Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K #-} module Pitch where open import Data.Bool using (Bool; false; true) open import Data.Integer using (ℤ; +_; -[1+_]) open import Data.Fin using (Fin; toℕ; #_; _≟_) renaming (zero to fz; suc to fs) open import Data.Maybe using (Maybe; just; nothing) renaming (map to mmap) open import Data.Nat using (ℕ; suc; _+_; _*_; _∸_; _≡ᵇ_) open import Data.Nat.DivMod using (_mod_; _div_) open import Data.Product using (_×_; _,_; proj₁) open import Data.Vec using (Vec; []; _∷_; map; lookup; replicate; _[_]%=_; toList) open import Function using (_∘_) open import Relation.Nullary using (yes; no) open import BitVec using (BitVec; insert) open import Lemmas using (revMod; -_mod_; -_div_) open import Util using (findIndex) -- Position of a pitch on an absolute scale -- 0 is C(-1) on the international scale (where C4 is middle C) -- or C0 on the Midi scale (where C5 is middle C) -- Pitch is intentially set to match Midi pitch. -- However it is fine to let 0 represent some other note and -- translate appropriately at the end. data Pitch : Set where pitch : ℕ → Pitch unpitch : Pitch → ℕ unpitch (pitch p) = p -- Number of notes in the chromatic scale. chromaticScaleSize : ℕ chromaticScaleSize = 12 -- Number of notes in the diatonic scale. diatonicScaleSize : ℕ diatonicScaleSize = 7 -- Position of a pitch within an octave, in the range [0..chromaticScaleSize-1]. data PitchClass : Set where pitchClass : Fin chromaticScaleSize → PitchClass unPitchClass : PitchClass → Fin chromaticScaleSize unPitchClass (pitchClass p) = p Scale : ℕ → Set Scale = Vec PitchClass -- Which octave one is in. data Octave : Set where octave : ℕ → Octave unoctave : Octave → ℕ unoctave (octave n) = n PitchOctave : Set PitchOctave = PitchClass × Octave relativeToAbsolute : PitchOctave → Pitch relativeToAbsolute (pitchClass n , octave o) = pitch (o * chromaticScaleSize + (toℕ n)) absoluteToRelative : Pitch → PitchOctave absoluteToRelative (pitch n) = (pitchClass (n mod chromaticScaleSize) , octave (n div chromaticScaleSize)) pitchToClass : Pitch → PitchClass pitchToClass = proj₁ ∘ absoluteToRelative majorScale harmonicMinorScale : Scale diatonicScaleSize majorScale = map pitchClass (# 0 ∷ # 2 ∷ # 4 ∷ # 5 ∷ # 7 ∷ # 9 ∷ # 11 ∷ []) harmonicMinorScale = map pitchClass (# 0 ∷ # 2 ∷ # 3 ∷ # 5 ∷ # 7 ∷ # 8 ∷ # 11 ∷ []) indexInScale : {n : ℕ} → Vec PitchClass n → Fin chromaticScaleSize → Maybe (Fin n) indexInScale [] p = nothing indexInScale (pc ∷ pcs) p with (unPitchClass pc ≟ p) ... | yes _ = just fz ... | no _ = mmap fs (indexInScale pcs p) data DiatonicDegree : Set where diatonicDegree : Fin diatonicScaleSize → DiatonicDegree undd : DiatonicDegree → Fin diatonicScaleSize undd (diatonicDegree d) = d infix 4 _≡ᵈ_ _≡ᵈ_ : DiatonicDegree → DiatonicDegree → Bool diatonicDegree d ≡ᵈ diatonicDegree e = toℕ d ≡ᵇ toℕ e -- round down pitchClassToDegreeMajor : PitchClass → DiatonicDegree pitchClassToDegreeMajor (pitchClass fz) = diatonicDegree (# 0) pitchClassToDegreeMajor (pitchClass (fs fz)) = diatonicDegree (# 0) pitchClassToDegreeMajor (pitchClass (fs (fs fz))) = diatonicDegree (# 1) pitchClassToDegreeMajor (pitchClass (fs (fs (fs fz)))) = diatonicDegree (# 1) pitchClassToDegreeMajor (pitchClass (fs (fs (fs (fs fz))))) = diatonicDegree (# 2) pitchClassToDegreeMajor (pitchClass (fs (fs (fs (fs (fs fz)))))) = diatonicDegree (# 3) pitchClassToDegreeMajor (pitchClass (fs (fs (fs (fs (fs (fs fz))))))) = diatonicDegree (# 3) pitchClassToDegreeMajor (pitchClass (fs (fs (fs (fs (fs (fs (fs fz)))))))) = diatonicDegree (# 4) pitchClassToDegreeMajor (pitchClass (fs (fs (fs (fs (fs (fs (fs (fs fz))))))))) = diatonicDegree (# 4) pitchClassToDegreeMajor (pitchClass (fs (fs (fs (fs (fs (fs (fs (fs (fs fz)))))))))) = diatonicDegree (# 5) pitchClassToDegreeMajor (pitchClass (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs fz))))))))))) = diatonicDegree (# 5) pitchClassToDegreeMajor (pitchClass (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs fz)))))))))))) = diatonicDegree (# 6) degreeToPitchClassMajor : DiatonicDegree → PitchClass degreeToPitchClassMajor (diatonicDegree fz) = pitchClass (# 0) degreeToPitchClassMajor (diatonicDegree (fs fz)) = pitchClass (# 2) degreeToPitchClassMajor (diatonicDegree (fs (fs fz))) = pitchClass (# 4) degreeToPitchClassMajor (diatonicDegree (fs (fs (fs fz)))) = pitchClass (# 5) degreeToPitchClassMajor (diatonicDegree (fs (fs (fs (fs fz))))) = pitchClass (# 7) degreeToPitchClassMajor (diatonicDegree (fs (fs (fs (fs (fs fz)))))) = pitchClass (# 9) degreeToPitchClassMajor (diatonicDegree (fs (fs (fs (fs (fs (fs fz))))))) = pitchClass (# 11) pitchToDegreeCMajor : Pitch → DiatonicDegree pitchToDegreeCMajor = pitchClassToDegreeMajor ∘ pitchToClass d1 d2 d3 d4 d5 d6 d7 : DiatonicDegree d1 = diatonicDegree (# 0) d2 = diatonicDegree (# 1) d3 = diatonicDegree (# 2) d4 = diatonicDegree (# 3) d5 = diatonicDegree (# 4) d6 = diatonicDegree (# 5) d7 = diatonicDegree (# 6) thirdUp : DiatonicDegree → DiatonicDegree thirdUp (diatonicDegree d) = diatonicDegree ((toℕ d + 2) mod diatonicScaleSize) scaleSize : {n : ℕ} → Scale n → ℕ scaleSize {n} _ = n transposePitch : ℤ → Pitch → Pitch transposePitch (+_ k) (pitch n) = pitch (n + k) transposePitch (-[1+_] k) (pitch n) = pitch (n ∸ suc k) -- Set of pitch classes represented as a bit vector. PitchClassSet : Set PitchClassSet = BitVec chromaticScaleSize addToPitchClassSet : PitchClass → PitchClassSet → PitchClassSet addToPitchClassSet (pitchClass p) ps = insert p ps -- Standard Midi pitches -- first argument is relative pitch within octave -- second argument is octave (C5 = middle C for Midi) standardMidiPitch : Fin chromaticScaleSize → ℕ → Pitch standardMidiPitch p o = relativeToAbsolute (pitchClass p , octave o) c c♯ d d♯ e f f♯ g g♯ a b♭ b : ℕ → Pitch c = standardMidiPitch (# 0) c♯ = standardMidiPitch (# 1) d = standardMidiPitch (# 2) d♯ = standardMidiPitch (# 3) e = standardMidiPitch (# 4) f = standardMidiPitch (# 5) f♯ = standardMidiPitch (# 6) g = standardMidiPitch (# 7) g♯ = standardMidiPitch (# 8) a = standardMidiPitch (# 9) b♭ = standardMidiPitch (# 10) b = standardMidiPitch (# 11)
{ "alphanum_fraction": 0.6529817201, "avg_line_length": 40.4484848485, "ext": "agda", "hexsha": "a22dc41fc25b63c8c525ad762383b8bb2f65a65f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "doc/icfp20/code/Pitch.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "doc/icfp20/code/Pitch.agda", "max_line_length": 117, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "doc/icfp20/code/Pitch.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 2052, "size": 6674 }
module Base.Prelude.Unit where open import Data.Unit using (tt) renaming (⊤ to ⊤ᵖ) public open import Base.Free using (Free; pure) ⊤ : (S : Set) (P : S → Set) → Set ⊤ _ _ = ⊤ᵖ pattern Tt = pure tt
{ "alphanum_fraction": 0.6201923077, "avg_line_length": 20.8, "ext": "agda", "hexsha": "689985372b4448e5964654750a87663e0f315b23", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z", "max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "FreeProving/free-compiler", "max_forks_repo_path": "base/agda/Base/Prelude/Unit.agda", "max_issues_count": 120, "max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z", "max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "FreeProving/free-compiler", "max_issues_repo_path": "base/agda/Base/Prelude/Unit.agda", "max_line_length": 66, "max_stars_count": 36, "max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "FreeProving/free-compiler", "max_stars_repo_path": "base/agda/Base/Prelude/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z", "num_tokens": 78, "size": 208 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module stash.modalities.gbm.GbmUtil where BM-Relation : ∀ {ℓ} (M : Modality ℓ) {A : Type ℓ} {B : Type ℓ} (Q : A → B → Type ℓ) → Type ℓ BM-Relation M {A} {B} Q = {a₀ : A} {b₀ : B} (q₀ : Q a₀ b₀) {a₁ : A} (q₁ : Q a₁ b₀) {b₁ : B} (q₂ : Q a₀ b₁) → Modality.is-◯-connected M (((a₀ , q₀) == (a₁ , q₁)) * ((b₀ , q₀) == (b₁ , q₂))) prop-lemma : ∀ {ℓ} {A : Type ℓ} {a₀ a₁ : A} (P : A → hProp ℓ) (p : a₀ == a₁) (x₀ : (fst ∘ P) a₀) (x₁ : (fst ∘ P) a₁) → x₀ == x₁ [ (fst ∘ P) ↓ p ] prop-lemma P idp x₀ x₁ = prop-has-all-paths (snd (P _)) x₀ x₁ pths-ovr-is-prop : ∀ {ℓ} {A : Type ℓ} {a₀ a₁ : A} (P : A → hProp ℓ) (p : a₀ == a₁) (x₀ : (fst ∘ P) a₀) (x₁ : (fst ∘ P) a₁) → is-prop (x₀ == x₁ [ (fst ∘ P) ↓ p ]) pths-ovr-is-prop P idp x₀ x₁ = =-preserves-level (snd (P _)) pths-ovr-contr : ∀ {ℓ} {A : Type ℓ} {a₀ a₁ : A} (P : A → hProp ℓ) (p : a₀ == a₁) (x₀ : (fst ∘ P) a₀) (x₁ : (fst ∘ P) a₁) → is-contr (x₀ == x₁ [ (fst ∘ P) ↓ p ]) pths-ovr-contr P idp x₀ x₁ = =-preserves-level (inhab-prop-is-contr x₀ (snd (P _))) eqv-square : ∀ {i j} {A : Type i} {B : Type j} (e : A ≃ B) {b b' : B} (p : b == b') → ap (–> e ∘ <– e) p == (<–-inv-r e b) ∙ p ∙ (! (<–-inv-r e b')) eqv-square e idp = ! (!-inv-r (<–-inv-r e _)) eqv-square' : ∀ {i j} {A : Type i} {B : Type j} (e : A ≃ B) {a a' : A} (p : a == a') → ap (<– e ∘ –> e) p == <–-inv-l e a ∙ p ∙ ! (<–-inv-l e a') eqv-square' e idp = ! (!-inv-r (<–-inv-l e _)) ↓-==-in : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B} {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u ∙ ap g p) == (ap f p ∙ v) → (u == v [ (λ x → f x == g x) ↓ p ]) ↓-==-in {p = idp} q = ! (∙-unit-r _) ∙ q ↓-==-out : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B} {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u == v [ (λ x → f x == g x) ↓ p ]) → (u ∙ ap g p) == (ap f p ∙ v) ↓-==-out {p = idp} q = (∙-unit-r _) ∙ q module HFiberSrcEquiv {i₀ i₁ i₂} {A : Type i₀} {B : Type i₁} {C : Type i₂} (f : A → B) (h : B → C) (k : A → C) (w : (a : A) → h (f a) == k a) (ise-f : is-equiv f) where private g = is-equiv.g ise-f f-g = is-equiv.f-g ise-f g-f = is-equiv.g-f ise-f adj = is-equiv.adj ise-f adj' = is-equiv.adj' ise-f to : (c : C) → hfiber k c → hfiber h c to .(k a) (a , idp) = f a , w a to-lem₀ : (c : C) (x : hfiber k c) → fst (to c x) == f (fst x) to-lem₀ .(k a) (a , idp) = idp to-lem₁ : (c : C) (x : hfiber k c) → snd (to c x) == ap h (to-lem₀ c x) ∙ w (fst x) ∙ snd x to-lem₁ .(k a) (a , idp) = ! (∙-unit-r (w a)) from : (c : C) → hfiber h c → hfiber k c from .(h b) (b , idp) = g b , ! (w (g b)) ∙ ap h (f-g b) from-lem₀ : (c : C) (x : hfiber h c) → fst (from c x) == g (fst x) from-lem₀ .(h b) (b , idp) = idp from-lem₁ : (c : C) (x : hfiber h c) → snd (from c x) == ap k (from-lem₀ c x) ∙ (! (w (g (fst x)))) ∙ ap h (f-g (fst x)) ∙ snd x from-lem₁ .(h b) (b , idp) = ap (λ p → ! (w (g b)) ∙ p) (! (∙-unit-r (ap h (f-g b)))) to-from : (c : C) (x : hfiber h c) → to c (from c x) == x to-from .(h b) (b , idp) = pair= (q ∙ f-g b) (↓-app=cst-in (r ∙ eq)) where c = h b p = ! (w (g b)) ∙ ap h (f-g b) q = to-lem₀ c (g b , p) r = to-lem₁ c (g b , p) eq = ap h q ∙ w (g b) ∙ ! (w (g b)) ∙ ap h (f-g b) =⟨ ! (∙-assoc (w (g b)) (! (w (g b))) (ap h (f-g b))) |in-ctx (λ x → ap h q ∙ x) ⟩ ap h q ∙ (w (g b) ∙ (! (w (g b)))) ∙ ap h (f-g b) =⟨ !-inv-r (w (g b)) |in-ctx (λ x → ap h q ∙ x ∙ ap h (f-g b)) ⟩ ap h q ∙ ap h (f-g b) =⟨ ∙-ap h q (f-g b) ⟩ ap h (q ∙ f-g b) =⟨ ! (∙-unit-r (ap h (q ∙ f-g b))) ⟩ ap h (q ∙ f-g b) ∙ idp ∎ from-to : (c : C) (x : hfiber k c) → from c (to c x) == x from-to .(k a) (a , idp) = pair= (p ∙ g-f a) (↓-app=cst-in (q ∙ eq)) where c = k a p = from-lem₀ c (f a , w a) q = from-lem₁ c (f a , w a) eq = ap k p ∙ ! (w (g (f a))) ∙ ap h (f-g (f a)) ∙ w a =⟨ ! (adj a) |in-ctx (λ x → ap k p ∙ ! (w (g (f a))) ∙ ap h x ∙ w a) ⟩ ap k p ∙ ! (w (g (f a))) ∙ ap h (ap f (g-f a)) ∙ w a =⟨ ∘-ap h f (g-f a) |in-ctx (λ x → ap k p ∙ ! (w (g (f a))) ∙ x ∙ w a) ⟩ ap k p ∙ ! (w (g (f a))) ∙ ap (h ∘ f) (g-f a) ∙ w a =⟨ ! (↓-='-out (apd w (g-f a))) |in-ctx (λ x → ap k p ∙ ! (w (g (f a))) ∙ x) ⟩ ap k p ∙ ! (w (g (f a))) ∙ w (g (f a)) ∙' ap k (g-f a) =⟨ ∙'=∙ (w (g (f a))) (ap k (g-f a)) |in-ctx (λ x → ap k p ∙ ! (w (g (f a))) ∙ x) ⟩ ap k p ∙ ! (w (g (f a))) ∙ w (g (f a)) ∙ ap k (g-f a) =⟨ ! (∙-assoc (! (w (g (f a)))) (w (g (f a))) (ap k (g-f a))) |in-ctx (λ x → ap k p ∙ x) ⟩ ap k p ∙ (! (w (g (f a))) ∙ w (g (f a))) ∙ ap k (g-f a) =⟨ !-inv-l (w (g (f a))) |in-ctx (λ x → ap k p ∙ x ∙ ap k (g-f a)) ⟩ ap k p ∙ ap k (g-f a) =⟨ ∙-ap k p (g-f a) ⟩ ap k (p ∙ g-f a) =⟨ ! (∙-unit-r (ap k (p ∙ g-f a))) ⟩ ap k (p ∙ g-f a) ∙ idp ∎ eqv : (c : C) → hfiber k c ≃ hfiber h c eqv c = equiv (to c) (from c) (to-from c) (from-to c) module HFiberTgtEquiv {i₀ i₁ i₂} {A : Type i₀} {B : Type i₁} {C : Type i₂} (h : A → B) (k : A → C) (f : B → C) (w : (a : A) → k a == f (h a)) (ise-f : is-equiv f) where private g = is-equiv.g ise-f f-g = is-equiv.f-g ise-f g-f = is-equiv.g-f ise-f adj = is-equiv.adj ise-f adj' = is-equiv.adj' ise-f to : (b : B) → hfiber h b → hfiber k (f b) to .(h a) (a , idp) = a , w a to-lem₀ : (b : B) (x : hfiber h b) → fst (to b x) == fst x to-lem₀ .(h a) (a , idp) = idp to-lem₁ : (b : B) (x : hfiber h b) → snd (to b x) == ap k (to-lem₀ b x) ∙ w (fst x) ∙ ap f (snd x) to-lem₁ .(h a) (a , idp) = ! (∙-unit-r (w a)) from : (b : B) → hfiber k (f b) → hfiber h b from b (a , p) = a , (! (g-f (h a)) ∙ ap g (! (w a) ∙ p) ∙ g-f b) to-from : (b : B) (x : hfiber k (f b)) → to b (from b x) == x to-from b (a , p) = pair= r (↓-app=cst-in (s ∙ (ap (λ x → ap k r ∙ x) eq))) where q = ! (g-f (h a)) ∙ ap g (! (w a) ∙ p) ∙ g-f b r = to-lem₀ b (a , q) s = to-lem₁ b (a , q) eq = w a ∙ ap f q =⟨ ! (∙-ap f (! (g-f (h a))) (ap g (! (w a) ∙ p) ∙ g-f b)) |in-ctx (λ x → w a ∙ x) ⟩ w a ∙ ap f (! (g-f (h a))) ∙ ap f (ap g (! (w a) ∙ p) ∙ g-f b) =⟨ ! (∙-ap f (ap g (! (w a) ∙ p)) (g-f b)) |in-ctx (λ x → w a ∙ ap f (! (g-f (h a))) ∙ x) ⟩ w a ∙ ap f (! (g-f (h a))) ∙ ap f (ap g (! (w a) ∙ p)) ∙ ap f (g-f b) =⟨ ∘-ap f g (! (w a) ∙ p) |in-ctx (λ x → w a ∙ ap f (! (g-f (h a))) ∙ x ∙ ap f (g-f b)) ⟩ w a ∙ ap f (! (g-f (h a))) ∙ ap (f ∘ g) (! (w a) ∙ p) ∙ ap f (g-f b) =⟨ ap (λ x → w a ∙ ap f (! (g-f (h a))) ∙ x ∙ ap f (g-f b)) (eqv-square (f , ise-f) (! (w a) ∙ p)) ⟩ w a ∙ ap f (! (g-f (h a))) ∙ (f-g (f (h a)) ∙ (! (w a) ∙ p) ∙ ! (f-g (f b))) ∙ ap f (g-f b) =⟨ adj b |in-ctx (λ x → w a ∙ ap f (! (g-f (h a))) ∙ (f-g (f (h a)) ∙ (! (w a) ∙ p) ∙ ! (f-g (f b))) ∙ x) ⟩ w a ∙ ap f (! (g-f (h a))) ∙ (f-g (f (h a)) ∙ (! (w a) ∙ p) ∙ ! (f-g (f b))) ∙ f-g (f b) =⟨ ∙-assoc (f-g (f (h a))) ((! (w a) ∙ p) ∙ ! (f-g (f b))) (f-g (f b)) |in-ctx (λ x → w a ∙ ap f (! (g-f (h a))) ∙ x) ⟩ w a ∙ ap f (! (g-f (h a))) ∙ f-g (f (h a)) ∙ ((! (w a) ∙ p) ∙ ! (f-g (f b))) ∙ f-g (f b) =⟨ ∙-assoc (! (w a) ∙ p) (! (f-g (f b))) (f-g (f b)) |in-ctx (λ x → w a ∙ ap f (! (g-f (h a))) ∙ f-g (f (h a)) ∙ x) ⟩ w a ∙ ap f (! (g-f (h a))) ∙ f-g (f (h a)) ∙ (! (w a) ∙ p) ∙ ! (f-g (f b)) ∙ f-g (f b) =⟨ !-inv-l (f-g (f b)) |in-ctx (λ x → w a ∙ ap f (! (g-f (h a))) ∙ f-g (f (h a)) ∙ (! (w a) ∙ p) ∙ x) ⟩ w a ∙ ap f (! (g-f (h a))) ∙ f-g (f (h a)) ∙ (! (w a) ∙ p) ∙ idp =⟨ ∙-unit-r (! (w a) ∙ p) |in-ctx (λ x → w a ∙ ap f (! (g-f (h a))) ∙ f-g (f (h a)) ∙ x) ⟩ w a ∙ ap f (! (g-f (h a))) ∙ f-g (f (h a)) ∙ ! (w a) ∙ p =⟨ ap-! f (g-f (h a)) |in-ctx (λ x → w a ∙ x ∙ f-g (f (h a)) ∙ ! (w a) ∙ p) ⟩ w a ∙ ! (ap f (g-f (h a))) ∙ f-g (f (h a)) ∙ ! (w a) ∙ p =⟨ ! (adj (h a)) |in-ctx (λ x → w a ∙ ! (ap f (g-f (h a))) ∙ x ∙ ! (w a) ∙ p) ⟩ w a ∙ ! (ap f (g-f (h a))) ∙ ap f (g-f (h a)) ∙ ! (w a) ∙ p =⟨ ! (∙-assoc (! (ap f (g-f (h a)))) (ap f (g-f (h a))) (! (w a) ∙ p)) |in-ctx (λ x → w a ∙ x)⟩ w a ∙ (! (ap f (g-f (h a))) ∙ ap f (g-f (h a))) ∙ ! (w a) ∙ p =⟨ !-inv-l (ap f (g-f (h a))) |in-ctx (λ x → w a ∙ x ∙ ! (w a) ∙ p)⟩ w a ∙ ! (w a) ∙ p =⟨ ! (∙-assoc (w a) (! (w a)) p) ⟩ (w a ∙ ! (w a)) ∙ p =⟨ !-inv-r (w a) |in-ctx (λ x → x ∙ p) ⟩ p ∎ from-to : (b : B) (x : hfiber h b) → from b (to b x) == x from-to .(h a) (a , idp) = pair= idp eq where eq = ! (g-f (h a)) ∙ ap g (! (w a) ∙ w a) ∙ g-f (h a) =⟨ !-inv-l (w a)|in-ctx (λ x → ! (g-f (h a)) ∙ ap g x ∙ g-f (h a)) ⟩ ! (g-f (h a)) ∙ g-f (h a) =⟨ !-inv-l (g-f (h a)) ⟩ idp ∎ eqv : (b : B) → hfiber h b ≃ hfiber k (f b) eqv b = equiv (to b) (from b) (to-from b) (from-to b) module HFiberSqEquiv {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} (f₀ : A₀ → B₀) (f₁ : A₁ → B₁) (hA : A₀ → A₁) (hB : B₀ → B₁) (sq : CommSquare f₀ f₁ hA hB) (ise-hA : is-equiv hA) (ise-hB : is-equiv hB) where open CommSquare private gB = is-equiv.g ise-hB module Src = HFiberSrcEquiv hA f₁ (hB ∘ f₀) (λ a₀ → ! (commutes sq a₀)) ise-hA module Tgt = HFiberTgtEquiv f₀ (f₁ ∘ hA) hB (λ a₀ → ! (commutes sq a₀)) ise-hB eqv : (b₀ : B₀) → hfiber f₀ b₀ ≃ hfiber f₁ (hB b₀) eqv b₀ = Src.eqv (hB b₀) ∘e coe-equiv (ap (λ s → hfiber s (hB b₀)) (λ= (λ a₀ → ! (commutes sq a₀)))) ∘e Tgt.eqv b₀ hfiber-sq-eqv : ∀ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} (f₀ : A₀ → B₀) (f₁ : A₁ → B₁) (hA : A₀ → A₁) (hB : B₀ → B₁) (sq : CommSquare f₀ f₁ hA hB) (ise-hA : is-equiv hA) (ise-hB : is-equiv hB) → (b₀ : B₀) → hfiber f₀ b₀ ≃ hfiber f₁ (hB b₀) hfiber-sq-eqv f₀ f₁ hA hB sq ise-hA ise-hB b₀ = M.eqv b₀ where module M = HFiberSqEquiv f₀ f₁ hA hB sq ise-hA ise-hB
{ "alphanum_fraction": 0.3431740763, "avg_line_length": 49.1373390558, "ext": "agda", "hexsha": "86003e6d9447230eefd56716683c4ed18b8a885c", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/modalities/gbm/GbmUtil.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/modalities/gbm/GbmUtil.agda", "max_line_length": 141, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/modalities/gbm/GbmUtil.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 5248, "size": 11449 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.EilenbergMacLane open import groups.ToOmega open import cohomology.Theory open import cohomology.SpectrumModel module cohomology.EMModel where module _ {i} (G : AbGroup i) where open EMExplicit G using (⊙EM; EM-level; EM-conn; spectrum) private E : (n : ℤ) → Ptd i E (pos m) = ⊙EM m E (negsucc m) = ⊙Lift ⊙Unit E-spectrum : (n : ℤ) → ⊙Ω (E (succ n)) ⊙≃ E n E-spectrum (pos n) = spectrum n E-spectrum (negsucc O) = ≃-to-⊙≃ {X = ⊙Ω (E 0)} (equiv (λ _ → _) (λ _ → idp) (λ _ → idp) (prop-has-all-paths _)) idp E-spectrum (negsucc (S n)) = ≃-to-⊙≃ {X = ⊙Ω (E (negsucc n))} (equiv (λ _ → _) (λ _ → idp) (λ _ → idp) (prop-has-all-paths {{=-preserves-level ⟨⟩}} _)) idp EM-Cohomology : CohomologyTheory i EM-Cohomology = spectrum-cohomology E E-spectrum open CohomologyTheory EM-Cohomology EM-dimension : {n : ℤ} → n ≠ 0 → is-trivialᴳ (C n (⊙Lift ⊙S⁰)) EM-dimension {pos O} neq = ⊥-rec (neq idp) EM-dimension {pos (S n)} _ = contr-is-trivialᴳ (C (pos (S n)) (⊙Lift ⊙S⁰)) {{connected-at-level-is-contr {{⟨⟩}} {{Trunc-preserves-conn $ equiv-preserves-conn (pre⊙∘-equiv ⊙lower-equiv ∘e ⊙Bool→-equiv-idf _ ⁻¹) {{path-conn (connected-≤T (⟨⟩-monotone-≤ (≤-ap-S (O≤ n))) )}}}}}} EM-dimension {negsucc O} _ = contr-is-trivialᴳ (C (negsucc O) (⊙Lift ⊙S⁰)) {{Trunc-preserves-level 0 (Σ-level (Π-level λ _ → inhab-prop-is-contr idp) ⟨⟩)}} EM-dimension {negsucc (S n)} _ = contr-is-trivialᴳ (C (negsucc (S n)) (⊙Lift ⊙S⁰)) {{Trunc-preserves-level 0 (Σ-level (Π-level λ _ → =-preserves-level ⟨⟩) λ _ → =-preserves-level (=-preserves-level ⟨⟩))}} EM-Ordinary : OrdinaryTheory i EM-Ordinary = ordinary-theory EM-Cohomology EM-dimension
{ "alphanum_fraction": 0.5691434469, "avg_line_length": 32.8474576271, "ext": "agda", "hexsha": "c6fa0c596cd2e0c6287d1312e895478dbaacab32", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/EMModel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/EMModel.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/EMModel.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 753, "size": 1938 }
------------------------------------------------------------------------ -- Laws related to _⊛_ and return ------------------------------------------------------------------------ module TotalParserCombinators.Laws.ApplicativeFunctor where open import Algebra open import Category.Monad open import Codata.Musical.Notation open import Data.List import Data.List.Categorical import Data.List.Relation.Binary.BagAndSetEquality as BSEq open import Function open import Level open RawMonad {f = zero} Data.List.Categorical.monad using () renaming (_⊛_ to _⊛′_; _>>=_ to _>>=′_) private module BagMonoid {k} {A : Set} = CommutativeMonoid (BSEq.commutativeMonoid k A) open import TotalParserCombinators.Derivative open import TotalParserCombinators.Congruence hiding (return; fail) renaming (_∣_ to _∣′_) import TotalParserCombinators.Laws.AdditiveMonoid as AdditiveMonoid open import TotalParserCombinators.Laws.Derivative as Derivative import TotalParserCombinators.Laws.Monad as Monad open import TotalParserCombinators.Lib open import TotalParserCombinators.Parser ------------------------------------------------------------------------ -- _⊛_, return, _∣_ and fail form an applicative functor "with a zero -- and a plus" -- Together with the additive monoid laws we get something which -- resembles an idempotent semiring (if we restrict ourselves to -- language equivalence). -- First note that _⊛_ can be defined using _>>=_. private -- A variant of "flip map". pam : ∀ {Tok R₁ R₂ xs} → Parser Tok R₁ xs → (f : R₁ → R₂) → Parser Tok R₂ (xs >>=′ [_] ∘ f) pam p f = p >>= (return ∘ f) infixl 10 _⊛″_ -- Note that this definition forces the argument parsers. _⊛″_ : ∀ {Tok R₁ R₂ fs xs} → ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs) → ∞⟨ fs ⟩Parser Tok R₁ (flatten xs) → Parser Tok R₂ (flatten fs ⊛′ flatten xs) p₁ ⊛″ p₂ = ♭? p₁ >>= pam (♭? p₂) ⊛-in-terms-of->>= : ∀ {Tok R₁ R₂ fs xs} (p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs) ) (p₂ : ∞⟨ fs ⟩Parser Tok R₁ (flatten xs)) → p₁ ⊛ p₂ ≅P p₁ ⊛″ p₂ ⊛-in-terms-of->>= {R₁ = R₁} {R₂} {fs} {xs} p₁ p₂ = BagMonoid.reflexive (Claims.⊛flatten-⊛-flatten (flatten fs) xs) ∷ λ t → ♯ ( D t (p₁ ⊛ p₂) ≅⟨ D-⊛ p₁ p₂ ⟩ D t (♭? p₁) ⊛ ♭? p₂ ∣ return⋆ (flatten fs) ⊛ D t (♭? p₂) ≅⟨ ⊛-in-terms-of->>= (D t (♭? p₁)) (♭? p₂) ∣′ ⊛-in-terms-of->>= (return⋆ (flatten fs)) (D t (♭? p₂)) ⟩ D t (♭? p₁) ⊛″ ♭? p₂ ∣ return⋆ (flatten fs) ⊛″ D t (♭? p₂) ≅⟨ (D t (♭? p₁) ⊛″ ♭? p₂ ∎) ∣′ ([ ○ - ○ - ○ - ○ ] return⋆ (flatten fs) ∎ >>= λ f → sym $ lemma t f) ⟩ D t (♭? p₁) >>= pam (♭? p₂) ∣ return⋆ (flatten fs) >>= (λ f → D t (pam (♭? p₂) f)) ≅⟨ sym $ D->>= (♭? p₁) (pam (♭? p₂)) ⟩ D t (♭? p₁ >>= pam (♭? p₂)) ∎) where lemma : ∀ t (f : R₁ → R₂) → D t (♭? p₂ >>= λ x → return (f x)) ≅P D t (♭? p₂) >>= λ x → return (f x) lemma t f = D t (pam (♭? p₂) f) ≅⟨ D->>= (♭? p₂) (return ∘ f) ⟩ pam (D t (♭? p₂)) f ∣ (return⋆ (flatten xs) >>= λ _ → fail) ≅⟨ (pam (D t (♭? p₂)) f ∎) ∣′ Monad.right-zero (return⋆ (flatten xs)) ⟩ pam (D t (♭? p₂)) f ∣ fail ≅⟨ AdditiveMonoid.right-identity (pam (D t (♭? p₂)) f) ⟩ pam (D t (♭? p₂)) f ∎ -- We can then reduce all the laws to corresponding laws for _>>=_. -- The zero laws have already been proved. open Derivative public using () renaming (left-zero-⊛ to left-zero; right-zero-⊛ to right-zero) -- _⊛_ distributes from the left over _∣_. left-distributive : ∀ {Tok R₁ R₂ fs xs₁ xs₂} (p₁ : Parser Tok (R₁ → R₂) fs) (p₂ : Parser Tok R₁ xs₁) (p₃ : Parser Tok R₁ xs₂) → p₁ ⊛ (p₂ ∣ p₃) ≅P p₁ ⊛ p₂ ∣ p₁ ⊛ p₃ left-distributive p₁ p₂ p₃ = p₁ ⊛ (p₂ ∣ p₃) ≅⟨ ⊛-in-terms-of->>= p₁ (p₂ ∣ p₃) ⟩ p₁ ⊛″ (p₂ ∣ p₃) ≅⟨ ([ ○ - ○ - ○ - ○ ] p₁ ∎ >>= λ f → Monad.right-distributive p₂ p₃ (return ∘ f)) ⟩ (p₁ >>= λ f → pam p₂ f ∣ pam p₃ f) ≅⟨ Monad.left-distributive p₁ (pam p₂) (pam p₃) ⟩ p₁ ⊛″ p₂ ∣ p₁ ⊛″ p₃ ≅⟨ sym $ ⊛-in-terms-of->>= p₁ p₂ ∣′ ⊛-in-terms-of->>= p₁ p₃ ⟩ p₁ ⊛ p₂ ∣ p₁ ⊛ p₃ ∎ -- _⊛_ distributes from the right over _∣_. right-distributive : ∀ {Tok R₁ R₂ fs₁ fs₂ xs} (p₁ : Parser Tok (R₁ → R₂) fs₁) (p₂ : Parser Tok (R₁ → R₂) fs₂) (p₃ : Parser Tok R₁ xs) → (p₁ ∣ p₂) ⊛ p₃ ≅P p₁ ⊛ p₃ ∣ p₂ ⊛ p₃ right-distributive p₁ p₂ p₃ = (p₁ ∣ p₂) ⊛ p₃ ≅⟨ ⊛-in-terms-of->>= (p₁ ∣ p₂) p₃ ⟩ (p₁ ∣ p₂) ⊛″ p₃ ≅⟨ Monad.right-distributive p₁ p₂ (pam p₃) ⟩ p₁ ⊛″ p₃ ∣ p₂ ⊛″ p₃ ≅⟨ sym $ ⊛-in-terms-of->>= p₁ p₃ ∣′ ⊛-in-terms-of->>= p₂ p₃ ⟩ p₁ ⊛ p₃ ∣ p₂ ⊛ p₃ ∎ -- Applicative functor laws. identity : ∀ {Tok R xs} (p : Parser Tok R xs) → return id ⊛ p ≅P p identity p = return id ⊛ p ≅⟨ ⊛-in-terms-of->>= (return id) p ⟩ return id ⊛″ p ≅⟨ Monad.left-identity id (pam p) ⟩ p >>= return ≅⟨ Monad.right-identity p ⟩ p ∎ homomorphism : ∀ {Tok R₁ R₂} (f : R₁ → R₂) (x : R₁) → return f ⊛ return x ≅P return {Tok = Tok} (f x) homomorphism f x = return f ⊛ return x ≅⟨ ⊛-in-terms-of->>= (return f) (return x) ⟩ return f ⊛″ return x ≅⟨ Monad.left-identity f (pam (return x)) ⟩ pam (return x) f ≅⟨ Monad.left-identity x (return ∘ f) ⟩ return (f x) ∎ private infixl 10 _⊛-cong_ _⊛-cong_ : ∀ {k Tok R₁ R₂ xs₁ xs₂ fs₁ fs₂} {p₁ : Parser Tok (R₁ → R₂) fs₁} {p₂ : Parser Tok R₁ xs₁} {p₃ : Parser Tok (R₁ → R₂) fs₂} {p₄ : Parser Tok R₁ xs₂} → p₁ ∼[ k ]P p₃ → p₂ ∼[ k ]P p₄ → p₁ ⊛″ p₂ ∼[ k ]P p₃ ⊛″ p₄ _⊛-cong_ {p₁ = p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄ = p₁ ⊛″ p₂ ≅⟨ sym $ ⊛-in-terms-of->>= p₁ p₂ ⟩ p₁ ⊛ p₂ ∼⟨ [ ○ - ○ - ○ - ○ ] p₁≈p₃ ⊛ p₂≈p₄ ⟩ p₃ ⊛ p₄ ≅⟨ ⊛-in-terms-of->>= p₃ p₄ ⟩ p₃ ⊛″ p₄ ∎ pam-lemma : ∀ {Tok R₁ R₂ R₃ xs} {g : R₂ → List R₃} (p₁ : Parser Tok R₁ xs) (f : R₁ → R₂) (p₂ : (x : R₂) → Parser Tok R₃ (g x)) → pam p₁ f >>= p₂ ≅P p₁ >>= λ x → p₂ (f x) pam-lemma p₁ f p₂ = pam p₁ f >>= p₂ ≅⟨ sym $ Monad.associative p₁ (return ∘ f) p₂ ⟩ (p₁ >>= λ x → return (f x) >>= p₂) ≅⟨ ([ ○ - ○ - ○ - ○ ] p₁ ∎ >>= λ x → Monad.left-identity (f x) p₂) ⟩ (p₁ >>= λ x → p₂ (f x)) ∎ composition : ∀ {Tok R₁ R₂ R₃ fs gs xs} (p₁ : Parser Tok (R₂ → R₃) fs) (p₂ : Parser Tok (R₁ → R₂) gs) (p₃ : Parser Tok R₁ xs) → return _∘′_ ⊛ p₁ ⊛ p₂ ⊛ p₃ ≅P p₁ ⊛ (p₂ ⊛ p₃) composition p₁ p₂ p₃ = return _∘′_ ⊛ p₁ ⊛ p₂ ⊛ p₃ ≅⟨ ⊛-in-terms-of->>= (return _∘′_ ⊛ p₁ ⊛ p₂) p₃ ⟩ return _∘′_ ⊛ p₁ ⊛ p₂ ⊛″ p₃ ≅⟨ ⊛-in-terms-of->>= (return _∘′_ ⊛ p₁) p₂ ⊛-cong (p₃ ∎) ⟩ return _∘′_ ⊛ p₁ ⊛″ p₂ ⊛″ p₃ ≅⟨ ⊛-in-terms-of->>= (return _∘′_) p₁ ⊛-cong (p₂ ∎) ⊛-cong (p₃ ∎) ⟩ return _∘′_ ⊛″ p₁ ⊛″ p₂ ⊛″ p₃ ≅⟨ Monad.left-identity _∘′_ (pam p₁) ⊛-cong (p₂ ∎) ⊛-cong (p₃ ∎) ⟩ pam p₁ _∘′_ ⊛″ p₂ ⊛″ p₃ ≅⟨ pam-lemma p₁ _∘′_ (pam p₂) ⊛-cong (p₃ ∎) ⟩ ((p₁ >>= λ f → pam p₂ (_∘′_ f)) ⊛″ p₃) ≅⟨ sym $ Monad.associative p₁ (λ f → pam p₂ (_∘′_ f)) (pam p₃) ⟩ (p₁ >>= λ f → pam p₂ (_∘′_ f) >>= pam p₃) ≅⟨ ([ ○ - ○ - ○ - ○ ] p₁ ∎ >>= λ f → pam-lemma p₂ (_∘′_ f) (pam p₃)) ⟩ (p₁ >>= λ f → p₂ >>= λ g → pam p₃ (f ∘′ g)) ≅⟨ ([ ○ - ○ - ○ - ○ ] p₁ ∎ >>= λ f → [ ○ - ○ - ○ - ○ ] p₂ ∎ >>= λ g → sym $ pam-lemma p₃ g (return ∘ f)) ⟩ (p₁ >>= λ f → p₂ >>= λ g → pam (pam p₃ g) f) ≅⟨ ([ ○ - ○ - ○ - ○ ] p₁ ∎ >>= λ f → Monad.associative p₂ (pam p₃) (return ∘ f)) ⟩ p₁ ⊛″ (p₂ ⊛″ p₃) ≅⟨ sym $ (p₁ ∎) ⊛-cong ⊛-in-terms-of->>= p₂ p₃ ⟩ p₁ ⊛″ (p₂ ⊛ p₃) ≅⟨ sym $ ⊛-in-terms-of->>= p₁ (p₂ ⊛ p₃) ⟩ p₁ ⊛ (p₂ ⊛ p₃) ∎ interchange : ∀ {Tok R₁ R₂ fs} (p : Parser Tok (R₁ → R₂) fs) (x : R₁) → p ⊛ return x ≅P return (λ f → f x) ⊛ p interchange p x = p ⊛ return x ≅⟨ ⊛-in-terms-of->>= p (return x) ⟩ p ⊛″ return x ≅⟨ ([ ○ - ○ - ○ - ○ ] p ∎ >>= λ f → Monad.left-identity x (return ∘ f)) ⟩ (p >>= λ f → return (f x)) ≅⟨ pam p (λ f → f x) ∎ ⟩ pam p (λ f → f x) ≅⟨ sym $ Monad.left-identity (λ f → f x) (pam p) ⟩ return (λ f → f x) ⊛″ p ≅⟨ sym $ ⊛-in-terms-of->>= (return (λ f → f x)) p ⟩ return (λ f → f x) ⊛ p ∎
{ "alphanum_fraction": 0.4273349006, "avg_line_length": 44.9903846154, "ext": "agda", "hexsha": "67e927bf419867f804d1fc519ade3e4908cacbeb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Laws/ApplicativeFunctor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Laws/ApplicativeFunctor.agda", "max_line_length": 117, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Laws/ApplicativeFunctor.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 3909, "size": 9358 }
{-# OPTIONS --no-termination-check #-} module RunTests where open import Prelude.Bool open import Prelude.Char open import Prelude.Nat open import Prelude.List open import Prelude.IO open import Prelude.String open import Prelude.Unit open import Prelude.Product postulate Stream : Set popen : String -> String -> IO Stream pclose : Stream -> IO Unit readChar : Stream -> IO Char strLen : String -> Nat charAt : (s : String) -> Nat -> Char _`_`_ : {A B C : Set}(x : A)(f : A -> B -> C)(y : B) -> C x ` f ` y = f x y infixr 9 _∘_ _∘_ : {A : Set}{B : A -> Set}{C : (x : A) -> B x -> Set} (f : {a : A}(b : B a)-> C a b) (g : (a : A) -> B a)(x : A) -> C x (g x) f ∘ g = λ x -> f (g x) infixr 1 _$_ _$_ : {A : Set}{B : A -> Set}(f : (x : A) -> B x)(x : A) -> B x f $ x = f x {-# COMPILED_EPIC popen (s : String, m : String, u : Unit) -> Ptr = foreign Ptr "popen" (mkString(s) : String, mkString(m) : String) #-} {-# COMPILED_EPIC pclose (s : Ptr, u : Unit) -> Unit = foreign Int "pclose" (s : Ptr) ; u #-} {-# COMPILED_EPIC readChar (s : Ptr, u : Unit) -> Int = foreign Int "fgetc" (s : Ptr) #-} {-# COMPILED_EPIC strLen (s : Any) -> BigInt = foreign BigInt "intToBig" (foreign Int "strlen" (mkString(s) : String) : Int) #-} {-# COMPILED_EPIC charAt (s : Any, n : BigInt) -> Int = foreign Int "charAtBig" (mkString(s) : String, n : BigInt) #-} readStream : Stream -> IO (List Char) readStream stream = c <- readChar stream , if' charEq eof c then pclose stream ,, return [] else ( cs <- readStream stream , return (c :: cs)) system : String -> IO (List Char) system s = putStrLn $ "system " +S+ s ,, x <- popen s "r" , y <- readStream x , return y span : {A : Set} -> (p : A -> Bool) -> List A -> List A × List A span p [] = [] , [] span p (a :: as) with p a ... | false = [] , a :: as ... | true with span p as ... | xs , ys = (a :: xs) , ys groupBy : {A : Set} -> (A -> A -> Bool) -> List A -> List (List A) groupBy _ [] = [] groupBy eq (x :: xs) with span (eq x) xs ... | ys , zs = (x :: ys) :: groupBy eq zs comparing : {A B : Set} -> (A -> B) -> (B -> B -> Bool) -> A -> A -> Bool comparing f _==_ x y = f x == f y FilePath : Set FilePath = String and : List Bool -> Bool and [] = true and (true :: xs) = and xs and (false :: _) = false sequence : {A : Set} -> List (IO A) -> IO (List A) sequence [] = return [] sequence (x :: xs) = r <- x , rs <- sequence xs , return (r :: rs) mapM : {A B : Set} -> (A -> IO B) -> List A -> IO (List B) mapM f xs = sequence (map f xs) printList : List Char -> IO Unit printList xs = mapM printChar xs ,, printChar '\n' printResult : FilePath -> List Char -> List Char -> IO Unit printResult filename l1 l2 with l1 ` listEq charEq ` l2 ... | true = putStrLn (filename +S+ ": Success!") ... | false = putStrLn (filename +S+ ": Fail!") ,, putStrLn "Expected:" ,, printList l2 ,, putStrLn "Got:" ,, printList l1 compile : FilePath -> FilePath -> IO Unit compile dir file = system $ "agda --epic --compile-dir=" +S+ dir +S+ "bin/ " +S+ dir +S+ file ,, return unit readFile : FilePath -> IO (List Char) readFile file = system $ "cat " +S+ file -- This won't work because of a bug in Epic... {- validFile : List Char -> Bool validFile f with span (not ∘ charEq '.') f ... | _ , ('.' :: 'a' :: 'g' :: 'd' :: 'a' :: []) = true ... | _ , ('.' :: 'o' :: 'u' :: 't' :: []) = true ... | _ = false -} stripFileEnding : FilePath -> FilePath stripFileEnding fp = fromList $ fst $ span (not ∘ charEq '.') (fromString fp) testFile : FilePath -> FilePath -> FilePath -> IO Bool testFile outdir agdafile outfile = compile outdir (agdafile) ,, out <- system $ outdir +S+ "bin/" +S+ stripFileEnding agdafile , expected <- readFile (outdir +S+ outfile) , printResult agdafile out expected ,, return (out ` listEq charEq ` expected) testFile' : FilePath -> List (List Char) -> IO Bool testFile' outdir (agdafile :: outfile :: _) = testFile outdir (fromList agdafile) (fromList outfile) testFile' _ _ = return true isNewline : Char -> Bool isNewline '\n' = true isNewline _ = false lines : List Char -> List (List Char) lines list with span (not ∘ isNewline) list ... | l , [] = l :: [] ... | l , _ :: s' = l :: lines s' getFiles : FilePath -> IO (List (List Char)) getFiles dir = out <- system $ "ls " +S+ dir , putStrLn "getFiles after ls" ,, -- mapM (printList ∘ snd) $ map (span (not ∘ charEq '.')) $ lines out ,, return $ lines out -- filter validFile $ lines out isDot : Char -> Bool isDot '.' = true isDot _ = false testFiles : FilePath -> IO Bool testFiles dir = files <- getFiles dir , putStrLn "Found the following files in the tests directory:" ,, mapM printList files ,, res <- mapM (testFile' dir) (groupBy (comparing (fst ∘ span (not ∘ isDot)) (listEq charEq)) files) , return $ and res getCurrentDirectory : IO FilePath getCurrentDirectory = fromList <$> system "pwd" main : IO Unit main = dir' <- getCurrentDirectory , putStrLn (fromList (fromString dir')) ,, putStrLn "hello" ,, putStrLn (fromList (tail ('h' :: 'e' :: 'j' :: []))) ,, printList (fromString "hej igen") ,, putStrLn (fromList (tail (fromString "hello"))) ,, dir <- fromList ∘ init ∘ fromString <$> getCurrentDirectory , putStrLn dir ,, system ("rm " +S+ dir +S+ "/tests/*.agdai") ,, res <- testFiles (dir +S+ "/tests/") , (if res then putStrLn "All tests succeeded! " else putStrLn "Not all tests succeeded ")
{ "alphanum_fraction": 0.5562684238, "avg_line_length": 31.3423913043, "ext": "agda", "hexsha": "57b488aa066f504f645028c0c1dac9087970d3cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/epic/RunTests.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/epic/RunTests.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/epic/RunTests.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1805, "size": 5767 }
-- ---------------------------------------------------------------------- -- The Agda σ-library -- -- Renamings -- ---------------------------------------------------------------------- -- A renaming is defined as a substitution ρ, mapping -- indices to indices (w/ explicit bounds). It is a subclass -- of substitutions. -- -- The σ-library provides renamings as primitives. module Sigma.Renaming.Base where open import Data.Nat using (ℕ; suc; zero; _+_) open import Data.Fin using (Fin; zero; suc) open import Function as Fun using (_∘_) open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩) open import Sigma.Subst.Base using (Sub; _∷_; []; _++_) -- ------------------------------------------------------------------------ -- A renaming ρ : 𝕀ⁿ → 𝕀ᵐ is denoted { i ↦ j : i ∈ 𝕀ⁿ, j ∈ 𝕀ᵐ } Ren : ℕ → ℕ → Set Ren m n = Sub (Fin n) m space : ∀ { m n } → Ren m n → ℕ × ℕ space { m } { n } _ = ⟨ m , n ⟩ dom : ∀ { m n } → Ren m n → ℕ dom = proj₁ ∘ space rng : ∀ { m n } → Ren m n → ℕ rng = proj₂ ∘ space -- Identity renaming idₙ : 𝕀ⁿ → 𝕀ⁿ. -- Defined by idₙ = { i ↦ i : i ∈ 𝕀ⁿ }. id : ∀ { n } → Ren n n id = Fun.id -- Shift operator ↑ₙ : 𝕀ⁿ → 𝕀ⁿ⁺¹ -- Defined by ↑ₙ i = 1 + i ↑ : ∀ { n } → Ren n (1 + n) ↑ = suc infix 10 _⇑ -- Lift operator ρ ⇑ -- Defined by ρ ⇑ = { 0 ↦ 0 } ∪ { ↑ i ↦ ↑ j : i ∈ 𝕀ⁿ, j ∈ 𝕀ᵐ } -- This operator is used for defining a capture avoiding renaming. -- -- For example in λ. e, free variables of e are now shifted: -- e : 0 1 2 -- λ e : 0 1 2 3 -- since λ binds 0. _⇑ : ∀ { m n } → Ren m n → Ren (1 + m) (1 + n) ρ ⇑ = zero ∷ ↑ ∘ ρ -- ------------------------------------------------------------------------ -- Generalizing the above primitives to "multi-variable binders" -- allows for formalization of binders that bind multiple variables, -- such as patterns. So-called multi-variate binders. -- Multi-variate identity idₙᵐ : 𝕀ᵐ → 𝕀ᵐ⁺ⁿ -- Defined by idₙᵐ = { i ↦ i' : i ∈ 𝕀ᵐ, i' ∈ 𝕀ᵐ⁺ⁿ, i = i' }. -- -- For example: -- id✶ 1 = 0 ∷ []ₙ -- id✶ 2 = 0 ∷ ↑ ∘ (0 ∷ []) = 0 ∷ 1 ∷ []ₙ -- id✶ 3 = 0 ∷ ↑ ∘ id✶ 2 = 0 ∷ 1 ∷ 2 ∷ []ₙ id✶ : ∀ { n } m → Ren m (m + n) id✶ zero = [] id✶ (suc m) = zero ∷ ↑ ∘ id✶ m -- Multi-variate shift operator ↑ₙᵐ : 𝕀ⁿ → 𝕀ᵐ⁺ⁿ -- Defined by ↑ₙᵐ = { i ↦ m + i : i ∈ 𝕀ⁿ } ↑✶_ : ∀ { n } k → Ren n (k + n) ↑✶ zero = id ↑✶ suc k = ↑ ∘ ↑✶ k -- Multi-variate lift operator ρ ⇑ᵏ -- Defined by ρ ⇑ᵏ = { i ↦ i' } ∪ { ↑ᵏ i ↦ ↑ᵏ j : i ∈ 𝕀ⁿ, j ∈ 𝕀ᵐ } -- This operator is used for defining a multi-variate capture avoiding renaming. -- -- For example in λ. e, free variables of e are now shifted by k: -- e : 0 1 2 3 -- λ e : 0 ... k k + 1 k + 2 k + 3 -- since λ binds 0, ..., k - 1. _⇑✶_ : ∀ { m n } → Ren m n → ∀ k → Ren (k + m) (k + n) ρ ⇑✶ k = id✶ k ++ (↑✶ k ∘ ρ)
{ "alphanum_fraction": 0.4711332858, "avg_line_length": 29.5368421053, "ext": "agda", "hexsha": "9461249e6351e301f212cf7ad279fd9d51f657fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "johnyob/agda-sigma", "max_forks_repo_path": "src/Sigma/Renaming/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "johnyob/agda-sigma", "max_issues_repo_path": "src/Sigma/Renaming/Base.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "johnyob/agda-sigma", "max_stars_repo_path": "src/Sigma/Renaming/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1138, "size": 2806 }
------------------------------------------------------------------------ -- Isomorphism of monoids on sets coincides with equality (assuming -- univalence) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- This module has been developed in collaboration with Thierry -- Coquand. open import Equality module Univalence-axiom.Isomorphism-is-equality.Monoid {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq using (_↔_; Σ-≡,≡↔≡; ↑↔) open Derived-definitions-and-properties eq open import Equivalence eq as Eq using (_≃_) open import Function-universe eq hiding (id) open import H-level eq open import H-level.Closure eq open import Prelude hiding (id) open import Univalence-axiom eq -- Monoid laws (including the assumption that the carrier type is a -- set). Is-monoid : (C : Type) → (C → C → C) → C → Type Is-monoid C _∙_ id = -- C is a set. Is-set C × -- Left and right identity laws. (∀ x → (id ∙ x) ≡ x) × (∀ x → (x ∙ id) ≡ x) × -- Associativity. (∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z)) -- Monoids (on sets). Monoid : Type₁ Monoid = -- Carrier. Σ Type λ C → -- Binary operation. Σ (C → C → C) λ _∙_ → -- Identity. Σ C λ id → -- Laws. Is-monoid C _∙_ id -- The carrier type. Carrier : Monoid → Type Carrier M = proj₁ M -- The binary operation. op : (M : Monoid) → Carrier M → Carrier M → Carrier M op M = proj₁ (proj₂ M) -- The identity element. id : (M : Monoid) → Carrier M id M = proj₁ (proj₂ (proj₂ M)) -- The monoid laws. laws : (M : Monoid) → Is-monoid (Carrier M) (op M) (id M) laws M = proj₂ (proj₂ (proj₂ M)) -- Monoid morphisms. Is-homomorphism : (M₁ M₂ : Monoid) → (Carrier M₁ → Carrier M₂) → Type Is-homomorphism M₁ M₂ f = (∀ x y → f (op M₁ x y) ≡ op M₂ (f x) (f y)) × (f (id M₁) ≡ id M₂) -- Monoid isomorphisms. _≅_ : Monoid → Monoid → Type M₁ ≅ M₂ = Σ (Carrier M₁ ↔ Carrier M₂) λ f → Is-homomorphism M₁ M₂ (_↔_.to f) -- The monoid laws are propositional (assuming extensionality). laws-propositional : Extensionality (# 0) (# 0) → (M : Monoid) → Is-proposition (Is-monoid (Carrier M) (op M) (id M)) laws-propositional ext M = ×-closure 1 (H-level-propositional ext 2) (×-closure 1 (Π-closure ext 1 λ _ → is-set) (×-closure 1 (Π-closure ext 1 λ _ → is-set) (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → is-set))) where is-set = proj₁ (laws M) -- Monoid equality is isomorphic to equality of the carrier sets, -- binary operations and identity elements, suitably transported -- (assuming extensionality). equality-triple-lemma : Extensionality (# 0) (# 0) → (M₁ M₂ : Monoid) → M₁ ≡ M₂ ↔ Σ (Carrier M₁ ≡ Carrier M₂) λ C-eq → subst (λ C → C → C → C) C-eq (op M₁) ≡ op M₂ × subst (λ C → C) C-eq (id M₁) ≡ id M₂ equality-triple-lemma ext (C₁ , op₁ , id₁ , laws₁) (C₂ , op₂ , id₂ , laws₂) = ((C₁ , op₁ , id₁ , laws₁) ≡ (C₂ , op₂ , id₂ , laws₂)) ↔⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ bij ⟩ (((C₁ , op₁ , id₁) , laws₁) ≡ ((C₂ , op₂ , id₂) , laws₂)) ↝⟨ inverse $ ignore-propositional-component $ laws-propositional ext (C₂ , op₂ , id₂ , laws₂) ⟩ ((C₁ , op₁ , id₁) ≡ (C₂ , op₂ , id₂)) ↝⟨ inverse Σ-≡,≡↔≡ ⟩ (Σ (C₁ ≡ C₂) λ C-eq → subst (λ C → (C → C → C) × C) C-eq (op₁ , id₁) ≡ (op₂ , id₂)) ↝⟨ ∃-cong (λ _ → ≡⇒↝ _ $ cong (λ x → x ≡ _) $ push-subst-, (λ C → C → C → C) (λ C → C)) ⟩ (Σ (C₁ ≡ C₂) λ C-eq → (subst (λ C → C → C → C) C-eq op₁ , subst (λ C → C) C-eq id₁) ≡ (op₂ , id₂)) ↝⟨ ∃-cong (λ _ → inverse ≡×≡↔≡) ⟩□ (Σ (C₁ ≡ C₂) λ C-eq → subst (λ C → C → C → C) C-eq op₁ ≡ op₂ × subst (λ C → C) C-eq id₁ ≡ id₂) □ where bij = (Σ Type λ C → Σ (C → C → C) λ op → Σ C λ id → Is-monoid C op id) ↝⟨ ∃-cong (λ _ → Σ-assoc) ⟩ (Σ Type λ C → Σ ((C → C → C) × C) λ { (op , id) → Is-monoid C op id }) ↝⟨ Σ-assoc ⟩□ (Σ (Σ Type λ C → (C → C → C) × C) λ { (C , op , id) → Is-monoid C op id }) □ -- If two monoids are isomorphic, then they are equal (assuming -- univalence). isomorphic-equal : Univalence (# 0) → Univalence (# 1) → (M₁ M₂ : Monoid) → M₁ ≅ M₂ → M₁ ≡ M₂ isomorphic-equal univ univ₁ M₁ M₂ (bij , bij-op , bij-id) = goal where open _≃_ -- Our goal: goal : M₁ ≡ M₂ -- Extensionality follows from univalence. ext : Extensionality (# 0) (# 0) ext = dependent-extensionality univ₁ univ -- Hence the goal follows from monoids-equal-if, if we can prove -- three equalities. C-eq : Carrier M₁ ≡ Carrier M₂ op-eq : subst (λ A → A → A → A) C-eq (op M₁) ≡ op M₂ id-eq : subst (λ A → A) C-eq (id M₁) ≡ id M₂ goal = _↔_.from (equality-triple-lemma ext M₁ M₂) (C-eq , op-eq , id-eq) -- Our bijection can be converted into an equivalence. equiv : Carrier M₁ ≃ Carrier M₂ equiv = Eq.↔⇒≃ bij -- Hence the first equality follows directly from univalence. C-eq = ≃⇒≡ univ equiv -- For the second equality, let us first define a "cast" operator. cast₂ : {A B : Type} → A ≃ B → (A → A → A) → (B → B → B) cast₂ eq f = λ x y → to eq (f (from eq x) (from eq y)) -- The transport theorem implies that cast₂ equiv can be expressed -- using subst. cast₂-equiv-is-subst : ∀ f → cast₂ equiv f ≡ subst (λ A → A → A → A) C-eq f cast₂-equiv-is-subst f = transport-theorem (λ A → A → A → A) cast₂ refl univ equiv f -- The second equality op-eq follows from extensionality, -- cast₂-equiv-is-subst, and the fact that the bijection is a -- monoid homomorphism. op-eq = apply-ext ext λ x → apply-ext ext λ y → subst (λ A → A → A → A) C-eq (op M₁) x y ≡⟨ cong (λ f → f x y) $ sym $ cast₂-equiv-is-subst (op M₁) ⟩ to equiv (op M₁ (from equiv x) (from equiv y)) ≡⟨ bij-op (from equiv x) (from equiv y) ⟩ op M₂ (to equiv (from equiv x)) (to equiv (from equiv y)) ≡⟨ cong₂ (op M₂) (right-inverse-of equiv x) (right-inverse-of equiv y) ⟩∎ op M₂ x y ∎ -- The development above can be repeated for the identity -- elements. cast₀ : {A B : Type} → A ≃ B → A → B cast₀ eq x = to eq x cast₀-equiv-is-subst : ∀ x → cast₀ equiv x ≡ subst (λ A → A) C-eq x cast₀-equiv-is-subst x = transport-theorem (λ A → A) cast₀ refl univ equiv x id-eq = subst (λ A → A) C-eq (id M₁) ≡⟨ sym $ cast₀-equiv-is-subst (id M₁) ⟩ to equiv (id M₁) ≡⟨ bij-id ⟩∎ id M₂ ∎ -- Equality of monoids is in fact in bijective correspondence with -- isomorphism of monoids (assuming univalence). isomorphism-is-equality : Univalence (# 0) → Univalence (# 1) → (M₁ M₂ : Monoid) → (M₁ ≅ M₂) ↔ (M₁ ≡ M₂) isomorphism-is-equality univ univ₁ (C₁ , op₁ , id₁ , laws₁) (C₂ , op₂ , id₂ , laws₂) = (Σ (C₁ ↔ C₂) λ f → Is-homomorphism M₁ M₂ (_↔_.to f)) ↝⟨ Σ-cong (Eq.↔↔≃ ext C₁-set) (λ _ → _ □) ⟩ (Σ (C₁ ≃ C₂) λ C-eq → Is-homomorphism M₁ M₂ (_≃_.to C-eq)) ↝⟨ ∃-cong (λ C-eq → op-lemma C-eq ×-cong id-lemma C-eq) ⟩ (Σ (C₁ ≃ C₂) λ C-eq → subst (λ C → C → C → C) (≃⇒≡ univ C-eq) op₁ ≡ op₂ × subst (λ C → C) (≃⇒≡ univ C-eq) id₁ ≡ id₂) ↝⟨ inverse $ Σ-cong (≡≃≃ univ) (λ C-eq → ≡⇒↝ _ $ cong (λ eq → subst (λ C → C → C → C) eq op₁ ≡ op₂ × subst (λ C → C) eq id₁ ≡ id₂) $ sym $ _≃_.left-inverse-of (≡≃≃ univ) C-eq) ⟩ (Σ (C₁ ≡ C₂) λ C-eq → subst (λ C → C → C → C) C-eq op₁ ≡ op₂ × subst (λ C → C) C-eq id₁ ≡ id₂) ↝⟨ inverse $ equality-triple-lemma ext M₁ M₂ ⟩ ((C₁ , op₁ , id₁ , laws₁) ≡ (C₂ , op₂ , id₂ , laws₂)) □ where -- The two monoids. M₁ = (C₁ , op₁ , id₁ , laws₁) M₂ = (C₂ , op₂ , id₂ , laws₂) -- Extensionality follows from univalence. ext : Extensionality (# 0) (# 0) ext = dependent-extensionality univ₁ univ -- C₁ is a set. C₁-set : Is-set C₁ C₁-set = proj₁ laws₁ module _ (C-eq : C₁ ≃ C₂) where open _≃_ C-eq -- Two component lemmas. op-lemma : (∀ x y → to (op₁ x y) ≡ op₂ (to x) (to y)) ↔ subst (λ C → C → C → C) (≃⇒≡ univ C-eq) op₁ ≡ op₂ op-lemma = (∀ x y → to (op₁ x y) ≡ op₂ (to x) (to y)) ↔⟨ ∀-cong ext (λ _ → Eq.extensionality-isomorphism ext) ⟩ (∀ x → (λ y → to (op₁ x y)) ≡ (λ y → op₂ (to x) (to y))) ↝⟨ ∀-cong ext (λ _ → inverse $ ∘from≡↔≡∘to ext C-eq) ⟩ (∀ x → (λ y → to (op₁ x (from y))) ≡ (λ y → op₂ (to x) y)) ↔⟨ Eq.extensionality-isomorphism ext ⟩ ((λ x y → to (op₁ x (from y))) ≡ (λ x y → op₂ (to x) y)) ↝⟨ inverse $ ∘from≡↔≡∘to ext C-eq ⟩ ((λ x y → to (op₁ (from x) (from y))) ≡ (λ x y → op₂ x y)) ↝⟨ ≡⇒↝ _ $ cong (λ o → o ≡ op₂) $ transport-theorem (λ C → C → C → C) (λ eq f x y → _≃_.to eq (f (_≃_.from eq x) (_≃_.from eq y))) refl univ C-eq op₁ ⟩ (subst (λ C → C → C → C) (≃⇒≡ univ C-eq) op₁ ≡ op₂) □ id-lemma : (to id₁ ≡ id₂) ↔ (subst (λ C → C) (≃⇒≡ univ C-eq) id₁ ≡ id₂) id-lemma = (to id₁ ≡ id₂) ↝⟨ ≡⇒↝ _ $ cong (λ i → i ≡ id₂) $ transport-theorem (λ C → C) _≃_.to refl univ C-eq id₁ ⟩□ (subst (λ C → C) (≃⇒≡ univ C-eq) id₁ ≡ id₂) □ -- Equality of monoids is thus equal to equality (assuming -- univalence). isomorphism-is-equal-to-equality : Univalence (# 0) → Univalence (# 1) → (M₁ M₂ : Monoid) → ↑ _ (M₁ ≅ M₂) ≡ (M₁ ≡ M₂) isomorphism-is-equal-to-equality univ univ₁ M₁ M₂ = ≃⇒≡ univ₁ $ Eq.↔⇒≃ ( ↑ _ (M₁ ≅ M₂) ↝⟨ ↑↔ ⟩ (M₁ ≅ M₂) ↝⟨ isomorphism-is-equality univ univ₁ M₁ M₂ ⟩□ (M₁ ≡ M₂) □)
{ "alphanum_fraction": 0.4855414855, "avg_line_length": 33.38170347, "ext": "agda", "hexsha": "361dc9bfb991a9738c8247764865ff682c25019e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/Monoid.agda", "max_line_length": 136, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 3964, "size": 10582 }
module Haskell.Prim.Char where open import Agda.Builtin.IO open import Agda.Builtin.String open import Agda.Builtin.Char open import Agda.Builtin.Bool open import Agda.Builtin.Int using (pos; negsuc) open import Haskell.Prim open import Haskell.Prim.Int open import Haskell.Prim.Integer open import Haskell.Prim.Enum open import Haskell.Prim.Real ord : Char -> Int ord c = fromEnum ((pos ∘ primCharToNat) c) chr1 : Integer -> Char chr1 (pos n) = primNatToChar n chr1 _ = '_' chr : Int -> Char chr n = chr1 (toInteger n)
{ "alphanum_fraction": 0.7518939394, "avg_line_length": 22, "ext": "agda", "hexsha": "d6aa93f7a8446cb034adf06ebfb31de10424303e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ioanasv/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Char.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ioanasv/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Char.agda", "max_line_length": 48, "max_stars_count": 1, "max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ioanasv/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Char.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z", "num_tokens": 152, "size": 528 }
module TestLib where import Lib.Bool import Lib.Eq import Lib.Fin import Lib.IO import Lib.Id import Lib.List import Lib.Logic import Lib.Maybe import Lib.Monad import Lib.Nat import Lib.Prelude import Lib.Vec
{ "alphanum_fraction": 0.8028169014, "avg_line_length": 12.5294117647, "ext": "agda", "hexsha": "96ce87f4921a1264f91edd7af82bb64d38870641", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/simple-lib/TestLib.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/simple-lib/TestLib.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/simple-lib/TestLib.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 59, "size": 213 }
module UniDB.Morph.Shift where open import UniDB.Spec open import UniDB.Morph.Depth open import UniDB.Morph.Weaken -------------------------------------------------------------------------------- data Shift : MOR where shift : {γ₁ γ₂ : Dom} (ξ : Depth Weaken γ₁ γ₂) → Shift γ₁ γ₂ instance iUpShift : Up Shift _↑₁ {{iUpShift}} (shift ζ) = shift (ζ ↑₁) _↑_ {{iUpShift}} ξ 0 = ξ _↑_ {{iUpShift}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁ ↑-zero {{iUpShift}} ξ = refl ↑-suc {{iUpShift}} ξ δ⁺ = refl iWkmShift : Wkm Shift wkm {{iWkmShift}} δ = shift (depth (weaken δ) 0) iIdmShift : Idm Shift idm {{iIdmShift}} _ = wkm {Shift} 0 module _ {T : STX} {{vrT : Vr T}} where instance iLkShift : Lk T Shift lk {{iLkShift}} (shift ζ) i = vr {T} (lk {Ix} {Depth Weaken} ζ i) iLkUpShift : {{wkT : Wk T}} {{wkVrT : WkVr T}} → LkUp T Shift lk-↑₁-zero {{iLkUpShift}} (shift ξ) = cong (vr {T}) (lk-↑₁-zero {Ix} {_} ξ ) lk-↑₁-suc {{iLkUpShift}} (shift ξ) i = begin vr {T} (lk {Ix} (ξ ↑₁) (suc i)) ≡⟨ cong (vr {T}) (lk-↑₁-suc ξ i) ⟩ vr {T} (wk₁ {Ix} (lk {Ix} ξ i)) ≡⟨ sym (wk₁-vr {T} (lk {Ix} ξ i)) ⟩ wk₁ {T} (vr {T} (lk {Ix} ξ i)) ∎ iLkWkmShift : LkWkm T Shift lk-wkm {{iLkWkmShift}} δ i = refl iLkIdmShift : LkIdm T Shift lk-idm {{iLkIdmShift}} i = refl module _ {T : STX} {{vrT : Vr T}} where instance iLkRenShift : LkRen T Shift lk-ren {{iLkRenShift}} (shift ξ) i = refl --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5078947368, "avg_line_length": 28.679245283, "ext": "agda", "hexsha": "5dca3e98447e25ba249730d37cdbf2e86ccca8de", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Morph/Shift.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Morph/Shift.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Morph/Shift.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 634, "size": 1520 }
------------------------------------------------------------------------------ -- Subtraction using the fixed-point operator ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.LTC-PCF.Data.Nat.SubtractionFixedPointOperator where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Base.Properties -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Data/Nat.agda). infixl 9 _∸_ ------------------------------------------------------------------------------ -- Subtraction's definition ∸-helper : D → D ∸-helper f = lam (λ m → lam (λ n → if (iszero₁ n) then m else if (iszero₁ m) then zero else f · pred₁ m · pred₁ n)) _∸_ : D → D → D _∸_ m n = fix ∸-helper · m · n ------------------------------------------------------------------------------ -- Conversion rules from the Agda standard library 0.8.1 (see -- Data/Nat.agda) without use induction. private ---------------------------------------------------------------------------- -- The steps -- See doc in LTC-PCF.Program.GCD.Total.Equations. -- Initially, the conversion rule fix-eq is applied. ∸-s₁ : D → D → D ∸-s₁ m n = ∸-helper (fix ∸-helper) · m · n -- First argument application. ∸-s₂ : D → D ∸-s₂ m = lam (λ n → if (iszero₁ n) then m else if (iszero₁ m) then zero else fix ∸-helper · pred₁ m · pred₁ n) -- Second argument application. ∸-s₃ : D → D → D ∸-s₃ m n = if (iszero₁ n) then m else if (iszero₁ m) then zero else fix ∸-helper · pred₁ m · pred₁ n -- First if_then_else_ iszero₁ n = b. ∸-s₄ : D → D → D → D ∸-s₄ m n b = if b then m else if (iszero₁ m) then zero else fix ∸-helper · pred₁ m · pred₁ n -- First if_then_else_ when if true ... ∸-s₅ : D → D ∸-s₅ m = m -- First if_then_else_ when if false ... ∸-s₆ : D → D → D ∸-s₆ m n = if (iszero₁ m) then zero else fix ∸-helper · pred₁ m · pred₁ n -- Second if_then_else_ iszero₁ m = b. ∸-s₇ : D → D → D → D ∸-s₇ m n b = if b then zero else fix ∸-helper · pred₁ m · pred₁ n -- Second if_then_else_ when if true ... ∸-s₈ : D ∸-s₈ = zero -- Second if_then_else_ when if false ... ∸-s₉ : D → D → D ∸-s₉ m n = fix ∸-helper · pred₁ m · pred₁ n ---------------------------------------------------------------------------- -- Congruence properties ∸-s₄Cong₃ : ∀ {m n b₁ b₂} → b₁ ≡ b₂ → ∸-s₄ m n b₁ ≡ ∸-s₄ m n b₂ ∸-s₄Cong₃ refl = refl ∸-s₇Cong₃ : ∀ {m n b₁ b₂} → b₁ ≡ b₂ → ∸-s₇ m n b₁ ≡ ∸-s₇ m n b₂ ∸-s₇Cong₃ refl = refl ---------------------------------------------------------------------------- -- The execution steps -- See doc in LTC-PCF.Program.GCD.Total.Equations. proof₀₋₁ : ∀ m n → fix ∸-helper · m · n ≡ ∸-s₁ m n proof₀₋₁ m n = subst (λ x → x · m · n ≡ ∸-helper (fix ∸-helper) · m · n) (sym (fix-eq ∸-helper)) refl proof₁₋₂ : ∀ m n → ∸-s₁ m n ≡ ∸-s₂ m · n proof₁₋₂ m n = subst (λ x → x · n ≡ ∸-s₂ m · n) (sym (beta ∸-s₂ m)) refl proof₂₋₃ : ∀ m n → ∸-s₂ m · n ≡ ∸-s₃ m n proof₂₋₃ m n = beta (∸-s₃ m) n proof₃₋₄ : ∀ m n b → iszero₁ n ≡ b → ∸-s₃ m n ≡ ∸-s₄ m n b proof₃₋₄ m n b = ∸-s₄Cong₃ proof₄₊ : ∀ m n → ∸-s₄ m n true ≡ ∸-s₅ m proof₄₊ m _ = if-true (∸-s₅ m) proof₄₋₆ : ∀ m n → ∸-s₄ m n false ≡ ∸-s₆ m n proof₄₋₆ m n = if-false (∸-s₆ m n) proof₆₋₇ : ∀ m n b → iszero₁ m ≡ b → ∸-s₆ m n ≡ ∸-s₇ m n b proof₆₋₇ m n b = ∸-s₇Cong₃ proof₇₊ : ∀ m n → ∸-s₇ m n true ≡ ∸-s₈ proof₇₊ m n = if-true ∸-s₈ proof₇₋₉ : ∀ m n → ∸-s₇ m n false ≡ ∸-s₉ m n proof₇₋₉ m n = if-false (∸-s₉ m n) ------------------------------------------------------------------------------ -- The equations for subtraction ∸-x0 : ∀ n → n ∸ zero ≡ n ∸-x0 n = n ∸ zero ≡⟨ proof₀₋₁ n zero ⟩ ∸-s₁ n zero ≡⟨ proof₁₋₂ n zero ⟩ ∸-s₂ n · zero ≡⟨ proof₂₋₃ n zero ⟩ ∸-s₃ n zero ≡⟨ proof₃₋₄ n zero true iszero-0 ⟩ ∸-s₄ n zero true ≡⟨ proof₄₊ n zero ⟩ n ∎ ∸-0S : ∀ n → zero ∸ succ₁ n ≡ zero ∸-0S n = zero ∸ succ₁ n ≡⟨ proof₀₋₁ zero (succ₁ n) ⟩ ∸-s₁ zero (succ₁ n) ≡⟨ proof₁₋₂ zero (succ₁ n) ⟩ ∸-s₂ zero · (succ₁ n) ≡⟨ proof₂₋₃ zero (succ₁ n) ⟩ ∸-s₃ zero (succ₁ n) ≡⟨ proof₃₋₄ zero (succ₁ n) false (iszero-S n) ⟩ ∸-s₄ zero (succ₁ n) false ≡⟨ proof₄₋₆ zero (succ₁ n) ⟩ ∸-s₆ zero (succ₁ n) ≡⟨ proof₆₋₇ zero (succ₁ n) true iszero-0 ⟩ ∸-s₇ zero (succ₁ n) true ≡⟨ proof₇₊ zero (succ₁ n) ⟩ zero ∎ ∸-SS : ∀ m n → succ₁ m ∸ succ₁ n ≡ m ∸ n ∸-SS m n = succ₁ m ∸ succ₁ n ≡⟨ proof₀₋₁ (succ₁ m) (succ₁ n) ⟩ ∸-s₁ (succ₁ m) (succ₁ n) ≡⟨ proof₁₋₂ (succ₁ m) (succ₁ n) ⟩ ∸-s₂ (succ₁ m) · (succ₁ n) ≡⟨ proof₂₋₃ (succ₁ m) (succ₁ n) ⟩ ∸-s₃ (succ₁ m) (succ₁ n) ≡⟨ proof₃₋₄ (succ₁ m) (succ₁ n) false (iszero-S n) ⟩ ∸-s₄ (succ₁ m) (succ₁ n) false ≡⟨ proof₄₋₆ (succ₁ m) (succ₁ n) ⟩ ∸-s₆ (succ₁ m) (succ₁ n) ≡⟨ proof₆₋₇ (succ₁ m) (succ₁ n) false (iszero-S m) ⟩ ∸-s₇ (succ₁ m) (succ₁ n) false ≡⟨ proof₇₋₉ (succ₁ m) (succ₁ n) ⟩ fix ∸-helper · pred₁ (succ₁ m) · pred₁ (succ₁ n) ≡⟨ ·-rightCong (pred-S n) ⟩ fix ∸-helper · pred₁ (succ₁ m) · n ≡⟨ ·-leftCong (·-rightCong (pred-S m)) ⟩ fix ∸-helper · m · n ∎
{ "alphanum_fraction": 0.4459924321, "avg_line_length": 31.427027027, "ext": "agda", "hexsha": "3ddb757f359a80309cb2fbbf752151d0fdc2e531", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/LTC-PCF/Data/Nat/SubtractionFixedPointOperator.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/LTC-PCF/Data/Nat/SubtractionFixedPointOperator.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/LTC-PCF/Data/Nat/SubtractionFixedPointOperator.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 2355, "size": 5814 }
{-# OPTIONS --type-in-type #-} module examplesPaperJFP.agdaCodeBrady where open import Data.List open import Agda.Builtin.Unit public renaming (⊤ to Unit; tt to triv) open import Data.Product open import examplesPaperJFP.StateDependentIO {- Brady's Effect -} Effect : Set₁ Effect = (Result : Set) → (InResource : Set) → (OutResource : Result → Set) → Set record MyEffect : Set₁ where field Ops : Set Result : Ops → Set InResource : Ops → Set OutResource : (o : Ops) → Result o → Set open MyEffect effectToIOInterfaceˢ : Effect → IOInterfaceˢ Stateˢ (effectToIOInterfaceˢ eff) = Set Commandˢ (effectToIOInterfaceˢ eff) s = Σ[ Result ∈ Set ] (Σ[ outR ∈ (Result → Set) ] (eff Result s outR)) Responseˢ (effectToIOInterfaceˢ eff) s (result , outR , op) = result nextˢ (effectToIOInterfaceˢ eff) s (result , outR , op) = outR const : { A B : Set} → B → A → B const b = λ _ → b data EFFECT′ : Set₁ where MkEff : Set → Effect → EFFECT′ EFFECT : Set₁ EFFECT = Set × Effect data State : Effect where Get : (a : Set) → State a a (λ _ → a) Put : (a : Set) → (b : Set) → State a a (λ _ → b) data myStateOps : Set₁ where get : Set → myStateOps put : Set → Set → myStateOps myState : MyEffect Ops myState = myStateOps Result myState (get a) = a InResource myState (get a) = a OutResource myState (get a) _ = a Result myState (put a b) = a InResource myState (put a b) = a OutResource myState (put a b) _ = b STATE : Set → EFFECT STATE x = ( x , State ) postulate String : Set data Stdio : Effect where PutStr : String → Stdio Unit Unit (const Unit) GetStr : Stdio String String (const String) STDIO : EFFECT STDIO = ( Unit , Stdio ) data Eff : (x : Set) → List EFFECT → (x → List EFFECT) → Set where get : (x : Set) → Eff x [ STATE x ] (const [ STATE x ]) put : (x : Set) → x → Eff Unit [ STATE x ] (const [ STATE x ]) putM : (x : Set) → (y : Set) → y → Eff Unit [ STATE x ] (const [ STATE y ]) update : (x : Set) → (x → x) → Eff Unit [ STATE x ] (const [ STATE x ]) data EffM : (m : Set → Set) → (res : Set) → (inEffects : List EFFECT) → (outEffects : res → List EFFECT) → Set where _>>=_ : {m : Set → Set} → {res : Set} → {inEffects : List EFFECT} → {outEffects : res → List EFFECT} → {res′ : Set} → {inEffects′ : res → List EFFECT} → {outEffects′ : res′ → List EFFECT} → EffM m res inEffects outEffects → ((x : res) → EffM m res′ (inEffects′ x) outEffects′) → EffM m res′ inEffects outEffects′ record SetInterfaceˢ : Set where field Commandˢ′ : Set → Set Responseˢ′ : (s : Set) → Commandˢ′ s → Set nextˢ′ : (s : Set) → (c : Commandˢ′ s) → Responseˢ′ s c → Set open SetInterfaceˢ module _ (I : SetInterfaceˢ ) (let Stateˢ = Set) (let C = Commandˢ′ I) (let R = Responseˢ′ I) (let next = nextˢ′ I) where handle : (M : Set → Set) → Set handle M = (A : Set) → (s : Stateˢ) → (c : C s) → (f : (r : R s c) → next s c r → M A) → M A postulate Char : Set
{ "alphanum_fraction": 0.569915914, "avg_line_length": 30.0093457944, "ext": "agda", "hexsha": "16c54a140e7bd0e696f48439899fc018ae1043ee", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/agdaCodeBrady.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/agdaCodeBrady.agda", "max_line_length": 88, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/agdaCodeBrady.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 1092, "size": 3211 }
-- Andreas, Ulf, 2016-06-01, discussing issue #679 -- {-# OPTIONS -v tc.with.strip:20 #-} postulate anything : {A : Set} → A data Ty : Set where _=>_ : (a b : Ty) → Ty ⟦_⟧ : Ty → Set ⟦ a => b ⟧ = ⟦ a ⟧ → ⟦ b ⟧ eq : (a : Ty) → ⟦ a ⟧ → ⟦ a ⟧ → Set eq (a => b) f g = ∀ {x y : ⟦ a ⟧} → eq a x y → eq b (f x) (g y) bad : (a : Ty) (x : ⟦ a ⟧) → eq a x x bad (a => b) f h with b bad (a => b) f h | _ = anything -- ERROR WAS: Too few arguments in with clause! -- Should work now.
