Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- Representation-independent results for non-dependent lenses ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Lens.Non-dependent {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J as Bij using (module _↔_) open import Equivalence equality-with-J using (_≃_) open import Erased.Cubical eq open import Function-universe equality-with-J as F hiding (_∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import Surjection equality-with-J using (_↠_) private variable a b c c₁ c₂ c₃ : Level A B : Set a Lens₁ Lens₂ Lens₃ : Set a → Set b → Set c ------------------------------------------------------------------------ -- An existence result -- There is, in general, no lens for the first projection from a -- Σ-type, assuming that lenses with contractible domains have -- contractible codomains. no-first-projection-lens : (Lens : Set (a ⊔ b) → Set a → Set c) → @0 (∀ {A B} → Lens A B → Contractible A → Contractible B) → ∃ λ (A : Set a) → ∃ λ (B : A → Set b) → ¬ Lens (Σ A B) A no-first-projection-lens {b = b} _ contractible-to-contractible = ↑ _ Bool , (λ b → ↑ _ (lower b ≡ true)) , λ l → $⟨ singleton-contractible _ ⟩ Contractible (Singleton true) ↝⟨ H-level.respects-surjection surj 0 ⟩ Contractible (∃ λ b → ↑ _ (lower b ≡ true)) ↝⟨ (λ hyp → [ contractible-to-contractible l hyp ]) ⟩ Erased (Contractible (↑ _ Bool)) ↝⟨ Erased-cong (H-level.respects-surjection (_↔_.surjection Bij.↑↔) 0) ⟩ Erased (Contractible Bool) ↝⟨ Erased-cong (mono₁ 0) ⟩ Erased (Is-proposition Bool) ↝⟨ inverse-ext? ¬-Erased↔¬ _ ¬-Bool-propositional ⟩□ ⊥ □ where surj : Singleton true ↠ ∃ λ b → ↑ _ (lower b ≡ true) surj = record { logical-equivalence = record { to = λ { (b , b≡true) → lift b , lift b≡true } ; from = λ { (lift b , lift b≡true) → b , b≡true } } ; right-inverse-of = refl } ------------------------------------------------------------------------ -- Statements of preservation results, and some related lemmas -- Lens-like things with getters and setters. record Has-getter-and-setter (Lens : Set a → Set b → Set c) : Set (lsuc (a ⊔ b ⊔ c)) where field -- Getter. get : {A : Set a} {B : Set b} → Lens A B → A → B -- Setter. set : {A : Set a} {B : Set b} → Lens A B → A → B → A -- A statement of what it means for two lenses to have the same getter -- and setter. Same-getter-and-setter : {Lens₁ : Set a → Set b → Set c₁} {Lens₂ : Set a → Set b → Set c₂} ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ {A : Set a} {B : Set b} → Lens₁ A B → Lens₂ A B → Set (a ⊔ b) Same-getter-and-setter ⦃ L₁ = L₁ ⦄ ⦃ L₂ = L₂ ⦄ l₁ l₂ = get L₁ l₁ ≡ get L₂ l₂ × set L₁ l₁ ≡ set L₂ l₂ where open Has-getter-and-setter -- A statement of what it means for a function to preserve getters and -- setters for all inputs. Preserves-getters-and-setters-→ : {Lens₁ : Set a → Set b → Set c₁} {Lens₂ : Set a → Set b → Set c₂} ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ (A : Set a) (B : Set b) → (Lens₁ A B → Lens₂ A B) → Set (a ⊔ b ⊔ c₁) Preserves-getters-and-setters-→ {Lens₁ = Lens₁} A B f = (l : Lens₁ A B) → Same-getter-and-setter (f l) l -- A statement of what it means for a logical equivalence to preserve -- getters and setters. Preserves-getters-and-setters-⇔ : {Lens₁ : Set a → Set b → Set c₁} {Lens₂ : Set a → Set b → Set c₂} ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ (A : Set a) (B : Set b) → (Lens₁ A B ⇔ Lens₂ A B) → Set (a ⊔ b ⊔ c₁ ⊔ c₂) Preserves-getters-and-setters-⇔ A B eq = Preserves-getters-and-setters-→ A B (_⇔_.to eq) × Preserves-getters-and-setters-→ A B (_⇔_.from eq) -- Composition preserves Preserves-getters-and-setters-→. Preserves-getters-and-setters-→-∘ : ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ ⦃ L₃ : Has-getter-and-setter Lens₃ ⦄ {f : Lens₂ A B → Lens₃ A B} {g : Lens₁ A B → Lens₂ A B} → Preserves-getters-and-setters-→ A B f → Preserves-getters-and-setters-→ A B g → Preserves-getters-and-setters-→ A B (f ∘ g) Preserves-getters-and-setters-→-∘ p-f p-g _ = trans (proj₁ (p-f _)) (proj₁ (p-g _)) , trans (proj₂ (p-f _)) (proj₂ (p-g _)) -- Composition preserves Preserves-getters-and-setters-⇔. Preserves-getters-and-setters-⇔-∘ : ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ ⦃ L₃ : Has-getter-and-setter Lens₃ ⦄ {f : Lens₂ A B ⇔ Lens₃ A B} {g : Lens₁ A B ⇔ Lens₂ A B} → Preserves-getters-and-setters-⇔ A B f → Preserves-getters-and-setters-⇔ A B g → Preserves-getters-and-setters-⇔ A B (f F.∘ g) Preserves-getters-and-setters-⇔-∘ p-f p-g = Preserves-getters-and-setters-→-∘ (proj₁ p-f) (proj₁ p-g) , Preserves-getters-and-setters-→-∘ (proj₂ p-g) (proj₂ p-f) -- The function inverse preserves Preserves-getters-and-setters-⇔. Preserves-getters-and-setters-⇔-inverse : ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ {f : Lens₁ A B ⇔ Lens₂ A B} → Preserves-getters-and-setters-⇔ A B f → Preserves-getters-and-setters-⇔ A B (inverse f) Preserves-getters-and-setters-⇔-inverse = swap -- If the forward direction of a split surjection preserves getters -- and setters, then both directions do. Preserves-getters-and-setters-→-↠-⇔ : ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ (f : Lens₁ A B ↠ Lens₂ A B) → Preserves-getters-and-setters-→ A B (_↠_.to f) → Preserves-getters-and-setters-⇔ A B (_↠_.logical-equivalence f) Preserves-getters-and-setters-→-↠-⇔ ⦃ L₁ = L₁ ⦄ ⦃ L₂ = L₂ ⦄ f p = p , λ l → (get L₁ (_↠_.from f l) ≡⟨ sym $ proj₁ $ p (_↠_.from f l) ⟩ get L₂ (_↠_.to f (_↠_.from f l)) ≡⟨ cong (get L₂) $ _↠_.right-inverse-of f _ ⟩∎ get L₂ l ∎) , (set L₁ (_↠_.from f l) ≡⟨ sym $ proj₂ $ p (_↠_.from f l) ⟩ set L₂ (_↠_.to f (_↠_.from f l)) ≡⟨ cong (set L₂) $ _↠_.right-inverse-of f _ ⟩∎ set L₂ l ∎) where open Has-getter-and-setter
{ "alphanum_fraction": 0.5769461078, "avg_line_length": 36.5027322404, "ext": "agda", "hexsha": "2766a1d194b39475453c05edcdaeef3ad0315913", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Saizan/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Saizan/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Saizan/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2372, "size": 6680 }
module _ where open import Agda.Primitive -- Named implicit parameters data D₁ {a b} (A : Set a) (B : Set b) : Set (a ⊔ lsuc b) data D₁ {b = c} X Y where mkD₁ : Set c → D₁ X Y -- Trailing implicit parameters data D₂ {a} : Set a data D₂ where tt : D₂
{ "alphanum_fraction": 0.6307692308, "avg_line_length": 15.2941176471, "ext": "agda", "hexsha": "65d55851ce004e4aa10309acafc8ed68cf049acc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1886.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1886.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1886.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 98, "size": 260 }
{-# OPTIONS --cubical --safe #-} module Data.List where open import Data.List.Base public
{ "alphanum_fraction": 0.7065217391, "avg_line_length": 15.3333333333, "ext": "agda", "hexsha": "fbc8ea7e669430b3d7b67852c7ad5023e9440d53", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/List.agda", "max_line_length": 33, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/List.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 21, "size": 92 }
module Data.Tuple.Function where open import Data open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Type module _ {ℓ₁ ℓ₂ ℓ₃} {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} where _,⃝_ : (T₁ → T₂) → (T₁ → T₃) → (T₁ → (T₂ ⨯ T₃)) _,⃝_ f g x = (f(x) , g(x)) left : (T₁ → (T₂ ⨯ T₃)) → (T₁ → T₂) left = Tuple.left ∘_ right : (T₁ → (T₂ ⨯ T₃)) → (T₁ → T₃) right = Tuple.right ∘_
{ "alphanum_fraction": 0.5589622642, "avg_line_length": 24.9411764706, "ext": "agda", "hexsha": "f69aa2b754779555c0e837840366ea9be3038c4b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Tuple/Function.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Tuple/Function.agda", "max_line_length": 73, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Tuple/Function.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 206, "size": 424 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Nat where open import Cubical.Data.Nat.Base public open import Cubical.Data.Nat.Properties public
{ "alphanum_fraction": 0.7602339181, "avg_line_length": 24.4285714286, "ext": "agda", "hexsha": "ebfce44d1dd01e9d02ef2fa848e8a31e5462b3b9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Nat.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Nat.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 42, "size": 171 }
-- The <local hints> in an ATP pragma <prove> can be data constructors. module ATPLocalHints1 where postulate D : Set zero : D succ : D → D data N : D → Set where zN : N zero sN : ∀ {n} → N n → N (succ n) postulate 0-N : N zero {-# ATP prove 0-N zN #-}
{ "alphanum_fraction": 0.5629370629, "avg_line_length": 16.8235294118, "ext": "agda", "hexsha": "d685e06145c6a96725c4ee0de142c48d1e6a0eb0", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "examples/ATPLocalHints1.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "examples/ATPLocalHints1.agda", "max_line_length": 71, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "examples/ATPLocalHints1.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 100, "size": 286 }
module UselessAbstractAbstract where A : Set₁ abstract abstract A = Set
{ "alphanum_fraction": 0.746835443, "avg_line_length": 11.2857142857, "ext": "agda", "hexsha": "4e8e17ed7947a09c62ffed9d59f496ff8a7e5391", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/UselessAbstractAbstract.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/UselessAbstractAbstract.agda", "max_line_length": 36, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/UselessAbstractAbstract.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 22, "size": 79 }
module Pair where postulate _,_ : Set → Set → Set fst : {A B : Set} → (A , B) → A snd : {A B : Set} → (A , B) → B {-# COMPILE GHC _,_ = type (,) #-} {-# COMPILE GHC fst = \ _ _ -> fst #-} {-# COMPILE GHC snd = \ _ _ -> snd #-}
{ "alphanum_fraction": 0.4638297872, "avg_line_length": 21.3636363636, "ext": "agda", "hexsha": "21d8f94ce9d4fb09c6188bd7614f99c0991fad6e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda-editor", "max_forks_repo_path": "src/Pair.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda-editor", "max_issues_repo_path": "src/Pair.agda", "max_line_length": 38, "max_stars_count": null, "max_stars_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda-editor", "max_stars_repo_path": "src/Pair.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 88, "size": 235 }
-- Andreas, 2017-09-16, issue #2759 -- Allow empty declaration blocks in the parser. open import Agda.Builtin.Nat x0 = zero mutual x1 = suc x0 abstract x2 = suc x1 private x3 = suc x2 instance x4 = suc x3 macro x5 = suc x4 postulate x6 = suc x5 -- Expected: 6 warnings about empty blocks mutual postulate -- Empty postulate block. abstract private instance macro -- Empty macro block.
{ "alphanum_fraction": 0.7284263959, "avg_line_length": 13.1333333333, "ext": "agda", "hexsha": "f1ce56306fa33f8605e41dede245f9b0b8343128", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2759.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue2759.agda", "max_line_length": 48, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue2759.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 128, "size": 394 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Refl datatype and functions required for equational reasoning. -- ---------------------------------------------------------------------- module Basics.Reasoning where open import Basics.Nat hiding (_≥_) open import Basics.Ordering -- Basic definition we will need in our proofs is propositional -- equality (known as refl). Unlike refl definition provided by Agda's -- standard library the definition below is not universe -- polymorphic. It works only on Set, but not on Set1 and higher Sets -- - this will be perfectly sufficient for our purposes. This datatype -- allows to express equality between types belonging to Set. data _≡_ {S : Set} (s : S) : S → Set where refl : s ≡ s infixl 1 _≡_ -- Below we prove basic properties of relations: symmetry, -- transitivity, congruence and substitution. If these proofs are not -- familiar I encourage to take a look at tutorials on Agda Wiki. The -- most useful source in my opinion are the online lecture notes for -- the Computer Aided Formal Reasoning course by Thorsten Altenkirch: -- -- http://www.cs.nott.ac.uk/~txa/g53cfr/ sym : {A : Set} → {a b : A} → a ≡ b → b ≡ a sym refl = refl trans : {A : Set}{a b c : A} → a ≡ b → b ≡ c → a ≡ c trans refl refl = refl cong : {A B : Set} (f : A → B) → ∀ {a b} → a ≡ b → f a ≡ f b cong f refl = refl subst : {A : Set}(P : A → Set) → {a b : A} → a ≡ b → P a → P b subst prp refl p = p -- We prove some basic properties of addition that we will need later -- in more complex proofs. I assume that you had previous exposure to -- these basic proofs, but nevertheless I provide extensive -- explanations. Make sure you understand how these proofs work before -- proceeding with rest of the paper. -- Note [0 is right identity of addition] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- The fact that 0 is left identity of addition (ie. 0 + a ≡ a) -- follows directly from our definition of _+_: -- -- _+_ : Nat → Nat → Nat -- zero + m = m -- suc n + m = suc (n + m) -- -- But we need a separate proof that 0 is also right identity of -- addition, ie. a + 0 ≡ a. Proof proceeds by induction on a. If a is -- zero then we have: -- -- 0 + 0 = 0 -- -- And the proof follows from the definition of addition - hence we -- use refl. In a recursive case we have: -- -- (suc a) + zero ≡ (suc a) -- -- Applying definition of addition to LHS we have: -- -- suc (a + zero) ≡ suc a -- -- Since we have suc on both sides of the equality, we use -- congruence. This leaves us with a proof that equality holds for the -- parameters of suc: -- -- a + zero ≡ a -- -- But that happens to be the equality we are proving at the -- moment. We therefore make a recursive call to (+0 a), which is -- equivalent of applying inductive hypothesis in an inductive proof. -- -- ∎ +0 : (a : Nat) → a + zero ≡ a -- See Note [0 is right identity of addition] +0 zero = refl +0 (suc a) = cong suc (+0 a) -- Note [1 + (a + b) equals a + (1 + b)] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- We will need this property surprisingly often. We proceed by -- inductive proof on a. In the base case, when a = 0, we have: -- -- suc (0 + b) ≡ 0 + (suc b) -- -- Applying definition of + to both sides of equality we get: -- -- suc b ≡ suc b -- -- Which is true by definition, hence we use refl. In the recursive -- case we have: -- -- suc ((suc a) + b) ≡ (suc a) + (suc b) -- -- We apply definition of + to both sides and get: -- -- suc (suc (a + b)) ≡ suc (a + (suc b)) -- -- Again, since we have suc on both sides we use congruence and are -- left with a proof: -- -- suc (a + b) ≡ a + (suc b) -- -- Which again is the equality we are proving. We appeal to inductive -- hypothesis by making a recursive call. -- -- ∎ +suc : (a b : Nat) → suc (a + b) ≡ a + (suc b) +suc zero b = refl +suc (suc a) b = cong suc (+suc a b) -- Note [Commutativity of addition] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- Everyone knows that a + b ≡ b + a. But Agda won't take our word and -- requires a formal proof. Let's proceed by induction on second -- argument. In the base case we have: -- -- a + 0 ≡ 0 + a -- -- Right side reduces by the definition of + which leaves us with -- -- a + 0 ≡ a -- -- We proved that earlier so we appeal to already existing proof. In -- the inductive case we have: -- -- a + suc b ≡ (suc b) + a [1] -- -- Right hand side reduces by definition of + giving us: -- -- a + suc b ≡ suc (b + a) [2] -- -- [2] is therefore the equality we have to prove. From +suc we know -- that -- -- suc (a + b) ≡ a + (suc b) [3] -- -- And we can use that to transform left hand side of [1]. Note -- however that in order to apply [3] to left hand side of [1] we need -- to reverse sides of the equality [3]: -- -- a + (suc b) ≡ suc (a + b) [4] -- -- We achieve this by using symmetry. -- -- Looking at right hand sides of [2] and [4] we see they differ by -- the order of arguments to +. We can prove them equal by using -- congruence on suc and appealing to our inductive hypothesis of -- commutativity of addition. This means we have proven two things: -- -- a + (suc b) ≡ suc (a + b) [4, repeated], from symmetry of +suc -- suc (a + b) ≡ suc (b + a) [5], from congruence on suc and -- inductive hypothesis -- -- Combining [4] and [5] using transitivity yields the proof of [2]. -- -- ∎ -- -- Here is a diagram, showing how code relates to the proof: -- -- a + b ≡ b + a -- ____|____ -- / \ -- trans (sym (+suc a b)) (cong suc (+comm a b)) -- ̲\_____________/ \__________________/ -- | | -- a + (suc b) ≡ suc (a + b) | -- suc (a + b) ≡ suc (b + a) +comm : (a b : Nat) → a + b ≡ b + a +comm a zero = +0 a +comm a (suc b) = trans (sym (+suc a b)) (cong suc (+comm a b)) -- Note [Associativity of addition] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- We proceed by induction on the first parameter. In the base case we -- have a = 0: -- -- 0 + (b + c) ≡ (0 + b) + c -- -- Both sides can be normalized using the definition of + giving us -- -- b + c ≡ b + c -- -- Since this is true by definition we use refl. In the inductive case -- we have to prove: -- -- suc a + (b + c) ≡ (suc a + b) + c -- -- Again, Agda normalizes each side using definition of + : -- -- LHS: suc a + (b + c) ≡ suc (a + (b + c)) -- RHS: (suc a + b) + c ≡ suc (a + b) + c ≡ suc ((a + b) + c) -- -- This means we have to prove: -- -- suc (a + (b + c)) ≡ suc ((a + b) + c) -- -- We can use congruence to remove the outer suc on both sides which -- leaves us with a proof of: -- -- a + (b + c) ̄≡ (a + b) + c -- -- Which happens to be our inductive hypothesis - hence a recursive -- call to +assoc. -- -- ∎ +assoc : (a b c : Nat) → a + (b + c) ≡ (a + b) + c +assoc zero b c = refl +assoc (suc a) b c = cong suc (+assoc a b c) -- Note [If numbers are equal they are in the greater-equal relation] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- Finally, we need a proof that if a = b then a ≥ b. This property is -- specific to our task, so you most likely haven't seen it other -- tutorials. There are three interesting things in this proof: -- -- 1) a value of type m ≥ n proves that m is greater-equal than n. We -- therefore need to construct the value of this type. -- -- 2) since refl is the only constructor of type ≡ we always use refl -- when pattern matching on a value of ≡. We also always pass refl -- as a value of ≡ in calls. -- -- 3) we need to match on implicit parameters to construct a -- proof. Note that although type signature specifies Nats m and -- n, in the proof we require that these are always equal. This -- requirement comes from the fact that m ≡ n, i.e. that m and n -- are equal. -- -- In the base case we need to construct a proof that 0 ≥ 0, which we -- do by using ge0. Inductive case simply applies geS to result of -- recursive call to ≥sym. ≥sym : {m n : Nat} → m ≡ n → m ≥ n ≥sym {zero} {zero} refl = ge0 ≥sym {.(suc n)} {(suc n)} refl = geS (≥sym {n} {n} refl)
{ "alphanum_fraction": 0.5716604824, "avg_line_length": 33.5564202335, "ext": "agda", "hexsha": "291da66f49ad32ab1c3bd193766cfc0a7fa7e243", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/Basics/Reasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/Basics/Reasoning.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/Basics/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 2531, "size": 8624 }
---------------------------------------------------------------------- -- This file contains constructions of new categories from existing -- -- categories. -- ---------------------------------------------------------------------- module Category.CategoryCons where open import Level open import Data.Product open import Setoid.Total open import Category.Category open SetoidFun -- The product of two categories. _●_ : {l₁ l₂ : Level} → (ℂ₁ : Cat {l₁}) → (ℂ₂ : Cat {l₂}) → Cat {l₁ ⊔ l₂} ℂ₁ ● ℂ₂ = record { Obj = (Obj ℂ₁) × (Obj ℂ₂); Hom = λ A B → (Hom ℂ₁ (proj₁ A) (proj₁ B)) ●ₛ ((Hom ℂ₂ (proj₂ A) (proj₂ B))); comp = λ {A} {B} {C} → (comp ℂ₁) ●b (comp ℂ₂); id = λ {A} → (id ℂ₁) , (id ℂ₂); assocPf = λ {A} {B} {C} {D} {f} {g} {h} → (assocPf ℂ₁) , (assocPf ℂ₂); idPf = λ {A} {B} {f} → (idPf ℂ₁) , (idPf ℂ₂) }
{ "alphanum_fraction": 0.4268943436, "avg_line_length": 39.0416666667, "ext": "agda", "hexsha": "a0deb4f31d0034fe9edc3d0fe643432f9dbd2c56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "setoid-cats/Category/CategoryCons.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "setoid-cats/Category/CategoryCons.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "setoid-cats/Category/CategoryCons.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 294, "size": 937 }
open import Data.Product renaming (_×_ to _∧_) ×-comm : {A B : Set} → (A ∧ B) → (B ∧ A) ×-comm (fst , snd) = snd , fst id : {A : Set} → A → A id a = a K : {A B : Set} → A → B → A K a b = a app : {A B : Set} → (A → B) → A → B app f a = f a flip : {A B C : Set} → (A → B → C) → B → A → C flip f b a = f a b comp : {A B C : Set} → (A → B) → (B → C) → (A → C) comp ab bc = λ x → bc (ab x) S : {A B C : Set} → (A → B → C) → (A → B) → A → C S g f = λ x → g x (f x) proj1 : {A B : Set} → (A ∧ B) → A proj1 (fst , snd) = fst proj2 : {A B : Set} → (A ∧ B) → B proj2 (fst , snd) = snd diagonal : {A B : Set} → A → (A ∧ A) diagonal a = a , a commut : {A B : Set} → (A ∧ B) → (B ∧ A) commut (fst , snd) = snd , fst curry1 : {A B C : Set} → (A ∧ B → C) → (A → B → C) curry1 f = λ x x₁ → f (x , x₁) curry2 : {A B C : Set} → (A → B → C) → (A ∧ B → C) curry2 f (fst , snd) = f fst snd _↔_ : (A B : Set) → Set A ↔ B = (A → B) ∧ (B → A) currying : {A B C : Set} → (A ∧ B → C) ↔ (A → B → C) currying = curry1 , curry2 distrib : {A B C : Set} → (A → (B ∧ C)) ↔ ((A → B) ∧ (A → C)) distrib = (λ x → (λ x₁ → proj1 (x x₁)) , λ x₁ → proj2 (x x₁)) , λ x x₁ → ((proj1 x) x₁) , ((proj2 x) x₁) data _∨_ (A B : Set) : Set where left : A → A ∨ B right : B → A ∨ B or-elim : {A B C : Set} → (A ∨ B) → (A → C) → (B → C) → C or-elim (left x) = λ x₁ x₂ → x₁ x or-elim (right x) = λ x₁ x₂ → x₂ x or-comm : {A B : Set} → (A ∨ B) → (B ∨ A) or-comm (left x) = right x or-comm (right x) = left x or-dist : {A B C : Set} → (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)) or-dist (fst , left x) = left (fst , x) or-dist (fst , right x) = right (fst , x) data ⊥ : Set where ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () ¬ : Set → Set ¬ A = A → ⊥ contr : {A B : Set} → (A → B) → (¬ B → ¬ A) contr f = λ x x₁ → x (f x₁) non-contr : {A : Set} → ¬ (A ∧ ¬ A) non-contr (fst , snd) = snd fst nni : {A : Set} → A → ¬ (¬ A) nni a = λ x → x a ⊥-nne : ¬ (¬ ⊥) → ⊥ ⊥-nne x = x ⊥-elim ¬-elim : {A B : Set} → ¬ A → A → B ¬-elim n a = ⊥-elim (n a) nnlem : {A : Set} → ¬ (¬ (A ∨ ¬ A)) nnlem = (λ x → x (right λ y → x (left y))) rp2 : {A : Set} → (A → ¬ A) → (¬ A → A) → ⊥ rp2 a na = nnlem (λ x → or-elim x (λ x₁ → a x₁ x₁) λ x₁ → x₁ (na x₁)) data ⊤ : Set where tt : ⊤ ti : {A : Set} → (⊤ → A) → A ti f = f tt dmnt : ¬ ⊤ → ⊥ dmnt f = f tt dmtn : ⊥ → ¬ ⊤ dmtn = λ x x₁ → x lem : Set₁ lem = (A : Set) → A ∨ ¬ A nne : Set₁ nne = (A : Set) → ¬ (¬ A) → A nne-lem : nne → lem nne-lem x A = x (A ∨ ¬ A) nnlem lem-nne : lem → nne lem-nne x A y = or-elim (x A) (λ x₁ → x₁) λ x₁ → ¬-elim y x₁ _↔₁_ : (A B : Set₁) → Set₁ A ↔₁ B = (A → B) ∧ (B → A) peirce : Set₁ peirce = (A B : Set) → ((A → B) → A) → A lem-peirce : lem ↔₁ peirce lem-peirce = (λ x A B x₁ → or-elim (x A) id λ x₂ → x₁ λ x₃ → ¬-elim x₂ x₃) , λ x A → x (A ∨ ¬ A) ⊥ λ x₁ → right λ x₂ → x₁ (left x₂) nne-peirce : nne ↔₁ peirce nne-peirce = (λ x A B x₁ → x A λ x₂ → x₂ (x₁ λ x₃ → ¬-elim x₂ x₃)) , (λ x A x₁ → x A ⊥ λ x₂ → ¬-elim x₁ x₂)
{ "alphanum_fraction": 0.4366767984, "avg_line_length": 21.6131386861, "ext": "agda", "hexsha": "132ae92ab39ee68960d1d94d29d89d68fe1b52d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "erwinkn/program-eq-proof", "max_forks_repo_path": "TD5/prop.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "erwinkn/program-eq-proof", "max_issues_repo_path": "TD5/prop.agda", "max_line_length": 131, "max_stars_count": null, "max_stars_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "erwinkn/program-eq-proof", "max_stars_repo_path": "TD5/prop.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1491, "size": 2961 }
------------------------------------------------------------------------ -- Contexts, variables, context morphisms, etc. ------------------------------------------------------------------------ -- Based on Conor McBride's "Outrageous but Meaningful Coincidences: -- Dependent type-safe syntax and evaluation". -- The contexts and variables are parametrised by a universe. open import Data.Universe.Indexed module deBruijn.Context.Basics {i u e} (Uni : IndexedUniverse i u e) where open IndexedUniverse Uni open import Data.Product as Prod open import Data.Unit open import Function hiding (_∋_) open import Level using (_⊔_; Lift) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary import Relation.Nullary.Decidable as Dec open P.≡-Reasoning ------------------------------------------------------------------------ -- Contexts and "types" mutual -- Contexts. infixl 5 _▻_ data Ctxt : Set (i ⊔ u ⊔ e) where ε : Ctxt _▻_ : (Γ : Ctxt) (σ : Type Γ) → Ctxt -- Semantic types: maps from environments to universe codes. The -- semantic types come in two flavours: indexed and unindexed -- (paired up with an index). IType : Ctxt → I → Set (u ⊔ e) IType Γ i = Env Γ → U i Type : Ctxt → Set (i ⊔ u ⊔ e) Type Γ = ∃ λ i → IType Γ i -- Extracts the index from an unindexed type. index : ∀ {Γ} → Type Γ → I index = proj₁ -- Converts a type to an indexed type. indexed-type : ∀ {Γ} (σ : Type Γ) → IType Γ (index σ) indexed-type = proj₂ -- Interpretation of contexts: environments. Env : Ctxt → Set e Env ε = Lift _ ⊤ Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (indexed-type σ γ) -- Semantic values: maps from environments to universe values. Value : (Γ : Ctxt) → Type Γ → Set _ Value Γ σ = (γ : Env Γ) → El (indexed-type σ γ) ------------------------------------------------------------------------ -- Context morphisms -- Context morphisms or "semantic substitutions": maps from -- environments to environments. Note the arrow's direction. infixr 4 _⇨̂_ _⇨̂_ : Ctxt → Ctxt → Set _ Γ ⇨̂ Δ = Env Δ → Env Γ -- The identity morphism. îd : ∀ {Γ} → Γ ⇨̂ Γ îd = id -- If the context cannot be inferred the following variant can be used -- instead. îd[_] : ∀ Γ → Γ ⇨̂ Γ îd[ _ ] = îd -- Reverse composition of context morphisms. infixl 9 _∘̂_ _∘̂_ : ∀ {Γ Δ Ε} → Γ ⇨̂ Δ → Δ ⇨̂ Ε → Γ ⇨̂ Ε ρ̂₁ ∘̂ ρ̂₂ = ρ̂₁ ∘ ρ̂₂ -- Application of context morphisms to indexed types. infixl 8 _/̂I_ _/̂I_ : ∀ {Γ Δ i} → IType Γ i → Γ ⇨̂ Δ → IType Δ i σ /̂I ρ̂ = σ ∘ ρ̂ -- Application of context morphisms to types. infixl 8 _/̂_ _/̂_ : ∀ {Γ Δ} → Type Γ → Γ ⇨̂ Δ → Type Δ (i , σ) /̂ ρ̂ = (i , σ /̂I ρ̂) -- Application of context morphisms to values. infixl 8 _/̂Val_ _/̂Val_ : ∀ {Γ Δ σ} → Value Γ σ → (ρ̂ : Γ ⇨̂ Δ) → Value Δ (σ /̂ ρ̂) v /̂Val ρ̂ = v ∘ ρ̂ -- Weakening. ŵk : ∀ {Γ σ} → Γ ⇨̂ Γ ▻ σ ŵk = proj₁ ŵk[_] : ∀ {Γ} σ → Γ ⇨̂ Γ ▻ σ ŵk[ _ ] = ŵk -- Empty context morphism. ε̂ : ∀ {Δ} → ε ⇨̂ Δ ε̂ = λ _ → _ ε̂[_] : ∀ Δ → ε ⇨̂ Δ ε̂[ _ ] = ε̂ -- Extends a context morphism with another value. infixl 5 _▻̂_ _▻̂[_]_ _▻̂_ : ∀ {Γ Δ σ} (ρ̂ : Γ ⇨̂ Δ) → Value Δ (σ /̂ ρ̂) → Γ ▻ σ ⇨̂ Δ _▻̂_ = <_,_> _▻̂[_]_ : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) σ → Value Δ (σ /̂ ρ̂) → Γ ▻ σ ⇨̂ Δ ρ̂ ▻̂[ _ ] v = ρ̂ ▻̂ v -- A context morphism which only modifies the last "variable". ŝub : ∀ {Γ σ} → Value Γ σ → Γ ▻ σ ⇨̂ Γ ŝub v = îd ▻̂ v -- The "tail" of a "nonempty" context morphism. t̂ail : ∀ {Γ Δ σ} → Γ ▻ σ ⇨̂ Δ → Γ ⇨̂ Δ t̂ail ρ̂ = ŵk ∘̂ ρ̂ -- The "head" of a "nonempty" context morphism. ĥead : ∀ {Γ Δ σ} (ρ̂ : Γ ▻ σ ⇨̂ Δ) → Value Δ (σ /̂ t̂ail ρ̂) ĥead ρ̂ = proj₂ ∘ ρ̂ -- Lifting. infixl 10 _↑̂_ infix 10 _↑̂ _↑̂_ : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) σ → Γ ▻ σ ⇨̂ Δ ▻ σ /̂ ρ̂ ρ̂ ↑̂ _ = Prod.map ρ̂ id _↑̂ : ∀ {Γ Δ σ} (ρ̂ : Γ ⇨̂ Δ) → Γ ▻ σ ⇨̂ Δ ▻ σ /̂ ρ̂ ρ̂ ↑̂ = ρ̂ ↑̂ _ ------------------------------------------------------------------------ -- Variables -- Variables (de Bruijn indices). infix 3 _∋_ data _∋_ : (Γ : Ctxt) → Type Γ → Set (i ⊔ u ⊔ e) where zero : ∀ {Γ σ} → Γ ▻ σ ∋ σ /̂ ŵk suc : ∀ {Γ σ τ} (x : Γ ∋ τ) → Γ ▻ σ ∋ τ /̂ ŵk zero[_] : ∀ {Γ} σ → Γ ▻ σ ∋ σ /̂ ŵk zero[ _ ] = zero suc[_] : ∀ {Γ} σ {τ} → Γ ∋ τ → Γ ▻ σ ∋ τ /̂ ŵk suc[ _ ] = suc -- Interpretation of variables: a lookup function. lookup : ∀ {Γ σ} → Γ ∋ σ → Value Γ σ lookup zero (γ , v) = v lookup (suc x) (γ , v) = lookup x γ -- Application of context morphisms to variables. infixl 8 _/̂∋_ _/̂∋_ : ∀ {Γ Δ σ} → Γ ∋ σ → (ρ̂ : Γ ⇨̂ Δ) → Value Δ (σ /̂ ρ̂) x /̂∋ ρ̂ = lookup x /̂Val ρ̂ ------------------------------------------------------------------------ -- Equality infix 4 _≅-Ctxt_ _≅-Type_ _≅-IType_ _≅-Value_ _≅-⇨̂_ _≅-∋_ -- Equality of contexts. _≅-Ctxt_ : Ctxt → Ctxt → Set _ Γ₁ ≅-Ctxt Γ₂ = Γ₁ ≡ Γ₂ -- Equality of types. -- -- This library uses propositional equality, including the K rule. -- -- Two types are defined to be equal if their corresponding telescopes -- are equal. The constructor [_] turns a type into a telescope. -- -- At first two types (or context morphisms, or…) were defined to be -- equal if they were equal according to the heterogeneous equality. -- However, this led to a problem. Consider the old and new -- definitions of /̂-cong: -- -- Old: -- -- /̂-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} -- {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} → -- Γ₁ ≡ Γ₂ → Δ₁ ≡ Δ₂ → σ₁ ≅ σ₂ → ρ̂₁ ≅ ρ̂₂ → σ₁ /̂ ρ̂₁ ≅ σ₂ /̂ ρ̂₂ -- /̂-cong P.refl P.refl H.refl H.refl = H.refl -- -- New: -- -- /̂-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} -- {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} → -- σ₁ ≅-Type σ₂ → ρ̂₁ ≅-⇨̂ ρ̂₂ → σ₁ /̂ ρ̂₁ ≅-Type σ₂ /̂ ρ̂₂ -- /̂-cong P.refl P.refl = P.refl -- -- Notice that the old definition required more assumptions than the -- new one. This meant that proofs using various congruences became -- unnecessarily large and complicated. record [Type] : Set (i ⊔ u ⊔ e) where constructor [_] field {Γ} : Ctxt σ : Type Γ _≅-Type_ : ∀ {Γ₁} (σ₁ : Type Γ₁) {Γ₂} (σ₂ : Type Γ₂) → Set _ σ₁ ≅-Type σ₂ = [ σ₁ ] ≡ [ σ₂ ] -- If the indices are equal, then _≅-Type_ coincides with _≡_. ≅-Type-⇒-≡ : ∀ {Γ} {σ₁ σ₂ : Type Γ} → σ₁ ≅-Type σ₂ → σ₁ ≡ σ₂ ≅-Type-⇒-≡ P.refl = P.refl -- Certain uses of substitutivity can be removed. drop-subst-Type : ∀ {a} {A : Set a} {x₁ x₂} (f : A → Ctxt) {σ} (x₁≡x₂ : x₁ ≡ x₂) → P.subst (λ x → Type (f x)) x₁≡x₂ σ ≅-Type σ drop-subst-Type f P.refl = P.refl -- TODO: Should functions like ≅-Type-⇒-≡ and drop-subst-Type be -- included for all types? record [IType] : Set (i ⊔ u ⊔ e) where constructor [_] field {Γ} : Ctxt {idx} : I σ : IType Γ idx _≅-IType_ : ∀ {Γ₁ i₁} (σ₁ : IType Γ₁ i₁) {Γ₂ i₂} (σ₂ : IType Γ₂ i₂) → Set _ σ₁ ≅-IType σ₂ = _≡_ {A = [IType]} [ σ₁ ] [ σ₂ ] -- If the indices are equal, then _≅-IType_ coincides with _≡_. ≅-IType-⇒-≡ : ∀ {Γ i} {σ₁ σ₂ : IType Γ i} → σ₁ ≅-IType σ₂ → σ₁ ≡ σ₂ ≅-IType-⇒-≡ P.refl = P.refl -- Equality of values. record [Value] : Set (i ⊔ u ⊔ e) where constructor [_] field {Γ} : Ctxt {σ} : Type Γ v : Value Γ σ _≅-Value_ : ∀ {Γ₁ σ₁} (v₁ : Value Γ₁ σ₁) {Γ₂ σ₂} (v₂ : Value Γ₂ σ₂) → Set _ v₁ ≅-Value v₂ = _≡_ {A = [Value]} [ v₁ ] [ v₂ ] ≅-Value-⇒-≡ : ∀ {Γ σ} {v₁ v₂ : Value Γ σ} → v₁ ≅-Value v₂ → v₁ ≡ v₂ ≅-Value-⇒-≡ P.refl = P.refl -- Equality of context morphisms. record [⇨̂] : Set (i ⊔ u ⊔ e) where constructor [_] field {Γ Δ} : Ctxt ρ̂ : Γ ⇨̂ Δ _≅-⇨̂_ : ∀ {Γ₁ Δ₁} (ρ̂₁ : Γ₁ ⇨̂ Δ₁) {Γ₂ Δ₂} (ρ̂₂ : Γ₂ ⇨̂ Δ₂) → Set _ ρ̂₁ ≅-⇨̂ ρ̂₂ = _≡_ {A = [⇨̂]} [ ρ̂₁ ] [ ρ̂₂ ] ≅-⇨̂-⇒-≡ : ∀ {Γ Δ} {ρ̂₁ ρ̂₂ : Γ ⇨̂ Δ} → ρ̂₁ ≅-⇨̂ ρ̂₂ → ρ̂₁ ≡ ρ̂₂ ≅-⇨̂-⇒-≡ P.refl = P.refl -- Equality of variables. record [∋] : Set (i ⊔ u ⊔ e) where constructor [_] field {Γ} : Ctxt {σ} : Type Γ x : Γ ∋ σ _≅-∋_ : ∀ {Γ₁ σ₁} (x₁ : Γ₁ ∋ σ₁) {Γ₂ σ₂} (x₂ : Γ₂ ∋ σ₂) → Set _ x₁ ≅-∋ x₂ = _≡_ {A = [∋]} [ x₁ ] [ x₂ ] ≅-∋-⇒-≡ : ∀ {Γ σ} {x₁ x₂ : Γ ∋ σ} → x₁ ≅-∋ x₂ → x₁ ≡ x₂ ≅-∋-⇒-≡ P.refl = P.refl ------------------------------------------------------------------------ -- Some congruence lemmas ▻-cong : ∀ {Γ₁ Γ₂ σ₁ σ₂} → σ₁ ≅-Type σ₂ → Γ₁ ▻ σ₁ ≅-Ctxt Γ₂ ▻ σ₂ ▻-cong P.refl = P.refl indexed-type-cong : ∀ {Γ₁} {σ₁ : Type Γ₁} {Γ₂} {σ₂ : Type Γ₂} → σ₁ ≅-Type σ₂ → indexed-type σ₁ ≅-IType indexed-type σ₂ indexed-type-cong P.refl = P.refl îd-cong : ∀ {Γ₁ Γ₂} → Γ₁ ≅-Ctxt Γ₂ → îd[ Γ₁ ] ≅-⇨̂ îd[ Γ₂ ] îd-cong P.refl = P.refl ∘̂-cong : ∀ {Γ₁ Δ₁ Ε₁} {ρ̂₁₁ : Γ₁ ⇨̂ Δ₁} {ρ̂₂₁ : Δ₁ ⇨̂ Ε₁} {Γ₂ Δ₂ Ε₂} {ρ̂₁₂ : Γ₂ ⇨̂ Δ₂} {ρ̂₂₂ : Δ₂ ⇨̂ Ε₂} → ρ̂₁₁ ≅-⇨̂ ρ̂₁₂ → ρ̂₂₁ ≅-⇨̂ ρ̂₂₂ → ρ̂₁₁ ∘̂ ρ̂₂₁ ≅-⇨̂ ρ̂₁₂ ∘̂ ρ̂₂₂ ∘̂-cong P.refl P.refl = P.refl /̂I-cong : ∀ {Γ₁ Δ₁ i₁} {σ₁ : IType Γ₁ i₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {Γ₂ Δ₂ i₂} {σ₂ : IType Γ₂ i₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} → σ₁ ≅-IType σ₂ → ρ̂₁ ≅-⇨̂ ρ̂₂ → σ₁ /̂I ρ̂₁ ≅-IType σ₂ /̂I ρ̂₂ /̂I-cong P.refl P.refl = P.refl /̂-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} → σ₁ ≅-Type σ₂ → ρ̂₁ ≅-⇨̂ ρ̂₂ → σ₁ /̂ ρ̂₁ ≅-Type σ₂ /̂ ρ̂₂ /̂-cong P.refl P.refl = P.refl /̂Val-cong : ∀ {Γ₁ Δ₁ σ₁} {v₁ : Value Γ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {Γ₂ Δ₂ σ₂} {v₂ : Value Γ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} → v₁ ≅-Value v₂ → ρ̂₁ ≅-⇨̂ ρ̂₂ → v₁ /̂Val ρ̂₁ ≅-Value v₂ /̂Val ρ̂₂ /̂Val-cong P.refl P.refl = P.refl ŵk-cong : ∀ {Γ₁} {σ₁ : Type Γ₁} {Γ₂} {σ₂ : Type Γ₂} → σ₁ ≅-Type σ₂ → ŵk[ σ₁ ] ≅-⇨̂ ŵk[ σ₂ ] ŵk-cong P.refl = P.refl ε̂-cong : ∀ {Δ₁ Δ₂} → Δ₁ ≅-Ctxt Δ₂ → ε̂[ Δ₁ ] ≅-⇨̂ ε̂[ Δ₂ ] ε̂-cong P.refl = P.refl ▻̂-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {v₁ : Value Δ₁ (σ₁ /̂ ρ̂₁)} {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {v₂ : Value Δ₂ (σ₂ /̂ ρ̂₂)} → σ₁ ≅-Type σ₂ → ρ̂₁ ≅-⇨̂ ρ̂₂ → v₁ ≅-Value v₂ → ρ̂₁ ▻̂[ σ₁ ] v₁ ≅-⇨̂ ρ̂₂ ▻̂[ σ₂ ] v₂ ▻̂-cong P.refl P.refl P.refl = P.refl ŝub-cong : ∀ {Γ₁ σ₁} {v₁ : Value Γ₁ σ₁} {Γ₂ σ₂} {v₂ : Value Γ₂ σ₂} → v₁ ≅-Value v₂ → ŝub v₁ ≅-⇨̂ ŝub v₂ ŝub-cong P.refl = P.refl t̂ail-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ▻ σ₁ ⇨̂ Δ₁} {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ▻ σ₂ ⇨̂ Δ₂} → ρ̂₁ ≅-⇨̂ ρ̂₂ → t̂ail ρ̂₁ ≅-⇨̂ t̂ail ρ̂₂ t̂ail-cong P.refl = P.refl ĥead-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ▻ σ₁ ⇨̂ Δ₁} {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ▻ σ₂ ⇨̂ Δ₂} → ρ̂₁ ≅-⇨̂ ρ̂₂ → ĥead ρ̂₁ ≅-Value ĥead ρ̂₂ ĥead-cong P.refl = P.refl ↑̂-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {σ₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {σ₂} → ρ̂₁ ≅-⇨̂ ρ̂₂ → σ₁ ≅-Type σ₂ → ρ̂₁ ↑̂ σ₁ ≅-⇨̂ ρ̂₂ ↑̂ σ₂ ↑̂-cong P.refl P.refl = P.refl zero-cong : ∀ {Γ₁} {σ₁ : Type Γ₁} {Γ₂} {σ₂ : Type Γ₂} → σ₁ ≅-Type σ₂ → zero[ σ₁ ] ≅-∋ zero[ σ₂ ] zero-cong P.refl = P.refl suc-cong : ∀ {Γ₁ σ₁ τ₁} {x₁ : Γ₁ ∋ τ₁} {Γ₂ σ₂ τ₂} {x₂ : Γ₂ ∋ τ₂} → σ₁ ≅-Type σ₂ → x₁ ≅-∋ x₂ → suc[ σ₁ ] x₁ ≅-∋ suc[ σ₂ ] x₂ suc-cong P.refl P.refl = P.refl /̂∋-cong : ∀ {Γ₁ Δ₁ σ₁} {x₁ : Γ₁ ∋ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {Γ₂ Δ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} → x₁ ≅-∋ x₂ → ρ̂₁ ≅-⇨̂ ρ̂₂ → x₁ /̂∋ ρ̂₁ ≅-Value x₂ /̂∋ ρ̂₂ /̂∋-cong P.refl P.refl = P.refl ------------------------------------------------------------------------ -- Some properties, all of which hold definitionally -- _/̂_ preserves the index. index-/̂ : ∀ {Γ Δ} (σ : Type Γ) (ρ̂ : Γ ⇨̂ Δ) → index (σ /̂ ρ̂) ≡ index σ index-/̂ σ ρ̂ = P.refl -- îd and _∘̂_ form a monoid. îd-∘̂ : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) → ρ̂ ∘̂ îd ≅-⇨̂ ρ̂ îd-∘̂ ρ̂ = P.refl ∘̂-îd : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) → îd ∘̂ ρ̂ ≅-⇨̂ ρ̂ ∘̂-îd ρ̂ = P.refl ∘̂-assoc : ∀ {Γ Δ Ε Ζ} (ρ̂₁ : Γ ⇨̂ Δ) (ρ̂₂ : Δ ⇨̂ Ε) (ρ̂₃ : Ε ⇨̂ Ζ) → ρ̂₁ ∘̂ (ρ̂₂ ∘̂ ρ̂₃) ≅-⇨̂ (ρ̂₁ ∘̂ ρ̂₂) ∘̂ ρ̂₃ ∘̂-assoc ρ̂₁ ρ̂₂ ρ̂₃ = P.refl -- The lifting of the identity substitution is the identity -- substitution. îd-↑̂ : ∀ {Γ} (σ : Type Γ) → îd ↑̂ σ ≅-⇨̂ îd[ Γ ▻ σ ] îd-↑̂ σ = P.refl -- _↑̂ distributes over _∘̂_. ↑̂-distrib : ∀ {Γ Δ Ε} (ρ̂₁ : Γ ⇨̂ Δ) (ρ̂₂ : Δ ⇨̂ Ε) σ → (ρ̂₁ ∘̂ ρ̂₂) ↑̂ σ ≅-⇨̂ ρ̂₁ ↑̂ σ ∘̂ ρ̂₂ ↑̂ ↑̂-distrib ρ̂₁ ρ̂₂ σ = P.refl -- ŵk is a left inverse of ŝub. ŵk-∘̂-ŝub : ∀ {Γ σ} (v : Value Γ σ) → ŵk ∘̂ ŝub v ≅-⇨̂ îd ŵk-∘̂-ŝub v = P.refl -- First weakening under the head, and then replacing the head with -- the new head, is the same as doing nothing. ŵk-↑̂-∘̂-ŝub : ∀ {Γ} σ → ŵk ↑̂ ∘̂ ŝub proj₂ ≅-⇨̂ îd[ Γ ▻ σ ] ŵk-↑̂-∘̂-ŝub σ = P.refl -- ŵk commutes with arbitrary context morphisms (modulo lifting). ∘̂-ŵk : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) σ → ρ̂ ∘̂ ŵk[ σ /̂ ρ̂ ] ≅-⇨̂ ŵk[ σ ] ∘̂ ρ̂ ↑̂ ∘̂-ŵk ρ̂ σ = P.refl -- ŝub commutes with arbitrary context morphisms (modulo lifting). ŝub-∘̂ : ∀ {Γ Δ σ} (ρ̂ : Γ ⇨̂ Δ) (v : Value Γ σ) → ŝub v ∘̂ ρ̂ ≅-⇨̂ ρ̂ ↑̂ ∘̂ ŝub (v /̂Val ρ̂) ŝub-∘̂ ρ̂ v = P.refl -- Laws relating _▻̂_, ĥead and t̂ail. ĥead-▻̂ : ∀ {Γ Δ σ} (ρ̂ : Γ ⇨̂ Δ) (v : Value Δ (σ /̂ ρ̂)) → ĥead (ρ̂ ▻̂[ σ ] v) ≅-Value v ĥead-▻̂ ρ̂ v = P.refl t̂ail-▻̂ : ∀ {Γ Δ σ} (ρ̂ : Γ ⇨̂ Δ) (v : Value Δ (σ /̂ ρ̂)) → t̂ail (ρ̂ ▻̂[ σ ] v) ≅-⇨̂ ρ̂ t̂ail-▻̂ ρ̂ v = P.refl t̂ail-▻̂-ĥead : ∀ {Γ Δ σ} (ρ̂ : Γ ▻ σ ⇨̂ Δ) → t̂ail ρ̂ ▻̂ ĥead ρ̂ ≅-⇨̂ ρ̂ t̂ail-▻̂-ĥead ρ̂ = P.refl -- Law relating _▻̂_ and _∘̂_. ▻̂-∘̂ : ∀ {Γ Δ Ε σ} (ρ̂₁ : Γ ⇨̂ Δ) (ρ̂₂ : Δ ⇨̂ Ε) (v : Value Δ (σ /̂ ρ̂₁)) → (ρ̂₁ ▻̂[ σ ] v) ∘̂ ρ̂₂ ≅-⇨̂ (ρ̂₁ ∘̂ ρ̂₂) ▻̂ v /̂Val ρ̂₂ ▻̂-∘̂ ρ̂₁ ρ̂₂ v = P.refl -- The identity substitution has no effect. /̂-îd : ∀ {Γ} (σ : Type Γ) → σ /̂ îd ≅-Type σ /̂-îd σ = P.refl /̂Val-îd : ∀ {Γ σ} (v : Value Γ σ) → v /̂Val îd ≅-Value v /̂Val-îd v = P.refl -- Applying two substitutions is equivalent to applying their -- composition. /̂-∘̂ : ∀ {Γ Δ Ε} (ρ̂₁ : Γ ⇨̂ Δ) (ρ̂₂ : Δ ⇨̂ Ε) σ → σ /̂ ρ̂₁ ∘̂ ρ̂₂ ≅-Type σ /̂ ρ̂₁ /̂ ρ̂₂ /̂-∘̂ ρ̂₁ ρ̂₂ σ = P.refl /̂Val-∘̂ : ∀ {Γ Δ Ε σ} (ρ̂₁ : Γ ⇨̂ Δ) (ρ̂₂ : Δ ⇨̂ Ε) (v : Value Γ σ) → v /̂Val ρ̂₁ ∘̂ ρ̂₂ ≅-Value v /̂Val ρ̂₁ /̂Val ρ̂₂ /̂Val-∘̂ ρ̂₁ ρ̂₂ v = P.refl ------------------------------------------------------------------------ -- More properties -- _▻_ is injective. ▻-injective : ∀ {Γ₁ σ₁ Γ₂ σ₂} → Γ₁ ▻ σ₁ ≅-Ctxt Γ₂ ▻ σ₂ → Γ₁ ≅-Ctxt Γ₂ × σ₁ ≅-Type σ₂ ▻-injective P.refl = P.refl , P.refl -- Equality of variables is decidable (if they refer to the same -- context). infix 4 _≟-∋_ _≟-∋_ : ∀ {Γ σ₁} (x₁ : Γ ∋ σ₁) {σ₂} (x₂ : Γ ∋ σ₂) → Dec (x₁ ≅-∋ x₂) zero ≟-∋ zero = yes P.refl zero ≟-∋ suc _ = no λ () suc _ ≟-∋ zero = no λ () suc x₁ ≟-∋ suc x₂ = Dec.map′ (suc-cong P.refl) helper (x₁ ≟-∋ x₂) where helper : ∀ {Γ₁ σ₁ τ₁} {x₁ : Γ₁ ∋ τ₁} {Γ₂ σ₂ τ₂} {x₂ : Γ₂ ∋ τ₂} → suc[ σ₁ ] x₁ ≅-∋ suc[ σ₂ ] x₂ → x₁ ≅-∋ x₂ helper P.refl = P.refl
{ "alphanum_fraction": 0.4697890353, "avg_line_length": 27.2756052142, "ext": "agda", "hexsha": "8fd8ae0dd75be532880ad93af794106ffdf92d27", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Context/Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Context/Basics.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Context/Basics.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 7856, "size": 14647 }
{-# OPTIONS --without-K #-} module Agda.Builtin.IO where postulate IO : ∀ {a} → Set a → Set a {-# BUILTIN IO IO #-} {-# HASKELL type AgdaIO a b = IO b #-} {-# COMPILED_TYPE IO MAlonzo.Code.Agda.Builtin.IO.AgdaIO #-}
{ "alphanum_fraction": 0.6255707763, "avg_line_length": 21.9, "ext": "agda", "hexsha": "cbc438889e740731d837f77c353d71de24c90c4d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/IO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/IO.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/IO.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 69, "size": 219 }
------------------------------------------------------------------------ -- Some character parsers ------------------------------------------------------------------------ -- This code also illustrates how a library can make use of another -- library. module RecursiveDescent.Inductive.Char where open import Data.Unit open import Data.Nat open import Data.Bool import Data.Char as C open C using (Char; _==_) open import Data.List open import Data.Function hiding (_$_) open import RecursiveDescent.Index open import RecursiveDescent.Inductive import RecursiveDescent.Inductive.Token open import RecursiveDescent.Inductive.SimpleLib import RecursiveDescent.Inductive.Lib as Lib private module L = Lib Char -- Some parameterised parsers. private data NT (nt : ParserType₁) : ParserType₁ where lib' : forall {i r} -> L.Nonterminal nt i r -> NT nt i r digit' : NT nt _ ℕ number' : NT nt _ ℕ whitespace' : NT nt _ ⊤ Nonterminal : ParserType₁ -> ParserType₁ Nonterminal = NT module Combinators {nt} (lib : forall {i r} -> Nonterminal nt i r -> nt i r) where open L.Combinators (lib ∘₁ lib') digit : Parser Char nt _ ℕ digit = ! lib digit' number : Parser Char nt _ ℕ number = ! lib number' whitespace : Parser Char nt _ ⊤ whitespace = ! lib whitespace' open RecursiveDescent.Inductive.Token C.decSetoid charLib : forall {i r} -> Nonterminal nt i r -> Parser Char nt i r charLib (lib' p) = library p charLib digit' = 0 <$ sym '0' ∣ 1 <$ sym '1' ∣ 2 <$ sym '2' ∣ 3 <$ sym '3' ∣ 4 <$ sym '4' ∣ 5 <$ sym '5' ∣ 6 <$ sym '6' ∣ 7 <$ sym '7' ∣ 8 <$ sym '8' ∣ 9 <$ sym '9' charLib number' = toNum <$> digit + where toNum = foldr (\n x -> 10 * x + n) 0 ∘ reverse -- whitespace recognises an incomplete but useful list of whitespace -- characters. charLib whitespace' = sat' isSpace where isSpace = \c -> (c == ' ') ∨ (c == '\t') ∨ (c == '\n') ∨ (c == '\r')
{ "alphanum_fraction": 0.5478424015, "avg_line_length": 28.4266666667, "ext": "agda", "hexsha": "704e00dfd7932df053d687f2e70d398935cdc570", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/RecursiveDescent/Inductive/Char.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/RecursiveDescent/Inductive/Char.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/RecursiveDescent/Inductive/Char.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 578, "size": 2132 }
------------------------------------------------------------------------ -- A map function for the substitutions ------------------------------------------------------------------------ open import Data.Universe.Indexed module deBruijn.Substitution.Data.Map {i u e} {Uni : IndexedUniverse i u e} where import deBruijn.Context; open deBruijn.Context Uni open import deBruijn.Substitution.Data.Basics open import Function using (_$_) import Relation.Binary.PropositionalEquality as P open P.≡-Reasoning private module Dummy {t₁} {T₁ : Term-like t₁} {t₂} {T₂ : Term-like t₂} where open Term-like T₁ using () renaming (_⊢_ to _⊢₁_; _≅-⊢_ to _≅-⊢₁_; [_] to [_]₁) open Term-like T₂ using () renaming (_≅-⊢_ to _≅-⊢₂_; [_] to [_]₂) -- Map. map : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} → [ T₁ ⟶ T₂ ] ρ̂₂ → Sub T₁ ρ̂₁ → Sub T₂ (ρ̂₁ ∘̂ ρ̂₂) map f ε = ε map {ρ̂₂ = ρ̂₂} f (ρ₁ ▻ t) = P.subst (λ v → Sub T₂ (⟦ ρ₁ ⟧⇨ ∘̂ ρ̂₂ ▻̂ v)) (≅-Value-⇒-≡ $ P.sym $ corresponds f t) (map f ρ₁ ▻ f · t) abstract -- An unfolding lemma. map-▻ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} {σ} (f : [ T₁ ⟶ T₂ ] ρ̂₂) (ρ : Sub T₁ ρ̂₁) t → map f (ρ ▻⇨[ σ ] t) ≅-⇨ map f ρ ▻⇨[ σ ] f · t map-▻ {ρ̂₂ = ρ̂₂} f ρ t = drop-subst-Sub (λ v → ⟦ ρ ⟧⇨ ∘̂ ρ̂₂ ▻̂ v) (≅-Value-⇒-≡ $ P.sym $ corresponds f t) -- A congruence lemma. map-cong : ∀ {Γ₁ Δ₁ Ε₁} {ρ̂₁₁ : Γ₁ ⇨̂ Δ₁} {ρ̂₂₁ : Δ₁ ⇨̂ Ε₁} {f₁ : [ T₁ ⟶ T₂ ] ρ̂₂₁} {ρ₁ : Sub T₁ ρ̂₁₁} {Γ₂ Δ₂ Ε₂} {ρ̂₁₂ : Γ₂ ⇨̂ Δ₂} {ρ̂₂₂ : Δ₂ ⇨̂ Ε₂} {f₂ : [ T₁ ⟶ T₂ ] ρ̂₂₂} {ρ₂ : Sub T₁ ρ̂₁₂} → f₁ ≅-⟶ f₂ → ρ₁ ≅-⇨ ρ₂ → map f₁ ρ₁ ≅-⇨ map f₂ ρ₂ map-cong {f₁ = _ , _} {f₂ = ._ , _} {ρ₂ = ε} [ P.refl ] P.refl = P.refl map-cong {f₁ = f₁} {f₂ = f₂} {ρ₂ = ρ ▻ t} f₁≅f₂ P.refl = begin [ map f₁ (ρ ▻ t) ] ≡⟨ map-▻ f₁ ρ t ⟩ [ map f₁ ρ ▻ f₁ · t ] ≡⟨ ▻⇨-cong P.refl (map-cong f₁≅f₂ (P.refl {x = [ ρ ]})) (·-cong f₁≅f₂ (P.refl {x = [ t ]₁})) ⟩ [ map f₂ ρ ▻ f₂ · t ] ≡⟨ P.sym $ map-▻ f₂ ρ t ⟩ [ map f₂ (ρ ▻ t) ] ∎ -- Variants which only require that the functions are -- extensionally equal. map-cong-ext₁ : ∀ {Γ₁ Δ Ε₁} {ρ̂₁₁ : Γ₁ ⇨̂ Δ} {ρ̂₂₁ : Δ ⇨̂ Ε₁} {f₁ : [ T₁ ⟶ T₂ ] ρ̂₂₁} {ρ₁ : Sub T₁ ρ̂₁₁} {Γ₂ Ε₂} {ρ̂₁₂ : Γ₂ ⇨̂ Δ} {ρ̂₂₂ : Δ ⇨̂ Ε₂} {f₂ : [ T₁ ⟶ T₂ ] ρ̂₂₂} {ρ₂ : Sub T₁ ρ̂₁₂} → Ε₁ ≅-Ctxt Ε₂ → (∀ {σ} (t : Δ ⊢₁ σ) → f₁ · t ≅-⊢₂ f₂ · t) → ρ₁ ≅-⇨ ρ₂ → map f₁ ρ₁ ≅-⇨ map f₂ ρ₂ map-cong-ext₁ {Δ = Δ} {f₁ = f₁} {f₂ = f₂} {ρ₂ = ρ} Ε₁≅Ε₂ f₁≅f₂ P.refl = helper ρ where helper : ∀ {Γ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₁ ρ̂) → map f₁ ρ ≅-⇨ map f₂ ρ helper ε = ε⇨-cong Ε₁≅Ε₂ helper (ρ ▻ t) = begin [ map f₁ (ρ ▻ t) ] ≡⟨ map-▻ f₁ ρ t ⟩ [ map f₁ ρ ▻ f₁ · t ] ≡⟨ ▻⇨-cong P.refl (helper ρ) (f₁≅f₂ t) ⟩ [ map f₂ ρ ▻ f₂ · t ] ≡⟨ P.sym $ map-▻ f₂ ρ t ⟩ [ map f₂ (ρ ▻ t) ] ∎ map-cong-ext₂ : ∀ {Γ₁ Δ₁ Ε₁} {ρ̂₁₁ : Γ₁ ⇨̂ Δ₁} {ρ̂₂₁ : Δ₁ ⇨̂ Ε₁} {f₁ : [ T₁ ⟶ T₂ ] ρ̂₂₁} {ρ₁ : Sub T₁ ρ̂₁₁} {Γ₂ Δ₂ Ε₂} {ρ̂₁₂ : Γ₂ ⇨̂ Δ₂} {ρ̂₂₂ : Δ₂ ⇨̂ Ε₂} {f₂ : [ T₁ ⟶ T₂ ] ρ̂₂₂} {ρ₂ : Sub T₁ ρ̂₁₂} → Δ₁ ≅-Ctxt Δ₂ → Ε₁ ≅-Ctxt Ε₂ → (∀ {σ₁ σ₂} {t₁ : Δ₁ ⊢₁ σ₁} {t₂ : Δ₂ ⊢₁ σ₂} → t₁ ≅-⊢₁ t₂ → f₁ · t₁ ≅-⊢₂ f₂ · t₂) → ρ₁ ≅-⇨ ρ₂ → map f₁ ρ₁ ≅-⇨ map f₂ ρ₂ map-cong-ext₂ P.refl Ε₁≅Ε₂ f₁≅f₂ ρ₁≅ρ₂ = map-cong-ext₁ Ε₁≅Ε₂ (λ t → f₁≅f₂ (P.refl {x = [ t ]₁})) ρ₁≅ρ₂ private -- A helper lemma. /∋-map-▻ : ∀ {Γ Δ Ε σ τ} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} {t} → (x : Γ ▻ σ ∋ τ) (f : [ T₁ ⟶ T₂ ] ρ̂₂) (ρ : Sub T₁ ρ̂₁) → x /∋ map f (ρ ▻ t) ≅-⊢₂ x /∋ (map f ρ ▻ f · t) /∋-map-▻ {t = t} x f ρ = /∋-cong (P.refl {x = [ x ]}) (map-▻ f ρ t) -- Some sort of naturality statement for _/∋_. /∋-map : ∀ {Γ Δ Ε σ} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} → (x : Γ ∋ σ) (f : [ T₁ ⟶ T₂ ] ρ̂₂) (ρ : Sub T₁ ρ̂₁) → x /∋ map f ρ ≅-⊢₂ f · (x /∋ ρ) /∋-map (zero {σ = σ}) f (ρ ▻ t) = begin [ zero[ σ ] /∋ map f (ρ ▻ t) ]₂ ≡⟨ /∋-map-▻ zero[ σ ] f ρ ⟩ [ zero[ σ ] /∋ (map f ρ ▻ f · t) ]₂ ≡⟨ P.refl ⟩ [ f · t ]₂ ∎ /∋-map (suc {σ = σ} x) f (ρ ▻ t) = begin [ suc x /∋ map f (ρ ▻ t) ]₂ ≡⟨ /∋-map-▻ (suc x) f ρ ⟩ [ suc[ σ ] x /∋ (map f ρ ▻ f · t) ]₂ ≡⟨ P.refl ⟩ [ x /∋ map f ρ ]₂ ≡⟨ /∋-map x f ρ ⟩ [ f · (x /∋ ρ) ]₂ ∎ open Dummy public abstract -- Map is functorial. map-[id] : ∀ {t} {T : Term-like t} {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T ρ̂) → map ([id] {T = T}) ρ ≅-⇨ ρ map-[id] ε = P.refl map-[id] (ρ ▻ t) = ▻⇨-cong P.refl (map-[id] ρ) P.refl map-[∘] : ∀ {t₁} {T₁ : Term-like t₁} {t₂} {T₂ : Term-like t₂} {t₃} {T₃ : Term-like t₃} {Γ Δ Ε Ζ} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} {ρ̂₃ : Ε ⇨̂ Ζ} (f₂ : [ T₂ ⟶ T₃ ] ρ̂₃) (f₁ : [ T₁ ⟶ T₂ ] ρ̂₂) (ρ : Sub T₁ ρ̂₁) → map (f₂ [∘] f₁) ρ ≅-⇨ map f₂ (map f₁ ρ) map-[∘] f₂ f₁ ε = P.refl map-[∘] f₂ f₁ (ρ ▻ t) = begin [ map (f₂ [∘] f₁) (ρ ▻ t) ] ≡⟨ map-▻ (f₂ [∘] f₁) ρ t ⟩ [ map (f₂ [∘] f₁) ρ ▻ f₂ · (f₁ · t) ] ≡⟨ ▻⇨-cong P.refl (map-[∘] f₂ f₁ ρ) P.refl ⟩ [ map f₂ (map f₁ ρ) ▻ f₂ · (f₁ · t) ] ≡⟨ P.sym $ map-▻ f₂ (map f₁ ρ) (f₁ · t) ⟩ [ map f₂ (map f₁ ρ ▻ f₁ · t) ] ≡⟨ map-cong (f₂ ∎-⟶) (P.sym $ map-▻ f₁ ρ t) ⟩ [ map f₂ (map f₁ (ρ ▻ t)) ] ∎
