Search is not available for this dataset
text
string
meta
dict
-- 2016-01-05, Jesper: In some cases, the new unifier is still too restrictive -- when --cubical-compatible is enabled because it doesn't do generalization of datatype -- indices. This should be fixed in the future. -- 2016-06-23, Jesper: Now fixed. {-# OPTIONS --cubical-compatible #-} data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x data Bar : Set₁ where bar : Bar baz : (A : Set) → Bar data Foo : Bar → Set₁ where foo : Foo bar test : foo ≡ foo → Set₁ test refl = Set
{ "alphanum_fraction": 0.6494023904, "avg_line_length": 22.8181818182, "ext": "agda", "hexsha": "74d8ad5f6d947a1390f720abe20a0deec0dca7b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/NewUnifierTooRestrictive.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/NewUnifierTooRestrictive.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/NewUnifierTooRestrictive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 165, "size": 502 }
module _ where module M (A : Set) where record R : Set where postulate B : Set postulate A : Set r : M.R A module M' = M A open import Agda.Builtin.Reflection open import Agda.Builtin.List postulate any : {A : Set} → A macro m : Term → TC _ m goal = bindTC (inferType goal) λ goal-type → bindTC (normalise goal-type) λ goal-type → bindTC (inferType goal-type) λ _ → unify goal (def (quote any) []) g : M'.R.B r g = m
{ "alphanum_fraction": 0.6155507559, "avg_line_length": 14.935483871, "ext": "agda", "hexsha": "14ae9832e472c7f80fdb98267f06dfe34470227e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3083.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3083.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3083.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 157, "size": 463 }
{-# OPTIONS --no-positivity-check #-} module Clowns where import Equality import Isomorphism import Derivative import ChainRule open import Sets open import Functor open import Zipper open import Dissect open Functor.Recursive open Functor.Semantics -- Natural numbers NatF : U NatF = K [1] + Id Nat : Set Nat = μ NatF zero : Nat zero = inn (inl <>) suc : Nat -> Nat suc n = inn (inr n) plus : Nat -> Nat -> Nat plus n m = fold NatF φ n where φ : ⟦ NatF ⟧ Nat -> Nat φ (inl <>) = m φ (inr z) = suc z -- Lists ListF : (A : Set) -> U ListF A = K [1] + K A × Id List' : (A : Set) -> Set List' A = μ (ListF A) nil : {A : Set} -> List' A nil = inn (inl <>) cons : {A : Set} -> A -> List' A -> List' A cons x xs = inn (inr < x , xs >) sum : List' Nat -> Nat sum = fold (ListF Nat) φ where φ : ⟦ ListF Nat ⟧ Nat -> Nat φ (inl <>) = zero φ (inr < n , m >) = plus n m TreeF : U TreeF = K [1] + Id × Id Tree : Set Tree = μ TreeF leaf : Tree leaf = inn (inl <>) node : Tree -> Tree -> Tree node l r = inn (inr < l , r >)
{ "alphanum_fraction": 0.5773294909, "avg_line_length": 15.5373134328, "ext": "agda", "hexsha": "395e53f50b32727b1c14f996cd245d0aa596b17c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/clowns/Clowns.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/clowns/Clowns.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/clowns/Clowns.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 392, "size": 1041 }
module Numeric.Nat.GCD.Properties where open import Prelude open import Numeric.Nat.Properties open import Numeric.Nat.Divide open import Numeric.Nat.Divide.Properties open import Numeric.Nat.GCD open import Numeric.Nat.GCD.Extended open import Tactic.Nat open import Tactic.Cong gcd-is-gcd : ∀ d a b → gcd! a b ≡ d → IsGCD d a b gcd-is-gcd d a b refl with gcd a b ... | gcd-res _ isgcd = isgcd gcd-divides-l : ∀ a b → gcd! a b Divides a gcd-divides-l a b with gcd a b ... | gcd-res _ i = IsGCD.d|a i gcd-divides-r : ∀ a b → gcd! a b Divides b gcd-divides-r a b with gcd a b ... | gcd-res _ i = IsGCD.d|b i is-gcd-unique : ∀ {a b} d₁ d₂ (g₁ : IsGCD d₁ a b) (g₂ : IsGCD d₂ a b) → d₁ ≡ d₂ is-gcd-unique d d′ (is-gcd d|a d|b gd) (is-gcd d′|a d′|b gd′) = divides-antisym (gd′ d d|a d|b) (gd d′ d′|a d′|b) gcd-unique : ∀ a b d → IsGCD d a b → gcd! a b ≡ d gcd-unique a b d pd with gcd a b ... | gcd-res d′ pd′ = is-gcd-unique d′ d pd′ pd is-gcd-commute : ∀ {d a b} → IsGCD d a b → IsGCD d b a is-gcd-commute (is-gcd d|a d|b g) = is-gcd d|b d|a (flip ∘ g) gcd-commute : ∀ a b → gcd! a b ≡ gcd! b a gcd-commute a b with gcd b a gcd-commute a b | gcd-res d p = gcd-unique a b d (is-gcd-commute p) gcd-factor-l : ∀ {a b} → a Divides b → gcd! a b ≡ a gcd-factor-l {a} (factor! b) = gcd-unique a (b * a) a (is-gcd divides-refl (divides-mul-r b divides-refl) λ _ k|a _ → k|a) gcd-factor-r : ∀ {a b} → b Divides a → gcd! a b ≡ b gcd-factor-r {a} {b} b|a = gcd-commute a b ⟨≡⟩ gcd-factor-l b|a gcd-idem : ∀ a → gcd! a a ≡ a gcd-idem a = gcd-factor-l divides-refl gcd-zero-l : ∀ n → gcd! 0 n ≡ n gcd-zero-l n = gcd-unique 0 n n (is-gcd (factor! 0) divides-refl λ _ _ k|n → k|n) gcd-zero-r : ∀ n → gcd! n 0 ≡ n gcd-zero-r n = gcd-commute n 0 ⟨≡⟩ gcd-zero-l n zero-is-gcd-l : ∀ {a b} → IsGCD 0 a b → a ≡ 0 zero-is-gcd-l (is-gcd 0|a _ _) = divides-zero 0|a zero-is-gcd-r : ∀ {a b} → IsGCD 0 a b → b ≡ 0 zero-is-gcd-r (is-gcd _ 0|b _) = divides-zero 0|b zero-gcd-l : ∀ a b → gcd! a b ≡ 0 → a ≡ 0 zero-gcd-l a b eq with gcd a b zero-gcd-l a b refl | gcd-res .0 p = zero-is-gcd-l p zero-gcd-r : ∀ a b → gcd! a b ≡ 0 → b ≡ 0 zero-gcd-r a b eq with gcd a b zero-gcd-r a b refl | gcd-res .0 p = zero-is-gcd-r p nonzero-is-gcd-l : ∀ {a b d} {{_ : NonZero a}} → IsGCD d a b → NonZero d nonzero-is-gcd-l {0} {{}} _ nonzero-is-gcd-l {a@(suc _)} {d = suc _} _ = _ nonzero-is-gcd-l {a@(suc _)} {d = 0} (is-gcd (factor q eq) _ _) = refute eq nonzero-is-gcd-r : ∀ {a b d} {{_ : NonZero b}} → IsGCD d a b → NonZero d nonzero-is-gcd-r isgcd = nonzero-is-gcd-l (is-gcd-commute isgcd) nonzero-gcd-l : ∀ a b {{_ : NonZero a}} → NonZero (gcd! a b) nonzero-gcd-l a b = nonzero-is-gcd-l (GCD.isGCD (gcd a b)) nonzero-gcd-r : ∀ a b {{_ : NonZero b}} → NonZero (gcd! a b) nonzero-gcd-r a b = nonzero-is-gcd-r (GCD.isGCD (gcd a b)) private _|>_ = divides-trans gcd-assoc : ∀ a b c → gcd! a (gcd! b c) ≡ gcd! (gcd! a b) c gcd-assoc a b c with gcd a b | gcd b c ... | gcd-res ab (is-gcd ab|a ab|b gab) | gcd-res bc (is-gcd bc|b bc|c gbc) with gcd ab c ... | gcd-res ab-c (is-gcd abc|ab abc|c gabc) = gcd-unique a bc ab-c (is-gcd (abc|ab |> ab|a) (gbc ab-c (abc|ab |> ab|b) abc|c) λ k k|a k|bc → gabc k (gab k k|a (k|bc |> bc|b)) (k|bc |> bc|c)) -- Coprimality properties coprime-sym : ∀ a b → Coprime a b → Coprime b a coprime-sym a b p = gcd-commute b a ⟨≡⟩ p coprimeByDivide : ∀ a b → (∀ k → k Divides a → k Divides b → k Divides 1) → Coprime a b coprimeByDivide a b g = gcd-unique a b 1 (is-gcd one-divides one-divides g) divide-coprime : ∀ d a b → Coprime a b → d Divides a → d Divides b → d Divides 1 divide-coprime d a b p d|a d|b with gcd a b divide-coprime d a b refl d|a d|b | gcd-res _ (is-gcd _ _ g) = g d d|a d|b mul-coprime-l : ∀ a b c → Coprime a (b * c) → Coprime a b mul-coprime-l a b c a⊥bc = coprimeByDivide a b λ k k|a k|b → divide-coprime k a (b * c) a⊥bc k|a (divides-mul-l c k|b) mul-coprime-r : ∀ a b c → Coprime a (b * c) → Coprime a c mul-coprime-r a b c a⊥bc = mul-coprime-l a c b (transport (Coprime a) auto a⊥bc) is-gcd-factors-coprime : ∀ {a b d} (p : IsGCD d a b) {{_ : NonZero d}} → Coprime (is-gcd-factor₁ p) (is-gcd-factor₂ p) is-gcd-factors-coprime {a} {b} {0} _ {{}} is-gcd-factors-coprime {a} {b} {d@(suc _)} p@(is-gcd (factor qa refl) (factor qb refl) g) with gcd qa qb ... | gcd-res j (is-gcd j|qa j|qb gj) = lem₃ j lem₂ where lem : IsGCD (j * d) a b lem = is-gcd (divides-mul-cong-r d j|qa) (divides-mul-cong-r d j|qb) λ k k|a k|b → divides-mul-r j (g k k|a k|b) lem₂ : d ≡ j * d lem₂ = is-gcd-unique d (j * d) p lem lem₃ : ∀ j → d ≡ j * d → j ≡ 1 lem₃ 0 () lem₃ 1 _ = refl lem₃ (suc (suc n)) eq = refute eq private mul-gcd-distr-l' : ∀ a b c ⦃ a>0 : NonZero a ⦄ ⦃ b>0 : NonZero b ⦄ → gcd! (a * b) (a * c) ≡ a * gcd! b c mul-gcd-distr-l' a b c with gcd b c | gcd (a * b) (a * c) ... | gcd-res d gcd-bc@(is-gcd (factor! b′) (factor! c′) _) | gcd-res δ gcd-abac@(is-gcd (factor u uδ=ab) (factor v vδ=ac) g) = let instance _ = nonzero-is-gcd-l gcd-bc _ : NonZero (d * a) _ = mul-nonzero d a in case g (d * a) (factor b′ auto) (factor c′ auto) of λ where (factor w wda=δ) → let dab′=dauw = d * a * b′ ≡⟨ by uδ=ab ⟩ u * δ ≡⟨ u *_ $≡ wda=δ ⟩ʳ u * (w * (d * a)) ≡⟨ auto ⟩ d * a * (u * w) ∎ dac′=davw = d * a * c′ ≡⟨ by vδ=ac ⟩ v * δ ≡⟨ v *_ $≡ wda=δ ⟩ʳ v * (w * (d * a)) ≡⟨ auto ⟩ d * a * (v * w) ∎ uw=b′ : u * w ≡ b′ uw=b′ = sym (mul-inj₂ (d * a) b′ (u * w) dab′=dauw) vw=c′ : v * w ≡ c′ vw=c′ = sym (mul-inj₂ (d * a) c′ (v * w) dac′=davw) w=1 : w ≡ 1 w=1 = divides-one (divide-coprime w b′ c′ (is-gcd-factors-coprime gcd-bc) (factor u uw=b′) (factor v vw=c′)) in case w=1 of λ where refl → by wda=δ mul-gcd-distr-l : ∀ a b c → gcd! (a * b) (a * c) ≡ a * gcd! b c mul-gcd-distr-l zero b c = refl mul-gcd-distr-l a zero c = (λ z → gcd! z (a * c)) $≡ mul-zero-r a mul-gcd-distr-l a@(suc _) b@(suc _) c = mul-gcd-distr-l' a b c mul-gcd-distr-r : ∀ a b c → gcd! (a * c) (b * c) ≡ gcd! a b * c mul-gcd-distr-r a b c = gcd! (a * c) (b * c) ≡⟨ gcd! $≡ mul-commute a c *≡ mul-commute b c ⟩ gcd! (c * a) (c * b) ≡⟨ mul-gcd-distr-l c a b ⟩ c * gcd! a b ≡⟨ auto ⟩ gcd! a b * c ∎ -- Divide two numbers by their gcd and return the result, the gcd, and some useful properties. -- Continuation-passing for efficiency reasons. gcdReduce' : ∀ {a} {A : Set a} (a b : Nat) ⦃ _ : NonZero b ⦄ → ((a′ b′ d : Nat) → (⦃ _ : NonZero a ⦄ → NonZero a′) → ⦃ nzb : NonZero b′ ⦄ → ⦃ nzd : NonZero d ⦄ → a′ * d ≡ a → b′ * d ≡ b → Coprime a′ b′ → A) → A gcdReduce' a b ret with gcd a b gcdReduce' a b ret | gcd-res d isgcd@(is-gcd d|a@(factor a′ eqa) d|b@(factor b′ eqb) g)= let instance _ = nonzero-is-gcd-r isgcd in ret a′ b′ d (nonzero-factor d|a) ⦃ nonzero-factor d|b ⦄ eqa eqb (is-gcd-factors-coprime isgcd) -- Both arguments are non-zero. gcdReduce : ∀ {a} {A : Set a} (a b : Nat) ⦃ _ : NonZero a ⦄ ⦃ _ : NonZero b ⦄ → ((a′ b′ d : Nat) ⦃ a′>0 : NonZero a′ ⦄ ⦃ b′>0 : NonZero b′ ⦄ ⦃ nzd : NonZero d ⦄ → a′ * d ≡ a → b′ * d ≡ b → Coprime a′ b′ → A) → A gcdReduce a b k = gcdReduce' a b λ a′ b′ d a′>0 eq₁ eq₂ a′⊥b′ → let instance _ = a′>0 in k a′ b′ d eq₁ eq₂ a′⊥b′ -- Only the right argument is guaranteed to be non-zero. gcdReduce-r : ∀ {a} {A : Set a} (a b : Nat) ⦃ _ : NonZero b ⦄ → ((a′ b′ d : Nat) ⦃ nzb : NonZero b′ ⦄ ⦃ nzd : NonZero d ⦄ → a′ * d ≡ a → b′ * d ≡ b → Coprime a′ b′ → A) → A gcdReduce-r a b k = gcdReduce' a b λ a′ b′ d _ eq₁ eq₂ a′⊥b′ → k a′ b′ d eq₁ eq₂ a′⊥b′ --- Properties --- coprime-divide-mul-l : ∀ a b c → Coprime a b → a Divides (b * c) → a Divides c coprime-divide-mul-l a b c p a|bc with extendedGCD a b coprime-divide-mul-l a b c p a|bc | gcd-res d i e with gcd-unique _ _ _ i ʳ⟨≡⟩ p coprime-divide-mul-l a b c p (factor q qa=bc) | gcd-res d i (bézoutL x y ax=1+by) | refl = factor (x * c - y * q) $ (x * c - y * q) * a ≡⟨ auto ⟩ a * x * c - y * (q * a) ≡⟨ by-cong ax=1+by ⟩ suc (b * y) * c - y * (q * a) ≡⟨ by-cong qa=bc ⟩ suc (b * y) * c - y * (b * c) ≡⟨ auto ⟩ c ∎ coprime-divide-mul-l a b c p (factor q qa=bc) | gcd-res d i (bézoutR x y by=1+ax) | refl = factor (y * q - x * c) $ (y * q - x * c) * a ≡⟨ auto ⟩ y * (q * a) - a * x * c ≡⟨ by-cong qa=bc ⟩ y * (b * c) - a * x * c ≡⟨ auto ⟩ (b * y) * c - a * x * c ≡⟨ by-cong by=1+ax ⟩ suc (a * x) * c - a * x * c ≡⟨ auto ⟩ c ∎ coprime-divide-mul-r : ∀ a b c → Coprime a c → a Divides (b * c) → a Divides b coprime-divide-mul-r a b c p a|bc = coprime-divide-mul-l a c b p (transport (a Divides_) auto a|bc) is-gcd-by-coprime-factors : ∀ d a b (d|a : d Divides a) (d|b : d Divides b) ⦃ nzd : NonZero d ⦄ → Coprime (get-factor d|a) (get-factor d|b) → IsGCD d a b is-gcd-by-coprime-factors d a b d|a@(factor! q) d|b@(factor! r) q⊥r = is-gcd d|a d|b λ k k|a k|b → let lem : ∀ j → j Divides q → j Divides r → j ≡ 1 lem j j|q j|r = divides-one (divide-coprime j q r q⊥r j|q j|r) in case gcd k d of λ where (gcd-res g isgcd@(is-gcd (factor k′ k′g=k@refl) (factor d′ d′g=d@refl) sup)) → let instance g>0 = nonzero-is-gcd-r isgcd k′⊥d′ : Coprime k′ d′ k′⊥d′ = is-gcd-factors-coprime isgcd k′|qd′ : k′ Divides (q * d′) k′|qd′ = cancel-mul-divides-r k′ (q * d′) g (transport ((k′ * g) Divides_) {x = q * (d′ * g)} {q * d′ * g} auto k|a) k′|rd′ : k′ Divides (r * d′) k′|rd′ = cancel-mul-divides-r k′ (r * d′) g (transport ((k′ * g) Divides_) {x = r * (d′ * g)} {r * d′ * g} auto k|b) k′|q : k′ Divides q k′|q = coprime-divide-mul-r k′ q d′ k′⊥d′ k′|qd′ k′|r : k′ Divides r k′|r = coprime-divide-mul-r k′ r d′ k′⊥d′ k′|rd′ k′=1 = lem k′ k′|q k′|r k=g : k ≡ g k=g = case k′=1 of λ where refl → auto in factor d′ (d′ *_ $≡ k=g ⟨≡⟩ d′g=d)
{ "alphanum_fraction": 0.5026891691, "avg_line_length": 39.3576642336, "ext": "agda", "hexsha": "546e05440b1350f625df2c71511a89829666644c", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Numeric/Nat/GCD/Properties.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Numeric/Nat/GCD/Properties.agda", "max_line_length": 106, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Numeric/Nat/GCD/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 4584, "size": 10784 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.QuotientAlgebra where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset using (_∈_) open import Cubical.HITs.SetQuotients hiding (_/_) open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.QuotientRing renaming (_/_ to _/Ring_) hiding ([_]/) open import Cubical.Algebra.CommRing.Ideal hiding (IdealsIn) open import Cubical.Algebra.CommAlgebra open import Cubical.Algebra.CommAlgebra.Ideal open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Ideal using (isIdeal) private variable ℓ : Level module _ {R : CommRing ℓ} (A : CommAlgebra R ℓ) where open CommRingStr {{...}} hiding (_-_; -_; dist; ·Lid; ·Rdist+) renaming (_·_ to _·R_; _+_ to _+R_) open CommAlgebraStr {{...}} open RingTheory (CommRing→Ring (CommAlgebra→CommRing A)) using (-DistR·) instance _ : CommRingStr _ _ = snd R _ : CommAlgebraStr _ _ _ = snd A _/_ : (I : IdealsIn A) → CommAlgebra R ℓ _/_ I = commAlgebraFromCommRing ((CommAlgebra→CommRing A) /Ring I) (λ r → elim (λ _ → squash/) (λ x → [ r ⋆ x ]) (eq r)) (λ r s → elimProp (λ _ → squash/ _ _) λ x i → [ ((r ·R s) ⋆ x ≡⟨ ⋆-assoc r s x ⟩ r ⋆ (s ⋆ x) ∎) i ]) (λ r s → elimProp (λ _ → squash/ _ _) λ x i → [ ((r +R s) ⋆ x ≡⟨ ⋆-ldist r s x ⟩ r ⋆ x + s ⋆ x ∎) i ]) (λ r → elimProp2 (λ _ _ → squash/ _ _) λ x y i → [ (r ⋆ (x + y) ≡⟨ ⋆-rdist r x y ⟩ r ⋆ x + r ⋆ y ∎) i ]) (elimProp (λ _ → squash/ _ _) (λ x i → [ (1r ⋆ x ≡⟨ ⋆-lid x ⟩ x ∎) i ])) λ r → elimProp2 (λ _ _ → squash/ _ _) λ x y i → [ ((r ⋆ x) · y ≡⟨ ⋆-lassoc r x y ⟩ r ⋆ (x · y) ∎) i ] where open CommIdeal using (isCommIdeal) eq : (r : fst R) (x y : fst A) → x - y ∈ (fst I) → [ r ⋆ x ] ≡ [ r ⋆ y ] eq r x y x-y∈I = eq/ _ _ (subst (λ u → u ∈ fst I) ((r ⋆ 1a) · (x - y) ≡⟨ ·Rdist+ (r ⋆ 1a) x (- y) ⟩ (r ⋆ 1a) · x + (r ⋆ 1a) · (- y) ≡[ i ]⟨ (r ⋆ 1a) · x + -DistR· (r ⋆ 1a) y i ⟩ (r ⋆ 1a) · x - (r ⋆ 1a) · y ≡[ i ]⟨ ⋆-lassoc r 1a x i - ⋆-lassoc r 1a y i ⟩ r ⋆ (1a · x) - r ⋆ (1a · y) ≡[ i ]⟨ r ⋆ (·Lid x i) - r ⋆ (·Lid y i) ⟩ r ⋆ x - r ⋆ y ∎ ) (isCommIdeal.·Closed (snd I) _ x-y∈I)) [_]/ : {R : CommRing ℓ} {A : CommAlgebra R ℓ} {I : IdealsIn A} → (a : fst A) → fst (A / I) [ a ]/ = [ a ]
{ "alphanum_fraction": 0.4423142759, "avg_line_length": 43.5970149254, "ext": "agda", "hexsha": "26d16354eda4d14be45dede6c86606a43d3ebc81", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/QuotientAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/QuotientAlgebra.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/QuotientAlgebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1080, "size": 2921 }
-- Example by Ian Orton {-# OPTIONS --rewriting #-} open import Agda.Builtin.Bool open import Agda.Builtin.Equality _∧_ : Bool → Bool → Bool true ∧ y = y false ∧ y = false data ⊥ : Set where ⊥-elim : ∀ {a} {A : Set a} → ⊥ → A ⊥-elim () ¬_ : ∀ {a} → Set a → Set a ¬ A = A → ⊥ contradiction : ∀ {a b} {A : Set a} {B : Set b} → A → ¬ A → B contradiction a f = ⊥-elim (f a) _≢_ : ∀ {a} {A : Set a} (x y : A) → Set a x ≢ y = ¬ (x ≡ y) postulate obvious : (b b' : Bool) (p : b ≢ b') → (b ∧ b') ≡ false {-# BUILTIN REWRITE _≡_ #-} {-# REWRITE obvious #-} oops : (b : Bool) → b ∧ b ≡ false oops b = refl true≢false : true ≡ false → ⊥ true≢false () bot : ⊥ bot = true≢false (oops true)
{ "alphanum_fraction": 0.5231213873, "avg_line_length": 17.3, "ext": "agda", "hexsha": "76f39c82aa80616c004a043438dd834719f1e64c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Fail/Issue2059.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Fail/Issue2059.agda", "max_line_length": 61, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Fail/Issue2059.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 289, "size": 692 }
{-# OPTIONS --without-K #-} open import Base open import Homotopy.Pushout open import Homotopy.VanKampen.Guide {- This module provides the function code⇒path for the homotopy equivalence for van Kampen theorem. -} module Homotopy.VanKampen.CodeToPath {i} (d : pushout-diag i) (l : legend i (pushout-diag.C d)) where open pushout-diag d open legend l open import Homotopy.Truncation open import Homotopy.PathTruncation open import Homotopy.VanKampen.Code d l private pgl : ∀ n → _≡₀_ {A = P} (left (f $ loc n)) (right (g $ loc n)) pgl n = proj (glue $ loc n) p!gl : ∀ n → _≡₀_ {A = P} (right (g $ loc n)) (left (f $ loc n)) p!gl n = proj (! (glue $ loc n)) ap₀l : ∀ {a₁ a₂} → a₁ ≡₀ a₂ → _≡₀_ {A = P} (left a₁) (left a₂) ap₀l p = ap₀ left p ap₀r : ∀ {b₁ b₂} → b₁ ≡₀ b₂ → _≡₀_ {A = P} (right b₁) (right b₂) ap₀r p = ap₀ right p module _ {a₁ : A} where private ap⇒path-split : (∀ {a₂} → a-code-a a₁ a₂ → _≡₀_ {A = P} (left a₁) (left a₂)) × (∀ {b₂} → a-code-b a₁ b₂ → _≡₀_ {A = P} (left a₁) (right b₂)) ap⇒path-split = a-code-rec-nondep a₁ (λ a₂ → left a₁ ≡₀ left a₂) ⦃ λ a₂ → π₀-is-set _ ⦄ (λ b₂ → left a₁ ≡₀ right b₂) ⦃ λ b₂ → π₀-is-set _ ⦄ (λ p → ap₀l p) (λ n pco p → (pco ∘₀ p!gl n) ∘₀ ap₀l p) (λ n pco p → (pco ∘₀ pgl n) ∘₀ ap₀r p) (λ n {co} pco → (((pco ∘₀ pgl n) ∘₀ refl₀) ∘₀ p!gl n) ∘₀ refl₀ ≡⟨ refl₀-right-unit _ ⟩ ((pco ∘₀ pgl n) ∘₀ refl₀) ∘₀ p!gl n ≡⟨ ap (λ x → x ∘₀ p!gl n) $ refl₀-right-unit $ pco ∘₀ pgl n ⟩ (pco ∘₀ pgl n) ∘₀ p!gl n ≡⟨ concat₀-assoc pco (pgl n) (p!gl n) ⟩ pco ∘₀ (pgl n ∘₀ p!gl n) ≡⟨ ap (λ x → pco ∘₀ proj x) $ opposite-right-inverse $ glue $ loc n ⟩ pco ∘₀ refl₀ ≡⟨ refl₀-right-unit pco ⟩∎ pco ∎) (λ n {co} pco → (((pco ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n) ∘₀ refl₀ ≡⟨ refl₀-right-unit _ ⟩ ((pco ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n ≡⟨ ap (λ x → x ∘₀ pgl n) $ refl₀-right-unit $ pco ∘₀ p!gl n ⟩ (pco ∘₀ p!gl n) ∘₀ pgl n ≡⟨ concat₀-assoc pco (p!gl n) (pgl n) ⟩ pco ∘₀ (p!gl n ∘₀ pgl n) ≡⟨ ap (λ x → pco ∘₀ proj x) $ opposite-left-inverse $ glue $ loc n ⟩ pco ∘₀ refl₀ ≡⟨ refl₀-right-unit pco ⟩∎ pco ∎) (λ n₁ {co} pco n₂ r → (((pco ∘₀ pgl n₁) ∘₀ ap₀r (ap₀ g r)) ∘₀ p!gl n₂) ∘₀ refl₀ ≡⟨ refl₀-right-unit _ ⟩ ((pco ∘₀ pgl n₁) ∘₀ ap₀r (ap₀ g r)) ∘₀ p!gl n₂ ≡⟨ concat₀-assoc (pco ∘₀ pgl n₁) (ap₀r (ap₀ g r)) (p!gl n₂) ⟩ (pco ∘₀ pgl n₁) ∘₀ (ap₀r (ap₀ g r) ∘₀ p!gl n₂) ≡⟨ ap (λ x → (pco ∘₀ pgl n₁) ∘₀ (x ∘₀ p!gl n₂)) $ ! $ ap₀-compose right g r ⟩ (pco ∘₀ pgl n₁) ∘₀ (ap₀ (right ◯ g) r ∘₀ p!gl n₂) ≡⟨ ap (λ x → (pco ∘₀ pgl n₁) ∘₀ x) $ homotopy₀-naturality (right ◯ g) (left ◯ f) (proj ◯ (! ◯ glue)) r ⟩ (pco ∘₀ pgl n₁) ∘₀ (p!gl n₁ ∘₀ ap₀ (left ◯ f) r) ≡⟨ ! $ concat₀-assoc (pco ∘₀ pgl n₁) (p!gl n₁) (ap₀ (left ◯ f) r) ⟩ ((pco ∘₀ pgl n₁) ∘₀ p!gl n₁) ∘₀ ap₀ (left ◯ f) r ≡⟨ ap (λ x → ((pco ∘₀ pgl n₁) ∘₀ p!gl n₁) ∘₀ x) $ ap₀-compose left f r ⟩ ((pco ∘₀ pgl n₁) ∘₀ p!gl n₁) ∘₀ ap₀l (ap₀ f r) ≡⟨ ap (λ x → (x ∘₀ p!gl n₁) ∘₀ ap₀l (ap₀ f r)) $ ! $ refl₀-right-unit $ pco ∘₀ pgl n₁ ⟩∎ (((pco ∘₀ pgl n₁) ∘₀ refl₀) ∘₀ p!gl n₁) ∘₀ ap₀l (ap₀ f r) ∎) aa⇒path : ∀ {a₂} → a-code-a a₁ a₂ → _≡₀_ {A = P} (left a₁) (left a₂) aa⇒path = π₁ ap⇒path-split ab⇒path : ∀ {b₂} → a-code-b a₁ b₂ → _≡₀_ {A = P} (left a₁) (right b₂) ab⇒path = π₂ ap⇒path-split ap⇒path : ∀ {p₂ : P} → a-code a₁ p₂ → left a₁ ≡₀ p₂ ap⇒path {p₂} = pushout-rec (λ p → a-code a₁ p → left a₁ ≡₀ p) (λ a → aa⇒path {a}) (λ b → ab⇒path {b}) (loc-fiber-rec l (λ c → transport (λ p → a-code a₁ p → left a₁ ≡₀ p) (glue c) aa⇒path ≡ ab⇒path) ⦃ λ c → →-is-set (π₀-is-set (left a₁ ≡ right (g c))) _ _ ⦄ (λ n → funext λ co → transport (λ p → a-code a₁ p → left a₁ ≡₀ p) (glue $ loc n) aa⇒path co ≡⟨ trans-→ (a-code a₁) (λ x → left a₁ ≡₀ x) (glue $ loc n) aa⇒path co ⟩ transport (λ p → left a₁ ≡₀ p) (glue $ loc n) (aa⇒path $ transport (a-code a₁) (! (glue $ loc n)) co) ≡⟨ ap (transport (λ p → left a₁ ≡₀ p) (glue $ loc n) ◯ aa⇒path) $ trans-a-code-!glue-loc n co ⟩ transport (λ p → left a₁ ≡₀ p) (glue $ loc n) (aa⇒path $ ab⇒aa n co) ≡⟨ trans-cst≡₀id (glue $ loc n) (aa⇒path $ ab⇒aa n co) ⟩ (aa⇒path $ ab⇒aa n co) ∘₀ pgl n ≡⟨ refl ⟩ ((ab⇒path co ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n ≡⟨ ap (λ x → x ∘₀ pgl n) $ refl₀-right-unit $ ab⇒path co ∘₀ p!gl n ⟩ (ab⇒path co ∘₀ p!gl n) ∘₀ pgl n ≡⟨ concat₀-assoc (ab⇒path co) (p!gl n) (pgl n) ⟩ ab⇒path co ∘₀ (p!gl n ∘₀ pgl n) ≡⟨ ap (λ x → ab⇒path co ∘₀ proj x) $ opposite-left-inverse $ glue $ loc n ⟩ ab⇒path co ∘₀ refl₀ ≡⟨ refl₀-right-unit $ ab⇒path co ⟩∎ ab⇒path co ∎)) p₂ -- FIXME -- There is tension between reducing duplicate code and -- maintaining definitional equality. I could not make -- the neccessary type conversion definitional, so -- I just copied and pasted the previous module. module _ {b₁ : B} where private bp⇒path-split : (∀ {b₂} → b-code-b b₁ b₂ → _≡₀_ {A = P} (right b₁) (right b₂)) × (∀ {a₂} → b-code-a b₁ a₂ → _≡₀_ {A = P} (right b₁) (left a₂)) bp⇒path-split = b-code-rec-nondep b₁ (λ b₂ → right b₁ ≡₀ right b₂) ⦃ λ b₂ → π₀-is-set _ ⦄ (λ a₂ → right b₁ ≡₀ left a₂) ⦃ λ a₂ → π₀-is-set _ ⦄ (λ p → ap₀r p) (λ n pco p → (pco ∘₀ pgl n) ∘₀ ap₀r p) (λ n pco p → (pco ∘₀ p!gl n) ∘₀ ap₀l p) (λ n {co} pco → (((pco ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n) ∘₀ refl₀ ≡⟨ refl₀-right-unit _ ⟩ ((pco ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n ≡⟨ ap (λ x → x ∘₀ pgl n) $ refl₀-right-unit $ pco ∘₀ p!gl n ⟩ (pco ∘₀ p!gl n) ∘₀ pgl n ≡⟨ concat₀-assoc pco (p!gl n) (pgl n) ⟩ pco ∘₀ (p!gl n ∘₀ pgl n) ≡⟨ ap (λ x → pco ∘₀ proj x) $ opposite-left-inverse $ glue $ loc n ⟩ pco ∘₀ refl₀ ≡⟨ refl₀-right-unit pco ⟩∎ pco ∎) (λ n {co} pco → (((pco ∘₀ pgl n) ∘₀ refl₀) ∘₀ p!gl n) ∘₀ refl₀ ≡⟨ refl₀-right-unit _ ⟩ ((pco ∘₀ pgl n) ∘₀ refl₀) ∘₀ p!gl n ≡⟨ ap (λ x → x ∘₀ p!gl n) $ refl₀-right-unit $ pco ∘₀ pgl n ⟩ (pco ∘₀ pgl n) ∘₀ p!gl n ≡⟨ concat₀-assoc pco (pgl n) (p!gl n) ⟩ pco ∘₀ (pgl n ∘₀ p!gl n) ≡⟨ ap (λ x → pco ∘₀ proj x) $ opposite-right-inverse $ glue $ loc n ⟩ pco ∘₀ refl₀ ≡⟨ refl₀-right-unit pco ⟩∎ pco ∎) (λ n₁ {co} pco n₂ r → (((pco ∘₀ p!gl n₁) ∘₀ ap₀l (ap₀ f r)) ∘₀ pgl n₂) ∘₀ refl₀ ≡⟨ refl₀-right-unit _ ⟩ ((pco ∘₀ p!gl n₁) ∘₀ ap₀l (ap₀ f r)) ∘₀ pgl n₂ ≡⟨ concat₀-assoc (pco ∘₀ p!gl n₁) (ap₀l (ap₀ f r)) (pgl n₂) ⟩ (pco ∘₀ p!gl n₁) ∘₀ (ap₀l (ap₀ f r) ∘₀ pgl n₂) ≡⟨ ap (λ x → (pco ∘₀ p!gl n₁) ∘₀ (x ∘₀ pgl n₂)) $ ! $ ap₀-compose left f r ⟩ (pco ∘₀ p!gl n₁) ∘₀ (ap₀ (left ◯ f) r ∘₀ pgl n₂) ≡⟨ ap (λ x → (pco ∘₀ p!gl n₁) ∘₀ x) $ homotopy₀-naturality (left ◯ f) (right ◯ g) (proj ◯ glue) r ⟩ (pco ∘₀ p!gl n₁) ∘₀ (pgl n₁ ∘₀ ap₀ (right ◯ g) r) ≡⟨ ! $ concat₀-assoc (pco ∘₀ p!gl n₁) (pgl n₁) (ap₀ (right ◯ g) r) ⟩ ((pco ∘₀ p!gl n₁) ∘₀ pgl n₁) ∘₀ ap₀ (right ◯ g) r ≡⟨ ap (λ x → ((pco ∘₀ p!gl n₁) ∘₀ pgl n₁) ∘₀ x) $ ap₀-compose right g r ⟩ ((pco ∘₀ p!gl n₁) ∘₀ pgl n₁) ∘₀ ap₀r (ap₀ g r) ≡⟨ ap (λ x → (x ∘₀ pgl n₁) ∘₀ ap₀r (ap₀ g r)) $ ! $ refl₀-right-unit $ pco ∘₀ p!gl n₁ ⟩∎ (((pco ∘₀ p!gl n₁) ∘₀ refl₀) ∘₀ pgl n₁) ∘₀ ap₀r (ap₀ g r) ∎) bb⇒path : ∀ {b₂} → b-code-b b₁ b₂ → _≡₀_ {A = P} (right b₁) (right b₂) bb⇒path = π₁ bp⇒path-split ba⇒path : ∀ {a₂} → b-code-a b₁ a₂ → _≡₀_ {A = P} (right b₁) (left a₂) ba⇒path = π₂ bp⇒path-split bp⇒path : ∀ {p₂ : P} → b-code b₁ p₂ → right b₁ ≡₀ p₂ bp⇒path {p₂} = pushout-rec (λ p → b-code b₁ p → right b₁ ≡₀ p) (λ a → ba⇒path {a}) (λ b → bb⇒path {b}) (λ c → loc-fiber-rec l (λ c → transport (λ p → b-code b₁ p → right b₁ ≡₀ p) (glue c) ba⇒path ≡ bb⇒path) ⦃ λ c → →-is-set (π₀-is-set (right b₁ ≡ right (g c))) _ _ ⦄ (λ n → funext λ co → transport (λ p → b-code b₁ p → right b₁ ≡₀ p) (glue $ loc n) ba⇒path co ≡⟨ trans-→ (b-code b₁) (λ x → right b₁ ≡₀ x) (glue $ loc n) ba⇒path co ⟩ transport (λ p → right b₁ ≡₀ p) (glue $ loc n) (ba⇒path $ transport (b-code b₁) (! (glue $ loc n)) co) ≡⟨ ap (transport (λ p → right b₁ ≡₀ p) (glue $ loc n) ◯ ba⇒path) $ trans-b-code-!glue-loc n co ⟩ transport (λ p → right b₁ ≡₀ p) (glue $ loc n) (ba⇒path $ bb⇒ba n co) ≡⟨ trans-cst≡₀id (glue $ loc n) (ba⇒path $ bb⇒ba n co) ⟩ (ba⇒path $ bb⇒ba n co) ∘₀ pgl n ≡⟨ refl ⟩ ((bb⇒path co ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n ≡⟨ ap (λ x → x ∘₀ pgl n) $ refl₀-right-unit $ bb⇒path co ∘₀ p!gl n ⟩ (bb⇒path co ∘₀ p!gl n) ∘₀ pgl n ≡⟨ concat₀-assoc (bb⇒path co) (p!gl n) (pgl n) ⟩ bb⇒path co ∘₀ (p!gl n ∘₀ pgl n) ≡⟨ ap (λ x → bb⇒path co ∘₀ proj x) $ opposite-left-inverse $ glue $ loc n ⟩ bb⇒path co ∘₀ refl₀ ≡⟨ refl₀-right-unit $ bb⇒path co ⟩∎ bb⇒path co ∎) c) p₂ module _ where private Lbaaa : ∀ n {a₂} → b-code-a (g $ loc n) a₂ → Set i Lbaaa n co = aa⇒path {f $ loc n} (ba⇒aa n co) ≡ pgl n ∘₀ ba⇒path co Lbbab : ∀ n {b₂} → b-code-b (g $ loc n) b₂ → Set i Lbbab n co = ab⇒path {f $ loc n} (bb⇒ab n co) ≡ pgl n ∘₀ bb⇒path co private bp⇒ap⇒path-split : ∀ n → (∀ {a₂} co → Lbbab n {a₂} co) × (∀ {b₂} co → Lbaaa n {b₂} co) abstract bp⇒ap⇒path-split n = b-code-rec (g $ loc n) (λ co → ab⇒path {f $ loc n} (bb⇒ab n co) ≡ pgl n ∘₀ bb⇒path co) ⦃ λ _ → ≡-is-set $ π₀-is-set _ ⦄ (λ co → aa⇒path {f $ loc n} (ba⇒aa n co) ≡ pgl n ∘₀ ba⇒path co) ⦃ λ _ → ≡-is-set $ π₀-is-set _ ⦄ (λ p → ab⇒path (bb⇒ab n (⟧b p)) ≡⟨ refl ⟩ (refl₀ ∘₀ pgl n) ∘₀ ap₀r p ≡⟨ ap (λ x → x ∘₀ ap₀r p) $ refl₀-left-unit $ pgl n ⟩ pgl n ∘₀ ap₀r p ≡⟨ refl ⟩∎ pgl n ∘₀ bb⇒path (⟧b p) ∎) (λ n₁ {co} eq p₁ → (aa⇒path (ba⇒aa n co) ∘₀ pgl n₁) ∘₀ ap₀r p₁ ≡⟨ ap (λ x → (x ∘₀ pgl n₁) ∘₀ ap₀r p₁) eq ⟩ ((pgl n ∘₀ ba⇒path co) ∘₀ pgl n₁) ∘₀ ap₀r p₁ ≡⟨ ap (λ x → x ∘₀ ap₀r p₁) $ concat₀-assoc (pgl n) (ba⇒path co) (pgl n₁) ⟩ (pgl n ∘₀ (ba⇒path co ∘₀ pgl n₁)) ∘₀ ap₀r p₁ ≡⟨ concat₀-assoc (pgl n) (ba⇒path co ∘₀ pgl n₁) (ap₀r p₁) ⟩∎ pgl n ∘₀ ((ba⇒path co ∘₀ pgl n₁) ∘₀ ap₀r p₁) ∎) (λ n₁ {co} eq p₁ → (ab⇒path (bb⇒ab n co) ∘₀ p!gl n₁) ∘₀ ap₀l p₁ ≡⟨ ap (λ x → (x ∘₀ p!gl n₁) ∘₀ ap₀l p₁) eq ⟩ ((pgl n ∘₀ bb⇒path co) ∘₀ p!gl n₁) ∘₀ ap₀l p₁ ≡⟨ ap (λ x → x ∘₀ ap₀l p₁) $ concat₀-assoc (pgl n) (bb⇒path co) (p!gl n₁) ⟩ (pgl n ∘₀ (bb⇒path co ∘₀ p!gl n₁)) ∘₀ ap₀l p₁ ≡⟨ concat₀-assoc (pgl n) (bb⇒path co ∘₀ p!gl n₁) (ap₀l p₁) ⟩∎ pgl n ∘₀ ((bb⇒path co ∘₀ p!gl n₁) ∘₀ ap₀l p₁) ∎) (λ _ co → prop-has-all-paths (π₀-is-set _ _ _) _ co) (λ _ co → prop-has-all-paths (π₀-is-set _ _ _) _ co) (λ _ _ _ _ → prop-has-all-paths (π₀-is-set _ _ _) _ _) ba⇒aa⇒path : ∀ n {a₂} co → Lbaaa n {a₂} co ba⇒aa⇒path n = π₂ $ bp⇒ap⇒path-split n bb⇒ab⇒path : ∀ n {b₂} co → Lbbab n {b₂} co bb⇒ab⇒path n = π₁ $ bp⇒ap⇒path-split n private bp⇒ap⇒path : ∀ n {p₂} (co : b-code (g $ loc n) p₂) → ap⇒path {f $ loc n} {p₂} (bp⇒ap n {p₂} co) ≡ pgl n ∘₀ bp⇒path {g $ loc n} {p₂} co abstract bp⇒ap⇒path n {p₂} = pushout-rec (λ x → ∀ (co : b-code (g $ loc n) x) → ap⇒path {f $ loc n} {x} (bp⇒ap n {x} co) ≡ pgl n ∘₀ bp⇒path {g $ loc n} {x} co) (λ a₂ → ba⇒aa⇒path n {a₂}) (λ b₂ → bb⇒ab⇒path n {b₂}) (λ _ → funext λ _ → prop-has-all-paths (π₀-is-set _ _ _) _ _) p₂ code⇒path : ∀ {p₁ p₂} → code p₁ p₂ → p₁ ≡₀ p₂ code⇒path {p₁} {p₂} = pushout-rec (λ p₁ → code p₁ p₂ → p₁ ≡₀ p₂) (λ a → ap⇒path {a} {p₂}) (λ b → bp⇒path {b} {p₂}) (loc-fiber-rec l (λ c → transport (λ x → code x p₂ → x ≡₀ p₂) (glue c) (ap⇒path {f c} {p₂}) ≡ bp⇒path {g c} {p₂}) ⦃ λ c → →-is-set (π₀-is-set (right (g c) ≡ p₂)) _ _ ⦄ (λ n → funext λ (co : code (right $ g $ loc n) p₂) → transport (λ x → code x p₂ → x ≡₀ p₂) (glue $ loc n) (ap⇒path {f $ loc n} {p₂}) co ≡⟨ trans-→ (λ x → code x p₂) (λ x → x ≡₀ p₂) (glue $ loc n) (ap⇒path {f $ loc n} {p₂}) co ⟩ transport (λ x → x ≡₀ p₂) (glue $ loc n) (ap⇒path {f $ loc n} {p₂} $ transport (λ x → code x p₂) (! (glue $ loc n)) co) ≡⟨ ap (transport (λ x → x ≡₀ p₂) (glue $ loc n) ◯ ap⇒path {f $ loc n} {p₂}) $ trans-!glue-code-loc n {p₂} co ⟩ transport (λ x → x ≡₀ p₂) (glue $ loc n) (ap⇒path {f $ loc n} {p₂} $ bp⇒ap n {p₂} co) ≡⟨ ap (transport (λ x → x ≡₀ p₂) (glue $ loc n)) $ bp⇒ap⇒path n {p₂} co ⟩ transport (λ x → x ≡₀ p₂) (glue $ loc n) (pgl n ∘₀ bp⇒path {g $ loc n} {p₂} co) ≡⟨ trans-id≡₀cst (glue $ loc n) (pgl n ∘₀ bp⇒path {g $ loc n} {p₂} co) ⟩ p!gl n ∘₀ (pgl n ∘₀ bp⇒path {g $ loc n} {p₂} co) ≡⟨ ! $ concat₀-assoc (p!gl n) (pgl n) (bp⇒path {g $ loc n} {p₂} co) ⟩ (p!gl n ∘₀ pgl n) ∘₀ bp⇒path {g $ loc n} {p₂} co ≡⟨ ap (λ x → proj x ∘₀ bp⇒path {g $ loc n} {p₂} co) $ opposite-left-inverse (glue $ loc n) ⟩ refl₀ ∘₀ bp⇒path {g $ loc n} {p₂} co ≡⟨ refl₀-left-unit (bp⇒path {g $ loc n} {p₂} co) ⟩∎ bp⇒path {g $ loc n} {p₂} co ∎)) p₁
{ "alphanum_fraction": 0.4451162166, "avg_line_length": 44.4358208955, "ext": "agda", "hexsha": "7edb9c4f2cfdc9bfbf4dde5d7937d2a11ea504be", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/VanKampen/CodeToPath.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/VanKampen/CodeToPath.agda", "max_line_length": 114, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/VanKampen/CodeToPath.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 7007, "size": 14886 }
module Example.Test where open import Data.Maybe using (Is-just) open import Prelude.Init open import Prelude.DecEq open import Prelude.Decidable _ : (¬ ¬ ((true , true) ≡ (true , true))) × (8 ≡ 18 ∸ 10) _ = auto
{ "alphanum_fraction": 0.6788990826, "avg_line_length": 18.1666666667, "ext": "agda", "hexsha": "297ec924917c7b4592ce37d2904220649feb7942", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b987bcf8dbe1e1699405f26010273d562805258a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omelkonian/setup-agda", "max_forks_repo_path": "Example/Test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b987bcf8dbe1e1699405f26010273d562805258a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omelkonian/setup-agda", "max_issues_repo_path": "Example/Test.agda", "max_line_length": 41, "max_stars_count": 2, "max_stars_repo_head_hexsha": "b987bcf8dbe1e1699405f26010273d562805258a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omelkonian/setup-agda", "max_stars_repo_path": "Example/Test.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T19:15:16.000Z", "max_stars_repo_stars_event_min_datetime": "2020-11-14T12:25:39.000Z", "num_tokens": 66, "size": 218 }
-- Export only the experiments that are expected to compile (without -- any holes) {-# OPTIONS --cubical --no-import-sorts #-} module Cubical.Experiments.Everything where open import Cubical.Experiments.Brunerie public open import Cubical.Experiments.EscardoSIP public open import Cubical.Experiments.Generic public open import Cubical.Experiments.NatMinusTwo open import Cubical.Experiments.Problem open import Cubical.Experiments.FunExtFromUA public open import Cubical.Experiments.HoTT-UF open import Cubical.Experiments.Rng
{ "alphanum_fraction": 0.8336483932, "avg_line_length": 37.7857142857, "ext": "agda", "hexsha": "dc6b4fe94c74a0cca7002482eb15b84a02124e95", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Experiments/Everything.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Experiments/Everything.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Experiments/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 126, "size": 529 }
module Web.URI.Port where open import Web.URI.Port.Primitive public using ( Port? ; :80 ; ε )
{ "alphanum_fraction": 0.7157894737, "avg_line_length": 23.75, "ext": "agda", "hexsha": "91e445dcf3ee7d8874fbbb774cbd1896702a9147", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:37:59.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:37:59.000Z", "max_forks_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-uri", "max_forks_repo_path": "src/Web/URI/Port.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-uri", "max_issues_repo_path": "src/Web/URI/Port.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-uri", "max_stars_repo_path": "src/Web/URI/Port.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:25.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-23T04:56:25.000Z", "num_tokens": 24, "size": 95 }
{-# OPTIONS --experimental-irrelevance #-} -- {-# OPTIONS -v tc:10 #-} module ExplicitLambdaExperimentalIrrelevance where postulate A : Set T : ..(x : A) -> Set -- shape irrelevant type test : .(a : A) -> T a -> Set test a = λ (x : T a) -> A -- this should type check and not complain about irrelevance of a module M .(a : A) where -- should also work with module parameter test1 : T a -> Set test1 = λ (x : T a) -> A
{ "alphanum_fraction": 0.6189376443, "avg_line_length": 24.0555555556, "ext": "agda", "hexsha": "26901ac57be218ab8994072470d8a2e48f7ed75d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/ExplicitLambdaExperimentalIrrelevance.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/ExplicitLambdaExperimentalIrrelevance.agda", "max_line_length": 65, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/ExplicitLambdaExperimentalIrrelevance.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 136, "size": 433 }
module Numeral.Integer where open import Data.Tuple open import Logic import Lvl open import Numeral.Natural open import Numeral.Natural.Oper open import Relator.Equals open import Type open import Type.Quotient -- Equivalence relation of difference equality. -- Essentially (if one would already work in the integers): -- (a₁ , a₂) diff-≡_ (b₁ , b₂) -- ⇔ a₁ + b₂ ≡ a₂ + b₁ -- ⇔ a₁ − a₂ ≡ b₁ − b₂ _diff-≡_ : (ℕ ⨯ ℕ) → (ℕ ⨯ ℕ) → Stmt{Lvl.𝟎} (a₁ , a₂) diff-≡ (b₁ , b₂) = (a₁ + b₂ ≡ a₂ + b₁) ℤ : Type{Lvl.𝟎} ℤ = (ℕ ⨯ ℕ) / (_diff-≡_)
{ "alphanum_fraction": 0.6397058824, "avg_line_length": 24.7272727273, "ext": "agda", "hexsha": "15f5b8482328f24cd6e534e179080d3f394b51c2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Mathematical/Numeral/Integer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Mathematical/Numeral/Integer.agda", "max_line_length": 59, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Mathematical/Numeral/Integer.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 224, "size": 544 }
module hello-world where open import IO open import Data.String open import Data.Nat open import Data.Vec main = run (putStrLn "Hello World!") data Bool : Set where true : Bool false : Bool if_then_else_ : {A : Set} → Bool → A → A → A if true then x else y = x if false then x else y = y new : {A : Set} -> A -> A new x = x _plus_ : {A : Set} -> A -> A -> A x plus y = x vec : Vec Bool 1 vec = true ∷ []
{ "alphanum_fraction": 0.6124401914, "avg_line_length": 14.9285714286, "ext": "agda", "hexsha": "94c575b10ed1d5c93143f694c0e950da9f2bb2c5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "neosimsim/merkdas", "max_forks_repo_path": "hello-agda/hello-world.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "neosimsim/merkdas", "max_issues_repo_path": "hello-agda/hello-world.agda", "max_line_length": 45, "max_stars_count": 1, "max_stars_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "neosimsim/merkdas", "max_stars_repo_path": "hello-agda/hello-world.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-26T08:08:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-26T08:08:13.000Z", "num_tokens": 141, "size": 418 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Rings.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Ideals.Principal.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open import Rings.Ideals.Definition R open import Rings.Divisible.Definition R open Setoid S record PrincipalIdeal {c : _} {pred : A → Set c} (ideal : Ideal pred) : Set (a ⊔ b ⊔ c) where field generator : A genIsInIdeal : pred generator genGenerates : {x : A} → pred x → generator ∣ x
{ "alphanum_fraction": 0.6650165017, "avg_line_length": 31.8947368421, "ext": "agda", "hexsha": "1fe2042b2d0b2cf49ca638072ebbee573ee98ae7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Ideals/Principal/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Ideals/Principal/Definition.agda", "max_line_length": 134, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Ideals/Principal/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 199, "size": 606 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field module Algebra.Linear.Morphism.Properties {k ℓᵏ} (K : Field k ℓᵏ) where open import Level open import Algebra.FunctionProperties as FP import Algebra.Linear.Morphism.Definitions as LinearMorphismDefinitions import Algebra.Morphism as Morphism open import Relation.Binary using (Rel; Setoid) open import Relation.Binary.Morphism.Structures open import Algebra.Morphism open import Algebra.Linear.Structures.VectorSpace K open import Algebra.Linear.Structures.Bundles module _ {a₁ ℓ₁} (From : VectorSpace K a₁ ℓ₁) {a₂ ℓ₂} (To : VectorSpace K a₂ ℓ₂) where open import Algebra.Linear.Morphism.VectorSpace K private module F = VectorSpace From module T = VectorSpace To open VectorSpaceField open F using () renaming ( Carrier to A ; _≈_ to _≈₁_ ; refl to ≈₁-refl ; sym to ≈₁-sym ; trans to ≈₁-trans ; setoid to setoid₁ ; _+_ to _+₁_ ; +-cong to +₁-cong ; +-identityˡ to +₁-identityˡ ; _∙_ to _∙₁_ ; ∙-identity to ∙₁-identity ; ∙-absorbˡ to ∙₁-absorbˡ ; ∙-absorbʳ to ∙₁-absorbʳ ; 0# to 0₁ ) open T using () renaming ( Carrier to B ; _≈_ to _≈₂_ ; refl to ≈₂-refl ; sym to ≈₂-sym ; trans to ≈₂-trans ; setoid to setoid₂ ; _+_ to _+₂_ ; +-cong to +₂-cong ; +-identityˡ to +₂-identityˡ ; _∙_ to _∙₂_ ; ∙-identity to ∙₂-identity ; ∙-absorbˡ to ∙₂-absorbˡ ; ∙-absorbʳ to ∙₂-absorbʳ ; 0# to 0₂ ) open import Function open import Function.Equality open LinearDefinitions (VectorSpace.Carrier From) (VectorSpace.Carrier To) _≈₂_ linear : ∀ (f : setoid₁ ⟶ setoid₂) -> (∀ (a b : K') (u v : A) -> (f ⟨$⟩ (a ∙₁ u +₁ b ∙₁ v)) ≈₂ a ∙₂ (f ⟨$⟩ u) +₂ b ∙₂ (f ⟨$⟩ v)) -> IsLinearMap From To (f ⟨$⟩_) linear f lin = record { isAbelianGroupMorphism = record { gp-homo = record { mn-homo = record { sm-homo = record { ⟦⟧-cong = cong f ; ∙-homo = λ x y → begin f ⟨$⟩ x +₁ y ≈⟨ cong f (+₁-cong (≈₁-sym (∙₁-identity x)) (≈₁-sym (∙₁-identity y))) ⟩ f ⟨$⟩ (1ᵏ ∙₁ x +₁ 1ᵏ ∙₁ y) ≈⟨ lin 1ᵏ 1ᵏ x y ⟩ 1ᵏ ∙₂ (f ⟨$⟩ x) +₂ 1ᵏ ∙₂ (f ⟨$⟩ y) ≈⟨ +₂-cong (∙₂-identity (f ⟨$⟩ x)) (∙₂-identity (f ⟨$⟩ y)) ⟩ (f ⟨$⟩ x) +₂ (f ⟨$⟩ y) ∎ } ; ε-homo = begin f ⟨$⟩ 0₁ ≈⟨ cong f (≈₁-trans (≈₁-sym (+₁-identityˡ 0₁)) (+₁-cong (≈₁-sym (∙₁-absorbˡ 0₁)) (≈₁-sym (∙₁-absorbˡ 0₁)))) ⟩ f ⟨$⟩ 0ᵏ ∙₁ 0₁ +₁ 0ᵏ ∙₁ 0₁ ≈⟨ lin 0ᵏ 0ᵏ 0₁ 0₁ ⟩ 0ᵏ ∙₂ (f ⟨$⟩ 0₁) +₂ 0ᵏ ∙₂ (f ⟨$⟩ 0₁) ≈⟨ ≈₂-trans (+₂-cong (∙₂-absorbˡ (f ⟨$⟩ 0₁)) (∙₂-absorbˡ (f ⟨$⟩ 0₁))) (+₂-identityˡ 0₂) ⟩ 0₂ ∎ } } } ; ∙-homo = λ c u → begin f ⟨$⟩ c ∙₁ u ≈⟨ cong f (≈₁-trans (≈₁-sym (+₁-identityˡ (c ∙₁ u))) (+₁-cong (≈₁-sym (∙₁-absorbˡ 0₁)) ≈₁-refl)) ⟩ f ⟨$⟩ 0ᵏ ∙₁ 0₁ +₁ c ∙₁ u ≈⟨ lin 0ᵏ c 0₁ u ⟩ 0ᵏ ∙₂ (f ⟨$⟩ 0₁) +₂ c ∙₂ (f ⟨$⟩ u) ≈⟨ ≈₂-trans (+₂-cong (∙₂-absorbˡ (f ⟨$⟩ 0₁)) ≈₂-refl) (+₂-identityˡ (c ∙₂ (f ⟨$⟩ u))) ⟩ c ∙₂ (f ⟨$⟩ u) ∎ } where open import Relation.Binary.EqReasoning setoid₂
{ "alphanum_fraction": 0.4787204451, "avg_line_length": 29.9583333333, "ext": "agda", "hexsha": "5b02abb01686366bb1fe19666fdbcf2a88f5432c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Morphism/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Morphism/Properties.agda", "max_line_length": 121, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Morphism/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 1472, "size": 3595 }
module Issue408 where open import Common.Prelude open import Common.Equality -- 1. Agda should prefer to split on an argument that covers data Fin : Nat → Set where zero : {n : Nat} → Fin (suc n) suc : {n : Nat} → Fin n → Fin (suc n) wk : {n : Nat} → Fin n → Fin (suc n) wk zero = zero wk (suc n) = suc (wk n) predFin : (n : Nat) → Fin n → Fin n predFin (suc n) zero = zero predFin (suc n) (suc i) = wk i -- predFin should be covering data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : {n : Nat} (x : A) (xs : Vec A n) → Vec A (suc n) _!!_ : {A : Set}{n : Nat} → Vec A n → Fin n → A (x ∷ xs) !! zero = x (x ∷ xs) !! (suc i) = xs !! i -- should be covering, no need for absurd clause test!!1 : ∀ {A}{n} (x : A) (xs : Vec A n) → (x ∷ xs) !! zero ≡ x test!!1 x xs = refl test!!2 : ∀ {A}{n} (x : A) (xs : Vec A n) i → (x ∷ xs) !! (suc i) ≡ xs !! i test!!2 x xs i = refl -- 2. Agda should prefer to split on an argument that has only -- constructor patterns. For max below, split on 2nd, then on 1st. max : Nat → Nat → Nat max (suc n) (suc m) = suc (max n m) max 0 (suc m) = suc m max n 0 = n testmax1 : {n m : Nat} → max (suc n) (suc m) ≡ suc (max n m) testmax1 = refl testmax2 : {m : Nat} → max 0 (suc m) ≡ suc m testmax2 = refl {- DOES NOT WORK YET testmax3 : {n : Nat} → max n 0 ≡ n testmax3 = refl -- equation should hold definitionally -}
{ "alphanum_fraction": 0.5598290598, "avg_line_length": 25.0714285714, "ext": "agda", "hexsha": "64b2ebbfbf64a6ed99a08b8567e79aad15f42030", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue408.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue408.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue408.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 561, "size": 1404 }
module Extensions.Bool where open import Data.Unit open import Data.Bool open import Relation.Nullary public using (yes; no; ¬_; Dec) data All {p} (P : Set p) : Bool → Set p where true : P → All P true false : All P false data Any {p} (P : Set p) : Bool → Set p where true : P → Any P true all-map : ∀ {p} {P Q : Set p} {b} → All P b → (f : P → Q) → All Q b all-map (true x) f = true (f x) all-map false f = false Is-true : Bool → Set Is-true t = Any ⊤ t is-yes : ∀ {a} {A : Set a} → Dec A → Bool is-yes (yes p) = true is-yes (no ¬p) = false
{ "alphanum_fraction": 0.5917266187, "avg_line_length": 23.1666666667, "ext": "agda", "hexsha": "c61b2d14567d7a7cb3f20404e8bca8a3c1ae1bef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Extensions/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Extensions/Bool.agda", "max_line_length": 67, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Extensions/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 207, "size": 556 }
{-# OPTIONS --erased-cubical #-} -- Modules that use --cubical can be imported when --erased-cubical is -- used. open import Erased-cubical-Import.Cubical -- However, definitions from such modules can only be used in erased -- contexts. _ : {A : Set} → A → ∥ A ∥ _ = ∣_∣
{ "alphanum_fraction": 0.6690909091, "avg_line_length": 21.1538461538, "ext": "agda", "hexsha": "01e44f0f7202e3ce0d63e00259303dee611682dd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Erased-cubical-Import.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Erased-cubical-Import.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Erased-cubical-Import.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 86, "size": 275 }