{ "alphanum_fraction": 0.4822546973, "avg_line_length": 23.95, "ext": "agda", "hexsha": "102bb4a31a9912be7855a6fdf7b97af781fbaae6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue679u.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue679u.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue679u.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 213, "size": 479 }
-- Andreas, 2014-09-23 -- Issue 1194, reported by marco.vax91, 2014-06-13 -- {-# OPTIONS -v scope.operators:50 #-} module _ where module A where data D1 : Set where c : D1 -- Just default notation for c here. module B where data D2 : Set where c : A.D1 → D2 -- Interesting notation for c here. syntax c x = ⟦ x ⟧ open A open B -- Since there is only one interesting notation for c in scope -- we should be able to use it. test : D2 test = ⟦ c ⟧
{ "alphanum_fraction": 0.6392405063, "avg_line_length": 15.2903225806, "ext": "agda", "hexsha": "f5e12eda90d452609ed9d6f6b7bb4cf4663ff336", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1194a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1194a.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1194a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 158, "size": 474 }
{- This second-order signature was created from the following second-order syntax description: syntax CommGroup | CG type * : 0-ary term unit : * | ε add : * * -> * | _⊕_ l20 neg : * -> * | ⊖_ r40 theory (εU⊕ᴸ) a |> add (unit, a) = a (εU⊕ᴿ) a |> add (a, unit) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) (⊖N⊕ᴸ) a |> add (neg (a), a) = unit (⊖N⊕ᴿ) a |> add (a, neg (a)) = unit (⊕C) a b |> add(a, b) = add(b, a) -} module CommGroup.Signature where open import SOAS.Context open import SOAS.Common open import SOAS.Syntax.Signature *T public open import SOAS.Syntax.Build *T public -- Operator symbols data CGₒ : Set where unitₒ addₒ negₒ : CGₒ -- Term signature CG:Sig : Signature CGₒ CG:Sig = sig λ { unitₒ → ⟼₀ * ; addₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ * ; negₒ → (⊢₀ *) ⟼₁ * } open Signature CG:Sig public
{ "alphanum_fraction": 0.5651672434, "avg_line_length": 18.847826087, "ext": "agda", "hexsha": "0e9fc926a00b48028df26550ca2280dec6c99377", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/CommGroup/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/CommGroup/Signature.agda", "max_line_length": 91, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/CommGroup/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 379, "size": 867 }
-- {-# OPTIONS --safe #-} module Language where open import Map open import Relation.Binary.PropositionalEquality open import Data.String using (String) open import Data.Nat open import Data.Bool open import Data.Maybe using (Maybe; just; nothing) open import Agda.Builtin.Unit open import Data.Empty open import Relation.Nullary using (¬_) open import Data.Product using (_×_) open import Data.List -- I separated this because of function calls data VarId : Set where Var : (x : String) → VarId -- This is the language of expressions data Aexp {A : Set} : Set where _+`_ : ∀(x1 x2 : Aexp {A}) → Aexp _-`_ : ∀(x1 x2 : Aexp {A}) → Aexp _*`_ : ∀(x1 x2 : Aexp {A}) → Aexp Avar : ∀(x : String) → Aexp Anum : ∀(x : A) → Aexp -- Type A should be comparable to 0 -- _/_ : ∀(x1 x2 : A) → (x2 ≡ 0) → Aexp -- Special - for ℕ _~-~_ : (a b : ℕ) → ℕ zero ~-~ b = 0 suc a ~-~ b = a ~-~ b -- Evaluation of Arithexp aeval : (st : String → ℕ) → (exp : Aexp {ℕ}) → ℕ aeval st (e +` e₁) = aeval st e + aeval st e₁ aeval st (e -` e₁) = aeval st e ~-~ aeval st e₁ aeval st (e *` e₁) = aeval st e * aeval st e₁ aeval st (Avar x) = st x aeval st (Anum x) = x -- This is the language of boolean expressions data Bexp {A : Set} : Set where TRUE : Bexp FALSE : Bexp _<`_ : ∀ (x1 x2 : Aexp {A}) → Bexp _>`_ : ∀ (x1 x2 : Aexp {A}) → Bexp _≤`_ : ∀ (x1 x2 : Aexp {A}) → Bexp _≥`_ : ∀ (x1 x2 : Aexp {A}) → Bexp _≡`_ : ∀ (x1 x2 : Aexp {A}) → Bexp ¬`_ : ∀ (b : Bexp {A}) → Bexp _&&`_ : ∀ (b1 b2 : Bexp {A}) → Bexp _||`_ : ∀ (b1 b2 : Bexp {A}) → Bexp -- Bool evaluation for ℕ beval : (st : String → ℕ) → (b : Bexp {ℕ}) → Bool beval st TRUE = true beval st FALSE = false beval st (x1 <` x2) = let ql = aeval st x1 in let qr = aeval st x2 in ((not ((ql ≤ᵇ qr) ∧ (qr ≤ᵇ ql))) ∧ (ql ≤ᵇ qr)) beval st (x1 >` x2) = let ql = aeval st x1 in let qr = aeval st x2 in ((not ((ql ≤ᵇ qr) ∧ (qr ≤ᵇ ql))) ∧ (qr ≤ᵇ ql)) beval st (x1 ≤` x2) = let l = aeval st x1 in let r = aeval st x2 in l ≤ᵇ r beval st (x1 ≥` x2) = let l = aeval st x1 in let r = aeval st x2 in r ≤ᵇ l beval st (x1 ≡` x2) = let l = aeval st x1 in let r = aeval st x2 in (l ≤ᵇ r) ∧ (r ≤ᵇ l) beval st (¬` b) = not (beval st b) beval st (b &&` b₁) = beval st b ∧ beval st b₁ beval st (b ||` b₁) = beval st b ∨ beval st b₁ data ATuple : Set where Arg : (v : String) → ATuple _,`_ : (f : ATuple) → (n : ATuple) → ATuple data RTuple : Set where Ret : (v : String) → RTuple _,`_ : (f : RTuple) → (n : RTuple) → RTuple -- Make a list of RTuple rtuple2list : RTuple → List (String) rtuple2list (Ret v) = v ∷ [] rtuple2list (r ,` r₁) = rtuple2list r ++ rtuple2list r₁ -- Name of functions are in different namespace data FuncCall {A : Set} : Set where -- Calling a function <_>:=_<_> : (ret : RTuple) → (f : String) → (args : ATuple) → FuncCall -- XXX: Note that the below allows writing code like -- this: F()||F()//F() _||`_ : (l r : FuncCall {A}) → FuncCall -- _//`_ : (l r : FuncCall {A}) → FuncCall -- This is the command language that we have data Cmd {A : Set} : Set where SKIP : Cmd _:=_ : (l : VarId) → (r : Aexp {A}) → Cmd _;_ : (c1 c2 : Cmd {A}) → Cmd IF_THEN_ELSE_END : (b : Bexp {A}) → (t : Cmd {A}) → (c : Cmd {A}) → Cmd WHILE_DO_END : (b : Bexp {A}) → (bo : Cmd {A}) → Cmd -- This makes calling the function a command EXEC : FuncCall {A} → Cmd -- This is defining a function -- This should give state of type (f → Maybe (Ret strings, args string, Cmd)) -- This should be an eval function, not a relation -- This will be called from funccall and go from st => st' data FuncDef {A : Set} : Set where -- Define a function/thread DEF_<_>⇒<_>:_END : (f : String) → (ATuple) → (RTuple) → (c : Cmd {A}) → FuncDef -- Toplevel -- This should start from MAIN -- This should be an topeval function KP => st data Top {A : Set} : Set where MAIN:_END : (c : Cmd {A}) → Top _;_ : FuncDef {A} → (a : Top {A}) → Top infix 22 _:=_ infixl 21 _;_ infixl 20 _||`_ -- infixl 20 _//`_ infixl 23 _-`_ infixl 23 _+`_ infixl 24 _*`_ infixl 25 _,`_ -- Highest precedence and left assoc -- Example of a program with multiple functions Main : Top Main = DEF "Factorial" < Arg "K" >⇒< Ret "fact" ,` Ret "K" >: Var "n" := Avar "K" ; Var "fact" := Anum 1 ; WHILE (Avar "n" >` Anum 0) DO Var "fact" := Avar "fact" *` Avar "n" ; Var "n" := Avar "n" -` Anum 1 END ; Var "res" := Anum 0 ; IF ((Avar "K" ≡` Anum 4) &&` (Avar "fact" ≡` Anum 24)) THEN Var "res" := Anum 1 ELSE Var "res" := Anum 0 END END ; MAIN: Var "K" := Anum 4 ; -- The below 2 have to be declared before being used Var "fact" := Anum 0 ; -- We should also have a tuple with each function/thread for -- pre-post. EXEC < Ret "fact" ,` Ret "K" >:= "Factorial" < Arg "K" > END -- Making the tuple type needed to hold the program data ProgTuple {A : Set} : Set where _,_,_ : (a : ATuple) → (r : RTuple) → (c : Cmd {A}) → ProgTuple -- Getting stuff from the Progtuple getProgCmd : {A : Set} → (p : Maybe (ProgTuple {A})) → Cmd {A} getProgCmd (just (a , r , c)) = c getProgCmd nothing = SKIP -- Dangerous getProgArgs : {A : Set} → (p : Maybe (ProgTuple {A})) → ATuple getProgArgs (just (a , r , c)) = a getProgArgs nothing = Arg "VOID" getProgRets : {A : Set} → (p : Maybe (ProgTuple {A})) → RTuple getProgRets (just (a , r , c)) = r getProgRets nothing = Ret "VOID" -- Semantics from here -- All stacks should come from point of function call -- Here Γ is the caller' stack data _,_-[_]->ᴬ_ {A : Set} (Γ : (String → ( A))) : (String → ( A)) → (ATuple) → (String → A) → Set where hd : ∀ (v : String) → ∀ (st : (String → A)) → -- Γ v ≡ just vv → -- Make sure that Arg is in the caller' stack ----------------------------------------------------------- Γ , st -[ Arg v ]->ᴬ (Store st v (Γ v)) tl : (l r : ATuple) → (st st' st'' : (String → A)) → (Γ , st -[ l ]->ᴬ st') → (Γ , st' -[ r ]->ᴬ st'') → ----------------------------------------------------------- Γ , st -[ (l ,` r) ]->ᴬ st'' -- Here Γ is the callee' stack data _,_-[_]->ᴿ_ {A : Set} (Γ : (String → A)) : (String → A) → RTuple → (String → A) → Set where hd : ∀ (v : String) → ∀ (v1 v2 : A) → ∀ (st : (String → A)) → -- → Γ v ≡ just v1 → st v ≡ just v2 → -- (_⊕_ : A → A → A) → ∀ (a b c : A) → (a ⊕ b ≡ b ⊕ a) -- → ((a ⊕ b) ⊕ c ≡ a ⊕ (b ⊕ c)) → ----------------------------------------------------------- Γ , st -[ Ret v ]->ᴿ (Store st v (Γ v)) -- Γ , st -[ Ret v ]->ᴿ (Store st v (Γ v ⊕ st v)) tl : ∀ (l r : RTuple) → (st st' st'' : (String → A)) → (Γ , st -[ l ]->ᴿ st') → (Γ , st' -[ r ]->ᴿ st'') → ----------------------------------------------------------- Γ , st -[ (l ,` r) ]->ᴿ st'' mutual -- These are the relations for ℕ data _,_=[_]=>_ (Γ : String → Maybe (ProgTuple {ℕ})) : (String → ℕ) → Cmd {ℕ} → (String → ℕ) → Set where CSKIP : ∀ (st : (String → ℕ)) → ----------------------- Γ , st =[ SKIP ]=> st CASSIGN : ∀ (st : (String → ℕ)) → ∀ (x : String) → ∀ (e : Aexp {ℕ}) → ----------------------------------------------------------- Γ , st =[ Var x := e ]=> (Store st x (aeval st e)) CSEQ : ∀ (st st' st'' : (String → ℕ)) → ∀ (c1 c2 : Cmd {ℕ}) → Γ , st =[ c1 ]=> st' → Γ , st' =[ c2 ]=> st'' → ----------------------------------------------------------- Γ , st =[ (c1 ; c2)]=> st'' CIFT : ∀ (st st' : (String → ℕ)) → (b : Bexp {ℕ}) → (t e : Cmd {ℕ}) → beval st b ≡ true → Γ , st =[ t ]=> st' → ----------------------------------------------------------- Γ , st =[ (IF b THEN t ELSE e END)]=> st' CIFE : ∀ (st st' : (String → ℕ)) → (b : Bexp {ℕ}) → (t e : Cmd {ℕ}) → beval st b ≡ false → Γ , st =[ e ]=> st' → ----------------------------------------------------------- Γ , st =[ (IF b THEN t ELSE e END)]=> st' CLF : (st : (String → ℕ)) → (b : Bexp {ℕ}) → (c : Cmd {ℕ}) → beval st b ≡ false → ----------------------------------------------------------- Γ , st =[ (WHILE b DO c END) ]=> st CLT : (st st' st'' : (String → ℕ)) → (b : Bexp {ℕ}) → (c : Cmd {ℕ}) → beval st b ≡ true → Γ , st =[ c ]=> st' → Γ , st' =[ (WHILE b DO c END) ]=> st'' → ----------------------------------------------------------- Γ , st =[ (WHILE b DO c END) ]=> st'' -- XXX: Done. CEX : ∀ (f : FuncCall {ℕ}) → ∀ (st st' : (String → ℕ)) → Γ , st =[ f ]=>ᶠ st' ----------------------------------------------------------- → Γ , st =[ EXEC f ]=> st' -- TODO: The function calls and definition with ℕ data _,_=[_]=>ᶠ_ (Γ : String → (Maybe (ProgTuple {ℕ}))) : (String → ℕ) → FuncCall {ℕ} → (String → ℕ) → Set where Base : ∀ (fname : String) → -- name of the function ∀ (stm : String → ℕ) -- caller stack, → (stf' stf'' : String → ℕ) -- These are the pre-call and -- post-call callee stack, -- respectively. → (stm' : String → ℕ) -- The resultant caller stack -- res of putting values on callee stack → stm , (K 0) -[ getProgArgs (Γ fname) ]->ᴬ stf' -- result of running the function → Γ , stf' =[ getProgCmd (Γ fname) ]=> stf'' -- copying ret values back on caller' stack → stf'' , stm -[ getProgRets (Γ fname) ]->ᴿ stm' ----------------------------------------------------------- → Γ , stm =[ < getProgRets (Γ fname) >:= fname < getProgArgs (Γ fname) > ]=>ᶠ stm' -- XXX: The above needs to be extended to return a list of -- fname with stm'. This will allow merge to be called in || -- and // -- Doing the evaluation of top evalProg : {A : Set} → (p : Top {A}) → (st : String → Maybe (ProgTuple {A})) → (String → Maybe (ProgTuple {A})) evalProg MAIN: c END st = (StoreP st "MAIN" (Arg "void" , Ret "void" , c)) evalProg (DEF f < x >⇒< x1 >: c END ; p) st = StoreP (evalProg p st) f (x , x1 , c) -- Example of relation on ℕ ex1 : ∀ (Γ : (String → Maybe ProgTuple)) → ∀ (st : (String → ℕ)) → Γ , st =[ SKIP ]=> st ex1 Γ st = CSKIP st -- Hoare logic starts here! {-# NO_POSITIVITY_CHECK #-} -- XXX: Maybe later define another language for it? -- Logical expressions with ℕ as relations (used for Hoare Propositions) data _|=_ (st : String → ℕ) : Bexp {ℕ} → Set where LT : ∀ (l r : Aexp {ℕ}) → (aeval st l) Data.Nat.< (aeval st r) → st |= (l <` r) LE : ∀ (l r : Aexp {ℕ}) → (aeval st l) Data.Nat.≤ (aeval st r) → st |= (l ≤` r) GT : ∀ (l r : Aexp {ℕ}) → (aeval st l) Data.Nat.> (aeval st r) → st |= (l >` r) GE : ∀ (l r : Aexp {ℕ}) → (aeval st l) Data.Nat.≥ (aeval st r) → st |= (l ≥` r) EQ : ∀ (l r : Aexp {ℕ}) → (aeval st l) ≡ (aeval st r) → st |= (l ≡` r) TT : st |= TRUE AND : ∀ (b1 b2 : Bexp {ℕ}) → (st |= b1) → (st |= b2) → st |= (b1 &&` b2) ORL : ∀ (b1 b2 : Bexp {ℕ}) → (st |= b1) → (st |= (b1 ||` b2)) ORR : ∀ (b1 b2 : Bexp {ℕ}) → (st |= b2) → (st |= (b1 ||` b2)) -- XXX: Had to disable POSITIVITY_CHECK NOT : ∀ (b : Bexp {ℕ}) → ((st |= b) → ⊥) → st |= (¬` b) -- Assert with ℙrops Assertℙ : ∀ (b : Bexp {ℕ}) → (String → ℕ) → Set Assertℙ b st = st |= b -- Defn of substitution rule with ℙrop Subsℙ : ∀ (b : Bexp {ℕ}) -- b is my assertion → (X : String) → (e : Aexp {ℕ}) → (String → ℕ) → Set Subsℙ b X e st = (Store st X (aeval st e)) |= b getStates : ∀ (stf stm : String → ℕ) → ATuple → (String → ℕ) getStates stf stm (Arg v) = Store stf v (stm v) getStates stf stm (l ,` r) = getStates (getStates stf stm l) stm r getStatesR : ∀ (stm stf : String → ℕ) → RTuple → (String → ℕ) getStatesR stm stf (Ret v) = Store stm v (stf v) getStatesR stm stf (rets ,` rets₁) = getStatesR (getStatesR stm stf rets) stf rets₁ -- Subs for the input arguments before calling a function SubsArgs : ∀ (Q : Bexp {ℕ}) → (args : ATuple) → (stf stm : (String → ℕ)) → Set SubsArgs Q args stf stm = (getStates stf stm args) |= Q -- Subs for the output rets after calling function SubsRets : ∀ (R : Bexp {ℕ}) → (rets : RTuple) → (stm stf : (String → ℕ)) → Set SubsRets R rets stm stf = (getStatesR stm stf rets) |= R -- Lemma for getStates getstates-eq-lemma : ∀ (st stm st' : (String → ℕ)) → (args : ATuple) → stm , st -[ args ]->ᴬ st' → (getStates st stm args) ≡ st' getstates-eq-lemma st stm .(Store st v (stm v)) (Arg v) (hd .v .st) = refl getstates-eq-lemma st stm st' (args ,` args₁) (tl .args .args₁ .st st'' .st' cmd cmd₁) with getstates-eq-lemma st stm st'' args cmd ... | refl = getstates-eq-lemma st'' stm st' args₁ cmd₁ -- Lemma for getStatesR getstatesr-eq-lemma : ∀ (stm stf stm' : (String → ℕ)) → (rets : RTuple) → (stf , stm -[ rets ]->ᴿ stm') → (getStatesR stm stf rets) ≡ stm' getstatesr-eq-lemma stm stf .(Store stm v (stf v)) .(Ret v) (hd v v1 v2 .stm) = refl getstatesr-eq-lemma stm stf stm' .(l ,` r) (tl l r .stm st' .stm' cmd cmd₁) with getstatesr-eq-lemma stm stf st' l cmd ... | refl = getstatesr-eq-lemma st' stf stm' r cmd₁ -- Now the soundness proof for SubsArgs SubsArgs-theorem : ∀ (stf stm stf' : (String → ℕ)) → (Q : Bexp {ℕ}) → (args : ATuple) → (P : SubsArgs Q args stf stm) → (cmd : stm , stf -[ args ]->ᴬ stf') → (stf' |= Q) SubsArgs-theorem stf stm .(Store stf v (stm v)) .(l <` r) .(Arg v) (LT l r x) (hd v .stf) = LT l r x SubsArgs-theorem stf stm .(Store stf v (stm v)) .(l ≤` r) .(Arg v) (LE l r x) (hd v .stf) = LE l r x SubsArgs-theorem stf stm .(Store stf v (stm v)) .(l >` r) .(Arg v) (GT l r x) (hd v .stf) = GT l r x SubsArgs-theorem stf stm .(Store stf v (stm v)) .(l ≥` r) .(Arg v) (GE l r x) (hd v .stf) = GE l r x SubsArgs-theorem stf stm .(Store stf v (stm v)) .(l ≡` r) .(Arg v) (EQ l r x) (hd v .stf) = EQ l r x SubsArgs-theorem stf stm .(Store stf v (stm v)) .TRUE .(Arg v) TT (hd v .stf) = TT SubsArgs-theorem stf stm .(Store stf v (stm v)) .(b1 &&` b2) .(Arg v) (AND b1 b2 P P₁) (hd v .stf) = AND b1 b2 P P₁ SubsArgs-theorem stf stm .(Store stf v (stm v)) .(b1 ||` b2) .(Arg v) (ORL b1 b2 P) (hd v .stf) = ORL b1 b2 P SubsArgs-theorem stf stm .(Store stf v (stm v)) .(b1 ||` b2) .(Arg v) (ORR b1 b2 P) (hd v .stf) = ORR b1 b2 P SubsArgs-theorem stf stm .(Store stf v (stm v)) .(¬` b) .(Arg v) (NOT b x) (hd v .stf) = NOT b x SubsArgs-theorem stf stm stf' .(l₁ <` r₁) .(l ,` r) (LT l₁ r₁ x) (tl l r .stf st' .stf' cmd cmd₁) rewrite getstates-eq-lemma stf stm st' l cmd | getstates-eq-lemma st' stm stf' r cmd₁ = LT l₁ r₁ x SubsArgs-theorem stf stm stf' .(l₁ ≤` r₁) .(l ,` r) (LE l₁ r₁ x) (tl l r .stf st' .stf' cmd cmd₁) rewrite getstates-eq-lemma stf stm st' l cmd | getstates-eq-lemma st' stm stf' r cmd₁ = LE l₁ r₁ x SubsArgs-theorem stf stm stf' .(l₁ >` r₁) .(l ,` r) (GT l₁ r₁ x) (tl l r .stf st' .stf' cmd cmd₁) rewrite getstates-eq-lemma stf stm st' l cmd | getstates-eq-lemma st' stm stf' r cmd₁ = GT l₁ r₁ x SubsArgs-theorem stf stm stf' .(l₁ ≥` r₁) .(l ,` r) (GE l₁ r₁ x) (tl l r .stf st' .stf' cmd cmd₁) rewrite getstates-eq-lemma stf stm st' l cmd | getstates-eq-lemma st' stm stf' r cmd₁ = GE l₁ r₁ x SubsArgs-theorem stf stm stf' .(l₁ ≡` r₁) .(l ,` r) (EQ l₁ r₁ x) (tl l r .stf st' .stf' cmd cmd₁) rewrite getstates-eq-lemma stf stm st' l cmd | getstates-eq-lemma st' stm stf' r cmd₁ = EQ l₁ r₁ x SubsArgs-theorem stf stm stf' .TRUE .(l ,` r) TT (tl l r .stf st' .stf' cmd cmd₁) = TT SubsArgs-theorem stf stm stf' .(b1 &&` b2) .(l ,` r) (AND b1 b2 P P₁) (tl l r .stf st' .stf' cmd cmd₁) rewrite getstates-eq-lemma stf stm st' l cmd | getstates-eq-lemma st' stm stf' r cmd₁ = AND b1 b2 P P₁ SubsArgs-theorem stf stm stf' .(b1 ||` b2) .(l ,` r) (ORL b1 b2 P) (tl l r .stf st' .stf' cmd cmd₁) rewrite getstates-eq-lemma stf stm st' l cmd | getstates-eq-lemma st' stm stf' r cmd₁ = ORL b1 b2 P SubsArgs-theorem stf stm stf' .(b1 ||` b2) .(l ,` r) (ORR b1 b2 P) (tl l r .stf st' .stf' cmd cmd₁) rewrite getstates-eq-lemma stf stm st' l cmd | getstates-eq-lemma st' stm stf' r cmd₁ = ORR b1 b2 P SubsArgs-theorem stf stm stf' .(¬` b) .(l ,` r) (NOT b x) (tl l r .stf st' .stf' cmd cmd₁) rewrite getstates-eq-lemma stf stm st' l cmd | getstates-eq-lemma st' stm stf' r cmd₁ = NOT b x -- The inductive case for concurrent function calls either (// or ||) -- This thorem is saying that if the product (conjunction) of two -- pre-conditions holds on the caller' stack then the pre-condition -- holds for each of the Funccall in the concurrent execution. -- TODO: The below theorem can be extended to N instead of just two -- inductively with ease. Leaving it to two for now as proof of concept. conc-pre-theorem : ∀ (stm stf1 stf1' stf2 stf2' : (String → ℕ)) → ∀ (a1 a2 : ATuple) → (c1 : stm , stf1 -[ a1 ]->ᴬ stf1') → (c2 : stm , stf2 -[ a2 ]->ᴬ stf2') → ∀ (Q1 Q2 : Bexp {ℕ}) → (SubsArgs Q1 a1 stf1 stm) × (SubsArgs Q2 a2 stf2 stm) → (stf1' |= Q1) × (stf2' |= Q2) conc-pre-theorem stm stf1 stf1' stf2 stf2' a1 a2 c1 c2 Q1 Q2 (fst Data.Product., snd) = (SubsArgs-theorem stf1 stm stf1' Q1 a1 fst c1) Data.Product., (SubsArgs-theorem stf2 stm stf2' Q2 a2 snd c2) -- DONE: We do the same as Subsargs for ret but with stacks swapped SubsRets-theorem : ∀ (stm stf stm' : (String → ℕ)) → (Q : Bexp {ℕ}) → (rets : RTuple) → (P : SubsRets Q rets stm stf) → (cmd : stf , stm -[ rets ]->ᴿ stm') → (stm' |= Q) SubsRets-theorem stm stf .(Store stm v (stf v)) .(l <` r) .(Ret v) (LT l r x) (hd v v1 v2 .stm) = LT l r x SubsRets-theorem stm stf .(Store stm v (stf v)) .(l ≤` r) .(Ret v) (LE l r x) (hd v v1 v2 .stm) = LE l r x SubsRets-theorem stm stf .(Store stm v (stf v)) .(l >` r) .(Ret v) (GT l r x) (hd v v1 v2 .stm) = GT l r x SubsRets-theorem stm stf .(Store stm v (stf v)) .(l ≥` r) .(Ret v) (GE l r x) (hd v v1 v2 .stm) = GE l r x SubsRets-theorem stm stf .(Store stm v (stf v)) .(l ≡` r) .(Ret v) (EQ l r x) (hd v v1 v2 .stm) = EQ l r x SubsRets-theorem stm stf .(Store stm v (stf v)) .TRUE .(Ret v) TT (hd v v1 v2 .stm) = TT SubsRets-theorem stm stf .(Store stm v (stf v)) .(b1 &&` b2) .(Ret v) (AND b1 b2 P P₁) (hd v v1 v2 .stm) = AND b1 b2 P P₁ SubsRets-theorem stm stf .(Store stm v (stf v)) .(b1 ||` b2) .(Ret v) (ORL b1 b2 P) (hd v v1 v2 .stm) = ORL b1 b2 P SubsRets-theorem stm stf .(Store stm v (stf v)) .(b1 ||` b2) .(Ret v) (ORR b1 b2 P) (hd v v1 v2 .stm) = ORR b1 b2 P SubsRets-theorem stm stf .(Store stm v (stf v)) .(¬` b) .(Ret v) (NOT b x) (hd v v1 v2 .stm) = NOT b x SubsRets-theorem stm stf stm' .(l₁ <` r₁) .(l ,` r) (LT l₁ r₁ x) (tl l r .stm st' .stm' cmd cmd₁) rewrite getstatesr-eq-lemma stm stf st' l cmd | getstatesr-eq-lemma st' stf stm' r cmd₁ = LT l₁ r₁ x SubsRets-theorem stm stf stm' .(l₁ ≤` r₁) .(l ,` r) (LE l₁ r₁ x) (tl l r .stm st' .stm' cmd cmd₁) rewrite getstatesr-eq-lemma stm stf st' l cmd | getstatesr-eq-lemma st' stf stm' r cmd₁ = LE l₁ r₁ x SubsRets-theorem stm stf stm' .(l₁ >` r₁) .(l ,` r) (GT l₁ r₁ x) (tl l r .stm st' .stm' cmd cmd₁) rewrite getstatesr-eq-lemma stm stf st' l cmd | getstatesr-eq-lemma st' stf stm' r cmd₁ = GT l₁ r₁ x SubsRets-theorem stm stf stm' .(l₁ ≥` r₁) .(l ,` r) (GE l₁ r₁ x) (tl l r .stm st' .stm' cmd cmd₁) rewrite getstatesr-eq-lemma stm stf st' l cmd | getstatesr-eq-lemma st' stf stm' r cmd₁ = GE l₁ r₁ x SubsRets-theorem stm stf stm' .(l₁ ≡` r₁) .(l ,` r) (EQ l₁ r₁ x) (tl l r .stm st' .stm' cmd cmd₁) rewrite getstatesr-eq-lemma stm stf st' l cmd | getstatesr-eq-lemma st' stf stm' r cmd₁ = EQ l₁ r₁ x SubsRets-theorem stm stf stm' .TRUE .(l ,` r) TT (tl l r .stm st' .stm' cmd cmd₁) = TT SubsRets-theorem stm stf stm' .(b1 &&` b2) .(l ,` r) (AND b1 b2 P P₁) (tl l r .stm st' .stm' cmd cmd₁) rewrite getstatesr-eq-lemma stm stf st' l cmd | getstatesr-eq-lemma st' stf stm' r cmd₁ = AND b1 b2 P P₁ SubsRets-theorem stm stf stm' .(b1 ||` b2) .(l ,` r) (ORL b1 b2 P) (tl l r .stm st' .stm' cmd cmd₁) rewrite getstatesr-eq-lemma stm stf st' l cmd | getstatesr-eq-lemma st' stf stm' r cmd₁ = ORL b1 b2 P SubsRets-theorem stm stf stm' .(b1 ||` b2) .(l ,` r) (ORR b1 b2 P) (tl l r .stm st' .stm' cmd cmd₁) rewrite getstatesr-eq-lemma stm stf st' l cmd | getstatesr-eq-lemma st' stf stm' r cmd₁ = ORR b1 b2 P SubsRets-theorem stm stf stm' .(¬` b) .(l ,` r) (NOT b x) (tl l r .stm st' .stm' cmd cmd₁) rewrite getstatesr-eq-lemma stm stf st' l cmd | getstatesr-eq-lemma st' stf stm' r cmd₁ = NOT b x -- FIXME: The post condition is being proved only for 2 concurrent -- calls, but can be easily extended to N using an inductive -- data-structure. conc-post-lemma : ∀ (stf1 stf2 stm1 stm1' stm2 stm2' : (String → ℕ)) → (Q1 Q2 : Bexp {ℕ}) → (r1 r2 : RTuple) → (c1 : stf1 , stm1 -[ r1 ]->ᴿ stm1') → (c2 : stf2 , stm2 -[ r2 ]->ᴿ stm2') → (SubsRets Q1 r1 stm1 stf1) × (SubsRets Q2 r2 stm2 stf2) → (stm1' |= Q1 × stm2' |= Q2) conc-post-lemma stf1 stf2 stm1 stm1' stm2 stm2' Q1 Q2 r1 r2 c1 c2 (fst Data.Product., snd) = (SubsRets-theorem stm1 stf1 stm1' Q1 r1 fst c1) Data.Product., SubsRets-theorem stm2 stf2 stm2' Q2 r2 snd c2 -- TODO: We need to show that stm2 |= Q2 ≡ stm |= Q2. This requires us -- to show that merge does not change the values of stm2, which -- guarantee stm2 |= Q2. This is from the rule of constancy -- TODO: Rule of constancy can be proven, by first using t_update_neq -- from Map and then proving the lookup on aeval. merge-cong : ∀ (v1 v2 : String) → (v1 ≡ v2) → (Ret v1 ≡ Ret v2) merge-cong v1 .v1 refl = refl postulate merge-lemma : ∀ (stm1 stm2 stm : (String → ℕ)) → (Q2 : Bexp {ℕ}) → (r1 r2 : RTuple) → (merge : stm1 , stm2 -[ r1 ]->ᴿ stm) → stm2 |= Q2 → ¬ (r2 ≡ r1) → stm |= Q2 -- merge-lemma stm1 stm2 .(Store stm2 v (stm1 v)) Q2 .(Ret v) (Ret v₂) (hd v v1 v2 .stm2) p q rewrite t-update-neq stm2 v v₂ (stm1 v) λ x → ⊥-elim (q (merge-cong v₂ v x)) = {!!} -- merge-lemma stm1 stm2 .(Store stm2 v (stm1 v)) Q2 .(Ret v) (r2 ,` r3) (hd v v1 v2 .stm2) p q = {!!} -- merge-lemma stm1 stm2 stm Q2 .(l ,` r) r2 (tl l r .stm2 st' .stm merge merge₁) p q = {!!} -- Now the theorem that Q1 &&` Q2 hold on the merged stm stack XXX: -- Again this is being done only for two concurrent functions, but can -- be extended to N via an inductive data type. conc-post-theorem : ∀ (stm1 stm2 stm : (String → ℕ)) → (Q1 Q2 : Bexp {ℕ}) -- stm is the merged stack → (r1 r2 : RTuple) → (merge : stm1 , stm2 -[ r1 ]->ᴿ stm) → (stm1 |= Q1 × stm2 |= Q2) → (P : SubsRets Q1 r1 stm2 stm1) → ¬ (r2 ≡ r1) → (stm |= (Q1 &&` Q2)) conc-post-theorem stm1 stm2 stm Q1 Q2 r1 r2 merge (_ Data.Product., snd) P nr = AND Q1 Q2 (SubsRets-theorem stm2 stm1 stm Q1 r1 P merge) (merge-lemma stm1 stm2 stm Q2 r1 r2 merge snd nr) -- TODO: This is the theorem for post-condition for two concurrent -- function calls. This is harder than the pre-condition. -- 1.) In this case caller stack goes from stm -> stm' and stm -> stm'' -- for the two functions called concurrently. -- 2.) stm'' and stm' need to be combined into a single stm''' after the -- execution of the two functions concurrently? But how? This will be -- done in FuncCall relational semantics data type above. -- 3.) Once we have point 2 done then we can prove the correctness same -- as conc-pre-theorem but for post-condition of || or //. -- XXX: Use the above lemma to show the side condition state of R' X ≡ -- stf I and so on for all outputs. -- Subs theorem states that Hoare' subs rule is valid (or sound) subs-theoremℙ : ∀ (Γ : String → Maybe (ProgTuple {ℕ})) → ∀ (st st' : (String → ℕ)) → (X : String) → (e : Aexp {ℕ}) → (Q : Bexp {ℕ}) → (P : (Subsℙ Q X e st)) → (C : Γ , st =[ Var X := e ]=> st') → (Assertℙ Q st') subs-theoremℙ Γ st .(Store st X (aeval st e)) X e .(l <` r) (LT l r x) (CASSIGN .st .X .e) = LT l r x subs-theoremℙ Γ st .(Store st X (aeval st e)) X e .(l ≤` r) (LE l r x) (CASSIGN .st .X .e) = LE l r x subs-theoremℙ Γ st .(Store st X (aeval st e)) X e .(l >` r) (GT l r x) (CASSIGN .st .X .e) = GT l r x subs-theoremℙ Γ st .(Store st X (aeval st e)) X e .(l ≥` r) (GE l r x) (CASSIGN .st .X .e) = GE l r x subs-theoremℙ Γ st .(Store st X (aeval st e)) X e .(l ≡` r) (EQ l r x) (CASSIGN .st .X .e) = EQ l r x subs-theoremℙ Γ st .(Store st X (aeval st e)) X e .TRUE TT (CASSIGN .st .X .e) = TT subs-theoremℙ Γ st .(Store st X (aeval st e)) X e .(b1 &&` b2) (AND b1 b2 p p₁) (CASSIGN .st .X .e) = AND b1 b2 p p₁ subs-theoremℙ Γ st .(Store st X (aeval st e)) X e .(b1 ||` b2) (ORL b1 b2 p) (CASSIGN .st .X .e) = ORL b1 b2 p subs-theoremℙ Γ st .(Store st X (aeval st e)) X e .(b1 ||` b2) (ORR b1 b2 p) (CASSIGN .st .X .e) = ORR b1 b2 p subs-theoremℙ Γ st .(Store st X (aeval st e)) X e .(¬` b) (NOT b p) (CASSIGN .st .X .e) = NOT b p -- Consequence hoare rule theorem the general case soundness theorem. -- This works for both P₁ ⇒ P ∧ Q ⇒ Q₁. Model the implication using (¬` -- P₁) ||` P and (¬` Q) ||` Q₁ cons-theorem : ∀ (st : (String → ℕ)) → ∀ (P Q : Bexp {ℕ}) → Assertℙ P st → st |= ((¬` P) ||` Q) → Assertℙ Q st cons-theorem st P Q a (ORL .(¬` P) .Q (NOT .P x)) = ⊥-elim (x a) cons-theorem st P Q a (ORR .(¬` P) .Q b) = b -- The SKIP Hoare rule soundness theorem skip-theorem : ∀ (Γ : String → Maybe (ProgTuple {ℕ})) → ∀ (st st' : (String → ℕ)) → ∀ (P : Bexp {ℕ}) → Assertℙ P st → Γ , st =[ SKIP ]=> st' → Assertℙ P st' skip-theorem Γ st .st p sk (CSKIP .st) = sk -- The Sequence Hoare rule soundness theorem. -- Definition of a sound sequence rule data _,≪_≫_≪_≫ (Γ : String → Maybe (ProgTuple {ℕ})) : Bexp {ℕ} → Cmd {ℕ} → Bexp {ℕ} → Set where HSEQ : ∀ (st st' : (String → ℕ)) → (c1 c2 : Cmd {ℕ}) → (P Q : Bexp {ℕ}) → st |= P → Γ , st =[ c1 ; c2 ]=> st' → st' |= Q → ----------------------------------------------------------- Γ ,≪ P ≫ (c1 ; c2) ≪ Q ≫ -- The sequence rule soundness theorem -- this is a different way of looking at it seq-theorem : ∀ (Γ : String → Maybe (ProgTuple {ℕ})) → ∀ (st st' st'' : (String → ℕ)) → (c1 c2 : Cmd {ℕ}) → (P Q R : Bexp {ℕ}) → (Γ , st =[ c1 ]=> st') → (Γ , st' =[ c2 ]=> st'') → st |= P → st' |= Q → st'' |= R → Γ ,≪ P ≫ c1 ; c2 ≪ R ≫ seq-theorem Γ st st' st'' c1 c2 P Q R sc1 sc2 p _ r = HSEQ st st'' c1 c2 P R p (CSEQ st st' st'' c1 c2 sc1 sc2) r -- Help lemma contradiction-lemma : ∀ (b : Bexp {ℕ}) → ∀ (st : (String → ℕ)) → (beval st b ≡ true) → (beval st b ≡ false) → ⊥ contradiction-lemma b st p rewrite p = λ () -- Deterministic lemma for argument passing deterministic-ret-lemma : ∀ (stf stm stm' stm'' : (String → ℕ)) → (rets : RTuple) → (stm , stf -[ rets ]->ᴿ stm') → (stm , stf -[ rets ]->ᴿ stm'') → (stm' ≡ stm'') deterministic-ret-lemma stf stm .(Store stf v (stm v)) .(Store stf v (stm v)) .(Ret v) (hd v v1 v2 .stf) (hd .v v3 v4 .stf) = refl deterministic-ret-lemma stf stm stm' stm'' .(l ,` r) (tl l r .stf st' .stm' p1 p3) (tl .l .r .stf st'' .stm'' p2 p4) with deterministic-ret-lemma stf stm st' st'' l p1 p2 ... | refl with deterministic-ret-lemma st' stm stm' stm'' r p3 p4 ... | refl = refl -- Deterministic lemma for argument passing deterministic-arg-lemma : ∀ (stm stf stf' stf'' : (String → ℕ)) → (args : ATuple) → (stm , stf -[ args ]->ᴬ stf') → (stm , stf -[ args ]->ᴬ stf'') → (stf' ≡ stf'') deterministic-arg-lemma stm stf .(Store stf v (stm v)) .(Store stf v (stm v)) .(Arg v) (hd v .stf) (hd .v .stf) = refl deterministic-arg-lemma stm stf stf' stf'' .(l ,` r) (tl l r .stf st' .stf' p1 p3) (tl .l .r .stf st'' .stf'' p2 p4) with deterministic-arg-lemma stm stf st' st'' l p1 p2 ... | refl with deterministic-arg-lemma stm st' stf' stf'' r p3 p4 ... | refl = refl mutual -- The deterministic execution for function calls deterministic-func-theorem : ∀ (Γ : (String → Maybe (ProgTuple {ℕ}))) → ∀ (stm stm1 stm2 : (String → ℕ)) → ∀ (f : FuncCall {ℕ} ) → Γ , stm =[ f ]=>ᶠ stm2 → Γ , stm =[ f ]=>ᶠ stm1 → stm2 ≡ stm1 deterministic-func-theorem Γ stm stm1 stm2 .(< getProgRets (Γ fname) >:= fname < getProgArgs (Γ fname) >) (Base fname .stm stf' stf'' .stm2 x x₁ x₂) (Base .fname .stm stf''' stf'''' .stm1 x₃ x₄ x₅) with deterministic-arg-lemma stm (K 0) stf' stf''' (getProgArgs (Γ fname)) x x₃ ... | refl with deterministic-exec-theorem Γ stf' stf'' stf'''' (getProgCmd (Γ fname)) x₁ x₄ ... | refl with deterministic-ret-lemma stm stf'' stm1 stm2 (getProgRets (Γ fname)) x₅ x₂ ... | refl = refl -- Lemma for deterministic execution of commands deterministic-exec-theorem : ∀ (Γ : String → Maybe (ProgTuple {ℕ})) → ∀ (st st' st'' : String → ℕ) → ∀ (c : Cmd {ℕ}) → Γ , st =[ c ]=> st' → Γ , st =[ c ]=> st'' → st' ≡ st'' deterministic-exec-theorem Γ st .st .st .SKIP (CSKIP .st) (CSKIP .st) = refl deterministic-exec-theorem Γ st .(Store st x (aeval st e)) .(Store st x (aeval st e)) .(Var x := e) (CASSIGN .st x e) (CASSIGN .st .x .e) = refl deterministic-exec-theorem Γ st st' st'' .(c1 ; c2) (CSEQ .st st''' .st' c1 c2 e1 e3) (CSEQ .st st'''' .st'' .c1 .c2 e2 e4) with deterministic-exec-theorem Γ st st''' st'''' c1 e1 e2 ... | refl with deterministic-exec-theorem Γ st''' st'' st' c2 e4 e3 ... | refl = refl deterministic-exec-theorem Γ st st' st'' .(IF b THEN t ELSE e END) (CIFT .st .st' b t e x e1) (CIFT .st .st'' .b .t .e x₁ e2) with deterministic-exec-theorem Γ st st'' st' t e2 e1 ... | refl = refl deterministic-exec-theorem Γ st st' st'' .(IF b THEN t ELSE e END) (CIFT .st .st' b t e x e1) (CIFE .st .st'' .b .t .e x₁ e2) = ⊥-elim (contradiction-lemma b st x x₁) deterministic-exec-theorem Γ st st' st'' .(IF b THEN t ELSE e END) (CIFE .st .st' b t e x e1) (CIFT .st .st'' .b .t .e x₁ e2) = ⊥-elim (contradiction-lemma b st x₁ x) deterministic-exec-theorem Γ st st' st'' .(IF b THEN t ELSE e END) (CIFE .st .st' b t e x e1) (CIFE .st .st'' .b .t .e x₁ e2) with deterministic-exec-theorem Γ st st'' st' e e2 e1 ... | refl = refl deterministic-exec-theorem Γ st .st .st .(WHILE b DO c END) (CLF .st b c x) (CLF .st .b .c x₁) = refl deterministic-exec-theorem Γ st .st st'' .(WHILE b DO c END) (CLF .st b c x) (CLT .st st' .st'' .b .c x₁ e2 e3) = ⊥-elim (contradiction-lemma b st x₁ x) deterministic-exec-theorem Γ st st' .st .(WHILE b DO c END) (CLT .st st''' .st' b c x e1 e3) (CLF .st .b .c x₁) = ⊥-elim (contradiction-lemma b st x x₁) deterministic-exec-theorem Γ st st' st'' .(WHILE b DO c END) (CLT .st st''' .st' b c x e1 e3) (CLT .st st'''' .st'' .b .c x₁ e2 e4) with deterministic-exec-theorem Γ st st'''' st''' c e2 e1 ... | refl with deterministic-exec-theorem Γ st''' st'' st' (WHILE b DO c END) e4 e3 ... | refl = refl deterministic-exec-theorem Γ st st' st'' (EXEC < ret >:= f < args >) (CEX .(< ret >:= f < args >) .st .st' x) (CEX .(< ret >:= f < args >) .st .st'' x₁) with deterministic-func-theorem Γ st st' st'' < ret >:= f < args > x₁ x ... | refl = refl -- Proving seq rule soundness via standard technique seq-theorem1 : ∀ (Γ : String → Maybe (ProgTuple {ℕ})) → ∀ (st1 st2 st3 st4 : (String → ℕ)) → (c1 c2 : Cmd {ℕ}) → (P Q R : Bexp {ℕ}) → (Γ , st1 =[ c1 ]=> st2) → (Γ , st2 =[ c2 ]=> st3) → st1 |= P → st2 |= Q → st3 |= R → Γ , st1 =[ c1 ; c2 ]=> st4 → st4 |= R seq-theorem1 Γ st1 st2 st3 st4 c1 c2 P Q R ec1 ec2 st1p st2q st3r (CSEQ .st1 st' .st4 .c1 .c2 ec12 ec13) with deterministic-exec-theorem Γ st1 st2 st' c1 ec1 ec12 ... | refl with deterministic-exec-theorem Γ st2 st3 st4 c2 ec2 ec13 ... | refl = st3r -- TODO: Add If-else and while soundness rules if you want here -- This is the derivable one (completely syntactic, not semantic) -- In my case I will follow the same technique as SF, but instead of -- taking propositions I will take the state and the boolean expression -- for each proposition. This will make the syntactic derivation of -- Hoare rules possible.
{ "alphanum_fraction": 0.5255818085, "avg_line_length": 48.3175965665, "ext": "agda", "hexsha": "f52d1e05b29c14c428e3179df4ff83c8fe99ea2b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bff8c271b54f55ceac550c603e468f68838a07ee", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "amal029/compositional-real-time-contracts", "max_forks_repo_path": "Language.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bff8c271b54f55ceac550c603e468f68838a07ee", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "amal029/compositional-real-time-contracts", "max_issues_repo_path": "Language.agda", "max_line_length": 278, "max_stars_count": null, "max_stars_repo_head_hexsha": "bff8c271b54f55ceac550c603e468f68838a07ee", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "amal029/compositional-real-time-contracts", "max_stars_repo_path": "Language.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 12828, "size": 33774 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Finite.Fin.Instance.Parallel where open import Data.Nat using (ℕ) open import Data.Fin open import Data.Fin.Patterns open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Categories.Category.Finite.Fin open import Categories.Category private variable a b c d : Fin 2 -- -- /---0---\ -- 0 1 -- \---1---/ -- ParallelShape : FinCatShape ParallelShape = record { size = 2 ; ∣_⇒_∣ = card ; hasShape = record { id = id ; _∘_ = _∘_ ; assoc = assoc ; identityˡ = identityˡ ; identityʳ = identityʳ } } where card : Fin 2 → Fin 2 → ℕ card 0F 0F = 1 card 0F 1F = 2 card 1F 0F = 0 card 1F 1F = 1 id : Fin (card a a) id {0F} = 0F id {1F} = 0F _∘_ : ∀ {a b c} → Fin (card b c) → Fin (card a b) → Fin (card a c) _∘_ {0F} {0F} {0F} 0F 0F = 0F _∘_ {0F} {0F} {1F} 0F 0F = 0F _∘_ {0F} {0F} {1F} 1F 0F = 1F _∘_ {0F} {1F} {1F} 0F 0F = 0F _∘_ {0F} {1F} {1F} 0F 1F = 1F _∘_ {1F} {1F} {1F} 0F 0F = 0F assoc : ∀ {f : Fin (card a b)} {g : Fin (card b c)} {h : Fin (card c d)} → ((h ∘ g) ∘ f) ≡ (h ∘ (g ∘ f)) assoc {0F} {0F} {0F} {0F} {0F} {0F} {0F} = refl assoc {0F} {0F} {0F} {1F} {0F} {0F} {0F} = refl assoc {0F} {0F} {0F} {1F} {0F} {0F} {1F} = refl assoc {0F} {0F} {1F} {1F} {0F} {0F} {0F} = refl assoc {0F} {0F} {1F} {1F} {0F} {1F} {0F} = refl assoc {0F} {1F} {1F} {1F} {0F} {0F} {0F} = refl assoc {0F} {1F} {1F} {1F} {1F} {0F} {0F} = refl assoc {1F} {1F} {1F} {1F} {0F} {0F} {0F} = refl identityˡ : ∀ {a b} {f : Fin (card a b)} → (id ∘ f) ≡ f identityˡ {0F} {0F} {0F} = refl identityˡ {0F} {1F} {0F} = refl identityˡ {0F} {1F} {1F} = refl identityˡ {1F} {1F} {0F} = refl identityʳ : ∀ {a b} {f : Fin (card a b)} → (f ∘ id) ≡ f identityʳ {0F} {0F} {0F} = refl identityʳ {0F} {1F} {0F} = refl identityʳ {0F} {1F} {1F} = refl identityʳ {1F} {1F} {0F} = refl Parallel : Category _ _ _ Parallel = FinCategory ParallelShape module Parallel = Category Parallel
{ "alphanum_fraction": 0.4825935596, "avg_line_length": 29.0886075949, "ext": "agda", "hexsha": "c2f9bd1f7897d7515bd28470b805471fbcc5358d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Finite/Fin/Instance/Parallel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Finite/Fin/Instance/Parallel.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Finite/Fin/Instance/Parallel.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1049, "size": 2298 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Bool open import lib.types.Group open import lib.types.Nat open import lib.types.Pi open import lib.types.Sigma open import lib.types.Coproduct open import lib.types.Truncation open import lib.groups.Homomorphism open import lib.groups.Isomorphism open import lib.groups.SubgroupProp open import lib.groups.Lift open import lib.groups.Unit module lib.groups.GroupProduct where {- binary product -} ×-group-struct : ∀ {i j} {A : Type i} {B : Type j} (GS : GroupStructure A) (HS : GroupStructure B) → GroupStructure (A × B) ×-group-struct {A = A} {B = B} GS HS = record {M} where module G = GroupStructure GS module H = GroupStructure HS module M where ident : A × B ident = G.ident , H.ident inv : A × B → A × B inv (g , h) = G.inv g , H.inv h comp : A × B → A × B → A × B comp (g₁ , h₁) (g₂ , h₂) = G.comp g₁ g₂ , H.comp h₁ h₂ abstract unit-l : ∀ ab → comp ident ab == ab unit-l (g , h) = pair×= (G.unit-l g) (H.unit-l h) assoc : ∀ ab₁ ab₂ ab₃ → comp (comp ab₁ ab₂) ab₃ == comp ab₁ (comp ab₂ ab₃) assoc (g₁ , h₁) (g₂ , h₂) (g₃ , h₃) = pair×= (G.assoc g₁ g₂ g₃) (H.assoc h₁ h₂ h₃) inv-l : ∀ ab → comp (inv ab) ab == ident inv-l (g , h) = pair×= (G.inv-l g) (H.inv-l h) infix 80 _×ᴳ_ _×ᴳ_ : ∀ {i j} → Group i → Group j → Group (lmax i j) _×ᴳ_ (group A A-level A-struct) (group B B-level B-struct) = group (A × B) (×-level A-level B-level) (×-group-struct A-struct B-struct) {- general product -} Π-group-struct : ∀ {i j} {I : Type i} {A : I → Type j} (FS : (i : I) → GroupStructure (A i)) → GroupStructure (Π I A) Π-group-struct FS = record { ident = ident ∘ FS; inv = λ f i → inv (FS i) (f i); comp = λ f g i → comp (FS i) (f i) (g i); unit-l = λ f → (λ= (λ i → unit-l (FS i) (f i))); assoc = λ f g h → (λ= (λ i → assoc (FS i) (f i) (g i) (h i))); inv-l = λ f → (λ= (λ i → inv-l (FS i) (f i)))} where open GroupStructure Πᴳ : ∀ {i j} (I : Type i) (F : I → Group j) → Group (lmax i j) Πᴳ I F = group (Π I (El ∘ F)) (Π-level (λ i → El-level (F i))) (Π-group-struct (group-struct ∘ F)) where open Group {- functorial behavior of [Πᴳ] -} Πᴳ-emap-r : ∀ {i j k} (I : Type i) {F : I → Group j} {G : I → Group k} → (∀ i → F i ≃ᴳ G i) → Πᴳ I F ≃ᴳ Πᴳ I G Πᴳ-emap-r I {F} {G} iso = ≃-to-≃ᴳ (Π-emap-r (GroupIso.f-equiv ∘ iso)) (λ f g → λ= λ i → GroupIso.pres-comp (iso i) (f i) (g i)) {- the product of abelian groups is abelian -} ×ᴳ-is-abelian : ∀ {i j} (G : Group i) (H : Group j) → is-abelian G → is-abelian H → is-abelian (G ×ᴳ H) ×ᴳ-is-abelian G H aG aH (g₁ , h₁) (g₂ , h₂) = pair×= (aG g₁ g₂) (aH h₁ h₂) ×ᴳ-abgroup : ∀ {i j} → AbGroup i → AbGroup j → AbGroup (lmax i j) ×ᴳ-abgroup (G , aG) (H , aH) = G ×ᴳ H , ×ᴳ-is-abelian G H aG aH Πᴳ-is-abelian : ∀ {i j} {I : Type i} {F : I → Group j} → (∀ i → is-abelian (F i)) → is-abelian (Πᴳ I F) Πᴳ-is-abelian aF f₁ f₂ = λ= (λ i → aF i (f₁ i) (f₂ i)) {- defining a homomorphism into a product -} ×ᴳ-fanout : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k} → (G →ᴳ H) → (G →ᴳ K) → (G →ᴳ H ×ᴳ K) ×ᴳ-fanout (group-hom h h-comp) (group-hom k k-comp) = group-hom (λ x → (h x , k x)) (λ x y → pair×= (h-comp x y) (k-comp x y)) Πᴳ-fanout : ∀ {i j k} {I : Type i} {G : Group j} {F : I → Group k} → ((i : I) → G →ᴳ F i) → (G →ᴳ Πᴳ I F) Πᴳ-fanout h = group-hom (λ x i → GroupHom.f (h i) x) (λ x y → λ= (λ i → GroupHom.pres-comp (h i) x y)) ×ᴳ-fanout-pre∘ : ∀ {i j k l} {G : Group i} {H : Group j} {K : Group k} {J : Group l} (φ : G →ᴳ H) (ψ : G →ᴳ K) (χ : J →ᴳ G) → ×ᴳ-fanout φ ψ ∘ᴳ χ == ×ᴳ-fanout (φ ∘ᴳ χ) (ψ ∘ᴳ χ) ×ᴳ-fanout-pre∘ φ ψ χ = group-hom= idp {- projection homomorphisms -} ×ᴳ-fst : ∀ {i j} {G : Group i} {H : Group j} → (G ×ᴳ H →ᴳ G) ×ᴳ-fst = group-hom fst (λ _ _ → idp) ×ᴳ-snd : ∀ {i j} {G : Group i} {H : Group j} → (G ×ᴳ H →ᴳ H) ×ᴳ-snd = group-hom snd (λ _ _ → idp) ×ᴳ-snd-is-surj : ∀ {i j} {G : Group i} {H : Group j} → is-surjᴳ (×ᴳ-snd {G = G} {H = H}) ×ᴳ-snd-is-surj {G = G} h = [ (Group.ident G , h) , idp ] Πᴳ-proj : ∀ {i j} {I : Type i} {F : I → Group j} (i : I) → (Πᴳ I F →ᴳ F i) Πᴳ-proj i = group-hom (λ f → f i) (λ _ _ → idp) {- injection homomorphisms -} module _ {i j} {G : Group i} {H : Group j} where ×ᴳ-inl : G →ᴳ G ×ᴳ H ×ᴳ-inl = ×ᴳ-fanout (idhom G) cst-hom ×ᴳ-inr : H →ᴳ G ×ᴳ H ×ᴳ-inr = ×ᴳ-fanout (cst-hom {H = G}) (idhom H) ×ᴳ-diag : ∀ {i} {G : Group i} → (G →ᴳ G ×ᴳ G) ×ᴳ-diag = ×ᴳ-fanout (idhom _) (idhom _) {- when G is abelian, we can define a map H×K → G as a sum of maps - H → G and K → G (that is, the product behaves as a sum) -} module _ {i j k} {G : Group i} {H : Group j} {K : Group k} (G-abelian : is-abelian G) where private module G = Group G module H = Group H module K = Group K abstract interchange : (g₁ g₂ g₃ g₄ : G.El) → G.comp (G.comp g₁ g₂) (G.comp g₃ g₄) == G.comp (G.comp g₁ g₃) (G.comp g₂ g₄) interchange g₁ g₂ g₃ g₄ = (g₁ □ g₂) □ (g₃ □ g₄) =⟨ G.assoc g₁ g₂ (g₃ □ g₄) ⟩ g₁ □ (g₂ □ (g₃ □ g₄)) =⟨ G-abelian g₃ g₄ |in-ctx (λ w → g₁ □ (g₂ □ w)) ⟩ g₁ □ (g₂ □ (g₄ □ g₃)) =⟨ ! (G.assoc g₂ g₄ g₃) |in-ctx (λ w → g₁ □ w) ⟩ g₁ □ ((g₂ □ g₄) □ g₃) =⟨ G-abelian (g₂ □ g₄) g₃ |in-ctx (λ w → g₁ □ w) ⟩ g₁ □ (g₃ □ (g₂ □ g₄)) =⟨ ! (G.assoc g₁ g₃ (g₂ □ g₄)) ⟩ (g₁ □ g₃) □ (g₂ □ g₄) =∎ where infix 80 _□_ _□_ = G.comp ×ᴳ-fanin : (H →ᴳ G) → (K →ᴳ G) → (H ×ᴳ K →ᴳ G) ×ᴳ-fanin φ ψ = group-hom (λ {(h , k) → G.comp (φ.f h) (ψ.f k)}) lemma where module φ = GroupHom φ module ψ = GroupHom ψ abstract lemma : preserves-comp (Group.comp (H ×ᴳ K)) G.comp (λ {(h , k) → G.comp (φ.f h) (ψ.f k)}) lemma (h₁ , k₁) (h₂ , k₂) = G.comp (φ.f (H.comp h₁ h₂)) (ψ.f (K.comp k₁ k₂)) =⟨ φ.pres-comp h₁ h₂ |in-ctx (λ w → G.comp w (ψ.f (K.comp k₁ k₂))) ⟩ G.comp (G.comp (φ.f h₁) (φ.f h₂)) (ψ.f (K.comp k₁ k₂)) =⟨ ψ.pres-comp k₁ k₂ |in-ctx (λ w → G.comp (G.comp (φ.f h₁) (φ.f h₂)) w) ⟩ G.comp (G.comp (φ.f h₁) (φ.f h₂)) (G.comp (ψ.f k₁) (ψ.f k₂)) =⟨ interchange (φ.f h₁) (φ.f h₂) (ψ.f k₁) (ψ.f k₂) ⟩ G.comp (G.comp (φ.f h₁) (ψ.f k₁)) (G.comp (φ.f h₂) (ψ.f k₂)) =∎ abstract ×ᴳ-fanin-η : ∀ {i j} (G : Group i) (H : Group j) (aGH : is-abelian (G ×ᴳ H)) → idhom (G ×ᴳ H) == ×ᴳ-fanin aGH (×ᴳ-inl {G = G}) (×ᴳ-inr {G = G}) ×ᴳ-fanin-η G H aGH = group-hom= $ λ= λ {(g , h) → ! (pair×= (Group.unit-r G g) (Group.unit-l H h))} ×ᴳ-fanin-pre∘ : ∀ {i j k l} {G : Group i} {H : Group j} {K : Group k} {L : Group l} (aK : is-abelian K) (aL : is-abelian L) (φ : K →ᴳ L) (ψ : G →ᴳ K) (χ : H →ᴳ K) → ×ᴳ-fanin aL (φ ∘ᴳ ψ) (φ ∘ᴳ χ) == φ ∘ᴳ (×ᴳ-fanin aK ψ χ) ×ᴳ-fanin-pre∘ aK aL φ ψ χ = group-hom= $ λ= λ {(g , h) → ! (GroupHom.pres-comp φ (GroupHom.f ψ g) (GroupHom.f χ h))} {- define a homomorphism [G₁ × G₂ → H₁ × H₂] from homomorphisms - [G₁ → H₁] and [G₂ → H₂] -} ×ᴳ-fmap : ∀ {i j k l} {G₁ : Group i} {G₂ : Group j} {H₁ : Group k} {H₂ : Group l} → (G₁ →ᴳ H₁) → (G₂ →ᴳ H₂) → (G₁ ×ᴳ G₂ →ᴳ H₁ ×ᴳ H₂) ×ᴳ-fmap {G₁ = G₁} {G₂} {H₁} {H₂} φ ψ = group-hom (×-fmap φ.f ψ.f) lemma where module φ = GroupHom φ module ψ = GroupHom ψ abstract lemma : preserves-comp (Group.comp (G₁ ×ᴳ G₂)) (Group.comp (H₁ ×ᴳ H₂)) (λ {(h₁ , h₂) → (φ.f h₁ , ψ.f h₂)}) lemma (h₁ , h₂) (h₁' , h₂') = pair×= (φ.pres-comp h₁ h₁') (ψ.pres-comp h₂ h₂') ×ᴳ-emap : ∀ {i j k l} {G₁ : Group i} {G₂ : Group j} {H₁ : Group k} {H₂ : Group l} → (G₁ ≃ᴳ H₁) → (G₂ ≃ᴳ H₂) → (G₁ ×ᴳ G₂ ≃ᴳ H₁ ×ᴳ H₂) ×ᴳ-emap (φ , φ-is-equiv) (ψ , ψ-is-equiv) = ×ᴳ-fmap φ ψ , ×-isemap φ-is-equiv ψ-is-equiv {- equivalences in Πᴳ -} Πᴳ-emap-l : ∀ {i j k} {A : Type i} {B : Type j} (F : B → Group k) → (e : A ≃ B) → Πᴳ A (F ∘ –> e) ≃ᴳ Πᴳ B F Πᴳ-emap-l {A = A} {B = B} F e = ≃-to-≃ᴳ (Π-emap-l (Group.El ∘ F) e) lemma where abstract lemma = λ f g → λ= λ b → transp-El-pres-comp F (<–-inv-r e b) (f (<– e b)) (g (<– e b)) {- 0ᴳ is a unit for product -} ×ᴳ-unit-l : ∀ {i} (G : Group i) → 0ᴳ ×ᴳ G ≃ᴳ G ×ᴳ-unit-l _ = ×ᴳ-snd {G = 0ᴳ} , is-eq snd (λ g → (unit , g)) (λ _ → idp) (λ _ → idp) ×ᴳ-unit-r : ∀ {i} (G : Group i) → G ×ᴳ 0ᴳ ≃ᴳ G ×ᴳ-unit-r _ = ×ᴳ-fst , is-eq fst (λ g → (g , unit)) (λ _ → idp) (λ _ → idp) {- A product Πᴳ indexed by Bool is the same as a binary product -} module _ {i j k} {A : Type i} {B : Type j} (F : A ⊔ B → Group k) where Πᴳ₁-⊔-iso-×ᴳ : Πᴳ (A ⊔ B) F ≃ᴳ Πᴳ A (F ∘ inl) ×ᴳ Πᴳ B (F ∘ inr) Πᴳ₁-⊔-iso-×ᴳ = ≃-to-≃ᴳ (Π₁-⊔-equiv-× (Group.El ∘ F)) (λ _ _ → idp) {- Commutativity of ×ᴳ -} ×ᴳ-comm : ∀ {i j} (H : Group i) (K : Group j) → H ×ᴳ K ≃ᴳ K ×ᴳ H ×ᴳ-comm H K = group-hom (λ {(h , k) → (k , h)}) (λ _ _ → idp) , is-eq _ (λ {(k , h) → (h , k)}) (λ _ → idp) (λ _ → idp) {- Associativity of ×ᴳ -} ×ᴳ-assoc : ∀ {i j k} (G : Group i) (H : Group j) (K : Group k) → ((G ×ᴳ H) ×ᴳ K) ≃ᴳ (G ×ᴳ (H ×ᴳ K)) ×ᴳ-assoc G H K = group-hom (λ {((g , h) , k) → (g , (h , k))}) (λ _ _ → idp) , is-eq _ (λ {(g , (h , k)) → ((g , h) , k)}) (λ _ → idp) (λ _ → idp) module _ {i} where infixl 80 _^ᴳ_ _^ᴳ_ : Group i → ℕ → Group i H ^ᴳ O = Lift-group {j = i} 0ᴳ H ^ᴳ (S n) = H ×ᴳ (H ^ᴳ n) ^ᴳ-+ : (H : Group i) (m n : ℕ) → H ^ᴳ (m + n) ≃ᴳ (H ^ᴳ m) ×ᴳ (H ^ᴳ n) ^ᴳ-+ H O n = ×ᴳ-emap (lift-iso {G = 0ᴳ}) (idiso (H ^ᴳ n)) ∘eᴳ ×ᴳ-unit-l (H ^ᴳ n) ⁻¹ᴳ ^ᴳ-+ H (S m) n = ×ᴳ-assoc H (H ^ᴳ m) (H ^ᴳ n) ⁻¹ᴳ ∘eᴳ ×ᴳ-emap (idiso H) (^ᴳ-+ H m n) module _ where Πᴳ-is-trivial : ∀ {i j} (I : Type i) (F : I → Group j) → (∀ (i : I) → is-trivialᴳ (F i)) → is-trivialᴳ (Πᴳ I F) Πᴳ-is-trivial I F F-is-trivial = λ f → λ= λ i → F-is-trivial i (f i) module _ {j} {F : Unit → Group j} where Πᴳ₁-Unit : Πᴳ Unit F ≃ᴳ F unit Πᴳ₁-Unit = ≃-to-≃ᴳ Π₁-Unit (λ _ _ → idp)
{ "alphanum_fraction": 0.4967398937, "avg_line_length": 36.7859778598, "ext": "agda", "hexsha": "34c0a9649601cce1b49a0bb512e7bdd60ff5cf1a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/GroupProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/GroupProduct.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/GroupProduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5060, "size": 9969 }
{-# OPTIONS --without-K #-} open import library.Basics open import library.types.Sigma open import library.types.Bool open import library.types.Truncation hiding (Trunc) module Sec8judgmentalBeta where {- Recall Definition 3.6: postulate Trunc : Type → Type h-tr : (X : Type) → is-prop (Trunc X) ∣_∣ : {X : Type} → X → Trunc X rec : {X : Type} → {P : Type} → (is-prop P) → (X → P) → Trunc X → P We now redefine the propositional truncation so that rec has the judgmental β rule. We use the library implementation (library.types.Truncation). However, we still only talk about the *propositional* truncation (not the more general n-truncation). This file is independent of all the previous files of the article. For the part in Subsection 9.4, we need some statements for for than the lowest universe. Therefore, we choose to be more careful about universe levels. -} Trunc : ∀ {i} → Type i → Type i Trunc = library.types.Truncation.Trunc ⟨-1⟩ h-tr : ∀ {i} → (X : Type i) → is-prop (Trunc X) h-tr X = Trunc-level ∣_∣ : ∀ {i} → {X : Type i} → X → Trunc X ∣_∣ = [_] rec : ∀ {i j} → {X : Type i} → {P : Type j} → (is-prop P) → (X → P) → Trunc X → P rec = Trunc-rec ind : ∀ {i j} → {X : Type i} → {P : Trunc X → Type j} → ((z : Trunc X) → is-prop (P z)) → ((x : X) → P ∣ x ∣) → (z : Trunc X) → P z ind = Trunc-elim -- Subsection 8.1 -- Theorem 8.1 interval : Type₀ interval = Trunc Bool i₁ : interval i₁ = ∣ true ∣ i₂ : interval i₂ = ∣ false ∣ seg : i₁ == i₂ seg = prop-has-all-paths (h-tr _) _ _ -- We prove that the interval has the "correct" recursion principle: module interval {i} {Y : Type i} (y₁ y₂ : Y) (p : y₁ == y₂) where g : Bool → Σ Y λ y → y₁ == y g true = (y₁ , idp) g false = (y₂ , p) ĝ : interval → Σ Y λ y → y₁ == y ĝ = rec (contr-is-prop (pathfrom-is-contr _)) g f : interval → Y f = fst ∘ ĝ f-i₁ : f i₁ == y₁ f-i₁ = idp f-i₂ : f i₂ == y₂ f-i₂ = idp f-seg : ap f seg == p f-seg = ap f seg =⟨ idp ⟩ ap (fst ∘ ĝ) seg =⟨ ! (∘-ap _ _ _) ⟩ (ap fst) (ap ĝ seg) =⟨ ap (ap fst) (prop-has-all-paths (contr-is-set (pathfrom-is-contr _) _ _) _ _) ⟩ (ap fst) (pair= p po-aux) =⟨ fst=-β p _ ⟩ p ∎ where po-aux : idp == p [ _==_ y₁ ↓ p ] po-aux = from-transp (_==_ y₁) p (trans-pathfrom p idp) -- Everything again outside the module: interval-rec : ∀ {i} → {Y : Type i} → (y₁ y₂ : Y) → (p : y₁ == y₂) → (interval → Y) interval-rec = interval.f interval-rec-i₁ : ∀ {i} → {Y : Type i} → (y₁ y₂ : Y) → (p : y₁ == y₂) → (interval-rec y₁ y₂ p) i₁ == y₁ interval-rec-i₁ = interval.f-i₁ -- or: λ _ _ _ → idp interval-rec-i₂ : ∀ {i} → {Y : Type i} → (y₁ y₂ : Y) → (p : y₁ == y₂) → (interval-rec y₁ y₂ p) i₂ == y₂ interval-rec-i₂ = interval.f-i₂ -- or: λ _ _ _ → idp interval-rec-seg : ∀ {i} → {Y : Type i} → (y₁ y₂ : Y) → (p : y₁ == y₂) → ap (interval-rec y₁ y₂ p) seg == p interval-rec-seg = interval.f-seg -- Subsection 8.2 -- Lemma 8.2 (Shulman) / Corollary 8.3 interval→funext : ∀ {i j} → {X : Type i} → {Y : Type j} → (f g : (X → Y)) → ((x : X) → f x == g x) → f == g interval→funext {X = X} {Y = Y} f g hom = ap i-x seg where x-i : X → interval → Y x-i x = interval-rec (f x) (g x) (hom x) i-x : interval → X → Y i-x i x = x-i x i -- Thus, function extensionality holds automatically. open import library.types.Pi -- Subsection 8.3 -- We use the definitions from Section 5, but we re-define them as our definition of "Trunc" has chanced factors : ∀ {i j} → {X : Type i} → {Y : Type j} → (f : X → Y) → Type (lmax i j) factors {X = X} {Y = Y} f = Σ (Trunc X → Y) λ f' → (x : X) → f' ∣ x ∣ == f x -- Theorem 8.4 - note the line proof' = λ _ → idp judgmental-factorr : ∀ {i j} → {X : Type i} → {Y : Type j} → (f : X → Y) → factors f → factors f judgmental-factorr {X = X} {Y = Y} f (f₂ , proof) = f' , proof' where g : X → (z : Trunc X) → Σ Y λ y → y == f₂ z g x = λ z → f x , f x =⟨ ! (proof _) ⟩ f₂ ∣ x ∣ =⟨ ap f₂ (prop-has-all-paths (h-tr _) _ _) ⟩ f₂ z ∎ g-codom-prop : is-prop ((z : Trunc X) → Σ Y λ y → y == f₂ z) g-codom-prop = contr-is-prop (Π-level (λ z → pathto-is-contr _)) ĝ : Trunc X → (z : Trunc X) → Σ Y λ y → y == f₂ z ĝ = rec g-codom-prop g f' : Trunc X → Y f' = λ z → fst (ĝ z z) proof' : (x : X) → f' ∣ x ∣ == f x proof' = λ _ → idp -- Theorem 8.5 - we need the induction principle, but with that, it is actually simpler than the previous construction. -- Still, it is nearly a replication. factors-dep : ∀ {i j} → {X : Type i} → {Y : Trunc X → Type j} → (f : (x : X) → (Y ∣ x ∣)) → Type (lmax i j) factors-dep {X = X} {Y = Y} f = Σ ((z : Trunc X) → Y z) λ f₂ → ((x : X) → f x == f₂ ∣ x ∣) judgmental-factorr-dep : ∀ {i j} → {X : Type i} → {Y : Trunc X → Type j} → (f : (x : X) → Y ∣ x ∣) → factors-dep {X = X} {Y = Y} f → factors-dep {X = X} {Y = Y} f judgmental-factorr-dep {X = X} {Y = Y} f (f₂ , proof) = f' , proof' where g : (x : X) → Σ (Y ∣ x ∣) λ y → y == f₂ ∣ x ∣ g x = f x , proof x g-codom-prop : (z : Trunc X) → is-prop (Σ (Y z) λ y → y == f₂ z) g-codom-prop z = contr-is-prop (pathto-is-contr _) ĝ : (z : Trunc X) → Σ (Y z) λ y → y == f₂ z ĝ = ind g-codom-prop g f' : (z : Trunc X) → Y z f' = fst ∘ ĝ proof' : (x : X) → f' ∣ x ∣ == f x proof' x = idp -- Subsection 8.4 -- The content of this section is partially taken from an earlier formalization by the first-named author; -- see -- -- http://homotopytypetheory.org/2013/10/28/ -- -- for a discussion and -- -- http://red.cs.nott.ac.uk/~ngk/html-trunc-inverse/trunc-inverse.html -- -- for a formalization (the slightly simpler formalization that is mentioned in the article). -- Definition 8.6 -- Pointed types Type• : ∀ {i} → Type (lsucc i) Type• {i} = Σ (Type i) (idf _) module _ {i} (X : Type• {i}) where base = fst X pt = snd X -- We have already used the pathto-types a couple of times. -- Let's introduce a name for those that work with pointed types: pathto : Type (lsucc i) pathto = Σ (Type• {i}) (λ Y → Y == X) -- As it is well-known, these type is contractible and thereby propositional: pathto-prop : is-prop pathto pathto-prop = contr-is-prop (pathto-is-contr X) -- Definition 8.7 is-transitive : ∀ {i} → Type i → Type (lsucc i) is-transitive {i} X = (x₁ x₂ : X) → _==_ {A = Type•} (X , x₁) (X , x₂) -- Example 8.8 module dec-trans {i} (X : Type i) (dec : has-dec-eq X) where module _ (x₁ x₂ : X) where -- I define a function X → X that switches x and x₀. switch : X → X switch = λ y → match dec y x₁ withl (λ _ → x₂) withr (λ _ → match dec y x₂ withl (λ _ → x₁) withr (λ _ → y)) -- Rather tedious to prove, but completely straightforward: -- this map is its own inverse. switch-selfinverse : (y : X) → switch (switch y) == y switch-selfinverse y with dec y x₁ switch-selfinverse y | inl _ with dec x₂ x₁ switch-selfinverse y | inl y-x₁ | inl x-x₁ = x-x₁ ∙ ! y-x₁ switch-selfinverse y | inl _ | inr _ with dec x₂ x₂ switch-selfinverse y | inl y-x₁ | inr _ | inl _ = ! y-x₁ switch-selfinverse y | inl _ | inr _ | inr ¬x₂-x₂ = Empty-elim {A = λ _ → x₂ == y} (¬x₂-x₂ idp) switch-selfinverse y | inr _ with dec y x₂ switch-selfinverse y | inr _ | inl _ with dec x₂ x₁ switch-selfinverse y | inr ¬x₂-x₁ | inl y-x₂ | inl x₂-x₁ = Empty-elim (¬x₂-x₁ (y-x₂ ∙ x₂-x₁)) switch-selfinverse y | inr _ | inl _ | inr _ with dec x₁ x₁ switch-selfinverse y | inr _ | inl y-x₂ | inr _ | inl _ = ! y-x₂ switch-selfinverse y | inr _ | inl _ | inr _ | inr ¬x₁-x₁ = Empty-elim {A = λ _ → _ == y} (¬x₁-x₁ idp) switch-selfinverse y | inr _ | inr _ with dec y x₁ switch-selfinverse y | inr ¬y-x₁ | inr _ | inl y-x₁ = Empty-elim {A = λ _ → x₂ == y} (¬y-x₁ y-x₁) switch-selfinverse y | inr _ | inr _ | inr _ with dec y x₂ switch-selfinverse y | inr _ | inr ¬y-x₂ | inr _ | inl y-x₂ = Empty-elim {A = λ _ → x₁ == y} (¬y-x₂ y-x₂) switch-selfinverse y | inr _ | inr _ | inr _ | inr _ = idp switch-maps : switch x₂ == x₁ switch-maps with dec x₂ x₁ switch-maps | inl x₂-x₁ = x₂-x₁ switch-maps | inr _ with dec x₂ x₂ switch-maps | inr _ | inl _ = idp switch-maps | inr _ | inr ¬x-x = Empty-elim {A = λ _ → x₂ == x₁} (¬x-x idp) -- switch is an equivalence switch-eq : X ≃ X switch-eq = equiv switch switch switch-selfinverse switch-selfinverse -- X is transitive: is-trans : is-transitive X is-trans x₁ x₂ = pair= (ua X-X) x₁-x₂ where X-X : X ≃ X X-X = switch-eq x₂ x₁ x₁-x₂ : PathOver (idf (Type i)) (ua X-X) x₁ x₂ x₁-x₂ = ↓-idf-ua-in X-X (switch-maps x₂ x₁) -- Example 8.8 addendum: ℕ is transitive. open import library.types.Nat ℕ-trans : is-transitive ℕ ℕ-trans = dec-trans.is-trans ℕ ℕ-has-dec-eq -- Example 9.9 -- (Note that this does not need the univalence axiom) -- preparation path-trans-aux : ∀ {i} → (X : Type i) → (x₁ x₂ x₃ : X) → (x₂ == x₃) → (p₁₂ : x₁ == x₂) → (p₁₃ : x₁ == x₃) → _==_ {A = Type•} (x₁ == x₂ , p₁₂) (x₁ == x₃ , p₁₃) path-trans-aux X x₁ .x₁ .x₁ p idp idp = idp -- the lemma path-trans : ∀ {i} → (X : Type i) → (x₁ x₂ : X) → is-transitive (x₁ == x₂) path-trans X x₁ x₂ = path-trans-aux X x₁ x₂ x₂ idp -- In particular, the lemma works for loop spaces. -- We define them as follows: Ω : ∀ {i} → Type• {i} → Type• {i} Ω (X , x) = (x == x , idp) -- We choose precomposition here - whether the function exponentiation operator is more -- convenient to use with pre- or postcomposition depends on the concrete case. infix 10 _^_ _^_ : ∀ {i} {A : Set i} → (A → A) → ℕ → A → A f ^ 0 = idf _ f ^ S n = f ∘ f ^ n loop-trans : ∀ {i} → (X : Type• {i}) → (n : ℕ) → is-transitive (fst ((Ω ^ (1 + n)) X)) loop-trans {i} X n = path-trans type point point where type : Type i type = fst ((Ω ^ n) X) point : type point = snd ((Ω ^ n) X) -- Example 8.10 and 8.11 -- (not formalized) module constr-myst {i} (X : Type i) (x₀ : X) (t : is-transitive X) where f : X → Type• {i} f x = (X , x) f'' : Trunc X → Type• {i} f'' _ = (X , x₀) f-fact : factors f f-fact = f'' , (λ x → t x₀ x) f' : Trunc X → Type• {i} f' = fst (judgmental-factorr f f-fact) -- Theorem 9.12 -- the myst function: myst : (z : Trunc X) → fst (f' z) myst = snd ∘ f' check : (x : X) → myst ∣ x ∣ == x check x = idp myst-∣_∣-is-id : myst ∘ ∣_∣ == idf X myst-∣_∣-is-id = λ= λ x → idp -- Let us do it explicitly for ℕ: open import library.types.Nat myst-ℕ = constr-myst.myst ℕ 0 (dec-trans.is-trans ℕ ℕ-has-dec-eq) myst-∣_∣-is-id : (n : ℕ) → myst-ℕ ∣ n ∣ == n myst-∣_∣-is-id n = idp test : myst-ℕ ∣ 17 ∣ == 17 test = idp
{ "alphanum_fraction": 0.5528938466, "avg_line_length": 31.5187319885, "ext": "agda", "hexsha": "e05b3bace1e37d6984c8b0630716e5b364ad59cc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/anonymousExistence/Sec8judgmentalBeta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/anonymousExistence/Sec8judgmentalBeta.agda", "max_line_length": 131, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/anonymousExistence/Sec8judgmentalBeta.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 4295, "size": 10937 }
open import Prelude module Implicits.Semantics.RewriteContext where open import Implicits.Syntax open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Data.Vec open import Data.List.All as All open import Extensions.Vec -- rewrite context (relation between implicit and explicit context) _#_ : ∀ {ν n} (Γ : Ctx ν n) (Δ : ICtx ν) → Set Γ # Δ = All (λ i → i ∈ Γ) Δ K# : ∀ {ν n} (K : Ktx ν n) → Set K# (Γ , Δ) = Γ # Δ #tvar : ∀ {ν n} {K : Ktx ν n} → K# K → K# (ktx-weaken K) #tvar All.[] = All.[] #tvar (px All.∷ K#K) = (∈⋆map px (λ t → t tp/tp TypeLemmas.wk)) All.∷ (#tvar K#K) #var : ∀ {ν n} {K : Ktx ν n} → (a : Type ν) → K# K → K# (a ∷Γ K) #var a All.[] = All.[] #var a (px All.∷ K#K) = there px All.∷ (#var a K#K) #ivar : ∀ {ν n} {K : Ktx ν n} → (a : Type ν) → K# K → K# (a ∷K K) #ivar a K#K = here All.∷ (All.map there K#K)
{ "alphanum_fraction": 0.5871559633, "avg_line_length": 29.0666666667, "ext": "agda", "hexsha": "b97b796c5cb1e11af06e6d7cc51236c9cd7ead1e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Semantics/RewriteContext.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Semantics/RewriteContext.agda", "max_line_length": 81, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Semantics/RewriteContext.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 371, "size": 872 }
{-# OPTIONS --allow-unsolved-metas #-} module _ where open import Agda.Primitive using (Level) variable l : Level postulate Σ : {l' : Level}{X : Set} (Y : X → Set l') -> Set _,_ : {l' : Level}{X : Set} {Y : X → Set l'} -> (x : X)(y : Y x) -> Σ Y is-universal-element : {l' : Level}{X : Set} {A : X → Set l'} -> Σ A → Set universality-section : {X : Set} {A : X → Set l} -> (x : X) (a : A x) → is-universal-element {X = X} (x , a)
{ "alphanum_fraction": 0.4946921444, "avg_line_length": 27.7058823529, "ext": "agda", "hexsha": "d65421c38bc0e9206242077475fc0636a48f6ba4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3516.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3516.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3516.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 174, "size": 471 }
open import Auto.Core open import Data.List using (_∷_; []; length) open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (_,_) open import Data.Sum using (inj₁; inj₂) open import Reflection using (Term; Name; lam; visible; abs; TC; returnTC; bindTC) module Auto.Extensible (instHintDB : IsHintDB) where open IsHintDB instHintDB public open PsExtensible instHintDB public open Auto.Core public using (dfs; bfs; Exception; throw; searchSpaceExhausted; unsupportedSyntax) auto : Strategy → ℕ → HintDB → Term → TC Term auto search depth db type with agda2goal×premises type ... | inj₁ msg = returnTC (quoteError msg) ... | inj₂ ((n , g) , args) with search (suc depth) (solve g (fromRules args ∙ db)) ... | [] = returnTC (quoteError searchSpaceExhausted) ... | (p ∷ _) = bindTC (reify p) (λ rp → returnTC (intros rp)) where intros : Term → Term intros = introsAcc (length args) where introsAcc : ℕ → Term → Term introsAcc zero t = t introsAcc (suc k) t = lam visible (abs "TODO" (introsAcc k t)) infixl 5 _<<_ _<<_ : HintDB → Name → TC HintDB db << n = bindTC (name2rule n) (λ {(inj₁ msg) → returnTC db ; (inj₂ (k , r)) → returnTC (db ∙ return r)}) -- db << n with (name2rule n) -- db << n | inj₁ msg = db -- db << n | inj₂ (k , r) = db ∙ return r
{ "alphanum_fraction": 0.6341642229, "avg_line_length": 31.7209302326, "ext": "agda", "hexsha": "d66a2e6a3f28831a601bb66d66a1f6510c2a534d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2019-07-07T07:37:07.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-10T10:47:30.000Z", "max_forks_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wenkokke/AutoInAgda", "max_forks_repo_path": "src/Auto/Extensible.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_issues_repo_issues_event_max_datetime": "2017-11-06T16:49:27.000Z", "max_issues_repo_issues_event_min_datetime": "2017-11-03T09:46:19.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wenkokke/AutoInAgda", "max_issues_repo_path": "src/Auto/Extensible.agda", "max_line_length": 111, "max_stars_count": 22, "max_stars_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/AutoInAgda", "max_stars_repo_path": "src/Auto/Extensible.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-20T15:04:47.000Z", "max_stars_repo_stars_event_min_datetime": "2017-07-18T18:14:09.000Z", "num_tokens": 431, "size": 1364 }