{ "alphanum_fraction": 0.3731012118, "avg_line_length": 39.06, "ext": "agda", "hexsha": "9b6acfe46608be5a5055fe9351a3c0f497f50839", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Substitution/Data/Map.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Substitution/Data/Map.agda", "max_line_length": 88, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Substitution/Data/Map.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 3120, "size": 5859 }
{-# OPTIONS --without-K --safe #-} module Categories.Comonad where open import Level open import Categories.Category using (Category) open import Categories.Functor using (Functor; Endofunctor; _∘F_) renaming (id to idF) open import Categories.NaturalTransformation renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism hiding (_≃_) open import Categories.NaturalTransformation.Equivalence open NaturalIsomorphism record Comonad {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where field F : Endofunctor C ε : NaturalTransformation F idF δ : NaturalTransformation F (F ∘F F) module F = Functor F module ε = NaturalTransformation ε module δ = NaturalTransformation δ open Category C open Functor F field assoc : ∀ {X : Obj} → δ.η (F₀ X) ∘ δ.η X ≈ F₁ (δ.η X) ∘ δ.η X sym-assoc : ∀ {X : Obj} → F₁ (δ.η X) ∘ δ.η X ≈ δ.η (F₀ X) ∘ δ.η X identityˡ : ∀ {X : Obj} → F₁ (ε.η X) ∘ δ.η X ≈ id identityʳ : ∀ {X : Obj} → ε.η (F₀ X) ∘ δ.η X ≈ id
{ "alphanum_fraction": 0.6696252465, "avg_line_length": 32.7096774194, "ext": "agda", "hexsha": "b682e545dc7af6545389d5c0d524396c2146187a", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Comonad.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Comonad.agda", "max_line_length": 86, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Comonad.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 348, "size": 1014 }
-- {-# OPTIONS -v tc.mod.apply:80 #-} module Issue1985 where module Def where postulate A : Set module Par (X : Set₁) where postulate B : Set open Def public -- module Works where -- module Ren B = Par B -- module App = Ren Set module Fails where module RenP (X : Set₁) = Par X module Ren = Par -- Like RenP, Ren should contain -- A : (B : Set) → Set -- A B = Par.A B -- but it incorrectly contained -- A : Set -- A = Par.A A₁ A₂ B₁ B₂ : Set₁ → Set A₁ = RenP.A A₂ = Ren.A B₁ = RenP.B B₂ = Ren.B module App = Ren Set A₃ B₃ : Set A₃ = App.A B₃ = App.B
{ "alphanum_fraction": 0.5761047463, "avg_line_length": 16.0789473684, "ext": "agda", "hexsha": "5d5ecb642910402d6517d631c176e70d0b49faa2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1985.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1985.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1985.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 232, "size": 611 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Primitive postulate A : Set F : ∀ {ℓ} (XF : Set ℓ) → Set ℓ record R (Q : ∀ {ℓ} (XQ : Set ℓ) → Set ℓ) ℓ : Set (lsuc ℓ) where field f : {A : Set ℓ} (fa : F A) → Q A open R module M (X : Set₁) where postulate G : ∀ {ℓ} (XG : Set ℓ) → Set ℓ module N (Y : Set) where open M Set variable z : F A postulate P : (p : G A) → Set fails : P (f _ z)
{ "alphanum_fraction": 0.5136363636, "avg_line_length": 15.7142857143, "ext": "agda", "hexsha": "9cacde3f4ed19f4bead8db794c56aaae8f96f06e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4149.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4149.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4149.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 190, "size": 440 }
module Imports.StaleMetaLiteral where open import Common.Prelude hiding (_>>=_) open import Common.Reflection open import Common.Equality macro metaLit : Tactic metaLit hole = checkType unknown (def (quote Nat) []) >>= λ { (meta m args) → unify hole (lit (meta m)) >>= λ _ → unify (meta m args) (lit (nat 42)) ; _ → typeError (strErr "not a meta" ∷ []) } staleMeta : Meta staleMeta = metaLit
{ "alphanum_fraction": 0.6485849057, "avg_line_length": 22.3157894737, "ext": "agda", "hexsha": "bd239141148ea6fb617d9a684197a7a6f48c45b4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Imports/StaleMetaLiteral.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Imports/StaleMetaLiteral.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Imports/StaleMetaLiteral.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 126, "size": 424 }
module Verifier where open import Definitions open import NatEquality using (_≟_ ; equality-disjoint) check1 : (m n : ℕ) → Equal? m n check1 = _≟_ check2 : (m n : ℕ) → m ≡ n → m ≢ n → ⊥ check2 = equality-disjoint
{ "alphanum_fraction": 0.6589861751, "avg_line_length": 18.0833333333, "ext": "agda", "hexsha": "dd5f327ee64ca7ee2db177706147e01c06629842", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "danr/agder", "max_forks_repo_path": "problems/NatEquality/Verifier.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "danr/agder", "max_issues_repo_path": "problems/NatEquality/Verifier.agda", "max_line_length": 55, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "danr/agder", "max_stars_repo_path": "problems/NatEquality/Verifier.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z", "num_tokens": 75, "size": 217 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.MappingCones.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Data.Unit open import Cubical.Data.Sum open import Cubical.HITs.Pushout open import Cubical.HITs.MappingCones.Base private variable ℓ ℓ' ℓ'' : Level PushoutUnit-iso-Cone : ∀ {X : Type ℓ} {Y : Type ℓ'} (f : X → Y) → Iso (Pushout (const tt) f) (Cone f) Iso.fun (PushoutUnit-iso-Cone f) (inl tt) = hub Iso.fun (PushoutUnit-iso-Cone f) (inr x) = inj x Iso.fun (PushoutUnit-iso-Cone f) (push x i) = spoke x i Iso.inv (PushoutUnit-iso-Cone f) (inj x) = inr x Iso.inv (PushoutUnit-iso-Cone f) hub = inl tt Iso.inv (PushoutUnit-iso-Cone f) (spoke x i) = push x i Iso.rightInv (PushoutUnit-iso-Cone f) (inj x) = refl Iso.rightInv (PushoutUnit-iso-Cone f) hub = refl Iso.rightInv (PushoutUnit-iso-Cone f) (spoke x i) = refl Iso.leftInv (PushoutUnit-iso-Cone f) (inl tt) = refl Iso.leftInv (PushoutUnit-iso-Cone f) (inr x) = refl Iso.leftInv (PushoutUnit-iso-Cone f) (push x i) = refl PushoutUnit≡Cone : ∀ {X : Type ℓ} {Y : Type ℓ'} (f : X → Y) → Pushout (const tt) f ≡ Cone f PushoutUnit≡Cone f = isoToPath (PushoutUnit-iso-Cone f) ConesUnit-iso-Cone : ∀ {X : Type ℓ} {Y : Type ℓ'} (f : X → Y) → Iso (Cones Unit (λ { tt → f })) (Cone f) Iso.fun (ConesUnit-iso-Cone f) (inj x) = inj x Iso.fun (ConesUnit-iso-Cone f) (hub tt) = hub Iso.fun (ConesUnit-iso-Cone f) (spoke tt x i) = spoke x i Iso.inv (ConesUnit-iso-Cone f) (inj x) = inj x Iso.inv (ConesUnit-iso-Cone f) hub = hub tt Iso.inv (ConesUnit-iso-Cone f) (spoke x i) = spoke tt x i Iso.rightInv (ConesUnit-iso-Cone f) (inj x) = refl Iso.rightInv (ConesUnit-iso-Cone f) hub = refl Iso.rightInv (ConesUnit-iso-Cone f) (spoke x i) = refl Iso.leftInv (ConesUnit-iso-Cone f) (inj x) = refl Iso.leftInv (ConesUnit-iso-Cone f) (hub x) = refl Iso.leftInv (ConesUnit-iso-Cone f) (spoke a x i) = refl ConesUnit≡Cone : ∀ {X : Type ℓ} {Y : Type ℓ'} (f : X → Y) → (Cones Unit (λ { tt → f })) ≡ (Cone f) ConesUnit≡Cone f = isoToPath (ConesUnit-iso-Cone f)
{ "alphanum_fraction": 0.6620099144, "avg_line_length": 42.6730769231, "ext": "agda", "hexsha": "4af0d01466e4690c5ba23edd5e399a3acca3ad93", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/MappingCones/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/MappingCones/Properties.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/MappingCones/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 852, "size": 2219 }
{- This second-order term syntax was created from the following second-order syntax description: syntax PCF type N : 0-ary _↣_ : 2-ary | r30 B : 0-ary term app : α ↣ β α -> β | _$_ l20 lam : α.β -> α ↣ β | ƛ_ r10 tr : B fl : B ze : N su : N -> N pr : N -> N iz : N -> B | 0? if : B α α -> α fix : α.α -> α theory (ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a] (ƛη) f : α ↣ β |> lam (x. app(f, x)) = f (zz) |> iz (ze) = tr (zs) n : N |> iz (su (n)) = fl (ps) n : N |> pr (su (n)) = n (ift) t f : α |> if (tr, t, f) = t (iff) t f : α |> if (fl, t, f) = f (fix) t : α.α |> fix (x.t[x]) = t[fix (x.t[x])] -} module PCF.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import PCF.Signature private variable Γ Δ Π : Ctx α β : PCFT 𝔛 : Familyₛ -- Inductive term declaration module PCF:Terms (𝔛 : Familyₛ) where data PCF : Familyₛ where var : ℐ ⇾̣ PCF mvar : 𝔛 α Π → Sub PCF Π Γ → PCF α Γ _$_ : PCF (α ↣ β) Γ → PCF α Γ → PCF β Γ ƛ_ : PCF β (α ∙ Γ) → PCF (α ↣ β) Γ tr : PCF B Γ fl : PCF B Γ ze : PCF N Γ su : PCF N Γ → PCF N Γ pr : PCF N Γ → PCF N Γ 0? : PCF N Γ → PCF B Γ if : PCF B Γ → PCF α Γ → PCF α Γ → PCF α Γ fix : PCF α (α ∙ Γ) → PCF α Γ infixl 20 _$_ infixr 10 ƛ_ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 PCFᵃ : MetaAlg PCF PCFᵃ = record { 𝑎𝑙𝑔 = λ where (appₒ ⋮ a , b) → _$_ a b (lamₒ ⋮ a) → ƛ_ a (trₒ ⋮ _) → tr (flₒ ⋮ _) → fl (zeₒ ⋮ _) → ze (suₒ ⋮ a) → su a (prₒ ⋮ a) → pr a (izₒ ⋮ a) → 0? a (ifₒ ⋮ a , b , c) → if a b c (fixₒ ⋮ a) → fix a ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module PCFᵃ = MetaAlg PCFᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : PCF ⇾̣ 𝒜 𝕊 : Sub PCF Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 (_$_ a b) = 𝑎𝑙𝑔 (appₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (ƛ_ a) = 𝑎𝑙𝑔 (lamₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 tr = 𝑎𝑙𝑔 (trₒ ⋮ tt) 𝕤𝕖𝕞 fl = 𝑎𝑙𝑔 (flₒ ⋮ tt) 𝕤𝕖𝕞 ze = 𝑎𝑙𝑔 (zeₒ ⋮ tt) 𝕤𝕖𝕞 (su a) = 𝑎𝑙𝑔 (suₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (pr a) = 𝑎𝑙𝑔 (prₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (0? a) = 𝑎𝑙𝑔 (izₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (if a b c) = 𝑎𝑙𝑔 (ifₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b , 𝕤𝕖𝕞 c) 𝕤𝕖𝕞 (fix a) = 𝑎𝑙𝑔 (fixₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ PCFᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ PCF α Γ) → 𝕤𝕖𝕞 (PCFᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (appₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (lamₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (trₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (flₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (zeₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (suₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (prₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (izₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (ifₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (fixₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ PCF ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : PCF ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ PCFᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : PCF α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub PCF Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! (_$_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (ƛ_ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! tr = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! fl = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! ze = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (su a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (pr a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (0? a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (if a b c) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b | 𝕤𝕖𝕞! c = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (fix a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature PCF:Syn : Syntax PCF:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = PCF:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open PCF:Terms 𝔛 in record { ⊥ = PCF ⋉ PCFᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax PCF:Syn public open PCF:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands PCFᵃ public open import SOAS.Metatheory PCF:Syn public
{ "alphanum_fraction": 0.4786079836, "avg_line_length": 27.1388888889, "ext": "agda", "hexsha": "e3ac035a4f420048ea1414ab385eda646fefcbbf", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/PCF/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/PCF/Syntax.agda", "max_line_length": 93, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/PCF/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 3247, "size": 4885 }
{- An agda file contains a single module. The module name should correspond to the name and path of the file. The path is relative to the project root. In this case the project root is the root of Agda II. Modules can be parameterised, but in this case we choose not to parameterise the top-level module. -} module examples.syntax.Syntax where -- It is recommended that the body of the top-level module is indented by a -- small amount, but this is not enforced in the syntax. -- You can have modules inside modules. The name of a sub-module isn't -- qualified. module Expressions (X : Set)(x1, x2 : X) where -- There are three forms of sorts. Set = Set0. postulate A1 : Set A2 : Set3 A3 : Prop -- Independent function space. fun1 : X -> X fun1 x = x -- Implicit independent function space. This is mostly included for -- symmetry, I can't come up with an example when this would be useful. fun2 : {X} -> X fun2 {x} = x -- Dependent function space. fun3 : (A:Set) -> A -> A fun3 A x = x -- Implicit dependent function space. 'A' is implicit so we don't have to -- write it out in the function definition. fun4 : {A:Set} -> A -> A fun4 x = x -- You can also write independent functions using the dependent function -- space syntax. Not that you'd ever want to. fun5 : (_:X) -> X fun5 x = x -- Lambdas can be domain free. const1 : {A, B : Set} -> A -> B -> A const1 = \x y -> x -- Or completely typed. const2 = \{A:Set}{B:Set}(x:A)(y:B) -> x -- inferable, no type needed -- You cannot mix typed and untyped arguments in the same lambda. const3 : {A, B : Set} -> A -> B -> A const3 = \{A}{B} -> \(x:A)(y:B) -> x -- You can have wildcards in lambdas const4 : {A, B : Set} -> A -> B -> A const4 = \x _ -> x -- Implicit arguments can be omitted in applications. x = const1 x1 x2 -- Or made explicit. x' = const1 {X} {X} x1 x2 -- Infix operators can be bound by lambdas. See ComplexDeclarations for -- more information about infix operators. dup : {A:Set} -> (A -> A -> A) -> A -> A dup = \(+) x -> x + x -- The two basic declarations are function definitions and datatype -- declarations. module BasicDeclarations (X : Set) where -- The most common declaration is the function definition. It consists of -- two parts; a type signature and a set of function clauses. Type -- signatures have the form 'id : type', no telescopes are allowed at this -- point. This can be discussed. id : X -> X id x = x -- You can omit the type signature if the type can be inferred. id' = id -- Datatypes are introduced with the data keyword. data Bool : Set where false : Bool true : Bool -- The parameters to the datatype (A in this case) are in scope in the -- types of the constructors. At the moment inductive families are not -- supported. data List (A : Set) : Set where nil : List A (::) : A -> List A -> List A -- When using a constructor as a function, the parameters are hidden -- arguments. singleton : X -> List X singleton x = x :: nil singleton' : X -> List X singleton' x = (::) {X} x (nil {X}) -- You can pattern match over elements of a datatype when defining -- functions (and only then). null : (A : Set) -> List A -> Bool null A nil = true null A (x::xs) = false -- Patterns can be nested (and functions can be recursive). and : List Bool -> Bool and nil = true and (true::xs) = and xs and (false::xs) = false -- Functions can be defined in an infix style. When doing this it must be -- clear what name is being defined without looking at fixities. Hence we -- could never remove the parenthesis around x::xs in the second clause. (++) : List X -> List X -> List X nil ++ ys = ys (x::xs) ++ ys = x :: (xs ++ ys) -- You can also use a combination of infix and prefix. (@) : {A, B, C : Set} -> (B -> C) -> (A -> B) -> A -> C (f @ g) x = f (g x) -- Declarations can appear in many different contexts and not all -- declarations are allowed everywhere. module ComplexDeclarations (X : Set) where -- You can introduce new constants with the postulate declaration. A -- postulate declaration takes a list of type signatures. postulate A : Set a : A -- Let's introduce some datatypes so we have something to work with. At the -- same time we illustrate that layout is optional. data Nat : Set where { zero : Nat; suc : Nat -> Nat } data Bool : Set where { false : Bool; true : Bool } {- We can declare the fixity of infix symbols. The fixity is tied to a particular binding of a name. The binding doesn't have to be in scope directly (as in the example below), but it should be possible to bring it into scope by moving the fixity declaration further down in the current block (but never inside things). The following wouldn't be allowed: infixl 15 + mutual (+) : Nat -> Nat -> Nat .. There are three forms: infix, infixl and infixr, for non-associative, left associative and right associative respectively. The number is the precedence level. -} infixl 15 +, `plus` (+) : Nat -> Nat -> Nat n + zero = zero n + suc m = suc (n + m) plus = (+) -- The following code is to stress test the handling of infix applications. infixl 10 @ infixl 11 @@ infixr 10 # infixr 11 ## postulate (@) : Nat -> Nat -> Nat (#) : Nat -> Nat -> Nat (@@) : Nat -> Nat -> Nat (##) : Nat -> Nat -> Nat z = zero test1 = z @ (z # z) test2 = (z @ z) # z test3 = z # (z @ z) test4 = (z # z) @ z test5 = z ## z # z ## z # z test6 = z @@ z @ z @@ z @ z test7 = z # z @@ z @@ z # z -- Mutually recursive definition are introduced using the 'mutual' keyword. -- A mutual block can contain function definitions, datatypes -- (induction-recursion) and fixity declarations. mutual even : Nat -> Bool even zero = true even (suc n) = odd n odd : Nat -> Bool odd zero = false odd (suc n) = even n -- If a function is declared abstract the definition of the function is not -- visible outside the module. For an abstract datatype the constructors -- are hidden. Definitions that can appear in an abstract block are: -- function definitions, data declarations, fixity declarations, mutual -- blocks, open and name space declarations (see NameSpaces). abstract data Stack : Set where nil : Stack cons : A -> Stack -> Stack empty : Stack empty = nil push : A -> Stack -> Stack push = cons -- Local declarations are introduces either with a let or in a where -- clause. A where clause is attached to a function clause. Everything that -- can appear in an abstract block can appear in a local declaration, plus -- abstract blocks. Local functions can be recursive. foo : (A : Set) -> A -> A foo A x = let f : Local -> A f (local y) = y in f (local x) where data Local : Set where local : A -> Local -- You can declare things to be private to the current module. This means -- that they cannot be accessed outside the module (but they're still -- visible inside the module and its submodules). The only things that -- cannot appear in a private block are other private blocks and import -- statements. private bar : X -> X bar x = x -- Private declarations can go inside mutual and abstract blocks. mutual private f : Nat -> Nat f zero = zero f (suc n) = g n g : Nat -> Nat g n = f n abstract Nat' : Set Nat' = Nat private h : Nat' -> Nat h n = n -- A name space is something that contains names. You can create new -- name spaces and bring names from a name space into scope. module NameSpaces where -- To access definitions from a module in a different file, you have to -- 'import' this module. Only top-level modules (which have their own -- files) can be imported. -- If the imported module is not parameterised a name space with the same -- name as the module is created. import examples.syntax.ModuleA -- We can now refer to things from ModuleA using the created name -- space. Note that no unqualified names were brought into scope -- (except, perhaps, the name of the name space). [To bring -- unqualified names into scope we have to use the 'open' -- declaration.] FunnyNat = examples.syntax.ModuleA.Nat -- If the name of an imported module clashes with a local module we might -- have to rename the module we are importing import examples.syntax.ModuleA as A import examples.syntax.ModuleA as A' using (Nat) Nat1 = A.Nat Nat2 = A'.Nat {- You can't project from a parameterised module. It has to be instantiated first. The only thing that happens when importing is that the module name 'examples.syntax.ModuleB' is brought into scope (and the type checker goes away and type checks this module). -} import examples.syntax.ModuleB -- To instantiate ModuleB we need something to instantiate it with. postulate X : Set (==) : X -> X -> Prop refl : (x : X) -> x == x -- To instantiate a module you create a new module and define it as the -- instantiation in question. module B = examples.syntax.ModuleB X (==) refl -- Now the module B contains all the names from ModuleB. XList = B.List And = B./\ -- qualified operators are not infix symbols dummyX = B.SubModule.dummy -- submodules of ModuleB are also in scope -- This of course works for non-parameterised modules as well. module B' = B -- And you can create parameterised modules this way. module BX ((==) : X -> X -> Prop)(refl : (x : X) -> x == x) = B X (==) refl -- To bring names from a module into scope you use an open declaration. open examples.syntax.ModuleA two : FunnyNat two = eval (plus (suc zero) (suc zero)) {- In all three declarations (import, module instantiation and open) you can give modifiers that affect the names which are imported. There are three modifiers: using (x1;..;xn) only import x1,..,xn hiding (x1;..;xn) import everything but x1,..,xn renaming (x1 to y1;..;xn to yn) import x1,..,xn but call them y1,..,yn Restrictions: - a modifier can appear only once - 'using' and 'hiding' cannot appear together - imported names must be distinct (e.g. you cannot rename to a name that is already being imported). -} -- B1 only contains True and False module B1 = B using (True; False) -- B2 contains True, False and And where And = B./\ module B2 = B using (True; False) renaming (/\ to And) -- B3 contains everything from B except reflEqList and eqList, plus === -- where (===) = B.eqList. module B3 = B hiding (reflEqList) renaming (eqList to ===) -- When referring to sub modules you have to be explicitly about it being -- a module module B4 = B renaming (module SubModule to Sub) dummy : X dummy = B4.Sub.dummy -- There are two kinds of meta variables; question marks and underscores. -- Question marks are used for interaction and underscores for implicit -- arguments. module MetaVariables where postulate X : Set x : X -- There are two ways of writing a question mark: ? and {! ... !} -- The type checker will not complain about unsolved question marks (unless -- you claim you are done). incomplete : {A:Set} -> A -> A incomplete x = ? incomplete' : {A:Set} -> A -> A incomplete' x = {! you can put anything in here, even {! nested holes !} !} -- Underscores should always be solvable locally. Internally underscores -- are inserted for implicit arguments, but there are cases where you would -- like to write them explicitly. For instance, if you want to give one but -- not all implicit arguments to a function explicitly. underscore : ({A,B,C:Set} -> (A -> A) -> B -> C) -> X underscore f = f {_} {X} {_} (\y -> y) x -- Note that '_' is not an identifier character. The current use of -- underscore is not the real reason for this. The idea is rather that -- underscore will be used for subscripts. id : (A : Set) -> A -> A id A x = x x' = id_x -- this means id _ x -- The parser supports four types of literals. The syntax is the same as in -- Haskell (since that meant I could steal the lexer for them from ghc). module Literals where -- We haven't decided how to handle built-in types. postulate Integer : Set Char : Set String : Set Float : Set fortyTwo : Integer fortyTwo = 42 helloWorld : String helloWorld = "Hello World!" escape : Char escape = '\ESC' pi : Float pi = 3.141592 -- There are few things that the parser doesn't implement. {- Fancy case. I haven't been able to come up with a nice syntax for the fancy case statement. The difficulty is that we should make it clear what arguments to the elimination rule will appear as patterns (the targets). Suggestions are welcome. Also I'm not sure that we want the fancy case. It would be better to have a good way of doing actual pattern matching on inductive families. -} {- Relative imports. You might want to be able to say import .ModuleA to import the module 'current.directory.ModuleA'. Easy to implement but I'm not sure it's that painful to write the complete name (not a problem in Haskell for instance). Drawbacks: it looks kind of funny and it adds an extra bit of syntax to remember. -}
{ "alphanum_fraction": 0.6268888575, "avg_line_length": 33.0887850467, "ext": "agda", "hexsha": "e27bbd3df5156540e97133ab72acbe0573e432a2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/syntax/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/syntax/Syntax.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/syntax/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 3745, "size": 14162 }
module LitDistinct where {-# BUILTIN STRING String #-} data _==_ {A : Set}(x : A) : A -> Set where refl : x == x data False : Set where foo : "bar" == "baz" -> False foo ()
{ "alphanum_fraction": 0.5635359116, "avg_line_length": 12.9285714286, "ext": "agda", "hexsha": "9c6f04dce7b11c37308a27152b2a830f8f668627", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/LitDistinct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/LitDistinct.agda", "max_line_length": 43, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/LitDistinct.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 58, "size": 181 }
open import Data.List hiding ([_]) renaming (_∷_ to _∷ₗ_) open import Data.Maybe open import Data.Product open import AEff open import EffectAnnotations open import Renamings open import Substitutions open import Types open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary module Preservation where -- BINDING CONTEXTS BCtx = List VType -- WELL-TYPED EVALUATION CONTEXTS data _⊢E[_]⦂_ (Γ : Ctx) : (Δ : BCtx) → CType → Set where [-] : {C : CType} → ------------- Γ ⊢E[ [] ]⦂ C let=_`in_ : {Δ : BCtx} {X Y : VType} {o : O} {i : I} → Γ ⊢E[ Δ ]⦂ X ! (o , i) → Γ ∷ X ⊢M⦂ Y ! (o , i) → ------------------------ Γ ⊢E[ Δ ]⦂ Y ! (o , i) ↑ : {Δ : BCtx} {X : VType} {o : O} {i : I} → (op : Σₛ) → op ∈ₒ o → Γ ⊢V⦂ ``(payload op) → Γ ⊢E[ Δ ]⦂ X ! (o , i) → ------------------------ Γ ⊢E[ Δ ]⦂ X ! (o , i) ↓ : {Δ : BCtx} {X : VType} {o : O} {i : I} (op : Σₛ) → Γ ⊢V⦂ ``(payload op) → Γ ⊢E[ Δ ]⦂ X ! (o , i) → --------------------------- Γ ⊢E[ Δ ]⦂ X ! op ↓ₑ (o , i) promise_∣_↦_`in_ : {Δ : BCtx} {X Y : VType} {o o' : O} {i i' : I} → (op : Σₛ) → lkpᵢ op i ≡ just (o' , i') → Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i') → Γ ∷ ⟨ X ⟩ ⊢E[ Δ ]⦂ Y ! (o , i) → ------------------------------------------ Γ ⊢E[ X ∷ₗ Δ ]⦂ Y ! (o , i) coerce : {Δ : BCtx} {X : VType} {o o' : O} {i i' : I} → o ⊑ₒ o' → i ⊑ᵢ i' → Γ ⊢E[ Δ ]⦂ X ! (o , i) → ------------------------ Γ ⊢E[ Δ ]⦂ X ! (o' , i') -- MERGING AN ORDINARY CONTEXT AND A BINDING CONTEXT infix 30 _⋈_ _⋈_ : Ctx → BCtx → Ctx Γ ⋈ [] = Γ Γ ⋈ (X ∷ₗ Δ) = (Γ ∷ ⟨ X ⟩) ⋈ Δ -- FINDING THE TYPE OF THE HOLE OF A WELL-TYPED EVALUATION CONTEXT hole-ty-e : {Γ : Ctx} {Δ : BCtx} {C : CType} → Γ ⊢E[ Δ ]⦂ C → CType hole-ty-e {_} {_} {C} [-] = C hole-ty-e (let= E `in M) = hole-ty-e E hole-ty-e (↑ op p V E) = hole-ty-e E hole-ty-e (↓ op V E) = hole-ty-e E hole-ty-e (promise op ∣ p ↦ M `in E) = hole-ty-e E hole-ty-e (coerce p q E) = hole-ty-e E -- FILLING A WELL-TYPED EVALUATION CONTEXT {- LEMMA 3.5 -} infix 30 _[_] _[_] : {Γ : Ctx} {Δ : BCtx} {C : CType} → (E : Γ ⊢E[ Δ ]⦂ C) → Γ ⋈ Δ ⊢M⦂ (hole-ty-e E) → Γ ⊢M⦂ C [-] [ M ] = M (let= E `in N) [ M ] = let= (E [ M ]) `in N ↑ op p V E [ M ] = ↑ op p V (E [ M ]) ↓ op V E [ M ] = ↓ op V (E [ M ]) (promise op ∣ p ↦ N `in E) [ M ] = promise op ∣ p ↦ N `in (E [ M ]) coerce p q E [ M ] = coerce p q (E [ M ]) -- STRENGTHENING OF GROUND VALUES WRT BOUND PROMISES strengthen-var : {Γ : Ctx} → (Δ : BCtx) → {A : BType} → `` A ∈ Γ ⋈ Δ → `` A ∈ Γ strengthen-var [] x = x strengthen-var (y ∷ₗ Δ) x with strengthen-var Δ x ... | Tl p = p strengthen-val : {Γ : Ctx} {Δ : BCtx} {A : BType} → Γ ⋈ Δ ⊢V⦂ `` A → Γ ⊢V⦂ `` A strengthen-val {_} {Δ} (` x) = ` strengthen-var Δ x strengthen-val (``_ c) = ``_ c strengthen-val-[] : {Γ : Ctx} {A : BType} → (V : Γ ⋈ [] ⊢V⦂ `` A) → -------------------- strengthen-val {Δ = []} V ≡ V strengthen-val-[] (` x) = refl strengthen-val-[] (``_ c) = refl -- SMALL-STEP OPERATIONAL SEMANTICS FOR WELL-TYPED COMPUTATIONS -- (ADDITIONALLY SERVES AS THE PRESERVATION THEOREM) {- THEOREM 3.6 -} infix 10 _↝_ data _↝_ {Γ : Ctx} : {C : CType} → Γ ⊢M⦂ C → Γ ⊢M⦂ C → Set where -- COMPUTATIONAL RULES apply : {X : VType} {C : CType} → (M : Γ ∷ X ⊢M⦂ C) → (V : Γ ⊢V⦂ X) → ---------------------- (ƛ M) · V ↝ M [ id-subst [ V ]s ]m let-return : {X Y : VType} {o : O} {i : I} → (V : Γ ⊢V⦂ X) → (N : Γ ∷ X ⊢M⦂ Y ! (o , i)) → ----------------------------- let= (return V) `in N ↝ N [ id-subst [ V ]s ]m let-↑ : {X Y : VType} {o : O} {i : I} {op : Σₛ} → (p : op ∈ₒ o) → (V : Γ ⊢V⦂ ``(payload op)) → (M : Γ ⊢M⦂ X ! (o , i)) → (N : Γ ∷ X ⊢M⦂ Y ! (o , i)) → ----------------------------- let= (↑ op p V M) `in N ↝ ↑ op p V (let= M `in N) let-promise : {X Y Z : VType} {o o' : O} {i i' : I} {op : Σₛ} → (p : lkpᵢ op i ≡ just (o' , i')) → (M₁ : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')) → (M₂ : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) → (N : Γ ∷ Y ⊢M⦂ Z ! (o , i)) → --------------------------------------------------------------------------- let= (promise op ∣ p ↦ M₁ `in M₂) `in N ↝ (promise op ∣ p ↦ M₁ `in (let= M₂ `in (M-rename (comp-ren exchange wk₁) N))) letrec-unfold : {X : VType} {C D : CType} (M : Γ ∷ (X ⇒ C) ∷ X ⊢M⦂ C) → (N : Γ ∷ (X ⇒ C) ⊢M⦂ D) → ---------------------------------------- (letrec M `in N) ↝ N [ id-subst [ ƛ (letrec M-rename wk₃ M `in M-rename exchange M) ]s ]m promise-↑ : {X Y : VType} {o o' : O} {i i' : I} {op op' : Σₛ} → (p : lkpᵢ op i ≡ just (o' , i')) → (q : op' ∈ₒ o) → (V : Γ ∷ ⟨ X ⟩ ⊢V⦂ ``(payload op')) → (M : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')) → (N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) → -------------------------------------------- (promise op ∣ p ↦ M `in (↑ op' q V N)) ↝ ↑ op' q (strengthen-val {Δ = X ∷ₗ []} V) (promise op ∣ p ↦ M `in N) ↓-return : {X : VType} {o : O} {i : I} {op : Σₛ} → (V : Γ ⊢V⦂ ``(payload op)) → (W : Γ ⊢V⦂ X) → ---------------------------------------------------------------- ↓ {o = o} {i = i} op V (return W) ↝ return {o = proj₁ (op ↓ₑ (o , i))} {i = proj₂ (op ↓ₑ (o , i))} W ↓-↑ : {X : VType} {o : O} {i : I} {op : Σₛ} {op' : Σₛ} → (p : op' ∈ₒ o) → (V : Γ ⊢V⦂ ``(payload op)) → (W : Γ ⊢V⦂ ``(payload op')) → (M : Γ ⊢M⦂ X ! (o , i)) → ------------------------------- ↓ op V (↑ op' p W M) ↝ ↑ op' (↓ₑ-⊑ₒ op' p) W (↓ op V M) ↓-promise-op : {X Y : VType} {o o' : O} {i i' : I} {op : Σₛ} → (p : lkpᵢ op i ≡ just (o' , i')) → (V : Γ ⊢V⦂ ``(payload op)) → (M : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')) → (N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) → --------------------------------------------------------------------------------------- ↓ op V (promise op ∣ p ↦ M `in N ) ↝ (let= (coerce (↓ₑ-⊑ₒ-o' {o} p) (↓ₑ-⊑ₒ-i' {o} p) (M [ id-subst [ V ]s ]m)) `in ↓ op (V-rename wk₁ V) ((M-rename (comp-ren exchange wk₁) N) [ id-subst [ ` Hd ]s ]m)) ↓-promise-op' : {X Y : VType} {o o' : O} {i i' : I} {op op' : Σₛ} → (p : ¬ op ≡ op') → (q : lkpᵢ op' i ≡ just (o' , i')) → (V : Γ ⊢V⦂ ``(payload op)) → (M : Γ ∷ ``(payload op') ⊢M⦂ ⟨ X ⟩ ! (o' , i')) → (N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) → ------------------------------------------------------------------------------------------ ↓ op V (promise op' ∣ q ↦ M `in N ) ↝ promise_∣_↦_`in_ {o' = proj₁ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q)} {i' = proj₁ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q))} op' (proj₁ (proj₂ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q)))) (coerce (proj₁ (proj₂ (proj₂ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q))))) (proj₂ (proj₂ (proj₂ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q))))) M) (↓ op (V-rename wk₁ V) N) await-promise : {X : VType} {C : CType} → (V : Γ ⊢V⦂ X) → (M : Γ ∷ X ⊢M⦂ C) → -------------------- await ⟨ V ⟩ until M ↝ M [ id-subst [ V ]s ]m -- EVALUATION CONTEXT RULE context : {Δ : BCtx} {C : CType} → (E : Γ ⊢E[ Δ ]⦂ C) → {M N : Γ ⋈ Δ ⊢M⦂ (hole-ty-e E)} → M ↝ N → ------------------------------- E [ M ] ↝ E [ N ] -- COERCION RULES -- (THE RESULT OF WORKING WITH WELL-TYPED SYNTAX AND MAKING SUBSUMPTION INTO AN EXPLICIT COERCION) coerce-return : {X : VType} {o o' : O} {i i' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} → (V : Γ ⊢V⦂ X) → -------------------------------- coerce p q (return V) ↝ return V coerce-↑ : {X : VType} {o o' : O} {i i' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} {op : Σₛ} → (r : op ∈ₒ o) → (V : Γ ⊢V⦂ ``(payload op)) → (M : Γ ⊢M⦂ X ! (o , i)) → ------------------------------- coerce p q (↑ op r V M) ↝ ↑ op (p op r) V (coerce p q M) coerce-promise : {X Y : VType} {o o' o'' : O} {i i' i'' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} {op : Σₛ} → (r : lkpᵢ op i ≡ just (o'' , i'')) (M : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o'' , i'')) → (N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) → ------------------------------------------------------------------ coerce p q (promise op ∣ r ↦ M `in N) ↝ promise_∣_↦_`in_ {o' = lkpᵢ-nextₒ q r} {i' = lkpᵢ-nextᵢ q r} op (lkpᵢ-next-eq q r) (coerce (lkpᵢ-next-⊑ₒ q r) (lkpᵢ-next-⊑ᵢ q r) M) (coerce p q N)
{ "alphanum_fraction": 0.2596823854, "avg_line_length": 34.5714285714, "ext": "agda", "hexsha": "7c1a66f17b14de6ad54a98ed96dfb6612885bbac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danelahman/aeff-agda", "max_forks_repo_path": "Preservation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danelahman/aeff-agda", "max_issues_repo_path": "Preservation.agda", "max_line_length": 110, "max_stars_count": 4, "max_stars_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danelahman/aeff-agda", "max_stars_repo_path": "Preservation.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T22:48:48.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-17T00:15:00.000Z", "num_tokens": 3985, "size": 12342 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT {- Proof that if [A] and [B] are two propositions, then so is [A * B]. -} module homotopy.PropJoinProp {i} {A : Type i} (pA : is-prop A) {j} {B : Type j} (pB : is-prop B) where contr-left : (a : A) → is-contr (A * B) contr-left a = left a , Pushout-elim (λ a' → ap left (prop-has-all-paths pA a a')) (λ b' → glue (a , b')) (λ {(a' , b') → ↓-cst=idf-in' $ ! $ ↓-app=cst-out (apd (λ a → glue (a , b')) (prop-has-all-paths pA a a'))}) contr-right : (b : B) → is-contr (A * B) contr-right b = right b , Pushout-elim (λ a' → ! (glue (a' , b))) (λ b' → ap right (prop-has-all-paths pB b b')) (λ {(a' , b') → ↓-cst=idf-in' $ ! (glue (a' , b)) ∙ glue (a' , b') =⟨ ! (↓-cst=app-out' $ apd (λ b → glue (a' , b)) (prop-has-all-paths pB b b')) |in-ctx ! (glue (a' , b)) ∙_ ⟩ ! (glue (a' , b)) ∙ glue (a' , b) ∙ ap right (prop-has-all-paths pB b b') =⟨ ! $ ∙-assoc (! (glue (a' , b))) (glue (a' , b)) (ap right (prop-has-all-paths pB b b')) ⟩ (! (glue (a' , b)) ∙ glue (a' , b)) ∙ ap right (prop-has-all-paths pB b b') =⟨ !-inv-l (glue (a' , b)) |in-ctx _∙ ap right (prop-has-all-paths pB b b') ⟩ ap right (prop-has-all-paths pB b b') =∎}) prop*prop-is-prop : is-prop (A * B) prop*prop-is-prop = inhab-to-contr-is-prop $ Pushout-rec contr-left contr-right (λ _ → prop-has-all-paths is-contr-is-prop _ _)
{ "alphanum_fraction": 0.5175561798, "avg_line_length": 39.5555555556, "ext": "agda", "hexsha": "1c07c86a8cf521a3443549b005f3728f98836e00", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/PropJoinProp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/PropJoinProp.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/PropJoinProp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 587, "size": 1424 }
module Categories.Comonad where
{ "alphanum_fraction": 0.875, "avg_line_length": 16, "ext": "agda", "hexsha": "ed3c45de4aabcb7200c9e5e9a66599f987477f90", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Comonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Comonad.agda", "max_line_length": 31, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "p-pavel/categories", "max_stars_repo_path": "Categories/Comonad.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z", "max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z", "num_tokens": 7, "size": 32 }
{-# OPTIONS --cubical --safe --postfix-projections #-} module Data.Binary.Skew where open import Prelude open import Data.Nat open import Data.List 𝔹 : Type 𝔹 = List ℕ inc : 𝔹 → 𝔹 inc [] = zero ∷ [] inc (x ∷ []) = zero ∷ x ∷ [] inc (x₁ ∷ zero ∷ xs) = suc x₁ ∷ xs inc (x₁ ∷ suc x₂ ∷ xs) = zero ∷ x₁ ∷ x₂ ∷ xs ⟦_⇑⟧ : ℕ → 𝔹 ⟦ zero ⇑⟧ = [] ⟦ suc n ⇑⟧ = inc ⟦ n ⇑⟧ skew : ℕ → ℕ skew n = suc (n + n) w : ℕ → ℕ → ℕ w zero a = a w (suc n) a = skew (w n a) ⟦_∷_⇓⟧^ : ℕ → (ℕ → ℕ) → ℕ → ℕ ⟦ x ∷ xs ⇓⟧^ a = let a′ = w x a in a′ + xs (skew a′) ⟦_⇓⟧ : 𝔹 → ℕ ⟦ [] ⇓⟧ = zero ⟦ x ∷ xs ⇓⟧ = let a = w x 1 in a + foldr ⟦_∷_⇓⟧^ (const zero) xs a -- open import Path.Reasoning -- import Data.Nat.Properties as ℕ -- inc-suc : ∀ x → ⟦ inc x ⇓⟧ ≡ suc ⟦ x ⇓⟧ -- inc-suc [] = refl -- inc-suc (x ∷ []) = refl -- inc-suc (x ∷ zero ∷ xs) = cong suc (ℕ.+-assoc (w x 1) (w x 1) _) -- inc-suc (x₁ ∷ suc x₂ ∷ xs) = cong suc (cong (w x₁ 1 +_) {!!}) -- 𝔹-rightInv : ∀ x → ⟦ ⟦ x ⇑⟧ ⇓⟧ ≡ x -- 𝔹-rightInv zero = refl -- 𝔹-rightInv (suc x) = {!!} -- 𝔹-leftInv : ∀ x → ⟦ ⟦ x ⇓⟧ ⇑⟧ ≡ x -- 𝔹-leftInv [] = refl -- 𝔹-leftInv (x ∷ xs) = {!!} -- 𝔹⇔ℕ : 𝔹 ⇔ ℕ -- 𝔹⇔ℕ .fun = ⟦_⇓⟧ -- 𝔹⇔ℕ .inv = ⟦_⇑⟧ -- 𝔹⇔ℕ .rightInv x = {!!} -- 𝔹⇔ℕ .leftInv = {!!}
{ "alphanum_fraction": 0.464811784, "avg_line_length": 21.0689655172, "ext": "agda", "hexsha": "4c5d793527841ccde9a8623e522dd6a853f76bd6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/Skew.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/Skew.agda", "max_line_length": 70, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/Skew.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 668, "size": 1222 }
-- Andreas, 2011-05-30 -- {-# OPTIONS -v tc.lhs.unify:50 #-} module Issue292c where data ⊥ : Set where infix 3 ¬_ ¬_ : Set → Set ¬ P = P → ⊥ infix 4 _≅_ data _≅_ {A : Set} (x : A) : ∀ {B : Set} → B → Set where refl : x ≅ x record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public data Bool : Set where true false : Bool data Unit1 : Set where unit1 : Unit1 data Unit2 : Set where unit2 : Unit2 D : Bool -> Set D true = Unit1 D false = Unit2 P : Set -> Set P S = Σ S (\s → s ≅ unit1) pbool : P (D true) pbool = unit1 , refl ¬pbool2 : ¬ P (D false) ¬pbool2 ( unit2 , () ) {- expected error unit2 ≅ unit1 should be empty, but that's not obvious to me when checking that the clause ¬pbool2 (unit2 , ()) has type ¬ P (D false) -}
{ "alphanum_fraction": 0.5957711443, "avg_line_length": 16.75, "ext": "agda", "hexsha": "bd804f61a4fc6d49cdb9e2a0c408753ec75904da", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue292c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue292c.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue292c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 306, "size": 804 }
{- This second-order term syntax was created from the following second-order syntax description: syntax FOL type * : 0-ary N : 0-ary term false : * | ⊥ or : * * -> * | _∨_ l20 true : * | ⊤ and : * * -> * | _∧_ l20 not : * -> * | ¬_ r50 eq : N N -> * | _≟_ l20 all : N.* -> * | ∀′ ex : N.* -> * | ∃′ theory (⊥U∨ᴸ) a |> or (false, a) = a (⊥U∨ᴿ) a |> or (a, false) = a (∨A) a b c |> or (or(a, b), c) = or (a, or(b, c)) (∨C) a b |> or(a, b) = or(b, a) (⊤U∧ᴸ) a |> and (true, a) = a (⊤U∧ᴿ) a |> and (a, true) = a (∧A) a b c |> and (and(a, b), c) = and (a, and(b, c)) (∧D∨ᴸ) a b c |> and (a, or (b, c)) = or (and(a, b), and(a, c)) (∧D∨ᴿ) a b c |> and (or (a, b), c) = or (and(a, c), and(b, c)) (∨B∧ᴸ) a b |> or (and (a, b), a) = a (∨B∧ᴿ) a b |> or (a, and (a, b)) = a (∧B∨ᴸ) a b |> and (or (a, b), a) = a (∧B∨ᴿ) a b |> and (a, or (a, b)) = a (⊥X∧ᴸ) a |> and (false, a) = false (⊥X∧ᴿ) a |> and (a, false) = false (¬N∨ᴸ) a |> or (not (a), a) = false (¬N∨ᴿ) a |> or (a, not (a)) = false (∧C) a b |> and(a, b) = and(b, a) (∨I) a |> or(a, a) = a (∧I) a |> and(a, a) = a (¬²) a |> not(not (a)) = a (∨D∧ᴸ) a b c |> or (a, and (b, c)) = and (or(a, b), or(a, c)) (∨D∧ᴿ) a b c |> or (and (a, b), c) = and (or(a, c), or(b, c)) (⊤X∨ᴸ) a |> or (true, a) = true (⊤X∨ᴿ) a |> or (a, true) = true (¬N∧ᴸ) a |> and (not (a), a) = false (¬N∧ᴿ) a |> and (a, not (a)) = false (DM∧) a b |> not (and (a, b)) = or (not(a), not(b)) (DM∨) a b |> not (or (a, b)) = and (not(a), not(b)) (DM∀) p : N.* |> not (all (x. p[x])) = ex (x. not(p[x])) (DM∃) p : N.* |> not (ex (x. p[x])) = all (x. not(p[x])) (∀D∧) p q : N.* |> all (x. and(p[x], q[x])) = and (all(x.p[x]), all(x.q[x])) (∃D∨) p q : N.* |> ex (x. or(p[x], q[x])) = or (ex(x.p[x]), ex(x.q[x])) (∧P∀ᴸ) p : * q : N.* |> and (p, all(x.q[x])) = all (x. and(p, q[x])) (∧P∃ᴸ) p : * q : N.* |> and (p, ex (x.q[x])) = ex (x. and(p, q[x])) (∨P∀ᴸ) p : * q : N.* |> or (p, all(x.q[x])) = all (x. or (p, q[x])) (∨P∃ᴸ) p : * q : N.* |> or (p, ex (x.q[x])) = ex (x. or (p, q[x])) (∧P∀ᴿ) p : N.* q : * |> and (all(x.p[x]), q) = all (x. and(p[x], q)) (∧P∃ᴿ) p : N.* q : * |> and (ex (x.p[x]), q) = ex (x. and(p[x], q)) (∨P∀ᴿ) p : N.* q : * |> or (all(x.p[x]), q) = all (x. or (p[x], q)) (∨P∃ᴿ) p : N.* q : * |> or (ex (x.p[x]), q) = ex (x. or (p[x], q)) (∀Eᴸ) p : N.* n : N |> all (x.p[x]) = and (p[n], all(x.p[x])) (∃Eᴸ) p : N.* n : N |> ex (x.p[x]) = or (p[n], ex (x.p[x])) (∀Eᴿ) p : N.* n : N |> all (x.p[x]) = and (all(x.p[x]), p[n]) (∃Eᴿ) p : N.* n : N |> ex (x.p[x]) = or (ex (x.p[x]), p[n]) (∃⟹) p : N.* q : * |> imp (ex (x.p[x]), q) = all (x. imp(p[x], q)) (∀⟹) p : N.* q : * |> imp (all(x.p[x]), q) = ex (x. imp(p[x], q)) -} module FOL.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import FOL.Signature private variable Γ Δ Π : Ctx α : FOLT 𝔛 : Familyₛ -- Inductive term declaration module FOL:Terms (𝔛 : Familyₛ) where data FOL : Familyₛ where var : ℐ ⇾̣ FOL mvar : 𝔛 α Π → Sub FOL Π Γ → FOL α Γ ⊥ : FOL * Γ _∨_ : FOL * Γ → FOL * Γ → FOL * Γ ⊤ : FOL * Γ _∧_ : FOL * Γ → FOL * Γ → FOL * Γ ¬_ : FOL * Γ → FOL * Γ _≟_ : FOL N Γ → FOL N Γ → FOL * Γ ∀′ : FOL * (N ∙ Γ) → FOL * Γ ∃′ : FOL * (N ∙ Γ) → FOL * Γ infixl 20 _∨_ infixl 20 _∧_ infixr 50 ¬_ infixl 20 _≟_ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 FOLᵃ : MetaAlg FOL FOLᵃ = record { 𝑎𝑙𝑔 = λ where (falseₒ ⋮ _) → ⊥ (orₒ ⋮ a , b) → _∨_ a b (trueₒ ⋮ _) → ⊤ (andₒ ⋮ a , b) → _∧_ a b (notₒ ⋮ a) → ¬_ a (eqₒ ⋮ a , b) → _≟_ a b (allₒ ⋮ a) → ∀′ a (exₒ ⋮ a) → ∃′ a ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module FOLᵃ = MetaAlg FOLᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : FOL ⇾̣ 𝒜 𝕊 : Sub FOL Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 ⊥ = 𝑎𝑙𝑔 (falseₒ ⋮ tt) 𝕤𝕖𝕞 (_∨_ a b) = 𝑎𝑙𝑔 (orₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 ⊤ = 𝑎𝑙𝑔 (trueₒ ⋮ tt) 𝕤𝕖𝕞 (_∧_ a b) = 𝑎𝑙𝑔 (andₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (¬_ a) = 𝑎𝑙𝑔 (notₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (_≟_ a b) = 𝑎𝑙𝑔 (eqₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (∀′ a) = 𝑎𝑙𝑔 (allₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (∃′ a) = 𝑎𝑙𝑔 (exₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ FOLᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ FOL α Γ) → 𝕤𝕖𝕞 (FOLᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (falseₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (orₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (trueₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (andₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (notₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (eqₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (allₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (exₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ FOL ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : FOL ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ FOLᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : FOL α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub FOL Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! ⊥ = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_∨_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! ⊤ = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_∧_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (¬_ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_≟_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (∀′ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (∃′ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature FOL:Syn : Syntax FOL:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = FOL:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open FOL:Terms 𝔛 in record { ⊥ = FOL ⋉ FOLᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax FOL:Syn public open FOL:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands FOLᵃ public open import SOAS.Metatheory FOL:Syn public -- Derived operations _⟹_ : FOL 𝔛 * Γ → FOL 𝔛 * Γ → FOL 𝔛 * Γ p ⟹ q = ¬ p ∨ q
{ "alphanum_fraction": 0.4391971665, "avg_line_length": 31.9622641509, "ext": "agda", "hexsha": "32ffae3d9a781766a9e7b2a399ef7807739d1b44", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/FOL/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/FOL/Syntax.agda", "max_line_length": 93, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/FOL/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 4295, "size": 6776 }
open import Agda.Builtin.Equality data ⊥ : Set where cong : {A B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong f refl = refl postulate funExt : ∀ {A B : Set} {f g : A → B} → (∀ x → f x ≡ g x) → f ≡ g data D : Set where c1 : D → ⊥ → D c2 : (⊥ → D) → D cycle : ∀ {n} → c2 (c1 n) ≡ n → ⊥ cycle () d : D d = c2 λ () only-one-D : (x : D) → x ≡ d only-one-D (c2 x) = cong c2 (funExt (λ ())) boom : ⊥ boom = cycle (only-one-D (c2 (c1 d)))
{ "alphanum_fraction": 0.4578833693, "avg_line_length": 17.1481481481, "ext": "agda", "hexsha": "79559c4e1098f340f0daa4049e151cb0be8e0fef", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4995-UnderappliedConstructor.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4995-UnderappliedConstructor.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4995-UnderappliedConstructor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 217, "size": 463 }
