Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Groups.Definition module Groups.Subgroups.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) where open import Setoids.Subset S open Group G record Subgroup {c : _} (pred : A → Set c) : Set (a ⊔ b ⊔ c) where field isSubset : subset pred closedUnderPlus : {g h : A} → (pred g) → (pred h) → pred (g + h) containsIdentity : pred 0G closedUnderInverse : ({g : A} → (pred g) → (pred (inverse g))) subgroupOp : {c : _} {pred : A → Set c} → (s : Subgroup pred) → Sg A pred → Sg A pred → Sg A pred subgroupOp {pred = pred} record { closedUnderPlus = one } (a , prA) (b , prB) = (a + b) , one prA prB subgroupIsGroup : {c : _} {pred : A → Set c} → (s : Subgroup pred) → Group (subsetSetoid (Subgroup.isSubset s)) (subgroupOp s) Group.+WellDefined (subgroupIsGroup s) {m , prM} {n , prN} {x , prX} {y , prY} m=x n=y = +WellDefined m=x n=y Group.0G (subgroupIsGroup record { containsIdentity = two }) = 0G , two Group.inverse (subgroupIsGroup record { closedUnderInverse = three }) (a , prA) = (inverse a) , three prA Group.+Associative (subgroupIsGroup s) {a , prA} {b , prB} {c , prC} = +Associative Group.identRight (subgroupIsGroup s) {a , prA} = identRight Group.identLeft (subgroupIsGroup s) {a , prA} = identLeft Group.invLeft (subgroupIsGroup s) {a , prA} = invLeft Group.invRight (subgroupIsGroup s) {a , prA} = invRight
{ "alphanum_fraction": 0.6542893726, "avg_line_length": 48.8125, "ext": "agda", "hexsha": "2e078dec351bd97200040608159b04cec1faa6c9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Subgroups/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Subgroups/Definition.agda", "max_line_length": 126, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Subgroups/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 555, "size": 1562 }
------------------------------------------------------------------------------ -- Generic well-founded induction on trees ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Adapted from FOTC.Data.Nat.Induction.Acc.WellFounded. module FOT.FOTC.Program.Mirror.Induction.Acc.WellFounded where open import FOTC.Base open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ -- The accessibility predicate: x is accessible if everything which is -- smaller than x is also accessible (inductively). data Acc (_<_ : D → D → Set)(t : D) : Set where acc : (∀ {t'} → Tree t' → t' < t → Acc _<_ t') → Acc _<_ t accFold : {P : D → Set}(_<_ : D → D → Set) → (∀ {t} → Tree t → (∀ {t'} → Tree t' → t' < t → P t') → P t) → ∀ {t} → Tree t → Acc _<_ t → P t accFold _<_ f Tt (acc h) = f Tt (λ Tt' t'<t → accFold _<_ f Tt' (h Tt' t'<t)) -- The accessibility predicate encodes what it means to be -- well-founded; if all elements are accessible, then _<_ is -- well-founded. WellFounded : (D → D → Set) → Set WellFounded _<_ = ∀ {t} → Tree t → Acc _<_ t WellFoundedInduction : {P : D → Set}{_<_ : D → D → Set} → WellFounded _<_ → (∀ {t} → Tree t → (∀ {t'} → Tree t' → t' < t → P t') → P t) → ∀ {t} → Tree t → P t WellFoundedInduction {_<_ = _<_} wf f Tt = accFold _<_ f Tt (wf Tt)
{ "alphanum_fraction": 0.4871794872, "avg_line_length": 38.0487804878, "ext": "agda", "hexsha": "48366864be66e8c22371189cc2eff8c926eb835d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Mirror/Induction/Acc/WellFounded.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Mirror/Induction/Acc/WellFounded.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Mirror/Induction/Acc/WellFounded.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 450, "size": 1560 }
------------------------------------------------------------------------ -- Example: Right recursive expression grammar ------------------------------------------------------------------------ module TotalRecognisers.Simple.Expression where open import Codata.Musical.Notation open import Data.Bool open import Data.Char as Char using (Char) open import Data.String as String using (String) open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable import TotalRecognisers.Simple as P private open module PC = P Char Char._≟_ hiding (_·_) open PC.P using (_·_) ------------------------------------------------------------------------ -- Recognisers for bits and binary numbers -- Bits. bit = tok '0' ∣ tok '1' -- Numbers. number = bit · ♯ (empty ∣ number) ------------------------------------------------------------------------ -- An expression grammar -- t ∷= f '+' t ∣ f -- f ∷= a '*' f ∣ a -- a ∷= '(' t ')' ∣ n mutual term = factor · ♯ (tok '+' · ♯ term) ∣ factor factor = atom · ♯ (tok '*' · ♯ factor) ∣ atom atom = tok '(' · ♯ term · ♯ tok ')' ∣ number ------------------------------------------------------------------------ -- Unit tests module Tests where test : ∀ {n} → P n → String → Bool test p s = ⌊ String.toList s ∈? p ⌋ ex₁ : test term "0*(0+0)" ≡ true ex₁ = refl ex₂ : test term "0*(0+0" ≡ false ex₂ = refl
{ "alphanum_fraction": 0.4583624913, "avg_line_length": 23.0483870968, "ext": "agda", "hexsha": "e143b2238d16751910af05ab65a35f5342d88195", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalRecognisers/Simple/Expression.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalRecognisers/Simple/Expression.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalRecognisers/Simple/Expression.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 345, "size": 1429 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed universes ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Universe.Indexed where open import Data.Product open import Data.Universe open import Function open import Level ------------------------------------------------------------------------ -- Definitions record IndexedUniverse i u e : Set (suc (i ⊔ u ⊔ e)) where field I : Set i -- Index set. U : I → Set u -- Codes. El : ∀ {i} → U i → Set e -- Decoding function. -- An indexed universe can be turned into an unindexed one. unindexed-universe : Universe (i ⊔ u) e unindexed-universe = record { U = ∃ λ i → U i ; El = El ∘ proj₂ }
{ "alphanum_fraction": 0.4461538462, "avg_line_length": 26.40625, "ext": "agda", "hexsha": "8012079769e580190d77a383c763125321e23434", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Universe/Indexed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Universe/Indexed.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Universe/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 187, "size": 845 }
module Integer.Signed where open import Data.Empty as ⊥ open import Data.Product as Σ open import Data.Product.Relation.Pointwise.NonDependent open import Data.Sum as ⊎ open import Data.Unit as ⊤ open import Equality open import Function open import Natural as ℕ open import Quotient as / open import Relation.Binary open import Syntax open Equality.FunctionProperties ⟦ℤ⟧ = ℕ ⊎ ℕ ⟦ℤ²⟧ = ⟦ℤ⟧ × ⟦ℤ⟧ infix 10 +1*_ -1*_ pattern +1*_ x = inj₁ x pattern -1*_ x = inj₂ x infix 1 _≈_ _≈_ : ⟦ℤ⟧ → ⟦ℤ⟧ → Set +1* x ≈ +1* y = x ≡ y +1* x ≈ -1* y = x ≡ 0 × y ≡ 0 -1* x ≈ +1* y = x ≡ 0 × y ≡ 0 -1* x ≈ -1* y = x ≡ y ≈-refl : ∀ {x} → x ≈ x ≈-refl {+1* x} = refl ≈-refl { -1* x} = refl ≈-sym : ∀ {x y} → x ≈ y → y ≈ x ≈-sym {+1* x} {+1* y} = sym ≈-sym {+1* x} { -1* y} = Σ.swap ≈-sym { -1* x} {+1* y} = Σ.swap ≈-sym { -1* x} { -1* y} = sym ≈-trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z ≈-trans {+1* x} {+1* y} {+1* z} p q = compPath p q ≈-trans {+1* x} {+1* y} { -1* z} p (q , r) = p ≫ q , r ≈-trans {+1* x} { -1* y} {+1* z} (p , q) (r , s) = p ≫ sym s ≈-trans {+1* x} { -1* y} { -1* z} (p , q) r = p , sym r ≫ q ≈-trans { -1* x} {+1* y} {+1* z} (p , q) r = p , sym r ≫ q ≈-trans { -1* x} {+1* y} { -1* z} (p , q) (r , s) = p ≫ sym s ≈-trans { -1* x} { -1* y} {+1* z} p (q , r) = p ≫ q , r ≈-trans { -1* x} { -1* y} { -1* z} p q = compPath p q ℤ = ⟦ℤ⟧ / _≈_ ℤ² = ⟦ℤ²⟧ / Pointwise _≈_ _≈_ instance ⟦ℤ⟧-Number : Number ⟦ℤ⟧ ⟦ℤ⟧-Number = record { Constraint = λ _ → ⊤ ; fromNat = λ n → +1* n } ℤ-Number : Number ℤ ℤ-Number = record { Constraint = λ _ → ⊤ ; fromNat = λ n → ⟦ fromNat n ⟧ } ⟦ℤ⟧-Negative : Negative ⟦ℤ⟧ ⟦ℤ⟧-Negative = record { Constraint = λ _ → ⊤ ; fromNeg = λ n → -1* n } ℤ-Negative : Negative ℤ ℤ-Negative = record { Constraint = λ _ → ⊤ ; fromNeg = λ n → ⟦ fromNeg n ⟧ } ⟦negate⟧ : ⟦ℤ⟧ → ⟦ℤ⟧ ⟦negate⟧ (+1* n) = -1* n ⟦negate⟧ (-1* n) = +1* n negate : ℤ → ℤ negate = ⟦negate⟧ // λ where (+1* x) (+1* y) → id (+1* x) (-1* y) → id (-1* x) (+1* y) → id (-1* x) (-1* y) → id ℕ-minus : ℕ → ℕ → ⟦ℤ⟧ ℕ-minus zero n = -1* n ℕ-minus m zero = +1* m ℕ-minus (suc m) (suc n) = ℕ-minus m n instance ℕ-minus-syntax : minus-syntax-simple ℕ ℕ ⟦ℤ⟧ ℕ-minus-syntax = λ where ._-_ → ℕ-minus ℕ-minus-identityˡ : ∀ a → ℕ-minus 0 a ≈ -1* a ℕ-minus-identityˡ a = refl ℕ-minus-identityʳ : ∀ a → ℕ-minus a 0 ≈ +1* a ℕ-minus-identityʳ zero = refl , refl ℕ-minus-identityʳ (suc a) = refl ⟦plus⟧ : ⟦ℤ²⟧ → ⟦ℤ⟧ ⟦plus⟧ (+1* a , +1* b) = +1* (a + b) ⟦plus⟧ (+1* a , -1* b) = a - b ⟦plus⟧ (-1* a , +1* b) = b - a ⟦plus⟧ (-1* a , -1* b) = -1* (a + b) plus : ℤ² → ℤ plus = ⟦plus⟧ // λ where (+1* a , +1* b) (+1* c , +1* d) (p , q) → cong₂ _+_ p q (+1* a , +1* b) (+1* c , -1* d) (p , (q , r)) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥ , ♥) → ≈-trans (⟨ ℕ.+-identityʳ a ⟩) (≈-sym (ℕ-minus-identityʳ a)) (+1* a , +1* b) (-1* c , +1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥ , ♥) → ≈-sym (ℕ-minus-identityʳ b) (+1* a , +1* b) (-1* c , -1* d) ((p , q) , (r , s)) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ ,′ ⟪ s ⟫ of λ where (♥ , ♥ , ♥ , ♥) → refl , refl (+1* a , -1* b) (+1* c , +1* d) (p , (q , r)) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥ , ♥) → ≈-trans {ℕ-minus a 0} {+1* a} {+1* (a + 0)} (ℕ-minus-identityʳ a) (sym ⟨ ℕ.+-identityʳ a ⟩) (+1* a , -1* b) (+1* c , -1* d) (p , q) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → ≈-refl (+1* a , -1* b) (-1* c , +1* d) ((p , q) , (r , s)) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ ,′ ⟪ s ⟫ of λ where (♥ , ♥ , ♥ , ♥) → refl (+1* a , -1* b) (-1* c , -1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥ , ♥) → refl (-1* a , +1* b) (+1* c , +1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥ , ♥) → ℕ-minus-identityʳ b (-1* a , +1* b) (+1* c , -1* d) ((p , q) , (r , s)) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ ,′ ⟪ s ⟫ of λ where (♥ , ♥ , ♥ , ♥) → refl (-1* a , +1* b) (-1* c , +1* d) (p , q) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → ≈-refl (-1* a , +1* b) (-1* c , -1* d) (p , (q , r)) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥ , ♥) → sym ⟨ ℕ.+-identityʳ a ⟩ (-1* a , -1* b) (+1* c , +1* d) ((p , q) , (r , s)) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ ,′ ⟪ s ⟫ of λ where (♥ , ♥ , ♥ , ♥) → refl , refl (-1* a , -1* b) (+1* c , -1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥ , ♥) → refl (-1* a , -1* b) (-1* c , +1* d) (p , (q , r)) → case ⟪ p ⟫ ,′ ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥ , ♥) → ⟨ ℕ.+-identityʳ a ⟩ (-1* a , -1* b) (-1* c , -1* d) (p , q) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → refl ⟦times⟧ : ⟦ℤ²⟧ → ⟦ℤ⟧ ⟦times⟧ (+1* a , +1* b) = +1* (a * b) ⟦times⟧ (+1* a , -1* b) = -1* (a * b) ⟦times⟧ (-1* a , +1* b) = -1* (a * b) ⟦times⟧ (-1* a , -1* b) = +1* (a * b) times : ℤ² → ℤ times = ⟦times⟧ // λ where (+1* a , +1* b) (+1* c , +1* d) (p , q) → cong₂ _*_ p q (+1* a , -1* b) (+1* c , -1* d) (p , q) → cong₂ _*_ p q (-1* a , +1* b) (-1* c , +1* d) (p , q) → cong₂ _*_ p q (-1* a , -1* b) (-1* c , -1* d) (p , q) → cong₂ _*_ p q (+1* a , +1* b) (+1* c , -1* d) (p , q , r) → case ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥) → ⟨ *-zeroʳ a ⟩ , ⟨ *-zeroʳ c ⟩ (+1* a , -1* b) (+1* c , +1* d) (p , (q , r)) → case ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥) → ⟨ *-zeroʳ a ⟩ , ⟨ *-zeroʳ c ⟩ (-1* a , +1* b) (-1* c , -1* d) (p , (q , r)) → case ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥) → ⟨ *-zeroʳ a ⟩ , ⟨ *-zeroʳ c ⟩ (-1* a , -1* b) (-1* c , +1* d) (p , (q , r)) → case ⟪ q ⟫ ,′ ⟪ r ⟫ of λ where (♥ , ♥) → ⟨ *-zeroʳ a ⟩ , ⟨ *-zeroʳ c ⟩ (+1* a , +1* b) (-1* c , +1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → refl , refl (+1* a , -1* b) (-1* c , -1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → refl , refl (-1* a , +1* b) (+1* c , +1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → refl , refl (-1* a , -1* b) (+1* c , -1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → refl , refl (+1* a , +1* b) (-1* c , -1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → refl (+1* a , -1* b) (-1* c , +1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → refl (-1* a , +1* b) (+1* c , -1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → refl (-1* a , -1* b) (+1* c , +1* d) ((p , q) , r) → case ⟪ p ⟫ ,′ ⟪ q ⟫ of λ where (♥ , ♥) → refl instance ℤ-plus-syntax : plus-syntax-simple ℤ ℤ ℤ ℤ-plus-syntax = λ where ._+_ → /.uncurry ≈-refl ≈-refl plus ℤ-minus-syntax : minus-syntax-simple ℤ ℤ ℤ ℤ-minus-syntax = λ where ._-_ x y → x + negate y ℤ-times-syntax : times-syntax-simple ℤ ℤ ℤ ℤ-times-syntax = λ where ._*_ → /.uncurry ≈-refl ≈-refl times
{ "alphanum_fraction": 0.3663584932, "avg_line_length": 31.6462882096, "ext": "agda", "hexsha": "8bcd4a048cbdbdc78a389358652a51bd81b96587", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kcsmnt0/numbers", "max_forks_repo_path": "src/Integer/Signed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kcsmnt0/numbers", "max_issues_repo_path": "src/Integer/Signed.agda", "max_line_length": 78, "max_stars_count": 9, "max_stars_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kcsmnt0/numbers", "max_stars_repo_path": "src/Integer/Signed.agda", "max_stars_repo_stars_event_max_datetime": "2020-01-16T07:16:26.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-20T01:29:41.000Z", "num_tokens": 3750, "size": 7247 }
-- 2014-02-08 Andreas -- Eta-equality for records that are recursive via some data type module _ where open import Common.Equality module Nested where data List (A : Set) : Set where [] : List A _∷_ : (x : A)(xs : List A) → List A record Tree (A : Set) : Set where constructor tree field elem : A subtrees : List (Tree A) open Tree test : ∀ {A} (t : Tree A) → t ≡ tree (elem t) (subtrees t) test t = refl -- we should have eta for Tree! module Mutual where mutual data TreeList (A : Set) : Set where [] : TreeList A _∷_ : (x : Tree A)(xs : TreeList A) → TreeList A record Tree (A : Set) : Set where constructor tree field elem : A subtrees : TreeList A open Tree test : ∀ {A} (t : Tree A) → t ≡ tree (elem t) (subtrees t) test t = refl
{ "alphanum_fraction": 0.5725995316, "avg_line_length": 19.8604651163, "ext": "agda", "hexsha": "c1ecc7e2708f231b6f3b8234b6284e928a2bf314", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/succeed/EtaInductiveRecord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/succeed/EtaInductiveRecord.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/EtaInductiveRecord.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 279, "size": 854 }
module JVM.Defaults.Syntax.Instructions.Show where open import Data.String as String hiding (show) open import Data.Nat.Show as Nat hiding (show) open import Relation.Binary.PropositionalEquality open import Relation.Ternary.Structures.Syntax open import Relation.Ternary.Monad.Weakening open import Relation.Ternary.Data.ReflexiveTransitive open import JVM.Types open import JVM.Contexts open import JVM.Defaults.Syntax.Values open import JVM.Defaults.Syntax.Instructions open import JVM.Model using (↑; ↓) show-instr : ∀ {Φ} → ⟨ Γ ∣ ψ₁ ⇒ ψ₂ ⟩ Φ → String show-instr noop = "noop" show-instr pop = "pop" show-instr (push x) = "push" where show-const : Const a → String show-const null = "null" show-const unit = "unit" show-const (num x) = Nat.show x show-instr dup = "dup" show-instr swap = "swap" show-instr (bop x) = "bop" show-instr new = "new" show-instr read = "read" show-instr write = "write" show-instr (load (refl ⇈ wk)) = "load " ++ Nat.show (indexOf wk) show-instr (store (refl ⇈ wk)) = "store " ++ Nat.show (indexOf wk) show-instr (goto x) = "goto" show-instr (if c x₁) = "if" ++ show-comp c where show-comp : Comparator → String show-comp eq = "eq" show-comp ne = "ne" show-comp lt = "lt" show-comp ge = "ge" show-comp gt = "gt" show-comp le = "le" show-instr ret = "ret" show-code : ∀ {Γ Φ} → Code Γ ψ₁ ψ₂ Φ → String show-code (labeled (_ ∙⟨ _ ⟩ ↓ i)) = "<>: " ++ show-instr i show-code (instr (↓ i)) = " " ++ show-instr i show : ∀ {Φ} → ⟪ Γ ∣ ψ₁ ⇒ ψ₂ ⟫ Φ → String show nil = "" show (c ▹⟨ σ ⟩ is) = show-code c ++ "\n" ++ show is
{ "alphanum_fraction": 0.6213476446, "avg_line_length": 32.25, "ext": "agda", "hexsha": "91e871950a0f1871181eb7579ebeeee48fb63ba3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Syntax/Instructions/Show.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Syntax/Instructions/Show.agda", "max_line_length": 66, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Syntax/Instructions/Show.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 547, "size": 1677 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} module Haskell.Modules.ToBool where open import Data.Bool hiding (not) import Function import Relation.Nullary as RN import Relation.Nullary.Decidable.Core as RNDC record ToBool {a}(A : Set a) : Set a where field toBool : A → Bool open ToBool {{ ... }} public not : ∀ {b} {B : Set b} ⦃ _ : ToBool B ⦄ → B → Bool not b = Data.Bool.not (toBool b) instance ToBool-Bool : ToBool Bool ToBool-Bool = record { toBool = Function.id } ToBool-Dec : ∀{a}{A : Set a} → ToBool (RN.Dec A) ToBool-Dec = record { toBool = RNDC.⌊_⌋ }
{ "alphanum_fraction": 0.662591687, "avg_line_length": 26.3870967742, "ext": "agda", "hexsha": "0fa3defaa3af98144b894a55dff044b974597d5e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Haskell/Modules/ToBool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Haskell/Modules/ToBool.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Haskell/Modules/ToBool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 249, "size": 818 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Logical relation for erasure with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Change.Implementation where open import Nehemiah.Syntax.Type open import Nehemiah.Syntax.Term open import Nehemiah.Denotation.Value open import Nehemiah.Denotation.Evaluation open import Nehemiah.Change.Validity open import Nehemiah.Change.Type open import Nehemiah.Change.Value open import Nehemiah.Change.Derive open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Nehemiah import Parametric.Change.Implementation Const ⟦_⟧Base ⟦_⟧Const ΔBase ⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧ derive-const as Implementation private implements-base : ∀ ι {v : ⟦ ι ⟧Base} → Δ₍ ι ₎ v → ⟦ ΔBase ι ⟧Type → Set implements-base base-int {v} Δv Δv′ = Δv ≡ Δv′ implements-base base-bag {v} Δv Δv′ = Δv ≡ Δv′ u⊟v≈u⊝v-base : ∀ ι → {u v : ⟦ ι ⟧Base} → implements-base ι {v} (u ⊟₍ ι ₎ v) (⟦diff-base⟧ ι u v) u⊟v≈u⊝v-base base-int = refl u⊟v≈u⊝v-base base-bag = refl nil-v≈⟦nil⟧-v-base : ∀ ι {v : ⟦ ι ⟧Base} → implements-base ι (nil₍ ι ₎ v) (⟦nil-base⟧ ι v) nil-v≈⟦nil⟧-v-base base-int = refl nil-v≈⟦nil⟧-v-base base-bag = refl carry-over-base : ∀ {ι} {v : ⟦ ι ⟧Base} (Δv : Δ₍ ι ₎ v) {Δv′ : ⟦ ΔBase ι ⟧Type} (Δv≈Δv′ : implements-base ι {v} Δv Δv′) → v ⊞₍ base ι ₎ Δv ≡ v ⟦⊕₍ base ι ₎⟧ Δv′ carry-over-base {base-int} {v} Δv Δv≈Δv′ = cong (_+_ v) Δv≈Δv′ carry-over-base {base-bag} Δv Δv≈Δv′ = cong (_++_ (before₍ bag ₎ Δv)) Δv≈Δv′ implementation-structure : Implementation.Structure implementation-structure = record { implements-base = implements-base ; u⊟v≈u⊝v-base = u⊟v≈u⊝v-base ; nil-v≈⟦nil⟧-v-base = nil-v≈⟦nil⟧-v-base ; carry-over-base = carry-over-base } open Implementation.Structure implementation-structure public
{ "alphanum_fraction": 0.6218611521, "avg_line_length": 33.85, "ext": "agda", "hexsha": "994d37e7152642f692ef09d7bd729ad164e98060", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Nehemiah/Change/Implementation.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Nehemiah/Change/Implementation.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Nehemiah/Change/Implementation.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 766, "size": 2031 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The max operator derived from an arbitrary total order ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Algebra.Construct.NaturalChoice.Max {a ℓ₁ ℓ₂} (totalOrder : TotalOrder a ℓ₁ ℓ₂) where open import Algebra.FunctionProperties open import Relation.Binary.Construct.Converse using () renaming (totalOrder to flip) open TotalOrder totalOrder renaming (Carrier to A) ------------------------------------------------------------------------ -- Max is just min with a flipped order import Algebra.Construct.NaturalChoice.Min (flip totalOrder) as Min infixl 6 _⊔_ _⊔_ : Op₂ A _⊔_ = Min._⊓_ open Min public using () renaming ( ⊓-cong to ⊔-cong ; ⊓-idem to ⊔-idem ; ⊓-sel to ⊔-sel ; ⊓-assoc to ⊔-assoc ; ⊓-comm to ⊔-comm ; ⊓-identityˡ to ⊔-identityˡ ; ⊓-identityʳ to ⊔-identityʳ ; ⊓-identity to ⊔-identity ; ⊓-zeroˡ to ⊔-zeroˡ ; ⊓-zeroʳ to ⊔-zeroʳ ; ⊓-zero to ⊔-zero ; ⊓-isMagma to ⊔-isMagma ; ⊓-isSemigroup to ⊔-isSemigroup ; ⊓-isBand to ⊔-isBand ; ⊓-isSemilattice to ⊔-isSemilattice ; ⊓-isMonoid to ⊔-isMonoid ; ⊓-magma to ⊔-magma ; ⊓-semigroup to ⊔-semigroup ; ⊓-band to ⊔-band ; ⊓-semilattice to ⊔-semilattice ; ⊓-monoid to ⊔-monoid ; x⊓y≈y⇒y≤x to x⊔y≈y⇒x≤y ; x⊓y≈x⇒x≤y to x⊔y≈x⇒y≤x )
{ "alphanum_fraction": 0.508782936, "avg_line_length": 28.4642857143, "ext": "agda", "hexsha": "91118b98b1ebf5dcf107d5b8c22537f1949f4280", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Construct/NaturalChoice/Max.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Construct/NaturalChoice/Max.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Construct/NaturalChoice/Max.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 568, "size": 1594 }
module string where open import bool open import eq open import char open import list open import nat open import unit open import maybe open import product ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- postulate Pair : (A B : Set) → Set pair : {A B : Set} → A → B → Pair A B pair-fst : {A B : Set} → Pair A B → A pair-snd : {A B : Set} → Pair A B → B {-# COMPILE GHC Pair = type (,) #-} {-# COMPILE GHC pair = \ _ _ a b -> (a, b) #-} {-# COMPILE GHC pair-fst = \ _ _ p -> fst p #-} {-# COMPILE GHC pair-snd = \ _ _ p -> snd p #-} postulate string : Set stringUncons : string → maybe (Pair char string) stringFoldl : ∀{A : Set} → (A → char → A) → A → string → A stringFoldr : ∀{A : Set} → (char → A → A) → A → string → A {-# BUILTIN STRING string #-} {-# COMPILE GHC stringUncons = Data.Text.uncons #-} {-# COMPILE GHC stringFoldl = \ x -> Data.Text.foldl #-} {-# COMPILE GHC stringFoldr = \ x -> Data.Text.foldr #-} private primitive primStringToList : string → 𝕃 char primStringAppend : string → string → string primStringFromList : 𝕃 char → string primStringEquality : string → string → 𝔹 -- see string-thms.agda for some axioms about the above primitive functions ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infixr 6 _^_ infix 8 _=string_ ---------------------------------------------------------------------- -- operations ---------------------------------------------------------------------- _^_ : string → string → string _^_ = primStringAppend string-uncons : string → maybe (char × string) string-uncons x with stringUncons x string-uncons x | nothing = nothing string-uncons x | just x₁ = just (pair-fst x₁ , pair-snd x₁) string-to-𝕃char : string → 𝕃 char string-to-𝕃char = primStringToList 𝕃char-to-string : 𝕃 char → string 𝕃char-to-string = primStringFromList _=string_ : string → string → 𝔹 _=string_ = primStringEquality char-to-string : char → string char-to-string c = 𝕃char-to-string [ c ] string-append-t : ℕ → Set string-append-t 0 = string → string string-append-t (suc n) = string → (string-append-t n) string-append-h : (n : ℕ) → string → string-append-t n string-append-h 0 ret = λ x → ret ^ x string-append-h (suc n) ret = λ x → (string-append-h n (ret ^ x)) string-append : (n : ℕ) → string-append-t n string-append n = string-append-h n "" string-concat : 𝕃 string → string string-concat [] = "" string-concat (s :: ss) = s ^ (string-concat ss) string-concat-sep : (separator : string) → 𝕃 string → string string-concat-sep sep [] = "" string-concat-sep sep (s1 :: ss) with ss ... | [] = s1 ... | s2 :: ss' = s1 ^ sep ^ (string-concat-sep sep ss) string-concat-sep-map : ∀{A : Set} → (separator : string) → (A → string) → 𝕃 A → string string-concat-sep-map sep f l = string-concat-sep sep (map f l) escape-string-h : 𝕃 char → 𝕃 char escape-string-h ('\n' :: cs) = '\\' :: 'n' :: (escape-string-h cs) escape-string-h ('"' :: cs) = '\\' :: '"' :: (escape-string-h cs) escape-string-h (c :: cs) = c :: escape-string-h cs escape-string-h [] = [] escape-string : string → string escape-string s = 𝕃char-to-string( escape-string-h( string-to-𝕃char s ) ) string-length : string → ℕ string-length s = length (string-to-𝕃char s)
{ "alphanum_fraction": 0.5593958757, "avg_line_length": 29.4273504274, "ext": "agda", "hexsha": "6fd1d7238c9fa7c2921592a2295c0363d102e682", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "string.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "string.agda", "max_line_length": 87, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "string.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 977, "size": 3443 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Monoidal where open import Level open import Data.Product using (Σ; _,_) open import Categories.Category open import Categories.Category.Product open import Categories.Category.Monoidal open import Categories.Functor hiding (id) open import Categories.NaturalTransformation hiding (id) private variable o ℓ e : Level C D : Category o ℓ e module _ (MC : Monoidal C) (MD : Monoidal D) where private module C = Category C module D = Category D module MC = Monoidal MC module MD = Monoidal MD record MonoidalFunctor : Set (levelOfTerm MC ⊔ levelOfTerm MD) where field F : Functor C D open Functor F public field ε : D [ MD.unit , F₀ MC.unit ] ⊗-homo : NaturalTransformation (MD.⊗ ∘F (F ⁂ F)) (F ∘F MC.⊗) module ⊗-homo = NaturalTransformation ⊗-homo -- coherence condition open D open MD open Commutation field associativity : ∀ {X Y Z} → [ (F₀ X ⊗₀ F₀ Y) ⊗₀ F₀ Z ⇒ F₀ (X MC.⊗₀ Y MC.⊗₀ Z) ]⟨ ⊗-homo.η (X , Y) ⊗₁ id ⇒⟨ F₀ (X MC.⊗₀ Y) ⊗₀ F₀ Z ⟩ ⊗-homo.η (X MC.⊗₀ Y , Z) ⇒⟨ F₀ ((X MC.⊗₀ Y) MC.⊗₀ Z) ⟩ F₁ MC.associator.from ≈ associator.from ⇒⟨ F₀ X ⊗₀ F₀ Y ⊗₀ F₀ Z ⟩ id ⊗₁ ⊗-homo.η (Y , Z) ⇒⟨ F₀ X ⊗₀ F₀ (Y MC.⊗₀ Z) ⟩ ⊗-homo.η (X , Y MC.⊗₀ Z) ⟩ unitaryˡ : ∀ {X} → [ unit ⊗₀ F₀ X ⇒ F₀ X ]⟨ ε ⊗₁ id ⇒⟨ F₀ MC.unit ⊗₀ F₀ X ⟩ ⊗-homo.η (MC.unit , X) ⇒⟨ F₀ (MC.unit MC.⊗₀ X) ⟩ F₁ MC.unitorˡ.from ≈ unitorˡ.from ⟩ unitaryʳ : ∀ {X} → [ F₀ X ⊗₀ unit ⇒ F₀ X ]⟨ id ⊗₁ ε ⇒⟨ F₀ X ⊗₀ F₀ MC.unit ⟩ ⊗-homo.η (X , MC.unit) ⇒⟨ F₀ (X MC.⊗₀ MC.unit) ⟩ F₁ MC.unitorʳ.from ≈ unitorʳ.from ⟩
{ "alphanum_fraction": 0.4354767184, "avg_line_length": 33.1617647059, "ext": "agda", "hexsha": "2c979727d061291e7b263afba0e3798af2d11a16", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Monoidal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Monoidal.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Monoidal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 742, "size": 2255 }
-- Andreas, 2017-01-08 -- Error range when "The name of the top level module does not match" to big {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --type-in-type #-} -- {-# OPTIONS -v scope.checkModuleName:100 #-} module ThisIsTheWrongName where postulate Something : Set -- WAS: Error range included option pragmas. -- Expected range: only the module name
{ "alphanum_fraction": 0.7038043478, "avg_line_length": 21.6470588235, "ext": "agda", "hexsha": "f75355532c32958c0774ea3c5a2e19f92d0da7e8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/RegionWrongModule.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/RegionWrongModule.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/RegionWrongModule.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 92, "size": 368 }
{-# OPTIONS -v tc.cover.splittree:50 #-} open import Agda.Builtin.Nat data Vec (A : Set) : Nat → Set where nil : Vec A zero cons : (n : Nat) → A → Vec A n → Vec A (suc n) append : {A : Set} (m n : Nat) → Vec A m → Vec A n → Vec A (m + n) append .zero n nil ys = ys append (.suc m) n (cons .m x xs) ys = cons (m + n) x (append m n xs ys) open import Agda.Builtin.Equality data _×_ (A B : Set) : Set where pair : A → B → A × B test : (p q : Nat × Nat) → p ≡ q → Set₁ test (.(pair x) y) (pair x .y) refl = Set
{ "alphanum_fraction": 0.5449438202, "avg_line_length": 26.7, "ext": "agda", "hexsha": "70ee11a8091af70af3d95a61ff33cd55f94cedfa", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ForcedConstructorPattern.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ForcedConstructorPattern.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ForcedConstructorPattern.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 206, "size": 534 }
open import Agda.Primitive using (_⊔_) import Categories.Category as Category import Categories.Category.Cartesian as Cartesian open import MultiSorted.AlgebraicTheory -- Finite products indexed by contexts module MultiSorted.Product {o ℓ e} (𝒞 : Category.Category o ℓ e) {𝓈 ℴ} {Σ : Signature {𝓈} {ℴ}} (interp-sort : Signature.sort Σ → Category.Category.Obj 𝒞) where open Signature Σ open Category.Category 𝒞 open HomReasoning interp-sort-var : {Γ : Context} → var Γ → Obj interp-sort-var {Γ} x = interp-sort (sort-of Γ x) record Producted : Set (o ⊔ ℓ ⊔ e ⊔ 𝓈) where field prod : Context → Obj π : ∀ {Γ} (x : var Γ) → prod Γ ⇒ interp-sort-var x tuple : ∀ Γ {B} → ((x : var Γ) → B ⇒ interp-sort-var x) → B ⇒ prod Γ project : ∀ {Γ} {B} {x : var Γ} {fs : (y : var Γ) → B ⇒ interp-sort-var y} → π x ∘ tuple Γ fs ≈ fs x unique : ∀ {Γ} {B} {fs : (x : var Γ) → B ⇒ interp-sort-var x} {g : B ⇒ prod Γ} → (∀ i → π i ∘ g ≈ fs i) → tuple Γ fs ≈ g η : ∀ {Γ} → tuple Γ π ≈ id η = unique (λ i → identityʳ) ! : ∀ {B : Obj} → B ⇒ prod ctx-empty ! {B} = tuple ctx-empty ctx-empty-absurd !-unique : ∀ {B : Obj} {f : B ⇒ prod ctx-empty} → ! ≈ f !-unique {f = f} = unique ctx-empty-absurd !-unique₂ : ∀ {B : Obj} {f g : B ⇒ prod ctx-empty} → f ≈ g !-unique₂ = (⟺ !-unique) ○ !-unique tuple-cong : ∀ {B : Obj} {Γ} {fs gs : (x : var Γ) → B ⇒ interp-sort-var x} → (∀ i → fs i ≈ gs i) → tuple Γ fs ≈ tuple Γ gs tuple-cong ξ = unique (λ i → project ○ ⟺ (ξ i)) ∘-distribʳ-tuple : ∀ {B C} {Γ} {fs : (x : var Γ) → B ⇒ interp-sort-var x} {g : C ⇒ B} → tuple Γ (λ x → fs x ∘ g) ≈ tuple Γ fs ∘ g ∘-distribʳ-tuple = unique (λ i → ⟺ assoc ○ ∘-resp-≈ˡ project) -- A cartesian category has a standard products structure (which we need not use) module _ (cartesian-𝒞 : Cartesian.Cartesian 𝒞) where open Cartesian.Cartesian cartesian-𝒞 standard-prod : Context → Obj standard-prod ctx-empty = ⊤ standard-prod (ctx-slot A) = interp-sort A standard-prod (ctx-concat Γ Δ) = standard-prod Γ × standard-prod Δ standard-π : ∀ {Γ} (x : var Γ) → standard-prod Γ ⇒ interp-sort-var x standard-π var-var = id standard-π (var-inl i) = standard-π i ∘ π₁ standard-π (var-inr i) = standard-π i ∘ π₂ standard-tuple : ∀ Γ {B} → ((x : var Γ) → B ⇒ interp-sort-var x) → B ⇒ standard-prod Γ standard-tuple ctx-empty fs = ! standard-tuple (ctx-slot _) fs = fs var-var standard-tuple (ctx-concat Γ Δ) fs = ⟨ standard-tuple Γ (λ i → fs (var-inl i)) , standard-tuple Δ (λ j → fs (var-inr j)) ⟩ standard-project : ∀ {Γ} {B} {x : var Γ} {fs : (x : var Γ) → B ⇒ interp-sort-var x} → standard-π x ∘ standard-tuple Γ fs ≈ fs x standard-project {x = var-var} = identityˡ standard-project {x = var-inl x} = assoc ○ ((∘-resp-≈ʳ project₁) ○ standard-project {x = x}) standard-project {x = var-inr x} = assoc ○ ((∘-resp-≈ʳ project₂) ○ standard-project {x = x}) standard-unique : ∀ {Γ} {B} {fs : (x : var Γ) → B ⇒ interp-sort-var x} {g : B ⇒ standard-prod Γ} → (∀ i → standard-π i ∘ g ≈ fs i) → standard-tuple Γ fs ≈ g standard-unique {ctx-empty} ξ = !-unique _ standard-unique {ctx-slot _} ξ = ⟺ (ξ var-var) ○ identityˡ standard-unique {ctx-concat Γ Δ} {fs = fs} ξ = unique (⟺ (standard-unique (λ x → sym-assoc ○ (ξ (var-inl x))))) (⟺ (standard-unique (λ y → sym-assoc ○ (ξ (var-inr y))))) StandardProducted : Producted StandardProducted = record { prod = standard-prod ; π = standard-π ; tuple = standard-tuple ; project = λ {Γ} → standard-project {Γ} ; unique = standard-unique }
{ "alphanum_fraction": 0.5603470944, "avg_line_length": 40.4574468085, "ext": "agda", "hexsha": "9bf57beabd160cb002d600973d7adf04a165cda7", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/MultiSorted/Product.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/MultiSorted/Product.agda", "max_line_length": 136, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/MultiSorted/Product.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 1360, "size": 3803 }
-- In a module instantiation 'module A = e', 'e' should have the form 'm e1 .. -- en' where 'm' is a module name. module NotAModuleExpr where module Bad = \x -> x
{ "alphanum_fraction": 0.6545454545, "avg_line_length": 23.5714285714, "ext": "agda", "hexsha": "40c8de35811169c09c3377331a73a0da8a8ffb30", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/NotAModuleExpr.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/NotAModuleExpr.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/NotAModuleExpr.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 50, "size": 165 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT import homotopy.WedgeExtension as WedgeExt import homotopy.SuspAdjointLoop as SAL module homotopy.Freudenthal where {- lemma (move this where?) -} private move1-left-on-left : ∀ {i} {A : Type i} {x y : A} (p : x == y) (q : x == y) → ((! q) ∙ p == idp → p == q) move1-left-on-left p idp h = h module FreudenthalEquiv {i} (n k : ℕ₋₂) (kle : k ≤T S n +2+ S n) (X : Ptd i) {{cX : is-connected (S (S n)) (de⊙ X)}} where Q : Susp (de⊙ X) → Type i Q x = Trunc k (north == x) ⊙up : X ⊙→ ⊙Ω (⊙Susp X) ⊙up = SAL.η _ up = fst ⊙up Codes-mer-args : WedgeExt.args {a₀ = pt X} {b₀ = [_] {n = k} (pt X)} Codes-mer-args = record {n = S n; m = S n; P = λ _ _ → (Trunc k (de⊙ X) , raise-level-≤T kle Trunc-level); f = [_]; g = idf _; p = idp} Codes-mer : de⊙ X → Trunc k (de⊙ X) → Trunc k (de⊙ X) Codes-mer = WedgeExt.ext Codes-mer-args Codes-mer-β-l : (λ a → Codes-mer a [ pt X ]) == [_] Codes-mer-β-l = λ= $ WedgeExt.β-l {r = Codes-mer-args} Codes-mer-β-r : (λ b → Codes-mer (pt X) b) == idf _ Codes-mer-β-r = λ= $ WedgeExt.β-r {r = Codes-mer-args} Codes-mer-coh : app= Codes-mer-β-l (pt X) == app= Codes-mer-β-r [ pt X ] Codes-mer-coh = app= Codes-mer-β-l (pt X) =⟨ app=-β (WedgeExt.β-l {r = Codes-mer-args}) (pt X) ⟩ WedgeExt.β-l {r = Codes-mer-args} (pt X) =⟨ ! (move1-left-on-left _ _ (WedgeExt.coh {r = Codes-mer-args})) ⟩ WedgeExt.β-r {r = Codes-mer-args} [ pt X ] =⟨ ! (app=-β (WedgeExt.β-r {r = Codes-mer-args}) [ pt X ]) ⟩ app= Codes-mer-β-r [ pt X ] ∎ Codes-mer-is-equiv : (x : de⊙ X) → is-equiv (Codes-mer x) Codes-mer-is-equiv = conn-extend (pointed-conn-out {n = S n} (de⊙ X) (pt X)) (λ x' → (is-equiv (Codes-mer x') , is-equiv-level)) (λ tt → transport is-equiv (! (Codes-mer-β-r)) (idf-is-equiv _)) Codes-mer-equiv : (x : de⊙ X) → Trunc k (de⊙ X) ≃ Trunc k (de⊙ X) Codes-mer-equiv x = (Codes-mer x , Codes-mer-is-equiv x) Codes-mer-inv-x₀ : <– (Codes-mer-equiv (pt X)) == idf _ Codes-mer-inv-x₀ = ap is-equiv.g (conn-extend-β (pointed-conn-out (de⊙ X) (pt X)) (λ x' → (is-equiv (Codes-mer x') , is-equiv-level)) _ unit) ∙ lemma (! (Codes-mer-β-r)) (snd $ ide _) where lemma : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B} (α : f == g) (e : is-equiv f) → is-equiv.g (transport is-equiv α e) == is-equiv.g e lemma idp e = idp Codes : Susp (de⊙ X) → Type i Codes = SuspRec.f (Trunc k (de⊙ X)) (Trunc k (de⊙ X)) (ua ∘ Codes-mer-equiv) Codes-has-level : (x : Susp (de⊙ X)) → has-level k (Codes x) Codes-has-level = Susp-elim Trunc-level Trunc-level (λ _ → prop-has-all-paths-↓) {- favonia: This equation should be true: [⊙Trunc-fmap ⊙up = (decodeN , decodeN-pt)]. Maybe there is a way to refactor the following code so that pointedness is handled more elegantly. -} decodeN : Codes north → Trunc k (north' (de⊙ X) == north) decodeN = Trunc-fmap up decodeN-pt : decodeN [ pt X ] == [ idp ] decodeN-pt = snd (⊙Trunc-fmap ⊙up) decodeS : Codes south → Q south decodeS = Trunc-fmap merid encode₀ : {x : Susp (de⊙ X)} → north == x → Codes x encode₀ α = transport Codes α [ pt X ] encode : {x : Susp (de⊙ X)} → Trunc k (north == x) → Codes x encode {x} tα = Trunc-rec {{Codes-has-level x}} encode₀ tα abstract encode-decodeN : (c : Codes north) → encode (decodeN c) == c encode-decodeN = Trunc-elim {{λ _ → =-preserves-level Trunc-level}} (λ x → encode (decodeN [ x ]) =⟨ idp ⟩ coe (ap Codes (merid x ∙ ! (merid (pt X)))) [ pt X ] =⟨ ap-∙ Codes (merid x) (! (merid (pt X))) |in-ctx (λ w → coe w [ pt X ]) ⟩ coe (ap Codes (merid x) ∙ ap Codes (! (merid (pt X)))) [ pt X ] =⟨ coe-∙ (ap Codes (merid x)) (ap Codes (! (merid (pt X)))) [ pt X ] ⟩ coe (ap Codes (! (merid (pt X)))) (coe (ap Codes (merid x)) [ pt X ]) =⟨ SuspRec.merid-β _ _ (ua ∘ Codes-mer-equiv) x |in-ctx (λ w → coe (ap Codes (! (merid (pt X)))) (coe w [ pt X ])) ⟩ coe (ap Codes (! (merid (pt X)))) (coe (ua (Codes-mer-equiv x)) [ pt X ]) =⟨ coe-β (Codes-mer-equiv x) [ pt X ] |in-ctx (λ w → coe (ap Codes (! (merid (pt X)))) w) ⟩ coe (ap Codes (! (merid (pt X)))) (Codes-mer x [ pt X ]) =⟨ app= Codes-mer-β-l x |in-ctx (λ w → coe (ap Codes (! (merid (pt X)))) w) ⟩ coe (ap Codes (! (merid (pt X)))) [ x ] =⟨ coe-ap-! Codes (merid (pt X)) [ x ] ⟩ coe! (ap Codes (merid (pt X))) [ x ] =⟨ SuspRec.merid-β _ _ (ua ∘ Codes-mer-equiv) (pt X) |in-ctx (λ w → coe! w [ x ]) ⟩ coe! (ua (Codes-mer-equiv (pt X))) [ x ] =⟨ coe!-β (Codes-mer-equiv (pt X)) [ x ] ⟩ <– (Codes-mer-equiv (pt X)) [ x ] =⟨ app= Codes-mer-inv-x₀ [ x ] ⟩ [ x ] ∎) decode : {x : Susp (de⊙ X)} → Codes x → Q x decode {x} = Susp-elim {P = λ y → Codes y → Q y} decodeN decodeS (λ x' → ↓-→-from-transp (λ= (STS x'))) x where abstract coh : {s₁ s₂ : Susp (de⊙ X)} (p : s₁ == s₂) → (ap (λ s → s ∙ p) (!-inv-r p)) == ∙-assoc p (! p) p ∙ ap (λ s → p ∙ s) (!-inv-l p) ∙ ∙-unit-r p coh idp = idp P : de⊙ X → de⊙ X → (S (n +2+ (S n))) -Type (lmax i i) P = λ x₁ x₂ → ((transport Q (merid x₁) (Trunc-fmap up [ x₂ ]) == Trunc-fmap merid (transport Codes (merid x₁) [ x₂ ])), =-preserves-level (raise-level-≤T kle Trunc-level)) f : (a : de⊙ X) → fst (P a (pt X)) f a = transport Q (merid a) [ up (pt X) ] =⟨ transport-Trunc (north ==_) (merid a) (up (pt X)) ⟩ [ transport (north ==_) (merid a) (up (pt X)) ] =⟨ ap [_] $ transp-cst=idf {A = Susp (de⊙ X)} (merid a) (up (pt X)) ⟩ [ (merid (pt X) ∙ ! (merid (pt X))) ∙ merid a ] =⟨ ap [_] $ ap (λ s → s ∙ merid a) (!-inv-r (merid (pt X))) ⟩ [ merid a ] =⟨ idp ⟩ Trunc-fmap merid [ a ] =⟨ ap (Trunc-fmap merid) (! (app= Codes-mer-β-l a)) ⟩ Trunc-fmap merid (Codes-mer a [ pt X ]) =⟨ ap (Trunc-fmap merid) (! (coe-β (Codes-mer-equiv a) [ pt X ])) ⟩ Trunc-fmap merid (coe (ua (Codes-mer-equiv a)) [ pt X ]) =⟨ ! (SuspRec.merid-β _ _ (ua ∘ Codes-mer-equiv) a) |in-ctx (λ w → Trunc-fmap merid (coe w [ pt X ])) ⟩ Trunc-fmap merid (transport Codes (merid a) [ pt X ]) ∎ g : (b : de⊙ X) → fst (P (pt X) b) g b = transport Q (merid (pt X)) [ up b ] =⟨ transport-Trunc (north ==_) (merid (pt X)) (up b) ⟩ [ transport (north ==_) (merid (pt X)) (up b) ] =⟨ ap [_] $ transp-cst=idf {A = Susp (de⊙ X)} (merid (pt X)) (up b) ⟩ [ (merid b ∙ ! (merid (pt X))) ∙ merid (pt X) ] =⟨ ap [_] $ ∙-assoc (merid b) (! (merid (pt X))) (merid (pt X)) ∙ ap (λ s → merid b ∙ s) (!-inv-l (merid (pt X))) ∙ ∙-unit-r (merid b) ⟩ [ merid b ] =⟨ idp ⟩ Trunc-fmap merid [ b ] =⟨ ap (Trunc-fmap merid) (! (app= Codes-mer-β-r [ b ])) ⟩ Trunc-fmap merid (Codes-mer (pt X) [ b ]) =⟨ ap (Trunc-fmap merid) (! (coe-β (Codes-mer-equiv (pt X)) [ b ])) ⟩ Trunc-fmap merid (coe (ua (Codes-mer-equiv (pt X))) [ b ]) =⟨ ! (SuspRec.merid-β _ _ (ua ∘ Codes-mer-equiv) (pt X)) |in-ctx (λ w → Trunc-fmap merid (coe w [ b ])) ⟩ Trunc-fmap merid (transport Codes (merid (pt X)) [ b ]) ∎ p : f (pt X) == g (pt X) p = ap2 (λ p₁ p₂ → transport Q (merid (pt X)) [ up (pt X) ] =⟨ transport-Trunc (north ==_) (merid (pt X)) (up (pt X)) ⟩ [ transport (north ==_) (merid (pt X)) (up (pt X)) ] =⟨ ap [_] $ transp-cst=idf {A = Susp (de⊙ X)} (merid (pt X)) (up (pt X)) ⟩ [ (merid (pt X) ∙ ! (merid (pt X))) ∙ merid (pt X) ] =⟨ ap [_] p₁ ⟩ [ merid (pt X) ] =⟨ idp ⟩ Trunc-fmap merid [ pt X ] =⟨ ap (Trunc-fmap merid) (! p₂) ⟩ Trunc-fmap merid (Codes-mer (pt X) [ pt X ]) =⟨ ap (Trunc-fmap merid) (! (coe-β (Codes-mer-equiv (pt X)) [ pt X ])) ⟩ Trunc-fmap merid (coe (ua (Codes-mer-equiv (pt X))) [ pt X ]) =⟨ ! (SuspRec.merid-β _ _ (ua ∘ Codes-mer-equiv) (pt X)) |in-ctx (λ w → Trunc-fmap merid (coe w [ pt X ])) ⟩ Trunc-fmap merid (transport Codes (merid (pt X)) [ pt X ]) ∎) (coh (merid (pt X))) Codes-mer-coh STS-args : WedgeExt.args {a₀ = pt X} {b₀ = pt X} STS-args = record {n = S n; m = S n; P = P; f = f; g = g; p = p} STS : (x' : de⊙ X) (c : Codes north) → transport Q (merid x') (Trunc-fmap up c) == Trunc-fmap merid (transport Codes (merid x') c) STS x' = Trunc-elim {{λ _ → =-preserves-level Trunc-level}} (WedgeExt.ext STS-args x') abstract decode-encode : {x : Susp (de⊙ X)} (tα : Q x) → decode {x} (encode {x} tα) == tα decode-encode {x} = Trunc-elim {P = λ tα → decode {x} (encode {x} tα) == tα} {{λ _ → =-preserves-level Trunc-level}} (J (λ y p → decode {y} (encode {y} [ p ]) == [ p ]) (ap [_] (!-inv-r (merid (pt X))))) eq : Trunc k (de⊙ X) ≃ Trunc k (north' (de⊙ X) == north) eq = equiv decodeN encode decode-encode encode-decodeN ⊙eq : ⊙Trunc k X ⊙≃ ⊙Trunc k (⊙Ω (⊙Susp X)) ⊙eq = ≃-to-⊙≃ eq (ap [_] (!-inv-r (merid (pt X)))) path : Trunc k (de⊙ X) == Trunc k (north' (de⊙ X) == north) path = ua eq ⊙path : ⊙Trunc k X == ⊙Trunc k (⊙Ω (⊙Susp X)) ⊙path = ⊙ua ⊙eq {- Used to prove stability in iterated suspensions -} module FreudenthalIso {i} (n : ℕ₋₂) (k : ℕ) (kle : ⟨ S k ⟩ ≤T S n +2+ S n) (X : Ptd i) {{_ : is-connected (S (S n)) (de⊙ X)}} where open FreudenthalEquiv n ⟨ S k ⟩ kle X public hom : Ω^S-group k (⊙Trunc ⟨ S k ⟩ X) →ᴳ Ω^S-group k (⊙Trunc ⟨ S k ⟩ (⊙Ω (⊙Susp X))) hom = Ω^S-group-fmap k (decodeN , decodeN-pt) iso : Ω^S-group k (⊙Trunc ⟨ S k ⟩ X) ≃ᴳ Ω^S-group k (⊙Trunc ⟨ S k ⟩ (⊙Ω (⊙Susp X))) iso = Ω^S-group-emap k ⊙eq
{ "alphanum_fraction": 0.4861313869, "avg_line_length": 39.8255813953, "ext": "agda", "hexsha": "c06bc44e66da5674c7b1af6e7ea18ed60866a3ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/Freudenthal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/Freudenthal.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/Freudenthal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4177, "size": 10275 }
module Structure.Groupoid.Functor where open import Functional using (_on₂_) open import Lang.Instance import Lvl open import Logic.Predicate open import Structure.Category import Structure.Category.Functor as Category open import Structure.Function open import Structure.Groupoid import Structure.Relator.Names as Names open import Structure.Setoid open import Syntax.Function open import Type private variable ℓ ℓₒ ℓₘ ℓₗₒ ℓₗₘ ℓᵣₒ ℓᵣₘ ℓₑ ℓₗₑ ℓᵣₑ : Lvl.Level private variable Obj Objₗ Objᵣ : Type{ℓ} private variable _⟶_ _⟶ₗ_ _⟶ᵣ_ : Objₗ → Objᵣ → Type{ℓ} module _ ⦃ morphism-equivₗ : ∀{x y : Objₗ} → Equiv{ℓₗₑ}(x ⟶ₗ y) ⦄ ⦃ morphism-equivᵣ : ∀{x y : Objᵣ} → Equiv{ℓᵣₑ}(x ⟶ᵣ y) ⦄ (Groupoidₗ : Groupoid(_⟶ₗ_)) (Groupoidᵣ : Groupoid(_⟶ᵣ_)) where -- A covariant functor. -- A mapping which transforms objects and morphisms from one category to another while "preserving" the groupoid structure. -- A homomorphism between groupoids. record Functor (F : Objₗ → Objᵣ) : Type{Lvl.of(Type.of(Groupoidₗ)) Lvl.⊔ Lvl.of(Type.of(Groupoidᵣ))} where constructor intro open Groupoid ⦃ … ⦄ private instance _ = Groupoidₗ private instance _ = Groupoidᵣ field map : Names.Subrelation(_⟶ₗ_) ((_⟶ᵣ_) on₂ F) field ⦃ map-function ⦄ : ∀{x y} → Function(map{x}{y}) ⦃ op-preserving ⦄ : ∀{x y z : Objₗ}{f : y ⟶ₗ z}{g : x ⟶ₗ y} → (map(f ∘ g) ≡ map(f) ∘ map(g)) ⦃ inv-preserving ⦄ : ∀{x y : Objₗ}{f : x ⟶ₗ y} → (map(inv f) ≡ inv(map f)) ⦃ id-preserving ⦄ : ∀{x : Objₗ} → (map(id {x = x}) ≡ id) categoryFunctor : Category.Functor(category ⦃ r = Groupoidₗ ⦄)(category ⦃ r = Groupoidᵣ ⦄) (F) Category.Functor.map categoryFunctor = map Category.Functor.map-function categoryFunctor = map-function Category.Functor.op-preserving categoryFunctor = op-preserving Category.Functor.id-preserving categoryFunctor = id-preserving open Category.Functor(categoryFunctor) public hiding (map ; map-function ; op-preserving ; id-preserving) module _ ⦃ morphism-equiv : ∀{x y : Obj} → Equiv{ℓₑ}(x ⟶ y) ⦄ (Groupoid : Groupoid(_⟶_)) where Endofunctor = Functor(Groupoid)(Groupoid) module Endofunctor = Functor{Groupoidₗ = Groupoid}{Groupoidᵣ = Groupoid} _→ᶠᵘⁿᶜᵗᵒʳ_ : GroupoidObject{ℓₗₒ}{ℓₗₘ}{ℓₗₑ} → GroupoidObject{ℓᵣₒ}{ℓᵣₘ}{ℓᵣₑ} → Type grpₗ →ᶠᵘⁿᶜᵗᵒʳ grpᵣ = ∃(Functor (GroupoidObject.groupoid(grpₗ)) ((GroupoidObject.groupoid(grpᵣ)))) ⟲ᶠᵘⁿᶜᵗᵒʳ_ : GroupoidObject{ℓₒ}{ℓₘ}{ℓₑ} → Type ⟲ᶠᵘⁿᶜᵗᵒʳ grp = grp →ᶠᵘⁿᶜᵗᵒʳ grp
{ "alphanum_fraction": 0.6820166733, "avg_line_length": 38.1666666667, "ext": "agda", "hexsha": "fe4a93646b6aa6fbe2ab7b4acbb94d67d2e5b3c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Groupoid/Functor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Groupoid/Functor.agda", "max_line_length": 125, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Groupoid/Functor.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1072, "size": 2519 }
module _ where open import Agda.Builtin.Nat using (mod-helper) open import Common.Prelude open import Common.Equality _mod_ : Nat → Nat → Nat n mod zero = 0 n mod suc m = mod-helper 0 m n m {-# INLINE _mod_ #-} primitive primForce : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) → (∀ x → B x) → B x primForceLemma : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) (f : ∀ x → B x) → primForce x f ≡ f x force = primForce forceLemma = primForceLemma infixr 0 _$!_ _$!_ : ∀ {a b} {A : Set a} {B : A → Set b} → (∀ x → B x) → ∀ x → B x f $! x = force x f -- Memory leak without proper seq -- pow′ : Nat → Nat → Nat pow′ zero acc = acc pow′ (suc n) acc = pow′ n $! (acc + acc) mod 234576373 pow : Nat → Nat pow n = pow′ n 1 main : IO Unit main = printNat (pow 5000000)
{ "alphanum_fraction": 0.5674300254, "avg_line_length": 21.8333333333, "ext": "agda", "hexsha": "9a2adba0157799ba6ec30a415c883358f83f5c5b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/PrimSeq.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/PrimSeq.agda", "max_line_length": 100, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/PrimSeq.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 305, "size": 786 }
module PLRTree.Complete {A : Set} where open import PLRTree {A} open import PLRTree.Equality {A} data _⋗_ : PLRTree → PLRTree → Set where ⋗lf : (x : A) → node perfect x leaf leaf ⋗ leaf ⋗nd : {l r l' r' : PLRTree} (x x' : A) → l ≃ r → l' ≃ r' → l ⋗ l' → node perfect x l r ⋗ node perfect x' l' r' mutual data _⋘_ : PLRTree → PLRTree → Set where x⋘ : (x y z : A) → node right x (node perfect y leaf leaf) leaf ⋘ node perfect z leaf leaf l⋘ : {l r l' r' : PLRTree} → (x x' : A) → l ⋘ r → l' ≃ r' → r ≃ l' → (node left x l r) ⋘ (node perfect x' l' r') r⋘ : {l r l' r' : PLRTree} → (x x' : A) → l ⋙ r → l' ≃ r' → l ⋗ l' → (node right x l r) ⋘ (node perfect x' l' r') data _⋙_ : PLRTree → PLRTree → Set where ⋙p : {l r : PLRTree} → l ⋗ r → l ⋙ r ⋙l : {l r l' r' : PLRTree} → (x x' : A) → l ≃ r → l' ⋘ r' → l ⋗ r' → (node perfect x l r) ⋙ (node left x' l' r') ⋙r : {l r l' r' : PLRTree} → (x x' : A) → l ≃ r → l' ⋙ r' → l ≃ l' → (node perfect x l r) ⋙ (node right x' l' r') data Complete : PLRTree → Set where leaf : Complete leaf perfect : {l r : PLRTree} (x : A) → Complete l → Complete r → l ≃ r → Complete (node perfect x l r) left : {l r : PLRTree} (x : A) → Complete l → Complete r → l ⋘ r → Complete (node left x l r) right : {l r : PLRTree} (x : A) → Complete l → Complete r → l ⋙ r → Complete (node right x l r)
{ "alphanum_fraction": 0.3270728355, "avg_line_length": 31.1857142857, "ext": "agda", "hexsha": "61ce55662d4cd69c7d3c54b77bfb71c862c4bfda", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Complete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Complete.agda", "max_line_length": 91, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Complete.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 687, "size": 2183 }
{- -- an ≃ equivalence of types can be lifted to a ≃S equivalence -- (over their ≡-Setoids) -- NOT NEEDED lift≃ : ∀ {ℓ} → {A B : Set ℓ} → A ≃ B → (≡-Setoid A) ≃S (≡-Setoid B) lift≃ {_} {A} {B} (f , mkqinv g α β) = equiv AS BS α' β' where module AA = Setoid (≡-Setoid A) module BB = Setoid (≡-Setoid B) AS : ≡-Setoid A ⟶ ≡-Setoid B AS = →to⟶ f BS : ≡-Setoid B ⟶ ≡-Setoid A BS = →to⟶ g α' : {x y : B} → P._≡_ x y → P._≡_ (f (g x)) y α' = λ {x} {y} p → BB.trans (α x) p β' : {x y : A} → P._≡_ x y → P._≡_ (g (f x)) y β' = λ {x} {y} p → AA.trans (β x) p -}
{ "alphanum_fraction": 0.4656616415, "avg_line_length": 29.85, "ext": "agda", "hexsha": "791aa6a0ad96a38c3396aa30b903ae422f286099", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/SetoidUtils.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/SetoidUtils.agda", "max_line_length": 68, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/SetoidUtils.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 299, "size": 597 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Bool open import lib.types.Empty open import lib.types.Paths open import lib.types.Pi open import lib.types.Sigma {- This file contains various lemmas that rely on lib.types.Paths or functional extensionality for pointed maps. -} module lib.types.Pointed where {- Pointed maps -} -- function extensionality for pointed maps ⊙λ= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} (p : ∀ x → fst f x == fst g x) (α : snd f == snd g [ (λ y → y == pt Y) ↓ p (pt X) ]) → f == g ⊙λ= {g = g} p α = pair= (λ= p) (↓-app=cst-in (↓-idf=cst-out α ∙ ap (_∙ snd g) (! (app=-β p _)))) {- ⊙λ=' : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} (p : ∀ x → fst f x == fst g x) (α : snd f == p (pt X) ∙ snd g) → f == g ⊙λ=' p α = ⊙λ= p (↓-idf=cst-in α) -} -- associativity of pointed maps ⊙∘-assoc-pt : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {a₁ a₂ : A} (f : A → B) {b : B} (g : B → C) {c : C} (p : a₁ == a₂) (q : f a₂ == b) (r : g b == c) → ⊙∘-pt (g ∘ f) p (⊙∘-pt g q r) == ⊙∘-pt g (⊙∘-pt f p q) r ⊙∘-assoc-pt _ _ idp _ _ = idp ⊙∘-assoc : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (h : Z ⊙→ W) (g : Y ⊙→ Z) (f : X ⊙→ Y) → ((h ⊙∘ g) ⊙∘ f) == (h ⊙∘ (g ⊙∘ f)) ⊙∘-assoc (h , hpt) (g , gpt) (f , fpt) = ⊙λ= (λ _ → idp) (⊙∘-assoc-pt g h fpt gpt hpt) {- Pointed equivalences -} -- Extracting data from an pointed equivalence module _ {i j} {X : Ptd i} {Y : Ptd j} (⊙e : X ⊙≃ Y) where private e : de⊙ X ≃ de⊙ Y e = (fst (fst ⊙e) , snd ⊙e) ⊙≃-to-≃ = e ⊙–>-pt : –> e (pt X) == pt Y ⊙–>-pt = snd (fst ⊙e) private p = ⊙–>-pt ⊙–> : X ⊙→ Y ⊙–> = fst ⊙e ⊙<–-pt : <– e (pt Y) == pt X ⊙<–-pt = ap (<– e) (! ⊙–>-pt) ∙ <–-inv-l e (pt X) ⊙<– : Y ⊙→ X ⊙<– = <– e , ⊙<–-pt infix 120 _⊙⁻¹ _⊙⁻¹ : Y ⊙≃ X _⊙⁻¹ = ⊙<– , is-equiv-inverse (snd ⊙e) ⊙<–-inv-l : ⊙<– ⊙∘ ⊙–> == ⊙idf _ ⊙<–-inv-l = ⊙λ= (<–-inv-l e) $ ↓-idf=cst-in $ ap (<– e) p ∙ ap (<– e) (! p) ∙ <–-inv-l e (pt X) =⟨ ! (∙-assoc (ap (<– e) p) (ap (<– e) (! p)) (<–-inv-l e (pt X))) ⟩ (ap (<– e) p ∙ ap (<– e) (! p)) ∙ <–-inv-l e (pt X) =⟨ ∙-ap (<– e) p (! p) ∙ ap (ap (<– e)) (!-inv-r p) |in-ctx (λ w → w ∙ <–-inv-l e (pt X)) ⟩ <–-inv-l e (pt X) =⟨ ! (∙-unit-r _) ⟩ <–-inv-l e (pt X) ∙ idp =∎ ⊙<–-inv-r : ⊙–> ⊙∘ ⊙<– == ⊙idf _ ⊙<–-inv-r = ⊙λ= (<–-inv-r e) $ ↓-idf=cst-in $ ap (–> e) (ap (<– e) (! p) ∙ <–-inv-l e (pt X)) ∙ p =⟨ ap-∙ (–> e) (ap (<– e) (! p)) (<–-inv-l e (pt X)) |in-ctx (λ w → w ∙ p) ⟩ (ap (–> e) (ap (<– e) (! p)) ∙ ap (–> e) (<–-inv-l e (pt X))) ∙ p =⟨ <–-inv-adj e (pt X) |in-ctx (λ w → (ap (–> e) (ap (<– e) (! p)) ∙ w) ∙ p) ⟩ (ap (–> e) (ap (<– e) (! p)) ∙ <–-inv-r e (–> e (pt X))) ∙ p =⟨ ∘-ap (–> e) (<– e) (! p) |in-ctx (λ w → (w ∙ <–-inv-r e (–> e (pt X))) ∙ p) ⟩ (ap (–> e ∘ <– e) (! p) ∙ <–-inv-r e (–> e (pt X))) ∙ p =⟨ ap (_∙ p) (! (↓-app=idf-out (apd (<–-inv-r e) (! p)))) ⟩ (<–-inv-r e (pt Y) ∙' (! p)) ∙ p =⟨ ∙'=∙ (<–-inv-r e (pt Y)) (! p) |in-ctx _∙ p ⟩ (<–-inv-r e (pt Y) ∙ (! p)) ∙ p =⟨ ∙-assoc (<–-inv-r e (pt Y)) (! p) p ⟩ <–-inv-r e (pt Y) ∙ (! p ∙ p) =⟨ !-inv-l p |in-ctx (<–-inv-r e (pt Y)) ∙_ ⟩ <–-inv-r e (pt Y) ∙ idp =∎ module _ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (⊙e : X ⊙≃ Y) where post⊙∘-is-equiv : is-equiv (λ (k : Z ⊙→ X) → ⊙–> ⊙e ⊙∘ k) post⊙∘-is-equiv = is-eq f g f-g g-f where f = ⊙–> ⊙e ⊙∘_ g = ⊙<– ⊙e ⊙∘_ abstract f-g = λ k → ! (⊙∘-assoc (⊙–> ⊙e) (⊙<– ⊙e) k) ∙ ap (_⊙∘ k) (⊙<–-inv-r ⊙e) ∙ ⊙∘-unit-l k g-f = λ k → ! (⊙∘-assoc (⊙<– ⊙e) (⊙–> ⊙e) k) ∙ ap (_⊙∘ k) (⊙<–-inv-l ⊙e) ∙ ⊙∘-unit-l k pre⊙∘-is-equiv : is-equiv (λ (k : Y ⊙→ Z) → k ⊙∘ ⊙–> ⊙e) pre⊙∘-is-equiv = is-eq f g f-g g-f where f = _⊙∘ ⊙–> ⊙e g = _⊙∘ ⊙<– ⊙e abstract f-g = λ k → ⊙∘-assoc k (⊙<– ⊙e) (⊙–> ⊙e) ∙ ap (k ⊙∘_) (⊙<–-inv-l ⊙e) ∙ ⊙∘-unit-r k g-f = λ k → ⊙∘-assoc k (⊙–> ⊙e) (⊙<– ⊙e) ∙ ap (k ⊙∘_) (⊙<–-inv-r ⊙e) ∙ ⊙∘-unit-r k pre⊙∘-equiv : (Y ⊙→ Z) ≃ (X ⊙→ Z) pre⊙∘-equiv = _ , pre⊙∘-is-equiv {- Pointed maps out of bool -} -- intuition : [f true] is fixed and the only changable part is [f false]. ⊙Bool→-to-idf : ∀ {i} {X : Ptd i} → ⊙Bool ⊙→ X → de⊙ X ⊙Bool→-to-idf (h , _) = h false ⊙Bool→-equiv-idf : ∀ {i} (X : Ptd i) → (⊙Bool ⊙→ X) ≃ de⊙ X ⊙Bool→-equiv-idf {i} X = equiv ⊙Bool→-to-idf g f-g g-f where g : de⊙ X → ⊙Bool ⊙→ X g x = (if_then pt X else x) , idp abstract f-g : ∀ x → ⊙Bool→-to-idf (g x) == x f-g x = idp g-f : ∀ H → g (⊙Bool→-to-idf H) == H g-f (h , hpt) = pair= (λ= lemma) (↓-app=cst-in $ idp =⟨ ! (!-inv-l hpt) ⟩ ! hpt ∙ hpt =⟨ ! (app=-β lemma true) |in-ctx (λ w → w ∙ hpt) ⟩ app= (λ= lemma) true ∙ hpt =∎) where lemma : ∀ b → fst (g (h false)) b == h b lemma true = ! hpt lemma false = idp
{ "alphanum_fraction": 0.3935203477, "avg_line_length": 31.0552147239, "ext": "agda", "hexsha": "807c85135f78f1195bf5a619a61820f3474f393a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Pointed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Pointed.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Pointed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2705, "size": 5062 }
module AndOrNot where open import Data.Bool open import Data.Product test : Bool → Bool → Bool × Bool × Bool test x y = x ∧ y , x ∨ y , not x
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 18, "ext": "agda", "hexsha": "eb1577643d51d5e9ff4ae3d07ace9c2a8b400288", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-11-09T22:08:40.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-09T22:08:40.000Z", "max_forks_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_forks_repo_licenses": [ "Info-ZIP" ], "max_forks_repo_name": "seanwallawalla-forks/RosettaCodeData", "max_forks_repo_path": "Task/Logical-operations/Agda/logical-operations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Info-ZIP" ], "max_issues_repo_name": "seanwallawalla-forks/RosettaCodeData", "max_issues_repo_path": "Task/Logical-operations/Agda/logical-operations.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4f0027c6ce83daa36118ee8b67915a13cd23ab67", "max_stars_repo_licenses": [ "Info-ZIP" ], "max_stars_repo_name": "mullikine/RosettaCodeData", "max_stars_repo_path": "Task/Logical-operations/Agda/logical-operations.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-09T22:08:38.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-09T22:08:38.000Z", "num_tokens": 44, "size": 144 }
