Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K #-} module PathStructure.Empty where open import Equivalence open import Types split-path : {x y : ⊥} → x ≡ y → ⊥ split-path = J (λ _ _ _ → ⊥) id _ _ merge-path : {x y : ⊥} → ⊥ → x ≡ y merge-path = 0-elim split-merge-eq : {x y : ⊥} → (x ≡ y) ≃ ⊥ split-merge-eq = split-path , (merge-path , λ b → 0-elim b) , (merge-path , J (λ _ _ p → merge-path (split-path p) ≡ p) (λ b → 0-elim b) _ _)
{ "alphanum_fraction": 0.5437788018, "avg_line_length": 21.7, "ext": "agda", "hexsha": "10088c6888bc6db111fe4d5bc49ad4efaf1630f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/PathStructure/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/PathStructure/Empty.agda", "max_line_length": 47, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/PathStructure/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 174, "size": 434 }
module Interpreter where open import Agda.Builtin.IO using (IO) open import Agda.Builtin.Int using (pos) open import Agda.Builtin.Unit using (⊤) open import FFI.IO using (getContents; putStrLn; _>>=_; _>>_) open import FFI.Data.Aeson using (Value; eitherDecode) open import FFI.Data.Either using (Left; Right) open import FFI.Data.String using (String; _++_) open import FFI.Data.Text.Encoding using (encodeUtf8) open import FFI.System.Exit using (exitWith; ExitFailure) open import Luau.Syntax using (Block) open import Luau.Syntax.FromJSON using (blockFromJSON) open import Luau.Syntax.ToString using (blockToString) open import Luau.Run using (run; return; done; error) open import Luau.RuntimeError.ToString using (errToStringᴮ) open import Luau.Value.ToString using (valueToString) runBlock : ∀ {a} → Block a → IO ⊤ runBlock block with run block runBlock block | return V D = putStrLn (valueToString V) runBlock block | done D = putStrLn "nil" runBlock block | error E D = putStrLn (errToStringᴮ E) runJSON : Value → IO ⊤ runJSON value with blockFromJSON(value) runJSON value | (Left err) = putStrLn ("Luau error: " ++ err) >> exitWith (ExitFailure (pos 1)) runJSON value | (Right block) = runBlock block runString : String → IO ⊤ runString txt with eitherDecode (encodeUtf8 txt) runString txt | (Left err) = putStrLn ("JSON error: " ++ err) >> exitWith (ExitFailure (pos 1)) runString txt | (Right value) = runJSON value main : IO ⊤ main = getContents >>= runString
{ "alphanum_fraction": 0.7484787018, "avg_line_length": 37.9230769231, "ext": "agda", "hexsha": "fe311e57820c3003fc37dbfaa90bb0fb21789564", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Tr4shh/Roblox-Luau", "max_forks_repo_path": "prototyping/Interpreter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Tr4shh/Roblox-Luau", "max_issues_repo_path": "prototyping/Interpreter.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Tr4shh/Roblox-Luau", "max_stars_repo_path": "prototyping/Interpreter.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 401, "size": 1479 }
------------------------------------------------------------------------ -- Propositional truncation ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- Partly following the HoTT book. -- The module is parametrised by a notion of equality. The higher -- constructor of the HIT defining the propositional truncation uses -- path equality, but the supplied notion of equality is used for many -- other things. import Equality.Path as P module H-level.Truncation.Propositional {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Dec open import Prelude open import Logical-equivalence using (_⇔_) open import Bijection equality-with-J as Bijection using (_↔_) open import Embedding equality-with-J as Embedding hiding (id; _∘_) open import Equality.Decidable-UIP equality-with-J open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Equivalence.Erased equality-with-J using (_≃ᴱ_) open import Equivalence.Erased.Contractible-preimages equality-with-J as ECP using (_⁻¹ᴱ_) open import Equivalence-relation equality-with-J open import Erased.Cubical eq as E using (Erased; erased; Very-stableᴱ-≡; Erased-singleton) import Erased.Stability equality-with-J as ES open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J import H-level.Truncation.Church equality-with-J as Trunc open import H-level.Truncation.Propositional.Erased eq as TE using (∥_∥ᴱ; Surjectiveᴱ) open import Injection equality-with-J using (_↣_) open import Monad equality-with-J open import Preimage equality-with-J as Preimage using (_⁻¹_) open import Surjection equality-with-J as Surjection using (_↠_; Split-surjective) private variable a b c d p r ℓ : Level A A₁ A₂ B B₁ B₂ C D : Type a P Q : A → Type p R : A → A → Type r A↠B f k s x y : A -- Propositional truncation. data ∥_∥ (A : Type a) : Type a where ∣_∣ : A → ∥ A ∥ truncation-is-propositionᴾ : P.Is-proposition ∥ A ∥ -- The truncation produces propositions. truncation-is-proposition : Is-proposition ∥ A ∥ truncation-is-proposition = _↔_.from (H-level↔H-level 1) truncation-is-propositionᴾ -- A dependent eliminator, expressed using paths. record Elimᴾ′ {A : Type a} (P : ∥ A ∥ → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : (x : A) → P ∣ x ∣ truncation-is-propositionʳ : (p : P x) (q : P y) → P.[ (λ i → P (truncation-is-propositionᴾ x y i)) ] p ≡ q open Elimᴾ′ public elimᴾ′ : Elimᴾ′ P → (x : ∥ A ∥) → P x elimᴾ′ {A = A} {P = P} e = helper where module E′ = Elimᴾ′ e helper : (x : ∥ A ∥) → P x helper ∣ x ∣ = E′.∣∣ʳ x helper (truncation-is-propositionᴾ x y i) = E′.truncation-is-propositionʳ (helper x) (helper y) i -- A possibly more useful dependent eliminator, expressed using paths. record Elimᴾ {A : Type a} (P : ∥ A ∥ → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : (x : A) → P ∣ x ∣ truncation-is-propositionʳ : (x : ∥ A ∥) → P.Is-proposition (P x) open Elimᴾ public elimᴾ : Elimᴾ P → (x : ∥ A ∥) → P x elimᴾ e = elimᴾ′ e′ where module E′ = Elimᴾ e e′ : Elimᴾ′ _ e′ .∣∣ʳ = E′.∣∣ʳ e′ .truncation-is-propositionʳ _ _ = P.heterogeneous-irrelevance E′.truncation-is-propositionʳ -- A non-dependent eliminator, expressed using paths. record Recᴾ (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B truncation-is-propositionʳ : P.Is-proposition B open Recᴾ public recᴾ : Recᴾ A B → ∥ A ∥ → B recᴾ r = elimᴾ e where module R = Recᴾ r e : Elimᴾ _ e .∣∣ʳ = R.∣∣ʳ e .truncation-is-propositionʳ _ = R.truncation-is-propositionʳ -- A dependently typed eliminator. record Elim′ {A : Type a} (P : ∥ A ∥ → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : (x : A) → P ∣ x ∣ truncation-is-propositionʳ : (x : ∥ A ∥) → Is-proposition (P x) open Elim′ public elim′ : Elim′ P → (x : ∥ A ∥) → P x elim′ e = elimᴾ e′ where module E′ = Elim′ e e′ : Elimᴾ _ e′ .∣∣ʳ = E′.∣∣ʳ e′ .truncation-is-propositionʳ = _↔_.to (H-level↔H-level 1) ∘ E′.truncation-is-propositionʳ elim : (P : ∥ A ∥ → Type p) → (∀ x → Is-proposition (P x)) → ((x : A) → P ∣ x ∣) → (x : ∥ A ∥) → P x elim _ p f = elim′ λ where .∣∣ʳ → f .truncation-is-propositionʳ → p -- Primitive "recursion". record Rec′ (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B truncation-is-propositionʳ : Is-proposition B open Rec′ public rec′ : Rec′ A B → ∥ A ∥ → B rec′ r = recᴾ r′ where module R = Rec′ r r′ : Recᴾ _ _ r′ .∣∣ʳ = R.∣∣ʳ r′ .truncation-is-propositionʳ = _↔_.to (H-level↔H-level 1) R.truncation-is-propositionʳ rec : Is-proposition B → (A → B) → ∥ A ∥ → B rec p f = rec′ λ where .∣∣ʳ → f .truncation-is-propositionʳ → p -- A map function. ∥∥-map : (A → B) → ∥ A ∥ → ∥ B ∥ ∥∥-map f = rec truncation-is-proposition (∣_∣ ∘ f) -- The propositional truncation defined here is isomorphic to the one -- defined in H-level.Truncation.Church. ∥∥↔∥∥ : ∀ ℓ {a} {A : Type a} → ∥ A ∥ ↔ Trunc.∥ A ∥ 1 (a ⊔ ℓ) ∥∥↔∥∥ ℓ = record { surjection = record { logical-equivalence = record { to = rec (Trunc.truncation-has-correct-h-level 1 ext) Trunc.∣_∣₁ ; from = lower {ℓ = ℓ} ∘ Trunc.rec 1 (↑-closure 1 truncation-is-proposition) (lift ∘ ∣_∣) } ; right-inverse-of = λ _ → Trunc.truncation-has-correct-h-level 1 ext _ _ } ; left-inverse-of = λ _ → truncation-is-proposition _ _ } -- If A is merely inhabited (with erased proofs), then A is merely -- inhabited. ∥∥ᴱ→∥∥ : ∥ A ∥ᴱ → ∥ A ∥ ∥∥ᴱ→∥∥ = TE.rec λ where .TE.∣∣ʳ → ∣_∣ .TE.truncation-is-propositionʳ → truncation-is-proposition -- In an erased context the propositional truncation operator defined -- in H-level.Truncation.Propositional.Erased is equivalent to the one -- defined here. @0 ∥∥ᴱ≃∥∥ : ∥ A ∥ᴱ ≃ ∥ A ∥ ∥∥ᴱ≃∥∥ = Eq.⇔→≃ TE.truncation-is-proposition truncation-is-proposition ∥∥ᴱ→∥∥ (rec TE.truncation-is-proposition TE.∣_∣) mutual -- If A and B are logically equivalent, then functions of any kind can -- be constructed from ∥ A ∥ to ∥ B ∥. ∥∥-cong-⇔ : ∀ {k} → A ⇔ B → ∥ A ∥ ↝[ k ] ∥ B ∥ ∥∥-cong-⇔ A⇔B = ∥∥-cong-⇔′ (∣_∣ ∘ _⇔_.to A⇔B) (∣_∣ ∘ _⇔_.from A⇔B) -- A variant of the previous result. ∥∥-cong-⇔′ : ∀ {k} → (A → ∥ B ∥) → (B → ∥ A ∥) → ∥ A ∥ ↝[ k ] ∥ B ∥ ∥∥-cong-⇔′ A→∥B∥ B→∥A∥ = from-equivalence $ Eq.⇔→≃ truncation-is-proposition truncation-is-proposition (rec truncation-is-proposition A→∥B∥) (rec truncation-is-proposition B→∥A∥) -- The truncation operator preserves all kinds of functions. private ∥∥-cong-↣ : A ↣ B → ∥ A ∥ ↣ ∥ B ∥ ∥∥-cong-↣ f = record { to = ∥∥-map (_↣_.to f) ; injective = λ _ → truncation-is-proposition _ _ } ∥∥-cong : A ↝[ k ] B → ∥ A ∥ ↝[ k ] ∥ B ∥ ∥∥-cong {k = implication} = ∥∥-map ∥∥-cong {k = logical-equivalence} = ∥∥-cong-⇔ ∥∥-cong {k = surjection} = ∥∥-cong-⇔ ∘ _↠_.logical-equivalence ∥∥-cong {k = bijection} = ∥∥-cong-⇔ ∘ from-isomorphism ∥∥-cong {k = equivalence} = ∥∥-cong-⇔ ∘ from-isomorphism ∥∥-cong {k = equivalenceᴱ} = ∥∥-cong-⇔ ∘ _≃ᴱ_.logical-equivalence ∥∥-cong {k = injection} = ∥∥-cong-↣ ∥∥-cong {k = embedding} = _↔_.to (↣↔Embedding ext (mono₁ 1 truncation-is-proposition) (mono₁ 1 truncation-is-proposition)) ∘ ∥∥-cong-↣ ∘ Embedding.injection -- A form of idempotence for binary sums. idempotent : ∥ A ⊎ A ∥ ↔ ∥ A ∥ idempotent = ∥∥-cong-⇔ (record { to = [ id , id ]; from = inj₁ }) -- A generalised flattening lemma. flatten′ : (F : (Type ℓ → Type ℓ) → Type f) → (∀ {G H} → (∀ {A} → G A → H A) → F G → F H) → (F ∥_∥ → ∥ F id ∥) → ∥ F ∥_∥ ∥ ↔ ∥ F id ∥ flatten′ _ map f = record { surjection = record { logical-equivalence = record { to = rec truncation-is-proposition f ; from = ∥∥-map (map ∣_∣) } ; right-inverse-of = λ _ → truncation-is-proposition _ _ } ; left-inverse-of = λ _ → truncation-is-proposition _ _ } -- Nested truncations can be flattened. flatten : ∥ ∥ A ∥ ∥ ↔ ∥ A ∥ flatten {A = A} = flatten′ (λ F → F A) (λ f → f) id private -- Another flattening lemma, given as an example of how flatten′ can -- be used. ∥∃∥∥∥↔∥∃∥ : {B : A → Type b} → ∥ ∃ (∥_∥ ∘ B) ∥ ↔ ∥ ∃ B ∥ ∥∃∥∥∥↔∥∃∥ {B = B} = flatten′ (λ F → ∃ (F ∘ B)) (λ f → Σ-map id f) (uncurry λ x → ∥∥-map (x ,_)) -- A universe-polymorphic variant of bind. infixl 5 _>>=′_ _>>=′_ : ∥ A ∥ → (A → ∥ B ∥) → ∥ B ∥ x >>=′ f = _↔_.to flatten (∥∥-map f x) -- The universe-polymorphic variant of bind is associative. >>=′-associative : (x : ∥ A ∥) {f : A → ∥ B ∥} {g : B → ∥ C ∥} → x >>=′ (λ x → f x >>=′ g) ≡ x >>=′ f >>=′ g >>=′-associative x {f} {g} = elim (λ x → x >>=′ (λ x₁ → f x₁ >>=′ g) ≡ x >>=′ f >>=′ g) (λ _ → ⇒≡ 1 truncation-is-proposition) (λ _ → refl _) x instance -- The propositional truncation operator is a monad. raw-monad : ∀ {ℓ} → Raw-monad (∥_∥ {a = ℓ}) Raw-monad.return raw-monad = ∣_∣ Raw-monad._>>=_ raw-monad = _>>=′_ monad : ∀ {ℓ} → Monad (∥_∥ {a = ℓ}) Monad.raw-monad monad = raw-monad Monad.left-identity monad x f = refl _ Monad.associativity monad x _ _ = >>=′-associative x Monad.right-identity monad = elim _ (λ _ → ⇒≡ 1 truncation-is-proposition) (λ _ → refl _) -- Surjectivity. Surjective : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Surjective f = ∀ b → ∥ f ⁻¹ b ∥ -- The property Surjective f is a proposition. Surjective-propositional : {f : A → B} → Is-proposition (Surjective f) Surjective-propositional = Π-closure ext 1 λ _ → truncation-is-proposition -- In an erased context surjectivity with erased proofs is equivalent -- to surjectivity. -- -- It appears to me as if neither direction of this equivalence can be -- established if the erasure annotation is removed. @0 Surjectiveᴱ≃Surjective : Surjectiveᴱ f ≃ Surjective f Surjectiveᴱ≃Surjective {f = f} = (∀ y → ∥ f ⁻¹ᴱ y ∥ᴱ) ↝⟨ (∀-cong ext λ _ → ∥∥ᴱ≃∥∥) ⟩ (∀ y → ∥ f ⁻¹ᴱ y ∥) ↝⟨ (∀-cong ext λ _ → ∥∥-cong (inverse ECP.⁻¹≃⁻¹ᴱ)) ⟩□ (∀ y → ∥ f ⁻¹ y ∥) □ -- The function ∣_∣ is surjective. ∣∣-surjective : Surjective (∣_∣ {A = A}) ∣∣-surjective = elim _ (λ _ → truncation-is-proposition) (λ x → ∣ x , refl _ ∣) -- Split surjective functions are surjective. Split-surjective→Surjective : {f : A → B} → Split-surjective f → Surjective f Split-surjective→Surjective s = λ b → ∣ s b ∣ -- Being both surjective and an embedding is equivalent to being an -- equivalence. -- -- This is Corollary 4.6.4 from the first edition of the HoTT book -- (the proof is perhaps not quite identical). surjective×embedding≃equivalence : {f : A → B} → (Surjective f × Is-embedding f) ≃ Is-equivalence f surjective×embedding≃equivalence {f = f} = (Surjective f × Is-embedding f) ↔⟨ ∀-cong ext (λ _ → ∥∥↔∥∥ lzero) ×-cong F.id ⟩ (Trunc.Surjective _ f × Is-embedding f) ↝⟨ Trunc.surjective×embedding≃equivalence lzero ext ⟩□ Is-equivalence f □ -- If the underlying type is a proposition, then truncations of the -- type are isomorphic to the type itself. ∥∥↔ : Is-proposition A → ∥ A ∥ ↔ A ∥∥↔ A-prop = record { surjection = record { logical-equivalence = record { to = rec A-prop id ; from = ∣_∣ } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → truncation-is-proposition _ _ } -- A type is a proposition if it is equivalent to the propositional -- truncation of some type. ≃∥∥→Is-proposition : A ≃ ∥ B ∥ → Is-proposition A ≃∥∥→Is-proposition A≃∥B∥ a₁ a₂ = $⟨ truncation-is-proposition _ _ ⟩ _≃_.to A≃∥B∥ a₁ ≡ _≃_.to A≃∥B∥ a₂ ↝⟨ Eq.≃-≡ A≃∥B∥ ⟩□ a₁ ≡ a₂ □ -- A simple isomorphism involving propositional truncation. ∥∥×↔ : ∥ A ∥ × A ↔ A ∥∥×↔ = drop-⊤-left-× λ a → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible truncation-is-proposition ∣ a ∣ -- A variant of ∥∥×↔, introduced to ensure that the right-inverse-of -- proof is, by definition, simple. ∥∥×≃ : (∥ A ∥ × A) ≃ A ∥∥×≃ = Eq.↔→≃ proj₂ (λ x → ∣ x ∣ , x) refl (λ _ → cong (_, _) (truncation-is-proposition _ _)) _ : _≃_.right-inverse-of ∥∥×≃ x ≡ refl _ _ = refl _ -- A variant of ∥∥×≃. Erased-∥∥×≃ : (Erased ∥ A ∥ × A) ≃ A Erased-∥∥×≃ = Eq.↔→≃ proj₂ (λ x → E.[ ∣ x ∣ ] , x) refl (λ (_ , x) → cong (_, x) (E.[]-cong E.[ truncation-is-proposition _ _ ])) _ : _≃_.right-inverse-of Erased-∥∥×≃ x ≡ refl _ _ = refl _ -- ∥_∥ commutes with _×_. ∥∥×∥∥↔∥×∥ : (∥ A ∥ × ∥ B ∥) ↔ ∥ A × B ∥ ∥∥×∥∥↔∥×∥ = record { surjection = record { logical-equivalence = record { from = λ p → ∥∥-map proj₁ p , ∥∥-map proj₂ p ; to = λ { (x , y) → rec truncation-is-proposition (λ x → rec truncation-is-proposition (λ y → ∣ x , y ∣) y) x } } ; right-inverse-of = λ _ → truncation-is-proposition _ _ } ; left-inverse-of = λ _ → ×-closure 1 truncation-is-proposition truncation-is-proposition _ _ } -- Variants of proj₁-closure. private H-level-×₁-lemma : (A → ∥ B ∥) → ∀ n → H-level (suc n) (A × B) → H-level (suc n) A H-level-×₁-lemma inhabited n h = [inhabited⇒+]⇒+ n λ a → rec (H-level-propositional ext (suc n)) (λ b → proj₁-closure (λ _ → b) (suc n) h) (inhabited a) H-level-×₁ : (A → ∥ B ∥) → ∀ n → H-level n (A × B) → H-level n A H-level-×₁ inhabited zero h = propositional⇒inhabited⇒contractible (H-level-×₁-lemma inhabited 0 (mono₁ 0 h)) (proj₁ (proj₁ h)) H-level-×₁ inhabited (suc n) = H-level-×₁-lemma inhabited n H-level-×₂ : (B → ∥ A ∥) → ∀ n → H-level n (A × B) → H-level n B H-level-×₂ {B = B} {A = A} inhabited n = H-level n (A × B) ↝⟨ H-level.respects-surjection (from-bijection ×-comm) n ⟩ H-level n (B × A) ↝⟨ H-level-×₁ inhabited n ⟩□ H-level n B □ -- If A is merely inhabited, then the truncation of A is isomorphic to -- the unit type. inhabited⇒∥∥↔⊤ : ∥ A ∥ → ∥ A ∥ ↔ ⊤ inhabited⇒∥∥↔⊤ ∥a∥ = _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible truncation-is-proposition ∥a∥ -- If A is not inhabited, then the propositional truncation of A is -- isomorphic to the empty type. not-inhabited⇒∥∥↔⊥ : ¬ A → ∥ A ∥ ↔ ⊥ {ℓ = ℓ} not-inhabited⇒∥∥↔⊥ {A = A} = ¬ A ↝⟨ (λ ¬a ∥a∥ → rec ⊥-propositional ¬a ∥a∥) ⟩ ¬ ∥ A ∥ ↝⟨ inverse ∘ Bijection.⊥↔uninhabited ⟩□ ∥ A ∥ ↔ ⊥ □ -- The negation of the truncation of A is isomorphic to the negation -- of A. ¬∥∥↔¬ : ¬ ∥ A ∥ ↔ ¬ A ¬∥∥↔¬ {A = A} = record { surjection = record { logical-equivalence = record { to = λ f → f ∘ ∣_∣ ; from = rec ⊥-propositional } ; right-inverse-of = λ _ → ¬-propositional ext _ _ } ; left-inverse-of = λ _ → ¬-propositional ext _ _ } -- The function λ R x y → ∥ R x y ∥ preserves Is-equivalence-relation. ∥∥-preserves-Is-equivalence-relation : Is-equivalence-relation R → Is-equivalence-relation (λ x y → ∥ R x y ∥) ∥∥-preserves-Is-equivalence-relation R-equiv = record { reflexive = ∣ reflexive ∣ ; symmetric = symmetric ⟨$⟩_ ; transitive = λ p q → transitive ⟨$⟩ p ⊛ q } where open Is-equivalence-relation R-equiv mutual -- The propositional truncation's universal property. universal-property : Is-proposition B → (∥ A ∥ → B) ≃ (A → B) universal-property B-prop = universal-property-Π (λ _ → B-prop) -- A generalisation of the universal property. universal-property-Π : (∀ x → Is-proposition (P x)) → ((x : ∥ A ∥) → P x) ≃ ((x : A) → P ∣ x ∣) universal-property-Π {A = A} {P = P} P-prop = ((x : ∥ A ∥) → P x) ↝⟨ Eq.⇔→≃ prop truncation-is-proposition (λ f → ∣ f ∘ ∣_∣ ∣) (rec prop (elim _ P-prop)) ⟩ ∥ ((x : A) → P ∣ x ∣) ∥ ↔⟨ ∥∥↔ (Π-closure ext 1 λ _ → P-prop _) ⟩□ ((x : A) → P ∣ x ∣) □ where prop = Π-closure ext 1 λ _ → P-prop _ private -- The universal property computes in the right way. _ : (B-prop : Is-proposition B) (f : ∥ A ∥ → B) → _≃_.to (universal-property B-prop) f ≡ f ∘ ∣_∣ _ = λ _ _ → refl _ _ : (B-prop : Is-proposition B) (f : A → B) (x : A) → _≃_.from (universal-property B-prop) f ∣ x ∣ ≡ f x _ = λ _ _ _ → refl _ -- If there is a function f : A → ∥ B ∥, then f is an equivalence if -- and only if the second projection from A × B is an equivalence. equivalence-to-∥∥≃proj₂-equivalence : (f : A → ∥ B ∥) → Is-equivalence f ≃ Is-equivalence (proj₂ ⦂ (A × B → B)) equivalence-to-∥∥≃proj₂-equivalence {A = A} {B = B} f = Eq.⇔→≃ (Eq.propositional ext _) (Eq.propositional ext _) (λ eq → _≃_.is-equivalence (A × B ↝⟨ (×-cong₁ λ _ → Eq.⟨ _ , eq ⟩) ⟩ ∥ B ∥ × B ↝⟨ ∥∥×≃ ⟩□ B □)) from where from : Is-equivalence proj₂ → Is-equivalence f from eq = _≃_.is-equivalence $ Eq.⇔→≃ A-prop truncation-is-proposition _ (rec A-prop (proj₁ ∘ _≃_.from Eq.⟨ _ , eq ⟩)) where A-prop₁ : B → Is-proposition A A-prop₁ b a₁ a₂ = $⟨ refl _ ⟩ b ≡ b ↔⟨⟩ proj₂ (a₁ , b) ≡ proj₂ (a₂ , b) ↔⟨ Eq.≃-≡ Eq.⟨ _ , eq ⟩ ⟩ (a₁ , b) ≡ (a₂ , b) ↝⟨ cong proj₁ ⟩□ a₁ ≡ a₂ □ A-prop : Is-proposition A A-prop = [inhabited⇒+]⇒+ 0 (A ↝⟨ f ⟩ ∥ B ∥ ↝⟨ rec (H-level-propositional ext 1) A-prop₁ ⟩□ Is-proposition A □) -- There is an equivalence between "A is equivalent to ∥ B ∥" and -- "there is a function from A to ∥ B ∥ and the second projection is -- an equivalence from A × B to B". ≃∥∥≃→∥∥×proj₂-equivalence : (A ≃ ∥ B ∥) ≃ ((A → ∥ B ∥) × Is-equivalence (proj₂ ⦂ (A × B → B))) ≃∥∥≃→∥∥×proj₂-equivalence {A = A} {B = B} = A ≃ ∥ B ∥ ↔⟨ Eq.≃-as-Σ ⟩ (∃ λ (f : A → ∥ B ∥) → Is-equivalence f) ↝⟨ ∃-cong equivalence-to-∥∥≃proj₂-equivalence ⟩□ (A → ∥ B ∥) × Is-equivalence (proj₂ ⦂ (A × B → B)) □ -- The following three results come from "Generalizations of Hedberg's -- Theorem" by Kraus, Escardó, Coquand and Altenkirch. -- Types with constant endofunctions are "h-stable" (meaning that -- "mere inhabitance" implies inhabitance). constant-endofunction⇒h-stable : {f : A → A} → Constant f → ∥ A ∥ → A constant-endofunction⇒h-stable {A = A} {f = f} c = ∥ A ∥ ↝⟨ rec (fixpoint-lemma f c) (λ x → f x , c (f x) x) ⟩ (∃ λ (x : A) → f x ≡ x) ↝⟨ proj₁ ⟩□ A □ -- Having a constant endofunction is logically equivalent to being -- h-stable. constant-endofunction⇔h-stable : (∃ λ (f : A → A) → Constant f) ⇔ (∥ A ∥ → A) constant-endofunction⇔h-stable = record { to = λ { (_ , c) → constant-endofunction⇒h-stable c } ; from = λ f → f ∘ ∣_∣ , λ x y → f ∣ x ∣ ≡⟨ cong f $ truncation-is-proposition _ _ ⟩∎ f ∣ y ∣ ∎ } -- A type is a set if and only if it is "h-separated" (which means -- that all its equality types are h-stable). Is-set⇔h-separated : Is-set A ⇔ ((x y : A) → ∥ x ≡ y ∥ → x ≡ y) Is-set⇔h-separated {A = A} = record { to = λ A-set _ _ → rec A-set id ; from = ((x y : A) → ∥ x ≡ y ∥ → x ≡ y) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → _⇔_.from constant-endofunction⇔h-stable) ⟩ ((x y : A) → ∃ λ (f : x ≡ y → x ≡ y) → Constant f) ↝⟨ constant⇒set ⟩□ Is-set A □ } -- If A is decided, then ∥ A ∥ is decided. Dec→Dec-∥∥ : Dec A → Dec ∥ A ∥ Dec→Dec-∥∥ (yes a) = yes ∣ a ∣ Dec→Dec-∥∥ (no ¬A) = no (_↔_.from ¬∥∥↔¬ ¬A) -- If a binary relation can be decided, then the propositional -- truncation of the relation can also be decided. decidable→decidable-∥∥ : {P : A → B → Type p} → ((x : A) (y : B) → Dec (P x y)) → ((x : A) (y : B) → Dec ∥ P x y ∥) decidable→decidable-∥∥ dec = λ x y → Dec→Dec-∥∥ (dec x y) -- If A is decided, then one can convert between ∥ A ∥ and A. Dec→∥∥⇔ : Dec A → ∥ A ∥ ⇔ A Dec→∥∥⇔ _ ._⇔_.from = ∣_∣ Dec→∥∥⇔ (yes a) ._⇔_.to = λ _ → a Dec→∥∥⇔ (no ¬A) ._⇔_.to = ⊥-elim ∘ rec ⊥-propositional ¬A -- Variants of the following two lemmas were communicated to me by -- Nicolai Kraus. They are closely related to Lemma 2.1 in his paper -- "The General Universal Property of the Propositional Truncation". -- A variant of ∥∥×≃. drop-∥∥ : {B : A → Type b} → (A → ∥ C ∥) → (∥ C ∥ → ∀ x → B x) ≃ (∀ x → B x) drop-∥∥ {C = C} {B = B} inh = Eq.with-other-inverse ((∥ C ∥ → ∀ a → B a) ↔⟨ Π-comm ⟩ (∀ a → ∥ C ∥ → B a) ↝⟨ (∀-cong ext λ a → drop-⊤-left-Π ext (inhabited⇒∥∥↔⊤ (inh a))) ⟩□ (∀ a → B a) □) (λ f _ → f) (λ f → ⟨ext⟩ λ _ → ⟨ext⟩ λ a → _ ≡⟨ subst-const _ ⟩∎ f a ∎) -- Another variant of ∥∥×≃. push-∥∥ : {B : A → Type b} {C : (∀ x → B x) → Type c} → (A → ∥ D ∥) → (∥ D ∥ → ∃ λ (f : ∀ x → B x) → C f) ≃ (∃ λ (f : ∀ x → B x) → ∥ D ∥ → C f) push-∥∥ {D = D} {B = B} {C = C} inh = (∥ D ∥ → ∃ λ (f : ∀ c → B c) → C f) ↔⟨ ΠΣ-comm ⟩ (∃ λ (f : ∥ D ∥ → ∀ c → B c) → ∀ b → C (f b)) ↝⟨ (Σ-cong-contra (inverse $ drop-∥∥ inh) λ _ → F.id) ⟩□ (∃ λ (f : ∀ c → B c) → ∥ D ∥ → C f) □ -- Having a coherently constant function into a groupoid is equivalent -- to having a function from a propositionally truncated type into the -- groupoid. This result is Proposition 2.3 in "The General Universal -- Property of the Propositional Truncation" by Kraus. Coherently-constant : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Coherently-constant f = ∃ λ (c : Constant f) → ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃ coherently-constant-function≃∥inhabited∥⇒inhabited : {A : Type a} {B : Type b} → H-level 3 B → (∃ λ (f : A → B) → Coherently-constant f) ≃ (∥ A ∥ → B) coherently-constant-function≃∥inhabited∥⇒inhabited {a = a} {b = b} {A = A} {B} B-groupoid = (∃ λ (f : A → B) → Coherently-constant f) ↝⟨ Trunc.coherently-constant-function≃∥inhabited∥⇒inhabited lzero ext B-groupoid ⟩ (Trunc.∥ A ∥ 1 (a ⊔ b) → B) ↝⟨ →-cong₁ ext (inverse $ ∥∥↔∥∥ (a ⊔ b)) ⟩□ (∥ A ∥ → B) □ private -- One direction of the proposition above computes in the right way. to-coherently-constant-function≃∥inhabited∥⇒inhabited : (h : H-level 3 B) (f : ∃ λ (f : A → B) → Coherently-constant f) (x : A) → _≃_.to (coherently-constant-function≃∥inhabited∥⇒inhabited h) f ∣ x ∣ ≡ proj₁ f x to-coherently-constant-function≃∥inhabited∥⇒inhabited _ _ _ = refl _ -- Having a constant function into a set is equivalent to having a -- function from a propositionally truncated type into the set. The -- statement of this result is that of Proposition 2.2 in "The General -- Universal Property of the Propositional Truncation" by Kraus, but -- it uses a different proof: as observed by Kraus this result follows -- from Proposition 2.3. constant-function≃∥inhabited∥⇒inhabited : {A : Type a} {B : Type b} → Is-set B → (∃ λ (f : A → B) → Constant f) ≃ (∥ A ∥ → B) constant-function≃∥inhabited∥⇒inhabited {a = a} {b = b} {A = A} {B} B-set = (∃ λ (f : A → B) → Constant f) ↝⟨ Trunc.constant-function≃∥inhabited∥⇒inhabited lzero ext B-set ⟩ (Trunc.∥ A ∥ 1 (a ⊔ b) → B) ↝⟨ →-cong₁ ext (inverse $ ∥∥↔∥∥ (a ⊔ b)) ⟩□ (∥ A ∥ → B) □ private -- One direction of the proposition above computes in the right way. to-constant-function≃∥inhabited∥⇒inhabited : (B-set : Is-set B) (f : ∃ λ (f : A → B) → Constant f) (x : A) → _≃_.to (constant-function≃∥inhabited∥⇒inhabited B-set) f ∣ x ∣ ≡ proj₁ f x to-constant-function≃∥inhabited∥⇒inhabited _ _ _ = refl _ -- The axiom of choice, in one of the alternative forms given in the -- HoTT book (§3.8). Axiom-of-choice : (a b : Level) → Type (lsuc (a ⊔ b)) Axiom-of-choice a b = {A : Type a} {B : A → Type b} → Is-set A → (∀ x → ∥ B x ∥) → ∥ (∀ x → B x) ∥ -- The axiom of choice can be turned into a bijection. choice-bijection : {A : Type a} {B : A → Type b} → Axiom-of-choice a b → Is-set A → (∀ x → ∥ B x ∥) ↔ ∥ (∀ x → B x) ∥ choice-bijection choice A-set = record { surjection = record { logical-equivalence = record { to = choice A-set ; from = λ f x → ∥∥-map (_$ x) f } ; right-inverse-of = λ _ → truncation-is-proposition _ _ } ; left-inverse-of = λ _ → (Π-closure ext 1 λ _ → truncation-is-proposition) _ _ } -- The axiom of countable choice, stated in a corresponding way. Axiom-of-countable-choice : (b : Level) → Type (lsuc b) Axiom-of-countable-choice b = {B : ℕ → Type b} → (∀ x → ∥ B x ∥) → ∥ (∀ x → B x) ∥ -- The axiom of countable choice can be turned into a bijection. countable-choice-bijection : {B : ℕ → Type b} → Axiom-of-countable-choice b → (∀ x → ∥ B x ∥) ↔ ∥ (∀ x → B x) ∥ countable-choice-bijection cc = record { surjection = record { logical-equivalence = record { to = cc ; from = λ f x → ∥∥-map (_$ x) f } ; right-inverse-of = λ _ → truncation-is-proposition _ _ } ; left-inverse-of = λ _ → (Π-closure ext 1 λ _ → truncation-is-proposition) _ _ } ------------------------------------------------------------------------ -- Definitions related to truncated binary sums -- Truncated binary sums. infixr 1 _∥⊎∥_ _∥⊎∥_ : Type a → Type b → Type (a ⊔ b) A ∥⊎∥ B = ∥ A ⊎ B ∥ -- Introduction rules. ∣inj₁∣ : A → A ∥⊎∥ B ∣inj₁∣ = ∣_∣ ∘ inj₁ ∣inj₂∣ : B → A ∥⊎∥ B ∣inj₂∣ = ∣_∣ ∘ inj₂ -- _∥⊎∥_ is pointwise propositional. ∥⊎∥-propositional : Is-proposition (A ∥⊎∥ B) ∥⊎∥-propositional = truncation-is-proposition -- _∥⊎∥_ preserves all kinds of functions. infixr 1 _∥⊎∥-cong_ _∥⊎∥-cong_ : A₁ ↝[ k ] A₂ → B₁ ↝[ k ] B₂ → A₁ ∥⊎∥ B₁ ↝[ k ] A₂ ∥⊎∥ B₂ A₁↝A₂ ∥⊎∥-cong B₁↝B₂ = ∥∥-cong (A₁↝A₂ ⊎-cong B₁↝B₂) -- _∥⊎∥_ is commutative. ∥⊎∥-comm : A ∥⊎∥ B ↔ B ∥⊎∥ A ∥⊎∥-comm = ∥∥-cong ⊎-comm -- If one truncates the types to the left or right of _∥⊎∥_, then one -- ends up with an isomorphic type. truncate-left-∥⊎∥ : A ∥⊎∥ B ↔ ∥ A ∥ ∥⊎∥ B truncate-left-∥⊎∥ = inverse $ flatten′ (λ F → F _ ⊎ _) (λ f → ⊎-map f id) [ ∥∥-map inj₁ , ∣inj₂∣ ] truncate-right-∥⊎∥ : A ∥⊎∥ B ↔ A ∥⊎∥ ∥ B ∥ truncate-right-∥⊎∥ {A = A} {B = B} = A ∥⊎∥ B ↝⟨ ∥⊎∥-comm ⟩ B ∥⊎∥ A ↝⟨ truncate-left-∥⊎∥ ⟩ ∥ B ∥ ∥⊎∥ A ↝⟨ ∥⊎∥-comm ⟩□ A ∥⊎∥ ∥ B ∥ □ -- _∥⊎∥_ is associative. ∥⊎∥-assoc : A ∥⊎∥ (B ∥⊎∥ C) ↔ (A ∥⊎∥ B) ∥⊎∥ C ∥⊎∥-assoc {A = A} {B = B} {C = C} = ∥ A ⊎ ∥ B ⊎ C ∥ ∥ ↝⟨ inverse truncate-right-∥⊎∥ ⟩ ∥ A ⊎ B ⊎ C ∥ ↝⟨ ∥∥-cong ⊎-assoc ⟩ ∥ (A ⊎ B) ⊎ C ∥ ↝⟨ truncate-left-∥⊎∥ ⟩□ ∥ ∥ A ⊎ B ∥ ⊎ C ∥ □ -- ⊥ is a left and right identity of _∥⊎∥_ if the other argument is a -- proposition. ∥⊎∥-left-identity : Is-proposition A → ⊥ {ℓ = ℓ} ∥⊎∥ A ↔ A ∥⊎∥-left-identity {A = A} A-prop = ∥ ⊥ ⊎ A ∥ ↝⟨ ∥∥-cong ⊎-left-identity ⟩ ∥ A ∥ ↝⟨ ∥∥↔ A-prop ⟩□ A □ ∥⊎∥-right-identity : Is-proposition A → A ∥⊎∥ ⊥ {ℓ = ℓ} ↔ A ∥⊎∥-right-identity {A = A} A-prop = A ∥⊎∥ ⊥ ↔⟨ ∥⊎∥-comm ⟩ ⊥ ∥⊎∥ A ↔⟨ ∥⊎∥-left-identity A-prop ⟩□ A □ -- _∥⊎∥_ is idempotent for propositions. ∥⊎∥-idempotent : Is-proposition A → A ∥⊎∥ A ↔ A ∥⊎∥-idempotent {A = A} A-prop = ∥ A ⊎ A ∥ ↝⟨ idempotent ⟩ ∥ A ∥ ↝⟨ ∥∥↔ A-prop ⟩□ A □ -- Sometimes a truncated binary sum is isomorphic to one of its -- summands. drop-left-∥⊎∥ : Is-proposition B → (A → B) → A ∥⊎∥ B ↔ B drop-left-∥⊎∥ B-prop A→B = _≃_.bijection $ Eq.⇔→≃ ∥⊎∥-propositional B-prop (rec B-prop [ to-implication A→B , id ]) ∣inj₂∣ drop-right-∥⊎∥ : Is-proposition A → (B → A) → A ∥⊎∥ B ↔ A drop-right-∥⊎∥ {A = A} {B = B} A-prop B→A = A ∥⊎∥ B ↝⟨ ∥⊎∥-comm ⟩ B ∥⊎∥ A ↝⟨ drop-left-∥⊎∥ A-prop B→A ⟩□ A □ drop-⊥-right-∥⊎∥ : Is-proposition A → ¬ B → A ∥⊎∥ B ↔ A drop-⊥-right-∥⊎∥ A-prop ¬B = drop-right-∥⊎∥ A-prop (⊥-elim ∘ ¬B) drop-⊥-left-∥⊎∥ : Is-proposition B → ¬ A → A ∥⊎∥ B ↔ B drop-⊥-left-∥⊎∥ B-prop ¬A = drop-left-∥⊎∥ B-prop (⊥-elim ∘ ¬A) -- A type of functions from a truncated binary sum to a family of -- propositions can be expressed as a binary product of function -- types. Π∥⊎∥↔Π×Π : (∀ x → Is-proposition (P x)) → ((x : A ∥⊎∥ B) → P x) ↔ ((x : A) → P (∣inj₁∣ x)) × ((y : B) → P (∣inj₂∣ y)) Π∥⊎∥↔Π×Π {A = A} {B = B} {P = P} P-prop = ((x : A ∥⊎∥ B) → P x) ↔⟨ universal-property-Π P-prop ⟩ ((x : A ⊎ B) → P ∣ x ∣) ↝⟨ Π⊎↔Π×Π ext ⟩□ ((x : A) → P (∣inj₁∣ x)) × ((y : B) → P (∣inj₂∣ y)) □ -- Two distributivity laws for Σ and _∥⊎∥_. Σ-∥⊎∥-distrib-left : Is-proposition A → Σ A (λ x → P x ∥⊎∥ Q x) ↔ Σ A P ∥⊎∥ Σ A Q Σ-∥⊎∥-distrib-left {P = P} {Q = Q} A-prop = (∃ λ x → ∥ P x ⊎ Q x ∥) ↝⟨ inverse $ ∥∥↔ (Σ-closure 1 A-prop λ _ → ∥⊎∥-propositional) ⟩ ∥ (∃ λ x → ∥ P x ⊎ Q x ∥) ∥ ↝⟨ flatten′ (λ F → (∃ λ x → F (P x ⊎ Q x))) (λ f → Σ-map id f) (uncurry λ x → ∥∥-map (x ,_)) ⟩ ∥ (∃ λ x → P x ⊎ Q x) ∥ ↝⟨ ∥∥-cong ∃-⊎-distrib-left ⟩□ ∥ ∃ P ⊎ ∃ Q ∥ □ Σ-∥⊎∥-distrib-right : (∀ x → Is-proposition (P x)) → Σ (A ∥⊎∥ B) P ↔ Σ A (P ∘ ∣inj₁∣) ∥⊎∥ Σ B (P ∘ ∣inj₂∣) Σ-∥⊎∥-distrib-right {A = A} {B = B} {P = P} P-prop = _≃_.bijection $ Eq.⇔→≃ prop₂ prop₁ (uncurry $ elim _ (λ _ → Π-closure ext 1 λ _ → prop₁) λ where (inj₁ x) y → ∣ inj₁ (x , y) ∣ (inj₂ x) y → ∣ inj₂ (x , y) ∣) (rec prop₂ [ Σ-map ∣inj₁∣ id , Σ-map ∣inj₂∣ id ]) where prop₁ = ∥⊎∥-propositional prop₂ = Σ-closure 1 ∥⊎∥-propositional P-prop -- A variant of one of De Morgan's laws. ¬∥⊎∥¬↔¬× : Dec (¬ A) → Dec (¬ B) → ¬ A ∥⊎∥ ¬ B ↔ ¬ (A × B) ¬∥⊎∥¬↔¬× {A = A} {B = B} dec-¬A dec-¬B = record { surjection = record { logical-equivalence = record { to = rec (¬-propositional ext) ¬⊎¬→׬ ; from = ∣_∣ ∘ _↠_.from (¬⊎¬↠¬× ext dec-¬A dec-¬B) } ; right-inverse-of = λ _ → ¬-propositional ext _ _ } ; left-inverse-of = λ _ → ∥⊎∥-propositional _ _ } -- If ∥ A ∥ is decided, then A ∥⊎∥ B is equivalent to A ∥⊎∥ ¬ A × B. ∥⊎∥≃∥⊎∥¬× : Dec ∥ A ∥ → (A ∥⊎∥ B) ≃ (A ∥⊎∥ ¬ A × B) ∥⊎∥≃∥⊎∥¬× (yes ∥A∥) = Eq.⇔→≃ ∥⊎∥-propositional ∥⊎∥-propositional (const (∥∥-map inj₁ ∥A∥)) (id ∥⊎∥-cong proj₂) ∥⊎∥≃∥⊎∥¬× (no ¬∥A∥) = Eq.⇔→≃ ∥⊎∥-propositional ∥⊎∥-propositional (id ∥⊎∥-cong (¬∥A∥ ∘ ∣_∣) ,_) (id ∥⊎∥-cong proj₂) -- If ∥ B ∥ is decided, then A ∥⊎∥ B is equivalent to ¬ B × A ∥⊎∥ B. ∥⊎∥≃¬×∥⊎∥ : Dec ∥ B ∥ → (A ∥⊎∥ B) ≃ (¬ B × A ∥⊎∥ B) ∥⊎∥≃¬×∥⊎∥ {B = B} {A = A} dec-∥B∥ = A ∥⊎∥ B ↔⟨ ∥⊎∥-comm ⟩ B ∥⊎∥ A ↝⟨ ∥⊎∥≃∥⊎∥¬× dec-∥B∥ ⟩ B ∥⊎∥ ¬ B × A ↔⟨ ∥⊎∥-comm ⟩□ ¬ B × A ∥⊎∥ B □ ------------------------------------------------------------------------ -- Code related to Erased-singleton -- A corollary of erased-singleton-with-erased-center-propositional. ↠→↔Erased-singleton : {@0 y : B} (A↠B : A ↠ B) → Very-stableᴱ-≡ B → ∥ (∃ λ (x : A) → Erased (_↠_.to A↠B x ≡ y)) ∥ ↔ Erased-singleton y ↠→↔Erased-singleton {A = A} {y = y} A↠B s = ∥ (∃ λ (x : A) → Erased (_↠_.to A↠B x ≡ y)) ∥ ↝⟨ ∥∥-cong-⇔ (Surjection.Σ-cong-⇔ A↠B λ _ → F.id) ⟩ ∥ Erased-singleton y ∥ ↝⟨ ∥∥↔ (E.erased-singleton-with-erased-center-propositional s) ⟩□ Erased-singleton y □ mutual -- The right-to-left direction of the previous lemma does not depend -- on the assumption of stability. ↠→Erased-singleton→ : {@0 y : B} (A↠B : A ↠ B) → Erased-singleton y → ∥ (∃ λ (x : A) → Erased (_↠_.to A↠B x ≡ y)) ∥ ↠→Erased-singleton→ = _ -- Agda can infer the definition. _ : _↔_.from (↠→↔Erased-singleton A↠B s) x ≡ ↠→Erased-singleton→ A↠B x _ = refl _ -- A corollary of Σ-Erased-Erased-singleton↔ and ↠→↔Erased-singleton. Σ-Erased-∥-Σ-Erased-≡-∥↔ : (A↠B : A ↠ B) → Very-stableᴱ-≡ B → (∃ λ (x : Erased B) → ∥ (∃ λ (y : A) → Erased (_↠_.to A↠B y ≡ erased x)) ∥) ↔ B Σ-Erased-∥-Σ-Erased-≡-∥↔ {A = A} {B = B} A↠B s = (∃ λ (x : Erased B) → ∥ (∃ λ (y : A) → Erased (_↠_.to A↠B y ≡ erased x)) ∥) ↝⟨ (∃-cong λ _ → ↠→↔Erased-singleton A↠B s) ⟩ (∃ λ (x : Erased B) → Erased-singleton (erased x)) ↝⟨ E.Σ-Erased-Erased-singleton↔ ⟩□ B □ mutual -- Again the right-to-left direction of the previous lemma does not -- depend on the assumption of stability. →Σ-Erased-∥-Σ-Erased-≡-∥ : (A↠B : A ↠ B) → B → ∃ λ (x : Erased B) → ∥ (∃ λ (y : A) → Erased (_↠_.to A↠B y ≡ erased x)) ∥ →Σ-Erased-∥-Σ-Erased-≡-∥ = _ -- Agda can infer the definition. _ : _↔_.from (Σ-Erased-∥-Σ-Erased-≡-∥↔ A↠B s) x ≡ →Σ-Erased-∥-Σ-Erased-≡-∥ A↠B x _ = refl _ -- In an erased context the left-to-right direction of -- Σ-Erased-∥-Σ-Erased-≡-∥↔ returns the erased first component. @0 to-Σ-Erased-∥-Σ-Erased-≡-∥↔≡ : ∀ (A↠B : A ↠ B) (s : Very-stableᴱ-≡ B) x → _↔_.to (Σ-Erased-∥-Σ-Erased-≡-∥↔ A↠B s) x ≡ erased (proj₁ x) to-Σ-Erased-∥-Σ-Erased-≡-∥↔≡ A↠B s (E.[ x ] , y) = _↔_.to (Σ-Erased-∥-Σ-Erased-≡-∥↔ A↠B s) (E.[ x ] , y) ≡⟨⟩ proj₁ (_↔_.to (↠→↔Erased-singleton A↠B s) y) ≡⟨ erased (proj₂ (_↔_.to (↠→↔Erased-singleton A↠B s) y)) ⟩∎ x ∎
{ "alphanum_fraction": 0.5261153587, "avg_line_length": 30.3170515098, "ext": "agda", "hexsha": "03858ee63aed33d85bfb08109a4bbc8b4c5c0431", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/H-level/Truncation/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/H-level/Truncation/Propositional.agda", "max_line_length": 127, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/H-level/Truncation/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 15121, "size": 34137 }
-- Andreas, 2016-04-18 Issue 1834 regression (extracted from larger test case) -- {-# OPTIONS -v tc.cover:30 #-} data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ record Stream (A : Set) : Set where coinductive constructor _∷_ field head : A tail : Stream A open Stream weird' : (n : ℕ) → Stream ℕ head (weird' zero) = zero tail (weird' zero) = weird' zero ( weird' (suc n)) = n ∷ tail (weird' n)
{ "alphanum_fraction": 0.5976470588, "avg_line_length": 21.25, "ext": "agda", "hexsha": "5640fba4e06c633ec6c2b8272cff8f0951a3884a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1834e.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1834e.agda", "max_line_length": 78, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1834e.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 153, "size": 425 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Unary.Subtype where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Relation.Unary open import Cubical.Data.Nat private variable a ℓ ℓ′ : Level A : Type a Subtype : (P : Pred A ℓ) → Type _ Subtype {A = A} P = Σ[ x ∈ A ] x ∈ P module _ (P : Pred A ℓ) where isOfHLevelSubtype : ∀ n → isOfHLevel (suc n) A → isOfHLevel (suc n) (Subtype P) isOfHLevelSubtype n hA = isOfHLevelΣ (suc n) hA (λ _ → isProp→isOfHLevelSuc n (isProp[ P ] _)) isSetSubtype : isSet A → isSet (Subtype P) isSetSubtype = isOfHLevelSubtype 1 inclusion : (P : Pred A ℓ) (Q : Pred A ℓ′) → P ⊆ Q → Subtype P → Subtype Q inclusion P Q P⊆Q = λ (x , Px) → (x , P⊆Q Px) ⇔-equiv : (P : Pred A ℓ) (Q : Pred A ℓ′) → P ⇔ Q → Subtype P ≃ Subtype Q ⇔-equiv P Q (P⊆Q , Q⊆P) = isoToEquiv (iso (inclusion P Q P⊆Q) (inclusion Q P Q⊆P) (λ (x , Qx) → cong (x ,_) (Q x .snd _ _)) (λ (x , Px) → cong (x ,_) (P x .snd _ _)) )
{ "alphanum_fraction": 0.5781376518, "avg_line_length": 33.3783783784, "ext": "agda", "hexsha": "423a01fd8d0710c6574be872c18279ff31b7baa3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Unary/Subtype.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Unary/Subtype.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Unary/Subtype.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 458, "size": 1235 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Functions.FunExtEquiv where open import Cubical.Foundations.Prelude open import Cubical.Foundations.CartesianKanOps open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Vec open import Cubical.Data.Nat open import Cubical.Reflection.StrictEquiv private variable ℓ ℓ₁ ℓ₂ ℓ₃ : Level -- Function extensionality is an equivalence module _ {A : Type ℓ} {B : A → I → Type ℓ₁} {f : (x : A) → B x i0} {g : (x : A) → B x i1} where funExtEquiv : (∀ x → PathP (B x) (f x) (g x)) ≃ PathP (λ i → ∀ x → B x i) f g unquoteDef funExtEquiv = defStrictEquiv funExtEquiv funExt funExt⁻ funExtPath : (∀ x → PathP (B x) (f x) (g x)) ≡ PathP (λ i → ∀ x → B x i) f g funExtPath = ua funExtEquiv funExtIso : Iso (∀ x → PathP (B x) (f x) (g x)) (PathP (λ i → ∀ x → B x i) f g) funExtIso = iso funExt funExt⁻ (λ x → refl {x = x}) (λ x → refl {x = x}) -- Function extensionality for binary functions funExt₂ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → I → Type ℓ₂} {f : (x : A) → (y : B x) → C x y i0} {g : (x : A) → (y : B x) → C x y i1} → ((x : A) (y : B x) → PathP (C x y) (f x y) (g x y)) → PathP (λ i → ∀ x y → C x y i) f g funExt₂ p i x y = p x y i -- Function extensionality for binary functions is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → I → Type ℓ₂} {f : (x : A) → (y : B x) → C x y i0} {g : (x : A) → (y : B x) → C x y i1} where private appl₂ : PathP (λ i → ∀ x y → C x y i) f g → ∀ x y → PathP (C x y) (f x y) (g x y) appl₂ eq x y i = eq i x y funExt₂Equiv : (∀ x y → PathP (C x y) (f x y) (g x y)) ≃ (PathP (λ i → ∀ x y → C x y i) f g) unquoteDef funExt₂Equiv = defStrictEquiv funExt₂Equiv funExt₂ appl₂ funExt₂Path : (∀ x y → PathP (C x y) (f x y) (g x y)) ≡ (PathP (λ i → ∀ x y → C x y i) f g) funExt₂Path = ua funExt₂Equiv -- Function extensionality for ternary functions funExt₃ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {D : (x : A) → (y : B x) → C x y → I → Type ℓ₃} {f : (x : A) → (y : B x) → (z : C x y) → D x y z i0} {g : (x : A) → (y : B x) → (z : C x y) → D x y z i1} → ((x : A) (y : B x) (z : C x y) → PathP (D x y z) (f x y z) (g x y z)) → PathP (λ i → ∀ x y z → D x y z i) f g funExt₃ p i x y z = p x y z i -- Function extensionality for ternary functions is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {D : (x : A) → (y : B x) → C x y → I → Type ℓ₃} {f : (x : A) → (y : B x) → (z : C x y) → D x y z i0} {g : (x : A) → (y : B x) → (z : C x y) → D x y z i1} where private appl₃ : PathP (λ i → ∀ x y z → D x y z i) f g → ∀ x y z → PathP (D x y z) (f x y z) (g x y z) appl₃ eq x y z i = eq i x y z funExt₃Equiv : (∀ x y z → PathP (D x y z) (f x y z) (g x y z)) ≃ (PathP (λ i → ∀ x y z → D x y z i) f g) unquoteDef funExt₃Equiv = defStrictEquiv funExt₃Equiv funExt₃ appl₃ funExt₃Path : (∀ x y z → PathP (D x y z) (f x y z) (g x y z)) ≡ (PathP (λ i → ∀ x y z → D x y z i) f g) funExt₃Path = ua funExt₃Equiv -- n-ary non-dependent funext nAryFunExt : {X : Type ℓ} {Y : I → Type ℓ₁} (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) → ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) → PathP (λ i → nAryOp n X (Y i)) fX fY nAryFunExt zero fX fY p = p [] nAryFunExt (suc n) fX fY p i x = nAryFunExt n (fX x) (fY x) (λ xs → p (x ∷ xs)) i -- n-ary funext⁻ nAryFunExt⁻ : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) → PathP (λ i → nAryOp n X (Y i)) fX fY → ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) nAryFunExt⁻ zero fX fY p [] = p nAryFunExt⁻ (suc n) fX fY p (x ∷ xs) = nAryFunExt⁻ n (fX x) (fY x) (λ i → p i x) xs nAryFunExtEquiv : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) → ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) ≃ PathP (λ i → nAryOp n X (Y i)) fX fY nAryFunExtEquiv n {X} {Y} fX fY = isoToEquiv (iso (nAryFunExt n fX fY) (nAryFunExt⁻ n fX fY) (linv n fX fY) (rinv n fX fY)) where linv : (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) (p : PathP (λ i → nAryOp n X (Y i)) fX fY) → nAryFunExt n fX fY (nAryFunExt⁻ n fX fY p) ≡ p linv zero fX fY p = refl linv (suc n) fX fY p i j x = linv n (fX x) (fY x) (λ k → p k x) i j rinv : (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) (p : (xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) → nAryFunExt⁻ n fX fY (nAryFunExt n fX fY p) ≡ p rinv zero fX fY p i [] = p [] rinv (suc n) fX fY p i (x ∷ xs) = rinv n (fX x) (fY x) (λ ys i → p (x ∷ ys) i) i xs -- Funext when the domain also depends on the interval funExtDep : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁)) → PathP (λ i → (x : A i) → B i x) f g funExtDep {A = A} {B} {f} {g} h i x = comp (λ k → B i (coei→i A i x k)) (λ k → λ { (i = i0) → f (coei→i A i0 x k) ; (i = i1) → g (coei→i A i1 x k) }) (h (λ j → coei→j A i j x) i) funExtDep⁻ : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → PathP (λ i → (x : A i) → B i x) f g → ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁)) funExtDep⁻ q p i = q i (p i) funExtDepEquiv : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁)) ≃ PathP (λ i → (x : A i) → B i x) f g funExtDepEquiv {A = A} {B} {f} {g} = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun = funExtDep isom .inv = funExtDep⁻ isom .rightInv q m i x = comp (λ k → B i (coei→i A i x (k ∨ m))) (λ k → λ { (i = i0) → f (coei→i A i0 x (k ∨ m)) ; (i = i1) → g (coei→i A i1 x (k ∨ m)) ; (m = i1) → q i x }) (q i (coei→i A i x m)) isom .leftInv h m p i = comp (λ k → B i (lemi→i m k)) (λ k → λ { (i = i0) → f (lemi→i m k) ; (i = i1) → g (lemi→i m k) ; (m = i1) → h p i }) (h (λ j → lemi→j j m) i) where lemi→j : ∀ j → coei→j A i j (p i) ≡ p j lemi→j j = coei→j (λ k → coei→j A i k (p i) ≡ p k) i j (coei→i A i (p i)) lemi→i : PathP (λ m → lemi→j i m ≡ p i) (coei→i A i (p i)) refl lemi→i = sym (coei→i (λ k → coei→j A i k (p i) ≡ p k) i (coei→i A i (p i))) ◁ λ m k → lemi→j i (m ∨ k) heteroHomotopy≃Homotopy : {A : I → Type ℓ} {B : (i : I) → Type ℓ₁} {f : A i0 → B i0} {g : A i1 → B i1} → ({x₀ : A i0} {x₁ : A i1} → PathP A x₀ x₁ → PathP B (f x₀) (g x₁)) ≃ ((x₀ : A i0) → PathP B (f x₀) (g (transport (λ i → A i) x₀))) heteroHomotopy≃Homotopy {A = A} {B} {f} {g} = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun h x₀ = h (isContrSinglP A x₀ .fst .snd) isom .inv k {x₀} {x₁} p = subst (λ fib → PathP B (f x₀) (g (fib .fst))) (isContrSinglP A x₀ .snd (x₁ , p)) (k x₀) isom .rightInv k = funExt λ x₀ → cong (λ α → subst (λ fib → PathP B (f x₀) (g (fib .fst))) α (k x₀)) (isProp→isSet isPropSinglP (isContrSinglP A x₀ .fst) _ (isContrSinglP A x₀ .snd (isContrSinglP A x₀ .fst)) refl) ∙ transportRefl (k x₀) isom .leftInv h j {x₀} {x₁} p = transp (λ i → PathP B (f x₀) (g (isContrSinglP A x₀ .snd (x₁ , p) (i ∨ j) .fst))) j (h (isContrSinglP A x₀ .snd (x₁ , p) j .snd))
{ "alphanum_fraction": 0.4953703704, "avg_line_length": 41.4093264249, "ext": "agda", "hexsha": "10377696692f89008752fa02c3aff712c836de87", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Functions/FunExtEquiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Functions/FunExtEquiv.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Functions/FunExtEquiv.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3800, "size": 7992 }
module Data.Num.Bijection where open import Data.Num.Core open import Data.Num.Surjection open import Data.Num.Injection open import Data.Nat open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Function.Bijection open Bijective open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Negation data BijectionView : ℕ → ℕ → ℕ → Set where Bij : ∀ {b d o} → SurjCond b d o → InjCond b d o → BijectionView b d o NonSurj : ∀ {b d o} → NonSurjCond b d o → BijectionView b d o NonInj : ∀ {b d o} → NonInjCond b d o → BijectionView b d o bijectionView : (b d o : ℕ) → BijectionView b d o bijectionView b d o with surjectionView b d o | injectionView b d o bijectionView b d o | Surj c₁ | Inj c₂ = Bij c₁ c₂ bijectionView b d o | Surj _ | NonInj c₁ = NonInj c₁ bijectionView b d o | NonSurj c₁ | _ = NonSurj c₁ IsBijective : ℕ → ℕ → ℕ → Set IsBijective b d o with bijectionView b d o IsBijective b d o | Bij _ _ = ⊤ IsBijective b d o | NonSurj _ = ⊥ IsBijective b d o | NonInj _ = ⊥ SurjCond∧InjCond⇒Bijective : ∀ {b} {d} {o} → SurjCond b d o → InjCond b d o → Bijective (Num⟶ℕ b d o) SurjCond∧InjCond⇒Bijective surjCond injCond = record { injective = InjCond⇒Injective injCond ; surjective = SurjCond⇒Surjective surjCond } NonSurjCond⇏Bijective : ∀ {b} {d} {o} → NonSurjCond b d o → ¬ (Bijective (Num⟶ℕ b d o)) NonSurjCond⇏Bijective reason claim = NonSurjCond⇏Surjective reason (surjective claim) NonInjCond⇏Bijective : ∀ {b} {d} {o} → NonInjCond b d o → ¬ (Bijective (Num⟶ℕ b d o)) NonInjCond⇏Bijective reason claim = NonInjCond⇏Injective reason (injective claim) Bijective? : ∀ b d o → Dec (Bijective (Num⟶ℕ b d o)) Bijective? b d o with bijectionView b d o Bijective? b d o | Bij surjCond injCond = yes (record { injective = InjCond⇒Injective injCond ; surjective = SurjCond⇒Surjective surjCond }) Bijective? b d o | NonSurj reason = no (NonSurjCond⇏Bijective reason) Bijective? b d o | NonInj reason = no (NonInjCond⇏Bijective reason)
{ "alphanum_fraction": 0.6862281117, "avg_line_length": 38.4181818182, "ext": "agda", "hexsha": "93e8abedc9ce1c9c7d5c59fc06216f38f6d382b5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Bijection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Bijection.agda", "max_line_length": 101, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Bijection.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 765, "size": 2113 }
module Utils where open import Relation.Binary.PropositionalEquality open import Data.List listHeadEq : ∀ {α} {A : Set α} {x y : A} -> {xt yt : List A} -> x ∷ xt ≡ y ∷ yt -> x ≡ y listHeadEq refl = refl listTailEq : ∀ {α} {A : Set α} {x y : A} -> {xt yt : List A} -> x ∷ xt ≡ y ∷ yt -> xt ≡ yt listTailEq refl = refl
{ "alphanum_fraction": 0.5887850467, "avg_line_length": 26.75, "ext": "agda", "hexsha": "4eb6f6edfe1ea4f4b0ef948913d389983179fd77", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/agda-parikh", "max_forks_repo_path": "Utils.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/agda-parikh", "max_issues_repo_path": "Utils.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/agda-parikh", "max_stars_repo_path": "Utils.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 122, "size": 321 }
module trie where open import bool open import char open import list open import maybe open import product open import string open import unit cal : Set → Set cal A = 𝕃 (char × A) empty-cal : ∀{A : Set} → cal A empty-cal = [] cal-lookup : ∀ {A : Set} → cal A → char → maybe A cal-lookup [] _ = nothing cal-lookup ((c , a) :: l) c' with c =char c' ... | tt = just a ... | ff = cal-lookup l c' cal-insert : ∀ {A : Set} → cal A → char → A → cal A cal-insert [] c a = (c , a) :: [] cal-insert ((c' , a') :: l) c a with c =char c' ... | tt = (c , a) :: l ... | ff = (c' , a') :: (cal-insert l c a) cal-remove : ∀ {A : Set} → cal A → char → cal A cal-remove [] _ = [] cal-remove ((c , a) :: l) c' with c =char c' ... | tt = cal-remove l c' ... | ff = (c , a) :: cal-remove l c' cal-add : ∀{A : Set} → cal A → char → A → cal A cal-add l c a = (c , a) :: l test-cal-insert = cal-insert (('a' , 1) :: ('b' , 2) :: []) 'b' 20 data trie (A : Set) : Set where Node : maybe A → cal (trie A) → trie A empty-trie : ∀{A : Set} → trie A empty-trie = (Node nothing empty-cal) trie-lookup-h : ∀{A : Set} → trie A → 𝕃 char → maybe A trie-lookup-h (Node odata ts) (c :: cs) with cal-lookup ts c trie-lookup-h (Node odata ts) (c :: cs) | nothing = nothing trie-lookup-h (Node odata ts) (c :: cs) | just t = trie-lookup-h t cs trie-lookup-h (Node odata ts) [] = odata trie-lookup : ∀{A : Set} → trie A → string → maybe A trie-lookup t s = trie-lookup-h t (string-to-𝕃char s) trie-contains : ∀{A : Set} → trie A → string → 𝔹 trie-contains t s with trie-lookup t s trie-contains t s | nothing = ff trie-contains t s | just _ = tt trie-insert-h : ∀{A : Set} → trie A → 𝕃 char → A → trie A trie-insert-h (Node odata ts) [] x = (Node (just x) ts) trie-insert-h (Node odata ts) (c :: cs) x with cal-lookup ts c trie-insert-h (Node odata ts) (c :: cs) x | just t = (Node odata (cal-insert ts c (trie-insert-h t cs x))) trie-insert-h (Node odata ts) (c :: cs) x | nothing = (Node odata (cal-add ts c (trie-insert-h empty-trie cs x))) trie-insert : ∀{A : Set} → trie A → string → A → trie A trie-insert t s x = trie-insert-h t (string-to-𝕃char s) x trie-remove-h : ∀{A : Set} → trie A → 𝕃 char → trie A trie-remove-h (Node odata ts) (c :: cs) with cal-lookup ts c trie-remove-h (Node odata ts) (c :: cs) | nothing = Node odata ts trie-remove-h (Node odata ts) (c :: cs) | just t = Node odata (cal-insert ts c (trie-remove-h t cs)) trie-remove-h (Node odata ts) [] = Node nothing ts trie-remove : ∀{A : Set} → trie A → string → trie A trie-remove t s = trie-remove-h t (string-to-𝕃char s) trie-map : ∀{A B : Set} → (A → B) → trie A → trie B trie-cal-map : ∀{A B : Set} → (A → B) → cal (trie A) → cal (trie B) trie-map f (Node x x₁) = Node (maybe-map f x) (trie-cal-map f x₁) trie-cal-map f [] = [] trie-cal-map f ((c , t) :: cs) = (c , trie-map f t) :: trie-cal-map f cs trie-to-string-h : ∀{A : Set} → string → (A → string) → trie A → 𝕃 char → string trie-cal-to-string-h : ∀{A : Set} → string → (A → string) → cal (trie A) → 𝕃 char → string trie-to-string-h sep d (Node (just x) c) prev-str = (𝕃char-to-string (reverse prev-str)) ^ sep ^ (d x) ^ "\n" ^ (trie-cal-to-string-h sep d c prev-str) trie-to-string-h sep d (Node nothing c) prev-str = trie-cal-to-string-h sep d c prev-str trie-cal-to-string-h sep d [] prev-str = "" trie-cal-to-string-h sep d ((c , t) :: cs) prev-str = (trie-to-string-h sep d t (c :: prev-str)) ^ (trie-cal-to-string-h sep d cs prev-str) {- trie-to-string sep d t returns a string representation of the trie t, where each mapping from string s to data x is printed as s sep d x where sep is a string and d returns a string for any element A of the trie. -} trie-to-string : ∀{A : Set} → string → (A → string) → trie A → string trie-to-string sep d t = trie-to-string-h sep d t [] trie-mappings-h : ∀{A : Set} → trie A → 𝕃 char → 𝕃 (string × A) trie-cal-mappings-h : ∀{A : Set} → cal (trie A) → 𝕃 char → 𝕃 (string × A) trie-mappings-h (Node (just x) c) prev-str = (𝕃char-to-string (reverse prev-str) , x) :: (trie-cal-mappings-h c prev-str) trie-mappings-h (Node nothing c) prev-str = (trie-cal-mappings-h c prev-str) trie-cal-mappings-h [] prev-str = [] trie-cal-mappings-h ((c , t) :: cs) prev-str = trie-mappings-h t (c :: prev-str) ++ (trie-cal-mappings-h cs prev-str) trie-mappings : ∀{A : Set} → trie A → 𝕃 (string × A) trie-mappings t = trie-mappings-h t [] -- return a list of all the strings which have associated data in the trie trie-strings : ∀{A : Set} → trie A → 𝕃 string trie-strings t = map fst (trie-mappings t) trie-nonempty : ∀{A : Set} → trie A → 𝔹 trie-cal-nonempty : ∀{A : Set} → cal (trie A) → 𝔹 trie-nonempty (Node (just x) t) = tt trie-nonempty (Node nothing c) = trie-cal-nonempty c trie-cal-nonempty [] = ff trie-cal-nonempty ((a , t) :: c) = trie-nonempty t || trie-cal-nonempty c ---------------------------------------------------------------------- -- stringset ---------------------------------------------------------------------- stringset : Set stringset = trie ⊤ stringset-contains : stringset → string → 𝔹 stringset-contains ss s = trie-contains ss s stringset-insert : stringset → string → stringset stringset-insert ss s = trie-insert ss s triv stringset-remove : stringset → string → stringset stringset-remove ss s = trie-remove ss s stringset-insert𝕃 : stringset → 𝕃 char → stringset stringset-insert𝕃 ss s = trie-insert-h ss s triv empty-stringset : stringset empty-stringset = empty-trie stringset-insert* : stringset → 𝕃 string → stringset stringset-insert* s [] = s stringset-insert* s (x :: xs) = stringset-insert (stringset-insert* s xs) x stringset-strings : ∀{A : Set} → trie A → 𝕃 string stringset-strings t = map fst (trie-mappings t)
{ "alphanum_fraction": 0.6070620978, "avg_line_length": 37.8223684211, "ext": "agda", "hexsha": "624e6cea54e6f1ee1d40744004c65a5f33b806c7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "trie.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "trie.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "trie.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1919, "size": 5749 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT -- TODO Is it possible to have a more generic [→-group] construction? module groups.ToOmega where ⊙→Ω-group-structure : ∀ {i j} (X : Ptd i) (Y : Ptd j) → GroupStructure (X ⊙→ ⊙Ω Y) ⊙→Ω-group-structure X Y = record {M} where module M where ident : (X ⊙→ ⊙Ω Y) ident = ⊙cst comp : (X ⊙→ ⊙Ω Y) → (X ⊙→ ⊙Ω Y) → (X ⊙→ ⊙Ω Y) comp F G = ⊙Ω-∙ ⊙∘ ⊙fanout F G inv : (X ⊙→ ⊙Ω Y) → (X ⊙→ ⊙Ω Y) inv F = (! ∘ fst F) , ap ! (snd F) abstract unit-l-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → ⊙∘-pt (fst ⊙Ω-∙) (⊙fanout-pt {a₀ = idp} idp α) idp == α unit-l-lemma idp = idp unit-l : ∀ G → comp ident G == G unit-l G = ⊙λ=' (λ _ → idp) (unit-l-lemma (snd G)) assoc-lemma : ∀ {i} {A : Type i} {x : A} {p q r : x == x} (α : p == idp) (β : q == idp) (γ : r == idp) → ⊙∘-pt (fst ⊙Ω-∙) (⊙fanout-pt (⊙∘-pt (fst ⊙Ω-∙) (⊙fanout-pt α β) idp) γ) idp == ⊙∘-pt (fst ⊙Ω-∙) (⊙fanout-pt α (⊙∘-pt (fst ⊙Ω-∙) (⊙fanout-pt β γ) idp)) idp [ _== idp ↓ ∙-assoc p q r ] assoc-lemma idp idp idp = idp assoc : ∀ F G H → comp (comp F G) H == comp F (comp G H) assoc F G H = ⊙λ=' (λ x → ∙-assoc (fst F x) (fst G x) (fst H x)) (assoc-lemma (snd F) (snd G) (snd H)) inv-l-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → ⊙∘-pt (fst ⊙Ω-∙) (⊙fanout-pt (ap ! α) α) idp == idp [ _== idp ↓ !-inv-l p ] inv-l-lemma idp = idp inv-l : ∀ F → comp (inv F) F == ident inv-l F = ⊙λ=' (!-inv-l ∘ fst F) (inv-l-lemma (snd F)) Trunc-⊙→Ω-group : ∀ {i j} (X : Ptd i) (Y : Ptd j) → Group (lmax i j) Trunc-⊙→Ω-group X Y = Trunc-group (⊙→Ω-group-structure X Y) {- [Trunc-→Ω-group] is functorial in the first argument -} ⊙→Ω-group-structure-fmap-dom : ∀ {i j k} {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) (Z : Ptd k) → (⊙→Ω-group-structure Y Z →ᴳˢ ⊙→Ω-group-structure X Z) ⊙→Ω-group-structure-fmap-dom F Z = group-structure-hom (_⊙∘ F) (λ g₁ g₂ → ⊙λ= (⊙∘-assoc ⊙Ω-∙ (⊙fanout g₁ g₂) F) ∙ ap (⊙Ω-∙ ⊙∘_) (⊙fanout-pre∘ g₁ g₂ F)) Trunc-⊙→Ω-group-fmap-dom : ∀ {i j k} {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) (Z : Ptd k) → (Trunc-⊙→Ω-group Y Z →ᴳ Trunc-⊙→Ω-group X Z) Trunc-⊙→Ω-group-fmap-dom F Z = Trunc-group-fmap $ ⊙→Ω-group-structure-fmap-dom F Z ⊙→Ω-group-structure-emap-dom : ∀ {i j k} {X : Ptd i} {Y : Ptd j} (e : X ⊙≃ Y) (Z : Ptd k) → (⊙→Ω-group-structure Y Z ≃ᴳˢ ⊙→Ω-group-structure X Z) ⊙→Ω-group-structure-emap-dom (F , F-is-equiv) Z = ⊙→Ω-group-structure-fmap-dom F Z , pre⊙∘-is-equiv (F , F-is-equiv) Trunc-⊙→Ω-group-emap-dom : ∀ {i j k} {X : Ptd i} {Y : Ptd j} (e : X ⊙≃ Y) (Z : Ptd k) → (Trunc-⊙→Ω-group Y Z ≃ᴳ Trunc-⊙→Ω-group X Z) Trunc-⊙→Ω-group-emap-dom F Z = Trunc-group-emap $ ⊙→Ω-group-structure-emap-dom F Z Trunc-⊙→Ω-group-fmap-dom-idf : ∀ {i j} {X : Ptd i} (Y : Ptd j) → Trunc-⊙→Ω-group-fmap-dom (⊙idf X) Y == idhom (Trunc-⊙→Ω-group X Y) Trunc-⊙→Ω-group-fmap-dom-idf Y = group-hom= $ λ= $ Trunc-elim (λ _ → idp) Trunc-⊙→Ω-group-fmap-dom-∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : Y ⊙→ Z) (f : X ⊙→ Y) (W : Ptd l) → Trunc-⊙→Ω-group-fmap-dom (g ⊙∘ f) W == Trunc-⊙→Ω-group-fmap-dom f W ∘ᴳ Trunc-⊙→Ω-group-fmap-dom g W Trunc-⊙→Ω-group-fmap-dom-∘ g f W = group-hom= $ λ= $ Trunc-elim (λ h → ap [_] (! (⊙λ= $ ⊙∘-assoc h g f))) ⊙→Ω-group-structure-fmap-codom : ∀ {i j k} (X : Ptd i) {Y : Ptd j} {Z : Ptd k} → Y ⊙→ Z → (⊙→Ω-group-structure X Y →ᴳˢ ⊙→Ω-group-structure X Z) ⊙→Ω-group-structure-fmap-codom X {Y} {Z} F = group-structure-hom (⊙Ω-fmap F ⊙∘_) (λ G H → ⊙λ=' (λ x → Ω-fmap-∙ F ((fst G) x) ((fst H) x)) (lemma (snd F) (snd G) (snd H))) where abstract lemma : ∀ {ptZ : de⊙ Z} (α : (fst F) (pt Y) == ptZ) {gpt hpt : Ω Y} (β : gpt == idp) (γ : hpt == idp) → ⊙∘-pt (Ω-fmap (fst F , α)) (⊙∘-pt (fst ⊙Ω-∙) (⊙fanout-pt β γ) idp) (snd (⊙Ω-fmap (fst F , α))) == ⊙∘-pt (fst ⊙Ω-∙) (⊙fanout-pt (⊙∘-pt (Ω-fmap (fst F , α)) β (snd (⊙Ω-fmap (fst F , α)))) (⊙∘-pt (Ω-fmap (fst F , α)) γ (snd (⊙Ω-fmap (fst F , α)))) ) idp [ _== idp ↓ Ω-fmap-∙ (fst F , α) gpt hpt ] lemma idp idp idp = idp Trunc-⊙→Ω-group-fmap-codom : ∀ {i j k} (X : Ptd i) {Y : Ptd j} {Z : Ptd k} → Y ⊙→ Z → Trunc-⊙→Ω-group X Y →ᴳ Trunc-⊙→Ω-group X Z Trunc-⊙→Ω-group-fmap-codom X = Trunc-group-fmap ∘ ⊙→Ω-group-structure-fmap-codom X ⊙→Ω-group-structure-emap-codom : ∀ {i j k} (X : Ptd i) {Y : Ptd j} {Z : Ptd k} → Y ⊙≃ Z → ⊙→Ω-group-structure X Y ≃ᴳˢ ⊙→Ω-group-structure X Z ⊙→Ω-group-structure-emap-codom X (F , F-is-equiv) = ⊙→Ω-group-structure-fmap-codom X F , post⊙∘-is-equiv (⊙Ω-emap (F , F-is-equiv)) Trunc-⊙→Ω-group-emap-codom : ∀ {i j k} (X : Ptd i) {Y : Ptd j} {Z : Ptd k} → Y ⊙≃ Z → Trunc-⊙→Ω-group X Y ≃ᴳ Trunc-⊙→Ω-group X Z Trunc-⊙→Ω-group-emap-codom X = Trunc-group-emap ∘ ⊙→Ω-group-structure-emap-codom X -- TODO Check naming convensions. -- TODO Use [CommSquareᴳ]. Trunc-⊙→Ω-group-fmap-nat : ∀ {i₀ i₁ j₀ j₁} {X₀ : Ptd i₀} {X₁ : Ptd i₁} {Y₀ : Ptd j₀} {Y₁ : Ptd j₁} (F : X₀ ⊙→ X₁) (G : Y₀ ⊙→ Y₁) → Trunc-⊙→Ω-group-fmap-dom F Y₁ ∘ᴳ Trunc-⊙→Ω-group-fmap-codom X₁ G == Trunc-⊙→Ω-group-fmap-codom X₀ G ∘ᴳ Trunc-⊙→Ω-group-fmap-dom F Y₀ Trunc-⊙→Ω-group-fmap-nat F G = group-hom= $ λ= $ Trunc-elim (λ k → ap [_] $ ⊙λ= $ ⊙∘-assoc (⊙Ω-fmap G) k F) {- Not used. Trunc-⊙→Ω-group-emap-nat : ∀ {i₀ i₁ j₀ j₁} {X₀ : Ptd i₀} {X₁ : Ptd i₁} {Y₀ : Ptd j₀} {Y₁ : Ptd j₁} (F : X₀ ⊙≃ X₁) (G : Y₀ ⊙≃ Y₁) → Trunc-⊙→Ω-group-emap-dom F Y₁ ∘ᴳ Trunc-⊙→Ω-group-emap-codom X₁ G == Trunc-⊙→Ω-group-emap-codom X₀ G ∘ᴳ Trunc-⊙→Ω-group-emap-dom F Y₀ Trunc-⊙→Ω-group-emap-nat F G = group-hom=-to-iso= $ Trunc-⊙→Ω-group-fmap-nat F G -} {- Pointed maps out of bool -} Trunc-⊙Bool→Ω-iso-π₁ : ∀ {i} (X : Ptd i) → Trunc-⊙→Ω-group ⊙Bool X ≃ᴳ πS 0 X Trunc-⊙Bool→Ω-iso-π₁ {i} X = Trunc-group-emap (≃-to-≃ᴳˢ (⊙Bool→-equiv-idf (⊙Ω X)) (λ _ _ → idp))
{ "alphanum_fraction": 0.5079967024, "avg_line_length": 41.8275862069, "ext": "agda", "hexsha": "e93d4af8f94d512bab79a1220e0664d48e63822f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/groups/ToOmega.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/groups/ToOmega.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/groups/ToOmega.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3150, "size": 6065 }
module Proc where open import Basics module ProcDef (U : Set)(T : U -> Set)(Name : U -> Set) where LT : U -> Set LT a = Lift (T a) record Tran (a b : U) : Set where field upV : T b -> LT a downV : T a -> LT b mapLT : {a b : U} -> (T a -> LT b) -> List (T a) -> List (T b) mapLT f [] = [] mapLT f (x :: xs) with f x ... | bot = mapLT f xs ... | lift y = y :: mapLT f xs infixr 40 _!_ _!_+_ infix 40 >_ infixr 30 _||_ _/|_ data Proc (a : U) : Set where o : Proc a >_ : (T a -> Proc a) -> Proc a _!_ : LT a -> Proc a -> Proc a _!_+_ : LT a -> Proc a -> (T a -> Proc a) -> Proc a _||_ : Proc a -> Proc a -> Proc a _/|_ : {b : U} -> Tran a b -> Proc b -> Proc a def : Name a -> Proc a Env : Set Env = (a : U) -> Name a -> Proc a record Param : Set1 where field U : Set T : U -> Set Name : U -> Set env : ProcDef.Env U T Name module Process (param : Param) where private open module Par = Param param public private open module Pro = ProcDef U T Name public infixr 40 _!g_ _!_+g_ infix 40 >g_ infixr 30 _||g_ _/|g_ data Guard {a : U} : Proc a -> Set where og : Guard o >g_ : (f : T a -> Proc a) -> Guard (> f) _!g_ : (w : LT a)(p : Proc a) -> Guard (w ! p) _!_+g_ : (w : LT a)(p : Proc a)(f : T a -> Proc a) -> Guard (w ! p + f) _||g_ : {p1 p2 : Proc a} -> Guard p1 -> Guard p2 -> Guard (p1 || p2) _/|g_ : {b : U}(φ : Tran a b){p : Proc b} -> Guard p -> Guard (φ /| p) defg : (x : Name a) -> Guard (env a x) -> Guard (def x) infix 20 _-[_]->_ _-!_!->_ open Tran data _-[_]->_ {a : U} : Proc a -> LT a -> Proc a -> Set where qtau : {p : Proc a} -> p -[ bot ]-> p rx-o : {v : T a} -> o -[ lift v ]-> o rx-! : {v : T a}{w : LT a}{p : Proc a} -> w ! p -[ lift v ]-> w ! p rx-> : {v : T a}{f : T a -> Proc a} -> > f -[ lift v ]-> f v rx-+ : {v : T a}{w : LT a}{p : Proc a}{f : T a -> Proc a} -> w ! p + f -[ lift v ]-> f v rx-|| : {v : T a}{p1 p2 p1' p2' : Proc a} -> p1 -[ lift v ]-> p1' -> p2 -[ lift v ]-> p2' -> p1 || p2 -[ lift v ]-> p1' || p2' rx-/| : {v : T a}{b : U}{φ : Tran a b}{q q' : Proc b} -> q -[ downV φ v ]-> q' -> φ /| q -[ lift v ]-> φ /| q' rx-def : {v : T a}{p : Proc a}{x : Name a} -> env a x -[ lift v ]-> p -> def x -[ lift v ]-> p data _-!_!->_ {a : U} : Proc a -> LT a -> Proc a -> Set where tx-! : {w : LT a}{p : Proc a} -> w ! p -! w !-> p tx-+ : {w : LT a}{p : Proc a}{f : T a -> Proc a} -> w ! p + f -! w !-> p tx-!| : {w : LT a}{p p' q q' : Proc a} -> p -! w !-> p' -> q -[ w ]-> q' -> p || q -! w !-> p' || q' tx-|! : {w : LT a}{p p' q q' : Proc a} -> p -[ w ]-> p' -> q -! w !-> q' -> p || q -! w !-> p' || q' tx-/| : {b : U}{w : LT b}{φ : Tran a b}{q q' : Proc b} -> q -! w !-> q' -> φ /| q -! upV φ =<< w !-> φ /| q' tx-def : {w : LT a}{p : Proc a}{x : Name a} -> env a x -! w !-> p -> def x -! w !-> p data Silent {a : U} : Proc a -> Set where silent-o : Silent o silent-> : {f : T a -> Proc a} -> Silent (> f) silent-|| : {p1 p2 : Proc a} -> Silent p1 -> Silent p2 -> Silent (p1 || p2) silent-def : {x : Name a} -> Silent (env _ x) -> Silent (def x) silent-/| : {b : U}{φ : Tran a b}{p : Proc b} -> Silent p -> Silent (φ /| p) infixr 40 _>!>_ _>*>_ data _-[_]->*_ {a : U} : Proc a -> List (T a) -> Proc a -> Set where rnop : {p : Proc a} -> p -[ [] ]->* p _>?>_ : {p q r : Proc a}{x : T a}{xs : List (T a)} -> p -[ lift x ]-> q -> q -[ xs ]->* r -> p -[ x :: xs ]->* r rx-||* : forall {a xs}{p1 p2 q1 q2 : Proc a} -> p1 -[ xs ]->* p2 -> q1 -[ xs ]->* q2 -> p1 || q1 -[ xs ]->* p2 || q2 rx-||* rnop rnop = rnop rx-||* (s1 >?> t1) (s2 >?> t2) = rx-|| s1 s2 >?> rx-||* t1 t2 rx-/|* : forall {a b xs}{φ : Tran a b}{p q : Proc b} -> p -[ mapLT (downV φ) xs ]->* q -> φ /| p -[ xs ]->* φ /| q rx-/|* {xs = []} rnop = rnop rx-/|* {xs = x :: xs}{φ = φ} t with it (downV φ x) refl rx-/|* {xs = x :: xs}{φ}{p}{q} t | it bot eq = rx-/| (lem₁ eq) >?> rx-/|* (lem₂ eq t) where lem₁ : forall {w} -> w == bot -> p -[ w ]-> p lem₁ refl = qtau lem₂ : downV φ x == bot -> p -[ mapLT (downV φ) (x :: xs) ]->* q -> p -[ mapLT (downV φ) xs ]->* q lem₂ eq h with downV φ x lem₂ refl h | .bot = h rx-/|* {a}{b}{x :: xs}{φ}{p}{q} t | it (lift y) eq = rx-/| (lem₁ eq t) >?> rx-/|* (lem₂ eq t) where Eqn = downV φ x == lift y Asm = p -[ mapLT (downV φ) (x :: xs) ]->* q r : Eqn -> Asm -> Proc b r eq t with downV φ x r refl (_>?>_ {q = q} _ _) | ._ = q lem₁ : (eq : Eqn)(h : Asm) -> p -[ downV φ x ]-> r eq h lem₁ eq t with downV φ x lem₁ refl (s >?> _) | ._ = s lem₂ : (eq : Eqn)(h : Asm) -> r eq h -[ mapLT (downV φ) xs ]->* q lem₂ eq t with downV φ x lem₂ refl (_ >?> t) | ._ = t data _-!_!->*_ {a : U} : Proc a -> List (T a) -> Proc a -> Set where tnop : {p : Proc a} -> p -! [] !->* p _>!>_ : {p q r : Proc a}{x : T a}{xs : List (T a)} -> p -! lift x !-> q -> q -! xs !->* r -> p -! x :: xs !->* r _>*>_ : {p q r : Proc a}{xs : List (T a)} -> p -! bot !-> q -> q -! xs !->* r -> p -! xs !->* r
{ "alphanum_fraction": 0.3695393507, "avg_line_length": 33.6171428571, "ext": "agda", "hexsha": "749fd76a37d14b4917a98bba7984d0c7afa25834", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/cbs/Proc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/cbs/Proc.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/cbs/Proc.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 2371, "size": 5883 }
open import Relation.Binary.Core module Bound.Total.Order.Properties {A : Set} (_≤_ : A → A → Set) (trans≤ : Transitive _≤_) where open import Bound.Total A open import Bound.Total.Order _≤_ lemma-LeB≤ : {x y : A} → LeB (val x) (val y) → x ≤ y lemma-LeB≤ (lexy x≤y) = x≤y transLeB : {a b c : Bound} → LeB a b → LeB b c → LeB a c transLeB lebx _ = lebx transLeB _ lext = lext transLeB (lexy x≤y) (lexy y≤z) = lexy (trans≤ x≤y y≤z)
{ "alphanum_fraction": 0.5889830508, "avg_line_length": 27.7647058824, "ext": "agda", "hexsha": "decf09f47383d76f2cb80da7aa5276469bdc4f61", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Bound/Total/Order/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Bound/Total/Order/Properties.agda", "max_line_length": 56, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Bound/Total/Order/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 190, "size": 472 }
module STLC.Examples where -- This file contains a few example programs for the definitional -- interpreter for STLC in Section 2. open import Data.Maybe.Base open import Data.List.Base open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All open import Data.List.Membership.Propositional open import Data.Integer hiding (suc) open import Relation.Binary.PropositionalEquality -- for de Bruijn numerals open import STLC.Semantics -- The identity function: λ x . x -- -- Variables are represented as de Bruijn indices, assumed to have -- been elaborated from a surface language with names to the nameless -- representation used in the abstract syntax in `STLC.Semantics`. idexpr : Expr [] (unit ⇒ unit) idexpr = ƛ (var (here refl)) -- id () = () test-idexpr : eval 2 (idexpr · unit) [] ≡ just unit test-idexpr = refl -- curried addition: λ x . λ y . y + x curry+ : Expr [] (int ⇒ (int ⇒ int)) curry+ = ƛ (ƛ (iop _+_ (var (here refl)) (var (there (here refl))))) -- 1 + 1 = 2 test-curry+ : eval 3 ((curry+ · (num (+ 1))) · (num (+ 1))) [] ≡ just (num (+ 2)) test-curry+ = refl
{ "alphanum_fraction": 0.696122633, "avg_line_length": 30.8055555556, "ext": "agda", "hexsha": "ec6b4ce640fa4c7e32ae4efd3fcaa67737fdfe1d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/STLC/Examples.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/STLC/Examples.agda", "max_line_length": 81, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/STLC/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 326, "size": 1109 }
------------------------------------------------------------------------------ -- The predicate names are translated as constant names ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PredicateNameConstantName where postulate D : Set P : D → Set postulate foo : ∀ d → P d → P d {-# ATP prove foo #-}
{ "alphanum_fraction": 0.4003868472, "avg_line_length": 28.7222222222, "ext": "agda", "hexsha": "6979273f99aea9236aba678f14bfdb47eddbf47a", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/PredicateNameConstantName.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/PredicateNameConstantName.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/PredicateNameConstantName.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 86, "size": 517 }
module Simple where postulate Nat : Set zero : Nat -- we want -- ?0 zero = zero -- and then -- ?0 x = x
{ "alphanum_fraction": 0.5289256198, "avg_line_length": 9.3076923077, "ext": "agda", "hexsha": "4ddf0f5570945680f97f490fc3691cee7b02c8e5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "notes/papers/implicit/examples/Simple.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "notes/papers/implicit/examples/Simple.agda", "max_line_length": 19, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "notes/papers/implicit/examples/Simple.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 45, "size": 121 }
module Data.QuadTree.Implementation.PropDepthRelation where open import Haskell.Prelude open import Data.Logic ---- Properties of depth lteTransitiveWeird : (x y d : Nat) -> IsTrue (x < y) -> (y <= d) ≡ ((x <= d) && (y <= d)) lteTransitiveWeird zero zero zero xlty = refl lteTransitiveWeird zero zero (suc d) xlty = refl lteTransitiveWeird zero (suc y) zero xlty = refl lteTransitiveWeird zero (suc y) (suc d) xlty = refl lteTransitiveWeird (suc x) (suc y) zero xlty = refl lteTransitiveWeird (suc x) (suc y) (suc d) xlty = lteTransitiveWeird x y d xlty lteTransitiveWeirdInv : (x y d : Nat) -> IsFalse (x < y) -> (x <= d) ≡ ((x <= d) && (y <= d)) lteTransitiveWeirdInv zero zero zero xnlty = refl lteTransitiveWeirdInv zero zero (suc d) xnlty = refl lteTransitiveWeirdInv (suc x) zero zero xnlty = refl lteTransitiveWeirdInv (suc x) zero (suc d) xnlty = begin (suc x <= suc d) =⟨ sym $ boolAndTrue (suc x <= suc d) ⟩ (suc x <= suc d) && true =⟨⟩ ((suc x <= suc d) && (zero <= suc d)) end lteTransitiveWeirdInv (suc x) (suc y) zero xnlty = refl lteTransitiveWeirdInv (suc x) (suc y) (suc d) xnlty = lteTransitiveWeirdInv x y d xnlty ifComparisonMap : (x y d : Nat) -> ((x <= d) && (y <= d)) ≡ (if x < y then (y <= d) else (x <= d)) ifComparisonMap x y d = ifc x < y then (λ {{xlty}} -> begin (x <= d) && (y <= d) =⟨ sym $ lteTransitiveWeird x y d xlty ⟩ y <= d =⟨ sym $ ifTrue (x < y) xlty ⟩ (if x < y then (y <= d) else (x <= d)) end ) else (λ {{xnlty}} -> begin (x <= d) && (y <= d) =⟨ sym $ lteTransitiveWeirdInv x y d xnlty ⟩ x <= d =⟨ sym $ ifFalse (x < y) xnlty ⟩ (if x < y then (y <= d) else (x <= d)) end ) propMaxLte : (x y d : Nat) -> ((x <= d) && (y <= d)) ≡ (max x y <= d) propMaxLte x y d = begin (x <= d) && (y <= d) =⟨ ifComparisonMap x y d ⟩ (if x < y then (y <= d) else (x <= d)) =⟨ propFnIf (λ v -> v <= d) ⟩ (if x < y then y else x) <= d =⟨⟩ max x y <= d end propAndMap : (a b c d : Bool) -> a ≡ c -> b ≡ d -> (a && b) ≡ (c && d) propAndMap false false false false ac bd = refl propAndMap false true false true ac bd = refl propAndMap true false true false ac bd = refl propAndMap true true true true ac bd = refl propMaxLte4 : (w x y z d : Nat) -> (((w <= d) && (x <= d)) && ((y <= d) && (z <= d))) ≡ (max (max w x) (max y z) <= d) propMaxLte4 w x y z d = begin ((w <= d) && (x <= d)) && ((y <= d) && (z <= d)) =⟨ propAndMap ((w <= d) && (x <= d)) ((y <= d) && (z <= d)) (max w x <= d) (max y z <= d) (propMaxLte w x d) (propMaxLte y z d) ⟩ (max w x <= d) && (max y z <= d) =⟨ propMaxLte (if w < x then x else w) (if y < z then z else y) d ⟩ (max (max w x) (max y z) <= d) end
{ "alphanum_fraction": 0.5452891961, "avg_line_length": 34.7974683544, "ext": "agda", "hexsha": "1a2eb7f674ec4561c12315c884c154bf40eaf02f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "JonathanBrouwer/research-project", "max_forks_repo_path": "src/Data/QuadTree/Implementation/PropDepthRelation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "JonathanBrouwer/research-project", "max_issues_repo_path": "src/Data/QuadTree/Implementation/PropDepthRelation.agda", "max_line_length": 131, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "JonathanBrouwer/research-project", "max_stars_repo_path": "src/Data/QuadTree/Implementation/PropDepthRelation.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z", "num_tokens": 1120, "size": 2749 }
open import trie-core open import string open import maybe module trie-functions (trie-lookup : ∀{A : Set} → trie A → string → maybe A) (trie-insert : ∀{A : Set} → trie A → string → A → trie A) (trie-remove : ∀{A : Set} → trie A → string → trie A) where open import bool open import char open import list open import product open import unit open import eq open import nat trie-contains : ∀{A : Set} → trie A → string → 𝔹 trie-contains t s with trie-lookup t s trie-contains t s | nothing = ff trie-contains t s | just _ = tt trie-map : ∀{A B : Set} → (A → B) → trie A → trie B trie-cal-map : ∀{A B : Set} → (A → B) → cal (trie A) → cal (trie B) trie-map f (Node x x₁) = Node (maybe-map f x) (trie-cal-map f x₁) trie-cal-map f [] = [] trie-cal-map f ((c , t) :: cs) = (c , trie-map f t) :: trie-cal-map f cs trie-to-string-h : ∀{A : Set} → string → (A → string) → trie A → 𝕃 char → string trie-cal-to-string-h : ∀{A : Set} → string → (A → string) → cal (trie A) → 𝕃 char → string trie-to-string-h sep d (Node (just x) c) prev-str = (𝕃char-to-string (reverse prev-str)) ^ sep ^ (d x) ^ "\n" ^ (trie-cal-to-string-h sep d c prev-str) trie-to-string-h sep d (Node nothing c) prev-str = trie-cal-to-string-h sep d c prev-str trie-cal-to-string-h sep d [] prev-str = "" trie-cal-to-string-h sep d ((c , t) :: cs) prev-str = (trie-to-string-h sep d t (c :: prev-str)) ^ (trie-cal-to-string-h sep d cs prev-str) {- trie-to-string sep d t returns a string representation of the trie t, where each mapping from string s to data x is printed as s sep d x where sep is a string and d returns a string for any element A of the trie. -} trie-to-string : ∀{A : Set} → string → (A → string) → trie A → string trie-to-string sep d t = trie-to-string-h sep d t [] trie-mappings-h : ∀{A : Set} → trie A → 𝕃 char → 𝕃 (string × A) trie-cal-mappings-h : ∀{A : Set} → cal (trie A) → 𝕃 char → 𝕃 (string × A) trie-mappings-h (Node (just x) c) prev-str = (𝕃char-to-string (reverse prev-str) , x) :: (trie-cal-mappings-h c prev-str) trie-mappings-h (Node nothing c) prev-str = (trie-cal-mappings-h c prev-str) trie-cal-mappings-h [] prev-str = [] trie-cal-mappings-h ((c , t) :: cs) prev-str = trie-mappings-h t (c :: prev-str) ++ (trie-cal-mappings-h cs prev-str) trie-mappings : ∀{A : Set} → trie A → 𝕃 (string × A) trie-mappings t = trie-mappings-h t [] -- return a list of all the strings which have associated data in the trie trie-strings : ∀{A : Set} → trie A → 𝕃 string trie-strings t = map fst (trie-mappings t) trie-size : ∀{A : Set} → trie A → ℕ trie-size t = length (trie-strings t) trie-nonempty : ∀{A : Set} → trie A → 𝔹 trie-cal-nonempty : ∀{A : Set} → cal (trie A) → 𝔹 trie-nonempty (Node (just x) t) = tt trie-nonempty (Node nothing c) = trie-cal-nonempty c trie-cal-nonempty [] = ff trie-cal-nonempty ((a , t) :: c) = trie-nonempty t || trie-cal-nonempty c ---------------------------------------------------------------------- -- list-tries, which map strings to lists of values ---------------------------------------------------------------------- 𝕃trie : Set → Set 𝕃trie A = trie (𝕃 A) 𝕃trie-lookup : ∀{A : Set} → 𝕃trie A → string → 𝕃 A 𝕃trie-lookup t s with trie-lookup t s ... | nothing = [] ... | just l = l 𝕃trie-add : ∀{A : Set} → trie (𝕃 A) → string → A → trie (𝕃 A) 𝕃trie-add t s a = trie-insert t s (a :: 𝕃trie-lookup t s) 𝕃trie-add* : ∀{A : Set} → trie (𝕃 A) → string → 𝕃 A → trie (𝕃 A) 𝕃trie-add* t s aa = trie-insert t s (aa ++ 𝕃trie-lookup t s) ---------------------------------------------------------------------- -- stringset ---------------------------------------------------------------------- stringset : Set stringset = trie ⊤ stringset-contains : stringset → string → 𝔹 stringset-contains ss s = trie-contains ss s stringset-insert : stringset → string → stringset stringset-insert ss s = trie-insert ss s triv stringset-remove : stringset → string → stringset stringset-remove ss s = trie-remove ss s stringset-insert𝕃 : stringset → 𝕃 char → stringset stringset-insert𝕃 ss s = trie-insert-h ss s triv empty-stringset : stringset empty-stringset = empty-trie stringset-insert* : stringset → 𝕃 string → stringset stringset-insert* s [] = s stringset-insert* s (x :: xs) = stringset-insert (stringset-insert* s xs) x stringset-strings : ∀{A : Set} → trie A → 𝕃 string stringset-strings t = map fst (trie-mappings t)
{ "alphanum_fraction": 0.5981012658, "avg_line_length": 38.4695652174, "ext": "agda", "hexsha": "c8e7f9fd09f4ae9358271a2d390eb0cdbec52129", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "trie-functions.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "trie-functions.agda", "max_line_length": 121, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "trie-functions.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 1392, "size": 4424 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by decidable total orders ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Properties.DecTotalOrder {d₁ d₂ d₃} (DT : DecTotalOrder d₁ d₂ d₃) where open DecTotalOrder DT hiding (trans) import Relation.Binary.Construct.Converse as Converse import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ as ToStrict import Relation.Binary.Properties.TotalOrder totalOrder as TotalOrderProperties open import Relation.Nullary using (¬_) ------------------------------------------------------------------------ -- _≥_ - the flipped relation is also a total order open TotalOrderProperties public using ( _≥_ ; ≥-refl ; ≥-reflexive ; ≥-trans ; ≥-antisym ; ≥-total ; ≥-isPreorder ; ≥-isPartialOrder ; ≥-isTotalOrder ; ≥-preorder ; ≥-poset ; ≥-totalOrder ) ≥-isDecTotalOrder : IsDecTotalOrder _≈_ _≥_ ≥-isDecTotalOrder = Converse.isDecTotalOrder isDecTotalOrder ≥-decTotalOrder : DecTotalOrder _ _ _ ≥-decTotalOrder = record { isDecTotalOrder = ≥-isDecTotalOrder } open DecTotalOrder ≥-decTotalOrder public using () renaming (_≤?_ to _≥?_) ------------------------------------------------------------------------ -- _<_ - the strict version is a strict total order open TotalOrderProperties public using ( _<_ ; <-resp-≈ ; <-respʳ-≈ ; <-respˡ-≈ ; <-irrefl ; <-asym ; <-trans ; <-isStrictPartialOrder ; <-strictPartialOrder ; <⇒≉ ; ≤∧≉⇒< ; <⇒≱ ; ≤⇒≯ ; ≰⇒> ) <-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ <-isStrictTotalOrder = ToStrict.<-isStrictTotalOrder₂ isDecTotalOrder <-strictTotalOrder : StrictTotalOrder _ _ _ <-strictTotalOrder = record { isStrictTotalOrder = <-isStrictTotalOrder } open StrictTotalOrder <-strictTotalOrder public using () renaming (compare to <-compare) ≮⇒≥ : ∀ {x y} → ¬ (x < y) → y ≤ x ≮⇒≥ = ToStrict.≮⇒≥ Eq.sym _≟_ reflexive total ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.2 strictTotalOrder = <-strictTotalOrder {-# WARNING_ON_USAGE strictTotalOrder "Warning: strictTotalOrder was deprecated in v1.2. Please use <-strictTotalOrder instead." #-}
{ "alphanum_fraction": 0.58290463, "avg_line_length": 25.27, "ext": "agda", "hexsha": "63fa479d0df25e014101a611344f71ef21fe0d14", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Properties/DecTotalOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Properties/DecTotalOrder.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Properties/DecTotalOrder.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 707, "size": 2527 }
{-# OPTIONS --without-K #-} module hott.level.sets where open import hott.level.sets.core public open import hott.level.sets.extra public
{ "alphanum_fraction": 0.7625899281, "avg_line_length": 23.1666666667, "ext": "agda", "hexsha": "c7087d8b323fb7f77839b439afcdb1f51a5f70bc", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/hott/level/sets.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/level/sets.agda", "max_line_length": 40, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/hott/level/sets.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 31, "size": 139 }
module Basics where id : ∀ {a}{A : Set a} → A → A id x = x _∘_ : ∀ {a b c}{A : Set a}{B : Set b}{C : Set c} → (f : B → C) → (g : A → B) → (A → C) f ∘ g = λ x → f (g x)
{ "alphanum_fraction": 0.3882352941, "avg_line_length": 21.25, "ext": "agda", "hexsha": "2b47fd2923a78c5c6033591120beaa903b922763", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Basics.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Basics.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 86, "size": 170 }
{-# OPTIONS --cubical --allow-unsolved-metas #-} open import Agda.Builtin.Cubical.Path open import Agda.Primitive.Cubical open import Agda.Builtin.Bool postulate Index : Set i : Index data D : Index → Set where c : D i cong : {A B : Set} (x y : A) (f : A → B) → x ≡ y → f x ≡ f y cong _ _ f x≡y = λ i → f (x≡y i) refl : {A : Set} {x : A} → x ≡ x refl {x = x} = λ _ → x subst : {A : Set} {x y : A} (P : A → Set) → x ≡ y → P x → P y subst P eq p = primTransp (λ i → P (eq i)) i0 p postulate subst-refl : {A : Set} {x : A} (P : A → Set) {p : P x} → subst P refl p ≡ p f : {i : Index} (xs : D i) → D i f c = c works : f (subst D refl c) ≡ c works = cong (subst D refl c) c f (subst-refl D) -- There is no type error here, just a meta to solve. -- The original problem was assuming injectivity of f. should-work-too : f (subst D refl c) ≡ c should-work-too = cong _ _ f (subst-refl D)
{ "alphanum_fraction": 0.5655021834, "avg_line_length": 22.3414634146, "ext": "agda", "hexsha": "26e52fb3cea8e9729f5e15ee7e23ed3f112aae58", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue5579.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue5579.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue5579.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 364, "size": 916 }
open import Oscar.Prelude open import Oscar.Class module Oscar.Class.Reflexivity where module Reflexivity' {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) (x : 𝔒) = ℭLASS (_∼_) (x ∼ x) module Reflexivity {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) where class = ∀ {x} → Reflexivity'.class _∼_ x type = ∀ {x} → Reflexivity'.type _∼_ x method : ⦃ _ : class ⦄ → type method = Reflexivity'.method _∼_ _ module _ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} where reflexivity = Reflexivity.method _∼_ ε = reflexivity module _ {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) where reflexivity[_] = Reflexivity.method _∼_ ε[_] = reflexivity
{ "alphanum_fraction": 0.5670261941, "avg_line_length": 18.5428571429, "ext": "agda", "hexsha": "e9db95795dfa7328e75765713b10f12ca5b48b3e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Reflexivity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Reflexivity.agda", "max_line_length": 42, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Reflexivity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 322, "size": 649 }
-- Andreas, 2019-07-23, issue #3937 reported by gallais f : let ... = ? in ? f = ? -- WAS: internal error -- Expected: Could not parse the left-hand side ...