open import Data.List open import Data.List.Any open import Data.Nat as ℕ data capn-kind : Set where cKStruct : capn-kind ckInter : capn-kind open import Relation.Binary.PropositionalEquality open Membership (setoid capn-kind) capn-ctx = List capn-kind data capn-τ : {Γ : capn-ctx} → Set data capn-field : {Γ : capn-ctx} → Set data capn-method : {Γ : capn-ctx} → Set --While the actual capnp schema supports declaration of structs in any order / arbitrary recursion, --I am limiting this to reference to structs-declared-so-far. This makes the model simpler, without --removing any of the power (I think), though it would be less convenient to write code for. data capn-τ where cVoid : ∀ {Γ} → capn-τ {Γ} cBool : ∀ {Γ} → capn-τ {Γ} cInt8 : ∀ {Γ} → capn-τ {Γ} cInt16 : ∀ {Γ} → capn-τ {Γ} cInt32 : ∀ {Γ} → capn-τ {Γ} cInt64 : ∀ {Γ} → capn-τ {Γ} cUInt8 : ∀ {Γ} → capn-τ {Γ} cUInt16 : ∀ {Γ} → capn-τ {Γ} cUInt32 : ∀ {Γ} → capn-τ {Γ} cUInt64 : ∀ {Γ} → capn-τ {Γ} cFloat32 : ∀ {Γ} → capn-τ {Γ} cFloat64 : ∀ {Γ} → capn-τ {Γ} cData : ∀ {Γ} → capn-τ {Γ} cText : ∀ {Γ} → capn-τ {Γ} cList : ∀ {Γ} → capn-τ {Γ} → capn-τ {Γ} cStruct : ∀ {Γ} → List (capn-field {cKStruct ∷ Γ}) → capn-τ {cKStruct ∷ Γ} cEnum : ∀ {Γ} → ℕ → capn-τ {Γ} cVar : ∀ {Γ k} → (k ∈ Γ) → capn-τ {Γ} cInterface : ∀ {Γ} → List (capn-method {ckInter ∷ Γ}) → capn-τ {ckInter ∷ Γ} --I'm ignoring field names, because fields can be indexed by list position, which is enough for proofs --I'm also ignoring groups, since they are just an addressing convenience data capn-field where cField : ∀ {Γ} → capn-τ {Γ} → capn-field {Γ} cUnion : ∀ {Γ} → List (capn-field {Γ})→ capn-field {Γ} cAny : ∀ {Γ} → capn-field {Γ} data capn-method where cMeth : ∀ {Γ} → List (capn-τ {Γ}) → List (capn-τ {Γ}) → capn-method {Γ}
{ "alphanum_fraction": 0.587276551, "avg_line_length": 39.625, "ext": "agda", "hexsha": "e0027a2aeb8650b6b3e3bdb54dc3d2f5327fca4e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-03-18T13:51:18.000Z", "max_forks_repo_forks_event_min_datetime": "2016-01-12T23:35:10.000Z", "max_forks_repo_head_hexsha": "0348b702860f1252458e657001989c154030f03c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "maurer/holmes", "max_forks_repo_path": "formal/capnproto.agda", "max_issues_count": 21, "max_issues_repo_head_hexsha": "0348b702860f1252458e657001989c154030f03c", "max_issues_repo_issues_event_max_datetime": "2017-12-08T02:45:23.000Z", "max_issues_repo_issues_event_min_datetime": "2016-12-13T11:15:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "maurer/holmes", "max_issues_repo_path": "formal/capnproto.agda", "max_line_length": 102, "max_stars_count": 27, "max_stars_repo_head_hexsha": "0348b702860f1252458e657001989c154030f03c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "maurer/holmes", "max_stars_repo_path": "formal/capnproto.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-14T22:21:39.000Z", "max_stars_repo_stars_event_min_datetime": "2015-11-24T18:04:01.000Z", "num_tokens": 788, "size": 1902 }
{- This file contains a direct proof that the Brunerie number (the number n s.t. π₄(S³)≅ℤ/nℤ) is 2, not relying on any of the more advanced constructions in chapters 4-6 in Brunerie's thesis (but still using chapters 1-3 for the construction). The Brunerie number is defined via S³ ≃ S¹ * S¹ -ᵂ→ S² ∨ S² -ᶠᵒˡᵈ→ S² where * denotes the join, ∨ denotes the wedge sum, W is the Whitehead map (see joinTo⋁ in Cubical.Homotopy.Whitehead) and the final map is just the folding map. η := ∣ fold ∘ W ∣₀ defines an element of π₃(S²). The (absolute value) of the Brunerie number is given by the absolute value of ϕ(η) for any iso π₃(S²)≅ℤ. The reason it's hard to prove ϕ(η) = ± 2 directly is mainly because the equivalence S³ ≃ S¹ * S¹ complicates things. In this file, we try to work around this problem. The proof goes as follows. 1. Define π₃*(A) := ∥ S¹ * S¹ →∙ A ∥₀ and define explicitly an addition on this type. Prove that the equivalence π₃(A) ≃ π₃*(A) is structure preserving, thereby giving a group structure on π₃*(A) and a group iso π₃*(A) ≅ π₃(A) 2. Under this iso, η gets mapped to η₁ (by construction) defined by S¹ * S¹ -ᵂ→ S² ∨ S² -ᶠᵒˡᵈ→ S² which is much easier to work with. 3. Define a sequence of equivalences π₃*(S²) ≅ π₃*(S¹ * S¹) ≅ π₃*(S³) ≅ π₃(S³) ≅ ℤ and trace η₁ in each step, proving that it ends up at -2. It turns out that that the iso S³ ≃ S¹ * S¹, which has been relatively explicitly defined in Cubical.HITs.Sphere.Properties, kills off a good deal of ``annoying'' terms on the way, making the proof rather straightforward. 4. Conclude that π₄(S³) ≅ ℤ/2ℤ. -} {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.Group.Pi4S3.QuickProof where open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Group.Base open import Cubical.Homotopy.Group.Pi3S2 open import Cubical.Homotopy.Group.PinSn open import Cubical.Homotopy.Hopf open import Cubical.Homotopy.Whitehead using (joinTo⋁) open import Cubical.Homotopy.Connected open import Cubical.Homotopy.HopfInvariant.HopfMap using (hopfMap≡HopfMap') -- Only imports a simple equality of two constructions of the Hopf map. open import Cubical.Homotopy.Group.Pi4S3.BrunerieNumber using (fold∘W ; coFib-fold∘W∙ ; π₄S³≅π₃coFib-fold∘W∙ ; S³→S²→Pushout→Unit) -- Only imports definitions/proofs from chapter 1-3 in Brunerie's thesis open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.Int renaming (ℤ to Z ; _·_ to _·Z_ ; _+_ to _+Z_) open import Cubical.HITs.S1 renaming (_·_ to _*_) open import Cubical.HITs.Sn open import Cubical.HITs.Susp renaming (toSusp to σ) open import Cubical.HITs.Join hiding (joinS¹S¹→S³) open import Cubical.HITs.Wedge open import Cubical.HITs.Pushout open import Cubical.HITs.SetTruncation renaming (rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.Truncation renaming (rec to trRec) open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Exact open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Instances.IntMod open S¹Hopf open Iso open GroupStr private variable ℓ : Level A B : Pointed ℓ -- Some abbreviations and simple lemmas private σ₁ = σ (S₊∙ 1) σ₂ = σ (S₊∙ 2) σ-filler : ∀ {ℓ} {A : Type ℓ} (x y : A) (i j : I) → Susp A σ-filler x y i j = compPath-filler (merid x) (sym (merid y)) i j to3ConnectedId : {f g : A →∙ B} → (isConnected 3 (typ B)) → fst f ≡ fst g → ∣ f ∣₂ ≡ ∣ g ∣₂ to3ConnectedId {f = f} {g = g} con p = trRec (squash₂ _ _) (λ q → cong ∣_∣₂ (ΣPathP (p , q))) (fst (isConnectedPathP 1 (isConnectedPath 2 con _ _) (snd f) (snd g))) connS³ : isConnected 3 (S₊ 3) connS³ = isConnectedSubtr 3 1 (sphereConnected 3) con-joinS¹S¹ : isConnected 3 (join S¹ S¹) con-joinS¹S¹ = (isConnectedRetractFromIso 3 (IsoSphereJoin 1 1) (isConnectedSubtr 3 1 (sphereConnected 3))) -- Key goal: prove that the following element of π₃(S²) gets mapped to -2 η : π' 3 (S₊∙ 2) η = fst (π'∘∙Hom 2 (fold∘W , refl)) ∣ id∙ (S₊∙ 3) ∣₂ {- Step 1. Define an addition on π₃*(A) := ∥ S¹ * S¹ →∙ A ∥₀ -} -- On the underlying function spaces. _+join_ : (f g : (join S¹ S¹ , inl base) →∙ A) → (join S¹ S¹ , inl base) →∙ A fst (f +join g) (inl x) = fst f (inl x) fst (f +join g) (inr x) = fst g (inr x) fst (f +join g) (push a b i) = (cong (fst f) (push a b ∙ sym (push base b)) ∙∙ snd f ∙ sym (snd g) ∙∙ cong (fst g) (push base base ∙∙ sym (push a base) ∙∙ push a b)) i snd (f +join g) = snd f -- Homotopy group version _π₃*+_ : (f g : ∥ (join S¹ S¹ , inl base) →∙ S₊∙ 2 ∥₂) → ∥ (join S¹ S¹ , inl base) →∙ S₊∙ 2 ∥₂ _π₃*+_ = sRec2 squash₂ λ x y → ∣ x +join y ∣₂ -- transferring between π₃ and π₃* -- (homotopy groups defined in terms of S¹ * S¹) joinify : S₊∙ 3 →∙ A → (join S¹ S¹ , inl base) →∙ A fst (joinify f) x = fst f (joinS¹S¹→S³ x) snd (joinify f) = snd f disjoin : (join S¹ S¹ , inl base) →∙ A → S₊∙ 3 →∙ A fst (disjoin f) = λ x → fst f (Iso.inv (IsoSphereJoin 1 1) x) snd (disjoin f) = snd f -- joinify is structure preserving +join≡∙Π : (f g : S₊∙ 3 →∙ A) → joinify (∙Π f g) ≡ (joinify f +join joinify g) +join≡∙Π f' g' = ΣPathP ((funExt (λ { (inl x) → sym fp ; (inr x) → sym gp ∙ cong g (merid north) ; (push a b i) j → main a b j i})) , λ i j → fp (j ∨ ~ i)) where f = fst f' g = fst g' fp = snd f' gp = snd g' path-lem : ∀ {ℓ} {A : Type ℓ} {x y z w u : A} (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) (s : w ≡ u) → (refl ∙∙ p ∙∙ q) ∙ (r ∙∙ s ∙∙ refl) ≡ (p ∙∙ (q ∙ r) ∙∙ s) path-lem p q r s = cong ((p ∙ q) ∙_) (sym (compPath≡compPath' r s)) ∙∙ sym (∙assoc p q (r ∙ s)) ∙∙ cong (p ∙_) (∙assoc q r s) ∙ sym (doubleCompPath≡compPath p (q ∙ r) s) main-helper : (a b : S¹) → Square ((refl ∙∙ cong f (σ₂ (S¹×S¹→S² a b)) ∙∙ fp) ∙ (sym gp ∙∙ cong g (σ₂ (S¹×S¹→S² a b)) ∙∙ refl)) ((cong f (merid (S¹×S¹→S² a b)) ∙ sym (cong f (merid north))) ∙∙ (fp ∙ sym gp) ∙∙ cong g (merid (S¹×S¹→S² a b))) (λ _ → f north) (cong g (merid north)) main-helper a b = path-lem (cong f (σ₂ (S¹×S¹→S² a b))) fp (sym gp) (cong g (σ₂ (S¹×S¹→S² a b))) ◁ lem where lem : PathP (λ i → f north ≡ cong g (merid north) i) ((λ i → f (σ₂ (S¹×S¹→S² a b) i)) ∙∙ fp ∙ (sym gp) ∙∙ (cong g (σ₂ (S¹×S¹→S² a b)))) ((cong f (merid (S¹×S¹→S² a b)) ∙ sym (cong f (merid north))) ∙∙ fp ∙ sym gp ∙∙ cong g (merid (S¹×S¹→S² a b))) lem i j = hcomp (λ k → λ { (i = i0) → (cong-∙ f (merid (S¹×S¹→S² a b)) (sym (merid north)) (~ k) ∙∙ fp ∙ sym gp ∙∙ (λ i → g (σ-filler (S¹×S¹→S² a b) north k i))) j ; (i = i1) → ((cong f (merid (S¹×S¹→S² a b)) ∙ sym (cong f (merid north))) ∙∙ (fp ∙ sym gp) ∙∙ cong g (merid (S¹×S¹→S² a b))) j ; (j = i0) → f north ; (j = i1) → g (merid north (~ k ∨ i))}) (((cong f (merid (S¹×S¹→S² a b)) ∙ sym (cong f (merid north))) ∙∙ (fp ∙ sym gp) ∙∙ cong g (merid (S¹×S¹→S² a b))) j) main-helper₂ : (a b : S¹) → cong (fst (joinify g')) (push base base ∙∙ sym (push a base) ∙∙ push a b) ≡ cong g (merid (S¹×S¹→S² a b)) main-helper₂ a b = cong-∙∙ (fst (joinify g')) (push base base) (sym (push a base)) (push a b) ∙ cong (cong g (merid north) ∙∙_∙∙ cong g (merid (S¹×S¹→S² a b))) (cong (cong g) (cong sym (cong merid (S¹×S¹→S²rUnit a)))) ∙ ((λ i → (cong g (λ j → merid north (j ∧ ~ i))) ∙∙ (cong g (λ j → merid north (~ j ∧ ~ i))) ∙∙ cong g (merid (S¹×S¹→S² a b))) ∙ sym (lUnit (cong g (merid (S¹×S¹→S² a b))))) main : (a b : S¹) → PathP (λ i → fp (~ i) ≡ (sym gp ∙ cong g (merid north)) i) ((sym fp ∙∙ cong f (σ₂ (S¹×S¹→S² a b)) ∙∙ fp) ∙ (sym gp ∙∙ cong g (σ₂ (S¹×S¹→S² a b)) ∙∙ gp)) ((cong (fst (joinify f')) (push a b ∙ sym (push base b)) ∙∙ fp ∙ sym gp ∙∙ cong (fst (joinify g')) (push base base ∙∙ sym (push a base) ∙∙ push a b))) main a b = ((λ i j → hcomp (λ k → λ {(i = i0) → (((λ j → fp (~ j ∧ k)) ∙∙ cong f (σ₂ (S¹×S¹→S² a b)) ∙∙ fp) ∙ (sym gp ∙∙ cong g (σ₂ (S¹×S¹→S² a b)) ∙∙ λ j → gp (j ∧ k))) j ; (i = i1) → ((cong f (merid (S¹×S¹→S² a b)) ∙ sym (cong f (merid north))) ∙∙ fp ∙ sym gp ∙∙ cong g (merid (S¹×S¹→S² a b))) j ; (j = i0) → fp (~ i ∧ k) ; (j = i1) → compPath-filler' (sym gp) (cong g (merid north)) k i}) (main-helper a b i j))) ▷ λ i → cong-∙ (fst (joinify f')) (push a b) (sym (push base b)) (~ i) ∙∙ fp ∙ sym gp ∙∙ main-helper₂ a b (~ i) -- Group structure on π₃* -- todo: remove connectivity assumption module _ (A : Pointed ℓ) (con : (isConnected 3 (typ A))) where π₃*Iso : Iso (typ (π'Gr 2 A)) ∥ (join S¹ S¹ , inl base) →∙ A ∥₂ fun π₃*Iso = sMap joinify inv π₃*Iso = sMap disjoin rightInv π₃*Iso = sElim (λ _ → isSetPathImplicit) λ f → to3ConnectedId con (funExt λ x → cong (fst f) (Iso.leftInv (IsoSphereJoin 1 1) x)) leftInv π₃*Iso = sElim (λ _ → isSetPathImplicit) λ f → to3ConnectedId con (funExt (λ x → cong (fst f) (Iso.rightInv (IsoSphereJoin 1 1) x))) π₃* : Group ℓ π₃* = InducedGroup (π'Gr 2 A) (sRec2 squash₂ (λ x y → ∣ x +join y ∣₂)) (isoToEquiv π₃*Iso) (sElim2 (λ _ _ → isSetPathImplicit) (λ f g → cong ∣_∣₂ (+join≡∙Π f g))) π₃≅π₃* : GroupEquiv (π'Gr 2 A) π₃* π₃≅π₃* = InducedGroupEquiv (π'Gr 2 A) (sRec2 squash₂ (λ x y → ∣ x +join y ∣₂)) (isoToEquiv π₃*Iso) (sElim2 (λ _ _ → isSetPathImplicit) (λ f g → cong ∣_∣₂ (+join≡∙Π f g))) -- Induced homomorphisms (A →∙ B) → (π₃*(A) → π₃*(B)) -- todo: remove connectivity assumptions module _ (conA : (isConnected 3 (typ A))) (conB : (isConnected 3 (typ B))) (f : A →∙ B) where postCompπ₃* : GroupHom (π₃* A conA) (π₃* B conB) fst postCompπ₃* = sMap (f ∘∙_) snd postCompπ₃* = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ h g → to3ConnectedId conB (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a b i) j → (cong-∙∙ (fst f) (cong (fst h) ((push a b ∙ (sym (push base b))))) (snd h ∙ (sym (snd g))) (cong (fst g) ((push base base ∙∙ (sym (push a base)) ∙∙ push a b))) ∙ cong (cong (fst f) (cong (fst h) (push a b ∙ (sym (push base b)))) ∙∙_∙∙ cong (fst f ∘ fst g) ((push base base ∙∙ (sym (push a base)) ∙∙ push a b))) (cong-∙ (fst f) (snd h) (sym (snd g)) ∙ λ j → compPath-filler (cong (fst f) (snd h)) (snd f) j ∙ sym (compPath-filler (cong (fst f) (snd g)) (snd f) j))) j i})) -- Induced iso (A ≃∙ B) → π₃*(A) ≅ π₃*(B) -- todo: remove connectivity assumptions module _ (conA : (isConnected 3 (typ A))) (conB : (isConnected 3 (typ B))) (f : A ≃∙ B) where postCompπ₃*Equiv : GroupEquiv (π₃* A conA) (π₃* B conB) fst postCompπ₃*Equiv = isoToEquiv h where h : Iso (π₃* A conA .fst) (π₃* B conB .fst) fun h = fst (postCompπ₃* conA conB (≃∙map f)) inv h = fst (postCompπ₃* conB conA (≃∙map (invEquiv∙ f))) rightInv h = sElim (λ _ → isSetPathImplicit) λ g → to3ConnectedId conB (funExt λ x → secEq (fst f) (fst g x)) leftInv h = sElim (λ _ → isSetPathImplicit) λ g → to3ConnectedId conA (funExt λ x → retEq (fst f) (fst g x)) snd postCompπ₃*Equiv = snd (postCompπ₃* conA conB (≃∙map f)) -- The relevant groups (in order of the iso π₃(S²) ≅ ℤ) π₃S² = π'Gr 2 (S₊∙ 2) π₃*S² = π₃* (S₊∙ 2) (sphereConnected 2) π₃*joinS¹S¹ = π₃* (join S¹ S¹ , inl base) con-joinS¹S¹ π₃*S³ = π₃* (S₊∙ 3) connS³ π₃S³ = π'Gr 2 (S₊∙ 3) {- Goal now: Show that (η : π₃(S²)) ↦ (η₁ : π₃*(S²)) ↦ (η₂ : π₃*(S¹ * S¹)) ↦ (η₃ : π₃*(S³)) ↦ (η₄ : π₃(S³)) ↦ (-2 : ℤ) for some terms η₁ ... η₄ by a sequence of isomorphisms π₃(S²) ≅ π₃*(S²) ≅ π₃*(S¹ * S¹) ≅ π₃*(S³) ≅ π₃(S³) ≅ ℤ Hence, there is an is an iso π₃(S²) ≅ ℤ taking η to -2, from which we can conclude π₄(S³) ≅ ℤ/2ℤ. -} -- Underlying functions of (some of) the ηs η₁-raw : (join S¹ S¹ , inl base) →∙ S₊∙ 2 fst η₁-raw (inl x) = north fst η₁-raw (inr x) = north fst η₁-raw (push a b i) = (σ₁ b ∙ σ₁ a) i snd η₁-raw = refl η₂-raw : (join S¹ S¹ , inl base) →∙ (join S¹ S¹ , inl base) fst η₂-raw (inl x) = inr (invLooper x) fst η₂-raw (inr x) = inr x fst η₂-raw (push a b i) = (sym (push (b * invLooper a) (invLooper a)) ∙ push (b * invLooper a) b) i snd η₂-raw = sym (push base base) η₃-raw : (join S¹ S¹ , inl base) →∙ S₊∙ 3 fst η₃-raw (inl x) = north fst η₃-raw (inr x) = north fst η₃-raw (push a b i) = (sym (σ₂ (S¹×S¹→S² a b)) ∙ sym (σ₂ (S¹×S¹→S² a b))) i snd η₃-raw = refl -- Homotopy group versions η₁ : fst π₃*S² η₁ = ∣ η₁-raw ∣₂ η₂ : fst (π₃*joinS¹S¹) η₂ = ∣ η₂-raw ∣₂ η₃ : π₃*S³ .fst η₃ = ∣ η₃-raw ∣₂ η₄ : fst π₃S³ η₄ = ·π' 2 (-π' 2 ∣ idfun∙ (S₊∙ 3) ∣₂) (-π' 2 ∣ idfun∙ (S₊∙ 3) ∣₂) -- π₃S²≅π₃*S² π₃S²→π₃*S² : GroupEquiv π₃S² π₃*S² π₃S²→π₃*S² = π₃≅π₃* (S₊∙ 2) (sphereConnected 2) -- Time for π₃*(S¹ * S¹) ≅ π₃*S². -- We have this iso already, but slightly differently stated, -- so the following proof becomes a bit technical. -- We define it in terms a slight variation of the Hopf map Hopfσ : join S¹ S¹ → S₊ 2 Hopfσ (inl x) = north Hopfσ (inr x) = north Hopfσ (push a b i) = σ₁ (invLooper a * b) i π₃*joinS¹S¹→π₃*S² : GroupHom π₃*joinS¹S¹ π₃*S² π₃*joinS¹S¹→π₃*S² = postCompπ₃* con-joinS¹S¹ (sphereConnected 2) (Hopfσ , refl) π₃*joinS¹S¹≅π₃*S² : GroupEquiv π₃*joinS¹S¹ π₃*S² fst (fst π₃*joinS¹S¹≅π₃*S²) = fst π₃*joinS¹S¹→π₃*S² snd (fst π₃*joinS¹S¹≅π₃*S²) = subst isEquiv idLem isEquivπ₃*joinS¹S¹→π₃*S²' where π₃*joinS¹S¹→π₃*S²' : GroupHom π₃*joinS¹S¹ π₃*S² π₃*joinS¹S¹→π₃*S²' = postCompπ₃* con-joinS¹S¹ (sphereConnected 2) (fst ∘ JoinS¹S¹→TotalHopf , refl) isEquivπ₃*joinS¹S¹→π₃*S²' : isEquiv (fst π₃*joinS¹S¹→π₃*S²') isEquivπ₃*joinS¹S¹→π₃*S²' = transport (λ i → isEquiv (fst (help (~ i)))) (snd (fst GrEq)) where GrEq = compGroupEquiv (πS³≅πTotalHopf 2) π'₃S²≅π'₃TotalHopf help : PathP (λ i → GroupHom (GroupPath π₃*joinS¹S¹ π₃S³ .fst (compGroupEquiv (invGroupEquiv (π₃≅π₃* (join S¹ S¹ , inl base) con-joinS¹S¹)) (π'Iso 2 (isoToEquiv (IsoSphereJoin 1 1) , refl))) i) (GroupPath π₃*S² π₃S² .fst (invGroupEquiv (π₃≅π₃* (S₊∙ 2) (sphereConnected 2))) i)) π₃*joinS¹S¹→π₃*S²' (fst (fst GrEq) , snd GrEq) help = toPathP (Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ f → (λ i → transportRefl ((invGroupEquiv (π₃≅π₃* (S₊∙ 2) (sphereConnected 2))) .fst .fst (fst π₃*joinS¹S¹→π₃*S²' ( ((fst (fst (π₃≅π₃* (join S¹ S¹ , inl base) con-joinS¹S¹))) (invEq (fst (π'Iso 2 (isoToEquiv (IsoSphereJoin 1 1) , refl))) (transportRefl f i)))))) i) ∙ main f)) where main : (f : _) → invEquiv (fst (π₃≅π₃* (S₊∙ 2) (sphereConnected 2))) .fst (fst π₃*joinS¹S¹→π₃*S²' (invEq (invEquiv (fst (π₃≅π₃* (join S¹ S¹ , inl base) con-joinS¹S¹))) (invEq (fst (π'Iso 2 (isoToEquiv Iso-joinS¹S¹-S³ , (λ _ → north)))) f))) ≡ fst GrEq .fst f main = sElim (λ _ → isSetPathImplicit) λ f → to3ConnectedId (sphereConnected 2) (funExt λ x → (λ i → fst (JoinS¹S¹→TotalHopf (Iso.inv (IsoSphereJoin 1 1) (fst f (Iso.rightInv (IsoSphereJoin 1 1) x i))))) ∙ sym (funExt⁻ (sym (cong fst hopfMap≡HopfMap')) (fst f x))) idLem : fst π₃*joinS¹S¹→π₃*S²' ≡ fst π₃*joinS¹S¹→π₃*S² idLem = funExt (sElim (λ _ → isSetPathImplicit) λ f → to3ConnectedId (sphereConnected 2) (funExt λ x → lem (fst f x))) where lem : (x : _) → fst (JoinS¹S¹→TotalHopf x) ≡ Hopfσ x lem (inl x) = refl lem (inr x) = sym (merid base) lem (push a b i) j = compPath-filler (merid (invLooper a * b)) (sym (merid base)) j i snd π₃*joinS¹S¹≅π₃*S² = snd π₃*joinS¹S¹→π₃*S² -- π₃*(S³) ≅ π₃*(S¹ * S¹) π₃*S³≅π₃*joinS¹S¹ : GroupEquiv π₃*S³ π₃*joinS¹S¹ π₃*S³≅π₃*joinS¹S¹ = postCompπ₃*Equiv connS³ con-joinS¹S¹ (isoToEquiv (invIso (IsoSphereJoin 1 1)) , refl) -- π₃(S³)≅π₃*(S³) π₃S³≅π₃*S³ : GroupEquiv π₃S³ π₃*S³ π₃S³≅π₃*S³ = π₃≅π₃* (S₊∙ 3) connS³ η↦η₁ : fst (fst π₃S²→π₃*S²) η ≡ η₁ η↦η₁ = to3ConnectedId (sphereConnected 2) (funExt λ x → (funExt⁻ lem₁ x) ∙ sym (lem₂ x)) where lem₁ : fold∘W ∘ joinS¹S¹→S³ ≡ fold⋁ ∘ (joinTo⋁ {A = S₊∙ 1} {B = S₊∙ 1}) lem₁ = funExt λ x → cong (fold⋁ ∘ (joinTo⋁ {A = S₊∙ 1} {B = S₊∙ 1})) (leftInv (IsoSphereJoin 1 1) x) lem₂ : (x : join S¹ S¹) → fst η₁-raw x ≡ (fold⋁ ∘ joinTo⋁) x lem₂ (inl x) = refl lem₂ (inr x) = refl lem₂ (push a b i) j = help j i where help : (σ₁ b ∙ σ₁ a) ≡ cong (fold⋁ ∘ joinTo⋁) (push a b) help = sym (cong-∙∙ fold⋁ (λ j → inr (σ₁ b j)) (sym (push tt)) (λ j → inl (σ₁ a j)) ∙ λ i → (λ j → σ₁ b (j ∧ ~ i)) ∙∙ (λ j → σ₁ b (j ∨ ~ i)) ∙∙ σ₁ a) -- We show that η₂ ↦ η₁ (this is easier than η₁ ↦ η₂) η₂↦η₁ : fst (fst π₃*joinS¹S¹≅π₃*S²) η₂ ≡ η₁ η₂↦η₁ = to3ConnectedId (sphereConnected 2) (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a b i) j → main a b j i}) where lem : (a b : S¹) → (sym (σ₁ (invLooper (b * invLooper a) * invLooper a)) ≡ σ₁ b) × (σ₁ (invLooper (b * invLooper a) * b) ≡ σ₁ a) fst (lem a b) = cong sym (cong σ₁ (sym (invLooperDistr (b * invLooper a) a)) ∙ σ-invSphere 0 (b * invLooper a * a)) ∙ cong σ₁ (sym (assocS¹ b (invLooper a) a) ∙ cong (b *_) (commS¹ _ _ ∙ sym (rCancelS¹ a)) ∙ rUnitS¹ b) snd (lem a b) = cong σ₁ (cong (_* b) (invLooperDistr b (invLooper a) ∙ cong (invLooper b *_) (invSphere² 1 a) ∙ commS¹ (invLooper b) a) ∙ sym (assocS¹ a (invLooper b) b) ∙ cong (a *_) (commS¹ _ _ ∙ sym (rCancelS¹ b)) ∙ rUnitS¹ a) main : (a b : S¹) → cong Hopfσ ((sym (push (b * invLooper a) (invLooper a)) ∙ push (b * invLooper a) b)) ≡ σ₁ b ∙ σ₁ a main a b = cong-∙ Hopfσ (sym (push (b * invLooper a) (invLooper a))) (push (b * invLooper a) b) ∙ cong₂ _∙_ (fst (lem a b)) (snd (lem a b)) -- We show that η₂ ↦ η₃ η₂↦η₃ : invEq (fst π₃*S³≅π₃*joinS¹S¹) η₂ ≡ η₃ η₂↦η₃ = to3ConnectedId connS³ (funExt λ x → sym (joinS¹S¹→S³σ≡ (fst η₂-raw x)) ∙ lem x) where joinS¹S¹→S³σ : join S¹ S¹ → S₊ 3 joinS¹S¹→S³σ (inl x) = north joinS¹S¹→S³σ (inr x) = north joinS¹S¹→S³σ (push a b i) = σ₂ (S¹×S¹→S² a b) i joinS¹S¹→S³σ≡ : (x : _) → joinS¹S¹→S³σ x ≡ joinS¹S¹→S³ x joinS¹S¹→S³σ≡ (inl x) = refl joinS¹S¹→S³σ≡ (inr x) = merid north joinS¹S¹→S³σ≡ (push a b i) j = compPath-filler (merid (S¹×S¹→S² a b)) (sym (merid north)) (~ j) i lem : (x : _) → joinS¹S¹→S³σ (fst η₂-raw x) ≡ fst η₃-raw x lem (inl x) = refl lem (inr x) = refl lem (push a b i) j = main j i where left-lem : σ₂ (S¹×S¹→S² (b * invLooper a) (invLooper a)) ≡ σ₂ (S¹×S¹→S² a b) left-lem = cong σ₂ (S¹×S¹→S²-Distr b (invLooper a) ∙ sym (S¹×S¹→S²-antiComm a b)) right-lem : σ₂ (S¹×S¹→S² (b * invLooper a) b) ≡ sym (σ₂ (S¹×S¹→S² a b)) right-lem = cong σ₂ ((cong (λ x → S¹×S¹→S² x b) (commS¹ b (invLooper a)) ∙ S¹×S¹→S²-Distr (invLooper a) b) ∙∙ S¹×S¹→S²-antiComm (invLooper a) b ∙∙ invSusp∘S¹×S¹→S² b (invLooper a)) ∙∙ σ-invSphere 1 (S¹×S¹→S² b (invLooper a)) ∙∙ cong (sym ∘ σ₂) (sym (S¹×S¹→S²-antiComm a b)) main : cong (joinS¹S¹→S³σ ∘ fst η₂-raw) (push a b) ≡ sym (σ₂ (S¹×S¹→S² a b)) ∙ sym (σ₂ (S¹×S¹→S² a b)) main = cong-∙ joinS¹S¹→S³σ (sym (push (b * invLooper a) (invLooper a))) (push (b * invLooper a) b) ∙ cong₂ _∙_ (cong sym left-lem) right-lem -- We show that η₄ ↦ η₃ (this is easier than η₃ ↦ η₄) η₄↦η₃ : fst (fst π₃S³≅π₃*S³) η₄ ≡ η₃ η₄↦η₃ = IsGroupHom.pres· (snd π₃S³≅π₃*S³) (-π' 2 ∣ idfun∙ (S₊∙ 3) ∣₂) (-π' 2 ∣ idfun∙ (S₊∙ 3) ∣₂) ∙ cong₂ _+π₃*_ gen↦η₃/2 gen↦η₃/2 ∙ η₃/2+η₃/2≡η₃ where _+π₃*_ : fst π₃*S³ → fst π₃*S³ → fst π₃*S³ _+π₃*_ = GroupStr._·_ (snd π₃*S³) η₃-raw/2 : (join S¹ S¹ , inl base) →∙ S₊∙ 3 fst η₃-raw/2 (inl x) = north fst η₃-raw/2 (inr x) = north fst η₃-raw/2 (push a b i) = σ₂ (S¹×S¹→S² a b) (~ i) snd η₃-raw/2 = refl η₃/2 : π₃*S³ .fst η₃/2 = ∣ η₃-raw/2 ∣₂ gen↦η₃/2 : fst (fst π₃S³≅π₃*S³) (-π' 2 ∣ idfun∙ (S₊∙ 3) ∣₂) ≡ η₃/2 gen↦η₃/2 = to3ConnectedId connS³ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a b i) → refl}) η₃/2+η₃/2≡η₃ : η₃/2 +π₃* η₃/2 ≡ η₃ η₃/2+η₃/2≡η₃ = to3ConnectedId connS³ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a b i) → λ j → lem a b j i}) where lem : (a b : S¹) → cong (fst (η₃-raw/2 +join η₃-raw/2)) (push a b) ≡ cong (fst η₃-raw) (push a b) lem a b = (λ i → cong-∙ (fst η₃-raw/2) (push a b) (sym (push base b)) i ∙∙ rUnit refl (~ i) ∙∙ cong-∙∙ (fst η₃-raw/2) (push base base) (sym (push a base)) (push a b) i) ∙∙ (λ i → (sym (σ₂ (S¹×S¹→S² a b)) ∙ rCancel (merid north) i) ∙∙ refl ∙∙ (sym (rCancel (merid north) i) ∙∙ (cong σ₂ (S¹×S¹→S²rUnit a) ∙ rCancel (merid north)) i ∙∙ sym (σ₂ (S¹×S¹→S² a b)))) ∙∙ ((λ i → rUnit (sym (σ₂ (S¹×S¹→S² a b))) (~ i) ∙∙ refl ∙∙ lUnit (sym (σ₂ (S¹×S¹→S² a b))) (~ i)) ∙ λ i → (λ j → σ₂ (S¹×S¹→S² a b) (i ∨ ~ j)) ∙∙ (λ j → σ₂ (S¹×S¹→S² a b) (i ∧ ~ j)) ∙∙ sym (σ₂ (S¹×S¹→S² a b))) -- Agda is very keen on expanding things, so we make an abstract -- summary of the main lemmas above abstract π₃S²≅π₃*S²-abs : GroupEquiv π₃S² π₃*S² π₃S²≅π₃*S²-abs = π₃S²→π₃*S² π₃*S²≅π₃*joinS¹S¹-abs : GroupEquiv π₃*S² π₃*joinS¹S¹ π₃*S²≅π₃*joinS¹S¹-abs = invGroupEquiv π₃*joinS¹S¹≅π₃*S² π₃*joinS¹S¹≅π₃*S³-abs : GroupEquiv π₃*joinS¹S¹ π₃*S³ π₃*joinS¹S¹≅π₃*S³-abs = invGroupEquiv π₃*S³≅π₃*joinS¹S¹ π₃*S³≅π₃*S³-abs : GroupEquiv π₃*S³ π₃S³ π₃*S³≅π₃*S³-abs = invGroupEquiv π₃S³≅π₃*S³ -- stated in terms of (n : ℕ) to prevent normalisation π₃'S³≅ℤ-abs : (n : ℕ) → GroupEquiv (π'Gr n (S₊∙ (suc n))) ℤ π₃'S³≅ℤ-abs n = GroupIso→GroupEquiv (πₙ'Sⁿ≅ℤ n) η↦η₁-abs : fst (fst π₃S²≅π₃*S²-abs) η ≡ η₁ η↦η₁-abs = η↦η₁ η₁↦η₂-abs : fst (fst π₃*S²≅π₃*joinS¹S¹-abs) η₁ ≡ η₂ η₁↦η₂-abs = cong (fst (fst π₃*S²≅π₃*joinS¹S¹-abs)) (sym η₂↦η₁) ∙ secEq (fst π₃*S²≅π₃*joinS¹S¹-abs) η₂ η₂↦η₃-abs : fst (fst π₃*joinS¹S¹≅π₃*S³-abs) η₂ ≡ η₃ η₂↦η₃-abs = η₂↦η₃ η₃↦η₄-abs : fst (fst π₃*S³≅π₃*S³-abs) η₃ ≡ η₄ η₃↦η₄-abs = cong (invEq (fst π₃S³≅π₃*S³)) (sym η₄↦η₃) ∙ retEq (fst π₃S³≅π₃*S³) η₄ gen↦1 : (n : ℕ) → fst (fst (π₃'S³≅ℤ-abs n)) ∣ idfun∙ (S₊∙ (suc n)) ∣₂ ≡ 1 gen↦1 = πₙ'Sⁿ≅ℤ-idfun∙ -- We finally prove that η₄ ↦ -2 abstract η₄↦-2 : fst (fst (π₃'S³≅ℤ-abs 2)) η₄ ≡ -2 η₄↦-2 = speedUp (∣ idfun∙ (S₊∙ 3) ∣₂) (gen↦1 2) where speedUp : (x : _) → fst (fst (π₃'S³≅ℤ-abs (suc (suc zero)))) x ≡ (pos (suc zero)) → (fst (fst (π₃'S³≅ℤ-abs 2))) (·π' 2 (-π' 2 x) (-π' 2 x)) ≡ -2 speedUp x p = IsGroupHom.pres· (π₃'S³≅ℤ-abs 2 .snd) (-π' 2 x) (-π' 2 x) ∙ cong (λ x → x +Z x) (IsGroupHom.presinv (π₃'S³≅ℤ-abs 2 .snd) x ∙ cong (inv (ℤ .snd)) p) -- Puting it all together, we get our group iso π₃(S²) ≅ ℤ π₃'S²≅ℤ : GroupEquiv (π'Gr 2 (S₊∙ 2)) ℤ π₃'S²≅ℤ = compGroupEquiv π₃S²≅π₃*S²-abs (compGroupEquiv π₃*S²≅π₃*joinS¹S¹-abs (compGroupEquiv π₃*joinS¹S¹≅π₃*S³-abs (compGroupEquiv π₃*S³≅π₃*S³-abs (π₃'S³≅ℤ-abs 2)))) -- ... which takes η to -2 η↦-2 : fst (fst π₃'S²≅ℤ) η ≡ - 2 η↦-2 = cong (fst (fst (π₃'S³≅ℤ-abs 2))) (cong (fst π₃*S³≅π₃*S³-abs .fst) (cong (fst π₃*joinS¹S¹≅π₃*S³-abs .fst) (cong (fst (fst π₃*S²≅π₃*joinS¹S¹-abs)) η↦η₁-abs ∙ η₁↦η₂-abs) ∙ η₂↦η₃-abs) ∙ η₃↦η₄-abs) ∙ η₄↦-2 -- We combine this with the rest of the main conclusions of chapters -- 1-3 in Brunerie's thesis BrunerieIso : GroupEquiv (π'Gr 3 (S₊∙ 3)) (ℤ/ 2) BrunerieIso = compGroupEquiv (compGroupEquiv π₄S³≅π₃coFib-fold∘W∙ (invGroupEquiv (GroupEquiv-abstractℤ/abs-gen (π'Gr 2 (S₊∙ 3)) (π'Gr 2 (S₊∙ 2)) (π'Gr 2 coFib-fold∘W∙) (invGroupEquiv (π₃'S³≅ℤ-abs 2)) (invGroupEquiv π₃'S²≅ℤ) (π'∘∙Hom 2 (fold∘W , refl)) _ S³→S²→Pushout→Unit 2 (cong abs (cong (invEq (invEquiv (fst π₃'S²≅ℤ)) ∘ sMap (_∘∙_ (fold∘W , refl))) (sym (cong (invEq (fst (π₃'S³≅ℤ-abs 2))) (gen↦1 2)) ∙ retEq (fst (π₃'S³≅ℤ-abs 2)) ∣ idfun∙ (S₊∙ 3) ∣₂)) ∙ cong abs η↦-2)))) (abstractℤ/≅ℤ 2)
{ "alphanum_fraction": 0.5307304315, "avg_line_length": 36.514324693, "ext": "agda", "hexsha": "7ea2b1714dc694e9a366e2c556a9c23427f37c73", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Homotopy/Group/Pi4S3/QuickProof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Homotopy/Group/Pi4S3/QuickProof.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Homotopy/Group/Pi4S3/QuickProof.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 12068, "size": 26765 }
-- Basic intuitionistic propositional calculus, without ∨ or ⊥. -- Kripke-style semantics with contexts as concrete worlds, and glueing for α and ▻. -- Hilbert-style syntax. module BasicIPC.Semantics.KripkeConcreteGluedHilbert where open import BasicIPC.Syntax.Common public open import Common.Semantics public open ConcreteWorlds (Ty) public -- Partial intuitionistic Kripke models with explicit syntax. record Model : Set₁ where infix 3 _⊩ᵅ_ _[⊢]_ field -- Forcing for atomic propositions; monotonic. _⊩ᵅ_ : World → Atom → Set mono⊩ᵅ : ∀ {P w w′} → w ≤ w′ → w ⊩ᵅ P → w′ ⊩ᵅ P -- Hilbert-style syntax representation; monotonic. _[⊢]_ : Cx Ty → Ty → Set mono[⊢] : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ [⊢] A → Γ′ [⊢] A [var] : ∀ {A Γ} → A ∈ Γ → Γ [⊢] A [app] : ∀ {A B Γ} → Γ [⊢] A ▻ B → Γ [⊢] A → Γ [⊢] B [ci] : ∀ {A Γ} → Γ [⊢] A ▻ A [ck] : ∀ {A B Γ} → Γ [⊢] A ▻ B ▻ A [cs] : ∀ {A B C Γ} → Γ [⊢] (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C [cpair] : ∀ {A B Γ} → Γ [⊢] A ▻ B ▻ A ∧ B [cfst] : ∀ {A B Γ} → Γ [⊢] A ∧ B ▻ A [csnd] : ∀ {A B Γ} → Γ [⊢] A ∧ B ▻ B [unit] : ∀ {Γ} → Γ [⊢] ⊤ -- NOTE: [lam] is necessary to give meaning to Gentzen-style syntax. [lam] : ∀ {A B Γ} → Γ , A [⊢] B → Γ [⊢] A ▻ B infix 3 _[⊢]⋆_ _[⊢]⋆_ : Cx Ty → Cx Ty → Set Γ [⊢]⋆ ∅ = 𝟙 Γ [⊢]⋆ Ξ , A = Γ [⊢]⋆ Ξ × Γ [⊢] A open Model {{…}} public -- Forcing in a particular world of a particular model. module _ {{_ : Model}} where infix 3 _⊩_ _⊩_ : World → Ty → Set w ⊩ α P = Glue (unwrap w [⊢] α P) (w ⊩ᵅ P) w ⊩ A ▻ B = Glue (unwrap w [⊢] (A ▻ B)) (∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B) w ⊩ A ∧ B = w ⊩ A × w ⊩ B w ⊩ ⊤ = 𝟙 infix 3 _⊩⋆_ _⊩⋆_ : World → Cx Ty → Set w ⊩⋆ ∅ = 𝟙 w ⊩⋆ Ξ , A = w ⊩⋆ Ξ × w ⊩ A -- Monotonicity with respect to context inclusion. module _ {{_ : Model}} where mono⊩ : ∀ {A w w′} → w ≤ w′ → w ⊩ A → w′ ⊩ A mono⊩ {α P} ξ s = mono[⊢] (unwrap≤ ξ) (syn s) ⅋ mono⊩ᵅ ξ (sem s) mono⊩ {A ▻ B} ξ s = mono[⊢] (unwrap≤ ξ) (syn s) ⅋ λ ξ′ → sem s (trans≤ ξ ξ′) mono⊩ {A ∧ B} ξ s = mono⊩ {A} ξ (π₁ s) , mono⊩ {B} ξ (π₂ s) mono⊩ {⊤} ξ s = ∙ mono⊩⋆ : ∀ {Ξ w w′} → w ≤ w′ → w ⊩⋆ Ξ → w′ ⊩⋆ Ξ mono⊩⋆ {∅} ξ ∙ = ∙ mono⊩⋆ {Ξ , A} ξ (ts , t) = mono⊩⋆ {Ξ} ξ ts , mono⊩ {A} ξ t -- Extraction of syntax representation in a particular model. module _ {{_ : Model}} where reifyʳ : ∀ {A w} → w ⊩ A → unwrap w [⊢] A reifyʳ {α P} s = syn s reifyʳ {A ▻ B} s = syn s reifyʳ {A ∧ B} s = [app] ([app] [cpair] (reifyʳ {A} (π₁ s))) (reifyʳ {B} (π₂ s)) reifyʳ {⊤} s = [unit] reifyʳ⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → unwrap w [⊢]⋆ Ξ reifyʳ⋆ {∅} ∙ = ∙ reifyʳ⋆ {Ξ , A} (ts , t) = reifyʳ⋆ ts , reifyʳ t -- Useful theorems in functional form. module _ {{_ : Model}} where [multicut] : ∀ {Ξ A Γ} → Γ [⊢]⋆ Ξ → Ξ [⊢] A → Γ [⊢] A [multicut] {∅} ∙ u = mono[⊢] bot⊆ u [multicut] {Ξ , B} (ts , t) u = [app] ([multicut] ts ([lam] u)) t [pair] : ∀ {A B Γ} → Γ [⊢] A → Γ [⊢] B → Γ [⊢] A ∧ B [pair] t u = [app] ([app] [cpair] t) u [fst] : ∀ {A B Γ} → Γ [⊢] A ∧ B → Γ [⊢] A [fst] t = [app] [cfst] t [snd] : ∀ {A B Γ} → Γ [⊢] A ∧ B → Γ [⊢] B [snd] t = [app] [csnd] t -- Additional useful equipment. module _ {{_ : Model}} where _⟪$⟫_ : ∀ {A B w} → w ⊩ A ▻ B → w ⊩ A → w ⊩ B s ⟪$⟫ a = sem s refl≤ a ⟪K⟫ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ⟪K⟫ {A} a = [app] [ck] (reifyʳ a) ⅋ λ ξ → K (mono⊩ {A} ξ a) ⟪S⟫ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ A ▻ B → w ⊩ A → w ⊩ C ⟪S⟫ s₁ s₂ a = (s₁ ⟪$⟫ a) ⟪$⟫ (s₂ ⟪$⟫ a) ⟪S⟫′ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ {A} {B} {C} s₁ = [app] [cs] (syn s₁) ⅋ λ ξ s₂ → [app] ([app] [cs] (mono[⊢] (unwrap≤ ξ) (syn s₁))) (syn s₂) ⅋ λ ξ′ → ⟪S⟫ (mono⊩ {A ▻ B ▻ C} (trans≤ ξ ξ′) s₁) (mono⊩ {A ▻ B} ξ′ s₂) _⟪,⟫′_ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ∧ B _⟪,⟫′_ {A} a = [app] [cpair] (reifyʳ a) ⅋ λ ξ → _,_ (mono⊩ {A} ξ a) -- Forcing in a particular world of a particular model, for sequents. module _ {{_ : Model}} where infix 3 _⊩_⇒_ _⊩_⇒_ : World → Cx Ty → Ty → Set w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A infix 3 _⊩_⇒⋆_ _⊩_⇒⋆_ : World → Cx Ty → Cx Ty → Set w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ -- Entailment, or forcing in all worlds of all models, for sequents. infix 3 _⊨_ _⊨_ : Cx Ty → Ty → Set₁ Γ ⊨ A = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒ A infix 3 _⊨⋆_ _⊨⋆_ : Cx Ty → Cx Ty → Set₁ Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒⋆ Ξ -- Additional useful equipment, for sequents. module _ {{_ : Model}} where lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A lookup top (γ , a) = a lookup (pop i) (γ , b) = lookup i γ _⟦$⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B (s₁ ⟦$⟧ s₂) γ = s₁ γ ⟪$⟫ s₂ γ ⟦K⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B ▻ A ⟦K⟧ {A} {B} a γ = ⟪K⟫ {A} {B} (a γ) ⟦S⟧ : ∀ {A B C Γ w} → w ⊩ Γ ⇒ A ▻ B ▻ C → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ C ⟦S⟧ s₁ s₂ a γ = ⟪S⟫ (s₁ γ) (s₂ γ) (a γ) _⟦,⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B → w ⊩ Γ ⇒ A ∧ B (a ⟦,⟧ b) γ = a γ , b γ ⟦π₁⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ A ⟦π₁⟧ s γ = π₁ (s γ) ⟦π₂⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ B ⟦π₂⟧ s γ = π₂ (s γ)
{ "alphanum_fraction": 0.4285443877, "avg_line_length": 29.8474576271, "ext": "agda", "hexsha": "fc00fa545979712d2d7479ca459e53c119de023f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIPC/Semantics/KripkeConcreteGluedHilbert.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIPC/Semantics/KripkeConcreteGluedHilbert.agda", "max_line_length": 93, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIPC/Semantics/KripkeConcreteGluedHilbert.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2925, "size": 5283 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory {- Ordinary cohomology groups of the n-torus Tⁿ = (S¹)ⁿ. - We have Cᵏ(Tⁿ) == C⁰(S⁰)^(n choose' k) where _choose'_ defined as below. - This argument could give Cᵏ((Sᵐ)ⁿ) with a little more work. -} module cohomology.Torus {i} (OT : OrdinaryTheory i) where open OrdinaryTheory OT open import cohomology.Sphere OT open import cohomology.SphereProduct cohomology-theory {- Almost n choose k, but with n choose' O = 0 for any n. -} _choose'_ : ℕ → ℤ → ℕ n choose' negsucc _ = 0 n choose' pos O = 0 n choose' pos (S O) = n O choose' pos (S (S k)) = 0 S n choose' pos (S (S k)) = (n choose' (pos (S (S k)))) + (n choose' (pos (S k))) _-⊙Torus : ℕ → Ptd₀ O -⊙Torus = ⊙Unit (S n) -⊙Torus = ⊙S¹ ⊙× (n -⊙Torus) C-nTorus : (k : ℤ) (n : ℕ) → C k (⊙Lift (n -⊙Torus)) ≃ᴳ C 0 (⊙Lift ⊙S⁰) ^ᴳ (n choose' k) C-nTorus (negsucc k) O = lift-iso ∘eᴳ trivial-iso-0ᴳ (C-Unit (negsucc k)) C-nTorus (negsucc k) (S n) = C (negsucc k) (⊙Lift (S n -⊙Torus)) ≃ᴳ⟨ C-emap (negsucc k) (⊙lift-equiv ⊙∘e ⊙×-emap (⊙ide _) ⊙lower-equiv) ⟩ C (negsucc k) (⊙S¹ ⊙× ⊙Lift (n -⊙Torus)) ≃ᴳ⟨ C-Sphere× (negsucc k) 1 (⊙Lift (n -⊙Torus)) ⟩ C (negsucc k) (⊙Lift ⊙S¹) ×ᴳ (C (negsucc k) (⊙Lift (n -⊙Torus)) ×ᴳ C (negsucc k) (⊙Susp (⊙Lift (n -⊙Torus)))) ≃ᴳ⟨ ×ᴳ-emap (trivial-iso-0ᴳ (C-Sphere-≠-is-trivial (negsucc k) 1 (ℤ-negsucc≠pos _ _))) (idiso _) ⟩ 0ᴳ ×ᴳ (C (negsucc k) (⊙Lift (n -⊙Torus)) ×ᴳ C (negsucc k) (⊙Susp (⊙Lift (n -⊙Torus)))) ≃ᴳ⟨ ×ᴳ-unit-l _ ⟩ C (negsucc k) (⊙Lift (n -⊙Torus)) ×ᴳ C (negsucc k) (⊙Susp (⊙Lift (n -⊙Torus))) ≃ᴳ⟨ ×ᴳ-emap (lower-iso ∘eᴳ C-nTorus (negsucc k) n) (C-nTorus (negsucc (S k)) n ∘eᴳ C-Susp (negsucc (S k)) (⊙Lift (n -⊙Torus))) ⟩ 0ᴳ ×ᴳ Lift-group 0ᴳ ≃ᴳ⟨ ×ᴳ-unit-l (Lift-group 0ᴳ) ⟩ Lift-group 0ᴳ ≃ᴳ∎ C-nTorus (pos O) O = lift-iso ∘eᴳ trivial-iso-0ᴳ (C-Unit 0) C-nTorus (pos O) (S n) = C 0 (⊙Lift (S n -⊙Torus)) ≃ᴳ⟨ C-emap 0 (⊙lift-equiv ⊙∘e ⊙×-emap (⊙ide _) ⊙lower-equiv) ⟩ C 0 (⊙S¹ ⊙× ⊙Lift (n -⊙Torus)) ≃ᴳ⟨ C-Sphere× 0 1 (⊙Lift (n -⊙Torus)) ⟩ C 0 (⊙Lift ⊙S¹) ×ᴳ (C 0 (⊙Lift (n -⊙Torus)) ×ᴳ C 0 (⊙Susp (⊙Lift (n -⊙Torus)))) ≃ᴳ⟨ ×ᴳ-emap (trivial-iso-0ᴳ (C-Sphere-≠-is-trivial 0 1 (pos-≠ (ℕ-O≠S _)))) (idiso _) ⟩ 0ᴳ ×ᴳ (C 0 (⊙Lift (n -⊙Torus)) ×ᴳ C 0 (⊙Susp (⊙Lift (n -⊙Torus)))) ≃ᴳ⟨ ×ᴳ-unit-l _ ⟩ C 0 (⊙Lift (n -⊙Torus)) ×ᴳ C 0 (⊙Susp (⊙Lift (n -⊙Torus))) ≃ᴳ⟨ ×ᴳ-emap (lower-iso ∘eᴳ C-nTorus 0 n) (C-nTorus -1 n ∘eᴳ C-Susp -1 (⊙Lift (n -⊙Torus))) ⟩ 0ᴳ ×ᴳ Lift-group 0ᴳ ≃ᴳ⟨ ×ᴳ-unit-l _ ⟩ Lift-group 0ᴳ ≃ᴳ∎ C-nTorus (pos (S O)) O = lift-iso ∘eᴳ trivial-iso-0ᴳ (C-Unit 1) C-nTorus (pos (S O)) (S n) = C 1 (⊙Lift (S n -⊙Torus)) ≃ᴳ⟨ C-emap 1 (⊙lift-equiv ⊙∘e ⊙×-emap (⊙ide _) ⊙lower-equiv) ⟩ C 1 (⊙S¹ ⊙× ⊙Lift (n -⊙Torus)) ≃ᴳ⟨ C-Sphere× 1 1 (⊙Lift (n -⊙Torus)) ⟩ C 1 (⊙Lift ⊙S¹) ×ᴳ (C 1 (⊙Lift (n -⊙Torus)) ×ᴳ C 1 (⊙Susp (⊙Lift (n -⊙Torus)))) ≃ᴳ⟨ ×ᴳ-emap (C-Sphere-diag 1) ( ×ᴳ-unit-r _ ∘eᴳ ×ᴳ-emap (C-nTorus 1 n) (lower-iso ∘eᴳ C-nTorus 0 n ∘eᴳ C-Susp 0 (⊙Lift (n -⊙Torus)))) ⟩ C 0 (⊙Lift ⊙S⁰) ×ᴳ (C 0 (⊙Lift ⊙S⁰) ^ᴳ n) ≃ᴳ∎ C-nTorus (pos (S (S k))) O = lift-iso ∘eᴳ trivial-iso-0ᴳ (C-Unit (pos (S (S k)))) C-nTorus (pos (S (S k))) (S n) = C (pos (S (S k))) (⊙Lift (S n -⊙Torus)) ≃ᴳ⟨ C-emap (pos (S (S k))) (⊙lift-equiv ⊙∘e ⊙×-emap (⊙ide _) ⊙lower-equiv) ⟩ C (pos (S (S k))) (⊙S¹ ⊙× ⊙Lift (n -⊙Torus)) ≃ᴳ⟨ C-Sphere× (pos (S (S k))) 1 (⊙Lift (n -⊙Torus)) ⟩ C (pos (S (S k))) (⊙Lift ⊙S¹) ×ᴳ (C (pos (S (S k))) (⊙Lift (n -⊙Torus)) ×ᴳ C (pos (S (S k))) (⊙Susp (⊙Lift (n -⊙Torus)))) ≃ᴳ⟨ ×ᴳ-emap (trivial-iso-0ᴳ (C-Sphere-≠-is-trivial (pos (S (S k))) 1 (pos-≠ (ℕ-S-≠ (ℕ-S≠O k))))) (idiso _) ⟩ 0ᴳ ×ᴳ (C (pos (S (S k))) (⊙Lift (n -⊙Torus)) ×ᴳ C (pos (S (S k))) (⊙Susp (⊙Lift (n -⊙Torus)))) ≃ᴳ⟨ ×ᴳ-unit-l _ ⟩ C (pos (S (S k))) (⊙Lift (n -⊙Torus)) ×ᴳ C (pos (S (S k))) (⊙Susp (⊙Lift (n -⊙Torus))) ≃ᴳ⟨ ×ᴳ-emap (C-nTorus (pos (S (S k))) n) (C-nTorus (pos (S k)) n ∘eᴳ C-Susp (pos (S k)) (⊙Lift (n -⊙Torus))) ⟩ (C 0 (⊙Lift ⊙S⁰) ^ᴳ (n choose' pos (S (S k)))) ×ᴳ (C 0 (⊙Lift ⊙S⁰) ^ᴳ (n choose' pos (S k))) ≃ᴳ⟨ ^ᴳ-+ (C 0 (⊙Lift ⊙S⁰)) (n choose' pos (S (S k))) (n choose' pos (S k)) ⁻¹ᴳ ⟩ C 0 (⊙Lift ⊙S⁰) ^ᴳ (S n choose' pos (S (S k))) ≃ᴳ∎
{ "alphanum_fraction": 0.5097816197, "avg_line_length": 39.25, "ext": "agda", "hexsha": "8b7def68136f17fd31fe3f5045f376c3d4e44cf3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/Torus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/Torus.agda", "max_line_length": 123, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/Torus.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2664, "size": 4396 }
------------------------------------------------------------------------ -- Some derivable properties ------------------------------------------------------------------------ open import Algebra module Algebra.Props.Lattice (l : Lattice) where open Lattice l open import Algebra.Structures import Algebra.FunctionProperties as P; open P _≈_ import Relation.Binary.EqReasoning as EqR; open EqR setoid open import Data.Function open import Data.Product ∧-idempotent : Idempotent _∧_ ∧-idempotent x = begin x ∧ x ≈⟨ refl ⟨ ∧-pres-≈ ⟩ sym (proj₁ absorptive _ _) ⟩ x ∧ (x ∨ x ∧ x) ≈⟨ proj₂ absorptive _ _ ⟩ x ∎ ∨-idempotent : Idempotent _∨_ ∨-idempotent x = begin x ∨ x ≈⟨ refl ⟨ ∨-pres-≈ ⟩ sym (∧-idempotent _) ⟩ x ∨ x ∧ x ≈⟨ proj₁ absorptive _ _ ⟩ x ∎ -- The dual construction is also a lattice. ∧-∨-isLattice : IsLattice _≈_ _∧_ _∨_ ∧-∨-isLattice = record { isEquivalence = isEquivalence ; ∨-comm = ∧-comm ; ∨-assoc = ∧-assoc ; ∨-pres-≈ = ∧-pres-≈ ; ∧-comm = ∨-comm ; ∧-assoc = ∨-assoc ; ∧-pres-≈ = ∨-pres-≈ ; absorptive = swap absorptive } ∧-∨-lattice : Lattice ∧-∨-lattice = record { _∧_ = _∨_ ; _∨_ = _∧_ ; isLattice = ∧-∨-isLattice }
{ "alphanum_fraction": 0.5098039216, "avg_line_length": 26.5625, "ext": "agda", "hexsha": "2ece1a28a6a9bb3c73d74caf5f3d91cbea890943", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Algebra/Props/Lattice.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Algebra/Props/Lattice.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Algebra/Props/Lattice.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 463, "size": 1275 }
------------------------------------------------------------------------ -- Code related to the paper "Bag Equivalence via a Proof-Relevant -- Membership Relation" -- -- Nils Anders Danielsson ------------------------------------------------------------------------ -- Note that the code does not follow the paper exactly. For instance, -- many definitions are universe-polymorphic, and in some cases where -- the paper contains both a specialised and a more general definition -- the code only contains the more general one. The code has also been -- changed after the paper was published. {-# OPTIONS --without-K --safe #-} module README.Bag-equivalence where ------------------------------------------------------------------------ -- 2: Brief Introduction to Agda -- The prelude, containing List, ℕ, Fin, ⊥, ⊤, _⊎_ (written as _+_ in -- the paper), ∃, and _×_. import Prelude -- Some list functions: length and index (called lookup in the paper). import List -- Logical equivalences: _⇔_. import Logical-equivalence -- Bijections: _↔_. import Bijection -- Equality: _≡_. import Equality.Propositional -- The K rule, and a proof showing that it implies proof-irrelevance. import Equality -- Bijectional reasoning combinators (more general than those in the -- paper): inverse (written as sym in the paper), _□, and _↔⟨_⟩_. import Function-universe ------------------------------------------------------------------------ -- 3: Bag Equivalence for Lists -- Any, _∈_, and the two definitions of bag equivalence. import Bag-equivalence ------------------------------------------------------------------------ -- 4: Bijectional Reasoning -- Definitions of map, concat and _>>=_ (the latter as part of a monad -- instance). import List -- Algebraic properties of type constructors (like ⊥ ⊎ A ↔ A). import Function-universe import Fin -- All the main lemmas from this section, including -- >>=-left-distributive. import Bag-equivalence ------------------------------------------------------------------------ -- 5: The Definitions Are Equivalent -- The equivalence proof. import Bag-equivalence -- There are infinitely many proofs of ℕ ≡ ℕ in homotopy type theory. import Univalence-axiom ------------------------------------------------------------------------ -- 6: Bag Equivalence for Arbitrary Containers -- Containers, including Any, _∈_, the two definitions of bag -- equivalence, and a proof showing that the two definitions are -- logically equivalent. -- -- There is also a proof which shows that the definitions are -- isomorphic (assuming extensionality), if "bijection" is replaced by -- the logically equivalent concept of "(weak) equivalence" in the -- definitions of bag equivalence. import Container import Equivalence -- The List, Stream and Tree containers. It is shown that the general -- definition of bag equivalence for containers, instantiated with the -- List container, is equivalent (in a certain sense) to the list-only -- definition given above. import Container.List import Container.Stream import Container.Tree ------------------------------------------------------------------------ -- 7: More Bijectional Reasoning -- Three implementations of tree sort are provided. -- 1) An implementation of tree sort, formally proved to return a -- permutation of the input. import Tree-sort.Partial import Tree-sort.Examples -- 2) An implementation of tree sort, formally proved to return a -- /sorted/ permutation of the input. import Tree-sort.Full import Tree-sort.Examples -- 3) An implementation of tree sort which uses containers to -- represent trees and lists. -- -- In the module Tree-sort.Full indexed types are used to enforce -- sortedness, but this development uses non-indexed containers, so -- sortedness is not enforced. -- -- The implementation using containers has the advantage of uniform -- definitions of Any/membership/bag equivalence, but the other -- implementations use more direct definitions and are perhaps a -- bit "leaner". import Container.Tree import Container.Tree-sort import Container.Tree-sort.Example ------------------------------------------------------------------------ -- 8: Set Equivalence, Subsets and Subbags -- Injections: _↣_. import Injection -- The general definition of set and bag equivalence and the subset -- and subbag preorders, as well as preservation lemmas such as -- >>=-cong. import Bag-equivalence ------------------------------------------------------------------------ -- 9: Related Work -- One of the definitions of bag equivalence from Coq's standard -- library has been replicated, and shown to be sound with respect to -- the other ones. import Bag-equivalence ------------------------------------------------------------------------ -- 10: Conclusions -- Two proofs showing that cons is left cancellative, using different -- definitions of bag equivalence. import Bag-equivalence
{ "alphanum_fraction": 0.6265643924, "avg_line_length": 28.6358381503, "ext": "agda", "hexsha": "77a3836ddb9de81cbce69806a4970ebd2cb4ac98", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "README/Bag-equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "README/Bag-equivalence.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "README/Bag-equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 1011, "size": 4954 }
{-# OPTIONS --without-K --safe #-} module Cham.Label where open import Cham.Name data Label : Set where _⁺ : Name → Label _⁻ : Name → Label
{ "alphanum_fraction": 0.6351351351, "avg_line_length": 13.4545454545, "ext": "agda", "hexsha": "3c70f751d13cab5d1ce3783d365a5b3fe3eb6b16", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "riz0id/chemical-abstract-machine", "max_forks_repo_path": "agda/Cham/Label.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "riz0id/chemical-abstract-machine", "max_issues_repo_path": "agda/Cham/Label.agda", "max_line_length": 34, "max_stars_count": null, "max_stars_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "riz0id/chemical-abstract-machine", "max_stars_repo_path": "agda/Cham/Label.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 42, "size": 148 }
module prelude where open import Function using (id; _∘_) public open import Data.Sum renaming (inj₁ to Σ₁; inj₂ to Σ₂) using (_⊎_) public open import Data.Product renaming (proj₁ to π₁; proj₂ to π₂) using (Σ; _×_; _,_; ∃; Σ-syntax) public open import Agda.Builtin.Unit using (⊤; tt) public open import Data.Empty using (⊥) public open import Data.Nat as Nat renaming (suc to ℕs; zero to ℕz; _+_ to _ℕ+_) using (ℕ) public open import Relation.Binary.PropositionalEquality.Core as Eq using (_≡_; _≢_; refl; sym; trans; subst) renaming (cong to _⟨$⟩_) public open Eq.≡-Reasoning using (_≡⟨⟩_; step-≡; _∎) public postulate extensionality : {A : Set} {B : A → Set} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g extensionality2 : {A : Set} {B : A → Set} {C : (x : A) → B x → Set} {f g : (x : A) (y : B x) → C x y } → (∀ x y → f x y ≡ g x y) → f ≡ g extensionality2 λλf≡g = extensionality λ x → extensionality λ y → λλf≡g x y trans-refl : {A : Set} {x y : A} (p : x ≡ y) → trans p refl ≡ p trans-refl p rewrite p = refl subst⋯ : {A : Set} {x y z : A} (P : A → Set) (p : x ≡ y) (q : y ≡ z) (Px : P x) → subst P (trans p q) Px ≡ subst P q (subst P p Px) subst⋯ _ p _ _ rewrite p = refl _×⁼_ : {A X : Set} {a b : A} {x y : X} → a ≡ b → x ≡ y → (a , x) ≡ (b , y) _×⁼_ refl refl = refl _⨄_ : {A B : Set} → (A → Set) → (B → Set) → A ⊎ B → Set (F ⨄ G) (Σ₁ x) = F x (F ⨄ G) (Σ₂ y) = G y _⨃_ _⨉_ : {A B : Set} → (A → Set) → (B → Set) → A × B → Set F ⨃ G = λ (a , b) → F a ⊎ G b F ⨉ G = λ (a , b) → F a × G b _$₁_ : ∀ {A B X : Set} (f : A → B) → A × X → B × X f $₁ (a , x) = f a , x _⁻¹ : {A B : Set} → (A → B) → B → Set _⁻¹ {A} {B} f b = Σ[ a ∈ A ] (f a ≡ b) uncurry : {a b c : Set} → (a → b → c) → (a × b) → c uncurry f (a , b) = f a b
{ "alphanum_fraction": 0.5154755205, "avg_line_length": 41.3255813953, "ext": "agda", "hexsha": "73c441936290d98e0457fa72ca1f6adc2a8b993b", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-30T11:45:57.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-10T17:19:37.000Z", "max_forks_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dspivak/poly", "max_forks_repo_path": "code-examples/agda/prelude.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_issues_repo_issues_event_max_datetime": "2022-01-12T10:06:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-02T02:29:39.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dspivak/poly", "max_issues_repo_path": "code-examples/agda/prelude.agda", "max_line_length": 134, "max_stars_count": 53, "max_stars_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mstone/poly", "max_stars_repo_path": "code-examples/agda/prelude.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:08:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-18T16:31:04.000Z", "num_tokens": 815, "size": 1777 }