open import Prelude module Implicits.Resolution.GenericFinite.Algorithm.Soundness where open import Induction.WellFounded open import Induction.Nat open import Data.List open import Data.List.Any open Membership-≡ open import Data.Fin.Substitution open import Data.Nat.Base using (_<′_) open import Data.Maybe as Maybe open import Data.Nat hiding (_<_) open import Data.Nat.Properties open import Relation.Binary using (module DecTotalOrder) open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans) open import Implicits.Syntax open import Implicits.Syntax.Type.Unification open import Implicits.Syntax.Type.Unification.Lemmas as mgu hiding (sound) open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Implicits.Resolution.GenericFinite.Resolution open import Implicits.Resolution.GenericFinite.Algorithm open import Implicits.Resolution.GenericFinite.TerminationCondition open import Implicits.Resolution.Termination open import Data.Vec hiding (_∈_) open import Extensions.Bool as Bl private module M = MetaTypeMetaSubst module ResolutionSound (cond : TerminationCondition) where open TerminationCondition cond open ResolutionAlgorithm cond open ResolutionRules cond open Lemmas postulate lem₄ : ∀ {m ν} (a : MetaType m (suc ν)) u us → from-meta ((M.open-meta a) M./ (us M.↑) M./ (M.sub u)) ≡ (from-meta (a M./ (us M.↑tp))) tp[/tp from-meta u ] open-↓-∀ : ∀ {ν m} {Δ : ICtx ν} {Φ} (a : MetaType m (suc ν)) τ u us → Δ , Φ ⊢ (from-meta ((open-meta a) M./ (u ∷ us))) ↓ τ → Δ , Φ ⊢ (from-meta (∀' a M./ us)) ↓ τ open-↓-∀ {Δ = Δ} {Φ = Φ} a τ u us p = (i-tabs (from-meta u) (subst (λ v → Δ , Φ ⊢ v ↓ τ) (begin from-meta (M._/_ (open-meta a) (u ∷ us)) ≡⟨ cong (λ v → from-meta (M._/_ (open-meta a) v)) (sym $ us↑-⊙-sub-u≡u∷us u us) ⟩ from-meta ((open-meta a) M./ (us M.↑ M.⊙ (M.sub u))) ≡⟨ cong from-meta (/-⊙ (open-meta a)) ⟩ from-meta ((open-meta a) M./ us M.↑ M./ (M.sub u)) ≡⟨ lem₄ a u us ⟩ from-meta (M._/_ a (us M.↑tp)) tp[/tp from-meta u ] ∎) p)) where open MetaTypeMetaLemmas hiding (subst) mutual match'-sound : ∀ {ν m} (Δ : ICtx ν) (Φ : TCtx) τ (r : MetaType m ν) → (Φ↓ : T-Acc Φ) → (m↓ : m<-Acc r) → Maybe.All (λ u → Δ , Φ ⊢ from-meta (r M./ u) ↓ τ) (match' Δ Φ τ r Φ↓ m↓) match'-sound Δ Φ τ (a ⇒ b) Φ↓ (acc m↓) with match' Δ Φ τ b Φ↓ (m↓ _ (b-m<-a⇒b a b)) | match'-sound Δ Φ τ b Φ↓ (m↓ _ (b-m<-a⇒b a b)) match'-sound Δ Φ τ (a ⇒ b) Φ↓ (acc m↓) | just u | just pu with (step Φ Δ (from-meta (a M./ u)) (from-meta (b M./ u)) τ) <? Φ match'-sound Δ Φ τ (a ⇒ b) (acc Φ↓) (acc m↓) | just u | just pu | no Φ> = nothing match'-sound Δ Φ τ (a ⇒ b) (acc Φ↓) (acc m↓) | just u | just pu | yes Φ< with resolve' Δ (step Φ Δ (from-meta (a M./ u)) (from-meta (b M./ u)) τ) (from-meta (a M./ u)) (Φ↓ _ Φ<) | sound' Δ (step Φ Δ (from-meta (a M./ u)) (from-meta (b M./ u)) τ) (from-meta (a M./ u)) (Φ↓ _ Φ<) match'-sound Δ Φ τ (a ⇒ b) (acc Φ↓) (acc m↓) | just u | just pu | yes Φ< | true | true px = just (i-iabs Φ< px pu) match'-sound Δ Φ τ (a ⇒ b) (acc Φ↓) (acc m↓) | just u | just pu | yes Φ< | false | false = nothing match'-sound Δ Φ τ (a ⇒ b) (acc Φ↓) (acc m↓) | nothing | _ = nothing match'-sound Δ Φ τ (∀' r) Φ↓ (acc m↓) with match' Δ Φ τ (open-meta r) Φ↓ (m↓ _ (open-meta-a-m<-∀'a r)) | match'-sound Δ Φ τ (open-meta r) Φ↓ (m↓ _ (open-meta-a-m<-∀'a r)) match'-sound Δ Φ τ (∀' r) Φ↓ (acc m↓) | just (u ∷ us) | just px = just (open-↓-∀ r τ u us px) match'-sound Δ Φ τ (∀' r) Φ↓ (acc m↓) | nothing | nothing = nothing match'-sound Δ Φ τ (simpl x) Φ↓ m↓ with mgu (simpl x) τ | mgu.sound (simpl x) τ match'-sound Δ Φ τ (simpl x) Φ↓ m↓ | just _ | just px = just (subst (λ z → Δ , Φ ⊢ z ↓ τ) (sym px) (i-simp τ)) match'-sound Δ Φ τ (simpl x) Φ↓ m↓ | nothing | nothing = nothing match-sound : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) τ r → (Φ↓ : T-Acc Φ) → Bl.All (Δ , Φ ⊢ r ↓ τ) (match Δ Φ τ r Φ↓) match-sound Δ Φ τ r Φ↓ with match' Δ Φ τ (to-meta {zero} r) Φ↓ (m<-well-founded _) | match'-sound Δ Φ τ (to-meta {zero} r) Φ↓ (m<-well-founded _) match-sound Δ Φ τ r Φ↓ | just x | just px = true (subst (λ z → Δ , Φ ⊢ z ↓ τ) eq px) where eq : ∀ {ν} {a : Type ν} {s} → from-meta (to-meta {zero} a M./ s) ≡ a eq {a = a} {s = []} = begin from-meta (M._/_ (to-meta {zero} a) []) ≡⟨ cong (λ q → from-meta q) (MetaTypeMetaLemmas.id-vanishes (to-meta {zero} a)) ⟩ from-meta (to-meta {zero} a) ≡⟨ to-meta-zero-vanishes ⟩ a ∎ match-sound Δ Φ τ r Φ↓ | nothing | q = false match1st-sound : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) (ρs : ICtx ν) → (τ : SimpleType ν) → (Φ↓ : T-Acc Φ) → Bl.All (∃ λ r → (r ∈ ρs) × (Δ , Φ ⊢ r ↓ τ)) (match1st Δ Φ ρs τ Φ↓) match1st-sound Δ Φ [] τ Φ↓ = false match1st-sound Δ Φ (x ∷ ρs) τ Φ↓ with match Δ Φ τ x Φ↓ | match-sound Δ Φ τ x Φ↓ match1st-sound Δ Φ (x ∷ ρs) τ Φ↓ | true | true px = true (x , (here refl , px)) match1st-sound Δ Φ (x ∷ ρs) τ Φ↓ | false | false = all-map (match1st-sound Δ Φ ρs τ Φ↓) (λ{ (r , r∈ρs , r↓τ) → r , ((there r∈ρs) , r↓τ) }) sound' : ∀ {ν} (Δ : ICtx ν) Φ r → (Φ↓ : T-Acc Φ) → Bl.All (Δ , Φ ⊢ᵣ r) (resolve' Δ Φ r Φ↓) sound' Δ Φ (simpl x) Φ↓ = all-map (match1st-sound Δ Φ Δ x Φ↓) (λ{ (r , r∈Δ , r↓τ) → r-simp r∈Δ r↓τ }) sound' Δ Φ (a ⇒ b) Φ↓ = all-map (sound' (a ∷ Δ) Φ b Φ↓) (λ x → r-iabs a x) sound' Δ Φ (∀' r) Φ↓ = all-map (sound' (ictx-weaken Δ) Φ r Φ↓) r-tabs sound : ∀ {ν} (Δ : ICtx ν) r {Φ} → (Φ↓ : T-Acc Φ) → Bl.All (Δ , Φ ⊢ᵣ r) (resolve Δ Φ r) sound Δ r Φ↓ = sound' Δ _ r (wf-< _)
{ "alphanum_fraction": 0.542991755, "avg_line_length": 49.525, "ext": "agda", "hexsha": "a7c665341c68d1fb2e235cc93777846e905e8086", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/GenericFinite/Algorithm/Soundness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/GenericFinite/Algorithm/Soundness.agda", "max_line_length": 104, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/GenericFinite/Algorithm/Soundness.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 2392, "size": 5943 }
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Instance.PathsOf where -- PathsOf is adjoint to Underlying Quiver, i.e. -- The "Underlying Graph" (of a Category) <-> "Path Category on a Quiver" Adjunction. -- Lots of surprises here, of various level of surprisingness -- 1. The PathCategory rises universe levels of arrows (and equivalences); the Underlying Quiver does not -- (due to the Transitive Closure "Star" construction) -- 2. As a consequence of (1), the eventual Adjunction will be for all Levels being the same -- 3. To build a Functor from Categories to Quivers, then the object/hom levels are straightforward, -- but "Categories" has NaturalIsomorphism as the notion of equivalence of Functors. This means -- that, for example, the 2-point Groupoid is contractible -- (thus equivalent to the 1-point Category), and yet those two "Graphs" shouldn't be considered to -- be the same! This is because there isn't an equivalently natural notion of equivalence of -- Graph (Quiver) Homomorphism. -- Interestingly, this only shows up when trying to prove that the Underlying Functor respects -- _≈_, which is not traditionally a requirement of a Functor! This requirement is usually left -- implicit. (See Categories.Function.Construction.FreeCategory for the details) -- -- In other words, the adjunction doesn't involve Cats, but StrictCats as one of the endpoints. open import Level open import Function using (_$_; flip) renaming (id to id→; _∘_ to _⊚_) import Relation.Binary.PropositionalEquality as ≡ open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Data.Quiver using (Quiver) open import Data.Quiver.Paths import Data.Quiver.Morphism as QM open QM using (Morphism; _≃_) open import Categories.Adjoint using (Adjoint) open import Categories.Category.Core using (Category) import Categories.Category.Construction.PathCategory as PC open import Categories.Category.Instance.Quivers open import Categories.Functor using (Functor) open import Categories.Functor.Construction.PathsOf using (PathsOf) open import Categories.Functor.Instance.UnderlyingQuiver using (Underlying₀; Underlying₁; Underlying) open import Categories.NaturalTransformation using (ntHelper) import Categories.Morphism.Reasoning as MR module _ (o ℓ e : Level) where -- the unit morphism from a Quiver X to U∘Free X. unit : (X : Quiver o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)) → Morphism X (Underlying₀ (PC.PathCategory X)) unit X = let open Paths X in record { F₀ = id→ ; F₁ = return ; F-resp-≈ = _◅ ε } module _ (X : Category o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)) where open Category X open HomReasoning open Paths (Underlying₀ X) -- "unwind" a path by using repeated composition unwind : {A B : Obj} → Star _⇒_ A B → A ⇒ B unwind = fold _⇒_ (flip _∘_) id unwind-◅◅ : {A B C : Obj} {f : Star _⇒_ A B} {g : Star _⇒_ B C} → unwind (f ◅◅ g) ≈ (unwind g) ∘ (unwind f) unwind-◅◅ {f = ε} {g} = Equiv.sym identityʳ unwind-◅◅ {f = x ◅ f} {g} = ∘-resp-≈ˡ (unwind-◅◅ {f = f} {g}) ○ assoc unwind-resp-≈ : {A B : Obj} {f g : Star _⇒_ A B} → f ≈* g → unwind f ≈ unwind g unwind-resp-≈ ε = Equiv.refl unwind-resp-≈ (x ◅ eq) = ∘-resp-≈ (unwind-resp-≈ eq) x unwindF : Functor (PC.PathCategory (Underlying₀ X)) X unwindF = record { F₀ = id→ ; F₁ = unwind ; identity = Category.Equiv.refl X ; homomorphism = λ { {f = f} {g} → unwind-◅◅ {f = f} {g} } ; F-resp-≈ = unwind-resp-≈ } module _ (X : Quiver o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)) where open Paths X zig′ : {A B : Quiver.Obj X} → (f : Star (Quiver._⇒_ X) A B) → unwind (PC.PathCategory X) (QM.qmap (unit X) f) ≈* f zig′ ε = ε zig′ (fs ◅ f) = Quiver.Equiv.refl X ◅ zig′ f module _ {X Y : Category o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)} (F : Functor X Y) where module X = Category X module Y = Category Y open Category.HomReasoning Y open Functor F unwind-natural : {A B : X.Obj} (f : Star X._⇒_ A B) → unwind Y (QM.qmap (Underlying₁ F) f) Y.≈ F₁ (unwind X f) unwind-natural ε = Y.Equiv.sym identity unwind-natural (x ◅ f) = Y.Equiv.sym (homomorphism ○ Category.∘-resp-≈ˡ Y (Y.Equiv.sym (unwind-natural f))) Free⊣Underlying : Adjoint (PathsOf {o} {o ⊔ ℓ} {o ⊔ ℓ ⊔ e}) Underlying Free⊣Underlying = record { unit = ntHelper record { η = unit ; commute = λ {X} {Y} f → let open Paths Y in record { F₀≡ = ≡.refl ; F₁≡ = Quiver.Equiv.refl Y ◅ ε } } ; counit = ntHelper record { η = unwindF ; commute = λ {_} {Y} F → record { eq₀ = λ _ → ≡.refl ; eq₁ = λ f → toSquare Y (unwind-natural F f) } } ; zig = λ {G} → record { eq₀ = λ _ → ≡.refl ; eq₁ = λ f → toSquare (PC.PathCategory G) (zig′ G f) } ; zag = λ {B} → record { F₀≡ = ≡.refl ; F₁≡ = Category.identityˡ B } } where open MR using (toSquare)
{ "alphanum_fraction": 0.6453382084, "avg_line_length": 43.1842105263, "ext": "agda", "hexsha": "92394fe35fac47db188397db0bd457db0adccb2c", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Instance/PathsOf.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Instance/PathsOf.agda", "max_line_length": 114, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Instance/PathsOf.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1633, "size": 4923 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Type(s) used (only) when calling out to Haskell via the FFI ------------------------------------------------------------------------ {-# OPTIONS --without-K #-} module Foreign.Haskell where open import Level -- A unit type. data Unit : Set where unit : Unit {-# COMPILE GHC Unit = data () (()) #-} {-# COMPILE UHC Unit = data __UNIT__ (__UNIT__) #-} -- A pair type record Pair {ℓ ℓ′ : Level} (A : Set ℓ) (B : Set ℓ′) : Set (ℓ ⊔ ℓ′) where constructor _,_ field fst : A snd : B open Pair public {-# FOREIGN GHC type AgdaPair l1 l2 a b = (a , b) #-} {-# COMPILE GHC Pair = data MAlonzo.Code.Foreign.Haskell.AgdaPair ((,)) #-}
{ "alphanum_fraction": 0.4947089947, "avg_line_length": 24.3870967742, "ext": "agda", "hexsha": "ba37c3ab9e29cc2336861db56df65328fbbf3163", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Foreign/Haskell.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Foreign/Haskell.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Foreign/Haskell.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 195, "size": 756 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some unit types ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Unit where open import Data.Sum open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl) -- Some types are defined in Data.Unit.Base. open import Data.Unit.Base public ------------------------------------------------------------------------ -- Operations infix 4 _≟_ _≤?_ _≟_ : Decidable {A = ⊤} _≡_ _ ≟ _ = yes refl _≤?_ : Decidable _≤_ _ ≤? _ = yes _ total : Total _≤_ total _ _ = inj₁ _ ------------------------------------------------------------------------ -- Properties preorder : Preorder _ _ _ preorder = PropEq.preorder ⊤ setoid : Setoid _ _ setoid = PropEq.setoid ⊤ decTotalOrder : DecTotalOrder _ _ _ decTotalOrder = record { Carrier = ⊤ ; _≈_ = _≡_ ; _≤_ = _≤_ ; isDecTotalOrder = record { isTotalOrder = record { isPartialOrder = record { isPreorder = record { isEquivalence = PropEq.isEquivalence ; reflexive = λ _ → _ ; trans = λ _ _ → _ } ; antisym = antisym } ; total = total } ; _≟_ = _≟_ ; _≤?_ = _≤?_ } } where antisym : Antisymmetric _≡_ _≤_ antisym _ _ = refl decSetoid : DecSetoid _ _ decSetoid = DecTotalOrder.Eq.decSetoid decTotalOrder poset : Poset _ _ _ poset = DecTotalOrder.poset decTotalOrder
{ "alphanum_fraction": 0.4799291617, "avg_line_length": 22.8918918919, "ext": "agda", "hexsha": "6d0426f71a5a2dd75c7956c7d9ad8286096e195f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Unit.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 433, "size": 1694 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Universe-sensitive functor and monad instances for the Product type. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Data.Product.Categorical.Examples {a e b} {A : Monoid a e} {B : Set b} where open import Level using (Lift; lift; _⊔_) open import Category.Functor using (RawFunctor) open import Category.Monad using (RawMonad) open import Data.Product open import Data.Product.Relation.Binary.Pointwise.NonDependent open import Function import Function.Identity.Categorical as Id open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality using (_≡_; refl) ------------------------------------------------------------------------ -- Examples -- Note that these examples are simple unit tests, because the type -- checker verifies them. private module A = Monoid A open import Data.Product.Categorical.Left A.rawMonoid b _≈_ : Rel (A.Carrier × Lift a B) (e ⊔ a ⊔ b) _≈_ = Pointwise A._≈_ _≡_ open RawFunctor functor -- This type to the right of × needs to be a "lifted" version of (B : Set b) -- that lives in the universe (Set (a ⊔ b)). fmapIdₗ : (x : A.Carrier × Lift a B) → (id <$> x) ≈ x fmapIdₗ x = A.refl , refl open RawMonad monad -- Now, let's show that "return" is a unit for >>=. We use Lift in exactly -- the same way as above. The data (x : B) then needs to be "lifted" to -- this new type (Lift B). returnUnitL : ∀ {x : B} {f : Lift a B → A.Carrier × Lift a B} → ((return (lift x)) >>= f) ≈ f (lift x) returnUnitL = A.identityˡ _ , refl returnUnitR : {x : A.Carrier × Lift a B} → (x >>= return) ≈ x returnUnitR = A.identityʳ _ , refl -- And another (limited version of a) monad law... bindCompose : ∀ {f g : Lift a B → A.Carrier × Lift a B} → {x : A.Carrier × Lift a B} → ((x >>= f) >>= g) ≈ (x >>= (λ y → (f y >>= g))) bindCompose = A.assoc _ _ _ , refl
{ "alphanum_fraction": 0.5761904762, "avg_line_length": 33.3333333333, "ext": "agda", "hexsha": "dc73acad7124149d51753fbe125fe233e75ad97c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Examples.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 583, "size": 2100 }
module InstanceArgumentsNotFound where postulate A B : Set f : {{a : A}} → B test : B test = f
{ "alphanum_fraction": 0.5981308411, "avg_line_length": 13.375, "ext": "agda", "hexsha": "81687466da7ccb16b0c9628ce3a1574ac212a857", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/InstanceArgumentsNotFound.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/InstanceArgumentsNotFound.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/InstanceArgumentsNotFound.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 32, "size": 107 }
{-# OPTIONS --sized-types #-} module FormalLanguage {ℓ} where import Lvl open import Sized.Data.List renaming (∅ to []) open import Lang.Size open import Data.Boolean open import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Data.Boolean.Stmt open import Functional open import Relator.Equals open import Type -- Definitions: -- A language is a set of words. -- A word in a language is a list of valid symbols in the language. -- A valid symbol in the language is an element in the alphabet of the language. -- An alphabet of a language is a set. -- A string is a word. -- Standard conventions for variable naming in languages: -- L is a language -- Σ is an alphabet Alphabet = Type{ℓ} Word = List -- Language is defined as a trie: (LHS is using the definition of Language, RHS is using the usual "semantics" of languages as sets): -- For a language L -- accepts-ε: -- (accepts-ε(L) = 𝑇) ↔ (ε ∈ L) -- accepts-ε(L) returns a boolean determining whether the empty word is accepted in the language. -- suffix-lang: -- ∀word∀c. (word ∈ suffix-lang(L)(c)) ↔ ((c 𝁼 word) ∈ L) -- suffix-lang(L)(c) is the language that consists of the rest of the words when a word is starting with c in L. -- Copied (with modifications) from: http://agda.readthedocs.io/en/v2.5.2/language/sized-types.html (2017-05-13) -- which links the following paper: "Formal Languages, Formally and Coinductively, Dmitriy Traytel, FSCD (2016)" [https://www21.in.tum.de/~traytel/papers/fscd16-coind_lang/paper.pdf] -- Example: -- A language 𝔏 consists of 6 words: -- 𝔏 = {"" , "aa" , "aaa" , "aab" , "aba" , "aaab"} -- accepts-ε (𝔏) = 𝑇 -- suffix-lang(𝔏)(a) = {"a" , "aa" , "ab" , "ba" , "aab"} -- accepts-ε (suffix-lang(𝔏)(a)) = 𝐹 -- suffix-lang(suffix-lang(𝔏)(a))(a) = {"" , "a" , "b" , "ab"} -- suffix-lang(suffix-lang(𝔏)(a))(b) = {"a"} record Language (Σ : Alphabet) {s : Size} : Type{ℓ} where constructor intro coinductive field accepts-ε : Bool suffix-lang : ∀{sₛ : <ˢⁱᶻᵉ s} → Σ → Language(Σ){sₛ} module Oper {Σ} where infixl 1003 _∪_ infixl 1002 _∩_ infixl 1001 _𝁼_ infixl 1000 _* -- The empty language. -- The language that does not include any word at all. ∅ : ∀{s} → Language(Σ){s} Language.accepts-ε ∅ = 𝐹 Language.suffix-lang ∅ _ = ∅ -- The empty word language. -- The language with only the empty word. ε : ∀{s} → Language(Σ){s} Language.accepts-ε ε = 𝑇 Language.suffix-lang ε _ = ∅ -- The language of length 1 words that only accepts some symbols of its alphabet alphabet-filter : ∀{s} → (Σ → Bool) → Language(Σ){s} Language.accepts-ε (alphabet-filter f) = 𝐹 Language.suffix-lang (alphabet-filter f) c = if f(c) then ε else ∅ -- The single symbol language. -- The language consisting of a single word with a single letter -- Note: This is only possible when Alphabet has a computably decidable equality relation single : ⦃ _ : ComputablyDecidable(_≡_) ⦄ → ∀{s} → Σ → Language(Σ){s} single(a) = alphabet-filter(ComputablyDecidable.decide(_≡_) a) -- The sublanguage filtered by a decidable predicate. filter : ∀{s} → (Word(Σ) → Bool) → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (filter P(𝔏)) = P(List.∅) Language.suffix-lang (filter P(𝔏)) c = filter (P ∘ tail) (Language.suffix-lang(𝔏)(c)) -- The language where every letter in the alphabet is applied to a function. unmap : ∀{Σ₂}{s} → (Σ → Σ₂) → Language(Σ₂){s} → Language(Σ){s} Language.accepts-ε (unmap f(𝔏)) = Language.accepts-ε (𝔏) Language.suffix-lang (unmap f(𝔏)) c = unmap f(Language.suffix-lang(𝔏)(f(c))) -- Union. -- The language that includes any words that the two languages have. _∪_ : ∀{s} → Language(Σ){s} → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (L₁ ∪ L₂) = Language.accepts-ε(L₁) || Language.accepts-ε(L₂) Language.suffix-lang (L₁ ∪ L₂) c = Language.suffix-lang(L₁)(c) ∪ Language.suffix-lang(L₂)(c) -- Intersection. -- The language that only includes the words that both languages have in common. _∩_ : ∀{s} → Language(Σ){s} → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (L₁ ∩ L₂) = Language.accepts-ε(L₁) && Language.accepts-ε(L₂) Language.suffix-lang (L₁ ∩ L₂) c = Language.suffix-lang(L₁)(c) ∩ Language.suffix-lang(L₂)(c) -- Concatenation. -- The language that includes words that start with a word the first language and end in a word from the second language. _𝁼_ : ∀{s} → Language(Σ){s} → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (L₁ 𝁼 L₂) = Language.accepts-ε(L₁) && Language.accepts-ε(L₂) Language.suffix-lang (L₁ 𝁼 L₂) c = if Language.accepts-ε(L₁) then (Language.suffix-lang(L₁)(c) 𝁼 L₂) ∪ Language.suffix-lang(L₂)(c) else (Language.suffix-lang(L₁)(c) 𝁼 L₂) -- Star/Closure -- The language that includes words in any number of concatenations with itself. _* : ∀{s} → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (L *) = 𝑇 Language.suffix-lang (L *) c = Language.suffix-lang(L)(c) 𝁼 (L *) -- Complement -- The language that includes all words that a language does not have. ∁_ : ∀{s} → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (∁ L) = !(Language.accepts-ε(L)) Language.suffix-lang (∁ L) c = ∁(Language.suffix-lang(L)(c)) -- The universal language. -- The language that includes all words in any combination of the alphabet. -- The largest language (with most words) with a certain alphabet. 𝐔 : ∀{s} → Language(Σ){s} 𝐔 = ∁(∅) -- Containment check -- Checks whether a word is in the language. _∈?_ : ∀{s} → Word{s = s}(Σ) → Language(Σ) → Bool _∈?_ [] L = Language.accepts-ε(L) _∈?_ (_⊰_ {sₗ} c w) L = _∈?_ {s = sₗ} w (Language.suffix-lang L c) -- Containment -- The relation of whether a word is in the language or not. _∈_ : ∀{s} → Word{s = s}(Σ) → Language(Σ) → Type _∈_ {s} a b = IsTrue(_∈?_ {s} a b) [_]_∈_ : ∀(s) → Word{s = s}(Σ) → Language(Σ) → Type [ s ] a ∈ b = _∈_ {s} a b -- Uncontainment -- The relation of whether a word is not in the language or not. _∉_ : ∀{s} → Word{s = s}(Σ) → Language(Σ) → Type _∉_ {s} a b = IsFalse(_∈?_ {s} a b) [_]_∉_ : ∀(s) → Word{s = s}(Σ) → Language(Σ) → Type [ s ] a ∉ b = _∉_ {s} a b
{ "alphanum_fraction": 0.636638068, "avg_line_length": 41.137254902, "ext": "agda", "hexsha": "522f57d683e26504dd7634e3b80887110d4df7da", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "FormalLanguage.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "FormalLanguage.agda", "max_line_length": 182, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "FormalLanguage.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2228, "size": 6294 }
module Data.Bin.Addition where open import Data.List using ([]; _∷_) open import Data.Bin using(addBits; addBitLists; addCarryToBitList) open import Relation.Binary.PropositionalEquality private module PropEq = Relation.Binary.PropositionalEquality open import Data.Fin using (zero; suc) renaming (toℕ to bitToℕ; _+_ to _+F_) open import Data.Fin.Properties using (_+′_) open import Data.Digit using (fromDigits) open import Data.Product import Data.Nat.Properties open import Data.Bin.Bijection using (fromℕ-bijection) module Solving where open Relation.Binary.PropositionalEquality open ≡-Reasoning open import Algebra -- open Algebra.Structures open CommutativeSemiring Data.Nat.Properties.commutativeSemiring hiding (sym; refl) open Data.Product open Data.Nat.Properties.SemiringSolver lem : ∀ {a b c as bs b' c' r} → c' * 2 + b' ≡ c + a + b → r ≡ c' + (as + bs) → b' + r * 2 ≡ c + (a + as * 2 + (b + bs * 2)) lem {a} {b} {c} {as} {bs} {b'} {c'} {r} eq1 eq2 = begin b' + r * 2 ≡⟨ cong (λ x → b' + x * 2) eq2 ⟩ b' + (c' + (as + bs)) * 2 ≡⟨ cong (λ x → b' + x) (proj₂ distrib 2 c' (as + bs)) ⟩ b' + (c' * 2 + (as + bs) * 2) ≡⟨ sym (+-assoc b' (c' * 2) ((as + bs) * 2)) ⟩ b' + c' * 2 + (as + bs) * 2 ≡⟨ +-cong (+-comm b' (c' * 2)) refl ⟩ c' * 2 + b' + (as + bs) * 2 ≡⟨ +-cong eq1 refl ⟩ c + a + b + (as + bs) * 2 ≡⟨ solve 5 (λ a b c as bs → c :+ a :+ b :+ (as :+ bs) :* con 2 := c :+ (a :+ as :* con 2 :+ (b :+ bs :* con 2)) ) refl a b c as bs ⟩ c + (a + as * 2 + (b + bs * 2)) ∎ open import Data.Nat using () renaming (_+_ to _+_; _*_ to _*_) open Data.Bin using (toℕ; toBits) addBits-is-addition : ∀ {c a b} → bitToℕ (proj₁ (addBits c a b)) * 2 + bitToℕ (proj₂ (addBits c a b)) ≡ bitToℕ c + bitToℕ a + bitToℕ b -- Brute force!!! (LOL) addBits-is-addition {zero} {zero} {zero} = refl addBits-is-addition {zero} {zero} {suc zero} = refl addBits-is-addition {zero} {suc zero} {zero} = refl addBits-is-addition {zero} {suc zero} {suc zero} = refl addBits-is-addition {suc zero} {zero} {zero} = refl addBits-is-addition {suc zero} {zero} {suc zero} = refl addBits-is-addition {suc zero} {suc zero} {zero} = refl addBits-is-addition {suc zero} {suc zero} {suc zero} = refl addBits-is-addition {suc (suc ())} addBits-is-addition {_} {suc (suc ())} addBits-is-addition {_} {_} {suc (suc ())} addCarryToBitLists-is-addition : ∀ c b → fromDigits (addCarryToBitList c b) ≡ bitToℕ c + fromDigits b addCarryToBitLists-is-addition zero _ = refl addCarryToBitLists-is-addition (suc zero) [] = refl addCarryToBitLists-is-addition (suc zero) (zero ∷ t) = refl addCarryToBitLists-is-addition (suc zero) (suc zero ∷ t) = cong (λ x → x * 2) (addCarryToBitLists-is-addition (suc zero) t) addCarryToBitLists-is-addition (suc (suc ())) _ addCarryToBitLists-is-addition _ ((suc (suc ())) ∷ _) open import Data.Nat.Properties using (isCommutativeSemiring) open import Algebra.Structures using (module IsCommutativeSemiring; module IsCommutativeMonoid) open IsCommutativeSemiring isCommutativeSemiring using (+-isCommutativeMonoid) open IsCommutativeMonoid +-isCommutativeMonoid using (identity; comm) renaming (∙-cong to +-cong) addBitLists-is-addition : ∀ c a b → fromDigits (addBitLists c a b) ≡ bitToℕ c + (fromDigits a + fromDigits b) addBitLists-is-addition c [] b = addCarryToBitLists-is-addition c b addBitLists-is-addition c (a ∷ as) [] = trans (addCarryToBitLists-is-addition c (a ∷ as)) (+-cong {bitToℕ c} refl (sym (proj₂ identity (fromDigits (a ∷ as))))) addBitLists-is-addition c (a ∷ as) (b ∷ bs) with addBits c a b | addBits-is-addition {c} {a} {b} ... | (c' , b') | abia with addBitLists c' as bs | addBitLists-is-addition c' as bs ... | r | ria = Solving.lem {bitToℕ a} {bitToℕ b} {bitToℕ c} {fromDigits as} {fromDigits bs} {bitToℕ b'} {bitToℕ c'} abia ria open import Function.Inverse using (Inverse) open import Function.Equality open import Data.Bin.BitListBijection using () renaming (toℕ⟶ to bits-to-ℕ) open import Data.Bin.Bijection using (Bits-inverse-Bin) simplify-fromBits-to-ℕ : ∀ a → toℕ (Data.Bin.fromBits a) ≡ bits-to-ℕ ⟨$⟩ a simplify-fromBits-to-ℕ a = Π.cong bits-to-ℕ (Inverse.left-inverse-of Bits-inverse-Bin a ) +-is-addition : ∀ a b → toℕ (Data.Bin._+_ a b) ≡ toℕ a + toℕ b +-is-addition a b = trans (simplify-fromBits-to-ℕ (addBitLists zero (toBits a) (toBits b))) (addBitLists-is-addition zero as bs) where as = toBits a bs = toBits b import Algebra.Lifting open import Data.Nat using (ℕ) open import Data.Bin using (Bin; 0#) open import Algebra.Structures using (IsCommutativeMonoid) private module Lifting = Algebra.Lifting _ _ fromℕ-bijection is-commutativeMonoid : IsCommutativeMonoid _≡_ Data.Bin._+_ 0# is-commutativeMonoid = lift-isCommutativeMonoid 0 +-isCommutativeMonoid where open Lifting.WithOp₂ _+_ Data.Bin._+_ +-is-addition
{ "alphanum_fraction": 0.6333203581, "avg_line_length": 42.8166666667, "ext": "agda", "hexsha": "a0e7c5927d0124eaf8be15534e6d029c252daf6d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "Rotsor/BinDivMod", "max_forks_repo_path": "Data/Bin/Addition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "Rotsor/BinDivMod", "max_issues_repo_path": "Data/Bin/Addition.agda", "max_line_length": 161, "max_stars_count": 1, "max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Rotsor/BinDivMod", "max_stars_repo_path": "Data/Bin/Addition.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z", "num_tokens": 1897, "size": 5138 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.DiffInt.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.DiffInt.Base open import Cubical.Data.Nat as ℕ using (suc; zero; isSetℕ; discreteℕ; ℕ) renaming (_+_ to _+ⁿ_; _·_ to _·ⁿ_) open import Cubical.Data.Sigma open import Cubical.Data.Bool open import Cubical.Data.Int as Int using (Int; sucInt) open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Relation.Binary.Base open import Cubical.Relation.Nullary open import Cubical.HITs.SetQuotients open BinaryRelation relIsEquiv : isEquivRel rel relIsEquiv = equivRel {A = ℕ × ℕ} relIsRefl relIsSym relIsTrans where open import Cubical.Data.Nat relIsRefl : isRefl rel relIsRefl (a0 , a1) = refl relIsSym : isSym rel relIsSym (a0 , a1) (b0 , b1) p = sym p relIsTrans : isTrans rel relIsTrans (a0 , a1) (b0 , b1) (c0 , c1) p0 p1 = inj-m+ {m = (b0 + b1)} ((b0 + b1) + (a0 + c1) ≡⟨ +-assoc (b0 + b1) a0 c1 ⟩ ((b0 + b1) + a0) + c1 ≡[ i ]⟨ +-comm b0 b1 i + a0 + c1 ⟩ ((b1 + b0) + a0) + c1 ≡[ i ]⟨ +-comm (b1 + b0) a0 i + c1 ⟩ (a0 + (b1 + b0)) + c1 ≡[ i ]⟨ +-assoc a0 b1 b0 i + c1 ⟩ (a0 + b1) + b0 + c1 ≡⟨ sym (+-assoc (a0 + b1) b0 c1) ⟩ (a0 + b1) + (b0 + c1) ≡⟨ cong (λ p → p . fst + p .snd) (transport ΣPath≡PathΣ (p0 , p1))⟩ (b0 + a1) + (c0 + b1) ≡⟨ sym (+-assoc b0 a1 (c0 + b1))⟩ b0 + (a1 + (c0 + b1)) ≡[ i ]⟨ b0 + (a1 + +-comm c0 b1 i) ⟩ b0 + (a1 + (b1 + c0)) ≡[ i ]⟨ b0 + +-comm a1 (b1 + c0) i ⟩ b0 + ((b1 + c0) + a1) ≡[ i ]⟨ b0 + +-assoc b1 c0 a1 (~ i) ⟩ b0 + (b1 + (c0 + a1)) ≡⟨ +-assoc b0 b1 (c0 + a1)⟩ (b0 + b1) + (c0 + a1) ∎ ) relIsProp : BinaryRelation.isPropValued rel relIsProp a b x y = isSetℕ _ _ _ _ discreteℤ : Discrete ℤ discreteℤ = discreteSetQuotients (discreteΣ discreteℕ λ _ → discreteℕ) relIsProp relIsEquiv (λ _ _ → discreteℕ _ _) isSetℤ : isSet ℤ isSetℤ = Discrete→isSet discreteℤ sucℤ' : ℕ × ℕ -> ℤ sucℤ' (a⁺ , a⁻) = [ suc a⁺ , a⁻ ] sucℤ'-respects-rel : (a b : ℕ × ℕ) → rel a b → sucℤ' a ≡ sucℤ' b sucℤ'-respects-rel a@(a⁺ , a⁻) b@(b⁺ , b⁻) a~b = eq/ (suc a⁺ , a⁻) (suc b⁺ , b⁻) λ i → suc (a~b i) sucℤ : ℤ -> ℤ sucℤ = elim {R = rel} {B = λ _ → ℤ} (λ _ → isSetℤ) sucℤ' sucℤ'-respects-rel predℤ' : ℕ × ℕ -> ℤ predℤ' (a⁺ , a⁻) = [ a⁺ , suc a⁻ ] ⟦_⟧ : Int -> ℤ ⟦_⟧ (Int.pos n) = [ n , 0 ] ⟦_⟧ (Int.negsuc n) = [ 0 , suc n ] fwd = ⟦_⟧ bwd' : ℕ × ℕ -> Int bwd' (zero , a⁻) = Int.neg a⁻ bwd' (suc a⁺ , a⁻) = sucInt (bwd' (a⁺ , a⁻)) rel-suc : ∀ a⁺ a⁻ → rel (a⁺ , a⁻) (suc a⁺ , suc a⁻) rel-suc a⁺ a⁻ = ℕ.+-suc a⁺ a⁻ bwd'-suc : ∀ a⁺ a⁻ → bwd' (a⁺ , a⁻) ≡ bwd' (suc a⁺ , suc a⁻) bwd'-suc zero zero = refl bwd'-suc zero (suc a⁻) = refl bwd'-suc (suc a⁺) a⁻ i = sucInt (bwd'-suc a⁺ a⁻ i) bwd'+ : ∀ m n → bwd' (m , m +ⁿ n) ≡ bwd' (0 , n) bwd'+ zero n = refl bwd'+ (suc m) n = sym (bwd'-suc m (m +ⁿ n)) ∙ bwd'+ m n bwd'-respects-rel : (a b : ℕ × ℕ) → rel a b → bwd' a ≡ bwd' b bwd'-respects-rel (zero , a⁻) ( b⁺ , b⁻) a~b = sym (bwd'+ b⁺ a⁻) ∙ (λ i → bwd' (b⁺ , a~b (~ i))) bwd'-respects-rel (suc a⁺ , a⁻) (zero , b⁻) a~b = (λ i → bwd' (suc a⁺ , a~b (~ i))) ∙ sym (bwd'-suc a⁺ (a⁺ +ⁿ b⁻)) ∙ bwd'+ a⁺ b⁻ bwd'-respects-rel (suc a⁺ , a⁻) (suc b⁺ , b⁻) a~b i = sucInt (bwd'-respects-rel (a⁺ , a⁻) (b⁺ , b⁻) (ℕ.inj-m+ {1} {a⁺ +ⁿ b⁻} {b⁺ +ⁿ a⁻} a~b) i) bwd : ℤ -> Int bwd = elim {R = rel} {B = λ _ → Int} (λ _ → Int.isSetInt) bwd' bwd'-respects-rel bwd-fwd : ∀ (x : Int) -> bwd (fwd x) ≡ x bwd-fwd (Int.pos zero) = refl bwd-fwd (Int.pos (suc n)) i = sucInt (bwd-fwd (Int.pos n) i) bwd-fwd (Int.negsuc n) = refl suc-⟦⟧ : ∀ x → sucℤ ⟦ x ⟧ ≡ ⟦ sucInt x ⟧ suc-⟦⟧ (Int.pos n) = refl suc-⟦⟧ (Int.negsuc zero) = eq/ {R = rel} (1 , 1) (0 , 0) refl suc-⟦⟧ (Int.negsuc (suc n)) = eq/ {R = rel} (1 , 2 +ⁿ n) (0 , 1 +ⁿ n) refl fwd-bwd' : (a : ℕ × ℕ) → fwd (bwd [ a ]) ≡ [ a ] fwd-bwd' a@(zero , zero) = refl fwd-bwd' a@(zero , suc a⁻) = refl fwd-bwd' a@(suc a⁺ , a⁻) = sym (suc-⟦⟧ (bwd [ a⁺ , a⁻ ])) ∙ (λ i → sucℤ (fwd-bwd' (a⁺ , a⁻) i)) fwd-bwd : ∀ (z : ℤ) -> fwd (bwd z) ≡ z fwd-bwd = elimProp {R = rel} (λ _ → isSetℤ _ _) fwd-bwd' Int≡ℤ : Int ≡ ℤ Int≡ℤ = isoToPath (iso fwd bwd fwd-bwd bwd-fwd) infix 8 -_ infixl 7 _·_ infixl 6 _+_ _+'_ : (a b : ℕ × ℕ) → ℤ (a⁺ , a⁻) +' (b⁺ , b⁻) = [ a⁺ +ⁿ b⁺ , a⁻ +ⁿ b⁻ ] private commˡⁿ : ∀ a b c → a +ⁿ b +ⁿ c ≡ a +ⁿ c +ⁿ b commˡⁿ a b c = sym (ℕ.+-assoc a b c) ∙ (λ i → a +ⁿ ℕ.+-comm b c i) ∙ ℕ.+-assoc a c b lem0 : ∀ a b c d → (a +ⁿ b) +ⁿ (c +ⁿ d) ≡ (a +ⁿ c) +ⁿ (b +ⁿ d) lem0 a b c d = ℕ.+-assoc (a +ⁿ b) c d ∙ (λ i → commˡⁿ a b c i +ⁿ d) ∙ sym (ℕ.+-assoc (a +ⁿ c) b d) +ⁿ-creates-rel-≡ : ∀ a⁺ a⁻ x → _≡_ {A = ℤ} [ a⁺ , a⁻ ] [ a⁺ +ⁿ x , a⁻ +ⁿ x ] +ⁿ-creates-rel-≡ a⁺ a⁻ x = eq/ (a⁺ , a⁻) (a⁺ +ⁿ x , a⁻ +ⁿ x) ((λ i → a⁺ +ⁿ ℕ.+-comm a⁻ x i) ∙ ℕ.+-assoc a⁺ x a⁻) +-respects-relʳ : (a b c : ℕ × ℕ) → rel a b → (a +' c) ≡ (b +' c) +-respects-relʳ a@(a⁺ , a⁻) b@(b⁺ , b⁻) c@(c⁺ , c⁻) p = eq/ {R = rel} (a⁺ +ⁿ c⁺ , a⁻ +ⁿ c⁻) (b⁺ +ⁿ c⁺ , b⁻ +ⁿ c⁻) ( (a⁺ +ⁿ c⁺) +ⁿ (b⁻ +ⁿ c⁻) ≡⟨ lem0 a⁺ c⁺ b⁻ c⁻ ⟩ (a⁺ +ⁿ b⁻) +ⁿ (c⁺ +ⁿ c⁻) ≡[ i ]⟨ p i +ⁿ (c⁺ +ⁿ c⁻) ⟩ (b⁺ +ⁿ a⁻) +ⁿ (c⁺ +ⁿ c⁻) ≡⟨ sym (lem0 b⁺ c⁺ a⁻ c⁻) ⟩ (b⁺ +ⁿ c⁺) +ⁿ (a⁻ +ⁿ c⁻) ∎) +-respects-relˡ : (a b c : ℕ × ℕ) → rel b c → (a +' b) ≡ (a +' c) +-respects-relˡ a@(a⁺ , a⁻) b@(b⁺ , b⁻) c@(c⁺ , c⁻) p = eq/ {R = rel} (a⁺ +ⁿ b⁺ , a⁻ +ⁿ b⁻) (a⁺ +ⁿ c⁺ , a⁻ +ⁿ c⁻) ( (a⁺ +ⁿ b⁺) +ⁿ (a⁻ +ⁿ c⁻) ≡⟨ lem0 a⁺ b⁺ a⁻ c⁻ ⟩ (a⁺ +ⁿ a⁻) +ⁿ (b⁺ +ⁿ c⁻) ≡[ i ]⟨ (a⁺ +ⁿ a⁻) +ⁿ p i ⟩ (a⁺ +ⁿ a⁻) +ⁿ (c⁺ +ⁿ b⁻) ≡⟨ sym (lem0 a⁺ c⁺ a⁻ b⁻) ⟩ (a⁺ +ⁿ c⁺) +ⁿ (a⁻ +ⁿ b⁻) ∎) _+''_ : ℤ → ℤ → ℤ _+''_ = rec2 {R = rel} {B = ℤ} φ _+'_ +-respects-relʳ +-respects-relˡ where abstract φ = isSetℤ -- normalization of isSetℤ explodes. Therefore we wrap this with expanded cases _+_ : ℤ → ℤ → ℤ x@([ _ ]) + y@([ _ ]) = x +'' y x@([ _ ]) + y@(eq/ _ _ _ _) = x +'' y x@(eq/ _ _ _ _) + y@([ _ ]) = x +'' y x@(eq/ _ _ _ _) + y@(eq/ _ _ _ _) = x +'' y x@(eq/ _ _ _ _) + y@(squash/ a b p q i j) = isSetℤ _ _ (cong (x +_) p) (cong (x +_) q) i j x@([ _ ]) + y@(squash/ a b p q i j) = isSetℤ _ _ (cong (x +_) p) (cong (x +_) q) i j x@(squash/ a b p q i j) + y = isSetℤ _ _ (cong (_+ y) p) (cong (_+ y) q) i j -'_ : ℕ × ℕ → ℤ -' (a⁺ , a⁻) = [ a⁻ , a⁺ ] neg-respects-rel'-≡ : (a b : ℕ × ℕ) → rel a b → (-' a) ≡ (-' b) neg-respects-rel'-≡ a@(a⁺ , a⁻) b@(b⁺ , b⁻) p = eq/ {R = rel} (a⁻ , a⁺) (b⁻ , b⁺) (ℕ.+-comm a⁻ b⁺ ∙ sym p ∙ ℕ.+-comm a⁺ b⁻) -_ : ℤ → ℤ -_ = rec {R = rel} {B = ℤ} isSetℤ -'_ neg-respects-rel'-≡ _·'_ : (a b : ℕ × ℕ) → ℤ (a⁺ , a⁻) ·' (b⁺ , b⁻) = [ a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻ , a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺ ] private lem1 : ∀ a b c d → (a +ⁿ b) +ⁿ (c +ⁿ d) ≡ (a +ⁿ d) +ⁿ (b +ⁿ c) lem1 a b c d = (λ i → (a +ⁿ b) +ⁿ ℕ.+-comm c d i) ∙ ℕ.+-assoc (a +ⁿ b) d c ∙ (λ i → commˡⁿ a b d i +ⁿ c) ∙ sym (ℕ.+-assoc (a +ⁿ d) b c) ·-respects-relʳ : (a b c : ℕ × ℕ) → rel a b → (a ·' c) ≡ (b ·' c) ·-respects-relʳ a@(a⁺ , a⁻) b@(b⁺ , b⁻) c@(c⁺ , c⁻) p = eq/ {R = rel} (a⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁻ , a⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ c⁺) (b⁺ ·ⁿ c⁺ +ⁿ b⁻ ·ⁿ c⁻ , b⁺ ·ⁿ c⁻ +ⁿ b⁻ ·ⁿ c⁺) ( (a⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁻) +ⁿ (b⁺ ·ⁿ c⁻ +ⁿ b⁻ ·ⁿ c⁺) ≡⟨ lem1 (a⁺ ·ⁿ c⁺) (a⁻ ·ⁿ c⁻) (b⁺ ·ⁿ c⁻) (b⁻ ·ⁿ c⁺) ⟩ (a⁺ ·ⁿ c⁺ +ⁿ b⁻ ·ⁿ c⁺) +ⁿ (a⁻ ·ⁿ c⁻ +ⁿ b⁺ ·ⁿ c⁻) ≡[ i ]⟨ ℕ.·-distribʳ a⁺ b⁻ c⁺ i +ⁿ ℕ.·-distribʳ a⁻ b⁺ c⁻ i ⟩ ((a⁺ +ⁿ b⁻) ·ⁿ c⁺) +ⁿ ((a⁻ +ⁿ b⁺) ·ⁿ c⁻) ≡[ i ]⟨ p i ·ⁿ c⁺ +ⁿ (ℕ.+-comm a⁻ b⁺ ∙ sym p ∙ ℕ.+-comm a⁺ b⁻) i ·ⁿ c⁻ ⟩ ((b⁺ +ⁿ a⁻) ·ⁿ c⁺) +ⁿ ((b⁻ +ⁿ a⁺) ·ⁿ c⁻) ≡[ i ]⟨ ℕ.·-distribʳ b⁺ a⁻ c⁺ (~ i) +ⁿ ℕ.·-distribʳ b⁻ a⁺ c⁻ (~ i) ⟩ (b⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁺) +ⁿ (b⁻ ·ⁿ c⁻ +ⁿ a⁺ ·ⁿ c⁻) ≡⟨ sym (lem1 (b⁺ ·ⁿ c⁺) (b⁻ ·ⁿ c⁻) (a⁺ ·ⁿ c⁻) (a⁻ ·ⁿ c⁺)) ⟩ (b⁺ ·ⁿ c⁺ +ⁿ b⁻ ·ⁿ c⁻) +ⁿ (a⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ c⁺) ∎) ·-respects-relˡ : (a b c : ℕ × ℕ) → rel b c → (a ·' b) ≡ (a ·' c) ·-respects-relˡ a@(a⁺ , a⁻) b@(b⁺ , b⁻) c@(c⁺ , c⁻) p = eq/ {R = rel} (a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻ , a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺) (a⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁻ , a⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ c⁺) ( (a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻) +ⁿ (a⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ c⁺) ≡⟨ lem0 (a⁺ ·ⁿ b⁺) (a⁻ ·ⁿ b⁻) (a⁺ ·ⁿ c⁻) (a⁻ ·ⁿ c⁺) ⟩ (a⁺ ·ⁿ b⁺ +ⁿ a⁺ ·ⁿ c⁻) +ⁿ (a⁻ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ c⁺) ≡[ i ]⟨ ℕ.·-distribˡ a⁺ b⁺ c⁻ i +ⁿ ℕ.·-distribˡ a⁻ b⁻ c⁺ i ⟩ (a⁺ ·ⁿ (b⁺ +ⁿ c⁻)) +ⁿ (a⁻ ·ⁿ (b⁻ +ⁿ c⁺)) ≡[ i ]⟨ a⁺ ·ⁿ p i +ⁿ a⁻ ·ⁿ (ℕ.+-comm b⁻ c⁺ ∙ sym p ∙ ℕ.+-comm b⁺ c⁻) i ⟩ (a⁺ ·ⁿ (c⁺ +ⁿ b⁻)) +ⁿ (a⁻ ·ⁿ (c⁻ +ⁿ b⁺)) ≡[ i ]⟨ ℕ.·-distribˡ a⁺ c⁺ b⁻ (~ i) +ⁿ ℕ.·-distribˡ a⁻ c⁻ b⁺ (~ i) ⟩ (a⁺ ·ⁿ c⁺ +ⁿ a⁺ ·ⁿ b⁻) +ⁿ (a⁻ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ b⁺) ≡⟨ sym (lem0 (a⁺ ·ⁿ c⁺) (a⁻ ·ⁿ c⁻) (a⁺ ·ⁿ b⁻) (a⁻ ·ⁿ b⁺)) ⟩ (a⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁻) +ⁿ (a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺) ∎) _·''_ : ℤ → ℤ → ℤ _·''_ = rec2 {R = rel} {B = ℤ} isSetℤ _·'_ ·-respects-relʳ ·-respects-relˡ -- normalization of isSetℤ explodes. Therefore we wrap this with expanded cases _·_ : ℤ → ℤ → ℤ x@([ _ ]) · y@([ _ ]) = x ·'' y x@([ _ ]) · y@(eq/ _ _ _ _) = x ·'' y x@(eq/ _ _ _ _) · y@([ _ ]) = x ·'' y x@(eq/ _ _ _ _) · y@(eq/ _ _ _ _) = x ·'' y x@(eq/ _ _ _ _) · y@(squash/ a b p q i j) = isSetℤ _ _ (cong (x ·_) p) (cong (x ·_) q) i j x@([ _ ]) · y@(squash/ a b p q i j) = isSetℤ _ _ (cong (x ·_) p) (cong (x ·_) q) i j x@(squash/ a b p q i j) · y = isSetℤ _ _ (cong (_· y) p) (cong (_· y) q) i j +-identityʳ : (x : ℤ) → x + 0 ≡ x +-identityʳ = elimProp {R = rel} (λ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) i → [ ℕ.+-comm a⁺ 0 i , ℕ.+-comm a⁻ 0 i ] } +-comm : (x y : ℤ) → x + y ≡ y + x +-comm = elimProp2 {R = rel} (λ _ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) (b⁺ , b⁻) i → [ ℕ.+-comm a⁺ b⁺ i , ℕ.+-comm a⁻ b⁻ i ] } +-inverseʳ : (x : ℤ) → x + (- x) ≡ 0 +-inverseʳ = elimProp {R = rel} (λ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) → eq/ {R = rel} (a⁺ +ⁿ a⁻ , a⁻ +ⁿ a⁺) (0 , 0) (ℕ.+-zero (a⁺ +ⁿ a⁻) ∙ ℕ.+-comm a⁺ a⁻) } +-assoc : (x y z : ℤ) → x + (y + z) ≡ x + y + z +-assoc = elimProp3 {R = rel} (λ _ _ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) (b⁺ , b⁻) (c⁺ , c⁻) i → [ ℕ.+-assoc a⁺ b⁺ c⁺ i , ℕ.+-assoc a⁻ b⁻ c⁻ i ] } ·-identityʳ : (x : ℤ) → x · 1 ≡ x ·-identityʳ = elimProp {R = rel} (λ _ → isSetℤ _ _) γ where γ : (a : ℕ × ℕ) → _ γ (a⁺ , a⁻) i = [ p i , q i ] where p : a⁺ ·ⁿ 1 +ⁿ a⁻ ·ⁿ 0 ≡ a⁺ p i = ℕ.+-comm (ℕ.·-identityʳ a⁺ i) (ℕ.0≡m·0 a⁻ (~ i)) i q : a⁺ ·ⁿ 0 +ⁿ a⁻ ·ⁿ 1 ≡ a⁻ q i = ℕ.0≡m·0 a⁺ (~ i) +ⁿ ℕ.·-identityʳ a⁻ i ·-comm : (x y : ℤ) → x · y ≡ y · x ·-comm = elimProp2 {R = rel} (λ _ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) (b⁺ , b⁻) i → [ ℕ.·-comm a⁺ b⁺ i +ⁿ ℕ.·-comm a⁻ b⁻ i , ℕ.+-comm (ℕ.·-comm a⁺ b⁻ i) (ℕ.·-comm a⁻ b⁺ i) i ] } ·-distribˡ : (x y z : ℤ) → x · (y + z) ≡ x · y + x · z ·-distribˡ = elimProp3 {R = rel} (λ _ _ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) (b⁺ , b⁻) (c⁺ , c⁻) → [ a⁺ ·ⁿ (b⁺ +ⁿ c⁺) +ⁿ a⁻ ·ⁿ (b⁻ +ⁿ c⁻) , a⁺ ·ⁿ (b⁻ +ⁿ c⁻) +ⁿ a⁻ ·ⁿ (b⁺ +ⁿ c⁺) ] ≡[ i ]⟨ [ ℕ.·-distribˡ a⁺ b⁺ c⁺ (~ i) +ⁿ ℕ.·-distribˡ a⁻ b⁻ c⁻ (~ i) , ℕ.·-distribˡ a⁺ b⁻ c⁻ (~ i) +ⁿ ℕ.·-distribˡ a⁻ b⁺ c⁺ (~ i) ] ⟩ [ (a⁺ ·ⁿ b⁺ +ⁿ a⁺ ·ⁿ c⁺) +ⁿ (a⁻ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ c⁻) , (a⁺ ·ⁿ b⁻ +ⁿ a⁺ ·ⁿ c⁻) +ⁿ (a⁻ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ c⁺) ] ≡[ i ]⟨ [ lem0 (a⁺ ·ⁿ b⁺) (a⁻ ·ⁿ b⁻) (a⁺ ·ⁿ c⁺) (a⁻ ·ⁿ c⁻) (~ i), lem0 (a⁺ ·ⁿ b⁻) (a⁺ ·ⁿ c⁻) (a⁻ ·ⁿ b⁺) (a⁻ ·ⁿ c⁺) i ] ⟩ [ a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻ +ⁿ (a⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁻) , a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺ +ⁿ (a⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ c⁺) ] ∎ } ·-assoc : (x y z : ℤ) → x · (y · z) ≡ x · y · z ·-assoc = elimProp3 {R = rel} (λ _ _ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) (b⁺ , b⁻) (c⁺ , c⁻) → [ a⁺ ·ⁿ (b⁺ ·ⁿ c⁺ +ⁿ b⁻ ·ⁿ c⁻) +ⁿ a⁻ ·ⁿ (b⁺ ·ⁿ c⁻ +ⁿ b⁻ ·ⁿ c⁺) , a⁺ ·ⁿ (b⁺ ·ⁿ c⁻ +ⁿ b⁻ ·ⁿ c⁺) +ⁿ a⁻ ·ⁿ (b⁺ ·ⁿ c⁺ +ⁿ b⁻ ·ⁿ c⁻) ] ≡[ i ]⟨ [ ℕ.·-distribˡ a⁺ (b⁺ ·ⁿ c⁺) (b⁻ ·ⁿ c⁻) (~ i) +ⁿ ℕ.·-distribˡ a⁻ (b⁺ ·ⁿ c⁻) (b⁻ ·ⁿ c⁺) (~ i) , ℕ.·-distribˡ a⁺ (b⁺ ·ⁿ c⁻) (b⁻ ·ⁿ c⁺) (~ i) +ⁿ ℕ.·-distribˡ a⁻ (b⁺ ·ⁿ c⁺) (b⁻ ·ⁿ c⁻) (~ i) ] ⟩ [ (a⁺ ·ⁿ (b⁺ ·ⁿ c⁺) +ⁿ a⁺ ·ⁿ (b⁻ ·ⁿ c⁻)) +ⁿ (a⁻ ·ⁿ (b⁺ ·ⁿ c⁻) +ⁿ a⁻ ·ⁿ (b⁻ ·ⁿ c⁺)) , (a⁺ ·ⁿ (b⁺ ·ⁿ c⁻) +ⁿ a⁺ ·ⁿ (b⁻ ·ⁿ c⁺)) +ⁿ (a⁻ ·ⁿ (b⁺ ·ⁿ c⁺) +ⁿ a⁻ ·ⁿ (b⁻ ·ⁿ c⁻)) ] ≡[ i ]⟨ [ (ℕ.·-assoc a⁺ b⁺ c⁺ i +ⁿ ℕ.·-assoc a⁺ b⁻ c⁻ i) +ⁿ (ℕ.·-assoc a⁻ b⁺ c⁻ i +ⁿ ℕ.·-assoc a⁻ b⁻ c⁺ i) , (ℕ.·-assoc a⁺ b⁺ c⁻ i +ⁿ ℕ.·-assoc a⁺ b⁻ c⁺ i) +ⁿ (ℕ.·-assoc a⁻ b⁺ c⁺ i +ⁿ ℕ.·-assoc a⁻ b⁻ c⁻ i) ] ⟩ [ (a⁺ ·ⁿ b⁺ ·ⁿ c⁺ +ⁿ a⁺ ·ⁿ b⁻ ·ⁿ c⁻) +ⁿ (a⁻ ·ⁿ b⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ b⁻ ·ⁿ c⁺) , (a⁺ ·ⁿ b⁺ ·ⁿ c⁻ +ⁿ a⁺ ·ⁿ b⁻ ·ⁿ c⁺) +ⁿ (a⁻ ·ⁿ b⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ b⁻ ·ⁿ c⁻) ] ≡[ i ]⟨ [ lem1 (a⁺ ·ⁿ b⁺ ·ⁿ c⁺) (a⁺ ·ⁿ b⁻ ·ⁿ c⁻) (a⁻ ·ⁿ b⁺ ·ⁿ c⁻) (a⁻ ·ⁿ b⁻ ·ⁿ c⁺) i , lem1 (a⁺ ·ⁿ b⁺ ·ⁿ c⁻) (a⁺ ·ⁿ b⁻ ·ⁿ c⁺) (a⁻ ·ⁿ b⁺ ·ⁿ c⁺) (a⁻ ·ⁿ b⁻ ·ⁿ c⁻) i ] ⟩ [ (a⁺ ·ⁿ b⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ b⁻ ·ⁿ c⁺) +ⁿ (a⁺ ·ⁿ b⁻ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ b⁺ ·ⁿ c⁻) , (a⁺ ·ⁿ b⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ b⁻ ·ⁿ c⁻) +ⁿ (a⁺ ·ⁿ b⁻ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ b⁺ ·ⁿ c⁺) ] ≡[ i ]⟨ [ ℕ.·-distribʳ (a⁺ ·ⁿ b⁺) (a⁻ ·ⁿ b⁻) c⁺ i +ⁿ ℕ.·-distribʳ (a⁺ ·ⁿ b⁻) (a⁻ ·ⁿ b⁺) c⁻ i , ℕ.·-distribʳ (a⁺ ·ⁿ b⁺) (a⁻ ·ⁿ b⁻) c⁻ i +ⁿ ℕ.·-distribʳ (a⁺ ·ⁿ b⁻) (a⁻ ·ⁿ b⁺) c⁺ i ] ⟩ [ (a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻) ·ⁿ c⁺ +ⁿ (a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺) ·ⁿ c⁻ , (a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻) ·ⁿ c⁻ +ⁿ (a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺) ·ⁿ c⁺ ] ∎ } private _ : Dec→Bool (discreteℤ [ (3 , 5) ] [ (4 , 6) ]) ≡ true _ = refl _ : Dec→Bool (discreteℤ [ (3 , 5) ] [ (4 , 7) ]) ≡ false _ = refl
{ "alphanum_fraction": 0.411121922, "avg_line_length": 46.7167832168, "ext": "agda", "hexsha": "1daf19588ffb675488827f52b9f415a69530341f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/cubical", "max_forks_repo_path": "Cubical/Data/DiffInt/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/cubical", "max_issues_repo_path": "Cubical/Data/DiffInt/Properties.agda", "max_line_length": 163, "max_stars_count": null, "max_stars_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/cubical", "max_stars_repo_path": "Cubical/Data/DiffInt/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8544, "size": 13361 }
open import Class.Listable open import Data.List.Relation.Unary.All open import Data.List.Relation.Unary.AllPairs open import Data.List.Relation.Unary.Any import Data.Vec.Recursive import Data.Vec.Recursive.Categorical open import Prelude module Theory.PrimMeta where private variable A B C : Set M : Set → Set data PrimMeta : Set where EvalStmt : PrimMeta ShellCmd : PrimMeta CheckTerm : PrimMeta Parse : PrimMeta Normalize : PrimMeta HeadNormalize : PrimMeta InferType : PrimMeta private variable m : PrimMeta instance PrimMeta-Eq : Eq PrimMeta PrimMeta-Eq = Listable.Listable→Eq record { listing = EvalStmt ∷ ShellCmd ∷ CheckTerm ∷ Parse ∷ Normalize ∷ HeadNormalize ∷ InferType ∷ [] ; unique = ((λ ()) ∷ (λ ()) ∷ (λ ()) ∷ (λ ()) ∷ (λ ()) ∷ (λ ()) ∷ []) ∷ ((λ ()) ∷ (λ ()) ∷ (λ ()) ∷ (λ ()) ∷ (λ ()) ∷ []) ∷ ((λ ()) ∷ (λ ()) ∷ (λ ()) ∷ (λ ()) ∷ []) ∷ ((λ ()) ∷ (λ ()) ∷ (λ ()) ∷ []) ∷ ((λ ()) ∷ (λ ()) ∷ []) ∷ ((λ ()) ∷ []) ∷ [] ∷ [] ; complete = λ where EvalStmt → here refl ShellCmd → there (here refl) CheckTerm → there (there (here refl)) Parse → there (there (there (here refl))) Normalize → there (there (there (there (here refl)))) HeadNormalize → there (there (there (there (there (here refl))))) InferType → there (there (there (there (there (there (here refl)))))) } PrimMeta-EqB : EqB PrimMeta PrimMeta-EqB = Eq→EqB PrimMeta-Show : Show PrimMeta PrimMeta-Show = record { show = helper } where helper : PrimMeta → String helper EvalStmt = "EvalStmt" helper ShellCmd = "ShellCmd" helper CheckTerm = "CheckTerm" helper Parse = "Parse" helper Normalize = "Normalize" helper HeadNormalize = "HeadNormalize" helper InferType = "InferType" primMetaArity : PrimMeta → ℕ primMetaArity EvalStmt = 1 primMetaArity ShellCmd = 2 primMetaArity CheckTerm = 2 primMetaArity Parse = 3 primMetaArity Normalize = 1 primMetaArity HeadNormalize = 1 primMetaArity InferType = 1 primMetaArgs : Set → PrimMeta → Set primMetaArgs A m = A Data.Vec.Recursive.^ (primMetaArity m) mapPrimMetaArgs : (A → B) → primMetaArgs A m → primMetaArgs B m mapPrimMetaArgs f = Data.Vec.Recursive.map f _ traversePrimMetaArgs : {{Monad M}} → (A → M B) → primMetaArgs A m → M (primMetaArgs B m) traversePrimMetaArgs {{mon}} = Data.Vec.Recursive.Categorical.mapM mon primMetaArgs-Show : (A → String) → primMetaArgs A m → String primMetaArgs-Show showA = Data.Vec.Recursive.foldr "" showA (λ _ a s → showA a + s) _ primMetaArgsZipWith : (A → B → C) → primMetaArgs A m → primMetaArgs B m → primMetaArgs C m primMetaArgsZipWith f x y = Data.Vec.Recursive.zipWith f _ x y primMetaArgsSequence : {{Monad M}} → primMetaArgs (M A) m → M (primMetaArgs A m) primMetaArgsSequence {{mon}} = Data.Vec.Recursive.Categorical.sequenceM mon primMetaArgsAnd : primMetaArgs Bool m → Bool primMetaArgsAnd = Data.Vec.Recursive.foldr {P = const Bool} true id (const _∧_) _
{ "alphanum_fraction": 0.6166875784, "avg_line_length": 34.652173913, "ext": "agda", "hexsha": "6235387cda20488d550da99e860f958cd899923a", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "src/Theory/PrimMeta.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "src/Theory/PrimMeta.agda", "max_line_length": 100, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "src/Theory/PrimMeta.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 972, "size": 3188 }
module UniDB.Spec where open import UniDB.Core public record Vr (T : STX) : Set where field vr : {γ : Dom} → Ix γ → T γ vr-inj : {γ : Dom} → Inj (vr {γ}) open Vr {{...}} public record Wk (X : STX) : Set where field wk₁ : {γ : Dom} (x : X γ) → X (suc γ) wk : {γ : Dom} (δ : Dom) (x : X γ) → X (γ ∪ δ) wk-zero : {γ : Dom} (x : X γ) → wk 0 x ≡ x wk-suc : {γ : Dom} (δ : Dom) (x : X γ) → wk (suc δ) x ≡ wk₁ (wk δ x) wk1-wk₁ : {γ : Dom} (x : X γ) → wk 1 x ≡ wk₁ x wk1-wk₁ x = trans (wk-suc 0 x) (cong wk₁ (wk-zero x)) open Wk {{...}} public instance iVrIx : Vr Ix vr {{iVrIx}} i = i vr-inj {{iVrIx}} p = p iWkIx : Wk Ix wk₁ {{iWkIx}} = suc wk {{iWkIx}} zero i = i wk {{iWkIx}} (suc δ) i = suc (wk δ i) wk-zero {{iWkIx}} x = refl wk-suc {{iWkIx}} δ x = refl -------------------------------------------------------------------------------- record WkVr (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} : Set where field wk₁-vr : {γ : Dom} (i : Ix γ) → wk₁ (vr {T} i) ≡ vr {T} (wk₁ i) wk-vr : {γ : Dom} (δ : Dom) (i : Ix γ) → wk δ (vr {T} i) ≡ vr {T} (wk δ i) open WkVr {{...}} public instance iWkVrIx : WkVr Ix wk₁-vr {{iWkVrIx}} i = refl wk-vr {{iWkVrIx}} δ i = refl -------------------------------------------------------------------------------- record Lk (T : STX) (Ξ : MOR) : Set where field lk : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (i : Ix γ₁) → T γ₂ open Lk {{...}} public record Up (Ξ : MOR) : Set where infixl 9 _↑₁ _↑_ field _↑₁ : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) → Ξ (suc γ₁) (suc γ₂) _↑_ : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (δ : Dom) → Ξ (γ₁ ∪ δ) (γ₂ ∪ δ) ↑-zero : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) → ξ ↑ zero ≡ ξ ↑-suc : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (δ : Dom) → ξ ↑ suc δ ≡ ξ ↑ δ ↑₁ record Comp (Ξ : MOR) : Set where infixl 8 _⊙_ field _⊙_ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) → Ξ γ₁ γ₃ record Idm (Ξ : MOR) : Set where field idm : (γ : Dom) → Ξ γ γ record Wkm (Ξ : MOR) : Set where field wkm : {γ : Dom} (δ : Dom) → Ξ γ (γ ∪ δ) record Snoc (T : STX) (Ξ : MOR) : Set where field snoc : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (t : T γ₂) → Ξ (suc γ₁) γ₂ record Beta (T : STX) (Ξ : MOR) : Set where field beta : {γ : Dom} (t : T γ) → Ξ (suc γ) γ open Idm {{...}} public open Wkm {{...}} public open Up {{...}} public open Comp {{...}} public open Snoc {{...}} public open Beta {{...}} public -------------------------------------------------------------------------------- record LkRen (T : STX) {{vrT : Vr T}} (Ξ : MOR) {{lkIxΞ : Lk Ix Ξ}} {{lkTΞ : Lk T Ξ}} : Set where field lk-ren : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (i : Ix γ₁) → lk {T} ξ i ≡ vr (lk ξ i) open LkRen {{...}} public record LkUp (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} : Set where field lk-↑₁-zero : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) → lk {T} (ξ ↑₁) zero ≡ vr zero lk-↑₁-suc : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (i : Ix γ₁) → lk {T} (ξ ↑₁) (suc i) ≡ wk₁ (lk ξ i) lk-↑-∪ : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (i : Ix γ₁) (δ : Dom) → lk {T} (ξ ↑ δ) (wk δ i) ≡ wk δ (lk ξ i) lk-↑-∪ ξ i zero = begin lk (ξ ↑ 0) i ≡⟨ cong₂ lk ((↑-zero ξ)) refl ⟩ lk ξ i ≡⟨ sym (wk-zero (lk ξ i)) ⟩ wk 0 (lk ξ i) ∎ lk-↑-∪ ξ i (suc δ) = begin lk (ξ ↑ suc δ) (suc (wk δ i)) ≡⟨ cong₂ lk (↑-suc ξ δ) refl ⟩ lk (ξ ↑ δ ↑₁) (suc (wk δ i)) ≡⟨ lk-↑₁-suc (ξ ↑ δ) (wk δ i) ⟩ wk₁ (lk (ξ ↑ δ) (wk δ i)) ≡⟨ cong wk₁ (lk-↑-∪ ξ i δ) ⟩ wk₁ (wk δ (lk ξ i)) ≡⟨ sym (wk-suc δ (lk ξ i)) ⟩ wk (suc δ) (lk ξ i) ∎ open LkUp {{...}} public record LkRenComp (T : STX) {{vrT : Vr T}} (Ξ : MOR) {{lkIxΞ : Lk Ix Ξ}} {{lkTΞ : Lk T Ξ}} {{compΞ : Comp Ξ}} {{lkRenTΞ : LkRen T Ξ}} : Set where field lk-ren-comp : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) (i : Ix γ₁) → lk {T} (ξ₁ ⊙ ξ₂) i ≡ lk {T} ξ₂ (lk {Ix} ξ₁ i) open LkRenComp {{...}} public record LkIdm (T : STX) {{vrT : Vr T}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{idmΞ : Idm Ξ}} : Set where field lk-idm : {γ : Dom} (i : Ix γ) → lk {T} (idm {Ξ} γ) i ≡ vr i open LkIdm {{...}} public record LkWkm (T : STX) {{vrT : Vr T}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{wkmΞ : Wkm Ξ}} : Set where field lk-wkm : {γ : Dom} (δ : Dom) (i : Ix γ) → lk {T} (wkm {Ξ} δ) i ≡ vr (wk δ i) open LkWkm {{...}} public -------------------------------------------------------------------------------- record UpIdm (Ξ : MOR) {{upΞ : Up Ξ}} {{idmΞ : Idm Ξ}} : Set where field idm-↑₁ : {γ : Dom} → idm {Ξ} γ ↑₁ ≡ idm {Ξ} (suc γ) idm-↑ : {γ : Dom} (δ : Dom) → idm {Ξ} γ ↑ δ ≡ idm {Ξ} (γ ∪ δ) idm-↑ zero = ↑-zero (idm {Ξ} _) idm-↑ (suc δ) = begin idm _ ↑ suc δ ≡⟨ ↑-suc (idm _) δ ⟩ idm _ ↑ δ ↑₁ ≡⟨ cong _↑₁ (idm-↑ δ) ⟩ idm _ ↑₁ ≡⟨ idm-↑₁ ⟩ idm (suc (_ ∪ δ)) ∎ open UpIdm {{...}} public record UpComp (Ξ : MOR) {{upΞ : Up Ξ}} {{compΞ : Comp Ξ}} : Set where field ⊙-↑₁ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) → (ξ₁ ⊙ ξ₂) ↑₁ ≡ (ξ₁ ↑₁) ⊙ (ξ₂ ↑₁) ⊙-↑ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) (δ : Dom) → (ξ₁ ⊙ ξ₂) ↑ δ ≡ (ξ₁ ↑ δ) ⊙ (ξ₂ ↑ δ) ⊙-↑ ξ₁ ξ₂ zero = begin (ξ₁ ⊙ ξ₂) ↑ 0 ≡⟨ ↑-zero (ξ₁ ⊙ ξ₂) ⟩ ξ₁ ⊙ ξ₂ ≡⟨ sym (cong₂ _⊙_ (↑-zero ξ₁) (↑-zero ξ₂)) ⟩ (ξ₁ ↑ 0) ⊙ (ξ₂ ↑ 0) ∎ ⊙-↑ ξ₁ ξ₂ (suc δ) = begin (ξ₁ ⊙ ξ₂) ↑ suc δ ≡⟨ ↑-suc (ξ₁ ⊙ ξ₂) δ ⟩ (ξ₁ ⊙ ξ₂) ↑ δ ↑₁ ≡⟨ cong _↑₁ (⊙-↑ ξ₁ ξ₂ δ) ⟩ ((ξ₁ ↑ δ) ⊙ (ξ₂ ↑ δ)) ↑₁ ≡⟨ ⊙-↑₁ (ξ₁ ↑ δ) (ξ₂ ↑ δ) ⟩ (ξ₁ ↑ δ ↑₁) ⊙ (ξ₂ ↑ δ ↑₁) ≡⟨ sym (cong₂ _⊙_ (↑-suc ξ₁ δ) (↑-suc ξ₂ δ)) ⟩ (ξ₁ ↑ suc δ) ⊙ (ξ₂ ↑ suc δ) ∎ open UpComp {{...}} public record CompIdm (Ξ : MOR) {{idmΞ : Idm Ξ}} {{compΞ : Comp Ξ}} : Set where field ⊙-idm : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) → ξ ⊙ idm {Ξ} γ₂ ≡ ξ idm-⊙ : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) → idm {Ξ} γ₁ ⊙ ξ ≡ ξ open CompIdm {{...}} public record CompAssoc (Ξ : MOR) {{compΞ : Comp Ξ}} : Set where field ⊙-assoc : {γ₁ γ₂ γ₃ γ₄ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) (ξ₃ : Ξ γ₃ γ₄) → ξ₁ ⊙ (ξ₂ ⊙ ξ₃) ≡ (ξ₁ ⊙ ξ₂) ⊙ ξ₃ open CompAssoc {{...}} public -------------------------------------------------------------------------------- record WkmBeta (T : STX) (Ξ : MOR) {{idmΞ : Idm Ξ}} {{wkmΞ : Wkm Ξ}} {{compΞ : Comp Ξ}} {{betaTΞ : Beta T Ξ}} : Set where field wkm-beta : {γ : Dom} (t : T γ) → wkm {Ξ} 1 ⊙ beta {T} {Ξ} t ≡ idm {Ξ} γ open WkmBeta {{...}} public record WkmHom (Ξ : MOR) {{idmΞ : Idm Ξ}} {{wkmΞ : Wkm Ξ}} {{compΞ : Comp Ξ}} : Set where field wkm-zero : {γ : Dom} → wkm {Ξ} 0 ≡ idm {Ξ} γ wkm-suc : {γ : Dom} (δ : Dom) → wkm {Ξ} {γ} (suc δ) ≡ wkm {Ξ} δ ⊙ wkm {Ξ} 1 open WkmHom {{...}} public record WkmComm (Ξ : MOR) {{upΞ : Up Ξ}} {{wkmΞ : Wkm Ξ}} {{compΞ : Comp Ξ}} : Set where field wkm₁-comm : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) → ξ ⊙ wkm {Ξ} 1 ≡ wkm {Ξ} 1 ⊙ ξ ↑₁ wkm-comm : {{idmΞ : Idm Ξ}} {{wkmHomΞ : WkmHom Ξ}} {{compIdmΞ : CompIdm Ξ}} {{compAssocΞ : CompAssoc Ξ}} {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (δ : Dom) → ξ ⊙ wkm {Ξ} δ ≡ wkm {Ξ} δ ⊙ ξ ↑ δ wkm-comm {{iWkmCommReg}} ξ zero = begin ξ ⊙ wkm 0 ≡⟨ cong (_⊙_ ξ) wkm-zero ⟩ ξ ⊙ idm _ ≡⟨ ⊙-idm ξ ⟩ ξ ≡⟨ sym (idm-⊙ ξ) ⟩ idm _ ⊙ ξ ≡⟨ sym (cong₂ _⊙_ wkm-zero (↑-zero ξ)) ⟩ wkm 0 ⊙ (ξ ↑ 0) ∎ wkm-comm {{iWkmCommReg}} ξ (suc δ) = begin ξ ⊙ wkm (suc δ) ≡⟨ cong (_⊙_ ξ) (wkm-suc δ) ⟩ ξ ⊙ (wkm δ ⊙ wkm 1) ≡⟨ ⊙-assoc ξ (wkm δ) (wkm 1) ⟩ (ξ ⊙ wkm δ) ⊙ wkm 1 ≡⟨ cong (λ ξ → ξ ⊙ wkm 1) (wkm-comm ξ δ) ⟩ (wkm δ ⊙ (ξ ↑ δ)) ⊙ wkm 1 ≡⟨ sym (⊙-assoc (wkm δ) (ξ ↑ δ) (wkm 1)) ⟩ wkm δ ⊙ ((ξ ↑ δ) ⊙ wkm 1) ≡⟨ cong (_⊙_ (wkm δ)) (wkm₁-comm (ξ ↑ δ)) ⟩ wkm δ ⊙ (wkm 1 ⊙ (ξ ↑ δ ↑₁)) ≡⟨ ⊙-assoc (wkm δ) (wkm 1) (ξ ↑ δ ↑₁) ⟩ (wkm δ ⊙ wkm 1) ⊙ (ξ ↑ δ ↑₁) ≡⟨ cong (λ ρ → (wkm δ ⊙ wkm 1) ⊙ ρ) (sym (↑-suc ξ δ)) ⟩ (wkm δ ⊙ wkm 1) ⊙ (ξ ↑ suc δ) ≡⟨ cong (λ ρ → ρ ⊙ (ξ ↑ suc δ)) (sym (wkm-suc δ)) ⟩ wkm (suc δ) ⊙ (ξ ↑ suc δ) ∎ open WkmComm {{...}} public -------------------------------------------------------------------------------- infix 1 [_]_≃_ record [_]_≃_ (T : STX) {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {Ζ : MOR} {{lkTΖ : Lk T Ζ}} {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₁ γ₂) : Set where field lk≃ : (i : Ix γ₁) → lk {T} {Ξ} ξ i ≡ lk {T} {Ζ} ζ i open [_]_≃_ public module _ {T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}} {Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {{lkUpTΖ : LkUp T Ζ}} where ≃-↑₁ : {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≃ ζ) → [ T ] ξ ↑₁ ≃ ζ ↑₁ lk≃ (≃-↑₁ {γ₁} {γ₂} {ξ} {ζ} hyp) zero = begin lk (ξ ↑₁) zero ≡⟨ lk-↑₁-zero ξ ⟩ vr zero ≡⟨ sym (lk-↑₁-zero ζ) ⟩ lk (ζ ↑₁) zero ∎ lk≃ (≃-↑₁ {γ₁} {γ₂} {ξ} {ζ} hyp) (suc i) = begin lk (ξ ↑₁) (suc i) ≡⟨ lk-↑₁-suc ξ i ⟩ wk₁ (lk ξ i) ≡⟨ cong wk₁ (lk≃ hyp i) ⟩ wk₁ (lk ζ i) ≡⟨ sym (lk-↑₁-suc ζ i) ⟩ lk (ζ ↑₁) (suc i) ∎ ≃-↑ : {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≃ ζ) (δ : Dom) → [ T ] ξ ↑ δ ≃ ζ ↑ δ ≃-↑ {ξ = ξ} {ζ} hyp zero rewrite ↑-zero {Ξ} ξ | ↑-zero {Ζ} ζ = hyp ≃-↑ {ξ = ξ} {ζ} hyp (suc δ) rewrite ↑-suc {Ξ} ξ δ | ↑-suc {Ζ} ζ δ = ≃-↑₁ (≃-↑ hyp δ) -------------------------------------------------------------------------------- infix 1 [_]_≅_ data [_]_≅_ (T : STX) {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₁ γ₂) → Set where ≃-to-≅ : {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : (δ' : Dom) → [ T ] ξ ↑ δ' ≃ ζ ↑ δ') (δ : Dom) → [ T ] ξ ↑ δ ≅ ζ ↑ δ module _ {T : STX} {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} where ≃-to-≅` : {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : (δ' : Dom) → [ T ] ξ ↑ δ' ≃ ζ ↑ δ') → [ T ] ξ ≅ ζ ≃-to-≅` {ξ = ξ} {ζ} hyp = lem₂ where lem : [ T ] ξ ↑ 0 ≅ ζ ↑ 0 lem = ≃-to-≅ hyp 0 lem₂ : [ T ] ξ ≅ ζ lem₂ rewrite sym (↑-zero {Ξ} ξ) | sym (↑-zero {Ζ} ζ) = lem ≅-to-≃ : {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≅ ζ) → [ T ] ξ ≃ ζ ≅-to-≃ (≃-to-≅ hyp δ) = hyp δ ≅-↑₁ : {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≅ ζ) → [ T ] ξ ↑₁ ≅ ζ ↑₁ ≅-↑₁ (≃-to-≅ {ξ = ξ} {ζ} hyp δ) rewrite sym (↑-suc {Ξ} ξ δ) | sym (↑-suc {Ζ} ζ δ) = ≃-to-≅ hyp (suc δ) ≅-↑ : {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≅ ζ) (δ : Dom) → [ T ] ξ ↑ δ ≅ ζ ↑ δ ≅-↑ {ξ = ξ} {ζ} hyp zero rewrite ↑-zero ξ | ↑-zero ζ = hyp ≅-↑ {ξ = ξ} {ζ} hyp (suc δ) rewrite ↑-suc ξ δ | ↑-suc ζ δ = ≅-↑₁ (≅-↑ hyp δ) module _ {T : STX} {{vrT : Vr T}} {Ξ : MOR} {{lkIxΞ : Lk Ix Ξ}} {{lkTΞ : Lk T Ξ}} {{lkRenTΞ : LkRen T Ξ}} {{upΞ : Up Ξ}} {Ζ : MOR} {{lkIxΖ : Lk Ix Ζ}} {{lkTΖ : Lk T Ζ}} {{lkRenTΖ : LkRen T Ζ}} {{upΖ : Up Ζ}} where Ix≅-to-≅ : {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} → [ Ix ] ξ ≅ ζ → [ T ] ξ ≅ ζ Ix≅-to-≅ (≃-to-≅ {ξ = ξ} {ζ} hyp δ) = ≃-to-≅ (λ δ' → record { lk≃ = λ i → begin lk {T} (ξ ↑ δ') i ≡⟨ lk-ren {T} {Ξ} (ξ ↑ δ') i ⟩ vr (lk {Ix} (ξ ↑ δ') i) ≡⟨ cong vr (lk≃ (hyp δ') i) ⟩ vr (lk {Ix} (ζ ↑ δ') i) ≡⟨ sym (lk-ren {T} {Ζ} (ζ ↑ δ') i) ⟩ lk {T} (ζ ↑ δ') i ∎}) δ -------------------------------------------------------------------------------- record HComp (Ξ Ζ Θ : MOR) : Set where infixl 8 _⊡_ field _⊡_ : {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃) → Θ γ₁ γ₃ open HComp {{...}} public record UpHComp (Ξ : MOR) {{upΞ : Up Ξ}} (Ζ : MOR) {{upΖ : Up Ζ}} (Θ : MOR) {{upΘ : Up Θ}} {{hcompΞΖΘ : HComp Ξ Ζ Θ}} : Set where field ⊡-↑₁ : {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃) → (_⊡_ {Θ = Θ} ξ ζ) ↑₁ ≡ (ξ ↑₁) ⊡ (ζ ↑₁) ⊡-↑ : {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃) (δ : Dom) → _↑_ {Θ} (ξ ⊡ ζ) δ ≡ (ξ ↑ δ) ⊡ (ζ ↑ δ) ⊡-↑ ξ ζ zero = begin (ξ ⊡ ζ) ↑ 0 ≡⟨ ↑-zero {Θ} (_⊡_ {Ξ} {Ζ} {Θ} ξ ζ) ⟩ (ξ ⊡ ζ) ≡⟨ sym (cong₂ (_⊡_ {Ξ} {Ζ} {Θ}) (↑-zero ξ) (↑-zero ζ)) ⟩ (ξ ↑ 0) ⊡ (ζ ↑ 0) ∎ ⊡-↑ ξ ζ (suc δ) = begin (ξ ⊡ ζ) ↑ suc δ ≡⟨ ↑-suc (ξ ⊡ ζ) δ ⟩ (ξ ⊡ ζ) ↑ δ ↑₁ ≡⟨ cong _↑₁ ((⊡-↑ ξ ζ δ)) ⟩ (ξ ↑ δ ⊡ ζ ↑ δ) ↑₁ ≡⟨ ⊡-↑₁ (ξ ↑ δ) (ζ ↑ δ) ⟩ ξ ↑ δ ↑₁ ⊡ ζ ↑ δ ↑₁ ≡⟨ sym (cong₂ (_⊡_ {Ξ} {Ζ} {Θ}) (↑-suc ξ δ) (↑-suc ζ δ)) ⟩ ξ ↑ suc δ ⊡ ζ ↑ suc δ ∎ open UpHComp {{...}} public record HCompIdmLeft (Ξ : MOR) {{idmΞ : Idm Ξ}} (Ζ : MOR) {{hcompΞΖΖ : HComp Ξ Ζ Ζ}} : Set where field idm-⊡ : {γ₁ γ₂ : Dom} (ζ : Ζ γ₁ γ₂) → idm {Ξ} γ₁ ⊡ ζ ≡ ζ open HCompIdmLeft {{...}} public