module CTL.Modalities.EN where open import FStream.Core open import Library -- Eventually (in) Next : p ⊧ φ ⇔ ∃ p[1] ⊧ φ EN' : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream' C (Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂) EN' s = EPred head (inF (tail s)) EN : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream C (Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂) EN s = EPred EN' (inF s) mutual EN'ₛ : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream' C (Set ℓ₂) → FStream' {i} C (Set (ℓ₁ ⊔ ℓ₂)) head (EN'ₛ props) = EN' props tail (EN'ₛ props) = ENₛ (tail props) ENₛ : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream C (Set ℓ₂) → FStream {i} C (Set (ℓ₁ ⊔ ℓ₂)) inF (ENₛ props) = fmap EN'ₛ (inF props)
{ "alphanum_fraction": 0.5635528331, "avg_line_length": 29.6818181818, "ext": "agda", "hexsha": "e898ebe35cdd02d6dc8491a4d4372c7781b23d2e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "zimbatm/condatis", "max_forks_repo_path": "CTL/Modalities/EN.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "zimbatm/condatis", "max_issues_repo_path": "CTL/Modalities/EN.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Aerate/condatis", "max_stars_repo_path": "CTL/Modalities/EN.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z", "num_tokens": 318, "size": 653 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Dec where -- Stdlib imports open import Level using (Level; _⊔_) open import Relation.Nullary using (Dec) open import Relation.Binary using (REL) DecRel : {a b ℓ : Level} {A : Set a} {B : Set b} → REL A B ℓ → Set (a ⊔ b ⊔ ℓ) DecRel R = ∀ x y → Dec (R x y)
{ "alphanum_fraction": 0.6297468354, "avg_line_length": 22.5714285714, "ext": "agda", "hexsha": "05d74f515655fe07fee54a2db2c56e2ebe305f79", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Dec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Dec.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Dec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 105, "size": 316 }
{-# OPTIONS --cubical --prop #-} module Issue2487-2 where import Issue2487.Infective
{ "alphanum_fraction": 0.7325581395, "avg_line_length": 17.2, "ext": "agda", "hexsha": "62e16f69b8736ac2d196360131f9a09cb07b7234", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2487-2.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2487-2.agda", "max_line_length": 32, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2487-2.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 25, "size": 86 }
module #2 where open import Relation.Binary.PropositionalEquality open import #1 {- Exercise 2.2. Show that the three equalities of proofs constructed in the previous exercise form a commutative triangle. In other words, if the three definitions of concatenation are denoted by (p ∘ q), (p ∘ q), and (p ∘ q), then the concatenated equality (p ∘ q) = (p ∘ q) = (p ∘ q) is equal to the equality (p ∘ q) = (p ∘ q). -} composite-commutative-triangle : ∀ {i} {A : Set i}{x y z : A} → (p : x ≡ y) (q : y ≡ z) → composite (composite=composite' p q) (composite'=composite'' p q) ≡ composite=composite'' p q composite-commutative-triangle refl refl = refl
{ "alphanum_fraction": 0.6701649175, "avg_line_length": 35.1052631579, "ext": "agda", "hexsha": "b81a6e006cbc00faaa85a4a6ec3bdf2b9d9a1146", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter2/#2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter2/#2.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter2/#2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 208, "size": 667 }
{-# OPTIONS --without-K #-} open import HoTT {- Useful lemmas for computing the effect of transporting a function - across an equivalence in the domain or codomain. - TODO: find a better place for this. -} module cohomology.FunctionOver where {- transporting a function along an equivalence or path in the domain -} module _ {i} {j} {B : Type i} {C : Type j} (g : B → C) where domain-over-path : {A : Type i} (p : A == B) → g ∘ coe p == g [ (λ D → (D → C)) ↓ p ] domain-over-path idp = idp domain-over-equiv : {A : Type i} (e : A ≃ B) → g ∘ –> e == g [ (λ D → (D → C)) ↓ ua e ] domain-over-equiv e = ↓-app→cst-in $ λ q → ap g (↓-idf-ua-out e q) module _ {i} {j} {A : Type i} {C : Type j} (f : A → C) where domain!-over-path : {B : Type i} (p : A == B) → f == f ∘ coe! p [ (λ D → (D → C)) ↓ p ] domain!-over-path idp = idp domain!-over-equiv : {B : Type i} (e : A ≃ B) → f == f ∘ <– e [ (λ D → (D → C)) ↓ ua e ] domain!-over-equiv e = ↓-app→cst-in $ λ q → ap f (! (<–-inv-l e _) ∙ ap (<– e) (↓-idf-ua-out e q)) {- transporting a ptd function along a equivalence or path in the domain -} module _ {i} {j} {Y : Ptd i} {Z : Ptd j} (g : fst (Y ⊙→ Z)) where domain-over-⊙path : {X : Ptd i} (p : fst X == fst Y) (q : coe p (snd X) == snd Y) → g ⊙∘ (coe p , q) == g [ (λ W → fst (W ⊙→ Z)) ↓ pair= p (↓-idf-in p q) ] domain-over-⊙path idp idp = idp domain-over-⊙equiv : {X : Ptd i} (e : X ⊙≃ Y) → g ⊙∘ ⊙–> e == g [ (λ W → fst (W ⊙→ Z)) ↓ ⊙ua e ] domain-over-⊙equiv {X = X} e = ap (λ w → g ⊙∘ w) (! $ ⊙λ= (coe-β (⊙≃-to-≃ e)) idp) ◃ domain-over-⊙path (ua (⊙≃-to-≃ e)) (coe-β (⊙≃-to-≃ e) (snd X) ∙ snd (⊙–> e)) module _ {i} {j} {X : Ptd i} {Z : Ptd j} (f : fst (X ⊙→ Z)) where domain!-over-⊙path : {Y : Ptd i} (p : fst X == fst Y) (q : coe p (snd X) == snd Y) → f == f ⊙∘ (coe! p , ap (coe! p) (! q) ∙ coe!-inv-l p (snd X)) [ (λ W → fst (W ⊙→ Z)) ↓ pair= p (↓-idf-in p q) ] domain!-over-⊙path idp idp = idp domain!-over-⊙equiv : {Y : Ptd i} (e : X ⊙≃ Y) → f == f ⊙∘ (⊙<– e) [ (λ W → fst (W ⊙→ Z)) ↓ ⊙ua e ] domain!-over-⊙equiv {Y = Y} e = (! (ap (λ w → f ⊙∘ w) (⊙<–-inv-l e)) ∙ ! (⊙∘-assoc f _ (⊙–> e))) ◃ domain-over-⊙equiv (f ⊙∘ (⊙<– e)) e {- transporting a function along an equivalence or path in the codomain -} module _ {i} {j} {A : Type i} {B : Type j} (f : A → B) where codomain-over-path : {C : Type j} (p : B == C) → f == coe p ∘ f [ (λ D → (A → D)) ↓ p ] codomain-over-path idp = idp codomain-over-equiv : {C : Type j} (e : B ≃ C) → f == –> e ∘ f [ (λ D → (A → D)) ↓ ua e ] codomain-over-equiv e = ↓-cst→app-in $ λ _ → ↓-idf-ua-in e idp module _ {i} {j} {A : Type i} {C : Type j} (g : A → C) where codomain!-over-path : {B : Type j} (p : B == C) → coe! p ∘ g == g [ (λ D → (A → D)) ↓ p ] codomain!-over-path idp = idp codomain!-over-equiv : {B : Type j} (e : B ≃ C) → <– e ∘ g == g [ (λ D → (A → D)) ↓ ua e ] codomain!-over-equiv e = ↓-cst→app-in $ λ _ → ↓-idf-ua-in e (<–-inv-r e _) {- transporting a ptd function along a equivalence or path in the codomain -} module _ {i} {j} {X : Ptd i} {Y : Ptd j} (f : fst (X ⊙→ Y)) where codomain-over-⊙path : {Z : Ptd j} (p : fst Y == fst Z) (q : coe p (snd Y) == snd Z) → f == (coe p , q) ⊙∘ f [ (λ W → fst (X ⊙→ W)) ↓ pair= p (↓-idf-in p q) ] codomain-over-⊙path idp idp = pair= idp (! (∙-unit-r _ ∙ ap-idf (snd f))) codomain-over-⊙equiv : {Z : Ptd j} (e : Y ⊙≃ Z) → f == (⊙–> e) ⊙∘ f [ (λ W → fst (X ⊙→ W)) ↓ ⊙ua e ] codomain-over-⊙equiv {Z = Z} e = codomain-over-⊙path (ua (⊙≃-to-≃ e)) (coe-β (⊙≃-to-≃ e) (snd Y) ∙ snd (⊙–> e)) ▹ ap (λ w → w ⊙∘ f) (⊙λ= (coe-β (⊙≃-to-≃ e)) idp) module _ {i} {j} {X : Ptd i} {Z : Ptd j} (g : fst (X ⊙→ Z)) where codomain!-over-⊙path : {Y : Ptd j} (p : fst Y == fst Z) (q : coe p (snd Y) == snd Z) → (coe! p , ap (coe! p) (! q) ∙ coe!-inv-l p (snd Y)) ⊙∘ g == g [ (λ W → fst (X ⊙→ W)) ↓ pair= p (↓-idf-in p q) ] codomain!-over-⊙path idp idp = pair= idp (∙-unit-r _ ∙ ap-idf (snd g)) codomain!-over-⊙equiv : {Y : Ptd j} (e : Y ⊙≃ Z) → (⊙<– e) ⊙∘ g == g [ (λ W → fst (X ⊙→ W)) ↓ ⊙ua e ] codomain!-over-⊙equiv {Y = Y} e = codomain-over-⊙equiv (⊙<– e ⊙∘ g) e ▹ ! (⊙∘-assoc (⊙–> e) _ g) ∙ ap (λ w → w ⊙∘ g) (⊙<–-inv-r e) ∙ ⊙∘-unit-l g module _ {i j} where function-over-paths : {A₁ B₁ : Type i} {A₂ B₂ : Type j} {f : A₁ → A₂} {g : B₁ → B₂} (p₁ : A₁ == B₁) (p₂ : A₂ == B₂) → coe p₂ ∘ f == g ∘ coe p₁ → f == g [ (λ {(A , B) → A → B}) ↓ pair×= p₁ p₂ ] function-over-paths idp idp α = α function-over-equivs : {A₁ B₁ : Type i} {A₂ B₂ : Type j} {f : A₁ → A₂} {g : B₁ → B₂} (e₁ : A₁ ≃ B₁) (e₂ : A₂ ≃ B₂) → –> e₂ ∘ f == g ∘ –> e₁ → f == g [ (λ {(A , B) → A → B}) ↓ pair×= (ua e₁) (ua e₂) ] function-over-equivs {f = f} {g = g} e₁ e₂ α = function-over-paths (ua e₁) (ua e₂) $ transport (λ {(h , k) → h ∘ f == g ∘ k}) (pair×= (! (λ= (coe-β e₂))) (! (λ= (coe-β e₁)))) α {- transporting a group homomorphism along an isomorphism -} domain-over-iso : ∀ {i j} {G H : Group i} {K : Group j} {φ : G →ᴳ H} {ie : is-equiv (GroupHom.f φ)} {ψ : G →ᴳ K} {χ : H →ᴳ K} → GroupHom.f ψ == GroupHom.f χ [ (λ A → A → Group.El K) ↓ ua (GroupHom.f φ , ie) ] → ψ == χ [ (λ J → J →ᴳ K) ↓ group-ua (φ , ie) ] domain-over-iso {K = K} {φ = φ} {ie} {ψ} {χ} p = hom=-↓ _ _ $ ↓-ap-out _ Group.El _ $ transport (λ q → GroupHom.f ψ == GroupHom.f χ [ (λ A → A → Group.El K) ↓ q ]) (! (group-ua-el (φ , ie))) p codomain-over-iso : ∀ {i j} {G : Group i} {H K : Group j} {φ : H →ᴳ K} {ie : is-equiv (GroupHom.f φ)} {ψ : G →ᴳ H} {χ : G →ᴳ K} → GroupHom.f ψ == GroupHom.f χ [ (λ A → Group.El G → A) ↓ ua (GroupHom.f φ , ie) ] → ψ == χ [ (λ J → G →ᴳ J) ↓ group-ua (φ , ie) ] codomain-over-iso {G = G} {φ = φ} {ie} {ψ} {χ} p = hom=-↓ _ _ $ ↓-ap-out _ Group.El _ $ transport (λ q → GroupHom.f ψ == GroupHom.f χ [ (λ A → Group.El G → A) ↓ q ]) (! (group-ua-el (φ , ie))) p hom-over-isos : ∀ {i j} {G₁ H₁ : Group i} {G₂ H₂ : Group j} {φ₁ : G₁ →ᴳ H₁} {ie₁ : is-equiv (GroupHom.f φ₁)} {φ₂ : G₂ →ᴳ H₂} {ie₂ : is-equiv (GroupHom.f φ₂)} {ψ : G₁ →ᴳ G₂} {χ : H₁ →ᴳ H₂} → GroupHom.f ψ == GroupHom.f χ [ (λ {(A , B) → A → B}) ↓ pair×= (ua (GroupHom.f φ₁ , ie₁)) (ua (GroupHom.f φ₂ , ie₂)) ] → ψ == χ [ uncurry _→ᴳ_ ↓ pair×= (group-ua (φ₁ , ie₁)) (group-ua (φ₂ , ie₂)) ] hom-over-isos {φ₁ = φ₁} {ie₁} {φ₂} {ie₂} {ψ} {χ} p = hom=-↓ _ _ $ ↓-ap-out (λ {(A , B) → A → B}) (λ {(G , H) → (Group.El G , Group.El H)}) _ $ transport (λ q → GroupHom.f ψ == GroupHom.f χ [ (λ {(A , B) → A → B}) ↓ q ]) (ap2 (λ p q → pair×= p q) (! (group-ua-el (φ₁ , ie₁))) (! (group-ua-el (φ₂ , ie₂))) ∙ ! (lemma Group.El Group.El (group-ua (φ₁ , ie₁)) (group-ua (φ₂ , ie₂)))) p where lemma : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} (f : A → C) (g : B → D) {x y : A} {w z : B} (p : x == y) (q : w == z) → ap (λ {(a , b) → (f a , g b)}) (pair×= p q) == pair×= (ap f p) (ap g q) lemma f g idp idp = idp
{ "alphanum_fraction": 0.4569966814, "avg_line_length": 40.6292134831, "ext": "agda", "hexsha": "9e2b503890a0c64413c1047d9bdf6551d2b3aa46", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "cohomology/FunctionOver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "cohomology/FunctionOver.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "cohomology/FunctionOver.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 3373, "size": 7232 }
module Numeral.PositiveInteger.Oper.Proofs where open import Functional open import Function.Equals open import Function.Iteration open import Function.Iteration.Proofs open import Logic.Propositional open import Logic.Predicate import Numeral.Natural as ℕ import Numeral.Natural.Oper as ℕ open import Numeral.PositiveInteger open import Numeral.PositiveInteger.Oper open import Relator.Equals open import Relator.Equals.Proofs import Function.Names as Names open import Structure.Function open import Structure.Function.Domain open import Structure.Function.Multi open import Structure.Operator open import Structure.Operator.Monoid import Structure.Operator.Names as Names open import Structure.Operator.Proofs.Util open import Structure.Operator.Proofs open import Structure.Operator.Properties open import Syntax.Transitivity open import Type -- TODO: Move stuff related to ℕ₊-to-ℕ instance ℕ-ℕ₊-preserves-𝐒 : Preserving₁(ℕ₊-to-ℕ)(𝐒)(ℕ.𝐒) Preserving.proof ℕ-ℕ₊-preserves-𝐒 = p where p : Names.Preserving₁(ℕ₊-to-ℕ)(𝐒)(ℕ.𝐒) p {𝟏} = [≡]-intro p {𝐒 x} = congruence₁(ℕ.𝐒) p instance ℕ-ℕ₊-preserves-[+] : Preserving₂(ℕ₊-to-ℕ)(_+_)(ℕ._+_) Preserving.proof ℕ-ℕ₊-preserves-[+] = p where p : Names.Preserving₂(ℕ₊-to-ℕ)(_+_)(ℕ._+_) p {x} {𝟏} = [≡]-intro p {x} {𝐒 y} = congruence₁(ℕ.𝐒) p instance ℕ-ℕ₊-preserves-[⋅] : Preserving₂(ℕ₊-to-ℕ)(_⋅_)(ℕ._⋅_) Preserving.proof ℕ-ℕ₊-preserves-[⋅] {x}{y} = p{x}{y} where p : Names.Preserving₂(ℕ₊-to-ℕ)(_⋅_)(ℕ._⋅_) p {x} {𝟏} = [≡]-intro p {x} {𝐒 y} = ℕ₊-to-ℕ (x + (x ⋅ y)) 🝖[ _≡_ ]-[ preserving₂(ℕ₊-to-ℕ)(_+_)(ℕ._+_) ] (ℕ₊-to-ℕ x) ℕ.+ (ℕ₊-to-ℕ (x ⋅ y)) 🝖[ _≡_ ]-[ congruence₁((ℕ₊-to-ℕ x) ℕ.+_) (p{x}{y}) ] (ℕ₊-to-ℕ x) ℕ.+ ((ℕ₊-to-ℕ x) ℕ.⋅ (ℕ₊-to-ℕ y)) 🝖[ _≡_ ]-end instance 𝐒-from-ℕ-preserves-𝐒 : Preserving₁(𝐒-from-ℕ)(ℕ.𝐒)(𝐒) Preserving.proof 𝐒-from-ℕ-preserves-𝐒 = [≡]-intro instance 𝐒-from-ℕ-preserves-[+] : Preserving₂(𝐒-from-ℕ)(ℕ.𝐒 ∘₂ ℕ._+_)(_+_) Preserving.proof 𝐒-from-ℕ-preserves-[+] = p where p : Names.Preserving₂(𝐒-from-ℕ)(ℕ.𝐒 ∘₂ ℕ._+_)(_+_) p {x}{ℕ.𝟎} = [≡]-intro p {x}{ℕ.𝐒 y} = congruence₁(𝐒) (p {x}{y}) {-instance 𝐒-from-ℕ-preserves-[⋅] : Preserving₂(𝐒-from-ℕ)(ℕ.𝐒 ∘₂ ℕ._⋅_ )(_⋅_) Preserving.proof 𝐒-from-ℕ-preserves-[⋅] = p where p : Names.Preserving₂(𝐒-from-ℕ)(ℕ.𝐒 ∘₂ ℕ._⋅_ )(_⋅_) p {x}{ℕ.𝟎} = {!!} p {x}{ℕ.𝐒 y} = {!!} -} {- 𝐒-from-ℕ (ℕ.𝐒(x ℕ.+ (x ℕ.⋅ ℕ.𝐒(y)))) 🝖[ _≡_ ]-[ preserving₂(𝐒-from-ℕ)(ℕ.𝐒 ∘₂ ℕ._+_)(_+_) ] (𝐒-from-ℕ x) + (𝐒-from-ℕ (x ℕ.⋅ ℕ.𝐒(y))) 🝖[ _≡_ ]-[] (𝐒-from-ℕ x) + (𝐒-from-ℕ (x ℕ.+ (x ℕ.⋅ y))) 🝖[ _≡_ ]-[ congruence₁((𝐒-from-ℕ x) +_) (p{x}{y}) ] (𝐒-from-ℕ x) + ((𝐒-from-ℕ x) ⋅ (𝐒-from-ℕ y)) 🝖[ _≡_ ]-end -} {- instance ℕ₊-to-ℕ-injective : Injective(ℕ₊-to-ℕ) Injective.proof ℕ₊-to-ℕ-injective {𝟏} {𝟏} p = [≡]-intro Injective.proof ℕ₊-to-ℕ-injective {𝟏} {𝐒 y} p = {!congruence₁(\x → ℕ-to-ℕ₊ x ⦃ ? ⦄) p!} Injective.proof ℕ₊-to-ℕ-injective {𝐒 x} {𝟏} p = {!preserving₁(ℕ₊-to-ℕ)(𝐒)(ℕ.𝐒) 🝖 p!} Injective.proof ℕ₊-to-ℕ-injective {𝐒 x} {𝐒 y} p = {!!} -} {- module _ where [+]-repeatᵣ-𝐒 : ∀{x y z : ℕ} → (x + y ≡ repeatᵣ y (const 𝐒) z x) [+]-repeatᵣ-𝐒 {x} {𝟎} = [≡]-intro [+]-repeatᵣ-𝐒 {x} {𝐒 y} {z} = congruence₁(𝐒) ([+]-repeatᵣ-𝐒 {x} {y} {z}) [+]-repeatₗ-𝐒 : ∀{x y z : ℕ} → (x + y ≡ repeatₗ y (const ∘ 𝐒) x z) [+]-repeatₗ-𝐒 {x} {𝟎} = [≡]-intro [+]-repeatₗ-𝐒 {x} {𝐒 y} {z} = congruence₁(𝐒) ([+]-repeatₗ-𝐒 {x} {y} {z}) [⋅]-repeatᵣ-[+] : ∀{x y} → (x ⋅ y ≡ repeatᵣ y (_+_) x 0) [⋅]-repeatᵣ-[+] {x} {𝟎} = [≡]-intro [⋅]-repeatᵣ-[+] {x} {𝐒 y} = congruence₁(x +_) ([⋅]-repeatᵣ-[+] {x} {y}) [^]-repeatᵣ-[⋅] : ∀{x y} → (x ^ y ≡ repeatᵣ y (_⋅_) x 1) [^]-repeatᵣ-[⋅] {x} {𝟎} = [≡]-intro [^]-repeatᵣ-[⋅] {x} {𝐒 y} = congruence₁(x ⋅_) ([^]-repeatᵣ-[⋅] {x} {y}) -} instance [𝐒]-injective : Injective(𝐒) Injective.proof [𝐒]-injective [≡]-intro = [≡]-intro [1+]-𝐒 : ∀{x : ℕ₊} → (𝟏 + x ≡ 𝐒(x)) [1+]-𝐒 {𝟏} = [≡]-intro [1+]-𝐒 {𝐒 x} = congruence₁(𝐒) ([1+]-𝐒 {x}) {-# REWRITE [1+]-𝐒 #-} [+]-step : ∀{x y : ℕ₊} → (𝐒(x) + y) ≡ (x + 𝐒(y)) [+]-step {x} {𝟏} = [≡]-intro [+]-step {x} {𝐒 y} = congruence₁(𝐒) ([+]-step {x} {y}) {-# REWRITE [+]-step #-} [+]-commutativity-raw : Names.Commutativity(_+_) [+]-commutativity-raw {𝟏} {𝟏} = [≡]-intro [+]-commutativity-raw {𝟏} {𝐒 y} = congruence₁(𝐒) ([+]-commutativity-raw {𝟏} {y}) [+]-commutativity-raw {𝐒 x} {𝟏} = congruence₁(𝐒) ([+]-commutativity-raw {x} {𝟏}) [+]-commutativity-raw {𝐒 x} {𝐒 y} = congruence₁(𝐒) (congruence₁(𝐒) ([+]-commutativity-raw {x} {y})) instance [+]-commutativity : Commutativity(_+_) [+]-commutativity = intro [+]-commutativity-raw [+]-associativity-raw : Names.Associativity(_+_) [+]-associativity-raw {x} {y} {𝟏} = [≡]-intro [+]-associativity-raw {x} {y} {𝐒 z} = congruence₁(𝐒) ([+]-associativity-raw {x} {y} {z}) instance [+]-associativity : Associativity(_+_) [+]-associativity = intro [+]-associativity-raw [⋅]-identityₗ-raw : Names.Identityₗ(_⋅_)(𝟏) [⋅]-identityₗ-raw {𝟏} = [≡]-intro [⋅]-identityₗ-raw {𝐒 x} = congruence₁(𝐒) ([⋅]-identityₗ-raw {x}) -- commutativity(_+_) 🝖 congruence₁(𝐒) ([⋅]-identityₗ-raw {x}) {-# REWRITE [⋅]-identityₗ-raw #-} [⋅]-identityᵣ-raw : Names.Identityᵣ(_⋅_)(𝟏) [⋅]-identityᵣ-raw = [≡]-intro instance [⋅]-identityₗ : Identityₗ(_⋅_)(𝟏) [⋅]-identityₗ = intro [⋅]-identityₗ-raw instance [⋅]-identityᵣ : Identityᵣ(_⋅_)(𝟏) [⋅]-identityᵣ = intro [⋅]-identityᵣ-raw instance [⋅]-identity : Identity(_⋅_)(𝟏) [⋅]-identity = intro [⋅]-commutativity-raw : Names.Commutativity(_⋅_) -- TODO: Extract the proof of (x + (𝐒 x + 𝐒 y) ≡ y + (𝐒 x + 𝐒 y)). Note that the properties here can probably also be proven using Function.Repeat.Proofs [⋅]-commutativity-raw {x} {𝟏} = [≡]-intro [⋅]-commutativity-raw {𝟏} {𝐒 y} = [≡]-intro [⋅]-commutativity-raw {𝐒 x} {𝐒 y} = 𝐒 x ⋅ 𝐒 y 🝖[ _≡_ ]-[] 𝐒 x + (𝐒 x ⋅ y) 🝖-[ congruence₁(𝐒) (congruence₂ᵣ(_+_)(x) ([⋅]-commutativity-raw {𝐒 x} {y})) ] 𝐒 x + (y ⋅ 𝐒 x) 🝖[ _≡_ ]-[] 𝐒 x + (y ⋅ 𝐒 x) 🝖[ _≡_ ]-[] 𝐒 x + (y + (y ⋅ x)) 🝖-[ congruence₁(𝐒) (associativity(_+_)) ]-sym (𝐒 x + y) + (y ⋅ x) 🝖[ _≡_ ]-[] 𝐒(x + y) + (y ⋅ x) 🝖-[ congruence₁(𝐒) (congruence₂(_+_) ([+]-commutativity-raw {x}{y}) ([⋅]-commutativity-raw {y}{x})) ] 𝐒(y + x) + (x ⋅ y) 🝖[ _≡_ ]-[] (𝐒 y + x) + (x ⋅ y) 🝖-[ congruence₁(𝐒) (associativity(_+_)) ] 𝐒 y + (x + (x ⋅ y)) 🝖[ _≡_ ]-[] 𝐒 y + (x ⋅ 𝐒 y) 🝖-[ congruence₁(𝐒) (congruence₂ᵣ(_+_)(y) ([⋅]-commutativity-raw {𝐒 y} {x})) ]-sym 𝐒 y + (𝐒 y ⋅ x) 🝖[ _≡_ ]-[] 𝐒 y ⋅ 𝐒 x 🝖-end instance [⋅]-commutativity : Commutativity(_⋅_) [⋅]-commutativity = intro(\{x}{y} → [⋅]-commutativity-raw {x}{y}) [⋅][+]-distributivityᵣ-raw : Names.Distributivityᵣ(_⋅_)(_+_) [⋅][+]-distributivityᵣ-raw {x} {y} {𝟏} = [≡]-intro [⋅][+]-distributivityᵣ-raw {x} {y} {𝐒 z} = (x + y) + ((x + y) ⋅ z) 🝖[ _≡_ ]-[ congruence₁((x + y) +_) ([⋅][+]-distributivityᵣ-raw {x} {y} {z}) ] (x + y) + ((x ⋅ z) + (y ⋅ z)) 🝖[ _≡_ ]-[ One.associate-commute4 {a = x}{y}{x ⋅ z}{y ⋅ z} ([+]-commutativity-raw{x = y}) ] (x + (x ⋅ z)) + (y + (y ⋅ z)) 🝖[ _≡_ ]-[] (x ⋅ 𝐒(z)) + (y ⋅ 𝐒(z)) 🝖[ _≡_ ]-end instance [⋅][+]-distributivityᵣ : Distributivityᵣ(_⋅_)(_+_) [⋅][+]-distributivityᵣ = intro(\{x}{y}{z} → [⋅][+]-distributivityᵣ-raw {x}{y}{z}) instance [⋅][+]-distributivityₗ : Distributivityₗ(_⋅_)(_+_) [⋅][+]-distributivityₗ = [↔]-to-[←] OneTypeTwoOp.distributivity-equivalence-by-commutativity [⋅][+]-distributivityᵣ [⋅]-associativity-raw : Names.Associativity(_⋅_) [⋅]-associativity-raw {x} {y} {𝟏} = [≡]-intro [⋅]-associativity-raw {x} {y} {𝐒 z} = (x ⋅ y) + (x ⋅ y ⋅ z) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x ⋅ y) ([⋅]-associativity-raw {x}{y}{z}) ] (x ⋅ y) + (x ⋅ (y ⋅ z)) 🝖[ _≡_ ]-[ distributivityₗ(_⋅_)(_+_) {x = x}{y = y}{z = y ⋅ z} ]-sym x ⋅ (y + (y ⋅ z)) 🝖-end instance [⋅]-associativity : Associativity(_⋅_) [⋅]-associativity = intro(\{x}{y}{z} → [⋅]-associativity-raw {x}{y}{z}) instance ℕ₊-multiplicative-monoid : Monoid(_⋅_) Monoid.binary-operator ℕ₊-multiplicative-monoid = [≡]-binary-operator Monoid.identity-existence ℕ₊-multiplicative-monoid = [∃]-intro(𝟏) [⋅]-with-[𝐒]ₗ : ∀{x y} → (𝐒(x) ⋅ y ≡ (x ⋅ y) + y) [⋅]-with-[𝐒]ₗ {x}{y} = 𝐒(x) ⋅ y 🝖[ _≡_ ]-[ congruence₁(_⋅ y) [1+]-𝐒 ]-sym (x + 𝟏) ⋅ y 🝖[ _≡_ ]-[ [⋅][+]-distributivityᵣ-raw{x}{𝟏}{y} ] (x ⋅ y) + (𝟏 ⋅ y) 🝖[ _≡_ ]-[ congruence₁((x ⋅ y) +_) ([⋅]-identityₗ-raw {y}) ] (x ⋅ y) + y 🝖[ _≡_ ]-end [⋅]-with-[𝐒]ᵣ : ∀{x y} → (x ⋅ 𝐒(y) ≡ x + (x ⋅ y)) [⋅]-with-[𝐒]ᵣ = [≡]-intro
{ "alphanum_fraction": 0.5412323373, "avg_line_length": 38.8918918919, "ext": "agda", "hexsha": "4e8ff48b5964bd7f6e5d19a9228ffb6091a1b928", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/PositiveInteger/Oper/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/PositiveInteger/Oper/Proofs.agda", "max_line_length": 202, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/PositiveInteger/Oper/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 4695, "size": 8634 }
-- Andreas, 2017-01-26, issue #2436 -- Outlaw coinductive records with eta-equality record U : Set where coinductive eta-equality field f : U -- Infinite eta-expansion would make Agda loop test : U test = _
{ "alphanum_fraction": 0.712962963, "avg_line_length": 16.6153846154, "ext": "agda", "hexsha": "ac729440bfefc8d96e5df889ec67d542c96772d6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2436.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2436.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2436.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 68, "size": 216 }
module Isos.Isomorphism where open import Logics.And public
{ "alphanum_fraction": 0.8360655738, "avg_line_length": 15.25, "ext": "agda", "hexsha": "34652779581fa0b66b80f0c72ca7bd511fe08233", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Isos/Isomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Isos/Isomorphism.agda", "max_line_length": 29, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Isos/Isomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 15, "size": 61 }
{- - Prelude: Play with some basic theorems... -} {-# OPTIONS --rewriting #-} module Prelude where open import Agda.Builtin.Equality public open import Agda.Builtin.Nat renaming (Nat to ℕ) public {-# BUILTIN REWRITE _≡_ #-} -- Identity function id : ∀ {ℓ} {A : Set ℓ} → A → A id x = x _ : id 42 ≡ 42 _ = refl -- Composition _∘_ : ∀ {ℓ m n} {A : Set ℓ} {B : Set m} {C : B → Set n} (g : (b : B) → C b) (f : A → B) → --------- (a : A) → C (f a) (g ∘ f) x = g (f x) _ : (id ∘ id) 42 ≡ id (id 42) _ = refl -- Transitivity trans : ∀ {ℓ} {A : Set ℓ} {x y z : A} (q : y ≡ z) (p : x ≡ y) → --------- x ≡ z trans n refl = n -- Symmetry symm : ∀ {ℓ} {A : Set ℓ} {x y : A} (p : x ≡ y) → --------- y ≡ x symm refl = refl -- Congruence cong : ∀ {ℓ ℓ′} {A : Set ℓ} {B : Set ℓ′} (f : A → B) {x y : A} (p : x ≡ y) → --------- f x ≡ f y cong _ refl = refl cong₂ : ∀ {ℓ ℓ′} {A A′ : Set ℓ} {B : Set ℓ′} (f : A → A′ → B) {x y : A} {x′ y′ : A′} (p : x ≡ y) (q : x′ ≡ y′) → ----------- f x x′ ≡ f y y′ cong₂ _ refl refl = refl -- Substitution subst : ∀ {ℓ ℓ′} {A : Set ℓ} (B : A → Set ℓ′) {x y : A} (p : x ≡ y) → --------- B x → B y subst _ refl = λ a → a -- Type coercion coe : ∀ {ℓ} {A B : Set ℓ} → ----------- A ≡ B → A → B coe r a = subst id r a
{ "alphanum_fraction": 0.4162323157, "avg_line_length": 13.43, "ext": "agda", "hexsha": "02ea11d125b8595a58ac3790026f54d44cb3f95d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "anqurvanillapy/fpl", "max_forks_repo_path": "agda/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "anqurvanillapy/fpl", "max_issues_repo_path": "agda/Prelude.agda", "max_line_length": 55, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "anqurvanillapy/fpl", "max_stars_repo_path": "agda/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-24T22:47:47.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-24T22:47:47.000Z", "num_tokens": 625, "size": 1343 }
-- Andreas, 2018-10-17, re issue #2757 -- -- Matching on runtime-irrelevant arguments is fine -- as long as it produces only one branch. open import Agda.Builtin.Bool open import Agda.Builtin.Equality open import Agda.Builtin.Nat -- Matching on empty types can be erased. data ⊥ : Set where ⊥-elim : ∀{A : Set} → @0 ⊥ → A ⊥-elim () -- Accessibility. data Acc {A : Set} (R : A → A → Set) (x : A) : Set where acc : (∀{y} (y<x : R y x) → Acc R y) → Acc R x -- Accessibility proofs can be erased. wfrec : {A : Set} (R : A → A → Set) {P : A → Set} → (∀{x} → (∀{y} (@0 y<x : R y x) → P y) → P x) → ∀{x} (@0 ax : Acc R x) → P x wfrec R f (acc h) = f λ y<x → wfrec R f (h y<x) -- Non-branching matches can be erased. diag : ∀(@0 x) (y : Bool) (@0 eq : x ≡ y) → Bool diag false false refl = false diag true y refl = y diag' : ∀ x (@0 y : Bool) (@0 eq : x ≡ y) → Bool diag' false false refl = false diag' true y refl = y -- Also for literals. nonBranchLit : ∀ (@0 x) (eq : x ≡ 0) → Set nonBranchLit 0 refl = Nat -- The attribute syntax collides lexically with the as-pattern syntax. userConfusingClashOfAttributesAndAsPatterns : ∀ (@0 x) (eq : x ≡ 0) → Set userConfusingClashOfAttributesAndAsPatterns (x @0) refl = Nat
{ "alphanum_fraction": 0.6064516129, "avg_line_length": 25.8333333333, "ext": "agda", "hexsha": "84414b5435d03dd88f523e0fbe9a4845f261b001", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/EraseSingleConstructorMatches.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/EraseSingleConstructorMatches.agda", "max_line_length": 73, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/EraseSingleConstructorMatches.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 450, "size": 1240 }
open import Relation.Nullary using (¬_) module AKS.Fin where open import AKS.Nat using (ℕ; _+_; _<_) record Fin (n : ℕ) : Set where constructor Fin✓ field i : ℕ i<n : i < n ¬Fin0 : ¬ (Fin 0) ¬Fin0 () from< : ∀ {i n} → i < n → Fin n from< {i} i<n = Fin✓ i i<n
{ "alphanum_fraction": 0.5615942029, "avg_line_length": 15.3333333333, "ext": "agda", "hexsha": "979788c6350543509d7c82ffd054cc46c0bfc895", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Fin.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 112, "size": 276 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Record types with manifest fields and "with", based on Randy -- Pollack's "Dependently Typed Records in Type Theory" ------------------------------------------------------------------------ -- For an example of how this module can be used, see README.Record. {-# OPTIONS --without-K --safe #-} open import Data.Bool.Base using (if_then_else_) open import Data.Empty open import Data.List.Base open import Data.Product hiding (proj₁; proj₂) open import Data.Unit open import Function open import Level open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Decidable -- The module is parametrised by the type of labels, which should come -- with decidable equality. module Record {ℓ : Level} (Label : Set ℓ) (_≟_ : Decidable (_≡_ {A = Label})) where ------------------------------------------------------------------------ -- A Σ-type with a manifest field -- A variant of Σ where the value of the second field is "manifest" -- (given by the first). infix 4 _, record Manifest-Σ {a b} (A : Set a) {B : A → Set b} (f : (x : A) → B x) : Set a where constructor _, field proj₁ : A proj₂ : B proj₁ proj₂ = f proj₁ ------------------------------------------------------------------------ -- Signatures and records mutual infixl 5 _,_∶_ _,_≔_ data Signature s : Set (suc s ⊔ ℓ) where ∅ : Signature s _,_∶_ : (Sig : Signature s) (ℓ : Label) (A : Record Sig → Set s) → Signature s _,_≔_ : (Sig : Signature s) (ℓ : Label) {A : Record Sig → Set s} (a : (r : Record Sig) → A r) → Signature s -- Record is a record type to ensure that the signature can be -- inferred from a value of type Record Sig. record Record {s} (Sig : Signature s) : Set s where eta-equality inductive constructor rec field fun : Record-fun Sig Record-fun : ∀ {s} → Signature s → Set s Record-fun ∅ = Lift _ ⊤ Record-fun (Sig , ℓ ∶ A) = Σ (Record Sig) A Record-fun (Sig , ℓ ≔ a) = Manifest-Σ (Record Sig) a ------------------------------------------------------------------------ -- Labels -- A signature's labels, starting with the last one. labels : ∀ {s} → Signature s → List Label labels ∅ = [] labels (Sig , ℓ ∶ A) = ℓ ∷ labels Sig labels (Sig , ℓ ≔ a) = ℓ ∷ labels Sig -- Inhabited if the label is part of the signature. infix 4 _∈_ _∈_ : ∀ {s} → Label → Signature s → Set ℓ ∈ Sig = foldr (λ ℓ′ → if ⌊ ℓ ≟ ℓ′ ⌋ then (λ _ → ⊤) else id) ⊥ (labels Sig) ------------------------------------------------------------------------ -- Projections -- Signature restriction and projection. (Restriction means removal of -- a given field and all subsequent fields.) Restrict : ∀ {s} (Sig : Signature s) (ℓ : Label) → ℓ ∈ Sig → Signature s Restrict ∅ ℓ () Restrict (Sig , ℓ′ ∶ A) ℓ ℓ∈ with ℓ ≟ ℓ′ ... | yes _ = Sig ... | no _ = Restrict Sig ℓ ℓ∈ Restrict (Sig , ℓ′ ≔ a) ℓ ℓ∈ with ℓ ≟ ℓ′ ... | yes _ = Sig ... | no _ = Restrict Sig ℓ ℓ∈ Restricted : ∀ {s} (Sig : Signature s) (ℓ : Label) → ℓ ∈ Sig → Set s Restricted Sig ℓ ℓ∈ = Record (Restrict Sig ℓ ℓ∈) Proj : ∀ {s} (Sig : Signature s) (ℓ : Label) {ℓ∈ : ℓ ∈ Sig} → Restricted Sig ℓ ℓ∈ → Set s Proj ∅ ℓ {} Proj (Sig , ℓ′ ∶ A) ℓ {ℓ∈} with ℓ ≟ ℓ′ ... | yes _ = A ... | no _ = Proj Sig ℓ {ℓ∈} Proj (_,_≔_ Sig ℓ′ {A = A} a) ℓ {ℓ∈} with ℓ ≟ ℓ′ ... | yes _ = A ... | no _ = Proj Sig ℓ {ℓ∈} -- Record restriction and projection. infixl 5 _∣_ _∣_ : ∀ {s} {Sig : Signature s} → Record Sig → (ℓ : Label) {ℓ∈ : ℓ ∈ Sig} → Restricted Sig ℓ ℓ∈ _∣_ {Sig = ∅} r ℓ {} _∣_ {Sig = Sig , ℓ′ ∶ A} (rec r) ℓ {ℓ∈} with ℓ ≟ ℓ′ ... | yes _ = Σ.proj₁ r ... | no _ = _∣_ (Σ.proj₁ r) ℓ {ℓ∈} _∣_ {Sig = Sig , ℓ′ ≔ a} (rec r) ℓ {ℓ∈} with ℓ ≟ ℓ′ ... | yes _ = Manifest-Σ.proj₁ r ... | no _ = _∣_ (Manifest-Σ.proj₁ r) ℓ {ℓ∈} infixl 5 _·_ _·_ : ∀ {s} {Sig : Signature s} (r : Record Sig) (ℓ : Label) {ℓ∈ : ℓ ∈ Sig} → Proj Sig ℓ {ℓ∈} (r ∣ ℓ) _·_ {Sig = ∅} r ℓ {} _·_ {Sig = Sig , ℓ′ ∶ A} (rec r) ℓ {ℓ∈} with ℓ ≟ ℓ′ ... | yes _ = Σ.proj₂ r ... | no _ = _·_ (Σ.proj₁ r) ℓ {ℓ∈} _·_ {Sig = Sig , ℓ′ ≔ a} (rec r) ℓ {ℓ∈} with ℓ ≟ ℓ′ ... | yes _ = Manifest-Σ.proj₂ r ... | no _ = _·_ (Manifest-Σ.proj₁ r) ℓ {ℓ∈} ------------------------------------------------------------------------ -- With -- Sig With ℓ ≔ a is the signature Sig, but with the ℓ field set to a. mutual infixl 5 _With_≔_ _With_≔_ : ∀ {s} (Sig : Signature s) (ℓ : Label) {ℓ∈ : ℓ ∈ Sig} → ((r : Restricted Sig ℓ ℓ∈) → Proj Sig ℓ r) → Signature s _With_≔_ ∅ ℓ {} a _With_≔_ (Sig , ℓ′ ∶ A) ℓ {ℓ∈} a with ℓ ≟ ℓ′ ... | yes _ = Sig , ℓ′ ≔ a ... | no _ = _With_≔_ Sig ℓ {ℓ∈} a , ℓ′ ∶ A ∘ drop-With _With_≔_ (Sig , ℓ′ ≔ a′) ℓ {ℓ∈} a with ℓ ≟ ℓ′ ... | yes _ = Sig , ℓ′ ≔ a ... | no _ = _With_≔_ Sig ℓ {ℓ∈} a , ℓ′ ≔ a′ ∘ drop-With drop-With : ∀ {s} {Sig : Signature s} {ℓ : Label} {ℓ∈ : ℓ ∈ Sig} {a : (r : Restricted Sig ℓ ℓ∈) → Proj Sig ℓ r} → Record (_With_≔_ Sig ℓ {ℓ∈} a) → Record Sig drop-With {Sig = ∅} {ℓ∈ = ()} r drop-With {Sig = Sig , ℓ′ ∶ A} {ℓ} (rec r) with ℓ ≟ ℓ′ ... | yes _ = rec (Manifest-Σ.proj₁ r , Manifest-Σ.proj₂ r) ... | no _ = rec (drop-With (Σ.proj₁ r) , Σ.proj₂ r) drop-With {Sig = Sig , ℓ′ ≔ a} {ℓ} (rec r) with ℓ ≟ ℓ′ ... | yes _ = rec (Manifest-Σ.proj₁ r ,) ... | no _ = rec (drop-With (Manifest-Σ.proj₁ r) ,)
{ "alphanum_fraction": 0.4922915207, "avg_line_length": 31.5359116022, "ext": "agda", "hexsha": "9252554798a3dcfda3e6b4022af842b7ab18bbaf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Record.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Record.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Record.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2116, "size": 5708 }
-- making sure that the fun clauses are kept in declaration order -- in an interleaved mutual block open import Agda.Builtin.Nat interleaved mutual plus : Nat → Nat → Nat minus : Nat → Nat → Nat -- 0 being neutral plus 0 n = n minus n 0 = n -- other 0 case plus n 0 = n minus 0 n = 0 -- suc suc plus (suc m) (suc n) = suc (suc (plus m n)) minus (suc m) (suc n) = minus m n -- All of these test cases should be true by computation -- It will not be the case if the definitions have been interleaved -- the wrong way around (because the resulting definition would be -- strict in a different argument) open import Agda.Builtin.Equality _ : ∀ {n} → plus 0 n ≡ n _ = refl _ : ∀ {n} → minus n 0 ≡ n _ = refl -- The following should not check with refl; for the same reasons -- _ : ∀ {n} → plus n 0 ≡ n -- _ = refl -- _ : ∀ {n} → minus 0 n ≡ 0 -- _ = refl -- but they are of course provable by case analysis: _ : ∀ n → plus n 0 ≡ n _ = λ where zero → refl (suc _) → refl _ : ∀ n → minus 0 n ≡ 0 _ = λ where zero → refl (suc _) → refl
{ "alphanum_fraction": 0.6122823098, "avg_line_length": 19.8363636364, "ext": "agda", "hexsha": "4f9e6aafb5b21f8420ed40d1018a77587f31f976", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2858-Order.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2858-Order.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2858-Order.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 371, "size": 1091 }
-- Reported by nils.anders.danielsson, Feb 17, 2015 -- See also Issue 292 , Issue 1406 , and Issue 1427. -- The code below is accepted by Agda 2.4.2.2, but not by the current -- maintenance or master branches. data Box (A : Set) : Set where [_] : A → Box A data _≡_ (A : Set) : Set → Set₁ where refl : A ≡ A data _≅_ {A : Set₁} (x : A) : {B : Set₁} → B → Set₂ where refl : x ≅ x -- C could be a typed DSEL. data C : Set → Set₁ where c₁ c₂ : (A : Set) → C (Box A) -- If A is considered forced, the code no longer type-checks. -- D could be some kind of semantics for C. data D : {A : Set} → C A → Set₂ where d₁ : (A : Set) → D (c₁ A) d₂ : (A : Set) → D (c₂ A) module Doesn't-work where -- Let's try to write an eliminator for the part of the semantics -- that concerns c₁ programs. The basic approach doesn't work: D-elim-c₁ : (P : {A : Set} → D (c₁ A) → Set₂) → ((A : Set) → P (d₁ A)) → {A : Set} (x : D (c₁ A)) → P x D-elim-c₁ P p (d₁ A) = p A -- The following trick also fails (but for some reason the absurd -- case is accepted): -- Jesper 2015-12-18 update: this is no longer accepted by the new unifier. --D-elim-c₁-helper : -- (P : {A B : Set} {c : C A} → -- D c → A ≡ Box B → c ≅ c₁ B → Set₂) → -- ((A : Set) → P (d₁ A) refl refl) → -- {A B : Set} {c : C A} -- (x : D c) (eq₂ : c ≅ c₁ B) (eq₁ : A ≡ Box B) → P x eq₁ eq₂ --D-elim-c₁-helper P p (d₂ A) () _ --D-elim-c₁-helper P p (d₁ A) refl refl = p A module Works where -- I can define the eliminators by first defining and proving no -- confusion (following McBride, Goguen and McKinna). However, this -- requires a fair amount of work, and easy dependent pattern -- matching is arguably one of the defining features of Agda. -- -- A quote from "A Few Constructions on Constructors": "The Epigram -- language and system [25, 23] takes these constructions for -- granted. We see no reason why the users of other systems should -- work harder than we do." data ⊥ : Set₁ where No-confusion : ∀ {A B} → C A → C B → Set₁ No-confusion (c₁ A) (c₁ B) = A ≡ B No-confusion (c₂ A) (c₂ B) = A ≡ B No-confusion _ _ = ⊥ no-confusion : ∀ {A B} (x : C A) (y : C B) → A ≡ B → x ≅ y → No-confusion x y no-confusion (c₁ A) .(c₁ A) refl refl = refl no-confusion (c₂ A) .(c₂ A) refl refl = refl D-elim-c₁-helper : (P : {A B : Set} {c : C A} → D c → A ≡ Box B → c ≅ c₁ B → Set₂) → ((A : Set) → P (d₁ A) refl refl) → {A B : Set} {c : C A} (x : D c) (eq₂ : c ≅ c₁ B) (eq₁ : A ≡ Box B) → P x eq₁ eq₂ D-elim-c₁-helper P p (d₁ A) eq₂ eq₁ with no-confusion _ _ eq₁ eq₂ D-elim-c₁-helper P p (d₁ B) refl refl | refl = p B D-elim-c₁-helper P p (d₂ A) eq₂ eq₁ with no-confusion _ _ eq₁ eq₂ D-elim-c₁-helper P p (d₂ A) eq₂ eq₁ | () cast : {A B : Set} {x : C A} {y : C B} → A ≡ B → x ≅ y → D x → D y cast refl refl x = x D-elim-c₁ : (P : {A : Set} → D (c₁ A) → Set₂) → ((A : Set) → P (d₁ A)) → {A : Set} (x : D (c₁ A)) → P x D-elim-c₁ P p x = D-elim-c₁-helper (λ x eq₁ eq₂ → P (cast eq₁ eq₂ x)) p x refl refl -- should type-check
{ "alphanum_fraction": 0.557160804, "avg_line_length": 32.1616161616, "ext": "agda", "hexsha": "591ce2add6f3a556dea4a21a18db0f993815df61", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1435.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1435.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1435.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1251, "size": 3184 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Pointed.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed.Base open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma Π∙ : ∀ {ℓ ℓ'} (A : Type ℓ) (B∙ : A → Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') Π∙ A B∙ = (∀ a → typ (B∙ a)) , (λ a → pt (B∙ a)) Σ∙ : ∀ {ℓ ℓ'} (A∙ : Pointed ℓ) (B∙ : typ A∙ → Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') Σ∙ A∙ B∙ = (Σ[ a ∈ typ A∙ ] typ (B∙ a)) , (pt A∙ , pt (B∙ (pt A∙))) _×∙_ : ∀ {ℓ ℓ'} (A∙ : Pointed ℓ) (B∙ : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') A∙ ×∙ B∙ = ((typ A∙) × (typ B∙)) , (pt A∙ , pt B∙) {- composition of pointed maps -} _∘∙_ : ∀ {ℓA ℓB ℓC} {A : Pointed ℓA} {B : Pointed ℓB} {C : Pointed ℓC} (g : B →∙ C) (f : A →∙ B) → (A →∙ C) (g , g∙) ∘∙ (f , f∙) = (λ x → g (f x)) , ((cong g f∙) ∙ g∙) {- pointed identity -} id∙ : ∀ {ℓA} (A : Pointed ℓA) → (A →∙ A) id∙ A = ((λ x → x) , refl) {- constant pointed map -} const∙ : ∀ {ℓA ℓB} (A : Pointed ℓA) (B : Pointed ℓB) → (A →∙ B) const∙ _ (_ , b) = (λ _ → b) , refl {- left identity law for pointed maps -} ∘∙-idˡ : ∀ {ℓA ℓB} {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → f ∘∙ id∙ A ≡ f ∘∙-idˡ (_ , f∙) = ΣPathP ( refl , (lUnit f∙) ⁻¹ ) {- right identity law for pointed maps -} ∘∙-idʳ : ∀ {ℓA ℓB} {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → id∙ B ∘∙ f ≡ f ∘∙-idʳ (_ , f∙) = ΣPathP ( refl , (rUnit f∙) ⁻¹ ) {- associativity for composition of pointed maps -} ∘∙-assoc : ∀ {ℓA ℓB ℓC ℓD} {A : Pointed ℓA} {B : Pointed ℓB} {C : Pointed ℓC} {D : Pointed ℓD} (h : C →∙ D) (g : B →∙ C) (f : A →∙ B) → (h ∘∙ g) ∘∙ f ≡ h ∘∙ (g ∘∙ f) ∘∙-assoc (h , h∙) (g , g∙) (f , f∙) = ΣPathP (refl , q) where q : (cong (h ∘ g) f∙) ∙ (cong h g∙ ∙ h∙) ≡ cong h (cong g f∙ ∙ g∙) ∙ h∙ q = ( (cong (h ∘ g) f∙) ∙ (cong h g∙ ∙ h∙) ≡⟨ refl ⟩ (cong h (cong g f∙)) ∙ (cong h g∙ ∙ h∙) ≡⟨ assoc (cong h (cong g f∙)) (cong h g∙) h∙ ⟩ (cong h (cong g f∙) ∙ cong h g∙) ∙ h∙ ≡⟨ cong (λ p → p ∙ h∙) ((cong-∙ h (cong g f∙) g∙) ⁻¹) ⟩ (cong h (cong g f∙ ∙ g∙) ∙ h∙) ∎ )
{ "alphanum_fraction": 0.4801279123, "avg_line_length": 39.8, "ext": "agda", "hexsha": "303cf6f32457f7752b17c04b58f0fa85935bef89", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Foundations/Pointed/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Foundations/Pointed/Properties.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Foundations/Pointed/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1179, "size": 2189 }