module Data.Vec.Membership.Propositional.Distinct.Properties where open import Data.Fin as Fin open import Relation.Binary.PropositionalEquality as P open import Data.Vec as Vec using (Vec; [] ; _∷_ ; _++_) open import Data.Vec.Any open import Data.Vec.Membership.Propositional.Distinct open import Data.Vec.Membership.Propositional.Disjoint renaming (Disjoint to _⋈_) open import Data.Vec.Membership.Propositional.Properties open import Data.Vec.Membership.Propositional open import Data.Product open import Data.Empty using (⊥-elim) open import Function using (_∘_) open import Function.Equivalence using (_⇔_; equivalence) distinct-++ˡ : ∀ {a}{A : Set a}{m n} (xs : Vec A m){ys : Vec A n} → Distinct (xs ++ ys) → Distinct xs distinct-++ˡ [] dis = distinct-[] distinct-++ˡ (x ∷ xs) (.x distinct-∷ dis by x∉xsys) = x distinct-∷ distinct-++ˡ xs dis by λ x∈xs → x∉xsys (∈-++⁺ˡ x∈xs) distinct-++ʳ : ∀ {a}{A : Set a}{m n} (xs : Vec A m) {ys : Vec A n} → Distinct (xs ++ ys) → Distinct ys distinct-++ʳ [] dys = dys distinct-++ʳ (x ∷ xs) (.x distinct-∷ dxsys by _) = distinct-++ʳ xs dxsys distinct-++→disjoint : ∀ {a}{A : Set a}{m n} (xs : Vec A m) {ys : Vec A n} → Distinct (xs ++ ys) → xs ⋈ ys distinct-++→disjoint [] dxsys {z} () z∈ys distinct-++→disjoint (x ∷ xs) (.x distinct-∷ dxsys by x∉xsys) {.x} (here refl) x∈ys = x∉xsys (∈-++⁺ʳ xs x∈ys) distinct-++→disjoint (x ∷ xs) (.x distinct-∷ dxsys by x₁) {z} (there z∈xs) z∈ys = distinct-++→disjoint xs dxsys z∈xs z∈ys ⋈→distinct-++ : ∀ {a}{A : Set a}{m n}{xs : Vec A m}{ys : Vec A n} → Distinct xs → Distinct ys → xs ⋈ ys → Distinct (xs ++ ys) ⋈→distinct-++ {xs = []} _ dys _ = dys ⋈→distinct-++ {xs = x ∷ xs} (.x distinct-∷ dxs by x∉xs) dys xxs⋈ys = x distinct-∷ ⋈→distinct-++ dxs dys (xxs⋈ys ∘ there) by λ x∈xs++ys → xxs⋈ys (here P.refl) (x∈xs++ys→x∉xs→x∈ys xs x∈xs++ys x∉xs) where x∈xs++ys→x∉xs→x∈ys : ∀ {a} {A : Set a} {m n} (xs : Vec A m){ys : Vec A n} → ∀ {x} → x ∈ xs ++ ys → x ∉ xs → x ∈ ys x∈xs++ys→x∉xs→x∈ys [] x∈ys _ = x∈ys x∈xs++ys→x∉xs→x∈ys (x ∷ xs) (here refl) x∉xs = ⊥-elim (x∉xs (here refl)) x∈xs++ys→x∉xs→x∈ys (x ∷ xs) (there x∈xsys) x∉xs = x∈xs++ys→x∉xs→x∈ys xs x∈xsys (x∉xs ∘ there) distinct-++⇔⋈ : ∀ {a}{A : Set a}{m n} {xs : Vec A m}{ys : Vec A n} → Distinct (xs ++ ys) ⇔ (Distinct xs × Distinct ys × xs ⋈ ys) distinct-++⇔⋈ = equivalence to from where open import Data.Nat.Properties to : ∀ {a}{A : Set a} {m n} {xs : Vec A m}{ys : Vec A n} → Distinct (xs ++ ys) → (Distinct xs × Distinct ys × xs ⋈ ys) to {xs = xs} dxsys = distinct-++ˡ xs dxsys , distinct-++ʳ xs dxsys , distinct-++→disjoint xs dxsys from : ∀ {a}{A : Set a} {m n} {xs : Vec A m}{ ys : Vec A n} → (Distinct xs × Distinct ys × xs ⋈ ys) → Distinct (xs ++ ys) from (dxs , dys , xs⋈ys) = ⋈→distinct-++ dxs dys xs⋈ys private lookup-∈ : ∀ {a n}{A : Set a} i (xs : Vec A n) → Vec.lookup i xs ∈ xs lookup-∈ () [] lookup-∈ zero (x ∷ xs) = here P.refl lookup-∈ (suc i) (x ∷ xs) = there (lookup-∈ i xs) lookup-injective : ∀ {a n}{A : Set a} {xs : Vec A n}{i j} → Distinct xs → Vec.lookup i xs ≡ Vec.lookup j xs → i ≡ j lookup-injective {i = ()} {j} distinct-[] _ lookup-injective {i = zero} {zero} (x distinct-∷ dxs by x∉xs) eq = P.refl lookup-injective {i = suc i} {suc j} (x distinct-∷ dxs by x∉xs) eq = P.cong Fin.suc (lookup-injective dxs eq) lookup-injective {xs = _ ∷ xs} {i = zero} {suc j} (x distinct-∷ dxs by x∉xs) eq rewrite eq = ⊥-elim (x∉xs (lookup-∈ j xs)) lookup-injective {xs = _ ∷ xs} {i = suc i} {zero} (x distinct-∷ dxs by x∉xs) eq rewrite P.sym eq = ⊥-elim (x∉xs (lookup-∈ i xs))
{ "alphanum_fraction": 0.5897365532, "avg_line_length": 54.3880597015, "ext": "agda", "hexsha": "d1c108ee6a750c4ee99c7a159b7494d34c16309f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tizmd/agda-distinct-disjoint", "max_forks_repo_path": "src/Data/Vec/Membership/Propositional/Distinct/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tizmd/agda-distinct-disjoint", "max_issues_repo_path": "src/Data/Vec/Membership/Propositional/Distinct/Properties.agda", "max_line_length": 129, "max_stars_count": null, "max_stars_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tizmd/agda-distinct-disjoint", "max_stars_repo_path": "src/Data/Vec/Membership/Propositional/Distinct/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1546, "size": 3644 }
module Utils where open import Data.Fin using (Fin) import Data.Fin as F open import Data.Nat data Fromℕ (n : ℕ) : ℕ → Set where yes : (m : Fin n) → Fromℕ n (F.toℕ m) no : (m : ℕ) → Fromℕ n (n + m) fromℕ : ∀ n m → Fromℕ n m fromℕ zero m = no m fromℕ (suc n) zero = yes F.zero fromℕ (suc n) (suc m) with fromℕ n m fromℕ (suc n) (suc .(F.toℕ m)) | yes m = yes (F.suc m) fromℕ (suc n) (suc .(n + m)) | no m = no m
{ "alphanum_fraction": 0.5707656613, "avg_line_length": 25.3529411765, "ext": "agda", "hexsha": "fddda83d2b6d4d807dfec3b6a272a3786d56cb3c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bens/hwlc", "max_forks_repo_path": "Utils.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bens/hwlc", "max_issues_repo_path": "Utils.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bens/hwlc", "max_stars_repo_path": "Utils.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 196, "size": 431 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Fundamental {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Conversion open import Definition.LogicalRelation.Substitution.Reduction open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Introductions import Definition.LogicalRelation.Substitution.Irrelevance as S open import Agda.Primitive open import Tools.Product open import Tools.Unit open import Tools.Nat import Tools.PropositionalEquality as PE mutual -- Fundamental theorem for contexts. valid : ∀ {Γ} → ⊢ Γ → ⊩ᵛ Γ valid ε = ε′ valid (⊢Γ ∙ A) = let [Γ] , [A] = fundamental A in [Γ] ∙′ [A] -- Fundamental theorem for types. fundamental : ∀ {Γ A} (⊢A : Γ ⊢ A) → Σω₄ (⊩ᵛ Γ) (λ [Γ] → Γ ⊩ᵛ⟨ ¹ ⟩ A / [Γ]) fundamental (ℕⱼ x) = valid x , ℕᵛ (valid x) fundamental (Uⱼ x) = valid x , Uᵛ (valid x) fundamental (Πⱼ_▹_ {F} {G} ⊢F ⊢G) with fundamental ⊢F | fundamental ⊢G fundamental (Πⱼ_▹_ {F} {G} ⊢F ⊢G) | [Γ] , [F] | [Γ∙F] , [G] = [Γ] , Πᵛ {F} {G} [Γ] [F] (S.irrelevance {A = G} [Γ∙F] ([Γ] ∙′ [F]) [G]) fundamental (univ {A} ⊢A) with fundamentalTerm ⊢A fundamental (univ {A} ⊢A) | [Γ] , [U] , [A] = [Γ] , univᵛ {A} [Γ] [U] [A] -- Fundamental theorem for type equality. fundamentalEq : ∀{Γ A B} → Γ ⊢ A ≡ B → ∃ω₄ λ ([Γ] : ⊩ᵛ Γ) → ∃ω₃² λ ([A] : Γ ⊩ᵛ⟨ ¹ ⟩ A / [Γ]) ([B] : Γ ⊩ᵛ⟨ ¹ ⟩ B / [Γ]) → Γ ⊩ᵛ⟨ ¹ ⟩ A ≡ B / [Γ] / [A] fundamentalEq (univ {A} {B} x) with fundamentalTermEq x fundamentalEq (univ {A} {B} x) | [Γ] , modelsTermEq [U] [t] [u] [t≡u] = let [A] = univᵛ {A} [Γ] [U] [t] [B] = univᵛ {B} [Γ] [U] [u] in [Γ] , [A] , [B] , (λ ⊢Δ [σ] → univEqEq (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) ([t≡u] ⊢Δ [σ])) fundamentalEq (refl D) = let [Γ] , [B] = fundamental D in [Γ] , [B] , [B] , (λ ⊢Δ [σ] → reflEq (proj₁ ([B] ⊢Δ [σ]))) fundamentalEq (sym A≡B) with fundamentalEq A≡B fundamentalEq (sym A≡B) | [Γ] , [B] , [A] , [B≡A] = [Γ] , [A] , [B] , (λ ⊢Δ [σ] → symEq (proj₁ ([B] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) ([B≡A] ⊢Δ [σ])) fundamentalEq (trans {A} {B₁} {B} A≡B₁ B₁≡B) with fundamentalEq A≡B₁ | fundamentalEq B₁≡B fundamentalEq (trans {A} {B₁} {B} A≡B B≡C) | [Γ] , [A] , [B₁] , [A≡B₁] | [Γ]₁ , [B₁]₁ , [B] , [B₁≡B] = [Γ] , [A] , S.irrelevance {A = B} [Γ]₁ [Γ] [B] , (λ ⊢Δ [σ] → let [σ]′ = S.irrelevanceSubst [Γ] [Γ]₁ ⊢Δ ⊢Δ [σ] in transEq (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([B₁] ⊢Δ [σ])) (proj₁ ([B] ⊢Δ [σ]′)) ([A≡B₁] ⊢Δ [σ]) (irrelevanceEq (proj₁ ([B₁]₁ ⊢Δ [σ]′)) (proj₁ ([B₁] ⊢Δ [σ])) ([B₁≡B] ⊢Δ [σ]′))) fundamentalEq (Π-cong {F} {H} {G} {E} ⊢F A≡B A≡B₁) with fundamentalEq A≡B | fundamentalEq A≡B₁ fundamentalEq (Π-cong {F} {H} {G} {E} ⊢F A≡B A≡B₁) | [Γ] , [F] , [H] , [F≡H] | [Γ]₁ , [G] , [E] , [G≡E] = let [G]′ = S.irrelevance {A = G} [Γ]₁ ([Γ] ∙′ [F]) [G] [E]′ = S.irrelevanceLift {A = E} {F = F} {H = H} [Γ] [F] [H] [F≡H] (S.irrelevance {A = E} [Γ]₁ ([Γ] ∙′ [F]) [E]) [G≡E]′ = S.irrelevanceEq {A = G} {B = E} [Γ]₁ ([Γ] ∙′ [F]) [G] [G]′ [G≡E] in [Γ] , Πᵛ {F} {G} [Γ] [F] [G]′ , Πᵛ {H} {E} [Γ] [H] [E]′ , Π-congᵛ {F} {G} {H} {E} [Γ] [F] [G]′ [H] [E]′ [F≡H] [G≡E]′ -- Fundamental theorem for variables. fundamentalVar : ∀ {Γ A x} → x ∷ A ∈ Γ → ([Γ] : ⊩ᵛ Γ) → ∃ω₃ λ ([A] : Γ ⊩ᵛ⟨ ¹ ⟩ A / [Γ]) → Γ ⊩ᵛ⟨ ¹ ⟩ var x ∷ A / [Γ] / [A] fundamentalVar here (VPack _ _ (V∙ {A = A} {l = l} [Γ] [A])) = (λ ⊢Δ [σ] → let [σA] = proj₁ ([A] ⊢Δ (proj₁ [σ])) [σA′] = maybeEmb (irrelevance′ (PE.sym (subst-wk A)) [σA]) in [σA′] , (λ [σ′] [σ≡σ′] → irrelevanceEq″ (PE.sym (subst-wk A)) (PE.sym (subst-wk A)) [σA] [σA′] (proj₂ ([A] ⊢Δ (proj₁ [σ])) (proj₁ [σ′]) (proj₁ [σ≡σ′])))) , (λ ⊢Δ [σ] → let [σA] = proj₁ ([A] ⊢Δ (proj₁ [σ])) [σA′] = maybeEmb (irrelevance′ (PE.sym (subst-wk A)) [σA]) in irrelevanceTerm′ (PE.sym (subst-wk A)) [σA] [σA′] (proj₂ [σ]) , (λ [σ′] [σ≡σ′] → irrelevanceEqTerm′ (PE.sym (subst-wk A)) [σA] [σA′] (proj₂ [σ≡σ′]))) fundamentalVar (there {A = A} h) ([Γ] ∙′ [B]) = (λ ⊢Δ [σ] → let [h] = proj₁ (fundamentalVar h [Γ]) ⊢Δ (proj₁ [σ]) [σA] = proj₁ [h] [σA′] = irrelevance′ (PE.sym (subst-wk A)) [σA] in [σA′] , (λ [σ′] [σ≡σ′] → irrelevanceEq″ (PE.sym (subst-wk A)) (PE.sym (subst-wk A)) [σA] [σA′] (proj₂ [h] (proj₁ [σ′]) (proj₁ [σ≡σ′])))) , (λ ⊢Δ [σ] → let [h] = (proj₁ (fundamentalVar h [Γ])) ⊢Δ (proj₁ [σ]) [σA] = proj₁ [h] [σA′] = irrelevance′ (PE.sym (subst-wk A)) [σA] [h′] = (proj₂ (fundamentalVar h [Γ])) ⊢Δ (proj₁ [σ]) in irrelevanceTerm′ (PE.sym (subst-wk A)) [σA] [σA′] (proj₁ [h′]) , (λ [σ′] [σ≡σ′] → irrelevanceEqTerm′ (PE.sym (subst-wk A)) [σA] [σA′] (proj₂ [h′] (proj₁ [σ′]) (proj₁ [σ≡σ′])))) -- Fundamental theorem for terms. fundamentalTerm : ∀{Γ A t} → Γ ⊢ t ∷ A → ∃ω₄ λ ([Γ] : ⊩ᵛ Γ) → ∃ω₃ λ ([A] : Γ ⊩ᵛ⟨ ¹ ⟩ A / [Γ]) → Γ ⊩ᵛ⟨ ¹ ⟩ t ∷ A / [Γ] / [A] fundamentalTerm (ℕⱼ x) = valid x , Uᵛ (valid x) , ℕᵗᵛ (valid x) fundamentalTerm (Πⱼ_▹_ {F} {G} ⊢F ⊢G) with fundamentalTerm ⊢F | fundamentalTerm ⊢G ... | [Γ] , [U] , [F]ₜ | [Γ]₁ , [U]₁ , [G]ₜ = let [F] = univᵛ {F} [Γ] [U] [F]ₜ [U]′ = S.irrelevance {A = U} [Γ]₁ ([Γ] ∙′ [F]) [U]₁ [F]ₜ′ = S.irrelevanceTerm {A = U} {t = F} [Γ] [Γ] [U] (Uᵛ [Γ]) [F]ₜ [G]ₜ′ = S.irrelevanceTerm {A = U} {t = G} [Γ]₁ ([Γ] ∙′ [F]) [U]₁ (λ {Δ} {σ} → [U]′ {Δ} {σ}) [G]ₜ in [Γ] , [U] , S.irrelevanceTerm {A = U} {t = Π F ▹ G} [Γ] [Γ] (Uᵛ [Γ]) [U] (Πᵗᵛ {F} {G} [Γ] [F] (λ {Δ} {σ} → [U]′ {Δ} {σ}) [F]ₜ′ [G]ₜ′) fundamentalTerm (var ⊢Γ x∷A) = valid ⊢Γ , fundamentalVar x∷A (valid ⊢Γ) fundamentalTerm (lamⱼ {F} {G} {t} ⊢F ⊢t) with fundamental ⊢F | fundamentalTerm ⊢t ... | [Γ] , [F] | [Γ]₁ , [G] , [t] = let [G]′ = S.irrelevance {A = G} [Γ]₁ ([Γ] ∙′ [F]) [G] [t]′ = S.irrelevanceTerm {A = G} {t = t} [Γ]₁ ([Γ] ∙′ [F]) [G] [G]′ [t] in [Γ] , Πᵛ {F} {G} [Γ] [F] [G]′ , lamᵛ {F} {G} {t} [Γ] [F] [G]′ [t]′ fundamentalTerm (_∘ⱼ_ {g} {a} {F} {G} Dt Du) with fundamentalTerm Dt | fundamentalTerm Du ... | [Γ] , [ΠFG] , [t] | [Γ]₁ , [F] , [u] = let [ΠFG]′ = S.irrelevance {A = Π F ▹ G} [Γ] [Γ]₁ [ΠFG] [t]′ = S.irrelevanceTerm {A = Π F ▹ G} {t = g} [Γ] [Γ]₁ [ΠFG] [ΠFG]′ [t] [G[t]] = substSΠ {F} {G} {a} [Γ]₁ [F] [ΠFG]′ [u] [t∘u] = appᵛ {F} {G} {g} {a} [Γ]₁ [F] [ΠFG]′ [t]′ [u] in [Γ]₁ , [G[t]] , [t∘u] fundamentalTerm (zeroⱼ x) = valid x , ℕᵛ (valid x) , zeroᵛ {l = ¹} (valid x) fundamentalTerm (sucⱼ {n} t) with fundamentalTerm t fundamentalTerm (sucⱼ {n} t) | [Γ] , [ℕ] , [n] = [Γ] , [ℕ] , sucᵛ {n = n} [Γ] [ℕ] [n] fundamentalTerm (natrecⱼ {G} {s} {z} {n} ⊢G ⊢z ⊢s ⊢n) with fundamental ⊢G | fundamentalTerm ⊢z | fundamentalTerm ⊢s | fundamentalTerm ⊢n ... | [Γ] , [G] | [Γ]₁ , [G₀] , [z] | [Γ]₂ , [G₊] , [s] | [Γ]₃ , [ℕ] , [n] = let sType = Π ℕ ▹ (G ▹▹ G [ suc (var 0) ]↑) [Γ]′ = [Γ]₃ [G]′ = S.irrelevance {A = G} [Γ] ([Γ]′ ∙′ [ℕ]) [G] [G₀]′ = S.irrelevance {A = G [ zero ]} [Γ]₁ [Γ]′ [G₀] [G₊]′ = S.irrelevance {A = sType} [Γ]₂ [Γ]′ [G₊] [Gₙ]′ = substS {F = ℕ} {G = G} {t = n} [Γ]′ [ℕ] [G]′ [n] [z]′ = S.irrelevanceTerm {A = G [ zero ]} {t = z} [Γ]₁ [Γ]′ [G₀] [G₀]′ [z] [s]′ = S.irrelevanceTerm {A = sType} {t = s} [Γ]₂ [Γ]′ [G₊] [G₊]′ [s] in [Γ]′ , [Gₙ]′ , natrecᵛ {G} {z} {s} {n} [Γ]′ [ℕ] [G]′ [G₀]′ [G₊]′ [Gₙ]′ [z]′ [s]′ [n] fundamentalTerm (conv {t} {A} {B} ⊢t A′≡A) with fundamentalTerm ⊢t | fundamentalEq A′≡A fundamentalTerm (conv {t} {A} {B} ⊢t A′≡A) | [Γ] , [A′] , [t] | [Γ]₁ , [A′]₁ , [A] , [A′≡A] = let [Γ]′ = [Γ]₁ [t]′ = S.irrelevanceTerm {A = A} {t = t} [Γ] [Γ]′ [A′] [A′]₁ [t] in [Γ]′ , [A] , convᵛ {t} {A} {B} [Γ]′ [A′]₁ [A] [A′≡A] [t]′ -- Fundamental theorem for term equality. fundamentalTermEq : ∀{Γ A t t′} → Γ ⊢ t ≡ t′ ∷ A → ∃ω₄ λ ([Γ] : ⊩ᵛ Γ) → [ Γ ⊩ᵛ⟨ ¹ ⟩ t ≡ t′ ∷ A / [Γ] ] fundamentalTermEq (refl D) with fundamentalTerm D ... | [Γ] , [A] , [t] = [Γ] , modelsTermEq [A] [t] [t] (λ ⊢Δ [σ] → reflEqTerm (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ]))) fundamentalTermEq (sym D) with fundamentalTermEq D fundamentalTermEq (sym D) | [Γ] , modelsTermEq [A] [t′] [t] [t′≡t] = [Γ] , modelsTermEq [A] [t] [t′] (λ ⊢Δ [σ] → symEqTerm (proj₁ ([A] ⊢Δ [σ])) ([t′≡t] ⊢Δ [σ])) fundamentalTermEq (trans {t} {u} {r} {A} t≡u u≡t′) with fundamentalTermEq t≡u | fundamentalTermEq u≡t′ fundamentalTermEq (trans {t} {u} {r} {A} t≡u u≡t′) | [Γ] , modelsTermEq [A] [t] [u] [t≡u] | [Γ]₁ , modelsTermEq [A]₁ [t]₁ [u]₁ [t≡u]₁ = let [r]′ = S.irrelevanceTerm {A = A} {t = r} [Γ]₁ [Γ] [A]₁ [A] [u]₁ in [Γ] , modelsTermEq [A] [t] [r]′ (λ ⊢Δ [σ] → let [σ]′ = S.irrelevanceSubst [Γ] [Γ]₁ ⊢Δ ⊢Δ [σ] [t≡u]₁′ = irrelevanceEqTerm (proj₁ ([A]₁ ⊢Δ [σ]′)) (proj₁ ([A] ⊢Δ [σ])) ([t≡u]₁ ⊢Δ [σ]′) in transEqTerm (proj₁ ([A] ⊢Δ [σ])) ([t≡u] ⊢Δ [σ]) [t≡u]₁′) fundamentalTermEq (conv {A} {B} {t} {u} t≡u A′≡A) with fundamentalTermEq t≡u | fundamentalEq A′≡A fundamentalTermEq (conv {A} {B} {t} {u} t≡u A′≡A) | [Γ] , modelsTermEq [A′] [t] [u] [t≡u] | [Γ]₁ , [A′]₁ , [A] , [A′≡A] = let [t]′ = S.irrelevanceTerm {A = A} {t = t} [Γ] [Γ]₁ [A′] [A′]₁ [t] [u]′ = S.irrelevanceTerm {A = A} {t = u} [Γ] [Γ]₁ [A′] [A′]₁ [u] [t]″ = convᵛ {t} {A} {B} [Γ]₁ [A′]₁ [A] [A′≡A] [t]′ [u]″ = convᵛ {u} {A} {B} [Γ]₁ [A′]₁ [A] [A′≡A] [u]′ in [Γ]₁ , modelsTermEq [A] [t]″ [u]″ (λ ⊢Δ [σ] → let [σ]′ = S.irrelevanceSubst [Γ]₁ [Γ] ⊢Δ ⊢Δ [σ] [t≡u]′ = irrelevanceEqTerm (proj₁ ([A′] ⊢Δ [σ]′)) (proj₁ ([A′]₁ ⊢Δ [σ])) ([t≡u] ⊢Δ [σ]′) in convEqTerm₁ (proj₁ ([A′]₁ ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) ([A′≡A] ⊢Δ [σ]) [t≡u]′) fundamentalTermEq (Π-cong {E} {F} {G} {H} ⊢F F≡H G≡E) with fundamental ⊢F | fundamentalTermEq F≡H | fundamentalTermEq G≡E ... | [Γ] , [F] | [Γ]₁ , modelsTermEq [U] [F]ₜ [H]ₜ [F≡H]ₜ | [Γ]₂ , modelsTermEq [U]₁ [G]ₜ [E]ₜ [G≡E]ₜ = let [U]′ = Uᵛ [Γ] [F]ₜ′ = S.irrelevanceTerm {A = U} {t = F} [Γ]₁ [Γ] [U] [U]′ [F]ₜ [H]ₜ′ = S.irrelevanceTerm {A = U} {t = H} [Γ]₁ [Γ] [U] [U]′ [H]ₜ [F]′ = S.irrelevance {A = F} [Γ] [Γ]₁ [F] [H] = univᵛ {A = H} [Γ] [U]′ [H]ₜ′ [F≡H] = S.irrelevanceEq {A = F} {B = H} [Γ]₁ [Γ] [F]′ [F] (univEqᵛ {F} {H} [Γ]₁ [U] [F]′ [F≡H]ₜ) [U]₁′ = Uᵛ (VPack _ _ (V∙ {A = F} [Γ] [F])) [U]₂′ = Uᵛ (VPack _ _ (V∙ {A = H} [Γ] [H])) [G]ₜ′ = S.irrelevanceTerm {A = U} {t = G} [Γ]₂ ([Γ] ∙′ [F]) [U]₁ (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [G]ₜ [E]ₜ′ = S.irrelevanceTermLift {A = U} {F = F} {H = H} {t = E} [Γ] [F] [H] [F≡H] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) (S.irrelevanceTerm {A = U} {t = E} [Γ]₂ ([Γ] ∙′ [F]) [U]₁ (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [E]ₜ) [F≡H]ₜ′ = S.irrelevanceEqTerm {A = U} {t = F} {u = H} [Γ]₁ [Γ] [U] (Uᵛ [Γ]) [F≡H]ₜ [G≡E]ₜ′ = S.irrelevanceEqTerm {A = U} {t = G} {u = E} [Γ]₂ (VPack _ _ (V∙ {A = F} [Γ] [F])) [U]₁ (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [G≡E]ₜ in [Γ] , modelsTermEq [U]′ (Πᵗᵛ {F} {G} [Γ] [F] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [F]ₜ′ [G]ₜ′) (Πᵗᵛ {H} {E} [Γ] [H] (λ {Δ} {σ} → [U]₂′ {Δ} {σ}) [H]ₜ′ [E]ₜ′) (Π-congᵗᵛ {F} {G} {H} {E} [Γ] [F] [H] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) (λ {Δ} {σ} → [U]₂′ {Δ} {σ}) [F]ₜ′ [G]ₜ′ [H]ₜ′ [E]ₜ′ [F≡H]ₜ′ [G≡E]ₜ′) fundamentalTermEq (app-cong {a} {b} {f} {g} {F} {G} f≡g a≡b) with fundamentalTermEq f≡g | fundamentalTermEq a≡b ... | [Γ] , modelsTermEq [ΠFG] [f] [g] [f≡g] | [Γ]₁ , modelsTermEq [F] [a] [b] [a≡b] = let [ΠFG]′ = S.irrelevance {A = Π F ▹ G} [Γ] [Γ]₁ [ΠFG] [f]′ = S.irrelevanceTerm {A = Π F ▹ G} {t = f} [Γ] [Γ]₁ [ΠFG] [ΠFG]′ [f] [g]′ = S.irrelevanceTerm {A = Π F ▹ G} {t = g} [Γ] [Γ]₁ [ΠFG] [ΠFG]′ [g] [f≡g]′ = S.irrelevanceEqTerm {A = Π F ▹ G} {t = f} {u = g} [Γ] [Γ]₁ [ΠFG] [ΠFG]′ [f≡g] [G[a]] = substSΠ {F} {G} {a} [Γ]₁ [F] [ΠFG]′ [a] [G[b]] = substSΠ {F} {G} {b} [Γ]₁ [F] [ΠFG]′ [b] [G[a]≡G[b]] = substSΠEq {F} {G} {F} {G} {a} {b} [Γ]₁ [F] [F] [ΠFG]′ [ΠFG]′ (reflᵛ {Π F ▹ G} [Γ]₁ [ΠFG]′) [a] [b] [a≡b] in [Γ]₁ , modelsTermEq [G[a]] (appᵛ {F} {G} {f} {a} [Γ]₁ [F] [ΠFG]′ [f]′ [a]) (conv₂ᵛ {g ∘ b} {G [ a ]} {G [ b ]} [Γ]₁ [G[a]] [G[b]] [G[a]≡G[b]] (appᵛ {F} {G} {g} {b} [Γ]₁ [F] [ΠFG]′ [g]′ [b])) (app-congᵛ {F} {G} {f} {g} {a} {b} [Γ]₁ [F] [ΠFG]′ [f≡g]′ [a] [b] [a≡b]) fundamentalTermEq (β-red {a} {b} {F} {G} ⊢F ⊢b ⊢a) with fundamental ⊢F | fundamentalTerm ⊢b | fundamentalTerm ⊢a ... | [Γ] , [F] | [Γ]₁ , [G] , [b] | [Γ]₂ , [F]₁ , [a] = let [G]′ = S.irrelevance {A = G} [Γ]₁ ([Γ]₂ ∙′ [F]₁) [G] [b]′ = S.irrelevanceTerm {A = G} {t = b} [Γ]₁ ([Γ]₂ ∙′ [F]₁) [G] [G]′ [b] [G[a]] = substS {F} {G} {a} [Γ]₂ [F]₁ [G]′ [a] [b[a]] = substSTerm {F} {G} {a} {b} [Γ]₂ [F]₁ [G]′ [b]′ [a] [lam] , [eq] = redSubstTermᵛ {G [ a ]} {(lam b) ∘ a} {b [ a ]} [Γ]₂ (λ {Δ} {σ} ⊢Δ [σ] → let [liftσ] = liftSubstS {F = F} [Γ]₂ ⊢Δ [F]₁ [σ] ⊢σF = escape (proj₁ ([F]₁ ⊢Δ [σ])) ⊢σb = escapeTerm (proj₁ ([G]′ (⊢Δ ∙ ⊢σF) [liftσ])) (proj₁ ([b]′ (⊢Δ ∙ ⊢σF) [liftσ])) ⊢σa = escapeTerm (proj₁ ([F]₁ ⊢Δ [σ])) (proj₁ ([a] ⊢Δ [σ])) in PE.subst₂ (λ x y → _ ⊢ (lam (subst (liftSubst σ) b)) ∘ (subst σ a) ⇒ x ∷ y) (PE.sym (singleSubstLift b a)) (PE.sym (singleSubstLift G a)) (β-red ⊢σF ⊢σb ⊢σa)) [G[a]] [b[a]] in [Γ]₂ , modelsTermEq [G[a]] [lam] [b[a]] [eq] fundamentalTermEq (η-eq {f} {g} {F} {G} ⊢F ⊢t ⊢t′ t≡t′) with fundamental ⊢F | fundamentalTerm ⊢t | fundamentalTerm ⊢t′ | fundamentalTermEq t≡t′ ... | [Γ] , [F] | [Γ]₁ , [ΠFG] , [t] | [Γ]₂ , [ΠFG]₁ , [t′] | [Γ]₃ , modelsTermEq [G] [t0] [t′0] [t0≡t′0] = let [F]′ = S.irrelevance {A = F} [Γ] [Γ]₁ [F] [G]′ = S.irrelevance {A = G} [Γ]₃ ([Γ]₁ ∙′ [F]′) [G] [t′]′ = S.irrelevanceTerm {A = Π F ▹ G} {t = g} [Γ]₂ [Γ]₁ [ΠFG]₁ [ΠFG] [t′] [ΠFG]″ = Πᵛ {F} {G} [Γ]₁ [F]′ [G]′ [t]″ = S.irrelevanceTerm {A = Π F ▹ G} {t = f} [Γ]₁ [Γ]₁ [ΠFG] [ΠFG]″ [t] [t′]″ = S.irrelevanceTerm {A = Π F ▹ G} {t = g} [Γ]₂ [Γ]₁ [ΠFG]₁ [ΠFG]″ [t′] [t0≡t′0]′ = S.irrelevanceEqTerm {A = G} {t = wk1 f ∘ var 0} {u = wk1 g ∘ var 0} [Γ]₃ ([Γ]₁ ∙′ [F]′) [G] [G]′ [t0≡t′0] [t≡t′] = η-eqᵛ {f} {g} {F} {G} [Γ]₁ [F]′ [G]′ [t]″ [t′]″ [t0≡t′0]′ [t≡t′]′ = S.irrelevanceEqTerm {A = Π F ▹ G} {t = f} {u = g} [Γ]₁ [Γ]₁ [ΠFG]″ [ΠFG] [t≡t′] in [Γ]₁ , modelsTermEq [ΠFG] [t] [t′]′ [t≡t′]′ fundamentalTermEq (suc-cong x) with fundamentalTermEq x fundamentalTermEq (suc-cong {t} {u} x) | [Γ] , modelsTermEq [A] [t] [u] [t≡u] = let [suct] = sucᵛ {n = t} [Γ] [A] [t] [sucu] = sucᵛ {n = u} [Γ] [A] [u] in [Γ] , modelsTermEq [A] [suct] [sucu] (λ ⊢Δ [σ] → sucEqTerm (proj₁ ([A] ⊢Δ [σ])) ([t≡u] ⊢Δ [σ])) fundamentalTermEq (natrec-cong {z} {z′} {s} {s′} {n} {n′} {F} {F′} F≡F′ z≡z′ s≡s′ n≡n′) with fundamentalEq F≡F′ | fundamentalTermEq z≡z′ | fundamentalTermEq s≡s′ | fundamentalTermEq n≡n′ fundamentalTermEq (natrec-cong {z} {z′} {s} {s′} {n} {n′} {F} {F′} F≡F′ z≡z′ s≡s′ n≡n′) | [Γ] , [F] , [F′] , [F≡F′] | [Γ]₁ , modelsTermEq [F₀] [z] [z′] [z≡z′] | [Γ]₂ , modelsTermEq [F₊] [s] [s′] [s≡s′] | [Γ]₃ , modelsTermEq [ℕ] [n] [n′] [n≡n′] = let sType = Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) s′Type = Π ℕ ▹ (F′ ▹▹ F′ [ suc (var 0) ]↑) [0] = S.irrelevanceTerm {l = ¹} {A = ℕ} {t = zero} [Γ]₃ [Γ]₃ (ℕᵛ [Γ]₃) [ℕ] (zeroᵛ {l = ¹} [Γ]₃) [F]′ = S.irrelevance {A = F} [Γ] ([Γ]₃ ∙′ [ℕ]) [F] [F₀]′ = S.irrelevance {A = F [ zero ]} [Γ]₁ [Γ]₃ [F₀] [F₊]′ = S.irrelevance {A = sType} [Γ]₂ [Γ]₃ [F₊] [Fₙ]′ = substS {ℕ} {F} {n} [Γ]₃ [ℕ] [F]′ [n] [F′]′ = S.irrelevance {A = F′} [Γ] ([Γ]₃ ∙′ [ℕ]) [F′] [F₀]″ = substS {ℕ} {F} {zero} [Γ]₃ [ℕ] [F]′ [0] [F′₀]′ = substS {ℕ} {F′} {zero} [Γ]₃ [ℕ] [F′]′ [0] [F′₊]′ = sucCase {F′} [Γ]₃ [ℕ] [F′]′ [F′ₙ′]′ = substS {ℕ} {F′} {n′} [Γ]₃ [ℕ] [F′]′ [n′] [ℕ≡ℕ] = reflᵛ {ℕ} [Γ]₃ [ℕ] [0≡0] = reflᵗᵛ {ℕ} {zero} [Γ]₃ [ℕ] [0] [F≡F′]′ = S.irrelevanceEq {A = F} {B = F′} [Γ] ([Γ]₃ ∙′ [ℕ]) [F] [F]′ [F≡F′] [F₀≡F′₀] = substSEq {ℕ} {ℕ} {F} {F′} {zero} {zero} [Γ]₃ [ℕ] [ℕ] [ℕ≡ℕ] [F]′ [F′]′ [F≡F′]′ [0] [0] [0≡0] [F₀≡F′₀]′ = S.irrelevanceEq {A = F [ zero ]} {B = F′ [ zero ]} [Γ]₃ [Γ]₃ [F₀]″ [F₀]′ [F₀≡F′₀] [F₊≡F′₊] = sucCaseCong {F} {F′} [Γ]₃ [ℕ] [F]′ [F′]′ [F≡F′]′ [F₊≡F′₊]′ = S.irrelevanceEq {A = sType} {B = s′Type} [Γ]₃ [Γ]₃ (sucCase {F} [Γ]₃ [ℕ] [F]′) [F₊]′ [F₊≡F′₊] [Fₙ≡F′ₙ′]′ = substSEq {ℕ} {ℕ} {F} {F′} {n} {n′} [Γ]₃ [ℕ] [ℕ] [ℕ≡ℕ] [F]′ [F′]′ [F≡F′]′ [n] [n′] [n≡n′] [z]′ = S.irrelevanceTerm {A = F [ zero ]} {t = z} [Γ]₁ [Γ]₃ [F₀] [F₀]′ [z] [z′]′ = convᵛ {z′} {F [ zero ]} {F′ [ zero ]} [Γ]₃ [F₀]′ [F′₀]′ [F₀≡F′₀]′ (S.irrelevanceTerm {A = F [ zero ]} {t = z′} [Γ]₁ [Γ]₃ [F₀] [F₀]′ [z′]) [z≡z′]′ = S.irrelevanceEqTerm {A = F [ zero ]} {t = z} {u = z′} [Γ]₁ [Γ]₃ [F₀] [F₀]′ [z≡z′] [s]′ = S.irrelevanceTerm {A = sType} {t = s} [Γ]₂ [Γ]₃ [F₊] [F₊]′ [s] [s′]′ = convᵛ {s′} {sType} {s′Type} [Γ]₃ [F₊]′ [F′₊]′ [F₊≡F′₊]′ (S.irrelevanceTerm {A = sType} {t = s′} [Γ]₂ [Γ]₃ [F₊] [F₊]′ [s′]) [s≡s′]′ = S.irrelevanceEqTerm {A = sType} {t = s} {u = s′} [Γ]₂ [Γ]₃ [F₊] [F₊]′ [s≡s′] in [Γ]₃ , modelsTermEq [Fₙ]′ (natrecᵛ {F} {z} {s} {n} [Γ]₃ [ℕ] [F]′ [F₀]′ [F₊]′ [Fₙ]′ [z]′ [s]′ [n]) (conv₂ᵛ {natrec F′ z′ s′ n′} {F [ n ]} {F′ [ n′ ]} [Γ]₃ [Fₙ]′ [F′ₙ′]′ [Fₙ≡F′ₙ′]′ (natrecᵛ {F′} {z′} {s′} {n′} [Γ]₃ [ℕ] [F′]′ [F′₀]′ [F′₊]′ [F′ₙ′]′ [z′]′ [s′]′ [n′])) (natrec-congᵛ {F} {F′} {z} {z′} {s} {s′} {n} {n′} [Γ]₃ [ℕ] [F]′ [F′]′ [F≡F′]′ [F₀]′ [F′₀]′ [F₀≡F′₀]′ [F₊]′ [F′₊]′ [F₊≡F′₊]′ [Fₙ]′ [z]′ [z′]′ [z≡z′]′ [s]′ [s′]′ [s≡s′]′ [n] [n′] [n≡n′]) fundamentalTermEq (natrec-zero {z} {s} {F} ⊢F ⊢z ⊢s) with fundamental ⊢F | fundamentalTerm ⊢z | fundamentalTerm ⊢s fundamentalTermEq (natrec-zero {z} {s} {F} ⊢F ⊢z ⊢s) | [Γ] , [F] | [Γ]₁ , [F₀] , [z] | [Γ]₂ , [F₊] , [s] = let sType = Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) [Γ]′ = [Γ]₁ [ℕ]′ = ℕᵛ {l = ¹} [Γ]′ [F₊]′ = S.irrelevance {A = sType} [Γ]₂ [Γ]′ [F₊] [s]′ = S.irrelevanceTerm {A = sType} {t = s} [Γ]₂ [Γ]′ [F₊] [F₊]′ [s] [F]′ = S.irrelevance {A = F} [Γ] ([Γ]′ ∙′ [ℕ]′) [F] d , r = redSubstTermᵛ {F [ zero ]} {natrec F z s zero} {z} [Γ]′ (λ {Δ} {σ} ⊢Δ [σ] → let ⊢ℕ = escape (proj₁ ([ℕ]′ ⊢Δ [σ])) ⊢F = escape (proj₁ ([F]′ (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ]′ ⊢Δ [ℕ]′ [σ]))) ⊢z = PE.subst (λ x → Δ ⊢ subst σ z ∷ x) (singleSubstLift F zero) (escapeTerm (proj₁ ([F₀] ⊢Δ [σ])) (proj₁ ([z] ⊢Δ [σ]))) ⊢s = PE.subst (λ x → Δ ⊢ subst σ s ∷ x) (natrecSucCase σ F) (escapeTerm (proj₁ ([F₊]′ ⊢Δ [σ])) (proj₁ ([s]′ ⊢Δ [σ]))) in PE.subst (λ x → Δ ⊢ subst σ (natrec F z s zero) ⇒ subst σ z ∷ x) (PE.sym (singleSubstLift F zero)) (natrec-zero ⊢F ⊢z ⊢s)) [F₀] [z] in [Γ]′ , modelsTermEq [F₀] d [z] r fundamentalTermEq (natrec-suc {n} {z} {s} {F} ⊢n ⊢F ⊢z ⊢s) with fundamentalTerm ⊢n | fundamental ⊢F | fundamentalTerm ⊢z | fundamentalTerm ⊢s ... | [Γ] , [ℕ] , [n] | [Γ]₁ , [F] | [Γ]₂ , [F₀] , [z] | [Γ]₃ , [F₊] , [s] = let [ℕ]′ = S.irrelevance {A = ℕ} [Γ] [Γ]₃ [ℕ] [n]′ = S.irrelevanceTerm {A = ℕ} {t = n} [Γ] [Γ]₃ [ℕ] [ℕ]′ [n] [sucn] = sucᵛ {n = n} [Γ]₃ [ℕ]′ [n]′ [F₀]′ = S.irrelevance {A = F [ zero ]} [Γ]₂ [Γ]₃ [F₀] [z]′ = S.irrelevanceTerm {A = F [ zero ]} {t = z} [Γ]₂ [Γ]₃ [F₀] [F₀]′ [z] [F]′ = S.irrelevance {A = F} [Γ]₁ ([Γ]₃ ∙′ [ℕ]′) [F] [F[sucn]] = substS {ℕ} {F} {suc n} [Γ]₃ [ℕ]′ [F]′ [sucn] [Fₙ]′ = substS {ℕ} {F} {n} [Γ]₃ [ℕ]′ [F]′ [n]′ [natrecₙ] = natrecᵛ {F} {z} {s} {n} [Γ]₃ [ℕ]′ [F]′ [F₀]′ [F₊] [Fₙ]′ [z]′ [s] [n]′ t = (s ∘ n) ∘ (natrec F z s n) q = subst (liftSubst (sgSubst n)) (wk1 (F [ suc (var 0) ]↑)) y = S.irrelevanceTerm′ {A = q [ natrec F z s n ]} {A′ = F [ suc n ]} {t = t} (natrecIrrelevantSubst′ F z s n) [Γ]₃ [Γ]₃ (substSΠ {F [ n ]} {q} {natrec F z s n} [Γ]₃ (substS {ℕ} {F} {n} [Γ]₃ [ℕ]′ [F]′ [n]′) (substSΠ {ℕ} {F ▹▹ F [ suc (var 0) ]↑} {n} [Γ]₃ [ℕ]′ [F₊] [n]′) [natrecₙ]) [F[sucn]] (appᵛ {F [ n ]} {q} {s ∘ n} {natrec F z s n} [Γ]₃ [Fₙ]′ (substSΠ {ℕ} {F ▹▹ F [ suc (var 0) ]↑} {n} [Γ]₃ [ℕ]′ [F₊] [n]′) (appᵛ {ℕ} {F ▹▹ F [ suc (var 0) ]↑} {s} {n} [Γ]₃ [ℕ]′ [F₊] [s] [n]′) [natrecₙ]) d , r = redSubstTermᵛ {F [ suc n ]} {natrec F z s (suc n)} {t } {¹} {_} [Γ]₃ (λ {Δ} {σ} ⊢Δ [σ] → let ⊢n = escapeTerm (proj₁ ([ℕ]′ ⊢Δ [σ])) (proj₁ ([n]′ ⊢Δ [σ])) ⊢ℕ = escape (proj₁ ([ℕ]′ ⊢Δ [σ])) ⊢F = escape (proj₁ ([F]′ (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ]₃ ⊢Δ [ℕ]′ [σ]))) ⊢z = PE.subst (λ x → Δ ⊢ subst σ z ∷ x) (singleSubstLift F zero) (escapeTerm (proj₁ ([F₀]′ ⊢Δ [σ])) (proj₁ ([z]′ ⊢Δ [σ]))) ⊢s = PE.subst (λ x → Δ ⊢ subst σ s ∷ x) (natrecSucCase σ F) (escapeTerm (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ]))) r = _⊢_⇒_∷_.natrec-suc {n = subst σ n} {z = subst σ z} {s = subst σ s} {F = subst (liftSubst σ) F} ⊢n ⊢F ⊢z ⊢s in PE.subst (λ x → Δ ⊢ subst σ (natrec F z s (suc n)) ⇒ (subst σ t) ∷ x) (PE.trans (PE.trans (substCompEq F) (substVar-to-subst (λ { 0 → PE.refl ; (1+ x) → PE.trans (subst-wk (σ x)) (subst-id (σ x)) }) F)) (PE.sym (substCompEq F))) r) [F[sucn]] y in [Γ]₃ , modelsTermEq [F[sucn]] d y r -- Fundamental theorem for substitutions. fundamentalSubst : ∀ {Γ Δ σ} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ) → Δ ⊢ˢ σ ∷ Γ → ∃ω₄ λ [Γ] → Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ fundamentalSubst ε ⊢Δ [σ] = ε′ , tt fundamentalSubst (⊢Γ ∙ ⊢A) ⊢Δ ([tailσ] , [headσ]) = let [Γ] , [A] = fundamental ⊢A [Δ] , [A]′ , [t] = fundamentalTerm [headσ] [Γ]′ , [σ] = fundamentalSubst ⊢Γ ⊢Δ [tailσ] [tailσ]′ = S.irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] [idA] = proj₁ ([A]′ (soundContext [Δ]) (idSubstS [Δ])) [idA]′ = proj₁ ([A] ⊢Δ [tailσ]′) [idt] = proj₁ ([t] (soundContext [Δ]) (idSubstS [Δ])) in [Γ] ∙′ [A] , ([tailσ]′ , irrelevanceTerm″ (subst-id _) (subst-id _) [idA] [idA]′ [idt]) -- Fundamental theorem for substitution equality. fundamentalSubstEq : ∀ {Γ Δ σ σ′} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ) → Δ ⊢ˢ σ ≡ σ′ ∷ Γ → ∃ω₄ λ [Γ] → ∃ω₃² λ [σ] ([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ] fundamentalSubstEq ε ⊢Δ σ = ε′ , tt , tt , tt fundamentalSubstEq (⊢Γ ∙ ⊢A) ⊢Δ (tailσ≡σ′ , headσ≡σ′) = let [Γ] , [A] = fundamental ⊢A [Γ]′ , [tailσ] , [tailσ′] , [tailσ≡σ′] = fundamentalSubstEq ⊢Γ ⊢Δ tailσ≡σ′ [Δ] , modelsTermEq [A]′ [t] [t′] [t≡t′] = fundamentalTermEq headσ≡σ′ [tailσ]′ = S.irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [tailσ] [tailσ′]′ = S.irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [tailσ′] [tailσ≡σ′]′ = S.irrelevanceSubstEq [Γ]′ [Γ] ⊢Δ ⊢Δ [tailσ] [tailσ]′ [tailσ≡σ′] [idA] = proj₁ ([A]′ (soundContext [Δ]) (idSubstS [Δ])) [idA]′ = proj₁ ([A] ⊢Δ [tailσ]′) [idA]″ = proj₁ ([A] ⊢Δ [tailσ′]′) [idt] = proj₁ ([t] (soundContext [Δ]) (idSubstS [Δ])) [idt′] = proj₁ ([t′] (soundContext [Δ]) (idSubstS [Δ])) [idt≡t′] = [t≡t′] (soundContext [Δ]) (idSubstS [Δ]) in [Γ] ∙′ [A] , ([tailσ]′ , irrelevanceTerm″ (subst-id _) (subst-id _) [idA] [idA]′ [idt]) , ([tailσ′]′ , convTerm₁ [idA]′ [idA]″ (proj₂ ([A] ⊢Δ [tailσ]′) [tailσ′]′ [tailσ≡σ′]′) (irrelevanceTerm″ (subst-id _) (subst-id _) [idA] [idA]′ [idt′])) , ([tailσ≡σ′]′ , irrelevanceEqTerm″ (subst-id _) (subst-id _) (subst-id _) [idA] [idA]′ [idt≡t′])
{ "alphanum_fraction": 0.3635415966, "avg_line_length": 53.1035714286, "ext": "agda", "hexsha": "98a735e6a9712259b72ecaa266c639c52af8fe4b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Fundamental.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Fundamental.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Fundamental.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 13920, "size": 29738 }
------------------------------------------------------------------------ -- Some auxiliary operations and lemmas ------------------------------------------------------------------------ module BreadthFirst.Lemmas where open import Codata.Musical.Notation open import Codata.Musical.Colist as Colist using (Colist; []; _∷_; concat; _++_) open import Function open import Data.List using ([]; _∷_) open import Data.List.NonEmpty as List⁺ using (List⁺; [_]; _∷_; _⁺++⁺_) import Data.Vec as Vec open import Data.Product using (_,_) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) renaming (refl to ≡-refl) open import BreadthFirst.Universe open import BreadthFirst.Programs open import Tree using (leaf; node; map) open import Stream using (Stream; _≺_) renaming (_++_ to _++∞_) ------------------------------------------------------------------------ -- Some operations zipWith : {A B : Set} (f : A → B → B) → Colist A → Stream B → Stream B zipWith f [] ys = ys zipWith f (x ∷ xs) (y ≺ ys) = f x y ≺ ♯ zipWith f (♭ xs) (♭ ys) infixr 5 _⁺++_ _⁺++∞_ _⁺++∞_ : {A : Set} → List⁺ A → Stream A → Stream A xs ⁺++∞ ys = Colist.fromList (Vec.toList $ List⁺.toVec xs) ++∞ ys _⁺++_ : {A : Set} → List⁺ A → Colist A → Colist A xs ⁺++ ys = Colist.fromList (Vec.toList $ List⁺.toVec xs) ++ ys ------------------------------------------------------------------------ -- Eq is an equivalence relation refl : ∀ {a} x → Eq a x x refl {a = tree a} leaf = leaf refl {a = tree a} (node l x r) = node (♯ refl (♭ l)) (refl x) (♯ refl (♭ r)) refl {a = stream a} (x ≺ xs) = refl x ≺ ♯ refl (♭ xs) refl {a = colist a} [] = [] refl {a = colist a} (x ∷ xs) = refl x ∷ ♯ refl (♭ xs) refl {a = a ⊗ b} (x , y) = (refl x , refl y) refl {a = ⌈ A ⌉} x = ⌈ PropEq.refl ⌉ sym : ∀ {a x y} → Eq a x y → Eq a y x sym {a = tree a} leaf = leaf sym {a = tree a} (node l≈l′ x≈x′ r≈r′) = node (♯ sym (♭ l≈l′)) (sym x≈x′) (♯ sym (♭ r≈r′)) sym {a = stream a} (x≈x′ ≺ xs≈xs′) = sym x≈x′ ≺ ♯ sym (♭ xs≈xs′) sym {a = colist a} [] = [] sym {a = colist a} (x≈x′ ∷ xs≈xs′) = sym x≈x′ ∷ ♯ sym (♭ xs≈xs′) sym {a = a ⊗ b} (x≈x′ , y≈y′) = (sym x≈x′ , sym y≈y′) sym {a = ⌈ A ⌉} ⌈ x≡x′ ⌉ = ⌈ PropEq.sym x≡x′ ⌉ trans : ∀ {a x y z} → Eq a x y → Eq a y z → Eq a x z trans {a = tree a} leaf leaf = leaf trans {a = tree a} (node l≈l′ x≈x′ r≈r′) (node l′≈l″ x′≈x″ r′≈r″) = node (♯ trans (♭ l≈l′) (♭ l′≈l″)) (trans x≈x′ x′≈x″) (♯ trans (♭ r≈r′) (♭ r′≈r″)) trans {a = stream a} (x≈x′ ≺ xs≈xs′) (x′≈x″ ≺ xs′≈xs″) = trans x≈x′ x′≈x″ ≺ ♯ trans (♭ xs≈xs′) (♭ xs′≈xs″) trans {a = colist a} [] [] = [] trans {a = colist a} (x≈x′ ∷ xs≈xs′) (x′≈x″ ∷ xs′≈xs″) = trans x≈x′ x′≈x″ ∷ ♯ trans (♭ xs≈xs′) (♭ xs′≈xs″) trans {a = a ⊗ b} (x≈x′ , y≈y′) (x′≈x″ , y′≈y″) = (trans x≈x′ x′≈x″ , trans y≈y′ y′≈y″) trans {a = ⌈ A ⌉} ⌈ x≡x′ ⌉ ⌈ x′≡x″ ⌉ = ⌈ PropEq.trans x≡x′ x′≡x″ ⌉ ------------------------------------------------------------------------ -- Productivity checker workaround for Eq infixr 5 _≺_ _∷_ infixr 4 _,_ infix 3 _∎ infixr 2 _≈⟨_⟩_ _≊⟨_⟩_ data EqP : ∀ a → El a → El a → Set₁ where leaf : ∀ {a} → EqP (tree a) leaf leaf node : ∀ {a x x′ l l′ r r′} (l≈l′ : ∞ (EqP (tree a) (♭ l) (♭ l′))) (x≈x′ : Eq a x x′ ) (r≈r′ : ∞ (EqP (tree a) (♭ r) (♭ r′))) → EqP (tree a) (node l x r) (node l′ x′ r′) _≺_ : ∀ {a x x′ xs xs′} (x≈x′ : Eq a x x′ ) (xs≈xs′ : ∞ (EqP (stream a) (♭ xs) (♭ xs′))) → EqP (stream a) (x ≺ xs) (x′ ≺ xs′) [] : ∀ {a} → EqP (colist a) [] [] _∷_ : ∀ {a x x′ xs xs′} (x≈x′ : Eq a x x′ ) (xs≈xs′ : ∞ (EqP (colist a) (♭ xs) (♭ xs′))) → EqP (colist a) (x ∷ xs) (x′ ∷ xs′) _,_ : ∀ {a b x x′ y y′} (x≈x′ : Eq a x x′) (y≈y′ : Eq b y y′) → EqP (a ⊗ b) (x , y) (x′ , y′) ⌈_⌉ : ∀ {A x x′} (x≡x′ : x ≡ x′) → EqP ⌈ A ⌉ x x′ _≊⟨_⟩_ : ∀ {a} x {y z} (x≈y : EqP a x y) (y≈z : EqP a y z) → EqP a x z zipWith-cong : ∀ {a b} {f : El a → El b → El b} (cong : ∀ {x x′ y y′} → Eq a x x′ → Eq b y y′ → Eq b (f x y) (f x′ y′)) {xs xs′ ys ys′} (xs≈xs′ : EqP (colist a) xs xs′) (ys≈ys′ : EqP (stream b) ys ys′) → EqP (stream b) (zipWith f xs ys) (zipWith f xs′ ys′) data EqW : ∀ a → El a → El a → Set₁ where leaf : ∀ {a} → EqW (tree a) leaf leaf node : ∀ {a x x′ l l′ r r′} (l≈l′ : EqP (tree a) (♭ l) (♭ l′)) (x≈x′ : Eq a x x′ ) (r≈r′ : EqP (tree a) (♭ r) (♭ r′)) → EqW (tree a) (node l x r) (node l′ x′ r′) _≺_ : ∀ {a x x′ xs xs′} (x≈x′ : Eq a x x′ ) (xs≈xs′ : EqP (stream a) (♭ xs) (♭ xs′)) → EqW (stream a) (x ≺ xs) (x′ ≺ xs′) [] : ∀ {a} → EqW (colist a) [] [] _∷_ : ∀ {a x x′ xs xs′} (x≈x′ : Eq a x x′ ) (xs≈xs′ : EqP (colist a) (♭ xs) (♭ xs′)) → EqW (colist a) (x ∷ xs) (x′ ∷ xs′) _,_ : ∀ {a b x x′ y y′} (x≈x′ : Eq a x x′) (y≈y′ : Eq b y y′) → EqW (a ⊗ b) (x , y) (x′ , y′) ⌈_⌉ : ∀ {A x x′} (x≡x′ : x ≡ x′) → EqW ⌈ A ⌉ x x′ ⟦_⟧≈⁻¹ : ∀ {a} {x y : El a} → Eq a x y → EqP a x y ⟦ leaf ⟧≈⁻¹ = leaf ⟦ node l≈l′ x≈x′ r≈r′ ⟧≈⁻¹ = node (♯ ⟦ ♭ l≈l′ ⟧≈⁻¹) x≈x′ (♯ ⟦ ♭ r≈r′ ⟧≈⁻¹) ⟦ x≈x′ ≺ xs≈xs′ ⟧≈⁻¹ = x≈x′ ≺ ♯ ⟦ ♭ xs≈xs′ ⟧≈⁻¹ ⟦ [] ⟧≈⁻¹ = [] ⟦ x≈x′ ∷ xs≈xs′ ⟧≈⁻¹ = x≈x′ ∷ ♯ ⟦ ♭ xs≈xs′ ⟧≈⁻¹ ⟦ (x≈x′ , y≈y′) ⟧≈⁻¹ = (x≈x′ , y≈y′) ⟦ ⌈ x≡x′ ⌉ ⟧≈⁻¹ = ⌈ x≡x′ ⌉ whnf≈ : ∀ {a xs ys} → EqP a xs ys → EqW a xs ys whnf≈ leaf = leaf whnf≈ (node l≈l′ x≈x′ r≈r′) = node (♭ l≈l′) x≈x′ (♭ r≈r′) whnf≈ (x≈x′ ≺ xs≈xs′) = x≈x′ ≺ ♭ xs≈xs′ whnf≈ [] = [] whnf≈ (x≈x′ ∷ xs≈xs′) = x≈x′ ∷ ♭ xs≈xs′ whnf≈ (x≈x′ , y≈y′) = (x≈x′ , y≈y′) whnf≈ ⌈ x≡x′ ⌉ = ⌈ x≡x′ ⌉ whnf≈ ( _ ≊⟨ x≈y ⟩ y≈z) with whnf≈ x≈y | whnf≈ y≈z whnf≈ (._ ≊⟨ x≈y ⟩ y≈z) | leaf | leaf = leaf whnf≈ (._ ≊⟨ x≈y ⟩ y≈z) | node l≈l′ x≈x′ r≈r′ | node l′≈l″ x′≈x″ r′≈r″ = node (_ ≊⟨ l≈l′ ⟩ l′≈l″) (trans x≈x′ x′≈x″) (_ ≊⟨ r≈r′ ⟩ r′≈r″) whnf≈ (._ ≊⟨ x≈y ⟩ y≈z) | [] | [] = [] whnf≈ (._ ≊⟨ x≈y ⟩ y≈z) | x≈y′ ∷ xs≈ys′ | y≈z′ ∷ ys≈zs′ = trans x≈y′ y≈z′ ∷ (_ ≊⟨ xs≈ys′ ⟩ ys≈zs′) whnf≈ (._ ≊⟨ x≈y ⟩ y≈z) | x≈y′ ≺ xs≈ys′ | y≈z′ ≺ ys≈zs′ = trans x≈y′ y≈z′ ≺ (_ ≊⟨ xs≈ys′ ⟩ ys≈zs′) whnf≈ (._ ≊⟨ x≈y ⟩ y≈z) | (x≈x′ , y≈y′) | (x′≈x″ , y′≈y″) = (trans x≈x′ x′≈x″ , trans y≈y′ y′≈y″) whnf≈ ( _ ≊⟨ x≈y ⟩ y≈z) | ⌈ x≡x′ ⌉ | ⌈ x′≡x″ ⌉ = ⌈ PropEq.trans x≡x′ x′≡x″ ⌉ whnf≈ (zipWith-cong cong xs≈xs′ ys≈ys′) with whnf≈ xs≈xs′ | whnf≈ ys≈ys′ ... | [] | ys≈ys″ = ys≈ys″ ... | x≈x′ ∷ xs≈xs″ | y≈y′ ≺ ys≈ys″ = cong x≈x′ y≈y′ ≺ zipWith-cong cong xs≈xs″ ys≈ys″ mutual value≈ : ∀ {a xs ys} → EqW a xs ys → Eq a xs ys value≈ leaf = leaf value≈ (node l≈l′ x≈x′ r≈r′) = node (♯ ⟦ l≈l′ ⟧≈) x≈x′ (♯ ⟦ r≈r′ ⟧≈) value≈ (x≈x′ ≺ xs≈xs′) = x≈x′ ≺ ♯ ⟦ xs≈xs′ ⟧≈ value≈ [] = [] value≈ (x≈x′ ∷ xs≈xs′) = x≈x′ ∷ ♯ ⟦ xs≈xs′ ⟧≈ value≈ (x≈x′ , y≈y′) = (x≈x′ , y≈y′) value≈ ⌈ x≡x′ ⌉ = ⌈ x≡x′ ⌉ ⟦_⟧≈ : ∀ {a xs ys} → EqP a xs ys → Eq a xs ys ⟦ xs≈ys ⟧≈ = value≈ (whnf≈ xs≈ys) _≈⟨_⟩_ : ∀ {a} x {y z} (x≈y : Eq a x y) (y≈z : EqP a y z) → EqP a x z x ≈⟨ x≈y ⟩ y≈z = x ≊⟨ ⟦ x≈y ⟧≈⁻¹ ⟩ y≈z _∎ : ∀ {a} x → EqP a x x x ∎ = ⟦ refl x ⟧≈⁻¹ ------------------------------------------------------------------------ -- Productivity checker workaround for PrefixOf infixr 2 _≋⟨_⟩_ _⊑⟨_⟩_ data PrefixOfP (a : U) : Colist (El a) → Stream (El a) → Set₁ where [] : ∀ {ys} → PrefixOfP a [] ys ⁺++-mono : ∀ xs {ys ys′} (ys⊑ys′ : ∞ (PrefixOfP a ys ys′)) → PrefixOfP a (xs ⁺++ ys) (xs ⁺++∞ ys′) _≋⟨_⟩_ : ∀ xs {ys zs} (xs≈ys : Eq (colist a) xs ys) (ys⊑zs : PrefixOfP a ys zs) → PrefixOfP a xs zs _⊑⟨_⟩_ : ∀ xs {ys zs} (xs⊑ys : PrefixOfP a xs ys) (ys≈zs : EqP (stream a) ys zs) → PrefixOfP a xs zs data PrefixOfW (a : U) : Colist (El a) → Stream (El a) → Set₁ where [] : ∀ {ys} → PrefixOfW a [] ys _∷_ : ∀ {x y xs ys} (x≈y : Eq a x y) (p : PrefixOfP a (♭ xs) (♭ ys)) → PrefixOfW a (x ∷ xs) (y ≺ ys) whnf⊑ : ∀ {a xs ys} → PrefixOfP a xs ys → PrefixOfW a xs ys whnf⊑ [] = [] whnf⊑ (⁺++-mono (x ∷ []) ys⊑ys′) = refl x ∷ ♭ ys⊑ys′ whnf⊑ (⁺++-mono (x ∷ (x′ ∷ xs)) ys⊑ys′) = refl x ∷ ⁺++-mono (x′ ∷ xs) ys⊑ys′ whnf⊑ (._ ≋⟨ [] ⟩ _ ) = [] whnf⊑ (._ ≋⟨ x≈y ∷ xs≈ys ⟩ ys⊑zs) with whnf⊑ ys⊑zs ... | y≈z ∷ ys⊑zs′ = trans x≈y y≈z ∷ (_ ≋⟨ ♭ xs≈ys ⟩ ys⊑zs′) whnf⊑ (._ ⊑⟨ xs⊑ys ⟩ ys≈zs) with whnf⊑ xs⊑ys | whnf≈ ys≈zs ... | [] | _ = [] ... | x≈y ∷ xs⊑ys′ | y≈z ≺ ys≈zs′ = trans x≈y y≈z ∷ (_ ⊑⟨ xs⊑ys′ ⟩ ys≈zs′) mutual value⊑ : ∀ {a xs ys} → PrefixOfW a xs ys → PrefixOf a xs ys value⊑ [] = [] value⊑ (x≈y ∷ xs⊑ys) = x≈y ∷ ♯ ⟦ xs⊑ys ⟧⊑ ⟦_⟧⊑ : ∀ {a xs ys} → PrefixOfP a xs ys → PrefixOf a xs ys ⟦ xs⊑ys ⟧⊑ = value⊑ (whnf⊑ xs⊑ys) ------------------------------------------------------------------------ -- More lemmas ⁺++∞-cong : ∀ {a xs xs′ ys ys′} → Eq ⌈ List⁺ (El a) ⌉ xs xs′ → Eq (stream a) ys ys′ → Eq (stream a) (xs ⁺++∞ ys) (xs′ ⁺++∞ ys′) ⁺++∞-cong {xs = x ∷ []} ⌈ ≡-refl ⌉ ys≈ys′ = refl x ≺ ♯ ys≈ys′ ⁺++∞-cong {xs = x ∷ (x′ ∷ xs)} ⌈ ≡-refl ⌉ ys≈ys′ = refl x ≺ ♯ ⁺++∞-cong {xs = x′ ∷ xs} ⌈ ≡-refl ⌉ ys≈ys′ ++-assoc : ∀ {a} xs ys zs → Eq (stream a) (xs ⁺++∞ (ys ⁺++∞ zs)) ((xs ⁺++⁺ ys) ⁺++∞ zs) ++-assoc (x ∷ []) ys zs = refl x ≺ ♯ refl (ys ⁺++∞ zs) ++-assoc (x ∷ (x′ ∷ xs)) ys zs = refl x ≺ ♯ ++-assoc (x′ ∷ xs) ys zs zip-++-assoc : ∀ {a} xss yss (zss : Stream (Stream (El a))) → Eq (stream (stream a)) (zipWith _⁺++∞_ ⟦ xss ⟧ (zipWith _⁺++∞_ ⟦ yss ⟧ zss)) (zipWith _⁺++∞_ ⟦ longZipWith _⁺++⁺_ xss yss ⟧ zss) zip-++-assoc xss yss (zs ≺ zss) with whnf xss | whnf yss ... | [] | [] = refl _ ... | [] | ys ∷ yss′ = refl _ ... | xs ∷ xss′ | [] = refl _ ... | ⌈ xs ⌉ ∷ xss′ | ⌈ ys ⌉ ∷ yss′ = ++-assoc xs ys zs ≺ ♯ zip-++-assoc (♭ xss′) (♭ yss′) (♭ zss) concat-lemma : ∀ {a} xs xss → Eq (colist a) (concat (xs ∷ xss)) (xs ⁺++ concat (♭ xss)) concat-lemma (x ∷ []) xss = refl x ∷ ♯ refl (concat (♭ xss)) concat-lemma (x ∷ (x′ ∷ xs)) xss = refl x ∷ ♯ concat-lemma (x′ ∷ xs) xss
{ "alphanum_fraction": 0.3796313196, "avg_line_length": 40.7360594796, "ext": "agda", "hexsha": "05069d7b14a6490b11d7cb6dc73c7af1cc113bf5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "BreadthFirst/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "BreadthFirst/Lemmas.agda", "max_line_length": 114, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "BreadthFirst/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 5549, "size": 10958 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.GroupoidQuotients where open import Cubical.HITs.GroupoidQuotients.Base public open import Cubical.HITs.GroupoidQuotients.Properties public
{ "alphanum_fraction": 0.8075117371, "avg_line_length": 35.5, "ext": "agda", "hexsha": "ef2758b565af43c9162683462eddff13ff6fa397", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/HITs/GroupoidQuotients.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/HITs/GroupoidQuotients.agda", "max_line_length": 60, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/HITs/GroupoidQuotients.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 58, "size": 213 }
{-# OPTIONS --copatterns #-} -- 2013-05-30 Andreas, Oury's counterexample to subject reduction in Coq -- 2014-11-04 Andreas: simplified (removed force) module MatchingOnCoinductiveRecord where open import Common.Equality record U : Set where coinductive constructor inn field out : U open U u : U out u = u eq : (x : U) → x ≡ inn (out x) eq (inn y) = refl -- should fail, as internally this is just -- eq x = refl -- and we do not have η for coinductive records equ : u ≡ inn u equ = eq u -- normalizes to refl, which does not have type u ≡ inn u
{ "alphanum_fraction": 0.6831858407, "avg_line_length": 18.8333333333, "ext": "agda", "hexsha": "4ad2c3964e66a7d0ae1487946b55412b1078c169", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/MatchingOnCoinductiveRecord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/MatchingOnCoinductiveRecord.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/MatchingOnCoinductiveRecord.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 178, "size": 565 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Sum.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Empty open import Cubical.Data.Nat open import Cubical.Data.Sum.Base -- Path space of sum type module SumPath {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where Cover : A ⊎ B → A ⊎ B → Type (ℓ-max ℓ ℓ') Cover (inl a) (inl a') = Lift {j = ℓ-max ℓ ℓ'} (a ≡ a') Cover (inl _) (inr _) = Lift ⊥ Cover (inr _) (inl _) = Lift ⊥ Cover (inr b) (inr b') = Lift {j = ℓ-max ℓ ℓ'} (b ≡ b') reflCode : (c : A ⊎ B) → Cover c c reflCode (inl a) = lift refl reflCode (inr b) = lift refl encode : ∀ c c' → c ≡ c' → Cover c c' encode c _ = J (λ c' _ → Cover c c') (reflCode c) encodeRefl : ∀ c → encode c c refl ≡ reflCode c encodeRefl c = JRefl (λ c' _ → Cover c c') (reflCode c) decode : ∀ c c' → Cover c c' → c ≡ c' decode (inl a) (inl a') (lift p) = cong inl p decode (inl a) (inr b') () decode (inr b) (inl a') () decode (inr b) (inr b') (lift q) = cong inr q decodeRefl : ∀ c → decode c c (reflCode c) ≡ refl decodeRefl (inl a) = refl decodeRefl (inr b) = refl decodeEncode : ∀ c c' → (p : c ≡ c') → decode c c' (encode c c' p) ≡ p decodeEncode c _ = J (λ c' p → decode c c' (encode c c' p) ≡ p) (cong (decode c c) (encodeRefl c) ∙ decodeRefl c) isOfHLevelCover : (n : ℕ) → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) B → ∀ c c' → isOfHLevel (suc n) (Cover c c') isOfHLevelCover n p q (inl a) (inl a') = isOfHLevelLift (suc n) (p a a') isOfHLevelCover n p q (inl a) (inr b') = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥)) isOfHLevelCover n p q (inr b) (inl a') = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥)) isOfHLevelCover n p q (inr b) (inr b') = isOfHLevelLift (suc n) (q b b') isOfHLevelSum : ∀ {ℓ ℓ'} (n : ℕ) {A : Type ℓ} {B : Type ℓ'} → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) B → isOfHLevel (suc (suc n)) (A ⊎ B) isOfHLevelSum n lA lB c c' = retractIsOfHLevel (suc n) (SumPath.encode c c') (SumPath.decode c c') (SumPath.decodeEncode c c') (SumPath.isOfHLevelCover n lA lB c c')
{ "alphanum_fraction": 0.5884368308, "avg_line_length": 32.8873239437, "ext": "agda", "hexsha": "57c43e294ce34470bb3332fd678f5e7a3e3a358b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Data/Sum/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Data/Sum/Properties.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Data/Sum/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 979, "size": 2335 }
module Sets.PredicateSet.Finite{ℓₗ}{ℓₒ} where import Lvl open import Functional open import Logic.Propositional{ℓₗ Lvl.⊔ ℓₒ} open import Logic.Predicate{ℓₗ}{ℓₒ} open import Numeral.Finite open import Numeral.Natural import Relator.Equals open import Sets.PredicateSet open import Structure.Function.Domain open import Type{ℓₒ} {- record Irrelevant∃ {X : Type} (Pred : X → Stmt) : Stmt where field witness : X ⦃ .proof ⦄ : Pred(witness) record Finite {T} (S : PredSet{ℓₗ}{ℓₒ}(T)) : Stmt where field count : ℕ bijection : 𝕟(count) → Irrelevant∃(x ↦ (x ∈ S)) proof : Bijective(bijection) -- TODO: Bijective must allow different levels -}
{ "alphanum_fraction": 0.6920821114, "avg_line_length": 26.2307692308, "ext": "agda", "hexsha": "9b22cb344f9d4f27650f35f5ed79e0001364b146", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Sets/PredicateSet/Finite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Sets/PredicateSet/Finite.agda", "max_line_length": 83, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Sets/PredicateSet/Finite.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 233, "size": 682 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Monad.Strong where open import Categories.Category open import Categories.Monoidal open import Categories.Functor renaming (id to idF; _∘_ to _∘F_; _≡_ to _≡F_) open import Categories.Functor.Constant open import Categories.NaturalTransformation renaming (id to idN; _≡_ to _≡N_) open import Categories.NaturalIsomorphism using (module NaturalIsomorphism) open import Categories.Monad open import Categories.Product open import Data.Fin using (Fin) open import Function using (flip) open import Data.Nat using () open import Data.Product using (_,_) open import Data.Vec using (Vec; _∷_; []; [_]; lookup) open import Level record Strength {o ℓ e}(C : Category o ℓ e) (monoidal : Monoidal C) (M : Monad C) : Set (o ⊔ ℓ ⊔ e) where open Category C open Monoidal monoidal using (⊗) renaming (id to idObj) open NaturalIsomorphism (Monoidal.identityˡ monoidal) using () renaming (F⇒G to υˡ) open NaturalIsomorphism (Monoidal.identityʳ monoidal) using () renaming (F⇒G to υʳ) open NaturalIsomorphism (Monoidal.assoc monoidal) using () renaming (F⇒G to αʳ; F⇐G to αˡ) module υˡ = NaturalTransformation υˡ open Functor ⊗ using () renaming (F₀ to ⊗₀; F₁ to ⊗₁) unitorˡ : ∀ A → ⊗₀ (idObj , A) ⇒ A unitorˡ A = υˡ.η (flip lookup [ A ]) associatorʳ : ∀ A B C → ⊗₀ (⊗₀ (A , B) , C) ⇒ ⊗₀ (A , ⊗₀ (B , C)) associatorʳ A B C = NaturalTransformation.η αʳ (flip lookup (A ∷ B ∷ C ∷ [])) associatorˡ : ∀ A B C → ⊗₀ (A , ⊗₀ (B , C)) ⇒ ⊗₀ (⊗₀ (A , B) , C) associatorˡ A B C = NaturalTransformation.η αˡ (flip lookup (A ∷ B ∷ C ∷ [])) module M = Monad M open M using (F) open Functor F using (F₀; F₁) open NaturalTransformation M.η using (η) open NaturalTransformation M.μ using () renaming (η to μ) field σ : NaturalTransformation (⊗ ∘F (idF {C = C} ⁂ F)) (F ∘F ⊗) module σ = NaturalTransformation σ field .identity₁ : ∀ {A} → F₁ (unitorˡ A) ∘ σ.η (idObj , A) ≡ unitorˡ (F₀ A) .identity₂ : ∀ {A B} → σ.η (A , B) ∘ ⊗₁ (id , η B) ≡ η (⊗₀ (A , B)) α-assoc : ∀ {A B C} → F₁ (associatorʳ A B C) ∘ σ.η (⊗₀ (A , B) , C) ≡ σ.η (A , ⊗₀ (B , C)) ∘ ⊗₁ (id , σ.η (B , C)) ∘ associatorʳ A B (F₀ C) μ-assoc : ∀ {A B} → μ (⊗₀ (A , B)) ∘ F₁ (σ.η (A , B)) ∘ σ.η (A , F₀ B) ≡ σ.η (A , B) ∘ ⊗₁ (id , μ B)
{ "alphanum_fraction": 0.5951020408, "avg_line_length": 27.8409090909, "ext": "agda", "hexsha": "cc69ecebe1af9d924b4828483f8b9cef8c191ba2", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Monad/Strong.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Monad/Strong.agda", "max_line_length": 85, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Monad/Strong.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 947, "size": 2450 }
module OTT.Prelude where open import Level renaming (Level to MetaLevel; zero to lzeroₘ; suc to lsucₘ; _⊔_ to _⊔ₘ_) using () public open import Function public open import Relation.Binary.PropositionalEquality as P using (_≡_) renaming (refl to prefl; trans to ptrans; subst to psubst; cong to pcong; cong₂ to pcong₂) public open import Data.Empty public open import Data.Nat.Base hiding (_⊔_; _≟_; erase) public open import Data.Maybe.Base using (Maybe; nothing; just) public open import Data.Product hiding (,_) renaming (map to pmap) public open import OTT.Lib.Heteroindexed public open import OTT.Lib.Decidable public open import Relation.Nullary open import Relation.Binary infix 4 ,_ pattern ,_ y = _ , y record ⊤ {α} : Set α where constructor tt ⊤₀ : Set ⊤₀ = ⊤ instance iprefl : ∀ {α} {A : Set α} {x : A} -> x ≡ x iprefl = prefl ,-inst : ∀ {α β} {A : Set α} {B : A -> Set β} {{x : A}} {{y : B x}} -> Σ A B ,-inst {{x}} {{y}} = x , y pright : ∀ {α} {A : Set α} {x y z : A} -> x ≡ y -> x ≡ z -> y ≡ z pright prefl prefl = prefl hpcong₂ : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : Set γ} {x₁ x₂} {y₁ : B x₁} {y₂ : B x₂} -> (f : ∀ x -> B x -> C) -> (q : x₁ ≡ x₂) -> psubst B q y₁ ≡ y₂ -> f x₁ y₁ ≡ f x₂ y₂ hpcong₂ f prefl prefl = prefl record Apply {α β} {A : Set α} (B : A -> Set β) x : Set β where constructor tag field detag : B x open Apply public tag-inj : ∀ {α β} {A : Set α} {B : A -> Set β} {x} {y₁ y₂ : B x} -> tag {B = B} y₁ ≡ tag y₂ -> y₁ ≡ y₂ tag-inj prefl = prefl data Match {ι α} {I : Set ι} {i} (A : I -> Set α) (x : A i) : Set (ι ⊔ₘ α) where matched : ∀ {j} -> (x′ : A j) -> [ A ] x ≅ x′ -> Match A x match : ∀ {ι α} {I : Set ι} {i} -> (A : I -> Set α) -> (x : A i) -> Match A x match A x = matched x irefl data IMatch {ι α β} {I : Set ι} {i} (A : I -> Set α) {x : A i} (B : ∀ {i} -> A i -> Set β) (y : B x) : Set (ι ⊔ₘ α ⊔ₘ β) where imatched : ∀ {i} {x : A i} -> (y′ : B x) -> [ A ][ B ] y ≅ y′ -> IMatch A B y imatch : ∀ {ι α β} {I : Set ι} {i} -> (A : I -> Set α) {x : A i} -> (B : ∀ {i} -> A i -> Set β) -> (y : B x) -> IMatch A B y imatch A B y = imatched y iirefl module _ {α} {A : Set α} where open import Relation.Nullary.Decidable open import Data.Maybe toPropEq : {a b : Maybe A} -> a ≡ b -> Eq _≡_ a b toPropEq {a = nothing} prefl = nothing toPropEq {a = just _ } prefl = just prefl fromPropEq : {a b : Maybe A} -> Eq _≡_ a b -> a ≡ b fromPropEq (just q) = pcong just q fromPropEq nothing = prefl fromDecPropEq : {a b : Maybe A} -> Dec (Eq _≡_ a b) -> Dec (a ≡ b) fromDecPropEq = map′ fromPropEq toPropEq where decideMaybe : Decidable (_≡_ {A = A}) -> Decidable (_≡_ {A = Maybe A}) decideMaybe D a b = fromDecPropEq (a ≟ b) where open DecSetoid (decSetoid (P.decSetoid D)) Enum : ℕ -> Set Enum 0 = ⊥ Enum 1 = ⊤ Enum (suc n) = Maybe (Enum n) decEnum : ∀ n -> Decidable (_≡_ {A = Enum n}) decEnum 0 () () decEnum 1 tt tt = yes prefl decEnum (suc (suc n)) e₁ e₂ = decideMaybe (decEnum (suc n)) e₁ e₂