{ "alphanum_fraction": 0.4021960784, "avg_line_length": 34.3665768194, "ext": "agda", "hexsha": "bc40836142ba778791814e9f90fb806c77418c24", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Spec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Spec.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Spec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7036, "size": 12750 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Data.These where open import Light.Library.Data.These using (Library ; Dependencies) open import Light.Variable.Levels open import Light.Level using (_⊔_) dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation } where module Implementation where data These (𝕒 : Set aℓ) (𝕓 : Set bℓ) : Set (aℓ ⊔ bℓ) where this : 𝕒 → These 𝕒 𝕓 that : 𝕓 → These 𝕒 𝕓 these : 𝕒 → 𝕓 → These 𝕒 𝕓
{ "alphanum_fraction": 0.6472440945, "avg_line_length": 31.75, "ext": "agda", "hexsha": "712f45e9004748522c989fa971e7983b7095d302", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Implementation/Data/These.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Implementation/Data/These.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Implementation/Data/These.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 172, "size": 635 }
------------------------------------------------------------------------ -- 1-categories ------------------------------------------------------------------------ -- The code is based on the presentation in the HoTT book (but might -- not follow it exactly). {-# OPTIONS --without-K --safe #-} open import Equality module Category {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq as Bijection using (_↔_) open Derived-definitions-and-properties eq open import Equivalence eq as Eq using (_≃_; ⟨_,_⟩; module _≃_; Is-equivalence) open import Function-universe eq as F hiding (id) renaming (_∘_ to _⊚_) open import H-level eq open import H-level.Closure eq open import Logical-equivalence using (module _⇔_) import Nat eq as Nat open import Prelude as P hiding (id; Unit) open import Univalence-axiom eq ------------------------------------------------------------------------ -- Precategories -- This definition of precategories takes the type of objects as a -- parameter. Precategory-with-Obj : ∀ {ℓ₁} → Type ℓ₁ → (ℓ₂ : Level) → Type (ℓ₁ ⊔ lsuc ℓ₂) Precategory-with-Obj Obj ℓ₂ = -- Morphisms (a /set/). ∃ λ (HOM : Obj → Obj → Set ℓ₂) → let Hom = λ X Y → proj₁ (HOM X Y) in -- Identity. ∃ λ (id : ∀ {X} → Hom X X) → -- Composition. ∃ λ (_∙_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z) → -- Identity laws. (∀ {X Y} {f : Hom X Y} → (id ∙ f) ≡ f) × (∀ {X Y} {f : Hom X Y} → (f ∙ id) ≡ f) × -- Associativity. (∀ {X Y Z U} {f : Hom X Y} {g : Hom Y Z} {h : Hom Z U} → (h ∙ (g ∙ f)) ≡ ((h ∙ g) ∙ f)) -- Precategories. Precategory′ : (ℓ₁ ℓ₂ : Level) → Type (lsuc (ℓ₁ ⊔ ℓ₂)) Precategory′ ℓ₁ ℓ₂ = -- Objects. ∃ λ (Obj : Type ℓ₁) → Precategory-with-Obj Obj ℓ₂ -- A wrapper. record Precategory (ℓ₁ ℓ₂ : Level) : Type (lsuc (ℓ₁ ⊔ ℓ₂)) where field precategory : Precategory′ ℓ₁ ℓ₂ -- Objects. Obj : Type ℓ₁ Obj = proj₁ precategory -- Morphisms. HOM : Obj → Obj → Set ℓ₂ HOM = proj₁ (proj₂ precategory) -- The morphism type family. Hom : Obj → Obj → Type ℓ₂ Hom X Y = proj₁ (HOM X Y) -- The morphism types are sets. Hom-is-set : ∀ {X Y} → Is-set (Hom X Y) Hom-is-set = proj₂ (HOM _ _) -- Identity. id : ∀ {X} → Hom X X id = proj₁ (proj₂ (proj₂ precategory)) -- Composition. infixr 10 _∙_ _∙_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z _∙_ = proj₁ (proj₂ (proj₂ (proj₂ precategory))) -- The left identity law. left-identity : ∀ {X Y} {f : Hom X Y} → id ∙ f ≡ f left-identity = proj₁ (proj₂ (proj₂ (proj₂ (proj₂ precategory)))) -- The right identity law. right-identity : ∀ {X Y} {f : Hom X Y} → f ∙ id ≡ f right-identity = proj₁ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂ precategory))))) -- The associativity law. assoc : ∀ {X Y Z U} {f : Hom X Y} {g : Hom Y Z} {h : Hom Z U} → h ∙ (g ∙ f) ≡ (h ∙ g) ∙ f assoc = proj₂ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂ precategory))))) -- Isomorphisms. Is-isomorphism : ∀ {X Y} → Hom X Y → Type ℓ₂ Is-isomorphism f = ∃ λ g → (f ∙ g ≡ id) × (g ∙ f ≡ id) infix 4 _≅_ _≅_ : Obj → Obj → Type ℓ₂ X ≅ Y = ∃ λ (f : Hom X Y) → Is-isomorphism f -- Some projections. infix 15 _¹ _⁻¹ _¹⁻¹ _⁻¹¹ _¹ : ∀ {X Y} → X ≅ Y → Hom X Y f ¹ = proj₁ f _⁻¹ : ∀ {X Y} → X ≅ Y → Hom Y X f ⁻¹ = proj₁ (proj₂ f) _¹⁻¹ : ∀ {X Y} (f : X ≅ Y) → f ¹ ∙ f ⁻¹ ≡ id f ¹⁻¹ = proj₁ (proj₂ (proj₂ f)) _⁻¹¹ : ∀ {X Y} (f : X ≅ Y) → f ⁻¹ ∙ f ¹ ≡ id f ⁻¹¹ = proj₂ (proj₂ (proj₂ f)) abstract -- "Is-isomorphism f" is a proposition. Is-isomorphism-propositional : ∀ {X Y} (f : Hom X Y) → Is-proposition (Is-isomorphism f) Is-isomorphism-propositional f (g , fg , gf) (g′ , fg′ , g′f) = Σ-≡,≡→≡ (g ≡⟨ sym left-identity ⟩ id ∙ g ≡⟨ cong (λ h → h ∙ g) $ sym g′f ⟩ (g′ ∙ f) ∙ g ≡⟨ sym assoc ⟩ g′ ∙ (f ∙ g) ≡⟨ cong (_∙_ g′) fg ⟩ g′ ∙ id ≡⟨ right-identity ⟩∎ g′ ∎) (Σ-≡,≡→≡ (Hom-is-set _ _) (Hom-is-set _ _)) -- Isomorphism equality is equivalent to "forward morphism" -- equality. ≡≃≡¹ : ∀ {X Y} {f g : X ≅ Y} → (f ≡ g) ≃ (f ¹ ≡ g ¹) ≡≃≡¹ {f = f} {g} = (f ≡ g) ↔⟨ inverse $ ignore-propositional-component $ Is-isomorphism-propositional _ ⟩□ (f ¹ ≡ g ¹) □ -- The type of isomorphisms (between two objects) is a set. ≅-set : ∀ {X Y} → Is-set (X ≅ Y) ≅-set = Σ-closure 2 Hom-is-set (λ _ → mono₁ 1 $ Is-isomorphism-propositional _) -- Identity isomorphism. id≅ : ∀ {X} → X ≅ X id≅ = id , id , left-identity , right-identity -- Composition of isomorphisms. infixr 10 _∙≅_ _∙≅_ : ∀ {X Y Z} → Y ≅ Z → X ≅ Y → X ≅ Z f ∙≅ g = (f ¹ ∙ g ¹) , (g ⁻¹ ∙ f ⁻¹) , fg f g , gf f g where abstract fg : ∀ {X Y Z} (f : Y ≅ Z) (g : X ≅ Y) → (f ¹ ∙ g ¹) ∙ (g ⁻¹ ∙ f ⁻¹) ≡ id fg f g = (f ¹ ∙ g ¹) ∙ (g ⁻¹ ∙ f ⁻¹) ≡⟨ sym assoc ⟩ f ¹ ∙ (g ¹ ∙ (g ⁻¹ ∙ f ⁻¹)) ≡⟨ cong (_∙_ (f ¹)) assoc ⟩ f ¹ ∙ ((g ¹ ∙ g ⁻¹) ∙ f ⁻¹) ≡⟨ cong (λ h → f ¹ ∙ (h ∙ f ⁻¹)) $ g ¹⁻¹ ⟩ f ¹ ∙ (id ∙ f ⁻¹) ≡⟨ cong (_∙_ (f ¹)) left-identity ⟩ f ¹ ∙ f ⁻¹ ≡⟨ f ¹⁻¹ ⟩∎ id ∎ gf : ∀ {X Y Z} (f : Y ≅ Z) (g : X ≅ Y) → (g ⁻¹ ∙ f ⁻¹) ∙ (f ¹ ∙ g ¹) ≡ id gf f g = (g ⁻¹ ∙ f ⁻¹) ∙ (f ¹ ∙ g ¹) ≡⟨ sym assoc ⟩ g ⁻¹ ∙ (f ⁻¹ ∙ (f ¹ ∙ g ¹)) ≡⟨ cong (_∙_ (g ⁻¹)) assoc ⟩ g ⁻¹ ∙ ((f ⁻¹ ∙ f ¹) ∙ g ¹) ≡⟨ cong (λ h → g ⁻¹ ∙ (h ∙ g ¹)) $ f ⁻¹¹ ⟩ g ⁻¹ ∙ (id ∙ g ¹) ≡⟨ cong (_∙_ (g ⁻¹)) left-identity ⟩ g ⁻¹ ∙ g ¹ ≡⟨ g ⁻¹¹ ⟩∎ id ∎ -- The inverse of an isomorphism. infix 15 _⁻¹≅ _⁻¹≅ : ∀ {X Y} → X ≅ Y → Y ≅ X f ⁻¹≅ = f ⁻¹ , f ¹ , f ⁻¹¹ , f ¹⁻¹ -- Isomorphisms form a precategory. precategory-≅ : Precategory ℓ₁ ℓ₂ precategory-≅ = record { precategory = Obj , (λ X Y → (X ≅ Y) , ≅-set) , id≅ , _∙≅_ , _≃_.from ≡≃≡¹ left-identity , _≃_.from ≡≃≡¹ right-identity , _≃_.from ≡≃≡¹ assoc } -- Equal objects are isomorphic. ≡→≅ : ∀ {X Y} → X ≡ Y → X ≅ Y ≡→≅ = elim (λ {X Y} _ → X ≅ Y) (λ _ → id≅) -- "Computation rule" for ≡→≅. ≡→≅-refl : ∀ {X} → ≡→≅ (refl X) ≡ id≅ ≡→≅-refl = elim-refl (λ {X Y} _ → X ≅ Y) _ -- Rearrangement lemma for ≡→≅. ≡→≅-¹ : ∀ {X Y} (X≡Y : X ≡ Y) → ≡→≅ X≡Y ¹ ≡ elim (λ {X Y} _ → Hom X Y) (λ _ → id) X≡Y ≡→≅-¹ {X} = elim¹ (λ X≡Y → ≡→≅ X≡Y ¹ ≡ elim (λ {X Y} _ → Hom X Y) (λ _ → id) X≡Y) (≡→≅ (refl X) ¹ ≡⟨ cong _¹ ≡→≅-refl ⟩ id≅ ¹ ≡⟨⟩ id ≡⟨ sym $ elim-refl (λ {X Y} _ → Hom X Y) _ ⟩∎ elim (λ {X Y} _ → Hom X Y) (λ _ → id) (refl X) ∎) -- A lemma that can be used to prove that ≡→≅ is an equivalence. ≡→≅-equivalence-lemma : ∀ {X} → (≡≃≅ : ∀ {Y} → (X ≡ Y) ≃ (X ≅ Y)) → _≃_.to ≡≃≅ (refl X) ¹ ≡ id → ∀ {Y} → Is-equivalence (≡→≅ {X = X} {Y = Y}) ≡→≅-equivalence-lemma {X} ≡≃≅ ≡≃≅-refl {Y} = Eq.respects-extensional-equality (elim¹ (λ X≡Y → _≃_.to ≡≃≅ X≡Y ≡ ≡→≅ X≡Y) (_≃_.to ≡≃≅ (refl X) ≡⟨ _≃_.from ≡≃≡¹ ≡≃≅-refl ⟩ id≅ ≡⟨ sym ≡→≅-refl ⟩∎ ≡→≅ (refl X) ∎)) (_≃_.is-equivalence ≡≃≅) -- An example: sets and functions. (Defined using extensionality.) precategory-Set : (ℓ : Level) → Extensionality ℓ ℓ → Precategory (lsuc ℓ) ℓ precategory-Set ℓ ext = record { precategory = -- Objects: sets. Set ℓ , -- Morphisms: functions. (λ { (A , A-set) (B , B-set) → (A → B) , Π-closure ext 2 (λ _ → B-set) }) , -- Identity. P.id , -- Composition. (λ f g → f ∘ g) , -- Laws. refl _ , refl _ , refl _ } -- Isomorphisms in this category are equivalent to equivalences -- (assuming extensionality). ≃≃≅-Set : (ℓ : Level) (ext : Extensionality ℓ ℓ) → let open Precategory (precategory-Set ℓ ext) in (X Y : Obj) → (⌞ X ⌟ ≃ ⌞ Y ⌟) ≃ (X ≅ Y) ≃≃≅-Set ℓ ext X Y = Eq.↔⇒≃ record { surjection = record { logical-equivalence = record { to = λ X≃Y → _≃_.to X≃Y , _≃_.from X≃Y , apply-ext ext (_≃_.right-inverse-of X≃Y) , apply-ext ext (_≃_.left-inverse-of X≃Y) ; from = λ X≅Y → Eq.↔⇒≃ record { surjection = record { logical-equivalence = record { to = proj₁ X≅Y ; from = proj₁ (proj₂ X≅Y) } ; right-inverse-of = λ x → cong (_$ x) $ proj₁ (proj₂ (proj₂ X≅Y)) } ; left-inverse-of = λ x → cong (_$ x) $ proj₂ (proj₂ (proj₂ X≅Y)) } } ; right-inverse-of = λ X≅Y → _≃_.from (≡≃≡¹ {X = X} {Y = Y}) (refl (proj₁ X≅Y)) } ; left-inverse-of = λ X≃Y → Eq.lift-equality ext (refl (_≃_.to X≃Y)) } where open Precategory (precategory-Set ℓ ext) using (≡≃≡¹) -- Equality characterisation lemma for Precategory′. equality-characterisation-Precategory′ : ∀ {ℓ₁ ℓ₂} {C D : Precategory′ ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) → Univalence ℓ₁ → Univalence ℓ₂ → let module C = Precategory (record { precategory = C }) module D = Precategory (record { precategory = D }) in (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃ D.Hom X Y) → (∀ X → _≃_.to (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → _≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f) (_≃_.from (eqH X Y) g)) ≡ f D.∙ g)) ↔ C ≡ D equality-characterisation-Precategory′ {ℓ₁} {ℓ₂} {C} {D} ext univ₁ univ₂ = (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃ D.Hom X Y) → (∀ X → _≃_.to (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → _≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f) (_≃_.from (eqH X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $ Σ-cong (∀-cong ext₁₁₂₊ λ _ → ∀-cong ext₁₂₊ λ _ → ≡≃≃ univ₂) (λ _ → F.id)) ⟩ (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≡ D.Hom X Y) → (∀ X → ≡⇒→ (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH X Z) (C._∙_ (≡⇒← (eqH Y Z) f) (≡⇒← (eqH X Y) g)) ≡ f D.∙ g)) ↝⟨ inverse $ Σ-cong (≡≃≃ univ₁) (λ _ → F.id) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (≡⇒← eqO X) (≡⇒← eqO Y) ≡ D.Hom X Y) → (∀ X → ≡⇒→ (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH X Z) (C._∙_ (≡⇒← (eqH Y Z) f) (≡⇒← (eqH X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $ Σ-cong (∀-cong ext₁₁₂₊ λ _ → ∀-cong ext₁₂₊ λ _ → inverse $ ignore-propositional-component $ H-level-propositional ext₂₂ 2) (λ _ → F.id)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : ∀ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y) ≡ D.HOM X Y) → let eqH′ = λ X Y → proj₁ (Σ-≡,≡←≡ (eqH X Y)) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → ≡⇒↝ _ $ cong (λ (eqH′ : ∀ _ _ → _) → (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z f g → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) (apply-ext ext₁₁₂₊ λ _ → apply-ext ext₁₂₊ λ _ → proj₁-Σ-≡,≡←≡ _)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : ∀ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y) ≡ D.HOM X Y) → let eqH′ = λ X Y → cong proj₁ (eqH X Y) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $ Σ-cong (∀-cong ext₁₁₂₊ λ _ → inverse $ Eq.extensionality-isomorphism ext₁₂₊) (λ _ → F.id)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : ∀ X → (λ Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ D.HOM X) → let eqH′ = λ X Y → cong proj₁ (ext⁻¹ (eqH X) Y) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $ Σ-cong (inverse $ Eq.extensionality-isomorphism ext₁₁₂₊) (λ _ → F.id)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : (λ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ D.HOM) → let eqH′ = λ X Y → cong proj₁ (ext⁻¹ (ext⁻¹ eqH X) Y) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ eqO → inverse $ Σ-cong (inverse $ ≡⇒↝ equivalence (HOM-lemma eqO)) (λ _ → F.id)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) → let eqH′ = λ X Y → cong proj₁ (ext⁻¹ (ext⁻¹ (≡⇒← (HOM-lemma eqO) eqH) X) Y) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ eqO → ∃-cong λ eqH → ≡⇒↝ _ $ cong (λ (eqH′ : ∀ _ _ → _) → (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z f g → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) (apply-ext ext₁₁₂₊ λ X → apply-ext ext₁₂₊ λ Y → cong proj₁ (ext⁻¹ (ext⁻¹ (≡⇒← (HOM-lemma eqO) eqH) X) Y) ≡⟨⟩ cong proj₁ (cong (_$ Y) (cong (_$ X) (≡⇒← (HOM-lemma eqO) eqH))) ≡⟨ cong (cong _) $ cong-∘ _ _ _ ⟩ cong proj₁ (cong (λ f → f X Y) (≡⇒← (HOM-lemma eqO) eqH)) ≡⟨ cong-∘ _ _ _ ⟩∎ cong (λ F → ⌞ F X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) ∎)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) → let eqH′ = λ X Y → cong (λ F → ⌞ F X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ eqO → ∃-cong λ eqH → (∀-cong ext₁₂ λ _ → ≡⇒↝ _ $ cong (_≡ _) P-lemma) ×-cong (∀-cong ext₁₁₂ λ X → ∀-cong ext₁₁₂ λ Y → ∀-cong ext₁₂ λ Z → ∀-cong ext₂₂ λ f → ∀-cong ext₂₂ λ g → ≡⇒↝ _ $ cong (_≡ _) Q-lemma)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) → (∀ X → subst₂ (uncurry P) eqO eqH C.id {X = X} ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → subst₂ (uncurry Q) eqO eqH C._∙_ f g ≡ f D.∙ g)) ↝⟨ Σ-assoc ⟩ (∃ λ (eq : ∃ λ (eqO : C.Obj ≡ D.Obj) → subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) → (∀ X → subst (uncurry P) (uncurry Σ-≡,≡→≡ eq) C.id {X = X} ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → subst (uncurry Q) (uncurry Σ-≡,≡→≡ eq) C._∙_ f g ≡ f D.∙ g)) ↝⟨ Σ-cong Bijection.Σ-≡,≡↔≡ (λ _ → F.id) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → subst (uncurry Q) eq C._∙_ f g ≡ f D.∙ g)) ↔⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₂ λ _ → ∀-cong ext₂₂ λ _ → Eq.extensionality-isomorphism ext₂₂) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) → subst (uncurry Q) eq C._∙_ {X = X} f ≡ D._∙_ f)) ↔⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₂ λ _ → Eq.extensionality-isomorphism ext₂₂) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id) × (∀ X Y Z → subst (uncurry Q) eq C._∙_ {X = X} {Y = Y} {Z = Z} ≡ D._∙_)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₁₂ λ _ → implicit-extensionality-isomorphism ext₁₂) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id) × (∀ X Y → (λ {_} → subst (uncurry Q) eq C._∙_ {X = X} {Y = Y}) ≡ D._∙_)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ → implicit-extensionality-isomorphism ext₁₁₂) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id) × (∀ X → (λ {_ _} → subst (uncurry Q) eq C._∙_ {X = X}) ≡ D._∙_)) ↝⟨ ∃-cong (λ _ → implicit-extensionality-isomorphism ext₁₂ ×-cong implicit-extensionality-isomorphism ext₁₁₂) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (λ {_} → subst (uncurry P) eq (λ {_} → C.id)) ≡ (λ {_} → D.id) × (λ {_ _ _} → subst (uncurry Q) eq (λ {_ _ _} → C._∙_)) ≡ (λ {_ _ _} → D._∙_)) ↝⟨ ∃-cong (λ _ → ≡×≡↔≡) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → ( (λ {_} → subst (uncurry P) eq (λ {_} → C.id)) , (λ {_ _ _} → subst (uncurry Q) eq (λ {_ _ _} → C._∙_)) ) ≡ ((λ {_} → D.id) , λ {_ _ _} → D._∙_)) ↝⟨ ∃-cong (λ _ → ≡⇒↝ _ $ cong (_≡ _) $ sym $ push-subst-, _ _) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → subst _ eq ((λ {_} → C.id) , λ {_ _ _} → C._∙_) ≡ ((λ {_} → D.id) , λ {_ _ _} → D._∙_)) ↝⟨ Bijection.Σ-≡,≡↔≡ ⟩ ((C.Obj , C.HOM) , (λ {_} → C.id) , λ {_ _ _} → C._∙_) ≡ ((D.Obj , D.HOM) , (λ {_} → D.id) , λ {_ _ _} → D._∙_) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ Σ-assoc) ⟩ (C.Obj , C.HOM , (λ {_} → C.id) , λ {_ _ _} → C._∙_) ≡ (D.Obj , D.HOM , (λ {_} → D.id) , λ {_ _ _} → D._∙_) ↝⟨ ignore-propositional-component ( ×-closure 1 (implicit-Π-closure ext₁₁₂ 1 λ _ → implicit-Π-closure ext₁₂ 1 λ _ → implicit-Π-closure ext₂₂ 1 λ _ → D.Hom-is-set) $ ×-closure 1 (implicit-Π-closure ext₁₁₂ 1 λ _ → implicit-Π-closure ext₁₂ 1 λ _ → implicit-Π-closure ext₂₂ 1 λ _ → D.Hom-is-set) (implicit-Π-closure ext₁₁₂ 1 λ _ → implicit-Π-closure ext₁₁₂ 1 λ _ → implicit-Π-closure ext₁₁₂ 1 λ _ → implicit-Π-closure ext₁₂ 1 λ _ → implicit-Π-closure ext₂₂ 1 λ _ → implicit-Π-closure ext₂₂ 1 λ _ → implicit-Π-closure ext₂₂ 1 λ _ → D.Hom-is-set)) ⟩ ((C.Obj , C.HOM , (λ {_} → C.id) , λ {_ _ _} → C._∙_) , _) ≡ ((D.Obj , D.HOM , (λ {_} → D.id) , λ {_ _ _} → D._∙_) , _) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩□ C ≡ D □ where module C = Precategory (record { precategory = C }) module D = Precategory (record { precategory = D }) ext₁₁₂₊ : Extensionality ℓ₁ (ℓ₁ ⊔ lsuc ℓ₂) ext₁₁₂₊ = lower-extensionality ℓ₂ lzero ext ext₁₁₂ : Extensionality ℓ₁ (ℓ₁ ⊔ ℓ₂) ext₁₁₂ = lower-extensionality ℓ₂ (lsuc ℓ₂) ext ext₁₂₊ : Extensionality ℓ₁ (lsuc ℓ₂) ext₁₂₊ = lower-extensionality ℓ₂ ℓ₁ ext ext₁₂ : Extensionality ℓ₁ ℓ₂ ext₁₂ = lower-extensionality ℓ₂ _ ext ext₂₂ : Extensionality ℓ₂ ℓ₂ ext₂₂ = lower-extensionality ℓ₁ _ ext rearrange : ∀ {a b c d e} {A : Type a} {B : A → Type b} {C : (a : A) → B a → Type c} {D : (a : A) (b : B a) → C a b → Type d} {E : (a : A) (b : B a) (c : C a b) → D a b c → Type e} → (∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → ∃ λ (d : D a b c) → E a b c d) ↔ (∃ λ (p : ∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → D a b c) → E (proj₁ p) (proj₁ (proj₂ p)) (proj₁ (proj₂ (proj₂ p))) (proj₂ (proj₂ (proj₂ p)))) rearrange {A = A} {B} {C} {D} {E} = (∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → ∃ λ (d : D a b c) → E a b c d) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → Σ-assoc) ⟩ (∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (p : ∃ λ (c : C a b) → D a b c) → E a b (proj₁ p) (proj₂ p)) ↝⟨ ∃-cong (λ _ → Σ-assoc) ⟩ (∃ λ (a : A) → ∃ λ (p : ∃ λ (b : B a) → ∃ λ (c : C a b) → D a b c) → E a (proj₁ p) (proj₁ (proj₂ p)) (proj₂ (proj₂ p))) ↝⟨ Σ-assoc ⟩□ (∃ λ (p : ∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → D a b c) → E (proj₁ p) (proj₁ (proj₂ p)) (proj₁ (proj₂ (proj₂ p))) (proj₂ (proj₂ (proj₂ p)))) □ ≡⇒←-subst : {C D : Type ℓ₁} {H : C → C → Set ℓ₂} (eqO : C ≡ D) → (λ X Y → H (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ subst (λ Obj → Obj → Obj → Set _) eqO H ≡⇒←-subst {C} {H = H} eqO = elim¹ (λ eqO → (λ X Y → H (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ subst (λ Obj → Obj → Obj → Set _) eqO H) ((λ X Y → H (≡⇒← (refl C) X) (≡⇒← (refl C) Y)) ≡⟨ cong (λ f X Y → H (f X) (f Y)) ≡⇒←-refl ⟩ H ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (λ Obj → Obj → Obj → Set _) (refl C) H ∎) eqO ≡⇒←-subst-refl : {C : Type ℓ₁} {H : C → C → Set ℓ₂} → _ ≡⇒←-subst-refl {C} {H} = ≡⇒←-subst {H = H} (refl C) ≡⟨ elim¹-refl _ _ ⟩∎ trans (cong (λ f X Y → H (f X) (f Y)) ≡⇒←-refl) (sym $ subst-refl _ _) ∎ HOM-lemma : (eqO : C.Obj ≡ D.Obj) → ((λ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ D.HOM) ≡ (subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) HOM-lemma eqO = cong (_≡ _) (≡⇒←-subst eqO) ≡⇒→-lemma : ∀ {eqO eqH X Y} {f : C.Hom (≡⇒← eqO X) (≡⇒← eqO Y)} → _ ≡⇒→-lemma {eqO} {eqH} {X} {Y} {f} = ≡⇒→ (cong (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH)) f ≡⟨ sym $ subst-in-terms-of-≡⇒↝ equivalence (≡⇒← (HOM-lemma eqO) eqH) (λ H → ⌞ H X Y ⌟) _ ⟩ subst (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq _) $ sym $ subst-in-terms-of-inverse∘≡⇒↝ equivalence (≡⇒←-subst eqO) (_≡ _) _ ⟩ subst (λ H → ⌞ H X Y ⌟) (subst (_≡ _) (sym $ ≡⇒←-subst eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq _) $ subst-trans (≡⇒←-subst eqO) ⟩ subst (λ H → ⌞ H X Y ⌟) (trans (≡⇒←-subst eqO) eqH) f ≡⟨ sym $ subst-subst _ _ _ _ ⟩∎ subst (λ H → ⌞ H X Y ⌟) eqH (subst (λ H → ⌞ H X Y ⌟) (≡⇒←-subst eqO) f) ∎ ≡⇒←-lemma : ∀ {eqO eqH X Y} {f : D.Hom X Y} → _ ≡⇒←-lemma {eqO} {eqH} {X} {Y} {f} = ≡⇒← (cong (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH)) f ≡⟨ sym $ subst-in-terms-of-inverse∘≡⇒↝ equivalence (≡⇒← (HOM-lemma eqO) eqH) (λ H → ⌞ H X Y ⌟) _ ⟩ subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒← (HOM-lemma eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (sym eq) _) $ sym $ subst-in-terms-of-inverse∘≡⇒↝ equivalence (≡⇒←-subst eqO) (_≡ _) _ ⟩ subst (λ H → ⌞ H X Y ⌟) (sym $ subst (_≡ _) (sym $ ≡⇒←-subst eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (sym eq) _) $ subst-trans (≡⇒←-subst eqO) ⟩ subst (λ H → ⌞ H X Y ⌟) (sym $ trans (≡⇒←-subst eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq _) $ sym-trans (≡⇒←-subst eqO) eqH ⟩ subst (λ H → ⌞ H X Y ⌟) (trans (sym eqH) (sym $ ≡⇒←-subst eqO)) f ≡⟨ sym $ subst-subst _ _ _ _ ⟩∎ subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ∎ expand-≡⇒←-subst : ∀ {C : Type ℓ₁} {X Y} {F G : C → C → Set ℓ₂} {eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) (refl C) F ≡ G} {f : ⌞ F (≡⇒← (refl C) X) (≡⇒← (refl C) Y) ⌟} → _ expand-≡⇒←-subst {C} {X} {Y} {F} {eqH = eqH} {f} = subst (λ H → ⌞ H X Y ⌟) eqH (subst (λ H → ⌞ H X Y ⌟) (≡⇒←-subst (refl C)) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eqH $ subst (λ H → ⌞ H X Y ⌟) eq f) ≡⇒←-subst-refl ⟩ subst (λ H → ⌞ H X Y ⌟) eqH (subst (λ H → ⌞ H X Y ⌟) (trans (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) (sym $ subst-refl _ _)) f) ≡⟨ cong (subst (λ H → ⌞ H X Y ⌟) eqH) $ sym $ subst-subst _ _ _ _ ⟩ subst (λ H → ⌞ H X Y ⌟) eqH (subst (λ H → ⌞ H X Y ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) f)) ≡⟨ cong (λ f → subst (λ H → ⌞ H X Y ⌟) eqH $ subst (λ H → ⌞ H X Y ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) f) $ sym $ subst-∘ (λ H → ⌞ H X Y ⌟) (λ f X Y → F (f X) (f Y)) ≡⇒←-refl ⟩∎ subst (λ H → ⌞ H X Y ⌟) eqH (subst (λ H → ⌞ H X Y ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ f → ⌞ F (f X) (f Y) ⌟) ≡⇒←-refl f)) ∎ expand-sym-≡⇒←-subst : ∀ {C : Type ℓ₁} {X Y} {F G : C → C → Set ℓ₂} {eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) (refl C) F ≡ G} {f : ⌞ G X Y ⌟} → _ expand-sym-≡⇒←-subst {C} {X} {Y} {F} {eqH = eqH} {f} = subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst (refl C)) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (sym eq) $ subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⇒←-subst-refl ⟩ subst (λ H → ⌞ H X Y ⌟) (sym $ trans (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) (sym $ subst-refl _ _)) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq $ subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) $ sym-trans (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) _ ⟩ subst (λ H → ⌞ H X Y ⌟) (trans (sym $ sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (sym $ cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (trans eq (sym $ cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)) $ subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) $ sym-sym _ ⟩ subst (λ H → ⌞ H X Y ⌟) (trans (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (sym $ cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ sym $ subst-subst _ _ _ _ ⟩ subst (λ H → ⌞ H X Y ⌟) (sym $ cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f)) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq $ subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) $ subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) $ sym $ cong-sym (λ f X Y → F (f X) (f Y)) ≡⇒←-refl ⟩ subst (λ H → ⌞ H X Y ⌟) (cong (λ f X Y → F (f X) (f Y)) $ sym ≡⇒←-refl) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f)) ≡⟨ sym $ subst-∘ _ _ _ ⟩∎ subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym ≡⇒←-refl) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f)) ∎ subst-Σ-≡,≡→≡ : ∀ {C : Type ℓ₁} {F G : C → C → Set ℓ₂} {eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) (refl C) F ≡ G} {P : (Obj : Type ℓ₁) (HOM : Obj → Obj → Set ℓ₂) → Type (ℓ₁ ⊔ ℓ₂)} → _ subst-Σ-≡,≡→≡ {C} {F} {eqH = eqH} {P} = subst (P C) eqH ∘ subst (P C) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F) ≡⟨ apply-ext (lower-extensionality lzero (lsuc ℓ₂) ext) (λ _ → subst-subst (P C) _ _ _) ⟩ subst (P C) (trans (sym $ subst-refl _ _) eqH) ≡⟨ apply-ext (lower-extensionality lzero (lsuc ℓ₂) ext) (λ _ → subst-∘ (uncurry P) (C ,_) _) ⟩ subst (uncurry P) (cong (C ,_) (trans (sym $ subst-refl _ _) eqH)) ≡⟨ cong (subst (uncurry P)) $ sym $ Σ-≡,≡→≡-reflˡ eqH ⟩∎ subst (uncurry P) (Σ-≡,≡→≡ (refl C) eqH) ∎ P = λ Obj (HOM : Obj → Obj → Set _) → ∀ {X} → ⌞ HOM X X ⌟ abstract P-lemma : ∀ {eqO eqH X} → ≡⇒→ (cong (λ H → ⌞ H X X ⌟) (≡⇒← (HOM-lemma eqO) eqH)) C.id ≡ subst₂ (uncurry P) eqO eqH C.id {X = X} P-lemma {eqO} {eqH} {X} = ≡⇒→ (cong (λ H → ⌞ H X X ⌟) (≡⇒← (HOM-lemma eqO) eqH)) C.id ≡⟨ ≡⇒→-lemma ⟩ subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (≡⇒←-subst eqO) (C.id {X = ≡⇒← eqO X})) ≡⟨ elim (λ eqO → ∀ {X F G} (eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) eqO F ≡ G) (id : ∀ X → ⌞ F X X ⌟) → subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (≡⇒←-subst eqO) (id (≡⇒← eqO X))) ≡ subst (uncurry P) (Σ-≡,≡→≡ eqO eqH) (λ {X} → id X)) (λ C {X F G} eqH id → subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (≡⇒←-subst (refl C)) (id (≡⇒← (refl C) X))) ≡⟨ expand-≡⇒←-subst ⟩ subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ f → ⌞ F (f X) (f X) ⌟) ≡⇒←-refl (id (≡⇒← (refl C) X)))) ≡⟨ cong (λ f → subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) f)) $ dcong (λ f → id (f X)) ≡⇒←-refl ⟩ subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F) (id X)) ≡⟨ cong (subst (λ H → ⌞ H X X ⌟) eqH) $ push-subst-implicit-application _ _ ⟩ subst (λ H → ⌞ H X X ⌟) eqH (subst (P C) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F) (λ {X} → id X) {X = X}) ≡⟨ push-subst-implicit-application _ _ ⟩ subst (P C) eqH (subst (P C) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F) (λ {X} → id X)) {X = X} ≡⟨ cong (λ (f : P C F → P C G) → f _) subst-Σ-≡,≡→≡ ⟩∎ subst (uncurry P) (Σ-≡,≡→≡ (refl C) eqH) (λ {X} → id X) ∎) eqO eqH (λ _ → C.id) ⟩ subst (uncurry P) (Σ-≡,≡→≡ eqO eqH) (λ {X} → C.id {X = X}) {X = X} ≡⟨⟩ subst₂ (uncurry P) eqO eqH C.id ∎ Q = λ Obj (HOM : Obj → Obj → Set _) → ∀ {X Y Z} → ⌞ HOM Y Z ⌟ → ⌞ HOM X Y ⌟ → ⌞ HOM X Z ⌟ push-Q : {C : Type ℓ₁} {X Y Z : C} {F G : C → C → Set ℓ₂} {c : (X Y Z : C) → ⌞ F Y Z ⌟ → ⌞ F X Y ⌟ → ⌞ F X Z ⌟} {F≡G : F ≡ G} {f : ⌞ G Y Z ⌟} {g : ⌞ G X Y ⌟} → subst (λ H → ⌞ H X Z ⌟) F≡G (c X Y Z (subst (λ H → ⌞ H Y Z ⌟) (sym F≡G) f) (subst (λ H → ⌞ H X Y ⌟) (sym F≡G) g)) ≡ subst (Q C) F≡G (c _ _ _) f g push-Q {C} {X} {Y} {Z} {c = c} {F≡G} {f} {g} = subst (λ H → ⌞ H X Z ⌟) F≡G (c X Y Z (subst (λ H → ⌞ H Y Z ⌟) (sym F≡G) f) (subst (λ H → ⌞ H X Y ⌟) (sym F≡G) g)) ≡⟨ sym subst-→ ⟩ subst (λ H → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) F≡G (c X Y Z (subst (λ H → ⌞ H Y Z ⌟) (sym F≡G) f)) g ≡⟨ cong (_$ g) $ sym subst-→ ⟩ subst (λ H → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) F≡G (c X Y Z) f g ≡⟨ cong (λ h → h f g) $ push-subst-implicit-application _ (λ H Z → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) ⟩ subst (λ H → ∀ {Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) F≡G (c X Y _) f g ≡⟨ cong (λ h → h {Z = Z} f g) $ push-subst-implicit-application F≡G (λ H Y → ∀ {Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) ⟩ subst (λ H → ∀ {Y Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) F≡G (c X _ _) f g ≡⟨ cong (λ h → h {Y = Y} {Z = Z} f g) $ push-subst-implicit-application F≡G (λ H X → ∀ {Y Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) ⟩∎ subst (Q C) F≡G (c _ _ _) f g ∎ abstract Q-lemma : ∀ {eqO eqH X Y Z f g} → let eqH′ = λ X Y → cong (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) in ≡⇒→ (eqH′ X Z) (≡⇒← (eqH′ Y Z) f C.∙ ≡⇒← (eqH′ X Y) g) ≡ subst₂ (uncurry Q) eqO eqH C._∙_ f g Q-lemma {eqO} {eqH} {X} {Y} {Z} {f} {g} = let eqH′ = λ X Y → cong (λ F → ⌞ F X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) in ≡⇒→ (eqH′ X Z) (≡⇒← (eqH′ Y Z) f C.∙ ≡⇒← (eqH′ X Y) g) ≡⟨ cong₂ (λ f g → ≡⇒→ (eqH′ X Z) (f C.∙ g)) ≡⇒←-lemma ≡⇒←-lemma ⟩ ≡⇒→ (eqH′ X Z) (subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f) C.∙ subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)) ≡⟨ ≡⇒→-lemma ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst eqO) (subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f) C.∙ subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))) ≡⟨ elim (λ eqO → ∀ {X Y Z F G} (eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) eqO F ≡ G) (comp : ∀ X Y Z → ⌞ F Y Z ⌟ → ⌞ F X Y ⌟ → ⌞ F X Z ⌟) (f : ⌞ G Y Z ⌟) (g : ⌞ G X Y ⌟) → subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst eqO) (comp (≡⇒← eqO X) (≡⇒← eqO Y) (≡⇒← eqO Z) (subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)) (subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡ subst (uncurry Q) (Σ-≡,≡→≡ eqO eqH) (λ {X Y Z} → comp X Y Z) f g) (λ C {X Y Z F G} eqH comp f g → subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst (refl C)) (comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y) (≡⇒← (refl C) Z) (subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst (refl C)) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)) (subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst (refl C)) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡⟨ cong₂ (λ f g → subst (λ H → ⌞ H X Z ⌟) eqH $ subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst (refl C)) $ comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y) (≡⇒← (refl C) Z) f g) expand-sym-≡⇒←-subst expand-sym-≡⇒←-subst ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst (refl C)) (comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y) (≡⇒← (refl C) Z) (subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym ≡⇒←-refl) (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym ≡⇒←-refl) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) ≡⟨ expand-≡⇒←-subst ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ f → ⌞ F (f X) (f Z) ⌟) ≡⇒←-refl (comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y) (≡⇒← (refl C) Z) (subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym ≡⇒←-refl) (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym ≡⇒←-refl) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))))) ≡⟨ cong (subst (λ H → ⌞ H X Z ⌟) eqH ∘ subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)) $ dcong′ (λ h eq → comp (h X) (h Y) (h Z) (subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym eq) (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym eq) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) _ ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym (refl P.id)) (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym (refl P.id)) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) ≡⟨ cong₂ (λ p q → subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ f → ⌞ F (f Y) (f Z) ⌟) p (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) q (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))))) (sym-refl {x = P.id}) (sym-refl {x = P.id}) ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ f → ⌞ F (f Y) (f Z) ⌟) (refl P.id) (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) (refl P.id) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) ≡⟨ cong₂ (λ f g → subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z f g))) (subst-refl _ _) (subst-refl _ _) ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡⟨ sym $ cong₂ (λ p q → subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ H → ⌞ H Y Z ⌟) p (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)) (subst (λ H → ⌞ H X Y ⌟) q (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) (sym-sym (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)) (sym-sym (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)) ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ H → ⌞ H Y Z ⌟) (sym $ sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)) (subst (λ H → ⌞ H X Y ⌟) (sym $ sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡⟨ cong (subst (λ H → ⌞ H X Z ⌟) eqH) push-Q ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (Q C) (sym $ subst-refl _ _) (λ {X Y Z} → comp X Y Z) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)) ≡⟨ push-Q ⟩ subst (Q C) eqH (subst (Q C) (sym $ subst-refl _ _) (λ {X Y Z} → comp X Y Z)) f g ≡⟨ cong (λ (h : Q C F → Q C G) → h _ _ _) subst-Σ-≡,≡→≡ ⟩∎ subst (uncurry Q) (Σ-≡,≡→≡ (refl C) eqH) (λ {X Y Z} → comp X Y Z) f g ∎) eqO eqH (λ _ _ _ → C._∙_) f g ⟩ subst (uncurry Q) (Σ-≡,≡→≡ eqO eqH) C._∙_ f g ≡⟨⟩ subst₂ (uncurry Q) eqO eqH C._∙_ f g ∎ -- Equality characterisation lemma for Precategory. equality-characterisation-Precategory : ∀ {ℓ₁ ℓ₂} {C D : Precategory ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) → Univalence ℓ₁ → Univalence ℓ₂ → let module C = Precategory C module D = Precategory D in (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃ D.Hom X Y) → (∀ X → _≃_.to (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → _≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f) (_≃_.from (eqH X Y) g)) ≡ f D.∙ g)) ↔ C ≡ D equality-characterisation-Precategory {ℓ₁} {ℓ₂} {C} {D} ext univ₁ univ₂ = _ ↝⟨ equality-characterisation-Precategory′ ext univ₁ univ₂ ⟩ C.precategory ≡ D.precategory ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩□ C ≡ D □ where module C = Precategory C module D = Precategory D rearrange : Precategory ℓ₁ ℓ₂ ↔ Precategory′ ℓ₁ ℓ₂ rearrange = record { surjection = record { logical-equivalence = record { to = Precategory.precategory ; from = λ C → record { precategory = C } } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- Lifts a precategory's object type. lift-precategory-Obj : ∀ {ℓ₁} ℓ₁′ {ℓ₂} → Precategory ℓ₁ ℓ₂ → Precategory (ℓ₁ ⊔ ℓ₁′) ℓ₂ lift-precategory-Obj ℓ₁′ C .Precategory.precategory = ↑ ℓ₁′ C.Obj , (λ (lift A) (lift B) → C.HOM A B) , C.id , C._∙_ , C.left-identity , C.right-identity , C.assoc where module C = Precategory C -- Lifts a precategory's morphism type family. lift-precategory-Hom : ∀ {ℓ₁ ℓ₂} ℓ₂′ → Precategory ℓ₁ ℓ₂ → Precategory ℓ₁ (ℓ₂ ⊔ ℓ₂′) lift-precategory-Hom ℓ₂′ C .Precategory.precategory = C.Obj , (λ A B → ↑ ℓ₂′ (C.Hom A B) , ↑-closure 2 C.Hom-is-set) , lift C.id , (λ (lift f) (lift g) → lift (f C.∙ g)) , cong lift C.left-identity , cong lift C.right-identity , cong lift C.assoc where module C = Precategory C ------------------------------------------------------------------------ -- Categories Category′ : (ℓ₁ ℓ₂ : Level) → Type (lsuc (ℓ₁ ⊔ ℓ₂)) Category′ ℓ₁ ℓ₂ = -- A precategory. ∃ λ (C : Precategory ℓ₁ ℓ₂) → -- The function ≡→≅ is an equivalence (for each pair of objects). ∀ {X Y} → Is-equivalence (Precategory.≡→≅ C {X = X} {Y = Y}) -- A wrapper. record Category (ℓ₁ ℓ₂ : Level) : Type (lsuc (ℓ₁ ⊔ ℓ₂)) where field category : Category′ ℓ₁ ℓ₂ -- Precategory. precategory : Precategory ℓ₁ ℓ₂ precategory = proj₁ category open Precategory precategory public hiding (precategory) -- The function ≡→≅ is an equivalence (for each pair of objects). ≡→≅-equivalence : ∀ {X Y} → Is-equivalence (≡→≅ {X = X} {Y = Y}) ≡→≅-equivalence = proj₂ category ≡≃≅ : ∀ {X Y} → (X ≡ Y) ≃ (X ≅ Y) ≡≃≅ = ⟨ _ , ≡→≅-equivalence ⟩ ≅→≡ : ∀ {X Y} → X ≅ Y → X ≡ Y ≅→≡ = _≃_.from ≡≃≅ -- "Computation rule" for ≅→≡. ≅→≡-refl : ∀ {X} → ≅→≡ id≅ ≡ refl X ≅→≡-refl {X} = ≅→≡ id≅ ≡⟨ cong ≅→≡ $ sym ≡→≅-refl ⟩ ≅→≡ (≡→≅ (refl X)) ≡⟨ _≃_.left-inverse-of ≡≃≅ _ ⟩∎ refl X ∎ -- Obj has h-level 3. Obj-3 : H-level 3 Obj Obj-3 = respects-surjection (_≃_.surjection (Eq.inverse ≡≃≅)) 2 ≅-set -- Isomorphisms form a category. category-≅ : Category ℓ₁ ℓ₂ category-≅ = record { category = precategory-≅ , is-equiv } where module P≅ = Precategory precategory-≅ abstract is-equiv : ∀ {X Y} → Is-equivalence (P≅.≡→≅ {X = X} {Y = Y}) is-equiv = _⇔_.from (Is-equivalence≃Is-equivalence-CP _) λ (X≅Y , X≅Y-iso) → Σ-map (Σ-map P.id (λ {X≡Y} ≡→≅[X≡Y]≡X≅Y → elim (λ {X Y} X≡Y → (X≅Y : X ≅ Y) (X≅Y-iso : P≅.Is-isomorphism X≅Y) → ≡→≅ X≡Y ≡ X≅Y → P≅.≡→≅ X≡Y ≡ (X≅Y , X≅Y-iso)) (λ X X≅X X≅X-iso ≡→≅[refl]≡X≅X → P≅.≡→≅ (refl X) ≡⟨ P≅.≡→≅-refl ⟩ P≅.id≅ ≡⟨ Σ-≡,≡→≡ (id≅ ≡⟨ sym ≡→≅-refl ⟩ ≡→≅ (refl X) ≡⟨ ≡→≅[refl]≡X≅X ⟩∎ X≅X ∎) (P≅.Is-isomorphism-propositional _ _ _) ⟩∎ (X≅X , X≅X-iso) ∎) X≡Y X≅Y X≅Y-iso ≡→≅[X≡Y]≡X≅Y)) (λ { {X≡Y , _} ∀y→≡y → λ { (X≡Y′ , ≡→≅[X≡Y′]≡X≅Y) → let lemma = ≡→≅ X≡Y′ ≡⟨ elim (λ X≡Y′ → ≡→≅ X≡Y′ ≡ proj₁ (P≅.≡→≅ X≡Y′)) (λ X → ≡→≅ (refl X) ≡⟨ ≡→≅-refl ⟩ id≅ ≡⟨ cong proj₁ $ sym P≅.≡→≅-refl ⟩∎ proj₁ (P≅.≡→≅ (refl X)) ∎) X≡Y′ ⟩ proj₁ (P≅.≡→≅ X≡Y′) ≡⟨ cong proj₁ ≡→≅[X≡Y′]≡X≅Y ⟩∎ X≅Y ∎ in (X≡Y , _) ≡⟨ Σ-≡,≡→≡ (cong proj₁ (∀y→≡y (X≡Y′ , lemma))) (P≅.≅-set _ _) ⟩∎ (X≡Y′ , _) ∎ } }) $ _⇔_.to (Is-equivalence≃Is-equivalence-CP _) ≡→≅-equivalence X≅Y -- Some equality rearrangement lemmas. Hom-, : ∀ {X X′ Y Y′} {f : Hom X Y} (p : X ≡ X′) (q : Y ≡ Y′) → subst (uncurry Hom) (cong₂ _,_ p q) f ≡ ≡→≅ q ¹ ∙ f ∙ ≡→≅ p ⁻¹ Hom-, p q = elim (λ p → ∀ q → ∀ {f} → subst (uncurry Hom) (cong₂ _,_ p q) f ≡ ≡→≅ q ¹ ∙ f ∙ ≡→≅ p ⁻¹) (λ X q → elim (λ q → ∀ {f} → subst (uncurry Hom) (cong₂ _,_ (refl X) q) f ≡ ≡→≅ q ¹ ∙ f ∙ ≡→≅ (refl X) ⁻¹) (λ Y {f} → subst (uncurry Hom) (cong₂ _,_ (refl X) (refl Y)) f ≡⟨ cong (λ eq → subst (uncurry Hom) eq f) $ cong₂-refl _,_ ⟩ subst (uncurry Hom) (refl (X , Y)) f ≡⟨ subst-refl (uncurry Hom) _ ⟩ f ≡⟨ sym left-identity ⟩ id ∙ f ≡⟨ cong (λ g → g ¹ ∙ f) $ sym ≡→≅-refl ⟩ ≡→≅ (refl Y) ¹ ∙ f ≡⟨ sym right-identity ⟩ (≡→≅ (refl Y) ¹ ∙ f) ∙ id ≡⟨ sym assoc ⟩ ≡→≅ (refl Y) ¹ ∙ f ∙ id ≡⟨ cong (λ g → ≡→≅ (refl Y) ¹ ∙ f ∙ g ⁻¹) $ sym ≡→≅-refl ⟩∎ ≡→≅ (refl Y) ¹ ∙ f ∙ ≡→≅ (refl X) ⁻¹ ∎) q) p q ≡→≅-trans : ∀ {X Y Z} (p : X ≡ Y) (q : Y ≡ Z) → ≡→≅ (trans p q) ≡ ≡→≅ q ∙≅ ≡→≅ p ≡→≅-trans {X} = elim¹ (λ p → ∀ q → ≡→≅ (trans p q) ≡ ≡→≅ q ∙≅ ≡→≅ p) (elim¹ (λ q → ≡→≅ (trans (refl X) q) ≡ ≡→≅ q ∙≅ ≡→≅ (refl X)) (≡→≅ (trans (refl X) (refl X)) ≡⟨ cong ≡→≅ trans-refl-refl ⟩ ≡→≅ (refl X) ≡⟨ ≡→≅-refl ⟩ id≅ ≡⟨ sym $ Precategory.left-identity precategory-≅ ⟩ id≅ ∙≅ id≅ ≡⟨ sym $ cong₂ _∙≅_ ≡→≅-refl ≡→≅-refl ⟩∎ ≡→≅ (refl X) ∙≅ ≡→≅ (refl X) ∎)) -- Equality of categories is isomorphic to equality of the underlying -- precategories (assuming extensionality). ≡↔precategory≡precategory′ : ∀ {ℓ₁ ℓ₂} {C D : Category′ ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → C ≡ D ↔ proj₁ C ≡ proj₁ D ≡↔precategory≡precategory′ {ℓ₂ = ℓ₂} ext = inverse $ ignore-propositional-component (implicit-Π-closure (lower-extensionality ℓ₂ lzero ext) 1 λ _ → implicit-Π-closure (lower-extensionality ℓ₂ lzero ext) 1 λ _ → Eq.propositional ext _) -- Equality of categories is isomorphic to equality of the underlying -- precategories (assuming extensionality). ≡↔precategory≡precategory : ∀ {ℓ₁ ℓ₂} {C D : Category ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → C ≡ D ↔ Category.precategory C ≡ Category.precategory D ≡↔precategory≡precategory {C = C} {D = D} ext = C ≡ D ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩ C.category ≡ D.category ↝⟨ ≡↔precategory≡precategory′ ext ⟩□ C.precategory ≡ D.precategory □ where module C = Category C module D = Category D rearrange : Category′ _ _ ↔ Category _ _ rearrange = record { surjection = record { logical-equivalence = record { to = λ C → record { category = C } ; from = Category.category } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- Equality characterisation lemma for Category′. equality-characterisation-Category′ : ∀ {ℓ₁ ℓ₂} {C D : Category′ ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) → Univalence ℓ₁ → Univalence ℓ₂ → let module C = Category (record { category = C }) module D = Category (record { category = D }) in (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃ D.Hom X Y) → (∀ X → _≃_.to (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → _≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f) (_≃_.from (eqH X Y) g)) ≡ f D.∙ g)) ↔ C ≡ D equality-characterisation-Category′ {ℓ₂ = ℓ₂} {C} {D} ext univ₁ univ₂ = _ ↝⟨ equality-characterisation-Precategory ext univ₁ univ₂ ⟩ C.precategory ≡ D.precategory ↝⟨ inverse $ ≡↔precategory≡precategory′ (lower-extensionality lzero (lsuc ℓ₂) ext) ⟩□ C ≡ D □ where module C = Category (record { category = C }) module D = Category (record { category = D }) -- Equality characterisation lemma for Category. equality-characterisation-Category : ∀ {ℓ₁ ℓ₂} {C D : Category ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) → Univalence ℓ₁ → Univalence ℓ₂ → let module C = Category C module D = Category D in (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃ D.Hom X Y) → (∀ X → _≃_.to (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → _≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f) (_≃_.from (eqH X Y) g)) ≡ f D.∙ g)) ↔ C ≡ D equality-characterisation-Category {ℓ₂ = ℓ₂} {C} {D} ext univ₁ univ₂ = _ ↝⟨ equality-characterisation-Precategory ext univ₁ univ₂ ⟩ C.precategory ≡ D.precategory ↝⟨ inverse $ ≡↔precategory≡precategory (lower-extensionality lzero (lsuc ℓ₂) ext) ⟩□ C ≡ D □ where module C = Category C module D = Category D -- A lemma that can be used to turn a precategory into a category. precategory-to-category : ∀ {c₁ c₂} (C : Precategory c₁ c₂) → let open Precategory C in (≡≃≅ : ∀ {X Y} → (X ≡ Y) ≃ (X ≅ Y)) → (∀ {X} → _≃_.to ≡≃≅ (refl X) ¹ ≡ id) → Category c₁ c₂ precategory-to-category C ≡≃≅ ≡≃≅-refl = record { category = C , Precategory.≡→≅-equivalence-lemma C ≡≃≅ ≡≃≅-refl } -- A variant of the previous lemma for precategories with Set c₁ as -- the type of objects. (The lemma is defined using extensionality and -- univalence for sets.) precategory-with-Set-to-category : ∀ {c₁ c₂} → Extensionality c₁ c₁ → ((A B : Set c₁) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) → (C : Precategory-with-Obj (Set c₁) c₂) → let open Precategory (record { precategory = _ , C }) in (≃≃≅ : ∀ X Y → (⌞ X ⌟ ≃ ⌞ Y ⌟) ≃ (X ≅ Y)) → (∀ X → _≃_.to (≃≃≅ X X) Eq.id ¹ ≡ id) → Category (lsuc c₁) c₂ precategory-with-Set-to-category ext univ C ≃≃≅ ≃≃≅-id = precategory-to-category C′ ≡≃≅ ≡≃≅-refl where C′ = record { precategory = _ , C } open Precategory C′ -- _≡_ and _≅_ are pointwise equivalent… cong-⌞⌟ : {X Y : Obj} → (X ≡ Y) ≃ (⌞ X ⌟ ≡ ⌞ Y ⌟) cong-⌞⌟ = Eq.↔⇒≃ $ inverse $ ignore-propositional-component (H-level-propositional ext 2) ≡≃≅ : ∀ {X Y} → (X ≡ Y) ≃ (X ≅ Y) ≡≃≅ {X} {Y} = ≃≃≅ X Y ⊚ ≡≃≃ (univ X Y) ⊚ cong-⌞⌟ -- …and the proof maps reflexivity to the identity isomorphism. ≡≃≅-refl : ∀ {X} → _¹ {X = X} {Y = X} (_≃_.to ≡≃≅ (refl X)) ≡ id ≡≃≅-refl {X} = cong (_¹ {X = X} {Y = X}) ( _≃_.to (≃≃≅ X X) (≡⇒≃ (proj₁ (Σ-≡,≡←≡ (refl X)))) ≡⟨ cong (_≃_.to (≃≃≅ X X) ∘ ≡⇒≃ ∘ proj₁) Σ-≡,≡←≡-refl ⟩ _≃_.to (≃≃≅ X X) (≡⇒≃ (refl ⌞ X ⌟)) ≡⟨ cong (_≃_.to (≃≃≅ X X)) ≡⇒≃-refl ⟩ _≃_.to (≃≃≅ X X) Eq.id ≡⟨ _≃_.from (≡≃≡¹ {X = X} {Y = X}) $ ≃≃≅-id X ⟩∎ id≅ ∎) -- An example: sets and functions. (Defined using extensionality and -- univalence for sets.) category-Set : (ℓ : Level) → Extensionality ℓ ℓ → ((A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) → Category (lsuc ℓ) ℓ category-Set ℓ ext univ = precategory-with-Set-to-category ext univ (proj₂ precategory) (≃≃≅-Set ℓ ext) (λ _ → refl P.id) where C = precategory-Set ℓ ext open Precategory C -- An example: sets and bijections. (Defined using extensionality and -- univalence for sets.) category-Set-≅ : (ℓ : Level) → Extensionality ℓ ℓ → ((A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) → Category (lsuc ℓ) ℓ category-Set-≅ ℓ ext univ = Category.category-≅ (category-Set ℓ ext univ) private -- The objects are sets. Obj-category-Set-≅ : ∀ ℓ (ext : Extensionality ℓ ℓ) (univ : (A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) → Category.Obj (category-Set-≅ ℓ ext univ) ≡ Set ℓ Obj-category-Set-≅ _ _ _ = refl _ -- The morphisms are bijections. Hom-category-Set-≅ : ∀ ℓ (ext : Extensionality ℓ ℓ) (univ : (A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) → Category.Hom (category-Set-≅ ℓ ext univ) ≡ Category._≅_ (category-Set ℓ ext univ) Hom-category-Set-≅ _ _ _ = refl _ -- A trivial category (with a singleton type of objects and singleton -- homsets). Unit : ∀ ℓ₁ ℓ₂ → Category ℓ₁ ℓ₂ Unit ℓ₁ ℓ₂ = precategory-to-category record { precategory = ↑ ℓ₁ ⊤ , (λ _ _ → ↑ ℓ₂ ⊤ , ↑⊤-set) , _ , _ , refl _ , refl _ , refl _ } (λ {x y} → x ≡ y ↔⟨ ≡↔⊤ ⟩ ⊤ ↔⟨ inverse ≡↔⊤ ⟩ lift tt ≡ lift tt ↔⟨ inverse $ drop-⊤-left-Σ ≡↔⊤ ⟩ lift tt ≡ lift tt × lift tt ≡ lift tt ↔⟨ inverse $ drop-⊤-left-Σ Bijection.↑↔ ⟩ ↑ ℓ₂ ⊤ × lift tt ≡ lift tt × lift tt ≡ lift tt ↔⟨ inverse $ drop-⊤-left-Σ Bijection.↑↔ ⟩□ ↑ ℓ₂ ⊤ × ↑ ℓ₂ ⊤ × lift tt ≡ lift tt × lift tt ≡ lift tt □) (refl _) where ↑⊤-set : ∀ {ℓ} → Is-set (↑ ℓ ⊤) ↑⊤-set = mono (Nat.zero≤ 2) (↑-closure 0 ⊤-contractible) ≡↔⊤ : ∀ {ℓ} {x y : ↑ ℓ ⊤} → (x ≡ y) ↔ ⊤ ≡↔⊤ = _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible ↑⊤-set (refl _) -- An "empty" category, without objects. Empty : ∀ ℓ₁ ℓ₂ → Category ℓ₁ ℓ₂ Empty ℓ₁ ℓ₂ = precategory-to-category record { precategory = ⊥ , ⊥-elim , (λ {x} → ⊥-elim x) , (λ {x} → ⊥-elim x) , (λ {x} → ⊥-elim x) , (λ {x} → ⊥-elim x) , (λ {x} → ⊥-elim x) } (λ {x} → ⊥-elim x) (λ {x} → ⊥-elim x) -- Lifts a category's object type. lift-category-Obj : ∀ {ℓ₁} ℓ₁′ {ℓ₂} → Category ℓ₁ ℓ₂ → Category (ℓ₁ ⊔ ℓ₁′) ℓ₂ lift-category-Obj ℓ₁′ C .Category.category = C′ , ≡→≅-equivalence where C′ = lift-precategory-Obj ℓ₁′ (Category.precategory C) module C = Category C module C′ = Precategory C′ ≡→≅-equivalence : {X Y : Precategory.Obj C′} → Is-equivalence (C′.≡→≅ {X = X} {Y = Y}) ≡→≅-equivalence {X = X} {Y = Y} = _≃_.is-equivalence $ Eq.with-other-function (X ≡ Y ↝⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ Bijection.↑↔ ⟩ lower X ≡ lower Y ↝⟨ Eq.⟨ _ , C.≡→≅-equivalence ⟩ ⟩ lower X C.≅ lower Y ↔⟨⟩ X C′.≅ Y □) C′.≡→≅ (elim (λ X≡Y → C.≡→≅ (cong lower X≡Y) ≡ C′.≡→≅ X≡Y) (λ X → C.≡→≅ (cong lower (refl X)) ≡⟨ cong C.≡→≅ $ cong-refl lower ⟩ C.≡→≅ (refl (lower X)) ≡⟨ C.≡→≅-refl ⟩ C.id≅ ≡⟨⟩ C′.id≅ ≡⟨ sym C′.≡→≅-refl ⟩∎ C′.≡→≅ (refl X) ∎)) -- Lifts a category's morphism type family. lift-category-Hom : ∀ {ℓ₁ ℓ₂} ℓ₂′ → Category ℓ₁ ℓ₂ → Category ℓ₁ (ℓ₂ ⊔ ℓ₂′) lift-category-Hom ℓ₂′ C .Category.category = C′ , ≡→≅-equivalence where C′ = lift-precategory-Hom ℓ₂′ (Category.precategory C) module C = Category C module C′ = Precategory C′ ≡→≅-equivalence : {X Y : Precategory.Obj C′} → Is-equivalence (C′.≡→≅ {X = X} {Y = Y}) ≡→≅-equivalence {X = X} {Y = Y} = _≃_.is-equivalence $ Eq.with-other-function (X ≡ Y ↝⟨ Eq.⟨ _ , C.≡→≅-equivalence ⟩ ⟩ X C.≅ Y ↝⟨ equiv ⟩□ X C′.≅ Y □) C′.≡→≅ (elim (λ X≡Y → _≃_.to equiv (C.≡→≅ X≡Y) ≡ C′.≡→≅ X≡Y) (λ X → _≃_.to equiv (C.≡→≅ (refl X)) ≡⟨ cong (_≃_.to equiv) C.≡→≅-refl ⟩ _≃_.to equiv C.id≅ ≡⟨ _≃_.from C′.≡≃≡¹ (refl _) ⟩ C′.id≅ ≡⟨ sym C′.≡→≅-refl ⟩∎ C′.≡→≅ (refl X) ∎)) where equiv : ∀ {X Y} → (X C.≅ Y) ≃ (X C′.≅ Y) equiv = Σ-cong (inverse Bijection.↑↔) λ _ → Σ-cong (inverse Bijection.↑↔) λ _ → (Eq.≃-≡ $ Eq.↔⇒≃ Bijection.↑↔) ×-cong (Eq.≃-≡ $ Eq.↔⇒≃ Bijection.↑↔)
{ "alphanum_fraction": 0.3270031495, "avg_line_length": 47.5155358275, "ext": "agda", "hexsha": "06c77964f41f5c7ff53662f4636e836f7716df12", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Category.agda", "max_line_length": 148, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Category.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 27463, "size": 74932 }
module Parse where open import Common.Unit open import Common.Char open import Common.String open import Common.List open import Common.IO parse : List String → List Char → String parse (e ∷ []) [] = "ha" parse (e ∷ []) (')' ∷ xs) = "ho" parse (e ∷ es) (a ∷ xs) = parse (e ∷ es) xs parse _ _ = "hi" parseRegExp : String parseRegExp = parse ("ff" ∷ []) ('a' ∷ []) main : _ main = do let w = parseRegExp putStrLn w
{ "alphanum_fraction": 0.5420944559, "avg_line_length": 19.48, "ext": "agda", "hexsha": "261a5d791a4caf979203ad7ae3d7631085d7f885", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "xekoukou/agda-ocaml", "max_forks_repo_path": "test/Compiler/simple/Parse.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "xekoukou/agda-ocaml", "max_issues_repo_path": "test/Compiler/simple/Parse.agda", "max_line_length": 55, "max_stars_count": 7, "max_stars_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "xekoukou/agda-ocaml", "max_stars_repo_path": "test/Compiler/simple/Parse.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 143, "size": 487 }
module Structure.Setoid.Category where open import Data import Data.Tuple as Tuple open import Functional open import Function.Equals open import Function.Equals.Proofs open import Function.Proofs open import Logic.Predicate import Lvl open import Structure.Category open import Structure.Categorical.Properties open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Type open import Type.Properties.Singleton private variable ℓ ℓₑ ℓₒ : Lvl.Level -- TODO: Maybe move this? FunctionObject : Setoid{ℓₑ}{ℓₒ} → Setoid{ℓₑ}{ℓₒ} → Type FunctionObject ([∃]-intro A) ([∃]-intro B) = ∃{Obj = (A → B)} Function instance FunctionObject-equiv : ∀{A B : Setoid{ℓₑ}{ℓₒ}} → Equiv(FunctionObject A B) Equiv._≡_ FunctionObject-equiv = (_⊜_) on₂ [∃]-witness Reflexivity.proof (Equivalence.reflexivity (Equiv.equivalence FunctionObject-equiv)) = reflexivity(_⊜_) Symmetry.proof (Equivalence.symmetry (Equiv.equivalence FunctionObject-equiv)) = symmetry(_⊜_) Transitivity.proof (Equivalence.transitivity (Equiv.equivalence FunctionObject-equiv)) = transitivity(_⊜_) -- The setoid category contains setoids and functions respecting the congruence property in the setoid. setoidCategory : Category{Obj = Setoid{ℓₑ}{ℓₒ}} FunctionObject Category._∘_ setoidCategory ([∃]-intro f) ([∃]-intro g) = [∃]-intro (f ∘ g) ⦃ [∘]-function {f = f}{g = g} ⦄ Category.id setoidCategory = [∃]-intro id BinaryOperator.congruence (Category.binaryOperator setoidCategory) f₁f₂ g₁g₂ = [⊜][∘]-binaryOperator-raw f₁f₂ g₁g₂ Morphism.Associativity.proof (Category.associativity setoidCategory) {x = _} {y = _} {z = _} {x = [∃]-intro f} {y = [∃]-intro g} {z = [∃]-intro h} = [∘]-associativity {f = f} {g = g} {h = h} Morphism.Identityₗ.proof (Tuple.left (Category.identity setoidCategory)) = [∘]-identityₗ Morphism.Identityᵣ.proof (Tuple.right (Category.identity setoidCategory)) = [∘]-identityᵣ setoidCategoryObject : ∀{ℓₑ}{ℓₒ} → CategoryObject setoidCategoryObject{ℓₑ}{ℓₒ} = intro(setoidCategory{ℓₑ}{ℓₒ}) module _ where open import Data.Proofs open import Relator.Equals Empty-initialObject : Object.Initial(FunctionObject{ℓₑ}) ([∃]-intro Empty) IsUnit.unit Empty-initialObject = [∃]-intro empty _⊜_.proof (IsUnit.uniqueness Empty-initialObject) {} Unit-terminalObject : Object.Terminal(FunctionObject{ℓₑ}) ([∃]-intro Unit) IsUnit.unit Unit-terminalObject = [∃]-intro (const <>) _⊜_.proof (IsUnit.uniqueness Unit-terminalObject) = [≡]-intro
{ "alphanum_fraction": 0.7431228206, "avg_line_length": 45.2807017544, "ext": "agda", "hexsha": "6a23228be184f732903e3fee6de0ec0ddc9ee190", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Setoid/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Setoid/Category.agda", "max_line_length": 190, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Setoid/Category.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 818, "size": 2581 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties for Conats ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Conat.Properties where open import Size open import Data.Nat.Base using (ℕ; zero; suc) open import Codata.Thunk open import Codata.Conat open import Codata.Conat.Bisimilarity open import Function open import Relation.Nullary open import Relation.Nullary.Decidable using (map′) open import Relation.Binary private variable i : Size 0∸m≈0 : ∀ m → i ⊢ zero ∸ m ≈ zero 0∸m≈0 zero = refl 0∸m≈0 (suc m) = 0∸m≈0 m sℕ≤s⁻¹ : ∀ {m n} → suc m ℕ≤ suc n → m ℕ≤ n .force sℕ≤s⁻¹ (sℕ≤s p) = p _ℕ≤?_ : Decidable _ℕ≤_ zero ℕ≤? n = yes zℕ≤n suc m ℕ≤? zero = no (λ ()) suc m ℕ≤? suc n = map′ sℕ≤s sℕ≤s⁻¹ (m ℕ≤? n .force) 0ℕ+-identity : ∀ {n} → i ⊢ 0 ℕ+ n ≈ n 0ℕ+-identity = refl +ℕ0-identity : ∀ {n} → i ⊢ n +ℕ 0 ≈ n +ℕ0-identity {n = zero} = zero +ℕ0-identity {n = suc n} = suc λ where .force → +ℕ0-identity
{ "alphanum_fraction": 0.5481481481, "avg_line_length": 25.1162790698, "ext": "agda", "hexsha": "12dfbaef6f703c7485e9f11ff3aa1d8d49e7b16d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Codata/Conat/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Codata/Conat/Properties.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Codata/Conat/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 410, "size": 1080 }
------------------------------------------------------------------------ -- The semantics is deterministic ------------------------------------------------------------------------ open import Atom module Deterministic (atoms : χ-atoms) where open import Equality.Propositional open import Prelude hiding (const) open import Tactic.By.Propositional open import Chi atoms open χ-atoms atoms Lookup-deterministic : ∀ {c₁ c₂ bs xs₁ xs₂ e₁ e₂} → Lookup c₁ bs xs₁ e₁ → Lookup c₂ bs xs₂ e₂ → c₁ ≡ c₂ → xs₁ ≡ xs₂ × e₁ ≡ e₂ Lookup-deterministic here here _ = refl , refl Lookup-deterministic here (there q _) refl = ⊥-elim (q refl) Lookup-deterministic (there p _) here refl = ⊥-elim (p refl) Lookup-deterministic (there p₁ p₂) (there q₁ q₂) refl = Lookup-deterministic p₂ q₂ refl ↦-deterministic : ∀ {e xs es e₁ e₂} → e [ xs ← es ]↦ e₁ → e [ xs ← es ]↦ e₂ → e₁ ≡ e₂ ↦-deterministic [] [] = refl ↦-deterministic (∷ p) (∷ q) = by (↦-deterministic p q) mutual ⇓-deterministic : ∀ {e v₁ v₂} → e ⇓ v₁ → e ⇓ v₂ → v₁ ≡ v₂ ⇓-deterministic (apply p₁ p₂ p₃) (apply q₁ q₂ q₃) with ⇓-deterministic p₁ q₁ | ⇓-deterministic p₂ q₂ ... | refl | refl = ⇓-deterministic p₃ q₃ ⇓-deterministic (case p₁ p₂ p₃ p₄) (case q₁ q₂ q₃ q₄) with ⇓-deterministic p₁ q₁ ... | refl with Lookup-deterministic p₂ q₂ refl ... | refl , refl rewrite ↦-deterministic p₃ q₃ = ⇓-deterministic p₄ q₄ ⇓-deterministic (rec p) (rec q) = ⇓-deterministic p q ⇓-deterministic lambda lambda = refl ⇓-deterministic (const ps) (const qs) = by (⇓⋆-deterministic ps qs) ⇓⋆-deterministic : ∀ {es vs₁ vs₂} → es ⇓⋆ vs₁ → es ⇓⋆ vs₂ → vs₁ ≡ vs₂ ⇓⋆-deterministic [] [] = refl ⇓⋆-deterministic (p ∷ ps) (q ∷ qs) = cong₂ _∷_ (⇓-deterministic p q) (⇓⋆-deterministic ps qs)
{ "alphanum_fraction": 0.5712737127, "avg_line_length": 34.1666666667, "ext": "agda", "hexsha": "a9cc66f7c06af638a0b171e5e233679a52102200", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Deterministic.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Deterministic.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Deterministic.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 700, "size": 1845 }
{-# OPTIONS --allow-unsolved-metas #-} module _ where postulate Functor : (Set → Set) → Set₁ fmap : {F : Set → Set} {{_ : Functor F}} {A B : Set} → (A → B) → F A → F B postulate Id : Set → Set bla : {A : Set} → Id A → Id A bla = fmap {{?}} (λ x → x) -- should not fail!