{ "alphanum_fraction": 0.6211180124, "avg_line_length": 17.8888888889, "ext": "agda", "hexsha": "3a745194d2e9034a9ae04a348a686b1751848201", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3937.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3937.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3937.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 48, "size": 161 }
{- Definition of a basis of a distributive lattice as a generating sub-meet-semilattice -} {-# OPTIONS --safe #-} module Cubical.Algebra.DistLattice.Basis where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Foundations.Powerset open import Cubical.Functions.Embedding open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ ; zero ; suc) open import Cubical.Data.FinData open import Cubical.Data.Bool open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Monoid.BigOp open import Cubical.Algebra.CommMonoid open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice open import Cubical.Algebra.DistLattice open import Cubical.Algebra.DistLattice.BigOps private variable ℓ : Level module _ (L' : DistLattice ℓ) where private L = fst L' open DistLatticeStr (snd L') open Join L' record IsGenSublattice (M : Semilattice ℓ) (e : fst M → L) : Type ℓ where constructor isgensublattice open SemilatticeStr (snd M) renaming (ε to 0s ; _·_ to _∧s_) field isInj : ∀ x y → e x ≡ e y → x ≡ y pres0 : e 0s ≡ 0l resp∧ : ∀ x y → e (x ∧s y) ≡ e x ∧l e y ⋁Gen : ∀ (x : L) → ∃[ n ∈ ℕ ] Σ[ α ∈ FinVec (fst M) n ] (⋁ (e ∘ α) ≡ x) -- TODO: prove equivalence with the more set-theoretical definition record IsBasis (S : ℙ L) : Type ℓ where constructor isbasis field contains1 : 1l ∈ S ∧lClosed : ∀ (x y : L) → x ∈ S → y ∈ S → x ∧l y ∈ S ⋁Basis : ∀ (x : L) → ∃[ n ∈ ℕ ] Σ[ α ∈ FinVec L n ] (∀ i → α i ∈ S) × (⋁ α ≡ x) open IsBasis open SemilatticeStr Basis→MeetSemilattice : (S : ℙ L) → IsBasis S → Semilattice ℓ fst (Basis→MeetSemilattice S isBasisS) = Σ[ l ∈ L ] (l ∈ S) ε (snd (Basis→MeetSemilattice S isBasisS)) = 1l , isBasisS .contains1 _·_ (snd (Basis→MeetSemilattice S isBasisS)) x y = fst x ∧l fst y , isBasisS .∧lClosed _ _ (snd x) (snd y) isSemilattice (snd (Basis→MeetSemilattice S isBasisS)) = makeIsSemilattice (isSetΣ (isSetDistLattice L') λ _ → isProp→isSet (S _ .snd)) (λ _ _ _ → Σ≡Prop (λ _ → S _ .snd) (∧lAssoc _ _ _)) (λ _ → Σ≡Prop (λ _ → S _ .snd) (∧lRid _)) (λ _ → Σ≡Prop (λ _ → S _ .snd) (∧lLid _)) (λ _ _ → Σ≡Prop (λ _ → S _ .snd) (∧lComm _ _)) λ _ → Σ≡Prop (λ _ → S _ .snd) (∧lIdem _)
{ "alphanum_fraction": 0.6739598278, "avg_line_length": 34.85, "ext": "agda", "hexsha": "da44dab48cce379edaa8fc523e70d381b338869e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/DistLattice/Basis.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/DistLattice/Basis.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/DistLattice/Basis.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 985, "size": 2788 }
module WellTypedTermsModel where open import Library open import WellTypedTerms open import RMonads.REM open import FunctorCat open import Categories.Sets -- interpretation of types Val : Ty → Set Val ι = ⊤ Val (σ ⇒ τ) = Val σ → Val τ -- interpretation of contexts Env : Con → Set Env Γ = ∀{σ} → Var Γ σ → Val σ _<<_ : ∀{Γ σ} → Env Γ → Val σ → Env (Γ < σ) (γ << v) vz = v (γ << v) (vs x) = γ x -- intepretation of terms eval : ∀{Γ σ} → Env Γ → Tm Γ σ → Val σ eval γ (var x) = γ x eval γ (app t u) = eval γ t (eval γ u) eval γ (lam t) = λ v → eval (γ << v) t substeval : ∀{σ τ}(p : σ ≅ τ){Γ : Con}{γ : Env Γ}(t : Tm Γ σ) → (subst Val p ∘ eval γ) t ≅ (eval γ ∘ subst (Tm Γ) p) t substeval refl t = refl wk<< : ∀{Γ Δ}(α : Ren Γ Δ)(β : Env Δ){σ}(v : Val σ) → ∀{ρ}(y : Var (Γ < σ) ρ) → ((β ∘ α) << v) y ≅ (β << v) (wk α y) wk<< α β v vz = refl wk<< α β v (vs y) = refl reneval : ∀{Γ Δ σ}(α : Ren Γ Δ)(β : Env Δ)(t : Tm Γ σ) → eval (β ∘ α) t ≅ (eval β ∘ ren α) t reneval α β (var x) = refl reneval α β (app t u) = proof eval (β ∘ α) t (eval (β ∘ α) u) ≅⟨ cong₂ (λ f x → f x) (reneval α β t) (reneval α β u) ⟩ eval β (ren α t) (eval β (ren α u)) ∎ reneval α β (lam t) = ext λ v → proof eval ((β ∘ α) << v) t ≅⟨ cong (λ (γ : Env _) → eval γ t) (iext λ _ → ext (wk<< α β v)) ⟩ eval ((β << v) ∘ wk α) t ≅⟨ reneval (wk α) (β << v) t ⟩ eval (β << v) (ren (wk α) t) ∎ lifteval : ∀{Γ Δ σ τ}(α : Sub Γ Δ)(β : Env Δ)(v : Val σ)(y : Var (Γ < σ) τ) → ((eval β ∘ α) << v) y ≅ (eval (β << v) ∘ lift α) y lifteval α β v vz = refl lifteval α β v (vs x) = proof eval β (α x) ≅⟨ reneval vs (β << v) (α x) ⟩ eval (β << v) (ren vs (α x)) ∎ subeval : ∀{Γ Δ σ}(α : Sub Γ Δ)(β : Env Δ)(t : Tm Γ σ) → eval (eval β ∘ α) t ≅ (eval β ∘ sub α) t subeval α β (var x) = refl subeval α β (app t u) = proof eval (eval β ∘ α) t (eval (eval β ∘ α) u) ≅⟨ cong₂ (λ f x → f x) (subeval α β t) (subeval α β u) ⟩ eval β (sub α t) (eval β (sub α u)) ∎ subeval α β (lam t) = ext λ v → proof eval ((eval β ∘ α) << v) t ≅⟨ cong (λ (γ : Env _) → eval γ t) (iext λ _ → ext (lifteval α β v)) ⟩ eval (eval (β << v) ∘ lift α) t ≅⟨ subeval (lift α) (β << v) t ⟩ eval (β << v) (sub (lift α) t) ∎ modelRAlg : RAlg TmRMonad modelRAlg = record { acar = Val; astr = λ {Γ} → λ γ → eval γ; alaw1 = refl; alaw2 = λ {Γ Δ α γ} → iext λ σ → ext (subeval α γ)}
{ "alphanum_fraction": 0.4869530309, "avg_line_length": 26.5, "ext": "agda", "hexsha": "371e7732834f3d6f41dddd27911384d0bc24af8f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "WellTypedTermsModel.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "WellTypedTermsModel.agda", "max_line_length": 77, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "WellTypedTermsModel.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 1148, "size": 2491 }
module Class.Traversable where open import Class.Monad open import Level record Traversable {a} (T : Set a -> Set a) : Set (suc a) where field sequence : ∀ {M : Set a -> Set a} {{_ : Monad M}} {A : Set a} -> T (M A) -> M (T A) open Traversable {{...}} public
{ "alphanum_fraction": 0.6044776119, "avg_line_length": 24.3636363636, "ext": "agda", "hexsha": "9389a9054e49961697562ad12228e77920a52901", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Class/Traversable.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Class/Traversable.agda", "max_line_length": 87, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Class/Traversable.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 87, "size": 268 }
open import Coinduction using ( ♯_ ) open import Data.Bool using ( Bool ; true ; false ; not ) open import Data.ByteString using ( null ) open import Data.ByteString.UTF8 using ( fromString ) renaming ( span to #span ) open import Data.Natural using ( Natural ) open import Data.Product using ( _×_ ; _,_ ) open import Data.Char using ( Char ) open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; _⟫_ ; π₁ ; π₂ ; _[&]_ ) open import System.IO.Transducers.Weight using ( weight ) open import System.IO.Transducers.Stateful using ( loop ) open import System.IO.Transducers.Session using ( ⟨_⟩ ; _&_ ; ¿ ; * ; _&*_ ; Bytes ; Bytes' ; Strings ) open import System.IO.Transducers.Strict using ( _⇛_ ) module System.IO.Transducers.UTF8 where mutual -- TODO: span isn't doing the right thing when char boundaries fail to line up with bytestring boundaries span+ : (Char → Bool) → Bytes' ⇛ (Bytes & Bytes) span+ φ x with #span φ x span+ φ x | (x₁ , x₂) with null x₁ | null x₂ span+ φ x | (x₁ , x₂) | true | true = inp (♯ span φ) span+ φ x | (x₁ , x₂) | true | false = out false (out true (out x₂ done)) span+ φ x | (x₁ , x₂) | false | true = out true (out x₁ (inp (♯ span φ))) span+ φ x | (x₁ , x₂) | false | false = out true (out x₁ (out false (out true (out x₂ done)))) span : (Char → Bool) → Bytes ⇛ (Bytes & Bytes) span φ false = out false (out false done) span φ true = inp (♯ span+ φ) break : (Char → Bool) → Bytes ⇛ (Bytes & Bytes) break φ = span (λ x → not (φ x)) mutual nonempty+ : Bytes' & Bytes ⇛ ¿ Bytes & Bytes nonempty+ x with null x nonempty+ x | true = inp (♯ nonempty) nonempty+ x | false = out true (out true (out x done)) nonempty : Bytes & Bytes ⇛ ¿ Bytes & Bytes nonempty true = inp (♯ nonempty+) nonempty false = out false done split? : (Char → Bool) → Bytes ⇒ (¿ Bytes & Bytes) split? φ = inp (♯ span φ) ⟫ π₂ {Bytes} ⟫ inp (♯ break φ) ⟫ inp (♯ nonempty) split : (Char → Bool) → Bytes ⇒ * Bytes split φ = loop {Bytes} (split? φ) ⟫ π₁ -- TODO: decode encode : Strings ⇛ Bytes encode true = out true (inp (♯ λ s → out (fromString s) (inp (♯ encode)))) encode false = out false done
{ "alphanum_fraction": 0.634774609, "avg_line_length": 37.4827586207, "ext": "agda", "hexsha": "1a5fecbbd8f24dba85be9882a80052a07a2a1735", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Transducers/UTF8.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Transducers/UTF8.agda", "max_line_length": 107, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Transducers/UTF8.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 704, "size": 2174 }
module Text.Greek.SBLGNT.2Thess where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΘΕΣΣΑΛΟΝΙΚΕΙΣ-Β : List (Word) ΠΡΟΣ-ΘΕΣΣΑΛΟΝΙΚΕΙΣ-Β = word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Thess.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.1" ∷ word (Σ ∷ ι ∷ ∙λ ∷ ο ∷ υ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "2Thess.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.1" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ς ∷ []) "2Thess.1.1" ∷ word (τ ∷ ῇ ∷ []) "2Thess.1.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "2Thess.1.1" ∷ word (Θ ∷ ε ∷ σ ∷ σ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ ι ∷ κ ∷ έ ∷ ω ∷ ν ∷ []) "2Thess.1.1" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.1" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Thess.1.1" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "2Thess.1.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Thess.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Thess.1.1" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Thess.1.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.2" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "2Thess.1.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.1.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.1.2" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Thess.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.2" ∷ word (Ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Thess.1.3" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.1.3" ∷ word (τ ∷ ῷ ∷ []) "2Thess.1.3" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Thess.1.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Thess.1.3" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Thess.1.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.3" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.1.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Thess.1.3" ∷ word (ἄ ∷ ξ ∷ ι ∷ ό ∷ ν ∷ []) "2Thess.1.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Thess.1.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.1.3" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ α ∷ υ ∷ ξ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "2Thess.1.3" ∷ word (ἡ ∷ []) "2Thess.1.3" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "2Thess.1.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.3" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "2Thess.1.3" ∷ word (ἡ ∷ []) "2Thess.1.3" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "2Thess.1.3" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "2Thess.1.3" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "2Thess.1.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Thess.1.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.1.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "2Thess.1.3" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Thess.1.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.4" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.1.4" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ υ ∷ χ ∷ ᾶ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.1.4" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Thess.1.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.1.4" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Thess.1.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.4" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "2Thess.1.4" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.4" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.4" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.4" ∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Thess.1.4" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.4" ∷ word (α ∷ ἷ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ἀ ∷ ν ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Thess.1.4" ∷ word (ἔ ∷ ν ∷ δ ∷ ε ∷ ι ∷ γ ∷ μ ∷ α ∷ []) "2Thess.1.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.5" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "2Thess.1.5" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Thess.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.1.5" ∷ word (τ ∷ ὸ ∷ []) "2Thess.1.5" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ξ ∷ ι ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.1.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.1.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.5" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Thess.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.1.5" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Thess.1.5" ∷ word (ἧ ∷ ς ∷ []) "2Thess.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.5" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "2Thess.1.5" ∷ word (ε ∷ ἴ ∷ π ∷ ε ∷ ρ ∷ []) "2Thess.1.6" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "2Thess.1.6" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2Thess.1.6" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Thess.1.6" ∷ word (ἀ ∷ ν ∷ τ ∷ α ∷ π ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.1.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.6" ∷ word (θ ∷ ∙λ ∷ ί ∷ β ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.1.6" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "2Thess.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.1.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.7" ∷ word (θ ∷ ∙λ ∷ ι ∷ β ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Thess.1.7" ∷ word (ἄ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.7" ∷ word (μ ∷ ε ∷ θ ∷ []) "2Thess.1.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.7" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.7" ∷ word (τ ∷ ῇ ∷ []) "2Thess.1.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ι ∷ []) "2Thess.1.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.7" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.7" ∷ word (ἀ ∷ π ∷ []) "2Thess.1.7" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "2Thess.1.7" ∷ word (μ ∷ ε ∷ τ ∷ []) "2Thess.1.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "2Thess.1.7" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "2Thess.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.7" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.8" ∷ word (φ ∷ ∙λ ∷ ο ∷ γ ∷ ὶ ∷ []) "2Thess.1.8" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "2Thess.1.8" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Thess.1.8" ∷ word (ἐ ∷ κ ∷ δ ∷ ί ∷ κ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.8" ∷ word (μ ∷ ὴ ∷ []) "2Thess.1.8" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ σ ∷ ι ∷ []) "2Thess.1.8" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "2Thess.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.8" ∷ word (μ ∷ ὴ ∷ []) "2Thess.1.8" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.8" ∷ word (τ ∷ ῷ ∷ []) "2Thess.1.8" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "2Thess.1.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.8" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "2Thess.1.9" ∷ word (δ ∷ ί ∷ κ ∷ η ∷ ν ∷ []) "2Thess.1.9" ∷ word (τ ∷ ί ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.9" ∷ word (ὄ ∷ ∙λ ∷ ε ∷ θ ∷ ρ ∷ ο ∷ ν ∷ []) "2Thess.1.9" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "2Thess.1.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.1.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "2Thess.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.9" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.1.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.9" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Thess.1.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.9" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "2Thess.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "2Thess.1.10" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ ν ∷ δ ∷ ο ∷ ξ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.10" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "2Thess.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.10" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.10" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.10" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "2Thess.1.10" ∷ word (τ ∷ ὸ ∷ []) "2Thess.1.10" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Thess.1.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ φ ∷ []) "2Thess.1.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.10" ∷ word (τ ∷ ῇ ∷ []) "2Thess.1.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "2Thess.1.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.1.11" ∷ word (ὃ ∷ []) "2Thess.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Thess.1.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Thess.1.11" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Thess.1.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.1.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.1.11" ∷ word (ἀ ∷ ξ ∷ ι ∷ ώ ∷ σ ∷ ῃ ∷ []) "2Thess.1.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.11" ∷ word (κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Thess.1.11" ∷ word (ὁ ∷ []) "2Thess.1.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Thess.1.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.11" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ σ ∷ ῃ ∷ []) "2Thess.1.11" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "2Thess.1.11" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "2Thess.1.11" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Thess.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.11" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "2Thess.1.11" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "2Thess.1.11" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.11" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "2Thess.1.11" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "2Thess.1.12" ∷ word (ἐ ∷ ν ∷ δ ∷ ο ∷ ξ ∷ α ∷ σ ∷ θ ∷ ῇ ∷ []) "2Thess.1.12" ∷ word (τ ∷ ὸ ∷ []) "2Thess.1.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "2Thess.1.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.12" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.12" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Thess.1.12" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Thess.1.12" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Thess.1.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.1.12" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Thess.1.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.12" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (Ἐ ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.2.1" ∷ word (δ ∷ ὲ ∷ []) "2Thess.2.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.2.1" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Thess.2.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.1" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.2.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.2.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.1" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῆ ∷ ς ∷ []) "2Thess.2.1" ∷ word (ἐ ∷ π ∷ []) "2Thess.2.1" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "2Thess.2.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.2" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.2" ∷ word (μ ∷ ὴ ∷ []) "2Thess.2.2" ∷ word (τ ∷ α ∷ χ ∷ έ ∷ ω ∷ ς ∷ []) "2Thess.2.2" ∷ word (σ ∷ α ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.2.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.2" ∷ word (ν ∷ ο ∷ ὸ ∷ ς ∷ []) "2Thess.2.2" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "2Thess.2.2" ∷ word (θ ∷ ρ ∷ ο ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.2.2" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "2Thess.2.2" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.2.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Thess.2.2" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "2Thess.2.2" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.2.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "2Thess.2.2" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "2Thess.2.2" ∷ word (δ ∷ ι ∷ []) "2Thess.2.2" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "2Thess.2.2" ∷ word (ὡ ∷ ς ∷ []) "2Thess.2.2" ∷ word (δ ∷ ι ∷ []) "2Thess.2.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.2" ∷ word (ὡ ∷ ς ∷ []) "2Thess.2.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.2.2" ∷ word (ἐ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "2Thess.2.2" ∷ word (ἡ ∷ []) "2Thess.2.2" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "2Thess.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.2.2" ∷ word (μ ∷ ή ∷ []) "2Thess.2.3" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Thess.2.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.3" ∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ []) "2Thess.2.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Thess.2.3" ∷ word (μ ∷ η ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "2Thess.2.3" ∷ word (τ ∷ ρ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "2Thess.2.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.2.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Thess.2.3" ∷ word (μ ∷ ὴ ∷ []) "2Thess.2.3" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "2Thess.2.3" ∷ word (ἡ ∷ []) "2Thess.2.3" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ α ∷ []) "2Thess.2.3" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "2Thess.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.3" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ φ ∷ θ ∷ ῇ ∷ []) "2Thess.2.3" ∷ word (ὁ ∷ []) "2Thess.2.3" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "2Thess.2.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.3" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.3" ∷ word (ὁ ∷ []) "2Thess.2.3" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "2Thess.2.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.3" ∷ word (ἀ ∷ π ∷ ω ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.3" ∷ word (ὁ ∷ []) "2Thess.2.4" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Thess.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.4" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ α ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Thess.2.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Thess.2.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Thess.2.4" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "2Thess.2.4" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "2Thess.2.4" ∷ word (ἢ ∷ []) "2Thess.2.4" ∷ word (σ ∷ έ ∷ β ∷ α ∷ σ ∷ μ ∷ α ∷ []) "2Thess.2.4" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Thess.2.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Thess.2.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Thess.2.4" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "2Thess.2.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.2.4" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "2Thess.2.4" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ε ∷ ι ∷ κ ∷ ν ∷ ύ ∷ ν ∷ τ ∷ α ∷ []) "2Thess.2.4" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Thess.2.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.2.4" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Thess.2.4" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "2Thess.2.4" ∷ word (ο ∷ ὐ ∷ []) "2Thess.2.5" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "2Thess.2.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.2.5" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "2Thess.2.5" ∷ word (ὢ ∷ ν ∷ []) "2Thess.2.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Thess.2.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.5" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Thess.2.5" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "2Thess.2.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.6" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Thess.2.6" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.6" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ο ∷ ν ∷ []) "2Thess.2.6" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "2Thess.2.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.6" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.6" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ φ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.2.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Thess.2.6" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.6" ∷ word (τ ∷ ῷ ∷ []) "2Thess.2.6" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.6" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "2Thess.2.6" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Thess.2.7" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Thess.2.7" ∷ word (ἤ ∷ δ ∷ η ∷ []) "2Thess.2.7" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "2Thess.2.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.7" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.7" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "2Thess.2.7" ∷ word (ὁ ∷ []) "2Thess.2.7" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ω ∷ ν ∷ []) "2Thess.2.7" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "2Thess.2.7" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "2Thess.2.7" ∷ word (ἐ ∷ κ ∷ []) "2Thess.2.7" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ υ ∷ []) "2Thess.2.7" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Thess.2.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.8" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "2Thess.2.8" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ φ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Thess.2.8" ∷ word (ὁ ∷ []) "2Thess.2.8" ∷ word (ἄ ∷ ν ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "2Thess.2.8" ∷ word (ὃ ∷ ν ∷ []) "2Thess.2.8" ∷ word (ὁ ∷ []) "2Thess.2.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.2.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "2Thess.2.8" ∷ word (ἀ ∷ ν ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "2Thess.2.8" ∷ word (τ ∷ ῷ ∷ []) "2Thess.2.8" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Thess.2.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.8" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Thess.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Thess.2.8" ∷ word (τ ∷ ῇ ∷ []) "2Thess.2.8" ∷ word (ἐ ∷ π ∷ ι ∷ φ ∷ α ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Thess.2.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.8" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.8" ∷ word (ο ∷ ὗ ∷ []) "2Thess.2.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Thess.2.9" ∷ word (ἡ ∷ []) "2Thess.2.9" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "2Thess.2.9" ∷ word (κ ∷ α ∷ τ ∷ []) "2Thess.2.9" ∷ word (ἐ ∷ ν ∷ έ ∷ ρ ∷ γ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Thess.2.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.9" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "2Thess.2.9" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.9" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Thess.2.9" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "2Thess.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.9" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "2Thess.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.9" ∷ word (τ ∷ έ ∷ ρ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.2.9" ∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ υ ∷ ς ∷ []) "2Thess.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.10" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.10" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ π ∷ ά ∷ τ ∷ ῃ ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ ν ∷ θ ∷ []) "2Thess.2.10" ∷ word (ὧ ∷ ν ∷ []) "2Thess.2.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "2Thess.2.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Thess.2.10" ∷ word (ἐ ∷ δ ∷ έ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "2Thess.2.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.10" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.10" ∷ word (σ ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.2.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "2Thess.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Thess.2.11" ∷ word (π ∷ έ ∷ μ ∷ π ∷ ε ∷ ι ∷ []) "2Thess.2.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.2.11" ∷ word (ὁ ∷ []) "2Thess.2.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Thess.2.11" ∷ word (ἐ ∷ ν ∷ έ ∷ ρ ∷ γ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Thess.2.11" ∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ η ∷ ς ∷ []) "2Thess.2.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.11" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.11" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "2Thess.2.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Thess.2.11" ∷ word (τ ∷ ῷ ∷ []) "2Thess.2.11" ∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ []) "2Thess.2.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.2.12" ∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.2.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Thess.2.12" ∷ word (ο ∷ ἱ ∷ []) "2Thess.2.12" ∷ word (μ ∷ ὴ ∷ []) "2Thess.2.12" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Thess.2.12" ∷ word (τ ∷ ῇ ∷ []) "2Thess.2.12" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Thess.2.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Thess.2.12" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Thess.2.12" ∷ word (τ ∷ ῇ ∷ []) "2Thess.2.12" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ ᾳ ∷ []) "2Thess.2.12" ∷ word (Ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Thess.2.13" ∷ word (δ ∷ ὲ ∷ []) "2Thess.2.13" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.2.13" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Thess.2.13" ∷ word (τ ∷ ῷ ∷ []) "2Thess.2.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Thess.2.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Thess.2.13" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Thess.2.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "2Thess.2.13" ∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "2Thess.2.13" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Thess.2.13" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.2.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.2.13" ∷ word (ε ∷ ἵ ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "2Thess.2.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.13" ∷ word (ὁ ∷ []) "2Thess.2.13" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Thess.2.13" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ ν ∷ []) "2Thess.2.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.13" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "2Thess.2.13" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.13" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "2Thess.2.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Thess.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "2Thess.2.13" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.14" ∷ word (ὃ ∷ []) "2Thess.2.14" ∷ word (ἐ ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "2Thess.2.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.14" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.2.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.14" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.2.14" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Thess.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.14" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.2.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.2.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.14" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "2Thess.2.15" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Thess.2.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.2.15" ∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "2Thess.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.15" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "2Thess.2.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Thess.2.15" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ό ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "2Thess.2.15" ∷ word (ἃ ∷ ς ∷ []) "2Thess.2.15" ∷ word (ἐ ∷ δ ∷ ι ∷ δ ∷ ά ∷ χ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "2Thess.2.15" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Thess.2.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.2.15" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "2Thess.2.15" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Thess.2.15" ∷ word (δ ∷ ι ∷ []) "2Thess.2.15" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "2Thess.2.15" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.15" ∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.2.16" ∷ word (δ ∷ ὲ ∷ []) "2Thess.2.16" ∷ word (ὁ ∷ []) "2Thess.2.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.2.16" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.16" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "2Thess.2.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.16" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Thess.2.16" ∷ word (ὁ ∷ []) "2Thess.2.16" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "2Thess.2.16" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.16" ∷ word (ὁ ∷ []) "2Thess.2.16" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "2Thess.2.16" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.16" ∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Thess.2.16" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.2.16" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Thess.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.16" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "2Thess.2.16" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὴ ∷ ν ∷ []) "2Thess.2.16" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.16" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "2Thess.2.16" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "2Thess.2.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Thess.2.17" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.17" ∷ word (σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ξ ∷ α ∷ ι ∷ []) "2Thess.2.17" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.17" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Thess.2.17" ∷ word (ἔ ∷ ρ ∷ γ ∷ ῳ ∷ []) "2Thess.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "2Thess.2.17" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῷ ∷ []) "2Thess.2.17" ∷ word (Τ ∷ ὸ ∷ []) "2Thess.3.1" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "2Thess.3.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Thess.3.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.3.1" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Thess.3.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.3.1" ∷ word (ὁ ∷ []) "2Thess.3.1" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "2Thess.3.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.3.1" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ῃ ∷ []) "2Thess.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.1" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Thess.3.1" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Thess.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Thess.3.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.3.2" ∷ word (ῥ ∷ υ ∷ σ ∷ θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.3.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Thess.3.2" ∷ word (ἀ ∷ τ ∷ ό ∷ π ∷ ω ∷ ν ∷ []) "2Thess.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.2" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "2Thess.3.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "2Thess.3.2" ∷ word (ο ∷ ὐ ∷ []) "2Thess.3.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Thess.3.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Thess.3.2" ∷ word (ἡ ∷ []) "2Thess.3.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "2Thess.3.2" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.3.3" ∷ word (δ ∷ έ ∷ []) "2Thess.3.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Thess.3.3" ∷ word (ὁ ∷ []) "2Thess.3.3" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.3.3" ∷ word (ὃ ∷ ς ∷ []) "2Thess.3.3" ∷ word (σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "2Thess.3.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.3" ∷ word (φ ∷ υ ∷ ∙λ ∷ ά ∷ ξ ∷ ε ∷ ι ∷ []) "2Thess.3.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.3.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.3" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ []) "2Thess.3.3" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ θ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.4" ∷ word (δ ∷ ὲ ∷ []) "2Thess.3.4" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Thess.3.4" ∷ word (ἐ ∷ φ ∷ []) "2Thess.3.4" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.3.4" ∷ word (ἃ ∷ []) "2Thess.3.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.4" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "2Thess.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.4" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "2Thess.3.4" ∷ word (ὁ ∷ []) "2Thess.3.5" ∷ word (δ ∷ ὲ ∷ []) "2Thess.3.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.3.5" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ υ ∷ θ ∷ ύ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.3.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.5" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Thess.3.5" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.3.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.3.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.3.5" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "2Thess.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.3.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.3.5" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ ν ∷ []) "2Thess.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.5" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.6" ∷ word (δ ∷ ὲ ∷ []) "2Thess.3.6" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.3.6" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.6" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Thess.3.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.6" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.3.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.3.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.6" ∷ word (σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.3.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.6" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.3.6" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.3.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "2Thess.3.6" ∷ word (ἀ ∷ τ ∷ ά ∷ κ ∷ τ ∷ ω ∷ ς ∷ []) "2Thess.3.6" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Thess.3.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.6" ∷ word (μ ∷ ὴ ∷ []) "2Thess.3.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Thess.3.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.3.6" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.3.6" ∷ word (ἣ ∷ ν ∷ []) "2Thess.3.6" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ά ∷ β ∷ ο ∷ σ ∷ α ∷ ν ∷ []) "2Thess.3.6" ∷ word (π ∷ α ∷ ρ ∷ []) "2Thess.3.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "2Thess.3.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Thess.3.7" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "2Thess.3.7" ∷ word (π ∷ ῶ ∷ ς ∷ []) "2Thess.3.7" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "2Thess.3.7" ∷ word (μ ∷ ι ∷ μ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.3.7" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.3.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Thess.3.7" ∷ word (ἠ ∷ τ ∷ α ∷ κ ∷ τ ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.7" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.7" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "2Thess.3.8" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ὰ ∷ ν ∷ []) "2Thess.3.8" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "2Thess.3.8" ∷ word (ἐ ∷ φ ∷ ά ∷ γ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.8" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ []) "2Thess.3.8" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "2Thess.3.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Thess.3.8" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.8" ∷ word (κ ∷ ό ∷ π ∷ ῳ ∷ []) "2Thess.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.8" ∷ word (μ ∷ ό ∷ χ ∷ θ ∷ ῳ ∷ []) "2Thess.3.8" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "2Thess.3.8" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Thess.3.8" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Thess.3.8" ∷ word (τ ∷ ὸ ∷ []) "2Thess.3.8" ∷ word (μ ∷ ὴ ∷ []) "2Thess.3.8" ∷ word (ἐ ∷ π ∷ ι ∷ β ∷ α ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ί ∷ []) "2Thess.3.8" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "2Thess.3.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.8" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Thess.3.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.3.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Thess.3.9" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.9" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "2Thess.3.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Thess.3.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.3.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Thess.3.9" ∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ν ∷ []) "2Thess.3.9" ∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.3.9" ∷ word (τ ∷ ὸ ∷ []) "2Thess.3.9" ∷ word (μ ∷ ι ∷ μ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.3.9" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Thess.3.10" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "2Thess.3.10" ∷ word (ἦ ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Thess.3.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.10" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Thess.3.10" ∷ word (π ∷ α ∷ ρ ∷ η ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.10" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.3.10" ∷ word (ε ∷ ἴ ∷ []) "2Thess.3.10" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Thess.3.10" ∷ word (ο ∷ ὐ ∷ []) "2Thess.3.10" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "2Thess.3.10" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.3.10" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "2Thess.3.10" ∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ έ ∷ τ ∷ ω ∷ []) "2Thess.3.10" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.11" ∷ word (γ ∷ ά ∷ ρ ∷ []) "2Thess.3.11" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "2Thess.3.11" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Thess.3.11" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.11" ∷ word (ἀ ∷ τ ∷ ά ∷ κ ∷ τ ∷ ω ∷ ς ∷ []) "2Thess.3.11" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "2Thess.3.11" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Thess.3.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Thess.3.11" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Thess.3.11" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.3.12" ∷ word (δ ∷ ὲ ∷ []) "2Thess.3.12" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "2Thess.3.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.12" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Thess.3.12" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.3.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Thess.3.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.3.12" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Thess.3.12" ∷ word (ἡ ∷ σ ∷ υ ∷ χ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.3.12" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Thess.3.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Thess.3.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Thess.3.12" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "2Thess.3.12" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.3.12" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Thess.3.13" ∷ word (δ ∷ έ ∷ []) "2Thess.3.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.3.13" ∷ word (μ ∷ ὴ ∷ []) "2Thess.3.13" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ κ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "2Thess.3.13" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Thess.3.13" ∷ word (Ε ∷ ἰ ∷ []) "2Thess.3.14" ∷ word (δ ∷ έ ∷ []) "2Thess.3.14" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Thess.3.14" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Thess.3.14" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ []) "2Thess.3.14" ∷ word (τ ∷ ῷ ∷ []) "2Thess.3.14" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "2Thess.3.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.3.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.3.14" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "2Thess.3.14" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "2Thess.3.14" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ ε ∷ []) "2Thess.3.14" ∷ word (μ ∷ ὴ ∷ []) "2Thess.3.14" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ μ ∷ ί ∷ γ ∷ ν ∷ υ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.3.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Thess.3.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.3.14" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ α ∷ π ∷ ῇ ∷ []) "2Thess.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.15" ∷ word (μ ∷ ὴ ∷ []) "2Thess.3.15" ∷ word (ὡ ∷ ς ∷ []) "2Thess.3.15" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ὸ ∷ ν ∷ []) "2Thess.3.15" ∷ word (ἡ ∷ γ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "2Thess.3.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Thess.3.15" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "2Thess.3.15" ∷ word (ὡ ∷ ς ∷ []) "2Thess.3.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ν ∷ []) "2Thess.3.15" ∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.3.16" ∷ word (δ ∷ ὲ ∷ []) "2Thess.3.16" ∷ word (ὁ ∷ []) "2Thess.3.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.3.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.3.16" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "2Thess.3.16" ∷ word (δ ∷ ῴ ∷ η ∷ []) "2Thess.3.16" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.3.16" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "2Thess.3.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.3.16" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.3.16" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.16" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Thess.3.16" ∷ word (τ ∷ ρ ∷ ό ∷ π ∷ ῳ ∷ []) "2Thess.3.16" ∷ word (ὁ ∷ []) "2Thess.3.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.3.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Thess.3.16" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Thess.3.16" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.16" ∷ word (Ὁ ∷ []) "2Thess.3.17" ∷ word (ἀ ∷ σ ∷ π ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "2Thess.3.17" ∷ word (τ ∷ ῇ ∷ []) "2Thess.3.17" ∷ word (ἐ ∷ μ ∷ ῇ ∷ []) "2Thess.3.17" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "2Thess.3.17" ∷ word (Π ∷ α ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "2Thess.3.17" ∷ word (ὅ ∷ []) "2Thess.3.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Thess.3.17" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "2Thess.3.17" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.17" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Thess.3.17" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "2Thess.3.17" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Thess.3.17" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ []) "2Thess.3.17" ∷ word (ἡ ∷ []) "2Thess.3.18" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Thess.3.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.18" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.3.18" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.18" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.3.18" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.18" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Thess.3.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Thess.3.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.18" ∷ []
{ "alphanum_fraction": 0.3695183321, "avg_line_length": 46.8688327316, "ext": "agda", "hexsha": "0ee3ca34c200c76c1853cf00370049847677d4db", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/2Thess.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/2Thess.agda", "max_line_length": 91, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/2Thess.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 27646, "size": 38948 }
open import Data.Empty open import Data.Maybe open import Data.Product open import Data.Unit open import Axiom.Extensionality.Propositional open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Negation open import EffectAnnotations open import Types module AEff where -- ARITY ASSIGNMENT TO SIGNATURES OF SIGNALS, INTERRUPTS, AND BASE CONSTANTS postulate payload : Σₛ → Σ VType (λ X → mobile X) -- payload type assignment for signal and interrupt names postulate Σ-base : Set -- set of base constants postulate ar-base : Σ-base → BType -- arity assignment to base constants -- CONTEXTS data Ctx : Set where [] : Ctx _∷_ : Ctx → VType → Ctx _■ : Ctx → Ctx infixl 35 _∷_ infixl 35 _■ _++ₖ_ : Ctx → Ctx → Ctx Γ ++ₖ [] = Γ Γ ++ₖ (Γ' ∷ X) = (Γ ++ₖ Γ') ∷ X Γ ++ₖ (Γ' ■) = (Γ ++ₖ Γ') ■ infixl 30 _++ₖ_ -- VARIABLES IN CONTEXTS (I.E., DE BRUIJN INDICES) data _∈_ (X : VType) : Ctx → Set where Hd : {Γ : Ctx} → X ∈ (Γ ∷ X) Tl-v : {Γ : Ctx} {Y : VType} → X ∈ Γ → X ∈ (Γ ∷ Y) Tl-■ : {Γ : Ctx} → mobile X → X ∈ Γ → X ∈ (Γ ■) -- DERIVATIONS OF WELL-TYPED TERMS mutual data _⊢V⦂_ (Γ : Ctx) : VType → Set where `_ : {X : VType} → X ∈ Γ → ------------- Γ ⊢V⦂ X ´_ : (c : Σ-base) → -------------- Γ ⊢V⦂ ``(ar-base c) ⋆ : Γ ⊢V⦂ 𝟙 ƛ : {X : VType} {C : CType} → Γ ∷ X ⊢C⦂ C → ------------- Γ ⊢V⦂ X ⇒ C ⟨_⟩ : {X : VType} → Γ ⊢V⦂ X → ------------- Γ ⊢V⦂ ⟨ X ⟩ □ : {X : VType} → Γ ■ ⊢V⦂ X → ------------- Γ ⊢V⦂ □ X infix 40 _·_ data _⊢C⦂_ (Γ : Ctx) : CType → Set where return : {X : VType} {o : O} {i : I} → Γ ⊢V⦂ X → ----------------- Γ ⊢C⦂ X ! (o , i) let=_`in_ : {X Y : VType} {o : O} {i : I} → Γ ⊢C⦂ X ! (o , i) → Γ ∷ X ⊢C⦂ Y ! (o , i) → ----------------------- Γ ⊢C⦂ Y ! (o , i) _·_ : {X : VType} {C : CType} → Γ ⊢V⦂ X ⇒ C → Γ ⊢V⦂ X → ------------- Γ ⊢C⦂ C ↑ : {X : VType} {o : O} {i : I} → (op : Σₛ) → op ∈ₒ o → Γ ⊢V⦂ proj₁ (payload op) → Γ ⊢C⦂ X ! (o , i) → -------------------------- Γ ⊢C⦂ X ! (o , i) ↓ : {X : VType} {o : O} {i : I} (op : Σₛ) → Γ ⊢V⦂ proj₁ (payload op) → Γ ⊢C⦂ X ! (o , i) → -------------------------- Γ ⊢C⦂ X ! op ↓ₑ (o , i) promise_∣_↦_`in_ : {X Y : VType} {o o' : O} {i i' : I} → (op : Σₛ) → (o' , i') ⊑ lkpᵢ op i → Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i') → Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i) → --------------------------------------------------------------------------------------------------- Γ ⊢C⦂ Y ! (o , i) await_until_ : {X : VType} {C : CType} → Γ ⊢V⦂ ⟨ X ⟩ → Γ ∷ X ⊢C⦂ C → -------------- Γ ⊢C⦂ C unbox_`in_ : {X : VType} {C : CType} → Γ ⊢V⦂ □ X → Γ ∷ X ⊢C⦂ C → ------------- Γ ⊢C⦂ C spawn : {C D : CType} → Γ ■ ⊢C⦂ C → Γ ⊢C⦂ D → --------------------- Γ ⊢C⦂ D coerce : {X : VType} {o o' : O} {i i' : I} → o ⊑ₒ o' → i ⊑ᵢ i' → Γ ⊢C⦂ X ! (o , i) → ------------------- Γ ⊢C⦂ X ! (o' , i') -- DERIVATIONS OF WELL-TYPED PROCESSES infix 10 _⊢P⦂_ data _⊢P⦂_ (Γ : Ctx) : {o : O} → PType o → Set where run : {X : VType} {o : O} {i : I} → Γ ⊢C⦂ X ! (o , i) → ------------------- Γ ⊢P⦂ X ‼ o , i _∥_ : {o o' : O} {PP : PType o} → {QQ : PType o'} → Γ ⊢P⦂ PP → Γ ⊢P⦂ QQ → ----------------- Γ ⊢P⦂ (PP ∥ QQ) ↑ : {o : O} → {PP : PType o} (op : Σₛ) → op ∈ₒ o → Γ ⊢V⦂ (proj₁ (payload op)) → Γ ⊢P⦂ PP → ---------------------------- Γ ⊢P⦂ PP ↓ : {o : O} {PP : PType o} (op : Σₛ) → Γ ⊢V⦂ (proj₁ (payload op)) → Γ ⊢P⦂ PP → ---------------------------- Γ ⊢P⦂ op ↓ₚ PP -- ADMISSIBLE TYPING RULES ■-dup-var : {Γ Γ' : Ctx} {X : VType} → X ∈ (Γ ■ ++ₖ Γ') → -------------------------- X ∈ (Γ ■ ■ ++ₖ Γ') ■-dup-var {Γ} {[]} (Tl-■ p x) = Tl-■ p (Tl-■ p x) ■-dup-var {Γ} {Γ' ∷ Y} Hd = Hd ■-dup-var {Γ} {Γ' ∷ Y} (Tl-v x) = Tl-v (■-dup-var x) ■-dup-var {Γ} {Γ' ■} (Tl-■ p x) = Tl-■ p (■-dup-var x) mutual ■-dup-v : {Γ Γ' : Ctx} {X : VType} → (Γ ■ ++ₖ Γ') ⊢V⦂ X → -------------------------- (Γ ■ ■ ++ₖ Γ') ⊢V⦂ X ■-dup-v (` x) = ` ■-dup-var x ■-dup-v (´ c) = ´ c ■-dup-v ⋆ = ⋆ ■-dup-v (ƛ M) = ƛ (■-dup-c M) ■-dup-v ⟨ V ⟩ = ⟨ ■-dup-v V ⟩ ■-dup-v (□ V) = □ (■-dup-v {Γ' = _ ■} V) ■-dup-c : {Γ Γ' : Ctx} {C : CType} → (Γ ■ ++ₖ Γ') ⊢C⦂ C → -------------------------- (Γ ■ ■ ++ₖ Γ') ⊢C⦂ C ■-dup-c (return V) = return (■-dup-v V) ■-dup-c (let= M `in N) = let= (■-dup-c M) `in (■-dup-c N) ■-dup-c (V · W) = (■-dup-v V) · (■-dup-v W) ■-dup-c (↑ op p V M) = ↑ op p (■-dup-v V) (■-dup-c M) ■-dup-c (↓ op V M) = ↓ op (■-dup-v V) (■-dup-c M) ■-dup-c (promise op ∣ x ↦ M `in N) = promise op ∣ x ↦ (■-dup-c M) `in (■-dup-c N) ■-dup-c (await V until M) = await (■-dup-v V) until (■-dup-c M) ■-dup-c (unbox V `in M) = unbox (■-dup-v V) `in (■-dup-c M) ■-dup-c (spawn M N) = spawn (■-dup-c {Γ' = _ ■} M) (■-dup-c N) ■-dup-c (coerce p q M) = coerce p q (■-dup-c M) ■-wk : {Γ : Ctx} {X : VType} → mobile X → Γ ⊢V⦂ X → ----------------------- Γ ■ ⊢V⦂ X ■-wk p (` x) = ` Tl-■ p x ■-wk p (´ c) = ´ c ■-wk p ⋆ = ⋆ ■-wk p (□ V) = □ (■-dup-v {_} {[]} V) ■-str-var : {Γ Γ' : Ctx} {X : VType} → X ∈ Γ ■ ++ₖ Γ' → -------------------------- X ∈ Γ ++ₖ Γ' ■-str-var {Γ} {[]} (Tl-■ p x) = x ■-str-var {Γ} {Γ' ∷ Y} Hd = Hd ■-str-var {Γ} {Γ' ∷ Y} (Tl-v x) = Tl-v (■-str-var x) ■-str-var {Γ} {Γ' ■} (Tl-■ p x) = Tl-■ p (■-str-var x) mutual ■-str-v : {Γ Γ' : Ctx} {X : VType} → Γ ■ ++ₖ Γ' ⊢V⦂ X → ----------------------- Γ ++ₖ Γ' ⊢V⦂ X ■-str-v (` x) = ` ■-str-var x ■-str-v (´ c) = ´ c ■-str-v ⋆ = ⋆ ■-str-v (ƛ M) = ƛ (■-str-c M) ■-str-v ⟨ V ⟩ = ⟨ ■-str-v V ⟩ ■-str-v {Γ} {Γ'} (□ V) = □ (■-str-v {Γ' = _ ■} V) ■-str-c : {Γ Γ' : Ctx} {C : CType} → Γ ■ ++ₖ Γ' ⊢C⦂ C → ----------------------- Γ ++ₖ Γ' ⊢C⦂ C ■-str-c (return V) = return (■-str-v V) ■-str-c (let= M `in N) = let= (■-str-c M) `in (■-str-c N) ■-str-c (V · W) = (■-str-v V) · (■-str-v W) ■-str-c (↑ op p V M) = ↑ op p (■-str-v V) (■-str-c M) ■-str-c (↓ op V M) = ↓ op (■-str-v V) (■-str-c M) ■-str-c (promise op ∣ r ↦ M `in N) = promise op ∣ r ↦ (■-str-c M) `in (■-str-c N) ■-str-c (await V until M) = await (■-str-v V) until (■-str-c M) ■-str-c (unbox V `in M) = unbox (■-str-v V) `in (■-str-c M) ■-str-c (spawn M N) = spawn (■-str-c {Γ' = _ ■} M) (■-str-c N) ■-str-c (coerce p q M) = coerce p q (■-str-c M)
{ "alphanum_fraction": 0.286977492, "avg_line_length": 24.8091168091, "ext": "agda", "hexsha": "fe94faf124d7ab5b4be3063f08310682e1ca8329", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danelahman/modal-aeff-agda", "max_forks_repo_path": "AEff.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danelahman/modal-aeff-agda", "max_issues_repo_path": "AEff.agda", "max_line_length": 122, "max_stars_count": 2, "max_stars_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danelahman/higher-order-aeff-agda", "max_stars_repo_path": "AEff.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T18:50:26.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-17T15:00:34.000Z", "num_tokens": 3350, "size": 8708 }
module BadInductionRecursion3 where data Bool : Set where false : Bool true : Bool data Two : Bool -> Set where zero : Two false suc : Two false -> Two true mutual data D : Set where d : forall u -> D′ true u -> D D′ : forall b -> Two b -> Set D′ ._ zero = D D′ ._ (suc n) = D′ _ n -> Bool _·_ : D -> D -> D d (suc zero) f · x = f x ω : D ω = d (suc zero) (\x -> x · x) Ω : D Ω = ω · ω