module Issue4267.A1 where record RA1 : Set₁ where field A : Set
{ "alphanum_fraction": 0.6901408451, "avg_line_length": 11.8333333333, "ext": "agda", "hexsha": "697580afb4ea77bf54aeb24d8a6d50e23ada677d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4267/A1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4267/A1.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4267/A1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 24, "size": 71 }
module consoleExamples.helloWorld where open import ConsoleLib main : ConsoleProg main = run (WriteString "Hello World")
{ "alphanum_fraction": 0.8048780488, "avg_line_length": 17.5714285714, "ext": "agda", "hexsha": "3ac59fbcb490278c232cd544e84faa242eff2c2b", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/consoleExamples/helloWorld.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/consoleExamples/helloWorld.agda", "max_line_length": 39, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/consoleExamples/helloWorld.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 28, "size": 123 }
module Prelude.Smashed where open import Prelude.Equality open import Prelude.Unit open import Prelude.Empty open import Prelude.Nat.Core open import Prelude.Function open import Prelude.Ord record Smashed {a} (A : Set a) : Set a where field smashed : ∀ {x y : A} → x ≡ y open Smashed {{...}} public {-# DISPLAY Smashed.smashed _ = smashed #-} instance Smash⊤ : Smashed ⊤ smashed {{Smash⊤}} = refl Smash⊥ : Smashed ⊥ smashed {{Smash⊥}} {} Smash≡ : ∀ {a} {A : Set a} {a b : A} → Smashed (a ≡ b) smashed {{Smash≡}} {x = refl} {refl} = refl -- Can't be instance, since this would interfere with the ⊤ and ⊥ instances. SmashNonZero : ∀ {n : Nat} → Smashed (NonZero n) SmashNonZero {zero} = it SmashNonZero {suc n} = it
{ "alphanum_fraction": 0.6522911051, "avg_line_length": 23.1875, "ext": "agda", "hexsha": "7ffee0a17595991e7cb460dd51fd4fa9bac918a7", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Smashed.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Smashed.agda", "max_line_length": 76, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Smashed.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 252, "size": 742 }
{-# OPTIONS --cubical --safe #-} open import Agda.Builtin.Cubical.Path open import Agda.Primitive private variable a : Level A B : Set a Is-proposition : Set a → Set a Is-proposition A = (x y : A) → x ≡ y data ∥_∥ (A : Set a) : Set a where ∣_∣ : A → ∥ A ∥ @0 trivial : Is-proposition ∥ A ∥ rec : @0 Is-proposition B → (A → B) → ∥ A ∥ → B rec p f ∣ x ∣ = f x rec p f (trivial x y i) = p (rec p f x) (rec p f y) i
{ "alphanum_fraction": 0.54, "avg_line_length": 21.4285714286, "ext": "agda", "hexsha": "c5825c66a10a1320262bb7d98e70f8f205f8bf25", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue4638-Cubical.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue4638-Cubical.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue4638-Cubical.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 181, "size": 450 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Object.Product.Core {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Function using (flip; _$_) open import Categories.Morphism 𝒞 open import Categories.Morphism.Reasoning 𝒞 open Category 𝒞 open HomReasoning private variable A B C D X Y Z : Obj h i j : A ⇒ B -- Borrowed from Dan Doel's definition of products record Product (A B : Obj) : Set (o ⊔ ℓ ⊔ e) where infix 10 ⟨_,_⟩ field A×B : Obj π₁ : A×B ⇒ A π₂ : A×B ⇒ B ⟨_,_⟩ : C ⇒ A → C ⇒ B → C ⇒ A×B project₁ : π₁ ∘ ⟨ h , i ⟩ ≈ h project₂ : π₂ ∘ ⟨ h , i ⟩ ≈ i unique : π₁ ∘ h ≈ i → π₂ ∘ h ≈ j → ⟨ i , j ⟩ ≈ h g-η : ⟨ π₁ ∘ h , π₂ ∘ h ⟩ ≈ h g-η = unique refl refl η : ⟨ π₁ , π₂ ⟩ ≈ id η = unique identityʳ identityʳ ⟨⟩-cong₂ : ∀ {f f′ : C ⇒ A} {g g′ : C ⇒ B} → f ≈ f′ → g ≈ g′ → ⟨ f , g ⟩ ≈ ⟨ f′ , g′ ⟩ ⟨⟩-cong₂ f≡f′ g≡g′ = unique (project₁ ○ ⟺ f≡f′) (project₂ ○ ⟺ g≡g′) ∘-distribʳ-⟨⟩ : ∀ {f : C ⇒ A} {g : C ⇒ B} {q : D ⇒ C} → ⟨ f , g ⟩ ∘ q ≈ ⟨ f ∘ q , g ∘ q ⟩ ∘-distribʳ-⟨⟩ = ⟺ $ unique (pullˡ project₁) (pullˡ project₂) unique′ : π₁ ∘ h ≈ π₁ ∘ i → π₂ ∘ h ≈ π₂ ∘ i → h ≈ i unique′ eq₁ eq₂ = trans (sym (unique eq₁ eq₂)) g-η module _ {A B : Obj} where open Product {A} {B} renaming (⟨_,_⟩ to _⟨_,_⟩) repack : (p₁ p₂ : Product A B) → A×B p₁ ⇒ A×B p₂ repack p₁ p₂ = p₂ ⟨ π₁ p₁ , π₂ p₁ ⟩ repack∘ : (p₁ p₂ p₃ : Product A B) → repack p₂ p₃ ∘ repack p₁ p₂ ≈ repack p₁ p₃ repack∘ p₁ p₂ p₃ = ⟺ $ unique p₃ (glueTrianglesʳ (project₁ p₃) (project₁ p₂)) (glueTrianglesʳ (project₂ p₃) (project₂ p₂)) repack≡id : (p : Product A B) → repack p p ≈ id repack≡id = η repack-cancel : (p₁ p₂ : Product A B) → repack p₁ p₂ ∘ repack p₂ p₁ ≈ id repack-cancel p₁ p₂ = repack∘ p₂ p₁ p₂ ○ repack≡id p₂ up-to-iso : ∀ (p₁ p₂ : Product A B) → Product.A×B p₁ ≅ Product.A×B p₂ up-to-iso p₁ p₂ = record { from = repack p₁ p₂ ; to = repack p₂ p₁ ; iso = record { isoˡ = repack-cancel p₂ p₁ ; isoʳ = repack-cancel p₁ p₂ } } transport-by-iso : ∀ (p : Product A B) → ∀ {X} → Product.A×B p ≅ X → Product A B transport-by-iso p {X} p≅X = record { A×B = X ; π₁ = π₁ ∘ to ; π₂ = π₂ ∘ to ; ⟨_,_⟩ = λ h₁ h₂ → from ∘ ⟨ h₁ , h₂ ⟩ ; project₁ = cancelInner isoˡ ○ project₁ ; project₂ = cancelInner isoˡ ○ project₂ ; unique = λ {_ i l r} pf₁ pf₂ → begin from ∘ ⟨ l , r ⟩ ≈˘⟨ refl⟩∘⟨ ⟨⟩-cong₂ pf₁ pf₂ ⟩ from ∘ ⟨ (π₁ ∘ to) ∘ i , (π₂ ∘ to) ∘ i ⟩ ≈⟨ refl⟩∘⟨ unique (⟺ assoc) (⟺ assoc) ⟩ from ∘ to ∘ i ≈⟨ cancelˡ isoʳ ⟩ i ∎ } where open Product p open _≅_ p≅X Reversible : (p : Product A B) → Product B A Reversible p = record { A×B = A×B ; π₁ = π₂ ; π₂ = π₁ ; ⟨_,_⟩ = flip ⟨_,_⟩ ; project₁ = project₂ ; project₂ = project₁ ; unique = flip unique } where open Product p Commutative : (p₁ : Product A B) (p₂ : Product B A) → Product.A×B p₁ ≅ Product.A×B p₂ Commutative p₁ p₂ = up-to-iso p₁ (Reversible p₂) Associable : ∀ (p₁ : Product X Y) (p₂ : Product Y Z) (p₃ : Product X (Product.A×B p₂)) → Product (Product.A×B p₁) Z Associable p₁ p₂ p₃ = record { A×B = A×B p₃ ; π₁ = p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ; π₂ = π₂ p₂ ∘ π₂ p₃ ; ⟨_,_⟩ = λ f g → p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ; project₁ = λ {_ f g} → begin p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ≈⟨ ∘-distribʳ-⟨⟩ p₁ ⟩ p₁ ⟨ π₁ p₃ ∘ p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ , (π₁ p₂ ∘ π₂ p₃) ∘ p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₁ (project₁ p₃) (glueTrianglesˡ (project₁ p₂) (project₂ p₃)) ⟩ p₁ ⟨ π₁ p₁ ∘ f , π₂ p₁ ∘ f ⟩ ≈⟨ g-η p₁ ⟩ f ∎ ; project₂ = λ {_ f g} → glueTrianglesˡ (project₂ p₂) (project₂ p₃) ; unique = λ {_ i f g} pf₁ pf₂ → begin p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₃ (∘-resp-≈ʳ (sym pf₁)) (⟨⟩-cong₂ p₂ (∘-resp-≈ʳ (sym pf₁)) (sym pf₂)) ⟩ p₃ ⟨ π₁ p₁ ∘ p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ i , p₂ ⟨ π₂ p₁ ∘ p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ i , (π₂ p₂ ∘ π₂ p₃) ∘ i ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₃ (pullˡ (project₁ p₁)) (⟨⟩-cong₂ p₂ (trans (pullˡ (project₂ p₁)) assoc) assoc) ⟩ p₃ ⟨ π₁ p₃ ∘ i , p₂ ⟨ π₁ p₂ ∘ π₂ p₃ ∘ i , π₂ p₂ ∘ π₂ p₃ ∘ i ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₃ refl (g-η p₂) ⟩ p₃ ⟨ π₁ p₃ ∘ i , π₂ p₃ ∘ i ⟩ ≈⟨ g-η p₃ ⟩ i ∎ } where open Product renaming (⟨_,_⟩ to _⟨_,_⟩) Associative : ∀ (p₁ : Product X Y) (p₂ : Product Y Z) (p₃ : Product X (Product.A×B p₂)) (p₄ : Product (Product.A×B p₁) Z) → (Product.A×B p₃) ≅ (Product.A×B p₄) Associative p₁ p₂ p₃ p₄ = up-to-iso (Associable p₁ p₂ p₃) p₄ Mobile : ∀ {A₁ B₁ A₂ B₂} (p : Product A₁ B₁) → A₁ ≅ A₂ → B₁ ≅ B₂ → Product A₂ B₂ Mobile p A₁≅A₂ B₁≅B₂ = record { A×B = A×B ; π₁ = from A₁≅A₂ ∘ π₁ ; π₂ = from B₁≅B₂ ∘ π₂ ; ⟨_,_⟩ = λ h k → ⟨ to A₁≅A₂ ∘ h , to B₁≅B₂ ∘ k ⟩ ; project₁ = begin (from A₁≅A₂ ∘ π₁) ∘ ⟨ to A₁≅A₂ ∘ _ , to B₁≅B₂ ∘ _ ⟩ ≈⟨ pullʳ project₁ ⟩ from A₁≅A₂ ∘ (to A₁≅A₂ ∘ _) ≈⟨ cancelˡ (isoʳ A₁≅A₂) ⟩ _ ∎ ; project₂ = begin (from B₁≅B₂ ∘ π₂) ∘ ⟨ to A₁≅A₂ ∘ _ , to B₁≅B₂ ∘ _ ⟩ ≈⟨ pullʳ project₂ ⟩ from B₁≅B₂ ∘ (to B₁≅B₂ ∘ _) ≈⟨ cancelˡ (isoʳ B₁≅B₂) ⟩ _ ∎ ; unique = λ pfˡ pfʳ → unique (switch-fromtoˡ A₁≅A₂ (⟺ assoc ○ pfˡ)) (switch-fromtoˡ B₁≅B₂ (⟺ assoc ○ pfʳ)) } where open Product p open _≅_
{ "alphanum_fraction": 0.4544565749, "avg_line_length": 38.1180124224, "ext": "agda", "hexsha": "5c528c05dfd44b7c22d32e29467fb883eba4db40", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Object/Product/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Object/Product/Core.agda", "max_line_length": 150, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Object/Product/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2799, "size": 6137 }
module _ where open import Agda.Builtin.Nat postulate F : Set → Set pure : ∀ {A} → A → F A -- _<*>_ : ∀ {A B} → F (A → B) → F A → F B fail : F Nat → F Nat fail a = (| suc a |)
{ "alphanum_fraction": 0.4946236559, "avg_line_length": 14.3076923077, "ext": "agda", "hexsha": "e35b5c127768d9b343537c9a31d4ee9ace1d24fb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/IdiomBracketsNotInScope.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/IdiomBracketsNotInScope.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/IdiomBracketsNotInScope.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 186 }
postulate A : Set f : (B : Set) → B → A f A a = a -- Expected error: -- A !=< A of type Set -- (because one is a variable and one a defined identifier) -- when checking that the expression a has type A
{ "alphanum_fraction": 0.6359223301, "avg_line_length": 18.7272727273, "ext": "agda", "hexsha": "0efbcf3feb24d59c1841cd80f4772e8a788e0226", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue998c.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue998c.agda", "max_line_length": 59, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue998c.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 63, "size": 206 }
{-# OPTIONS --rewriting #-} module FFI.Data.Aeson where open import Agda.Builtin.Equality using (_≡_) open import Agda.Builtin.Equality.Rewrite using () open import Agda.Builtin.Bool using (Bool) open import Agda.Builtin.String using (String) open import FFI.Data.ByteString using (ByteString) open import FFI.Data.HaskellString using (HaskellString; pack) open import FFI.Data.Maybe using (Maybe; just; nothing) open import FFI.Data.Either using (Either; mapL) open import FFI.Data.Scientific using (Scientific) open import FFI.Data.Vector using (Vector) open import Properties.Equality using (_≢_) {-# FOREIGN GHC import qualified Data.Aeson #-} {-# FOREIGN GHC import qualified Data.Aeson.Key #-} {-# FOREIGN GHC import qualified Data.Aeson.KeyMap #-} postulate KeyMap : Set → Set Key : Set fromString : String → Key toString : Key → String empty : ∀ {A} → KeyMap A singleton : ∀ {A} → Key → A → (KeyMap A) insert : ∀ {A} → Key → A → (KeyMap A) → (KeyMap A) delete : ∀ {A} → Key → (KeyMap A) → (KeyMap A) unionWith : ∀ {A} → (A → A → A) → (KeyMap A) → (KeyMap A) → (KeyMap A) lookup : ∀ {A} → Key -> KeyMap A -> Maybe A {-# POLARITY KeyMap ++ #-} {-# COMPILE GHC KeyMap = type Data.Aeson.KeyMap.KeyMap #-} {-# COMPILE GHC Key = type Data.Aeson.Key.Key #-} {-# COMPILE GHC fromString = Data.Aeson.Key.fromText #-} {-# COMPILE GHC toString = Data.Aeson.Key.toText #-} {-# COMPILE GHC empty = \_ -> Data.Aeson.KeyMap.empty #-} {-# COMPILE GHC singleton = \_ -> Data.Aeson.KeyMap.singleton #-} {-# COMPILE GHC insert = \_ -> Data.Aeson.KeyMap.insert #-} {-# COMPILE GHC delete = \_ -> Data.Aeson.KeyMap.delete #-} {-# COMPILE GHC unionWith = \_ -> Data.Aeson.KeyMap.unionWith #-} {-# COMPILE GHC lookup = \_ -> Data.Aeson.KeyMap.lookup #-} postulate lookup-insert : ∀ {A} k v (m : KeyMap A) → (lookup k (insert k v m) ≡ just v) postulate lookup-empty : ∀ {A} k → (lookup {A} k empty ≡ nothing) postulate lookup-insert-not : ∀ {A} j k v (m : KeyMap A) → (j ≢ k) → (lookup k m ≡ lookup k (insert j v m)) postulate singleton-insert-empty : ∀ {A} k (v : A) → (singleton k v ≡ insert k v empty) postulate insert-swap : ∀ {A} j k (v w : A) m → (j ≢ k) → insert j v (insert k w m) ≡ insert k w (insert j v m) postulate insert-over : ∀ {A} j k (v w : A) m → (j ≡ k) → insert j v (insert k w m) ≡ insert j v m postulate to-from : ∀ k → toString(fromString k) ≡ k postulate from-to : ∀ k → fromString(toString k) ≡ k {-# REWRITE lookup-insert lookup-empty singleton-insert-empty #-} data Value : Set where object : KeyMap Value → Value array : Vector Value → Value string : String → Value number : Scientific → Value bool : Bool → Value null : Value {-# COMPILE GHC Value = data Data.Aeson.Value (Data.Aeson.Object|Data.Aeson.Array|Data.Aeson.String|Data.Aeson.Number|Data.Aeson.Bool|Data.Aeson.Null) #-} Object = KeyMap Value Array = Vector Value postulate decode : ByteString → Maybe Value eitherHDecode : ByteString → Either HaskellString Value {-# COMPILE GHC decode = Data.Aeson.decodeStrict #-} {-# COMPILE GHC eitherHDecode = Data.Aeson.eitherDecodeStrict #-} eitherDecode : ByteString → Either String Value eitherDecode bytes = mapL pack (eitherHDecode bytes)
{ "alphanum_fraction": 0.6746724891, "avg_line_length": 41.1025641026, "ext": "agda", "hexsha": "43014719abbb1e56727573588132745f3edf89b8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "TheGreatSageEqualToHeaven/luau", "max_forks_repo_path": "prototyping/FFI/Data/Aeson.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "TheGreatSageEqualToHeaven/luau", "max_issues_repo_path": "prototyping/FFI/Data/Aeson.agda", "max_line_length": 154, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/FFI/Data/Aeson.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 934, "size": 3206 }
import cedille-options module elaboration-helpers (options : cedille-options.options) where open import lib open import monad-instances open import general-util open import cedille-types open import syntax-util open import ctxt open import conversion open import constants open import to-string options open import subst open import rename open import is-free open import toplevel-state options {id} open import spans options {id} open import datatype-functions open import templates open import erase uncurry' : ∀ {A B C D : Set} → (A → B → C → D) → (A × B × C) → D uncurry' f (a , b , c) = f a b c uncurry'' : ∀ {A B C D E : Set} → (A → B → C → D → E) → (A × B × C × D) → E uncurry'' f (a , b , c , d) = f a b c d uncurry''' : ∀ {A B C D E F : Set} → (A → B → C → D → E → F) → (A × B × C × D × E) → F uncurry''' f (a , b , c , d , e) = f a b c d e ctxt-term-decl' : posinfo → var → type → ctxt → ctxt ctxt-term-decl' pi x T (mk-ctxt (fn , mn , ps , q) ss is os Δ) = mk-ctxt (fn , mn , ps , trie-insert q x (x , [])) ss (trie-insert is x (term-decl T , fn , pi)) os Δ ctxt-type-decl' : posinfo → var → kind → ctxt → ctxt ctxt-type-decl' pi x k (mk-ctxt (fn , mn , ps , q) ss is os Δ) = mk-ctxt (fn , mn , ps , trie-insert q x (x , [])) ss (trie-insert is x (type-decl k , fn , pi)) os Δ ctxt-tk-decl' : posinfo → var → tk → ctxt → ctxt ctxt-tk-decl' pi x (Tkt T) = ctxt-term-decl' pi x T ctxt-tk-decl' pi x (Tkk k) = ctxt-type-decl' pi x k ctxt-param-decl : var → var → tk → ctxt → ctxt ctxt-param-decl x x' atk Γ @ (mk-ctxt (fn , mn , ps , q) ss is os Δ) = let d = case atk of λ {(Tkt T) → term-decl T; (Tkk k) → type-decl k} in mk-ctxt (fn , mn , ps , trie-insert q x (x , [])) ss (trie-insert is x' (d , fn , pi-gen)) os Δ ctxt-term-def' : var → var → term → type → opacity → ctxt → ctxt ctxt-term-def' x x' t T op Γ @ (mk-ctxt (fn , mn , ps , q) ss is os Δ) = mk-ctxt (fn , mn , ps , qualif-insert-params q (mn # x) x ps) ss (trie-insert is x' (term-def (just ps) op (just $ hnf Γ unfold-head t tt) T , fn , x)) os Δ ctxt-type-def' : var → var → type → kind → opacity → ctxt → ctxt ctxt-type-def' x x' T k op Γ @ (mk-ctxt (fn , mn , ps , q) ss is os Δ) = mk-ctxt (fn , mn , ps , qualif-insert-params q (mn # x) x ps) ss (trie-insert is x' (type-def (just ps) op (just $ hnf Γ (unfolding-elab unfold-head) T tt) k , fn , x)) os Δ ctxt-let-term-def : posinfo → var → term → type → ctxt → ctxt ctxt-let-term-def pi x t T Γ @ (mk-ctxt (fn , mn , ps , q) ss is os Δ) = mk-ctxt (fn , mn , ps , trie-insert q x (x , [])) ss (trie-insert is x (term-def nothing OpacTrans (just $ hnf Γ unfold-head t tt) T , fn , pi)) os Δ ctxt-let-type-def : posinfo → var → type → kind → ctxt → ctxt ctxt-let-type-def pi x T k Γ @ (mk-ctxt (fn , mn , ps , q) ss is os Δ) = mk-ctxt (fn , mn , ps , trie-insert q x (x , [])) ss (trie-insert is x (type-def nothing OpacTrans (just $ hnf Γ (unfolding-elab unfold-head) T tt) k , fn , pi)) os Δ {- ctxt-μ-out-def : var → term → term → var → ctxt → ctxt ctxt-μ-out-def x t c y (mk-ctxt mod ss is os Δ) = let is' = is --trie-insert is y (term-udef nothing OpacTrans c , "missing" , "missing") is'' = trie-insert is' x (term-udef nothing OpacTrans t , y , y) in mk-ctxt mod ss is'' os Δ -} ctxt-datatype-decl' : var → var → var → args → ctxt → ctxt ctxt-datatype-decl' X isType/v Type/v as Γ@(mk-ctxt (fn , mn , ps , q) ss is os (Δ , μ' , μ)) = mk-ctxt (fn , mn , ps , q) ss is os $ Δ , trie-insert μ' Type/v (X , isType/v , as) , μ --mk-ctxt (fn , mn , ps , q) ss (trie-insert is ("/" ^ Type/v) $ rename-def ("/" ^ X) , "missing" , "missing") os $ Δ , trie-insert μ' Type/v (X , isType/v , as) , μ {- ctxt-rename-def' : var → var → args → ctxt → ctxt ctxt-rename-def' x x' as (mk-ctxt (fn , mn , ps , q) ss is os Δ) = mk-ctxt (fn , mn , ps , trie-insert q x (x' , as)) ss (trie-insert is x (rename-def x' , "missing" , "missing")) os Δ -} ctxt-kind-def' : var → var → params → kind → ctxt → ctxt ctxt-kind-def' x x' ps2 k Γ @ (mk-ctxt (fn , mn , ps1 , q) ss is os Δ) = mk-ctxt (fn , mn , ps1 , qualif-insert-params q (mn # x) x ps1) ss (trie-insert is x' (kind-def (ps1 ++ qualif-params Γ ps2) k' , fn , pi-gen)) os Δ where k' = hnf Γ (unfolding-elab unfold-head) k tt {- ctxt-datatype-def' : var → var → params → kind → kind → ctrs → ctxt → ctxt ctxt-datatype-def' x x' psᵢ kᵢ k cs Γ@(mk-ctxt (fn , mn , ps , q) ss is os (Δ , μₓ)) = mk-ctxt (fn , mn , ps , q') ss (trie-insert is x' (type-def (just $ ps ++ psᵢ) OpacTrans nothing k , fn , x)) os (trie-insert Δ x' (ps ++ psᵢ , kᵢ , k , cs) , μₓ) where q' = qualif-insert-params q x x' ps -} ctxt-lookup-term-var' : ctxt → var → maybe type ctxt-lookup-term-var' Γ @ (mk-ctxt (fn , mn , ps , q) ss is os Δ) x = env-lookup Γ x ≫=maybe λ where (term-decl T , _) → just T (term-def ps _ _ T , _ , x') → let ps = maybe-else [] id ps in just $ abs-expand-type ps T _ → nothing -- TODO: Could there be parameter/argument clashes if the same parameter variable is defined multiple times? -- TODO: Could variables be parameter-expanded multiple times? ctxt-lookup-type-var' : ctxt → var → maybe kind ctxt-lookup-type-var' Γ @ (mk-ctxt (fn , mn , ps , q) ss is os Δ) x = env-lookup Γ x ≫=maybe λ where (type-decl k , _) → just k (type-def ps _ _ k , _ , x') → let ps = maybe-else [] id ps in just $ abs-expand-kind ps k _ → nothing subst-qualif : ∀ {ed : exprd} → ctxt → renamectxt → ⟦ ed ⟧ → ⟦ ed ⟧ subst-qualif{TERM} Γ ρₓ = subst-renamectxt Γ ρₓ ∘ qualif-term Γ subst-qualif{TYPE} Γ ρₓ = subst-renamectxt Γ ρₓ ∘ qualif-type Γ subst-qualif{KIND} Γ ρₓ = subst-renamectxt Γ ρₓ ∘ qualif-kind Γ subst-qualif Γ ρₓ = id rename-validify : string → string rename-validify = 𝕃char-to-string ∘ (h ∘ string-to-𝕃char) where validify-char : char → 𝕃 char validify-char '/' = [ '-' ] validify-char c with (c =char 'a') || (c =char 'z') || (c =char 'A') || (c =char 'Z') || (c =char '\'') || (c =char '-') || (c =char '_') || is-digit c || (('a' <char c) && (c <char 'z')) || (('A' <char c) && (c <char 'Z')) ...| tt = [ c ] ...| ff = 'Z' :: string-to-𝕃char (ℕ-to-string (toNat c)) ++ [ 'Z' ] h : 𝕃 char → 𝕃 char h [] = [] h (c :: cs) = validify-char c ++ h cs -- Returns a fresh variable name by adding primes and replacing invalid characters fresh-var' : string → (string → 𝔹) → renamectxt → string fresh-var' = fresh-var ∘ rename-validify rename-new_from_for_ : ∀ {X : Set} → var → ctxt → (var → X) → X rename-new ignored-var from Γ for f = f $ fresh-var' "x" (ctxt-binds-var Γ) empty-renamectxt rename-new x from Γ for f = f $ fresh-var' x (ctxt-binds-var Γ) empty-renamectxt rename_from_for_ : ∀ {X : Set} → var → ctxt → (var → X) → X rename ignored-var from Γ for f = f ignored-var rename x from Γ for f = f $ fresh-var' x (ctxt-binds-var Γ) empty-renamectxt fresh-id-term : ctxt → term fresh-id-term Γ = rename "x" from Γ for λ x → mlam x $ mvar x get-renaming : renamectxt → var → var → var × renamectxt get-renaming ρₓ xₒ x = let x' = fresh-var' x (renamectxt-in-range ρₓ) ρₓ in x' , renamectxt-insert ρₓ xₒ x' rename_-_from_for_ : ∀ {X : Set} → var → var → renamectxt → (var → renamectxt → X) → X rename xₒ - ignored-var from ρₓ for f = f ignored-var ρₓ rename xₒ - x from ρₓ for f = uncurry f $ get-renaming ρₓ xₒ x rename_-_lookup_for_ : ∀ {X : Set} → var → var → renamectxt → (var → renamectxt → X) → X rename xₒ - x lookup ρₓ for f with renamectxt-lookup ρₓ xₒ ...| nothing = rename xₒ - x from ρₓ for f ...| just x' = f x' ρₓ qualif-new-var : ctxt → var → var qualif-new-var Γ x = ctxt-get-current-modname Γ # x ctxt-datatype-def' : var → var → var → params → kind → kind → ctrs → ctxt → ctxt ctxt-datatype-def' v Is/v is/v psᵢ kᵢ k cs Γ@(mk-ctxt (fn , mn , ps , q) ss i os (Δ , μ' , μ)) = mk-ctxt (fn , mn , ps , q) ss i os (trie-insert Δ v (ps ++ psᵢ , kᵢ , k , cs) , trie-insert μ' elab-mu-prev-key (v , is/v , []) , trie-insert μ Is/v v) mbeta : term → term → term mrho : term → var → type → term → term mtpeq : term → term → type mbeta t t' = Beta pi-gen (SomeTerm t pi-gen) (SomeTerm t' pi-gen) mrho t x T t' = Rho pi-gen RhoPlain NoNums t (Guide pi-gen x T) t' mtpeq t1 t2 = TpEq pi-gen t1 t2 pi-gen {- subst-args-params : ctxt → args → params → kind → kind subst-args-params Γ (ArgsCons (TermArg _ t) ys) (ParamsCons (Decl _ _ _ x _ _) ps) k = subst-args-params Γ ys ps $ subst Γ t x k subst-args-params Γ (ArgsCons (TypeArg t) ys) (ParamsCons (Decl _ _ _ x _ _) ps) k = subst-args-params Γ ys ps $ subst Γ t x k subst-args-params Γ ys ps k = k -} module reindexing (Γ : ctxt) (isₒ : indices) where reindex-fresh-var : renamectxt → trie indices → var → var reindex-fresh-var ρₓ is ignored-var = ignored-var reindex-fresh-var ρₓ is x = fresh-var x (λ x' → ctxt-binds-var Γ x' || trie-contains is x') ρₓ rename-indices : renamectxt → trie indices → indices rename-indices ρₓ is = foldr {B = renamectxt → indices} (λ {(Index x atk) f ρₓ → let x' = reindex-fresh-var ρₓ is x in Index x' (substh-tk {TERM} Γ ρₓ empty-trie atk) :: f (renamectxt-insert ρₓ x x')}) (λ ρₓ → []) isₒ ρₓ reindex-subst : ∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧ reindex-subst {ed} = substs {ed} {TERM} Γ empty-trie reindex-t : Set → Set reindex-t X = renamectxt → trie indices → X → X {-# TERMINATING #-} reindex : ∀ {ed} → reindex-t ⟦ ed ⟧ reindex-term : reindex-t term reindex-type : reindex-t type reindex-kind : reindex-t kind reindex-tk : reindex-t tk reindex-liftingType : reindex-t liftingType reindex-optTerm : reindex-t optTerm reindex-optType : reindex-t optType reindex-optGuide : reindex-t optGuide reindex-optClass : reindex-t optClass reindex-lterms : reindex-t lterms reindex-args : reindex-t args reindex-arg : reindex-t arg reindex-theta : reindex-t theta reindex-vars : reindex-t (maybe vars) reindex-defTermOrType : renamectxt → trie indices → defTermOrType → defTermOrType × renamectxt reindex{TERM} = reindex-term reindex{TYPE} = reindex-type reindex{KIND} = reindex-kind reindex{TK} = reindex-tk reindex = λ ρₓ is x → x rc-is : renamectxt → indices → renamectxt rc-is = foldr λ {(Index x atk) ρₓ → renamectxt-insert ρₓ x x} index-var = "indices" index-type-var = "Indices" is-index-var = isJust ∘ is-pfx index-var is-index-type-var = isJust ∘ is-pfx index-type-var reindex-term ρₓ is (App t me (Var pi x)) with trie-lookup is x ...| nothing = App (reindex-term ρₓ is t) me (reindex-term ρₓ is (Var pi x)) ...| just is' = indices-to-apps is' $ reindex-term ρₓ is t reindex-term ρₓ is (App t me t') = App (reindex-term ρₓ is t) me (reindex-term ρₓ is t') reindex-term ρₓ is (AppTp t T) = AppTp (reindex-term ρₓ is t) (reindex-type ρₓ is T) reindex-term ρₓ is (Beta pi ot ot') = Beta pi (reindex-optTerm ρₓ is ot) (reindex-optTerm ρₓ is ot') reindex-term ρₓ is (Chi pi oT t) = Chi pi (reindex-optType ρₓ is oT) (reindex-term ρₓ is t) reindex-term ρₓ is (Delta pi oT t) = Delta pi (reindex-optType ρₓ is oT) (reindex-term ρₓ is t) reindex-term ρₓ is (Epsilon pi lr m t) = Epsilon pi lr m (reindex-term ρₓ is t) reindex-term ρₓ is (Hole pi) = Hole pi reindex-term ρₓ is (IotaPair pi t t' g pi') = IotaPair pi (reindex-term ρₓ is t) (reindex-term ρₓ is t') (reindex-optGuide ρₓ is g) pi' reindex-term ρₓ is (IotaProj t n pi) = IotaProj (reindex-term ρₓ is t) n pi reindex-term ρₓ is (Lam pi me pi' x oc t) with is-index-var x ...| ff = let x' = reindex-fresh-var ρₓ is x in Lam pi me pi' x' (reindex-optClass ρₓ is oc) (reindex-term (renamectxt-insert ρₓ x x') is t) ...| tt with rename-indices ρₓ is | oc ...| isₙ | NoClass = indices-to-lams' isₙ $ reindex-term (rc-is ρₓ isₙ) (trie-insert is x isₙ) t ...| isₙ | SomeClass atk = indices-to-lams isₙ $ reindex-term (rc-is ρₓ isₙ) (trie-insert is x isₙ) t reindex-term ρₓ is (Let pi fe d t) = elim-pair (reindex-defTermOrType ρₓ is d) λ d' ρₓ' → Let pi fe d' (reindex-term ρₓ' is t) reindex-term ρₓ is (Open pi o pi' x t) = Open pi o pi' x (reindex-term ρₓ is t) reindex-term ρₓ is (Parens pi t pi') = reindex-term ρₓ is t reindex-term ρₓ is (Phi pi t₌ t₁ t₂ pi') = Phi pi (reindex-term ρₓ is t₌) (reindex-term ρₓ is t₁) (reindex-term ρₓ is t₂) pi' reindex-term ρₓ is (Rho pi op on t og t') = Rho pi op on (reindex-term ρₓ is t) (reindex-optGuide ρₓ is og) (reindex-term ρₓ is t') reindex-term ρₓ is (Sigma pi t) = Sigma pi (reindex-term ρₓ is t) reindex-term ρₓ is (Theta pi θ t ts) = Theta pi (reindex-theta ρₓ is θ) (reindex-term ρₓ is t) (reindex-lterms ρₓ is ts) reindex-term ρₓ is (Var pi x) = Var pi $ renamectxt-rep ρₓ x reindex-term ρₓ is (Mu pi pi' x t oT pi'' cs pi''') = Var pi-gen "template-mu-not-allowed" reindex-term ρₓ is (Mu' pi ot t oT pi' cs pi'') = Var pi-gen "template-mu-not-allowed" reindex-type ρₓ is (Abs pi me pi' x atk T) with is-index-var x ...| ff = let x' = reindex-fresh-var ρₓ is x in Abs pi me pi' x' (reindex-tk ρₓ is atk) (reindex-type (renamectxt-insert ρₓ x x') is T) ...| tt = let isₙ = rename-indices ρₓ is in indices-to-alls isₙ $ reindex-type (rc-is ρₓ isₙ) (trie-insert is x isₙ) T reindex-type ρₓ is (Iota pi pi' x T T') = let x' = reindex-fresh-var ρₓ is x in Iota pi pi' x' (reindex-type ρₓ is T) (reindex-type (renamectxt-insert ρₓ x x') is T') reindex-type ρₓ is (Lft pi pi' x t lT) = let x' = reindex-fresh-var ρₓ is x in Lft pi pi' x' (reindex-term (renamectxt-insert ρₓ x x') is t) (reindex-liftingType ρₓ is lT) reindex-type ρₓ is (NoSpans T pi) = NoSpans (reindex-type ρₓ is T) pi reindex-type ρₓ is (TpLet pi d T) = elim-pair (reindex-defTermOrType ρₓ is d) λ d' ρₓ' → TpLet pi d' (reindex-type ρₓ' is T) reindex-type ρₓ is (TpApp T T') = TpApp (reindex-type ρₓ is T) (reindex-type ρₓ is T') reindex-type ρₓ is (TpAppt T (Var pi x)) with trie-lookup is x ...| nothing = TpAppt (reindex-type ρₓ is T) (reindex-term ρₓ is (Var pi x)) ...| just is' = indices-to-tpapps is' $ reindex-type ρₓ is T reindex-type ρₓ is (TpAppt T t) = TpAppt (reindex-type ρₓ is T) (reindex-term ρₓ is t) reindex-type ρₓ is (TpArrow (TpVar pi x) Erased T) with is-index-type-var x ...| ff = TpArrow (reindex-type ρₓ is (TpVar pi x)) Erased (reindex-type ρₓ is T) ...| tt = let isₙ = rename-indices ρₓ is in indices-to-alls isₙ $ reindex-type (rc-is ρₓ isₙ) is T reindex-type ρₓ is (TpArrow T me T') = TpArrow (reindex-type ρₓ is T) me (reindex-type ρₓ is T') reindex-type ρₓ is (TpEq pi t t' pi') = TpEq pi (reindex-term ρₓ is t) (reindex-term ρₓ is t') pi' reindex-type ρₓ is (TpHole pi) = TpHole pi reindex-type ρₓ is (TpLambda pi pi' x atk T) with is-index-var x ...| ff = let x' = reindex-fresh-var ρₓ is x in TpLambda pi pi' x' (reindex-tk ρₓ is atk) (reindex-type (renamectxt-insert ρₓ x x') is T) ...| tt = let isₙ = rename-indices ρₓ is in indices-to-tplams isₙ $ reindex-type (rc-is ρₓ isₙ) (trie-insert is x isₙ) T reindex-type ρₓ is (TpParens pi T pi') = reindex-type ρₓ is T reindex-type ρₓ is (TpVar pi x) = TpVar pi $ renamectxt-rep ρₓ x reindex-kind ρₓ is (KndParens pi k pi') = reindex-kind ρₓ is k reindex-kind ρₓ is (KndArrow k k') = KndArrow (reindex-kind ρₓ is k) (reindex-kind ρₓ is k') reindex-kind ρₓ is (KndPi pi pi' x atk k) with is-index-var x ...| ff = let x' = reindex-fresh-var ρₓ is x in KndPi pi pi' x' (reindex-tk ρₓ is atk) (reindex-kind (renamectxt-insert ρₓ x x') is k) ...| tt = let isₙ = rename-indices ρₓ is in indices-to-kind isₙ $ reindex-kind (rc-is ρₓ isₙ) (trie-insert is x isₙ) k reindex-kind ρₓ is (KndTpArrow (TpVar pi x) k) with is-index-type-var x ...| ff = KndTpArrow (reindex-type ρₓ is (TpVar pi x)) (reindex-kind ρₓ is k) ...| tt = let isₙ = rename-indices ρₓ is in indices-to-kind isₙ $ reindex-kind (rc-is ρₓ isₙ) is k reindex-kind ρₓ is (KndTpArrow T k) = KndTpArrow (reindex-type ρₓ is T) (reindex-kind ρₓ is k) reindex-kind ρₓ is (KndVar pi x as) = KndVar pi (renamectxt-rep ρₓ x) (reindex-args ρₓ is as) reindex-kind ρₓ is (Star pi) = Star pi reindex-tk ρₓ is (Tkt T) = Tkt $ reindex-type ρₓ is T reindex-tk ρₓ is (Tkk k) = Tkk $ reindex-kind ρₓ is k -- Can't reindex large indices in a lifting type (LiftPi requires a type, not a tk), -- so for now we will just ignore reindexing lifting types. -- Types withing lifting types will still be reindexed, though. reindex-liftingType ρₓ is (LiftArrow lT lT') = LiftArrow (reindex-liftingType ρₓ is lT) (reindex-liftingType ρₓ is lT') reindex-liftingType ρₓ is (LiftParens pi lT pi') = reindex-liftingType ρₓ is lT reindex-liftingType ρₓ is (LiftPi pi x T lT) = let x' = reindex-fresh-var ρₓ is x in LiftPi pi x' (reindex-type ρₓ is T) (reindex-liftingType (renamectxt-insert ρₓ x x') is lT) reindex-liftingType ρₓ is (LiftStar pi) = LiftStar pi reindex-liftingType ρₓ is (LiftTpArrow T lT) = LiftTpArrow (reindex-type ρₓ is T) (reindex-liftingType ρₓ is lT) reindex-optTerm ρₓ is NoTerm = NoTerm reindex-optTerm ρₓ is (SomeTerm t pi) = SomeTerm (reindex-term ρₓ is t) pi reindex-optType ρₓ is NoType = NoType reindex-optType ρₓ is (SomeType T) = SomeType (reindex-type ρₓ is T) reindex-optClass ρₓ is NoClass = NoClass reindex-optClass ρₓ is (SomeClass atk) = SomeClass (reindex-tk ρₓ is atk) reindex-optGuide ρₓ is NoGuide = NoGuide reindex-optGuide ρₓ is (Guide pi x T) = let x' = reindex-fresh-var ρₓ is x in Guide pi x' (reindex-type (renamectxt-insert ρₓ x x') is T) reindex-lterms ρₓ is = map λ where (Lterm me t) → Lterm me (reindex-term ρₓ is t) reindex-theta ρₓ is (AbstractVars xs) = maybe-else Abstract AbstractVars $ reindex-vars ρₓ is $ just xs reindex-theta ρₓ is θ = θ reindex-vars''' : vars → vars → vars reindex-vars''' (VarsNext x xs) xs' = VarsNext x $ reindex-vars''' xs xs' reindex-vars''' (VarsStart x) xs = VarsNext x xs reindex-vars'' : vars → maybe vars reindex-vars'' (VarsNext x (VarsStart x')) = just $ VarsStart x reindex-vars'' (VarsNext x xs) = maybe-map (VarsNext x) $ reindex-vars'' xs reindex-vars'' (VarsStart x) = nothing reindex-vars' : renamectxt → trie indices → var → maybe vars reindex-vars' ρₓ is x = maybe-else (just $ VarsStart $ renamectxt-rep ρₓ x) (reindex-vars'' ∘ flip foldr (VarsStart "") λ {(Index x atk) → VarsNext x}) (trie-lookup is x) reindex-vars ρₓ is (just (VarsStart x)) = reindex-vars' ρₓ is x reindex-vars ρₓ is (just (VarsNext x xs)) = maybe-else (reindex-vars ρₓ is $ just xs) (λ xs' → maybe-map (reindex-vars''' xs') $ reindex-vars ρₓ is $ just xs) $ reindex-vars' ρₓ is x reindex-vars ρₓ is nothing = nothing reindex-arg ρₓ is (TermArg me t) = TermArg me (reindex-term ρₓ is t) reindex-arg ρₓ is (TypeArg T) = TypeArg (reindex-type ρₓ is T) reindex-args ρₓ is = map(reindex-arg ρₓ is) reindex-defTermOrType ρₓ is (DefTerm pi x oT t) = let x' = reindex-fresh-var ρₓ is x oT' = optType-map oT reindex-subst in DefTerm elab-hide-key x' (reindex-optType ρₓ is oT') (reindex-term ρₓ is $ reindex-subst t) , renamectxt-insert ρₓ x x' reindex-defTermOrType ρₓ is (DefType pi x k T) = let x' = reindex-fresh-var ρₓ is x in DefType elab-hide-key x' (reindex-kind ρₓ is $ reindex-subst k) (reindex-type ρₓ is $ reindex-subst T) , renamectxt-insert ρₓ x x' reindex-cmds : renamectxt → trie indices → cmds → cmds × renamectxt reindex-cmds ρₓ is [] = [] , ρₓ reindex-cmds ρₓ is ((ImportCmd i) :: cs) = elim-pair (reindex-cmds ρₓ is cs) $ _,_ ∘ _::_ (ImportCmd i) reindex-cmds ρₓ is ((DefTermOrType op d pi) :: cs) = elim-pair (reindex-defTermOrType ρₓ is d) λ d' ρₓ' → elim-pair (reindex-cmds ρₓ' is cs) $ _,_ ∘ _::_ (DefTermOrType op d' pi) reindex-cmds ρₓ is ((DefKind pi x ps k pi') :: cs) = let x' = reindex-fresh-var ρₓ is x in elim-pair (reindex-cmds (renamectxt-insert ρₓ x x') is cs) $ _,_ ∘ _::_ (DefKind pi x' ps (reindex-kind ρₓ is $ reindex-subst k) pi') reindex-cmds ρₓ is ((DefDatatype dt pi) :: cs) = reindex-cmds ρₓ is cs -- Templates can't use datatypes! reindex-file : ctxt → indices → start → cmds × renamectxt reindex-file Γ is (File csᵢ pi' pi'' x ps cs pi''') = reindex-cmds empty-renamectxt empty-trie cs where open reindexing Γ is parameterize-file : ctxt → params → cmds → cmds parameterize-file Γ ps cs = foldr {B = qualif → cmds} (λ c cs σ → elim-pair (h c σ) λ c σ → c :: cs σ) (λ _ → []) cs empty-trie where ps' = ps -- substs-params {ARG} Γ empty-trie ps σ+ = λ σ x → qualif-insert-params σ x x ps' subst-ps : ∀ {ed} → qualif → ⟦ ed ⟧ → ⟦ ed ⟧ subst-ps = substs $ add-params-to-ctxt ps' Γ h' : defTermOrType → qualif → defTermOrType × qualif h' (DefTerm pi x T? t) σ = let T?' = case T? of λ where (SomeType T) → SomeType $ abs-expand-type ps' $ subst-ps σ T NoType → NoType t' = params-to-lams ps' $ subst-ps σ t in DefTerm pi x T?' t' , σ+ σ x h' (DefType pi x k T) σ = let k' = abs-expand-kind ps' $ subst-ps σ k T' = params-to-tplams ps' $ subst-ps σ T in DefType pi x k' T' , σ+ σ x h : cmd → qualif → cmd × qualif h (ImportCmd i) σ = ImportCmd i , σ h (DefTermOrType op d pi) σ = elim-pair (h' d σ) λ d σ → DefTermOrType op d pi , σ h (DefKind pi x ps'' k pi') σ = DefKind pi x ps'' k pi' , σ h (DefDatatype dt pi) σ = DefDatatype dt pi , σ open import cedille-syntax mk-ctr-term : maybeErased → (x X : var) → ctrs → params → term mk-ctr-term me x X cs ps = let t = Mlam X $ ctrs-to-lams' cs $ params-to-apps ps $ mvar x in case me of λ where Erased → Beta pi-gen NoTerm $ SomeTerm t pi-gen NotErased → IotaPair pi-gen (Beta pi-gen NoTerm $ SomeTerm t pi-gen) t NoGuide pi-gen mk-ctr-type : maybeErased → ctxt → ctr → ctrs → var → type mk-ctr-type me Γ (Ctr _ x T) cs Tₕ with decompose-ctr-type (ctxt-var-decl Tₕ Γ) T ...| Tₓ , ps , is = params-to-alls ps $ TpAppt (recompose-tpapps is $ mtpvar Tₕ) $ rename "X" from add-params-to-ctxt ps (ctxt-var-decl Tₕ Γ) for λ X → mk-ctr-term me x X cs ps mk-ctr-fmap-t : Set → Set mk-ctr-fmap-t X = ctxt → (var × var × var × var × term) → X {-# TERMINATING #-} mk-ctr-fmap-η+ : mk-ctr-fmap-t (term → type → term) mk-ctr-fmap-η- : mk-ctr-fmap-t (term → type → term) mk-ctr-fmap-η? : mk-ctr-fmap-t (term → type → term) → mk-ctr-fmap-t (term → type → term) mk-ctr-fmapₖ-η+ : mk-ctr-fmap-t (type → kind → type) mk-ctr-fmapₖ-η- : mk-ctr-fmap-t (type → kind → type) mk-ctr-fmapₖ-η? : mk-ctr-fmap-t (type → kind → type) → mk-ctr-fmap-t (type → kind → type) mk-ctr-fmap-η? f Γ x x' T with is-free-in tt (fst x) T ...| tt = f Γ x x' T ...| ff = x' mk-ctr-fmapₖ-η? f Γ x x' k with is-free-in tt (fst x) k ...| tt = f Γ x x' k ...| ff = x' mk-ctr-fmap-η+ Γ x x' T with decompose-ctr-type Γ T ...| Tₕ , ps , _ = params-to-lams' ps $ let Γ' = add-params-to-ctxt ps Γ in foldl (λ {(Decl _ _ me x'' (Tkt T) _) t → App t me $ mk-ctr-fmap-η? mk-ctr-fmap-η- Γ' x (mvar x'') T; (Decl _ _ _ x'' (Tkk k) _) t → AppTp t $ mk-ctr-fmapₖ-η? mk-ctr-fmapₖ-η- Γ' x (mtpvar x'') k}) x' ps mk-ctr-fmapₖ-η+ Γ xₒ @ (x , Aₓ , Bₓ , cₓ , castₓ) x' k = let is = kind-to-indices Γ (subst Γ (mtpvar Aₓ) x k) in indices-to-tplams is $ let Γ' = add-indices-to-ctxt is Γ in foldl (λ {(Index x'' (Tkt T)) → flip TpAppt $ mk-ctr-fmap-η? mk-ctr-fmap-η- Γ' xₒ (mvar x'') T; (Index x'' (Tkk k)) → flip TpApp $ mk-ctr-fmapₖ-η? mk-ctr-fmapₖ-η- Γ' xₒ (mtpvar x'') k}) x' $ map (λ {(Index x'' atk) → Index x'' $ subst Γ' (mtpvar x) Aₓ atk}) is mk-ctr-fmap-η- Γ xₒ @ (x , Aₓ , Bₓ , cₓ , castₓ) x' T with decompose-ctr-type Γ T ...| TpVar _ x'' , ps , as = params-to-lams' ps $ let Γ' = add-params-to-ctxt ps Γ in (if ~ x'' =string x then id else mapp (recompose-apps (ttys-to-args Erased as) $ mappe (AppTp (AppTp castₓ (mtpvar Aₓ)) (mtpvar Bₓ)) (mvar cₓ))) (foldl (λ {(Decl _ _ me x'' (Tkt T) _) t → App t me $ mk-ctr-fmap-η? mk-ctr-fmap-η+ Γ' xₒ (mvar x'') T; (Decl _ _ me x'' (Tkk k) _) t → AppTp t $ mk-ctr-fmapₖ-η? mk-ctr-fmapₖ-η+ Γ' xₒ (mtpvar x'') k}) x' ps) ...| Iota _ _ x'' T₁ T₂ , ps , [] = let Γ' = add-params-to-ctxt ps Γ tₒ = foldl (λ { (Decl _ _ me x'' (Tkt T) _) t → App t me $ mk-ctr-fmap-η? mk-ctr-fmap-η+ Γ' xₒ (mvar x'') T; (Decl _ _ me x'' (Tkk k) _) t → AppTp t $ mk-ctr-fmapₖ-η? mk-ctr-fmapₖ-η+ Γ' xₒ (mtpvar x'') k }) x' ps t₁ = mk-ctr-fmap-η? mk-ctr-fmap-η- Γ' xₒ (IotaProj tₒ "1" pi-gen) T₁ t₂ = mk-ctr-fmap-η? mk-ctr-fmap-η- Γ' xₒ (IotaProj tₒ "2" pi-gen) (subst Γ (mk-ctr-fmap-η? mk-ctr-fmap-η- Γ' xₒ (mvar x'') T₁) x'' T₂) in params-to-lams' ps $ IotaPair pi-gen t₁ t₂ NoGuide pi-gen ...| Tₕ , ps , as = x' mk-ctr-fmapₖ-η- Γ xₒ @ (x , Aₓ , Bₓ , cₓ , castₓ) x' k with kind-to-indices Γ (subst Γ (mtpvar Bₓ) x k) ...| is = indices-to-tplams is $ let Γ' = add-indices-to-ctxt is Γ in foldl (λ {(Index x'' (Tkt T)) → flip TpAppt $ mk-ctr-fmap-η? mk-ctr-fmap-η+ Γ' xₒ (mvar x'') T; (Index x'' (Tkk k)) → flip TpApp $ mk-ctr-fmapₖ-η? mk-ctr-fmapₖ-η+ Γ' xₒ (mtpvar x'') k}) x' $ map (λ {(Index x'' atk) → Index x'' $ subst Γ' (mtpvar x) Bₓ atk}) is record encoded-datatype-names : Set where constructor mk-encoded-datatype-names field data-functor : var data-fmap : var data-Mu : var data-mu : var data-cast : var data-functor-ind : var cast : var fixpoint-type : var fixpoint-in : var fixpoint-out : var fixpoint-ind : var fixpoint-lambek : var elab-mu-t : Set elab-mu-t = ctxt → ctxt-datatype-info → encoded-datatype-names → var → var ⊎ maybe (term × var × 𝕃 tty) → term → type → cases → maybe (term × ctxt) record encoded-datatype : Set where constructor mk-encoded-datatype field --data-def : datatype --mod-ps : params names : encoded-datatype-names elab-mu : elab-mu-t elab-mu-pure : ctxt → ctxt-datatype-info → maybe var → term → cases → maybe term check-mu : ctxt → ctxt-datatype-info → var → var ⊎ maybe (term × var × 𝕃 tty) → term → optType → cases → type → maybe (term × ctxt) check-mu Γ d Xₒ x? t oT ms T with d --data-def check-mu Γ d Xₒ x? t oT ms T | mk-data-info X mu asₚ asᵢ ps kᵢ k cs fcs -- Data X ps is cs with kind-to-indices Γ kᵢ | oT check-mu Γ d Xₒ x? t oT ms T | mk-data-info X mu asₚ asᵢ ps kᵢ k cs fcs | is | NoType = elab-mu Γ {-(Data X ps is cs)-} d names Xₒ x? t (indices-to-tplams is $ TpLambda pi-gen pi-gen ignored-var (Tkt $ indices-to-tpapps is $ flip apps-type asₚ $ mtpvar X) T) ms check-mu Γ d Xₒ x? t oT ms T | mk-data-info X mu asₚ asᵢ ps kᵢ k cs fcs | is | SomeType Tₘ = elab-mu Γ d names Xₒ x? t Tₘ ms synth-mu : ctxt → ctxt-datatype-info → var → var ⊎ maybe (term × var × 𝕃 tty) → term → optType → cases → maybe (term × ctxt) synth-mu Γ d Xₒ x? t NoType ms = nothing synth-mu Γ d Xₒ x? t (SomeType Tₘ) ms = elab-mu Γ d names Xₒ x? t Tₘ ms record datatype-encoding : Set where constructor mk-datatype-encoding field template : start functor : var cast : var fixpoint-type : var fixpoint-in : var fixpoint-out : var fixpoint-ind : var fixpoint-lambek : var elab-mu : elab-mu-t elab-mu-pure : ctxt → ctxt-datatype-info → encoded-datatype-names → maybe var → term → cases → maybe term {-# TERMINATING #-} mk-defs : ctxt → datatype → cmds × cmds × encoded-datatype mk-defs Γ'' (Data x ps is cs) = tcs , (csn OpacTrans functor-cmd $ csn OpacTrans functor-ind-cmd $ csn OpacTrans fmap-cmd $ csn OpacOpaque type-cmd $ csn OpacOpaque Mu-cmd $ csn OpacTrans mu-cmd $ csn OpacTrans cast-cmd $ foldr (csn OpacTrans ∘ ctr-cmd) [] cs) , record { elab-mu = elab-mu; elab-mu-pure = λ Γ d → elab-mu-pure Γ d namesₓ; --data-def = Data x ps is cs; --mod-ps = ctxt-get-current-params Γ; names = namesₓ} where csn : opacity → defTermOrType → cmds → cmds csn o d = DefTermOrType o d pi-gen ::_ k = indices-to-kind is $ Star pi-gen Γ' = add-params-to-ctxt ps $ add-ctrs-to-ctxt cs $ ctxt-var-decl x Γ'' tcs-ρ = reindex-file Γ' is template tcs = parameterize-file Γ' (params-set-erased Erased $ {-ctxt-get-current-params Γ'' ++-} ps) $ fst tcs-ρ ρₓ = snd tcs-ρ data-functorₓ = fresh-var (x ^ "F") (ctxt-binds-var Γ') ρₓ data-fmapₓ = fresh-var (x ^ "Fmap") (ctxt-binds-var Γ') ρₓ --data-fresh-check = λ f → fresh-var x (λ x → ctxt-binds-var Γ' (f x) || renamectxt-in-field ρₓ (rename-validify $ f x) || renamectxt-in-field ρₓ (f x) || renamectxt-in-field ρₓ (rename-validify $ f x)) ρₓ data-Muₓₒ = x -- data-fresh-check data-Is/ data-muₓₒ = x -- data-fresh-check data-is/ data-castₓₒ = x -- data-fresh-check data-to/ data-Muₓ = data-Is/ data-Muₓₒ data-muₓ = data-is/ data-muₓₒ data-castₓ = data-to/ data-castₓₒ data-Muₓᵣ = rename-validify data-Muₓ data-muₓᵣ = rename-validify data-muₓ data-castₓᵣ = rename-validify data-castₓ data-functor-indₓ = fresh-var (x ^ "IndF") (ctxt-binds-var Γ') ρₓ functorₓ = renamectxt-rep ρₓ functor castₓ = renamectxt-rep ρₓ cast fixpoint-typeₓ = renamectxt-rep ρₓ fixpoint-type fixpoint-inₓ = renamectxt-rep ρₓ fixpoint-in fixpoint-outₓ = renamectxt-rep ρₓ fixpoint-out fixpoint-indₓ = renamectxt-rep ρₓ fixpoint-ind fixpoint-lambekₓ = renamectxt-rep ρₓ fixpoint-lambek Γ = foldr ctxt-var-decl (add-indices-to-ctxt is Γ') (data-functorₓ :: data-fmapₓ :: data-Muₓ :: data-muₓ :: data-castₓ :: data-Muₓᵣ :: data-muₓᵣ :: data-functor-indₓ :: []) --Γ = add-indices-to-ctxt is $ ctxt-var-decl data-functorₓ $ ctxt-var-decl data-fmapₓ $ ctxt-var-decl data-Muₓ $ ctxt-var-decl data-muₓ $ ctxt-var-decl data-castₓ $ ctxt-var-decl data-functor-indₓ Γ' namesₓ = record { data-functor = data-functorₓ; data-fmap = data-fmapₓ; data-Mu = data-Muₓᵣ; data-mu = data-muₓᵣ; data-cast = data-castₓᵣ; data-functor-ind = data-functor-indₓ; cast = castₓ; fixpoint-type = fixpoint-typeₓ; fixpoint-in = fixpoint-inₓ; fixpoint-out = fixpoint-outₓ; fixpoint-ind = fixpoint-indₓ; fixpoint-lambek = fixpoint-lambekₓ} new-var : ∀ {ℓ} {X : Set ℓ} → var → (var → X) → X new-var x f = f $ fresh-var x (ctxt-binds-var Γ) ρₓ functor-cmd = DefType pi-gen data-functorₓ (params-to-kind ps $ KndArrow k k) $ params-to-tplams ps $ TpLambda pi-gen pi-gen x (Tkk $ k) $ indices-to-tplams is $ new-var "x" λ xₓ → new-var "X" λ Xₓ → Iota pi-gen pi-gen xₓ (mtpeq id-term id-term) $ Abs pi-gen Erased pi-gen Xₓ (Tkk $ indices-to-kind is $ KndTpArrow (mtpeq id-term id-term) star) $ foldr (λ c → flip TpArrow NotErased $ mk-ctr-type Erased Γ c cs Xₓ) (TpAppt (indices-to-tpapps is $ mtpvar Xₓ) (mvar xₓ)) cs -- Note: had to set params to erased because args later in mu or mu' could be erased functor-ind-cmd = DefTerm pi-gen data-functor-indₓ NoType $ params-to-lams ps $ Lam pi-gen Erased pi-gen x (SomeClass $ Tkk k) $ indices-to-lams is $ new-var "x" λ xₓ → new-var "y" λ yₓ → new-var "e" λ eₓ → new-var "X" λ Xₓ → let T = indices-to-tpapps is $ TpApp (params-to-tpapps ps $ mtpvar data-functorₓ) (mtpvar x) in Lam pi-gen NotErased pi-gen xₓ (SomeClass $ Tkt T) $ Lam pi-gen Erased pi-gen Xₓ (SomeClass $ Tkk $ indices-to-kind is $ KndTpArrow T star) $ flip (foldr λ {c @ (Ctr _ x' _) → Lam pi-gen NotErased pi-gen x' $ SomeClass $ Tkt $ mk-ctr-type NotErased Γ c cs Xₓ}) cs $ flip mappe (Beta pi-gen NoTerm NoTerm) $ flip mappe (mvar xₓ) $ let Γ' = ctxt-var-decl xₓ $ ctxt-var-decl yₓ $ ctxt-var-decl eₓ $ ctxt-var-decl Xₓ Γ in flip (foldl λ {(Ctr _ x' T) → flip mapp $ elim-pair (decompose-arrows Γ T) λ ps' Tₕ → params-to-lams' ps' $ Mlam yₓ $ Mlam eₓ $ params-to-apps ps' $ mvar x'}) cs $ AppTp (IotaProj (mvar xₓ) "2" pi-gen) $ indices-to-tplams is $ TpLambda pi-gen pi-gen xₓ (Tkt $ mtpeq id-term id-term) $ Abs pi-gen Erased pi-gen yₓ (Tkt T) $ Abs pi-gen Erased pi-gen eₓ (Tkt $ mtpeq (mvar yₓ) (mvar xₓ)) $ TpAppt (indices-to-tpapps is $ mtpvar Xₓ) $ Phi pi-gen (mvar eₓ) (mvar yₓ) (mvar xₓ) pi-gen fmap-cmd : defTermOrType fmap-cmd with new-var "A" id | new-var "B" id | new-var "c" id ...| Aₓ | Bₓ | cₓ = DefTerm pi-gen data-fmapₓ (SomeType $ params-to-alls ps $ TpApp (params-to-tpapps ps $ mtpvar functorₓ) $ params-to-tpapps ps $ mtpvar data-functorₓ) $ params-to-lams ps $ Mlam Aₓ $ Mlam Bₓ $ Mlam cₓ $ IotaPair pi-gen (indices-to-lams is $ new-var "x" λ xₓ → mlam xₓ $ IotaPair pi-gen (IotaProj (mvar xₓ) "1" pi-gen) (new-var "X" λ Xₓ → Mlam Xₓ $ ctrs-to-lams' cs $ foldl (flip mapp ∘ eta-expand-ctr) (AppTp (IotaProj (mvar xₓ) "2" pi-gen) $ mtpvar Xₓ) cs) NoGuide pi-gen) (Beta pi-gen NoTerm NoTerm) NoGuide pi-gen where eta-expand-ctr : ctr → term eta-expand-ctr (Ctr _ x' T) = mk-ctr-fmap-η+ (ctxt-var-decl Aₓ $ ctxt-var-decl Bₓ $ ctxt-var-decl cₓ Γ) (x , Aₓ , Bₓ , cₓ , params-to-apps (params-set-erased Erased ps) (mvar castₓ)) (mvar x') T type-cmd = DefType pi-gen x (params-to-kind ps k) $ params-to-tplams ps $ TpAppt (TpApp (params-to-tpapps ps $ mtpvar fixpoint-typeₓ) $ params-to-tpapps ps $ mtpvar data-functorₓ) (params-to-apps ps $ mvar data-fmapₓ) mu-proj : var → 𝔹 → type × (term → term) mu-proj Xₓ b = rename "i" from add-params-to-ctxt ps Γ for λ iₓ → let u = if b then id-term else params-to-apps (params-set-erased Erased ps) (mvar fixpoint-outₓ) Tₙ = λ T → Iota pi-gen pi-gen iₓ (indices-to-alls is $ TpArrow (indices-to-tpapps is $ mtpvar Xₓ) NotErased $ indices-to-tpapps is T) $ mtpeq (mvar iₓ) u T₁ = Tₙ $ params-to-tpapps ps $ mtpvar x T₂ = Tₙ $ TpApp (params-to-tpapps ps $ mtpvar data-functorₓ) $ mtpvar Xₓ T = if b then T₁ else T₂ rₓ = if b then "c" else "o" t = λ mu → mapp (AppTp mu T) $ mlam "c" $ mlam "o" $ mvar rₓ in T , λ mu → Open pi-gen OpacTrans pi-gen data-Muₓ (Phi pi-gen (IotaProj (t mu) "2" pi-gen) (IotaProj (t mu) "1" pi-gen) u pi-gen) Mu-cmd = DefType pi-gen data-Muₓ (params-to-kind ps $ KndArrow k star) $ params-to-tplams ps $ rename "X" from add-params-to-ctxt ps Γ for λ Xₓ → rename "Y" from add-params-to-ctxt ps Γ for λ Yₓ → TpLambda pi-gen pi-gen Xₓ (Tkk k) $ mall Yₓ (Tkk star) $ flip (flip TpArrow NotErased) (mtpvar Yₓ) $ TpArrow (fst $ mu-proj Xₓ tt) NotErased $ TpArrow (fst $ mu-proj Xₓ ff) NotErased $ mtpvar Yₓ mu-cmd = DefTerm pi-gen data-muₓ (SomeType $ params-to-alls (params-set-erased Erased ps) $ TpApp (params-to-tpapps ps $ mtpvar data-Muₓ) $ params-to-tpapps ps $ mtpvar x) $ params-to-lams (params-set-erased Erased ps) $ Open pi-gen OpacTrans pi-gen x $ Open pi-gen OpacTrans pi-gen data-Muₓ $ rename "Y" from add-params-to-ctxt ps Γ for λ Yₓ → rename "f" from add-params-to-ctxt ps Γ for λ fₓ → let pair = λ t → IotaPair pi-gen t (Beta pi-gen NoTerm (SomeTerm (erase t) pi-gen)) NoGuide pi-gen in Mlam Yₓ $ mlam fₓ $ mapp (mapp (mvar fₓ) $ pair $ indices-to-lams is $ id-term) $ pair $ mappe (AppTp (params-to-apps (params-set-erased Erased ps) (mvar fixpoint-outₓ)) $ (params-to-tpapps ps $ mtpvar data-functorₓ)) (params-to-apps ps $ mvar data-fmapₓ) cast-cmd = rename "Y" from add-params-to-ctxt ps Γ for λ Yₓ → rename "mu" from add-params-to-ctxt ps Γ for λ muₓ → DefTerm pi-gen data-castₓ NoType $ params-to-lams ps $ Lam pi-gen Erased pi-gen Yₓ (SomeClass $ Tkk k) $ Lam pi-gen Erased pi-gen muₓ (SomeClass $ Tkt $ TpApp (params-to-tpapps ps $ mtpvar data-Muₓ) $ mtpvar Yₓ) $ snd (mu-proj Yₓ tt) $ mvar muₓ ctr-cmd : ctr → defTermOrType ctr-cmd (Ctr _ x' T) with subst Γ (params-to-tpapps ps $ mtpvar x) x T ...| T' with decompose-ctr-type Γ T' ...| Tₕ , ps' , as' = DefTerm pi-gen x' (SomeType $ params-to-alls (ps ++ ps') T') $ Open pi-gen OpacTrans pi-gen x $ params-to-lams ps $ params-to-lams ps' $ mapp (recompose-apps (ttys-to-args Erased $ drop (length ps) as') $ mappe (AppTp (params-to-apps (params-set-erased Erased ps) $ mvar fixpoint-inₓ) $ params-to-tpapps ps $ mtpvar data-functorₓ) $ params-to-apps ps $ mvar data-fmapₓ) $ rename "X" from add-params-to-ctxt ps' Γ for λ Xₓ → mk-ctr-term NotErased x' Xₓ cs ps' {- Datatypes -} ctxt-elab-ctr-def : var → params → type → (ctrs-length ctr-index : ℕ) → ctxt → ctxt ctxt-elab-ctr-def c ps' t n i Γ@(mk-ctxt mod @ (fn , mn , ps , q) ss is os Δ) = mk-ctxt mod ss (trie-insert is ("//" ^ c) (ctr-def [] t n i (unerased-arrows $ abs-expand-type (ps ++ ps') t) , "missing" , "missing")) os Δ ctxt-elab-ctrs-def : ctxt → params → ctrs → ctxt ctxt-elab-ctrs-def Γ ps cs = foldr {B = ℕ → ctxt} (λ {(Ctr _ x T) Γ i → ctxt-elab-ctr-def x ps T (length cs) i $ Γ $ suc i}) (λ _ → Γ) cs 0 mendler-elab-mu-pure : ctxt → ctxt-datatype-info → encoded-datatype-names → maybe var → term → cases → maybe term mendler-elab-mu-pure Γ (mk-data-info X is/X? asₚ asᵢ ps kᵢ k cs fcs) (mk-encoded-datatype-names _ _ _ _ _ _ _ _ fixpoint-inₓ fixpoint-outₓ fixpoint-indₓ fixpoint-lambekₓ) x? t ms = let ps-tm = id --λ t → foldr (const $ flip mapp id-term) t $ erase-params ps fix-ind = mvar fixpoint-indₓ -- hnf Γ unfold-all (ps-tm $ mvar fixpoint-indₓ) tt fix-out = mvar fixpoint-outₓ -- hnf Γ unfold-all (ps-tm $ mvar fixpoint-outₓ) tt μ-tm = λ x msf → mapp (mapp fix-ind t) $ mlam x $ rename "x" from ctxt-var-decl x Γ for λ fₓ → mlam fₓ $ msf $ mvar fₓ -- mapp fix-out $ mvar fₓ μ'-tm = λ msf → msf $ mapp fix-out t set-nth = λ l n a → foldr{B = maybe ℕ → 𝕃 (maybe term)} (λ {a' t nothing → a' :: t nothing; a' t (just zero) → a :: t nothing; a' t (just (suc n)) → a' :: t (just n)}) (λ _ → []) l (just n) in -- Note: removing the implicit arguments below hangs Agda's type-checker! foldl{B = 𝕃 (maybe term) → maybe (term → term)} (λ c msf l → case_of_{B = maybe (term → term)} c λ {(Case _ x cas t) → env-lookup Γ ("//" ^ x) ≫=maybe λ {(ctr-def ps? _ n i a , _ , _) → msf (set-nth l i (just $ caseArgs-to-lams cas t)); _ → nothing}}) (-- Note: lambda-expanding this "foldr..." also hangs Agda...? foldr (λ t? msf → msf ≫=maybe λ msf → t? ≫=maybe λ t → just λ t' → (msf (mapp t' t))) (just λ t → t)) ms (map (λ _ → nothing) ms) ≫=maybe (just ∘ maybe-else' x? μ'-tm μ-tm) mendler-elab-mu : elab-mu-t mendler-elab-mu Γ (mk-data-info X is/X? asₚ asᵢ ps kᵢ k cs fcs) (mk-encoded-datatype-names data-functorₓ data-fmapₓ data-Muₓ data-muₓ data-castₓ data-functor-indₓ castₓ fixpoint-typeₓ fixpoint-inₓ fixpoint-outₓ fixpoint-indₓ fixpoint-lambekₓ) Xₒ x? t Tₘ ms = let infixl 10 _-is _-ps _`ps _·is _·ps _-is = recompose-apps $ ttys-to-args Erased asᵢ _`ps = recompose-apps asₚ _-ps = recompose-apps $ args-set-erased Erased asₚ _·is = recompose-tpapps asᵢ _·ps = recompose-tpapps $ args-to-ttys asₚ σ = fst (mk-inst ps (asₚ ++ ttys-to-args NotErased asᵢ)) is = kind-to-indices Γ (substs Γ σ k) Γᵢₛ = add-indices-to-ctxt is $ add-params-to-ctxt ps Γ is-as : indices → args is-as = map λ {(Index x atk) → tk-elim atk (λ _ → TermArg Erased $ `vₓ x) (λ _ → TypeArg $ `Vₓ x)} is/X? = maybe-map `vₓ_ is/X? maybe-or either-else' x? (λ _ → nothing) (maybe-map fst) open? = Open pi-gen OpacTrans pi-gen X close? = Open pi-gen OpacOpaque pi-gen X ms' = foldr (λ {(Case _ x cas t) σ → let Γ' = add-caseArgs-to-ctxt cas Γᵢₛ in trie-insert σ x $ caseArgs-to-lams cas $ rename "y" from Γ' for λ yₓ → rename "e" from Γ' for λ eₓ → `Λ yₓ ₊ `Λ eₓ ₊ close? (`ρ (`ς `vₓ eₓ) - t)}) empty-trie ms fmap = `vₓ data-fmapₓ `ps functor = `Vₓ data-functorₓ ·ps Xₜₚ = `Vₓ X ·ps in-fix = λ is/X? T asᵢ t → either-else' x? (λ x → recompose-apps asᵢ (`vₓ fixpoint-inₓ -ps · functor - fmap) ` (maybe-else' is/X? t λ is/X → recompose-apps asᵢ (`vₓ castₓ -ps - (fmap · T · Xₜₚ - (`open data-Muₓ - (is/X ` (`λ "to" ₊ `λ "out" ₊ `vₓ "to"))))) ` t)) (λ e → maybe-else' (is/X? maybe-or maybe-map fst e) t λ is/X → recompose-apps asᵢ (`vₓ castₓ -ps · `Vₓ Xₒ · Xₜₚ - (`open data-Muₓ - (is/X ` (`λ "to" ₊ `λ "out" ₊ `vₓ "to")))) ` t) app-lambek = λ is/X? t T asᵢ body → body - (in-fix is/X? T asᵢ t) - (recompose-apps asᵢ (`vₓ fixpoint-lambekₓ -ps · functor - fmap) ` (in-fix is/X? T asᵢ t)) in rename "x" from Γᵢₛ for λ xₓ → rename "y" from Γᵢₛ for λ yₓ → rename "y'" from ctxt-var-decl yₓ Γᵢₛ for λ y'ₓ → rename "z" from Γᵢₛ for λ zₓ → rename "e" from Γᵢₛ for λ eₓ → rename "X" from Γᵢₛ for λ Xₓ → foldl (λ {(Ctr _ x Tₓ) rec → rec ≫=maybe λ rec → trie-lookup ms' x ≫=maybe λ t → just λ tₕ → rec tₕ ` t}) (just λ t → t) cs ≫=maybe λ msf → just $ flip (either-else' x?) (λ _ → open? (app-lambek is/X? t (`Vₓ Xₒ ·ps) (ttys-to-args Erased asᵢ) (msf (let Tₛ = maybe-else' is/X? Xₜₚ λ _ → `Vₓ Xₒ fcₜ = maybe-else' is/X? id λ is/X → _`_ $ indices-to-apps is $ `vₓ castₓ -ps · (functor ·ₜ Tₛ) · (functor ·ₜ Xₜₚ) - (fmap · Tₛ · Xₜₚ - (`open data-Muₓ - (is/X ` (`λ "to" ₊ `λ "out" ₊ `vₓ "to")))) out = maybe-else' is/X? (`vₓ fixpoint-outₓ -ps · functor - fmap) λ is/X → let i = `open data-Muₓ - is/X · (`ι xₓ :ₜ indices-to-alls is (indices-to-tpapps is Tₛ ➔ indices-to-tpapps is (functor ·ₜ Tₛ)) ₊ `[ `vₓ xₓ ≃ `vₓ fixpoint-outₓ ]) ` (`λ "to" ₊ `λ "out" ₊ `vₓ "out") in `φ i `₊2 - i `₊1 [ `vₓ fixpoint-outₓ ] in (`φ `β - (`vₓ data-functor-indₓ `ps · Tₛ -is ` (out -is ` t)) [ `vₓ fixpoint-outₓ ` erase t ]) · (indices-to-tplams is $ `λₜ yₓ :ₜ indices-to-tpapps is (functor ·ₜ Tₛ) ₊ `∀ y'ₓ :ₜ indices-to-tpapps is Xₜₚ ₊ `∀ eₓ :ₜ `[ `vₓ fixpoint-inₓ -ps ` `vₓ yₓ ≃ `vₓ y'ₓ ] ₊ indices-to-tpapps is Tₘ `ₜ (`φ `vₓ eₓ - (indices-to-apps is (`vₓ fixpoint-inₓ -ps · functor - fmap) ` (fcₜ (`vₓ yₓ))) [ `vₓ y'ₓ ]))))) , Γ) λ xₒ → rename xₒ from Γᵢₛ for λ x → let Rₓₒ = mu-Type/ x isRₓₒ = mu-isType/ x in rename Rₓₒ from Γᵢₛ for λ Rₓ → rename isRₓₒ from Γᵢₛ for λ isRₓ → rename "to" from Γᵢₛ for λ toₓ → rename "out" from Γᵢₛ for λ outₓ → let fcₜ = `vₓ castₓ -ps · (functor ·ₜ `Vₓ Rₓ) · (functor ·ₜ Xₜₚ) - (fmap · `Vₓ Rₓ · Xₜₚ - `vₓ toₓ) subst-msf = subst-renamectxt Γᵢₛ (maybe-extract (renamectxt-insert* empty-renamectxt (xₒ :: isRₓₒ :: Rₓₒ :: toₓ :: outₓ :: xₓ :: yₓ :: y'ₓ :: []) (x :: isRₓ :: Rₓ :: toₓ :: outₓ :: xₓ :: yₓ :: y'ₓ :: [])) refl) ∘ msf in open? (`vₓ fixpoint-indₓ -ps · functor - fmap -is ` t · Tₘ ` (`Λ Rₓ ₊ `Λ toₓ ₊ `Λ outₓ ₊ `λ x ₊ indices-to-lams is (`λ yₓ ₊ `-[ isRₓ :ₜ `Vₓ data-Muₓ ·ps ·ₜ (`Vₓ Rₓ) `= `open data-Muₓ - (`Λ ignored-var ₊ `λ xₓ ₊ `vₓ xₓ ` (`vₓ toₓ) ` (`vₓ outₓ))]- (app-lambek (just $ `vₓ isRₓ) (`vₓ yₓ) (`Vₓ Rₓ) (is-as is) $ subst-msf ((`φ `β - (indices-to-apps is (`vₓ data-functor-indₓ `ps · (`Vₓ Rₓ)) ` `vₓ yₓ) [ `vₓ yₓ ]) · (indices-to-tplams is $ `λₜ yₓ :ₜ indices-to-tpapps is (functor ·ₜ (`Vₓ Rₓ)) ₊ `∀ y'ₓ :ₜ indices-to-tpapps is Xₜₚ ₊ `∀ eₓ :ₜ `[ `vₓ fixpoint-inₓ -ps ` `vₓ yₓ ≃ `vₓ y'ₓ ] ₊ indices-to-tpapps is Tₘ `ₜ (`φ `vₓ eₓ - (`vₓ fixpoint-inₓ -ps · functor - fmap ` (indices-to-apps is fcₜ ` (`vₓ yₓ))) [ `vₓ y'ₓ ]))))))) , ctxt-datatype-decl' X isRₓ Rₓ asₚ Γ mendler-encoding : datatype-encoding mendler-encoding = record { template = templateMendler; functor = "Functor"; cast = "cast"; fixpoint-type = "CVFixIndM"; fixpoint-in = "cvInFixIndM"; fixpoint-out = "cvOutFixIndM"; fixpoint-ind = "cvIndFixIndM"; fixpoint-lambek = "lambek"; elab-mu = mendler-elab-mu; elab-mu-pure = mendler-elab-mu-pure } mendler-simple-encoding : datatype-encoding mendler-simple-encoding = record { template = templateMendlerSimple; functor = "RecFunctor"; cast = "cast"; fixpoint-type = "FixM"; fixpoint-out = "outFix"; fixpoint-in = "inFix"; fixpoint-ind = "IndFixM"; fixpoint-lambek = "lambek"; elab-mu = mendler-elab-mu; elab-mu-pure = mendler-elab-mu-pure } selected-encoding = case cedille-options.options.datatype-encoding options of λ where cedille-options.Mendler → mendler-simple-encoding cedille-options.Mendler-old → mendler-encoding
{ "alphanum_fraction": 0.6034864598, "avg_line_length": 46.9187242798, "ext": "agda", "hexsha": "11a9d8ef9f14ef8f7924e770a22ea392e8692a1d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CarlOlson/cedille", "max_forks_repo_path": "src/elaboration-helpers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CarlOlson/cedille", "max_issues_repo_path": "src/elaboration-helpers.agda", "max_line_length": 309, "max_stars_count": null, "max_stars_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CarlOlson/cedille", "max_stars_repo_path": "src/elaboration-helpers.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 18034, "size": 45605 }
------------------------------------------------------------------------ -- An example: A function that, given a stream, tries to find an -- element satisfying a predicate ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} module Search where open import Equality.Propositional.Cubical open import Prelude hiding (⊥) open import Monad equality-with-J open import Univalence-axiom equality-with-J open import Partiality-algebra.Monotone open import Partiality-monad.Inductive open import Partiality-monad.Inductive.Fixpoints open import Partiality-monad.Inductive.Monad -- Streams. infixr 5 _∷_ record Stream {a} (A : Type a) : Type a where coinductive constructor _∷_ field head : A tail : Stream A open Stream -- A direct implementation of the function. module Direct {a} {A : Type a} (q : A → Bool) where Φ : Trans (Stream A) (λ _ → A) Φ f xs = if q (head xs) then return (head xs) else f (tail xs) Φ-monotone : ∀ {f₁ f₂} → (∀ xs → f₁ xs ⊑ f₂ xs) → ∀ xs → Φ f₁ xs ⊑ Φ f₂ xs Φ-monotone f₁⊑f₂ xs with q (head xs) ... | true = return (head xs) ■ ... | false = f₁⊑f₂ (tail xs) Φ-⊑ : Trans-⊑ (Stream A) (λ _ → A) Φ-⊑ = record { function = Φ; monotone = Φ-monotone } search : Stream A → A ⊥ search = fix→ Φ-⊑ search-least : ∀ f → (∀ xs → Φ f xs ⊑ f xs) → ∀ xs → search xs ⊑ f xs search-least = fix→-is-least Φ-⊑ Φ-ω-continuous : (s : ∃ λ (f : ℕ → Stream A → A ⊥) → ∀ n xs → f n xs ⊑ f (suc n) xs) → Φ (⨆ ∘ at s) ≡ ⨆ ∘ at [ Φ-⊑ $ s ]-inc Φ-ω-continuous s = ⟨ext⟩ helper where helper : ∀ xs → Φ (⨆ ∘ at s) xs ≡ ⨆ (at [ Φ-⊑ $ s ]-inc xs) helper xs with q (head xs) ... | true = return (head xs) ≡⟨ sym ⨆-const ⟩∎ ⨆ (constˢ (return (head xs))) ∎ ... | false = ⨆ (at s (tail xs)) ∎ Φ-ω : Trans-ω (Stream A) (λ _ → A) Φ-ω = record { monotone-function = Φ-⊑ ; ω-continuous = Φ-ω-continuous } search-fixpoint : search ≡ Φ search search-fixpoint = fix→-is-fixpoint-combinator Φ-ω -- An arguably more convenient implementation. module Indirect {a} {A : Type a} (q : A → Bool) where ΦP : Stream A → Partial (Stream A) (λ _ → A) A ΦP xs = if q (head xs) then return (head xs) else rec (tail xs) Φ : Trans (Stream A) (λ _ → A) Φ = Trans-⊑.function (transformer ΦP) search : Stream A → A ⊥ search = fixP ΦP search-least : ∀ f → (∀ xs → Φ f xs ⊑ f xs) → ∀ xs → search xs ⊑ f xs search-least = fixP-is-least ΦP search-fixpoint : search ≡ Φ search search-fixpoint = fixP-is-fixpoint-combinator ΦP
{ "alphanum_fraction": 0.5492324972, "avg_line_length": 25.932038835, "ext": "agda", "hexsha": "36a38529d0bd4af8c466be56422b89e132ea3df7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Search.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Search.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Search.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 970, "size": 2671 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.Coproduct where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Data.Sum as Sum open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.DirProd open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.DirectProd open import Cubical.HITs.SetTruncation as ST open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure private variable ℓ ℓ' : Level module _ {X : Type ℓ} {Y : Type ℓ'} where open Iso open IsGroupHom open GroupStr Equiv-Coproduct-CoHom : {n : ℕ} → GroupIso (coHomGr n (X ⊎ Y)) (DirProd (coHomGr n X) (coHomGr n Y)) Iso.fun (fst Equiv-Coproduct-CoHom) = ST.rec (isSet× squash₂ squash₂) (λ f → ∣ f ∘ inl ∣₂ , ∣ (f ∘ inr) ∣₂) Iso.inv (fst Equiv-Coproduct-CoHom) = uncurry (ST.rec (λ u v p q i j y → squash₂ (u y) (v y) (λ X → p X y) (λ X → q X y) i j) (λ g → ST.rec squash₂ (λ h → ∣ Sum.rec g h ∣₂))) Iso.rightInv (fst Equiv-Coproduct-CoHom) = uncurry (ST.elim (λ x → isProp→isSet λ u v i y → isSet× squash₂ squash₂ _ _ (u y) (v y) i) (λ g → ST.elim (λ _ → isProp→isSet (isSet× squash₂ squash₂ _ _)) (λ h → refl))) Iso.leftInv (fst Equiv-Coproduct-CoHom) = ST.elim (λ _ → isProp→isSet (squash₂ _ _)) λ f → cong ∣_∣₂ (funExt (Sum.elim (λ x → refl) (λ x → refl))) snd Equiv-Coproduct-CoHom = makeIsGroupHom (ST.elim (λ x → isProp→isSet λ u v i y → isSet× squash₂ squash₂ _ _ (u y) (v y) i) (λ g → ST.elim (λ _ → isProp→isSet (isSet× squash₂ squash₂ _ _)) λ h → refl))
{ "alphanum_fraction": 0.6169507576, "avg_line_length": 40.6153846154, "ext": "agda", "hexsha": "886b7f5b9be5e13649fce9f9e0a0728265dc0cf3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/Coproduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/Coproduct.agda", "max_line_length": 114, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/Coproduct.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 665, "size": 2112 }