{ "alphanum_fraction": 0.5597790773, "avg_line_length": 32.7446808511, "ext": "agda", "hexsha": "60d54777034f71a7f4e62a30fc9ac4af90350f83", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z", "max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ajnavarro/language-dataset", "max_forks_repo_path": "data/github.com/effectfully/OTT/3da2a48114dc7d02854049800cdf0f279ff3dd43/Prelude.agda", "max_issues_count": 91, "max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z", "max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ajnavarro/language-dataset", "max_issues_repo_path": "data/github.com/effectfully/OTT/3da2a48114dc7d02854049800cdf0f279ff3dd43/Prelude.agda", "max_line_length": 99, "max_stars_count": 9, "max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ajnavarro/language-dataset", "max_stars_repo_path": "data/github.com/effectfully/OTT/3da2a48114dc7d02854049800cdf0f279ff3dd43/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z", "num_tokens": 1258, "size": 3078 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field import Algebra.Linear.Structures.Bundles.FiniteDimensional as FDB module Algebra.Linear.Space.FiniteDimensional.Hom {k ℓᵏ} (K : Field k ℓᵏ) {p a₁ ℓ₁} (V₁-space : FDB.FiniteDimensional K a₁ ℓ₁ p) {n a₂ ℓ₂} (V₂-space : FDB.FiniteDimensional K a₂ ℓ₂ n) where open import Algebra.Linear.Structures.VectorSpace K open import Algebra.Linear.Structures.Bundles as VS open import Algebra.Linear.Structures.FiniteDimensional K open import Algebra.Linear.Morphism.Bundles K open VectorSpaceField open FDB.FiniteDimensional V₁-space using () renaming ( Carrier to V₁ ; _≈_ to _≈₁_ ; isEquivalence to ≈₁-isEquiv ; refl to ≈₁-refl ; sym to ≈₁-sym ; trans to ≈₁-trans ; _+_ to _+₁_ ; _∙_ to _∙₁_ ; -_ to -₁_ ; 0# to 0₁ ; +-identityˡ to +₁-identityˡ ; +-identityʳ to +₁-identityʳ ; +-identity to +₁-identity ; +-cong to +₁-cong ; +-assoc to +₁-assoc ; +-comm to +₁-comm ; *ᵏ-∙-compat to *ᵏ-∙₁-compat ; ∙-+-distrib to ∙₁-+₁-distrib ; ∙-+ᵏ-distrib to ∙₁-+ᵏ-distrib ; ∙-cong to ∙₁-cong ; ∙-identity to ∙₁-identity ; ∙-absorbˡ to ∙₁-absorbˡ ; ∙-absorbʳ to ∙₁-absorbʳ ; -‿cong to -₁‿cong ; -‿inverseˡ to -₁‿inverseˡ ; -‿inverseʳ to -₁‿inverseʳ ; vectorSpace to vectorSpace₁ ; embed to embed₁ ) open FDB.FiniteDimensional V₂-space using () renaming ( Carrier to V₂ ; _≈_ to _≈₂_ ; isEquivalence to ≈₂-isEquiv ; refl to ≈₂-refl ; sym to ≈₂-sym ; trans to ≈₂-trans ; _+_ to _+₂_ ; _∙_ to _∙₂_ ; -_ to -₂_ ; 0# to 0₂ ; +-identityˡ to +₂-identityˡ ; +-identityʳ to +₂-identityʳ ; +-identity to +₂-identity ; +-cong to +₂-cong ; +-assoc to +₂-assoc ; +-comm to +₂-comm ; *ᵏ-∙-compat to *ᵏ-∙₂-compat ; ∙-+-distrib to ∙₂-+₂-distrib ; ∙-+ᵏ-distrib to ∙₂-+ᵏ-distrib ; ∙-cong to ∙₂-cong ; ∙-identity to ∙₂-identity ; ∙-absorbˡ to ∙₂-absorbˡ ; ∙-absorbʳ to ∙₂-absorbʳ ; -‿cong to -₂‿cong ; -‿inverseˡ to -₂‿inverseˡ ; -‿inverseʳ to -₂‿inverseʳ ; vectorSpace to vectorSpace₂ ; embed to embed₂ ) open LinearIsomorphism embed₁ using () renaming ( ⟦_⟧ to ⟦_⟧₁ ; ⟦⟧-cong to ⟦⟧₁-cong ; injective to ⟦⟧₁-injective ; surjective to ⟦⟧₁-surjective ; +-homo to +₁-homo ; ∙-homo to ∙₁-homo ; 0#-homo to 0₁-homo ) open LinearIsomorphism embed₂ using () renaming ( ⟦_⟧ to ⟦_⟧₂ ; ⟦⟧-cong to ⟦⟧₂-cong ; injective to ⟦⟧₂-injective ; surjective to ⟦⟧₂-surjective ; +-homo to +₂-homo ; ∙-homo to ∙₂-homo ; 0#-homo to 0₂-homo ) import Algebra.Linear.Construct.HomSpace K vectorSpace₁ vectorSpace₂ as PS open VS.VectorSpace PS.vectorSpace renaming ( refl to ≈-refl ; sym to ≈-sym ; trans to ≈-trans ) import Algebra.Linear.Construct.Vector as Vec open Vec K using ( ++-cong ; ++-identityˡ ; +-distrib-++ ; ∙-distrib-++ ; 0++0≈0 ) renaming ( _≈_ to _≈v_ ; ≈-refl to ≈v-refl ; ≈-sym to ≈v-sym ; ≈-trans to ≈v-trans ; _+_ to _+v_ ; _∙_ to _∙v_ ; 0# to 0v ; +-cong to +v-cong ; setoid to vec-setoid ; vectorSpace to vector-vectorSpace ) import Algebra.Linear.Construct.Matrix K as M open import Data.Nat hiding (_+_) renaming (_*_ to _*ℕ_) open import Relation.Binary.PropositionalEquality as P using (_≡_; subst; subst-subst-sym) renaming ( refl to ≡-refl ; sym to ≡-sym ; trans to ≡-trans ) open import Data.Vec open import Data.Product open import Data.Fin open import Function δ : ∀ {n p} -> Fin n -> Fin p -> K' δ zero zero = 1ᵏ δ (suc n) zero = 0ᵏ δ zero (suc p) = 0ᵏ δ (suc n) (suc p) = δ n p canonicalBasis : M.Matrix n p canonicalBasis = M.tabulate δ module _ where open import Algebra.Morphism.Definitions (LinearMap vectorSpace₁ vectorSpace₂) (M.Matrix n p) M._≈_ open import Algebra.Linear.Morphism.Definitions K (LinearMap vectorSpace₁ vectorSpace₂) (M.Matrix n p) M._≈_ import Relation.Binary.Morphism.Definitions (LinearMap vectorSpace₁ vectorSpace₂) (M.Matrix n p) as R open import Relation.Binary.EqReasoning (M.setoid {n} {p}) Mat : LinearMap vectorSpace₁ vectorSpace₂ -> M.Matrix n p Mat f = M.mapCols (λ u -> embed₂ LinearIsomorphism.⟪$⟫ (f LinearMap.⟪$⟫ {! embed₁ ⁻¹ ⟪$⟫ u!})) canonicalBasis -- (λ u → embed₂ LinearIsomorphism.⟪$⟫ (proj₁ (⟦⟧₂-surjective u))) canonicalBasis Mat-cong : R.Homomorphic₂ _≈_ M._≈_ Mat Mat-cong {A} {B} f = begin Mat A ≈⟨ M.≈-reflexive (M.mapCols-cong (λ u → {!!}) canonicalBasis) ⟩ {!!} ≈⟨ {!!} ⟩ Mat B ∎ {- Mat-cong : R.Homomorphic₂ PS._≈_ _≈v_ Mat ⟦⟧-cong (r₁ , r₂) = ++-cong (⟦⟧₁-cong r₁) (⟦⟧₂-cong r₂) +-homo : Homomorphic₂ ⟦_⟧ _+_ _+v_ +-homo (x₁ , x₂) (y₁ , y₂) = begin ⟦ (x₁ , x₂) + (y₁ , y₂) ⟧ ≡⟨⟩ ⟦ x₁ +₁ y₁ ⟧₁ ++ ⟦ x₂ +₂ y₂ ⟧₂ ≈⟨ ++-cong (+₁-homo x₁ y₁) (+₂-homo x₂ y₂) ⟩ (⟦ x₁ ⟧₁ +v ⟦ y₁ ⟧₁) ++ (⟦ x₂ ⟧₂ +v ⟦ y₂ ⟧₂) ≈⟨ ≈v-sym (+-distrib-++ ⟦ x₁ ⟧₁ ⟦ x₂ ⟧₂ ⟦ y₁ ⟧₁ ⟦ y₂ ⟧₂) ⟩ (⟦ x₁ ⟧₁ ++ ⟦ x₂ ⟧₂) +v (⟦ y₁ ⟧₁ ++ ⟦ y₂ ⟧₂) ≈⟨ +v-cong ≈v-refl ≈v-refl ⟩ ⟦ x₁ , x₂ ⟧ +v ⟦ y₁ , y₂ ⟧ ∎ 0#-homo : Homomorphic₀ ⟦_⟧ 0# 0v 0#-homo = begin ⟦ 0# ⟧ ≡⟨⟩ ⟦ 0₁ ⟧₁ ++ ⟦ 0₂ ⟧₂ ≈⟨ ++-cong 0₁-homo 0₂-homo ⟩ (0v {n}) ++ (0v {p}) ≈⟨ 0++0≈0 {n} {p} ⟩ 0v {n +ℕ p} ∎ ∙-homo : ScalarHomomorphism ⟦_⟧ _∙_ _∙v_ ∙-homo c (x₁ , x₂) = begin ⟦ c ∙ (x₁ , x₂) ⟧ ≈⟨ ++-cong (∙₁-homo c x₁) (∙₂-homo c x₂) ⟩ (c ∙v ⟦ x₁ ⟧₁) ++ (c ∙v ⟦ x₂ ⟧₂) ≈⟨ ≈v-sym (∙-distrib-++ c ⟦ x₁ ⟧₁ ⟦ x₂ ⟧₂) ⟩ c ∙v ⟦ x₁ , x₂ ⟧ ∎ ⟦⟧-injective : Injective ⟦_⟧ ⟦⟧-injective {x₁ , x₂} {y₁ , y₂} r = let (r₁ , r₂) = ++-split r in ⟦⟧₁-injective r₁ , ⟦⟧₂-injective r₂ ⟦⟧-surjective : Surjective ⟦_⟧ ⟦⟧-surjective y = let (x₁ , x₂) = splitAt' n p ≡-refl y (u , r₁) = ⟦⟧₁-surjective x₁ (v , r₂) = ⟦⟧₂-surjective x₂ in (u , v) , ≈v-trans (++-cong r₁ r₂) (++-splitAt' {n} {p} y) embed : LinearIsomorphism PS.vectorSpace (vector-vectorSpace {n +ℕ p}) embed = record { ⟦_⟧ = ⟦_⟧ ; isLinearIsomorphism = record { isLinearMonomorphism = record { isLinearMap = record { isAbelianGroupMorphism = record { gp-homo = record { mn-homo = record { sm-homo = record { ⟦⟧-cong = ⟦⟧-cong ; ∙-homo = +-homo } ; ε-homo = 0#-homo } } } ; ∙-homo = ∙-homo } ; injective = ⟦⟧-injective } ; surjective = ⟦⟧-surjective } } isFiniteDimensional : IsFiniteDimensional _≈_ _+_ _∙_ -_ 0# (n +ℕ p) isFiniteDimensional = record { isVectorSpace = isVectorSpace ; embed = embed } -}
{ "alphanum_fraction": 0.5386235955, "avg_line_length": 26.0805860806, "ext": "agda", "hexsha": "53c126c22a0b665338636f2cd51c1559422b992a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Space/FiniteDimensional/Hom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Space/FiniteDimensional/Hom.agda", "max_line_length": 110, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Space/FiniteDimensional/Hom.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 3094, "size": 7120 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by join semilattices ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Lattice module Relation.Binary.Properties.JoinSemilattice {c ℓ₁ ℓ₂} (J : JoinSemilattice c ℓ₁ ℓ₂) where open JoinSemilattice J import Algebra as Alg import Algebra.Structures as Alg import Algebra.FunctionProperties as P; open P _≈_ open import Data.Product open import Function using (_∘_; flip) open import Relation.Binary open import Relation.Binary.Properties.Poset poset import Relation.Binary.Reasoning.PartialOrder as PoR -- The join operation is monotonic. ∨-monotonic : _∨_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ ∨-monotonic {x} {y} {u} {v} x≤y u≤v = let _ , _ , least = supremum x u y≤y∨v , v≤y∨v , _ = supremum y v in least (y ∨ v) (trans x≤y y≤y∨v) (trans u≤v v≤y∨v) ∨-cong : _∨_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ ∨-cong x≈y u≈v = antisym (∨-monotonic (reflexive x≈y) (reflexive u≈v)) (∨-monotonic (reflexive (Eq.sym x≈y)) (reflexive (Eq.sym u≈v))) -- The join operation is commutative, associative and idempotent. ∨-comm : Commutative _∨_ ∨-comm x y = let x≤x∨y , y≤x∨y , least = supremum x y y≤y∨x , x≤y∨x , least′ = supremum y x in antisym (least (y ∨ x) x≤y∨x y≤y∨x) (least′ (x ∨ y) y≤x∨y x≤x∨y) ∨-assoc : Associative _∨_ ∨-assoc x y z = let x∨y≤[x∨y]∨z , z≤[x∨y]∨z , least = supremum (x ∨ y) z x≤x∨[y∨z] , y∨z≤x∨[y∨z] , least′ = supremum x (y ∨ z) y≤y∨z , z≤y∨z , _ = supremum y z x≤x∨y , y≤x∨y , _ = supremum x y in antisym (least (x ∨ (y ∨ z)) (∨-monotonic refl y≤y∨z) (trans z≤y∨z y∨z≤x∨[y∨z])) (least′ ((x ∨ y) ∨ z) (trans x≤x∨y x∨y≤[x∨y]∨z) (∨-monotonic y≤x∨y refl)) ∨-idempotent : Idempotent _∨_ ∨-idempotent x = let x≤x∨x , _ , least = supremum x x in antisym (least x refl refl) x≤x∨x x≤y⇒x∨y≈y : ∀ {x y} → x ≤ y → x ∨ y ≈ y x≤y⇒x∨y≈y {x} {y} x≤y = antisym (begin x ∨ y ≤⟨ ∨-monotonic x≤y refl ⟩ y ∨ y ≈⟨ ∨-idempotent _ ⟩ y ∎) (y≤x∨y _ _) where open PoR poset -- Every order-theoretic semilattice can be turned into an algebraic one. isAlgSemilattice : Alg.IsSemilattice _≈_ _∨_ isAlgSemilattice = record { isBand = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ∨-cong } ; assoc = ∨-assoc } ; idem = ∨-idempotent } ; comm = ∨-comm } algSemilattice : Alg.Semilattice c ℓ₁ algSemilattice = record { isSemilattice = isAlgSemilattice } -- The dual construction is a meet semilattice. dualIsMeetSemilattice : IsMeetSemilattice _≈_ (flip _≤_) _∨_ dualIsMeetSemilattice = record { isPartialOrder = invIsPartialOrder ; infimum = supremum } dualMeetSemilattice : MeetSemilattice c ℓ₁ ℓ₂ dualMeetSemilattice = record { _∧_ = _∨_ ; isMeetSemilattice = dualIsMeetSemilattice }
{ "alphanum_fraction": 0.562716127, "avg_line_length": 30.5865384615, "ext": "agda", "hexsha": "3bc7b99ee3a5a9fcecc88f9cb54dd0766201622c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/JoinSemilattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/JoinSemilattice.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/JoinSemilattice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1284, "size": 3181 }
open import Agda.Builtin.Nat open import Agda.Builtin.Sigma interleaved mutual data Rec : Set ⟦_⟧ : Rec → Set constructor `Nat : Rec ⟦ `Nat ⟧ = Nat _ : Rec _ = `Σ `Nat (λ _ → `Nat) _ : Rec → Rec _ = λ r → `Σ r (λ _ → `Nat) constructor `Σ : (r : Rec) → (⟦ r ⟧ → Rec) → Rec ⟦ `Σ A B ⟧ = Σ ⟦ A ⟧ λ a → ⟦ B a ⟧ _+1-Nats : Nat → Rec zero +1-Nats = `Nat suc n +1-Nats = `Σ `Nat λ _ → n +1-Nats Nats : Rec Nats = `Σ `Nat _+1-Nats [1] : ⟦ Nats ⟧ [1] = 0 , 1 [1⋯3] : ⟦ Nats ⟧ [1⋯3] = 2 , 1 , 2 , 3
{ "alphanum_fraction": 0.4904214559, "avg_line_length": 15.8181818182, "ext": "agda", "hexsha": "79f14d85f5157831b779cf18dc3824229f66fb5a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue2858-IR-record.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2858-IR-record.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2858-IR-record.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 271, "size": 522 }
{-# OPTIONS --without-K #-} module Lecture4 where import Lecture3 open Lecture3 public -- the identity type on a type A, given a fixed basepoint x data Id {i : Level} {A : UU i} (x : A) : A → UU i where refl : Id x x _==_ : {i : Level} {A : UU i} (x y : A) → UU i x == y = Id x y ind-Id : {i j : Level} {A : UU i} {x : A} (B : (y : A) (p : Id x y) → UU j) → (B x refl) → (y : A) (p : Id x y) → B y p ind-Id x b y refl = b -- groupoid structure on identity types (a.k.a. paths) inv : {i : Level} {A : UU i} {x y : A} → Id x y → Id y x inv (refl) = refl _⁻¹ : {i : Level} {A : UU i} {x y : A} → Id x y → Id y x x ⁻¹ = inv x concat : {i : Level} {A : UU i} {x z : A} (y : A) → Id x y → Id y z → Id x z concat x refl q = q _·_ : {i : Level} {A : UU i} {x z : A} {y : A} → Id x y → Id y z → Id x z p · q = concat _ p q -- equational reasoning (TODO: demonstrate this by reworking some of the proofs to use it) infix 15 _==∎ -- \qed infixr 10 _==⟨_⟩_ -- \< \> _==∎ : ∀ {i : Level} {A : UU i} (a : A) → a == a a ==∎ = refl _==⟨_⟩_ : ∀ {i : Level} {A : UU i} (a : A) {b c : A} → a == b → b == c → a == c a ==⟨ γ ⟩ η = γ · η -- end equational reasoning assoc : {i : Level} {A : UU i} {x y z w : A} (p : Id x y) (q : Id y z) (r : Id z w) → Id (concat _ p (concat _ q r)) (concat _ (concat _ p q) r) assoc refl q r = refl left-unit : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (concat _ refl p) p left-unit refl = refl right-unit : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (concat _ p refl) p right-unit refl = refl left-inv : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (concat _ (inv p) p) refl left-inv refl = refl right-inv : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (concat _ p (inv p)) refl right-inv refl = refl -- action on paths of a function ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y : A} (p : Id x y) → Id (f x) (f y) ap f refl = refl ap-id : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (ap id p) p ap-id refl = refl ap-comp : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} (g : B → C) (f : A → B) {x y : A} (p : Id x y) → Id (ap (comp g f) p) (ap g (ap f p)) ap-comp g f refl = refl ap-refl : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x : A) → Id (ap f (refl {_} {_} {x})) refl ap-refl f x = refl ap-concat : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y z : A} (p : Id x y) (q : Id y z) → Id (ap f (concat _ p q)) (concat _ (ap f p) (ap f q)) ap-concat f refl q = refl ap-inv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y : A} (p : Id x y) → Id (ap f (inv p)) (inv (ap f p)) ap-inv f refl = refl tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) (b : B x) → B y tr B refl b = b apd : {i j : Level} {A : UU i} {B : A → UU j} (f : (x : A) → B x) {x y : A} (p : Id x y) → Id (tr B p (f x)) (f y) apd f refl = refl -- Exercises below -- Exercise 4.1 The composition of transports is the transport of the concatenation tr-concat : {i j : Level} {A : UU i} (B : A → UU j) {x y z : A} (p : Id x y) (q : Id y z) (b : B x) → Id (tr B q (tr B p b)) (tr B (concat _ p q) b) tr-concat B refl refl b = refl -- Exercise 4.2 Taking the inverse distributes contravariantly over concatenation inv-assoc : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) → Id (inv (concat _ p q)) (concat _ (inv q) (inv p)) inv-assoc refl refl = refl -- Exercise 4.3 If B is a weakened family over A (trivial bundle, not dependent), then tr is refl tr-triv : {i j : Level} {A : UU i} {B : UU j} {x y : A} (p : Id x y) (b : B) → Id (tr (weaken A B) p b) b tr-triv refl b = refl -- Exercise 4.4 Transporting, using x=y and f:A → B, an identity between identities tr-fib : {i j : Level} {A : UU i} {B : UU j} {f : A → B} {x y : A} (p : Id x y) (b : B) → (q : Id (f x) b) → Id (tr (λ (a : A) → Id (f a) b) p q) (concat _ (inv (ap f p)) q) tr-fib refl b q = refl tr-fib' : {i j : Level} {A : UU i} {B : UU j} {f : A → B} {x y : A} (p : Id x y) (b : B) → (q : Id b (f x)) → Id (tr (λ (a : A) → Id b (f a)) p q) (concat _ q (ap f p)) tr-fib' refl b refl = refl -- Exercise 4.5 inv-con : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) (r : Id x z) → (Id (p · q) r) → (Id q ((inv p) · r)) inv-con refl refl r refl = refl con-inv : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) (r : Id x z) → (Id (p · q) r) → (Id p (r · (inv q))) con-inv refl refl r refl = refl -- Exercise 4.6 Path lifting, from a path in the base A to a path in the total space Σ A B lift : {i j : Level} {A : UU i} {B : A → UU j} {x y : A} (p : Id x y) (b : B x) → Id (dpair x b) (dpair y (tr B p b)) lift refl b = refl -- Exercise 4.7 Some laws of arithmetic (follow-up from Remark 2.3.1) right-unit-addN : (m : ℕ) → Id (m + Nzero) m right-unit-addN Nzero = refl right-unit-addN (Nsucc m) = ap Nsucc (right-unit-addN m) left-unit-addN : (m : ℕ) → Id (Nzero + m) m left-unit-addN m = refl assoc-addN : (m n k : ℕ) → Id (m + (n + k)) ((m + n) + k) assoc-addN Nzero n k = refl assoc-addN (Nsucc m) n k = ap Nsucc (assoc-addN m n k) right-succ-addN : (m n : ℕ) → Id (m + (Nsucc n)) (Nsucc (m + n)) right-succ-addN Nzero n = refl right-succ-addN (Nsucc m) n = ap Nsucc (right-succ-addN m n) comm-addN : (m n : ℕ) → Id (m + n) (n + m) comm-addN Nzero Nzero = refl comm-addN Nzero (Nsucc n) = ap Nsucc (comm-addN Nzero n) comm-addN (Nsucc m) Nzero = ap Nsucc (comm-addN m Nzero) comm-addN (Nsucc m) (Nsucc n) = ((Nsucc m) + (Nsucc n)) ==⟨ ap Nsucc (comm-addN m (Nsucc n)) ⟩ (Nsucc ((Nsucc n) + m)) ==⟨ inv (right-succ-addN (Nsucc n) m) ⟩ ((Nsucc n) + (Nsucc m)) ==∎ left-zero-mulN : (m : ℕ) → Id (Nzero ** m) Nzero left-zero-mulN m = refl right-zero-mulN : (m : ℕ) → Id (m ** Nzero) Nzero right-zero-mulN Nzero = refl right-zero-mulN (Nsucc m) = concat (m ** Nzero) (right-unit-addN _) (right-zero-mulN m) left-unit-mulN : (m : ℕ) → Id ((Nsucc Nzero) ** m) m left-unit-mulN m = refl right-unit-mulN : (m : ℕ) → Id (m ** (Nsucc Nzero)) m right-unit-mulN Nzero = refl right-unit-mulN (Nsucc m) = ((Nsucc m) ** (Nsucc Nzero)) ==⟨ comm-addN _ (Nsucc Nzero) ⟩ (Nsucc Nzero) + (m ** (Nsucc Nzero)) ==⟨ ap Nsucc (right-unit-mulN m) ⟩ (Nsucc m) ==∎ distr-addN-mulN : (m n k : ℕ) → Id ((m + n) ** k) ((m ** k) + (n ** k)) distr-addN-mulN Nzero n k = refl distr-addN-mulN (Nsucc m) n k = ((Nsucc m) + n) ** k ==⟨ refl ⟩ (Nsucc (m + n)) ** k ==⟨ refl ⟩ ((m + n) ** k) + k ==⟨ ap (λ x → x + k) (distr-addN-mulN m n k) ⟩ ((m ** k) + (n ** k)) + k ==⟨ inv (assoc-addN (m ** k) (n ** k) k) ⟩ (m ** k) + ((n ** k) + k) ==⟨ ap (λ x → (m ** k) + x) (comm-addN (n ** k) k) ⟩ (m ** k) + (k + (n ** k)) ==⟨ assoc-addN (m ** k) k (n ** k) ⟩ ((m ** k) + k) + (n ** k) ==⟨ refl ⟩ ((Nsucc m) ** k) + (n ** k) ==∎ assoc-mulN : (m n k : ℕ) → Id (m ** (n ** k)) ((m ** n) ** k) assoc-mulN Nzero n k = refl assoc-mulN (Nsucc m) n k = ((Nsucc m) ** (n ** k)) ==⟨ refl ⟩ (m ** (n ** k)) + (n ** k) ==⟨ ap (λ x → x + (n ** k)) (assoc-mulN m n k) ⟩ ((m ** n) ** k) + (n ** k) ==⟨ inv (distr-addN-mulN (m ** n) n k) ⟩ ((m ** n) + n) ** k ==⟨ refl ⟩ (Nsucc m ** n) ** k ==∎
{ "alphanum_fraction": 0.4988922736, "avg_line_length": 30.0916666667, "ext": "agda", "hexsha": "ecf206418537f9446c11c9e695e1cbaf1584b737", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2018-06-25T15:05:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-02-22T19:58:46.000Z", "max_forks_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "glangmead/hott_cmu80818", "max_forks_repo_path": "Lecture4.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b", "max_issues_repo_issues_event_max_datetime": "2018-03-25T14:44:31.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-22T21:01:16.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "glangmead/hott_cmu80818", "max_issues_repo_path": "Lecture4.agda", "max_line_length": 153, "max_stars_count": 4, "max_stars_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "glangmead/hott_cmu80818", "max_stars_repo_path": "Lecture4.agda", "max_stars_repo_stars_event_max_datetime": "2018-09-04T02:52:25.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-03T20:32:19.000Z", "num_tokens": 3219, "size": 7222 }
-- Testing how the pragmas are saved in the agda interface files (using -- the program dump-agdai) when they are used from the command-line: -- $ agda --no-termination-check OptionPragmaCommandLine.agda -- 17 October 2012. Because the PragmaOption --no-termination-check -- was used from the command-line it is *not* saved in the interface -- file. -- iPragmaOptions = [] module OptionPragmaCommandLine where
{ "alphanum_fraction": 0.7578692494, "avg_line_length": 31.7692307692, "ext": "agda", "hexsha": "106a7928cc93b598085d495cdc11a029bf37081a", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "notes/agda-interface/OptionPragmaCommandLine.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "notes/agda-interface/OptionPragmaCommandLine.agda", "max_line_length": 71, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "notes/agda-interface/OptionPragmaCommandLine.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 100, "size": 413 }
{-# OPTIONS --cubical-compatible #-} open import Agda.Builtin.Equality subst : {A : Set} {@0 x y : A} (@0 P : A → Set) → x ≡ y → P x → P y subst P refl p = p
{ "alphanum_fraction": 0.5487804878, "avg_line_length": 18.2222222222, "ext": "agda", "hexsha": "ffc6ebf8fd090c32e3fc651644921df10614bf00", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue5448-3.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue5448-3.agda", "max_line_length": 38, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue5448-3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 60, "size": 164 }
module Lists.Reverse where open import Lists open import Nats open import Equality open import Function ------------------------------------------------------------------------ -- internal stuffs private -- rev$v:a=a:rev$v : ∀ {n m} {A : Set n} (a : A) (v : List A m) → -- rev (v ∷ʳ a) ≡ a ∷ rev v -- rev$v:a=a:rev$v _ [] = refl -- rev$v:a=a:rev$v a (_ ∷ xs) with rev (xs ∷ʳ a) | rev$v:a=a:rev$v a xs -- ... | .(a ∷ rev xs) | refl = refl rev$v:a=a:rev$v : ∀ {n} {A : Set n} (a : A) (v : List A) → reverse (v ∷ʳ a) ≡ a ∷ reverse v rev$v:a=a:rev$v _ [] = refl rev$v:a=a:rev$v a (_ ∷ xs) rewrite rev$v:a=a:rev$v a xs = refl rev∘rev=id : ∀ {n} {A : Set n} (v : List A) → reverse (reverse v) ≡ v rev∘rev=id [] = refl rev∘rev=id (x ∷ xs) rewrite rev$v:a=a:rev$v x $ reverse xs | rev∘rev=id xs = refl ------------------------------------------------------------------------ -- public aliases list-rev-rev-id : ∀ {n} {A : Set n} (v : List A) → reverse (reverse v) ≡ v list-rev-rev-id = rev∘rev=id
{ "alphanum_fraction": 0.4295900178, "avg_line_length": 29.5263157895, "ext": "agda", "hexsha": "c9cfd97d3cc6bb361d6ca5caf45da14293a35497", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Lists/Reverse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Lists/Reverse.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Lists/Reverse.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 381, "size": 1122 }
module Structure.Operator.Monoid.Monoids.Coset where open import Functional open import Function.Equals open import Function.Equals.Proofs import Lvl open import Logic open import Logic.Predicate open import Logic.Predicate.Equiv open import Sets.PredicateSet renaming (_≡_ to _≡ₛ_) open import Structure.Function open import Structure.Function.Domain open import Structure.Function.Domain.Proofs open import Structure.Function.Multi open import Structure.Operator.Monoid open import Structure.Operator.Monoid.Homomorphism open import Structure.Operator.Monoid.Monoids.Function open import Structure.Operator.Monoid.Submonoid open import Structure.Operator.Properties open import Structure.Operator open import Structure.Relator.Properties open import Structure.Setoid renaming (_≡_ to _≡ₑ_) open import Syntax.Transitivity open import Type private variable ℓ ℓₑ : Lvl.Level private variable T : Type{ℓ} module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ function : ∀{f : T → T} → Function(f) ⦄ {_▫_ : T → T → T} (monoid : Monoid(_▫_)) where cosetₗ-submonoid : Submonoid(function-monoid)(⊶(_▫_)) Submonoid.contains-identity cosetₗ-submonoid = [∃]-intro (_) ⦃ intro(identityₗ(_▫_)(_)) ⦄ Submonoid.operator-closure cosetₗ-submonoid {f}{g} ⦃ [∃]-intro a ⦃ pa ⦄ ⦄ ⦃ [∃]-intro b ⦃ pb ⦄ ⦄ = [∃]-intro (a ▫ b) ⦃ intro (\{x} → ((a ▫ b) ▫ x) 🝖[ _≡ₑ_ ]-[ associativity(_▫_) ] (a ▫ (b ▫ x)) 🝖[ _≡ₑ_ ]-[ _⊜_.proof pa ] f(b ▫ x) 🝖[ _≡ₑ_ ]-[ congruence₁(f) (_⊜_.proof pb) ] f(g(x)) 🝖[ _≡ₑ_ ]-[] (f ∘ g)(x) 🝖-end ) ⦄ cosetᵣ-submonoid : Submonoid(function-monoid)(⊶(swap(_▫_))) Submonoid.contains-identity cosetᵣ-submonoid = [∃]-intro (_) ⦃ intro(identityᵣ(_▫_)(_)) ⦄ Submonoid.operator-closure cosetᵣ-submonoid {f}{g} ⦃ [∃]-intro a ⦃ pa ⦄ ⦄ ⦃ [∃]-intro b ⦃ pb ⦄ ⦄ = [∃]-intro (b ▫ a) ⦃ intro (\{x} → (x ▫ (b ▫ a)) 🝖[ _≡ₑ_ ]-[ associativity(_▫_) ]-sym ((x ▫ b) ▫ a) 🝖[ _≡ₑ_ ]-[ _⊜_.proof pa ] f(x ▫ b) 🝖[ _≡ₑ_ ]-[ congruence₁(f) (_⊜_.proof pb) ] f(g(x)) 🝖[ _≡ₑ_ ]-[] (f ∘ g)(x) 🝖-end ) ⦄ cosetₗ-homomorphism : ∃(Homomorphism monoid (Submonoid.monoid cosetₗ-submonoid)) ∃.witness cosetₗ-homomorphism a = [∃]-intro (a ▫_) ⦃ [∃]-intro a ⦃ reflexivity(_≡ₑ_) {a ▫_} ⦄ ⦄ _⊜_.proof (Function.congruence (Homomorphism.function (∃.proof cosetₗ-homomorphism)) ab) {x} = congruence₂ₗ(_▫_)(x) ab _⊜_.proof (Preserving.proof (Homomorphism.preserve-op (∃.proof cosetₗ-homomorphism)) {x}) = associativity(_▫_) _⊜_.proof (Preserving.proof (Homomorphism.preserve-id (∃.proof cosetₗ-homomorphism))) {x} = identityₗ(_▫_)(_) instance cosetₗ-surjective : Surjective([∃]-witness cosetₗ-homomorphism) Surjective.proof cosetₗ-surjective {[∃]-intro f ⦃ pf ⦄} = pf instance cosetₗ-injective : Injective([∃]-witness cosetₗ-homomorphism) Injective.proof cosetₗ-injective {x} {y} (intro xy) = x 🝖[ _≡ₑ_ ]-[ identityᵣ(_▫_)(_) ]-sym x ▫ Monoid.id monoid 🝖[ _≡ₑ_ ]-[ xy {Monoid.id monoid} ] y ▫ Monoid.id monoid 🝖[ _≡ₑ_ ]-[ identityᵣ(_▫_)(_) ] y 🝖-end instance cosetₗ-bijective : Bijective([∃]-witness cosetₗ-homomorphism) cosetₗ-bijective = injective-surjective-to-bijective([∃]-witness cosetₗ-homomorphism) {- cosetᵣ-homomorphism : ∃(Homomorphism monoid (Submonoid.monoid cosetᵣ-submonoid)) ∃.witness cosetᵣ-homomorphism a = [∃]-intro (_▫ a) ⦃ [∃]-intro a ⦃ reflexivity(_≡ₑ_) {_▫ a} ⦄ ⦄ _⊜_.proof (Function.congruence (Homomorphism.function (∃.proof cosetᵣ-homomorphism)) ab) {x} = congruence₂ᵣ(_▫_)(x) ab _⊜_.proof (Preserving.proof (Homomorphism.preserve-op (∃.proof cosetᵣ-homomorphism)) {a} {b}) {x} = (x ▫ (a ▫ b)) 🝖[ _≡ₑ_ ]-[ {!!} ] ((x ▫ b) ▫ a) 🝖-end _⊜_.proof (Preserving.proof (Homomorphism.preserve-id (∃.proof cosetᵣ-homomorphism))) {x} = identityᵣ(_▫_)(_) -}
{ "alphanum_fraction": 0.640298892, "avg_line_length": 46.7590361446, "ext": "agda", "hexsha": "a78b047c7ddfc071b5ac35f08dc499d9c50159f5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Monoid/Monoids/Coset.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Monoid/Monoids/Coset.agda", "max_line_length": 122, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Monoid/Monoids/Coset.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1614, "size": 3881 }
-- Exponentials and closed categories module CategoryTheory.BCCCs.Closed where open import CategoryTheory.Categories open import CategoryTheory.BCCCs.Cartesian module _ {n} {ℂ : Category n} (Cℂ : Cartesian ℂ) where open Category ℂ open Cartesian Cℂ -- Exponential from two objects record Exponential (A B : obj) : Set (lsuc n) where field -- | Data -- Exponential object A⇒B : obj -- Evaluation map eval : A⇒B ⊗ A ~> B -- Canonical transposition morphism (currying) Λ : ∀{E} -> (E ⊗ A ~> B) -> (E ~> A⇒B) -- | Laws Λ-comm : ∀{E} -> {e : E ⊗ A ~> B} -> eval ∘ (Λ e * id) ≈ e Λ-unique : ∀{E} -> {e : E ⊗ A ~> B} {m : E ~> A⇒B} -> eval ∘ (m * id) ≈ e -> Λ e ≈ m Λ-cong : ∀{E} {f g : E ⊗ A ~> B} -> f ≈ g -> Λ f ≈ Λ g -- Currying identity Λ-*id : ∀{D E} {f : E ⊗ A ~> B} {g : D ~> E} -> Λ (f ∘ (g * id)) ≈ Λ f ∘ g Λ-*id {D}{E}{f}{g} = begin Λ (f ∘ (g * id)) ≈⟨ Λ-cong (≈-cong-left (Λ-comm [sym]) ≈> ∘-assoc) ⟩ Λ (eval ∘ (Λ f * id) ∘ (g * id)) ≈⟨ Λ-cong (≈-cong-right (*-idemp-dist-∘ id-left)) ⟩ Λ (eval ∘ (Λ f ∘ g) * id) ≈⟨ Λ-unique r≈ ⟩ Λ f ∘ g ∎ -- Type class for closed categories -- definition using exponentials record Closed {n} {ℂ : Category n} (Cℂ : Cartesian ℂ) : Set (lsuc n) where open Category ℂ field -- Exponential object for each pair of objects exp : ∀(A B : obj) -> Exponential Cℂ A B open module E {A} {B} = Exponential (exp A B) public -- Shorthand for exponential object infixr 20 _⇒_ _⇒_ : (A B : obj) -> obj A ⇒ B = A⇒B {A} {B}
{ "alphanum_fraction": 0.448423303, "avg_line_length": 31.1833333333, "ext": "agda", "hexsha": "8d4fdbaa77647407c07443b31645d38a7e04dcc6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/CategoryTheory/BCCCs/Closed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/CategoryTheory/BCCCs/Closed.agda", "max_line_length": 74, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/CategoryTheory/BCCCs/Closed.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 676, "size": 1871 }
{- Please do not move this file. Changes should only be made if necessary. This file contains benchmarks for the paper: Synthetic Integral Cohomology in Cubical Agda Guillaume Brunerie, Axel Ljungström, Anders Mörtberg Computer Science Logic (CSL) 2022 Command to run the benchmarks and get timings: agda -v profile.definitions:10 Benchmarks.agda This assumes that there is no Benchmarks.agdai file. If there is one, then it should be removed before the above command is run. -} {-# OPTIONS --safe #-} module Cubical.Experiments.ZCohomology.Benchmarks where open import Cubical.Foundations.Everything open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Int open import Cubical.HITs.Sn open import Cubical.Algebra.Group hiding (ℤ ; Bool) open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.GroupStructure hiding (_+ₕ_) renaming (_+'ₕ_ to _+ₕ_) {- _+'ₕ_ is just (λ x y → (x +ₕ 0ₕ) +ₕ (y +ₕ 0ₕ)) For technical reason, this gives nicer reductions and computes better in higher dimensions. -} open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.Groups.Wedge open import Cubical.ZCohomology.Groups.Torus open import Cubical.ZCohomology.Groups.KleinBottle open import Cubical.ZCohomology.Groups.WedgeOfSpheres open import Cubical.ZCohomology.Groups.RP2 open import Cubical.ZCohomology.Groups.CP2 open import Cubical.Data.Sigma open import Cubical.HITs.KleinBottle open import Cubical.HITs.RPn.Base open import Cubical.HITs.SetTruncation open import Cubical.HITs.Pushout open import Cubical.HITs.Hopf open import Cubical.HITs.Truncation open import Cubical.HITs.Susp open import Cubical.HITs.S1 open IsGroupHom open Iso -- S¹ (everything fast) module S1-tests where ϕ : coHom 1 (S₊ 1) → ℤ ϕ = fun (fst (Hⁿ-Sⁿ≅ℤ 0)) ϕ⁻¹ : ℤ → coHom 1 (S₊ 1) ϕ⁻¹ = inv (fst (Hⁿ-Sⁿ≅ℤ 0)) test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- <10ms test₁ = refl test₂ : ϕ (ϕ⁻¹ 1) ≡ 1 -- <10ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- <10ms test₃ = refl test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 12ms test₄ = refl test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- 13ms test₅ = refl test₆ : ϕ (ϕ⁻¹ -3 +ₕ ϕ⁻¹ 4) ≡ 1 -- 37ms test₆ = refl test₇ : ϕ (ϕ⁻¹ -5 +ₕ ϕ⁻¹ -2) ≡ -7 -- 38ms test₇ = refl -- S² module S2-tests where ϕ : coHom 2 (S₊ 2) → ℤ ϕ = fun (fst (Hⁿ-Sⁿ≅ℤ 1)) ϕ⁻¹ : ℤ → coHom 2 (S₊ 2) ϕ⁻¹ = inv (fst (Hⁿ-Sⁿ≅ℤ 1)) test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 13ms test₁ = refl test₂ : ϕ (ϕ⁻¹ 1) ≡ 1 -- 17ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 1,152ms test₃ = refl test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 1,235ms test₄ = refl test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- 1,208ms test₅ = refl test₆ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 1) ≡ 2 -- 1,153ms test₆ = refl test₇ : ϕ (ϕ⁻¹ 2 +ₕ ϕ⁻¹ 4) ≡ 6 -- 1,365ms test₇ = refl -- S³ module S3-tests where ϕ : coHom 3 (S₊ 3) → ℤ ϕ = fun (fst (Hⁿ-Sⁿ≅ℤ 2)) ϕ⁻¹ : ℤ → coHom 3 (S₊ 3) ϕ⁻¹ = inv (fst (Hⁿ-Sⁿ≅ℤ 2)) test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 228ms test₁ = refl test₂ : ϕ (ϕ⁻¹ 1) ≡ 1 -- 231ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 3) ≡ 3 -- 325ms test₃ = refl {- test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- nope test₄ = refl test₅ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- nope test₅ = refl -} -- S⁴ module S4-tests where ϕ : coHom 4 (S₊ 4) → ℤ ϕ = fun (fst (Hⁿ-Sⁿ≅ℤ 3)) ϕ⁻¹ : ℤ → coHom 4 (S₊ 4) ϕ⁻¹ = inv (fst (Hⁿ-Sⁿ≅ℤ 3)) {- _+ₕ_ Fails already here... test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- nope test₁ = refl -} -- ϕ can handle 0ₕ fast test₂ : ϕ (0ₕ _) ≡ 0 -- < 10ms test₂ = refl {- It fails to map the generator to 1, however. test₂ : ϕ (∣ ∣_∣ ∣₂) ≡ 1 -- nope test₂ = refl -} module S1∨S1∨S2-tests₁ where -- everything fast ϕ : coHom 1 S²⋁S¹⋁S¹ → ℤ × ℤ ϕ = fun (fst H¹-S²⋁S¹⋁S¹) ϕ⁻¹ : ℤ × ℤ → coHom 1 S²⋁S¹⋁S¹ ϕ⁻¹ = inv (fst H¹-S²⋁S¹⋁S¹) test₁ : ϕ (ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- 11ms test₁ = refl test₂ : ϕ (ϕ⁻¹ (3 , 1)) ≡ (3 , 1) -- 23ms test₂ = refl test₃ : ϕ (ϕ⁻¹ (0 , 0) +ₕ ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- 19ms test₃ = refl test₄ : ϕ (ϕ⁻¹ (0 , 1) +ₕ ϕ⁻¹ (1 , 0)) ≡ (1 , 1) -- 26ms test₄ = refl test₅ : ϕ (ϕ⁻¹ (3 , 2) +ₕ ϕ⁻¹ (-1 , 5)) ≡ (2 , 7) -- 62ms test₅ = refl module S1∨S1∨S2-tests₂ where ϕ : coHom 2 S²⋁S¹⋁S¹ → ℤ ϕ = fun (fst H²-S²⋁S¹⋁S¹) ϕ⁻¹ : ℤ → coHom 2 S²⋁S¹⋁S¹ ϕ⁻¹ = inv (fst H²-S²⋁S¹⋁S¹) test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 106ms test₁ = refl test₂ : ϕ (ϕ⁻¹ 3) ≡ 3 -- 125ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 9,689ms test₃ = refl test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 9,235ms test₄ = refl test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- 9,748ms test₅ = refl test₆ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 1) ≡ 2 -- 9,136ms test₆ = refl test₇ : ϕ (ϕ⁻¹ 2 +ₕ ϕ⁻¹ 4) ≡ 6 -- 9,557ms test₇ = refl module Torus-test₁ where -- fast ϕ : coHom 1 (S₊ 1 × S₊ 1) → ℤ × ℤ ϕ = fun (fst H¹-T²≅ℤ×ℤ) ϕ⁻¹ : ℤ × ℤ → coHom 1 (S₊ 1 × S₊ 1) ϕ⁻¹ = inv (fst H¹-T²≅ℤ×ℤ) test₁ : ϕ (ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- 11ms test₁ = refl test₂ : ϕ (ϕ⁻¹ (3 , 1)) ≡ (3 , 1) -- 17ms test₂ = refl test₃ : ϕ (ϕ⁻¹ (0 , 0) +ₕ ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- 19ms test₃ = refl test₄ : ϕ (ϕ⁻¹ (0 , 1) +ₕ ϕ⁻¹ (1 , 0)) ≡ (1 , 1) -- 26ms test₄ = refl test₅ : ϕ (ϕ⁻¹ (-3 , 2) +ₕ ϕ⁻¹ (-1 , 5)) ≡ (-4 , 7) -- 61ms test₅ = refl module Torus-test₂ where ϕ : coHom 2 (S₊ 1 × S₊ 1) → ℤ ϕ = fun (fst H²-T²≅ℤ) ϕ⁻¹ : ℤ → coHom 2 (S₊ 1 × S₊ 1) ϕ⁻¹ = inv (fst H²-T²≅ℤ) test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 136sm test₁ = refl test₂ : ϕ (ϕ⁻¹ 3) ≡ 3 -- 154ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 12,790ms test₃ = refl test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 12,366ms test₄ = refl test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- 12,257ms test₅ = refl test₆ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 1) ≡ 2 -- 13,092ms test₆ = refl test₇ : ϕ (ϕ⁻¹ 2 +ₕ ϕ⁻¹ 4) ≡ 6 -- 12,528ms test₇ = refl module Klein-test₁ where -- fast ϕ : coHom 1 KleinBottle → ℤ ϕ = fun (fst H¹-𝕂²≅ℤ) ϕ⁻¹ : ℤ → coHom 1 KleinBottle ϕ⁻¹ = inv (fst H¹-𝕂²≅ℤ) test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- <10ms test₁ = refl test₂ : ϕ (ϕ⁻¹ 3) ≡ 3 -- 13ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 10ms test₃ = refl test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 14ms test₄ = refl test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- 14ms test₅ = refl test₆ : ϕ (ϕ⁻¹ -3 +ₕ ϕ⁻¹ 4) ≡ 1 -- 38ms test₆ = refl test₇ : ϕ (ϕ⁻¹ -5 +ₕ ϕ⁻¹ -2) ≡ -7 -- 38ms test₇ = refl -- The example in the paper: test : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 2) ≡ 3 -- 22ms test = refl module Klein-test₂ where ϕ : coHom 2 KleinBottle → Bool ϕ = fun (fst H²-𝕂²≅Bool) ϕ⁻¹ : Bool → coHom 2 KleinBottle ϕ⁻¹ = inv (fst H²-𝕂²≅Bool) {- test₀ : ϕ (0ₕ _) ≡ true -- fails already here... test₀ = refl -} module RP2-test₂ where ϕ : coHom 2 RP² → Bool ϕ = fun (fst H²-RP²≅Bool) ϕ⁻¹ : Bool → coHom 2 RP² ϕ⁻¹ = inv (fst H²-RP²≅Bool) test₀ : ϕ (0ₕ _) ≡ true -- 1,328ms (unlike for Klein, this works) test₀ = refl {- test₁ : ϕ (ϕ⁻¹ true) ≡ true -- nope test₁ = refl -} module CP2-test₂ where ϕ : coHom 2 CP² → ℤ ϕ = fun (fst H²CP²≅ℤ) ϕ⁻¹ : ℤ → coHom 2 CP² ϕ⁻¹ = inv (fst H²CP²≅ℤ) -- For explicitly constructed elements g : H²CP², ϕ works well test₀ : ϕ (0ₕ _) ≡ 0 -- <10ms test₀ = refl generator : coHom 2 CP² generator = ∣ (λ { (inl x) → ∣ x ∣ ; (inr x) → 0ₖ _ ; (push a i) → p a i}) ∣₂ where ind : (B : TotalHopf → Type) → ((x : _) → isOfHLevel 3 (B x)) → B (north , base) → (x : _) → B x ind = transport (λ i → (B : isoToPath IsoS³TotalHopf i → Type) → ((x : _) → isOfHLevel 3 (B x)) → B (transp (λ j → isoToPath IsoS³TotalHopf (i ∨ ~ j)) i (north , base)) → (x : _) → B x) λ B hLev ind → sphereElim _ (λ _ → hLev _) ind p : (a : TotalHopf) → ∣ fst a ∣ ≡ 0ₖ 2 p = ind _ (λ _ → isOfHLevelTrunc 4 _ _) refl test₁ : ϕ generator ≡ 1 -- 24ms test₁ = refl -- For _+ₕ_ too test₂ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 1,343ms test₂ = refl test₃ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 1) ≡ 2 -- 1,302ms test₃ = refl test₄ : ϕ (ϕ⁻¹ 2 +ₕ ϕ⁻¹ 2) ≡ 4 -- 1,410ms test₄ = refl module CP2-test₄ where ϕ : coHom 4 CP² → ℤ ϕ = fun (fst H⁴CP²≅ℤ) ϕ⁻¹ : ℤ → coHom 4 CP² ϕ⁻¹ = inv (fst H⁴CP²≅ℤ) {- test₀ : ϕ (0ₕ _) ≡ 0 -- fails already here... test₀ = refl -}
{ "alphanum_fraction": 0.5518607443, "avg_line_length": 21.4690721649, "ext": "agda", "hexsha": "61a2662f325ef9116e5c71352bcb424a66b06f7a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a1d2bb38c0794f3cb00610cd6061cf9b5410518d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lkstl/cubical", "max_forks_repo_path": "Cubical/Experiments/ZCohomology/Benchmarks.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a1d2bb38c0794f3cb00610cd6061cf9b5410518d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lkstl/cubical", "max_issues_repo_path": "Cubical/Experiments/ZCohomology/Benchmarks.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "a1d2bb38c0794f3cb00610cd6061cf9b5410518d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lkstl/cubical", "max_stars_repo_path": "Cubical/Experiments/ZCohomology/Benchmarks.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-20T11:56:18.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-20T11:56:18.000Z", "num_tokens": 4546, "size": 8330 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Definition open import Numbers.Naturals.Naturals open import Numbers.Integers.Integers open import Groups.Groups open import Groups.Definition open import Groups.Lemmas open import Rings.Definition open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Fields.Fields open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import Sets.EquivalenceRelations module Numbers.Rationals.Definition where open import Fields.FieldOfFractions.Setoid ℤIntDom open import Fields.FieldOfFractions.Addition ℤIntDom open import Fields.FieldOfFractions.Multiplication ℤIntDom open import Fields.FieldOfFractions.Ring ℤIntDom open import Fields.FieldOfFractions.Field ℤIntDom open import Fields.FieldOfFractions.Lemmas ℤIntDom open import Fields.FieldOfFractions.Order ℤIntDom ℤOrderedRing ℚ : Set ℚ = fieldOfFractionsSet ℚSetoid : Setoid ℚ ℚSetoid = fieldOfFractionsSetoid _+Q_ : ℚ → ℚ → ℚ a +Q b = fieldOfFractionsPlus a b _*Q_ : ℚ → ℚ → ℚ a *Q b = fieldOfFractionsTimes a b ℚRing : Ring fieldOfFractionsSetoid _+Q_ _*Q_ ℚRing = fieldOfFractionsRing 0Q : ℚ 0Q = Ring.0R ℚRing injectionQ : ℤ → ℚ injectionQ = embedIntoFieldOfFractions injectionNQ : ℕ → ℚ injectionNQ n = injectionQ (nonneg n) injectionQInjective : Injection injectionQ injectionQInjective {nonneg x} {nonneg .x} refl = refl injectionQInjective {negSucc x} {negSucc .x} refl = refl ℚField : Field ℚRing ℚField = fieldOfFractions _<Q_ : ℚ → ℚ → Set _<Q_ = fieldOfFractionsComparison _=Q_ : ℚ → ℚ → Set a =Q b = Setoid._∼_ fieldOfFractionsSetoid a b reflQ : {x : ℚ} → (x =Q x) reflQ {x} = Equivalence.reflexive (Setoid.eq fieldOfFractionsSetoid) {x} _≤Q_ : ℚ → ℚ → Set a ≤Q b = (a <Q b) || (a =Q b) negateQ : ℚ → ℚ negateQ a = Group.inverse (Ring.additiveGroup ℚRing) a _-Q_ : ℚ → ℚ → ℚ a -Q b = a +Q negateQ b a-A : (a : ℚ) → (a -Q a) =Q 0Q a-A a = Group.invRight (Ring.additiveGroup ℚRing) {a} ℚPartialOrder : SetoidPartialOrder fieldOfFractionsSetoid fieldOfFractionsComparison ℚPartialOrder = fieldOfFractionsOrder ℚTotalOrder : SetoidTotalOrder fieldOfFractionsOrder ℚTotalOrder = fieldOfFractionsTotalOrder ℚOrderInherited : (a b : ℤ) → a <Z b → injectionQ a <Q injectionQ b ℚOrderInherited a b a<b = fieldOfFractionsOrderInherited a<b open SetoidTotalOrder fieldOfFractionsTotalOrder open SetoidPartialOrder partial open Setoid fieldOfFractionsSetoid negateQWellDefined : (a b : ℚ) → (a =Q b) → (negateQ a) =Q (negateQ b) negateQWellDefined a b a=b = inverseWellDefined (Ring.additiveGroup ℚRing) {a} {b} a=b ℚPOrdered : PartiallyOrderedRing ℚRing partial ℚPOrdered = fieldOfFractionsPOrderedRing ℚOrdered : TotallyOrderedRing ℚPOrdered ℚOrdered = fieldOfFractionsOrderedRing
{ "alphanum_fraction": 0.783161512, "avg_line_length": 28.2524271845, "ext": "agda", "hexsha": "febd07c7eebc8e7138913ca255c79e768949f01a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Rationals/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Rationals/Definition.agda", "max_line_length": 86, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Rationals/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 974, "size": 2910 }
{- This second-order term syntax was created from the following second-order syntax description: syntax PropLog | PR type * : 0-ary term false : * | ⊥ or : * * -> * | _∨_ l20 true : * | ⊤ and : * * -> * | _∧_ l30 not : * -> * | ¬_ r50 theory (⊥U∨ᴸ) a |> or (false, a) = a (⊥U∨ᴿ) a |> or (a, false) = a (∨A) a b c |> or (or(a, b), c) = or (a, or(b, c)) (∨C) a b |> or(a, b) = or(b, a) (⊤U∧ᴸ) a |> and (true, a) = a (⊤U∧ᴿ) a |> and (a, true) = a (∧A) a b c |> and (and(a, b), c) = and (a, and(b, c)) (∧D∨ᴸ) a b c |> and (a, or (b, c)) = or (and(a, b), and(a, c)) (∧D∨ᴿ) a b c |> and (or (a, b), c) = or (and(a, c), and(b, c)) (⊥X∧ᴸ) a |> and (false, a) = false (⊥X∧ᴿ) a |> and (a, false) = false (¬N∨ᴸ) a |> or (not (a), a) = false (¬N∨ᴿ) a |> or (a, not (a)) = false (∧C) a b |> and(a, b) = and(b, a) (∨I) a |> or(a, a) = a (∧I) a |> and(a, a) = a (¬²) a |> not(not (a)) = a (∨D∧ᴸ) a b c |> or (a, and (b, c)) = and (or(a, b), or(a, c)) (∨D∧ᴿ) a b c |> or (and (a, b), c) = and (or(a, c), or(b, c)) (∨B∧ᴸ) a b |> or (and (a, b), a) = a (∨B∧ᴿ) a b |> or (a, and (a, b)) = a (∧B∨ᴸ) a b |> and (or (a, b), a) = a (∧B∨ᴿ) a b |> and (a, or (a, b)) = a (⊤X∨ᴸ) a |> or (true, a) = true (⊤X∨ᴿ) a |> or (a, true) = true (¬N∧ᴸ) a |> and (not (a), a) = false (¬N∧ᴿ) a |> and (a, not (a)) = false (DM∧) a b |> not (and (a, b)) = or (not(a), not(b)) (DM∨) a b |> not (or (a, b)) = and (not(a), not(b)) -} module PropLog.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import PropLog.Signature private variable Γ Δ Π : Ctx α : *T 𝔛 : Familyₛ -- Inductive term declaration module PR:Terms (𝔛 : Familyₛ) where data PR : Familyₛ where var : ℐ ⇾̣ PR mvar : 𝔛 α Π → Sub PR Π Γ → PR α Γ ⊥ : PR * Γ _∨_ : PR * Γ → PR * Γ → PR * Γ ⊤ : PR * Γ _∧_ : PR * Γ → PR * Γ → PR * Γ ¬_ : PR * Γ → PR * Γ infixl 20 _∨_ infixl 30 _∧_ infixr 50 ¬_ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 PRᵃ : MetaAlg PR PRᵃ = record { 𝑎𝑙𝑔 = λ where (falseₒ ⋮ _) → ⊥ (orₒ ⋮ a , b) → _∨_ a b (trueₒ ⋮ _) → ⊤ (andₒ ⋮ a , b) → _∧_ a b (notₒ ⋮ a) → ¬_ a ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module PRᵃ = MetaAlg PRᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : PR ⇾̣ 𝒜 𝕊 : Sub PR Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 ⊥ = 𝑎𝑙𝑔 (falseₒ ⋮ tt) 𝕤𝕖𝕞 (_∨_ a b) = 𝑎𝑙𝑔 (orₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 ⊤ = 𝑎𝑙𝑔 (trueₒ ⋮ tt) 𝕤𝕖𝕞 (_∧_ a b) = 𝑎𝑙𝑔 (andₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (¬_ a) = 𝑎𝑙𝑔 (notₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ PRᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ PR α Γ) → 𝕤𝕖𝕞 (PRᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (falseₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (orₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (trueₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (andₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (notₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ PR ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : PR ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ PRᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : PR α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub PR Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! ⊥ = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_∨_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! ⊤ = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_∧_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (¬_ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature PR:Syn : Syntax PR:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = PR:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open PR:Terms 𝔛 in record { ⊥ = PR ⋉ PRᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax PR:Syn public open PR:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands PRᵃ public open import SOAS.Metatheory PR:Syn public -- Derived operations _⟹_ : PR 𝔛 * Γ → PR 𝔛 * Γ → PR 𝔛 * Γ p ⟹ q = ¬ p ∨ q
{ "alphanum_fraction": 0.4765267968, "avg_line_length": 27.6666666667, "ext": "agda", "hexsha": "01eeb3ca531f42cf39430e8d70e0a25d27ccccc7", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/PropLog/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/PropLog/Syntax.agda", "max_line_length": 93, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/PropLog/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 3034, "size": 4814 }
-- Andreas, 2015-11-18 Fixing de Bruijn indices in debug print for with. {-# OPTIONS -v tc.with.top:25 #-} -- KEEP! postulate Trash A : Set P : A → Set provokeError : Trash -- The trash arguments should not show up in the debug printing! -- If they do, permutations or de Bruijn indices are messed up, -- or the debug messages are printed in the wrong context. test : (trash1 : Trash) (b : A) (trash2 : Trash) (f : ∀ x → P x) (trash3 : Trash) → Set test trash1 b trash2 f trash3 with f b ... | p = provokeError -- EXPECTED: -- ... -- vs = [f b] -- as = [P b] -- ... -- with arguments [f b] -- types [P b] -- ... -- checkWithFunction -- ... -- as = [P b] -- vs = [f b] -- ... -- -- and then a type error message.