------------------------------------------------------------------------ -- A variant of set quotients with erased higher constructors ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- Partly following the HoTT book, but adapted for erasure. -- -- Unlike the HoTT book, but following the cubical library (in which -- set quotients were implemented by Zesen Qian and Anders Mörtberg), -- the quotienting relations are not (always) required to be -- propositional. -- The module is parametrised by a notion of equality. The higher -- constructors of the HIT defining quotients use path equality, but -- the supplied notion of equality is used for many other things. import Equality.Path as P module Quotient.Erased {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Decidable-UIP equality-with-J using (Constant) open import Equality.Path.Isomorphisms eq import Equality.Path.Isomorphisms.Univalence eq as U open import Equivalence equality-with-J as Eq using (_≃_) import Equivalence.Erased equality-with-J as EEq open import Equivalence-relation equality-with-J open import Erased.Cubical eq as Er using (Erased; Erasedᴾ; [_]) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as PT using (∥_∥; ∣_∣) open import H-level.Truncation.Propositional.Erased eq as PTᴱ using (∥_∥ᴱ; ∣_∣; Surjectiveᴱ) open import Quotient eq as Q using (_/_) open import Sum equality-with-J open import Surjection equality-with-J using (_↠_) open import Univalence-axiom equality-with-J private variable a a₁ a₂ p r r₁ r₂ : Level A A₁ A₂ B : Type a P : A → Type p R : A → A → Type r f k x y : A ------------------------------------------------------------------------ -- A re-export -- This module re-exports Quotient.Erased.Basics. open import Quotient.Erased.Basics eq public ------------------------------------------------------------------------ -- Preservation lemmas -- Two preservation lemmas for functions. infix 5 _/ᴱ-map-∥∥_ _/ᴱ-map_ _/ᴱ-map-∥∥_ : {@0 R₁ : A₁ → A₁ → Type r₁} {@0 R₂ : A₂ → A₂ → Type r₂} → (A₁→A₂ : A₁ → A₂) → @0 (∀ x y → ∥ R₁ x y ∥ → ∥ R₂ (A₁→A₂ x) (A₁→A₂ y) ∥) → A₁ /ᴱ R₁ → A₂ /ᴱ R₂ _/ᴱ-map-∥∥_ {R₁ = R₁} {R₂ = R₂} A₁→A₂ R₁→R₂ = rec λ where .[]ʳ → [_] ∘ A₁→A₂ .is-setʳ → /ᴱ-is-set .[]-respects-relationʳ {x = x} {y = y} → R₁ x y ↝⟨ ∣_∣ ⟩ ∥ R₁ x y ∥ ↝⟨ R₁→R₂ _ _ ⟩ ∥ R₂ (A₁→A₂ x) (A₁→A₂ y) ∥ ↝⟨ PT.rec /ᴱ-is-set []-respects-relation ⟩□ [ A₁→A₂ x ] ≡ [ A₁→A₂ y ] □ _/ᴱ-map_ : {@0 R₁ : A₁ → A₁ → Type r₁} {@0 R₂ : A₂ → A₂ → Type r₂} → (A₁→A₂ : A₁ → A₂) → @0 (∀ x y → R₁ x y → R₂ (A₁→A₂ x) (A₁→A₂ y)) → A₁ /ᴱ R₁ → A₂ /ᴱ R₂ A₁→A₂ /ᴱ-map R₁→R₂ = A₁→A₂ /ᴱ-map-∥∥ λ x y → PT.∥∥-map (R₁→R₂ x y) -- Two preservation lemmas for logical equivalences. /ᴱ-cong-∥∥-⇔ : {@0 R₁ : A₁ → A₁ → Type r₁} {@0 R₂ : A₂ → A₂ → Type r₂} → (A₁⇔A₂ : A₁ ⇔ A₂) → @0 (∀ x y → ∥ R₁ x y ∥ → ∥ R₂ (_⇔_.to A₁⇔A₂ x) (_⇔_.to A₁⇔A₂ y) ∥) → @0 (∀ x y → ∥ R₂ x y ∥ → ∥ R₁ (_⇔_.from A₁⇔A₂ x) (_⇔_.from A₁⇔A₂ y) ∥) → A₁ /ᴱ R₁ ⇔ A₂ /ᴱ R₂ /ᴱ-cong-∥∥-⇔ A₁⇔A₂ R₁→R₂ R₂→R₁ = record { to = _⇔_.to A₁⇔A₂ /ᴱ-map-∥∥ R₁→R₂ ; from = _⇔_.from A₁⇔A₂ /ᴱ-map-∥∥ R₂→R₁ } /ᴱ-cong-⇔ : {@0 R₁ : A₁ → A₁ → Type r₁} {@0 R₂ : A₂ → A₂ → Type r₂} → (A₁⇔A₂ : A₁ ⇔ A₂) → @0 (∀ x y → R₁ x y → R₂ (_⇔_.to A₁⇔A₂ x) (_⇔_.to A₁⇔A₂ y)) → @0 (∀ x y → R₂ x y → R₁ (_⇔_.from A₁⇔A₂ x) (_⇔_.from A₁⇔A₂ y)) → A₁ /ᴱ R₁ ⇔ A₂ /ᴱ R₂ /ᴱ-cong-⇔ A₁⇔A₂ R₁→R₂ R₂→R₁ = /ᴱ-cong-∥∥-⇔ A₁⇔A₂ (λ x y → PT.∥∥-map (R₁→R₂ x y)) (λ x y → PT.∥∥-map (R₂→R₁ x y)) -- Two preservation lemmas for split surjections. infix 5 _/ᴱ-cong-∥∥-↠_ _/ᴱ-cong-↠_ _/ᴱ-cong-∥∥-↠_ : {@0 R₁ : A₁ → A₁ → Type r₁} {@0 R₂ : A₂ → A₂ → Type r₂} → (A₁↠A₂ : A₁ ↠ A₂) → @0 (∀ x y → ∥ R₁ x y ∥ ⇔ ∥ R₂ (_↠_.to A₁↠A₂ x) (_↠_.to A₁↠A₂ y) ∥) → A₁ /ᴱ R₁ ↠ A₂ /ᴱ R₂ _/ᴱ-cong-∥∥-↠_ {R₁ = R₁} {R₂ = R₂} A₁↠A₂ R₁⇔R₂ = record { logical-equivalence = /ᴱ-cong-∥∥-⇔ (_↠_.logical-equivalence A₁↠A₂) (λ x y → _⇔_.to (R₁⇔R₂ x y)) (λ x y → ∥ R₂ x y ∥ ↝⟨ ≡⇒↝ _ (sym $ cong₂ (λ x y → ∥ R₂ x y ∥) (right-inverse-of x) (right-inverse-of y)) ⟩ ∥ R₂ (to (from x)) (to (from y)) ∥ ↝⟨ _⇔_.from (R₁⇔R₂ _ _) ⟩□ ∥ R₁ (from x) (from y) ∥ □) ; right-inverse-of = elim-prop λ where .[]ʳ x → [ to (from x) ] ≡⟨ cong [_] $ right-inverse-of x ⟩∎ [ x ] ∎ .is-propositionʳ _ → /ᴱ-is-set } where open _↠_ A₁↠A₂ _/ᴱ-cong-↠_ : {@0 R₁ : A₁ → A₁ → Type r₁} {@0 R₂ : A₂ → A₂ → Type r₂} → (A₁↠A₂ : A₁ ↠ A₂) → @0 (∀ x y → R₁ x y ⇔ R₂ (_↠_.to A₁↠A₂ x) (_↠_.to A₁↠A₂ y)) → A₁ /ᴱ R₁ ↠ A₂ /ᴱ R₂ A₁↠A₂ /ᴱ-cong-↠ R₁⇔R₂ = A₁↠A₂ /ᴱ-cong-∥∥-↠ λ x y → PT.∥∥-cong-⇔ (R₁⇔R₂ x y) -- Two preservation lemmas for isomorphisms. infix 5 _/ᴱ-cong-∥∥_ _/ᴱ-cong_ _/ᴱ-cong-∥∥_ : {A₁ : Type a₁} {A₂ : Type a₂} {@0 R₁ : A₁ → A₁ → Type r₁} {@0 R₂ : A₂ → A₂ → Type r₂} → (A₁↔A₂ : A₁ ↔[ k ] A₂) → @0 (∀ x y → ∥ R₁ x y ∥ ⇔ ∥ R₂ (to-implication A₁↔A₂ x) (to-implication A₁↔A₂ y) ∥) → A₁ /ᴱ R₁ ↔[ k ] A₂ /ᴱ R₂ _/ᴱ-cong-∥∥_ {k = k} {R₁ = R₁} {R₂ = R₂} A₁↔A₂′ R₁⇔R₂ = from-bijection (record { surjection = from-isomorphism A₁↔A₂ /ᴱ-cong-∥∥-↠ λ x y → ∥ R₁ x y ∥ ↝⟨ R₁⇔R₂ x y ⟩ ∥ R₂ (to-implication A₁↔A₂′ x) (to-implication A₁↔A₂′ y) ∥ ↝⟨ ≡⇒↝ _ $ cong₂ (λ f g → ∥ R₂ (f x) (g y) ∥) (to-implication∘from-isomorphism k bijection) (to-implication∘from-isomorphism k bijection) ⟩□ ∥ R₂ (to x) (to y) ∥ □ ; left-inverse-of = elim-prop λ where .[]ʳ x → [ from (to x) ] ≡⟨ cong [_] $ left-inverse-of x ⟩∎ [ x ] ∎ .is-propositionʳ _ → /ᴱ-is-set }) where A₁↔A₂ = from-isomorphism A₁↔A₂′ open _↔_ A₁↔A₂ _/ᴱ-cong_ : {A₁ : Type a₁} {A₂ : Type a₂} {@0 R₁ : A₁ → A₁ → Type r₁} {@0 R₂ : A₂ → A₂ → Type r₂} → (A₁↔A₂ : A₁ ↔[ k ] A₂) → @0 (∀ x y → R₁ x y ⇔ R₂ (to-implication A₁↔A₂ x) (to-implication A₁↔A₂ y)) → A₁ /ᴱ R₁ ↔[ k ] A₂ /ᴱ R₂ _/ᴱ-cong_ A₁↔A₂ R₁⇔R₂ = A₁↔A₂ /ᴱ-cong-∥∥ λ x y → PT.∥∥-cong-⇔ (R₁⇔R₂ x y) ------------------------------------------------------------------------ -- Some properties -- [_] is surjective with erased proofs. Surjectiveᴱ-[] : Surjectiveᴱ ([_] {R = R}) Surjectiveᴱ-[] = elim-prop λ where .[]ʳ x → ∣ x , [ refl _ ] ∣ .is-propositionʳ _ → PTᴱ.truncation-is-proposition -- Quotienting by the propositional truncation of a relation is -- equivalent to quotienting by the relation itself. /ᴱ-∥∥≃/ᴱ : A /ᴱ (λ x y → ∥ R x y ∥) ≃ A /ᴱ R /ᴱ-∥∥≃/ᴱ {R = R} = F.id /ᴱ-cong-∥∥ λ x y → ∥ ∥ R x y ∥ ∥ ↔⟨ PT.flatten ⟩□ ∥ R x y ∥ □ -- If R is an equivalence relation, then A /ᴱ R is weakly effective -- (where this is expressed using ∥_∥ᴱ). -- -- This proof is based on that of Proposition 2 in "Quotienting the -- Delay Monad by Weak Bisimilarity" by Chapman, Uustalu and Veltri. weakly-effective : {R : A → A → Type r} → @0 Is-equivalence-relation R → ∥ R x x ∥ᴱ → _≡_ {A = A /ᴱ R} [ x ] [ y ] → ∥ R x y ∥ᴱ weakly-effective {A = A} {r = r} {x = x} {y = y} {R = R} eq ∥Rxx∥ᴱ [x]≡[y] = $⟨ ∥Rxx∥ᴱ ⟩ R′ x [ x ] .proj₁ ↝⟨ ≡⇒→ (cong (λ y → R′ x y .proj₁) [x]≡[y]) ⟩ R′ x [ y ] .proj₁ ↔⟨⟩ ∥ R x y ∥ᴱ □ where R′ : A → A /ᴱ R → ∃ λ (P : Type r) → Erased (Is-proposition P) R′ x = rec λ where .[]ʳ y → ∥ R x y ∥ᴱ , [ PTᴱ.truncation-is-proposition ] .is-setʳ → $⟨ (λ {_ _} → Is-set-∃-Is-proposition ext U.prop-ext) ⟩ Is-set (Proposition r) ↝⟨ H-level-cong _ 2 (∃-cong λ _ → inverse $ Er.Erased↔ .Er.erased) ⦂ (_ → _) ⟩□ Is-set (∃ λ (P : Type r) → Erased (Is-proposition P)) □ .[]-respects-relationʳ {x = y} {y = z} → R y z ↝⟨ (λ r → record { to = flip (eq .Is-equivalence-relation.transitive) r ; from = flip (eq .Is-equivalence-relation.transitive) (eq .Is-equivalence-relation.symmetric r) }) ⟩ R x y ⇔ R x z ↝⟨ EEq._≃ᴱ_.logical-equivalence ∘ PTᴱ.∥∥ᴱ-cong-⇔ ⟩ ∥ R x y ∥ᴱ ⇔ ∥ R x z ∥ᴱ ↔⟨ ⇔↔≡″ ext U.prop-ext ⟩ (∥ R x y ∥ᴱ , _) ≡ (∥ R x z ∥ᴱ , _) ↝⟨ cong (Σ-map id Er.[_]→) ⟩□ (∥ R x y ∥ᴱ , [ _ ]) ≡ (∥ R x z ∥ᴱ , [ _ ]) □ -- If R is an equivalence relation, and R is propositional (for x -- and y), then A /ᴱ R is effective (for x and y). effective : @0 Is-equivalence-relation R → @0 Is-proposition (R x y) → R x x → _≡_ {A = A /ᴱ R} [ x ] [ y ] → R x y effective {R = R} {x = x} {y = y} eq prop Rxx = [ x ] ≡ [ y ] ↝⟨ weakly-effective eq ∣ Rxx ∣ ⟩ ∥ R x y ∥ᴱ ↔⟨ PTᴱ.∥∥ᴱ↔ prop ⟩□ R x y □ -- If R is an equivalence relation, and R is propositional (for x -- and y), then R x y is equivalent to equality of x and y under [_] -- (in erased contexts). @0 related≃[equal] : Is-equivalence-relation R → Is-proposition (R x y) → R x y ≃ _≡_ {A = A /ᴱ R} [ x ] [ y ] related≃[equal] eq prop = Eq.⇔→≃ prop /ᴱ-is-set []-respects-relation (effective eq prop (eq .Is-equivalence-relation.reflexive)) -- If R is an equivalence relation, then ∥ R x y ∥ is equivalent to -- equality of x and y under [_] (in erased contexts). @0 ∥related∥≃[equal] : Is-equivalence-relation R → ∥ R x y ∥ ≃ _≡_ {A = A /ᴱ R} [ x ] [ y ] ∥related∥≃[equal] {R = R} {x = x} {y = y} eq = ∥ R x y ∥ ↝⟨ inverse PT.∥∥ᴱ≃∥∥ ⟩ ∥ R x y ∥ᴱ ↝⟨ Eq.⇔→≃ PTᴱ.truncation-is-proposition /ᴱ-is-set (PTᴱ.rec λ @0 where .PTᴱ.truncation-is-propositionʳ → /ᴱ-is-set .PTᴱ.∣∣ʳ → []-respects-relation) (weakly-effective eq ∣ eq .Is-equivalence-relation.reflexive ∣) ⟩□ [ x ] ≡ [ y ] □ -- Quotienting with equality (for a set) amounts to the same thing as -- not quotienting at all. /ᴱ≡↔ : @0 Is-set A → A /ᴱ _≡_ ↔ A /ᴱ≡↔ A-set = record { surjection = record { logical-equivalence = record { from = [_] ; to = rec λ where .[]ʳ → id .[]-respects-relationʳ → id .is-setʳ → A-set } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = elim-prop λ where .[]ʳ _ → refl _ .is-propositionʳ _ → /ᴱ-is-set } -- Quotienting with a trivial relation amounts to the same thing as -- using the propositional truncation (with erased proofs). /ᴱtrivial↔∥∥ᴱ : @0 (∀ x y → R x y) → A /ᴱ R ↔ ∥ A ∥ᴱ /ᴱtrivial↔∥∥ᴱ {A = A} {R = R} trivial = record { surjection = record { logical-equivalence = record { to = rec-prop λ where .[]ʳ → ∣_∣ .is-propositionʳ → PTᴱ.truncation-is-proposition ; from = PTᴱ.rec λ where .PTᴱ.∣∣ʳ → [_] .PTᴱ.truncation-is-propositionʳ → elim-prop λ @0 where .is-propositionʳ _ → Π-closure ext 1 λ _ → /ᴱ-is-set .[]ʳ x → elim-prop λ @0 where .is-propositionʳ _ → /ᴱ-is-set .[]ʳ y → []-respects-relation (trivial x y) } ; right-inverse-of = PTᴱ.elim λ where .PTᴱ.∣∣ʳ _ → refl _ .PTᴱ.truncation-is-propositionʳ _ → ⇒≡ 1 PTᴱ.truncation-is-proposition } ; left-inverse-of = elim-prop λ where .[]ʳ _ → refl _ .is-propositionʳ _ → /ᴱ-is-set } ------------------------------------------------------------------------ -- A property related to ∥_∥ᴱ, proved using _/ᴱ_ -- Having a constant function (with an erased proof of constancy) into -- a set is equivalent to having a function from a propositionally -- truncated type (with erased proofs) into the set. -- -- The statement of this result is adapted from that of -- Proposition 2.2 in "The General Universal Property of the -- Propositional Truncation" by Kraus. Σ→Erased-Constant≃∥∥ᴱ→ : @0 Is-set B → (∃ λ (f : A → B) → Erased (Constant f)) ≃ (∥ A ∥ᴱ → B) Σ→Erased-Constant≃∥∥ᴱ→ {B = B} {A = A} B-set = (∃ λ (f : A → B) → Erased (Constant f)) ↔⟨ lemma ⟩ (A /ᴱ (λ _ _ → ⊤) → B) ↝⟨ →-cong₁ ext (/ᴱtrivial↔∥∥ᴱ _) ⟩□ (∥ A ∥ᴱ → B) □ where lemma : _ ↔ _ lemma = record { surjection = record { logical-equivalence = record { to = λ (f , [ c ]) → rec λ where .[]ʳ → f .[]-respects-relationʳ _ → c _ _ .is-setʳ → B-set ; from = λ f → (f ∘ [_]) , [ (λ _ _ → cong f ([]-respects-relation _)) ] } ; right-inverse-of = λ f → ⟨ext⟩ $ elim λ where .[]ʳ _ → refl _ .[]-respects-relationʳ _ → B-set _ _ .is-setʳ _ → mono₁ 2 B-set } ; left-inverse-of = λ _ → Σ-≡,≡→≡ (refl _) (Er.H-level-Erased 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → B-set) _ _) } -- The two directions of the proposition above compute in the -- "right" way. _ : (@0 B-set : Is-set B) → _≃_.to (Σ→Erased-Constant≃∥∥ᴱ→ B-set) f ∣ x ∣ ≡ proj₁ f x _ = λ _ → refl _ _ : (@0 B-set : Is-set B) → proj₁ (_≃_.from (Σ→Erased-Constant≃∥∥ᴱ→ B-set) f) x ≡ f ∣ x ∣ _ = λ _ → refl _ ------------------------------------------------------------------------ -- Various type formers commute with quotients -- _⊎_ commutes with quotients. ⊎/ᴱ : {@0 R₁ : A₁ → A₁ → Type r} {@0 R₂ : A₂ → A₂ → Type r} → (A₁ ⊎ A₂) /ᴱ (R₁ ⊎ᴾ R₂) ≃ (A₁ /ᴱ R₁ ⊎ A₂ /ᴱ R₂) ⊎/ᴱ = Eq.↔→≃ (rec λ where .[]ʳ → ⊎-map [_] [_] .is-setʳ → ⊎-closure 0 /ᴱ-is-set /ᴱ-is-set .[]-respects-relationʳ {x = inj₁ _} {y = inj₁ _} → cong inj₁ ∘ []-respects-relation .[]-respects-relationʳ {x = inj₂ _} {y = inj₂ _} → cong inj₂ ∘ []-respects-relation) Prelude.[ rec (λ where .[]ʳ x → [ inj₁ x ] .[]-respects-relationʳ → []-respects-relation .is-setʳ → /ᴱ-is-set) , rec (λ where .[]ʳ x → [ inj₂ x ] .[]-respects-relationʳ → []-respects-relation .is-setʳ → /ᴱ-is-set) ] Prelude.[ elim-prop (λ where .[]ʳ _ → refl _ .is-propositionʳ _ → ⊎-closure 0 /ᴱ-is-set /ᴱ-is-set) , elim-prop (λ where .[]ʳ _ → refl _ .is-propositionʳ _ → ⊎-closure 0 /ᴱ-is-set /ᴱ-is-set) ] (elim-prop λ where .[]ʳ → Prelude.[ (λ _ → refl _) , (λ _ → refl _) ] .is-propositionʳ _ → /ᴱ-is-set) -- Maybe commutes with quotients. -- -- Chapman, Uustalu and Veltri mention a similar result in -- "Quotienting the Delay Monad by Weak Bisimilarity". Maybe/ᴱ : {@0 R : A → A → Type r} → Maybe A /ᴱ Maybeᴾ R ≃ Maybe (A /ᴱ R) Maybe/ᴱ {A = A} {R = R} = Maybe A /ᴱ Maybeᴾ R ↝⟨ ⊎/ᴱ ⟩ ⊤ /ᴱ Trivial ⊎ A /ᴱ R ↔⟨ /ᴱtrivial↔∥∥ᴱ _ ⊎-cong F.id ⟩ ∥ ⊤ ∥ᴱ ⊎ A /ᴱ R ↔⟨ PTᴱ.∥∥ᴱ↔ (mono₁ 0 ⊤-contractible) ⊎-cong F.id ⟩□ Maybe (A /ᴱ R) □ -- A simplification lemma for Maybe/-comm. Maybe/ᴱ-[] : {@0 R : A → A → Type r} → _≃_.to (Maybe/ᴱ {R = R}) ∘ [_] ≡ ⊎-map id ([_] {R = R}) Maybe/ᴱ-[] = ⟨ext⟩ λ x → _≃_.to Maybe/ᴱ [ x ] ≡⟨⟩ ⊎-map _ id (⊎-map _ id (⊎-map [_] [_] x)) ≡⟨ sym $ ⊎-map-∘ (⊎-map [_] [_] x) ⟩ ⊎-map _ id (⊎-map [_] [_] x) ≡⟨ sym $ ⊎-map-∘ x ⟩∎ ⊎-map id [_] x ∎ -- Cartesian products commute with quotients, assuming that the two -- binary relations involved in the statement are reflexive. ×/ᴱ : {@0 R₁ : A₁ → A₁ → Type r₁} {@0 R₂ : A₂ → A₂ → Type r₂} → @0 (∀ {x} → R₁ x x) → @0 (∀ {x} → R₂ x x) → (A₁ × A₂) /ᴱ (R₁ ×ᴾ R₂) ≃ (A₁ /ᴱ R₁ × A₂ /ᴱ R₂) ×/ᴱ {R₁ = R₁} {R₂ = R₂} R₁-refl R₂-refl = Eq.↔→≃ (rec λ where .is-setʳ → ×-closure 2 /ᴱ-is-set /ᴱ-is-set .[]ʳ → Σ-map [_] [_] .[]-respects-relationʳ {x = x₁ , x₂} {y = y₁ , y₂} → R₁ x₁ y₁ × R₂ x₂ y₂ ↝⟨ Σ-map []-respects-relation []-respects-relation ⟩ [ x₁ ] ≡ [ y₁ ] × [ x₂ ] ≡ [ y₂ ] ↝⟨ uncurry (cong₂ _,_) ⟩□ ([ x₁ ] , [ x₂ ]) ≡ ([ y₁ ] , [ y₂ ]) □) (uncurry $ rec λ where .is-setʳ → Π-closure ext 2 λ _ → /ᴱ-is-set .[]ʳ x → (x ,_) /ᴱ-map λ y₁ y₂ → R₂ y₁ y₂ ↝⟨ R₁-refl ,_ ⟩□ R₁ x x × R₂ y₁ y₂ □ .[]-respects-relationʳ {x = x₁} {y = x₂} R₁x₁x₂ → ⟨ext⟩ $ elim-prop λ @0 where .is-propositionʳ _ → /ᴱ-is-set .[]ʳ y → [ (x₁ , y) ] ≡⟨ []-respects-relation (R₁x₁x₂ , R₂-refl) ⟩∎ [ (x₂ , y) ] ∎) (uncurry $ elim-prop λ where .is-propositionʳ _ → Π-closure ext 1 λ _ → ×-closure 2 /ᴱ-is-set /ᴱ-is-set .[]ʳ _ → elim-prop λ where .is-propositionʳ _ → ×-closure 2 /ᴱ-is-set /ᴱ-is-set .[]ʳ _ → refl _) (elim-prop λ where .is-propositionʳ _ → /ᴱ-is-set .[]ʳ _ → refl _) -- The sigma type former commutes (kind of) with quotients, assuming -- that the second projections come from propositional types. Σ/ᴱ : @0 (∀ {x} → Is-proposition (P x)) → Σ (A /ᴱ R) P ≃ Σ A (P ∘ [_]) /ᴱ (R on proj₁) Σ/ᴱ {A = A} {R = R} {P = P} prop = Eq.↔→≃ (uncurry $ elim λ where .is-setʳ _ → Π-closure ext 2 λ _ → /ᴱ-is-set .[]ʳ → curry [_] .[]-respects-relationʳ {x = x} {y = y} r → ⟨ext⟩ λ P[y] → subst (λ x → P x → Σ A (P ∘ [_]) /ᴱ (R on proj₁)) ([]-respects-relation r) (curry [_] x) P[y] ≡⟨ subst-→-domain P {f = curry [_] x} ([]-respects-relation r) ⟩ [ (x , subst P (sym $ []-respects-relation r) P[y]) ] ≡⟨ []-respects-relation r ⟩∎ [ (y , P[y]) ] ∎) (rec λ where .is-setʳ → Σ-closure 2 /ᴱ-is-set (λ _ → mono₁ 1 prop) .[]ʳ → Σ-map [_] id .[]-respects-relationʳ {x = (x₁ , x₂)} {y = (y₁ , y₂)} → R x₁ y₁ ↝⟨ []-respects-relation ⟩ [ x₁ ] ≡ [ y₁ ] ↔⟨ ignore-propositional-component prop ⟩ ([ x₁ ] , x₂) ≡ ([ y₁ ] , y₂) □) (elim-prop λ where .[]ʳ _ → refl _ .is-propositionʳ _ → /ᴱ-is-set) (uncurry $ elim-prop λ where .[]ʳ _ _ → refl _ .is-propositionʳ _ → Π-closure ext 1 λ _ → Σ-closure 2 /ᴱ-is-set (λ _ → mono₁ 1 prop)) -- Erased commutes with quotients if certain conditions hold. Erased/ᴱ : {@0 A : Type a} {@0 R : A → A → Type r} → @0 Is-set A → @0 (∀ {x y} → R x y → x ≡ y) → Erased A /ᴱ Erasedᴾ R ≃ Erased (A /ᴱ R) Erased/ᴱ {A = A} {R = R} set R→≡ = Eq.↔→≃ (rec λ where .is-setʳ → Er.H-level-Erased 2 /ᴱ-is-set .[]ʳ → Er.map [_] .[]-respects-relationʳ [ Rxy ] → Er.[]-cong [ []-respects-relation Rxy ]) (λ ([ x ]) → [ [ from′ x ] ]) (λ ([ x ]) → Er.[]-cong [ flip (elim-prop {P = λ x → [ from′ x ] ≡ x}) x (λ @0 where .is-propositionʳ _ → /ᴱ-is-set .[]ʳ _ → refl _) ]) (elim-prop λ where .is-propositionʳ _ → /ᴱ-is-set .[]ʳ _ → refl _) where @0 from′ : A /ᴱ R → A from′ = rec λ @0 where .is-setʳ → set .[]ʳ → id .[]-respects-relationʳ → R→≡
{ "alphanum_fraction": 0.4621113834, "avg_line_length": 35.6963979417, "ext": "agda", "hexsha": "2a3469bcc6b391cfea84cd52b90ad703aa806d5f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Quotient/Erased.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Quotient/Erased.agda", "max_line_length": 138, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Quotient/Erased.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 8628, "size": 20811 }
open import Agda.Builtin.Reflection open import Agda.Builtin.Unit -- WORKS macro idT : Term → Term → TC ⊤ idT = unify -- FAILS macro test = unify
{ "alphanum_fraction": 0.6838709677, "avg_line_length": 11.9230769231, "ext": "agda", "hexsha": "9e8df450de318c30e3de2cf5f5bf9eca358fee7a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1943.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1943.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1943.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 52, "size": 155 }
-- Andreas, 2013-11-23 -- postulates are now alsow allowed in old-style mutual blocks open import Common.Prelude mutual even : Nat → Bool even zero = true even (suc n) = odd n postulate odd : Nat → Bool -- Error WAS: Postulates are not allowed in mutual blocks
{ "alphanum_fraction": 0.6892857143, "avg_line_length": 18.6666666667, "ext": "agda", "hexsha": "ebec9a40c096bd53ef84580c5e39514a518fa1c1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue977.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue977.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue977.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 83, "size": 280 }
module Preduploid.Functor where open import Preduploid open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) open import Level private variable p q r s : Polarity record Functor {o₁ ℓ₁ o₂ ℓ₂} (𝒞 : Preduploid o₁ ℓ₁) (𝒟 : Preduploid o₂ ℓ₂) : Set (levelOfTerm 𝒞 ⊔ levelOfTerm 𝒟) where private module 𝒞 = Preduploid.Preduploid 𝒞 module 𝒟 = Preduploid.Preduploid 𝒟 open 𝒟 field F₀ : 𝒞.Ob p -> Ob p F₁ : forall {A : 𝒞.Ob p} {B : 𝒞.Ob q} -> A 𝒞.⇒ B -> F₀ A ⇒ F₀ B identity : forall {A : 𝒞.Ob p} -> F₁ 𝒞.id ≡ id {A = F₀ A} homomorphism : forall {A : 𝒞.Ob p} {B : 𝒞.Ob q} {C : 𝒞.Ob r} {f : A 𝒞.⇒ B} {g : B 𝒞.⇒ C} -> F₁ (g 𝒞.⊙ f) ≡ F₁ g ⊙ F₁ f
{ "alphanum_fraction": 0.6034236805, "avg_line_length": 25.962962963, "ext": "agda", "hexsha": "45410144e052ce3dc05705226d0921cd698fdb31", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16def03e15bb8d71680bea60ae758ab37f4b2df9", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "elpinal/duploids", "max_forks_repo_path": "Preduploid/Functor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "16def03e15bb8d71680bea60ae758ab37f4b2df9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "elpinal/duploids", "max_issues_repo_path": "Preduploid/Functor.agda", "max_line_length": 92, "max_stars_count": 5, "max_stars_repo_head_hexsha": "16def03e15bb8d71680bea60ae758ab37f4b2df9", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "elpinal/duploids", "max_stars_repo_path": "Preduploid/Functor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-13T22:35:15.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-09T01:39:36.000Z", "num_tokens": 334, "size": 701 }
open import Prelude open import Algebra open import Algebra.Monus module Codata.Segments {ℓ} (mon : CTMAPOM ℓ) where open CTMAPOM mon private variable i j : 𝑆 -- This is a type which contains some finite and some infinite lists. -- The idea is that each entry contains a parameter (w) which says -- how much coinductive "fuel" it uses. -- The Colist′ A i type represents a colist which is defined down to depth -- i; the Colist A type represents a "true" colist, i.e. a colist defined for -- any given depth. infixr 5 _◃_ data Colist′ {a} (A : Type a) (i : 𝑆) : Type (a ℓ⊔ ℓ) where _◃_ : ∀ w → -- Segment size ( (w<i : w < i) → -- If there is enough fuel left (i is the fuel) -- (also the _<_ type is a proposition) A × Colist′ A (i ∸ w) -- Produce an element followed by the rest of -- the list, with w taken out of the fuel. ) → Colist′ A i Colist : Type a → Type (a ℓ⊔ ℓ) Colist A = ∀ {i} → Colist′ A i -- The main interesting things tyhis type can do are the following: -- * Infinite lists. -- * The "fuel" parameter can be an arbitrary monoid, not just ℕ -- * Finite lists can also be specified, and the way we say something is -- finite is by taking no fuel. -- * Everything seems to correspond correctly to the monus axioms. -------------------------------------------------------------------------------- -- Finite colists -------------------------------------------------------------------------------- -- By adding a finite prefix you don't have to use any of the fuel. _∹_ : A → Colist A → Colist A x ∹ xs = ε ◃ λ _ → x , xs -------------------------------------------------------------------------------- -- Empty colists -------------------------------------------------------------------------------- -- To terminate computation you use all the fuel, making an empty list. -- (I'm not sure how principled this is: semantically I don't know if I like -- that the size of a segment can depend on the supplied size parameter). empty : Colist A empty {i = i} = i ◃ λ i<i → ⊥-elim (irrefl i<i) -------------------------------------------------------------------------------- -- Finite derived colists -------------------------------------------------------------------------------- -- singleton pure : A → Colist A pure x = x ∹ empty replicate : ℕ → A → Colist A replicate zero x = empty replicate (suc n) x = x ∹ replicate n x -------------------------------------------------------------------------------- -- Infinite colists -------------------------------------------------------------------------------- -- This unfold function produces an infinite list; it needs every size segment -- be non empty so that each step uses some fuel. This is what provides the -- termination argument. module _ (B : 𝑆 → Type b) -- The seed type (ϕ : ∀ {i} → -- At depth i B i → -- With this seed ∃ w × -- Produce a segment of size w (w ≢ ε) × -- w can't be ε, so that we use some of the fuel to prove -- termination ((w<i : w < i) → A × B (i ∸ w)) -- And produce the cons constructor. ) -- ^ The step function where unfold′ : Acc _<_ i → B i → Colist′ A i unfold′ a = uncurry _◃_ ∘ map₂ (λ { (w≢ε , xs′) w<i → map₂ (case a of λ { (acc wf) → unfold′ (wf _ (∸‿<-< _ _ w<i w≢ε)) }) (xs′ w<i) }) ∘ ϕ unfold : (fdc : WellFounded _<_) (B : 𝑆 → Type b) (ϕ : ∀ {i} → B i → ∃ w × (w ≢ ε) × ((w<i : w < i) → A × B (i ∸ w))) → (∀ {i} → B i) → Colist A unfold fdc B ϕ xs {i} = unfold′ B ϕ (fdc i) xs -- Here's a simple example using the unfold function: this produces infinitely -- repeated values, with segment size s. repeat : (fdc : WellFounded _<_) (s : 𝑆) (s≢ε : s ≢ ε) (x : A) → Colist A repeat fdc s s≢ε x = unfold fdc (const ⊤) (λ _ → s , s≢ε , const (x , tt)) tt -------------------------------------------------------------------------------- -- Manipulating colists -------------------------------------------------------------------------------- -- One important thing to note about the Colist type: it is inductive! -- Although it does technically represent "coinduction", the constructors and -- type itself are inductive as far as Agda can see. For that reason functions -- like map pass the termination checker with no extra ceremony. map : (A → B) → Colist′ A i → Colist′ B i map f (w ◃ xs) = w ◃ λ w<i → case xs w<i of λ { (y , ys) → f y , map f ys } -- You can extract a finite prefix of the colist. open import Data.List using (List; _∷_; []) take′ : ∀ i → Colist′ A i → List A take′ i (w ◃ xs) with w <? i ... | no _ = [] ... | yes w<i with xs w<i ... | y , ys = y ∷ take′ _ ys take : 𝑆 → Colist A → List A take x xs = take′ x xs
{ "alphanum_fraction": 0.4837087691, "avg_line_length": 37.3834586466, "ext": "agda", "hexsha": "376420dd166388c340d950976b5563351711c068", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Codata/Segments.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Codata/Segments.agda", "max_line_length": 80, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Codata/Segments.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1317, "size": 4972 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.DistributiveLattice {dl₁ dl₂} (DL : DistributiveLattice dl₁ dl₂) where open DistributiveLattice DL import Algebra.Properties.Lattice private open module L = Algebra.Properties.Lattice lattice public hiding (replace-equality) open import Algebra.Structures open import Algebra.FunctionProperties _≈_ open import Relation.Binary open import Relation.Binary.Reasoning.Setoid setoid open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; module Equivalence) open import Data.Product using (_,_) ∨-∧-distribˡ : _∨_ DistributesOverˡ _∧_ ∨-∧-distribˡ x y z = begin x ∨ y ∧ z ≈⟨ ∨-comm _ _ ⟩ y ∧ z ∨ x ≈⟨ ∨-∧-distribʳ _ _ _ ⟩ (y ∨ x) ∧ (z ∨ x) ≈⟨ ∨-comm _ _ ⟨ ∧-cong ⟩ ∨-comm _ _ ⟩ (x ∨ y) ∧ (x ∨ z) ∎ ∨-∧-distrib : _∨_ DistributesOver _∧_ ∨-∧-distrib = ∨-∧-distribˡ , ∨-∧-distribʳ ∧-∨-distribˡ : _∧_ DistributesOverˡ _∨_ ∧-∨-distribˡ x y z = begin x ∧ (y ∨ z) ≈⟨ ∧-congʳ $ sym (∧-absorbs-∨ _ _) ⟩ (x ∧ (x ∨ y)) ∧ (y ∨ z) ≈⟨ ∧-congʳ $ ∧-congˡ $ ∨-comm _ _ ⟩ (x ∧ (y ∨ x)) ∧ (y ∨ z) ≈⟨ ∧-assoc _ _ _ ⟩ x ∧ ((y ∨ x) ∧ (y ∨ z)) ≈⟨ ∧-congˡ $ sym (∨-∧-distribˡ _ _ _) ⟩ x ∧ (y ∨ x ∧ z) ≈⟨ ∧-congʳ $ sym (∨-absorbs-∧ _ _) ⟩ (x ∨ x ∧ z) ∧ (y ∨ x ∧ z) ≈⟨ sym $ ∨-∧-distribʳ _ _ _ ⟩ x ∧ y ∨ x ∧ z ∎ ∧-∨-distribʳ : _∧_ DistributesOverʳ _∨_ ∧-∨-distribʳ x y z = begin (y ∨ z) ∧ x ≈⟨ ∧-comm _ _ ⟩ x ∧ (y ∨ z) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩ x ∧ y ∨ x ∧ z ≈⟨ ∧-comm _ _ ⟨ ∨-cong ⟩ ∧-comm _ _ ⟩ y ∧ x ∨ z ∧ x ∎ ∧-∨-distrib : _∧_ DistributesOver _∨_ ∧-∨-distrib = ∧-∨-distribˡ , ∧-∨-distribʳ -- The dual construction is also a distributive lattice. ∧-∨-isDistributiveLattice : IsDistributiveLattice _≈_ _∧_ _∨_ ∧-∨-isDistributiveLattice = record { isLattice = ∧-∨-isLattice ; ∨-∧-distribʳ = ∧-∨-distribʳ } ∧-∨-distributiveLattice : DistributiveLattice _ _ ∧-∨-distributiveLattice = record { _∧_ = _∨_ ; _∨_ = _∧_ ; isDistributiveLattice = ∧-∨-isDistributiveLattice } -- One can replace the underlying equality with an equivalent one. replace-equality : {_≈′_ : Rel Carrier dl₂} → (∀ {x y} → x ≈ y ⇔ (x ≈′ y)) → DistributiveLattice _ _ replace-equality {_≈′_} ≈⇔≈′ = record { _≈_ = _≈′_ ; _∧_ = _∧_ ; _∨_ = _∨_ ; isDistributiveLattice = record { isLattice = Lattice.isLattice (L.replace-equality ≈⇔≈′) ; ∨-∧-distribʳ = λ x y z → to ⟨$⟩ ∨-∧-distribʳ x y z } } where open module E {x y} = Equivalence (≈⇔≈′ {x} {y})
{ "alphanum_fraction": 0.5306262904, "avg_line_length": 33.0227272727, "ext": "agda", "hexsha": "e393d36e48ec105ffb384ff1d2b9d9f25aa35579", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/DistributiveLattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/DistributiveLattice.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/DistributiveLattice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1238, "size": 2906 }
-- Andreas, 2020-03-27, issue #3684 -- Warn about invalid fields instead of hard error. module TooManyFields where postulate X : Set record D : Set where field x : X d : X -> D d x = record {x = x; y = x}
{ "alphanum_fraction": 0.654028436, "avg_line_length": 16.2307692308, "ext": "agda", "hexsha": "8a7eef3a63bd36d4d7fcd6765501176046f080ed", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/TooManyFields.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/TooManyFields.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/TooManyFields.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 69, "size": 211 }
module Logic{ℓ} where -- open import Logic -- open import Logic.Classical -- Everything is computably decidable -- instance postulate classical : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) Stmt : _ Stmt = Set(ℓ) -- Prop(ℓ) open import Agda.Primitive public renaming (Setω to Stmtω)
{ "alphanum_fraction": 0.7050359712, "avg_line_length": 19.8571428571, "ext": "agda", "hexsha": "c18b2cb53de3dd8dd0e3bcae557a488126f66b9a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Mathematical/Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Mathematical/Logic.agda", "max_line_length": 66, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Mathematical/Logic.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 83, "size": 278 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to Fin, and operations making use of these -- properties (or other properties not available in Data.Fin) ------------------------------------------------------------------------ module Data.Fin.Properties where open import Algebra open import Data.Fin open import Data.Nat as N using (ℕ; zero; suc; s≤s; z≤n; _∸_) renaming (_≤_ to _ℕ≤_; _<_ to _ℕ<_; _+_ to _ℕ+_) import Data.Nat.Properties as N open import Data.Product open import Function open import Function.Equality as FunS using (_⟨$⟩_) open import Function.Injection using (_↣_) open import Algebra.FunctionProperties open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; cong; subst) open import Category.Functor open import Category.Applicative ------------------------------------------------------------------------ -- Properties private drop-suc : ∀ {o} {m n : Fin o} → Fin.suc m ≡ suc n → m ≡ n drop-suc refl = refl preorder : ℕ → Preorder _ _ _ preorder n = P.preorder (Fin n) setoid : ℕ → Setoid _ _ setoid n = P.setoid (Fin n) strictTotalOrder : ℕ → StrictTotalOrder _ _ _ strictTotalOrder n = record { Carrier = Fin n ; _≈_ = _≡_ ; _<_ = _<_ ; isStrictTotalOrder = record { isEquivalence = P.isEquivalence ; trans = N.<-trans ; compare = cmp ; <-resp-≈ = P.resp₂ _<_ } } where cmp : ∀ {n} → Trichotomous _≡_ (_<_ {n}) cmp zero zero = tri≈ (λ()) refl (λ()) cmp zero (suc j) = tri< (s≤s z≤n) (λ()) (λ()) cmp (suc i) zero = tri> (λ()) (λ()) (s≤s z≤n) cmp (suc i) (suc j) with cmp i j ... | tri< lt ¬eq ¬gt = tri< (s≤s lt) (¬eq ∘ drop-suc) (¬gt ∘ N.≤-pred) ... | tri> ¬lt ¬eq gt = tri> (¬lt ∘ N.≤-pred) (¬eq ∘ drop-suc) (s≤s gt) ... | tri≈ ¬lt eq ¬gt = tri≈ (¬lt ∘ N.≤-pred) (cong suc eq) (¬gt ∘ N.≤-pred) decSetoid : ℕ → DecSetoid _ _ decSetoid n = StrictTotalOrder.decSetoid (strictTotalOrder n) infix 4 _≟_ _≟_ : {n : ℕ} → Decidable {A = Fin n} _≡_ _≟_ {n} = DecSetoid._≟_ (decSetoid n) to-from : ∀ n → toℕ (fromℕ n) ≡ n to-from zero = refl to-from (suc n) = cong suc (to-from n) toℕ-injective : ∀ {n} {i j : Fin n} → toℕ i ≡ toℕ j → i ≡ j toℕ-injective {zero} {} {} _ toℕ-injective {suc n} {zero} {zero} eq = refl toℕ-injective {suc n} {zero} {suc j} () toℕ-injective {suc n} {suc i} {zero} () toℕ-injective {suc n} {suc i} {suc j} eq = cong suc (toℕ-injective (cong N.pred eq)) bounded : ∀ {n} (i : Fin n) → toℕ i ℕ< n bounded zero = s≤s z≤n bounded (suc i) = s≤s (bounded i) prop-toℕ-≤ : ∀ {n} (x : Fin n) → toℕ x ℕ≤ N.pred n prop-toℕ-≤ zero = z≤n prop-toℕ-≤ (suc {n = zero} ()) prop-toℕ-≤ (suc {n = suc n} i) = s≤s (prop-toℕ-≤ i) nℕ-ℕi≤n : ∀ n i → n ℕ-ℕ i ℕ≤ n nℕ-ℕi≤n n zero = begin n ∎ where open N.≤-Reasoning nℕ-ℕi≤n zero (suc ()) nℕ-ℕi≤n (suc n) (suc i) = begin n ℕ-ℕ i ≤⟨ nℕ-ℕi≤n n i ⟩ n ≤⟨ N.n≤1+n n ⟩ suc n ∎ where open N.≤-Reasoning inject-lemma : ∀ {n} {i : Fin n} (j : Fin′ i) → toℕ (inject j) ≡ toℕ j inject-lemma {i = zero} () inject-lemma {i = suc i} zero = refl inject-lemma {i = suc i} (suc j) = cong suc (inject-lemma j) inject+-lemma : ∀ {m} n (i : Fin m) → toℕ i ≡ toℕ (inject+ n i) inject+-lemma n zero = refl inject+-lemma n (suc i) = cong suc (inject+-lemma n i) inject₁-lemma : ∀ {m} (i : Fin m) → toℕ (inject₁ i) ≡ toℕ i inject₁-lemma zero = refl inject₁-lemma (suc i) = cong suc (inject₁-lemma i) inject≤-lemma : ∀ {m n} (i : Fin m) (le : m ℕ≤ n) → toℕ (inject≤ i le) ≡ toℕ i inject≤-lemma zero (N.s≤s le) = refl inject≤-lemma (suc i) (N.s≤s le) = cong suc (inject≤-lemma i le) ≺⇒<′ : _≺_ ⇒ N._<′_ ≺⇒<′ (n ≻toℕ i) = N.≤⇒≤′ (bounded i) <′⇒≺ : N._<′_ ⇒ _≺_ <′⇒≺ {n} N.≤′-refl = subst (λ i → i ≺ suc n) (to-from n) (suc n ≻toℕ fromℕ n) <′⇒≺ (N.≤′-step m≤′n) with <′⇒≺ m≤′n <′⇒≺ (N.≤′-step m≤′n) | n ≻toℕ i = subst (λ i → i ≺ suc n) (inject₁-lemma i) (suc n ≻toℕ (inject₁ i)) toℕ-raise : ∀ {m} n (i : Fin m) → toℕ (raise n i) ≡ n ℕ+ toℕ i toℕ-raise zero i = refl toℕ-raise (suc n) i = cong suc (toℕ-raise n i) fromℕ≤-toℕ : ∀ {m} (i : Fin m) (i<m : toℕ i ℕ< m) → fromℕ≤ i<m ≡ i fromℕ≤-toℕ zero (s≤s z≤n) = refl fromℕ≤-toℕ (suc i) (s≤s (s≤s m≤n)) = cong suc (fromℕ≤-toℕ i (s≤s m≤n)) toℕ-fromℕ≤ : ∀ {m n} (m<n : m ℕ< n) → toℕ (fromℕ≤ m<n) ≡ m toℕ-fromℕ≤ (s≤s z≤n) = refl toℕ-fromℕ≤ (s≤s (s≤s m<n)) = cong suc (toℕ-fromℕ≤ (s≤s m<n)) ------------------------------------------------------------------------ -- Operations infixl 6 _+′_ _+′_ : ∀ {m n} (i : Fin m) (j : Fin n) → Fin (N.pred m ℕ+ n) i +′ j = inject≤ (i + j) (N._+-mono_ (prop-toℕ-≤ i) ≤-refl) where open DecTotalOrder N.decTotalOrder renaming (refl to ≤-refl) -- reverse {n} "i" = "n ∸ 1 ∸ i". reverse : ∀ {n} → Fin n → Fin n reverse {zero} () reverse {suc n} i = inject≤ (n ℕ- i) (N.n∸m≤n (toℕ i) (suc n)) reverse-prop : ∀ {n} → (i : Fin n) → toℕ (reverse i) ≡ n ∸ suc (toℕ i) reverse-prop {zero} () reverse-prop {suc n} i = begin toℕ (inject≤ (n ℕ- i) _) ≡⟨ inject≤-lemma _ _ ⟩ toℕ (n ℕ- i) ≡⟨ toℕ‿ℕ- n i ⟩ n ∸ toℕ i ∎ where open P.≡-Reasoning toℕ‿ℕ- : ∀ n i → toℕ (n ℕ- i) ≡ n ∸ toℕ i toℕ‿ℕ- n zero = to-from n toℕ‿ℕ- zero (suc ()) toℕ‿ℕ- (suc n) (suc i) = toℕ‿ℕ- n i reverse-involutive : ∀ {n} → Involutive _≡_ reverse reverse-involutive {n} i = toℕ-injective (begin toℕ (reverse (reverse i)) ≡⟨ reverse-prop _ ⟩ n ∸ suc (toℕ (reverse i)) ≡⟨ eq ⟩ toℕ i ∎) where open P.≡-Reasoning open CommutativeSemiring N.commutativeSemiring using (+-comm) lem₁ : ∀ m n → (m ℕ+ n) ∸ (m ℕ+ n ∸ m) ≡ m lem₁ m n = begin m ℕ+ n ∸ (m ℕ+ n ∸ m) ≡⟨ cong (λ ξ → m ℕ+ n ∸ (ξ ∸ m)) (+-comm m n) ⟩ m ℕ+ n ∸ (n ℕ+ m ∸ m) ≡⟨ cong (λ ξ → m ℕ+ n ∸ ξ) (N.m+n∸n≡m n m) ⟩ m ℕ+ n ∸ n ≡⟨ N.m+n∸n≡m m n ⟩ m ∎ lem₂ : ∀ n → (i : Fin n) → n ∸ suc (n ∸ suc (toℕ i)) ≡ toℕ i lem₂ zero () lem₂ (suc n) i = begin n ∸ (n ∸ toℕ i) ≡⟨ cong (λ ξ → ξ ∸ (ξ ∸ toℕ i)) i+j≡k ⟩ (toℕ i ℕ+ j) ∸ (toℕ i ℕ+ j ∸ toℕ i) ≡⟨ lem₁ (toℕ i) j ⟩ toℕ i ∎ where decompose-n : ∃ λ j → n ≡ toℕ i ℕ+ j decompose-n = n ∸ toℕ i , P.sym (N.m+n∸m≡n (prop-toℕ-≤ i)) j = proj₁ decompose-n i+j≡k = proj₂ decompose-n eq : n ∸ suc (toℕ (reverse i)) ≡ toℕ i eq = begin n ∸ suc (toℕ (reverse i)) ≡⟨ cong (λ ξ → n ∸ suc ξ) (reverse-prop i) ⟩ n ∸ suc (n ∸ suc (toℕ i)) ≡⟨ lem₂ n i ⟩ toℕ i ∎ -- If there is an injection from a type to a finite set, then the type -- has decidable equality. eq? : ∀ {a n} {A : Set a} → A ↣ Fin n → Decidable {A = A} _≡_ eq? inj = Dec.via-injection inj _≟_ -- Quantification over finite sets commutes with applicative functors. sequence : ∀ {F n} {P : Fin n → Set} → RawApplicative F → (∀ i → F (P i)) → F (∀ i → P i) sequence {F} RA = helper _ _ where open RawApplicative RA helper : ∀ n (P : Fin n → Set) → (∀ i → F (P i)) → F (∀ i → P i) helper zero P ∀iPi = pure (λ()) helper (suc n) P ∀iPi = combine <$> ∀iPi zero ⊛ helper n (λ n → P (suc n)) (∀iPi ∘ suc) where combine : P zero → (∀ i → P (suc i)) → ∀ i → P i combine z s zero = z combine z s (suc i) = s i private -- Included just to show that sequence above has an inverse (under -- an equivalence relation with two equivalence classes, one with -- all inhabited sets and the other with all uninhabited sets). sequence⁻¹ : ∀ {F}{A} {P : A → Set} → RawFunctor F → F (∀ i → P i) → ∀ i → F (P i) sequence⁻¹ RF F∀iPi i = (λ f → f i) <$> F∀iPi where open RawFunctor RF
{ "alphanum_fraction": 0.5143214509, "avg_line_length": 33.1742738589, "ext": "agda", "hexsha": "c2a8b1164602c5ffcc75699529309750dfc28a27", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Fin/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Fin/Properties.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Fin/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 3473, "size": 7995 }
module container.m.level where open import level open import sum open import equality.core open import equality.calculus open import function.core open import function.isomorphism open import function.extensionality open import sets.unit open import sets.nat.core open import hott.level open import hott.univalence open import container.core open import container.equality open import container.fixpoint open import container.m.core open import container.m.extensionality private module Properties {li la lb} {c : Container li la lb} (hA : ∀ i → contr (Container.A c i)) where open Definition c open Extensionality c open Fixpoint (fix M fixpoint) using (head; tail) module S where module local where open Equality c (fix M fixpoint) using (equality) open Definition equality public open Fixpoint (fix local.M local.fixpoint) public using (head; tail) open local public center : ∀ {i} → M i center {i} = inf (proj₁ (hA i)) λ _ → ♯ center contraction : ∀ {i} (x : M i) → center ≡ x contraction {i} x = mext (lem' x) where coalg : ∀ {i}{x y : M i} → center ≡ x → Σ (head x ≡ head y) λ p → ((b : B (head x)) → center ≡ tail x b) coalg {i}{y = y} refl = proj₂ (hA i) (head y) , λ b → refl lem' : ∀ {i}(x : M i) → center ≡M x lem' _ = S.unfold (λ _ → coalg) _ refl m-contr : ∀ i → contr (M i) m-contr i = center , contraction -- Lemma 14 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) m-level : ∀ {n li la lb} {c : Container li la lb} → let open Definition c in ((i : I) → h n (A i)) → (i : I) → h n (M i) m-level {n = 0} hA i = Properties.m-contr hA i m-level {n = suc n} {c = c} hA i = λ xs ys → retract-level mext mext-inv mext-retraction (ih xs ys) where open Definition c open Extensionality c open Fixpoint (fix M fixpoint) using (head; tail) ih : (xs ys : M i) → h n (xs ≡M ys) ih xs ys = m-level (λ { (i , xs , ys) → hA i (head xs) (head ys) }) (i , xs , ys)
{ "alphanum_fraction": 0.5808057945, "avg_line_length": 29.0657894737, "ext": "agda", "hexsha": "7b0d54b8a9395901bc970fbac678d2313b424f6f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/m/level.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/m/level.agda", "max_line_length": 74, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/m/level.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 666, "size": 2209 }
import Lvl open import Data.Boolean open import Type module Data.List.Sorting.InsertionSort {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where open import Data.List import Data.List.Functions as List open import Data.List.Sorting.Functions(_≤?_) insertion-sort : List(T) → List(T) insertion-sort = List.foldᵣ insert ∅ module Proofs where open import Data.Boolean.Stmt open import Data.List.Relation.Permutation open import Data.List.Sorting(_≤?_) open import Data.List.Sorting.Proofs(_≤?_) open import Functional using (_∘₂_) open import Logic.Propositional open import Relator.Equals open import Structure.Relator.Properties open import Syntax.Transitivity module _ (asym : ∀{x y} → (x ≤? y ≡ not(y ≤? x))) where -- TODO: Use Structure.Relator.Properties.Asymmetry by the relation (IsTrue ∘₂ (_≤?_)) instance insertion-sort-sorted-proof : ∀{l} → Sorted(insertion-sort l) insertion-sort-sorted-proof {∅} = empty insertion-sort-sorted-proof {x ⊰ l} = insert-sorted-proof asym (insertion-sort-sorted-proof {l}) insert-permutation-proof : ∀{x}{l} → ((insert x l) permutes (x ⊰ l)) insert-permutation-proof {x} {∅} = prepend _permutes_.empty insert-permutation-proof {x} {a ⊰ l} with (x ≤? a) ... | 𝑇 = reflexivity(_permutes_) ... | 𝐹 = a ⊰ insert x l 🝖-[ _permutes_.prepend (insert-permutation-proof {x} {l}) ] a ⊰ x ⊰ l 🝖-[ _permutes_.swap ] x ⊰ a ⊰ l 🝖-end instance insertion-sort-permutation-proof : ∀{l} → ((insertion-sort l) permutes l) insertion-sort-permutation-proof {∅} = _permutes_.empty insertion-sort-permutation-proof {x ⊰ l} = insertion-sort (x ⊰ l) 🝖-[ insert-permutation-proof ] x ⊰ (insertion-sort l) 🝖-[ prepend (insertion-sort-permutation-proof {l}) ] x ⊰ l 🝖-end instance insertion-sort-sorting-algorithm : SortingAlgorithm(insertion-sort) SortingAlgorithm.sorts insertion-sort-sorting-algorithm {l} = insertion-sort-sorted-proof {l} SortingAlgorithm.permutes insertion-sort-sorting-algorithm = insertion-sort-permutation-proof
{ "alphanum_fraction": 0.6646455224, "avg_line_length": 41.2307692308, "ext": "agda", "hexsha": "e7c4edcd6268061e73874add54ac9719b10414b4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Sorting/InsertionSort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Sorting/InsertionSort.agda", "max_line_length": 144, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Sorting/InsertionSort.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 625, "size": 2144 }
module Verifier where open import ModusPonens using (modusPonens) check : ∀ {P Q : Set} → (P → Q) → P → Q check = modusPonens
{ "alphanum_fraction": 0.671875, "avg_line_length": 18.2857142857, "ext": "agda", "hexsha": "d81c1bbb0f2a24d2e62cb866d755ee47102de064", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "danr/agder", "max_forks_repo_path": "problems/ModusPonens/Verifier.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "danr/agder", "max_issues_repo_path": "problems/ModusPonens/Verifier.agda", "max_line_length": 43, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "danr/agder", "max_stars_repo_path": "problems/ModusPonens/Verifier.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z", "num_tokens": 48, "size": 128 }
{-# OPTIONS --cubical #-} module Multidimensional.Data.DirNum.Properties where open import Cubical.Foundations.Prelude open import Cubical.Data.Empty open import Cubical.Data.Prod open import Cubical.Data.Bool open import Cubical.Data.Nat open import Cubical.Relation.Nullary open import Multidimensional.Data.Dir open import Multidimensional.Data.DirNum.Base open import Multidimensional.Data.Extra.Nat double-lemma : ∀ {r} → (d : DirNum r) → doubleℕ (DirNum→ℕ d) ≡ DirNum→ℕ (doubleDirNum+ r d) double-lemma {r} d = refl ¬↓,d≡↑,d′ : ∀ {n} → ∀ (d d′ : DirNum n) → ¬ (↓ , d) ≡ (↑ , d′) ¬↓,d≡↑,d′ {n} d d′ ↓,d≡↑,d′ = ¬↓≡↑ (cong proj₁ ↓,d≡↑,d′) ¬↑,d≡↓,d′ : ∀ {n} → ∀ (d d′ : DirNum n) → ¬ (↑ , d) ≡ (↓ , d′) ¬↑,d≡↓,d′ {n} d d′ ↑,d≡↓,d′ = ¬↑≡↓ (cong proj₁ ↑,d≡↓,d′) -- dropping least significant bit preserves equality -- TODO: this was copied over from Direction.agda ; redefine using DropLeast dropLeast≡ : ∀ {n} → ∀ (ds ds′ : DirNum n) (d : Dir) → ((d , ds) ≡ (d , ds′)) → ds ≡ ds′ dropLeast≡ {n} ds ds′ d d,ds≡d,ds′ = cong proj₂ d,ds≡d,ds′ zero-n→0 : ∀ {r} → DirNum→ℕ (zero-n r) ≡ zero zero-n→0 {zero} = refl zero-n→0 {suc r} = doubleℕ (DirNum→ℕ (zero-n r)) ≡⟨ cong doubleℕ (zero-n→0 {r}) ⟩ doubleℕ zero ≡⟨ refl ⟩ zero ∎ zero-n? : ∀ {n} → (x : DirNum n) → Dec (x ≡ zero-n n) zero-n? {zero} tt = yes refl zero-n? {suc n} (↓ , ds) with zero-n? ds ... | no ds≠zero-n = no (λ y → ds≠zero-n (dropLeast≡ ds (zero-n n) ↓ y)) ... | yes ds≡zero-n = yes (cong (λ y → (↓ , y)) ds≡zero-n) zero-n? {suc n} (↑ , ds) = no ((¬↑,d≡↓,d′ ds (zero-n n))) zero-n≡0 : {r : ℕ} → DirNum→ℕ (zero-n r) ≡ zero zero-n≡0{zero} = refl zero-n≡0 {suc r} = doubleℕ (DirNum→ℕ {r} (zero-n r)) ≡⟨ cong doubleℕ (zero-n≡0 {r}) ⟩ 0 ∎ -- x is doubleable as a DirNum precisely when x's most significant bit is 0 -- this should return a Dec doubleable-n? : {n : ℕ} → (x : DirNum n) → Bool doubleable-n? {zero} tt = false doubleable-n? {suc n} (x , x₁) with zero-n? x₁ ... | yes _ = true ... | no _ = doubleable-n? x₁ max→ℕ : (r : ℕ) → DirNum→ℕ (max-n r) ≡ predℕ (doublesℕ r 1) max→ℕ zero = refl max→ℕ (suc r) = suc (doubleℕ (DirNum→ℕ (max-n r))) ≡⟨ cong (λ z → suc (doubleℕ z)) (max→ℕ r) ⟩ suc (doubleℕ (predℕ (doublesℕ r 1))) ≡⟨ cong suc (doublePred (doublesℕ r 1)) ⟩ suc (predℕ (predℕ (doubleℕ (doublesℕ r 1)))) ≡⟨ cong (λ z → suc (predℕ (predℕ z))) (doubleDoubles r 1) ⟩ suc (predℕ (predℕ (doublesℕ (suc r) 1))) ≡⟨ refl ⟩ suc (predℕ (predℕ (doublesℕ r 2))) ≡⟨ sucPred (predℕ (doublesℕ r 2)) H ⟩ predℕ (doublesℕ r 2) ∎ where G : (r : ℕ) → doubleℕ (doublesℕ r 1) ≡ doublesℕ r 2 G zero = refl G (suc r) = doubleℕ (doublesℕ r 2) ≡⟨ doubleDoubles r 2 ⟩ doublesℕ (suc r) 2 ≡⟨ refl ⟩ doublesℕ r (doubleℕ 2) ∎ H : ¬ predℕ (doublesℕ r 2) ≡ zero H = λ h → (predDoublePos (doublesℕ r 1) (doublesPos r 1 snotz) (( predℕ (doubleℕ (doublesℕ r 1)) ≡⟨ cong predℕ (G r) ⟩ predℕ (doublesℕ r 2) ≡⟨ h ⟩ 0 ∎ ))) max? : ∀ {n} → (x : DirNum n) → Dec (x ≡ max-n n) max? {zero} tt = yes refl max? {suc n} (↓ , ds) = no ((¬↓,d≡↑,d′ ds (max-n n))) max? {suc n} (↑ , ds) with max? ds ... | yes ds≡max-n = yes ( (↑ , ds) ≡⟨ cong (λ x → (↑ , x)) ds≡max-n ⟩ (↑ , max-n n) ∎ ) ... | no ¬ds≡max-n = no (λ d,ds≡d,max-n → ¬ds≡max-n ((dropLeast≡ ds (max-n n) ↑ d,ds≡d,max-n))) maxn+1≡↑maxn : ∀ n → max-n (suc n) ≡ (↑ , (max-n n)) maxn+1≡↑maxn n = refl maxr≡pred2ʳ : (r : ℕ) (d : DirNum r) → d ≡ max-n r → DirNum→ℕ d ≡ predℕ (doublesℕ r (suc zero)) maxr≡pred2ʳ zero d d≡max = refl maxr≡pred2ʳ (suc r) (↓ , ds) d≡max = ⊥-elim ((¬↓,d≡↑,d′ ds (max-n r)) d≡max) maxr≡pred2ʳ (suc r) (↑ , ds) d≡max = suc (doubleℕ (DirNum→ℕ ds)) ≡⟨ cong (λ x → suc (doubleℕ x)) (maxr≡pred2ʳ r ds ds≡max) ⟩ suc (doubleℕ (predℕ (doublesℕ r (suc zero)))) -- 2*(2^r - 1) + 1 = 2^r+1 - 1 ≡⟨ cong suc (doublePred (doublesℕ r (suc zero))) ⟩ suc (predℕ (predℕ (doubleℕ (doublesℕ r (suc zero))))) ≡⟨ sucPred (predℕ (doubleℕ (doublesℕ r (suc zero)))) ( (predDoublePos (doublesℕ r (suc zero)) ((doublesPos r 1 snotz)))) ⟩ predℕ (doubleℕ (doublesℕ r (suc zero))) ≡⟨ cong predℕ (doubleDoubles r (suc zero)) ⟩ predℕ (doublesℕ (suc r) 1) ≡⟨ refl ⟩ predℕ (doublesℕ r 2) -- 2^r*2 - 1 = 2^(r+1) - 1 ∎ where ds≡max : ds ≡ max-n r ds≡max = dropLeast≡ ds (max-n r) ↑ d≡max -- TODO: rename? nextsuc-lemma : (r : ℕ) (x : DirNum r) → ¬ ((sucDoubleDirNum+ r x) ≡ max-n (suc r)) → ¬ (x ≡ max-n r) nextsuc-lemma zero tt ¬H = ⊥-elim (¬H refl) nextsuc-lemma (suc r) (↓ , x) ¬H = ¬↓,d≡↑,d′ x (max-n r) nextsuc-lemma (suc r) (↑ , x) ¬H = λ h → ¬H (H (dropLeast≡ x (max-n r) ↑ h)) --⊥-elim (¬H H) where H : (x ≡ max-n r) → sucDoubleDirNum+ (suc r) (↑ , x) ≡ (↑ , (↑ , max-n r)) H x≡maxnr = sucDoubleDirNum+ (suc r) (↑ , x) ≡⟨ cong (λ y → sucDoubleDirNum+ (suc r) (↑ , y)) x≡maxnr ⟩ sucDoubleDirNum+ (suc r) (↑ , max-n r) ≡⟨ refl ⟩ (↑ , (↑ , max-n r)) ∎ next≡suc : (r : ℕ) (x : DirNum r) → ¬ (x ≡ max-n r) → DirNum→ℕ (next x) ≡ suc (DirNum→ℕ x) next≡suc zero tt ¬x≡maxnr = ⊥-elim (¬x≡maxnr refl) next≡suc (suc r) (↓ , x) ¬x≡maxnr = refl next≡suc (suc r) (↑ , x) ¬x≡maxnr = doubleℕ (DirNum→ℕ (next x)) ≡⟨ cong doubleℕ (next≡suc r x (nextsuc-lemma r x ¬x≡maxnr)) ⟩ doubleℕ (suc (DirNum→ℕ x)) ≡⟨ refl ⟩ suc (suc (doubleℕ (DirNum→ℕ x))) ∎
{ "alphanum_fraction": 0.5239114918, "avg_line_length": 33.7590361446, "ext": "agda", "hexsha": "f2f27f6c0bee85499927465599bd3e497deb7d09", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_forks_repo_path": "Multidimensional/Data/DirNum/Properties.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_issues_repo_path": "Multidimensional/Data/DirNum/Properties.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_stars_repo_path": "Multidimensional/Data/DirNum/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2628, "size": 5604 }
{-# OPTIONS --verbose=10 #-} module leafs where open import Data.Nat open import Data.Vec open import Agda.Builtin.Sigma open import Data.Product open import Data.Fin using (fromℕ) open import trees open import optics open import lemmas leafsTree : {A : Set} -> Tree A -> ∃[ n ] (Vec A n × (Vec A n -> Tree A)) leafsTree empty = 0 , ([] , λ _ -> empty) leafsTree (node empty root empty) = (1 , (root ∷ [] , λ v -> node empty (head v) empty)) leafsTree {A} (node left root right) with leafsTree left | leafsTree right ... | (n1 , (g1 , p1)) | (n2 , (g2 , p2)) = (n1 + n2 , (g1 ++ g2 , λ v -> node (p1 (take n1 v)) root (p2 (drop n1 v)))) leafs : {A : Set} -> Traversal (Tree A) (Tree A) A A leafs = record{ extract = leafsTree } module tests where tree1 : Tree ℕ tree1 = node (node empty 1 empty) 3 empty open Traversal leafs1 : Vec ℕ 1 leafs1 = get leafs tree1 updatedleafs1 : Tree ℕ updatedleafs1 = put leafs (node tree1 5 tree1) (2 ∷ 5 ∷ [])