-- Step-indexed logical relations based on functional big-step semantics. -- -- Goal for now: just prove the fundamental theorem of logical relations, -- relating a term to itself in a different environments. -- -- But to betray the eventual goal, I can also relate integer values with a -- change in the relation witness. That was a completely local change. But that -- might also be because we only have few primitives. -- -- Because of closures, we need relations across different terms with different -- contexts and environments. -- -- This development is strongly inspired by "Imperative self-adjusting -- computation" (ISAC below), POPL'08, in preference to Dargaye and Leroy (2010), "A verified -- framework for higher-order uncurrying optimizations", but I deviate -- somewhere, especially to try following "Functional Big-Step Semantics"), -- though I deviate somewhere. -- In fact, this development is typed, hence some parts of the model are closer -- to Ahmed (ESOP 2006), "Step-Indexed Syntactic Logical Relations for Recursive -- and Quantified Types". But for many relevant aspects, the two papers are -- interchangeable. -- -- The main insight from the ISAC paper missing from the other one is how to -- step-index a big-step semantics correctly: just ensure that the steps in the -- big-step semantics agree with the ones in the small-step semantics. *Then* -- everything just works with big-step semantics. Quite a few other details are -- fiddly, but those are the same in small-step semantics. -- -- CHEATS: -- "Fuctional big-step semantics" requires an external termination proof for the -- semantics. There it is also mechanized, here it isn't. Worse, the same -- termination problem affects some lemmas about the semantics. module Thesis.FunBigStepSILR2 where open import Data.Empty open import Data.Unit.Base hiding (_≤_) open import Data.Product open import Relation.Binary.PropositionalEquality open import Relation.Binary hiding (_⇒_) open import Data.Nat -- using (ℕ; zero; suc; decTotalOrder; _<_; _≤_) open import Data.Nat.Properties data Type : Set where _⇒_ : (σ τ : Type) → Type nat : Type infixr 20 _⇒_ ⟦_⟧Type : Type → Set ⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type ⟦ nat ⟧Type = ℕ open import Base.Syntax.Context Type public open import Base.Syntax.Vars Type public data Const : (τ : Type) → Set where lit : ℕ → Const nat -- succ : Const (int ⇒ int) data Term (Γ : Context) : (τ : Type) → Set where -- constants aka. primitives const : ∀ {τ} → (c : Const τ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ -- we use de Bruijn indices, so we don't need binding occurrences. abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (const c) = const c weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) data Val : Type → Set open import Base.Denotation.Environment Type Val public open import Base.Data.DependentList public data Val where closure : ∀ {Γ σ τ} → (t : Term (σ • Γ) τ) → (ρ : ⟦ Γ ⟧Context) → Val (σ ⇒ τ) intV : ∀ (n : ℕ) → Val nat import Base.Denotation.Environment -- Den stands for Denotational semantics. module Den = Base.Denotation.Environment Type ⟦_⟧Type -- -- Functional big-step semantics -- -- Termination is far from obvious to Agda once we use closures. So we use -- step-indexing with a fuel value. -- WARNING: ISAC's big-step semantics produces a step count as "output". But -- that would not help Agda establish termination. That's only a problem for a -- functional big-step semantics, not for a relational semantics. -- -- So, instead, I tried to use a sort of writer monad: the interpreter gets fuel -- and returns the remaining fuel. That's the same trick as in "functional -- big-step semantics". That *makes* the function terminating, even though Agda -- cannot see this because it does not know that the returned fuel is no bigger. -- Since we focus for now on STLC, unlike that -- paper, we could avoid error values because we keep types. -- -- One could drop types and add error values instead. data ErrVal (τ : Type) : Set where Done : (v : Val τ) → (n1 : ℕ) → ErrVal τ Error : ErrVal τ TimeOut : ErrVal τ Res : Type → Set Res τ = (n : ℕ) → ErrVal τ _>>=_ : ∀ {σ τ} → Res σ → (Val σ → Res τ) → Res τ (s >>= t) n0 with s n0 ... | Done v n1 = t v n1 ... | Error = Error ... | TimeOut = TimeOut evalConst : ∀ {τ} → Const τ → Res τ evalConst (lit v) n = Done (intV v) n {-# TERMINATING #-} eval : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → Res τ apply : ∀ {σ τ} → Val (σ ⇒ τ) → Val σ → Res τ apply (closure t ρ) a n = eval t (a • ρ) n eval (var x) ρ n = Done (⟦ x ⟧Var ρ) n eval (abs t) ρ n = Done (closure t ρ) n eval (const c) ρ n = evalConst c n eval _ ρ zero = TimeOut eval (app s t) ρ (suc n) = (eval s ρ >>= (λ sv → eval t ρ >>= λ tv → apply sv tv)) n eval-const-dec : ∀ {τ} → (c : Const τ) → ∀ {v} n0 n1 → evalConst c n0 ≡ Done v n1 → n1 ≤ n0 eval-const-dec (lit v) n0 .n0 refl = ≤-refl {-# TERMINATING #-} eval-dec : ∀ {Γ τ} → (t : Term Γ τ) → ∀ ρ v n0 n1 → eval t ρ n0 ≡ Done v n1 → n1 ≤ n0 eval-dec (const c) ρ v n0 n1 eq = eval-const-dec c n0 n1 eq eval-dec (var x) ρ .(⟦ x ⟧Var ρ) n0 .n0 refl = ≤-refl eval-dec (abs t) ρ .(closure t ρ) n0 .n0 refl = ≤-refl eval-dec (app s t) ρ v zero n1 () eval-dec (app s t) ρ v (suc n0) n3 eq with eval s ρ n0 | inspect (eval s ρ) n0 eval-dec (app s t) ρ v (suc n0) n3 eq | Done sv sn1 | [ seq ] with eval t ρ sn1 | inspect (eval t ρ) sn1 eval-dec (app s t) ρ v (suc n0) n3 eq | Done sv@(closure st sρ) sn1 | [ seq ] | (Done tv tn2) | [ teq ] = ≤-step (≤-trans (≤-trans (eval-dec st _ _ _ _ eq) (eval-dec t _ _ _ _ teq)) (eval-dec s _ _ _ _ seq)) eval-dec (app s t) ρ v (suc n0) n3 () | Done sv sn1 | [ seq ] | Error | [ teq ] eval-dec (app s t) ρ v (suc n0) n3 () | Done sv sn1 | [ seq ] | TimeOut | [ teq ] eval-dec (app s t) ρ v (suc n0) n3 () | Error | [ seq ] eval-dec (app s t) ρ v (suc n0) n3 () | TimeOut | [ seq ] eval-const-mono : ∀ {τ} → (c : Const τ) → ∀ {v} n0 n1 → evalConst c n0 ≡ Done v n1 → evalConst c (suc n0) ≡ Done v (suc n1) eval-const-mono (lit v) n0 .n0 refl = refl -- ARGH {-# TERMINATING #-} eval-mono : ∀ {Γ τ} → (t : Term Γ τ) → ∀ ρ v n0 n1 → eval t ρ n0 ≡ Done v n1 → eval t ρ (suc n0) ≡ Done v (suc n1) eval-mono (const c) ρ v n0 n1 eq = eval-const-mono c n0 n1 eq eval-mono (var x) ρ .(⟦ x ⟧Var ρ) n0 .n0 refl = refl eval-mono (abs t) ρ .(closure t ρ) n0 .n0 refl = refl eval-mono (app s t) ρ v zero n1 () eval-mono (app s t) ρ v (suc n0) n1 eq with eval s ρ n0 | inspect (eval s ρ) n0 eval-mono (app s t) ρ v (suc n0) n2 eq | Done sv n1 | [ seq ] with eval s ρ (suc n0) | eval-mono s ρ sv n0 n1 seq eval-mono (app s t) ρ v (suc n0) n2 eq | Done sv n1 | [ seq ] | .(Done sv (suc n1)) | refl with eval t ρ n1 | inspect (eval t ρ) n1 eval-mono (app s t) ρ v (suc n0) n3 eq | Done sv n1 | [ seq ] | .(Done sv (suc n1)) | refl | Done tv n2 | [ teq ] with eval t ρ (suc n1) | eval-mono t ρ tv n1 n2 teq eval-mono (app s t) ρ v (suc n0) n3 eq | Done (closure t₁ ρ₁) n1 | [ seq ] | .(Done (closure {Γ = _} {σ = _} {τ = _} t₁ ρ₁) (suc n1)) | refl | (Done tv n2) | [ teq ] | .(Done tv (suc n2)) | refl = eval-mono t₁ (tv • ρ₁) v n2 n3 eq eval-mono (app s t) ρ v (suc n0) n2 () | Done sv n1 | [ seq ] | .(Done sv (suc n1)) | refl | Error | [ teq ] eval-mono (app s t) ρ v (suc n0) n2 () | Done sv n1 | [ seq ] | .(Done sv (suc n1)) | refl | TimeOut | [ teq ] eval-mono (app s t) ρ v (suc n0) n1 () | Error | [ seq ] eval-mono (app s t) ρ v (suc n0) n1 () | TimeOut | [ seq ] eval-adjust-plus : ∀ d {Γ τ} → (t : Term Γ τ) → ∀ ρ v n0 n1 → eval t ρ n0 ≡ Done v n1 → eval t ρ (d + n0) ≡ Done v (d + n1) eval-adjust-plus zero t ρ v n0 n1 eq = eq eval-adjust-plus (suc d) t ρ v n0 n1 eq = eval-mono t ρ v (d + n0) (d + n1) (eval-adjust-plus d t ρ v n0 n1 eq) eval-const-strengthen : ∀ {τ} → (c : Const τ) → ∀ {v} n0 n1 → evalConst c (suc n0) ≡ Done v (suc n1) → evalConst c n0 ≡ Done v n1 eval-const-strengthen (lit v) n0 .n0 refl = refl -- I started trying to prove eval-strengthen, which I appeal to informally -- below, but I gave up. I still guess the lemma is true but proving it looks -- too painful to bother. -- Without this lemma, I can't fully prove that this logical relation is -- equivalent to the original one. -- But this one works (well, at least up to the fundamental theorem, haven't -- attempted other lemmas), so it should be good enough. -- eval-mono-err : ∀ {Γ τ} → (t : Term Γ τ) → ∀ ρ n → eval t ρ n ≡ Error → eval t ρ (suc n) ≡ Error -- eval-mono-err (const (lit x)) ρ zero eq = {!!} -- eval-mono-err (const (lit x)) ρ (suc n) eq = {!!} -- eval-mono-err (var x) ρ n eq = {!!} -- eval-mono-err (app t t₁) ρ n eq = {!!} -- eval-mono-err (abs t) ρ n eq = {!!} -- -- eval t ρ (suc n0) ≡ Done v (suc n1) → eval t ρ n0 ≡ Done v n -- eval-aux : ∀ {Γ τ} → (t : Term Γ τ) → ∀ ρ n → (Σ[ res0 ∈ ErrVal τ ] eval t ρ n ≡ res0) × (Σ[ resS ∈ ErrVal τ ] eval t ρ n ≡ resS) -- eval-aux t ρ n with -- eval t ρ n | inspect (eval t ρ) n | -- eval t ρ (suc n) | inspect (eval t ρ) (suc n) -- eval-aux t ρ n | res0 | [ eq0 ] | (Done v1 n1) | [ eq1 ] = {!!} -- eval-aux t ρ n | res0 | [ eq0 ] | Error | [ eq1 ] = {!!} -- eval-aux t ρ n | Done v n1 | [ eq0 ] | TimeOut | [ eq1 ] = {!!} -- eval-aux t ρ n | Error | [ eq0 ] | TimeOut | [ eq1 ] = {!!} -- eval-aux t ρ n | TimeOut | [ eq0 ] | TimeOut | [ eq1 ] = (TimeOut , refl) , (TimeOut , refl) -- {-# TERMINATING #-} -- eval-strengthen : ∀ {Γ τ} → (t : Term Γ τ) → ∀ ρ v n0 n1 → eval t ρ (suc n0) ≡ Done v (suc n1) → eval t ρ n0 ≡ Done v n1 -- eval-strengthen (const c) ρ v n0 n1 eq = eval-const-strengthen c n0 n1 eq -- eval-strengthen (var x) ρ .(⟦ x ⟧Var ρ) n0 .n0 refl = refl -- eval-strengthen (abs t) ρ .(closure t ρ) n0 .n0 refl = refl -- eval-strengthen (app s t) ρ v zero n1 eq with eval s ρ 0 | inspect (eval s ρ) 0 -- eval-strengthen (app s t) ρ v zero n1 eq | Done sv sn1 | [ seq ] with eval-dec s ρ sv 0 sn1 seq -- eval-strengthen (app s t) ρ v zero n1 eq | Done sv .0 | [ seq ] | z≤n with eval t ρ 0 | inspect (eval t ρ) 0 -- eval-strengthen (app s t) ρ v zero n1 eq | Done sv _ | [ seq ] | z≤n | Done tv tn1 | [ teq ] with eval-dec t ρ tv 0 tn1 teq -- eval-strengthen (app s t) ρ v zero n1 eq | Done (closure st sρ) _ | [ seq ] | z≤n | (Done tv .0) | [ teq ] | z≤n with eval-dec st _ v 0 (suc n1) eq -- eval-strengthen (app s t) ρ v zero n1 eq | Done (closure st sρ) _ | [ seq ] | z≤n | (Done tv _) | [ teq ] | z≤n | () -- eval-strengthen (app s t) ρ v zero n1 () | Done sv _ | [ seq ] | z≤n | Error | [ teq ] -- eval-strengthen (app s t) ρ v zero n1 () | Done sv _ | [ seq ] | z≤n | TimeOut | [ teq ] -- eval-strengthen (app s t) ρ v zero n1 () | Error | [ seq ] -- eval-strengthen (app s t) ρ v zero n1 () | TimeOut | [ seq ] -- -- eval-dec s ρ -- -- {!eval-dec s ρ ? (suc zero) (suc n1) !} -- -- eval-strengthen (app s t) ρ v (suc n0) n1 eq with eval s ρ (suc n0) | inspect (eval s ρ) (suc n0) -- -- eval-strengthen (app s t) ρ v₁ (suc n0) n2 eq | Done sv n1 | [ seq ] with eval s ρ n0 = {!eval-strengthen s ρ v n0 n1 seq !} -- -- eval-strengthen (app s t) ρ v (suc n0) n1 () | Error | [ seq ] -- -- eval-strengthen (app s t) ρ v (suc n0) n1 () | TimeOut | [ seq ] -- eval-strengthen (app s t) ρ v (suc n0) n1 eq with eval s ρ n0 | inspect (eval s ρ) n0 -- eval-strengthen (app s t) ρ v (suc n0) n2 eq | Done sv n1 | [ seq ] with eval s ρ (suc n0) | eval-mono s ρ sv n0 n1 seq -- eval-strengthen (app s t) ρ v (suc n0) n2 eq | Done sv n1 | [ seq ] | .(Done sv (suc n1)) | refl with eval t ρ n1 | inspect (eval t ρ) n1 -- eval-strengthen (app s t) ρ v (suc n0) n3 eq | Done sv n1 | [ seq ] | .(Done sv (suc n1)) | refl | Done tv n2 | [ teq ] with eval t ρ (suc n1) | eval-mono t ρ tv n1 n2 teq -- eval-strengthen (app s t) ρ v (suc n0) n3 eq | Done (closure t₁ ρ₁) n1 | [ seq ] | .(Done (closure {Γ = _} {σ = _} {τ = _} t₁ ρ₁) (suc n1)) | refl | (Done tv n2) | [ teq ] | .(Done tv (suc n2)) | refl = eval-strengthen t₁ (tv • ρ₁) v n2 n3 eq -- eval-strengthen (app s t) ρ v (suc n0) n2 eq | Done sv n1 | [ seq ] | .(Done sv (suc n1)) | refl | Error | [ teq ] = {!!} -- eval-strengthen (app s t) ρ v (suc n0) n2 eq | Done sv n1 | [ seq ] | .(Done sv (suc n1)) | refl | TimeOut | [ teq ] = {!!} -- eval-strengthen (app s t) ρ v (suc n0) n1 eq | Error | [ seq ] = {!!} -- eval-strengthen (app s t) ρ v (suc n0) n1 eq | TimeOut | [ seq ] = {!!} -- eval-adjust-minus : ∀ d {Γ τ} → (t : Term Γ τ) → ∀ {ρ v} n0 n1 → eval t ρ (d + n0) ≡ Done v (d + n1) → eval t ρ n0 ≡ Done v n1 -- eval-adjust-minus zero t n0 n1 eq = eq -- eval-adjust-minus (suc d) t n0 n1 eq = eval-adjust-minus d t n0 n1 (eval-strengthen t _ _ (d + n0) (d + n1) eq) import Data.Integer as I open I using (ℤ) mutual -- Warning: compared to Ahmed's papers, this definition for relT also requires -- t1 to be well-typed, not just t2. -- -- This difference might affect the status of some proofs in Ahmed's papers, -- but that's not a problem here. -- Also: can't confirm this in any of the papers I'm using, but I'd guess that -- all papers using environments allow to relate closures with different -- implementations and different hidden environments. -- -- To check if the proof goes through with equal context, I changed the proof. -- Now a proof that two closures are equivalent contains a proof that their -- typing contexts are equivalent. The changes were limited softawre -- engineering, the same proofs go through. -- This is not the same definition of relT, but it is equivalent. relT : ∀ {τ Γ} (t1 : Term Γ τ) (t2 : Term Γ τ) (ρ1 : ⟦ Γ ⟧Context) (ρ2 : ⟦ Γ ⟧Context) → ℕ → Set -- This equation is a lemma in the original definition. relT t1 t2 ρ1 ρ2 zero = ⊤ -- To compare this definition, note that the original k is suc n here. relT {τ} t1 t2 ρ1 ρ2 (suc n) = (v1 : Val τ) → -- Originally we have 0 ≤ j < k, so j < suc n, so k - j = suc n - j. -- It follows that 0 < k - j ≤ k, hence suc n - j ≤ suc n, or n - j ≤ n. -- Here, instead of binding j we bind n-j = n - j, require n - j ≤ n, and -- use suc n-j instead of k - j. ∀ n-j (n-j≤n : n-j ≤ n) → -- The next assumption is important. This still says that evaluation consumes j steps. -- Since j ≤ n, it is OK to start evaluation with n steps. -- Starting with (suc n) and getting suc n-j is equivalent, per eval-mono -- and eval-strengthen. But in practice this version is easier to use. (eq : eval t1 ρ1 n ≡ Done v1 n-j) → Σ[ v2 ∈ Val τ ] Σ[ n2 ∈ ℕ ] eval t2 ρ2 n2 ≡ Done v2 0 × relV τ v1 v2 (suc n-j) -- Here, computing t2 is allowed to take an unbounded number of steps. Having to write a number at all is annoying. relV : ∀ τ (v1 v2 : Val τ) → ℕ → Set -- Show the proof still goes through if we relate clearly different values by -- inserting changes in the relation. -- There's no syntax to produce such changes, but you can add changes to the -- environment. relV nat (intV v1) (intV v2) n = Σ[ dv ∈ ℤ ] dv I.+ (I.+ v1) ≡ (I.+ v2) relV (σ ⇒ τ) (closure {Γ1} t1 ρ1) (closure {Γ2} t2 ρ2) n = Σ (Γ1 ≡ Γ2) λ { refl → ∀ (k : ℕ) (k≤n : k < n) v1 v2 → relV σ v1 v2 k → relT t1 t2 (v1 • ρ1) (v2 • ρ2) k } -- Above, in the conclusion, I'm not relating app (closure t1 ρ1) v1 with app -- (closure t2 ρ2) v2 (or some encoding of that that actually works), but the -- result of taking a step from that configuration. That is important, because -- both Pitts' "Step-Indexed Biorthogonality: a Tutorial Example" and -- "Imperative Self-Adjusting Computation" do the same thing (and point out it's -- important). Δτ : Type → Type Δτ (σ ⇒ τ) = σ ⇒ (Δτ σ) ⇒ Δτ τ Δτ nat = nat mutual -- The original relation allows unrelated environments. However, while that is -- fine as a logical relation, it's not OK if we want to prove that validity -- agrees with oplus. We want a finer relation. -- Also: we still need to demand the actual environments to be related, and -- the bodies to match. Haven't done that yet. On the other hand, since we do want -- to allow for replacement changes, that would probably complicate the proof -- elsewhere. relT3 : ∀ {τ Γ ΔΓ} (t1 : Term Γ τ) (dt : Term ΔΓ (Δτ τ)) (t2 : Term Γ τ) (ρ1 : ⟦ Γ ⟧Context) (dρ : ⟦ ΔΓ ⟧Context) (ρ2 : ⟦ Γ ⟧Context) → ℕ → Set relT3 t1 dt t2 ρ1 dρ ρ2 zero = ⊤ relT3 {τ} t1 dt t2 ρ1 dρ ρ2 (suc n) = (v1 : Val τ) → ∀ n-j (n-j≤n : n-j ≤ n) → (eq : eval t1 ρ1 n ≡ Done v1 n-j) → Σ[ v2 ∈ Val τ ] Σ[ n2 ∈ ℕ ] eval t2 ρ2 n2 ≡ Done v2 0 × Σ[ dv ∈ Val (Δτ τ) ] Σ[ dn ∈ ℕ ] eval dt dρ dn ≡ Done dv 0 × relV3 τ v1 dv v2 (suc n-j) -- Weakening in this definition is going to be annoying to use. And having to -- construct terms is ugly. -- Worse, evaluating the application consumes computation steps. -- Weakening could be avoided if we use a separate language of change terms -- with two environments, and with a dclosure binding two variables at once, -- and so on. relV3 : ∀ τ (v1 : Val τ) (dv : Val (Δτ τ)) (v2 : Val τ) → ℕ → Set relV3 nat (intV v1) (intV dv) (intV v2) n = dv + v1 ≡ v2 relV3 (σ ⇒ τ) (closure {Γ1} t1 ρ1) (closure dt dρ) (closure {Γ2} t2 ρ2) n = Σ (Γ1 ≡ Γ2) λ { refl → ∀ (k : ℕ) (k<n : k < n) v1 dv v2 → relV3 σ v1 dv v2 k → relT3 t1 (app (weaken (drop (Δτ σ) • ≼-refl) dt) (var this)) t2 (v1 • ρ1) (dv • v1 • dρ) (v2 • ρ2) k } -- Relate λ x → 0 and λ x → 1 at any step count. example1 : ∀ n → relV (nat ⇒ nat) (closure (const (lit 0)) ∅) (closure (const (lit 1)) ∅) n example1 n = refl , λ { zero k<n v1 v2 x → tt ; (suc k) k<n v1 v2 x .(intV 0) .k n-j≤n refl → intV 1 , 0 , refl , (I.+ 1 , refl) } -- Relate λ x → 0 and λ x → x at any step count. example2 : ∀ n → relV (nat ⇒ nat) (closure (const (lit 0)) ∅) (closure (var this) ∅) n example2 n = refl , λ { zero k<n v1 v2 x → tt ; (suc k) k<n (intV v1) (intV v2) x .(intV 0) .k n-j≤n refl → intV v2 , 0 , refl , (I.+ v2 , cong I.+_ (+-identityʳ v2)) } relρ : ∀ Γ (ρ1 ρ2 : ⟦ Γ ⟧Context) → ℕ → Set relρ ∅ ∅ ∅ n = ⊤ relρ (τ • Γ) (v1 • ρ1) (v2 • ρ2) n = relV τ v1 v2 n × relρ Γ ρ1 ρ2 n relV-mono : ∀ m n → m ≤ n → ∀ τ v1 v2 → relV τ v1 v2 n → relV τ v1 v2 m relV-mono m n m≤n nat (intV v1) (intV v2) vv = vv relV-mono m n m≤n (σ ⇒ τ) (closure t1 ρ1) (closure t2 ρ2) (refl , ff) = refl , λ k k≤m → ff k (≤-trans k≤m m≤n) relρ-mono : ∀ m n → m ≤ n → ∀ Γ ρ1 ρ2 → relρ Γ ρ1 ρ2 n → relρ Γ ρ1 ρ2 m relρ-mono m n m≤n ∅ ∅ ∅ tt = tt relρ-mono m n m≤n (τ • Γ) (v1 • ρ1) (v2 • ρ2) (vv , ρρ) = relV-mono m n m≤n _ v1 v2 vv , relρ-mono m n m≤n Γ ρ1 ρ2 ρρ fundamentalV : ∀ {Γ τ} (x : Var Γ τ) → (n : ℕ) → (ρ1 ρ2 : ⟦ Γ ⟧Context) (ρρ : relρ Γ ρ1 ρ2 n) → relT (var x) (var x) ρ1 ρ2 n fundamentalV x zero ρ1 ρ2 ρρ = tt fundamentalV this (suc n) (v1 • ρ1) (v2 • ρ2) (vv , ρρ) .v1 .n n-j≤n refl = v2 , zero , refl , vv fundamentalV (that x) (suc n) (v1 • ρ1) (v2 • ρ2) (vv , ρρ) = fundamentalV x (suc n) ρ1 ρ2 ρρ lt1 : ∀ {k n} → k < n → k ≤ n lt1 (s≤s p) = ≤-step p fundamental : ∀ {Γ τ} (t : Term Γ τ) → (n : ℕ) → (ρ1 ρ2 : ⟦ Γ ⟧Context) (ρρ : relρ Γ ρ1 ρ2 n) → relT t t ρ1 ρ2 n fundamental t zero ρ1 ρ2 ρρ = tt fundamental (var x) (suc n) ρ1 ρ2 ρρ = fundamentalV x (suc n) ρ1 ρ2 ρρ fundamental (const (lit v)) (suc n) ρ1 ρ2 ρρ .(intV v) .n n-j≤n refl = intV v , zero , refl , I.+ zero , refl fundamental (abs t) (suc n) ρ1 ρ2 ρρ .(closure t ρ1) .n n-j≤n refl = closure t ρ2 , zero , refl , refl , λ k k<n v1 v2 vv → fundamental t k (v1 • ρ1) (v2 • ρ2) (vv , relρ-mono k (suc n) (lt1 k<n) _ _ _ ρρ) fundamental (app s t) (suc zero) ρ1 ρ2 ρρ v1 n-j n-j≤n () fundamental (app s t) (suc (suc n)) ρ1 ρ2 ρρ v1 n-j n-j≤n eq with eval s ρ1 n | inspect (eval s ρ1) n fundamental (app s t) (suc (suc n)) ρ1 ρ2 ρρ v1 n-j n-j≤n eq | Done sv1 n1 | [ s1eq ] with eval-dec s _ _ n n1 s1eq | eval t ρ1 n1 | inspect (eval t ρ1) n1 fundamental (app s t) (suc (suc n)) ρ1 ρ2 ρρ v1 n-j n-j≤n eq | Done (closure st1 sρ1) n1 | [ s1eq ] | n1≤n | Done tv1 n2 | [ t1eq ] with eval-dec t _ _ n1 n2 t1eq ... | n2≤n1 with fundamental s (suc (suc n)) ρ1 ρ2 ρρ (closure st1 sρ1) (suc n1) (s≤s n1≤n) (eval-mono s ρ1 (closure st1 sρ1) n n1 s1eq) | fundamental t (suc (suc n1)) ρ1 ρ2 (relρ-mono (suc (suc n1)) (suc (suc n)) (s≤s (s≤s n1≤n)) _ _ _ ρρ) tv1 (suc n2) (s≤s n2≤n1) (eval-mono t ρ1 tv1 n1 n2 t1eq) ... | sv2@(closure st2 sρ2) , sn3 , s2eq , refl , svv | tv2 , tn3 , t2eq , tvv with svv (suc n2) (s≤s (s≤s n2≤n1)) tv1 tv2 (relV-mono (suc n2) (suc (suc n2)) (s≤s (n≤1+n n2)) _ tv1 tv2 tvv) v1 n-j (eval-dec st1 _ _ _ _ eq) eq ... | v2 , n3 , eq2 , vv = v2 , suc (sn3 + (tn3 + n3)) , comp , vv where s2eq-adj : eval s ρ2 (sn3 + (tn3 + n3)) ≡ Done (closure st2 sρ2) (tn3 + n3) s2eq-adj rewrite +-comm sn3 (tn3 + n3)| cong (Done (closure st2 sρ2)) (sym (+-identityʳ (tn3 + n3))) = eval-adjust-plus (tn3 + n3) s _ sv2 _ _ s2eq t2eq-adj : eval t ρ2 (tn3 + n3) ≡ Done tv2 n3 t2eq-adj rewrite +-comm tn3 n3 | cong (Done tv2) (sym (+-identityʳ n3)) = eval-adjust-plus n3 t _ tv2 _ _ t2eq comp : (eval s ρ2 >>= (λ sv → eval t ρ2 >>= apply sv)) (sn3 + (tn3 + n3)) ≡ Done v2 0 comp rewrite s2eq-adj | t2eq-adj = eq2 fundamental (app s t) (suc (suc n)) ρ1 ρ2 ρρ v1 n-j n-j≤n () | Done sv1 n1 | [ s1eq ] | n1≤n | Error | [ t1eq ] fundamental (app s t) (suc (suc n)) ρ1 ρ2 ρρ v1 n-j n-j≤n () | Done sv1 n1 | [ s1eq ] | n1≤n | TimeOut | [ t1eq ] fundamental (app s t) (suc (suc n)) ρ1 ρ2 ρρ v1 n-j n-j≤n () | Error | [ s1eq ] fundamental (app s t) (suc (suc n)) ρ1 ρ2 ρρ v1 n-j n-j≤n () | TimeOut | [ s1eq ]
{ "alphanum_fraction": 0.604519774, "avg_line_length": 52.7142857143, "ext": "agda", "hexsha": "44b82987ded763b77e5f762b226c18fd0490e5a7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/FunBigStepSILR2.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/FunBigStepSILR2.agda", "max_line_length": 245, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/FunBigStepSILR2.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 8861, "size": 21771 }
{- Automatically generating proofs of UnivalentStr for records -} {-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Structures.Record where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.SIP open import Cubical.Foundations.Structure open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.List as List open import Cubical.Data.Vec as Vec open import Cubical.Data.Bool open import Cubical.Data.Maybe open import Cubical.Data.Sum open import Cubical.Structures.Auto import Cubical.Structures.Macro as M import Agda.Builtin.Reflection as R open import Cubical.Reflection.Base -- Magic number private FUEL = 10000 -- Types for specifying inputs to the tactics data AutoFieldSpec : Typeω where autoFieldSpec : ∀ {ℓ ℓ₁ ℓ₂} (R : Type ℓ → Type ℓ₁) {S : Type ℓ → Type ℓ₂} → ({X : Type ℓ} → R X → S X) → AutoFieldSpec module _ {ℓ ℓ₁ ℓ₁'} where mutual data AutoFields (R : Type ℓ → Type ℓ₁) (ι : StrEquiv R ℓ₁') : Typeω where fields: : AutoFields R ι _data[_∣_] : (fs : AutoFields R ι) → ∀ {ℓ₂ ℓ₂'} {S : Type ℓ → Type ℓ₂} {ι' : StrEquiv S ℓ₂'} → (f : {X : Type ℓ} → R X → S X) → ({A B : TypeWithStr ℓ R} {e : typ A ≃ typ B} → ι A B e → ι' (map-snd f A) (map-snd f B) e) → AutoFields R ι _prop[_∣_] : (fs : AutoFields R ι) → ∀ {ℓ₂} {P : (X : Type ℓ) → GatherFields fs X → Type ℓ₂} → ({X : Type ℓ} (r : R X) → P X (projectFields fs r)) → isPropProperty R ι fs P → AutoFields R ι GatherFieldsLevel : {R : Type ℓ → Type ℓ₁} {ι : StrEquiv R ℓ₁'} → AutoFields R ι → Level GatherFieldsLevel fields: = ℓ-zero GatherFieldsLevel (_data[_∣_] fs {ℓ₂ = ℓ₂} _ _) = ℓ-max (GatherFieldsLevel fs) ℓ₂ GatherFieldsLevel (_prop[_∣_] fs {ℓ₂ = ℓ₂} _ _) = ℓ-max (GatherFieldsLevel fs) ℓ₂ GatherFields : {R : Type ℓ → Type ℓ₁} {ι : StrEquiv R ℓ₁'} (dat : AutoFields R ι) → Type ℓ → Type (GatherFieldsLevel dat) GatherFields fields: X = Unit GatherFields (_data[_∣_] fs {S = S} _ _) X = GatherFields fs X × S X GatherFields (_prop[_∣_] fs {P = P} _ _) X = Σ[ s ∈ GatherFields fs X ] (P X s) projectFields : {R : Type ℓ → Type ℓ₁} {ι : StrEquiv R ℓ₁'} (fs : AutoFields R ι) → {X : Type ℓ} → R X → GatherFields fs X projectFields fields: = _ projectFields (fs data[ f ∣ _ ]) r = projectFields fs r , f r projectFields (fs prop[ f ∣ _ ]) r = projectFields fs r , f r isPropProperty : ∀ {ℓ₂} (R : Type ℓ → Type ℓ₁) (ι : StrEquiv R ℓ₁') (fs : AutoFields R ι) (P : (X : Type ℓ) → GatherFields fs X → Type ℓ₂) → Type (ℓ-max (ℓ-suc ℓ) (ℓ-max ℓ₁ ℓ₂)) isPropProperty R ι fs P = {X : Type ℓ} (r : R X) → isProp (P X (projectFields fs r)) data AutoRecordSpec : Typeω where autoRecordSpec : (R : Type ℓ → Type ℓ₁) (ι : StrEquiv R ℓ₁') → AutoFields R ι → AutoRecordSpec -- Some reflection utilities private tApply : R.Term → List (R.Arg R.Term) → R.Term tApply t l = R.def (quote idfun) (R.unknown v∷ t v∷ l) tStrMap : R.Term → R.Term → R.Term tStrMap A f = R.def (quote map-snd) (f v∷ A v∷ []) tStrProj : R.Term → R.Name → R.Term tStrProj A sfield = tStrMap A (R.def sfield []) Fun : ∀ {ℓ ℓ'} → Type ℓ → Type ℓ' → Type (ℓ-max ℓ ℓ') Fun A B = A → B -- Helper functions used in the generated univalence proof private pathMap : ∀ {ℓ ℓ'} {S : I → Type ℓ} {T : I → Type ℓ'} (f : {i : I} → S i → T i) {x : S i0} {y : S i1} → PathP S x y → PathP T (f x) (f y) pathMap f p i = f (p i) -- Property field helper functions module _ {ℓ ℓ₁ ℓ₁' ℓ₂} (R : Type ℓ → Type ℓ₁) -- Structure record (ι : StrEquiv R ℓ₁') -- Equivalence record (fs : AutoFields R ι) -- Prior fields (P : (X : Type ℓ) → GatherFields fs X → Type ℓ₂) -- Property type (f : {X : Type ℓ} (r : R X) → P X (projectFields fs r)) -- Property projection where prev = projectFields fs Prev = GatherFields fs PropHelperCenterType : Type _ PropHelperCenterType = (A B : TypeWithStr ℓ R) (e : A .fst ≃ B .fst) (p : PathP (λ i → Prev (ua e i)) (prev (A .snd)) (prev (B .snd))) → PathP (λ i → P (ua e i) (p i)) (f (A .snd)) (f (B .snd)) PropHelperContractType : PropHelperCenterType → Type _ PropHelperContractType c = (A B : TypeWithStr ℓ R) (e : A .fst ≃ B .fst) {p₀ : PathP (λ i → Prev (ua e i)) (prev (A .snd)) (prev (B .snd))} (q : PathP (λ i → R (ua e i)) (A .snd) (B .snd)) (p : p₀ ≡ (λ i → prev (q i))) → PathP (λ k → PathP (λ i → P (ua e i) (p k i)) (f (A .snd)) (f (B .snd))) (c A B e p₀) (λ i → f (q i)) PropHelperType : Type _ PropHelperType = Σ PropHelperCenterType PropHelperContractType derivePropHelper : isPropProperty R ι fs P → PropHelperType derivePropHelper propP .fst A B e p = isOfHLevelPathP' 0 (propP _) (f (A .snd)) (f (B .snd)) .fst derivePropHelper propP .snd A B e q p = isOfHLevelPathP' 0 (isOfHLevelPathP 1 (propP _) _ _) _ _ .fst -- Build proof of univalence from an isomorphism module _ {ℓ ℓ₁ ℓ₁'} (S : Type ℓ → Type ℓ₁) (ι : StrEquiv S ℓ₁') where fwdShape : Type _ fwdShape = (A B : TypeWithStr ℓ S) (e : typ A ≃ typ B) → ι A B e → PathP (λ i → S (ua e i)) (str A) (str B) bwdShape : Type _ bwdShape = (A B : TypeWithStr ℓ S) (e : typ A ≃ typ B) → PathP (λ i → S (ua e i)) (str A) (str B) → ι A B e fwdBwdShape : fwdShape → bwdShape → Type _ fwdBwdShape fwd bwd = (A B : TypeWithStr ℓ S) (e : typ A ≃ typ B) → ∀ p → fwd A B e (bwd A B e p) ≡ p bwdFwdShape : fwdShape → bwdShape → Type _ bwdFwdShape fwd bwd = (A B : TypeWithStr ℓ S) (e : typ A ≃ typ B) → ∀ r → bwd A B e (fwd A B e r) ≡ r -- The implicit arguments A,B in UnivalentStr make some things annoying so let's avoid them ExplicitUnivalentStr : Type _ ExplicitUnivalentStr = (A B : TypeWithStr _ S) (e : typ A ≃ typ B) → ι A B e ≃ PathP (λ i → S (ua e i)) (str A) (str B) explicitUnivalentStr : (fwd : fwdShape) (bwd : bwdShape) → fwdBwdShape fwd bwd → bwdFwdShape fwd bwd → ExplicitUnivalentStr explicitUnivalentStr fwd bwd fwdBwd bwdFwd A B e = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun = fwd A B e isom .inv = bwd A B e isom .rightInv = fwdBwd A B e isom .leftInv = bwdFwd A B e ExplicitUnivalentDesc : ∀ ℓ → (d : M.Desc ℓ) → Type _ ExplicitUnivalentDesc _ d = ExplicitUnivalentStr (M.MacroStructure d) (M.MacroEquivStr d) explicitUnivalentDesc : ∀ ℓ → (d : M.Desc ℓ) → ExplicitUnivalentDesc ℓ d explicitUnivalentDesc _ d A B e = M.MacroUnivalentStr d e -- Internal record specification type private record TypedTerm : Type where field type : R.Term term : R.Term record InternalDatumField : Type where field sfield : R.Name -- name of structure field efield : R.Name -- name of equivalence field record InternalPropField : Type where field sfield : R.Name -- name of structure field InternalField : Type InternalField = InternalDatumField ⊎ InternalPropField record InternalSpec (A : Type) : Type where field srec : R.Term -- structure record type erec : R.Term -- equivalence record type fields : List (InternalField × A) -- in reverse order open TypedTerm open InternalDatumField open InternalPropField -- Parse a field and record specifications private findName : R.Term → R.TC R.Name findName (R.def name _) = R.returnTC name findName (R.lam R.hidden (R.abs _ t)) = findName t findName t = R.typeError (R.strErr "Not a name + spine: " ∷ R.termErr t ∷ []) parseFieldSpec : R.Term → R.TC (R.Term × R.Term × R.Term × R.Term) parseFieldSpec (R.con (quote autoFieldSpec) (ℓ h∷ ℓ₁ h∷ ℓ₂ h∷ R v∷ S h∷ f v∷ [])) = R.reduce ℓ >>= λ ℓ → R.returnTC (ℓ , ℓ₂ , S , f) parseFieldSpec t = R.typeError (R.strErr "Malformed field specification: " ∷ R.termErr t ∷ []) parseSpec : R.Term → R.TC (InternalSpec TypedTerm) parseSpec (R.con (quote autoRecordSpec) (ℓ h∷ ℓ₁ h∷ ℓ₁' h∷ srecTerm v∷ erecTerm v∷ fs v∷ [])) = parseFields fs >>= λ fs' → R.returnTC λ { .srec → srecTerm ; .erec → erecTerm ; .fields → fs'} where open InternalSpec parseFields : R.Term → R.TC (List (InternalField × TypedTerm)) parseFields (R.con (quote fields:) _) = R.returnTC [] parseFields (R.con (quote _data[_∣_]) (ℓ h∷ ℓ₁ h∷ ℓ₁' h∷ R h∷ ι h∷ fs v∷ ℓ₂ h∷ ℓ₂' h∷ S h∷ ι' h∷ sfieldTerm v∷ efieldTerm v∷ [])) = R.reduce ℓ >>= λ ℓ → findName sfieldTerm >>= λ sfieldName → findName efieldTerm >>= λ efieldName → buildDesc FUEL ℓ ℓ₂ S >>= λ d → let f : InternalField × TypedTerm f = λ { .fst → inl λ { .sfield → sfieldName ; .efield → efieldName } ; .snd .type → R.def (quote ExplicitUnivalentDesc) (ℓ v∷ d v∷ []) ; .snd .term → R.def (quote explicitUnivalentDesc) (ℓ v∷ d v∷ []) } in liftTC (f ∷_) (parseFields fs) parseFields (R.con (quote _prop[_∣_]) (ℓ h∷ ℓ₁ h∷ ℓ₁' h∷ R h∷ ι h∷ fs v∷ ℓ₂ h∷ P h∷ fieldTerm v∷ prop v∷ [])) = findName fieldTerm >>= λ fieldName → let p : InternalField × TypedTerm p = λ { .fst → inr λ { .sfield → fieldName } ; .snd .type → R.def (quote PropHelperType) (srecTerm v∷ erecTerm v∷ fs v∷ P v∷ fieldTerm v∷ []) ; .snd .term → R.def (quote derivePropHelper) (srecTerm v∷ erecTerm v∷ fs v∷ P v∷ fieldTerm v∷ prop v∷ []) } in liftTC (p ∷_) (parseFields fs) parseFields t = R.typeError (R.strErr "Malformed autoRecord specification (1): " ∷ R.termErr t ∷ []) parseSpec t = R.typeError (R.strErr "Malformed autoRecord specification (2): " ∷ R.termErr t ∷ []) -- Build a proof of univalence from an InternalSpec module _ (spec : InternalSpec ℕ) where open InternalSpec spec private fwdDatum : Vec R.Term 4 → R.Term → InternalDatumField × ℕ → R.Term fwdDatum (A ∷ B ∷ e ∷ streq ∷ _) i (dat , n) = R.def (quote equivFun) (tApply (v n) (tStrProj A (dat .sfield) v∷ tStrProj B (dat .sfield) v∷ e v∷ []) v∷ R.def (dat .efield) (streq v∷ []) v∷ i v∷ []) fwdProperty : Vec R.Term 4 → R.Term → R.Term → InternalPropField × ℕ → R.Term fwdProperty (A ∷ B ∷ e ∷ streq ∷ _) i prevPath prop = R.def (quote fst) (v (prop .snd) v∷ A v∷ B v∷ e v∷ prevPath v∷ i v∷ []) bwdClause : Vec R.Term 4 → InternalDatumField × ℕ → R.Clause bwdClause (A ∷ B ∷ e ∷ q ∷ _) (dat , n) = R.clause [] (R.proj (dat .efield) v∷ []) (R.def (quote invEq) (tApply (v n) (tStrProj A (dat .sfield) v∷ tStrProj B (dat .sfield) v∷ e v∷ []) v∷ R.def (quote pathMap) (R.def (dat .sfield) [] v∷ q v∷ []) v∷ [])) fwdBwdDatum : Vec R.Term 4 → R.Term → R.Term → InternalDatumField × ℕ → R.Term fwdBwdDatum (A ∷ B ∷ e ∷ q ∷ _) j i (dat , n) = R.def (quote retEq) (tApply (v n) (tStrProj A (dat .sfield) v∷ tStrProj B (dat .sfield) v∷ e v∷ []) v∷ R.def (quote pathMap) (R.def (dat .sfield) [] v∷ q v∷ []) v∷ j v∷ i v∷ []) fwdBwdProperty : Vec R.Term 4 → (j i prevPath : R.Term) → InternalPropField × ℕ → R.Term fwdBwdProperty (A ∷ B ∷ e ∷ q ∷ _) j i prevPath prop = R.def (quote snd) (v (prop .snd) v∷ A v∷ B v∷ e v∷ q v∷ prevPath v∷ j v∷ i v∷ []) bwdFwdClause : Vec R.Term 4 → R.Term → InternalDatumField × ℕ → R.Clause bwdFwdClause (A ∷ B ∷ e ∷ streq ∷ _) j (dat , n) = R.clause [] (R.proj (dat .efield) v∷ []) (R.def (quote secEq) (tApply (v n) (tStrProj A (dat .sfield) v∷ tStrProj B (dat .sfield) v∷ e v∷ []) v∷ R.def (dat .efield) (streq v∷ []) v∷ j v∷ [])) makeVarsFrom : {n : ℕ} → ℕ → Vec R.Term n makeVarsFrom {zero} k = [] makeVarsFrom {suc n} k = v (n + k) ∷ (makeVarsFrom k) fwd : R.Term fwd = vlam "A" (vlam "B" (vlam "e" (vlam "streq" (vlam "i" (R.pat-lam body []))))) where -- input list is in reverse order fwdClauses : ℕ → List (InternalField × ℕ) → List (R.Name × R.Term) fwdClauses k [] = [] fwdClauses k ((inl f , n) ∷ fs) = fwdClauses k fs ∷ʳ (f .sfield , fwdDatum (makeVarsFrom k) (v 0) (map-snd (4 + k +_) (f , n))) fwdClauses k ((inr p , n) ∷ fs) = fwdClauses k fs ∷ʳ (p .sfield , fwdProperty (makeVarsFrom k) (v 0) prevPath (map-snd (4 + k +_) (p , n))) where prevPath = vlam "i" (List.foldl (λ t (_ , t') → R.con (quote _,_) (t v∷ t' v∷ [])) (R.con (quote tt) []) (fwdClauses (suc k) fs)) body = List.map (λ (n , t) → R.clause [] [ varg (R.proj n) ] t) (fwdClauses 1 fields) bwd : R.Term bwd = vlam "A" (vlam "B" (vlam "e" (vlam "q" (R.pat-lam (bwdClauses fields) [])))) where -- input is in reverse order bwdClauses : List (InternalField × ℕ) → List R.Clause bwdClauses [] = [] bwdClauses ((inl f , n) ∷ fs) = bwdClauses fs ∷ʳ bwdClause (makeVarsFrom 0) (map-snd (4 +_) (f , n)) bwdClauses ((inr p , n) ∷ fs) = bwdClauses fs fwdBwd : R.Term fwdBwd = vlam "A" (vlam "B" (vlam "e" (vlam "q" (vlam "j" (vlam "i" (R.pat-lam body [])))))) where -- input is in reverse order fwdBwdClauses : ℕ → List (InternalField × ℕ) → List (R.Name × R.Term) fwdBwdClauses k [] = [] fwdBwdClauses k ((inl f , n) ∷ fs) = fwdBwdClauses k fs ∷ʳ (f .sfield , fwdBwdDatum (makeVarsFrom k) (v 1) (v 0) (map-snd (4 + k +_) (f , n))) fwdBwdClauses k ((inr p , n) ∷ fs) = fwdBwdClauses k fs ∷ʳ ((p .sfield , fwdBwdProperty (makeVarsFrom k) (v 1) (v 0) prevPath (map-snd (4 + k +_) (p , n)))) where prevPath = vlam "j" (vlam "i" (List.foldl (λ t (_ , t') → R.con (quote _,_) (t v∷ t' v∷ [])) (R.con (quote tt) []) (fwdBwdClauses (2 + k) fs))) body = List.map (λ (n , t) → R.clause [] [ varg (R.proj n) ] t) (fwdBwdClauses 2 fields) bwdFwd : R.Term bwdFwd = vlam "A" (vlam "B" (vlam "e" (vlam "streq" (vlam "j" (R.pat-lam (bwdFwdClauses fields) []))))) where bwdFwdClauses : List (InternalField × ℕ) → List R.Clause bwdFwdClauses [] = [] bwdFwdClauses ((inl f , n) ∷ fs) = bwdFwdClauses fs ∷ʳ bwdFwdClause (makeVarsFrom 1) (v 0) (map-snd (5 +_) (f , n)) bwdFwdClauses ((inr _ , n) ∷ fs) = bwdFwdClauses fs univalentRecord : R.Term univalentRecord = R.def (quote explicitUnivalentStr) (R.unknown v∷ R.unknown v∷ fwd v∷ bwd v∷ fwdBwd v∷ bwdFwd v∷ []) macro autoFieldEquiv : R.Term → R.Term → R.Term → R.Term → R.TC Unit autoFieldEquiv spec A B hole = (R.reduce spec >>= parseFieldSpec) >>= λ (ℓ , ℓ₂ , S , f) → buildDesc FUEL ℓ ℓ₂ S >>= λ d → R.unify hole (R.def (quote M.MacroEquivStr) (d v∷ tStrMap A f v∷ tStrMap B f v∷ [])) autoUnivalentRecord : R.Term → R.Term → R.TC Unit autoUnivalentRecord t hole = (R.reduce t >>= parseSpec) >>= λ spec → -- R.typeError (R.strErr "WOW: " ∷ R.termErr (main spec) ∷ []) R.unify (main spec) hole where module _ (spec : InternalSpec TypedTerm) where open InternalSpec spec mapUp : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (ℕ → A → B) → ℕ → List A → List B mapUp f _ [] = [] mapUp f n (x ∷ xs) = f n x ∷ mapUp f (suc n) xs closureSpec : InternalSpec ℕ closureSpec .InternalSpec.srec = srec closureSpec .InternalSpec.erec = erec closureSpec .InternalSpec.fields = mapUp (λ n → map-snd (λ _ → n)) 0 fields closure : R.Term closure = iter (List.length fields) (vlam "") (univalentRecord closureSpec) env : List (R.Arg R.Term) env = List.map (varg ∘ term ∘ snd) (List.rev fields) closureTy : R.Term closureTy = List.foldr (λ ty cod → R.def (quote Fun) (ty v∷ cod v∷ [])) (R.def (quote ExplicitUnivalentStr) (srec v∷ erec v∷ [])) (List.map (type ∘ snd) (List.rev fields)) main : R.Term main = R.def (quote idfun) (closureTy v∷ closure v∷ env)
{ "alphanum_fraction": 0.568551279, "avg_line_length": 36.8546255507, "ext": "agda", "hexsha": "edec938d96f2342073ccff70b3faac862245f2aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Structures/Record.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Structures/Record.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Structures/Record.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6100, "size": 16732 }
module Record where module M where record A : Set where constructor a open M record B : Set where record C : Set where constructor c x : A x = a y : C y = record {} record D (E : Set) : Set where record F : Set₁ where field G : Set z : G
{ "alphanum_fraction": 0.4835820896, "avg_line_length": 6.2037037037, "ext": "agda", "hexsha": "d4db21321510b92325d5e75c2ca1410237953daa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/declaration/Record.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/declaration/Record.agda", "max_line_length": 19, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/declaration/Record.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 122, "size": 335 }
{-# OPTIONS --cubical --safe #-} module JustBeInjective where open import Cubical.Core.Everything open import Cubical.Data.Unit data maybe (A : Set) : Set where just : A -> maybe A nothing : maybe A variable A : Set unwrap : A → (a : maybe A) → A unwrap _ (just x) = x unwrap a nothing = a just-injective : ∀ {A : Set} (a b : A) → just a ≡ just b → a ≡ b just-injective a b p i = unwrap a (p i)
{ "alphanum_fraction": 0.6401985112, "avg_line_length": 22.3888888889, "ext": "agda", "hexsha": "da91190350526ff4406160cb94884e26bc1d10dd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/JustBeInjective.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/JustBeInjective.agda", "max_line_length": 64, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/JustBeInjective.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 133, "size": 403 }
{-# OPTIONS --cubical #-} module LaterPrims where open import Agda.Primitive open import Agda.Primitive.Cubical renaming (itIsOne to 1=1) open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to outS) module Prims where primitive primLockUniv : Set₁ open Prims renaming (primLockUniv to LockU) public private variable l : Level A B : Set l -- We postulate Tick as it is supposed to be an abstract sort. postulate Tick : LockU ▹_ : ∀ {l} → Set l → Set l ▹_ A = (@tick x : Tick) -> A ▸_ : ∀ {l} → ▹ Set l → Set l ▸ A = (@tick x : Tick) → A x next : A → ▹ A next x _ = x _⊛_ : ▹ (A → B) → ▹ A → ▹ B _⊛_ f x a = f a (x a) map▹ : (f : A → B) → ▹ A → ▹ B map▹ f x α = f (x α) transpLater : ∀ (A : I → ▹ Set) → ▸ (A i0) → ▸ (A i1) transpLater A u0 a = primTransp (\ i → A i a) i0 (u0 a) transpLater-prim : (A : I → ▹ Set) → (x : ▸ (A i0)) → ▸ (A i1) transpLater-prim A x = primTransp (\ i → ▸ (A i)) i0 x transpLater-test : ∀ (A : I → ▹ Set) → (x : ▸ (A i0)) → transpLater-prim A x ≡ transpLater A x transpLater-test A x = \ _ → transpLater-prim A x hcompLater-prim : ∀ (A : ▹ Set) φ (u : I → Partial φ (▸ A)) → (u0 : (▸ A) [ φ ↦ u i0 ]) → ▸ A hcompLater-prim A φ u u0 a = primHComp (\ { i (φ = i1) → u i 1=1 a }) (outS u0 a) hcompLater : ∀ (A : ▹ Set) φ (u : I → Partial φ (▸ A)) → (u0 : (▸ A) [ φ ↦ u i0 ]) → ▸ A hcompLater A φ u u0 = primHComp (\ { i (φ = i1) → u i 1=1 }) (outS u0) hcompLater-test : ∀ (A : ▹ Set) φ (u : I → Partial φ (▸ A)) → (u0 : (▸ A) [ φ ↦ u i0 ]) → hcompLater A φ u u0 ≡ hcompLater-prim A φ u u0 hcompLater-test A φ u x = \ _ → hcompLater-prim A φ u x ap : ∀ {A B : Set} (f : A → B) → ∀ {x y} → x ≡ y → f x ≡ f y ap f eq = \ i → f (eq i) _$>_ : ∀ {A B : Set} {f g : A → B} → f ≡ g → ∀ x → f x ≡ g x eq $> x = \ i → eq i x later-ext : ∀ {A : Set} → {f g : ▹ A} → (▸ \ α → f α ≡ g α) → f ≡ g later-ext eq = \ i α → eq α i postulate dfix : ∀ {l} {A : Set l} → (▹ A → A) → ▹ A pfix : ∀ {l} {A : Set l} (f : ▹ A → A) → dfix f ≡ (\ _ → f (dfix f)) pfix' : ∀ {l} {A : Set l} (f : ▹ A → A) → ▸ \ α → dfix f α ≡ f (dfix f) pfix' f α i = pfix f i α fix : ∀ {l} {A : Set l} → (▹ A → A) → A fix f = f (dfix f) data gStream (A : Set) : Set where cons : (x : A) (xs : ▹ gStream A) → gStream A repeat : ∀ {A : Set} → A → gStream A repeat a = fix \ repeat▹ → cons a repeat▹ repeat-eq : ∀ {A : Set} (a : A) → repeat a ≡ cons a (\ α → repeat a) repeat-eq a = ap (cons a) (pfix (cons a)) map : ∀ {A B : Set} → (A → B) → gStream A → gStream B map f = fix \ map▹ → \ { (cons a as) → cons (f a) \ α → map▹ α (as α) } map-eq : ∀ {A B : Set} → (f : A → B) → ∀ a as → map f (cons a as) ≡ cons (f a) (\ α → map f (as α)) map-eq f a b = ap (cons _) (later-ext \ α → pfix' _ α $> b α) _∙_ : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z _∙_ {x = x} p q i = primHComp (\ j → \ { (i = i0) → x; (i = i1) → q j}) (p i) map-repeat : ∀ {A B : Set} → (a : A) → (f : A → B) → map f (repeat a) ≡ repeat (f a) map-repeat a f = fix \ prf▹ → ap (map f) (repeat-eq a) ∙ (map-eq f a _ ∙ ap (cons (f a)) (later-ext prf▹ ∙ later-ext \ α → \ i → pfix' (cons (f a)) α (primINeg i) ))
{ "alphanum_fraction": 0.500630517, "avg_line_length": 32.3673469388, "ext": "agda", "hexsha": "fc209f506b36c7cc9763ae06ed156c7b1bd9f4b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "02fe8918eb5c22bf75de040a4952c148858badb0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "rwe/agda", "max_forks_repo_path": "test/Succeed/LaterPrims.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "02fe8918eb5c22bf75de040a4952c148858badb0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "rwe/agda", "max_issues_repo_path": "test/Succeed/LaterPrims.agda", "max_line_length": 165, "max_stars_count": null, "max_stars_repo_head_hexsha": "02fe8918eb5c22bf75de040a4952c148858badb0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "rwe/agda", "max_stars_repo_path": "test/Succeed/LaterPrims.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1457, "size": 3172 }
module 120-natural-induction-necessary where open import 010-false-true open import 020-equivalence open import 100-natural -- We prove that the induction axiom is necessary. -- Peano axioms without induction. record NaturalWithoutInduction {M : Set} (zero : M) (suc : M -> M) (_==_ : M -> M -> Set) : Set1 where -- axioms field equiv : Equivalence _==_ sucn!=zero : ∀ {r} -> suc r == zero -> False sucinjective : ∀ {r s} -> suc r == suc s -> r == s cong : ∀ {r s} -> r == s -> suc r == suc s not-induction : ((p : M -> Set) -> p zero -> (∀ n -> p n -> p (suc n)) -> ∀ n -> p n) -> False open Equivalence equiv public -- Construct a model, and prove it satisfies NaturalWithoutInduction -- but not Natural. To do this, we add an extra zero. data M : Set where zero1 : M zero2 : M suc : M -> M thm-M-is-natural-without-induction : NaturalWithoutInduction zero1 suc _≡_ thm-M-is-natural-without-induction = record { equiv = thm-≡-is-equivalence; sucn!=zero = sucn!=zero; sucinjective = sucinjective; cong = cong; not-induction = not-induction } where sucn!=zero : ∀ {r} -> suc r ≡ zero1 -> False sucn!=zero () sucinjective : ∀ {r s} -> suc r ≡ suc s -> r ≡ s sucinjective refl = refl cong : ∀ {r s} -> r ≡ s -> suc r ≡ suc s cong refl = refl -- To prove that induction fails, we test the property "is a -- successor of zero1 but not of zero2". This holds for zero1 (the -- base case), and it also holds for every successor of n if it -- holds for n, but it does not hold for zero2 (or for any of its -- successors). not-induction : ((p : M -> Set) -> p zero1 -> (∀ n -> p n -> p (suc n)) -> ∀ n -> p n) -> False not-induction induction = induction p base hypothesis zero2 where -- Property "is a successor of zero1 but not a successor of zero2". p : M -> Set p zero1 = True -- true for zero1 p zero2 = False -- false (no proof) for zero2 p (suc n) = p n -- true for successor of n if and only if true for n -- Base case is trivial. base : p zero1 base = trivial -- Induction hypothesis follows by application of "p n" itself -- due to the recursive definition of p. hypothesis : ∀ n -> p n -> p (suc n) hypothesis n pn = pn -- To round this off, we explicitly prove that M is not natural. thm-M-is-not-natural : (Natural zero1 suc _≡_) -> False thm-M-is-not-natural nat = (NaturalWithoutInduction.not-induction thm-M-is-natural-without-induction) (Natural.induction nat)
{ "alphanum_fraction": 0.60587562, "avg_line_length": 31.2023809524, "ext": "agda", "hexsha": "b72c2a282d8c3756edf72c7976dd465722b9ef4b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mcmtroffaes/agda-proofs", "max_forks_repo_path": "120-natural-induction-necessary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mcmtroffaes/agda-proofs", "max_issues_repo_path": "120-natural-induction-necessary.agda", "max_line_length": 76, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mcmtroffaes/agda-proofs", "max_stars_repo_path": "120-natural-induction-necessary.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z", "num_tokens": 794, "size": 2621 }
module Issue468 where data Unit : Set where nothing : Unit data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A data P : (R : Set) → Maybe R → Set₁ where p : (R : Set) (x : R) → P R (just x) works : P Unit (just _) works = p _ nothing fails : Unit → P Unit (just _) fails x = p _ nothing
{ "alphanum_fraction": 0.6037735849, "avg_line_length": 16.7368421053, "ext": "agda", "hexsha": "993b9cdfa40ea839c5270ea7bdb20510d0df9715", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue468.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue468.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue468.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 106, "size": 318 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Groups.Definition open import Groups.Homomorphisms.Definition module Groups.Isomorphisms.Definition where record GroupIso {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) (f : A → B) : Set (m ⊔ n ⊔ o ⊔ p) where open Setoid S renaming (_∼_ to _∼G_) open Setoid T renaming (_∼_ to _∼H_) field groupHom : GroupHom G H f bij : SetoidBijection S T f record GroupsIsomorphic {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) : Set (m ⊔ n ⊔ o ⊔ p) where field isomorphism : A → B proof : GroupIso G H isomorphism
{ "alphanum_fraction": 0.5977900552, "avg_line_length": 43.0952380952, "ext": "agda", "hexsha": "1a6ab397a1ed9add09e18c6947fbc8cfe6050ef3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Isomorphisms/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Isomorphisms/Definition.agda", "max_line_length": 215, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Isomorphisms/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 365, "size": 905 }
module Lib.Vec where open import Lib.Prelude open import Lib.Nat open import Lib.Fin infixr 40 _::_ _++_ data Vec (A : Set) : Nat -> Set where [] : Vec A 0 _::_ : forall {n} -> A -> Vec A n -> Vec A (suc n) _++_ : {A : Set}{n m : Nat} -> Vec A n -> Vec A m -> Vec A (n + m) [] ++ ys = ys (x :: xs) ++ ys = x :: xs ++ ys _!_ : forall {A n} -> Vec A n -> Fin n -> A [] ! () x :: xs ! zero = x x :: xs ! suc i = xs ! i tabulate : forall {A n} -> (Fin n -> A) -> Vec A n tabulate {n = zero} f = [] tabulate {n = suc n} f = f zero :: tabulate (f ∘ suc) vec : forall {A n} -> A -> Vec A n vec x = tabulate (\_ -> x) infixl 30 _<*>_ _<*>_ : forall {A B n} -> Vec (A -> B) n -> Vec A n -> Vec B n [] <*> [] = [] f :: fs <*> x :: xs = f x :: (fs <*> xs) map : forall {A B n} -> (A -> B) -> Vec A n -> Vec B n map f xs = vec f <*> xs zip : forall {A B C n} -> (A -> B -> C) -> Vec A n -> Vec B n -> Vec C n zip f xs ys = vec f <*> xs <*> ys
{ "alphanum_fraction": 0.4563206578, "avg_line_length": 23.7317073171, "ext": "agda", "hexsha": "6394315f305aacf874d571d51830f603f1209c13", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/simple-lib/Lib/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/simple-lib/Lib/Vec.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/simple-lib/Lib/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 381, "size": 973 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.Unit where open import Cubical.Foundations.Prelude open import Cubical.Data.Unit open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing private variable ℓ : Level open CommRingStr UnitCommRing : ∀ {ℓ} → CommRing ℓ fst UnitCommRing = Unit* 0r (snd UnitCommRing) = tt* 1r (snd UnitCommRing) = tt* _+_ (snd UnitCommRing) = λ _ _ → tt* _·_ (snd UnitCommRing) = λ _ _ → tt* - snd UnitCommRing = λ _ → tt* isCommRing (snd UnitCommRing) = makeIsCommRing isSetUnit* (λ _ _ _ → refl) (λ { tt* → refl }) (λ _ → refl) (λ _ _ → refl) (λ _ _ _ → refl) (λ { tt* → refl }) (λ _ _ _ → refl) (λ _ _ → refl)
{ "alphanum_fraction": 0.6420612813, "avg_line_length": 25.6428571429, "ext": "agda", "hexsha": "3a9e6a3685850f03af509c116f8290679aa860d9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/Unit.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 235, "size": 718 }
module Prelude.String where open import Prelude.Bool open import Prelude.Char open import Prelude.List open import Prelude.Nat postulate String : Set nil : String primStringToNat : String → Nat charToString : Char -> String {-# BUILTIN STRING String #-} primitive primStringAppend : String → String → String primStringToList : String → List Char primStringFromList : List Char → String primStringEquality : String → String → Bool {-# COMPILED_EPIC nil () -> String = "" #-} {-# COMPILED_EPIC primStringToNat (s : String) -> BigInt = foreign BigInt "strToBigInt" (s : String) #-} -- {-# COMPILED_EPIC charToString (c : Int) -> String = charToString(c) #-} strEq : (x y : String) -> Bool strEq = primStringEquality infixr 30 _+S+_ _+S+_ : (x y : String) -> String _+S+_ = primStringAppend fromList : List Char -> String fromList = primStringFromList fromString : String -> List Char fromString = primStringToList
{ "alphanum_fraction": 0.7066950053, "avg_line_length": 24.1282051282, "ext": "agda", "hexsha": "b47024c9c43f630b6a9d3222debac749d6929801", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/epic/Prelude/String.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/epic/Prelude/String.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/epic/Prelude/String.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 260, "size": 941 }
module Everything where import Library import Syntax import RenamingAndSubstitution import EquationalTheory
{ "alphanum_fraction": 0.8899082569, "avg_line_length": 15.5714285714, "ext": "agda", "hexsha": "34c9b1ec61af6d818bff3c0ecf23627d9682e0dd", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda/Everything.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda/Everything.agda", "max_line_length": 30, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 22, "size": 109 }
-- TODO: Unfinished open import Logic open import Type open import Structure.Relator open import Structure.Setoid module Geometry.HilbertAxioms {ℓₚ ℓₗ ℓₚₑ ℓₗₑ ℓₚₗ ℓₚₚₚ} (Point : Type{ℓₚ}) ⦃ equiv-point : Equiv{ℓₚₑ}(Point) ⦄ -- The type of points on a plane. (Line : Type{ℓₗ}) ⦃ equiv-line : Equiv{ℓₗₑ}(Line) ⦄ -- The type of lines on a plane. (Distance : Type{ℓₗ}) ⦃ equiv-distance : Equiv{ℓₗₑ}(Distance) ⦄ (Angle : Type{ℓₗ}) ⦃ equiv-angle : Equiv{ℓₗₑ}(Angle) ⦄ (_∈ₚₗ_ : Point → Line → Stmt{ℓₚₗ}) -- `p ∈ₚₗ l` means that the point `p` lies on the line `l`. (_―_―_ : Point → Point → Point → Stmt{ℓₚₚₚ}) -- `p₁ ― p₂ ― p₃` means that the second point `p₂` lies between `p₁` and `p₃` in some line. ⦃ incidence-relator : BinaryRelator(_∈ₚₗ_) ⦄ ⦃ betweenness-relator : TrinaryRelator(_―_―_) ⦄ where open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Functional.Combinations import Lvl open import Logic.Predicate open import Logic.Propositional open import Logic.Propositional.Xor open import Sets.ExtensionalPredicateSet renaming (_≡_ to _≡ₛ_) open import Structure.Relator.Properties open import Structure.Setoid.Uniqueness open import Syntax.Function private variable p p₁ p₂ p₃ p₄ q q₁ q₂ q₃ q₄ : Point private variable l l₁ l₂ : Line module _ where -- An open line segment. -- The set of points strictly between two points in a line. -- Also called: -- • Open interval in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter. betweens : Point → Point → PredSet(Point) betweens a b ∋ p = a ― p ― b PredSet.preserve-equiv (betweens a b) = TrinaryRelator.unary₂ betweenness-relator extensionPoints : Point → Point → PredSet(Point) extensionPoints a b ∋ p = a ― b ― p PredSet.preserve-equiv (extensionPoints a b) = TrinaryRelator.unary₃ betweenness-relator -- A line segment. -- The set of points between two points in a line including the endpoints. segment : Point → Point → PredSet(Point) segment a b = (• a) ∪ (• b) ∪ (betweens a b) -- A ray. -- The set of points between starting from `a` in the direction of `b` in a line. ray : Point → Point → PredSet(Point) ray a b = (• a) ∪ (• b) ∪ (extensionPoints a b) angle : Point → Point → Point → PredSet(PredSet(Point)) angle p₁ p₂ p₃ = (• ray p₁ p₂) ∪ (• ray p₁ p₃) Distinct₃ : Point → Point → Point → Stmt Distinct₃ = combine₃Fn₂Op₂(_≢_)(_∧_) Collinear₃ : Point → Point → Point → Stmt Collinear₃ p₁ p₂ p₃ = ∃(l ↦ all₃Fn₁Op₂(_∈ₚₗ l)(_∧_) p₁ p₂ p₃) record Axioms : Type{ℓₚ Lvl.⊔ ℓₗ Lvl.⊔ ℓₚₑ Lvl.⊔ ℓₗₑ Lvl.⊔ ℓₚₗ Lvl.⊔ ℓₚₚₚ} where field -- There is an unique line for every unordered distinct pair of points. -- Also called: -- • I1 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren. -- • I.1 and I.2 in Project Gutenberg’s The Foundations of Geometry by David Hilbert. -- • I1 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter. line-construction : (p₁ ≢ p₂) → ∃!(l ↦ (p₁ ∈ₚₗ l) ∧ (p₂ ∈ₚₗ l)) -- There are two distinct points on every line. -- Also called: -- • I2 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren. -- • I.7 in Project Gutenberg’s The Foundations of Geometry by David Hilbert. -- • I2 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter. line-deconstruction : ∃{Obj = Point ⨯ Point}(\{(p₁ , p₂) → (p₁ ≢ p₂) ∧ (p₁ ∈ₚₗ l) ∧ (p₂ ∈ₚₗ l)}) -- There exists three points that constructs a triangle (not all on the same line). -- • I3 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren. -- • I3 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter. triangle-existence : ∃{Obj = Point ⨯ Point ⨯ Point}(\{(p₁ , p₂ , p₃) → ¬(Collinear₃ p₁ p₂ p₃)}) -- The betweenness relation is strict (pairwise irreflexive). -- There are no points between a single point. betweenness-strictness : ¬(p₁ ― p₂ ― p₁) -- The betweenness relation is symmetric. -- Also called: -- • B1 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren. -- • II.1 in Project Gutenberg’s The Foundations of Geometry by David Hilbert. -- • B1 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter. betweenness-symmetry : (p₁ ― p₂ ― p₃) → (p₃ ― p₂ ― p₁) -- A line segment can be extended to a third point. -- • Part of II.2 in Project Gutenberg’s The Foundations of Geometry by David Hilbert. -- • B2 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren. -- • B2 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter. betweenness-extensionᵣ : (p₁ ≢ p₂) → ∃(p₃ ↦ (p₁ ― p₂ ― p₃)) -- Three points are always between each other in a certain order. betweenness-antisymmetryₗ : (p₁ ― p₂ ― p₃) → (p₂ ― p₁ ― p₃) → ⊥ -- Three distinct points on a line are always between each other in a certain order. -- Also called: -- • Part of B3 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren. -- • Part of II.3 in Project Gutenberg’s The Foundations of Geometry by David Hilbert. -- • Part of B3 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter. betweenness-cases : (Distinct₃ p₁ p₂ p₃) → (Collinear₃ p₁ p₂ p₃) → (rotate₃Fn₃Op₂(_―_―_)(_∨_) p₁ p₂ p₃) -- For three points that forms a triangle, and a line not intersecting the triangle's vertices, but intersecting one of its edges. Such a line intersects exactly one of the other edges of the triangle. -- Also called: -- • Pasch's axiom -- • B4 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren. -- • II.5 in Project Gutenberg’s The Foundations of Geometry by David Hilbert. -- • B4 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter. line-triangle-intersection : ¬(Collinear₃ p₁ p₂ p₃) → (all₃Fn₁Op₂(¬_ ∘ (_∈ₚₗ l))(_∧_) p₁ p₂ p₃) → ((p ∈ₚₗ l) ∧ (p₁ ― p ― p₂)) → (∃(p ↦ (p ∈ₚₗ l) ∧ (p₁ ― p ― p₃)) ⊕ ∃(p ↦ (p ∈ₚₗ l) ∧ (p₂ ― p ― p₃))) -- TODO: The rest of the axioms are not yet formulated because I am not sure what the best way to express them is ray-segment : ∃!(p ↦ (p ∈ ray p₁ p₂) ∧ (segment q₁ q₂ ≡ₛ segment p₁ p)) segment-concat : (p₁ ― p₂ ― p₃) → (q₁ ― q₂ ― q₃) → (segment p₁ p₂ ≡ₛ segment q₁ q₂) → (segment p₂ p₃ ≡ₛ segment q₂ q₃) → (segment p₁ p₃ ≡ₛ segment q₁ q₃) -- A pair of points constructs a line. line : (a : Point) → (b : Point) → (a ≢ b) → Line line a b nab = [∃!]-witness(line-construction nab) -- A line can be deconstructed to two points. linePoints : Line → (Point ⨯ Point) linePoints l = [∃]-witness(line-deconstruction{l}) -- The point to the left in the construction of a line is in the line. line-construction-pointₗ : (np12 : p₁ ≢ p₂) → (p₁ ∈ₚₗ line p₁ p₂ np12) line-construction-pointₗ np12 = [∧]-elimₗ([∃!]-proof (line-construction np12)) -- The point to the right in the construction of a line is in the line. line-construction-pointᵣ : (np12 : p₁ ≢ p₂) → (p₂ ∈ₚₗ line p₁ p₂ np12) line-construction-pointᵣ np12 = [∧]-elimᵣ([∃!]-proof (line-construction np12)) -- Two lines having a pair of common points are the same line.. line-uniqueness : (p₁ ≢ p₂) → (p₁ ∈ₚₗ l₁) → (p₂ ∈ₚₗ l₁) → (p₁ ∈ₚₗ l₂) → (p₂ ∈ₚₗ l₂) → (l₁ ≡ l₂) line-uniqueness np12 p1l1 p2l1 p1l2 p2l2 = [∃!]-uniqueness (line-construction np12) ([∧]-intro p1l1 p2l1) ([∧]-intro p1l2 p2l2) -- The deconstructed points of a line are distinct. linePoints-distinct : let (a , b) = linePoints(l) in (a ≢ b) linePoints-distinct = [∧]-elimₗ([∧]-elimₗ([∃]-proof(line-deconstruction))) -- The left deconstructed point of a line is in the line. linePoints-pointₗ : Tuple.left(linePoints(l)) ∈ₚₗ l linePoints-pointₗ = [∧]-elimᵣ([∧]-elimₗ([∃]-proof(line-deconstruction))) -- The right deconstructed point of a line is in the line. linePoints-pointᵣ : Tuple.right(linePoints(l)) ∈ₚₗ l linePoints-pointᵣ = [∧]-elimᵣ([∃]-proof(line-deconstruction)) -- The line of the deconstructed points of a line is the same line. line-linePoints-inverseᵣ : let (a , b) = linePoints(l) in (line a b linePoints-distinct ≡ l) line-linePoints-inverseᵣ = line-uniqueness linePoints-distinct (line-construction-pointₗ linePoints-distinct) (line-construction-pointᵣ linePoints-distinct) linePoints-pointₗ linePoints-pointᵣ betweenness-antisymmetryᵣ : (p₁ ― p₂ ― p₃) → (p₁ ― p₃ ― p₂) → ⊥ betweenness-antisymmetryᵣ p123 p132 = betweenness-antisymmetryₗ (betweenness-symmetry p123) (betweenness-symmetry p132) betweenness-irreflexivityₗ : ¬(p₁ ― p₁ ― p₂) betweenness-irreflexivityₗ p112 = betweenness-antisymmetryₗ p112 p112 betweenness-irreflexivityᵣ : ¬(p₁ ― p₂ ― p₂) betweenness-irreflexivityᵣ p122 = betweenness-irreflexivityₗ (betweenness-symmetry p122) -- Also called: -- • B1 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren. -- • B1 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter. betweenness-distinct : (p₁ ― p₂ ― p₃) → (Distinct₃ p₁ p₂ p₃) Tuple.left (betweenness-distinct p123) p12 = betweenness-irreflexivityₗ(substitute₃-unary₁(_―_―_) p12 p123) Tuple.left (Tuple.right (betweenness-distinct p123)) p13 = betweenness-strictness(substitute₃-unary₁(_―_―_) p13 p123) Tuple.right(Tuple.right (betweenness-distinct p123)) p23 = betweenness-irreflexivityᵣ(substitute₃-unary₂(_―_―_) p23 p123) betweenness-extensionₗ : (p₂ ≢ p₃) → ∃(p₁ ↦ (p₁ ― p₂ ― p₃)) betweenness-extensionₗ np23 = [∃]-map-proof betweenness-symmetry (betweenness-extensionᵣ (np23 ∘ symmetry(_≡_))) -- Three points are always between each other in a certain order. -- Also called: -- • B3 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren. -- • II.3 in Project Gutenberg’s The Foundations of Geometry by David Hilbert. -- • B3 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter. betweenness-distinct-cases : (Distinct₃ p₁ p₂ p₃) → (Collinear₃ p₁ p₂ p₃) → ((p₁ ― p₂ ― p₃) ⊕₃ (p₂ ― p₃ ― p₁) ⊕₃ (p₃ ― p₁ ― p₂)) betweenness-distinct-cases pd pl with betweenness-cases pd pl ... | [∨]-introₗ p123 = [⊕₃]-intro₁ p123 (betweenness-antisymmetryₗ (betweenness-symmetry p123)) (betweenness-antisymmetryᵣ (betweenness-symmetry p123)) ... | [∨]-introᵣ ([∨]-introₗ p231) = [⊕₃]-intro₂ (betweenness-antisymmetryᵣ ((betweenness-symmetry p231))) p231 (betweenness-antisymmetryₗ ((betweenness-symmetry p231))) ... | [∨]-introᵣ ([∨]-introᵣ p312) = [⊕₃]-intro₃ (betweenness-antisymmetryₗ (betweenness-symmetry p312)) (betweenness-antisymmetryᵣ (betweenness-symmetry p312)) p312 --betweenness-between : (p₁ ≢ p₂) → (p₁ ∈ₚₗ l) → (p₂ ∈ₚₗ l) → ∃(p ↦ p₁ ― p ― p₂) --betweenness-between np12 p1l p2l = {!!} --betweenness-collinnear : (p₁ ― p₂ ― p₃) → (Collinear₃ p₁ p₂ p₃)