{ "alphanum_fraction": 0.575, "avg_line_length": 23.75, "ext": "agda", "hexsha": "1b50a59e5d4aa6d3494a8f9064d06291a2d7c5b4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/DebugWith.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/DebugWith.agda", "max_line_length": 87, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/DebugWith.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 235, "size": 760 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Complete.Properties.Construction {o ℓ e} (C : Category o ℓ e) where open import Level open import Data.Product using (∃₂; _,_; -,_) open import Categories.Category.Complete open import Categories.Diagram.Equalizer C open import Categories.Diagram.Limit as Lim open import Categories.Object.Product.Indexed C open import Categories.Functor import Categories.Category.Construction.Cones as Co import Categories.Morphism.Reasoning as MR private variable o′ ℓ′ e′ o″ ℓ″ e″ : Level module C = Category C module _ (prods : AllProductsOf (o′ ⊔ ℓ′)) (equalizer : ∀ {A B} (f g : A C.⇒ B) → Equalizer f g) where private module Prods {I} (P : I → C.Obj) = IndexedProductOf (prods P) open C.HomReasoning module _ {J : Category o′ ℓ′ e′} (F : Functor J C) where private module J = Category J open Functor F open MR C module OP = Prods {Lift ℓ′ J.Obj} (λ j → F₀ (lower j)) module MP = Prods {∃₂ J._⇒_} (λ { (_ , B , _) → F₀ B }) src : C.Obj src = OP.X dst : C.Obj dst = MP.X ϕ⇒ : (i : ∃₂ J._⇒_) → let (_ , B , _) = i in src C.⇒ F₀ B ϕ⇒ (_ , B , _) = OP.π (lift B) ϕ : src C.⇒ dst ϕ = MP.⟨ ϕ⇒ ⟩ ψ⇒ : (i : ∃₂ J._⇒_) → let (_ , B , _) = i in src C.⇒ F₀ B ψ⇒ (A , B , f) = F₁ f C.∘ OP.π (lift A) ψ : src C.⇒ dst ψ = MP.⟨ ψ⇒ ⟩ module eq = Equalizer (equalizer ϕ ψ) ⊤ : Co.Cone F ⊤ = record { N = eq.obj ; apex = record { ψ = λ X → OP.π (lift X) C.∘ eq.arr ; commute = λ {X Y} f → begin F₁ f C.∘ OP.π (lift X) C.∘ eq.arr ≈˘⟨ pushˡ (MP.commute ψ⇒ _) ⟩ (MP.π (-, -, f) C.∘ ψ) C.∘ eq.arr ≈˘⟨ pushʳ eq.equality ⟩ MP.π (-, -, f) C.∘ ϕ C.∘ eq.arr ≈⟨ pullˡ (MP.commute ϕ⇒ _ ) ⟩ OP.π (lift Y) C.∘ eq.arr ∎ } } module _ {K : Co.Cone F} where private module K = Co.Cone F K K⇒ : K.N C.⇒ src K⇒ = OP.⟨ (λ j → K.ψ (lower j)) ⟩ Keq : (i : ∃₂ J._⇒_) → ϕ⇒ i C.∘ K⇒ C.≈ ψ⇒ i C.∘ K⇒ Keq i@(A , B , f) = begin ϕ⇒ i C.∘ K⇒ ≈⟨ OP.commute _ _ ⟩ K.ψ B ≈˘⟨ K.commute _ ⟩ F₁ f C.∘ K.ψ A ≈˘⟨ pullʳ (OP.commute _ _) ⟩ ψ⇒ i C.∘ K⇒ ∎ !-eq : ϕ C.∘ K⇒ C.≈ ψ C.∘ K⇒ !-eq = begin ϕ C.∘ K⇒ ≈⟨ MP.⟨⟩∘ _ _ ⟩ MP.⟨ (λ i → ϕ⇒ i C.∘ K⇒) ⟩ ≈⟨ MP.⟨⟩-cong _ _ Keq ⟩ MP.⟨ (λ i → ψ⇒ i C.∘ K⇒) ⟩ ≈˘⟨ MP.⟨⟩∘ _ _ ⟩ ψ C.∘ K⇒ ∎ ! : Co.Cones F [ K , ⊤ ] ! = record { arr = eq.equalize {h = K⇒} !-eq ; commute = λ {j} → begin (OP.π (lift j) C.∘ eq.arr) C.∘ eq.equalize !-eq ≈˘⟨ pushʳ eq.universal ⟩ OP.π (lift j) C.∘ K⇒ ≈⟨ OP.commute _ _ ⟩ K.ψ j ∎ } !-unique : (f : Co.Cones F [ K , ⊤ ]) → Co.Cones F [ ! ≈ f ] !-unique f = ⟺ (eq.unique eq) where module f = Co.Cone⇒ F f eq : K⇒ C.≈ eq.arr C.∘ f.arr eq = OP.unique′ _ _ λ i → begin OP.π i C.∘ K⇒ ≈⟨ OP.commute _ _ ⟩ K.ψ (lower i) ≈˘⟨ f.commute ⟩ (OP.π i C.∘ eq.arr) C.∘ f.arr ≈⟨ C.assoc ⟩ OP.π i C.∘ eq.arr C.∘ f.arr ∎ complete : Limit F complete = record { terminal = record { ⊤ = ⊤ ; ⊤-is-terminal = record { ! = ! ; !-unique = !-unique } } } AllProducts×Equalizer⇒Complete : Complete o′ ℓ′ e′ C AllProducts×Equalizer⇒Complete = complete
{ "alphanum_fraction": 0.4317237799, "avg_line_length": 31.3170731707, "ext": "agda", "hexsha": "ef6bb8c0c8515f336d707650864af97ac55fa4a4", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Complete/Properties/Construction.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Complete/Properties/Construction.agda", "max_line_length": 102, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Complete/Properties/Construction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1565, "size": 3852 }
{-# OPTIONS --without-K #-} module Leftovers.Utils where open import Data.String using (String) open import Data.List as List -- open import Reflection open import Leftovers.Monad open import Reflection.Term open import Reflection.Pattern as P -- open import Reflection.TypeChecking.Monad.Instances open import Data.Nat open import Data.Product open import Data.Unit open import Function using (_$_) import Data.List.Categorical open import Level open Data.List.Categorical.TraversableM {m = Level.zero} leftoversMonad case_of_ : ∀ {A B : Set} → A → (A → B) → B case x of f = f x λv_↦_ λh_↦_ : String → Term → Term λv x ↦ body = lam visible (abs x body) λh x ↦ body = lam hidden (abs x body) identity : ∀ {ℓ} { X : Set ℓ} → X → X identity x = x the : ∀ {ℓ} → (T : Set ℓ) → T → T the _ = identity _⦂_ : Term → Type → Term t ⦂ T = def (quote the) (vArg T ∷ vArg t ∷ []) app : Term → Term → Term app f x = def (quote _$_) (vArg f ∷ vArg x ∷ []) returnTypeFor : Type → Term → Leftovers Type returnTypeFor (pi (arg _ dom) cod) x = do debugPrint "returnTypeFor" 2 (strErr "Checking pattern " ∷ termErr x ∷ strErr " against type " ∷ termErr dom ∷ []) checkType x dom pure (app (lam visible cod) x) returnTypeFor t x = do ldom ← freshMeta (quoteTerm Level) lcod ← freshMeta (quoteTerm Level) dom ← freshMeta (sort (set ldom)) cod ← extendContext (vArg dom) (freshMeta (sort (set lcod))) unify t (pi (vArg dom) (abs "x" cod)) pure (app (lam visible (abs "x" cod)) x) --Try an action (usually unification) but continue without it -- if it fails try : Leftovers ⊤ → Leftovers ⊤ try x = catchLeftovers x (pure tt) tryUnify : Term → Term → Leftovers ⊤ tryUnify x y = try (unify x y) {- Syntactic sugar for trying a computation, if it fails then try the other one -} -- try-fun : ∀ {a} {A : Set a} → Leftovers A → Leftovers A → Leftovers A -- try-fun = catchLeftovers -- syntax try-fun t f = try t or-else f constructors : Definition → List Name constructors (data-type pars cs) = cs constructors _ = [] import Reflection.Show record CtorArg : Set where constructor mkCtorArg field pat : Arg Pattern term : Arg Term type : Arg Type -- Given a name, get its type -- and generate fresh metas for each argument -- e.g. turn (a -> b -> c -> d) into [_ , _ , _] fully-applied-pattern : Name → Leftovers (List (CtorArg)) fully-applied-pattern nm = do nmType ← getType nm -- debugPrint "full-app" 2 (strErr "fullApp " ∷ nameErr nm ∷ termErr nmType ∷ []) pure (full-app-type nmType 0) where full-app-type : Type → ℕ → List (CtorArg) full-app-type (pi (arg info dom) (abs s x)) pos = (mkCtorArg (arg info (P.var pos)) (arg info (var pos [])) (arg info unknown)) ∷ full-app-type x (1 + pos) -- ((arg info (P.var pos) , arg info (var pos [])) ∷ full-app-type x (1 + pos)) full-app-type t pos = []
{ "alphanum_fraction": 0.6522790055, "avg_line_length": 28.6732673267, "ext": "agda", "hexsha": "8e4ab7689a1eeeac4efb0bd7c044867f1d9abb68", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/AgdaLeftovers", "max_forks_repo_path": "src/Leftovers/Utils.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/AgdaLeftovers", "max_issues_repo_path": "src/Leftovers/Utils.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/AgdaLeftovers", "max_stars_repo_path": "src/Leftovers/Utils.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 916, "size": 2896 }
open import Nat open import Prelude open import contexts open import core open import dynamics-core open import lemmas-gcomplete open import disjointness open import dom-eq open import holes-disjoint-checks open import lemmas-disjointness open import lemmas-freshness open import finality open import focus-formation open import ground-decidable open import grounding open import lemmas-subst-ta open import htype-decidable open import lemmas-consistency open import lemmas-ground open import lemmas-matching open import synth-unicity open import elaborability open import elaboration-generality open import elaboration-unicity open import type-assignment-unicity open import typed-elaboration open import canonical-boxed-forms open import canonical-indeterminate-forms open import canonical-value-forms open import lemmas-progress-checks open import preservation open import progress open import progress-checks open import cast-inert open import complete-elaboration open import complete-preservation open import complete-progress open import lemmas-complete open import contraction open import exchange open import weakening open import binders-disjoint-checks
{ "alphanum_fraction": 0.8504672897, "avg_line_length": 21.4, "ext": "agda", "hexsha": "c1af2b934d41b2da705e3f849ff13985f481ee91", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "dynamics-all.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "dynamics-all.agda", "max_line_length": 41, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "dynamics-all.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 262, "size": 1177 }
{-# OPTIONS --without-K --rewriting #-} module lib.PathSeq where open import lib.path-seq.Ap public open import lib.path-seq.Concat public open import lib.path-seq.Inversion public open import lib.path-seq.Reasoning public open import lib.path-seq.Rotations public open import lib.path-seq.Split public
{ "alphanum_fraction": 0.7901639344, "avg_line_length": 27.7272727273, "ext": "agda", "hexsha": "db11be3b7058b729194e5add3ee2e2f9f5ada967", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/PathSeq.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/PathSeq.agda", "max_line_length": 41, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/PathSeq.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 74, "size": 305 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.IdNat {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties import Definition.Typed.Weakening as Twk open import Definition.Typed.EqualityRelation open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution import Definition.LogicalRelation.Weakening as Lwk open import Definition.LogicalRelation.Substitution.Properties import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Weakening -- open import Definition.LogicalRelation.Substitution.Introductions.Nat open import Definition.LogicalRelation.Substitution.Introductions.Empty open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.Idlemmas open import Definition.LogicalRelation.Substitution.Introductions.IdUniv open import Definition.LogicalRelation.Substitution.MaybeEmbed -- open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Tools.Product open import Tools.Empty import Tools.Unit as TU import Tools.PropositionalEquality as PE import Data.Nat as Nat [ℕ] : ∀ {Γ l} → ⊢ Γ → Γ ⊩⟨ l ⟩ ℕ ^ [ ! , ι ⁰ ] [ℕ] ⊢Γ = ℕᵣ (idRed:*: (univ (ℕⱼ ⊢Γ))) [Id]ℕ : ∀ {Γ l t u} (⊢Γ : ⊢ Γ) ([t] : Γ ⊩ℕ t ∷ℕ) ([u] : Γ ⊩ℕ u ∷ℕ) → Γ ⊩⟨ l ⟩ Id ℕ t u ^ [ % , ι ⁰ ] [Id]ℕ {Γ} {l} {t} {u} ⊢Γ (ℕₜ .(suc m′) [[ ⊢tℕ , ⊢mℕ , dt ]] m≡m (sucᵣ {m′} [m′])) (ℕₜ .(suc n′) [[ ⊢uℕ , ⊢nℕ , du ]] n≡n (sucᵣ {n′} [n′])) = let [Idmn] = [Id]ℕ ⊢Γ [m′] [n′] ⊢m′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [m′] ⊢n′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [n′] nfId = univ⇒* ((IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ ⇨∷* IdℕSRed*Term′ ⊢m′ℕ ⊢uℕ ⊢nℕ du) ⇨∷* (Id-ℕ-SS ⊢m′ℕ ⊢n′ℕ ⇨ id (Idⱼ (ℕⱼ ⊢Γ) ⊢m′ℕ ⊢n′ℕ))) in proj₁ (redSubst* nfId [Idmn]) [Id]ℕ {Γ} {l} {t} {u} ⊢Γ (ℕₜ .(suc m′) [[ ⊢tℕ , ⊢mℕ , dt ]] m≡m (sucᵣ {m′} [m′])) (ℕₜ .zero [[ ⊢uℕ , ⊢nℕ , du ]] n≡n zeroᵣ) = let ⊢m′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [m′] nfId = (IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ) ⇨∷* (IdℕSRed*Term′ ⊢m′ℕ ⊢uℕ ⊢nℕ du ⇨∷* (Id-ℕ-S0 ⊢m′ℕ ⇨ id (Emptyⱼ ⊢Γ))) in Emptyᵣ [[ univ (Idⱼ (ℕⱼ ⊢Γ) ⊢tℕ ⊢uℕ) , univ (Emptyⱼ ⊢Γ) , univ⇒* nfId ]] [Id]ℕ {Γ} {l} {t} {u} ⊢Γ (ℕₜ .(suc m′) [[ ⊢tℕ , ⊢mℕ , dt ]] m≡m (sucᵣ {m′} [m′])) (ℕₜ n [[ ⊢uℕ , ⊢nℕ , du ]] n≡n (ne (neNfₜ nen _ n∼n))) = let ⊢m′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [m′] nfId = (IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ) ⇨∷* IdℕSRed*Term′ ⊢m′ℕ ⊢uℕ ⊢nℕ du m′≡m′ = escapeTermEq ([ℕ] {l = ι ⁰} ⊢Γ) (reflEqTerm ([ℕ] {l = ι ⁰} ⊢Γ) [m′]) in ne′ (Id ℕ (suc m′) n) [[ univ (Idⱼ (ℕⱼ ⊢Γ) ⊢tℕ ⊢uℕ) , univ (Idⱼ (ℕⱼ ⊢Γ) ⊢mℕ ⊢nℕ) , univ⇒* nfId ]] (IdℕSₙ nen) (~-IdℕS ⊢Γ m′≡m′ n∼n) [Id]ℕ {Γ} {l} {t} {u} ⊢Γ (ℕₜ .zero [[ ⊢tℕ , ⊢mℕ , dt ]] m≡m zeroᵣ) (ℕₜ .(suc n′) [[ ⊢uℕ , ⊢nℕ , du ]] n≡n (sucᵣ {n′} [n′])) = let ⊢n′ = escapeTerm ([ℕ] {l = ι ⁰} ⊢Γ) [n′] nfId = (IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ) ⇨∷* (Idℕ0Red*Term′ ⊢uℕ ⊢nℕ du ⇨∷* (Id-ℕ-0S ⊢n′ ⇨ id (Emptyⱼ ⊢Γ))) in Emptyᵣ [[ univ (Idⱼ (ℕⱼ ⊢Γ) ⊢tℕ ⊢uℕ) , univ (Emptyⱼ ⊢Γ) , univ⇒* nfId ]] [Id]ℕ {Γ} {l} {t} {u} ⊢Γ (ℕₜ .zero [[ ⊢tℕ , ⊢mℕ , dt ]] m≡m zeroᵣ) (ℕₜ .zero [[ ⊢uℕ , ⊢nℕ , du ]] n≡n zeroᵣ) = let nfId = (IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ) ⇨∷* (Idℕ0Red*Term′ ⊢uℕ ⊢nℕ du ⇨∷* (Id-ℕ-00 ⊢Γ ⇨ id (Unitⱼ ⊢Γ))) in proj₁ (redSubst* (univ⇒* nfId) (maybeEmb″ (UnitType ⊢Γ))) [Id]ℕ {Γ} {l} {t} {u} ⊢Γ (ℕₜ .zero [[ ⊢tℕ , ⊢mℕ , dt ]] m≡m zeroᵣ) (ℕₜ n [[ ⊢uℕ , ⊢nℕ , du ]] n≡n (ne (neNfₜ nen _ n∼n))) = let nfId = (IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ) ⇨∷* Idℕ0Red*Term′ ⊢uℕ ⊢nℕ du in ne′ (Id ℕ zero n) [[ univ (Idⱼ (ℕⱼ ⊢Γ) ⊢tℕ ⊢uℕ) , univ (Idⱼ (ℕⱼ ⊢Γ) (zeroⱼ ⊢Γ) ⊢nℕ) , univ⇒* nfId ]] (Idℕ0ₙ nen) (~-Idℕ0 ⊢Γ n∼n) [Id]ℕ {Γ} {l} {t} {u} ⊢Γ (ℕₜ m [[ ⊢tℕ , ⊢mℕ , dt ]] m≡m (ne (neNfₜ nem _ m∼m))) [u] = let ⊢u = escapeTerm ([ℕ] {l = ι ⁰} ⊢Γ) [u] u≡u = escapeTermEq {l = ι ⁰} ([ℕ] ⊢Γ) (reflEqTerm ([ℕ] {l = ι ⁰} ⊢Γ) [u]) in ne′ (Id ℕ m u) [[ univ (Idⱼ (ℕⱼ ⊢Γ) ⊢tℕ ⊢u) , univ (Idⱼ (ℕⱼ ⊢Γ) ⊢mℕ ⊢u) , univ⇒* (IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢u) ]] (Idℕₙ nem) (~-Idℕ ⊢Γ m∼m u≡u) escapeEqℕ₁ : ∀ {Γ m n} → Γ ⊩ℕ m ≡ n ∷ℕ → Γ ⊢ m ∷ ℕ ^ [ ! , ι ⁰ ] escapeEqℕ₁ (ℕₜ₌ k k′ [[ ⊢t , ⊢u , d ]] d′ k≡k′ prop) = ⊢t escapeEqℕ₂ : ∀ {Γ m n} → Γ ⊩ℕ m ≡ n ∷ℕ → Γ ⊢ n ∷ ℕ ^ [ ! , ι ⁰ ] escapeEqℕ₂ (ℕₜ₌ k k′ d [[ ⊢t , ⊢u , d' ]] k≡k′ prop) = ⊢t irrelevanceEqTermℕ : ∀ {Γ A t t′ u u′ r ll l} (eqt : t PE.≡ t′) (equ : u PE.≡ u′) (p : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ r , ll ] / p → Γ ⊩⟨ l ⟩ t′ ≡ u′ ∷ A ^ [ r , ll ] / p irrelevanceEqTermℕ PE.refl PE.refl p t≡u = t≡u [IdExt]ℕ : ∀ {Γ l t u v w} (⊢Γ : ⊢ Γ) ([t] : Γ ⊩ℕ t ∷ℕ) ([u] : Γ ⊩ℕ u ∷ℕ) ([v] : Γ ⊩ℕ v ∷ℕ) ([w] : Γ ⊩ℕ w ∷ℕ) ([t≡v] : Γ ⊩ℕ t ≡ v ∷ℕ) ([u≡w] : Γ ⊩ℕ u ≡ w ∷ℕ) → Γ ⊩⟨ l ⟩ Id ℕ t u ≡ Id ℕ v w ^ [ % , ι ⁰ ] / [Id]ℕ ⊢Γ [t] [u] [IdExt]ℕ {Γ} {l} {t} {u} {v} {w} ⊢Γ (ℕₜ .(suc _) [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ (sucᵣ {n} [t'])) (ℕₜ .(suc _) [[ ⊢uℕ , ⊢nℕ , du ]] n≡n (sucᵣ {n₂} [u'])) (ℕₜ .(suc _) [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ (sucᵣ {n₁} [v'])) (ℕₜ .(suc _) [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ (sucᵣ {n₃} [w'])) (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ [t≡v'])) (ℕₜ₌ .(suc _) .(suc _) d₅ d′₁ k≡k′₁ (sucᵣ [u≡w'])) = let t≡t' = suc-PE-injectivity (whrDet*Term (dt , sucₙ) (redₜ d₄ , sucₙ)) u≡u' = suc-PE-injectivity (whrDet*Term (du , sucₙ) (redₜ d₅ , sucₙ)) v≡v' = suc-PE-injectivity (whrDet*Term (dv , sucₙ) (redₜ d′ , sucₙ)) w≡w' = suc-PE-injectivity (whrDet*Term (dw , sucₙ) (redₜ d′₁ , sucₙ)) [t] = ℕₜ (suc _) [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ (sucᵣ [t']) [u] = ℕₜ (suc _) [[ ⊢uℕ , ⊢nℕ , du ]] n≡n (sucᵣ [u']) [v] = ℕₜ (suc _) [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ (sucᵣ [v']) [w] = ℕₜ (suc _) [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ (sucᵣ [w']) [Idmn] = [IdExt]ℕ {l = l} ⊢Γ [t'] [u'] [v'] [w'] (irrelevanceEqTermℕ {l = l} (PE.sym t≡t') (PE.sym v≡v') ([ℕ] ⊢Γ) [t≡v']) (irrelevanceEqTermℕ {l = l} (PE.sym u≡u') (PE.sym w≡w') ([ℕ] ⊢Γ) [u≡w']) ⊢t′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [t'] ⊢u′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [u'] nfId = univ⇒* ((IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ ⇨∷* IdℕSRed*Term′ ⊢t′ℕ ⊢uℕ ⊢nℕ du) ⇨∷* (Id-ℕ-SS ⊢t′ℕ ⊢u′ℕ ⇨ id (Idⱼ (ℕⱼ ⊢Γ) ⊢t′ℕ ⊢u′ℕ))) ⊢v′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [v'] ⊢w′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [w'] nfId' = univ⇒* ((IdℕRed*Term′ ⊢vℕ ⊢oℕ dv ⊢wℕ ⇨∷* IdℕSRed*Term′ ⊢v′ℕ ⊢wℕ ⊢pℕ dw) ⇨∷* (Id-ℕ-SS ⊢v′ℕ ⊢w′ℕ ⇨ id (Idⱼ (ℕⱼ ⊢Γ) ⊢v′ℕ ⊢w′ℕ))) [IdA] , [IdA≡ℕ] = redSubst* {l = l} nfId ([Id]ℕ ⊢Γ [t'] [u']) [IdB] , [IdB≡ℕ] = redSubst* {l = l} nfId' ([Id]ℕ ⊢Γ [v'] [w']) [IdA≡ℕ]′ = irrelevanceEq {A = Id ℕ t u} {B = Id ℕ n n₂} {l = l} [IdA] ([Id]ℕ ⊢Γ [t] [u]) [IdA≡ℕ] [IdB≡ℕ]′ = irrelevanceEq {A = Id ℕ v w} {B = Id ℕ n₁ n₃} {l = l} {l′ = l} [IdB] ([Id]ℕ ⊢Γ [v] [w]) [IdB≡ℕ] in transEq {A = Id ℕ t u} {B = Id ℕ n n₂} {C = Id ℕ v w} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [t] [u]) ([Id]ℕ ⊢Γ [t'] [u']) ([Id]ℕ ⊢Γ [v] [w]) [IdA≡ℕ]′ (transEq {A = Id ℕ n n₂} {B = Id ℕ n₁ n₃} {C = Id ℕ v w} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [t'] [u']) ([Id]ℕ ⊢Γ [v'] [w']) ([Id]ℕ ⊢Γ [v] [w]) [Idmn] (symEq {A = Id ℕ v w} {B = Id ℕ n₁ n₃} ([Id]ℕ ⊢Γ [v] [w]) ([Id]ℕ ⊢Γ [v'] [w']) [IdB≡ℕ]′)) [IdExt]ℕ {Γ} {l} {t} {u} {v} {w} ⊢Γ (ℕₜ .(suc _) [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ (sucᵣ {n} [t'])) (ℕₜ .zero [[ ⊢uℕ , ⊢nℕ , du ]] n≡n zeroᵣ) (ℕₜ .(suc _) [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ (sucᵣ {m} [v'])) (ℕₜ .zero [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ zeroᵣ) (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ x)) (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) = let [t] = ℕₜ (suc _) [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ (sucᵣ [t']) [u] = ℕₜ zero [[ ⊢uℕ , ⊢nℕ , du ]] n≡n zeroᵣ [v] = ℕₜ (suc _) [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ (sucᵣ [v']) [w] = ℕₜ zero [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ zeroᵣ ⊢t′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [t'] nfId = univ⇒* ((IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ) ⇨∷* (IdℕSRed*Term′ ⊢t′ℕ ⊢uℕ ⊢nℕ du ⇨∷* (Id-ℕ-S0 ⊢t′ℕ ⇨ id (Emptyⱼ ⊢Γ)))) ⊢v′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [v'] nfId' = univ⇒* ((IdℕRed*Term′ ⊢vℕ ⊢oℕ dv ⊢wℕ) ⇨∷* (IdℕSRed*Term′ ⊢v′ℕ ⊢wℕ ⊢pℕ dw ⇨∷* (Id-ℕ-S0 ⊢v′ℕ ⇨ id (Emptyⱼ ⊢Γ)))) [Empty] = Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Γ))) [IdA] , [IdA≡ℕ] = redSubst* {l = l} nfId [Empty] [IdB] , [IdB≡ℕ] = redSubst* {l = l} nfId' [Empty] [IdA≡ℕ]′ = irrelevanceEq {A = Id ℕ t u} {B = Empty _} {l = l} {l′ = l} [IdA] ([Id]ℕ ⊢Γ [t] [u]) [IdA≡ℕ] [IdB≡ℕ]′ = irrelevanceEq {A = Id ℕ v w} {B = Empty _} {l = l} {l′ = l} [IdB] ([Id]ℕ ⊢Γ [v] [w]) [IdB≡ℕ] in transEq {A = Id ℕ t u} {B = Empty _} {C = Id ℕ v w} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [t] [u]) [Empty] ([Id]ℕ ⊢Γ [v] [w]) [IdA≡ℕ]′ (symEq {A = Id ℕ v w} {B = Empty _} {l = l} {l′ = l} ([Id]ℕ ⊢Γ [v] [w]) [Empty] [IdB≡ℕ]′) [IdExt]ℕ {Γ} {l} {u} {t} {w} {v} ⊢Γ (ℕₜ .zero [[ ⊢uℕ , ⊢nℕ , du ]] n≡n zeroᵣ) (ℕₜ .(suc _) [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ (sucᵣ {n} [t'])) (ℕₜ .zero [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ zeroᵣ) (ℕₜ .(suc _) [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ (sucᵣ {m} [v'])) (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ x)) = let [t] = ℕₜ (suc _) [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ (sucᵣ [t']) [u] = ℕₜ zero [[ ⊢uℕ , ⊢nℕ , du ]] n≡n zeroᵣ [v] = ℕₜ (suc _) [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ (sucᵣ [v']) [w] = ℕₜ zero [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ zeroᵣ ⊢t′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [t'] nfId = univ⇒* ((IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ) ⇨∷* (IdℕSRed*Term′ ⊢t′ℕ ⊢uℕ ⊢nℕ du ⇨∷* (Id-ℕ-S0 ⊢t′ℕ ⇨ id (Emptyⱼ ⊢Γ)))) ⊢v′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [v'] nfId' = univ⇒* ((IdℕRed*Term′ ⊢vℕ ⊢oℕ dv ⊢wℕ) ⇨∷* (IdℕSRed*Term′ ⊢v′ℕ ⊢wℕ ⊢pℕ dw ⇨∷* (Id-ℕ-S0 ⊢v′ℕ ⇨ id (Emptyⱼ ⊢Γ)))) [Empty] = Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Γ))) [IdA] , [IdA≡ℕ] = redSubst* {l = l} nfId [Empty] [IdB] , [IdB≡ℕ] = redSubst* {l = l} nfId' [Empty] [IdA≡ℕ]′ = irrelevanceEq {A = Id ℕ t u} {B = Empty _} {l = l} {l′ = l} [IdA] ([Id]ℕ ⊢Γ [t] [u]) [IdA≡ℕ] [IdB≡ℕ]′ = irrelevanceEq {A = Id ℕ v w} {B = Empty _} {l = l} {l′ = l} [IdB] ([Id]ℕ ⊢Γ [v] [w]) [IdB≡ℕ] in transEq {A = Id ℕ u t} {B = Empty _} {C = Id ℕ w v} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [u] [t]) [Empty] ([Id]ℕ ⊢Γ [w] [v]) [IdB≡ℕ]′ (symEq {A = Id ℕ w v} {B = Empty _} {l = l} {l′ = l} ([Id]ℕ ⊢Γ [w] [v]) [Empty] [IdA≡ℕ]′) [IdExt]ℕ {Γ} {l} {t} {u} {v} {w} ⊢Γ (ℕₜ .zero [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ zeroᵣ) (ℕₜ .zero [[ ⊢uℕ , ⊢nℕ , du ]] n≡n zeroᵣ) (ℕₜ .zero [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ zeroᵣ) (ℕₜ .zero [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ zeroᵣ) (ℕₜ₌ .zero .zero d₄ d′ k≡k′ zeroᵣ) (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) = let [t] = ℕₜ zero [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ zeroᵣ [u] = ℕₜ zero [[ ⊢uℕ , ⊢nℕ , du ]] n≡n zeroᵣ [v] = ℕₜ zero [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ zeroᵣ [w] = ℕₜ zero [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ zeroᵣ nfId = univ⇒* ((IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ) ⇨∷* (Idℕ0Red*Term′ ⊢uℕ ⊢nℕ du ⇨∷* (Id-ℕ-00 ⊢Γ ⇨ id (Unitⱼ ⊢Γ)))) nfId' = univ⇒* ((IdℕRed*Term′ ⊢vℕ ⊢oℕ dv ⊢wℕ) ⇨∷* (Idℕ0Red*Term′ ⊢wℕ ⊢pℕ dw ⇨∷* (Id-ℕ-00 ⊢Γ ⇨ id (Unitⱼ ⊢Γ)))) [Unit] = UnitType ⊢Γ [IdA] , [IdA≡ℕ] = redSubst* nfId [Unit] [IdB] , [IdB≡ℕ] = redSubst* nfId' [Unit] [IdA≡ℕ]′ = irrelevanceEq {A = Id ℕ t u} {B = Unit} {l = ι ⁰} {l′ = l} [IdA] ([Id]ℕ ⊢Γ [t] [u]) [IdA≡ℕ] [IdB≡ℕ]′ = irrelevanceEq {A = Id ℕ v w} {B = Unit} {l = ι ⁰} {l′ = l} [IdB] ([Id]ℕ ⊢Γ [v] [w]) [IdB≡ℕ] in transEq {A = Id ℕ t u} {B = Unit} {C = Id ℕ v w} {l = l} {l′ = ι ⁰} {l″ = l} ([Id]ℕ ⊢Γ [t] [u]) [Unit] ([Id]ℕ ⊢Γ [v] [w]) [IdA≡ℕ]′ (symEq {A = Id ℕ v w} {B = Unit} {l = l} {l′ = ι ⁰} ([Id]ℕ ⊢Γ [v] [w]) [Unit] [IdB≡ℕ]′) [IdExt]ℕ {Γ} {l} {t} {u} {v} {w} ⊢Γ (ℕₜ .(suc _) [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ (sucᵣ {t'} [t'])) (ℕₜ n [[ ⊢uℕ , ⊢nℕ , du ]] n≡n (ne (neNfₜ neKu ⊢ku k≡ku))) (ℕₜ .(suc _) [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ (sucᵣ {v'} [v'])) (ℕₜ n₃ [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ (ne (neNfₜ neKw ⊢kw k≡kw))) (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ [t≡v'])) (ℕₜ₌ k₁ k′₁ d₅ d′₁ k≡k′₁ (ne (neNfₜ₌ neK neM K~M))) = let t≡t' = suc-PE-injectivity (whrDet*Term (dt , sucₙ) (redₜ d₄ , sucₙ)) v≡v' = suc-PE-injectivity (whrDet*Term (dv , sucₙ) (redₜ d′ , sucₙ)) u≡u' = whrDet*Term (du , ne neKu) (redₜ d₅ , ne neK) w≡w' = whrDet*Term (dw , ne neKw) (redₜ d′₁ , ne neM) [t] = ℕₜ (suc _) [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ (sucᵣ [t']) [u] = ℕₜ n [[ ⊢uℕ , ⊢nℕ , du ]] n≡n (ne (neNfₜ neKu ⊢ku k≡ku)) [v] = ℕₜ (suc _) [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ (sucᵣ [v']) [w] = ℕₜ n₃ [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ (ne (neNfₜ neKw ⊢kw k≡kw)) [suct'] = ℕₜ (suc t') (idRedTerm:*: ⊢mℕ) n≡n₁ (sucᵣ [t']) [n] = ℕₜ n (idRedTerm:*: ⊢nℕ) n≡n (ne (neNfₜ neKu ⊢ku k≡ku)) [sucv'] = ℕₜ (suc v') (idRedTerm:*: ⊢oℕ) n≡n₂ (sucᵣ [v']) [n₃] = ℕₜ n₃ (idRedTerm:*: ⊢pℕ) n≡n₃ (ne (neNfₜ neKw ⊢kw k≡kw)) ⊢t′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [t'] ⊢v′ℕ = escapeTerm {l = ι ⁰} ([ℕ] ⊢Γ) [v'] nfId = univ⇒* ((IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ) ⇨∷* IdℕSRed*Term′ ⊢t′ℕ ⊢uℕ ⊢nℕ du) nfId' = univ⇒* ((IdℕRed*Term′ ⊢vℕ ⊢oℕ dv ⊢wℕ) ⇨∷* IdℕSRed*Term′ ⊢v′ℕ ⊢wℕ ⊢pℕ dw) [IdA] , [IdA≡ℕ] = redSubst* nfId ([Id]ℕ ⊢Γ [suct'] [n]) [IdB] , [IdB≡ℕ] = redSubst* nfId' ([Id]ℕ ⊢Γ [sucv'] [n₃]) [IdA≡ℕ]′ = irrelevanceEq {A = Id ℕ t u} {B = Id ℕ (suc t') n} {l = ι ⁰} {l′ = l} [IdA] ([Id]ℕ ⊢Γ [t] [u]) [IdA≡ℕ] [IdB≡ℕ]′ = irrelevanceEq {A = Id ℕ v w} {B = Id ℕ (suc v') n₃} {l = ι ⁰} {l′ = l} [IdB] ([Id]ℕ ⊢Γ [v] [w]) [IdB≡ℕ] [Idneutral] : Γ ⊩⟨ l ⟩ Id ℕ (suc t') n ≡ Id ℕ (suc v') n₃ ^ [ % , ι ⁰ ] / ([Id]ℕ ⊢Γ [suct'] [n]) [Idneutral] = ne₌ (Id ℕ (suc v') n₃) (idRed:*: (univ (Idⱼ (ℕⱼ ⊢Γ) ⊢oℕ ⊢pℕ))) (IdℕSₙ neKw) (~-IdℕS ⊢Γ (let X = escapeTermEq {l = l} ([ℕ] ⊢Γ) [t≡v'] in PE.subst (λ X → Γ ⊢ X ≅ _ ∷ ℕ ^ [ ! , ι ⁰ ]) (PE.sym t≡t') (PE.subst (λ X → Γ ⊢ _ ≅ X ∷ ℕ ^ [ ! , ι ⁰ ]) (PE.sym v≡v') X) ) (PE.subst (λ X → Γ ⊢ X ~ _ ∷ ℕ ^ [ ! , ι ⁰ ]) (PE.sym u≡u') (PE.subst (λ X → Γ ⊢ k₁ ~ X ∷ ℕ ^ [ ! , ι ⁰ ]) (PE.sym w≡w') K~M))) in transEq {A = Id ℕ t u} {B = Id ℕ (suc t') n} {C = Id ℕ v w} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [t] [u]) ([Id]ℕ ⊢Γ [suct'] [n]) ([Id]ℕ ⊢Γ [v] [w]) [IdA≡ℕ]′ (transEq {A = Id ℕ (suc t') n} {B = Id ℕ (suc v') n₃} {C = Id ℕ v w} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [suct'] [n]) ([Id]ℕ ⊢Γ [sucv'] [n₃]) ([Id]ℕ ⊢Γ [v] [w]) [Idneutral] (symEq {A = Id ℕ v w} {B = Id ℕ (suc v') n₃} {l = l} {l′ = l} ([Id]ℕ ⊢Γ [v] [w]) ([Id]ℕ ⊢Γ [sucv'] [n₃]) [IdB≡ℕ]′)) [IdExt]ℕ {Γ} {l} {t} {u} {v} {w} ⊢Γ (ℕₜ n₁ [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ (ne (neNfₜ neKt ⊢kt k≡kt))) [u] (ℕₜ n₂ [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ (ne (neNfₜ neKv ⊢kv k≡kv))) [w] (ℕₜ₌ k k′ d₄ d′ k≡k′ (ne (neNfₜ₌ neK neM K~M))) [u=w] = let [t] = ℕₜ n₁ [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ (ne (neNfₜ neKt ⊢kt k≡kt)) [v] = ℕₜ n₂ [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ (ne (neNfₜ neKv ⊢kv k≡kv)) ⊢u = escapeTerm ([ℕ] {l = ι ⁰} ⊢Γ) [u] ⊢w = escapeTerm ([ℕ] {l = ι ⁰} ⊢Γ) [w] u≡w = escapeTermEq {l = ι ⁰} ([ℕ] ⊢Γ) [u=w] t≡t' = whrDet*Term (dt , ne neKt) (redₜ d₄ , ne neK) v≡v' = whrDet*Term (dv , ne neKv) (redₜ d′ , ne neM) nfId = univ⇒* (IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢u) nfId' = univ⇒* (IdℕRed*Term′ ⊢vℕ ⊢oℕ dv ⊢w) [n₁] = ℕₜ n₁ (idRedTerm:*: ⊢mℕ) n≡n₁ (ne (neNfₜ neKt ⊢kt k≡kt)) [n₂] = ℕₜ n₂ (idRedTerm:*: ⊢oℕ) n≡n₂ (ne (neNfₜ neKv ⊢kv k≡kv)) [IdA] , [IdA≡ℕ] = redSubst* nfId ([Id]ℕ ⊢Γ [n₁] [u]) [IdB] , [IdB≡ℕ] = redSubst* nfId' ([Id]ℕ ⊢Γ [n₂] [w]) [IdA≡ℕ]′ = irrelevanceEq {A = Id ℕ t u} {B = Id ℕ n₁ u} {l = ι ⁰} {l′ = l} [IdA] ([Id]ℕ ⊢Γ [t] [u]) [IdA≡ℕ] [IdB≡ℕ]′ = irrelevanceEq {A = Id ℕ v w} {B = Id ℕ n₂ w} {l = ι ⁰} {l′ = l} [IdB] ([Id]ℕ ⊢Γ [v] [w]) [IdB≡ℕ] [Idneutral] : Γ ⊩⟨ l ⟩ Id ℕ n₁ u ≡ Id ℕ n₂ w ^ [ % , ι ⁰ ] / ([Id]ℕ ⊢Γ [n₁] [u]) [Idneutral] = ne₌ (Id ℕ n₂ w) (idRed:*: (univ (Idⱼ (ℕⱼ ⊢Γ) ⊢oℕ ⊢w))) (Idℕₙ neKv) (~-Idℕ ⊢Γ (PE.subst (λ X → Γ ⊢ X ~ _ ∷ ℕ ^ [ ! , ι ⁰ ]) (PE.sym t≡t') (PE.subst (λ X → Γ ⊢ _ ~ X ∷ ℕ ^ [ ! , ι ⁰ ]) (PE.sym v≡v') K~M)) u≡w) in transEq {A = Id ℕ t u} {B = Id ℕ n₁ u} {C = Id ℕ v w} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [t] [u]) ([Id]ℕ ⊢Γ [n₁] [u]) ([Id]ℕ ⊢Γ [v] [w]) [IdA≡ℕ]′ (transEq {A = Id ℕ n₁ u} {B = Id ℕ n₂ w} {C = Id ℕ v w} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [n₁] [u]) ([Id]ℕ ⊢Γ [n₂] [w]) ([Id]ℕ ⊢Γ [v] [w]) [Idneutral] (symEq {A = Id ℕ v w} {B = Id ℕ n₂ w} {l = l} {l′ = l} ([Id]ℕ ⊢Γ [v] [w]) ([Id]ℕ ⊢Γ [n₂] [w]) [IdB≡ℕ]′)) [IdExt]ℕ {Γ} {l} {t} {u} {v} {w} ⊢Γ (ℕₜ .zero [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ zeroᵣ) (ℕₜ n [[ ⊢uℕ , ⊢nℕ , du ]] n≡n (ne (neNfₜ neKu ⊢ku k≡ku))) (ℕₜ .zero [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ zeroᵣ) (ℕₜ n₃ [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ (ne (neNfₜ neKw ⊢kw k≡kw))) (ℕₜ₌ .zero .zero d₄ d′ k≡k′ zeroᵣ) (ℕₜ₌ k₁ k′₁ d₅ d′₁ k≡k′₁ (ne (neNfₜ₌ neK neM K~M))) = let u≡u' = whrDet*Term (du , ne neKu) (redₜ d₅ , ne neK) w≡w' = whrDet*Term (dw , ne neKw) (redₜ d′₁ , ne neM) [t] = ℕₜ zero [[ ⊢tℕ , ⊢mℕ , dt ]] n≡n₁ zeroᵣ [u] = ℕₜ n [[ ⊢uℕ , ⊢nℕ , du ]] n≡n (ne (neNfₜ neKu ⊢ku k≡ku)) [v] = ℕₜ zero [[ ⊢vℕ , ⊢oℕ , dv ]] n≡n₂ zeroᵣ [w] = ℕₜ n₃ [[ ⊢wℕ , ⊢pℕ , dw ]] n≡n₃ (ne (neNfₜ neKw ⊢kw k≡kw)) [n] = ℕₜ n (idRedTerm:*: ⊢nℕ) n≡n (ne (neNfₜ neKu ⊢ku k≡ku)) [n₃] = ℕₜ n₃ (idRedTerm:*: ⊢pℕ) n≡n₃ (ne (neNfₜ neKw ⊢kw k≡kw)) [zero] = ℕₜ zero (idRedTerm:*: (zeroⱼ ⊢Γ)) (≅ₜ-zerorefl ⊢Γ) zeroᵣ nfId = univ⇒* ((IdℕRed*Term′ ⊢tℕ ⊢mℕ dt ⊢uℕ) ⇨∷* Idℕ0Red*Term′ ⊢uℕ ⊢nℕ du) nfId' = univ⇒* ((IdℕRed*Term′ ⊢vℕ ⊢oℕ dv ⊢wℕ) ⇨∷* Idℕ0Red*Term′ ⊢wℕ ⊢pℕ dw) [IdA] , [IdA≡ℕ] = redSubst* nfId ([Id]ℕ ⊢Γ [zero] [n]) [IdB] , [IdB≡ℕ] = redSubst* nfId' ([Id]ℕ ⊢Γ [zero] [n₃]) [IdA≡ℕ]′ = irrelevanceEq {A = Id ℕ t u} {B = Id ℕ zero n} {l = ι ⁰} {l′ = l} [IdA] ([Id]ℕ ⊢Γ [t] [u]) [IdA≡ℕ] [IdB≡ℕ]′ = irrelevanceEq {A = Id ℕ v w} {B = Id ℕ zero n₃} {l = ι ⁰} {l′ = l} [IdB] ([Id]ℕ ⊢Γ [v] [w]) [IdB≡ℕ] [Idneutral] : Γ ⊩⟨ l ⟩ Id ℕ zero n ≡ Id ℕ zero n₃ ^ [ % , ι ⁰ ] / ([Id]ℕ ⊢Γ [zero] [n]) [Idneutral] = ne₌ (Id ℕ zero n₃) (idRed:*: (univ (Idⱼ (ℕⱼ ⊢Γ) ⊢oℕ ⊢pℕ))) (Idℕ0ₙ neKw) (~-Idℕ0 ⊢Γ (PE.subst (λ X → Γ ⊢ X ~ _ ∷ ℕ ^ [ ! , ι ⁰ ]) (PE.sym u≡u') (PE.subst (λ X → Γ ⊢ k₁ ~ X ∷ ℕ ^ [ ! , ι ⁰ ]) (PE.sym w≡w') K~M))) in transEq {A = Id ℕ t u} {B = Id ℕ zero n} {C = Id ℕ v w} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [t] [u]) ([Id]ℕ ⊢Γ [zero] [n]) ([Id]ℕ ⊢Γ [v] [w]) [IdA≡ℕ]′ (transEq {A = Id ℕ zero n} {B = Id ℕ zero n₃} {C = Id ℕ v w} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [zero] [n]) ([Id]ℕ ⊢Γ [zero] [n₃]) ([Id]ℕ ⊢Γ [v] [w]) [Idneutral] (symEq {A = Id ℕ v w} {B = Id ℕ zero n₃} {l = l} {l′ = l} ([Id]ℕ ⊢Γ [v] [w]) ([Id]ℕ ⊢Γ [zero] [n₃]) [IdB≡ℕ]′)) -- refuting cases [IdExt]ℕ ⊢Γ (ℕₜ .zero d₁ n≡n₁ zeroᵣ) _ _ _ (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ x)) _ = ⊥-elim (zero≢suc (whrDet*Term (redₜ d₁ , zeroₙ) (redₜ d₄ , sucₙ))) [IdExt]ℕ ⊢Γ (ℕₜ n₁ d₁ n≡n₁ (ne (neNfₜ neK ⊢k k≡k))) _ _ _ (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ x)) _ = ⊥-elim (suc≢ne neK (whrDet*Term (redₜ d₄ , sucₙ) (redₜ d₁ , ne neK))) [IdExt]ℕ ⊢Γ _ _ (ℕₜ .zero d₂ n≡n₂ zeroᵣ) _ (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ x)) _ = ⊥-elim (zero≢suc (whrDet*Term (redₜ d₂ , zeroₙ) (redₜ d′ , sucₙ))) [IdExt]ℕ ⊢Γ _ _ (ℕₜ n₂ d₂ n≡n₂ (ne (neNfₜ neK ⊢k k≡k))) _ (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ x)) _ = ⊥-elim (suc≢ne neK (whrDet*Term (redₜ d′ , sucₙ) (redₜ d₂ , ne neK))) [IdExt]ℕ ⊢Γ _ (ℕₜ .zero d₁ n≡n₁ zeroᵣ) _ _ _ (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ x)) = ⊥-elim (zero≢suc (whrDet*Term (redₜ d₁ , zeroₙ) (redₜ d₄ , sucₙ))) [IdExt]ℕ ⊢Γ _ (ℕₜ n₁ d₁ n≡n₁ (ne (neNfₜ neK ⊢k k≡k))) _ _ _ (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ x)) = ⊥-elim (suc≢ne neK (whrDet*Term (redₜ d₄ , sucₙ) (redₜ d₁ , ne neK))) [IdExt]ℕ ⊢Γ _ _ _ (ℕₜ .zero d₂ n≡n₂ zeroᵣ) _ (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ x)) = ⊥-elim (zero≢suc (whrDet*Term (redₜ d₂ , zeroₙ) (redₜ d′ , sucₙ))) [IdExt]ℕ ⊢Γ _ _ _ (ℕₜ n₂ d₂ n≡n₂ (ne (neNfₜ neK ⊢k k≡k))) _ (ℕₜ₌ .(suc _) .(suc _) d₄ d′ k≡k′ (sucᵣ x)) = ⊥-elim (suc≢ne neK (whrDet*Term (redₜ d′ , sucₙ) (redₜ d₂ , ne neK))) [IdExt]ℕ ⊢Γ (ℕₜ .(suc _) d n≡n (sucᵣ x₃)) _ _ _ (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) _ = ⊥-elim (zero≢suc (whrDet*Term (redₜ d₅ , zeroₙ) (redₜ d , sucₙ))) [IdExt]ℕ ⊢Γ (ℕₜ n d n≡n (ne (neNfₜ neK ⊢k k≡k))) _ _ _ (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) _ = ⊥-elim (zero≢ne neK (whrDet*Term (redₜ d₅ , zeroₙ) (redₜ d , ne neK))) [IdExt]ℕ ⊢Γ _ _ (ℕₜ .(suc _) d₃ n≡n₃ (sucᵣ x₃)) _ (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) _ = ⊥-elim (zero≢suc (whrDet*Term (redₜ d′₁ , zeroₙ) (redₜ d₃ , sucₙ))) [IdExt]ℕ ⊢Γ _ _ (ℕₜ n₃ d₃ n≡n₃ (ne (neNfₜ neK ⊢k k≡k))) _ (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) _ = ⊥-elim (zero≢ne neK (whrDet*Term (redₜ d′₁ , zeroₙ) (redₜ d₃ , ne neK))) [IdExt]ℕ ⊢Γ _ (ℕₜ .(suc _) d n≡n (sucᵣ x₃)) _ _ _ (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) = ⊥-elim (zero≢suc (whrDet*Term (redₜ d₅ , zeroₙ) (redₜ d , sucₙ))) [IdExt]ℕ ⊢Γ _ (ℕₜ n d n≡n (ne (neNfₜ neK ⊢k k≡k))) _ _ _ (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) = ⊥-elim (zero≢ne neK (whrDet*Term (redₜ d₅ , zeroₙ) (redₜ d , ne neK))) [IdExt]ℕ ⊢Γ _ _ _ (ℕₜ .(suc _) d₃ n≡n₃ (sucᵣ x₃)) _ (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) = ⊥-elim (zero≢suc (whrDet*Term (redₜ d′₁ , zeroₙ) (redₜ d₃ , sucₙ))) [IdExt]ℕ ⊢Γ _ _ _ (ℕₜ n₃ d₃ n≡n₃ (ne (neNfₜ neK ⊢k k≡k))) _ (ℕₜ₌ .zero .zero d₅ d′₁ k≡k′₁ zeroᵣ) = ⊥-elim (zero≢ne neK (whrDet*Term (redₜ d′₁ , zeroₙ) (redₜ d₃ , ne neK))) [IdExt]ℕ ⊢Γ (ℕₜ .(suc _) d₁ n≡n₁ (sucᵣ x₁)) _ _ _ (ℕₜ₌ k k′ d₄ d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) _ = ⊥-elim (suc≢ne neK (whrDet*Term (redₜ d₁ , sucₙ) (redₜ d₄ , ne neK))) [IdExt]ℕ ⊢Γ (ℕₜ .zero d₁ n≡n₁ zeroᵣ) _ _ _ (ℕₜ₌ k k′ d₄ d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) _ = ⊥-elim (zero≢ne neK (whrDet*Term (redₜ d₁ , zeroₙ) (redₜ d₄ , ne neK))) [IdExt]ℕ ⊢Γ _ _ (ℕₜ .(suc _) d₁ n≡n₁ (sucᵣ x₁)) _ (ℕₜ₌ k k′ d₄ d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) _ = ⊥-elim (suc≢ne neM (whrDet*Term (redₜ d₁ , sucₙ) (redₜ d′ , ne neM))) [IdExt]ℕ ⊢Γ _ _ (ℕₜ .zero d₁ n≡n₁ zeroᵣ) _ (ℕₜ₌ k k′ d₄ d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) _ = ⊥-elim (zero≢ne neM (whrDet*Term (redₜ d₁ , zeroₙ) (redₜ d′ , ne neM))) [IdExt]ℕ ⊢Γ _ (ℕₜ .(suc _) d₁ n≡n₁ (sucᵣ x₁)) _ _ _ (ℕₜ₌ k k′ d₄ d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) = ⊥-elim (suc≢ne neK (whrDet*Term (redₜ d₁ , sucₙ) (redₜ d₄ , ne neK))) [IdExt]ℕ ⊢Γ _ (ℕₜ .zero d₁ n≡n₁ zeroᵣ) _ _ _ (ℕₜ₌ k k′ d₄ d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) = ⊥-elim (zero≢ne neK (whrDet*Term (redₜ d₁ , zeroₙ) (redₜ d₄ , ne neK))) [IdExt]ℕ ⊢Γ _ _ _ (ℕₜ .(suc _) d₁ n≡n₁ (sucᵣ x₁)) _ (ℕₜ₌ k k′ d₄ d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) = ⊥-elim (suc≢ne neM (whrDet*Term (redₜ d₁ , sucₙ) (redₜ d′ , ne neM))) [IdExt]ℕ ⊢Γ _ _ _ (ℕₜ .zero d₁ n≡n₁ zeroᵣ) _ (ℕₜ₌ k k′ d₄ d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) = ⊥-elim (zero≢ne neM (whrDet*Term (redₜ d₁ , zeroₙ) (redₜ d′ , ne neM))) [Id]ℕGen : ∀ {Γ l A t u} (⊢Γ : ⊢ Γ) ([A] : Γ ⊩ℕ A) ([t] : Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ι ⁰ ] / ℕᵣ [A]) ([u] : Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ι ⁰ ] / ℕᵣ [A]) → Γ ⊩⟨ l ⟩ Id A t u ^ [ % , ι ⁰ ] [Id]ℕGen ⊢Γ [[ ⊢A , ⊢B , D ]] (ℕₜ n d n≡n prop) (ℕₜ n₁ d₁ n≡n₁ prop₁) = let [[ ⊢tℕ , _ , _ ]] = d [[ ⊢uℕ , _ , _ ]] = d₁ in proj₁ (redSubst* (IdRed* (conv ⊢tℕ (sym (subset* D))) (conv ⊢uℕ (sym (subset* D))) D) ([Id]ℕ ⊢Γ (ℕₜ n d n≡n prop) (ℕₜ n₁ d₁ n≡n₁ prop₁))) [IdExt]ℕGen : ∀ {A B t v u w Γ l l'} (⊢Γ : ⊢ Γ) ([A] : Γ ⊩ℕ A) ([B] : Γ ⊩ℕ B) ([A≡B] : Γ ⊩⟨ l ⟩ A ≡ B ^ [ ! , ι ⁰ ] / ℕᵣ [A]) ([t] : Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ι ⁰ ] / ℕᵣ [A]) ([v] : Γ ⊩⟨ l' ⟩ v ∷ B ^ [ ! , ι ⁰ ] / ℕᵣ [B]) ([t≡v] : Γ ⊩⟨ l ⟩ t ≡ v ∷ A ^ [ ! , ι ⁰ ] / ℕᵣ [A]) ([u] : Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ι ⁰ ] / ℕᵣ [A]) ([w] : Γ ⊩⟨ l' ⟩ w ∷ B ^ [ ! , ι ⁰ ] / ℕᵣ [B]) ([u≡w] : Γ ⊩⟨ l ⟩ u ≡ w ∷ A ^ [ ! , ι ⁰ ] / ℕᵣ [A]) → Γ ⊩⟨ l ⟩ Id A t u ≡ Id B v w ^ [ % , ι ⁰ ] / [Id]ℕGen ⊢Γ [A] [t] [u] [IdExt]ℕGen {A} {B} {t} {v} {u} {w} {Γ} {l} {l'} ⊢Γ [[ ⊢A , ⊢B , D ]] [[ ⊢A₁ , ⊢B₁ , D₁ ]] [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] = let [A] = [[ ⊢A , ⊢B , D ]] [B] = [[ ⊢A₁ , ⊢B₁ , D₁ ]] [ℕ]' = [ℕ] {l = l} ⊢Γ [A]' , [Aeq] = redSubst* D [ℕ]' [B]' , [Beq] = redSubst* D₁ [ℕ]' [t]′ = convTerm₁ {t = t} [A]' [ℕ]' [Aeq] (irrelevanceTerm {l = l} (ℕᵣ [A]) [A]' [t]) [u]′ = convTerm₁ {t = u} [B]' [ℕ]' [Beq] (irrelevanceTerm {l = l} (ℕᵣ [B]) [B]' [u]) [v]′ = convTerm₁ {t = v} [A]' [ℕ]' [Aeq] (irrelevanceTerm {l = l} (ℕᵣ [A]) [A]' [v]) [w]′ = convTerm₁ {t = w} [B]' [ℕ]' [Beq] (irrelevanceTerm {l = l} (ℕᵣ [B]) [B]' [w]) [t≡v]′ = convEqTerm₁ {t = t} {u = v} [A]' [ℕ]' [Aeq] (irrelevanceEqTerm {l = l} (ℕᵣ [A]) [A]' [t≡v]) [u≡w]′ = convEqTerm₁ {t = u} {u = w} [B]' [ℕ]' [Beq] (irrelevanceEqTerm {l = l} (ℕᵣ [B]) [B]' [u≡w]) X = irrelevanceEq {A = Id ℕ t u} {B = Id ℕ v w} {l = l} ([Id]ℕ ⊢Γ [t] [u]) ([Id]ℕ ⊢Γ [t]′ [u]′) ([IdExt]ℕ ⊢Γ [t]′ [u]′ [v]′ [w]′ [t≡v]′ [u≡w]′) [IdA] , [IdA≡U] = redSubst* {l = l} (IdRed* (escapeTerm {l = l} (ℕᵣ [A]) [t]) (escapeTerm {l = l} (ℕᵣ [A]) [u]) D) ([Id]ℕ ⊢Γ [t]′ [u]′) [IdB] , [IdB≡U] = redSubst* (IdRed* (escapeTerm {l = l} (ℕᵣ [B]) [v]) (escapeTerm {l = l} (ℕᵣ [B]) [w]) D₁) ([Id]ℕ ⊢Γ [v]′ [w]′) [IDAtu] = [Id]ℕGen ⊢Γ [A] [t] [u] [IDBvw] = [Id]ℕGen ⊢Γ [B] [v] [w] [IdA≡U]′ = irrelevanceEq {A = Id A t u} {B = Id ℕ t u} [IdA] [IDAtu] [IdA≡U] [IdB≡U]′ = irrelevanceEq {A = Id B v w} {B = Id ℕ v w} {l = l} {l′ = l} [IdB] [IDBvw] [IdB≡U] in transEq {A = Id A t u} {B = Id ℕ t u} {C = Id B v w} {l = l} {l′ = l} {l″ = l} [IDAtu] ([Id]ℕ ⊢Γ [t]′ [u]′) [IDBvw] [IdA≡U]′ (transEq {A = Id ℕ t u} {B = Id ℕ v w} {C = Id B v w} {l = l} {l′ = l} {l″ = l} ([Id]ℕ ⊢Γ [t]′ [u]′) ([Id]ℕ ⊢Γ [v]′ [w]′) [IDBvw] X (symEq {A = Id B v w} {B = Id ℕ v w} [IDBvw] ([Id]ℕ ⊢Γ [v]′ [w]′) [IdB≡U]′))
{ "alphanum_fraction": 0.4590642181, "avg_line_length": 70.1758530184, "ext": "agda", "hexsha": "f643b80420ca21dc5af51db1d6dea3afe6b230c6", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdNat.agda", "max_line_length": 178, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdNat.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 16660, "size": 26737 }
module Control.WellFounded where open import Prelude open import Prelude.Nat.Properties using (suc-inj) data Acc {a} {A : Set a} (_<_ : A → A → Set a) (x : A) : Set a where acc : (∀ y → y < x → Acc _<_ y) → Acc _<_ x -- LessNat is well-founded -- private wfNatSlow : (n : Nat) → Acc _<_ n wfNatSlow′ : (n j y : Nat) → n ≡ suc (j + y) → Acc _<_ y wfNatSlow′ (suc n) zero .n refl = wfNatSlow n wfNatSlow′ (suc n) (suc j) y eq = wfNatSlow′ n j y (suc-inj eq) wfNatSlow′ zero zero y () wfNatSlow′ zero (suc j) y () wfNatSlow n = acc λ { y (diff j eq) → wfNatSlow′ n j y eq } -- Need to match on n to avoid unfolding on neutral argument! wfNatFast : {k : Nat} → (n : Nat) → Acc _<_ n wfNatFast {zero} n = wfNatSlow n wfNatFast {suc k} zero = wfNatSlow zero wfNatFast {suc k} (suc n) = acc λ m _ → wfNatFast {k} m wfNat : (n : Nat) → Acc _<_ n wfNat n = wfNatFast {1000000000} n
{ "alphanum_fraction": 0.5939849624, "avg_line_length": 30.0322580645, "ext": "agda", "hexsha": "9d927473609e61857865a0eaf9e46945905a228f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Control/WellFounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Control/WellFounded.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Control/WellFounded.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 364, "size": 931 }
{-# OPTIONS --without-K --exact-split --safe #-} module Contract where open import Basic_Types open import Identity open import Homotopy_Equivalence -- a contractable space means there is a point which is path-connected to any -- other point in the same space is_contr : Set → Set is_contr A = Σ a ∶ A , (∀ (x : A) → a ≡ x)
{ "alphanum_fraction": 0.7073170732, "avg_line_length": 23.4285714286, "ext": "agda", "hexsha": "00ce375ccfa4679b6f3b4cc6d02a1e3b2f6cb69b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andyfreeyy/agda_and_math", "max_forks_repo_path": "HoTT/Contract.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andyfreeyy/agda_and_math", "max_issues_repo_path": "HoTT/Contract.agda", "max_line_length": 77, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andyfreeyy/agda_and_math", "max_stars_repo_path": "HoTT/Contract.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-24T10:56:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T09:01:42.000Z", "num_tokens": 90, "size": 328 }
{-# OPTIONS --cubical-compatible #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality data Fin : Nat → Set where zero : {n : Nat} → Fin (suc n) suc : {n : Nat} (i : Fin n) → Fin (suc n) -- From Data.Fin.Properties in the standard library (2016-12-30). suc-injective : ∀ {o} {m n : Fin o} → Fin.suc m ≡ suc n → m ≡ n suc-injective refl = refl
{ "alphanum_fraction": 0.6301369863, "avg_line_length": 26.0714285714, "ext": "agda", "hexsha": "3406296e9336917a6b842a20046009cdc1661fdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue1115.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue1115.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue1115.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 129, "size": 365 }
-- Andreas, 2016-11-03, issue #2292 -- Internal error when debugging the coverage checker. {-# OPTIONS -v tc.cover.top:10 #-} -- KEEP! data ⊥ : Set where ⊥-elim : ∀{A : Set} → ⊥ → A ⊥-elim ()
{ "alphanum_fraction": 0.6, "avg_line_length": 19.5, "ext": "agda", "hexsha": "44a20206325baf2def13c2f2b1e6b168a8032dc9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2292.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2292.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2292.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 70, "size": 195 }
-- Some theorems about operations on non-deterministic values module nondet-thms where open import bool open import bool-thms open import nat open import eq open import nat-thms open import functions open import nondet ---------------------------------------------------------------------- -- Theorems about values contained in non-deterministic values: -- A proof that x is value of the non-deterministic tree y: -- either it is equal to a deterministic value (ndrefl) -- or it is somewhere in the tree. -- If it is in the tree then we need to construct both branches of the tree, -- and a proof that x is in one of the branches -- A consequence of this is that any proof that x ∈ y contains the path -- to x in the tree. -- -- Example: -- hInCoin : H ∈ coin -- hInCoin = left (Val H) (Val T) ndrefl -- -- Since H is on the left side of coin, we use the left constructor -- The branches of the tree are (Val H) and (Val T), -- and since H is identically equal to H this completes the proof. data _∈_ {A : Set} (x : A) : (y : ND A) → Set where ndrefl : x ∈ (Val x) left : (l : ND A) → (r : ND A) → x ∈ l → x ∈ (l ?? r) right : (l : ND A) → (r : ND A) → x ∈ r → x ∈ (l ?? r) -- A basic inductive lemma that shows that ∈ is closed under function -- application. That is, if x ∈ nx, then f x ∈ f $* nx -- -- Example: -- ndCons : ... → xs ∈ nxs → (x :: xs) ∈ (_::_ x) $* nxs ∈-$* : {A B : Set} → (f : A → B) → (x : A) → (nx : ND A) → x ∈ nx → (f x) ∈ (f $* nx) ∈-$* f x (Val .x) ndrefl = ndrefl ∈-$* f x (l ?? r) (left .l .r k) = left (f $* l) (f $* r) (∈-$* f x l k) ∈-$* f x (l ?? r) (right .l .r k) = right (f $* l) (f $* r) (∈-$* f x r k) -- This is a similar result as ∈-$* but for non-deterministic application: ∈-*$* : {A B : Set} → (x : A) → (nx : ND A) → (f : A → B) → (nf : A → ND B) → x ∈ nx → f x ∈ nf x → f x ∈ (nf *$* nx) ∈-*$* x (Val .x) f nf ndrefl pf = pf ∈-*$* x (l ?? r) f nf (left .l .r p) pf = left (nf *$* l) (nf *$* r) (∈-*$* x l f nf p pf) ∈-*$* x (l ?? r) f nf (right .l .r p) pf = right (nf *$* l) (nf *$* r) (∈-*$* x r f nf p pf) ---------------------------------------------------------------------- -- Theorems about '$*': -- Combine two $* applications into one: $*-$* : ∀ {A B C : Set} → (f : B → C) (g : A → B) (xs : ND A) → f $* (g $* xs) ≡ (f ∘ g) $* xs $*-$* f g (Val x) = refl $*-$* f g (t1 ?? t2) rewrite $*-$* f g t1 | $*-$* f g t2 = refl ---------------------------------------------------------------------- -- Theorems about 'always': -- Extend validity of a function with a deterministic argument to validity of -- the corresponding non-deterministic function: always-$* : ∀ {A : Set} → (p : A → 𝔹) (xs : ND A) → ((y : A) → p y ≡ tt) → always (p $* xs) ≡ tt always-$* _ (Val y) prf = prf y always-$* p (t1 ?? t2) prf rewrite always-$* p t1 prf | always-$* p t2 prf = refl -- Extend validity of a function with a deterministic argument to validity of -- the corresponding non-deterministic function: always-*$* : ∀ {A : Set} → (p : A → ND 𝔹) (xs : ND A) → ((y : A) → always (p y) ≡ tt) → always (p *$* xs) ≡ tt always-*$* _ (Val y) prf = prf y always-*$* p (t1 ?? t2) prf rewrite always-*$* p t1 prf | always-*$* p t2 prf = refl -- Extend validity of a deterministic function to validity of -- corresponding function with non-deterministic result: always-toND : ∀ {A : Set} → (p : A → 𝔹) (x : A) → (p x) ≡ tt → always (toND p x) ≡ tt always-toND _ _ p = p ---------------------------------------------------------------------- -- Theorems about 'satisfy': -- A theorem like filter-map in functional programming: satisfy-$* : ∀ {A B : Set} → (f : A → B) (xs : ND A) (p : B → 𝔹) → (f $* xs) satisfy p ≡ xs satisfy (p ∘ f) satisfy-$* _ (Val x) _ = refl satisfy-$* f (t1 ?? t2) p rewrite satisfy-$* f t1 p | satisfy-$* f t2 p = refl -- Extend validity of function with deterministic argument to validity of -- non-deterministic function: satisfy-*$* : ∀ {A B : Set} → (p : B → 𝔹) (f : A → ND B) (xs : ND A) → ((y : A) → (f y) satisfy p ≡ tt) → (f *$* xs) satisfy p ≡ tt satisfy-*$* _ _ (Val y) prf = prf y satisfy-*$* p f (t1 ?? t2) prf rewrite satisfy-*$* p f t1 prf | satisfy-*$* p f t2 prf = refl ---------------------------------------------------------------------- -- Theorems about 'every': every-$* : ∀ (f : ℕ → ℕ) (v : ℕ) (x : ND ℕ) → every _=ℕ_ v x ≡ tt → every _=ℕ_ (f v) (f $* x) ≡ tt every-$* f v (Val x) u rewrite =ℕ-to-≡ {v} {x} u | =ℕ-refl (f x) = refl every-$* f v (t1 ?? t2) u rewrite every-$* f v t1 (&&-fst u) | every-$* f v t2 (&&-snd {every _=ℕ_ v t1} {every _=ℕ_ v t2} u) = refl ---------------------------------------------------------------------- -- This theorms allows to weaken a predicate which is always satisfied: weak-always-predicate : ∀ {A : Set} → (p p1 : A → 𝔹) (xs : ND A) → xs satisfy p ≡ tt → xs satisfy (λ x → p1 x || p x) ≡ tt weak-always-predicate p p1 (Val x) u rewrite u | ||-tt (p1 x) = refl weak-always-predicate p p1 (t1 ?? t2) u rewrite weak-always-predicate p p1 t1 (&&-fst u) | weak-always-predicate p p1 t2 (&&-snd {t1 satisfy p} {t2 satisfy p} u) = refl ----------------------------------------------------------------------
{ "alphanum_fraction": 0.4902470741, "avg_line_length": 38.726618705, "ext": "agda", "hexsha": "ec31203da4f6bf610affcdb5dcf663c70ee6d61e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "mihanus/curry-agda", "max_forks_repo_path": "nondet/nondet-thms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "mihanus/curry-agda", "max_issues_repo_path": "nondet/nondet-thms.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "mihanus/curry-agda", "max_stars_repo_path": "nondet/nondet-thms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1867, "size": 5383 }
-- A minor variant of code reported by Andreas Abel. The code below -- should be rejected. open import Agda.Builtin.Size data ⊥ : Set where data SizeLt (i : Size) : Set where size : (j : Size< i) → SizeLt i <∞ : SizeLt ∞ <∞ = size ∞ data D (i : Size) : SizeLt i → Set where c : ∀ {i' : Size< i} → ((j : SizeLt i') → D i' j) → D i (size i') f : D ∞ <∞ → ⊥ f (c h) = f (h <∞) d : ∀ i s → D i s d i (size j) = c (d j) loop : ⊥ loop = f (d ∞ <∞)
{ "alphanum_fraction": 0.5242290749, "avg_line_length": 18.16, "ext": "agda", "hexsha": "da2046ffbe334d6f0efb347dd21887a6c11a5fb1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1946-3.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1946-3.agda", "max_line_length": 67, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1946-3.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 190, "size": 454 }
module Vec where open import SHE-Prelude data Nat : Set where z : Nat s : Nat -> Nat data Vec (X : Set) : Nat -> Set where vNil : Vec X z _:-_ : forall {n} -> X -> Vec X n -> Vec X (s n) _+N_ : Nat -> Nat -> Nat z +N n = n s m +N n = s (m +N n) _vappend_ : forall {X m n} -> Vec X m -> Vec X n -> Vec X (m +N n) vNil vappend ys = ys (x :- xs) vappend ys = x :- (xs vappend ys) vec : forall {n X} -> X -> Vec X n vec {z} x = vNil vec {s n} x = x :- vec x _N>=_ : Nat -> Nat -> Set m N>= z = One z N>= s n = Zero s m N>= s n = m N>= n vtake : {X : Set}{m : Nat}(n : Nat) -> m N>= n -> Vec X m -> Vec X n vtake (s n) () vNil vtake z p xs = vNil vtake (s n) p (x :- xs) = x :- (vtake n p xs) VecApp : forall {n} -> Applicative \X -> Vec X n VecApp {n} = record { pure = vec ; _<*>_ = vapp } where vapp : forall {n X Y} -> Vec (X -> Y) n -> Vec X n -> Vec Y n vapp vNil vNil = vNil vapp (f :- fs) (x :- xs) = f x :- vapp fs xs v1 : Vec Nat (s (s (s z))) v1 = Applicative.pure VecApp z v2 : Vec Nat (s z) v2 = vtake (s z) <> v1 v3 : Vec Nat (s z) v3 = vec {s z} z v5 : Vec Nat (s z) v5 = vtake (s z) <> (z :- (z :- vNil)) v6 : Vec Nat (s z) v6 = vtake (s z) <> (z :- (z :- vNil))