{ "alphanum_fraction": 0.5250596659, "avg_line_length": 14.9642857143, "ext": "agda", "hexsha": "80520ea886ac69eb9769268a3887c649d88e7b22", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/BadInductionRecursion3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/BadInductionRecursion3.agda", "max_line_length": 35, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/BadInductionRecursion3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 168, "size": 419 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness --sized-types #-} open import Size open import Data.Empty open import Data.Product open import Data.Sum open import Data.List using ([]; _∷_; _∷ʳ_; _++_) open import Codata.Thunk open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Unary using (_∈_; _⊆_) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (Star; ε; _◅_; return) open import Function.Base using (case_of_) open import Common module FairSubtyping {ℙ : Set} (message : Message ℙ) where open import Trace message open import SessionType message open import Transitions message open import Session message open import Compliance message open import HasTrace message open import TraceInclusion message open import Convergence message open import FairCompliance message data FairSub : SessionType -> SessionType -> Size -> Set where nil<|any : ∀{T i} -> FairSub nil T i end<|def : ∀{T S i} (e : End T) (def : Defined S) -> FairSub T S i inp<|inp : ∀{f g i} (con : inp f ↓ inp g) (inc : dom f ⊆ dom g) (F : (x : ℙ) -> Thunk (FairSub (f x .force) (g x .force)) i) -> FairSub (inp f) (inp g) i out<|out : ∀{f g i} (con : out f ↓ out g) (W : Witness g) (inc : dom g ⊆ dom f) (F : ∀{x} (!x : x ∈ dom g) -> Thunk (FairSub (f x .force) (g x .force)) i) -> FairSub (out f) (out g) i _<|_ : SessionType -> SessionType -> Set _<|_ T S = FairSub T S ∞ -- sub-defined : ∀{T S} -> T <| S -> Defined T -> Defined S -- sub-defined (end<|def _ def) _ = def -- sub-defined (inp<|inp _ _) _ = inp -- sub-defined (out<|out _ _ _) _ = out fs->convergence : ∀{T S} -> T <| S -> T ↓ S fs->convergence nil<|any = inclusion->convergence nil<=any fs->convergence (end<|def e def) = inclusion->convergence (end<=def e def) fs->convergence (inp<|inp con inc F) = con fs->convergence (out<|out con W inc F) = con fc-not-transition+end : ∀{R R' T α} -> FairComplianceS (R # T) -> Transition R α R' -> End T -> ⊥ fc-not-transition+end comp inp (inp U) with comp ε ... | _ , ε , win#def () _ ... | _ , sync () inp ◅ _ , _ fc-not-transition+end comp inp (out U) with comp ε ... | _ , ε , win#def () _ ... | _ , sync _ (out fx) ◅ _ , _ = ⊥-elim (U _ fx) fc-not-transition+end comp (out fx) (inp V) with comp ε ... | _ , ε , win#def (out U) _ = ⊥-elim (U _ fx) ... | _ , sync (out _) inp ◅ reds , win#def w def = let _ , rr , tr = unzip-red* reds in ⊥-elim (V _ (transitions+defined->defined tr def)) fc-not-transition+end comp (out fx) (out _) with comp ε ... | _ , ε , win#def (out U) _ = ⊥-elim (U _ fx) ... | _ , sync () (out _) ◅ _ , _ sub-red : ∀{T S S' R R' α} -> FairComplianceS (R # T) -> T <| S -> Transition R (co-action α) R' -> Transition S α S' -> ∃[ T' ] (Transition T α T' × T' <| S') sub-red comp nil<|any _ _ with comp ε ... | _ , ε , win#def _ () ... | _ , sync _ () ◅ _ , _ sub-red comp (end<|def e _) r _ = ⊥-elim (fc-not-transition+end comp r e) sub-red comp (inp<|inp con inc F) (out {h} hx) (inp {f}) = _ , inp , F _ .force sub-red comp (out<|out con W inc F) inp (out fx) = _ , out (inc fx) , F fx .force sub-red* : ∀{T S S' R R' φ} -> FairComplianceS (R # T) -> T <| S -> Transitions R (co-trace φ) R' -> Transitions S φ S' -> ∃[ T' ] (Transitions T φ T' × T' <| S') sub-red* comp sub refl refl = _ , refl , sub sub-red* comp sub (step r rr) (step s sr) = let _ , t , sub' = sub-red comp sub r s in let comp' = fc-transitions (step r refl) (step t refl) comp in let _ , tr , sub'' = sub-red* comp' sub' rr sr in _ , step t tr , sub'' sub-sound : ∀{T S R} -> FairComplianceS (R # T) -> T <| S -> FairComplianceS (R # S) sub-sound comp sub {_ # _} reds = let _ , rr , sr = unzip-red* reds in let _ , tr , sub' = sub-red* comp sub rr sr in let comp' = fair-compliance-red* comp (zip-red* rr tr) in con-sound (fs->convergence sub') comp'
{ "alphanum_fraction": 0.6400622932, "avg_line_length": 35.1849315068, "ext": "agda", "hexsha": "39f267993556ab7f39f70882b16b61889cf6c3b8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/FairSubtyping.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/FairSubtyping.agda", "max_line_length": 94, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/FairSubtyping.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 1644, "size": 5137 }
-- Algorithmic equality. {-# OPTIONS --safe #-} module Definition.Conversion where open import Definition.Untyped open import Definition.Typed open import Tools.Nat import Tools.PropositionalEquality as PE infix 10 _⊢_~_↑_^_ infix 10 _⊢_[conv↑]_^_ infix 10 _⊢_[conv↓]_^_ infix 10 _⊢_[conv↑]_∷_^_ infix 10 _⊢_[conv↓]_∷_^_ infix 10 _⊢_[genconv↑]_∷_^_ mutual -- Neutral equality. data _⊢_~_↑!_^_ (Γ : Con Term) : (k l A : Term) → TypeLevel → Set where var-refl : ∀ {x y A l} → Γ ⊢ var x ∷ A ^ [ ! , l ] → x PE.≡ y → Γ ⊢ var x ~ var y ↑! A ^ l app-cong : ∀ {k l t v F rF lF lG G lΠ} → Γ ⊢ k ~ l ↓! Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ ι lΠ → Γ ⊢ t [genconv↑] v ∷ F ^ [ rF , ι lF ] → Γ ⊢ k ∘ t ^ lΠ ~ l ∘ v ^ lΠ ↑! G [ t ] ^ ι lG natrec-cong : ∀ {k l h g a₀ b₀ F G lF} → Γ ∙ ℕ ^ [ ! , ι ⁰ ] ⊢ F [conv↑] G ^ [ ! , ι lF ] → Γ ⊢ a₀ [conv↑] b₀ ∷ F [ zero ] ^ ι lF → Γ ⊢ h [conv↑] g ∷ Π ℕ ^ ! ° ⁰ ▹ (F ^ ! ° lF ▹▹ F [ suc (var 0) ]↑ ° lF ° lF) ° lF ° lF ^ ι lF → Γ ⊢ k ~ l ↓! ℕ ^ ι ⁰ → Γ ⊢ natrec lF F a₀ h k ~ natrec lF G b₀ g l ↑! F [ k ] ^ ι lF Emptyrec-cong : ∀ {k l F G ll lEmpty} → Γ ⊢ F [conv↑] G ^ [ ! , ι ll ] → Γ ⊢ k ~ l ↑% Empty lEmpty ^ ι lEmpty → Γ ⊢ Emptyrec ll lEmpty F k ~ Emptyrec ll lEmpty G l ↑! F ^ ι ll Id-cong : ∀ {l A A' t t' u u'} → Γ ⊢ A ~ A' ↓! U l ^ next l → Γ ⊢ t [conv↑] t' ∷ A ^ ι l → Γ ⊢ u [conv↑] u' ∷ A ^ ι l → Γ ⊢ Id A t u ~ Id A' t' u' ↑! SProp l ^ next l Id-ℕ : ∀ {t t' u u'} → Γ ⊢ t ~ t' ↓! ℕ ^ ι ⁰ → Γ ⊢ u [conv↑] u' ∷ ℕ ^ ι ⁰ → Γ ⊢ Id ℕ t u ~ Id ℕ t' u' ↑! SProp ⁰ ^ next ⁰ Id-ℕ0 : ∀ {t t'} → Γ ⊢ t ~ t' ↓! ℕ ^ ι ⁰ → Γ ⊢ Id ℕ zero t ~ Id ℕ zero t' ↑! SProp ⁰ ^ next ⁰ Id-ℕS : ∀ {t t' u u'} → Γ ⊢ t [conv↑] t' ∷ ℕ ^ ι ⁰ → Γ ⊢ u ~ u' ↓! ℕ ^ ι ⁰ → Γ ⊢ Id ℕ (suc t) u ~ Id ℕ (suc t') u' ↑! SProp ⁰ ^ next ⁰ Id-U : ∀ {t t' u u'} → Γ ⊢ t ~ t' ↓! U ⁰ ^ ι ¹ → Γ ⊢ u [conv↑] u' ∷ U ⁰ ^ ι ¹ → Γ ⊢ Id (U ⁰) t u ~ Id (U ⁰) t' u' ↑! SProp ¹ ^ next ¹ Id-Uℕ : ∀ {t t'} → Γ ⊢ t ~ t' ↓! U ⁰ ^ ι ¹ → Γ ⊢ Id (U ⁰) ℕ t ~ Id (U ⁰) ℕ t' ↑! SProp ¹ ^ next ¹ Id-UΠ : ∀ {A rA B A' B' t t'} → Γ ⊢ Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ [conv↑] Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹ → Γ ⊢ t ~ t' ↓! U ⁰ ^ ι ¹ → Γ ⊢ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ ) t ~ Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ) t' ↑! SProp ¹ ^ next ¹ cast-cong : ∀ {A A' B B' t t' e e'} → Γ ⊢ A ~ A' ↓! U ⁰ ^ next ⁰ → Γ ⊢ B [conv↑] B' ∷ U ⁰ ^ ι ¹ → Γ ⊢ t [conv↑] t' ∷ A ^ ι ⁰ → Γ ⊢ e ∷ (Id (U ⁰) A B) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) A' B') ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ A B e t ~ cast ⁰ A' B' e' t' ↑! B ^ ι ⁰ cast-ℕ : ∀ {A A' t t' e e'} → Γ ⊢ A ~ A' ↓! U ⁰ ^ next ⁰ → Γ ⊢ t [conv↑] t' ∷ ℕ ^ ι ⁰ → Γ ⊢ e ∷ (Id (U ⁰) ℕ A) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) ℕ A') ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ A e t ~ cast ⁰ ℕ A' e' t' ↑! A ^ ι ⁰ cast-ℕℕ : ∀ {t t' e e'} → Γ ⊢ t ~ t' ↓! ℕ ^ ι ⁰ → Γ ⊢ e ∷ (Id (U ⁰) ℕ ℕ) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) ℕ ℕ) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ ℕ e t ~ cast ⁰ ℕ ℕ e' t' ↑! ℕ ^ ι ⁰ cast-Π : ∀ {A rA P A' P' B B' t t' e e'} → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [conv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ next ⁰ → Γ ⊢ B ~ B' ↓! U ⁰ ^ next ⁰ → Γ ⊢ t [conv↑] t' ∷ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ^ ι ⁰ → Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) B) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ) B') ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) B e t ~ cast ⁰ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ) B' e' t' ↑! B ^ ι ⁰ cast-Πℕ : ∀ {A rA P A' P' t t' e e'} → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [conv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹ → Γ ⊢ t [conv↑] t' ∷ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ^ ι ⁰ → Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) ℕ) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ) ℕ) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) ℕ e t ~ cast ⁰ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ) ℕ e' t' ↑! ℕ ^ ι ⁰ cast-ℕΠ : ∀ {A rA P A' P' t t' e e'} → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [conv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹ → Γ ⊢ t [conv↑] t' ∷ ℕ ^ ι ⁰ → Γ ⊢ e ∷ (Id (U ⁰) ℕ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) ℕ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) e t ~ cast ⁰ ℕ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ) e' t' ↑! (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) ^ ι ⁰ cast-ΠΠ%! : ∀ {A P A' P' B Q B' Q' t t' e e'} → Γ ⊢ Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ [conv↑] Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹ → Γ ⊢ Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ [conv↑] Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹ → Γ ⊢ t [conv↑] t' ∷ Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ ^ ι ⁰ → Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ ) (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰ ) (Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ ) (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ ) e t ~ cast ⁰ (Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰ ) (Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰ ) e' t' ↑! (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ ) ^ ι ⁰ cast-ΠΠ!% : ∀ {A P A' P' B Q B' Q' t t' e e'} → Γ ⊢ Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ [conv↑] Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹ → Γ ⊢ Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ [conv↑] Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹ → Γ ⊢ t [conv↑] t' ∷ Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ ^ ι ⁰ → Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ ) (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰ ) (Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ ) (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ ) e t ~ cast ⁰ (Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰ ) (Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰ ) e' t' ↑! (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ ) ^ ι ⁰ record _⊢_~_↑%_^_ (Γ : Con Term) (k l A : Term) (ll : TypeLevel) : Set where inductive constructor %~↑ field ⊢k : Γ ⊢ k ∷ A ^ [ % , ll ] ⊢l : Γ ⊢ l ∷ A ^ [ % , ll ] data _⊢_~_↑_^_ (Γ : Con Term) : (k l A : Term) → TypeInfo → Set where ~↑! : ∀ {k l A ll} → Γ ⊢ k ~ l ↑! A ^ ll → Γ ⊢ k ~ l ↑ A ^ [ ! , ll ] ~↑% : ∀ {k l A ll} → Γ ⊢ k ~ l ↑% A ^ ll → Γ ⊢ k ~ l ↑ A ^ [ % , ll ] -- Neutral equality with types in WHNF. record _⊢_~_↓!_^_ (Γ : Con Term) (k l B : Term) (ll : TypeLevel) : Set where inductive constructor [~] field A : Term D : Γ ⊢ A ⇒* B ^ [ ! , ll ] whnfB : Whnf B k~l : Γ ⊢ k ~ l ↑! A ^ ll -- Type equality. record _⊢_[conv↑]_^_ (Γ : Con Term) (A B : Term) (rA : TypeInfo) : Set where inductive constructor [↑] field A′ B′ : Term D : Γ ⊢ A ⇒* A′ ^ rA D′ : Γ ⊢ B ⇒* B′ ^ rA whnfA′ : Whnf A′ whnfB′ : Whnf B′ A′<>B′ : Γ ⊢ A′ [conv↓] B′ ^ rA -- Type equality with types in WHNF. data _⊢_[conv↓]_^_ (Γ : Con Term) : (A B : Term) → TypeInfo → Set where U-refl : ∀ {r r' } → r PE.≡ r' -- needed for K issues → ⊢ Γ → Γ ⊢ Univ r ¹ [conv↓] Univ r' ¹ ^ [ ! , next ¹ ] univ : ∀ {A B r l} → Γ ⊢ A [conv↓] B ∷ Univ r l ^ next l → Γ ⊢ A [conv↓] B ^ [ r , ι l ] -- Term equality. record _⊢_[conv↑]_∷_^_ (Γ : Con Term) (t u A : Term) (l : TypeLevel) : Set where inductive constructor [↑]ₜ field B t′ u′ : Term D : Γ ⊢ A ⇒* B ^ [ ! , l ] d : Γ ⊢ t ⇒* t′ ∷ B ^ l d′ : Γ ⊢ u ⇒* u′ ∷ B ^ l whnfB : Whnf B whnft′ : Whnf t′ whnfu′ : Whnf u′ t<>u : Γ ⊢ t′ [conv↓] u′ ∷ B ^ l -- Term equality with types and terms in WHNF. data _⊢_[conv↓]_∷_^_ (Γ : Con Term) : (t u A : Term) (l : TypeLevel) → Set where U-refl : ∀ {r r' } → r PE.≡ r' -- needed for K issues → ⊢ Γ → Γ ⊢ Univ r ⁰ [conv↓] Univ r' ⁰ ∷ U ¹ ^ next ¹ ne : ∀ {r K L lU l} → Γ ⊢ K ~ L ↓! Univ r lU ^ l → Γ ⊢ K [conv↓] L ∷ Univ r lU ^ l ℕ-refl : ⊢ Γ → Γ ⊢ ℕ [conv↓] ℕ ∷ U ⁰ ^ next ⁰ Empty-refl : ∀ {l ll} → ll PE.≡ next l → ⊢ Γ → Γ ⊢ Empty l [conv↓] Empty l ∷ SProp l ^ ll Π-cong : ∀ {F G H E rF rH rΠ lF lH lG lE lΠ ll} → ll PE.≡ next lΠ → rF PE.≡ rH -- needed for K issues → lF PE.≡ lH -- needed for K issues → lG PE.≡ lE -- needed for K issues → lF ≤ lΠ → lG ≤ lΠ → Γ ⊢ F ^ [ rF , ι lF ] → Γ ⊢ F [conv↑] H ∷ Univ rF lF ^ next lF → Γ ∙ F ^ [ rF , ι lF ] ⊢ G [conv↑] E ∷ Univ rΠ lG ^ next lG → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ [conv↓] Π H ^ rH ° lH ▹ E ° lE ° lΠ ∷ Univ rΠ lΠ ^ ll ∃-cong : ∀ {F G H E l ll} → ll PE.≡ next l → Γ ⊢ F ^ [ % , ι l ] → Γ ⊢ F [conv↑] H ∷ SProp l ^ next l → Γ ∙ F ^ [ % , ι l ] ⊢ G [conv↑] E ∷ SProp l ^ next l → Γ ⊢ ∃ F ▹ G [conv↓] ∃ H ▹ E ∷ SProp l ^ ll ℕ-ins : ∀ {k l} → Γ ⊢ k ~ l ↓! ℕ ^ ι ⁰ → Γ ⊢ k [conv↓] l ∷ ℕ ^ ι ⁰ ne-ins : ∀ {k l M N ll} → Γ ⊢ k ∷ N ^ [ ! , ι ll ] → Γ ⊢ l ∷ N ^ [ ! , ι ll ] → Neutral N → Γ ⊢ k ~ l ↓! M ^ ι ll → Γ ⊢ k [conv↓] l ∷ N ^ ι ll zero-refl : ⊢ Γ → Γ ⊢ zero [conv↓] zero ∷ ℕ ^ ι ⁰ suc-cong : ∀ {m n} → Γ ⊢ m [conv↑] n ∷ ℕ ^ ι ⁰ → Γ ⊢ suc m [conv↓] suc n ∷ ℕ ^ ι ⁰ η-eq : ∀ {f g F G rF lF lG l} → lF ≤ l → lG ≤ l → Γ ⊢ F ^ [ rF , ι lF ] → Γ ⊢ f ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ ! , ι l ] → Γ ⊢ g ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ ! , ι l ] → Function f → Function g → Γ ∙ F ^ [ rF , ι lF ] ⊢ wk1 f ∘ var 0 ^ l [conv↑] wk1 g ∘ var 0 ^ l ∷ G ^ ι lG → Γ ⊢ f [conv↓] g ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ ι l _⊢_[genconv↑]_∷_^_ : (Γ : Con Term) (t u A : Term) (r : TypeInfo) → Set _⊢_[genconv↑]_∷_^_ Γ k l A [ ! , ll ] = Γ ⊢ k [conv↑] l ∷ A ^ ll _⊢_[genconv↑]_∷_^_ Γ k l A [ % , ll ] = Γ ⊢ k ~ l ↑% A ^ ll var-refl′ : ∀ {Γ x A rA ll} → Γ ⊢ var x ∷ A ^ [ rA , ll ] → Γ ⊢ var x ~ var x ↑ A ^ [ rA , ll ] var-refl′ {rA = !} ⊢x = ~↑! (var-refl ⊢x PE.refl) var-refl′ {rA = %} ⊢x = ~↑% (%~↑ ⊢x ⊢x)
{ "alphanum_fraction": 0.3270518889, "avg_line_length": 46.4605809129, "ext": "agda", "hexsha": "21e9a449e68be768a1335d9b446fd28988cf3607", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Conversion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Conversion.agda", "max_line_length": 144, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Conversion.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 5764, "size": 11197 }
{-# OPTIONS --cubical --safe #-} module Data.Array.Skew where open import Prelude open import Data.Binary.Skew open import Data.List open import Data.Nat using (_+_) private variable p : Level P : ℕ → Type p n : ℕ ns : 𝔹 infixl 6 _∔_ _∔_ : ℕ → ℕ → ℕ zero ∔ m = m suc n ∔ m = n ∔ suc m infixl 4 _⊕_ _⊕_ : (ℕ → Type p) → ℕ → ℕ → Type p _⊕_ P n m = P (n ∔ m) data Spine⁺ {p} (P : ℕ → Type p) : 𝔹 → Type p where nil : Spine⁺ P [] conss : ∀ n → P n → Spine⁺ (P ⊕ suc n) ns → Spine⁺ P (n ∷ ns) data Spine {p} (P : ℕ → Type p) : 𝔹 → Type p where nil : Spine P [] conss : ∀ n → P n → Spine⁺ (P ⊕ n) ns → Spine P (n ∷ ns) -- cons : (∀ {m} → P m → P m → P (suc m)) → P zero → Spine P ns → Spine P (inc ns) -- cons _*_ x nil = conss zero x nil -- cons _*_ x (conss n x₁ nil) = conss zero x (conss n x₁ nil) -- cons _*_ x (conss n x₁ (conss zero x₂ xs)) = conss (suc n) (x₁ * x₁) xs -- cons _*_ x (conss n x₁ (conss (suc m) x₂ xs)) = conss zero x (conss n x₁ (conss m x₂ {!!}))
{ "alphanum_fraction": 0.5454545455, "avg_line_length": 25.6666666667, "ext": "agda", "hexsha": "1bc753a262148715f188b88c27ae4fceb16508d5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Array/Skew.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Array/Skew.agda", "max_line_length": 94, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Array/Skew.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 444, "size": 1001 }
-- Issue #2814 reported by tomjack on 2017-10-18 {-# OPTIONS --cubical --rewriting --confluence-check #-} -- prelude stolen from Saizan/cubical-demo open import Agda.Primitive.Cubical public open import Agda.Builtin.Cubical.Path Path = _≡_ refl : ∀ {ℓ} {A : Set ℓ} {x : A} → x ≡ x refl {x = x} = λ _ → x postulate Rewrite : ∀ {ℓ} {A : Set ℓ} → A → A → Set {-# BUILTIN REWRITE Rewrite #-} module Good where postulate Unit : Set unit : Unit module UnitElim (P : Unit → Set) (unit* : P unit) where postulate Unit-elim : (x : Unit) → P x unit-β : Rewrite (Unit-elim unit) unit* open UnitElim public {-# REWRITE unit-β #-} test₁ : {C : Set} {c₀ : C} → Path {A = C} (Unit-elim (λ _ → C) c₀ unit) c₀ test₁ = refl test₂ : {C : Set} {c₀ : C} → Path {A = Path c₀ c₀} (λ j → Unit-elim (λ _ → C) c₀ unit) refl test₂ = refl -- same code, but with a dummy module parameter module Bad (Dummy : Set) where postulate Unit : Set unit : Unit module UnitElim (P : Unit → Set) (unit* : P unit) where postulate Unit-elim : (x : Unit) → P x unit-β : Rewrite (Unit-elim unit) unit* open UnitElim public {-# REWRITE unit-β #-} test₁ : {C : Set} {c₀ : C} → Path {A = C} (Unit-elim (λ _ → C) c₀ unit) c₀ test₁ = refl test₂ : {C : Set} {c₀ : C} → Path {A = Path c₀ c₀} (λ j → Unit-elim (λ _ → C) c₀ unit) refl test₂ = refl -- WAS: -- Unit-elim (λ _ → .C) .c₀ unit != .c₀ of type .C -- when checking that the expression refl has type -- Path (λ j → Unit-elim (λ _ → .C) .c₀ unit) refl -- SHOULD: succeed
{ "alphanum_fraction": 0.5865567533, "avg_line_length": 23.8939393939, "ext": "agda", "hexsha": "dea126c7452b50019645d87756c500e2c6f5af32", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue2814.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue2814.agda", "max_line_length": 93, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue2814.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 588, "size": 1577 }
{-# OPTIONS --copatterns --sized-types #-} {- M types done properly coinductive -} module NewM where open import Size open import Coinduction open import Data.Product open import Function open import Data.M as M record M' {i : Size} (A : Set) (B : A → Set) : Set where coinductive field d : ∀ {j : Size< i} → Σ A (λ x → (B x → M' {j} A B)) open M' f : ∀{i} → {A : Set} {B : A → Set} → M A B → M' {i} A B proj₁ (d (f x)) = head x proj₂ (d (f x)) = f ∘ tail x g : {A : Set} {B : A → Set} → M' A B → M A B g x = inf (proj₁ (d x)) (λ b → ♯ g (proj₂ (d x) b))
{ "alphanum_fraction": 0.5528169014, "avg_line_length": 23.6666666667, "ext": "agda", "hexsha": "2a3b8e6046135c8eba88bde10724929908b5d0c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/Container/NewM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/Container/NewM.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/Container/NewM.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 228, "size": 568 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.Substitution where open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.Typed.Weakening open import Definition.Typed.Consequences.Syntactic open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Irrelevance open import Definition.LogicalRelation.Fundamental open import Tools.Product import Tools.PropositionalEquality as PE -- Well-formed substitution of types. substitution : ∀ {A Γ Δ σ} → Γ ⊢ A → Δ ⊢ˢ σ ∷ Γ → ⊢ Δ → Δ ⊢ subst σ A substitution A σ ⊢Δ with fundamental A | fundamentalSubst (wf A) ⊢Δ σ substitution A σ ⊢Δ | [Γ] , [A] | [Γ]′ , [σ] = escape (proj₁ ([A] ⊢Δ (irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]))) -- Well-formed substitution of type equality. substitutionEq : ∀ {A B Γ Δ σ σ′} → Γ ⊢ A ≡ B → Δ ⊢ˢ σ ≡ σ′ ∷ Γ → ⊢ Δ → Δ ⊢ subst σ A ≡ subst σ′ B substitutionEq A≡B σ ⊢Δ with fundamentalEq A≡B | fundamentalSubstEq (wfEq A≡B) ⊢Δ σ substitutionEq A≡B σ ⊢Δ | [Γ] , [A] , [B] , [A≡B] | [Γ]′ , [σ] , [σ′] , [σ≡σ′] = let [σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] [σ′]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ′] [σ≡σ′]′ = irrelevanceSubstEq [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] [σ]′ [σ≡σ′] in escapeEq (proj₁ ([A] ⊢Δ [σ]′)) (transEq (proj₁ ([A] ⊢Δ [σ]′)) (proj₁ ([B] ⊢Δ [σ]′)) (proj₁ ([B] ⊢Δ [σ′]′)) ([A≡B] ⊢Δ [σ]′) (proj₂ ([B] ⊢Δ [σ]′) [σ′]′ [σ≡σ′]′)) -- Well-formed substitution of terms. substitutionTerm : ∀ {t A Γ Δ σ} → Γ ⊢ t ∷ A → Δ ⊢ˢ σ ∷ Γ → ⊢ Δ → Δ ⊢ subst σ t ∷ subst σ A substitutionTerm t σ ⊢Δ with fundamentalTerm t | fundamentalSubst (wfTerm t) ⊢Δ σ substitutionTerm t σ ⊢Δ | [Γ] , [A] , [t] | [Γ]′ , [σ] = let [σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] in escapeTerm (proj₁ ([A] ⊢Δ [σ]′)) (proj₁ ([t] ⊢Δ [σ]′)) -- Well-formed substitution of term equality. substitutionEqTerm : ∀ {t u A Γ Δ σ σ′} → Γ ⊢ t ≡ u ∷ A → Δ ⊢ˢ σ ≡ σ′ ∷ Γ → ⊢ Δ → Δ ⊢ subst σ t ≡ subst σ′ u ∷ subst σ A substitutionEqTerm t≡u σ≡σ′ ⊢Δ with fundamentalTermEq t≡u | fundamentalSubstEq (wfEqTerm t≡u) ⊢Δ σ≡σ′ ... | [Γ] , modelsTermEq [A] [t] [u] [t≡u] | [Γ]′ , [σ] , [σ′] , [σ≡σ′] = let [σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] [σ′]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ′] [σ≡σ′]′ = irrelevanceSubstEq [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] [σ]′ [σ≡σ′] in escapeTermEq (proj₁ ([A] ⊢Δ [σ]′)) (transEqTerm (proj₁ ([A] ⊢Δ [σ]′)) ([t≡u] ⊢Δ [σ]′) (proj₂ ([u] ⊢Δ [σ]′) [σ′]′ [σ≡σ′]′)) -- Reflexivity of well-formed substitution. substRefl : ∀ {σ Γ Δ} → Δ ⊢ˢ σ ∷ Γ → Δ ⊢ˢ σ ≡ σ ∷ Γ substRefl id = id substRefl (σ , x) = substRefl σ , refl x -- Weakening of well-formed substitution. wkSubst′ : ∀ {ρ σ Γ Δ Δ′} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ) (⊢Δ′ : ⊢ Δ′) ([ρ] : ρ ∷ Δ′ ⊆ Δ) ([σ] : Δ ⊢ˢ σ ∷ Γ) → Δ′ ⊢ˢ ρ •ₛ σ ∷ Γ wkSubst′ ε ⊢Δ ⊢Δ′ ρ id = id wkSubst′ (_∙_ {Γ} {A} ⊢Γ ⊢A) ⊢Δ ⊢Δ′ ρ (tailσ , headσ) = wkSubst′ ⊢Γ ⊢Δ ⊢Δ′ ρ tailσ , PE.subst (λ x → _ ⊢ _ ∷ x) (wk-subst A) (wkTerm ρ ⊢Δ′ headσ) -- Weakening of well-formed substitution by one. wk1Subst′ : ∀ {F σ Γ Δ} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ) (⊢F : Δ ⊢ F) ([σ] : Δ ⊢ˢ σ ∷ Γ) → (Δ ∙ F) ⊢ˢ wk1Subst σ ∷ Γ wk1Subst′ {F} {σ} {Γ} {Δ} ⊢Γ ⊢Δ ⊢F [σ] = wkSubst′ ⊢Γ ⊢Δ (⊢Δ ∙ ⊢F) (step id) [σ] -- Lifting of well-formed substitution. liftSubst′ : ∀ {F σ Γ Δ} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ) (⊢F : Γ ⊢ F) ([σ] : Δ ⊢ˢ σ ∷ Γ) → (Δ ∙ subst σ F) ⊢ˢ liftSubst σ ∷ Γ ∙ F liftSubst′ {F} {σ} {Γ} {Δ} ⊢Γ ⊢Δ ⊢F [σ] = let ⊢Δ∙F = ⊢Δ ∙ substitution ⊢F [σ] ⊢Δ in wkSubst′ ⊢Γ ⊢Δ ⊢Δ∙F (step id) [σ] , var ⊢Δ∙F (PE.subst (λ x → 0 ∷ x ∈ (Δ ∙ subst σ F)) (wk-subst F) here) -- Well-formed identity substitution. idSubst′ : ∀ {Γ} (⊢Γ : ⊢ Γ) → Γ ⊢ˢ idSubst ∷ Γ idSubst′ ε = id idSubst′ (_∙_ {Γ} {A} ⊢Γ ⊢A) = wk1Subst′ ⊢Γ ⊢Γ ⊢A (idSubst′ ⊢Γ) , PE.subst (λ x → Γ ∙ A ⊢ _ ∷ x) (wk1-tailId A) (var (⊢Γ ∙ ⊢A) here) -- Well-formed substitution composition. substComp′ : ∀ {σ σ′ Γ Δ Δ′} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ) (⊢Δ′ : ⊢ Δ′) ([σ] : Δ′ ⊢ˢ σ ∷ Δ) ([σ′] : Δ ⊢ˢ σ′ ∷ Γ) → Δ′ ⊢ˢ σ ₛ•ₛ σ′ ∷ Γ substComp′ ε ⊢Δ ⊢Δ′ [σ] id = id substComp′ (_∙_ {Γ} {A} ⊢Γ ⊢A) ⊢Δ ⊢Δ′ [σ] ([tailσ′] , [headσ′]) = substComp′ ⊢Γ ⊢Δ ⊢Δ′ [σ] [tailσ′] , PE.subst (λ x → _ ⊢ _ ∷ x) (substCompEq A) (substitutionTerm [headσ′] [σ] ⊢Δ′) -- Well-formed singleton substitution of terms. singleSubst : ∀ {A t Γ} → Γ ⊢ t ∷ A → Γ ⊢ˢ sgSubst t ∷ Γ ∙ A singleSubst {A} t = let ⊢Γ = wfTerm t in idSubst′ ⊢Γ , PE.subst (λ x → _ ⊢ _ ∷ x) (PE.sym (subst-id A)) t -- Well-formed singleton substitution of term equality. singleSubstEq : ∀ {A t u Γ} → Γ ⊢ t ≡ u ∷ A → Γ ⊢ˢ sgSubst t ≡ sgSubst u ∷ Γ ∙ A singleSubstEq {A} t = let ⊢Γ = wfEqTerm t in substRefl (idSubst′ ⊢Γ) , PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x) (PE.sym (subst-id A)) t -- Well-formed singleton substitution of terms with lifting. singleSubst↑ : ∀ {A t Γ} → Γ ∙ A ⊢ t ∷ wk1 A → Γ ∙ A ⊢ˢ consSubst (wk1Subst idSubst) t ∷ Γ ∙ A singleSubst↑ {A} t with wfTerm t ... | ⊢Γ ∙ ⊢A = wk1Subst′ ⊢Γ ⊢Γ ⊢A (idSubst′ ⊢Γ) , PE.subst (λ x → _ ∙ A ⊢ _ ∷ x) (wk1-tailId A) t -- Well-formed singleton substitution of term equality with lifting. singleSubst↑Eq : ∀ {A t u Γ} → Γ ∙ A ⊢ t ≡ u ∷ wk1 A → Γ ∙ A ⊢ˢ consSubst (wk1Subst idSubst) t ≡ consSubst (wk1Subst idSubst) u ∷ Γ ∙ A singleSubst↑Eq {A} t with wfEqTerm t ... | ⊢Γ ∙ ⊢A = substRefl (wk1Subst′ ⊢Γ ⊢Γ ⊢A (idSubst′ ⊢Γ)) , PE.subst (λ x → _ ∙ A ⊢ _ ≡ _ ∷ x) (wk1-tailId A) t -- Helper lemmas for single substitution substType : ∀ {t F G Γ} → Γ ∙ F ⊢ G → Γ ⊢ t ∷ F → Γ ⊢ G [ t ] substType {t} {F} {G} ⊢G ⊢t = let ⊢Γ = wfTerm ⊢t in substitution ⊢G (singleSubst ⊢t) ⊢Γ substTypeEq : ∀ {t u F G E Γ} → Γ ∙ F ⊢ G ≡ E → Γ ⊢ t ≡ u ∷ F → Γ ⊢ G [ t ] ≡ E [ u ] substTypeEq {F = F} ⊢G ⊢t = let ⊢Γ = wfEqTerm ⊢t in substitutionEq ⊢G (singleSubstEq ⊢t) ⊢Γ substTerm : ∀ {F G t f Γ} → Γ ∙ F ⊢ f ∷ G → Γ ⊢ t ∷ F → Γ ⊢ f [ t ] ∷ G [ t ] substTerm {F} {G} {t} {f} ⊢f ⊢t = let ⊢Γ = wfTerm ⊢t in substitutionTerm ⊢f (singleSubst ⊢t) ⊢Γ substTypeΠ : ∀ {t F G Γ} → Γ ⊢ Π F ▹ G → Γ ⊢ t ∷ F → Γ ⊢ G [ t ] substTypeΠ ΠFG t with syntacticΠ ΠFG substTypeΠ ΠFG t | F , G = substType G t subst↑Type : ∀ {t F G Γ} → Γ ∙ F ⊢ G → Γ ∙ F ⊢ t ∷ wk1 F → Γ ∙ F ⊢ G [ t ]↑ subst↑Type ⊢G ⊢t = substitution ⊢G (singleSubst↑ ⊢t) (wfTerm ⊢t) subst↑TypeEq : ∀ {t u F G E Γ} → Γ ∙ F ⊢ G ≡ E → Γ ∙ F ⊢ t ≡ u ∷ wk1 F → Γ ∙ F ⊢ G [ t ]↑ ≡ E [ u ]↑ subst↑TypeEq ⊢G ⊢t = substitutionEq ⊢G (singleSubst↑Eq ⊢t) (wfEqTerm ⊢t)
{ "alphanum_fraction": 0.5134601832, "avg_line_length": 40.3125, "ext": "agda", "hexsha": "49f2d9db3adfe48a6ffe0396c7a1b263b6684a3c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/Substitution.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/Substitution.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3359, "size": 7095 }
{- Binary natural numbers (Anders Mörtberg, Jan. 2019) This file defines two representations of binary numbers. We prove that they are equivalent to unary numbers and univalence is then used to transport both programs and properties between the representations. This is an example of how having computational univalence can be useful for practical programming. The first definition is [Binℕ] and the numbers are essentially lists of 0/1 with no trailing zeroes (in little-endian format). The main definitions and examples are: - Equivalence between Binℕ and ℕ ([Binℕ≃ℕ]) with an equality obtained using univalence ([Binℕ≡ℕ]). - Addition on Binℕ defined by transporting addition on ℕ to Binℕ ([_+Binℕ_]) along Binℕ≡ℕ together with a proof that addition on Binℕ is associative obtained by transporting the proof for ℕ ([+Binℕ-assoc]). - Functions testing whether a binary number is odd or even in O(1) ([oddBinℕ], [evenBinℕ]) and the corresponding functions for ℕ obtained by transport. Proof that odd numbers are not even transported from Binℕ to ℕ ([oddℕnotEvenℕ]). - An example of the structure identity principle for natural number structures ([NatImpl]). We first prove that Binℕ≡ℕ lifts to natural number structures ([NatImplℕ≡Binℕ]) and we then use this to transport "+-suc : m + suc n ≡ suc (m + n)" from ℕ to Binℕ ([+Binℕ-suc]). - An example of program/data refinement using the structure identity principle where we transport a property that is infeasible to prove by computation for ℕ ([propDoubleℕ]): 2^20 * 2^10 = 2^5 * (2^15 * 2^10) from the corresponding result on Binℕ which is proved instantly by refl ([propDoubleBinℕ]). These examples are inspired from an old cubicaltt formalization: https://github.com/mortberg/cubicaltt/blob/master/examples/binnat.ctt which itself is based on an even older cubical formalization (from 2014): https://github.com/simhu/cubical/blob/master/examples/binnat.cub The second representation is more non-standard and inspired by: https://github.com/RedPRL/redtt/blob/master/library/cool/nats.red Only some of the experiments have been done for this representation, but it has the virtue of being a bit simpler to prove equivalent to ℕ. The same representation can be found in: http://www.cs.bham.ac.uk/~mhe/agda-new/BinaryNaturals.html -} {-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Data.BinNat.BinNat where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Empty open import Cubical.Relation.Nullary -- Positive binary numbers data Pos : Type₀ where pos1 : Pos x0 : Pos → Pos x1 : Pos → Pos sucPos : Pos → Pos sucPos pos1 = x0 pos1 sucPos (x0 ps) = x1 ps sucPos (x1 ps) = x0 (sucPos ps) Pos→ℕ : Pos → ℕ Pos→ℕ pos1 = suc zero Pos→ℕ (x0 ps) = doubleℕ (Pos→ℕ ps) Pos→ℕ (x1 ps) = suc (doubleℕ (Pos→ℕ ps)) posInd : {P : Pos → Type₀} → P pos1 → ((p : Pos) → P p → P (sucPos p)) → (p : Pos) → P p posInd {P} h1 hs ps = f ps where H : (p : Pos) → P (x0 p) → P (x0 (sucPos p)) H p hx0p = hs (x1 p) (hs (x0 p) hx0p) f : (ps : Pos) → P ps f pos1 = h1 f (x0 ps) = posInd (hs pos1 h1) H ps f (x1 ps) = hs (x0 ps) (posInd (hs pos1 h1) H ps) Pos→ℕsucPos : (p : Pos) → Pos→ℕ (sucPos p) ≡ suc (Pos→ℕ p) Pos→ℕsucPos pos1 = refl Pos→ℕsucPos (x0 p) = refl Pos→ℕsucPos (x1 p) = λ i → doubleℕ (Pos→ℕsucPos p i) zero≠Pos→ℕ : (p : Pos) → ¬ (zero ≡ Pos→ℕ p) zero≠Pos→ℕ p = posInd (λ prf → znots prf) hs p where hs : (p : Pos) → ¬ (zero ≡ Pos→ℕ p) → zero ≡ Pos→ℕ (sucPos p) → ⊥ hs p neq ieq = ⊥-elim (znots (ieq ∙ (Pos→ℕsucPos p))) ℕ→Pos : ℕ → Pos ℕ→Pos zero = pos1 ℕ→Pos (suc zero) = pos1 ℕ→Pos (suc (suc n)) = sucPos (ℕ→Pos (suc n)) ℕ→PosSuc : ∀ n → ¬ (zero ≡ n) → ℕ→Pos (suc n) ≡ sucPos (ℕ→Pos n) ℕ→PosSuc zero neq = ⊥-elim (neq refl) ℕ→PosSuc (suc n) neq = refl Pos→ℕ→Pos : (p : Pos) → ℕ→Pos (Pos→ℕ p) ≡ p Pos→ℕ→Pos p = posInd refl hs p where hs : (p : Pos) → ℕ→Pos (Pos→ℕ p) ≡ p → ℕ→Pos (Pos→ℕ (sucPos p)) ≡ sucPos p hs p hp = ℕ→Pos (Pos→ℕ (sucPos p)) ≡⟨ cong ℕ→Pos (Pos→ℕsucPos p) ⟩ ℕ→Pos (suc (Pos→ℕ p)) ≡⟨ ℕ→PosSuc (Pos→ℕ p) (zero≠Pos→ℕ p) ⟩ sucPos (ℕ→Pos (Pos→ℕ p)) ≡⟨ cong sucPos hp ⟩ sucPos p ∎ ℕ→Pos→ℕ : (n : ℕ) → Pos→ℕ (ℕ→Pos (suc n)) ≡ suc n ℕ→Pos→ℕ zero = refl ℕ→Pos→ℕ (suc n) = Pos→ℕ (sucPos (ℕ→Pos (suc n))) ≡⟨ Pos→ℕsucPos (ℕ→Pos (suc n)) ⟩ suc (Pos→ℕ (ℕ→Pos (suc n))) ≡⟨ cong suc (ℕ→Pos→ℕ n) ⟩ suc (suc n) ∎ -- Binary numbers data Binℕ : Type₀ where binℕ0 : Binℕ binℕpos : Pos → Binℕ ℕ→Binℕ : ℕ → Binℕ ℕ→Binℕ zero = binℕ0 ℕ→Binℕ (suc n) = binℕpos (ℕ→Pos (suc n)) Binℕ→ℕ : Binℕ → ℕ Binℕ→ℕ binℕ0 = zero Binℕ→ℕ (binℕpos x) = Pos→ℕ x ℕ→Binℕ→ℕ : (n : ℕ) → Binℕ→ℕ (ℕ→Binℕ n) ≡ n ℕ→Binℕ→ℕ zero = refl ℕ→Binℕ→ℕ (suc zero) = refl ℕ→Binℕ→ℕ (suc (suc n)) = Pos→ℕ (sucPos (ℕ→Pos (suc n))) ≡⟨ Pos→ℕsucPos (ℕ→Pos (suc n)) ⟩ suc (Pos→ℕ (ℕ→Pos (suc n))) ≡⟨ cong suc (ℕ→Binℕ→ℕ (suc n)) ⟩ suc (suc n) ∎ Binℕ→ℕ→Binℕ : (n : Binℕ) → ℕ→Binℕ (Binℕ→ℕ n) ≡ n Binℕ→ℕ→Binℕ binℕ0 = refl Binℕ→ℕ→Binℕ (binℕpos p) = posInd refl (λ p _ → rem p) p where rem : (p : Pos) → ℕ→Binℕ (Pos→ℕ (sucPos p)) ≡ binℕpos (sucPos p) rem p = ℕ→Binℕ (Pos→ℕ (sucPos p)) ≡⟨ cong ℕ→Binℕ (Pos→ℕsucPos p) ⟩ binℕpos (ℕ→Pos (suc (Pos→ℕ p))) ≡⟨ cong binℕpos ((ℕ→PosSuc (Pos→ℕ p) (zero≠Pos→ℕ p)) ∙ (cong sucPos (Pos→ℕ→Pos p))) ⟩ binℕpos (sucPos p) ∎ Binℕ≃ℕ : Binℕ ≃ ℕ Binℕ≃ℕ = isoToEquiv (iso Binℕ→ℕ ℕ→Binℕ ℕ→Binℕ→ℕ Binℕ→ℕ→Binℕ) -- Use univalence (in fact only "ua") to get an equality from the -- above equivalence Binℕ≡ℕ : Binℕ ≡ ℕ Binℕ≡ℕ = ua Binℕ≃ℕ sucBinℕ : Binℕ → Binℕ sucBinℕ binℕ0 = binℕpos pos1 sucBinℕ (binℕpos x) = binℕpos (sucPos x) Binℕ→ℕsuc : (x : Binℕ) → suc (Binℕ→ℕ x) ≡ Binℕ→ℕ (sucBinℕ x) Binℕ→ℕsuc binℕ0 = refl Binℕ→ℕsuc (binℕpos x) = sym (Pos→ℕsucPos x) -- We can transport addition on ℕ to Binℕ _+Binℕ_ : Binℕ → Binℕ → Binℕ _+Binℕ_ = transport (λ i → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i)) _+_ -- Test: 4 + 1 = 5 private _ : binℕpos (x0 (x0 pos1)) +Binℕ binℕpos pos1 ≡ binℕpos (x1 (x0 pos1)) _ = refl -- It is easy to test if binary numbers are odd oddBinℕ : Binℕ → Bool oddBinℕ binℕ0 = false oddBinℕ (binℕpos pos1) = true oddBinℕ (binℕpos (x0 _)) = false oddBinℕ (binℕpos (x1 _)) = true evenBinℕ : Binℕ → Bool evenBinℕ n = oddBinℕ (sucBinℕ n) -- And prove the following property (without induction) oddBinℕnotEvenBinℕ : (n : Binℕ) → oddBinℕ n ≡ not (evenBinℕ n) oddBinℕnotEvenBinℕ binℕ0 = refl oddBinℕnotEvenBinℕ (binℕpos pos1) = refl oddBinℕnotEvenBinℕ (binℕpos (x0 x)) = refl oddBinℕnotEvenBinℕ (binℕpos (x1 x)) = refl -- It is also easy to define and prove the property for unary numbers, -- however the definition uses recursion and the proof induction private oddn : ℕ → Bool oddn zero = true oddn (suc x) = not (oddn x) evenn : ℕ → Bool evenn n = not (oddn n) oddnSuc : (n : ℕ) → oddn n ≡ not (evenn n) oddnSuc zero = refl oddnSuc (suc n) = cong not (oddnSuc n) -- So what we can do instead is to transport the odd test from Binℕ to -- ℕ along the equality oddℕ : ℕ → Bool oddℕ = transport (λ i → Binℕ≡ℕ i → Bool) oddBinℕ evenℕ : ℕ → Bool evenℕ = transport (λ i → Binℕ≡ℕ i → Bool) evenBinℕ -- We can then also transport the property oddℕnotEvenℕ : (n : ℕ) → oddℕ n ≡ not (evenℕ n) oddℕnotEvenℕ = let -- We first build a path from oddBinℕ to oddℕ. When i=1 this is -- "transp (λ j → Binℕ≡ℕ j → Bool) i0 oddBinℕ" (i.e. oddℕ) oddp : PathP (λ i → Binℕ≡ℕ i → Bool) oddBinℕ oddℕ oddp i = transp (λ j → Binℕ≡ℕ (i ∧ j) → Bool) (~ i) oddBinℕ -- We then build a path from evenBinℕ to evenℕ evenp : PathP (λ i → Binℕ≡ℕ i → Bool) evenBinℕ evenℕ evenp i = transp (λ j → Binℕ≡ℕ (i ∧ j) → Bool) (~ i) evenBinℕ in -- Then transport oddBinℕnotEvenBinℕ in a suitable equality type -- When i=0 this is "(n : Binℕ) → oddBinℕ n ≡ not (evenBinℕ n)" -- When i=1 this is "(n : ℕ) → oddℕ n ≡ not (evenℕ n)" transport (λ i → (n : Binℕ≡ℕ i) → oddp i n ≡ not (evenp i n)) oddBinℕnotEvenBinℕ -- We can do the same for natural numbers: -- First construct the path addp : PathP (λ i → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i)) _+_ _+Binℕ_ addp i = transp (λ j → Binℕ≡ℕ (~ i ∨ ~ j) → Binℕ≡ℕ (~ i ∨ ~ j) → Binℕ≡ℕ (~ i ∨ ~ j)) (~ i) _+_ -- Then transport associativity: +Binℕ-assoc : ∀ m n o → m +Binℕ (n +Binℕ o) ≡ (m +Binℕ n) +Binℕ o +Binℕ-assoc = transport (λ i → (m n o : Binℕ≡ℕ (~ i)) → addp i m (addp i n o) ≡ addp i (addp i m n) o) +-assoc -- We can also define what it means to be an implementation of natural -- numbers and use this to transport properties between different -- implementation of natural numbers. This can be seen as a special -- case of the structure identity principle: any property that holds -- for one structure also holds for an equivalent one. -- An implementation of natural numbers (i.e. a "natural number -- structure") has a zero and successor. record NatImpl (A : Type₀) : Type₀ where field z : A s : A → A open NatImpl NatImplℕ : NatImpl ℕ z NatImplℕ = zero s NatImplℕ = suc NatImplBinℕ : NatImpl Binℕ z NatImplBinℕ = binℕ0 s NatImplBinℕ = sucBinℕ -- Using the equality between binary and unary numbers we can get an -- equality between the two implementations of the NatImpl interface NatImplℕ≡Binℕ : PathP (λ i → NatImpl (Binℕ≡ℕ (~ i))) NatImplℕ NatImplBinℕ z (NatImplℕ≡Binℕ i) = transp (λ j → Binℕ≡ℕ (~ i ∨ ~ j)) (~ i) zero s (NatImplℕ≡Binℕ i) = λ x → glue (λ { (i = i0) → suc x ; (i = i1) → sucBinℕ x }) -- We need to do use and hcomp to do and endpoint -- correction as "suc (unglue x)" connects "suc x" -- with "suc (Binℕ→ℕ x)" along i (which makes sense as -- x varies from ℕ to Binℕ along i), but we need -- something from "suc x" to "Binℕ→ℕ (sucBinℕ x)" for -- the glue to be well-formed (hcomp (λ j → λ { (i = i0) → suc x ; (i = i1) → Binℕ→ℕsuc x j }) (suc (unglue (i ∨ ~ i) x))) -- We then use this to transport +-suc from unary to binary numbers +Binℕ-suc : ∀ m n → m +Binℕ sucBinℕ n ≡ sucBinℕ (m +Binℕ n) +Binℕ-suc = transport (λ i → (m n : Binℕ≡ℕ (~ i)) → addp i m (NatImplℕ≡Binℕ i .s n) ≡ NatImplℕ≡Binℕ i .s (addp i m n)) +-suc -- Doubling experiment: we define a notion of "doubling structure" and -- transport a proof that is proved directly using refl for binary -- numbers to unary numbers. This is an example of program/data -- refinement: we can use univalence to prove properties about -- inefficient data-structures using efficient ones. -- Doubling structures record Double {ℓ} (A : Type ℓ) : Type (ℓ-suc ℓ) where field -- doubling function computing 2 * x double : A → A -- element to double elt : A open Double -- Compute: 2^n * x doubles : ∀ {ℓ} {A : Type ℓ} (D : Double A) → ℕ → A → A doubles D n x = iter n (double D) x Doubleℕ : Double ℕ double Doubleℕ = doubleℕ elt Doubleℕ = n1024 where -- 1024 = 2^8 * 2^2 = 2^10 n1024 : ℕ n1024 = doublesℕ 8 4 -- The doubling operation on binary numbers is O(1), while for unary -- numbers it is O(n). What is of course even more problematic is that -- we cannot handle very big unary natural numbers, but with binary -- there is no problem to represent very big numbers doubleBinℕ : Binℕ → Binℕ doubleBinℕ binℕ0 = binℕ0 doubleBinℕ (binℕpos x) = binℕpos (x0 x) DoubleBinℕ : Double Binℕ double DoubleBinℕ = doubleBinℕ elt DoubleBinℕ = bin1024 where -- 1024 = 2^10 = 10000000000₂ bin1024 : Binℕ bin1024 = binℕpos (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 pos1)))))))))) -- As these function don't commute strictly we have to prove it -- separately and insert it in the proof of DoubleBinℕ≡Doubleℕ below -- (just like we had to in NatImplℕ≡NatImplBinℕ Binℕ→ℕdouble : (x : Binℕ) → doubleℕ (Binℕ→ℕ x) ≡ Binℕ→ℕ (doubleBinℕ x) Binℕ→ℕdouble binℕ0 = refl Binℕ→ℕdouble (binℕpos x) = refl -- We use the equality between Binℕ and ℕ to get an equality of -- doubling structures DoubleBinℕ≡Doubleℕ : PathP (λ i → Double (Binℕ≡ℕ i)) DoubleBinℕ Doubleℕ double (DoubleBinℕ≡Doubleℕ i) = λ x → glue (λ { (i = i0) → doubleBinℕ x ; (i = i1) → doubleℕ x }) (hcomp (λ j → λ { (i = i0) → Binℕ→ℕdouble x j ; (i = i1) → doubleℕ x }) (doubleℕ (unglue (i ∨ ~ i) x))) elt (DoubleBinℕ≡Doubleℕ i) = transp (λ j → Binℕ≡ℕ (i ∨ ~ j)) i (Doubleℕ .elt) -- We can now use transport to prove a property that is too slow to -- check with unary numbers. We define the property we want to check -- as a record so that Agda does not try to unfold it eagerly. record propDouble {ℓ} {A : Type ℓ} (D : Double A) : Type ℓ where field -- 2^20 * e = 2^5 * (2^15 * e) proof : doubles D 20 (elt D) ≡ doubles D 5 (doubles D 15 (elt D)) open propDouble -- The property we want to prove takes too long to typecheck for ℕ: -- propDoubleℕ : propDouble Doubleℕ -- propDoubleℕ = refl -- With binary numbers it is instant propDoubleBinℕ : propDouble DoubleBinℕ proof propDoubleBinℕ = refl -- By transporting the proof along the equality we then get it for -- unary numbers propDoubleℕ : propDouble Doubleℕ propDoubleℕ = transport (λ i → propDouble (DoubleBinℕ≡Doubleℕ i)) propDoubleBinℕ -------------------------------------------------------------------------------- -- -- Alternative encoding of binary natural numbers inspired by: -- https://github.com/RedPRL/redtt/blob/master/library/cool/nats.red -- -- This representation makes the equivalence with ℕ a bit easier to -- prove, but the doubling example wouldn't work as nicely as we -- cannot define it as an O(1) operation data binnat : Type₀ where zero : binnat -- 0 consOdd : binnat → binnat -- 2^n + 1 consEven : binnat → binnat -- 2^{n+1} binnat→ℕ : binnat → ℕ binnat→ℕ zero = 0 binnat→ℕ (consOdd n) = suc (doubleℕ (binnat→ℕ n)) binnat→ℕ (consEven n) = suc (suc (doubleℕ (binnat→ℕ n))) suc-binnat : binnat → binnat suc-binnat zero = consOdd zero suc-binnat (consOdd n) = consEven n suc-binnat (consEven n) = consOdd (suc-binnat n) ℕ→binnat : ℕ → binnat ℕ→binnat zero = zero ℕ→binnat (suc n) = suc-binnat (ℕ→binnat n) binnat→ℕ-suc : (n : binnat) → binnat→ℕ (suc-binnat n) ≡ suc (binnat→ℕ n) binnat→ℕ-suc zero = refl binnat→ℕ-suc (consOdd n) = refl binnat→ℕ-suc (consEven n) = λ i → suc (doubleℕ (binnat→ℕ-suc n i)) ℕ→binnat→ℕ : (n : ℕ) → binnat→ℕ (ℕ→binnat n) ≡ n ℕ→binnat→ℕ zero = refl ℕ→binnat→ℕ (suc n) = (binnat→ℕ-suc (ℕ→binnat n)) ∙ (cong suc (ℕ→binnat→ℕ n)) suc-ℕ→binnat-double : (n : ℕ) → suc-binnat (ℕ→binnat (doubleℕ n)) ≡ consOdd (ℕ→binnat n) suc-ℕ→binnat-double zero = refl suc-ℕ→binnat-double (suc n) = λ i → suc-binnat (suc-binnat (suc-ℕ→binnat-double n i)) binnat→ℕ→binnat : (n : binnat) → ℕ→binnat (binnat→ℕ n) ≡ n binnat→ℕ→binnat zero = refl binnat→ℕ→binnat (consOdd n) = (suc-ℕ→binnat-double (binnat→ℕ n)) ∙ (cong consOdd (binnat→ℕ→binnat n)) binnat→ℕ→binnat (consEven n) = (λ i → suc-binnat (suc-ℕ→binnat-double (binnat→ℕ n) i)) ∙ (cong consEven (binnat→ℕ→binnat n)) ℕ≃binnat : ℕ ≃ binnat ℕ≃binnat = isoToEquiv (iso ℕ→binnat binnat→ℕ binnat→ℕ→binnat ℕ→binnat→ℕ) ℕ≡binnat : ℕ ≡ binnat ℕ≡binnat = ua ℕ≃binnat -- We can transport addition on ℕ to binnat _+binnat_ : binnat → binnat → binnat _+binnat_ = transport (λ i → ℕ≡binnat i → ℕ≡binnat i → ℕ≡binnat i) _+_ -- Test: 4 + 1 = 5 _ : consEven (consOdd zero) +binnat consOdd zero ≡ consOdd (consEven zero) _ = refl oddbinnat : binnat → Bool oddbinnat zero = false oddbinnat (consOdd _) = true oddbinnat (consEven _) = false oddℕ' : ℕ → Bool oddℕ' = transport (λ i → ℕ≡binnat (~ i) → Bool) oddbinnat -- The NatImpl example for this representation of binary numbers private NatImplbinnat : NatImpl binnat z NatImplbinnat = zero s NatImplbinnat = suc-binnat -- Note that the s case is a bit simpler as no end-point correction -- is necessary (things commute strictly) NatImplℕ≡NatImplbinnat : PathP (λ i → NatImpl (ℕ≡binnat i)) NatImplℕ NatImplbinnat z (NatImplℕ≡NatImplbinnat i) = transp (λ j → ℕ≡binnat (i ∨ ~ j)) i zero s (NatImplℕ≡NatImplbinnat i) = λ x → glue (λ { (i = i0) → suc x ; (i = i1) → suc-binnat x }) (suc-binnat (unglue (i ∨ ~ i) x)) oddSuc : (n : binnat) → oddbinnat n ≡ not (oddbinnat (suc-binnat n)) oddSuc zero = refl oddSuc (consOdd _) = refl oddSuc (consEven _) = refl oddℕSuc' : (n : ℕ) → oddℕ' n ≡ not (oddℕ' (suc n)) oddℕSuc' = let eq : (i : I) → ℕ≡binnat (~ i) → Bool eq i = transp (λ j → ℕ≡binnat (~ i ∨ ~ j) → Bool) (~ i) oddbinnat in transport (λ i → (n : ℕ≡binnat (~ i)) → eq i n ≡ not (eq i (NatImplℕ≡NatImplbinnat (~ i) .NatImpl.s n))) oddSuc
{ "alphanum_fraction": 0.6354281728, "avg_line_length": 34.6794354839, "ext": "agda", "hexsha": "9552f02cb080dcd2257aed69927c871644572d51", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Data/BinNat/BinNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Data/BinNat/BinNat.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Data/BinNat/BinNat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6975, "size": 17201 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Limits.Pullback where open import Cubical.Foundations.Prelude open import Cubical.Categories.Limits.Base open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Data.Sigma open import Cubical.Categories.Instances.Cospan public private variable ℓ ℓ' : Level module _ {C : Precategory ℓ ℓ'} where open Precategory C open Functor record Cospan : Type (ℓ-max ℓ ℓ') where constructor cospan field l m r : ob s₁ : C [ l , m ] s₂ : C [ r , m ] record PullbackLegs (cspn : Cospan) (c : ob) : Type (ℓ-max ℓ ℓ') where constructor pblegs open Cospan cspn field p₁ : C [ c , l ] p₂ : C [ c , r ] record PullbackCone (cspn : Cospan) (c : ob) : Type (ℓ-max ℓ ℓ') where constructor cone open Cospan cspn field pl : PullbackLegs cspn c open PullbackLegs pl public field sq : p₁ ⋆⟨ C ⟩ s₁ ≡ p₂ ⋆⟨ C ⟩ s₂ record isPullback (cspn : _) {c} (pb : PullbackLegs cspn c) : Type (ℓ-max ℓ ℓ') where open Cospan cspn open PullbackLegs field sq : pb .p₁ ⋆⟨ C ⟩ s₁ ≡ pb .p₂ ⋆⟨ C ⟩ s₂ open PullbackCone field up : ∀ {d} → (pb' : PullbackCone cspn d) → isContr (Σ[ f ∈ (C [ d , c ]) ] ((pb' .p₁ ≡ f ⋆⟨ C ⟩ pb .p₁) × (pb' .p₂ ≡ f ⋆⟨ C ⟩ pb .p₂))) Cospan→Func : Cospan → Functor CospanCat C Cospan→Func (cospan l m r f g) .F-ob ⓪ = l Cospan→Func (cospan l m r f g) .F-ob ① = m Cospan→Func (cospan l m r f g) .F-ob ② = r Cospan→Func (cospan l m r f g) .F-hom {⓪} {①} k = f Cospan→Func (cospan l m r f g) .F-hom {②} {①} k = g Cospan→Func (cospan l m r f g) .F-hom {⓪} {⓪} k = id l Cospan→Func (cospan l m r f g) .F-hom {①} {①} k = id m Cospan→Func (cospan l m r f g) .F-hom {②} {②} k = id r Cospan→Func (cospan l m r f g) .F-id {⓪} = refl Cospan→Func (cospan l m r f g) .F-id {①} = refl Cospan→Func (cospan l m r f g) .F-id {②} = refl Cospan→Func (cospan l m r f g) .F-seq {⓪} {⓪} {⓪} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {⓪} {⓪} {①} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {⓪} {①} {①} φ ψ = sym (⋆IdR _) Cospan→Func (cospan l m r f g) .F-seq {①} {①} {①} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {②} {②} {②} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {②} {②} {①} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {②} {①} {①} φ ψ = sym (⋆IdR _) -- TODO: show that this definition of Pullback is equivalent to the Cospan limit
{ "alphanum_fraction": 0.5812524011, "avg_line_length": 32.1358024691, "ext": "agda", "hexsha": "be348ac5bb606ab90d43042457691f6fb31d245f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Categories/Limits/Pullback.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Categories/Limits/Pullback.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Categories/Limits/Pullback.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1165, "size": 2603 }
open import Agda.Primitive open import Agda.Builtin.Sigma data Empty : Set where _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') A ≃ B = Σ (A → B) λ f → Empty record Iso {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') : Set (ℓ ⊔ ℓ') where field inv : B → A postulate isoToEquiv : ∀{ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → Iso A B → A ≃ B works : Iso (∀ {a : Set} → a) Empty works = λ where .Iso.inv n → {!n!} -- something like (∀ {A : Set} → A) seems to be necessary to trigger test : (∀ {A : Set} → A) ≃ Empty test = isoToEquiv λ where .Iso.inv n → {!n!}
{ "alphanum_fraction": 0.5347593583, "avg_line_length": 22.44, "ext": "agda", "hexsha": "c38e316820b277aef248f3ee89939a01b55b835b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/interaction/Issue5252.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/interaction/Issue5252.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/interaction/Issue5252.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 246, "size": 561 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Weight biased leftist heap that proves rank invariant: size of -- -- left subtree of a node is not smaller than size of right -- -- subtree. Uses a two-pass merging algorithm. -- ---------------------------------------------------------------------- module TwoPassMerge.RankProof where open import Basics -- To prove the rank invariant we will index each Heap by its size, -- (remember that size of a heap is its rank). Therefore index of -- value n says that a Heap stores n elements. When merging two heaps -- we will use the index to ensure that rank invariant is maintained. -- -- Again, Heap has two constructor: -- -- 1) empty constructs a heap containing no elements. Therefore the -- index is 0. -- -- 2) node takes two subtrees: one containing l elements, the other -- containing r elements. The size of resulting heap is the sum of -- l and r plus one for the element stored by the node itself. To -- enforce the rank invariant node constructor expects a proof -- that invariant holds: a value of type l ≥ r. If we can -- construct value of this type then it proves the invariant. data Heap : Rank → Set where empty : Heap zero node : {l r : Rank} → Priority → l ≥ r → Heap l → Heap r → Heap (suc (l + r)) -- Since rank is now an index we no longer need rank function to -- extract Rank from a node. We can pattern match on the index -- instead. -- Singleton heap stores only one element. Therefore it has size of -- one. To prove the rank invariant we must show that 0 ≥ 0. We -- construct a value of this type using ge0 constructor. singleton : Priority → Heap one singleton p = node p ge0 empty empty -- Note [Proving rank invariant (merge using makeT)] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- Proving the rank invariant itself is surprisingly simple. We just -- need to supply a proof that rank of left subtree is not smaller -- than rank of right subtree. We can easily obtain evidence that it -- is so by using order function which return result of comparing two -- natural numbers (which will be tree ranks in this case) together -- with a proof of the result. -- -- But there is a different difficulty here. Since we index heaps by -- their size we now require that makeT and merge construct trees of -- correct size. Prooving this requires some substantial work on our -- side. -- -- We need to prove that the size of merged heap is equal to the sum -- of sizes of heaps being merged. Recall that our merging algorithm -- is two pass: we use merge to actually do the merging and makeT to -- restore the rank invariant if necessary (see Note [Two-pass merging -- algorithm]). This means our proof will be two-stage. We need to -- prove that: -- -- 1) makeT creates a node of required size, even if it swaps left -- and right children. -- -- 2) recursive calls to merge produce heaps of required size. -- Note [Proving makeT] -- ~~~~~~~~~~~~~~~~~~~~ -- -- makeT takes two subtrees of size l and r and produces a new tree of -- size 1 + l + r. We must prove that each of two cases of makeT -- returns tree of correct size: -- -- 1) size of l is ≥ than size of r: no extra proof is necessary as -- everything follows from the definition of +. -- -- 2) size of r is ≥ than size of l: in this case we swap left and -- right subtrees. This requires us to prove that: -- -- suc (r + l) ≡ suc (l + r) -- -- That proof is done using congruence on suc function and -- commutativity of addition. We will define that proof as -- makeT-lemma as we will be using in subsequent proofs. makeT-lemma : (a b : Nat) → suc (a + b) ≡ suc (b + a) makeT-lemma a b = cong suc (+comm a b) makeT : {l r : Rank} → Priority → Heap l → Heap r → Heap (suc (l + r)) makeT {l-rank} {r-rank} p l r with order l-rank r-rank makeT {l-rank} {r-rank} p l r | ge l≥r = node p l≥r l r makeT {l-rank} {r-rank} p l r | le r≥l = subst Heap (makeT-lemma r-rank l-rank) (node p r≥l r l) -- Note [Notation for proving heap merge] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- In the proofs of heap merge we will use following notation: -- -- h1, h2 - rank of heaps being merged -- p1, p2 - priority of root element -- l1 - rank of left subtree in the first heap -- r1 - rank of right subtree in the first heap -- l2 - rank of left subtree in the second heap -- r2 - rank of right subtree in the second heap -- -- Note that: -- -- h1 = suc (l1 + r1) -- h2 = suc (l2 + r2) -- -- h1 h2 -- -- p1 p2 -- / \ / \ -- / \ / \ -- l1 r1 l2 r2 -- Note [Proving merge] -- ~~~~~~~~~~~~~~~~~~~~ -- -- We need to prove that all four cases of merge (see [Two-pass merging -- algorithm]) produce heap of required size, which is h1 + h2. Since -- in the proofs we will always operate on l1, r1, l2 and r2 we have: -- -- h1 + h2 ̄≡ suc (l1 + r1) + suc (l2 + r2) -- ≡ suc ((l1 + r1) + suc (l2 + r2)) -- -- (Second transformation comes from definition of +). This is the -- expected size and therefore the final result we must prove in every -- case that we analyze. -- It is best to study the implementation of merge now and then read -- the explanation of proofs. -- Note [merge, proof 0a] -- ~~~~~~~~~~~~~~~~~~~~~~ -- -- h1 ≡ 0, therefore: h1 + h2 ≡ 0 + h2 ≡ h2 ∎ -- -- This is definitional equality based on _+_ -- -- ∎ -- Note [merge, proof 0b] -- ~~~~~~~~~~~~~~~~~~~~~~ -- -- h2 ≡ 0, therefore expected size is h1 + h2 ≡ h1 + 0. We need to -- show that: -- -- h1 ≡ h1 + 0 -- -- This is a simple statement that 0 is right identity of addition. We -- proved that as one of basic properties of addition in -- Basics.Reasoning module, except our proof had the sides of equality -- reversed, ie. we proved a + 0 ≡ a, not a ≡ a + 0). We use symmetry -- to construct a proof of latter from the former. -- -- ∎ -- Note [merge, proof 1] -- ~~~~~~~~~~~~~~~~~~~~~ -- -- We have p1 < p2. We keep p1 as the root and need to prove that -- merging r1 with h2 gives correct size. Here's how the term that -- performs the merge corresponds to its type (for the sake of -- readability I elided implict parameters): -- -- makeT p1 x1 l1 (merge r1 (node p2 l2≥r2 l2 r2)) -- | | | \__________________/ -- | +------+ | | -- | | +----------+ | -- | | | +---------+ -- | | | ________|__ -- | | | / \ -- suc (l1 + (r1 + suc (l2 + r2))) -- -- Formally: -- -- suc (l1 + (r1 + suc (l2 + r2))) ≡ suc ((l1 + r1) + suc (l2 + r2)) -- -- Recall that RHS of this equality comes from [Proving merge]. We -- begin proof with congruence on suc: -- -- cong suc X -- -- where X proves -- -- l1 + (r1 + suc (l2 + r2)) ≡ (l1 + r1) + suc (l2 + r2) -- -- Substituting a = l1, b = r1 and c = suc (l2 + r2) we have -- -- a + (b + c) ≡ (a + b) + c -- -- Which is associativity of addition that we have already proved in -- Basics.Reasoning. -- -- ∎ proof-1 : (l1 r1 l2 r2 : Nat) → suc ( l1 + (r1 + suc (l2 + r2))) ≡ suc ((l1 + r1) + suc (l2 + r2)) proof-1 l1 r1 l2 r2 = cong suc (+assoc l1 r1 (suc (l2 + r2))) -- Note [merge, proof 2] -- ~~~~~~~~~~~~~~~~~~~~~ -- -- We have p2 < p1. We keep p2 as the root and need to prove that -- merging r2 with h1 gives correct size. Again, here's the -- corespondence between the term and its type: -- -- makeT p2 x2 l2 (merge r2 (node p1 l1≥r1 l1 r1)) -- | | | \_________________/ -- | +------+ | | -- | | +----------+ +---------+ -- | | | ________|__ -- | | | / \ -- suc (l2 + (r2 + suc (l1 + r1))) -- -- Formally: -- -- suc (l2 + (r2 + suc (l1 + r1))) ≡ suc ((l1 + r1) + suc (l2 + r2)) -- -- Again we use cong to deal with the outer calls to suc and -- substitute a = l2, b = r2 and c = l1 + r1. This leaves us with a -- proof of lemma A: -- -- a + (b + suc c) ≡ c + suc (a + b) -- -- From associativity we know that: -- -- a + (b + suc c) ≡ (a + b) + suc c -- -- If we prove lemma B: -- -- (a + b) + suc c = c + suc (a + b) -- -- we can combine it using transitivity to get the final proof. We can -- rewrite lemma B as: -- -- n + suc m ≡ m + suc n -- -- where n = a + b and m = c. From symmetry of +suc we have: --- -- n + (suc m) ≡ suc (n + m) -- -- Using transitivity we combine it with congruence on commutativity -- of addition to prove: -- -- suc (n + m) ≡ suc (m + n) -- -- Again, using transitivity we combine it with +suc: -- -- suc (m + n) ≡ m + suc n -- -- Which proves lemma B and therefore the whole proof is complete. -- -- ∎ lemma-B : (n m : Nat) → n + suc m ≡ m + suc n lemma-B n m = trans (sym (+suc n m)) (trans (cong suc (+comm n m)) (+suc m n)) lemma-A : (a b c : Nat) → a + (b + suc c) ≡ c + suc (a + b) lemma-A a b c = trans (+assoc a b (suc c)) (lemma-B (a + b) c) proof-2 : (l1 r1 l2 r2 : Nat) → suc (l2 + (r2 + suc (l1 + r1))) ≡ suc ((l1 + r1) + suc (l2 + r2)) proof-2 l1 r1 l2 r2 = cong suc (lemma-A l2 r2 (l1 + r1)) -- Note [Constructing equality proofs using transitivity] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- Now that constructed two specific proofs we can focus on a more -- general technique used in both cases. Let's rewrite proof-2 in a -- different fassion to see closely what is happening at each -- step. Inlining lemmas A and B into proof-2 gives: -- -- proof-2i : (l1 r1 l2 r2 : Nat) → suc (l2 + (r2 + suc (l1 + r1))) -- ≡ suc ((l1 + r1) + suc (l2 + r2)) -- proof-2i l1 r1 l2 r2 = -- cong suc (trans (+assoc l2 r2 (suc (l1 + r1))) -- (trans (sym (+suc (l2 + r2) (l1 + r1))) -- (trans (cong suc (+comm (l2 + r2) (l1 + r1))) -- (+suc (l1 + r1) (l2 + r2)))) -- -- We see a lot of properties combined using transitivity. In general, -- if we have to prove: -- -- a ≡ e -- -- and we can prove: -- -- a ≡ b, b ≡ c, c ≡ d, d ≡ e -- -- then we can combine these proofs using transitivity: -- -- trans (a ≡ b) (trans (b ≡ c) (trans (c ≡ d) (d ≡ e))) -- -- While simple to use, combining proofs with transitivity can be not -- so obvious at first. Let's rewrite the proof we have conducted -- using following notation: -- -- a ≡[ proof 1 ] -- b ≡[ proof 2 ] -- c ≡[ proof 3 ] -- d ≡[ proof 4 ] -- e ∎ -- -- Where proof 1 proves a ≡ b, proof 2 proves b ≡ c and so on. In our -- particular case this will be: -- -- suc (l2 + (r2 + suc (l1 + r1))) ≡[ cong suc ] -- [suc] l2 + (r2 + suc (l1 + r1)) ≡[+assoc l2 r2 (suc (l1 + r1))] -- [suc] (l2 + r2) + suc (l1 + r1) ≡[ sym (+suc (l2 + r2) (l1 + r1))] -- [suc] suc ((l2 + r2) + (l1 + r1)) ≡[ cong suc (+comm (l2 + r2) (l1 + r1)) ] -- [suc] suc ((l1 + r1) + (l2 + r2)) ≡[+suc (l1 + r1) (l2 + r2) ] -- [suc] (l1 + r1) + suc (l2 + r2) ∎ -- -- We use [suc] to denote that everything happens under a call to suc -- (thanks to using congruence). Compare this notation with code of -- proof-2i. -- Note [Notation in merge] -- ~~~~~~~~~~~~~~~~~~~~~~~~ -- -- merge uses different notation than the proofs. We use l1, r1, l2 -- and r2 to denote the respective subtrees and l1-rank, r1-rank, -- l2-rank and r2-rank to denote their ranks. We use h1 and h2 to -- denote heaps. merge : {l r : Rank} → Heap l → Heap r → Heap (l + r) merge empty h2 = h2 -- See [merge, proof 0a] merge {suc l} {zero} h1 empty = subst Heap (sym (+0 (suc l))) h1 -- See [merge, proof 0b] merge {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {l1-rank} {r1-rank} p1 l1≥r1 l1 r1) (node {l2-rank} {r2-rank} p2 l2≥r2 l2 r2) with p1 < p2 merge {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {l1-rank} {r1-rank} p1 l1≥r1 l1 r1) (node {l2-rank} {r2-rank} p2 l2≥r2 l2 r2) | true = subst Heap (proof-1 l1-rank r1-rank l2-rank r2-rank) -- See [merge, proof 1] (makeT p1 l1 (merge r1 (node p2 l2≥r2 l2 r2))) merge {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {l1-rank} {r1-rank} p1 l1≥r1 l1 r1) (node {l2-rank} {r2-rank} p2 l2≥r2 l2 r2) | false = subst Heap (proof-2 l1-rank r1-rank l2-rank r2-rank) -- See [merge, proof 2] (makeT p2 l2 (merge r2 (node p1 l1≥r1 l1 r1))) -- We require that inserting an element into the heap increases its -- size by one. As previously we define insert as merge and a -- singleton heap. Size of singleton heap is (suc zero), while already -- existing heap has size n. According to definition of merge the -- resulting heap will therefore have size: -- -- (suc zero) + n -- -- By definition of + this can be normalized to: -- -- suc (zero + n) -- -- and finally to -- -- suc n -- -- Which is size we require in the type signature. This means we don't -- need any additional proof because expected result follows from -- definitions. insert : {n : Rank} → Priority → Heap n → Heap (suc n) insert p h = merge (singleton p) h -- By indexing heap with its size we can finally have means to ensure -- that heap passed to findMin or deleteMin is not empty. findMin : {n : Rank} → Heap (suc n) → Priority findMin (node p _ _ _) = p deleteMin : {n : Rank} → Heap (suc n) → Heap n deleteMin (node _ _ l r) = merge l r
{ "alphanum_fraction": 0.5716985246, "avg_line_length": 35.189258312, "ext": "agda", "hexsha": "b2a56f9842005c87c9fad7bf833ddb46cc634d5b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/TwoPassMerge/RankProof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/TwoPassMerge/RankProof.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/TwoPassMerge/RankProof.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 4418, "size": 13759 }