{ "alphanum_fraction": 0.525, "avg_line_length": 20, "ext": "agda", "hexsha": "89b64ef706e033beaf0f3e43c00ef68aac6ddf1b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2172.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2172.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2172.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 105, "size": 280 }
{- Finitely presented algebras. An R-algebra A is finitely presented, if there merely is an exact sequence of R-modules: (f₁,⋯,fₘ) → R[X₁,⋯,Xₙ] → A → 0 (where f₁,⋯,fₘ ∈ R[X₁,⋯,Xₙ]) -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.FPAlgebra where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Powerset open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Data.FinData open import Cubical.Data.Nat open import Cubical.Data.Vec open import Cubical.Data.Sigma open import Cubical.Data.Empty open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.FGIdeal using (inclOfFGIdeal) open import Cubical.Algebra.CommAlgebra open import Cubical.Algebra.CommAlgebra.FreeCommAlgebra renaming (inducedHom to freeInducedHom) open import Cubical.Algebra.CommAlgebra.QuotientAlgebra renaming (inducedHom to quotientInducedHom) open import Cubical.Algebra.CommAlgebra.Ideal open import Cubical.Algebra.CommAlgebra.FGIdeal open import Cubical.Algebra.CommAlgebra.Instances.Initial open import Cubical.Algebra.CommAlgebra.Instances.Unit renaming (UnitCommAlgebra to TerminalCAlg) open import Cubical.Algebra.CommAlgebra.Kernel open import Cubical.Algebra.Algebra.Properties open import Cubical.Algebra.Algebra private variable ℓ : Level module _ {R : CommRing ℓ} where open Construction using (var) Polynomials : (n : ℕ) → CommAlgebra R ℓ Polynomials n = R [ Fin n ] evPoly : {n : ℕ} (A : CommAlgebra R ℓ) → ⟨ Polynomials n ⟩ → FinVec ⟨ A ⟩ n → ⟨ A ⟩ evPoly A P values = fst (freeInducedHom A values) P evPolyPoly : {n : ℕ} (P : ⟨ Polynomials n ⟩) → evPoly (Polynomials n) P var ≡ P evPolyPoly {n = n} P = cong (λ u → fst u P) (inducedHomVar R (Fin n)) evPolyHomomorphic : {n : ℕ} (A B : CommAlgebra R ℓ) (f : CommAlgebraHom A B) → (P : ⟨ Polynomials n ⟩) → (values : FinVec ⟨ A ⟩ n) → (fst f) (evPoly A P values) ≡ evPoly B P (fst f ∘ values) evPolyHomomorphic A B f P values = (fst f) (evPoly A P values) ≡⟨ refl ⟩ (fst f) (fst (freeInducedHom A values) P) ≡⟨ refl ⟩ fst (f ∘a freeInducedHom A values) P ≡⟨ cong (λ u → fst u P) (natIndHomR f values) ⟩ fst (freeInducedHom B (fst f ∘ values)) P ≡⟨ refl ⟩ evPoly B P (fst f ∘ values) ∎ where open AlgebraHoms module _ {m : ℕ} (n : ℕ) (relation : FinVec ⟨ Polynomials n ⟩ m) where open CommAlgebraStr using (0a) open Cubical.Algebra.Algebra.Properties.AlgebraHoms relationsIdeal = generatedIdeal (Polynomials n) relation abstract {- The following definitions are abstract because of type checking speed problems - complete unfolding of FPAlgebra is triggered otherwise. This also means, the where blocks contain more type declarations than usual. -} FPAlgebra : CommAlgebra R ℓ FPAlgebra = Polynomials n / relationsIdeal modRelations : CommAlgebraHom (Polynomials n) (Polynomials n / relationsIdeal) modRelations = quotientMap (Polynomials n) relationsIdeal generator : (i : Fin n) → ⟨ FPAlgebra ⟩ generator = fst modRelations ∘ var relationsHold : (i : Fin m) → evPoly FPAlgebra (relation i) generator ≡ 0a (snd FPAlgebra) relationsHold i = evPoly FPAlgebra (relation i) generator ≡⟨ sym (evPolyHomomorphic (Polynomials n) FPAlgebra modRelations (relation i) var) ⟩ fst modRelations (evPoly (Polynomials n) (relation i) var) ≡⟨ cong (λ u → fst modRelations u) (evPolyPoly (relation i)) ⟩ fst modRelations (relation i) ≡⟨ isZeroFromIdeal {R = R} {A = (Polynomials n)} {I = relationsIdeal} (relation i) (incInIdeal (Polynomials n) relation i ) ⟩ 0a (snd FPAlgebra) ∎ inducedHom : (A : CommAlgebra R ℓ) (values : FinVec ⟨ A ⟩ n) (relationsHold : (i : Fin m) → evPoly A (relation i) values ≡ 0a (snd A)) → CommAlgebraHom FPAlgebra A inducedHom A values relationsHold = quotientInducedHom (Polynomials n) relationsIdeal A freeHom isInKernel where freeHom : CommAlgebraHom (Polynomials n) A freeHom = freeInducedHom A values isInKernel : fst (generatedIdeal (Polynomials n) relation) ⊆ fst (kernel (Polynomials n) A freeHom) isInKernel = inclOfFGIdeal (CommAlgebra→CommRing (Polynomials n)) relation (kernel (Polynomials n) A freeHom) relationsHold inducedHomOnGenerators : (A : CommAlgebra R ℓ) (values : FinVec ⟨ A ⟩ n) (relationsHold : (i : Fin m) → evPoly A (relation i) values ≡ 0a (snd A)) (i : Fin n) → fst (inducedHom A values relationsHold) (generator i) ≡ values i inducedHomOnGenerators _ _ _ _ = refl unique : {A : CommAlgebra R ℓ} (values : FinVec ⟨ A ⟩ n) (relationsHold : (i : Fin m) → evPoly A (relation i) values ≡ 0a (snd A)) (f : CommAlgebraHom FPAlgebra A) → ((i : Fin n) → fst f (generator i) ≡ values i) → inducedHom A values relationsHold ≡ f unique {A = A} values relationsHold f hasCorrectValues = injectivePrecomp (Polynomials n) relationsIdeal A (inducedHom A values relationsHold) f (sym ( f' ≡⟨ sym (inv f') ⟩ freeInducedHom A (evaluateAt A f') ≡⟨ cong (freeInducedHom A) (funExt hasCorrectValues) ⟩ freeInducedHom A values ≡⟨ cong (freeInducedHom A) refl ⟩ freeInducedHom A (evaluateAt A iHom') ≡⟨ inv iHom' ⟩ iHom' ∎)) where {- Poly n | \ modRelations f' ↓ ↘ FPAlgebra ─f→ A -} f' iHom' : CommAlgebraHom (Polynomials n) A f' = compAlgebraHom modRelations f iHom' = compAlgebraHom modRelations (inducedHom A values relationsHold) inv : retract (Iso.fun (homMapIso {I = Fin n} A)) (Iso.inv (homMapIso A)) inv = Iso.leftInv (homMapIso {R = R} {I = Fin n} A) {- ∀ A : Comm-R-Algebra, ∀ J : Finitely-generated-Ideal, Hom(R[I]/J,A) is isomorphic to the Set of roots of the generators of J -} zeroLocus : (A : CommAlgebra R ℓ) → Type ℓ zeroLocus A = Σ[ v ∈ FinVec ⟨ A ⟩ n ] ((i : Fin m) → evPoly A (relation i) v ≡ 0a (snd A)) inducedHomFP : (A : CommAlgebra R ℓ) → zeroLocus A → CommAlgebraHom FPAlgebra A inducedHomFP A d = inducedHom A (fst d) (snd d) evaluateAtFP : {A : CommAlgebra R ℓ} → CommAlgebraHom FPAlgebra A → zeroLocus A evaluateAtFP {A} f = value , λ i → evPoly A (relation i) value ≡⟨ step1 (relation i) ⟩ fst compHom (evPoly (Polynomials n) (relation i) var) ≡⟨ refl ⟩ (fst f) ((fst modRelations) (evPoly (Polynomials n) (relation i) var)) ≡⟨ cong (fst f) (evPolyHomomorphic (Polynomials n) FPAlgebra modRelations (relation i) var) ⟩ (fst f) (evPoly FPAlgebra (relation i) generator) ≡⟨ cong (fst f) (relationsHold i) ⟩ (fst f) (0a (snd FPAlgebra)) ≡⟨ IsAlgebraHom.pres0 (snd f) ⟩ 0a (snd A) ∎ where compHom : CommAlgebraHom (Polynomials n) A compHom = CommAlgebraHoms.compCommAlgebraHom (Polynomials n) FPAlgebra A modRelations f value : FinVec ⟨ A ⟩ n value = (Iso.fun (homMapIso A)) compHom step1 : (x : ⟨ Polynomials n ⟩) → evPoly A x value ≡ fst compHom (evPoly (Polynomials n) x var) step1 x = sym (evPolyHomomorphic (Polynomials n) A compHom x var) FPHomIso : {A : CommAlgebra R ℓ} → Iso (CommAlgebraHom FPAlgebra A) (zeroLocus A) Iso.fun FPHomIso = evaluateAtFP Iso.inv FPHomIso = inducedHomFP _ Iso.rightInv (FPHomIso {A}) = λ b → Σ≡Prop (λ x → isPropΠ (λ i → isSetCommAlgebra A (evPoly A (relation i) x) (0a (snd A)))) refl Iso.leftInv (FPHomIso {A}) = λ a → Σ≡Prop (λ f → isPropIsCommAlgebraHom {ℓ} {R} {ℓ} {ℓ} {FPAlgebra} {A} f) λ i → fst (unique {A} (fst (evaluateAtFP {A} a)) (snd (evaluateAtFP a)) a (λ j → refl) i) homMapPathFP : (A : CommAlgebra R ℓ)→ CommAlgebraHom FPAlgebra A ≡ zeroLocus A homMapPathFP A = isoToPath (FPHomIso {A}) isSetZeroLocus : (A : CommAlgebra R ℓ) → isSet (zeroLocus A) isSetZeroLocus A = J (λ y _ → isSet y) (isSetAlgebraHom (CommAlgebra→Algebra FPAlgebra) (CommAlgebra→Algebra A)) (homMapPathFP A) record FinitePresentation (A : CommAlgebra R ℓ) : Type ℓ where field n : ℕ m : ℕ relations : FinVec ⟨ Polynomials n ⟩ m equiv : CommAlgebraEquiv (FPAlgebra n relations) A isFPAlgebra : (A : CommAlgebra R ℓ) → Type _ isFPAlgebra A = ∥ FinitePresentation A ∥₁ isFPAlgebraIsProp : {A : CommAlgebra R ℓ} → isProp (isFPAlgebra A) isFPAlgebraIsProp = isPropPropTrunc module Instances {R : CommRing ℓ} where open FinitePresentation {- Every (multivariate) polynomial algebra is finitely presented -} module _ (n : ℕ) where private A : CommAlgebra R ℓ A = Polynomials n emptyGen : FinVec (fst A) 0 emptyGen = λ () B : CommAlgebra R ℓ B = FPAlgebra n emptyGen polynomialAlgFP : FinitePresentation A FinitePresentation.n polynomialAlgFP = n m polynomialAlgFP = 0 relations polynomialAlgFP = emptyGen equiv polynomialAlgFP = -- Idea: A and B enjoy the same universal property. toAAsEquiv , snd toA where toA : CommAlgebraHom B A toA = inducedHom n emptyGen A Construction.var (λ ()) fromA : CommAlgebraHom A B fromA = freeInducedHom B (generator _ _) open AlgebraHoms inverse1 : fromA ∘a toA ≡ idAlgebraHom _ inverse1 = fromA ∘a toA ≡⟨ sym (unique _ _ _ _ _ (λ i → cong (fst fromA) ( fst toA (generator n emptyGen i) ≡⟨ inducedHomOnGenerators _ _ _ _ _ _ ⟩ Construction.var i ∎))) ⟩ inducedHom n emptyGen B (generator _ _) (relationsHold _ _) ≡⟨ unique _ _ _ _ _ (λ i → refl) ⟩ idAlgebraHom _ ∎ inverse2 : toA ∘a fromA ≡ idAlgebraHom _ inverse2 = isoFunInjective (homMapIso A) _ _ ( evaluateAt A (toA ∘a fromA) ≡⟨ sym (naturalEvR {A = B} {B = A} toA fromA) ⟩ fst toA ∘ evaluateAt B fromA ≡⟨ refl ⟩ fst toA ∘ generator _ _ ≡⟨ funExt (inducedHomOnGenerators _ _ _ _ _)⟩ Construction.var ∎) toAAsEquiv : ⟨ B ⟩ ≃ ⟨ A ⟩ toAAsEquiv = isoToEquiv (iso (fst toA) (fst fromA) (λ a i → fst (inverse2 i) a) (λ b i → fst (inverse1 i) b)) {- The initial R-algebra is finitely presented -} private R[⊥] : CommAlgebra R ℓ R[⊥] = Polynomials 0 emptyGen : FinVec (fst R[⊥]) 0 emptyGen = λ () R[⊥]/⟨0⟩ : CommAlgebra R ℓ R[⊥]/⟨0⟩ = FPAlgebra 0 emptyGen R[⊥]/⟨0⟩IsInitial : (B : CommAlgebra R ℓ) → isContr (CommAlgebraHom R[⊥]/⟨0⟩ B) R[⊥]/⟨0⟩IsInitial B = iHom , uniqueness where iHom : CommAlgebraHom R[⊥]/⟨0⟩ B iHom = inducedHom 0 emptyGen B (λ ()) (λ ()) uniqueness : (f : CommAlgebraHom R[⊥]/⟨0⟩ B) → iHom ≡ f uniqueness f = unique 0 emptyGen {A = B} (λ ()) (λ ()) f (λ ()) initialCAlgFP : FinitePresentation (initialCAlg R) n initialCAlgFP = 0 m initialCAlgFP = 0 relations initialCAlgFP = emptyGen equiv initialCAlgFP = equivByInitiality R R[⊥]/⟨0⟩ R[⊥]/⟨0⟩IsInitial {- The terminal R-algebra is finitely presented -} private unitGen : FinVec (fst R[⊥]) 1 unitGen zero = 1a where open CommAlgebraStr (snd R[⊥]) R[⊥]/⟨1⟩ : CommAlgebra R ℓ R[⊥]/⟨1⟩ = FPAlgebra 0 unitGen terminalCAlgFP : FinitePresentation (TerminalCAlg R) n terminalCAlgFP = 0 m terminalCAlgFP = 1 relations terminalCAlgFP = unitGen equiv terminalCAlgFP = equivFrom1≡0 R R[⊥]/⟨1⟩ (sym (⋆-lid 1a) ∙ relationsHold 0 unitGen zero) where open CommAlgebraStr (snd R[⊥]/⟨1⟩)
{ "alphanum_fraction": 0.5550242701, "avg_line_length": 40.125, "ext": "agda", "hexsha": "7e963125460f212f0141414d6e071481c76b75d8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xekoukou/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/FPAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xekoukou/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/FPAlgebra.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xekoukou/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/FPAlgebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4088, "size": 13803 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence open import HoTT.Equivalence.Lift open import HoTT.Identity.Sigma open import HoTT.Identity.Universe open import HoTT.HLevel open import HoTT.Logic module HoTT.Exercises.Chapter3.Exercise10 {i} where postulate lem : LEM {lsuc i} _ : Prop𝒰 i ≃ Prop𝒰 (lsuc i) _ = f , qinv→isequiv (g , η , ε) where f : _ f P = LiftProp P g : _ g P with lem P ... | inl _ = ⊤ ... | inr _ = ⊥ η : g ∘ f ~ id η P with lem (f P) ... | inl t = hlevel⁼ (ua (prop-equiv (const (lower t)) (const ★))) ... | inr f = hlevel⁼ (ua (prop-equiv 𝟎-rec (𝟎-rec ∘ f ∘ lift))) ε : f ∘ g ~ id ε P with lem P ... | inl t = hlevel⁼ (ua (Lift-equiv ∙ₑ prop-equiv (const t) (const ★))) ... | inr f = hlevel⁼ (ua (Lift-equiv ∙ₑ prop-equiv 𝟎-rec (𝟎-rec ∘ f)))
{ "alphanum_fraction": 0.6036144578, "avg_line_length": 25.9375, "ext": "agda", "hexsha": "58d5b3f906cffdfdfc4cdea58dbcc26f9b8af597", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Exercises/Chapter3/Exercise10.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Exercises/Chapter3/Exercise10.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Exercises/Chapter3/Exercise10.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 334, "size": 830 }
{-# OPTIONS --without-K #-} module horner where open import Type open import Type.Identities open import Function.NP open import Function.Extensionality open import Data.Fin.NP using (Fin; Fin▹ℕ) open import Data.Product renaming (proj₁ to fst; proj₂ to snd) hiding (map) open import Data.Zero open import Data.One open import Data.Sum hiding (map) open import Data.Nat.NP open import Data.Nat.Properties import Data.List as L import Data.List.Properties as LP open L using (List; []; _∷_) open import Relation.Binary.PropositionalEquality.NP open import HoTT --open import Explore.Fin ℕ< : ℕ → Set ℕ< n = Σ ℕ λ x → x < n sumFin : (n : ℕ) (f : Fin n → ℕ) → ℕ sumFin n f = {!!} sum< : (n : ℕ) (f : ℕ< n → ℕ) → ℕ sum< n f = {!!} prod< : (n : ℕ) (f : ℕ< n → ℕ) → ℕ prod< n f = {!!} {- foo : ∀ n a x → sumFin n λ i → a i * x ^ i foo = ? bar : ∀ n a x → sumFin n λ i → a i * x ^ i bar = ? -} baz : ∀ n (u : ℕ< n → ℕ) → (sum< n λ { (i , p) → prod< i (λ { (j , q) → u (j , <-trans q p) }) }) ≡ {!!} baz = {!!} module _ n (u : ℕ< n → Set) {{_ : UA}} {{_ : FunExt}} where open ≡-Reasoning Baz : _ ≡ _ Baz = (Σ (ℕ< n) λ { (i , p) → Π (ℕ< i) λ { (j , q) → u (j , <-trans q p) } }) ≡⟨ ! Σ-assoc ⟩ (Σ ℕ λ i → Σ (i < n) λ p → Π (ℕ< i) λ { (j , q) → u (j , <-trans q p) }) ≡⟨ Σ=′ ℕ (λ i → Σ=′ (i < n) λ p → ΠΣ-curry) ⟩ (Σ ℕ λ i → Σ (i < n) λ p → Π ℕ λ j → Π (j < i) λ q → u (j , <-trans q p)) ∎ module DataVersion (A : ★) where open import Data.Tree.Binary data T : BinTree A → ★ where empty : T empty _⊕_ : ∀ {t u} → (𝟙 ⊎ T t × T u) → T (fork t u) module TypeVersion where ε = 𝟙 _⊕_ : ★ → ★ → ★ _⊕_ = λ u z → ε ⊎ u × z module ListVersion where open L open ≡-Reasoning map-∘ = LP.map-compose sum-lin : ∀ k xs → sum (map (_*_ k) xs) ≡ k * sum xs sum-lin k [] = ℕ°.*-comm 0 k sum-lin k (x ∷ xs) = k * x + sum (map (_*_ k) xs) ≡⟨ ap (_+_ (k * x)) (sum-lin k xs) ⟩ k * x + k * sum xs ≡⟨ ! fst ℕ°.distrib k x (sum xs) ⟩ k * (x + sum xs) ∎ lemma : ∀ x xss → sum (map product (map (_∷_ x) xss)) ≡ x * sum (map product xss) lemma x xss = sum (map product (map (_∷_ x) xss)) ≡⟨ ap sum (! map-∘ xss) ⟩ sum (map (product ∘ _∷_ x) xss) ≡⟨by-definition⟩ sum (map (_*_ x ∘ product) xss) ≡⟨ ap sum (map-∘ xss) ⟩ sum (map (_*_ x) (map product xss)) ≡⟨ sum-lin x (map product xss) ⟩ x * sum (map product xss) ∎ ε = 1 _⊕_ = λ u z → ε + u * z t3 = ∀ xs → sum (map product (inits xs)) ≡ foldr _⊕_ ε xs t4 : t3 t4 [] = refl t4 (x ∷ xs) = ap suc (lemma x (inits xs) ∙ ap (_*_ x) (t4 xs))
{ "alphanum_fraction": 0.4626814098, "avg_line_length": 29.2323232323, "ext": "agda", "hexsha": "edcc842b0471e5e0eeb2bb78110a6ceab0dd23e7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "experiments/horner.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "experiments/horner.agda", "max_line_length": 104, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "experiments/horner.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 1132, "size": 2894 }
{-# OPTIONS --without-K --safe #-} module Data.Fin.Indexed.Properties where open import Agda.Builtin.Nat using (_<_) open import Data.Nat.Base open import Data.Fin.Indexed.Base open import Data.Bool open import Data.Maybe.Base private variable n m k : ℕ weaken : ∀ {n} → Fin n → Fin (suc n) weaken {suc n} f0 = f0 weaken {suc n} (fs x) = fs (weaken x) -- x \\ y | x < y = just x -- | x ≡ y = nothing -- | x > y = just (x - 1) _\\_ : Fin (suc n) → Fin (suc n) → Maybe (Fin n) f0 \\ f0 = nothing fs i \\ f0 = just i _\\_ {suc n} (fs i) (fs j) = mapMaybe fs (i \\ j) _\\_ {suc n} (f0 ) (fs j) = just f0 insert : Fin (suc n) → Fin n → Fin (suc n) insert f0 j = fs j insert (fs i) f0 = f0 insert (fs i) (fs j) = fs (insert i j) weakens : ∀ n → Fin m → Fin (n + m) weakens zero x = x weakens (suc n) x = weaken (weakens n x) _∔_ : Fin n → Fin m → Fin (n + m) f0 ∔ m = weakens _ m fs n ∔ m = fs (n ∔ m) under : (Fin m → Fin k) → Fin (n + m) → Fin (n + k) under {n = zero } f x = f x under {n = suc n} f (fs x) = fs (under f x) under {n = suc n} f f0 = f0
{ "alphanum_fraction": 0.542081448, "avg_line_length": 25.6976744186, "ext": "agda", "hexsha": "0d55825f0121970649e1051364ee2871d2d06eaa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Fin/Indexed/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Fin/Indexed/Properties.agda", "max_line_length": 51, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Fin/Indexed/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 445, "size": 1105 }
-- {-# OPTIONS -v tc.pos:100 #-} -- Records are allowed in mutual blocks. module RecordInMutual where import Common.Level open import Common.Equality mutual record A : Set where field p : D record B : Set where field q : A data D : Set where c : B -> D open A open B -- A and B are guarded via D, so we have eta for A and for B: etaA : {a : A} → a ≡ record { p = p a } etaA = refl etaB : {b : B} → b ≡ record { q = q b } etaB = refl
{ "alphanum_fraction": 0.6083150985, "avg_line_length": 17.5769230769, "ext": "agda", "hexsha": "f464297f9e540f24eecdc6b0e76cc3532745eac2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/RecordInMutual.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/RecordInMutual.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/RecordInMutual.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 152, "size": 457 }
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Weakening where open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Consequences.Syntactic open import Definition.Conversion open import Definition.Conversion.Soundness import Tools.PropositionalEquality as PE open import Tools.Product mutual -- Weakening of algorithmic equality of neutrals. wk~↑ : ∀ {ρ t u A Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ t ~ u ↑ A → Δ ⊢ U.wk ρ t ~ U.wk ρ u ↑ U.wk ρ A wk~↑ {ρ} [ρ] ⊢Δ (var-refl x₁ x≡y) = var-refl (wkTerm [ρ] ⊢Δ x₁) (PE.cong (wkVar ρ) x≡y) wk~↑ ρ ⊢Δ (app-cong {G = G} t~u x) = PE.subst (λ x → _ ⊢ _ ~ _ ↑ x) (PE.sym (wk-β G)) (app-cong (wk~↓ ρ ⊢Δ t~u) (wkConv↑Term ρ ⊢Δ x)) wk~↑ ρ ⊢Δ (fst-cong p~r) = fst-cong (wk~↓ ρ ⊢Δ p~r) wk~↑ ρ ⊢Δ (snd-cong {G = G} p~r) = PE.subst (λ x → _ ⊢ _ ~ _ ↑ x) (PE.sym (wk-β G)) (snd-cong (wk~↓ ρ ⊢Δ p~r)) wk~↑ {ρ} {Δ = Δ} [ρ] ⊢Δ (natrec-cong {k} {l} {h} {g} {a₀} {b₀} {F} {G} x x₁ x₂ t~u) = PE.subst (λ x → _ ⊢ U.wk ρ (natrec F a₀ h k) ~ _ ↑ x) (PE.sym (wk-β F)) (natrec-cong (wkConv↑ (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) x) (PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) (wk-β F) (wkConv↑Term [ρ] ⊢Δ x₁)) (PE.subst (λ x → Δ ⊢ U.wk ρ h [conv↑] U.wk ρ g ∷ x) (wk-β-natrec _ F) (wkConv↑Term [ρ] ⊢Δ x₂)) (wk~↓ [ρ] ⊢Δ t~u)) wk~↑ {ρ} {Δ = Δ} [ρ] ⊢Δ (Emptyrec-cong {k} {l} {F} {G} x t~u) = Emptyrec-cong (wkConv↑ [ρ] ⊢Δ x) (wk~↓ [ρ] ⊢Δ t~u) -- Weakening of algorithmic equality of neutrals in WHNF. wk~↓ : ∀ {ρ t u A Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ t ~ u ↓ A → Δ ⊢ U.wk ρ t ~ U.wk ρ u ↓ U.wk ρ A wk~↓ {ρ} [ρ] ⊢Δ ([~] A₁ D whnfA k~l) = [~] (U.wk ρ A₁) (wkRed* [ρ] ⊢Δ D) (wkWhnf ρ whnfA) (wk~↑ [ρ] ⊢Δ k~l) -- Weakening of algorithmic equality of types. wkConv↑ : ∀ {ρ A B Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ A [conv↑] B → Δ ⊢ U.wk ρ A [conv↑] U.wk ρ B wkConv↑ {ρ} [ρ] ⊢Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) = [↑] (U.wk ρ A′) (U.wk ρ B′) (wkRed* [ρ] ⊢Δ D) (wkRed* [ρ] ⊢Δ D′) (wkWhnf ρ whnfA′) (wkWhnf ρ whnfB′) (wkConv↓ [ρ] ⊢Δ A′<>B′) -- Weakening of algorithmic equality of types in WHNF. wkConv↓ : ∀ {ρ A B Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ A [conv↓] B → Δ ⊢ U.wk ρ A [conv↓] U.wk ρ B wkConv↓ ρ ⊢Δ (U-refl x) = U-refl ⊢Δ wkConv↓ ρ ⊢Δ (ℕ-refl x) = ℕ-refl ⊢Δ wkConv↓ ρ ⊢Δ (Empty-refl x) = Empty-refl ⊢Δ wkConv↓ ρ ⊢Δ (Unit-refl x) = Unit-refl ⊢Δ wkConv↓ ρ ⊢Δ (ne x) = ne (wk~↓ ρ ⊢Δ x) wkConv↓ ρ ⊢Δ (Π-cong x A<>B A<>B₁) = let ⊢ρF = wk ρ ⊢Δ x in Π-cong ⊢ρF (wkConv↑ ρ ⊢Δ A<>B) (wkConv↑ (lift ρ) (⊢Δ ∙ ⊢ρF) A<>B₁) wkConv↓ ρ ⊢Δ (Σ-cong x A<>B A<>B₁) = let ⊢ρF = wk ρ ⊢Δ x in Σ-cong ⊢ρF (wkConv↑ ρ ⊢Δ A<>B) (wkConv↑ (lift ρ) (⊢Δ ∙ ⊢ρF) A<>B₁) -- Weakening of algorithmic equality of terms. wkConv↑Term : ∀ {ρ t u A Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ t [conv↑] u ∷ A → Δ ⊢ U.wk ρ t [conv↑] U.wk ρ u ∷ U.wk ρ A wkConv↑Term {ρ} [ρ] ⊢Δ ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) = [↑]ₜ (U.wk ρ B) (U.wk ρ t′) (U.wk ρ u′) (wkRed* [ρ] ⊢Δ D) (wkRed*Term [ρ] ⊢Δ d) (wkRed*Term [ρ] ⊢Δ d′) (wkWhnf ρ whnfB) (wkWhnf ρ whnft′) (wkWhnf ρ whnfu′) (wkConv↓Term [ρ] ⊢Δ t<>u) -- Weakening of algorithmic equality of terms in WHNF. wkConv↓Term : ∀ {ρ t u A Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ t [conv↓] u ∷ A → Δ ⊢ U.wk ρ t [conv↓] U.wk ρ u ∷ U.wk ρ A wkConv↓Term ρ ⊢Δ (ℕ-ins x) = ℕ-ins (wk~↓ ρ ⊢Δ x) wkConv↓Term ρ ⊢Δ (Empty-ins x) = Empty-ins (wk~↓ ρ ⊢Δ x) wkConv↓Term ρ ⊢Δ (Unit-ins x) = Unit-ins (wk~↓ ρ ⊢Δ x) wkConv↓Term {ρ} [ρ] ⊢Δ (ne-ins t u x x₁) = ne-ins (wkTerm [ρ] ⊢Δ t) (wkTerm [ρ] ⊢Δ u) (wkNeutral ρ x) (wk~↓ [ρ] ⊢Δ x₁) wkConv↓Term ρ ⊢Δ (univ x x₁ x₂) = univ (wkTerm ρ ⊢Δ x) (wkTerm ρ ⊢Δ x₁) (wkConv↓ ρ ⊢Δ x₂) wkConv↓Term ρ ⊢Δ (zero-refl x) = zero-refl ⊢Δ wkConv↓Term ρ ⊢Δ (suc-cong t<>u) = suc-cong (wkConv↑Term ρ ⊢Δ t<>u) wkConv↓Term {ρ} {Δ = Δ} [ρ] ⊢Δ (η-eq {F = F} {G = G} x₁ x₂ y y₁ t<>u) = let ⊢F , _ = syntacticΠ (syntacticTerm x₁) ⊢ρF = wk [ρ] ⊢Δ ⊢F in η-eq (wkTerm [ρ] ⊢Δ x₁) (wkTerm [ρ] ⊢Δ x₂) (wkFunction ρ y) (wkFunction ρ y₁) (PE.subst₃ (λ x y z → Δ ∙ U.wk ρ F ⊢ x [conv↑] y ∷ z) (PE.cong₂ _∘_ (PE.sym (wk1-wk≡lift-wk1 _ _)) PE.refl) (PE.cong₂ _∘_ (PE.sym (wk1-wk≡lift-wk1 _ _)) PE.refl) PE.refl (wkConv↑Term (lift [ρ]) (⊢Δ ∙ ⊢ρF) t<>u)) wkConv↓Term {ρ} [ρ] ⊢Δ (Σ-η {G = G} ⊢p ⊢r pProd rProd fstConv sndConv) = Σ-η (wkTerm [ρ] ⊢Δ ⊢p) (wkTerm [ρ] ⊢Δ ⊢r) (wkProduct ρ pProd) (wkProduct ρ rProd) (wkConv↑Term [ρ] ⊢Δ fstConv) (PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) (wk-β G) (wkConv↑Term [ρ] ⊢Δ sndConv)) wkConv↓Term {ρ} [ρ] ⊢Δ (η-unit [t] [u] tWhnf uWhnf) = η-unit (wkTerm [ρ] ⊢Δ [t]) (wkTerm [ρ] ⊢Δ [u]) (wkWhnf ρ tWhnf) (wkWhnf ρ uWhnf)
{ "alphanum_fraction": 0.4771830986, "avg_line_length": 44.0082644628, "ext": "agda", "hexsha": "df85c29c5187ddd884cb638d816e4787448442fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/Conversion/Weakening.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/Conversion/Weakening.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/Conversion/Weakening.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2653, "size": 5325 }
-- Instances of Gaussian integers. {-# OPTIONS --without-K --safe #-} module GauInt.Instances where open import Data.Integer using (+_ ; -[1+_] ; +[1+_]) open import Data.Nat using (suc ) open import Instances open import GauInt.Base renaming (-_ to -𝔾_ ; _-_ to _-𝔾_ ; _+_ to _+𝔾_ ; _*_ to _*𝔾_ ; NonZero to NonZero𝔾 ; rank to rank𝔾) -- Instances to overload operations. instance sr𝔾 : SemiRing 𝔾 _+_ {{sr𝔾}} = _+𝔾_ _*_ {{sr𝔾}} = _*𝔾_ 0# {{sr𝔾}} = 0𝔾 1# {{sr𝔾}} = 1𝔾 instance ring𝔾 : Ring 𝔾 ring𝔾 .sra = sr𝔾 ring𝔾 .-_ = -𝔾_ instance Rank𝔾 : Rank 𝔾 Rank𝔾 .rank = rank𝔾 -- This depends on how the boolean equality on 𝔾 is defined. To be -- precise, it depends on the order of comparing the components. instance nzp : ∀ {n} {y} -> NonZero𝔾 (+ suc n + y i) nzp = _ nzn : ∀ {n} {y} -> NonZero𝔾 (-[1+ n ] + y i) nzn = _ nzpi : ∀ {n} -> NonZero𝔾 (0# + (+ suc n) i) nzpi = _ nzni : ∀ {n} -> NonZero𝔾 (0# + (-[1+ n ]) i) nzni = _ instance NZT𝔾 : NonZeroTypeclass 𝔾 NZT𝔾 .NonZero = NonZero𝔾 {- -- Translation from NonZero predicate to non-equality. test-t : ∀ (x : 𝔾) -> .{{NonZero x}} -> ¬ x ≡ 0# test-t (+_ zero + +[1+ n ] i) = λ {()} test-t (+_ zero + -[1+_] n i) = λ {()} test-t (+[1+ n ] + x₁ i) = λ {()} test-t (-[1+_] n + x₁ i) = λ {()} open import Relation.Binary.Structures open IsDecEquivalence {{...}} open IsDecTotalOrder {{...}} open import Data.Nat.Instances open import Data.Integer.Instances test : {!!} test = 0ℤ ≤? 0ℤ -}
{ "alphanum_fraction": 0.5860683188, "avg_line_length": 21.6376811594, "ext": "agda", "hexsha": "3d375b184f959d8ed92cd09b34993d58704e116d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "onestruggler/EucDomain", "max_forks_repo_path": "GauInt/Instances.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "onestruggler/EucDomain", "max_issues_repo_path": "GauInt/Instances.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "onestruggler/EucDomain", "max_stars_repo_path": "GauInt/Instances.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 625, "size": 1493 }
{-# OPTIONS --cubical --without-K #-} open import Cubical.Core.Everything open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Sum open import Cubical.Data.Unit module Coequalizers where record Graph {ℓ ℓ' : Level} (E : Type ℓ) (V : Type ℓ') : Type (ℓ-max ℓ ℓ') where field π₀ : E → V π₁ : E → V open Graph ⦃...⦄ data Coeq {ℓ ℓ' : Level} {V : Type ℓ} {E : Type ℓ'} (ev : Graph E V) : Type (ℓ-max ℓ ℓ') where c[_] : V → (Coeq ev) quot : (e : E) → c[ (Graph.π₀ ev e) ] ≡ c[ (Graph.π₁ ev e) ] _/_ : {ℓ ℓ' : Level} (V : Type ℓ) (E : Type ℓ') ⦃ ev : Graph E V ⦄ → Type (ℓ-max ℓ ℓ') _/_ V E ⦃ ev ⦄ = Coeq ev infix 25 _/_ module CoprodCoeq {ℓ ℓ' ℓ'' : Level} (E₀ : Type ℓ) (E₁ : Type ℓ') (V : Type ℓ'') ⦃ ev : Graph (E₀ ⊎ E₁) V ⦄ where instance evE₀ : Graph E₀ V evE₀ = record { π₀ = π₀ ∘ inl ; π₁ = π₁ ∘ inl } ev-snd : Graph E₁ (V / E₀) ev-snd = record { π₀ = c[_] ∘ π₀ ∘ inr ; π₁ = c[_] ∘ π₁ ∘ inr } coeq-coprod-equiv : V / (E₀ ⊎ E₁) ≃ (V / E₀) / E₁ coeq-coprod-equiv = isoToEquiv (iso f g f-g g-f) where f : V / (E₀ ⊎ E₁) → (V / E₀) / E₁ f c[ x ] = c[ c[ x ] ] f (quot (inl e) i) = c[ quot e i ] f (quot (inr e) i) = quot e i g : (V / E₀) / E₁ → V / (E₀ ⊎ E₁) g c[ c[ x ] ] = c[ x ] g c[ quot e i ] = quot (inl e) i g (quot e i) = quot (inr e) i f-g : (z : (V / E₀) / E₁) → (f (g z) ≡ z) f-g c[ c[ x ] ] = refl f-g c[ quot e i ] = refl f-g (quot e i) = refl g-f : (z : V / (E₀ ⊎ E₁)) → (g (f z) ≡ z) g-f c[ x ] = refl g-f (quot (inl e) i) = refl g-f (quot (inr e) i) = refl module TrivialExtension {ℓ ℓ' : Level} (V : Type ℓ) (v : V) where instance evt-l : Graph Unit (V ⊎ Unit) evt-l = record { π₀ = λ x → inl v ; π₁ = inr } evt-r : Graph Unit (Unit ⊎ V) evt-r = record { π₀ = inl ; π₁ = λ _ → inr v } te-equiv-l : V ≃ (V ⊎ Unit) / Unit te-equiv-l = isoToEquiv (iso (c[_] ∘ inl) g f-g (λ _ → refl)) where g : (V ⊎ Unit) / Unit → V g c[ inl x ] = x g c[ inr x ] = v g (quot e i) = v f-g : (z : (V ⊎ Unit) / Unit) → c[ inl (g z) ] ≡ z f-g c[ inl x ] = refl f-g c[ inr x ] = quot x f-g (quot e i) j = quot e (i ∧ j) te-equiv-r : V ≃ (Unit ⊎ V) / Unit te-equiv-r = isoToEquiv (iso (c[_] ∘ inr) g f-g λ _ → refl) where g : (Unit ⊎ V) / Unit → V g c[ inl x ] = v g c[ inr x ] = x g (quot e i) = v f-g : (z : (Unit ⊎ V) / Unit) → c[ inr (g z) ] ≡ z f-g c[ inl x ] i = quot x (~ i) f-g c[ inr x ] = refl f-g (quot e i) j = quot e (i ∨ ~ j)
{ "alphanum_fraction": 0.4776496035, "avg_line_length": 28.306122449, "ext": "agda", "hexsha": "f970038699fbc917fd8b9cc27dacd2538a31e573", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "awswan/nielsenschreier-hott", "max_forks_repo_path": "cubical/Coequalizers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "awswan/nielsenschreier-hott", "max_issues_repo_path": "cubical/Coequalizers.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "awswan/nielsenschreier-hott", "max_stars_repo_path": "cubical/Coequalizers.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1232, "size": 2774 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. open import Level open import Axiom.ExcludedMiddle open import Axiom.Extensionality.Propositional open import Relation.Nullary open import Relation.Binary.PropositionalEquality using (_≡_; refl) module Common where postulate excluded-middle : ExcludedMiddle Level.zero extensionality : Extensionality Level.zero (Level.suc Level.zero) record Message (ℙ : Set) : Set where infix 4 _?=_ field _?=_ : (x y : ℙ) -> Dec (x ≡ y)
{ "alphanum_fraction": 0.7607052897, "avg_line_length": 36.0909090909, "ext": "agda", "hexsha": "8c60a16a8cc0caeb47cd544921d4b008f29c2104", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/Common.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/Common.agda", "max_line_length": 68, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/Common.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 362, "size": 1588 }
module _ where module M where data D : Set where d : D private instance x : D x = d ! : ⦃ _ : M.D ⦄ → M.D ! ⦃ x ⦄ = x y : M.D y = !
{ "alphanum_fraction": 0.4285714286, "avg_line_length": 8.9444444444, "ext": "agda", "hexsha": "ff56a7f89465e71cb620a2722f06a8795bf2697b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1913.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1913.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1913.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 71, "size": 161 }
{-# OPTIONS --cubical #-} open import Formalization.PredicateLogic.Signature module Formalization.PredicateLogic.Constructive.SequentCalculus (𝔏 : Signature) where open Signature(𝔏) open import Data.Option open import Data.List open import Data.List.Functions using (map) renaming (singleton to · ; _++_ to _∪_) open import Data.List.Relation.Permutation import Data.ListSized as S open import Formalization.PredicateLogic.Syntax(𝔏) open import Formalization.PredicateLogic.Syntax.Substitution(𝔏) open import Functional as Fn using () import Lvl open import Numeral.Natural open import Type private variable ℓ : Lvl.Level private variable args n vars vars₁ vars₂ : ℕ private variable Γ Γ₁ Γ₂ Γ₃ : List(Formula(vars)) private variable Δ Δ₁ Δ₂ Δ₃ : Option(Formula(vars)) private variable φ φ₁ φ₂ ψ A B C : Formula(vars) private variable p : Prop(n) private variable f : Prop(args) private variable x : S.List(Term(vars))(args) _∪·_ : ∀{T : Type{ℓ}} → List(T) → T → List(T) _∪·_ = Fn.swap(_⊰_) infixl 1000 _∪·_ module Variant1 where data _⇒_ : List(Formula(vars)) → Option(Formula(vars)) → Type{Lvl.𝐒(ℓₚ Lvl.⊔ ℓₒ)} where axiom : ((· φ) ⇒ Some(φ)) weakenₗ : (Γ ⇒ Δ) → ((Γ ∪· A) ⇒ Δ) permuteₗ : (Γ₁ permutes Γ₂) → (Γ₁ ⇒ Δ) → (Γ₂ ⇒ Δ) contractₗ : ((Γ ∪· A ∪· A) ⇒ Δ) → ((Γ ∪· A) ⇒ Δ) ⊥ₗ : (Γ ∪· ⊥) ⇒ None ∧ₗₗ : ((Γ ∪· A) ⇒ Δ) → ((Γ ∪· (A ∧ B)) ⇒ Δ) ∧ₗᵣ : ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ∧ B)) ⇒ Δ) ∨ₗ : ((Γ ∪· A) ⇒ Δ) → ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ∨ B)) ⇒ Δ) ⟶ₗ : (Γ ⇒ Some(A)) → ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ⟶ B)) ⇒ Δ) Ɐₗ : ∀{t} → ((Γ ∪· (substitute0 t A)) ⇒ Δ) → ((Γ ∪· (Ɐ A)) ⇒ Δ) ∃ₗ : ∀{v}{n} → ((Γ ∪· (substituteN n (var v) A)) ⇒ Δ) → ((Γ ∪· (∃ A)) ⇒ Δ) weakenᵣ : (Γ ⇒ None) → (Γ ⇒ Some(A)) ⊤ᵣ : ∅ ⇒ Some(⊤ {vars}) ∧ᵣ : (Γ ⇒ Some(A)) → (Γ ⇒ Some(B)) → (Γ ⇒ Some(A ∧ B)) ∨ᵣₗ : (Γ ⇒ Some(A)) → (Γ ⇒ Some(A ∨ B)) ∨ᵣᵣ : (Γ ⇒ Some(B)) → (Γ ⇒ Some(A ∨ B)) ⟶ᵣ : ((Γ ∪· A) ⇒ Some(B)) → (Γ ⇒ Some(A ⟶ B)) Ɐᵣ : ∀{v}{n} → (Γ ⇒ Some((substituteN n (var v) A))) → (Γ ⇒ Some(Ɐ A)) ∃ᵣ : ∀{t} → (Γ ⇒ Some((substitute0 t A))) → (Γ ⇒ Some(∃ A)) import Logic.Propositional as Meta no-empty-refl : Meta.¬(∅ ⇒ None{T = Formula vars}) no-empty-refl (permuteₗ perm p) rewrite Proofs.permutes-on-empty perm = no-empty-refl p {- no-callCC : Meta.¬(∅ ⇒ Some(((A ⟶ B) ⟶ A) ⟶ A)) no-callCC (permuteₗ perm p) rewrite permutes-on-empty perm = no-callCC p no-callCC (weakenᵣ (permuteₗ perm p)) rewrite permutes-on-empty perm = no-empty-refl p no-callCC (⟶ᵣ p) = no-callCC {!!} {-no-callCC (⟶ᵣ (weakenₗ p)) = {!!} no-callCC (⟶ᵣ (permuteₗ x p)) = {!!} no-callCC (⟶ᵣ (contractₗ p)) = {!!} no-callCC (⟶ᵣ (⟶ₗ p p₁)) = {!!} no-callCC (⟶ᵣ (weakenᵣ p)) = {!!} no-callCC (⟶ᵣ (∧ᵣ p p₁)) = {!!} no-callCC (⟶ᵣ (∨ᵣₗ p)) = {!!} no-callCC (⟶ᵣ (∨ᵣᵣ p)) = {!!} no-callCC (⟶ᵣ (⟶ᵣ p)) = {!!} no-callCC (⟶ᵣ (Ɐᵣ p)) = {!!} no-callCC (⟶ᵣ (∃ᵣ p)) = {!!} -} -} module Variant3 where -- Note: Because this formalization is non-standard, a problem arises for Formula(𝟎): It it missing some of the quantification rules because it has no variables. data _⇒_ : List(Formula(vars)) → Formula(vars) → Type{Lvl.𝐒(ℓₚ Lvl.⊔ ℓₒ)} where axiom : ((Γ ∪· (f $ x)) ⇒ (f $ x)) permuteₗ : (Γ₁ permutes Γ₂) → (Γ₁ ⇒ C) → (Γ₂ ⇒ C) ⊥ₗ : (Γ ∪· ⊥) ⇒ A ∧ₗ : ((Γ ∪· A ∪· B) ⇒ C) → ((Γ ∪· (A ∧ B)) ⇒ C) ∨ₗ : ((Γ ∪· A) ⇒ C) → ((Γ ∪· B) ⇒ C) → ((Γ ∪· (A ∨ B)) ⇒ C) ⟶ₗ : ((Γ ∪· (A ⟶ B)) ⇒ A) → ((Γ ∪· B) ⇒ C) → ((Γ ∪· (A ⟶ B)) ⇒ C) Ɐₗ : ∀{t} → ((Γ ∪· (substitute0 t A) ∪· (Ɐ A)) ⇒ C) → ((Γ ∪· (Ɐ A)) ⇒ C) ∃ₗ : ∀{n}{v} → ((Γ ∪· (substituteN n (var v) A)) ⇒ C) → ((Γ ∪· (∃ A)) ⇒ C) ⊤ᵣ : Γ ⇒ (⊤ {vars}) ∧ᵣ : (Γ ⇒ A) → (Γ ⇒ B) → (Γ ⇒ (A ∧ B)) ∨ᵣₗ : (Γ ⇒ A) → (Γ ⇒ (A ∨ B)) ∨ᵣᵣ : (Γ ⇒ B) → (Γ ⇒ (A ∨ B)) ⟶ᵣ : ((Γ ∪· A) ⇒ B) → (Γ ⇒ (A ⟶ B)) Ɐᵣ : ∀{n}{v} → (Γ ⇒ (substituteN n (var v) A)) → (Γ ⇒ (Ɐ A)) ∃ᵣ : ∀{t} → (Γ ⇒ (substitute0 t A)) → (Γ ⇒ (∃ A)) import Logic.Propositional as Meta open import Numeral.Finite open import Type.Properties.Inhabited weakenₗ : (Γ ⇒ ψ) → ((Γ ∪· φ) ⇒ ψ) weakenₗ axiom = permuteₗ swap axiom weakenₗ (permuteₗ x p) = permuteₗ (prepend x) (weakenₗ p) weakenₗ ⊥ₗ = permuteₗ swap ⊥ₗ weakenₗ (∧ₗ p) = permuteₗ swap (∧ₗ(permuteₗ (trans swap (prepend swap)) (weakenₗ p))) weakenₗ (∨ₗ p q) = permuteₗ swap (∨ₗ (permuteₗ swap (weakenₗ p)) (permuteₗ swap (weakenₗ q))) weakenₗ (⟶ₗ p q) = permuteₗ swap (⟶ₗ (permuteₗ swap (weakenₗ p)) (permuteₗ swap (weakenₗ q))) weakenₗ (Ɐₗ p) = permuteₗ swap (Ɐₗ (permuteₗ (trans swap (prepend swap)) (weakenₗ p))) weakenₗ (∃ₗ{n = n} p) = permuteₗ swap (∃ₗ{n = n} (permuteₗ swap (weakenₗ p))) weakenₗ ⊤ᵣ = ⊤ᵣ weakenₗ (∧ᵣ p q) = ∧ᵣ (weakenₗ p) (weakenₗ q) weakenₗ (∨ᵣₗ p) = ∨ᵣₗ (weakenₗ p) weakenₗ (∨ᵣᵣ p) = ∨ᵣᵣ (weakenₗ p) weakenₗ (⟶ᵣ p) = ⟶ᵣ (permuteₗ swap (weakenₗ p)) weakenₗ (Ɐᵣ{n = n} p) = Ɐᵣ{n = n} (weakenₗ p) weakenₗ (∃ᵣ p) = ∃ᵣ (weakenₗ p) weaken-union : (Γ₂ ⇒ φ) → ((Γ₁ ∪ Γ₂) ⇒ φ) weaken-union {Γ₁ = ∅} p = p weaken-union {Γ₁ = φ ⊰ Γ₁} p = weakenₗ (weaken-union {Γ₁ = Γ₁} p) open import Formalization.PredicateLogic.Syntax.Tree(𝔏) open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function open import Structure.Relator.Properties open import Syntax.Function direct₊ : ∀{φ : Formula(𝐒(vars))} → ((Γ ∪· φ) ⇒ φ) direct₊{Γ = Γ}{φ = φ} = induction-on-height(P) (\{vars}{φ} → proof{vars}{φ}) \() where P = \{vars} (φ : Formula(vars)) → (vars ≢ 𝟎) → ∀{Γ} → (Γ ∪· φ) ⇒ φ proof : ∀{φ : Formula(vars)} → (∀{vars}{ψ : Formula(vars)} → (height ψ < height φ) → P(ψ)) → P(φ) proof {𝟎} _ nz with () ← nz [≡]-intro proof {𝐒 _} {φ = f $ x} prev _ = axiom proof {𝐒 _} {φ = ⊤} prev _ = weakenₗ ⊤ᵣ proof {𝐒 _} {φ = ⊥} prev _ = ⊥ₗ proof {𝐒 _} {φ = φ ∧ ψ} prev nz = ∧ᵣ (∧ₗ (permuteₗ swap (prev (∧-height-orderₗ{φ = φ}{ψ = ψ}) nz))) (∧ₗ (prev (∧-height-orderᵣ{ψ = ψ}{φ = φ}) nz)) proof {𝐒 _} {φ = φ ∨ ψ} prev nz = ∨ₗ (∨ᵣₗ (prev (∨-height-orderₗ{φ = φ}{ψ = ψ}) nz)) (∨ᵣᵣ (prev (∨-height-orderᵣ{ψ = ψ}{φ = φ}) nz)) proof {𝐒 _} {φ = φ ⟶ ψ} prev nz = ⟶ᵣ (permuteₗ swap (⟶ₗ (permuteₗ swap (prev (⟶-height-orderₗ{φ = φ}{ψ = ψ}) nz)) (prev (⟶-height-orderᵣ{ψ = ψ}{φ = φ}) nz))) proof {𝐒 v} {φ = Ɐ φ} prev nz = Ɐᵣ{n = 𝟎}{v = 𝟎} (Ɐₗ{t = var 𝟎} (weakenₗ (prev (subtransitivityₗ(_≤_)(_≡_) (congruence₁(𝐒) (substitute-height{φ = φ})) (Ɐ-height-order{φ = φ})) nz))) proof {𝐒 v} {φ = ∃ φ} prev nz = ∃ᵣ{t = var 𝟎} (∃ₗ{n = 𝟎}{v = 𝟎} (prev (subtransitivityₗ(_≤_)(_≡_) (congruence₁(𝐒) (substitute-height{φ = φ})) (Ɐ-height-order{φ = φ})) nz)) no-empty-refl : Meta.¬(∅ ⇒ (⊥ {vars})) no-empty-refl (permuteₗ perm p) rewrite Proofs.permutes-on-empty perm = no-empty-refl p no-empty-axiomₗ : Meta.¬(·(p $ x) ⇒ ⊥) no-empty-axiomₗ (permuteₗ perm p) rewrite Proofs.permutes-on-singleton perm = no-empty-axiomₗ p no-empty-axiomᵣ : Meta.¬(∅ ⇒ (p $ x)) no-empty-axiomᵣ (permuteₗ perm p) rewrite Proofs.permutes-on-empty perm = no-empty-axiomᵣ p no-negated-axiomᵣ : Meta.¬(∅ ⇒ (¬(p $ x))) no-negated-axiomᵣ (permuteₗ perm p) rewrite Proofs.permutes-on-empty perm = no-negated-axiomᵣ p no-negated-axiomᵣ (⟶ᵣ p) = no-empty-axiomₗ p -- 3.5.2 substitute-proof : ∀{t : 𝕟(vars₁) → Term(vars₂)} → (Γ ⇒ φ) → ((map(substitute t) Γ) ⇒ (substitute t φ)) substitute-proof p = {!!} module _ ⦃ pos-prop : ◊(Prop(0)) ⦄ where no-excludedMiddle : Meta.¬(∀{A : Formula(vars)} → (∅ ⇒ (A ∨ (¬ A)))) no-excludedMiddle as = proof(as{[◊]-existence $ S.∅}) where proof : Meta.¬(∅ ⇒ ((p $ x) ∨ ¬(p $ x))) proof (permuteₗ perm q) rewrite Proofs.permutes-on-empty perm = proof q proof (∨ᵣₗ (permuteₗ perm q)) rewrite Proofs.permutes-on-empty perm = no-empty-axiomᵣ q proof (∨ᵣᵣ (permuteₗ perm q)) rewrite Proofs.permutes-on-empty perm = no-negated-axiomᵣ q proof (∨ᵣᵣ (permuteₗ perm (⟶ᵣ q))) rewrite Proofs.permutes-on-empty perm = no-empty-axiomₗ q proof (∨ᵣᵣ (⟶ᵣ (permuteₗ perm q))) rewrite Proofs.permutes-on-singleton perm = no-empty-axiomₗ q no-doubleNegation : Meta.¬(∀{A : Formula(vars)} → (∅ ⇒ ((¬ ¬ A) ⟶ A))) no-doubleNegation as = proof(as{[◊]-existence $ S.∅}) where proof : Meta.¬(∅ ⇒ ((¬ ¬(p $ x)) ⟶ (p $ x))) proof (permuteₗ perm q) rewrite Proofs.permutes-on-empty perm = proof q proof (⟶ᵣ (permuteₗ perm q)) = {!!} proof (⟶ᵣ (⟶ₗ q (permuteₗ perm q₁))) = {!!} proof (⟶ᵣ (⟶ₗ (permuteₗ perm q) ⊥ₗ)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ₗ q q₁) ⊥ₗ)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ᵣ q) ⊥ₗ)) = {!!} test : ∀{T : Type{ℓ}} → (Γ₁ permutes Γ₂) → ((Γ₁ ⇒ φ) → T) → ((Γ₂ ⇒ φ) → T) test perm p1 p2 = p1 (permuteₗ (symmetry(_permutes_) perm) p2) {-# INLINE test #-} no-callCC : Meta.¬(∀{A B : Formula(vars)} → (∅ ⇒ ((A ⟶ B) ⟶ A) ⟶ A)) no-callCC as = proof(as{[◊]-existence $ S.∅}{⊥}) where proof2 : Meta.¬((∅ ∪· ((p $ x ⟶ ⊥) ⟶ p $ x) ∪· p $ x) ⇒ ⊥) proof2 (permuteₗ x t) = {!t!} proof3 : Meta.¬((∅ ∪· p $ x ∪· ((p $ x ⟶ ⊥) ⟶ p $ x)) ⇒ ⊥) proof3 (permuteₗ perm p) = {!!} proof3 (⟶ₗ p q) = {!!} proof : Meta.¬(∅ ⇒ (((p $ x) ⟶ ⊥) ⟶ (p $ x)) ⟶ (p $ x)) proof (permuteₗ perm q) rewrite Proofs.permutes-on-empty perm = proof q proof (⟶ᵣ (permuteₗ perm q)) rewrite Proofs.permutes-on-singleton perm = {!!} proof (⟶ᵣ (⟶ₗ (permuteₗ perm q) q₁)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ₗ q (permuteₗ x r)) s)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ₗ q (⟶ᵣ r)) s)) = no-empty-axiomₗ (contract-axiom-bottom r) where contract-axiom-bottom : ((·(p $ x) ∪· (p $ x)) ⇒ ⊥) → (·(p $ x) ⇒ ⊥) contract-axiom-bottom (permuteₗ x p) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ perm q)) r)) = proof2 (permuteₗ perm q) -- proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ perm q)) r)) = test (trans swap (symmetry(_permutes_) perm)) (proof ↦ {!⟶ᵣ proof!}) q {-proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ perm q)) r)) = test (symmetry(_permutes_) perm) proof2 q where proof2 : Meta.¬((∅ ∪· ((p $ x ⟶ ⊥) ⟶ p $ x) ∪· p $ x) ⇒ ⊥) proof2 (permuteₗ perm p) = test (symmetry(_permutes_) perm) proof2 p-} {-proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ (prepend perm) q)) r)) rewrite permutes-on-singleton perm = {!!} proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ swap (permuteₗ perm q))) r)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ swap (⟶ₗ q₁ (permuteₗ perm q₂)))) r)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ (trans perm₁ perm₂) q)) r)) = {!!}-} --⟶ₗ : ((Γ ∪· (A ⟶ B)) ⇒ A) → ((Γ ∪· B) ⇒ A) → ((Γ ∪· (A ⟶ B)) ⇒ A)
{ "alphanum_fraction": 0.528344038, "avg_line_length": 48.6108597285, "ext": "agda", "hexsha": "cb260a46db03f960209d8b5747026cbb8a41487f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/PredicateLogic/Constructive/SequentCalculus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/PredicateLogic/Constructive/SequentCalculus.agda", "max_line_length": 187, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/PredicateLogic/Constructive/SequentCalculus.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 5083, "size": 10743 }
-- Andreas, 2020-09-26, issue #4946. -- More liberal type signatures for constructors of sized types. -- {-# OPTIONS -v tc.polarity:20 #-} open import Agda.Builtin.Size variable i : Size A : Set data T : Size → Set → Set where c : A → T i A → T (↑ i) A -- The type of the constructor c is elaborated to -- -- c : {A : Set} {i : Set} → A → T i A → T (↑ i) A -- -- Thus, the size argument i is not the first. -- Nevertheless, Agda recognize the first argument of T -- as covariant. test : T i A → T ∞ A test x = x -- Should pass.
{ "alphanum_fraction": 0.6132596685, "avg_line_length": 20.1111111111, "ext": "agda", "hexsha": "fcbde800ade2b3587943f7ac5e38323fd64bdc80", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4946.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4946.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4946.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 176, "size": 543 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Nullary where open import Cubical.Relation.Nullary.Base public open import Cubical.Relation.Nullary.Properties public
{ "alphanum_fraction": 0.793814433, "avg_line_length": 32.3333333333, "ext": "agda", "hexsha": "815be21b244efbb15e9b5e639257277730609fbc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Relation/Nullary.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Relation/Nullary.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Relation/Nullary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 45, "size": 194 }
module Pullback where open import Logic.Equivalence open import Logic.Relations open import Logic.Base open import Category open import Unique module Pull (ℂ : Cat) where private open module CC = Category.Category ℂ private open module U = Uniq ℂ record isPull {A B C D A' : Obj}(f : A ─→ B)(g : A ─→ C)(f' : C ─→ D)(g' : B ─→ D)(h₁ : A' ─→ C)(h₂ : A' ─→ B)(commut : f' ∘ h₁ == g' ∘ h₂) : Set1 where field unique : ∃! \(h : A' ─→ A) -> (g ∘ h == h₁) /\ (f ∘ h == h₂) record pullback {B C D : Obj}(g' : B ─→ D)(f' : C ─→ D) : Set1 where field A : Obj f : A ─→ B g : A ─→ C comm : g' ∘ f == f' ∘ g pull : (forall {A' : Obj}(h₁ : A' ─→ C)(h₂ : A' ─→ B)(commut : f' ∘ h₁ == g' ∘ h₂) -> isPull f g f' g' h₁ h₂ commut) record PullCat : Set2 where field pull : {B C D : Obj}(g' : B ─→ D)(f' : C ─→ D) -> pullback g' f'
{ "alphanum_fraction": 0.5085130533, "avg_line_length": 31.4642857143, "ext": "agda", "hexsha": "a4389ad4e3261b2384497feca6a6c370d95215f1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Pullback.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Pullback.agda", "max_line_length": 154, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Pullback.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 379, "size": 881 }
------------------------------------------------------------------------------ -- Co-inductive natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GFPs.Conat where open import FOTC.Base open import FOTC.Base.PropertiesI ------------------------------------------------------------------------------ -- Conat is a greatest fixed-point of a functor -- The functor. NatF : (D → Set) → D → Set NatF A n = n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n') -- The co-natural numbers are the greatest fixed-point of NatF. postulate Conat : D → Set -- Conat is a post-fixed point of NatF, i.e. -- -- Conat ≤ NatF Conat. Conat-out : ∀ {n} → Conat n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') -- The higher-order version. Conat-out-ho : ∀ {n} → Conat n → NatF Conat n -- Conat is the greatest post-fixed point of NatF, i.e. -- -- ∀ A. A ≤ NatF A ⇒ A ≤ Conat. Conat-coind : (A : D → Set) → -- A is post-fixed point of ConatF. (∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) → -- Conat is greater than A. ∀ {n} → A n → Conat n -- The higher-order version. Conat-coind-ho : (A : D → Set) → (∀ {n} → A n → NatF A n) → ∀ {n} → A n → Conat n -- 22 December 2013. This is a stronger induction principle. If we -- use it, we can use the trivial predicate A = λ x → x ≡ x in the -- proofs. Unfortunately, we don't have a justification/proof for -- this principle. Conat-stronger-coind₁ : ∀ (A : D → Set) {n} → (A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) → A n → Conat n -- Other stronger co-induction principle -- -- Adapted from (Paulson, 1997. p. 16). Conat-stronger-coind₂ : (A : D → Set) → (∀ {n} → A n → (n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) ∨ Conat n) → ∀ {n} → A n → Conat n ------------------------------------------------------------------------------ -- Conat-out and Conat-out-ho are equivalents Conat-out-fo : ∀ {n} → Conat n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') Conat-out-fo = Conat-out-ho Conat-out-ho' : ∀ {n} → Conat n → NatF Conat n Conat-out-ho' = Conat-out ------------------------------------------------------------------------------ -- Conat-coind and Conat-coind-ho are equivalents Conat-coind-fo : (A : D → Set) → (∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) → ∀ {n} → A n → Conat n Conat-coind-fo = Conat-coind-ho Conat-coind-ho' : (A : D → Set) → (∀ {n} → A n → NatF A n) → ∀ {n} → A n → Conat n Conat-coind-ho' = Conat-coind ------------------------------------------------------------------------------ -- Because a greatest post-fixed point is a fixed-point, then the -- Conat predicate is also a pre-fixed point of the functional NatF, -- i.e. -- -- NatF Conat ≤ Conat. Conat-in : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') → Conat n Conat-in h = Conat-coind A h' h where A : D → Set A n = n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') h' : ∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n') h' (inj₁ n≡0) = inj₁ n≡0 h' (inj₂ (n' , prf , Cn')) = inj₂ (n' , prf , Conat-out Cn') -- The higher-order version. Conat-in-ho : ∀ {n} → NatF Conat n → Conat n Conat-in-ho = Conat-in -- A different definition. Conat-in' : (∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n')) → ∀ {n} → Conat n Conat-in' h = Conat-coind (λ m → m ≡ m) (h' h) refl where h' : (∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n')) → ∀ {m} → m ≡ m → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ m' ≡ m') h' h'' {m} _ with (h'' {m}) ... | inj₁ m≡0 = inj₁ m≡0 ... | inj₂ (m' , prf , _) = inj₂ (m' , prf , refl) Conat-in-ho' : (∀ {n} → NatF Conat n) → ∀ {n} → Conat n Conat-in-ho' = Conat-in' ------------------------------------------------------------------------------ -- From Conat-coind/Conat-stronger-coind₁ to Conat-stronger-coind₁/Conat-coind Conat-coind'' : (A : D → Set) → (∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) → ∀ {n} → A n → Conat n Conat-coind'' A h An = Conat-stronger-coind₁ A h An -- 22 December 2013: We couln't prove Conat-stronger-coind₁ using -- Conat-coind. Conat-stronger-coind₁' : ∀ (A : D → Set) {n} → (A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) → A n → Conat n Conat-stronger-coind₁' A {n} h An = Conat-in (case prf₁ prf₂ (h An)) where prf₁ : n ≡ zero → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') prf₁ n≡0 = inj₁ n≡0 prf₂ : ∃[ n' ] n ≡ succ₁ n' ∧ A n' → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') prf₂ (n' , prf , An') = inj₂ (n' , prf , {!!}) ------------------------------------------------------------------------------ -- From Conat-stronger-coind₂ to Conat-stronger-coind₁ -- 13 January 2014: We couln't prove Conat-stronger-coind₁ using -- Conat-stronger-coind₂. Conat-stronger-coind₁'' : ∀ (A : D → Set) {n} → (A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) → A n → Conat n Conat-stronger-coind₁'' A h An = Conat-stronger-coind₂ A {!!} An ------------------------------------------------------------------------------ -- References -- -- Paulson, L. C. (1997). Mechanizing Coinduction and Corecursion in -- Higher-order Logic. Journal of Logic and Computation 7.2, -- pp. 175–204.