{ "alphanum_fraction": 0.6823837, "avg_line_length": 55.46, "ext": "agda", "hexsha": "a49d5abf493bd67a61e5b97af31aa24f7cd03c4f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Geometry/HilbertAxioms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Geometry/HilbertAxioms.agda", "max_line_length": 205, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Geometry/HilbertAxioms.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3950, "size": 11092 }
{-# OPTIONS --sized-types #-} module GiveSize where postulate Size : Set {-# BUILTIN SIZE Size #-} id : Size → Size id i = {!i!}
{ "alphanum_fraction": 0.6183206107, "avg_line_length": 14.5555555556, "ext": "agda", "hexsha": "2ae0553e83b96b713adde62418a827dc8237c7e4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/interaction/GiveSize.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/interaction/GiveSize.agda", "max_line_length": 29, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/interaction/GiveSize.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 37, "size": 131 }
open import Formalization.PredicateLogic.Signature module Formalization.PredicateLogic.Syntax.NegativeTranslations (𝔏 : Signature) where open Signature(𝔏) open import Data.ListSized import Lvl open import Formalization.PredicateLogic.Syntax (𝔏) open import Functional using (_∘_ ; _∘₂_ ; swap) open import Numeral.Finite open import Numeral.Natural open import Sets.PredicateSet using (PredSet) open import Type private variable ℓ : Lvl.Level private variable args vars : ℕ -- Also called: Gödel-Gentzen's negative translation. -- 2.3.3 ggTrans : Formula(vars) → Formula(vars) ggTrans (P $ x) = ¬¬(P $ x) ggTrans ⊤ = ⊤ ggTrans ⊥ = ⊥ ggTrans (φ ∧ ψ) = (ggTrans φ) ∧ (ggTrans ψ) ggTrans (φ ∨ ψ) = ¬(¬(ggTrans φ) ∧ ¬(ggTrans ψ)) ggTrans (φ ⟶ ψ) = (ggTrans φ) ⟶ (ggTrans ψ) ggTrans (Ɐ φ) = Ɐ(ggTrans φ) ggTrans (∃ φ) = ¬ Ɐ(¬(ggTrans φ)) -- Also called: Kolmogorov's negative translation. -- 2.3.7A koTrans : Formula(vars) → Formula(vars) koTrans (P $ x) = ¬¬(P $ x) koTrans ⊤ = ⊤ koTrans ⊥ = ⊥ koTrans (φ ∧ ψ) = ¬¬((koTrans φ) ∧ (koTrans ψ)) koTrans (φ ∨ ψ) = ¬¬((koTrans φ) ∨ (koTrans ψ)) koTrans (φ ⟶ ψ) = ¬¬((koTrans φ) ⟶ (koTrans ψ)) koTrans (Ɐ φ) = ¬¬ Ɐ(koTrans φ) koTrans (∃ φ) = ¬¬ ∃(koTrans φ) -- Also called: Kuroda's negative translation. -- 2.3.7B kuTrans : Formula(vars) → Formula(vars) kuTrans (P $ x) = P $ x kuTrans ⊤ = ⊤ kuTrans ⊥ = ⊥ kuTrans (φ ∧ ψ) = ((koTrans φ) ∧ (koTrans ψ)) kuTrans (φ ∨ ψ) = ((koTrans φ) ∨ (koTrans ψ)) kuTrans (φ ⟶ ψ) = ((koTrans φ) ⟶ (koTrans ψ)) kuTrans (Ɐ φ) = Ɐ(¬¬(koTrans φ)) kuTrans (∃ φ) = ∃(koTrans φ)
{ "alphanum_fraction": 0.6288916563, "avg_line_length": 30.3018867925, "ext": "agda", "hexsha": "152b54cda5eb7edcc26862aadbb58857ab2d4b99", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/PredicateLogic/Syntax/NegativeTranslations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/PredicateLogic/Syntax/NegativeTranslations.agda", "max_line_length": 85, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/PredicateLogic/Syntax/NegativeTranslations.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 628, "size": 1606 }
module Lawvere where open import Library open import Data.Sum open import Categories open import Categories.Sets open import Categories.Initial open import Categories.PushOuts open import Categories.Products hiding (_×_) open import Categories.CoProducts open import Categories.Terminal open import Functors open import Functors.Fin record Lawvere {a}{b} : Set (lsuc (a ⊔ b)) where constructor lawvere field T : Cat {a}{b} L : Fun (Nats Op) T L0 : Term T (Fun.OMap L zero) LP : ∀ m n → Prod T (Fun.OMap L m) (Fun.OMap L n) -- it's not the identity, it switches some implicit in fid and fcomp I think FunOp : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} → Fun C D → Fun (C Op) (D Op) FunOp (functor OMap HMap fid fcomp) = functor OMap HMap fid fcomp LSet : Lawvere LSet = lawvere (Sets Op) (FunOp FinF) (term (λ ()) (ext λ ())) λ m n → prod (Fin m ⊎ Fin n) inj₁ inj₂ [_,_]′ refl refl λ p q → ext (λ{ (inj₁ a) -> fcong a p; (inj₂ b) -> fcong b q}) open import RMonads open import RMonads.RKleisli open import RMonads.RKleisli.Functors lem : RMonad FinF → Lawvere {lzero}{lzero} lem M = lawvere (Kl M Op) (FunOp (RKlL M) ) (term (λ ()) (ext λ ())) λ m n → prod (m + n) (η ∘ extend) (η ∘ lift m) (case m) (ext λ i → trans (fcong (extend i) law2) (lem1 m _ _ i)) (ext λ i → trans (fcong (lift m i) law2) (lem2 m _ _ i)) λ {o} {f} {g} {h} p q → ext (lem3 m f g h (trans (ext λ i → sym (fcong (extend i) law2)) p) (trans (ext λ i → sym (fcong (lift m i) law2)) q)) where open RMonad M lem-1 : Lawvere {lzero}{lzero} → RMonad FinF lem-1 LT = rmonad (λ n → Cat.Hom (Lawvere.T LT) (Fun.OMap (Lawvere.L LT) 1) (Fun.OMap (Lawvere.L LT) n)) {!!} {!!} {!!} {!!} {!!} open import Categories.Products record Model {a}{b}{c}{d} (Law : Lawvere {a}{b}) : Set (lsuc (a ⊔ b ⊔ c ⊔ d)) where open Lawvere Law field C : Cat {c}{d} F : Fun T C F0 : Term C (Fun.OMap F (Fun.OMap L zero)) FP : ∀ m n → Prod C (Fun.OMap F (Fun.OMap L m)) (Fun.OMap F (Fun.OMap L n)) open import RMonads.REM open import RMonads.CatofRAdj.InitRAdj open import RMonads.CatofRAdj.TermRAdjObj open import RMonads.REM.Functors model : (T : RMonad FinF) → Model (lem T) model T = record { C = EM T Op ; F = FunOp (K' T (EMObj T)); F0 = term (λ{alg} → ralgmorph (RAlg.astr alg {0} (λ ())) (λ {n}{f} → sym $ RAlg.alaw2 alg {n}{zero}{f}{λ ()} )) (λ{alg}{f} → RAlgMorphEq T (ext (λ t → trans (trans (cong (λ f₁ → RAlg.astr alg f₁ t) (ext (λ ()))) (sym (fcong t (RAlgMorph.ahom f {0}{RMonad.η T})))) (cong (RAlgMorph.amor f) (fcong t (RMonad.law1 T)))))); FP = λ m n → prod (Fun.OMap (REML FinF T) (m + n) ) (Fun.HMap (REML FinF T) extend) (Fun.HMap (REML FinF T) (lift m)) (λ{alg} f g → ralgmorph (RAlg.astr alg (case m (RAlgMorph.amor f ∘ RMonad.η T) (RAlgMorph.amor g ∘ RMonad.η T))) (sym (RAlg.alaw2 alg))) (λ {alg}{f}{g} → RAlgMorphEq T (trans (sym (RAlg.alaw2 alg)) (trans (cong (RAlg.astr alg) (ext λ i → trans (fcong (extend i) (sym (RAlg.alaw1 alg))) (lem1 m _ _ i))) (trans (sym (RAlgMorph.ahom f)) (ext λ i → cong (RAlgMorph.amor f) (fcong i (RMonad.law1 T))))))) (λ {alg}{f}{g} → RAlgMorphEq T (trans (sym (RAlg.alaw2 alg)) (trans (cong (RAlg.astr alg) (ext λ i → trans (fcong (lift m i) (sym (RAlg.alaw1 alg))) (lem2 m _ _ i))) (trans (sym (RAlgMorph.ahom g)) (ext λ i → cong (RAlgMorph.amor g) (fcong i (RMonad.law1 T))))))) λ{alg}{f}{g}{h} p q → RAlgMorphEq T (trans (trans (ext λ i → cong (RAlgMorph.amor h) (sym (fcong i (RMonad.law1 T)))) (RAlgMorph.ahom h)) (cong (RAlg.astr alg) (ext (lem3 m (RAlgMorph.amor f ∘ RMonad.η T) (RAlgMorph.amor g ∘ RMonad.η T) (RAlgMorph.amor h ∘ RMonad.η T) (ext λ i → trans (cong (RAlgMorph.amor h) (sym (fcong i (RMonad.law2 T)))) (fcong (RMonad.η T i) (cong RAlgMorph.amor p))) (ext λ i → trans (cong (RAlgMorph.amor h) (sym (fcong i (RMonad.law2 T)))) (fcong (RMonad.η T i) (cong RAlgMorph.amor q)))))))}
{ "alphanum_fraction": 0.5220004293, "avg_line_length": 32.5804195804, "ext": "agda", "hexsha": "425e108e66089088ba41b392350267cbe3faecd5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Lawvere.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Lawvere.agda", "max_line_length": 88, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Lawvere.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 1701, "size": 4659 }
module UniDB.Subst.Core where open import UniDB.Spec public open import UniDB.Morph.Unit record Ap (T X : STX) : Set₁ where field ap : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (x : X γ₁) → X γ₂ open Ap {{...}} public record ApVr (T : STX) {{vrT : Vr T}} {{apTT : Ap T T}} : Set₁ where field ap-vr : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) → (i : Ix γ₁) → ap {T} ξ (vr i) ≡ lk {T} ξ i open ApVr {{...}} public record LkCompAp (T : STX) {{vrT : Vr T}} {{apTT : Ap T T}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{compΞ : Comp Ξ}} : Set₁ where field lk-⊙-ap : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) (i : Ix γ₁) → lk {T} (ξ₁ ⊙ ξ₂) i ≡ ap {T} ξ₂ (lk ξ₁ i) open LkCompAp {{...}} public record ApIdm (T : STX) {{vrT : Vr T}} (X : STX) {{apTX : Ap T X}} : Set₁ where field ap-idm : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{idmΞ : Idm Ξ}} {{lkIdmTΞ : LkIdm T Ξ}} {{upIdmΞ : UpIdm Ξ}} {γ : Dom} (x : X γ) → ap {T} (idm {Ξ} γ) x ≡ x open ApIdm {{...}} public record ApRel (T : STX) {{vrT : Vr T}} (X : STX) {{apTX : Ap T X}} : Set₁ where field ap-rel≅ : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≅ ζ) (x : X γ₁) → ap {T} ξ x ≡ ap {T} ζ x ap-rel≃ : {{wkT : Wk T}} {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}} {Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {{lkUpTΖ : LkUp T Ζ}} {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≃ ζ) (x : X γ₁) → ap {T} ξ x ≡ ap {T} ζ x ap-rel≃ hyp = ap-rel≅ (≃-to-≅` (≃-↑ hyp)) open ApRel {{...}} public module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} where record ApWkmWk : Set₁ where field ap-wkm-wk₁ : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{wkmΞ : Wkm Ξ}} {{lkUpTΞ : LkUp T Ξ}} {{lkWkmTΞ : LkWkm T Ξ}} {γ : Dom} (x : X γ) → ap {T} (wkm {Ξ} 1) x ≡ wk₁ x ap-wkm-wk : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{wkmΞ : Wkm Ξ}} {{lkUpTΞ : LkUp T Ξ}} {{lkWkmTΞ : LkWkm T Ξ}} {γ : Dom} (δ : Dom) (x : X γ) → ap {T} (wkm {Ξ} δ) x ≡ wk δ x open ApWkmWk {{...}} public module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} where record ApWk : Set₁ where field ap-wk₁ : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}} {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (x : X γ₁) → ap {T} (ξ ↑₁) (wk₁ x) ≡ wk₁ (ap {T} ξ x) open ApWk {{...}} public module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} where record ApComp : Set₁ where field ap-⊙ : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{compΞ : Comp Ξ}} {{upCompΞ : UpComp Ξ}} {{lkCompTΞ : LkCompAp T Ξ}} {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) → (x : X γ₁) → ap {T} (ξ₁ ⊙ ξ₂) x ≡ ap {T} ξ₂ (ap {T} ξ₁ x) open ApComp {{...}} public instance iApIx : Ap Ix Ix ap {{iApIx}} = lk iApVrIx : ApVr Ix ap-vr {{iApVrIx}} ξ i = refl iApIdmIxIx : ApIdm Ix Ix ap-idm {{iApIdmIxIx}} {Ξ} = lk-idm {Ix} {Ξ} iApWkmWkIxIx : ApWkmWk Ix Ix ap-wkm-wk₁ {{iApWkmWkIxIx}} {Ξ} = lk-wkm {Ix} {Ξ} 1 ap-wkm-wk {{iApWkmWkIxIx}} {Ξ} = lk-wkm {Ix} {Ξ} iApRelIxIx : ApRel Ix Ix ap-rel≅ {{iApRelIxIx}} = lk≃ ∘ ≅-to-≃ iApWkIxIx : ApWk Ix Ix ap-wk₁ {{iApWkIxIx}} {Ξ} ξ i = lk-↑₁-suc {Ix} {Ξ} ξ i -- TODO: Remove module _ (T : STX) {{vrT : Vr T}} {{apTT : Ap T T}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} (Ζ : MOR) {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} (Θ : MOR) {{lkTΘ : Lk T Θ}} {{upΘ : Up Θ}} {{hcompΞΖΘ : HComp Ξ Ζ Θ}} where record LkHCompAp : Set₁ where field lk-⊡-ap : {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃) (i : Ix γ₁) → lk {T} {Θ} (ξ ⊡ ζ) i ≡ ap {T} ζ (lk ξ i) open LkHCompAp {{...}} public -- TODO: Remove module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} where record ApHComp : Set₁ where field ap-⊡ : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {Θ : MOR} {{lkTΘ : Lk T Θ}} {{upΘ : Up Θ}} {{hcompΞΖΘ : HComp Ξ Ζ Θ}} {{upHCompΞ : UpHComp Ξ Ζ Θ}} {{lkHCompTΞΖΘ : LkHCompAp T Ξ Ζ Θ}} {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃) → (x : X γ₁) → ap {T} {X} {Θ} (ξ ⊡ ζ) x ≡ ap {T} ζ (ap {T} ξ x) open ApHComp {{...}} public -- TODO: Move module _ {T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{wkVrT : WkVr T}} {X : STX} {{wkX : Wk X}} {{apTX : Ap T X}} {{apRelTX : ApRel T X}} {{apIdmTX : ApIdm T X}} {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{idmΞ : Idm Ξ}} {{lkIdmTΞ : LkIdm T Ξ}} {{lkUpTΞ : LkUp T Ξ}} where ap-idm` : {γ : Dom} (x : X γ) → ap {T} (idm {Ξ} γ) x ≡ x ap-idm` {γ} x = begin ap {T} (idm {Ξ} γ) x ≡⟨ ap-rel≃ {T} lem x ⟩ ap {T} (idm {Unit} γ) x ≡⟨ ap-idm {T} x ⟩ x ∎ where lem : [ T ] idm {Ξ} γ ≃ unit lk≃ lem = lk-idm {T} {Ξ}
{ "alphanum_fraction": 0.4548227221, "avg_line_length": 29.9771428571, "ext": "agda", "hexsha": "2e1ad682f6e7bd17e316f0c45e921fd71093321d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Subst/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Subst/Core.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Subst/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2809, "size": 5246 }
{-# OPTIONS --allow-unsolved-metas #-} infixr 6 _∷_ data List (A : Set) : Set where [] : List A _∷_ : A -> List A -> List A postulate Bool : Set t : Bool long : List Bool long = t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ [] meta : Set meta = _
{ "alphanum_fraction": 0.251088627, "avg_line_length": 70.9818181818, "ext": "agda", "hexsha": "ca99b438d3dd6dde1059e52043cd97dee748e0fb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue1108.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue1108.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue1108.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 11678, "size": 15616 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.Groups.Unit where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.HITs.Sn open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₋₁ ; ∣_∣ to ∣_∣₋₁) open import Cubical.HITs.Nullification open import Cubical.Data.Int hiding (_+_ ; +-comm) open import Cubical.Data.Nat open import Cubical.HITs.Truncation open import Cubical.Homotopy.Connected open import Cubical.Data.Unit open import Cubical.Algebra.Group -- H⁰(Unit) open GroupHom open GroupIso private H⁰-Unit≅ℤ' : GroupIso (coHomGr 0 Unit) intGroup fun (GroupIso.map H⁰-Unit≅ℤ') = sRec isSetInt (λ f → f tt) isHom (GroupIso.map H⁰-Unit≅ℤ') = sElim2 (λ _ _ → isOfHLevelPath 2 isSetInt _ _) λ a b → addLemma (a tt) (b tt) inv H⁰-Unit≅ℤ' a = ∣ (λ _ → a) ∣₂ rightInv H⁰-Unit≅ℤ' _ = refl leftInv H⁰-Unit≅ℤ' = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ a → refl H⁰-Unit≅ℤ : GroupEquiv (coHomGr 0 Unit) intGroup H⁰-Unit≅ℤ = GrIsoToGrEquiv H⁰-Unit≅ℤ' {- Hⁿ(Unit) for n ≥ 1 -} isContrHⁿ-Unit : (n : ℕ) → isContr (coHom (suc n) Unit) isContrHⁿ-Unit n = subst isContr (λ i → ∥ UnitToTypePath (coHomK (suc n)) (~ i) ∥₂) (helper' n) where helper' : (n : ℕ) → isContr (∥ coHomK (suc n) ∥₂) helper' n = subst isContr ((isoToPath (truncOfTruncIso {A = S₊ (1 + n)} 2 (1 + n))) ∙∙ sym propTrunc≡Trunc2 ∙∙ λ i → ∥ hLevelTrunc (suc (+-comm n 2 i)) (S₊ (1 + n)) ∥₂) (isConnectedSubtr 2 (helper2 n .fst) (subst (λ x → isConnected x (S₊ (suc n))) (sym (helper2 n .snd)) (sphereConnected (suc n))) ) where helper2 : (n : ℕ) → Σ[ m ∈ ℕ ] m + 2 ≡ 2 + n helper2 zero = 0 , refl helper2 (suc n) = (suc n) , λ i → suc (+-comm n 2 i) Hⁿ-Unit≅0' : (n : ℕ) → GroupIso (coHomGr (suc n) Unit) trivialGroup GroupHom.fun (GroupIso.map (Hⁿ-Unit≅0' n)) _ = _ GroupHom.isHom (GroupIso.map (Hⁿ-Unit≅0' n)) _ _ = refl GroupIso.inv (Hⁿ-Unit≅0' n) _ = 0ₕ GroupIso.rightInv (Hⁿ-Unit≅0' n) _ = refl GroupIso.leftInv (Hⁿ-Unit≅0' n) _ = isOfHLevelSuc 0 (isContrHⁿ-Unit n) _ _ Hⁿ-Unit≅0 : (n : ℕ) → GroupEquiv (coHomGr (suc n) Unit) trivialGroup Hⁿ-Unit≅0 n = GrIsoToGrEquiv (Hⁿ-Unit≅0' n) {- Hⁿ for arbitrary contractible types -} private Hⁿ-contrTypeIso : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A → Iso (coHom (suc n) A) (coHom (suc n) Unit) Hⁿ-contrTypeIso n contr = compIso (setTruncIso (isContr→Iso2 contr)) (setTruncIso (invIso (isContr→Iso2 isContrUnit))) Hⁿ-contrType≅0' : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A → GroupIso (coHomGr (suc n) A) trivialGroup fun (GroupIso.map (Hⁿ-contrType≅0' _ _)) _ = _ isHom (GroupIso.map (Hⁿ-contrType≅0' _ _)) _ _ = refl inv (Hⁿ-contrType≅0' _ _) _ = 0ₕ rightInv (Hⁿ-contrType≅0' _ _) _ = refl leftInv (Hⁿ-contrType≅0' {A = A} n contr) _ = isOfHLevelSuc 0 helper _ _ where helper : isContr (coHom (suc n) A) helper = (Iso.inv (Hⁿ-contrTypeIso n contr) 0ₕ) , λ y → cong (Iso.inv (Hⁿ-contrTypeIso n contr)) (isOfHLevelSuc 0 (isContrHⁿ-Unit n) 0ₕ (Iso.fun (Hⁿ-contrTypeIso n contr) y)) ∙ Iso.leftInv (Hⁿ-contrTypeIso n contr) y Hⁿ-contrType≅0 : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A → GroupEquiv (coHomGr (suc n) A) trivialGroup Hⁿ-contrType≅0 n contr = GrIsoToGrEquiv (Hⁿ-contrType≅0' n contr)
{ "alphanum_fraction": 0.6415044012, "avg_line_length": 43.5930232558, "ext": "agda", "hexsha": "f61572cbbd69dddca54b5fb3072481ddd594619a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/Unit.agda", "max_line_length": 135, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1545, "size": 3749 }
{-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Instances.FreeAbGroup where open import Cubical.Foundations.Prelude open import Cubical.HITs.FreeAbGroup open import Cubical.Algebra.AbGroup private variable ℓ : Level module _ {A : Type ℓ} where FAGAbGroup : AbGroup ℓ FAGAbGroup = makeAbGroup {G = FreeAbGroup A} ε _·_ _⁻¹ trunc assoc identityᵣ invᵣ comm
{ "alphanum_fraction": 0.7675675676, "avg_line_length": 24.6666666667, "ext": "agda", "hexsha": "1ddc12a1df5316a88b7ab6647a0b9d7a0119431b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup/Instances/FreeAbGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup/Instances/FreeAbGroup.agda", "max_line_length": 88, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup/Instances/FreeAbGroup.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 115, "size": 370 }
module Data.Collection where open import Data.Collection.Core public open import Data.Collection.Equivalence open import Data.Collection.Inclusion open import Relation.Nullary -------------------------------------------------------------------------------- -- Singleton -------------------------------------------------------------------------------- singleton : String → Collection singleton x = x ∷ [] -------------------------------------------------------------------------------- -- Delete -------------------------------------------------------------------------------- delete : String → Collection → Collection delete x [] = [] delete x (a ∷ A) with x ≟ a delete x (a ∷ A) | yes p = delete x A -- keep deleting, because there might be many of them delete x (a ∷ A) | no ¬p = a ∷ delete x A -------------------------------------------------------------------------------- -- Union -------------------------------------------------------------------------------- union : Collection → Collection → Collection union [] B = B union (a ∷ A) B with a ∈? B union (a ∷ A) B | yes p = union A B union (a ∷ A) B | no ¬p = a ∷ union A B -- -- open import Data.List -- open import Data.String hiding (setoid) -- open import Data.List using ([]; _∷_) public -- open import Data.Product -- open import Data.Sum renaming (map to mapSum) -- -- open import Data.Bool using (Bool; true; false; T; not) -- open import Level renaming (zero to lvl0) -- open import Function using (_∘_; id; flip; _on_) -- open import Function.Equivalence using (_⇔_; Equivalence; equivalence) -- -- open import Function.Equality using (_⟨$⟩_) renaming (cong to cong≈) -- open import Relation.Nullary -- open import Relation.Unary -- open import Relation.Nullary.Negation -- open import Relation.Nullary.Decidable renaming (map to mapDec; map′ to mapDec′) -- open import Relation.Binary hiding (_⇒_) -- open import Relation.Binary.PropositionalEquality -- -- open ≡-Reasoning -- -- -- -- I know this notation is a bit confusing -- _⊈_ : ∀ {a ℓ₁ ℓ₂} {A : Set a} → Pred A ℓ₁ → Pred A ℓ₂ → Set _ -- P ⊈ Q = ∀ {x} → x ∉ P → x ∉ Q -- -- -- ⊆-IsPreorder : IsPreorder _≋_ _⊆_ -- ⊆-IsPreorder = record -- { isEquivalence = {! !} -- ; reflexive = {! !} -- ; trans = {! !} -- } -- -- -- []-empty : Empty c[ [] ] -- []-empty = λ x → λ () -- -- here-respects-≡ : ∀ {A} → (λ x → x ∈ c[ A ]) Respects _≡_ -- here-respects-≡ refl = id -- -- there-respects-≡ : ∀ {x A} → (λ a → x ∈ c[ a ∷ A ]) Respects _≡_ -- there-respects-≡ refl = id -- -- ∈-respects-≡ : ∀ {x} → (λ P → x ∈ c[ P ]) Respects _≡_ -- ∈-respects-≡ refl = id -- -- there-if-not-here : ∀ {x a A} → x ≢ a → x ∈ c[ a ∷ A ] → x ∈ c[ A ] -- there-if-not-here x≢a here = contradiction refl x≢a -- there-if-not-here x≢a (there x∈a∷A) = x∈a∷A -- -- here-if-not-there : ∀ {x a A} → x ∉ c[ A ] → x ∈ c[ a ∷ A ] → x ≡ a -- here-if-not-there x∉A here = refl -- here-if-not-there x∉A (there x∈A) = contradiction x∈A x∉A -- -- map-¬∷ : ∀ {x a A B} → (x ∉ c[ A ] → x ∉ c[ B ]) → x ≢ a → x ∉ c[ a ∷ A ] → x ∉ c[ a ∷ B ] -- map-¬∷ f x≢x x∉a∷A here = contradiction refl x≢x -- map-¬∷ f x≢a x∉a∷A (there x∈B) = f (x∉a∷A ∘ there) x∈B -- -- still-not-there : ∀ {x y} A → x ≢ y → x ∉ c[ A ] → x ∉ c[ y ∷ A ] -- still-not-there [] x≢y x∉[y] here = x≢y refl -- still-not-there [] x≢y x∉[y] (there ()) -- still-not-there (a ∷ A) x≢y x∉a∷A here = x≢y refl -- still-not-there (a ∷ A) x≢y x∉a∷A (there x∈a∷A) = x∉a∷A x∈a∷A -- -- -------------------------------------------------------------------------------- -- -- Union -- -------------------------------------------------------------------------------- -- -- union : Collection → Collection → Collection -- union [] B = B -- union (a ∷ A) B with a ∈? B -- union (a ∷ A) B | yes p = union A B -- union (a ∷ A) B | no ¬p = a ∷ union A B -- -- in-right-union : ∀ A B → c[ B ] ⊆ c[ union A B ] -- in-right-union [] B x∈B = x∈B -- in-right-union (a ∷ A) B x∈B with a ∈? B -- in-right-union (a ∷ A) B x∈B | yes p = in-right-union A B x∈B -- in-right-union (a ∷ A) B x∈B | no ¬p = there (in-right-union A B x∈B) -- -- in-left-union : ∀ A B → c[ A ] ⊆ c[ union A B ] -- in-left-union [] B () -- in-left-union (a ∷ A) B x∈A with a ∈? B -- in-left-union (a ∷ A) B here | yes p = in-right-union A B p -- in-left-union (a ∷ A) B (there x∈A) | yes p = in-left-union A B x∈A -- in-left-union (a ∷ A) B here | no ¬p = here -- in-left-union (a ∷ A) B (there x∈A) | no ¬p = there (in-left-union A B x∈A) -- -- ∪-left-identity : ∀ A → c[ [] ] ∪ c[ A ] ≋ c[ A ] -- ∪-left-identity A = equivalence to inj₂ -- where -- to : c[ [] ] ∪ c[ A ] ⊆ c[ A ] -- to (inj₁ ()) -- to (inj₂ ∈A) = ∈A -- -- ∪-right-identity : ∀ A → c[ A ] ∪ c[ [] ] ≋ c[ A ] -- ∪-right-identity A = equivalence to inj₁ -- where -- to : c[ A ] ∪ c[ [] ] ⊆ c[ A ] -- to (inj₁ ∈A) = ∈A -- to (inj₂ ()) -- -- in-either : ∀ A B → c[ union A B ] ⊆ c[ A ] ∪ c[ B ] -- in-either [] B x∈A∪B = inj₂ x∈A∪B -- in-either (a ∷ A) B x∈A∪B with a ∈? B -- in-either (a ∷ A) B x∈A∪B | yes p = mapSum there id (in-either A B x∈A∪B) -- in-either (a ∷ A) B here | no ¬p = inj₁ here -- in-either (a ∷ A) B (there x∈A∪B) | no ¬p = mapSum there id (in-either A B x∈A∪B) -- -- ∪-union : ∀ A B → c[ A ] ∪ c[ B ] ≋ c[ union A B ] -- ∪-union A B = equivalence to (in-either A B) -- where to : ∀ {x} → x ∈ c[ A ] ∪ c[ B ] → x ∈ c[ union A B ] -- to (inj₁ ∈A) = in-left-union A B ∈A -- to (inj₂ ∈B) = in-right-union A B ∈B -- -- -- map-⊆-union : ∀ {A B C} → c[ A ] ⊆ c[ B ] → c[ B ] ⊆ c[ C ] → c[ ] ⊆ c[ union C D ] -- -- map-⊆-union f g ∈union = {! !} -- -- -- union-branch-1 : ∀ {x a} A B → a ∈ c[ B ] → x ∈ c[ union (a ∷ A) B ] → x ∈ c[ union A B ] -- union-branch-1 {x} {a} A B a∈B x∈union with a ∈? B -- union-branch-1 A B a∈B x∈union | yes p = x∈union -- union-branch-1 A B a∈B x∈union | no ¬p = contradiction a∈B ¬p -- -- there-left-union-coherence : ∀ {x} {a} A B → x ∈ c[ a ∷ A ] → x ∈c a ∷ union A B -- there-left-union-coherence A B here = here -- there-left-union-coherence A B (there x∈a∷A) = there (in-left-union A B x∈a∷A) -- -- -- in-neither : ∀ {x} A B → x ∉c union A B → x ∉ c[ A ] × x ∉ c[ B ] -- in-neither [] B x∉A∪B = (λ ()) , x∉A∪B -- in-neither (a ∷ A) B x∉A∪B with a ∈? B -- in-neither (a ∷ A) B x∉A∪B | yes a∈B = (contraposition (union-branch-1 A B a∈B ∘ in-left-union (a ∷ A) B) x∉A∪B) , (contraposition (in-right-union A B) x∉A∪B) -- in-neither (a ∷ A) B x∉A∪B | no a∉B = (contraposition (there-left-union-coherence A B) x∉A∪B) , contraposition (there ∘ in-right-union A B) x∉A∪B -- -- -- delete : String → Collection → Collection -- delete x [] = [] -- delete x (a ∷ A) with x ≟ a -- delete x (a ∷ A) | yes p = delete x A -- keep deleting, because there might be many of them -- delete x (a ∷ A) | no ¬p = a ∷ delete x A -- -- ∉-after-deleted : ∀ x A → x ∉ c[ delete x A ] -- ∉-after-deleted x [] () -- ∉-after-deleted x (a ∷ A) with x ≟ a -- ∉-after-deleted x (a ∷ A) | yes p = ∉-after-deleted x A -- ∉-after-deleted x (a ∷ A) | no ¬p = still-not-there (delete x A) ¬p (∉-after-deleted x A) -- -- -- still-∈-after-deleted : ∀ {x} y A → x ≢ y → x ∈ c[ A ] → x ∈ c[ delete y A ] -- still-∈-after-deleted y [] x≢y () -- still-∈-after-deleted y (a ∷ A) x≢y x∈A with y ≟ a -- still-∈-after-deleted y (.y ∷ A) x≢y x∈A | yes refl = still-∈-after-deleted y A x≢y (there-if-not-here x≢y x∈A) -- still-∈-after-deleted y (a ∷ A) x≢y x∈A | no ¬p = ∷-⊆-monotone {! !} {! x∈A !} -- -- still-∈-after-deleted y (a ∷ A) x≢y x∈A | no ¬p = ∷-⊆-monotone (still-∈-after-deleted y A x≢y) x∈A -- -- -- still-∉-after-deleted : ∀ {x} y A → x ≢ y → x ∉ c[ A ] → x ∉ c[ delete y A ] -- -- still-∉-after-deleted y [] x≢y x∉A = x∉A -- -- still-∉-after-deleted y (a ∷ A) x≢y x∉A with y ≟ a -- -- still-∉-after-deleted y (.y ∷ A) x≢y x∉A | yes refl = still-∉-after-deleted y A x≢y (x∉A ∘ there) -- -- still-∉-after-deleted {x} y (a ∷ A) x≢y x∉A | (no ¬p) with x ≟ a -- -- still-∉-after-deleted y (x ∷ A) x≢y x∉A | no ¬p | yes refl = contradiction here x∉A -- -- still-∉-after-deleted y (a ∷ A) x≢y x∉A | no ¬p | no ¬q = map-¬∷ (still-∉-after-deleted y A x≢y) ¬q x∉A -- -- -- -- still-∉-after-recovered : ∀ {x} y A → x ≢ y → x ∉c delete y A → x ∉ c[ A ] -- -- still-∉-after-recovered y [] x≢y x∉deleted () -- -- still-∉-after-recovered y (a ∷ A) x≢y x∉deleted x∈a∷A with y ≟ a -- -- still-∉-after-recovered y (.y ∷ A) x≢y x∉deleted x∈a∷A | yes refl = still-∉-after-recovered y A x≢y x∉deleted (there-if-not-here x≢y x∈a∷A) -- -- still-∉-after-recovered {x} y (a ∷ A) x≢y x∉deleted x∈a∷A | no ¬p with x ≟ a -- -- still-∉-after-recovered y (x ∷ A) x≢y x∉deleted x∈a∷A | no ¬p | yes refl = contradiction here x∉deleted -- -- still-∉-after-recovered y (a ∷ A) x≢y x∉deleted x∈a∷A | no ¬p | no ¬q = x∉deleted (∷-⊆-monotone (still-∈-after-deleted y A x≢y) x∈a∷A) -- -- singleton : String → Collection -- singleton x = x ∷ [] -- -- singleton-≡ : ∀ {x y} → x ∈ c[ singleton y ] → x ≡ y -- singleton-≡ here = refl -- singleton-≡ (there ())
{ "alphanum_fraction": 0.4879930457, "avg_line_length": 42.8046511628, "ext": "agda", "hexsha": "332f22f4a36a57ed8f7e7986a681faf46fbcfc47", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/lambda-calculus", "max_forks_repo_path": "Data/Collection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/lambda-calculus", "max_issues_repo_path": "Data/Collection.agda", "max_line_length": 161, "max_stars_count": null, "max_stars_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/lambda-calculus", "max_stars_repo_path": "Data/Collection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3721, "size": 9203 }
module Numeral.Natural.Oper.Proofs.Rewrite where import Lvl open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Induction open import Relator.Equals open import Relator.Equals.Proofs open import Syntax.Function private variable x y : ℕ [+]-baseₗ : 𝟎 + y ≡ y [+]-baseₗ {x} = ℕ-elim [≡]-intro (x ↦ [≡]-with(𝐒) {𝟎 + x}{x}) x {-# REWRITE [+]-baseₗ #-} [+]-baseᵣ : x + 𝟎 ≡ x [+]-baseᵣ = [≡]-intro [+]-stepₗ : 𝐒(x) + y ≡ 𝐒(x + y) [+]-stepₗ {x}{y} = ℕ-elim [≡]-intro (i ↦ [≡]-with(𝐒) {𝐒(x) + i} {x + 𝐒(i)}) y {-# REWRITE [+]-stepₗ #-} [+]-stepᵣ : x + 𝐒(y) ≡ 𝐒(x + y) [+]-stepᵣ = [≡]-intro
{ "alphanum_fraction": 0.5888, "avg_line_length": 24.0384615385, "ext": "agda", "hexsha": "97d3c66cba3ba1df41d66f65ba59bf875d2239c7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/Proofs/Rewrite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/Proofs/Rewrite.agda", "max_line_length": 77, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/Proofs/Rewrite.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 294, "size": 625 }
module Numeral.PositiveInteger where import Lvl open import Syntax.Number open import Data.Boolean.Stmt open import Functional open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural as ℕ using (ℕ) open import Type data ℕ₊ : Type{Lvl.𝟎} where 𝟏 : ℕ₊ 𝐒 : ℕ₊ → ℕ₊ ℕ₊-to-ℕ : ℕ₊ → ℕ ℕ₊-to-ℕ (𝟏) = ℕ.𝐒(ℕ.𝟎) ℕ₊-to-ℕ (𝐒(n)) = ℕ.𝐒(ℕ₊-to-ℕ (n)) ℕ-to-ℕ₊ : (n : ℕ) → ⦃ _ : IsTrue(positive?(n)) ⦄ → ℕ₊ ℕ-to-ℕ₊ (ℕ.𝟎) ⦃ ⦄ ℕ-to-ℕ₊ (ℕ.𝐒(ℕ.𝟎)) ⦃ _ ⦄ = 𝟏 ℕ-to-ℕ₊ (ℕ.𝐒(ℕ.𝐒(x))) ⦃ p ⦄ = 𝐒(ℕ-to-ℕ₊ (ℕ.𝐒(x)) ⦃ p ⦄) instance ℕ₊-numeral : Numeral(ℕ₊) Numeral.restriction-ℓ (ℕ₊-numeral) = Lvl.𝟎 Numeral.restriction (ℕ₊-numeral) (n) = IsTrue(positive?(n)) num ⦃ ℕ₊-numeral ⦄ (n) ⦃ proof ⦄ = ℕ-to-ℕ₊ (n) ⦃ proof ⦄ 𝐒-from-ℕ : ℕ → ℕ₊ 𝐒-from-ℕ (ℕ.𝟎) = 𝟏 𝐒-from-ℕ (ℕ.𝐒(n)) = 𝐒(𝐒-from-ℕ(n)) 𝐏-to-ℕ : ℕ₊ → ℕ 𝐏-to-ℕ (𝟏) = ℕ.𝟎 𝐏-to-ℕ (𝐒(n)) = ℕ.𝐒(𝐏-to-ℕ(n))
{ "alphanum_fraction": 0.5551763367, "avg_line_length": 23.7567567568, "ext": "agda", "hexsha": "c54225b856f2aef2f11f2ec2469a88ad61bd410d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/PositiveInteger.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/PositiveInteger.agda", "max_line_length": 63, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/PositiveInteger.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 570, "size": 879 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae module Functions.Definition where Rel : {a b : _} → Set a → Set (a ⊔ lsuc b) Rel {a} {b} A = A → A → Set b _∘_ : {a b c : _} {A : Set a} {B : Set b} {C : Set c} → (f : B → C) → (g : A → B) → (A → C) g ∘ f = λ a → g (f a) Injection : {a b : _} {A : Set a} {B : Set b} (f : A → B) → Set (a ⊔ b) Injection {A = A} f = {x y : A} → (f x ≡ f y) → x ≡ y Surjection : {a b : _} {A : Set a} {B : Set b} (f : A → B) → Set (a ⊔ b) Surjection {A = A} {B = B} f = (b : B) → Sg A (λ a → f a ≡ b) record Bijection {a b : _} {A : Set a} {B : Set b} (f : A → B) : Set (a ⊔ b) where field inj : Injection f surj : Surjection f record Invertible {a b : _} {A : Set a} {B : Set b} (f : A → B) : Set (a ⊔ b) where field inverse : B → A isLeft : (b : B) → f (inverse b) ≡ b isRight : (a : A) → inverse (f a) ≡ a id : {a : _} {A : Set a} → (A → A) id a = a dom : {a b : _} {A : Set a} {B : Set b} (f : A → B) → Set a dom {A = A} f = A codom : {a b : _} {A : Set a} {B : Set b} (f : A → B) → Set b codom {B = B} f = B
{ "alphanum_fraction": 0.470890411, "avg_line_length": 29.2, "ext": "agda", "hexsha": "27335aeb9c3ecce076513b07af2a95ebe6a64a4d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Functions/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Functions/Definition.agda", "max_line_length": 91, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Functions/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 531, "size": 1168 }
-- This is a selection of useful function -- from the standard library that we tend to use a lot. module Prelude where open import Data.Nat hiding (_⊔_) public open import Level renaming (suc to lsuc; zero to ℓ0) public open import Relation.Binary.PropositionalEquality renaming ([_] to Reveal[_] ) public open import Relation.Unary public open import Data.Unit using (⊤; tt) public open import Data.Sum public open import Data.Nat.Properties public open import Relation.Nullary hiding (Irrelevant) public open import Data.Product using (_×_; proj₁; proj₂; Σ; _,_; ∃; Σ-syntax; ∃-syntax) public open import Data.Empty using (⊥; ⊥-elim) public open import Function using (_∘_) public open import Data.List.Relation.Unary.Any using (Any; here; there) public
{ "alphanum_fraction": 0.6628701595, "avg_line_length": 17.2156862745, "ext": "agda", "hexsha": "294afd93527e4a3b47c9c932d612662c1773c891", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "lisandrasilva/agda-liveness", "max_forks_repo_path": "src/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "lisandrasilva/agda-liveness", "max_issues_repo_path": "src/Prelude.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "lisandrasilva/agda-liveness", "max_stars_repo_path": "src/Prelude.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 248, "size": 878 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Primitive using (Level) module Tutorials.Monday where -- Two dashes to comment out the rest of the line {- Opening {- and closing -} for a multi-line comment -} -- In Agda all the tokens are tokenised using whitespace (with the exception of parentheses and some other symbols) -- Agda offers unicode support -- We can input unicode using the backslash \ and (most of the time) typing what one would type in LaTeX -- If in emacs, we can put the cursor over a characted and use M-x describe-char to see how that character is inputted -- ⊥ is written using \bot data ⊥ : Set where -- AKA the empty set, bottom, falsehood, the absurd type, the empty type, the initial object -- ⊥ : Set means ⊥ is a Type (Set = Type, for historical reasons) -- The data keyword creates a data type where we list all the constructors of the types -- ⊥ has no constructors: there is no way of making something of type ⊥ record ⊤ : Set where -- AKA the singleton set, top, truth, the trivial type, the unit type, the terminal object -- The record keyword creates a record type -- Records have a single constructor -- To create a record you must populate all of its fields -- ⊤ has no fields: it is trivial to make one, and contains no information constructor tt data Bool : Set where -- Bool has two constructors: one bit worth of information true : Bool false : Bool -------- -- Simple composite types -------- module Simple where record _×_ (A : Set) (B : Set) : Set where -- AKA logical and, product type -- Agda offers support for mixfix notation -- We use the underscores to specify where the arguments goal -- In this case the arguments are the type parameters A and B, so we can write A × B -- A × B models a type packing up *both* an A *and* a B -- A and B are type parameters, both of type Set, i.e. types -- A × B itself is of type Set, i.e. a type -- We use the single record constructor _,_ to make something of type A × B -- The constructor _,_ takes two parameters: the fields fst and snd, of type A and B, respectively -- If we have a of type A and b of type B, then (a , b) is of type A × B constructor _,_ field fst : A snd : B -- Agda has a very expressive module system (more on modules later) -- Every record has a module automatically attached to it -- Opening a record exposes its constructor and it fields -- The fields are projection functions out of the record -- In the case of _×_, it exposes -- fst : A × B → A -- snd : A × B → B open _×_ data _⊎_ (A B : Set) : Set where -- AKA logical or, sum type, disjoint union -- A ⊎ B models a type packing *either* an A *or* a B -- A and B are type parameters, both of type Set, i.e. types -- A ⊎ B itself is of type Set, i.e. a type -- A ⊎ B has two constructors: inl and inr -- The constructor inl takes something of type A as an argument and returns something of type A ⊎ B -- The constructor inr takes something of type B as an argument and returns something of type A ⊎ B -- We can make something of type A ⊎ B either by using inl and supplying an A, or by using inr and supplying a B inl : A → A ⊎ B inr : B → A ⊎ B -------- -- Some simple proofs! -------- -- In constructive mathematics logical implication is modelled as function types -- An object of type A → B shows that assuming an object of type A, we can construct an object of type B -- Below we want to show that assuming an object of type A × B, we can construct an object of type A -- We want to show that this is the case regardless of what A and B actually are -- We do this using a polymorphic function that is parametrised over A and B, both of type Set -- We use curly braces {} to make these function parameters implicit -- When we call this function we won't have to supply the arguments A and B unless we want to -- When we define this function we won't have to accept A and B as arguments unless we want to -- The first line below gives the type of the function get-fst -- The second line gives its definition get-fst : {A : Set} {B : Set} → A × B → A get-fst x = {!!} -- Agda is an *interactive* proof assistant -- We don't provide our proofs/programs all at once: we develop them iteratively -- We write ? where we don't yet have a program to provide, and we reload the file -- What we get back is a hole where we can place the cursor and have a conversation with Agda -- ctrl+c is the prefix that we use to communicate with Agda -- ctrl+c ctrl+l reload the file -- ctrl+c ctrl+, shows the goal and the context -- ctrl+c ctrl+. shows the goal, the context, and what we have so far -- ctrl+c ctrl+c pattern matches against a given arguments -- ctrl+c ctrl+space fill in hole -- ctrl+c ctrl+r refines the goal: it will ask Agda to insert the first constructor we need -- ctrl+c ctrl+a try to automatically fulfill the goal -- key bindings: https://agda.readthedocs.io/en/v2.6.1.3/getting-started/quick-guide.html get-snd : ∀ {A B} → A × B → B get-snd x = {!!} -- The variable keyword enables us to declare convention for notation -- Unless said otherwise, whenever we refer to A, B or C and these are not bound, we will refer to objects of type Set variable ℓ : Level A B C : Set ℓ -- Notice how we don't have to declare A, B and C anymore curry : (A → B → C) → (A × B → C) curry f = {!!} uncurry : (A × B → C) → (A → B → C) uncurry f = {!!} ×-comm : A × B → B × A ×-comm = {!!} ×-assoc : (A × B) × C → A × (B × C) ×-assoc = {!!} -- Pattern matching has to be exhaustive: all cases must be addressed ⊎-comm : A ⊎ B → B ⊎ A ⊎-comm = {!!} ⊎-assoc : (A ⊎ B) ⊎ C → A ⊎ (B ⊎ C) ⊎-assoc = {!!} -- If there are no cases to be addressed there is nothing for us left to do -- If you believe ⊥ exist you believe anything absurd : ⊥ → A absurd a = {!!} -- In constructive mathematics all proofs are constructions -- How do we show that an object of type A cannot possibly be constructed, while using a construction to show so? -- We take the cannonically impossible-to-construct object ⊥, and show that if we were to assume the existence of A, we could use it to construct ⊥ ¬_ : Set ℓ → Set ℓ ¬ A = A → ⊥ -- In classical logic double negation can be eliminated: ¬ ¬ A ⇒ A -- That is however not the case in constructive mathematics: -- The proof ¬ ¬ A is a function that takes (A → ⊥) into ⊥, and offers no witness for A -- The opposite direction is however constructive: ⇒¬¬ : A → ¬ ¬ A ⇒¬¬ = {!!} -- Moreover, double negation can be eliminated from non-witnesses ¬¬¬⇒¬ : ¬ ¬ ¬ A → ¬ A ¬¬¬⇒¬ = {!!} -- Here we have a choice of two programs to write ×-⇒-⊎₁ : A × B → A ⊎ B ×-⇒-⊎₁ = {!!} ×-⇒-⊎₂ : A × B → A ⊎ B ×-⇒-⊎₂ = {!!} -- A little more involved -- Show that the implication (A ⊎ B → A × B) is not always true for all A and Bs ⊎-⇏-× : ¬ (∀ {A B} → A ⊎ B → A × B) ⊎-⇏-× f = {!!} variable ℓ : Level A B C : Set ℓ -------- -- Inductive data types -------- data ℕ : Set where -- The type of unary natural numbers -- The zero constructor takes no arguments; the base case -- The suc constructor takes one argument: an existing natural number; the inductive case -- We represent natural numbers by using ticks: ||| ≈ 3 -- zero: no ticks -- suc: one more tick -- suc (suc (suc zero)) ≈ ||| ≈ 3 zero : ℕ suc : ℕ → ℕ three : ℕ three = suc (suc (suc zero)) -- Compiler pragmas allow us to give instructions to Agda -- They are introduced with an opening {-# and a closing #-} -- Here we the pragma BUILTIN to tell Agda to use ℕ as the builtin type for natural numbers -- This allows us to say 3 instead of suc (suc (suc zero)) {-# BUILTIN NATURAL ℕ #-} three' : ℕ three' = 3 -- Whenever we say n or m and they haven't been bound, they refer to natural numbers variable n m l : ℕ -- Brief interlude: we declare the fixity of certain functions -- By default, all definitions have precedence 20 -- The higher the precedence, the tighter they bind -- Here we also declare that _+_ is left associative, i.e. 1 + 2 + 3 is parsed as (1 + 2) + 3 infixl 20 _+_ -- Define addition of natural numbers by structural recursion _+_ : ℕ → ℕ → ℕ x + y = {!!} -- In functions recursion must always occur on structurally smaller values (otherwise the computation might never terminate) -- In Agda *all computations must terminate* -- We can tell Agda to ignore non-termination with this pragma {-# TERMINATING #-} non-terminating : ℕ → ℕ non-terminating n = non-terminating n -- However, doing so would allow us to define elements of the type ⊥ -- This is not considered safe: running Agda with the --safe option will make type-checking fail {-# TERMINATING #-} loop : ⊥ loop = loop -- Use structural recursion to define multiplication _*_ : ℕ → ℕ → ℕ x * y = {!!} -- The module keyword allows us to define modules (namespaces) module List where infixr 15 _∷_ _++_ data List (A : Set) : Set where -- Lists are another example of inductive types -- The type parameter A is the type of every element in the list -- They are like natural numbers, but the successor case contains an A [] : List A _∷_ : A → List A → List A -- List concatenation by structural recursion _++_ : List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) -- Apply a function (A → B) to every element of a list map : (A → B) → List A → List B map = {!!} -- A base case B and an inductive case A → B → B is all we need to take a List A and make a B foldr : (A → B → B) → B → List A → B foldr f b [] = b foldr f b (x ∷ xs) = f x (foldr f b xs) -------- -- Dependent Types -------- -- Dependent types are types that depend on values, objects of another type -- Dependent types allow us to model predicates on types -- A predicate P on a type A is a function taking elements of A into types Pred : Set → Set₁ Pred A = A → Set -- Let us define a predicate on ℕ that models the even numbers -- Even numbers are taken to the type ⊤, which is trivial to satisfy -- Odd numbers are taken to the type ⊥, which is impossible to satisfy Even : Pred ℕ Even x = {!!} -- We can now use Even as a precondition on a previous arguments -- Here we bind the first argument of type ℕ to the name n -- We then use n as an argument to the type Even -- As we expose the constructors of n, Even will compute half : (n : ℕ) → Even n → ℕ half n n-even = {!!} -- There is an alternative way of definiting dependent types -- EvenData is a data type indexed by elements of the type ℕ -- That is, for every (n : ℕ), EvenData n is a type -- The constructor zero constructs an element of the type EvenData zero -- The constructor 2+_ takes an element of the type EvenData n and constructs one of type EvenData (suc (suc n)) -- Note that there is no constructors that constructs elements of the type Evendata (suc zero) data EvenData : ℕ → Set where -- Pred ℕ zero : EvenData zero 2+_ : EvenData n → EvenData (suc (suc n)) -- We can use EvenData as a precondition too -- The difference is that while Even n computes automatically, we have to take EvenData n appart by pattern matching -- It leaves a trace of *why* n is even half-data : (n : ℕ) → EvenData n → ℕ half-data n n-even = {!!} -- Function composition: (f ∘ g) composes two functions f and g -- The result takes the input, feeds it through g, then feeds the result through f infixr 20 _∘_ _∘_ : (B → C) → (A → B) → (A → C) (f ∘ g) x = f (g x) -------- -- Example of common uses of dependent types -------- module Fin where -- The type Fin n has n distinct inhabitants data Fin : ℕ → Set where zero : Fin (suc n) suc : Fin n → Fin (suc n) -- Note that there is no constructor for Fin zero Fin0 : Fin zero → ⊥ Fin0 x = {!!} -- We can erase the type level information to get a ℕ back to-ℕ : Fin n → ℕ to-ℕ zero = zero to-ℕ (suc x) = suc (to-ℕ x) module Vec where open Fin -- Vectors are like lists, but they keep track of their length -- The type Vec A n is the type of lists of length n containing values of type A -- Notice that while A is a parameter (remains unchanged in all constructors), n is an index -- We can bind parameters to names (since they don't change) but we cannot bind indices data Vec (A : Set) : ℕ → Set where [] : Vec A zero _∷_ : A → Vec A n → Vec A (suc n) -- Now we can define concatenation, but giving more assurances about the resulting length _++_ : Vec A n → Vec A m → Vec A (n + m) xs ++ ys = {!!} map : (A → B) → Vec A n → Vec B n map = {!!} -- Given a vector and a fin, we can use the latter as a lookup index into the former -- Question: what happens if there vector is empty? _!_ : Vec A n → Fin n → A xs ! i = {!!} -- A vector Vec A n is just the inductive form of a function Fin n → A tabulate : ∀ {n} → (Fin n → A) → Vec A n tabulate {n = zero} f = [] tabulate {n = suc n} f = f zero ∷ tabulate (f ∘ suc) untabulate : Vec A n → (Fin n → A) untabulate [] () untabulate (x ∷ xs) zero = x untabulate (x ∷ xs) (suc i) = untabulate xs i -- Predicates need not be unary, they can be binary! (i.e. relations) Rel : Set → Set₁ Rel A = A → A → Set -- Question: how many proofs are there for any n ≤ m data _≤_ : Rel ℕ where z≤n : zero ≤ n s≤s : n ≤ m → suc n ≤ suc m _<_ : ℕ → ℕ → Set n < m = suc n ≤ m -- _≤_ is reflexive and transitive ≤-refl : ∀ n → n ≤ n ≤-refl n = {!!} ≤-trans : n ≤ m → m ≤ l → n ≤ l ≤-trans a b = {!!} ----------- -- Propositional Equality ----------- -- Things get interesting: we can use type indices to define propositional equality -- For any (x y : A) the type x ≡ y is a proof showing that x and y are in fact definitionally equal -- It has a single constructor refl which limits the ways of making something of type x ≡ y to those where x and y are in fact the same, i.e. x ≡ x -- When we pattern match against something of type x ≡ y, the constructor refl will make x and y unify: Agda will internalise the equality infix 10 _≡_ -- \== ≡ data _≡_ (x : A) : A → Set where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} -- Definitional equality holds when the two sides compute to the same symbols 2+2≡4 : 2 + 2 ≡ 4 2+2≡4 = {!!} -- Because of the way in which defined _+_, zero + x ≡ x holds definitionally (the first case in the definition) +-idˡ : ∀ x → (zero + x) ≡ x +-idˡ x = {!!} -- We show that equality respects congruence cong : {x y : A} (f : A → B) → x ≡ y → f x ≡ f y cong f p = {!!} -- However this does not hold definitionally -- We need to use proof by induction -- We miss some pieces to prove this +-idʳ : ∀ x → (x + zero) ≡ x +-idʳ x = {!!} -- Propositional equality is reflexive by construction, here we show it is also symmetric and transitive sym : {x y : A} → x ≡ y → y ≡ x sym p = {!!} trans : {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans p q = {!!} -- A binary version that will come in use later on cong₂ : {x y : A} {w z : B} (f : A → B → C) → x ≡ y → w ≡ z → f x w ≡ f y z cong₂ f refl refl = refl -- Leibniz equality, transport subst : {x y : A} {P : Pred A} → x ≡ y → P x → P y subst eq p = {!!} -- Now we can start proving slightly more interesting things! +-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z) +-assoc x y z = {!!} -- Introduce underscores on the RHS +-comm : ∀ x y → x + y ≡ y + x +-comm x zero = {!!} +-comm x (suc y) = {!!} -- The keyword where allows us to introduce local definitions where +-suc : ∀ x y → x + suc y ≡ suc (x + y) +-suc x y = {!!} ----------- -- Some tooling for equational reasoning ----------- infix 3 _∎ infixr 2 step-≡ infix 1 begin_ begin_ : ∀{x y : A} → x ≡ y → x ≡ y begin_ x≡y = x≡y step-≡ : ∀ (x {y z} : A) → y ≡ z → x ≡ y → x ≡ z step-≡ _ y≡z x≡y = trans x≡y y≡z syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z _∎ : ∀ (x : A) → x ≡ x _∎ _ = refl -- The equational resoning style allows us to explicitly write down the goals at each stage -- This starts to look like what one would do on the whiteboard +-comm′ : ∀ x y → x + y ≡ y + x +-comm′ x zero = {!!} +-comm′ x (suc y) = begin (x + suc y) ≡⟨ {!!} ⟩ suc (x + y) ≡⟨ {!!} ⟩ suc (y + x) ∎
{ "alphanum_fraction": 0.6409188361, "avg_line_length": 35.0321888412, "ext": "agda", "hexsha": "e0cd7a0fe38b08839562c63e873e369d803be0f5", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-11-24T10:50:55.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-23T08:50:13.000Z", "max_forks_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "poncev/agda-bcam", "max_forks_repo_path": "Tutorials/Monday.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "poncev/agda-bcam", "max_issues_repo_path": "Tutorials/Monday.agda", "max_line_length": 149, "max_stars_count": 27, "max_stars_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "poncev/agda-bcam", "max_stars_repo_path": "Tutorials/Monday.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-03T22:53:51.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-23T17:59:21.000Z", "num_tokens": 5005, "size": 16325 }
module map-Tree where -- ツリー data Tree (A B : Set) : Set where leaf : A → Tree A B node : Tree A B → B → Tree A B → Tree A B -- ツリーのmap map-Tree : ∀ {A B C D : Set} → (A → C) → (B → D) → Tree A B → Tree C D map-Tree f g (leaf a) = leaf (f a) map-Tree f g (node treeˡ b treeʳ) = node (map-Tree f g treeˡ) (g b) (map-Tree f g treeʳ)
{ "alphanum_fraction": 0.547277937, "avg_line_length": 29.0833333333, "ext": "agda", "hexsha": "c84b9330cbc4699fdc78efa6a18f5f7b81cfce2f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/lists/map-Tree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/lists/map-Tree.agda", "max_line_length": 88, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/lists/map-Tree.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 149, "size": 349 }
{-# OPTIONS --without-K #-} open import Base open import Homotopy.PullbackDef module Homotopy.PullbackIsPullback {i} (d : pullback-diag i) where open pullback-diag d import Homotopy.PullbackUP as PullbackUP open PullbackUP d (λ _ → unit) pullback-cone : cone (pullback d) pullback-cone = (pullback.a d , pullback.b d , pullback.h d) factor-pullback : (E : Set i) → (cone E → (E → pullback d)) factor-pullback E (top→A , top→B , h) x = (top→A x , top→B x , h x) pullback-is-pullback : is-pullback (pullback d) pullback-cone pullback-is-pullback E = iso-is-eq _ (factor-pullback E) (λ y → refl) (λ f → refl)
{ "alphanum_fraction": 0.6865912763, "avg_line_length": 25.7916666667, "ext": "agda", "hexsha": "73d54c80009cf9a3bfc8ba809ca1473612b93874", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/PullbackIsPullback.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/PullbackIsPullback.agda", "max_line_length": 67, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/PullbackIsPullback.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 215, "size": 619 }
module GUIgeneric.GUIExampleLib where open import GUIgeneric.Prelude hiding (addButton) open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add) open import GUIgeneric.GUI executeChangeGui : ∀{i} → (fr : FFIFrame)(mvar : MVar StateAndGuiObj) (mvarFFI : MVar StateAndFFIComp) (let state = addVar mvar (SingleMVar mvarFFI)) → StateAndGuiObj × StateAndFFIComp → IOˢ GuiLev2Interface i (λ _ → prod state) state executeChangeGui fr varO varFFI ((gNew , (prop , obj)) , (gOld , ffi)) = deleteComp gOld ffi >>=ₚˢ λ _ → reCreateFrame gNew fr >>=ₚˢ λ ffiNew → setHandlerG gNew ffiNew varO (SingleMVar varFFI) >>=ₚˢ λ _ → (translateLev1toLev2 (setAttributes ∞ gNew prop ffiNew)) >>=ˢ λ _ _ → returnˢ ((gNew , (prop , obj)) , (gNew , ffiNew )) setRightClick₃ : ∀{i} → (g : Frame) (ffiComp : FFIcomponents g) (mvar : MVar StateAndGuiObj) (mvarFFI : MVar StateAndFFIComp) (getFr : FFIcomponents g → FFIFrame) (let state = addVar mvar (SingleMVar mvarFFI)) → IOˢ GuiLev3Interface i (λ s → s ≡ state × Unit) state setRightClick₃ g ffi mvar mvarFFI getFr = doˢ (setRightClick (getFr ffi) (executeChangeGui (getFr ffi) mvar mvarFFI ∷ [])) λ r → returnˢ (refl , _) setCustomEvent₃ : ∀{i} → (g : Frame) (ffiComp : FFIcomponents g) (mvar : MVar StateAndGuiObj) (mvarFFI : MVar StateAndFFIComp) (getFr : FFIcomponents g → FFIFrame) (let state = addVar mvar (SingleMVar mvarFFI)) → IOˢ GuiLev3Interface i (λ s → s ≡ state × Unit) state setCustomEvent₃ g ffi mvar mvarFFI getFr = doˢ (setCustomEvent (getFr ffi) (executeChangeGui (getFr ffi) mvar mvarFFI ∷ [])) λ r → returnˢ (refl , _) mainGeneric : (g : Frame)(a : properties g)(o : HandlerObject ∞ g)(getFr : FFIcomponents g → FFIFrame) → IOˢ GuiLev3Interface ∞ (λ _ → Unit) [] mainGeneric g propDef objDef getFr = let _>>=_ = _>>=ₚˢ_ createGUIElements = λ g → cmd3 (createFrame g) setAttributes = λ g prop ffi → cmd3 (translateLev1toLev2ₚ (setAttributes ∞ g prop ffi)) in createGUIElements g >>= λ ffi → setAttributes g propDef ffi >>= λ _ → cmd3 (initFFIMVar g ffi) >>=ₚsemiˢ λ mvaffi → cmd3 (initHandlerMVar (SingleMVar mvaffi) g propDef objDef) >>=ₚsemiˢ λ mvar → cmd3 (setHandlerG g ffi mvar (SingleMVar mvaffi)) >>=ₚˢ λ _ → setCustomEvent₃ g ffi mvar mvaffi getFr >>=ˢ λ _ _ → returnˢ _ where cmd3 = translateLev2toLev3 compileProgram : (g : Frame)(a : properties g) (h : HandlerObject ∞ g) → NativeIO Unit compileProgram g a h = start (translateLev3 (mainGeneric g a h (getFrameGen g))) generateProgram = compileProgram addButton : String → CompEls frame → (isOpt : IsOptimized) → CompEls frame addButton str fr isOpt = add' buttonFrame (create-button str) fr isOpt addTxtBox' : String → CompEls frame → (isOpt : IsOptimized) → CompEls frame addTxtBox' str fr isOpt = add' buttonFrame (create-txtbox str) fr isOpt record GUI {i : Size} : Set₁ where field defFrame : Frame property : properties defFrame obj : HandlerObject i defFrame open GUI public guiFull2IOˢprog : GUI → IOˢ GuiLev3Interface ∞ (λ _ → Unit) [] guiFull2IOˢprog g = mainGeneric (g .defFrame) (g .property) (g .obj) (getFrameGen (g .defFrame)) compileGUI : GUI → NativeIO Unit compileGUI g = start (translateLev3 (guiFull2IOˢprog g))
{ "alphanum_fraction": 0.6091222487, "avg_line_length": 34.5963302752, "ext": "agda", "hexsha": "b2aa0b99f6f6164bb5fafa96065093f4538cb921", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "examples/GUIgeneric/GUIExampleLib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "examples/GUIgeneric/GUIExampleLib.agda", "max_line_length": 102, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "examples/GUIgeneric/GUIExampleLib.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 1183, "size": 3771 }