------------------------------------------------------------------------ -- M-types ------------------------------------------------------------------------ {-# OPTIONS --without-K --sized-types #-} open import Equality module M {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq as Bijection using (_↔_) open Derived-definitions-and-properties eq import Equivalence eq as Eq open import Function-universe eq hiding (_∘_) open import Function-universe.Size eq open import H-level eq open import H-level.Closure eq open import Prelude open import Prelude.Size ------------------------------------------------------------------------ -- M-types mutual data M {a b} (A : Type a) (B : A → Type b) (i : Size) : Type (a ⊔ b) where dns : (x : A) (f : B x → M′ A B i) → M A B i record M′ {a b} (A : Type a) (B : A → Type b) (i : Size) : Type (a ⊔ b) where coinductive field force : {j : Size< i} → M A B j open M′ public -- Projections. pɐǝɥ : ∀ {a b i} {A : Type a} {B : A → Type b} → M A B i → A pɐǝɥ (dns x f) = x lıɐʇ : ∀ {a b i} {j : Size< i} {A : Type a} {B : A → Type b} → (x : M A B i) → B (pɐǝɥ x) → M A B j lıɐʇ (dns x f) y = force (f y) ------------------------------------------------------------------------ -- Equality -- M-types are isomorphic to Σ-types containing M-types (almost). M-unfolding : ∀ {a b} {i} {A : Type a} {B : A → Type b} → M A B i ↔ ∃ λ (x : A) → B x → M′ A B i M-unfolding = record { surjection = record { logical-equivalence = record { to = λ { (dns x f) → x , f } ; from = uncurry dns } ; right-inverse-of = refl } ; left-inverse-of = λ { (dns x f) → refl (dns x f) } } abstract -- Equality between elements of an M-type can be proved using a pair -- of equalities (assuming extensionality and a kind of η law). -- -- Note that, because the equality type former is not sized, this -- lemma is perhaps not very useful. M-≡,≡↔≡ : ∀ {a b i} {A : Type a} {B : A → Type b} → Extensionality b (a ⊔ b) → (∀ {x} {f g : B x → M′ A B i} → _≡_ {A = B x → {j : Size< i} → M A B j} (force ∘ f) (force ∘ g) ↔ f ≡ g) → ∀ {x y} {f : B x → M′ A B i} {g : B y → M′ A B i} → (∃ λ (p : x ≡ y) → ∀ b {j : Size< i} → force (f b) {j = j} ≡ force (g (subst B p b))) ↔ _≡_ {A = M A B i} (dns x f) (dns y g) M-≡,≡↔≡ {a} {i = i} {A} {B} ext η {x} {y} {f} {g} = (∃ λ (p : x ≡ y) → ∀ b {j : Size< i} → force (f b) {j = j} ≡ force (g (subst B p b))) ↝⟨ ∃-cong lemma ⟩ (∃ λ (p : x ≡ y) → subst (λ x → B x → M′ A B i) p f ≡ g) ↝⟨ Bijection.Σ-≡,≡↔≡ ⟩ (_≡_ {A = ∃ λ (x : A) → B x → M′ A B i} (x , f) (y , g)) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ M-unfolding) ⟩□ (dns x f ≡ dns y g) □ where lemma : (p : x ≡ y) → ((b : B x) {j : Size< i} → f b .force {j = j} ≡ g (subst B p b) .force) ↔ (subst (λ x → B x → M′ A B i) p f ≡ g) lemma p = elim (λ {x y} p → (f : B x → M′ A B i) (g : B y → M′ A B i) → (∀ b {j : Size< i} → f b .force {j = j} ≡ g (subst B p b) .force) ↔ (subst (λ x → B x → M′ A B i) p f ≡ g)) (λ x f g → (∀ b {j : Size< i} → f b .force {j = j} ≡ g (subst B (refl x) b) .force) ↝⟨ subst (λ h → (∀ b {j : Size< i} → f b .force ≡ g (h b) .force) ↔ (∀ b {j : Size< i} → f b .force ≡ g b .force)) (sym (apply-ext (lower-extensionality lzero a ext) (subst-refl B))) Bijection.id ⟩ (∀ b {j : Size< i} → f b .force {j = j} ≡ g b .force) ↔⟨ ∀-cong ext (λ _ → implicit-Π-size-≃-Π-size) ⟩ (∀ b (j : Size< i) → f b .force {j = j} ≡ g b .force) ↔⟨ ∀-cong ext (λ _ → Π-size-≃) ⟩ (∀ b (j : Size< i in-type) → f b .force {j = size j} ≡ g b .force {j = size j}) ↔⟨ ∀-cong ext (λ _ → Eq.extensionality-isomorphism (lower-extensionality _ lzero ext)) ⟩ ((b : B x) → _≡_ {A = (j : Size< i in-type) → M A B (size j)} (λ j → f b .force {j = size j}) (λ j → g b .force {j = size j})) ↔⟨ ∀-cong ext (λ _ → Eq.≃-≡ $ Eq.↔⇒≃ Bijection.implicit-Π↔Π) ⟩ ((b : B x) → _≡_ {A = {j : Size< i in-type} → M A B (size j)} (λ {j} → f b .force {j = size j}) (λ {j} → g b .force {j = size j})) ↔⟨ ∀-cong ext (λ _ → Eq.≃-≡ implicit-Π-size-≃) ⟩ ((b : B x) → _≡_ {A = {j : Size< i} → M A B j} (λ { {j} → f b .force {j = j} }) (λ { {j} → g b .force {j = j} })) ↔⟨ Eq.extensionality-isomorphism ext ⟩ (force ∘ f ≡ force ∘ g) ↝⟨ η ⟩ (f ≡ g) ↝⟨ subst (λ h → (f ≡ g) ↔ (h ≡ g)) (sym $ subst-refl (λ x' → B x' → M′ A B i) f) Bijection.id ⟩□ (subst (λ x → B x → M′ A B i) (refl x) f ≡ g) □) p f g ------------------------------------------------------------------------ -- Bisimilarity and bisimilarity for bisimilarity -- Bisimilarity. mutual infix 4 [_]_≡M_ [_]_≡M′_ data [_]_≡M_ {a b} {A : Type a} {B : A → Type b} (i : Size) (x y : M A B ∞) : Type (a ⊔ b) where dns : (p : pɐǝɥ x ≡ pɐǝɥ y) → (∀ b → [ i ] lıɐʇ x b ≡M′ lıɐʇ y (subst B p b)) → [ i ] x ≡M y record [_]_≡M′_ {a b} {A : Type a} {B : A → Type b} (i : Size) (x y : M A B ∞) : Type (a ⊔ b) where coinductive field force : {j : Size< i} → [ j ] x ≡M y open [_]_≡M′_ public -- Projections. pɐǝɥ≡ : ∀ {a b i} {A : Type a} {B : A → Type b} {x y : M A B ∞} → [ i ] x ≡M y → pɐǝɥ x ≡ pɐǝɥ y pɐǝɥ≡ (dns p q) = p lıɐʇ≡ : ∀ {a b i} {A : Type a} {B : A → Type b} {x y : M A B ∞} → (p : [ i ] x ≡M y) → ∀ b {j : Size< i} → [ j ] lıɐʇ x b ≡M lıɐʇ y (subst B (pɐǝɥ≡ p) b) lıɐʇ≡ (dns p q) y = force (q y) -- Equality implies bisimilarity. ≡⇒≡M : ∀ {a b i} {A : Type a} {B : A → Type b} {x y : M A B ∞} → x ≡ y → [ i ] x ≡M y ≡⇒≡M {i = i} {B = B} {dns x f} {dns y g} p = dns (proj₁ q) helper where q = elim (λ {m m′} m≡m′ → ∃ λ (x≡y : pɐǝɥ m ≡ pɐǝɥ m′) → ∀ b → lıɐʇ m b ≡ lıɐʇ m′ (subst B x≡y b)) (λ m → refl (pɐǝɥ m) , λ b → lıɐʇ m b ≡⟨ cong (lıɐʇ m) (sym $ subst-refl B _) ⟩∎ lıɐʇ m (subst B (refl (pɐǝɥ m)) b) ∎) p helper : ∀ b → [ i ] lıɐʇ (dns x f) b ≡M′ lıɐʇ (dns y g) (subst B (proj₁ q) b) force (helper b) = ≡⇒≡M (proj₂ q b) -- Bisimilarity for the bisimilarity type. mutual data [_]_≡≡M_ {a b} {A : Type a} {B : A → Type b} {x y : M A B ∞} (i : Size) (p q : [ ∞ ] x ≡M y) : Type (a ⊔ b) where dns : (r : pɐǝɥ≡ p ≡ pɐǝɥ≡ q) → (∀ b → [ i ] lıɐʇ≡ p b ≡≡M′ subst (λ p → [ ∞ ] lıɐʇ x b ≡M lıɐʇ y (subst B p b)) (sym r) (lıɐʇ≡ q b)) → [ i ] p ≡≡M q record [_]_≡≡M′_ {a b} {A : Type a} {B : A → Type b} {x y : M A B ∞} (i : Size) (p q : [ ∞ ] x ≡M y) : Type (a ⊔ b) where coinductive field force : {j : Size< i} → [ j ] p ≡≡M q open [_]_≡≡M′_ public ------------------------------------------------------------------------ -- Closure under various h-levels abstract -- If we assume a notion of extensionality (bisimilarity implies -- equality) then Contractible is closed under M. M-closure-contractible : ∀ {a b} {A : Type a} {B : A → Type b} → ({x y : M A B ∞} → [ ∞ ] x ≡M y → x ≡ y) → Contractible A → Contractible (M A B ∞) M-closure-contractible {A = A} {B} ext (z , irrA) = (x , ext ∘ irr) where x : ∀ {i} → M A B i x = dns z λ _ → λ { .force → x } irr : ∀ {i} y → [ i ] x ≡M y irr {i} (dns x′ f) = dns (irrA x′) helper where helper : ∀ y → [ i ] x ≡M′ force (f (subst B (irrA x′) y)) force (helper _) = irr _ -- The same applies to Is-proposition. M-closure-propositional : ∀ {a b} {A : Type a} {B : A → Type b} → ({x y : M A B ∞} → [ ∞ ] x ≡M y → x ≡ y) → Is-proposition A → Is-proposition (M A B ∞) M-closure-propositional {A = A} {B} ext p = λ x y → ext $ irrelevant x y where irrelevant : ∀ {i} (x y : M A B ∞) → [ i ] x ≡M y irrelevant {i} (dns x f) (dns y g) = dns (p x y) helper where helper : (y′ : B x) → [ i ] force (f y′) ≡M′ force (g (subst B (p x y) y′)) force (helper _) = irrelevant _ _ -- If we assume that we have another notion of extensionality, then -- Is-set is closed under M. M-closure-set : ∀ {a b} {A : Type a} {B : A → Type b} → ({x y : M A B ∞} {p q : x ≡ y} → [ ∞ ] ≡⇒≡M p ≡≡M ≡⇒≡M q → p ≡ q) → Is-set A → Is-set (M A B ∞) M-closure-set {A = A} {B} ext s = λ p q → ext $ uip (≡⇒≡M p) (≡⇒≡M q) where uip : ∀ {i} {x y : M A B ∞} (p q : [ ∞ ] x ≡M y) → [ i ] p ≡≡M q uip {i} {x} {y} (dns p f) (dns q g) = dns (s p q) helper where helper : (b : B (pɐǝɥ x)) → [ i ] force (f b) ≡≡M′ subst (λ eq → [ ∞ ] lıɐʇ x b ≡M lıɐʇ y (subst B eq b)) (sym (s p q)) (force (g b)) force (helper _) = uip _ _
{ "alphanum_fraction": 0.3800157356, "avg_line_length": 36.9745454545, "ext": "agda", "hexsha": "189b4fb2aeabf0ad7fcda56f7107fe1841b0f6a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/M.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/M.agda", "max_line_length": 139, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/M.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 3936, "size": 10168 }
module Sane where import Data.Fin as F -- -- open import Data.Empty open import Data.Unit -- open import Data.Unit.Core open import Data.Nat using (ℕ ; zero ; suc ; _+_ ; _>_ ) open import Data.Sum using (inj₁ ; inj₂ ) -- open import Data.Product renaming (map to _×→_) open import Data.Vec open import Function using ( id ) renaming (_∘_ to _○_) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; cong ; module ≡-Reasoning ) open ≡-Reasoning -- start re-splitting things up, as this is getting out of hand open import FT -- Finite Types open import VecHelpers open import NatSimple open import Eval -- not sure where else to put this [Z][A] hetType : {A B : Set} → (a : A) → A ≡ B → B hetType a refl = a -- construct a combinator which represents the swapping of the i-th and -- (i+1)-th 'bit' of a finite type. -- Best to think of this as an 'elementary permutation', in the same way -- we have 'elementary matrices' (which turn out to be permutations when they -- are unitary). swapi : {n : ℕ} → F.Fin n → (fromℕ (suc n)) ⇛ (fromℕ (suc n)) swapi {zero} () swapi {suc n} F.zero = assocl₊⇛ ◎ swap₊⇛ ⊕ id⇛ ◎ assocr₊⇛ swapi {suc n} (F.suc i) = id⇛ ⊕ swapi {n} i -- swapUpTo i permutes the combinator left by one up to i -- if possible values are X a b c Y d e, swapUpTo 3's possible outputs -- are a b c X Y d e swapUpTo : {n : ℕ} → F.Fin n → (fromℕ (suc n)) ⇛ (fromℕ (suc n)) swapUpTo F.zero = id⇛ swapUpTo (F.suc i) = (id⇛ ⊕ swapUpTo i) ◎ swapi F.zero -- swapDownFrom i permutes the combinator right by one up to i (the reverse -- of swapUpTo) swapDownFrom : {n : ℕ} → F.Fin n → (fromℕ (suc n)) ⇛ (fromℕ (suc n)) swapDownFrom F.zero = id⇛ swapDownFrom (F.suc i) = swapi F.zero ◎ (id⇛ ⊕ swapDownFrom i) -- TODO: verify that this is actually correct -- Idea: To swap n < m with each other, swap n, n + 1, ... , m - 1, m, then -- go back down, so that m and n are swapped and everything else is in the -- same spot -- makeSingleComb {combinator size} (arrayElement) (arrayIndex), -- gives a combinator which 'does' that, assuming i<j, else id⇛ makeSingleComb : {n : ℕ} → F.Fin n → F.Fin n → (fromℕ n) ⇛ (fromℕ n) makeSingleComb F.zero F.zero = id⇛ makeSingleComb F.zero (F.suc i) = id⇛ makeSingleComb (F.suc j) F.zero = swapDownFrom j ◎ swapi j ◎ swapUpTo j makeSingleComb (F.suc j) (F.suc i) = id⇛ ⊕ makeSingleComb j i -- swapm i returns a combinator that swaps 0 and i swapm : {n : ℕ} → F.Fin n → (fromℕ n) ⇛ (fromℕ n) swapm F.zero = id⇛ swapm (F.suc i) = swapUpTo i ◎ swapi i ◎ swapDownFrom i -- Correctness: after putting together i indices, the partial combinator c' is -- represented by the vector [1, 2, ... , n - (i +1)] ++ (last i v) -- -- Might want to bake in the correctness proof here---have the output be a -- combinator c, a vector v, and a proof that vecRep c v, then we just prove -- that the vector at the end is just the vector from the beginning -- -- Or just put them together and prove that they're related by vecRep with -- foldrWorks and that the end vector is the input vector; this is probably simpler -- (and is the approach currently reflected in the code below) -- swapInd i j returns a vector v′ where v′[i] = j, v′[j] = i, and v′[k] = k -- where k != j and k != i zeroIfEq : {n n′ : ℕ} → F.Fin n → F.Fin n → F.Fin (suc n′) → F.Fin (suc n′) zeroIfEq F.zero F.zero ret = F.zero zeroIfEq F.zero (F.suc j) ret = ret zeroIfEq (F.suc i) F.zero ret = ret zeroIfEq (F.suc i) (F.suc j) ret = zeroIfEq i j ret swapIndFn : {n : ℕ} → F.Fin n → F.Fin n → (F.Fin n → F.Fin n) swapIndFn F.zero j F.zero = j swapIndFn (F.suc i) F.zero F.zero = F.suc i swapIndFn (F.suc i) (F.suc j) F.zero = F.zero swapIndFn F.zero F.zero (F.suc x) = F.suc x swapIndFn {suc zero} F.zero (F.suc ()) (F.suc x) swapIndFn {suc (suc n)} F.zero (F.suc j) (F.suc x) = zeroIfEq j x (F.suc x) swapIndFn (F.suc i) F.zero (F.suc x) = zeroIfEq i x (F.suc x) swapIndFn (F.suc i) (F.suc j) (F.suc x) = F.suc (swapIndFn i j x) swapInd : {n : ℕ} → F.Fin n → F.Fin n → Vec (F.Fin n) n swapInd i j = tabulate (swapIndFn i j) swapIndVec : {n : ℕ} → F.Fin n → F.Fin n → Vec (F.Fin n) n → Vec (F.Fin n) n swapIndVec i j v = tabulate (λ k → v !! swapIndFn i j k) -- useful abbreviations 2+ : ℕ → ℕ 2+ n = suc (suc n) 3+ : ℕ → ℕ 3+ n = suc (2+ n) F2+ : {n : ℕ} → F.Fin n → F.Fin (2+ n) F2+ i = F.suc (F.suc i) F3+ : {n : ℕ} → F.Fin n → F.Fin (3+ n) F3+ i = F.suc (F2+ i) swap01 : {n : ℕ} → Vec (F.Fin (2+ n)) (2+ n) swap01 = F.suc F.zero ∷ F.zero ∷ tabulate F2+ swapIndIdAfterOne : {n : ℕ} → (i : F.Fin n) → (F2+ i) ≡ swapIndFn F.zero (F.suc F.zero) (F2+ i) swapIndIdAfterOne i = refl -- yesss finally it just works! swapIndSucDist : {n : ℕ} → (i j x : F.Fin n) → (F.suc (swapIndFn i j x)) ≡ (swapIndFn (F.suc i) (F.suc j) (F.suc x)) swapIndSucDist i j x = refl -- more useful abbreviations F1+swap : {n : ℕ} → (i : F.Fin n) → Vec (F.Fin (2+ n)) (suc n) F1+swap i = vmap F.suc (swapInd (F.inject₁ i) (F.suc i)) swapIndFn+ : {n : ℕ} → (i : F.Fin n) → F.Fin (suc n) → F.Fin (suc n) swapIndFn+ i = swapIndFn (F.inject₁ i) (F.suc i) swapInd++ : {n : ℕ} → (i : F.Fin n) → Vec (F.Fin (2+ n)) (2+ n) swapInd++ i = swapInd (F.inject₁ (F.suc i)) (F2+ i) swap≡ind₁ : {n : ℕ} → (i : F.Fin n) → F.zero ∷ F1+swap i ≡ swapInd++ i swap≡ind₁ {n} i = begin F.zero ∷ F1+swap i ≡⟨ cong (_∷_ F.zero) (begin F1+swap i ≡⟨ mapTab F.suc (swapIndFn+ i) ⟩ tabulate (F.suc ○ swapIndFn+ i) ≡⟨ tabf∼g _ _ (swapIndSucDist (F.inject₁ i) (F.suc i)) ⟩ (tabulate (swapIndFn+ (F.suc i) ○ F.suc) ∎)) ⟩ swapInd++ i ∎ -- vecRep c v relates a combinator c over normal types to the output -- vector it results in. This works only over a subset of combinators -- used in decompilation. data vecRep : {n : ℕ} → (fromℕ n) ⇛ (fromℕ n) → Vec (F.Fin n) n → Set where vr-id : {n : ℕ} → vecRep (id⇛ {fromℕ n}) (upTo n) vr-swap : {n : ℕ} → vecRep {suc (suc n)} (swapi {suc n} F.zero) swap01 vr-comp : {n : ℕ} {c₁ c₂ : (fromℕ n) ⇛ (fromℕ n)} {v₁ v₂ : Vec (F.Fin n) n} → vecRep c₁ v₁ → vecRep c₂ v₂ → vecRep (c₁ ◎ c₂) (v₁ ∘̬ v₂) vr-plus : {n : ℕ} → {c : (fromℕ n) ⇛ (fromℕ n)} → {v : Vec (F.Fin n) n} → vecRep {n} c v → vecRep {suc n} (id⇛ ⊕ c) (F.zero ∷ (vmap F.suc v)) -- Record for keeping a combinator, a vector, and a proof that they compute -- the same function. record Compiled (n : ℕ) : Set where constructor _►_⟨_⟩ field comb : (fromℕ n) ⇛ (fromℕ n) vec : Vec (F.Fin n) n proof : vecRep comb vec -- TODO: there might be a better vector to put in the vecRep here -- we'll need to see what's most amenable to proving swapUpToWorks swapiWorks : {n : ℕ} → (i : F.Fin n) → vecRep (swapi i) (swapInd (F.inject₁ i) (F.suc i)) swapiWorks {zero} () swapiWorks {suc n} F.zero = vr-swap swapiWorks {suc n} (F.suc i) = hetType (vr-plus (swapiWorks i)) (cong (vecRep (id⇛ ⊕ swapi i)) (swap≡ind₁ i)) -- permutations on vectors for specifying swapUpTo/DownFrom data _<F_ : {n : ℕ} → F.Fin n → F.Fin n → Set where zero-leq : {n : ℕ} → {i : F.Fin n} → F.zero <F (F.suc i) suc-leq : {n : ℕ} → {i j : F.Fin n} → i <F j → (F.suc i) <F (F.suc j) <suc : {n : ℕ} → (i j : F.Fin n) → (F.suc i) <F (F.suc j) → i <F j <suc i j (suc-leq p) = p dec<F : {n : ℕ} → (i j : F.Fin n) → Dec (i <F j) dec<F F.zero F.zero = no (λ ()) dec<F F.zero (F.suc j) = yes zero-leq dec<F (F.suc i) F.zero = no (λ ()) dec<F (F.suc i) (F.suc j) with dec<F i j dec<F (F.suc i) (F.suc j) | yes x = yes (suc-leq x) dec<F (F.suc i) (F.suc j) | no x = no (λ p → x (<suc i j p)) -- swap args of F.inject+ inj+ : {m n : ℕ} → F.Fin m → F.Fin (n + m) inj+ {m} {n} i = hetType (F.inject+ n i) (cong F.Fin (+-comm m n)) -- the library definition of + on Fin isn't what we want here, ugh _+F_ : {m n : ℕ} → F.Fin (suc m) → F.Fin n → F.Fin (m + n) _+F_ {m} {zero} F.zero () _+F_ {m} {suc n} F.zero j = inj+ {suc n} {m} j _+F_ {zero} {n} (F.suc ()) _ _+F_ {suc m} {n} (F.suc i) j = F.suc (i +F j) data _h≡_ {A : Set} : {B : Set} → A → B → Set₁ where hrefl : (x : A) → _h≡_ {A} {A} x x hetTypeIsID : {A B : Set} → (x : A) → (p : A ≡ B) → (hetType x p) h≡ x hetTypeIsID x refl = hrefl x -- Permute the first i elements of v to the right one (and i^th down to 0) -- Should correspond with swapDownFrom -- permuteRight : {n : ℕ} → (i : F.Fin n) → Vec (F.Fin n) n → Vec (F.Fin n) n -- permuteRight i v = tabulate (permRightFn v i) permuteRight : {n : ℕ} → (i : F.Fin n) → Vec (F.Fin n) n permuteRight {zero} () permuteRight {suc n} F.zero = upTo _ permuteRight {suc zero} (F.suc ()) permuteRight {suc (suc n)} (F.suc i) = F.suc (head (permuteRight i)) ∷ F.zero ∷ vmap F.suc (tail (permuteRight i)) -- redundant helper permRightID : {n : ℕ} → F.Fin n → Vec (F.Fin n) n permRightID i = permuteRight i -- The opposite of permuteRight; should correspond with swapUpTo pl′ : {m : ℕ} {A : Set} → F.Fin m → Vec A m → A → Vec A (suc m) pl′ {m = zero} () _ _ pl′ {m = suc m} F.zero (x ∷ xs) first = x ∷ first ∷ xs pl′ (F.suc i) (x ∷ xs) first = x ∷ (pl′ i xs first) permuteLeft : {n : ℕ} {A : Set} → (i : F.Fin n) → Vec A n → Vec A n permuteLeft {zero} () _ permuteLeft {suc n} F.zero v = v permuteLeft {suc zero} (F.suc ()) _ permuteLeft {suc (suc n)} (F.suc i) (a ∷ b ∷ rest) = pl′ i (b ∷ rest) a permLeftID : {n : ℕ} → F.Fin n → Vec (F.Fin n) n permLeftID i = permuteLeft i (upTo _) permLeftId₀ : {n : ℕ} → (upTo (suc n)) ≡ permuteLeft F.zero (upTo (suc n)) permLeftId₀ {n} = refl permLeftIdPasti : {n : ℕ} → (v : Vec (F.Fin (2+ n)) (2+ n)) → (i : F.Fin n) → permuteLeft (F.suc F.zero) v !! (F2+ i) ≡ v !! F2+ i permLeftIdPasti (x ∷ x₁ ∷ x₂ ∷ v) F.zero = refl permLeftIdPasti (x ∷ x₁ ∷ x₂ ∷ v) (F.suc i) = refl -- it should actually be possible to recur on this! -- and as an added bonus, it should actually be true! [Z] plCorr : {m n : ℕ} (v : Vec (F.Fin m) n) (i : F.Fin n) → vmap F.suc (pl′ i (vmap F.suc v) F.zero) ∘̬′ swap01 ≡ pl′ i (vmap F.suc (vmap F.suc v)) F.zero plCorr [] () plCorr (x ∷ v) F.zero = begin vmap F.suc (pl′ F.zero (vmap F.suc (x ∷ v)) F.zero) ∘̬′ swap01 ≡⟨ refl ⟩ (F.suc (F.suc x) ∷ F.suc F.zero ∷ vmap F.suc (vmap F.suc v)) ∘̬′ swap01 ≡⟨ refl ⟩ ((tabulate (F.suc ○ F.suc)) !! x) ∷ (F.suc F.zero ∷ vmap F.suc (vmap F.suc v)) ∘̬′ swap01 ≡⟨ cong (λ x → x ∷ (F.suc F.zero ∷ vmap F.suc (vmap F.suc v)) ∘̬′ swap01) (lookupTab x) ⟩ (F.suc (F.suc x)) ∷ ((F.suc F.zero ∷ vmap F.suc (vmap F.suc v)) ∘̬′ swap01) ≡⟨ refl ⟩ (F.suc (F.suc x)) ∷ F.zero ∷ ((vmap F.suc (vmap F.suc v)) ∘̬′ swap01) ≡⟨ cong (λ q → F.suc (F.suc x) ∷ F.zero ∷ q) (map2+id v) ⟩ F.suc (F.suc x) ∷ F.zero ∷ vmap F.suc (vmap F.suc v) ≡⟨ refl ⟩ pl′ F.zero (vmap F.suc (vmap F.suc (x ∷ v))) F.zero ∎ plCorr (x ∷ v) (F.suc i) = begin vmap F.suc (pl′ (F.suc i) (vmap F.suc (x ∷ v)) F.zero) ∘̬′ swap01 ≡⟨ refl ⟩ (tabulate (F.suc ○ F.suc) !! x) ∷ ((vmap F.suc (pl′ i (vmap F.suc v) F.zero)) ∘̬′ swap01) ≡⟨ cong (λ q → q ∷ ((vmap F.suc (pl′ i (vmap F.suc v) F.zero)) ∘̬′ swap01)) (lookupTab x) ⟩ F.suc (F.suc x) ∷ ((vmap F.suc (pl′ i (vmap F.suc v) F.zero)) ∘̬′ swap01) ≡⟨ cong (_∷_ (F.suc (F.suc x))) (plCorr v i) ⟩ F.suc (F.suc x) ∷ pl′ i (vmap F.suc (vmap F.suc v)) F.zero ≡⟨ refl ⟩ pl′ (F.suc i) (vmap F.suc (vmap F.suc (x ∷ v))) F.zero ∎ fzero : F.Fin 7 fzero = F.zero fone : F.Fin 7 fone = F.suc F.zero ftwo : F.Fin 7 ftwo = F.suc (F.suc F.zero) fthree : F.Fin 7 fthree = F.suc (F.suc (F.suc F.zero)) ffour : F.Fin 7 ffour = F.suc (F.suc (F.suc (F.suc F.zero))) ffive : F.Fin 7 ffive = F.suc (F.suc (F.suc (F.suc (F.suc F.zero)))) fsix : F.Fin 7 fsix = F.suc (F.suc (F.suc (F.suc (F.suc (F.suc F.zero))))) -- gzero : F.Fin 6 gzero = F.zero gone : F.Fin 6 gone = F.suc F.zero gtwo : F.Fin 6 gtwo = F.suc (F.suc F.zero) gthree : F.Fin 6 gthree = F.suc (F.suc (F.suc F.zero)) gfour : F.Fin 6 gfour = F.suc (F.suc (F.suc (F.suc F.zero))) gfive : F.Fin 6 gfive = F.suc (F.suc (F.suc (F.suc (F.suc F.zero)))) -- i=3 -- n=5 test1 : Vec (F.Fin 7) 7 test1 = permuteLeft ffour (fzero ∷ fone ∷ ftwo ∷ fthree ∷ ffour ∷ ffive ∷ fsix ∷ []) {-- test1 = (0 1) (1 2) (2 3) (3 4) (4 0) (5 5) (6 6) --} test2 : Vec (F.Fin 6) 6 test2 = permuteLeft gthree (gzero ∷ gone ∷ gtwo ∷ gthree ∷ gfour ∷ gfive ∷ []) {-- test2 = (0 1) (1 2) (2 3) (3 0) (4 4) (5 5) vmap F.suc test2 = (0 2) (1 3) (2 4) (3 1) (4 5) (5 6) F.zero ∷ vmap F.suc test2 = (0 0) (1 2) (2 3) (3 4) (4 1) (5 5) (6 6) swap01 = (0 1) (1 0) (2 2) (3 3) (4 4) (5 5) (6 6) (F.zero ∷ vmap F.suc test2) ∘̬ swap01 = (0 1) (1 2) (2 3) (3 4) (4 0) (5 5) (6 6) test1 = (0 1) (1 2) (2 3) (3 4) (4 0) (5 5) (6 6) --} -- glue lemma between plCorr and swapUpToWorks to deal with the difference between -- the result type of swapUpToWorks and the result type of the VecRep combinators -- We need this glue here to get from swapUpToWorks (which has two calls to permuteLeft) -- to plCorr (which has two calls to pl′), since permuteLeft is a wrapper around pl′. -- Once we've removed the wrapper, we can eat the delicious candy^W^W^W^Wactually do -- induction; hopefully the type of plCorr is general enough for this but not too general -- to, er, be true. [Z] sucWorks : {n : ℕ} → (i : F.Fin n) → (F.zero ∷ vmap F.suc (permuteLeft (F.inject₁ i) (upTo (suc n)))) ∘̬ swap01 ≡ pl′ {suc n} (F.inject₁ i) (tail (upTo (suc (suc n)))) F.zero sucWorks {suc n} F.zero = begin (F.zero ∷ vmap F.suc (permuteLeft F.zero (upTo (suc (suc n))))) ∘̬ swap01 ≡⟨ cong (λ x → (F.zero ∷ vmap F.suc x) ∘̬ swap01) (sym (permLeftId₀)) ⟩ (F.zero ∷ vmap F.suc (upTo (suc (suc n)))) ∘̬ swap01 ≡⟨ cong (λ x → (F.zero ∷ x) ∘̬ swap01) ((mapTab F.suc id)) ⟩ upTo (suc (suc (suc n))) ∘̬ swap01 ≡⟨ ∘̬simpleid swap01 ⟩ swap01 ≡⟨ refl ⟩ pl′ F.zero (tail (upTo (suc (suc (suc n))))) F.zero ∎ sucWorks {suc zero} (F.suc ()) sucWorks {suc (suc n)} (F.suc i) = begin (F.zero ∷ vmap F.suc (permuteLeft (F.inject₁ (F.suc i)) (upTo (suc (suc (suc n)))))) ∘̬ swap01 ≡⟨ ∘̬≡∘̬′ (F.zero ∷ vmap F.suc (permuteLeft (F.inject₁ (F.suc i)) (upTo (suc (suc (suc n)))))) swap01 ⟩ (F.zero ∷ vmap F.suc (permuteLeft (F.inject₁ (F.suc i)) (upTo (suc (suc (suc n)))))) ∘̬′ swap01 ≡⟨ refl ⟩ (F.zero ∷ vmap F.suc (pl′ (F.inject₁ i) (tail (upTo (suc (suc (suc n))))) F.zero)) ∘̬′ swap01 ≡⟨ refl ⟩ (F.suc F.zero) ∷ ((vmap F.suc (pl′ (F.inject₁ i) (tabulate F.suc) F.zero)) ∘̬′ swap01) ≡⟨ cong (λ q → F.suc F.zero ∷ vmap F.suc (pl′ (F.inject₁ i) q F.zero) ∘̬′ swap01) (sym (mapTab F.suc id)) ⟩ (F.suc F.zero) ∷ ((vmap F.suc (pl′ (F.inject₁ i) (vmap F.suc (tabulate id)) F.zero)) ∘̬′ swap01) ≡⟨ cong (_∷_ (F.suc F.zero)) (plCorr (tabulate id) (F.inject₁ i)) ⟩ (F.suc F.zero) ∷ (pl′ (F.inject₁ i) (vmap F.suc (vmap F.suc (tabulate id))) F.zero) ≡⟨ cong (λ q → F.suc F.zero ∷ pl′ (F.inject₁ i) (vmap F.suc q) F.zero) (mapTab F.suc id) ⟩ (F.suc F.zero) ∷ pl′ (F.inject₁ i) (vmap F.suc (tail (upTo (suc (suc (suc n)))))) F.zero ≡⟨ cong (λ x → (F.suc F.zero) ∷ pl′ (F.inject₁ i) x F.zero) (sym (upToTail (suc (suc n)))) ⟩ F.suc F.zero ∷ pl′ (F.inject₁ i) (tail (tail (upTo (suc (suc (suc (suc n))))))) F.zero ≡⟨ refl ⟩ pl′ (F.inject₁ (F.suc i)) (tail (upTo (suc (suc (suc (suc n)))))) F.zero ∎ -- NB: I added the F.inject₁ in calls to permuteLeft/Right to get it to work -- with swapUpTo/DownFrom; I'm not sure that this is correct? It might -- be a sign that the type of the swap functions is too specific, instead. -- (though now it looks like it will at least make the type of shuffle a bit nicer) [Z] swapUpToWorks : {n : ℕ} → (i : F.Fin n) → vecRep (swapUpTo i) (permuteLeft (F.inject₁ i) (upTo (suc n))) swapUpToWorks F.zero = vr-id swapUpToWorks (F.suc i) = hetType (vr-comp (vr-plus (swapUpToWorks i)) vr-swap) (cong (vecRep (swapUpTo (F.suc i))) (sucWorks i)) sdfWorks : {n : ℕ} → (i : F.Fin (suc n)) → swap01 ∘̬ (F.zero ∷ vmap F.suc (permuteRight i)) ≡ permuteRight (F.suc i) sdfWorks i = begin swap01 ∘̬ (F.zero ∷ vmap F.suc (permuteRight i)) ≡⟨ ∘̬≡∘̬′ swap01 (F.zero ∷ vmap F.suc (permuteRight i)) ⟩ swap01 ∘̬′ (F.zero ∷ vmap F.suc (permuteRight i)) ≡⟨ refl ⟩ (vmap F.suc (permuteRight i) !! F.zero) ∷ F.zero ∷ (tabulate (F.suc ○ F.suc) ∘̬′ (F.zero ∷ vmap F.suc (permuteRight i))) ≡⟨ cong (λ q → q ∷ F.zero ∷ tabulate (F.suc ○ F.suc) ∘̬′ (F.zero ∷ vmap F.suc (permuteRight i))) (head!!0 (vmap F.suc (permuteRight i))) ⟩ (head (vmap F.suc (permuteRight i))) ∷ F.zero ∷ (tabulate (F.suc ○ F.suc) ∘̬′ (F.zero ∷ vmap F.suc (permuteRight i))) ≡⟨ cong (λ q → q ∷ F.zero ∷ tabulate (F.suc ○ F.suc) ∘̬′ (F.zero ∷ vmap F.suc (permuteRight i))) (headmap (permuteRight i)) ⟩ (F.suc (head (permuteRight i))) ∷ F.zero ∷ (tabulate (F.suc ○ F.suc) ∘̬′ (F.zero ∷ vmap F.suc (permuteRight i))) ≡⟨ cong (λ q → F.suc (head (permuteRight i)) ∷ F.zero ∷ q) (sym (∘̬≡∘̬′ (tabulate (F.suc ○ F.suc)) (F.zero ∷ vmap F.suc (permuteRight i)))) ⟩ (F.suc (head (permuteRight i))) ∷ F.zero ∷ (tabulate (F.suc ○ F.suc) ∘̬ (F.zero ∷ vmap F.suc (permuteRight i))) ≡⟨ cong (λ q → F.suc (head (permuteRight i)) ∷ F.zero ∷ q) (2suc∘̬2tail (F.zero ∷ vmap F.suc (permuteRight i))) ⟩ (F.suc (head (permuteRight i))) ∷ F.zero ∷ (tail (vmap F.suc (permuteRight i))) ≡⟨ cong (λ q → F.suc (head (permuteRight i)) ∷ F.zero ∷ q) (tailmap (permuteRight i)) ⟩ (F.suc (head (permuteRight i))) ∷ F.zero ∷ (vmap F.suc (tail (permuteRight i))) ≡⟨ refl ⟩ permuteRight (F.suc i) ∎ swapDownFromWorks : {n : ℕ} → (i : F.Fin n) → vecRep (swapDownFrom i) (permuteRight (F.inject₁ i)) swapDownFromWorks F.zero = vr-id swapDownFromWorks (F.suc i) = hetType (vr-comp vr-swap (vr-plus (swapDownFromWorks i))) (cong (vecRep (swapDownFrom (F.suc i))) (sdfWorks (F.inject₁ i))) _◎∘̬_ : {n : ℕ} → Compiled n → Compiled n → Compiled n (c₁ ► v₁ ⟨ p₁ ⟩) ◎∘̬ (c₂ ► v₂ ⟨ p₂ ⟩) = ((c₁ ◎ c₂) ► v₁ ∘̬ v₂ ⟨ vr-comp p₁ p₂ ⟩ ) vecToComb : {n : ℕ} → Vec (F.Fin n) n → (fromℕ n) ⇛ (fromℕ n) vecToComb {n} vec = foldr (λ i → fromℕ n ⇛ fromℕ n) _◎_ id⇛ (map (λ i → makeSingleComb (vec !! i) i) (upTo n)) finToVal : {n : ℕ} → F.Fin n → ⟦ fromℕ n ⟧ finToVal F.zero = inj₁ tt finToVal (F.suc n) = inj₂ (finToVal n) valToFin : {n : ℕ} → ⟦ fromℕ n ⟧ → F.Fin n valToFin {zero} () valToFin {suc n} (inj₁ tt) = F.zero valToFin {suc n} (inj₂ v) = F.suc (valToFin v) finToValToFin : {n : ℕ} → (v : ⟦ fromℕ n ⟧) → finToVal (valToFin v) ≡ v finToValToFin {zero} () finToValToFin {suc n} (inj₁ tt) = refl -- (inj₁ tt) finToValToFin {suc n} (inj₂ v) = cong inj₂ (finToValToFin v) valToFinToVal : {n : ℕ} → (i : F.Fin n) → valToFin (finToVal i) ≡ i valToFinToVal F.zero = refl -- F.zero valToFinToVal (F.suc i) = cong F.suc (valToFinToVal i) combToVec : {n : ℕ} → (fromℕ n) ⇛ (fromℕ n) → Vec (F.Fin n) n combToVec c = tabulate (valToFin ○ (evalComb c) ○ finToVal) twoF4 : F.Fin four twoF4 = F.suc (F.suc F.zero) fourF5 : F.Fin five fourF5 = F.suc (F.suc F.zero) swapUpToTest : Vec (F.Fin five) five swapUpToTest = combToVec (swapUpTo twoF4) pltest : (n : ℕ) → (i : F.Fin n) → Vec (F.Fin n) n pltest n i = permuteLeft i (upTo n) prtest : Vec (F.Fin five) five prtest = permuteRight fourF5 -- (F.suc (F.suc (F.suc (F.suc F.zero)))) sdftest : Vec (F.Fin five) five sdftest = combToVec (swapDownFrom twoF4) sucomptest : {n : ℕ} → (i : F.Fin n) → Vec (F.Fin (suc (suc n))) (suc (suc n)) sucomptest {n} i = (F.zero ∷ vmap F.suc (permuteLeft (F.inject₁ i) (upTo (suc n)))) ∘̬ (F.suc F.zero ∷ F.zero ∷ vmap (F.suc ○ F.suc) (upTo n)) sit : Vec (F.Fin five) five sit = combToVec (swapi (F.suc (F.suc F.zero))) mntest : Vec (F.Fin five) five mntest = combToVec (makeSingleComb (F.suc (F.suc (F.suc F.zero))) F.zero) evalVec : {n : ℕ} → Vec (F.Fin n) n → F.Fin n → ⟦ fromℕ n ⟧ evalVec vec i = finToVal (lookup i vec) permLeftTest : F.Fin four permLeftTest = valToFin (evalVec (permLeftID (F.suc (F.suc F.zero))) (F.zero)) lookupToEvalVec : {n : ℕ} → (i : F.Fin n) → (v : Vec (F.Fin n) n) → lookup i v ≡ valToFin (evalVec v i) lookupToEvalVec i v = sym (valToFinToVal (lookup i v) ) -- Might want to take a ⟦ fromℕ n ⟧ instead of a Fin n as the second -- argument here? combToVecWorks : {n : ℕ} → (c : (fromℕ n) ⇛ (fromℕ n)) → (i : F.Fin n) → (evalComb c (finToVal i)) ≡ evalVec (combToVec c) i combToVecWorks c i = (sym (finToValToFin _)) ∘ (cong finToVal (sym (lookupTab i))) -- This lemma is the hammer that will let us use vecRep to (hopefully) simply -- prove some lemmas about the helper functions used in vecToComb, then apply -- vecRepWorks at the end to make sure they all "do the right thing" vecRepWorks : {n : ℕ} → {c : (fromℕ n) ⇛ (fromℕ n)} → {v : Vec (F.Fin n) n} → vecRep c v → (i : F.Fin n) → (evalVec v i) ≡ (evalComb c (finToVal i)) vecRepWorks vr-id i = cong finToVal (lookupTab i) vecRepWorks vr-swap F.zero = refl -- (inj₂ (inj₁ tt)) vecRepWorks vr-swap (F.suc F.zero) = refl -- (inj₁ tt) vecRepWorks {suc (suc n)} vr-swap (F.suc (F.suc i)) = cong finToVal (lookupTab i) vecRepWorks (vr-comp {n} {c₁} {c₂} {v₁} {v₂} vr vr₁) i = begin finToVal (lookup i (tabulate (λ j → lookup (lookup j v₁) v₂))) ≡⟨ cong finToVal (lookup∘tabulate i (λ j → lookup (lookup j v₁) v₂)) ⟩ finToVal (lookup (lookup i v₁) v₂) ≡⟨ cong (λ x → finToVal (lookup x v₂)) (lookupToEvalVec i v₁) ⟩ finToVal (lookup (valToFin (evalVec v₁ i)) v₂) ≡⟨ cong (λ x → finToVal (lookup (valToFin x) v₂)) (vecRepWorks vr i) ⟩ finToVal (lookup (valToFin (evalComb c₁ (finToVal i))) v₂) ≡⟨ cong finToVal (lookupToEvalVec (valToFin (evalComb c₁ (finToVal i))) v₂) ⟩ finToVal (valToFin (evalVec v₂ (valToFin (evalComb c₁ (finToVal i))))) ≡⟨ finToValToFin (evalVec v₂ (valToFin (evalComb c₁ (finToVal i)))) ⟩ evalVec v₂ (valToFin (evalComb c₁ (finToVal i))) ≡⟨ vecRepWorks vr₁ (valToFin (evalComb c₁ (finToVal i))) ⟩ evalComb c₂ (finToVal (valToFin (evalComb c₁ (finToVal i)))) ≡⟨ cong (evalComb c₂) (finToValToFin (evalComb c₁ (finToVal i))) ⟩ evalComb (c₁ ◎ c₂) (finToVal i) ∎ vecRepWorks {suc n} (vr-plus vr) F.zero = refl -- (inj₁ tt) vecRepWorks (vr-plus {c = c} {v = v} vr) (F.suc i) = begin evalVec (F.zero ∷ vmap F.suc v) (F.suc i) ≡⟨ cong finToVal (map!! F.suc v i) ⟩ inj₂ (finToVal (v !! i)) ≡⟨ cong inj₂ (vecRepWorks vr i) ⟩ (evalComb (id⇛ ⊕ c) (finToVal (F.suc i)) ∎) record Permut (n : ℕ) : Set where constructor per field vec : Vec (F.Fin n) n uniq : ∀ {i j : F.Fin n} → (vec !! i) ≡ (vec !! j) → i ≡ j -- this should also take a proof that i>0. pred′ : {n : ℕ} (i : F.Fin (suc (suc n))) → F.Fin (suc n) pred′ F.zero = F.zero pred′ (F.suc i) = i record NormComb (n : ℕ) : Set where constructor ⟪_,_⟫ field v : Vec (F.Fin n) n -- We can't actually have it be the stronger condition and still be -- able to properly recur on it as in vtc′. p : ∀ (i : F.Fin n) (j : F.Fin′ i) → (v !! (F.inject j) ≡ i) → (v !! i ≡ (F.inject j)) predToSuc : {n : ℕ} (i : F.Fin (suc n)) (j : F.Fin′ i) (x : F.Fin (suc (suc n))) (v : Vec (F.Fin (suc (suc n))) (suc n)) → vmap pred′ v !! F.inject j ≡ i → (∀ (i : F.Fin (suc (suc n))) (j : F.Fin′ i) → ((x ∷ v) !! (F.inject j) ≡ i) → ((x ∷ v) !! i ≡ (F.inject j))) → (x ∷ v) !! F.inject (F.suc j) ≡ F.suc i predToSuc i j x v p p₁ = begin (x ∷ v) !! F.inject (F.suc j) ≡⟨ refl ⟩ v !! F.inject j ≡⟨ {!refl!} ⟩ F.suc i ∎ nctail : {n : ℕ} → NormComb (suc n) → NormComb n nctail {zero} ⟪ x ∷ [] , p ⟫ = ⟪ [] , (λ ()) ⟫ nctail {suc n} ⟪ x ∷ v , p ⟫ = ⟪ vmap pred′ v , {!!} ⟫ vtc′ : {n : ℕ} (v : Vec (F.Fin n) n) → (fromℕ n) ⇛ (fromℕ n) vtc′ {zero} [] = id⇛ vtc′ {suc zero} (x ∷ []) = id⇛ -- can only swap with itself vtc′ {suc (suc n)} (F.zero ∷ v) = id⇛ ⊕ (vtc′ (vmap pred′ v)) vtc′ {suc (suc n)} ((F.suc i) ∷ v) = (id⇛ ⊕ (vtc′ (vmap pred′ v))) ◎ (swapm (F.suc i)) testvtc : {n : ℕ} → Vec (F.Fin n) n → Vec (F.Fin n) n testvtc v = combToVec (vtc′ v) testvtc0 : {n : ℕ} → Vec (F.Fin n) n → Vec (F.Fin n) n testvtc0 v = combToVec (vecToComb v) pl2 : Vec (F.Fin 5) 5 pl2 = permuteLeft (F.suc (F.suc F.zero)) (upTo 5) pr2 : Vec (F.Fin 5) 5 pr2 = permuteRight (F.suc (F.suc F.zero)) pred∘suc : {n : ℕ} (x : F.Fin (suc (suc n))) → ((F.toℕ x) > zero) → F.suc (pred′ x) ≡ x pred∘suc F.zero () pred∘suc (F.suc _) _ = refl -- Assumptions we need so far: -- - If the first element of a vec is zero, no other element is zero -- (to prove that "vmap F.suc (vmap pred′ v) == v") -- - Probably something for the last case, too magic1 : {n : ℕ} (v : Vec (F.Fin n) n) → vecRep (vtc′ v) v magic1 {zero} [] = vr-id magic1 {suc zero} (F.zero ∷ []) = vr-id magic1 {suc zero} (F.suc () ∷ []) -- this will need something reminiscent of LeftCancellation? magic1 {suc (suc n)} (F.zero ∷ v) = hetType (vr-plus (magic1 {suc n} (vmap pred′ v))) (cong (λ x → vecRep (id⇛ ⊕ vtc′ (vmap pred′ v)) (F.zero ∷ x)) ((vmap∘vmap F.suc pred′ v) ∘ (vmap∘id {!!}) )) -- swap and recurse? magic1 {suc (suc n)} (F.suc x ∷ v) = {!!} -- [JC] flip the conclusion around, as 'evalVec v i' is trivial. Makes -- equational reasoning easier vecToCombWorks : {n : ℕ} → (v : Vec (F.Fin n) n) → (i : F.Fin n) → (evalComb (vtc′ v) (finToVal i)) ≡ (evalVec v i) vecToCombWorks v i = sym (vecRepWorks (magic1 v) i) ------------------------------------------------------------------ -- Goal: lemma1 : {n : ℕ} (v : Vec (F.Fin n) n) → (i : F.Fin n) → (evalVec v i) ≡ (evalComb (vtc′ v) (finToVal i)) lemma1 v i = sym (vecToCombWorks v i) lemma2 : {n : ℕ} (c : (fromℕ n) ⇛ (fromℕ n)) → (i : F.Fin n) → (evalComb c (finToVal i)) ≡ evalVec (combToVec c) i lemma2 c i = combToVecWorks c i ----------------------------------------------------------------
{ "alphanum_fraction": 0.5542609854, "avg_line_length": 36.9849521204, "ext": "agda", "hexsha": "688e643af528de4f1662d2a39fac00e18a9a94f2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/OldUnivalence/Sane.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/OldUnivalence/Sane.agda", "max_line_length": 104, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/OldUnivalence/Sane.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 11414, "size": 27036 }
module Data.Vec.Membership.Properties where open import Data.Vec open import Data.Vec.Membership open import Data.Vec.Any.Membership.Propositional
{ "alphanum_fraction": 0.8169934641, "avg_line_length": 13.9090909091, "ext": "agda", "hexsha": "807b7246c02a7d6bdfecd6946e0cd24736807b04", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tizmd/agda-vector-any", "max_forks_repo_path": "src/Data/Vec/Membership/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tizmd/agda-vector-any", "max_issues_repo_path": "src/Data/Vec/Membership/Properties.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tizmd/agda-vector-any", "max_stars_repo_path": "src/Data/Vec/Membership/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 35, "size": 153 }
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Susp where open import Cubical.HITs.Susp.Base public -- open import Cubical.HITs.Susp.Properties public
{ "alphanum_fraction": 0.7547169811, "avg_line_length": 22.7142857143, "ext": "agda", "hexsha": "deaf83c22b0af6862239bf44d1207ee236484865", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/HITs/Susp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/HITs/Susp.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/HITs/Susp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 44, "size": 159 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some properties about integers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Integer.Properties where open import Algebra import Algebra.Morphism as Morphism import Algebra.Properties.AbelianGroup open import Data.Integer.Base renaming (suc to sucℤ) open import Data.Nat as ℕ using (ℕ; suc; zero; _∸_; s≤s; z≤n) hiding (module ℕ) import Data.Nat.Properties as ℕₚ open import Data.Nat.Solver open import Data.Product using (proj₁; proj₂; _,_) open import Data.Sum as Sum using (inj₁; inj₂) open import Data.Sign as Sign using () renaming (_*_ to _𝕊*_) import Data.Sign.Properties as 𝕊ₚ open import Function using (_∘_; _$_) open import Level using (0ℓ) open import Relation.Binary open import Relation.Binary.PropositionalEquality import Relation.Binary.Reasoning.PartialOrder as POR import Relation.Binary.Reasoning.Preorder as PreR open import Relation.Nullary using (yes; no) open import Relation.Nullary.Negation using (contradiction) import Relation.Nullary.Decidable as Dec open import Algebra.FunctionProperties {A = ℤ} _≡_ open import Algebra.FunctionProperties.Consequences.Propositional open import Algebra.Structures {A = ℤ} _≡_ module ℤtoℕ = Morphism.Definitions ℤ ℕ _≡_ module ℕtoℤ = Morphism.Definitions ℕ ℤ _≡_ open +-*-Solver ------------------------------------------------------------------------ -- Equality +-injective : ∀ {m n} → + m ≡ + n → m ≡ n +-injective refl = refl -[1+-injective : ∀ {m n} → -[1+ m ] ≡ -[1+ n ] → m ≡ n -[1+-injective refl = refl infix 4 _≟_ _≟_ : Decidable {A = ℤ} _≡_ + m ≟ + n = Dec.map′ (cong (+_)) +-injective (m ℕ.≟ n) + m ≟ -[1+ n ] = no λ() -[1+ m ] ≟ + n = no λ() -[1+ m ] ≟ -[1+ n ] = Dec.map′ (cong -[1+_]) -[1+-injective (m ℕ.≟ n) ≡-decSetoid : DecSetoid _ _ ≡-decSetoid = decSetoid _≟_ ------------------------------------------------------------------------ -- Properties of -_ neg-involutive : ∀ n → - - n ≡ n neg-involutive (+ zero) = refl neg-involutive (+ suc n) = refl neg-involutive (-[1+ n ]) = refl neg-injective : ∀ {m n} → - m ≡ - n → m ≡ n neg-injective {m} {n} -m≡-n = begin m ≡⟨ sym (neg-involutive m) ⟩ - - m ≡⟨ cong -_ -m≡-n ⟩ - - n ≡⟨ neg-involutive n ⟩ n ∎ where open ≡-Reasoning neg-suc : ∀ m → - + suc m ≡ pred (- + m) neg-suc zero = refl neg-suc (suc m) = refl ------------------------------------------------------------------------ -- Properties of ∣_∣ ∣n∣≡0⇒n≡0 : ∀ {n} → ∣ n ∣ ≡ 0 → n ≡ + 0 ∣n∣≡0⇒n≡0 {+ .zero} refl = refl ∣n∣≡0⇒n≡0 { -[1+ n ]} () ∣-n∣≡∣n∣ : ∀ n → ∣ - n ∣ ≡ ∣ n ∣ ∣-n∣≡∣n∣ (+ zero) = refl ∣-n∣≡∣n∣ (+ suc n) = refl ∣-n∣≡∣n∣ (-[1+ n ]) = refl 0≤n⇒+∣n∣≡n : ∀ {n} → + 0 ≤ n → + ∣ n ∣ ≡ n 0≤n⇒+∣n∣≡n (+≤+ 0≤n) = refl +∣n∣≡n⇒0≤n : ∀ {n} → + ∣ n ∣ ≡ n → + 0 ≤ n +∣n∣≡n⇒0≤n {+ n} _ = +≤+ z≤n +∣n∣≡n⇒0≤n { -[1+ n ]} () ------------------------------------------------------------------------ -- Properties of sign and _◃_ ◃-inverse : ∀ i → sign i ◃ ∣ i ∣ ≡ i ◃-inverse -[1+ n ] = refl ◃-inverse (+ zero) = refl ◃-inverse (+ suc n) = refl ◃-cong : ∀ {i j} → sign i ≡ sign j → ∣ i ∣ ≡ ∣ j ∣ → i ≡ j ◃-cong {i} {j} sign-≡ abs-≡ = begin i ≡⟨ sym $ ◃-inverse i ⟩ sign i ◃ ∣ i ∣ ≡⟨ cong₂ _◃_ sign-≡ abs-≡ ⟩ sign j ◃ ∣ j ∣ ≡⟨ ◃-inverse j ⟩ j ∎ where open ≡-Reasoning +◃n≡+n : ∀ n → Sign.+ ◃ n ≡ + n +◃n≡+n zero = refl +◃n≡+n (suc _) = refl -◃n≡-n : ∀ n → Sign.- ◃ n ≡ - + n -◃n≡-n zero = refl -◃n≡-n (suc _) = refl sign-◃ : ∀ s n → sign (s ◃ suc n) ≡ s sign-◃ Sign.- _ = refl sign-◃ Sign.+ _ = refl abs-◃ : ∀ s n → ∣ s ◃ n ∣ ≡ n abs-◃ _ zero = refl abs-◃ Sign.- (suc n) = refl abs-◃ Sign.+ (suc n) = refl signₙ◃∣n∣≡n : ∀ n → sign n ◃ ∣ n ∣ ≡ n signₙ◃∣n∣≡n (+ n) = +◃n≡+n n signₙ◃∣n∣≡n (-[1+ n ]) = refl sign-cong : ∀ {s₁ s₂ n₁ n₂} → s₁ ◃ suc n₁ ≡ s₂ ◃ suc n₂ → s₁ ≡ s₂ sign-cong {s₁} {s₂} {n₁} {n₂} eq = begin s₁ ≡⟨ sym $ sign-◃ s₁ n₁ ⟩ sign (s₁ ◃ suc n₁) ≡⟨ cong sign eq ⟩ sign (s₂ ◃ suc n₂) ≡⟨ sign-◃ s₂ n₂ ⟩ s₂ ∎ where open ≡-Reasoning abs-cong : ∀ {s₁ s₂ n₁ n₂} → s₁ ◃ n₁ ≡ s₂ ◃ n₂ → n₁ ≡ n₂ abs-cong {s₁} {s₂} {n₁} {n₂} eq = begin n₁ ≡⟨ sym $ abs-◃ s₁ n₁ ⟩ ∣ s₁ ◃ n₁ ∣ ≡⟨ cong ∣_∣ eq ⟩ ∣ s₂ ◃ n₂ ∣ ≡⟨ abs-◃ s₂ n₂ ⟩ n₂ ∎ where open ≡-Reasoning ∣s◃m∣*∣t◃n∣≡m*n : ∀ s t m n → ∣ s ◃ m ∣ ℕ.* ∣ t ◃ n ∣ ≡ m ℕ.* n ∣s◃m∣*∣t◃n∣≡m*n s t m n = cong₂ ℕ._*_ (abs-◃ s m) (abs-◃ t n) ◃-≡ : ∀ {m n} → sign m ≡ sign n → ∣ m ∣ ≡ ∣ n ∣ → m ≡ n ◃-≡ {+ m} {+ n } ≡-sign ≡-abs = cong ℤ.pos ≡-abs ◃-≡ { -[1+ m ]} { -[1+ n ]} ≡-sign ≡-abs = cong -[1+_] (ℕₚ.suc-injective ≡-abs) ◃-≡ {+ m} { -[1+ n ]} () ≡-abs ◃-≡ { -[1+ m ]} {+ n } () ≡-abs ------------------------------------------------------------------------ -- Properties of _⊖_ n⊖n≡0 : ∀ n → n ⊖ n ≡ + 0 n⊖n≡0 zero = refl n⊖n≡0 (suc n) = n⊖n≡0 n ⊖-swap : ∀ a b → a ⊖ b ≡ - (b ⊖ a) ⊖-swap zero zero = refl ⊖-swap (suc _) zero = refl ⊖-swap zero (suc _) = refl ⊖-swap (suc a) (suc b) = ⊖-swap a b ⊖-≥ : ∀ {m n} → m ℕ.≥ n → m ⊖ n ≡ + (m ∸ n) ⊖-≥ z≤n = refl ⊖-≥ (ℕ.s≤s n≤m) = ⊖-≥ n≤m ⊖-< : ∀ {m n} → m ℕ.< n → m ⊖ n ≡ - + (n ∸ m) ⊖-< {zero} (ℕ.s≤s z≤n) = refl ⊖-< {suc m} (ℕ.s≤s m<n) = ⊖-< m<n ⊖-≰ : ∀ {m n} → n ℕ.≰ m → m ⊖ n ≡ - + (n ∸ m) ⊖-≰ = ⊖-< ∘ ℕₚ.≰⇒> ∣⊖∣-< : ∀ {m n} → m ℕ.< n → ∣ m ⊖ n ∣ ≡ n ∸ m ∣⊖∣-< {zero} (ℕ.s≤s z≤n) = refl ∣⊖∣-< {suc n} (ℕ.s≤s m<n) = ∣⊖∣-< m<n ∣⊖∣-≰ : ∀ {m n} → n ℕ.≰ m → ∣ m ⊖ n ∣ ≡ n ∸ m ∣⊖∣-≰ = ∣⊖∣-< ∘ ℕₚ.≰⇒> sign-⊖-< : ∀ {m n} → m ℕ.< n → sign (m ⊖ n) ≡ Sign.- sign-⊖-< {zero} (ℕ.s≤s z≤n) = refl sign-⊖-< {suc n} (ℕ.s≤s m<n) = sign-⊖-< m<n sign-⊖-≰ : ∀ {m n} → n ℕ.≰ m → sign (m ⊖ n) ≡ Sign.- sign-⊖-≰ = sign-⊖-< ∘ ℕₚ.≰⇒> -[n⊖m]≡-m+n : ∀ m n → - (m ⊖ n) ≡ (- (+ m)) + (+ n) -[n⊖m]≡-m+n zero zero = refl -[n⊖m]≡-m+n zero (suc n) = refl -[n⊖m]≡-m+n (suc m) zero = refl -[n⊖m]≡-m+n (suc m) (suc n) = sym (⊖-swap n m) ∣m⊖n∣≡∣n⊖m∣ : ∀ x y → ∣ x ⊖ y ∣ ≡ ∣ y ⊖ x ∣ ∣m⊖n∣≡∣n⊖m∣ zero zero = refl ∣m⊖n∣≡∣n⊖m∣ zero (suc _) = refl ∣m⊖n∣≡∣n⊖m∣ (suc _) zero = refl ∣m⊖n∣≡∣n⊖m∣ (suc x) (suc y) = ∣m⊖n∣≡∣n⊖m∣ x y +-cancelˡ-⊖ : ∀ a b c → (a ℕ.+ b) ⊖ (a ℕ.+ c) ≡ b ⊖ c +-cancelˡ-⊖ zero b c = refl +-cancelˡ-⊖ (suc a) b c = +-cancelˡ-⊖ a b c ------------------------------------------------------------------------ -- Properties of _+_ +-comm : Commutative _+_ +-comm -[1+ a ] -[1+ b ] = cong (-[1+_] ∘ suc) (ℕₚ.+-comm a b) +-comm (+ a ) (+ b ) = cong +_ (ℕₚ.+-comm a b) +-comm -[1+ _ ] (+ _ ) = refl +-comm (+ _ ) -[1+ _ ] = refl +-identityˡ : LeftIdentity (+ 0) _+_ +-identityˡ -[1+ _ ] = refl +-identityˡ (+ _ ) = refl +-identityʳ : RightIdentity (+ 0) _+_ +-identityʳ = comm+idˡ⇒idʳ +-comm +-identityˡ +-identity : Identity (+ 0) _+_ +-identity = +-identityˡ , +-identityʳ distribˡ-⊖-+-pos : ∀ a b c → b ⊖ c + + a ≡ b ℕ.+ a ⊖ c distribˡ-⊖-+-pos _ zero zero = refl distribˡ-⊖-+-pos _ zero (suc _) = refl distribˡ-⊖-+-pos _ (suc _) zero = refl distribˡ-⊖-+-pos a (suc b) (suc c) = distribˡ-⊖-+-pos a b c distribˡ-⊖-+-neg : ∀ a b c → b ⊖ c + -[1+ a ] ≡ b ⊖ (suc c ℕ.+ a) distribˡ-⊖-+-neg _ zero zero = refl distribˡ-⊖-+-neg _ zero (suc _) = refl distribˡ-⊖-+-neg _ (suc _) zero = refl distribˡ-⊖-+-neg a (suc b) (suc c) = distribˡ-⊖-+-neg a b c distribʳ-⊖-+-pos : ∀ a b c → + a + (b ⊖ c) ≡ a ℕ.+ b ⊖ c distribʳ-⊖-+-pos a b c = begin + a + (b ⊖ c) ≡⟨ +-comm (+ a) (b ⊖ c) ⟩ (b ⊖ c) + + a ≡⟨ distribˡ-⊖-+-pos a b c ⟩ b ℕ.+ a ⊖ c ≡⟨ cong (_⊖ c) (ℕₚ.+-comm b a) ⟩ a ℕ.+ b ⊖ c ∎ where open ≡-Reasoning distribʳ-⊖-+-neg : ∀ a b c → -[1+ a ] + (b ⊖ c) ≡ b ⊖ (suc a ℕ.+ c) distribʳ-⊖-+-neg a b c = begin -[1+ a ] + (b ⊖ c) ≡⟨ +-comm -[1+ a ] (b ⊖ c) ⟩ (b ⊖ c) + -[1+ a ] ≡⟨ distribˡ-⊖-+-neg a b c ⟩ b ⊖ suc (c ℕ.+ a) ≡⟨ cong (λ x → b ⊖ suc x) (ℕₚ.+-comm c a) ⟩ b ⊖ suc (a ℕ.+ c) ∎ where open ≡-Reasoning suc-+ : ∀ m n → + suc m + n ≡ sucℤ (+ m + n) suc-+ m (+ n) = refl suc-+ m (-[1+ n ]) = sym (distribʳ-⊖-+-pos 1 m (suc n)) pos-+-commute : ℕtoℤ.Homomorphic₂ +_ ℕ._+_ _+_ pos-+-commute zero n = refl pos-+-commute (suc m) n = cong sucℤ (pos-+-commute m n) +-assoc : Associative _+_ +-assoc (+ zero) y z rewrite +-identityˡ y | +-identityˡ (y + z) = refl +-assoc x (+ zero) z rewrite +-identityʳ x | +-identityˡ z = refl +-assoc x y (+ zero) rewrite +-identityʳ (x + y) | +-identityʳ y = refl +-assoc -[1+ a ] -[1+ b ] (+ suc c) = sym (distribʳ-⊖-+-neg a c b) +-assoc -[1+ a ] (+ suc b) (+ suc c) = distribˡ-⊖-+-pos (suc c) b a +-assoc (+ suc a) -[1+ b ] -[1+ c ] = distribˡ-⊖-+-neg c a b +-assoc (+ suc a) -[1+ b ] (+ suc c) rewrite distribˡ-⊖-+-pos (suc c) a b | distribʳ-⊖-+-pos (suc a) c b | sym (ℕₚ.+-assoc a 1 c) | ℕₚ.+-comm a 1 = refl +-assoc (+ suc a) (+ suc b) -[1+ c ] rewrite distribʳ-⊖-+-pos (suc a) b c | sym (ℕₚ.+-assoc a 1 b) | ℕₚ.+-comm a 1 = refl +-assoc -[1+ a ] -[1+ b ] -[1+ c ] rewrite sym (ℕₚ.+-assoc a 1 (b ℕ.+ c)) | ℕₚ.+-comm a 1 | ℕₚ.+-assoc a b c = refl +-assoc -[1+ a ] (+ suc b) -[1+ c ] rewrite distribʳ-⊖-+-neg a b c | distribˡ-⊖-+-neg c b a = refl +-assoc (+ suc a) (+ suc b) (+ suc c) rewrite ℕₚ.+-assoc (suc a) (suc b) (suc c) = refl suc-pred : ∀ m → sucℤ (pred m) ≡ m suc-pred m = begin sucℤ (pred m) ≡⟨ sym (+-assoc (+ 1) (- + 1) m) ⟩ + 0 + m ≡⟨ +-identityˡ m ⟩ m ∎ where open ≡-Reasoning pred-suc : ∀ m → pred (sucℤ m) ≡ m pred-suc m = begin pred (sucℤ m) ≡⟨ sym (+-assoc (- + 1) (+ 1) m) ⟩ + 0 + m ≡⟨ +-identityˡ m ⟩ m ∎ where open ≡-Reasoning +-pred : ∀ m n → m + pred n ≡ pred (m + n) +-pred m n = begin m + (-[1+ 0 ] + n) ≡⟨ sym (+-assoc m -[1+ 0 ] n) ⟩ m + -[1+ 0 ] + n ≡⟨ cong (_+ n) (+-comm m -[1+ 0 ]) ⟩ -[1+ 0 ] + m + n ≡⟨ +-assoc -[1+ 0 ] m n ⟩ -[1+ 0 ] + (m + n) ∎ where open ≡-Reasoning pred-+ : ∀ m n → pred m + n ≡ pred (m + n) pred-+ m n = begin pred m + n ≡⟨ +-comm (pred m) n ⟩ n + pred m ≡⟨ +-pred n m ⟩ pred (n + m) ≡⟨ cong pred (+-comm n m) ⟩ pred (m + n) ∎ where open ≡-Reasoning +-inverseˡ : LeftInverse (+ 0) -_ _+_ +-inverseˡ -[1+ n ] = n⊖n≡0 n +-inverseˡ (+ zero) = refl +-inverseˡ (+ suc n) = n⊖n≡0 n +-inverseʳ : RightInverse (+ 0) -_ _+_ +-inverseʳ = comm+invˡ⇒invʳ +-comm +-inverseˡ +-inverse : Inverse (+ 0) -_ _+_ +-inverse = +-inverseˡ , +-inverseʳ +-isMagma : IsMagma _+_ +-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _+_ } +-magma : Magma 0ℓ 0ℓ +-magma = record { isMagma = +-isMagma } +-isSemigroup : IsSemigroup _+_ +-isSemigroup = record { isMagma = +-isMagma ; assoc = +-assoc } +-semigroup : Semigroup 0ℓ 0ℓ +-semigroup = record { isSemigroup = +-isSemigroup } +-0-isMonoid : IsMonoid _+_ (+ 0) +-0-isMonoid = record { isSemigroup = +-isSemigroup ; identity = +-identity } +-0-monoid : Monoid 0ℓ 0ℓ +-0-monoid = record { isMonoid = +-0-isMonoid } +-0-isCommutativeMonoid : IsCommutativeMonoid _+_ (+ 0) +-0-isCommutativeMonoid = record { isSemigroup = +-isSemigroup ; identityˡ = +-identityˡ ; comm = +-comm } +-0-commutativeMonoid : CommutativeMonoid _ _ +-0-commutativeMonoid = record { isCommutativeMonoid = +-0-isCommutativeMonoid } +-0-isGroup : IsGroup _+_ (+ 0) (-_) +-0-isGroup = record { isMonoid = +-0-isMonoid ; inverse = +-inverse ; ⁻¹-cong = cong (-_) } +-isAbelianGroup : IsAbelianGroup _+_ (+ 0) (-_) +-isAbelianGroup = record { isGroup = +-0-isGroup ; comm = +-comm } +-0-abelianGroup : AbelianGroup _ _ +-0-abelianGroup = record { isAbelianGroup = +-isAbelianGroup } -- Other properties of _+_ n≢1+n : ∀ {n} → n ≢ sucℤ n n≢1+n {+ _} () n≢1+n { -[1+ 0 ]} () n≢1+n { -[1+ suc n ]} () 1-[1+n]≡-n : ∀ n → sucℤ -[1+ n ] ≡ - (+ n) 1-[1+n]≡-n zero = refl 1-[1+n]≡-n (suc n) = refl neg-distrib-+ : ∀ m n → - (m + n) ≡ (- m) + (- n) neg-distrib-+ (+ zero) (+ zero) = refl neg-distrib-+ (+ zero) (+ suc n) = refl neg-distrib-+ (+ suc m) (+ zero) = cong -[1+_] (ℕₚ.+-identityʳ m) neg-distrib-+ (+ suc m) (+ suc n) = cong -[1+_] (ℕₚ.+-suc m n) neg-distrib-+ -[1+ m ] -[1+ n ] = cong (λ v → + suc v) (sym (ℕₚ.+-suc m n)) neg-distrib-+ (+ m) -[1+ n ] = -[n⊖m]≡-m+n m (suc n) neg-distrib-+ -[1+ m ] (+ n) = trans (-[n⊖m]≡-m+n n (suc m)) (+-comm (- + n) (+ suc m)) ◃-distrib-+ : ∀ s m n → s ◃ (m ℕ.+ n) ≡ (s ◃ m) + (s ◃ n) ◃-distrib-+ Sign.- m n = begin Sign.- ◃ (m ℕ.+ n) ≡⟨ -◃n≡-n (m ℕ.+ n) ⟩ - (+ (m ℕ.+ n)) ≡⟨⟩ - ((+ m) + (+ n)) ≡⟨ neg-distrib-+ (+ m) (+ n) ⟩ (- (+ m)) + (- (+ n)) ≡⟨ sym (cong₂ _+_ (-◃n≡-n m) (-◃n≡-n n)) ⟩ (Sign.- ◃ m) + (Sign.- ◃ n) ∎ where open ≡-Reasoning ◃-distrib-+ Sign.+ m n = begin Sign.+ ◃ (m ℕ.+ n) ≡⟨ +◃n≡+n (m ℕ.+ n) ⟩ + (m ℕ.+ n) ≡⟨⟩ (+ m) + (+ n) ≡⟨ sym (cong₂ _+_ (+◃n≡+n m) (+◃n≡+n n)) ⟩ (Sign.+ ◃ m) + (Sign.+ ◃ n) ∎ where open ≡-Reasoning +-minus-telescope : ∀ x y z → (x - y) + (y - z) ≡ x - z +-minus-telescope x y z = begin (x - y) + (y - z) ≡⟨ +-assoc x (- y) (y - z) ⟩ x + (- y + (y - z)) ≡⟨ cong (λ v → x + v) (sym (+-assoc (- y) y _)) ⟩ x + ((- y + y) - z) ≡⟨ sym (+-assoc x (- y + y) (- z)) ⟩ x + (- y + y) - z ≡⟨ cong (λ a → x + a - z) (+-inverseˡ y) ⟩ x + (+ 0) - z ≡⟨ cong (_- z) (+-identityʳ x) ⟩ x - z ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- Properties of _-_ neg-minus-pos : ∀ x y → -[1+ x ] - (+ y) ≡ -[1+ (y ℕ.+ x) ] neg-minus-pos x zero = refl neg-minus-pos zero (suc y) = cong (-[1+_] ∘ suc) (sym (ℕₚ.+-identityʳ y)) neg-minus-pos (suc x) (suc y) = cong (-[1+_] ∘ suc) (ℕₚ.+-comm (suc x) y) [+m]-[+n]≡m⊖n : ∀ x y → (+ x) - (+ y) ≡ x ⊖ y [+m]-[+n]≡m⊖n zero zero = refl [+m]-[+n]≡m⊖n zero (suc y) = refl [+m]-[+n]≡m⊖n (suc x) zero = cong (+_ ∘ suc) (ℕₚ.+-identityʳ x) [+m]-[+n]≡m⊖n (suc x) (suc y) = refl ∣m-n∣≡∣n-m∣ : (x y : ℤ) → ∣ x - y ∣ ≡ ∣ y - x ∣ ∣m-n∣≡∣n-m∣ -[1+ x ] -[1+ y ] = ∣m⊖n∣≡∣n⊖m∣ y x ∣m-n∣≡∣n-m∣ -[1+ x ] (+ y) = begin ∣ -[1+ x ] - (+ y) ∣ ≡⟨ cong ∣_∣ (neg-minus-pos x y) ⟩ suc (y ℕ.+ x) ≡⟨ sym (ℕₚ.+-suc y x) ⟩ y ℕ.+ suc x ∎ where open ≡-Reasoning ∣m-n∣≡∣n-m∣ (+ x) -[1+ y ] = begin x ℕ.+ suc y ≡⟨ ℕₚ.+-suc x y ⟩ suc (x ℕ.+ y) ≡⟨ cong ∣_∣ (sym (neg-minus-pos y x)) ⟩ ∣ -[1+ y ] + - (+ x) ∣ ∎ where open ≡-Reasoning ∣m-n∣≡∣n-m∣ (+ x) (+ y) = begin ∣ (+ x) - (+ y) ∣ ≡⟨ cong ∣_∣ ([+m]-[+n]≡m⊖n x y) ⟩ ∣ x ⊖ y ∣ ≡⟨ ∣m⊖n∣≡∣n⊖m∣ x y ⟩ ∣ y ⊖ x ∣ ≡⟨ cong ∣_∣ (sym ([+m]-[+n]≡m⊖n y x)) ⟩ ∣ (+ y) - (+ x) ∣ ∎ where open ≡-Reasoning minus-suc : ∀ m n → m - + suc n ≡ pred (m - + n) minus-suc m n = begin m + - + suc n ≡⟨ cong (_+_ m) (neg-suc n) ⟩ m + pred (- (+ n)) ≡⟨ +-pred m (- + n) ⟩ pred (m - + n) ∎ where open ≡-Reasoning m≡n⇒m-n≡0 : ∀ m n → m ≡ n → m - n ≡ + 0 m≡n⇒m-n≡0 m m refl = +-inverseʳ m m-n≡0⇒m≡n : ∀ m n → m - n ≡ + 0 → m ≡ n m-n≡0⇒m≡n m n m-n≡0 = begin m ≡⟨ sym (+-identityʳ m) ⟩ m + + 0 ≡⟨ cong (_+_ m) (sym (+-inverseˡ n)) ⟩ m + (- n + n) ≡⟨ sym (+-assoc m (- n) n) ⟩ (m - n) + n ≡⟨ cong (_+ n) m-n≡0 ⟩ + 0 + n ≡⟨ +-identityˡ n ⟩ n ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- Properties of _*_ *-comm : Commutative _*_ *-comm -[1+ a ] -[1+ b ] rewrite ℕₚ.*-comm (suc a) (suc b) = refl *-comm -[1+ a ] (+ b ) rewrite ℕₚ.*-comm (suc a) b = refl *-comm (+ a ) -[1+ b ] rewrite ℕₚ.*-comm a (suc b) = refl *-comm (+ a ) (+ b ) rewrite ℕₚ.*-comm a b = refl *-identityˡ : LeftIdentity (+ 1) _*_ *-identityˡ (+ zero ) = refl *-identityˡ -[1+ n ] rewrite ℕₚ.+-identityʳ n = refl *-identityˡ (+ suc n) rewrite ℕₚ.+-identityʳ n = refl *-identityʳ : RightIdentity (+ 1) _*_ *-identityʳ = comm+idˡ⇒idʳ *-comm *-identityˡ *-identity : Identity (+ 1) _*_ *-identity = *-identityˡ , *-identityʳ *-zeroˡ : LeftZero (+ 0) _*_ *-zeroˡ n = refl *-zeroʳ : RightZero (+ 0) _*_ *-zeroʳ = comm+zeˡ⇒zeʳ *-comm *-zeroˡ *-zero : Zero (+ 0) _*_ *-zero = *-zeroˡ , *-zeroʳ private lemma : ∀ a b c → c ℕ.+ (b ℕ.+ a ℕ.* suc b) ℕ.* suc c ≡ c ℕ.+ b ℕ.* suc c ℕ.+ a ℕ.* suc (c ℕ.+ b ℕ.* suc c) lemma = solve 3 (λ a b c → c :+ (b :+ a :* (con 1 :+ b)) :* (con 1 :+ c) := c :+ b :* (con 1 :+ c) :+ a :* (con 1 :+ (c :+ b :* (con 1 :+ c)))) refl *-assoc : Associative _*_ *-assoc (+ zero) _ _ = refl *-assoc x (+ zero) z rewrite ℕₚ.*-zeroʳ ∣ x ∣ = refl *-assoc x y (+ zero) rewrite ℕₚ.*-zeroʳ ∣ y ∣ | ℕₚ.*-zeroʳ ∣ x ∣ | ℕₚ.*-zeroʳ ∣ sign x 𝕊* sign y ◃ ∣ x ∣ ℕ.* ∣ y ∣ ∣ = refl *-assoc -[1+ a ] -[1+ b ] (+ suc c) = cong (+_ ∘ suc) (lemma a b c) *-assoc -[1+ a ] (+ suc b) -[1+ c ] = cong (+_ ∘ suc) (lemma a b c) *-assoc (+ suc a) (+ suc b) (+ suc c) = cong (+_ ∘ suc) (lemma a b c) *-assoc (+ suc a) -[1+ b ] -[1+ c ] = cong (+_ ∘ suc) (lemma a b c) *-assoc -[1+ a ] -[1+ b ] -[1+ c ] = cong -[1+_] (lemma a b c) *-assoc -[1+ a ] (+ suc b) (+ suc c) = cong -[1+_] (lemma a b c) *-assoc (+ suc a) -[1+ b ] (+ suc c) = cong -[1+_] (lemma a b c) *-assoc (+ suc a) (+ suc b) -[1+ c ] = cong -[1+_] (lemma a b c) private -- lemma used to prove distributivity. distrib-lemma : ∀ a b c → (c ⊖ b) * -[1+ a ] ≡ a ℕ.+ b ℕ.* suc a ⊖ (a ℕ.+ c ℕ.* suc a) distrib-lemma a b c rewrite +-cancelˡ-⊖ a (b ℕ.* suc a) (c ℕ.* suc a) | ⊖-swap (b ℕ.* suc a) (c ℕ.* suc a) with b ℕ.≤? c ... | yes b≤c rewrite ⊖-≥ b≤c | ⊖-≥ (ℕₚ.*-mono-≤ b≤c (ℕₚ.≤-refl {x = suc a})) | -◃n≡-n ((c ∸ b) ℕ.* suc a) | ℕₚ.*-distribʳ-∸ (suc a) c b = refl ... | no b≰c rewrite sign-⊖-≰ b≰c | ∣⊖∣-≰ b≰c | +◃n≡+n ((b ∸ c) ℕ.* suc a) | ⊖-≰ (b≰c ∘ ℕₚ.*-cancelʳ-≤ b c a) | neg-involutive (+ (b ℕ.* suc a ∸ c ℕ.* suc a)) | ℕₚ.*-distribʳ-∸ (suc a) b c = refl *-distribʳ-+ : _*_ DistributesOverʳ _+_ *-distribʳ-+ (+ zero) y z rewrite ℕₚ.*-zeroʳ ∣ y ∣ | ℕₚ.*-zeroʳ ∣ z ∣ | ℕₚ.*-zeroʳ ∣ y + z ∣ = refl *-distribʳ-+ x (+ zero) z rewrite +-identityˡ z | +-identityˡ (sign z 𝕊* sign x ◃ ∣ z ∣ ℕ.* ∣ x ∣) = refl *-distribʳ-+ x y (+ zero) rewrite +-identityʳ y | +-identityʳ (sign y 𝕊* sign x ◃ ∣ y ∣ ℕ.* ∣ x ∣) = refl *-distribʳ-+ -[1+ a ] -[1+ b ] -[1+ c ] = cong (+_) $ solve 3 (λ a b c → (con 2 :+ b :+ c) :* (con 1 :+ a) := (con 1 :+ b) :* (con 1 :+ a) :+ (con 1 :+ c) :* (con 1 :+ a)) refl a b c *-distribʳ-+ (+ suc a) (+ suc b) (+ suc c) = cong (+_) $ solve 3 (λ a b c → (con 1 :+ b :+ (con 1 :+ c)) :* (con 1 :+ a) := (con 1 :+ b) :* (con 1 :+ a) :+ (con 1 :+ c) :* (con 1 :+ a)) refl a b c *-distribʳ-+ -[1+ a ] (+ suc b) (+ suc c) = cong -[1+_] $ solve 3 (λ a b c → a :+ (b :+ (con 1 :+ c)) :* (con 1 :+ a) := (con 1 :+ b) :* (con 1 :+ a) :+ (a :+ c :* (con 1 :+ a))) refl a b c *-distribʳ-+ (+ suc a) -[1+ b ] -[1+ c ] = cong -[1+_] $ solve 3 (λ a b c → a :+ (con 1 :+ a :+ (b :+ c) :* (con 1 :+ a)) := (con 1 :+ b) :* (con 1 :+ a) :+ (a :+ c :* (con 1 :+ a))) refl a b c *-distribʳ-+ -[1+ a ] -[1+ b ] (+ suc c) = distrib-lemma a b c *-distribʳ-+ -[1+ a ] (+ suc b) -[1+ c ] = distrib-lemma a c b *-distribʳ-+ (+ suc a) -[1+ b ] (+ suc c) with b ℕ.≤? c ... | yes b≤c rewrite +-cancelˡ-⊖ a (c ℕ.* suc a) (b ℕ.* suc a) | ⊖-≥ b≤c | +-comm (- (+ (a ℕ.+ b ℕ.* suc a))) (+ (a ℕ.+ c ℕ.* suc a)) | ⊖-≥ (ℕₚ.*-mono-≤ b≤c (ℕₚ.≤-refl {x = suc a})) | ℕₚ.*-distribʳ-∸ (suc a) c b | +◃n≡+n (c ℕ.* suc a ∸ b ℕ.* suc a) = refl ... | no b≰c rewrite +-cancelˡ-⊖ a (c ℕ.* suc a) (b ℕ.* suc a) | sign-⊖-≰ b≰c | ∣⊖∣-≰ b≰c | -◃n≡-n ((b ∸ c) ℕ.* suc a) | ⊖-≰ (b≰c ∘ ℕₚ.*-cancelʳ-≤ b c a) | ℕₚ.*-distribʳ-∸ (suc a) b c = refl *-distribʳ-+ (+ suc c) (+ suc a) -[1+ b ] with b ℕ.≤? a ... | yes b≤a rewrite +-cancelˡ-⊖ c (a ℕ.* suc c) (b ℕ.* suc c) | ⊖-≥ b≤a | ⊖-≥ (ℕₚ.*-mono-≤ b≤a (ℕₚ.≤-refl {x = suc c})) | +◃n≡+n ((a ∸ b) ℕ.* suc c) | ℕₚ.*-distribʳ-∸ (suc c) a b = refl ... | no b≰a rewrite +-cancelˡ-⊖ c (a ℕ.* suc c) (b ℕ.* suc c) | sign-⊖-≰ b≰a | ∣⊖∣-≰ b≰a | ⊖-≰ (b≰a ∘ ℕₚ.*-cancelʳ-≤ b a c) | -◃n≡-n ((b ∸ a) ℕ.* suc c) | ℕₚ.*-distribʳ-∸ (suc c) b a = refl *-distribˡ-+ : _*_ DistributesOverˡ _+_ *-distribˡ-+ = comm+distrʳ⇒distrˡ *-comm *-distribʳ-+ [1+m]*n≡n+m*n : ∀ m n → sucℤ m * n ≡ n + m * n [1+m]*n≡n+m*n m n = begin sucℤ m * n ≡⟨ *-distribʳ-+ n (+ 1) m ⟩ + 1 * n + m * n ≡⟨ cong (_+ m * n) (*-identityˡ n) ⟩ n + m * n ∎ where open ≡-Reasoning *-isMagma : IsMagma _*_ *-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _*_ } *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-isSemigroup : IsSemigroup _*_ *-isSemigroup = record { isMagma = *-isMagma ; assoc = *-assoc } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-1-isMonoid : IsMonoid _*_ (+ 1) *-1-isMonoid = record { isSemigroup = *-isSemigroup ; identity = *-identity } *-1-monoid : Monoid 0ℓ 0ℓ *-1-monoid = record { isMonoid = *-1-isMonoid } *-1-isCommutativeMonoid : IsCommutativeMonoid _*_ (+ 1) *-1-isCommutativeMonoid = record { isSemigroup = *-isSemigroup ; identityˡ = *-identityˡ ; comm = *-comm } *-1-commutativeMonoid : CommutativeMonoid _ _ *-1-commutativeMonoid = record { isCommutativeMonoid = *-1-isCommutativeMonoid } +-*-isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ (+ 0) (+ 1) +-*-isCommutativeSemiring = record { +-isCommutativeMonoid = +-0-isCommutativeMonoid ; *-isCommutativeMonoid = *-1-isCommutativeMonoid ; distribʳ = *-distribʳ-+ ; zeroˡ = *-zeroˡ } +-*-isRing : IsRing _+_ _*_ -_ (+ 0) (+ 1) +-*-isRing = record { +-isAbelianGroup = +-isAbelianGroup ; *-isMonoid = *-1-isMonoid ; distrib = IsCommutativeSemiring.distrib +-*-isCommutativeSemiring } +-*-ring : Ring _ _ +-*-ring = record { isRing = +-*-isRing } +-*-isCommutativeRing : IsCommutativeRing _+_ _*_ -_ (+ 0) (+ 1) +-*-isCommutativeRing = record { isRing = +-*-isRing ; *-comm = *-comm } +-*-commutativeRing : CommutativeRing _ _ +-*-commutativeRing = record { Carrier = ℤ ; _≈_ = _≡_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = + 0 ; 1# = + 1 ; isCommutativeRing = +-*-isCommutativeRing } -- Other properties of _*_ abs-*-commute : ℤtoℕ.Homomorphic₂ ∣_∣ _*_ ℕ._*_ abs-*-commute i j = abs-◃ _ _ pos-distrib-* : ∀ x y → (+ x) * (+ y) ≡ + (x ℕ.* y) pos-distrib-* zero y = refl pos-distrib-* (suc x) zero = pos-distrib-* x zero pos-distrib-* (suc x) (suc y) = refl ◃-distrib-* : ∀ s t m n → (s 𝕊* t) ◃ (m ℕ.* n) ≡ (s ◃ m) * (t ◃ n) ◃-distrib-* s t zero zero = refl ◃-distrib-* s t zero (suc n) = refl ◃-distrib-* s t (suc m) zero = trans (cong₂ _◃_ (𝕊ₚ.*-comm s t) (ℕₚ.*-comm m 0)) (*-comm (t ◃ zero) (s ◃ suc m)) ◃-distrib-* s t (suc m) (suc n) = sym (cong₂ _◃_ (cong₂ _𝕊*_ (sign-◃ s m) (sign-◃ t n)) (∣s◃m∣*∣t◃n∣≡m*n s t (suc m) (suc n))) *-cancelʳ-≡ : ∀ i j k → k ≢ + 0 → i * k ≡ j * k → i ≡ j *-cancelʳ-≡ i j k ≢0 eq with signAbs k *-cancelʳ-≡ i j .(+ 0) ≢0 eq | s ◂ zero = contradiction refl ≢0 *-cancelʳ-≡ i j .(s ◃ suc n) ≢0 eq | s ◂ suc n with ∣ s ◃ suc n ∣ | abs-◃ s (suc n) | sign (s ◃ suc n) | sign-◃ s n ... | .(suc n) | refl | .s | refl = ◃-cong (sign-i≡sign-j i j eq) $ ℕₚ.*-cancelʳ-≡ ∣ i ∣ ∣ j ∣ $ abs-cong eq where sign-i≡sign-j : ∀ i j → (sign i 𝕊* s) ◃ (∣ i ∣ ℕ.* suc n) ≡ (sign j 𝕊* s) ◃ (∣ j ∣ ℕ.* suc n) → sign i ≡ sign j sign-i≡sign-j i j eq with signAbs i | signAbs j sign-i≡sign-j .(+ 0) .(+ 0) eq | s₁ ◂ zero | s₂ ◂ zero = refl sign-i≡sign-j .(+ 0) .(s₂ ◃ suc n₂) eq | s₁ ◂ zero | s₂ ◂ suc n₂ with ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂) ... | .(suc n₂) | refl with abs-cong {s₁} {sign (s₂ ◃ suc n₂) 𝕊* s} {0} {suc n₂ ℕ.* suc n} eq ... | () sign-i≡sign-j .(s₁ ◃ suc n₁) .(+ 0) eq | s₁ ◂ suc n₁ | s₂ ◂ zero with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁) ... | .(suc n₁) | refl with abs-cong {sign (s₁ ◃ suc n₁) 𝕊* s} {s₁} {suc n₁ ℕ.* suc n} {0} eq ... | () sign-i≡sign-j .(s₁ ◃ suc n₁) .(s₂ ◃ suc n₂) eq | s₁ ◂ suc n₁ | s₂ ◂ suc n₂ with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁) | sign (s₁ ◃ suc n₁) | sign-◃ s₁ n₁ | ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂) | sign (s₂ ◃ suc n₂) | sign-◃ s₂ n₂ ... | .(suc n₁) | refl | .s₁ | refl | .(suc n₂) | refl | .s₂ | refl = 𝕊ₚ.*-cancelʳ-≡ s₁ s₂ (sign-cong eq) *-cancelˡ-≡ : ∀ i j k → i ≢ + 0 → i * j ≡ i * k → j ≡ k *-cancelˡ-≡ i j k rewrite *-comm i j | *-comm i k = *-cancelʳ-≡ j k i *-cancelʳ-≤-pos : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n *-cancelʳ-≤-pos (-[1+ m ]) (-[1+ n ]) o (-≤- n≤m) = -≤- (ℕₚ.≤-pred (ℕₚ.*-cancelʳ-≤ (suc n) (suc m) o (s≤s n≤m))) *-cancelʳ-≤-pos -[1+ _ ] (+ _) _ _ = -≤+ *-cancelʳ-≤-pos (+ 0) -[1+ _ ] _ () *-cancelʳ-≤-pos (+ suc _) -[1+ _ ] _ () *-cancelʳ-≤-pos (+ 0) (+ 0) _ _ = +≤+ z≤n *-cancelʳ-≤-pos (+ 0) (+ suc _) _ _ = +≤+ z≤n *-cancelʳ-≤-pos (+ suc _) (+ 0) _ (+≤+ ()) *-cancelʳ-≤-pos (+ suc m) (+ suc n) o (+≤+ m≤n) = +≤+ (ℕₚ.*-cancelʳ-≤ (suc m) (suc n) o m≤n) *-cancelˡ-≤-pos : ∀ m n o → + suc m * n ≤ + suc m * o → n ≤ o *-cancelˡ-≤-pos m n o rewrite *-comm (+ suc m) n | *-comm (+ suc m) o = *-cancelʳ-≤-pos n o m *-monoʳ-≤-pos : ∀ n → (_* + suc n) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤-pos _ (-≤+ {n = 0}) = -≤+ *-monoʳ-≤-pos _ (-≤+ {n = suc _}) = -≤+ *-monoʳ-≤-pos x (-≤- n≤m) = -≤- (ℕₚ.≤-pred (ℕₚ.*-mono-≤ (s≤s n≤m) (ℕₚ.≤-refl {x = suc x}))) *-monoʳ-≤-pos _ (+≤+ {m = 0} {n = 0} m≤n) = +≤+ m≤n *-monoʳ-≤-pos _ (+≤+ {m = 0} {n = suc _} m≤n) = +≤+ z≤n *-monoʳ-≤-pos _ (+≤+ {m = suc _} {n = 0} ()) *-monoʳ-≤-pos x (+≤+ {m = suc _} {n = suc _} m≤n) = +≤+ ((ℕₚ.