{ "alphanum_fraction": 0.574906367, "avg_line_length": 28.1052631579, "ext": "agda", "hexsha": "538d05c7122459b6d66298859dcd3ab4d46da28d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "hablapps/safeoptics", "max_forks_repo_path": "src/main/agda/leafs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "hablapps/safeoptics", "max_issues_repo_path": "src/main/agda/leafs.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "hablapps/safeoptics", "max_stars_repo_path": "src/main/agda/leafs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 367, "size": 1068 }
{-# OPTIONS --without-K --safe #-} module Categories.Yoneda where -- Yoneda Lemma. In total, provides: -- * the Yoneda Embedding (called embed here) from any Category C into Presheaves C -- Worth noticing that there is no 'locally small' condition here; however, if one looks at -- the levels involved, there is indeed a raise from that of C to that of Presheaves C. -- * The traditional Yoneda lemma (yoneda-inverse) which says that for any object a of C, and -- any Presheaf F over C (where our presheaves are over Setoids), then -- Hom[ Presheaves C] (Functor.F₀ embed a , F) ≅ Functor.F₀ F a -- as Setoids. In addition, Yoneda (yoneda) also says that this isomorphism is natural in a and F. open import Level open import Function.Base using (_$_) open import Function.Bundles using (Inverse) open import Function.Equality using (Π; _⟨$⟩_; cong) open import Relation.Binary.Bundles using (module Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR open import Data.Product using (_,_; Σ) open import Categories.Category using (Category; _[_,_]) open import Categories.Category.Product using (πʳ; πˡ; _※_) open import Categories.Category.Construction.Presheaves using (Presheaves) open import Categories.Category.Construction.Functors using (eval) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.Functor.Hom using (module Hom; Hom[_][-,_]; Hom[_][-,-]) open import Categories.Functor.Bifunctor using (Bifunctor) open import Categories.Functor.Presheaf using (Presheaf) open import Categories.Functor.Construction.LiftSetoids using (LiftSetoids) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR import Categories.NaturalTransformation.Hom as NT-Hom private variable o ℓ e : Level module Yoneda (C : Category o ℓ e) where open Category C hiding (op) -- uses lots open HomReasoning using (_○_; ⟺) open MR C using (id-comm) open NaturalTransformation using (η; commute) open NT-Hom C using (Hom[A,C]⇒Hom[B,C]) private module CE = Category.Equiv C using (refl) module C = Category C using (op) -- The Yoneda embedding functor embed : Functor C (Presheaves C) embed = record { F₀ = Hom[ C ][-,_] ; F₁ = Hom[A,C]⇒Hom[B,C] -- A⇒B induces a NatTrans on the Homs. ; identity = identityˡ ○_ ; homomorphism = λ h₁≈h₂ → ∘-resp-≈ʳ h₁≈h₂ ○ assoc ; F-resp-≈ = λ f≈g h≈i → ∘-resp-≈ f≈g h≈i } -- Using the adjunction between product and product, we get a kind of contravariant Bifunctor yoneda-inverse : (a : Obj) (F : Presheaf C (Setoids ℓ e)) → Inverse (Category.hom-setoid (Presheaves C) {Functor.F₀ embed a} {F}) (Functor.F₀ F a) yoneda-inverse a F = record { f = λ nat → η nat a ⟨$⟩ id ; f⁻¹ = λ x → ntHelper record { η = λ X → record { _⟨$⟩_ = λ X⇒a → F.₁ X⇒a ⟨$⟩ x ; cong = λ i≈j → F.F-resp-≈ i≈j SE.refl } ; commute = λ {X} {Y} Y⇒X {f} {g} f≈g → let module SR = SetoidR (F.₀ Y) in SR.begin F.₁ (id ∘ f ∘ Y⇒X) ⟨$⟩ x SR.≈⟨ F.F-resp-≈ (identityˡ ○ ∘-resp-≈ˡ f≈g) (SE.refl {x}) ⟩ F.₁ (g ∘ Y⇒X) ⟨$⟩ x SR.≈⟨ F.homomorphism SE.refl ⟩ F.₁ Y⇒X ⟨$⟩ (F.₁ g ⟨$⟩ x) SR.∎ } ; cong₁ = λ i≈j → i≈j CE.refl ; cong₂ = λ i≈j y≈z → F.F-resp-≈ y≈z i≈j ; inverse = (λ Fa → F.identity SE.refl) , λ nat {x} {z} z≈y → let module S = Setoid (F.₀ x) in S.trans (S.sym (commute nat z CE.refl)) (cong (η nat x) (identityˡ ○ identityˡ ○ z≈y)) } where module F = Functor F using (₀; ₁; F-resp-≈; homomorphism; identity) module SE = Setoid (F.₀ a) using (refl) private -- in this bifunctor, a presheaf from Presheaves C goes from C to Setoids ℓ e, -- but the over Setoids has higher level than the hom setoids. Nat[Hom[C][-,c],F] : Bifunctor (Presheaves C) (Category.op C) (Setoids _ _) Nat[Hom[C][-,c],F] = Hom[ Presheaves C ][-,-] ∘F (Functor.op embed ∘F πʳ ※ πˡ) -- in this bifunctor, it needs to go from Presheaves which maps C to Setoids ℓ e, -- so the universe level needs to be lifted. FC : Bifunctor (Presheaves C) (Category.op C) (Setoids _ _) FC = LiftSetoids (o ⊔ ℓ ⊔ e) (o ⊔ ℓ) ∘F eval {C = Category.op C} {D = Setoids ℓ e} module yoneda-inverse {a} {F} = Inverse (yoneda-inverse a F) -- the two bifunctors above are naturally isomorphic. -- it is easy to show yoneda-inverse first then to yoneda. yoneda : NaturalIsomorphism Nat[Hom[C][-,c],F] FC yoneda = record { F⇒G = ntHelper record { η = λ where (F , A) → record { _⟨$⟩_ = λ α → lift (yoneda-inverse.f α) ; cong = λ i≈j → lift (i≈j CE.refl) } ; commute = λ where {_} {G , B} (α , f) {β} {γ} β≈γ → lift $ cong (η α B) (helper f β γ β≈γ) } ; F⇐G = ntHelper record { η = λ (F , A) → record { _⟨$⟩_ = λ x → yoneda-inverse.f⁻¹ (lower x) ; cong = λ i≈j y≈z → Functor.F-resp-≈ F y≈z (lower i≈j) } ; commute = λ (α , f) eq eq′ → helper′ α f (lower eq) eq′ } ; iso = λ (F , A) → record { isoˡ = λ {α β} i≈j {X} y≈z → Setoid.trans (Functor.F₀ F X) ( yoneda-inverse.inverseʳ α {x = X} y≈z) (i≈j CE.refl) ; isoʳ = λ eq → lift (Setoid.trans (Functor.F₀ F A) ( yoneda-inverse.inverseˡ {F = F} _) (lower eq)) } } where helper : {F : Functor C.op (Setoids ℓ e)} {A B : Obj} (f : B ⇒ A) (β γ : NaturalTransformation Hom[ C ][-, A ] F) → Setoid._≈_ (Functor.F₀ Nat[Hom[C][-,c],F] (F , A)) β γ → Setoid._≈_ (Functor.F₀ F B) (η β B ⟨$⟩ f ∘ id) (Functor.F₁ F f ⟨$⟩ (η γ A ⟨$⟩ id)) helper {F} {A} {B} f β γ β≈γ = S.begin η β B ⟨$⟩ f ∘ id S.≈⟨ cong (η β B) (id-comm ○ (⟺ identityˡ)) ⟩ η β B ⟨$⟩ id ∘ id ∘ f S.≈⟨ commute β f CE.refl ⟩ F.₁ f ⟨$⟩ (η β A ⟨$⟩ id) S.≈⟨ cong (F.₁ f) (β≈γ CE.refl) ⟩ F.₁ f ⟨$⟩ (η γ A ⟨$⟩ id) S.∎ where module F = Functor F using (₀;₁) module S = SetoidR (F.₀ B) helper′ : ∀ {F G : Functor (Category.op C) (Setoids ℓ e)} {A B Z : Obj} {h i : Z ⇒ B} {X Y : Setoid.Carrier (Functor.F₀ F A)} (α : NaturalTransformation F G) (f : B ⇒ A) → Setoid._≈_ (Functor.F₀ F A) X Y → h ≈ i → Setoid._≈_ (Functor.F₀ G Z) (Functor.F₁ G h ⟨$⟩ (η α B ⟨$⟩ (Functor.F₁ F f ⟨$⟩ X))) (η α Z ⟨$⟩ (Functor.F₁ F (f ∘ i) ⟨$⟩ Y)) helper′ {F} {G} {A} {B} {Z} {h} {i} {X} {Y} α f eq eq′ = S.begin G.₁ h ⟨$⟩ (η α B ⟨$⟩ (F.₁ f ⟨$⟩ X)) S.≈˘⟨ commute α h (S′.sym (cong (F.₁ f) eq)) ⟩ η α Z ⟨$⟩ (F.₁ h ⟨$⟩ (F.₁ f ⟨$⟩ Y)) S.≈⟨ cong (η α Z) (F.F-resp-≈ eq′ S′.refl) ⟩ η α Z ⟨$⟩ (F.₁ i ⟨$⟩ (F.₁ f ⟨$⟩ Y)) S.≈˘⟨ cong (η α Z) (F.homomorphism (Setoid.refl (F.₀ A))) ⟩ η α Z ⟨$⟩ (F.₁ (f ∘ i) ⟨$⟩ Y) S.∎ where module F = Functor F using (₀; ₁; homomorphism; F-resp-≈) module G = Functor G using (₀; ₁) module S = SetoidR (G.₀ Z) module S′ = Setoid (F.₀ B) using (refl; sym) module yoneda = NaturalIsomorphism yoneda
{ "alphanum_fraction": 0.5555412205, "avg_line_length": 46.9757575758, "ext": "agda", "hexsha": "52975067253129e7853ba5c0b677fabfef4cf0e2", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Yoneda.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Yoneda.agda", "max_line_length": 108, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Yoneda.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 2806, "size": 7751 }
module Pi.Everything where open import Pi.Syntax -- Syntax of Pi open import Pi.Opsem -- Abstract machine semantics of Pi open import Pi.AuxLemmas -- Some auxiliary lemmas about opsem for forward/backward deterministic proof open import Pi.NoRepeat -- Forward/backward deterministic lemmas and Non-repeating lemma open import Pi.Eval -- Evaluator for Pi open import Pi.Interp -- Big-step intepreter of Pi open import Pi.Invariants -- Some invariants about abstract machine semantics open import Pi.Properties -- Properties of Pi open import Pi.Examples -- Examples open import Pi.Category -- Pi Category
{ "alphanum_fraction": 0.7682539683, "avg_line_length": 52.5, "ext": "agda", "hexsha": "8b3f4f03c40f75e9d2edfa6a4ee7b550495b5152", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Pi/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Pi/Everything.agda", "max_line_length": 103, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Pi/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 142, "size": 630 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.DiffInt where open import Cubical.HITs.Ints.DiffInt.Base public open import Cubical.HITs.Ints.DiffInt.Properties public
{ "alphanum_fraction": 0.7817258883, "avg_line_length": 32.8333333333, "ext": "agda", "hexsha": "48a38b3f014dd120face768b9d73c40dda02e977", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/HITs/Ints/DiffInt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/HITs/Ints/DiffInt.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/HITs/Ints/DiffInt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 54, "size": 197 }
{- This second-order signature was created from the following second-order syntax description: syntax Sum | S type _⊕_ : 2-ary | l30 term inl : α -> α ⊕ β inr : β -> α ⊕ β case : α ⊕ β α.γ β.γ -> γ theory (lβ) a : α f : α.γ g : β.γ |> case (inl(a), x.f[x], y.g[y]) = f[a] (rβ) b : β f : α.γ g : β.γ |> case (inr(b), x.f[x], y.g[y]) = g[b] (cη) s : α ⊕ β c : (α ⊕ β).γ |> case (s, x.c[inl(x)], y.c[inr(y)]) = c[s] -} module Sum.Signature where open import SOAS.Context -- Type declaration data ST : Set where _⊕_ : ST → ST → ST infixl 30 _⊕_ open import SOAS.Syntax.Signature ST public open import SOAS.Syntax.Build ST public -- Operator symbols data Sₒ : Set where inlₒ inrₒ : {α β : ST} → Sₒ caseₒ : {α β γ : ST} → Sₒ -- Term signature S:Sig : Signature Sₒ S:Sig = sig λ { (inlₒ {α}{β}) → (⊢₀ α) ⟼₁ α ⊕ β ; (inrₒ {α}{β}) → (⊢₀ β) ⟼₁ α ⊕ β ; (caseₒ {α}{β}{γ}) → (⊢₀ α ⊕ β) , (α ⊢₁ γ) , (β ⊢₁ γ) ⟼₃ γ } open Signature S:Sig public
{ "alphanum_fraction": 0.5273631841, "avg_line_length": 21.3829787234, "ext": "agda", "hexsha": "d07a0ac8c6c56a18cacd0af990dfbd2e6b05fb86", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Sum/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Sum/Signature.agda", "max_line_length": 91, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Sum/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 464, "size": 1005 }
-- New feature by Jesper Cockx in commit be89d4a8b264dd2719cb8c601a2c7f45a95ba220 : -- disabling the universe check for a data or record type. -- Andreas, 2018-10-27, re issue #3327: restructured test cases. module _ where -- Pragma is naturally attached to definition. module DataDef where data U : Set T : U → Set {-# NO_UNIVERSE_CHECK #-} data U where pi : (A : Set)(b : A → U) → U T (pi A b) = (x : A) → T (b x) -- Pragma can also be attached to signature. module DataSig where {-# NO_UNIVERSE_CHECK #-} data U : Set T : U → Set data U where pi : (A : Set)(b : A → U) → U T (pi A b) = (x : A) → T (b x) -- Works also for explicit mutual blocks. module Mutual where {-# NO_UNIVERSE_CHECK #-} data U : Set where pi : (A : Set)(b : A → U) → U T : U → Set T (pi A b) = (x : A) → T (b x) -- Records: module Records where {-# NO_UNIVERSE_CHECK #-} record R : Set where field out : Set {-# NO_UNIVERSE_CHECK #-} record S : Set record S where field out : Set
{ "alphanum_fraction": 0.6034816248, "avg_line_length": 17.8275862069, "ext": "agda", "hexsha": "05d4234a5d2df8567bdee74dd7b4b3225df6d09d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "test/Succeed/NoUniverseCheckPragma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "test/Succeed/NoUniverseCheckPragma.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "test/Succeed/NoUniverseCheckPragma.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 355, "size": 1034 }
open import Nat open import Prelude open import core open import contexts open import typed-elaboration open import lemmas-gcomplete open import lemmas-complete open import progress-checks open import finality module cast-inert where -- if a term is compelete and well typed, then the casts inside are all -- identity casts and there are no failed casts cast-inert : ∀{Δ Γ d τ} → d dcomplete → Δ , Γ ⊢ d :: τ → cast-id d cast-inert dc TAConst = CIConst cast-inert dc (TAVar x₁) = CIVar cast-inert (DCLam dc x₁) (TALam x₂ wt) = CILam (cast-inert dc wt) cast-inert (DCAp dc dc₁) (TAAp wt wt₁) = CIAp (cast-inert dc wt) (cast-inert dc₁ wt₁) cast-inert () (TAEHole x x₁) cast-inert () (TANEHole x wt x₁) cast-inert (DCCast dc x x₁) (TACast wt x₂) with complete-consistency x₂ x x₁ ... | refl = CICast (cast-inert dc wt) cast-inert () (TAFailedCast wt x x₁ x₂) -- in a well typed complete internal expression, every cast is the -- identity cast. complete-casts : ∀{Γ Δ d τ1 τ2} → Γ , Δ ⊢ d ⟨ τ1 ⇒ τ2 ⟩ :: τ2 → d ⟨ τ1 ⇒ τ2 ⟩ dcomplete → τ1 == τ2 complete-casts wt comp with cast-inert comp wt complete-casts wt comp | CICast qq = refl -- relates expressions to the same thing with all identity casts -- removed. note that this is a syntactic rewrite and it goes under -- binders. data no-id-casts : ihexp → ihexp → Set where NICConst : no-id-casts c c NICVar : ∀{x} → no-id-casts (X x) (X x) NICLam : ∀{x τ d d'} → no-id-casts d d' → no-id-casts (·λ x [ τ ] d) (·λ x [ τ ] d') NICHole : ∀{u} → no-id-casts (⦇-⦈⟨ u ⟩) (⦇-⦈⟨ u ⟩) NICNEHole : ∀{d d' u} → no-id-casts d d' → no-id-casts (⦇⌜ d ⌟⦈⟨ u ⟩) (⦇⌜ d' ⌟⦈⟨ u ⟩) NICAp : ∀{d1 d2 d1' d2'} → no-id-casts d1 d1' → no-id-casts d2 d2' → no-id-casts (d1 ∘ d2) (d1' ∘ d2') NICCast : ∀{d d' τ} → no-id-casts d d' → no-id-casts (d ⟨ τ ⇒ τ ⟩) d' NICFailed : ∀{d d' τ1 τ2} → no-id-casts d d' → no-id-casts (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) (d' ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) -- removing identity casts doesn't change the type no-id-casts-type : ∀{Γ Δ d τ d' } → Δ , Γ ⊢ d :: τ → no-id-casts d d' → Δ , Γ ⊢ d' :: τ no-id-casts-type TAConst NICConst = TAConst no-id-casts-type (TAVar x₁) NICVar = TAVar x₁ no-id-casts-type (TALam x₁ wt) (NICLam nic) = TALam x₁ (no-id-casts-type wt nic) no-id-casts-type (TAAp wt wt₁) (NICAp nic nic₁) = TAAp (no-id-casts-type wt nic) (no-id-casts-type wt₁ nic₁) no-id-casts-type (TAEHole x x₁) NICHole = TAEHole x x₁ no-id-casts-type (TANEHole x wt x₁) (NICNEHole nic) = TANEHole x (no-id-casts-type wt nic) x₁ no-id-casts-type (TACast wt x) (NICCast nic) = no-id-casts-type wt nic no-id-casts-type (TAFailedCast wt x x₁ x₂) (NICFailed nic) = TAFailedCast (no-id-casts-type wt nic) x x₁ x₂
{ "alphanum_fraction": 0.5889570552, "avg_line_length": 46.5714285714, "ext": "agda", "hexsha": "c0737c8569d10e9318636154cdd7c2e5a583e1b5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "cast-inert.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "cast-inert.agda", "max_line_length": 110, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "cast-inert.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 1137, "size": 2934 }
-- Andreas, 2018-11-03, issue #3364 -- -- Better error when trying to import with new qualified module name. open import Agda.Builtin.Nat as Builtin.Nat -- WAS: Error: -- Not in scope: -- as at ... -- when scope checking as -- NOW: Warning -- `as' must be followed by an unqualified name -- when scope checking the declaration -- open import Agda.Builtin.Nat as Builtin.Nat
{ "alphanum_fraction": 0.7034120735, "avg_line_length": 23.8125, "ext": "agda", "hexsha": "6842c730a9decf50a5911574cde96e5b9e586a5c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "test/Succeed/Issue3364.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "test/Succeed/Issue3364.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "test/Succeed/Issue3364.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 106, "size": 381 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Relation.Binary.Raw module Cubical.Relation.Binary.Reasoning.PartialOrder {c ℓ} {A : Type c} (P : PartialOrder A ℓ) where open PartialOrder P import Cubical.Relation.Binary.Raw.Construct.NonStrictToStrict _≤_ as Strict ------------------------------------------------------------------------ -- Re-export contents of base module open import Cubical.Relation.Binary.Reasoning.Base.Double isPreorder (Strict.<-transitive isPartialOrder) Strict.<⇒≤ (Strict.<-≤-trans transitive antisym) (Strict.≤-<-trans transitive antisym) public
{ "alphanum_fraction": 0.6732824427, "avg_line_length": 29.7727272727, "ext": "agda", "hexsha": "32ed96c8a648cd46fe2d8901e41ceb4a466dfa34", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Reasoning/PartialOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Reasoning/PartialOrder.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Reasoning/PartialOrder.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 172, "size": 655 }
-- exercises -- * basic logic properties (implication, and, or, bot, not, forall, exists) -- * data types -- * records -- * non-dep, non-rec, non-indexed case splits -- * including elimination constants as hints -- * hidden arguments open import Auto.Prelude h0 : (A : Set) → A → A h0 = {!!} --h0 = λ A z → z h1 : (A B : Set) → A → (A → B) → B h1 = {!!} --h1 = λ A B z z₁ → z₁ z h2 : ∀ A B → A ∧ B → B ∧ A h2 = {!!} --h2 = λ A B z → ∧-i (_∧_.snd z) (_∧_.fst z) h3 : ∀ A B C → (A ∧ B) ∧ C → A ∧ (B ∧ C) h3 = {!!} --h3 = λ A B C z → -- ∧-i (_∧_.fst (_∧_.fst z)) (∧-i (_∧_.snd (_∧_.fst z)) (_∧_.snd z)) h4 : (A B C : Set) → A ∨ B → (A → C) → (B → C) → C h4 A B C x h₁ h₂ = {!-c!} h5 : ∀ A B → A ∨ B → B ∨ A h5 A B x = {!-c!} --h5 A B (∨-i₁ x) = ∨-i₂ x --h5 A B (∨-i₂ x) = ∨-i₁ x h6 : ∀ A B C → (A ∨ B) ∨ C → A ∨ (B ∨ C) h6 A B C x = {!-c!} --h6 A B C (∨-i₁ (∨-i₁ x)) = ∨-i₁ x --h6 A B C (∨-i₁ (∨-i₂ x)) = ∨-i₂ (∨-i₁ x) --h6 A B C (∨-i₂ x) = ∨-i₂ (∨-i₂ x) h7 : (A : Set) → ⊥ → A h7 A x = {!-c!} h8 : ∀ A → A → ¬ (¬ A) h8 = {!!} --h8 = λ A z z₁ → z₁ z h9 : ∀ A → ¬ (¬ (¬ A)) → ¬ A h9 = {!!} --h9 = λ A z z₁ → z (λ z₂ → z₂ z₁) h10 : (∀ A → ¬ (¬ A) → A) → (∀ A → A ∨ ¬ A) h10 = {!!} --h10 = λ z A → -- z (A ∨ ((x : A) → ⊥)) (λ z₁ → z₁ (∨-i₂ (λ x → z₁ (∨-i₁ x)))) h11 : (∀ A → A ∨ ¬ A) → (∀ A → ¬ (¬ A) → A) h11 = {!∨-e ⊥-e!} --h11 = λ z A z₁ → -- ∨-e A ((x : A) → ⊥) A (z A) (λ z₂ → z₂) (λ z₂ → ⊥-e A (z₁ z₂)) h12 : {X : Set} {P Q : X → Set} → ((x : X) → P x ∧ Q x) → ((x : X) → P x) ∧ ((x : X) → Q x) h12 = {!!} --h12 = λ {X} {P} {Q} z → ∧-i (λ x → _∧_.fst (z x)) (λ x → _∧_.snd (z x)) h13 : {X : Set} {P Q : X → Set} → ((x : X) → P x) ∧ ((x : X) → Q x) → ((x : X) → P x ∧ Q x) h13 = {!!} --h13 = λ {X} {P} {Q} z x → ∧-i (_∧_.fst z x) (_∧_.snd z x) n0 : {X : Set} {P Q : X → Set} → Σ X (λ x → P x ∨ Q x) → Σ X P ∨ Σ X Q --n0 = {!∨-e!} -- no solution found, not even for the two subproofs n0 = λ h → ∨-e _ _ _ (Σ.prf h) (λ x → ∨-i₁ (Σ-i (Σ.wit h) x)) (λ x → ∨-i₂ (Σ-i (Σ.wit h) x)) n1 : {X : Set} {P Q : X → Set} → Σ X P ∨ Σ X Q → Σ X (λ x → P x ∨ Q x) --n1 = {!∨-e!} -- no solution found, not even for the two subproofs n1 = λ h → ∨-e _ _ _ h (λ x → Σ-i (Σ.wit x) (∨-i₁ (Σ.prf x))) (λ x → Σ-i (Σ.wit x) (∨-i₂ (Σ.prf x))) h14 : {X : Set} → (x : X) → Σ X (λ x → ⊤) h14 = {!!} --h14 = λ {X} x → Σ-i x (record {}) h15 : {X : Set} → Σ (X → X) (λ x → ⊤) h15 = {!!} --h15 = λ {X} → Σ-i (λ x → x) (record {}) h16 : {X : Set} {P : X → Set} → Σ (X → X) (λ f → (x : X) → P (f x) → P x) h16 = {!!} --h16 = λ {X} {P} → Σ-i (λ x → x) (λ x x₁ → x₁) module Drink where postulate RAA : (A : Set) → (¬ A → ⊥) → A drink : (A : Set) → (a : A) → (Drink : A → Set) → Σ A (λ x → (Drink x) → Π A Drink) drink A a Drink = {!RAA!} -- h17 {- drink A a Drink = RAA (Σ A (λ z → (x : Drink z) → Π A Drink)) (λ z → z (Σ-i a (λ x → fun (λ a₁ → RAA (Drink a₁) (λ z₁ → z (Σ-i a₁ (λ x₁ → fun (λ a₂ → RAA (Drink a₂) (λ _ → z₁ x₁))))))))) -- h17 -}
{ "alphanum_fraction": 0.3599876505, "avg_line_length": 26.9916666667, "ext": "agda", "hexsha": "f81ac51a24e1c85115a97cafbf8dcb0a8f9808e1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Auto-BasicLogic.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Auto-BasicLogic.agda", "max_line_length": 108, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Auto-BasicLogic.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1607, "size": 3239 }
module TLP02 where open import Data.Bool open import Data.Nat open import Data.String open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl) -- ----- Star型の定義 ----- data Star : Set where NIL : Star TRU : Star N : ℕ → Star S : String → Star C : Star → Star → Star -- ----- 組込関数の定義 ----- postulate CONS : Star → Star → Star CAR : Star → Star CDR : Star → Star ATOM : Star → Star IF : Star → Star → Star → Star EQUAL : Star → Star → Star SIZE : Star → Star LT : Star → Star → Star -- ----- Starから≡に ----- postulate ~ : Star → Star equal-eq : {x y : Star} → (EQUAL x y) ≡ TRU → x ≡ y ifAP : {q x y : Star} → (IF q (EQUAL x y) TRU) ≡ TRU → (q ≡ TRU → x ≡ y) ifEP : {q x y : Star} → (IF q TRU (EQUAL x y)) ≡ TRU → ((~ q) ≡ TRU → x ≡ y) -- ----- 公理 ----- equal-same : (x : Star) → (EQUAL (EQUAL x x) TRU) ≡ TRU equal-swap : (x y : Star) → (EQUAL (EQUAL x y) (EQUAL y x)) ≡ TRU equal-if : (x y : Star) → (IF (EQUAL x y) (EQUAL x y) TRU) ≡ TRU atom/cons : (x y : Star) → (EQUAL (ATOM (CONS x y)) NIL) ≡ TRU car/cons : (x y : Star) → (EQUAL (CAR (CONS x y)) x) ≡ TRU cdr/cons : (x y : Star) → (EQUAL (CDR (CONS x y)) y) ≡ TRU cons/car+cdr : (x : Star) → (IF (ATOM x) TRU (EQUAL (CONS (CAR x) (CDR x)) x)) ≡ TRU if-true : (x y : Star) → (EQUAL (IF TRU x y) x) ≡ TRU if-false : (x y : Star) → (EQUAL (IF NIL x y) y) ≡ TRU if-same : (x y : Star) → (EQUAL (IF x y y) y) ≡ TRU if-nest-A : (x y z : Star) → (IF x (EQUAL (IF x y z) y) TRU) ≡ TRU if-nest-E : (x y z : Star) → (IF x TRU (EQUAL (IF x y z) z)) ≡ TRU size/car : (x : Star) → (IF (ATOM x) TRU (EQUAL (LT (SIZE (CAR x)) (SIZE x)) TRU)) ≡ TRU size/cdr : (x : Star) → (IF (ATOM x) TRU (EQUAL (LT (SIZE (CDR x)) (SIZE x)) TRU)) ≡ TRU -- ----- 練習 ----- hoge2 : (ATOM (CONS TRU TRU)) ≡ NIL hoge2 = equal-eq (atom/cons TRU TRU) hoge2' : (ATOM (CONS TRU TRU)) ≡ NIL hoge2' rewrite (equal-eq (atom/cons TRU TRU)) = refl -- ----- {-- -- ----- 停止性で引っかかる ----- memb?' : Star → Star memb?' xs = (IF (ATOM xs) NIL (IF (EQUAL (CAR xs) (S "?")) TRU (memb?' (CDR xs)))) --} -- ----- memb?の停止性 ----- postulate premise : (xs : Star) → (~ (ATOM xs)) ≡ TRU measure-memb? : (xs : Star) → (IF (ATOM xs) TRU (IF (EQUAL (CAR xs) (S "?")) TRU (LT (SIZE (CDR xs)) (SIZE xs)))) ≡ TRU measure-memb? xs rewrite (ifEP (size/cdr xs) (premise xs)) | (equal-eq (if-same (EQUAL (CAR xs) (S "?")) TRU)) | (equal-eq (if-same (ATOM xs) TRU)) = refl -- ----- memb?の定義 ----- postulate memb? : Star → Star def-memb? : (xs : Star) → memb? xs ≡ (IF (ATOM xs) NIL (IF (EQUAL (CAR xs) (S "?")) TRU (memb? (CDR xs)))) -- ----- rembの定義 ----- postulate remb : Star → Star def-remb : (xs : Star) → remb xs ≡ (IF (ATOM xs) (S "'()") (IF (EQUAL (CAR xs) (S "?")) (remb (CDR xs)) (CONS (CAR xs) (remb (CDR xs))))) -- ----- 帰納的な証明 ----- postulate premise2 : (xs : Star) → (ATOM xs) ≡ TRU premise3 : (xs : Star) → ~ (ATOM xs) ≡ TRU atomt : (ATOM (S "'()")) ≡ TRU memb?/remb : (xs : Star) → (IF (ATOM xs) (EQUAL (memb? (remb xs)) NIL) (IF (EQUAL (memb? (remb (CDR xs))) NIL) (EQUAL (memb? (remb xs)) NIL) TRU)) ≡ IF (ATOM xs) TRU (IF (EQUAL (memb? (remb (CDR xs))) NIL) TRU TRU) memb?/remb xs rewrite (def-remb xs) | (ifAP (if-nest-A (ATOM xs) (S "'()") ((IF (EQUAL (CAR xs) (S "?")) (remb (CDR xs)) (CONS (CAR xs) (remb (CDR xs)))))) (premise2 xs)) | (def-memb? ((S "'()"))) | (atomt) | (equal-eq (if-true NIL ((IF (EQUAL (CAR (S "'()")) (S "?")) TRU (memb? (CDR (S "'()"))))))) | (equal-eq (equal-same NIL)) | (def-remb xs) -- ----- ここで証明ステップが一気に進んだ | (ifEP (if-nest-E (ATOM xs) (S "'()") (IF (EQUAL (CAR xs) (S "?")) (remb (CDR xs)) (CONS (CAR xs) (remb (CDR xs))))) (premise3 xs)) = refl memb?/remb2 : (xs : Star) → IF (ATOM xs) TRU (IF (EQUAL (memb? (remb (CDR xs))) NIL) TRU TRU) ≡ TRU memb?/remb2 xs rewrite (equal-eq (if-same (EQUAL (memb? (remb (CDR xs))) NIL) TRU)) | (equal-eq (if-same (ATOM xs) TRU)) = refl
{ "alphanum_fraction": 0.4545256745, "avg_line_length": 31.2653061224, "ext": "agda", "hexsha": "02b6c05ae28968a5c9f64b5d03cbd7cebc322e13", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "righ1113/Agda", "max_forks_repo_path": "TLP02.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "righ1113/Agda", "max_issues_repo_path": "TLP02.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "righ1113/Agda", "max_stars_repo_path": "TLP02.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1788, "size": 4596 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Definitions of algebraic structures defined over some other -- structure, like modules and vector spaces -- -- Terminology of bundles: -- * There are both *semimodules* and *modules*. -- - For M an R-semimodule, R is a semiring, and M forms a commutative -- monoid. -- - For M an R-module, R is a ring, and M forms an Abelian group. -- * There are all four of *left modules*, *right modules*, *bimodules*, -- and *modules*. -- - Left modules have a left-scaling operation. -- - Right modules have a right-scaling operation. -- - Bimodules have two sorts of scalars. Left-scaling handles one and -- right-scaling handles the other. Left-scaling and right-scaling -- are furthermore compatible. -- - Modules are bimodules with a single sort of scalars and scalar -- multiplication must also be commutative. Left-scaling and -- right-scaling coincide. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.Module.Bundles where open import Algebra.Bundles open import Algebra.Core open import Algebra.Module.Structures open import Algebra.Module.Definitions open import Function.Base open import Level open import Relation.Binary import Relation.Binary.Reasoning.Setoid as SetR private variable r ℓr s ℓs : Level ------------------------------------------------------------------------ -- Left modules ------------------------------------------------------------------------ record LeftSemimodule (semiring : Semiring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where open Semiring semiring infixr 7 _*ₗ_ infixl 6 _+ᴹ_ infix 4 _≈ᴹ_ field Carrierᴹ : Set m _≈ᴹ_ : Rel Carrierᴹ ℓm _+ᴹ_ : Op₂ Carrierᴹ _*ₗ_ : Opₗ Carrier Carrierᴹ 0ᴹ : Carrierᴹ isLeftSemimodule : IsLeftSemimodule semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_ open IsLeftSemimodule isLeftSemimodule public +ᴹ-commutativeMonoid : CommutativeMonoid m ℓm +ᴹ-commutativeMonoid = record { isCommutativeMonoid = +ᴹ-isCommutativeMonoid } open CommutativeMonoid +ᴹ-commutativeMonoid public using () renaming ( monoid to +ᴹ-monoid ; semigroup to +ᴹ-semigroup ; magma to +ᴹ-magma ; rawMagma to +ᴹ-rawMagma ; rawMonoid to +ᴹ-rawMonoid ) record LeftModule (ring : Ring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where open Ring ring infixr 8 -ᴹ_ infixr 7 _*ₗ_ infixl 6 _+ᴹ_ infix 4 _≈ᴹ_ field Carrierᴹ : Set m _≈ᴹ_ : Rel Carrierᴹ ℓm _+ᴹ_ : Op₂ Carrierᴹ _*ₗ_ : Opₗ Carrier Carrierᴹ 0ᴹ : Carrierᴹ -ᴹ_ : Op₁ Carrierᴹ isLeftModule : IsLeftModule ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_ open IsLeftModule isLeftModule public leftSemimodule : LeftSemimodule semiring m ℓm leftSemimodule = record { isLeftSemimodule = isLeftSemimodule } open LeftSemimodule leftSemimodule public using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma ; +ᴹ-rawMagma; +ᴹ-rawMonoid) +ᴹ-abelianGroup : AbelianGroup m ℓm +ᴹ-abelianGroup = record { isAbelianGroup = +ᴹ-isAbelianGroup } open AbelianGroup +ᴹ-abelianGroup public using () renaming (group to +ᴹ-group) ------------------------------------------------------------------------ -- Right modules ------------------------------------------------------------------------ record RightSemimodule (semiring : Semiring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where open Semiring semiring infixl 7 _*ᵣ_ infixl 6 _+ᴹ_ infix 4 _≈ᴹ_ field Carrierᴹ : Set m _≈ᴹ_ : Rel Carrierᴹ ℓm _+ᴹ_ : Op₂ Carrierᴹ _*ᵣ_ : Opᵣ Carrier Carrierᴹ 0ᴹ : Carrierᴹ isRightSemimodule : IsRightSemimodule semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ᵣ_ open IsRightSemimodule isRightSemimodule public +ᴹ-commutativeMonoid : CommutativeMonoid m ℓm +ᴹ-commutativeMonoid = record { isCommutativeMonoid = +ᴹ-isCommutativeMonoid } open CommutativeMonoid +ᴹ-commutativeMonoid public using () renaming ( monoid to +ᴹ-monoid ; semigroup to +ᴹ-semigroup ; magma to +ᴹ-magma ; rawMagma to +ᴹ-rawMagma ; rawMonoid to +ᴹ-rawMonoid ) record RightModule (ring : Ring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where open Ring ring infixr 8 -ᴹ_ infixl 7 _*ᵣ_ infixl 6 _+ᴹ_ infix 4 _≈ᴹ_ field Carrierᴹ : Set m _≈ᴹ_ : Rel Carrierᴹ ℓm _+ᴹ_ : Op₂ Carrierᴹ _*ᵣ_ : Opᵣ Carrier Carrierᴹ 0ᴹ : Carrierᴹ -ᴹ_ : Op₁ Carrierᴹ isRightModule : IsRightModule ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ᵣ_ open IsRightModule isRightModule public rightSemimodule : RightSemimodule semiring m ℓm rightSemimodule = record { isRightSemimodule = isRightSemimodule } open RightSemimodule rightSemimodule public using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma ; +ᴹ-rawMagma; +ᴹ-rawMonoid) +ᴹ-abelianGroup : AbelianGroup m ℓm +ᴹ-abelianGroup = record { isAbelianGroup = +ᴹ-isAbelianGroup } open AbelianGroup +ᴹ-abelianGroup public using () renaming (group to +ᴹ-group) ------------------------------------------------------------------------ -- Bimodules ------------------------------------------------------------------------ record Bisemimodule (R-semiring : Semiring r ℓr) (S-semiring : Semiring s ℓs) m ℓm : Set (r ⊔ s ⊔ ℓr ⊔ ℓs ⊔ suc (m ⊔ ℓm)) where private module R = Semiring R-semiring module S = Semiring S-semiring infixr 7 _*ₗ_ infixl 6 _+ᴹ_ infix 4 _≈ᴹ_ field Carrierᴹ : Set m _≈ᴹ_ : Rel Carrierᴹ ℓm _+ᴹ_ : Op₂ Carrierᴹ _*ₗ_ : Opₗ R.Carrier Carrierᴹ _*ᵣ_ : Opᵣ S.Carrier Carrierᴹ 0ᴹ : Carrierᴹ isBisemimodule : IsBisemimodule R-semiring S-semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_ _*ᵣ_ open IsBisemimodule isBisemimodule public leftSemimodule : LeftSemimodule R-semiring m ℓm leftSemimodule = record { isLeftSemimodule = isLeftSemimodule } rightSemimodule : RightSemimodule S-semiring m ℓm rightSemimodule = record { isRightSemimodule = isRightSemimodule } open LeftSemimodule leftSemimodule public using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma; +ᴹ-rawMagma ; +ᴹ-rawMonoid) record Bimodule (R-ring : Ring r ℓr) (S-ring : Ring s ℓs) m ℓm : Set (r ⊔ s ⊔ ℓr ⊔ ℓs ⊔ suc (m ⊔ ℓm)) where private module R = Ring R-ring module S = Ring S-ring infixr 7 _*ₗ_ infixl 6 _+ᴹ_ infix 4 _≈ᴹ_ field Carrierᴹ : Set m _≈ᴹ_ : Rel Carrierᴹ ℓm _+ᴹ_ : Op₂ Carrierᴹ _*ₗ_ : Opₗ R.Carrier Carrierᴹ _*ᵣ_ : Opᵣ S.Carrier Carrierᴹ 0ᴹ : Carrierᴹ -ᴹ_ : Op₁ Carrierᴹ isBimodule : IsBimodule R-ring S-ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_ _*ᵣ_ open IsBimodule isBimodule public leftModule : LeftModule R-ring m ℓm leftModule = record { isLeftModule = isLeftModule } rightModule : RightModule S-ring m ℓm rightModule = record { isRightModule = isRightModule } open LeftModule leftModule public using ( +ᴹ-abelianGroup; +ᴹ-commutativeMonoid; +ᴹ-group; +ᴹ-monoid ; +ᴹ-semigroup; +ᴹ-magma; +ᴹ-rawMagma; +ᴹ-rawMonoid) bisemimodule : Bisemimodule R.semiring S.semiring m ℓm bisemimodule = record { isBisemimodule = isBisemimodule } open Bisemimodule bisemimodule public using (leftSemimodule; rightSemimodule) ------------------------------------------------------------------------ -- Modules over commutative structures ------------------------------------------------------------------------ record Semimodule (commutativeSemiring : CommutativeSemiring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where open CommutativeSemiring commutativeSemiring infixr 7 _*ₗ_ infixl 7 _*ᵣ_ infixl 6 _+ᴹ_ infix 4 _≈ᴹ_ field Carrierᴹ : Set m _≈ᴹ_ : Rel Carrierᴹ ℓm _+ᴹ_ : Op₂ Carrierᴹ _*ₗ_ : Opₗ Carrier Carrierᴹ _*ᵣ_ : Opᵣ Carrier Carrierᴹ 0ᴹ : Carrierᴹ isSemimodule : IsSemimodule commutativeSemiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_ _*ᵣ_ open IsSemimodule isSemimodule public private module L = LeftDefs Carrier _≈ᴹ_ module R = RightDefs Carrier _≈ᴹ_ bisemimodule : Bisemimodule semiring semiring m ℓm bisemimodule = record { isBisemimodule = isBisemimodule } open Bisemimodule bisemimodule public using ( leftSemimodule; rightSemimodule ; +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma ; +ᴹ-rawMagma; +ᴹ-rawMonoid) open SetR ≈ᴹ-setoid *ₗ-comm : L.Commutative _*ₗ_ *ₗ-comm x y m = begin x *ₗ y *ₗ m ≈⟨ ≈ᴹ-sym (*ₗ-assoc x y m) ⟩ (x * y) *ₗ m ≈⟨ *ₗ-cong (*-comm _ _) ≈ᴹ-refl ⟩ (y * x) *ₗ m ≈⟨ *ₗ-assoc y x m ⟩ y *ₗ x *ₗ m ∎ *ᵣ-comm : R.Commutative _*ᵣ_ *ᵣ-comm m x y = begin m *ᵣ x *ᵣ y ≈⟨ *ᵣ-assoc m x y ⟩ m *ᵣ (x * y) ≈⟨ *ᵣ-cong ≈ᴹ-refl (*-comm _ _) ⟩ m *ᵣ (y * x) ≈⟨ ≈ᴹ-sym (*ᵣ-assoc m y x) ⟩ m *ᵣ y *ᵣ x ∎ record Module (commutativeRing : CommutativeRing r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where open CommutativeRing commutativeRing infixr 8 -ᴹ_ infixr 7 _*ₗ_ infixl 6 _+ᴹ_ infix 4 _≈ᴹ_ field Carrierᴹ : Set m _≈ᴹ_ : Rel Carrierᴹ ℓm _+ᴹ_ : Op₂ Carrierᴹ _*ₗ_ : Opₗ Carrier Carrierᴹ _*ᵣ_ : Opᵣ Carrier Carrierᴹ 0ᴹ : Carrierᴹ -ᴹ_ : Op₁ Carrierᴹ isModule : IsModule commutativeRing _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_ _*ᵣ_ open IsModule isModule public bimodule : Bimodule ring ring m ℓm bimodule = record { isBimodule = isBimodule } open Bimodule bimodule public using ( leftModule; rightModule; leftSemimodule; rightSemimodule ; +ᴹ-abelianGroup; +ᴹ-group; +ᴹ-commutativeMonoid; +ᴹ-monoid ; +ᴹ-semigroup; +ᴹ-magma ; +ᴹ-rawMonoid; +ᴹ-rawMagma) semimodule : Semimodule commutativeSemiring m ℓm semimodule = record { isSemimodule = isSemimodule } open Semimodule semimodule public using (*ₗ-comm; *ᵣ-comm)
{ "alphanum_fraction": 0.620951417, "avg_line_length": 29.4925373134, "ext": "agda", "hexsha": "252ae1b072c1f2d0686a9eb5f610e9c3014138f2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Module/Bundles.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Module/Bundles.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Module/Bundles.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 3911, "size": 9880 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The universal binary relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Construct.Always where open import Relation.Binary open import Relation.Binary.Construct.Constant using (Const) open import Data.Unit using (⊤; tt) open import Level using (Lift; lift) ------------------------------------------------------------------------ -- Definition Always : ∀ {a ℓ} {A : Set a} → Rel A ℓ Always = Const (Lift _ ⊤) ------------------------------------------------------------------------ -- Properties module _ {a} (A : Set a) ℓ where refl : Reflexive {ℓ = ℓ} {A} Always refl = lift tt sym : Symmetric {ℓ = ℓ} {A} Always sym _ = lift tt trans : Transitive {ℓ = ℓ} {A} Always trans _ _ = lift tt isEquivalence : IsEquivalence {ℓ = ℓ} {A} Always isEquivalence = record {} setoid : Setoid a ℓ setoid = record { isEquivalence = isEquivalence } ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.17 Always-setoid = setoid {-# WARNING_ON_USAGE Always-setoid "Warning: Always-setoid was deprecated in v0.14. Please use setoid instead." #-}
{ "alphanum_fraction": 0.4801346801, "avg_line_length": 26.0526315789, "ext": "agda", "hexsha": "dbfcad5ce678e1392ddef21332816ddcdd45c391", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Always.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Always.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Always.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 328, "size": 1485 }
module Oscar.Category.Action where open import Oscar.Category.Setoid open import Oscar.Function open import Oscar.Level record Action {𝔬} (⋆ : Set 𝔬) 𝔄𝔬 𝔄𝔮 : Set (𝔬 ⊔ lsuc (𝔄𝔬 ⊔ 𝔄𝔮)) where field 𝔄 : ⋆ → Setoid 𝔄𝔬 𝔄𝔮 ⦃ isSetoid ⦄ : ∀ {x} → IsSetoid (Setoid.⋆ (𝔄 x)) 𝔄𝔮 ↥ : ⋆ → Set 𝔄𝔬 ↥ = Setoid.⋆ ∘ 𝔄
{ "alphanum_fraction": 0.5945121951, "avg_line_length": 18.2222222222, "ext": "agda", "hexsha": "bcdf4a46b8f694eb4e648b99575720f15f1660b8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Category/Action.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Category/Action.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Category/Action.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 171, "size": 328 }
{-# OPTIONS --without-K --safe #-} module Cham.Inference where
{ "alphanum_fraction": 0.6615384615, "avg_line_length": 13, "ext": "agda", "hexsha": "df0edac7fe15b682d10f2c81ba01952a57ba4c0a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "riz0id/chemical-abstract-machine", "max_forks_repo_path": "agda/Cham/Inference.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "riz0id/chemical-abstract-machine", "max_issues_repo_path": "agda/Cham/Inference.agda", "max_line_length": 34, "max_stars_count": null, "max_stars_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "riz0id/chemical-abstract-machine", "max_stars_repo_path": "agda/Cham/Inference.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 14, "size": 65 }
{-# OPTIONS --without-K --safe #-} module Categories.Bicategory.Instance.Cats where -- The category of categories (Cats) is a Bicategory open import Level open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂) open import Categories.Bicategory using (Bicategory) open import Categories.Category using (Category) open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism open import Categories.Category.Instance.One using (One) open import Categories.Category.Product using (Product; πˡ; πʳ; _※_) open import Categories.Category.Construction.Functors open import Categories.Functor.Construction.Constant import Categories.Morphism.Reasoning as MR Cats : (o ℓ e : Level) → Bicategory (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) (o ⊔ e) (suc (o ⊔ ℓ ⊔ e)) Cats o ℓ e = record { enriched = record { Obj = Category o ℓ e ; hom = Functors ; id = λ {A} → const {D = Functors A A} {C = One} idF ; ⊚ = product ; ⊚-assoc = λ {A B C D} → let module D = Category D in let module C = Category C in record { F⇒G = ntHelper record { η = λ { ((F₁ , F₂) , F₃) → F⇒G (associator F₃ F₂ F₁) } -- the proof is as below, so write it raw combinator-style ; commute = λ { {(G₁ , G₂) , G₃} {(H₁ , H₂) , H₃} ((η₁ , η₂) , η₃) {x} → let open Category D in let open HomReasoning in identityˡ ○ ⟺ assoc ○ ∘-resp-≈ˡ (⟺ (homomorphism H₁)) ○ ⟺ identityʳ} } ; F⇐G = ntHelper record { η = λ { ((F₁ , F₂) , F₃) → F⇐G (associator F₃ F₂ F₁)} ; commute = λ { {(G₁ , G₂) , G₃} {(H₁ , H₂) , H₃} ((η₁ , η₂) , η₃) {x} → let open Category D in let open HomReasoning in begin id ∘ F₁ H₁ (F₁ H₂ (η η₃ x) C.∘ η η₂ (F₀ G₃ x)) ∘ η η₁ (F₀ G₂ (F₀ G₃ x)) ≈⟨ identityˡ ⟩ F₁ H₁ (F₁ H₂ (η η₃ x) C.∘ η η₂ (F₀ G₃ x)) ∘ η η₁ (F₀ G₂ (F₀ G₃ x)) ≈⟨ homomorphism H₁ ⟩∘⟨refl ⟩ (F₁ H₁ (F₁ H₂ (η η₃ x)) ∘ F₁ H₁ (η η₂ (F₀ G₃ x))) ∘ η η₁ (F₀ G₂ (F₀ G₃ x)) ≈⟨ assoc ⟩ F₁ H₁ (F₁ H₂ (η η₃ x)) ∘ F₁ H₁ (η η₂ (F₀ G₃ x)) ∘ η η₁ (F₀ G₂ (F₀ G₃ x)) ≈˘⟨ identityʳ ⟩ (F₁ H₁ (F₁ H₂ (η η₃ x)) ∘ F₁ H₁ (η η₂ (F₀ G₃ x)) ∘ η η₁ (F₀ G₂ (F₀ G₃ x))) ∘ id ∎ } } ; iso = λ X → record { isoˡ = D.identityʳ ; isoʳ = D.identityˡ } } ; unitˡ = λ {A} {B} → let module B = Category B in let open B.HomReasoning in record { F⇒G = ntHelper record { η = λ _ → F⇒G unitorˡ ; commute = λ _ → B.identityˡ } ; F⇐G = ntHelper record { η = λ _ → F⇐G unitorˡ ; commute = λ f → B.identityˡ ○ ⟺ B.identityʳ ○ ⟺ B.identityʳ } ; iso = λ _ → record { isoˡ = B.identityˡ ; isoʳ = B.identityʳ } } ; unitʳ = λ {A} {B} → let open Category B in let open HomReasoning in record { F⇒G = ntHelper record { η = λ _ → F⇒G unitorʳ ; commute = λ { {_} {Y , _} (f , _) {x} → begin id ∘ F₁ Y (Category.id A) ∘ η f x ≈⟨ identityˡ ○ ∘-resp-≈ˡ (identity Y) ○ MR.id-comm-sym B ⟩ η f x ∘ id ∎ } } ; F⇐G = ntHelper record { η = λ _ → F⇐G unitorʳ ; commute = λ { {_} {Y , _} (f , _) {x} → begin id ∘ η f x ≈˘⟨ identity Y ⟩∘⟨refl ⟩ F₁ Y (Category.id A) ∘ η f x ≈˘⟨ identityʳ ⟩ (F₁ Y (Category.id A) ∘ η f x) ∘ id ∎ } } ; iso = λ _ → record { isoˡ = identityˡ ; isoʳ = identityʳ } } } ; triangle = λ {_ _ C} → Category.identityʳ C ; pentagon = λ {A B C D E} {f g h i} {X} → let open Category E in let open HomReasoning in begin (F₁ i (Category.id D) ∘ id) ∘ id ∘ F₁ i (F₁ h (F₁ g (Category.id B))) ∘ id ≈⟨ identityʳ ⟩∘⟨ (identityˡ ○ identityʳ) ⟩ F₁ i (Category.id D) ∘ F₁ i (F₁ h (F₁ g (Category.id B))) ≈⟨ identity i ⟩∘⟨ F-resp-≈ i (F-resp-≈ h (identity g)) ⟩ id ∘ F₁ i (F₁ h (Category.id C)) ≈⟨ refl⟩∘⟨ F-resp-≈ i (identity h) ⟩ id ∘ F₁ i (Category.id D) ≈⟨ refl⟩∘⟨ identity i ⟩ id ∘ id ∎ } where open NaturalTransformation open NaturalIsomorphism open Functor
{ "alphanum_fraction": 0.5204704818, "avg_line_length": 45.5773195876, "ext": "agda", "hexsha": "2405edec8a4d79628cc716788dfbd9a3a7ce49ed", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Bicategory/Instance/Cats.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Bicategory/Instance/Cats.agda", "max_line_length": 105, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Bicategory/Instance/Cats.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1764, "size": 4421 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Application of substitutions to lists, along with various lemmas ------------------------------------------------------------------------ -- This module illustrates how Data.Fin.Substitution.Lemmas.AppLemmas -- can be used. {-# OPTIONS --without-K --safe #-} open import Data.Fin.Substitution.Lemmas open import Data.Nat using (ℕ) module Data.Fin.Substitution.List {ℓ} {T : ℕ → Set ℓ} (lemmas₄ : Lemmas₄ T) where open import Data.List.Base open import Data.List.Properties open import Data.Fin.Substitution import Function as Fun open import Relation.Binary.PropositionalEquality open ≡-Reasoning private open module L = Lemmas₄ lemmas₄ using (_/_; id; _⊙_) infixl 8 _//_ _//_ : ∀ {m n} → List (T m) → Sub T m n → List (T n) ts // ρ = map (λ σ → σ / ρ) ts appLemmas : AppLemmas (λ n → List (T n)) T appLemmas = record { application = record { _/_ = _//_ } ; lemmas₄ = lemmas₄ ; id-vanishes = λ ts → begin ts // id ≡⟨ map-cong L.id-vanishes ts ⟩ map Fun.id ts ≡⟨ map-id ts ⟩ ts ∎ ; /-⊙ = λ {_ _ _ ρ₁ ρ₂} ts → begin ts // ρ₁ ⊙ ρ₂ ≡⟨ map-cong L./-⊙ ts ⟩ map (λ σ → σ / ρ₁ / ρ₂) ts ≡⟨ map-compose ts ⟩ ts // ρ₁ // ρ₂ ∎ } open AppLemmas appLemmas public hiding (_/_) renaming (_/✶_ to _//✶_)
{ "alphanum_fraction": 0.546230441, "avg_line_length": 29.2916666667, "ext": "agda", "hexsha": "d26a29c46b535dc6947cc536dff62e47c553d707", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution/List.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution/List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 462, "size": 1406 }
module MutualBlockInLet where postulate A : Set a : A test = let abstract x = a y = x in y