import cedille-options open import general-util module spans (options : cedille-options.options) {mF : Set → Set} {{_ : monad mF}} where open import lib open import functions open import cedille-types open import constants open import conversion open import ctxt open import is-free open import syntax-util open import to-string options open import subst open import erase open import datatype-functions -------------------------------------------------- -- span datatype -------------------------------------------------- err-m : Set err-m = maybe string data span : Set where mk-span : string → posinfo → posinfo → 𝕃 tagged-val {- extra information for the span -} → err-m → span span-to-rope : span → rope span-to-rope (mk-span name start end extra nothing) = [[ "[\"" ^ name ^ "\"," ^ start ^ "," ^ end ^ ",{" ]] ⊹⊹ tagged-vals-to-rope 0 extra ⊹⊹ [[ "}]" ]] span-to-rope (mk-span name start end extra (just err)) = [[ "[\"" ^ name ^ "\"," ^ start ^ "," ^ end ^ ",{" ]] ⊹⊹ tagged-vals-to-rope 0 (strRunTag "error" empty-ctxt (strAdd err) :: extra) ⊹⊹ [[ "}]" ]] data error-span : Set where mk-error-span : string → posinfo → posinfo → 𝕃 tagged-val → string → error-span data spans : Set where regular-spans : maybe error-span → 𝕃 span → spans global-error : string {- error message -} → maybe span → spans is-error-span : span → 𝔹 is-error-span (mk-span _ _ _ _ err) = isJust err get-span-error : span → err-m get-span-error (mk-span _ _ _ _ err) = err get-tagged-vals : span → 𝕃 tagged-val get-tagged-vals (mk-span _ _ _ tvs _) = tvs spans-have-error : spans → 𝔹 spans-have-error (regular-spans es ss) = isJust es spans-have-error (global-error _ _) = tt empty-spans : spans empty-spans = regular-spans nothing [] 𝕃span-to-rope : 𝕃 span → rope 𝕃span-to-rope (s :: []) = span-to-rope s 𝕃span-to-rope (s :: ss) = span-to-rope s ⊹⊹ [[ "," ]] ⊹⊹ 𝕃span-to-rope ss 𝕃span-to-rope [] = [[]] spans-to-rope : spans → rope spans-to-rope (regular-spans _ ss) = [[ "{\"spans\":["]] ⊹⊹ 𝕃span-to-rope ss ⊹⊹ [[ "]}" ]] where spans-to-rope (global-error e s) = [[ global-error-string e ]] ⊹⊹ maybe-else [[]] (λ s → [[", \"global-error\":"]] ⊹⊹ span-to-rope s) s print-file-id-table : ctxt → 𝕃 tagged-val print-file-id-table (mk-ctxt mod (syms , mn-fn , mn-ps , fn-ids , id , id-fns) is os Δ) = h [] id-fns where h : ∀ {i} → 𝕃 tagged-val → 𝕍 string i → 𝕃 tagged-val h ts [] = ts h {i} ts (fn :: fns) = h (strRunTag "fileid" empty-ctxt (strAdd fn) :: ts) fns add-span : span → spans → spans add-span s@(mk-span dsc pi pi' tv nothing) (regular-spans es ss) = regular-spans es (s :: ss) add-span s@(mk-span dsc pi pi' tv (just err)) (regular-spans es ss) = regular-spans (just (mk-error-span dsc pi pi' tv err)) (s :: ss) add-span s (global-error e e') = global-error e e' -------------------------------------------------- -- spanM, a state monad for spans -------------------------------------------------- spanM : Set → Set spanM A = ctxt → spans → mF (A × ctxt × spans) -- return for the spanM monad spanMr : ∀{A : Set} → A → spanM A spanMr a Γ ss = returnM (a , Γ , ss) spanMok : spanM ⊤ spanMok = spanMr triv get-ctxt : ∀{A : Set} → (ctxt → spanM A) → spanM A get-ctxt m Γ ss = m Γ Γ ss set-ctxt : ctxt → spanM ⊤ set-ctxt Γ _ ss = returnM (triv , Γ , ss) get-error : ∀ {A : Set} → (maybe error-span → spanM A) → spanM A get-error m Γ ss@(global-error _ _) = m nothing Γ ss get-error m Γ ss@(regular-spans nothing _) = m nothing Γ ss get-error m Γ ss@(regular-spans (just es) _) = m (just es) Γ ss set-error : maybe (error-span) → spanM ⊤ set-error es Γ ss@(global-error _ _) = returnM (triv , Γ , ss) set-error es Γ (regular-spans _ ss) = returnM (triv , Γ , regular-spans es ss) restore-def : Set restore-def = maybe qualif-info × maybe sym-info spanM-set-params : params → spanM ⊤ spanM-set-params ps Γ ss = returnM (triv , (ctxt-params-def ps Γ) , ss) -- this returns the previous ctxt-info, if any, for the given variable spanM-push-term-decl : posinfo → var → type → spanM restore-def spanM-push-term-decl pi x t Γ ss = let qi = ctxt-get-qi Γ x in returnM ((qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) , ctxt-term-decl pi x t Γ , ss) -- let bindings currently cannot be made opaque, so this is OpacTrans. -tony spanM-push-term-def : posinfo → var → term → type → spanM restore-def spanM-push-term-def pi x t T Γ ss = let qi = ctxt-get-qi Γ x in returnM ((qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) , ctxt-term-def pi localScope OpacTrans x (just t) T Γ , ss) spanM-push-term-udef : posinfo → var → term → spanM restore-def spanM-push-term-udef pi x t Γ ss = let qi = ctxt-get-qi Γ x in returnM ((qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) , ctxt-term-udef pi localScope OpacTrans x t Γ , ss) -- return previous ctxt-info, if any spanM-push-type-decl : posinfo → var → kind → spanM restore-def spanM-push-type-decl pi x k Γ ss = let qi = ctxt-get-qi Γ x in returnM ((qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) , ctxt-type-decl pi x k Γ , ss) spanM-push-type-def : posinfo → var → type → kind → spanM restore-def spanM-push-type-def pi x t T Γ ss = let qi = ctxt-get-qi Γ x in returnM ((qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) , ctxt-type-def pi localScope OpacTrans x (just t) T Γ , ss) spanM-lookup-restore-info : var → spanM restore-def spanM-lookup-restore-info x = get-ctxt λ Γ → let qi = ctxt-get-qi Γ x in spanMr (qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) -- returns the original sym-info. -- clarification is idempotent: if the definition was already clarified, -- then the operation succeeds, and returns (just sym-info). -- this only returns nothing in the case that the opening didnt make sense: -- you tried to open a term def, you tried to open an unknown def, etc... -- basically any situation where the def wasnt a "proper" type def spanM-clarify-def : opacity → var → spanM (maybe sym-info) spanM-clarify-def o x Γ ss = returnM (result (ctxt-clarify-def Γ o x)) where result : maybe (sym-info × ctxt) → (maybe sym-info × ctxt × spans) result (just (si , Γ')) = ( just si , Γ' , ss ) result nothing = ( nothing , Γ , ss ) spanM-restore-clarified-def : var → sym-info → spanM ⊤ spanM-restore-clarified-def x si Γ ss = returnM (triv , ctxt-set-sym-info Γ x si , ss) -- restore ctxt-info for the variable with given posinfo spanM-restore-info : var → restore-def → spanM ⊤ spanM-restore-info v rd Γ ss = returnM (triv , ctxt-restore-info Γ v (fst rd) (snd rd) , ss) _≫=span_ : ∀{A B : Set} → spanM A → (A → spanM B) → spanM B (m₁ ≫=span m₂) ss Γ = m₁ ss Γ ≫=monad λ where (v , Γ , ss) → m₂ v Γ ss _≫span_ : ∀{A B : Set} → spanM A → spanM B → spanM B (m₁ ≫span m₂) = m₁ ≫=span (λ _ → m₂) spanM-restore-info* : 𝕃 (var × restore-def) → spanM ⊤ spanM-restore-info* [] = spanMok spanM-restore-info* ((v , qi , m) :: s) = spanM-restore-info v (qi , m) ≫span spanM-restore-info* s infixl 2 _≫span_ _≫=span_ _≫=spanj_ _≫=spanm_ _≫=spanm'_ _≫=spanc_ _≫=spanc'_ _≫spanc_ _≫spanc'_ _≫=spanj_ : ∀{A : Set} → spanM (maybe A) → (A → spanM ⊤) → spanM ⊤ _≫=spanj_{A} m m' = m ≫=span cont where cont : maybe A → spanM ⊤ cont nothing = spanMok cont (just x) = m' x -- discard changes made by the first computation _≫=spand_ : ∀{A B : Set} → spanM A → (A → spanM B) → spanM B _≫=spand_{A} m m' Γ ss = m Γ ss ≫=monad λ where (v , _ , _) → m' v Γ ss -- discard *spans* generated by first computation _≫=spands_ : ∀ {A B : Set} → spanM A → (A → spanM B) → spanM B _≫=spands_ m f Γ ss = m Γ ss ≫=monad λ where (v , Γ , _ ) → f v Γ ss _≫=spanm_ : ∀{A : Set} → spanM (maybe A) → (A → spanM (maybe A)) → spanM (maybe A) _≫=spanm_{A} m m' = m ≫=span cont where cont : maybe A → spanM (maybe A) cont nothing = spanMr nothing cont (just a) = m' a _≫=spans'_ : ∀ {A B E : Set} → spanM (E ∨ A) → (A → spanM (E ∨ B)) → spanM (E ∨ B) _≫=spans'_ m f = m ≫=span λ where (inj₁ e) → spanMr (inj₁ e) (inj₂ a) → f a _≫=spanm'_ : ∀{A B : Set} → spanM (maybe A) → (A → spanM (maybe B)) → spanM (maybe B) _≫=spanm'_{A}{B} m m' = m ≫=span cont where cont : maybe A → spanM (maybe B) cont nothing = spanMr nothing cont (just a) = m' a -- Currying/uncurry span binding _≫=spanc_ : ∀{A B C} → spanM (A × B) → (A → B → spanM C) → spanM C (m ≫=spanc m') Γ ss = m Γ ss ≫=monad λ where ((a , b) , Γ' , ss') → m' a b Γ' ss' _≫=spanc'_ : ∀{A B C} → spanM (A × B) → (B → spanM C) → spanM C (m ≫=spanc' m') Γ ss = m Γ ss ≫=monad λ where ((a , b) , Γ' , ss') → m' b Γ' ss' _≫spanc'_ : ∀{A B} → spanM A → B → spanM (A × B) (m ≫spanc' b) = m ≫=span λ a → spanMr (a , b) _≫spanc_ : ∀{A B} → spanM A → spanM B → spanM (A × B) (ma ≫spanc mb) = ma ≫=span λ a → mb ≫=span λ b → spanMr (a , b) spanMok' : ∀{A} → A → spanM (⊤ × A) spanMok' a = spanMr (triv , a) _on-fail_≫=spanm'_ : ∀ {A B} → spanM (maybe A) → spanM B → (A → spanM B) → spanM B _on-fail_≫=spanm'_ {A}{B} m fail f = m ≫=span cont where cont : maybe A → spanM B cont nothing = fail cont (just x) = f x _on-fail_≫=spans'_ : ∀ {A B E} → spanM (E ∨ A) → (E → spanM B) → (A → spanM B) → spanM B _on-fail_≫=spans'_ {A}{B}{E} m fail f = m ≫=span cont where cont : E ∨ A → spanM B cont (inj₁ err) = fail err cont (inj₂ a) = f a _exit-early_≫=spans'_ = _on-fail_≫=spans'_ with-ctxt : ∀ {A} → ctxt → spanM A → spanM A with-ctxt Γ sm = get-ctxt λ Γ' → set-ctxt Γ ≫span sm ≫=span λ a → set-ctxt Γ' ≫span spanMr a sequence-spanM : ∀ {A} → 𝕃 (spanM A) → spanM (𝕃 A) sequence-spanM [] = spanMr [] sequence-spanM (sp :: sps) = sp ≫=span λ x → sequence-spanM sps ≫=span λ xs → spanMr (x :: xs) foldr-spanM : ∀ {A B} → (A → spanM B → spanM B) → spanM B → 𝕃 (spanM A) → spanM B foldr-spanM f n [] = n foldr-spanM f n (m :: ms) = m ≫=span λ a → f a (foldr-spanM f n ms) foldl-spanM : ∀ {A B} → (spanM B → A → spanM B) → spanM B → 𝕃 (spanM A) → spanM B foldl-spanM f m [] = m foldl-spanM f m (m' :: ms) = m' ≫=span λ a → foldl-spanM f (f m a) ms spanM-for_init_use_ : ∀ {A B} → 𝕃 (spanM A) → spanM B → (A → spanM B → spanM B) → spanM B spanM-for xs init acc use f = foldr-spanM f acc xs spanM-add : span → spanM ⊤ spanM-add s Γ ss = returnM (triv , Γ , add-span s ss) spanM-addl : 𝕃 span → spanM ⊤ spanM-addl [] = spanMok spanM-addl (s :: ss) = spanM-add s ≫span spanM-addl ss debug-span : posinfo → posinfo → 𝕃 tagged-val → span debug-span pi pi' tvs = mk-span "Debug" pi pi' tvs nothing spanM-debug : posinfo → posinfo → 𝕃 tagged-val → spanM ⊤ --spanM-debug pi pi' tvs = spanM-add (debug-span pi pi' tvs) spanM-debug pi pi' tvs = spanMok to-string-tag-tk : (tag : string) → ctxt → tk → tagged-val to-string-tag-tk t Γ (Tkt T) = to-string-tag t Γ T to-string-tag-tk t Γ (Tkk k) = to-string-tag t Γ k -------------------------------------------------- -- tagged-val constants -------------------------------------------------- location-data : location → tagged-val location-data (file-name , pi) = strRunTag "location" empty-ctxt (strAdd file-name ≫str strAdd " - " ≫str strAdd pi) var-location-data : ctxt → var → tagged-val var-location-data Γ @ (mk-ctxt _ _ i _ _) x = location-data (maybe-else ("missing" , "missing") snd (trie-lookup i x maybe-or trie-lookup i (qualif-var Γ x))) {- {-# TERMINATING #-} var-location-data : ctxt → var → maybe language-level → tagged-val var-location-data Γ x (just ll-term) with ctxt-var-location Γ x | qualif-term Γ (Var posinfo-gen x) ...| ("missing" , "missing") | (Var pi x') = location-data (ctxt-var-location Γ x') ...| loc | _ = location-data loc var-location-data Γ x (just ll-type) with ctxt-var-location Γ x | qualif-type Γ (TpVar posinfo-gen x) ...| ("missing" , "missing") | (TpVar pi x') = location-data (ctxt-var-location Γ x') ...| loc | _ = location-data loc var-location-data Γ x (just ll-kind) with ctxt-var-location Γ x | qualif-kind Γ (KndVar posinfo-gen x ArgsNil) ...| ("missing" , "missing") | (KndVar pi x' as) = location-data (ctxt-var-location Γ x') ...| loc | _ = location-data loc var-location-data Γ x nothing with ctxt-lookup-term-var Γ x | ctxt-lookup-type-var Γ x | ctxt-lookup-kind-var-def Γ x ...| just _ | _ | _ = var-location-data Γ x (just ll-term) ...| _ | just _ | _ = var-location-data Γ x (just ll-type) ...| _ | _ | just _ = var-location-data Γ x (just ll-kind) ...| _ | _ | _ = location-data ("missing" , "missing") -} explain : string → tagged-val explain = strRunTag "explanation" empty-ctxt ∘ strAdd reason : string → tagged-val reason = strRunTag "reason" empty-ctxt ∘ strAdd expected-type : ctxt → type → tagged-val expected-type = to-string-tag "expected-type" expected-type-subterm : ctxt → type → tagged-val expected-type-subterm = to-string-tag "expected-type of the subterm" missing-expected-type : tagged-val missing-expected-type = strRunTag "expected-type" empty-ctxt $ strAdd "[missing]" -- hnf-type : ctxt → type → tagged-val -- hnf-type Γ tp = to-string-tag "hnf of type" Γ (hnf-term-type Γ ff tp) -- hnf-expected-type : ctxt → type → tagged-val -- hnf-expected-type Γ tp = to-string-tag "hnf of expected type" Γ (hnf-term-type Γ ff tp) expected-kind : ctxt → kind → tagged-val expected-kind = to-string-tag "expected kind" expected-kind-if : ctxt → maybe kind → 𝕃 tagged-val expected-kind-if _ nothing = [] expected-kind-if Γ (just k) = [ expected-kind Γ k ] expected-type-if : ctxt → maybe type → 𝕃 tagged-val expected-type-if _ nothing = [] expected-type-if Γ (just tp) = [ expected-type Γ tp ] -- hnf-expected-type-if : ctxt → maybe type → 𝕃 tagged-val -- hnf-expected-type-if Γ nothing = [] -- hnf-expected-type-if Γ (just tp) = [ hnf-expected-type Γ tp ] type-data : ctxt → type → tagged-val type-data = to-string-tag "type" missing-type : tagged-val missing-type = strRunTag "type" empty-ctxt $ strAdd "[undeclared]" warning-data : string → tagged-val warning-data = strRunTag "warning" empty-ctxt ∘ strAdd check-for-type-mismatch : ctxt → string → type → type → 𝕃 tagged-val × err-m check-for-type-mismatch Γ s tp tp' = let tp'' = hnf Γ unfold-head tp' tt in expected-type Γ tp :: [ type-data Γ tp' ] , if conv-type Γ tp tp'' then nothing else just ("The expected type does not match the " ^ s ^ " type.") check-for-type-mismatch-if : ctxt → string → maybe type → type → 𝕃 tagged-val × err-m check-for-type-mismatch-if Γ s (just tp) = check-for-type-mismatch Γ s tp check-for-type-mismatch-if Γ s nothing tp = [ type-data Γ tp ] , nothing summary-data : {ed : exprd} → (name : string) → ctxt → ⟦ ed ⟧ → tagged-val summary-data name Γ t = strRunTag "summary" Γ (strVar name ≫str strAdd " : " ≫str to-stringh t) missing-kind : tagged-val missing-kind = strRunTag "kind" empty-ctxt $ strAdd "[undeclared]" head-kind : ctxt → kind → tagged-val head-kind = to-string-tag "the kind of the head" head-type : ctxt → type → tagged-val head-type = to-string-tag "the type of the head" arg-type : ctxt → type → tagged-val arg-type = to-string-tag "computed arg type" arg-exp-type : ctxt → type → tagged-val arg-exp-type = to-string-tag "expected arg type" type-app-head : ctxt → type → tagged-val type-app-head = to-string-tag "the head" term-app-head : ctxt → term → tagged-val term-app-head = to-string-tag "the head" term-argument : ctxt → term → tagged-val term-argument = to-string-tag "the argument" type-argument : ctxt → type → tagged-val type-argument = to-string-tag "the argument" contextual-type-argument : ctxt → type → tagged-val contextual-type-argument = to-string-tag "contextual type arg" arg-argument : ctxt → arg → tagged-val arg-argument Γ (TermArg me x) = term-argument Γ x arg-argument Γ (TypeArg x) = type-argument Γ x kind-data : ctxt → kind → tagged-val kind-data = to-string-tag "kind" liftingType-data : ctxt → liftingType → tagged-val liftingType-data = to-string-tag "lifting type" kind-data-if : ctxt → maybe kind → 𝕃 tagged-val kind-data-if Γ (just k) = [ kind-data Γ k ] kind-data-if _ nothing = [] super-kind-data : tagged-val super-kind-data = strRunTag "superkind" empty-ctxt $ strAdd "□" symbol-data : string → tagged-val symbol-data = strRunTag "symbol" empty-ctxt ∘ strAdd tk-data : ctxt → tk → tagged-val tk-data Γ (Tkk k) = kind-data Γ k tk-data Γ (Tkt t) = type-data Γ t checking-to-string : checking-mode → string checking-to-string checking = "checking" checking-to-string synthesizing = "synthesizing" checking-to-string untyped = "untyped" checking-data : checking-mode → tagged-val checking-data = strRunTag "checking-mode" empty-ctxt ∘' strAdd ∘' checking-to-string checked-meta-var : var → tagged-val checked-meta-var = strRunTag "checked meta-var" empty-ctxt ∘ strAdd ll-data : language-level → tagged-val ll-data = strRunTag "language-level" empty-ctxt ∘' strAdd ∘' ll-to-string ll-data-term = ll-data ll-term ll-data-type = ll-data ll-type ll-data-kind = ll-data ll-kind {- binder-data : ℕ → tagged-val binder-data n = "binder" , [[ ℕ-to-string n ]] , [] -- this is the subterm position in the parse tree (as determined by -- spans) for the bound variable of a binder binder-data-const : tagged-val binder-data-const = binder-data 0 bound-data : defTermOrType → ctxt → tagged-val bound-data (DefTerm pi v mtp t) Γ = to-string-tag "bound-value" Γ t bound-data (DefType pi v k tp) Γ = to-string-tag "bound-value" Γ tp -} binder-data : ctxt → posinfo → var → (atk : tk) → maybeErased → maybe (if tk-is-type atk then term else type) → (from to : posinfo) → tagged-val binder-data Γ pi x atk me val s e = strRunTag "binder" Γ $ strAdd "symbol:" ≫str --strAdd "{\\\\\"symbol\\\\\":\\\\\"" ≫str strAdd x ≫str --strAdd "\\\\\"," ≫str atk-val atk val ≫str strAdd "§from:" ≫str --strAdd ",\\\\\"from\\\\\":" ≫str strAdd s ≫str strAdd "§to:" ≫str --strAdd ",\\\\\"to\\\\\":" ≫str strAdd e ≫str loc ≫str erased? --strAdd "}" where loc : strM {-loc = maybe-else' (ctxt-get-info (qualif-var Γ x) Γ) strEmpty $ λ where (_ , fn , pi) → strAdd "§fn:" ≫str --strAdd ",\\\\\"fn\\\\\":\\\\\"" ≫str strAdd fn ≫str strAdd "§pos:" ≫str --strAdd "\\\\\",\\\\\"pos\\\\\":" ≫str strAdd pi-} loc = strAdd "§fn:" ≫str strAdd (ctxt-get-current-filename Γ) ≫str strAdd "§pos:" ≫str strAdd pi erased? : strM erased? = strAdd "§erased:" ≫str --strAdd ",\\\\\"erased\\\\\":" ≫str strAdd (if me then "true" else "false") val? : ∀ {ed} → maybe ⟦ ed ⟧ → strM val? = maybe-else strEmpty λ x → strAdd "§value:" ≫str --strAdd "\\\\\",\\\\\"value\\\\\":\\\\\"" ≫str to-stringh x atk-val : (atk : tk) → maybe (if tk-is-type atk then term else type) → strM atk-val (Tkt T) t? = strAdd "§type:" ≫str --strAdd "\\\\\"type\\\\\":\\\\\"" ≫str to-stringh T ≫str val? t? -- ≫str --strAdd "\\\\\"" atk-val (Tkk k) T? = strAdd "§kind:" ≫str --strAdd "\\\\\"kind\\\\\":\\\\\"" ≫str to-stringh k ≫str val? T? -- ≫str --strAdd "\\\\\"" punctuation-data : tagged-val punctuation-data = strRunTag "punctuation" empty-ctxt $ strAdd "true" not-for-navigation : tagged-val not-for-navigation = strRunTag "not-for-navigation" empty-ctxt $ strAdd "true" is-erased : type → 𝔹 is-erased (TpVar _ _ ) = tt is-erased _ = ff keywords = "keywords" --keyword-erased = "erased" --keyword-noterased = "noterased" keyword-application = "application" keyword-locale = "meta-var-locale" --noterased : tagged-val --noterased = keywords , [[ keyword-noterased ]] , [] keywords-data : 𝕃 string → tagged-val keywords-data kws = keywords , h kws , [] where h : 𝕃 string → rope h [] = [[]] h (k :: []) = [[ k ]] h (k :: ks) = [[ k ]] ⊹⊹ [[ " " ]] ⊹⊹ h ks {- keywords-data-var : maybeErased → tagged-val keywords-data-var e = keywords , [[ if e then keyword-erased else keyword-noterased ]] , [] -} keywords-app : (is-locale : 𝔹) → tagged-val keywords-app l = keywords-data ([ keyword-application ] ++ (if l then [ keyword-locale ] else [])) keywords-app-if-typed : checking-mode → (is-locale : 𝔹) → 𝕃 tagged-val keywords-app-if-typed untyped l = [] keywords-app-if-typed _ l = [ keywords-app l ] error-if-not-eq : ctxt → type → 𝕃 tagged-val → 𝕃 tagged-val × err-m error-if-not-eq Γ (TpEq pi t1 t2 pi') tvs = expected-type Γ (TpEq pi t1 t2 pi') :: tvs , nothing error-if-not-eq Γ tp tvs = expected-type Γ tp :: tvs , just "This term is being checked against the following type, but an equality type was expected" error-if-not-eq-maybe : ctxt → maybe type → 𝕃 tagged-val → 𝕃 tagged-val × err-m error-if-not-eq-maybe Γ (just tp) = error-if-not-eq Γ tp error-if-not-eq-maybe _ _ tvs = tvs , nothing params-data : ctxt → params → 𝕃 tagged-val params-data _ [] = [] params-data Γ ps = [ params-to-string-tag "parameters" Γ ps ] -------------------------------------------------- -- span-creating functions -------------------------------------------------- Star-name : string Star-name = "Star" parens-span : posinfo → posinfo → span parens-span pi pi' = mk-span "parentheses" pi pi' [] nothing data decl-class : Set where param : decl-class index : decl-class decl-class-name : decl-class → string decl-class-name param = "parameter" decl-class-name index = "index" Decl-span : ctxt → decl-class → posinfo → posinfo → var → tk → maybeErased → posinfo → span Decl-span Γ dc pi pi' v atk me pi'' = mk-span ((if tk-is-type atk then "Term " else "Type ") ^ (decl-class-name dc)) pi pi'' [ binder-data Γ pi' v atk me nothing (tk-end-pos atk) pi'' ] nothing TpVar-span : ctxt → posinfo → string → checking-mode → 𝕃 tagged-val → err-m → span TpVar-span Γ pi v check tvs = mk-span name pi (posinfo-plus-str pi (unqual-local v)) (checking-data check :: ll-data-type :: var-location-data Γ v :: symbol-data (unqual-local v) :: tvs) where v' = unqual-local v name = if isJust (data-lookup Γ (qualif-var Γ v') []) then "Datatype variable" else "Type variable" Var-span : ctxt → posinfo → string → checking-mode → 𝕃 tagged-val → err-m → span Var-span Γ pi v check tvs = mk-span name pi (posinfo-plus-str pi v') (checking-data check :: ll-data-term :: var-location-data Γ v :: symbol-data v' :: tvs) where v' = unqual-local v name : string name with qual-lookup Γ v' ...| just (_ , ctr-def _ _ _ _ _ , _) = "Constructor variable" ...| _ = "Term variable" KndVar-span : ctxt → (posinfo × var) → (end-pi : posinfo) → params → checking-mode → 𝕃 tagged-val → err-m → span KndVar-span Γ (pi , v) pi' ps check tvs = mk-span "Kind variable" pi pi' (checking-data check :: ll-data-kind :: var-location-data Γ v :: symbol-data (unqual-local v) :: super-kind-data :: (params-data Γ ps ++ tvs)) var-span-with-tags : maybeErased → ctxt → posinfo → string → checking-mode → tk → 𝕃 tagged-val → err-m → span var-span-with-tags _ Γ pi x check (Tkk k) tags = TpVar-span Γ pi x check ({-keywords-data-var ff ::-} [ kind-data Γ k ] ++ tags) var-span-with-tags e Γ pi x check (Tkt t) tags = Var-span Γ pi x check ({-keywords-data-var e ::-} [ type-data Γ t ] ++ tags) var-span : maybeErased → ctxt → posinfo → string → checking-mode → tk → err-m → span var-span e Γ pi x check tk = var-span-with-tags e Γ pi x check tk [] redefined-var-span : ctxt → posinfo → var → span redefined-var-span Γ pi x = mk-span "Variable definition" pi (posinfo-plus-str pi x) [ var-location-data Γ x ] (just "This symbol was defined already.") TpAppt-span : type → term → checking-mode → 𝕃 tagged-val → err-m → span TpAppt-span tp t check tvs = mk-span "Application of a type to a term" (type-start-pos tp) (term-end-pos t) (checking-data check :: ll-data-type :: tvs) TpApp-span : type → type → checking-mode → 𝕃 tagged-val → err-m → span TpApp-span tp tp' check tvs = mk-span "Application of a type to a type" (type-start-pos tp) (type-end-pos tp') (checking-data check :: ll-data-type :: tvs) App-span : (is-locale : 𝔹) → term → term → checking-mode → 𝕃 tagged-val → err-m → span App-span l t t' check tvs = mk-span "Application of a term to a term" (term-start-pos t) (term-end-pos t') (checking-data check :: ll-data-term :: keywords-app-if-typed check l ++ tvs) AppTp-span : term → type → checking-mode → 𝕃 tagged-val → err-m → span AppTp-span t tp check tvs = mk-span "Application of a term to a type" (term-start-pos t) (type-end-pos tp) (checking-data check :: ll-data-term :: keywords-app-if-typed check ff ++ tvs) TpQuant-e = 𝔹 is-pi : TpQuant-e is-pi = tt TpQuant-span : ctxt → TpQuant-e → posinfo → posinfo → var → tk → type → checking-mode → 𝕃 tagged-val → err-m → span TpQuant-span Γ is-pi pi pi' x atk body check tvs err = let err-if-type-pi = if ~ tk-is-type atk && is-pi then just "Π-types must bind a term, not a type (use ∀ instead)" else nothing in mk-span (if is-pi then "Dependent function type" else "Implicit dependent function type") pi (type-end-pos body) (checking-data check :: ll-data-type :: binder-data Γ pi' x atk (~ is-pi) nothing (type-start-pos body) (type-end-pos body) :: tvs) (if isJust err-if-type-pi then err-if-type-pi else err) TpLambda-span : ctxt → posinfo → posinfo → var → tk → type → checking-mode → 𝕃 tagged-val → err-m → span TpLambda-span Γ pi pi' x atk body check tvs = mk-span "Type-level lambda abstraction" pi (type-end-pos body) (checking-data check :: ll-data-type :: binder-data Γ pi' x atk NotErased nothing (type-start-pos body) (type-end-pos body) :: tvs) Iota-span : ctxt → posinfo → posinfo → var → type → checking-mode → 𝕃 tagged-val → err-m → span Iota-span Γ pi pi' x t2 check tvs = mk-span "Iota-abstraction" pi (type-end-pos t2) (explain "A dependent intersection type" :: checking-data check :: binder-data Γ pi' x (Tkt t2) ff nothing (type-start-pos t2) (type-end-pos t2) :: ll-data-type :: tvs) TpArrow-span : type → type → checking-mode → 𝕃 tagged-val → err-m → span TpArrow-span t1 t2 check tvs = mk-span "Arrow type" (type-start-pos t1) (type-end-pos t2) (checking-data check :: ll-data-type :: tvs) TpEq-span : posinfo → term → term → posinfo → checking-mode → 𝕃 tagged-val → err-m → span TpEq-span pi t1 t2 pi' check tvs = mk-span "Equation" pi pi' (explain "Equation between terms" :: checking-data check :: ll-data-type :: tvs) Star-span : posinfo → checking-mode → err-m → span Star-span pi check = mk-span Star-name pi (posinfo-plus pi 1) (checking-data check :: [ ll-data-kind ]) KndPi-span : ctxt → posinfo → posinfo → var → tk → kind → checking-mode → err-m → span KndPi-span Γ pi pi' x atk k check = mk-span "Pi kind" pi (kind-end-pos k) (checking-data check :: ll-data-kind :: binder-data Γ pi' x atk ff nothing (kind-start-pos k) (kind-end-pos k) :: [ super-kind-data ]) KndArrow-span : kind → kind → checking-mode → err-m → span KndArrow-span k k' check = mk-span "Arrow kind" (kind-start-pos k) (kind-end-pos k') (checking-data check :: ll-data-kind :: [ super-kind-data ]) KndTpArrow-span : type → kind → checking-mode → err-m → span KndTpArrow-span t k check = mk-span "Arrow kind" (type-start-pos t) (kind-end-pos k) (checking-data check :: ll-data-kind :: [ super-kind-data ]) {- [[file:../cedille-mode.el::(defun%20cedille-mode-filter-out-special(data)][Frontend]] -} special-tags : 𝕃 string special-tags = "symbol" :: "location" :: "language-level" :: "checking-mode" :: "summary" :: "binder" :: "bound-value" :: "keywords" :: [] error-span-filter-special : error-span → error-span error-span-filter-special (mk-error-span dsc pi pi' tvs msg) = mk-error-span dsc pi pi' tvs' msg where tvs' = (flip filter) tvs λ tag → list-any (_=string (fst tag)) special-tags erasure : ctxt → term → tagged-val erasure Γ t = to-string-tag "erasure" Γ (erase-term t) erased-marg-span : ctxt → term → maybe type → span erased-marg-span Γ t mtp = mk-span "Erased module parameter" (term-start-pos t) (term-end-pos t) (maybe-else [] (λ tp → [ type-data Γ tp ]) mtp) (just "An implicit module parameter variable occurs free in the erasure of the term.") Lam-span-erased : maybeErased → string Lam-span-erased Erased = "Erased lambda abstraction (term-level)" Lam-span-erased NotErased = "Lambda abstraction (term-level)" Lam-span : ctxt → checking-mode → posinfo → posinfo → maybeErased → var → tk → term → 𝕃 tagged-val → err-m → span Lam-span Γ c pi pi' NotErased x {-(SomeClass-} (Tkk k) {-)-} t tvs e = mk-span (Lam-span-erased NotErased) pi (term-end-pos t) (ll-data-term :: binder-data Γ pi' x (Tkk k) NotErased nothing (term-start-pos t) (term-end-pos t) :: checking-data c :: tvs) (e maybe-or just "λ-terms must bind a term, not a type (use Λ instead)") --Lam-span Γ c pi l x NoClass t tvs = mk-span (Lam-span-erased l) pi (term-end-pos t) (ll-data-term :: binder-data Γ x :: checking-data c :: tvs) Lam-span Γ c pi pi' l x {-(SomeClass-} atk {-)-} t tvs = mk-span (Lam-span-erased l) pi (term-end-pos t) ((ll-data-term :: binder-data Γ pi' x atk l nothing (term-start-pos t) (term-end-pos t) :: checking-data c :: tvs) ++ bound-tp atk) where bound-tp : tk → 𝕃 tagged-val bound-tp (Tkt (TpHole _)) = [] bound-tp atk = [ to-string-tag-tk "type of bound variable" Γ atk ] compileFail-in : ctxt → term → 𝕃 tagged-val × err-m compileFail-in Γ t with is-free-in check-erased compileFail-qual | qualif-term Γ t ...| is-free | tₒ with erase-term tₒ | hnf Γ unfold-all tₒ ff ...| tₑ | tₙ with is-free tₒ ...| ff = [] , nothing ...| tt with is-free tₙ | is-free tₑ ...| tt | _ = [ to-string-tag "normalized term" Γ tₙ ] , just "compileFail occurs in the normalized term" ...| ff | ff = [ to-string-tag "the term" Γ tₒ ] , just "compileFail occurs in an erased position" ...| ff | tt = [] , nothing DefTerm-span : ctxt → posinfo → var → (checked : checking-mode) → maybe type → term → posinfo → 𝕃 tagged-val → span DefTerm-span Γ pi x checked tp t pi' tvs = h ((h-summary tp) ++ ({-erasure Γ t ::-} tvs)) pi x checked tp pi' where h : 𝕃 tagged-val → posinfo → var → (checked : checking-mode) → maybe type → posinfo → span h tvs pi x checking _ pi' = mk-span "Term-level definition (checking)" pi pi' tvs nothing h tvs pi x _ (just tp) pi' = mk-span "Term-level definition (synthesizing)" pi pi' (to-string-tag "synthesized type" Γ tp :: tvs) nothing h tvs pi x _ nothing pi' = mk-span "Term-level definition (synthesizing)" pi pi' ((strRunTag "synthesized type" empty-ctxt $ strAdd "[nothing]") :: tvs) nothing h-summary : maybe type → 𝕃 tagged-val h-summary nothing = [(checking-data synthesizing)] h-summary (just tp) = (checking-data checking :: [ summary-data x Γ tp ]) CheckTerm-span : ctxt → (checked : checking-mode) → maybe type → term → posinfo → 𝕃 tagged-val → span CheckTerm-span Γ checked tp t pi' tvs = h ({-erasure Γ t ::-} tvs) checked tp (term-start-pos t) pi' where h : 𝕃 tagged-val → (checked : checking-mode) → maybe type → posinfo → posinfo → span h tvs checking _ pi pi' = mk-span "Checking a term" pi pi' (checking-data checking :: tvs) nothing h tvs _ (just tp) pi pi' = mk-span "Synthesizing a type for a term" pi pi' (checking-data synthesizing :: to-string-tag "synthesized type" Γ tp :: tvs) nothing h tvs _ nothing pi pi' = mk-span "Synthesizing a type for a term" pi pi' (checking-data synthesizing :: (strRunTag "synthesized type" empty-ctxt $ strAdd "[nothing]") :: tvs) nothing normalized-type : ctxt → type → tagged-val normalized-type = to-string-tag "normalized type" DefType-span : ctxt → posinfo → var → (checked : checking-mode) → maybe kind → type → posinfo → 𝕃 tagged-val → span DefType-span Γ pi x checked mk tp pi' tvs = h ((h-summary mk) ++ tvs) checked mk where h : 𝕃 tagged-val → checking-mode → maybe kind → span h tvs checking _ = mk-span "Type-level definition (checking)" pi pi' tvs nothing h tvs _ (just k) = mk-span "Type-level definition (synthesizing)" pi pi' (to-string-tag "synthesized kind" Γ k :: tvs) nothing h tvs _ nothing = mk-span "Type-level definition (synthesizing)" pi pi' ( (strRunTag "synthesized kind" empty-ctxt $ strAdd "[nothing]") :: tvs) nothing h-summary : maybe kind → 𝕃 tagged-val h-summary nothing = [(checking-data synthesizing)] h-summary (just k) = (checking-data checking :: [ summary-data x Γ k ]) DefKind-span : ctxt → posinfo → var → kind → posinfo → span DefKind-span Γ pi x k pi' = mk-span "Kind-level definition" pi pi' (kind-data Γ k :: [ summary-data x Γ (Var pi "□") ]) nothing DefDatatype-span : ctxt → posinfo → posinfo → var → params → (reg Mu bound : kind) → (mu : type) → (cast : type) → ctrs → posinfo → span DefDatatype-span Γ pi pi' x ps k kₘᵤ kₓ Tₘᵤ Tₜₒ cs pi'' = mk-span "Datatype definition" pi pi'' (binder-data Γ pi' x (Tkk kₓ) ff nothing (kind-end-pos k) pi'' :: summary-data x Γ k :: summary-data (data-Is/ x) Γ kₘᵤ :: summary-data (data-is/ x) Γ Tₘᵤ :: summary-data (data-to/ x) Γ Tₜₒ :: to-string-tag (data-Is/ x) Γ kₘᵤ :: to-string-tag (data-is/ x) Γ Tₘᵤ :: to-string-tag (data-to/ x) Γ Tₜₒ :: []) nothing {-unchecked-term-span : term → span unchecked-term-span t = mk-span "Unchecked term" (term-start-pos t) (term-end-pos t) (ll-data-term :: not-for-navigation :: [ explain "This term has not been type-checked."]) nothing-} Beta-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span Beta-span pi pi' check tvs = mk-span "Beta axiom" pi pi' (checking-data check :: ll-data-term :: explain "A term constant whose type states that β-equal terms are provably equal" :: tvs) hole-span : ctxt → posinfo → maybe type → 𝕃 tagged-val → span hole-span Γ pi tp tvs = mk-span "Hole" pi (posinfo-plus pi 1) (ll-data-term :: expected-type-if Γ tp ++ tvs) (just "This hole remains to be filled in") tp-hole-span : ctxt → posinfo → maybe kind → 𝕃 tagged-val → span tp-hole-span Γ pi k tvs = mk-span "Hole" pi (posinfo-plus pi 1) (ll-data-term :: expected-kind-if Γ k ++ tvs) (just "This hole remains to be filled in") expected-to-string : checking-mode → string expected-to-string checking = "expected" expected-to-string synthesizing = "synthesized" expected-to-string untyped = "untyped" Epsilon-span : posinfo → leftRight → maybeMinus → term → checking-mode → 𝕃 tagged-val → err-m → span Epsilon-span pi lr m t check tvs = mk-span "Epsilon" pi (term-end-pos t) (checking-data check :: ll-data-term :: tvs ++ [ explain ("Normalize " ^ side lr ^ " of the " ^ expected-to-string check ^ " equation, using " ^ maybeMinus-description m ^ " reduction." ) ]) where side : leftRight → string side Left = "the left-hand side" side Right = "the right-hand side" side Both = "both sides" maybeMinus-description : maybeMinus → string maybeMinus-description EpsHnf = "head" maybeMinus-description EpsHanf = "head-applicative" optGuide-spans : optGuide → checking-mode → spanM ⊤ optGuide-spans NoGuide _ = spanMok optGuide-spans (Guide pi x tp) expected = get-ctxt λ Γ → spanM-add (Var-span Γ pi x expected [] nothing) Rho-span : posinfo → term → term → checking-mode → rhoHnf → ℕ ⊎ var → 𝕃 tagged-val → err-m → span Rho-span pi t t' expected r (inj₂ x) tvs = mk-span "Rho" pi (term-end-pos t') (checking-data expected :: ll-data-term :: explain ("Rewrite all places where " ^ x ^ " occurs in the " ^ expected-to-string expected ^ " type, using an equation. ") :: tvs) Rho-span pi t t' expected r (inj₁ numrewrites) tvs err = mk-span "Rho" pi (term-end-pos t') (checking-data expected :: ll-data-term :: tvs ++ (explain ("Rewrite terms in the " ^ expected-to-string expected ^ " type, using an equation. " ^ (if r then "" else "Do not ") ^ "Beta-reduce the type as we look for matches.") :: fst h)) (snd h) where h : 𝕃 tagged-val × err-m h = if isJust err then [] , err else if numrewrites =ℕ 0 then [] , just "No rewrites could be performed." else [ strRunTag "Number of rewrites" empty-ctxt (strAdd $ ℕ-to-string numrewrites) ] , err Phi-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span Phi-span pi pi' expected tvs = mk-span "Phi" pi pi' (checking-data expected :: ll-data-term :: tvs) Chi-span : ctxt → posinfo → optType → term → checking-mode → 𝕃 tagged-val → err-m → span Chi-span Γ pi m t' check tvs = mk-span "Chi" pi (term-end-pos t') (ll-data-term :: checking-data check :: tvs ++ helper m) where helper : optType → 𝕃 tagged-val helper (SomeType T) = explain ("Check a term against an asserted type") :: [ to-string-tag "the asserted type" Γ T ] helper NoType = [ explain ("Change from checking mode (outside the term) to synthesizing (inside)") ] Sigma-span : posinfo → term → checking-mode → 𝕃 tagged-val → err-m → span Sigma-span pi t check tvs = mk-span "Sigma" pi (term-end-pos t) (ll-data-term :: checking-data check :: explain "Swap the sides of the equation synthesized for the body of this term" :: tvs) Delta-span : ctxt → posinfo → optType → term → checking-mode → 𝕃 tagged-val → err-m → span Delta-span Γ pi T t check tvs = mk-span "Delta" pi (term-end-pos t) (ll-data-term :: explain "Prove anything you want from a contradiction" :: checking-data check :: tvs) Open-span : ctxt → opacity → posinfo → var → term → checking-mode → 𝕃 tagged-val → err-m → span Open-span Γ o pi x t check tvs = elim-pair (if o iff OpacTrans then ("Open" , "Open an opaque definition") else ("Close" , "Hide a definition")) λ name expl → mk-span name pi (term-end-pos t) (ll-data-term :: explain expl :: checking-data check :: tvs) motive-label : string motive-label = "the motive" the-motive : ctxt → type → tagged-val the-motive = to-string-tag motive-label Theta-span : ctxt → posinfo → theta → term → lterms → checking-mode → 𝕃 tagged-val → err-m → span Theta-span Γ pi u t ls check tvs = mk-span "Theta" pi (lterms-end-pos (term-end-pos t) ls) (ll-data-term :: checking-data check :: tvs ++ do-explain u) where do-explain : theta → 𝕃 tagged-val do-explain Abstract = [ explain ("Perform an elimination with the first term, after abstracting it from the expected type.") ] do-explain (AbstractVars vs) = [ strRunTag "explanation" Γ (strAdd "Perform an elimination with the first term, after abstracting the listed variables (" ≫str vars-to-string vs ≫str strAdd ") from the expected type.") ] do-explain AbstractEq = [ explain ("Perform an elimination with the first term, after abstracting it with an equation " ^ "from the expected type.") ] Mu-span : ctxt → posinfo → maybe var → posinfo → (motive? : maybe type) → checking-mode → 𝕃 tagged-val → err-m → span Mu-span Γ pi x? pi' motive? check tvs = mk-span (if isJust x? then "Mu" else "Mu'") pi pi' (ll-data-term :: checking-data check :: explain ("Pattern match on a term" ^ (if isJust motive? then ", with a motive" else "")) :: tvs) pattern-ctr-span : ctxt → posinfo → var → caseArgs → maybe type → err-m → span pattern-ctr-span Γ pi x as tp = let x' = unqual-local x in mk-span "Pattern constructor" pi (posinfo-plus-str pi x') (checking-data synthesizing :: var-location-data Γ x :: ll-data-term :: symbol-data x' :: maybe-else' tp [] (λ tp → params-to-string-tag "args" Γ (rename-to-args empty-renamectxt as $ fst $ decompose-arrows Γ tp) :: [])) where open import rename rename-to-args : renamectxt → caseArgs → params → params rename-to-args ρ (CaseTermArg _ _ x :: as) (Decl pi pi' me x' atk pi'' :: ps) = Decl pi pi' me x (subst-renamectxt Γ ρ atk) pi'' :: rename-to-args (renamectxt-insert ρ x' x) as ps rename-to-args ρ (CaseTypeArg _ x :: as) (Decl pi pi' me x' atk pi'' :: ps) = Decl pi pi' me x (subst-renamectxt Γ ρ atk) pi'' :: rename-to-args (renamectxt-insert ρ x' x) as ps rename-to-args ρ [] (Decl pi pi' me x atk pi'' :: ps) = Decl pi pi' me x (subst-renamectxt Γ ρ atk) pi'' :: rename-to-args (renamectxt-insert ρ x x) [] ps rename-to-args ρ as ps = ps Lft-span : ctxt → posinfo → posinfo → var → term → checking-mode → 𝕃 tagged-val → err-m → span Lft-span Γ pi pi' X t check tvs = mk-span "Lift type" pi (term-end-pos t) (checking-data check :: ll-data-type :: binder-data Γ pi' X (Tkk star) tt nothing (term-start-pos t) (term-end-pos t) :: tvs) File-span : ctxt → posinfo → posinfo → string → span File-span Γ pi pi' filename = mk-span ("Cedille source file (" ^ filename ^ ")") pi pi' (print-file-id-table Γ) nothing Module-span : posinfo → posinfo → span Module-span pi pi' = mk-span "Module declaration" pi pi' [ not-for-navigation ] nothing Module-header-span : posinfo → posinfo → span Module-header-span pi pi' = mk-span "Module header" pi pi' [ not-for-navigation ] nothing DefDatatype-header-span : posinfo → span DefDatatype-header-span pi = mk-span "Data" pi (posinfo-plus-str pi "data") [ not-for-navigation ] nothing Import-span : posinfo → string → posinfo → 𝕃 tagged-val → err-m → span Import-span pi file pi' tvs = mk-span ("Import of another source file") pi pi' (("Path" , [[ file ]] , []) :: location-data (file , first-position) :: tvs) Import-module-span : ctxt → (posinfo × var) → params → 𝕃 tagged-val → err-m → span Import-module-span Γ (pi , mn) ps tvs = mk-span "Imported module" pi (posinfo-plus-str pi mn) (params-data Γ ps ++ tvs) punctuation-span : string → posinfo → posinfo → span punctuation-span name pi pi' = mk-span name pi pi' ( punctuation-data :: not-for-navigation :: [] ) nothing whitespace-span : posinfo → posinfo → span whitespace-span pi pi' = mk-span "Whitespace" pi pi' [ not-for-navigation ] nothing comment-span : posinfo → posinfo → span comment-span pi pi' = mk-span "Comment" pi pi' [ not-for-navigation ] nothing IotaPair-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span IotaPair-span pi pi' c tvs = mk-span "Iota pair" pi pi' (explain "Inhabit a iota-type (dependent intersection type)." :: checking-data c :: ll-data-term :: tvs) IotaProj-span : term → posinfo → checking-mode → 𝕃 tagged-val → err-m → span IotaProj-span t pi' c tvs = mk-span "Iota projection" (term-start-pos t) pi' (checking-data c :: ll-data-term :: tvs) -- <<<<<<< HEAD Let-span : ctxt → checking-mode → posinfo → posinfo → forceErased → var → (atk : tk) → (if tk-is-type atk then term else type) → term → 𝕃 tagged-val → err-m → span Let-span Γ c pi pi' fe x atk val t' tvs = mk-span name pi (term-end-pos t') (binder-data Γ pi' x atk ff (just val) (term-start-pos t') (term-end-pos t') :: ll-data-term :: checking-data c :: tvs) where name = if fe then "Erased Term Let" else "Term Let" -- ======= -- Let-span : ctxt → checking-mode → posinfo → forceErased → defTermOrType → term → 𝕃 tagged-val → err-m → span -- Let-span Γ c pi fe d t' tvs = mk-span name pi (term-end-pos t') (binder-data-const :: bound-data d Γ :: ll-data-term :: checking-data c :: tvs) -- where name = if fe then "Erased Term Let" else "Term Let" -- >>>>>>> master TpLet-span : ctxt → checking-mode → posinfo → posinfo → var → (atk : tk) → (if tk-is-type atk then term else type) → type → 𝕃 tagged-val → err-m → span TpLet-span Γ c pi pi' x atk val t' tvs = mk-span "Type Let" pi (type-end-pos t') (binder-data Γ pi' x atk ff (just val) (type-start-pos t') (type-end-pos t') :: ll-data-type :: checking-data c :: tvs)
{ "alphanum_fraction": 0.6348741419, "avg_line_length": 46.8884120172, "ext": "agda", "hexsha": "b407fbf714adfd5e601ee6589869447d3baa605e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CarlOlson/cedille", "max_forks_repo_path": "src/spans.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CarlOlson/cedille", "max_issues_repo_path": "src/spans.agda", "max_line_length": 352, "max_stars_count": null, "max_stars_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CarlOlson/cedille", "max_stars_repo_path": "src/spans.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 13740, "size": 43700 }
module Issue2749-2 where -- testing unicode lambda and arrow id : {A : Set} -> A -> A id = {!!} -- testing unicode double braces it : {A : Set} {{a : A}} → A → A it = {!!} data B : Set where mkB : B → B → B -- testing unicode suffixes left : B → B left b₁ = {!!} open import Agda.Builtin.Equality -- testing ascii only forall allq : (∀ m n → m ≡ n) ≡ {!!} allq = refl
{ "alphanum_fraction": 0.5771276596, "avg_line_length": 16.347826087, "ext": "agda", "hexsha": "30bf6337c7b55fd94f9e0a9920fff1be1d406584", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2749-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2749-2.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2749-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 129, "size": 376 }
open import Coinduction using ( ♯_ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; cong ; subst ) open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; ⟦_⟧ ; _≃_ ) open import System.IO.Transducers.Strict using ( Strict ) open import System.IO.Transducers.Session using ( Session ; I ; Σ ; _/_ ) open import System.IO.Transducers.Trace using ( Trace ; [] ; _∷_ ; _✓ ; _⊑_ ) open import System.IO.Transducers.Properties.Lemmas using ( I-η ; ⟦⟧-mono ; ⟦⟧-resp-✓ ; ⟦⟧-resp-[] ) open import System.IO.Transducers.Properties.Category using ( _≣_ ; ⟦⟧-refl-≣ ) module System.IO.Transducers.Properties.Equivalences where open Relation.Binary.PropositionalEquality.≡-Reasoning _//_ : ∀ S → (Trace S) → Session S // [] = S S // (a ∷ as) = (S / a) // as suffix : ∀ {S} {as bs : Trace S} → (as ⊑ bs) → (Trace (S // as)) suffix {bs = bs} [] = bs suffix (a ∷ as⊑bs) = suffix as⊑bs _+++_ : ∀ {S} (as : Trace S) (bs : Trace (S // as)) → (Trace S) [] +++ bs = bs (a ∷ as) +++ bs = a ∷ (as +++ bs) suffix-+++ : ∀ {S} {as : Trace S} {bs} (as⊑bs : as ⊑ bs) → as +++ suffix as⊑bs ≡ bs suffix-+++ [] = refl suffix-+++ (a ∷ as⊑bs) = cong (_∷_ a) (suffix-+++ as⊑bs) suffix-mono : ∀ {S} {as : Trace S} {bs cs} (as⊑bs : as ⊑ bs) (as⊑cs : as ⊑ cs) → (bs ⊑ cs) → (suffix as⊑bs ⊑ suffix as⊑cs) suffix-mono [] [] bs⊑cs = bs⊑cs suffix-mono (.a ∷ as⊑bs) (.a ∷ as⊑cs) (a ∷ bs⊑cs) = suffix-mono as⊑bs as⊑cs bs⊑cs suffix-resp-✓ : ∀ {S} {as : Trace S} {bs} (as⊑bs : as ⊑ bs) → (bs ✓) → (suffix as⊑bs ✓) suffix-resp-✓ [] bs✓ = bs✓ suffix-resp-✓ (.a ∷ as⊑bs) (a ∷ bs✓) = suffix-resp-✓ as⊑bs bs✓ suffix-[] : ∀ {S} {as : Trace S} (as⊑as : as ⊑ as) → (suffix as⊑as ≡ []) suffix-[] [] = refl suffix-[] (a ∷ as⊑as) = suffix-[] as⊑as strictify : ∀ {S T} (f : Trace S → Trace T) → (∀ as bs → as ⊑ bs → f as ⊑ f bs) → (Trace S → Trace (T // f [])) strictify f f-mono as = suffix (f-mono [] as []) lazify : ∀ {S T} (f : Trace S → Trace T) a → (Trace (S / a) → Trace T) lazify f a as = f (a ∷ as) strictify-mono : ∀ {S T} (f : Trace S → Trace T) f-mono → (∀ as bs → as ⊑ bs → strictify f f-mono as ⊑ strictify f f-mono bs) strictify-mono f f-mono as bs as⊑bs = suffix-mono (f-mono [] as []) (f-mono [] bs []) (f-mono as bs as⊑bs) strictify-resp-✓ : ∀ {S T} (f : Trace S → Trace T) f-mono → (∀ as → as ✓ → f as ✓) → (∀ as → as ✓ → strictify f f-mono as ✓) strictify-resp-✓ f f-mono f-resp-✓ as as✓ = suffix-resp-✓ (f-mono [] as []) (f-resp-✓ as as✓) strictify-strict : ∀ {S T} (f : Trace S → Trace T) f-mono → (strictify f f-mono [] ≡ []) strictify-strict f f-mono = suffix-[] (f-mono [] [] []) lazify-mono : ∀ {S T} (f : Trace S → Trace T) a → (∀ as bs → as ⊑ bs → f as ⊑ f bs) → (∀ as bs → as ⊑ bs → lazify f a as ⊑ lazify f a bs) lazify-mono f a f-mono as bs as⊑bs = f-mono (a ∷ as) (a ∷ bs) (a ∷ as⊑bs) lazify-resp-✓ : ∀ {S T} (f : Trace S → Trace T) a → (∀ as → as ✓ → f as ✓) → (∀ as → as ✓ → lazify f a as ✓) lazify-resp-✓ f a f-resp-✓ as as✓ = f-resp-✓ (a ∷ as) (a ∷ as✓) mutual lazy' : ∀ {T S} bs (f : Trace S → Trace (T // bs)) → (∀ as bs → as ⊑ bs → f as ⊑ f bs) → (∀ as → as ✓ → f as ✓) → (f [] ≡ []) → (S ⇒ T) lazy' [] f f-mono f-resp-✓ f-strict = strict f f-mono f-resp-✓ f-strict lazy' {Σ V F} (b ∷ bs) f f-mono f-resp-✓ f-strict = out b (lazy' bs f f-mono f-resp-✓ f-strict) lazy' {I} (() ∷ bs) f f-mono f-resp-✓ f-strict lazy : ∀ {T S} (f : Trace S → Trace T) → (∀ as bs → as ⊑ bs → f as ⊑ f bs) → (∀ as → as ✓ → f as ✓) → (S ⇒ T) lazy f f-mono f-resp-✓ = lazy' (f []) (strictify f f-mono) (strictify-mono f f-mono) (strictify-resp-✓ f f-mono f-resp-✓) (strictify-strict f f-mono) strict : ∀ {S T} (f : Trace S → Trace T) → (∀ as bs → as ⊑ bs → f as ⊑ f bs) → (∀ as → as ✓ → f as ✓) → (f [] ≡ []) → (S ⇒ T) strict {I} {I} f f-mono f-resp-✓ f-strict = done strict {Σ V F} f f-mono f-resp-✓ f-strict = inp (♯ λ a → lazy (lazify f a) (lazify-mono f a f-mono) (lazify-resp-✓ f a f-resp-✓)) strict {I} {Σ W G} f f-mono f-resp-✓ f-strict with subst _✓ f-strict (f-resp-✓ [] []) strict {I} {Σ W G} f f-mono f-resp-✓ f-strict | () mutual lazy'-⟦⟧ : ∀ {T S} bs (f : Trace S → Trace (T // bs)) f-mono f-resp-✓ f-strict → ∀ as → ⟦ lazy' bs f f-mono f-resp-✓ f-strict ⟧ as ≡ bs +++ f as lazy'-⟦⟧ [] f f-mono f-resp-✓ f-strict as = strict-⟦⟧ f f-mono f-resp-✓ f-strict as lazy'-⟦⟧ {Σ W G} (b ∷ bs) f f-mono f-resp-✓ f-strict as = cong (_∷_ b) (lazy'-⟦⟧ bs f f-mono f-resp-✓ f-strict as) lazy'-⟦⟧ {I} (() ∷ bs) f f-mono f-resp-✓ f-strict as lazy-⟦⟧ : ∀ {S T} (f : Trace S → Trace T) f-mono f-resp-✓ → ⟦ lazy f f-mono f-resp-✓ ⟧ ≃ f lazy-⟦⟧ f f-mono f-resp-✓ as = begin ⟦ lazy f f-mono f-resp-✓ ⟧ as ≡⟨ lazy'-⟦⟧ (f []) (strictify f f-mono) (strictify-mono f f-mono) (strictify-resp-✓ f f-mono f-resp-✓) (strictify-strict f f-mono) as ⟩ f [] +++ strictify f f-mono as ≡⟨ suffix-+++ (f-mono [] as []) ⟩ f as ∎ strict-⟦⟧ : ∀ {S T} (f : Trace S → Trace T) f-mono f-resp-✓ f-strict → ⟦ strict f f-mono f-resp-✓ f-strict ⟧ ≃ f strict-⟦⟧ {I} {I} f f-mono f-resp-✓ f-strict [] = sym (I-η (f [])) strict-⟦⟧ {Σ V F} f f-mono f-resp-✓ f-strict [] = sym f-strict strict-⟦⟧ {Σ V F} f f-mono f-resp-✓ f-strict (a ∷ as) = lazy-⟦⟧ (lazify f a) (lazify-mono f a f-mono) (lazify-resp-✓ f a f-resp-✓) as strict-⟦⟧ {I} {Σ W G} f f-mono f-resp-✓ f-strict as with subst _✓ f-strict (f-resp-✓ [] []) strict-⟦⟧ {I} {Σ W G} f f-mono f-resp-✓ f-strict as | () strict-⟦⟧ {I} f f-mono f-resp-✓ f-strict (() ∷ as) ⟦⟧-lazy : ∀ {S T} (P : S ⇒ T) → lazy ⟦ P ⟧ (⟦⟧-mono P) (⟦⟧-resp-✓ P) ≣ P ⟦⟧-lazy P = ⟦⟧-refl-≣ (lazy ⟦ P ⟧ (⟦⟧-mono P) (⟦⟧-resp-✓ P)) P (lazy-⟦⟧ ⟦ P ⟧ (⟦⟧-mono P) (⟦⟧-resp-✓ P)) ⟦⟧-strict : ∀ {S T} (P : S ⇒ T) (#P : Strict P) → strict ⟦ P ⟧ (⟦⟧-mono P) (⟦⟧-resp-✓ P) (⟦⟧-resp-[] #P) ≣ P ⟦⟧-strict P #P = ⟦⟧-refl-≣ (strict ⟦ P ⟧ (⟦⟧-mono P) (⟦⟧-resp-✓ P) (⟦⟧-resp-[] #P)) P (strict-⟦⟧ ⟦ P ⟧ (⟦⟧-mono P) (⟦⟧-resp-✓ P) (⟦⟧-resp-[] #P))
{ "alphanum_fraction": 0.5099836334, "avg_line_length": 44.2753623188, "ext": "agda", "hexsha": "e921f8033805f5013f28a6471f0f48a7fd88796c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Transducers/Properties/Equivalences.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Transducers/Properties/Equivalences.agda", "max_line_length": 151, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Transducers/Properties/Equivalences.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 2907, "size": 6110 }
module Text.Greek.SBLGNT.3John where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΙΩΑΝΝΟΥ-Γ : List (Word) ΙΩΑΝΝΟΥ-Γ = word (Ὁ ∷ []) "3John.1.1" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "3John.1.1" ∷ word (Γ ∷ α ∷ ΐ ∷ ῳ ∷ []) "3John.1.1" ∷ word (τ ∷ ῷ ∷ []) "3John.1.1" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ῷ ∷ []) "3John.1.1" ∷ word (ὃ ∷ ν ∷ []) "3John.1.1" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "3John.1.1" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ []) "3John.1.1" ∷ word (ἐ ∷ ν ∷ []) "3John.1.1" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "3John.1.1" ∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ έ ∷ []) "3John.1.2" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "3John.1.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "3John.1.2" ∷ word (ε ∷ ὔ ∷ χ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "3John.1.2" ∷ word (σ ∷ ε ∷ []) "3John.1.2" ∷ word (ε ∷ ὐ ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "3John.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.2" ∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "3John.1.2" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "3John.1.2" ∷ word (ε ∷ ὐ ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ τ ∷ α ∷ ί ∷ []) "3John.1.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "3John.1.2" ∷ word (ἡ ∷ []) "3John.1.2" ∷ word (ψ ∷ υ ∷ χ ∷ ή ∷ []) "3John.1.2" ∷ word (ἐ ∷ χ ∷ ά ∷ ρ ∷ η ∷ ν ∷ []) "3John.1.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "3John.1.3" ∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "3John.1.3" ∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "3John.1.3" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "3John.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.3" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "3John.1.3" ∷ word (σ ∷ ο ∷ υ ∷ []) "3John.1.3" ∷ word (τ ∷ ῇ ∷ []) "3John.1.3" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "3John.1.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "3John.1.3" ∷ word (σ ∷ ὺ ∷ []) "3John.1.3" ∷ word (ἐ ∷ ν ∷ []) "3John.1.3" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "3John.1.3" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "3John.1.3" ∷ word (μ ∷ ε ∷ ι ∷ ζ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "3John.1.4" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "3John.1.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "3John.1.4" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "3John.1.4" ∷ word (χ ∷ α ∷ ρ ∷ ά ∷ ν ∷ []) "3John.1.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "3John.1.4" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ []) "3John.1.4" ∷ word (τ ∷ ὰ ∷ []) "3John.1.4" ∷ word (ἐ ∷ μ ∷ ὰ ∷ []) "3John.1.4" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "3John.1.4" ∷ word (ἐ ∷ ν ∷ []) "3John.1.4" ∷ word (τ ∷ ῇ ∷ []) "3John.1.4" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "3John.1.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "3John.1.4" ∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ έ ∷ []) "3John.1.5" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "3John.1.5" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "3John.1.5" ∷ word (ὃ ∷ []) "3John.1.5" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "3John.1.5" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ σ ∷ ῃ ∷ []) "3John.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "3John.1.5" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.5" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "3John.1.5" ∷ word (ξ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "3John.1.5" ∷ word (ο ∷ ἳ ∷ []) "3John.1.6" ∷ word (ἐ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ η ∷ σ ∷ ά ∷ ν ∷ []) "3John.1.6" ∷ word (σ ∷ ο ∷ υ ∷ []) "3John.1.6" ∷ word (τ ∷ ῇ ∷ []) "3John.1.6" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "3John.1.6" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "3John.1.6" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "3John.1.6" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "3John.1.6" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "3John.1.6" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "3John.1.6" ∷ word (π ∷ ρ ∷ ο ∷ π ∷ έ ∷ μ ∷ ψ ∷ α ∷ ς ∷ []) "3John.1.6" ∷ word (ἀ ∷ ξ ∷ ί ∷ ω ∷ ς ∷ []) "3John.1.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "3John.1.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "3John.1.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "3John.1.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "3John.1.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "3John.1.7" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "3John.1.7" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "3John.1.7" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "3John.1.7" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "3John.1.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "3John.1.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "3John.1.7" ∷ word (ἐ ∷ θ ∷ ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "3John.1.7" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "3John.1.8" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "3John.1.8" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "3John.1.8" ∷ word (ὑ ∷ π ∷ ο ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "3John.1.8" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.8" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "3John.1.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "3John.1.8" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ὶ ∷ []) "3John.1.8" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "3John.1.8" ∷ word (τ ∷ ῇ ∷ []) "3John.1.8" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "3John.1.8" ∷ word (Ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ά ∷ []) "3John.1.9" ∷ word (τ ∷ ι ∷ []) "3John.1.9" ∷ word (τ ∷ ῇ ∷ []) "3John.1.9" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "3John.1.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "3John.1.9" ∷ word (ὁ ∷ []) "3John.1.9" ∷ word (φ ∷ ι ∷ ∙λ ∷ ο ∷ π ∷ ρ ∷ ω ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "3John.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "3John.1.9" ∷ word (Δ ∷ ι ∷ ο ∷ τ ∷ ρ ∷ έ ∷ φ ∷ η ∷ ς ∷ []) "3John.1.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "3John.1.9" ∷ word (ἐ ∷ π ∷ ι ∷ δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "3John.1.9" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "3John.1.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "3John.1.10" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "3John.1.10" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "3John.1.10" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "3John.1.10" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "3John.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "3John.1.10" ∷ word (τ ∷ ὰ ∷ []) "3John.1.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "3John.1.10" ∷ word (ἃ ∷ []) "3John.1.10" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "3John.1.10" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "3John.1.10" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "3John.1.10" ∷ word (φ ∷ ∙λ ∷ υ ∷ α ∷ ρ ∷ ῶ ∷ ν ∷ []) "3John.1.10" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "3John.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.10" ∷ word (μ ∷ ὴ ∷ []) "3John.1.10" ∷ word (ἀ ∷ ρ ∷ κ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "3John.1.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "3John.1.10" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "3John.1.10" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "3John.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "3John.1.10" ∷ word (ἐ ∷ π ∷ ι ∷ δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "3John.1.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.10" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "3John.1.10" ∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ ι ∷ []) "3John.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.10" ∷ word (ἐ ∷ κ ∷ []) "3John.1.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "3John.1.10" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "3John.1.10" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "3John.1.10" ∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ έ ∷ []) "3John.1.11" ∷ word (μ ∷ ὴ ∷ []) "3John.1.11" ∷ word (μ ∷ ι ∷ μ ∷ ο ∷ ῦ ∷ []) "3John.1.11" ∷ word (τ ∷ ὸ ∷ []) "3John.1.11" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "3John.1.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "3John.1.11" ∷ word (τ ∷ ὸ ∷ []) "3John.1.11" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "3John.1.11" ∷ word (ὁ ∷ []) "3John.1.11" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "3John.1.11" ∷ word (ἐ ∷ κ ∷ []) "3John.1.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "3John.1.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "3John.1.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "3John.1.11" ∷ word (ὁ ∷ []) "3John.1.11" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "3John.1.11" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "3John.1.11" ∷ word (ἑ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ ε ∷ ν ∷ []) "3John.1.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "3John.1.11" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "3John.1.11" ∷ word (Δ ∷ η ∷ μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ ῳ ∷ []) "3John.1.12" ∷ word (μ ∷ ε ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "3John.1.12" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "3John.1.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "3John.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.12" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "3John.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "3John.1.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "3John.1.12" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "3John.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.12" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "3John.1.12" ∷ word (δ ∷ ὲ ∷ []) "3John.1.12" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "3John.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.12" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "3John.1.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "3John.1.12" ∷ word (ἡ ∷ []) "3John.1.12" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "3John.1.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "3John.1.12" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ ς ∷ []) "3John.1.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "3John.1.12" ∷ word (Π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "3John.1.13" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "3John.1.13" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ ι ∷ []) "3John.1.13" ∷ word (σ ∷ ο ∷ ι ∷ []) "3John.1.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "3John.1.13" ∷ word (ο ∷ ὐ ∷ []) "3John.1.13" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "3John.1.13" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "3John.1.13" ∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "3John.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.13" ∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ο ∷ υ ∷ []) "3John.1.13" ∷ word (σ ∷ ο ∷ ι ∷ []) "3John.1.13" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "3John.1.13" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "3John.1.14" ∷ word (δ ∷ ὲ ∷ []) "3John.1.14" ∷ word (ε ∷ ὐ ∷ θ ∷ έ ∷ ω ∷ ς ∷ []) "3John.1.14" ∷ word (σ ∷ ε ∷ []) "3John.1.14" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "3John.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.14" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "3John.1.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "3John.1.14" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "3John.1.14" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "3John.1.14" ∷ word (Ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "3John.1.15" ∷ word (σ ∷ ο ∷ ι ∷ []) "3John.1.15" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "3John.1.15" ∷ word (σ ∷ ε ∷ []) "3John.1.15" ∷ word (ο ∷ ἱ ∷ []) "3John.1.15" ∷ word (φ ∷ ί ∷ ∙λ ∷ ο ∷ ι ∷ []) "3John.1.15" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ υ ∷ []) "3John.1.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.15" ∷ word (φ ∷ ί ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "3John.1.15" ∷ word (κ ∷ α ∷ τ ∷ []) "3John.1.15" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "3John.1.15" ∷ []
{ "alphanum_fraction": 0.3607026924, "avg_line_length": 45.5391304348, "ext": "agda", "hexsha": "8baf4b8398572e7ad2d47123d28aac1585bc23b0", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/3John.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/3John.agda", "max_line_length": 74, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/3John.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 7352, "size": 10474 }
module Dummy where
{ "alphanum_fraction": 0.8, "avg_line_length": 6.6666666667, "ext": "agda", "hexsha": "42cc06d8d2ce39dc62ed6f075df4f541cf44cee9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/Dummy.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/Dummy.agda", "max_line_length": 18, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/Dummy.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 5, "size": 20 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field open import Algebra.Linear.Structures.Bundles module Algebra.Linear.Space.Hom {k ℓ} (K : Field k ℓ) {a₁ ℓ₁} (V₁-space : VectorSpace K a₁ ℓ₁) {a₂ ℓ₂} (V₂-space : VectorSpace K a₂ ℓ₂) where open import Relation.Binary open import Level using (_⊔_; suc) open import Data.Nat using (ℕ) renaming (_+_ to _+ℕ_) open import Algebra.Linear.Morphism.Bundles K open import Algebra.Linear.Morphism.Properties K open import Algebra.Linear.Structures.VectorSpace open import Data.Product open VectorSpaceField K open VectorSpace V₁-space using () renaming ( Carrier to V₁ ; _≈_ to _≈₁_ ; isEquivalence to ≈₁-isEquiv ; refl to ≈₁-refl ; sym to ≈₁-sym ; trans to ≈₁-trans ; setoid to setoid₁ ; _+_ to _+₁_ ; _∙_ to _∙₁_ ; -_ to -₁_ ; 0# to 0₁ ; +-identityˡ to +₁-identityˡ ; +-identityʳ to +₁-identityʳ ; +-identity to +₁-identity ; +-cong to +₁-cong ; +-assoc to +₁-assoc ; +-comm to +₁-comm ; *ᵏ-∙-compat to *ᵏ-∙₁-compat ; ∙-+-distrib to ∙₁-+₁-distrib ; ∙-+ᵏ-distrib to ∙₁-+ᵏ-distrib ; ∙-cong to ∙₁-cong ; ∙-identity to ∙₁-identity ; ∙-absorbˡ to ∙₁-absorbˡ ; ∙-absorbʳ to ∙₁-absorbʳ ; -‿cong to -₁‿cong ; -‿inverseˡ to -₁‿inverseˡ ; -‿inverseʳ to -₁‿inverseʳ ) open VectorSpace V₂-space using () renaming ( Carrier to V₂ ; _≈_ to _≈₂_ ; isEquivalence to ≈₂-isEquiv ; refl to ≈₂-refl ; sym to ≈₂-sym ; trans to ≈₂-trans ; setoid to setoid₂ ; _+_ to _+₂_ ; _∙_ to _∙₂_ ; -_ to -₂_ ; 0# to 0₂ ; +-identityˡ to +₂-identityˡ ; +-identityʳ to +₂-identityʳ ; +-identity to +₂-identity ; +-cong to +₂-cong ; +-assoc to +₂-assoc ; +-comm to +₂-comm ; *ᵏ-∙-compat to *ᵏ-∙₂-compat ; ∙-+-distrib to ∙₂-+₂-distrib ; ∙-+ᵏ-distrib to ∙₂-+ᵏ-distrib ; ∙-cong to ∙₂-cong ; ∙-identity to ∙₂-identity ; ∙-absorbˡ to ∙₂-absorbˡ ; ∙-absorbʳ to ∙₂-absorbʳ ; ∙-∙-comm to ∙₂-∙₂-comm ; -‿cong to -₂‿cong ; -‿inverseˡ to -₂‿inverseˡ ; -‿inverseʳ to -₂‿inverseʳ ; -‿+-comm to -₂‿+₂-comm ; -1∙u≈-u to -1∙u≈₂-u ) import Function private V : Set (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) V = LinearMap V₁-space V₂-space open LinearMap using (_⟪$⟫_; ⟦⟧-cong; distrib-linear) setoid : Setoid (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) _ setoid = linearMap-setoid V₁-space V₂-space open Setoid setoid public renaming (isEquivalence to ≈-isEquiv) open import Algebra.FunctionProperties _≈_ open import Algebra.Structures _≈_ open import Function.Equality hiding (setoid; _∘_) open import Relation.Binary.EqReasoning setoid₂ 0# : V 0# = record { ⟦_⟧ = λ x → 0₂ ; isLinearMap = linear V₁-space V₂-space π λ a b u v → begin 0₂ ≈⟨ ≈₂-trans (≈₂-sym (∙₂-absorbʳ b)) (≈₂-sym (+₂-identityˡ (b ∙₂ 0₂))) ⟩ 0₂ +₂ b ∙₂ 0₂ ≈⟨ +₂-cong (≈₂-sym (∙₂-absorbʳ a)) ≈₂-refl ⟩ a ∙₂ 0₂ +₂ b ∙₂ 0₂ ∎ } where π : setoid₁ ⟶ setoid₂ π = record { _⟨$⟩_ = λ x → 0₂ ; cong = λ r → ≈₂-refl } -_ : Op₁ V - f = record { ⟦_⟧ = λ x → -₂ f ⟪$⟫ x ; isLinearMap = linear V₁-space V₂-space π let -[a∙u]≈₂a∙[-u] : ∀ (a : K') (u : V₂) -> (-₂ (a ∙₂ u)) ≈₂ a ∙₂ (-₂ u) -[a∙u]≈₂a∙[-u] a u = begin (-₂ (a ∙₂ u)) ≈⟨ ≈₂-sym (-1∙u≈₂-u (a ∙₂ u)) ⟩ (-ᵏ 1ᵏ) ∙₂ (a ∙₂ u) ≈⟨ ≈₂-sym (*ᵏ-∙₂-compat (-ᵏ 1ᵏ) a u) ⟩ ((-ᵏ 1ᵏ) *ᵏ a) ∙₂ u ≈⟨ ∙₂-cong (≈ᵏ-trans (≈ᵏ-sym (-ᵏ‿distribˡ-*ᵏ 1ᵏ a)) (-ᵏ‿cong (*ᵏ-identityˡ a))) ≈₂-refl ⟩ (-ᵏ a) ∙₂ u ≈⟨ ∙₂-cong (≈ᵏ-trans (-ᵏ‿cong (≈ᵏ-sym (*ᵏ-identityʳ a))) (-ᵏ‿distribʳ-*ᵏ a 1ᵏ)) ≈₂-refl ⟩ (a *ᵏ (-ᵏ 1ᵏ)) ∙₂ u ≈⟨ ≈₂-trans (*ᵏ-∙₂-compat a (-ᵏ 1ᵏ) u) (∙₂-cong ≈ᵏ-refl (-1∙u≈₂-u u)) ⟩ a ∙₂ (-₂ u) ∎ in λ a b u v → begin π ⟨$⟩ a ∙₁ u +₁ b ∙₁ v ≈⟨ -₂‿cong (distrib-linear f a b u v) ⟩ -₂ (a ∙₂ (f ⟪$⟫ u) +₂ b ∙₂ (f ⟪$⟫ v)) ≈⟨ ≈₂-sym (-₂‿+₂-comm (a ∙₂ (f ⟪$⟫ u)) ( b ∙₂ (f ⟪$⟫ v))) ⟩ ((-₂ (a ∙₂ (f ⟪$⟫ u))) +₂ (-₂ (b ∙₂ (f ⟪$⟫ v)))) ≈⟨ +₂-cong (-[a∙u]≈₂a∙[-u] a (f ⟪$⟫ u)) (-[a∙u]≈₂a∙[-u] b (f ⟪$⟫ v)) ⟩ a ∙₂ (π ⟨$⟩ u) +₂ b ∙₂ (π ⟨$⟩ v) ∎ } where π : setoid₁ ⟶ setoid₂ π = record { _⟨$⟩_ = λ x → -₂ f ⟪$⟫ x ; cong = λ r → -₂‿cong (⟦⟧-cong f r) } infixr 25 _+_ _+_ : Op₂ V f + g = record { ⟦_⟧ = λ x -> (f ⟪$⟫ x) +₂ (g ⟪$⟫ x) ; isLinearMap = linear V₁-space V₂-space π let reassoc : ∀ (u v u' v' : V₂) -> (u +₂ v) +₂ (u' +₂ v') ≈₂ (u +₂ u') +₂ (v +₂ v') reassoc u v u' v' = begin (u +₂ v) +₂ (u' +₂ v') ≈⟨ +₂-assoc u v (u' +₂ v') ⟩ u +₂ (v +₂ (u' +₂ v')) ≈⟨ +₂-cong ≈₂-refl (≈₂-trans (≈₂-sym (+₂-assoc v u' v')) (+₂-cong (+₂-comm v u') ≈₂-refl)) ⟩ u +₂ ((u' +₂ v) +₂ v') ≈⟨ ≈₂-trans (+₂-cong ≈₂-refl (+₂-assoc u' v v')) (≈₂-sym (+₂-assoc u u' (v +₂ v'))) ⟩ (u +₂ u') +₂ (v +₂ v') ∎ distrib-f-g k w = ≈₂-sym (∙₂-+₂-distrib k (f ⟪$⟫ w) (g ⟪$⟫ w)) in λ a b u v → begin π ⟨$⟩ a ∙₁ u +₁ b ∙₁ v ≡⟨⟩ (f ⟪$⟫ (a ∙₁ u +₁ b ∙₁ v)) +₂ (g ⟪$⟫ (a ∙₁ u +₁ b ∙₁ v)) ≈⟨ +₂-cong (distrib-linear f a b u v) (distrib-linear g a b u v) ⟩ (a ∙₂ (f ⟪$⟫ u) +₂ b ∙₂ (f ⟪$⟫ v)) +₂ ((a ∙₂ (g ⟪$⟫ u) +₂ b ∙₂ (g ⟪$⟫ v))) ≈⟨ reassoc (a ∙₂ (f ⟪$⟫ u)) (b ∙₂ (f ⟪$⟫ v)) (a ∙₂ (g ⟪$⟫ u)) (b ∙₂ (g ⟪$⟫ v)) ⟩ (a ∙₂ (f ⟪$⟫ u) +₂ a ∙₂ (g ⟪$⟫ u)) +₂ ((b ∙₂ (f ⟪$⟫ v)) +₂ b ∙₂ (g ⟪$⟫ v)) ≈⟨ +₂-cong (distrib-f-g a u) (distrib-f-g b v) ⟩ a ∙₂ (π ⟨$⟩ u) +₂ b ∙₂ (π ⟨$⟩ v) ∎ } where π : setoid₁ ⟶ setoid₂ π = record { _⟨$⟩_ = λ x → (f ⟪$⟫ x) +₂ (g ⟪$⟫ x) ; cong = λ r → +₂-cong (⟦⟧-cong f r) (⟦⟧-cong g r) } infixr 30 _∙_ _∙_ : K' -> V -> V c ∙ f = record { ⟦_⟧ = λ x → c ∙₂ (f ⟪$⟫ x) ; isLinearMap = linear V₁-space V₂-space π λ a b u v → begin π ⟨$⟩ a ∙₁ u +₁ b ∙₁ v ≈⟨ ∙₂-cong ≈ᵏ-refl (distrib-linear f a b u v) ⟩ c ∙₂ (a ∙₂ (f ⟪$⟫ u) +₂ b ∙₂ (f ⟪$⟫ v)) ≈⟨ ∙₂-+₂-distrib c (a ∙₂ (f ⟪$⟫ u)) ( b ∙₂ (f ⟪$⟫ v)) ⟩ (c ∙₂ (a ∙₂ (f ⟪$⟫ u))) +₂ (c ∙₂ (b ∙₂ (f ⟪$⟫ v))) ≈⟨ +₂-cong (∙₂-∙₂-comm c a (f ⟪$⟫ u)) (∙₂-∙₂-comm c b (f ⟪$⟫ v)) ⟩ a ∙₂ (π ⟨$⟩ u) +₂ b ∙₂ (π ⟨$⟩ v) ∎ } where π : setoid₁ ⟶ setoid₂ π = record { _⟨$⟩_ = λ x → c ∙₂ (f ⟪$⟫ x) ; cong = λ r → ∙₂-cong ≈ᵏ-refl (⟦⟧-cong f r) } +-cong : Congruent₂ _+_ +-cong r₁ r₂ = λ rₓ -> +₂-cong (r₁ rₓ) (r₂ rₓ) +-assoc : Associative _+_ +-assoc f g h {y = y} rₓ = ≈₂-trans (+₂-cong (+₂-cong (⟦⟧-cong f rₓ) (⟦⟧-cong g rₓ)) (⟦⟧-cong h rₓ)) (+₂-assoc (f ⟪$⟫ y) (g ⟪$⟫ y) (h ⟪$⟫ y)) +-identityˡ : LeftIdentity 0# _+_ +-identityˡ f {x} rₓ = ≈₂-trans (+₂-identityˡ (f ⟪$⟫ x)) (⟦⟧-cong f rₓ) +-identityʳ : RightIdentity 0# _+_ +-identityʳ f {x} rₓ = ≈₂-trans (+₂-identityʳ (f ⟪$⟫ x)) (⟦⟧-cong f rₓ) +-identity : Identity 0# _+_ +-identity = +-identityˡ , +-identityʳ +-comm : Commutative _+_ +-comm f g {x} rₓ = ≈₂-trans (+₂-comm (f ⟪$⟫ x) (g ⟪$⟫ x)) (+₂-cong (⟦⟧-cong g rₓ) (⟦⟧-cong f rₓ)) *ᵏ-∙-compat : ∀ (a b : K') (f : V) -> ((a *ᵏ b) ∙ f) ≈ (a ∙ (b ∙ f)) *ᵏ-∙-compat a b f {x} rₓ = ≈₂-trans (*ᵏ-∙₂-compat a b (f ⟪$⟫ x)) (∙₂-cong ≈ᵏ-refl (∙₂-cong ≈ᵏ-refl (⟦⟧-cong f rₓ))) ∙-+-distrib : ∀ (a : K') (f g : V) -> (a ∙ (f + g)) ≈ ((a ∙ f) + (a ∙ g)) ∙-+-distrib a f g {x} rₓ = ≈₂-trans (∙₂-+₂-distrib a (f ⟪$⟫ x) (g ⟪$⟫ x)) (+₂-cong (∙₂-cong ≈ᵏ-refl (⟦⟧-cong f rₓ)) (∙₂-cong ≈ᵏ-refl (⟦⟧-cong g rₓ))) ∙-+ᵏ-distrib : ∀ (a b : K') (f : V) -> ((a +ᵏ b) ∙ f) ≈ ((a ∙ f) + (b ∙ f)) ∙-+ᵏ-distrib a b f {x} rₓ = ≈₂-trans (∙₂-+ᵏ-distrib a b (f ⟪$⟫ x)) (+₂-cong cf cf) where cf : ∀ {c : K'} -> _ cf {c} = ∙₂-cong (≈ᵏ-refl {c}) (⟦⟧-cong f rₓ) ∙-cong : ∀ {a b : K'} {f g : V} -> a ≈ᵏ b -> f ≈ g -> (a ∙ f) ≈ (b ∙ g) ∙-cong {f = f} {g = g} rk rf rₓ = ≈₂-trans (∙₂-cong rk (rf rₓ)) (∙₂-cong ≈ᵏ-refl (⟦⟧-cong g ≈₁-refl)) ∙-identity : ∀ (f : V) → (1ᵏ ∙ f) ≈ f ∙-identity f {x} rₓ = ≈₂-trans (∙₂-identity (f ⟪$⟫ x)) (⟦⟧-cong f rₓ) ∙-absorbˡ : ∀ (x : V) → (0ᵏ ∙ x) ≈ 0# ∙-absorbˡ f {x} _ = ≈₂-trans (∙₂-absorbˡ (f ⟪$⟫ x)) ≈₂-refl -‿inverseˡ : LeftInverse 0# -_ _+_ -‿inverseˡ f {x} _ = ≈₂-trans (-₂‿inverseˡ (f ⟪$⟫ x)) ≈₂-refl -‿inverseʳ : RightInverse 0# -_ _+_ -‿inverseʳ f {x} _ = -₂‿inverseʳ (f ⟪$⟫ x) -‿inverse : Inverse 0# -_ _+_ -‿inverse = -‿inverseˡ , -‿inverseʳ -‿cong : Congruent₁ -_ -‿cong r rₓ = -₂‿cong (r rₓ) isMagma : IsMagma _+_ isMagma = record { isEquivalence = ≈-isEquiv -- I don't know how to solve this: I'd like to write simply ∙-cong = +-cong ; ∙-cong = λ {f} {g} {u} {v} -> +-cong {f} {g} {u} {v} } isSemigroup : IsSemigroup _+_ isSemigroup = record { isMagma = isMagma ; assoc = +-assoc } isMonoid : IsMonoid _+_ 0# isMonoid = record { isSemigroup = isSemigroup ; identity = +-identity } isGroup : IsGroup _+_ 0# -_ isGroup = record { isMonoid = isMonoid ; inverse = -‿inverse ; ⁻¹-cong = λ {f} {g} -> -‿cong {f} {g} } isAbelianGroup : IsAbelianGroup _+_ 0# -_ isAbelianGroup = record { isGroup = isGroup ; comm = +-comm } isVectorSpace : IsVectorSpace K _≈_ _+_ _∙_ -_ 0# isVectorSpace = record { isAbelianGroup = isAbelianGroup ; *ᵏ-∙-compat = *ᵏ-∙-compat ; ∙-+-distrib = ∙-+-distrib ; ∙-+ᵏ-distrib = ∙-+ᵏ-distrib ; ∙-cong = λ {a} {b} {f} {g} -> ∙-cong {a} {b} {f} {g} ; ∙-identity = ∙-identity ; ∙-absorbˡ = ∙-absorbˡ } vectorSpace : VectorSpace K (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) (a₁ ⊔ ℓ₁ ⊔ ℓ₂) vectorSpace = record { isVectorSpace = isVectorSpace }