*-mono-≤ m≤n (ℕₚ.≤-refl {x = suc x}))) *-monoʳ-≤-non-neg : ∀ n → (_* + n) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤-non-neg (suc n) = *-monoʳ-≤-pos n *-monoʳ-≤-non-neg zero {i} {j} i≤j rewrite *-zeroʳ i | *-zeroʳ j = +≤+ z≤n *-monoˡ-≤-non-neg : ∀ n → (+ n *_) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-non-neg n {i} {j} i≤j rewrite *-comm (+ n) i | *-comm (+ n) j = *-monoʳ-≤-non-neg n i≤j *-monoˡ-≤-pos : ∀ n → (+ suc n *_) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-pos n = *-monoˡ-≤-non-neg (suc n) -1*n≡-n : ∀ n → -[1+ 0 ] * n ≡ - n -1*n≡-n (+ zero) = refl -1*n≡-n (+ suc n) = cong -[1+_] (ℕₚ.+-identityʳ n) -1*n≡-n -[1+ n ] = cong (λ v → + suc v) (ℕₚ.+-identityʳ n) neg-distribˡ-* : ∀ x y → - (x * y) ≡ (- x) * y neg-distribˡ-* x y = begin - (x * y) ≡⟨ sym (-1*n≡-n (x * y)) ⟩ -[1+ 0 ] * (x * y) ≡⟨ sym (*-assoc -[1+ 0 ] x y) ⟩ -[1+ 0 ] * x * y ≡⟨ cong (_* y) (-1*n≡-n x) ⟩ - x * y ∎ where open ≡-Reasoning neg-distribʳ-* : ∀ x y → - (x * y) ≡ x * (- y) neg-distribʳ-* x y = begin - (x * y) ≡⟨ cong -_ (*-comm x y) ⟩ - (y * x) ≡⟨ neg-distribˡ-* y x ⟩ - y * x ≡⟨ *-comm (- y) x ⟩ x * (- y) ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- Properties _⊓_ ⊓-comm : Commutative _⊓_ ⊓-comm -[1+ m ] -[1+ n ] = cong -[1+_] (ℕₚ.⊔-comm m n) ⊓-comm -[1+ m ] (+ n) = refl ⊓-comm (+ m) -[1+ n ] = refl ⊓-comm (+ m) (+ n) = cong +_ (ℕₚ.⊓-comm m n) ⊓-assoc : Associative _⊓_ ⊓-assoc -[1+ m ] -[1+ n ] -[1+ p ] = cong -[1+_] (ℕₚ.⊔-assoc m n p) ⊓-assoc -[1+ m ] -[1+ n ] (+ p) = refl ⊓-assoc -[1+ m ] (+ n) -[1+ p ] = refl ⊓-assoc -[1+ m ] (+ n) (+ p) = refl ⊓-assoc (+ m) -[1+ n ] -[1+ p ] = refl ⊓-assoc (+ m) -[1+ n ] (+ p) = refl ⊓-assoc (+ m) (+ n) -[1+ p ] = refl ⊓-assoc (+ m) (+ n) (+ p) = cong +_ (ℕₚ.⊓-assoc m n p) ⊓-idem : Idempotent _⊓_ ⊓-idem (+ m) = cong +_ (ℕₚ.⊓-idem m) ⊓-idem -[1+ m ] = cong -[1+_] (ℕₚ.⊔-idem m) ⊓-sel : Selective _⊓_ ⊓-sel -[1+ m ] -[1+ n ] = Sum.map (cong -[1+_]) (cong -[1+_]) $ ℕₚ.⊔-sel m n ⊓-sel -[1+ m ] (+ n) = inj₁ refl ⊓-sel (+ m) -[1+ n ] = inj₂ refl ⊓-sel (+ m) (+ n) = Sum.map (cong ℤ.pos) (cong ℤ.pos) $ ℕₚ.⊓-sel m n m≤n⇒m⊓n≡m : ∀ {m n} → m ≤ n → m ⊓ n ≡ m m≤n⇒m⊓n≡m -≤+ = refl m≤n⇒m⊓n≡m (-≤- n≤m) = cong -[1+_] (ℕₚ.m≤n⇒n⊔m≡n n≤m) m≤n⇒m⊓n≡m (+≤+ m≤n) = cong +_ (ℕₚ.m≤n⇒m⊓n≡m m≤n) m⊓n≡m⇒m≤n : ∀ {m n} → m ⊓ n ≡ m → m ≤ n m⊓n≡m⇒m≤n { -[1+ m ]} { -[1+ n ]} eq = -≤- (ℕₚ.n⊔m≡n⇒m≤n (-[1+-injective eq)) m⊓n≡m⇒m≤n { -[1+ m ]} {+ n} eq = -≤+ m⊓n≡m⇒m≤n {+ m} { -[1+ n ]} () m⊓n≡m⇒m≤n {+ m} {+ n} eq = +≤+ (ℕₚ.m⊓n≡m⇒m≤n (+-injective eq)) m≥n⇒m⊓n≡n : ∀ {m n} → m ≥ n → m ⊓ n ≡ n m≥n⇒m⊓n≡n {m} {n} pr rewrite ⊓-comm m n = m≤n⇒m⊓n≡m pr m⊓n≡n⇒m≥n : ∀ {m n} → m ⊓ n ≡ n → m ≥ n m⊓n≡n⇒m≥n {m} {n} eq rewrite ⊓-comm m n = m⊓n≡m⇒m≤n eq m⊓n≤n : ∀ m n → m ⊓ n ≤ n m⊓n≤n -[1+ m ] -[1+ n ] = -≤- (ℕₚ.n≤m⊔n m n) m⊓n≤n -[1+ m ] (+ n) = -≤+ m⊓n≤n (+ m) -[1+ n ] = -≤- ℕₚ.≤-refl m⊓n≤n (+ m) (+ n) = +≤+ (ℕₚ.m⊓n≤n m n) m⊓n≤m : ∀ m n → m ⊓ n ≤ m m⊓n≤m m n rewrite ⊓-comm m n = m⊓n≤n n m ------------------------------------------------------------------------ -- Properties _⊔_ ⊔-comm : Commutative _⊔_ ⊔-comm -[1+ m ] -[1+ n ] = cong -[1+_] (ℕₚ.⊓-comm m n) ⊔-comm -[1+ m ] (+ n) = refl ⊔-comm (+ m) -[1+ n ] = refl ⊔-comm (+ m) (+ n) = cong +_ (ℕₚ.⊔-comm m n) ⊔-assoc : Associative _⊔_ ⊔-assoc -[1+ m ] -[1+ n ] -[1+ p ] = cong -[1+_] (ℕₚ.⊓-assoc m n p) ⊔-assoc -[1+ m ] -[1+ n ] (+ p) = refl ⊔-assoc -[1+ m ] (+ n) -[1+ p ] = refl ⊔-assoc -[1+ m ] (+ n) (+ p) = refl ⊔-assoc (+ m) -[1+ n ] -[1+ p ] = refl ⊔-assoc (+ m) -[1+ n ] (+ p) = refl ⊔-assoc (+ m) (+ n) -[1+ p ] = refl ⊔-assoc (+ m) (+ n) (+ p) = cong +_ (ℕₚ.⊔-assoc m n p) ⊔-idem : Idempotent _⊔_ ⊔-idem (+ m) = cong +_ (ℕₚ.⊔-idem m) ⊔-idem -[1+ m ] = cong -[1+_] (ℕₚ.⊓-idem m) ⊔-sel : Selective _⊔_ ⊔-sel -[1+ m ] -[1+ n ] = Sum.map (cong -[1+_]) (cong -[1+_]) $ ℕₚ.⊓-sel m n ⊔-sel -[1+ m ] (+ n) = inj₂ refl ⊔-sel (+ m) -[1+ n ] = inj₁ refl ⊔-sel (+ m) (+ n) = Sum.map (cong ℤ.pos) (cong ℤ.pos) $ ℕₚ.⊔-sel m n m≤n⇒m⊔n≡n : ∀ {m n} → m ≤ n → m ⊔ n ≡ n m≤n⇒m⊔n≡n -≤+ = refl m≤n⇒m⊔n≡n (-≤- n≤m) = cong -[1+_] (ℕₚ.m≤n⇒n⊓m≡m n≤m) m≤n⇒m⊔n≡n (+≤+ m≤n) = cong +_ (ℕₚ.m≤n⇒m⊔n≡n m≤n) m⊔n≡n⇒m≤n : ∀ {m n} → m ⊔ n ≡ n → m ≤ n m⊔n≡n⇒m≤n { -[1+ m ]} { -[1+ n ]} eq = -≤- (ℕₚ.m⊓n≡n⇒n≤m (-[1+-injective eq)) m⊔n≡n⇒m≤n { -[1+ m ]} {+ n} eq = -≤+ m⊔n≡n⇒m≤n {+ m} { -[1+ n ]} () m⊔n≡n⇒m≤n {+ m} {+ n} eq = +≤+ (ℕₚ.n⊔m≡m⇒n≤m (+-injective eq)) m≥n⇒m⊔n≡m : ∀ {m n} → m ≥ n → m ⊔ n ≡ m m≥n⇒m⊔n≡m {m} {n} pr rewrite ⊔-comm m n = m≤n⇒m⊔n≡n pr m⊔n≡m⇒m≥n : ∀ {m n} → m ⊔ n ≡ m → m ≥ n m⊔n≡m⇒m≥n {m} {n} eq rewrite ⊔-comm m n = m⊔n≡n⇒m≤n eq m≤m⊔n : ∀ m n → m ≤ m ⊔ n m≤m⊔n -[1+ m ] -[1+ n ] = -≤- (ℕₚ.m⊓n≤m m n) m≤m⊔n -[1+ m ] (+ n) = -≤+ m≤m⊔n (+ m) -[1+ n ] = +≤+ ℕₚ.≤-refl m≤m⊔n (+ m) (+ n) = +≤+ (ℕₚ.m≤m⊔n m n) n≤m⊔n : ∀ m n → n ≤ m ⊔ n n≤m⊔n m n rewrite ⊔-comm m n = m≤m⊔n n m neg-distrib-⊔-⊓ : ∀ m n → - (m ⊔ n) ≡ - m ⊓ - n neg-distrib-⊔-⊓ -[1+ m ] -[1+ n ] = refl neg-distrib-⊔-⊓ -[1+ m ] (+ zero) = refl neg-distrib-⊔-⊓ -[1+ m ] (+ suc n) = refl neg-distrib-⊔-⊓ (+ zero) -[1+ n ] = refl neg-distrib-⊔-⊓ (+ suc m) -[1+ n ] = refl neg-distrib-⊔-⊓ (+ zero) (+ zero) = refl neg-distrib-⊔-⊓ (+ zero) (+ suc n) = refl neg-distrib-⊔-⊓ (+ suc m) (+ zero) = refl neg-distrib-⊔-⊓ (+ suc m) (+ suc n) = refl neg-distrib-⊓-⊔ : ∀ m n → - (m ⊓ n) ≡ - m ⊔ - n neg-distrib-⊓-⊔ -[1+ m ] -[1+ n ] = refl neg-distrib-⊓-⊔ -[1+ m ] (+ zero) = refl neg-distrib-⊓-⊔ -[1+ m ] (+ suc n) = refl neg-distrib-⊓-⊔ (+ zero) -[1+ n ] = refl neg-distrib-⊓-⊔ (+ suc m) -[1+ n ] = refl neg-distrib-⊓-⊔ (+ zero) (+ zero) = refl neg-distrib-⊓-⊔ (+ zero) (+ suc n) = refl neg-distrib-⊓-⊔ (+ suc m) (+ zero) = refl neg-distrib-⊓-⊔ (+ suc m) (+ suc n) = refl ------------------------------------------------------------------------ -- Properties _≤_ drop‿+≤+ : ∀ {m n} → + m ≤ + n → m ℕ.≤ n drop‿+≤+ (+≤+ m≤n) = m≤n drop‿-≤- : ∀ {m n} → -[1+ m ] ≤ -[1+ n ] → n ℕ.≤ m drop‿-≤- (-≤- n≤m) = n≤m ≤-reflexive : _≡_ ⇒ _≤_ ≤-reflexive { -[1+ n ]} refl = -≤- ℕₚ.≤-refl ≤-reflexive {+ n} refl = +≤+ ℕₚ.≤-refl ≤-refl : Reflexive _≤_ ≤-refl = ≤-reflexive refl ≤-trans : Transitive _≤_ ≤-trans -≤+ (+≤+ n≤m) = -≤+ ≤-trans (-≤- n≤m) -≤+ = -≤+ ≤-trans (-≤- n≤m) (-≤- k≤n) = -≤- (ℕₚ.≤-trans k≤n n≤m) ≤-trans (+≤+ m≤n) (+≤+ n≤k) = +≤+ (ℕₚ.≤-trans m≤n n≤k) ≤-antisym : Antisymmetric _≡_ _≤_ ≤-antisym -≤+ () ≤-antisym (-≤- n≤m) (-≤- m≤n) = cong -[1+_] $ ℕₚ.≤-antisym m≤n n≤m ≤-antisym (+≤+ m≤n) (+≤+ n≤m) = cong (+_) $ ℕₚ.≤-antisym m≤n n≤m ≤-total : Total _≤_ ≤-total (-[1+ m ]) (-[1+ n ]) with ℕₚ.≤-total m n ... | inj₁ m≤n = inj₂ (-≤- m≤n) ... | inj₂ n≤m = inj₁ (-≤- n≤m) ≤-total (-[1+ m ]) (+ n ) = inj₁ -≤+ ≤-total (+ m ) (-[1+ n ]) = inj₂ -≤+ ≤-total (+ m ) (+ n ) with ℕₚ.≤-total m n ... | inj₁ m≤n = inj₁ (+≤+ m≤n) ... | inj₂ n≤m = inj₂ (+≤+ n≤m) infix 4 _≤?_ _≤?_ : Decidable _≤_ -[1+ m ] ≤? -[1+ n ] = Dec.map′ -≤- drop‿-≤- (ℕ._≤?_ n m) -[1+ m ] ≤? + n = yes -≤+ + m ≤? -[1+ n ] = no λ () + m ≤? + n = Dec.map′ +≤+ drop‿+≤+ (ℕ._≤?_ m n) ≤-isPreorder : IsPreorder _≡_ _≤_ ≤-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-preorder : Preorder _ _ _ ≤-preorder = record { isPreorder = ≤-isPreorder } ≤-isPartialOrder : IsPartialOrder _≡_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ≤-poset : Poset _ _ _ ≤-poset = record { Carrier = ℤ ; _≈_ = _≡_ ; _≤_ = _≤_ ; isPartialOrder = ≤-isPartialOrder } ≤-isTotalOrder : IsTotalOrder _≡_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } ≤-decTotalOrder : DecTotalOrder _ _ _ ≤-decTotalOrder = record { Carrier = ℤ ; _≈_ = _≡_ ; _≤_ = _≤_ ; isDecTotalOrder = ≤-isDecTotalOrder } -- Other properties of _≤_ 0⊖m≤+ : ∀ m {n} → 0 ⊖ m ≤ + n 0⊖m≤+ zero = +≤+ z≤n 0⊖m≤+ (suc m) = -≤+ ≤-step : ∀ {n m} → n ≤ m → n ≤ sucℤ m ≤-step -≤+ = -≤+ ≤-step (+≤+ m≤n) = +≤+ (ℕₚ.≤-step m≤n) ≤-step (-≤- z≤n) = -≤+ ≤-step (-≤- (ℕ.s≤s n≤m)) = -≤- (ℕₚ.≤-step n≤m) ≤-steps : ∀ {m n} p → m ≤ n → m ≤ + p + n ≤-steps {n = n} zero m≤n rewrite +-identityˡ n = m≤n ≤-steps {n = n} (suc p) m≤n rewrite suc-+ p n = ≤-step (≤-steps p m≤n) ≤-step-neg : ∀ {m n} → m ≤ n → pred m ≤ n ≤-step-neg -≤+ = -≤+ ≤-step-neg (-≤- n≤m) = -≤- (ℕₚ.≤-step n≤m) ≤-step-neg (+≤+ z≤n) = -≤+ ≤-step-neg (+≤+ (ℕ.s≤s m≤n)) = +≤+ (ℕₚ.≤-step m≤n) ≤-steps-neg : ∀ {m n} p → m ≤ n → m - + p ≤ n ≤-steps-neg {m} zero m≤n rewrite +-identityʳ m = m≤n ≤-steps-neg {m} (suc p) m≤n rewrite minus-suc m p = ≤-step-neg (≤-steps-neg p m≤n) ⊖-monoʳ-≥-≤ : ∀ p → (p ⊖_) Preserves ℕ._≥_ ⟶ _≤_ ⊖-monoʳ-≥-≤ zero (z≤n {n}) = 0⊖m≤+ n ⊖-monoʳ-≥-≤ zero (ℕ.s≤s m≤n) = -≤- m≤n ⊖-monoʳ-≥-≤ (suc p) (z≤n {zero}) = ≤-refl ⊖-monoʳ-≥-≤ (suc p) (z≤n {suc n}) = ≤-step (⊖-monoʳ-≥-≤ p (z≤n {n})) ⊖-monoʳ-≥-≤ (suc p) (ℕ.s≤s m≤n) = ⊖-monoʳ-≥-≤ p m≤n ⊖-monoˡ-≤ : ∀ p → (_⊖ p) Preserves ℕ._≤_ ⟶ _≤_ ⊖-monoˡ-≤ zero m≤n = +≤+ m≤n ⊖-monoˡ-≤ (suc p) (z≤n {0}) = ≤-refl ⊖-monoˡ-≤ (suc p) (z≤n {(suc m)}) = ≤-trans (⊖-monoʳ-≥-≤ 0 (ℕₚ.n≤1+n p)) (⊖-monoˡ-≤ p z≤n) ⊖-monoˡ-≤ (suc p) (ℕ.s≤s m≤n) = ⊖-monoˡ-≤ p m≤n pred-mono : pred Preserves _≤_ ⟶ _≤_ pred-mono (-≤+ {n = 0}) = -≤- z≤n pred-mono (-≤+ {n = suc n}) = -≤+ pred-mono (-≤- n≤m) = -≤- (ℕ.s≤s n≤m) pred-mono (+≤+ m≤n) = ⊖-monoˡ-≤ 1 m≤n suc-mono : sucℤ Preserves _≤_ ⟶ _≤_ suc-mono (-≤+ {m}) = 0⊖m≤+ m suc-mono (-≤- n≤m) = ⊖-monoʳ-≥-≤ zero n≤m suc-mono (+≤+ m≤n) = +≤+ (ℕ.s≤s m≤n) +-pos-monoʳ-≤ : ∀ n → (_+_ (+ n)) Preserves _≤_ ⟶ _≤_ +-pos-monoʳ-≤ zero {i} {j} i≤j rewrite +-identityˡ i | +-identityˡ j = i≤j +-pos-monoʳ-≤ (suc n) {i} {j} i≤j rewrite suc-+ n i | suc-+ n j = suc-mono (+-pos-monoʳ-≤ n i≤j) +-neg-monoʳ-≤ : ∀ n → (_+_ -[1+ n ]) Preserves _≤_ ⟶ _≤_ +-neg-monoʳ-≤ zero i≤j = pred-mono i≤j +-neg-monoʳ-≤ (suc n) {i} {j} i≤j rewrite pred-+ -[1+ n ] i | pred-+ -[1+ n ] j = pred-mono (+-neg-monoʳ-≤ n i≤j) +-monoʳ-≤ : ∀ n → (_+_ n) Preserves _≤_ ⟶ _≤_ +-monoʳ-≤ (+ n) = +-pos-monoʳ-≤ n +-monoʳ-≤ -[1+ n ] = +-neg-monoʳ-≤ n +-monoˡ-≤ : ∀ n → (_+ n) Preserves _≤_ ⟶ _≤_ +-monoˡ-≤ n {i} {j} i≤j rewrite +-comm i n | +-comm j n = +-monoʳ-≤ n i≤j +-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ +-mono-≤ {m} {n} {i} {j} m≤n i≤j = begin m + i ≤⟨ +-monoˡ-≤ i m≤n ⟩ n + i ≤⟨ +-monoʳ-≤ n i≤j ⟩ n + j ∎ where open POR ≤-poset neg-≤-pos : ∀ {m n} → - (+ m) ≤ + n neg-≤-pos {zero} = +≤+ z≤n neg-≤-pos {suc m} = -≤+ neg-mono-≤-≥ : -_ Preserves _≤_ ⟶ _≥_ neg-mono-≤-≥ -≤+ = neg-≤-pos neg-mono-≤-≥ (-≤- n≤m) = +≤+ (s≤s n≤m) neg-mono-≤-≥ (+≤+ z≤n) = neg-≤-pos neg-mono-≤-≥ (+≤+ (s≤s m≤n)) = -≤- m≤n m≤m+n : ∀ {m} n → m ≤ m + + n m≤m+n {m} n = begin m ≡⟨ sym (+-identityʳ m) ⟩ m + + 0 ≤⟨ +-monoʳ-≤ m (+≤+ z≤n) ⟩ m + + n ∎ where open POR ≤-poset m-n≤m : ∀ m n → m - + n ≤ m m-n≤m m n = ≤-steps-neg n ≤-refl n≤m+n : ∀ m {n} → n ≤ + m + n n≤m+n m {n} rewrite +-comm (+ m) n = m≤m+n m m≤n⇒m-n≤0 : ∀ {m n} → m ≤ n → m - n ≤ + 0 m≤n⇒m-n≤0 (-≤+ {n = n}) = ≤-steps-neg n -≤+ m≤n⇒m-n≤0 (-≤- {n = n} n≤m) = ≤-trans (⊖-monoʳ-≥-≤ n n≤m) (≤-reflexive (n⊖n≡0 n)) m≤n⇒m-n≤0 (+≤+ {n = 0} z≤n) = +≤+ z≤n m≤n⇒m-n≤0 (+≤+ {n = suc n} z≤n) = -≤+ m≤n⇒m-n≤0 (+≤+ (ℕ.s≤s {m} m≤n)) = ≤-trans (⊖-monoʳ-≥-≤ m m≤n) (≤-reflexive (n⊖n≡0 m)) m-n≤0⇒m≤n : ∀ {m n} → m - n ≤ + 0 → m ≤ n m-n≤0⇒m≤n {m} {n} m-n≤0 = begin m ≡⟨ sym (+-identityʳ m) ⟩ m + + 0 ≡⟨ cong (_+_ m) (sym (+-inverseˡ n)) ⟩ m + (- n + n) ≡⟨ sym (+-assoc m (- n) n) ⟩ (m - n) + n ≤⟨ +-monoˡ-≤ n m-n≤0 ⟩ + 0 + n ≡⟨ +-identityˡ n ⟩ n ∎ where open POR ≤-poset m≤n⇒0≤n-m : ∀ {m n} → m ≤ n → + 0 ≤ n - m m≤n⇒0≤n-m {m} {n} m≤n = begin + 0 ≡⟨ sym (+-inverseʳ m) ⟩ m - m ≤⟨ +-monoˡ-≤ (- m) m≤n ⟩ n - m ∎ where open POR ≤-poset 0≤n-m⇒m≤n : ∀ {m n} → + 0 ≤ n - m → m ≤ n 0≤n-m⇒m≤n {m} {n} 0≤n-m = begin m ≡⟨ sym (+-identityˡ m) ⟩ + 0 + m ≤⟨ +-monoˡ-≤ m 0≤n-m ⟩ n - m + m ≡⟨ +-assoc n (- m) m ⟩ n + (- m + m) ≡⟨ cong (_+_ n) (+-inverseˡ m) ⟩ n + + 0 ≡⟨ +-identityʳ n ⟩ n ∎ where open POR ≤-poset n≤1+n : ∀ n → n ≤ (+ 1) + n n≤1+n n = ≤-step ≤-refl ≤-irrelevant : Irrelevant _≤_ ≤-irrelevant -≤+ -≤+ = refl ≤-irrelevant (-≤- n≤m₁) (-≤- n≤m₂) = cong -≤- (ℕₚ.≤-irrelevant n≤m₁ n≤m₂) ≤-irrelevant (+≤+ n≤m₁) (+≤+ n≤m₂) = cong +≤+ (ℕₚ.≤-irrelevant n≤m₁ n≤m₂) ------------------------------------------------------------------------ -- Properties _<_ -<+ : ∀ {m n} → -[1+ m ] < + n -<+ {0} = +≤+ z≤n -<+ {suc _} = -≤+ <-irrefl : Irreflexive _≡_ _<_ <-irrefl { + n} refl (+≤+ 1+n≤n) = ℕₚ.<-irrefl refl 1+n≤n <-irrefl { -[1+ zero ]} refl () <-irrefl { -[1+ suc n ]} refl (-≤- 1+n≤n) = ℕₚ.<-irrefl refl 1+n≤n >-irrefl : Irreflexive _≡_ _>_ >-irrefl = <-irrefl ∘ sym <-asym : Asymmetric _<_ <-asym {+ n} {+ m} (+≤+ n<m) (+≤+ m<n) = ℕₚ.<-asym n<m m<n <-asym {+ n} { -[1+ m ]} () _ <-asym { -[1+ n ]} {+_ n₁} _ () <-asym { -[1+ 0 ]} { -[1+_] _} () _ <-asym { -[1+ _ ]} { -[1+_] 0} _ () <-asym { -[1+ suc n ]} { -[1+ suc m ]} (-≤- n<m) (-≤- m<n) = ℕₚ.<-asym n<m m<n ≤-<-trans : Trans _≤_ _<_ _<_ ≤-<-trans { -[1+ m ]} {+ n} {+ p} -≤+ (+≤+ 1+n≤p) = -<+ {m} {p} ≤-<-trans {+ m} {+ n} {+ p} (+≤+ m≤n) (+≤+ 1+n≤p) = +≤+ (ℕₚ.≤-trans (ℕ.s≤s m≤n) 1+n≤p) ≤-<-trans { -[1+ m ]} { -[1+ n ]} (-≤- n≤m) n<p = ≤-trans (⊖-monoʳ-≥-≤ 0 n≤m) n<p <-≤-trans : Trans _<_ _≤_ _<_ <-≤-trans = ≤-trans <⇒≤ : ∀ {m n} → m < n → m ≤ n <⇒≤ m<n = ≤-trans (n≤1+n _) m<n <-trans : Transitive _<_ <-trans {m} {n} {p} m<n n<p = ≤-<-trans {m} {n} {p} (<⇒≤ m<n) n<p <-cmp : Trichotomous _≡_ _<_ <-cmp (+ m) (+ n) with ℕₚ.<-cmp m n ... | tri< m<n m≢n m≯n = tri< (+≤+ m<n) (m≢n ∘ +-injective) (m≯n ∘ drop‿+≤+) ... | tri≈ m≮n m≡n m≯n = tri≈ (m≮n ∘ drop‿+≤+) (cong (+_) m≡n) (m≯n ∘ drop‿+≤+) ... | tri> m≮n m≢n m>n = tri> (m≮n ∘ drop‿+≤+) (m≢n ∘ +-injective) (+≤+ m>n) <-cmp (+_ m) -[1+ 0 ] = tri> (λ()) (λ()) (+≤+ z≤n) <-cmp (+_ m) -[1+ suc n ] = tri> (λ()) (λ()) -≤+ <-cmp -[1+ 0 ] (+ n) = tri< (+≤+ z≤n) (λ()) (λ()) <-cmp -[1+ suc m ] (+ n) = tri< -≤+ (λ()) (λ()) <-cmp -[1+ 0 ] -[1+ 0 ] = tri≈ (λ()) refl (λ()) <-cmp -[1+ 0 ] -[1+ suc n ] = tri> (λ()) (λ()) (-≤- z≤n) <-cmp -[1+ suc m ] -[1+ 0 ] = tri< (-≤- z≤n) (λ()) (λ()) <-cmp -[1+ suc m ] -[1+ suc n ] with ℕₚ.<-cmp (suc m) (suc n) ... | tri< m<n m≢n m≯n = tri> (m≯n ∘ s≤s ∘ drop‿-≤-) (m≢n ∘ -[1+-injective) (-≤- (ℕₚ.≤-pred m<n)) ... | tri≈ m≮n m≡n m≯n = tri≈ (m≯n ∘ ℕ.s≤s ∘ drop‿-≤-) (cong -[1+_] m≡n) (m≮n ∘ ℕ.s≤s ∘ drop‿-≤-) ... | tri> m≮n m≢n m>n = tri< (-≤- (ℕₚ.≤-pred m>n)) (m≢n ∘ -[1+-injective) (m≮n ∘ s≤s ∘ drop‿-≤-) <-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_ <-isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = <-irrefl ; trans = λ {i} → <-trans {i} ; <-resp-≈ = (λ {x} → subst (x <_)) , subst (_< _) } <-strictPartialOrder : StrictPartialOrder _ _ _ <-strictPartialOrder = record { isStrictPartialOrder = <-isStrictPartialOrder } <-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_ <-isStrictTotalOrder = record { isEquivalence = isEquivalence ; trans = λ {i} → <-trans {i} ; compare = <-cmp } <-strictTotalOrder : StrictTotalOrder _ _ _ <-strictTotalOrder = record { isStrictTotalOrder = <-isStrictTotalOrder } -- Other properties of _<_ n≮n : ∀ {n} → n ≮ n n≮n {+ n} (+≤+ n<n) = contradiction n<n ℕₚ.1+n≰n n≮n { -[1+ 0 ]} () n≮n { -[1+ suc n ]} (-≤- n<n) = contradiction n<n ℕₚ.1+n≰n >⇒≰ : ∀ {x y} → x > y → x ≰ y >⇒≰ {y = y} x>y x≤y = contradiction (<-≤-trans {i = y} x>y x≤y) n≮n ≰⇒> : ∀ {x y} → x ≰ y → x > y ≰⇒> {+ m} {+ n} m≰n = +≤+ (ℕₚ.≰⇒> (m≰n ∘ +≤+)) ≰⇒> {+ m} { -[1+ n ]} _ = -<+ {n} {m} ≰⇒> { -[1+ m ]} {+ _} m≰n = contradiction -≤+ m≰n ≰⇒> { -[1+ 0 ]} { -[1+ 0 ]} m≰n = contradiction ≤-refl m≰n ≰⇒> { -[1+ suc _ ]} { -[1+ 0 ]} m≰n = contradiction (-≤- z≤n) m≰n ≰⇒> { -[1+ m ]} { -[1+ suc n ]} m≰n with m ℕ.≤? n ... | yes m≤n = -≤- m≤n ... | no m≰n' = contradiction (-≤- (ℕₚ.≰⇒> m≰n')) m≰n <-irrelevant : Irrelevant _<_ <-irrelevant = ≤-irrelevant +-monoˡ-< : ∀ n → (_+ n) Preserves _<_ ⟶ _<_ +-monoˡ-< n {i} {j} i<j rewrite sym (+-assoc (+ 1) i n) = +-monoˡ-≤ n i<j +-monoʳ-< : ∀ n → (_+_ n) Preserves _<_ ⟶ _<_ +-monoʳ-< n {i} {j} i<j rewrite +-comm n i | +-comm n j = +-monoˡ-< n {i} {j} i<j +-mono-< : _+_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ +-mono-< {m} {n} {i} {j} m<n i<j = begin sucℤ (m + i) ≤⟨ suc-mono {m + i} (<⇒≤ (+-monoˡ-< i {m} {n} m<n)) ⟩ sucℤ (n + i) ≤⟨ +-monoʳ-< n i<j ⟩ n + j ∎ where open POR ≤-poset +-mono-≤-< : _+_ Preserves₂ _≤_ ⟶ _<_ ⟶ _<_ +-mono-≤-< {m} {n} {i} {j} m≤n i<j = ≤-<-trans (+-monoˡ-≤ i m≤n) (+-monoʳ-< n i<j) +-mono-<-≤ : _+_ Preserves₂ _<_ ⟶ _≤_ ⟶ _<_ +-mono-<-≤ {m} {n} {i} {j} m<n i≤j = <-≤-trans {m + i} {n + i} {n + j} (+-monoˡ-< i {m} {n} m<n) (+-monoʳ-≤ n i≤j) ------------------------------------------------------------------------ -- Extra properties m≤pred[n]⇒m<n : ∀ {m n} → m ≤ pred n → m < n m≤pred[n]⇒m<n {m} {n} m≤predn = begin sucℤ m ≤⟨ +-monoʳ-≤ (+ 1) m≤predn ⟩ + 1 + pred n ≡⟨ sym (+-assoc (+ 1) -[1+ 0 ] n) ⟩ (+ 1 + -[1+ 0 ]) + n ≡⟨ cong (_+ n) (+-inverseʳ (+ 1)) ⟩ + 0 + n ≡⟨ +-identityˡ n ⟩ n ∎ where open POR ≤-poset m<n⇒m≤pred[n] : ∀ {m n} → m < n → m ≤ pred n m<n⇒m≤pred[n] {m} {n} m<n = begin m ≡⟨ sym (pred-suc m) ⟩ pred (sucℤ m) ≤⟨ pred-mono m<n ⟩ pred n ∎ where open POR ≤-poset neg-mono-<-> : -_ Preserves _<_ ⟶ _>_ neg-mono-<-> {i} {j} i<j = begin + 1 - j ≡⟨ cong (_- j) (neg-involutive (+ 1)) ⟩ - - + 1 - j ≡⟨ sym (neg-distrib-+ (- + 1) j) ⟩ - (- + 1 + j) ≤⟨ neg-mono-≤-≥ (m<n⇒m≤pred[n] i<j) ⟩ - i ∎ where open POR ≤-poset ------------------------------------------------------------------------ -- A specialised module for reasoning about the _≤_ and _<_ relations module ≤-Reasoning where open import Relation.Binary.Reasoning.Base.Triple ≤-isPreorder (λ {i} → <-trans {i}) (resp₂ _<_) <⇒≤ (λ {i} → <-≤-trans {i}) ≤-<-trans public hiding (_≈⟨_⟩_) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 inverseˡ = +-inverseˡ {-# WARNING_ON_USAGE inverseˡ "Warning: inverseˡ was deprecated in v0.15. Please use +-inverseˡ instead." #-} inverseʳ = +-inverseʳ {-# WARNING_ON_USAGE inverseʳ "Warning: inverseʳ was deprecated in v0.15. Please use +-inverseʳ instead." #-} distribʳ = *-distribʳ-+ {-# WARNING_ON_USAGE distribʳ "Warning: distribʳ was deprecated in v0.15. Please use *-distribʳ-+ instead." #-} isCommutativeSemiring = +-*-isCommutativeSemiring {-# WARNING_ON_USAGE isCommutativeSemiring "Warning: isCommutativeSemiring was deprecated in v0.15. Please use +-*-isCommutativeSemiring instead." #-} commutativeRing = +-*-commutativeRing {-# WARNING_ON_USAGE commutativeRing "Warning: commutativeRing was deprecated in v0.15. Please use +-*-commutativeRing instead." #-} *-+-right-mono = *-monoʳ-≤-pos {-# WARNING_ON_USAGE *-+-right-mono "Warning: *-+-right-mono was deprecated in v0.15. Please use *-monoʳ-≤-pos instead." #-} cancel-*-+-right-≤ = *-cancelʳ-≤-pos {-# WARNING_ON_USAGE cancel-*-+-right-≤ "Warning: cancel-*-+-right-≤ was deprecated in v0.15. Please use *-cancelʳ-≤-pos instead." #-} cancel-*-right = *-cancelʳ-≡ {-# WARNING_ON_USAGE cancel-*-right "Warning: cancel-*-right was deprecated in v0.15. Please use *-cancelʳ-≡ instead." #-} doubleNeg = neg-involutive {-# WARNING_ON_USAGE doubleNeg "Warning: doubleNeg was deprecated in v0.15. Please use neg-involutive instead." #-} -‿involutive = neg-involutive {-# WARNING_ON_USAGE -‿involutive "Warning: -‿involutive was deprecated in v0.15. Please use neg-involutive instead." #-} +-⊖-left-cancel = +-cancelˡ-⊖ {-# WARNING_ON_USAGE +-⊖-left-cancel "Warning: +-⊖-left-cancel was deprecated in v0.15. Please use +-cancelˡ-⊖ instead." #-} -- Version 1.0 ≰→> = ≰⇒> {-# WARNING_ON_USAGE ≰→> "Warning: ≰→> was deprecated in v1.0. Please use ≰⇒> instead." #-} ≤-irrelevance = ≤-irrelevant {-# WARNING_ON_USAGE ≤-irrelevance "Warning: ≤-irrelevance was deprecated in v1.0. Please use ≤-irrelevant instead." #-} <-irrelevance = <-irrelevant {-# WARNING_ON_USAGE <-irrelevance "Warning: <-irrelevance was deprecated in v1.0. Please use <-irrelevant instead." #-}
{ "alphanum_fraction": 0.43863104, "avg_line_length": 32.5512820513, "ext": "agda", "hexsha": "b910d836e65564d064b0790e069e97aea3e8a377", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Properties.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 25141, "size": 48241 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LogicalFramework.AdequacyTheorems where module Example5 where -- First-order logic with equality. open import Common.FOL.FOL-Eq public postulate A B C : Set f₁ : A → C f₂ : B → C g : (A → C) → (B → C) → A ∨ B → C g f₁ f₂ (inj₁ a) = f₁ a g f₁ f₂ (inj₂ b) = f₂ b g' : (A → C) → (B → C) → A ∨ B → C g' f₁ f₂ x = case f₁ f₂ x module Example7 where -- First-order logic with equality. open import Common.FOL.FOL-Eq public postulate C : D → D → Set d : ∀ {a} → C a a g : ∀ {a b} → a ≡ b → C a b g refl = d g' : ∀ {a b} → a ≡ b → C a b g' {a} h = subst (C a) h d module Example10 where -- First-order logic with equality. open import Common.FOL.FOL-Eq public postulate A B C : Set f₁ : A → C f₂ : B → C f : A ∨ B → C f (inj₁ a) = f₁ a f (inj₂ b) = f₂ b f' : A ∨ B → C f' = case f₁ f₂ module Example20 where -- First-order logic with equality. open import Common.FOL.FOL-Eq public f : {A : D → Set}{t t' : D} → t ≡ t' → A t → A t' f {A} {t} {.t} refl At = d At where postulate d : A t → A t f' : {A : D → Set}{t t' : D} → t ≡ t' → A t → A t' f' {A} h At = subst A h At module Example30 where -- First-order logic with equality. open import Common.FOL.FOL-Eq public postulate A B C E : Set f₁ : A → E f₂ : B → E f₃ : C → E g : (A ∨ B) ∨ C → E g (inj₁ (inj₁ a)) = f₁ a g (inj₁ (inj₂ b)) = f₂ b g (inj₂ c) = f₃ c g' : (A ∨ B) ∨ C → E g' = case (case f₁ f₂) f₃ module Example40 where infixl 9 _+_ _+'_ infix 7 _≡_ data ℕ : Set where zero : ℕ succ : ℕ → ℕ ℕ-ind : (A : ℕ → Set) → A zero → (∀ n → A n → A (succ n)) → ∀ n → A n ℕ-ind A A0 h zero = A0 ℕ-ind A A0 h (succ n) = h n (ℕ-ind A A0 h n) data _≡_ (x : ℕ) : ℕ → Set where refl : x ≡ x subst : (A : ℕ → Set) → ∀ {x y} → x ≡ y → A x → A y subst A refl Ax = Ax _+_ : ℕ → ℕ → ℕ zero + n = n succ m + n = succ (m + n) _+'_ : ℕ → ℕ → ℕ m +' n = ℕ-ind (λ _ → ℕ) n (λ x y → succ y) m -- Properties using pattern matching. succCong : ∀ {m n} → m ≡ n → succ m ≡ succ n succCong refl = refl +-rightIdentity : ∀ n → n + zero ≡ n +-rightIdentity zero = refl +-rightIdentity (succ n) = succCong (+-rightIdentity n) -- Properties using the basic inductive constants. succCong' : ∀ {m n} → m ≡ n → succ m ≡ succ n succCong' {m} h = subst (λ x → succ m ≡ succ x) h refl +'-leftIdentity : ∀ n → zero +' n ≡ n +'-leftIdentity n = refl +'-rightIdentity : ∀ n → n +' zero ≡ n +'-rightIdentity = ℕ-ind A A0 is where A : ℕ → Set A n = n +' zero ≡ n A0 : A zero A0 = refl is : ∀ n → A n → A (succ n) is n ih = succCong' ih module Example50 where infixl 10 _*_ infixl 9 _+_ infix 7 _≡_ data ℕ : Set where zero : ℕ succ : ℕ → ℕ ℕ-ind : (A : ℕ → Set) → A zero → (∀ n → A n → A (succ n)) → ∀ n → A n ℕ-ind A A0 h zero = A0 ℕ-ind A A0 h (succ n) = h n (ℕ-ind A A0 h n) data _≡_ (x : ℕ) : ℕ → Set where refl : x ≡ x ℕ-rec : {A : Set} → A → (ℕ → A → A) → ℕ → A ℕ-rec {A} = ℕ-ind (λ _ → A) _+_ : ℕ → ℕ → ℕ m + n = ℕ-rec n (λ _ x → succ x) m +-0x : ∀ n → zero + n ≡ n +-0x n = refl +-Sx : ∀ m n → succ m + n ≡ succ (m + n) +-Sx m n = refl _*_ : ℕ → ℕ → ℕ m * n = ℕ-rec zero (λ _ x → n + x) m *-0x : ∀ n → zero * n ≡ zero *-0x n = refl *-Sx : ∀ m n → succ m * n ≡ n + m * n *-Sx m n = refl
{ "alphanum_fraction": 0.4860426929, "avg_line_length": 20.4134078212, "ext": "agda", "hexsha": "97a4aac62bdeba15ab685a91c1610590ab2f370c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/LogicalFramework/AdequacyTheorems.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/LogicalFramework/AdequacyTheorems.agda", "max_line_length": 71, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/LogicalFramework/AdequacyTheorems.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1543, "size": 3654 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of right-scaling ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary -- The properties are parameterised by the two carriers and -- the result equality. module Algebra.Module.Definitions.Right {a b ℓb} (A : Set a) {B : Set b} (_≈_ : Rel B ℓb) where open import Data.Product open import Data.Sum ------------------------------------------------------------------------ -- Binary operations open import Algebra.Core ------------------------------------------------------------------------ -- Properties of operations RightIdentity : A → Opᵣ A B → Set _ RightIdentity a _∙ᴮ_ = ∀ m → (m ∙ᴮ a) ≈ m Associative : Op₂ A → Opᵣ A B → Set _ Associative _∙ᴬ_ _∙ᴮ_ = ∀ m x y → ((m ∙ᴮ x) ∙ᴮ y) ≈ (m ∙ᴮ (x ∙ᴬ y)) _DistributesOverˡ_⟶_ : Opᵣ A B → Op₂ A → Op₂ B → Set _ _*_ DistributesOverˡ _+ᴬ_ ⟶ _+ᴮ_ = ∀ m x y → (m * (x +ᴬ y)) ≈ ((m * x) +ᴮ (m * y)) _DistributesOverʳ_ : Opᵣ A B → Op₂ B → Set _ _*_ DistributesOverʳ _+_ = ∀ x m n → ((m + n) * x) ≈ ((m * x) + (n * x)) LeftZero : B → Opᵣ A B → Set _ LeftZero z _∙_ = ∀ x → (z ∙ x) ≈ z RightZero : A → B → Opᵣ A B → Set _ RightZero zᴬ zᴮ _∙_ = ∀ x → (x ∙ zᴬ) ≈ zᴮ Commutative : Opᵣ A B → Set _ Commutative _∙_ = ∀ m x y → ((m ∙ x) ∙ y) ≈ ((m ∙ y) ∙ x) LeftCongruent : ∀ {ℓa} → Rel A ℓa → Opᵣ A B → Set _ LeftCongruent ≈ᴬ _∙_ = ∀ {m} → (m ∙_) Preserves ≈ᴬ ⟶ _≈_ RightCongruent : Opᵣ A B → Set _ RightCongruent _∙_ = ∀ {x} → (_∙ x) Preserves _≈_ ⟶ _≈_ Congruent : ∀ {ℓa} → Rel A ℓa → Opᵣ A B → Set _ Congruent ≈ᴬ ∙ = ∙ Preserves₂ _≈_ ⟶ ≈ᴬ ⟶ _≈_
{ "alphanum_fraction": 0.4850615114, "avg_line_length": 28.45, "ext": "agda", "hexsha": "1612c47c4cafde51261088a74b465c16eca1392a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Module/Definitions/Right.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Module/Definitions/Right.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Module/Definitions/Right.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 674, "size": 1707 }
module Lec1Done where -- the -- mark introduces a "comment to end of line" ------------------------------------------------------------------------------ -- some basic "logical" types ------------------------------------------------------------------------------ data Zero : Set where -- to give a value in a data, choose one constructor -- there are no constructors -- so that's impossible record One : Set where -- to give a value in a record type, fill all its fields -- there are no fields -- so that's trivial -- (can we have a constructor, for convenience?) constructor <> {-# COMPILE GHC One = data () (()) #-} data _+_ (S : Set)(T : Set) : Set where -- "where" wants an indented block -- to offer a choice of constructors, list them with their types inl : S -> S + T -- constructors can pack up stuff inr : T -> S + T -- in Haskell, this was called "Either S T" {- record _*_ (S : Set)(T : Set) : Set where field -- introduces a bunch of fields, listed with their types fst : S snd : T -- in Haskell, this was called "(S, T)" -} -- _*_ IS GENERALIZED BY SIGMA record Sg (S : Set)(T : S -> Set) : Set where -- Sg is short for "Sigma" constructor _,_ field -- introduces a bunch of fields, listed with their types fst : S snd : T fst open Sg public -- brings fst and snd into scope hereafter unto all inheritors -- make _*_ from Sg ? _*_ : Set -> Set -> Set S * T = Sg S \ _ -> T infixr 4 _*_ _,_ ------------------------------------------------------------------------------ -- some simple proofs ------------------------------------------------------------------------------ comm-* : {A : Set}{B : Set} -> A * B -> B * A comm-* record { fst = a ; snd = b } = record { fst = b ; snd = a } assocLR-+ : {A B C : Set} -> (A + B) + C -> A + (B + C) assocLR-+ (inl (inl a)) = inl a assocLR-+ (inl (inr b)) = inr (inl b) assocLR-+ (inr c) = inr (inr c) _$*_ : {A A' B B' : Set} -> (A -> A') -> (B -> B') -> A * B -> A' * B' (f $* g) record { fst = a ; snd = b } = record { fst = f a ; snd = g b } -- record syntax is rather ugly for small stuff; can we have constructors? _$+_ : {A A' B B' : Set} -> (A -> A') -> (B -> B') -> A + B -> A' + B' (f $+ g) (inl a) = inl (f a) (f $+ g) (inr b) = inr (g b) combinatorK : {A E : Set} -> A -> E -> A combinatorK = \ a _ -> a combinatorS : {S T E : Set} -> (E -> S -> T) -> (E -> S) -> E -> T combinatorS = \ f s e -> (f e) (s e) id : {X : Set} -> X -> X -- id x = x -- is the easy way; let's do it a funny way to make a point id = combinatorS combinatorK (combinatorK {_} {Zero}) -- no choice for -^ ^^^^- could be anything naughtE : {X : Set} -> Zero -> X naughtE () -- standard composition: f << g is "f after g" _<<_ : {X Y Z : Set} -> (Y -> Z) -> (X -> Y) -> (X -> Z) (f << g) x = f (g x) -- diagrammatic composition: f >> g is "f then g" _>>_ : {X Y Z : Set} -> (X -> Y) -> (Y -> Z) -> (X -> Z) -- ^^^^^^^^ dominoes! (f >> g) x = g (f x) -- infix application _$_ : {S : Set}{T : S -> Set}(f : (x : S) -> T x)(s : S) -> T s f $ s = f s infixl 2 _$_ ------------------------------------------------------------------------------ -- from logic to data ------------------------------------------------------------------------------ data Nat : Set where zero : Nat suc : Nat -> Nat -- recursive data type {-# BUILTIN NATURAL Nat #-} -- ^^^^^^^^^^^^^^^^^^^ this pragma lets us use decimal notation _+N_ : Nat -> Nat -> Nat zero +N y = y suc x +N y = suc (x +N y) -- there are other choices four : Nat four = 2 +N 2 ------------------------------------------------------------------------------ -- and back to logic ------------------------------------------------------------------------------ data _==_ {X : Set} : X -> X -> Set where refl : (x : X) -> x == x -- the relation that's "only reflexive" {-# BUILTIN EQUALITY _==_ #-} -- we'll see what that's for, later _=$=_ : {X Y : Set}{f f' : X -> Y}{x x' : X} -> f == f' -> x == x' -> f x == f' x' refl f =$= refl x = refl (f x) infixl 2 _=$=_ zero-+N : (n : Nat) -> (zero +N n) == n zero-+N n = refl n +N-zero : (n : Nat) -> (n +N zero) == n +N-zero zero = refl zero +N-zero (suc n) = refl suc =$= +N-zero n assocLR-+N : (x y z : Nat) -> ((x +N y) +N z) == (x +N (y +N z)) assocLR-+N zero y z = refl (y +N z) assocLR-+N (suc x) y z = refl suc =$= assocLR-+N x y z ------------------------------------------------------------------------------ -- computing types ------------------------------------------------------------------------------ _>=_ : Nat -> Nat -> Set x >= zero = One zero >= suc y = Zero suc x >= suc y = x >= y refl->= : (n : Nat) -> n >= n refl->= zero = record {} refl->= (suc n) = refl->= n trans->= : (x y z : Nat) -> x >= y -> y >= z -> x >= z trans->= x y zero x>=y y>=z = record {} trans->= x zero (suc z) x>=y () trans->= zero (suc y) (suc z) () y>=z trans->= (suc x) (suc y) (suc z) x>=y y>=z = trans->= x y z x>=y y>=z ------------------------------------------------------------------------------ -- construction by proof ------------------------------------------------------------------------------ {- -- MOVED UP TO REPLACE _*_ record Sg (S : Set)(T : S -> Set) : Set where -- Sg is short for "Sigma" constructor _,_ field -- introduces a bunch of fields, listed with their types fst : S snd : T fst -- make _*_ from Sg ? _*_ : Set -> Set -> Set S * T = Sg S \ _ -> T -} difference : (m n : Nat) -> m >= n -> Sg Nat \ d -> m == (n +N d) -- ( ) difference m zero m>=n = m , refl m difference zero (suc n) () difference (suc m) (suc n) m>=n with difference m n m>=n difference (suc m) (suc n) m>=n | d , q = d , (refl suc =$= q) tryMe = difference 42 37 _ -- don'tTryMe = difference 37 42 {!!} ------------------------------------------------------------------------------ -- things to remember to say ------------------------------------------------------------------------------ -- why the single colon? -- what's with all the spaces? -- what's with identifiers mixing letters and symbols? -- what's with all the braces? -- what is Set? -- are there any lowercase/uppercase conventions? -- what's with all the underscores? -- (i) placeholders in mixfix operators -- (ii) don't care (on the left) -- (iii) go figure (on the right) -- why use arithmetic operators for types? -- what's the difference between = and == ? -- can't we leave out cases? -- can't we loop? -- the function type is both implication and universal quantification, -- but why is it called Pi? -- why is Sigma called Sigma? -- B or nor B?
{ "alphanum_fraction": 0.4416593374, "avg_line_length": 29.6608695652, "ext": "agda", "hexsha": "4a272dbc778cc9e3c653f61a65c2f5d23205e02b", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec1Done.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec1Done.agda", "max_line_length": 78, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec1Done.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 2016, "size": 6822 }
open import Level hiding ( suc ; zero ) open import Algebra module sym3 where open import Symmetric open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import FLutil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin open import Data.Fin.Permutation hiding (_∘ₚ_) infixr 200 _∘ₚ_ _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ sym3solvable : solvable (Symmetric 3) solvable.dervied-length sym3solvable = 2 solvable.end sym3solvable x d = solved1 x d where open import Data.List using ( List ; [] ; _∷_ ) open Solvable (Symmetric 3) p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid p0id = pleq _ _ refl p0 = FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) p1 = FL→perm ((# 0) :: ((# 1) :: ((# 0 ) :: f0))) p2 = FL→perm ((# 1) :: ((# 0) :: ((# 0 ) :: f0))) p3 = FL→perm ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) p4 = FL→perm ((# 2) :: ((# 0) :: ((# 0 ) :: f0))) p5 = FL→perm ((# 2) :: ((# 1) :: ((# 0 ) :: f0))) t0 = plist p0 ∷ plist p1 ∷ plist p2 ∷ plist p3 ∷ plist p4 ∷ plist p5 ∷ [] t1 = plist [ p0 , p0 ] ∷ plist [ p1 , p0 ] ∷ plist [ p2 , p0 ] ∷ plist [ p3 , p0 ] ∷ plist [ p4 , p0 ] ∷ plist [ p5 , p1 ] ∷ plist [ p0 , p1 ] ∷ plist [ p1 , p1 ] ∷ plist [ p2 , p1 ] ∷ plist [ p3 , p1 ] ∷ plist [ p4 , p1 ] ∷ plist [ p5 , p1 ] ∷ plist [ p0 , p2 ] ∷ plist [ p1 , p2 ] ∷ plist [ p2 , p2 ] ∷ plist [ p3 , p2 ] ∷ plist [ p4 , p2 ] ∷ plist [ p5 , p2 ] ∷ plist [ p0 , p3 ] ∷ plist [ p1 , p3 ] ∷ plist [ p3 , p3 ] ∷ plist [ p3 , p3 ] ∷ plist [ p4 , p3 ] ∷ plist [ p5 , p3 ] ∷ plist [ p0 , p4 ] ∷ plist [ p1 , p4 ] ∷ plist [ p3 , p4 ] ∷ plist [ p3 , p4 ] ∷ plist [ p4 , p4 ] ∷ plist [ p5 , p4 ] ∷ plist [ p0 , p5 ] ∷ plist [ p1 , p5 ] ∷ plist [ p3 , p5 ] ∷ plist [ p3 , p5 ] ∷ plist [ p4 , p4 ] ∷ plist [ p5 , p5 ] ∷ [] open _=p=_ stage1 : (x : Permutation 3 3) → Set (Level.suc Level.zero) stage1 x = Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x open import logic p33=4 : ( p3 ∘ₚ p3 ) =p= p4 p33=4 = pleq _ _ refl p44=3 : ( p4 ∘ₚ p4 ) =p= p3 p44=3 = pleq _ _ refl p34=0 : ( p3 ∘ₚ p4 ) =p= pid p34=0 = pleq _ _ refl p43=0 : ( p4 ∘ₚ p3 ) =p= pid p43=0 = pleq _ _ refl com33 : [ p3 , p3 ] =p= pid com33 = pleq _ _ refl com44 : [ p4 , p4 ] =p= pid com44 = pleq _ _ refl com34 : [ p3 , p4 ] =p= pid com34 = pleq _ _ refl com43 : [ p4 , p3 ] =p= pid com43 = pleq _ _ refl pFL : ( g : Permutation 3 3) → { x : FL 3 } → perm→FL g ≡ x → g =p= FL→perm x pFL g {x} refl = ptrans (psym (FL←iso g)) ( FL-inject refl ) open ≡-Reasoning -- st01 : ( x y : Permutation 3 3) → x =p= p3 → y =p= p3 → x ∘ₚ y =p= p4 -- st01 x y s t = record { peq = λ q → ( begin -- (x ∘ₚ y) ⟨$⟩ʳ q -- ≡⟨ peq ( presp s t ) q ⟩ -- ( p3 ∘ₚ p3 ) ⟨$⟩ʳ q -- ≡⟨ peq p33=4 q ⟩ -- p4 ⟨$⟩ʳ q -- ∎ ) } st00 = perm→FL [ FL→perm ((suc zero) :: (suc zero :: (zero :: f0 ))) , FL→perm ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) ] st02 : ( g h : Permutation 3 3) → ([ g , h ] =p= pid) ∨ ([ g , h ] =p= p3) ∨ ([ g , h ] =p= p4) st02 g h with perm→FL g | perm→FL h | inspect perm→FL g | inspect perm→FL h ... | (zero :: (zero :: (zero :: f0))) | t | record { eq = ge } | te = case1 (ptrans (comm-resp {g} {h} {pid} (FL-inject ge ) prefl ) (idcomtl h) ) ... | s | (zero :: (zero :: (zero :: f0))) | se | record { eq = he } = case1 (ptrans (comm-resp {g} {h} {_} {pid} prefl (FL-inject he ))(idcomtr g) ) ... | (zero :: (suc zero) :: (zero :: f0 )) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc zero) :: (zero :: (zero :: f0 )) | (suc zero) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc zero) :: (suc zero :: (zero :: f0 )) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | (suc (suc zero)) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (zero :: (suc zero) :: (zero :: f0 )) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (zero :: (suc zero) :: (zero :: f0 )) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (zero :: (suc zero) :: (zero :: f0 )) | (suc (suc zero)) :: (zero :: (zero :: f0 ))| record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (zero :: (suc zero) :: (zero :: f0 )) | ((suc (suc zero)) :: (suc zero) :: (zero :: f0))| record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | ((suc (suc zero)) :: (zero :: (zero :: f0 )))| record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc zero) :: (suc zero :: (zero :: f0 )) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc zero) :: (suc zero :: (zero :: f0 )) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc zero) :: (suc zero :: (zero :: f0 )) | ((suc (suc zero)) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc zero) :: (suc zero :: (zero :: f0 )) | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((zero :: (suc zero) :: (zero :: f0 )) ) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((suc zero) :: (suc zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | ((zero :: (suc zero) :: (zero :: f0 )) ) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | ((suc zero) :: (suc zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | (suc (suc zero)) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) stage12 x (comm {g} {h} x1 y1 ) = st02 g h stage12 _ (ccong {y} x=y sx) with stage12 y sx ... | case1 id = case1 ( ptrans (psym x=y ) id ) ... | case2 (case1 x₁) = case2 (case1 ( ptrans (psym x=y ) x₁ )) ... | case2 (case2 x₁) = case2 (case2 ( ptrans (psym x=y ) x₁ )) solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid solved1 x (ccong {f} {g} (record {peq = f=g}) d) with solved1 f d ... | record { peq = f=e } = record { peq = λ q → cc q } where cc : ( q : Fin 3 ) → x ⟨$⟩ʳ q ≡ q cc q = begin x ⟨$⟩ʳ q ≡⟨ sym (f=g q) ⟩ f ⟨$⟩ʳ q ≡⟨ f=e q ⟩ q ∎ solved1 _ (comm {g} {h} x y) with stage12 g x | stage12 h y ... | case1 t | case1 s = ptrans (comm-resp t s) (comm-refl {pid} prefl) ... | case1 t | case2 s = ptrans (comm-resp {g} {h} {pid} t prefl) (idcomtl h) ... | case2 t | case1 s = ptrans (comm-resp {g} {h} {_} {pid} prefl s) (idcomtr g) ... | case2 (case1 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com33 q) } ... | case2 (case2 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com44 q) } ... | case2 (case1 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com34 q) } ... | case2 (case2 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com43 q) }
{ "alphanum_fraction": 0.4808811677, "avg_line_length": 60.0376344086, "ext": "agda", "hexsha": "6b7b4e205f56306bde378151d13a6f87b1effd22", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/Galois", "max_forks_repo_path": "src/sym3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/Galois", "max_issues_repo_path": "src/sym3.agda", "max_line_length": 153, "max_stars_count": 1, "max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/Galois", "max_stars_repo_path": "src/sym3.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z", "num_tokens": 4591, "size": 11167 }
{-# OPTIONS --allow-unsolved-metas #-} -- FIXME open import Everything module Test.Test2 where failed-test test-functor-transextensionality test-the-test : ∀ {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} {_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁} {ℓ₁} {_∼̇₁_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁} {ε₁ : Reflexivity.type _∼₁_} {_↦₁_ : Transitivity.type _∼₁_} {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} {_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂} {ℓ₂} {_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂} {ε₂ : Reflexivity.type _∼₂_} {_↦₂_ : Transitivity.type _∼₂_} {surjection : Surjection.type 𝔒₁ 𝔒₂} {smap : Smap.type _∼₁_ _∼₂_ surjection surjection} ⦃ I : IsFunctor _∼₁_ _∼̇₁_ ε₁ _↦₁_ _∼₂_ _∼̇₂_ ε₂ _↦₂_ smap ⦄ ⦃ J : IsFunctor _∼₁_ _∼̇₁_ ε₁ _↦₁_ _∼₂_ _∼̇₂_ ε₂ _↦₂_ smap ⦄ → Transextensionality.type _∼₁_ _∼̇₁_ _↦₁_ failed-test = transextensionality test-functor-transextensionality {_∼₁_ = _∼₁_} {_∼̇₁_ = _∼̇₁_} {_↦₁_ = _↦₁_} {{I}} = transextensionality {_∼_ = λ z z₁ → z ∼₁ z₁} {_∼̇_ = λ {x} {y} → _∼̇₁_ {x} {y}} {transitivity = λ {x y z} → _↦₁_ {x} {y} {z}} {{I .IsFunctor.`IsCategory₁ .IsCategory.`IsPrecategory .IsPrecategory.`𝓣ransextensionality}} -- FIXME can this be simplified? test-the-test {_∼₁_ = _∼₁_} {_∼̇₁_ = _∼̇₁_} {_↦₁_ = _↦₁_} = test-functor-transextensionality {_∼₁_ = _∼₁_} {_∼̇₁_ = _∼̇₁_} {_↦₁_ = _↦₁_}
{ "alphanum_fraction": 0.5840368381, "avg_line_length": 44.9310344828, "ext": "agda", "hexsha": "665ac68af57621011e9aa91362e2618349c606b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/Test2.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/Test2.agda", "max_line_length": 338, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/Test2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 714, "size": 1303 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Definition of natural numbers and operations on them. -- ---------------------------------------------------------------------- module Basics.Nat where open import Basics.Bool -- Nat represents natural numbers (starting with 0) data Nat : Set where zero : Nat suc : Nat → Nat -- We define a constant 1 as it will be useful later on one : Nat one = suc zero -- Addition _+_ : Nat → Nat → Nat zero + m = m suc n + m = suc (n + m) infixl 6 _+_ -- Comparisons needed in our code _<_ : Nat → Nat → Bool n < zero = false zero < suc n = true suc n < suc m = n < m _≥_ : Nat → Nat → Bool m ≥ zero = true zero ≥ suc n = false suc m ≥ suc n = m ≥ n infixl 4 _<_ _≥_
{ "alphanum_fraction": 0.4612644702, "avg_line_length": 26.7380952381, "ext": "agda", "hexsha": "271fdbf0fe30a1fac74c048a355a223725111fa1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/Basics/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/Basics/Nat.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/Basics/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 272, "size": 1123 }
open import Common.Reflect open import Common.Prelude open import Common.Equality data Maybe A : Set where nothing : Maybe A just : A → Maybe A _<$>_ : ∀ {A B} → (A → B) → Maybe A → Maybe B f <$> just x = just (f x) f <$> nothing = nothing _==_ = primQNameEquality -- This is awkward! awkwardUnquoteNat : Term → Maybe Nat awkwardUnquoteNat (con z []) = if z == quote Nat.zero then just 0 else nothing awkwardUnquoteNat (con s (arg _ n ∷ [])) = if s == quote Nat.suc then suc <$> awkwardUnquoteNat n else nothing awkwardUnquoteNat v = nothing testAwkward : just 10 ≡ awkwardUnquoteNat (quoteTerm 10) testAwkward = refl -- This is nicer! pattern `zero = con (quote Nat.zero) [] pattern `suc n = con (quote Nat.suc) (arg _ n ∷ []) unquoteNat : Term → Maybe Nat unquoteNat `zero = just zero unquoteNat (`suc n) = suc <$> unquoteNat n unquoteNat _ = nothing test : just 10 ≡ unquoteNat (quoteTerm 10) test = refl
{ "alphanum_fraction": 0.6677248677, "avg_line_length": 22.5, "ext": "agda", "hexsha": "e7f8d09b769c3c0eec083d51f5c4b43239fe4cfd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/succeed/Issue619.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/succeed/Issue619.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue619.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 308, "size": 945 }
module Testing where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} plus : Nat -> Nat -> Nat plus zero n = n plus (suc m) n = suc (plus m n) times : Nat -> Nat -> Nat times zero n = zero times (suc m) n = plus n (times m n) data List (A : Set) : Nat -> Set where nil : List A 0 cons : {n : Nat} -> A -> List A n -> List A (suc n) f : Nat -> (b : Nat) -> (a : Nat) -> Nat f x = plus -- Push argument doesn't work with implicit -- Toggle implicit generates code that the tool can't handle -- also, want to include {something = x} in language map : {n : Nat} -> {A : Set} -> {B : Set} -> {renameMe0 : A -> B} -> List A n -> List B n map {renameMe0 = f} nil = nil map {renameMe0 = f} (cons x xs) = cons (f x) (map {_} {_} {_} {f} xs) map2 : {n : Nat} -> {A : Set} -> {B : Set} -> (A -> B) -> List A n -> List B n map2 f nil = nil map2 f (cons x xs) = cons (f x) (map2 f xs) {- data Eq {A : Set} (x : A) : A -> Set where refl : Eq x x subst : {A : Set} -> (P : A -> Set) -> {x : A} -> {y : A} -> Eq x y -> P x -> P y subst P refl px = px data Foo : Set where foo : Foo bar : Foo -- Refactoring to introduce these! {-# FOREIGN GHC data Foo = Foo | Bar #-} {-# COMPILE GHC Foo = data Foo (Foo | Bar) #-} -}
{ "alphanum_fraction": 0.53359375, "avg_line_length": 24.1509433962, "ext": "agda", "hexsha": "666f35fcff9d7dc955725ea9da8a28f7185e6e02", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/ManualTestFiles/Testing.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/ManualTestFiles/Testing.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/ManualTestFiles/Testing.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 455, "size": 1280 }
-- Andreas, 2020-03-26, issue #4481, reported by gallais -- #952 unintentionally added named lambdas, but without updating the type-checker. -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.term.expr.top:15 #-} -- {-# OPTIONS -v tc.term.lambda:30 #-} open import Agda.Primitive -- In Agda 2.6.0 and 2.6.1, this is a fake inconsistency proof: data ⊥ : Set where record ⊤ : Set where proj2 : ∀ a {A B : Set a} → Set a proj2 = λ _ {B = B} → B agdaIsInconsistent : proj2 lzero {⊤} {⊥} agdaIsInconsistent = _ -- should be yellow in > 2.6.1 -- The following should complain about unexpected implicit argument: _ : Set → {A B : Set} → Set _ = λ _ {C = B} {A} → A -- should fail
{ "alphanum_fraction": 0.6429608128, "avg_line_length": 26.5, "ext": "agda", "hexsha": "a22382b36f4b738cef44ac6bd34b5b3fda1a4130", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4481.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4481.agda", "max_line_length": 83, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4481.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 231, "size": 689 }
-- Andreas, 2014-03-02, issue and test case by Nisse -- {-# OPTIONS --show-implicit -v tc.meta.assign:25 -v tc.meta.occurs:70 -v tc.meta.kill:30 #-} -- {-# OPTIONS -v tc:10 #-} record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public postulate A : Set D : A → Set data P : ∀ {xP} → D xP → Set where c : ∀ {xc} (dc : D xc) → P dc module M (f : ∀ {x} → D x → Σ A D) (_ : ∀ {xM} (dM : D xM) → P (proj₂ (f dM))) where postulate p : ∀ {x} → D x → A q : ∀ {x} {d : D x} → D (p d) p : ∀ {x} → D x → A p = M.p (λ x → _ , x) c q : ∀ {xq} {dq : D xq} → D (p dq) q = M.q _ c -- WAS: Unsound pruning of metas under projections -- -- Cannot instantiate the metavariable _49 to solution d since it -- contains the variable d which is not in scope of the metavariable -- or irrelevant in the metavariable but relevant in the solution -- when checking that the expression c has type ((d : D .x₁) → P _49) -- NOW: type-checks fine
{ "alphanum_fraction": 0.5710059172, "avg_line_length": 23.5813953488, "ext": "agda", "hexsha": "0700623814fb24550c901aac293c94130f6ceb5a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1070.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1070.agda", "max_line_length": 95, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1070.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 375, "size": 1014 }
{-# OPTIONS --cubical --safe #-} module NormalForm where open import Cubical.Core.Everything using (_≡_; Level; Type; Σ; _,_; fst; snd; _≃_; ~_) open import Cubical.Foundations.Prelude using (refl; sym; _∙_; cong; transport; subst; funExt; transp; i0; i1) open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.Univalence using (ua) open import Cubical.Foundations.Isomorphism using (iso; Iso; isoToPath; section; retract; isoToEquiv) open import Data.Bool using (Bool; false; true; if_then_else_) open import Data.Integer using (ℤ; +_; -[1+_]) open import Data.Fin using (Fin; toℕ; #_; _≟_) renaming (zero to fz; suc to fs) open import Data.List using (List; []; _∷_; foldr; length; map) open import Data.Maybe using (Maybe; just; nothing) renaming (map to mmap) open import Data.Nat using (ℕ; zero; suc; pred; _+_; _*_; _∸_; _≡ᵇ_; _>_; _<ᵇ_) open import Data.Nat.DivMod using (_mod_; _div_) open import Data.Product using (_×_; _,_; proj₁) open import Data.Vec using (Vec; []; _∷_; lookup; replicate; _[_]%=_; toList) renaming (map to vmap) open import Relation.Nullary using (yes; no) open import BitVec using (BitVec; insert; empty; show) open import Util open import Pitch open import Interval _≤[]_ : List ℕ → List ℕ → Bool [] ≤[] ys = true (x ∷ xs) ≤[] [] = false (x ∷ xs) ≤[] (y ∷ ys) = if x ≡ᵇ y then xs ≤[] ys else (if x <ᵇ y then true else false) _≤[opci]_ : List PitchClass → List PitchClass → Bool _≤[opci]_ xs ys = (map (toℕ ∘ unOrderedIntervalClass) (pcIntervals xs)) ≤[] (map (toℕ ∘ unOrderedIntervalClass) (pcIntervals ys)) bestPitchClassList : List PitchClass → List (List PitchClass) → List PitchClass bestPitchClassList xs [] = xs bestPitchClassList [] (ys ∷ yss) = bestPitchClassList ys yss bestPitchClassList xs@(_ ∷ _) (ys ∷ yss) = if xs ≤[opci] ys then bestPitchClassList xs yss else bestPitchClassList ys yss normalForm : PitchClassSet → List PitchClass normalForm pcs = let xs = fromPitchClassSet pcs in bestPitchClassList [] (iter rotateLeft (pred (length xs)) xs) bestNormalForm : PitchClassSet → List PitchClass bestNormalForm pcs = let xs = normalForm pcs ys = normalForm (I pcs) in if xs ≤[opci] ys then xs else ys primeForm : PitchClassSet → List PitchClass primeForm pcs with bestNormalForm pcs ... | [] = [] ... | xs@(pitchClass p ∷ _) = map (Tp (toℕ (opposite p))) xs -- Test --ss = vmap pitchClass (# 4 ∷ # 7 ∷ # 9 ∷ []) ss = vmap pitchClass (# 2 ∷ # 0 ∷ # 5 ∷ # 6 ∷ []) --ss = vmap pitchClass (# 8 ∷ # 9 ∷ # 11 ∷ # 0 ∷ # 4 ∷ []) --ss = vmap pitchClass (# 8 ∷ # 7 ∷ # 4 ∷ # 3 ∷ # 11 ∷ # 0 ∷ []) aa = show (toPitchClassSet (toList ss)) bb = fromPitchClassSet (toPitchClassSet (toList ss)) cc = map (toℕ ∘ unPitchClass) (normalForm (toPitchClassSet (toList ss))) dd = map (toℕ ∘ unPitchClass) (bestNormalForm (toPitchClassSet (toList ss))) ee = map (toℕ ∘ unPitchClass) (primeForm (toPitchClassSet (toList ss))) ff = icVector (primeForm (toPitchClassSet (toList ss))) gg = map (toℕ ∘ unPitchClass) (fromPitchClassSet (T 8 (toPitchClassSet (toList ss))))
{ "alphanum_fraction": 0.6588976378, "avg_line_length": 39.1975308642, "ext": "agda", "hexsha": "959fa7c21159ca17ac8becf3faab388642160c7b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/NormalForm.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/NormalForm.agda", "max_line_length": 114, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/NormalForm.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 1062, "size": 3175 }
open import Data.Bool using ( Bool ) open import Data.String using ( String ) open import Data.Word using ( Byte ) open import Data.Natural using ( Natural ) module Data.ByteString.Primitive where postulate ByteStringLazy : Set ByteStringLazy² : Set emptyLazy : ByteStringLazy consLazy : Byte → ByteStringLazy → ByteStringLazy snocLazy : ByteStringLazy → Byte → ByteStringLazy appendLazy : ByteStringLazy → ByteStringLazy → ByteStringLazy lengthLazy : ByteStringLazy → Natural nullLazy : ByteStringLazy → Bool spanLazy : (Byte → Bool) → ByteStringLazy → ByteStringLazy² breakLazy : (Byte → Bool) → ByteStringLazy → ByteStringLazy² lazy₁ : ByteStringLazy² → ByteStringLazy lazy₂ : ByteStringLazy² → ByteStringLazy {-# IMPORT Data.ByteString.Lazy #-} {-# COMPILED_TYPE ByteStringLazy Data.ByteString.Lazy.ByteString #-} {-# COMPILED_TYPE ByteStringLazy² (Data.ByteString.Lazy.ByteString,Data.ByteString.Lazy.ByteString) #-} {-# COMPILED emptyLazy Data.ByteString.Lazy.empty #-} {-# COMPILED consLazy Data.ByteString.Lazy.cons #-} {-# COMPILED snocLazy Data.ByteString.Lazy.snoc #-} {-# COMPILED appendLazy Data.ByteString.Lazy.append #-} {-# COMPILED lengthLazy fromIntegral . Data.ByteString.Lazy.length #-} {-# COMPILED nullLazy Data.ByteString.Lazy.null #-} {-# COMPILED spanLazy Data.ByteString.Lazy.span #-} {-# COMPILED breakLazy Data.ByteString.Lazy.break #-} {-# COMPILED lazy₁ \ ( x , y ) -> x #-} {-# COMPILED lazy₂ \ ( x , y ) -> y #-} postulate ByteStringStrict : Set ByteStringStrict² : Set emptyStrict : ByteStringStrict consStrict : Byte → ByteStringStrict → ByteStringStrict snocStrict : ByteStringStrict → Byte → ByteStringStrict appendStrict : ByteStringStrict → ByteStringStrict → ByteStringStrict lengthStrict : ByteStringStrict → Natural nullStrict : ByteStringStrict → Bool spanStrict : (Byte → Bool) → ByteStringStrict → ByteStringStrict² breakStrict : (Byte → Bool) → ByteStringStrict → ByteStringStrict² strict₁ : ByteStringStrict² → ByteStringStrict strict₂ : ByteStringStrict² → ByteStringStrict {-# IMPORT Data.ByteString #-} {-# COMPILED_TYPE ByteStringStrict Data.ByteString.ByteString #-} {-# COMPILED_TYPE ByteStringStrict² (Data.ByteString.ByteString,Data.ByteString.ByteString) #-} {-# COMPILED emptyStrict Data.ByteString.empty #-} {-# COMPILED consStrict Data.ByteString.cons #-} {-# COMPILED snocStrict Data.ByteString.snoc #-} {-# COMPILED appendStrict Data.ByteString.append #-} {-# COMPILED lengthStrict fromIntegral . Data.ByteString.length #-} {-# COMPILED nullStrict Data.ByteString.null #-} {-# COMPILED spanStrict Data.ByteString.span #-} {-# COMPILED breakStrict Data.ByteString.break #-} {-# COMPILED strict₁ \ ( x , y ) -> x #-} {-# COMPILED strict₂ \ ( x , y ) -> y #-} postulate mkLazy : ByteStringStrict → ByteStringLazy mkStrict : ByteStringLazy → ByteStringStrict {-# COMPILED mkStrict (Data.ByteString.concat . Data.ByteString.Lazy.toChunks) #-} {-# COMPILED mkLazy (\ bs -> Data.ByteString.Lazy.fromChunks [ bs ]) #-}
{ "alphanum_fraction": 0.7432432432, "avg_line_length": 43.3428571429, "ext": "agda", "hexsha": "e2e5becb6230fc5671e5a754e115b11926cb19cd", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/Data/ByteString/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/Data/ByteString/Primitive.agda", "max_line_length": 103, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/Data/ByteString/Primitive.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 697, "size": 3034 }
open import Data.Empty open import Data.Maybe open import Data.Product open import Data.Sum open import Data.Unit open import AEff open import AwaitingComputations open import EffectAnnotations open import Preservation open import Renamings open import Substitutions open import Types open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Negation module Progress where -- WRAPPING PROMISES AROUND A CONTEXT ⟨⟨_⟩⟩ : Ctx → Ctx ⟨⟨ [] ⟩⟩ = [] ⟨⟨ Γ ∷ X ⟩⟩ = ⟨⟨ Γ ⟩⟩ ∷ ⟨ X ⟩ -- RESULTS data RunResult⟨_∣_⟩ (Γ : Ctx) : {C : CType} → ⟨⟨ Γ ⟩⟩ ⊢M⦂ C → Set where return : {X : VType} {o : O} {i : I} (V : ⟨⟨ Γ ⟩⟩ ⊢V⦂ X) → ------------------------------------------ RunResult⟨ Γ ∣ return {o = o} {i = i} V ⟩ promise : {X Y : VType} {o o' : O} {i i' : I} {op : Σₛ} {p : lkpᵢ op i ≡ just (o' , i')} {M : ⟨⟨ Γ ⟩⟩ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')} {N : ⟨⟨ Γ ⟩⟩ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)} → RunResult⟨ Γ ∷ X ∣ N ⟩ → ---------------------------------------------------- RunResult⟨ Γ ∣ promise op ∣ p ↦ M `in N ⟩ awaiting : {C : CType} {Y : VType} {y : ⟨ Y ⟩ ∈ ⟨⟨ Γ ⟩⟩} {M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ C} → y ⧗ M → --------------------- RunResult⟨ Γ ∣ M ⟩ data CompResult⟨_∣_⟩ (Γ : Ctx) : {C : CType} → ⟨⟨ Γ ⟩⟩ ⊢M⦂ C → Set where comp : {C : CType} {M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ C} → RunResult⟨ Γ ∣ M ⟩ → --------------------- CompResult⟨ Γ ∣ M ⟩ signal : {X : VType} {o : O} {i : I} {op : Σₛ} {p : op ∈ₒ o} {V : ⟨⟨ Γ ⟩⟩ ⊢V⦂ ``(payload op)} {M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ X ! (o , i)} → CompResult⟨ Γ ∣ M ⟩ → -------------------------------- CompResult⟨ Γ ∣ ↑ op p V M ⟩ -- PROGRESS THEOREM FOR PROMISE-OPEN COMPUTATIONS ⇒-not-in-ctx : {Γ : Ctx} {X : VType} {C : CType} → X ⇒ C ∈ ⟨⟨ Γ ⟩⟩ → ⊥ ⇒-not-in-ctx {Γ ∷ y} (Tl x) = ⇒-not-in-ctx x {- THEOREM 3.3 -} progress : {Γ : Ctx} {C : CType} → (M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ C) → ------------------------------- (Σ[ N ∈ ⟨⟨ Γ ⟩⟩ ⊢M⦂ C ] (M ↝ N) ⊎ CompResult⟨ Γ ∣ M ⟩) progress (return V) = inj₂ (comp (return V)) progress (let= M `in N) with progress M ... | inj₁ (M' , r) = inj₁ (_ , context (let= [-] `in N) r) ... | inj₂ (comp (return V)) = inj₁ (_ , let-return V N) ... | inj₂ (comp (promise {_} {_} {_} {_} {_} {_} {_} {p} {M'} {M''} R)) = inj₁ (_ , let-promise p M' M'' N) ... | inj₂ (comp (awaiting R)) = inj₂ (comp (awaiting (let-in R))) ... | inj₂ (signal {_} {_} {_} {_} {p} {V} {M'} R) = inj₁ (_ , let-↑ p V M' N) progress (letrec M `in N) = inj₁ (_ , letrec-unfold M N) progress ((` x) · W) with ⇒-not-in-ctx x ... | () progress (ƛ M · W) = inj₁ (_ , apply M W) progress (↑ op p V M) with progress M ... | inj₁ (M' , r) = inj₁ (_ , context (↑ op p V [-]) r) ... | inj₂ R = inj₂ (signal R) progress (↓ op V M) with progress M ... | inj₁ (M' , r) = inj₁ (_ , context (↓ op V [-]) r) ... | inj₂ (comp (return W)) = inj₁ (_ , (↓-return V W)) ... | inj₂ (comp (awaiting R)) = inj₂ (comp (awaiting (interrupt R))) ... | inj₂ (signal {X} {o} {i} {op'} {p} {W} {M'} R) = inj₁ (_ , (↓-↑ p V W M')) ... | inj₂ (comp (promise {_} {_} {_} {_} {_} {_} {op'} {p} {M'} {M''} R)) with decₛ op op' ... | yes refl = inj₁ (_ , ↓-promise-op p V M' M'') ... | no ¬q = inj₁ (_ , ↓-promise-op' ¬q p V M' M'') progress (promise op ∣ p ↦ M `in N) with progress N ... | inj₁ (M' , r) = inj₁ (_ , context (promise op ∣ p ↦ M `in [-]) r) ... | inj₂ (comp R) = inj₂ (comp (promise R)) ... | inj₂ (signal {_} {_} {_} {_} {q} {V} {M'} R) = inj₁ (_ , promise-↑ p q V M M') progress (await ` x until M) = inj₂ (comp (awaiting await)) progress (await ⟨ V ⟩ until M) = inj₁ (_ , await-promise V M) progress (coerce p q M) with progress M ... | inj₁ (M' , r) = inj₁ (_ , context (coerce p q [-]) r) ... | inj₂ (comp (return V)) = inj₁ (_ , coerce-return V) ... | inj₂ (comp (promise {_} {_} {_} {_} {_} {_} {op'} {r} {M'} {M''} R)) = inj₁ (_ , coerce-promise r M' M'') ... | inj₂ (comp (awaiting R)) = inj₂ (comp (awaiting (coerce R))) ... | inj₂ (signal {_} {_} {_} {_} {r} {V} {M'} R) = inj₁ (_ , coerce-↑ r V M') -- PROGRESS THEOREM FOR CLOSED COMPUTATIONS {- COROLLARY 3.4 -} closed-progress : {C : CType} → (M : [] ⊢M⦂ C) → -------------------------- (Σ[ N ∈ [] ⊢M⦂ C ] (M ↝ N) ⊎ CompResult⟨ [] ∣ M ⟩) closed-progress M = progress M