{ "alphanum_fraction": 0.4643313264, "avg_line_length": 33.2181818182, "ext": "agda", "hexsha": "99b2c1c2d8eb5f1560e1f38674b7de3495c996c7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/fixed-points/GFPs/Conat.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/fixed-points/GFPs/Conat.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/fixed-points/GFPs/Conat.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1976, "size": 5481 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category module Categories.Object.Initial {o ℓ e} (C : Category o ℓ e) where open Category C open import Level record Initial : Set (o ⊔ ℓ ⊔ e) where field ⊥ : Obj ! : ∀ {A} → (⊥ ⇒ A) .!-unique : ∀ {A} → (f : ⊥ ⇒ A) → ! ≡ f .!-unique₂ : ∀ {A} → (f g : ⊥ ⇒ A) → f ≡ g !-unique₂ f g = begin f ↑⟨ !-unique f ⟩ ! ↓⟨ !-unique g ⟩ g ∎ where open HomReasoning .⊥-id : (f : ⊥ ⇒ ⊥) → f ≡ id ⊥-id f = !-unique₂ f id
{ "alphanum_fraction": 0.4666666667, "avg_line_length": 17.9032258065, "ext": "agda", "hexsha": "b918cb6f4527bbb018c4e522f8474497e6f1867a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Initial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Initial.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "p-pavel/categories", "max_stars_repo_path": "Categories/Object/Initial.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z", "max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z", "num_tokens": 226, "size": 555 }
open import Data.Graph module Data.Graph.Path.Cut {ℓᵥ ℓₑ} (g : FiniteGraph ℓᵥ ℓₑ) where open import Data.Fin as Fin using (Fin; zero; suc) open import Data.Fin.Properties as Fin-Props using (pigeonhole) open import Data.List as List using (List; []; _∷_) open import Data.List.Any as Any using (Any; here; there) open import Data.List.Membership.Propositional as ∈L renaming (_∈_ to _∈L_) open import Data.Nat as ℕ open import Data.Nat.Properties as ℕ-Props open import Data.Product as Σ open import Data.Sum as ⊎ open import Finite import Finite.Pigeonhole open import Function open import Induction.Nat open import Induction.WellFounded import Level as ℓ open import Relation.Binary.PropositionalEquality open import Relation.Binary.PreorderReasoning ≤-preorder open import Relation.Nullary hiding (module Dec) open import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Negation open FiniteGraph g open IsFinite infix 3 _∈_ data _∈_ x : ∀ {a b n} → Path a b n → Set where here : ∀ {b c n} {e : Edge x b} {p : Path b c n} → x ∈ e ∷ p there : ∀ {a b c n} {e : Edge a b} {p : Path b c n} → x ∈ p → x ∈ e ∷ p infix 3 _∈?_ _∈?_ : ∀ {a b n} x (p : Path a b n) → Dec (x ∈ p) x ∈? [] = no λ () _∈?_ {a} x (e ∷ p) = case decEqVertex a x of λ where (yes refl) → yes here (no a≢x) → case x ∈? p of λ where (yes i) → yes (there i) (no ¬i) → no λ where here → contradiction refl a≢x (there i) → contradiction i ¬i index : ∀ {a b x n} {p : Path a b n} → x ∈ p → Fin n index here = zero index (there i) = suc (index i) lookup : ∀ {a b n} → Path a b n → Fin n → Vertex lookup {a} (e ∷ p) zero = a lookup (e ∷ p) (suc i) = lookup p i ∈-lookup : ∀ {a b n} {p : Path a b n} (i : Fin n) → lookup p i ∈ p ∈-lookup {p = []} () ∈-lookup {p = e ∷ p} zero = here ∈-lookup {p = e ∷ p} (suc i) = there (∈-lookup i) finiteIndex : ∀ {a b n} (p : Path a b n) → Fin n → Fin (size vertexFinite) finiteIndex p = Any.index ∘ membership vertexFinite ∘ lookup p prefixLength : ∀ {a b x n} {p : Path a b n} → x ∈ p → ℕ prefixLength here = zero prefixLength (there i) = suc (prefixLength i) suffixLength : ∀ {a b x n} {p : Path a b n} → x ∈ p → ℕ suffixLength {n = n} here = n suffixLength (there i) = suffixLength i split : ∀ {a b x n} {p : Path a b n} (i : x ∈ p) → Path a x (prefixLength i) × Path x b (suffixLength i) split {p = p} here = [] , p split {p = e ∷ p} (there i) = Σ.map₁ (e ∷_) (split i) prefix : ∀ {a b x n} {p : Path a b n} (i : x ∈ p) → Path a x (prefixLength i) prefix = proj₁ ∘ split suffix : ∀ {a b x n} {p : Path a b n} (i : x ∈ p) → Path x b (suffixLength i) suffix = proj₂ ∘ split splitLengthsAddUp : ∀ {a b x n} {p : Path a b n} (i : x ∈ p) → n ≡ prefixLength i + suffixLength i splitLengthsAddUp here = refl splitLengthsAddUp (there i) = cong suc (splitLengthsAddUp i) data Repeats : ∀ {a b n} → Path a b n → Set where here : ∀ {a b c n} {e : Edge a b} {p : Path b c n} → a ∈ p → Repeats (e ∷ p) there : ∀ {a b c n} {e : Edge a b} {p : Path b c n} → Repeats p → Repeats (e ∷ p) repeats? : ∀ {a b n} (p : Path a b n) → Dec (Repeats p) repeats? [] = no λ () repeats? {a} (e ∷ p) = case a ∈? p of λ where (yes i) → yes (here i) (no ¬i) → case repeats? p of λ where (yes r) → yes (there r) (no ¬r) → no λ where (here i) → contradiction i ¬i (there r) → contradiction r ¬r Acyclic : ∀ {a b n} → Path a b n → Set Acyclic p = ¬ Repeats p acyclic? : ∀ {a b n} (p : Path a b n) → Dec (Acyclic p) acyclic? = ¬? ∘ repeats? data Segmented a b : ℕ → Set (ℓᵥ ℓ.⊔ ℓₑ) where _◄_◄_ : ∀ {x m n l} → Path a x m → Path x x (suc n) → Path x b l → Segmented a b (m + suc n + l) segment : ∀ {a b n} {p : Path a b n} → Repeats p → Segmented a b n segment {p = []} () segment {p = e ∷ p} (here i) rewrite splitLengthsAddUp i = [] ◄ e ∷ prefix i ◄ suffix i segment {p = e ∷ p} (there r) = case segment r of λ where (p₁ ◄ p₂ ◄ p₃) → (e ∷ p₁) ◄ p₂ ◄ p₃ cutLoop< : ∀ {a b n} {p : Path a b n} → Repeats p → Path< a b n cutLoop< r = case segment r of λ where (_◄_◄_ {m = m} p₁ p₂ p₃) → -, lengthLem m , p₁ ++ p₃ where lengthLem : ∀ x {y z} → suc (x + z) ≤ x + suc y + z lengthLem zero = s≤s (n≤m+n _ _) lengthLem (suc x) = s≤s (lengthLem x) indicesLoop : ∀ {a b n i j} {p : Path a b n} → i ≢ j → lookup p i ≡ lookup p j → Repeats p indicesLoop {i = zero} {zero} {e ∷ p} z≢z eq = contradiction refl z≢z indicesLoop {i = zero} {suc j} {e ∷ p} _ refl = here (∈-lookup j) indicesLoop {i = suc i} {zero} {e ∷ p} _ refl = here (∈-lookup i) indicesLoop {i = suc i} {suc j} {e ∷ p} si≢sj eq = there (indicesLoop (si≢sj ∘ cong suc) eq) findLoop : ∀ {a b n} (p : Path a b n) → n > size vertexFinite → Repeats p findLoop p gt = let i , j , i≢j , eq = pigeonhole gt (finiteIndex p) in indicesLoop i≢j (indexOf-injective vertexFinite eq) acyclic-length-≤ : ∀ {a b n} (p : Path a b n) → Acyclic p → n ≤ size vertexFinite acyclic-length-≤ {n = n} p ¬r = case n ≤? size vertexFinite of λ where (yes le) → le (no ¬le) → contradiction (findLoop p (≰⇒> ¬le)) ¬r shortenPath : ∀ {a b n} → Path a b n → n > size vertexFinite → Path< a b n shortenPath p = cutLoop< ∘ findLoop p shortenPathEnough : ∀ {a b n} (p : Path a b n) → n > size vertexFinite → Path≤ a b (size vertexFinite) shortenPathEnough = <-rec _ wfRec _ where wfRec = λ n rec p gt → let n′ , le , p′ = shortenPath p gt in case size vertexFinite <? n′ of λ where (yes n′>v) → rec _ le p′ n′>v (no n′≯v) → -, ≮⇒≥ n′≯v , p′ shortEnoughPath : ∀ {a b n} (p : Path a b n) → Path≤ a b (size vertexFinite) shortEnoughPath {n = n} p = case size vertexFinite <? n of λ where (yes n>v) → shortenPathEnough p n>v (no n≯v) → -, ≮⇒≥ n≯v , p cutAllLoops : ∀ {a b n} → (p : Path a b n) → Repeats p → ∃ λ (p : Path≤ a b n) → ¬ Repeats (proj₂ (proj₂ p)) cutAllLoops = <-rec _ wfRec _ where wfRec = λ x rec p r → case cutLoop< r of λ where (n′ , lt , p′) → case repeats? p′ of λ where (yes r) → case rec _ lt p′ r of λ where ((n′′ , le′′ , p′′) , ¬r′′) → (n′′ , ≤-trans le′′ (<⇒≤ lt) , p′′) , ¬r′′ (no ¬r) → (n′ , <⇒≤ lt , p′) , ¬r acyclicPath : ∀ {a b n} → (p : Path a b n) → ∃ λ (p : Path≤ a b n) → ¬ Repeats (proj₂ (proj₂ p)) acyclicPath p = case repeats? p of λ where (yes r) → cutAllLoops p r (no ¬r) → (-, ≤-refl , p) , ¬r minimalPath : ∀ {a b n} → Path a b n → ∃ λ (p : Path≤ a b (size vertexFinite)) → ¬ Repeats (proj₂ (proj₂ p)) minimalPath p = let x , x≤max , p′ = shortEnoughPath p (y , y≤x , p′′) , ¬r = acyclicPath p′ in (y , ≤-trans y≤x x≤max , p′′) , ¬r
{ "alphanum_fraction": 0.5609219025, "avg_line_length": 33.067961165, "ext": "agda", "hexsha": "989624a9e0ec7cc289e607a3d36abd657b659461", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kcsmnt0/graph", "max_forks_repo_path": "src/Data/Graph/Path/Cut.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kcsmnt0/graph", "max_issues_repo_path": "src/Data/Graph/Path/Cut.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kcsmnt0/graph", "max_stars_repo_path": "src/Data/Graph/Path/Cut.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2710, "size": 6812 }
open import Type open import Structure.Relator open import Structure.Setoid renaming (_≡_ to _≡ₑ_) -- TODO: Organize this module module Structure.Sets.ZFC.Inductive {ℓₛ ℓₗ ℓₑ} {S : Type{ℓₛ}} ⦃ equiv : Equiv{ℓₑ}(S) ⦄ (_∈_ : S → S → Type{ℓₗ}) ⦃ [∈]-binaryRelator : BinaryRelator(_∈_) ⦄ where open import Functional using (id) open import Functional.Dependent import Lvl open import Logic.Predicate open import Logic.Propositional open import Logic.Propositional.Theorems open import Structure.Relator.Proofs renaming ([≡]-binaryRelator to [≡ₑ]-binaryRelator) open import Structure.Sets.ZFC(_∈_) ⦃ [∈]-binaryRelator ⦄ open import Structure.Sets.ZFC.Oper(_∈_) import Structure.Sets.Names open Structure.Sets.Names.From-[∈] (_∈_) open import Structure.Sets.Quantifiers (_∈_) open import Syntax.Function private variable ℓ : Lvl.Level private variable A B C D E N a b c d e x y z As : S private variable P : S → Type{ℓ} module _ ⦃ zfc : ZFC ⦄ where open ZFC(zfc) -- minSubset P(A) is the intersection of all subsets of A satisfying P. -- Semantically, minSubset P(A) is the minimal subset of A satisfying P when A satisfies P and big intersection of a set containing A preserves P. minSubset : (P : S → Type{ℓ}) → ⦃ rel : UnaryRelator(P) ⦄ → S → S minSubset P(A) = ⋂(filter P(℘(A))) -- The minimal subset is a subset of the given set when the given set satisfies the given property. minSubset-subset : ⦃ rel : UnaryRelator(P) ⦄ → P(A) → (minSubset P(A) ⊆ A) minSubset-subset {P = P}{A = A} pa xM = [∧]-elimᵣ([↔]-to-[→] intersection xM) filt where filt : (A ∈ filter P(℘(A))) filt = [↔]-to-[←] restricted-comprehension ([∧]-intro ℘-self pa) -- A subset of the minimal subset is equal to the minimal subset if it and the given set satisfies the given property. minSubset-subsets : ⦃ rel : UnaryRelator(P) ⦄ → P(A) → P(B) → (B ⊆ minSubset P(A)) → (B ⊇ minSubset P(A)) minSubset-subsets {P = P}{A = A} pa pb sub cont = [∧]-elimᵣ([↔]-to-[→] (restricted-comprehension ⦃ _ ⦄) cont) (filt-pow ([∧]-intro (minSubset-subset pa ∘ sub) pb)) where filt-pow : ((B ⊆ A) ∧ P(B)) → (B ∈ filter P(℘(A))) filt-pow ([∧]-intro sub pb) = [↔]-to-[←] restricted-comprehension ([∧]-intro ([↔]-to-[←] power sub) pb) minSubset-satisfaction3 : ⦃ rel : UnaryRelator(P) ⦄ → (∀ₛ(℘(℘(A))) (As ↦ ((∀ₛ(As) P) → P(⋂ As)))) → P(A) → P(minSubset P(A)) minSubset-satisfaction3 preserv p = preserv ([↔]-to-[←] power ([∧]-elimₗ ∘ [↔]-to-[→] restricted-comprehension)) ([∧]-elimᵣ ∘ [↔]-to-[→] restricted-comprehension) -- When the big intersection of a set containing A preserves P and A satisfies P, then the minimal subset satisfies P. minSubset-satisfaction : ⦃ rel : UnaryRelator(P) ⦄ → (∀{As} → (A ∈ As) → (∀ₛ(As) P) → P(⋂ As)) → P(A) → P(minSubset P(A)) minSubset-satisfaction preserv p = preserv ([↔]-to-[←] restricted-comprehension ([∧]-intro ℘-self p)) ([∧]-elimᵣ ∘ [↔]-to-[→] restricted-comprehension) -- The "smallest" inductive set is the set of natural numbers. -- All elements which can be expressed using only 𝟎 and 𝐒. ℕ : S ℕ = ⋂(filter Inductive (℘(ω₀))) -- TODO: This pattern seems useful. See the module Inductive -- The relation "lesser than" in this model of ℕ. -- This works for all elements in ℕ by the definition of 𝟎 and 𝐒. _<_ : S → S → Type a < b = a ∈ b _≤_ : S → S → Type a ≤ b = (a < b) ∨ (a ≡ b) _>_ : S → S → Type a > b = b < a _≥_ : S → S → Type a ≥ b = b ≤ a infixl 2000 _<_ _≤_ _>_ _≥_ 𝕟 : S → S 𝕟(n) = filter(_< n) ⦃ binary-unaryRelatorᵣ ⦄ (ℕ) -- The set ℕ contains zero and all successors. ℕ-inductive : Inductive(ℕ) ℕ-inductive = minSubset-satisfaction p infinity where p : ∀{S} → (ω₀ ∈ S) → (∀ₛ(S) Inductive) → Inductive(⋂ S) p {S} omega ind = [∧]-intro base step where base : 𝟎 ∈ (⋂ S) base = [↔]-to-[←] intersection ([∧]-intro ([∃]-intro ω₀ ⦃ [∧]-intro omega ([∧]-elimₗ infinity) ⦄) ([∧]-elimₗ ∘ ind)) step : (x ∈ (⋂ S)) → (𝐒(x) ∈ (⋂ S)) step xint = [↔]-to-[←] intersection ([∧]-intro ([∃]-intro ω₀ ⦃ [∧]-intro omega ([∧]-elimᵣ infinity ([∧]-elimᵣ([↔]-to-[→] intersection xint) omega)) ⦄) (\as → [∧]-elimᵣ(ind as) ([∧]-elimᵣ([↔]-to-[→] intersection xint) as))) {- ℕ-inclusionᵣ : (x ∈ ℕ) → ∃(A ↦ ((A ⊆ ω₀) ∧ Inductive(A)) ∧ (x ∈ A)) ∧ ∀ₗ(A ↦ (((A ⊆ ω₀) ∧ Inductive(A)) → (x ∈ A))) ℕ-inclusionᵣ xℕ = [∧]-map ([∃]-map-proof ([∧]-map ([∧]-map ([↔]-to-[→] power) id ∘ [↔]-to-[→] restricted-comprehension) id) ∘ [↔]-to-[→] union) (\p q → p ([↔]-to-[←] restricted-comprehension ([∧]-map ([↔]-to-[←] power) id q))) ([↔]-to-[→] intersection xℕ) -} -- The natural numbers' set induction principle. ℕ-set-induction : Inductive(N) → (N ⊆ ℕ) → (N ⊇ ℕ) ℕ-set-induction = minSubset-subsets infinity -- The induction principle of the natural numbers for the elements in the set ℕ. ℕ-induction : ⦃ rel : UnaryRelator(P) ⦄ → P(𝟎) → (∀ₛ(ℕ) (n ↦ (P(n) → P(𝐒(n))))) → (∀ₛ(ℕ) P) ℕ-induction {P = P} pz ps = [∧]-elimᵣ ∘ [↔]-to-[→] restricted-comprehension ∘ Pset-super where Pset : S Pset = filter P(ℕ) Pset-𝟎 : (𝟎 ∈ Pset) Pset-𝟎 = [↔]-to-[←] restricted-comprehension ([∧]-intro ([∧]-elimₗ ℕ-inductive) pz) Pset-𝐒 : ∀ₛ(Pset) (n ↦ (𝐒(n) ∈ Pset)) Pset-𝐒 {n} nPset = let Pn : P(n) Pn = [∧]-elimᵣ([↔]-to-[→] restricted-comprehension nPset) nℕ : (n ∈ ℕ) nℕ = [∧]-elimₗ([↔]-to-[→] restricted-comprehension nPset) in [↔]-to-[←] restricted-comprehension ([∧]-intro ([∧]-elimᵣ ℕ-inductive nℕ) (ps nℕ Pn)) Pset-super : ℕ ⊆ Pset Pset-super = ℕ-set-induction ([∧]-intro Pset-𝟎 Pset-𝐒) ([∧]-elimₗ ∘ [↔]-to-[→] restricted-comprehension)
{ "alphanum_fraction": 0.5984460533, "avg_line_length": 47.1916666667, "ext": "agda", "hexsha": "6ca9d2d0ce718fa7d6d4483e719fc9173fee4bcb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Sets/ZFC/Inductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Sets/ZFC/Inductive.agda", "max_line_length": 259, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Sets/ZFC/Inductive.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2257, "size": 5663 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Impl.Consensus.BlockStorage.BlockStore open import LibraBFT.Impl.Consensus.BlockStorage.BlockTree open import LibraBFT.Impl.Consensus.ConsensusTypes.ExecutedBlock as ExecutedBlock open import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote open import LibraBFT.Impl.OBM.Prelude open import LibraBFT.Impl.Properties.Util open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.ByteString open import Util.Hash open import Util.KVMap as Map open import Util.PKCS open import Util.Prelude open QCProps open Invariants module LibraBFT.Impl.Consensus.BlockStorage.Properties.BlockTree where module insertBlockESpec (eb0 : ExecutedBlock) (bt : BlockTree) where eb0Id = eb0 ^∙ ebId open Reqs (eb0 ^∙ ebBlock) bt -- This is not quite right. It does not yet account for the updating of the parent Block -- Is it needed (see below)? record Updated (hv : HashValue) (pre post : BlockTree) (eb : ExecutedBlock) : Set where field ≢hv¬Upd : ∀ {hv'} → hv' ≢ hv → btGetBlock hv' post ≡ btGetBlock hv' pre record ContractOk (bt“ : BlockTree) (eb : ExecutedBlock) : Set where constructor mkContractOk field bt≡x : bt ≡ (bt“ & btIdToBlock ∙~ (bt ^∙ btIdToBlock)) -- The following two fields are not used, but something like this will be useful in proving -- btiPres and may provide value in their own right ¬upd : ∀ {eb'} → btGetBlock eb0Id bt ≡ just eb' → bt ≡ bt“ upd : btGetBlock eb0Id bt ≡ nothing → Updated eb0Id bt bt“ eb blocks≈ : NoHC1 → eb [ _≈Block_ ]L eb0 at ebBlock btiPres : ∀ {eci} → Preserves BlockTreeInv (bt , eci) (bt“ , eci) Contract : Either ErrLog (BlockTree × ExecutedBlock) → Set Contract (Left _) = ⊤ Contract (Right (bt' , b)) = ContractOk bt' b open insertBlockE postulate -- TODO-1: prove; note that the contract is stronger than we need because insertBlockE -- is called only when btGetBlock eb0Id bt ≡ nothing in LibraBFT contract' : EitherD-weakestPre (step₀ eb0 bt) Contract contract : Contract (insertBlockE.E eb0 bt) contract = EitherD-contract (step₀ eb0 bt) Contract contract' module insertQuorumCertESpec (qc : QuorumCert) (bt0 : BlockTree) where open insertQuorumCertE qc bt0 Ok : Set Ok = ∃₂ λ bt1 il → insertQuorumCertE qc bt0 ≡ Right (bt1 , il) private Ok' : BlockTree → List InfoLog → Either ErrLog (BlockTree × List InfoLog) → Set Ok' bt il m = m ≡ Right (bt , il) record ContractOk (btPre btPost : BlockTree) (ilPre ilPost : List InfoLog) : Set where constructor mkContractOk field noNewQCs : ∈Post⇒∈PreOrBT (_≡ qc) btPre btPost ContractOk-trans : ∀ {btPre btInt btPost ilPre ilInt ilPost} → ContractOk btPre btInt ilPre ilInt → ContractOk btInt btPost ilInt ilPost → ContractOk btPre btPost ilPre ilPost ContractOk-trans (mkContractOk noNewQCs) (mkContractOk noNewQCs₁) = mkContractOk (∈Post⇒∈PreOr'-trans _∈BlockTree_ (_≡ qc) noNewQCs noNewQCs₁) Contract : EitherD-Post ErrLog (BlockTree × List InfoLog) Contract (Left _) = ⊤ Contract (Right (bt1 , il)) = ContractOk bt0 bt1 [] il contract' : EitherD-weakestPre step₀ Contract contract' with safetyInvariant ...| Left e = tt ...| Right unit = contract-step₁' where contract-step₁' : EitherD-weakestPre (step₁ blockId) Contract proj₁ contract-step₁' _ = tt proj₂ contract-step₁' block _ = contract-step₂' where contract-step₂' : EitherD-weakestPre (step₂ blockId block) Contract proj₁ contract-step₂' _ = tt proj₂ contract-step₂' hcb _ = contract-step₃' where contract-cont2' : ∀ (bt : BlockTree) (info : List InfoLog) → let (bt' , info') = continue2 bt info in ContractOk bt bt' info info' contract-cont2' bt info with (bt ^∙ btHighestCommitCert ∙ qcCommitInfo ∙ biRound) <? (qc ^∙ qcCommitInfo ∙ biRound) ...| yes hqcR<qcR = mkContractOk (∈BlockTree-upd-hcc refl refl) ...| no hqcR≥qcR = mkContractOk (λ _ x → inj₁ x) cont1-update-bt : BlockTree → BlockTree cont1-update-bt bt = bt & btIdToQuorumCert ∙~ Map.insert blockId qc (bt ^∙ btIdToQuorumCert) info' : List InfoLog → Bool → List InfoLog info' il b = (fakeInfo ∷ il) ++ (if b then (fakeInfo ∷ []) else []) contract-cont1' : ∀ (btPre : BlockTree) (infoPre : List InfoLog) → let (btPost , infoPost) = continue1 btPre blockId block infoPre in ContractOk btPre btPost infoPre infoPost contract-cont1' btPre infoPre with Map.kvm-member blockId (btPre ^∙ btIdToQuorumCert) ...| true = mkContractOk (ContractOk.noNewQCs (contract-cont2' btPre (info' infoPre $ ExecutedBlock.isNilBlock block ))) ...| false = ContractOk-trans {btInt = cont1-update-bt btPre} {ilInt = info' infoPre $ ExecutedBlock.isNilBlock block } (mkContractOk (∈Post⇒∈PreOrBT-QCs≡ _ refl refl)) (mkContractOk (ContractOk.noNewQCs (contract-cont2' (cont1-update-bt btPre) (info' infoPre $ ExecutedBlock.isNilBlock block)))) bt' = bt0 & btHighestCertifiedBlockId ∙~ block ^∙ ebId & btHighestQuorumCert ∙~ qc contract-step₃' : EitherD-weakestPre (step₃ blockId block hcb) Contract proj₁ contract-step₃' _ = ContractOk-trans (mkContractOk (∈BlockTree-upd-hqc refl refl)) (contract-cont1' bt' (fakeInfo ∷ [])) proj₂ contract-step₃' _ = ContractOk-trans (mkContractOk (∈Post⇒∈PreOr'-refl _∈BlockTree_ _)) (contract-cont1' bt0 [])
{ "alphanum_fraction": 0.6357758621, "avg_line_length": 45.4265734266, "ext": "agda", "hexsha": "6eafdd5fe98aa75037293cbcbda02b11d785770e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/Properties/BlockTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/Properties/BlockTree.agda", "max_line_length": 129, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/Properties/BlockTree.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1864, "size": 6496 }
open import Prelude module Nat where -- definitions data Nat : Set where Z : Nat 1+ : Nat → Nat {-# BUILTIN NATURAL Nat #-} _+_ : Nat → Nat → Nat Z + m = m 1+ n + m = 1+ (n + m) infixl 60 _+_ data _≤_ : Nat → Nat → Set where ≤refl : ∀{n} → n ≤ n ≤1+ : ∀{n m} → n ≤ m → n ≤ 1+ m infix 40 _≤_ _<_ : Nat → Nat → Set n < m = n ≤ m ∧ n ≠ m infix 40 _<_ -- The `difference` operation accepts two numbers n and m and a proof that n ≤ m. -- Alternative definitions could return an option, returning None if n > m, -- or truncation, returning 0 if n > m. The latter may make some of the work easier, -- if it allows us to avoid issues with proof relevance. Even so, many proofs would -- still need to make use of the proof that n ≤ m to establish that the difference is -- not arbitrarily 0. As such, we believe that refactoring to use the perhaps more -- conventional truncation approach would not necessarily go far enough in cleaning up -- proofs as to be worth the refactoring effort. difference : ∀{n m} → n ≤ m → Nat difference {n} {.n} ≤refl = Z difference {n} {.(1+ _)} (≤1+ n≤m-1) = 1+ (difference n≤m-1) -- basic theorems -- the succ operation is injective 1+inj : ∀{n m} → 1+ n == 1+ m → n == m 1+inj refl = refl 1+ap : ∀{n m} → n == m → 1+ n == 1+ m 1+ap {n} {.n} refl = refl 1+ap-cp : ∀{n m} → 1+ n ≠ 1+ m → n ≠ m 1+ap-cp h1 h2 = h1 (1+ap h2) 1+inj-cp : ∀{n m} → n ≠ m → 1+ n ≠ 1+ m 1+inj-cp h1 h2 = h1 (1+inj h2) -- equality of naturals is decidable. we represent this as computing a -- choice of units, with inl <> meaning that the naturals are indeed the -- same and inr <> that they are not. natEQ : (x y : Nat) → ((x == y) ∨ ((x == y) → ⊥)) natEQ Z Z = Inl refl natEQ Z (1+ y) = Inr (λ ()) natEQ (1+ x) Z = Inr (λ ()) natEQ (1+ x) (1+ y) with natEQ x y natEQ (1+ x) (1+ .x) | Inl refl = Inl refl ... | Inr b = Inr (λ x₁ → b (1+inj x₁)) 0≠1+n : ∀{n} → 0 ≠ 1+ n 0≠1+n = λ () -- _+_ theorems n+Z==n : ∀{n} → n + Z == n n+Z==n {Z} = refl n+Z==n {1+ n} = 1+ap n+Z==n n+1+m==1+n+m : ∀{n m} → n + 1+ m == 1+ (n + m) n+1+m==1+n+m {Z} = refl n+1+m==1+n+m {1+ n} = 1+ap n+1+m==1+n+m n≠n+1+m : ∀{n m} → n ≠ n + 1+ m n≠n+1+m {Z} {m} () n≠n+1+m {1+ n} {m} h = 1+inj-cp n≠n+1+m h +comm : ∀{a b} → a + b == b + a +comm {Z} {b} = ! n+Z==n +comm {1+ a} {Z} = 1+ap n+Z==n +comm {1+ a} {1+ b} with a + 1+ b | b + 1+ a | n+1+m==1+n+m {a} {b} | n+1+m==1+n+m {b} {a} +comm {1+ a} {1+ b} | _ | _ | refl | refl = 1+ap (1+ap (+comm {a})) +assc : ∀{a b c} → (a + b) + c == a + (b + c) +assc {Z} = refl +assc {1+ a} = 1+ap (+assc {a}) a+n==a+m→n==m : ∀{a n m} → a + n == a + m → n == m a+n==a+m→n==m {Z} refl = refl a+n==a+m→n==m {1+ a} a+n==a+m = a+n==a+m→n==m (1+inj a+n==a+m) n+a==m+a→n==m : ∀{n m a} → n + a == m + a → n == m n+a==m+a→n==m {n} {m} {a} n+a==m+a rewrite +comm {n} {a} | +comm {m} {a} = a+n==a+m→n==m n+a==m+a +inj : ∀{a1 a2 b} → a1 + b == a2 + b → a1 == a2 +inj {a1} {a2} {Z} h rewrite (n+Z==n {a1}) | (n+Z==n {a2}) = h +inj {a1} {a2} {1+ b} h rewrite n+1+m==1+n+m {a1} {b} | n+1+m==1+n+m {a2} {b} = +inj (1+inj h) +inj-cp : ∀{a1 a2 b} → a1 ≠ a2 → a1 + b ≠ a2 + b +inj-cp ne f = ne (+inj f) -- even/odd theorems even-inj : ∀{m n} → m + m == n + n → m == n even-inj {Z} {Z} eq = refl even-inj {1+ m} {1+ n} eq rewrite (n+1+m==1+n+m {n} {n}) | (n+1+m==1+n+m {m} {m}) = 1+ap (even-inj (1+inj (1+inj eq))) even-not-odd : ∀{m n} → 1+ (m + m) ≠ (n + n) even-not-odd {Z} {1+ n} eq rewrite (n+1+m==1+n+m {n} {n}) = 0≠1+n (1+inj eq) even-not-odd {1+ m} {1+ n} eq rewrite (n+1+m==1+n+m {n} {n}) | (n+1+m==1+n+m {m} {m}) = even-not-odd {m} {n} (1+inj (1+inj eq)) -- _≤_ theorems 0≤n : ∀{n} → Z ≤ n 0≤n {Z} = ≤refl 0≤n {1+ n} = ≤1+ 0≤n 1+n≰0 : ∀{n} → 1+ n ≤ Z → ⊥ 1+n≰0 = λ () n≤m→1+n≤1+m : ∀{n m} → n ≤ m → 1+ n ≤ 1+ m n≤m→1+n≤1+m {n} {.n} ≤refl = ≤refl n≤m→1+n≤1+m {n} {.(1+ _)} (≤1+ h) = ≤1+ (n≤m→1+n≤1+m h) n≤m→s+n=m : ∀{n m} → n ≤ m → Σ[ s ∈ Nat ] (s + n == m) n≤m→s+n=m ≤refl = Z , refl n≤m→s+n=m (≤1+ n≤m) with n≤m→s+n=m n≤m ... | _ , refl = _ , refl 1+n≤1+m→n≤m : ∀{n m} → 1+ n ≤ 1+ m → n ≤ m 1+n≤1+m→n≤m {n} {.n} ≤refl = ≤refl 1+n≤1+m→n≤m {n} {Z} (≤1+ h) = abort (1+n≰0 h) 1+n≤1+m→n≤m {n} {1+ m} (≤1+ h) = ≤1+ (1+n≤1+m→n≤m h) n+s≤m+s→n≤m : ∀{n m s} → n + s ≤ m + s → n ≤ m n+s≤m+s→n≤m {n} {m} {s = Z} n+s≤m+s rewrite n+Z==n {n} | n+Z==n {m} = n+s≤m+s n+s≤m+s→n≤m {n} {m} {s = 1+ s} n+s≤m+s rewrite n+1+m==1+n+m {n} {s} | n+1+m==1+n+m {m} {s} = n+s≤m+s→n≤m (1+n≤1+m→n≤m n+s≤m+s) 1+n≰n : ∀{n} → 1+ n ≤ n → ⊥ 1+n≰n {Z} h = abort (1+n≰0 h) 1+n≰n {1+ n} h = 1+n≰n (1+n≤1+m→n≤m h) ≤total : ∀{n m} → n ≤ m ∨ m ≤ n ≤total {Z} {m} = Inl 0≤n ≤total {1+ n} {Z} = Inr (≤1+ 0≤n) ≤total {1+ n} {1+ m} with ≤total {n} {m} ≤total {1+ n} {1+ m} | Inl h = Inl (n≤m→1+n≤1+m h) ≤total {1+ n} {1+ m} | Inr h = Inr (n≤m→1+n≤1+m h) ≤trans : ∀{a b c} → a ≤ b → b ≤ c → a ≤ c ≤trans ≤refl b≤c = b≤c ≤trans (≤1+ a≤b) ≤refl = ≤1+ a≤b ≤trans (≤1+ a≤b) (≤1+ b≤c) = ≤1+ (≤trans (≤1+ a≤b) b≤c) ≤antisym : ∀{n m} → n ≤ m → m ≤ n → n == m ≤antisym {n} {.n} ≤refl m≤n = refl ≤antisym {n} {.(1+ _)} (≤1+ h1) h2 = abort (1+n≰n (≤trans h2 h1)) n≤n+m : ∀{n m} → n ≤ n + m n≤n+m {n} {Z} with n + Z | n+Z==n {n} n≤n+m {_} {Z} | _ | refl = ≤refl n≤n+m {n} {1+ m} with n + 1+ m | ! (n+1+m==1+n+m {n} {m}) n≤n+m {n} {1+ m} | _ | refl = ≤trans n≤n+m (≤1+ ≤refl) n≤m+n : ∀{n m} → n ≤ m + n n≤m+n {n} {m} rewrite +comm {m} {n} = n≤n+m -- _<_ theorems n≮0 : ∀{n} → n < Z → ⊥ n≮0 {Z} (π3 , π4) = π4 refl n≮0 {1+ n} (π3 , π4) = 1+n≰0 π3 n<1+n : ∀{n} → n < 1+ n π1 n<1+n = ≤1+ ≤refl π2 n<1+n () 1+n<1+m→n<m : ∀{n m} → 1+ n < 1+ m → n < m π1 (1+n<1+m→n<m (π3 , π4)) = 1+n≤1+m→n≤m π3 π2 (1+n<1+m→n<m (π3 , π4)) = 1+ap-cp π4 <trans : ∀{a b c} → a < b → b < c → a < c π1 (<trans (π3 , π4) (π5 , π6)) = ≤trans π3 π5 π2 (<trans (π3 , π4) (≤refl , π6)) = abort (π6 refl) π2 (<trans (π3 , π4) (≤1+ π5 , π6)) refl = 1+n≰n (≤trans π3 π5) <antisym : ∀{n m} → n < m → m < n → ⊥ <antisym (n≤m , n≠m) (m≤n , _) = n≠m (≤antisym n≤m m≤n) <antirefl : ∀{n} → n < n → ⊥ <antirefl (_ , ne) = abort (ne refl) n<m→n<s+m : ∀{n m s} → n < m → n < s + m n<m→n<s+m {s = Z} n<m = n<m n<m→n<s+m {s = 1+ s} n<m = <trans (n<m→n<s+m {s = s} n<m) n<1+n n<m→1+n<1+m : ∀{n m} → n < m → 1+ n < 1+ m n<m→1+n<1+m (π3 , π4) = n≤m→1+n≤1+m π3 , 1+inj-cp π4 n<m→s+1+n=m : ∀{n m} → n < m → Σ[ s ∈ Nat ] (s + 1+ n == m) n<m→s+1+n=m (≤refl , ne) = abort (ne refl) n<m→s+1+n=m {n = n} (≤1+ n≤m , _) with n≤m→s+n=m n≤m ... | _ , refl = _ , (n+1+m==1+n+m {m = n}) 0<1+n : ∀{n} → 0 < 1+ n 0<1+n {Z} = ≤1+ ≤refl , (λ ()) 0<1+n {1+ n} = 0≤n , (λ ()) 1+n≤m→n<m : ∀{n m} → 1+ n ≤ m → n < m 1+n≤m→n<m ≤refl = n<1+n 1+n≤m→n<m (≤1+ 1+n≤m) = <trans (1+n≤m→n<m 1+n≤m) n<1+n n≤m→n<1+m : ∀{n m} → n ≤ m → n < 1+ m n≤m→n<1+m {Z} n≤m = 0<1+n n≤m→n<1+m {1+ n} n≤m = n<m→1+n<1+m (1+n≤m→n<m n≤m) n<m→1+n≤m : ∀{n m} → n < m → 1+ n ≤ m n<m→1+n≤m (≤refl , ne) = abort (ne refl) n<m→1+n≤m (≤1+ n≤m , _) = n≤m→1+n≤1+m n≤m n<m→n≤m : ∀{n m} → n < m → n ≤ m n<m→n≤m n<m = 1+n≤1+m→n≤m (≤1+ (n<m→1+n≤m n<m)) <dec : (n m : Nat) → n < m ∨ n == m ∨ m < n <dec n m with natEQ n m ... | Inl refl = Inr (Inl refl) ... | Inr ne with ≤total {n} {m} ... | Inl ≤refl = abort (ne refl) ... | Inl (≤1+ n≤m) = Inl (n≤m→n<1+m n≤m) ... | Inr ≤refl = abort (ne refl) ... | Inr (≤1+ m≤n) = Inr (Inr (n≤m→n<1+m m≤n)) <dec-refl : (n : Nat) → <dec n n == Inr (Inl refl) <dec-refl n with <dec n n <dec-refl n | Inl (_ , ne) = abort (ne refl) <dec-refl n | Inr (Inl refl) = refl <dec-refl n | Inr (Inr (_ , ne)) = abort (ne refl) -- difference theorems m-n+n==m : ∀{n m} → (n≤m : n ≤ m) → difference n≤m + n == m m-n+n==m ≤refl = refl m-n+n==m (≤1+ n≤m) = 1+ap (m-n+n==m n≤m) n+m-n==m : ∀{n m} → (n≤n+m : n ≤ n + m) → difference n≤n+m == m n+m-n==m {n} n≤n+m = n+a==m+a→n==m (m-n+n==m n≤n+m · +comm {n}) a+b==c→a==c-b : ∀{a b c} → a + b == c → (b≤c : b ≤ c) → a == difference b≤c a+b==c→a==c-b a+b==c b≤c = n+a==m+a→n==m (a+b==c · ! (m-n+n==m b≤c)) diff-proof-irrelevance : ∀{n m} → (n≤m1 n≤m2 : n ≤ m) → difference n≤m1 == difference n≤m2 diff-proof-irrelevance ≤refl ≤refl = refl diff-proof-irrelevance ≤refl (≤1+ n≤m2) = abort (1+n≰n n≤m2) diff-proof-irrelevance (≤1+ n≤m1) ≤refl = abort (1+n≰n n≤m1) diff-proof-irrelevance (≤1+ n≤m1) (≤1+ n≤m2) = 1+ap (diff-proof-irrelevance n≤m1 n≤m2) m-n==1+m-1+n : ∀{n m} → (n≤m : n ≤ m) → (1+n≤1+m : 1+ n ≤ 1+ m) → difference n≤m == difference 1+n≤1+m m-n==1+m-1+n {n} {.n} ≤refl ≤refl = refl m-n==1+m-1+n {n} {.n} ≤refl (≤1+ 1+n≤n) = abort (1+n≰n 1+n≤n) m-n==1+m-1+n {.(1+ _)} {.(1+ _)} (≤1+ 1+m≤m) ≤refl = abort (1+n≰n 1+m≤m) m-n==1+m-1+n {n} {.(1+ _)} (≤1+ n≤m) (≤1+ 1+n≤1+m) = 1+ap (m-n==1+m-1+n n≤m 1+n≤1+m) m-n==m+s-n+s : ∀{n m s} → (n≤m : n ≤ m) → (n+s≤m+s : n + s ≤ m + s) → difference n≤m == difference n+s≤m+s m-n==m+s-n+s {n} {m} {s = Z} n≤m n+s≤m+s rewrite n+Z==n {n} | n+Z==n {m} = diff-proof-irrelevance n≤m n+s≤m+s m-n==m+s-n+s {n} {m} {s = 1+ s} n≤m n+s≤m+s rewrite n+1+m==1+n+m {n} {s} | n+1+m==1+n+m {m} {s} = (m-n==m+s-n+s n≤m (1+n≤1+m→n≤m n+s≤m+s)) · (m-n==1+m-1+n (1+n≤1+m→n≤m n+s≤m+s) n+s≤m+s)
{ "alphanum_fraction": 0.4326255826, "avg_line_length": 32.6182432432, "ext": "agda", "hexsha": "15859857db0216726a2fbb72090b66a617a845cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nickcollins/dependent-dicts-agda", "max_forks_repo_path": "Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nickcollins/dependent-dicts-agda", "max_issues_repo_path": "Nat.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nickcollins/dependent-dicts-agda", "max_stars_repo_path": "Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5376, "size": 9655 }
module Prelude where open import Agda.Primitive using (Level; lzero; lsuc) renaming (_⊔_ to lmax) -- empty type data ⊥ : Set where -- from false, derive whatever abort : ∀ {C : Set} → ⊥ → C abort () -- unit data ⊤ : Set where <> : ⊤ -- sums data _+_ (A B : Set) : Set where Inl : A → A + B Inr : B → A + B -- pairs infixr 1 _,_ record Σ {l1 l2 : Level} (A : Set l1) (B : A → Set l2) : Set (lmax l1 l2) where constructor _,_ field π1 : A π2 : B π1 open Σ public -- Sigma types, or dependent pairs, with nice notation. syntax Σ A (\ x -> B) = Σ[ x ∈ A ] B _×_ : {l1 : Level} {l2 : Level} → (Set l1) → (Set l2) → Set (lmax l1 l2) A × B = Σ A λ _ → B infixr 1 _×_ infixr 1 _+_ -- equality data _==_ {l : Level} {A : Set l} (M : A) : A → Set l where refl : M == M infixr 9 _==_ -- disequality _≠_ : {l : Level} {A : Set l} → (a b : A) → Set l a ≠ b = (a == b) → ⊥ {-# BUILTIN EQUALITY _==_ #-} -- transitivity of equality _·_ : {l : Level} {α : Set l} {x y z : α} → x == y → y == z → x == z refl · refl = refl -- symmetry of equality ! : {l : Level} {α : Set l} {x y : α} → x == y → y == x ! refl = refl -- ap, in the sense of HoTT, that all functions respect equality in their -- arguments. named in a slightly non-standard way to avoid naming -- clashes with hazelnut constructors. ap1 : {l1 l2 : Level} {α : Set l1} {β : Set l2} {x y : α} (F : α → β) → x == y → F x == F y ap1 F refl = refl -- transport, in the sense of HoTT, that fibrations respect equality tr : {l1 l2 : Level} {α : Set l1} {x y : α} (B : α → Set l2) → x == y → B x → B y tr B refl x₁ = x₁ -- options data Maybe (A : Set) : Set where Some : A → Maybe A None : Maybe A -- the some constructor is injective. perhaps unsurprisingly. someinj : {A : Set} {x y : A} → Some x == Some y → x == y someinj refl = refl -- some isn't none. somenotnone : {A : Set} {x : A} → Some x == None → ⊥ somenotnone () -- function extensionality, used to reason about contexts as finite -- functions. postulate funext : {A : Set} {B : A → Set} {f g : (x : A) → (B x)} → ((x : A) → f x == g x) → f == g -- non-equality is commutative flip : {A : Set} {x y : A} → (x == y → ⊥) → (y == x → ⊥) flip neq eq = neq (! eq) -- two types are said to be equivalent, or isomorphic, if there is a pair -- of functions between them where both round-trips are stable up to == _≃_ : Set → Set → Set _≃_ A B = Σ[ f ∈ (A → B) ] Σ[ g ∈ (B → A) ] (((a : A) → g (f a) == a) × (((b : B) → f (g b) == b)))
{ "alphanum_fraction": 0.5038391225, "avg_line_length": 27.0792079208, "ext": "agda", "hexsha": "dfeefa1af3e66f5827393f529a82a468873ff2d8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "Prelude.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "Prelude.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1030, "size": 2735 }
---------------------------------------------------------------------- -- Functional big-step evaluation of terms in the partiality monad ---------------------------------------------------------------------- module SystemF.Eval where open import Codata.Musical.Notation open import Category.Monad open import Category.Monad.Partiality.All as All using (All; now; later) open import Data.Fin using (Fin; zero; suc) open import Data.Maybe as Maybe using (just; nothing) open import Data.Maybe.Relation.Unary.Any as MaybeAny using (just) open import Data.Nat using (_+_) open import Data.Vec using ([]) open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import PartialityAndFailure as PF hiding (fail) open PF.Equality hiding (fail) open PF.Equivalence private module M {f} = RawMonad (PF.monad {f}) open import SystemF.Type open import SystemF.Term open import SystemF.WtTerm open TypeSubst using () renaming (_[/_] to _[/tp_]) open TermTypeSubst using () renaming (_[/_] to _[/tmTp_]) open TermTermSubst using () renaming (_[/_] to _[/tmTm_]) open WtTermTypeSubst using () renaming (_[/_]′ to _[/⊢tmTp_]) open WtTermTermSubst using () renaming (_[/_] to _[/⊢tmTm_]) ---------------------------------------------------------------------- -- Functional call-by-value big-step semantics -- The functional presentation of the big-step semantics below is -- heavily inspired by Danielsson's ICFP'12 paper "Operational -- Semantics Using the Partiality Monad". While the paper describes a -- closure-based semantics, the semantics given below is -- substitution-based. This simplifies the evaluation of recursive -- terms, i.e those involving fixpoint combinators, which would -- otherwise have to be evaluated in a cyclic evironment, i.e. one -- already containing the value of the recursive term being evaluated. -- -- NB: while it is not described in detail in the paper, Danielsson -- actually provides an alternative, substitution-based implementation -- in the accompanying code, which can be found at -- -- http://www.cse.chalmers.se/~nad/publications/danielsson-semantics-partiality-monad.tgz -- -- As pointed out in Danielsson's paper, the functional presentation -- of the big-step semantics feels rather natural in that it follows -- the form of an interpreter, and it has the added advantage of -- proving that the semantics are deterministic and computable "for -- free". -- -- For more information about Danielson's paper see -- -- http://www.cse.chalmers.se/~nad/publications/danielsson-semantics-partiality-monad.html ---------------------------------------------------------------------- -- Semantic domain and evaluation -- Computations with potential failure and partiality effects. Comp : ∀ m n → Set Comp m n = (Val m n) ?⊥ -- Following Danielsson's approach, we formulate the evaluation -- function _⇓′ in an "embedded language" to work around the -- limitations of Agda's guarded coinduction. The function _⇓′ -- returns "programs", i.e. instances of the type _?⊥P which -- internalizes the monadic bind operation as a constructor. In a -- second step, these programs are interpreted in the -- partiality-and-failure monad by the function _⇓. -- -- For details about this technique, see e.g. Danielsson's PAR'10 -- paper "Beating the Productivity Checker Using Embedded Languages". -- -- SystemF.Eval.NoWorkarounds contains an alternative version of the -- semantics which does not use the above-mentioned workaround. The -- alternative definition, while (provably) equivalent to the one -- given below, is more verbose and arguably less readable. However -- the associated type soundness proof is simpler in that it requires -- no additional compositionality lemmas. module _ where open PF.Workaround -- Computation "programs". CompP : ∀ m n → Set₁ CompP m n = (Val m n) ?⊥P mutual infix 7 _⇓′ _[_]′ _·′_ -- Evaluation of untyped (open) terms in _?⊥P. _⇓′ : ∀ {m n} → Term m n → CompP m n var x ⇓′ = fail Λ t ⇓′ = return (Λ t) λ' a t ⇓′ = return (λ' a t) μ a t ⇓′ = later (♯ (t [/tmTm μ a t ] ⇓′)) (t [ a ]) ⇓′ = t ⇓′ >>= λ v → v [ a ]′ (s · t) ⇓′ = s ⇓′ >>= λ f → t ⇓′ >>= λ v → f ·′ v fold a t ⇓′ = t ⇓′ >>= λ v → return (fold a v) unfold a t ⇓′ = t ⇓′ >>= λ v → unfold′ a v -- Call-by-value evaluation of type application in _?⊥P. _[_]′ : ∀ {m n} → Val m n → Type n → CompP m n (Λ t) [ a ]′ = later (♯ (t [/tmTp a ] ⇓′)) _ [ _ ]′ = fail -- Call-by-value Evaluation of term application in _?⊥P. _·′_ : ∀ {m n} → Val m n → Val m n → CompP m n (λ' _ t) ·′ v = later (♯ (t [/tmTm ⌜ v ⌝ ] ⇓′)) _ ·′ _ = fail -- Evaluation of recursive type unfolding in _?⊥P. unfold′ : ∀ {m n} → Type (1 + n) → Val m n → CompP m n unfold′ _ (fold _ v) = return v unfold′ a _ = fail infix 7 _⇓ -- Evaluation of untyped (open) terms in the partiality monad. _⇓ : ∀ {m n} → Term m n → Comp m n t ⇓ = ⟦ t ⇓′ ⟧P ---------------------------------------------------------------------- -- The semantics _⇓ is compositional module _ where open M open PF.Reasoning open PF.Workaround using (⟦_⟧P) renaming (_>>=_ to _>>=P_) open PF.Workaround.Correct infix 7 _[_]⇓ _·⇓_ -- Short hands for relating the semantics of composite terms to the -- semantics of their subterms. _[_]⇓ : ∀ {m n} → Comp m n → Type n → Comp m n c [ a ]⇓ = c >>= λ v → ⟦ v [ a ]′ ⟧P _·⇓_ : ∀ {m n} → Comp m n → Comp m n → Comp m n c ·⇓ d = c >>= λ f → d >>= λ v → ⟦ f ·′ v ⟧P fold⇓ : ∀ {m n} → Type (1 + n) → Comp m n → Comp m n fold⇓ a c = c >>= λ v → return (fold a v) unfold⇓ : ∀ {m n} → Type (1 + n) → Comp m n → Comp m n unfold⇓ a c = c >>= λ v → ⟦ unfold′ a v ⟧P -- The semantics of type application is compositional. []-comp : ∀ {m n} (t : Term m n) (a : Type n) → t [ a ] ⇓ ≅ (t ⇓) [ a ]⇓ []-comp t a = >>=-hom (t ⇓′) _ -- The semantics of term application is compositional. ·-comp : ∀ {m n} (s t : Term m n) → s · t ⇓ ≅ (s ⇓) ·⇓ (t ⇓) ·-comp s t = s · t ⇓ ≅⟨ >>=-hom (s ⇓′) _ ⟩ (s ⇓ >>= λ f → ⟦ t ⇓′ >>=P (λ v → f ·′ v) ⟧P) ≅⟨ (s ⇓ ∎ >>=-cong λ _ → >>=-hom (t ⇓′) _) ⟩ (s ⇓) ·⇓ (t ⇓) ∎ -- The semantics of recursive type folding is compositional. fold-comp : ∀ {m n} (a : Type (1 + n)) (t : Term m n) → fold a t ⇓ ≅ fold⇓ a (t ⇓) fold-comp a t = >>=-hom (t ⇓′) _ -- The semantics of recursive type unfolding is compositional. unfold-comp : ∀ {m n} (a : Type (1 + n)) (t : Term m n) → unfold a t ⇓ ≅ unfold⇓ a (t ⇓) unfold-comp a t = >>=-hom (t ⇓′) _ ---------------------------------------------------------------------- -- Type soundness open PF using (fail) infix 4 _⊢comp_∈_ -- A computation is well-typed if it is a well-typed value or it takes -- a step towards a well-typed computation. Note that we exclude the -- case of failing well-typed computations through the use of -- Maybe.Any. _⊢comp_∈_ : ∀ {m n} → Ctx m n → Comp m n → Type n → Set Γ ⊢comp c ∈ a = All (MaybeAny.Any (λ v → Γ ⊢val v ∈ a)) c -- Well-typed computations do not fail. does-not-fail : ∀ {m n} {Γ : Ctx m n} {c a} → Γ ⊢comp c ∈ a → ¬ c ≈ fail does-not-fail (now (MaybeAny.just _)) (now ()) does-not-fail (later ⊢c) (laterˡ c-fails) = does-not-fail (♭ ⊢c) c-fails -- It remains to prove that well-typed terms evaluate to well-typed -- computations. The proof ⊢_⇓ follows the same structure as _⇓ and -- uses an analogous workaround to deal with guarded coinduction. It -- is formulated in the language AllP of of Partiality.All "programs" -- defined in All.Alternative. open All.Alternative open PF.Workaround using (⟦_⟧P) infix 4 ⊢compP_∈_ ⊢val_∈_ -- Closed well-typed computation "programs". ⊢compP_∈_ : Comp 0 0 → Type 0 → Set₁ ⊢compP c ∈ a = AllP (MaybeAny.Any (λ v → [] ⊢val v ∈ a)) c -- A short hand for closed well-typed values. ⊢val_∈_ : Val 0 0 → Type 0 → Set ⊢val v ∈ a = [] ⊢val v ∈ a mutual infix 7 ⊢_⇓′ ⊢_[_]′ ⊢_·′_ -- Evaluation of closed terms preserves well-typedness in AllP. ⊢_⇓′ : ∀ {t a} → [] ⊢ t ∈ a → ⊢compP t ⇓ ∈ a ⊢ var () ⇓′ ⊢ Λ ⊢t ⇓′ = now (just (Λ ⊢t)) ⊢ λ' a ⊢t ⇓′ = now (just (λ' a ⊢t)) ⊢ μ a ⊢t ⇓′ = later (♯ ⊢ ⊢t [/⊢tmTm μ a ⊢t ] ⇓′) ⊢_⇓′ {t [ a ]} (⊢t [ .a ] ) = t [ a ] ⇓ ≅⟨ []-comp t a ⟩P (t ⇓) [ a ]⇓ ⟨ ⊢ ⊢t ⇓′ >>=-congP (λ { .{_} (just ⊢v) → ⊢ ⊢v [ a ]′ }) ⟩P ⊢_⇓′ {s · t} (⊢s · ⊢t) = s · t ⇓ ≅⟨ ·-comp s t ⟩P (s ⇓) ·⇓ (t ⇓) ⟨ (⊢ ⊢s ⇓′ >>=-congP λ { .{_} (just ⊢f) → ⊢ ⊢t ⇓′ >>=-congP λ { .{_} (just ⊢v) → ⊢ ⊢f ·′ ⊢v }}) ⟩P ⊢_⇓′ {fold a t} (fold .a ⊢t) = fold a t ⇓ ≅⟨ fold-comp a t ⟩P fold⇓ a (t ⇓) ⟨ (⊢ ⊢t ⇓′ >>=-congP λ { .{_} (just ⊢v) → now (just (fold a ⊢v)) }) ⟩P ⊢_⇓′ {unfold a t} (unfold .a ⊢t) = unfold a t ⇓ ≅⟨ unfold-comp a t ⟩P unfold⇓ a (t ⇓) ⟨ (⊢ ⊢t ⇓′ >>=-congP λ { .{_} (just ⊢v) → ⊢unfold′ a ⊢v }) ⟩P -- Evaluation of type application preserves well-typedness in AllP. ⊢_[_]′ : ∀ {v a} → ⊢val v ∈ ∀' a → ∀ b → ⊢compP ⟦ v [ b ]′ ⟧P ∈ a [/tp b ] ⊢ Λ ⊢t [ a ]′ = later (♯ ⊢ ⊢t [/⊢tmTp a ] ⇓′) -- Evaluation of term application preserves well-typedness in AllP. ⊢_·′_ : ∀ {f v a b} → ⊢val f ∈ a →' b → ⊢val v ∈ a → ⊢compP ⟦ f ·′ v ⟧P ∈ b ⊢ λ' a ⊢t ·′ ⊢v = later (♯ ⊢ ⊢t [/⊢tmTm ⊢⌜ ⊢v ⌝ ] ⇓′) -- Evaluation of recursive type unfolding preserves well-typedness in AllP. ⊢unfold′ : ∀ {v} a → ⊢val v ∈ μ a → ⊢compP ⟦ unfold′ a v ⟧P ∈ a [/tp μ a ] ⊢unfold′ _ (fold ._ ⊢v) = now (just ⊢v) infix 7 ⊢_⇓ -- Evaluation of closed terms preserves well-typedness. ⊢_⇓ : ∀ {t a} → [] ⊢ t ∈ a → [] ⊢comp t ⇓ ∈ a ⊢_⇓ = sound ∘ ⊢_⇓′ -- Type soundness: evaluation of well-typed terms does not fail. type-soundness : ∀ {t a} → [] ⊢ t ∈ a → ¬ t ⇓ ≈ fail type-soundness ⊢t = does-not-fail ⊢ ⊢t ⇓
{ "alphanum_fraction": 0.5606798529, "avg_line_length": 37.5410447761, "ext": "agda", "hexsha": "77f9877dee4b955b7c45ff1b0d9c421eac22c50b", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-07-06T23:12:48.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-29T12:24:46.000Z", "max_forks_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sstucki/system-f-agda", "max_forks_repo_path": "src/SystemF/Eval.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_issues_repo_issues_event_max_datetime": "2019-05-11T19:23:26.000Z", "max_issues_repo_issues_event_min_datetime": "2017-05-30T06:43:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sstucki/system-f-agda", "max_issues_repo_path": "src/SystemF/Eval.agda", "max_line_length": 92, "max_stars_count": 68, "max_stars_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sstucki/system-f-agda", "max_stars_repo_path": "src/SystemF/Eval.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T01:25:16.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-26T13:12:56.000Z", "num_tokens": 3590, "size": 10061 }
------------------------------------------------------------------------------ -- Group theory properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.PropertiesI where open import GroupTheory.Base open import Common.FOL.Relation.Binary.EqReasoning ------------------------------------------------------------------------------ -- Congruence properties -- The propositional equality is compatible with the binary operation. ·-leftCong : ∀ {a b c} → a ≡ b → a · c ≡ b · c ·-leftCong refl = refl ·-rightCong : ∀ {a b c} → b ≡ c → a · b ≡ a · c ·-rightCong refl = refl -- The propositional equality is compatible with the inverse function. ⁻¹-cong : ∀ {a b} → a ≡ b → a ⁻¹ ≡ b ⁻¹ ⁻¹-cong refl = refl ------------------------------------------------------------------------------ leftCancellation : ∀ {a b c} → a · b ≡ a · c → b ≡ c leftCancellation {a} {b} {c} h = b ≡⟨ sym (leftIdentity b) ⟩ ε · b ≡⟨ ·-leftCong (sym (leftInverse a)) ⟩ a ⁻¹ · a · b ≡⟨ assoc (a ⁻¹) a b ⟩ a ⁻¹ · (a · b) ≡⟨ ·-rightCong h ⟩ a ⁻¹ · (a · c) ≡⟨ sym (assoc (a ⁻¹) a c) ⟩ a ⁻¹ · a · c ≡⟨ ·-leftCong (leftInverse a) ⟩ ε · c ≡⟨ leftIdentity c ⟩ c ∎ -- A different proof without using congruence. leftCancellation' : ∀ {a b c} → a · b ≡ a · c → b ≡ c -- Paper proof (Mac Lane and Garret Birkhoff 1999. p. 48): -- -- 1. a⁻¹(ab) = a⁻¹(ac) (hypothesis ab = ac) -- 2. a⁻¹a(b) = a⁻¹a(c) (associative axiom) -- 3. εb = εc (left-inverse axiom for a⁻¹) -- 4. b = c (left-identity axiom) leftCancellation' {a} {b} {c} h = b ≡⟨ sym (leftIdentity b) ⟩ ε · b ≡⟨ subst (λ t → ε · b ≡ t · b) (sym (leftInverse a)) refl ⟩ a ⁻¹ · a · b ≡⟨ assoc (a ⁻¹) a b ⟩ a ⁻¹ · (a · b) ≡⟨ subst (λ t → a ⁻¹ · (a · b) ≡ a ⁻¹ · t) h refl ⟩ a ⁻¹ · (a · c) ≡⟨ sym (assoc (a ⁻¹) a c) ⟩ a ⁻¹ · a · c ≡⟨ subst (λ t → a ⁻¹ · a · c ≡ t · c) (leftInverse a) refl ⟩ ε · c ≡⟨ leftIdentity c ⟩ c ∎ -- Mac Lane and Garret Birkhoff (1999) p. 50, exercise 6. rightIdentity : ∀ a → a · ε ≡ a rightIdentity a = leftCancellation prf where prf : a ⁻¹ · (a · ε) ≡ a ⁻¹ · a prf = a ⁻¹ · (a · ε) ≡⟨ sym (assoc (a ⁻¹) a ε) ⟩ a ⁻¹ · a · ε ≡⟨ ·-leftCong (leftInverse a) ⟩ ε · ε ≡⟨ leftIdentity ε ⟩ ε ≡⟨ sym (leftInverse a) ⟩ a ⁻¹ · a ∎ -- Mac Lane and Garret Birkhoff (1999) p. 50, exercise 6. rightInverse : ∀ a → a · a ⁻¹ ≡ ε rightInverse a = leftCancellation prf where prf : a ⁻¹ · (a · a ⁻¹) ≡ a ⁻¹ · ε prf = a ⁻¹ · (a · a ⁻¹) ≡⟨ sym (assoc (a ⁻¹) a (a ⁻¹)) ⟩ a ⁻¹ · a · a ⁻¹ ≡⟨ ·-leftCong (leftInverse a) ⟩ ε · a ⁻¹ ≡⟨ leftIdentity (a ⁻¹) ⟩ a ⁻¹ ≡⟨ sym (rightIdentity (a ⁻¹)) ⟩ a ⁻¹ · ε ∎ rightCancellation : ∀ {a b c} → b · a ≡ c · a → b ≡ c rightCancellation {a} {b} {c} h = -- Paper proof: -- -- 1. (ba)a⁻¹ = (ca)a⁻¹ (hypothesis ab = ac) -- 2. (b)aa⁻¹ = (c)aa⁻¹ (associative axiom) -- 3. bε = cε (right-inverse axiom for a⁻¹) -- 4. b = c (right-identity axiom) b ≡⟨ sym (rightIdentity b) ⟩ b · ε ≡⟨ ·-rightCong (sym (rightInverse a)) ⟩ b · (a · a ⁻¹) ≡⟨ sym (assoc b a (a ⁻¹)) ⟩ b · a · a ⁻¹ ≡⟨ ·-leftCong h ⟩ c · a · a ⁻¹ ≡⟨ assoc c a (a ⁻¹) ⟩ c · (a · a ⁻¹) ≡⟨ ·-rightCong (rightInverse a) ⟩ c · ε ≡⟨ rightIdentity c ⟩ c ∎ -- Adapted from the Agda standard library 0.8.1 (see -- Algebra.Properties.Group.right-helper). y≡x⁻¹[xy] : ∀ a b → b ≡ a ⁻¹ · (a · b) y≡x⁻¹[xy] a b = b ≡⟨ sym (leftIdentity b) ⟩ ε · b ≡⟨ ·-leftCong (sym (leftInverse a)) ⟩ a ⁻¹ · a · b ≡⟨ assoc (a ⁻¹) a b ⟩ a ⁻¹ · (a · b) ∎ -- Adapted from the Agda standard library 0.8.1 (see -- Algebra.Properties.Group.left-helper). x≡[xy]y⁻¹ : ∀ a b → a ≡ (a · b) · b ⁻¹ x≡[xy]y⁻¹ a b = a ≡⟨ sym (rightIdentity a) ⟩ a · ε ≡⟨ ·-rightCong (sym (rightInverse b)) ⟩ a · (b · b ⁻¹) ≡⟨ sym (assoc a b (b ⁻¹)) ⟩ a · b · b ⁻¹ ∎ rightIdentityUnique : ∀ r → (∀ a → a · r ≡ a) → r ≡ ε -- Paper proof (Mac Lane and Garret 1999. p. 48): -- -- 1. r = εr (ε is an identity) -- 2. εr = r (hypothesis) -- 3. r = ε (transitivity) rightIdentityUnique r h = trans (sym (leftIdentity r)) (h ε) -- A more appropiate version to be used in the proofs. Adapted from -- the Agda standard library 0.8.1 (see -- Algebra.Properties.Group.right-identity-unique). rightIdentityUnique' : ∀ a r → a · r ≡ a → r ≡ ε rightIdentityUnique' a r h = r ≡⟨ y≡x⁻¹[xy] a r ⟩ a ⁻¹ · (a · r) ≡⟨ ·-rightCong h ⟩ a ⁻¹ · a ≡⟨ leftInverse a ⟩ ε ∎ leftIdentityUnique : ∀ l → (∀ a → l · a ≡ a) → l ≡ ε -- Paper proof: -- 1. l = le (ε is an identity) -- 2. le = e (hypothesis) -- 3. l = e (transitivity) leftIdentityUnique l h = trans (sym (rightIdentity l)) (h ε) -- A more appropiate version to be used in the proofs. Adapted from -- the Agda standard library 0.8.1 (see -- Algebra.Properties.Group.left-identity-unique). leftIdentityUnique' : ∀ a l → l · a ≡ a → l ≡ ε leftIdentityUnique' a l h = l ≡⟨ x≡[xy]y⁻¹ l a ⟩ l · a · a ⁻¹ ≡⟨ ·-leftCong h ⟩ a · a ⁻¹ ≡⟨ rightInverse a ⟩ ε ∎ rightInverseUnique : ∀ {a} → ∃[ r ] (a · r ≡ ε) ∧ (∀ r' → a · r' ≡ ε → r ≡ r') rightInverseUnique {a} = -- Paper proof: -- -- 1. We know that (a⁻¹) is a right inverse for a. -- 2. Let's suppose there is other right inverse r for a, i.e. ar ≡ ε, then -- 2.1. aa⁻¹ = ε (right-inverse axiom) -- 2.2. ar = ε (hypothesis) -- 2.3. aa⁻¹ = ar (transitivity) -- 2.4 a⁻¹ = a (left-cancellation) _ , rightInverse a , prf where prf : ∀ r' → a · r' ≡ ε → a ⁻¹ ≡ r' prf r' ar'≡ε = leftCancellation aa⁻¹≡ar' where aa⁻¹≡ar' : a · a ⁻¹ ≡ a · r' aa⁻¹≡ar' = a · a ⁻¹ ≡⟨ rightInverse a ⟩ ε ≡⟨ sym ar'≡ε ⟩ a · r' ∎ -- A more appropiate version to be used in the proofs. rightInverseUnique' : ∀ {a r} → a · r ≡ ε → a ⁻¹ ≡ r rightInverseUnique' {a} {r} ar≡ε = leftCancellation aa⁻¹≡ar where aa⁻¹≡ar : a · a ⁻¹ ≡ a · r aa⁻¹≡ar = a · a ⁻¹ ≡⟨ rightInverse a ⟩ ε ≡⟨ sym ar≡ε ⟩ a · r ∎ leftInverseUnique : ∀ {a} → ∃[ l ] (l · a ≡ ε) ∧ (∀ l' → l' · a ≡ ε → l ≡ l') leftInverseUnique {a} = -- Paper proof: -- -- 1. We know that (a⁻¹) is a left inverse for a. -- 2. Let's suppose there is other right inverse l for a, i.e. la ≡ ε, then -- 2.1. a⁻¹a = ε (left-inverse axiom) -- 2.2. la = ε (hypothesis) -- 2.3. a⁻¹a = la (transitivity) -- 2.4 a⁻¹ = l (right-cancellation) _ , leftInverse a , prf where prf : ∀ l' → l' · a ≡ ε → a ⁻¹ ≡ l' prf l' l'a≡ε = rightCancellation a⁻¹a≡l'a where a⁻¹a≡l'a : a ⁻¹ · a ≡ l' · a a⁻¹a≡l'a = a ⁻¹ · a ≡⟨ leftInverse a ⟩ ε ≡⟨ sym l'a≡ε ⟩ l' · a ∎ -- A more appropiate version to be used in the proofs. leftInverseUnique' : ∀ {a l} → l · a ≡ ε → a ⁻¹ ≡ l leftInverseUnique' {a} {l} la≡ε = rightCancellation a⁻¹a≡la where a⁻¹a≡la : a ⁻¹ · a ≡ l · a a⁻¹a≡la = a ⁻¹ · a ≡⟨ leftInverse a ⟩ ε ≡⟨ sym la≡ε ⟩ l · a ∎ ⁻¹-involutive : ∀ a → a ⁻¹ ⁻¹ ≡ a -- Paper proof: -- -- 1. a⁻¹a = ε (left-inverse axiom) -- 2. The previous equation states that a is the unique right -- inverse (a⁻¹)⁻¹ of a⁻¹. ⁻¹-involutive a = rightInverseUnique' (leftInverse a) identityInverse : ε ⁻¹ ≡ ε -- Paper proof: -- -- 1. εε = ε (left/right-identity axiom) -- 2. The previous equation states that ε is the unique left/right -- inverse ε⁻¹ of ε. identityInverse = rightInverseUnique' (leftIdentity ε) inverseDistribution : ∀ a b → (a · b) ⁻¹ ≡ b ⁻¹ · a ⁻¹ -- Paper proof: -- -- (b⁻¹a⁻¹)(ab) = b⁻¹(a⁻¹(ab)) (associative axiom) -- = b⁻¹(a⁻¹a)b (associative axiom) -- = b⁻¹(εb) (left-inverse axiom) -- = b⁻¹b (left-identity axiom) -- = ε (left-inverse axiom) -- Therefore, b⁻¹a⁻¹ is the unique left inverse of ab. inverseDistribution a b = leftInverseUnique' b⁻¹a⁻¹[ab]≡ε where b⁻¹a⁻¹[ab]≡ε : b ⁻¹ · a ⁻¹ · (a · b) ≡ ε b⁻¹a⁻¹[ab]≡ε = b ⁻¹ · a ⁻¹ · (a · b) ≡⟨ assoc (b ⁻¹) (a ⁻¹) (a · b) ⟩ b ⁻¹ · (a ⁻¹ · (a · b)) ≡⟨ ·-rightCong (sym (assoc (a ⁻¹) a b)) ⟩ b ⁻¹ · (a ⁻¹ · a · b) ≡⟨ ·-rightCong (·-leftCong (leftInverse a)) ⟩ b ⁻¹ · (ε · b) ≡⟨ ·-rightCong (leftIdentity b) ⟩ b ⁻¹ · b ≡⟨ leftInverse b ⟩ ε ∎ -- If the square of every element is the identity, the system is -- commutative. From: TPTP 6.4.0 problem GRP/GRP001-2.p. x²≡ε→comm : (∀ a → a · a ≡ ε) → ∀ {b c d} → b · c ≡ d → c · b ≡ d -- Paper proof: -- -- 1. d(bc) = dd (hypothesis bc = d) -- 2. d(bc) = ε (hypothesis dd = ε) -- 3. d(bc)c = c (by 2) -- 4. db(cc) = c (associativity axiom) -- 5. db = c (hypothesis cc = ε) -- 6. (db)b = cb (by 5) -- 7. d(bb) = cb (associativity axiom) -- 6. d = cb (hypothesis bb = ε) x²≡ε→comm h {b} {c} {d} bc≡d = sym d≡cb where db≡c : d · b ≡ c db≡c = d · b ≡⟨ sym (rightIdentity (d · b)) ⟩ d · b · ε ≡⟨ ·-rightCong (sym (h c)) ⟩ d · b · (c · c) ≡⟨ assoc d b (c · c) ⟩ d · (b · (c · c)) ≡⟨ ·-rightCong (sym (assoc b c c)) ⟩ d · ((b · c) · c) ≡⟨ ·-rightCong (·-leftCong bc≡d) ⟩ d · (d · c) ≡⟨ sym (assoc d d c) ⟩ d · d · c ≡⟨ ·-leftCong (h d) ⟩ ε · c ≡⟨ leftIdentity c ⟩ c ∎ d≡cb : d ≡ c · b d≡cb = d ≡⟨ sym (rightIdentity d) ⟩ d · ε ≡⟨ ·-rightCong (sym (h b)) ⟩ d · (b · b) ≡⟨ sym (assoc d b b) ⟩ d · b · b ≡⟨ ·-leftCong db≡c ⟩ c · b ∎ ------------------------------------------------------------------------------ -- References -- -- Mac Lane, S. and Birkhof, G. (1999). Algebra. 3rd ed. AMS Chelsea -- Publishing.
{ "alphanum_fraction": 0.4613325686, "avg_line_length": 35.1040268456, "ext": "agda", "hexsha": "59a71e166027325073c19b09cd78b186c43978de", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/GroupTheory/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/GroupTheory/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/GroupTheory/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 4273, "size": 10461 }
-- intrinsically-typed λ-calculus module IntrinsicallyTypedLC where open import Data.List open import Data.List.Relation.Unary.All open import Data.Unit open import Data.Nat -- definitions data Ty : Set where Tunit : Ty Tfun : Ty → Ty → Ty TEnv = List Ty data _∈_ : Ty → TEnv → Set where here : ∀ {t Φ} → t ∈ (t ∷ Φ) there : ∀ {t t' Φ} → t ∈ Φ → t ∈ (t' ∷ Φ) data Exp : TEnv → Ty → Set where Var : ∀ {Φ t} → (x : t ∈ Φ) → Exp Φ t Abs : ∀ {Φ t t'} → Exp (t ∷ Φ) t' → Exp Φ (Tfun t t') App : ∀ {Φ t t'} → Exp Φ (Tfun t t') → Exp Φ t → Exp Φ t' -- big-step semantics Val : Ty → Set Val Tunit = ⊤ Val (Tfun t t₁) = Val t → Val t₁ access : ∀ {t Φ} → t ∈ Φ → All Val Φ → Val t access here (px ∷ ρ) = px access (there x) (px ∷ ρ) = access x ρ eval : ∀ {Φ t} → Exp Φ t → All Val Φ → Val t eval (Var x) ρ = access x ρ eval (Abs e) ρ = λ x → eval e (x ∷ ρ) eval (App e e₁) ρ = (eval e ρ) (eval e₁ ρ)
{ "alphanum_fraction": 0.5595628415, "avg_line_length": 22.3170731707, "ext": "agda", "hexsha": "480791f2155ffa24680d8d47635b2f8f149745d6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-14T17:52:29.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-14T17:52:29.000Z", "max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "kcaliban/ldlc", "max_forks_repo_path": "src/lc/IntrinsicallyTypedLC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "kcaliban/ldlc", "max_issues_repo_path": "src/lc/IntrinsicallyTypedLC.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "kcaliban/ldlc", "max_stars_repo_path": "src/lc/IntrinsicallyTypedLC.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 396, "size": 915 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Heterogeneous equality ------------------------------------------------------------------------ -- This file contains some core definitions which are reexported by -- Relation.Binary.HeterogeneousEquality. {-# OPTIONS --with-K --safe #-} module Relation.Binary.HeterogeneousEquality.Core where open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl) ------------------------------------------------------------------------ -- Heterogeneous equality infix 4 _≅_ data _≅_ {ℓ} {A : Set ℓ} (x : A) : {B : Set ℓ} → B → Set ℓ where refl : x ≅ x ------------------------------------------------------------------------ -- Conversion ≅-to-≡ : ∀ {a} {A : Set a} {x y : A} → x ≅ y → x ≡ y ≅-to-≡ refl = refl ≡-to-≅ : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ≅ y ≡-to-≅ refl = refl
{ "alphanum_fraction": 0.4218061674, "avg_line_length": 28.375, "ext": "agda", "hexsha": "e9f109ac4094546c59202b51b7872a48b31958e6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality/Core.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 232, "size": 908 }
module Problem4 where infixr 40 _::_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A -- 4.1 map : {A B : Set} -> (A -> B) -> List A -> List B map f [] = [] map f (x :: xs) = f x :: map f xs infixr 40 _++_ _++_ : {A : Set} -> List A -> List A -> List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) -- 4.2 infixr 40 _▹_ data All {A : Set}(P : A -> Set) : List A -> Set where ∅ : All P [] _▹_ : {x : A} -> P x -> {xs : List A} -> All P xs -> All P (x :: xs) -- 4.3 data Some {A : Set}(P : A -> Set) : List A -> Set where hd : {x : A} -> P x -> {xs : List A} -> Some P (x :: xs) tl : {x : A}{xs : List A} -> Some P xs -> Some P (x :: xs) -- 4.4 -- We need composition at a higher universe here. _∘¹_ : {A B : Set}{C : B -> Set1}(f : (x : B) -> C x) (g : A -> B)(x : A) -> C (g x) (f ∘¹ g) x = f (g x) -- You might have to give f explictly when applying this theorem. all-map : {A B : Set}{P : A -> Set}{Q : B -> Set}{f : A -> B}{xs : List A} -> ({x : A} -> P x -> Q (f x)) -> All P xs -> All Q (map f xs) all-map h ∅ = ∅ all-map h (p ▹ ps) = h p ▹ all-map h ps all-++ : {A : Set}{P : A -> Set}{xs ys : List A} -> All P xs -> All P ys -> All P (xs ++ ys) all-++ ∅ qs = qs all-++ (p ▹ ps) qs = p ▹ (all-++ ps qs) some-map : {A B : Set}{P : A -> Set}{Q : B -> Set}{f : A -> B}{xs : List A} -> ({x : A} -> P x -> Q (f x)) -> Some P xs -> Some Q (map f xs) some-map h (hd p) = hd (h p) some-map h (tl ps) = tl (some-map h ps) some-++-left : {A : Set}{P : A -> Set}{xs ys : List A} -> Some P xs -> Some P (xs ++ ys) some-++-left (hd p) = hd p some-++-left (tl ps) = tl (some-++-left ps) -- Here we can't expect to infer xs, so we make it explicit some-++-right : {A : Set}{P : A -> Set}(xs : List A){ys : List A} -> Some P ys -> Some P (xs ++ ys) some-++-right [] p = p some-++-right (x :: xs) p = tl (some-++-right xs p) -- 4.5 data _==_ {A : Set}(x : A) : A -> Set where refl : x == x _∈_ : {A : Set} -> A -> List A -> Set x ∈ xs = Some (_==_ x) xs -- 4.6 record True : Set where tt : True tt = record {} Nat = List True zero : Nat zero = [] suc : Nat -> Nat suc n = tt :: n Vec : Set -> Nat -> Set Vec A n = All (\_ -> A) n Fin : Nat -> Set Fin n = Some (\_ -> True) n -- 4.7 infixr 5 _,_ data _×_ (A : Set)(B : A -> Set) : Set where _,_ : (x : A) -> B x -> A × B _∧_ : Set -> Set -> Set A ∧ B = A × (\_ -> B) _!_ : {A : Set}{P : A -> Set}{Q : A -> Set}{xs : List A} -> All P xs -> Some Q xs -> A × (\z -> P z ∧ Q z) ∅ ! () (p ▹ ps) ! hd q = (_ , p , q) (p ▹ ps) ! tl q = ps ! q -- 4.8 data False : Set where ¬_ : Set -> Set ¬ A = A -> False data _∨_ (A B : Set) : Set where inl : A -> A ∨ B inr : B -> A ∨ B data Bool : Set where true : Bool false : Bool data IsTrue : Bool -> Set where isTrue : IsTrue true Holds : {A : Set} -> (A -> Bool) -> A -> Set Holds p x = IsTrue (p x) false-isn't-true : ¬ IsTrue false false-isn't-true () decide : {A : Set}(p : A -> Bool)(x : A) -> Holds p x ∨ ¬ Holds p x decide p x with p x ... | true = inl isTrue ... | false = inr false-isn't-true all : {A : Set}(p : A -> Bool)(xs : List A) -> All (Holds p) xs ∨ Some (\x -> ¬ Holds p x) xs all p [] = inl ∅ all p (x :: xs) with decide p x ... | inr npx = inr (hd npx) ... | inl px with all p xs ... | inr npxs = inr (tl npxs) ... | inl pxs = inl (px ▹ pxs)
{ "alphanum_fraction": 0.4517231558, "avg_line_length": 22.2215189873, "ext": "agda", "hexsha": "717ebf01d2078e497bc2d860aec6543459c2e62d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/SummerSchool07/Solutions/Problem4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/SummerSchool07/Solutions/Problem4.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/SummerSchool07/Solutions/Problem4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1420, "size": 3511 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.RingStructure.CupProduct where open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Data.Nat open import Cubical.Data.Int hiding (_+'_ ; +'≡+ ; _+_) open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.Truncation as T open import Cubical.HITs.S1 hiding (_·_) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties infixl 30 _·₀_ infixr 35 _⌣ₖ_ infixr 35 _⌣_ --- This definition of ℕ-addition removes some unnecessary transports. open PlusBis -- Cup product with one integer (K₀) argument _·₀_ : {n : ℕ} (m : ℤ) → coHomK n → coHomK n _·₀_ {n = n} (pos zero) x = 0ₖ _ _·₀_ {n = n} (pos (suc m)) x = x +ₖ (pos m ·₀ x) _·₀_ {n = n} (negsuc zero) x = -ₖ x _·₀_ {n = n} (negsuc (suc m)) x = (negsuc m ·₀ x) -ₖ x ·₀-0ₖ : {n : ℕ} (m : ℤ) → _·₀_ m (0ₖ n) ≡ 0ₖ n ·₀-0ₖ (pos zero) = refl ·₀-0ₖ (pos (suc n)) = cong (0ₖ _ +ₖ_) (·₀-0ₖ (pos n)) ∙ rUnitₖ _ (0ₖ _) ·₀-0ₖ (negsuc zero) = -0ₖ ·₀-0ₖ (negsuc (suc n)) = cong (λ x → x -ₖ (0ₖ _)) (·₀-0ₖ (negsuc n)) ∙ rCancelₖ _ (0ₖ _) -- Pointed version first (enables truncation elimination) ⌣ₖ∙ : (n m : ℕ) → coHomK n → coHomK-ptd m →∙ coHomK-ptd (n +' m) fst (⌣ₖ∙ zero m a) b = a ·₀ b snd (⌣ₖ∙ zero m a) = ·₀-0ₖ a fst (⌣ₖ∙ (suc n) zero a) b = b ·₀ a snd (⌣ₖ∙ (suc n) zero a) = refl ⌣ₖ∙ (suc n) (suc m) = T.rec (isOfHLevel↑∙ (suc n) m) (cup n m) where cup : (n m : ℕ) → S₊ (suc n) → coHomK-ptd (suc m) →∙ coHomK-ptd (suc (suc (n + m))) fst (cup zero m base) _ = 0ₖ _ fst (cup zero m (loop i)) x = Kn→ΩKn+1 _ x i fst (cup (suc n) m north) _ = 0ₖ _ fst (cup (suc n) m south) _ = 0ₖ _ fst (cup (suc n) m (merid a i)) x = Kn→ΩKn+1 _ (fst (cup n m a) x) i snd (cup zero m base) = refl snd (cup zero m (loop i)) k = Kn→ΩKn+10ₖ _ k i snd (cup (suc n) m north) = refl snd (cup (suc n) m south) = refl snd (cup (suc n) m (merid a i)) k = (cong (Kn→ΩKn+1 _) (snd (cup n m a)) ∙ Kn→ΩKn+10ₖ _) k i -- Non pointed version _⌣ₖ_ : {n m : ℕ} → coHomK n → coHomK m → coHomK (n +' m) _⌣ₖ_ {n = n} {m = m} x y = fst (⌣ₖ∙ n m x) y -- Doubly pointed version ⌣ₖ∙∙ : (n m : ℕ) → coHomK-ptd n →∙ (coHomK-ptd m →∙ coHomK-ptd (n +' m) ∙) fst (⌣ₖ∙∙ n m) = ⌣ₖ∙ n m fst (snd (⌣ₖ∙∙ zero zero) i) x = 0 fst (snd (⌣ₖ∙∙ zero (suc m)) i) x = 0ₖ _ fst (snd (⌣ₖ∙∙ (suc n) zero) i) x = ·₀-0ₖ x i fst (snd (⌣ₖ∙∙ (suc zero) (suc m)) i) x = 0ₖ _ fst (snd (⌣ₖ∙∙ (suc (suc n)) (suc m)) i) x = 0ₖ _ snd (snd (⌣ₖ∙∙ zero zero) i) = refl snd (snd (⌣ₖ∙∙ zero (suc m)) i) = refl snd (snd (⌣ₖ∙∙ (suc n) zero) i) = refl snd (snd (⌣ₖ∙∙ (suc zero) (suc m)) i) = refl snd (snd (⌣ₖ∙∙ (suc (suc n)) (suc m)) i) = refl -- Cup product _⌣_ : ∀ {ℓ} {A : Type ℓ} {n m : ℕ} → coHom n A → coHom m A → coHom (n +' m) A _⌣_ = ST.rec2 squash₂ λ f g → ∣ (λ x → f x ⌣ₖ g x) ∣₂
{ "alphanum_fraction": 0.5908483634, "avg_line_length": 36.512195122, "ext": "agda", "hexsha": "f2da40a3fad0add71fcfb0776fbb709727598884", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/ZCohomology/RingStructure/CupProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/ZCohomology/RingStructure/CupProduct.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/ZCohomology/RingStructure/CupProduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1519, "size": 2994 }
-- https://stackoverflow.com/questions/61037572/how-to-define-the-range-function-on-a-relation-in-agda-set-theory module range where open import Data.Unit open import Data.Product renaming (_,_ to ⟨_,_⟩) open import Data.Sum open import Function Subset : Set → Set₁ Subset A = A → Set _∈_ : ∀ {A} → A → Subset A → Set a ∈ P = P a Relation : ∀ A B → Set₁ Relation A B = Subset (A × B) Range : ∀ {A B} → Relation A B → Subset B Range R b = ∃ (R ∘ ⟨_, b ⟩) -- equivalent to ∃ \a → R ⟨ a , b ⟩ _⊆_ : ∀ {A} → Subset A → Subset A → Set A ⊆ B = ∀ x → x ∈ A → x ∈ B wholeSet : ∀ A → Subset A wholeSet _ _ = ⊤ ∀subset⊆set : ∀ {A sub} → sub ⊆ wholeSet A ∀subset⊆set _ _ = tt _∩_ : ∀ {A} → Subset A → Subset A → Subset A (A ∩ B) x = x ∈ A × x ∈ B open import Data.Nat x : Set₁ x = Subset ℕ y : Set₁ y = Relation ℕ ℕ z : Subset ℕ z = Range {ℕ} λ { ⟨ n1 , n2 ⟩ → (x₁ : Σ ℕ (λ _ → ℕ)) → {!!} ∈ {!!}}
{ "alphanum_fraction": 0.569213732, "avg_line_length": 19.6304347826, "ext": "agda", "hexsha": "d4fd643a6992012ebaea7cbd365ad0b0aa092af4", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/range.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/range.agda", "max_line_length": 113, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/range.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 352, "size": 903 }
------------------------------------------------------------------------------ -- Agda-Prop Library. -- A compilation of theorems in Propositional Logic ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula.Theorems ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.PropFormula.Theorems.Biimplication n public open import Data.PropFormula.Theorems.Classical n public open import Data.PropFormula.Theorems.Conjunction n public open import Data.PropFormula.Theorems.Disjunction n public open import Data.PropFormula.Theorems.Implication n public open import Data.PropFormula.Theorems.Mixies n public open import Data.PropFormula.Theorems.Negation n public open import Data.PropFormula.Theorems.Weakening n public ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.532642487, "avg_line_length": 43.8636363636, "ext": "agda", "hexsha": "37018aa25c05ce16aa271f97e29f3c23dca805c6", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z", "max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z", "max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jonaprieto/agda-prop", "max_forks_repo_path": "src/Data/PropFormula/Theorems.agda", "max_issues_count": 18, "max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jonaprieto/agda-prop", "max_issues_repo_path": "src/Data/PropFormula/Theorems.agda", "max_line_length": 78, "max_stars_count": 13, "max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jonaprieto/agda-prop", "max_stars_repo_path": "src/Data/PropFormula/Theorems.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z", "num_tokens": 165, "size": 965 }
------------------------------------------------------------------------------ -- Testing the translation of definitions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Definition08 where open import Common.FOL postulate P : D → Set op : D → D -- In this case the proof term `Pb` is referenced in the types of the -- definitions of `c` and `d` via the `where` clause. Therefore in the -- translation of `c` and `d`, we need to erase this proof term. -- TODO (2016-04-02): This test case is invalid after fixing #22. -- foo : D → ∀ {b} → P b → D -- foo a Pb = a -- where -- c : D -- c = a -- {-# ATP definition c #-} -- d : D -- d = op c -- {-# ATP definition d #-} -- postulate bar : d ≡ op a -- {-# ATP prove bar #-} -- We need to have at least one conjecture to generate a TPTP file. postulate bar : ∀ d → d ≡ d {-# ATP prove bar #-}
{ "alphanum_fraction": 0.4874884152, "avg_line_length": 26.3170731707, "ext": "agda", "hexsha": "1381ae464aced8d8bf9118c4535bdc95751a9d8f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/Definition08.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/Definition08.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/Definition08.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 272, "size": 1079 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Unit.Polymorphic where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Relation.Nullary using (yes) open import Cubical.Relation.Binary.Raw using (Decidable) import Cubical.Data.Unit.Base as ⊤ ⊤ : {ℓ : Level} → Type ℓ ⊤ = Lift ⊤.⊤ pattern tt = lift ⊤.tt infix 4 _≟_ _≟_ : {ℓ : Level} → Decidable {A = ⊤ {ℓ}} _≡_ _ ≟ _ = yes refl isContr⊤ : {ℓ : Level} → isContr (⊤ {ℓ}) isContr⊤ = tt , λ {tt → refl} isProp⊤ : {ℓ : Level} → isProp (⊤ {ℓ}) isProp⊤ _ _ i = tt
{ "alphanum_fraction": 0.6564102564, "avg_line_length": 22.5, "ext": "agda", "hexsha": "b49ef480db266dd6e999989cec64c0be987a732f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Data/Unit/Polymorphic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Data/Unit/Polymorphic.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Data/Unit/Polymorphic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 229, "size": 585 }
{-# OPTIONS --cubical --no-import-sorts --safe --guardedness #-} module Cubical.Codata.Conat.Bounded where open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Codata.Conat.Base renaming (zero to czero; suc to csuc) open import Cubical.Codata.Conat.Properties open import Cubical.Data.Empty as Empty open import Cubical.Data.Sigma open import Cubical.Data.Sum hiding (rec) open import Cubical.Data.Unit open import Cubical.Relation.Nullary open import Cubical.Data.Nat as Nat import Cubical.Data.Fin.Recursive as Fin private variable ℓ : Level _≺_ : ℕ → Conat → Type _ _≺′_ : ℕ → Conat′ → Type _ n ≺ c = n ≺′ force c _ ≺′ czero = ⊥ zero ≺′ csuc _ = Unit suc n ≺′ csuc c = n ≺ c isProp≺ : ∀ n c → isProp (n ≺ c) isProp≺′ : ∀ n c → isProp (n ≺′ c) isProp≺ n c = isProp≺′ n (force c) isProp≺′ n czero = isProp⊥ isProp≺′ zero (csuc _) = isPropUnit isProp≺′ (suc n) (csuc c') = isProp≺ n c' isPropDep≺ : ∀ c → isPropDep (_≺ c) isPropDep≺ c = isOfHLevel→isOfHLevelDep 1 (λ n → isProp≺ n c) {_} {_} isPropDep≺′ : ∀ c → isPropDep (_≺′ c) isPropDep≺′ c = isOfHLevel→isOfHLevelDep 1 (λ n → isProp≺′ n c) {_} {_} private apart : ℕ → ℕ → Type apart zero zero = ⊥ apart (suc m) (suc n) = apart m n apart _ _ = Unit ≢→apart : (i j : ℕ) → ¬ i ≡ j → apart i j ≢→apart zero zero ¬p = ¬p refl ≢→apart (suc i) (suc j) ¬p = ≢→apart i j (¬p ∘ cong suc) ≢→apart zero (suc j) _ = _ ≢→apart (suc i) zero _ = _ apart→≢ : (i j : ℕ) → apart i j → ¬ i ≡ j apart→≢ (suc i) zero _ = snotz apart→≢ zero (suc j) _ = znots apart→≢ (suc i) (suc j) i#j = apart→≢ i j i#j ∘ cong predℕ isPropApart : ∀ m n → isProp (apart m n) isPropApart 0 0 = isProp⊥ isPropApart (suc m) (suc n) = isPropApart m n isPropApart (suc _) 0 = isPropUnit isPropApart 0 (suc _) = isPropUnit _#_ : ∀{P : ℕ → Type ℓ} → (l r : Σ ℕ P) → Type (m , _) # (n , _) = apart m n #→≢ : ∀{P : ℕ → Type ℓ} → (l r : Σ ℕ P) → l # r → ¬ l ≡ r #→≢ (i , _) (j , _) d = apart→≢ i j d ∘ cong fst isProp# : ∀{P : ℕ → Type ℓ} (l r : Σ ℕ P) → isProp (l # r) isProp# (m , _) (n , _) = isPropApart m n isProp#Depᵣ : ∀{P : ℕ → Type ℓ} (r : Σ ℕ P) → isPropDep (_# r) isProp#Depᵣ r = isOfHLevel→isOfHLevelDep 1 (λ l → isProp# l r) {_} {_} Bounded : Conat → Type Bounded m = Σ[ n ∈ ℕ ] n ≺ m Bounded′ : Conat′ → Type Bounded′ m = Σ[ n ∈ ℕ ] n ≺′ m discreteB′ : ∀ m → (i j : Bounded′ m) → (i ≡ j) ⊎ (i # j) discreteB′ m (i , i≺m) (j , j≺m) with discreteℕ i j ... | yes p = inl λ i → p i , isPropDep≺′ m i≺m j≺m p i ... | no ¬p = inr (≢→apart i j ¬p) ≺∞ : ∀ n → n ≺ ∞ ≺∞ zero = _ ≺∞ (suc n) = ≺∞ n Σ≺∞≃ℕ : Bounded ∞ ≃ ℕ Σ≺∞≃ℕ = isoToEquiv λ where .fun → fst .inv n → n , ≺∞ n .rightInv _ → refl .leftInv (n , p) i → λ where .fst → n .snd → isProp≺ n ∞ (≺∞ n) p i where open Iso Σ≺∞≡ℕ : Bounded ∞ ≡ ℕ Σ≺∞≡ℕ = ua Σ≺∞≃ℕ _≺?_ : ∀ n c → Dec (n ≺ c) n ≺? c with force c _ ≺? c | czero = no (idfun ⊥) zero ≺? c | csuc d = yes _ suc n ≺? c | csuc d = n ≺? d ≺-pred : ∀ n c → suc n ≺ c → n ≺ c ≺-pred n c sn≺c with force c ≺-pred zero c sn≺c | csuc d = _ ≺-pred (suc n) c sn≺c | csuc d = ≺-pred n d sn≺c ≺?-yes : ∀ n c → (p : n ≺ c) → n ≺? c ≡ yes p ≺?-yes n c p with force c ≺?-yes zero c p | csuc c' = refl ≺?-yes (suc n) c p | csuc c' = ≺?-yes n c' p ∀≺-same : ∀ m n → (∀ k → (k ≺ m) ≡ (k ≺ n)) → m ≡ n ∀≺-same m n ∀≺ i .force with force m | force n ... | czero | czero = czero ... | csuc o | csuc p = csuc (∀≺-same o p (∀≺ ∘ suc) i) ... | csuc o | czero = Empty.rec {A = csuc o ≡ czero} (transport (∀≺ 0) _) i ... | czero | csuc p = Empty.rec {A = czero ≡ csuc p} (transport⁻ (∀≺ 0) _) i Bounded→Fin : ∀ m → Bounded (embed m) → Fin.Fin m Bounded→Fin (suc m) (0 , 0≺m) = Fin.zero Bounded→Fin (suc m) (suc n , n≺m) = Fin.suc (Bounded→Fin m (n , n≺m)) module Untangle {m n} (f : Bounded′ (csuc m) → Bounded′ (csuc n)) (g : Bounded′ (csuc n) → Bounded′ (csuc m)) (rinv : section f g) (linv : retract f g) where bzro : ∀{k} → Bounded′ (csuc k) bzro = (zero , _) bsuc : ∀{k} → Bounded k → Bounded′ (csuc k) bsuc (l , l≺k) = (suc l , l≺k) #-f : ∀ v u → v # u → f v # f u #-f v u v#u with discreteB′ (csuc n) (f v) (f u) ... | inr fv#fu = fv#fu ... | inl fv≡fu = rec (#→≢ v u v#u (sym (linv v) ∙∙ cong g (fv≡fu) ∙∙ linv u)) #-g : ∀ v u → v # u → g v # g u #-g v u v#u with discreteB′ (csuc m) (g v) (g u) ... | inr gv#gu = gv#gu ... | inl gv≡gu = rec (#→≢ v u v#u (sym (rinv v) ∙∙ cong f (gv≡gu) ∙∙ rinv u)) #-fg : ∀ v u → v # u → f (g v) # f (g u) #-fg v u = #-f (g v) (g u) ∘ #-g v u #-gf : ∀ v u → v # u → g (f v) # g (f u) #-gf v u = #-g (f v) (f u) ∘ #-f v u default : ∀{k} → (v d : Bounded′ (csuc k)) → v # d → Bounded k default (suc l , l≺n) d _ = (l , l≺n) default (0 , _) (suc l , l≺n) _ = (l , l≺n) f- : Bounded m → Bounded n f- v = default (f (bsuc v)) (f bzro) (#-f (bsuc v) bzro _) g- : Bounded n → Bounded m g- v = default (g (bsuc v)) (g bzro) (#-g (bsuc v) bzro _) g-f-z : ∀ v u → g bzro ≡ bsuc v → g (bsuc u) ≡ bzro → g- u ≡ v g-f-z (l , l≺m) u p q with g (bsuc u) | g bzro | #-g (bsuc u) bzro _ ... | zero , _ | suc k , k≺m | #gf = λ where i .fst → predℕ (p i .fst) i .snd → isPropDep≺ m k≺m l≺m (cong (predℕ ∘ fst) p) i ... | w@(suc k , k≺m) | dg | #gf = rec (snotz (cong fst q)) g-f-s : ∀ v u → g (bsuc u) ≡ bsuc v → g- u ≡ v g-f-s (l , l≺m) u p with g (bsuc u) | #-g (bsuc u) bzro _ ... | suc k , k≺m | #gf = λ where i .fst → predℕ (p i .fst) i .snd → isPropDep≺ m k≺m l≺m (cong (predℕ ∘ fst) p) i ... | zero , k≺m | #gf = rec (znots (cong fst p)) g-f- : ∀ v → g- (f- v) ≡ v g-f- v@(i , i≺m) with f (bsuc v) | linv (bsuc v) | #-f (bsuc v) bzro _ ... | suc j , j≺m | p | #f = g-f-s v (j , j≺m) p ... | zero , _ | p | #f with f bzro | linv bzro ... | suc k , k≺n | q = g-f-z v (k , k≺n) p q f-g-z : ∀ v u → f bzro ≡ bsuc v → f (bsuc u) ≡ bzro → f- u ≡ v f-g-z (l , l≺n) u p q with f (bsuc u) | f bzro | #-f (bsuc u) bzro _ ... | zero , _ | suc k , k≺n | #fg = λ where i .fst → predℕ (p i .fst) i .snd → isPropDep≺ n k≺n l≺n (cong (predℕ ∘ fst) p) i ... | w@(suc k , k≺m) | df | #fg = rec (snotz (cong fst q)) f-g-s : ∀ v u → f (bsuc u) ≡ bsuc v → f- u ≡ v f-g-s (l , l≺n) u p with f (bsuc u) | #-f (bsuc u) bzro _ ... | suc k , k≺n | _ = λ where i .fst → predℕ (p i .fst) i .snd → isPropDep≺ n k≺n l≺n (cong (predℕ ∘ fst) p) i ... | zero , k≺m | _ = rec (znots (cong fst p)) f-g- : ∀ v → f- (g- v) ≡ v f-g- v@(i , i≺n) with g (bsuc v) | rinv (bsuc v) | #-g (bsuc v) bzro _ ... | suc j , j≺m | p | #g = f-g-s v (j , j≺m) p ... | zero , _ | p | #g with g bzro | rinv bzro ... | suc k , k≺m | q = f-g-z v (k , k≺m) p q open Iso iso- : Iso (Bounded m) (Bounded n) iso- .fun = f- iso- .inv = g- iso- .rightInv = f-g- iso- .leftInv = g-f- untangled : ∀{m n} → Iso (Bounded′ (csuc m)) (Bounded′ (csuc n)) → Iso (Bounded m) (Bounded n) untangled isom = Untangle.iso- fun inv rightInv leftInv where open Iso isom Bounded-inj-iso : ∀ m n → Iso (Bounded m) (Bounded n) → m ≡ n Bounded-inj-iso m n theIso i .force with force m | force n ... | czero | czero = czero ... | csuc l | csuc r = csuc (Bounded-inj-iso l r (untangled theIso) i) ... | czero | csuc r = rec {A = czero ≡ csuc r} (Iso.inv theIso (zero , _) .snd) i ... | csuc l | czero = rec {A = csuc l ≡ czero} (Iso.fun theIso (zero , _) .snd) i Bounded-inj : ∀ m n → Bounded m ≡ Bounded n → m ≡ n Bounded-inj m n = Bounded-inj-iso m n ∘ pathToIso
{ "alphanum_fraction": 0.5223402893, "avg_line_length": 31.244, "ext": "agda", "hexsha": "1b9d6808c918281eb86ef37f4cc605a6bc678fde", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Codata/Conat/Bounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Codata/Conat/Bounded.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Codata/Conat/Bounded.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 3728, "size": 7811 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) open import Categories.Functor.Bifunctor using (Bifunctor) module Categories.Category.Construction.Wedges {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where open import Level open import Categories.Category.Core using (Category) open import Categories.Diagram.Wedge F Wedges : Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) e′ Wedges = record { Obj = Wedge ; _⇒_ = Wedge-Morphism ; _≈_ = λ M N → u M ≈ u N ; id = Wedge-id ; _∘_ = Wedge-Morphism-∘ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = Equiv.refl ; sym = Equiv.sym ; trans = Equiv.trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Wedge-Morphism open Category D
{ "alphanum_fraction": 0.6374722838, "avg_line_length": 28.1875, "ext": "agda", "hexsha": "4a5f1ae1cf52e292b1920f6c8db6249724fdfb13", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Wedges.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Wedges.agda", "max_line_length": 108, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Wedges.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 339, "size": 902 }
module Text.Greek.SBLGNT.2Cor where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΚΟΡΙΝΘΙΟΥΣ-Β : List (Word) ΠΡΟΣ-ΚΟΡΙΝΘΙΟΥΣ-Β = word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Cor.1.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Cor.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.1.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.1.1" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.1.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.1" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ς ∷ []) "2Cor.1.1" ∷ word (ὁ ∷ []) "2Cor.1.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "2Cor.1.1" ∷ word (τ ∷ ῇ ∷ []) "2Cor.1.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "2Cor.1.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.1.1" ∷ word (τ ∷ ῇ ∷ []) "2Cor.1.1" ∷ word (ο ∷ ὔ ∷ σ ∷ ῃ ∷ []) "2Cor.1.1" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.1" ∷ word (Κ ∷ ο ∷ ρ ∷ ί ∷ ν ∷ θ ∷ ῳ ∷ []) "2Cor.1.1" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "2Cor.1.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.1.1" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.1.1" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.1.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.1.1" ∷ word (ο ∷ ὖ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.1.1" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.1" ∷ word (ὅ ∷ ∙λ ∷ ῃ ∷ []) "2Cor.1.1" ∷ word (τ ∷ ῇ ∷ []) "2Cor.1.1" ∷ word (Ἀ ∷ χ ∷ α ∷ ΐ ∷ ᾳ ∷ []) "2Cor.1.1" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Cor.1.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.2" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "2Cor.1.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.1.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.1.2" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.1.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.2" ∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.1.3" ∷ word (ὁ ∷ []) "2Cor.1.3" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.3" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "2Cor.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.3" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.1.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.1.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.3" ∷ word (ὁ ∷ []) "2Cor.1.3" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "2Cor.1.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.1.3" ∷ word (ο ∷ ἰ ∷ κ ∷ τ ∷ ι ∷ ρ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.3" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.1.3" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "2Cor.1.3" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.1.3" ∷ word (ὁ ∷ []) "2Cor.1.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Cor.1.4" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.1.4" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Cor.1.4" ∷ word (τ ∷ ῇ ∷ []) "2Cor.1.4" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "2Cor.1.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.1.4" ∷ word (τ ∷ ὸ ∷ []) "2Cor.1.4" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.1.4" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Cor.1.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.1.4" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.4" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Cor.1.4" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "2Cor.1.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.1.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.1.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.1.4" ∷ word (ἧ ∷ ς ∷ []) "2Cor.1.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.1.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "2Cor.1.4" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Cor.1.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.1.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.1.5" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.1.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "2Cor.1.5" ∷ word (τ ∷ ὰ ∷ []) "2Cor.1.5" ∷ word (π ∷ α ∷ θ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Cor.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.1.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.5" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Cor.1.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "2Cor.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.5" ∷ word (ἡ ∷ []) "2Cor.1.5" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "2Cor.1.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.5" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.1.6" ∷ word (δ ∷ ὲ ∷ []) "2Cor.1.6" ∷ word (θ ∷ ∙λ ∷ ι ∷ β ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.1.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.1.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.1.6" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.6" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.1.6" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.1.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.1.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.1.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.1.6" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.1.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.1.6" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "2Cor.1.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.6" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "2Cor.1.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.1.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.1.6" ∷ word (π ∷ α ∷ θ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.1.6" ∷ word (ὧ ∷ ν ∷ []) "2Cor.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.6" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.1.6" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.7" ∷ word (ἡ ∷ []) "2Cor.1.7" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ὶ ∷ ς ∷ []) "2Cor.1.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.7" ∷ word (β ∷ ε ∷ β ∷ α ∷ ί ∷ α ∷ []) "2Cor.1.7" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.1.7" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.7" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.1.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.1.7" ∷ word (ὡ ∷ ς ∷ []) "2Cor.1.7" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ο ∷ ί ∷ []) "2Cor.1.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.1.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.1.7" ∷ word (π ∷ α ∷ θ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.1.7" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Cor.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.1.7" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.1.7" ∷ word (Ο ∷ ὐ ∷ []) "2Cor.1.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.1.8" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.8" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ ν ∷ []) "2Cor.1.8" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Cor.1.8" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.1.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.1.8" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.1.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.1.8" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "2Cor.1.8" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.8" ∷ word (τ ∷ ῇ ∷ []) "2Cor.1.8" ∷ word (Ἀ ∷ σ ∷ ί ∷ ᾳ ∷ []) "2Cor.1.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.1.8" ∷ word (κ ∷ α ∷ θ ∷ []) "2Cor.1.8" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "2Cor.1.8" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.1.8" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "2Cor.1.8" ∷ word (ἐ ∷ β ∷ α ∷ ρ ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.8" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.1.8" ∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ ο ∷ ρ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.1.8" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.8" ∷ word (ζ ∷ ῆ ∷ ν ∷ []) "2Cor.1.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "2Cor.1.9" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.1.9" ∷ word (τ ∷ ὸ ∷ []) "2Cor.1.9" ∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ρ ∷ ι ∷ μ ∷ α ∷ []) "2Cor.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.9" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.1.9" ∷ word (ἐ ∷ σ ∷ χ ∷ ή ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.1.9" ∷ word (μ ∷ ὴ ∷ []) "2Cor.1.9" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.1.9" ∷ word (ὦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.9" ∷ word (ἐ ∷ φ ∷ []) "2Cor.1.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.1.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.1.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.1.9" ∷ word (τ ∷ ῷ ∷ []) "2Cor.1.9" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.1.9" ∷ word (τ ∷ ῷ ∷ []) "2Cor.1.9" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "2Cor.1.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.1.9" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "2Cor.1.9" ∷ word (ὃ ∷ ς ∷ []) "2Cor.1.10" ∷ word (ἐ ∷ κ ∷ []) "2Cor.1.10" ∷ word (τ ∷ η ∷ ∙λ ∷ ι ∷ κ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.1.10" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.1.10" ∷ word (ἐ ∷ ρ ∷ ρ ∷ ύ ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "2Cor.1.10" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.10" ∷ word (ῥ ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.1.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.1.10" ∷ word (ὃ ∷ ν ∷ []) "2Cor.1.10" ∷ word (ἠ ∷ ∙λ ∷ π ∷ ί ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.10" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "2Cor.1.10" ∷ word (ῥ ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.1.10" ∷ word (σ ∷ υ ∷ ν ∷ υ ∷ π ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.11" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.1.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.11" ∷ word (τ ∷ ῇ ∷ []) "2Cor.1.11" ∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.1.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.1.11" ∷ word (ἐ ∷ κ ∷ []) "2Cor.1.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Cor.1.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "2Cor.1.11" ∷ word (τ ∷ ὸ ∷ []) "2Cor.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.1.11" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.11" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "2Cor.1.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.1.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Cor.1.11" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ η ∷ θ ∷ ῇ ∷ []) "2Cor.1.11" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.1.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.11" ∷ word (Ἡ ∷ []) "2Cor.1.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.1.12" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "2Cor.1.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.12" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "2Cor.1.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "2Cor.1.12" ∷ word (τ ∷ ὸ ∷ []) "2Cor.1.12" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.1.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.1.12" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.1.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.1.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.12" ∷ word (ἁ ∷ γ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "2Cor.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.12" ∷ word (ε ∷ ἰ ∷ ∙λ ∷ ι ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Cor.1.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.1.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.1.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.12" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ ᾳ ∷ []) "2Cor.1.12" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ι ∷ κ ∷ ῇ ∷ []) "2Cor.1.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.1.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.12" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "2Cor.1.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.1.12" ∷ word (ἀ ∷ ν ∷ ε ∷ σ ∷ τ ∷ ρ ∷ ά ∷ φ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.12" ∷ word (τ ∷ ῷ ∷ []) "2Cor.1.12" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "2Cor.1.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "2Cor.1.12" ∷ word (δ ∷ ὲ ∷ []) "2Cor.1.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.1.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.12" ∷ word (ο ∷ ὐ ∷ []) "2Cor.1.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.1.13" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "2Cor.1.13" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.1.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.1.13" ∷ word (ἢ ∷ []) "2Cor.1.13" ∷ word (ἃ ∷ []) "2Cor.1.13" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.1.13" ∷ word (ἢ ∷ []) "2Cor.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.13" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.1.13" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "2Cor.1.13" ∷ word (δ ∷ ὲ ∷ []) "2Cor.1.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.1.13" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "2Cor.1.13" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.1.13" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.1.13" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.14" ∷ word (ἐ ∷ π ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "2Cor.1.14" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.1.14" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.1.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.1.14" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ []) "2Cor.1.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.14" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.14" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "2Cor.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.14" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.1.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.14" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.14" ∷ word (τ ∷ ῇ ∷ []) "2Cor.1.14" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "2Cor.1.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.14" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.1.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.1.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "2Cor.1.15" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "2Cor.1.15" ∷ word (τ ∷ ῇ ∷ []) "2Cor.1.15" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.1.15" ∷ word (ἐ ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "2Cor.1.15" ∷ word (π ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.1.15" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.1.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.15" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Cor.1.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.1.15" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "2Cor.1.15" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Cor.1.15" ∷ word (σ ∷ χ ∷ ῆ ∷ τ ∷ ε ∷ []) "2Cor.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.16" ∷ word (δ ∷ ι ∷ []) "2Cor.1.16" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.16" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Cor.1.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.1.16" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Cor.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.16" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "2Cor.1.16" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.1.16" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "2Cor.1.16" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Cor.1.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.1.16" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.16" ∷ word (ὑ ∷ φ ∷ []) "2Cor.1.16" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.16" ∷ word (π ∷ ρ ∷ ο ∷ π ∷ ε ∷ μ ∷ φ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.1.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.1.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.1.16" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "2Cor.1.16" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.1.17" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Cor.1.17" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.1.17" ∷ word (μ ∷ ή ∷ τ ∷ ι ∷ []) "2Cor.1.17" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "2Cor.1.17" ∷ word (τ ∷ ῇ ∷ []) "2Cor.1.17" ∷ word (ἐ ∷ ∙λ ∷ α ∷ φ ∷ ρ ∷ ί ∷ ᾳ ∷ []) "2Cor.1.17" ∷ word (ἐ ∷ χ ∷ ρ ∷ η ∷ σ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "2Cor.1.17" ∷ word (ἢ ∷ []) "2Cor.1.17" ∷ word (ἃ ∷ []) "2Cor.1.17" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.1.17" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.1.17" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "2Cor.1.17" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.1.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.1.17" ∷ word (ᾖ ∷ []) "2Cor.1.17" ∷ word (π ∷ α ∷ ρ ∷ []) "2Cor.1.17" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "2Cor.1.17" ∷ word (τ ∷ ὸ ∷ []) "2Cor.1.17" ∷ word (Ν ∷ α ∷ ὶ ∷ []) "2Cor.1.17" ∷ word (ν ∷ α ∷ ὶ ∷ []) "2Cor.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.17" ∷ word (τ ∷ ὸ ∷ []) "2Cor.1.17" ∷ word (Ο ∷ ὒ ∷ []) "2Cor.1.17" ∷ word (ο ∷ ὔ ∷ []) "2Cor.1.17" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.1.18" ∷ word (δ ∷ ὲ ∷ []) "2Cor.1.18" ∷ word (ὁ ∷ []) "2Cor.1.18" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.1.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.1.18" ∷ word (ὁ ∷ []) "2Cor.1.18" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "2Cor.1.18" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.18" ∷ word (ὁ ∷ []) "2Cor.1.18" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.1.18" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.18" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.1.18" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Cor.1.18" ∷ word (Ν ∷ α ∷ ὶ ∷ []) "2Cor.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.18" ∷ word (Ο ∷ ὔ ∷ []) "2Cor.1.18" ∷ word (ὁ ∷ []) "2Cor.1.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.1.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.1.19" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "2Cor.1.19" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "2Cor.1.19" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.1.19" ∷ word (ὁ ∷ []) "2Cor.1.19" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.19" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.1.19" ∷ word (δ ∷ ι ∷ []) "2Cor.1.19" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.19" ∷ word (κ ∷ η ∷ ρ ∷ υ ∷ χ ∷ θ ∷ ε ∷ ί ∷ ς ∷ []) "2Cor.1.19" ∷ word (δ ∷ ι ∷ []) "2Cor.1.19" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Cor.