{ "alphanum_fraction": 0.4610706809, "avg_line_length": 30.396969697, "ext": "agda", "hexsha": "a6b57632a0ab9e4199e4ad177ce117cc3a07320a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Space/Hom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Space/Hom.agda", "max_line_length": 102, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Space/Hom.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 5181, "size": 10031 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Functions.Definition open import Groups.Groups open import Groups.Definition open import Rings.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Numbers.Integers.Integers open import Numbers.Primes.PrimeNumbers open import Numbers.Modulo.Definition open import Numbers.Modulo.Group open import Numbers.Naturals.EuclideanAlgorithm open import Orders.Total.Definition module Rings.Examples.Proofs where nToZn' : (n : ℕ) (pr : 0 <N n) (x : ℕ) → ℤn n pr nToZn' 0 () nToZn' (succ n) pr x with divisionAlg (succ n) x nToZn' (succ n) pr1 x | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl thing ; quotSmall = quotSmall } = record { x = rem ; xLess = thing } nToZn' (succ n) pr1 x | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inr () ; quotSmall = quotSmall } mod' : (n : ℕ) → (pr : 0 <N n) → ℤ → ℤn n pr mod' zero () a mod' (succ n) pr (nonneg x) = nToZn' (succ n) pr x mod' (succ n) pr (negSucc x) = Group.inverse (ℤnGroup (succ n) pr) (nToZn' (succ n) pr (succ x)) subtractionEquiv : (a : ℕ) → {b c : ℕ} → (c<b : c <N b) → a +N c ≡ b → a ≡ subtractionNResult.result (-N (inl c<b)) subtractionEquiv 0 {b} {c} c<b pr rewrite pr = exFalso (TotalOrder.irreflexive ℕTotalOrder c<b) subtractionEquiv (succ a) {b} {c} c<b pr = equivalentSubtraction 0 b (succ a) c (succIsPositive a) c<b (equalityCommutative pr) modNExampleSurjective' : (n : ℕ) → (pr : 0 <N n) → Surjection (mod' n pr) modNExampleSurjective' zero () modNExampleSurjective' (succ n) pr record { x = x ; xLess = xLess } with divisionAlg (succ n) x modNExampleSurjective' (succ n) p record { x = x ; xLess = xLess } | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = q } = nonneg x , lhs' where rs' : rem ≡ x rs' = modIsUnique (record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = q }) (record { quot = 0 ; rem = x ; pr = blah ; remIsSmall = inl (<NProp xLess) ; quotSmall = inl (succIsPositive n) }) where blah : n *N 0 +N x ≡ x blah rewrite multiplicationNIsCommutative n 0 = refl lhs : nToZn' (succ n) p x ≡ record { x = rem ; xLess = remIsSmall } lhs with divisionAlg (succ n) x lhs | record { quot = quot' ; rem = rem' ; pr = pr' ; remIsSmall = inl t ; quotSmall = quotSmall } = equalityZn (equalityCommutative rs) where rs : rem ≡ rem' rs = modIsUnique (record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall; quotSmall = q }) (record { quot = quot' ; rem = rem' ; pr = pr' ; remIsSmall = inl t ; quotSmall = quotSmall }) lhs | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inr () ; quotSmall = quotSmall } lhs' : nToZn' (succ n) p x ≡ record { x = x ; xLess = xLess } lhs' = transitivity lhs (equalityZn rs') modNExampleSurjective' (succ n) p record { x = x ; xLess = xLess } | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inr () ; quotSmall = quotSmall } {- modNExampleGroupHom' : (n : ℕ) → (pr : 0 <N n) → GroupHom ℤGroup (ℤnGroup n pr) (mod' n pr) modNExampleGroupHom' 0 () GroupHom.wellDefined (modNExampleGroupHom' (succ n) pr) {x} {.x} refl = refl GroupHom.groupHom (modNExampleGroupHom' (succ n) _) {nonneg a} {nonneg b} with divisionAlg (succ n) a GroupHom.groupHom (modNExampleGroupHom' (succ n) _) {nonneg a} {nonneg b} | record { quot = quotA ; rem = remA ; pr = prA ; remIsSmall = inl remA<sn ; quotSmall = quotSmallA } with divisionAlg (succ n) b GroupHom.groupHom (modNExampleGroupHom' (succ n) _) {nonneg a} {nonneg b} | record { quot = quotA ; rem = remA ; pr = prA ; remIsSmall = inl remA<sn ; quotSmall = quotSmallA } | record { quot = quotB ; rem = remB ; pr = prB ; remIsSmall = inl remB<sn ; quotSmall = quotSmallB } with orderIsTotal (remA +N remB) (succ n) GroupHom.groupHom (modNExampleGroupHom' (succ n) pr1) {nonneg a} {nonneg b} | record { quot = quotA ; rem = remA ; pr = prA ; remIsSmall = inl remA<sn ; quotSmall = _ } | record { quot = quotB ; rem = remB ; pr = prB ; remIsSmall = inl remB<sn ; quotSmall = _ } | inl (inl rarb<sn) rewrite addingNonnegIsHom a b = equalityZn _ _ lemma where lemma : ℤn.x (nToZn' (succ n) pr1 (a +N b)) ≡ remA +N remB lemma with divisionAlg (succ n) (a +N b) lemma | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl x ; quotSmall = inl _ } = equalityCommutative thing5 where thing : ((succ n) *N quotA +N remA) +N ((succ n) *N quotB +N remB) ≡ a +N b thing rewrite prA | prB = refl thing2 : ((succ n) *N quotA +N remA) +N ((succ n) *N quotB +N remB) ≡ (succ n) *N quot +N rem thing2 rewrite pr = thing thing3 : (((succ n) *N quotA) +N ((succ n) *N quotB)) +N (remA +N remB) ≡ (succ n) *N quot +N rem thing3 rewrite equalityCommutative (additionNIsAssociative (((succ n) *N quotA) +N ((succ n) *N quotB)) remA remB) | additionNIsAssociative ((succ n) *N quotA) ((succ n) *N quotB) remA | additionNIsCommutative ((succ n) *N quotB) remA | equalityCommutative (additionNIsAssociative ((succ n) *N quotA) remA ((succ n) *N quotB)) | additionNIsAssociative ((succ n) *N quotA +N remA) ((succ n) *N quotB) remB = thing2 thing4 : (succ n) *N (quotA +N quotB) +N (remA +N remB) ≡ (succ n) *N quot +N rem thing4 rewrite productDistributes (succ n) quotA quotB = thing3 thing5 : remA +N remB ≡ rem thing5 = modUniqueLemma {remA +N remB} {rem} {succ n} (quotA +N quotB) quot rarb<sn x thing4 lemma | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl x ; quotSmall = inr () } lemma | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inr () ; quotSmall = quotSmall } GroupHom.groupHom (modNExampleGroupHom' (succ n) pr1) {nonneg a} {nonneg b} | record { quot = quotA ; rem = remA ; pr = prA ; remIsSmall = inl remA<sn } | record { quot = quotB ; rem = remB ; pr = prB ; remIsSmall = inl remB<sn } | inl (inr sn<rarb) rewrite addingNonnegIsHom a b = equalityZn _ _ lemma where lemma : ℤn.x (nToZn' (succ n) pr1 (a +N b)) ≡ subtractionNResult.result (-N (inl sn<rarb)) lemma with divisionAlg (succ n) (a +N b) lemma | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl x ; quotSmall = q } = modIsUnique record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl x ; quotSmall = q } record { quot = succ quotA +N quotB ; rem = subtractionNResult.result (-N (inl sn<rarb)) ; pr = answer ; remIsSmall = inl remSmall ; quotSmall = inl (succIsPositive n) } where transform : (a : ℕ) → {b c : ℕ} → (p : b <N c) → c <N a +N b → subtractionNResult.result (-N (inl p)) <N a transform a {b} {c} pr (le y proof1) with addIntoSubtraction (succ y) {b} {c} (inl pr) ... | bl = le y (transitivity bl (equalityCommutative (subtractionEquiv a (orderIsTransitive pr (addingIncreases c y)) (equalityCommutative (identityOfIndiscernablesLeft _ _ _ _≡_ proof1 (additionNIsCommutative (succ y) c)))))) thing : ((succ n) *N quotA +N remA) +N ((succ n) *N quotB +N remB) ≡ a +N b thing rewrite prA | prB = refl thing2 : (((succ n) *N quotA) +N ((succ n) *N quotB)) +N (remA +N remB) ≡ a +N b thing2 = identityOfIndiscernablesLeft _ _ _ _≡_ thing (transitivity (equalityCommutative (additionNIsAssociative ((quotA +N n *N quotA) +N remA) (succ n *N quotB) remB)) (transitivity (applyEquality (λ i → i +N remB) (additionNIsAssociative (quotA +N n *N quotA) remA (quotB +N n *N quotB))) (transitivity (applyEquality (λ i → ((quotA +N n *N quotA) +N i) +N remB) (additionNIsCommutative remA (quotB +N n *N quotB))) (transitivity (applyEquality (λ i → i +N remB) (equalityCommutative (additionNIsAssociative (quotA +N n *N quotA) (quotB +N n *N quotB) remA))) (additionNIsAssociative _ remA remB))))) thing3 : (succ n) *N (quotA +N quotB) +N (remA +N remB) ≡ a +N b thing3 = identityOfIndiscernablesLeft _ _ _ _≡_ thing2 (equalityCommutative (applyEquality (λ i → i +N (remA +N remB)) (productDistributes (succ n) (quotA) quotB))) answer : (succ n *N succ (quotA +N quotB)) +N subtractionNResult.result (-N (inl sn<rarb)) ≡ a +N b answer with addIntoSubtraction (succ n *N succ (quotA +N quotB)) (inl sn<rarb) ... | bl = transitivity bl (moveOneSubtraction' {a<=b = inl (orderIsTransitive sn<rarb (addingIncreases (remA +N remB) ((quotA +N quotB) +N n *N succ (quotA +N quotB))))} answer') where snTimes1 : succ n ≡ succ n *N 1 snTimes1 rewrite multiplicationNIsCommutative (succ n) 1 | additionNIsCommutative (succ n) 0 = refl q' : succ n *N succ (quotA +N quotB) ≡ succ n +N (succ n *N (quotA +N quotB)) q' rewrite additionNIsCommutative (succ n) (succ n *N (quotA +N quotB)) | snTimes1 | equalityCommutative (productDistributes (succ n) (quotA +N quotB) 1) = applyEquality (λ i → (succ n) *N i) (succIsAddOne (quotA +N quotB)) answer'' : (succ n *N succ (quotA +N quotB)) +N (remA +N remB) ≡ (succ n) +N ((succ n *N (quotA +N quotB)) +N (remA +N remB)) answer'' rewrite equalityCommutative (additionNIsAssociative (succ n) (succ n *N (quotA +N quotB)) (remA +N remB)) = applyEquality (λ i → i +N (remA +N remB)) q' answer' : (remA +N remB) +N (succ n *N succ (quotA +N quotB)) ≡ succ n +N (a +N b) answer' rewrite equalityCommutative thing3 = transitivity (additionNIsCommutative (remA +N remB) (succ n *N succ (quotA +N quotB))) answer'' remSmall : subtractionNResult.result (-N (inl sn<rarb)) <N succ n remSmall = transform (succ n) sn<rarb (addStrongInequalities remA<sn remB<sn) lemma | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inr () ; quotSmall = quotSmall } GroupHom.groupHom (modNExampleGroupHom' (succ n) pr1) {nonneg a} {nonneg b} | record { quot = quotA ; rem = remA ; pr = prA ; remIsSmall = inl remA<sn } | record { quot = quotB ; rem = remB ; pr = prB ; remIsSmall = inl remB<sn } | inr rarb=sn rewrite addingNonnegIsHom a b = equalityZn _ _ lemma where lemma : ℤn.x (nToZn' (succ n) pr1 (a +N b)) ≡ 0 lemma with divisionAlg (succ n) (a +N b) lemma | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl x } = equalityCommutative (modUniqueLemma ((quotA +N quotB) +N 1) quot pr1 x thing7) where thing : ((succ n) *N quotA +N remA) +N ((succ n) *N quotB +N remB) ≡ a +N b thing rewrite prA | prB = refl thing2 : ((succ n) *N quotA +N remA) +N ((succ n) *N quotB +N remB) ≡ (succ n) *N quot +N rem thing2 rewrite pr = thing thing3 : (((succ n) *N quotA) +N ((succ n) *N quotB)) +N (remA +N remB) ≡ (succ n) *N quot +N rem thing3 rewrite equalityCommutative (additionNIsAssociative (((succ n) *N quotA) +N ((succ n) *N quotB)) remA remB) | additionNIsAssociative ((succ n) *N quotA) ((succ n) *N quotB) remA | additionNIsCommutative ((succ n) *N quotB) remA | equalityCommutative (additionNIsAssociative ((succ n) *N quotA) remA ((succ n) *N quotB)) | additionNIsAssociative ((succ n) *N quotA +N remA) ((succ n) *N quotB) remB = thing2 thing4 : (succ n) *N (quotA +N quotB) +N (remA +N remB) ≡ (succ n) *N quot +N rem thing4 rewrite productDistributes (succ n) quotA quotB = thing3 thing5 : (succ n) *N (quotA +N quotB) +N (succ n) ≡ (succ n) *N quot +N rem thing5 rewrite equalityCommutative rarb=sn = thing4 thing6 : (succ n) *N ((quotA +N quotB) +N 1) ≡ (succ n) *N quot +N rem thing6 rewrite productDistributes (succ n) (quotA +N quotB) 1 | multiplicationNIsCommutative n 1 | additionNIsCommutative n 0 = thing5 thing7 : (succ n) *N ((quotA +N quotB) +N 1) +N 0 ≡ (succ n) *N quot +N rem thing7 = identityOfIndiscernablesLeft _ _ _ _≡_ thing6 (additionNIsCommutative 0 _) lemma | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inr () ; quotSmall = quotSmall } GroupHom.groupHom (modNExampleGroupHom' (succ n) _) {nonneg a} {nonneg b} | record { quot = quotA ; rem = remA ; pr = prA ; remIsSmall = inl remA<sn ; quotSmall = quotSmallA } | record { quot = quotB ; rem = remB ; pr = prB ; remIsSmall = inr () ; quotSmall = quotSmallB } GroupHom.groupHom (modNExampleGroupHom' (succ n) _) {nonneg a} {nonneg b} | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inr () ; quotSmall = quotSmall } GroupHom.groupHom (modNExampleGroupHom' (succ n) _) {nonneg a} {negSucc b} with divisionAlg (succ n) a GroupHom.groupHom (modNExampleGroupHom' (succ n) _) {nonneg a} {negSucc b} | record { quot = quotA ; rem = remA ; pr = prA ; remIsSmall = remIsSmallA ; quotSmall = quotSmallA } = {!!} GroupHom.groupHom (modNExampleGroupHom' (succ n) _) {negSucc x} {nonneg b} with divisionAlg (succ n) (succ x) ... | bl = {!!} GroupHom.groupHom (modNExampleGroupHom' (succ n) _) {negSucc x} {negSucc b} with divisionAlg (succ n) (succ x) ... | bl = {!!} -}
{ "alphanum_fraction": 0.6300617191, "avg_line_length": 93.5633802817, "ext": "agda", "hexsha": "d255f6968c0d5dd99d74c31ae696526898074c99", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Examples/Proofs.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Examples/Proofs.agda", "max_line_length": 613, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Examples/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 4691, "size": 13286 }
module Common.Weakening where -- open import Agda.Primitive import Data.List as List open import Data.List.Base open import Data.List.Membership.Propositional open import Data.List.Relation.Unary.All as All open import Data.List.Prefix open import Function open import Level {- The following `Weakenable` record defines a class of weakenable (or monotone) predicates over lists. We can make the definitions of `Weakenable` available using the syntax: open Weakenable ⦃...⦄ public Whenever we use `wk e p` where `e : x ⊑ x'`, `p : P x` where `x x' : List X`, Agda will use instance argument search to find a defined instance of `Weakenable {X} P`. See also http://agda.readthedocs.io/en/v2.5.3/language/instance-arguments.html -} record Weakenable {i j}{A : Set i}(p : List A → Set j) : Set (i ⊔ j) where field wk : ∀ {w w'} → w ⊑ w' → p w → p w' {- In general, weakenable predicates can be defined over *any* preorder. See `Experiments.Category` for a more general definition and treatment. The definition of `Weakenable` above is specialized to the interpreters in our paper which are all defined in terms of weakenable predicates over lists. -} open Weakenable ⦃...⦄ public {- We define a few derived instances of `Weakenable` that appear commonly. -} module _ {i} {A : Set i} where instance any-weakenable : ∀ {x : A} → Weakenable (λ xs → x ∈ xs) any-weakenable = record { wk = λ ext l → ∈-⊒ l ext } all-weakenable : ∀ {j} {B : Set j} {xs : List B} → ∀ {k} {C : B → List A → Set k} {{wₐ : ∀ {x} → Weakenable (C x)}} → Weakenable (λ ys → All (λ x → C x ys) xs) all-weakenable {{wₐ}} = record { wk = λ ext v → All.map (λ {a} y → Weakenable.wk wₐ ext y) v } -- const-weakenable : ∀ {j}{I : Set j} → Weakenable {A = I} (λ _ → A) -- const-weakenable = record { wk = λ ext c → c } list-weakenable : ∀ {b}{B : List A → Set b} → {{wb : Weakenable B}} → Weakenable (λ W → List (B W)) list-weakenable {{ wₐ }} = record {wk = λ ext v → List.map (wk ext) v } -- Nicer syntax for transitivity of prefixes: infixl 30 _⊚_ _⊚_ : ∀ {i} {A : Set i} {W W' W'' : List A} → W' ⊒ W → W'' ⊒ W' → W'' ⊒ W _⊚_ co₁ co₂ = ⊑-trans co₁ co₂ {- Another common construction is that of products of weakenable predicates. Section 3.4 defines this type, which corresponds to `_∩_` from the Agda Standard Library: -} open import Relation.Unary open import Data.Product _⊗_ : ∀ {a}{i j}{W : Set a}(p : W → Set i)(q : W → Set j)(w : W) → Set (i ⊔ j) _⊗_ = _∩_ -- We prove that when `_⊗_` is a product of two weakenable predicates, -- then `_⊗_` is an instance of `Weakenable`: instance weaken-pair : ∀ {a}{A : Set a}{i j}{p : List A → Set i}{q : List A → Set j} → {{wp : Weakenable p}} {{wq : Weakenable q}} → Weakenable (p ⊗ q) weaken-pair = record { wk = λ{ ext (x , y) → (wk ext x , wk ext y) } }
{ "alphanum_fraction": 0.6153585927, "avg_line_length": 33.9770114943, "ext": "agda", "hexsha": "ca54305f59b94a1164136bf0f5b8a9d9dd999763", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Common/Weakening.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Common/Weakening.agda", "max_line_length": 85, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Common/Weakening.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 999, "size": 2956 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Pointed where open import Cubical.Foundations.Pointed.Base public open import Cubical.Foundations.Pointed.Properties public open import Cubical.Foundations.Pointed.FunExt public open import Cubical.Foundations.Pointed.Homotopy public open import Cubical.Foundations.Pointed.Homogeneous
{ "alphanum_fraction": 0.8333333333, "avg_line_length": 36.6, "ext": "agda", "hexsha": "b9bfbbbc0924eb9cc2df700b8c8e5179a06509ac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Foundations/Pointed.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Foundations/Pointed.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Foundations/Pointed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 90, "size": 366 }
postulate A B : Set f : A → B data D : B → Set where c : {n : A} → D (f n) test : (x : B) → D x → Set test n c = {!!} test2 : Set test2 = let X = A in let X = B in {!!}
{ "alphanum_fraction": 0.4402173913, "avg_line_length": 11.5, "ext": "agda", "hexsha": "f619b3639d17be61f392d2cb7ff8944c2c2e1835", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3813-ctx.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3813-ctx.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3813-ctx.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 82, "size": 184 }
module ProcessRun where open import Data.Bool open import Data.List open import Data.Maybe open import Data.Product open import Relation.Binary.PropositionalEquality open import Typing open import ProcessSyntax open import Channel open import Global open import Values open import Session open import Schedule -- auxiliary lemmas list-right-zero : ∀ {A : Set} → (xs : List A) → xs ++ [] ≡ xs list-right-zero [] = refl list-right-zero (x ∷ xs) = cong (_∷_ x) (list-right-zero xs) list-assoc : ∀ {A : Set} → (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) list-assoc [] ys zs = refl list-assoc (x ∷ xs) ys zs = cong (_∷_ x) (list-assoc xs ys zs) cons-assoc : ∀ {A : Set} → (x : A) (xs ys : List A) → (x ∷ xs) ++ ys ≡ x ∷ (xs ++ ys) cons-assoc x xs ys = refl inactive-clone : (G : SCtx) → SCtx inactive-clone [] = [] inactive-clone (x ∷ G) = nothing ∷ inactive-clone G inactive-extension : ∀ {G} → Inactive G → (G' : SCtx) → Inactive (inactive-clone G' ++ G) inactive-extension inaG [] = inaG inactive-extension inaG (x ∷ G') = ::-inactive (inactive-extension inaG G') splitting-extension : ∀ {G G₁ G₂} (G' : SCtx) → SSplit G G₁ G₂ → SSplit (inactive-clone G' ++ G) (inactive-clone G' ++ G₁) (inactive-clone G' ++ G₂) splitting-extension [] ss = ss splitting-extension (x ∷ G') ss = ss-both (splitting-extension G' ss) left-right : (G' G'' : SCtx) → SSplit (G' ++ G'') (G' ++ inactive-clone G'') (inactive-clone G' ++ G'') left-right [] [] = ss-[] left-right [] (just x ∷ G'') = ss-right (left-right [] G'') left-right [] (nothing ∷ G'') = ss-both (left-right [] G'') left-right (x ∷ G') G'' with left-right G' G'' ... | ss-G'G'' with x left-right (x ∷ G') G'' | ss-G'G'' | just x₁ = ss-left ss-G'G'' left-right (x ∷ G') G'' | ss-G'G'' | nothing = ss-both ss-G'G'' ssplit-append : { G11 G12 G21 G22 : SCtx} (G1 G2 : SCtx) → SSplit G1 G11 G12 → SSplit G2 G21 G22 → SSplit (G1 ++ G2) (G11 ++ G21) (G12 ++ G22) ssplit-append _ _ ss-[] ss2 = ss2 ssplit-append _ _ (ss-both ss1) ss2 = ss-both (ssplit-append _ _ ss1 ss2) ssplit-append _ _ (ss-left ss1) ss2 = ss-left (ssplit-append _ _ ss1 ss2) ssplit-append _ _ (ss-right ss1) ss2 = ss-right (ssplit-append _ _ ss1 ss2) ssplit-append _ _ (ss-posneg ss1) ss2 = ss-posneg (ssplit-append _ _ ss1 ss2) ssplit-append _ _ (ss-negpos ss1) ss2 = ss-negpos (ssplit-append _ _ ss1 ss2) -- weakening #1 weaken1-cr : ∀ {G b s} G' → ChannelRef G b s → ChannelRef (inactive-clone G' ++ G) b s weaken1-cr [] cr = cr weaken1-cr (x ∷ G') cr = there (weaken1-cr G' cr) weaken1-val : ∀ {G t} G' → Val G t → Val (inactive-clone G' ++ G) t weaken1-venv : ∀ {G Φ} G' → VEnv G Φ → VEnv (inactive-clone G' ++ G) Φ weaken1-val G' (VUnit inaG) = VUnit (inactive-extension inaG G') weaken1-val G' (VInt i inaG) = VInt i (inactive-extension inaG G') weaken1-val G' (VPair ss-GG₁G₂ v v₁) = VPair (splitting-extension G' ss-GG₁G₂) (weaken1-val G' v) (weaken1-val G' v₁) weaken1-val G' (VChan b vcr) = VChan b (weaken1-cr G' vcr) weaken1-val G' (VFun x ϱ e) = VFun x (weaken1-venv G' ϱ) e weaken1-venv G' (vnil ina) = vnil (inactive-extension ina G') weaken1-venv G' (vcons ssp v ϱ) = vcons (splitting-extension G' ssp) (weaken1-val G' v) (weaken1-venv G' ϱ) weaken1-cont : ∀ {G t φ} G' → Cont G φ t → Cont (inactive-clone G' ++ G) φ t weaken1-cont G' (halt inaG un-t) = halt (inactive-extension inaG G') un-t weaken1-cont G' (bind ts ss e₂ ϱ₂ κ) = bind ts (splitting-extension G' ss) e₂ (weaken1-venv G' ϱ₂) (weaken1-cont G' κ) weaken1-cont G' (bind-thunk ts ss e₂ ϱ₂ κ) = bind-thunk ts (splitting-extension G' ss) e₂ (weaken1-venv G' ϱ₂) (weaken1-cont G' κ) weaken1-cont G' (subsume x κ) = subsume x (weaken1-cont G' κ) weaken1-command : ∀ {G} G' → Command G → Command (inactive-clone G' ++ G) weaken1-command G' (Fork ss κ₁ κ₂) = Fork (splitting-extension G' ss) (weaken1-cont G' κ₁) (weaken1-cont G' κ₂) weaken1-command G' (Ready ss v κ) = Ready (splitting-extension G' ss) (weaken1-val G' v) (weaken1-cont G' κ) weaken1-command G' (Halt x x₁ x₂) = Halt (inactive-extension x G') x₁ (weaken1-val G' x₂) weaken1-command G' (New s κ) = New s (weaken1-cont G' κ) weaken1-command G' (Close ss v κ) = Close (splitting-extension G' ss) (weaken1-val G' v) (weaken1-cont G' κ) weaken1-command G' (Wait ss v κ) = Wait (splitting-extension G' ss) (weaken1-val G' v) (weaken1-cont G' κ) weaken1-command G' (Send ss ss-args vch v κ) = Send (splitting-extension G' ss) (splitting-extension G' ss-args) (weaken1-val G' vch) (weaken1-val G' v) (weaken1-cont G' κ) weaken1-command G' (Recv ss vch κ) = Recv (splitting-extension G' ss) (weaken1-val G' vch) (weaken1-cont G' κ) weaken1-command G' (Select ss lab vch κ) = Select (splitting-extension G' ss) lab (weaken1-val G' vch) (weaken1-cont G' κ) weaken1-command G' (Branch ss vch dcont) = Branch (splitting-extension G' ss) (weaken1-val G' vch) λ lab → weaken1-cont G' (dcont lab) weaken1-command G' (NSelect ss lab vch κ) = NSelect (splitting-extension G' ss) lab (weaken1-val G' vch) (weaken1-cont G' κ) weaken1-command G' (NBranch ss vch dcont) = NBranch (splitting-extension G' ss) (weaken1-val G' vch) λ lab → weaken1-cont G' (dcont lab) weaken1-threadpool : ∀ {G} G' → ThreadPool G → ThreadPool (inactive-clone G' ++ G) weaken1-threadpool G' (tnil ina) = tnil (inactive-extension ina G') weaken1-threadpool G' (tcons ss cmd tp) = tcons (splitting-extension G' ss) (weaken1-command G' cmd) (weaken1-threadpool G' tp) -- auxiliary inactive-insertion : ∀ {G} G' G'' → Inactive (G' ++ G) → Inactive (G' ++ inactive-clone G'' ++ G) inactive-insertion [] G'' ina-G'G = inactive-extension ina-G'G G'' inactive-insertion (just x ∷ G') G'' () inactive-insertion (nothing ∷ G') G'' (::-inactive ina-G'G) = ::-inactive (inactive-insertion G' G'' ina-G'G) splitting-insertion : ∀ {G G₁ G₂} {G' G₁' G₂'} G'' → SSplit G' G₁' G₂' → SSplit G G₁ G₂ → SSplit (G' ++ inactive-clone G'' ++ G) (G₁' ++ inactive-clone G'' ++ G₁) (G₂' ++ inactive-clone G'' ++ G₂) splitting-insertion G'' ss-[] ss = splitting-extension G'' ss splitting-insertion G'' (ss-both ss') ss = ss-both (splitting-insertion G'' ss' ss) splitting-insertion G'' (ss-left ss') ss = ss-left (splitting-insertion G'' ss' ss) splitting-insertion G'' (ss-right ss') ss = ss-right (splitting-insertion G'' ss' ss) splitting-insertion G'' (ss-posneg ss') ss = ss-posneg (splitting-insertion G'' ss' ss) splitting-insertion G'' (ss-negpos ss') ss = ss-negpos (splitting-insertion G'' ss' ss) split-append : ∀ {G G1 G2} G' → SSplit (G' ++ G) G1 G2 → ∃ λ G₁' → ∃ λ G₂' → ∃ λ G₁ → ∃ λ G₂ → SSplit G' G₁' G₂' × SSplit G G₁ G₂ × G1 ≡ G₁' ++ G₁ × G2 ≡ G₂' ++ G₂ split-append [] ss = _ , _ , _ , _ , ss-[] , ss , refl , refl split-append (.nothing ∷ G') (ss-both ss) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = _ , _ , _ , _ , (ss-both ss') , ss0 , refl , refl split-append (.(just _) ∷ G') (ss-left ss) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = _ , _ , _ , _ , (ss-left ss') , ss0 , refl , refl split-append (.(just _) ∷ G') (ss-right ss) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = _ , _ , _ , _ , (ss-right ss') , ss0 , refl , refl split-append (.(just (_ , POSNEG)) ∷ G') (ss-posneg ss) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = _ , _ , _ , _ , (ss-posneg ss') , ss0 , refl , refl split-append (.(just (_ , POSNEG)) ∷ G') (ss-negpos ss) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = _ , _ , _ , _ , (ss-negpos ss') , ss0 , refl , refl -- weakening #2 weaken2-cr : ∀ {G b s} G' G'' → ChannelRef (G' ++ G) b s → ChannelRef (G' ++ inactive-clone G'' ++ G) b s weaken2-cr [] G'' cr = weaken1-cr G'' cr weaken2-cr (.(just (_ , POS)) ∷ G') G'' (here-pos ina-G x) = here-pos (inactive-insertion G' G'' ina-G) x weaken2-cr (.(just (_ , NEG)) ∷ G') G'' (here-neg ina-G x) = here-neg (inactive-insertion G' G'' ina-G) x weaken2-cr (.nothing ∷ G') G'' (there cr) = there (weaken2-cr G' G'' cr) weaken2-val : ∀ {G t} G' G'' → Val (G' ++ G) t → Val (G' ++ inactive-clone G'' ++ G) t weaken2-venv : ∀ {G Φ} G' G'' → VEnv (G' ++ G) Φ → VEnv (G' ++ inactive-clone G'' ++ G) Φ weaken2-val G' G'' (VUnit inaG) = VUnit (inactive-insertion G' G'' inaG) weaken2-val G' G'' (VInt i inaG) = VInt i (inactive-insertion G' G'' inaG) weaken2-val G' G'' (VPair ss-GG₁G₂ v₁ v₂) with split-append G' ss-GG₁G₂ ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = VPair (splitting-insertion G'' ss' ss0) (weaken2-val G₁' G'' v₁) (weaken2-val G₂' G'' v₂) weaken2-val G' G'' (VChan b vcr) = VChan b (weaken2-cr G' G'' vcr) weaken2-val G' G'' (VFun x ϱ e) = VFun x (weaken2-venv G' G'' ϱ) e weaken2-venv G' G'' (vnil ina) = vnil (inactive-insertion G' G'' ina) weaken2-venv G' G'' (vcons{G₁ = Gv}{G₂ = Gϱ} ssp v ϱ) with split-append G' ssp ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = vcons (splitting-insertion G'' ss' ss0) (weaken2-val G₁' G'' v) (weaken2-venv G₂' G'' ϱ) weaken2-cont : ∀ {G t φ} G' G'' → Cont (G' ++ G) φ t → Cont (G' ++ inactive-clone G'' ++ G) φ t weaken2-cont G' G'' (halt x un-t) = halt (inactive-insertion G' G'' x) un-t weaken2-cont G' G'' (bind ts ss e₂ ϱ₂ κ) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = bind ts (splitting-insertion G'' ss' ss0) e₂ (weaken2-venv G₁' G'' ϱ₂) (weaken2-cont G₂' G'' κ) weaken2-cont G' G'' (bind-thunk ts ss e₂ ϱ₂ κ) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = bind-thunk ts (splitting-insertion G'' ss' ss0) e₂ (weaken2-venv G₁' G'' ϱ₂) (weaken2-cont G₂' G'' κ) weaken2-cont G' G'' (subsume x κ) = subsume x (weaken2-cont G' G'' κ) weaken2-command : ∀ {G} G' G'' → Command (G' ++ G) → Command (G' ++ inactive-clone G'' ++ G) weaken2-command G' G'' (Fork ss κ₁ κ₂) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = Fork (splitting-insertion G'' ss' ss0) (weaken2-cont G₁' G'' κ₁) (weaken2-cont G₂' G'' κ₂) weaken2-command G' G'' (Ready ss v κ) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = Ready (splitting-insertion G'' ss' ss0) (weaken2-val G₁' G'' v) (weaken2-cont G₂' G'' κ) weaken2-command G' G'' (Halt x x₁ x₂) = Halt (inactive-insertion G' G'' x) x₁ (weaken2-val G' G'' x₂) weaken2-command G' G'' (New s κ) = New s (weaken2-cont G' G'' κ) weaken2-command G' G'' (Close ss v κ) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = Close (splitting-insertion G'' ss' ss0) (weaken2-val G₁' G'' v) (weaken2-cont G₂' G'' κ) weaken2-command G' G'' (Wait ss v κ) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = Wait (splitting-insertion G'' ss' ss0) (weaken2-val G₁' G'' v) (weaken2-cont G₂' G'' κ) weaken2-command G' G'' (Send ss ss-args vch v κ) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl with split-append G₁' ss-args ... | G₁₁' , G₁₂' , G₁₁ , G₁₂ , ss-args' , ss0-args , refl , refl = Send (splitting-insertion G'' ss' ss0) (splitting-insertion G'' ss-args' ss0-args) (weaken2-val G₁₁' G'' vch) (weaken2-val G₁₂' G'' v) (weaken2-cont G₂' G'' κ) weaken2-command G' G'' (Recv ss vch κ) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = Recv (splitting-insertion G'' ss' ss0) (weaken2-val G₁' G'' vch) (weaken2-cont G₂' G'' κ) weaken2-command G' G'' (Select ss lab vch κ) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = Select (splitting-insertion G'' ss' ss0) lab (weaken2-val G₁' G'' vch) (weaken2-cont G₂' G'' κ) weaken2-command G' G'' (Branch ss vch dcont) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = Branch (splitting-insertion G'' ss' ss0) (weaken2-val G₁' G'' vch) λ lab → weaken2-cont G₂' G'' (dcont lab) weaken2-command G' G'' (NSelect ss lab vch κ) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = NSelect (splitting-insertion G'' ss' ss0) lab (weaken2-val G₁' G'' vch) (weaken2-cont G₂' G'' κ) weaken2-command G' G'' (NBranch ss vch dcont) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = NBranch (splitting-insertion G'' ss' ss0) (weaken2-val G₁' G'' vch) λ lab → weaken2-cont G₂' G'' (dcont lab) weaken2-threadpool : ∀ {G} G' G'' → ThreadPool (G' ++ G) → ThreadPool (G' ++ inactive-clone G'' ++ G) weaken2-threadpool G' G'' (tnil ina) = tnil (inactive-insertion G' G'' ina) weaken2-threadpool G' G'' (tcons ss cmd tp) with split-append G' ss ... | G₁' , G₂' , G₁ , G₂ , ss' , ss0 , refl , refl = tcons (splitting-insertion G'' ss' ss0) (weaken2-command G₁' G'' cmd) (weaken2-threadpool G₂' G'' tp) -- translate a process term to semantics (i.e., a list of commands) runProc : ∀ {Φ} → (G : SCtx) → Proc Φ → VEnv G Φ → ∃ λ G' → ThreadPool (G' ++ G) runProc G (exp e) ϱ with ssplit-refl-left-inactive G ... | G' , ina-G' , sp-GGG' = [] , (tcons sp-GGG' (run (split-all-left _) sp-GGG' e ϱ (halt ina-G' UUnit)) (tnil ina-G')) runProc G (par sp P₁ P₂) ϱ with split-env sp ϱ ... | (G₁ , G₂) , ss-GG1G2 , ϱ₁ , ϱ₂ with runProc G₁ P₁ ϱ₁ | runProc G₂ P₂ ϱ₂ ... | (G₁' , tp1) | (G₂' , tp2) with weaken1-threadpool G₁' tp2 ... | tp2' with weaken2-threadpool G₁' G₂' tp1 ... | tp1' with left-right G₁' G₂' ... | ss-G1'G2' rewrite sym (list-assoc G₁' (inactive-clone G₂') G₁) | sym (list-assoc (inactive-clone G₁') G₂' G₂) = (G₁' ++ G₂') , tappend ssfinal tp1' tp2' where ssfinal : SSplit ((G₁' ++ G₂') ++ G) ((G₁' ++ inactive-clone G₂') ++ G₁) ((inactive-clone G₁' ++ G₂') ++ G₂) ssfinal = ssplit-append (G₁' ++ G₂') G ss-G1'G2' ss-GG1G2 runProc G (res s P) ϱ with ssplit-refl-right-inactive G ... | G1 , ina-G1 , ss-GG1G with runProc (just (SType.force s , POSNEG) ∷ G) P (vcons (ss-posneg ss-GG1G) (VChan POS (here-pos ina-G1 (subF-refl _))) (vcons (ss-left ss-GG1G) (VChan NEG (here-neg ina-G1 (subF-refl _))) (lift-venv ϱ))) ... | G' , tp = G' ++ just (SType.force s , POSNEG) ∷ [] , tp' where tp' : ThreadPool ((G' ++ just (SType.force s , POSNEG) ∷ []) ++ G) tp' rewrite list-assoc G' (just (SType.force s , POSNEG) ∷ []) G = tp startProc : Gas → Proc [] → Outcome startProc f P with runProc [] P (vnil []-inactive) ... | G , tp = schedule f tp
{ "alphanum_fraction": 0.6152600831, "avg_line_length": 63.1422222222, "ext": "agda", "hexsha": "91be1f5b163222506fb1186d36f8fd12acf9ee33", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/ProcessRun.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/ProcessRun.agda", "max_line_length": 234, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/ProcessRun.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 5665, "size": 14207 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Groups.Lemmas open import Groups.Definition open import Setoids.Orders.Total.Definition open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Modulo.Definition open import Semirings.Definition open import Orders.Total.Definition open import Sequences open import Numbers.Integers.Definition open import Numbers.Integers.Addition open import Numbers.Integers.Multiplication open import Numbers.Integers.Order open import Numbers.Rationals.Definition open import Vectors open import Fields.Fields module Rings.Orders.Total.Examples where open import Rings.Orders.Total.BaseExpansion (ℚOrdered) {10} (le 8 refl) open Field ℚField t : Vec ℚ 5 t = take 5 (partialSums (funcToSequence injectionNQ)) u : Vec ℚ 5 u = vecMap injectionNQ (0 ,- (1 ,- (3 ,- (6 ,- (10 ,- []))))) pr : Vec (ℚ && ℚ) 5 pr = vecZip t u ans : vecAllTrue (λ x → _&&_.fst x =Q _&&_.snd x) pr ans = refl ,, (refl ,, (refl ,, (refl ,, (refl ,, record {})))) open import Rings.InitialRing ℚRing a : Sequence ℚ a with allInvertible (fromN 10) (λ ()) ... | 1/10 , pr1/10 = approximations 1/10 pr1/10 (baseNExpansion (underlying (allInvertible (injectionNQ 7) λ ())) (lessInherits (succIsPositive 0)) (lessInherits (le 5 refl))) expected : Vec ℚ _ expected = record { num = nonneg 1 ; denom = nonneg 10 ; denomNonzero = f } ,- record { num = nonneg 14 ; denom = nonneg 100 ; denomNonzero = λ () } ,- record { num = nonneg 142 ; denom = nonneg 1000 ; denomNonzero = λ () } ,- [] where f : nonneg 10 ≡ nonneg 0 → False f () ans' : vecAllTrue (λ x → _&&_.fst x =Q _&&_.snd x) (vecZip (take _ a) expected) ans' = refl ,, (refl ,, (refl ,, record {}))
{ "alphanum_fraction": 0.7209985316, "avg_line_length": 34.6271186441, "ext": "agda", "hexsha": "98daa30c82f9fbd96f20c4e2f821414c6ae8b6bc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Orders/Total/Examples.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Orders/Total/Examples.agda", "max_line_length": 229, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Orders/Total/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 613, "size": 2043 }
module Haskell.Prim.Eq where open import Agda.Builtin.Nat as Nat hiding (_==_) open import Agda.Builtin.Char open import Agda.Builtin.Unit open import Agda.Builtin.List open import Haskell.Prim open import Haskell.Prim.Bool open import Haskell.Prim.Integer open import Haskell.Prim.Int open import Haskell.Prim.Word open import Haskell.Prim.Double open import Haskell.Prim.Tuple open import Haskell.Prim.Maybe open import Haskell.Prim.Either -------------------------------------------------- -- Eq record Eq (a : Set) : Set where infix 4 _==_ _/=_ field _==_ : a → a → Bool _/=_ : a → a → Bool x /= y = not (x == y) open Eq ⦃ ... ⦄ public {-# COMPILE AGDA2HS Eq existing-class #-} instance iEqNat : Eq Nat iEqNat ._==_ = Nat._==_ iEqInteger : Eq Integer iEqInteger ._==_ = eqInteger iEqInt : Eq Int iEqInt ._==_ = eqInt iEqWord : Eq Word iEqWord ._==_ = eqWord iEqDouble : Eq Double iEqDouble ._==_ = primFloatNumericalEquality iEqBool : Eq Bool iEqBool ._==_ false false = true iEqBool ._==_ true true = true iEqBool ._==_ _ _ = false iEqChar : Eq Char iEqChar ._==_ = primCharEquality iEqUnit : Eq ⊤ iEqUnit ._==_ _ _ = true iEqTuple₀ : Eq (Tuple []) iEqTuple₀ ._==_ _ _ = true iEqTuple : ∀ {as} → ⦃ Eq a ⦄ → ⦃ Eq (Tuple as) ⦄ → Eq (Tuple (a ∷ as)) iEqTuple ._==_ (x ∷ xs) (y ∷ ys) = x == y && xs == ys iEqList : ⦃ Eq a ⦄ → Eq (List a) iEqList ._==_ [] [] = true iEqList ._==_ (x ∷ xs) (y ∷ ys) = x == y && xs == ys iEqList ._==_ _ _ = false iEqMaybe : ⦃ Eq a ⦄ → Eq (Maybe a) iEqMaybe ._==_ Nothing Nothing = true iEqMaybe ._==_ (Just x) (Just y) = x == y iEqMaybe ._==_ _ _ = false iEqEither : ⦃ Eq a ⦄ → ⦃ Eq b ⦄ → Eq (Either a b) iEqEither ._==_ (Left x) (Left y) = x == y iEqEither ._==_ (Right x) (Right y) = x == y iEqEither ._==_ _ _ = false
{ "alphanum_fraction": 0.5769230769, "avg_line_length": 23.7530864198, "ext": "agda", "hexsha": "bbaabe892013a8a9a7d2039fc3d1630fb58d306f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dxts/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Eq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dxts/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Eq.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Eq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 703, "size": 1924 }
-- 2017-05-11, Reported by Ulf -- Implicit absurd matches should be treated in the same way as explicit ones -- when it comes to being used/unused. open import Agda.Builtin.Bool open import Agda.Builtin.Equality data ⊥ : Set where record ⊤ : Set where abort : (A : Set) {_ : ⊥} → A abort A {} test : (x y : ⊥) → abort Bool {x} ≡ abort Bool {y} test x y = refl
{ "alphanum_fraction": 0.6703296703, "avg_line_length": 22.75, "ext": "agda", "hexsha": "85858559f1b3966e4818fee4dee864e76d886548", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2580.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2580.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2580.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 116, "size": 364 }
module logical_foundations.Naturals where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) {-# BUILTIN NATPLUS _+_ #-} -- zero + n = n -- 0 + n = n -- suc m + n = suc (m + n) -- (1 + m) + n = 1 + (m + n) infixl 6 _+_ _ : 2 + 3 ≡ 5 _ = begin 2 + 3 ≡⟨⟩ (suc (suc zero)) + (suc (suc (suc zero))) ≡⟨⟩ suc ((suc zero) + (suc (suc (suc zero)))) ≡⟨⟩ suc (suc (zero + (suc (suc (suc zero))))) ≡⟨⟩ 5 ∎ _ : 2 + 3 ≡ 5 _ = begin 2 + 3 ≡⟨⟩ suc (1 + 3) ≡⟨⟩ suc (suc (0 + 3)) ≡⟨⟩ suc (suc 3) ≡⟨⟩ 5 ∎ _ : 2 + 3 ≡ 5 _ = refl _ : 3 + 4 ≡ 7 _ = begin 3 + 4 ≡⟨⟩ suc (2 + 4) ≡⟨⟩ suc (suc (1 + 4)) ≡⟨⟩ suc (suc (suc (0 + 4))) ≡⟨⟩ suc (suc (suc 4)) ≡⟨⟩ 7 ∎ _*_ : ℕ → ℕ → ℕ zero * n = zero -- 0 * n = 0 suc m * n = n + (m * n) -- (1 + m) * n = n + (m * n) {-# BUILTIN NATTIMES _*_ #-} infixl 7 _*_ _ : 2 * 3 ≡ 6 _ = begin 2 * 3 ≡⟨⟩ 3 + (1 * 3) ≡⟨⟩ 3 + (3 + (0 * 3)) ≡⟨⟩ 3 + (3 + 0) ≡⟨⟩ 6 ∎ _^_ : ℕ → ℕ → ℕ m ^ zero = suc zero m ^ suc n = m * (m ^ n) infixl 8 _^_ _ : 2 ^ 3 ≡ 8 _ = begin 2 ^ 3 ≡⟨⟩ 2 * (2 ^ 2) ≡⟨⟩ 2 * (2 * (2 ^ 1)) ≡⟨⟩ 2 * (2 * (2 * (2 ^ 0))) ≡⟨⟩ 2 * (2 * (2 * 1)) ≡⟨⟩ 8 ∎ _ : 3 ^ 4 ≡ 81 _ = refl _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n {-# BUILTIN NATMINUS _∸_ #-} infixl 6 _∸_ _ = begin 3 ∸ 2 ≡⟨⟩ 2 ∸ 1 ≡⟨⟩ 1 ∸ 0 ≡⟨⟩ 1 ∎ _ = begin 2 ∸ 3 ≡⟨⟩ 1 ∸ 2 ≡⟨⟩ 0 ∸ 1 ≡⟨⟩ 0 ∎ data Bin : Set where nil : Bin x0_ : Bin → Bin x1_ : Bin → Bin inc : Bin → Bin inc nil = x1 nil inc (x0 b) = x1 b inc (x1 b) = x0 (inc b) _ : inc (x1 x1 x0 x1 nil) ≡ x0 x0 x1 x1 nil _ = refl _ : inc (x1 x1 x1 x1 nil) ≡ x0 x0 x0 x0 x1 nil _ = refl to : ℕ → Bin to zero = x0 nil to (suc n) = inc (to n) _ : to 0 ≡ x0 nil _ = refl _ : to 1 ≡ x1 nil _ = refl _ : to 2 ≡ x0 x1 nil _ = refl _ : to 3 ≡ x1 x1 nil _ = refl _ : to 14 ≡ x0 x1 x1 x1 nil _ = refl two = suc (suc zero) from : Bin → ℕ from nil = zero from (x0 n) = two * (from n) from (x1 n) = suc (two * (from n)) _ : from nil ≡ zero _ = refl _ : from (x0 nil) ≡ zero _ = refl _ : from (x1 nil) ≡ suc zero _ = refl _ : from (x0 x1 nil) ≡ two _ = refl _ : from (x0 x1 nil) ≡ two * suc zero _ = refl _ : from (x1 x1 nil) ≡ suc (suc (suc zero)) _ = refl _ : from (x1 x1 nil) ≡ suc (two * suc zero) _ = refl _ : from (x0 x0 x1 nil) ≡ suc (suc (suc (suc zero))) _ = refl _ : from (x0 x0 x1 nil) ≡ two * (two * suc zero) _ = refl _ : from (x1 x0 x1 nil) ≡ suc (suc (suc (suc (suc zero)))) _ = refl _ : from (x1 x0 x1 nil) ≡ suc (two * (two * suc zero)) _ = refl
{ "alphanum_fraction": 0.4379738112, "avg_line_length": 13.2511415525, "ext": "agda", "hexsha": "7e58c1777fef001a9a7907394a3d1a5454e8e260", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d6ca8fb32c4fe02c96f6e5eef82c2f24b7206e1b", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "tobal/plfa", "max_forks_repo_path": "logical_foundations/Naturals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d6ca8fb32c4fe02c96f6e5eef82c2f24b7206e1b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "tobal/plfa", "max_issues_repo_path": "logical_foundations/Naturals.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "d6ca8fb32c4fe02c96f6e5eef82c2f24b7206e1b", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "tobal/plfa", "max_stars_repo_path": "logical_foundations/Naturals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1546, "size": 2902 }
open import HoTT open import cohomology.FunctionOver module cohomology.Exactness where module _ {i j k} {G : Group i} {H : Group j} {K : Group k} (φ : G →ᴳ H) (ψ : H →ᴳ K) where private module G = Group G module H = Group H module K = Group K module φ = GroupHom φ module ψ = GroupHom ψ {- in image of φ ⇒ in kernel of ψ -} is-exact-itok : Type (lmax k (lmax j i)) is-exact-itok = (h : H.El) → Trunc -1 (Σ G.El (λ g → φ.f g == h)) → ψ.f h == K.ident {- in kernel of ψ ⇒ in image of φ -} is-exact-ktoi : Type (lmax k (lmax j i)) is-exact-ktoi = (h : H.El) → ψ.f h == K.ident → Trunc -1 (Σ G.El (λ g → φ.f g == h)) record is-exact : Type (lmax k (lmax j i)) where field itok : is-exact-itok ktoi : is-exact-ktoi open is-exact public {- an equivalent version of is-exact-ktoi -} itok-alt-in : ((g : G.El) → ψ.f (φ.f g) == K.ident) → is-exact-itok itok-alt-in r h = Trunc-rec (K.El-level _ _) (λ {(g , p) → ap ψ.f (! p) ∙ r g}) itok-alt-out : is-exact-itok → ((g : G.El) → ψ.f (φ.f g) == K.ident) itok-alt-out s g = s (φ.f g) [ g , idp ] {- Convenient notation for sequences of homomorphisms -} infix 15 _⊣| infixr 10 _⟨_⟩→_ data HomSequence {i} : Group i → Group i → Type (lsucc i) where _⊣| : (G : Group i) → HomSequence G G _⟨_⟩→_ : (G : Group i) {H K : Group i} (φ : G →ᴳ H) → HomSequence H K → HomSequence G K data Sequence= {i} : {G₁ H₁ G₂ H₂ : Group i} (S₁ : HomSequence G₁ H₁) (S₂ : HomSequence G₂ H₂) → G₁ == G₂ → H₁ == H₂ → Type (lsucc i) where _∥⊣| : ∀ {G₁ G₂} (p : G₁ == G₂) → Sequence= (G₁ ⊣|) (G₂ ⊣|) p p _∥⟨_⟩∥_ : ∀ {G₁ G₂} (pG : G₁ == G₂) {H₁ K₁ H₂ K₂ : Group i} {φ₁ : G₁ →ᴳ H₁} {φ₂ : G₂ →ᴳ H₂} {S₁ : HomSequence H₁ K₁} {S₂ : HomSequence H₂ K₂} {pH : H₁ == H₂} {pK : K₁ == K₂} (over : φ₁ == φ₂ [ uncurry _→ᴳ_ ↓ pair×= pG pH ]) → Sequence= S₁ S₂ pH pK → Sequence= (G₁ ⟨ φ₁ ⟩→ S₁) (G₂ ⟨ φ₂ ⟩→ S₂) pG pK infix 15 _↓⊣| _∥⊣| infixr 10 _↓⟨_⟩↓_ _∥⟨_⟩∥_ data SequenceIso {i j} : {G₁ H₁ : Group i} {G₂ H₂ : Group j} (S₁ : HomSequence G₁ H₁) (S₂ : HomSequence G₂ H₂) → G₁ ≃ᴳ G₂ → H₁ ≃ᴳ H₂ → Type (lsucc (lmax i j)) where _↓⊣| : ∀ {G₁ G₂} (iso : G₁ ≃ᴳ G₂) → SequenceIso (G₁ ⊣|) (G₂ ⊣|) iso iso _↓⟨_⟩↓_ : ∀ {G₁ G₂} (isoG : G₁ ≃ᴳ G₂) {H₁ K₁ : Group i} {H₂ K₂ : Group j} {φ₁ : G₁ →ᴳ H₁} {φ₂ : G₂ →ᴳ H₂} {S₁ : HomSequence H₁ K₁} {S₂ : HomSequence H₂ K₂} {isoH : H₁ ≃ᴳ H₂} {isoK : K₁ ≃ᴳ K₂} (over : fst isoH ∘ᴳ φ₁ == φ₂ ∘ᴳ fst isoG) → SequenceIso S₁ S₂ isoH isoK → SequenceIso (G₁ ⟨ φ₁ ⟩→ S₁) (G₂ ⟨ φ₂ ⟩→ S₂) isoG isoK seq-iso-to-path : ∀ {i} {G₁ H₁ G₂ H₂ : Group i} {S₁ : HomSequence G₁ H₁} {S₂ : HomSequence G₂ H₂} {isoG : G₁ ≃ᴳ G₂} {isoH : H₁ ≃ᴳ H₂} → SequenceIso S₁ S₂ isoG isoH → Sequence= S₁ S₂ (group-ua isoG) (group-ua isoH) seq-iso-to-path (iso ↓⊣|) = group-ua iso ∥⊣| seq-iso-to-path (iso ↓⟨ over ⟩↓ si') = group-ua iso ∥⟨ hom-over-isos $ function-over-equivs _ _ $ ap GroupHom.f over ⟩∥ seq-iso-to-path si' sequence= : ∀ {i} {G₁ H₁ G₂ H₂ : Group i} {S₁ : HomSequence G₁ H₁} {S₂ : HomSequence G₂ H₂} (pG : G₁ == G₂) (pH : H₁ == H₂) → Sequence= S₁ S₂ pG pH → S₁ == S₂ [ uncurry HomSequence ↓ pair×= pG pH ] sequence= idp .idp (.idp ∥⊣|) = idp sequence= {G₁ = G₁} idp idp (_∥⟨_⟩∥_ .idp {φ₁ = φ₁} {pH = idp} idp sp') = ap (λ S' → G₁ ⟨ φ₁ ⟩→ S') (sequence= idp idp sp') sequence-iso-ua : ∀ {i} {G₁ H₁ G₂ H₂ : Group i} {S₁ : HomSequence G₁ H₁} {S₂ : HomSequence G₂ H₂} (isoG : G₁ ≃ᴳ G₂) (isoH : H₁ ≃ᴳ H₂) → SequenceIso S₁ S₂ isoG isoH → S₁ == S₂ [ uncurry HomSequence ↓ pair×= (group-ua isoG) (group-ua isoH) ] sequence-iso-ua isoG isoH si = sequence= _ _ (seq-iso-to-path si) data is-exact-seq {i} : {G H : Group i} → HomSequence G H → Type (lsucc i) where exact-seq-zero : {G : Group i} → is-exact-seq (G ⊣|) exact-seq-one : {G H : Group i} {φ : G →ᴳ H} → is-exact-seq (G ⟨ φ ⟩→ H ⊣|) exact-seq-two : {G H K J : Group i} {φ : G →ᴳ H} {ψ : H →ᴳ K} {diag : HomSequence K J} → is-exact φ ψ → is-exact-seq (H ⟨ ψ ⟩→ diag) → is-exact-seq (G ⟨ φ ⟩→ H ⟨ ψ ⟩→ diag) private exact-get-type : ∀ {i} {G H : Group i} → HomSequence G H → ℕ → Type i exact-get-type (G ⊣|) _ = Lift Unit exact-get-type (G ⟨ φ ⟩→ H ⊣|) _ = Lift Unit exact-get-type (G ⟨ φ ⟩→ (H ⟨ ψ ⟩→ s)) O = is-exact φ ψ exact-get-type (_ ⟨ _ ⟩→ s) (S n) = exact-get-type s n exact-get : ∀ {i} {G H : Group i} {diag : HomSequence G H} → is-exact-seq diag → (n : ℕ) → exact-get-type diag n exact-get exact-seq-zero _ = lift unit exact-get exact-seq-one _ = lift unit exact-get (exact-seq-two ex s) O = ex exact-get (exact-seq-two ex s) (S n) = exact-get s n private exact-build-arg-type : ∀ {i} {G H : Group i} → HomSequence G H → List (Type i) exact-build-arg-type (G ⊣|) = nil exact-build-arg-type (G ⟨ φ ⟩→ H ⊣|) = nil exact-build-arg-type (G ⟨ φ ⟩→ H ⟨ ψ ⟩→ s) = is-exact φ ψ :: exact-build-arg-type (H ⟨ ψ ⟩→ s) exact-build-helper : ∀ {i} {G H : Group i} (seq : HomSequence G H) → HList (exact-build-arg-type seq) → is-exact-seq seq exact-build-helper (G ⊣|) nil = exact-seq-zero exact-build-helper (G ⟨ φ ⟩→ H ⊣|) nil = exact-seq-one exact-build-helper (G ⟨ φ ⟩→ H ⟨ ψ ⟩→ s) (ie :: ies) = exact-seq-two ie (exact-build-helper (H ⟨ ψ ⟩→ s) ies) exact-build : ∀ {i} {G H : Group i} (seq : HomSequence G H) → hlist-curry-type (exact-build-arg-type seq) (λ _ → is-exact-seq seq) exact-build seq = hlist-curry (exact-build-helper seq) private hom-seq-snoc : ∀ {i} {G H K : Group i} → HomSequence G H → (H →ᴳ K) → HomSequence G K hom-seq-snoc (G ⊣|) ψ = G ⟨ ψ ⟩→ _ ⊣| hom-seq-snoc (G ⟨ φ ⟩→ s) ψ = G ⟨ φ ⟩→ hom-seq-snoc s ψ hom-seq-concat : ∀ {i} {G H K : Group i} → HomSequence G H → HomSequence H K → HomSequence G K hom-seq-concat (G ⊣|) s₂ = s₂ hom-seq-concat (G ⟨ φ ⟩→ s₁) s₂ = G ⟨ φ ⟩→ (hom-seq-concat s₁ s₂) abstract exact-concat : ∀ {i} {G H K L : Group i} {seq₁ : HomSequence G H} {φ : H →ᴳ K} {seq₂ : HomSequence K L} → is-exact-seq (hom-seq-snoc seq₁ φ) → is-exact-seq (H ⟨ φ ⟩→ seq₂) → is-exact-seq (hom-seq-concat seq₁ (H ⟨ φ ⟩→ seq₂)) exact-concat {seq₁ = G ⊣|} exact-seq-one es₂ = es₂ exact-concat {seq₁ = G ⟨ ψ ⟩→ H ⊣|} (exact-seq-two ex _) es₂ = exact-seq-two ex es₂ exact-concat {seq₁ = G ⟨ ψ ⟩→ H ⟨ χ ⟩→ s} (exact-seq-two ex es₁) es₂ = exact-seq-two ex (exact-concat {seq₁ = H ⟨ χ ⟩→ s} es₁ es₂)
{ "alphanum_fraction": 0.5604826073, "avg_line_length": 39.1533742331, "ext": "agda", "hexsha": "72ebf4f3f2dc667755a6101f13fd52dbc93b793c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/Exactness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/Exactness.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/Exactness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2885, "size": 6382 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.CommRing.Integers where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing module _ where open import Cubical.HITs.Ints.BiInvInt renaming ( _+_ to _+ℤ_; -_ to _-ℤ_; +-assoc to +ℤ-assoc; +-comm to +ℤ-comm ) BiInvIntAsCommRing : CommRing {ℓ-zero} BiInvIntAsCommRing = makeCommRing zero (suc zero) _+ℤ_ _·_ _-ℤ_ isSetBiInvInt +ℤ-assoc +-zero +-invʳ +ℤ-comm ·-assoc ·-identityʳ (λ x y z → sym (·-distribˡ x y z)) ·-comm -- makeCommRing ? ? ? ? ? ? ? ? ? ? ? ? ? ? module _ where open import Cubical.Data.Int IntAsCommRing : CommRing {ℓ-zero} IntAsCommRing = makeCommRing {R = Int} 0 1 _+_ _·_ -_ isSetInt +-assoc +-identityʳ +-inverseʳ +-comm (λ x y z → sym (·-assoc x y z)) ·-identityʳ (λ x y z → sym (·-distribˡ x y z)) ·-comm module _ where open import Cubical.HITs.Ints.QuoInt QuoIntAsCommRing : CommRing {ℓ-zero} QuoIntAsCommRing = makeCommRing {R = ℤ} 0 1 _+_ _·_ -_ isSetℤ +-assoc +-identityʳ +-inverseʳ +-comm ·-assoc ·-identityʳ (λ x y z → sym (·-distribˡ x y z)) ·-comm module _ where open import Cubical.Data.DiffInt DiffIntAsCommRing : CommRing {ℓ-zero} DiffIntAsCommRing = makeCommRing {R = ℤ} 0 1 _+_ _·_ -_ isSetℤ +-assoc +-identityʳ +-inverseʳ +-comm ·-assoc ·-identityʳ ·-distribˡ ·-comm open import Cubical.Algebra.Ring using (ringequiv) open import Cubical.Foundations.Equiv open import Cubical.Reflection.Base using (_$_) -- TODO: add this to Foundation.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Structure open import Cubical.HITs.Ints.BiInvInt using (BiInvInt) open import Cubical.Data.Nat using (suc; zero) renaming (_·_ to _·ⁿ_; _+_ to _+ⁿ_) open import Cubical.Data.Int as Int using (sucInt; predInt; Int) renaming ( _+_ to _+'_ ; _·_ to _·'_ ; -_ to -'_ ; pos to pos' ; negsuc to negsuc' ; sgn to sgn' ; abs to abs' ; signed to signed' ) module _ where open import Cubical.HITs.Ints.BiInvInt renaming ( fwd to ⟦_⟧ ; suc to sucᵇ ) private suc-⟦⟧ : ∀ x → sucᵇ ⟦ x ⟧ ≡ ⟦ sucInt x ⟧ suc-⟦⟧ (pos' n) = refl suc-⟦⟧ (negsuc' zero) = suc-pred _ suc-⟦⟧ (negsuc' (suc n)) = suc-pred _ pred-⟦⟧ : ∀ x → predl ⟦ x ⟧ ≡ ⟦ predInt x ⟧ pred-⟦⟧ (pos' zero) = refl pred-⟦⟧ (pos' (suc n)) = pred-suc _ pred-⟦⟧ (negsuc' zero) = refl pred-⟦⟧ (negsuc' (suc n)) = refl neg-⟦⟧ : ∀ x → - ⟦ x ⟧ ≡ ⟦ -' x ⟧ neg-⟦⟧ (pos' zero) = refl neg-⟦⟧ (pos' (suc n)) = (λ i → predl (neg-⟦⟧ (pos' n) i)) ∙ pred-⟦⟧ (-' pos' n) ∙ cong ⟦_⟧ (Int.predInt-neg (pos' n)) neg-⟦⟧ (negsuc' zero) = refl neg-⟦⟧ (negsuc' (suc n)) = (λ i → sucᵇ (neg-⟦⟧ (negsuc' n) i)) pres1 : 1 ≡ ⟦ 1 ⟧ pres1 = refl isHom+ : ∀ x y → ⟦ x +' y ⟧ ≡ ⟦ x ⟧ + ⟦ y ⟧ isHom+ (pos' zero) y i = ⟦ Int.+-comm 0 y i ⟧ isHom+ (pos' (suc n)) y = ⟦ pos' (suc n) +' y ⟧ ≡[ i ]⟨ ⟦ Int.sucInt+ (pos' n) y (~ i) ⟧ ⟩ ⟦ sucInt (pos' n +' y) ⟧ ≡⟨ sym $ suc-⟦⟧ _ ⟩ sucᵇ ⟦ pos' n +' y ⟧ ≡[ i ]⟨ sucᵇ $ isHom+ (pos' n) y i ⟩ sucᵇ (⟦ pos' n ⟧ + ⟦ y ⟧) ≡⟨ refl ⟩ sucᵇ ⟦ pos' n ⟧ + ⟦ y ⟧ ∎ isHom+ (negsuc' zero) y = pred-suc-inj _ _ (λ i → predl (γ i)) where -- γ = sucᵇ ⟦ negsuc' zero +' y ⟧ ≡⟨ suc-⟦⟧ (negsuc' zero +' y) ⟩ -- ⟦ sucInt (negsuc' zero +' y)⟧ ≡⟨ cong ⟦_⟧ $ Int.sucInt+ (negsuc' zero) y ∙ Int.+-comm 0 y ⟩ -- ⟦ y ⟧ ≡⟨ sym (suc-pred ⟦ y ⟧) ⟩ -- sucᵇ (pred zero + ⟦ y ⟧) ∎ γ = suc-⟦⟧ (negsuc' zero +' y) ∙ (λ i → ⟦ (Int.sucInt+ (negsuc' zero) y ∙ Int.+-comm 0 y) i ⟧) ∙ sym (suc-pred ⟦ y ⟧) isHom+ (negsuc' (suc n)) y = (λ i → ⟦ Int.predInt+ (negsuc' n) y (~ i) ⟧) ∙ sym (pred-⟦⟧ (negsuc' n +' y)) ∙ (λ i → pred $ isHom+ (negsuc' n) y i) isHom· : ∀ x y → ⟦ x ·' y ⟧ ≡ ⟦ x ⟧ · ⟦ y ⟧ isHom· (pos' zero) y i = ⟦ Int.signed-zero (Int.sgn y) i ⟧ isHom· (pos' (suc n)) y = ⟦ pos' (suc n) ·' y ⟧ ≡⟨ cong ⟦_⟧ $ Int.·-pos-suc n y ⟩ ⟦ y +' pos' n ·' y ⟧ ≡⟨ isHom+ y _ ⟩ ⟦ y ⟧ + ⟦ pos' n ·' y ⟧ ≡[ i ]⟨ ⟦ y ⟧ + isHom· (pos' n) y i ⟩ ⟦ y ⟧ + ⟦ pos' n ⟧ · ⟦ y ⟧ ≡⟨ (λ i → ⟦ y ⟧ + ·-comm ⟦ pos' n ⟧ ⟦ y ⟧ i) ∙ sym (·-suc ⟦ y ⟧ ⟦ pos' n ⟧) ∙ ·-comm ⟦ y ⟧ _ ⟩ sucᵇ ⟦ pos' n ⟧ · ⟦ y ⟧ ∎ isHom· (negsuc' zero) y = ⟦ -1 ·' y ⟧ ≡⟨ cong ⟦_⟧ (Int.·-neg1 y) ⟩ ⟦ -' y ⟧ ≡⟨ sym (neg-⟦⟧ y) ⟩ - ⟦ y ⟧ ≡⟨ sym (·-neg1 ⟦ y ⟧) ⟩ -1 · ⟦ y ⟧ ∎ isHom· (negsuc' (suc n)) y = ⟦ negsuc' (suc n) ·' y ⟧ ≡⟨ cong ⟦_⟧ $ Int.·-negsuc-suc n y ⟩ ⟦ -' y +' negsuc' n ·' y ⟧ ≡⟨ isHom+ (-' y) _ ⟩ ⟦ -' y ⟧ + ⟦ negsuc' n ·' y ⟧ ≡[ i ]⟨ ⟦ -' y ⟧ + isHom· (negsuc' n) y i ⟩ ⟦ -' y ⟧ + ⟦ negsuc' n ⟧ · ⟦ y ⟧ ≡⟨ cong₂ _+_ (sym (neg-⟦⟧ y)) refl ⟩ - ⟦ y ⟧ + ⟦ negsuc' n ⟧ · ⟦ y ⟧ ≡⟨ (λ i → - ⟦ y ⟧ + ·-comm ⟦ negsuc' n ⟧ ⟦ y ⟧ i) ∙ sym (·-pred ⟦ y ⟧ ⟦ negsuc' n ⟧) ∙ ·-comm ⟦ y ⟧ _ ⟩ pred ⟦ negsuc' n ⟧ · ⟦ y ⟧ ∎ ⟦⟧-isEquiv : isEquiv ⟦_⟧ ⟦⟧-isEquiv = isoToIsEquiv (iso ⟦_⟧ bwd fwd-bwd bwd-fwd) Int≃BiInvInt-CommRingEquivΣ : Σ[ e ∈ ⟨ IntAsCommRing ⟩ ≃ ⟨ BiInvIntAsCommRing ⟩ ] CommRingEquiv IntAsCommRing BiInvIntAsCommRing e Int≃BiInvInt-CommRingEquivΣ .fst = ⟦_⟧ , ⟦⟧-isEquiv Int≃BiInvInt-CommRingEquivΣ .snd = ringequiv pres1 isHom+ isHom· Int≡BiInvInt-AsCommRing : IntAsCommRing ≡ BiInvIntAsCommRing Int≡BiInvInt-AsCommRing = CommRingPath _ _ .fst Int≃BiInvInt-CommRingEquivΣ module _ where open import Cubical.HITs.Ints.QuoInt as QuoInt renaming ( Int→ℤ to ⟦_⟧ ) open import Cubical.Data.Bool private suc-⟦⟧ : ∀ x → sucℤ ⟦ x ⟧ ≡ ⟦ sucInt x ⟧ suc-⟦⟧ (pos' n) = refl suc-⟦⟧ (negsuc' zero) = sym posneg suc-⟦⟧ (negsuc' (suc n)) = refl pred-⟦⟧ : ∀ x → predℤ ⟦ x ⟧ ≡ ⟦ predInt x ⟧ pred-⟦⟧ (pos' zero) = refl pred-⟦⟧ (pos' (suc n)) = refl pred-⟦⟧ (negsuc' n) = refl neg-⟦⟧ : ∀ x → - ⟦ x ⟧ ≡ ⟦ -' x ⟧ neg-⟦⟧ (pos' zero) = sym posneg neg-⟦⟧ (pos' (suc n)) = refl neg-⟦⟧ (negsuc' n) = refl pres1 : 1 ≡ ⟦ 1 ⟧ pres1 = refl isHom+ : ∀ x y → ⟦ x +' y ⟧ ≡ ⟦ x ⟧ + ⟦ y ⟧ isHom+ (pos' zero) y i = ⟦ Int.+-comm 0 y i ⟧ isHom+ (pos' (suc n)) y = ⟦ pos' (suc n) +' y ⟧ ≡[ i ]⟨ ⟦ Int.sucInt+ (pos' n) y (~ i) ⟧ ⟩ ⟦ sucInt (pos' n +' y) ⟧ ≡⟨ sym $ suc-⟦⟧ _ ⟩ sucℤ ⟦ pos' n +' y ⟧ ≡[ i ]⟨ sucℤ $ isHom+ (pos' n) y i ⟩ sucℤ (⟦ pos' n ⟧ + ⟦ y ⟧) ≡⟨ refl ⟩ sucℤ ⟦ pos' n ⟧ + ⟦ y ⟧ ∎ isHom+ (negsuc' zero ) y = sucℤ-inj _ _ (suc-⟦⟧ (negsuc' zero +' y) ∙ (cong ⟦_⟧ $ Int.sucInt+ (negsuc' zero) y ∙ Int.+-identityˡ y) ∙ sym (sucPredℤ ⟦ y ⟧)) isHom+ (negsuc' (suc n)) y = cong ⟦_⟧ (sym (Int.predInt+ (negsuc' n) y)) ∙ (sym $ pred-⟦⟧ (negsuc' n +' y)) ∙ (λ i → predℤ $ isHom+ (negsuc' n) y i) isHom· : ∀ x y → ⟦ x ·' y ⟧ ≡ ⟦ x ⟧ · ⟦ y ⟧ isHom· (pos' zero) y = (cong ⟦_⟧ $ Int.signed-zero (sgn' y)) ∙ sym (signed-zero (sign ⟦ y ⟧) spos) isHom· (pos' (suc n)) y = ⟦ pos' (suc n) ·' y ⟧ ≡⟨ cong ⟦_⟧ $ Int.·-pos-suc n y ⟩ ⟦ y +' pos' n ·' y ⟧ ≡⟨ isHom+ y _ ⟩ ⟦ y ⟧ + ⟦ pos' n ·' y ⟧ ≡[ i ]⟨ ⟦ y ⟧ + isHom· (pos' n) y i ⟩ ⟦ y ⟧ + ⟦ pos' n ⟧ · ⟦ y ⟧ ≡⟨ sym $ ·-pos-suc n ⟦ y ⟧ ⟩ sucℤ ⟦ pos' n ⟧ · ⟦ y ⟧ ∎ isHom· (negsuc' zero) y = ⟦ -1 ·' y ⟧ ≡⟨ cong ⟦_⟧ (Int.·-neg1 y) ⟩ ⟦ -' y ⟧ ≡⟨ sym (neg-⟦⟧ y) ⟩ - ⟦ y ⟧ ≡⟨ sym (·-neg1 ⟦ y ⟧) ⟩ -1 · ⟦ y ⟧ ∎ isHom· (negsuc' (suc n)) y = ⟦ negsuc' (suc n) ·' y ⟧ ≡⟨ cong ⟦_⟧ $ Int.·-negsuc-suc n y ⟩ ⟦ -' y +' negsuc' n ·' y ⟧ ≡⟨ isHom+ (-' y) _ ⟩ ⟦ -' y ⟧ + ⟦ negsuc' n ·' y ⟧ ≡[ i ]⟨ ⟦ -' y ⟧ + isHom· (negsuc' n) y i ⟩ ⟦ -' y ⟧ + ⟦ negsuc' n ⟧ · ⟦ y ⟧ ≡⟨ cong₂ _+_ (sym (neg-⟦⟧ y)) refl ⟩ - ⟦ y ⟧ + ⟦ negsuc' n ⟧ · ⟦ y ⟧ ≡⟨ sym (·-neg-suc (suc n) ⟦ y ⟧) ⟩ predℤ ⟦ negsuc' n ⟧ · ⟦ y ⟧ ∎ ⟦⟧-isEquiv : isEquiv ⟦_⟧ ⟦⟧-isEquiv = isoToIsEquiv (iso ⟦_⟧ ℤ→Int ℤ→Int→ℤ Int→ℤ→Int) Int≃QuoInt-CommRingEquivΣ : Σ[ e ∈ ⟨ IntAsCommRing ⟩ ≃ ⟨ QuoIntAsCommRing ⟩ ] CommRingEquiv IntAsCommRing QuoIntAsCommRing e Int≃QuoInt-CommRingEquivΣ .fst = ⟦_⟧ , ⟦⟧-isEquiv Int≃QuoInt-CommRingEquivΣ .snd = ringequiv pres1 isHom+ isHom· Int≡QuoInt-AsCommRing : IntAsCommRing ≡ QuoIntAsCommRing Int≡QuoInt-AsCommRing = CommRingPath _ _ .fst Int≃QuoInt-CommRingEquivΣ QuoInt≡BiInvInt-AsCommRing : QuoIntAsCommRing ≡ BiInvIntAsCommRing QuoInt≡BiInvInt-AsCommRing = sym Int≡QuoInt-AsCommRing ∙ Int≡BiInvInt-AsCommRing open import Cubical.HITs.SetQuotients module _ where open import Cubical.Data.Sigma open import Cubical.Data.Bool open import Cubical.Data.Nat using (ℕ) renaming (_·_ to _·ⁿ_) open import Cubical.HITs.Rationals.QuoQ using (ℚ) renaming (_+_ to _+ʳ_) open import Cubical.HITs.Ints.QuoInt using (ℤ; sign; signed; abs) renaming (_+_ to _+ᶻ_) open import Cubical.Data.NatPlusOne using (ℕ₊₁; 1+_) test1 : ℤ → _ test1 x = {! x +ᶻ x !} -- Normal form: -- x +ᶻ x test2 : ℤ × ℕ₊₁ → _ test2 x = {! [ x ] +ʳ [ x ] !} -- Normal form: -- [ signed (sign (fst x) ⊕ false) (abs (fst x) ·ⁿ suc (ℕ₊₁.n (snd x))) -- +ᶻ signed (sign (fst x) ⊕ false) (abs (fst x) ·ⁿ suc (ℕ₊₁.n (snd x))) -- , (1+ (ℕ₊₁.n (snd x) +ⁿ ℕ₊₁.n (snd x) ·ⁿ suc (ℕ₊₁.n (snd x)))) -- ] test3 : ℚ → ℤ × ℕ₊₁ → _ test3 x y = {! x +ʳ [ y ] !} -- Normal form: -- rec -- (λ f g F G i j z → -- squash/ (f z) (g z) (λ i₁ → F i₁ z) (λ i₁ → G i₁ z) i j) -- (λ a → ... -- ... -- ... 2000 more lines ... open import Cubical.Data.DiffInt as DiffInt hiding (_+'_; _·'_) ⟦⟧-isEquiv : isEquiv ⟦_⟧ ⟦⟧-isEquiv = isoToIsEquiv (iso ⟦_⟧ bwd fwd-bwd bwd-fwd) pres1 : 1 ≡ ⟦ 1 ⟧ pres1 = refl isHom+ : ∀ x y → ⟦ x +' y ⟧ ≡ ⟦ x ⟧ + ⟦ y ⟧ isHom+ (pos' zero) y = {! !} isHom+ (pos' (suc n)) y = {! !} -- ? ∙ λ i → sucℤ (isHom+ (pos' n) y i) isHom+ (negsuc' zero) y = {! [ 0 , 1 ] + ⟦ y ⟧ !} isHom+ (negsuc' (suc n)) y = {! !} isHom· : ∀ x y → ⟦ x ·' y ⟧ ≡ ⟦ x ⟧ · ⟦ y ⟧ isHom· = {! !} Int≃DiffInt-CommRingEquivΣ : Σ[ e ∈ ⟨ IntAsCommRing ⟩ ≃ ⟨ DiffIntAsCommRing ⟩ ] CommRingEquiv IntAsCommRing DiffIntAsCommRing e Int≃DiffInt-CommRingEquivΣ .fst = ⟦_⟧ , ⟦⟧-isEquiv Int≃DiffInt-CommRingEquivΣ .snd = ringequiv pres1 isHom+ isHom· Int≡DiffInt-AsCommRing : IntAsCommRing ≡ DiffIntAsCommRing Int≡DiffInt-AsCommRing = CommRingPath _ _ .fst Int≃DiffInt-CommRingEquivΣ DiffInt≡BiInvInt-AsCommRing : DiffIntAsCommRing ≡ BiInvIntAsCommRing DiffInt≡BiInvInt-AsCommRing = sym Int≡DiffInt-AsCommRing ∙ Int≡BiInvInt-AsCommRing
{ "alphanum_fraction": 0.5069482538, "avg_line_length": 38.6501766784, "ext": "agda", "hexsha": "27199ca54561cff38b2a09dd8b8d3b1b64fbcc62", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Integers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Integers.agda", "max_line_length": 132, "max_stars_count": null, "max_stars_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Integers.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5260, "size": 10938 }
-- Andreas, 2018-10-18, issue #3289 reported by Ulf -- -- For postfix projections, we have no hiding info -- for the eliminated record value. -- Thus, contrary to the prefix case, it cannot be -- taken into account (e.g. for projection disambiguation). open import Agda.Builtin.Nat record R : Set where field p : Nat open R {{...}} test : R test .p = 0 -- Error WAS: Wrong hiding used for projection R.p -- Should work now.