{ "alphanum_fraction": 0.4265255293, "avg_line_length": 28.3411764706, "ext": "agda", "hexsha": "41f98f7479021c31d240cdeab19eea2472e5687d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danelahman/aeff-agda", "max_forks_repo_path": "Progress.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danelahman/aeff-agda", "max_issues_repo_path": "Progress.agda", "max_line_length": 91, "max_stars_count": 4, "max_stars_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danelahman/aeff-agda", "max_stars_repo_path": "Progress.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T22:48:48.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-17T00:15:00.000Z", "num_tokens": 1828, "size": 4818 }
{-# OPTIONS --without-K --exact-split #-} module categories where import 21-image open 21-image public {- We introduce precategories and categories. -} Precat : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Precat l1 l2 = Σ (UU l1) (λ Obj → Σ (Obj → Obj → hSet l2) (λ Hom → Σ ({X : Obj} → type-Set (Hom X X)) (λ i → Σ ( {X Y Z : Obj} → type-Set (Hom Y Z) → type-Set (Hom X Y) → type-Set (Hom X Z)) ( λ comp → ( {X Y Z W : Obj} (f : type-Set (Hom X Y)) (g : type-Set (Hom Y Z)) (h : type-Set (Hom Z W)) → Id (comp (comp h g) f) (comp h (comp g f))) × ( ( {X Y : Obj} (f : type-Set (Hom X Y)) → Id (comp i f) f) × ( {X Y : Obj} (f : type-Set (Hom X Y)) → Id (comp f i) f)))))) obj-Precat : {l1 l2 : Level} (C : Precat l1 l2) → UU l1 obj-Precat C = pr1 C hom-Precat : {l1 l2 : Level} (C : Precat l1 l2) → obj-Precat C → obj-Precat C → hSet l2 hom-Precat C = pr1 (pr2 C) id-Precat : {l1 l2 : Level} (C : Precat l1 l2) {X : obj-Precat C} → type-Set (hom-Precat C X X) id-Precat C = pr1 (pr2 (pr2 C)) comp-Precat : {l1 l2 : Level} (C : Precat l1 l2) {X Y Z : obj-Precat C} → type-Set (hom-Precat C Y Z) → type-Set (hom-Precat C X Y) → type-Set (hom-Precat C X Z) comp-Precat C = pr1 (pr2 (pr2 (pr2 C))) assoc-Precat : {l1 l2 : Level} (C : Precat l1 l2) {X Y Z W : obj-Precat C} (f : type-Set (hom-Precat C X Y)) → ( g : type-Set (hom-Precat C Y Z)) ( h : type-Set (hom-Precat C Z W)) → Id (comp-Precat C (comp-Precat C h g) f) (comp-Precat C h (comp-Precat C g f)) assoc-Precat C = pr1 (pr2 (pr2 (pr2 (pr2 C)))) left-unit-Precat : {l1 l2 : Level} (C : Precat l1 l2) {X Y : obj-Precat C} (f : type-Set (hom-Precat C X Y)) → Id (comp-Precat C (id-Precat C) f) f left-unit-Precat C = pr1 (pr2 (pr2 (pr2 (pr2 (pr2 C))))) right-unit-Precat : {l1 l2 : Level} (C : Precat l1 l2) {X Y : obj-Precat C} (f : type-Set (hom-Precat C X Y)) → Id (comp-Precat C f (id-Precat C)) f right-unit-Precat C = pr2 (pr2 (pr2 (pr2 (pr2 (pr2 C))))) {- We define the notion of isomorphism in a precategory. -} is-iso-Precat : {l1 l2 : Level} (C : Precat l1 l2) {X Y : obj-Precat C} → (type-Set (hom-Precat C X Y)) → UU l2 is-iso-Precat C {X} {Y} f = Σ ( type-Set (hom-Precat C Y X)) (λ g → Id (comp-Precat C f g) (id-Precat C) × Id (comp-Precat C g f) (id-Precat C)) iso-Precat : {l1 l2 : Level} (C : Precat l1 l2) → obj-Precat C → obj-Precat C → hSet l2 iso-Precat C X Y = {!!}
{ "alphanum_fraction": 0.5519713262, "avg_line_length": 32.1923076923, "ext": "agda", "hexsha": "d2ba27ade137ef617cd2154d69e5649b8270baf8", "lang": "Agda", "max_forks_count": 30, "max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z", "max_forks_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tadejpetric/HoTT-Intro", "max_forks_repo_path": "Agda/categories.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tadejpetric/HoTT-Intro", "max_issues_repo_path": "Agda/categories.agda", "max_line_length": 80, "max_stars_count": 333, "max_stars_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tadejpetric/HoTT-Intro", "max_stars_repo_path": "Agda/categories.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z", "num_tokens": 1090, "size": 2511 }
{-# OPTIONS --allow-unsolved-metas #-} module Formula where module _ where open import VariableName open import PredicateName open import Term data Formula : Set where atomic : PredicateName → Terms → Formula logical : Formula → Formula → Formula quantified : VariableName → Formula → Formula module _ where open import OscarPrelude formulaAtomic-inj₁ : ∀ {𝑃₁ τs₁ 𝑃₂ τs₂} → atomic 𝑃₁ τs₁ ≡ atomic 𝑃₂ τs₂ → 𝑃₁ ≡ 𝑃₂ formulaAtomic-inj₁ refl = refl formulaAtomic-inj₂ : ∀ {𝑃₁ τs₁ 𝑃₂ τs₂} → atomic 𝑃₁ τs₁ ≡ atomic 𝑃₂ τs₂ → τs₁ ≡ τs₂ formulaAtomic-inj₂ refl = refl formulaLogical-inj₁ : ∀ {φ₁₁ φ₁₂ φ₂₁ φ₂₂} → logical φ₁₁ φ₁₂ ≡ logical φ₂₁ φ₂₂ → φ₁₁ ≡ φ₂₁ formulaLogical-inj₁ refl = refl formulaLogical-inj₂ : ∀ {φ₁₁ φ₁₂ φ₂₁ φ₂₂} → logical φ₁₁ φ₁₂ ≡ logical φ₂₁ φ₂₂ → φ₁₂ ≡ φ₂₂ formulaLogical-inj₂ refl = refl formulaQuantified-inj₁ : ∀ {𝑥₁ φ₁ 𝑥₂ φ₂} → quantified 𝑥₁ φ₁ ≡ quantified 𝑥₂ φ₂ → 𝑥₁ ≡ 𝑥₂ formulaQuantified-inj₁ refl = refl formulaQuantified-inj₂ : ∀ {𝑥₁ φ₁ 𝑥₂ φ₂} → quantified 𝑥₁ φ₁ ≡ quantified 𝑥₂ φ₂ → φ₁ ≡ φ₂ formulaQuantified-inj₂ refl = refl instance EqFormula : Eq Formula Eq._==_ EqFormula (atomic 𝑃₁ τs₁) (atomic 𝑃₂ τs₂) = decEq₂ formulaAtomic-inj₁ formulaAtomic-inj₂ (𝑃₁ ≟ 𝑃₂) (τs₁ ≟ τs₂) Eq._==_ EqFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) = decEq₂ formulaLogical-inj₁ formulaLogical-inj₂ (φ₁₁ ≟ φ₂₁) (φ₁₂ ≟ φ₂₂) Eq._==_ EqFormula (quantified 𝑥₁ φ₁) (quantified 𝑥₂ φ₂) = decEq₂ formulaQuantified-inj₁ formulaQuantified-inj₂ (𝑥₁ ≟ 𝑥₂) (φ₁ ≟ φ₂) Eq._==_ EqFormula (atomic _ _) (logical _ _) = no λ () Eq._==_ EqFormula (atomic _ _) (quantified _ _) = no λ () Eq._==_ EqFormula (logical _ _) (atomic _ _) = no λ () Eq._==_ EqFormula (logical _ _) (quantified _ _) = no λ () Eq._==_ EqFormula (quantified _ _) (atomic _ _) = no λ () Eq._==_ EqFormula (quantified _ _) (logical _ _) = no λ () module _ where open import PredicateName open import Term 𝑃[_♭_] : PredicateName → Terms → Formula 𝑃[_♭_] = atomic {-# DISPLAY atomic = 𝑃[_♭_] #-} module _ where open import HasNeitherNor instance HasNeitherNorFormula : HasNeitherNor Formula HasNeitherNor._⊗_ HasNeitherNorFormula = logical {-# DISPLAY logical = _⊗_ #-} module _ where open import HasNeitherNor open import HasNegation instance HasNegationFormula : HasNegation Formula HasNegation.~ HasNegationFormula φ = φ ⊗ φ module _ where open import OscarPrelude open import Term open import HasSatisfaction open import Interpretation open import Vector open import InterpretationEqualityExceptAtVariableName open import Elements open import TruthValue instance HasSatisfactionFormula : HasSatisfaction Formula HasSatisfaction._⊨_ HasSatisfactionFormula I (atomic 𝑃 τs) = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ true ⟩ HasSatisfaction._⊨_ HasSatisfactionFormula I (logical φ₁ φ₂) = ¬ I ⊨ φ₁ × ¬ I ⊨ φ₂ HasSatisfaction._⊨_ HasSatisfactionFormula I (quantified 𝑥 φ) = (𝓘 : Interpretation) → 𝓘 ≞ I / 𝑥 → 𝓘 ⊨ φ instance HasDecidableSatisfactionFormula : HasDecidableSatisfaction Formula HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionFormula I (atomic 𝑃 τs) = {!!} HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionFormula I (logical φ₁ φ₂) = {!!} HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionFormula I (quantified 𝑥 φ) = {!!} instance HasDecidableValidationFormula : HasDecidableValidation Formula HasDecidableValidation.⊨?_ HasDecidableValidationFormula (atomic 𝑃 τs) = {!!} HasDecidableValidation.⊨?_ HasDecidableValidationFormula (logical φ₁ φ₂) = {!!} HasDecidableValidation.⊨?_ HasDecidableValidationFormula (quantified 𝑥 φ) = {!!} module _ where open import OscarPrelude open import Relation.Binary.Core --open import PredicateName open import VariableName open import Arity open import Term open import Vector mutual notationalVariantTerm* : (VariableName → Maybe VariableName) → Term → Term → Set notationalVariantTerm* v (variable 𝑥₁) (variable 𝑥₂) = maybe 𝑥₁ id (v 𝑥₁) ≡ 𝑥₂ notationalVariantTerm* v (function 𝑓₁ τs₁) (function 𝑓₂ τs₂) = 𝑓₁ ≡ 𝑓₂ × notationalVariantTerms* v τs₁ τs₂ notationalVariantTerm* v (variable x) (function x₁ x₂) = ⊥ notationalVariantTerm* v (function x x₁) (variable x₂) = ⊥ notationalVariantTerms* : (VariableName → Maybe VariableName) → Terms → Terms → Set notationalVariantTerms* v (⟨_⟩ {a₁} terms₁) (⟨_⟩ {a₂} terms₂) with a₁ ≟ a₂ notationalVariantTerms* v (⟨_⟩ {⟨ .0 ⟩} ⟨ [] ⟩) (⟨_⟩ {.(⟨ 0 ⟩)} ⟨ [] ⟩) | yes refl = ⊤ notationalVariantTerms* v (⟨_⟩ {⟨ .(suc _) ⟩} ⟨ x ∷ vector₁ ⟩) (⟨_⟩ {.(⟨ suc _ ⟩)} ⟨ x₁ ∷ vector₂ ⟩) | yes refl = notationalVariantTerm* v x x₁ × notationalVariantTerms* v ⟨ ⟨ vector₁ ⟩ ⟩ ⟨ ⟨ vector₂ ⟩ ⟩ … | no neq = ⊥ mutual data Term⟦_/_≈_⟧ (v : VariableName → Maybe VariableName) : Term → Term → Set where variable : ∀ 𝑥₁ 𝑥₂ → maybe 𝑥₁ id (v 𝑥₁) ≡ 𝑥₂ → Term⟦ v / variable 𝑥₁ ≈ variable 𝑥₂ ⟧ function : ∀ 𝑓 τs₁ τs₂ → Terms⟦ v / τs₁ ≈ τs₂ ⟧ → Term⟦ v / function 𝑓 τs₁ ≈ function 𝑓 τs₂ ⟧ data Terms⟦_/_≈_⟧ (v : VariableName → Maybe VariableName) : Terms → Terms → Set where [] : Terms⟦ v / ⟨ ⟨ [] ⟩ ⟩ ≈ ⟨ ⟨ [] ⟩ ⟩ ⟧ _∷_ : ∀ τ₁ τ₂ → Term⟦ v / τ₁ ≈ τ₂ ⟧ → ∀ τs₁ τs₂ → Terms⟦ v / τs₁ ≈ τs₂ ⟧ → Terms⟦ v / ⟨ ⟨ τ₁ ∷ vector (terms τs₁) ⟩ ⟩ ≈ ⟨ ⟨ τ₂ ∷ vector (terms τs₂) ⟩ ⟩ ⟧ notationalVariantFormula* : (VariableName → Maybe VariableName) → Formula → Formula → Set notationalVariantFormula* v (atomic x x₁) (atomic x₂ x₃) = x ≡ x₂ × notationalVariantTerms* v x₁ x₃ notationalVariantFormula* v (logical φ₁ φ₂) (logical φ₃ φ₄) = notationalVariantFormula* v φ₁ φ₃ × notationalVariantFormula* v φ₂ φ₄ notationalVariantFormula* v (quantified x φ₁) (quantified x₁ φ₂) = notationalVariantFormula* (λ {v' → ifYes v' ≟ x then just x₁ else v v'}) φ₁ φ₂ notationalVariantFormula* v (logical φ₁ φ₂) (atomic x x₁) = ⊥ notationalVariantFormula* v (atomic x x₁) (logical φ₂ φ₃) = ⊥ notationalVariantFormula* v (atomic x x₁) (quantified x₂ φ₂) = ⊥ notationalVariantFormula* v (logical φ₁ φ₂) (quantified x φ₃) = ⊥ notationalVariantFormula* v (quantified x φ₁) (atomic x₁ x₂) = ⊥ notationalVariantFormula* v (quantified x φ₁) (logical φ₂ φ₃) = ⊥ notationalVariantFormula : Formula → Formula → Set notationalVariantFormula φ₁ φ₂ = notationalVariantFormula* (const nothing) φ₁ φ₂ private refl-notationalVariantTerms* : ∀ x₁ → notationalVariantTerms* (λ x₂ → nothing) ⟨ terms x₁ ⟩ ⟨ terms x₁ ⟩ refl-notationalVariantTerms* (⟨_⟩ {arity = ⟨ .0 ⟩} ⟨ [] ⟩) = {!!} refl-notationalVariantTerms* (⟨_⟩ {arity = ⟨ .(suc _) ⟩} ⟨ _∷_ {n = n} x vector₁ ⟩) = {!!} {- refl-notationalVariantTerms* ⟨ ⟨ [] ⟩ ⟩ = tt refl-notationalVariantTerms* (⟨_⟩ {nx} ⟨ x ∷ vector₁ ⟩) = {!!} -} refl-notationalVariantFormula : (φ : Formula) → notationalVariantFormula φ φ refl-notationalVariantFormula (atomic x x₁) = {!!} refl-notationalVariantFormula (logical φ φ₁) = {!!} refl-notationalVariantFormula (quantified x φ) = {!!} isEquivalenceNotationalVariantFormula : IsEquivalence notationalVariantFormula isEquivalenceNotationalVariantFormula = record { refl = {!!} -- λ { {atomic _ _} → refl , {!!} ; {logical x x₁} → {!!} ; {quantified x x₁} → {!!} } ; sym = {!!} ; trans = {!!} } data Formula⟦_/_≈_⟧ (v : VariableName → Maybe VariableName) : Formula → Formula → Set where atomic : ∀ 𝑃 τs₁ τs₂ → Terms⟦ v / τs₁ ≈ τs₂ ⟧ → Formula⟦ v / atomic 𝑃 τs₁ ≈ atomic 𝑃 τs₂ ⟧ logical : ∀ φ₁₁ φ₁₂ φ₂₁ φ₂₂ → Formula⟦ v / φ₁₁ ≈ φ₂₁ ⟧ → Formula⟦ v / φ₁₂ ≈ φ₂₂ ⟧ → Formula⟦ v / logical φ₁₁ φ₁₂ ≈ logical φ₂₁ φ₂₂ ⟧ quantified : ∀ 𝑥₁ 𝑥₂ φ₁ φ₂ → Formula⟦ (λ {v' → ifYes v' ≟ 𝑥₁ then just 𝑥₂ else v v'}) / φ₁ ≈ φ₂ ⟧ → Formula⟦ v / quantified 𝑥₁ φ₁ ≈ quantified 𝑥₂ φ₂ ⟧ data F⟦_NotationalVariant_⟧ : Formula → Formula → Set where basic : ∀ φ₁ φ₂ → Formula⟦ const nothing / φ₁ ≈ φ₂ ⟧ → F⟦ φ₁ NotationalVariant φ₂ ⟧ private mutual refl-notVarTerms : ∀ x₁ → Terms⟦ const nothing / x₁ ≈ x₁ ⟧ refl-notVarTerms ⟨ ⟨ [] ⟩ ⟩ = [] refl-notVarTerms ⟨ ⟨ x ∷ vector₁ ⟩ ⟩ = (x ∷ x) (refl-notVarTerm x) ⟨ ⟨ vector₁ ⟩ ⟩ ⟨ ⟨ vector₁ ⟩ ⟩ (refl-notVarTerms ⟨ ⟨ vector₁ ⟩ ⟩) refl-notVarTerm : ∀ x₁ → Term⟦ const nothing / x₁ ≈ x₁ ⟧ refl-notVarTerm (variable x) = variable x x refl refl-notVarTerm (function x x₁) = function x x₁ x₁ (refl-notVarTerms x₁) refl-notationalVariant' : (φ : Formula) → F⟦ φ NotationalVariant φ ⟧ refl-notationalVariant' (atomic x x₁) = basic 𝑃[ x ♭ x₁ ] 𝑃[ x ♭ x₁ ] (atomic x x₁ x₁ (refl-notVarTerms x₁)) refl-notationalVariant' (logical φ φ₁) = basic (logical φ φ₁) (logical φ φ₁) (logical φ φ₁ φ φ₁ {!!} {!!}) refl-notationalVariant' (quantified x φ) = basic (quantified x φ) (quantified x φ) (quantified x x φ φ {!!}) isEquivalenceNotationalVariant' : IsEquivalence F⟦_NotationalVariant_⟧ isEquivalenceNotationalVariant' = record { refl = {!!} -- λ { {atomic _ _} → refl , {!!} ; {logical x x₁} → {!!} ; {quantified x x₁} → {!!} } ; sym = {!!} ; trans = {!!} } module _ where open import HasSubstantiveDischarge {- postulate instance cs : CanonicalSubstitution Formula instance hpu : HasPairUnification Formula (CanonicalSubstitution.S cs) -} instance HasSubstantiveDischargeFormulaFormula : HasSubstantiveDischarge Formula HasSubstantiveDischarge.hasNegation HasSubstantiveDischargeFormulaFormula = {!!} --HasSubstantiveDischarge._o≽o_ HasSubstantiveDischargeFormulaFormula φ₁ φ₂ = {!!} -- ∃ λ υ → υ Unifies φ₁ and φ₂ HasSubstantiveDischarge.≽-reflexive HasSubstantiveDischargeFormulaFormula = {!!} HasSubstantiveDischarge.≽-consistent HasSubstantiveDischargeFormulaFormula = {!!} HasSubstantiveDischarge.≽-contrapositive HasSubstantiveDischargeFormulaFormula = {!!} instance HasDecidableSubstantiveDischargeFormulaFormula : HasDecidableSubstantiveDischarge Formula HasDecidableSubstantiveDischarge.hasSubstantiveDischarge HasDecidableSubstantiveDischargeFormulaFormula = {!!} HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeFormulaFormula = {!!} module _ where open import VariableName ∀[_♭_] : VariableName → Formula → Formula ∀[_♭_] = quantified {-# DISPLAY Formula.quantified = ∀[_♭_] #-} module _ where open import HasNegation open import HasNeitherNor _∧_ : Formula → Formula → Formula φ₁ ∧ φ₂ = ~ φ₁ ⊗ ~ φ₂ _∨_ : Formula → Formula → Formula φ₁ ∨ φ₂ = ~ (φ₁ ⊗ φ₂) _⊃_ : Formula → Formula → Formula φ₁ ⊃ φ₂ = ~ φ₁ ∨ φ₂ _⟷_ : Formula → Formula → Formula φ₁ ⟷ φ₂ = (φ₁ ⊗ (φ₂ ⊗ φ₂)) ⊗ ((φ₁ ⊗ φ₁) ⊗ φ₂) -- TODO check that this is logically equivalent to the more verbose, (φ₁ ⊃ φ₂) ∧ (φ₂ ⊃ φ₁)
{ "alphanum_fraction": 0.6661175178, "avg_line_length": 42.6796875, "ext": "agda", "hexsha": "2ce31f34d3174c90161a306d92c91a32d8b8fbc8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Formula.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Formula.agda", "max_line_length": 207, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Formula.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3944, "size": 10926 }
-- Andreas, 2018-03-19, issue #2971, reported by Ulf -- Splitting on result should give proper error -- when record type is weak, i.e. lacks projections. {-# OPTIONS --no-irrelevant-projections #-} -- {-# OPTIONS -v tc.cover:20 #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality record Five : Set where field five : Nat .prf : five ≡ 5 -- No corresponding projection! best-number : Five best-number = {!!} -- C-c C-c (on result) -- Error WAS: -- Panic: Unbound name: NoIrrProj.Five.prf -- [0,2,10]@5465979233139828506 -- when checking that the expression ? has type Five -- Should give proper error message. -- Cannot split on result here, because record has irrelevant fields, -- but no corresponding projections -- when checking that the expression ? has type Five -- Testing similar errors: not-record : Set not-record = {!!} -- Cannot split on result here, because target type Set is not a record type -- when checking that the expression ? has type Set
{ "alphanum_fraction": 0.7074148297, "avg_line_length": 26.2631578947, "ext": "agda", "hexsha": "65ce6a4231cd0632fc8ce72c5e27cef81c3e90b4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/interaction/Issue2971.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/interaction/Issue2971.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/interaction/Issue2971.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 262, "size": 998 }
{-# OPTIONS --without-K #-} module container.m where open import container.m.coalgebra public open import container.m.from-nat public open import container.m.core public open import container.m.extensionality public open import container.m.level public
{ "alphanum_fraction": 0.8039215686, "avg_line_length": 25.5, "ext": "agda", "hexsha": "b2865073530954cfdf4bc32b448d07255f54cb8b", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/m.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/m.agda", "max_line_length": 45, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/m.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 51, "size": 255 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Haskell.Modules.RWS open import Haskell.Modules.RWS.Lens open import Haskell.Modules.RWS.RustAnyHow open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.TestUtils.MockStorage as MockStorage open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.LBFT open import Optics.All open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Consensus.PersistentLivenessStorage where ------------------------------------------------------------------------------ obmUpdateM : ( PersistentLivenessStorage → LBFT (Either ErrLog PersistentLivenessStorage) ) → LBFT (Either ErrLog Unit) obmUpdateE : BlockStore → ( PersistentLivenessStorage → Either ErrLog PersistentLivenessStorage ) -> Either ErrLog BlockStore ------------------------------------------------------------------------------ saveTreeM : List Block → List QuorumCert → LBFT (Either ErrLog Unit) saveTreeM blocks qcs = obmUpdateM (MockStorage.saveTreeM blocks qcs) saveTreeE : BlockStore → List Block → List QuorumCert → Either ErrLog BlockStore saveTreeE bs blocks qcs = obmUpdateE bs (MockStorage.saveTreeE blocks qcs) pruneTreeM : List HashValue → LBFT (Either ErrLog Unit) pruneTreeM = obmUpdateM ∘ MockStorage.pruneTreeM saveVoteM : Vote → LBFT (Either ErrLog Unit) saveVoteM = obmUpdateM ∘ MockStorage.saveStateM startM : LBFT (Either ErrLog RecoveryData) startM = use (lBlockStore ∙ bsStorage) >>= λ s → pure (MockStorage.start s) ∙^∙ withErrCtx (here' []) where here' : List String → List String here' t = "PersistentLivenessStorage" ∷ "startM" ∷ t saveHighestTimeoutCertM : TimeoutCertificate → LBFT (Either ErrLog Unit) saveHighestTimeoutCertM = obmUpdateM ∘ MockStorage.saveHighestTimeoutCertificateM ------------------------------------------------------------------------------ obmUpdateM f = do s <- use (lBlockStore ∙ bsStorage) f s ∙?∙ λ s' → do lBlockStore ∙ bsStorage ∙= s'; ok unit obmUpdateE bs f = do let s = bs ^∙ bsStorage s' ← f s pure (bs & bsStorage ∙~ s')
{ "alphanum_fraction": 0.6576648133, "avg_line_length": 34.027027027, "ext": "agda", "hexsha": "58c7745717212a82e12b4aab8b879344b941648b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/PersistentLivenessStorage.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/PersistentLivenessStorage.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/PersistentLivenessStorage.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 645, "size": 2518 }
open import Agda.Builtin.Equality open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.String open import Agda.Builtin.List open import Agda.Builtin.Unit impNames : Term → List String impNames (pi (arg (arg-info hidden _) _) (abs x b)) = x ∷ impNames b impNames _ = [] macro implicits : Name → Term → TC ⊤ implicits x hole = do t ← getType x i ← quoteTC (impNames t) unify hole i variable A : Set₁ x : A postulate f : (B : Set) → B ≡ B → Set g : f _ x ≡ f _ x g = refl _ : implicits g ≡ "x.A.1" ∷ "x" ∷ [] _ = refl postulate F : Set → Set₁ P : {x : Set} → F x → Set Q : {x : Set₁} → x → Set p : P x q : Q x _ : implicits p ≡ "x.A.1" ∷ "x" ∷ [] _ = refl _ : implicits q ≡ "x.A" ∷ "x" ∷ [] _ = refl fails : (A : Set) (f : F A) → P f fails A f = p {x = f}
{ "alphanum_fraction": 0.5740072202, "avg_line_length": 17.6808510638, "ext": "agda", "hexsha": "724fc728a30e971bae5a36af446e6bf4467b06a5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4291.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4291.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4291.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 329, "size": 831 }
module BasicIPC.Metatheory.GentzenSpinalNormalForm-HereditarySubstitution where open import BasicIPC.Syntax.GentzenSpinalNormalForm public -- Hereditary substitution and reduction. mutual [_≔_]ⁿᶠ_ : ∀ {A B Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ⁿᶠ A → Γ ⊢ⁿᶠ B → Γ ∖ i ⊢ⁿᶠ B [ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ j xs) with i ≟∈ j [ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ .i xs) | same = reduce s ([ i ≔ s ]ˢᵖ xs) [ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ ._ xs) | diff j = neⁿᶠ (spⁿᵉ j ([ i ≔ s ]ˢᵖ xs)) [ i ≔ s ]ⁿᶠ lamⁿᶠ t = lamⁿᶠ ([ pop i ≔ mono⊢ⁿᶠ weak⊆ s ]ⁿᶠ t) [ i ≔ s ]ⁿᶠ pairⁿᶠ t u = pairⁿᶠ ([ i ≔ s ]ⁿᶠ t) ([ i ≔ s ]ⁿᶠ u) [ i ≔ s ]ⁿᶠ unitⁿᶠ = unitⁿᶠ [_≔_]ˢᵖ_ : ∀ {A B C Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ⁿᶠ A → Γ ⊢ˢᵖ B ⦙ C → Γ ∖ i ⊢ˢᵖ B ⦙ C [ i ≔ s ]ˢᵖ nilˢᵖ = nilˢᵖ [ i ≔ s ]ˢᵖ appˢᵖ xs u = appˢᵖ ([ i ≔ s ]ˢᵖ xs) ([ i ≔ s ]ⁿᶠ u) [ i ≔ s ]ˢᵖ fstˢᵖ xs = fstˢᵖ ([ i ≔ s ]ˢᵖ xs) [ i ≔ s ]ˢᵖ sndˢᵖ xs = sndˢᵖ ([ i ≔ s ]ˢᵖ xs) reduce : ∀ {A C Γ} → Γ ⊢ⁿᶠ A → Γ ⊢ˢᵖ A ⦙ C → Γ ⊢ⁿᶠ C reduce t nilˢᵖ = t reduce (lamⁿᶠ t) (appˢᵖ xs u) = reduce ([ top ≔ u ]ⁿᶠ t) xs reduce (pairⁿᶠ t u) (fstˢᵖ xs) = reduce t xs reduce (pairⁿᶠ t u) (sndˢᵖ xs) = reduce u xs -- Reduction-based normal forms. appⁿᶠ : ∀ {A B Γ} → Γ ⊢ⁿᶠ A ▻ B → Γ ⊢ⁿᶠ A → Γ ⊢ⁿᶠ B appⁿᶠ t u = reduce t (appˢᵖ nilˢᵖ u) fstⁿᶠ : ∀ {A B Γ} → Γ ⊢ⁿᶠ A ∧ B → Γ ⊢ⁿᶠ A fstⁿᶠ t = reduce t (fstˢᵖ nilˢᵖ) sndⁿᶠ : ∀ {A B Γ} → Γ ⊢ⁿᶠ A ∧ B → Γ ⊢ⁿᶠ B sndⁿᶠ t = reduce t (sndˢᵖ nilˢᵖ) -- Useful equipment for deriving neutrals. ≪appˢᵖ : ∀ {A B C Γ} → Γ ⊢ˢᵖ C ⦙ A ▻ B → Γ ⊢ⁿᶠ A → Γ ⊢ˢᵖ C ⦙ B ≪appˢᵖ nilˢᵖ t = appˢᵖ nilˢᵖ t ≪appˢᵖ (appˢᵖ xs u) t = appˢᵖ (≪appˢᵖ xs t) u ≪appˢᵖ (fstˢᵖ xs) t = fstˢᵖ (≪appˢᵖ xs t) ≪appˢᵖ (sndˢᵖ xs) t = sndˢᵖ (≪appˢᵖ xs t) ≪fstˢᵖ : ∀ {A B C Γ} → Γ ⊢ˢᵖ C ⦙ A ∧ B → Γ ⊢ˢᵖ C ⦙ A ≪fstˢᵖ nilˢᵖ = fstˢᵖ nilˢᵖ ≪fstˢᵖ (appˢᵖ xs u) = appˢᵖ (≪fstˢᵖ xs) u ≪fstˢᵖ (fstˢᵖ xs) = fstˢᵖ (≪fstˢᵖ xs) ≪fstˢᵖ (sndˢᵖ xs) = sndˢᵖ (≪fstˢᵖ xs) ≪sndˢᵖ : ∀ {A B C Γ} → Γ ⊢ˢᵖ C ⦙ A ∧ B → Γ ⊢ˢᵖ C ⦙ B ≪sndˢᵖ nilˢᵖ = sndˢᵖ nilˢᵖ ≪sndˢᵖ (appˢᵖ xs u) = appˢᵖ (≪sndˢᵖ xs) u ≪sndˢᵖ (fstˢᵖ xs) = fstˢᵖ (≪sndˢᵖ xs) ≪sndˢᵖ (sndˢᵖ xs) = sndˢᵖ (≪sndˢᵖ xs) -- Derived neutrals. varⁿᵉ : ∀ {A Γ} → A ∈ Γ → Γ ⊢ⁿᵉ A varⁿᵉ i = spⁿᵉ i nilˢᵖ appⁿᵉ : ∀ {A B Γ} → Γ ⊢ⁿᵉ A ▻ B → Γ ⊢ⁿᶠ A → Γ ⊢ⁿᵉ B appⁿᵉ (spⁿᵉ i xs) t = spⁿᵉ i (≪appˢᵖ xs t) fstⁿᵉ : ∀ {A B Γ} → Γ ⊢ⁿᵉ A ∧ B → Γ ⊢ⁿᵉ A fstⁿᵉ (spⁿᵉ i xs) = spⁿᵉ i (≪fstˢᵖ xs) sndⁿᵉ : ∀ {A B Γ} → Γ ⊢ⁿᵉ A ∧ B → Γ ⊢ⁿᵉ B sndⁿᵉ (spⁿᵉ i xs) = spⁿᵉ i (≪sndˢᵖ xs) -- Iterated expansion. expand : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊢ⁿᶠ A expand {α P} t = neⁿᶠ t expand {A ▻ B} t = lamⁿᶠ (expand (appⁿᵉ (mono⊢ⁿᵉ weak⊆ t) (expand (varⁿᵉ top)))) expand {A ∧ B} t = pairⁿᶠ (expand (fstⁿᵉ t)) (expand (sndⁿᵉ t)) expand {⊤} t = unitⁿᶠ -- Expansion-based normal forms. varⁿᶠ : ∀ {A Γ} → A ∈ Γ → Γ ⊢ⁿᶠ A varⁿᶠ i = expand (varⁿᵉ i) -- Translation from simple terms to normal forms. tm→nf : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ⁿᶠ A tm→nf (var i) = varⁿᶠ i tm→nf (lam t) = lamⁿᶠ (tm→nf t) tm→nf (app t u) = appⁿᶠ (tm→nf t) (tm→nf u) tm→nf (pair t u) = pairⁿᶠ (tm→nf t) (tm→nf u) tm→nf (fst t) = fstⁿᶠ (tm→nf t) tm→nf (snd t) = sndⁿᶠ (tm→nf t) tm→nf unit = unitⁿᶠ -- Normalisation by hereditary substitution. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = nf→tm ∘ tm→nf
{ "alphanum_fraction": 0.5339805825, "avg_line_length": 30.2385321101, "ext": "agda", "hexsha": "13d1226578752a1674d1d6656fe24b87ea485fa1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIPC/Metatheory/GentzenSpinalNormalForm-HereditarySubstitution.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIPC/Metatheory/GentzenSpinalNormalForm-HereditarySubstitution.agda", "max_line_length": 84, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIPC/Metatheory/GentzenSpinalNormalForm-HereditarySubstitution.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2256, "size": 3296 }
{-# OPTIONS --cubical --no-positivity-check --no-termination-check #-} open import Prelude open import Algebra open import Algebra.Monus open import Relation.Binary open import Data.Maybe open import Data.List using (List; _∷_; []; foldr) module Control.Monad.HeapT {ℓ} (monoid : Monoid ℓ) (gmon : GradedMonad monoid ℓ ℓ) where open Monoid monoid open GradedMonad gmon private variable w : 𝑆 infixr 5 _∷_ infixr 6 _⋊_ mutual record Root (A : Type ℓ) : Type ℓ where coinductive constructor _⋊_ field weight : 𝑆 step : 𝐹 weight (Branch A) data Node (A : Type ℓ) : Type ℓ where ⌊_⌋ : A → Node A ⌈_⌉ : Root A → Node A data Branch (A : Type ℓ) : Type ℓ where [] : Branch A _∷_ : Node A → 𝐹 ε (Branch A) → Branch A open Root public Heap : Type ℓ → Type ℓ Heap A = 𝐹 ε (Branch A) infixr 5 _++_ _++_ : 𝐹 w (Branch A) → 𝐹 ε (Branch A) → 𝐹 w (Branch A) xs ++ ys = xs >>=ε λ { [] → ys ; (x ∷ xs) → pure (x ∷ xs ++ ys) } infixr 1 _>>=ᴺ_ _>>=ᴴ_ mutual _>>=ᴺ_ : Node A → (A → Heap B) → Heap B ⌊ x ⌋ >>=ᴺ f = f x ⌈ x ⌉ >>=ᴺ f = pure (⌈ weight x ⋊ (step x >>=ᴴ f) ⌉ ∷ pure []) _>>=ᴴ_ : 𝐹 w (Branch A) → (A → Heap B) → 𝐹 w (Branch B) xs >>=ᴴ f = xs >>=ε λ { [] → pure [] ; (x ∷ xs) → (x >>=ᴺ f) ++ (xs >>=ᴴ f) } pureᴴ : A → Heap A pureᴴ x = pure (⌊ x ⌋ ∷ pure []) liftᴴ : 𝐹 w A → Heap A liftᴴ xs = pure (⌈ _ ⋊ map (λ x → ⌊ x ⌋ ∷ pure []) xs ⌉ ∷ pure []) flatten : 𝐹 w (Branch A) → 𝐹 w (List A × List (Root A)) flatten xs = xs >>=ε λ { [] → pure ([] , []) ; (⌊ x ⌋ ∷ xs) → map (map₁ (x ∷_)) (flatten xs) ; (⌈ x ⌉ ∷ xs) → map (map₂ (x ∷_)) (flatten xs) } module PopMin (_≤|≥_ : Total (λ x y → ∃ z × (y ≡ x ∙ z))) (decomp : ∀ {A B w₁ w₂ w₃} → 𝐹 (w₁ ∙ w₂) A → 𝐹 (w₁ ∙ w₃) B → 𝐹 w₁ (𝐹 w₂ A × 𝐹 w₃ B)) where _∪_ : Root A → Root A → Root A xs ∪ ys with weight xs ≤|≥ weight ys ... | inl (k , wʸ≡wˣ∙k) = weight xs ⋊ map (λ { (xs , ys) → ⌈ k ⋊ ys ⌉ ∷ xs }) (decomp (subst (flip 𝐹 _) (sym (∙ε _)) (step xs)) (subst (flip 𝐹 _) wʸ≡wˣ∙k (step ys))) ... | inr (k , wˣ≡wʸ∙k) = weight ys ⋊ map (λ { (ys , xs) → ⌈ k ⋊ xs ⌉ ∷ ys }) (decomp (subst (flip 𝐹 _) (sym (∙ε _)) (step ys)) (subst (flip 𝐹 _) wˣ≡wʸ∙k (step xs))) ⋃⁺ : Root A → List (Root A) → Root A ⋃⁺ x₁ [] = x₁ ⋃⁺ x₁ (x₂ ∷ []) = x₁ ∪ x₂ ⋃⁺ x₁ (x₂ ∷ x₃ ∷ xs) = (x₁ ∪ x₂) ∪ ⋃⁺ x₃ xs ⋃ : List (Root A) → Maybe (Root A) ⋃ [] = nothing ⋃ (x ∷ xs) = just (⋃⁺ x xs) popMin : 𝐹 w (Branch A) → 𝐹 w (List A × Maybe (Root A)) popMin = map (map₂ ⋃) ∘ flatten
{ "alphanum_fraction": 0.4898739014, "avg_line_length": 27.5473684211, "ext": "agda", "hexsha": "b075fb8e8d207f6404bc4db9060fc31401302488", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Control/Monad/HeapT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Control/Monad/HeapT.agda", "max_line_length": 167, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Control/Monad/HeapT.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1263, "size": 2617 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The min operator derived from an arbitrary total order ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Algebra.Construct.NaturalChoice.Min {a ℓ₁ ℓ₂} (totalOrder : TotalOrder a ℓ₁ ℓ₂) where open import Algebra open import Data.Sum using (inj₁; inj₂; [_,_]) open import Data.Product using (_,_) open import Function using (id) open TotalOrder totalOrder renaming (Carrier to A) open import Algebra.FunctionProperties _≈_ open import Algebra.Structures _≈_ ---------------------------------------------------------------------------- -- Definition infixl 7 _⊓_ _⊓_ : Op₂ A x ⊓ y with total x y ... | inj₁ x≤y = x ... | inj₂ y≤x = y ---------------------------------------------------------------------------- -- Algebraic properties ⊓-sel : Selective _⊓_ ⊓-sel x y with total x y ... | inj₁ x≤y = inj₁ Eq.refl ... | inj₂ y≤x = inj₂ Eq.refl ⊓-idem : Idempotent _⊓_ ⊓-idem x with ⊓-sel x x ... | inj₁ x⊓x=x = x⊓x=x ... | inj₂ x⊓x=x = x⊓x=x ⊓-cong : Congruent₂ _⊓_ ⊓-cong {w} {x} {y} {z} w≈x y≈z with total w y | total x z ... | inj₁ w≤y | inj₁ x≤z = w≈x ... | inj₁ w≤y | inj₂ z≤x = antisym (≤-respʳ-≈ y≈z w≤y) (≤-respʳ-≈ (Eq.sym w≈x) z≤x) ... | inj₂ y≤w | inj₁ x≤z = antisym (≤-respʳ-≈ w≈x y≤w) (≤-respʳ-≈ (Eq.sym y≈z) x≤z) ... | inj₂ y≤w | inj₂ z≤x = y≈z ⊓-comm : Commutative _⊓_ ⊓-comm x y with total x y | total y x ... | inj₁ x≤y | inj₁ y≤x = antisym x≤y y≤x ... | inj₁ _ | inj₂ _ = Eq.refl ... | inj₂ _ | inj₁ _ = Eq.refl ... | inj₂ y≤x | inj₂ x≤y = antisym y≤x x≤y ⊓-assoc : Associative _⊓_ ⊓-assoc x y z with total x y | total x z | total y z ⊓-assoc x y z | inj₁ x≤y | inj₁ x≤z | inj₁ y≤z with total x z | total x y ... | inj₁ x≤z₂ | inj₁ _ = Eq.refl ... | inj₁ x≤z₂ | inj₂ y≤x = antisym x≤y y≤x ... | inj₂ z≤x | inj₁ _ = antisym z≤x (trans x≤y y≤z) ... | inj₂ z≤x | inj₂ y≤x = antisym (trans z≤x x≤y) (trans y≤x x≤z) ⊓-assoc x y z | inj₁ x≤y | inj₁ x≤z | inj₂ z≤y with total x z ... | inj₁ _ = Eq.refl ... | inj₂ _ = Eq.refl ⊓-assoc x y z | inj₁ x≤y | inj₂ z≤x | inj₁ y≤z with total x z | total x y ... | inj₁ x≤z | inj₁ _ = Eq.refl ... | inj₁ x≤z | inj₂ y≤x = antisym x≤y (trans y≤z z≤x) ... | inj₂ _ | inj₁ _ = antisym z≤x (trans x≤y y≤z) ... | inj₂ _ | inj₂ y≤x = antisym (trans z≤x x≤y) y≤z ⊓-assoc x y z | inj₁ x≤y | inj₂ z≤x | inj₂ z≤y with total x z ... | inj₁ _ = Eq.refl ... | inj₂ _ = Eq.refl ⊓-assoc x y z | inj₂ y≤x | inj₁ x≤z | inj₁ y≤z with total y z | total x y ... | inj₁ _ | inj₁ x≤y = antisym y≤x x≤y ... | inj₁ _ | inj₂ _ = Eq.refl ... | inj₂ z≤y | inj₁ x≤y = antisym (trans z≤y y≤x) (trans x≤y y≤z) ... | inj₂ z≤y | inj₂ _ = antisym z≤y (trans y≤x x≤z) ⊓-assoc x y z | inj₂ y≤x | inj₁ x≤z | inj₂ z≤y with total y z | total x z ... | inj₁ y≤z | inj₁ _ = antisym y≤x (trans x≤z z≤y) ... | inj₁ y≤z | inj₂ z≤x = antisym (trans y≤x x≤z) z≤y ... | inj₂ _ | inj₁ _ = antisym (trans z≤y y≤x) x≤z ... | inj₂ _ | inj₂ z≤x = Eq.refl ⊓-assoc x y z | inj₂ y≤x | inj₂ z≤x | inj₁ y≤z with total y z | total x y ... | inj₁ _ | inj₁ x≤y = antisym (trans y≤z z≤x) x≤y ... | inj₁ _ | inj₂ _ = Eq.refl ... | inj₂ z≤y | inj₁ x≤y = antisym (trans z≤y y≤x) (trans x≤y y≤z) ... | inj₂ z≤y | inj₂ _ = antisym z≤y y≤z ⊓-assoc x y z | inj₂ y≤x | inj₂ z≤x | inj₂ z≤y with total y z | total x z ... | inj₁ y≤z | inj₁ x≤z = antisym (trans y≤z z≤x) (trans x≤z z≤y) ... | inj₁ y≤z | inj₂ _ = antisym y≤z z≤y ... | inj₂ _ | inj₁ x≤z = antisym (trans z≤y y≤x) x≤z ... | inj₂ _ | inj₂ _ = Eq.refl ⊓-identityˡ : ∀ {⊥} → Maximum _≤_ ⊥ → LeftIdentity ⊥ _⊓_ ⊓-identityˡ {⊥} top x with total ⊥ x ... | inj₁ ⊥≤x = antisym ⊥≤x (top x) ... | inj₂ x≤⊥ = Eq.refl ⊓-identityʳ : ∀ {⊥} → Maximum _≤_ ⊥ → RightIdentity ⊥ _⊓_ ⊓-identityʳ {⊥} top x with total x ⊥ ... | inj₁ x≤⊥ = Eq.refl ... | inj₂ ⊥≤x = antisym ⊥≤x (top x) ⊓-identity : ∀ {⊥} → Maximum _≤_ ⊥ → Identity ⊥ _⊓_ ⊓-identity top = (⊓-identityˡ top , ⊓-identityʳ top) ⊓-zeroˡ : ∀ {⊥} → Minimum _≤_ ⊥ → LeftZero ⊥ _⊓_ ⊓-zeroˡ {⊥} bot x with total ⊥ x ... | inj₁ ⊥≤x = Eq.refl ... | inj₂ x≤⊥ = antisym x≤⊥ (bot x) ⊓-zeroʳ : ∀ {⊥} → Minimum _≤_ ⊥ → RightZero ⊥ _⊓_ ⊓-zeroʳ {⊥} bot x with total x ⊥ ... | inj₁ x≤⊥ = antisym x≤⊥ (bot x) ... | inj₂ ⊥≤x = Eq.refl ⊓-zero : ∀ {⊥} → Minimum _≤_ ⊥ → Zero ⊥ _⊓_ ⊓-zero bot = (⊓-zeroˡ bot , ⊓-zeroʳ bot) ---------------------------------------------------------------------------- -- Algebraic structures ⊓-isMagma : IsMagma _⊓_ ⊓-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ⊓-cong } ⊓-isSemigroup : IsSemigroup _⊓_ ⊓-isSemigroup = record { isMagma = ⊓-isMagma ; assoc = ⊓-assoc } ⊓-isBand : IsBand _⊓_ ⊓-isBand = record { isSemigroup = ⊓-isSemigroup ; idem = ⊓-idem } ⊓-isSemilattice : IsSemilattice _⊓_ ⊓-isSemilattice = record { isBand = ⊓-isBand ; comm = ⊓-comm } ⊓-isMonoid : ∀ {⊥} → Maximum _≤_ ⊥ → IsMonoid _⊓_ ⊥ ⊓-isMonoid top = record { isSemigroup = ⊓-isSemigroup ; identity = ⊓-identity top } ---------------------------------------------------------------------------- -- Algebraic packages ⊓-magma : Magma a ℓ₁ ⊓-magma = record { isMagma = ⊓-isMagma } ⊓-semigroup : Semigroup a ℓ₁ ⊓-semigroup = record { isSemigroup = ⊓-isSemigroup } ⊓-band : Band a ℓ₁ ⊓-band = record { isBand = ⊓-isBand } ⊓-semilattice : Semilattice a ℓ₁ ⊓-semilattice = record { isSemilattice = ⊓-isSemilattice } ⊓-monoid : ∀ {⊥} → Maximum _≤_ ⊥ → Monoid a ℓ₁ ⊓-monoid top = record { isMonoid = ⊓-isMonoid top } ---------------------------------------------------------------------------- -- Other properties x⊓y≈y⇒y≤x : ∀ {x y} → x ⊓ y ≈ y → y ≤ x x⊓y≈y⇒y≤x {x} {y} x⊓y≈y with total x y ... | inj₁ _ = reflexive (Eq.sym x⊓y≈y) ... | inj₂ y≤x = y≤x x⊓y≈x⇒x≤y : ∀ {x y} → x ⊓ y ≈ x → x ≤ y x⊓y≈x⇒x≤y {x} {y} x⊓y≈x with total x y ... | inj₁ x≤y = x≤y ... | inj₂ _ = reflexive (Eq.sym x⊓y≈x)
{ "alphanum_fraction": 0.5045617465, "avg_line_length": 30.8442211055, "ext": "agda", "hexsha": "626d0dc68187e3c4e1c9d375baa092bf8914a071", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Construct/NaturalChoice/Min.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Construct/NaturalChoice/Min.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Construct/NaturalChoice/Min.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2901, "size": 6138 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Reflexivity {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.Untyped using (Con ; Term) open import Tools.Nat open import Tools.Product private variable n : Nat Γ : Con Term n -- Reflexivity of valid types. reflᵛ : ∀ {A l} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ A ≡ A / [Γ] / [A] reflᵛ [Γ] [A] ⊢Δ [σ] = reflEq (proj₁ ([A] ⊢Δ [σ])) -- Reflexivity of valid terms. reflᵗᵛ : ∀ {A t l} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]) → Γ ⊩ᵛ⟨ l ⟩ t ≡ t ∷ A / [Γ] / [A] reflᵗᵛ [Γ] [A] [t] ⊢Δ [σ] = reflEqTerm (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ]))
{ "alphanum_fraction": 0.5542168675, "avg_line_length": 25.3611111111, "ext": "agda", "hexsha": "76ff21e6ebe588b13e8b684e5785b039329118ee", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z", "max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fhlkfy/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Reflexivity.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fhlkfy/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Reflexivity.agda", "max_line_length": 85, "max_stars_count": 30, "max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fhlkfy/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Reflexivity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z", "num_tokens": 386, "size": 913 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A universe of proposition functors, along with some properties ------------------------------------------------------------------------ module Relation.Nullary.Universe where open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary hiding (_⇒_) open import Relation.Binary.Simple open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl) open import Relation.Binary.Sum open import Relation.Binary.Product.Pointwise open import Data.Sum as Sum hiding (map) open import Data.Product as Prod hiding (map) open import Function import Function.Equality as FunS open import Data.Empty open import Category.Applicative open import Category.Monad open import Level infix 5 ¬¬_ infixr 4 _⇒_ infixr 3 _∧_ infixr 2 _∨_ infix 1 ⟨_⟩_≈_ -- The universe. data PropF p : Set (suc p) where Id : PropF p K : (P : Set p) → PropF p _∨_ : (F₁ F₂ : PropF p) → PropF p _∧_ : (F₁ F₂ : PropF p) → PropF p _⇒_ : (P₁ : Set p) (F₂ : PropF p) → PropF p ¬¬_ : (F : PropF p) → PropF p -- Equalities for universe inhabitants. mutual setoid : ∀ {p} → PropF p → Set p → Setoid p p setoid Id P = PropEq.setoid P setoid (K P) _ = PropEq.setoid P setoid (F₁ ∨ F₂) P = (setoid F₁ P) ⊎-setoid (setoid F₂ P) setoid (F₁ ∧ F₂) P = (setoid F₁ P) ×-setoid (setoid F₂ P) setoid (P₁ ⇒ F₂) P = FunS.≡-setoid P₁ (Setoid.indexedSetoid (setoid F₂ P)) setoid (¬¬ F) P = Always-setoid (¬ ¬ ⟦ F ⟧ P) ⟦_⟧ : ∀ {p} → PropF p → (Set p → Set p) ⟦ F ⟧ P = Setoid.Carrier (setoid F P) ⟨_⟩_≈_ : ∀ {p} (F : PropF p) {P : Set p} → Rel (⟦ F ⟧ P) p ⟨_⟩_≈_ F = Setoid._≈_ (setoid F _) -- ⟦ F ⟧ is functorial. map : ∀ {p} (F : PropF p) {P Q} → (P → Q) → ⟦ F ⟧ P → ⟦ F ⟧ Q map Id f p = f p map (K P) f p = p map (F₁ ∨ F₂) f FP = Sum.map (map F₁ f) (map F₂ f) FP map (F₁ ∧ F₂) f FP = Prod.map (map F₁ f) (map F₂ f) FP map (P₁ ⇒ F₂) f FP = map F₂ f ∘ FP map (¬¬ F) f FP = ¬¬-map (map F f) FP map-id : ∀ {p} (F : PropF p) {P} → ⟨ ⟦ F ⟧ P ⇒ F ⟩ map F id ≈ id map-id Id x = refl map-id (K P) x = refl map-id (F₁ ∨ F₂) (inj₁ x) = ₁∼₁ (map-id F₁ x) map-id (F₁ ∨ F₂) (inj₂ y) = ₂∼₂ (map-id F₂ y) map-id (F₁ ∧ F₂) (x , y) = (map-id F₁ x , map-id F₂ y) map-id (P₁ ⇒ F₂) f = λ x → map-id F₂ (f x) map-id (¬¬ F) ¬¬x = _ map-∘ : ∀ {p} (F : PropF p) {P Q R} (f : Q → R) (g : P → Q) → ⟨ ⟦ F ⟧ P ⇒ F ⟩ map F f ∘ map F g ≈ map F (f ∘ g) map-∘ Id f g x = refl map-∘ (K P) f g x = refl map-∘ (F₁ ∨ F₂) f g (inj₁ x) = ₁∼₁ (map-∘ F₁ f g x) map-∘ (F₁ ∨ F₂) f g (inj₂ y) = ₂∼₂ (map-∘ F₂ f g y) map-∘ (F₁ ∧ F₂) f g x = (map-∘ F₁ f g (proj₁ x) , map-∘ F₂ f g (proj₂ x)) map-∘ (P₁ ⇒ F₂) f g h = λ x → map-∘ F₂ f g (h x) map-∘ (¬¬ F) f g x = _ -- A variant of sequence can be implemented for ⟦ F ⟧. sequence : ∀ {p AF} → RawApplicative AF → (AF (Lift ⊥) → ⊥) → ({A B : Set p} → (A → AF B) → AF (A → B)) → ∀ F {P} → ⟦ F ⟧ (AF P) → AF (⟦ F ⟧ P) sequence {AF = AF} A extract-⊥ sequence-⇒ = helper where open RawApplicative A helper : ∀ F {P} → ⟦ F ⟧ (AF P) → AF (⟦ F ⟧ P) helper Id x = x helper (K P) x = pure x helper (F₁ ∨ F₂) (inj₁ x) = inj₁ <$> helper F₁ x helper (F₁ ∨ F₂) (inj₂ y) = inj₂ <$> helper F₂ y helper (F₁ ∧ F₂) (x , y) = _,_ <$> helper F₁ x ⊛ helper F₂ y helper (P₁ ⇒ F₂) f = sequence-⇒ (helper F₂ ∘ f) helper (¬¬ F) x = pure (λ ¬FP → x (λ fp → extract-⊥ (lift ∘ ¬FP <$> helper F fp))) -- Some lemmas about double negation. private open module M {p} = RawMonad (¬¬-Monad {p = p}) ¬¬-pull : ∀ {p} (F : PropF p) {P} → ⟦ F ⟧ (¬ ¬ P) → ¬ ¬ ⟦ F ⟧ P ¬¬-pull = sequence rawIApplicative (λ f → f lower) (λ f g → g (λ x → ⊥-elim (f x (λ y → g (λ _ → y))))) ¬¬-remove : ∀ {p} (F : PropF p) {P} → ¬ ¬ ⟦ F ⟧ (¬ ¬ P) → ¬ ¬ ⟦ F ⟧ P ¬¬-remove F = negated-stable ∘ ¬¬-pull (¬¬ F)
{ "alphanum_fraction": 0.4941204704, "avg_line_length": 33.336, "ext": "agda", "hexsha": "c85f85821bc8b712dd1ed498ecd6355eb03e29ce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Nullary/Universe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Nullary/Universe.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Nullary/Universe.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 1730, "size": 4167 }
module BFF where open import Data.Nat using (ℕ) open import Data.Fin using (Fin) open import Level using () renaming (zero to ℓ₀) import Category.Monad import Category.Functor open import Data.Maybe using (Maybe ; just ; nothing ; maybe′) open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_) open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_) open import Data.List using (List ; [] ; _∷_ ; map ; length) open import Data.Vec using (Vec ; toList ; fromList ; allFin) renaming (lookup to lookupV ; map to mapV ; [] to []V ; _∷_ to _∷V_) open import Function using (_∘_ ; flip) open import Relation.Binary using (Setoid ; DecSetoid ; module DecSetoid) open import FinMap open import Generic using (sequenceV ; ≡-to-Π) open import Structures using (Shaped ; module Shaped) open import Instances using (VecShaped) import CheckInsert open import GetTypes using (VecVec-to-PartialVecVec ; PartialVecVec-to-PartialShapeShape) module PartialShapeBFF (A : DecSetoid ℓ₀ ℓ₀) where open GetTypes.PartialShapeShape public using (Get ; module Get) open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq) open CheckInsert A assoc : {n m : ℕ} → Vec (Fin n) m → Vec Carrier m → Maybe (FinMapMaybe n Carrier) assoc []V []V = just empty assoc (i ∷V is) (b ∷V bs) = (assoc is bs) >>= (checkInsert i b) enumerate : {S : Set} {C : Set → S → Set} → (ShapeT : Shaped S C) → (s : S) → C (Fin (Shaped.arity ShapeT s)) s enumerate ShapeT s = fill s (allFin (arity s)) where open Shaped ShapeT denumerate : {S : Set} {C : Set → S → Set} → (ShapeT : Shaped S C) → {α : Set} {s : S} → (c : C α s) → Fin (Shaped.arity ShapeT s) → α denumerate ShapeT c = flip lookupV (Shaped.content ShapeT c) bff : (G : Get) → {i : Get.I G} → (j : Get.I G) → Get.SourceContainer G Carrier (Get.gl₁ G i) → Get.ViewContainer G Carrier (Get.gl₂ G j) → Maybe (Get.SourceContainer G (Maybe Carrier) (Get.gl₁ G j)) bff G {i} j s v = let s′ = enumerate SourceShapeT (gl₁ i) t′ = get s′ g = fromFunc (denumerate SourceShapeT s) g′ = delete-many (Shaped.content ViewShapeT t′) g t = enumerate SourceShapeT (gl₁ j) h = assoc (Shaped.content ViewShapeT (get t)) (Shaped.content ViewShapeT v) h′ = (flip union (reshape g′ (Shaped.arity SourceShapeT (gl₁ j)))) <$> h in ((λ f → fmapS f t) ∘ flip lookupM) <$> h′ where open Get G sbff : (G : Get) → {i : Get.I G} → (j : Get.I G) → Get.SourceContainer G Carrier (Get.gl₁ G i) → Get.ViewContainer G Carrier (Get.gl₂ G j) → Maybe (Get.SourceContainer G Carrier (Get.gl₁ G j)) sbff G j s v = bff G j s v >>= Shaped.sequence (Get.SourceShapeT G) module PartialVecBFF (A : DecSetoid ℓ₀ ℓ₀) where open GetTypes.PartialVecVec public using (Get) open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq) open CheckInsert A open PartialShapeBFF A public using (assoc) enumerate : {n : ℕ} → Vec Carrier n → Vec (Fin n) n enumerate {n} _ = PartialShapeBFF.enumerate A VecShaped n enumeratel : (n : ℕ) → Vec (Fin n) n enumeratel = PartialShapeBFF.enumerate A VecShaped denumerate : {n : ℕ} → Vec Carrier n → Fin n → Carrier denumerate = PartialShapeBFF.denumerate A VecShaped bff : (G : Get) → {i : Get.I G} → (j : Get.I G) → Vec Carrier (Get.gl₁ G i) → Vec Carrier (Get.gl₂ G j) → Maybe (Vec (Maybe Carrier) (Get.gl₁ G j)) bff G j s v = PartialShapeBFF.bff A (PartialVecVec-to-PartialShapeShape G) j s v sbff : (G : Get) → {i : Get.I G} → (j : Get.I G) → Vec Carrier (Get.gl₁ G i) → Vec Carrier (Get.gl₂ G j) → Maybe (Vec Carrier (Get.gl₁ G j)) sbff G j s v = PartialShapeBFF.sbff A (PartialVecVec-to-PartialShapeShape G) j s v module VecBFF (A : DecSetoid ℓ₀ ℓ₀) where open GetTypes.VecVec public using (Get) open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq) open CheckInsert A open PartialVecBFF A public using (assoc ; enumerate ; denumerate) bff : (G : Get) → {n : ℕ} → (m : ℕ) → Vec Carrier n → Vec Carrier (Get.getlen G m) → Maybe (Vec (Maybe Carrier) m) bff G = PartialVecBFF.bff A (VecVec-to-PartialVecVec G) sbff : (G : Get) → {n : ℕ} → (m : ℕ) → Vec Carrier n → Vec Carrier (Get.getlen G m) → Maybe (Vec Carrier m) sbff G = PartialVecBFF.sbff A (VecVec-to-PartialVecVec G)
{ "alphanum_fraction": 0.6490950226, "avg_line_length": 50.8045977011, "ext": "agda", "hexsha": "e9b459a7a91c0adef89006364f94cc25770c4ff6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jvoigtlaender/bidiragda", "max_forks_repo_path": "BFF.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jvoigtlaender/bidiragda", "max_issues_repo_path": "BFF.agda", "max_line_length": 201, "max_stars_count": null, "max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jvoigtlaender/bidiragda", "max_stars_repo_path": "BFF.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1432, "size": 4420 }
module MLib.Prelude.FromStdlib where -------------------------------------------------------------------------------- -- Misc -------------------------------------------------------------------------------- open import Level public using (Level) renaming ( zero to zeroˡ; suc to sucˡ; _⊔_ to _⊔ˡ_ ; Lift to Liftˡ; lift to liftˡ; lower to lowerˡ) -------------------------------------------------------------------------------- -- Data -------------------------------------------------------------------------------- module Σ where open import Data.Product public hiding (module Σ) open import Data.Product.Relation.Pointwise.Dependent public using (_,_; Pointwise-≡⇒≡; ≡⇒Pointwise-≡) open import Data.Product.Relation.Pointwise.NonDependent public using (≡×≡⇒≡; ≡⇒≡×≡) open Σ using (Σ; _×_; _,_; proj₁; proj₂; ∃; ∃₂; curry; uncurry) public open import Data.Sum public using (_⊎_; inj₁; inj₂) open import Data.Unit public using (⊤; tt) open import Data.Empty public using (⊥; ⊥-elim) module Bool where open import Data.Bool public open import Data.Bool.Properties public open Bool using (Bool; true; false; if_then_else_) hiding (module Bool) public module Nat where open import Data.Nat public open import Data.Nat.Properties public open Nat using (ℕ; zero; suc) hiding (module ℕ) public module Maybe where open import Data.Maybe public open Maybe using (Maybe; just; nothing; maybe) hiding (module Maybe) public module List where open import Data.List public open import Data.List.Properties public module All where open import Data.List.All public hiding (module All) open import Data.List.All.Properties public traverse : ∀ {a p p′} {A : Set a} {P : A → Set p} {P′ : A → Set p′} → (∀ {x} → P x → Maybe (P′ x)) → {xs : List A} → All P xs → Maybe (All P′ xs) traverse f [] = just [] traverse f (px ∷ ap) with f px | traverse f ap traverse f (px ∷ ap) | just px′ | just ap′ = just (px′ ∷ ap′) traverse f (px ∷ ap) | _ | _ = nothing open All using (All) public open List using (List; _∷_; []) hiding (module List) public module Table where open import Data.Table public open import Data.Table.Properties public open import Data.Table.Relation.Equality public open Table using (Table; tabulate; lookup) hiding (module Table) public module Vec where open import Data.Vec public hiding (module Vec) open import Data.Vec.Properties public module Pointwise where open import Data.Vec.Relation.Pointwise.Inductive public open Pointwise public using (Pointwise; []; _∷_) hiding (module Pointwise) open Vec public using (Vec; []; _∷_) module FE where open import Function.Equality hiding (module Π) public open FE using (_⟶_; _⟨$⟩_) public module Inverse where open import Function.Inverse public open Inverse public open Inverse using (Inverse; _↔_) hiding (module Inverse) public module LeftInverse where open import Function.LeftInverse public open LeftInverse public open LeftInverse using (LeftInverse; _↞_) hiding (module LeftInverse) public -------------------------------------------------------------------------------- -- Combinators -------------------------------------------------------------------------------- module Function where open import Function public open Function using (id; _∘_; case_of_) public -------------------------------------------------------------------------------- -- Relations -------------------------------------------------------------------------------- open import Relation.Nullary public using (Dec; yes; no; ¬_) open import Relation.Nullary.Decidable public using (⌊_⌋) -- Export names that can only apply to binary relations; things like 'Decidable' -- can apply to nullary or unary relations too! open import Relation.Binary.Core public using (Reflexive; Symmetric; Transitive; Irreflexive; Antisymmetric; Asymmetric; Trichotomous) open import Relation.Binary public using (Rel; Setoid; IsEquivalence; Poset; IsPartialOrder) module EqReasoning {c ℓ} (setoid : Setoid c ℓ) where open import Relation.Binary.EqReasoning setoid public module ≡ where open import Relation.Binary.PropositionalEquality public renaming (module ≡-Reasoning to Reasoning) open ≡ using (_≡_) public module ≅ where open import Relation.Binary.HeterogeneousEquality public renaming (module ≅-Reasoning to Reasoning) open ≅ using (_≅_) public -------------------------------------------------------------------------------- -- Algebra -------------------------------------------------------------------------------- module Algebra where open import Algebra public open import Algebra.Structures public module FunctionProperties {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where open import Algebra.FunctionProperties _≈_ public -------------------------------------------------------------------------------- -- From Holes.Prelude -------------------------------------------------------------------------------- open import Holes.Prelude public using ( RawMonad ; _>>=_ ; return ; _<$>_ ; join ; RawTraversable ; traverse ; sequence ; Choice ; _<|>_ ) infixl 1 _>>=ₘ_ _>>=ₗ_ _>>=ₘ_ : ∀ {a b} {A : Set a} {B : Set b} → Maybe A → (A → Maybe B) → Maybe B nothing >>=ₘ _ = nothing just x >>=ₘ f = f x _>>=ₗ_ : ∀ {a b} {A : Set a} {B : Set b} → List A → (A → List B) → List B [] >>=ₗ _ = [] (x ∷ xs) >>=ₗ f = f x List.++ (xs >>=ₗ f) instance Maybe-Monad : ∀ {a} → RawMonad {a} Maybe _>>=_ {{Maybe-Monad}} = _>>=ₘ_ return {{Maybe-Monad}} = just List-Monad : ∀ {a} → RawMonad {a} List _>>=_ {{List-Monad}} = _>>=ₗ_ return {{List-Monad}} x = x ∷ [] instance Maybe-Traversable : ∀ {a} → RawTraversable {a} Maybe traverse {{Maybe-Traversable}} f (just x) = just <$> f x traverse {{Maybe-Traversable}} f nothing = return nothing List-Traversable : ∀ {a} → RawTraversable {a} List traverse {{List-Traversable}} f [] = return [] traverse {{List-Traversable}} f (x ∷ xs) = f x >>= λ x′ → traverse {{List-Traversable}} f xs >>= λ xs′ → return (x′ ∷ xs′) instance Maybe-Choice : ∀ {a} → Choice {a} Maybe Choice._<|>_ Maybe-Choice (just x) _ = just x Choice._<|>_ Maybe-Choice nothing y = y module List-All where open List open All using ([]; _∷_) traverse-map : ∀ {a p q r} {A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r} (g : ∀ {x} → Q x → Maybe (R x)) (f : ∀ {x} → P x → Q x) {xs : List A} (ap : All P xs) → All.traverse g (All.map f ap) ≡ All.traverse (g ∘ f) ap traverse-map g f [] = ≡.refl traverse-map g f (px ∷ ap) with g (f px) traverse-map g f (px ∷ ap) | just _ rewrite traverse-map g f ap = ≡.refl traverse-map g f (px ∷ ap) | nothing = ≡.refl traverse-just : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} (ap : All P xs) → All.traverse just ap ≡ just ap traverse-just [] = ≡.refl traverse-just (px ∷ ap) rewrite traverse-just ap = ≡.refl traverse-cong : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} (f g : ∀ {x} → P x → Maybe (Q x)) → (∀ {x} (p : P x) → f p ≡ g p) → ∀ {xs : List A} (ap : All P xs) → All.traverse f ap ≡ All.traverse g ap traverse-cong f g eq [] = ≡.refl traverse-cong f g eq (px ∷ ap) rewrite eq px | traverse-cong f g eq ap = ≡.refl
{ "alphanum_fraction": 0.569258144, "avg_line_length": 32.6160714286, "ext": "agda", "hexsha": "69df62602be23a5397a6b36e92e463ee8eeb86c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Prelude/FromStdlib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Prelude/FromStdlib.agda", "max_line_length": 149, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Prelude/FromStdlib.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2115, "size": 7306 }
module Categories.Agda.ISetoids.Complete where open import Level open import Relation.Binary using (Setoid; module Setoid; Preorder; module Preorder; Rel; _=[_]⇒_) open import Data.Product using (Σ; _,_; proj₁; proj₂) open import Categories.Support.IProduct -- import Relation.Binary.EqReasoning as EqReasoning open import Categories.Support.Equivalence using (module I→R-Wrapper; setoid-i→r; Fam-setoid; ∀[_]-setoid_) renaming (Setoid to ISetoid; module Setoid to ISetoid) open import Categories.Support.SetoidFunctions using (module _⟶_) open import Categories.Support.PropositionalEquality import Categories.Support.ZigZag as ZigZag open import Categories.Category open import Categories.Functor import Categories.NaturalTransformation as NT open import Categories.Agda open import Categories.Colimit open import Categories.Object.Initial open import Categories.Cocones open import Categories.Cocone ISetoidsComplete : ∀ {o ℓ e c ℓ′} → Cocomplete o ℓ e (Category.op (ISetoids (c ⊔ ℓ′ ⊔ (o ⊔ ℓ ⊔ e)) (c ⊔ (o ⊔ ℓ ⊔ e)))) ISetoidsComplete {o} {ℓ} {e} {c} {cℓ} = record { colimit = colimit } where c′ = c ⊔ cℓ ⊔ (o ⊔ ℓ ⊔ e) ℓ′ = c ⊔ (o ⊔ ℓ ⊔ e) C = Category.op (ISetoids c′ ℓ′) colimit : ∀ {J : Category o ℓ e} (F : Functor J C) → Colimit F colimit {J} F = record { initial = record { ⊥ = record { N = Fam-setoid (Σ′ (∀ j → Carrier (F₀ j)) (λ f → ∀ {a b} (h : a J.⇒ b) → (F₀ a ≈ F₁ h ⟨$⟩ f b) (f a))) (∀[ J.Obj ]-setoid F₀) proj₁′ ; ψ = λ X → record { _⟨$⟩_ = λ f → proj₁′ f X ; cong = λ eq → eq X } ; commute = λ {X} {Y} h {f} {g} f≈g → trans (F₀ X) (f≈g X) (sym (F₀ X) (proj₂′ g h)) } ; ! = λ {A} → record { f = record { _⟨$⟩_ = λ X → (λ j → Cocone.ψ A j ⟨$⟩ X) , (λ {a} {b} h → sym (F₀ a) (Cocone.commute A h (refl (Cocone.N A)))) ; cong = λ i≈j a → cong (Cocone.ψ A a) i≈j } ; commute = λ {X} x≈y → cong (Cocone.ψ A X) x≈y } ; !-unique = λ {A} f x≈y a → sym (F₀ a) (CoconeMorphism.commute f (sym (Cocone.N A) x≈y)) } } where module J = Category J open Functor F open ISetoid open _⟶_
{ "alphanum_fraction": 0.5737489025, "avg_line_length": 41.4181818182, "ext": "agda", "hexsha": "bfe6d6590bc2900aebd91310b1aee88d706abef3", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Agda/ISetoids/Complete.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Agda/ISetoids/Complete.agda", "max_line_length": 126, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Agda/ISetoids/Complete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 799, "size": 2278 }
module Tactic.Nat.NF where open import Prelude open import Tactic.Nat.Exp open import Container.Bag Tm : Set → Set Tm Atom = List Atom NF : Set → Set NF Atom = Bag (Tm Atom) product1 : List Nat → Nat product1 [] = 1 product1 (x ∷ xs) = foldl (λ n x → n * x) x xs module _ {Atom : Set} {{_ : Ord Atom}} where infixl 6 _+nf_ infixl 7 _*nf_ _+nf_ : NF Atom → NF Atom → NF Atom _+nf_ a b = union a b merge : Tm Atom → Tm Atom → Tm Atom merge x [] = x merge [] y = y merge (i ∷ x) (j ∷ y) = if i <? j then i ∷ merge x (j ∷ y) else j ∷ merge (i ∷ x) y nf-sort : NF Atom → NF Atom nf-sort [] = [] nf-sort (x ∷ nf) = union [ x ] (nf-sort nf) mulTm : Nat × Tm Atom → Nat × Tm Atom → Nat × Tm Atom mulTm (a , x) (b , y) = a * b , merge x y _*nf_ : NF Atom → NF Atom → NF Atom [] *nf b = [] (t ∷ a) *nf b = nf-sort (map (mulTm t) b) +nf (a *nf b) -- Normalising expressions -- norm : Exp Atom → NF Atom norm (var x) = [ 1 , [ x ] ] norm (lit 0) = [] norm (lit n) = [ n , [] ] norm (e ⟨+⟩ e₁) = norm e +nf norm e₁ norm (e ⟨*⟩ e₁) = norm e *nf norm e₁ ⟦_⟧t : Nat × Tm Atom → Env Atom → Nat ⟦ k , v ⟧t ρ = k * productR (map ρ v) ⟦_⟧n : NF Atom → Env Atom → Nat ⟦ nf ⟧n ρ = sumR (map (flip ⟦_⟧t ρ) nf) ⟦_⟧ts : Nat × Tm Atom → Env Atom → Nat ⟦ 1 , v ⟧ts ρ = product1 (map ρ v) ⟦ k , v ⟧ts ρ = product1 (map ρ v) * k ⟦_⟧ns : NF Atom → Env Atom → Nat ⟦ [] ⟧ns ρ = 0 ⟦ t ∷ nf ⟧ns ρ = foldl (λ n t → n + ⟦ t ⟧ts ρ) (⟦ t ⟧ts ρ) nf cancel : NF Atom → NF Atom → NF Atom × NF Atom cancel nf₁ [] = nf₁ , [] cancel [] nf₂ = [] , nf₂ cancel ((i , x) ∷ nf₁) ((j , y) ∷ nf₂) with compare x y ... | less _ = first (_∷_ (i , x)) (cancel nf₁ ((j , y) ∷ nf₂)) ... | greater _ = second (_∷_ (j , y)) (cancel ((i , x) ∷ nf₁) nf₂) ... | equal _ with compare i j ... | less (diff k _) = second (_∷_ (suc k , y)) (cancel nf₁ nf₂) ... | greater (diff k _) = first (_∷_ (suc k , x)) (cancel nf₁ nf₂) ... | equal _ = cancel nf₁ nf₂
{ "alphanum_fraction": 0.4932950192, "avg_line_length": 27.4736842105, "ext": "agda", "hexsha": "dd5cc3743f833a340a5520493f28b988d925e056", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/NF.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/NF.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/NF.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 886, "size": 2088 }
{-# OPTIONS --no-positivity-check #-} module IIRDr where import LF import IIRD open LF open IIRD -- Agda2 has restricted IIRDs so we can define Ur/Tr directly mutual data Ur {I : Set}{D : I -> Set1}(γ : OPr I D)(i : I) : Set where intror : Hu γ (Ur γ) (Tr γ) i -> Ur {I}{D} γ i Tr : {I : Set}{D : I -> Set1}(γ : OPr I D)(i : I) -> Ur γ i -> D i Tr γ i (intror a) = Ht γ (Ur γ) (Tr γ) i a -- Elimination rule Rr : {I : Set}{D : I -> Set1}(γ : OPr I D)(F : (i : I) -> Ur γ i -> Set1) (h : (i : I)(a : Hu γ (Ur γ) (Tr γ) i) -> KIH (γ i) (Ur γ) (Tr γ) F a -> F i (intror a)) (i : I)(u : Ur γ i) -> F i u Rr γ F h i (intror a) = h i a (Kmap (γ i) (Ur γ) (Tr γ) F (Rr γ F h) a) -- Helpers ι★r : {I : Set}{D : I -> Set1} -> OP I D One' ι★r = ι ★'
{ "alphanum_fraction": 0.4967490247, "avg_line_length": 25.6333333333, "ext": "agda", "hexsha": "f3dcf992da7e4f6b415a68a2ab5caa42e69a78ad", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/IIRDr.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/IIRDr.agda", "max_line_length": 93, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/IIRDr.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 343, "size": 769 }
{-# OPTIONS --warning=error --safe --guardedness --without-K #-} open import Setoids.Orders.Partial.Definition open import Setoids.Setoids open import LogicalFormulae open import Rings.Definition open import Numbers.Rationals.Definition open import Functions.Definition module Numbers.Reals.Definition where open import Fields.CauchyCompletion.Definition ℚOrdered ℚField open import Fields.CauchyCompletion.Setoid ℚOrdered ℚField open import Fields.CauchyCompletion.Addition ℚOrdered ℚField open import Fields.CauchyCompletion.Multiplication ℚOrdered ℚField open import Fields.CauchyCompletion.Ring ℚOrdered ℚField open import Fields.CauchyCompletion.Comparison ℚOrdered ℚField ℝ : Set ℝ = CauchyCompletion _+R_ : ℝ → ℝ → ℝ _+R_ = _+C_ _*R_ : ℝ → ℝ → ℝ _*R_ = _*C_ ℝSetoid = cauchyCompletionSetoid _=R_ : ℝ → ℝ → Set a =R b = Setoid._∼_ cauchyCompletionSetoid a b ℝRing : Ring cauchyCompletionSetoid _+R_ _*R_ ℝRing = CRing injectionR : ℚ → ℝ injectionR = injection injectionRInjective : Injection injectionR injectionRInjective = CInjection' 0R : ℝ 0R = injection 0Q _<R_ : ℝ → ℝ → Set _<R_ = _<C_ ℝPartialOrder : SetoidPartialOrder cauchyCompletionSetoid _<C_ ℝPartialOrder = <COrder
{ "alphanum_fraction": 0.7908333333, "avg_line_length": 24, "ext": "agda", "hexsha": "1f9b8cb6d8a48ac9d4f2bb942f522d5486605052", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Reals/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Reals/Definition.agda", "max_line_length": 66, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Reals/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 382, "size": 1200 }
-- Andreas, 2016-07-28, issue #779 data D : Set where c : D record R : Set1 where bla : D → D bla c = c field F : Set -- Current: -- Not a valid let-definition -- Expected: -- Success, or error outlawing pattern matching definition before last field.