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.19" ∷ word (Σ ∷ ι ∷ ∙λ ∷ ο ∷ υ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "2Cor.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.19" ∷ word (Τ ∷ ι ∷ μ ∷ ο ∷ θ ∷ έ ∷ ο ∷ υ ∷ []) "2Cor.1.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.1.19" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "2Cor.1.19" ∷ word (Ν ∷ α ∷ ὶ ∷ []) "2Cor.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.19" ∷ word (Ο ∷ ὒ ∷ []) "2Cor.1.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.1.19" ∷ word (Ν ∷ α ∷ ὶ ∷ []) "2Cor.1.19" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Cor.1.19" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "2Cor.1.19" ∷ word (ὅ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.1.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.1.20" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ι ∷ []) "2Cor.1.20" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.1.20" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Cor.1.20" ∷ word (τ ∷ ὸ ∷ []) "2Cor.1.20" ∷ word (Ν ∷ α ∷ ί ∷ []) "2Cor.1.20" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "2Cor.1.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.20" ∷ word (δ ∷ ι ∷ []) "2Cor.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.20" ∷ word (τ ∷ ὸ ∷ []) "2Cor.1.20" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "2Cor.1.20" ∷ word (τ ∷ ῷ ∷ []) "2Cor.1.20" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.1.20" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.1.20" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "2Cor.1.20" ∷ word (δ ∷ ι ∷ []) "2Cor.1.20" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.20" ∷ word (ὁ ∷ []) "2Cor.1.21" ∷ word (δ ∷ ὲ ∷ []) "2Cor.1.21" ∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "2Cor.1.21" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.21" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "2Cor.1.21" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.1.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.1.21" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Cor.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.21" ∷ word (χ ∷ ρ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "2Cor.1.21" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.21" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "2Cor.1.21" ∷ word (ὁ ∷ []) "2Cor.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.22" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.1.22" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.1.22" ∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.1.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.1.22" ∷ word (ἀ ∷ ρ ∷ ρ ∷ α ∷ β ∷ ῶ ∷ ν ∷ α ∷ []) "2Cor.1.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.1.22" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.1.22" ∷ word (ἐ ∷ ν ∷ []) "2Cor.1.22" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.1.22" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.1.22" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.22" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "2Cor.1.23" ∷ word (δ ∷ ὲ ∷ []) "2Cor.1.23" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ α ∷ []) "2Cor.1.23" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.1.23" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "2Cor.1.23" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "2Cor.1.23" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.1.23" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.1.23" ∷ word (ἐ ∷ μ ∷ ὴ ∷ ν ∷ []) "2Cor.1.23" ∷ word (ψ ∷ υ ∷ χ ∷ ή ∷ ν ∷ []) "2Cor.1.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.1.23" ∷ word (φ ∷ ε ∷ ι ∷ δ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.1.23" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.23" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "2Cor.1.23" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "2Cor.1.23" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.1.23" ∷ word (Κ ∷ ό ∷ ρ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ν ∷ []) "2Cor.1.23" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Cor.1.24" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.1.24" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.1.24" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.1.24" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.1.24" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ί ∷ []) "2Cor.1.24" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.1.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.1.24" ∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "2Cor.1.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.1.24" ∷ word (τ ∷ ῇ ∷ []) "2Cor.1.24" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.1.24" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "2Cor.1.24" ∷ word (ἑ ∷ σ ∷ τ ∷ ή ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "2Cor.1.24" ∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ α ∷ []) "2Cor.2.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.2.1" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "2Cor.2.1" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.2.1" ∷ word (τ ∷ ὸ ∷ []) "2Cor.2.1" ∷ word (μ ∷ ὴ ∷ []) "2Cor.2.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "2Cor.2.1" ∷ word (ἐ ∷ ν ∷ []) "2Cor.2.1" ∷ word (∙λ ∷ ύ ∷ π ∷ ῃ ∷ []) "2Cor.2.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.2.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.2.1" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Cor.2.1" ∷ word (ε ∷ ἰ ∷ []) "2Cor.2.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.2.2" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2Cor.2.2" ∷ word (∙λ ∷ υ ∷ π ∷ ῶ ∷ []) "2Cor.2.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.2.2" ∷ word (τ ∷ ί ∷ ς ∷ []) "2Cor.2.2" ∷ word (ὁ ∷ []) "2Cor.2.2" ∷ word (ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "2Cor.2.2" ∷ word (μ ∷ ε ∷ []) "2Cor.2.2" ∷ word (ε ∷ ἰ ∷ []) "2Cor.2.2" ∷ word (μ ∷ ὴ ∷ []) "2Cor.2.2" ∷ word (ὁ ∷ []) "2Cor.2.2" ∷ word (∙λ ∷ υ ∷ π ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.2.2" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.2.2" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Cor.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.2.3" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "2Cor.2.3" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.2.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "2Cor.2.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.2.3" ∷ word (μ ∷ ὴ ∷ []) "2Cor.2.3" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "2Cor.2.3" ∷ word (∙λ ∷ ύ ∷ π ∷ η ∷ ν ∷ []) "2Cor.2.3" ∷ word (σ ∷ χ ∷ ῶ ∷ []) "2Cor.2.3" ∷ word (ἀ ∷ φ ∷ []) "2Cor.2.3" ∷ word (ὧ ∷ ν ∷ []) "2Cor.2.3" ∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ []) "2Cor.2.3" ∷ word (μ ∷ ε ∷ []) "2Cor.2.3" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "2Cor.2.3" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.2.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.2.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Cor.2.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.2.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.2.3" ∷ word (ἡ ∷ []) "2Cor.2.3" ∷ word (ἐ ∷ μ ∷ ὴ ∷ []) "2Cor.2.3" ∷ word (χ ∷ α ∷ ρ ∷ ὰ ∷ []) "2Cor.2.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.2.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.2.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Cor.2.3" ∷ word (ἐ ∷ κ ∷ []) "2Cor.2.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.2.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "2Cor.2.4" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.2.4" ∷ word (σ ∷ υ ∷ ν ∷ ο ∷ χ ∷ ῆ ∷ ς ∷ []) "2Cor.2.4" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.2.4" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "2Cor.2.4" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.2.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.2.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Cor.2.4" ∷ word (δ ∷ α ∷ κ ∷ ρ ∷ ύ ∷ ω ∷ ν ∷ []) "2Cor.2.4" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Cor.2.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.2.4" ∷ word (∙λ ∷ υ ∷ π ∷ η ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "2Cor.2.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.2.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.2.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "2Cor.2.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.2.4" ∷ word (γ ∷ ν ∷ ῶ ∷ τ ∷ ε ∷ []) "2Cor.2.4" ∷ word (ἣ ∷ ν ∷ []) "2Cor.2.4" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "2Cor.2.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "2Cor.2.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.2.4" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.2.4" ∷ word (Ε ∷ ἰ ∷ []) "2Cor.2.5" ∷ word (δ ∷ έ ∷ []) "2Cor.2.5" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.2.5" ∷ word (∙λ ∷ ε ∷ ∙λ ∷ ύ ∷ π ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "2Cor.2.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.2.5" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "2Cor.2.5" ∷ word (∙λ ∷ ε ∷ ∙λ ∷ ύ ∷ π ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "2Cor.2.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.2.5" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.2.5" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.2.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.2.5" ∷ word (μ ∷ ὴ ∷ []) "2Cor.2.5" ∷ word (ἐ ∷ π ∷ ι ∷ β ∷ α ∷ ρ ∷ ῶ ∷ []) "2Cor.2.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Cor.2.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.2.5" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "2Cor.2.6" ∷ word (τ ∷ ῷ ∷ []) "2Cor.2.6" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "2Cor.2.6" ∷ word (ἡ ∷ []) "2Cor.2.6" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ι ∷ μ ∷ ί ∷ α ∷ []) "2Cor.2.6" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "2Cor.2.6" ∷ word (ἡ ∷ []) "2Cor.2.6" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Cor.2.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.2.6" ∷ word (π ∷ ∙λ ∷ ε ∷ ι ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "2Cor.2.6" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.2.7" ∷ word (τ ∷ ο ∷ ὐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ ο ∷ ν ∷ []) "2Cor.2.7" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.2.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.2.7" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.2.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.2.7" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.2.7" ∷ word (μ ∷ ή ∷ []) "2Cor.2.7" ∷ word (π ∷ ω ∷ ς ∷ []) "2Cor.2.7" ∷ word (τ ∷ ῇ ∷ []) "2Cor.2.7" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "2Cor.2.7" ∷ word (∙λ ∷ ύ ∷ π ∷ ῃ ∷ []) "2Cor.2.7" ∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ ο ∷ θ ∷ ῇ ∷ []) "2Cor.2.7" ∷ word (ὁ ∷ []) "2Cor.2.7" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.2.7" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "2Cor.2.8" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "2Cor.2.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.2.8" ∷ word (κ ∷ υ ∷ ρ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.2.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Cor.2.8" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "2Cor.2.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.2.9" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.2.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.2.9" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "2Cor.2.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.2.9" ∷ word (γ ∷ ν ∷ ῶ ∷ []) "2Cor.2.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.2.9" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "2Cor.2.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.2.9" ∷ word (ε ∷ ἰ ∷ []) "2Cor.2.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.2.9" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Cor.2.9" ∷ word (ὑ ∷ π ∷ ή ∷ κ ∷ ο ∷ ο ∷ ί ∷ []) "2Cor.2.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.2.9" ∷ word (ᾧ ∷ []) "2Cor.2.10" ∷ word (δ ∷ έ ∷ []) "2Cor.2.10" ∷ word (τ ∷ ι ∷ []) "2Cor.2.10" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.2.10" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "2Cor.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.2.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.2.10" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2Cor.2.10" ∷ word (ὃ ∷ []) "2Cor.2.10" ∷ word (κ ∷ ε ∷ χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ ι ∷ []) "2Cor.2.10" ∷ word (ε ∷ ἴ ∷ []) "2Cor.2.10" ∷ word (τ ∷ ι ∷ []) "2Cor.2.10" ∷ word (κ ∷ ε ∷ χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ ι ∷ []) "2Cor.2.10" ∷ word (δ ∷ ι ∷ []) "2Cor.2.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.2.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.2.10" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ῳ ∷ []) "2Cor.2.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.2.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.2.11" ∷ word (μ ∷ ὴ ∷ []) "2Cor.2.11" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ κ ∷ τ ∷ η ∷ θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.2.11" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Cor.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.2.11" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "2Cor.2.11" ∷ word (ο ∷ ὐ ∷ []) "2Cor.2.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.2.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.2.11" ∷ word (τ ∷ ὰ ∷ []) "2Cor.2.11" ∷ word (ν ∷ ο ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Cor.2.11" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.2.11" ∷ word (Ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "2Cor.2.12" ∷ word (δ ∷ ὲ ∷ []) "2Cor.2.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.2.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.2.12" ∷ word (Τ ∷ ρ ∷ ῳ ∷ ά ∷ δ ∷ α ∷ []) "2Cor.2.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.2.12" ∷ word (τ ∷ ὸ ∷ []) "2Cor.2.12" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.2.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.2.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.2.12" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ς ∷ []) "2Cor.2.12" ∷ word (μ ∷ ο ∷ ι ∷ []) "2Cor.2.12" ∷ word (ἀ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "2Cor.2.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.2.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Cor.2.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.2.13" ∷ word (ἔ ∷ σ ∷ χ ∷ η ∷ κ ∷ α ∷ []) "2Cor.2.13" ∷ word (ἄ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.2.13" ∷ word (τ ∷ ῷ ∷ []) "2Cor.2.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "2Cor.2.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.2.13" ∷ word (τ ∷ ῷ ∷ []) "2Cor.2.13" ∷ word (μ ∷ ὴ ∷ []) "2Cor.2.13" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Cor.2.13" ∷ word (μ ∷ ε ∷ []) "2Cor.2.13" ∷ word (Τ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.2.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.2.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ν ∷ []) "2Cor.2.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.2.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.2.13" ∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ α ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.2.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.2.13" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "2Cor.2.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.2.13" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Cor.2.13" ∷ word (Τ ∷ ῷ ∷ []) "2Cor.2.14" ∷ word (δ ∷ ὲ ∷ []) "2Cor.2.14" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.2.14" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Cor.2.14" ∷ word (τ ∷ ῷ ∷ []) "2Cor.2.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Cor.2.14" ∷ word (θ ∷ ρ ∷ ι ∷ α ∷ μ ∷ β ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "2Cor.2.14" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.2.14" ∷ word (ἐ ∷ ν ∷ []) "2Cor.2.14" ∷ word (τ ∷ ῷ ∷ []) "2Cor.2.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Cor.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.2.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.2.14" ∷ word (ὀ ∷ σ ∷ μ ∷ ὴ ∷ ν ∷ []) "2Cor.2.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.2.14" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.2.14" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ι ∷ []) "2Cor.2.14" ∷ word (δ ∷ ι ∷ []) "2Cor.2.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.2.14" ∷ word (ἐ ∷ ν ∷ []) "2Cor.2.14" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.2.14" ∷ word (τ ∷ ό ∷ π ∷ ῳ ∷ []) "2Cor.2.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.2.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.2.15" ∷ word (ε ∷ ὐ ∷ ω ∷ δ ∷ ί ∷ α ∷ []) "2Cor.2.15" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "2Cor.2.15" ∷ word (τ ∷ ῷ ∷ []) "2Cor.2.15" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.2.15" ∷ word (ἐ ∷ ν ∷ []) "2Cor.2.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.2.15" ∷ word (σ ∷ ῳ ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.2.15" ∷ word (ἐ ∷ ν ∷ []) "2Cor.2.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.2.15" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.2.15" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "2Cor.2.16" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "2Cor.2.16" ∷ word (ὀ ∷ σ ∷ μ ∷ ὴ ∷ []) "2Cor.2.16" ∷ word (ἐ ∷ κ ∷ []) "2Cor.2.16" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.2.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.2.16" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.2.16" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "2Cor.2.16" ∷ word (δ ∷ ὲ ∷ []) "2Cor.2.16" ∷ word (ὀ ∷ σ ∷ μ ∷ ὴ ∷ []) "2Cor.2.16" ∷ word (ἐ ∷ κ ∷ []) "2Cor.2.16" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "2Cor.2.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.2.16" ∷ word (ζ ∷ ω ∷ ή ∷ ν ∷ []) "2Cor.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.2.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.2.16" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Cor.2.16" ∷ word (τ ∷ ί ∷ ς ∷ []) "2Cor.2.16" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ό ∷ ς ∷ []) "2Cor.2.16" ∷ word (ο ∷ ὐ ∷ []) "2Cor.2.17" ∷ word (γ ∷ ά ∷ ρ ∷ []) "2Cor.2.17" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.2.17" ∷ word (ὡ ∷ ς ∷ []) "2Cor.2.17" ∷ word (ο ∷ ἱ ∷ []) "2Cor.2.17" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "2Cor.2.17" ∷ word (κ ∷ α ∷ π ∷ η ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.2.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.2.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "2Cor.2.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.2.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.2.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.2.17" ∷ word (ὡ ∷ ς ∷ []) "2Cor.2.17" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.2.17" ∷ word (ε ∷ ἰ ∷ ∙λ ∷ ι ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Cor.2.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.2.17" ∷ word (ὡ ∷ ς ∷ []) "2Cor.2.17" ∷ word (ἐ ∷ κ ∷ []) "2Cor.2.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.2.17" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "2Cor.2.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.2.17" ∷ word (ἐ ∷ ν ∷ []) "2Cor.2.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Cor.2.17" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.2.17" ∷ word (Ἀ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.3.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "2Cor.3.1" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.3.1" ∷ word (σ ∷ υ ∷ ν ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "2Cor.3.1" ∷ word (ἢ ∷ []) "2Cor.3.1" ∷ word (μ ∷ ὴ ∷ []) "2Cor.3.1" ∷ word (χ ∷ ρ ∷ ῄ ∷ ζ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.3.1" ∷ word (ὥ ∷ ς ∷ []) "2Cor.3.1" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "2Cor.3.1" ∷ word (σ ∷ υ ∷ σ ∷ τ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "2Cor.3.1" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Cor.3.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.3.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.3.1" ∷ word (ἢ ∷ []) "2Cor.3.1" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.3.1" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.3.1" ∷ word (ἡ ∷ []) "2Cor.3.2" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "2Cor.3.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.3.2" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.3.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.3.2" ∷ word (ἐ ∷ γ ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "2Cor.3.2" ∷ word (ἐ ∷ ν ∷ []) "2Cor.3.2" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.3.2" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.3.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.3.2" ∷ word (γ ∷ ι ∷ ν ∷ ω ∷ σ ∷ κ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "2Cor.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.3.2" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ω ∷ σ ∷ κ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "2Cor.3.2" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Cor.3.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.3.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "2Cor.3.2" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.3.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.3.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ὲ ∷ []) "2Cor.3.3" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "2Cor.3.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.3.3" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "2Cor.3.3" ∷ word (ὑ ∷ φ ∷ []) "2Cor.3.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.3.3" ∷ word (ἐ ∷ γ ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "2Cor.3.3" ∷ word (ο ∷ ὐ ∷ []) "2Cor.3.3" ∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ν ∷ ι ∷ []) "2Cor.3.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.3.3" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Cor.3.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.3.3" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.3.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.3.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.3.3" ∷ word (π ∷ ∙λ ∷ α ∷ ξ ∷ ὶ ∷ ν ∷ []) "2Cor.3.3" ∷ word (∙λ ∷ ι ∷ θ ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "2Cor.3.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.3.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.3.3" ∷ word (π ∷ ∙λ ∷ α ∷ ξ ∷ ὶ ∷ ν ∷ []) "2Cor.3.3" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.3.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "2Cor.3.3" ∷ word (Π ∷ ε ∷ π ∷ ο ∷ ί ∷ θ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.3.4" ∷ word (δ ∷ ὲ ∷ []) "2Cor.3.4" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "2Cor.3.4" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.3.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.3.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.3.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.3.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.3.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.3.4" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "2Cor.3.4" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Cor.3.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.3.5" ∷ word (ἀ ∷ φ ∷ []) "2Cor.3.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.3.5" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ο ∷ ί ∷ []) "2Cor.3.5" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.3.5" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ί ∷ []) "2Cor.3.5" ∷ word (τ ∷ ι ∷ []) "2Cor.3.5" ∷ word (ὡ ∷ ς ∷ []) "2Cor.3.5" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.3.5" ∷ word (α ∷ ὑ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.3.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.3.5" ∷ word (ἡ ∷ []) "2Cor.3.5" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "2Cor.3.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.3.5" ∷ word (ἐ ∷ κ ∷ []) "2Cor.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.3.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.3.5" ∷ word (ὃ ∷ ς ∷ []) "2Cor.3.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.3.6" ∷ word (ἱ ∷ κ ∷ ά ∷ ν ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.3.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.3.6" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.3.6" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ῆ ∷ ς ∷ []) "2Cor.3.6" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "2Cor.3.6" ∷ word (ο ∷ ὐ ∷ []) "2Cor.3.6" ∷ word (γ ∷ ρ ∷ ά ∷ μ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.3.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.3.6" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.3.6" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.3.6" ∷ word (γ ∷ ρ ∷ ά ∷ μ ∷ μ ∷ α ∷ []) "2Cor.3.6" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ έ ∷ ν ∷ ν ∷ ε ∷ ι ∷ []) "2Cor.3.6" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.6" ∷ word (δ ∷ ὲ ∷ []) "2Cor.3.6" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "2Cor.3.6" ∷ word (ζ ∷ ῳ ∷ ο ∷ π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "2Cor.3.6" ∷ word (Ε ∷ ἰ ∷ []) "2Cor.3.7" ∷ word (δ ∷ ὲ ∷ []) "2Cor.3.7" ∷ word (ἡ ∷ []) "2Cor.3.7" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ []) "2Cor.3.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.3.7" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.3.7" ∷ word (ἐ ∷ ν ∷ []) "2Cor.3.7" ∷ word (γ ∷ ρ ∷ ά ∷ μ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.3.7" ∷ word (ἐ ∷ ν ∷ τ ∷ ε ∷ τ ∷ υ ∷ π ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "2Cor.3.7" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.3.7" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "2Cor.3.7" ∷ word (ἐ ∷ ν ∷ []) "2Cor.3.7" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "2Cor.3.7" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.3.7" ∷ word (μ ∷ ὴ ∷ []) "2Cor.3.7" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.3.7" ∷ word (ἀ ∷ τ ∷ ε ∷ ν ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "2Cor.3.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.3.7" ∷ word (υ ∷ ἱ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.3.7" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "2Cor.3.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.3.7" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.7" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "2Cor.3.7" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "2Cor.3.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.3.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.3.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "2Cor.3.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.3.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "2Cor.3.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.3.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.3.7" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "2Cor.3.7" ∷ word (π ∷ ῶ ∷ ς ∷ []) "2Cor.3.8" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "2Cor.3.8" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.3.8" ∷ word (ἡ ∷ []) "2Cor.3.8" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ []) "2Cor.3.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.3.8" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.3.8" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.3.8" ∷ word (ἐ ∷ ν ∷ []) "2Cor.3.8" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "2Cor.3.8" ∷ word (ε ∷ ἰ ∷ []) "2Cor.3.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.3.9" ∷ word (τ ∷ ῇ ∷ []) "2Cor.3.9" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ ᾳ ∷ []) "2Cor.3.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.3.9" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.3.9" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "2Cor.3.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "2Cor.3.9" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.3.9" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "2Cor.3.9" ∷ word (ἡ ∷ []) "2Cor.3.9" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ []) "2Cor.3.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.3.9" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Cor.3.9" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "2Cor.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.3.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.3.10" ∷ word (ο ∷ ὐ ∷ []) "2Cor.3.10" ∷ word (δ ∷ ε ∷ δ ∷ ό ∷ ξ ∷ α ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.3.10" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.10" ∷ word (δ ∷ ε ∷ δ ∷ ο ∷ ξ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.3.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.3.10" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "2Cor.3.10" ∷ word (τ ∷ ῷ ∷ []) "2Cor.3.10" ∷ word (μ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "2Cor.3.10" ∷ word (ε ∷ ἵ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "2Cor.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.3.10" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "2Cor.3.10" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Cor.3.10" ∷ word (ε ∷ ἰ ∷ []) "2Cor.3.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.3.11" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.11" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.3.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.3.11" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Cor.3.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "2Cor.3.11" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.3.11" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.11" ∷ word (μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.3.11" ∷ word (ἐ ∷ ν ∷ []) "2Cor.3.11" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "2Cor.3.11" ∷ word (Ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.3.12" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Cor.3.12" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "2Cor.3.12" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "2Cor.3.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῇ ∷ []) "2Cor.3.12" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "2Cor.3.12" ∷ word (χ ∷ ρ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.3.13" ∷ word (ο ∷ ὐ ∷ []) "2Cor.3.13" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "2Cor.3.13" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "2Cor.3.13" ∷ word (ἐ ∷ τ ∷ ί ∷ θ ∷ ε ∷ ι ∷ []) "2Cor.3.13" ∷ word (κ ∷ ά ∷ ∙λ ∷ υ ∷ μ ∷ μ ∷ α ∷ []) "2Cor.3.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.3.13" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.13" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "2Cor.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.3.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.3.13" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.13" ∷ word (μ ∷ ὴ ∷ []) "2Cor.3.13" ∷ word (ἀ ∷ τ ∷ ε ∷ ν ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "2Cor.3.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.3.13" ∷ word (υ ∷ ἱ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.3.13" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "2Cor.3.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.3.13" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.13" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Cor.3.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.3.13" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "2Cor.3.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.3.14" ∷ word (ἐ ∷ π ∷ ω ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "2Cor.3.14" ∷ word (τ ∷ ὰ ∷ []) "2Cor.3.14" ∷ word (ν ∷ ο ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Cor.3.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.3.14" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "2Cor.3.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.3.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.3.14" ∷ word (σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.3.14" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "2Cor.3.14" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "2Cor.3.14" ∷ word (κ ∷ ά ∷ ∙λ ∷ υ ∷ μ ∷ μ ∷ α ∷ []) "2Cor.3.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.3.14" ∷ word (τ ∷ ῇ ∷ []) "2Cor.3.14" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.3.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.3.14" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ᾶ ∷ ς ∷ []) "2Cor.3.14" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "2Cor.3.14" ∷ word (μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "2Cor.3.14" ∷ word (μ ∷ ὴ ∷ []) "2Cor.3.14" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ π ∷ τ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.3.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.3.14" ∷ word (ἐ ∷ ν ∷ []) "2Cor.3.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Cor.3.14" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.3.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.3.15" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "2Cor.3.15" ∷ word (σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.3.15" ∷ word (ἡ ∷ ν ∷ ί ∷ κ ∷ α ∷ []) "2Cor.3.15" ∷ word (ἂ ∷ ν ∷ []) "2Cor.3.15" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Cor.3.15" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "2Cor.3.15" ∷ word (κ ∷ ά ∷ ∙λ ∷ υ ∷ μ ∷ μ ∷ α ∷ []) "2Cor.3.15" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.3.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.3.15" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.3.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.3.15" ∷ word (κ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.3.15" ∷ word (ἡ ∷ ν ∷ ί ∷ κ ∷ α ∷ []) "2Cor.3.16" ∷ word (δ ∷ ὲ ∷ []) "2Cor.3.16" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Cor.3.16" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ ῃ ∷ []) "2Cor.3.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.3.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.3.16" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ α ∷ ι ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.3.16" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.16" ∷ word (κ ∷ ά ∷ ∙λ ∷ υ ∷ μ ∷ μ ∷ α ∷ []) "2Cor.3.16" ∷ word (ὁ ∷ []) "2Cor.3.17" ∷ word (δ ∷ ὲ ∷ []) "2Cor.3.17" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Cor.3.17" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ ά ∷ []) "2Cor.3.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Cor.3.17" ∷ word (ο ∷ ὗ ∷ []) "2Cor.3.17" ∷ word (δ ∷ ὲ ∷ []) "2Cor.3.17" ∷ word (τ ∷ ὸ ∷ []) "2Cor.3.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "2Cor.3.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.3.17" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ρ ∷ ί ∷ α ∷ []) "2Cor.3.17" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.3.18" ∷ word (δ ∷ ὲ ∷ []) "2Cor.3.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.3.18" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "2Cor.3.18" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ῳ ∷ []) "2Cor.3.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.3.18" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "2Cor.3.18" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.3.18" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ π ∷ τ ∷ ρ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.3.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.3.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "2Cor.3.18" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "2Cor.3.18" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ μ ∷ ο ∷ ρ ∷ φ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.3.18" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.3.18" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Cor.3.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.3.18" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "2Cor.3.18" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "2Cor.3.18" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.3.18" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.3.18" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.3.18" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "2Cor.4.1" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.4.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.4.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.4.1" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Cor.4.1" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "2Cor.4.1" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.4.1" ∷ word (ἠ ∷ ∙λ ∷ ε ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.4.1" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.4.1" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ κ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.4.1" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.4.2" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ π ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.4.2" ∷ word (τ ∷ ὰ ∷ []) "2Cor.4.2" ∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὰ ∷ []) "2Cor.4.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.4.2" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Cor.4.2" ∷ word (μ ∷ ὴ ∷ []) "2Cor.4.2" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.4.2" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.2" ∷ word (π ∷ α ∷ ν ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ί ∷ ᾳ ∷ []) "2Cor.4.2" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "2Cor.4.2" ∷ word (δ ∷ ο ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.4.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.4.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "2Cor.4.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.4.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.4.2" ∷ word (τ ∷ ῇ ∷ []) "2Cor.4.2" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.4.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.4.2" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Cor.4.2" ∷ word (σ ∷ υ ∷ ν ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.4.2" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.4.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.4.2" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "2Cor.4.2" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.4.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "2Cor.4.2" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.4.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.4.2" ∷ word (ε ∷ ἰ ∷ []) "2Cor.4.3" ∷ word (δ ∷ ὲ ∷ []) "2Cor.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.4.3" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Cor.4.3" ∷ word (κ ∷ ε ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.4.3" ∷ word (τ ∷ ὸ ∷ []) "2Cor.4.3" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.4.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.4.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.3" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.4.3" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.4.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "2Cor.4.3" ∷ word (κ ∷ ε ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.4.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.4" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "2Cor.4.4" ∷ word (ὁ ∷ []) "2Cor.4.4" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.4.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.4" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.4.4" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.4.4" ∷ word (ἐ ∷ τ ∷ ύ ∷ φ ∷ ∙λ ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.4.4" ∷ word (τ ∷ ὰ ∷ []) "2Cor.4.4" ∷ word (ν ∷ ο ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Cor.4.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.4.4" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.4.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.4.4" ∷ word (τ ∷ ὸ ∷ []) "2Cor.4.4" ∷ word (μ ∷ ὴ ∷ []) "2Cor.4.4" ∷ word (α ∷ ὐ ∷ γ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "2Cor.4.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.4.4" ∷ word (φ ∷ ω ∷ τ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "2Cor.4.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.4" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.4.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.4.4" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Cor.4.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.4" ∷ word (ὅ ∷ ς ∷ []) "2Cor.4.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Cor.4.4" ∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "2Cor.4.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.4.4" ∷ word (ο ∷ ὐ ∷ []) "2Cor.4.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.4.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.4.5" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.4.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.4.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Cor.4.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "2Cor.4.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.4.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.4.5" ∷ word (δ ∷ ὲ ∷ []) "2Cor.4.5" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.4.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.4.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.4.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "2Cor.4.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.4.6" ∷ word (ὁ ∷ []) "2Cor.4.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.4.6" ∷ word (ὁ ∷ []) "2Cor.4.6" ∷ word (ε ∷ ἰ ∷ π ∷ ώ ∷ ν ∷ []) "2Cor.4.6" ∷ word (Ἐ ∷ κ ∷ []) "2Cor.4.6" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.4.6" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "2Cor.4.6" ∷ word (∙λ ∷ ά ∷ μ ∷ ψ ∷ ε ∷ ι ∷ []) "2Cor.4.6" ∷ word (ὃ ∷ ς ∷ []) "2Cor.4.6" ∷ word (ἔ ∷ ∙λ ∷ α ∷ μ ∷ ψ ∷ ε ∷ ν ∷ []) "2Cor.4.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.6" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.4.6" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.4.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.4.6" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.4.6" ∷ word (φ ∷ ω ∷ τ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "2Cor.4.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.4.6" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.4.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.4.6" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Cor.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.4.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.6" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ῳ ∷ []) "2Cor.4.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.6" ∷ word (Ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.4.7" ∷ word (δ ∷ ὲ ∷ []) "2Cor.4.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.4.7" ∷ word (θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "2Cor.4.7" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.4.7" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.7" ∷ word (ὀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ κ ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.4.7" ∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.4.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.4.7" ∷ word (ἡ ∷ []) "2Cor.4.7" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "2Cor.4.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.4.7" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.4.7" ∷ word (ᾖ ∷ []) "2Cor.4.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.4.7" ∷ word (μ ∷ ὴ ∷ []) "2Cor.4.7" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.4.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.4.7" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.8" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.4.8" ∷ word (θ ∷ ∙λ ∷ ι ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.4.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.4.8" ∷ word (ο ∷ ὐ ∷ []) "2Cor.4.8" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ο ∷ χ ∷ ω ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.4.8" ∷ word (ἀ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.4.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.4.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.4.8" ∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ ο ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.4.8" ∷ word (δ ∷ ι ∷ ω ∷ κ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.4.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.4.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.4.9" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ ι ∷ π ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.4.9" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.4.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.4.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.4.9" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.4.9" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Cor.4.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.4.10" ∷ word (ν ∷ έ ∷ κ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.4.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.4.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.10" ∷ word (τ ∷ ῷ ∷ []) "2Cor.4.10" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Cor.4.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.4.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.4.10" ∷ word (ἡ ∷ []) "2Cor.4.10" ∷ word (ζ ∷ ω ∷ ὴ ∷ []) "2Cor.4.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.4.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.10" ∷ word (τ ∷ ῷ ∷ []) "2Cor.4.10" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Cor.4.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.4.10" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "2Cor.4.10" ∷ word (ἀ ∷ ε ∷ ὶ ∷ []) "2Cor.4.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.4.11" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.4.11" ∷ word (ο ∷ ἱ ∷ []) "2Cor.4.11" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.4.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.4.11" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.4.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.4.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.4.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "2Cor.4.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.4.11" ∷ word (ἡ ∷ []) "2Cor.4.11" ∷ word (ζ ∷ ω ∷ ὴ ∷ []) "2Cor.4.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.4.11" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "2Cor.4.11" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.11" ∷ word (τ ∷ ῇ ∷ []) "2Cor.4.11" ∷ word (θ ∷ ν ∷ η ∷ τ ∷ ῇ ∷ []) "2Cor.4.11" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "2Cor.4.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.4.11" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.4.12" ∷ word (ὁ ∷ []) "2Cor.4.12" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.4.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.12" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.4.12" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.4.12" ∷ word (ἡ ∷ []) "2Cor.4.12" ∷ word (δ ∷ ὲ ∷ []) "2Cor.4.12" ∷ word (ζ ∷ ω ∷ ὴ ∷ []) "2Cor.4.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.4.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.4.12" ∷ word (Ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.4.13" ∷ word (δ ∷ ὲ ∷ []) "2Cor.4.13" ∷ word (τ ∷ ὸ ∷ []) "2Cor.4.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "2Cor.4.13" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "2Cor.4.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.4.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.4.13" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.4.13" ∷ word (τ ∷ ὸ ∷ []) "2Cor.4.13" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.4.13" ∷ word (Ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ []) "2Cor.4.13" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "2Cor.4.13" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ []) "2Cor.4.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.4.13" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.4.13" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.4.13" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "2Cor.4.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.4.13" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.4.13" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.4.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.4.14" ∷ word (ὁ ∷ []) "2Cor.4.14" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ α ∷ ς ∷ []) "2Cor.4.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.4.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "2Cor.4.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.4.14" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.4.14" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "2Cor.4.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.4.14" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "2Cor.4.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.4.14" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.4.14" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "2Cor.4.14" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.4.14" ∷ word (τ ∷ ὰ ∷ []) "2Cor.4.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.4.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Cor.4.15" ∷ word (δ ∷ ι ∷ []) "2Cor.4.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.4.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.4.15" ∷ word (ἡ ∷ []) "2Cor.4.15" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Cor.4.15" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ά ∷ σ ∷ α ∷ σ ∷ α ∷ []) "2Cor.4.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.4.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.4.15" ∷ word (π ∷ ∙λ ∷ ε ∷ ι ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "2Cor.4.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.4.15" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.4.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ []) "2Cor.4.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.4.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.4.15" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "2Cor.4.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.4.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.4.15" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "2Cor.4.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.4.16" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ κ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.4.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.4.16" ∷ word (ε ∷ ἰ ∷ []) "2Cor.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.4.16" ∷ word (ὁ ∷ []) "2Cor.4.16" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "2Cor.4.16" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.4.16" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "2Cor.4.16" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.4.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.4.16" ∷ word (ὁ ∷ []) "2Cor.4.16" ∷ word (ἔ ∷ σ ∷ ω ∷ []) "2Cor.4.16" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.4.16" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ α ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.4.16" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "2Cor.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.4.16" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "2Cor.4.16" ∷ word (τ ∷ ὸ ∷ []) "2Cor.4.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.4.17" ∷ word (π ∷ α ∷ ρ ∷ α ∷ υ ∷ τ ∷ ί ∷ κ ∷ α ∷ []) "2Cor.4.17" ∷ word (ἐ ∷ ∙λ ∷ α ∷ φ ∷ ρ ∷ ὸ ∷ ν ∷ []) "2Cor.4.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.4.17" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.4.17" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.4.17" ∷ word (κ ∷ α ∷ θ ∷ []) "2Cor.4.17" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "2Cor.4.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.4.17" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "2Cor.4.17" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.4.17" ∷ word (β ∷ ά ∷ ρ ∷ ο ∷ ς ∷ []) "2Cor.4.17" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Cor.4.17" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.4.17" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.4.17" ∷ word (μ ∷ ὴ ∷ []) "2Cor.4.18" ∷ word (σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.4.18" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.4.18" ∷ word (τ ∷ ὰ ∷ []) "2Cor.4.18" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "2Cor.4.18" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.4.18" ∷ word (τ ∷ ὰ ∷ []) "2Cor.4.18" ∷ word (μ ∷ ὴ ∷ []) "2Cor.4.18" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "2Cor.4.18" ∷ word (τ ∷ ὰ ∷ []) "2Cor.4.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.4.18" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "2Cor.4.18" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ α ∷ ι ∷ ρ ∷ α ∷ []) "2Cor.4.18" ∷ word (τ ∷ ὰ ∷ []) "2Cor.4.18" ∷ word (δ ∷ ὲ ∷ []) "2Cor.4.18" ∷ word (μ ∷ ὴ ∷ []) "2Cor.4.18" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "2Cor.4.18" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ α ∷ []) "2Cor.4.18" ∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.5.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.5.1" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Cor.5.1" ∷ word (ἡ ∷ []) "2Cor.5.1" ∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ε ∷ ι ∷ ο ∷ ς ∷ []) "2Cor.5.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.5.1" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ []) "2Cor.5.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.1" ∷ word (σ ∷ κ ∷ ή ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.5.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ υ ∷ θ ∷ ῇ ∷ []) "2Cor.5.1" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "2Cor.5.1" ∷ word (ἐ ∷ κ ∷ []) "2Cor.5.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.5.1" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.1" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.5.1" ∷ word (ἀ ∷ χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.5.1" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.5.1" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.5.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.5.2" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.2" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "2Cor.5.2" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ά ∷ ζ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.2" ∷ word (τ ∷ ὸ ∷ []) "2Cor.5.2" ∷ word (ο ∷ ἰ ∷ κ ∷ η ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.5.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.5.2" ∷ word (τ ∷ ὸ ∷ []) "2Cor.5.2" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.5.2" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "2Cor.5.2" ∷ word (ἐ ∷ π ∷ ε ∷ ν ∷ δ ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.5.2" ∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ο ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.2" ∷ word (ε ∷ ἴ ∷ []) "2Cor.5.3" ∷ word (γ ∷ ε ∷ []) "2Cor.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.3" ∷ word (ἐ ∷ ν ∷ δ ∷ υ ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.5.3" ∷ word (ο ∷ ὐ ∷ []) "2Cor.5.3" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ο ∷ ὶ ∷ []) "2Cor.5.3" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.5.4" ∷ word (ο ∷ ἱ ∷ []) "2Cor.5.4" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.4" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.4" ∷ word (τ ∷ ῷ ∷ []) "2Cor.5.4" ∷ word (σ ∷ κ ∷ ή ∷ ν ∷ ε ∷ ι ∷ []) "2Cor.5.4" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ά ∷ ζ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.4" ∷ word (β ∷ α ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.5.4" ∷ word (ἐ ∷ φ ∷ []) "2Cor.5.4" ∷ word (ᾧ ∷ []) "2Cor.5.4" ∷ word (ο ∷ ὐ ∷ []) "2Cor.5.4" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.4" ∷ word (ἐ ∷ κ ∷ δ ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.5.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.5.4" ∷ word (ἐ ∷ π ∷ ε ∷ ν ∷ δ ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.5.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.5.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ ο ∷ θ ∷ ῇ ∷ []) "2Cor.5.4" ∷ word (τ ∷ ὸ ∷ []) "2Cor.5.4" ∷ word (θ ∷ ν ∷ η ∷ τ ∷ ὸ ∷ ν ∷ []) "2Cor.5.4" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Cor.5.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.5.4" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "2Cor.5.4" ∷ word (ὁ ∷ []) "2Cor.5.5" ∷ word (δ ∷ ὲ ∷ []) "2Cor.5.5" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.5.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.5.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.5.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "2Cor.5.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.5.5" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "2Cor.5.5" ∷ word (ὁ ∷ []) "2Cor.5.5" ∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.5.5" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.5.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.5.5" ∷ word (ἀ ∷ ρ ∷ ρ ∷ α ∷ β ∷ ῶ ∷ ν ∷ α ∷ []) "2Cor.5.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.5" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.5.5" ∷ word (Θ ∷ α ∷ ρ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.6" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Cor.5.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Cor.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.6" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.5.6" ∷ word (ἐ ∷ ν ∷ δ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.6" ∷ word (τ ∷ ῷ ∷ []) "2Cor.5.6" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Cor.5.6" ∷ word (ἐ ∷ κ ∷ δ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.6" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.5.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.6" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.5.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.5.7" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.5.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.5.7" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.7" ∷ word (ο ∷ ὐ ∷ []) "2Cor.5.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.5.7" ∷ word (ε ∷ ἴ ∷ δ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.5.7" ∷ word (θ ∷ α ∷ ρ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.8" ∷ word (δ ∷ ὲ ∷ []) "2Cor.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.8" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.8" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.5.8" ∷ word (ἐ ∷ κ ∷ δ ∷ η ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.5.8" ∷ word (ἐ ∷ κ ∷ []) "2Cor.5.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.8" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.8" ∷ word (ἐ ∷ ν ∷ δ ∷ η ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.5.8" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.5.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.5.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.5.8" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "2Cor.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.9" ∷ word (φ ∷ ι ∷ ∙λ ∷ ο ∷ τ ∷ ι ∷ μ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.5.9" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.5.9" ∷ word (ἐ ∷ ν ∷ δ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.9" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.5.9" ∷ word (ἐ ∷ κ ∷ δ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.9" ∷ word (ε ∷ ὐ ∷ ά ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "2Cor.5.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Cor.5.9" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.5.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.5.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.5.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Cor.5.10" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.5.10" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.5.10" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "2Cor.5.10" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "2Cor.5.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.10" ∷ word (β ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.5.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.5.10" ∷ word (κ ∷ ο ∷ μ ∷ ί ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Cor.5.10" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.5.10" ∷ word (τ ∷ ὰ ∷ []) "2Cor.5.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.5.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.10" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.5.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.5.10" ∷ word (ἃ ∷ []) "2Cor.5.10" ∷ word (ἔ ∷ π ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "2Cor.5.10" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.5.10" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "2Cor.5.10" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.5.10" ∷ word (φ ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.5.10" ∷ word (Ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.11" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Cor.5.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.5.11" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "2Cor.5.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.5.11" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.5.11" ∷ word (π ∷ ε ∷ ί ∷ θ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.11" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.5.11" ∷ word (δ ∷ ὲ ∷ []) "2Cor.5.11" ∷ word (π ∷ ε ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.5.11" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "2Cor.5.11" ∷ word (δ ∷ ὲ ∷ []) "2Cor.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.11" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.11" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.5.11" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.5.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.5.11" ∷ word (π ∷ ε ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ῶ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.5.11" ∷ word (ο ∷ ὐ ∷ []) "2Cor.5.12" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "2Cor.5.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.5.12" ∷ word (σ ∷ υ ∷ ν ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.5.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.5.12" ∷ word (ἀ ∷ φ ∷ ο ∷ ρ ∷ μ ∷ ὴ ∷ ν ∷ []) "2Cor.5.12" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.5.12" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.5.12" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.5.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.5.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.5.12" ∷ word (ἔ ∷ χ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.5.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.5.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.5.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.12" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ῳ ∷ []) "2Cor.5.12" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.12" ∷ word (μ ∷ ὴ ∷ []) "2Cor.5.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.12" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "2Cor.5.12" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.5.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.5.13" ∷ word (ἐ ∷ ξ ∷ έ ∷ σ ∷ τ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.5.13" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.5.13" ∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.5.13" ∷ word (ἡ ∷ []) "2Cor.5.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.5.14" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "2Cor.5.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.14" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "2Cor.5.14" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.5.14" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Cor.5.14" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.5.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.5.14" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "2Cor.5.14" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.5.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.5.14" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "2Cor.5.14" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "2Cor.5.14" ∷ word (ο ∷ ἱ ∷ []) "2Cor.5.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.14" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.15" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.5.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.5.15" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "2Cor.5.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.5.15" ∷ word (ο ∷ ἱ ∷ []) "2Cor.5.15" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.5.15" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "2Cor.5.15" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.5.15" ∷ word (ζ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.5.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.5.15" ∷ word (τ ∷ ῷ ∷ []) "2Cor.5.15" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.5.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.5.15" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ό ∷ ν ∷ τ ∷ ι ∷ []) "2Cor.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.15" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ι ∷ []) "2Cor.5.15" ∷ word (Ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.5.16" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.5.16" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.5.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.16" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Cor.5.16" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "2Cor.5.16" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.16" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.5.16" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "2Cor.5.16" ∷ word (ε ∷ ἰ ∷ []) "2Cor.5.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.16" ∷ word (ἐ ∷ γ ∷ ν ∷ ώ ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.16" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.5.16" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "2Cor.5.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "2Cor.5.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.5.16" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Cor.5.16" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "2Cor.5.16" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.16" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.5.17" ∷ word (ε ∷ ἴ ∷ []) "2Cor.5.17" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.5.17" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Cor.5.17" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ []) "2Cor.5.17" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "2Cor.5.17" ∷ word (τ ∷ ὰ ∷ []) "2Cor.5.17" ∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ α ∷ []) "2Cor.5.17" ∷ word (π ∷ α ∷ ρ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "2Cor.5.17" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "2Cor.5.17" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "2Cor.5.17" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ά ∷ []) "2Cor.5.17" ∷ word (τ ∷ ὰ ∷ []) "2Cor.5.18" ∷ word (δ ∷ ὲ ∷ []) "2Cor.5.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Cor.5.18" ∷ word (ἐ ∷ κ ∷ []) "2Cor.5.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.18" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.5.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.18" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ά ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.5.18" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.5.18" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "2Cor.5.18" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.5.18" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.18" ∷ word (δ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.5.18" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.5.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.5.18" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Cor.5.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.5.18" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ ῆ ∷ ς ∷ []) "2Cor.5.18" ∷ word (ὡ ∷ ς ∷ []) "2Cor.5.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.5.19" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.5.19" ∷ word (ἦ ∷ ν ∷ []) "2Cor.5.19" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.19" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Cor.5.19" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "2Cor.5.19" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "2Cor.5.19" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "2Cor.5.19" ∷ word (μ ∷ ὴ ∷ []) "2Cor.5.19" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.5.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.5.19" ∷ word (τ ∷ ὰ ∷ []) "2Cor.5.19" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Cor.5.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.5.19" ∷ word (θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.5.19" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.19" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.5.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.5.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "2Cor.5.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.5.19" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ ῆ ∷ ς ∷ []) "2Cor.5.19" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.5.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.20" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Cor.5.20" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.5.20" ∷ word (ὡ ∷ ς ∷ []) "2Cor.5.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.20" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.5.20" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.5.20" ∷ word (δ ∷ ι ∷ []) "2Cor.5.20" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.5.20" ∷ word (δ ∷ ε ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.5.20" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.5.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.5.20" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ά ∷ γ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.5.20" ∷ word (τ ∷ ῷ ∷ []) "2Cor.5.20" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.5.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.5.21" ∷ word (μ ∷ ὴ ∷ []) "2Cor.5.21" ∷ word (γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "2Cor.5.21" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.5.21" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.5.21" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.5.21" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.5.21" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.5.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.5.21" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.5.21" ∷ word (γ ∷ ε ∷ ν ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.5.21" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "2Cor.5.21" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.5.21" ∷ word (ἐ ∷ ν ∷ []) "2Cor.5.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Cor.5.21" ∷ word (Σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.6.1" ∷ word (δ ∷ ὲ ∷ []) "2Cor.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.1" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.6.1" ∷ word (μ ∷ ὴ ∷ []) "2Cor.6.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.6.1" ∷ word (κ ∷ ε ∷ ν ∷ ὸ ∷ ν ∷ []) "2Cor.6.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.6.1" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Cor.6.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.6.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.6.1" ∷ word (δ ∷ έ ∷ ξ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.6.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.6.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "2Cor.6.2" ∷ word (γ ∷ ά ∷ ρ ∷ []) "2Cor.6.2" ∷ word (Κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "2Cor.6.2" ∷ word (δ ∷ ε ∷ κ ∷ τ ∷ ῷ ∷ []) "2Cor.6.2" ∷ word (ἐ ∷ π ∷ ή ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ []) "2Cor.6.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "2Cor.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.2" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.2" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "2Cor.6.2" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.6.2" ∷ word (ἐ ∷ β ∷ ο ∷ ή ∷ θ ∷ η ∷ σ ∷ ά ∷ []) "2Cor.6.2" ∷ word (σ ∷ ο ∷ ι ∷ []) "2Cor.6.2" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "2Cor.6.2" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Cor.6.2" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.6.2" ∷ word (ε ∷ ὐ ∷ π ∷ ρ ∷ ό ∷ σ ∷ δ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.6.2" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "2Cor.6.2" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Cor.6.2" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "2Cor.6.2" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.6.2" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.6.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.3" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "2Cor.6.3" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.6.3" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ο ∷ π ∷ ή ∷ ν ∷ []) "2Cor.6.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.6.3" ∷ word (μ ∷ ὴ ∷ []) "2Cor.6.3" ∷ word (μ ∷ ω ∷ μ ∷ η ∷ θ ∷ ῇ ∷ []) "2Cor.6.3" ∷ word (ἡ ∷ []) "2Cor.6.3" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ []) "2Cor.6.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.6.4" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.4" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.6.4" ∷ word (σ ∷ υ ∷ ν ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.6.4" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.6.4" ∷ word (ὡ ∷ ς ∷ []) "2Cor.6.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.6.4" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.6.4" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.4" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "2Cor.6.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῇ ∷ []) "2Cor.6.4" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.4" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.6.4" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.4" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ α ∷ ι ∷ ς ∷ []) "2Cor.6.4" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.4" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ο ∷ χ ∷ ω ∷ ρ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.6.4" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.5" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.6.5" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.5" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.6.5" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.5" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.6.5" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.5" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.6.5" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.5" ∷ word (ἀ ∷ γ ∷ ρ ∷ υ ∷ π ∷ ν ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.6.5" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.5" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.6.5" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.6" ∷ word (ἁ ∷ γ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "2Cor.6.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.6" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.6.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.6" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ ᾳ ∷ []) "2Cor.6.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.6" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "2Cor.6.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.6" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Cor.6.6" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "2Cor.6.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.6" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "2Cor.6.6" ∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ τ ∷ ῳ ∷ []) "2Cor.6.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.7" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "2Cor.6.7" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Cor.6.7" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.7" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "2Cor.6.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.6.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.6.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.6.7" ∷ word (ὅ ∷ π ∷ ∙λ ∷ ω ∷ ν ∷ []) "2Cor.6.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.6.7" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Cor.6.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.6.7" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "2Cor.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.7" ∷ word (ἀ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "2Cor.6.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.6.8" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Cor.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.8" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.6.8" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.6.8" ∷ word (δ ∷ υ ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.8" ∷ word (ε ∷ ὐ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.6.8" ∷ word (ὡ ∷ ς ∷ []) "2Cor.6.8" ∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.8" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.6.8" ∷ word (ὡ ∷ ς ∷ []) "2Cor.6.9" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.9" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ι ∷ ν ∷ ω ∷ σ ∷ κ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.6.9" ∷ word (ὡ ∷ ς ∷ []) "2Cor.6.9" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.9" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "2Cor.6.9" ∷ word (ζ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.6.9" ∷ word (ὡ ∷ ς ∷ []) "2Cor.6.9" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.9" ∷ word (μ ∷ ὴ ∷ []) "2Cor.6.9" ∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.6.9" ∷ word (ὡ ∷ ς ∷ []) "2Cor.6.10" ∷ word (∙λ ∷ υ ∷ π ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.6.10" ∷ word (ἀ ∷ ε ∷ ὶ ∷ []) "2Cor.6.10" ∷ word (δ ∷ ὲ ∷ []) "2Cor.6.10" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.6.10" ∷ word (ὡ ∷ ς ∷ []) "2Cor.6.10" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ὶ ∷ []) "2Cor.6.10" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.6.10" ∷ word (δ ∷ ὲ ∷ []) "2Cor.6.10" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.6.10" ∷ word (ὡ ∷ ς ∷ []) "2Cor.6.10" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "2Cor.6.10" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Cor.6.10" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.6.10" ∷ word (Τ ∷ ὸ ∷ []) "2Cor.6.11" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "2Cor.6.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.6.11" ∷ word (ἀ ∷ ν ∷ έ ∷ ῳ ∷ γ ∷ ε ∷ ν ∷ []) "2Cor.6.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.6.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.6.11" ∷ word (Κ ∷ ο ∷ ρ ∷ ί ∷ ν ∷ θ ∷ ι ∷ ο ∷ ι ∷ []) "2Cor.6.11" ∷ word (ἡ ∷ []) "2Cor.6.11" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "2Cor.6.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.6.11" ∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ ά ∷ τ ∷ υ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Cor.6.11" ∷ word (ο ∷ ὐ ∷ []) "2Cor.6.12" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ο ∷ χ ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.6.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.12" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.6.12" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ο ∷ χ ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.6.12" ∷ word (δ ∷ ὲ ∷ []) "2Cor.6.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.12" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.6.12" ∷ word (σ ∷ π ∷ ∙λ ∷ ά ∷ γ ∷ χ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.6.12" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.6.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.6.13" ∷ word (δ ∷ ὲ ∷ []) "2Cor.6.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "2Cor.6.13" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ μ ∷ ι ∷ σ ∷ θ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.6.13" ∷ word (ὡ ∷ ς ∷ []) "2Cor.6.13" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.6.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "2Cor.6.13" ∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ύ ∷ ν ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.13" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.6.13" ∷ word (Μ ∷ ὴ ∷ []) "2Cor.6.14" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.6.14" ∷ word (ἑ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ζ ∷ υ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.6.14" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.6.14" ∷ word (τ ∷ ί ∷ ς ∷ []) "2Cor.6.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.6.14" ∷ word (μ ∷ ε ∷ τ ∷ ο ∷ χ ∷ ὴ ∷ []) "2Cor.6.14" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "2Cor.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.14" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ί ∷ ᾳ ∷ []) "2Cor.6.14" ∷ word (ἢ ∷ []) "2Cor.6.14" ∷ word (τ ∷ ί ∷ ς ∷ []) "2Cor.6.14" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ []) "2Cor.6.14" ∷ word (φ ∷ ω ∷ τ ∷ ὶ ∷ []) "2Cor.6.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.6.14" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.6.14" ∷ word (τ ∷ ί ∷ ς ∷ []) "2Cor.6.15" ∷ word (δ ∷ ὲ ∷ []) "2Cor.6.15" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "2Cor.6.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.6.15" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.6.15" ∷ word (Β ∷ ε ∷ ∙λ ∷ ι ∷ ά ∷ ρ ∷ []) "2Cor.6.15" ∷ word (ἢ ∷ []) "2Cor.6.15" ∷ word (τ ∷ ί ∷ ς ∷ []) "2Cor.6.15" ∷ word (μ ∷ ε ∷ ρ ∷ ὶ ∷ ς ∷ []) "2Cor.6.15" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Cor.6.15" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Cor.6.15" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.6.15" ∷ word (τ ∷ ί ∷ ς ∷ []) "2Cor.6.16" ∷ word (δ ∷ ὲ ∷ []) "2Cor.6.16" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ τ ∷ ά ∷ θ ∷ ε ∷ σ ∷ ι ∷ ς ∷ []) "2Cor.6.16" ∷ word (ν ∷ α ∷ ῷ ∷ []) "2Cor.6.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.6.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Cor.6.16" ∷ word (ε ∷ ἰ ∷ δ ∷ ώ ∷ ∙λ ∷ ω ∷ ν ∷ []) "2Cor.6.16" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.6.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.6.16" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "2Cor.6.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.6.16" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.6.16" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.6.16" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.6.16" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "2Cor.6.16" ∷ word (ὁ ∷ []) "2Cor.6.16" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.6.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.6.16" ∷ word (Ἐ ∷ ν ∷ ο ∷ ι ∷ κ ∷ ή ∷ σ ∷ ω ∷ []) "2Cor.6.16" ∷ word (ἐ ∷ ν ∷ []) "2Cor.6.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.16" ∷ word (ἐ ∷ μ ∷ π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ω ∷ []) "2Cor.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.16" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.6.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.6.16" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "2Cor.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "2Cor.6.16" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "2Cor.6.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.6.16" ∷ word (∙λ ∷ α ∷ ό ∷ ς ∷ []) "2Cor.6.16" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "2Cor.6.17" ∷ word (ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "2Cor.6.17" ∷ word (ἐ ∷ κ ∷ []) "2Cor.6.17" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ υ ∷ []) "2Cor.6.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.6.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.17" ∷ word (ἀ ∷ φ ∷ ο ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.6.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "2Cor.6.17" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Cor.6.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.17" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.6.17" ∷ word (μ ∷ ὴ ∷ []) "2Cor.6.17" ∷ word (ἅ ∷ π ∷ τ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.6.17" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "2Cor.6.17" ∷ word (ε ∷ ἰ ∷ σ ∷ δ ∷ έ ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.6.17" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.6.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.18" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.6.18" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.6.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.6.18" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "2Cor.6.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.18" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.6.18" ∷ word (ἔ ∷ σ ∷ ε ∷ σ ∷ θ ∷ έ ∷ []) "2Cor.6.18" ∷ word (μ ∷ ο ∷ ι ∷ []) "2Cor.6.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.6.18" ∷ word (υ ∷ ἱ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.6.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.6.18" ∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "2Cor.6.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "2Cor.6.18" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Cor.6.18" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "2Cor.6.18" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "2Cor.7.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Cor.7.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.7.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Cor.7.1" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.7.1" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "2Cor.7.1" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.7.1" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.7.1" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.7.1" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.7.1" ∷ word (μ ∷ ο ∷ ∙λ ∷ υ ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Cor.7.1" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "2Cor.7.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.7.1" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.7.1" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ε ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.7.1" ∷ word (ἁ ∷ γ ∷ ι ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "2Cor.7.1" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.1" ∷ word (φ ∷ ό ∷ β ∷ ῳ ∷ []) "2Cor.7.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.7.1" ∷ word (Χ ∷ ω ∷ ρ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "2Cor.7.2" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.7.2" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "2Cor.7.2" ∷ word (ἠ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.7.2" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "2Cor.7.2" ∷ word (ἐ ∷ φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.7.2" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "2Cor.7.2" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ κ ∷ τ ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.7.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.7.3" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ κ ∷ ρ ∷ ι ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.7.3" ∷ word (ο ∷ ὐ ∷ []) "2Cor.7.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "2Cor.7.3" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ί ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "2Cor.7.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.7.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.7.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.3" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.7.3" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.7.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.7.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.7.3" ∷ word (τ ∷ ὸ ∷ []) "2Cor.7.3" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "2Cor.7.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.7.3" ∷ word (σ ∷ υ ∷ ζ ∷ ῆ ∷ ν ∷ []) "2Cor.7.3" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ []) "2Cor.7.4" ∷ word (μ ∷ ο ∷ ι ∷ []) "2Cor.7.4" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "2Cor.7.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.7.4" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.7.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ []) "2Cor.7.4" ∷ word (μ ∷ ο ∷ ι ∷ []) "2Cor.7.4" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "2Cor.7.4" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.7.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.4" ∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "2Cor.7.4" ∷ word (τ ∷ ῇ ∷ []) "2Cor.7.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.7.4" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.7.4" ∷ word (τ ∷ ῇ ∷ []) "2Cor.7.4" ∷ word (χ ∷ α ∷ ρ ∷ ᾷ ∷ []) "2Cor.7.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.7.4" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Cor.7.4" ∷ word (τ ∷ ῇ ∷ []) "2Cor.7.4" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "2Cor.7.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "2Cor.7.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.7.5" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.7.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.7.5" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Cor.7.5" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.7.5" ∷ word (ἔ ∷ σ ∷ χ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "2Cor.7.5" ∷ word (ἄ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.7.5" ∷ word (ἡ ∷ []) "2Cor.7.5" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "2Cor.7.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.7.5" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.5" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.7.5" ∷ word (θ ∷ ∙λ ∷ ι ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.7.5" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "2Cor.7.5" ∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ []) "2Cor.7.5" ∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "2Cor.7.5" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ι ∷ []) "2Cor.7.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.7.6" ∷ word (ὁ ∷ []) "2Cor.7.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Cor.7.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.7.6" ∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.7.6" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.7.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.7.6" ∷ word (ὁ ∷ []) "2Cor.7.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.7.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.6" ∷ word (τ ∷ ῇ ∷ []) "2Cor.7.6" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "2Cor.7.6" ∷ word (Τ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.7.6" ∷ word (ο ∷ ὐ ∷ []) "2Cor.7.7" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.7.7" ∷ word (δ ∷ ὲ ∷ []) "2Cor.7.7" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.7" ∷ word (τ ∷ ῇ ∷ []) "2Cor.7.7" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "2Cor.7.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.7.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.7.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.7.7" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.7" ∷ word (τ ∷ ῇ ∷ []) "2Cor.7.7" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.7.7" ∷ word (ᾗ ∷ []) "2Cor.7.7" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "2Cor.7.7" ∷ word (ἐ ∷ φ ∷ []) "2Cor.7.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.7.7" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "2Cor.7.7" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.7.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.7.7" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.7" ∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ό ∷ θ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.7.