{ "alphanum_fraction": 0.4885496183, "avg_line_length": 11.9090909091, "ext": "agda", "hexsha": "7c218491fb310c69b3325e021e3ef734e8de2e07", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/AbstractBlockInLet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/AbstractBlockInLet.agda", "max_line_length": 29, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/AbstractBlockInLet.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 39, "size": 131 }
open import Relation.Binary.Core module PLRTree.Push.Heap {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import Data.Sum open import Induction.WellFounded open import Order.Total _≤_ tot≤ open import PLRTree {A} open import PLRTree.Drop _≤_ tot≤ open import PLRTree.Heap _≤_ open import PLRTree.Heap.Properties _≤_ trans≤ open import PLRTree.Order {A} open import PLRTree.Order.Properties {A} lemma-push-≤* : {x y : A}{l r : PLRTree}(t : Tag) → x ≤ y → x ≤* l → x ≤* r → (acc : Acc _≺_ (node t y l r)) → x ≤* (push (node t y l r) acc) lemma-push-≤* {x} t x≤y (lf≤* .x) x≤*r (acc rs) = nd≤* x≤y (lf≤* x) (lf≤* x) lemma-push-≤* {x} {y} t x≤y (nd≤* {t'} .{x} {x'} x≤x' x≤*l' x≤*r') (lf≤* .x) (acc rs) with tot≤ y x' ... | inj₁ y≤x' = nd≤* x≤y (nd≤* x≤x' (lf≤* x) (lf≤* x)) (lf≤* x) ... | inj₂ x'≤y = nd≤* x≤x' (nd≤* x≤y (lf≤* x) (lf≤* x)) (lf≤* x) lemma-push-≤* {x} {y} t x≤y (nd≤* {t'} .{x} {x'} {l'} {r'} x≤x' x≤*l' x≤*r') (nd≤* {t''} .{x} {x''} {l''} {r''} x≤x'' x≤*l'' x≤*r'') (acc rs) with tot≤ y x' | tot≤ y x'' | tot≤ x' x'' ... | inj₁ y≤x' | inj₁ y≤x'' | _ = nd≤* x≤y (nd≤* x≤x' x≤*l' x≤*r') (nd≤* x≤x'' x≤*l'' x≤*r'') ... | inj₁ y≤x' | inj₂ x''≤y | _ rewrite lemma-≡-height t'' y x'' l'' r'' = let acc-t''yl''r'' = rs (node t'' y l'' r'') (lemma-≺-right t y (node t' x' l' r') (node t'' x'' l'' r'')) in nd≤* x≤x'' (nd≤* x≤x' x≤*l' x≤*r') (lemma-push-≤* t'' x≤y x≤*l'' x≤*r'' acc-t''yl''r'') ... | inj₂ x'≤y | inj₁ y≤x'' | _ rewrite lemma-≡-height t' y x' l' r' = let acc-t'yl'r' = rs (node t' y l' r') (lemma-≺-left t y (node t' x' l' r') (node t'' x'' l'' r'')) in nd≤* x≤x' (lemma-push-≤* t' x≤y x≤*l' x≤*r' acc-t'yl'r') (nd≤* x≤x'' x≤*l'' x≤*r'') ... | inj₂ x'≤y | inj₂ x''≤y | inj₁ x'≤x'' rewrite lemma-≡-height t' y x' l' r' = let acc-t'yl'r' = rs (node t' y l' r') (lemma-≺-left t y (node t' x' l' r') (node t'' x'' l'' r'')) in nd≤* x≤x' (lemma-push-≤* t' x≤y x≤*l' x≤*r' acc-t'yl'r') (nd≤* x≤x'' x≤*l'' x≤*r'') ... | inj₂ x'≤y | inj₂ x''≤y | inj₂ x''≤x' rewrite lemma-≡-height t'' y x'' l'' r'' = let acc-t''yl''r'' = rs (node t'' y l'' r'') (lemma-≺-right t y (node t' x' l' r') (node t'' x'' l'' r'')) in nd≤* x≤x'' (nd≤* x≤x' x≤*l' x≤*r') (lemma-push-≤* t'' x≤y x≤*l'' x≤*r'' acc-t''yl''r'') lemma-push-heap : {l r : PLRTree}(t : Tag)(x : A) → Heap l → Heap r → (acc : Acc _≺_ (node t x l r)) → Heap (push (node t x l r) acc) lemma-push-heap t x leaf _ _ = node (lf≤* x) (lf≤* x) leaf leaf lemma-push-heap t x (node {t'} {x'} x'≤*l' x'≤*r' hl' hr') leaf (acc rs) with tot≤ x x' ... | inj₁ x≤x' = node (nd≤* x≤x' (lf≤* x) (lf≤* x)) (lf≤* x) (node (lf≤* x') (lf≤* x') leaf leaf) leaf ... | inj₂ x'≤x = node (nd≤* x'≤x (lf≤* x') (lf≤* x')) (lf≤* x') (node (lf≤* x) (lf≤* x) leaf leaf) leaf lemma-push-heap t x (node {t'} {x'} {l'} {r'} x'≤*l' x'≤*r' hl' hr') (node {t''} {x''} {l''} {r''} x''≤*l'' x''≤*r'' hl'' hr'') (acc rs) with tot≤ x x' | tot≤ x x'' | tot≤ x' x'' ... | inj₁ x≤x' | inj₁ x≤x'' | _ = let x≤*t'x'l'r' = nd≤* x≤x' (lemma-≤-≤* x≤x' x'≤*l') (lemma-≤-≤* x≤x' x'≤*r') ; x≤*t''x''l''r'' = nd≤* x≤x'' (lemma-≤-≤* x≤x'' x''≤*l'') (lemma-≤-≤* x≤x'' x''≤*r'') in node x≤*t'x'l'r' x≤*t''x''l''r'' (node x'≤*l' x'≤*r' hl' hr') (node x''≤*l'' x''≤*r'' hl'' hr'') ... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height t'' x x'' l'' r'' = let acc-t''xl''r'' = rs (node t'' x l'' r'') (lemma-≺-right t x (node t' x' l' r') (node t'' x'' l'' r'')) ; x''≤*t'x'l'r' = lemma-≤-≤* x''≤x (nd≤* x≤x' (lemma-≤-≤* x≤x' x'≤*l') (lemma-≤-≤* x≤x' x'≤*r')) ; x''≤*push-t''xl''r'' = lemma-push-≤* t'' x''≤x x''≤*l'' x''≤*r'' acc-t''xl''r'' in node x''≤*t'x'l'r' x''≤*push-t''xl''r'' (node x'≤*l' x'≤*r' hl' hr') (lemma-push-heap t'' x hl'' hr'' acc-t''xl''r'') ... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height t' x x' l' r' = let acc-t'xl'r' = rs (node t' x l' r') (lemma-≺-left t x (node t' x' l' r') (node t'' x'' l'' r'')) ; x'≤*t''x''l''r'' = lemma-≤-≤* x'≤x (nd≤* x≤x'' (lemma-≤-≤* x≤x'' x''≤*l'') (lemma-≤-≤* x≤x'' x''≤*r'')) ; x'≤*push-t'xl'r' = lemma-push-≤* t' x'≤x x'≤*l' x'≤*r' acc-t'xl'r' in node x'≤*push-t'xl'r' x'≤*t''x''l''r'' (lemma-push-heap t' x hl' hr' acc-t'xl'r') (node x''≤*l'' x''≤*r'' hl'' hr'') ... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height t' x x' l' r' = let acc-t'xl'r' = rs (node t' x l' r') (lemma-≺-left t x (node t' x' l' r') (node t'' x'' l'' r'')) ; x'≤*t''x''l''r'' = lemma-≤-≤* x'≤x'' (nd≤* refl≤ x''≤*l'' x''≤*r'') ; x'≤*push-t'xl'r' = lemma-push-≤* t' x'≤x x'≤*l' x'≤*r' acc-t'xl'r' in node x'≤*push-t'xl'r' x'≤*t''x''l''r'' (lemma-push-heap t' x hl' hr' acc-t'xl'r') (node x''≤*l'' x''≤*r'' hl'' hr'') ... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height t'' x x'' l'' r'' = let acc-t''xl''r'' = rs (node t'' x l'' r'') (lemma-≺-right t x (node t' x' l' r') (node t'' x'' l'' r'')) ; x''≤*t'x'l'r' = lemma-≤-≤* x''≤x' (nd≤* refl≤ x'≤*l' x'≤*r') ; x''≤*push-t''xl''r'' = lemma-push-≤* t'' x''≤x x''≤*l'' x''≤*r'' acc-t''xl''r'' in node x''≤*t'x'l'r' x''≤*push-t''xl''r'' (node x'≤*l' x'≤*r' hl' hr') (lemma-push-heap t'' x hl'' hr'' acc-t''xl''r'')
{ "alphanum_fraction": 0.4244070252, "avg_line_length": 76.7083333333, "ext": "agda", "hexsha": "ff3e31fed2390467fee29dac7e2bfc8f50f604cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Push/Heap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Push/Heap.agda", "max_line_length": 142, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Push/Heap.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 2932, "size": 5523 }
{-# OPTIONS --termination-depth=1 #-} --{-# OPTIONS -v term:40 #-} module TerminationWithInsufficientDepth where data Nat : Set where zero : Nat suc : Nat -> Nat module Depth2 where -- The fix to issue 59 makes this go through. -- f : Nat -> Nat -- f zero = zero -- f (suc zero) = zero -- f (suc (suc n)) with zero -- ... | m = f (suc n) -- Using a helper function, we still need termination-depth g : Nat → Nat → Nat f : Nat → Nat f zero = zero f (suc zero) = zero f (suc (suc n)) = g n zero g n m = f (suc n) {- this type checks with --termination-depth >= 2 calls: f -> f_with (-2) f_with -> f (+1) -} module Depth3 where f : Nat → Nat g : Nat → Nat f zero = zero f (suc zero) = zero f (suc (suc zero)) = zero f (suc (suc (suc n))) = g n g n = f (suc (suc n))
{ "alphanum_fraction": 0.5575539568, "avg_line_length": 17.375, "ext": "agda", "hexsha": "b891a0214d9275dcadc535f8f72c56924d43a78b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/TerminationWithInsufficientDepth.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/TerminationWithInsufficientDepth.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/TerminationWithInsufficientDepth.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 299, "size": 834 }
{-# OPTIONS --without-K #-} module Data.ByteString.Primitive.Strict where open import Data.Word8.Primitive using (Word8) open import Agda.Builtin.Nat using (Nat) open import Agda.Builtin.List using (List) open import Agda.Builtin.String using (String) open import Agda.Builtin.Bool using (Bool) open import Agda.Builtin.IO using (IO) open import Data.Tuple.Base using (Pair) {-# FOREIGN GHC import qualified Data.Word #-} {-# FOREIGN GHC import qualified Data.Text #-} {-# FOREIGN GHC import qualified Data.ByteString #-} open import Foreign.Haskell using (Unit) open import Data.ByteString.Primitive.Int postulate ByteStringStrict : Set readBinaryFileStrict : String → IO ByteStringStrict writeBinaryFileStrict : String → ByteStringStrict → IO Unit List←Strict : ByteStringStrict → List Word8 List→Strict : List Word8 → ByteStringStrict emptyStrict : ByteStringStrict nullStrict : ByteStringStrict → Bool lengthStrict : ByteStringStrict → Int headStrict : ByteStringStrict → Word8 tailStrict : ByteStringStrict → ByteStringStrict indexStrict : ByteStringStrict → Int → Word8 splitAtStrict : Int → ByteStringStrict → Pair ByteStringStrict ByteStringStrict {-# COMPILE GHC ByteStringStrict = type Data.ByteString.ByteString #-} {-# COMPILE GHC readBinaryFileStrict = ( Data.ByteString.readFile . Data.Text.unpack ) #-} {-# COMPILE GHC writeBinaryFileStrict = ( Data.ByteString.writeFile . Data.Text.unpack ) #-} {-# COMPILE GHC List←Strict = ( Data.ByteString.unpack ) #-} {-# COMPILE GHC List→Strict = ( Data.ByteString.pack ) #-} {-# COMPILE GHC emptyStrict = (Data.ByteString.empty) #-} {-# COMPILE GHC nullStrict = (Data.ByteString.null) #-} {-# COMPILE GHC lengthStrict = (Data.ByteString.length) #-} {-# COMPILE GHC headStrict = (Data.ByteString.head) #-} {-# COMPILE GHC tailStrict = (Data.ByteString.tail) #-} {-# COMPILE GHC indexStrict = (Data.ByteString.index) #-} {-# COMPILE GHC splitAtStrict = (Data.ByteString.splitAt) #-}
{ "alphanum_fraction": 0.7274529237, "avg_line_length": 34.2033898305, "ext": "agda", "hexsha": "098a7ec8c492ead92ce9a1409402d8b514f9ab25", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/bytes-agda", "max_forks_repo_path": "src/Data/ByteString/Primitive/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/bytes-agda", "max_issues_repo_path": "src/Data/ByteString/Primitive/Strict.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/bytes-agda", "max_stars_repo_path": "src/Data/ByteString/Primitive/Strict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 462, "size": 2018 }
module Logics.Not where open import Function open import Relation.Nullary ------------------------------------------------------------------------ -- internal stuffs private a=¬∘¬a : ∀ {a} {A : Set a} → A → ¬ (¬ A) a=¬∘¬a a z = z a /p→q/→¬/p→¬q/ : ∀ {p q} {P : Set p} {Q : Set q} → (P → Q) → (¬ Q → ¬ P) /p→q/→¬/p→¬q/ p→q ¬q p = ¬q $ p→q p ------------------------------------------------------------------------ -- public aliases not-not : ∀ {ℓ} {A : Set ℓ} → A → ¬ (¬ A) not-not = a=¬∘¬a contrapositive : ∀ {p q} {P : Set p} {Q : Set q} → (P → Q) → (¬ Q → ¬ P) contrapositive = /p→q/→¬/p→¬q/
{ "alphanum_fraction": 0.3524590164, "avg_line_length": 24.4, "ext": "agda", "hexsha": "4683a4734a32ba1164c951266e7c8df161b02a83", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Logics/Not.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Logics/Not.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Logics/Not.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 233, "size": 610 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ open import Algebra module Algebra.Properties.Group {g₁ g₂} (G : Group g₁ g₂) where open Group G import Algebra.FunctionProperties as P; open P _≈_ import Relation.Binary.EqReasoning as EqR; open EqR setoid open import Function open import Data.Product ⁻¹-involutive : ∀ x → x ⁻¹ ⁻¹ ≈ x ⁻¹-involutive x = begin x ⁻¹ ⁻¹ ≈⟨ sym $ proj₂ identity _ ⟩ x ⁻¹ ⁻¹ ∙ ε ≈⟨ refl ⟨ ∙-cong ⟩ sym (proj₁ inverse _) ⟩ x ⁻¹ ⁻¹ ∙ (x ⁻¹ ∙ x) ≈⟨ sym $ assoc _ _ _ ⟩ x ⁻¹ ⁻¹ ∙ x ⁻¹ ∙ x ≈⟨ proj₁ inverse _ ⟨ ∙-cong ⟩ refl ⟩ ε ∙ x ≈⟨ proj₁ identity _ ⟩ x ∎ private left-helper : ∀ x y → x ≈ (x ∙ y) ∙ y ⁻¹ left-helper x y = begin x ≈⟨ sym (proj₂ identity x) ⟩ x ∙ ε ≈⟨ refl ⟨ ∙-cong ⟩ sym (proj₂ inverse y) ⟩ x ∙ (y ∙ y ⁻¹) ≈⟨ sym (assoc x y (y ⁻¹)) ⟩ (x ∙ y) ∙ y ⁻¹ ∎ right-helper : ∀ x y → y ≈ x ⁻¹ ∙ (x ∙ y) right-helper x y = begin y ≈⟨ sym (proj₁ identity y) ⟩ ε ∙ y ≈⟨ sym (proj₁ inverse x) ⟨ ∙-cong ⟩ refl ⟩ (x ⁻¹ ∙ x) ∙ y ≈⟨ assoc (x ⁻¹) x y ⟩ x ⁻¹ ∙ (x ∙ y) ∎ left-identity-unique : ∀ x y → x ∙ y ≈ y → x ≈ ε left-identity-unique x y eq = begin x ≈⟨ left-helper x y ⟩ (x ∙ y) ∙ y ⁻¹ ≈⟨ eq ⟨ ∙-cong ⟩ refl ⟩ y ∙ y ⁻¹ ≈⟨ proj₂ inverse y ⟩ ε ∎ right-identity-unique : ∀ x y → x ∙ y ≈ x → y ≈ ε right-identity-unique x y eq = begin y ≈⟨ right-helper x y ⟩ x ⁻¹ ∙ (x ∙ y) ≈⟨ refl ⟨ ∙-cong ⟩ eq ⟩ x ⁻¹ ∙ x ≈⟨ proj₁ inverse x ⟩ ε ∎ identity-unique : ∀ {x} → Identity x _∙_ → x ≈ ε identity-unique {x} id = left-identity-unique x x (proj₂ id x) left-inverse-unique : ∀ x y → x ∙ y ≈ ε → x ≈ y ⁻¹ left-inverse-unique x y eq = begin x ≈⟨ left-helper x y ⟩ (x ∙ y) ∙ y ⁻¹ ≈⟨ eq ⟨ ∙-cong ⟩ refl ⟩ ε ∙ y ⁻¹ ≈⟨ proj₁ identity (y ⁻¹) ⟩ y ⁻¹ ∎ right-inverse-unique : ∀ x y → x ∙ y ≈ ε → y ≈ x ⁻¹ right-inverse-unique x y eq = begin y ≈⟨ sym (⁻¹-involutive y) ⟩ y ⁻¹ ⁻¹ ≈⟨ ⁻¹-cong (sym (left-inverse-unique x y eq)) ⟩ x ⁻¹ ∎
{ "alphanum_fraction": 0.4603036876, "avg_line_length": 32.4647887324, "ext": "agda", "hexsha": "93e2a9f6668e28f7316638b34f4890d1c2494967", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/Group.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/Group.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 974, "size": 2305 }
record R (A B : Set) : Set where constructor c₁ field x : A mutual T : Set T = R D T data D : Set where c₂ : T → D f : T → Set f (c₁ (c₂ x)) = f x
{ "alphanum_fraction": 0.4970414201, "avg_line_length": 10.5625, "ext": "agda", "hexsha": "274b0913942ebac5f6f0f1583486cdd559a46828", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2997.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2997.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2997.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 74, "size": 169 }
open import Auto.Core using (Rule; RuleName; _≟-RuleName_; name2rule; IsHintDB) open import Level using (zero) open import Function using (id; _∘_) open import Category.Functor using (module RawFunctor) open import Data.Bool as Bool using (if_then_else_) open import Data.List as List using (List; _++_; []; [_]) open import Data.Maybe as Maybe using (Maybe; just; nothing) open import Data.Nat as Nat using (ℕ; pred) open import Data.Product as Prod using (∃; _,_; proj₂) open import Data.Sum as Sum using (_⊎_; inj₁; inj₂) open import Data.Unit as Unit using (⊤) open import Reflection using (Name) open import Relation.Nullary.Decidable using (⌊_⌋) module Auto.Counting where -------------------------------------------------------------------------------- -- Define a 'counting' hint database which, upon selection of a rule will -- -- decrement an associated 'count' value, and upon reaching 0 will delete -- -- the hint from the hint database. -- -- -- -- The count values can either be natural numbers, in which case they -- -- will be decremented as expected, or the value ⊤, in which case they -- -- will not be decremented, effectively inserting infinite copies of the -- -- rule into the hint database. -- -------------------------------------------------------------------------------- module CountingHintDB where open RawFunctor (Maybe.functor {zero}) using (_<$>_) Count : Set Count = ℕ ⊎ ⊤ record Hint (k : ℕ) : Set where constructor mkHint field rule : Rule k count : Count ruleName : RuleName ruleName = Rule.name rule HintDB : Set HintDB = List (∃ Hint) decrCount : ∀ {k} → Hint k → Maybe (Hint k) decrCount {k} (mkHint r c) = mkHint r <$> decrCount′ c where decrCount′ : Count → Maybe Count decrCount′ (inj₁ 0) = nothing decrCount′ (inj₁ 1) = nothing decrCount′ (inj₁ x) = just (inj₁ (pred x)) decrCount′ (inj₂ _) = just (inj₂ _) getTr : ∀ {k} → Hint k → (HintDB → HintDB) getTr h₁ = List.concatMap (List.fromMaybe ∘ mdecr₁) where mdecr₁ : ∃ Hint → Maybe (∃ Hint) mdecr₁ (_ , h₂) = if ⌊ Hint.ruleName h₁ ≟-RuleName Hint.ruleName h₂ ⌋ then (_,_ _) <$> decrCount h₂ else just (_ , h₂) countingHintDB : IsHintDB countingHintDB = record { HintDB = HintDB ; Hint = Hint ; getHints = id ; getRule = Hint.rule ; getTr = getTr ; ε = [] ; _∙_ = _++_ ; return = λ r → [ _ , mkHint r (inj₂ _) ] } open CountingHintDB using (mkHint; countingHintDB) open import Auto.Extensible countingHintDB public -------------------------------------------------------------------------------- -- Define some new syntax in order to insert rules with limited usage. -- -------------------------------------------------------------------------------- infixl 5 _<<[_]_ _<<[_]_ : HintDB → ℕ → Name → HintDB db <<[ 0 ] _ = db db <<[ x ] n with (name2rule n) db <<[ x ] n | inj₁ msg = db db <<[ x ] n | inj₂ (k , r) = db ∙ [ k , mkHint r (inj₁ x) ]
{ "alphanum_fraction": 0.5104381064, "avg_line_length": 35.0618556701, "ext": "agda", "hexsha": "5777aca1d40fcc4b83fabb9272db3cf395fca365", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2019-07-07T07:37:07.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-10T10:47:30.000Z", "max_forks_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wenkokke/AutoInAgda", "max_forks_repo_path": "src/Auto/Counting.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_issues_repo_issues_event_max_datetime": "2017-11-06T16:49:27.000Z", "max_issues_repo_issues_event_min_datetime": "2017-11-03T09:46:19.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wenkokke/AutoInAgda", "max_issues_repo_path": "src/Auto/Counting.agda", "max_line_length": 96, "max_stars_count": 22, "max_stars_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/AutoInAgda", "max_stars_repo_path": "src/Auto/Counting.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-20T15:04:47.000Z", "max_stars_repo_stars_event_min_datetime": "2017-07-18T18:14:09.000Z", "num_tokens": 894, "size": 3401 }
module Cats.Category.Setoids.Facts.Initial where open import Data.Empty using (⊥) open import Level open import Cats.Category open import Cats.Category.Setoids using (Setoids ; ≈-intro) module Build {l} {l≈} where open Category (Setoids l l≈) Zero : Obj Zero = record { Carrier = Lift l ⊥ ; _≈_ = λ() ; isEquivalence = record { refl = λ{} ; sym = λ{} ; trans = λ{} } } isInitial : IsInitial Zero isInitial X = ∃!-intro (record { arr = λ() ; resp = λ{} }) _ λ _ → ≈-intro λ {} open Build instance hasInitial : ∀ l l≈ → HasInitial (Setoids l l≈) hasInitial l l≈ = record { Zero = Zero ; isInitial = isInitial }
{ "alphanum_fraction": 0.5529891304, "avg_line_length": 17.1162790698, "ext": "agda", "hexsha": "b15b0a1ed9f64c2f39074cd555e405d5717ef409", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Setoids/Facts/Initial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Setoids/Facts/Initial.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Setoids/Facts/Initial.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 222, "size": 736 }
module Generic.Lib.Data.Nat where open import Data.Nat.Base hiding (_⊔_; _^_) public open import Generic.Lib.Decidable instance ℕEq : Eq ℕ ℕEq = viaBase Nat._≟_ where import Data.Nat as Nat foldℕ : ∀ {α} {A : Set α} -> (A -> A) -> A -> ℕ -> A foldℕ f x 0 = x foldℕ f x (suc n) = f (foldℕ f x n)
{ "alphanum_fraction": 0.6102236422, "avg_line_length": 20.8666666667, "ext": "agda", "hexsha": "ccb97f26d9d336da3ab4e6f754f2d68813c79d02", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Data/Nat.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Data/Nat.agda", "max_line_length": 52, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Data/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 121, "size": 313 }
{-# OPTIONS --without-K #-} module container.equality where open import level open import sum open import equality.core open import function.isomorphism open import function.extensionality open import container.core open import container.fixpoint module Equality {li la lb lx} (c : Container li la lb) (fp : Fixpoint c lx) where open Container c open Fixpoint fp substX : {i : I}{a a' : A i}(p : a ≡ a')(b : B a) → X (r (subst B p b)) → X (r b) substX refl _ x = x substX-β : ∀ {i} {a a' : A i} (f : (b : B a) → X (r b)) (f' : (b : B a') → X (r b)) (p : a ≡ a') → (subst (λ a → (b : B a) → X (r b)) p f ≡ f') ≅ ((b : B a) → f b ≡ substX p b (f' (subst B p b))) substX-β f f' refl = sym≅ strong-funext-iso -- structural equality for container fixpoints I-≡ : Set (li ⊔ lx) I-≡ = Σ I λ i → X i × X i A-≡ : I-≡ → Set la A-≡ (_ , u , v) = head u ≡ head v B-≡ : {j : I-≡} → A-≡ j → Set lb B-≡ {_ , u , _} _ = B (head u) r-≡ : {j : I-≡}{p : A-≡ j} → B-≡ p → I-≡ r-≡ {i , u , v}{p} b = r b , tail u b , substX p b (tail v (subst B p b)) equality : Container _ _ _ equality = record { I = I-≡ ; A = A-≡ ; B = B-≡ ; r = (λ {j p} → r-≡ {j} {p}) }
{ "alphanum_fraction": 0.4765204003, "avg_line_length": 25.98, "ext": "agda", "hexsha": "b8680b9ad05e9f5ad409771e2073a428d9b28317", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/container/equality.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/container/equality.agda", "max_line_length": 75, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 521, "size": 1299 }
module Issue2487.A where
{ "alphanum_fraction": 0.84, "avg_line_length": 12.5, "ext": "agda", "hexsha": "c9f638bbca04a14392454c4764039b533da85487", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2487/A.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2487/A.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2487/A.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 7, "size": 25 }
module Class.Show where open import Data.String using (String) record Show {a} (A : Set a) : Set a where field show : A -> String open Show {{...}} public
{ "alphanum_fraction": 0.6463414634, "avg_line_length": 16.4, "ext": "agda", "hexsha": "effc1fb27c35eb61fb333eeb5a8d284272bfd93b", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Class/Show.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Class/Show.agda", "max_line_length": 41, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Class/Show.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 46, "size": 164 }
postulate Nat : Set succ : Nat → Nat Le : Nat → Nat → Set Fin : Nat → Set low : ∀ {m n} → Le m n → Fin n → Fin m instance Le-refl : ∀ {n} → Le n n Le-succ : ∀ {m n} ⦃ _ : Le m n ⦄ → Le m (succ n) Chk1 : ∀ {n} → Fin n → Set Chk2 : ∀ {n} → Fin n → Fin n → Set Chk3 : ∀ {m n} ⦃ _ : Le m n ⦄ → Fin m → Fin n → Set variable le : Le _ _ X G : Fin _ postulate works : Chk1 G → Chk2 (low le G) X → Chk3 X G -- WAS: Instance argument got solved with `Le-refl`, which is not -- type-correct. -- SHOULD: result in a failed instance search fails : Chk2 (low le G) X → Chk3 X G
{ "alphanum_fraction": 0.5118483412, "avg_line_length": 21.8275862069, "ext": "agda", "hexsha": "b1a622b8765eb62f10962cfd88418070eeea242d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3464.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3464.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3464.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 259, "size": 633 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.FinData.Properties where open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Data.FinData.Base as Fin import Cubical.Data.Nat as ℕ open import Cubical.Data.Empty as Empty open import Cubical.Relation.Nullary private variable ℓ : Level A : Type ℓ znots : ∀{k} {m : Fin k} → ¬ (zero ≡ (suc m)) znots {k} {m} x = subst (Fin.rec (Fin k) ⊥) x m snotz : ∀{k} {m : Fin k} → ¬ ((suc m) ≡ zero) snotz {k} {m} x = subst (Fin.rec ⊥ (Fin k)) x m isPropFin0 : isProp (Fin 0) isPropFin0 = Empty.rec ∘ ¬Fin0 isContrFin1 : isContr (Fin 1) isContrFin1 .fst = zero isContrFin1 .snd zero = refl injSucFin : ∀ {n} { p q : Fin n} → suc p ≡ suc q → p ≡ q injSucFin {ℕ.suc ℕ.zero} {zero} {zero} pf = refl injSucFin {ℕ.suc (ℕ.suc n)} pf = cong predFin pf discreteFin : ∀{k} → Discrete (Fin k) discreteFin zero zero = yes refl discreteFin zero (suc y) = no znots discreteFin (suc x) zero = no snotz discreteFin (suc x) (suc y) with discreteFin x y ... | yes p = yes (cong suc p) ... | no ¬p = no (λ q → ¬p (injSucFin q)) isSetFin : ∀{k} → isSet (Fin k) isSetFin = Discrete→isSet discreteFin
{ "alphanum_fraction": 0.6608623549, "avg_line_length": 25.6595744681, "ext": "agda", "hexsha": "3cef723fff8264c8f20bf52a0a5760e230fa6da5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/FinData/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/FinData/Properties.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/FinData/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 461, "size": 1206 }
module Sandbox.IndRecIndexed where -- Ornamental Algebras, Algebraic Ornaments, CONOR McBRIDE -- https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/Ornament.pdf -- A Finite Axiomtization of Inductive-Recursion definitions, Peter Dybjer, Anton Setzer -- http://www.cse.chalmers.se/~peterd/papers/Finite_IR.pdf open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) open import Data.Bool open import Data.Unit open import Data.Empty open import Function open import Relation.Binary.PropositionalEquality open ≡-Reasoning data Desc (I : Set) : Set₁ where arg : (A : Set) → (A → Desc I) → Desc I rec : I → Desc I → Desc I ret : I → Desc I ⟦_⟧ : ∀ {I} → Desc I → (I → Set) → (I → Set) ⟦ arg A D ⟧ R i = Σ A (λ a → ⟦ D a ⟧ R i) ⟦ rec j D ⟧ R i = R j × ⟦ D ⟧ R i ⟦ ret j ⟧ R i = j ≡ i data Data {I} (D : Desc I) : I → Set where ⟨_⟩ : ∀ {i} → ⟦ D ⟧ (Data D) i → Data D i -- an arrow that respects indices _⇒_ : ∀ {I} → (I → Set) → (I → Set) → Set _⇒_ {I} X Y = (i : I) → X i → Y i map : ∀ {I} {A B : I → Set} → (D : Desc I) → (A ⇒ B) → ⟦ D ⟧ A ⇒ ⟦ D ⟧ B map (arg T U) f i (t , u) = t , map (U t) f i u map (rec j D) f i (a , u) = f j a , map D f i u map (ret j) f i i≡j = i≡j Alg : ∀ {I} (D : Desc I) → (A : I → Set) → Set Alg D A = ⟦ D ⟧ A ⇒ A -- fold D alg i ⟨ x ⟩ = alg i (map D (fold D alg) i x) -- mapFold F G alg i x = map F (fold G alg) i x mapFold : ∀ {I} {A : I → Set} (F G : Desc I) → Alg G A → ⟦ F ⟧ (Data G) ⇒ ⟦ F ⟧ A mapFold (arg Tags decoder) G alg i (tag , subnode) = tag , (mapFold (decoder tag) G alg i subnode) mapFold (rec j F) G alg i (⟨ x ⟩ , xs) = alg j (mapFold G G alg j x) , mapFold F G alg i xs mapFold (ret j) G alg i x = x fold : ∀ {I} {A : I → Set} (D : Desc I) → Alg D A → Data D ⇒ A fold D alg i ⟨ x ⟩ = alg i (mapFold D D alg i x) -- ℕ ℕDesc : Desc ⊤ ℕDesc = arg Bool (λ { true → rec tt (ret tt) ; false → ret tt }) ℕ : Set ℕ = Data ℕDesc tt zero : ℕ zero = ⟨ (false , refl) ⟩ suc : ℕ → ℕ suc n = ⟨ (true , (n , refl)) ⟩ -- indℕ : (P : ℕ → Set) -- → P zero -- → ((n : ℕ) → P n → P (suc n)) -- → (x : ℕ) -- → P x -- indℕ P base step ⟨ true , n , refl ⟩ = step n (indℕ P base step n) -- indℕ P base step ⟨ false , refl ⟩ = base -- -- _+_ : ℕ → ℕ → ℕ -- x + y = indℕ (λ _ → ℕ) y (λ n prf → suc prf) x +alg : ℕ → Alg ℕDesc (λ _ → ℕ) +alg y .tt (true , sum , refl) = suc sum +alg y .tt (false , refl) = y _+_ : ℕ → ℕ → ℕ x + y = fold ℕDesc (+alg y) tt x one : ℕ one = suc zero two : ℕ two = suc one +-suc-left : (m n : ℕ) → suc m + n ≡ suc (m + n) +-suc-left ⟨ true , m , refl ⟩ n = refl +-suc-left ⟨ false , refl ⟩ n = refl -- Nat NatDesc : Desc ℕ NatDesc = arg Bool ( λ { true → arg ℕ (λ { n → rec n (ret (suc n)) }) ; false → ret zero }) Nat : ℕ → Set Nat n = Data NatDesc n zeroNat : Nat zero zeroNat = ⟨ (false , refl) ⟩ sucNat : ∀ {n} → Nat n → Nat (suc n) sucNat {n} x = ⟨ (true , (n , (x , refl))) ⟩ -- Maybe MaybeDesc : Set → Desc ⊤ MaybeDesc A = arg Bool (λ { true → arg A (λ _ → ret tt) ; false → ret tt }) Maybe : Set → Set Maybe A = Data (MaybeDesc A) tt nothing : ∀ {A} → Maybe A nothing = ⟨ (false , refl) ⟩ just : ∀ {A} → A → Maybe A just n = ⟨ (true , (n , refl)) ⟩ -- List ListDesc : Set → Desc ⊤ ListDesc A = arg Bool ( λ { true → arg A (λ _ → rec tt (ret tt)) ; false → ret tt }) List : Set → Set List A = Data (ListDesc A) tt nil : ∀ {A} → List A nil = ⟨ (false , refl) ⟩ cons : ∀ {A} → A → List A → List A cons x xs = ⟨ (true , (x , (xs , refl))) ⟩ indList : ∀ {A} (P : List A → Set) → P nil → ((x : A) → (xs : List A) → P xs → P (cons x xs)) → (xs : List A) → P xs indList P base step ⟨ true , x , xs , refl ⟩ = step x xs (indList P base step xs) indList P base step ⟨ false , refl ⟩ = base -- Vec VecDesc : Set → Desc ℕ VecDesc A = arg Bool ( λ { true → arg A (λ _ → arg ℕ (λ n → rec n (ret (suc n)))) ; false → ret zero }) Vec : Set → ℕ → Set Vec A n = Data (VecDesc A) n nilV : ∀ {A} → Vec A zero nilV = ⟨ false , refl ⟩ consV : ∀ {A n} → A → Vec A n → Vec A (suc n) consV {A} {n} x xs = ⟨ true , x , n , xs , refl ⟩ ++alg : ∀ {A n} → Vec A n → Alg (VecDesc A) (λ m → Vec A (m + n)) ++alg {A} {n} ys .(suc o) (true , z , o , zs , refl) = ⟨ true , z , o + n , zs , sym (+-suc-left o n) ⟩ ++alg ys .zero (false , refl) = ys _++_ : ∀ {A m n} → Vec A m → Vec A n → Vec A (m + n) _++_ {A} {m} {n} xs ys = fold (VecDesc A) (++alg ys) m xs -- inverse image of e : J → I data Inv {J I : Set} (e : J → I) : I → Set where inv : (j : J) → Inv e (e j) data Orn {J I : Set} (e : J → I) : Desc I → Set₁ where arg : (A : Set) → {D : A → Desc I} → ((a : A) → Orn e (D a)) → Orn e (Desc.arg A D) rec : ∀ {h D} → Inv e h → Orn e D → Orn e (rec h D) ret : ∀ {o} → Inv e o → Orn e (ret o) new : ∀ {D} → (A : Set) → ((a : A) → Orn e D) → Orn e D ListOrn : Set → Orn (λ x → tt) ℕDesc ListOrn A = arg Bool (λ { true → Orn.new A (λ a → rec (inv tt) (ret (inv tt))) ; false → Orn.ret (inv tt)}) orn : ∀ {I J} {D : Desc I} {e : J → I} → Orn e D → Desc J orn (arg A O) = arg A (λ x → orn (O x)) orn (rec (inv j) O) = rec j (orn O) orn (ret (inv j)) = ret j orn (new A O) = arg A (λ x → orn (O x)) ListDesc' : Set → Desc ⊤ ListDesc' A = orn (ListOrn A) erase : ∀ {I J} {R : I → Set} {e : J → I} {D : Desc I} → (O : Orn e D) → ⟦ orn O ⟧ (R ∘ e) ⇒ (⟦ D ⟧ R ∘ e) erase (arg A O) i (a , os) = a , (erase (O a) i os) erase (rec (inv i) O) j (r , os) = r , erase O j os erase (ret (inv j)) .j refl = refl erase (new A O) j (a , os) = erase (O a) j os ornament-algebra : ∀ {I J} {e : J → I} {D : Desc I} → (O : Orn e D) → Alg (orn O) (λ j → Data D (e j)) ornament-algebra O j x = ⟨ erase O j x ⟩ forget : ∀ {I J} {e : J → I} {D : Desc I} {O : Orn e D} {j : J} → Data (orn O) j → Data D (e j) forget {I} {J} {e} {D} {O} {j} = fold (orn O) (ornament-algebra O) j algo : ∀ {I A} → (D : Desc I) → Alg D A → Orn {Σ I {! A !}} proj₁ D algo (arg A x) alg = arg A (λ a → algo (x a) (λ j ds → alg j (a , ds))) algo {I} {A} (rec i D) alg = new (A i) (λ a → rec (inv (i , a)) (algo D (λ j ds → alg i (a , {! ds !})))) algo (ret i) alg = ret (inv (i , alg i refl))
{ "alphanum_fraction": 0.4991173166, "avg_line_length": 30.1014492754, "ext": "agda", "hexsha": "5de4937d40ada717098af54928f79531f4fc782d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Sandbox/IndRecIndexed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Sandbox/IndRecIndexed.agda", "max_line_length": 106, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Sandbox/IndRecIndexed.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 2602, "size": 6231 }
{-# OPTIONS --without-K #-} open import Type using (Type₀; Type₁) open import Type.Identities open import Data.Zero using (𝟘) open import Data.One using (𝟙; 0₁) open import Data.Two.Base using (𝟚; 0₂; 1₂) open import Data.Product.NP using (Σ; _×_) open import Data.Sum.NP using (_⊎_) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Fin using (Fin) open import Data.Vec using (Vec) open import HoTT using (ua; UA; module Equivalences) open import Relation.Binary.PropositionalEquality.NP using (_≡_; !_; _∙_; idp) open Equivalences using (_≃_; ≃-!; ≃-refl; _≃-∙_) module Explore.Universe.Type {X : Type₀} where infixr 2 _×ᵁ_ data U : Type₁ El : U → Type₀ data U where 𝟘ᵁ 𝟙ᵁ 𝟚ᵁ : U _×ᵁ_ _⊎ᵁ_ : U → U → U Σᵁ : (u : U) (f : El u → U) → U Xᵁ : U ≃ᵁ : (u : U) (A : Type₀) (e : El u ≃ A) → U El 𝟘ᵁ = 𝟘 El 𝟙ᵁ = 𝟙 El 𝟚ᵁ = 𝟚 El (u₀ ×ᵁ u₁) = El u₀ × El u₁ El (u₀ ⊎ᵁ u₁) = El u₀ ⊎ El u₁ El (Σᵁ u f) = Σ (El u) λ x → El (f x) El Xᵁ = X El (≃ᵁ u A e) = A infix 8 _^ᵁ_ _^ᵁ_ : U → ℕ → U u ^ᵁ zero = 𝟙ᵁ u ^ᵁ suc n = u ×ᵁ u ^ᵁ n ^ᵁ≃Vec : ∀ u n → El (u ^ᵁ n) ≃ Vec (El u) n ^ᵁ≃Vec u zero = ≃-! Vec0≃𝟙 ^ᵁ≃Vec u (suc n) = ×≃-second (El u) (^ᵁ≃Vec u n) ≃-∙ ≃-! Vec∘suc≃× ^ᵁ≡Vec : ∀ {{_ : UA}} u n → El (u ^ᵁ n) ≡ Vec (El u) n ^ᵁ≡Vec u n = ua (^ᵁ≃Vec u n) Finᵁ : ℕ → U Finᵁ zero = 𝟘ᵁ Finᵁ (suc n) = 𝟙ᵁ ⊎ᵁ Finᵁ n Finᵁ' : ℕ → U Finᵁ' zero = 𝟘ᵁ Finᵁ' (suc zero) = 𝟙ᵁ Finᵁ' (suc (suc n)) = 𝟙ᵁ ⊎ᵁ Finᵁ' (suc n) Finᵁ≃Fin : ∀ n → El (Finᵁ n) ≃ Fin n Finᵁ≃Fin zero = ≃-! Fin0≃𝟘 Finᵁ≃Fin (suc n) = ⊎≃ ≃-refl (Finᵁ≃Fin n) ≃-∙ ≃-! Fin∘suc≃𝟙⊎Fin Finᵁ'≃Fin : ∀ n → El (Finᵁ' n) ≃ Fin n Finᵁ'≃Fin zero = ≃-! Fin0≃𝟘 Finᵁ'≃Fin (suc zero) = ≃-! Fin1≃𝟙 Finᵁ'≃Fin (suc (suc n)) = ⊎≃ ≃-refl (Finᵁ'≃Fin (suc n)) ≃-∙ ≃-! Fin∘suc≃𝟙⊎Fin
{ "alphanum_fraction": 0.5574419921, "avg_line_length": 25.9852941176, "ext": "agda", "hexsha": "f562f6f40c7c70a35693f1670a312eaa7a1b0586", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Universe/Type.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Universe/Type.agda", "max_line_length": 78, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Universe/Type.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 1067, "size": 1767 }
module Oscar.Property.Preservativity where open import Oscar.Level open import Oscar.Relation record Preservativity {a} {A : Set a} {b} {B : A → Set b} {c} {C : (x : A) → B x → Set c} (_▻₁_ : (x : A) → (y : B x) → C x y) {d} {D : Set d} {e} {E : D → Set e} {f} {F : (x : D) → E x → Set f} (_▻₂_ : (x : D) → (y : E x) → F x y) {ℓ} (_≤_ : ∀ {x y} → F x y → F x y → Set ℓ) (◽ : A → D) (◻ : ∀ {x} → B x → E (◽ x)) (□ : ∀ {x y} → C x y → F (◽ x) (◻ y)) : Set (a ⊔ b ⊔ c ⊔ d ⊔ e ⊔ f ⊔ ℓ) where field preservativity : ∀ (x : A) (y : B x) → □ (x ▻₁ y) ≤ (◽ x ▻₂ ◻ y) open Preservativity ⦃ … ⦄ public -- -- record Preservativity -- -- {𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁} -- -- (_◅₁_ : ∀ {m n} → m ►₁ n → ∀ {l} → m ⟨ l ►₁_ ⟩→ n) -- -- {𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} (_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂) -- -- (_◅₂_ : ∀ {m n} → m ►₂ n → ∀ {l} → m ⟨ l ►₂_ ⟩→ n) -- -- {ℓ} -- -- (_≤_ : ∀ {m n} → m ►₂ n → m ►₂ n → Set ℓ) -- -- {μ : 𝔄₁ → 𝔄₂} -- -- (◽ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n) -- -- : Set (𝔞₁ ⊔ 𝔰₁ ⊔ 𝔞₂ ⊔ 𝔰₂ ⊔ ℓ) where -- -- field -- -- preservativity : ∀ {l m} (f : l ►₁ m) {n} (g : m ►₁ n) → ◽ (g ◅₁ f) ≤ (◽ g ◅₂ ◽ f) -- -- open Preservativity ⦃ … ⦄ public -- -- -- record Preservativity -- -- -- {𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} -- -- -- (_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁) {𝔱₁} -- -- -- {▸₁ : 𝔄₁ → Set 𝔱₁} -- -- -- (_◃₁_ : ∀ {m n} → m ►₁ n → m ⟨ ▸₁ ⟩→ n) -- -- -- {𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} -- -- -- (_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂) {𝔱₂} -- -- -- {▸₂ : 𝔄₂ → Set 𝔱₂} -- -- -- (_◃₂_ : ∀ {m n} → m ►₂ n → m ⟨ ▸₂ ⟩→ n) -- -- -- {ℓ} -- -- -- (_≤_ : ∀ {n} → ▸₂ n → ▸₂ n → Set ℓ) -- -- -- {μ : 𝔄₁ → 𝔄₂} -- -- -- (◽ : ∀ {n} → ▸₁ n → ▸₂ (μ n)) -- -- -- (□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n) -- -- -- : Set (𝔞₁ ⊔ 𝔰₁ ⊔ 𝔱₁ ⊔ 𝔞₂ ⊔ 𝔰₂ ⊔ 𝔱₂ ⊔ ℓ) where -- -- -- field -- -- -- preservativity : ∀ {m n} (f : ▸₁ m) (g : m ►₁ n) → ◽ (g ◃₁ f) ≤ (□ g ◃₂ ◽ f) -- -- -- open Preservativity ⦃ … ⦄ public -- -- -- open import Oscar.Class.Associativity -- -- -- open import Oscar.Class.Symmetry -- -- -- open import Oscar.Function -- -- -- instance -- -- -- Preservativity⋆ : ∀ -- -- -- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} -- -- -- {_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n} -- -- -- {𝔱} {▸ : 𝔄 → Set 𝔱} -- -- -- {_◃_ : ∀ {m n} → m ► n → m ⟨ ▸ ⟩→ n} -- -- -- {ℓ} -- -- -- {_≤_ : ∀ {n} → ▸ n → ▸ n → Set ℓ} -- -- -- ⦃ _ : Associativity _◅_ _◃_ _≤_ ⦄ -- -- -- → ∀ {n} {x : ▸ n} -- -- -- → Preservativity _►_ (λ ⋆ → _◅_ ⋆) _►_ _◃_ (flip _≤_) (_◃ x) id -- -- -- Preservativity.preservativity (Preservativity⋆ {_◅_ = _◅_} {_◃_ = _◃_} {_≤_ = _≤_} ⦃ ′associativity ⦄ {x = x}) f = associativity {_◅_ = _◅_} {_◃_ = _◃_} {_≤_ = _≤_} ⦃ {-′associativity-}_ ⦄ x f -- -- -- preservation : ∀ -- -- -- {𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁} {𝔱₁} {▸₁ : 𝔄₁ → Set 𝔱₁} -- -- -- (_◃₁_ : ∀ {m n} → m ►₁ n → m ⟨ ▸₁ ⟩→ n) -- -- -- {𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} {_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂} {𝔱₂} {▸₂ : 𝔄₂ → Set 𝔱₂} -- -- -- (_◃₂_ : ∀ {m n} → m ►₂ n → m ⟨ ▸₂ ⟩→ n) -- -- -- {ℓ} -- -- -- (_≤_ : ∀ {n} → ▸₂ n → ▸₂ n → Set ℓ) -- -- -- {μ : 𝔄₁ → 𝔄₂} -- -- -- {◽ : ∀ {n} → ▸₁ n → ▸₂ (μ n)} -- -- -- {□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n} -- -- -- ⦃ _ : Preservativity _►₁_ _◃₁_ _►₂_ _◃₂_ _≤_ ◽ □ ⦄ -- -- -- {m n} (f : ▸₁ m) (g : m ►₁ n) → ◽ (g ◃₁ f) ≤ (□ g ◃₂ ◽ f) -- -- -- preservation _◃₁_ _◃₂_ _≤_ f g = preservativity {_◃₁_ = _◃₁_} {_◃₂_ = _◃₂_} {_≤_ = _≤_} f g
{ "alphanum_fraction": 0.3566714491, "avg_line_length": 39.1573033708, "ext": "agda", "hexsha": "cb9c1d567807cc2e3375051883aeec957dc7e49f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Property/Preservativity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Property/Preservativity.agda", "max_line_length": 203, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Property/Preservativity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1967, "size": 3485 }
module Relation.Equality.Extensionality where open import Relation.Equality open import Data.Inductive.Higher.Interval open import Relation.Path.Operation funext : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g funext {A = A}{B = B} {f = f}{g = g} p = ap {f = h} path-seg where h : I → (x : A) → B x h i x = interval-rec (f x) (g x) (p x) i
{ "alphanum_fraction": 0.5784061697, "avg_line_length": 32.4166666667, "ext": "agda", "hexsha": "a6baa8c0e230ff3b35d6cced617afb09aba61620", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Relation/Equality/Extensionality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Relation/Equality/Extensionality.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Relation/Equality/Extensionality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 150, "size": 389 }
module Issue205 where data ⊥ : Set where data D : Set₁ where d : (Set → Set) → D _*_ : D → Set → Set d F * A = F A foo : (F : D) → F * ⊥ foo (d _) = ⊥
{ "alphanum_fraction": 0.4968152866, "avg_line_length": 12.0769230769, "ext": "agda", "hexsha": "8716d1d0bb590c6ac95b086fe1b82fcfba49f1aa", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue205.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue205.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue205.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 68, "size": 157 }
postulate A : Set P : ..(_ : A) → Set f : {x : A} → P x g : ..(x : A) → P x g x = f
{ "alphanum_fraction": 0.347826087, "avg_line_length": 10.2222222222, "ext": "agda", "hexsha": "b0dc7c87e463ab9e97bd9f870ec045a5b85b8acc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue875.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue875.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue875.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 49, "size": 92 }
{-# OPTIONS --without-K --safe #-} open import Level open import Categories.Category module Categories.Category.Construction.Path {o ℓ e : Level} (C : Category o ℓ e) where open import Function using (flip) open import Relation.Binary hiding (_⇒_) open import Relation.Binary.Construct.Closure.Transitive open Category C -- Defining the Path Category ∘-tc : {A B : Obj} → A [ _⇒_ ]⁺ B → A ⇒ B ∘-tc [ f ] = f ∘-tc (_ ∼⁺⟨ f⁺ ⟩ f⁺′) = ∘-tc f⁺′ ∘ ∘-tc f⁺ infix 4 _≈⁺_ _≈⁺_ : {A B : Obj} → (i j : A [ _⇒_ ]⁺ B) → Set e f⁺ ≈⁺ g⁺ = ∘-tc f⁺ ≈ ∘-tc g⁺ Path : Category o (o ⊔ ℓ) e Path = record { Obj = Obj ; _⇒_ = λ A B → A [ _⇒_ ]⁺ B ; _≈_ = _≈⁺_ ; id = [ id ] ; _∘_ = flip (_ ∼⁺⟨_⟩_) ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ } where open HomReasoning
{ "alphanum_fraction": 0.5333998006, "avg_line_length": 23.3255813953, "ext": "agda", "hexsha": "150080d6e6aa3985454ebd9b0ac6808d9a73ad62", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Path.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Path.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Path.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 424, "size": 1003 }
{-# OPTIONS --cubical #-} module PathWithBoundary where open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Nat pred : Nat → Nat pred (suc n) = n pred 0 = 0 -- if the with abstraction correcly propagates the boundary the second -- clause will not typecheck. false : ∀ n {m} → (pred n + m) ≡ m false n {m} i with pred n ... | zero = m ... | suc q = m
{ "alphanum_fraction": 0.6585365854, "avg_line_length": 17.5714285714, "ext": "agda", "hexsha": "277565a314495d3c2444126209921d193346568d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/PathWithBoundary.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/PathWithBoundary.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/PathWithBoundary.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 119, "size": 369 }