{ "alphanum_fraction": 0.662835249, "avg_line_length": 17.4, "ext": "agda", "hexsha": "4f67203ccd97d3f2eb19ed770bf229ef1c628f9e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue779pattern.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue779pattern.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue779pattern.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 77, "size": 261 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- this module characterizes a category of all products indexed by I. -- this notion formalizes a category with all products up to certain cardinal. module Categories.Object.Product.Indexed {o ℓ e} (C : Category o ℓ e) where open import Level open import Categories.Morphism.Reasoning C open Category C open Equiv open HomReasoning record IndexedProductOf {i} {I : Set i} (P : I → Obj) : Set (i ⊔ o ⊔ e ⊔ ℓ) where field -- the product X : Obj π : ∀ i → X ⇒ P i ⟨_⟩ : ∀ {Y} → (∀ i → Y ⇒ P i) → Y ⇒ X commute : ∀ {Y} (f : ∀ i → Y ⇒ P i) → ∀ i → π i ∘ ⟨ f ⟩ ≈ f i unique : ∀ {Y} (h : Y ⇒ X) (f : ∀ i → Y ⇒ P i) → (∀ i → π i ∘ h ≈ f i) → ⟨ f ⟩ ≈ h η : ∀ {Y} (h : Y ⇒ X) → ⟨ (λ i → π i ∘ h) ⟩ ≈ h η h = unique _ _ λ _ → refl ⟨⟩∘ : ∀ {Y Z} (f : ∀ i → Y ⇒ P i) (g : Z ⇒ Y) → ⟨ f ⟩ ∘ g ≈ ⟨ (λ i → f i ∘ g) ⟩ ⟨⟩∘ f g = ⟺ (unique _ _ λ i → pullˡ (commute _ _)) ⟨⟩-cong : ∀ {Y} (f g : ∀ i → Y ⇒ P i) → (eq : ∀ i → f i ≈ g i) → ⟨ f ⟩ ≈ ⟨ g ⟩ ⟨⟩-cong f g eq = unique _ _ λ i → trans (commute _ _) (⟺ (eq i)) unique′ : ∀ {Y} (h h′ : Y ⇒ X) → (∀ i → π i ∘ h′ ≈ π i ∘ h) → h′ ≈ h unique′ h h′ f = trans (⟺ (unique _ _ f)) (η _) record IndexedProduct {i} (I : Set i) : Set (i ⊔ o ⊔ e ⊔ ℓ) where field P : I → Obj productOf : IndexedProductOf P open IndexedProductOf productOf public AllProducts : ∀ i → Set (o ⊔ ℓ ⊔ e ⊔ suc i) AllProducts i = (I : Set i) → IndexedProduct I AllProductsOf : ∀ i → Set (o ⊔ ℓ ⊔ e ⊔ suc i) AllProductsOf i = ∀ {I : Set i} (P : I → Obj) → IndexedProductOf P
{ "alphanum_fraction": 0.5120444719, "avg_line_length": 30.5471698113, "ext": "agda", "hexsha": "e90dfe2cca5cb899a92678ba6139ba612c8d755a", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Object/Product/Indexed.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Object/Product/Indexed.agda", "max_line_length": 87, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Object/Product/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 672, "size": 1619 }
{-# OPTIONS --without-K #-} open import level open import algebra.group.core open import algebra.monoid.mset open import algebra.monoid.morphism open import function.extensionality open import function.isomorphism open import equality.calculus open import equality.core open import sum open import hott.level open import hott.equivalence open import hott.univalence module algebra.group.gset {i}(G : Set i) ⦃ gG : IsGroup G ⦄ where open IsGroup ⦃ ... ⦄ IsGSet : ∀ {j}(X : Set j) → Set (i ⊔ j) IsGSet X = IsMSet G X GSet : ∀ j → Set (i ⊔ lsuc j) GSet j = Σ (Set j) IsGSet GSet₀ : ∀ j → Set (i ⊔ lsuc j) GSet₀ j = Σ (Type j 2) λ { (X , hX) → G → X → X } GSet₁ : ∀ {j} → GSet₀ j → Set (i ⊔ j) GSet₁ ((X , _) , _◂_) = ((g₁ g₂ : G)(x : X) → (g₁ * g₂) ◂ x ≡ g₁ ◂ (g₂ ◂ x)) × ((x : X) → e ◂ x ≡ x) gset₁-level : ∀ {j}(X : GSet₀ j) → h 1 (GSet₁ X) gset₁-level ((X , hX) , act) = ×-level (Π-level λ g₁ → Π-level λ g₂ → Π-level λ x → hX _ _) (Π-level λ x → hX _ _) gset-struct-iso : ∀ {j} → GSet j ≅ Σ (GSet₀ j) GSet₁ gset-struct-iso = record { to = λ { (X , xG) → (((X , IsMSet.mset-level xG) , IsMSet._◂_ xG) , (IsMSet.◂-hom xG , IsMSet.◂-id xG)) } ; from = λ { (((X , hX) , _◂_) , (◂-hom , ◂-id)) → (X , mk-is-mset _◂_ ◂-hom ◂-id hX) } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } open IsMSet ⦃ ... ⦄ module _ {j k} {X : Set j} ⦃ xG : IsGSet X ⦄ {Y : Set k} ⦃ yG : IsGSet Y ⦄ where IsGSetMorphism : (X → Y) → Set (i ⊔ j ⊔ k) IsGSetMorphism = IsMSetMorphism G module _ {j k} (X : Set j) ⦃ xG : IsGSet X ⦄ (Y : Set k) ⦃ yG : IsGSet Y ⦄ where GSetMorphism : Set (i ⊔ j ⊔ k) GSetMorphism = Σ (X → Y) IsGSetMorphism gsetmorphism-equality : h 2 Y → {f g : X → Y} (f-mor : IsGSetMorphism f) (g-mor : IsGSetMorphism g) → f ≡ g → _≡_ {A = GSetMorphism} (f , f-mor) (g , g-mor) gsetmorphism-equality hY {f} f-mor g-mor refl = ap (λ m → (f , m)) (h1⇒prop (is-mset-morphism-level G hY f) _ _) module _ {j} (X : Set j) ⦃ xG : IsGSet X ⦄ (Y : Set j) ⦃ yG : IsGSet Y ⦄ where 𝑋 𝑌 : GSet j 𝑋 = (X , xG) 𝑌 = (Y , yG) X₀ Y₀ : GSet₀ j X₀ = ((X , IsMSet.mset-level xG) , _◂_) Y₀ = ((Y , IsMSet.mset-level yG) , _◂_) GSet-univalence : (𝑋 ≡ 𝑌) ≅ (Σ (GSetMorphism X Y) λ { (f , _) → weak-equiv f }) GSet-univalence = begin (𝑋 ≡ 𝑌) ≅⟨ iso≡ gset-struct-iso ·≅ sym≅ (subtype-equality gset₁-level) ⟩ (X₀ ≡ Y₀) ≅⟨ sym≅ Σ-split-iso ⟩ ( Σ (proj₁ X₀ ≡ proj₁ Y₀) λ p → subst (λ { (X , _) → G → X → X }) p (proj₂ X₀) ≡ proj₂ Y₀ ) ≅⟨ ( Σ-ap-iso (sym≅ (subtype-equality λ X → hn-h1 2 X)) λ p → trans≡-iso (sym (subst-naturality (λ X → G → X → X) proj₁ p (proj₂ X₀)))) ⟩ ( Σ (X ≡ Y) λ p → subst (λ X → G → X → X) p (proj₂ X₀) ≡ proj₂ Y₀ ) ≅⟨ Σ-ap-iso refl≅ (λ p → sym≅ (lem₁ p _ _)) ⟩ ( Σ (X ≡ Y) λ p → ∀ g w → coerce p (proj₂ X₀ g w) ≡ proj₂ Y₀ g (coerce p w) ) ≅⟨ ( Σ-ap-iso uni-iso λ p → refl≅ ) ⟩ ( Σ (X ≈ Y) λ f → ∀ g w → apply≈ f (proj₂ X₀ g w) ≡ proj₂ Y₀ g (apply≈ f w)) ≅⟨ record { to = λ { ((f , we), mor) → ((f , mor) , we) } ; from = λ { ((f , mor) , we) → ((f , we) , mor) } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } ⟩ (Σ (GSetMorphism X Y) λ { (f , _) → weak-equiv f }) ∎ where open ≅-Reasoning lem₁ : {U V : Set j}(p : U ≡ V) → (act : G → U → U) → (act' : G → V → V) → (∀ g u → coerce p (act g u) ≡ act' g (coerce p u)) ≅ (subst (λ { X → G → X → X }) p act ≡ act') lem₁ refl act act' = (Π-ap-iso refl≅ λ g → strong-funext-iso) ·≅ strong-funext-iso instance GisGSet : IsGSet G GisGSet = record { _◂_ = _*_ ; ◂-hom = assoc ; ◂-id = lunit ; mset-level = is-set } module _ {j} {X : Set j} (hX : h 2 X) ⦃ xG : IsGSet X ⦄ where GSet-repr : (ϕ : G → X) → IsGSetMorphism ϕ → (g : G) → ϕ g ≡ g ◂ ϕ e GSet-repr ϕ ϕ-mor g = ap ϕ (sym (runit g)) · ϕ-mor g e GSet-repr-iso : GSetMorphism G X ≅ X GSet-repr-iso = iso f g α β where f : GSetMorphism G X → X f (ϕ , _) = ϕ e g : X → GSetMorphism G X g x = (ϕ , ϕ-mor) where ϕ : G → X ϕ g = g ◂ x ϕ-mor : IsGSetMorphism ϕ ϕ-mor g₁ g₂ = ◂-hom g₁ g₂ x α : (ϕ : GSetMorphism G X) → g (f ϕ) ≡ ϕ α (ϕ , ϕ-mor) = gsetmorphism-equality G X hX _ _ (funext λ g → sym (GSet-repr ϕ ϕ-mor g)) β : (x : X) → f (g x) ≡ x β x = (IsMSet.◂-id xG) x
{ "alphanum_fraction": 0.4562691131, "avg_line_length": 32.4834437086, "ext": "agda", "hexsha": "91bd45b290524f970ee63d367292ad9ae2770af3", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/algebra/group/gset.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/algebra/group/gset.agda", "max_line_length": 75, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/algebra/group/gset.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 2108, "size": 4905 }
{- Definition of finite sets There are may different formulations of finite sets in constructive mathematics, and we will use Bishop finiteness as is usually called in the literature. -} {-# OPTIONS --safe #-} module Cubical.Data.FinSet.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_) open import Cubical.Foundations.Univalence open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.Data.Nat open import Cubical.Data.Fin renaming (Fin to Finℕ) hiding (isSetFin) open import Cubical.Data.SumFin open import Cubical.Data.Sigma private variable ℓ ℓ' ℓ'' : Level A : Type ℓ -- definition of (Bishop) finite sets -- this definition makes cardinality computation more efficient isFinSet : Type ℓ → Type ℓ isFinSet A = Σ[ n ∈ ℕ ] ∥ A ≃ Fin n ∥ isFinOrd : Type ℓ → Type ℓ isFinOrd A = Σ[ n ∈ ℕ ] A ≃ Fin n isFinOrd→isFinSet : isFinOrd A → isFinSet A isFinOrd→isFinSet (_ , p) = _ , ∣ p ∣ -- finite sets are sets isFinSet→isSet : isFinSet A → isSet A isFinSet→isSet p = rec isPropIsSet (λ e → isOfHLevelRespectEquiv 2 (invEquiv e) isSetFin) (p .snd) -- isFinSet is proposition isPropIsFinSet : isProp (isFinSet A) isPropIsFinSet p q = Σ≡PropEquiv (λ _ → isPropPropTrunc) .fst ( Prop.elim2 (λ _ _ → isSetℕ _ _) (λ p q → Fin-inj _ _ (ua (invEquiv (SumFin≃Fin _) ⋆ (invEquiv p) ⋆ q ⋆ SumFin≃Fin _))) (p .snd) (q .snd)) -- isFinOrd is Set -- ordering can be seen as extra structures over finite sets isSetIsFinOrd : isSet (isFinOrd A) isSetIsFinOrd = isOfHLevelΣ 2 isSetℕ (λ _ → isOfHLevel⁺≃ᵣ 1 isSetFin) -- alternative definition of isFinSet isFinSet' : Type ℓ → Type ℓ isFinSet' A = ∥ Σ[ n ∈ ℕ ] A ≃ Fin n ∥ isFinSet→isFinSet' : isFinSet A → isFinSet' A isFinSet→isFinSet' (_ , p) = Prop.rec isPropPropTrunc (λ p → ∣ _ , p ∣) p isFinSet'→isFinSet : isFinSet' A → isFinSet A isFinSet'→isFinSet = Prop.rec isPropIsFinSet (λ (n , p) → _ , ∣ p ∣ ) isFinSet≡isFinSet' : isFinSet A ≡ isFinSet' A isFinSet≡isFinSet' = hPropExt isPropIsFinSet isPropPropTrunc isFinSet→isFinSet' isFinSet'→isFinSet -- the type of finite sets/propositions FinSet : (ℓ : Level) → Type (ℓ-suc ℓ) FinSet ℓ = TypeWithStr _ isFinSet FinProp : (ℓ : Level) → Type (ℓ-suc ℓ) FinProp ℓ = Σ[ P ∈ FinSet ℓ ] isProp (P .fst) -- cardinality of finite sets card : FinSet ℓ → ℕ card X = X .snd .fst -- equality between finite sets/propositions FinSet≡ : (X Y : FinSet ℓ) → (X .fst ≡ Y .fst) ≃ (X ≡ Y) FinSet≡ _ _ = Σ≡PropEquiv (λ _ → isPropIsFinSet) FinProp≡ : (X Y : FinProp ℓ) → (X .fst .fst ≡ Y .fst .fst) ≃ (X ≡ Y) FinProp≡ X Y = compEquiv (FinSet≡ (X .fst) (Y .fst)) (Σ≡PropEquiv (λ _ → isPropIsProp)) -- hlevels of FinSet and FinProp isGroupoidFinSet : isGroupoid (FinSet ℓ) isGroupoidFinSet X Y = isOfHLevelRespectEquiv 2 (FinSet≡ X Y) (isOfHLevel≡ 2 (isFinSet→isSet (X .snd)) (isFinSet→isSet (Y .snd))) isSetFinProp : isSet (FinProp ℓ) isSetFinProp X Y = isOfHLevelRespectEquiv 1 (FinProp≡ X Y) (isOfHLevel≡ 1 (X .snd) (Y .snd))
{ "alphanum_fraction": 0.6994868505, "avg_line_length": 28.8703703704, "ext": "agda", "hexsha": "40dce365801e2e49423b345687176cc5516096d1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/FinSet/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/FinSet/Base.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/FinSet/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1190, "size": 3118 }
module Luau.RuntimeError where open import Agda.Builtin.Equality using (_≡_) open import Luau.Heap using (Heap; lookup) open import FFI.Data.Maybe using (just; nothing) open import Luau.Syntax using (Block; Expr; nil; var; addr; function⟨_⟩_end; block_is_end; _$_; local_←_; function_⟨_⟩_end; return; done; _∙_) data RuntimeErrorᴮ (H : Heap) : Block → Set data RuntimeErrorᴱ (H : Heap) : Expr → Set data RuntimeErrorᴱ H where NilIsNotAFunction : ∀ {M} → RuntimeErrorᴱ H (nil $ M) UnboundVariable : ∀ x → RuntimeErrorᴱ H (var x) SEGV : ∀ a → (lookup H a ≡ nothing) → RuntimeErrorᴱ H (addr a) app : ∀ {M N} → RuntimeErrorᴱ H M → RuntimeErrorᴱ H (M $ N) block : ∀ b {B} → RuntimeErrorᴮ H B → RuntimeErrorᴱ H (block b is B end) data RuntimeErrorᴮ H where local : ∀ x {M B} → RuntimeErrorᴱ H M → RuntimeErrorᴮ H (local x ← M ∙ B) return : ∀ {M B} → RuntimeErrorᴱ H M → RuntimeErrorᴮ H (return M ∙ B)
{ "alphanum_fraction": 0.6849015317, "avg_line_length": 41.5454545455, "ext": "agda", "hexsha": "86e7cf2114d3a1c25c4ae4f1ef84a5ef14a53af2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FreakingBarbarians/luau", "max_forks_repo_path": "prototyping/Luau/RuntimeError.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FreakingBarbarians/luau", "max_issues_repo_path": "prototyping/Luau/RuntimeError.agda", "max_line_length": 142, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FreakingBarbarians/luau", "max_stars_repo_path": "prototyping/Luau/RuntimeError.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 321, "size": 914 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Addition open import Numbers.Naturals.Order open import Numbers.Naturals.Multiplication open import Semirings.Definition open import Orders.Total.Definition module Numbers.Naturals.Naturals where record subtractionNResult (a b : ℕ) .(p : a ≤N b) : Set where field result : ℕ pr : a +N result ≡ b subtractionNWellDefined : {a b : ℕ} → {p1 p2 : a ≤N b} → (s : subtractionNResult a b p1) → (t : subtractionNResult a b p2) → (subtractionNResult.result s ≡ subtractionNResult.result t) subtractionNWellDefined {a} {b} {inl x} {pr2} record { result = result1 ; pr = pr1 } record { result = result ; pr = pr } = canSubtractFromEqualityLeft {a} (transitivity pr1 (equalityCommutative pr)) subtractionNWellDefined {a} {.a} {inr refl} {pr2} record { result = result1 ; pr = pr1 } record { result = result2 ; pr = pr } = transitivity g' (equalityCommutative g) where g : result2 ≡ 0 g = canSubtractFromEqualityLeft {a} {_} {0} (transitivity pr (equalityCommutative (addZeroRight a))) g' : result1 ≡ 0 g' = canSubtractFromEqualityLeft {a} {_} {0} (transitivity pr1 (equalityCommutative (addZeroRight a))) -N : {a : ℕ} → {b : ℕ} → (pr : a ≤N b) → subtractionNResult a b pr -N {zero} {b} prAB = record { result = b ; pr = refl } -N {succ a} {zero} (inl ()) -N {succ a} {zero} (inr ()) -N {succ a} {succ b} (inl x) with -N {a} {b} (inl (canRemoveSuccFrom<N x)) -N {succ a} {succ b} (inl x) | record { result = result ; pr = pr } = record { result = result ; pr = applyEquality succ pr } -N {succ a} {succ b} (inr pr) = record { result = 0 ; pr = transitivity (applyEquality succ (addZeroRight a)) pr } addOneToWeakInequality : {a b : ℕ} → (a ≤N b) → (succ a ≤N succ b) addOneToWeakInequality {a} {b} (inl ineq) = inl (succPreservesInequality ineq) addOneToWeakInequality {a} {.a} (inr refl) = inr refl bumpUpSubtraction : {a b : ℕ} → (p1 : a ≤N b) → (s : subtractionNResult a b p1) → Sg (subtractionNResult (succ a) (succ b) (addOneToWeakInequality p1)) (λ n → subtractionNResult.result n ≡ subtractionNResult.result s) bumpUpSubtraction {a} {b} a<=b record { result = result ; pr = pr } = record { result = result ; pr = applyEquality succ pr } , refl addMinus : {a : ℕ} → {b : ℕ} → (pr : a ≤N b) → subtractionNResult.result (-N {a} {b} pr) +N a ≡ b addMinus {zero} {zero} p = refl addMinus {zero} {succ b} pr = applyEquality succ (addZeroRight b) addMinus {succ a} {zero} (inl (le x ())) addMinus {succ a} {zero} (inr ()) addMinus {succ a} {succ b} (inl x) with (-N {succ a} {succ b} (inl x)) addMinus {succ a} {succ b} (inl x) | record { result = result ; pr = pr } = transitivity (transitivity (applyEquality (_+N succ a) (transitivity (subtractionNWellDefined {p1 = inl (canRemoveSuccFrom<N x)} {p2 = inl (canRemoveSuccFrom<N x)} (record { result = subtractionNResult.result (-N (inl (canRemoveSuccFrom<N x))) ; pr = transitivity (additionNIsCommutative a _) (addMinus (inl (canRemoveSuccFrom<N x)))}) previous) (equalityCommutative t))) (additionNIsCommutative result (succ a))) pr where pr'' : (a <N b) || (a ≡ b) pr'' = (inl (le (_<N_.x x) (transitivity (equalityCommutative (succExtracts (_<N_.x x) a)) (succInjective (_<N_.proof x))))) previous : subtractionNResult a b pr'' previous = -N pr'' next : Sg (subtractionNResult (succ a) (succ b) (addOneToWeakInequality pr'')) λ n → subtractionNResult.result n ≡ subtractionNResult.result previous next = bumpUpSubtraction pr'' previous t : result ≡ subtractionNResult.result (underlying next) t = subtractionNWellDefined {succ a} {succ b} {inl x} {addOneToWeakInequality pr''} (record { result = result ; pr = pr }) (underlying next) addMinus {succ a} {succ .a} (inr refl) = refl addMinus' : {a b : ℕ} → (pr : a ≤N b) → a +N subtractionNResult.result (-N {a} {b} pr) ≡ b addMinus' {a} {b} pr rewrite additionNIsCommutative a (subtractionNResult.result (-N {a} {b} pr)) = addMinus {a} {b} pr additionPreservesInequality : {a b : ℕ} → (c : ℕ) → a <N b → a +N c <N b +N c additionPreservesInequality {a} {b} zero prAB rewrite additionNIsCommutative a 0 | additionNIsCommutative b 0 = prAB additionPreservesInequality {a} {b} (succ c) (le x proof) = le x (transitivity (equalityCommutative (additionNIsAssociative (succ x) a (succ c))) (applyEquality (_+N succ c) proof)) additionPreservesInequalityOnLeft : {a b : ℕ} → (c : ℕ) → a <N b → c +N a <N c +N b additionPreservesInequalityOnLeft {a} {b} c prAB = identityOfIndiscernablesRight (λ a b → a <N b) (identityOfIndiscernablesLeft (λ a b → a <N b) (additionPreservesInequality {a} {b} c prAB) (additionNIsCommutative a c)) (additionNIsCommutative b c) multiplyIncreases : (a : ℕ) → (b : ℕ) → succ zero <N a → zero <N b → b <N a *N b multiplyIncreases zero b (le x ()) prB multiplyIncreases (succ zero) b (le zero ()) prb multiplyIncreases (succ zero) b (le (succ x) ()) prb multiplyIncreases (succ (succ a)) (succ b) prA prb = le (b +N a *N succ b) (applyEquality succ (transitivity (Semiring.commutative ℕSemiring _ (succ b)) (transitivity (applyEquality succ (Semiring.commutative ℕSemiring b _)) (Semiring.commutative ℕSemiring _ b)))) canTimesOneOnLeft : {a b : ℕ} → (a <N b) → (a *N (succ zero)) <N b canTimesOneOnLeft {a} {b} prAB = identityOfIndiscernablesLeft _<N_ prAB (equalityCommutative (productWithOneRight a)) canTimesOneOnRight : {a b : ℕ} → (a <N b) → a <N (b *N (succ zero)) canTimesOneOnRight {a} {b} prAB = identityOfIndiscernablesRight _<N_ prAB (equalityCommutative (productWithOneRight b)) canSwapAddOnLeftOfInequality : {a b c : ℕ} → (a +N b <N c) → (b +N a <N c) canSwapAddOnLeftOfInequality {a} {b} {c} pr = identityOfIndiscernablesLeft _<N_ pr (additionNIsCommutative a b) canSwapAddOnRightOfInequality : {a b c : ℕ} → (a <N b +N c) → (a <N c +N b) canSwapAddOnRightOfInequality {a} {b} {c} pr = identityOfIndiscernablesRight _<N_ pr (additionNIsCommutative b c) bumpDownOnRight : (a c : ℕ) → c *N succ a ≡ c *N a +N c bumpDownOnRight a c = transitivity (multiplicationNIsCommutative c (succ a)) (transitivity refl (transitivity (additionNIsCommutative c (a *N c)) ((addingPreservesEqualityRight c (multiplicationNIsCommutative a c) )))) succIsNonzero : {a : ℕ} → (succ a ≡ zero) → False succIsNonzero {a} () lessImpliesNotEqual : {a b : ℕ} → (a <N b) → a ≡ b → False lessImpliesNotEqual {a} {.a} prAB refl = TotalOrder.irreflexive ℕTotalOrder prAB -NIsDecreasing : {a b : ℕ} → (prAB : succ a <N b) → subtractionNResult.result (-N (inl prAB)) <N b -NIsDecreasing {a} {b} prAB with (-N (inl prAB)) -NIsDecreasing {a} {b} (le x proof) | record { result = result ; pr = pr } = record { x = a ; proof = pr } sumZeroImpliesSummandsZero : {a b : ℕ} → (a +N b ≡ zero) → ((a ≡ zero) && (b ≡ zero)) sumZeroImpliesSummandsZero {zero} {zero} pr = record { fst = refl ; snd = refl } sumZeroImpliesSummandsZero {zero} {(succ b)} pr = record { fst = refl ; snd = pr } sumZeroImpliesSummandsZero {(succ a)} {zero} () sumZeroImpliesSummandsZero {(succ a)} {(succ b)} () productWithNonzeroZero : (a b : ℕ) → (a *N succ b ≡ zero) → a ≡ zero productWithNonzeroZero zero b pr = refl productWithNonzeroZero (succ a) b () productOneImpliesOperandsOne : {a b : ℕ} → (a *N b ≡ 1) → (a ≡ 1) && (b ≡ 1) productOneImpliesOperandsOne {zero} {b} () productOneImpliesOperandsOne {succ a} {zero} pr = exFalso absurd'' where absurd : zero *N (succ a) ≡ 1 absurd' : 0 ≡ 1 absurd'' : False absurd'' = succIsNonzero (equalityCommutative absurd') absurd = identityOfIndiscernablesLeft _≡_ pr (productZeroIsZeroRight a) absurd' = absurd productOneImpliesOperandsOne {succ a} {succ b} pr = record { fst = r' ; snd = (applyEquality succ (_&&_.fst q)) } where p : b +N a *N succ b ≡ zero p = succInjective pr q : (b ≡ zero) && (a *N succ b ≡ zero) q = sumZeroImpliesSummandsZero p r : a ≡ zero r = productWithNonzeroZero a b (_&&_.snd q) r' : succ a ≡ 1 r' = applyEquality succ r oneTimesPlusZero : (a : ℕ) → a ≡ a *N succ zero +N zero oneTimesPlusZero a = identityOfIndiscernablesRight _≡_ (equalityCommutative (productWithOneRight a)) (equalityCommutative (addZeroRight (a *N succ zero))) equivalentSubtraction' : (a b c d : ℕ) → (a<c : a <N c) → (d<b : d <N b) → (subtractionNResult.result (-N {a} {c} (inl a<c))) ≡ (subtractionNResult.result (-N {d} {b} (inl d<b))) → a +N b ≡ c +N d equivalentSubtraction' a b c d prac prdb eq with -N (inl prac) equivalentSubtraction' a b c d prac prdb eq | record { result = result ; pr = pr } with -N (inl prdb) equivalentSubtraction' a b c d prac prdb refl | record { result = .result ; pr = pr1 } | record { result = result ; pr = pr } rewrite (equalityCommutative pr) = go where go : a +N (d +N result) ≡ c +N d go rewrite (equalityCommutative pr1) = t where t : a +N (d +N result) ≡ (a +N result) +N d t rewrite (additionNIsAssociative a result d) = applyEquality (λ n → a +N n) (additionNIsCommutative d result) lessThanMeansPositiveSubtr : {a b : ℕ} → (a<b : a <N b) → (subtractionNResult.result (-N (inl a<b)) ≡ 0) → False lessThanMeansPositiveSubtr {a} {b} a<b pr with -N (inl a<b) lessThanMeansPositiveSubtr {a} {b} a<b pr | record { result = result ; pr = sub } rewrite pr | addZeroRight a = lessImpliesNotEqual a<b sub moveOneSubtraction : {a b c : ℕ} → {a<=b : a ≤N b} → (subtractionNResult.result (-N {a} {b} a<=b)) ≡ c → b ≡ a +N c moveOneSubtraction {a} {b} {zero} {inl a<b} pr rewrite addZeroRight a = exFalso (lessThanMeansPositiveSubtr {a} {b} a<b pr) moveOneSubtraction {a} {b} {succ c} {inl a<b} pr with -N (inl a<b) moveOneSubtraction {a} {b} {succ c} {inl a<b} pr | record { result = result ; pr = sub } rewrite pr | sub = refl moveOneSubtraction {a} {.a} {zero} {inr refl} pr = equalityCommutative (addZeroRight a) moveOneSubtraction {a} {.a} {succ c} {inr refl} pr = identityOfIndiscernablesRight _≡_ (equalityCommutative (addZeroRight a)) (applyEquality (λ t → a +N t) pr') where selfSub : (r : ℕ) → subtractionNResult.result (-N {r} {r} (inr refl)) ≡ zero selfSub zero = refl selfSub (succ r) = refl pr' : 0 ≡ succ c pr' = transitivity (equalityCommutative (selfSub a)) pr moveOneSubtraction' : {a b c : ℕ} → {a<=b : a ≤N b} → (b ≡ a +N c) → subtractionNResult.result (-N {a} {b} a<=b) ≡ c moveOneSubtraction' {a} {b} {c} {inl x} pr with -N (inl x) moveOneSubtraction' {a} {b} {c} {inl x} pr | record { result = result ; pr = pr1 } rewrite pr = canSubtractFromEqualityLeft pr1 moveOneSubtraction' {a} {b} {c} {inr x} pr with -N (inr x) moveOneSubtraction' {a} {b} {c} {inr x} pr | record { result = result ; pr = pr1 } rewrite pr = canSubtractFromEqualityLeft pr1 equivalentSubtraction : (a b c d : ℕ) → (a<c : a <N c) → (d<b : d <N b) → a +N b ≡ c +N d → (subtractionNResult.result (-N {a} {c} (inl a<c))) ≡ (subtractionNResult.result (-N {d} {b} (inl d<b))) equivalentSubtraction zero b c d prac (le x proof) eq with (-N (inl (le x proof))) equivalentSubtraction zero b c d prac (le x proof) eq | record { result = result ; pr = pr } = equalityCommutative p'' where p : d +N result ≡ c +N d p = transitivity pr eq p' : d +N result ≡ d +N c p' = transitivity p (additionNIsCommutative c d) p'' : result ≡ c p'' = canSubtractFromEqualityLeft {d} {result} {c} p' equivalentSubtraction (succ a) b zero d (le x ()) prdb eq equivalentSubtraction (succ a) b (succ c) d prac prdb eq with (-N (inl (canRemoveSuccFrom<N prac))) equivalentSubtraction (succ a) b (succ c) d prac prdb eq | record { result = c-a ; pr = prc-a } with -N (inl prdb) equivalentSubtraction (succ a) b (succ c) d prac prdb eq | record { result = c-a ; pr = prc-a } | record { result = result ; pr = pr } rewrite equalityCommutative prc-a | equalityCommutative pr | equalityCommutative (additionNIsAssociative a d result) | additionNIsCommutative (a +N c-a) d | equalityCommutative (additionNIsAssociative d a c-a) | additionNIsCommutative a d = equalityCommutative (canSubtractFromEqualityLeft eq) leLemma : (b c : ℕ) → (b ≤N c) ≡ (b +N zero ≤N c +N zero) leLemma b c rewrite addZeroRight c = q where q : (b ≤N c) ≡ (b +N zero ≤N c) q rewrite addZeroRight b = refl lessCast : {a b c : ℕ} → (pr : a ≤N b) → (eq : a ≡ c) → c ≤N b lessCast {a} {b} pr eq rewrite eq = pr lessCast' : {a b c : ℕ} → (pr : a ≤N b) → (eq : b ≡ c) → a ≤N c lessCast' {a} {b} pr eq rewrite eq = pr subtractionCast : {a b c : ℕ} → {pr : a ≤N b} → (eq : a ≡ c) → (p : subtractionNResult a b pr) → Sg (subtractionNResult c b (lessCast pr eq)) (λ res → subtractionNResult.result p ≡ subtractionNResult.result res) subtractionCast {a} {b} {c} {a<b} eq subt rewrite eq = (subt , refl) subtractionCast' : {a b c : ℕ} → {pr : a ≤N b} → (eq : b ≡ c) → (p : subtractionNResult a b pr) → Sg (subtractionNResult a c (lessCast' pr eq)) (λ res → subtractionNResult.result p ≡ subtractionNResult.result res) subtractionCast' {a} {b} {c} {a<b} eq subt rewrite eq = (subt , refl) addToRightWeakInequality : (a : ℕ) → {b c : ℕ} → (pr : b ≤N c) → (b ≤N c +N a) addToRightWeakInequality zero {b} {c} (inl x) rewrite (addZeroRight c) = inl x addToRightWeakInequality (succ a) {b} {c} (inl x) = inl (TotalOrder.<Transitive ℕTotalOrder x (addingIncreases c a)) addToRightWeakInequality zero {b} {.b} (inr refl) = inr (equalityCommutative (addZeroRight b)) addToRightWeakInequality (succ a) {b} {.b} (inr refl) = inl (addingIncreases b a) addAssocLemma : (a b c : ℕ) → (a +N b) +N c ≡ (a +N c) +N b addAssocLemma a b c rewrite (additionNIsAssociative a b c) = g where g : a +N (b +N c) ≡ (a +N c) +N b g rewrite (additionNIsAssociative a c b) = applyEquality (λ t → a +N t) (additionNIsCommutative b c) addIntoSubtraction : (a : ℕ) → {b c : ℕ} → (pr : b ≤N c) → a +N (subtractionNResult.result (-N {b} {c} pr)) ≡ subtractionNResult.result (-N {b} {c +N a} (addToRightWeakInequality a pr)) addIntoSubtraction a {b} {c} pr with (-N {b} {c} pr) addIntoSubtraction a {b} {c} pr | record { result = c-b ; pr = prc-b } with (-N {b} {c +N a} (addToRightWeakInequality a pr)) addIntoSubtraction a {b} {c} pr | record { result = c-b ; pr = prc-b } | record { result = c+a-b ; pr = prcab } = equalityCommutative g''' where g : (b +N c+a-b) +N c-b ≡ c +N (a +N c-b) g rewrite (equalityCommutative (additionNIsAssociative c a c-b)) = applyEquality (λ t → t +N c-b) prcab g' : (b +N c-b) +N c+a-b ≡ c +N (a +N c-b) g' = identityOfIndiscernablesLeft _≡_ g (addAssocLemma b c+a-b c-b) g'' : c +N c+a-b ≡ c +N (a +N c-b) g'' = identityOfIndiscernablesLeft _≡_ g' (applyEquality (λ i → i +N c+a-b) prc-b) g''' : c+a-b ≡ a +N c-b g''' = canSubtractFromEqualityLeft {c} {c+a-b} {a +N c-b} g'' addStrongInequalities : {a b c d : ℕ} → (a<b : a <N b) → (c<d : c <N d) → (a +N c <N b +N d) addStrongInequalities {zero} {zero} {c} {d} prab prcd = prcd addStrongInequalities {zero} {succ b} {c} {d} prab prcd rewrite (additionNIsCommutative b d) = TotalOrder.<Transitive ℕTotalOrder prcd (cannotAddAndEnlarge d b) addStrongInequalities {succ a} {zero} {c} {d} (le x ()) prcd addStrongInequalities {succ a} {succ b} {c} {d} prab prcd = succPreservesInequality (addStrongInequalities (canRemoveSuccFrom<N prab) prcd) addWeakInequalities : {a b c d : ℕ} → (a<=b : a ≤N b) → (c<=d : c ≤N d) → (a +N c) ≤N (b +N d) addWeakInequalities {a} {b} {c} {d} (inl x) (inl y) = inl (addStrongInequalities x y) addWeakInequalities {a} {b} {c} {.c} (inl x) (inr refl) = inl (additionPreservesInequality c x) addWeakInequalities {a} {.a} {c} {d} (inr refl) (inl x) = inl (additionPreservesInequalityOnLeft a x) addWeakInequalities {a} {.a} {c} {.c} (inr refl) (inr refl) = inr refl addSubIntoSub : {a b c d : ℕ} → (a<b : a ≤N b) → (c<d : c ≤N d) → (subtractionNResult.result (-N {a} {b} a<b)) +N (subtractionNResult.result (-N {c} {d} c<d)) ≡ subtractionNResult.result (-N {a +N c} {b +N d} (addWeakInequalities a<b c<d)) addSubIntoSub {a}{b}{c}{d} a<b c<d with (-N {a} {b} a<b) addSubIntoSub {a} {b} {c} {d} a<b c<d | record { result = b-a ; pr = prb-a } with (-N {c} {d} c<d) addSubIntoSub {a} {b} {c} {d} a<b c<d | record { result = b-a ; pr = prb-a } | record { result = d-c ; pr = prd-c } with (-N {a +N c} {b +N d} (addWeakInequalities a<b c<d)) addSubIntoSub {a} {b} {c} {d} a<b c<d | record { result = b-a ; pr = prb-a } | record { result = d-c ; pr = prd-c } | record { result = b+d-a-c ; pr = pr } = equalityCommutative r where pr' : (a +N c) +N b+d-a-c ≡ (a +N b-a) +N d pr' rewrite prb-a = pr pr'' : a +N (c +N b+d-a-c) ≡ (a +N b-a) +N d pr'' rewrite (equalityCommutative (additionNIsAssociative a c b+d-a-c)) = pr' pr''' : a +N (c +N b+d-a-c) ≡ a +N (b-a +N d) pr''' rewrite (equalityCommutative (additionNIsAssociative a b-a d)) = pr'' q : c +N b+d-a-c ≡ b-a +N d q = canSubtractFromEqualityLeft {a} pr''' q' : c +N b+d-a-c ≡ b-a +N (c +N d-c) q' rewrite prd-c = q q'' : c +N b+d-a-c ≡ (b-a +N c) +N d-c q'' rewrite additionNIsAssociative b-a c d-c = q' q''' : c +N b+d-a-c ≡ (c +N b-a) +N d-c q''' rewrite additionNIsCommutative c b-a = q'' q'''' : c +N b+d-a-c ≡ c +N (b-a +N d-c) q'''' rewrite equalityCommutative (additionNIsAssociative c b-a d-c) = q''' r : b+d-a-c ≡ b-a +N d-c r = canSubtractFromEqualityLeft {c} q'''' subtractProduct : {a b c : ℕ} → (aPos : 0 <N a) → (b<c : b <N c) → (a *N (subtractionNResult.result (-N (inl b<c)))) ≡ subtractionNResult.result (-N {a *N b} {a *N c} (inl (lessRespectsMultiplicationLeft b c a b<c aPos))) subtractProduct {zero} {b} {c} aPos b<c = refl subtractProduct {succ zero} {b} {c} aPos b<c = s' where resbc = -N {b} {c} (inl b<c) resbc' : Sg (subtractionNResult (b +N 0 *N b) c (lessCast (inl b<c) (equalityCommutative (addZeroRight b)))) ((λ res → subtractionNResult.result resbc ≡ subtractionNResult.result res)) resbc'' : Sg (subtractionNResult (b +N 0 *N b) (c +N 0 *N c) (lessCast' (lessCast (inl b<c) (equalityCommutative (addZeroRight b))) (equalityCommutative (addZeroRight c)))) (λ res → subtractionNResult.result (underlying resbc') ≡ subtractionNResult.result res) g : (rsbc' : Sg (subtractionNResult (b +N 0 *N b) c (lessCast (inl b<c) (equalityCommutative (addZeroRight b)))) (λ res → subtractionNResult.result resbc ≡ subtractionNResult.result res)) → subtractionNResult.result resbc ≡ subtractionNResult.result (underlying rsbc') g' : (rsbc'' : Sg (subtractionNResult (b +N 0 *N b) (c +N 0 *N c) (lessCast' (lessCast (inl b<c) (equalityCommutative (addZeroRight b))) (equalityCommutative (addZeroRight c)))) (λ res → subtractionNResult.result (underlying resbc') ≡ subtractionNResult.result res)) → subtractionNResult.result (underlying resbc') ≡ subtractionNResult.result (underlying rsbc'') q : subtractionNResult.result resbc ≡ subtractionNResult.result (underlying resbc'') r : subtractionNResult.result (underlying resbc'') ≡ subtractionNResult.result (-N {b +N 0 *N b} {c +N 0 *N c} (inl (lessRespectsMultiplicationLeft b c 1 b<c aPos))) s : subtractionNResult.result resbc ≡ subtractionNResult.result (-N {b +N 0 *N b} {c +N 0 *N c} (inl (lessRespectsMultiplicationLeft b c 1 b<c aPos))) s = transitivity q r s' : subtractionNResult.result resbc +N 0 ≡ subtractionNResult.result (-N {b +N 0 *N b} {c +N 0 *N c} (inl (lessRespectsMultiplicationLeft b c 1 b<c aPos))) s' = identityOfIndiscernablesLeft _≡_ s (equalityCommutative (addZeroRight _)) r = subtractionNWellDefined {b +N 0 *N b} {c +N 0 *N c} {(lessCast' (lessCast (inl b<c) (equalityCommutative (addZeroRight b))) (equalityCommutative (addZeroRight c)))} {inl (lessRespectsMultiplicationLeft b c 1 b<c aPos)} (underlying resbc'') (-N {b +N 0 *N b} {c +N 0 *N c} (inl (lessRespectsMultiplicationLeft b c 1 b<c aPos))) g (a , b) = b g' (a , b) = b resbc'' = subtractionCast' {pr = inl (identityOfIndiscernablesLeft _<N_ b<c (equalityCommutative (addZeroRight b)))} (equalityCommutative (addZeroRight c)) (underlying resbc') q = transitivity {_} {_} {subtractionNResult.result resbc} {subtractionNResult.result (underlying resbc')} {subtractionNResult.result (underlying resbc'')} (g resbc') (g' resbc'') resbc' = subtractionCast {b} {c} {b +N 0 *N b} {inl b<c} (equalityCommutative (addZeroRight b)) resbc subtractProduct {succ (succ a)} {b} {c} aPos b<c = let t : (succ a) *N subtractionNResult.result (-N {b} {c} (inl b<c)) ≡ subtractionNResult.result (-N {(succ a) *N b} {(succ a) *N c} (inl (lessRespectsMultiplicationLeft b c (succ a) b<c (succIsPositive a)))) t = subtractProduct {succ a} {b} {c} (succIsPositive a) b<c in go t --go t where go : (succ a) *N subtractionNResult.result (-N {b} {c} (inl b<c)) ≡ subtractionNResult.result (-N {(succ a) *N b} {(succ a) *N c} (inl (lessRespectsMultiplicationLeft b c (succ a) b<c (succIsPositive a)))) → (subtractionNResult.result (-N (inl b<c)) +N (subtractionNResult.result (-N (inl b<c)) +N a *N subtractionNResult.result (-N (inl b<c))) ≡ subtractionNResult.result (-N (inl (lessRespectsMultiplicationLeft b c (succ (succ a)) b<c aPos)))) go t = transitivity {_} {_} {lhs} {middle2} {rhs} u' v where c-b = subtractionNResult.result (-N {b} {c} (inl b<c)) lhs = c-b +N (succ a) *N c-b middle = subtractionNResult.result (-N {(succ a) *N b} {(succ a) *N c} (inl (lessRespectsMultiplicationLeft b c (succ a) b<c (succIsPositive a)))) middle2 = subtractionNResult.result (-N {b +N (succ a *N b)} {c +N (succ a *N c)} (addWeakInequalities (inl b<c) (inl (lessRespectsMultiplicationLeft b c (succ a) b<c (succIsPositive a))))) rhs = subtractionNResult.result (-N {succ (succ a) *N b} {(succ (succ a)) *N c} (inl (lessRespectsMultiplicationLeft b c (succ (succ a)) b<c aPos))) lhs' : lhs ≡ c-b +N middle u : c-b +N middle ≡ middle2 u' : lhs ≡ middle2 v : middle2 ≡ rhs u'' : c-b +N subtractionNResult.result (-N {(succ a) *N b} {(succ a) *N c} (inl (lessRespectsMultiplicationLeft b c (succ a) b<c (succIsPositive a)))) ≡ rhs u'' rewrite equalityCommutative v = u u' rewrite equalityCommutative u = lhs' lhs' rewrite t = refl u = addSubIntoSub (inl b<c) (inl (lessRespectsMultiplicationLeft b c (succ a) b<c (succIsPositive a))) v = subtractionNWellDefined {succ (succ a) *N b} {succ (succ a) *N c} {addWeakInequalities (inl b<c) (inl (lessRespectsMultiplicationLeft b c (succ a) b<c (succIsPositive a)))} {inl (lessRespectsMultiplicationLeft b c (succ (succ a)) b<c aPos)} (-N {b +N (succ a *N b)} {c +N (succ a *N c)} (addWeakInequalities (inl b<c) (inl (lessRespectsMultiplicationLeft b c (succ a) b<c (succIsPositive a))))) (-N {(succ (succ a)) *N b} {(succ (succ a)) *N c} (inl (lessRespectsMultiplicationLeft b c (succ (succ a)) b<c aPos))) subtractProduct' : {a b c : ℕ} → (aPos : 0 <N a) → (b<c : b <N c) → (subtractionNResult.result (-N (inl b<c))) *N a ≡ subtractionNResult.result (-N {a *N b} {a *N c} (inl (lessRespectsMultiplicationLeft b c a b<c aPos))) subtractProduct' {a} aPos b<c = identityOfIndiscernablesLeft _≡_ (subtractProduct aPos b<c) (multiplicationNIsCommutative a _) equalityDecidable : (a b : ℕ) → (a ≡ b) || ((a ≡ b) → False) equalityDecidable zero zero = inl refl equalityDecidable zero (succ b) = inr naughtE equalityDecidable (succ a) zero = inr λ t → naughtE (equalityCommutative t) equalityDecidable (succ a) (succ b) with equalityDecidable a b equalityDecidable (succ a) (succ b) | inl x = inl (applyEquality succ x) equalityDecidable (succ a) (succ b) | inr x = inr (λ t → x (succInjective t)) cannotAddKeepingEquality : (a b : ℕ) → (a ≡ a +N succ b) → False cannotAddKeepingEquality zero zero pr = naughtE pr cannotAddKeepingEquality (succ a) zero pr = cannotAddKeepingEquality a zero (succInjective pr) cannotAddKeepingEquality zero (succ b) pr = naughtE pr cannotAddKeepingEquality (succ a) (succ b) pr = cannotAddKeepingEquality a (succ b) (succInjective pr) <NWellDefined' : {a b c d : ℕ} → a ≡ c → b ≡ d → a <N b → c <N d <NWellDefined' {a} {b} {c} {d} a=c b=d a<b rewrite a=c | b=d = a<b
{ "alphanum_fraction": 0.6527175932, "avg_line_length": 72.1160714286, "ext": "agda", "hexsha": "a33cf93e49a977bd642a4849739da81e62bd3684", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Naturals/Naturals.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Naturals/Naturals.agda", "max_line_length": 527, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Naturals/Naturals.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 8853, "size": 24231 }
module Prelude.Decidable where open import Prelude.Empty data Dec {a} (P : Set a) : Set a where yes : P → Dec P no : ¬ P → Dec P infix 0 ifYes_then_else_ ifNo_then_else_ ifYes_then_else_ : ∀ {a b} {A : Set a} {B : Set b} → Dec A → B → B → B ifYes yes _ then x else _ = x ifYes no _ then _ else y = y ifNo_then_else_ : ∀ {a b} {A : Set a} {B : Set b} → Dec A → B → B → B ifNo d then x else y = ifYes d then y else x FromDec : ∀ {a} {P : Set a} → Dec P → Set a FromDec {P = P} (yes _) = P FromDec {P = P} (no _) = ¬ P fromDec : ∀ {a} {P : Set a} (d : Dec P) → FromDec d fromDec (yes x) = x fromDec (no x) = x
{ "alphanum_fraction": 0.577170418, "avg_line_length": 24.88, "ext": "agda", "hexsha": "43edde66b34467fc61856e6a7b1ef060e0b5bb79", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Decidable.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Decidable.agda", "max_line_length": 70, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 256, "size": 622 }
{-# OPTIONS --without-K #-} open import Type open import Function open import Function.Extensionality open import Data.Fin using (Fin) open import Level.NP open import Algebra open import Algebra.FunctionProperties.NP open import Data.Fin using (Fin; zero; suc) open import Data.Nat open import Data.Product open import Relation.Binary.NP open import Explore.Core open import Explore.Properties open import Explore.Explorable import Explore.Fin open Explore.Fin.Regular open import HoTT module Explore.Function.Fin where postulate Postulate-FinFunˢ-ok : ★ -- open ExplorableRecord module _ {A : ★}(μA : Explorable A) where eᴬ = explore μA extend : ∀ {n} → A → (Fin n → A) → Fin (suc n) → A extend x g zero = x extend x g (suc i) = g i ¬Fin0 : Fin 0 → A ¬Fin0 () -- There is one function Fin 0 → A (called abs) so this should be fine -- if not there is a version below that forces the domain to be non-empty FinFunᵉ : ∀ n → Explore _ (Fin n → A) FinFunᵉ zero z op f = f ¬Fin0 FinFunᵉ (suc n) z op f = eᴬ z op (λ x → FinFunᵉ n z op (f ∘ extend x)) FinFunⁱ : ∀ n → ExploreInd _ (FinFunᵉ n) FinFunⁱ zero P Pz P∙ Pf = Pf _ FinFunⁱ (suc n) P Pz P∙ Pf = explore-ind μA (λ sa → P (λ z op f → sa z op (λ x → FinFunᵉ n z op (f ∘ extend x)))) Pz P∙ (λ x → FinFunⁱ n (λ sf → P (λ z op f → sf z op (f ∘ extend x))) Pz P∙ (Pf ∘ extend x)) FinFunˢ : ∀ n → Sum (Fin n → A) FinFunˢ n = FinFunᵉ n 0 _+_ postulate FinFunˢ-ok : ∀ {{_ : Postulate-FinFunˢ-ok}} n → Adequate-sum (FinFunˢ n) μFinFun : ∀ {{_ : Postulate-FinFunˢ-ok}} {n} → Explorable (Fin n → A) μFinFun = mk _ (FinFunⁱ _) (FinFunˢ-ok _) module BigDistr {{_ : Postulate-FinFunˢ-ok}} {{_ : FunExt}} {{_ : UA}} {A : ★}(μA : Explorable A) (cm : CommutativeMonoid ₀ ₀) -- we want (open CMon cm) !!! (_◎_ : let open CMon cm in C → C → C) (ε-◎ : let open CMon cm in Zero _≈_ ε _◎_) (distrib : let open CMon cm in _DistributesOver_ _≈_ _◎_ _∙_) (_◎-cong_ : let open CMon cm in _◎_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_) where open CMon cm renaming (sym to ≈-sym) μF→A = μFinFun μA -- Sum over A Σᴬ = explore μA ε _∙_ -- Sum over (Fin(1+I)→A) functions Σ' : ∀ {I} → ((Fin I → A) → C) → C Σ' = explore μF→A ε _∙_ -- Product over Fin(1+I) values Π' = λ I → explore (μFin I) ε _◎_ bigDistr : ∀ I F → Π' I (Σᴬ ∘ F) ≈ Σ' (Π' I ∘ _ˢ_ F) bigDistr zero _ = refl bigDistr (suc I) F = Σᴬ (F zero) ◎ Π' I (Σᴬ ∘ F ∘ suc) ≈⟨ refl ◎-cong bigDistr I (F ∘ suc) ⟩ Σᴬ (F zero) ◎ Σ' (Π' I ∘ _ˢ_ (F ∘ suc)) ≈⟨ ≈-sym (explore-linʳ μA monoid _◎_ (F zero) (Σ' (Π' I ∘ _ˢ_ (F ∘ suc))) (proj₁ ε-◎ _) (proj₂ distrib)) ⟩ Σᴬ (λ j → F zero j ◎ Σ' (Π' I ∘ _ˢ_ (F ∘ suc))) ≈⟨ explore-mon-ext μA monoid (λ j → ≈-sym (explore-linˡ μF→A monoid _◎_ (Π' I ∘ _ˢ_ (F ∘ suc)) (F zero j) (proj₂ ε-◎ _) (proj₁ distrib))) ⟩ (Σᴬ λ j → Σ' λ f → F zero j ◎ Π' I ((F ∘ suc) ˢ f)) ∎ module _ {{_ : Postulate-FinFunˢ-ok}}{{_ : UA}}{{_ : FunExt}} where FinDist : ∀ {n} → DistFun (μFin n) (λ μX → μFinFun μX) FinDist μB c ◎ distrib ◎-cong f = BigDistr.bigDistr μB c ◎ distrib ◎-cong f _
{ "alphanum_fraction": 0.5861093652, "avg_line_length": 31.1960784314, "ext": "agda", "hexsha": "1463e86585e6d09009aa36fee39ed8231fe513b5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Function/Fin.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Function/Fin.agda", "max_line_length": 143, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Function/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 1374, "size": 3182 }
{-# OPTIONS --without-K -v 2 #-} module Leftovers.Equality where open import Leftovers.Utils -- open import Leftovers.Leftovers import Level as Level -- open import Reflection open import Reflection.Term open import Reflection.Pattern as P open import Reflection.TypeChecking.Monad.Instances open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary open import Data.Unit open import Data.Nat as Nat hiding (_⊓_) open import Data.Bool open import Data.Product open import Data.List as List open import Data.Char as Char open import Data.String as String open import Leftovers.Monad import Data.List.Categorical open Data.List.Categorical.TraversableM {m = Level.zero} leftoversMonad --This file was adapted from https://github.com/alhassy/gentle-intro-to-reflection open import Reflection.Show import Data.Nat.Show as NShow --Unify the goal with a function that does a case-split on an argument of the type with the given name -- Return the metavariables, along with telescopes, for each branch cases : Name → Term → Leftovers ⊤ cases typeName hole -- thm-you-hope-is-provable-by-refls = do -- let η = nom δ ← getDefinition typeName holeType ← inferType hole debugPrint "refl-cases" 2 (strErr " hole type to start " ∷ termErr holeType ∷ []) clauses ← forM (constructors δ) (mk-cls holeType) -- declareDef (vArg η) holeType let retFun = (pat-lam clauses []) normFun ← reduce retFun debugPrint "refl-cases" 2 (strErr "reflcases ret non-norm " ∷ termErr retFun ∷ []) unify hole normFun normHole ← reduce hole debugPrint "refl-cases" 2 (strErr "reflCases final " ∷ termErr normHole ∷ []) where -- For each constructor, generate the clause, -- along with the metavariable term for its right-hand side mk-cls : Type → Name → Leftovers (Clause ) mk-cls holeType ctor = do debugPrint "mk-cls" 2 (strErr "mk-cls with ctor " ∷ nameErr ctor ∷ []) fullyApplied <- fully-applied-pattern ctor let patArgs = List.map CtorArg.pat fullyApplied patTerm = List.map CtorArg.term fullyApplied patTypes = List.map CtorArg.type fullyApplied extendContexts patTypes do debugPrint "" 2 (strErr "before retType " ∷ termErr holeType ∷ strErr " and " ∷ termErr (con ctor patTerm) ∷ []) retType ← returnTypeFor holeType (con ctor patTerm) debugPrint "mk-cls" 2 (strErr "retType is " ∷ termErr retType ∷ []) -- Make the right-hand side in an extended context -- with new pattern-match variables rhs ← freshMeta retType let teles = List.map (λ (x , n) → ( "arg" String.++ NShow.show n , x )) (List.zip patTypes (List.upTo (List.length patTypes))) debugPrint "mk-cls" 2 (strErr "Pat" ∷ strErr (showPatterns patArgs) ∷ [] ) let ret = (clause teles [ vArg (con ctor patArgs) ] (rhs ⦂ retType)) debugPrint "mk-cls" 2 (strErr "retClause" ∷ strErr (showClause ret) ∷ []) -- tryUnify rhs (con (quote refl) []) pure ret -- ≡-type-info : Term → Leftovers (Arg Term × Arg Term × Term × Term) -- ≡-type-info (def (quote _≡_) (𝓁 ∷ 𝒯 ∷ arg _ l ∷ arg _ r ∷ [])) = return (𝓁 , 𝒯 , l , r) -- ≡-type-info _ = typeError [ strErr "Term is not a ≡-type." ] -- {- If we have “f $ args” return “f”. -} -- $-head : Term → Term -- $-head (var v args) = var v [] -- $-head (con c args) = con c [] -- $-head (def f args) = def f [] -- $-head (pat-lam cs args) = pat-lam cs [] -- $-head t = t -- import Agda.Builtin.Reflection as Builtin -- _$-≟_ : Term → Term → Bool -- con c args $-≟ con c′ args′ = Builtin.primQNameEquality c c′ -- def f args $-≟ def f′ args′ = Builtin.primQNameEquality f f′ -- var x args $-≟ var x′ args′ = does (x Nat.≟ x′) -- _ $-≟ _ = false -- {- Only gets heads and as much common args, not anywhere deep. :'( -} -- infix 5 _⊓_ -- {-# TERMINATING #-} {- Fix this by adding fuel (con c args) ≔ 1 + length args -} -- _⊓_ : Term → Term → Term -- l ⊓ r with l $-≟ r | l | r -- ...| false | x | y = unknown -- ...| true | var f args | var f′ args′ = var f (List.zipWith (λ{ (arg i!! t) (arg j!! s) → arg i!! (t ⊓ s) }) args args′) -- ...| true | con f args | con f′ args′ = con f (List.zipWith (λ{ (arg i!! t) (arg j!! s) → arg i!! (t ⊓ s) }) args args′) -- ...| true | def f args | def f′ args′ = def f (List.zipWith (λ{ (arg i!! t) (arg j!! s) → arg i!! (t ⊓ s) }) args args′) -- ...| true | ll | _ = ll {- Left biased; using ‘unknown’ does not ensure idempotence. -} -- {- ‘unknown’ goes to a variable, a De Bruijn index -} -- unknown-elim : ℕ → List (Arg Term) → List (Arg Term) -- unknown-elim n [] = [] -- unknown-elim n (arg i unknown ∷ xs) = arg i (var n []) ∷ unknown-elim (n + 1) xs -- unknown-elim n (arg i (var x args) ∷ xs) = arg i (var (n + suc x) args) ∷ unknown-elim n xs -- unknown-elim n (arg i x ∷ xs) = arg i x ∷ unknown-elim n xs -- {- Essentially we want: body(unknownᵢ) ⇒ λ _ → body(var 0) -- However, now all “var 0” references in “body” refer to the wrong argument; -- they now refer to “one more lambda away than before”. -} -- unknown-count : List (Arg Term) → ℕ -- unknown-count [] = 0 -- unknown-count (arg i unknown ∷ xs) = 1 + unknown-count xs -- unknown-count (arg i _ ∷ xs) = unknown-count xs -- unknown-λ : ℕ → Term → Term -- unknown-λ zero body = body -- unknown-λ (suc n) body = unknown-λ n (λv "section" ↦ body) -- {- Replace ‘unknown’ with sections -} -- patch : Term → Term -- patch it@(def f args) = unknown-λ (unknown-count args) (def f (unknown-elim 0 args)) -- patch it@(var f args) = unknown-λ (unknown-count args) (var f (unknown-elim 0 args)) -- patch it@(con f args) = unknown-λ (unknown-count args) (con f (unknown-elim 0 args)) -- patch t = t -- macro -- spine : Term → Term → Leftovers ⊤ -- spine p goal = -- do τ ← inferType p -- _ , _ , l , r ← ≡-type-info τ -- unify goal (patch (l ⊓ r)) -- macro -- applyEq : Term → Term → Leftovers ⊤ -- applyEq p hole = -- do -- τ ← inferType hole -- _ , _ , l , r ← ≡-type-info τ -- unify hole ((def (quote cong) (vArg (patch (l ⊓ r)) ∷ vArg p ∷ [])))
{ "alphanum_fraction": 0.5905172414, "avg_line_length": 38.4378698225, "ext": "agda", "hexsha": "7e9f3fca27584898e762d7cfd413e1fa81a90b30", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/AgdaLeftovers", "max_forks_repo_path": "src/Leftovers/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/AgdaLeftovers", "max_issues_repo_path": "src/Leftovers/Equality.agda", "max_line_length": 132, "max_stars_count": null, "max_stars_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/AgdaLeftovers", "max_stars_repo_path": "src/Leftovers/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1979, "size": 6496 }
-- Adapted from Wadler: https://plfa.github.io/Lambda/ module Context (A : Set) where open import Prelude open import Data.Nat open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym) open import Data.Maybe open import Data.Product using (_×_; proj₁; proj₂; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Relation.Nullary.Decidable open import Relation.Nullary using (Dec; yes; no) open import Data.Empty import Data.Nat.Properties infixl 5 _,_⦂_ -- Internal type of contexts data ctx : Set where ∅ : ctx _,_⦂_ : ctx → ℕ → A → ctx infix 4 _∋_⦂_ data _∋_⦂_ : ctx → ℕ → A → Set where Z : ∀ {Γ : ctx} → ∀ {x : ℕ} → ∀ {a : A} ------------------ → Γ , x ⦂ a ∋ x ⦂ a S : ∀ {Γ x y a b} → x ≢ y → Γ ∋ x ⦂ a ------------------ → Γ , y ⦂ b ∋ x ⦂ a lookup : ctx → ℕ → Maybe A lookup ∅ _ = nothing lookup (Γ , x ⦂ t) y with compare x y ... | equal _ = just t ... | _ = lookup Γ x data _∈dom_ : ℕ → ctx → Set where inDom : ∀ {x Γ a} → Γ ∋ x ⦂ a ------------- → x ∈dom Γ data _∉dom_ : ℕ → ctx → Set where notInEmpty : ∀ {x} ---------- → x ∉dom ∅ notInNonempty : ∀ {x x' Γ T} → x ≢ x' → x ∉dom Γ -------------------- → x ∉dom (Γ , x' ⦂ T) irrelevantExtensionsOK : ∀ {Γ : ctx} → ∀ {x y t t'} → Γ ∋ x ⦂ t → x ≢ y → Γ , y ⦂ t' ∋ x ⦂ t irrelevantExtensionsOK {Γ} {x} {y} {t} cont@(Z {Γ₀} {x} {t}) neq = S neq cont irrelevantExtensionsOK (S neq' rest) neq = S neq (irrelevantExtensionsOK rest neq') irrelevantReductionsOK : ∀ {Γ : ctx} → ∀ {x y t t'} → Γ , x ⦂ t ∋ y ⦂ t' → y ≢ x → Γ ∋ y ⦂ t' -- ⊥-elim (!neq (Relation.Binary.PropositionalEquality.sym x x)) irrelevantReductionsOK {Γ} {x} {y} {t} {t'} z@(Z {Γ} {x} {t}) neq = let s : x ≡ x s = refl bot = neq s in Data.Empty.⊥-elim bot irrelevantReductionsOK {Γ} {x} {y} {t} {t'} (S x₁ qq) neq = qq irrelevantReductionsInValuesOK : ∀ {Γ : ctx} → ∀ {x y t t'} → Γ , x ⦂ t ∋ y ⦂ t' → t ≢ t' → Γ ∋ y ⦂ t' irrelevantReductionsInValuesOK {Γ} {x} {.x} {t} {.t} Z tNeqt' = ⊥-elim (tNeqt' refl) irrelevantReductionsInValuesOK {Γ} {x} {y} {t} {t'} (S yNeqx yt'InΓ') tNeqt' = yt'InΓ' ∈domExcludedMiddle : ∀ {Γ x} → x ∉dom Γ → Relation.Nullary.¬ (x ∈dom Γ) ∈domExcludedMiddle {.∅} {x} notInEmpty (inDom ()) ∈domExcludedMiddle {.(_ , _ ⦂ _)} {x} (notInNonempty xNeqx' xNotInΓ) (inDom n) = let rest = ∈domExcludedMiddle xNotInΓ xInΓ = irrelevantReductionsOK n xNeqx' in rest (inDom xInΓ) ∉domPreservation : ∀ {x x' Γ T T'} → x ∉dom (Γ , x' ⦂ T) --------------------- → x ∉dom (Γ , x' ⦂ T') ∉domPreservation {x} {x'} {Γ} {T} {T'} (notInNonempty xNeqX' xNotInDom) = notInNonempty xNeqX' xNotInDom ∉domGreaterThan : ∀ {Γ x} → (∀ x' → x' ∈dom Γ → x' < x) → x ∉dom Γ ∉domGreaterThan {∅} {x} xBigger = notInEmpty ∉domGreaterThan {Γ , x' ⦂ t} {x} xBigger = notInNonempty x≢x' (∉domGreaterThan rest) -- (∉domGreaterThan (λ x'' → λ x''InΓ → xBigger x'' (inDom {!!}))) where x'<x = xBigger x' (inDom Z) x≢x' : x ≢ x' x≢x' = ≢-sym (Data.Nat.Properties.<⇒≢ x'<x) rest : (x'' : ℕ) → x'' ∈dom Γ → x'' < x rest x'' (inDom x''InΓ) with x' ≟ x'' ... | yes x'≡x'' rewrite x'≡x'' = xBigger x'' (inDom Z) ... | no x'≢x'' = xBigger x'' (inDom (S (≢-sym x'≢x'') x''InΓ)) fresh : (Γ : ctx) → ∃[ x ] (x ∉dom Γ × (∀ x' → x' ∈dom Γ → x' < x)) fresh ∅ = ⟨ zero , ⟨ notInEmpty , xBigger ⟩ ⟩ where xBigger : (∀ x' → x' ∈dom ∅ → x' < zero) xBigger x' (inDom ()) fresh (Γ , x ⦂ t) = ⟨ x' , ⟨ x'IsFresh , x'Bigger ⟩ ⟩ where freshInRest = fresh Γ biggerThanRest = suc (proj₁ freshInRest) x' = biggerThanRest ⊔ (suc x) -- bigger than both everything in Γ and x. freshInRestBigger = proj₂ (proj₂ freshInRest) x'Bigger : (x'' : ℕ) → (x'' ∈dom (Γ , x ⦂ t)) → x'' < x' x'Bigger x'' (inDom x''InΓ') with x ≟ x'' ... | yes x≡x'' rewrite x≡x'' = s≤s (Data.Nat.Properties.n≤m⊔n (proj₁ (fresh Γ)) x'') -- s≤s (Data.Nat.Properties.<⇒≤ x''<oldFresh) ... | no x≢x'' = let x''<oldFresh = freshInRestBigger x'' (inDom (irrelevantReductionsOK x''InΓ' (≢-sym x≢x'')) ) x''≤oldFresh = (Data.Nat.Properties.<⇒≤ x''<oldFresh) in s≤s ( Data.Nat.Properties.m≤n⇒m≤n⊔o x x''≤oldFresh) -- s≤s (Data.Nat.Properties.<⇒≤ x''<oldFresh) x'IsFresh : x' ∉dom (Γ , x ⦂ t) x'IsFresh = ∉domGreaterThan x'Bigger -- Removing elements from a context _#_ : ctx → ℕ → ctx ∅ # x = ∅ (Γ , x' ⦂ T) # x with compare x x' ... | equal _ = Γ ... | _ = (Γ # x) , x' ⦂ T contextLookupUnique : ∀ {Γ : ctx} → ∀ {x t t'} → Γ ∋ x ⦂ t → Γ ∋ x ⦂ t' → t ≡ t' contextLookupUnique z1@Z z2@Z = refl contextLookupUnique z1@Z s2@(S {Γ} {x} {y} {a} {b} neq xHasTypeT') = Data.Empty.⊥-elim (neq refl) contextLookupUnique (S neq xHasTypeT) Z = Data.Empty.⊥-elim (neq refl) contextLookupUnique (S x₁ xHasTypeT) (S x₂ xHasTypeT') = contextLookupUnique xHasTypeT xHasTypeT' contextLookupNeq : ∀ {Γ : ctx} → ∀ {x x' t t'} → Γ , x ⦂ t ∋ x' ⦂ t' → t ≢ t' → x ≢ x' contextLookupNeq Z tNeq = Data.Empty.⊥-elim (tNeq refl) contextLookupNeq (S xNeq x'InΓ) tNeq = λ xEq → xNeq (sym xEq) lookupWeakening : ∀ {Γ : ctx} → ∀ {x x' t t'} → Γ ∋ x ⦂ t → ∃[ T ] ((Γ , x' ⦂ t') ∋ x ⦂ T) lookupWeakening {Γ} {x} {x'} {t} {t'} Γcontainment with x ≟ x' ... | yes refl = ⟨ t' , Z {Γ = Γ} {x = x'} {a = t'} ⟩ ... | no neq = ⟨ t , S neq Γcontainment ⟩ ∉dom-≢ : {Γ : ctx} → ∀ {x x' t} → x ∉dom (Γ , x' ⦂ t) → x ≢ x' ∉dom-≢ {Γ} {x} {x'} {t} (notInNonempty xNeqx' xNotInΓ') xEqx' = xNeqx' xEqx'
{ "alphanum_fraction": 0.4253171857, "avg_line_length": 33.6699029126, "ext": "agda", "hexsha": "fb0762af21cf302ffe9d3c4e833231eaaa6d45fc", "lang": "Agda", "max_forks_count": 11, "max_forks_repo_forks_event_max_datetime": "2021-06-09T18:40:19.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T08:20:52.000Z", "max_forks_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "ivoysey/Obsidian", "max_forks_repo_path": "formalization/Context.agda", "max_issues_count": 259, "max_issues_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_issues_repo_issues_event_max_datetime": "2022-03-29T18:20:05.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-18T19:50:41.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "ivoysey/Obsidian", "max_issues_repo_path": "formalization/Context.agda", "max_line_length": 115, "max_stars_count": 79, "max_stars_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "ivoysey/Obsidian", "max_stars_repo_path": "formalization/Context.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T10:34:28.000Z", "max_stars_repo_stars_event_min_datetime": "2017-08-19T16:24:10.000Z", "num_tokens": 2542, "size": 6936 }
open import Proc module Hear (param : Param) where open import Basics private open module P = Process param open Tran hear : {a : U}{p : Proc a} -> Guard p -> LT a -> Proc a hear {p = p} g bot = p hear og (lift v) = o hear (w !g p) (lift v) = w ! p hear (>g f) (lift v) = f v hear (_ ! _ +g f) (lift v) = f v hear (g1 ||g g2) (lift v) = hear g1 (lift v) || hear g2 (lift v) hear (φ /|g g) (lift v) = φ /| hear g (downV φ v) hear (defg x g) (lift v) = hear g (lift v) sound : {a : U}{p : Proc a}(g : Guard p){w : LT a} -> p -[ w ]-> hear g w sound g {bot} = qtau sound og {lift v} = rx-o sound (>g _) {lift v} = rx-> sound (w !g p) {lift v} = rx-! sound (w ! p +g f) {lift v} = rx-+ sound (g1 ||g g2) {lift v} = rx-|| (sound g1) (sound g2) sound (φ /|g g) {lift v} = rx-/| (sound g) sound (defg x g) {lift v} = rx-def (sound g) uniq : {a : U}{p : Proc a}{w : LT a}{px py : Proc a} -> p -[ w ]-> px -> p -[ w ]-> py -> px == py uniq qtau qtau = refl uniq rx-o rx-o = refl uniq rx-> rx-> = refl uniq rx-! rx-! = refl uniq rx-+ rx-+ = refl uniq (rx-|| l1 r1) (rx-|| l2 r2) with uniq l1 l2 | uniq r1 r2 ... | refl | refl = refl uniq (rx-/| r1) (rx-/| r2) with uniq r1 r2 ... | refl = refl uniq (rx-def r1) (rx-def r2) with uniq r1 r2 ... | refl = refl complete : {a : U}{p : Proc a}(g : Guard p){w : LT a}{p' : Proc a} -> p -[ w ]-> p' -> p' == hear g w complete g r = uniq r (sound g)
{ "alphanum_fraction": 0.4959731544, "avg_line_length": 30.4081632653, "ext": "agda", "hexsha": "e70df5eb167deae23d24f386b3d5afb4001c6e48", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/cbs/Hear.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/cbs/Hear.agda", "max_line_length": 69, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/cbs/Hear.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 604, "size": 1490 }
module NatProps where open import Data.Nat using (ℕ ; _≟_ ; _<_ ; zero ; suc ; s≤s) open import Relation.Nullary using (Dec ; yes ; no ; ¬_) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym) <-¬≡ : ∀ {n m} → n < m → ¬ n ≡ m <-¬≡ {zero} {zero} () <-¬≡ {zero} {suc m} p = λ () <-¬≡ {suc n} {zero} p = λ () <-¬≡ {suc n} {suc m} (Data.Nat.s≤s p) with (<-¬≡ p) ... | q = λ { refl → q refl }
{ "alphanum_fraction": 0.5224586288, "avg_line_length": 35.25, "ext": "agda", "hexsha": "dbadc11fae6741f8bad5a4a7211310958fa256df", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/NatProps.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/NatProps.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "src/NatProps.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 172, "size": 423 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of permutations using setoid equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary hiding (Decidable) module Data.List.Relation.Binary.Permutation.Setoid.Properties {a ℓ} (S : Setoid a ℓ) where open import Algebra open import Data.Fin.Base using (Fin) open import Data.List.Base as List hiding (head; tail) open import Data.List.Relation.Binary.Pointwise as Pointwise using (Pointwise; head; tail) import Data.List.Relation.Binary.Equality.Setoid as Equality import Data.List.Relation.Binary.Permutation.Setoid as Permutation open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.List.Relation.Unary.AllPairs using (AllPairs; []; _∷_) import Data.List.Relation.Unary.Unique.Setoid as Unique import Data.List.Membership.Setoid as Membership open import Data.List.Membership.Setoid.Properties using (∈-∃++; ∈-insert) open import Data.List.Relation.Binary.BagAndSetEquality using (bag; _∼[_]_; empty-unique; drop-cons; commutativeMonoid) import Data.List.Properties as Lₚ open import Data.Nat hiding (_⊔_) open import Data.Nat.Induction open import Data.Nat.Properties open import Data.Product using (_,_; _×_; ∃; ∃₂; proj₁; proj₂) open import Function using (_∘_; _⟨_⟩_; flip) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as Inv using (inverse) open import Level using (Level; _⊔_) open import Relation.Unary using (Pred; Decidable) open import Relation.Binary.Properties.Setoid S using (≉-resp₂) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_ ; refl; sym; cong; cong₂; subst; _≢_; inspect) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Negation using (contradiction) private variable b p r : Level open Setoid S using (_≈_) renaming (Carrier to A; refl to ≈-refl; sym to ≈-sym; trans to ≈-trans) open Permutation S open Membership S open Unique S using (Unique) open module ≋ = Equality S using (_≋_; []; _∷_; ≋-refl; ≋-sym; ≋-trans; All-resp-≋; Any-resp-≋; AllPairs-resp-≋) open PermutationReasoning ------------------------------------------------------------------------ -- Relationships to other predicates ------------------------------------------------------------------------ All-resp-↭ : ∀ {P : Pred A p} → P Respects _≈_ → (All P) Respects _↭_ All-resp-↭ resp (refl xs≋ys) pxs = All-resp-≋ resp xs≋ys pxs All-resp-↭ resp (prep x≈y p) (px ∷ pxs) = resp x≈y px ∷ All-resp-↭ resp p pxs All-resp-↭ resp (swap ≈₁ ≈₂ p) (px ∷ py ∷ pxs) = resp ≈₂ py ∷ resp ≈₁ px ∷ All-resp-↭ resp p pxs All-resp-↭ resp (trans p₁ p₂) pxs = All-resp-↭ resp p₂ (All-resp-↭ resp p₁ pxs) Any-resp-↭ : ∀ {P : Pred A p} → P Respects _≈_ → (Any P) Respects _↭_ Any-resp-↭ resp (refl xs≋ys) pxs = Any-resp-≋ resp xs≋ys pxs Any-resp-↭ resp (prep x≈y p) (here px) = here (resp x≈y px) Any-resp-↭ resp (prep x≈y p) (there pxs) = there (Any-resp-↭ resp p pxs) Any-resp-↭ resp (swap x y p) (here px) = there (here (resp x px)) Any-resp-↭ resp (swap x y p) (there (here px)) = here (resp y px) Any-resp-↭ resp (swap x y p) (there (there pxs)) = there (there (Any-resp-↭ resp p pxs)) Any-resp-↭ resp (trans p₁ p₂) pxs = Any-resp-↭ resp p₂ (Any-resp-↭ resp p₁ pxs) AllPairs-resp-↭ : ∀ {R : Rel A r} → Symmetric R → R Respects₂ _≈_ → (AllPairs R) Respects _↭_ AllPairs-resp-↭ sym resp (refl xs≋ys) pxs = AllPairs-resp-≋ resp xs≋ys pxs AllPairs-resp-↭ sym resp (prep x≈y p) (∼ ∷ pxs) = All-resp-↭ (proj₁ resp) p (All.map (proj₂ resp x≈y) ∼) ∷ AllPairs-resp-↭ sym resp p pxs AllPairs-resp-↭ sym resp@(rʳ , rˡ) (swap eq₁ eq₂ p) ((∼₁ ∷ ∼₂) ∷ ∼₃ ∷ pxs) = (sym (rʳ eq₂ (rˡ eq₁ ∼₁)) ∷ All-resp-↭ rʳ p (All.map (rˡ eq₂) ∼₃)) ∷ All-resp-↭ rʳ p (All.map (rˡ eq₁) ∼₂) ∷ AllPairs-resp-↭ sym resp p pxs AllPairs-resp-↭ sym resp (trans p₁ p₂) pxs = AllPairs-resp-↭ sym resp p₂ (AllPairs-resp-↭ sym resp p₁ pxs) ∈-resp-↭ : ∀ {x} → (x ∈_) Respects _↭_ ∈-resp-↭ = Any-resp-↭ (flip ≈-trans) Unique-resp-↭ : Unique Respects _↭_ Unique-resp-↭ = AllPairs-resp-↭ (_∘ ≈-sym) ≉-resp₂ ------------------------------------------------------------------------ -- Relationships to other relations ------------------------------------------------------------------------ ≋⇒↭ : _≋_ ⇒ _↭_ ≋⇒↭ = refl ↭-respʳ-≋ : _↭_ Respectsʳ _≋_ ↭-respʳ-≋ xs≋ys (refl zs≋xs) = refl (≋-trans zs≋xs xs≋ys) ↭-respʳ-≋ (x≈y ∷ xs≋ys) (prep eq zs↭xs) = prep (≈-trans eq x≈y) (↭-respʳ-≋ xs≋ys zs↭xs) ↭-respʳ-≋ (x≈y ∷ w≈z ∷ xs≋ys) (swap eq₁ eq₂ zs↭xs) = swap (≈-trans eq₁ w≈z) (≈-trans eq₂ x≈y) (↭-respʳ-≋ xs≋ys zs↭xs) ↭-respʳ-≋ xs≋ys (trans ws↭zs zs↭xs) = trans ws↭zs (↭-respʳ-≋ xs≋ys zs↭xs) ↭-respˡ-≋ : _↭_ Respectsˡ _≋_ ↭-respˡ-≋ xs≋ys (refl ys≋zs) = refl (≋-trans (≋-sym xs≋ys) ys≋zs) ↭-respˡ-≋ (x≈y ∷ xs≋ys) (prep eq zs↭xs) = prep (≈-trans (≈-sym x≈y) eq) (↭-respˡ-≋ xs≋ys zs↭xs) ↭-respˡ-≋ (x≈y ∷ w≈z ∷ xs≋ys) (swap eq₁ eq₂ zs↭xs) = swap (≈-trans (≈-sym x≈y) eq₁) (≈-trans (≈-sym w≈z) eq₂) (↭-respˡ-≋ xs≋ys zs↭xs) ↭-respˡ-≋ xs≋ys (trans ws↭zs zs↭xs) = trans (↭-respˡ-≋ xs≋ys ws↭zs) zs↭xs ------------------------------------------------------------------------ -- Properties of steps ------------------------------------------------------------------------ 0<steps : ∀ {xs ys} (xs↭ys : xs ↭ ys) → 0 < steps xs↭ys 0<steps (refl _) = s≤s z≤n 0<steps (prep eq xs↭ys) = ≤-step (0<steps xs↭ys) 0<steps (swap eq₁ eq₂ xs↭ys) = ≤-step (0<steps xs↭ys) 0<steps (trans xs↭ys xs↭ys₁) = <-transˡ (0<steps xs↭ys) (m≤m+n (steps xs↭ys) (steps xs↭ys₁)) steps-respˡ : ∀ {xs ys zs} (ys≋xs : ys ≋ xs) (ys↭zs : ys ↭ zs) → steps (↭-respˡ-≋ ys≋xs ys↭zs) ≡ steps ys↭zs steps-respˡ _ (refl _) = refl steps-respˡ (_ ∷ ys≋xs) (prep _ ys↭zs) = cong suc (steps-respˡ ys≋xs ys↭zs) steps-respˡ (_ ∷ _ ∷ ys≋xs) (swap _ _ ys↭zs) = cong suc (steps-respˡ ys≋xs ys↭zs) steps-respˡ ys≋xs (trans ys↭ws ws↭zs) = cong (_+ steps ws↭zs) (steps-respˡ ys≋xs ys↭ws) steps-respʳ : ∀ {xs ys zs} (xs≋ys : xs ≋ ys) (zs↭xs : zs ↭ xs) → steps (↭-respʳ-≋ xs≋ys zs↭xs) ≡ steps zs↭xs steps-respʳ _ (refl _) = refl steps-respʳ (_ ∷ ys≋xs) (prep _ ys↭zs) = cong suc (steps-respʳ ys≋xs ys↭zs) steps-respʳ (_ ∷ _ ∷ ys≋xs) (swap _ _ ys↭zs) = cong suc (steps-respʳ ys≋xs ys↭zs) steps-respʳ ys≋xs (trans ys↭ws ws↭zs) = cong (steps ys↭ws +_) (steps-respʳ ys≋xs ws↭zs) ------------------------------------------------------------------------ -- Properties of list functions ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- map module _ (T : Setoid b ℓ) where open Setoid T using () renaming (_≈_ to _≈′_) open Permutation T using () renaming (_↭_ to _↭′_) map⁺ : ∀ {f} → f Preserves _≈_ ⟶ _≈′_ → ∀ {xs ys} → xs ↭ ys → map f xs ↭′ map f ys map⁺ pres (refl xs≋ys) = refl (Pointwise.map⁺ _ _ (Pointwise.map pres xs≋ys)) map⁺ pres (prep x p) = prep (pres x) (map⁺ pres p) map⁺ pres (swap x y p) = swap (pres x) (pres y) (map⁺ pres p) map⁺ pres (trans p₁ p₂) = trans (map⁺ pres p₁) (map⁺ pres p₂) ------------------------------------------------------------------------ -- _++_ shift : ∀ {v w} → v ≈ w → (xs ys : List A) → xs ++ [ v ] ++ ys ↭ w ∷ xs ++ ys shift {v} {w} v≈w [] ys = prep v≈w ↭-refl shift {v} {w} v≈w (x ∷ xs) ys = begin x ∷ (xs ++ [ v ] ++ ys) <⟨ shift v≈w xs ys ⟩ x ∷ w ∷ xs ++ ys <<⟨ ↭-refl ⟩ w ∷ x ∷ xs ++ ys ∎ ++⁺ˡ : ∀ xs {ys zs : List A} → ys ↭ zs → xs ++ ys ↭ xs ++ zs ++⁺ˡ [] ys↭zs = ys↭zs ++⁺ˡ (x ∷ xs) ys↭zs = ↭-prep _ (++⁺ˡ xs ys↭zs) ++⁺ʳ : ∀ {xs ys : List A} zs → xs ↭ ys → xs ++ zs ↭ ys ++ zs ++⁺ʳ zs (refl xs≋ys) = refl (Pointwise.++⁺ xs≋ys ≋-refl) ++⁺ʳ zs (prep x ↭) = prep x (++⁺ʳ zs ↭) ++⁺ʳ zs (swap x y ↭) = swap x y (++⁺ʳ zs ↭) ++⁺ʳ zs (trans ↭₁ ↭₂) = trans (++⁺ʳ zs ↭₁) (++⁺ʳ zs ↭₂) ++⁺ : _++_ Preserves₂ _↭_ ⟶ _↭_ ⟶ _↭_ ++⁺ ws↭xs ys↭zs = trans (++⁺ʳ _ ws↭xs) (++⁺ˡ _ ys↭zs) -- Algebraic properties ++-identityˡ : LeftIdentity _↭_ [] _++_ ++-identityˡ xs = ↭-refl ++-identityʳ : RightIdentity _↭_ [] _++_ ++-identityʳ xs = ↭-reflexive (Lₚ.++-identityʳ xs) ++-identity : Identity _↭_ [] _++_ ++-identity = ++-identityˡ , ++-identityʳ ++-assoc : Associative _↭_ _++_ ++-assoc xs ys zs = ↭-reflexive (Lₚ.++-assoc xs ys zs) ++-comm : Commutative _↭_ _++_ ++-comm [] ys = ↭-sym (++-identityʳ ys) ++-comm (x ∷ xs) ys = begin x ∷ xs ++ ys <⟨ ++-comm xs ys ⟩ x ∷ ys ++ xs ≡⟨ cong (λ v → x ∷ v ++ xs) (≡.sym (Lₚ.++-identityʳ _)) ⟩ (x ∷ ys ++ []) ++ xs ↭⟨ ++⁺ʳ xs (↭-sym (shift ≈-refl ys [])) ⟩ (ys ++ [ x ]) ++ xs ↭⟨ ++-assoc ys [ x ] xs ⟩ ys ++ ([ x ] ++ xs) ≡⟨⟩ ys ++ (x ∷ xs) ∎ -- Structures ++-isMagma : IsMagma _↭_ _++_ ++-isMagma = record { isEquivalence = ↭-isEquivalence ; ∙-cong = ++⁺ } ++-isSemigroup : IsSemigroup _↭_ _++_ ++-isSemigroup = record { isMagma = ++-isMagma ; assoc = ++-assoc } ++-isMonoid : IsMonoid _↭_ _++_ [] ++-isMonoid = record { isSemigroup = ++-isSemigroup ; identity = ++-identity } ++-isCommutativeMonoid : IsCommutativeMonoid _↭_ _++_ [] ++-isCommutativeMonoid = record { isMonoid = ++-isMonoid ; comm = ++-comm } -- Bundles ++-magma : Magma a (a ⊔ ℓ) ++-magma = record { isMagma = ++-isMagma } ++-semigroup : Semigroup a (a ⊔ ℓ) ++-semigroup = record { isSemigroup = ++-isSemigroup } ++-monoid : Monoid a (a ⊔ ℓ) ++-monoid = record { isMonoid = ++-isMonoid } ++-commutativeMonoid : CommutativeMonoid a (a ⊔ ℓ) ++-commutativeMonoid = record { isCommutativeMonoid = ++-isCommutativeMonoid } -- Some other useful lemmas zoom : ∀ h {t xs ys : List A} → xs ↭ ys → h ++ xs ++ t ↭ h ++ ys ++ t zoom h {t} = ++⁺ˡ h ∘ ++⁺ʳ t inject : ∀ (v : A) {ws xs ys zs} → ws ↭ ys → xs ↭ zs → ws ++ [ v ] ++ xs ↭ ys ++ [ v ] ++ zs inject v ws↭ys xs↭zs = trans (++⁺ˡ _ (↭-prep _ xs↭zs)) (++⁺ʳ _ ws↭ys) shifts : ∀ xs ys {zs : List A} → xs ++ ys ++ zs ↭ ys ++ xs ++ zs shifts xs ys {zs} = begin xs ++ ys ++ zs ↭˘⟨ ++-assoc xs ys zs ⟩ (xs ++ ys) ++ zs ↭⟨ ++⁺ʳ zs (++-comm xs ys) ⟩ (ys ++ xs) ++ zs ↭⟨ ++-assoc ys xs zs ⟩ ys ++ xs ++ zs ∎ dropMiddleElement-≋ : ∀ {x} ws xs {ys} {zs} → ws ++ [ x ] ++ ys ≋ xs ++ [ x ] ++ zs → ws ++ ys ↭ xs ++ zs dropMiddleElement-≋ [] [] (_ ∷ eq) = ≋⇒↭ eq dropMiddleElement-≋ [] (x ∷ xs) (w≈v ∷ eq) = ↭-respˡ-≋ (≋-sym eq) (shift w≈v xs _) dropMiddleElement-≋ (w ∷ ws) [] (w≈x ∷ eq) = ↭-respʳ-≋ eq (↭-sym (shift (≈-sym w≈x) ws _)) dropMiddleElement-≋ (w ∷ ws) (x ∷ xs) (w≈x ∷ eq) = prep w≈x (dropMiddleElement-≋ ws xs eq) dropMiddleElement : ∀ {v} ws xs {ys zs} → ws ++ [ v ] ++ ys ↭ xs ++ [ v ] ++ zs → ws ++ ys ↭ xs ++ zs dropMiddleElement {v} ws xs {ys} {zs} p = helper p ws xs ≋-refl ≋-refl where lemma : ∀ {w x y z} → w ≈ x → x ≈ y → z ≈ y → w ≈ z lemma w≈x x≈y z≈y = ≈-trans (≈-trans w≈x x≈y) (≈-sym z≈y) open PermutationReasoning -- The l′ & l″ could be eliminated at the cost of making the `trans` case -- much more difficult to prove. At the very least would require using `Acc`. helper : ∀ {l′ l″ : List A} → l′ ↭ l″ → ∀ ws xs {ys zs : List A} → ws ++ [ v ] ++ ys ≋ l′ → xs ++ [ v ] ++ zs ≋ l″ → ws ++ ys ↭ xs ++ zs helper {as} {bs} (refl eq3) ws xs {ys} {zs} eq1 eq2 = dropMiddleElement-≋ ws xs (≋-trans (≋-trans eq1 eq3) (≋-sym eq2)) helper {_ ∷ as} {_ ∷ bs} (prep _ as↭bs) [] [] {ys} {zs} (_ ∷ ys≋as) (_ ∷ zs≋bs) = begin ys ≋⟨ ys≋as ⟩ as ↭⟨ as↭bs ⟩ bs ≋˘⟨ zs≋bs ⟩ zs ∎ helper {_ ∷ as} {_ ∷ bs} (prep a≈b as↭bs) [] (x ∷ xs) {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin ys ≋⟨ ≋₁ ⟩ as ↭⟨ as↭bs ⟩ bs ≋˘⟨ ≋₂ ⟩ xs ++ v ∷ zs ↭⟨ shift (lemma ≈₁ a≈b ≈₂) xs zs ⟩ x ∷ xs ++ zs ∎ helper {_ ∷ as} {_ ∷ bs} (prep v≈w p) (w ∷ ws) [] {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin w ∷ ws ++ ys ↭⟨ ↭-sym (shift (lemma ≈₂ (≈-sym v≈w) ≈₁) ws ys) ⟩ ws ++ v ∷ ys ≋⟨ ≋₁ ⟩ as ↭⟨ p ⟩ bs ≋˘⟨ ≋₂ ⟩ zs ∎ helper {_ ∷ as} {_ ∷ bs} (prep w≈x p) (w ∷ ws) (x ∷ xs) {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin w ∷ ws ++ ys ↭⟨ prep (lemma ≈₁ w≈x ≈₂) (helper p ws xs ≋₁ ≋₂) ⟩ x ∷ xs ++ zs ∎ helper {_ ∷ a ∷ as} {_ ∷ b ∷ bs} (swap v≈x y≈v p) [] [] {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin ys ≋⟨ ≋₁ ⟩ a ∷ as ↭⟨ prep (≈-trans (≈-trans (≈-trans y≈v (≈-sym ≈₂)) ≈₁) v≈x) p ⟩ b ∷ bs ≋˘⟨ ≋₂ ⟩ zs ∎ helper {_ ∷ a ∷ as} {_ ∷ b ∷ bs} (swap v≈w y≈w p) [] (x ∷ []) {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin ys ≋⟨ ≋₁ ⟩ a ∷ as ↭⟨ prep y≈w p ⟩ _ ∷ bs ≋˘⟨ ≈₂ ∷ tail ≋₂ ⟩ x ∷ zs ∎ helper {_ ∷ a ∷ as} {_ ∷ b ∷ bs} (swap v≈w y≈x p) [] (x ∷ w ∷ xs) {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin ys ≋⟨ ≋₁ ⟩ a ∷ as ↭⟨ prep y≈x p ⟩ _ ∷ bs ≋⟨ ≋-sym (≈₂ ∷ tail ≋₂) ⟩ x ∷ xs ++ v ∷ zs ↭⟨ prep ≈-refl (shift (lemma ≈₁ v≈w (head ≋₂)) xs zs) ⟩ x ∷ w ∷ xs ++ zs ∎ helper {_ ∷ a ∷ as} {_ ∷ b ∷ bs} (swap w≈x _ p) (w ∷ []) [] {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin w ∷ ys ≋⟨ ≈₁ ∷ tail (≋₁) ⟩ _ ∷ as ↭⟨ prep w≈x p ⟩ b ∷ bs ≋⟨ ≋-sym ≋₂ ⟩ zs ∎ helper {_ ∷ a ∷ as} {_ ∷ b ∷ bs} (swap w≈y x≈v p) (w ∷ x ∷ ws) [] {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin w ∷ x ∷ ws ++ ys ↭⟨ prep ≈-refl (↭-sym (shift (lemma ≈₂ (≈-sym x≈v) (head ≋₁)) ws ys)) ⟩ w ∷ ws ++ v ∷ ys ≋⟨ ≈₁ ∷ tail ≋₁ ⟩ _ ∷ as ↭⟨ prep w≈y p ⟩ b ∷ bs ≋⟨ ≋-sym ≋₂ ⟩ zs ∎ helper {_ ∷ a ∷ as} {_ ∷ b ∷ bs} (swap x≈v v≈y p) (x ∷ []) (y ∷ []) {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin x ∷ ys ≋⟨ ≈₁ ∷ tail ≋₁ ⟩ _ ∷ as ↭⟨ prep (≈-trans x≈v (≈-trans (≈-sym (head ≋₂)) (≈-trans (head ≋₁) v≈y))) p ⟩ _ ∷ bs ≋⟨ ≋-sym (≈₂ ∷ tail ≋₂) ⟩ y ∷ zs ∎ helper {_ ∷ a ∷ as} {_ ∷ b ∷ bs} (swap y≈w v≈z p) (y ∷ []) (z ∷ w ∷ xs) {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin y ∷ ys ≋⟨ ≈₁ ∷ tail ≋₁ ⟩ _ ∷ as ↭⟨ prep y≈w p ⟩ _ ∷ bs ≋⟨ ≋-sym ≋₂ ⟩ w ∷ xs ++ v ∷ zs ↭⟨ ↭-prep w (shift ≈-refl xs zs) ⟩ w ∷ v ∷ xs ++ zs ↭⟨ swap ≈-refl (lemma (head ≋₁) v≈z ≈₂) ↭-refl ⟩ z ∷ w ∷ xs ++ zs ∎ helper {_ ∷ a ∷ as} {_ ∷ b ∷ bs} (swap y≈v w≈z p) (y ∷ w ∷ ws) (z ∷ []) {ys} {zs} (≈₁ ∷ ≋₁) (≈₂ ∷ ≋₂) = begin y ∷ w ∷ ws ++ ys ↭⟨ swap (lemma ≈₁ y≈v (head ≋₂)) ≈-refl ↭-refl ⟩ w ∷ v ∷ ws ++ ys ↭⟨ ↭-prep w (↭-sym (shift ≈-refl ws ys)) ⟩ w ∷ ws ++ v ∷ ys ≋⟨ ≋₁ ⟩ _ ∷ as ↭⟨ prep w≈z p ⟩ _ ∷ bs ≋⟨ ≋-sym (≈₂ ∷ tail ≋₂) ⟩ z ∷ zs ∎ helper (swap x≈z y≈w p) (x ∷ y ∷ ws) (w ∷ z ∷ xs) {ys} {zs} (≈₁ ∷ ≈₃ ∷ ≋₁) (≈₂ ∷ ≈₄ ∷ ≋₂) = begin x ∷ y ∷ ws ++ ys ↭⟨ swap (lemma ≈₁ x≈z ≈₄) (lemma ≈₃ y≈w ≈₂) (helper p ws xs ≋₁ ≋₂) ⟩ w ∷ z ∷ xs ++ zs ∎ helper {as} {bs} (trans p₁ p₂) ws xs eq1 eq2 with ∈-∃++ S (∈-resp-↭ (↭-respˡ-≋ (≋-sym eq1) p₁) (∈-insert S ws ≈-refl)) ... | (h , t , w , v≈w , eq) = trans (helper p₁ ws h eq1 (≋-trans (≋.++⁺ ≋-refl (v≈w ∷ ≋-refl)) (≋-sym eq))) (helper p₂ h xs (≋-trans (≋.++⁺ ≋-refl (v≈w ∷ ≋-refl)) (≋-sym eq)) eq2) dropMiddle : ∀ {vs} ws xs {ys zs} → ws ++ vs ++ ys ↭ xs ++ vs ++ zs → ws ++ ys ↭ xs ++ zs dropMiddle {[]} ws xs p = p dropMiddle {v ∷ vs} ws xs p = dropMiddle ws xs (dropMiddleElement ws xs p) split : ∀ (v : A) as bs {xs} → xs ↭ as ++ [ v ] ++ bs → ∃₂ λ ps qs → xs ≋ ps ++ [ v ] ++ qs split v as bs p = helper as bs p (<-wellFounded (steps p)) where helper : ∀ as bs {xs} (p : xs ↭ as ++ [ v ] ++ bs) → Acc _<_ (steps p) → ∃₂ λ ps qs → xs ≋ ps ++ [ v ] ++ qs helper [] bs (refl eq) _ = [] , bs , eq helper (a ∷ []) bs (refl eq) _ = [ a ] , bs , eq helper (a ∷ b ∷ as) bs (refl eq) _ = a ∷ b ∷ as , bs , eq helper [] bs (prep v≈x _) _ = [] , _ , v≈x ∷ ≋-refl helper (a ∷ as) bs (prep eq as↭xs) (acc rec) with helper as bs as↭xs (rec _ ≤-refl) ... | (ps , qs , eq₂) = a ∷ ps , qs , eq ∷ eq₂ helper [] (b ∷ bs) (swap x≈b y≈v _) _ = [ b ] , _ , x≈b ∷ y≈v ∷ ≋-refl helper (a ∷ []) bs (swap x≈v y≈a ↭) _ = [] , a ∷ _ , x≈v ∷ y≈a ∷ ≋-refl helper (a ∷ b ∷ as) bs (swap x≈b y≈a as↭xs) (acc rec) with helper as bs as↭xs (rec _ ≤-refl) ... | (ps , qs , eq) = b ∷ a ∷ ps , qs , x≈b ∷ y≈a ∷ eq helper as bs (trans ↭₁ ↭₂) (acc rec) with helper as bs ↭₂ (rec _ (m<n+m (steps ↭₂) (0<steps ↭₁))) ... | (ps , qs , eq) = helper ps qs (↭-respʳ-≋ eq ↭₁) (rec _ (subst (_< _) (sym (steps-respʳ eq ↭₁)) (m<m+n (steps ↭₁) (0<steps ↭₂)))) ------------------------------------------------------------------------ -- filter module _ {p} {P : Pred A p} (P? : Decidable P) (P≈ : P Respects _≈_) where filter⁺ : ∀ {xs ys : List A} → xs ↭ ys → filter P? xs ↭ filter P? ys filter⁺ (refl xs≋ys) = refl (≋.filter⁺ P? P≈ xs≋ys) filter⁺ (trans xs↭zs zs↭ys) = trans (filter⁺ xs↭zs) (filter⁺ zs↭ys) filter⁺ {x ∷ xs} {y ∷ ys} (prep x≈y xs↭ys) with P? x | P? y ... | yes _ | yes _ = prep x≈y (filter⁺ xs↭ys) ... | yes Px | no ¬Py = contradiction (P≈ x≈y Px) ¬Py ... | no ¬Px | yes Py = contradiction (P≈ (≈-sym x≈y) Py) ¬Px ... | no _ | no _ = filter⁺ xs↭ys filter⁺ {x ∷ w ∷ xs} {y ∷ z ∷ ys} (swap x≈z w≈y xs↭ys) with P? x | P? y filter⁺ {x ∷ w ∷ xs} {y ∷ z ∷ ys} (swap x≈z w≈y xs↭ys) | no ¬Px | no ¬Py with P? z | P? w ... | _ | yes Pw = contradiction (P≈ w≈y Pw) ¬Py ... | yes Pz | _ = contradiction (P≈ (≈-sym x≈z) Pz) ¬Px ... | no _ | no _ = filter⁺ xs↭ys filter⁺ {x ∷ w ∷ xs} {y ∷ z ∷ ys} (swap x≈z w≈y xs↭ys) | no ¬Px | yes Py with P? z | P? w ... | _ | no ¬Pw = contradiction (P≈ (≈-sym w≈y) Py) ¬Pw ... | yes Pz | _ = contradiction (P≈ (≈-sym x≈z) Pz) ¬Px ... | no _ | yes _ = prep w≈y (filter⁺ xs↭ys) filter⁺ {x ∷ w ∷ xs} {y ∷ z ∷ ys} (swap x≈z w≈y xs↭ys) | yes Px | no ¬Py with P? z | P? w ... | no ¬Pz | _ = contradiction (P≈ x≈z Px) ¬Pz ... | _ | yes Pw = contradiction (P≈ w≈y Pw) ¬Py ... | yes _ | no _ = prep x≈z (filter⁺ xs↭ys) filter⁺ {x ∷ w ∷ xs} {y ∷ z ∷ ys} (swap x≈z w≈y xs↭ys) | yes Px | yes Py with P? z | P? w ... | no ¬Pz | _ = contradiction (P≈ x≈z Px) ¬Pz ... | _ | no ¬Pw = contradiction (P≈ (≈-sym w≈y) Py) ¬Pw ... | yes _ | yes _ = swap x≈z w≈y (filter⁺ xs↭ys) ------------------------------------------------------------------------ -- _∷ʳ_ ∷↭∷ʳ : ∀ (x : A) xs → x ∷ xs ↭ xs ∷ʳ x ∷↭∷ʳ x xs = ↭-sym (begin xs ++ [ x ] ↭⟨ shift ≈-refl xs [] ⟩ x ∷ xs ++ [] ≡⟨ Lₚ.++-identityʳ _ ⟩ x ∷ xs ∎) where open PermutationReasoning