{ "alphanum_fraction": 0.4907033145, "avg_line_length": 20.2786885246, "ext": "agda", "hexsha": "b9a0c2626d60a79b47e711d5eb93eb1d47f36d5e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3d0514c72c804acc10851b90a7ef82a5b4cbc1ff", "max_forks_repo_licenses": [ "MIT-0" ], "max_forks_repo_name": "iain-logan/she", "max_forks_repo_path": "comparisons/agda/Vec.agda", "max_issues_count": 11, "max_issues_repo_head_hexsha": "3d0514c72c804acc10851b90a7ef82a5b4cbc1ff", "max_issues_repo_issues_event_max_datetime": "2016-03-20T10:18:21.000Z", "max_issues_repo_issues_event_min_datetime": "2016-01-28T17:02:48.000Z", "max_issues_repo_licenses": [ "MIT-0" ], "max_issues_repo_name": "iain-logan/she", "max_issues_repo_path": "comparisons/agda/Vec.agda", "max_line_length": 68, "max_stars_count": 1, "max_stars_repo_head_hexsha": "3d0514c72c804acc10851b90a7ef82a5b4cbc1ff", "max_stars_repo_licenses": [ "MIT-0" ], "max_stars_repo_name": "iain-logan/she", "max_stars_repo_path": "comparisons/agda/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-04T00:06:06.000Z", "max_stars_repo_stars_event_min_datetime": "2016-08-04T00:06:06.000Z", "num_tokens": 528, "size": 1237 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Reflection.RecordEquiv private variable ℓ ℓ' : Level record IsCommAlgebra (R : CommRing ℓ) {A : Type ℓ'} (0a : A) (1a : A) (_+_ : A → A → A) (_·_ : A → A → A) (-_ : A → A) (_⋆_ : ⟨ R ⟩ → A → A) : Type (ℓ-max ℓ ℓ') where constructor iscommalgebra field isAlgebra : IsAlgebra (CommRing→Ring R) 0a 1a _+_ _·_ -_ _⋆_ ·-comm : (x y : A) → x · y ≡ y · x open IsAlgebra isAlgebra public unquoteDecl IsCommAlgebraIsoΣ = declareRecordIsoΣ IsCommAlgebraIsoΣ (quote IsCommAlgebra) record CommAlgebraStr (R : CommRing ℓ) (A : Type ℓ') : Type (ℓ-max ℓ ℓ') where constructor commalgebrastr field 0a : A 1a : A _+_ : A → A → A _·_ : A → A → A -_ : A → A _⋆_ : ⟨ R ⟩ → A → A isCommAlgebra : IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_ open IsCommAlgebra isCommAlgebra public infix 8 -_ infixl 7 _·_ infixl 7 _⋆_ infixl 6 _+_ CommAlgebra : (R : CommRing ℓ) → ∀ ℓ' → Type (ℓ-max ℓ (ℓ-suc ℓ')) CommAlgebra R ℓ' = Σ[ A ∈ Type ℓ' ] CommAlgebraStr R A module _ {R : CommRing ℓ} where open CommRingStr (snd R) using (1r) renaming (_+_ to _+r_; _·_ to _·s_) CommAlgebraStr→AlgebraStr : {A : Type ℓ'} → CommAlgebraStr R A → AlgebraStr (CommRing→Ring R) A CommAlgebraStr→AlgebraStr (commalgebrastr _ _ _ _ _ _ (iscommalgebra isAlgebra ·-comm)) = algebrastr _ _ _ _ _ _ isAlgebra CommAlgebra→Algebra : (A : CommAlgebra R ℓ') → Algebra (CommRing→Ring R) ℓ' CommAlgebra→Algebra (_ , str) = (_ , CommAlgebraStr→AlgebraStr str) CommAlgebra→CommRing : (A : CommAlgebra R ℓ') → CommRing ℓ' CommAlgebra→CommRing (_ , commalgebrastr _ _ _ _ _ _ (iscommalgebra isAlgebra ·-comm)) = _ , commringstr _ _ _ _ _ (iscommring (IsAlgebra.isRing isAlgebra) ·-comm) isSetCommAlgebra : (A : CommAlgebra R ℓ') → isSet ⟨ A ⟩ isSetCommAlgebra A = isSetAlgebra (CommAlgebra→Algebra A) makeIsCommAlgebra : {A : Type ℓ'} {0a 1a : A} {_+_ _·_ : A → A → A} { -_ : A → A} {_⋆_ : ⟨ R ⟩ → A → A} (isSet-A : isSet A) (+-assoc : (x y z : A) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : A) → x + 0a ≡ x) (+-rinv : (x : A) → x + (- x) ≡ 0a) (+-comm : (x y : A) → x + y ≡ y + x) (·-assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z) (·-lid : (x : A) → 1a · x ≡ x) (·-ldist-+ : (x y z : A) → (x + y) · z ≡ (x · z) + (y · z)) (·-comm : (x y : A) → x · y ≡ y · x) (⋆-assoc : (r s : ⟨ R ⟩) (x : A) → (r ·s s) ⋆ x ≡ r ⋆ (s ⋆ x)) (⋆-ldist : (r s : ⟨ R ⟩) (x : A) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x)) (⋆-rdist : (r : ⟨ R ⟩) (x y : A) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y)) (⋆-lid : (x : A) → 1r ⋆ x ≡ x) (⋆-lassoc : (r : ⟨ R ⟩) (x y : A) → (r ⋆ x) · y ≡ r ⋆ (x · y)) → IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_ makeIsCommAlgebra {A = A} {0a} {1a} {_+_} {_·_} { -_} {_⋆_} isSet-A +-assoc +-rid +-rinv +-comm ·-assoc ·-lid ·-ldist-+ ·-comm ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid ⋆-lassoc = iscommalgebra (makeIsAlgebra isSet-A +-assoc +-rid +-rinv +-comm ·-assoc (λ x → x · 1a ≡⟨ ·-comm _ _ ⟩ 1a · x ≡⟨ ·-lid _ ⟩ x ∎) ·-lid (λ x y z → x · (y + z) ≡⟨ ·-comm _ _ ⟩ (y + z) · x ≡⟨ ·-ldist-+ _ _ _ ⟩ (y · x) + (z · x) ≡⟨ cong (λ u → (y · x) + u) (·-comm _ _) ⟩ (y · x) + (x · z) ≡⟨ cong (λ u → u + (x · z)) (·-comm _ _) ⟩ (x · y) + (x · z) ∎) ·-ldist-+ ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid ⋆-lassoc λ r x y → r ⋆ (x · y) ≡⟨ cong (λ u → r ⋆ u) (·-comm _ _) ⟩ r ⋆ (y · x) ≡⟨ sym (⋆-lassoc _ _ _) ⟩ (r ⋆ y) · x ≡⟨ ·-comm _ _ ⟩ x · (r ⋆ y) ∎) ·-comm module _ (S : CommRing ℓ) where open CommRingStr (snd S) renaming (1r to 1S) open CommRingStr (snd R) using () renaming (_·_ to _·R_; _+_ to _+R_; 1r to 1R) commAlgebraFromCommRing : (_⋆_ : fst R → fst S → fst S) → ((r s : fst R) (x : fst S) → (r ·R s) ⋆ x ≡ r ⋆ (s ⋆ x)) → ((r s : fst R) (x : fst S) → (r +R s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x)) → ((r : fst R) (x y : fst S) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y)) → ((x : fst S) → 1R ⋆ x ≡ x) → ((r : fst R) (x y : fst S) → (r ⋆ x) · y ≡ r ⋆ (x · y)) → CommAlgebra R ℓ commAlgebraFromCommRing _⋆_ ·Assoc⋆ ⋆DistR ⋆DistL ⋆Lid ⋆Assoc· = fst S , commalgebrastr 0r 1S _+_ _·_ -_ _⋆_ (makeIsCommAlgebra is-set +Assoc +Rid +Rinv +Comm ·Assoc ·Lid ·Ldist+ ·Comm ·Assoc⋆ ⋆DistR ⋆DistL ⋆Lid ⋆Assoc·) IsCommAlgebraEquiv : {A B : Type ℓ'} (M : CommAlgebraStr R A) (e : A ≃ B) (N : CommAlgebraStr R B) → Type (ℓ-max ℓ ℓ') IsCommAlgebraEquiv M e N = IsAlgebraHom (CommAlgebraStr→AlgebraStr M) (e .fst) (CommAlgebraStr→AlgebraStr N) CommAlgebraEquiv : (M N : CommAlgebra R ℓ') → Type (ℓ-max ℓ ℓ') CommAlgebraEquiv M N = Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] IsCommAlgebraEquiv (M .snd) e (N .snd) IsCommAlgebraHom : {A B : Type ℓ'} (M : CommAlgebraStr R A) (f : A → B) (N : CommAlgebraStr R B) → Type (ℓ-max ℓ ℓ') IsCommAlgebraHom M f N = IsAlgebraHom (CommAlgebraStr→AlgebraStr M) f (CommAlgebraStr→AlgebraStr N) CommAlgebraHom : (M N : CommAlgebra R ℓ') → Type (ℓ-max ℓ ℓ') CommAlgebraHom M N = Σ[ f ∈ (⟨ M ⟩ → ⟨ N ⟩) ] IsCommAlgebraHom (M .snd) f (N .snd) module _ {M N : CommAlgebra R ℓ'} where open CommAlgebraStr {{...}} open IsAlgebraHom private instance _ = snd M _ = snd N makeCommAlgebraHom : (f : fst M → fst N) → (fPres1 : f 1a ≡ 1a) → (fPres+ : (x y : fst M) → f (x + y) ≡ f x + f y) → (fPres· : (x y : fst M) → f (x · y) ≡ f x · f y) → (fPres⋆ : (r : fst R) (x : fst M) → f (r ⋆ x) ≡ r ⋆ f x) → CommAlgebraHom M N makeCommAlgebraHom f fPres1 fPres+ fPres· fPres⋆ = f , isHom where fPres0 = f 0a ≡⟨ sym (+-rid _) ⟩ f 0a + 0a ≡⟨ cong (λ u → f 0a + u) (sym (+-rinv (f 0a))) ⟩ f 0a + (f 0a - f 0a) ≡⟨ +-assoc (f 0a) (f 0a) (- f 0a) ⟩ (f 0a + f 0a) - f 0a ≡⟨ cong (λ u → u - f 0a) (sym (fPres+ 0a 0a)) ⟩ f (0a + 0a) - f 0a ≡⟨ cong (λ u → f u - f 0a) (+-lid 0a) ⟩ f 0a - f 0a ≡⟨ +-rinv (f 0a) ⟩ 0a ∎ isHom : IsCommAlgebraHom (snd M) f (snd N) pres0 isHom = fPres0 pres1 isHom = fPres1 pres+ isHom = fPres+ pres· isHom = fPres· pres- isHom = (λ x → f (- x) ≡⟨ sym (+-rid _) ⟩ (f (- x) + 0a) ≡⟨ cong (λ u → f (- x) + u) (sym (+-rinv (f x))) ⟩ (f (- x) + (f x - f x)) ≡⟨ +-assoc _ _ _ ⟩ ((f (- x) + f x) - f x) ≡⟨ cong (λ u → u - f x) (sym (fPres+ _ _)) ⟩ (f ((- x) + x) - f x) ≡⟨ cong (λ u → f u - f x) (+-linv x) ⟩ (f 0a - f x) ≡⟨ cong (λ u → u - f x) fPres0 ⟩ (0a - f x) ≡⟨ +-lid _ ⟩ (- f x) ∎) pres⋆ isHom = fPres⋆ isPropIsCommAlgebraHom : (f : fst M → fst N) → isProp (IsCommAlgebraHom (snd M) f (snd N)) isPropIsCommAlgebraHom f = isPropIsAlgebraHom (CommRing→Ring R) (snd (CommAlgebra→Algebra M)) f (snd (CommAlgebra→Algebra N)) isPropIsCommAlgebra : (R : CommRing ℓ) {A : Type ℓ'} (0a 1a : A) (_+_ _·_ : A → A → A) (-_ : A → A) (_⋆_ : ⟨ R ⟩ → A → A) → isProp (IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_) isPropIsCommAlgebra R _ _ _ _ _ _ = isOfHLevelRetractFromIso 1 IsCommAlgebraIsoΣ (isPropΣ (isPropIsAlgebra _ _ _ _ _ _ _) (λ alg → isPropΠ2 λ _ _ → alg .IsAlgebra.is-set _ _)) 𝒮ᴰ-CommAlgebra : (R : CommRing ℓ) → DUARel (𝒮-Univ ℓ') (CommAlgebraStr R) (ℓ-max ℓ ℓ') 𝒮ᴰ-CommAlgebra R = 𝒮ᴰ-Record (𝒮-Univ _) (IsCommAlgebraEquiv {R = R}) (fields: data[ 0a ∣ nul ∣ pres0 ] data[ 1a ∣ nul ∣ pres1 ] data[ _+_ ∣ bin ∣ pres+ ] data[ _·_ ∣ bin ∣ pres· ] data[ -_ ∣ autoDUARel _ _ ∣ pres- ] data[ _⋆_ ∣ autoDUARel _ _ ∣ pres⋆ ] prop[ isCommAlgebra ∣ (λ _ _ → isPropIsCommAlgebra _ _ _ _ _ _ _) ]) where open CommAlgebraStr open IsAlgebraHom -- faster with some sharing nul = autoDUARel (𝒮-Univ _) (λ A → A) bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A) CommAlgebraPath : (R : CommRing ℓ) → (A B : CommAlgebra R ℓ') → (CommAlgebraEquiv A B) ≃ (A ≡ B) CommAlgebraPath R = ∫ (𝒮ᴰ-CommAlgebra R) .UARel.ua isGroupoidCommAlgebra : {R : CommRing ℓ} → isGroupoid (CommAlgebra R ℓ') isGroupoidCommAlgebra A B = isOfHLevelRespectEquiv 2 (CommAlgebraPath _ _ _) (isSetAlgebraEquiv _ _)
{ "alphanum_fraction": 0.4706820901, "avg_line_length": 41.0983606557, "ext": "agda", "hexsha": "8e80df43a33a94cfc3a00d912425df35ac69e3b9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lpw25/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lpw25/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Base.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lpw25/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4072, "size": 10028 }
{-# OPTIONS --safe #-} module Definition.Conversion.EqRelInstance where open import Definition.Untyped open import Definition.Untyped.Properties using (wkSingleSubstId) open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening using (_∷_⊆_; wkEq; step; id) open import Definition.Conversion open import Definition.Conversion.Reduction open import Definition.Conversion.Universe open import Definition.Conversion.Stability open import Definition.Conversion.Soundness open import Definition.Conversion.Lift open import Definition.Conversion.Conversion open import Definition.Conversion.Transitivity open import Definition.Conversion.Weakening open import Definition.Conversion.Whnf open import Definition.Typed.EqualityRelation open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Substitution open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.Equality open import Definition.Typed.Consequences.Reduction open import Definition.Conversion.Symmetry open import Tools.Nat open import Tools.Product import Tools.PropositionalEquality as PE open import Tools.Function -- Algorithmic equality of neutrals with injected conversion. data _⊢_~_∷_^_ (Γ : Con Term) (k l A : Term) (r : TypeInfo) : Set where ↑ : ∀ {B} → Γ ⊢ A ≡ B ^ r → Γ ⊢ k ~ l ↑ B ^ r → Γ ⊢ k ~ l ∷ A ^ r -- Properties of algorithmic equality of neutrals with injected conversion. ~-var : ∀ {x A r Γ} → Γ ⊢ var x ∷ A ^ r → Γ ⊢ var x ~ var x ∷ A ^ r ~-var x = let ⊢A = syntacticTerm x in ↑ (refl ⊢A) (var-refl′ x) ~-app : ∀ {f g a b F G Γ rF lF lG lΠ} → Γ ⊢ f ~ g ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ ! , ι lΠ ] → Γ ⊢ a [genconv↑] b ∷ F ^ [ rF , ι lF ] → Γ ⊢ f ∘ a ^ lΠ ~ g ∘ b ^ lΠ ∷ G [ a ] ^ [ ! , ι lG ] ~-app {rF = !} (↑ A≡B (~↑! x)) x₁ = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ΠFG≡B′ = trans A≡B (subset* (red D)) H , E , B≡ΠHE = Π≡A ΠFG≡B′ whnfB′ F≡H , _ , _ , _ , G≡E = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x ^ _) B≡ΠHE ΠFG≡B′) _ , ⊢f , _ = syntacticEqTerm (soundnessConv↑Term x₁) in ↑ (substTypeEq G≡E (refl ⊢f)) (app-cong′ (PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ΠHE ([~] _ (red D) whnfB′ x)) (convConvTerm x₁ F≡H)) ~-app {rF = %} (↑ A≡B (~↑! x)) x₁ = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ΠFG≡B′ = trans A≡B (subset* (red D)) H , E , B≡ΠHE = Π≡A ΠFG≡B′ whnfB′ F≡H , _ , _ , _ , G≡E = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x ^ _) B≡ΠHE ΠFG≡B′) _ , ⊢f , _ = syntacticEqTerm (proj₂ (proj₂ (soundness~↑% x₁))) in ↑ (substTypeEq G≡E (genRefl ⊢f)) (app-cong′ (PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ΠHE ([~] _ (red D) whnfB′ x)) (conv~↑% x₁ F≡H)) ~-natrec : ∀ {z z′ s s′ n n′ F F′ Γ lF} → (Γ ∙ ℕ ^ [ ! , ι ⁰ ]) ⊢ F [conv↑] F′ ^ [ ! , ι lF ] → Γ ⊢ z [conv↑] z′ ∷ (F [ zero ]) ^ ι lF → Γ ⊢ s [conv↑] s′ ∷ (Π ℕ ^ ! ° ⁰ ▹ (F ^ ! ° lF ▹▹ F [ suc (var 0) ]↑ ° lF ° lF) ° lF ° lF) ^ ι lF → Γ ⊢ n ~ n′ ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ natrec lF F z s n ~ natrec lF F′ z′ s′ n′ ∷ (F [ n ]) ^ [ ! , ι lF ] ~-natrec {n = n} {n′ = n′} x x₁ x₂ (↑ A≡B (~↑! x₄)) = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ℕ≡B′ = trans A≡B (subset* (red D)) B≡ℕ = ℕ≡A ℕ≡B′ whnfB′ k~l′ = PE.subst (λ x → _ ⊢ n ~ n′ ↓! x ^ _) B≡ℕ ([~] _ (red D) whnfB′ x₄) ⊢F , _ = syntacticEq (soundnessConv↑ x) _ , ⊢n , _ = syntacticEqTerm (soundness~↓! k~l′) in ↑ (refl (substType ⊢F ⊢n)) (natrec-cong′ x x₁ x₂ k~l′) ~-Emptyrec : ∀ {e e' F F′ Γ l lEmpty} → Γ ⊢ F [conv↑] F′ ^ [ ! , ι l ] → Γ ⊢ e ∷ Empty lEmpty ^ [ % , ι lEmpty ] → Γ ⊢ e' ∷ Empty lEmpty ^ [ % , ι lEmpty ] → Γ ⊢ Emptyrec l lEmpty F e ~ Emptyrec l lEmpty F′ e' ∷ F ^ [ ! , ι l ] ~-Emptyrec {e = e} {e' = e'} x ⊢e ⊢e' = let k~l′ = %~↑ ⊢e ⊢e' ⊢F , _ = syntacticEq (soundnessConv↑ x) in ↑ (refl ⊢F) (Emptyrec-cong′ x k~l′) ~-IdCong : ∀ {A A' : Term} {l : Level} {t t' u u' : Term} {Γ : Con Term} → Γ ⊢ A ~ A' ∷ Univ ! l ^ [ ! , next l ] → Γ ⊢ t [conv↑] t' ∷ A ^ ι l → Γ ⊢ u [conv↑] u' ∷ A ^ ι l → Γ ⊢ Id A t u ~ Id A' t' u' ∷ SProp l ^ [ ! , next l ] ~-IdCong (↑ A≡B (~↑! x)) t~t' u~u' = let ⊢Γ = wfEqTerm (soundnessConv↑Term t~t') _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ A~A′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-cong A~A′ t~t' u~u')) ~-Idℕ : ∀ {t t' u u' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ t ~ t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ u [genconv↑] u' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ Id ℕ t u ~ Id ℕ t' u' ∷ SProp ⁰ ^ [ ! , next ⁰ ] ~-Idℕ ⊢Γ (↑ A≡B (~↑! x)) u~u' = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ℕ≡B′ = trans A≡B (subset* (red D)) B≡ℕ = ℕ≡A ℕ≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ℕ ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-ℕ t~t′ u~u')) ~-Idℕ0 : ∀ {u u' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ u ~ u' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ Id ℕ zero u ~ Id ℕ zero u' ∷ SProp ⁰ ^ [ ! , next ⁰ ] ~-Idℕ0 ⊢Γ (↑ A≡B (~↑! x)) = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ℕ≡B′ = trans A≡B (subset* (red D)) B≡ℕ = ℕ≡A ℕ≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ℕ ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-ℕ0 t~t′)) ~-IdℕS : ∀ {t t' u u' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ t [genconv↑] t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ u ~ u' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ Id ℕ (suc t) u ~ Id ℕ (suc t') u' ∷ SProp ⁰ ^ [ ! , next ⁰ ] ~-IdℕS ⊢Γ X (↑ A≡B (~↑! x)) = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B ℕ≡B′ = trans A≡B (subset* (red D)) B≡ℕ = ℕ≡A ℕ≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ℕ ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-ℕS X t~t′)) ~-IdU : ∀ {t t' u u' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ t ~ t' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ u [genconv↑] u' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Id (U ⁰) t u ~ Id (U ⁰) t' u' ∷ SProp ¹ ^ [ ! , next ¹ ] ~-IdU ⊢Γ (↑ A≡B (~↑! x)) X = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-U t~t′ X)) ~-IdUℕ : ∀ {u u' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ u ~ u' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Id (U ⁰) ℕ u ~ Id (U ⁰) ℕ u' ∷ SProp ¹ ^ [ ! , next ¹ ] ~-IdUℕ ⊢Γ (↑ A≡B (~↑! x)) = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-Uℕ t~t′)) ~-IdUΠ : ∀ {A : Term} {rA : Relevance} {B A' B' u u' : Term} {Γ : Con Term} → Γ ⊢ Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ [genconv↑] Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ u ~ u' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) u ~ Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) u' ∷ SProp ¹ ^ [ ! , next ¹ ] ~-IdUΠ X (↑ A≡B (~↑! x)) = let ⊢Γ = wfEqTerm (soundnessConv↑Term X) _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) in ↑ (refl (Ugenⱼ ⊢Γ)) (~↑! (Id-UΠ X t~t′)) ~-castcong : ∀ {A A' B B' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ A ~ A' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B [genconv↑] B' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ A ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) A B ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) A' B' ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ A B e t ~ cast ⁰ A' B' e' t' ∷ B ^ [ ! , ι ⁰ ] ~-castcong (↑ A≡B (~↑! x)) X Y ⊢e ⊢e' = let _ , ⊢B , _ = syntacticEqTerm (soundnessConv↑Term X) _ , ⊢B' = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B' U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) in ↑ (refl (univ ⊢B)) (~↑! (cast-cong t~t′ X Y ⊢e ⊢e')) ~-castℕ : ∀ {B B' e e' t t' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ B ~ B' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) ℕ B ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) ℕ B' ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ B e t ~ cast ⁰ ℕ B' e' t' ∷ B ^ [ ! , ι ⁰ ] ~-castℕ ⊢Γ (↑ A≡B (~↑! x)) X ⊢e ⊢e' = let _ , ⊢B' = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B' U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) _ , ⊢B , _ = syntacticEqTerm (soundness~↓! t~t′) in ↑ (refl (univ ⊢B)) (~↑! (cast-ℕ t~t′ X ⊢e ⊢e')) ~-castℕℕ : ∀ {e e' t t' : Term} {Γ : Con Term} → ⊢ Γ → Γ ⊢ t ~ t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ ℕ e t ~ cast ⁰ ℕ ℕ e' t' ∷ ℕ ^ [ ! , ι ⁰ ] ~-castℕℕ ⊢Γ (↑ A≡B (~↑! x)) ⊢e ⊢e' = let _ , ⊢B' = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B' ℕ≡B′ = trans A≡B (subset* (red D)) B≡ℕ = ℕ≡A ℕ≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ℕ ([~] _ (red D) whnfB′ x) _ , ⊢B , _ = syntacticEqTerm (soundness~↓! t~t′) in ↑ (refl (univ (ℕⱼ ⊢Γ))) (~↑! (cast-ℕℕ t~t′ ⊢e ⊢e')) ~-castΠ : ∀ {A A' : Term} {rA : Relevance} {P P' B B' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [genconv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B ~ B' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) B ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) B' ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) B e t ~ cast ⁰ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) B' e' t' ∷ B ^ [ ! , ι ⁰ ] ~-castΠ X (↑ A≡B (~↑! x)) Y ⊢e ⊢e' = let _ , ⊢B' = syntacticEq A≡B B′ , whnfB′ , D = whNorm ⊢B' U≡B′ = trans A≡B (subset* (red D)) B≡U = U≡A-whnf U≡B′ whnfB′ t~t′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡U ([~] _ (red D) whnfB′ x) _ , ⊢B , _ = syntacticEqTerm (soundness~↓! t~t′) in ↑ (refl (univ ⊢B)) (~↑! (cast-Π X t~t′ Y ⊢e ⊢e')) ~-castℕΠ : ∀ {A A' : Term} {rA : Relevance} {P P' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ A ∷ Univ rA ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ A ^ [ rA , ι ⁰ ]) ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [genconv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) ℕ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) ℕ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) e t ~ cast ⁰ ℕ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) e' t' ∷ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] ~-castℕΠ ⊢A ⊢P X Y ⊢e ⊢e' = ↑ (refl (univ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢A ▹ ⊢P))) (~↑! (cast-ℕΠ X Y ⊢e ⊢e')) ~-castΠℕ : ∀ {A A' : Term} {rA : Relevance} {P P' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ A ∷ Univ rA ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ A ^ [ rA , ι ⁰ ]) ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [genconv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) ℕ ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) ℕ ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) ℕ e t ~ cast ⁰ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) ℕ e' t' ∷ ℕ ^ [ ! , ι ⁰ ] ~-castΠℕ ⊢A ⊢P X Y ⊢e ⊢e' = ↑ (refl (univ (ℕⱼ (wfTerm ⊢A)))) (~↑! (cast-Πℕ X Y ⊢e ⊢e')) ~-castΠΠ%! : ∀ {A A' P P' B B' Q Q' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ A ∷ Univ % ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ A ^ [ % , ι ⁰ ]) ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ [genconv↑] Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B ∷ Univ ! ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ B ^ [ ! , ι ⁰ ]) ⊢ Q ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ [genconv↑] Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) (Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) (Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰) e t ~ cast ⁰ (Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰) e' t' ∷ Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] ~-castΠΠ%! ⊢A ⊢P X ⊢B ⊢Q Y t~t' ⊢e ⊢e' = ↑ (refl (univ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢B ▹ ⊢Q))) (~↑! (cast-ΠΠ%! X Y t~t' ⊢e ⊢e')) ~-castΠΠ!% : ∀ {A A' P P' B B' Q Q' e e' t t' : Term} {Γ : Con Term} → Γ ⊢ A ∷ Univ ! ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ A ^ [ ! , ι ⁰ ]) ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ [genconv↑] Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B ∷ Univ % ⁰ ^ [ ! , next ⁰ ] → (Γ ∙ B ^ [ % , ι ⁰ ]) ⊢ Q ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ [genconv↑] Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t [genconv↑] t' ∷ Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ Id (U ⁰) (Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ Id (U ⁰) (Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰) e t ~ cast ⁰ (Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰) e' t' ∷ Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] ~-castΠΠ!% ⊢A ⊢P X ⊢B ⊢Q Y t~t' ⊢e ⊢e' = ↑ (refl (univ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢B ▹ ⊢Q))) (~↑! (cast-ΠΠ!% X Y t~t' ⊢e ⊢e')) ~-sym : {k l A : Term} {r : TypeInfo} {Γ : Con Term} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ l ~ k ∷ A ^ r ~-sym (↑ A≡B x) = let ⊢Γ = wfEq A≡B B , A≡B′ , l~k = sym~↑ (reflConEq ⊢Γ) x in ↑ (trans A≡B A≡B′) l~k ~-trans : {k l m A : Term} {r : TypeInfo} {Γ : Con Term} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ l ~ m ∷ A ^ r → Γ ⊢ k ~ m ∷ A ^ r ~-trans (↑ x (~↑! x₁)) (↑ x₂ (~↑! x₃)) = let ⊢Γ = wfEq x k~m , _ = trans~↑! PE.refl (reflConEq ⊢Γ) x₁ x₃ in ↑ x (~↑! k~m) ~-trans (↑ x (~↑% x₁)) (↑ x₂ (~↑% x₃)) = let ⊢Γ = wfEq x k~m = trans~↑% (reflConEq ⊢Γ) x₁ (conv~↑% x₃ (trans (sym x₂) x)) in ↑ x (~↑% k~m) ~-wk : {k l A : Term} {r : TypeInfo} {ρ : Wk} {Γ Δ : Con Term} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊢ k ~ l ∷ A ^ r → Δ ⊢ wk ρ k ~ wk ρ l ∷ wk ρ A ^ r ~-wk x x₁ (↑ x₂ x₃) = ↑ (wkEq x x₁ x₂) (wk~↑ x x₁ x₃) ~-conv : {k l A B : Term} {r : TypeInfo} {Γ : Con Term} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ A ≡ B ^ r → Γ ⊢ k ~ l ∷ B ^ r ~-conv (↑ x x₁) x₂ = ↑ (trans (sym x₂) x) x₁ ~-to-conv : {k l A : Term} {Γ : Con Term} {r : TypeInfo} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ k [genconv↑] l ∷ A ^ r ~-to-conv {r = [ ! , ll ]} (↑ x x₁) = convConvTerm (lift~toConv↑ x₁) (sym x) ~-to-conv {r = [ % , ll ]} (↑ x (~↑% x₁)) = conv~↑% x₁ (sym x) un-univConv : ∀ {A B : Term} {r : Relevance} {l : Level} {Γ : Con Term} → Γ ⊢ A [conv↑] B ^ [ r , ι l ] → Γ ⊢ A [conv↑] B ∷ Univ r l ^ next l un-univConv {A} {B} {r} {l} ([↑] A′ B′ D D′ whnfA′ whnfB′ (univ x)) = let ⊢Γ = wfEqTerm (soundnessConv↓Term x) in [↑]ₜ (Univ r l) A′ B′ (id (Ugenⱼ ⊢Γ)) (un-univ⇒* D) (un-univ⇒* D′) Uₙ whnfA′ whnfB′ x Πₜ-cong : ∀ {F G H E rF rG lF lG lΠ Γ} → lF ≤ lΠ → lG ≤ lΠ → Γ ⊢ F ^ [ rF , ι lF ] → Γ ⊢ F [conv↑] H ∷ Univ rF lF ^ next lF → Γ ∙ F ^ [ rF , ι lF ] ⊢ G [conv↑] E ∷ Univ rG lG ^ next lG → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ [conv↑] Π H ^ rF ° lF ▹ E ° lG ° lΠ ∷ Univ rG lΠ ^ next lΠ Πₜ-cong lF< lG< x x₁ x₂ = liftConvTerm (Π-cong PE.refl PE.refl PE.refl PE.refl lF< lG< x x₁ x₂) ~-irrelevance : {k l A : Term} {Γ : Con Term} {ll : TypeLevel} → Γ ⊢ k ∷ A ^ [ % , ll ] → Γ ⊢ l ∷ A ^ [ % , ll ] → Γ ⊢ k ~ l ∷ A ^ [ % , ll ] ~-irrelevance ⊢k ⊢l = let X = ~↑% (%~↑ ⊢k ⊢l) ⊢A = syntacticTerm ⊢k in ↑ (refl ⊢A) X soundnessgenConv : ∀ {a b A r Γ} → Γ ⊢ a [genconv↑] b ∷ A ^ r → Γ ⊢ a ≡ b ∷ A ^ r soundnessgenConv {r = [ ! , l ]} = soundnessConv↑Term soundnessgenConv {r = [ % , l ]} x = proj₂ (proj₂ (soundness~↑% x)) symgenConv : ∀ {t u A r Γ} → Γ ⊢ t [genconv↑] u ∷ A ^ r → Γ ⊢ u [genconv↑] t ∷ A ^ r symgenConv {r = [ ! , l ]} = symConvTerm symgenConv {r = [ % , l ]} t<>u = let ⊢Γ = wfEqTerm (proj₂ (proj₂ (soundness~↑% t<>u))) in sym~↑% (reflConEq ⊢Γ) t<>u wkgenConv↑Term : ∀ {ρ t u A Γ r Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ t [genconv↑] u ∷ A ^ r → Δ ⊢ wk ρ t [genconv↑] wk ρ u ∷ wk ρ A ^ r wkgenConv↑Term {r = [ ! , l ]} = wkConv↑Term wkgenConv↑Term {r = [ % , l ]} = wk~↑% convgenconv : ∀ {t u A B : Term} {r : TypeInfo} {Γ : Con Term} → Γ ⊢ t [genconv↑] u ∷ A ^ r → Γ ⊢ A ≡ B ^ r → Γ ⊢ t [genconv↑] u ∷ B ^ r convgenconv {r = [ ! , l ]} = convConvTerm convgenconv {r = [ % , l ]} = conv~↑% transgenConv : ∀ {t u v A : Term} {r : TypeInfo} {Γ : Con Term} → Γ ⊢ t [genconv↑] u ∷ A ^ r → Γ ⊢ u [genconv↑] v ∷ A ^ r → Γ ⊢ t [genconv↑] v ∷ A ^ r transgenConv {r = [ ! , l ]} = transConvTerm transgenConv {r = [ % , l ]} = trans~↑!Term -- Algorithmic equality instance of the generic equality relation. instance eqRelInstance : EqRelSet eqRelInstance = eqRel _⊢_[conv↑]_^_ _⊢_[genconv↑]_∷_^_ _⊢_~_∷_^_ ~-to-conv soundnessConv↑ soundnessgenConv univConv↑ un-univConv symConv symgenConv ~-sym transConv transgenConv ~-trans convgenconv ~-conv wkConv↑ wkgenConv↑Term ~-wk reductionConv↑ reductionConv↑Term (liftConv ∘ᶠ (U-refl PE.refl)) ( liftConvTerm ∘ᶠ (U-refl PE.refl)) (liftConvTerm ∘ᶠ ℕ-refl) (liftConvTerm ∘ᶠ (Empty-refl PE.refl)) Πₜ-cong (λ x x₁ x₂ → liftConvTerm (∃-cong PE.refl x x₁ x₂)) (liftConvTerm ∘ᶠ zero-refl) (liftConvTerm ∘ᶠ suc-cong) (λ l< l<' x x₁ x₂ x₃ x₄ x₅ → liftConvTerm (η-eq l< l<' x x₁ x₂ x₃ x₄ x₅)) ~-var ~-app ~-natrec ~-Emptyrec ~-IdCong ~-Idℕ ~-Idℕ0 ~-IdℕS ~-IdU ~-IdUℕ ~-IdUΠ ~-castcong ~-castℕ ~-castℕℕ ~-castΠ ~-castℕΠ ~-castΠℕ ~-castΠΠ%! ~-castΠΠ!% ~-irrelevance
{ "alphanum_fraction": 0.4106384068, "avg_line_length": 45.4255813953, "ext": "agda", "hexsha": "23b885835d11ce4b6f841f69f86c60c163125035", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Conversion/EqRelInstance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Conversion/EqRelInstance.agda", "max_line_length": 116, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Conversion/EqRelInstance.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 10148, "size": 19533 }
open import Array open import Array.APL open import Data.Nat open import Data.Nat.Properties open import Data.Nat.DivMod hiding (_/_) open import Data.Fin hiding (_≤_; _<_; _+_) --using (Fin; zero; suc; toℕ) open import Data.Vec open import Data.Vec.Properties open import Relation.Binary.PropositionalEquality open import Data.Product open import Function open import Relation.Nullary open import Relation.Nullary.Decidable open import Data.Unit using (⊤) open import Agda.Builtin.Float -- Save some typing when selecting from index-vectors/shapes -- converted into arrays. pattern I0 = (zero ∷ []) pattern I1 = (suc zero ∷ []) pattern I2 = (suc (suc zero) ∷ []) pattern I3 = (suc (suc (suc zero)) ∷ []) -- Verbose facts about transitivity of <, ≤, and ≡ a≤b⇒b≡c⇒a≤c : ∀ {a b c} → a ≤ b → b ≡ c → a ≤ c a≤b⇒b≡c⇒a≤c a≤b refl = a≤b a≤b⇒a≡c⇒b≡d⇒c≤d : ∀ {a b c d} → a ≤ b → a ≡ c → b ≡ d → c ≤ d a≤b⇒a≡c⇒b≡d⇒c≤d a≤b refl refl = a≤b a<b⇒0<b : ∀ {a b} → a < b → zero < b a<b⇒0<b {a} a<b = ≤-trans (s≤s z≤n) a<b a<b⇒c≤a⇒c<b : ∀ {a b c} → a < b → c ≤ a → c < b a<b⇒c≤a⇒c<b a<b z≤n = a<b⇒0<b a<b a<b⇒c≤a⇒c<b (s≤s a<b) (s≤s c≤a) = s≤s (a<b⇒c≤a⇒c<b a<b c≤a) a≤b⇒c≤a⇒c≤b : ∀ {a b c} → a ≤ b → c ≤ a → c ≤ b a≤b⇒c≤a⇒c≤b {a} {b} {c} a≤b c≤a = ≤-trans c≤a a≤b A<B⇒B≤C⇒A≤C : ∀ {n}{ix s s₁ : Ar ℕ 1 (n ∷ [])} → ix <a s → s₁ ≥a s → s₁ ≥a ix A<B⇒B≤C⇒A≤C {ix = imap x} {imap x₁} {imap x₂} ix<s ix≤s₁ iv = ≤-trans (<⇒≤ $ ix<s iv) (ix≤s₁ iv) A≥B⇒A≡C⇒C≥B : ∀ {d s}{A B C : Ar ℕ d s} → A ≥a B → A =a C → C ≥a B A≥B⇒A≡C⇒C≥B {A = imap x} {imap x₁} {imap x₂} A≥B A≡C iv rewrite (sym $ A≡C iv) = A≥B iv -- Something that could go in Stdlib. ≡⇒≤ : ∀ {a b} → a ≡ b → a ≤ b ≡⇒≤ refl = ≤-refl a≤a*b : ∀ {a b} → a ≤ a * suc b a≤a*b {a} {b = zero} rewrite (*-identityʳ a) = ≤-refl a≤a*b {a} {b = suc b} = ≤-trans a≤a*b (*-monoʳ-≤ a (≤-step ≤-refl)) a-s[b]+1≡a-b : ∀ {a b} → b < a → a ∸ suc b + 1 ≡ a ∸ b a-s[b]+1≡a-b {a} {b} pf = begin a ∸ suc (b) + 1 ≡⟨ sym $ +-∸-comm 1 pf ⟩ a + 1 ∸ suc b ≡⟨ cong₂ _∸_ (+-comm a 1) (refl {x = suc b}) ⟩ a ∸ b ∎ where open ≡-Reasoning conv-ix-inb : ∀ {n}{ix s s₁ : Ar ℕ 1 (n ∷ [])} → (ix<s : ix <a s) → (s₁≥s : s₁ ≥a s) → (s₁ -ₙ ix) {≥ = A<B⇒B≤C⇒A≤C {s₁ = s₁} ix<s s₁≥s} ≥a ((s₁ -ₙ s) {≥ = s₁≥s} +ₙ (scal 1)) conv-ix-inb {ix = imap ix} {imap s} {imap s₁} ix<s s₁≥s iv = let s₁-[1+ix]≥s₁-s = ∸-monoʳ-≤ (s₁ iv) (ix<s iv) s₁-[1+ix]+1≥s₁-s+1 = +-monoˡ-≤ 1 s₁-[1+ix]≥s₁-s in a≤b⇒b≡c⇒a≤c s₁-[1+ix]+1≥s₁-s+1 (a-s[b]+1≡a-b {a = s₁ iv} {b = ix iv} (≤-trans (ix<s iv) (s₁≥s iv))) undo-sa-as : ∀ {n} {s s₁ : Vec ℕ n}{ix : Ar ℕ 1 (n ∷ [])}{≥1} → ((imap (λ iv → lookup s₁ (ix-lookup iv zero)) -ₙ ix) {≥ = ≥1}) =a imap (λ z → lookup (a→s ((imap (λ iv → lookup s₁ (ix-lookup iv zero)) -ₙ ix) {≥ = ≥1})) (ix-lookup z zero)) undo-sa-as {s₁ = s₁} {ix = (imap ix)} {≥1} iv = sym $ s→a∘a→s ((s→a s₁ -ₙ imap ix) {≥ = ≥1}) iv -- conv ← {a←⍵ ⋄ w←⍺ ⋄ ⊃+/,w×{(1+(⍴a)-⍴w)↑⍵↓a}¨⍳⍴w} conv : ∀ {n s s₁} → Ar Float n s → Ar Float n s₁ → {s₁≥s : s→a s₁ ≥a s→a s} → let sr = a→s $ (s→a s₁ -ₙ s→a s) {≥ = s₁≥s} +ₙ scal 1 in Ar Float n sr conv {n = n} {s = s} {s₁ = s₁} w a {s₁≥s} = let sr = (s→a s₁ -ₙ s→a s) {≥ = s₁≥s} +ₙ scal 1 idxs = ι ρ w rots ix ix<s = let ~ix≥ρa = A<B⇒B≤C⇒A≤C ix<s s₁≥s ix↓a = (ix ↓ a) {pf = ~ix≥ρa} ~ix-inb = conv-ix-inb {s₁ = s→a s₁} ix<s s₁≥s ~ρix↓a≥sr = A≥B⇒A≡C⇒C≥B ~ix-inb (undo-sa-as {s = s} {s₁ = s₁} {≥1 = ~ix≥ρa}) in (sr ↑ ix↓a) {pf = ~ρix↓a≥sr } rots-unw ix,ix<s = (let ix , ix<s = ix,ix<s in rots ix ix<s) r = rots-unw ̈ idxs mul = w ̈⟨ (λ weight arr → arr ×ᵣ scal weight) ⟩ (subst-ar (a→s∘s→a s) r) res = reduce-1d (, mul) _+ᵣ_ (cst 0.0) in res module conv-test where open import Array.Repr cex₁ = conv (cst {s = 1 ∷ []} 2.0) (imap {s = 2 ∷ []} λ { (zero ∷ []) → 2.0 ; (suc zero ∷ []) → 3.0}) {s₁≥s = λ { (zero ∷ []) → s≤s z≤n} } cex₂ = conv (mkempty (3 ∷ 0 ∷ []) refl) (cst {s = 5 ∷ 0 ∷ []} 1.0) {λ { (zero ∷ []) → s≤s (s≤s (s≤s z≤n)) ; (suc zero ∷ []) → z≤n}} repex₁ = a→rt cex₁ -- blog←{⍺×⍵×1-⍵} blog : ∀ {n s} → Ar Float n s → Ar Float n s → Ar Float n s blog α ω = α ×ᵣ ω ×ᵣ (scal 1.0) -ᵣ ω -- backbias←{+/,⍵} backbias : ∀ {n s} → Ar Float n s → Scal Float backbias ω = _+ᵣ_ / , ω -- XXX we can define unary -ᵣ and ÷ᵣ to make it even nicer. -- logistic←{÷1+*-⍵} logistic : ∀ {n s} → Ar Float n s → Ar Float n s logistic {s} ω = (scal 1.0) ÷ᵣ (scal 1.0) +ᵣ *ᵣ (scal 0.0) -ᵣ ω -- XXX Note that even though we had to specify n-n instances -- explicitly, we didn't truly mimic the APL expression below. -- As per APL semantics, meansqerr accepts the combination -- of arguments 0-n, n-n and n-0. So the fact that we had -- to specialise suggests that we didn't truly implement -- the original behaviour. -- meansqerr←{÷∘2+/,(⍺-⍵)*2} meansqerr : ∀ {n s} → Ar Float n s → Ar Float n s → Scal Float meansqerr α ω = _÷⟨ n-n ⟩ᵣ (cst 2.0) $ (_+⟨ n-n ⟩ᵣ_ / , (α -⟨ n-n ⟩ᵣ ω) ×ᵣ (α -⟨ n-n ⟩ᵣ ω)) -- backavgpool←{2⌿2/⍵÷4}⍤2 backavgpool : ∀ {s} → Ar Float 2 s → Ar Float 2 $ a→s (s→a s ×ₙ (scal 2)) backavgpool {m ∷ n ∷ []} (imap f) = imap (λ iv → let ix , ix<r = ix→a iv px = (ix ÷ₙ (cst 2)) {≥0 = λ _ → s≤s z≤n} pv = a→ix px (s→a (m ∷ n ∷ [])) λ jv → let x = a<b⇒c≤a⇒c<b (ix<r jv) (m/n*n≤m _ 2) y = a≤b⇒b≡c⇒a≤c x (*-lookup {jv = jv}{m = m}{n = n}) in *-cancelʳ-< _ _ y in f pv) ÷ᵣ (scal 4.0) where *-lookup : ∀ {jv : Ix 1 (2 ∷ [])}{m n} → lookup (m * 2 ∷ n * 2 ∷ []) (ix-lookup jv zero) ≡ lookup (m ∷ n ∷ []) (ix-lookup jv zero) * 2 *-lookup {jv = I0} = refl *-lookup {jv = I1} = refl -- This should be perfectly generaliseable --- instead of 2 -- we can use any m>0 a<b⇒k<2⇒a*2+k<b*2 : ∀ {a b k} → a < b → k < 2 → a * 2 + k < b * 2 a<b⇒k<2⇒a*2+k<b*2 {a} {b} {zero} a<b k<2 rewrite (+-identityʳ (a * 2)) | (*-comm a 2) | (*-comm b 2) = *-monoʳ-< 1 a<b a<b⇒k<2⇒a*2+k<b*2 {a} {b} {suc zero} a<b k<2 = ≤-trans (s≤s (≡⇒≤ (+-comm _ 1))) (*-monoˡ-≤ 2 a<b) a<b⇒k<2⇒a*2+k<b*2 {a} {b} {suc (suc k)} a<b (s≤s (s≤s ())) A<B⇒K<2⇒A*2+K<B*2 : ∀ {n s}{a b k : Ar ℕ n s} → a <a b → k <a (cst 2) → ((a ×ₙ (scal 2)) +ₙ k) <a (b ×ₙ (scal 2)) A<B⇒K<2⇒A*2+K<B*2 {a = imap a} {imap b} {imap k} a<b k<2 = λ iv → a<b⇒k<2⇒a*2+k<b*2 (a<b iv) (k<2 iv) -- avgpool←{÷∘4{+/,⍵}⌺(2 2⍴2)⍤2⊢⍵} avgpool-explicit : ∀ {s} → Ar Float 2 $ a→s (s→a s ×ₙ (scal 2)) → Ar Float 2 s avgpool-explicit {s} (imap p) = imap (λ iv → let sh = (s→a s ×ₙ scal 2) ix , ix<s = ix→a iv bx = ix ×ₙ scal 2 s-00 = s→a (0 ∷ 0 ∷ []) i1 = a→ix (bx +ₙ s-00) sh (A<B⇒K<2⇒A*2+K<B*2 {k = s-00} ix<s λ { I0 → s≤s z≤n; I1 → s≤s z≤n}) s-01 = s→a (0 ∷ 1 ∷ []) i2 = a→ix (bx +ₙ s-01) sh (A<B⇒K<2⇒A*2+K<B*2 {k = s-01} ix<s λ { I0 → s≤s z≤n; I1 → s≤s (s≤s z≤n)}) s-10 = s→a (1 ∷ 0 ∷ []) i3 = a→ix (bx +ₙ s-10) sh (A<B⇒K<2⇒A*2+K<B*2 {k = s-10} ix<s λ { I0 → s≤s (s≤s z≤n); I1 → s≤s z≤n }) s-11 = s→a (1 ∷ 1 ∷ []) i4 = a→ix (bx +ₙ s-11) sh (A<B⇒K<2⇒A*2+K<B*2 {k = s-11} ix<s λ { I0 → s≤s (s≤s z≤n) ; I1 → s≤s (s≤s z≤n) }) s = _÷⟨ n-n ⟩ᵣ (scal 4.0) $ (scal $ p i1) +⟨ n-n ⟩ᵣ (scal $ p i2) +⟨ n-n ⟩ᵣ (scal $ p i2) +⟨ n-n ⟩ᵣ (scal $ p i3) +⟨ n-n ⟩ᵣ (scal $ p i4) in unscal s) -- avgpool←{÷∘4{+/,⍵}⌺(2 2⍴2)⍤2⊢⍵} avgpool : ∀ {s} → Ar Float 2 $ a→s (s→a s ×ₙ (scal 2)) → Ar Float 2 s avgpool {s} (imap p) = imap (λ iv → let sh = (s→a s ×ₙ scal 2) ix , ix<s = ix→a iv bx = ix ×ₙ scal 2 ixs = ι (cst {s = 2 ∷ []} 2) use-ixs i,pf = let i , pf = i,pf jx = bx +⟨ n-n ⟩ₙ i in p (a→ix jx sh (A<B⇒K<2⇒A*2+K<B*2 ix<s pf)) s = _÷⟨ n-n ⟩ᵣ (scal 4.0) $ _+⟨ n-n ⟩ᵣ_ / , use-ixs ̈ ixs in unscal s) -- multiconv←{(a ws bs)←⍵⋄bs{⍺+⍵ conv a}⍤(0,(⍴⍴a))⊢ws} multiconv : ∀ {n m s sw so} → (a : Ar Float n s) → (ws : Ar (Ar Float n sw) m so) → (bs : Ar Float m so) → {≥ : (s→a s) ≥a (s→a sw)} → Ar (Ar Float n (a→s $ ((s→a s -ₙ s→a sw) {≥}) +ₙ (scal 1))) m so multiconv a ws bs {≥} = bs ̈⟨ (λ b w → (scal b) +ᵣ conv w a {≥}) ⟩ ws --look-at-avgpl : ∀ {s} → (a : Ar Float 2 $ a→s (s→a s ×ₙ (scal 2))) → avgpool {s = s} a ≡ {!!} --look-at-avgpl {x₁ ∷ x₂ ∷ []} (imap f) = {!!} module test-avgpool where test-avgp = avgpool {s = 1 ∷ 1 ∷ []} (imap λ { (zero ∷ zero ∷ []) → 1.0 ; (zero ∷ suc zero ∷ []) → 2.0 ; (suc zero ∷ zero ∷ []) → 3.0 ; (suc zero ∷ suc zero ∷ []) → 4.0 }) avgp-val = unimap test-avgp $ zero ∷ zero ∷ [] -- This should go into APL operators. areplicate : ∀ {a}{X : Set a}{s} → (k : ℕ) → Ar X 1 s → Ar X _ _ areplicate k (imap f) = let x = imap λ iv → imap {d = 1} {s = k ∷ []} λ _ → f iv in , flatten x test-repl = a→s $ areplicate 2 $ proj₁ ̈ ι (scal 5) ∸-monoˡ-< : ∀ {m n o} → m < n → o ≤ m → m ∸ o < n ∸ o ∸-monoˡ-< {o = zero} m<n o≤m = m<n ∸-monoˡ-< {suc m} {o = suc o} (s≤s m<n) (s≤s o≤m) = ∸-monoˡ-< m<n o≤m a+b-a≡a : ∀ {n} {s₁ : Vec ℕ n} {s : Ix 1 (n ∷ []) → ℕ} {jv : Ix 1 (n ∷ [])} → lookup (tabulate (λ i → s (i ∷ []) + lookup s₁ i)) (ix-lookup jv zero) ∸ s jv ≡ lookup s₁ (ix-lookup jv zero) a+b-a≡a {zero} {[]} {s} {x ∷ []} = magic-fin x a+b-a≡a {suc n} {x ∷ s₁} {s} {I0} = m+n∸m≡n (s I0) x a+b-a≡a {suc n} {x ∷ s₁} {s} {suc j ∷ []} = a+b-a≡a {s₁ = s₁} {s = λ { (j ∷ []) → s (suc j ∷ [])}} {jv = j ∷ []} pre-pad : ∀ {a}{X : Set a}{n}{s₁ : Vec ℕ n} → (sh : Ar ℕ 1 (n ∷ [])) → X → (a : Ar X n s₁) → Ar X n (a→s $ sh +ₙ ρ a) pre-pad {s₁ = s₁} (imap s) e (imap f) = imap body where body : _ body iv = let ix , ix<s = ix→a iv in case ix ≥a? (imap s) of λ where (yes p) → let fx = (ix -ₙ (imap s)) {≥ = p} fv = a→ix fx (s→a s₁) λ jv → a<b⇒b≡c⇒a<c (∸-monoˡ-< (ix<s jv) (p jv)) (a+b-a≡a {s₁ = s₁} {s = s} {jv = jv}) in f (subst-ix (λ i → lookup∘tabulate _ i) fv) (no ¬p) → e arel-thm : ∀ {n s}{a b : Ar ℕ n s} → ARel _≥_ a b → a ≥a b arel-thm {a = imap a} {imap b} pf = pf ≥a-lkup : ∀ {n s}{a b : Ar ℕ n s} → a ≥a b → (iv : Ix n s) → unimap a iv ≥ unimap b iv ≥a-lkup {a = imap a} {imap b} p iv = p iv _↑⟨_⟩_ : ∀ {a}{X : Set a}{n}{s : Vec ℕ n} → (sh : Ar ℕ 1 (n ∷ [])) → X → (a : Ar X n s) → Ar X n (a→s sh) _↑⟨_⟩_ {s = s} (imap sh) e (imap a) = imap body where body : _ body iv = let ix , ix<s = ix→a iv in case ix <a? (ρ imap a) of λ where (yes p) → let av = a→ix ix (ρ imap a) p in a (subst-ix (λ i → lookup∘tabulate _ i) av) (no ¬p) → e -- backin←{(d w in)←⍵⋄⊃+/,w{(⍴in)↑(-⍵+⍴d)↑⍺×d}¨⍳⍴w} backin : ∀ {n s s₁} → (inp : Ar Float n s) → (w : Ar Float n s₁) → .{≥ : s→a s ≥a s→a s₁} → (d : Ar Float n $ a→s $ (s→a s -ₙ s→a s₁) {≥} +ₙ scal 1) → Ar Float n s backin {n}{s}{s₁} inp w d = let ixs = ι (ρ w) use-ixs i,pf = let i , pf = i,pf iv = (a→ix i (ρ w) pf) wᵢ = (unimap w) (subst-ix (λ i → lookup∘tabulate _ i) iv) x = pre-pad i 0.0 (d ×ᵣ scal wᵢ) y = (ρ inp) ↑⟨ 0.0 ⟩ x in y s = reduce-1d (, use-ixs ̈ ixs) _+ᵣ_ (cst 0.0) in subst-ar (λ i → lookup∘tabulate _ i) s s-w+1≤s : ∀ {s w} → s ≥ w → s > 0 → w > 0 → s ∸ w + 1 ≤ s s-w+1≤s {suc s} {suc w} (s≤s s≥w) s>0 w>0 rewrite (+-comm (s ∸ w) 1) = s≤s (m∸n≤m s w) helper : ∀ {n} {sI sw : Vec ℕ n} → s→a sI ≥a s→a sw → (cst 0) <a s→a sI → (cst 0) <a s→a sw → (iv : Ix 1 (n ∷ [])) → lookup sI (ix-lookup iv zero) ≥ lookup (tabulate (λ i → lookup sI i ∸ lookup sw i + 1)) (ix-lookup iv zero) helper {sI = sI} {sw} sI≥sw sI>0 sw>0 (x ∷ []) rewrite (lookup∘tabulate (λ i → lookup sI i ∸ lookup sw i + 1) x) = s-w+1≤s (sI≥sw (x ∷ [])) (sI>0 (x ∷ [])) (sw>0 (x ∷ [])) -- sI - (sI - sw + 1) + 1 = sw shape-same : ∀ {n} {sI sw : Vec ℕ n} → s→a sI ≥a s→a sw → (cst 0) <a s→a sI → (cst 0) <a s→a sw → (i : Fin n) → lookup (tabulate (λ i₁ → lookup sI i₁ ∸ lookup (tabulate (λ i₂ → lookup sI i₂ ∸ lookup sw i₂ + 1)) i₁ + 1)) i ≡ lookup sw i shape-same {suc n} {x ∷ sI} {y ∷ sw} I≥w I>0 w>0 zero = begin x ∸ (x ∸ y + 1) + 1 ≡⟨ sym $ +-∸-comm {m = x} 1 {o = (x ∸ y + 1)} (s-w+1≤s (I≥w I0) (I>0 I0) (w>0 I0)) ⟩ x + 1 ∸ (x ∸ y + 1) ≡⟨ cong (x + 1 ∸_) (sym $ +-∸-comm {m = x} 1 {o = y} (I≥w I0)) ⟩ x + 1 ∸ (x + 1 ∸ y) ≡⟨ m∸[m∸n]≡n {m = x + 1} {n = y} (a≤b⇒b≡c⇒a≤c (≤-step $ I≥w I0) (+-comm 1 x)) ⟩ y ∎ where open ≡-Reasoning shape-same {suc n} {x ∷ sI} {x₁ ∷ sw} I≥w I>0 w>0 (suc i) = shape-same {sI = sI} {sw = sw} (λ { (i ∷ []) → I≥w (suc i ∷ []) }) (λ { (i ∷ []) → I>0 (suc i ∷ []) }) (λ { (i ∷ []) → w>0 (suc i ∷ []) }) i {-backmulticonv ← { (d_out weights in bias) ← ⍵ d_in ← +⌿d_out {backin ⍺ ⍵ in} ⍤((⍴⍴in), (⍴⍴in)) ⊢ weights d_w ← {⍵ conv in} ⍤(⍴⍴in) ⊢ d_out d_bias ← backbias ⍤(⍴⍴in) ⊢ d_out d_in d_w d_bias }-} backmulticonv : ∀ {n m}{sI sw so} → (W : Ar (Ar Float n sw) m so) → (I : Ar Float n sI) → (B : Ar Float m so) -- We can get rid of these two expressions if we rewrite -- the convolution to accept s+1 ≥ w, and not s ≥ w. → {>I : (cst 0) <a s→a sI} → {>w : (cst 0) <a s→a sw} → {≥ : s→a sI ≥a s→a sw} → (δo : Ar (Ar Float n (a→s $ (s→a sI -ₙ s→a sw) {≥} +ₙ (scal 1))) m so) → (typeOf W) × (typeOf I) × (typeOf B) backmulticonv {sI = sI} {sw} {so} W I B {sI>0} {sw>0} {sI≥sw} δo = let δI = reduce-1d (, (W ̈⟨ (λ x y → backin I x {sI≥sw} y) ⟩ δo)) _+ᵣ_ (cst 0.0) δW = (λ x → conv x I {s₁≥s = helper {sI = sI} {sw = sw} sI≥sw sI>0 sw>0}) ̈ δo δB = backbias ̈ δo in (imap (λ iv → subst-ar (shape-same {sI = sI} {sw = sw} sI≥sw sI>0 sw>0) ((unimap δW) iv)) , δI , imap (λ iv → unscal $ unimap δB iv)) instance auto≥ : ∀ {m n : ℕ} → {{_ : True (m ≥? n)}} → m ≥ n auto≥ {m} {n} {{c}} = toWitness c auto≥a : ∀ {d s}{p q : Ar ℕ d s} {_ : True (p ≥a? q)} → (p ≥a q) auto≥a {p = imap x} {imap x₁} { c } = toWitness c auto<a : ∀ {d s}{p q : Ar ℕ d s} {{_ : True (p <a? q)}} → (p <a q) auto<a {p = imap x} {imap x₁} ⦃ c ⦄ = toWitness c test-zhang : (inp : Ar Float _ (28 ∷ 28 ∷ [])) → (k₁ : Ar Float _ (6 ∷ 5 ∷ 5 ∷ [])) → (b₁ : Ar Float _ (6 ∷ [])) → (k₂ : Ar Float _ (12 ∷ 6 ∷ 5 ∷ 5 ∷ [])) → (b₂ : Ar Float _ (12 ∷ [])) → (fc : Ar Float _ (10 ∷ 12 ∷ 1 ∷ 4 ∷ 4 ∷ [])) → (b : Ar Float _ (10 ∷ [])) → Ar Float _ (10 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) test-zhang inp k₁ b₁ k₂ b₂ fc b = let c₁ = logistic ̈ multiconv inp (nest k₁) b₁ {auto≥a} s₁ = avgpool {s = 12 ∷ 12 ∷ []} ̈ c₁ c₂ = logistic ̈ multiconv (flatten s₁) (nest k₂) b₂ {auto≥a} s₂ = avgpool {s = 4 ∷ 4 ∷ []} ̈ (nest {s = _ ∷ _ ∷ []} $ flatten c₂) r = logistic ̈ multiconv (flatten s₂) (nest fc) b {auto≥a} in flatten r train-zhang :(inp : Ar Float _ (28 ∷ 28 ∷ [])) → (k₁ : Ar Float _ (6 ∷ 5 ∷ 5 ∷ [])) → (b₁ : Ar Float _ (6 ∷ [])) → (k₂ : Ar Float _ (12 ∷ 6 ∷ 5 ∷ 5 ∷ [])) → (b₂ : Ar Float _ (12 ∷ [])) → (fc : Ar Float _ (10 ∷ 12 ∷ 1 ∷ 4 ∷ 4 ∷ [])) → (b : Ar Float _ (10 ∷ [])) → (target : Ar Float _ (10 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ [])) → typeOf k₁ × typeOf b₁ × typeOf k₂ × typeOf b₂ × typeOf fc × typeOf b × Scal Float train-zhang inp k₁ b₁ k₂ b₂ fc b target = let c₁ = logistic ̈ multiconv inp (nest k₁) b₁ {auto≥a} s₁ = avgpool {s = 12 ∷ 12 ∷ []} ̈ c₁ c₂ = logistic ̈ multiconv (flatten s₁) (nest k₂) b₂ {auto≥a} s₂ = avgpool {s = 4 ∷ 4 ∷ []} ̈ (nest {s = _ ∷ _ ∷ []} $ flatten c₂) o = flatten $ logistic ̈ multiconv (flatten s₂) (nest fc) b {auto≥a} δo = o -ᵣ target ε = meansqerr (, o) (, target) δfc , δs₂ , δb = backmulticonv (nest fc) (flatten s₂) b {>I = auto<a} {>w = auto<a} {≥ = auto≥a} (nest (blog δo o)) δc₂ = backavgpool ̈ (nest {s = _ ∷ _ ∷ []} δs₂) δk₂ , δs₁ , δb₂ = backmulticonv (nest k₂) (flatten s₁) b₂ {>I = auto<a} {>w = auto<a} {≥ = auto≥a} (nest (blog (flatten δc₂) (flatten c₂))) δc₁ = backavgpool ̈ (nest {s = _ ∷ []} δs₁) δk₁ , _ , δb₁ = backmulticonv (nest k₁) inp b₁ {>I = auto<a} {>w = auto<a} {≥ = auto≥a} (nest (blog (flatten δc₁) (flatten c₁))) in (flatten δk₁) , δb₁ , (flatten δk₂) , δb₂ , (flatten δfc) , δb , ε
{ "alphanum_fraction": 0.407226827, "avg_line_length": 38.6981132075, "ext": "agda", "hexsha": "6413515fbab965412ba9b7af1f7d2afffdfdf9c3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-10-12T07:19:48.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-12T07:19:48.000Z", "max_forks_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-array", "max_forks_repo_path": "CNN.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-array", "max_issues_repo_path": "CNN.agda", "max_line_length": 113, "max_stars_count": 6, "max_stars_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-array", "max_stars_repo_path": "CNN.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-15T14:21:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-09T13:53:46.000Z", "num_tokens": 8810, "size": 18459 }
data Dec (A : Set) : Set where yes : A → Dec A no : Dec A record ⊤ : Set where constructor tt data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x subst : ∀ {A}(P : A → Set){x y} → x ≡ y → P x → P y subst P refl px = px cong : ∀ {A B}(f : A → B){x y} → x ≡ y → f x ≡ f y cong f refl = refl postulate _≟_ : (n n' : ⊤) → Dec (n ≡ n') record _×_ A B : Set where constructor _,_ field proj₁ : A proj₂ : B open _×_ data Maybe : Set where nothing : Maybe data Blah (a : Maybe × ⊤) : Set where blah : {b : Maybe × ⊤} → Blah b → Blah a update : {A : Set} → ⊤ → A → A update n m with n ≟ n update n m | yes p = m update n m | no = m lem-upd : ∀ {A} n (m : A) → update n m ≡ m lem-upd n m with n ≟ n ... | yes p = refl ... | no = refl bug : {x : Maybe × ⊤} → proj₁ x ≡ nothing → Blah x bug ia = blah (bug (subst {⊤} (λ _ → proj₁ {B = ⊤} (update tt (nothing , tt)) ≡ nothing) refl (cong proj₁ (lem-upd _ _))))
{ "alphanum_fraction": 0.4765166341, "avg_line_length": 21.7446808511, "ext": "agda", "hexsha": "c51138e15fa1d5375f9b1ff941cf2033b8f10dec", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue970.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue970.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue970.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 401, "size": 1022 }
open import Common.Prelude open import TestHarness open import TestBool using ( not; _∧_ ; _↔_ ) module TestList where _++_ : ∀ {X} → List X → List X → List X [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) revApp : ∀ {X} → List X → List X → List X revApp [] ys = ys revApp (x ∷ xs) ys = revApp xs (x ∷ ys) reverse : ∀ {X} → List X → List X reverse xs = revApp xs [] _≟_ : List Bool → List Bool → Bool [] ≟ [] = true (x ∷ xs) ≟ (y ∷ ys) = (x ↔ y) ∧ (xs ≟ ys) _ ≟ - = false [tt] = true ∷ [] [ff] = false ∷ [] [tt,ff] = true ∷ [ff] [ff,tt] = false ∷ [tt] [ff,tt,ff] = false ∷ [tt,ff] tests : Tests tests _ = ( assert ([] ≟ []) "[]=[]" , assert (not ([tt] ≟ [ff])) "[tt]≠[ff]" , assert (([] ++ [tt]) ≟ [tt]) "[]++[tt]=[tt]" , assert (([tt] ++ []) ≟ [tt]) "[tt]++[]=[tt]" , assert (([tt] ++ [ff]) ≟ [tt,ff]) "[tt]++[ff]=[tt,ff]" , assert (([ff,tt] ++ [ff]) ≟ [ff,tt,ff]) "[ff,tt]++[ff]=[ff,tt,ff]" , assert (not (([ff] ++ [tt]) ≟ [tt,ff])) "[ff]++[tt]≠[tt,ff]" , assert (not (([tt] ++ [tt]) ≟ [tt,ff])) "[tt]++[tt]≠[tt,ff]" , assert (reverse [tt,ff] ≟ [ff,tt]) "rev[tt,ff]=[ff,tt]" , assert (reverse (reverse [tt,ff]) ≟ [tt,ff]) "rev(rev[tt,ff])=[tt,ff]" , assert (not (reverse [tt,ff] ≟ [tt,ff])) "rev[tt,ff]≠[tt,ff]" )
{ "alphanum_fraction": 0.4479326187, "avg_line_length": 30.3720930233, "ext": "agda", "hexsha": "ad492116f1723f8f3dabcf4169b72b073e06c42d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/js/TestList.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/js/TestList.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/js/TestList.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 565, "size": 1306 }
{-# OPTIONS --safe #-} module Data.Vec.Sigma where open import Prelude open import Data.Unit.UniversePolymorphic renaming (⊤ to ⊤′) Vec⁺ : Type a → ℕ → Type a Vec⁺ A zero = A Vec⁺ A (suc n) = A × Vec⁺ A n Vec : Type a → ℕ → Type a Vec A 0 = ⊤′ Vec A (suc n) = Vec⁺ A n private variable n : ℕ open import Data.List using (List; _∷_; []) toList⁺ : Vec⁺ A n → List A toList⁺ {n = zero } x = x ∷ [] toList⁺ {n = suc n} (x , xs) = x ∷ toList⁺ xs toList : Vec A n → List A toList {n = zero } _ = [] toList {n = suc n} = toList⁺
{ "alphanum_fraction": 0.5751391466, "avg_line_length": 19.962962963, "ext": "agda", "hexsha": "830079aefcb081c56ea638330dc8de63e2431317", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Vec/Sigma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Vec/Sigma.agda", "max_line_length": 60, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Vec/Sigma.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 210, "size": 539 }
-- Regression, introduced by the fix of issue 1759 module Issue1815 where module _ (A : Set) where record R1 : Set where field f1 : A record R2 : Set where field f2 : R1 open R1 f2 public -- Parameter A is hidden in type of field f1 in R1 ... test1 : ∀ A (r : R1 A) → A test1 A r = R1.f1 r -- ... and should be so in the type of field f1 in R2, too. shouldFail : ∀ A (r : R2 A) → A shouldFail A r = R2.f1 A r
{ "alphanum_fraction": 0.626450116, "avg_line_length": 20.5238095238, "ext": "agda", "hexsha": "d80603649db04ec2b341bfd4a7b7c2de4eca6e0f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1815.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1815.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1815.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 154, "size": 431 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Binary.Equality.Propositional directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Relation.Equality.Propositional where open import Data.Vec.Relation.Binary.Equality.Propositional public
{ "alphanum_fraction": 0.5170842825, "avg_line_length": 33.7692307692, "ext": "agda", "hexsha": "bfd71856248ea45fcff7f64e02d6dbfe1c6bd360", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/Propositional.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/Propositional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 72, "size": 439 }
open import Issue1251.NonTerminating
{ "alphanum_fraction": 0.8918918919, "avg_line_length": 18.5, "ext": "agda", "hexsha": "3a1335688690e338786654b7df22703e470e5dcd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1251.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1251.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1251.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 9, "size": 37 }
open import Agda.Builtin.Bool open import Agda.Builtin.Equality open import Agda.Builtin.Float data ⊥ : Set where defNegZero : -0.0 ≡ 0.0 → ⊥ defNegZero () primEqNegZero : primFloatEquality -0.0 0.0 ≡ false primEqNegZero = refl primLtNegZero₁ : primFloatNumericalLess 0.0 -0.0 ≡ false primLtNegZero₁ = refl primLtNegZero₂ : primFloatNumericalLess -0.0 0.0 ≡ false primLtNegZero₂ = refl primShowNegZero : primShowFloat -0.0 ≡ "-0.0" primShowNegZero = refl
{ "alphanum_fraction": 0.7554112554, "avg_line_length": 21, "ext": "agda", "hexsha": "08d51caa544dfa0c967a64dcbebe90ecac1c7504", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Succeed/Issue2169.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Succeed/Issue2169.agda", "max_line_length": 56, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Succeed/Issue2169.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 170, "size": 462 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category open import Categories.Object.BinaryProducts open import Categories.Object.Exponentiating module Categories.Object.Exponentiating.Adjunction {o ℓ e} (C : Category o ℓ e) (binary : BinaryProducts C) (Σ : Category.Obj C) (exponentiating : Exponentiating C binary Σ) where open Category C open BinaryProducts binary open Exponentiating exponentiating import Categories.Object.Product open Categories.Object.Product C import Categories.Object.Product.Morphisms open Categories.Object.Product.Morphisms C open Equiv open HomReasoning import Categories.Object.Exponentiating.Functor open Categories.Object.Exponentiating.Functor C binary Σ exponentiating open import Categories.Functor using (Functor; Contravariant) renaming (id to idF; _≡_ to _≡F_; _∘_ to _∘F_) open import Categories.Adjunction hiding (_≡_; id) open import Categories.NaturalTransformation using (NaturalTransformation; module NaturalTransformation) open import Categories.Monad using (Monad) Σ↑-Self-Adjunction : Adjunction (Functor.op Σ↑-Functor) Σ↑-Functor Σ↑-Self-Adjunction = record { unit = record { η = λ _ → flip id ; commute = unit-commute } ; counit = record { η = λ _ → flip id ; commute = counit-commute } ; zig = zig-zag ; zag = zig-zag } where .lem₁ : ∀{A B C D}{f : (B × C) ⇒ D}{g : A ⇒ (C × B)} → (f ∘ swap ∘ second id) ∘ g ≡ f ∘ swap ∘ g lem₁ {A}{B}{C}{D}{f}{g} = begin (f ∘ swap ∘ second id) ∘ g ↓⟨ (refl ⟩∘⟨ refl ⟩∘⟨ second-id product) ⟩∘⟨ refl ⟩ (f ∘ swap ∘ id) ∘ g ↓⟨ (refl ⟩∘⟨ identityʳ) ⟩∘⟨ refl ⟩ (f ∘ swap) ∘ g ↓⟨ assoc ⟩ f ∘ swap ∘ g ∎ .lem₂ : ∀ {X Y}{f : X ⇒ Y} → eval {Σ↑ Y} ∘ first (flip id ∘ f) ≡ eval {X} ∘ swap ∘ second [Σ↑ f ] lem₂ {X}{Y}{f} = begin eval {Σ↑ Y} ∘ first (flip id ∘ f) ↑⟨ refl ⟩∘⟨ first∘first ⟩ eval {Σ↑ Y} ∘ first (flip id) ∘ first f ↑⟨ assoc ⟩ (eval {Σ↑ Y} ∘ first (flip id)) ∘ first f ↓⟨ β ⟩∘⟨ refl ⟩ (eval {Y} ∘ swap ∘ second id) ∘ first f ↓⟨ lem₁ ⟩ eval {Y} ∘ swap ∘ first f ↓⟨ refl ⟩∘⟨ swap∘⁂ ⟩ eval {Y} ∘ second f ∘ swap ↑⟨ assoc ⟩ (eval {Y} ∘ second f) ∘ swap ↑⟨ β ⟩∘⟨ refl ⟩ (eval {X} ∘ first (λ-abs X (eval {Y} ∘ second f))) ∘ swap ↓⟨ assoc ⟩ eval {X} ∘ first (λ-abs X (eval {Y} ∘ second f)) ∘ swap ↑⟨ refl ⟩∘⟨ swap∘⁂ ⟩ eval {X} ∘ swap ∘ second (λ-abs X (eval ∘ second f)) ∎ .unit-commute : ∀ {X Y} (f : X ⇒ Y) → flip id ∘ f ≡ [Σ² f ] ∘ flip id unit-commute {X}{Y} f = begin flip id ∘ f ↓⟨ λ-unique lem₂ ⟩ flip [Σ↑ f ] ↑⟨ λ-cong lem₁ ⟩ λ-abs (Σ↑ Y) ((eval {X} ∘ swap ∘ second id) ∘ second [Σ↑ f ]) ↓⟨ λ-distrib ⟩ [Σ↑ [Σ↑ f ] ] ∘ flip id ∎ .counit-commute : ∀ {X Y} (f : X ⇒ Y) → [Σ² f ] ∘ flip id ≡ flip id ∘ f counit-commute f = sym (unit-commute f) .zig-zag : ∀{X} → id ≡ [Σ↑ flip id ] ∘ flip id zig-zag {X} = begin id ↑⟨ flip² ⟩ flip (flip id) ↑⟨ λ-cong lem₁ ⟩ λ-abs X ((eval ∘ swap ∘ second id) ∘ second (flip id)) ↓⟨ λ-distrib ⟩ [Σ↑ flip id ] ∘ flip id ∎
{ "alphanum_fraction": 0.5332940483, "avg_line_length": 28.2833333333, "ext": "agda", "hexsha": "f8d51fff80869e07c8a5f48025e20f53c1b8ad57", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Exponentiating/Adjunction.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Exponentiating/Adjunction.agda", "max_line_length": 71, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/Exponentiating/Adjunction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1285, "size": 3394 }
module Test where data Nat : Set where zero : Nat suc : Nat -> Nat module Q where module R where f : Nat -> Nat f n = suc n module B (n : Nat) where open Q.R public q = f n module Bz = B zero postulate _==_ : {A : Set} -> A -> A -> Set refl : {A : Set}{x : A} -> x == x