module Typing where open import Data.Fin hiding (_≤_) open import Data.List hiding (drop) open import Data.List.All open import Data.Maybe open import Data.Nat open import Data.Nat.Properties open import Data.Product open import Relation.Binary.PropositionalEquality -- linearity indicator data LU : Set where LL UU : LU data Dir : Set where SND RCV : Dir -- coinductive view on session types -- following "Interactive Programming in Agda" -- http://www.cse.chalmers.se/~abela/ooAgda.pdf mutual data Type : Set where TUnit TInt : Type TPair : Type → Type → Type TChan : STypeF SType → Type TFun : LU → Type → Type → Type data STypeF (S : Set) : Set where transmit : (d : Dir) (t : Type) (s : S) → STypeF S choice : (d : Dir) (s1 : S) (s2 : S) → STypeF S choiceN : (d : Dir) (m : ℕ) (alt : Fin m → S) → STypeF S end : (d : Dir) → STypeF S record SType : Set where coinductive constructor delay field force : STypeF SType open SType pattern send t s = transmit SND t s pattern recv t s = transmit RCV t s pattern sintern s1 s2 = choice SND s1 s2 pattern sextern s1 s2 = choice RCV s1 s2 pattern sintN m a = choiceN SND m a pattern sextN m a = choiceN RCV m a pattern send! = end SND pattern send? = end RCV -- session type equivalence data EquivF (R : SType → SType → Set) : STypeF SType → STypeF SType → Set where eq-send : ∀ {s1 s1'} → (t : Type) → R s1 s1' → EquivF R (send t s1) (send t s1') eq-recv : ∀ {s1 s1'} → (t : Type) → R s1 s1' → EquivF R (recv t s1) (recv t s1') eq-sintern : ∀ {s1 s1' s2 s2'} → R s1 s1' → R s2 s2' → EquivF R (sintern s1 s2) (sintern s1' s2') eq-sextern : ∀ {s1 s1' s2 s2'} → R s1 s1' → R s2 s2' → EquivF R (sextern s1 s2) (sextern s1' s2') eq-sintN : ∀ {m alt alt'} → ((i : Fin m) → R (alt i) (alt' i)) → EquivF R (sintN m alt) (sintN m alt') eq-sextN : ∀ {m alt alt'} → ((i : Fin m) → R (alt i) (alt' i)) → EquivF R (sextN m alt) (sextN m alt') eq-send! : EquivF R send! send! eq-send? : EquivF R send? send? record Equiv (s1 : SType) (s2 : SType) : Set where coinductive field force : EquivF Equiv (force s1) (force s2) open Equiv _≈_ = Equiv _≈'_ = EquivF Equiv -- equivalence is reflexive equivF-refl : ∀ s → s ≈' s equiv-refl : ∀ s → s ≈ s force (equiv-refl s) = equivF-refl (force s) equivF-refl (send t s) = eq-send t (equiv-refl s) equivF-refl (recv t s) = eq-recv t (equiv-refl s) equivF-refl (sintern s1 s2) = eq-sintern (equiv-refl s1) (equiv-refl s2) equivF-refl (sextern s1 s2) = eq-sextern (equiv-refl s1) (equiv-refl s2) equivF-refl (sintN m alt) = eq-sintN λ i → equiv-refl (alt i) equivF-refl (sextN m alt) = eq-sextN λ i → equiv-refl (alt i) equivF-refl send! = eq-send! equivF-refl send? = eq-send? -- equivalence is symmetric eqF-sym : ∀ {s1 s2} → s1 ≈' s2 → s2 ≈' s1 eq-sym : ∀ {s1 s2} → s1 ≈ s2 → s2 ≈ s1 eqF-sym (eq-send t x) = eq-send t (eq-sym x) eqF-sym (eq-recv t x) = eq-recv t (eq-sym x) eqF-sym (eq-sintern x x₁) = eq-sintern (eq-sym x) (eq-sym x₁) eqF-sym (eq-sextern x x₁) = eq-sextern (eq-sym x) (eq-sym x₁) eqF-sym (eq-sintN x) = eq-sintN λ i → eq-sym (x i) eqF-sym (eq-sextN x) = eq-sextN λ i → eq-sym (x i) eqF-sym eq-send! = eq-send! eqF-sym eq-send? = eq-send? force (eq-sym s1~s2) = eqF-sym (force s1~s2) -- equivalence is transitive equivF-trans : ∀ {s1 s2 s3} → EquivF Equiv s1 s2 → EquivF Equiv s2 s3 → EquivF Equiv s1 s3 equiv-trans : ∀ {s1 s2 s3} → Equiv s1 s2 → Equiv s2 s3 → Equiv s1 s3 force (equiv-trans s1~s2 s2~s3) = equivF-trans (force s1~s2) (force s2~s3) equivF-trans (eq-send t x) (eq-send .t x₁) = eq-send t (equiv-trans x x₁) equivF-trans (eq-recv t x) (eq-recv .t x₁) = eq-recv t (equiv-trans x x₁) equivF-trans (eq-sintern x x₁) (eq-sintern x₂ x₃) = eq-sintern (equiv-trans x x₂) (equiv-trans x₁ x₃) equivF-trans (eq-sextern x x₁) (eq-sextern x₂ x₃) = eq-sextern (equiv-trans x x₂) (equiv-trans x₁ x₃) equivF-trans (eq-sintN x) (eq-sintN x₁) = eq-sintN λ i → equiv-trans (x i) (x₁ i) equivF-trans (eq-sextN x) (eq-sextN x₁) = eq-sextN λ i → equiv-trans (x i) (x₁ i) equivF-trans eq-send! eq-send! = eq-send! equivF-trans eq-send? eq-send? = eq-send? -- dual dual-dir : Dir → Dir dual-dir SND = RCV dual-dir RCV = SND dual : SType → SType dualF : STypeF SType → STypeF SType force (dual s) = dualF (force s) dualF (transmit d t s) = transmit (dual-dir d) t (dual s) dualF (choice d s1 s2) = choice (dual-dir d) (dual s1) (dual s2) dualF (choiceN d m alt) = choiceN (dual-dir d) m λ i → dual (alt i) dualF (end d) = end (dual-dir d) -- properties dual-involution : (s : SType) → s ≈ dual (dual s) dual-involutionF : (s : STypeF SType) → s ≈' dualF (dualF s) force (dual-involution s) = dual-involutionF (force s) dual-involutionF (send t s) = eq-send t (dual-involution s) dual-involutionF (recv t s) = eq-recv t (dual-involution s) dual-involutionF (sintern s1 s2) = eq-sintern (dual-involution s1) (dual-involution s2) dual-involutionF (sextern s1 s2) = eq-sextern (dual-involution s1) (dual-involution s2) dual-involutionF (sintN m alt) = eq-sintN λ i → dual-involution (alt i) dual-involutionF (sextN m alt) = eq-sextN λ i → dual-involution (alt i) dual-involutionF send! = eq-send! dual-involutionF send? = eq-send? mutual -- subtyping data SubT : Type → Type → Set where sub-unit : SubT TUnit TUnit sub-int : SubT TInt TInt sub-pair : ∀ {t₁ t₂ t₁' t₂'} → SubT t₁ t₁' → SubT t₂ t₂' → SubT (TPair t₁ t₂) (TPair t₁' t₂') sub-fun : ∀ {t₁ t₂ t₁' t₂' lu} → SubT t₁' t₁ → SubT t₂ t₂' → SubT (TFun lu t₁ t₂) (TFun lu t₁' t₂') sub-chan : ∀ {s s'} → SubF Sub s s' → SubT (TChan s) (TChan s') -- session type subtyping data SubF (R : SType → SType → Set) : STypeF SType → STypeF SType → Set where sub-send : ∀ {s1 s1'} → (t t' : Type) → (t'<=t : SubT t' t) → (s1<=s1' : R s1 s1') → SubF R (send t s1) (send t' s1') sub-recv : ∀ {s1 s1'} → (t t' : Type) → (t<=t' : SubT t t') → (s1<=s1' : R s1 s1') → SubF R (recv t s1) (recv t' s1') sub-sintern : ∀ {s1 s1' s2 s2'} → (s1<=s1' : R s1 s1') → (s2<=s2' : R s2 s2') → SubF R (sintern s1 s2) (sintern s1' s2') sub-sextern : ∀ {s1 s1' s2 s2'} → (s1<=s1' : R s1 s1') → (s2<=s2' : R s2 s2') → SubF R (sextern s1 s2) (sextern s1' s2') sub-sintN : ∀ {m m' alt alt'} → (m'≤m : m' ≤ m) → ((i : Fin m') → R (alt (inject≤ i m'≤m)) (alt' i)) → SubF R (sintN m alt) (sintN m' alt') sub-sextN : ∀ {m m' alt alt'} → (m≤m' : m ≤ m') → ((i : Fin m) → R (alt i) (alt' (inject≤ i m≤m'))) → SubF R (sextN m alt) (sextN m' alt') sub-send! : SubF R send! send! sub-send? : SubF R send? send? record Sub (s1 : SType) (s2 : SType) : Set where coinductive field force : SubF Sub (force s1) (force s2) open Sub _≲_ = Sub _≲'_ = SubF Sub inject-refl : ∀ {m} → (i : Fin m) → inject≤ i ≤-refl ≡ i inject-refl zero = refl inject-refl (suc i) = cong suc (inject-refl i) inject-trans : ∀ {m m' m''} → (m'≤m : m' ≤ m) → (m''≤m' : m'' ≤ m') → (i : Fin m'') → (inject≤ (inject≤ i m''≤m') m'≤m) ≡ (inject≤ i (≤-trans m''≤m' m'≤m)) inject-trans z≤n z≤n () inject-trans (s≤s m'≤m) z≤n () inject-trans (s≤s m'≤m) (s≤s m''≤m') zero = refl inject-trans (s≤s m'≤m) (s≤s m''≤m') (suc i) = cong suc (inject-trans m'≤m m''≤m' i) -- subtyping is reflexive subt-refl : ∀ t → SubT t t subF-refl : ∀ s → s ≲' s sub-refl : ∀ s → s ≲ s force (sub-refl s) = subF-refl (force s) subF-refl (send t s) = sub-send t t (subt-refl t) (sub-refl s) subF-refl (recv t s) = sub-recv t t (subt-refl t) (sub-refl s) subF-refl (sintern s1 s2) = sub-sintern (sub-refl s1) (sub-refl s2) subF-refl (sextern s1 s2) = sub-sextern (sub-refl s1) (sub-refl s2) subF-refl (sintN m alt) = sub-sintN ≤-refl auxInt where auxInt : (i : Fin m) → Sub (alt (inject≤ i ≤-refl)) (alt i) auxInt i rewrite inject-refl i = sub-refl (alt i) subF-refl (sextN m alt) = sub-sextN ≤-refl auxExt where auxExt : (i : Fin m) → Sub (alt i) (alt (inject≤ i ≤-refl)) auxExt i rewrite inject-refl i = sub-refl (alt i) subF-refl send! = sub-send! subF-refl send? = sub-send? subt-refl TUnit = sub-unit subt-refl TInt = sub-int subt-refl (TPair t t₁) = sub-pair (subt-refl t) (subt-refl t₁) subt-refl (TChan s) = sub-chan (subF-refl s) subt-refl (TFun x t t₁) = sub-fun (subt-refl t) (subt-refl t₁) -- subtyping is transitive subt-trans : ∀ {t1 t2 t3} → SubT t1 t2 → SubT t2 t3 → SubT t1 t3 sub-trans : ∀ {s1 s2 s3} → s1 ≲ s2 → s2 ≲ s3 → s1 ≲ s3 subF-trans : ∀ {s1 s2 s3} → s1 ≲' s2 → s2 ≲' s3 → s1 ≲' s3 subt-trans sub-unit sub-unit = sub-unit subt-trans sub-int sub-int = sub-int subt-trans (sub-pair t1<:t2 t1<:t3) (sub-pair t2<:t3 t2<:t4) = sub-pair (subt-trans t1<:t2 t2<:t3) (subt-trans t1<:t3 t2<:t4) subt-trans (sub-fun t1<:t2 t1<:t3) (sub-fun t2<:t3 t2<:t4) = sub-fun (subt-trans t2<:t3 t1<:t2) (subt-trans t1<:t3 t2<:t4) subt-trans (sub-chan s1<:s2) (sub-chan s2<:s3) = sub-chan (subF-trans s1<:s2 s2<:s3) force (sub-trans s1<:s2 s2<:s3) = subF-trans (force s1<:s2) (force s2<:s3) subF-trans (sub-send t t' x x₁) (sub-send .t' t'' x₂ x₃) = sub-send t t'' (subt-trans x₂ x) (sub-trans x₁ x₃) subF-trans (sub-recv t t' x x₁) (sub-recv .t' t'' x₂ x₃) = sub-recv t t'' (subt-trans x x₂) (sub-trans x₁ x₃) subF-trans (sub-sintern x x₁) (sub-sintern x₂ x₃) = sub-sintern (sub-trans x x₂) (sub-trans x₁ x₃) subF-trans (sub-sextern x x₁) (sub-sextern x₂ x₃) = sub-sextern (sub-trans x x₂) (sub-trans x₁ x₃) subF-trans {sintN m alt}{sintN m' alt'}{sintN m'' alt''} (sub-sintN m'≤m palt) (sub-sintN m''≤m' palt') = sub-sintN (≤-trans m''≤m' m'≤m) λ i → sub-trans (auxInt i) (palt' i) where auxInt : (i : Fin m'') → Sub (alt (inject≤ i (≤-trans m''≤m' m'≤m))) (alt' (inject≤ i m''≤m')) auxInt i with palt (inject≤ i m''≤m') ... | r rewrite (inject-trans m'≤m m''≤m' i) = r subF-trans {sextN m alt}{sextN m' alt'}{sextN m'' alt''} (sub-sextN m≤m' palt) (sub-sextN m'≤m'' palt') = sub-sextN (≤-trans m≤m' m'≤m'') λ i → sub-trans (palt i) (auxExt i) where auxExt : (i : Fin m) → Sub (alt' (inject≤ i m≤m')) (alt'' (inject≤ i (≤-trans m≤m' m'≤m''))) auxExt i with palt' (inject≤ i m≤m') ... | r rewrite (inject-trans m'≤m'' m≤m' i) = r subF-trans sub-send! sub-send! = sub-send! subF-trans sub-send? sub-send? = sub-send? -- duality and subtyping dual-sub : ∀ {s1 s2} → s1 ≲ s2 → dual s2 ≲ dual s1 dual-subF : ∀ {s1 s2} → s1 ≲' s2 → dualF s2 ≲' dualF s1 force (dual-sub s1<=s2) = dual-subF (force s1<=s2) dual-subF (sub-send t t' t'<=t s1<=s1') = sub-recv t' t t'<=t (dual-sub s1<=s1') dual-subF (sub-recv t t' t<=t' s1<=s1') = sub-send t' t t<=t' (dual-sub s1<=s1') dual-subF (sub-sintern s1<=s1' s2<=s2') = sub-sextern (dual-sub s1<=s1') (dual-sub s2<=s2') dual-subF (sub-sextern s1<=s1' s2<=s2') = sub-sintern (dual-sub s1<=s1') (dual-sub s2<=s2') dual-subF (sub-sintN m'≤m x) = sub-sextN m'≤m λ i → dual-sub (x i) dual-subF (sub-sextN m≤m' x) = sub-sintN m≤m' λ i → dual-sub (x i) dual-subF sub-send! = sub-send? dual-subF sub-send? = sub-send! -- equivalence and subtyping eq-implies-sub : ∀ {s1 s2} → s1 ≈ s2 → s1 ≲ s2 eqF-implies-subF : ∀ {s1 s2} → s1 ≈' s2 → s1 ≲' s2 force (eq-implies-sub s1~s2) = eqF-implies-subF (force s1~s2) eqF-implies-subF (eq-send t x) = sub-send t t (subt-refl t) (eq-implies-sub x) eqF-implies-subF (eq-recv t x) = sub-recv t t (subt-refl t) (eq-implies-sub x) eqF-implies-subF (eq-sintern x x₁) = sub-sintern (eq-implies-sub x) (eq-implies-sub x₁) eqF-implies-subF (eq-sextern x x₁) = sub-sextern (eq-implies-sub x) (eq-implies-sub x₁) eqF-implies-subF {sintN m alt} {sintN .m alt'} (eq-sintN x) = sub-sintN ≤-refl auxInt where auxInt : (i : Fin m) → Sub (alt (inject≤ i ≤-refl)) (alt' i) auxInt i rewrite inject-refl i = eq-implies-sub (x i) eqF-implies-subF {sextN m alt} {sextN .m alt'} (eq-sextN x) = sub-sextN ≤-refl auxExt where auxExt : (i : Fin m) → Sub (alt i) (alt' (inject≤ i ≤-refl)) auxExt i rewrite inject-refl i = eq-implies-sub (x i) eqF-implies-subF eq-send! = sub-send! eqF-implies-subF eq-send? = sub-send? -- unrestricted data Unr : Type → Set where UUnit : Unr TUnit UInt : Unr TInt UPair : ∀ {t₁ t₂} → Unr t₁ → Unr t₂ → Unr (TPair t₁ t₂) UFun : ∀ {t₁ t₂} → Unr (TFun UU t₁ t₂) classify-type : (t : Type) → Maybe (Unr t) classify-type TUnit = just UUnit classify-type TInt = just UInt classify-type (TPair t₁ t₂) with classify-type t₁ | classify-type t₂ classify-type (TPair t₁ t₂) | just x | just x₁ = just (UPair x x₁) classify-type (TPair t₁ t₂) | just x | nothing = nothing classify-type (TPair t₁ t₂) | nothing | just x = nothing classify-type (TPair t₁ t₂) | nothing | nothing = nothing classify-type (TChan x) = nothing classify-type (TFun LL t₁ t₂) = nothing classify-type (TFun UU t₁ t₂) = just UFun TCtx = List Type -- context splitting, respecting linearity data Split : TCtx → TCtx → TCtx → Set where [] : Split [] [] [] dupl : ∀ {t Φ Φ₁ Φ₂} → Unr t → Split Φ Φ₁ Φ₂ → Split (t ∷ Φ) (t ∷ Φ₁) (t ∷ Φ₂) drop : ∀ {t Φ Φ₁ Φ₂} → Unr t → Split Φ Φ₁ Φ₂ → Split (t ∷ Φ) Φ₁ Φ₂ left : ∀ {t Φ Φ₁ Φ₂} → Split Φ Φ₁ Φ₂ → Split (t ∷ Φ) (t ∷ Φ₁) Φ₂ rght : ∀ {t Φ Φ₁ Φ₂} → Split Φ Φ₁ Φ₂ → Split (t ∷ Φ) Φ₁ (t ∷ Φ₂) -- split is symmetric split-sym : ∀ {φ φ₁ φ₂} → Split φ φ₁ φ₂ → Split φ φ₂ φ₁ split-sym [] = [] split-sym (dupl x sp) = dupl x (split-sym sp) split-sym (drop un-t sp) = drop un-t (split-sym sp) split-sym (left sp) = rght (split-sym sp) split-sym (rght sp) = left (split-sym sp) split-unr : ∀ {φ φ₁ φ₂} → (sp : Split φ φ₁ φ₂) → All Unr φ₁ → All Unr φ₂ → All Unr φ split-unr [] [] [] = [] split-unr (dupl x sp) (px ∷ unr1) (px₁ ∷ unr2) = px ∷ split-unr sp unr1 unr2 split-unr (drop x sp) unr1 unr2 = x ∷ split-unr sp unr1 unr2 split-unr (left sp) (px ∷ unr1) unr2 = px ∷ split-unr sp unr1 unr2 split-unr (rght sp) unr1 (px ∷ unr2) = px ∷ split-unr sp unr1 unr2 split-all-left : (φ : TCtx) → Split φ φ [] split-all-left [] = [] split-all-left (x ∷ φ) = left (split-all-left φ) split-all-right : (φ : TCtx) → Split φ [] φ split-all-right [] = [] split-all-right (x ∷ φ) = rght (split-all-right φ) -- split the unrestricted part from a typing context split-refl-left : (φ : TCtx) → ∃ λ φ' → All Unr φ' × Split φ φ φ' split-refl-left [] = [] , [] , [] split-refl-left (t ∷ φ) with split-refl-left φ | classify-type t split-refl-left (t ∷ φ) | φ' , unr-φ' , sp' | nothing = φ' , unr-φ' , left sp' split-refl-left (t ∷ φ) | φ' , unr-φ' , sp' | just y = t ∷ φ' , y ∷ unr-φ' , dupl y sp' split-all-unr : ∀ {φ} → All Unr φ → Split φ φ φ split-all-unr [] = [] split-all-unr (px ∷ un-φ) = dupl px (split-all-unr un-φ) split-from-disjoint : (φ₁ φ₂ : TCtx) → ∃ λ φ → Split φ φ₁ φ₂ split-from-disjoint [] φ₂ = φ₂ , split-all-right φ₂ split-from-disjoint (t ∷ φ₁) φ₂ with split-from-disjoint φ₁ φ₂ ... | φ' , sp = t ∷ φ' , left sp split-unr-right : ∀ {φ φ₁ φ₂ φ₃ φ₄} → Split φ φ₁ φ₂ → Split φ₁ φ₃ φ₄ → All Unr φ₂ → Split φ φ₃ φ₄ split-unr-right [] [] unr1 = [] split-unr-right (dupl x sp012) (dupl x₁ sp134) (px ∷ unr1) = dupl x₁ (split-unr-right sp012 sp134 unr1) split-unr-right (dupl x sp012) (drop x₁ sp134) (px ∷ unr1) = drop px (split-unr-right sp012 sp134 unr1) split-unr-right (dupl x sp012) (left sp134) (px ∷ unr1) = left (split-unr-right sp012 sp134 unr1) split-unr-right (dupl x sp012) (rght sp134) (px ∷ unr1) = rght (split-unr-right sp012 sp134 unr1) split-unr-right (drop x sp012) [] unr1 = drop x (split-unr-right sp012 [] unr1) split-unr-right (drop x sp012) (dupl x₁ sp134) unr1 = drop x (split-unr-right sp012 (dupl x₁ sp134) unr1) split-unr-right (drop x sp012) (drop x₁ sp134) unr1 = drop x (split-unr-right sp012 (drop x₁ sp134) unr1) split-unr-right (drop x sp012) (left sp134) unr1 = drop x (split-unr-right sp012 (left sp134) unr1) split-unr-right (drop x sp012) (rght sp134) unr1 = drop x (split-unr-right sp012 (rght sp134) unr1) split-unr-right (left sp012) (dupl x sp134) unr1 = dupl x (split-unr-right sp012 sp134 unr1) split-unr-right (left sp012) (drop x sp134) unr1 = drop x (split-unr-right sp012 sp134 unr1) split-unr-right (left sp012) (left sp134) unr1 = left (split-unr-right sp012 sp134 unr1) split-unr-right (left sp012) (rght sp134) unr1 = rght (split-unr-right sp012 sp134 unr1) split-unr-right (rght sp012) [] (px ∷ unr1) = drop px (split-unr-right sp012 [] unr1) split-unr-right (rght sp012) (dupl x sp134) (px ∷ unr1) = drop px (split-unr-right sp012 (dupl x sp134) unr1) split-unr-right (rght sp012) (drop x sp134) (px ∷ unr1) = drop px (split-unr-right sp012 (drop x sp134) unr1) split-unr-right (rght sp012) (left sp134) (px ∷ unr1) = drop px (split-unr-right sp012 (left sp134) unr1) split-unr-right (rght sp012) (rght sp134) (px ∷ unr1) = drop px (split-unr-right sp012 (rght sp134) unr1) split-unr-left : ∀ {φ φ₁ φ₂ φ₃ φ₄} → Split φ φ₁ φ₂ → Split φ₂ φ₃ φ₄ → All Unr φ₁ → Split φ φ₃ φ₄ split-unr-left [] [] [] = [] split-unr-left (dupl x sp012) (dupl x₁ sp234) (px ∷ unr1) = dupl px (split-unr-left sp012 sp234 unr1) split-unr-left (dupl x sp012) (drop x₁ sp234) (px ∷ unr1) = drop px (split-unr-left sp012 sp234 unr1) split-unr-left (dupl x sp012) (left sp234) (px ∷ unr1) = left (split-unr-left sp012 sp234 unr1) split-unr-left (dupl x sp012) (rght sp234) (px ∷ unr1) = rght (split-unr-left sp012 sp234 unr1) split-unr-left (drop x₁ sp012) [] unr1 = drop x₁ (split-unr-left sp012 [] unr1) split-unr-left (drop x₁ sp012) (dupl x₂ sp234) unr1 = drop x₁ (split-unr-left sp012 (dupl x₂ sp234) unr1) split-unr-left (drop x₁ sp012) (drop x₂ sp234) unr1 = drop x₁ (split-unr-left sp012 (drop x₂ sp234) unr1) split-unr-left (drop x₁ sp012) (left sp234) unr1 = drop x₁ (split-unr-left sp012 (left sp234) unr1) split-unr-left (drop x₁ sp012) (rght sp234) unr1 = drop x₁ (split-unr-left sp012 (rght sp234) unr1) split-unr-left (left sp012) [] (px ∷ unr1) = drop px (split-unr-left sp012 [] unr1) split-unr-left (left sp012) (dupl x sp234) (px ∷ unr1) = drop px (split-unr-left sp012 (dupl x sp234) unr1) split-unr-left (left sp012) (drop x sp234) (px ∷ unr1) = drop px (split-unr-left sp012 (drop x sp234) unr1) split-unr-left (left sp012) (left sp234) (px ∷ unr1) = drop px (split-unr-left sp012 (left sp234) unr1) split-unr-left (left sp012) (rght sp234) (px ∷ unr1) = drop px (split-unr-left sp012 (rght sp234) unr1) split-unr-left (rght sp012) (dupl x₁ sp234) unr1 = dupl x₁ (split-unr-left sp012 sp234 unr1) split-unr-left (rght sp012) (drop x₁ sp234) unr1 = drop x₁ (split-unr-left sp012 sp234 unr1) split-unr-left (rght sp012) (left sp234) unr1 = left (split-unr-left sp012 sp234 unr1) split-unr-left (rght sp012) (rght sp234) unr1 = rght (split-unr-left sp012 sp234 unr1) -- reorganize splits split-rotate : ∀ {φ φ₁ φ₂ φ₁₁ φ₁₂} → Split φ φ₁ φ₂ → Split φ₁ φ₁₁ φ₁₂ → ∃ λ φ' → Split φ φ₁₁ φ' × Split φ' φ₁₂ φ₂ split-rotate [] [] = [] , [] , [] split-rotate (drop x sp12) [] with split-rotate sp12 [] ... | φ' , sp-φ' , φ'-sp = _ ∷ φ' , rght sp-φ' , drop x φ'-sp split-rotate (dupl x sp12) (dupl x₁ sp1112) with split-rotate sp12 sp1112 ... | φ' , sp-φ' , φ'-sp = _ ∷ φ' , dupl x₁ sp-φ' , dupl x₁ φ'-sp split-rotate (dupl x sp12) (drop x₁ sp1112) with split-rotate sp12 sp1112 ... | φ' , sp-φ' , φ'-sp = _ ∷ φ' , rght sp-φ' , rght φ'-sp split-rotate (dupl x sp12) (left sp1112) with split-rotate sp12 sp1112 ... | φ' , sp-φ' , φ'-sp = _ ∷ φ' , dupl x sp-φ' , rght φ'-sp split-rotate (dupl x sp12) (rght sp1112) with split-rotate sp12 sp1112 ... | φ' , sp-φ' , φ'-sp = _ ∷ φ' , rght sp-φ' , dupl x φ'-sp split-rotate (drop px sp12) sp1112 with split-rotate sp12 sp1112 ... | φ' , sp-φ' , φ'-sp = _ ∷ φ' , rght sp-φ' , drop px φ'-sp split-rotate (left sp12) (dupl x₁ sp1112) with split-rotate sp12 sp1112 ... | φ' , sp-φ' , φ'-sp = _ ∷ φ' , dupl x₁ sp-φ' , left φ'-sp split-rotate (left sp12) (left sp1112) with split-rotate sp12 sp1112 ... | φ' , sp-φ' , φ'-sp = φ' , left sp-φ' , φ'-sp split-rotate (left sp12) (rght sp1112) with split-rotate sp12 sp1112 ... | φ' , sp-φ' , φ'-sp = _ ∷ φ' , rght sp-φ' , left φ'-sp split-rotate (left sp12) (drop px sp1112) with split-rotate sp12 sp1112 ... | φ' , sp-φ' , φ'-sp = φ' , drop px sp-φ' , φ'-sp split-rotate (rght sp12) sp1112 with split-rotate sp12 sp1112 ... | φ' , sp-φ' , φ'-sp = _ ∷ φ' , rght sp-φ' , rght φ'-sp -- extract from type context where all other entries are unrestricted data _∈_ (x : Type) : List Type → Set where here : ∀ { xs } → All Unr xs → x ∈ (x ∷ xs) there : ∀ { x₀ xs } → Unr x₀ → x ∈ xs → x ∈ (x₀ ∷ xs) -- unrestricted weakening unr-weaken-var : ∀ {Φ Φ₁ Φ₂ t} → Split Φ Φ₁ Φ₂ → All Unr Φ₂ → t ∈ Φ₁ → t ∈ Φ unr-weaken-var [] un-Φ₂ () unr-weaken-var (dupl x₁ sp) (_ ∷ un-Φ₂) (here x) = here (split-unr sp x un-Φ₂) unr-weaken-var (dupl x₁ sp) un-Φ₂ (there x x₂) = unr-weaken-var (rght sp) un-Φ₂ x₂ unr-weaken-var (drop un-t sp) un-Φ₂ x = there un-t (unr-weaken-var sp un-Φ₂ x) unr-weaken-var {t = _} (left sp) un-Φ₂ (here x) = here (split-unr sp x un-Φ₂) unr-weaken-var {t = t} (left sp) un-Φ₂ (there x x₁) = there x (unr-weaken-var sp un-Φ₂ x₁) unr-weaken-var {t = t} (rght sp) (unr-t ∷ un-Φ₂) (here x) = there unr-t (unr-weaken-var sp un-Φ₂ (here x)) unr-weaken-var {t = t} (rght sp) (unr-t ∷ un-Φ₂) (there x x₁) = there unr-t (unr-weaken-var sp un-Φ₂ (there x x₁)) -- left and right branching data Selector : Set where Left Right : Selector selection : ∀ {A : Set} → Selector → A → A → A selection Left x y = x selection Right x y = y
{ "alphanum_fraction": 0.6271927762, "avg_line_length": 46.4257641921, "ext": "agda", "hexsha": "495a2cf88262e9ebbc1ba12161fa01a5e9219400", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/Typing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/Typing.agda", "max_line_length": 143, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/Typing.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 9031, "size": 21263 }
open import Level using () renaming (zero to ℓ₀) open import Relation.Binary using (DecSetoid) module CheckInsert (A : DecSetoid ℓ₀ ℓ₀) where open import Data.Nat using (ℕ) open import Data.Fin using (Fin) open import Data.Fin.Properties using (_≟_) open import Data.Maybe using (Maybe ; nothing ; just) renaming (setoid to MaybeSetoid ; Eq to MaybeEq) open import Data.Vec using (Vec) renaming (_∷_ to _∷V_) open import Data.Vec.Equality using () renaming (module Equality to VecEq) open import Relation.Nullary using (Dec ; yes ; no ; ¬_) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary using (Setoid ; module DecSetoid) open import Relation.Binary.Core using (refl ; _≡_ ; _≢_) import Relation.Binary.EqReasoning as EqR open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans) open import FinMap private open module A = DecSetoid A using (Carrier ; _≈_) renaming (_≟_ to deq) checkInsert : {n : ℕ} → Fin n → Carrier → FinMapMaybe n Carrier → Maybe (FinMapMaybe n Carrier) checkInsert i b m with lookupM i m ... | nothing = just (insert i b m) ... | just c with deq b c ... | yes b≈c = just m ... | no b≉c = nothing data InsertionResult {n : ℕ} (i : Fin n) (x : Carrier) (h : FinMapMaybe n Carrier) : Maybe (FinMapMaybe n Carrier) → Set where same : (x' : Carrier) → x ≈ x' → lookupM i h ≡ just x' → InsertionResult i x h (just h) new : lookupM i h ≡ nothing → InsertionResult i x h (just (insert i x h)) wrong : (x' : Carrier) → ¬ (x ≈ x') → lookupM i h ≡ just x' → InsertionResult i x h nothing insertionresult : {n : ℕ} → (i : Fin n) → (x : Carrier) → (h : FinMapMaybe n Carrier) → InsertionResult i x h (checkInsert i x h) insertionresult i x h with lookupM i h | inspect (lookupM i) h insertionresult i x h | just x' | _ with deq x x' insertionresult i x h | just x' | [ il ] | yes x≈x' = same x' x≈x' il insertionresult i x h | just x' | [ il ] | no x≉x' = wrong x' x≉x' il insertionresult i x h | nothing | [ il ] = new il lemma-checkInsert-same : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ just x → checkInsert i x m ≡ just m lemma-checkInsert-same i x m p with lookupM i m lemma-checkInsert-same i x m refl | .(just x) with deq x x lemma-checkInsert-same i x m refl | .(just x) | yes x≈x = refl lemma-checkInsert-same i x m refl | .(just x) | no x≉x = contradiction A.refl x≉x lemma-checkInsert-new : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ nothing → checkInsert i x m ≡ just (insert i x m) lemma-checkInsert-new i x m p with lookupM i m lemma-checkInsert-new i x m refl | .nothing = refl lemma-checkInsert-wrong : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → ¬ (x ≈ x') → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing lemma-checkInsert-wrong i x m x' d p with lookupM i m lemma-checkInsert-wrong i x m x' d refl | .(just x') with deq x x' lemma-checkInsert-wrong i x m x' d refl | .(just x') | yes q = contradiction q d lemma-checkInsert-wrong i x m x' d refl | .(just x') | no ¬q = refl lemma-checkInsert-restrict : {n m : ℕ} → (f : Fin n → Carrier) → (i : Fin n) → (is : Vec (Fin n) m) → checkInsert i (f i) (restrict f is) ≡ just (restrict f (i ∷V is)) lemma-checkInsert-restrict f i is with checkInsert i (f i) (restrict f is) | insertionresult i (f i) (restrict f is) lemma-checkInsert-restrict f i is | ._ | same x fi≈x p = cong just (lemma-insert-same _ i (trans p (cong just (sym (lemma-lookupM-restrict i f is p))))) lemma-checkInsert-restrict f i is | ._ | new _ = refl lemma-checkInsert-restrict f i is | ._ | wrong x fi≉x p = contradiction (Setoid.reflexive A.setoid (lemma-lookupM-restrict i f is p)) fi≉x lemma-lookupM-checkInsert : {n : ℕ} → (i j : Fin n) → (h : FinMapMaybe n Carrier) → {x : Carrier} → lookupM i h ≡ just x → (y : Carrier) → {h' : FinMapMaybe n Carrier} → checkInsert j y h ≡ just h' → lookupM i h' ≡ just x lemma-lookupM-checkInsert i j h pl y ph' with checkInsert j y h | insertionresult j y h lemma-lookupM-checkInsert i j h pl y refl | ._ | same _ _ _ = pl lemma-lookupM-checkInsert i j h pl y ph' | ._ | new _ with i ≟ j lemma-lookupM-checkInsert i .i h pl y ph' | ._ | new pl' | yes refl = contradiction (trans (sym pl) pl') (λ ()) lemma-lookupM-checkInsert i j h {x} pl y refl | ._ | new _ | no i≢j = begin lookupM i (insert j y h) ≡⟨ lemma-lookupM-insert-other i j y h i≢j ⟩ lookupM i h ≡⟨ pl ⟩ just x ∎ where open Relation.Binary.PropositionalEquality.≡-Reasoning lemma-lookupM-checkInsert i j h pl y () | ._ | wrong _ _ _ lemma-lookupM-checkInsert-other : {n : ℕ} → (i j : Fin n) → i ≢ j → (x : Carrier) → (h : FinMapMaybe n Carrier) → {h' : FinMapMaybe n Carrier} → checkInsert j x h ≡ just h' → lookupM i h' ≡ lookupM i h lemma-lookupM-checkInsert-other i j i≢j x h ph' with lookupM j h lemma-lookupM-checkInsert-other i j i≢j x h ph' | just y with deq x y lemma-lookupM-checkInsert-other i j i≢j x h refl | just y | yes x≈y = refl lemma-lookupM-checkInsert-other i j i≢j x h () | just y | no x≉y lemma-lookupM-checkInsert-other i j i≢j x h refl | nothing = lemma-lookupM-insert-other i j x h i≢j
{ "alphanum_fraction": 0.6590263307, "avg_line_length": 61.3837209302, "ext": "agda", "hexsha": "e0e35ec67dc447330fbf1d17928260a3f4e37ad9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jvoigtlaender/bidiragda", "max_forks_repo_path": "CheckInsert.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jvoigtlaender/bidiragda", "max_issues_repo_path": "CheckInsert.agda", "max_line_length": 221, "max_stars_count": null, "max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jvoigtlaender/bidiragda", "max_stars_repo_path": "CheckInsert.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1776, "size": 5279 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of First ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.First.Properties where open import Data.Empty open import Data.Fin using (suc) open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.List.Relation.Unary.Any as Any using (here; there) open import Data.List.Relation.Unary.First import Data.Sum as Sum open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; _≗_) open import Relation.Unary open import Relation.Nullary.Negation ------------------------------------------------------------------------ -- map module _ {a b p q} {A : Set a} {B : Set b} {P : Pred B p} {Q : Pred B q} where map⁺ : {f : A → B} → First (P ∘′ f) (Q ∘′ f) ⊆ First P Q ∘′ List.map f map⁺ [ qfx ] = [ qfx ] map⁺ (pfxs ∷ pqfxs) = pfxs ∷ map⁺ pqfxs map⁻ : {f : A → B} → First P Q ∘′ List.map f ⊆ First (P ∘′ f) (Q ∘′ f) map⁻ {f} {[]} () map⁻ {f} {x ∷ xs} [ qfx ] = [ qfx ] map⁻ {f} {x ∷ xs} (pfx ∷ pqfxs) = pfx ∷ map⁻ pqfxs ------------------------------------------------------------------------ -- (++) module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where ++⁺ : ∀ {xs ys} → All P xs → First P Q ys → First P Q (xs List.++ ys) ++⁺ [] pqys = pqys ++⁺ (px ∷ pxs) pqys = px ∷ ++⁺ pxs pqys ⁺++ : ∀ {xs} → First P Q xs → ∀ ys → First P Q (xs List.++ ys) ⁺++ [ qx ] ys = [ qx ] ⁺++ (px ∷ pqxs) ys = px ∷ ⁺++ pqxs ys ------------------------------------------------------------------------ -- Relationship to All module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where All⇒¬First : P ⊆ ∁ Q → All P ⊆ ∁ (First P Q) All⇒¬First p⇒¬q [] () All⇒¬First p⇒¬q (px ∷ pxs) [ qx ] = ⊥-elim (p⇒¬q px qx) All⇒¬First p⇒¬q (_ ∷ pxs) (_ ∷ hf) = All⇒¬First p⇒¬q pxs hf First⇒¬All : Q ⊆ ∁ P → First P Q ⊆ ∁ (All P) First⇒¬All q⇒¬p [ qx ] (px ∷ pxs) = q⇒¬p qx px First⇒¬All q⇒¬p (_ ∷ pqxs) (_ ∷ pxs) = First⇒¬All q⇒¬p pqxs pxs ------------------------------------------------------------------------ -- Irrelevance unique-index : ∀ {xs} → P ⊆ ∁ Q → (f₁ f₂ : First P Q xs) → index f₁ ≡ index f₂ unique-index p⇒¬q [ _ ] [ _ ] = refl unique-index p⇒¬q [ qx ] (px ∷ _) = ⊥-elim (p⇒¬q px qx) unique-index p⇒¬q (px ∷ _) [ qx ] = ⊥-elim (p⇒¬q px qx) unique-index p⇒¬q (_ ∷ f₁) (_ ∷ f₂) = P.cong suc (unique-index p⇒¬q f₁ f₂) irrelevant : P ⊆ ∁ Q → Irrelevant P → Irrelevant Q → Irrelevant (First P Q) irrelevant p⇒¬q p-irr q-irr [ qx₁ ] [ qx₂ ] = P.cong [_] (q-irr qx₁ qx₂) irrelevant p⇒¬q p-irr q-irr [ qx₁ ] (px₂ ∷ f₂) = ⊥-elim (p⇒¬q px₂ qx₁) irrelevant p⇒¬q p-irr q-irr (px₁ ∷ f₁) [ qx₂ ] = ⊥-elim (p⇒¬q px₁ qx₂) irrelevant p⇒¬q p-irr q-irr (px₁ ∷ f₁) (px₂ ∷ f₂) = P.cong₂ _∷_ (p-irr px₁ px₂) (irrelevant p⇒¬q p-irr q-irr f₁ f₂) ------------------------------------------------------------------------ -- Decidability module _ {a p} {A : Set a} {P : Pred A p} where first? : Decidable P → Decidable (First P (∁ P)) first? P? xs = Sum.toDec $ Sum.map₂ (All⇒¬First contradiction) $ first (Sum.fromDec ∘ P?) xs ------------------------------------------------------------------------ -- Conversion to Any module _ {a p} {A : Set a} {P : Pred A p} where fromAny∘toAny≗id : ∀ {xs} → fromAny {Q = P} {x = xs} ∘′ toAny ≗ id fromAny∘toAny≗id [ qx ] = refl fromAny∘toAny≗id (px ∷ pqxs) = P.cong (_ ∷_) (fromAny∘toAny≗id pqxs) toAny∘fromAny≗id : ∀ {xs} → toAny {Q = P} ∘′ fromAny {x = xs} ≗ id toAny∘fromAny≗id (here px) = refl toAny∘fromAny≗id (there v) = P.cong there (toAny∘fromAny≗id v) ------------------------------------------------------------------------ -- Equivalence between the inductive definition and the view module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where toView : ∀ {as} → First P Q as → FirstView P Q as toView [ qx ] = [] ++ qx ∷ _ toView (px ∷ pqxs) with toView pqxs ... | pxs ++ qy ∷ ys = (px ∷ pxs) ++ qy ∷ ys fromView : ∀ {as} → FirstView P Q as → First P Q as fromView (pxs ++ qy ∷ ys) = ++⁺ pxs [ qy ]
{ "alphanum_fraction": 0.4659949622, "avg_line_length": 37.9739130435, "ext": "agda", "hexsha": "e77bcd3265ea62a5cd2057e63b107ff9cc5a38ba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/First/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/First/Properties.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/First/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1670, "size": 4367 }
{-# OPTIONS --safe --warning=error #-} open import Sets.EquivalenceRelations open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω) open import Setoids.Setoids open import Groups.Definition open import LogicalFormulae open import Orders.WellFounded.Definition open import Numbers.Naturals.Semiring open import Groups.Lemmas module Groups.FreeProduct.Setoid {i : _} {I : Set i} (decidableIndex : (x y : I) → ((x ≡ y) || ((x ≡ y) → False))) {a b : _} {A : I → Set a} {S : (i : I) → Setoid {a} {b} (A i)} {_+_ : (i : I) → (A i) → (A i) → A i} (decidableGroups : (i : I) → (x y : A i) → ((Setoid._∼_ (S i) x y)) || ((Setoid._∼_ (S i) x y) → False)) (G : (i : I) → Group (S i) (_+_ i)) where open import Groups.FreeProduct.Definition decidableIndex decidableGroups G =RP' : {m n : _} (s1 : ReducedSequenceBeginningWith m) (s2 : ReducedSequenceBeginningWith n) → Set b =RP' (ofEmpty i g nonZero) (ofEmpty j h nonZero₁) with decidableIndex i j =RP' (ofEmpty i g nonZero) (ofEmpty .i h nonZero₁) | inl refl = Setoid._∼_ (S i) g h =RP' (ofEmpty i g nonZero) (ofEmpty j h nonZero₁) | inr x = False' =RP' (ofEmpty i g nonZero) (prependLetter i₁ g₁ nonZero₁ s2 x) = False' =RP' (prependLetter i g nonZero s1 x) (ofEmpty i₁ g₁ nonZero₁) = False' =RP' (prependLetter i g nonZero s1 x) (prependLetter j h nonZero₁ s2 x₁) with decidableIndex i j =RP' (prependLetter i g nonZero s1 x) (prependLetter .i h nonZero₁ s2 x₁) | inl refl = Setoid._∼_ (S i) g h && =RP' s1 s2 =RP' (prependLetter i g nonZero s1 x) (prependLetter j h nonZero₁ s2 x₁) | inr x₂ = False' _=RP_ : Rel ReducedSequence empty =RP empty = True' empty =RP nonempty i x = False' nonempty i x =RP empty = False' nonempty i x =RP nonempty j y = =RP' x y =RP'reflex : {i : _} (x : ReducedSequenceBeginningWith i) → =RP' x x =RP'reflex (ofEmpty i g nonZero) with decidableIndex i i =RP'reflex (ofEmpty i g nonZero) | inl refl = Equivalence.reflexive (Setoid.eq (S i)) =RP'reflex (ofEmpty i g nonZero) | inr x = exFalso (x refl) =RP'reflex (prependLetter i g nonZero x x₁) with decidableIndex i i =RP'reflex (prependLetter i g nonZero x x₁) | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ,, =RP'reflex x =RP'reflex (prependLetter i g nonZero x x₁) | inr bad = exFalso (bad refl) private reflex : Reflexive _=RP_ reflex {empty} = record {} reflex {nonempty i (ofEmpty .i g nonZero)} with decidableIndex i i reflex {nonempty i (ofEmpty .i g nonZero)} | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ... | inr bad = exFalso (bad refl) reflex {nonempty i (prependLetter .i g nonZero x x₁)} with decidableIndex i i reflex {nonempty i (prependLetter .i g nonZero x x₁)} | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ,, =RP'reflex x reflex {nonempty i (prependLetter .i g nonZero x x₁)} | inr bad = exFalso (bad refl) =RP'symm : {i j : _} (x : ReducedSequenceBeginningWith i) (y : ReducedSequenceBeginningWith j) → =RP' x y → =RP' y x =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) with decidableIndex i j =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) | inl pr with decidableIndex j i =RP'symm (ofEmpty .j g nonZero) (ofEmpty j h nonZero2) | inl refl | inl refl = Equivalence.symmetric (Setoid.eq (S j)) {g} {h} =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) | inl pr | inr x = exFalso (x (equalityCommutative pr)) =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) | inr x with decidableIndex j i =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) | inr x | inl pr = exFalso (x (equalityCommutative pr)) =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) | inr x | inr _ = id =RP'symm (ofEmpty i g nonZero) (prependLetter i₁ g₁ nonZero₁ y x) = id =RP'symm (prependLetter i g nonZero x x₁) (ofEmpty i₁ g₁ nonZero₁) = id =RP'symm (prependLetter i g nonZero x x₁) (prependLetter j h nonZero2 y pr2) pr with decidableIndex i j =RP'symm (prependLetter .j g nonZero x x₁) (prependLetter j h nonZero2 y pr2) pr | inl refl with decidableIndex j j =RP'symm (prependLetter .j g nonZero x x₁) (prependLetter j h nonZero2 y pr2) (fst ,, snd) | inl refl | inl refl = Equivalence.symmetric (Setoid.eq (S j)) fst ,, =RP'symm x y snd =RP'symm (prependLetter .j g nonZero x x₁) (prependLetter j h nonZero2 y pr2) pr | inl refl | inr bad = exFalso (bad refl) =RP'symm (prependLetter i g nonZero x x₁) (prependLetter j h nonZero2 y pr2) () | inr i!=j private symm : Symmetric _=RP_ symm {empty} {empty} x = record {} symm {nonempty i m} {nonempty i₁ n} x = =RP'symm m n x =RP'trans : {i j k : _} (x : ReducedSequenceBeginningWith i) (y : ReducedSequenceBeginningWith j) (z : ReducedSequenceBeginningWith k) → =RP' x y → =RP' y z → =RP' x z =RP'trans (ofEmpty i g nonZero) (ofEmpty j g₁ nonZero₁) (ofEmpty k g₂ nonZero₂) x=y y=z with decidableIndex i j =RP'trans (ofEmpty .j g nonZero) (ofEmpty j g₁ nonZero₁) (ofEmpty k g₂ nonZero₂) x=y y=z | inl refl with decidableIndex j k =RP'trans (ofEmpty .j g nonZero) (ofEmpty j g₁ nonZero₁) (ofEmpty .j g₂ nonZero₂) x=y y=z | inl refl | inl refl = Equivalence.transitive (Setoid.eq (S j)) x=y y=z =RP'trans (prependLetter i g nonZero x x₁) (prependLetter j g₁ nonZero₁ y x₂) (prependLetter k g₂ nonZero₂ z x₃) x=y y=z with decidableIndex i j =RP'trans (prependLetter .j g nonZero x x₁) (prependLetter j g₁ nonZero₁ y x₂) (prependLetter k g₂ nonZero₂ z x₃) x=y y=z | inl refl with decidableIndex j k =RP'trans (prependLetter .j g nonZero x x₁) (prependLetter j g₁ nonZero₁ y x₂) (prependLetter .j g₂ nonZero₂ z x₃) (fst1 ,, snd1) (fst2 ,, snd2) | inl refl | inl refl = Equivalence.transitive (Setoid.eq (S j)) fst1 fst2 ,, =RP'trans x y z snd1 snd2 private trans : (x y z : ReducedSequence) → x =RP y → y =RP z → x =RP z trans empty empty empty x=y y=z = record {} trans (nonempty i x) (nonempty i₁ y) (nonempty i₂ z) x=y y=z = =RP'trans x y z x=y y=z notEqualIfStartDifferent : {j1 j2 : I} (neq : (j1 ≡ j2) → False) → (x1 : ReducedSequenceBeginningWith j1) (x2 : ReducedSequenceBeginningWith j2) → =RP' x1 x2 → False notEqualIfStartDifferent neq (ofEmpty i g nonZero) (ofEmpty j g₁ nonZero₁) eq with decidableIndex i j notEqualIfStartDifferent neq (ofEmpty i g nonZero) (ofEmpty j g₁ nonZero₁) eq | inl i=j = neq i=j notEqualIfStartDifferent neq (prependLetter i g nonZero x1 x) (prependLetter j g₁ nonZero₁ x2 x₁) eq with decidableIndex i j notEqualIfStartDifferent neq (prependLetter i g nonZero x1 x) (prependLetter j g₁ nonZero₁ x2 x₁) eq | inl eq' = neq eq' freeProductSetoid : Setoid ReducedSequence Setoid._∼_ freeProductSetoid = _=RP_ Equivalence.reflexive (Setoid.eq freeProductSetoid) {x} = reflex {x} Equivalence.symmetric (Setoid.eq freeProductSetoid) {a} {b} = symm {a} {b} Equivalence.transitive (Setoid.eq freeProductSetoid) {x} {y} {z} = trans x y z
{ "alphanum_fraction": 0.700739645, "avg_line_length": 69.6907216495, "ext": "agda", "hexsha": "a05ce34f3c47eff397f67f7a8be5cc24ac5ff094", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/FreeProduct/Setoid.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/FreeProduct/Setoid.agda", "max_line_length": 362, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/FreeProduct/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2454, "size": 6760 }
open import Function using (_∘_) open import Data.List using (List; _++_) renaming (_∷_ to _,_; _∷ʳ_ to _,′_; [] to ∅) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (∃; _,_) open import Relation.Nullary using (Dec; yes; no) open import Relation.Nullary.Decidable using (True; toWitness) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; sym; cong) module LambekGrishinCalculus (U : Set) (R : U) (⟦_⟧ᵁ : U → Set) where infixr 30 _⊗_ _⊕_ infixr 20 _⇒_ _⇛_ infixl 20 _⇐_ _⇚_ infix 5 _⊢_ [_]⊢_ _⊢[_] data Polarity : Set where + : Polarity - : Polarity _≟ᴾ_ : (p q : Polarity) → Dec (p ≡ q) + ≟ᴾ + = yes refl + ≟ᴾ - = no (λ ()) - ≟ᴾ + = no (λ ()) - ≟ᴾ - = yes refl data Type : Set where el : (A : U) → (p : Polarity) → Type _⊗_ : Type → Type → Type _⇒_ : Type → Type → Type _⇐_ : Type → Type → Type _⊕_ : Type → Type → Type _⇚_ : Type → Type → Type _⇛_ : Type → Type → Type data Pos : Type → Set where el : ∀ A → Pos (el A +) _⊗_ : ∀ A B → Pos (A ⊗ B) _⇚_ : ∀ B A → Pos (B ⇚ A) _⇛_ : ∀ A B → Pos (A ⇛ B) Pos? : ∀ A → Dec (Pos A) Pos? (el A +) = yes (el A) Pos? (el A -) = no (λ ()) Pos? (A ⊗ B) = yes (A ⊗ B) Pos? (A ⇒ B) = no (λ ()) Pos? (A ⇐ B) = no (λ ()) Pos? (A ⊕ B) = no (λ ()) Pos? (A ⇚ B) = yes (A ⇚ B) Pos? (A ⇛ B) = yes (A ⇛ B) data Neg : Type → Set where el : ∀ A → Neg (el A -) _⊕_ : ∀ A B → Neg (A ⊕ B) _⇒_ : ∀ A B → Neg (A ⇒ B) _⇐_ : ∀ B A → Neg (B ⇐ A) Neg? : ∀ A → Dec (Neg A) Neg? (el A +) = no (λ ()) Neg? (el A -) = yes (el A) Neg? (A ⊗ B) = no (λ ()) Neg? (A ⇒ B) = yes (A ⇒ B) Neg? (A ⇐ B) = yes (A ⇐ B) Neg? (A ⊕ B) = yes (A ⊕ B) Neg? (A ⇚ B) = no (λ ()) Neg? (A ⇛ B) = no (λ ()) Pol? : ∀ A → Pos A ⊎ Neg A Pol? (el A +) = inj₁ (el A) Pol? (el A -) = inj₂ (el A) Pol? (A ⊗ B) = inj₁ (A ⊗ B) Pol? (A ⇚ B) = inj₁ (A ⇚ B) Pol? (A ⇛ B) = inj₁ (A ⇛ B) Pol? (A ⊕ B) = inj₂ (A ⊕ B) Pol? (A ⇒ B) = inj₂ (A ⇒ B) Pol? (A ⇐ B) = inj₂ (A ⇐ B) mutual data Struct+ : Set where ·_· : Type → Struct+ _⊗_ : Struct+ → Struct+ → Struct+ _⇚_ : Struct+ → Struct- → Struct+ _⇛_ : Struct- → Struct+ → Struct+ data Struct- : Set where ·_· : Type → Struct- _⊕_ : Struct- → Struct- → Struct- _⇒_ : Struct+ → Struct- → Struct- _⇐_ : Struct- → Struct+ → Struct- mutual data _⊢[_] : Struct+ → Type → Set where var : ∀ {A} → · A · ⊢[ A ] μ : ∀ {X A} {p : True (Neg? A)} → X ⊢ · A · → X ⊢[ A ] ⊗R : ∀ {X Y A B} → X ⊢[ A ] → Y ⊢[ B ] → X ⊗ Y ⊢[ A ⊗ B ] ⇚R : ∀ {X Y A B} → X ⊢[ A ] → [ B ]⊢ Y → X ⇚ Y ⊢[ A ⇚ B ] ⇛R : ∀ {X Y A B} → [ A ]⊢ X → Y ⊢[ B ] → X ⇛ Y ⊢[ A ⇛ B ] data [_]⊢_ : Type → Struct- → Set where covar : ∀ {A} → [ A ]⊢ · A · μ̃ : ∀ {X A} {p : True (Pos? A)} → · A · ⊢ X → [ A ]⊢ X ⊕L : ∀ {X Y A B} → [ A ]⊢ Y → [ B ]⊢ X → [ A ⊕ B ]⊢ X ⊕ Y ⇒L : ∀ {X Y A B} → X ⊢[ A ] → [ B ]⊢ Y → [ A ⇒ B ]⊢ X ⇒ Y ⇐L : ∀ {X Y A B} → [ A ]⊢ Y → X ⊢[ B ] → [ A ⇐ B ]⊢ Y ⇐ X data _⊢_ : Struct+ → Struct- → Set where μ* : ∀ {X A} {p : True (Pos? A)} → X ⊢[ A ] → X ⊢ · A · μ̃* : ∀ {X A} {p : True (Neg? A)}→ [ A ]⊢ X → · A · ⊢ X ⊗L : ∀ {X A B} → · A · ⊗ · B · ⊢ X → · A ⊗ B · ⊢ X ⇚L : ∀ {X A B} → · A · ⇚ · B · ⊢ X → · A ⇚ B · ⊢ X ⇛L : ∀ {X A B} → · A · ⇛ · B · ⊢ X → · A ⇛ B · ⊢ X ⊕R : ∀ {X A B} → X ⊢ · A · ⊕ · B · → X ⊢ · A ⊕ B · ⇒R : ∀ {X A B} → X ⊢ · A · ⇒ · B · → X ⊢ · A ⇒ B · ⇐R : ∀ {X A B} → X ⊢ · A · ⇐ · B · → X ⊢ · A ⇐ B · res₁ : ∀ {X Y Z} → Y ⊢ X ⇒ Z → X ⊗ Y ⊢ Z res₂ : ∀ {X Y Z} → X ⊗ Y ⊢ Z → Y ⊢ X ⇒ Z res₃ : ∀ {X Y Z} → X ⊢ Z ⇐ Y → X ⊗ Y ⊢ Z res₄ : ∀ {X Y Z} → X ⊗ Y ⊢ Z → X ⊢ Z ⇐ Y dres₁ : ∀ {X Y Z} → Z ⇚ X ⊢ Y → Z ⊢ Y ⊕ X dres₂ : ∀ {X Y Z} → Z ⊢ Y ⊕ X → Z ⇚ X ⊢ Y dres₃ : ∀ {X Y Z} → Y ⇛ Z ⊢ X → Z ⊢ Y ⊕ X dres₄ : ∀ {X Y Z} → Z ⊢ Y ⊕ X → Y ⇛ Z ⊢ X dist₁ : ∀ {X Y Z W} → X ⊗ Y ⊢ Z ⊕ W → X ⇚ W ⊢ Z ⇐ Y dist₂ : ∀ {X Y Z W} → X ⊗ Y ⊢ Z ⊕ W → Y ⇚ W ⊢ X ⇒ Z dist₃ : ∀ {X Y Z W} → X ⊗ Y ⊢ Z ⊕ W → Z ⇛ X ⊢ W ⇐ Y dist₄ : ∀ {X Y Z W} → X ⊗ Y ⊢ Z ⊕ W → Z ⇛ Y ⊢ X ⇒ W raise : ∀ {A B} → · A · ⊢ · (B ⇐ A) ⇒ B · raise = ⇒R (res₂ (res₃ (μ̃* (⇐L covar var)))) lower : ∀ {A B} → · B ⇚ (A ⇛ B) · ⊢ · A · lower = ⇚L (dres₂ (dres₃ (μ* (⇛R covar var)))) import IntuitionisticLogic U ⟦_⟧ᵁ as IL open IL.Explicit hiding ([_]; _⊢_; reify) import LinearLogic U R ⟦_⟧ᵁ as LP open LP renaming (Type to TypeLP; _⊢_ to _⊢LP_; [_] to reifyLP) mutual ⟦_⟧+ : Type → TypeLP ⟦ el A + ⟧+ = el A ⟦ el A - ⟧+ = ¬ (¬ el A) ⟦ A ⊗ B ⟧+ = ⟦ A ⟧+ ⊗ ⟦ B ⟧+ ⟦ A ⇚ B ⟧+ = ⟦ A ⟧+ ⊗ ⟦ B ⟧- ⟦ A ⇛ B ⟧+ = ⟦ A ⟧- ⊗ ⟦ B ⟧+ ⟦ A ⊕ B ⟧+ = ¬ ( ⟦ A ⟧- ⊗ ⟦ B ⟧-) ⟦ A ⇒ B ⟧+ = ¬ ( ⟦ A ⟧+ ⊗ ⟦ B ⟧-) ⟦ A ⇐ B ⟧+ = ¬ ( ⟦ A ⟧- ⊗ ⟦ B ⟧+) ⟦_⟧- : Type → TypeLP ⟦ el A + ⟧- = ¬ el A ⟦ el A - ⟧- = ¬ el A ⟦ A ⊗ B ⟧- = ¬ ( ⟦ A ⟧+ ⊗ ⟦ B ⟧+) ⟦ A ⇚ B ⟧- = ¬ ( ⟦ A ⟧+ ⊗ ⟦ B ⟧-) ⟦ A ⇛ B ⟧- = ¬ ( ⟦ A ⟧- ⊗ ⟦ B ⟧+) ⟦ A ⊕ B ⟧- = ⟦ A ⟧- ⊗ ⟦ B ⟧- ⟦ A ⇒ B ⟧- = ⟦ A ⟧+ ⊗ ⟦ B ⟧- ⟦ A ⇐ B ⟧- = ⟦ A ⟧- ⊗ ⟦ B ⟧+ mutual str+ : Struct+ → List TypeLP str+ (· A ·) = ⟦ A ⟧+ , ∅ str+ (A ⊗ B) = str+ A ++ str+ B str+ (A ⇚ B) = str+ A ++ str- B str+ (A ⇛ B) = str- A ++ str+ B str- : Struct- → List TypeLP str- (· A ·) = ⟦ A ⟧- , ∅ str- (A ⊕ B) = str- A ++ str- B str- (A ⇒ B) = str+ A ++ str- B str- (A ⇐ B) = str- A ++ str+ B open Reify {{...}} using (⟦_⟧) instance Struct+Reify : Reify Struct+ (List TypeLP) Struct+Reify = record { ⟦_⟧ = str+ } instance Struct-Reify : Reify Struct- (List TypeLP) Struct-Reify = record { ⟦_⟧ = str- } instance TypeReify : Reify Type Set TypeReify = record { ⟦_⟧ = λ A → ⟦ ⟦ ⟦ A ⟧+ ⟧ ⟧ } instance StructReify : Reify Struct+ (List Set) StructReify = record { ⟦_⟧ = λ X → ⟦ ⟦ ⟦ X ⟧ ⟧ ⟧ } Neg-≡ : ∀ {A} → Neg A → ⟦ A ⟧+ ≡ ⟦ A ⟧- ⊸ ⊥ Neg-≡ {.(el A -)} (el A) = refl Neg-≡ {.(A ⊕ B)} (A ⊕ B) = refl Neg-≡ {.(A ⇒ B)} (A ⇒ B) = refl Neg-≡ {.(A ⇐ B)} (A ⇐ B) = refl Pos-≡ : ∀ {A} → Pos A → ⟦ A ⟧- ≡ ⟦ A ⟧+ ⊸ ⊥ Pos-≡ {.(el A +)} (el A) = refl Pos-≡ {.(A ⊗ B)} (A ⊗ B) = refl Pos-≡ {.(A ⇚ B)} (A ⇚ B) = refl Pos-≡ {.(A ⇛ B)} (A ⇛ B) = refl mutual reifyʳ : ∀ {X A} → X ⊢[ A ] → ⟦ X ⟧ ⊢LP ⟦ A ⟧+ reifyʳ var = var reifyʳ (μ {X} {A} {q} t) rewrite Neg-≡ (toWitness q) = abs (to-back (reify t)) reifyʳ (⊗R {X} {Y} {A} {B} s t) = pair (reifyʳ s) (reifyʳ t) reifyʳ (⇚R {X} {Y} {A} {B} s t) = pair (reifyʳ s) (reifyˡ t) reifyʳ (⇛R {X} {Y} {A} {B} s t) = pair (reifyˡ s) (reifyʳ t) reifyˡ : ∀ {A Y} → [ A ]⊢ Y → ⟦ Y ⟧ ⊢LP ⟦ A ⟧- reifyˡ covar = var reifyˡ (μ̃ {X} {A} {p} t) rewrite Pos-≡ (toWitness p) = abs (reify t) reifyˡ (⊕L {X} {Y} {A} {B} s t) = YX↝XY ⟦ X ⟧ ⟦ Y ⟧ (pair (reifyˡ s) (reifyˡ t)) reifyˡ (⇒L {X} {Y} {A} {B} s t) = pair (reifyʳ s) (reifyˡ t) reifyˡ (⇐L {X} {Y} {A} {B} s t) = pair (reifyˡ s) (reifyʳ t) reify : ∀ {X Y} → X ⊢ Y → ⟦ X ⟧ ++ ⟦ Y ⟧ ⊢LP ⊥ reify (μ* {X} {A} {p} t) rewrite Pos-≡ (toWitness p) = to-front (app var (reifyʳ t)) reify (μ̃* {X} {A} {q} t) rewrite Neg-≡ (toWitness q) = app var (reifyˡ t) reify (⊗L {X} {A} {B} t) = pair-left (reify t) reify (⇚L {X} {A} {B} t) = pair-left (reify t) reify (⇛L {X} {A} {B} t) = pair-left (reify t) reify (⊕R {X} {A} {B} t) = pair-left′ {⟦ X ⟧} {⟦ A ⟧- } {⟦ B ⟧- } (reify t) reify (⇒R {X} {A} {B} t) = pair-left′ {⟦ X ⟧} {⟦ A ⟧+ } {⟦ B ⟧- } (reify t) reify (⇐R {X} {A} {B} t) = pair-left′ {⟦ X ⟧} {⟦ A ⟧- } {⟦ B ⟧+ } (reify t) reify (res₁ {X} {Y} {Z} t) rewrite sym (++-assoc ⟦ X ⟧ ⟦ Y ⟧ ⟦ Z ⟧) = Y[XZ]↝X[YZ] ⟦ X ⟧ ⟦ Y ⟧ ⟦ Z ⟧ (reify t) reify (res₂ {X} {Y} {Z} t) rewrite ++-assoc ⟦ Y ⟧ ⟦ X ⟧ ⟦ Z ⟧ = [YX]Z↝[XY]Z ⟦ Y ⟧ ⟦ X ⟧ ⟦ Z ⟧ (reify t) reify (res₃ {X} {Y} {Z} t) rewrite sym (++-assoc ⟦ X ⟧ ⟦ Y ⟧ ⟦ Z ⟧) = X[ZY]↝X[YZ] ⟦ X ⟧ ⟦ Y ⟧ ⟦ Z ⟧ (reify t) reify (res₄ {X} {Y} {Z} t) rewrite ++-assoc ⟦ X ⟧ ⟦ Z ⟧ ⟦ Y ⟧ = [XZ]Y↝[XY]Z ⟦ X ⟧ ⟦ Z ⟧ ⟦ Y ⟧ (reify t) reify (dres₁ {X} {Y} {Z} t) rewrite ++-assoc ⟦ Z ⟧ ⟦ Y ⟧ ⟦ X ⟧ = [XZ]Y↝[XY]Z ⟦ Z ⟧ ⟦ Y ⟧ ⟦ X ⟧ (reify t) reify (dres₂ {X} {Y} {Z} t) rewrite sym (++-assoc ⟦ Z ⟧ ⟦ X ⟧ ⟦ Y ⟧) = X[ZY]↝X[YZ] ⟦ Z ⟧ ⟦ X ⟧ ⟦ Y ⟧ (reify t) reify (dres₃ {X} {Y} {Z} t) rewrite ++-assoc ⟦ Z ⟧ ⟦ Y ⟧ ⟦ X ⟧ = [YX]Z↝[XY]Z ⟦ Z ⟧ ⟦ Y ⟧ ⟦ X ⟧ (reify t) reify (dres₄ {X} {Y} {Z} t) rewrite sym (++-assoc ⟦ Y ⟧ ⟦ Z ⟧ ⟦ X ⟧) = Y[XZ]↝X[YZ] ⟦ Y ⟧ ⟦ Z ⟧ ⟦ X ⟧ (reify t) reify (dist₁ {X} {Y} {Z} {W} t) = XYZW↝XWZY ⟦ X ⟧ ⟦ Y ⟧ ⟦ Z ⟧ ⟦ W ⟧ (reify t) reify (dist₂ {X} {Y} {Z} {W} t) = XYZW↝YWXZ ⟦ X ⟧ ⟦ Y ⟧ ⟦ Z ⟧ ⟦ W ⟧ (reify t) reify (dist₃ {X} {Y} {Z} {W} t) = XYZW↝ZXWY ⟦ X ⟧ ⟦ Y ⟧ ⟦ Z ⟧ ⟦ W ⟧ (reify t) reify (dist₄ {X} {Y} {Z} {W} t) = XYZW↝ZYXW ⟦ X ⟧ ⟦ Y ⟧ ⟦ Z ⟧ ⟦ W ⟧ (reify t) [_] : ∀ {X A} → X ⊢[ A ] → (Ctxt ⟦ X ⟧ → ⟦ A ⟧) [_] = reifyLP ∘ reifyʳ