{ "alphanum_fraction": 0.4673985877, "avg_line_length": 44.0931818182, "ext": "agda", "hexsha": "49d502b1c3c27a2064787cecb78c97b1c7589740", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Setoid/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Setoid/Properties.agda", "max_line_length": 133, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Setoid/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 8790, "size": 19401 }
module L.Base.Nat.Properties where open import L.Base.Nat open import L.Base.Id.Core open import L.Base.Id.Properties using (ap;sym;transport) -- Properties of + +-idl : ∀{x} → zero + x ≡ x +-idl = refl +-idr : ∀{x} → x + zero ≡ x +-idr {x} = ind (λ n → n + zero ≡ n) refl (λ _ p → ap succ p) x +-assoc : {x y z : Nat} → (x + y) + z ≡ x + (y + z) +-assoc {x}{y}{z} = ind (λ n → (n + y) + z ≡ n + (y + z)) refl (λ _ p → ap succ p) x +-succ : {x y : Nat} → x + succ y ≡ succ (x + y) +-succ {x}{y} = ind (λ n → n + succ y ≡ succ (n + y)) refl (λ _ p → ap succ p) x +-comm : {x y : Nat} → x + y ≡ y + x +-comm {x}{y} = ind (λ n → n + y ≡ y + n) (sym +-idr) (λ n p → sym (transport (λ q → y + succ n ≡ succ q) (sym p) +-succ)) x -- Properties of * *-zl : ∀{x} → zero * x ≡ zero *-zl = refl *-zr : ∀{x} → x * zero ≡ zero *-zr {x} = ind (λ n → n * zero ≡ zero) refl (λ _ p → p) x *-idl : ∀{x} → 1 * x ≡ x *-idl = +-idr *-idr : ∀{x} → x * 1 ≡ x *-idr {x} = ind (λ n → n * 1 ≡ n) refl (λ _ p → ap succ p) x *-distrib-+ : {x y z : Nat} → (x + y) * z ≡ x * z + y * z *-distrib-+ {x}{y}{z} = ind (λ n → (n + y) * z ≡ n * z + y * z) refl (λ m p → transport (λ s → z + (m + y) * z ≡ s) (sym (+-assoc {z} {m * z} {y * z})) (ap (λ k → z + k) p)) x *-assoc : {x y z : Nat} → (x * y) * z ≡ x * (y * z) *-assoc {x}{y}{z} = ind (λ n → (n * y) * z ≡ n * (y * z)) refl (λ n p → transport (λ q → (y + n * y) * z ≡ y * z + q) p (*-distrib-+ {y}{n * y})) x
{ "alphanum_fraction": 0.4032869785, "avg_line_length": 32.9583333333, "ext": "agda", "hexsha": "f63c90931e2caaead9c9381f9393af09cd01f4ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Base/Nat/Properties.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Base/Nat/Properties.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Base/Nat/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 689, "size": 1582 }
-- Andreas, 2017-01-12, issue #2386 open import Agda.Primitive data _≡_ {a b} {A : Set (a ⊔ b)} : (x y : A) → Set where refl : (x : A) → x ≡ x {-# BUILTIN EQUALITY _≡_ #-} -- Should be accepted -- The type of primErase has to match the flavor of EQUALITY primitive primEraseEquality : ∀ {a b}{A : Set (a ⊔ b)} {x y : A} → _≡_ x y → _≡_ x y testTM : ∀ {a b} {A : Set (a ⊔ b)} {x : A} (eq : _≡_ {a} {b} x x) → primEraseEquality {x = x} {y = x} eq ≡ refl _ testTM _ = refl _ -- Testing rewrite subst : ∀{ℓ}{A : Set ℓ} {P : A → Set}{a b : A} → _≡_ {a = ℓ} {b = ℓ} a b → P a → P b subst eq p rewrite eq = p
{ "alphanum_fraction": 0.5415986949, "avg_line_length": 26.652173913, "ext": "agda", "hexsha": "8dee4c7fd1fe96e9abfbbdabd48c21316ca188a7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2386BuiltinEqualityUniverseLub.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2386BuiltinEqualityUniverseLub.agda", "max_line_length": 113, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2386BuiltinEqualityUniverseLub.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 267, "size": 613 }
{-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Instances.DirectSumHIT where open import Cubical.Foundations.Prelude open import Cubical.Algebra.AbGroup open import Cubical.Algebra.DirectSum.DirectSumHIT.Base open import Cubical.Algebra.DirectSum.DirectSumHIT.Properties private variable ℓ ℓ' : Level module _ (Idx : Type ℓ) (P : Idx → Type ℓ') (AGP : (r : Idx) → AbGroupStr (P r)) where open AbGroupStr open AbGroupProperties Idx P AGP ⊕HIT-AbGr : AbGroup (ℓ-max ℓ ℓ') fst ⊕HIT-AbGr = ⊕HIT Idx P AGP 0g (snd ⊕HIT-AbGr) = neutral _+_ (snd ⊕HIT-AbGr) = _add_ - snd ⊕HIT-AbGr = inv isAbGroup (snd ⊕HIT-AbGr) = makeIsAbGroup trunc addAssoc addRid rinv addComm
{ "alphanum_fraction": 0.7223837209, "avg_line_length": 27.52, "ext": "agda", "hexsha": "63699f140db011612b30a8a11fd839628f181775", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup/Instances/DirectSumHIT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup/Instances/DirectSumHIT.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup/Instances/DirectSumHIT.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 252, "size": 688 }
open import Agda.Primitive open import Agda.Builtin.Equality variable ℓ : Level A : Set ℓ P : A → Set ℓ x y : A f : (x : A) → P x cong : x ≡ y → f x ≡ f y cong refl = refl
{ "alphanum_fraction": 0.5783783784, "avg_line_length": 13.2142857143, "ext": "agda", "hexsha": "5de7b258c451deccab10c0212a64fd4c553a2b55", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3340.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3340.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3340.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 185 }
------------------------------------------------------------------------ -- Descending lists ------------------------------------------------------------------------ {-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Foundations.Everything module Cubical.Data.DescendingList.Base (A : Type₀) (_≥_ : A → A → Type₀) where ------------------------------------------------------------------------ -- Descending lists -- -- Defined simultaneously with the relation "x ≥ the HEAD of u" data DL : Type₀ data _≥ᴴ_ (x : A) : DL → Type₀ data DL where [] : DL cons : (x : A) (u : DL) → x ≥ᴴ u → DL data _≥ᴴ_ x where ≥ᴴ[] : x ≥ᴴ [] ≥ᴴcons : {y : A} {u : DL} {r : y ≥ᴴ u} → x ≥ y → x ≥ᴴ (cons y u r) [_] : A → DL [ x ] = cons x [] ≥ᴴ[]
{ "alphanum_fraction": 0.3976683938, "avg_line_length": 22.7058823529, "ext": "agda", "hexsha": "a47285f7124dce0afa11ae5fb3db9fb2b5cf1db2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/DescendingList/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/DescendingList/Base.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/DescendingList/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 227, "size": 772 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of Covec ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Covec.Categorical where open import Codata.Conat open import Codata.Covec open import Category.Functor open import Category.Applicative functor : ∀ {ℓ i n} → RawFunctor {ℓ} (λ A → Covec A n i) functor = record { _<$>_ = map } applicative : ∀ {ℓ i n} → RawApplicative {ℓ} (λ A → Covec A n i) applicative = record { pure = replicate _ ; _⊛_ = ap }
{ "alphanum_fraction": 0.5166402536, "avg_line_length": 25.24, "ext": "agda", "hexsha": "1ec6629994098539eaf7ba3dc8109cfba7366fa3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Covec/Categorical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Covec/Categorical.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Covec/Categorical.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 161, "size": 631 }
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Equational.Theory.Base module Fragment.Equational.Theory.Combinators (Θ : Theory) where open import Fragment.Algebra.Signature open import Fragment.Algebra.Properties open import Fragment.Equational.Model using (Model; IsModel; Models) open import Fragment.Equational.Model.Satisfaction open import Level using (Level) open import Function using (_∘_) open import Data.Nat using (ℕ) private variable a ℓ : Level {- forgetₒ' : ∀ {O} → Model (Θ ⦅ O ⦆ₒ) {a} {ℓ} → Model Θ {a} {ℓ} forgetₒ' {O = O} A = record { ∥_∥/≈ = ∥ A ∥/≈ ; isModel = forget-isModel } where open import Fragment.Equational.Model (Θ ⦅ O ⦆ₒ) using (∥_∥/≈; ∥_∥ₐ; ∥_∥ₐ-models) open import Fragment.Algebra.Algebra (Σ Θ) using (∥_∥/≈-isAlgebra) forget-⊨ : ∀ {θ eq} → ∥ A ∥ₐ ⊨⟨ θ ⟩ ((Θ ⦅ O ⦆ₒ) ⟦ {!oldₑ!} ⟧ₑ) → forgetₒ ∥ A ∥ₐ ⊨⟨ θ ⟩ (Θ ⟦ eq ⟧ₑ) forget-⊨ = {!!} forget-models : Models Θ (forgetₒ ∥ A ∥ₐ) forget-models eq θ = {!!} forget-isModel : IsModel Θ ∥ A ∥/≈ forget-isModel = record { isAlgebra = ∥ (forgetₒ ∥ A ∥ₐ) ∥/≈-isAlgebra ; models = forget-models } forgetₑ : ∀ {O E} → {X : ∀ {n} → E n → Eq ((Σ Θ) ⦅ O ⦆) n} → Model (Θ ⦅ O ∣ E / X ⦆) {a} {ℓ} → Model Θ {a} {ℓ} forgetₑ {O = O} {E} {X} A = record { ∥_∥/≈ = {!!} ; isModel = {!!} } -} data HomOp : ℕ → Set where h : HomOp 1 data HomEq : ℕ → Set where hom : ∀ {n} → ops (Σ Θ) n → HomEq n AddHom : Theory AddHom = Θ ⦅ HomOp ∣ HomEq / hom' ⦆ where import Fragment.Equational.Theory.Laws ((Σ Θ) ⦅ HomOp ⦆) as L hom' : ∀ {arity} → HomEq arity → Eq ((Σ Θ) ⦅ HomOp ⦆) arity hom' (hom f) = L.hom (newₒ h) (oldₒ f) data IdOp : ℕ → Set where α : IdOp 0 data IdEq : ℕ → Set where idₗ : IdEq 1 idᵣ : IdEq 1 AddId : ops (Σ Θ) 2 → Theory AddId • = Θ ⦅ IdOp ∣ IdEq / id ⦆ where import Fragment.Equational.Theory.Laws ((Σ Θ) ⦅ IdOp ⦆) as L id : ∀ {arity} → IdEq arity → Eq ((Σ Θ) ⦅ IdOp ⦆) arity id idₗ = L.idₗ (newₒ α) (oldₒ •) id idᵣ = L.idᵣ (newₒ α) (oldₒ •) data AnOp : ℕ → Set where ω : AnOp 0 data AnEq : ℕ → Set where anₗ : AnEq 1 anᵣ : AnEq 1 AddAn : ops (Σ Θ) 2 → Theory AddAn • = Θ ⦅ AnOp ∣ AnEq / an ⦆ where import Fragment.Equational.Theory.Laws ((Σ Θ) ⦅ AnOp ⦆) as L an : ∀ {arity} → AnEq arity → Eq ((Σ Θ) ⦅ AnOp ⦆) arity an anₗ = L.anₗ (newₒ ω) (oldₒ •) an anᵣ = L.anᵣ (newₒ ω) (oldₒ •)
{ "alphanum_fraction": 0.5284242655, "avg_line_length": 26.7448979592, "ext": "agda", "hexsha": "d2c7a13898c6de8e97538bbb5002dfea729d038a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Equational/Theory/Combinators.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Equational/Theory/Combinators.agda", "max_line_length": 70, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Equational/Theory/Combinators.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 1131, "size": 2621 }
{-# OPTIONS --type-in-type #-} Ty : Set Ty = (Ty : Set) (nat top bot : Ty) (arr prod sum : Ty → Ty → Ty) → Ty nat : Ty; nat = λ _ nat _ _ _ _ _ → nat top : Ty; top = λ _ _ top _ _ _ _ → top bot : Ty; bot = λ _ _ _ bot _ _ _ → bot arr : Ty → Ty → Ty; arr = λ A B Ty nat top bot arr prod sum → arr (A Ty nat top bot arr prod sum) (B Ty nat top bot arr prod sum) prod : Ty → Ty → Ty; prod = λ A B Ty nat top bot arr prod sum → prod (A Ty nat top bot arr prod sum) (B Ty nat top bot arr prod sum) sum : Ty → Ty → Ty; sum = λ A B Ty nat top bot arr prod sum → sum (A Ty nat top bot arr prod sum) (B Ty nat top bot arr prod sum) Con : Set; Con = (Con : Set) (nil : Con) (snoc : Con → Ty → Con) → Con nil : Con; nil = λ Con nil snoc → nil snoc : Con → Ty → Con; snoc = λ Γ A Con nil snoc → snoc (Γ Con nil snoc) A Var : Con → Ty → Set; Var = λ Γ A → (Var : Con → Ty → Set) (vz : ∀{Γ A} → Var (snoc Γ A) A) (vs : ∀{Γ B A} → Var Γ A → Var (snoc Γ B) A) → Var Γ A vz : ∀{Γ A} → Var (snoc Γ A) A; vz = λ Var vz vs → vz vs : ∀{Γ B A} → Var Γ A → Var (snoc Γ B) A; vs = λ x Var vz vs → vs (x Var vz vs) Tm : Con → Ty → Set; Tm = λ Γ A → (Tm : Con → Ty → Set) (var : ∀{Γ A} → Var Γ A → Tm Γ A) (lam : ∀{Γ A B} → Tm (snoc Γ A) B → Tm Γ (arr A B)) (app : ∀{Γ A B} → Tm Γ (arr A B) → Tm Γ A → Tm Γ B) (tt : ∀{Γ} → Tm Γ top) (pair : ∀{Γ A B} → Tm Γ A → Tm Γ B → Tm Γ (prod A B)) (fst : ∀{Γ A B} → Tm Γ (prod A B) → Tm Γ A) (snd : ∀{Γ A B} → Tm Γ (prod A B) → Tm Γ B) (left : ∀{Γ A B} → Tm Γ A → Tm Γ (sum A B)) (right : ∀{Γ A B} → Tm Γ B → Tm Γ (sum A B)) (case : ∀{Γ A B C} → Tm Γ (sum A B) → Tm Γ (arr A C) → Tm Γ (arr B C) → Tm Γ C) (zero : ∀{Γ} → Tm Γ nat) (suc : ∀{Γ} → Tm Γ nat → Tm Γ nat) (rec : ∀{Γ A} → Tm Γ nat → Tm Γ (arr nat (arr A A)) → Tm Γ A → Tm Γ A) → Tm Γ A var : ∀{Γ A} → Var Γ A → Tm Γ A; var = λ x Tm var lam app tt pair fst snd left right case zero suc rec → var x lam : ∀{Γ A B} → Tm (snoc Γ A) B → Tm Γ (arr A B); lam = λ t Tm var lam app tt pair fst snd left right case zero suc rec → lam (t Tm var lam app tt pair fst snd left right case zero suc rec) app : ∀{Γ A B} → Tm Γ (arr A B) → Tm Γ A → Tm Γ B; app = λ t u Tm var lam app tt pair fst snd left right case zero suc rec → app (t Tm var lam app tt pair fst snd left right case zero suc rec) (u Tm var lam app tt pair fst snd left right case zero suc rec) tt : ∀{Γ} → Tm Γ top; tt = λ Tm var lam app tt pair fst snd left right case zero suc rec → tt pair : ∀{Γ A B} → Tm Γ A → Tm Γ B → Tm Γ (prod A B); pair = λ t u Tm var lam app tt pair fst snd left right case zero suc rec → pair (t Tm var lam app tt pair fst snd left right case zero suc rec) (u Tm var lam app tt pair fst snd left right case zero suc rec) fst : ∀{Γ A B} → Tm Γ (prod A B) → Tm Γ A; fst = λ t Tm var lam app tt pair fst snd left right case zero suc rec → fst (t Tm var lam app tt pair fst snd left right case zero suc rec) snd : ∀{Γ A B} → Tm Γ (prod A B) → Tm Γ B; snd = λ t Tm var lam app tt pair fst snd left right case zero suc rec → snd (t Tm var lam app tt pair fst snd left right case zero suc rec) left : ∀{Γ A B} → Tm Γ A → Tm Γ (sum A B); left = λ t Tm var lam app tt pair fst snd left right case zero suc rec → left (t Tm var lam app tt pair fst snd left right case zero suc rec) right : ∀{Γ A B} → Tm Γ B → Tm Γ (sum A B); right = λ t Tm var lam app tt pair fst snd left right case zero suc rec → right (t Tm var lam app tt pair fst snd left right case zero suc rec) case : ∀{Γ A B C} → Tm Γ (sum A B) → Tm Γ (arr A C) → Tm Γ (arr B C) → Tm Γ C; case = λ t u v Tm var lam app tt pair fst snd left right case zero suc rec → case (t Tm var lam app tt pair fst snd left right case zero suc rec) (u Tm var lam app tt pair fst snd left right case zero suc rec) (v Tm var lam app tt pair fst snd left right case zero suc rec) zero : ∀{Γ} → Tm Γ nat; zero = λ Tm var lam app tt pair fst snd left right case zero suc rec → zero suc : ∀{Γ} → Tm Γ nat → Tm Γ nat; suc = λ t Tm var lam app tt pair fst snd left right case zero suc rec → suc (t Tm var lam app tt pair fst snd left right case zero suc rec) rec : ∀{Γ A} → Tm Γ nat → Tm Γ (arr nat (arr A A)) → Tm Γ A → Tm Γ A; rec = λ t u v Tm var lam app tt pair fst snd left right case zero suc rec → rec (t Tm var lam app tt pair fst snd left right case zero suc rec) (u Tm var lam app tt pair fst snd left right case zero suc rec) (v Tm var lam app tt pair fst snd left right case zero suc rec) v0 : ∀{Γ A} → Tm (snoc Γ A) A; v0 = var vz v1 : ∀{Γ A B} → Tm (snoc (snoc Γ A) B) A; v1 = var (vs vz) v2 : ∀{Γ A B C} → Tm (snoc (snoc (snoc Γ A) B) C) A; v2 = var (vs (vs vz)) v3 : ∀{Γ A B C D} → Tm (snoc (snoc (snoc (snoc Γ A) B) C) D) A; v3 = var (vs (vs (vs vz))) tbool : Ty; tbool = sum top top true : ∀{Γ} → Tm Γ tbool; true = left tt tfalse : ∀{Γ} → Tm Γ tbool; tfalse = right tt ifthenelse : ∀{Γ A} → Tm Γ (arr tbool (arr A (arr A A))); ifthenelse = lam (lam (lam (case v2 (lam v2) (lam v1)))) times4 : ∀{Γ A} → Tm Γ (arr (arr A A) (arr A A)); times4 = lam (lam (app v1 (app v1 (app v1 (app v1 v0))))) add : ∀{Γ} → Tm Γ (arr nat (arr nat nat)); add = lam (rec v0 (lam (lam (lam (suc (app v1 v0))))) (lam v0)) mul : ∀{Γ} → Tm Γ (arr nat (arr nat nat)); mul = lam (rec v0 (lam (lam (lam (app (app add (app v1 v0)) v0)))) (lam zero)) fact : ∀{Γ} → Tm Γ (arr nat nat); fact = lam (rec v0 (lam (lam (app (app mul (suc v1)) v0))) (suc zero)) {-# OPTIONS --type-in-type #-} Ty1 : Set Ty1 = (Ty1 : Set) (nat top bot : Ty1) (arr prod sum : Ty1 → Ty1 → Ty1) → Ty1 nat1 : Ty1; nat1 = λ _ nat1 _ _ _ _ _ → nat1 top1 : Ty1; top1 = λ _ _ top1 _ _ _ _ → top1 bot1 : Ty1; bot1 = λ _ _ _ bot1 _ _ _ → bot1 arr1 : Ty1 → Ty1 → Ty1; arr1 = λ A B Ty1 nat1 top1 bot1 arr1 prod sum → arr1 (A Ty1 nat1 top1 bot1 arr1 prod sum) (B Ty1 nat1 top1 bot1 arr1 prod sum) prod1 : Ty1 → Ty1 → Ty1; prod1 = λ A B Ty1 nat1 top1 bot1 arr1 prod1 sum → prod1 (A Ty1 nat1 top1 bot1 arr1 prod1 sum) (B Ty1 nat1 top1 bot1 arr1 prod1 sum) sum1 : Ty1 → Ty1 → Ty1; sum1 = λ A B Ty1 nat1 top1 bot1 arr1 prod1 sum1 → sum1 (A Ty1 nat1 top1 bot1 arr1 prod1 sum1) (B Ty1 nat1 top1 bot1 arr1 prod1 sum1) Con1 : Set; Con1 = (Con1 : Set) (nil : Con1) (snoc : Con1 → Ty1 → Con1) → Con1 nil1 : Con1; nil1 = λ Con1 nil1 snoc → nil1 snoc1 : Con1 → Ty1 → Con1; snoc1 = λ Γ A Con1 nil1 snoc1 → snoc1 (Γ Con1 nil1 snoc1) A Var1 : Con1 → Ty1 → Set; Var1 = λ Γ A → (Var1 : Con1 → Ty1 → Set) (vz : ∀{Γ A} → Var1 (snoc1 Γ A) A) (vs : ∀{Γ B A} → Var1 Γ A → Var1 (snoc1 Γ B) A) → Var1 Γ A vz1 : ∀{Γ A} → Var1 (snoc1 Γ A) A; vz1 = λ Var1 vz1 vs → vz1 vs1 : ∀{Γ B A} → Var1 Γ A → Var1 (snoc1 Γ B) A; vs1 = λ x Var1 vz1 vs1 → vs1 (x Var1 vz1 vs1) Tm1 : Con1 → Ty1 → Set; Tm1 = λ Γ A → (Tm1 : Con1 → Ty1 → Set) (var : ∀{Γ A} → Var1 Γ A → Tm1 Γ A) (lam : ∀{Γ A B} → Tm1 (snoc1 Γ A) B → Tm1 Γ (arr1 A B)) (app : ∀{Γ A B} → Tm1 Γ (arr1 A B) → Tm1 Γ A → Tm1 Γ B) (tt : ∀{Γ} → Tm1 Γ top1) (pair : ∀{Γ A B} → Tm1 Γ A → Tm1 Γ B → Tm1 Γ (prod1 A B)) (fst : ∀{Γ A B} → Tm1 Γ (prod1 A B) → Tm1 Γ A) (snd : ∀{Γ A B} → Tm1 Γ (prod1 A B) → Tm1 Γ B) (left : ∀{Γ A B} → Tm1 Γ A → Tm1 Γ (sum1 A B)) (right : ∀{Γ A B} → Tm1 Γ B → Tm1 Γ (sum1 A B)) (case : ∀{Γ A B C} → Tm1 Γ (sum1 A B) → Tm1 Γ (arr1 A C) → Tm1 Γ (arr1 B C) → Tm1 Γ C) (zero : ∀{Γ} → Tm1 Γ nat1) (suc : ∀{Γ} → Tm1 Γ nat1 → Tm1 Γ nat1) (rec : ∀{Γ A} → Tm1 Γ nat1 → Tm1 Γ (arr1 nat1 (arr1 A A)) → Tm1 Γ A → Tm1 Γ A) → Tm1 Γ A var1 : ∀{Γ A} → Var1 Γ A → Tm1 Γ A; var1 = λ x Tm1 var1 lam app tt pair fst snd left right case zero suc rec → var1 x lam1 : ∀{Γ A B} → Tm1 (snoc1 Γ A) B → Tm1 Γ (arr1 A B); lam1 = λ t Tm1 var1 lam1 app tt pair fst snd left right case zero suc rec → lam1 (t Tm1 var1 lam1 app tt pair fst snd left right case zero suc rec) app1 : ∀{Γ A B} → Tm1 Γ (arr1 A B) → Tm1 Γ A → Tm1 Γ B; app1 = λ t u Tm1 var1 lam1 app1 tt pair fst snd left right case zero suc rec → app1 (t Tm1 var1 lam1 app1 tt pair fst snd left right case zero suc rec) (u Tm1 var1 lam1 app1 tt pair fst snd left right case zero suc rec) tt1 : ∀{Γ} → Tm1 Γ top1; tt1 = λ Tm1 var1 lam1 app1 tt1 pair fst snd left right case zero suc rec → tt1 pair1 : ∀{Γ A B} → Tm1 Γ A → Tm1 Γ B → Tm1 Γ (prod1 A B); pair1 = λ t u Tm1 var1 lam1 app1 tt1 pair1 fst snd left right case zero suc rec → pair1 (t Tm1 var1 lam1 app1 tt1 pair1 fst snd left right case zero suc rec) (u Tm1 var1 lam1 app1 tt1 pair1 fst snd left right case zero suc rec) fst1 : ∀{Γ A B} → Tm1 Γ (prod1 A B) → Tm1 Γ A; fst1 = λ t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd left right case zero suc rec → fst1 (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd left right case zero suc rec) snd1 : ∀{Γ A B} → Tm1 Γ (prod1 A B) → Tm1 Γ B; snd1 = λ t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left right case zero suc rec → snd1 (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left right case zero suc rec) left1 : ∀{Γ A B} → Tm1 Γ A → Tm1 Γ (sum1 A B); left1 = λ t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right case zero suc rec → left1 (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right case zero suc rec) right1 : ∀{Γ A B} → Tm1 Γ B → Tm1 Γ (sum1 A B); right1 = λ t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case zero suc rec → right1 (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case zero suc rec) case1 : ∀{Γ A B C} → Tm1 Γ (sum1 A B) → Tm1 Γ (arr1 A C) → Tm1 Γ (arr1 B C) → Tm1 Γ C; case1 = λ t u v Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero suc rec → case1 (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero suc rec) (u Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero suc rec) (v Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero suc rec) zero1 : ∀{Γ} → Tm1 Γ nat1; zero1 = λ Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc rec → zero1 suc1 : ∀{Γ} → Tm1 Γ nat1 → Tm1 Γ nat1; suc1 = λ t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec → suc1 (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec) rec1 : ∀{Γ A} → Tm1 Γ nat1 → Tm1 Γ (arr1 nat1 (arr1 A A)) → Tm1 Γ A → Tm1 Γ A; rec1 = λ t u v Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec1 → rec1 (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec1) (u Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec1) (v Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec1) v01 : ∀{Γ A} → Tm1 (snoc1 Γ A) A; v01 = var1 vz1 v11 : ∀{Γ A B} → Tm1 (snoc1 (snoc1 Γ A) B) A; v11 = var1 (vs1 vz1) v21 : ∀{Γ A B C} → Tm1 (snoc1 (snoc1 (snoc1 Γ A) B) C) A; v21 = var1 (vs1 (vs1 vz1)) v31 : ∀{Γ A B C D} → Tm1 (snoc1 (snoc1 (snoc1 (snoc1 Γ A) B) C) D) A; v31 = var1 (vs1 (vs1 (vs1 vz1))) tbool1 : Ty1; tbool1 = sum1 top1 top1 true1 : ∀{Γ} → Tm1 Γ tbool1; true1 = left1 tt1 tfalse1 : ∀{Γ} → Tm1 Γ tbool1; tfalse1 = right1 tt1 ifthenelse1 : ∀{Γ A} → Tm1 Γ (arr1 tbool1 (arr1 A (arr1 A A))); ifthenelse1 = lam1 (lam1 (lam1 (case1 v21 (lam1 v21) (lam1 v11)))) times41 : ∀{Γ A} → Tm1 Γ (arr1 (arr1 A A) (arr1 A A)); times41 = lam1 (lam1 (app1 v11 (app1 v11 (app1 v11 (app1 v11 v01))))) add1 : ∀{Γ} → Tm1 Γ (arr1 nat1 (arr1 nat1 nat1)); add1 = lam1 (rec1 v01 (lam1 (lam1 (lam1 (suc1 (app1 v11 v01))))) (lam1 v01)) mul1 : ∀{Γ} → Tm1 Γ (arr1 nat1 (arr1 nat1 nat1)); mul1 = lam1 (rec1 v01 (lam1 (lam1 (lam1 (app1 (app1 add1 (app1 v11 v01)) v01)))) (lam1 zero1)) fact1 : ∀{Γ} → Tm1 Γ (arr1 nat1 nat1); fact1 = lam1 (rec1 v01 (lam1 (lam1 (app1 (app1 mul1 (suc1 v11)) v01))) (suc1 zero1)) {-# OPTIONS --type-in-type #-} Ty2 : Set Ty2 = (Ty2 : Set) (nat top bot : Ty2) (arr prod sum : Ty2 → Ty2 → Ty2) → Ty2 nat2 : Ty2; nat2 = λ _ nat2 _ _ _ _ _ → nat2 top2 : Ty2; top2 = λ _ _ top2 _ _ _ _ → top2 bot2 : Ty2; bot2 = λ _ _ _ bot2 _ _ _ → bot2 arr2 : Ty2 → Ty2 → Ty2; arr2 = λ A B Ty2 nat2 top2 bot2 arr2 prod sum → arr2 (A Ty2 nat2 top2 bot2 arr2 prod sum) (B Ty2 nat2 top2 bot2 arr2 prod sum) prod2 : Ty2 → Ty2 → Ty2; prod2 = λ A B Ty2 nat2 top2 bot2 arr2 prod2 sum → prod2 (A Ty2 nat2 top2 bot2 arr2 prod2 sum) (B Ty2 nat2 top2 bot2 arr2 prod2 sum) sum2 : Ty2 → Ty2 → Ty2; sum2 = λ A B Ty2 nat2 top2 bot2 arr2 prod2 sum2 → sum2 (A Ty2 nat2 top2 bot2 arr2 prod2 sum2) (B Ty2 nat2 top2 bot2 arr2 prod2 sum2) Con2 : Set; Con2 = (Con2 : Set) (nil : Con2) (snoc : Con2 → Ty2 → Con2) → Con2 nil2 : Con2; nil2 = λ Con2 nil2 snoc → nil2 snoc2 : Con2 → Ty2 → Con2; snoc2 = λ Γ A Con2 nil2 snoc2 → snoc2 (Γ Con2 nil2 snoc2) A Var2 : Con2 → Ty2 → Set; Var2 = λ Γ A → (Var2 : Con2 → Ty2 → Set) (vz : ∀{Γ A} → Var2 (snoc2 Γ A) A) (vs : ∀{Γ B A} → Var2 Γ A → Var2 (snoc2 Γ B) A) → Var2 Γ A vz2 : ∀{Γ A} → Var2 (snoc2 Γ A) A; vz2 = λ Var2 vz2 vs → vz2 vs2 : ∀{Γ B A} → Var2 Γ A → Var2 (snoc2 Γ B) A; vs2 = λ x Var2 vz2 vs2 → vs2 (x Var2 vz2 vs2) Tm2 : Con2 → Ty2 → Set; Tm2 = λ Γ A → (Tm2 : Con2 → Ty2 → Set) (var : ∀{Γ A} → Var2 Γ A → Tm2 Γ A) (lam : ∀{Γ A B} → Tm2 (snoc2 Γ A) B → Tm2 Γ (arr2 A B)) (app : ∀{Γ A B} → Tm2 Γ (arr2 A B) → Tm2 Γ A → Tm2 Γ B) (tt : ∀{Γ} → Tm2 Γ top2) (pair : ∀{Γ A B} → Tm2 Γ A → Tm2 Γ B → Tm2 Γ (prod2 A B)) (fst : ∀{Γ A B} → Tm2 Γ (prod2 A B) → Tm2 Γ A) (snd : ∀{Γ A B} → Tm2 Γ (prod2 A B) → Tm2 Γ B) (left : ∀{Γ A B} → Tm2 Γ A → Tm2 Γ (sum2 A B)) (right : ∀{Γ A B} → Tm2 Γ B → Tm2 Γ (sum2 A B)) (case : ∀{Γ A B C} → Tm2 Γ (sum2 A B) → Tm2 Γ (arr2 A C) → Tm2 Γ (arr2 B C) → Tm2 Γ C) (zero : ∀{Γ} → Tm2 Γ nat2) (suc : ∀{Γ} → Tm2 Γ nat2 → Tm2 Γ nat2) (rec : ∀{Γ A} → Tm2 Γ nat2 → Tm2 Γ (arr2 nat2 (arr2 A A)) → Tm2 Γ A → Tm2 Γ A) → Tm2 Γ A var2 : ∀{Γ A} → Var2 Γ A → Tm2 Γ A; var2 = λ x Tm2 var2 lam app tt pair fst snd left right case zero suc rec → var2 x lam2 : ∀{Γ A B} → Tm2 (snoc2 Γ A) B → Tm2 Γ (arr2 A B); lam2 = λ t Tm2 var2 lam2 app tt pair fst snd left right case zero suc rec → lam2 (t Tm2 var2 lam2 app tt pair fst snd left right case zero suc rec) app2 : ∀{Γ A B} → Tm2 Γ (arr2 A B) → Tm2 Γ A → Tm2 Γ B; app2 = λ t u Tm2 var2 lam2 app2 tt pair fst snd left right case zero suc rec → app2 (t Tm2 var2 lam2 app2 tt pair fst snd left right case zero suc rec) (u Tm2 var2 lam2 app2 tt pair fst snd left right case zero suc rec) tt2 : ∀{Γ} → Tm2 Γ top2; tt2 = λ Tm2 var2 lam2 app2 tt2 pair fst snd left right case zero suc rec → tt2 pair2 : ∀{Γ A B} → Tm2 Γ A → Tm2 Γ B → Tm2 Γ (prod2 A B); pair2 = λ t u Tm2 var2 lam2 app2 tt2 pair2 fst snd left right case zero suc rec → pair2 (t Tm2 var2 lam2 app2 tt2 pair2 fst snd left right case zero suc rec) (u Tm2 var2 lam2 app2 tt2 pair2 fst snd left right case zero suc rec) fst2 : ∀{Γ A B} → Tm2 Γ (prod2 A B) → Tm2 Γ A; fst2 = λ t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd left right case zero suc rec → fst2 (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd left right case zero suc rec) snd2 : ∀{Γ A B} → Tm2 Γ (prod2 A B) → Tm2 Γ B; snd2 = λ t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left right case zero suc rec → snd2 (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left right case zero suc rec) left2 : ∀{Γ A B} → Tm2 Γ A → Tm2 Γ (sum2 A B); left2 = λ t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right case zero suc rec → left2 (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right case zero suc rec) right2 : ∀{Γ A B} → Tm2 Γ B → Tm2 Γ (sum2 A B); right2 = λ t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case zero suc rec → right2 (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case zero suc rec) case2 : ∀{Γ A B C} → Tm2 Γ (sum2 A B) → Tm2 Γ (arr2 A C) → Tm2 Γ (arr2 B C) → Tm2 Γ C; case2 = λ t u v Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero suc rec → case2 (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero suc rec) (u Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero suc rec) (v Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero suc rec) zero2 : ∀{Γ} → Tm2 Γ nat2; zero2 = λ Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc rec → zero2 suc2 : ∀{Γ} → Tm2 Γ nat2 → Tm2 Γ nat2; suc2 = λ t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec → suc2 (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec) rec2 : ∀{Γ A} → Tm2 Γ nat2 → Tm2 Γ (arr2 nat2 (arr2 A A)) → Tm2 Γ A → Tm2 Γ A; rec2 = λ t u v Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec2 → rec2 (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec2) (u Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec2) (v Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec2) v02 : ∀{Γ A} → Tm2 (snoc2 Γ A) A; v02 = var2 vz2 v12 : ∀{Γ A B} → Tm2 (snoc2 (snoc2 Γ A) B) A; v12 = var2 (vs2 vz2) v22 : ∀{Γ A B C} → Tm2 (snoc2 (snoc2 (snoc2 Γ A) B) C) A; v22 = var2 (vs2 (vs2 vz2)) v32 : ∀{Γ A B C D} → Tm2 (snoc2 (snoc2 (snoc2 (snoc2 Γ A) B) C) D) A; v32 = var2 (vs2 (vs2 (vs2 vz2))) tbool2 : Ty2; tbool2 = sum2 top2 top2 true2 : ∀{Γ} → Tm2 Γ tbool2; true2 = left2 tt2 tfalse2 : ∀{Γ} → Tm2 Γ tbool2; tfalse2 = right2 tt2 ifthenelse2 : ∀{Γ A} → Tm2 Γ (arr2 tbool2 (arr2 A (arr2 A A))); ifthenelse2 = lam2 (lam2 (lam2 (case2 v22 (lam2 v22) (lam2 v12)))) times42 : ∀{Γ A} → Tm2 Γ (arr2 (arr2 A A) (arr2 A A)); times42 = lam2 (lam2 (app2 v12 (app2 v12 (app2 v12 (app2 v12 v02))))) add2 : ∀{Γ} → Tm2 Γ (arr2 nat2 (arr2 nat2 nat2)); add2 = lam2 (rec2 v02 (lam2 (lam2 (lam2 (suc2 (app2 v12 v02))))) (lam2 v02)) mul2 : ∀{Γ} → Tm2 Γ (arr2 nat2 (arr2 nat2 nat2)); mul2 = lam2 (rec2 v02 (lam2 (lam2 (lam2 (app2 (app2 add2 (app2 v12 v02)) v02)))) (lam2 zero2)) fact2 : ∀{Γ} → Tm2 Γ (arr2 nat2 nat2); fact2 = lam2 (rec2 v02 (lam2 (lam2 (app2 (app2 mul2 (suc2 v12)) v02))) (suc2 zero2)) {-# OPTIONS --type-in-type #-} Ty3 : Set Ty3 = (Ty3 : Set) (nat top bot : Ty3) (arr prod sum : Ty3 → Ty3 → Ty3) → Ty3 nat3 : Ty3; nat3 = λ _ nat3 _ _ _ _ _ → nat3 top3 : Ty3; top3 = λ _ _ top3 _ _ _ _ → top3 bot3 : Ty3; bot3 = λ _ _ _ bot3 _ _ _ → bot3 arr3 : Ty3 → Ty3 → Ty3; arr3 = λ A B Ty3 nat3 top3 bot3 arr3 prod sum → arr3 (A Ty3 nat3 top3 bot3 arr3 prod sum) (B Ty3 nat3 top3 bot3 arr3 prod sum) prod3 : Ty3 → Ty3 → Ty3; prod3 = λ A B Ty3 nat3 top3 bot3 arr3 prod3 sum → prod3 (A Ty3 nat3 top3 bot3 arr3 prod3 sum) (B Ty3 nat3 top3 bot3 arr3 prod3 sum) sum3 : Ty3 → Ty3 → Ty3; sum3 = λ A B Ty3 nat3 top3 bot3 arr3 prod3 sum3 → sum3 (A Ty3 nat3 top3 bot3 arr3 prod3 sum3) (B Ty3 nat3 top3 bot3 arr3 prod3 sum3) Con3 : Set; Con3 = (Con3 : Set) (nil : Con3) (snoc : Con3 → Ty3 → Con3) → Con3 nil3 : Con3; nil3 = λ Con3 nil3 snoc → nil3 snoc3 : Con3 → Ty3 → Con3; snoc3 = λ Γ A Con3 nil3 snoc3 → snoc3 (Γ Con3 nil3 snoc3) A Var3 : Con3 → Ty3 → Set; Var3 = λ Γ A → (Var3 : Con3 → Ty3 → Set) (vz : ∀{Γ A} → Var3 (snoc3 Γ A) A) (vs : ∀{Γ B A} → Var3 Γ A → Var3 (snoc3 Γ B) A) → Var3 Γ A vz3 : ∀{Γ A} → Var3 (snoc3 Γ A) A; vz3 = λ Var3 vz3 vs → vz3 vs3 : ∀{Γ B A} → Var3 Γ A → Var3 (snoc3 Γ B) A; vs3 = λ x Var3 vz3 vs3 → vs3 (x Var3 vz3 vs3) Tm3 : Con3 → Ty3 → Set; Tm3 = λ Γ A → (Tm3 : Con3 → Ty3 → Set) (var : ∀{Γ A} → Var3 Γ A → Tm3 Γ A) (lam : ∀{Γ A B} → Tm3 (snoc3 Γ A) B → Tm3 Γ (arr3 A B)) (app : ∀{Γ A B} → Tm3 Γ (arr3 A B) → Tm3 Γ A → Tm3 Γ B) (tt : ∀{Γ} → Tm3 Γ top3) (pair : ∀{Γ A B} → Tm3 Γ A → Tm3 Γ B → Tm3 Γ (prod3 A B)) (fst : ∀{Γ A B} → Tm3 Γ (prod3 A B) → Tm3 Γ A) (snd : ∀{Γ A B} → Tm3 Γ (prod3 A B) → Tm3 Γ B) (left : ∀{Γ A B} → Tm3 Γ A → Tm3 Γ (sum3 A B)) (right : ∀{Γ A B} → Tm3 Γ B → Tm3 Γ (sum3 A B)) (case : ∀{Γ A B C} → Tm3 Γ (sum3 A B) → Tm3 Γ (arr3 A C) → Tm3 Γ (arr3 B C) → Tm3 Γ C) (zero : ∀{Γ} → Tm3 Γ nat3) (suc : ∀{Γ} → Tm3 Γ nat3 → Tm3 Γ nat3) (rec : ∀{Γ A} → Tm3 Γ nat3 → Tm3 Γ (arr3 nat3 (arr3 A A)) → Tm3 Γ A → Tm3 Γ A) → Tm3 Γ A var3 : ∀{Γ A} → Var3 Γ A → Tm3 Γ A; var3 = λ x Tm3 var3 lam app tt pair fst snd left right case zero suc rec → var3 x lam3 : ∀{Γ A B} → Tm3 (snoc3 Γ A) B → Tm3 Γ (arr3 A B); lam3 = λ t Tm3 var3 lam3 app tt pair fst snd left right case zero suc rec → lam3 (t Tm3 var3 lam3 app tt pair fst snd left right case zero suc rec) app3 : ∀{Γ A B} → Tm3 Γ (arr3 A B) → Tm3 Γ A → Tm3 Γ B; app3 = λ t u Tm3 var3 lam3 app3 tt pair fst snd left right case zero suc rec → app3 (t Tm3 var3 lam3 app3 tt pair fst snd left right case zero suc rec) (u Tm3 var3 lam3 app3 tt pair fst snd left right case zero suc rec) tt3 : ∀{Γ} → Tm3 Γ top3; tt3 = λ Tm3 var3 lam3 app3 tt3 pair fst snd left right case zero suc rec → tt3 pair3 : ∀{Γ A B} → Tm3 Γ A → Tm3 Γ B → Tm3 Γ (prod3 A B); pair3 = λ t u Tm3 var3 lam3 app3 tt3 pair3 fst snd left right case zero suc rec → pair3 (t Tm3 var3 lam3 app3 tt3 pair3 fst snd left right case zero suc rec) (u Tm3 var3 lam3 app3 tt3 pair3 fst snd left right case zero suc rec) fst3 : ∀{Γ A B} → Tm3 Γ (prod3 A B) → Tm3 Γ A; fst3 = λ t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd left right case zero suc rec → fst3 (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd left right case zero suc rec) snd3 : ∀{Γ A B} → Tm3 Γ (prod3 A B) → Tm3 Γ B; snd3 = λ t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left right case zero suc rec → snd3 (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left right case zero suc rec) left3 : ∀{Γ A B} → Tm3 Γ A → Tm3 Γ (sum3 A B); left3 = λ t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right case zero suc rec → left3 (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right case zero suc rec) right3 : ∀{Γ A B} → Tm3 Γ B → Tm3 Γ (sum3 A B); right3 = λ t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case zero suc rec → right3 (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case zero suc rec) case3 : ∀{Γ A B C} → Tm3 Γ (sum3 A B) → Tm3 Γ (arr3 A C) → Tm3 Γ (arr3 B C) → Tm3 Γ C; case3 = λ t u v Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero suc rec → case3 (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero suc rec) (u Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero suc rec) (v Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero suc rec) zero3 : ∀{Γ} → Tm3 Γ nat3; zero3 = λ Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc rec → zero3 suc3 : ∀{Γ} → Tm3 Γ nat3 → Tm3 Γ nat3; suc3 = λ t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec → suc3 (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec) rec3 : ∀{Γ A} → Tm3 Γ nat3 → Tm3 Γ (arr3 nat3 (arr3 A A)) → Tm3 Γ A → Tm3 Γ A; rec3 = λ t u v Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec3 → rec3 (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec3) (u Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec3) (v Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec3) v03 : ∀{Γ A} → Tm3 (snoc3 Γ A) A; v03 = var3 vz3 v13 : ∀{Γ A B} → Tm3 (snoc3 (snoc3 Γ A) B) A; v13 = var3 (vs3 vz3) v23 : ∀{Γ A B C} → Tm3 (snoc3 (snoc3 (snoc3 Γ A) B) C) A; v23 = var3 (vs3 (vs3 vz3)) v33 : ∀{Γ A B C D} → Tm3 (snoc3 (snoc3 (snoc3 (snoc3 Γ A) B) C) D) A; v33 = var3 (vs3 (vs3 (vs3 vz3))) tbool3 : Ty3; tbool3 = sum3 top3 top3 true3 : ∀{Γ} → Tm3 Γ tbool3; true3 = left3 tt3 tfalse3 : ∀{Γ} → Tm3 Γ tbool3; tfalse3 = right3 tt3 ifthenelse3 : ∀{Γ A} → Tm3 Γ (arr3 tbool3 (arr3 A (arr3 A A))); ifthenelse3 = lam3 (lam3 (lam3 (case3 v23 (lam3 v23) (lam3 v13)))) times43 : ∀{Γ A} → Tm3 Γ (arr3 (arr3 A A) (arr3 A A)); times43 = lam3 (lam3 (app3 v13 (app3 v13 (app3 v13 (app3 v13 v03))))) add3 : ∀{Γ} → Tm3 Γ (arr3 nat3 (arr3 nat3 nat3)); add3 = lam3 (rec3 v03 (lam3 (lam3 (lam3 (suc3 (app3 v13 v03))))) (lam3 v03)) mul3 : ∀{Γ} → Tm3 Γ (arr3 nat3 (arr3 nat3 nat3)); mul3 = lam3 (rec3 v03 (lam3 (lam3 (lam3 (app3 (app3 add3 (app3 v13 v03)) v03)))) (lam3 zero3)) fact3 : ∀{Γ} → Tm3 Γ (arr3 nat3 nat3); fact3 = lam3 (rec3 v03 (lam3 (lam3 (app3 (app3 mul3 (suc3 v13)) v03))) (suc3 zero3)) {-# OPTIONS --type-in-type #-} Ty4 : Set Ty4 = (Ty4 : Set) (nat top bot : Ty4) (arr prod sum : Ty4 → Ty4 → Ty4) → Ty4 nat4 : Ty4; nat4 = λ _ nat4 _ _ _ _ _ → nat4 top4 : Ty4; top4 = λ _ _ top4 _ _ _ _ → top4 bot4 : Ty4; bot4 = λ _ _ _ bot4 _ _ _ → bot4 arr4 : Ty4 → Ty4 → Ty4; arr4 = λ A B Ty4 nat4 top4 bot4 arr4 prod sum → arr4 (A Ty4 nat4 top4 bot4 arr4 prod sum) (B Ty4 nat4 top4 bot4 arr4 prod sum) prod4 : Ty4 → Ty4 → Ty4; prod4 = λ A B Ty4 nat4 top4 bot4 arr4 prod4 sum → prod4 (A Ty4 nat4 top4 bot4 arr4 prod4 sum) (B Ty4 nat4 top4 bot4 arr4 prod4 sum) sum4 : Ty4 → Ty4 → Ty4; sum4 = λ A B Ty4 nat4 top4 bot4 arr4 prod4 sum4 → sum4 (A Ty4 nat4 top4 bot4 arr4 prod4 sum4) (B Ty4 nat4 top4 bot4 arr4 prod4 sum4) Con4 : Set; Con4 = (Con4 : Set) (nil : Con4) (snoc : Con4 → Ty4 → Con4) → Con4 nil4 : Con4; nil4 = λ Con4 nil4 snoc → nil4 snoc4 : Con4 → Ty4 → Con4; snoc4 = λ Γ A Con4 nil4 snoc4 → snoc4 (Γ Con4 nil4 snoc4) A Var4 : Con4 → Ty4 → Set; Var4 = λ Γ A → (Var4 : Con4 → Ty4 → Set) (vz : ∀{Γ A} → Var4 (snoc4 Γ A) A) (vs : ∀{Γ B A} → Var4 Γ A → Var4 (snoc4 Γ B) A) → Var4 Γ A vz4 : ∀{Γ A} → Var4 (snoc4 Γ A) A; vz4 = λ Var4 vz4 vs → vz4 vs4 : ∀{Γ B A} → Var4 Γ A → Var4 (snoc4 Γ B) A; vs4 = λ x Var4 vz4 vs4 → vs4 (x Var4 vz4 vs4) Tm4 : Con4 → Ty4 → Set; Tm4 = λ Γ A → (Tm4 : Con4 → Ty4 → Set) (var : ∀{Γ A} → Var4 Γ A → Tm4 Γ A) (lam : ∀{Γ A B} → Tm4 (snoc4 Γ A) B → Tm4 Γ (arr4 A B)) (app : ∀{Γ A B} → Tm4 Γ (arr4 A B) → Tm4 Γ A → Tm4 Γ B) (tt : ∀{Γ} → Tm4 Γ top4) (pair : ∀{Γ A B} → Tm4 Γ A → Tm4 Γ B → Tm4 Γ (prod4 A B)) (fst : ∀{Γ A B} → Tm4 Γ (prod4 A B) → Tm4 Γ A) (snd : ∀{Γ A B} → Tm4 Γ (prod4 A B) → Tm4 Γ B) (left : ∀{Γ A B} → Tm4 Γ A → Tm4 Γ (sum4 A B)) (right : ∀{Γ A B} → Tm4 Γ B → Tm4 Γ (sum4 A B)) (case : ∀{Γ A B C} → Tm4 Γ (sum4 A B) → Tm4 Γ (arr4 A C) → Tm4 Γ (arr4 B C) → Tm4 Γ C) (zero : ∀{Γ} → Tm4 Γ nat4) (suc : ∀{Γ} → Tm4 Γ nat4 → Tm4 Γ nat4) (rec : ∀{Γ A} → Tm4 Γ nat4 → Tm4 Γ (arr4 nat4 (arr4 A A)) → Tm4 Γ A → Tm4 Γ A) → Tm4 Γ A var4 : ∀{Γ A} → Var4 Γ A → Tm4 Γ A; var4 = λ x Tm4 var4 lam app tt pair fst snd left right case zero suc rec → var4 x lam4 : ∀{Γ A B} → Tm4 (snoc4 Γ A) B → Tm4 Γ (arr4 A B); lam4 = λ t Tm4 var4 lam4 app tt pair fst snd left right case zero suc rec → lam4 (t Tm4 var4 lam4 app tt pair fst snd left right case zero suc rec) app4 : ∀{Γ A B} → Tm4 Γ (arr4 A B) → Tm4 Γ A → Tm4 Γ B; app4 = λ t u Tm4 var4 lam4 app4 tt pair fst snd left right case zero suc rec → app4 (t Tm4 var4 lam4 app4 tt pair fst snd left right case zero suc rec) (u Tm4 var4 lam4 app4 tt pair fst snd left right case zero suc rec) tt4 : ∀{Γ} → Tm4 Γ top4; tt4 = λ Tm4 var4 lam4 app4 tt4 pair fst snd left right case zero suc rec → tt4 pair4 : ∀{Γ A B} → Tm4 Γ A → Tm4 Γ B → Tm4 Γ (prod4 A B); pair4 = λ t u Tm4 var4 lam4 app4 tt4 pair4 fst snd left right case zero suc rec → pair4 (t Tm4 var4 lam4 app4 tt4 pair4 fst snd left right case zero suc rec) (u Tm4 var4 lam4 app4 tt4 pair4 fst snd left right case zero suc rec) fst4 : ∀{Γ A B} → Tm4 Γ (prod4 A B) → Tm4 Γ A; fst4 = λ t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd left right case zero suc rec → fst4 (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd left right case zero suc rec) snd4 : ∀{Γ A B} → Tm4 Γ (prod4 A B) → Tm4 Γ B; snd4 = λ t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left right case zero suc rec → snd4 (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left right case zero suc rec) left4 : ∀{Γ A B} → Tm4 Γ A → Tm4 Γ (sum4 A B); left4 = λ t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right case zero suc rec → left4 (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right case zero suc rec) right4 : ∀{Γ A B} → Tm4 Γ B → Tm4 Γ (sum4 A B); right4 = λ t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case zero suc rec → right4 (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case zero suc rec) case4 : ∀{Γ A B C} → Tm4 Γ (sum4 A B) → Tm4 Γ (arr4 A C) → Tm4 Γ (arr4 B C) → Tm4 Γ C; case4 = λ t u v Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero suc rec → case4 (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero suc rec) (u Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero suc rec) (v Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero suc rec) zero4 : ∀{Γ} → Tm4 Γ nat4; zero4 = λ Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc rec → zero4 suc4 : ∀{Γ} → Tm4 Γ nat4 → Tm4 Γ nat4; suc4 = λ t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec → suc4 (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec) rec4 : ∀{Γ A} → Tm4 Γ nat4 → Tm4 Γ (arr4 nat4 (arr4 A A)) → Tm4 Γ A → Tm4 Γ A; rec4 = λ t u v Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec4 → rec4 (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec4) (u Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec4) (v Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec4) v04 : ∀{Γ A} → Tm4 (snoc4 Γ A) A; v04 = var4 vz4 v14 : ∀{Γ A B} → Tm4 (snoc4 (snoc4 Γ A) B) A; v14 = var4 (vs4 vz4) v24 : ∀{Γ A B C} → Tm4 (snoc4 (snoc4 (snoc4 Γ A) B) C) A; v24 = var4 (vs4 (vs4 vz4)) v34 : ∀{Γ A B C D} → Tm4 (snoc4 (snoc4 (snoc4 (snoc4 Γ A) B) C) D) A; v34 = var4 (vs4 (vs4 (vs4 vz4))) tbool4 : Ty4; tbool4 = sum4 top4 top4 true4 : ∀{Γ} → Tm4 Γ tbool4; true4 = left4 tt4 tfalse4 : ∀{Γ} → Tm4 Γ tbool4; tfalse4 = right4 tt4 ifthenelse4 : ∀{Γ A} → Tm4 Γ (arr4 tbool4 (arr4 A (arr4 A A))); ifthenelse4 = lam4 (lam4 (lam4 (case4 v24 (lam4 v24) (lam4 v14)))) times44 : ∀{Γ A} → Tm4 Γ (arr4 (arr4 A A) (arr4 A A)); times44 = lam4 (lam4 (app4 v14 (app4 v14 (app4 v14 (app4 v14 v04))))) add4 : ∀{Γ} → Tm4 Γ (arr4 nat4 (arr4 nat4 nat4)); add4 = lam4 (rec4 v04 (lam4 (lam4 (lam4 (suc4 (app4 v14 v04))))) (lam4 v04)) mul4 : ∀{Γ} → Tm4 Γ (arr4 nat4 (arr4 nat4 nat4)); mul4 = lam4 (rec4 v04 (lam4 (lam4 (lam4 (app4 (app4 add4 (app4 v14 v04)) v04)))) (lam4 zero4)) fact4 : ∀{Γ} → Tm4 Γ (arr4 nat4 nat4); fact4 = lam4 (rec4 v04 (lam4 (lam4 (app4 (app4 mul4 (suc4 v14)) v04))) (suc4 zero4)) {-# OPTIONS --type-in-type #-} Ty5 : Set Ty5 = (Ty5 : Set) (nat top bot : Ty5) (arr prod sum : Ty5 → Ty5 → Ty5) → Ty5 nat5 : Ty5; nat5 = λ _ nat5 _ _ _ _ _ → nat5 top5 : Ty5; top5 = λ _ _ top5 _ _ _ _ → top5 bot5 : Ty5; bot5 = λ _ _ _ bot5 _ _ _ → bot5 arr5 : Ty5 → Ty5 → Ty5; arr5 = λ A B Ty5 nat5 top5 bot5 arr5 prod sum → arr5 (A Ty5 nat5 top5 bot5 arr5 prod sum) (B Ty5 nat5 top5 bot5 arr5 prod sum) prod5 : Ty5 → Ty5 → Ty5; prod5 = λ A B Ty5 nat5 top5 bot5 arr5 prod5 sum → prod5 (A Ty5 nat5 top5 bot5 arr5 prod5 sum) (B Ty5 nat5 top5 bot5 arr5 prod5 sum) sum5 : Ty5 → Ty5 → Ty5; sum5 = λ A B Ty5 nat5 top5 bot5 arr5 prod5 sum5 → sum5 (A Ty5 nat5 top5 bot5 arr5 prod5 sum5) (B Ty5 nat5 top5 bot5 arr5 prod5 sum5) Con5 : Set; Con5 = (Con5 : Set) (nil : Con5) (snoc : Con5 → Ty5 → Con5) → Con5 nil5 : Con5; nil5 = λ Con5 nil5 snoc → nil5 snoc5 : Con5 → Ty5 → Con5; snoc5 = λ Γ A Con5 nil5 snoc5 → snoc5 (Γ Con5 nil5 snoc5) A Var5 : Con5 → Ty5 → Set; Var5 = λ Γ A → (Var5 : Con5 → Ty5 → Set) (vz : ∀{Γ A} → Var5 (snoc5 Γ A) A) (vs : ∀{Γ B A} → Var5 Γ A → Var5 (snoc5 Γ B) A) → Var5 Γ A vz5 : ∀{Γ A} → Var5 (snoc5 Γ A) A; vz5 = λ Var5 vz5 vs → vz5 vs5 : ∀{Γ B A} → Var5 Γ A → Var5 (snoc5 Γ B) A; vs5 = λ x Var5 vz5 vs5 → vs5 (x Var5 vz5 vs5) Tm5 : Con5 → Ty5 → Set; Tm5 = λ Γ A → (Tm5 : Con5 → Ty5 → Set) (var : ∀{Γ A} → Var5 Γ A → Tm5 Γ A) (lam : ∀{Γ A B} → Tm5 (snoc5 Γ A) B → Tm5 Γ (arr5 A B)) (app : ∀{Γ A B} → Tm5 Γ (arr5 A B) → Tm5 Γ A → Tm5 Γ B) (tt : ∀{Γ} → Tm5 Γ top5) (pair : ∀{Γ A B} → Tm5 Γ A → Tm5 Γ B → Tm5 Γ (prod5 A B)) (fst : ∀{Γ A B} → Tm5 Γ (prod5 A B) → Tm5 Γ A) (snd : ∀{Γ A B} → Tm5 Γ (prod5 A B) → Tm5 Γ B) (left : ∀{Γ A B} → Tm5 Γ A → Tm5 Γ (sum5 A B)) (right : ∀{Γ A B} → Tm5 Γ B → Tm5 Γ (sum5 A B)) (case : ∀{Γ A B C} → Tm5 Γ (sum5 A B) → Tm5 Γ (arr5 A C) → Tm5 Γ (arr5 B C) → Tm5 Γ C) (zero : ∀{Γ} → Tm5 Γ nat5) (suc : ∀{Γ} → Tm5 Γ nat5 → Tm5 Γ nat5) (rec : ∀{Γ A} → Tm5 Γ nat5 → Tm5 Γ (arr5 nat5 (arr5 A A)) → Tm5 Γ A → Tm5 Γ A) → Tm5 Γ A var5 : ∀{Γ A} → Var5 Γ A → Tm5 Γ A; var5 = λ x Tm5 var5 lam app tt pair fst snd left right case zero suc rec → var5 x lam5 : ∀{Γ A B} → Tm5 (snoc5 Γ A) B → Tm5 Γ (arr5 A B); lam5 = λ t Tm5 var5 lam5 app tt pair fst snd left right case zero suc rec → lam5 (t Tm5 var5 lam5 app tt pair fst snd left right case zero suc rec) app5 : ∀{Γ A B} → Tm5 Γ (arr5 A B) → Tm5 Γ A → Tm5 Γ B; app5 = λ t u Tm5 var5 lam5 app5 tt pair fst snd left right case zero suc rec → app5 (t Tm5 var5 lam5 app5 tt pair fst snd left right case zero suc rec) (u Tm5 var5 lam5 app5 tt pair fst snd left right case zero suc rec) tt5 : ∀{Γ} → Tm5 Γ top5; tt5 = λ Tm5 var5 lam5 app5 tt5 pair fst snd left right case zero suc rec → tt5 pair5 : ∀{Γ A B} → Tm5 Γ A → Tm5 Γ B → Tm5 Γ (prod5 A B); pair5 = λ t u Tm5 var5 lam5 app5 tt5 pair5 fst snd left right case zero suc rec → pair5 (t Tm5 var5 lam5 app5 tt5 pair5 fst snd left right case zero suc rec) (u Tm5 var5 lam5 app5 tt5 pair5 fst snd left right case zero suc rec) fst5 : ∀{Γ A B} → Tm5 Γ (prod5 A B) → Tm5 Γ A; fst5 = λ t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd left right case zero suc rec → fst5 (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd left right case zero suc rec) snd5 : ∀{Γ A B} → Tm5 Γ (prod5 A B) → Tm5 Γ B; snd5 = λ t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left right case zero suc rec → snd5 (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left right case zero suc rec) left5 : ∀{Γ A B} → Tm5 Γ A → Tm5 Γ (sum5 A B); left5 = λ t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right case zero suc rec → left5 (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right case zero suc rec) right5 : ∀{Γ A B} → Tm5 Γ B → Tm5 Γ (sum5 A B); right5 = λ t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case zero suc rec → right5 (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case zero suc rec) case5 : ∀{Γ A B C} → Tm5 Γ (sum5 A B) → Tm5 Γ (arr5 A C) → Tm5 Γ (arr5 B C) → Tm5 Γ C; case5 = λ t u v Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero suc rec → case5 (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero suc rec) (u Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero suc rec) (v Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero suc rec) zero5 : ∀{Γ} → Tm5 Γ nat5; zero5 = λ Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc rec → zero5 suc5 : ∀{Γ} → Tm5 Γ nat5 → Tm5 Γ nat5; suc5 = λ t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec → suc5 (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec) rec5 : ∀{Γ A} → Tm5 Γ nat5 → Tm5 Γ (arr5 nat5 (arr5 A A)) → Tm5 Γ A → Tm5 Γ A; rec5 = λ t u v Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec5 → rec5 (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec5) (u Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec5) (v Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec5) v05 : ∀{Γ A} → Tm5 (snoc5 Γ A) A; v05 = var5 vz5 v15 : ∀{Γ A B} → Tm5 (snoc5 (snoc5 Γ A) B) A; v15 = var5 (vs5 vz5) v25 : ∀{Γ A B C} → Tm5 (snoc5 (snoc5 (snoc5 Γ A) B) C) A; v25 = var5 (vs5 (vs5 vz5)) v35 : ∀{Γ A B C D} → Tm5 (snoc5 (snoc5 (snoc5 (snoc5 Γ A) B) C) D) A; v35 = var5 (vs5 (vs5 (vs5 vz5))) tbool5 : Ty5; tbool5 = sum5 top5 top5 true5 : ∀{Γ} → Tm5 Γ tbool5; true5 = left5 tt5 tfalse5 : ∀{Γ} → Tm5 Γ tbool5; tfalse5 = right5 tt5 ifthenelse5 : ∀{Γ A} → Tm5 Γ (arr5 tbool5 (arr5 A (arr5 A A))); ifthenelse5 = lam5 (lam5 (lam5 (case5 v25 (lam5 v25) (lam5 v15)))) times45 : ∀{Γ A} → Tm5 Γ (arr5 (arr5 A A) (arr5 A A)); times45 = lam5 (lam5 (app5 v15 (app5 v15 (app5 v15 (app5 v15 v05))))) add5 : ∀{Γ} → Tm5 Γ (arr5 nat5 (arr5 nat5 nat5)); add5 = lam5 (rec5 v05 (lam5 (lam5 (lam5 (suc5 (app5 v15 v05))))) (lam5 v05)) mul5 : ∀{Γ} → Tm5 Γ (arr5 nat5 (arr5 nat5 nat5)); mul5 = lam5 (rec5 v05 (lam5 (lam5 (lam5 (app5 (app5 add5 (app5 v15 v05)) v05)))) (lam5 zero5)) fact5 : ∀{Γ} → Tm5 Γ (arr5 nat5 nat5); fact5 = lam5 (rec5 v05 (lam5 (lam5 (app5 (app5 mul5 (suc5 v15)) v05))) (suc5 zero5)) {-# OPTIONS --type-in-type #-} Ty6 : Set Ty6 = (Ty6 : Set) (nat top bot : Ty6) (arr prod sum : Ty6 → Ty6 → Ty6) → Ty6 nat6 : Ty6; nat6 = λ _ nat6 _ _ _ _ _ → nat6 top6 : Ty6; top6 = λ _ _ top6 _ _ _ _ → top6 bot6 : Ty6; bot6 = λ _ _ _ bot6 _ _ _ → bot6 arr6 : Ty6 → Ty6 → Ty6; arr6 = λ A B Ty6 nat6 top6 bot6 arr6 prod sum → arr6 (A Ty6 nat6 top6 bot6 arr6 prod sum) (B Ty6 nat6 top6 bot6 arr6 prod sum) prod6 : Ty6 → Ty6 → Ty6; prod6 = λ A B Ty6 nat6 top6 bot6 arr6 prod6 sum → prod6 (A Ty6 nat6 top6 bot6 arr6 prod6 sum) (B Ty6 nat6 top6 bot6 arr6 prod6 sum) sum6 : Ty6 → Ty6 → Ty6; sum6 = λ A B Ty6 nat6 top6 bot6 arr6 prod6 sum6 → sum6 (A Ty6 nat6 top6 bot6 arr6 prod6 sum6) (B Ty6 nat6 top6 bot6 arr6 prod6 sum6) Con6 : Set; Con6 = (Con6 : Set) (nil : Con6) (snoc : Con6 → Ty6 → Con6) → Con6 nil6 : Con6; nil6 = λ Con6 nil6 snoc → nil6 snoc6 : Con6 → Ty6 → Con6; snoc6 = λ Γ A Con6 nil6 snoc6 → snoc6 (Γ Con6 nil6 snoc6) A Var6 : Con6 → Ty6 → Set; Var6 = λ Γ A → (Var6 : Con6 → Ty6 → Set) (vz : ∀{Γ A} → Var6 (snoc6 Γ A) A) (vs : ∀{Γ B A} → Var6 Γ A → Var6 (snoc6 Γ B) A) → Var6 Γ A vz6 : ∀{Γ A} → Var6 (snoc6 Γ A) A; vz6 = λ Var6 vz6 vs → vz6 vs6 : ∀{Γ B A} → Var6 Γ A → Var6 (snoc6 Γ B) A; vs6 = λ x Var6 vz6 vs6 → vs6 (x Var6 vz6 vs6) Tm6 : Con6 → Ty6 → Set; Tm6 = λ Γ A → (Tm6 : Con6 → Ty6 → Set) (var : ∀{Γ A} → Var6 Γ A → Tm6 Γ A) (lam : ∀{Γ A B} → Tm6 (snoc6 Γ A) B → Tm6 Γ (arr6 A B)) (app : ∀{Γ A B} → Tm6 Γ (arr6 A B) → Tm6 Γ A → Tm6 Γ B) (tt : ∀{Γ} → Tm6 Γ top6) (pair : ∀{Γ A B} → Tm6 Γ A → Tm6 Γ B → Tm6 Γ (prod6 A B)) (fst : ∀{Γ A B} → Tm6 Γ (prod6 A B) → Tm6 Γ A) (snd : ∀{Γ A B} → Tm6 Γ (prod6 A B) → Tm6 Γ B) (left : ∀{Γ A B} → Tm6 Γ A → Tm6 Γ (sum6 A B)) (right : ∀{Γ A B} → Tm6 Γ B → Tm6 Γ (sum6 A B)) (case : ∀{Γ A B C} → Tm6 Γ (sum6 A B) → Tm6 Γ (arr6 A C) → Tm6 Γ (arr6 B C) → Tm6 Γ C) (zero : ∀{Γ} → Tm6 Γ nat6) (suc : ∀{Γ} → Tm6 Γ nat6 → Tm6 Γ nat6) (rec : ∀{Γ A} → Tm6 Γ nat6 → Tm6 Γ (arr6 nat6 (arr6 A A)) → Tm6 Γ A → Tm6 Γ A) → Tm6 Γ A var6 : ∀{Γ A} → Var6 Γ A → Tm6 Γ A; var6 = λ x Tm6 var6 lam app tt pair fst snd left right case zero suc rec → var6 x lam6 : ∀{Γ A B} → Tm6 (snoc6 Γ A) B → Tm6 Γ (arr6 A B); lam6 = λ t Tm6 var6 lam6 app tt pair fst snd left right case zero suc rec → lam6 (t Tm6 var6 lam6 app tt pair fst snd left right case zero suc rec) app6 : ∀{Γ A B} → Tm6 Γ (arr6 A B) → Tm6 Γ A → Tm6 Γ B; app6 = λ t u Tm6 var6 lam6 app6 tt pair fst snd left right case zero suc rec → app6 (t Tm6 var6 lam6 app6 tt pair fst snd left right case zero suc rec) (u Tm6 var6 lam6 app6 tt pair fst snd left right case zero suc rec) tt6 : ∀{Γ} → Tm6 Γ top6; tt6 = λ Tm6 var6 lam6 app6 tt6 pair fst snd left right case zero suc rec → tt6 pair6 : ∀{Γ A B} → Tm6 Γ A → Tm6 Γ B → Tm6 Γ (prod6 A B); pair6 = λ t u Tm6 var6 lam6 app6 tt6 pair6 fst snd left right case zero suc rec → pair6 (t Tm6 var6 lam6 app6 tt6 pair6 fst snd left right case zero suc rec) (u Tm6 var6 lam6 app6 tt6 pair6 fst snd left right case zero suc rec) fst6 : ∀{Γ A B} → Tm6 Γ (prod6 A B) → Tm6 Γ A; fst6 = λ t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd left right case zero suc rec → fst6 (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd left right case zero suc rec) snd6 : ∀{Γ A B} → Tm6 Γ (prod6 A B) → Tm6 Γ B; snd6 = λ t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left right case zero suc rec → snd6 (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left right case zero suc rec) left6 : ∀{Γ A B} → Tm6 Γ A → Tm6 Γ (sum6 A B); left6 = λ t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right case zero suc rec → left6 (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right case zero suc rec) right6 : ∀{Γ A B} → Tm6 Γ B → Tm6 Γ (sum6 A B); right6 = λ t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case zero suc rec → right6 (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case zero suc rec) case6 : ∀{Γ A B C} → Tm6 Γ (sum6 A B) → Tm6 Γ (arr6 A C) → Tm6 Γ (arr6 B C) → Tm6 Γ C; case6 = λ t u v Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero suc rec → case6 (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero suc rec) (u Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero suc rec) (v Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero suc rec) zero6 : ∀{Γ} → Tm6 Γ nat6; zero6 = λ Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc rec → zero6 suc6 : ∀{Γ} → Tm6 Γ nat6 → Tm6 Γ nat6; suc6 = λ t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec → suc6 (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec) rec6 : ∀{Γ A} → Tm6 Γ nat6 → Tm6 Γ (arr6 nat6 (arr6 A A)) → Tm6 Γ A → Tm6 Γ A; rec6 = λ t u v Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec6 → rec6 (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec6) (u Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec6) (v Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec6) v06 : ∀{Γ A} → Tm6 (snoc6 Γ A) A; v06 = var6 vz6 v16 : ∀{Γ A B} → Tm6 (snoc6 (snoc6 Γ A) B) A; v16 = var6 (vs6 vz6) v26 : ∀{Γ A B C} → Tm6 (snoc6 (snoc6 (snoc6 Γ A) B) C) A; v26 = var6 (vs6 (vs6 vz6)) v36 : ∀{Γ A B C D} → Tm6 (snoc6 (snoc6 (snoc6 (snoc6 Γ A) B) C) D) A; v36 = var6 (vs6 (vs6 (vs6 vz6))) tbool6 : Ty6; tbool6 = sum6 top6 top6 true6 : ∀{Γ} → Tm6 Γ tbool6; true6 = left6 tt6 tfalse6 : ∀{Γ} → Tm6 Γ tbool6; tfalse6 = right6 tt6 ifthenelse6 : ∀{Γ A} → Tm6 Γ (arr6 tbool6 (arr6 A (arr6 A A))); ifthenelse6 = lam6 (lam6 (lam6 (case6 v26 (lam6 v26) (lam6 v16)))) times46 : ∀{Γ A} → Tm6 Γ (arr6 (arr6 A A) (arr6 A A)); times46 = lam6 (lam6 (app6 v16 (app6 v16 (app6 v16 (app6 v16 v06))))) add6 : ∀{Γ} → Tm6 Γ (arr6 nat6 (arr6 nat6 nat6)); add6 = lam6 (rec6 v06 (lam6 (lam6 (lam6 (suc6 (app6 v16 v06))))) (lam6 v06)) mul6 : ∀{Γ} → Tm6 Γ (arr6 nat6 (arr6 nat6 nat6)); mul6 = lam6 (rec6 v06 (lam6 (lam6 (lam6 (app6 (app6 add6 (app6 v16 v06)) v06)))) (lam6 zero6)) fact6 : ∀{Γ} → Tm6 Γ (arr6 nat6 nat6); fact6 = lam6 (rec6 v06 (lam6 (lam6 (app6 (app6 mul6 (suc6 v16)) v06))) (suc6 zero6)) {-# OPTIONS --type-in-type #-} Ty7 : Set Ty7 = (Ty7 : Set) (nat top bot : Ty7) (arr prod sum : Ty7 → Ty7 → Ty7) → Ty7 nat7 : Ty7; nat7 = λ _ nat7 _ _ _ _ _ → nat7 top7 : Ty7; top7 = λ _ _ top7 _ _ _ _ → top7 bot7 : Ty7; bot7 = λ _ _ _ bot7 _ _ _ → bot7 arr7 : Ty7 → Ty7 → Ty7; arr7 = λ A B Ty7 nat7 top7 bot7 arr7 prod sum → arr7 (A Ty7 nat7 top7 bot7 arr7 prod sum) (B Ty7 nat7 top7 bot7 arr7 prod sum) prod7 : Ty7 → Ty7 → Ty7; prod7 = λ A B Ty7 nat7 top7 bot7 arr7 prod7 sum → prod7 (A Ty7 nat7 top7 bot7 arr7 prod7 sum) (B Ty7 nat7 top7 bot7 arr7 prod7 sum) sum7 : Ty7 → Ty7 → Ty7; sum7 = λ A B Ty7 nat7 top7 bot7 arr7 prod7 sum7 → sum7 (A Ty7 nat7 top7 bot7 arr7 prod7 sum7) (B Ty7 nat7 top7 bot7 arr7 prod7 sum7) Con7 : Set; Con7 = (Con7 : Set) (nil : Con7) (snoc : Con7 → Ty7 → Con7) → Con7 nil7 : Con7; nil7 = λ Con7 nil7 snoc → nil7 snoc7 : Con7 → Ty7 → Con7; snoc7 = λ Γ A Con7 nil7 snoc7 → snoc7 (Γ Con7 nil7 snoc7) A Var7 : Con7 → Ty7 → Set; Var7 = λ Γ A → (Var7 : Con7 → Ty7 → Set) (vz : ∀{Γ A} → Var7 (snoc7 Γ A) A) (vs : ∀{Γ B A} → Var7 Γ A → Var7 (snoc7 Γ B) A) → Var7 Γ A vz7 : ∀{Γ A} → Var7 (snoc7 Γ A) A; vz7 = λ Var7 vz7 vs → vz7 vs7 : ∀{Γ B A} → Var7 Γ A → Var7 (snoc7 Γ B) A; vs7 = λ x Var7 vz7 vs7 → vs7 (x Var7 vz7 vs7) Tm7 : Con7 → Ty7 → Set; Tm7 = λ Γ A → (Tm7 : Con7 → Ty7 → Set) (var : ∀{Γ A} → Var7 Γ A → Tm7 Γ A) (lam : ∀{Γ A B} → Tm7 (snoc7 Γ A) B → Tm7 Γ (arr7 A B)) (app : ∀{Γ A B} → Tm7 Γ (arr7 A B) → Tm7 Γ A → Tm7 Γ B) (tt : ∀{Γ} → Tm7 Γ top7) (pair : ∀{Γ A B} → Tm7 Γ A → Tm7 Γ B → Tm7 Γ (prod7 A B)) (fst : ∀{Γ A B} → Tm7 Γ (prod7 A B) → Tm7 Γ A) (snd : ∀{Γ A B} → Tm7 Γ (prod7 A B) → Tm7 Γ B) (left : ∀{Γ A B} → Tm7 Γ A → Tm7 Γ (sum7 A B)) (right : ∀{Γ A B} → Tm7 Γ B → Tm7 Γ (sum7 A B)) (case : ∀{Γ A B C} → Tm7 Γ (sum7 A B) → Tm7 Γ (arr7 A C) → Tm7 Γ (arr7 B C) → Tm7 Γ C) (zero : ∀{Γ} → Tm7 Γ nat7) (suc : ∀{Γ} → Tm7 Γ nat7 → Tm7 Γ nat7) (rec : ∀{Γ A} → Tm7 Γ nat7 → Tm7 Γ (arr7 nat7 (arr7 A A)) → Tm7 Γ A → Tm7 Γ A) → Tm7 Γ A var7 : ∀{Γ A} → Var7 Γ A → Tm7 Γ A; var7 = λ x Tm7 var7 lam app tt pair fst snd left right case zero suc rec → var7 x lam7 : ∀{Γ A B} → Tm7 (snoc7 Γ A) B → Tm7 Γ (arr7 A B); lam7 = λ t Tm7 var7 lam7 app tt pair fst snd left right case zero suc rec → lam7 (t Tm7 var7 lam7 app tt pair fst snd left right case zero suc rec) app7 : ∀{Γ A B} → Tm7 Γ (arr7 A B) → Tm7 Γ A → Tm7 Γ B; app7 = λ t u Tm7 var7 lam7 app7 tt pair fst snd left right case zero suc rec → app7 (t Tm7 var7 lam7 app7 tt pair fst snd left right case zero suc rec) (u Tm7 var7 lam7 app7 tt pair fst snd left right case zero suc rec) tt7 : ∀{Γ} → Tm7 Γ top7; tt7 = λ Tm7 var7 lam7 app7 tt7 pair fst snd left right case zero suc rec → tt7 pair7 : ∀{Γ A B} → Tm7 Γ A → Tm7 Γ B → Tm7 Γ (prod7 A B); pair7 = λ t u Tm7 var7 lam7 app7 tt7 pair7 fst snd left right case zero suc rec → pair7 (t Tm7 var7 lam7 app7 tt7 pair7 fst snd left right case zero suc rec) (u Tm7 var7 lam7 app7 tt7 pair7 fst snd left right case zero suc rec) fst7 : ∀{Γ A B} → Tm7 Γ (prod7 A B) → Tm7 Γ A; fst7 = λ t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd left right case zero suc rec → fst7 (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd left right case zero suc rec) snd7 : ∀{Γ A B} → Tm7 Γ (prod7 A B) → Tm7 Γ B; snd7 = λ t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left right case zero suc rec → snd7 (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left right case zero suc rec) left7 : ∀{Γ A B} → Tm7 Γ A → Tm7 Γ (sum7 A B); left7 = λ t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right case zero suc rec → left7 (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right case zero suc rec) right7 : ∀{Γ A B} → Tm7 Γ B → Tm7 Γ (sum7 A B); right7 = λ t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case zero suc rec → right7 (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case zero suc rec) case7 : ∀{Γ A B C} → Tm7 Γ (sum7 A B) → Tm7 Γ (arr7 A C) → Tm7 Γ (arr7 B C) → Tm7 Γ C; case7 = λ t u v Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero suc rec → case7 (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero suc rec) (u Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero suc rec) (v Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero suc rec) zero7 : ∀{Γ} → Tm7 Γ nat7; zero7 = λ Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc rec → zero7 suc7 : ∀{Γ} → Tm7 Γ nat7 → Tm7 Γ nat7; suc7 = λ t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec → suc7 (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec) rec7 : ∀{Γ A} → Tm7 Γ nat7 → Tm7 Γ (arr7 nat7 (arr7 A A)) → Tm7 Γ A → Tm7 Γ A; rec7 = λ t u v Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec7 → rec7 (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec7) (u Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec7) (v Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec7) v07 : ∀{Γ A} → Tm7 (snoc7 Γ A) A; v07 = var7 vz7 v17 : ∀{Γ A B} → Tm7 (snoc7 (snoc7 Γ A) B) A; v17 = var7 (vs7 vz7) v27 : ∀{Γ A B C} → Tm7 (snoc7 (snoc7 (snoc7 Γ A) B) C) A; v27 = var7 (vs7 (vs7 vz7)) v37 : ∀{Γ A B C D} → Tm7 (snoc7 (snoc7 (snoc7 (snoc7 Γ A) B) C) D) A; v37 = var7 (vs7 (vs7 (vs7 vz7))) tbool7 : Ty7; tbool7 = sum7 top7 top7 true7 : ∀{Γ} → Tm7 Γ tbool7; true7 = left7 tt7 tfalse7 : ∀{Γ} → Tm7 Γ tbool7; tfalse7 = right7 tt7 ifthenelse7 : ∀{Γ A} → Tm7 Γ (arr7 tbool7 (arr7 A (arr7 A A))); ifthenelse7 = lam7 (lam7 (lam7 (case7 v27 (lam7 v27) (lam7 v17)))) times47 : ∀{Γ A} → Tm7 Γ (arr7 (arr7 A A) (arr7 A A)); times47 = lam7 (lam7 (app7 v17 (app7 v17 (app7 v17 (app7 v17 v07))))) add7 : ∀{Γ} → Tm7 Γ (arr7 nat7 (arr7 nat7 nat7)); add7 = lam7 (rec7 v07 (lam7 (lam7 (lam7 (suc7 (app7 v17 v07))))) (lam7 v07)) mul7 : ∀{Γ} → Tm7 Γ (arr7 nat7 (arr7 nat7 nat7)); mul7 = lam7 (rec7 v07 (lam7 (lam7 (lam7 (app7 (app7 add7 (app7 v17 v07)) v07)))) (lam7 zero7)) fact7 : ∀{Γ} → Tm7 Γ (arr7 nat7 nat7); fact7 = lam7 (rec7 v07 (lam7 (lam7 (app7 (app7 mul7 (suc7 v17)) v07))) (suc7 zero7))
{ "alphanum_fraction": 0.5985017533, "avg_line_length": 38.2269611577, "ext": "agda", "hexsha": "8124386c40e1096a02cf0e713f5173dbc253d18a", "lang": "Agda", "max_forks_count": 19, "max_forks_repo_forks_event_max_datetime": "2022-03-03T19:46:54.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-05T21:11:34.000Z", "max_forks_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "int-index/smalltt", "max_forks_repo_path": "bench/stlc1k.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_issues_repo_issues_event_max_datetime": "2022-02-28T21:51:10.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-16T09:14:57.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "int-index/smalltt", "max_issues_repo_path": "bench/stlc1k.agda", "max_line_length": 92, "max_stars_count": 377, "max_stars_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "int-index/smalltt", "max_stars_repo_path": "bench/stlc1k.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T21:31:01.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-26T16:57:16.000Z", "num_tokens": 22693, "size": 50192 }
module IdemInvo where open import Relation.Binary.PropositionalEquality module MainResult (A : Set) (f : A → A) (idem : ∀ x → f (f x) ≡ f x) (invo : ∀ x → f (f x) ≡ x) where -- an idempotent and involutive function is an identity function iden : ∀ x → f x ≡ x iden x = trans (sym (idem x)) (invo x)
{ "alphanum_fraction": 0.6132075472, "avg_line_length": 21.2, "ext": "agda", "hexsha": "f615f5affe8428621df82b16cb8316583e03c572", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44f16597c9ef9596f6dc1b628848a3a74fa9a19b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zaklogician/IdemInvo", "max_forks_repo_path": "IdemInvo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44f16597c9ef9596f6dc1b628848a3a74fa9a19b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zaklogician/IdemInvo", "max_issues_repo_path": "IdemInvo.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44f16597c9ef9596f6dc1b628848a3a74fa9a19b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zaklogician/IdemInvo", "max_stars_repo_path": "IdemInvo.agda", "max_stars_repo_stars_event_max_datetime": "2015-11-19T01:54:50.000Z", "max_stars_repo_stars_event_min_datetime": "2015-11-19T01:54:50.000Z", "num_tokens": 118, "size": 318 }
postulate I : Set data Box (A : Set) : Set where [_] : A → Box A variable @0 i : I @0 b : Box I data D : @0 Box I → Set where d : D [ i ] → D [ i ] variable @0 x : D b data P : @0 D b → Set where p : P (d x) works : ∀ {i} {@0 x : D [ i ]} → P (d x) works = p fails : ∀ {@0 i} {@0 x : D [ i ]} → P (d x) fails = p
{ "alphanum_fraction": 0.4447761194, "avg_line_length": 12.8846153846, "ext": "agda", "hexsha": "7c07456542a4fb9b978319c3418ec525794ca884", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue5058.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue5058.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue5058.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 149, "size": 335 }
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.FunExtEquiv where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence private variable ℓ ℓ₁ ℓ₂ ℓ₃ : Level -- Function extensionality is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {f g : (x : A) → B x} where private fib : (p : f ≡ g) → fiber funExt p fib p = (funExt⁻ p , refl) funExt-fiber-isContr : (p : f ≡ g) → (fi : fiber funExt p) → fib p ≡ fi funExt-fiber-isContr p (h , eq) i = (funExt⁻ (eq (~ i)) , λ j → eq (~ i ∨ j)) funExt-isEquiv : isEquiv funExt equiv-proof funExt-isEquiv p = (fib p , funExt-fiber-isContr p) funExtEquiv : (∀ x → f x ≡ g x) ≃ (f ≡ g) funExtEquiv = (funExt {B = B} , funExt-isEquiv) funExtPath : (∀ x → f x ≡ g x) ≡ (f ≡ g) funExtPath = ua funExtEquiv -- Function extensionality for binary functions funExt₂ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {f g : (x : A) → (y : B x) → C x y} → ((x : A) (y : B x) → f x y ≡ g x y) → f ≡ g funExt₂ p i x y = p x y i -- Function extensionality for binary functions is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {f g : (x : A) → (y : B x) → C x y} where private appl₂ : f ≡ g → ∀ x y → f x y ≡ g x y appl₂ eq x y i = eq i x y fib : (p : f ≡ g) → fiber funExt₂ p fib p = (appl₂ p , refl) funExt₂-fiber-isContr : (p : f ≡ g) → (fi : fiber funExt₂ p) → fib p ≡ fi funExt₂-fiber-isContr p (h , eq) i = (appl₂ (eq (~ i)) , λ j → eq (~ i ∨ j)) funExt₂-isEquiv : isEquiv funExt₂ equiv-proof funExt₂-isEquiv p = (fib p , funExt₂-fiber-isContr p) funExt₂Equiv : (∀ x y → f x y ≡ g x y) ≃ (f ≡ g) funExt₂Equiv = (funExt₂ , funExt₂-isEquiv) funExt₂Path : (∀ x y → f x y ≡ g x y) ≡ (f ≡ g) funExt₂Path = ua funExt₂Equiv -- Function extensionality for ternary functions funExt₃ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {D : (x : A) → (y : B x) → C x y → Type ℓ₃} {f g : (x : A) → (y : B x) → (z : C x y) → D x y z} → ((x : A) (y : B x) (z : C x y) → f x y z ≡ g x y z) → f ≡ g funExt₃ p i x y z = p x y z i -- Function extensionality for ternary functions is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {D : (x : A) → (y : B x) → C x y → Type ℓ₃} {f g : (x : A) → (y : B x) → (z : C x y) → D x y z} where private appl₃ : f ≡ g → ∀ x y z → f x y z ≡ g x y z appl₃ eq x y z i = eq i x y z fib : (p : f ≡ g) → fiber funExt₃ p fib p = (appl₃ p , refl) funExt₃-fiber-isContr : (p : f ≡ g) → (fi : fiber funExt₃ p) → fib p ≡ fi funExt₃-fiber-isContr p (h , eq) i = (appl₃ (eq (~ i)) , λ j → eq (~ i ∨ j)) funExt₃-isEquiv : isEquiv funExt₃ equiv-proof funExt₃-isEquiv p = (fib p , funExt₃-fiber-isContr p) funExt₃Equiv : (∀ x y z → f x y z ≡ g x y z) ≃ (f ≡ g) funExt₃Equiv = (funExt₃ , funExt₃-isEquiv) funExt₃Path : (∀ x y z → f x y z ≡ g x y z) ≡ (f ≡ g) funExt₃Path = ua funExt₃Equiv -- Puzzle: Can one generalize this to n-ary functions?
{ "alphanum_fraction": 0.5437933207, "avg_line_length": 34.5, "ext": "agda", "hexsha": "4a61b856ef684ab111337fb8759f321e001e06aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Foundations/FunExtEquiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Foundations/FunExtEquiv.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Foundations/FunExtEquiv.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1352, "size": 3174 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Object.Coproduct {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Function using (_$_) open Category 𝒞 open import Categories.Morphism.Reasoning 𝒞 open import Categories.Morphism 𝒞 open HomReasoning private variable A B C D : Obj f g h : A ⇒ B record Coproduct (A B : Obj) : Set (o ⊔ ℓ ⊔ e) where infix 10 [_,_] field A+B : Obj i₁ : A ⇒ A+B i₂ : B ⇒ A+B [_,_] : A ⇒ C → B ⇒ C → A+B ⇒ C inject₁ : [ f , g ] ∘ i₁ ≈ f inject₂ : [ f , g ] ∘ i₂ ≈ g unique : h ∘ i₁ ≈ f → h ∘ i₂ ≈ g → [ f , g ] ≈ h g-η : [ f ∘ i₁ , f ∘ i₂ ] ≈ f g-η = unique Equiv.refl Equiv.refl η : [ i₁ , i₂ ] ≈ id η = unique identityˡ identityˡ []-cong₂ : ∀ {C} → {f f′ : A ⇒ C} {g g′ : B ⇒ C} → f ≈ f′ → g ≈ g′ → [ f , g ] ≈ [ f′ , g′ ] []-cong₂ f≈f′ g≈g′ = unique (inject₁ ○ ⟺ f≈f′) (inject₂ ○ ⟺ g≈g′) ∘-distribˡ-[] : ∀ {f : A ⇒ C} {g : B ⇒ C} {q : C ⇒ D} → q ∘ [ f , g ] ≈ [ q ∘ f , q ∘ g ] ∘-distribˡ-[] = ⟺ $ unique (pullʳ inject₁) (pullʳ inject₂)
{ "alphanum_fraction": 0.5031731641, "avg_line_length": 23.9782608696, "ext": "agda", "hexsha": "5fa72725350290829ecc7e27976135172005ba30", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FintanH/agda-categories", "max_forks_repo_path": "src/Categories/Object/Coproduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FintanH/agda-categories", "max_issues_repo_path": "src/Categories/Object/Coproduct.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FintanH/agda-categories", "max_stars_repo_path": "src/Categories/Object/Coproduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 498, "size": 1103 }