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.7.7" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.7" ∷ word (ὀ ∷ δ ∷ υ ∷ ρ ∷ μ ∷ ό ∷ ν ∷ []) "2Cor.7.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.7.7" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.7" ∷ word (ζ ∷ ῆ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.7.7" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.7.7" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Cor.7.7" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.7.7" ∷ word (μ ∷ ε ∷ []) "2Cor.7.7" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.7.7" ∷ word (χ ∷ α ∷ ρ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.7.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.7.8" ∷ word (ε ∷ ἰ ∷ []) "2Cor.7.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.7.8" ∷ word (ἐ ∷ ∙λ ∷ ύ ∷ π ∷ η ∷ σ ∷ α ∷ []) "2Cor.7.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.7.8" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.8" ∷ word (τ ∷ ῇ ∷ []) "2Cor.7.8" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "2Cor.7.8" ∷ word (ο ∷ ὐ ∷ []) "2Cor.7.8" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ μ ∷ έ ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.7.8" ∷ word (ε ∷ ἰ ∷ []) "2Cor.7.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.7.8" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ μ ∷ ε ∷ ∙λ ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "2Cor.7.8" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ []) "2Cor.7.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.7.8" ∷ word (ἡ ∷ []) "2Cor.7.8" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "2Cor.7.8" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "2Cor.7.8" ∷ word (ε ∷ ἰ ∷ []) "2Cor.7.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.7.8" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.7.8" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "2Cor.7.8" ∷ word (ἐ ∷ ∙λ ∷ ύ ∷ π ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.7.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.7.8" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Cor.7.9" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ []) "2Cor.7.9" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Cor.7.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.7.9" ∷ word (ἐ ∷ ∙λ ∷ υ ∷ π ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.7.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.7.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.7.9" ∷ word (ἐ ∷ ∙λ ∷ υ ∷ π ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.7.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.7.9" ∷ word (μ ∷ ε ∷ τ ∷ ά ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "2Cor.7.9" ∷ word (ἐ ∷ ∙λ ∷ υ ∷ π ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.7.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.7.9" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.7.9" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "2Cor.7.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.7.9" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.9" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "2Cor.7.9" ∷ word (ζ ∷ η ∷ μ ∷ ι ∷ ω ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "2Cor.7.9" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.7.9" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.9" ∷ word (ἡ ∷ []) "2Cor.7.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.7.10" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.7.10" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "2Cor.7.10" ∷ word (∙λ ∷ ύ ∷ π ∷ η ∷ []) "2Cor.7.10" ∷ word (μ ∷ ε ∷ τ ∷ ά ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "2Cor.7.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.7.10" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.7.10" ∷ word (ἀ ∷ μ ∷ ε ∷ τ ∷ α ∷ μ ∷ έ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.7.10" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.7.10" ∷ word (ἡ ∷ []) "2Cor.7.10" ∷ word (δ ∷ ὲ ∷ []) "2Cor.7.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.7.10" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "2Cor.7.10" ∷ word (∙λ ∷ ύ ∷ π ∷ η ∷ []) "2Cor.7.10" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.7.10" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.7.10" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "2Cor.7.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.7.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "2Cor.7.11" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.7.11" ∷ word (τ ∷ ὸ ∷ []) "2Cor.7.11" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.7.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "2Cor.7.11" ∷ word (∙λ ∷ υ ∷ π ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.7.11" ∷ word (π ∷ ό ∷ σ ∷ η ∷ ν ∷ []) "2Cor.7.11" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ι ∷ ρ ∷ γ ∷ ά ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "2Cor.7.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.7.11" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ή ∷ ν ∷ []) "2Cor.7.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.7.11" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.7.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.7.11" ∷ word (ἀ ∷ γ ∷ α ∷ ν ∷ ά ∷ κ ∷ τ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.7.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.7.11" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "2Cor.7.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.7.11" ∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ό ∷ θ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.7.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.7.11" ∷ word (ζ ∷ ῆ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.7.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.7.11" ∷ word (ἐ ∷ κ ∷ δ ∷ ί ∷ κ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.7.11" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.11" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.7.11" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "2Cor.7.11" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.7.11" ∷ word (ἁ ∷ γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.7.11" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.7.11" ∷ word (τ ∷ ῷ ∷ []) "2Cor.7.11" ∷ word (π ∷ ρ ∷ ά ∷ γ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Cor.7.11" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "2Cor.7.12" ∷ word (ε ∷ ἰ ∷ []) "2Cor.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.7.12" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "2Cor.7.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.7.12" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Cor.7.12" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "2Cor.7.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.7.12" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.7.12" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "2Cor.7.12" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "2Cor.7.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.7.12" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.7.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.7.12" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "2Cor.7.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.7.12" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.7.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.7.12" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ὴ ∷ ν ∷ []) "2Cor.7.12" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.7.12" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.7.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.7.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.7.12" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.7.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.7.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.7.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.7.13" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.7.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ε ∷ κ ∷ ∙λ ∷ ή ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.7.13" ∷ word (Ἐ ∷ π ∷ ὶ ∷ []) "2Cor.7.13" ∷ word (δ ∷ ὲ ∷ []) "2Cor.7.13" ∷ word (τ ∷ ῇ ∷ []) "2Cor.7.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.7.13" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "2Cor.7.13" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.7.13" ∷ word (ἐ ∷ χ ∷ ά ∷ ρ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.7.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.7.13" ∷ word (τ ∷ ῇ ∷ []) "2Cor.7.13" ∷ word (χ ∷ α ∷ ρ ∷ ᾷ ∷ []) "2Cor.7.13" ∷ word (Τ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.7.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.7.13" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ έ ∷ π ∷ α ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.7.13" ∷ word (τ ∷ ὸ ∷ []) "2Cor.7.13" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "2Cor.7.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.7.13" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.7.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.7.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.7.14" ∷ word (ε ∷ ἴ ∷ []) "2Cor.7.14" ∷ word (τ ∷ ι ∷ []) "2Cor.7.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Cor.7.14" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.7.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.14" ∷ word (κ ∷ ε ∷ κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ ι ∷ []) "2Cor.7.14" ∷ word (ο ∷ ὐ ∷ []) "2Cor.7.14" ∷ word (κ ∷ α ∷ τ ∷ ῃ ∷ σ ∷ χ ∷ ύ ∷ ν ∷ θ ∷ η ∷ ν ∷ []) "2Cor.7.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.7.14" ∷ word (ὡ ∷ ς ∷ []) "2Cor.7.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Cor.7.14" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.14" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Cor.7.14" ∷ word (ἐ ∷ ∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.7.14" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.7.14" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Cor.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.7.14" ∷ word (ἡ ∷ []) "2Cor.7.14" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "2Cor.7.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.14" ∷ word (ἡ ∷ []) "2Cor.7.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.7.14" ∷ word (Τ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.7.14" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ []) "2Cor.7.14" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "2Cor.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.7.15" ∷ word (τ ∷ ὰ ∷ []) "2Cor.7.15" ∷ word (σ ∷ π ∷ ∙λ ∷ ά ∷ γ ∷ χ ∷ ν ∷ α ∷ []) "2Cor.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.7.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "2Cor.7.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.7.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.7.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Cor.7.15" ∷ word (ἀ ∷ ν ∷ α ∷ μ ∷ ι ∷ μ ∷ ν ∷ ῃ ∷ σ ∷ κ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "2Cor.7.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.7.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.7.15" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.7.15" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ή ∷ ν ∷ []) "2Cor.7.15" ∷ word (ὡ ∷ ς ∷ []) "2Cor.7.15" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Cor.7.15" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ υ ∷ []) "2Cor.7.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.7.15" ∷ word (τ ∷ ρ ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "2Cor.7.15" ∷ word (ἐ ∷ δ ∷ έ ∷ ξ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "2Cor.7.15" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ []) "2Cor.7.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.7.16" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.16" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.7.16" ∷ word (θ ∷ α ∷ ρ ∷ ρ ∷ ῶ ∷ []) "2Cor.7.16" ∷ word (ἐ ∷ ν ∷ []) "2Cor.7.16" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.7.16" ∷ word (Γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.8.1" ∷ word (δ ∷ ὲ ∷ []) "2Cor.8.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.8.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Cor.8.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.1" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Cor.8.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.8.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.8.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.1" ∷ word (δ ∷ ε ∷ δ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "2Cor.8.1" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.1" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.8.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.8.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.8.1" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "2Cor.8.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.8.2" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῇ ∷ []) "2Cor.8.2" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ῇ ∷ []) "2Cor.8.2" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.8.2" ∷ word (ἡ ∷ []) "2Cor.8.2" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ί ∷ α ∷ []) "2Cor.8.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.8.2" ∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "2Cor.8.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.8.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.2" ∷ word (ἡ ∷ []) "2Cor.8.2" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.8.2" ∷ word (β ∷ ά ∷ θ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.8.2" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ε ∷ ί ∷ α ∷ []) "2Cor.8.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.8.2" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ί ∷ σ ∷ σ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.8.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.8.2" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.2" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.8.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.8.2" ∷ word (ἁ ∷ π ∷ ∙λ ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.8.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.8.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.8.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.8.3" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "2Cor.8.3" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ []) "2Cor.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.3" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2Cor.8.3" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "2Cor.8.3" ∷ word (α ∷ ὐ ∷ θ ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ ο ∷ ι ∷ []) "2Cor.8.3" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Cor.8.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "2Cor.8.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.8.4" ∷ word (δ ∷ ε ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.8.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.4" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Cor.8.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.4" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Cor.8.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.8.4" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "2Cor.8.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.8.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.8.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.8.4" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.8.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.5" ∷ word (ο ∷ ὐ ∷ []) "2Cor.8.5" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.8.5" ∷ word (ἠ ∷ ∙λ ∷ π ∷ ί ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.8.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.8.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.8.5" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "2Cor.8.5" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.8.5" ∷ word (τ ∷ ῷ ∷ []) "2Cor.8.5" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Cor.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.5" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.8.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.8.5" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.8.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.8.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.8.6" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.8.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.8.6" ∷ word (Τ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.8.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.8.6" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.8.6" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ν ∷ ή ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "2Cor.8.6" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Cor.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.6" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ ῃ ∷ []) "2Cor.8.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.8.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.6" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Cor.8.6" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "2Cor.8.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.8.7" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "2Cor.8.7" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.7" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.8.7" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.8.7" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "2Cor.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.7" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "2Cor.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.7" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.7" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Cor.8.7" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ῇ ∷ []) "2Cor.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.7" ∷ word (τ ∷ ῇ ∷ []) "2Cor.8.7" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.8.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.7" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.8.7" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "2Cor.8.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.7" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.7" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "2Cor.8.7" ∷ word (τ ∷ ῇ ∷ []) "2Cor.8.7" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "2Cor.8.7" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.8.7" ∷ word (Ο ∷ ὐ ∷ []) "2Cor.8.8" ∷ word (κ ∷ α ∷ τ ∷ []) "2Cor.8.8" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ α ∷ γ ∷ ὴ ∷ ν ∷ []) "2Cor.8.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "2Cor.8.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.8.8" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.8.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.8.8" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "2Cor.8.8" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ῆ ∷ ς ∷ []) "2Cor.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.8" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.8.8" ∷ word (ὑ ∷ μ ∷ ε ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "2Cor.8.8" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "2Cor.8.8" ∷ word (γ ∷ ν ∷ ή ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.8.8" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "2Cor.8.8" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.8.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.8.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.9" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Cor.8.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.8.9" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.8.9" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.8.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.8.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.8.9" ∷ word (δ ∷ ι ∷ []) "2Cor.8.9" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.8.9" ∷ word (ἐ ∷ π ∷ τ ∷ ώ ∷ χ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.8.9" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "2Cor.8.9" ∷ word (ὤ ∷ ν ∷ []) "2Cor.8.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.8.9" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.8.9" ∷ word (τ ∷ ῇ ∷ []) "2Cor.8.9" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "2Cor.8.9" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Cor.8.9" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.8.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.10" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "2Cor.8.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.10" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "2Cor.8.10" ∷ word (δ ∷ ί ∷ δ ∷ ω ∷ μ ∷ ι ∷ []) "2Cor.8.10" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.8.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.8.10" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.8.10" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "2Cor.8.10" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "2Cor.8.10" ∷ word (ο ∷ ὐ ∷ []) "2Cor.8.10" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.8.10" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.10" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.8.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.10" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.10" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "2Cor.8.10" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ν ∷ ή ∷ ρ ∷ ξ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.8.10" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.8.10" ∷ word (π ∷ έ ∷ ρ ∷ υ ∷ σ ∷ ι ∷ []) "2Cor.8.10" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "2Cor.8.11" ∷ word (δ ∷ ὲ ∷ []) "2Cor.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.11" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.11" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.8.11" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "2Cor.8.11" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "2Cor.8.11" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "2Cor.8.11" ∷ word (ἡ ∷ []) "2Cor.8.11" ∷ word (π ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ []) "2Cor.8.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.8.11" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "2Cor.8.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Cor.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.11" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.11" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.8.11" ∷ word (ἐ ∷ κ ∷ []) "2Cor.8.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.8.11" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "2Cor.8.11" ∷ word (ε ∷ ἰ ∷ []) "2Cor.8.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.8.12" ∷ word (ἡ ∷ []) "2Cor.8.12" ∷ word (π ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ []) "2Cor.8.12" ∷ word (π ∷ ρ ∷ ό ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "2Cor.8.12" ∷ word (κ ∷ α ∷ θ ∷ ὸ ∷ []) "2Cor.8.12" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Cor.8.12" ∷ word (ἔ ∷ χ ∷ ῃ ∷ []) "2Cor.8.12" ∷ word (ε ∷ ὐ ∷ π ∷ ρ ∷ ό ∷ σ ∷ δ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.8.12" ∷ word (ο ∷ ὐ ∷ []) "2Cor.8.12" ∷ word (κ ∷ α ∷ θ ∷ ὸ ∷ []) "2Cor.8.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.8.12" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "2Cor.8.12" ∷ word (ο ∷ ὐ ∷ []) "2Cor.8.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.8.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.8.13" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.8.13" ∷ word (ἄ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ς ∷ []) "2Cor.8.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.8.13" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ς ∷ []) "2Cor.8.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.8.13" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.8.13" ∷ word (ἰ ∷ σ ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.8.13" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.14" ∷ word (τ ∷ ῷ ∷ []) "2Cor.8.14" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Cor.8.14" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "2Cor.8.14" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.14" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ σ ∷ σ ∷ ε ∷ υ ∷ μ ∷ α ∷ []) "2Cor.8.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.8.14" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.14" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "2Cor.8.14" ∷ word (ὑ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ η ∷ μ ∷ α ∷ []) "2Cor.8.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.8.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.14" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.14" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "2Cor.8.14" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ σ ∷ σ ∷ ε ∷ υ ∷ μ ∷ α ∷ []) "2Cor.8.14" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Cor.8.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.8.14" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.14" ∷ word (ὑ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ η ∷ μ ∷ α ∷ []) "2Cor.8.14" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "2Cor.8.14" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Cor.8.14" ∷ word (ἰ ∷ σ ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "2Cor.8.14" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.8.15" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "2Cor.8.15" ∷ word (Ὁ ∷ []) "2Cor.8.15" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "2Cor.8.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.8.15" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ε ∷ ό ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.8.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.15" ∷ word (ὁ ∷ []) "2Cor.8.15" ∷ word (τ ∷ ὸ ∷ []) "2Cor.8.15" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "2Cor.8.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.8.15" ∷ word (ἠ ∷ ∙λ ∷ α ∷ τ ∷ τ ∷ ό ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.8.15" ∷ word (Χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Cor.8.16" ∷ word (δ ∷ ὲ ∷ []) "2Cor.8.16" ∷ word (τ ∷ ῷ ∷ []) "2Cor.8.16" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.8.16" ∷ word (τ ∷ ῷ ∷ []) "2Cor.8.16" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ι ∷ []) "2Cor.8.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.16" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ὴ ∷ ν ∷ []) "2Cor.8.16" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.8.16" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.16" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.16" ∷ word (τ ∷ ῇ ∷ []) "2Cor.8.16" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "2Cor.8.16" ∷ word (Τ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.8.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.8.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.17" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "2Cor.8.17" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.8.17" ∷ word (ἐ ∷ δ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "2Cor.8.17" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ α ∷ ι ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "2Cor.8.17" ∷ word (δ ∷ ὲ ∷ []) "2Cor.8.17" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "2Cor.8.17" ∷ word (α ∷ ὐ ∷ θ ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.8.17" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "2Cor.8.17" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.8.17" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.8.17" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ π ∷ έ ∷ μ ∷ ψ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.8.18" ∷ word (δ ∷ ὲ ∷ []) "2Cor.8.18" ∷ word (μ ∷ ε ∷ τ ∷ []) "2Cor.8.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.8.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.8.18" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "2Cor.8.18" ∷ word (ο ∷ ὗ ∷ []) "2Cor.8.18" ∷ word (ὁ ∷ []) "2Cor.8.18" ∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.8.18" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.18" ∷ word (τ ∷ ῷ ∷ []) "2Cor.8.18" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "2Cor.8.18" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.8.18" ∷ word (π ∷ α ∷ σ ∷ ῶ ∷ ν ∷ []) "2Cor.8.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.8.18" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "2Cor.8.18" ∷ word (ο ∷ ὐ ∷ []) "2Cor.8.19" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.8.19" ∷ word (δ ∷ ὲ ∷ []) "2Cor.8.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.8.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.19" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ τ ∷ ο ∷ ν ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "2Cor.8.19" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Cor.8.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.8.19" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "2Cor.8.19" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ κ ∷ δ ∷ η ∷ μ ∷ ο ∷ ς ∷ []) "2Cor.8.19" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.19" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "2Cor.8.19" ∷ word (τ ∷ ῇ ∷ []) "2Cor.8.19" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "2Cor.8.19" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "2Cor.8.19" ∷ word (τ ∷ ῇ ∷ []) "2Cor.8.19" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "2Cor.8.19" ∷ word (ὑ ∷ φ ∷ []) "2Cor.8.19" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.19" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.8.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.8.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.8.19" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.8.19" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "2Cor.8.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.19" ∷ word (π ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.8.19" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.19" ∷ word (σ ∷ τ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.8.20" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.8.20" ∷ word (μ ∷ ή ∷ []) "2Cor.8.20" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.8.20" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.8.20" ∷ word (μ ∷ ω ∷ μ ∷ ή ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Cor.8.20" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.20" ∷ word (τ ∷ ῇ ∷ []) "2Cor.8.20" ∷ word (ἁ ∷ δ ∷ ρ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "2Cor.8.20" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "2Cor.8.20" ∷ word (τ ∷ ῇ ∷ []) "2Cor.8.20" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "2Cor.8.20" ∷ word (ὑ ∷ φ ∷ []) "2Cor.8.20" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.20" ∷ word (π ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.8.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.8.21" ∷ word (κ ∷ α ∷ ∙λ ∷ ὰ ∷ []) "2Cor.8.21" ∷ word (ο ∷ ὐ ∷ []) "2Cor.8.21" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.8.21" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.8.21" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.8.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.8.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.21" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.8.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "2Cor.8.21" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ π ∷ έ ∷ μ ∷ ψ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.8.22" ∷ word (δ ∷ ὲ ∷ []) "2Cor.8.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.8.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.8.22" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "2Cor.8.22" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.22" ∷ word (ὃ ∷ ν ∷ []) "2Cor.8.22" ∷ word (ἐ ∷ δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.8.22" ∷ word (ἐ ∷ ν ∷ []) "2Cor.8.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.8.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "2Cor.8.22" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "2Cor.8.22" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "2Cor.8.22" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "2Cor.8.22" ∷ word (δ ∷ ὲ ∷ []) "2Cor.8.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "2Cor.8.22" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ α ∷ ι ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.8.22" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.8.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῇ ∷ []) "2Cor.8.22" ∷ word (τ ∷ ῇ ∷ []) "2Cor.8.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.8.22" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.8.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.8.23" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.8.23" ∷ word (Τ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.8.23" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ὸ ∷ ς ∷ []) "2Cor.8.23" ∷ word (ἐ ∷ μ ∷ ὸ ∷ ς ∷ []) "2Cor.8.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.23" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.8.23" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.8.23" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ό ∷ ς ∷ []) "2Cor.8.23" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.8.23" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "2Cor.8.23" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.23" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "2Cor.8.23" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "2Cor.8.23" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "2Cor.8.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.8.23" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.8.24" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Cor.8.24" ∷ word (ἔ ∷ ν ∷ δ ∷ ε ∷ ι ∷ ξ ∷ ι ∷ ν ∷ []) "2Cor.8.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.8.24" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "2Cor.8.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.8.24" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.24" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.8.24" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.8.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.8.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.8.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.8.24" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ ι ∷ κ ∷ ν ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.8.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.8.24" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "2Cor.8.24" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.8.24" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "2Cor.8.24" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Cor.9.1" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "2Cor.9.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.9.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.9.1" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "2Cor.9.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.9.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.9.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.9.1" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.9.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ ν ∷ []) "2Cor.9.1" ∷ word (μ ∷ ο ∷ ί ∷ []) "2Cor.9.1" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Cor.9.1" ∷ word (τ ∷ ὸ ∷ []) "2Cor.9.1" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "2Cor.9.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.9.1" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "2Cor.9.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.9.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.9.2" ∷ word (π ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.9.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.2" ∷ word (ἣ ∷ ν ∷ []) "2Cor.9.2" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.9.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.2" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ῶ ∷ μ ∷ α ∷ ι ∷ []) "2Cor.9.2" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ό ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.9.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.9.2" ∷ word (Ἀ ∷ χ ∷ α ∷ ΐ ∷ α ∷ []) "2Cor.9.2" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ κ ∷ ε ∷ ύ ∷ α ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.9.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.9.2" ∷ word (π ∷ έ ∷ ρ ∷ υ ∷ σ ∷ ι ∷ []) "2Cor.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.2" ∷ word (τ ∷ ὸ ∷ []) "2Cor.9.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.2" ∷ word (ζ ∷ ῆ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Cor.9.2" ∷ word (ἠ ∷ ρ ∷ έ ∷ θ ∷ ι ∷ σ ∷ ε ∷ []) "2Cor.9.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.9.2" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ α ∷ ς ∷ []) "2Cor.9.2" ∷ word (ἔ ∷ π ∷ ε ∷ μ ∷ ψ ∷ α ∷ []) "2Cor.9.3" ∷ word (δ ∷ ὲ ∷ []) "2Cor.9.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.9.3" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ύ ∷ ς ∷ []) "2Cor.9.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.9.3" ∷ word (μ ∷ ὴ ∷ []) "2Cor.9.3" ∷ word (τ ∷ ὸ ∷ []) "2Cor.9.3" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ []) "2Cor.9.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.3" ∷ word (τ ∷ ὸ ∷ []) "2Cor.9.3" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.9.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.3" ∷ word (κ ∷ ε ∷ ν ∷ ω ∷ θ ∷ ῇ ∷ []) "2Cor.9.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.9.3" ∷ word (τ ∷ ῷ ∷ []) "2Cor.9.3" ∷ word (μ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "2Cor.9.3" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "2Cor.9.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.9.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.9.3" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "2Cor.9.3" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ κ ∷ ε ∷ υ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.9.3" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "2Cor.9.3" ∷ word (μ ∷ ή ∷ []) "2Cor.9.4" ∷ word (π ∷ ω ∷ ς ∷ []) "2Cor.9.4" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Cor.9.4" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.9.4" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "2Cor.9.4" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "2Cor.9.4" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ό ∷ ν ∷ ε ∷ ς ∷ []) "2Cor.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.4" ∷ word (ε ∷ ὕ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.9.4" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.9.4" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.9.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.9.4" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.9.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.9.4" ∷ word (μ ∷ ὴ ∷ []) "2Cor.9.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.9.4" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.9.4" ∷ word (ἐ ∷ ν ∷ []) "2Cor.9.4" ∷ word (τ ∷ ῇ ∷ []) "2Cor.9.4" ∷ word (ὑ ∷ π ∷ ο ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.9.4" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "2Cor.9.4" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "2Cor.9.5" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Cor.9.5" ∷ word (ἡ ∷ γ ∷ η ∷ σ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "2Cor.9.5" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.9.5" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.9.5" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.9.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.9.5" ∷ word (π ∷ ρ ∷ ο ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.9.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.9.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.5" ∷ word (π ∷ ρ ∷ ο ∷ κ ∷ α ∷ τ ∷ α ∷ ρ ∷ τ ∷ ί ∷ σ ∷ ω ∷ σ ∷ ι ∷ []) "2Cor.9.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.9.5" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ π ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "2Cor.9.5" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.9.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.5" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "2Cor.9.5" ∷ word (ἑ ∷ τ ∷ ο ∷ ί ∷ μ ∷ η ∷ ν ∷ []) "2Cor.9.5" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.9.5" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Cor.9.5" ∷ word (ὡ ∷ ς ∷ []) "2Cor.9.5" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.5" ∷ word (μ ∷ ὴ ∷ []) "2Cor.9.5" ∷ word (ὡ ∷ ς ∷ []) "2Cor.9.5" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.9.5" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.9.6" ∷ word (δ ∷ έ ∷ []) "2Cor.9.6" ∷ word (ὁ ∷ []) "2Cor.9.6" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "2Cor.9.6" ∷ word (φ ∷ ε ∷ ι ∷ δ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ς ∷ []) "2Cor.9.6" ∷ word (φ ∷ ε ∷ ι ∷ δ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ς ∷ []) "2Cor.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.6" ∷ word (θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.6" ∷ word (ὁ ∷ []) "2Cor.9.6" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "2Cor.9.6" ∷ word (ἐ ∷ π ∷ []) "2Cor.9.6" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.9.6" ∷ word (ἐ ∷ π ∷ []) "2Cor.9.6" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.6" ∷ word (θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.9.6" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.9.7" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.9.7" ∷ word (π ∷ ρ ∷ ο ∷ ῄ ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Cor.9.7" ∷ word (τ ∷ ῇ ∷ []) "2Cor.9.7" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "2Cor.9.7" ∷ word (μ ∷ ὴ ∷ []) "2Cor.9.7" ∷ word (ἐ ∷ κ ∷ []) "2Cor.9.7" ∷ word (∙λ ∷ ύ ∷ π ∷ η ∷ ς ∷ []) "2Cor.9.7" ∷ word (ἢ ∷ []) "2Cor.9.7" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.9.7" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ ς ∷ []) "2Cor.9.7" ∷ word (ἱ ∷ ∙λ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "2Cor.9.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.9.7" ∷ word (δ ∷ ό ∷ τ ∷ η ∷ ν ∷ []) "2Cor.9.7" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾷ ∷ []) "2Cor.9.7" ∷ word (ὁ ∷ []) "2Cor.9.7" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "2Cor.9.7" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ε ∷ ῖ ∷ []) "2Cor.9.8" ∷ word (δ ∷ ὲ ∷ []) "2Cor.9.8" ∷ word (ὁ ∷ []) "2Cor.9.8" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.9.8" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "2Cor.9.8" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Cor.9.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.9.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.9.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.9.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.9.8" ∷ word (ἐ ∷ ν ∷ []) "2Cor.9.8" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.9.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Cor.9.8" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "2Cor.9.8" ∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ ρ ∷ κ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Cor.9.8" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.9.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.9.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.9.8" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "2Cor.9.8" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "2Cor.9.8" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "2Cor.9.8" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.9.9" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "2Cor.9.9" ∷ word (Ἐ ∷ σ ∷ κ ∷ ό ∷ ρ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.9.9" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "2Cor.9.9" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.9.9" ∷ word (π ∷ έ ∷ ν ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.9.9" ∷ word (ἡ ∷ []) "2Cor.9.9" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "2Cor.9.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.9.9" ∷ word (μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "2Cor.9.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.9.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.9.9" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "2Cor.9.9" ∷ word (ὁ ∷ []) "2Cor.9.10" ∷ word (δ ∷ ὲ ∷ []) "2Cor.9.10" ∷ word (ἐ ∷ π ∷ ι ∷ χ ∷ ο ∷ ρ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "2Cor.9.10" ∷ word (σ ∷ π ∷ ό ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.9.10" ∷ word (τ ∷ ῷ ∷ []) "2Cor.9.10" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "2Cor.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.10" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.9.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.9.10" ∷ word (β ∷ ρ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.9.10" ∷ word (χ ∷ ο ∷ ρ ∷ η ∷ γ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.10" ∷ word (π ∷ ∙λ ∷ η ∷ θ ∷ υ ∷ ν ∷ ε ∷ ῖ ∷ []) "2Cor.9.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.9.10" ∷ word (σ ∷ π ∷ ό ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.9.10" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.10" ∷ word (α ∷ ὐ ∷ ξ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.9.10" ∷ word (τ ∷ ὰ ∷ []) "2Cor.9.10" ∷ word (γ ∷ ε ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Cor.9.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.9.10" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Cor.9.10" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.9.11" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.9.11" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.9.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.9.11" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "2Cor.9.11" ∷ word (ἁ ∷ π ∷ ∙λ ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "2Cor.9.11" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "2Cor.9.11" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.9.11" ∷ word (δ ∷ ι ∷ []) "2Cor.9.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.11" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.9.11" ∷ word (τ ∷ ῷ ∷ []) "2Cor.9.11" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.9.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.9.12" ∷ word (ἡ ∷ []) "2Cor.9.12" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ []) "2Cor.9.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.9.12" ∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.9.12" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ς ∷ []) "2Cor.9.12" ∷ word (ο ∷ ὐ ∷ []) "2Cor.9.12" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.9.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "2Cor.9.12" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ ν ∷ α ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "2Cor.9.12" ∷ word (τ ∷ ὰ ∷ []) "2Cor.9.12" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Cor.9.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.9.12" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "2Cor.9.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.9.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "2Cor.9.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.9.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Cor.9.12" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "2Cor.9.12" ∷ word (τ ∷ ῷ ∷ []) "2Cor.9.12" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.9.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.9.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.9.13" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ῆ ∷ ς ∷ []) "2Cor.9.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.9.13" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "2Cor.9.13" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ς ∷ []) "2Cor.9.13" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.9.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.9.13" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "2Cor.9.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.9.13" ∷ word (τ ∷ ῇ ∷ []) "2Cor.9.13" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ ῇ ∷ []) "2Cor.9.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.9.13" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.9.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.9.13" ∷ word (τ ∷ ὸ ∷ []) "2Cor.9.13" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.9.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.13" ∷ word (ἁ ∷ π ∷ ∙λ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "2Cor.9.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.9.13" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "2Cor.9.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.9.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.9.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Cor.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.9.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.9.14" ∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.9.14" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.9.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.9.14" ∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ο ∷ θ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.9.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.9.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.9.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.9.14" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "2Cor.9.14" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Cor.9.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.9.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.9.14" ∷ word (ἐ ∷ φ ∷ []) "2Cor.9.14" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.9.14" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Cor.9.15" ∷ word (τ ∷ ῷ ∷ []) "2Cor.9.15" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.9.15" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.9.15" ∷ word (τ ∷ ῇ ∷ []) "2Cor.9.15" ∷ word (ἀ ∷ ν ∷ ε ∷ κ ∷ δ ∷ ι ∷ η ∷ γ ∷ ή ∷ τ ∷ ῳ ∷ []) "2Cor.9.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.9.15" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ᾷ ∷ []) "2Cor.9.15" ∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.10.1" ∷ word (δ ∷ ὲ ∷ []) "2Cor.10.1" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2Cor.10.1" ∷ word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Cor.10.1" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "2Cor.10.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.10.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.10.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.10.1" ∷ word (π ∷ ρ ∷ α ∷ ΰ ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.1" ∷ word (ἐ ∷ π ∷ ι ∷ ε ∷ ι ∷ κ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Cor.10.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.1" ∷ word (ὃ ∷ ς ∷ []) "2Cor.10.1" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.10.1" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "2Cor.10.1" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "2Cor.10.1" ∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ὸ ∷ ς ∷ []) "2Cor.10.1" ∷ word (ἐ ∷ ν ∷ []) "2Cor.10.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.10.1" ∷ word (ἀ ∷ π ∷ ὼ ∷ ν ∷ []) "2Cor.10.1" ∷ word (δ ∷ ὲ ∷ []) "2Cor.10.1" ∷ word (θ ∷ α ∷ ρ ∷ ρ ∷ ῶ ∷ []) "2Cor.10.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.10.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.10.1" ∷ word (δ ∷ έ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.10.2" ∷ word (δ ∷ ὲ ∷ []) "2Cor.10.2" ∷ word (τ ∷ ὸ ∷ []) "2Cor.10.2" ∷ word (μ ∷ ὴ ∷ []) "2Cor.10.2" ∷ word (π ∷ α ∷ ρ ∷ ὼ ∷ ν ∷ []) "2Cor.10.2" ∷ word (θ ∷ α ∷ ρ ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.10.2" ∷ word (τ ∷ ῇ ∷ []) "2Cor.10.2" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.10.2" ∷ word (ᾗ ∷ []) "2Cor.10.2" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.10.2" ∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.10.2" ∷ word (ἐ ∷ π ∷ ί ∷ []) "2Cor.10.2" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "2Cor.10.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.10.2" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.10.2" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.10.2" ∷ word (ὡ ∷ ς ∷ []) "2Cor.10.2" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.10.2" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "2Cor.10.2" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Cor.10.2" ∷ word (ἐ ∷ ν ∷ []) "2Cor.10.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "2Cor.10.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.10.3" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.10.3" ∷ word (ο ∷ ὐ ∷ []) "2Cor.10.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.10.3" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "2Cor.10.3" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.10.3" ∷ word (τ ∷ ὰ ∷ []) "2Cor.10.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.10.4" ∷ word (ὅ ∷ π ∷ ∙λ ∷ α ∷ []) "2Cor.10.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.10.4" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Cor.10.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.10.4" ∷ word (ο ∷ ὐ ∷ []) "2Cor.10.4" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ι ∷ κ ∷ ὰ ∷ []) "2Cor.10.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.10.4" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.10.4" ∷ word (τ ∷ ῷ ∷ []) "2Cor.10.4" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Cor.10.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.10.4" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ί ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.10.4" ∷ word (ὀ ∷ χ ∷ υ ∷ ρ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.10.4" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.10.4" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.10.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.5" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "2Cor.10.5" ∷ word (ὕ ∷ ψ ∷ ω ∷ μ ∷ α ∷ []) "2Cor.10.5" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.10.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.10.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.10.5" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.10.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.10.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.5" ∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.10.5" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "2Cor.10.5" ∷ word (ν ∷ ό ∷ η ∷ μ ∷ α ∷ []) "2Cor.10.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.10.5" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ὴ ∷ ν ∷ []) "2Cor.10.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.10.6" ∷ word (ἑ ∷ τ ∷ ο ∷ ί ∷ μ ∷ ῳ ∷ []) "2Cor.10.6" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.10.6" ∷ word (ἐ ∷ κ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.10.6" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "2Cor.10.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ή ∷ ν ∷ []) "2Cor.10.6" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "2Cor.10.6" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "2Cor.10.6" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.10.6" ∷ word (ἡ ∷ []) "2Cor.10.6" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ή ∷ []) "2Cor.10.6" ∷ word (Τ ∷ ὰ ∷ []) "2Cor.10.7" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.10.7" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "2Cor.10.7" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.10.7" ∷ word (ε ∷ ἴ ∷ []) "2Cor.10.7" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.10.7" ∷ word (π ∷ έ ∷ π ∷ ο ∷ ι ∷ θ ∷ ε ∷ ν ∷ []) "2Cor.10.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "2Cor.10.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.7" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.10.7" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.10.7" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "2Cor.10.7" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "2Cor.10.7" ∷ word (ἐ ∷ φ ∷ []) "2Cor.10.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.10.7" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.10.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.10.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.7" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Cor.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.7" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.10.7" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "2Cor.10.8" ∷ word (τ ∷ ε ∷ []) "2Cor.10.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.10.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "2Cor.10.8" ∷ word (τ ∷ ι ∷ []) "2Cor.10.8" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "2Cor.10.8" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Cor.10.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.10.8" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.10.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.10.8" ∷ word (ἧ ∷ ς ∷ []) "2Cor.10.8" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "2Cor.10.8" ∷ word (ὁ ∷ []) "2Cor.10.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Cor.10.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.10.8" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "2Cor.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.10.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.10.8" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ί ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.10.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.10.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.10.8" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.10.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.10.9" ∷ word (μ ∷ ὴ ∷ []) "2Cor.10.9" ∷ word (δ ∷ ό ∷ ξ ∷ ω ∷ []) "2Cor.10.9" ∷ word (ὡ ∷ ς ∷ []) "2Cor.10.9" ∷ word (ἂ ∷ ν ∷ []) "2Cor.10.9" ∷ word (ἐ ∷ κ ∷ φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "2Cor.10.9" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.10.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.10.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.10.9" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Cor.10.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.10.10" ∷ word (Α ∷ ἱ ∷ []) "2Cor.10.10" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ α ∷ ὶ ∷ []) "2Cor.10.10" ∷ word (μ ∷ έ ∷ ν ∷ []) "2Cor.10.10" ∷ word (φ ∷ η ∷ σ ∷ ί ∷ ν ∷ []) "2Cor.10.10" ∷ word (β ∷ α ∷ ρ ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "2Cor.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.10" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ α ∷ ί ∷ []) "2Cor.10.10" ∷ word (ἡ ∷ []) "2Cor.10.10" ∷ word (δ ∷ ὲ ∷ []) "2Cor.10.10" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "2Cor.10.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.10" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.10.10" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ὴ ∷ ς ∷ []) "2Cor.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.10" ∷ word (ὁ ∷ []) "2Cor.10.10" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "2Cor.10.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ν ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.10.10" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.10.11" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "2Cor.10.11" ∷ word (ὁ ∷ []) "2Cor.10.11" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.10.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.10.11" ∷ word (ο ∷ ἷ ∷ ο ∷ ί ∷ []) "2Cor.10.11" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.10.11" ∷ word (τ ∷ ῷ ∷ []) "2Cor.10.11" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "2Cor.10.11" ∷ word (δ ∷ ι ∷ []) "2Cor.10.11" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Cor.10.11" ∷ word (ἀ ∷ π ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.10.11" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ι ∷ []) "2Cor.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.11" ∷ word (π ∷ α ∷ ρ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.10.11" ∷ word (τ ∷ ῷ ∷ []) "2Cor.10.11" ∷ word (ἔ ∷ ρ ∷ γ ∷ ῳ ∷ []) "2Cor.10.11" ∷ word (Ο ∷ ὐ ∷ []) "2Cor.10.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.10.12" ∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.10.12" ∷ word (ἐ ∷ γ ∷ κ ∷ ρ ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.10.12" ∷ word (ἢ ∷ []) "2Cor.10.12" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ρ ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.10.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "2Cor.10.12" ∷ word (τ ∷ ι ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.10.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.10.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.10.12" ∷ word (σ ∷ υ ∷ ν ∷ ι ∷ σ ∷ τ ∷ α ∷ ν ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.10.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.10.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "2Cor.10.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.10.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.10.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.10.12" ∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.10.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.12" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.10.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.10.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.10.12" ∷ word (ο ∷ ὐ ∷ []) "2Cor.10.12" ∷ word (σ ∷ υ ∷ ν ∷ ι ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.10.12" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.10.13" ∷ word (δ ∷ ὲ ∷ []) "2Cor.10.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.10.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.10.13" ∷ word (τ ∷ ὰ ∷ []) "2Cor.10.13" ∷ word (ἄ ∷ μ ∷ ε ∷ τ ∷ ρ ∷ α ∷ []) "2Cor.10.13" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.10.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.10.13" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.10.13" ∷ word (τ ∷ ὸ ∷ []) "2Cor.10.13" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.10.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.13" ∷ word (κ ∷ α ∷ ν ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.10.13" ∷ word (ο ∷ ὗ ∷ []) "2Cor.10.13" ∷ word (ἐ ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.10.13" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.10.13" ∷ word (ὁ ∷ []) "2Cor.10.13" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.10.13" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ υ ∷ []) "2Cor.10.13" ∷ word (ἐ ∷ φ ∷ ι ∷ κ ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.10.13" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "2Cor.10.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.10.13" ∷ word (ο ∷ ὐ ∷ []) "2Cor.10.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.10.14" ∷ word (ὡ ∷ ς ∷ []) "2Cor.10.14" ∷ word (μ ∷ ὴ ∷ []) "2Cor.10.14" ∷ word (ἐ ∷ φ ∷ ι ∷ κ ∷ ν ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.10.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.10.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.10.14" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ε ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.10.14" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "2Cor.10.14" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "2Cor.10.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.10.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.10.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.10.14" ∷ word (ἐ ∷ φ ∷ θ ∷ ά ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.10.14" ∷ word (ἐ ∷ ν ∷ []) "2Cor.10.14" ∷ word (τ ∷ ῷ ∷ []) "2Cor.10.14" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "2Cor.10.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.10.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.10.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.10.15" ∷ word (τ ∷ ὰ ∷ []) "2Cor.10.15" ∷ word (ἄ ∷ μ ∷ ε ∷ τ ∷ ρ ∷ α ∷ []) "2Cor.10.15" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.10.15" ∷ word (ἐ ∷ ν ∷ []) "2Cor.10.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ο ∷ τ ∷ ρ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.10.15" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.10.15" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "2Cor.10.15" ∷ word (δ ∷ ὲ ∷ []) "2Cor.10.15" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.10.15" ∷ word (α ∷ ὐ ∷ ξ ∷ α ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "2Cor.10.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.10.15" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.10.15" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.10.15" ∷ word (ἐ ∷ ν ∷ []) "2Cor.10.15" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.10.15" ∷ word (μ ∷ ε ∷ γ ∷ α ∷ ∙λ ∷ υ ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.10.15" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.10.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.10.15" ∷ word (κ ∷ α ∷ ν ∷ ό ∷ ν ∷ α ∷ []) "2Cor.10.15" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.10.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.10.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "2Cor.10.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.10.16" ∷ word (τ ∷ ὰ ∷ []) "2Cor.10.16" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ έ ∷ κ ∷ ε ∷ ι ∷ ν ∷ α ∷ []) "2Cor.10.16" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.10.16" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.10.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.10.16" ∷ word (ἐ ∷ ν ∷ []) "2Cor.10.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ο ∷ τ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Cor.10.16" ∷ word (κ ∷ α ∷ ν ∷ ό ∷ ν ∷ ι ∷ []) "2Cor.10.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.10.16" ∷ word (τ ∷ ὰ ∷ []) "2Cor.10.16" ∷ word (ἕ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ []) "2Cor.10.16" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.10.16" ∷ word (Ὁ ∷ []) "2Cor.10.17" ∷ word (δ ∷ ὲ ∷ []) "2Cor.10.17" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.10.17" ∷ word (ἐ ∷ ν ∷ []) "2Cor.10.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Cor.10.17" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "2Cor.10.17" ∷ word (ο ∷ ὐ ∷ []) "2Cor.10.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.10.18" ∷ word (ὁ ∷ []) "2Cor.10.18" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Cor.10.18" ∷ word (σ ∷ υ ∷ ν ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "2Cor.10.18" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ό ∷ ς ∷ []) "2Cor.10.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Cor.10.18" ∷ word (δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "2Cor.10.18" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.10.18" ∷ word (ὃ ∷ ν ∷ []) "2Cor.10.18" ∷ word (ὁ ∷ []) "2Cor.10.18" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Cor.10.18" ∷ word (σ ∷ υ ∷ ν ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.10.18" ∷ word (Ὄ ∷ φ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.11.1" ∷ word (ἀ ∷ ν ∷ ε ∷ ί ∷ χ ∷ ε ∷ σ ∷ θ ∷ έ ∷ []) "2Cor.11.1" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.11.1" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ό ∷ ν ∷ []) "2Cor.11.1" ∷ word (τ ∷ ι ∷ []) "2Cor.11.1" ∷ word (ἀ ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Cor.11.1" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.1" ∷ word (ἀ ∷ ν ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ έ ∷ []) "2Cor.11.1" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.11.1" ∷ word (ζ ∷ η ∷ ∙λ ∷ ῶ ∷ []) "2Cor.11.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.11.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.11.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.11.2" ∷ word (ζ ∷ ή ∷ ∙λ ∷ ῳ ∷ []) "2Cor.11.2" ∷ word (ἡ ∷ ρ ∷ μ ∷ ο ∷ σ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "2Cor.11.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.11.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.11.2" ∷ word (ἑ ∷ ν ∷ ὶ ∷ []) "2Cor.11.2" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "2Cor.11.2" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "2Cor.11.2" ∷ word (ἁ ∷ γ ∷ ν ∷ ὴ ∷ ν ∷ []) "2Cor.11.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.11.2" ∷ word (τ ∷ ῷ ∷ []) "2Cor.11.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Cor.11.2" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "2Cor.11.3" ∷ word (δ ∷ ὲ ∷ []) "2Cor.11.3" ∷ word (μ ∷ ή ∷ []) "2Cor.11.3" ∷ word (π ∷ ω ∷ ς ∷ []) "2Cor.11.3" ∷ word (ὡ ∷ ς ∷ []) "2Cor.11.3" ∷ word (ὁ ∷ []) "2Cor.11.3" ∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "2Cor.11.3" ∷ word (ἐ ∷ ξ ∷ η ∷ π ∷ ά ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.11.3" ∷ word (Ε ∷ ὕ ∷ α ∷ ν ∷ []) "2Cor.11.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.3" ∷ word (τ ∷ ῇ ∷ []) "2Cor.11.3" ∷ word (π ∷ α ∷ ν ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ί ∷ ᾳ ∷ []) "2Cor.11.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.11.3" ∷ word (φ ∷ θ ∷ α ∷ ρ ∷ ῇ ∷ []) "2Cor.11.3" ∷ word (τ ∷ ὰ ∷ []) "2Cor.11.3" ∷ word (ν ∷ ο ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Cor.11.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.11.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.11.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.11.3" ∷ word (ἁ ∷ π ∷ ∙λ ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.11.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.11.3" ∷ word (ἁ ∷ γ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.11.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.11.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.11.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.11.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "2Cor.11.3" ∷ word (ε ∷ ἰ ∷ []) "2Cor.11.4" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "2Cor.11.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.11.4" ∷ word (ὁ ∷ []) "2Cor.11.4" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Cor.11.4" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.11.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "2Cor.11.4" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.11.4" ∷ word (ὃ ∷ ν ∷ []) "2Cor.11.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.11.4" ∷ word (ἐ ∷ κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.11.4" ∷ word (ἢ ∷ []) "2Cor.11.4" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "2Cor.11.4" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.11.4" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.11.4" ∷ word (ὃ ∷ []) "2Cor.11.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.11.4" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.11.4" ∷ word (ἢ ∷ []) "2Cor.11.4" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.11.4" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.11.4" ∷ word (ὃ ∷ []) "2Cor.11.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.11.4" ∷ word (ἐ ∷ δ ∷ έ ∷ ξ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.11.4" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "2Cor.11.4" ∷ word (ἀ ∷ ν ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.11.4" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.11.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.11.5" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "2Cor.11.5" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ η ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.11.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.11.5" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.11.5" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "2Cor.11.5" ∷ word (ε ∷ ἰ ∷ []) "2Cor.11.6" ∷ word (δ ∷ ὲ ∷ []) "2Cor.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.6" ∷ word (ἰ ∷ δ ∷ ι ∷ ώ ∷ τ ∷ η ∷ ς ∷ []) "2Cor.11.6" ∷ word (τ ∷ ῷ ∷ []) "2Cor.11.6" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "2Cor.11.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.11.6" ∷ word (ο ∷ ὐ ∷ []) "2Cor.11.6" ∷ word (τ ∷ ῇ ∷ []) "2Cor.11.6" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.11.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.11.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.6" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.11.6" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.11.6" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.6" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.11.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.11.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.11.6" ∷ word (Ἢ ∷ []) "2Cor.11.7" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.11.7" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ []) "2Cor.11.7" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Cor.11.7" ∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "2Cor.11.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.11.7" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.11.7" ∷ word (ὑ ∷ ψ ∷ ω ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "2Cor.11.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.11.7" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ὰ ∷ ν ∷ []) "2Cor.11.7" ∷ word (τ ∷ ὸ ∷ []) "2Cor.11.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.11.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.11.7" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.11.7" ∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "2Cor.11.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.11.7" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ ς ∷ []) "2Cor.11.8" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.11.8" ∷ word (ἐ ∷ σ ∷ ύ ∷ ∙λ ∷ η ∷ σ ∷ α ∷ []) "2Cor.11.8" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "2Cor.11.8" ∷ word (ὀ ∷ ψ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.11.8" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.11.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.11.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.11.8" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Cor.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.9" ∷ word (π ∷ α ∷ ρ ∷ ὼ ∷ ν ∷ []) "2Cor.11.9" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.11.9" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.9" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "2Cor.11.9" ∷ word (ο ∷ ὐ ∷ []) "2Cor.11.9" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ν ∷ ά ∷ ρ ∷ κ ∷ η ∷ σ ∷ α ∷ []) "2Cor.11.9" ∷ word (ο ∷ ὐ ∷ θ ∷ ε ∷ ν ∷ ό ∷ ς ∷ []) "2Cor.11.9" ∷ word (τ ∷ ὸ ∷ []) "2Cor.11.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.11.9" ∷ word (ὑ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ η ∷ μ ∷ ά ∷ []) "2Cor.11.9" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.11.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ ν ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "2Cor.11.9" ∷ word (ο ∷ ἱ ∷ []) "2Cor.11.9" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "2Cor.11.9" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.11.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Cor.11.9" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "2Cor.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.9" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.9" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Cor.11.9" ∷ word (ἀ ∷ β ∷ α ∷ ρ ∷ ῆ ∷ []) "2Cor.11.9" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Cor.11.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.11.9" ∷ word (ἐ ∷ τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ α ∷ []) "2Cor.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.9" ∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ ω ∷ []) "2Cor.11.9" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Cor.11.10" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ []) "2Cor.11.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.11.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.10" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "2Cor.11.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.11.10" ∷ word (ἡ ∷ []) "2Cor.11.10" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "2Cor.11.10" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "2Cor.11.10" ∷ word (ο ∷ ὐ ∷ []) "2Cor.11.10" ∷ word (φ ∷ ρ ∷ α ∷ γ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.11.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.11.10" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "2Cor.11.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.11.10" ∷ word (κ ∷ ∙λ ∷ ί ∷ μ ∷ α ∷ σ ∷ ι ∷ []) "2Cor.11.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.11.10" ∷ word (Ἀ ∷ χ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "2Cor.11.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.11.11" ∷ word (τ ∷ ί ∷ []) "2Cor.11.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.11.11" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.11.11" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ []) "2Cor.11.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.11.11" ∷ word (ὁ ∷ []) "2Cor.11.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.11.11" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "2Cor.11.11" ∷ word (Ὃ ∷ []) "2Cor.11.12" ∷ word (δ ∷ ὲ ∷ []) "2Cor.11.12" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "2Cor.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.12" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "2Cor.11.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.11.12" ∷ word (ἐ ∷ κ ∷ κ ∷ ό ∷ ψ ∷ ω ∷ []) "2Cor.11.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.11.12" ∷ word (ἀ ∷ φ ∷ ο ∷ ρ ∷ μ ∷ ὴ ∷ ν ∷ []) "2Cor.11.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.11.12" ∷ word (θ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.11.12" ∷ word (ἀ ∷ φ ∷ ο ∷ ρ ∷ μ ∷ ή ∷ ν ∷ []) "2Cor.11.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.11.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.12" ∷ word (ᾧ ∷ []) "2Cor.11.12" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Cor.11.12" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.11.12" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Cor.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.12" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.11.12" ∷ word (ο ∷ ἱ ∷ []) "2Cor.11.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.11.13" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ι ∷ []) "2Cor.11.13" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ α ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "2Cor.11.13" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ τ ∷ α ∷ ι ∷ []) "2Cor.11.13" ∷ word (δ ∷ ό ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "2Cor.11.13" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ σ ∷ χ ∷ η ∷ μ ∷ α ∷ τ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.11.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.11.13" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.11.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.14" ∷ word (ο ∷ ὐ ∷ []) "2Cor.11.14" ∷ word (θ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "2Cor.11.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.11.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.11.14" ∷ word (ὁ ∷ []) "2Cor.11.14" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "2Cor.11.14" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ σ ∷ χ ∷ η ∷ μ ∷ α ∷ τ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.11.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.11.14" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.11.14" ∷ word (φ ∷ ω ∷ τ ∷ ό ∷ ς ∷ []) "2Cor.11.14" ∷ word (ο ∷ ὐ ∷ []) "2Cor.11.15" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "2Cor.11.15" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Cor.11.15" ∷ word (ε ∷ ἰ ∷ []) "2Cor.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.15" ∷ word (ο ∷ ἱ ∷ []) "2Cor.11.15" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.11.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.11.15" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ σ ∷ χ ∷ η ∷ μ ∷ α ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Cor.11.15" ∷ word (ὡ ∷ ς ∷ []) "2Cor.11.15" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.11.15" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Cor.11.15" ∷ word (ὧ ∷ ν ∷ []) "2Cor.11.15" ∷ word (τ ∷ ὸ ∷ []) "2Cor.11.15" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Cor.11.15" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.11.15" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.11.15" ∷ word (τ ∷ ὰ ∷ []) "2Cor.11.15" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "2Cor.11.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.11.15" ∷ word (Π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "2Cor.11.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "2Cor.11.16" ∷ word (μ ∷ ή ∷ []) "2Cor.11.16" ∷ word (τ ∷ ί ∷ ς ∷ []) "2Cor.11.16" ∷ word (μ ∷ ε ∷ []) "2Cor.11.16" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "2Cor.11.16" ∷ word (ἄ ∷ φ ∷ ρ ∷ ο ∷ ν ∷ α ∷ []) "2Cor.11.16" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "2Cor.11.16" ∷ word (ε ∷ ἰ ∷ []) "2Cor.11.16" ∷ word (δ ∷ ὲ ∷ []) "2Cor.11.16" ∷ word (μ ∷ ή ∷ []) "2Cor.11.16" ∷ word (γ ∷ ε ∷ []) "2Cor.11.16" ∷ word (κ ∷ ἂ ∷ ν ∷ []) "2Cor.11.16" ∷ word (ὡ ∷ ς ∷ []) "2Cor.11.16" ∷ word (ἄ ∷ φ ∷ ρ ∷ ο ∷ ν ∷ α ∷ []) "2Cor.11.16" ∷ word (δ ∷ έ ∷ ξ ∷ α ∷ σ ∷ θ ∷ έ ∷ []) "2Cor.11.16" ∷ word (μ ∷ ε ∷ []) "2Cor.11.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.11.16" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "2Cor.11.16" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ό ∷ ν ∷ []) "2Cor.11.16" ∷ word (τ ∷ ι ∷ []) "2Cor.11.16" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "2Cor.11.16" ∷ word (ὃ ∷ []) "2Cor.11.17" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "2Cor.11.17" ∷ word (ο ∷ ὐ ∷ []) "2Cor.11.17" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.11.17" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.11.17" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "2Cor.11.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.11.17" ∷ word (ὡ ∷ ς ∷ []) "2Cor.11.17" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.17" ∷ word (ἀ ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "2Cor.11.17" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.17" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "2Cor.11.17" ∷ word (τ ∷ ῇ ∷ []) "2Cor.11.17" ∷ word (ὑ ∷ π ∷ ο ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "2Cor.11.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.11.17" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.11.17" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "2Cor.11.18" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "2Cor.11.18" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Cor.11.18" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.11.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "2Cor.11.18" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "2Cor.11.18" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.11.18" ∷ word (ἡ ∷ δ ∷ έ ∷ ω ∷ ς ∷ []) "2Cor.11.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.11.19" ∷ word (ἀ ∷ ν ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.11.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.11.19" ∷ word (ἀ ∷ φ ∷ ρ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "2Cor.11.19" ∷ word (φ ∷ ρ ∷ ό ∷ ν ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "2Cor.11.19" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.11.19" ∷ word (ἀ ∷ ν ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.11.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.11.20" ∷ word (ε ∷ ἴ ∷ []) "2Cor.11.20" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.11.20" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.11.20" ∷ word (κ ∷ α ∷ τ ∷ α ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ο ∷ ῖ ∷ []) "2Cor.11.20" ∷ word (ε ∷ ἴ ∷ []) "2Cor.11.20" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.11.20" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "2Cor.11.20" ∷ word (ε ∷ ἴ ∷ []) "2Cor.11.20" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.11.20" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "2Cor.11.20" ∷ word (ε ∷ ἴ ∷ []) "2Cor.11.20" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.11.20" ∷ word (ἐ ∷ π ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.11.20" ∷ word (ε ∷ ἴ ∷ []) "2Cor.11.20" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.11.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.11.20" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "2Cor.11.20" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.11.20" ∷ word (δ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "2Cor.11.20" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.11.21" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.11.21" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "2Cor.11.21" ∷ word (ὡ ∷ ς ∷ []) "2Cor.11.21" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.11.21" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.11.21" ∷ word (ἠ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ή ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.11.21" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.21" ∷ word (ᾧ ∷ []) "2Cor.11.21" ∷ word (δ ∷ []) "2Cor.11.21" ∷ word (ἄ ∷ ν ∷ []) "2Cor.11.21" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.11.21" ∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ᾷ ∷ []) "2Cor.11.21" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.21" ∷ word (ἀ ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "2Cor.11.21" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "2Cor.11.21" ∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ῶ ∷ []) "2Cor.11.21" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "2Cor.11.21" ∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ῖ ∷ ο ∷ ί ∷ []) "2Cor.11.22" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.11.22" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "2Cor.11.22" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ η ∷ ∙λ ∷ ῖ ∷ τ ∷ α ∷ ί ∷ []) "2Cor.11.22" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.11.22" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "2Cor.11.22" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "2Cor.11.22" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ά ∷ μ ∷ []) "2Cor.11.22" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.11.22" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "2Cor.11.22" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ι ∷ []) "2Cor.11.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.11.23" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.11.23" ∷ word (π ∷ α ∷ ρ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ῶ ∷ ν ∷ []) "2Cor.11.23" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "2Cor.11.23" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.11.23" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "2Cor.11.23" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.23" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.23" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "2Cor.11.23" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.23" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.11.23" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "2Cor.11.23" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.23" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.11.23" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "2Cor.11.23" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.23" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.23" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "2Cor.11.23" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Cor.11.24" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "2Cor.11.24" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "2Cor.11.24" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "2Cor.11.24" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2Cor.11.24" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.11.24" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "2Cor.11.24" ∷ word (τ ∷ ρ ∷ ὶ ∷ ς ∷ []) "2Cor.11.25" ∷ word (ἐ ∷ ρ ∷ α ∷ β ∷ δ ∷ ί ∷ σ ∷ θ ∷ η ∷ ν ∷ []) "2Cor.11.25" ∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "2Cor.11.25" ∷ word (ἐ ∷ ∙λ ∷ ι ∷ θ ∷ ά ∷ σ ∷ θ ∷ η ∷ ν ∷ []) "2Cor.11.25" ∷ word (τ ∷ ρ ∷ ὶ ∷ ς ∷ []) "2Cor.11.25" ∷ word (ἐ ∷ ν ∷ α ∷ υ ∷ ά ∷ γ ∷ η ∷ σ ∷ α ∷ []) "2Cor.11.25" ∷ word (ν ∷ υ ∷ χ ∷ θ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.11.25" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.25" ∷ word (τ ∷ ῷ ∷ []) "2Cor.11.25" ∷ word (β ∷ υ ∷ θ ∷ ῷ ∷ []) "2Cor.11.25" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ η ∷ κ ∷ α ∷ []) "2Cor.11.25" ∷ word (ὁ ∷ δ ∷ ο ∷ ι ∷ π ∷ ο ∷ ρ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (κ ∷ ι ∷ ν ∷ δ ∷ ύ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.11.26" ∷ word (κ ∷ ι ∷ ν ∷ δ ∷ ύ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.11.26" ∷ word (κ ∷ ι ∷ ν ∷ δ ∷ ύ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (ἐ ∷ κ ∷ []) "2Cor.11.26" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.11.26" ∷ word (κ ∷ ι ∷ ν ∷ δ ∷ ύ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.11.26" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "2Cor.11.26" ∷ word (κ ∷ ι ∷ ν ∷ δ ∷ ύ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.26" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ []) "2Cor.11.26" ∷ word (κ ∷ ι ∷ ν ∷ δ ∷ ύ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.26" ∷ word (ἐ ∷ ρ ∷ η ∷ μ ∷ ί ∷ ᾳ ∷ []) "2Cor.11.26" ∷ word (κ ∷ ι ∷ ν ∷ δ ∷ ύ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.26" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "2Cor.11.26" ∷ word (κ ∷ ι ∷ ν ∷ δ ∷ ύ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.26" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ α ∷ δ ∷ έ ∷ ∙λ ∷ φ ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.11.26" ∷ word (κ ∷ ό ∷ π ∷ ῳ ∷ []) "2Cor.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.27" ∷ word (μ ∷ ό ∷ χ ∷ θ ∷ ῳ ∷ []) "2Cor.11.27" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.27" ∷ word (ἀ ∷ γ ∷ ρ ∷ υ ∷ π ∷ ν ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.11.27" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "2Cor.11.27" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.27" ∷ word (∙λ ∷ ι ∷ μ ∷ ῷ ∷ []) "2Cor.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.27" ∷ word (δ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "2Cor.11.27" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.27" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.11.27" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "2Cor.11.27" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.27" ∷ word (ψ ∷ ύ ∷ χ ∷ ε ∷ ι ∷ []) "2Cor.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.27" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "2Cor.11.27" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "2Cor.11.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.11.28" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.11.28" ∷ word (ἡ ∷ []) "2Cor.11.28" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ ς ∷ []) "2Cor.11.28" ∷ word (μ ∷ ο ∷ ι ∷ []) "2Cor.11.28" ∷ word (ἡ ∷ []) "2Cor.11.28" ∷ word (κ ∷ α ∷ θ ∷ []) "2Cor.11.28" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "2Cor.11.28" ∷ word (ἡ ∷ []) "2Cor.11.28" ∷ word (μ ∷ έ ∷ ρ ∷ ι ∷ μ ∷ ν ∷ α ∷ []) "2Cor.11.28" ∷ word (π ∷ α ∷ σ ∷ ῶ ∷ ν ∷ []) "2Cor.11.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.11.28" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "2Cor.11.28" ∷ word (τ ∷ ί ∷ ς ∷ []) "2Cor.11.29" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ []) "2Cor.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.29" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.11.29" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ῶ ∷ []) "2Cor.11.29" ∷ word (τ ∷ ί ∷ ς ∷ []) "2Cor.11.29" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.29" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.11.29" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2Cor.11.29" ∷ word (π ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "2Cor.11.29" ∷ word (Ε ∷ ἰ ∷ []) "2Cor.11.30" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ᾶ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.11.30" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "2Cor.11.30" ∷ word (τ ∷ ὰ ∷ []) "2Cor.11.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.11.30" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Cor.11.30" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.11.30" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.11.30" ∷ word (ὁ ∷ []) "2Cor.11.31" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.11.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.31" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "2Cor.11.31" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.11.31" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.11.31" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.11.31" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "2Cor.11.31" ∷ word (ὁ ∷ []) "2Cor.11.31" ∷ word (ὢ ∷ ν ∷ []) "2Cor.11.31" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.11.