{ "alphanum_fraction": 0.4016617346, "avg_line_length": 36.1563786008, "ext": "agda", "hexsha": "85743b3bea15a150d5f30de0f2af1e1e02c866ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b880cf25ed8e81b9a965ea9aad18377008d68a9f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wenkokke/msla2014", "max_forks_repo_path": "src/LambekGrishinCalculus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b880cf25ed8e81b9a965ea9aad18377008d68a9f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wenkokke/msla2014", "max_issues_repo_path": "src/LambekGrishinCalculus.agda", "max_line_length": 112, "max_stars_count": 5, "max_stars_repo_head_hexsha": "b880cf25ed8e81b9a965ea9aad18377008d68a9f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/msla2014", "max_stars_repo_path": "src/LambekGrishinCalculus.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-29T09:07:45.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-17T23:04:39.000Z", "num_tokens": 4910, "size": 8786 }
{-# OPTIONS --without-K #-} module Ch1 where -- open import lib.Base open import Base -- warmup module Eq-1-11-2 {i j} {A : Type i} {B : Type j} where -- import lib.types.Coproduct -- open import lib.types.Empty -- open import lib.types.Sigma -- If not A and not B, then not (A or B) deMorgan1 : (A → ⊥) × (B → ⊥) → (Coprod A B → ⊥) -- deMorgan1 (notA , notB) ab = {!!} -- {!!} becomes => -- deMorgan1 (notA , notB) (inl x) = {!!} -- by cases, C-c C-c on param ab -- deMorgan1 (notA , notB) (inr x) = {!!} deMorgan1 (notA , notB) (inl a) = notA a -- the 'a part' of (A + B) → ⊥ deMorgan1 (notA , notB) (inr b) = notB b module Ex1-1 where {- Exercise 1.1. Given functions f : A -> B and g : B -> C, define their composite g o f : A -> C. Show that we have h o (g o f ) == (h o g) o f -} _o_ : ∀ {i} {A B C : Type i} → (B → C) → (A → B) → A → C (g o f) x = g (f x) o-assoc : ∀ {i} {A B C D : Type i} → (h : C → D) → (g : B → C) → (f : A → B) → h o (g o f) == (h o g) o f o-assoc _ _ _ = idp -- "it's de proof" module Ex1-2 where -- open import lib.types.Sigma -- Derive the recursion principle for products recA×B using only the projections, and -- verify that the definitional equalities are valid. Do the same for Σ-types. recAxB : ∀ {i} {A B C : Type i} → (A → B → C) → A × B → C recAxB f ab = f (fst ab) (snd ab) recAxB= : ∀ {i} {A B C : Type i} {f : A → B → C} {a : A} {b : B} → recAxB f (a , b) == f a b recAxB= = idp recA+B : ∀ {i j} {A : Type i} {B : Type j} {C : Type (lmax i j)} → (A → C) → (B → C) → (Coprod A B → C) recA+B f g (inl x) = f x recA+B f g (inr x) = g x recA+B= : {A B C : Type0} {f : A → C} {g : B → C} {a : A} {b : B} → (recA+B f g (inl a) == f a) × (recA+B f g (inr b) == g b) recA+B= = idp , idp recΣ : ∀ {i j} {A : Type i} {B : A → Type j} {C : Type (lmax i j)} → ((a : A) → B a → C) → Σ A B → C recΣ f ab = f (fst ab) (snd ab) recΣ= : ∀ {i j} {A : Type i} {B : A → Type j} {C : Type (lmax i j)} {f : (a : A) → B a → C} {a : A} {ba : B a} → recΣ f (a , ba) == f a ba recΣ= = idp module Ex1-3 {i j} {A : Type i} {B : Type j} where -- open import lib.types.Sigma {- Derive the induction principle for products indA×B, using only the projections and the propositional uniqueness principle uppt. Verify that the definitional equalities are valid. Gen- eralize uppt to Σ-types, and do the same for Σ-types. -} -- book definition of uppt uppt-× : (ab : (A × B)) → (fst ab , snd ab) == ab uppt-× = λ _ → idp -- definition of induction principle the projections and the transported uniqueness principle -- (this was a confusing question to work out in Agda, since the transport is redundant / inferred by the typechecker) ind-× : (C : (A × B) → Type (lmax i j)) → ((a : A ) → (b : B) → C (a , b)) → Π (A × B) C ind-× C g ab = transport C (uppt-× ab) (g (fst ab) (snd ab)) -- (propositional) verification of defining equations ind-×= : (C : (A × B) → Type (lmax i j)) → (g : ((a : A ) → (b : B) → C (a , b))) → ∀ {a b} → ind-× C g (a , b) == g a b ind-×= C g {a} {b} = -- idp ind-× C g (a , b) =⟨ idp ⟩ transport C (uppt-× (a , b)) (g a b) =⟨ idp ⟩ transport C idp (g a b) =⟨ idp ⟩ g a b ∎ -- book definition of induction principle using pattern matching pattern-match-ind-× : (C : (A × B) → Type (lmax i j)) → Π A (λ x → Π B (λ y → C (x , y))) → Π (A × B) C pattern-match-ind-× _ g (a , b) = g a b -- alternative definition of uniqueness principle (from induction principle) ind-uppt-× : (x : (A × B)) → (fst x , snd x) == x ind-uppt-× = ind-× (λ z → z == z) (λ x x₁ → idp) -- validate definition for uppt uppt-×= : {x : (A × B)} → (uppt-× x) == (ind-uppt-× x) uppt-×= = idp -- uppt for Σ types upptΣ : {B : (a : A) → Type j} → (ab : Σ A B) → ab == (fst ab , snd ab) upptΣ _ = idp module Ex1-4 where -- open import lib.types.Sigma {- Assuming as given only the iterator for natural numbers iter : ∏ C → (C → C) → N → C C:U with the defining equations iter(C, c0, cs, succ(n)) :≡ cs(iter(C, c0, cs, n)), derive a function having the type of the recursor recN. Show that the defining equations of the recursor hold propositionally for this function, using the induction principle for N. -} iter : {C : Type0} → C → (C → C) → ℕ → C iter c0 cs 0 = c0 iter c0 cs (S n) = cs (iter c0 cs n) -- used in the definition of recNiter below to keep a count of the applications of a function sucApply : {C : Type0} → (ℕ → C → C) → ℕ × C → ℕ × C sucApply {C} cs = cs' where cs' : ℕ × C → ℕ × C cs' (n , c) = S n , cs n c {- Induction principle (dependent eliminator) for ℕ from the book: indN : ∏(C:N→U)C(0) → ∏(n:N)C(n) → C(succ(n)) → ∏(n:N)C(n) indN(C, c0, cs, 0) :≡ c0, indN(C, c0, cs, succ(n)) :≡ cs(n, indN(C, c0, cs, n)). -} indN : ∀ {i} {C : ℕ → Type i} → C 0 → ((n : ℕ) → C n → C (S n)) → (n : ℕ) → C n indN c0 cs 0 = c0 indN c0 cs (S n) = cs n (indN c0 cs n) -- digression / warmup - inductive proof that evens-are-even -- nth even even : ℕ → ℕ even n = iter 0 (λ n → S (S n)) n S= : {m n : ℕ} → m == n → (S m == S n) S= idp = idp _*2 : ℕ → ℕ O *2 = O (S n) *2 = S (S (n *2)) evens-are-even : (n : ℕ) → Σ ℕ (λ m → even n == m *2) evens-are-even = indN (0 , idp) inductiveCase where inductiveCase : (n : ℕ) → Σ ℕ (λ m → even n == m *2) → Σ ℕ (λ m → even (S n) == m *2) inductiveCase n (m , p) = S m , p'' where p' = S= p p'' = S= p' {- derive a function having the type of the recursor recN recN : ∏(C:U)C→(N→C→C)→N→C recN(C, c0, cs, 0) :≡ c0, recN(C, c0, cs, Sc(n)) :≡ cs(n, recN(C, c0, cs, n)). -} recNiter : {C : Type0} → C → (ℕ → C → C) → ℕ → C recNiter c0 cs n = snd (iter (0 , c0) cs' n) where cs' = sucApply cs {- Show that the defining equations of the recursor hold propositionally for this function, using the induction principle for N -} recNiter= : {C : Type0} {c0 : C} {cs : ℕ → C → C } → (n : ℕ) → (recNiter c0 cs (S n)) == (cs n (recNiter c0 cs n)) recNiter= {C} {c0} {cs} n = cs= n'= -- or, as spelled out below (using equational reasoning from HoTT-Agda) -- recNiter c0 cs (S n) =⟨ idp ⟩ -- snd (iter' (S n)) =⟨ idp ⟩ -- snd (cs' (iter' n)) =⟨ idp ⟩ -- snd (cs' (n' , snd (iter' n))) =⟨ idp ⟩ -- cs n' (snd (iter' n)) =⟨ cs= n'= ⟩ -- cs n (snd (iter' n)) =⟨ idp ⟩ -- cs n (recNiter c0 cs n) ∎ where cs' = sucApply cs iter' : ℕ → ℕ × C iter' = iter (0 , c0) cs' n' = fst (iter' n) -- proof that the first (counter) projection of the iter version of recN at n is just n fstIter'= : (n : ℕ) → (fst (iter (0 , c0) cs' n) == n) fstIter'= = indN idp inductiveCase where inductiveCase : (n : ℕ) → fst (iter' n) == n → fst (iter' (S n)) == S n inductiveCase m p = S= p -- or, as spelled out below -- fst (iter (0 , c0) cs' (S m)) =⟨ idp ⟩ -- fst (cs' (iter (0 , c0) cs' m)) =⟨ idp ⟩ -- fst (cs' (iter (0 , c0) cs' m)) =⟨ idp ⟩ -- -- fst (cs' (fst (iter (0 , c0) cs' m) , _)) =⟨ idp ⟩ -- Agda loses track of some hidden -- -- fst (S (fst (iter (0 , c0) cs' m)) , _) =⟨ idp ⟩ -- type data here, thus double-protective comments -- S (fst (iter (0 , c0) cs' m)) =⟨ S= p ⟩ -- S m ∎ n'= : n' == n n'= = fstIter'= n cs= : ∀ {n m} {c : C} → n == m → cs n c == cs m c cs= idp = idp -- recursor for Bool (used in next two exercises) module RecBool where recBool : ∀ {i} {A : Type i} → A → A → Bool → A recBool x y true = x recBool x y false = y module Ex1-5 where open RecBool {- Exercise 1.5. Show that if we define A + B :≡ ∑(x:2) rec2(U, A, B, x), then we can give a definition of indA+B for which the definitional equalities stated in §1.7 hold. -} _+_ : ∀ {i} → Type i → Type i → Type _ A + B = Σ Bool (λ isA → recBool A B isA) inl-+ : ∀ {i} {A B : Type i} → A → A + B inl-+ a = true , a inr-+ : ∀ {i} {A B : Type i} → B → A + B inr-+ b = false , b ind-+ : ∀ {i j} {A B : Type i} (C : A + B → Type j) → ((a : A) → C (inl-+ a)) → ((b : B) → C (inr-+ b)) → (x : A + B) → C x ind-+ C g1 g2 (true , a) = g1 a ind-+ C g1 g2 (false , b) = g2 b module Ex1-6 {i} {A B : Type i} where open RecBool open import FunExt {- Exercise 1.6. Show that if we define A × B :≡ ∏(x:2) rec2(U, A, B, x), then we can give a defini- tion of indA×B for which the definitional equalities stated in §1.5 hold propositionally (i.e. using equality types). (This requires the function extensionality axiom, which is introduced in §2.9.) -} _x_ : ∀ {i} → (A : Type i) → (B : Type i) → Type _ A x B = Π Bool (λ ab → recBool A B ab) _,,_ : A → B → A x B _,,_ a b true = a _,,_ a b false = b fst-x : A x B → A fst-x ab = ab true snd-x : A x B → B snd-x ab = ab false uppt-x : (ab : (A x B)) → (fst-x ab ,, snd-x ab) == ab uppt-x ab = is-equiv.g fe h where -- (fst-x ab ,, snd-x ab) x == ab x fe = fun-ext ((fst-x ab ,, snd-x ab)) ab h : (c : Bool) → (fst-x ab ,, snd-x ab) c == ab c h true = idp h false = idp ind-x : ∀ {j} (C : A x B → Type j) → ((a : A) → (b : B) → C (a ,, b)) → (ab : A x B) → C ab ind-x C g ab = transport C (uppt-x ab) (g a b) where a = fst-x ab b = snd-x ab module Ex1-7 where {- Exercise 1.7. Give an alternative derivation of ind′=A from ind=A which avoids the use of universes. (This is easiest using concepts from later chapters.) -} {- Section 1.12.2 "we can show that ind=A entails Lemmas2.3.1 and 3.11.8, and that these two principles imply ind′=A directly" -} {- Lemma 2.3.1 (Transport). Suppose that P is a type family over A and that p : x =A y. Then there is a function p∗ : P(x) → P(y). -} {- Lemma 3.11.8. For any A and any a : A, the type ∑(x:A)(a = x) is contractible. -} lemma-3-11-8 : ∀ {i} {A : Type i} (a : A) → is-contr (Σ A λ x → a == x) lemma-3-11-8 {_} {A} a = ((a , idp)) , λ { (x , p) → along {x} p } where along : {x : A}(p : a == x) → (a , idp) == (x , p) along idp = idp -- should really prove using ind== then ind='2 will indeed be based path induction from free -- path induction ind='2 : ∀ {i j} {A : Type i} {a : A} → (D : (x : A) (p : a == x) → Type j) → D a idp → {x : A} (p : a == x) → D x p ind='2 {i} {j} {A} {a} D d {x} p = transport (λ { (x , p) → D x p}) (snd (lemma-3-11-8 a) (x , p)) d module Ex1-14 where {- Exercise 1.14. Why do the induction principles for identity types not allow us to construct a function f : ∏(x:A) ∏(p:x=x)(p = reflx) with the defining equation f (x, reflx ) :≡ reflreflx ? -} module Ex1-15 {i j} {A : Type i} {C : A → Type j} where {- Exercise 1.15. Show that indiscernability of identicals follows from path induction. -} f : ∀ {x y : A} (p : x == y) → C x → C y f idp = ind== (λ x y _ → C x → C y) (λ x → λ cx → cx) idp
{ "alphanum_fraction": 0.5067359338, "avg_line_length": 33.7002967359, "ext": "agda", "hexsha": "8d53a5f50cb658e52e4063983aeb5e1c1347abe0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "aerskine/hott-ex", "max_forks_repo_path": "Ch1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "aerskine/hott-ex", "max_issues_repo_path": "Ch1.agda", "max_line_length": 297, "max_stars_count": null, "max_stars_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "aerskine/hott-ex", "max_stars_repo_path": "Ch1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4624, "size": 11357 }
module Types.IND where open import Data.Nat open import Data.Fin hiding (_+_) open import Data.Product open import Function open import Relation.Binary.PropositionalEquality hiding (Extensionality) open import Types.Direction open import Auxiliary.Extensionality open import Auxiliary.RewriteLemmas private variable m n : ℕ ---------------------------------------------------------------------- -- session type inductively with explicit rec data Polarity : Set where POS NEG : Polarity mutual data Type n : Set where TUnit TInt : Type n TPair : (T₁ : Type n) (T₂ : Type n) → Type n TChan : (S : SType n) → Type n data SType n : Set where gdd : (G : GType n) → SType n rec : (G : GType (suc n) ) → SType n var : (p : Polarity) → (x : Fin n) → SType n data GType n : Set where transmit : (d : Dir) (T : Type n) (S : SType n) → GType n choice : (d : Dir) (m : ℕ) (alt : Fin m → SType n) → GType n end : GType n TType = Type -- weakening weakenS : (n : ℕ) → SType m → SType (m + n) weakenG : (n : ℕ) → GType m → GType (m + n) weakenT : (n : ℕ) → TType m → TType (m + n) weakenS n (gdd gst) = gdd (weakenG n gst) weakenS n (rec gst) = rec (weakenG n gst) weakenS n (var p x) = var p (inject+ n x) weakenG n (transmit d t s) = transmit d (weakenT n t) (weakenS n s) weakenG n (choice d m alt) = choice d m (weakenS n ∘ alt) weakenG n end = end weakenT n TUnit = TUnit weakenT n TInt = TInt weakenT n (TPair ty ty₁) = TPair (weakenT n ty) (weakenT n ty₁) weakenT n (TChan x) = TChan (weakenS n x) weaken1 : SType m → SType (suc m) weaken1{m} stm with weakenS 1 stm ... | r rewrite n+1=suc-n {m} = r module CheckWeaken where s0 : SType 0 s0 = rec (transmit SND TUnit (var POS zero)) s1 : SType 1 s1 = rec (transmit SND TUnit (var POS zero)) s2 : SType 2 s2 = rec (transmit SND TUnit (var POS zero)) check-weakenS1 : weakenS 1 s0 ≡ s1 check-weakenS1 = cong rec (cong (transmit SND TUnit) refl) check-weakenS2 : weakenS 2 s0 ≡ s2 check-weakenS2 = cong rec (cong (transmit SND TUnit) refl) weaken1'N : Fin (suc n) → Fin n → Fin (suc n) weaken1'N zero x = suc x weaken1'N (suc i) zero = zero weaken1'N (suc i) (suc x) = suc (weaken1'N i x) weaken1'S : Fin (suc n) → SType n → SType (suc n) weaken1'G : Fin (suc n) → GType n → GType (suc n) weaken1'T : Fin (suc n) → TType n → TType (suc n) weaken1'S i (gdd gst) = gdd (weaken1'G i gst) weaken1'S i (rec gst) = rec (weaken1'G (suc i) gst) weaken1'S i (var p x) = var p (weaken1'N i x) weaken1'G i (transmit d t s) = transmit d (weaken1'T i t) (weaken1'S i s) weaken1'G i (choice d m alt) = choice d m (weaken1'S i ∘ alt) weaken1'G i end = end weaken1'T i TUnit = TUnit weaken1'T i TInt = TInt weaken1'T i (TPair t₁ t₂) = TPair (weaken1'T i t₁) (weaken1'T i t₂) weaken1'T i (TChan x) = TChan (weaken1'S i x) weaken1S : SType n → SType (suc n) weaken1G : GType n → GType (suc n) weaken1T : Type n → Type (suc n) weaken1S = weaken1'S zero weaken1G = weaken1'G zero weaken1T = weaken1'T zero module CheckWeaken1' where sxy : ∀ n → Fin (suc n) → SType n sxy n x = rec (transmit SND TUnit (var POS x)) s00 : SType 0 s00 = sxy 0 zero s10 : SType 1 s10 = sxy 1 zero s11 : SType 1 s11 = sxy 1 (suc zero) s22 : SType 2 s22 = sxy 2 (suc (suc zero)) check-weaken-s01 : weaken1'S zero s00 ≡ s10 check-weaken-s01 = refl check-weaken-s1-s2 : weaken1'S zero s11 ≡ s22 check-weaken-s1-s2 = refl check-weaken-s21 : weaken1'S (suc zero) (sxy 2 (suc zero)) ≡ sxy 3 (suc zero) check-weaken-s21 = refl -------------------------------------------------------------------- dual-pol : Polarity → Polarity dual-pol POS = NEG dual-pol NEG = POS dual-pol-inv : ∀ p → dual-pol (dual-pol p) ≡ p dual-pol-inv POS = refl dual-pol-inv NEG = refl swap-polS : (i : Fin (suc n)) → SType (suc n) → SType (suc n) swap-polG : (i : Fin (suc n)) → GType (suc n) → GType (suc n) swap-polT : (i : Fin (suc n)) → Type (suc n) → Type (suc n) swap-polG i (transmit d t st) = transmit d (swap-polT i t) (swap-polS i st) swap-polG i (choice d m alt) = choice d m (swap-polS i ∘ alt) swap-polG i end = end swap-polS i (gdd gst) = gdd (swap-polG i gst) swap-polS i (rec st) = rec (swap-polG (suc i) st) swap-polS zero (var p zero) = var (dual-pol p) zero swap-polS (suc i) (var p zero) = var p zero swap-polS zero (var p (suc x)) = var p (suc x) swap-polS {suc n} (suc i) (var p (suc x)) = weaken1S (swap-polS i (var p x)) swap-polT i TUnit = TUnit swap-polT i TInt = TInt swap-polT i (TPair t₁ t₂) = TPair (swap-polT i t₁) (swap-polT i t₂) swap-polT i (TChan x) = TChan (swap-polS i x) -------------------------------------------------------------------- weak-weakN : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (x : Fin n) → weaken1'N (suc i) (weaken1'N j x) ≡ weaken1'N (inject₁ j) (weaken1'N i x) weak-weakG : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (g : GType n) → weaken1'G (suc i) (weaken1'G j g) ≡ weaken1'G (inject₁ j) (weaken1'G i g) weak-weakS : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (s : SType n) → weaken1'S (suc i) (weaken1'S j s) ≡ weaken1'S (inject₁ j) (weaken1'S i s) weak-weakT : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (t : Type n) → weaken1'T (suc i) (weaken1'T j t) ≡ weaken1'T (inject₁ j) (weaken1'T i t) weak-weakN zero zero le x = refl weak-weakN (suc i) zero le x = refl weak-weakN (suc i) (suc j) (s≤s le) zero = refl weak-weakN{suc n} (suc i) (suc j) (s≤s le) (suc x) = cong suc (weak-weakN i j le x) weak-weakG i j le (transmit d t s) = cong₂ (transmit d) (weak-weakT i j le t) (weak-weakS i j le s) weak-weakG i j le (choice d m alt) = cong (choice d m) (ext (weak-weakS i j le ∘ alt)) weak-weakG i j le end = refl weak-weakS i j le (gdd gst) = cong gdd (weak-weakG i j le gst) weak-weakS i j le (rec gst) = cong rec (weak-weakG (suc i) (suc j) (s≤s le) gst) weak-weakS i j le (var p x) = cong (var p) (weak-weakN i j le x) weak-weakT i j le TUnit = refl weak-weakT i j le TInt = refl weak-weakT i j le (TPair t t₁) = cong₂ TPair (weak-weakT i j le t) (weak-weakT i j le t₁) weak-weakT i j le (TChan s) = cong TChan (weak-weakS i j le s) weaken1-weakenN : (m : ℕ) (j : Fin (suc n)) (x : Fin n) → inject+ m (weaken1'N j x) ≡ weaken1'N (inject+ m j) (inject+ m x) weaken1-weakenN m zero zero = refl weaken1-weakenN m zero (suc x) = refl weaken1-weakenN m (suc j) zero = refl weaken1-weakenN m (suc j) (suc x) = cong suc (weaken1-weakenN m j x) weaken1-weakenS : (m : ℕ) (j : Fin (suc n)) (s : SType n) → weakenS m (weaken1'S j s) ≡ weaken1'S (inject+ m j) (weakenS m s) weaken1-weakenG : (m : ℕ) (j : Fin (suc n)) (g : GType n) → weakenG m (weaken1'G j g) ≡ weaken1'G (inject+ m j) (weakenG m g) weaken1-weakenT : (m : ℕ) (j : Fin (suc n)) (t : Type n) → weakenT m (weaken1'T j t) ≡ weaken1'T (inject+ m j) (weakenT m t) weaken1-weakenS m j (gdd gst) = cong gdd (weaken1-weakenG m j gst) weaken1-weakenS m j (rec gst) = cong rec (weaken1-weakenG m (suc j) gst) weaken1-weakenS m zero (var p zero) = refl weaken1-weakenS m zero (var p (suc x)) = refl weaken1-weakenS {suc n} m (suc j) (var p zero) = refl weaken1-weakenS {suc n} m (suc j) (var p (suc x)) = cong (var p) (cong suc (weaken1-weakenN m j x)) weaken1-weakenG m j (transmit d t s) = cong₂ (transmit d) (weaken1-weakenT m j t) (weaken1-weakenS m j s) weaken1-weakenG m j (choice d m₁ alt) = cong (choice d m₁) (ext (weaken1-weakenS m j ∘ alt)) weaken1-weakenG m j end = refl weaken1-weakenT m j TUnit = refl weaken1-weakenT m j TInt = refl weaken1-weakenT m j (TPair t t₁) = cong₂ TPair (weaken1-weakenT m j t) (weaken1-weakenT m j t₁) weaken1-weakenT m j (TChan x) = cong TChan (weaken1-weakenS m j x) -------------------------------------------------------------------- -- weakening of later index {-# TERMINATING #-} swap-weaken1'G : (i : Fin (suc (suc n))) (j : Fin′ i) (gst : GType (suc n)) → swap-polG (inject j) (weaken1'G i gst) ≡ weaken1'G i (swap-polG (inject! j) gst) swap-weaken1'S : (i : Fin (suc (suc n))) (j : Fin′ i) (sst : SType (suc n)) → swap-polS (inject j) (weaken1'S i sst) ≡ weaken1'S i (swap-polS (inject! j) sst) swap-weaken1'T : (i : Fin (suc (suc n))) (j : Fin′ i) (t : Type (suc n)) → swap-polT (inject j) (weaken1'T i t) ≡ weaken1'T i (swap-polT (inject! j) t) swap-weaken1'G i j (transmit d t s) = cong₂ (transmit d) (swap-weaken1'T i j t) (swap-weaken1'S i j s) swap-weaken1'G i j (choice d m alt) = cong (choice d m) (ext (swap-weaken1'S i j ∘ alt)) swap-weaken1'G i j end = refl swap-weaken1'S i j (gdd gst) = cong gdd (swap-weaken1'G i j gst) swap-weaken1'S i j (rec gst) = cong rec (swap-weaken1'G (suc i) (suc j) gst) swap-weaken1'S zero () (var p x) swap-weaken1'S (suc i) zero (var p zero) = refl swap-weaken1'S (suc i) zero (var p (suc x)) = refl swap-weaken1'S (suc i) (suc j) (var p zero) = refl swap-weaken1'S{suc n} (suc i) (suc j) (var p (suc x)) rewrite (weak-weakS i zero z≤n (swap-polS (inject! j) (var p x))) = let sws = swap-weaken1'S{n} i j (var p x) in cong (weaken1'S zero) sws swap-weaken1'T i j TUnit = refl swap-weaken1'T i j TInt = refl swap-weaken1'T i j (TPair t₁ t₂) = cong₂ TPair (swap-weaken1'T i j t₁) (swap-weaken1'T i j t₂) swap-weaken1'T i j (TChan s) = cong TChan (swap-weaken1'S i j s) -------------------------------------------------------------------- -- weakening of earlier index {-# TERMINATING #-} swap-weaken1'S< : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) → (s : SType (suc n)) → swap-polS (suc i) (weaken1'S (inject₁ j) s) ≡ weaken1'S (inject₁ j) (swap-polS i s) swap-weaken1'G< : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) → (g : GType (suc n)) → swap-polG (suc i) (weaken1'G (inject₁ j) g) ≡ weaken1'G (inject₁ j) (swap-polG i g) swap-weaken1'T< : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) → (t : Type (suc n)) → swap-polT (suc i) (weaken1'T (inject₁ j) t) ≡ weaken1'T (inject₁ j) (swap-polT i t) swap-weaken1'S< i j le (gdd gst) = cong gdd (swap-weaken1'G< i j le gst) swap-weaken1'S< i j le (rec gst) = cong rec (swap-weaken1'G< (suc i) (suc j) (s≤s le) gst) swap-weaken1'S< zero zero le (var p x) = refl swap-weaken1'S< (suc i) zero le (var p x) = refl swap-weaken1'S<{suc n} (suc i) (suc j) le (var p zero) = refl swap-weaken1'S<{suc n} (suc i) (suc j) (s≤s le) (var p (suc x)) rewrite (weak-weakS (inject₁ j) zero z≤n (swap-polS i (var p x))) = let sws = swap-weaken1'S<{n} i j le (var p x) in cong (weaken1'S zero) sws swap-weaken1'G< i j le (transmit d t s) = cong₂ (transmit d) (swap-weaken1'T< i j le t) (swap-weaken1'S< i j le s) swap-weaken1'G< i j le (choice d m alt) = cong (choice d m) (ext ((swap-weaken1'S< i j le) ∘ alt)) swap-weaken1'G< i j le end = refl swap-weaken1'T< i j le TUnit = refl swap-weaken1'T< i j le TInt = refl swap-weaken1'T< i j le (TPair t t₁) = cong₂ (TPair) (swap-weaken1'T< i j le t) (swap-weaken1'T< i j le t₁) swap-weaken1'T< i j le (TChan s) = cong (TChan) (swap-weaken1'S< i j le s) swap-weakenS : (i : Fin (suc n)) → (s : SType (suc n)) → swap-polS (suc i) (weaken1S s) ≡ weaken1S (swap-polS i s) swap-weakenG : (i : Fin (suc n)) → (g : GType (suc n)) → swap-polG (suc i) (weaken1G g) ≡ weaken1G (swap-polG i g) swap-weakenT : (i : Fin (suc n)) → (t : Type (suc n)) → swap-polT (suc i) (weaken1T t) ≡ weaken1T (swap-polT i t) swap-weakenS i s = swap-weaken1'S< i zero z≤n s swap-weakenG i g = swap-weaken1'G< i zero z≤n g swap-weakenT i t = swap-weaken1'T< i zero z≤n t -------------------------------------------------------------------- -- swapping of general weakening {-# TERMINATING #-} swap-weakenG' : (m : ℕ) (j : Fin (suc n)) (gst : GType (suc n)) → swap-polG (inject+ m j) (weakenG m gst) ≡ weakenG m (swap-polG j gst) swap-weakenS' : (m : ℕ) (j : Fin (suc n)) (s : SType (suc n)) → swap-polS (inject+ m j) (weakenS m s) ≡ weakenS m (swap-polS j s) swap-weakenT' : (m : ℕ) (j : Fin (suc n)) (t : Type (suc n)) → swap-polT (inject+ m j) (weakenT m t) ≡ weakenT m (swap-polT j t) swap-weakenG' m j (transmit d t s) = cong₂ (transmit d) (swap-weakenT' m j t) (swap-weakenS' m j s) swap-weakenG' m j (choice d m₁ alt) = cong (choice d m₁) (ext (swap-weakenS' m j ∘ alt)) swap-weakenG' m j end = refl swap-weakenS' m j (gdd gst) = cong gdd (swap-weakenG' m j gst) swap-weakenS' m j (rec gst) = cong rec (swap-weakenG' m (suc j) gst) swap-weakenS' m zero (var p zero) = refl swap-weakenS' m (suc j) (var p zero) = refl swap-weakenS' m zero (var p (suc zero)) = refl swap-weakenS' m zero (var p (suc (suc x))) = refl swap-weakenS' {suc n} m (suc j) (var p (suc x)) rewrite (weaken1-weakenS m zero (swap-polS j (var p x))) = let rst = swap-weakenS'{n} m j (var p x) in cong weaken1S rst swap-weakenT' m j TUnit = refl swap-weakenT' m j TInt = refl swap-weakenT' m j (TPair t t₁) = cong₂ TPair (swap-weakenT' m j t) (swap-weakenT' m j t₁) swap-weakenT' m j (TChan x) = cong TChan (swap-weakenS' m j x) -------------------------------------------------------------------- {-# TERMINATING #-} swap-pol-invS : (i : Fin (suc n)) → (st : SType (suc n)) → swap-polS i (swap-polS i st) ≡ st swap-pol-invG : (i : Fin (suc n)) → (st : GType (suc n)) → swap-polG i (swap-polG i st) ≡ st swap-pol-invT : (i : Fin (suc n)) → (ty : Type (suc n)) → swap-polT i (swap-polT i ty) ≡ ty swap-pol-invS i (gdd gst) = cong gdd (swap-pol-invG i gst) swap-pol-invS i (rec gst) = cong rec (swap-pol-invG (suc i) gst) swap-pol-invS zero (var p zero) rewrite dual-pol-inv p = refl swap-pol-invS (suc i) (var p zero) = refl swap-pol-invS zero (var p (suc x)) rewrite dual-pol-inv p = refl swap-pol-invS {suc n} (suc i) (var p (suc x)) rewrite swap-weakenS i (swap-polS i (var p x)) | swap-pol-invS i (var p x) = refl -- extensionality needed swap-pol-invG i (transmit d t s) = cong₂ (transmit d) (swap-pol-invT i t) (swap-pol-invS i s) swap-pol-invG i (choice d m alt) = cong (choice d m) (ext R) where R : ∀ x → swap-polS i (swap-polS i (alt x)) ≡ alt x R x rewrite swap-pol-invS i (alt x) = refl swap-pol-invG i end = refl swap-pol-invT i TUnit = refl swap-pol-invT i TInt = refl swap-pol-invT i (TPair ty ty₁) = cong₂ TPair (swap-pol-invT i ty) (swap-pol-invT i ty₁) swap-pol-invT i (TChan x) = cong TChan (swap-pol-invS i x) -------------------------------------------------------------------- -- LM duality dualS : SType n → SType n dualG : GType n → GType n dualG (transmit d t st) = transmit (dual-dir d) t (dualS st) dualG (choice d m alt) = choice (dual-dir d) m (dualS ∘ alt) dualG end = end dualS (gdd gst) = gdd (dualG gst) dualS (rec gst) = rec (swap-polG zero (dualG gst)) dualS (var p x) = var (dual-pol p) x -------------------------------------------------------------------- dual-weakenS : (i : Fin (suc n)) (s : SType n) → dualS (weaken1'S i s) ≡ weaken1'S i (dualS s) dual-weakenG : (i : Fin (suc n)) (g : GType n) → dualG (weaken1'G i g) ≡ weaken1'G i (dualG g) dual-weakenS i (gdd gst) = cong gdd (dual-weakenG i gst) dual-weakenS i (rec gst) rewrite (sym (swap-weaken1'G (suc i) zero (dualG gst))) = cong rec (cong (swap-polG zero) (dual-weakenG (suc i) gst)) dual-weakenS i (var p x) = refl dual-weakenG i (transmit d t s) = cong₂ (transmit (dual-dir d)) refl (dual-weakenS i s) dual-weakenG i (choice d m alt) = cong (choice (dual-dir d) m) (ext (dual-weakenS i ∘ alt)) dual-weakenG i end = refl dual-weakenS' : (m : ℕ) (s : SType n) → dualS (weakenS m s) ≡ weakenS m (dualS s) dual-weakenG' : (m : ℕ) (g : GType n) → dualG (weakenG m g) ≡ weakenG m (dualG g) dual-weakenS' n (gdd gst) = cong gdd (dual-weakenG' n gst) dual-weakenS' n (rec gst) rewrite (sym (swap-weakenG' n zero (dualG gst))) = cong rec (cong (swap-polG zero) (dual-weakenG' n gst)) dual-weakenS' n (var p x) = refl dual-weakenG' n (transmit d t s) = cong₂ (transmit (dual-dir d)) refl (dual-weakenS' n s) dual-weakenG' n (choice d m alt) = cong (choice (dual-dir d) m) (ext (dual-weakenS' n ∘ alt)) dual-weakenG' n end = refl -------------------------------------------------------------------- aux : (i : Fin n) (x : Fin n) (p' : Polarity) → var p' (suc (suc x)) ≡ weaken1S (var p' (suc x)) aux i x p = refl var-suc : (i : Fin n) (x : Fin n) (p : Polarity) → ∃ λ p' → swap-polS (suc i) (var p (suc x)) ≡ var p' (suc x) var-suc zero zero p = dual-pol p , refl var-suc (suc i) zero p = p , refl var-suc zero (suc x) p = p , refl var-suc (suc i) (suc x) p with var-suc i x p ... | p' , snd rewrite sym (aux i x p') = p' , cong weaken1S snd -------------------------------------------------------------------- {-# TERMINATING #-} swap-swapG : (gst : GType (suc n)) → (i : Fin (suc n)) (j : Fin′ i) → swap-polG i (swap-polG (inject j) gst) ≡ swap-polG (inject j) (swap-polG i gst) swap-swapT : (t : Type (suc n)) → (i : Fin (suc n)) (j : Fin′ i) → swap-polT i (swap-polT (inject j) t) ≡ swap-polT (inject j) (swap-polT i t) swap-swapS : (st : SType (suc n)) → (i : Fin (suc n)) (j : Fin′ i) → swap-polS i (swap-polS (inject j) st) ≡ swap-polS (inject j) (swap-polS i st) swap-swapG (transmit d t s) i j = cong₂ (transmit d) (swap-swapT t i j) (swap-swapS s i j) swap-swapG (choice d m alt) i j = cong (choice d m) (ext (λ x → swap-swapS (alt x) i j)) swap-swapG end i j = refl swap-swapT TUnit i j = refl swap-swapT TInt i j = refl swap-swapT (TPair t t₁) i j = cong₂ TPair (swap-swapT t i j) (swap-swapT t₁ i j) swap-swapT (TChan x) i j = cong TChan (swap-swapS x i j) swap-swapS (gdd gst) i j = cong gdd (swap-swapG gst i j) swap-swapS (rec gst) i j = cong rec (swap-swapG gst (suc i) (suc j)) swap-swapS (var p zero) zero () swap-swapS (var p zero) (suc i) zero = refl swap-swapS (var p zero) (suc i) (suc j) = refl swap-swapS (var p (suc x)) zero () swap-swapS (var p (suc x)) (suc i) zero with var-suc i x p ... | p' , snd rewrite snd = refl swap-swapS {suc n} (var p (suc x)) (suc i) (suc j) rewrite swap-weakenS i (swap-polS (inject j) (var p x)) with swap-swapS (var p x) i j ... | pxij rewrite swap-weakenS (inject j) (swap-polS i (var p x)) = cong weaken1S pxij {-# TERMINATING #-} swap-pol-dualG : (i : Fin (suc n)) (gst : GType (suc n)) → swap-polG i (dualG gst) ≡ dualG (swap-polG i gst) swap-pol-dualS : (i : Fin (suc n)) (st : SType (suc n)) → swap-polS i (dualS st) ≡ dualS (swap-polS i st) swap-pol-dualG i (transmit d t s) = cong (transmit _ (swap-polT i t)) (swap-pol-dualS i s) swap-pol-dualG i (choice d m alt) = cong (choice _ _) (ext (swap-pol-dualS i ∘ alt)) swap-pol-dualG i end = refl swap-pol-dualS i (gdd gst) = cong gdd (swap-pol-dualG i gst) swap-pol-dualS i (rec gst) rewrite sym (swap-pol-dualG (suc i) gst) = cong rec (swap-swapG (dualG gst) (suc i) zero) swap-pol-dualS zero (var p zero) = refl swap-pol-dualS (suc i) (var p zero) = refl swap-pol-dualS zero (var p (suc x)) = refl swap-pol-dualS {suc n} (suc i) (var p (suc x)) rewrite (dual-weakenS zero (swap-polS i (var p x))) = cong weaken1S (swap-pol-dualS i (var p x)) -------------------------------------------------------------------- dual-invS : (st : SType n) → st ≡ dualS (dualS st) dual-invG : (gst : GType n) → gst ≡ dualG (dualG gst) dual-invS (gdd gst) = cong gdd (dual-invG gst) dual-invS (rec gst) rewrite sym (swap-pol-dualG zero (dualG gst)) | swap-pol-invG zero (dualG (dualG gst)) = cong rec (dual-invG gst) dual-invS (var p x) rewrite dual-pol-inv p = refl dual-invG (transmit d t s) rewrite dual-dir-inv d = cong₂ (transmit d) refl (dual-invS s) dual-invG (choice d m alt) rewrite dual-dir-inv d = cong (choice d m) (ext R) where R : (x : Fin m) → alt x ≡ dualS (dualS (alt x)) R x rewrite sym (dual-invS (alt x)) = refl dual-invG end = refl dual-if : Polarity → SType n → SType n dual-if POS s = s dual-if NEG s = dualS s dual-if-dual : (p : Polarity) (ist : SType 0) → dual-if p ist ≡ dual-if (dual-pol p) (dualS ist) dual-if-dual POS ist = (dual-invS ist) dual-if-dual NEG ist = refl -------------------------------------------------------------------- -- substitution st-substS : SType (suc n) → Fin (suc n) → SType 0 → SType n st-substG : GType (suc n) → Fin (suc n) → SType 0 → GType n st-substT : Type (suc n) → Fin (suc n) → SType 0 → Type n st-substS (gdd gst) i st0 = gdd (st-substG gst i st0) st-substS (rec gst) i st0 = rec (st-substG gst (suc i) st0) st-substS {n} (var p zero) zero st0 = weakenS n (dual-if p st0) st-substS {suc n} (var p zero) (suc i) st0 = var p zero st-substS {suc n} (var p (suc x)) zero st0 = var p x st-substS {suc n} (var p (suc x)) (suc i) st0 = weaken1S (st-substS (var p x) i st0) st-substG (transmit d t s) i st0 = transmit d (st-substT t i st0) (st-substS s i st0) st-substG (choice d m alt) i st0 = choice d m (λ j → st-substS (alt j) i st0) st-substG end i st0 = end st-substT TUnit i st0 = TUnit st-substT TInt i st0 = TInt st-substT (TPair ty ty₁) i st0 = TPair (st-substT ty i st0) (st-substT ty₁ i st0) st-substT (TChan st) i st0 = TChan (st-substS st i st0) -------------------------------------------------------------------- trivial-subst-var : (p : Polarity) (x : Fin n) (ist₁ ist₂ : SType 0) → st-substS (var p (suc x)) zero ist₁ ≡ st-substS (var p (suc x)) zero ist₂ trivial-subst-var p zero ist1 ist2 = refl trivial-subst-var p (suc x) ist1 ist2 = refl trivial-subst-var' : (p : Polarity) (i : Fin n) (ist₁ ist₂ : SType 0) → st-substS (var p zero) (suc i) ist₁ ≡ st-substS (var p zero) (suc i) ist₂ trivial-subst-var' p zero ist1 ist2 = refl trivial-subst-var' p (suc x) ist1 ist2 = refl -------------------------------------------------------------------- -- equivalence variable t t₁ t₂ t₁' t₂' : Type n s s₁ s₂ : SType n g g₁ g₂ : GType n unfold : SType 0 → GType 0 unfold (gdd gst) = gst unfold (rec gst) = st-substG gst zero (rec gst) -- type equivalence data EquivT (R : SType n → SType n → Set) : Type n → Type n → Set where eq-unit : EquivT R TUnit TUnit eq-int : EquivT R TInt TInt eq-pair : EquivT R t₁ t₁' → EquivT R t₂ t₂' → EquivT R (TPair t₁ t₂) (TPair t₁' t₂') eq-chan : R s₁ s₂ → EquivT R (TChan s₁) (TChan s₂) -- session type equivalence data EquivG (R : SType n → SType n → Set) : GType n → GType n → Set where eq-transmit : (d : Dir) → EquivT R t₁ t₂ → R s₁ s₂ → EquivG R (transmit d t₁ s₁) (transmit d t₂ s₂) eq-choice : ∀ {alt alt'} → (d : Dir) → ((i : Fin m) → R (alt i) (alt' i)) → EquivG R (choice d m alt) (choice d m alt') eq-end : EquivG R end end record Equiv (s₁ s₂ : SType 0) : Set where coinductive field force : EquivG Equiv (unfold s₁) (unfold s₂) open Equiv _≈_ = Equiv _≈'_ = EquivG Equiv _≈ᵗ_ = EquivT Equiv -- reflexive ≈-refl : s ≈ s ≈'-refl : g ≈' g ≈ᵗ-refl : t ≈ᵗ t force (≈-refl {s}) = ≈'-refl ≈'-refl {transmit d t s} = eq-transmit d ≈ᵗ-refl ≈-refl ≈'-refl {choice d m alt} = eq-choice d (λ i → ≈-refl) ≈'-refl {end} = eq-end ≈ᵗ-refl {TUnit} = eq-unit ≈ᵗ-refl {TInt} = eq-int ≈ᵗ-refl {TPair t t₁} = eq-pair ≈ᵗ-refl ≈ᵗ-refl ≈ᵗ-refl {TChan x} = eq-chan ≈-refl -- symmetric ≈-symm : s₁ ≈ s₂ → s₂ ≈ s₁ ≈'-symm : g₁ ≈' g₂ → g₂ ≈' g₁ ≈ᵗ-symm : t₁ ≈ᵗ t₂ → t₂ ≈ᵗ t₁ force (≈-symm s₁≈s₂) = ≈'-symm (force s₁≈s₂) ≈'-symm (eq-transmit d x x₁) = eq-transmit d (≈ᵗ-symm x) (≈-symm x₁) ≈'-symm (eq-choice d x) = eq-choice d (≈-symm ∘ x) ≈'-symm eq-end = eq-end ≈ᵗ-symm eq-unit = eq-unit ≈ᵗ-symm eq-int = eq-int ≈ᵗ-symm (eq-pair t₁≈ᵗt₂ t₁≈ᵗt₃) = eq-pair (≈ᵗ-symm t₁≈ᵗt₂) (≈ᵗ-symm t₁≈ᵗt₃) ≈ᵗ-symm (eq-chan x) = eq-chan (≈-symm x)
{ "alphanum_fraction": 0.5956372279, "avg_line_length": 40.5559380379, "ext": "agda", "hexsha": "4d60a5b5789108b822ca5566e0982c9ae49e5ed4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-07T16:12:50.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-07T16:12:50.000Z", "max_forks_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "peterthiemann/dual-session", "max_forks_repo_path": "src/Types/IND.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "peterthiemann/dual-session", "max_issues_repo_path": "src/Types/IND.agda", "max_line_length": 142, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "peterthiemann/dual-session", "max_stars_repo_path": "src/Types/IND.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:43:25.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-13T05:43:25.000Z", "num_tokens": 9588, "size": 23563 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to Pointwise ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Functional.Relation.Binary.Pointwise.Properties where open import Data.Fin.Base open import Data.Fin.Properties hiding (isDecEquivalence; setoid; decSetoid) open import Data.Nat.Base open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Data.Product.Relation.Binary.Pointwise.NonDependent using () renaming (Pointwise to ×-Pointwise) open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_]) open import Data.Vec.Functional as VF hiding (map) open import Data.Vec.Functional.Relation.Binary.Pointwise open import Function open import Level using (Level) open import Relation.Binary open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) private variable a a′ a″ b b′ b″ r s t ℓ : Level A : Set a B : Set b A′ : Set a′ B′ : Set b′ A″ : Set a″ B″ : Set b″ ------------------------------------------------------------------------ -- Relational properties module _ {R : Rel A ℓ} where refl : Reflexive R → ∀ {n} → Reflexive (Pointwise R {n}) refl r i = r sym : Symmetric R → ∀ {n} → Symmetric (Pointwise R {n}) sym s xsys i = s (xsys i) trans : Transitive R → ∀ {n} → Transitive (Pointwise R {n}) trans t xsys yszs i = t (xsys i) (yszs i) decidable : Decidable R → ∀ {n} → Decidable (Pointwise R {n}) decidable r? xs ys = all? λ i → r? (xs i) (ys i) ------------------------------------------------------------------------ -- Structures isEquivalence : IsEquivalence R → ∀ n → IsEquivalence (Pointwise R {n}) isEquivalence isEq n = record { refl = refl Eq.refl ; sym = sym Eq.sym ; trans = trans Eq.trans } where module Eq = IsEquivalence isEq isDecEquivalence : IsDecEquivalence R → ∀ n → IsDecEquivalence (Pointwise R {n}) isDecEquivalence isDecEq n = record { isEquivalence = isEquivalence Eq.isEquivalence n ; _≟_ = decidable Eq._≟_ } where module Eq = IsDecEquivalence isDecEq ------------------------------------------------------------------------ -- Bundles setoid : Setoid a ℓ → ℕ → Setoid a ℓ setoid S n = record { isEquivalence = isEquivalence S.isEquivalence n } where module S = Setoid S decSetoid : DecSetoid a ℓ → ℕ → DecSetoid a ℓ decSetoid S n = record { isDecEquivalence = isDecEquivalence S.isDecEquivalence n } where module S = DecSetoid S ------------------------------------------------------------------------ -- map module _ {R : REL A B r} {S : REL A′ B′ s} {f : A → A′} {g : B → B′} where map⁺ : (∀ {x y} → R x y → S (f x) (g y)) → ∀ {n} {xs : Vector A n} {ys : Vector B n} → Pointwise R xs ys → Pointwise S (VF.map f xs) (VF.map g ys) map⁺ f rs i = f (rs i) ------------------------------------------------------------------------ -- head module _ (R : REL A B r) {n} {xs : Vector A (suc n)} {ys} where head⁺ : Pointwise R xs ys → R (head xs) (head ys) head⁺ rs = rs zero ------------------------------------------------------------------------ -- tail module _ (R : REL A B r) {n} {xs : Vector A (suc n)} {ys} where tail⁺ : Pointwise R xs ys → Pointwise R (tail xs) (tail ys) tail⁺ rs = rs ∘ suc ------------------------------------------------------------------------ -- _++_ module _ (R : REL A B r) where ++⁺ : ∀ {m n xs ys xs′ ys′} → Pointwise R {n = m} xs ys → Pointwise R {n = n} xs′ ys′ → Pointwise R (xs ++ xs′) (ys ++ ys′) ++⁺ {m} rs rs′ i with splitAt m i ... | inj₁ i′ = rs i′ ... | inj₂ j′ = rs′ j′ ++⁻ˡ : ∀ {m n} (xs : Vector A m) (ys : Vector B m) {xs′ ys′} → Pointwise R (xs ++ xs′) (ys ++ ys′) → Pointwise R xs ys ++⁻ˡ {m} {n} _ _ rs i with rs (inject+ n i) ... | r rewrite splitAt-inject+ m n i = r ++⁻ʳ : ∀ {m n} (xs : Vector A m) (ys : Vector B m) {xs′ ys′} → Pointwise R (xs ++ xs′) (ys ++ ys′) → Pointwise R xs′ ys′ ++⁻ʳ {m} {n} _ _ rs i with rs (raise m i) ... | r rewrite splitAt-raise m n i = r ++⁻ : ∀ {m n} xs ys {xs′ ys′} → Pointwise R (xs ++ xs′) (ys ++ ys′) → Pointwise R {n = m} xs ys × Pointwise R {n = n} xs′ ys′ ++⁻ _ _ rs = ++⁻ˡ _ _ rs , ++⁻ʳ _ _ rs ------------------------------------------------------------------------ -- replicate module _ {R : REL A B r} {x y n} where replicate⁺ : R x y → Pointwise R {n = n} (replicate x) (replicate y) replicate⁺ = const ------------------------------------------------------------------------ -- _⊛_ module _ {R : REL A B r} {S : REL A′ B′ s} {n} where ⊛⁺ : ∀ {fs : Vector (A → A′) n} {gs : Vector (B → B′) n} → Pointwise (λ f g → ∀ {x y} → R x y → S (f x) (g y)) fs gs → ∀ {xs ys} → Pointwise R xs ys → Pointwise S (fs ⊛ xs) (gs ⊛ ys) ⊛⁺ rss rs i = (rss i) (rs i) ------------------------------------------------------------------------ -- zipWith module _ {R : REL A B r} {S : REL A′ B′ s} {T : REL A″ B″ t} where zipWith⁺ : ∀ {n xs ys xs′ ys′ f f′} → (∀ {x y x′ y′} → R x y → S x′ y′ → T (f x x′) (f′ y y′)) → Pointwise R xs ys → Pointwise S xs′ ys′ → Pointwise T (zipWith f xs xs′) (zipWith f′ {n = n} ys ys′) zipWith⁺ t rs ss i = t (rs i) (ss i) ------------------------------------------------------------------------ -- zip module _ {R : REL A B r} {S : REL A′ B′ s} {n xs ys xs′ ys′} where zip⁺ : Pointwise R xs ys → Pointwise S xs′ ys′ → Pointwise (λ xx yy → R (proj₁ xx) (proj₁ yy) × S (proj₂ xx) (proj₂ yy)) (zip xs xs′) (zip {n = n} ys ys′) zip⁺ rs ss i = rs i , ss i zip⁻ : Pointwise (λ xx yy → R (proj₁ xx) (proj₁ yy) × S (proj₂ xx) (proj₂ yy)) (zip xs xs′) (zip {n = n} ys ys′) → Pointwise R xs ys × Pointwise S xs′ ys′ zip⁻ rss = proj₁ ∘ rss , proj₂ ∘ rss ------------------------------------------------------------------------ -- foldr module _ {R : REL A B r} {S : REL A′ B′ s} {f : A → A′ → A′} {g : B → B′ → B′} where foldr-cong : (∀ {w x y z} → R w x → S y z → S (f w y) (g x z)) → ∀ {d : A′} {e : B′} → S d e → ∀ {n} {xs : Vector A n} {ys : Vector B n} → Pointwise R xs ys → S (foldr f d xs) (foldr g e ys) foldr-cong fg-cong d~e {zero} rss = d~e foldr-cong fg-cong d~e {suc n} rss = fg-cong (rss zero) (foldr-cong fg-cong d~e (rss ∘ suc))