{ "alphanum_fraction": 0.53, "avg_line_length": 13.0434782609, "ext": "agda", "hexsha": "d9e1aeb510f0709a0b68198b35b57f0a4917756e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "src/prototyping/modules/flat/Test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "src/prototyping/modules/flat/Test.agda", "max_line_length": 35, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "src/prototyping/modules/flat/Test.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 112, "size": 300 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Equivalences.GroupSplitEpiAction where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.Structure open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Relation.Binary open import Cubical.Structures.Subtype open import Cubical.Algebra.Group open import Cubical.Structures.LeftAction open import Cubical.Algebra.Group.Semidirect open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Isomorphism open import Cubical.DStructures.Structures.Group open import Cubical.DStructures.Structures.SplitEpi open import Cubical.DStructures.Structures.Action open Kernel open GroupHom -- such .fun! open GroupLemmas open MorphismLemmas {- After associating, we have two DURGs over Grp Grp × LAS × isAction Grp × (F × B) × isSecRet | | \ / Grp Action gives split mono: α π₂ G₀ --> H ↦ G₀ ↔ H ⋊⟨ α ⟩ G₀ ι₂ Split mono gives Action: σ Ad∘ι G₀ ↔ G₁ ↦ G₀ --> ker σ ι -} module _ (ℓ ℓ' : Level) where 𝒮ᴰ-Iso-GroupAct-SplitEpi-* : 𝒮ᴰ-♭PIso (idfun (Group {ℓ})) (𝒮ᴰ-G\GLasAction ℓ (ℓ-max ℓ ℓ')) (𝒮ᴰ-G\GFBSplitEpi ℓ (ℓ-max ℓ ℓ')) RelIso.fun (𝒮ᴰ-Iso-GroupAct-SplitEpi-* G₀) (H , _α_ , isAct) = H⋊G₀ , (ι₂ α , π₂ α) , π₂-hasSec α where -- combine the action structure and axioms α = groupaction _α_ isAct -- semidirect product induced by the action α H⋊G₀ : Group {ℓ-max ℓ ℓ'} H⋊G₀ = H ⋊⟨ α ⟩ G₀ RelIso.inv (𝒮ᴰ-Iso-GroupAct-SplitEpi-* G₀) (G₁ , (ι , σ) , isSplit) = ker-σ , _α_ , isAct where open GroupNotation₀ G₀ open GroupNotation₁ G₁ open SplitEpiNotation ι σ isSplit open IsGroupAction -- G₀ will act on ker σ ker-σ : Group {ℓ-max ℓ ℓ'} ker-σ = ker σ -- notation: group operation of ker σ _+ₖ_ = GroupStr._+_ (snd ker-σ) -- the left action structure of G₀ on ker σ -- is given by -- g α h := ιg + h - ιg _α_ : LeftActionStructure ⟨ G₀ ⟩ ⟨ ker-σ ⟩ g α (h , p) = (ig +₁ h) -₁ ig , q where ig = 𝒾 g abstract -- proof that (ig +₁ h) -₁ ig -- lies in ker-σ q = s ((ig +₁ h) -₁ ig) ≡⟨ σ .isHom (ig +₁ h) (-₁ ig) ⟩ s (ig +₁ h) +₀ s (-₁ ig) ≡⟨ cong (s (ig +₁ h) +₀_) (mapInv σ ig) ⟩ s (ig +₁ h) -₀ si g ≡⟨ cong (_+₀ -₀ (s ig)) (σ .isHom ig h) ⟩ (si g +₀ s h) -₀ si g ≡⟨ cong (λ z → ((si g) +₀ z) -₀ (si g)) p ⟩ ((si g) +₀ 0₀) -₀ (si g) ≡⟨ cong (_+₀ -₀ (s ig)) (rId₀ (s ig)) ⟩ (si g) -₀ (si g) ≡⟨ rCancel₀ (si g) ⟩ 0₀ ∎ -- proof that the left action structure α -- satisfies the group action axioms abstract isAct : IsGroupAction G₀ ker-σ _α_ -- at every g, g α_ is a homomorphism, that is -- g α (h + h') ≡ g α h + g α h' isAct .isHom g (h , p) (h' , p') = subtypeWitnessIrrelevance (sg-typeProp σ) q where ig = ι .fun g -ig = -₁ ig q = fst (g α ((h , p) +ₖ (h' , p'))) ≡⟨ refl ⟩ (ig +₁ (h +₁ h')) -₁ ig ≡⟨ cong (λ z → (ig +₁ (z +₁ h')) +₁ (-₁ ig)) (sym (rId₁ h) ∙ cong (h +₁_) (sym (lCancel₁ ig))) ⟩ (ig +₁ ((h +₁ (-ig +₁ ig)) +₁ h')) -₁ ig ≡⟨ cong (λ z → (ig +₁ (z +₁ h')) -₁ ig) (assoc₁ h -ig ig) ⟩ (ig +₁ (((h +₁ -ig) +₁ ig) +₁ h')) -₁ ig ≡⟨ cong (λ z → (ig +₁ z) -₁ ig) (sym (assoc₁ (h -₁ ig) ig h')) ⟩ (ig +₁ ((h +₁ -ig) +₁ (ig +₁ h'))) -₁ ig ≡⟨ cong (_+₁ -ig) (assoc₁ ig (h -₁ ig) (ig +₁ h')) ⟩ ((ig +₁ (h +₁ -ig)) +₁ (ig +₁ h')) -₁ ig ≡⟨ cong (λ z → (z +₁ (ig +₁ h')) -₁ ig) (assoc₁ ig h -ig) ⟩ (((ig +₁ h) +₁ -ig) +₁ (ig +₁ h')) -₁ ig ≡⟨ sym (assoc₁ ((ig +₁ h) -₁ ig) (ig +₁ h') -ig) ⟩ ((ig +₁ h) +₁ -ig) +₁ ((ig +₁ h') +₁ -ig) ≡⟨ refl ⟩ fst ((g α (h , p)) +ₖ (g α (h' , p'))) ∎ -- α satisfies the identity law, that is -- 0 α h = h for every h isAct .identity (h , p) = subtypeWitnessIrrelevance (sg-typeProp σ) q where q = fst (0₀ α (h , p)) ≡⟨ cong (λ z → (z +₁ h) +₁ (-₁ z)) (mapId ι) ⟩ (0₁ +₁ h) +₁ (-₁ 0₁) ≡⟨ cong ((0₁ +₁ h) +₁_) (invId G₁) ∙∙ rId₁ (0₁ +₁ h) ∙∙ lId₁ h ⟩ h ∎ -- α is associative in the sense that -- (g +₀ g') α h = g α (g' α h) isAct .assoc g g' (h , p) = subtypeWitnessIrrelevance (sg-typeProp σ) q where ig = ι .fun g ig' = ι .fun g' -ig = -₁ ig -ig' = -₁ ig' q = (ι .fun (g +₀ g') +₁ h) -₁ (ι .fun (g +₀ g')) ≡⟨ cong (λ z → (z +₁ h) -₁ z) (ι .isHom g g') ⟩ ((ig +₁ ig') +₁ h) -₁ (ig +₁ ig') ≡⟨ cong (((ig +₁ ig') +₁ h) +₁_) (invDistr G₁ ig ig') ⟩ ((ig +₁ ig') +₁ h) +₁ (-ig' -₁ ig) ≡⟨ cong (_+₁ (-ig' +₁ -ig)) (sym (assoc₁ ig ig' h)) ⟩ (ig +₁ (ig' +₁ h)) +₁ (-ig' -₁ ig) ≡⟨ assoc₁ (ig +₁ (ig' +₁ h)) -ig' -ig ⟩ ((ig +₁ (ig' +₁ h)) -₁ ig') -₁ ig ≡⟨ cong (_+₁ -ig) (sym (assoc₁ ig (ig' +₁ h) -ig')) ⟩ fst (g α (g' α (h , p))) ∎ -- end of abstract RelIso.rightInv (𝒮ᴰ-Iso-GroupAct-SplitEpi-* G₀) (G₁ , (ι , σ) , isSplit) = G₁-≅ , (ι-≅ , σ-≅) , isSplit-≅ where -- get our hands dirty with shameless reference to what we're constructing, -- such is the power of copatterns! -- back: turn the given split epi into the group action tuple ga ga = RelIso.inv (𝒮ᴰ-Iso-GroupAct-SplitEpi-* G₀) (G₁ , (ι , σ) , isSplit) -- map ga forth to the split epi tuple se' se' = RelIso.fun (𝒮ᴰ-Iso-GroupAct-SplitEpi-* G₀) ga -- notation -- short for (ker σ) ⋊⟨ Adᵢ ⟩ G₀ kσ⋊G₀ = fst se' -- the group action ga _α_ = fst (snd ga) isAct = snd (snd ga) open GroupNotation₀ G₀ open GroupNotation₁ G₁ -- notational convention: -- g : ⟨ G₀ ⟩ -- h : ⟨ G₁ ⟩ -- p : witness that g is in ker σ open SplitEpiNotation ι σ isSplit -- (ker σ) ⋊⟨ Adᵢ ⟩ G₀ ≃ G₁ G₁-≅ : GroupEquiv kσ⋊G₀ G₁ GroupEquiv.eq G₁-≅ = isoToEquiv isom where isom : Iso ⟨ kσ⋊G₀ ⟩ ⟨ G₁ ⟩ -- map forth is straight forward Iso.fun isom ((h , p) , g) = h +₁ 𝒾 g -- beginning of Iso.inv isom h -- G₁ part of the map fst (fst (Iso.inv isom h)) = h +₁ (is- h) -- proof that G₁ part is in ker σ snd (fst (Iso.inv isom h)) = q where abstract q = s (h +₁ is- h) ≡⟨ σ .isHom h (is- h) ⟩ s h +₀ s (is- h) ≡⟨ cong (s h +₀_) (funExt⁻ (cong GroupHom.fun isSplit) (s- h)) ⟩ s h +₀ (s- h) ≡⟨ cong (s h +₀_) (mapInv σ h) ⟩ s h -₀ (s h) ≡⟨ rCancel₀ (s h) ⟩ 0₀ ∎ -- G₀ part of the map snd (Iso.inv isom h) = s h -- end of Iso.inv isom h -- beginning of Iso.leftInv isom ((h , p) , g) Iso.leftInv isom ((h , p) , g) = ΣPathP (subtypeWitnessIrrelevance (sg-typeProp σ) q , q') where abstract q = (h +₁ 𝒾 g) +₁ is- (h +₁ 𝒾 g) ≡⟨ cong (λ z → (h +₁ 𝒾 g) +₁ is z) (invDistr G₁ h (𝒾 g)) ⟩ (h +₁ 𝒾 g) +₁ is ((-i g) -₁ h) ≡⟨ cong (λ z → (h +₁ 𝒾 g) +₁ 𝒾 z) (σ .isHom (-i g) (-₁ h)) ⟩ (h +₁ 𝒾 g) +₁ 𝒾 ((s-i g) +₀ (s- h)) ≡⟨ cong (λ z → (h +₁ 𝒾 g) +₁ 𝒾 ((s-i g) +₀ z)) (mapInv σ h ∙∙ cong -₀_ p ∙∙ invId G₀) ⟩ (h +₁ 𝒾 g) +₁ 𝒾 ((s-i g) +₀ 0₀) ≡⟨ cong (λ z → (h +₁ 𝒾 g) +₁ 𝒾 z) (rId₀ (s-i g)) ⟩ (h +₁ 𝒾 g) +₁ 𝒾 (s-i g) ≡⟨ cong (λ z → (h +₁ 𝒾 g) +₁ 𝒾 z ) (mapInv σ (𝒾 g)) ⟩ (h +₁ 𝒾 g) +₁ 𝒾 (-si g) ≡⟨ cong ((h +₁ 𝒾 g) +₁_) (mapInv ι (si g)) ⟩ (h +₁ 𝒾 g) -₁ (isi g) ≡⟨ cong (λ z → (h +₁ 𝒾 g) -₁ (𝒾 z)) (funExt⁻ (cong GroupHom.fun isSplit) g ) ⟩ (h +₁ 𝒾 g) -₁ (𝒾 g) ≡⟨ sym (assoc₁ h (𝒾 g) (-i g)) ⟩ h +₁ (𝒾 g -₁ (𝒾 g)) ≡⟨ cong (h +₁_) (rCancel₁ (𝒾 g)) ⟩ h +₁ 0₁ ≡⟨ rId₁ h ⟩ h ∎ q' = s (h +₁ 𝒾 g) ≡⟨ σ .isHom h (𝒾 g) ⟩ s h +₀ si g ≡⟨ cong (_+₀ si g) p ⟩ 0₀ +₀ si g ≡⟨ lId₀ (si g) ⟩ si g ≡⟨ funExt⁻ (cong GroupHom.fun isSplit) g ⟩ g ∎ -- end of Iso.leftInv isom ((h , p) , g) Iso.rightInv isom h = q where ish = 𝒾 (s h) abstract q = (h +₁ 𝒾 (s (-₁ h))) +₁ ish ≡⟨ cong (λ z → (h +₁ z) +₁ ish) (cong 𝒾 (mapInv σ h) ∙ mapInv ι (s h)) ⟩ (h +₁ (-₁ ish)) +₁ ish ≡⟨ sym (assoc₁ h (-₁ ish) ish) ⟩ h +₁ ((-₁ ish) +₁ ish) ≡⟨ (cong (h +₁_) (lCancel₁ ish)) ∙ (rId₁ h) ⟩ h ∎ -- end of Iso.rightInv isom h -- end of Iso ⟨ kσ⋊G₀ ⟩ ⟨ G₁ ⟩ GroupEquiv.isHom G₁-≅ ((h , p) , g) ((h' , p') , g') = q where abstract q = (h +₁ ((𝒾 g +₁ h') +₁ (-₁ 𝒾 g))) +₁ 𝒾 (g +₀ g') ≡⟨ cong ((h +₁ ((𝒾 g +₁ h') +₁ (-₁ 𝒾 g))) +₁_) (ι .isHom g g') ⟩ (h +₁ ((𝒾 g +₁ h') +₁ (-₁ 𝒾 g))) +₁ (𝒾 g +₁ 𝒾 g') ≡⟨ sym (assoc₁ h ((𝒾 g +₁ h') +₁ (-₁ 𝒾 g)) (𝒾 g +₁ 𝒾 g')) ⟩ h +₁ (((𝒾 g +₁ h') +₁ (-₁ 𝒾 g)) +₁ (𝒾 g +₁ 𝒾 g')) ≡⟨ cong (h +₁_) (sym (assoc₁ (𝒾 g +₁ h') (-₁ 𝒾 g) (𝒾 g +₁ 𝒾 g'))) ⟩ h +₁ ((𝒾 g +₁ h') +₁ ((-₁ 𝒾 g) +₁ (𝒾 g +₁ 𝒾 g'))) ≡⟨ cong (λ z → h +₁ ((𝒾 g +₁ h') +₁ z)) (assoc₁ (-₁ 𝒾 g) (𝒾 g) (𝒾 g')) ⟩ h +₁ ((𝒾 g +₁ h') +₁ (((-₁ 𝒾 g) +₁ 𝒾 g) +₁ 𝒾 g')) ≡⟨ cong (λ z → h +₁ ((𝒾 g +₁ h') +₁ (z +₁ 𝒾 g'))) (lCancel₁ (𝒾 g)) ⟩ h +₁ ((𝒾 g +₁ h') +₁ (0₁ +₁ 𝒾 g')) ≡⟨ cong (λ z → h +₁ ((𝒾 g +₁ h') +₁ z)) (lId₁ (𝒾 g')) ⟩ h +₁ ((𝒾 g +₁ h') +₁ 𝒾 g') ≡⟨ cong (h +₁_) (sym (assoc₁ (𝒾 g) h' (𝒾 g'))) ⟩ h +₁ (𝒾 g +₁ (h' +₁ 𝒾 g')) ≡⟨ assoc₁ h (𝒾 g) (h' +₁ 𝒾 g') ⟩ (h +₁ 𝒾 g) +₁ (h' +₁ 𝒾 g') ∎ -- end of GroupEquiv kσ⋊G₀ G₁ ι-≅ : (g : ⟨ G₀ ⟩) → 0₁ +₁ (𝒾 g) ≡ 𝒾 g ι-≅ g = lId₁ (𝒾 g) σ-≅ : (((h , _) , g) : ⟨ kσ⋊G₀ ⟩) → g ≡ s (h +₁ 𝒾 g) σ-≅ ((h , p) , g) = q where abstract q = g ≡⟨ funExt⁻ (cong fun (sym isSplit)) g ⟩ s (𝒾 g) ≡⟨ sym (lId₀ (s (𝒾 g))) ⟩ 0₀ +₀ s (𝒾 g) ≡⟨ cong (_+₀ s (𝒾 g)) (sym p) ⟩ s h +₀ s (𝒾 g) ≡⟨ sym (σ .isHom h (𝒾 g)) ⟩ s (h +₁ 𝒾 g) ∎ isSplit-≅ : Unit isSplit-≅ = tt RelIso.leftInv (𝒮ᴰ-Iso-GroupAct-SplitEpi-* G₀) (H , _α_ , isAct) = H-≅ , α-≅ , isAct-≅ where -- import notation open GroupNotation₀ G₀ open GroupNotationᴴ H open ActionNotationα (groupaction _α_ isAct) using (α-id) se = RelIso.fun (𝒮ᴰ-Iso-GroupAct-SplitEpi-* G₀) (H , _α_ , isAct) ga' = RelIso.inv (𝒮ᴰ-Iso-GroupAct-SplitEpi-* G₀) se -- H under fun and then inv ker-π₂ = fst ga' -- the adjoint action w.t.r. ι₂ _β_ = fst (snd ga') β-isAct = snd (snd ga') -- inclusion of G₀ into H ⋊⟨ α ⟩ G₀ ι = ι₂ (groupaction _α_ isAct) 𝒾 = ι .fun G₀-≅ : GroupEquiv G₀ G₀ G₀-≅ = idGroupEquiv G₀ H-≅ : GroupEquiv ker-π₂ H GroupEquiv.eq H-≅ = isoToEquiv isom where isom : Iso ⟨ ker-π₂ ⟩ ⟨ H ⟩ Iso.fun isom ((h , g) , p) = h Iso.inv isom h = (h , 0₀) , refl Iso.leftInv isom ((h , g) , p) = q where abstract r : (h , 0₀) ≡ (h , g) r = ΣPathP (refl , sym p) q : ((h , 0₀) , refl) ≡ ((h , g) , p) q = ΣPathP (r , isProp→PathP (λ i → set₀ (snd (r i)) 0₀) refl p) Iso.rightInv isom h = refl GroupEquiv.isHom H-≅ ((h , g) , p) ((h' , g') , p') = q where abstract q : h +ᴴ (g α h') ≡ h +ᴴ h' q = h +ᴴ (g α h') ≡⟨ cong (λ z → h +ᴴ (z α h')) p ⟩ h +ᴴ (0₀ α h') ≡⟨ cong (h +ᴴ_) (α-id h') ⟩ h +ᴴ h' ∎ α-≅ : (g : ⟨ G₀ ⟩) (((h , g') , p) : ⟨ ker-π₂ ⟩) → GroupEquiv.eq H-≅ .fst (g β ((h , g') , p)) ≡ g α h α-≅ g ((h , g') , p) = q where open ActionLemmas (groupaction _α_ isAct) abstract q = (0ᴴ +ᴴ (g α h)) +ᴴ ((g +₀ g') α ((-₀ g) α (-ᴴ 0ᴴ))) ≡⟨ cong (_+ᴴ ((g +₀ g') α ((-₀ g) α (-ᴴ 0ᴴ)))) (lIdᴴ (g α h)) ⟩ (g α h) +ᴴ ((g +₀ g') α ((-₀ g) α (-ᴴ 0ᴴ))) ≡⟨ cong (λ z → (g α h) +ᴴ ((g +₀ g') α ((-₀ g) α z))) (invId H) ⟩ (g α h) +ᴴ ((g +₀ g') α ((-₀ g) α 0ᴴ)) ≡⟨ cong (λ z → (g α h) +ᴴ ((g +₀ g') α z)) (actOnUnit (-₀ g)) ⟩ (g α h) +ᴴ ((g +₀ g') α 0ᴴ) ≡⟨ cong ((g α h) +ᴴ_) (actOnUnit (g +₀ g')) ⟩ (g α h) +ᴴ 0ᴴ ≡⟨ rIdᴴ (g α h) ⟩ g α h ∎ isAct-≅ : Unit isAct-≅ = tt IsoActionSplitEpi-* : Iso (GGLasAct ℓ (ℓ-max ℓ ℓ')) (SplitEpi' ℓ (ℓ-max ℓ ℓ')) IsoActionSplitEpi-* = 𝒮ᴰ-♭PIso-Over→TotalIso idIso (𝒮ᴰ-G\GLasAction ℓ (ℓ-max ℓ ℓ')) (𝒮ᴰ-G\GFBSplitEpi ℓ (ℓ-max ℓ ℓ')) 𝒮ᴰ-Iso-GroupAct-SplitEpi-* IsoActionSplitEpi : Iso (Action ℓ (ℓ-max ℓ ℓ')) (SplitEpi ℓ (ℓ-max ℓ ℓ')) IsoActionSplitEpi = compIso (IsoAction ℓ (ℓ-max ℓ ℓ')) (compIso IsoActionSplitEpi-* (IsoSplitEpi' ℓ (ℓ-max ℓ ℓ')))
{ "alphanum_fraction": 0.3665113999, "avg_line_length": 37.6812933025, "ext": "agda", "hexsha": "3be8db7ee0af5efc48a01e4d3893b40263da0bba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Equivalences/GroupSplitEpiAction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Equivalences/GroupSplitEpiAction.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Equivalences/GroupSplitEpiAction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6081, "size": 16316 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Base module lib.PathGroupoid where module _ {i} {A : Type i} where {- Concatenation of paths There are two different definitions of concatenation of paths, [_∙_] and [_∙'_], with different definitionnal behaviour. Maybe we should have only one but it’s sometimes useful to have both (in particular in lib.types.Paths). -} infixr 80 _∙_ _∙'_ _∙_ : {x y z : A} → (x == y → y == z → x == z) idp ∙ q = q _∙'_ : {x y z : A} → (x == y → y == z → x == z) q ∙' idp = q ∙=∙' : {x y z : A} (p : x == y) (q : y == z) → p ∙ q == p ∙' q ∙=∙' idp idp = idp ∙'=∙ : {x y z : A} (p : x == y) (q : y == z) → p ∙' q == p ∙ q ∙'=∙ idp idp = idp ∙-assoc : {x y z t : A} (p : x == y) (q : y == z) (r : z == t) → (p ∙ q) ∙ r == p ∙ (q ∙ r) ∙-assoc idp _ _ = idp ∙'-assoc : {x y z t : A} (p : x == y) (q : y == z) (r : z == t) → (p ∙' q) ∙' r == p ∙' (q ∙' r) ∙'-assoc _ _ idp = idp -- [∙-unit-l] and [∙'-unit-r] are definitional ∙-unit-r : {x y : A} (q : x == y) → q ∙ idp == q ∙-unit-r idp = idp ∙'-unit-l : {x y : A} (q : x == y) → idp ∙' q == q ∙'-unit-l idp = idp {- Reversal of paths -} ! : {x y : A} → (x == y → y == x) ! idp = idp !-inv-l : {x y : A} (p : x == y) → (! p) ∙ p == idp !-inv-l idp = idp !-inv'-l : {x y : A} (p : x == y) → (! p) ∙' p == idp !-inv'-l idp = idp !-inv-r : {x y : A} (p : x == y) → p ∙ (! p) == idp !-inv-r idp = idp !-inv'-r : {x y : A} (p : x == y) → p ∙' (! p) == idp !-inv'-r idp = idp {- Interactions between operations A lemma of the form [!-∙ …] gives a result of the form [! (_∙_ …) == …], and so on. -} !-∙ : {x y z : A} (p : x == y) (q : y == z) → ! (p ∙ q) == ! q ∙ ! p !-∙ idp idp = idp ∙-! : {x y z : A} (q : y == z) (p : x == y) → ! q ∙ ! p == ! (p ∙ q) ∙-! idp idp = idp !-∙' : {x y z : A} (p : x == y) (q : y == z) → ! (p ∙' q) == ! q ∙' ! p !-∙' idp idp = idp ∙'-! : {x y z : A} (q : y == z) (p : x == y) → ! q ∙' ! p == ! (p ∙' q) ∙'-! idp idp = idp !-! : {x y : A} (p : x == y) → ! (! p) == p !-! idp = idp {- Horizontal compositions -} infixr 80 _∙2_ _∙'2_ _∙2_ : {x y z : A} {p p' : x == y} {q q' : y == z} (α : p == p') (β : q == q') → p ∙ q == p' ∙ q' _∙2_ {p = idp} idp β = β _∙'2_ : {x y z : A} {p p' : x == y} {q q' : y == z} (α : p == p') (β : q == q') → p ∙' q == p' ∙' q' _∙'2_ {q = idp} α idp = α idp∙2idp : {x y z : A} (p : x == y) (q : y == z) → (idp {a = p}) ∙2 (idp {a = q}) == idp idp∙2idp idp idp = idp idp∙'2idp : {x y z : A} (p : x == y) (q : y == z) → (idp {a = p}) ∙'2 (idp {a = q}) == idp idp∙'2idp idp idp = idp {- Sometimes we need to restart a new section in order to have everything in the previous one generalized. -} module _ {i} {A : Type i} where {- Whisker and horizontal composition for Eckmann-Hilton argument -} infixr 80 _∙ᵣ_ _⋆2_ _⋆'2_ infixl 80 _∙ₗ_ _∙ᵣ_ : {x y z : A} {p p' : x == y} (α : p == p') (q : y == z) → p ∙ q == p' ∙ q _∙ᵣ_ {p = p} {p' = p'} α idp = ∙-unit-r p ∙ α ∙ ! (∙-unit-r p') _∙ₗ_ : {x y z : A} {q q' : y == z} (p : x == y) (β : q == q') → p ∙ q == p ∙ q' _∙ₗ_ {q = q} {q' = q'} idp β = β _⋆2_ : {x y z : A} {p p' : x == y} {q q' : y == z} (α : p == p') (β : q == q') → p ∙ q == p' ∙ q' _⋆2_ {p' = p'} {q = q} α β = (α ∙ᵣ q) ∙ (p' ∙ₗ β) _⋆'2_ : {x y z : A} {p p' : x == y} {q q' : y == z} (α : p == p') (β : q == q') → p ∙ q == p' ∙ q' _⋆'2_ {p = p} {q' = q'} α β = (p ∙ₗ β) ∙ (α ∙ᵣ q') ⋆2=⋆'2 : {x y z : A} {p p' : x == y} {q q' : y == z} (α : p == p') (β : q == q') → α ⋆2 β == α ⋆'2 β ⋆2=⋆'2 {p = idp} {q = idp} idp idp = idp module _ {i} {A : Type i} where anti-whisker-right : {x y z : A} (p : y == z) {q r : x == y} → (q ∙ p == r ∙ p → q == r) anti-whisker-right idp {q} {r} h = ! (∙-unit-r q) ∙ (h ∙ ∙-unit-r r) anti-whisker-left : {x y z : A} (p : x == y) {q r : y == z} → (p ∙ q == p ∙ r → q == r) anti-whisker-left idp h = h {- Dependent stuff -} module _ {i j} {A : Type i} {B : A → Type j} where {- Dependent constant path -} idpᵈ : {x : A} {u : B x} → u == u [ B ↓ idp ] idpᵈ = idp {- Dependent opposite path -} !ᵈ : {x y : A} {p : x == y} {u : B x} {v : B y} → (u == v [ B ↓ p ] → v == u [ B ↓ (! p)]) !ᵈ {p = idp} = ! !ᵈ' : {x y : A} {p : x == y} {u : B y} {v : B x} → (u == v [ B ↓ (! p) ] → v == u [ B ↓ p ]) !ᵈ' {p = idp} = ! !ᵈ-!ᵈ' : {x y : A} {p : x == y} {u : B y} {v : B x} → (q : u == v [ B ↓ (! p) ]) → !ᵈ (!ᵈ' q) == q !ᵈ-!ᵈ' {p = idp} idp = idp {- Dependent concatenation -} infixr 80 _∙ᵈ_ _∙'ᵈ_ _◃_ _▹_ _!◃_ _▹!_ _∙ᵈ_ : {x y z : A} {p : x == y} {p' : y == z} {u : B x} {v : B y} {w : B z} → (u == v [ B ↓ p ] → v == w [ B ↓ p' ] → u == w [ B ↓ (p ∙ p') ]) _∙ᵈ_ {p = idp} {p' = idp} q r = q ∙ r _◃_ = _∙ᵈ_ ◃idp : {x : A} {v w : B x} (q : w == v) → q ◃ idp == q ◃idp idp = idp idp◃ : {x y : A} {p : x == y} {u : B x} {v : B y} (r : u == v [ B ↓ p ]) → idp ◃ r == r idp◃ {p = idp} r = idp _∙'ᵈ_ : {x y z : A} {p : x == y} {p' : y == z} {u : B x} {v : B y} {w : B z} → (u == v [ B ↓ p ] → v == w [ B ↓ p' ] → u == w [ B ↓ (p ∙' p') ]) _∙'ᵈ_ {p = idp} {p' = idp} q r = q ∙' r _▹_ = _∙'ᵈ_ {- That’s not perfect, because [q] could be a dependent path. But in that case this is not well typed… -} idp▹ : {x : A} {v w : B x} (q : v == w) → idp ▹ q == q idp▹ idp = idp ▹idp : {x y : A} {p : x == y} {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → q ▹ idp == q ▹idp {p = idp} idp = idp _▹!_ : {x y z : A} {p : x == y} {p' : z == y} {u : B x} {v : B y} {w : B z} → u == v [ B ↓ p ] → w == v [ B ↓ p' ] → u == w [ B ↓ p ∙' (! p') ] _▹!_ {p' = idp} q idp = q idp▹! : {x : A} {v w : B x} (q : w == v) → idp ▹! q == ! q idp▹! idp = idp _!◃_ : {x y z : A} {p : y == x} {p' : y == z} {u : B x} {v : B y} {w : B z} → v == u [ B ↓ p ] → v == w [ B ↓ p' ] → u == w [ B ↓ (! p) ∙ p' ] _!◃_ {p = idp} idp q = q !◃idp :{x : A} {v w : B x} (q : v == w) → q !◃ idp == ! q !◃idp idp = idp {- This is some kind of dependent horizontal composition (used in [apd∙]). -} infixr 80 _∙2ᵈ_ _∙'2ᵈ_ _∙2ᵈ_ : {x y z : Π A B} {a a' : A} {p : a == a'} {q : x a == y a} {q' : x a' == y a'} {r : y a == z a} {r' : y a' == z a'} → (q == q' [ (λ a → x a == y a) ↓ p ]) → (r == r' [ (λ a → y a == z a) ↓ p ]) → (q ∙ r == q' ∙ r' [ (λ a → x a == z a) ↓ p ]) _∙2ᵈ_ {p = idp} α β = α ∙2 β _∙'2ᵈ_ : {x y z : Π A B} {a a' : A} {p : a == a'} {q : x a == y a} {q' : x a' == y a'} {r : y a == z a} {r' : y a' == z a'} → (q == q' [ (λ a → x a == y a) ↓ p ]) → (r == r' [ (λ a → y a == z a) ↓ p ]) → (q ∙' r == q' ∙' r' [ (λ a → x a == z a) ↓ p ]) _∙'2ᵈ_ {p = idp} α β = α ∙'2 β {- [apd∙] reduces a term of the form [apd (λ a → q a ∙ r a) p], do not confuse it with [apd-∙] which reduces a term of the form [apd f (p ∙ q)]. -} apd∙ : {a a' : A} {x y z : Π A B} (q : (a : A) → x a == y a) (r : (a : A) → y a == z a) (p : a == a') → apd (λ a → q a ∙ r a) p == apd q p ∙2ᵈ apd r p apd∙ q r idp = ! (idp∙2idp (q _) (r _)) apd∙' : {a a' : A} {x y z : Π A B} (q : (a : A) → x a == y a) (r : (a : A) → y a == z a) (p : a == a') → apd (λ a → q a ∙' r a) p == apd q p ∙'2ᵈ apd r p apd∙' q r idp = ! (idp∙'2idp (q _) (r _)) module _ {i j} {A : Type i} {B : A → Type j} where {- Exchange -} ▹-∙'2ᵈ : {x y z : Π A B} {a a' a'' : A} {p : a == a'} {p' : a' == a''} {q0 : x a == y a} {q0' : x a' == y a'} {r0 : y a == z a} {r0' : y a' == z a'} {q0'' : x a'' == y a''} {r0'' : y a'' == z a''} (q : q0 == q0' [ (λ a → x a == y a) ↓ p ]) (r : r0 == r0' [ (λ a → y a == z a) ↓ p ]) (s : q0' == q0'' [ (λ a → x a == y a) ↓ p' ]) (t : r0' == r0'' [ (λ a → y a == z a) ↓ p' ]) → (q ∙'2ᵈ r) ▹ (s ∙'2ᵈ t) == (q ▹ s) ∙'2ᵈ (r ▹ t) ▹-∙'2ᵈ {p = idp} {p' = idp} {q0} {.q0} {r0} {.r0} idp idp idp idp = ap (λ u → (idp {a = q0} ∙'2 idp {a = r0}) ∙' u) (idp∙'2idp q0 r0)
{ "alphanum_fraction": 0.3547448794, "avg_line_length": 27.7811447811, "ext": "agda", "hexsha": "f4a953ff3d9281fb45ff7433e4f531e2aaa53608", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/PathGroupoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/PathGroupoid.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/PathGroupoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4383, "size": 8251 }
module Lec2Start where open import Lec1Done ------------------------------------------------------------------------------ -- Vectors -- the star of exercise 1 ------------------------------------------------------------------------------ data Vec (X : Set) : Nat -> Set where -- like lists, but length-indexed [] : Vec X zero _,-_ : {n : Nat} -> X -> Vec X n -> Vec X (suc n) infixr 4 _,-_ -- the "cons" operator associates to the right ------------------------------------------------------------------------------ -- Taking a Prefix of a Vector ------------------------------------------------------------------------------ {-+} vTake : (m n : Nat) -> m >= n -> {X : Set} -> Vec X m -> Vec X n vTake m n m>=n xs = {!!} {+-} ------------------------------------------------------------------------------ -- Things to Prove ------------------------------------------------------------------------------ {-+} vTakeIdFact : (n : Nat){X : Set}(xs : Vec X n) -> vTake n n (refl->= n) xs == xs vTakeIdFact n xs = {!!} vTakeCpFact : (m n p : Nat)(m>=n : m >= n)(n>=p : n >= p) {X : Set}(xs : Vec X m) -> vTake m p (trans->= m n p m>=n n>=p) xs == vTake n p n>=p (vTake m n m>=n xs) {- hit p first: why? -} vTakeCpFact m n p m>=n n>=p xs = {!!} {+-} ------------------------------------------------------------------------------ -- Splittings (which bear some relationship to <= from ex1) ------------------------------------------------------------------------------ data _<[_]>_ : Nat -> Nat -> Nat -> Set where zzz : zero <[ zero ]> zero lll : {l m r : Nat} -> l <[ m ]> r -> suc l <[ suc m ]> r rrr : {l m r : Nat} -> l <[ m ]> r -> l <[ suc m ]> suc r {-+} _>[_]<_ : {X : Set}{l m r : Nat} -> Vec X l -> l <[ m ]> r -> Vec X r -> Vec X m xl >[ nnn ]< xr = {!!} {+-} {-+} data FindSplit {X : Set}{l m r : Nat}(nnn : l <[ m ]> r) : (xs : Vec X m) -> Set where splitBits : (xl : Vec X l)(xr : Vec X r) -> FindSplit nnn (xl >[ nnn ]< xr) {+-} {-+} findSplit : {X : Set}{l m r : Nat}(nnn : l <[ m ]> r)(xs : Vec X m) -> FindSplit nnn xs findSplit nnn xs = {!!} {+-} ------------------------------------------------------------------------------ -- what I should remember to say ------------------------------------------------------------------------------ -- What's the difference between m>=n and m >= n ? {- m>=n (without spaces) is just an identifier; it could be anything, but it has been chosen to be suggestive of its *type* which is m >= n (with spaces) which is the proposition that m is at least n. By "proposition", I mean "type with at most one inhabitant", where we care more about whether there is an inhabitant or not than which one (because there's never a choice). Finished code does not show us the types of its components, and that's not always a good thing. Here, by picking nice names, we get something of an aide-memoire. -} -- What does (x ,-_) mean? {- It's a "left section". Right sections (_,- xs) also exist sometimes. Why only sometimes? -} -- "Why is it stuck?" {- Proof by induction isn't just flailing about, you know? The trick is to pick the case analysis that provokes the "stuck" programs to do a step of computation. Then the same reasoning that justifies the termination of the program will justify the induction in a proof about it. -}
{ "alphanum_fraction": 0.4154910097, "avg_line_length": 36.887755102, "ext": "agda", "hexsha": "e2979a564aebeffc43292f34367b424bc4d67d83", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/nowyoutry/Lec2Start.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/nowyoutry/Lec2Start.agda", "max_line_length": 78, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec2Start.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 920, "size": 3615 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Group open import lib.types.CommutingSquare open import lib.groups.Homomorphism open import lib.groups.Isomorphism module lib.groups.CommutingSquare where -- A new type to keep the parameters. record CommSquareᴳ {i₀ i₁ j₀ j₁} {G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} (φ₀ : G₀ →ᴳ H₀) (φ₁ : G₁ →ᴳ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁) : Type (lmax (lmax i₀ i₁) (lmax j₀ j₁)) where constructor comm-sqrᴳ field commutesᴳ : ∀ g₀ → GroupHom.f (ξH ∘ᴳ φ₀) g₀ == GroupHom.f (φ₁ ∘ᴳ ξG) g₀ infix 0 _□$ᴳ_ _□$ᴳ_ = CommSquareᴳ.commutesᴳ CommSquareᴳ-∘v : ∀ {i₀ i₁ i₂ j₀ j₁ j₂} {G₀ : Group i₀} {G₁ : Group i₁} {G₂ : Group i₂} {H₀ : Group j₀} {H₁ : Group j₁} {H₂ : Group j₂} {φ : G₀ →ᴳ H₀} {ψ : G₁ →ᴳ H₁} {χ : G₂ →ᴳ H₂} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {μA : G₁ →ᴳ G₂} {μB : H₁ →ᴳ H₂} → CommSquareᴳ ψ χ μA μB → CommSquareᴳ φ ψ ξG ξH → CommSquareᴳ φ χ (μA ∘ᴳ ξG) (μB ∘ᴳ ξH) CommSquareᴳ-∘v {ξG = ξG} {μB = μB} (comm-sqrᴳ □₁₂) (comm-sqrᴳ □₀₁) = comm-sqrᴳ λ g₀ → ap (GroupHom.f μB) (□₀₁ g₀) ∙ □₁₂ (GroupHom.f ξG g₀) CommSquareᴳ-inverse-v : ∀ {i₀ i₁ j₀ j₁} {G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} {φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → CommSquareᴳ φ₀ φ₁ ξG ξH → (ξG-ise : is-equiv (GroupHom.f ξG)) (ξH-ise : is-equiv (GroupHom.f ξH)) → CommSquareᴳ φ₁ φ₀ (GroupIso.g-hom (ξG , ξG-ise)) (GroupIso.g-hom (ξH , ξH-ise)) CommSquareᴳ-inverse-v (comm-sqrᴳ □) ξG-ise ξH-ise = comm-sqrᴳ (commutes (CommSquare-inverse-v (comm-sqr □) ξG-ise ξH-ise))
{ "alphanum_fraction": 0.6161429452, "avg_line_length": 37.7441860465, "ext": "agda", "hexsha": "0401ce367792165a644f613408acae8cbedd10b5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/CommutingSquare.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/CommutingSquare.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/CommutingSquare.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 880, "size": 1623 }
module Control.SimplePar where open import Prelude open import Builtin.Float open import Builtin.Coinduction Val : Set Val = Float data IVar (A : Set) : Set where ivar : Int → IVar A data Trace : Set where Get : IVar Val → (Val -> Trace) → Trace Put : IVar Val → Val → Trace → Trace New : (IVar Val -> Trace) → Trace Fork : Trace → Trace → Trace Done : Trace record Par (A : Set) : Set where constructor par field runCont : (A → Trace) → Trace instance FunctorPar : Functor Par fmap {{FunctorPar}} f (par runCont) = par λ c → runCont (c ∘ f) ApplicativePar : Applicative Par pure {{ApplicativePar}} a = par λ c → c a _<*>_ {{ApplicativePar}} (par runCont₁) (par runCont₂) = par λ bcont → runCont₁ λ a → runCont₂ λ ab → bcont (a ab) MonadPar : Monad Par _>>=_ {{MonadPar}} (par runCont') k = par λ c → runCont' λ a → Par.runCont (k a) c data Stream (A : Set) : Set where _∷_ : (a : A) (as : ∞ (Stream A)) → Stream A instance FunctorStream : Functor Stream fmap {{FunctorStream}} f (a ∷ as) = f a ∷ ♯ fmap f (♭ as) data IntMap (A : Set) : Set where ε : IntMap A _↦_,_ : Int → A → IntMap A → IntMap A find : {A : Set} → Int → IntMap A → Maybe A find x ε = nothing find x (y ↦ a , m) = ifYes x == y then just a else find x m remove : {A : Set} → Int → IntMap A → IntMap A remove x ε = ε remove x (y ↦ a , m) = ifYes x == y then remove x m else y ↦ a , remove x m insertWith : {A : Set} → (A → A → A) → Int → A → IntMap A → IntMap A insertWith f x a ε = x ↦ a , ε insertWith f x a (y ↦ b , m) = ifYes x == y then y ↦ f a b , insertWith f x a m else x ↦ a , insertWith f x a m infix 2 _∌_ infix 3 _↦ε,_ _↦_,_ data Heap : Set data _∌_ : Heap → Int → Set data Heap where ∅ : Heap _↦ε,_ : (ix : Int) → (h : Heap) → ⦃ p : h ∌ ix ⦄ → Heap _↦_,_ : (ix : Int) → (v : Val) → (h : Heap) → ⦃ p : h ∌ ix ⦄ → Heap data _∌_ where ∅∌ : {ix : Int} → ∅ ∌ ix ε∌ : {ix ix' : Int} {h : Heap} → ⦃ p : h ∌ ix ⦄ → ¬ (ix' ≡ ix) → ix ↦ε, h ∌ ix' v∌ : {ix ix' : Int} {h : Heap} {v : Val} → ⦃ p : h ∌ ix ⦄ → ¬ (ix' ≡ ix) → ix ↦ v , h ∌ ix' -- data Lookup (ix : Int) (h : Heap) : Maybe Val → Dec (h ∌ ix) → Set where -- isn : ⦃ p : h ∌ ix ⦄ → Lookup ix h nothing (yes p) -- isε : ⦃ p : ¬ (h ∌ ix) ⦄ → Lookup ix h nothing (no p) -- isval : (v : Val) → ⦃ p : ¬ (h ∌ ix) ⦄ → Lookup ix h (just v) (no p) -- lookupHeap : (ix : Int) → (h : Heap) → Σ (Maybe Val) (λ v → Σ (Dec (h ∌ ix)) (λ p → Lookup ix h v p)) -- lookupHeap ix ∅ = nothing , yes ∅∌ , isn -- lookupHeap ix (ix' ↦ε, h) with ix == ix' -- ... | yes refl = nothing , no (λ { (ε∌ p) → p refl }) , isε -- ... | no p with lookupHeap ix h -- ... | (.nothing , .(yes _) , isn) = nothing , yes (ε∌ p) , isn -- ... | (.nothing , .(no _) , isε) = nothing , yes (ε∌ p) , isn -- ... | (.(just v) , .(no _) , isval v) = just v , no (λ { (ε∌ q) → {!!} }) , {!isval!} -- lookupHeap ix (ix' ↦ v , h) = {!!} lookupHeap : (ix : Int) → (h : Heap) → Maybe Val × Dec (h ∌ ix) lookupHeap ix ∅ = nothing , yes ∅∌ lookupHeap ix (ix' ↦ε, h) with ix == ix' ... | yes refl = nothing , no λ { (ε∌ p) → p refl } ... | no p = fst (lookupHeap ix h) , yes (ε∌ p) lookupHeap ix (ix' ↦ v , h) with ix == ix' ... | yes refl = just v , no λ { (v∌ p) → p refl } ... | no p = fst (lookupHeap ix h) , yes (v∌ p) infix 2 _≤ₕ_ data _≤ₕ_ : Heap → Heap → Set where h≤h : {h : Heap} → h ≤ₕ h h≤ε : {h : Heap} {ix : Int} ⦃ p : h ∌ ix ⦄ → h ≤ₕ ix ↦ε, h h≤v : {h : Heap} {ix : Int} {v : Val} ⦃ p : h ∌ ix ⦄ → h ≤ₕ ix ↦ v , h ε≤v : {h : Heap} {ix : Int} {v : Val} ⦃ p : h ∌ ix ⦄ → ix ↦ε, h ≤ₕ ix ↦ v , h h≤s : {h₁ h₂ : Heap} {ix : Int} {v w : Val} ⦃ p₁ : h₁ ∌ ix ⦄ ⦃ p₂ : h₂ ∌ ix ⦄ → h₁ ≤ₕ h₂ → v ≤ w → ix ↦ v , h₁ ≤ₕ ix ↦ w , h₂ Blkd = IntMap (List (Val → Trace)) data Exn : Set where Deadlock : Blkd → Exn MultiplePut : Val → Int → Val → Exn yank : {A : Set} → Nat → A → List A → A × List A yank n x xs = case splitAt (natMod (length (x ∷ xs)) n) (x ∷ xs) of λ { (hd , []) → x , hd ; (hd , x ∷ tl) → x , hd ++ tl } step : (Trace × List Trace) → Blkd → Int → Heap → Either Exn (List Trace × Blkd × Int × Heap) sched : Stream Nat → List Trace → Blkd → Int → Heap → Either Exn Heap {-# TERMINATING #-} sched randoms [] ε cntr heap = return heap sched randoms [] blkd cntr heap = left (Deadlock blkd) sched (rnd ∷ rs) (t ∷ ts) blkd cntr heap = caseM step (yank rnd t ts) blkd cntr heap of λ { (threads' , blkd' , cntr' , heap') → sched (♭ rs) threads' blkd' cntr' heap' } step (Get (ivar ix) k , others) blkd cntr heap = case lookupHeap ix heap of λ { (nothing , p) → return (others , insertWith _++_ ix [ k ] blkd , cntr , heap) ; (just v , p) → return (k v ∷ others , blkd , cntr , heap) } step (Put (ivar ix) v t₂ , others) blkd cntr heap = case lookupHeap ix heap of λ { (nothing , yes p) → case find ix blkd of λ { nothing → return (t₂ ∷ others , blkd , cntr , (ix ↦ v , heap) ⦃ p = p ⦄) ; (just ls) → return (t₂ ∷ map (λ k → k v) ls ++ others , remove ix blkd , cntr , heap) } ; (nothing , no p) → case find ix blkd of λ { nothing → return {!!} ; (just ls) → return (t₂ ∷ map (λ k → k v) ls ++ others , remove ix blkd , cntr , heap) } ; (just v₀ , _) → left (MultiplePut v ix v₀) } -- λ { nothing → case find ix blkd of -- λ { nothing → return (t₂ ∷ others , blkd , cntr , ix ↦ v , {!!}) -- ; (just ls) → {!!} } -- ; (just v) → {!!} } -- let heap' = ix ↦ v , heap -- in case (lookupHeap ix heap) of -- λ { nothing → case find ix blkd of -- λ { nothing → return (t₂ ∷ others , blkd , cntr , heap') -- ; (just ls) → return (t₂ ∷ map (λ k → k v) ls ++ others , remove ix blkd , cntr , heap) } -- ; (just v₀) → left (MultiplePut v ix v₀) } step (New k , others) blkd cntr heap = return (k (ivar cntr) ∷ others , blkd , cntr + 1 , {!!}) -- return (k (ivar cntr) ∷ others , blkd , cntr + 1 , cntr ↦ε, heap) step (Fork t₁ t₂ , others) blkd cntr heap = return (t₁ ∷ t₂ ∷ others , blkd , cntr , heap) step (Done , others) blkd cntr heap = return (others , blkd , cntr , heap) monotonicity : ∀ {threads} {blkd} {cntr} {heap} → ∀ {threads'} {blkd'} {cntr'} {heap'} → step threads blkd cntr heap ≡ right (threads' , blkd' , cntr' , heap') → heap ≤ₕ heap' monotonicity {Get (ivar ix) k , others} {heap = heap} p with (lookupHeap ix heap) monotonicity {Get (ivar ix) k , others} p | q = {!!} monotonicity {Put (ivar ix) v t₂ , others} {heap = heap} p with (lookupHeap ix heap) monotonicity {Put (ivar ix) v t₂ , others} {blkd = blkd} p | q = {!!} monotonicity {New k , others} p = {!!} monotonicity {Fork t₁ t₂ , others} p = {!!} monotonicity {Done , others} p = {!!}
{ "alphanum_fraction": 0.5260462394, "avg_line_length": 35.780104712, "ext": "agda", "hexsha": "2803776f82bf97cf330e479c66397e4337d30c81", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-31T01:16:10.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-08T23:39:18.000Z", "max_forks_repo_head_hexsha": "470cf1e705080b99616999c97463d7b7aa3c47db", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "ranjitjhala/verified-instances", "max_forks_repo_path": "experiments/Control/SimplePar.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "470cf1e705080b99616999c97463d7b7aa3c47db", "max_issues_repo_issues_event_max_datetime": "2019-03-07T19:40:25.000Z", "max_issues_repo_issues_event_min_datetime": "2016-09-06T13:53:41.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "ranjitjhala/verified-instances", "max_issues_repo_path": "experiments/Control/SimplePar.agda", "max_line_length": 104, "max_stars_count": 8, "max_stars_repo_head_hexsha": "470cf1e705080b99616999c97463d7b7aa3c47db", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "lkuper/verified-instances", "max_stars_repo_path": "experiments/Control/SimplePar.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-03T16:56:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-08-17T15:04:00.000Z", "num_tokens": 2738, "size": 6834 }
-- Andreas, 2019-05-03, issue #3732 -- -- Do not erase constructor arguments when bound to Haskell data type. -- Otherwise, it is not predictable how the Haskell constructors should look like. -- {-# OPTIONS -v compile:100 #-} open import Agda.Builtin.IO open import Agda.Builtin.Unit {-# FOREIGN GHC data I = Bar #-} {-# FOREIGN GHC data S = Foo I #-} module NonMutual where data I : Set where bar : I {-# COMPILE GHC I = data I (Bar) #-} data S : Set where foo : (i : I) → S {-# COMPILE GHC S = data S (Foo) #-} -- It could be that an earlier type embeds a later type, by virtue of mutual blocks: {-# FOREIGN GHC data I2 = Bar2 #-} {-# FOREIGN GHC data S2 = Foo2 I2 #-} module Mutual where mutual data S : Set where foo : (i : I) → S {-# COMPILE GHC S = data S2 (Foo2) #-} data I : Set where bar : I {-# COMPILE GHC I = data I2 (Bar2) #-} postulate main : IO ⊤ {-# COMPILE GHC main = return () #-}
{ "alphanum_fraction": 0.612565445, "avg_line_length": 19.4897959184, "ext": "agda", "hexsha": "f5233229b10bc0a64e2eb6c127f14534789b4851", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue3732.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue3732.agda", "max_line_length": 84, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue3732.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 283, "size": 955 }
module Metalogic.Linear.SequentCalculus {ℓₚ} (Proposition : Set(ℓₚ)) where
{ "alphanum_fraction": 0.7866666667, "avg_line_length": 37.5, "ext": "agda", "hexsha": "49219d687002c5ccaa0c593af47a57985c72cc96", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Metalogic/Linear/SequentCalculus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Metalogic/Linear/SequentCalculus.agda", "max_line_length": 74, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Metalogic/Linear/SequentCalculus.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 28, "size": 75 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.Function open import lib.PathFunctor open import lib.PathGroupoid module lib.path-seq.Concat {i} {A : Type i} where infixr 80 _∙∙_ _∙∙_ : {a a' a'' : A} → a =-= a' → a' =-= a'' → a =-= a'' _∙∙_ [] t = t _∙∙_ (p ◃∙ s) t = p ◃∙ (s ∙∙ t) ∙∙-assoc : {a a' a'' a''' : A} (s : a =-= a') (t : a' =-= a'') (u : a'' =-= a''') → (s ∙∙ t) ∙∙ u == s ∙∙ (t ∙∙ u) ∙∙-assoc [] t u = idp ∙∙-assoc (p ◃∙ s) t u = ap (p ◃∙_) (∙∙-assoc s t u) ∙∙-unit-r : {a a' : A} (s : a =-= a') → s ∙∙ [] == s ∙∙-unit-r [] = idp ∙∙-unit-r (p ◃∙ s) = ap (p ◃∙_) (∙∙-unit-r s) infixl 80 _∙▹_ _∙▹_ : {a a' a'' : A} → a =-= a' → a' == a'' → a =-= a'' _∙▹_ {a} {a'} {a''} s p = s ∙∙ (p ◃∙ []) ↯-∙∙ : {a a' a'' : A} (s : a =-= a') (t : a' =-= a'') → ↯ (s ∙∙ t) == ↯ s ∙ ↯ t ↯-∙∙ [] t = idp ↯-∙∙ (p ◃∙ []) [] = ! (∙-unit-r p) ↯-∙∙ (p ◃∙ []) (p' ◃∙ t) = idp ↯-∙∙ (p ◃∙ s@(_ ◃∙ _)) t = ap (λ y → p ∙ y) (↯-∙∙ s t) ∙ ! (∙-assoc p (↯ s) (↯ t))
{ "alphanum_fraction": 0.356, "avg_line_length": 25, "ext": "agda", "hexsha": "c6f987e0a834e825e2dec883137e2fb2aca1d4ac", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/path-seq/Concat.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/path-seq/Concat.agda", "max_line_length": 53, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/path-seq/Concat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 604, "size": 1000 }
module Pi0 where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Groupoid infixr 10 _◎_ infixr 30 _⟷_ ------------------------------------------------------------------------------ -- Level 0: -- Types at this level are just plain sets with no interesting path structure. -- The path structure is defined at levels 1 and beyond. data U : Set where ZERO : U ONE : U PLUS : U → U → U TIMES : U → U → U ⟦_⟧ : U → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ -- Programs -- We use pointed types; programs map a pointed type to another -- In other words, each program takes one particular value to another; if we -- want to work on another value, we generally use another program record U• : Set where constructor •[_,_] field ∣_∣ : U • : ⟦ ∣_∣ ⟧ open U• Space : (t• : U•) → Set Space •[ t , v ] = ⟦ t ⟧ point : (t• : U•) → Space t• point •[ t , v ] = v -- examples of plain types, values, and pointed types ONE• : U• ONE• = •[ ONE , tt ] BOOL : U BOOL = PLUS ONE ONE BOOL² : U BOOL² = TIMES BOOL BOOL TRUE : ⟦ BOOL ⟧ TRUE = inj₁ tt FALSE : ⟦ BOOL ⟧ FALSE = inj₂ tt BOOL•F : U• BOOL•F = •[ BOOL , FALSE ] BOOL•T : U• BOOL•T = •[ BOOL , TRUE ] -- The actual programs are the commutative semiring isomorphisms between -- pointed types. data _⟷_ : U• → U• → Set where unite₊ : ∀ {t v} → •[ PLUS ZERO t , inj₂ v ] ⟷ •[ t , v ] uniti₊ : ∀ {t v} → •[ t , v ] ⟷ •[ PLUS ZERO t , inj₂ v ] swap1₊ : ∀ {t₁ t₂ v₁} → •[ PLUS t₁ t₂ , inj₁ v₁ ] ⟷ •[ PLUS t₂ t₁ , inj₂ v₁ ] swap2₊ : ∀ {t₁ t₂ v₂} → •[ PLUS t₁ t₂ , inj₂ v₂ ] ⟷ •[ PLUS t₂ t₁ , inj₁ v₂ ] assocl1₊ : ∀ {t₁ t₂ t₃ v₁} → •[ PLUS t₁ (PLUS t₂ t₃) , inj₁ v₁ ] ⟷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] assocl2₊ : ∀ {t₁ t₂ t₃ v₂} → •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] ⟷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] assocl3₊ : ∀ {t₁ t₂ t₃ v₃} → •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] ⟷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₂ v₃ ] assocr1₊ : ∀ {t₁ t₂ t₃ v₁} → •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] ⟷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₁ v₁ ] assocr2₊ : ∀ {t₁ t₂ t₃ v₂} → •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] ⟷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] assocr3₊ : ∀ {t₁ t₂ t₃ v₃} → •[ PLUS (PLUS t₁ t₂) t₃ , inj₂ v₃ ] ⟷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] unite⋆ : ∀ {t v} → •[ TIMES ONE t , (tt , v) ] ⟷ •[ t , v ] uniti⋆ : ∀ {t v} → •[ t , v ] ⟷ •[ TIMES ONE t , (tt , v) ] swap⋆ : ∀ {t₁ t₂ v₁ v₂} → •[ TIMES t₁ t₂ , (v₁ , v₂) ] ⟷ •[ TIMES t₂ t₁ , (v₂ , v₁) ] assocl⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → •[ TIMES t₁ (TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] ⟷ •[ TIMES (TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] assocr⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → •[ TIMES (TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] ⟷ •[ TIMES t₁ (TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] distz : ∀ {t v absurd} → •[ TIMES ZERO t , (absurd , v) ] ⟷ •[ ZERO , absurd ] factorz : ∀ {t v absurd} → •[ ZERO , absurd ] ⟷ •[ TIMES ZERO t , (absurd , v) ] dist1 : ∀ {t₁ t₂ t₃ v₁ v₃} → •[ TIMES (PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] ⟷ •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] dist2 : ∀ {t₁ t₂ t₃ v₂ v₃} → •[ TIMES (PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] ⟷ •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] factor1 : ∀ {t₁ t₂ t₃ v₁ v₃} → •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] ⟷ •[ TIMES (PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] factor2 : ∀ {t₁ t₂ t₃ v₂ v₃} → •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] ⟷ •[ TIMES (PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] id⟷ : ∀ {t v} → •[ t , v ] ⟷ •[ t , v ] sym⟷ : ∀ {t₁ t₂ v₁ v₂} → (•[ t₁ , v₁ ] ⟷ •[ t₂ , v₂ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₁ , v₁ ]) _◎_ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → (•[ t₁ , v₁ ] ⟷ •[ t₂ , v₂ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) _⊕1_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} → (•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) → (•[ PLUS t₁ t₂ , inj₁ v₁ ] ⟷ •[ PLUS t₃ t₄ , inj₁ v₃ ]) _⊕2_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} → (•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) → (•[ PLUS t₁ t₂ , inj₂ v₂ ] ⟷ •[ PLUS t₃ t₄ , inj₂ v₄ ]) _⊗_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} → (•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) → (•[ TIMES t₁ t₂ , (v₁ , v₂) ] ⟷ •[ TIMES t₃ t₄ , (v₃ , v₄) ]) -- example programs NOT•T : •[ BOOL , TRUE ] ⟷ •[ BOOL , FALSE ] NOT•T = swap1₊ NOT•F : •[ BOOL , FALSE ] ⟷ •[ BOOL , TRUE ] NOT•F = swap2₊ CNOT•Fx : {b : ⟦ BOOL ⟧} → •[ BOOL² , (FALSE , b) ] ⟷ •[ BOOL² , (FALSE , b) ] CNOT•Fx = dist2 ◎ ((id⟷ ⊗ NOT•F) ⊕2 id⟷) ◎ factor2 CNOT•TF : •[ BOOL² , (TRUE , FALSE) ] ⟷ •[ BOOL² , (TRUE , TRUE) ] CNOT•TF = dist1 ◎ ((id⟷ ⊗ NOT•F) ⊕1 (id⟷ {TIMES ONE BOOL} {(tt , TRUE)})) ◎ factor1 CNOT•TT : •[ BOOL² , (TRUE , TRUE) ] ⟷ •[ BOOL² , (TRUE , FALSE) ] CNOT•TT = dist1 ◎ ((id⟷ ⊗ NOT•T) ⊕1 (id⟷ {TIMES ONE BOOL} {(tt , TRUE)})) ◎ factor1 -- The evaluation of a program is not done in order to figure out the output -- value. Both the input and output values are encoded in the type of the -- program; what the evaluation does is follow the path to constructively -- reach the ouput value from the input value. Even though programs of the -- same pointed types are, by definition, observationally equivalent, they -- may follow different paths. At this point, we simply declare that all such -- programs are "the same." At the next level, we will weaken this "path -- irrelevant" equivalence and reason about which paths can be equated to -- other paths via 2paths etc. -- Even though individual types are sets, the universe of types is a -- groupoid. The objects of this groupoid are the pointed types; the -- morphisms are the programs; and the equivalence of programs is the -- degenerate observational equivalence that equates every two programs that -- are extensionally equivalent. _obs≅_ : {t₁ t₂ : U•} → (c₁ c₂ : t₁ ⟷ t₂) → Set c₁ obs≅ c₂ = ⊤ UG : 1Groupoid UG = record { set = U• ; _↝_ = _⟷_ ; _≈_ = _obs≅_ ; id = id⟷ ; _∘_ = λ y⟷z x⟷y → x⟷y ◎ y⟷z ; _⁻¹ = sym⟷ ; lneutr = λ _ → tt ; rneutr = λ _ → tt ; assoc = λ _ _ _ → tt ; equiv = record { refl = tt ; sym = λ _ → tt ; trans = λ _ _ → tt } ; linv = λ _ → tt ; rinv = λ _ → tt ; ∘-resp-≈ = λ _ _ → tt } ------------------------------------------------------------------------------ -- Simplifiy various compositions simplifySym : {t₁ t₂ : U•} → (c₁ : t₁ ⟷ t₂) → (t₂ ⟷ t₁) simplifySym unite₊ = uniti₊ simplifySym uniti₊ = unite₊ simplifySym swap1₊ = swap2₊ simplifySym swap2₊ = swap1₊ simplifySym assocl1₊ = assocr1₊ simplifySym assocl2₊ = assocr2₊ simplifySym assocl3₊ = assocr3₊ simplifySym assocr1₊ = assocl1₊ simplifySym assocr2₊ = assocl2₊ simplifySym assocr3₊ = assocl3₊ simplifySym unite⋆ = uniti⋆ simplifySym uniti⋆ = unite⋆ simplifySym swap⋆ = swap⋆ simplifySym assocl⋆ = assocr⋆ simplifySym assocr⋆ = assocl⋆ simplifySym distz = factorz simplifySym factorz = distz simplifySym dist1 = factor1 simplifySym dist2 = factor2 simplifySym factor1 = dist1 simplifySym factor2 = dist2 simplifySym id⟷ = id⟷ simplifySym (sym⟷ c) = c simplifySym (c₁ ◎ c₂) = simplifySym c₂ ◎ simplifySym c₁ simplifySym (c₁ ⊕1 c₂) = simplifySym c₁ ⊕1 simplifySym c₂ simplifySym (c₁ ⊕2 c₂) = simplifySym c₁ ⊕2 simplifySym c₂ simplifySym (c₁ ⊗ c₂) = simplifySym c₁ ⊗ simplifySym c₂ simplifyl◎ : {t₁ t₂ t₃ : U•} → (c₁ : t₁ ⟷ t₂) → (c₂ : t₂ ⟷ t₃) → (t₁ ⟷ t₃) simplifyl◎ id⟷ c = c simplifyl◎ unite₊ uniti₊ = id⟷ simplifyl◎ uniti₊ unite₊ = id⟷ simplifyl◎ swap1₊ swap2₊ = id⟷ simplifyl◎ swap2₊ swap1₊ = id⟷ simplifyl◎ assocl1₊ assocr1₊ = id⟷ simplifyl◎ assocl2₊ assocr2₊ = id⟷ simplifyl◎ assocl3₊ assocr3₊ = id⟷ simplifyl◎ assocr1₊ assocl1₊ = id⟷ simplifyl◎ assocr2₊ assocl2₊ = id⟷ simplifyl◎ assocr3₊ assocl3₊ = id⟷ simplifyl◎ unite⋆ uniti⋆ = id⟷ simplifyl◎ uniti⋆ unite⋆ = id⟷ simplifyl◎ swap⋆ swap⋆ = id⟷ simplifyl◎ assocl⋆ assocr⋆ = id⟷ simplifyl◎ assocr⋆ assocl⋆ = id⟷ simplifyl◎ factorz distz = id⟷ simplifyl◎ dist1 factor1 = id⟷ simplifyl◎ dist2 factor2 = id⟷ simplifyl◎ factor1 dist1 = id⟷ simplifyl◎ factor2 dist2 = id⟷ simplifyl◎ (c₁ ◎ c₂) c₃ = c₁ ◎ (c₂ ◎ c₃) simplifyl◎ (c₁ ⊕1 c₂) swap1₊ = swap1₊ ◎ (c₂ ⊕2 c₁) simplifyl◎ (c₁ ⊕2 c₂) swap2₊ = swap2₊ ◎ (c₂ ⊕1 c₁) simplifyl◎ (_⊗_ {ONE} c₁ c₂) unite⋆ = unite⋆ ◎ c₂ simplifyl◎ (c₁ ⊗ c₂) swap⋆ = swap⋆ ◎ (c₂ ⊗ c₁) simplifyl◎ (c₁ ⊗ c₂) (c₃ ⊗ c₄) = (c₁ ◎ c₃) ⊗ (c₂ ◎ c₄) simplifyl◎ c₁ c₂ = c₁ ◎ c₂ simplifyr◎ : {t₁ t₂ t₃ : U•} → (c₁ : t₁ ⟷ t₂) → (c₂ : t₂ ⟷ t₃) → (t₁ ⟷ t₃) simplifyr◎ c id⟷ = c simplifyr◎ unite₊ uniti₊ = id⟷ simplifyr◎ uniti₊ unite₊ = id⟷ simplifyr◎ swap1₊ swap2₊ = id⟷ simplifyr◎ swap2₊ swap1₊ = id⟷ simplifyr◎ assocl1₊ assocr1₊ = id⟷ simplifyr◎ assocl2₊ assocr2₊ = id⟷ simplifyr◎ assocl3₊ assocr3₊ = id⟷ simplifyr◎ assocr1₊ assocl1₊ = id⟷ simplifyr◎ assocr2₊ assocl2₊ = id⟷ simplifyr◎ assocr3₊ assocl3₊ = id⟷ simplifyr◎ unite⋆ uniti⋆ = id⟷ simplifyr◎ uniti⋆ unite⋆ = id⟷ simplifyr◎ swap⋆ swap⋆ = id⟷ simplifyr◎ assocl⋆ assocr⋆ = id⟷ simplifyr◎ assocr⋆ assocl⋆ = id⟷ simplifyr◎ factorz distz = id⟷ simplifyr◎ dist1 factor1 = id⟷ simplifyr◎ dist2 factor2 = id⟷ simplifyr◎ factor1 dist1 = id⟷ simplifyr◎ factor2 dist2 = id⟷ simplifyr◎ (c₁ ◎ c₂) c₃ = c₁ ◎ (c₂ ◎ c₃) simplifyr◎ (c₁ ⊕1 c₂) swap1₊ = swap1₊ ◎ (c₂ ⊕2 c₁) simplifyr◎ (c₁ ⊕2 c₂) swap2₊ = swap2₊ ◎ (c₂ ⊕1 c₁) simplifyr◎ (_⊗_ {ONE} {ONE} c₁ c₂) unite⋆ = unite⋆ ◎ c₂ simplifyr◎ (c₁ ⊗ c₂) swap⋆ = swap⋆ ◎ (c₂ ⊗ c₁) simplifyr◎ (c₁ ⊗ c₂) (c₃ ⊗ c₄) = (c₁ ◎ c₃) ⊗ (c₂ ◎ c₄) simplifyr◎ c₁ c₂ = c₁ ◎ c₂
{ "alphanum_fraction": 0.5309682477, "avg_line_length": 34.9452054795, "ext": "agda", "hexsha": "933f1c5f39ed98ec065130d6c3a35d08ec1ff8ec", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/PiWithLevels/Pi0.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/PiWithLevels/Pi0.agda", "max_line_length": 80, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/PiWithLevels/Pi0.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4748, "size": 10204 }
module Issue939 where record Sigma (A : Set)(P : A → Set) : Set where field fst : A .snd : P fst open Sigma postulate A : Set P : A → Set x : A .p : P x ex : Sigma A P ex = record { fst = x ; snd = p } -- Note: we do not need --irrelevant-projections to use them on the lhs. ex' : Sigma A P fst ex' = x snd ex' = p -- WAS: Giving p yields the following error: -- Identifier p is declared irrelevant, so it cannot be used here -- when checking that the expression p has type P (fst ex') -- Fixed. Andreas, 2013-11-05
{ "alphanum_fraction": 0.6067615658, "avg_line_length": 18.1290322581, "ext": "agda", "hexsha": "dd52805a72ab2f0348edfa4ee8093a0be284452c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue939.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue939.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue939.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 181, "size": 562 }
open import Data.Nat open import Data.Product open import Data.Empty open import Relation.Binary.PropositionalEquality module Stream where record Stream (A : Set) : Set where coinductive field head : A tail : Stream A open Stream public get : ∀ {A : Set} → Stream A → ℕ → A get s zero = head s get s (suc i) = get s i {- natsFrom : ℕ → Stream ℕ head (natsFrom x) = x tail (natsFrom x) = natsFrom (suc x) nats : Stream ℕ nats = natsFrom 0 complicated-way-to-say-2 : head (tail (tail nats)) ≡ 2 complicated-way-to-say-2 = refl -- thread a relation R through the elements of a stream record Trans {A : Set}(R : A → A → Set)(as : Stream A) : Set where coinductive field trans-head : R (head as) (head (tail as)) trans-tail : Trans R (tail as) open Trans -- We can prove our generation of natural numbers to be correct! nats-correct : (n : ℕ) → Trans (λ x y → suc x ≡ y) (natsFrom n) trans-head (nats-correct n) = refl trans-tail (nats-correct n) = nats-correct (suc n) ----------------------------- -- Talking Distr. Systems! -- -- I hope I got the names right postulate State : Set Event : Set Enabled : State → Event → Set action : (s : State)(e : Event) → (enev : Enabled s e) → State _l-t_ : (State → Set) → (State → Set) → Set -- indicates a given post-state is a possible -- outcome from a given pre-state; witnesses the -- translation to the relational scheme I mentioned _⟶_ : State → State → Set s ⟶ s' = ∃[ e ] (Σ (Enabled s e) (λ enev → action s e enev ≡ s')) -- A Behavior, then, is a stream of states -- such that it starts at s₀ and all states -- are linked through the _⟶_ relation. -- You might want to have this in a single Beh record -- instead of assembling it from primitives Beh : State → Set Beh s₀ = Σ (Stream State) (λ st → head st ≡ s₀ × Trans _⟶_ st) module Absurd-DO-NOT-TRY-AT-HOME where data HeadOrTail {A : Set}(P : A → Set)(Q : Stream A → Set) : Stream A → Set where on-head : ∀{s} → P (head s) → HeadOrTail P Q s -- there might be a case for including (¬ P (head s)) here... on-tail : ∀{s} → Q (tail s) → HeadOrTail P Q s record Any {A : Set}(P : A → Set)(as : Stream A) : Set where coinductive field any : HeadOrTail P (Any P) as open Any public -- Witness is a proof by induction that places us -- at the position where P 'holds'; but as we shall see, -- this might never be the case and; even though the -- 'recursive' call makes 'progress' by traversing to the tail, -- it is not enough and we broke math anyway -- -- Exercise to the reader: mark this function as -- NON_TERMINATING instead to see how Agda would stop us -- from breaking math! NON_TERMINATING definitions never reduce -- during typechecking; rendering them almost useless. They are only used -- when doing actual user IO AFAIC {-# TERMINATING #-} witness : {A : Set}{P : A → Set}{as : Stream A} → Any P as → Stream A witness x with any x ...| on-head {s} _ = s ...| on-tail {s} x' = witness {as = tail s} x' {-# NON_TERMINATING #-} witness-satP : {A : Set}{P : A → Set}{as : Stream A} → (x : Any P as) → P (head (witness x)) witness-satP x with any x ...| on-head {s} p = p ...| on-tail x' = witness-satP x' never : {A : Set}(P : A → Set)(as : Stream A) → Any P as any (never P as) = on-tail (never P (tail as)) -- This is why induction and coinduction can't be mixed! xD -- note that even marking one of them as non-terminating we still -- run into trouble oh-no! : ⊥ oh-no! = witness-satP (never (λ _ → ⊥) nats) ----------------------------------------- -- Trying Again; with naturals to help -- mutual data AtF {A : Set}(P : A → Set) : Stream A → ℕ → Set where on-head : ∀{s} → P (head s) → AtF P s 0 on-tail : ∀{s n} → At P (tail s) n → AtF P s (suc n) record At {A : Set}(P : A → Set)(as : Stream A)(i : ℕ) : Set where coinductive field α : AtF P as i open At _satisfies_at_ : ∀{s₀}(σ : Beh s₀)(P : State → Set) → ℕ → Set σ satisfies P at i = At P (proj₁ σ) i -- Now, we can prove that a for all finite prefixes -- of an infinite behaviour such that they satisfy P -- at some observable point, they will satisfy Q at -- some future obervable point. -- Note the use of the word observable here! I like to think of coinduction -- in terms of dominos-chain-reaction. Imagine we want to knock a domino -- x₀ and we want to reason whether or not it knocks over a domino x'. -- Now sawy we reason like this: -- that we x₀ will knock x₁; which in turn will knock x₂; ... and -- eventually will knock x'. Well; it is induction that guarantees -- this for us, and induction requires the number of dominoes between -- x and x' to be countable (isomorphic to ℕ). -- -- If there truly is an infinite number of dominoes between x and x', -- it means that no matter how far we get, there will always be -- at least one domino between where we are and x'; and the wave of -- knocks will never reach x', hence, that type of reasoning is plain invalid. -- -- Behaviors are pottentially plain infinite; some systems never stop. -- We still want to guarantee certain invariants. -- -- Soundness, as I see it, is a proof that given any behavior σ -- that eventually satisfy P; and given that P leads to Q; -- any behaviour that forks of the point where σ satisfied P -- must satisfy Q; A first sketch in agda could be: soundness : {P Q : State → Set} → ∀{s₀ i}(σ : Beh s₀)(prf : σ satisfies P at i) → P l-t Q → Σ ℕ (λ j → σ satisfies Q at (j + i)) -- j + i already guarantess it is the future soundness = {! may-the-force-be-with-us !} -}
{ "alphanum_fraction": 0.6032989004, "avg_line_length": 33.530726257, "ext": "agda", "hexsha": "c093fddc44a369b8f21aa09b62397e9b550df7a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "lisandrasilva/agda-liveness", "max_forks_repo_path": "src/Stream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "lisandrasilva/agda-liveness", "max_issues_repo_path": "src/Stream.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "lisandrasilva/agda-liveness", "max_stars_repo_path": "src/Stream.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1827, "size": 6002 }
{-# OPTIONS --copatterns #-} module EmptyInductiveRecord where mutual data E : Set where e : F -> E record F : Set where inductive constructor c field f : E open F data ⊥ : Set where elim : E → ⊥ elim (e (c x)) = elim x elim' : E → ⊥ elim' (e y) = elim' (f y)
{ "alphanum_fraction": 0.5734265734, "avg_line_length": 13, "ext": "agda", "hexsha": "4ecff1c93fb1a2a8fb0ca8e021beb476b94dcf4f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/EmptyInductiveRecord.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/EmptyInductiveRecord.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/EmptyInductiveRecord.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 101, "size": 286 }
{-# OPTIONS --no-main #-} data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A {-# COMPILE GHC List = data Non (Sense) #-} -- should result in warning when compiling {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-}
{ "alphanum_fraction": 0.5580524345, "avg_line_length": 24.2727272727, "ext": "agda", "hexsha": "70fa8a4f9ea6f09ea05e9ffbd2d27f932e3e8575", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/CompileBuiltinListWarning.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/CompileBuiltinListWarning.agda", "max_line_length": 86, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/CompileBuiltinListWarning.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 82, "size": 267 }