{ "alphanum_fraction": 0.6833712984, "avg_line_length": 19.0869565217, "ext": "agda", "hexsha": "c3c65fdd9d97dbcefc4baebd07a219b5c5652739", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3289.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3289.agda", "max_line_length": 59, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3289.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 125, "size": 439 }
-- Test that postponing tactic applications work properly module _ where open import Common.Prelude open import Common.Reflection data Zero : Set where zero : Zero macro fill : Term → Tactic fill = give _asTypeOf_ : {A : Set} → A → A → A x asTypeOf _ = x -- Requires postponing the macro evaluation until the 'zero' has been -- disambiguated. foo : Nat foo = let z = zero in fill z asTypeOf z
{ "alphanum_fraction": 0.703163017, "avg_line_length": 17.8695652174, "ext": "agda", "hexsha": "00f987e9e6b38f076e42b9491bbdbf91a630afda", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/PostponeTactic.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/PostponeTactic.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/PostponeTactic.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 117, "size": 411 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Surjections ------------------------------------------------------------------------ module Function.Surjection where open import Level open import Function.Equality as F using (_⟶_) renaming (_∘_ to _⟪∘⟫_) open import Function.Equivalence using (Equivalence) open import Function.Injection hiding (id; _∘_) open import Function.LeftInverse as Left hiding (id; _∘_) open import Data.Product open import Relation.Binary import Relation.Binary.PropositionalEquality as P -- Surjective functions. record Surjective {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} (to : From ⟶ To) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field from : To ⟶ From right-inverse-of : from RightInverseOf to -- The set of all surjections from one setoid to another. record Surjection {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : Setoid t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field to : From ⟶ To surjective : Surjective to open Surjective surjective public right-inverse : RightInverse From To right-inverse = record { to = from ; from = to ; left-inverse-of = right-inverse-of } open LeftInverse right-inverse public using () renaming (to-from to from-to) injective : Injective from injective = LeftInverse.injective right-inverse injection : Injection To From injection = LeftInverse.injection right-inverse equivalence : Equivalence From To equivalence = record { to = to ; from = from } -- Right inverses can be turned into surjections. fromRightInverse : ∀ {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} → RightInverse From To → Surjection From To fromRightInverse r = record { to = from ; surjective = record { from = to ; right-inverse-of = left-inverse-of } } where open LeftInverse r -- The set of all surjections from one set to another. infix 3 _↠_ _↠_ : ∀ {f t} → Set f → Set t → Set _ From ↠ To = Surjection (P.setoid From) (P.setoid To) -- Identity and composition. id : ∀ {s₁ s₂} {S : Setoid s₁ s₂} → Surjection S S id {S = S} = record { to = F.id ; surjective = record { from = LeftInverse.to id′ ; right-inverse-of = LeftInverse.left-inverse-of id′ } } where id′ = Left.id {S = S} infixr 9 _∘_ _∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂} {F : Setoid f₁ f₂} {M : Setoid m₁ m₂} {T : Setoid t₁ t₂} → Surjection M T → Surjection F M → Surjection F T f ∘ g = record { to = to f ⟪∘⟫ to g ; surjective = record { from = LeftInverse.to g∘f ; right-inverse-of = LeftInverse.left-inverse-of g∘f } } where open Surjection g∘f = Left._∘_ (right-inverse g) (right-inverse f)
{ "alphanum_fraction": 0.5774695535, "avg_line_length": 27.3703703704, "ext": "agda", "hexsha": "a8889a2df74fe2dc6938342f1eeb690bb06dc60a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Function/Surjection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Function/Surjection.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Function/Surjection.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 861, "size": 2956 }
{-# OPTIONS --no-import-sorts --prop #-} open import Agda.Primitive renaming (Set to Set; Prop to Set₁) test : Set₁ test = Set
{ "alphanum_fraction": 0.6821705426, "avg_line_length": 18.4285714286, "ext": "agda", "hexsha": "957c4ad3e657b3a84719fee29cad85436e2f2f9f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/AmbiguousSet1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/AmbiguousSet1.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/AmbiguousSet1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 36, "size": 129 }
{- Index a structure T a positive structure S: X ↦ S X → T X -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Relational.Function where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.Relation.Binary.Base open import Cubical.Relation.ZigZag.Base open import Cubical.HITs.SetQuotients open import Cubical.HITs.PropositionalTruncation as Trunc open import Cubical.Structures.Function private variable ℓ ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓ₂' ℓ₂'' : Level FunctionRelStr : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} → StrRel S ℓ₁' → StrRel T ℓ₂' → StrRel (FunctionStructure S T) (ℓ-max ℓ₁ (ℓ-max ℓ₁' ℓ₂')) FunctionRelStr ρ₁ ρ₂ R f g = ∀ {x y} → ρ₁ R x y → ρ₂ R (f x) (g y) open isEquivRel private composeWith[_] : {A : Type ℓ} (R : EquivPropRel A ℓ) → compPropRel (R .fst) (quotientPropRel (R .fst .fst)) .fst ≡ graphRel [_] composeWith[_] R = funExt₂ λ a t → hPropExt squash (squash/ _ _) (Trunc.rec (squash/ _ _) (λ {(b , r , p) → eq/ a b r ∙ p })) (λ p → ∣ a , R .snd .reflexive a , p ∣) [_]∙[_]⁻¹ : {A : Type ℓ} (R : EquivPropRel A ℓ) → compPropRel (quotientPropRel (R .fst .fst)) (invPropRel (quotientPropRel (R .fst .fst))) .fst ≡ R .fst .fst [_]∙[_]⁻¹ R = funExt₂ λ a b → hPropExt squash (R .fst .snd a b) (Trunc.rec (R .fst .snd a b) (λ {(c , p , q) → effective (R .fst .snd) (R .snd) a b (p ∙ sym q)})) (λ r → ∣ _ , eq/ a b r , refl ∣) functionSuitableRel : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} {ρ₁ : StrRel S ℓ₁'} {ρ₂ : StrRel T ℓ₂'} (θ₁ : SuitableStrRel S ρ₁) → PositiveStrRel θ₁ → SuitableStrRel T ρ₂ → SuitableStrRel (FunctionStructure S T) (FunctionRelStr ρ₁ ρ₂) functionSuitableRel {S = S} {T = T} {ρ₁ = ρ₁} {ρ₂} θ₁ σ₁ θ₂ .quo (X , f) R h = final where ref : (s : S X) → ρ₁ (R .fst .fst) s s ref = posRelReflexive σ₁ R [f] : S X / ρ₁ (R .fst .fst) → T (X / R .fst .fst) [f] [ s ] = θ₂ .quo (X , f s) R (h (ref s)) .fst .fst [f] (eq/ s₀ s₁ r i) = cong fst (θ₂ .quo (X , f s₀) R (h (ref s₀)) .snd ( [f] [ s₁ ] , subst (λ R' → ρ₂ R' (f s₀) ([f] [ s₁ ])) (composeWith[_] R) (θ₂ .transitive (R .fst) (quotientPropRel (R .fst .fst)) (h r) (θ₂ .quo (X , f s₁) R (h (ref s₁)) .fst .snd)) )) i [f] (squash/ _ _ p q j i) = θ₂ .set squash/ _ _ (cong [f] p) (cong [f] q) j i relLemma : (s : S X) (t : S X) → ρ₁ (graphRel [_]) s (funIsEq (σ₁ .quo R) [ t ]) → ρ₂ (graphRel [_]) (f s) ([f] [ t ]) relLemma s t r = subst (λ R' → ρ₂ R' (f s) ([f] [ t ])) (composeWith[_] R) (θ₂ .transitive (R .fst) (quotientPropRel (R .fst .fst)) (h r') (θ₂ .quo (X , f t) R (h (ref t)) .fst .snd)) where r' : ρ₁ (R .fst .fst) s t r' = subst (λ R' → ρ₁ R' s t) ([_]∙[_]⁻¹ R) (θ₁ .transitive (quotientPropRel (R .fst .fst)) (invPropRel (quotientPropRel (R .fst .fst))) r (θ₁ .symmetric (quotientPropRel (R .fst .fst)) (subst (λ t' → ρ₁ (graphRel [_]) t' (funIsEq (σ₁ .quo R) [ t ])) (σ₁ .act .actStrId t) (σ₁ .act .actRel eq/ t t (ref t))))) quoRelLemma : (s : S X) (t : S X / ρ₁ (R .fst .fst)) → ρ₁ (graphRel [_]) s (funIsEq (σ₁ .quo R) t) → ρ₂ (graphRel [_]) (f s) ([f] t) quoRelLemma s = elimProp (λ _ → isPropΠ λ _ → θ₂ .prop (λ _ _ → squash/ _ _) _ _) (relLemma s) final : Σ (Σ _ _) _ final .fst .fst = [f] ∘ invIsEq (σ₁ .quo R) final .fst .snd {s} {t} r = quoRelLemma s (invIsEq (σ₁ .quo R) t) (subst (ρ₁ (graphRel [_]) s) (sym (secIsEq (σ₁ .quo R) t)) r) final .snd (f' , c) = Σ≡Prop (λ _ → isPropImplicitΠ λ s → isPropImplicitΠ λ t → isPropΠ λ _ → θ₂ .prop (λ _ _ → squash/ _ _) _ _) (funExt λ s → contractorLemma (invIsEq (σ₁ .quo R) s) ∙ cong f' (secIsEq (σ₁ .quo R) s)) where contractorLemma : (s : S X / ρ₁ (R .fst .fst)) → [f] s ≡ f' (funIsEq (σ₁ .quo R) s) contractorLemma = elimProp (λ _ → θ₂ .set squash/ _ _) (λ s → cong fst (θ₂ .quo (X , f s) R (h (ref s)) .snd ( f' (funIsEq (σ₁ .quo R) [ s ]) , c (subst (λ s' → ρ₁ (graphRel [_]) s' (funIsEq (σ₁ .quo R) [ s ])) (σ₁ .act .actStrId s) (σ₁ .act .actRel eq/ s s (ref s))) ))) functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .symmetric R h r = θ₂ .symmetric R (h (θ₁ .symmetric (invPropRel R) r)) functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .transitive R R' h h' rr' = Trunc.rec (θ₂ .prop (λ _ _ → squash) _ _) (λ {(_ , r , r') → θ₂ .transitive R R' (h r) (h' r')}) (σ .detransitive R R' rr') functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .set setX = isSetΠ λ _ → θ₂ .set setX functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .prop propR f g = isPropImplicitΠ λ _ → isPropImplicitΠ λ _ → isPropΠ λ _ → θ₂ .prop propR _ _ functionRelMatchesEquiv : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} (ρ₁ : StrRel S ℓ₁') {ι₁ : StrEquiv S ℓ₁''} (ρ₂ : StrRel T ℓ₂') {ι₂ : StrEquiv T ℓ₂''} → StrRelMatchesEquiv ρ₁ ι₁ → StrRelMatchesEquiv ρ₂ ι₂ → StrRelMatchesEquiv (FunctionRelStr ρ₁ ρ₂) (FunctionEquivStr ι₁ ι₂) functionRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ (X , f) (Y , g) e = equivImplicitΠCod (equivImplicitΠCod (equiv→ (μ₁ _ _ e) (μ₂ _ _ e))) functionRelMatchesEquiv+ : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} (ρ₁ : StrRel S ℓ₁') (α₁ : EquivAction S) (ρ₂ : StrRel T ℓ₂') (ι₂ : StrEquiv T ℓ₂'') → StrRelMatchesEquiv ρ₁ (EquivAction→StrEquiv α₁) → StrRelMatchesEquiv ρ₂ ι₂ → StrRelMatchesEquiv (FunctionRelStr ρ₁ ρ₂) (FunctionEquivStr+ α₁ ι₂) functionRelMatchesEquiv+ ρ₁ α₁ ρ₂ ι₂ μ₁ μ₂ (X , f) (Y , g) e = compEquiv (functionRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ (X , f) (Y , g) e) (isoToEquiv isom) where open Iso isom : Iso (FunctionEquivStr (EquivAction→StrEquiv α₁) ι₂ (X , f) (Y , g) e) (FunctionEquivStr+ α₁ ι₂ (X , f) (Y , g) e) isom .fun h s = h refl isom .inv k {x} = J (λ y _ → ι₂ (X , f x) (Y , g y) e) (k x) isom .rightInv k i x = JRefl (λ y _ → ι₂ (X , f x) (Y , g y) e) (k x) i isom .leftInv h = implicitFunExt λ {x} → implicitFunExt λ {y} → funExt λ p → J (λ y p → isom .inv (isom .fun h) p ≡ h p) (funExt⁻ (isom .rightInv (isom .fun h)) x) p
{ "alphanum_fraction": 0.5590481786, "avg_line_length": 35.4583333333, "ext": "agda", "hexsha": "4ab42b9967b32c404280999f067e5a8d33e82142", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Structures/Relational/Function.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Structures/Relational/Function.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Structures/Relational/Function.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2863, "size": 6808 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.cubical.Square open import lib.types.Group open import lib.types.EilenbergMacLane1.Core open import lib.types.EilenbergMacLane1.DoubleElim module lib.types.EilenbergMacLane1.DoublePathElim where private emloop-emloop-eq-helper : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f g : A → B → C) {a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₁ : B} (q : b₀ == b₁) {u₀₀ : f a₀ b₀ == g a₀ b₀} {u₀₁ : f a₀ b₁ == g a₀ b₁} {u₁₀ : f a₁ b₀ == g a₁ b₀} {u₁₁ : f a₁ b₁ == g a₁ b₁} (sq₀₋ : Square u₀₀ (ap (f a₀) q) (ap (g a₀) q) u₀₁) (sq₁₋ : Square u₁₀ (ap (f a₁) q) (ap (g a₁) q) u₁₁) (sq₋₀ : Square u₀₀ (ap (λ a → f a b₀) p) (ap (λ a → g a b₀) p) u₁₀) (sq₋₁ : Square u₀₁ (ap (λ a → f a b₁) p) (ap (λ a → g a b₁) p) u₁₁) → ap-comm f p q ∙v⊡ (sq₀₋ ⊡h sq₋₁) == (sq₋₀ ⊡h sq₁₋) ⊡v∙ ap-comm g p q → ↓-ap-in (λ Z → Z) (λ a → f a b₀ == g a b₀) (↓-='-from-square sq₋₀) ∙'ᵈ ↓-ap-in (λ Z → Z) (λ b → f a₁ b == g a₁ b) (↓-='-from-square sq₁₋) == ↓-ap-in (λ Z → Z) (λ b → f a₀ b == g a₀ b) (↓-='-from-square sq₀₋) ∙ᵈ ↓-ap-in (λ Z → Z) (λ a → f a b₁ == g a b₁) (↓-='-from-square sq₋₁) [ (λ p → u₀₀ == u₁₁ [ (λ Z → Z) ↓ p ]) ↓ ap-comm' (λ a b → f a b == g a b) p q ] emloop-emloop-eq-helper f g idp idp sq₀₋ sq₁₋ sq₋₀ sq₋₁ r = horiz-degen-path sq₋₀ ∙' horiz-degen-path sq₁₋ =⟨ ∙'=∙ (horiz-degen-path sq₋₀) (horiz-degen-path sq₁₋) ⟩ horiz-degen-path sq₋₀ ∙ horiz-degen-path sq₁₋ =⟨ ! (horiz-degen-path-⊡h sq₋₀ sq₁₋) ⟩ horiz-degen-path (sq₋₀ ⊡h sq₁₋) =⟨ ap horiz-degen-path (! r) ⟩ horiz-degen-path (sq₀₋ ⊡h sq₋₁) =⟨ horiz-degen-path-⊡h sq₀₋ sq₋₁ ⟩ horiz-degen-path sq₀₋ ∙ horiz-degen-path sq₋₁ =∎ module _ {i j} (G : Group i) (H : Group j) where private module G = Group G module H = Group H module EM₁Level₂DoublePathElim {k} {C : Type k} {{C-level : has-level 2 C}} (f₁ f₂ : EM₁ G → EM₁ H → C) (embase-embase* : f₁ embase embase == f₂ embase embase) (embase-emloop* : ∀ h → Square embase-embase* (ap (f₁ embase) (emloop h)) (ap (f₂ embase) (emloop h)) embase-embase*) (emloop-embase* : ∀ g → Square embase-embase* (ap (λ x → f₁ x embase) (emloop g)) (ap (λ x → f₂ x embase) (emloop g)) embase-embase*) (embase-emloop-comp* : ∀ h₁ h₂ → embase-emloop* (H.comp h₁ h₂) ⊡v∙ ap (ap (f₂ embase)) (emloop-comp' H h₁ h₂) == ap (ap (f₁ embase)) (emloop-comp' H h₁ h₂) ∙v⊡ ↓-='-square-comp (embase-emloop* h₁) (embase-emloop* h₂)) (emloop-comp-embase* : ∀ g₁ g₂ → emloop-embase* (G.comp g₁ g₂) ⊡v∙ ap (ap (λ x → f₂ x embase)) (emloop-comp' G g₁ g₂) == ap (ap (λ x → f₁ x embase)) (emloop-comp' G g₁ g₂) ∙v⊡ ↓-='-square-comp (emloop-embase* g₁) (emloop-embase* g₂)) (emloop-emloop* : ∀ g h → ap-comm f₁ (emloop g) (emloop h) ∙v⊡ (embase-emloop* h ⊡h emloop-embase* g) == (emloop-embase* g ⊡h embase-emloop* h) ⊡v∙ ap-comm f₂ (emloop g) (emloop h)) where private module M = EM₁Level₁DoubleElim G H {P = λ x y → f₁ x y == f₂ x y} {{λ x y → has-level-apply C-level _ _}} embase-embase* (λ h → ↓-='-from-square (embase-emloop* h)) (λ g → ↓-='-from-square (emloop-embase* g)) (λ h₁ h₂ → ↓-='-from-square-comp-path (emloop-comp h₁ h₂) (embase-emloop* h₁) (embase-emloop* h₂) (embase-emloop* (H.comp h₁ h₂)) (embase-emloop-comp* h₁ h₂)) (λ g₁ g₂ → ↓-='-from-square-comp-path (emloop-comp g₁ g₂) (emloop-embase* g₁) (emloop-embase* g₂) (emloop-embase* (G.comp g₁ g₂)) (emloop-comp-embase* g₁ g₂)) (λ g h → emloop-emloop-eq-helper f₁ f₂ (emloop g) (emloop h) (embase-emloop* h) (embase-emloop* h) (emloop-embase* g) (emloop-embase* g) (emloop-emloop* g h) ) open M public
{ "alphanum_fraction": 0.4707712825, "avg_line_length": 40.1696428571, "ext": "agda", "hexsha": "f21170832e0a929129dafefffbb30c392f6d4941", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/EilenbergMacLane1/DoublePathElim.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/EilenbergMacLane1/DoublePathElim.agda", "max_line_length": 76, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/EilenbergMacLane1/DoublePathElim.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1737, "size": 4499 }
module Progress where open import Data.Bool open import Data.Empty open import Data.Maybe hiding (Any ; All) open import Data.Nat open import Data.List open import Data.List.All open import Data.List.Any open import Data.Product open import Data.Unit open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Typing open import Syntax open import Global open import Channel open import Values open import Session open import Schedule open import ProcessSyntax open import ProcessRun -- resources appear in pairs data Paired : SEntry → Set where aon-nothing : Paired nothing aon-all : ∀ {s} → Paired (just (s , POSNEG)) -- need lemmas for matchXAndGo ... -- matchXandGo-preserves-paired matchWaitAndGo-preserves-paired : ∀ {G G₁ G₂ G₁₁ G₁₂ φ G₂₁ G₂₂ Gnext tpnext} {ss : SSplit G G₁ G₂} {ss-cl : SSplit G₁ G₁₁ G₁₂} {v : Val G₁₁ (TChan send!)} {cl-κ : Cont G₁₂ φ TUnit} {ss-GG' : SSplit G₂ G₂₁ G₂₂} → All Paired G → (tp' : ThreadPool G₂₁) → (tp'' : ThreadPool G₂₂) → matchWaitAndGo ss (ss-cl , v , cl-κ) ss-GG' tp' tp'' ≡ just (Gnext , tpnext) → All Paired Gnext matchWaitAndGo-preserves-paired all-paired (tnil ina) tp'' () matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(Fork ss₁ κ₁ κ₂) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(Ready ss₁ v κ) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(Halt x x₁ x₂) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(New s κ) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(Close ss₁ v κ) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(Send ss₁ ss-args vch v κ) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(Recv ss₁ vch κ) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(Select ss₁ lab vch κ) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(Branch ss₁ vch dcont) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(NSelect ss₁ lab vch κ) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss-GG' = ss-GG'} all-paired (tcons ss cmd@(NBranch ss₁ vch dcont) tp') tp'' match-≡ with ssplit-compose5 ss-GG' ss ... | Gi , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp' (tcons ss' cmd tp'') match-≡ matchWaitAndGo-preserves-paired {ss = ss-top} {ss-cl = ss-cl} {v = VChan cl-b cl-vcr} {ss-GG' = ss-tp} all-paired (tcons ss cmd@(Wait ss₁ (VChan w-b w-vcr) κ) tp-wl) tp-acc match-≡ with ssplit-compose6 ss ss₁ ... | Gi , ss-g3gi , ss-g4g2 with ssplit-compose6 ss-tp ss-g3gi ... | Gi' , ss-g3gi' , ss-gtpacc with ssplit-join ss-top ss-cl ss-g3gi' ... | Gchannels , Gother , ss-top' , ss-channels , ss-others with vcr-match ss-channels cl-vcr w-vcr matchWaitAndGo-preserves-paired {ss = ss-top} {ss-cl} {VChan cl-b cl-vcr} {ss-GG' = ss-tp} all-paired (tcons ss cmd@(Wait ss₁ (VChan w-b w-vcr) κ) tp-wl) tp-acc match-≡ | Gi , ss-g3gi , ss-g4g2 | Gi' , ss-g3gi' , ss-gtpacc | Gchannels , Gother , ss-top' , ss-channels , ss-others | nothing with ssplit-compose5 ss-tp ss ... | _ , ss-tp' , ss' = matchWaitAndGo-preserves-paired all-paired tp-wl (tcons ss' cmd tp-acc) match-≡ matchWaitAndGo-preserves-paired {ss = ss-top} {ss-cl} {VChan cl-b cl-vcr} {ss-GG' = ss-tp} all-paired (tcons ss cmd@(Wait ss₁ (VChan w-b w-vcr) κ) tp-wl) tp-acc refl | Gi , ss-g3gi , ss-g4g2 | Gi' , ss-g3gi' , ss-gtpacc | Gchannels , Gother , ss-top' , ss-channels , ss-others | just x = {!!} -- remains to prove All Paired Gother step-preserves-paired : ∀ {G G' ev tp'} → All Paired G → (tp : ThreadPool G) → Original.step tp ≡ (_,_ {G'} ev tp') → All Paired G' step-preserves-paired all-paired tp step-≡ with tp step-preserves-paired all-paired tp refl | tnil ina = all-paired step-preserves-paired all-paired tp refl | tcons ss (Fork ss₁ κ₁ κ₂) tp' = all-paired step-preserves-paired all-paired tp refl | tcons ss (Ready ss₁ v κ) tp' = all-paired step-preserves-paired all-paired tp step-≡ | tcons ss (Halt x x₁ x₂) tp' with inactive-left-ssplit ss x step-preserves-paired all-paired tp refl | tcons ss (Halt x x₁ x₂) tp' | refl = all-paired step-preserves-paired all-paired tp refl | tcons ss (New s κ) tp' = aon-all ∷ all-paired step-preserves-paired all-paired tp step-≡ | tcons{G₁}{G₂} ss (Close ss-vκ v κ) tp' with ssplit-refl-left-inactive G₂ ... | G' , ina-G' , ss-GG' with matchWaitAndGo ss (ss-vκ , v , κ) ss-GG' tp' (tnil ina-G') step-preserves-paired all-paired tp refl | tcons {G₁} {G₂} ss (Close ss-vκ v κ) tp' | G' , ina-G' , ss-GG' | just (Gnext , tpnext) = matchWaitAndGo-preserves-paired {ss = ss}{ss-cl = ss-vκ}{v = v}{cl-κ = κ}{ss-GG'} all-paired tp' (tnil ina-G') p where p : matchWaitAndGo ss (ss-vκ , v , κ) ss-GG' tp' (tnil ina-G') ≡ just (Gnext , tpnext) p = sym {!refl!} step-preserves-paired all-paired tp refl | tcons {G₁} {G₂} ss (Close ss-vκ v κ) tp' | G' , ina-G' , ss-GG' | nothing = all-paired step-preserves-paired all-paired tp refl | tcons ss (Wait ss₁ v κ) tp' = all-paired step-preserves-paired all-paired tp refl | tcons ss (Send ss₁ ss-args vch v κ) tp' = all-paired step-preserves-paired all-paired tp step-≡ | tcons{G₁}{G₂} ss (Recv ss-vκ vch κ) tp' with ssplit-refl-left-inactive G₂ ... | G' , ina-G' , ss-GG' with matchSendAndGo ss (ss-vκ , vch , κ) ss-GG' tp' (tnil ina-G') ... | just (G-next , tp-next) = {!!} step-preserves-paired all-paired tp refl | tcons {G₁} {G₂} ss (Recv ss-vκ vch κ) tp' | G' , ina-G' , ss-GG' | nothing = all-paired step-preserves-paired all-paired tp step-≡ | tcons{G₁}{G₂} ss (Select ss-vκ lab vch κ) tp' with ssplit-refl-left-inactive G₂ ... | G' , ina-G' , ss-GG' with matchBranchAndGo ss (ss-vκ , lab , vch , κ) ss-GG' tp' (tnil ina-G') ... | just (G-next , tp-next) = {!!} step-preserves-paired all-paired tp refl | tcons {G₁} {G₂} ss (Select ss-vκ lab vch κ) tp' | G' , ina-G' , ss-GG' | nothing = all-paired step-preserves-paired all-paired tp refl | tcons ss (Branch ss₁ vch dcont) tp' = all-paired step-preserves-paired all-paired tp step-≡ | tcons{G₁}{G₂} ss (NSelect ss-vκ lab vch κ) tp' with ssplit-refl-left-inactive G₂ ... | G' , ina-G' , ss-GG' with matchNBranchAndGo ss (ss-vκ , lab , vch , κ) ss-GG' tp' (tnil ina-G') ... | just (G-next , tp-next) = {!!} step-preserves-paired all-paired tp refl | tcons {G₁} {G₂} ss (NSelect ss-vκ lab vch κ) tp' | G' , ina-G' , ss-GG' | nothing = all-paired step-preserves-paired all-paired tp refl | tcons ss (NBranch ss₁ vch dcont) tp' = all-paired -- check if the first thread can make a step topCanStep : ∀ {G} → ThreadPool G → Set topCanStep (tnil ina) = ⊥ topCanStep (tcons ss (Fork ss₁ κ₁ κ₂) tp) = ⊤ topCanStep (tcons ss (Ready ss₁ v κ) tp) = ⊤ topCanStep (tcons ss (Halt x x₁ x₂) tp) = ⊤ topCanStep (tcons ss (New s κ) tp) = ⊤ topCanStep (tcons{G₁}{G₂} ss (Close ss-vκ v κ) tp) with ssplit-refl-left-inactive G₂ ... | G' , ina-G' , ss-GG' = Is-just (matchWaitAndGo ss (ss-vκ , v , κ) ss-GG' tp (tnil ina-G')) topCanStep (tcons ss (Wait ss₁ v κ) tp) = ⊥ topCanStep (tcons ss (Send ss₁ ss-args vch v κ) tp) = ⊥ topCanStep (tcons{G₁}{G₂} ss (Recv ss-vκ vch κ) tp) with ssplit-refl-left-inactive G₂ ... | G' , ina-G' , ss-GG' = Is-just (matchSendAndGo ss (ss-vκ , vch , κ) ss-GG' tp (tnil ina-G')) topCanStep (tcons{G₁}{G₂} ss (Select ss-vκ lab vch κ) tp) with ssplit-refl-left-inactive G₂ ... | G' , ina-G' , ss-GG' = Is-just (matchBranchAndGo ss (ss-vκ , lab , vch , κ) ss-GG' tp (tnil ina-G')) topCanStep (tcons ss (Branch ss₁ vch dcont) tp) = ⊥ topCanStep (tcons{G₁}{G₂} ss (NSelect ss-vκ lab vch κ) tp) with ssplit-refl-left-inactive G₂ ... | G' , ina-G' , ss-GG' = Is-just (matchNBranchAndGo ss (ss-vκ , lab , vch , κ) ss-GG' tp (tnil ina-G')) topCanStep (tcons ss (NBranch ss₁ vch dcont) tp) = ⊥ tpLength : ∀ {G} → ThreadPool G → ℕ tpLength (tnil ina) = 0 tpLength (tcons ss cmd tp) = suc (tpLength tp) allRotations : ∀ {G} → ThreadPool G → List (ThreadPool G) allRotations tp = nRotations (tpLength tp) tp where rotate : ∀ {G} → ThreadPool G → ThreadPool G rotate (tnil ina) = tnil ina rotate (tcons ss cmd tp) = tsnoc ss tp cmd nRotations : ∀ {G} ℕ → ThreadPool G → List (ThreadPool G) nRotations zero tp = [] nRotations (suc n) tp = tp ∷ nRotations n (rotate tp) -- the thread pool can step if any command in the pool can make a step canStep : ∀ {G} → ThreadPool G → Set canStep tp = Any topCanStep (allRotations tp) deadlocked : ∀ {G} → ThreadPool G → Set deadlocked (tnil ina) = ⊥ deadlocked tp@(tcons _ _ _) = ¬ canStep tp -- progress
{ "alphanum_fraction": 0.6650260852, "avg_line_length": 57.395480226, "ext": "agda", "hexsha": "94e19b3e56ed89c7de619146f23c686e28989952", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/Progress.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/Progress.agda", "max_line_length": 319, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/Progress.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 3856, "size": 10159 }
{-# OPTIONS --safe #-} module Definition.Typed.Consequences.RelevanceUnicity where open import Definition.Untyped hiding (U≢ℕ; U≢Π; U≢ne; ℕ≢Π; ℕ≢ne; Π≢ne; U≢Empty; ℕ≢Empty; Empty≢Π; Empty≢ne) open import Definition.Untyped.Properties using (subst-Univ-either) open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening open import Definition.Typed.Consequences.Equality import Definition.Typed.Consequences.Inequality as Ineq open import Definition.Typed.Consequences.Inversion open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.NeTypeEq open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.PiNorm open import Definition.Typed.Consequences.Substitution open import Tools.Product open import Tools.Empty open import Tools.Sum using (_⊎_; inj₁; inj₂) import Tools.PropositionalEquality as PE ℕ-relevant-term : ∀ {Γ A r} → Γ ⊢ ℕ ∷ A ^ r → Whnf A → A PE.≡ Univ ! ⁰ ℕ-relevant-term [ℕ] whnfA = let [[N]] , e = inversion-ℕ [ℕ] in U≡A-whnf (sym (PE.subst (λ r → _ ⊢ _ ≡ _ ^ r) e [[N]])) whnfA ℕ-relevant : ∀ {Γ r} → Γ ⊢ ℕ ^ r → r PE.≡ [ ! , ι ⁰ ] ℕ-relevant (univ [ℕ]) = let er , el = Univ-PE-injectivity (ℕ-relevant-term [ℕ] Uₙ) in PE.cong₂ (λ x y → [ x , ι y ]) er el Empty-irrelevant-term : ∀ {Γ A lEmpty r} → Γ ⊢ Empty lEmpty ∷ A ^ r → Whnf A → A PE.≡ SProp lEmpty Empty-irrelevant-term [Empty] whnfA = let [[Empty]] , e = inversion-Empty [Empty] in U≡A-whnf (sym (PE.subst (λ r → _ ⊢ _ ≡ _ ^ r) e [[Empty]])) whnfA Empty-irrelevant : ∀ {Γ lEmpty r} → Γ ⊢ Empty lEmpty ^ r → r PE.≡ [ % , ι lEmpty ] Empty-irrelevant (univ [Empty]) = let er , el = Univ-PE-injectivity (Empty-irrelevant-term [Empty] Uₙ) in PE.cong₂ (λ x y → [ x , ι y ]) er el Univ-relevant-term : ∀ {Γ A rU lU r} → Γ ⊢ Univ rU lU ∷ A ^ r → Whnf A → A PE.≡ U ¹ × lU PE.≡ ⁰ Univ-relevant-term [U] whnfA = U≡A-whnf (sym (proj₁ (inversion-U [U]))) whnfA , proj₂ (proj₂ (inversion-U [U])) Univ-relevant : ∀ {Γ rU lU r} → Γ ⊢ Univ rU lU ^ r → r PE.≡ [ ! , next lU ] Univ-relevant (Uⱼ _) = PE.refl Univ-relevant (univ [U]) = let er , el = Univ-PE-injectivity (proj₁ (Univ-relevant-term [U] Uₙ)) in PE.cong₂ (λ x y → [ x , y ]) er (PE.trans (PE.cong ι el) (PE.cong next (PE.sym (proj₂ (Univ-relevant-term [U] Uₙ))))) mutual Univ-uniq′ : ∀ {Γ A T₁ T₂ r₁ r₂ l₁ l₁' l₂ l₂'} → Γ ⊢ T₁ ≡ Univ r₁ l₁ ^ [ ! , l₁' ] → Γ ⊢ T₂ ≡ Univ r₂ l₂ ^ [ ! , l₂' ] → next l₁ PE.≡ l₁' → next l₂ PE.≡ l₂' → ΠNorm A → Γ ⊢ A ∷ T₁ ^ [ ! , l₁' ] → Γ ⊢ A ∷ T₂ ^ [ ! , l₂' ] → r₁ PE.≡ r₂ × l₁' PE.≡ l₂' Univ-uniq′ e₁ e₂ el₁ el₂ w (univ 0<1 x₁) (univ 0<1 x₃) = let er₁ , _ = Uinjectivity e₁ er₂ , _ = Uinjectivity e₂ in PE.trans (PE.sym er₁) er₂ , PE.refl Univ-uniq′ e₁ e₂ el₁ PE.refl w (ℕⱼ x) y = let e₁′ , el₁′ = Uinjectivity e₁ e₂′ , el₂′ = Uinjectivity (trans (sym e₂) (proj₁ (inversion-ℕ y)) ) in PE.sym (PE.trans e₂′ e₁′) , PE.cong next (PE.sym el₂′) Univ-uniq′ e₁ e₂ el₁ el₂ w (Emptyⱼ x) y = let e₁′ , el₁′ = Uinjectivity e₁ e₂′ , el₂′ = Uinjectivity (trans (sym e₂) (proj₁ (inversion-Empty y)) ) in PE.sym (PE.trans e₂′ e₁′) , PE.trans (PE.cong next (PE.sym el₂′)) el₂ Univ-uniq′ e₁ e₂ el₁ el₂ w (Πⱼ a ▹ b ▹ x ▹ x₁) (Πⱼ a' ▹ b' ▹ y ▹ y₁) = let er₁ , _ = Uinjectivity e₁ er₂ , _ = Uinjectivity e₂ res = Univ-uniq′ (refl (Ugenⱼ (wfTerm x₁))) (refl (Ugenⱼ (wfTerm x₁))) PE.refl PE.refl (ΠNorm-Π w) x₁ y₁ in PE.trans (PE.sym er₁) (PE.trans (proj₁ res) er₂) , PE.refl Univ-uniq′ e₁ e₂ el₁ el₂ (∃ₙ w) (∃ⱼ x ▹ x₁) (∃ⱼ y ▹ y₁) = let er₁ , _ = Uinjectivity e₁ er₂ , _ = Uinjectivity e₂ _ , el = Univ-uniq w x y in PE.trans (PE.sym er₁) er₂ , PE.cong next el Univ-uniq′ e₁ e₂ el₁ el₂ w (var _ x) (var _ y) = let T≡T , e = varTypeEq′ x y _ , el = typelevel-injectivity e ⊢T≡T = PE.subst (λ T → _ ⊢ _ ≡ T ^ _) T≡T (refl (proj₁ (syntacticEq e₁))) in proj₁ (Uinjectivity (trans (trans (sym e₁) ⊢T≡T) (PE.subst (λ lx → _ ⊢ _ ≡ _ ^ [ _ , lx ]) (PE.sym el) e₂))) , el Univ-uniq′ e₁ e₂ el₁ el₂ (ne ()) (lamⱼ x x₁ x₂ X) y Univ-uniq′ e₁ e₂ el₁ el₂ (ne (∘ₙ n)) (_∘ⱼ_ {G = G} x x₁) (_∘ⱼ_ {G = G₁} y y₁) = let F≡F , rF≡rF , lF≡lF , lG≡lG , G≡G = injectivity (proj₂ (neTypeEq n x y)) r≡r , _ = Uinjectivity (trans (sym e₁) (trans (substitutionEq G≡G (substRefl (singleSubst x₁)) (wfEq F≡F)) (PE.subst (λ lx → _ ⊢ _ ≡ _ ^ [ _ , ι lx ]) (PE.sym lG≡lG) e₂))) in r≡r , PE.cong ι lG≡lG Univ-uniq′ e₁ e₂ el₁ el₂ (ne ()) (zeroⱼ x) y Univ-uniq′ e₁ e₂ el₁ el₂ (ne ()) (sucⱼ X) y Univ-uniq′ e₁ e₂ el₁ el₂ w (natrecⱼ x x₁ x₂ x₃) (natrecⱼ x₄ y y₁ y₂) = proj₁ (Uinjectivity (trans (sym e₁) e₂)) , PE.refl Univ-uniq′ e₁ e₂ el₁ el₂ w (Emptyrecⱼ x x₁) (Emptyrecⱼ y y₁) = proj₁ (Uinjectivity (trans (sym e₁) e₂)) , PE.refl Univ-uniq′ e₁ e₂ el₁ el₂ (ne (Idₙ x)) (Idⱼ X X₁ X₂) (Idⱼ {l = ll} Y Y₁ Y₂) = let _ , el = Univ-uniq (ne x) X Y er₁ , _ = Uinjectivity e₁ er₂ , _ = Uinjectivity e₂ in PE.trans (PE.sym er₁) er₂ , PE.cong next el Univ-uniq′ e₁ e₂ el₁ el₂ (ne (Idℕₙ x)) (Idⱼ X X₁ X₂) (Idⱼ {l = ll} Y Y₁ Y₂) = let _ , el = Univ-uniq ℕₙ X Y er₁ , _ = Uinjectivity e₁ er₂ , _ = Uinjectivity e₂ in PE.trans (PE.sym er₁) er₂ , PE.cong next el Univ-uniq′ e₁ e₂ el₁ el₂ (ne (Idℕ0ₙ x)) (Idⱼ X X₁ X₂) (Idⱼ {l = ll} Y Y₁ Y₂) = let _ , el = Univ-uniq ℕₙ X Y er₁ , _ = Uinjectivity e₁ er₂ , _ = Uinjectivity e₂ in PE.trans (PE.sym er₁) er₂ , PE.cong next el Univ-uniq′ e₁ e₂ el₁ el₂ (ne (IdℕSₙ x)) (Idⱼ X X₁ X₂) (Idⱼ {l = ll} Y Y₁ Y₂) = let _ , el = Univ-uniq ℕₙ X Y er₁ , _ = Uinjectivity e₁ er₂ , _ = Uinjectivity e₂ in PE.trans (PE.sym er₁) er₂ , PE.cong next el Univ-uniq′ e₁ e₂ el₁ el₂ (ne (IdUₙ x)) (Idⱼ X X₁ X₂) (Idⱼ {l = ll} Y Y₁ Y₂) = let _ , el = Univ-uniq Uₙ X Y er₁ , _ = Uinjectivity e₁ er₂ , _ = Uinjectivity e₂ in PE.trans (PE.sym er₁) er₂ , PE.cong next el Univ-uniq′ e₁ e₂ el₁ el₂ (ne (IdUℕₙ x)) (Idⱼ X X₁ X₂) (Idⱼ {l = ll} Y Y₁ Y₂) = let _ , el = Univ-uniq Uₙ X Y er₁ , _ = Uinjectivity e₁ er₂ , _ = Uinjectivity e₂ in PE.trans (PE.sym er₁) er₂ , PE.cong next el Univ-uniq′ e₁ e₂ el₁ el₂ (ne (IdUΠₙ x)) (Idⱼ X X₁ X₂) (Idⱼ {l = ll} Y Y₁ Y₂) = let _ , el = Univ-uniq Uₙ X Y er₁ , _ = Uinjectivity e₁ er₂ , _ = Uinjectivity e₂ in PE.trans (PE.sym er₁) er₂ , PE.cong next el Univ-uniq′ e₁ e₂ el₁ el₂ w (castⱼ X X₁ X₂ X₃) (castⱼ y y₁ y₂ y₃) = proj₁ (Uinjectivity (trans (sym e₁) e₂)) , PE.refl Univ-uniq′ e₁ e₂ el₁ el₂ w (conv x x₁) y = Univ-uniq′ (trans x₁ e₁) e₂ el₁ el₂ w x y Univ-uniq′ e₁ e₂ el₁ el₂ w x (conv y y₁) = Univ-uniq′ e₁ (trans y₁ e₂) el₁ el₂ w x y Univ-uniq : ∀ {Γ A r₁ r₂ l₁ l₂} → ΠNorm A → Γ ⊢ A ∷ Univ r₁ l₁ ^ [ ! , next l₁ ] → Γ ⊢ A ∷ Univ r₂ l₂ ^ [ ! , next l₂ ] → r₁ PE.≡ r₂ × l₁ PE.≡ l₂ Univ-uniq n ⊢A₁ ⊢A₂ = let ⊢Γ = wfTerm ⊢A₁ er , el = Univ-uniq′ (refl (Ugenⱼ ⊢Γ)) (refl (Ugenⱼ ⊢Γ)) PE.refl PE.refl n ⊢A₁ ⊢A₂ in er , next-inj el relevance-unicity′ : ∀ {Γ A r₁ r₂ l₁ l₂} → ΠNorm A → Γ ⊢ A ^ [ r₁ , l₁ ] → Γ ⊢ A ^ [ r₂ , l₂ ] → r₁ PE.≡ r₂ × l₁ PE.≡ l₂ relevance-unicity′ n (Uⱼ x) (Uⱼ x₁) = PE.refl , PE.refl relevance-unicity′ n (Uⱼ x) (univ x₁) = let _ , _ , ¹≡⁰ = inversion-U x₁ in ⊥-elim (⁰≢¹ (PE.sym ¹≡⁰)) relevance-unicity′ n (univ x) (Uⱼ x₁) = let _ , _ , ¹≡⁰ = inversion-U x in ⊥-elim (⁰≢¹ (PE.sym ¹≡⁰)) relevance-unicity′ n (univ x) (univ x₁) = let er , el = Univ-uniq n x x₁ in er , PE.cong ι el relevance-unicity : ∀ {Γ A r₁ r₂ l₁ l₂} → Γ ⊢ A ^ [ r₁ , l₁ ] → Γ ⊢ A ^ [ r₂ , l₂ ] → r₁ PE.≡ r₂ × l₁ PE.≡ l₂ relevance-unicity ⊢A₁ ⊢A₂ with doΠNorm ⊢A₁ ... | _ with doΠNorm ⊢A₂ relevance-unicity ⊢A₁ ⊢A₂ | B , nB , ⊢B , rB | C , nC , ⊢C , rC = let e = detΠNorm* nB nC rB rC in relevance-unicity′ nC (PE.subst _ e ⊢B) ⊢C -- inequalities at any relevance U≢ℕ : ∀ {r r′ l l′ Γ} → Γ ⊢ Univ r l ≡ ℕ ^ [ r′ , l′ ] → ⊥ U≢ℕ U≡ℕ = Ineq.U≢ℕ! (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ [ rx , _ ]) (proj₁ (relevance-unicity (proj₂ (syntacticEq U≡ℕ)) (univ (ℕⱼ (wfEq U≡ℕ))))) U≡ℕ) U≢Π : ∀ {rU lU F rF G lF lG lΠ r Γ} → Γ ⊢ Univ rU lU ≡ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ r , ι lΠ ] → ⊥ U≢Π U≡Π = let r≡! , _ = relevance-unicity (proj₁ (syntacticEq U≡Π)) (Ugenⱼ (wfEq U≡Π)) in Ineq.U≢Π! (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ [ rx , _ ]) r≡! U≡Π) U≢ne : ∀ {rU lU r l K Γ} → Neutral K → Γ ⊢ Univ rU lU ≡ K ^ [ r , ι l ] → ⊥ U≢ne neK U≡K = let r≡! , _ = relevance-unicity (proj₁ (syntacticEq U≡K)) (Ugenⱼ (wfEq U≡K)) in Ineq.U≢ne! neK (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ [ rx , _ ]) r≡! U≡K) ℕ≢Π : ∀ {F rF G lF lG r Γ} → Γ ⊢ ℕ ≡ Π F ^ rF ° lF ▹ G ° lG ° ⁰ ^ [ r , ι ⁰ ] → ⊥ ℕ≢Π ℕ≡Π = let r≡! , _ = relevance-unicity (proj₁ (syntacticEq ℕ≡Π)) (univ (ℕⱼ (wfEq ℕ≡Π))) in Ineq.ℕ≢Π! (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ [ rx , _ ]) r≡! ℕ≡Π) Empty≢Π : ∀ {F rF G lF lG lΠ r Γ} → Γ ⊢ Empty lΠ ≡ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ r , ι lΠ ] → ⊥ Empty≢Π Empty≡Π = let r≡% , _ = relevance-unicity (proj₁ (syntacticEq Empty≡Π)) (univ (Emptyⱼ (wfEq Empty≡Π))) in Ineq.Empty≢Π% (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ [ rx , _ ]) r≡% Empty≡Π) ℕ≢ne : ∀ {K r Γ} → Neutral K → Γ ⊢ ℕ ≡ K ^ [ r , ι ⁰ ] → ⊥ ℕ≢ne neK ℕ≡K = let r≡! , _ = relevance-unicity (proj₁ (syntacticEq ℕ≡K)) (univ (ℕⱼ (wfEq ℕ≡K))) in Ineq.ℕ≢ne! neK (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ [ rx , _ ]) r≡! ℕ≡K) Empty≢ne : ∀ {K r l Γ} → Neutral K → Γ ⊢ Empty l ≡ K ^ [ r , ι l ] → ⊥ Empty≢ne neK Empty≡K = let r≡% , _ = relevance-unicity (proj₁ (syntacticEq Empty≡K)) (univ (Emptyⱼ (wfEq Empty≡K))) in Ineq.Empty≢ne% neK (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ [ rx , _ ]) r≡% Empty≡K) -- U != Empty is given easily by relevances U≢Empty : ∀ {Γ rU lU lEmpty r′} → Γ ⊢ Univ rU lU ≡ Empty lEmpty ^ r′ → ⊥ U≢Empty U≡Empty = let ⊢U , ⊢Empty = syntacticEq U≡Empty e₁ , _ = relevance-unicity ⊢U (Ugenⱼ (wfEq U≡Empty)) e₂ , _ = relevance-unicity ⊢Empty (univ (Emptyⱼ (wfEq U≡Empty))) in !≢% (PE.trans (PE.sym e₁) e₂) -- ℕ and Empty also by relevance ℕ≢Empty : ∀ {Γ r l} → Γ ⊢ ℕ ≡ Empty l ^ r → ⊥ ℕ≢Empty ℕ≡Empty = let ⊢ℕ , ⊢Empty = syntacticEq ℕ≡Empty e₁ , _ = relevance-unicity ⊢ℕ (univ (ℕⱼ (wfEq ℕ≡Empty))) e₂ , _ = relevance-unicity ⊢Empty (univ (Emptyⱼ (wfEq ℕ≡Empty))) in !≢% (PE.trans (PE.sym e₁) e₂)
{ "alphanum_fraction": 0.5527198212, "avg_line_length": 52.3707317073, "ext": "agda", "hexsha": "7d635e4e25411c610c5cc3871d1c7ecaee1c5dd8", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/RelevanceUnicity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/RelevanceUnicity.agda", "max_line_length": 125, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/RelevanceUnicity.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 4978, "size": 10736 }
------------------------------------------------------------------------ -- Breadth-first labelling of trees ------------------------------------------------------------------------ -- This module just defines breadth-first labelling. For a full -- development including a specification and proof, see BreadthFirst. module BreadthFirstWithoutProof where open import Codata.Musical.Notation open import Codata.Musical.Stream open import Data.Product open import Tree using (Tree; leaf; node) ------------------------------------------------------------------------ -- Universe data U : Set₁ where tree : (a : U) → U stream : (a : U) → U _⊗_ : (a b : U) → U ⌈_⌉ : (A : Set) → U El : U → Set El (tree a) = Tree (El a) El (stream a) = Stream (El a) El (a ⊗ b) = El a × El b El ⌈ A ⌉ = A ------------------------------------------------------------------------ -- Programs infixr 5 _∷_ infixr 4 _,_ mutual data ElP : U → Set₁ where ↓ : ∀ {a} (w : ElW a) → ElP a fst : ∀ {a b} (p : ElP (a ⊗ b)) → ElP a snd : ∀ {a b} (p : ElP (a ⊗ b)) → ElP b lab : ∀ {A B} (t : Tree A) (bss : ElP (stream ⌈ Stream B ⌉)) → ElP (tree ⌈ B ⌉ ⊗ stream ⌈ Stream B ⌉) -- The term WHNF is a bit of a misnomer here; only recursive -- /coinductive/ arguments are suspended (in the form of programs). data ElW : U → Set₁ where leaf : ∀ {a} → ElW (tree a) node : ∀ {a} (l : ∞ (ElP (tree a))) (x : ElW a) (r : ∞ (ElP (tree a))) → ElW (tree a) _∷_ : ∀ {a} (x : ElW a) (xs : ∞ (ElP (stream a))) → ElW (stream a) _,_ : ∀ {a b} (x : ElW a) (y : ElW b) → ElW (a ⊗ b) ⌈_⌉ : ∀ {A} (x : A) → ElW ⌈ A ⌉ fstW : ∀ {a b} → ElW (a ⊗ b) → ElW a fstW (x , y) = x sndW : ∀ {a b} → ElW (a ⊗ b) → ElW b sndW (x , y) = y -- Uses the n-th stream to label the n-th level in the tree. Returns -- the remaining stream elements (for every level). labW : ∀ {A B} → Tree A → ElW (stream ⌈ Stream B ⌉) → ElW (tree ⌈ B ⌉ ⊗ stream ⌈ Stream B ⌉) labW leaf bss = (leaf , bss) labW (node l _ r) (⌈ b ∷ bs ⌉ ∷ bss) = (node (♯ fst x) ⌈ b ⌉ (♯ fst y) , ⌈ ♭ bs ⌉ ∷ ♯ snd y) where x = lab (♭ l) (♭ bss) y = lab (♭ r) (snd x) whnf : ∀ {a} → ElP a → ElW a whnf (↓ w) = w whnf (fst p) = fstW (whnf p) whnf (snd p) = sndW (whnf p) whnf (lab t bss) = labW t (whnf bss) mutual ⟦_⟧W : ∀ {a} → ElW a → El a ⟦ leaf ⟧W = leaf ⟦ node l x r ⟧W = node (♯ ⟦ ♭ l ⟧P) ⟦ x ⟧W (♯ ⟦ ♭ r ⟧P) ⟦ x ∷ xs ⟧W = ⟦ x ⟧W ∷ ♯ ⟦ ♭ xs ⟧P ⟦ (x , y) ⟧W = (⟦ x ⟧W , ⟦ y ⟧W) ⟦ ⌈ x ⌉ ⟧W = x ⟦_⟧P : ∀ {a} → ElP a → El a ⟦ p ⟧P = ⟦ whnf p ⟧W ------------------------------------------------------------------------ -- Breadth-first labelling label′ : ∀ {A B} → Tree A → Stream B → ElP (tree ⌈ B ⌉ ⊗ stream ⌈ Stream B ⌉) label′ t bs = lab t (↓ (⌈ bs ⌉ ∷ ♯ snd (label′ t bs))) label : ∀ {A B} → Tree A → Stream B → Tree B label t bs = ⟦ fst (label′ t bs) ⟧P
{ "alphanum_fraction": 0.432705249, "avg_line_length": 28.854368932, "ext": "agda", "hexsha": "f683d55ad84eb1710511e4c9232cfc1fe570b739", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "BreadthFirstWithoutProof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "BreadthFirstWithoutProof.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "BreadthFirstWithoutProof.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1204, "size": 2972 }
module System.IO.Transducers.Properties where open import System.IO.Transducers.Properties.Category public open import System.IO.Transducers.Properties.Monoidal public open import System.IO.Transducers.Properties.LaxBraided public open import System.IO.Transducers.Properties.Equivalences public
{ "alphanum_fraction": 0.8686868687, "avg_line_length": 42.4285714286, "ext": "agda", "hexsha": "4ece15dd542a35910489b56ca5e4b27d817a0030", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Transducers/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Transducers/Properties.agda", "max_line_length": 64, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Transducers/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 56, "size": 297 }
{-# OPTIONS --without-K --rewriting #-} module lib.types.EilenbergMacLane1 where open import lib.types.EilenbergMacLane1.Core public open import lib.types.EilenbergMacLane1.Recursion public open import lib.types.EilenbergMacLane1.DoubleElim public open import lib.types.EilenbergMacLane1.DoublePathElim public open import lib.types.EilenbergMacLane1.FunElim public open import lib.types.EilenbergMacLane1.PathElim public
{ "alphanum_fraction": 0.8463356974, "avg_line_length": 38.4545454545, "ext": "agda", "hexsha": "779f28da11e9ac1a5c6f631405657cde19fda41a", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/EilenbergMacLane1.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/EilenbergMacLane1.agda", "max_line_length": 61, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/EilenbergMacLane1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 105, "size": 423 }
{-# OPTIONS --without-K #-} module sets.list.core where open import sum import sets.vec.core as V open import sets.nat.core List : ∀ {i} → Set i → Set i List A = Σ ℕ (V.Vec A) module _ {i}{A : Set i} where vec-to-list : ∀ {n} → V.Vec A n → List A vec-to-list {n} xs = n , xs [] : List A [] = 0 , V.[] infixr 4 _∷_ _∷_ : A → List A → List A x ∷ (n , xs) = suc n , x V.∷ xs
{ "alphanum_fraction": 0.5421994885, "avg_line_length": 18.619047619, "ext": "agda", "hexsha": "fe39b2fa5b396e7defec9bd4345fd5f38b2909c4", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/list/core.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/list/core.agda", "max_line_length": 42, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/list/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 158, "size": 391 }
-- Andreas, 2013-04-06 -- Interaction point buried in postponed type checking problem module Issue1083 where data Bool : Set where true false : Bool T : Bool → Set T true = Bool → Bool T false = Bool postulate f : {x : Bool} → T x test : (x : Bool) → T x test true = f {!!} test false = {!!} -- Constraints show: _10 := (_ : T _x_9) ? : Bool -- So there is a question mark which has never been seen by the type checker. -- It is buried in a postponed type-checking problem. -- Interaction points should probably be created by the scope checker, -- and then hooked up to meta variables by the type checker. -- This is how it works now.
{ "alphanum_fraction": 0.6857585139, "avg_line_length": 23.9259259259, "ext": "agda", "hexsha": "187dd8a19dd8a274457a5e1198e4efa77ba4939d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/interaction/Issue1083.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/interaction/Issue1083.agda", "max_line_length": 77, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/interaction/Issue1083.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 174, "size": 646 }
-- Andreas, 2020-05-16, issue #4649 -- Allow --safe flag in -I mode {-# OPTIONS --safe #-} data Unit : Set where unit : Unit test : Unit test = {!!}
{ "alphanum_fraction": 0.5909090909, "avg_line_length": 14, "ext": "agda", "hexsha": "0ffec86606969eb91955fb2e7b3fb06738f77072", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Interactive/Issue1430.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Interactive/Issue1430.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Interactive/Issue1430.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 50, "size": 154 }
data N : Set = zero | suc (n:N) data B : Set = true | false data False : Set = data True : Set = tt F : B -> Set F true = N F false = B G : (x:B) -> F x -> Set G false _ = N G true zero = B G true (suc n) = N (==) : B -> B -> Set true == true = True false == false = True _ == _ = False data Equal (x,y:B) : Set where equal : x == y -> Equal x y refl : (x:B) -> Equal x x refl true = equal tt refl false = equal tt postulate f : (x:B) -> (y : F x) -> G x y -> N -- Equal x true -> N h : N h = f _ false zero --(refl true)
{ "alphanum_fraction": 0.5146520147, "avg_line_length": 15.6, "ext": "agda", "hexsha": "e69f5dc2de7d420cbf8c3aa320489fb64515851c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "notes/papers/implicit/examples/Dangerous-Agda1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "notes/papers/implicit/examples/Dangerous-Agda1.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "notes/papers/implicit/examples/Dangerous-Agda1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 210, "size": 546 }
open import Oscar.Prelude module Oscar.Data.Constraint where data Constraint {𝔞} {𝔄 : Ø 𝔞} (𝒶 : 𝔄) : Ø₀ where instance ∅ : Constraint 𝒶
{ "alphanum_fraction": 0.695035461, "avg_line_length": 17.625, "ext": "agda", "hexsha": "98d5e453f3e7a0ddb36e142794c4737457b3755d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Constraint.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Constraint.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Constraint.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 52, "size": 141 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Reverse view ------------------------------------------------------------------------ module Data.List.Reverse where open import Data.List open import Data.Nat import Data.Nat.Properties as Nat open import Induction.Nat open import Relation.Binary.PropositionalEquality -- If you want to traverse a list from the end, then you can use the -- reverse view of it. infixl 5 _∶_∶ʳ_ data Reverse {A : Set} : List A → Set where [] : Reverse [] _∶_∶ʳ_ : ∀ xs (rs : Reverse xs) (x : A) → Reverse (xs ∷ʳ x) reverseView : ∀ {A} (xs : List A) → Reverse xs reverseView {A} xs = <-rec Pred rev (length xs) xs refl where Pred : ℕ → Set Pred n = (xs : List A) → length xs ≡ n → Reverse xs lem : ∀ xs {x : A} → length xs <′ length (xs ∷ʳ x) lem [] = ≤′-refl lem (x ∷ xs) = Nat.s≤′s (lem xs) rev : (n : ℕ) → <-Rec Pred n → Pred n rev n rec xs eq with initLast xs rev n rec .[] eq | [] = [] rev .(length (xs ∷ʳ x)) rec .(xs ∷ʳ x) refl | xs ∷ʳ' x with rec (length xs) (lem xs) xs refl rev ._ rec .([] ∷ʳ x) refl | ._ ∷ʳ' x | [] = _ ∶ [] ∶ʳ x rev ._ rec .(ys ∷ʳ y ∷ʳ x) refl | ._ ∷ʳ' x | ys ∶ rs ∶ʳ y = _ ∶ (_ ∶ rs ∶ʳ y) ∶ʳ x
{ "alphanum_fraction": 0.4842578711, "avg_line_length": 31.7619047619, "ext": "agda", "hexsha": "1977ce11f672caeb90809a2d215417dee9b2af6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/List/Reverse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/List/Reverse.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/List/Reverse.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 454, "size": 1334 }
-- Andreas, 2013-02-21 issue seems to have been fixed along with issue 796 -- {-# OPTIONS -v tc.decl:10 #-} module Issue4 where open import Common.Equality abstract abstract -- a second abstract seems to have no effect T : Set -> Set T A = A see-through : ∀ {A} → T A ≡ A see-through = refl data Ok (A : Set) : Set where ok : T (Ok A) → Ok A opaque : ∀ {A} → T A ≡ A opaque = see-through data Bad (A : Set) : Set where bad : T (Bad A) -> Bad A
{ "alphanum_fraction": 0.6033755274, "avg_line_length": 18.96, "ext": "agda", "hexsha": "b4326e6972533b70aebe0f2633e11b1b58dfd192", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue4.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/Issue4.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 158, "size": 474 }
-- It is recommended to use Cubical.Algebra.CommRing.Instances.Int -- instead of this file. {-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Instances.DiffInt where open import Cubical.Foundations.Prelude open import Cubical.HITs.SetQuotients open import Cubical.Algebra.AbGroup.Base open import Cubical.Data.Int.MoreInts.DiffInt renaming ( _+_ to _+ℤ_ ) DiffℤasAbGroup : AbGroup ℓ-zero DiffℤasAbGroup = makeAbGroup {G = ℤ} [ (0 , 0) ] _+ℤ_ -ℤ_ ℤ-isSet +ℤ-assoc (λ x → zero-identityʳ 0 x) (λ x → -ℤ-invʳ x) +ℤ-comm
{ "alphanum_fraction": 0.5091623037, "avg_line_length": 29.3846153846, "ext": "agda", "hexsha": "60979c9121a23e05e91a3e416d2d299a99a11751", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup/Instances/DiffInt.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup/Instances/DiffInt.agda", "max_line_length": 66, "max_stars_count": 301, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup/Instances/DiffInt.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 193, "size": 764 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Lambda {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening as T hiding (wk; wkTerm; wkEqTerm) open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Weakening open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Tools.Product import Tools.PropositionalEquality as PE -- Valid lambda term construction. lamᵛ : ∀ {F G t Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / ([Γ] ∙″ [F])) ([t] : Γ ∙ F ⊩ᵛ⟨ l ⟩ t ∷ G / [Γ] ∙″ [F] / [G]) → Γ ⊩ᵛ⟨ l ⟩ lam t ∷ Π F ▹ G / [Γ] / Πᵛ {F} {G} [Γ] [F] [G] lamᵛ {F} {G} {t} {Γ} {l} [Γ] [F] [G] [t] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] [ΠFG] = Πᵛ {F} {G} [Γ] [F] [G] Πᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext = extractMaybeEmbΠ (Π-elim (proj₁ ([ΠFG] ⊢Δ [σ]))) lamt : ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩⟨ l ⟩ subst σ (lam t) ∷ subst σ (Π F ▹ G) / proj₁ ([ΠFG] ⊢Δ [σ]) lamt {Δ} {σ} ⊢Δ [σ] = let [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] [σF] = proj₁ ([F] ⊢Δ [σ]) ⊢F = escape [σF] ⊢wk1F = T.wk (step id) (⊢Δ ∙ ⊢F) ⊢F [σG] = proj₁ ([G] (⊢Δ ∙ ⊢F) [liftσ]) ⊢G = escape [σG] [σt] = proj₁ ([t] (⊢Δ ∙ ⊢F) [liftσ]) ⊢t = escapeTerm [σG] [σt] wk1t[0] = irrelevanceTerm″ PE.refl (PE.sym (wkSingleSubstId (subst (liftSubst σ) t))) [σG] [σG] [σt] β-red′ = PE.subst (λ x → _ ⊢ _ ⇒ _ ∷ x) (wkSingleSubstId (subst (liftSubst σ) G)) (β-red ⊢wk1F (T.wkTerm (lift (step id)) (⊢Δ ∙ ⊢F ∙ ⊢wk1F) ⊢t) (var (⊢Δ ∙ ⊢F) here)) Πᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext = extractMaybeEmbΠ (Π-elim (proj₁ ([ΠFG] ⊢Δ [σ]))) in Πₜ (lam (subst (liftSubst σ) t)) (idRedTerm:*: (lamⱼ ⊢F ⊢t)) lamₙ (≅-η-eq ⊢F (lamⱼ ⊢F ⊢t) (lamⱼ ⊢F ⊢t) lamₙ lamₙ (escapeTermEq [σG] (reflEqTerm [σG] (proj₁ (redSubstTerm β-red′ [σG] wk1t[0]))))) (λ {_} {Δ₁} {a} {b} ρ ⊢Δ₁ [a] [b] [a≡b] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ] [a]′ = irrelevanceTerm′ (wk-subst F) ([F]′ ρ ⊢Δ₁) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a] [b]′ = irrelevanceTerm′ (wk-subst F) ([F]′ ρ ⊢Δ₁) (proj₁ ([F] ⊢Δ₁ [ρσ])) [b] [a≡b]′ = irrelevanceEqTerm′ (wk-subst F) ([F]′ ρ ⊢Δ₁) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a≡b] ⊢F₁′ = escape (proj₁ ([F] ⊢Δ₁ [ρσ])) ⊢F₁ = escape ([F]′ ρ ⊢Δ₁) [G]₁ = proj₁ ([G] (⊢Δ₁ ∙ ⊢F₁′) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ])) [G]₁′ = irrelevanceΓ′ (PE.cong (λ x → _ ∙ x) (PE.sym (wk-subst F))) (PE.sym (wk-subst-lift G)) [G]₁ [t]′ = irrelevanceTermΓ″ (PE.cong (λ x → _ ∙ x) (PE.sym (wk-subst F))) (PE.sym (wk-subst-lift G)) (PE.sym (wk-subst-lift t)) [G]₁ [G]₁′ (proj₁ ([t] (⊢Δ₁ ∙ ⊢F₁′) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ]))) ⊢a = escapeTerm ([F]′ ρ ⊢Δ₁) [a] ⊢b = escapeTerm ([F]′ ρ ⊢Δ₁) [b] ⊢t = escapeTerm [G]₁′ [t]′ G[a]′ = proj₁ ([G] ⊢Δ₁ ([ρσ] , [a]′)) G[a] = [G]′ ρ ⊢Δ₁ [a] t[a] = irrelevanceTerm″ (PE.sym (singleSubstWkComp a σ G)) (PE.sym (singleSubstWkComp a σ t)) G[a]′ G[a] (proj₁ ([t] ⊢Δ₁ ([ρσ] , [a]′))) G[b]′ = proj₁ ([G] ⊢Δ₁ ([ρσ] , [b]′)) G[b] = [G]′ ρ ⊢Δ₁ [b] t[b] = irrelevanceTerm″ (PE.sym (singleSubstWkComp b σ G)) (PE.sym (singleSubstWkComp b σ t)) G[b]′ G[b] (proj₁ ([t] ⊢Δ₁ ([ρσ] , [b]′))) lamt∘a≡t[a] = proj₂ (redSubstTerm (β-red ⊢F₁ ⊢t ⊢a) G[a] t[a]) G[a]≡G[b] = G-ext ρ ⊢Δ₁ [a] [b] [a≡b] t[a]≡t[b] = irrelevanceEqTerm″ (PE.sym (singleSubstWkComp a σ t)) (PE.sym (singleSubstWkComp b σ t)) (PE.sym (singleSubstWkComp a σ G)) G[a]′ G[a] (proj₂ ([t] ⊢Δ₁ ([ρσ] , [a]′)) ([ρσ] , [b]′) (reflSubst [Γ] ⊢Δ₁ [ρσ] , [a≡b]′)) t[b]≡lamt∘b = convEqTerm₂ G[a] G[b] G[a]≡G[b] (symEqTerm G[b] (proj₂ (redSubstTerm (β-red ⊢F₁ ⊢t ⊢b) G[b] t[b]))) in transEqTerm G[a] lamt∘a≡t[a] (transEqTerm G[a] t[a]≡t[b] t[b]≡lamt∘b)) (λ {_} {Δ₁} {a} ρ ⊢Δ₁ [a] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ] [a]′ = irrelevanceTerm′ (wk-subst F) ([F]′ ρ ⊢Δ₁) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a] ⊢F₁′ = escape (proj₁ ([F] ⊢Δ₁ [ρσ])) ⊢F₁ = escape ([F]′ ρ ⊢Δ₁) [G]₁ = proj₁ ([G] (⊢Δ₁ ∙ ⊢F₁′) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ])) [G]₁′ = irrelevanceΓ′ (PE.cong (λ x → _ ∙ x) (PE.sym (wk-subst F))) (PE.sym (wk-subst-lift G)) [G]₁ [t]′ = irrelevanceTermΓ″ (PE.cong (λ x → _ ∙ x) (PE.sym (wk-subst F))) (PE.sym (wk-subst-lift G)) (PE.sym (wk-subst-lift t)) [G]₁ [G]₁′ (proj₁ ([t] (⊢Δ₁ ∙ ⊢F₁′) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ]))) ⊢a = escapeTerm ([F]′ ρ ⊢Δ₁) [a] ⊢t = escapeTerm [G]₁′ [t]′ G[a]′ = proj₁ ([G] ⊢Δ₁ ([ρσ] , [a]′)) G[a] = [G]′ ρ ⊢Δ₁ [a] t[a] = irrelevanceTerm″ (PE.sym (singleSubstWkComp a σ G)) (PE.sym (singleSubstWkComp a σ t)) G[a]′ G[a] (proj₁ ([t] ⊢Δ₁ ([ρσ] , [a]′))) in proj₁ (redSubstTerm (β-red ⊢F₁ ⊢t ⊢a) G[a] t[a])) in lamt ⊢Δ [σ] , (λ {σ′} [σ′] [σ≡σ′] → let [liftσ′] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′] Πᵣ F″ G″ D″ ⊢F″ ⊢G″ A≡A″ [F]″ [G]″ G-ext′ = extractMaybeEmbΠ (Π-elim (proj₁ ([ΠFG] ⊢Δ [σ′]))) ⊢F′ = escape (proj₁ ([F] ⊢Δ [σ′])) [G]₁ = proj₁ ([G] (⊢Δ ∙ ⊢F) [liftσ]) [G]₁′ = proj₁ ([G] (⊢Δ ∙ ⊢F′) [liftσ′]) [σΠFG≡σ′ΠFG] = proj₂ ([ΠFG] ⊢Δ [σ]) [σ′] [σ≡σ′] ⊢t = escapeTerm [G]₁ (proj₁ ([t] (⊢Δ ∙ ⊢F) [liftσ])) ⊢t′ = escapeTerm [G]₁′ (proj₁ ([t] (⊢Δ ∙ ⊢F′) [liftσ′])) neuVar = neuTerm ([F]′ (step id) (⊢Δ ∙ ⊢F)) (var 0) (var (⊢Δ ∙ ⊢F) here) (~-var (var (⊢Δ ∙ ⊢F) here)) σlamt∘a≡σ′lamt∘a : ∀ {ρ Δ₁ a} → ([ρ] : ρ ∷ Δ₁ ⊆ Δ) (⊢Δ₁ : ⊢ Δ₁) → ([a] : Δ₁ ⊩⟨ l ⟩ a ∷ U.wk ρ (subst σ F) / [F]′ [ρ] ⊢Δ₁) → Δ₁ ⊩⟨ l ⟩ U.wk ρ (subst σ (lam t)) ∘ a ≡ U.wk ρ (subst σ′ (lam t)) ∘ a ∷ U.wk (lift ρ) (subst (liftSubst σ) G) [ a ] / [G]′ [ρ] ⊢Δ₁ [a] σlamt∘a≡σ′lamt∘a {_} {Δ₁} {a} ρ ⊢Δ₁ [a] = let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ] [ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ′] [ρσ≡ρσ′] = wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ ρ [σ] [σ≡σ′] ⊢F₁′ = escape (proj₁ ([F] ⊢Δ₁ [ρσ])) ⊢F₁ = escape ([F]′ ρ ⊢Δ₁) ⊢F₂′ = escape (proj₁ ([F] ⊢Δ₁ [ρσ′])) ⊢F₂ = escape ([F]″ ρ ⊢Δ₁) [σF≡σ′F] = proj₂ ([F] ⊢Δ₁ [ρσ]) [ρσ′] [ρσ≡ρσ′] [a]′ = irrelevanceTerm′ (wk-subst F) ([F]′ ρ ⊢Δ₁) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a] [a]″ = convTerm₁ (proj₁ ([F] ⊢Δ₁ [ρσ])) (proj₁ ([F] ⊢Δ₁ [ρσ′])) [σF≡σ′F] [a]′ ⊢a = escapeTerm ([F]′ ρ ⊢Δ₁) [a] ⊢a′ = escapeTerm ([F]″ ρ ⊢Δ₁) (irrelevanceTerm′ (PE.sym (wk-subst F)) (proj₁ ([F] ⊢Δ₁ [ρσ′])) ([F]″ ρ ⊢Δ₁) [a]″) G[a]′ = proj₁ ([G] ⊢Δ₁ ([ρσ] , [a]′)) G[a]₁′ = proj₁ ([G] ⊢Δ₁ ([ρσ′] , [a]″)) G[a] = [G]′ ρ ⊢Δ₁ [a] G[a]″ = [G]″ ρ ⊢Δ₁ (irrelevanceTerm′ (PE.sym (wk-subst F)) (proj₁ ([F] ⊢Δ₁ [ρσ′])) ([F]″ ρ ⊢Δ₁) [a]″) [σG[a]≡σ′G[a]] = irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G)) (PE.sym (singleSubstWkComp a σ′ G)) G[a]′ G[a] (proj₂ ([G] ⊢Δ₁ ([ρσ] , [a]′)) ([ρσ′] , [a]″) (consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₁ [ρσ] [ρσ≡ρσ′] [F] [a]′)) [G]₁ = proj₁ ([G] (⊢Δ₁ ∙ ⊢F₁′) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ])) [G]₁′ = irrelevanceΓ′ (PE.cong (λ x → _ ∙ x) (PE.sym (wk-subst F))) (PE.sym (wk-subst-lift G)) [G]₁ [G]₂ = proj₁ ([G] (⊢Δ₁ ∙ ⊢F₂′) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ′])) [G]₂′ = irrelevanceΓ′ (PE.cong (λ x → _ ∙ x) (PE.sym (wk-subst F))) (PE.sym (wk-subst-lift G)) [G]₂ [t]′ = irrelevanceTermΓ″ (PE.cong (λ x → _ ∙ x) (PE.sym (wk-subst F))) (PE.sym (wk-subst-lift G)) (PE.sym (wk-subst-lift t)) [G]₁ [G]₁′ (proj₁ ([t] (⊢Δ₁ ∙ ⊢F₁′) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ]))) [t]″ = irrelevanceTermΓ″ (PE.cong (λ x → _ ∙ x) (PE.sym (wk-subst F))) (PE.sym (wk-subst-lift G)) (PE.sym (wk-subst-lift t)) [G]₂ [G]₂′ (proj₁ ([t] (⊢Δ₁ ∙ ⊢F₂′) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ′]))) ⊢t = escapeTerm [G]₁′ [t]′ ⊢t′ = escapeTerm [G]₂′ [t]″ t[a] = irrelevanceTerm″ (PE.sym (singleSubstWkComp a σ G)) (PE.sym (singleSubstWkComp a σ t)) G[a]′ G[a] (proj₁ ([t] ⊢Δ₁ ([ρσ] , [a]′))) t[a]′ = irrelevanceTerm″ (PE.sym (singleSubstWkComp a σ′ G)) (PE.sym (singleSubstWkComp a σ′ t)) G[a]₁′ G[a]″ (proj₁ ([t] ⊢Δ₁ ([ρσ′] , [a]″))) [σlamt∘a≡σt[a]] = proj₂ (redSubstTerm (β-red ⊢F₁ ⊢t ⊢a) G[a] t[a]) [σ′t[a]≡σ′lamt∘a] = convEqTerm₂ G[a] G[a]″ [σG[a]≡σ′G[a]] (symEqTerm G[a]″ (proj₂ (redSubstTerm (β-red ⊢F₂ ⊢t′ ⊢a′) G[a]″ t[a]′))) [σt[a]≡σ′t[a]] = irrelevanceEqTerm″ (PE.sym (singleSubstWkComp a σ t)) (PE.sym (singleSubstWkComp a σ′ t)) (PE.sym (singleSubstWkComp a σ G)) G[a]′ G[a] (proj₂ ([t] ⊢Δ₁ ([ρσ] , [a]′)) ([ρσ′] , [a]″) (consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₁ [ρσ] [ρσ≡ρσ′] [F] [a]′)) in transEqTerm G[a] [σlamt∘a≡σt[a]] (transEqTerm G[a] [σt[a]≡σ′t[a]] [σ′t[a]≡σ′lamt∘a]) in Πₜ₌ (lam (subst (liftSubst σ) t)) (lam (subst (liftSubst σ′) t)) (idRedTerm:*: (lamⱼ ⊢F ⊢t)) (idRedTerm:*: (conv (lamⱼ ⊢F′ ⊢t′) (sym (≅-eq (escapeEq (proj₁ ([ΠFG] ⊢Δ [σ])) [σΠFG≡σ′ΠFG]))))) lamₙ lamₙ (≅-η-eq ⊢F (lamⱼ ⊢F ⊢t) (conv (lamⱼ ⊢F′ ⊢t′) (sym (≅-eq (escapeEq (proj₁ ([ΠFG] ⊢Δ [σ])) [σΠFG≡σ′ΠFG])))) lamₙ lamₙ (escapeTermEq (proj₁ ([G] (⊢Δ ∙ ⊢F) [liftσ])) (irrelevanceEqTerm′ (idWkLiftSubstLemma σ G) ([G]′ (step id) (⊢Δ ∙ ⊢F) neuVar) (proj₁ ([G] (⊢Δ ∙ ⊢F) [liftσ])) (σlamt∘a≡σ′lamt∘a (step id) (⊢Δ ∙ ⊢F) neuVar)))) (lamt ⊢Δ [σ]) (convTerm₂ (proj₁ ([ΠFG] ⊢Δ [σ])) (proj₁ ([ΠFG] ⊢Δ [σ′])) [σΠFG≡σ′ΠFG] (lamt ⊢Δ [σ′])) σlamt∘a≡σ′lamt∘a) -- Reducibility of η-equality under a valid substitution. η-eqEqTerm : ∀ {f g F G Γ Δ σ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / ([Γ] ∙″ [F])) → let [ΠFG] = Πᵛ {F} {G} [Γ] [F] [G] in Γ ∙ F ⊩ᵛ⟨ l ⟩ wk1 f ∘ var 0 ≡ wk1 g ∘ var 0 ∷ G / [Γ] ∙″ [F] / [G] → (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩⟨ l ⟩ subst σ f ∷ Π subst σ F ▹ subst (liftSubst σ) G / proj₁ ([ΠFG] ⊢Δ [σ]) → Δ ⊩⟨ l ⟩ subst σ g ∷ Π subst σ F ▹ subst (liftSubst σ) G / proj₁ ([ΠFG] ⊢Δ [σ]) → Δ ⊩⟨ l ⟩ subst σ f ≡ subst σ g ∷ Π subst σ F ▹ subst (liftSubst σ) G / proj₁ ([ΠFG] ⊢Δ [σ]) η-eqEqTerm {f} {g} {F} {G} {Γ} {Δ} {σ} [Γ] [F] [G] [f0≡g0] ⊢Δ [σ] (Πₜ f₁ [ ⊢t , ⊢u , d ] funcF f≡f [f] [f]₁) (Πₜ g₁ [ ⊢t₁ , ⊢u₁ , d₁ ] funcG g≡g [g] [g]₁) = let [d] = [ ⊢t , ⊢u , d ] [d′] = [ ⊢t₁ , ⊢u₁ , d₁ ] [ΠFG] = Πᵛ {F} {G} [Γ] [F] [G] [σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ]) Πᵣ F′ G′ D′ ⊢F ⊢G A≡A [F]′ [G]′ G-ext = extractMaybeEmbΠ (Π-elim [σΠFG]) [σF] = proj₁ ([F] ⊢Δ [σ]) [wk1F] = wk (step id) (⊢Δ ∙ ⊢F) [σF] var0′ = var (⊢Δ ∙ ⊢F) here var0 = neuTerm [wk1F] (var 0) var0′ (~-var var0′) var0≡0 = neuEqTerm [wk1F] (var 0) (var 0) var0′ var0′ (~-var var0′) [σG]′ = [G]′ (step id) (⊢Δ ∙ ⊢F) var0 [σG] = proj₁ ([G] (⊢Δ ∙ ⊢F) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ])) σf0≡σg0 = escapeTermEq [σG] ([f0≡g0] (⊢Δ ∙ ⊢F) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ])) σf0≡σg0′ = PE.subst₂ (λ x y → Δ ∙ subst σ F ⊢ x ≅ y ∷ subst (liftSubst σ) G) (PE.cong₂ _∘_ (PE.trans (subst-wk f) (PE.sym (wk-subst f))) PE.refl) (PE.cong₂ _∘_ (PE.trans (subst-wk g) (PE.sym (wk-subst g))) PE.refl) σf0≡σg0 ⊢ΠFG = escape [σΠFG] f≡f₁′ = proj₂ (redSubst*Term d [σΠFG] (Πₜ f₁ (idRedTerm:*: ⊢u) funcF f≡f [f] [f]₁)) g≡g₁′ = proj₂ (redSubst*Term d₁ [σΠFG] (Πₜ g₁ (idRedTerm:*: ⊢u₁) funcG g≡g [g] [g]₁)) eq′ = irrelevanceEqTerm′ (cons0wkLift1-id σ G) [σG]′ [σG] (app-congTerm [wk1F] [σG]′ (wk (step id) (⊢Δ ∙ ⊢F) [σΠFG]) (wkEqTerm (step id) (⊢Δ ∙ ⊢F) [σΠFG] f≡f₁′) var0 var0 var0≡0) eq₁′ = irrelevanceEqTerm′ (cons0wkLift1-id σ G) [σG]′ [σG] (app-congTerm [wk1F] [σG]′ (wk (step id) (⊢Δ ∙ ⊢F) [σΠFG]) (wkEqTerm (step id) (⊢Δ ∙ ⊢F) [σΠFG] g≡g₁′) var0 var0 var0≡0) eq = escapeTermEq [σG] eq′ eq₁ = escapeTermEq [σG] eq₁′ in Πₜ₌ f₁ g₁ [d] [d′] funcF funcG (≅-η-eq ⊢F ⊢u ⊢u₁ funcF funcG (≅ₜ-trans (≅ₜ-sym eq) (≅ₜ-trans σf0≡σg0′ eq₁))) (Πₜ f₁ [d] funcF f≡f [f] [f]₁) (Πₜ g₁ [d′] funcG g≡g [g] [g]₁) (λ {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] → let [F]″ = proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])) [a]′ = irrelevanceTerm′ (wk-subst F) ([F]′ [ρ] ⊢Δ₁) [F]″ [a] fEq = PE.cong₂ _∘_ (PE.trans (subst-wk f) (PE.sym (wk-subst f))) PE.refl gEq = PE.cong₂ _∘_ (PE.trans (subst-wk g) (PE.sym (wk-subst g))) PE.refl GEq = PE.sym (PE.trans (subst-wk (subst (liftSubst σ) G)) (PE.trans (substCompEq G) (cons-wk-subst ρ σ a G))) f≡g = irrelevanceEqTerm″ fEq gEq GEq (proj₁ ([G] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] , [a]′))) ([G]′ [ρ] ⊢Δ₁ [a]) ([f0≡g0] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] , [a]′)) [ρσΠFG] = wk [ρ] ⊢Δ₁ [σΠFG] [f]′ : Δ ⊩⟨ _ ⟩ f₁ ∷ Π F′ ▹ G′ / [σΠFG] [f]′ = Πₜ f₁ (idRedTerm:*: ⊢u) funcF f≡f [f] [f]₁ [ρf]′ = wkTerm [ρ] ⊢Δ₁ [σΠFG] [f]′ [g]′ : Δ ⊩⟨ _ ⟩ g₁ ∷ Π F′ ▹ G′ / [σΠFG] [g]′ = Πₜ g₁ (idRedTerm:*: ⊢u₁) funcG g≡g [g] [g]₁ [ρg]′ = wkTerm [ρ] ⊢Δ₁ [σΠFG] [g]′ [f∘u] = appTerm ([F]′ [ρ] ⊢Δ₁) ([G]′ [ρ] ⊢Δ₁ [a]) [ρσΠFG] [ρf]′ [a] [g∘u] = appTerm ([F]′ [ρ] ⊢Δ₁) ([G]′ [ρ] ⊢Δ₁ [a]) [ρσΠFG] [ρg]′ [a] [tu≡fu] = proj₂ (redSubst*Term (app-subst* (wkRed*Term [ρ] ⊢Δ₁ d) (escapeTerm ([F]′ [ρ] ⊢Δ₁) [a])) ([G]′ [ρ] ⊢Δ₁ [a]) [f∘u]) [gu≡t′u] = proj₂ (redSubst*Term (app-subst* (wkRed*Term [ρ] ⊢Δ₁ d₁) (escapeTerm ([F]′ [ρ] ⊢Δ₁) [a])) ([G]′ [ρ] ⊢Δ₁ [a]) [g∘u]) in transEqTerm ([G]′ [ρ] ⊢Δ₁ [a]) (symEqTerm ([G]′ [ρ] ⊢Δ₁ [a]) [tu≡fu]) (transEqTerm ([G]′ [ρ] ⊢Δ₁ [a]) f≡g [gu≡t′u])) -- Validity of η-equality. η-eqᵛ : ∀ {f g F G Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / ([Γ] ∙″ [F])) → let [ΠFG] = Πᵛ {F} {G} [Γ] [F] [G] in Γ ⊩ᵛ⟨ l ⟩ f ∷ Π F ▹ G / [Γ] / [ΠFG] → Γ ⊩ᵛ⟨ l ⟩ g ∷ Π F ▹ G / [Γ] / [ΠFG] → Γ ∙ F ⊩ᵛ⟨ l ⟩ wk1 f ∘ var 0 ≡ wk1 g ∘ var 0 ∷ G / [Γ] ∙″ [F] / [G] → Γ ⊩ᵛ⟨ l ⟩ f ≡ g ∷ Π F ▹ G / [Γ] / [ΠFG] η-eqᵛ {f} {g} {F} {G} [Γ] [F] [G] [f] [g] [f0≡g0] {Δ} {σ} ⊢Δ [σ] = η-eqEqTerm {f} {g} {F} {G} [Γ] [F] [G] [f0≡g0] ⊢Δ [σ] (proj₁ ([f] ⊢Δ [σ])) (proj₁ ([g] ⊢Δ [σ]))
{ "alphanum_fraction": 0.3265467025, "avg_line_length": 56.0051948052, "ext": "agda", "hexsha": "33b705d853e3184a62e951e12ac11a880cde15d9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Lambda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Lambda.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Lambda.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8381, "size": 21562 }