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.11.31" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.11.31" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "2Cor.11.31" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.11.31" ∷ word (ο ∷ ὐ ∷ []) "2Cor.11.31" ∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.11.31" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.32" ∷ word (Δ ∷ α ∷ μ ∷ α ∷ σ ∷ κ ∷ ῷ ∷ []) "2Cor.11.32" ∷ word (ὁ ∷ []) "2Cor.11.32" ∷ word (ἐ ∷ θ ∷ ν ∷ ά ∷ ρ ∷ χ ∷ η ∷ ς ∷ []) "2Cor.11.32" ∷ word (Ἁ ∷ ρ ∷ έ ∷ τ ∷ α ∷ []) "2Cor.11.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.11.32" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ς ∷ []) "2Cor.11.32" ∷ word (ἐ ∷ φ ∷ ρ ∷ ο ∷ ύ ∷ ρ ∷ ε ∷ ι ∷ []) "2Cor.11.32" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.11.32" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "2Cor.11.32" ∷ word (Δ ∷ α ∷ μ ∷ α ∷ σ ∷ κ ∷ η ∷ ν ∷ ῶ ∷ ν ∷ []) "2Cor.11.32" ∷ word (π ∷ ι ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "2Cor.11.32" ∷ word (μ ∷ ε ∷ []) "2Cor.11.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.33" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.11.33" ∷ word (θ ∷ υ ∷ ρ ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "2Cor.11.33" ∷ word (ἐ ∷ ν ∷ []) "2Cor.11.33" ∷ word (σ ∷ α ∷ ρ ∷ γ ∷ ά ∷ ν ∷ ῃ ∷ []) "2Cor.11.33" ∷ word (ἐ ∷ χ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ θ ∷ η ∷ ν ∷ []) "2Cor.11.33" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.11.33" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.11.33" ∷ word (τ ∷ ε ∷ ί ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.11.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.11.33" ∷ word (ἐ ∷ ξ ∷ έ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "2Cor.11.33" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Cor.11.33" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "2Cor.11.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.11.33" ∷ word (Κ ∷ α ∷ υ ∷ χ ∷ ᾶ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.12.1" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "2Cor.12.1" ∷ word (ο ∷ ὐ ∷ []) "2Cor.12.1" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.12.1" ∷ word (μ ∷ έ ∷ ν ∷ []) "2Cor.12.1" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.1" ∷ word (δ ∷ ὲ ∷ []) "2Cor.12.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.12.1" ∷ word (ὀ ∷ π ∷ τ ∷ α ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.1" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ι ∷ ς ∷ []) "2Cor.12.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.12.1" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "2Cor.12.2" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "2Cor.12.2" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Cor.12.2" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "2Cor.12.2" ∷ word (ἐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Cor.12.2" ∷ word (δ ∷ ε ∷ κ ∷ α ∷ τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "2Cor.12.2" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.12.2" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.2" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Cor.12.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.12.2" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "2Cor.12.2" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.12.2" ∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.12.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.12.2" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.12.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.12.2" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "2Cor.12.2" ∷ word (ὁ ∷ []) "2Cor.12.2" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.12.2" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "2Cor.12.2" ∷ word (ἁ ∷ ρ ∷ π ∷ α ∷ γ ∷ έ ∷ ν ∷ τ ∷ α ∷ []) "2Cor.12.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.12.2" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.12.2" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "2Cor.12.2" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.12.2" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "2Cor.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.3" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "2Cor.12.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.12.3" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.12.3" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "2Cor.12.3" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.12.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.3" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Cor.12.3" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Cor.12.3" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "2Cor.12.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.12.3" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.12.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.12.3" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "2Cor.12.3" ∷ word (ὁ ∷ []) "2Cor.12.3" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.12.3" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "2Cor.12.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.12.4" ∷ word (ἡ ∷ ρ ∷ π ∷ ά ∷ γ ∷ η ∷ []) "2Cor.12.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.12.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.12.4" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ε ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "2Cor.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.4" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.12.4" ∷ word (ἄ ∷ ρ ∷ ρ ∷ η ∷ τ ∷ α ∷ []) "2Cor.12.4" ∷ word (ῥ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Cor.12.4" ∷ word (ἃ ∷ []) "2Cor.12.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.12.4" ∷ word (ἐ ∷ ξ ∷ ὸ ∷ ν ∷ []) "2Cor.12.4" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "2Cor.12.4" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.12.4" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.12.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.12.5" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.12.5" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.5" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.12.5" ∷ word (δ ∷ ὲ ∷ []) "2Cor.12.5" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.12.5" ∷ word (ο ∷ ὐ ∷ []) "2Cor.12.5" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.5" ∷ word (ε ∷ ἰ ∷ []) "2Cor.12.5" ∷ word (μ ∷ ὴ ∷ []) "2Cor.12.5" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.5" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.12.5" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.12.5" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Cor.12.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.12.6" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "2Cor.12.6" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.12.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.12.6" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.6" ∷ word (ἄ ∷ φ ∷ ρ ∷ ω ∷ ν ∷ []) "2Cor.12.6" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Cor.12.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.12.6" ∷ word (ἐ ∷ ρ ∷ ῶ ∷ []) "2Cor.12.6" ∷ word (φ ∷ ε ∷ ί ∷ δ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.6" ∷ word (δ ∷ έ ∷ []) "2Cor.12.6" ∷ word (μ ∷ ή ∷ []) "2Cor.12.6" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Cor.12.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.12.6" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "2Cor.12.6" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Cor.12.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.12.6" ∷ word (ὃ ∷ []) "2Cor.12.6" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ []) "2Cor.12.6" ∷ word (μ ∷ ε ∷ []) "2Cor.12.6" ∷ word (ἢ ∷ []) "2Cor.12.6" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ []) "2Cor.12.6" ∷ word (τ ∷ ι ∷ []) "2Cor.12.6" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.12.6" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Cor.12.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.7" ∷ word (τ ∷ ῇ ∷ []) "2Cor.12.7" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "2Cor.12.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.12.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ω ∷ ν ∷ []) "2Cor.12.7" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "2Cor.12.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.12.7" ∷ word (μ ∷ ὴ ∷ []) "2Cor.12.7" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ α ∷ ί ∷ ρ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.7" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "2Cor.12.7" ∷ word (μ ∷ ο ∷ ι ∷ []) "2Cor.12.7" ∷ word (σ ∷ κ ∷ ό ∷ ∙λ ∷ ο ∷ ψ ∷ []) "2Cor.12.7" ∷ word (τ ∷ ῇ ∷ []) "2Cor.12.7" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "2Cor.12.7" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Cor.12.7" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "2Cor.12.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.12.7" ∷ word (μ ∷ ε ∷ []) "2Cor.12.7" ∷ word (κ ∷ ο ∷ ∙λ ∷ α ∷ φ ∷ ί ∷ ζ ∷ ῃ ∷ []) "2Cor.12.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.12.7" ∷ word (μ ∷ ὴ ∷ []) "2Cor.12.7" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ α ∷ ί ∷ ρ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.7" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.12.8" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "2Cor.12.8" ∷ word (τ ∷ ρ ∷ ὶ ∷ ς ∷ []) "2Cor.12.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.12.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Cor.12.8" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ α ∷ []) "2Cor.12.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.12.8" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ῇ ∷ []) "2Cor.12.8" ∷ word (ἀ ∷ π ∷ []) "2Cor.12.8" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Cor.12.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.9" ∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ έ ∷ ν ∷ []) "2Cor.12.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "2Cor.12.9" ∷ word (Ἀ ∷ ρ ∷ κ ∷ ε ∷ ῖ ∷ []) "2Cor.12.9" ∷ word (σ ∷ ο ∷ ι ∷ []) "2Cor.12.9" ∷ word (ἡ ∷ []) "2Cor.12.9" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Cor.12.9" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.12.9" ∷ word (ἡ ∷ []) "2Cor.12.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.12.9" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "2Cor.12.9" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.9" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Cor.12.9" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.12.9" ∷ word (ἥ ∷ δ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "2Cor.12.9" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Cor.12.9" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.12.9" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.9" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.9" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Cor.12.9" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.12.9" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.12.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.12.9" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ σ ∷ ῃ ∷ []) "2Cor.12.9" ∷ word (ἐ ∷ π ∷ []) "2Cor.12.9" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "2Cor.12.9" ∷ word (ἡ ∷ []) "2Cor.12.9" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "2Cor.12.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.12.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.12.9" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "2Cor.12.10" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ῶ ∷ []) "2Cor.12.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.10" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.12.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.10" ∷ word (ὕ ∷ β ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.12.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.10" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ α ∷ ι ∷ ς ∷ []) "2Cor.12.10" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.10" ∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.10" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ο ∷ χ ∷ ω ∷ ρ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Cor.12.10" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.12.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.12.10" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "2Cor.12.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.12.10" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ῶ ∷ []) "2Cor.12.10" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "2Cor.12.10" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "2Cor.12.10" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "2Cor.12.10" ∷ word (Γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ []) "2Cor.12.11" ∷ word (ἄ ∷ φ ∷ ρ ∷ ω ∷ ν ∷ []) "2Cor.12.11" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.12.11" ∷ word (μ ∷ ε ∷ []) "2Cor.12.11" ∷ word (ἠ ∷ ν ∷ α ∷ γ ∷ κ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "2Cor.12.11" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2Cor.12.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.12.11" ∷ word (ὤ ∷ φ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Cor.12.11" ∷ word (ὑ ∷ φ ∷ []) "2Cor.12.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.12.11" ∷ word (σ ∷ υ ∷ ν ∷ ί ∷ σ ∷ τ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Cor.12.11" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "2Cor.12.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.12.11" ∷ word (ὑ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ η ∷ σ ∷ α ∷ []) "2Cor.12.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.12.11" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.12.11" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "2Cor.12.11" ∷ word (ε ∷ ἰ ∷ []) "2Cor.12.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.11" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "2Cor.12.11" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "2Cor.12.11" ∷ word (τ ∷ ὰ ∷ []) "2Cor.12.12" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "2Cor.12.12" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "2Cor.12.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.12.12" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ []) "2Cor.12.12" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ι ∷ ρ ∷ γ ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "2Cor.12.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.12.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.12" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Cor.12.12" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "2Cor.12.12" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.12.12" ∷ word (τ ∷ ε ∷ []) "2Cor.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.12" ∷ word (τ ∷ έ ∷ ρ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.12" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.12.12" ∷ word (τ ∷ ί ∷ []) "2Cor.12.13" ∷ word (γ ∷ ά ∷ ρ ∷ []) "2Cor.12.13" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Cor.12.13" ∷ word (ὃ ∷ []) "2Cor.12.13" ∷ word (ἡ ∷ σ ∷ σ ∷ ώ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "2Cor.12.13" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.12.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Cor.12.13" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ ς ∷ []) "2Cor.12.13" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "2Cor.12.13" ∷ word (ε ∷ ἰ ∷ []) "2Cor.12.13" ∷ word (μ ∷ ὴ ∷ []) "2Cor.12.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.12.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.12.13" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2Cor.12.13" ∷ word (ο ∷ ὐ ∷ []) "2Cor.12.13" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ν ∷ ά ∷ ρ ∷ κ ∷ η ∷ σ ∷ α ∷ []) "2Cor.12.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.12.13" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ α ∷ σ ∷ θ ∷ έ ∷ []) "2Cor.12.13" ∷ word (μ ∷ ο ∷ ι ∷ []) "2Cor.12.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.12.13" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.12.13" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "2Cor.12.13" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "2Cor.12.14" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.12.14" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.12.14" ∷ word (ἑ ∷ τ ∷ ο ∷ ί ∷ μ ∷ ω ∷ ς ∷ []) "2Cor.12.14" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "2Cor.12.14" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Cor.12.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.12.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.14" ∷ word (ο ∷ ὐ ∷ []) "2Cor.12.14" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ν ∷ α ∷ ρ ∷ κ ∷ ή ∷ σ ∷ ω ∷ []) "2Cor.12.14" ∷ word (ο ∷ ὐ ∷ []) "2Cor.12.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.12.14" ∷ word (ζ ∷ η ∷ τ ∷ ῶ ∷ []) "2Cor.12.14" ∷ word (τ ∷ ὰ ∷ []) "2Cor.12.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.12.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.12.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.12.14" ∷ word (ο ∷ ὐ ∷ []) "2Cor.12.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.12.14" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "2Cor.12.14" ∷ word (τ ∷ ὰ ∷ []) "2Cor.12.14" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "2Cor.12.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.12.14" ∷ word (γ ∷ ο ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.12.14" ∷ word (θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "2Cor.12.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.12.14" ∷ word (ο ∷ ἱ ∷ []) "2Cor.12.14" ∷ word (γ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.12.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.12.14" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Cor.12.14" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2Cor.12.15" ∷ word (δ ∷ ὲ ∷ []) "2Cor.12.15" ∷ word (ἥ ∷ δ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "2Cor.12.15" ∷ word (δ ∷ α ∷ π ∷ α ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "2Cor.12.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.15" ∷ word (ἐ ∷ κ ∷ δ ∷ α ∷ π ∷ α ∷ ν ∷ η ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.15" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.12.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.12.15" ∷ word (ψ ∷ υ ∷ χ ∷ ῶ ∷ ν ∷ []) "2Cor.12.15" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.12.15" ∷ word (ε ∷ ἰ ∷ []) "2Cor.12.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "2Cor.12.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.12.15" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ ν ∷ []) "2Cor.12.15" ∷ word (ἧ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "2Cor.12.15" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.15" ∷ word (ἔ ∷ σ ∷ τ ∷ ω ∷ []) "2Cor.12.16" ∷ word (δ ∷ έ ∷ []) "2Cor.12.16" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2Cor.12.16" ∷ word (ο ∷ ὐ ∷ []) "2Cor.12.16" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ β ∷ ά ∷ ρ ∷ η ∷ σ ∷ α ∷ []) "2Cor.12.16" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.12.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.12.16" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "2Cor.12.16" ∷ word (π ∷ α ∷ ν ∷ ο ∷ ῦ ∷ ρ ∷ γ ∷ ο ∷ ς ∷ []) "2Cor.12.16" ∷ word (δ ∷ ό ∷ ∙λ ∷ ῳ ∷ []) "2Cor.12.16" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.12.16" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "2Cor.12.16" ∷ word (μ ∷ ή ∷ []) "2Cor.12.17" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "2Cor.12.17" ∷ word (ὧ ∷ ν ∷ []) "2Cor.12.17" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ κ ∷ α ∷ []) "2Cor.12.17" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.12.17" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.12.17" ∷ word (δ ∷ ι ∷ []) "2Cor.12.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.12.17" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ έ ∷ κ ∷ τ ∷ η ∷ σ ∷ α ∷ []) "2Cor.12.17" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.12.17" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ α ∷ []) "2Cor.12.18" ∷ word (Τ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.12.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.18" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ []) "2Cor.12.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.12.18" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ν ∷ []) "2Cor.12.18" ∷ word (μ ∷ ή ∷ τ ∷ ι ∷ []) "2Cor.12.18" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ έ ∷ κ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "2Cor.12.18" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.12.18" ∷ word (Τ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.12.18" ∷ word (ο ∷ ὐ ∷ []) "2Cor.12.18" ∷ word (τ ∷ ῷ ∷ []) "2Cor.12.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Cor.12.18" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Cor.12.18" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.12.18" ∷ word (ο ∷ ὐ ∷ []) "2Cor.12.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.12.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.12.18" ∷ word (ἴ ∷ χ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.12.18" ∷ word (Π ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "2Cor.12.19" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "2Cor.12.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.12.19" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.12.19" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.12.19" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "2Cor.12.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.12.19" ∷ word (ἐ ∷ ν ∷ []) "2Cor.12.19" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Cor.12.19" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.12.19" ∷ word (τ ∷ ὰ ∷ []) "2Cor.12.19" ∷ word (δ ∷ ὲ ∷ []) "2Cor.12.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Cor.12.19" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "2Cor.12.19" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.12.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.12.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.12.19" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ῆ ∷ ς ∷ []) "2Cor.12.19" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "2Cor.12.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.12.20" ∷ word (μ ∷ ή ∷ []) "2Cor.12.20" ∷ word (π ∷ ω ∷ ς ∷ []) "2Cor.12.20" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "2Cor.12.20" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Cor.12.20" ∷ word (ο ∷ ἵ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.12.20" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "2Cor.12.20" ∷ word (ε ∷ ὕ ∷ ρ ∷ ω ∷ []) "2Cor.12.20" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.12.20" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "2Cor.12.20" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῶ ∷ []) "2Cor.12.20" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.12.20" ∷ word (ο ∷ ἷ ∷ ο ∷ ν ∷ []) "2Cor.12.20" ∷ word (ο ∷ ὐ ∷ []) "2Cor.12.20" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.12.20" ∷ word (μ ∷ ή ∷ []) "2Cor.12.20" ∷ word (π ∷ ω ∷ ς ∷ []) "2Cor.12.20" ∷ word (ἔ ∷ ρ ∷ ι ∷ ς ∷ []) "2Cor.12.20" ∷ word (ζ ∷ ῆ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Cor.12.20" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ί ∷ []) "2Cor.12.20" ∷ word (ἐ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "2Cor.12.20" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ α ∷ ∙λ ∷ ι ∷ α ∷ ί ∷ []) "2Cor.12.20" ∷ word (ψ ∷ ι ∷ θ ∷ υ ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ί ∷ []) "2Cor.12.20" ∷ word (φ ∷ υ ∷ σ ∷ ι ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "2Cor.12.20" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "2Cor.12.20" ∷ word (μ ∷ ὴ ∷ []) "2Cor.12.21" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "2Cor.12.21" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.12.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.12.21" ∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ώ ∷ σ ∷ ῃ ∷ []) "2Cor.12.21" ∷ word (μ ∷ ε ∷ []) "2Cor.12.21" ∷ word (ὁ ∷ []) "2Cor.12.21" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "2Cor.12.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Cor.12.21" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.12.21" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.21" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ή ∷ σ ∷ ω ∷ []) "2Cor.12.21" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.12.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Cor.12.21" ∷ word (π ∷ ρ ∷ ο ∷ η ∷ μ ∷ α ∷ ρ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.21" ∷ word (μ ∷ ὴ ∷ []) "2Cor.12.21" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ η ∷ σ ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.12.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.12.21" ∷ word (τ ∷ ῇ ∷ []) "2Cor.12.21" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ ᾳ ∷ []) "2Cor.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.21" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Cor.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.12.21" ∷ word (ἀ ∷ σ ∷ ε ∷ ∙λ ∷ γ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Cor.12.21" ∷ word (ᾗ ∷ []) "2Cor.12.21" ∷ word (ἔ ∷ π ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "2Cor.12.21" ∷ word (Τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "2Cor.13.1" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.13.1" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.13.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.13.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.13.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Cor.13.1" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.13.1" ∷ word (δ ∷ ύ ∷ ο ∷ []) "2Cor.13.1" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "2Cor.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.1" ∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "2Cor.13.1" ∷ word (σ ∷ τ ∷ α ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Cor.13.1" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "2Cor.13.1" ∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "2Cor.13.1" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ί ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "2Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.2" ∷ word (π ∷ ρ ∷ ο ∷ ∙λ ∷ έ ∷ γ ∷ ω ∷ []) "2Cor.13.2" ∷ word (ὡ ∷ ς ∷ []) "2Cor.13.2" ∷ word (π ∷ α ∷ ρ ∷ ὼ ∷ ν ∷ []) "2Cor.13.2" ∷ word (τ ∷ ὸ ∷ []) "2Cor.13.2" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "2Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.2" ∷ word (ἀ ∷ π ∷ ὼ ∷ ν ∷ []) "2Cor.13.2" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Cor.13.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.13.2" ∷ word (π ∷ ρ ∷ ο ∷ η ∷ μ ∷ α ∷ ρ ∷ τ ∷ η ∷ κ ∷ ό ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.13.2" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "2Cor.13.2" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.13.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.13.2" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Cor.13.2" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "2Cor.13.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.13.2" ∷ word (τ ∷ ὸ ∷ []) "2Cor.13.2" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "2Cor.13.2" ∷ word (ο ∷ ὐ ∷ []) "2Cor.13.2" ∷ word (φ ∷ ε ∷ ί ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Cor.13.2" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "2Cor.13.3" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "2Cor.13.3" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "2Cor.13.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.13.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.13.3" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "2Cor.13.3" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.13.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.13.3" ∷ word (ὃ ∷ ς ∷ []) "2Cor.13.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.13.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.13.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.13.3" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ []) "2Cor.13.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.13.3" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ε ∷ ῖ ∷ []) "2Cor.13.3" ∷ word (ἐ ∷ ν ∷ []) "2Cor.13.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.13.4" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "2Cor.13.4" ∷ word (ἐ ∷ ξ ∷ []) "2Cor.13.4" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Cor.13.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.13.4" ∷ word (ζ ∷ ῇ ∷ []) "2Cor.13.4" ∷ word (ἐ ∷ κ ∷ []) "2Cor.13.4" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.13.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.13.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.13.4" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.13.4" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.13.4" ∷ word (ἐ ∷ ν ∷ []) "2Cor.13.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Cor.13.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.13.4" ∷ word (ζ ∷ ή ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.13.4" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "2Cor.13.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Cor.13.4" ∷ word (ἐ ∷ κ ∷ []) "2Cor.13.4" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "2Cor.13.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.13.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.13.4" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.13.4" ∷ word (Ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.13.5" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.13.5" ∷ word (ε ∷ ἰ ∷ []) "2Cor.13.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ὲ ∷ []) "2Cor.13.5" ∷ word (ἐ ∷ ν ∷ []) "2Cor.13.5" ∷ word (τ ∷ ῇ ∷ []) "2Cor.13.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "2Cor.13.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.13.5" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.13.5" ∷ word (ἢ ∷ []) "2Cor.13.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.13.5" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.13.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Cor.13.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.13.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "2Cor.13.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Cor.13.5" ∷ word (ἐ ∷ ν ∷ []) "2Cor.13.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Cor.13.5" ∷ word (ε ∷ ἰ ∷ []) "2Cor.13.5" ∷ word (μ ∷ ή ∷ τ ∷ ι ∷ []) "2Cor.13.5" ∷ word (ἀ ∷ δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ί ∷ []) "2Cor.13.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "2Cor.13.5" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "2Cor.13.6" ∷ word (δ ∷ ὲ ∷ []) "2Cor.13.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.13.6" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.13.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Cor.13.6" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.13.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.13.6" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "2Cor.13.6" ∷ word (ἀ ∷ δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "2Cor.13.6" ∷ word (ε ∷ ὐ ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.13.7" ∷ word (δ ∷ ὲ ∷ []) "2Cor.13.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Cor.13.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Cor.13.7" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "2Cor.13.7" ∷ word (μ ∷ ὴ ∷ []) "2Cor.13.7" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Cor.13.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.13.7" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "2Cor.13.7" ∷ word (μ ∷ η ∷ δ ∷ έ ∷ ν ∷ []) "2Cor.13.7" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Cor.13.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.13.7" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.13.7" ∷ word (δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "2Cor.13.7" ∷ word (φ ∷ α ∷ ν ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.13.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Cor.13.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.13.7" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.13.7" ∷ word (τ ∷ ὸ ∷ []) "2Cor.13.7" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "2Cor.13.7" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ τ ∷ ε ∷ []) "2Cor.13.7" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.13.7" ∷ word (δ ∷ ὲ ∷ []) "2Cor.13.7" ∷ word (ὡ ∷ ς ∷ []) "2Cor.13.7" ∷ word (ἀ ∷ δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "2Cor.13.7" ∷ word (ὦ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.13.7" ∷ word (ο ∷ ὐ ∷ []) "2Cor.13.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.13.8" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ θ ∷ ά ∷ []) "2Cor.13.8" ∷ word (τ ∷ ι ∷ []) "2Cor.13.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.13.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.13.8" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Cor.13.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Cor.13.8" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Cor.13.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.13.8" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Cor.13.8" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.13.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Cor.13.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "2Cor.13.9" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.13.9" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Cor.13.9" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Cor.13.9" ∷ word (δ ∷ ὲ ∷ []) "2Cor.13.9" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ο ∷ ὶ ∷ []) "2Cor.13.9" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "2Cor.13.9" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.9" ∷ word (ε ∷ ὐ ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Cor.13.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.13.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.13.9" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ ρ ∷ τ ∷ ι ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.13.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Cor.13.10" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Cor.13.10" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Cor.13.10" ∷ word (ἀ ∷ π ∷ ὼ ∷ ν ∷ []) "2Cor.13.10" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ []) "2Cor.13.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Cor.13.10" ∷ word (π ∷ α ∷ ρ ∷ ὼ ∷ ν ∷ []) "2Cor.13.10" ∷ word (μ ∷ ὴ ∷ []) "2Cor.13.10" ∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ ό ∷ μ ∷ ω ∷ ς ∷ []) "2Cor.13.10" ∷ word (χ ∷ ρ ∷ ή ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "2Cor.13.10" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Cor.13.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Cor.13.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "2Cor.13.10" ∷ word (ἣ ∷ ν ∷ []) "2Cor.13.10" ∷ word (ὁ ∷ []) "2Cor.13.10" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Cor.13.10" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ έ ∷ ν ∷ []) "2Cor.13.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "2Cor.13.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.13.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "2Cor.13.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Cor.13.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Cor.13.10" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ί ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Cor.13.10" ∷ word (Λ ∷ ο ∷ ι ∷ π ∷ ό ∷ ν ∷ []) "2Cor.13.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Cor.13.11" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.13.11" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.13.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.13.11" ∷ word (τ ∷ ὸ ∷ []) "2Cor.13.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "2Cor.13.11" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "2Cor.13.11" ∷ word (ε ∷ ἰ ∷ ρ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "2Cor.13.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.11" ∷ word (ὁ ∷ []) "2Cor.13.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Cor.13.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Cor.13.11" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "2Cor.13.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.11" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "2Cor.13.11" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "2Cor.13.11" ∷ word (μ ∷ ε ∷ θ ∷ []) "2Cor.13.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.13.11" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "2Cor.13.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "2Cor.13.12" ∷ word (ἐ ∷ ν ∷ []) "2Cor.13.12" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "2Cor.13.12" ∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Cor.13.12" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Cor.13.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Cor.13.12" ∷ word (ο ∷ ἱ ∷ []) "2Cor.13.12" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "2Cor.13.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Cor.13.12" ∷ word (ἡ ∷ []) "2Cor.13.13" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Cor.13.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.13.13" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.13.13" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Cor.13.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Cor.13.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.13" ∷ word (ἡ ∷ []) "2Cor.13.13" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "2Cor.13.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.13.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Cor.13.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Cor.13.13" ∷ word (ἡ ∷ []) "2Cor.13.13" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ []) "2Cor.13.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Cor.13.13" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "2Cor.13.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Cor.13.13" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Cor.13.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Cor.13.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Cor.13.13" ∷ []
{ "alphanum_fraction": 0.3454848783, "avg_line_length": 45.8514719001, "ext": "agda", "hexsha": "3ec79d157c6c4af2b1d13434bfdcc53537a2d7c3", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/2Cor.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/2Cor.agda", "max_line_length": 98, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/2Cor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 146064, "size": 205598 }
{-# OPTIONS --without-K #-} module Agda.Builtin.Unit where record ⊤ : Set where instance constructor tt {-# BUILTIN UNIT ⊤ #-} {-# COMPILED_DATA ⊤ () () #-}
{ "alphanum_fraction": 0.6172839506, "avg_line_length": 16.2, "ext": "agda", "hexsha": "3134eb8f6dd35543661c04ac03824708d25bf2a2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Unit.agda", "max_line_length": 30, "max_stars_count": null, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 43, "size": 162 }
open import Agda.Primitive data Foo : Setω where foo : Foo bar : Foo → Foo bar foo = foo
{ "alphanum_fraction": 0.6774193548, "avg_line_length": 11.625, "ext": "agda", "hexsha": "73d560c431a99a238822ed8711c23ee4d64e0426", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4109.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4109.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4109.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 93 }
{-# OPTIONS --guarded #-} postulate test : (@tick _ : _) → Set
{ "alphanum_fraction": 0.5454545455, "avg_line_length": 13.2, "ext": "agda", "hexsha": "e98206eb44ff790dc8cc8f331aa62aa4b631c293", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue5033.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue5033.agda", "max_line_length": 28, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue5033.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 19, "size": 66 }
-- --------------------------------- -- this is the agda file implementing my own work on logic, viz. a relational -- framework for logic. -- These codes have been checked by Agda 2.6.0 -- --------------------------------- module RL where -- this file use agda standard library open import Agda.Builtin.Equality open import Relation.Nullary open import Data.Empty open import Data.Product -- --------------------------------- -- Logical Frame -- --------------------------------- record Frame : Set₁ where field Φ : Set -- the set of language bot : Φ -- contradiction top : Φ -- validity _⇌_ : Φ → Φ → Set -- ⇌ is interpreted as consistency relation symm : ∀ (x y : Φ) → x ⇌ y → y ⇌ x -- ⇌ is symmetric alre : ∀ (x : Φ) → ¬ (x ≡ bot) → x ⇌ x -- except for ⊥, ⇌ is reflexive ⊥-contra : ∀ (x : Φ) → ¬ (x ⇌ bot) -- ⊥ is in-⇌ with any x∈Φ ⊤-validi : ∀ (x : Φ) → ¬ (x ≡ bot) → (x ⇌ top) -- ⊤ ⇌ everything e.x. ⊥ substitution : {A : Frame} (x y z : Frame.Φ A) -- ∀x,y,z∈Φ.(x≡y ∧ x⇌z → y⇌z) → x ≡ y → Frame._⇌_ A x z → Frame._⇌_ A y z substitution {A} x y z p q rewrite p = q cons→non-contra : {A : Frame} (x : Frame.Φ A) -- ∀x∈Φ.(∃y∈Φ.(x⇌y) → x≠⊥) → ∃[ y ] Frame._⇌_ A x y → ¬ (x ≡ Frame.bot A) cons→non-contra {A} x (y , f) q = Frame.⊥-contra A y w where s : Frame._⇌_ A (Frame.bot A) y s = substitution {A} x (Frame.bot A) y q f w : Frame._⇌_ A y (Frame.bot A) w = Frame.symm A (Frame.bot A) y s module Example₁ where data tf : Set where 𝟘x 𝟙x : tf data _↔_ : tf → tf → Set where t-t : 𝟙x ↔ 𝟙x symm-tf : ∀ (x y : tf) → x ↔ y → y ↔ x symm-tf 𝟙x 𝟙x t-t = t-t alre-tf : ∀ (x : tf) → ¬ (x ≡ 𝟘x) → x ↔ x alre-tf 𝟙x _ = t-t alre-tf 𝟘x p = ⊥-elim (p refl) 𝟙x-validi : ∀ (x : tf) → ¬ (x ≡ 𝟘x) → (x ↔ 𝟙x) 𝟙x-validi 𝟙x _ = t-t 𝟙x-validi 𝟘x ¬p = ⊥-elim (¬p refl) 𝟘x-contra : ∀ (x : tf) → ¬ (x ↔ 𝟘x) 𝟘x-contra x () tfFrame : Frame -- the smallest possible normal frame tfFrame = record { Φ = tf ; bot = 𝟘x ; top = 𝟙x ; _⇌_ = _↔_ ; symm = symm-tf ; alre = alre-tf ; ⊥-contra = 𝟘x-contra ; ⊤-validi = 𝟙x-validi } -- --------------------------------- -- Logical Consequence -- --------------------------------- record _⊢_ {A : Frame} (a b : Frame.Φ A) : Set where -- logical consequence field -- a⊢b ⇔ ∀x∈Φ.(x⇌a → x⇌b) fromCons : ∀ (x : Frame.Φ A) → Frame._⇌_ A x a → Frame._⇌_ A x b -- --------------------------------- -- properties of ⊢ refl-⊢ : {A : Frame} (a : Frame.Φ A) → _⊢_ {A} a a -- reflexive refl-⊢ {A} a = record { fromCons = p } where p : ∀ (x : Frame.Φ A) → Frame._⇌_ A x a → Frame._⇌_ A x a p x q = q trans-⊢ : {A : Frame} (a b c : Frame.Φ A) -- transitive → _⊢_ {A} a b → _⊢_ {A} b c → _⊢_ {A} a c trans-⊢ {A} a b c p q = record { fromCons = f } where f : ∀ (x : Frame.Φ A) → Frame._⇌_ A x a → Frame._⇌_ A x c f x h = _⊢_.fromCons q x (_⊢_.fromCons p x h) -- --------------------------------- -- --------------------------------- -- ∀x∈Φ.(⊥⊢x) bot-cons : {A : Frame} (x : Frame.Φ A) -- ∀x∈Φ.∀y∈Φ.(y⇌⊥ → y⇌x) → ∀ (y : Frame.Φ A) → Frame._⇌_ A y (Frame.bot A) → Frame._⇌_ A y x bot-cons {A} x y p = ⊥-elim (Frame.⊥-contra A y p) bot-to-every : {A : Frame} (x : Frame.Φ A) → _⊢_ {A} (Frame.bot A) x bot-to-every {A} x = record { fromCons = bot-cons {A} x } -- --------------------------------- -- --------------------------------- -- ∀x∈Φ.(x⊢⊤) top-cons : {A : Frame} (y x : Frame.Φ A) -- ∀y∈Φ.∀x∈Φ.(x⇌y → x⇌⊤) → Frame._⇌_ A x y → Frame._⇌_ A x (Frame.top A) top-cons {A} y x p = Frame.⊤-validi A x (cons→non-contra {A} x (y , p)) top-from-every : {A : Frame} (x : Frame.Φ A) → _⊢_ {A} x (Frame.top A) top-from-every {A} x = record { fromCons = top-cons {A} x } -- --------------------------------- -- --------------------------------- -- the criteria for a Reasoning frame -- --------------------------------- record Reasoning (A : Frame) : Set₁ where field -- basically, reas says every consistent pair is testified reas : ∀ (x y : Frame.Φ A) → Frame._⇌_ A x y → ∃[ z ] ((¬ (z ≡ Frame.bot A)) × ((_⊢_ {A} z x) × (_⊢_ {A} z y))) module Example₂ where open Example₁ 𝟘x⊢𝟘x : _⊢_ {tfFrame} 𝟘x 𝟘x 𝟘x⊢𝟘x = refl-⊢ {tfFrame} 𝟘x 𝟘x⊢𝟙x : _⊢_ {tfFrame} 𝟘x 𝟙x 𝟘x⊢𝟙x = bot-to-every {tfFrame} 𝟙x 𝟙x⊢𝟙x : _⊢_ {tfFrame} 𝟙x 𝟙x 𝟙x⊢𝟙x = refl-⊢ {tfFrame} 𝟙x reas-tf : ∀ (x y : tf) → (x ↔ y) → ∃[ z ] ((¬ (z ≡ 𝟘x)) × ((_⊢_ {tfFrame} z x) × (_⊢_ {tfFrame} z y))) reas-tf 𝟘x _ () reas-tf 𝟙x 𝟙x _ = (𝟙x , (p , (𝟙x⊢𝟙x , 𝟙x⊢𝟙x))) where p : ¬ (𝟙x ≡ 𝟘x) p () Reasoning-tf : Reasoning tfFrame Reasoning-tf = record { reas = reas-tf }
{ "alphanum_fraction": 0.456053068, "avg_line_length": 32.3758389262, "ext": "agda", "hexsha": "116cd6dc6f0ab1f471536f436245e03bff6cb612", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andyfreeyy/agda_and_math", "max_forks_repo_path": "Relational Logic/RL.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andyfreeyy/agda_and_math", "max_issues_repo_path": "Relational Logic/RL.agda", "max_line_length": 81, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andyfreeyy/agda_and_math", "max_stars_repo_path": "Relational Logic/RL.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-24T10:56:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T09:01:42.000Z", "num_tokens": 2161, "size": 4824 }
module ICFPPrelude where record ⊤ : Set where constructor ⟨⟩ data ⊥ : Set where ¬_ : Set → Set ¬_ A = A → ⊥ data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} _+_ : Nat → Nat → Nat zero + n = n suc m + n = suc (m + n) infixr 2 _∪_ data _∪_ A B : Set where inl : A → A ∪ B inr : B → A ∪ B data _≡_ {a}{A : Set a}(x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-}
{ "alphanum_fraction": 0.5376106195, "avg_line_length": 14.5806451613, "ext": "agda", "hexsha": "464ae51035c7fc5419e7b10d07ab18a68e87efd2", "lang": "Agda", "max_forks_count": 20, "max_forks_repo_forks_event_max_datetime": "2021-07-30T05:37:45.000Z", "max_forks_repo_forks_event_min_datetime": "2017-02-18T20:36:05.000Z", "max_forks_repo_head_hexsha": "6c7561bcc9877c6df9107f12f7e843f4e880189a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "enlambdment/disco", "max_forks_repo_path": "explore/typecheck/ICFPPrelude.agda", "max_issues_count": 282, "max_issues_repo_head_hexsha": "6c7561bcc9877c6df9107f12f7e843f4e880189a", "max_issues_repo_issues_event_max_datetime": "2022-03-28T21:43:15.000Z", "max_issues_repo_issues_event_min_datetime": "2016-11-19T18:05:42.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "enlambdment/disco", "max_issues_repo_path": "explore/typecheck/ICFPPrelude.agda", "max_line_length": 48, "max_stars_count": 138, "max_stars_repo_head_hexsha": "6c7561bcc9877c6df9107f12f7e843f4e880189a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "enlambdment/disco", "max_stars_repo_path": "explore/typecheck/ICFPPrelude.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-22T22:56:45.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-10T08:10:03.000Z", "num_tokens": 186, "size": 452 }
data D (A : Set) : Set₁ where
{ "alphanum_fraction": 0.6, "avg_line_length": 15, "ext": "agda", "hexsha": "16c2776e8e917ca87a89668a46b7dc5b8ebad019", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue4917.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue4917.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue4917.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 12, "size": 30 }
{-# OPTIONS --cubical --safe #-} module Data.Lift where open import Level record Lift {a} ℓ (A : Type a) : Type (a ℓ⊔ ℓ) where constructor lift field lower : A open Lift public
{ "alphanum_fraction": 0.6594594595, "avg_line_length": 15.4166666667, "ext": "agda", "hexsha": "c1ba0d44b0fca46ee4a7454b8505dc1f62a02d7e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Lift.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Lift.agda", "max_line_length": 52, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Lift.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 60, "size": 185 }
module Oscar.Category.Semigroupoid where open import Oscar.Data.Equality open import Oscar.Level open import Oscar.Relation record Semigroupoid {𝔬} {𝔒 : Ø 𝔬} {𝔪} (_⊸_ : 𝔒 → 𝔒 → Ø 𝔪) : Ø 𝔬 ∙̂ 𝔪 where infixr 9 _∙_ field _∙_ : ∀ {m n} → m ⊸ n → ∀ {l} → l ⊸ m → l ⊸ n ∙-associativity : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → (h ∙ g) ∙ f ≡ h ∙ g ∙ f record Category {𝔬} {𝔒 : Ø 𝔬} {𝔪} (_⊸_ : 𝔒 → 𝔒 → Ø 𝔪) : Ø 𝔬 ∙̂ 𝔪 where field semigroupoid : Semigroupoid _⊸_ open Semigroupoid semigroupoid public field ε : ∀ {n} → n ⊸ n ε-left-identity : ∀ {m n} (σ : m ⊸ n) → ε ∙ σ ≡ σ ε-right-identity : ∀ {m n} (σ : m ⊸ n) → σ ∙ ε ≡ σ record RCategory {𝔬} {𝔒 : Ø 𝔬} {𝔪} {_⊸_ : 𝔒 → 𝔒 → Ø 𝔪} (category : Category _⊸_) : Ø 𝔬 ∙̂ 𝔪 where open Category category public hiding (semigroupoid) module MCategory {𝔬} {𝔒 : Ø 𝔬} {𝔪} {_⊸_ : 𝔒 → 𝔒 → Ø 𝔪} (category : Category _⊸_) where open Category category public hiding (semigroupoid) -- open import Oscar.Category.Morphism -- open import Oscar.Category.Setoid -- open import Oscar.Level -- open import Oscar.Relation -- module _ {𝔬} {𝔪} {𝔮} (𝔐 : Morphism 𝔬 𝔪 𝔮) (open Morphism 𝔐) where -- record IsSemigroupoid (_∙_ : Transitive _↦_) : Set (lsuc (𝔬 ⊔ 𝔪 ⊔ 𝔮)) where -- field -- extensionality : Extensional _∙_ _≞_ -- associativity : Associative _∙_ _≞_ -- open IsSemigroupoid ⦃ … ⦄ public -- infixr 4 _,_ -- record Semigroupoid 𝔬 𝔪 𝔮 : Set (lsuc (𝔬 ⊔ 𝔪 ⊔ 𝔮)) -- where -- constructor _,_ -- field -- 𝔐 : Morphism 𝔬 𝔪 𝔮 -- open Morphism 𝔐 public -- infixl 7 _∙_ -- field _∙_ : Transitive _↦_ -- field ⦃ isSemigroupoid ⦄ : IsSemigroupoid 𝔐 _∙_ -- open IsSemigroupoid isSemigroupoid public
{ "alphanum_fraction": 0.5811818703, "avg_line_length": 23.8767123288, "ext": "agda", "hexsha": "5c26612ae69c0660a112708f6e4003248cdb3fe6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Category/Semigroupoid.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Category/Semigroupoid.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Category/Semigroupoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 809, "size": 1743 }
open import Prelude hiding (id; Bool; _∷_; []) module Examples.Infinite where open import Implicits.Syntax open import Implicits.WellTyped open import Implicits.Substitutions open import Implicits.Syntax.Type.Unification open import Implicits.Resolution.Infinite.Resolution open TypingRules _⊢ᵣ_ open import Data.Maybe open import Data.List tc-bool = 0 tc-int = 1 Bool : ∀ {n} → Type n Bool = simpl (tc tc-bool) Int : ∀ {n} → Type n Int = simpl (tc tc-int) module Ex₁ where Δ : ICtx zero Δ = (∀' (TVar zero ⇒ TVar zero)) ∷ [] p : Δ ⊢ᵣ (Int ⇒ Int) p = r-iabs (r-simp (there (here refl)) (i-tabs Int (i-iabs (r-simp (here refl) (i-simp (tc tc-int))) (i-simp (tc tc-int))))) module Ex₂ where implicitly : ∀ {ν n} → Term ν n implicitly = Λ (ρ α (var zero)) where α = TVar zero Implicitly : ∀ {ν n} {K : Ktx ν n} → K ⊢ implicitly ∈ (∀' (TVar zero ⇒ TVar zero)) Implicitly = Λ (ρ (ua-simp [] All.[]) (var zero))
{ "alphanum_fraction": 0.6371220021, "avg_line_length": 23.3902439024, "ext": "agda", "hexsha": "f564e478a99907726330919e4308dcf77ceb39df", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Examples/Infinite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Examples/Infinite.agda", "max_line_length": 84, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Examples/Infinite.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 333, "size": 959 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.CartesianClosed {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Function using (_$_; flip) open import Data.Product using (Σ; _,_; uncurry) open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Properties open import Categories.Category.Cartesian 𝒞 open import Categories.Category.Monoidal.Closed open import Categories.Object.Product 𝒞 hiding (repack≡id; repack∘; repack-cancel; up-to-iso; transport-by-iso) open import Categories.Object.Exponential 𝒞 hiding (repack) open import Categories.Morphism 𝒞 open import Categories.Morphism.Reasoning 𝒞 private module 𝒞 = Category 𝒞 open Category 𝒞 open HomReasoning variable A B C : Obj f g h i : A ⇒ B -- Cartesian closed category -- is a category with all products and exponentials record CartesianClosed : Set (levelOfTerm 𝒞) where infixr 9 _^_ -- an alternative notation for exponential, which emphasizes its internal hom natural infixr 5 _⇨_ field cartesian : Cartesian exp : Exponential A B module exp {A B} = Exponential (exp {A} {B}) _^_ : Obj → Obj → Obj B ^ A = exp.B^A {A} {B} _⇨_ : Obj → Obj → Obj _⇨_ = flip _^_ module cartesian = Cartesian cartesian open cartesian public B^A×A : ∀ B A → Product (B ^ A) A B^A×A B A = exp.product {A} {B} eval : Product.A×B (B^A×A B A) ⇒ B eval = exp.eval λg : C × A ⇒ B → C ⇒ B ^ A λg f = exp.λg product f λ-cong : f ≈ g → λg f ≈ λg g λ-cong eq = exp.λ-cong product eq _×id : (f : C ⇒ B ^ A) → C × A ⇒ [[ B^A×A B A ]] f ×id = [ product ⇒ exp.product ] f ×id β : eval ∘ λg f ×id ≈ f β = exp.β product η-exp : λg (eval ∘ f ×id) ≈ f η-exp = exp.η product λ-unique : eval ∘ f ×id ≈ g → f ≈ λg g λ-unique = exp.λ-unique product λ-unique₂ : eval ∘ f ×id ≈ eval ∘ g ×id → f ≈ g λ-unique₂ = exp.λ-unique′ product -- the annoying detail is that B^A×A is NOT the same as B ^ A × A, but they are isomorphic. -- make some infra so that the latter (which is more intuitive) can be used. B^A×A-iso : Product.A×B (B^A×A B A) ≅ B ^ A × A B^A×A-iso {B = B} {A = A} = record { from = repack exp.product product ; to = repack product exp.product ; iso = record { isoˡ = begin repack product exp.product ∘ repack exp.product product ≈⟨ [ exp.product ]⟨⟩∘ ⟩ [ exp.product ]⟨ π₁ ∘ repack exp.product product , π₂ ∘ repack exp.product product ⟩ ≈⟨ Product.⟨⟩-cong₂ exp.product project₁ project₂ ⟩ [ exp.product ]⟨ [ exp.product ]π₁ , [ exp.product ]π₂ ⟩ ≈⟨ Product.η exp.product ⟩ id ∎ ; isoʳ = begin repack exp.product product ∘ repack product exp.product ≈⟨ ⟨⟩∘ ⟩ ⟨ [ exp.product ]π₁ ∘ repack product exp.product , [ exp.product ]π₂ ∘ repack product exp.product ⟩ ≈⟨ ⟨⟩-cong₂ (Product.project₁ exp.product) (Product.project₂ exp.product) ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩ id ∎ } } eval′ : B ^ A × A ⇒ B eval′ = eval ∘ to where open _≅_ B^A×A-iso λ-unique′ : eval′ ∘ (f ⁂ id) ≈ g → f ≈ λg g λ-unique′ eq = exp.λ-unique product (⟺ (pullʳ [ product ⇒ product ⇒ exp.product ]repack∘×) ○ eq) λ-unique₂′ : eval′ ∘ (f ⁂ id) ≈ eval′ ∘ (g ⁂ id) → f ≈ g λ-unique₂′ eq = (λ-unique′ eq) ○ ⟺ (λ-unique′ refl) β′ : eval′ ∘ (λg f ⁂ id) ≈ f β′ {f = f} = begin eval′ ∘ (λg f ⁂ id) ≈⟨ pullʳ [ product ⇒ product ⇒ exp.product ]repack∘× ⟩ eval ∘ λg f ×id ≈⟨ β ⟩ f ∎ η-exp′ : λg (eval′ ∘ (f ⁂ id)) ≈ f η-exp′ = sym (λ-unique′ refl) η-id′ : λg (eval′ {B = B} {A = A}) ≈ id η-id′ = sym (λ-unique′ (elimʳ (id×id product))) ⊤^A≅⊤ : ⊤ ^ A ≅ ⊤ ⊤^A≅⊤ = record { from = ! ; to = λg ! ; iso = record { isoˡ = λ-unique₂ !-unique₂ ; isoʳ = ⊤-id _ } } A^⊤≅A : A ^ ⊤ ≅ A A^⊤≅A = record { from = let open _≅_ A×⊤≅A in eval′ ∘ to ; to = let open _≅_ A×⊤≅A in λg from ; iso = record { isoˡ = λ-unique₂′ $ begin eval′ ∘ ((λg π₁ ∘ eval′ ∘ ⟨ id , ! ⟩) ⁂ id) ≈˘⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ ((λg π₁ ⁂ id) ∘ ((eval′ ∘ ⟨ id , ! ⟩) ⁂ id)) ≈⟨ pullˡ β′ ⟩ π₁ ∘ ((eval′ ∘ ⟨ id , ! ⟩) ⁂ id) ≈⟨ helper ⟩ eval′ ∘ (id ⁂ id) ∎ ; isoʳ = firstid ! $ begin ((eval′ ∘ ⟨ id , ! ⟩) ∘ λg π₁) ⁂ id ≈˘⟨ first∘first ⟩ (eval′ ∘ ⟨ id , ! ⟩ ⁂ id) ∘ (λg π₁ ⁂ id) ≈⟨ helper′ ⟩∘⟨refl ⟩ (⟨ id , ! ⟩ ∘ eval′) ∘ (λg π₁ ⁂ id) ≈⟨ pullʳ β′ ⟩ ⟨ id , ! ⟩ ∘ π₁ ≈⟨ ⟨⟩∘ ⟩ ⟨ id ∘ π₁ , ! ∘ π₁ ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ !-unique₂ ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩ id ∎ } } where helper = begin π₁ ∘ ((eval′ ∘ ⟨ id , ! ⟩) ⁂ id) ≈⟨ project₁ ⟩ (eval′ ∘ ⟨ id , ! ⟩) ∘ π₁ ≈⟨ pullʳ ⟨⟩∘ ⟩ eval′ ∘ ⟨ id ∘ π₁ , ! ∘ π₁ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-congˡ !-unique₂ ⟩ eval′ ∘ (id ⁂ id) ∎ helper′ = let open _≅_ A×⊤≅A in begin (eval′ ∘ ⟨ id , ! ⟩) ⁂ id ≈⟨ introˡ isoˡ ⟩ (⟨ id , ! ⟩ ∘ π₁) ∘ ((eval′ ∘ ⟨ id , ! ⟩) ⁂ id) ≈⟨ pullʳ helper ⟩ ⟨ id , ! ⟩ ∘ (eval′ ∘ (id ⁂ id)) ≈⟨ refl⟩∘⟨ elimʳ (id×id product) ⟩ ⟨ id , ! ⟩ ∘ eval′ ∎ -- we use -⇨- to represent the bifunctor. -- -^- would generate a bifunctor of type Bifunctor 𝒞 𝒞.op 𝒞 which is not very typical. -⇨- : Bifunctor 𝒞.op 𝒞 𝒞 -⇨- = record { F₀ = uncurry _⇨_ ; F₁ = λ where (f , g) → λg (g ∘ eval′ ∘ second f) ; identity = λ-cong (identityˡ ○ (elimʳ (id×id product))) ○ η-id′ ; homomorphism = λ-unique₂′ helper ; F-resp-≈ = λ where (eq₁ , eq₂) → λ-cong (∘-resp-≈ eq₂ (∘-resp-≈ʳ (⁂-cong₂ refl eq₁))) } where helper : eval′ ∘ first (λg ((g ∘ f) ∘ eval′ ∘ second (h ∘ i))) ≈ eval′ ∘ first (λg (g ∘ eval′ ∘ second i) ∘ λg (f ∘ eval′ ∘ second h)) helper {g = g} {f = f} {h = h} {i = i} = begin eval′ ∘ first (λg ((g ∘ f) ∘ eval′ ∘ second (h ∘ i))) ≈⟨ β′ ⟩ (g ∘ f) ∘ eval′ ∘ second (h ∘ i) ≈˘⟨ refl⟩∘⟨ pullʳ second∘second ⟩ (g ∘ f) ∘ (eval′ ∘ second h) ∘ second i ≈˘⟨ pullˡ refl ⟩ g ∘ f ∘ (eval′ ∘ second h) ∘ second i ≈˘⟨ refl⟩∘⟨ assoc ⟩ g ∘ (f ∘ eval′ ∘ second h) ∘ second i ≈˘⟨ refl⟩∘⟨ pullˡ β′ ⟩ g ∘ eval′ ∘ first (λg (f ∘ eval′ ∘ second h)) ∘ second i ≈⟨ refl⟩∘⟨ pushʳ first↔second ⟩ g ∘ (eval′ ∘ second i) ∘ first (λg (f ∘ eval′ ∘ second h)) ≈˘⟨ assoc ⟩ (g ∘ eval′ ∘ second i) ∘ first (λg (f ∘ eval′ ∘ second h)) ≈˘⟨ pullˡ β′ ⟩ eval′ ∘ first (λg (g ∘ eval′ ∘ second i)) ∘ first (λg (f ∘ eval′ ∘ second h)) ≈⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (λg (g ∘ eval′ ∘ second i) ∘ λg (f ∘ eval′ ∘ second h)) ∎ _⇨- : Obj → Endofunctor 𝒞 _⇨- = appˡ -⇨- -⇨_ : Obj → Functor 𝒞.op 𝒞 -⇨_ = appʳ -⇨- module _ where private A⇨[-×A] : Obj → Endofunctor 𝒞 A⇨[-×A] A = A ⇨- ∘F -× A module A⇨[-×A] {A} = Functor (A⇨[-×A] A) [A⇨-]×A : Obj → Endofunctor 𝒞 [A⇨-]×A A = -× A ∘F A ⇨- module [A⇨-]×A {A} = Functor ([A⇨-]×A A) closedMonoidal : Closed monoidal closedMonoidal = record { [-,-] = -⇨- ; adjoint = λ {A} → record { unit = ntHelper record { η = λ _ → λg id ; commute = λ f → λ-unique₂′ $ begin eval′ ∘ first (λg id ∘ f) ≈˘⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (λg id) ∘ first f ≈⟨ cancelˡ β′ ⟩ first f ≈˘⟨ cancelʳ β′ ⟩ (first f ∘ eval′) ∘ first (λg id) ≈˘⟨ ∘-resp-≈ʳ (elimʳ (id×id product)) ⟩∘⟨refl ⟩ (first f ∘ eval′ ∘ first id) ∘ first (λg id) ≈˘⟨ pullˡ β′ ⟩ eval′ ∘ first (A⇨[-×A].F₁ f) ∘ first (λg id) ≈⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (A⇨[-×A].F₁ f ∘ λg id) ∎ } ; counit = ntHelper record { η = λ _ → eval′ ; commute = λ f → begin eval′ ∘ [A⇨-]×A.F₁ f ≈⟨ β′ ⟩ f ∘ eval′ ∘ first id ≈⟨ refl⟩∘⟨ elimʳ (id×id product) ⟩ f ∘ eval′ ∎ } ; zig = β′ ; zag = λ-unique₂′ $ begin eval′ ∘ first (λg (eval′ ∘ eval′ ∘ second id) ∘ λg id) ≈˘⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (λg (eval′ ∘ eval′ ∘ second id)) ∘ first (λg id) ≈⟨ pullˡ β′ ⟩ (eval′ ∘ eval′ ∘ second id) ∘ first (λg id) ≈⟨ ∘-resp-≈ʳ (elimʳ (id×id product)) ⟩∘⟨refl ⟩ (eval′ ∘ eval′) ∘ first (λg id) ≈⟨ cancelʳ β′ ⟩ eval′ ≈˘⟨ elimʳ (id×id product) ⟩ eval′ ∘ first id ∎ } ; mate = λ {X Y} f → record { commute₁ = λ-unique₂′ $ begin eval′ ∘ first (λg (second f ∘ eval′ ∘ second id) ∘ λg id) ≈˘⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (λg (second f ∘ eval′ ∘ second id)) ∘ first (λg id) ≈⟨ pullˡ β′ ⟩ (second f ∘ eval′ ∘ second id) ∘ first (λg id) ≈⟨ ∘-resp-≈ʳ (elimʳ (id×id product)) ⟩∘⟨refl ⟩ (second f ∘ eval′) ∘ first (λg id) ≈⟨ cancelʳ β′ ⟩ second f ≈˘⟨ cancelˡ β′ ⟩ eval′ ∘ first (λg id) ∘ second f ≈⟨ pushʳ first↔second ⟩ (eval′ ∘ second f) ∘ first (λg id) ≈˘⟨ identityˡ ⟩∘⟨refl ⟩ (id ∘ eval′ ∘ second f) ∘ first (λg id) ≈˘⟨ pullˡ β′ ⟩ eval′ ∘ first (λg (id ∘ eval′ ∘ second f)) ∘ first (λg id) ≈⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (λg (id ∘ eval′ ∘ second f) ∘ λg id) ∎ ; commute₂ = begin eval′ ∘ first (λg (id ∘ eval′ ∘ second f)) ≈⟨ β′ ⟩ id ∘ eval′ ∘ second f ≈⟨ identityˡ ⟩ eval′ ∘ second f ∎ } } module closedMonoidal = Closed closedMonoidal
{ "alphanum_fraction": 0.437216064, "avg_line_length": 40.762962963, "ext": "agda", "hexsha": "7a72a7511d2a49bc82eefc9f96045c0773841917", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/CartesianClosed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/CartesianClosed.agda", "max_line_length": 123, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/CartesianClosed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4325, "size": 11006 }
{- Agda Implementors' Meeting VI Göteborg May 24 - 30, 2007 Hello Agda! Ulf Norell -} -- Now we're getting somewhere! Inductive families of datatypes. module Families where -- You can import modules defined in other files. -- More details later... --open import Naturals data Nat : Set where zero : Nat suc : Nat -> Nat infixl 60 _+_ infixl 80 _*_ _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) _*_ : Nat -> Nat -> Nat zero * m = zero suc n * m = m + n * m -- Think of an inductive family... module Vec where data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n) infixr 40 _::_ -- Some simple functions head : {A : Set}{n : Nat} -> Vec A (suc n) -> A head (x :: _) = x -- no need for a [] case -- Does the definition look familiar? map : {A B : Set}{n : Nat} -> (A -> B) -> Vec A n -> Vec B n map f [] = [] map f (x :: xs) = f x :: map f xs t1 : Vec Nat (suc (suc zero)) t1 = map (_+_ three) (zero :: suc three :: []) where three = suc (suc (suc zero)) infixr 40 _++_ _++_ : {A : Set}{n m : Nat} -> Vec A n -> Vec A m -> Vec A (n + m) [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) {- Wait a second.. what's really going on here? All the indices were conveniently implicit! -} -- Ok. Let's make the implicit stuff explicit. {- module WhatsGoingOnHere? where open Vec using (Vec; []; _::_) -} -- Now what's this funny dot thing? map' : {A B : Set}(n : Nat) -> (A -> B) -> Vec A n -> Vec B n map' .zero f [] = [] map' .(suc _) f (x :: xs) = f x :: map' _ f xs -- Basically the dot means: inside is not a pattern at all but a -- term whose value is uniquely determined by type checking -- the actual pattern. -- In the cases above the types of the patterns -- [] and (_::_ {n} x xs) -- forces the first argument to be zero and suc n respectively. -- So, that's what we write. -- We could spend hours talking about this, but let's move on... -- Let's do some other interesting families. -- The identity type. data _==_ {A : Set}(x : A) : A -> Set where refl : x == x infix 30 _==_ infix 20 ¬_ -- In the presence of families we get a lot more empty types. data Bool : Set where true : Bool false : Bool data False : Set where ¬_ : Set -> Set ¬ A = A -> False _≠_ : {A : Set} -> A -> A -> Set x ≠ y = ¬ x == y true≠false : true == false -> False -- true ≠ false true≠false () -- [The following example might have worked at AIM6, but it does not -- work now, so I commented it out. /NAD] -- lem : (n : Nat) -> n == suc n -> False -- lem n () -- Why does this work: true == false is an empty type. {- What's next? -} -- Actually, inductive families are sufficiently fun that -- you'll never get bored, but there's even more fun to be had. -- Move on to: With.agda
{ "alphanum_fraction": 0.5617408907, "avg_line_length": 21.0212765957, "ext": "agda", "hexsha": "90f5424bc47cf9440cc3e75075010a1cdc0fc0e3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/Families.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/Families.agda", "max_line_length": 68, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/Families.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 940, "size": 2964 }
primitive primLevelSuc : _
{ "alphanum_fraction": 0.7586206897, "avg_line_length": 9.6666666667, "ext": "agda", "hexsha": "945bd7677bfea58a4858025fbc83857af0a78a2e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3318-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3318-2.agda", "max_line_length": 18, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3318-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 8, "size": 29 }
{-# OPTIONS --without-K --safe #-} module PiPointed where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product renaming (map to map×) open import Relation.Binary.PropositionalEquality open import Singleton open import PlainPi infixr 90 _#_ ------------------------------------------------------------------------------ -- Pointed types and singleton types data ∙𝕌 : Set where _#_ : (t : 𝕌) → (v : ⟦ t ⟧) → ∙𝕌 _∙×ᵤ_ : ∙𝕌 → ∙𝕌 → ∙𝕌 _∙+ᵤl_ : ∙𝕌 → ∙𝕌 → ∙𝕌 _∙+ᵤr_ : ∙𝕌 → ∙𝕌 → ∙𝕌 Singᵤ : ∙𝕌 → ∙𝕌 ∙⟦_⟧ : ∙𝕌 → Σ[ A ∈ Set ] A ∙⟦ t # v ⟧ = ⟦ t ⟧ , v ∙⟦ T₁ ∙×ᵤ T₂ ⟧ = zip _×_ _,_ ∙⟦ T₁ ⟧ ∙⟦ T₂ ⟧ ∙⟦ T₁ ∙+ᵤl T₂ ⟧ = zip _⊎_ (λ x _ → inj₁ x) ∙⟦ T₁ ⟧ ∙⟦ T₂ ⟧ ∙⟦ T₁ ∙+ᵤr T₂ ⟧ = zip _⊎_ (λ _ y → inj₂ y) ∙⟦ T₁ ⟧ ∙⟦ T₂ ⟧ ∙⟦ Singᵤ T ⟧ = < uncurry Singleton , (λ y → proj₂ y , refl) > ∙⟦ T ⟧ data _∙⟶_ : ∙𝕌 → ∙𝕌 → Set where ∙c : {t₁ t₂ : 𝕌} {v : ⟦ t₁ ⟧} → (c : t₁ ⟷ t₂) → t₁ # v ∙⟶ t₂ # (eval c v) ∙id⟷ : {T : ∙𝕌} → T ∙⟶ T _∙⊚_ : {T₁ T₂ T₃ : ∙𝕌} → (T₁ ∙⟶ T₂) → (T₂ ∙⟶ T₃) → (T₁ ∙⟶ T₃) ∙Singᵤ : (T₁ T₂ : ∙𝕌) → (T₁ ∙⟶ T₂) → (Singᵤ T₁ ∙⟶ Singᵤ T₂) -- monad return : (T : ∙𝕌) → T ∙⟶ Singᵤ T join : (T : ∙𝕌) → Singᵤ (Singᵤ T) ∙⟶ Singᵤ T tensorl : (T₁ T₂ : ∙𝕌) → (Singᵤ T₁ ∙×ᵤ T₂) ∙⟶ Singᵤ (T₁ ∙×ᵤ T₂) tensorr : (T₁ T₂ : ∙𝕌) → (T₁ ∙×ᵤ Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙×ᵤ T₂) tensor : (T₁ T₂ : ∙𝕌) → (Singᵤ T₁ ∙×ᵤ Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙×ᵤ T₂) untensor : (T₁ T₂ : ∙𝕌) → Singᵤ (T₁ ∙×ᵤ T₂) ∙⟶ (Singᵤ T₁ ∙×ᵤ Singᵤ T₂) plusl : (T₁ T₂ : ∙𝕌) → (Singᵤ T₁ ∙+ᵤl T₂) ∙⟶ Singᵤ (T₁ ∙+ᵤl T₂) plusr : (T₁ T₂ : ∙𝕌) → (T₁ ∙+ᵤr Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙+ᵤr T₂) -- plus : (T₁ T₂ : ∙𝕌) → (Singᵤ T₁ ∙+ᵤl Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙+ᵤl T₂) -- lobsided, feels wrong -- comonad extract : (T : ∙𝕌) → Singᵤ T ∙⟶ T duplicate : (T : ∙𝕌) → Singᵤ T ∙⟶ Singᵤ (Singᵤ T) cotensorl : (T₁ T₂ : ∙𝕌) → Singᵤ (T₁ ∙×ᵤ T₂) ∙⟶ (Singᵤ T₁ ∙×ᵤ T₂) cotensorr : (T₁ T₂ : ∙𝕌) → Singᵤ (T₁ ∙×ᵤ T₂) ∙⟶ (T₁ ∙×ᵤ Singᵤ T₂) coplusl : (T₁ T₂ : ∙𝕌) → Singᵤ (T₁ ∙+ᵤl T₂) ∙⟶ (Singᵤ T₁ ∙+ᵤl T₂) coplusr : (T₁ T₂ : ∙𝕌) → Singᵤ (T₁ ∙+ᵤr T₂) ∙⟶ (T₁ ∙+ᵤr Singᵤ T₂) ∙eval : {T₁ T₂ : ∙𝕌} → (C : T₁ ∙⟶ T₂) → let (t₁ , v₁) = ∙⟦ T₁ ⟧ (t₂ , v₂) = ∙⟦ T₂ ⟧ in Σ (t₁ → t₂) (λ f → f v₁ ≡ v₂) ∙eval ∙id⟷ = (λ x → x) , refl ∙eval (∙c c) = eval c , refl ∙eval (C₁ ∙⊚ C₂) with ∙eval C₁ | ∙eval C₂ ... | (f , p) | (g , q) = (λ x → g (f x)) , trans (cong g p) q ∙eval (∙Singᵤ T₁ T₂ C) with ∙⟦ T₁ ⟧ | ∙⟦ T₂ ⟧ | ∙eval C ... | t₁ , v₁ | t₂ , .(f v₁) | f , refl = (λ {(x , refl) → f x , refl}) , refl ∙eval (return T) = (λ _ → proj₂ ∙⟦ T ⟧ , refl) , refl ∙eval (join T) = (λ { (._ , refl) → (proj₂ ∙⟦ T ⟧) , refl} ) , refl ∙eval (tensorl T₁ T₂) = (λ {_ → (proj₂ ∙⟦ T₁ ⟧ , proj₂ ∙⟦ T₂ ⟧) , refl}) , refl ∙eval (tensorr T₁ T₂) = (λ {_ → (proj₂ ∙⟦ T₁ ⟧ , proj₂ ∙⟦ T₂ ⟧) , refl}) , refl ∙eval (tensor T₁ T₂) = (λ {_ → (proj₂ ∙⟦ T₁ ⟧ , proj₂ ∙⟦ T₂ ⟧) , refl}) , refl ∙eval (untensor T₁ T₂) = (λ _ → ((proj₂ ∙⟦ T₁ ⟧ , refl) , (proj₂ ∙⟦ T₂ ⟧ , refl))) , refl ∙eval (plusl T₁ T₂) = (λ _ → inj₁ (proj₂ ∙⟦ T₁ ⟧) , refl) , refl ∙eval (plusr T₁ T₂) = (λ _ → inj₂ (proj₂ ∙⟦ T₂ ⟧) , refl) , refl -- ∙eval (plus T₁ T₂) with ∙⟦ T₁ ⟧ | ∙⟦ T₂ ⟧ -- ... | t₁ , v₁ | t₂ , v₂ = (λ _ → inj₁ v₁ , refl) , refl ∙eval (extract T) = (λ {(w , refl) → w}) , refl ∙eval (duplicate T) = (λ {(w , refl) → (w , refl) , refl}) , refl ∙eval (cotensorl T₁ T₂) = (λ _ → ((proj₂ ∙⟦ T₁ ⟧ , refl) , proj₂ ∙⟦ T₂ ⟧)) , refl ∙eval (cotensorr T₁ T₂) = (λ _ → (proj₂ ∙⟦ T₁ ⟧ , (proj₂ ∙⟦ T₂ ⟧) , refl)) , refl ∙eval (coplusl T₁ T₂) = (λ _ → inj₁ (proj₂ ∙⟦ T₁ ⟧ , refl)) , refl ∙eval (coplusr T₁ T₂) = (λ _ → inj₂ (proj₂ ∙⟦ T₂ ⟧ , refl)) , refl -----------------------------------------------------------------------------
{ "alphanum_fraction": 0.4619358347, "avg_line_length": 43.2705882353, "ext": "agda", "hexsha": "589bdf404b3e25092d7e0e15ffd11deb9d7e3d91", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "fracGC/PiPointed.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "fracGC/PiPointed.agda", "max_line_length": 102, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "fracGC/PiPointed.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2206, "size": 3678 }
{-# OPTIONS --no-universe-polymorphism #-} open import Induction.WellFounded as WF open import Induction.Nat open import Relation.Binary.Core hiding (Total) open import Relation.Unary as U using (Decidable) open import Relation.Nullary open import Function using (_on_) open import Data.Nat import Level as L using (zero) open import Data.List open import BagEquality module Lists where infixr 8 _<l_ _<l_ : {A : Set} → Rel (List A) L.zero _<l_ = Data.Nat._<′_ on length <l-wellFounded : {A : Set} → Well-founded (_<l_ {A = A}) <l-wellFounded = newWf where module InverseOfProj = WF.Inverse-image length newWf = InverseOfProj.well-founded <′-well-founded data Ordered : {A : Set} → Rel A _ → List A → Set where NilIsOrd : {A : Set} {LEQ : Rel A _} → Ordered LEQ [] SingleIsOrd : {A : Set} {LEQ : Rel A _} {x : A} → Ordered LEQ [ x ] HeadTailOrd : {A : Set} {LEQ : Rel A _} {x y : A} {zs : List A} → LEQ x y → Ordered LEQ (y ∷ zs) → Ordered LEQ (x ∷ (y ∷ zs)) cons-Order-cong : {A : Set} → {LEQ : Rel A L.zero} → {x : A} → {ys : List A} → (∀ z → z ∈ ys → LEQ x z) → Ordered LEQ ys → Ordered LEQ (x ∷ ys) cons-Order-cong {A} {LEQ} {y} {[]} _ _ = SingleIsOrd cons-Order-cong {A} {LEQ} {x} {y ∷ ys} xLEQ ord-ys = HeadTailOrd (xLEQ y (inj₁ refl)) ord-ys ++-Order-cong : {A : Set} {LEQ : Rel A L.zero} → {xs ys : List A} {y : A} → (∀ z → z ∈ xs → LEQ z y) → Ordered LEQ xs → Ordered LEQ (y ∷ ys) → Ordered LEQ (xs ++ (y ∷ ys)) ++-Order-cong {A} {LEQ} {[]} {ys} {y} _ _ ord-y∷ys = ord-y∷ys ++-Order-cong {A} {LEQ} {x ∷ []} {ys} {y} yGEQ _ ord-y∷ys = HeadTailOrd (yGEQ x (inj₁ refl)) ord-y∷ys ++-Order-cong {A} {LEQ} {x₁ ∷ (x₂ ∷ xs)} {ys} {y} yGEQ (HeadTailOrd x₁LEQx₂ ord-x∷xs) ord-y∷ys = HeadTailOrd x₁LEQx₂ (++-Order-cong (λ z zIn → yGEQ z (inj₂ zIn)) ord-x∷xs ord-y∷ys) Total : {A : Set} → Rel A L.zero → Set Total {A} LEQ = (x y : A) → LEQ x y ⊕ LEQ y x data ListPrimitive : {A : Set} → List A → Set where NilIsPrim : ∀{A} → ListPrimitive {A = A} [] consIsNotPrim : {A : Set} → {x : A} → {xs : List A} → ¬ ListPrimitive (x ∷ xs) consIsNotPrim () primDec : {A : Set} → U.Decidable (ListPrimitive {A = A}) primDec [] = yes NilIsPrim primDec (x ∷ xs) = no consIsNotPrim data ListPrimitive2 : {A : Set} → List A → Set where NilIsPrim2 : ∀{A} → ListPrimitive2 {A = A} [] SingleIsPrim2 : ∀{A} {x : A} → ListPrimitive2 (x ∷ []) consConsIsNotPrim2 : {A : Set} → {x y : A} → {zs : List A} → ¬ ListPrimitive2 (x ∷ (y ∷ zs)) consConsIsNotPrim2 () prim2Dec : {A : Set} → U.Decidable (ListPrimitive2 {A = A}) prim2Dec [] = yes NilIsPrim2 prim2Dec (x ∷ []) = yes SingleIsPrim2 prim2Dec (x ∷ (y ∷ zs)) = no consConsIsNotPrim2
{ "alphanum_fraction": 0.5648988137, "avg_line_length": 40.3661971831, "ext": "agda", "hexsha": "31b6ff17f24aa79316ba5528b3bbc4eee0a3408a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda", "max_forks_repo_path": "Lists.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda", "max_issues_repo_path": "Lists.agda", "max_line_length": 180, "max_stars_count": null, "max_stars_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda", "max_stars_repo_path": "Lists.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1063, "size": 2866 }
module Generic.Lib.Equality.Propositional where open import Level open import Relation.Binary open import Data.Empty infix 3 _≡_ _≢_ _≗_ data _≡_ {α} {A : Set α} (x : A) : A -> Set where instance refl : x ≡ x pattern lrefl = lift refl _≢_ : ∀ {α} {A : Set α} -> A -> A -> Set x ≢ y = x ≡ y -> ⊥ _≗_ : ∀ {α β} {A : Set α} {B : A -> Set β} -> (∀ x -> B x) -> (∀ x -> B x) -> Set α f ≗ g = ∀ x -> f x ≡ g x sym : ∀ {α} {A : Set α} {x y : A} -> x ≡ y -> y ≡ x sym refl = refl trans : ∀ {α} {A : Set α} {x y z : A} -> x ≡ y -> y ≡ z -> x ≡ z trans refl refl = refl left : ∀ {α} {A : Set α} {x y z : A} -> y ≡ x -> z ≡ x -> y ≡ z left refl refl = refl right : ∀ {α} {A : Set α} {x y z : A} -> x ≡ y -> x ≡ z -> y ≡ z right refl refl = refl subst : ∀ {α β} {A : Set α} {x y} -> (B : A -> Set β) -> x ≡ y -> B x -> B y subst B refl z = z cong : ∀ {α β} {A : Set α} {B : Set β} {x y} -> (f : A -> B) -> x ≡ y -> f x ≡ f y cong f refl = refl cong₂ : ∀ {α β γ} {A : Set α} {B : Set β} {C : Set γ} {x₁ x₂ y₁ y₂} -> (g : A -> B -> C) -> x₁ ≡ x₂ -> y₁ ≡ y₂ -> g x₁ y₁ ≡ g x₂ y₂ cong₂ g refl refl = refl ≡-Setoid : ∀ {α} -> Set α -> Setoid α zero ≡-Setoid A = record { Carrier = A ; _≈_ = _≡_ ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } }
{ "alphanum_fraction": 0.4508320726, "avg_line_length": 25.4230769231, "ext": "agda", "hexsha": "f8f47eea8854f202a96bed7715fa6da1fffe70bf", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Equality/Propositional.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Equality/Propositional.agda", "max_line_length": 83, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Equality/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 595, "size": 1322 }
module agda where open import IO main = run (putStrLn "Happy New Year 1396")
{ "alphanum_fraction": 0.7435897436, "avg_line_length": 15.6, "ext": "agda", "hexsha": "3ef2061044a00e497bb31d2d920f915d15eb2fe7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c90dede80cbcbff0c7559442b2f65dfbcb786e3d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AliMD/happy-new-year", "max_forks_repo_path": "agda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c90dede80cbcbff0c7559442b2f65dfbcb786e3d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AliMD/happy-new-year", "max_issues_repo_path": "agda.agda", "max_line_length": 43, "max_stars_count": 2, "max_stars_repo_head_hexsha": "c90dede80cbcbff0c7559442b2f65dfbcb786e3d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AliMD/happy-new-year", "max_stars_repo_path": "agda.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-18T18:57:38.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-20T07:28:54.000Z", "num_tokens": 23, "size": 78 }
module Data.QuadTree.Implementation.PublicFunctions where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Data.Lens.Lens open import Data.Logic open import Data.QuadTree.Implementation.PropDepthRelation open import Data.QuadTree.Implementation.Definition open import Data.QuadTree.Implementation.ValidTypes open import Data.QuadTree.Implementation.QuadrantLenses open import Data.QuadTree.Implementation.DataLenses open import Data.QuadTree.Implementation.SafeFunctions {-# FOREIGN AGDA2HS {-# LANGUAGE Safe #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE Rank2Types #-} import Data.Nat import Data.Lens.Lens import Data.Logic import Data.QuadTree.Implementation.Definition import Data.QuadTree.Implementation.ValidTypes import Data.QuadTree.Implementation.QuadrantLenses import Data.QuadTree.Implementation.DataLenses import Data.QuadTree.Implementation.SafeFunctions #-} ---- Unsafe functions (Original) makeTree : {t : Set} {{eqT : Eq t}} -> (size : Nat × Nat) -> t -> QuadTree t makeTree size v = qtFromSafe $ makeTreeSafe size v {-# COMPILE AGDA2HS makeTree #-} getLocation : {t : Set} {{eqT : Eq t}} -> (loc : Nat × Nat) -> {dep : Nat} -> (qt : QuadTree t) -> {.(IsTrue (isInsideQuadTree loc qt))} -> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))} -> t getLocation loc qt {inside} {p} {q} = getLocationSafe loc (maxDepth qt) (qtToSafe qt {p} {q}) {inside} {-# COMPILE AGDA2HS getLocation #-} setLocation : {t : Set} {{eqT : Eq t}} -> (loc : Nat × Nat) -> t -> {dep : Nat} -> (qt : QuadTree t) -> {.(IsTrue (isInsideQuadTree loc qt))} -> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))} -> QuadTree t setLocation loc v qt {inside} {p} {q} = qtFromSafe $ setLocationSafe loc (maxDepth qt) v (qtToSafe qt {p} {q}) {inside} {-# COMPILE AGDA2HS setLocation #-} mapLocation : {t : Set} {{eqT : Eq t}} -> (loc : Nat × Nat) -> (t -> t) -> {dep : Nat} -> (qt : QuadTree t) -> {.(IsTrue (isInsideQuadTree loc qt))} -> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))} -> QuadTree t mapLocation loc f qt {inside} {p} {q} = qtFromSafe $ mapLocationSafe loc (maxDepth qt) f (qtToSafe qt {p} {q}) {inside} {-# COMPILE AGDA2HS mapLocation #-}
{ "alphanum_fraction": 0.6875271621, "avg_line_length": 39, "ext": "agda", "hexsha": "a11d9a533a97ed788d4d4ff5cf4eec3d24f72d7e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "JonathanBrouwer/research-project", "max_forks_repo_path": "src/Data/QuadTree/Implementation/PublicFunctions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "JonathanBrouwer/research-project", "max_issues_repo_path": "src/Data/QuadTree/Implementation/PublicFunctions.agda", "max_line_length": 119, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "JonathanBrouwer/research-project", "max_stars_repo_path": "src/Data/QuadTree/Implementation/PublicFunctions.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z", "num_tokens": 689, "size": 2301 }
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <[email protected]> module Algebra.Group.Semigroup where open import Algebra.Category open import Core -- A semigroup is an associative binary function. record SemigroupOver {a r} (A : Set a) (Eq : Equiv {r = r} A) : Set (a ⊔ r) where open Equiv Eq field _⋄_ : A → A → A ⋄-cong : ∀ {x1 x2 y1 y2} → x1 ≈ x2 → y1 ≈ y2 → x1 ⋄ y1 ≈ x2 ⋄ y2 assoc : ∀ x y z → (x ⋄ y) ⋄ z ≈ x ⋄ (y ⋄ z) semigroupoid : Semigroupoid semigroupoid = record { Ob = ⊤; Hom = λ _ _ → A; Eq = Eq; _∘_ = _⋄_; ∘-cong = ⋄-cong; assoc = assoc } open Semigroupoid semigroupoid public using (Epic; Monic) record Semigroup {a r} : Set (lsuc (a ⊔ r)) where field A : Set a Eq : Equiv {r = r} A semigroupOver : SemigroupOver A Eq open Equiv Eq public open SemigroupOver semigroupOver public -- Commutative semigroups. record IsComm {a r} (S : Semigroup {a} {r}) : Set (a ⊔ r) where open Semigroup S field comm : ∀ x y → x ⋄ y ≈ y ⋄ x -- A semigroup morphism is a function that maps the elements of one -- semigroup to another while preserving the compositional structure. record SemigroupMorphism {sa sr ta tr} (S : Semigroup {sa} {sr}) (T : Semigroup {ta} {tr}) : Set (sa ⊔ ta ⊔ sr ⊔ tr) where private module S = Semigroup S module T = Semigroup T field map : S.A → T.A map-cong : ∀ {x y} → x S.≈ y → map x T.≈ map y ⋄-preserving : ∀ x y → map (x S.⋄ y) T.≈ map x T.⋄ map y semifunctor : Semifunctor S.semigroupoid T.semigroupoid semifunctor = record { F = λ _ → tt; map = map; map-cong = map-cong; ∘-preserving = ⋄-preserving } -- An equivalence relation on semigroup morphisms that considers -- semigroup morphisms to be equal iff they map every element in the -- domain to the same element in the codomain. SemigroupMorphismEq : ∀ {sa sr ta tr} {S : Semigroup {sa} {sr}} {T : Semigroup {ta} {tr}} → Equiv (SemigroupMorphism S T) SemigroupMorphismEq {T = T} = record { _≈_ = λ F G → let module F = SemigroupMorphism F module G = SemigroupMorphism G in ∀ x → F.map x ≈ G.map x; refl = λ _ → refl; sym = λ x≈y x → sym (x≈y x); trans = λ x≈y y≈z x → trans (x≈y x) (y≈z x) } where module T = Semigroup T open Equiv T.Eq -- The category of semigroups and semigroup morphisms. Semigroups : ∀ {a r} → Category Semigroups {a} {r} = record { semigroupoid = record { Ob = Semigroup {a} {r}; Hom = SemigroupMorphism; Eq = SemigroupMorphismEq; _∘_ = _∘_; ∘-cong = λ {_} {_} {_} {F1} {F2} {G1} {G2} → ∘-cong {F1 = F1} {F2} {G1} {G2}; assoc = assoc }; id = id; left-id = left-right-id; right-id = left-right-id } where open module MyEquiv {S T} = Equiv (SemigroupMorphismEq {S = S} {T = T}) _∘_ : ∀ {S T U} → SemigroupMorphism T U → SemigroupMorphism S T → SemigroupMorphism S U _∘_ {S} {T} {U} F G = record { map = F.map Sets.∘ G.map; map-cong = λ p → F.map-cong (G.map-cong p); ⋄-preserving = λ x y → U.begin F.map (G.map (x S.⋄ y)) U.≈[ F.map-cong (G.⋄-preserving _ _) ] F.map (G.map x T.⋄ G.map y) U.≈[ F.⋄-preserving _ _ ] F.map (G.map x) U.⋄ F.map (G.map y) U.qed } where module S = Semigroup S module T = Semigroup T module U = Semigroup U module F = SemigroupMorphism F module G = SemigroupMorphism G ∘-cong : ∀ {S T U} {F1 F2 : SemigroupMorphism T U} {G1 G2 : SemigroupMorphism S T} → F1 ≈ F2 → G1 ≈ G2 → F1 ∘ G1 ≈ F2 ∘ G2 ∘-cong {U = U} {F1} {F2} {G1} {G2} F1≈F2 G1≈G2 x = U.begin F1.map (G1.map x) U.≈[ F1.map-cong (G1≈G2 _) ] F1.map (G2.map x) U.≈[ F1≈F2 _ ] F2.map (G2.map x) U.qed where module U = Semigroup U module F1 = SemigroupMorphism F1 module F2 = SemigroupMorphism F2 module G1 = SemigroupMorphism G1 module G2 = SemigroupMorphism G2 assoc : ∀ {S T U V} (F : SemigroupMorphism U V) (G : SemigroupMorphism T U) (H : SemigroupMorphism S T) → (F ∘ G) ∘ H ≈ F ∘ (G ∘ H) assoc {V = V} _ _ _ _ = V.refl where module V = Semigroup V id : ∀ {S} → SemigroupMorphism S S id {S} = record { map = λ x → x; map-cong = λ x → x; ⋄-preserving = λ _ _ → Semigroup.refl S } left-right-id : ∀ {S T} (F : SemigroupMorphism S T) → F ≈ F left-right-id {T = T} _ _ = T.refl where module T = Semigroup T module Semigroups {a r} = Category (Semigroups {a} {r}) -- Product semigroups _×S_ : ∀ {sa sr ta tr} → Semigroup {sa} {sr} → Semigroup {ta} {tr} → Semigroup S ×S T = record { A = S.A × T.A; Eq = record { _≈_ = λ { (x1 , x2) (y1 , y2) → (x1 S.≈ y1) × (x2 T.≈ y2) }; refl = S.refl , T.refl; sym = λ { (p1 , p2) → S.sym p1 , T.sym p2 }; trans = λ { (p1 , p2) (q1 , q2) → S.trans p1 q1 , T.trans p2 q2 } }; semigroupOver = record { _⋄_ = λ { (x1 , x2) (y1 , y2) → (x1 S.⋄ y1) , (x2 T.⋄ y2) }; ⋄-cong = λ { (p1 , p2) (q1 , q2) → S.⋄-cong p1 q1 , T.⋄-cong p2 q2 }; assoc = λ { (x1 , x2) (y1 , y2) (z1 , z2) → S.assoc x1 y1 z1 , T.assoc x2 y2 z2 } } } where module S = Semigroup S module T = Semigroup T
{ "alphanum_fraction": 0.5402403496, "avg_line_length": 24.850678733, "ext": "agda", "hexsha": "66aade93d58e399a1fd36cb13f65dfac777b8f8d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "esoeylemez/agda-simple", "max_forks_repo_path": "Algebra/Group/Semigroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "esoeylemez/agda-simple", "max_issues_repo_path": "Algebra/Group/Semigroup.agda", "max_line_length": 89, "max_stars_count": 1, "max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "esoeylemez/agda-simple", "max_stars_repo_path": "Algebra/Group/Semigroup.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z", "num_tokens": 2179, "size": 5492 }
module Categories.Sets where open import Library open import Categories Sets : ∀{l} → Cat Sets {l} = record{ Obj = Set l; Hom = λ X Y → X → Y; iden = id; comp = λ f g → f ∘ g; idl = refl; idr = refl; ass = refl}
{ "alphanum_fraction": 0.5593220339, "avg_line_length": 15.7333333333, "ext": "agda", "hexsha": "5f8a4ac98336d3229ccc8d62aeeff1aaa0ccdd8d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Categories/Sets.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Categories/Sets.agda", "max_line_length": 28, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Categories/Sets.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 90, "size": 236 }
{-# OPTIONS --type-in-type #-} module Nested where record Σ₁ (A : Set)(B : A → Set) : Set where constructor _,_ field fst : A snd : B fst infixr 2 _,_ record Σ (A : Set)(B : A → Set) : Set where field p : Σ₁ A B open Σ₁ p public open Σ data ⊤ : Set where tt : ⊤ ∃ : {A : Set}(B : A → Set) → Set ∃ B = Σ _ B infix 10 _≡_ data _≡_ {A : Set}(a : A) : {B : Set} → B → Set where refl : a ≡ a Cat : Set Cat = ∃ λ (Obj : Set) → ∃ λ (Hom : Obj → Obj → Set) → ∃ λ (id : ∀ X → Hom X X) → ∃ λ (_○_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z) → ∃ λ (idl : ∀ {X Y}{f : Hom X Y} → id Y ○ f ≡ f) → ∃ λ (idr : ∀ {X Y}{f : Hom X Y} → f ○ id X ≡ f) → ∃ λ (assoc : ∀ {W X Y Z}{f : Hom W X}{g : Hom X Y}{h : Hom Y Z} → (h ○ g) ○ f ≡ h ○ (g ○ f)) → ⊤ Obj : (C : Cat) → Set Obj C = fst C Hom : (C : Cat) → Obj C → Obj C → Set Hom C = fst (snd C) id : (C : Cat) → ∀ X → Hom C X X id C = fst (snd (snd C)) comp : (C : Cat) → ∀ {X Y Z} → Hom C Y Z → Hom C X Y → Hom C X Z comp C = fst (snd (snd (snd C))) idl : (C : Cat) → ∀ {X Y}{f : Hom C X Y} → comp C (id C Y) f ≡ f idl C = fst (snd (snd (snd (snd C)))) idr : (C : Cat) → ∀ {X Y}{f : Hom C X Y} → comp C f (id C X) ≡ f idr C = fst (snd (snd (snd (snd (snd C))))) assoc : (C : Cat) → ∀ {W X Y Z}{f : Hom C W X}{g : Hom C X Y}{h : Hom C Y Z} → comp C (comp C h g) f ≡ comp C h (comp C g f) assoc C = fst (snd (snd (snd (snd (snd (snd C))))))
{ "alphanum_fraction": 0.4511434511, "avg_line_length": 24.05, "ext": "agda", "hexsha": "eed8d594d145aab5a5046b94cc52e67059649a3f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "benchmark/proj/Nested.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "benchmark/proj/Nested.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "benchmark/proj/Nested.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 659, "size": 1443 }
-- Andreas, 2018-10-29, issue #3246 -- More things are now allowed in mutual blocks. -- @mutual@ just pushes the definition parts to the bottom. -- Definitions exist for data, record, functions, and pattern synonyms. {-# BUILTIN FLOAT Float #-} -- not (yet) allowed in mutual block mutual import Agda.Builtin.Bool open Agda.Builtin.Bool f : Bool f = g -- pushed to bottom -- module M where -- not (yet) allowed in mutual block module B = Agda.Builtin.Bool primitive primFloatEquality : Float → Float → Bool {-# INJECTIVE primFloatEquality #-} -- certainly a lie open import Agda.Builtin.Equality {-# DISPLAY primFloatEquality x y = x ≡ y #-} postulate A : Set {-# COMPILE GHC A = type Integer #-} variable x : Bool g : Bool g = true -- pushed to bottom {-# STATIC g #-} record R : Set where coinductive field foo : R {-# ETA R #-}
{ "alphanum_fraction": 0.6496674058, "avg_line_length": 20.0444444444, "ext": "agda", "hexsha": "60570bb254b91e75aeb662dd91681fa40ed21197", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bennn/agda", "max_forks_repo_path": "test/Succeed/Issue3246.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bennn/agda", "max_issues_repo_path": "test/Succeed/Issue3246.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bennn/agda", "max_stars_repo_path": "test/Succeed/Issue3246.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 257, "size": 902 }
module Oscar.Property.Equivalence where open import Oscar.Function open import Oscar.Level open import Oscar.Property.Reflexivity open import Oscar.Property.Symmetry open import Oscar.Property.Transitivity record Equivalence {𝔬} {⋆ : Set 𝔬} {𝔮} (_≋_ : ⋆ → ⋆ → Set 𝔮) : Set (𝔬 ⊔ 𝔮) where field ⦃ ′reflexivity ⦄ : Reflexivity _≋_ ⦃ ′symmetry ⦄ : Symmetry _≋_ ⦃ ′transitivity ⦄ : Transitivity _≋_ open Equivalence ⦃ … ⦄ public instance Equivalence⋆ : ∀ {𝔬} {⋆ : Set 𝔬} {𝔮} {_≋_ : ⋆ → ⋆ → Set 𝔮} ⦃ _ : Reflexivity _≋_ ⦄ ⦃ _ : Symmetry _≋_ ⦄ ⦃ _ : Transitivity _≋_ ⦄ → Equivalence _≋_ Equivalence.′reflexivity Equivalence⋆ = it Equivalence.′symmetry Equivalence⋆ = it Equivalence.′transitivity Equivalence⋆ = it
{ "alphanum_fraction": 0.6604774536, "avg_line_length": 26.9285714286, "ext": "agda", "hexsha": "8f6ebd4614a31aad99113a83dc034fa2a502c3ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Property/Equivalence.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Property/Equivalence.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Property/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 319, "size": 754 }
module Chunk where open import Codata.Stream using (chunksOf; iterate; take) open import Data.Nat using (ℕ; suc) open import Data.Vec using (Vec; []; _∷_) -- mylist 3 = [[1,2,3],[4,5,6],[7,8,9]] myVec : (n : ℕ) → Vec (Vec ℕ n) n myVec n = take n (chunksOf n (iterate suc 1))
{ "alphanum_fraction": 0.6312056738, "avg_line_length": 18.8, "ext": "agda", "hexsha": "0bdc025f0aa6908f5f01889326d8f81365e1b1ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "righ1113/Agda", "max_forks_repo_path": "Chunk.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "righ1113/Agda", "max_issues_repo_path": "Chunk.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "righ1113/Agda", "max_stars_repo_path": "Chunk.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 104, "size": 282 }
open import Prelude module Implicits.Resolution.Finite.Decidable where open import Coinduction open import Data.Fin.Substitution open import Data.List.Any open Membership-≡ open import Implicits.Syntax open import Implicits.Syntax.Type.Unification open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Implicits.Resolution.Finite.Resolution open import Function.Inverse as Inv using (_↔_; module Inverse) open import Function.Equality hiding (cong) open import Data.List.Any.Properties using (Any↔) module M = MetaTypeMetaSubst mutual {-# NO_TERMINATION_CHECK #-} match' : ∀ {m ν} (Δ : ICtx ν) s r∈Δ τ → (r : MetaType m ν) → Dec (∃ λ u → Δ & s , r∈Δ ⊢ from-meta (r M./ u) ↓ τ) match' Δ s r∈Δ τ (simpl x) with mgu (simpl x) τ match' Δ s r∈Δ τ (simpl x) | just (u , p) = yes ( (asub u) , subst (λ a → Δ & s , r∈Δ ⊢ a ↓ τ) (sym $ mgu-unifies (simpl x) τ (u , p)) (i-simp τ) ) match' Δ s r∈Δ τ (simpl x) | nothing = no (λ{ (proj₁ , proj₂) → {!!} }) match' Δ s r∈Δ τ (a ⇒ b) with match' Δ s r∈Δ τ b match' Δ s r∈Δ τ (a ⇒ b) | no ¬p = no {!!} match' Δ s r∈Δ τ (a ⇒ b) | yes (u , b/u↓τ) with all (λ x → (r∈Δ , (from-meta (a M./ u))) ?⊬dom x) s match' Δ s r∈Δ τ (a ⇒ b) | yes (u , b/u↓τ) | yes p -- The following with clause fails to satisfy termination checking with let a' = from-meta (a M./ u) in resolve' Δ ((r∈Δ , a') List.∷ s) a' match' Δ s r∈Δ τ (a ⇒ b) | yes (u , b/u↓τ) | yes p | yes ⊢ᵣa = yes (u , i-iabs p ⊢ᵣa b/u↓τ) match' Δ s r∈Δ τ (a ⇒ b) | yes (u , b/u↓τ) | yes p | no ¬⊢ᵣa = no (λ{ (u' , i-iabs x ⊢ᵣa a⇒b↓τ) → {!¬⊢ᵣa ⊢ᵣa!} }) match' Δ s r∈Δ τ (a ⇒ b) | yes (u , b/u↓τ) | no ¬p = no {!!} -- The following with clause fails to satisfy termination checking match' Δ s r∈Δ τ (∀' a) with match' Δ s r∈Δ τ (open-meta a) match' Δ s r∈Δ τ (∀' a) | yes p = yes $ lem p where lem : (∃ λ u → Δ & s , r∈Δ ⊢ (from-meta ((open-meta a) M./ u)) ↓ τ) → ∃ λ u' → Δ & s , r∈Δ ⊢ (from-meta (∀' a M./ u')) ↓ τ lem (u ∷ us , p) = us , (i-tabs (from-meta u) (subst (λ v → Δ & s , r∈Δ ⊢ v ↓ τ) (begin from-meta (M._/_ (open-meta a) (u ∷ us)) ≡⟨ cong (λ v → from-meta (M._/_ (open-meta a) v)) (sym $ us↑-⊙-sub-u≡u∷us u us) ⟩ from-meta ((open-meta a) M./ (us M.↑ M.⊙ (M.sub u))) ≡⟨ cong from-meta (/-⊙ (open-meta a)) ⟩ from-meta ((open-meta a) M./ us M.↑ M./ (M.sub u)) ≡⟨ lem' a u us ⟩ from-meta (M._/_ a (us M.↑tp)) tp[/tp from-meta u ] ∎) p)) where open MetaTypeMetaLemmas hiding (subst) match' Δ s r∈Δ τ (∀' r) | no ¬p = no {!!} -- match defers to match', which concerns itself with MetaTypes. -- If match' finds a match, we can use the fact that we have zero unification variables open here -- to show that we found the right thing. match : ∀ {ν} (Δ : ICtx ν) s r∈Δ → ∀ r τ → Dec (Δ & s , r∈Δ ⊢ r ↓ τ) match Δ s r∈Δ a τ with match' Δ s r∈Δ τ (to-meta {zero} a) match Δ s r∈Δ a τ | yes x = yes (lem x) where eq : ∀ {ν} {a : Type ν} {s} → from-meta (to-meta {zero} a M./ s) ≡ a eq {a = a} {s = []} = begin from-meta (M._/_ (to-meta {zero} a) []) ≡⟨ cong (λ q → from-meta q) (MetaTypeMetaLemmas.id-vanishes (to-meta {zero} a)) ⟩ from-meta (to-meta {zero} a) ≡⟨ to-meta-zero-vanishes ⟩ a ∎ lem : ∃ (λ u → Δ & s , r∈Δ ⊢ from-meta (to-meta {zero} a M./ u) ↓ τ) → Δ & s , r∈Δ ⊢ a ↓ τ lem ([] , proj₂) = subst (λ u → Δ & s , r∈Δ ⊢ u ↓ τ) eq proj₂ match Δ s r∈Δ a τ | no ¬p = no {!!} match1st : ∀ {ν} (Δ : ICtx ν) s τ → Dec (Any (λ r → Δ & s , r ⊢ r ↓ τ) Δ) match1st Δ s τ = match1st' Δ Δ s τ -- any (λ r → match Δ r τ) where match1st' : ∀ {ν} (Δ ρs : ICtx ν) s → (τ : SimpleType ν) → Dec (Any (λ r → Δ & s , r ⊢ r ↓ τ) ρs) match1st' Δ List.[] s τ = no {!!} match1st' Δ (x List.∷ xs) s τ with match Δ s x x τ match1st' Δ (x List.∷ xs) s τ | yes px = yes (here px) match1st' Δ (x List.∷ xs) s τ | no ¬p with match1st' Δ xs s τ match1st' Δ (x List.∷ xs) s τ | no ¬p | yes y = yes (there y) match1st' Δ (x List.∷ xs) s τ | no ¬p | no ¬q = no {!!} resolve' : ∀ {ν} (Δ : ICtx ν) s r → (Dec (Δ & s ⊢ᵣ r)) resolve' Δ s (simpl x) with match1st Δ s x resolve' Δ s (simpl x) | yes p = let r , r∈Δ , r↓x = (Inverse.from Any↔) Π.⟨$⟩ p in yes (r-simp r∈Δ r↓x) resolve' Δ s (simpl x) | no ¬p = no (λ{ (r-simp x₁ x₂) → ¬p (_⟨$⟩_ (Inverse.to Any↔) (_ , (x₁ , x₂))) }) resolve' Δ s (a ⇒ b) with resolve' (a List.∷ Δ) s b resolve' Δ s (a ⇒ b) | yes p = yes (r-iabs p) resolve' Δ s (a ⇒ b) | no ¬p = no (λ{ (r-iabs x) → ¬p x }) resolve' Δ s (∀' r) with resolve' (ictx-weaken Δ) (stack-weaken s) r resolve' Δ s (∀' r) | yes p = yes (r-tabs p) resolve' Δ s (∀' r) | no ¬p = no λ{ (r-tabs x) → ¬p x } resolve : ∀ {ν} (Δ : ICtx ν) r → (Dec (Δ & List.[] ⊢ᵣ r)) resolve Δ r = resolve' Δ List.[] r
{ "alphanum_fraction": 0.5182525434, "avg_line_length": 46.8504672897, "ext": "agda", "hexsha": "ff713a8277bcaa1b8a21c8cfa48f13e16de093ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Finite/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Finite/Decidable.agda", "max_line_length": 99, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Finite/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 2135, "size": 5013 }
{-# OPTIONS --rewriting #-} -- {-# OPTIONS -v rewriting:100 #-} postulate _↦_ : ∀ {i} {A : Set i} → A → A → Set i {-# BUILTIN REWRITE _↦_ #-} postulate Unit : Set tt : Unit module _ {i} (P : Unit → Set i) (tt* : P tt) where postulate Unit-elim : (x : Unit) → P x Unit-β : Unit-elim tt ↦ tt* {-# REWRITE Unit-β #-}
{ "alphanum_fraction": 0.5236686391, "avg_line_length": 16.9, "ext": "agda", "hexsha": "e73c0a547e05a6d3405709329335a5fa34ceb6de", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1552.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1552.agda", "max_line_length": 50, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1552.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 128, "size": 338 }