{ "alphanum_fraction": 0.4640562863, "avg_line_length": 33.7010309278, "ext": "agda", "hexsha": "f961e2f11883f773ed60d77aa430b0dd41005af0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Binary/Pointwise/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Binary/Pointwise/Properties.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Binary/Pointwise/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2145, "size": 6538 }
-- Syntax: Types, terms and contexts. module Syntax where open import Library infixr 6 _⇒_ infixr 4 _,_ -- Types and contexts. data Ty : Set where ★ : Ty _⇒_ : (a b : Ty) → Ty data Cxt : Set where ε : Cxt _,_ : (Γ : Cxt) (a : Ty) → Cxt -- Variables and terms. data Var : (Γ : Cxt) (a : Ty) → Set where zero : ∀ {Γ a} → Var (Γ , a) a suc : ∀ {Γ a b} (x : Var Γ a) → Var (Γ , b) a data Tm (Γ : Cxt) : (a : Ty) → Set where var : ∀ {a} (x : Var Γ a) → Tm Γ a abs : ∀ {a b} (t : Tm (Γ , a) b) → Tm Γ (a ⇒ b) app : ∀ {a b} (t : Tm Γ (a ⇒ b)) (u : Tm Γ a) → Tm Γ b -- Generalized neutral terms. data GNe (Arg : Cxt → Ty → Set) (Γ : Cxt) : Ty → Set where var : ∀{a} (x : Var Γ a) → GNe Arg Γ a app : ∀{a b} (n : GNe Arg Γ (a ⇒ b)) (o : Arg Γ a) → GNe Arg Γ b -- βη-normal forms. mutual Ne = GNe Nf data Nf (Γ : Cxt) : Ty → Set where abs : ∀{a b} (o : Nf (Γ , a) b) → Nf Γ (a ⇒ b) ne : (n : Ne Γ ★) → Nf Γ ★ mutual embNe : ∀{Γ a} → Ne Γ a → Tm Γ a embNe (var x) = var x embNe (app t u) = app (embNe t) (embNf u) embNf : ∀{Γ a} → Nf Γ a → Tm Γ a embNf (ne t) = embNe t embNf (abs t) = abs (embNf t)
{ "alphanum_fraction": 0.4544728435, "avg_line_length": 22.7636363636, "ext": "agda", "hexsha": "089827c2d45d05002a3ba97492956dae91a8500e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda/Syntax.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda/Syntax.agda", "max_line_length": 67, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 560, "size": 1252 }
open import Data.Nat using ( ℕ ) renaming ( zero to zero' ; suc to suc' ) open import Data.Nat.GeneralisedArithmetic using ( fold ) open import Data.String using ( String ) module Data.Natural.Primitive where infixl 6 _+_ postulate Natural : Set zero : Natural suc : Natural → Natural _+_ : Natural → Natural → Natural show : Natural → String foldl : {A : Set} → (A → A) → A → Natural → A foldl' : {A : Set} → (A → A) → A → Natural → A foldr : {A : Set} → (A → A) → A → Natural → A {-# FOREIGN GHC import qualified Data.Natural.AgdaFFI #-} {-# COMPILE GHC Natural = type Data.Natural.AgdaFFI.Natural #-} {-# COMPILE GHC zero = 0 #-} {-# COMPILE GHC suc = succ #-} {-# COMPILE GHC _+_ = (+) #-} {-# COMPILE GHC show = show #-} {-# COMPILE GHC foldl = (\ _ -> Data.Natural.AgdaFFI.nfoldl) #-} {-# COMPILE GHC foldl' = (\ _ -> Data.Natural.AgdaFFI.nfoldl') #-} {-# COMPILE GHC foldr = (\ _ -> Data.Natural.AgdaFFI.nfoldr) #-} private postulate # : ∀ {i} {A : Set i} → A → Natural {-# COMPILE GHC # = (\ _ _ -> Data.Natural.AgdaFFI.convert MAlonzo.Data.Nat.mazNatToInteger) #-} fromℕ : ℕ → Natural fromℕ = #
{ "alphanum_fraction": 0.6164021164, "avg_line_length": 31.5, "ext": "agda", "hexsha": "2e42267ccc5d3f4ad4c73f7c1c36323121e9b8fb", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "121d6c66cba34b4c15b437366b80c65dd2b02a8d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-system-io", "max_forks_repo_path": "src/Data/Natural/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "121d6c66cba34b4c15b437366b80c65dd2b02a8d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-system-io", "max_issues_repo_path": "src/Data/Natural/Primitive.agda", "max_line_length": 96, "max_stars_count": 10, "max_stars_repo_head_hexsha": "121d6c66cba34b4c15b437366b80c65dd2b02a8d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-system-io", "max_stars_repo_path": "src/Data/Natural/Primitive.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 363, "size": 1134 }
-- Mutual Recursion. module MutRec where open import Relation.Binary.PropositionalEquality using (_≡_; refl) data Odd : Set data Even : Set where e0 : Even eS : Odd → Even data Odd where oS : Even → Odd addEO : Even → Odd → Odd addOO : Odd → Odd → Even addOO (oS m) n = eS (addEO m n) addEO e0 n = n addEO (eS m) n = oS (addOO m n) _ : addEO (eS (oS e0)) (oS e0) ≡ oS (eS (oS e0)) _ = refl
{ "alphanum_fraction": 0.6271604938, "avg_line_length": 15.5769230769, "ext": "agda", "hexsha": "fc1d6aecbce27180cff1f5b40ab6b13d204fb71f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "anqurvanillapy/fpl", "max_forks_repo_path": "agda/MutRec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "anqurvanillapy/fpl", "max_issues_repo_path": "agda/MutRec.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "anqurvanillapy/fpl", "max_stars_repo_path": "agda/MutRec.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-24T22:47:47.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-24T22:47:47.000Z", "num_tokens": 154, "size": 405 }
module Esterel.Lang.Binding where open import utility open import Data.List open import Data.Empty using (⊥ ; ⊥-elim) open import Data.Bool using (Bool ; true ; false ; if_then_else_) open import Esterel.Lang open import Esterel.Environment as Env using (Env ; VarList ; Dom ; Θ ; _←_) open import Esterel.Context using (Context1 ; EvaluationContext1 ; _≐_⟦_⟧e ; _⟦_⟧e ; _≐_⟦_⟧c ; _⟦_⟧c) open import Esterel.Context.Properties using (plug) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) renaming (_≟ₛₜ_ to _≟ₛₜₛ_ ; unwrap to Sunwrap) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) renaming (_≟ₛₜ_ to _≟ₛₜₛₕ_ ; unwrap to sunwrap) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) renaming (unwrap to vunwrap) open import Data.Product using (_×_ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; ∃ ; Σ) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; _≟_ ; zero ; suc) open import Relation.Nullary using (Dec ; yes ; no ; ¬_) open import Function using (_∘_ ; id ; _∋_) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; setoid) open import Relation.Nullary.Decidable using (⌊_⌋) open import Data.Bool using (not) open import Data.List.Any as ListAny using (Any ; any ; here ; there) open import Data.List.Any.Properties using (∷↔) renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open ListSet Data.Nat._≟_ open _≐_⟦_⟧e open _≐_⟦_⟧c open Context1 open EvaluationContext1 base : VarList base = [] ,′ [] ,′ [] +S : Signal -> VarList -> VarList +S S' (S , s , v) = ((Sunwrap S') ∷ S , s , v) +s : SharedVar -> VarList -> VarList +s s' (S , s , v) = (S , sunwrap s' ∷ s , v) +x : SeqVar -> VarList -> VarList +x x' (S , s , v) = (S , s , vunwrap x' ∷ v) Xs : VarList -> List ℕ Xs (_ , _ , v) = v Ss : VarList -> List ℕ Ss (S , _ , _) = S FVₑ : Expr -> VarList FVₑ (plus []) = base FVₑ (plus (num x ∷ x₁)) = FVₑ (plus x₁) FVₑ (plus (seq-ref x ∷ x₁)) = +x x (FVₑ (plus x₁)) FVₑ (plus (shr-ref s ∷ x₁)) = +s s (FVₑ (plus x₁)) dist++ˡ : ∀{VL1 VL2 VL3} → (distinct VL1 (VL2 U̬ VL3)) → (distinct VL1 VL2) dist++ˡ (a , b , c) = (dist'++ˡ a) ,(dist'++ˡ b) ,(dist'++ˡ c) dist++ʳ : ∀{VL1 VL2 VL3} → (distinct VL1 (VL2 U̬ VL3)) → (distinct VL1 VL3) dist++ʳ{VL1}{VL2 = (v1 , v2 , v3)}{VL3 = (V1 , V2 , V3)} (a , b , c) = (dist'++ʳ{V2 = v1}{V3 = V1} a) , (dist'++ʳ{V2 = v2}{V3 = V2} b) , (dist'++ʳ{V2 = v3}{V3 = V3} c) dist++b : ∀{VL1 VL2 VL3 VL4} → (distinct (VL1 U̬ VL2) (VL3 U̬ VL4)) → (distinct VL1 VL3) dist++b (a , b , c) = (dist'++b a) , (dist'++b b) , (dist'++b c) dist:: : ∀{VL1 VL2 S} → (distinct VL1 (+S S VL2)) → (distinct VL1 VL2) dist::{VL1}{(Ss , s , v)}{S} (a , b , c) = dist':: a , b , c {- This definition of CorrectBinding accumulates the bound and free variables to make it easier to work with. The definition of `CB` (below) matches the one in the paper. -} data CorrectBinding : Term → (BV : VarList) → (FV : VarList) → Set where CBnothing : CorrectBinding nothin base base CBpause : CorrectBinding pause base base CBsig : ∀{p S BV FV} → CorrectBinding p BV FV → CorrectBinding (signl S p) (+S S BV) (FV |̌ (+S S base)) CBpresent : ∀{S p q BVp FVp BVq FVq} → (cbp : CorrectBinding p BVp FVp) → (cbq : CorrectBinding q BVq FVq) → CorrectBinding (present S ∣⇒ p ∣⇒ q) (BVp U̬ BVq) (+S S (FVp U̬ FVq)) CBemit : ∀{S} → CorrectBinding (emit S) base (+S S base) CBpar : ∀{p q BVp FVp BVq FVq} → (cbp : CorrectBinding p BVp FVp) → (cbq : CorrectBinding q BVq FVq) → (BVp≠BVq : distinct BVp BVq) → (FVp≠BVq : distinct FVp BVq) → (BVp≠FVq : distinct BVp FVq) → (Xp≠Xq : distinct' (Xs FVp) (Xs FVq)) → CorrectBinding (p ∥ q) (BVp U̬ BVq) (FVp U̬ FVq) CBloop : ∀{p BV FV} → CorrectBinding p BV FV → (BV≠FV : distinct BV FV) → CorrectBinding (loop p) BV FV CBloopˢ : ∀{p q BVp FVp BVq FVq} → CorrectBinding p BVp FVp → CorrectBinding q BVq FVq → (BVp≠FVq : distinct BVp FVq) → (BVq≠FVq : distinct BVq FVq) → CorrectBinding (loopˢ p q) (BVp U̬ BVq) (FVp U̬ FVq) CBseq : ∀{p q BVp BVq FVp FVq} → (cbp : CorrectBinding p BVp FVp) → (cbq : CorrectBinding q BVq FVq) → (BVp≠FVq : distinct BVp FVq) → CorrectBinding (p >> q) (BVp U̬ BVq) (FVp U̬ FVq) CBsusp : ∀{S p BV FV} → (cbp : CorrectBinding p BV FV) → ([S]≠BVp : distinct' [ (Sunwrap S) ] (Ss BV)) → CorrectBinding (suspend p S) BV (+S S FV) CBexit : ∀{n} → CorrectBinding (exit n) base base CBtrap : ∀{p BV FV} → CorrectBinding p BV FV → CorrectBinding (trap p) BV FV CBshared : ∀{s e p BV FV} → CorrectBinding p BV FV → CorrectBinding (shared s ≔ e in: p) (+s s BV) ((FVₑ e) U̬ (FV |̌ (+s s base))) CBsset : ∀{s e} → CorrectBinding (s ⇐ e) base (+s s (FVₑ e)) CBvar : ∀{x e p BV FV} → CorrectBinding p BV FV → CorrectBinding (var x ≔ e in: p) (+x x BV) ((FVₑ e) U̬ (FV |̌ (+x x base))) CBvset : ∀{x e} → CorrectBinding (x ≔ e) base (+x x (FVₑ e)) CBif : ∀{x p q BVp BVq FVp FVq} → (cbp : CorrectBinding p BVp FVp) → (cbq : CorrectBinding q BVq FVq) → CorrectBinding (if x ∣⇒ p ∣⇒ q) (BVp U̬ BVq) (+x x (FVp U̬ FVq)) CBρ : ∀{θ A p BV FV} → CorrectBinding p BV FV → CorrectBinding (ρ⟨ θ , A ⟩· p) (((Dom θ) U̬ BV)) (FV |̌ (Dom θ)) binding-is-function : ∀{p BV₁ FV₁ BV₂ FV₂} → CorrectBinding p BV₁ FV₁ → CorrectBinding p BV₂ FV₂ → BV₁ ≡ BV₂ × FV₁ ≡ FV₂ binding-is-function CBnothing CBnothing = refl , refl binding-is-function CBpause CBpause = refl , refl binding-is-function (CBsig cb₁) (CBsig cb₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function (CBpresent cbp₁ cbq₁) (CBpresent cbp₂ cbq₂) with binding-is-function cbp₁ cbp₂ | binding-is-function cbq₁ cbq₂ ... | (refl , refl) | (refl , refl) = refl , refl binding-is-function CBemit CBemit = refl , refl binding-is-function (CBpar cbp₁ cbq₁ BVp≠BVq₁ FVp≠BVq₁ BVp≠FVq₁ Xp≠Xq₁) (CBpar cbp₂ cbq₂ BVp≠BVq₂ FVp≠BVq₂ BVp≠FVq₂ Xp≠Xq₂) with binding-is-function cbp₁ cbp₂ | binding-is-function cbq₁ cbq₂ ... | (refl , refl) | (refl , refl) = refl , refl binding-is-function (CBloop cb₁ BV≠FV₁) (CBloop cb₂ BV≠FVV₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function (CBloopˢ cbp₁ cbq₁ BVp≠FVq₁ BVq≠FVq₁) (CBloopˢ cbp₂ cbq₂ BVp≠FVq₂ BVq≠FVq₂) with binding-is-function cbp₁ cbp₂ | binding-is-function cbq₁ cbq₂ ... | (refl , refl) | (refl , refl) = refl , refl binding-is-function (CBseq cbp₁ cbq₁ BV≠FV₁) (CBseq cbp₂ cbq₂ BV≠FV₂) with binding-is-function cbp₁ cbp₂ | binding-is-function cbq₁ cbq₂ ... | (refl , refl) | (refl , refl) = refl , refl binding-is-function (CBsusp cb₁ S∉BV₁) (CBsusp cb₂ S∉BV₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function CBexit CBexit = refl , refl binding-is-function (CBtrap cb₁) (CBtrap cb₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function (CBshared cb₁) (CBshared cb₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function CBsset CBsset = refl , refl binding-is-function (CBvar cb₁) (CBvar cb₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function CBvset CBvset = refl , refl binding-is-function (CBif cbp₁ cbq₁) (CBif cbp₂ cbq₂) with binding-is-function cbp₁ cbp₂ | binding-is-function cbq₁ cbq₂ ... | (refl , refl) | (refl , refl) = refl , refl binding-is-function (CBρ cb₁) (CBρ cb₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-dec : ∀ p → Dec (∃ \ BV -> ∃ \ FV -> CorrectBinding p BV FV) binding-dec nothin = yes (base , base , CBnothing) binding-dec pause = yes (base , base , CBpause) binding-dec (signl S p) with binding-dec p binding-dec (signl S p) | yes (BV , FV , CBp) = yes (+S S BV , (FV |̌ (+S S base)) , CBsig CBp) binding-dec (signl S p) | no ¬p = no (\ { (BV , FV , CBsig proj₃) → ¬p (_ , _ , proj₃) }) binding-dec (present S ∣⇒ p ∣⇒ q) with binding-dec p binding-dec (present S ∣⇒ p ∣⇒ q) | yes p₂ with binding-dec q binding-dec (present S ∣⇒ p ∣⇒ q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) = yes (BVp U̬ BVq , +S S (FVp U̬ FVq) , CBpresent CBp CBq) binding-dec (present S ∣⇒ p ∣⇒ p₁) | yes p₂ | (no ¬p) = no (\ { (BV , FV , CBpresent BD BD₁) → ¬p (_ , _ , BD₁) } ) binding-dec (present S ∣⇒ p ∣⇒ p₁) | no ¬p = no (\ { (BV , FV , CBpresent BD BD₁) → ¬p (_ , _ , BD) } ) binding-dec (emit S) = yes (base , (Sunwrap S ∷ [] , [] , []) , CBemit) binding-dec (p ∥ q) with binding-dec p binding-dec (p ∥ q) | yes (BVp , FVp , CBp) with binding-dec q binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) with distinct-dec BVp BVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | yes BVp≠BVq = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (p ∥ q) BV FV) ¬CB (BV₂ , FV₂ , CBpar CBp₂ CBq₂ BVp≠BVq' FVp≠BVq' BVp≠FVq' Xp≠Xq') with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec BVp≠BVq' BVp≠BVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | no ¬BVp≠BVq with distinct-dec FVp BVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (yes FVp≠BVq) = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (p ∥ q) BV FV) ¬CB (BV₂ , FV₂ , CBpar CBp₂ CBq₂ BVp≠BVq' FVp≠BVq' BVp≠FVq' Xp≠Xq') with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec FVp≠BVq' FVp≠BVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (no ¬FVp≠BVq) with distinct-dec BVp FVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (no ¬FVp≠BVq) | (yes BVp≠FVq) = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (p ∥ q) BV FV) ¬CB (BV₂ , FV₂ , CBpar CBp₂ CBq₂ BVp≠BVq' FVp≠BVq' BVp≠FVq' Xp≠Xq') with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec BVp≠FVq' BVp≠FVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (no ¬FVp≠BVq) | (no ¬BVp≠FVq) with distinct'-dec (Xs FVp) (Xs FVq) binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (no ¬FVp≠BVq) | (no ¬BVp≠FVq) | (yes Xp≠Xq) = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (p ∥ q) BV FV) ¬CB (BV₂ , FV₂ , CBpar CBp₂ CBq₂ BVp≠BVq' FVp≠BVq' BVp≠FVq' Xp≠Xq') with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = Xp≠Xq' (proj₁ Xp≠Xq) (proj₁ (proj₂ Xp≠Xq)) (proj₂ (proj₂ Xp≠Xq)) binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (no ¬FVp≠BVq) | (no ¬BVp≠FVq) | (no ¬Xp≠Xq) = yes (BVp U̬ BVq , FVp U̬ FVq , CBpar CBp CBq (distinct-dec-is-distinct ¬BVp≠BVq) (distinct-dec-is-distinct ¬FVp≠BVq) (distinct-dec-is-distinct ¬BVp≠FVq) (λ z z∈xs z∈ys → ¬Xp≠Xq (z , z∈xs , z∈ys))) binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | no ¬p = no (\ { (BV , FV , CBpar X X₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) → ¬p (_ , _ , X₁ ) } ) binding-dec (p ∥ q) | no ¬p = no (\ { (BV , FV , CBpar X X₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) → ¬p (_ , _ , X) } ) binding-dec (loop p) with binding-dec p binding-dec (loop p) | yes (BV , FV , CB) with distinct-dec BV FV binding-dec (loop p) | yes (BV , FV , CB) | yes dec = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (loop p) BV FV) ¬CB (BV₂ , FV₂ , CBloop CB₂ BV≠FV') with binding-is-function CB CB₂ ... | (refl , refl) = distinct-not-distinct-dec BV≠FV' dec binding-dec (loop p) | yes (BV , FV , CB) | no dec = yes (BV , (FV , (CBloop CB (distinct-dec-is-distinct dec)))) binding-dec (loop p) | no ¬p = no (\ { (BV , FV , CBloop CB BV≠FV) -> ¬p (_ , _ , CB) } ) binding-dec (loopˢ p q) with binding-dec p binding-dec (loopˢ p q) | yes (BVp , FVq , CBp ) with binding-dec q binding-dec (loopˢ p q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) with distinct-dec BVp FVq binding-dec (loopˢ p q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | yes BVp≠FVq = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (loopˢ p q) BV FV) ¬CB (BV₂ , FV₂ , CBloopˢ CBp₂ CBq₂ BVp≠FVq₂ BVq≠FVq₂) with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec BVp≠FVq₂ BVp≠FVq binding-dec (loopˢ p q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | no ¬BVp≠FVq with distinct-dec BVq FVq binding-dec (loopˢ p q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | no ¬BVp≠FVq | yes ¬BVq≠FVq = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (loopˢ p q) BV FV) ¬CB (BV₂ , FV₂ , CBloopˢ CBp₂ CBq₂ BVp≠FVq₂ BVq≠FVq₂) with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec BVq≠FVq₂ ¬BVq≠FVq binding-dec (loopˢ p q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | no BVp≠FVq | no BVq≠FVq = yes (BVp U̬ BVq , FVp U̬ FVq , CBloopˢ CBp CBq (distinct-dec-is-distinct BVp≠FVq) (distinct-dec-is-distinct BVq≠FVq)) binding-dec (loopˢ p q) | yes (BVp , FVq , CBp) | (no ¬CBq) = no (\ { (BV , FV , CBloopˢ CBp CBq BVp≠FVq BVq≠FVq) -> ¬CBq (_ , _ , CBq) } ) binding-dec (loopˢ p q) | no ¬CBp = no (\ { (BV , FV , CBloopˢ CBp CBq BVp≠FVq BVq≠FVq) -> ¬CBp (_ , _ , CBp) }) binding-dec (p >> q) with binding-dec p binding-dec (p >> q) | yes (BVp , FVq , CBp ) with binding-dec q binding-dec (p >> q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) with distinct-dec BVp FVq binding-dec (p >> q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (yes BVp≠FVq) = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (p >> q) BV FV) ¬CB (BV₂ , FV₂ , CBseq CBp₂ CBq₂ BVp≠FVq') with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec BVp≠FVq' BVp≠FVq binding-dec (p >> q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | no ¬BVp≠FVq = yes (BVp U̬ BVq , FVp U̬ FVq , CBseq CBp CBq (distinct-dec-is-distinct ¬BVp≠FVq)) binding-dec (p >> q) | yes (BVp , FVq , CBp) | (no ¬CBq) = no (\ { (BV , FV , CBseq CBp CBq BVp≠FVq) -> ¬CBq (_ , _ , CBq) } ) binding-dec (p >> q) | no ¬CBp = no (\ { (BV , FV , CBseq CBp CBq BVp≠FVq) -> ¬CBp (_ , _ , CBp) }) binding-dec (suspend p S) with binding-dec p binding-dec (suspend p S) | yes (BV , FV , CB) with distinct'-dec [ (Sunwrap S) ] (Ss BV) binding-dec (suspend p S) | yes (BV₁ , FV₁ , CB₁) | yes ([S]≠BVp₁ , [S]≠BVp₂ , [S]≠BVp₃) = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (suspend p S) BV FV) ¬CB (BV₂ , FV₂ , CBsusp CB₃ [S]≠BVp') with (binding-is-function CB₁ CB₃) ... | refl , refl = [S]≠BVp' [S]≠BVp₁ [S]≠BVp₂ [S]≠BVp₃ binding-dec (suspend p S) | yes (BV , FV , CB) | (no ¬[S]≠BVp) = yes (BV , +S S FV , CBsusp CB (λ z z∈xs z∈ys → ¬[S]≠BVp (z , z∈xs , z∈ys))) binding-dec (suspend p S) | no ¬p = no (\ { (BV , FV , CBsusp CB [S]≠BVp) -> ¬p (_ , _ , CB)}) binding-dec (trap p) with binding-dec p binding-dec (trap p) | yes (BV , FV , CB) = yes (BV , FV , CBtrap CB) binding-dec (trap p) | no ¬p = no (\ { (BV , FV , CBtrap CB ) -> ¬p (BV , FV , CB) }) binding-dec (exit x) = yes (base , base , CBexit) binding-dec (shared s ≔ e in: p) with binding-dec p binding-dec (shared s ≔ e in: p) | yes (BV , FV , CB) = yes (+s s BV , (FVₑ e) U̬ (FV |̌ (+s s base)) , CBshared CB) binding-dec (shared s ≔ e in: p) | no ¬p = no (\ { (BV , FV , CBshared CB) -> ¬p (_ , _ , CB) }) binding-dec (s ⇐ e) = yes (base , +s s (FVₑ e) , CBsset) binding-dec (var x ≔ e in: p) with binding-dec p binding-dec (var x ≔ e in: p) | yes (BV , FV , CB) = yes (+x x BV , (FVₑ e) U̬ (FV |̌ (+x x base)) , CBvar CB) binding-dec (var x ≔ e in: p) | no ¬p = no (\ { (BV , FV , CBvar CB) -> ¬p (_ , _ , CB) } ) binding-dec (x ≔ e) = yes (base , (+x x (FVₑ e)) , CBvset) binding-dec (if x ∣⇒ p ∣⇒ q) with binding-dec p binding-dec (if x ∣⇒ p ∣⇒ q) | yes p₁ with binding-dec q binding-dec (if x ∣⇒ p₁ ∣⇒ q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) = yes (BVp U̬ BVq , +x x (FVp U̬ FVq) , CBif CBp CBq) binding-dec (if x ∣⇒ p ∣⇒ q) | yes p₁ | (no ¬p) = no (\ { (BV , FV , CBif CBp CBq) -> ¬p (_ , _ , CBq) }) binding-dec (if x ∣⇒ p ∣⇒ q) | no ¬p = no (\ { (BV , FV , CBif CBp CBq) -> ¬p (_ , _ , CBp) }) binding-dec (ρ⟨ θ , A ⟩· p) with binding-dec p binding-dec (ρ⟨ θ , A ⟩· p) | yes (BV , FV , BP) = yes (((Dom θ) U̬ BV) , FV |̌ (Dom θ) , CBρ BP) binding-dec (ρ⟨ θ , A ⟩· p) | no ¬p = no (\ { (BV , FV , CBρ p ) -> ¬p (_ , _ , p) } ) binding-extract : ∀{p BV FV p' E} → CorrectBinding p BV FV → p ≐ E ⟦ p' ⟧e → Σ (VarList × VarList) λ { (BV' , FV') → (BV' ⊆ BV × FV' ⊆ FV) × CorrectBinding p' BV' FV' } binding-extract cb dehole = _ , (⊆-refl , ⊆-refl) , cb binding-extract (CBpar cbp cbq _ _ _ _) (depar₁ p≐E⟦p'⟧) with binding-extract cbp p≐E⟦p'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (∪ˡ BV'⊆BV , ∪ˡ FV'⊆FV) , cb* binding-extract {_} (CBpar {BVp = BVp} {FVp = FVp} cbp cbq _ _ _ _) (depar₂ q≐E⟦q'⟧) with binding-extract cbq q≐E⟦q'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (∪ʳ BVp BV'⊆BV , ∪ʳ FVp FV'⊆FV) , cb* binding-extract (CBseq cbp cbq _) (deseq p≐E⟦p'⟧) with binding-extract cbp p≐E⟦p'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (∪ˡ BV'⊆BV , ∪ˡ FV'⊆FV) , cb* binding-extract (CBloopˢ cbp cbq _ _) (deloopˢ p≐E⟦p'⟧) with binding-extract cbp p≐E⟦p'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (∪ˡ BV'⊆BV , ∪ˡ FV'⊆FV) , cb* binding-extract (CBsusp {S = S} cb _) (desuspend p≐E⟦p'⟧) with binding-extract cb p≐E⟦p'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (BV'⊆BV , ∪ʳ (+S S base) FV'⊆FV) , cb* binding-extract (CBtrap cb) (detrap p≐E⟦p'⟧) with binding-extract cb p≐E⟦p'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (BV'⊆BV , FV'⊆FV) , cb* binding-subst : ∀{p BVp FVp q BVq FVq r BVr FVr E} → CorrectBinding p BVp FVp → p ≐ E ⟦ q ⟧e → CorrectBinding q BVq FVq → BVr ⊆ BVq → FVr ⊆ FVq → CorrectBinding r BVr FVr → Σ (VarList × VarList) λ { (BV' , FV') → (BV' ⊆ BVp × FV' ⊆ FVp) × CorrectBinding (E ⟦ r ⟧e) BV' FV' } binding-subst (CBpar {BVq = BVq'} {FVq = FVq'} cbp' cbq' BVp'≠BVq' FVp'≠BVq' BVp'≠FVq' Xp'≠Xq') (depar₁ p'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbp' p'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVp'' , FVp'') , (BVp''⊆BVp' , FVp''⊆FVp') , cbp'' = _ , (∪-respect-⊆-left BVp''⊆BVp' , ∪-respect-⊆-left FVp''⊆FVp') , CBpar cbp'' cbq' (⊆-respect-distinct-left BVp''⊆BVp' BVp'≠BVq') (⊆-respect-distinct-left FVp''⊆FVp' FVp'≠BVq') (⊆-respect-distinct-left BVp''⊆BVp' BVp'≠FVq') (⊆¹-respect-distinct'-left (proj₂ (proj₂ FVp''⊆FVp')) Xp'≠Xq') binding-subst (CBpar {BVp = BVp'} {FVp = FVp'} cbp' cbq' BVp'≠BVq' FVp'≠BVq' BVp'≠FVq' Xp'≠Xq') (depar₂ q'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbq' q'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVq'' , FVq'') , (BVq''⊆BVq' , FVq''⊆FVq') , cbq'' = _ , (∪-respect-⊆-right BVp' BVq''⊆BVq' , ∪-respect-⊆-right FVp' FVq''⊆FVq') , CBpar cbp' cbq'' (⊆-respect-distinct-right BVq''⊆BVq' BVp'≠BVq') (⊆-respect-distinct-right BVq''⊆BVq' FVp'≠BVq') (⊆-respect-distinct-right FVq''⊆FVq' BVp'≠FVq') (⊆¹-respect-distinct'-right (proj₂ (proj₂ FVq''⊆FVq')) Xp'≠Xq') binding-subst (CBseq {BVq = BVq'} {FVq = FVq'} cbp' cbq' BV≠FV) (deseq p'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbp' p'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVp'' , FVp'') , (BVp''⊆BVp' , FVp''⊆FVp') , cbp'' = _ , (∪-respect-⊆-left BVp''⊆BVp' , ∪-respect-⊆-left FVp''⊆FVp') , CBseq cbp'' cbq' (⊆-respect-distinct-left BVp''⊆BVp' BV≠FV) binding-subst (CBloopˢ {BVq = BVq'} {FVq = FVq'} cbp' cbq' BVp≠FVq BVq≠FVq) (deloopˢ p'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbp' p'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVp'' , FVp'') , (BVp''⊆BVp' , FVp''⊆FVp') , cbp'' = _ , (∪-respect-⊆-left BVp''⊆BVp' , ∪-respect-⊆-left FVp''⊆FVp') , CBloopˢ cbp'' cbq' (⊆-respect-distinct-left BVp''⊆BVp' BVp≠FVq) BVq≠FVq binding-subst (CBsusp {S} {FV = FVp'} cbp' S∉BVp') (desuspend p'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbp' p'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVp'' , FVP'') , (BVp''⊆BVp' , FVp''⊆FVp') , cbp'' = _ , (BVp''⊆BVp' , (∪¹-respect-⊆¹-right [ Signal.unwrap S ] ,′ id ,′ id # FVp''⊆FVp')) , CBsusp cbp'' (⊆¹-respect-distinct'-right (proj₁ BVp''⊆BVp') S∉BVp') binding-subst (CBtrap cbp') (detrap p'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbp' p'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVp'' , FVp'') , ⟨BVp''⊆BVp'⟩×⟨FVp''⊆FVp'⟩ , cbp'' = _ , ⟨BVp''⊆BVp'⟩×⟨FVp''⊆FVp'⟩ , CBtrap cbp'' binding-subst cbp dehole cbq BVr⊆BVq FVr⊆FVq cbr with binding-is-function cbp cbq ... | (refl , refl) = _ , (BVr⊆BVq , FVr⊆FVq) , cbr binding-extractc' : ∀{p BV FV p' C} → CorrectBinding p BV FV → p ≐ C ⟦ p' ⟧c → Σ (VarList × VarList) λ { (BV' , FV') → CorrectBinding p' BV' FV' } binding-extractc' cbp dchole = _ , cbp binding-extractc' (CBsig cbp) (dcsignl p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBpresent cbp cbp₁) (dcpresent₁ p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBpresent cbp cbp₁) (dcpresent₂ p≐C⟦p'⟧) = binding-extractc' cbp₁ p≐C⟦p'⟧ binding-extractc' (CBpar cbp cbp₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (dcpar₁ p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBpar cbp cbp₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (dcpar₂ p≐C⟦p'⟧) = binding-extractc' cbp₁ p≐C⟦p'⟧ binding-extractc' (CBloop cbp BV≠FV) (dcloop p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBloopˢ CBp CBq BVp≠FVq BVq≠FVq) (dcloopˢ₁ p≐C⟦p'⟧) = binding-extractc' CBp p≐C⟦p'⟧ binding-extractc' (CBloopˢ CBp CBq BVp≠FVq BVq≠FVq) (dcloopˢ₂ q≐C⟦q'⟧) = binding-extractc' CBq q≐C⟦q'⟧ binding-extractc' (CBseq cbp cbp₁ BVp≠FVq) (dcseq₁ p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBseq cbp cbp₁ BVp≠FVq) (dcseq₂ p≐C⟦p'⟧) = binding-extractc' cbp₁ p≐C⟦p'⟧ binding-extractc' (CBsusp cbp [S]≠BVp) (dcsuspend p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBtrap cbp) (dctrap p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBshared cbp) (dcshared p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBvar cbp) (dcvar p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBif cbp cbp₁) (dcif₁ p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBif cbp cbp₁) (dcif₂ p≐C⟦p'⟧) = binding-extractc' cbp₁ p≐C⟦p'⟧ binding-extractc' (CBρ cbp) (dcenv p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-substc' : ∀{p BVp FVp q BVq FVq r BVr FVr C} → CorrectBinding p BVp FVp → p ≐ C ⟦ q ⟧c → CorrectBinding q BVq FVq → BVr ⊆ BVq → FVr ⊆ FVq → CorrectBinding r BVr FVr → Σ (VarList × VarList) λ { (BV' , FV') → (BV' ⊆ BVp × FV' ⊆ FVp) × CorrectBinding (C ⟦ r ⟧c) BV' FV' } binding-substc' CBp dchole CBq BVr⊆BVq FVr⊆FVq CBr with binding-is-function CBp CBq ... | refl , refl = _ , (BVr⊆BVq , FVr⊆FVq) , CBr binding-substc' (CBpar cbp cbp₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (dcpar₁ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-left bvsub , ∪-respect-⊆-left fvsub) , CBpar cb1 cbp₁ (⊆-respect-distinct-left bvsub BVp≠BVq) (⊆-respect-distinct-left fvsub FVp≠BVq) (⊆-respect-distinct-left bvsub BVp≠FVq) (⊆¹-respect-distinct'-left (thd fvsub) Xp≠Xq) binding-substc' (CBpar{BVp = BVp}{FVp = FVp} cbp cbp₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (dcpar₂ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp₁ dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right BVp bvsub , ∪-respect-⊆-right FVp fvsub) , CBpar cbp cb1 (⊆-respect-distinct-right bvsub BVp≠BVq) (⊆-respect-distinct-right bvsub FVp≠BVq) (⊆-respect-distinct-right fvsub BVp≠FVq) (⊆¹-respect-distinct'-right (thd fvsub) Xp≠Xq) binding-substc' (CBseq cbp cbp₁ BVp≠FVq) (dcseq₁ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-left bvsub , ∪-respect-⊆-left fvsub) , CBseq cb1 cbp₁ (⊆-respect-distinct-left bvsub BVp≠FVq) binding-substc' (CBseq{BVp = BVp}{FVp = FVp} cbp cbp₁ BVp≠FVq) (dcseq₂ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp₁ dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right BVp bvsub , ∪-respect-⊆-right FVp fvsub) , CBseq cbp cb1 (⊆-respect-distinct-right fvsub BVp≠FVq) binding-substc' (CBsusp{S = S} cbp [S]≠BVp) (dcsuspend dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (bvsub , ((∷-respect-⊆¹ (Signal.unwrap S)) , id , id # fvsub)) , CBsusp cb1 (⊆¹-respect-distinct'-right (fst bvsub) [S]≠BVp) binding-substc' (CBtrap CBp) (dctrap dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' CBp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (bvsub , fvsub) , CBtrap cb1 binding-substc' (CBsig{S = S ₛ} cbp) (dcsignl dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (((∷-respect-⊆¹ S) , id , id # bvsub) , ⊆-respect-|̌ (+S (S ₛ) base) fvsub), CBsig cb1 binding-substc' (CBpresent{S = S ₛ} cbp cbp₁) (dcpresent₁ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-left bvsub , ((∷-respect-⊆¹ S) , id , id # (∪-respect-⊆-left fvsub))) , CBpresent cb1 cbp₁ binding-substc' (CBpresent{S = S ₛ}{BVp = BVp}{FVp = FVp} cbp cbp₁) (dcpresent₂ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp₁ dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right BVp bvsub , ((∷-respect-⊆¹ S) , id , id # (∪-respect-⊆-right FVp fvsub))) , CBpresent cbp cb1 binding-substc' (CBloop cbp BV≠FV) (dcloop dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right base bvsub , fvsub) , CBloop cb1 (⊆-respect-distinct-left bvsub (⊆-respect-distinct-right fvsub BV≠FV)) binding-substc' (CBloopˢ cbp cbp₁ BVp≠FVq BVq≠FVq) (dcloopˢ₁ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-left bvsub , ∪-respect-⊆-left fvsub) , CBloopˢ cb1 cbp₁ (⊆-respect-distinct-left bvsub BVp≠FVq) BVq≠FVq binding-substc' (CBloopˢ{BVp = BVp}{FVp = FVp} cbp cbp₁ BVp≠FVq BVq≠FVq) (dcloopˢ₂ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp₁ dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right BVp bvsub , ∪-respect-⊆-right FVp fvsub) , CBloopˢ cbp cb1 (⊆-respect-distinct-right fvsub BVp≠FVq) (⊆-respect-distinct-left bvsub (⊆-respect-distinct-right fvsub BVq≠FVq)) binding-substc' (CBshared{s = s}{e = e} cbp) (dcshared dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (((id , (∷-respect-⊆¹ (SharedVar.unwrap s)) , id # bvsub)) , ∪-respect-⊆-right (FVₑ e) (⊆-respect-|̌ (+s s base) fvsub)) , CBshared cb1 binding-substc' (CBvar{x = x}{e = e} cbp) (dcvar dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (((id , id , (∷-respect-⊆¹ (SeqVar.unwrap x)) # bvsub)) , ∪-respect-⊆-right (FVₑ e) (⊆-respect-|̌ (+x x base) fvsub)) , CBvar cb1 binding-substc' (CBif{x = x ᵥ} cbp cbp₁) (dcif₁ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-left bvsub , (id , id , (∷-respect-⊆¹ x) # (∪-respect-⊆-left fvsub))) , CBif cb1 cbp₁ binding-substc' (CBif{x = x ᵥ}{BVp = BVp}{FVp = FVp} cbp cbp₁) (dcif₂ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp₁ dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right BVp bvsub , (id , id , (∷-respect-⊆¹ x) # (∪-respect-⊆-right FVp fvsub))) , CBif cbp cb1 binding-substc' (CBρ{θ = θ} cbp) (dcenv dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right (Dom θ) bvsub , ⊆-respect-|̌ (Dom θ) fvsub) , CBρ cb1 -- In the decomposition E ⟦ p ⟧e, the bound variables in p and the free -- variables in E must be disjoint. distinct-term-context-help : ∀ {BV FV BVp FVp BVnothin FVnothin} p E → CorrectBinding (E ⟦ p ⟧e) BV FV → CorrectBinding p BVp FVp → (BVp ⊆ BV) → CorrectBinding (E ⟦ nothin ⟧e) BVnothin FVnothin → distinct BVp FVnothin distinct-term-context-help p [] cb cbp BVp⊆BV CBnothing = (λ _ _ ()) ,′ (λ _ _ ()) ,′ (λ _ _ ()) distinct-term-context-help p (epar₁ q ∷ E) (CBpar cbp' cbq' BVp'≠BVq' FVp'≠BVq' BVp'≠FVq' Xp'≠Xq') cbp BVp⊆BV (CBpar cbnothinp cbnothinq BVp≠BVq₁ FVp≠BVq₁ BVp≠FVq₁ Xp≠Xq₁) with binding-extract cbp' (((E ⟦ p ⟧e) ≐ E ⟦ p ⟧e) ∋ plug refl) ... | (BV' , FV') , (BV'⊆BVE⟦p⟧ , FV'⊆FVE⟦p⟧) , cbp* with binding-is-function cbp cbp* | binding-is-function cbq' cbnothinq ... | refl , refl | refl , refl = distinct-union-right (distinct-term-context-help p E cbp' cbp BV'⊆BVE⟦p⟧ cbnothinp) (⊆-respect-distinct-left BV'⊆BVE⟦p⟧ BVp'≠FVq') distinct-term-context-help p (epar₂ p₁ ∷ E) (CBpar cbp' cbq' BVp'≠BVq' FVp'≠BVq' BVp'≠FVq' Xp'≠Xq') cbp BVp⊆BV (CBpar {FVq = FVnothinq} cbnothinp cbnothinq BVp≠BVq₁ FVp≠BVq₁ BVp≠FVq₁ Xp≠Xq₁) with binding-extract cbq' (((E ⟦ p ⟧e) ≐ E ⟦ p ⟧e) ∋ plug refl) ... | (BV' , FV') , (BV'⊆BVE⟦p⟧ , FV'⊆FVE⟦p⟧) , cbp* with binding-is-function cbp cbp* | binding-is-function cbp' cbnothinp ... | refl , refl | refl , refl = ⊆-respect-distinct-right (∪-comm-⊆-right FVnothinq ⊆-refl) (distinct-union-right (distinct-term-context-help p E cbq' cbp BV'⊆BVE⟦p⟧ cbnothinq) (⊆-respect-distinct-left BV'⊆BVE⟦p⟧ (distinct-sym FVp'≠BVq'))) distinct-term-context-help p (eseq q ∷ E) (CBseq {BVp = BVE⟦p⟧p} {FVp = FVE⟦p⟧p} cbp' cbq' BVp'≠FVq') cbp BVp⊆BV (CBseq {BVp = BVnothinp} {BVq = BVnothinq} {FVp = FVnothinp} {FVq = FVnothinq} cbnothinp cbnothinq BVp≠FVq) with binding-extract cbp' (((E ⟦ p ⟧e) ≐ E ⟦ p ⟧e) ∋ plug refl) ... | (BV' , FV') , (BV'⊆BVE⟦p⟧ , FV'⊆FVE⟦p⟧) , cbp* with binding-is-function cbp cbp* | binding-is-function cbq' cbnothinq ... | refl , refl | refl , refl = distinct-union-right (distinct-term-context-help p E cbp' cbp BV'⊆BVE⟦p⟧ cbnothinp) (⊆-respect-distinct-left BV'⊆BVE⟦p⟧ (distinct-sym (dist++ˡ (distinct-sym (distinct-union-left BVp'≠FVq' BVp≠FVq))))) distinct-term-context-help p (eloopˢ q ∷ E) (CBloopˢ {BVp = BVE⟦p⟧p} {FVp = FVE⟦p⟧p} cbp' cbq' BVp'≠FVq' BVq'≠FVq') cbp BVp⊆BV (CBloopˢ {BVp = BVnothinp} {FVp = FVnothinp} {BVq = BVnothinq} {FVq = FVnothinq} cbnothinp cbnothinq BVp≠FVq BVq≠FVq) with binding-extract cbp' (((E ⟦ p ⟧e) ≐ E ⟦ p ⟧e) ∋ plug refl) ... | (BV' , FV') , (BV'⊆BVE⟦p⟧ , FV'⊆FVE⟦p⟧) , cbp* with binding-is-function cbp cbp* | binding-is-function cbq' cbnothinq ... | refl , refl | refl , refl = distinct-union-right (distinct-term-context-help p E cbp' cbp BV'⊆BVE⟦p⟧ cbnothinp) (⊆-respect-distinct-left BV'⊆BVE⟦p⟧ (distinct-sym (dist++ˡ (distinct-sym (distinct-union-left BVp'≠FVq' BVp≠FVq))))) distinct-term-context-help {BVp = BVp} p (esuspend S ∷ E) (CBsusp cb [S]≠BVp) cbp BVp⊆BV (CBsusp {FV = FV} cbnothin [S]≠BVp₁) = BVp≠S∷FV ,′ id ,′ id # dist where dist = distinct-term-context-help p E cb cbp BVp⊆BV cbnothin BVp≠S∷FV : (typeof (proj₁ dist)) → ∀ S' → S' ∈ (proj₁ BVp) → S' ∈ (Signal.unwrap S ∷ proj₁ FV) → ⊥ BVp≠S∷FV BVp≠FV S' S'∈BVp (here refl) = [S]≠BVp S' (here refl) (proj₁ BVp⊆BV S' S'∈BVp) BVp≠S∷FV BVp≠FV S' S'∈BVp (there S'∈FV) = BVp≠FV S' S'∈BVp S'∈FV distinct-term-context-help p (etrap ∷ E) (CBtrap cb) cbp BVp⊆BV (CBtrap cbnothin) = distinct-term-context-help p E cb cbp BVp⊆BV cbnothin BVars : ∀ (p : Term) -> VarList BVars nothin = base BVars pause = base BVars (signl S p) = +S S (BVars p) BVars (present S ∣⇒ p ∣⇒ q) = BVp U̬ BVq where BVp = BVars p BVq = BVars q BVars (emit S) = base BVars (p ∥ q) = BVp U̬ BVq where BVp = BVars p BVq = BVars q BVars (loop p) = BV where BV = BVars p BVars (loopˢ p q) = BVp U̬ BVq where BVp = BVars p BVq = BVars q BVars (p >> q) = BVp U̬ BVq where BVp = BVars p BVq = BVars q BVars (suspend p S) = BVars p BVars (trap p) = BVars p BVars (exit x) = base BVars (shared s ≔ e in: p) = +s s (BVars p) BVars (s ⇐ e) = base BVars (var x ≔ e in: p) = +x x (BVars p) BVars (x ≔ e) = base BVars (if x ∣⇒ p ∣⇒ q) = BVp U̬ BVq where BVp = BVars p BVq = BVars q BVars (ρ⟨ θ , A ⟩· p) = (Dom θ) U̬ BV where BV = BVars p FVars : ∀ (p : Term) -> VarList FVars nothin = base FVars pause = base FVars (signl S p) = FV |̌ (+S S base) where FV = FVars p FVars (present S ∣⇒ p ∣⇒ q) = +S S (FVp U̬ FVq) where FVp = FVars p FVq = FVars q FVars (emit S) = +S S base FVars (p ∥ q) = FVp U̬ FVq where FVp = FVars p FVq = FVars q FVars (loop p) = FVars p FVars (loopˢ p q) = FVp U̬ FVq where FVp = FVars p FVq = FVars q FVars (p >> q) = FVp U̬ FVq where FVp = FVars p FVq = FVars q FVars (suspend p S) = +S S (FVars p) FVars (trap p) = FVars p FVars (exit x) = base FVars (shared s ≔ e in: p) = (FVₑ e) U̬ (FV |̌ (+s s base)) where FV = FVars p FVars (s ⇐ e) = +s s (FVₑ e) where FVars (var x ≔ e in: p) = (FVₑ e) U̬ (FV |̌ (+x x base)) where FV = FVars p FVars (x ≔ e) = +x x (FVₑ e) FVars (if x ∣⇒ p ∣⇒ q) = +x x (FVp U̬ FVq) where FVp = FVars p FVq = FVars q FVars (ρ⟨ θ , A ⟩· p) = FV |̌ (Dom θ) where FV = FVars p CB : Term -> Set CB p = CorrectBinding p (BVars p) (FVars p) BVFVcorrect : ∀ p BV FV -> CorrectBinding p BV FV -> BVars p ≡ BV × FVars p ≡ FV BVFVcorrect .nothin .([] , [] , []) .([] , [] , []) CBnothing = refl , refl BVFVcorrect .pause .([] , [] , []) .([] , [] , []) CBpause = refl , refl BVFVcorrect .(signl _ _) .(+S S BV) .(FV |̌ (+S S base)) (CBsig{p}{S}{BV}{FV} CB) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(present _ ∣⇒ _ ∣⇒ _) .(BVp U̬ BVq) .(+S S (FVp U̬ FVq)) (CBpresent{S}{p}{q}{BVp}{FVp}{BVq}{FVq} CBp CBq) with BVFVcorrect p BVp FVp CBp | BVFVcorrect q BVq FVq CBq ... | refl , refl | refl , refl = refl , refl BVFVcorrect .(emit _) _ _ CBemit = refl , refl BVFVcorrect .(_ ∥ _) .(BVp U̬ BVq) .(FVp U̬ FVq) (CBpar{p}{q}{BVp}{FVp}{BVq}{FVq} CBp CBq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) with BVFVcorrect p BVp FVp CBp | BVFVcorrect q BVq FVq CBq ... | refl , refl | refl , refl = refl , refl BVFVcorrect .(loop _) .BV .FV (CBloop{p}{BV}{FV} CB BV≠FV) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(loopˢ _ _) .(BVp U̬ BVq) .(FVp U̬ FVq) (CBloopˢ{p}{q}{BVp}{FVp}{BVq}{FVq} CBp CBq BVp≠FVq BVq≠FVq) with BVFVcorrect p BVp FVp CBp | BVFVcorrect q BVq FVq CBq ... | refl , refl | refl , refl = refl , refl BVFVcorrect .(_ >> _) .(BVp U̬ BVq) .(FVp U̬ FVq) (CBseq{p}{q}{BVp}{BVq}{FVp}{FVq} CBp CBq BVp≠FVq) with BVFVcorrect p BVp FVp CBp | BVFVcorrect q BVq FVq CBq ... | refl , refl | refl , refl = refl , refl BVFVcorrect .(suspend _ _) .BV .(+S S FV) (CBsusp{S}{p}{BV}{FV} CB [S]≠BVp) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(trap _) .BV .FV (CBtrap{p}{BV}{FV} CB) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(exit _) .([] , [] , []) .([] , [] , []) CBexit = refl , refl BVFVcorrect .(shared _ ≔ _ in: _) .(+s s BV) .((FVₑ e) U̬ (FV |̌ (+s s base))) (CBshared{s}{e}{p}{BV}{FV} CB) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(_ ⇐ _) .([] , [] , []) .(+s s (FVₑ e)) (CBsset{s}{e}) = refl , refl BVFVcorrect .(var _ ≔ _ in: _) .(+x x BV) .((FVₑ e) U̬ (FV |̌ (+x x base))) (CBvar{x}{e}{p}{BV}{FV} CB) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(_ ≔ _) .([] , [] , []) .(+x x (FVₑ e)) (CBvset{x}{e}) = refl , refl BVFVcorrect .(if _ ∣⇒ _ ∣⇒ _) .(BVp U̬ BVq) .(+x x (FVp U̬ FVq)) (CBif{x}{p}{q}{BVp}{BVq}{FVp}{FVq} CBp CBq) with BVFVcorrect p BVp FVp CBp | BVFVcorrect q BVq FVq CBq ... | refl , refl | refl , refl = refl , refl BVFVcorrect .(ρ⟨ _ , _ ⟩· _) .(((Dom θ) U̬ BV)) .(FV |̌ (Dom θ)) (CBρ{θ}{A}{p}{BV}{FV} CB) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl
{ "alphanum_fraction": 0.5750433549, "avg_line_length": 47.043263288, "ext": "agda", "hexsha": "23d1fa57d3b4ef354ab711e7c61f3553d59addb0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Esterel/Lang/Binding.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Esterel/Lang/Binding.agda", "max_line_length": 154, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Esterel/Lang/Binding.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 18280, "size": 38058 }
{-# OPTIONS --prop --rewriting #-} module Examples.Id where open import Calf.CostMonoid open import Calf.CostMonoids using (ℕ-CostMonoid) costMonoid = ℕ-CostMonoid open CostMonoid costMonoid open import Calf costMonoid open import Calf.Types.Nat open import Calf.Types.Bounded costMonoid open import Calf.Types.BigO costMonoid open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; module ≡-Reasoning) module Easy where id : cmp (Π nat λ _ → F nat) id n = ret n id/correct : ∀ n → ◯ (id n ≡ ret n) id/correct n u = refl id/cost : cmp (Π nat λ _ → cost) id/cost n = 0 id≤id/cost : ∀ n → IsBounded nat (id n) (id/cost n) id≤id/cost n = bound/ret id/asymptotic : given nat measured-via (λ n → n) , id ∈𝓞(λ n → 0) id/asymptotic = 0 ≤n⇒f[n]≤ 0 g[n]via λ n _ → id≤id/cost n module Hard where id : cmp (Π nat λ _ → F nat) id zero = ret 0 id (suc n) = step (F nat) 1 ( bind (F nat) (id n) λ n' → ret (suc n') ) id/correct : ∀ n → ◯ (id n ≡ ret n) id/correct zero u = refl id/correct (suc n) u = begin id (suc n) ≡⟨⟩ step (F nat) 1 ( bind (F nat) (id n) λ n' → ret (suc n') ) ≡⟨ step/ext (F nat) _ 1 u ⟩ (bind (F nat) (id n) λ n' → ret (suc n')) ≡⟨ Eq.cong (λ e → bind (F nat) e _) (id/correct n u) ⟩ ret (suc n) ∎ where open ≡-Reasoning id/cost : cmp (Π nat λ _ → cost) id/cost zero = 0 id/cost (suc n) = 1 + ( bind cost (id n) λ n' → id/cost n + 0 ) id/cost/closed : cmp (Π nat λ _ → cost) id/cost/closed n = n id/cost≤id/cost/closed : ∀ n → ◯ (id/cost n ≤ id/cost/closed n) id/cost≤id/cost/closed zero u = ≤-refl id/cost≤id/cost/closed (suc n) u = begin id/cost (suc n) ≡⟨⟩ 1 + ( bind cost (id n) λ n' → id/cost n + 0 ) ≡⟨ Eq.cong (λ e → 1 + bind cost e λ n' → id/cost n + 0) (id/correct n u) ⟩ 1 + (id/cost n + 0) ≡⟨ Eq.cong suc (+-identityʳ _) ⟩ 1 + id/cost n ≤⟨ +-monoʳ-≤ 1 (id/cost≤id/cost/closed n u) ⟩ 1 + id/cost/closed n ≡⟨⟩ suc n ≡⟨⟩ id/cost/closed (suc n) ∎ where open ≤-Reasoning id≤id/cost : ∀ n → IsBounded nat (id n) (id/cost n) id≤id/cost zero = bound/ret id≤id/cost (suc n) = bound/step 1 _ ( bound/bind (id/cost n) _ (id≤id/cost n) λ n → bound/ret ) id≤id/cost/closed : ∀ n → IsBounded nat (id n) (id/cost/closed n) id≤id/cost/closed n = bound/relax (id/cost≤id/cost/closed n) (id≤id/cost n) id/asymptotic : given nat measured-via (λ n → n) , id ∈𝓞(λ n → n) id/asymptotic = 0 ≤n⇒f[n]≤g[n]via λ n _ → id≤id/cost/closed n easy≡hard : ◯ (Easy.id ≡ Hard.id) easy≡hard u = funext λ n → begin Easy.id n ≡⟨ Easy.id/correct n u ⟩ ret n ≡˘⟨ Hard.id/correct n u ⟩ Hard.id n ∎ where open ≡-Reasoning
{ "alphanum_fraction": 0.5450791466, "avg_line_length": 24.2166666667, "ext": "agda", "hexsha": "a529b55958df03fdeee0fbf184de2274c7b68853", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Id.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Id.agda", "max_line_length": 93, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Id.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 1223, "size": 2906 }
-- Andreas, 2016-07-28 issue 2120, reported by guillaume -- {-# OPTIONS -v tc.term.exlam:50 #-} open import Common.Product data Nat : Set where zero : Nat data Eq {A : Set}(a : A) : A → Set where refl : Eq a a postulate _<∣_ : ∀ {X Y : Set} → (X → Y) → X → Y test : Nat test = ( λ { (zero , refl) → zero } ) <∣ (zero , zero) -- WAS: Internal error in Reduce -- EXPECTED: Proper error, like -- -- Type mismatch -- when checking that the pattern refl has type _15 zero
{ "alphanum_fraction": 0.611691023, "avg_line_length": 19.9583333333, "ext": "agda", "hexsha": "ed4ec6c12de3b2afa088c29627a28f3d87dba20d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2120.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2120.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2120.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 160, "size": 479 }