Search is not available for this dataset
text
string
meta
dict
module Numeral.Sign.Oper0 where open import Numeral.Sign -- Negation −_ : (+|0|−) → (+|0|−) − (➕) = (➖) − (𝟎) = (𝟎) − (➖) = (➕) -- Bounded addition _+_ : (+|0|−) → (+|0|−) → (+|0|−) (➕) + (➕) = (➕) (➕) + (➖) = (𝟎) (➕) + (𝟎) = (➕) (➖) + (➕) = (𝟎) (➖) + (➖) = (➖) (➖) + (𝟎) = (➖) (𝟎) + (➕) = (➕) (𝟎) + (➖) = (➖) (𝟎) + (𝟎) = (𝟎) -- Multiplication _⨯_ : (+|0|−) → (+|0|−) → (+|0|−) (➕) ⨯ (➕) = (➕) (➕) ⨯ (➖) = (➖) (➕) ⨯ (𝟎) = (𝟎) (➖) ⨯ (➕) = (➖) (➖) ⨯ (➖) = (➕) (➖) ⨯ (𝟎) = (𝟎) (𝟎) ⨯ (➕) = (𝟎) (𝟎) ⨯ (➖) = (𝟎) (𝟎) ⨯ (𝟎) = (𝟎) _⋚_ : (+|0|−) → (+|0|−) → (+|0|−) ➕ ⋚ 𝟎 = ➕ ➕ ⋚ ➖ = ➕ 𝟎 ⋚ ➖ = ➕ ➕ ⋚ ➕ = 𝟎 𝟎 ⋚ 𝟎 = 𝟎 ➖ ⋚ ➖ = 𝟎 𝟎 ⋚ ➕ = ➖ ➖ ⋚ ➕ = ➖ ➖ ⋚ 𝟎 = ➖
{ "alphanum_fraction": 0.2058371736, "avg_line_length": 14.4666666667, "ext": "agda", "hexsha": "9da8accdcdafe2bd3a878bcf308c71f8b9ba0ca7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Sign/Oper0.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Sign/Oper0.agda", "max_line_length": 33, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Sign/Oper0.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 555, "size": 651 }
module n2o.Network.Core where open import proto.Base open import proto.IO open import n2o.Network.Internal {-# FOREIGN GHC import Network.N2O.Core #-} postulate protoRun : ∀ {F : Set → Set} {A : Set} → F A → List (Proto F A) → N2O F A (Result (F A)) {-# COMPILE GHC protoRun = Network.N2O.Core.protoRun #-}
{ "alphanum_fraction": 0.6719242902, "avg_line_length": 22.6428571429, "ext": "agda", "hexsha": "1661de0ee39990e397db6cc4c52da5f2e3927aad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "o4/n2o", "max_forks_repo_path": "n2o/Network/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "o4/n2o", "max_issues_repo_path": "n2o/Network/Core.agda", "max_line_length": 92, "max_stars_count": 3, "max_stars_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "o4/n2o", "max_stars_repo_path": "n2o/Network/Core.agda", "max_stars_repo_stars_event_max_datetime": "2019-01-02T06:37:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-30T11:37:10.000Z", "num_tokens": 93, "size": 317 }
{-# OPTIONS --cubical --safe --guardedness #-} module Data.PolyP.Composition where open import Function hiding (_⟨_⟩_) open import Data.Sum open import Data.Sigma open import Level open import Data.Unit open import Data.Nat open import Data.Vec open import Data.Empty open import WellFounded open import Literals.Number open import Data.Fin.Indexed.Literals open import Data.Fin.Indexed.Properties open import Data.Fin.Indexed open import Data.Nat.Literals open import Data.Maybe open import Data.PolyP.Universe infixr 9 _⊚_ _⇑_ : Fin (suc n) → Functor n → Functor (suc n) i ⇑ (! j) = ! (insert i j) i ⇑ (x ⊕ y) = i ⇑ x ⊕ i ⇑ y i ⇑ (x ⊗ y) = i ⇑ x ⊗ i ⇑ y i ⇑ μ⟨ x ⟩ = μ⟨ fs i ⇑ x ⟩ i ⇑ ⓪ = ⓪ i ⇑ ① = ① ⇓ : Functor n → Functor (suc n) ⇓ (! x) = ! (weaken x) ⇓ (x ⊕ y) = ⇓ x ⊕ ⇓ y ⇓ (x ⊗ y) = ⇓ x ⊗ ⇓ y ⇓ μ⟨ x ⟩ = μ⟨ f0 ⇑ x ⟩ ⇓ ⓪ = ⓪ ⇓ ① = ① substAt : Fin (suc n) → Functor (suc n) → Functor n → Functor n substAt i (! j) xs = maybe xs ! (j \\ i) substAt i (ys ⊕ zs) xs = substAt i ys xs ⊕ substAt i zs xs substAt i (ys ⊗ zs) xs = substAt i ys xs ⊗ substAt i zs xs substAt i μ⟨ ys ⟩ xs = μ⟨ substAt (fs i) ys (f0 ⇑ xs) ⟩ substAt i ⓪ xs = ⓪ substAt i ① xs = ① _⊚_ : Functor (suc n) → Functor n → Functor n _⊚_ = substAt f0
{ "alphanum_fraction": 0.6123101519, "avg_line_length": 24.5294117647, "ext": "agda", "hexsha": "d2ac1ed17c67dd716fd0fb48a66a2bc4494fdcaf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/PolyP/Composition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/PolyP/Composition.agda", "max_line_length": 63, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/PolyP/Composition.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 547, "size": 1251 }
{-# OPTIONS --cubical --safe #-} module Data.Binary.Multiplication.Properties where open import Prelude open import Data.Binary.Definition open import Data.Binary.Addition open import Data.Binary.Addition.Properties using (+-cong) open import Data.Binary.Multiplication open import Data.Binary.Conversion import Data.Nat as ℕ import Data.Nat.Properties as ℕ open import Path.Reasoning open import Data.Binary.Isomorphism double-cong : ∀ xs → ⟦ double xs ⇓⟧ ≡ ⟦ xs ⇓⟧ ℕ.* 2 double-cong 0ᵇ i = zero double-cong (1ᵇ xs) i = 2 ℕ.+ double-cong xs i ℕ.* 2 double-cong (2ᵇ xs) i = ⟦ 2ᵇ 1ᵇ xs ⇓⟧ double-plus : ∀ x → x ℕ.+ x ≡ x ℕ.* 2 double-plus x = cong (x ℕ.+_) (sym (ℕ.+-idʳ x)) ; ℕ.*-comm 2 x lemma₁ : ∀ x y → x ℕ.* y ℕ.* 2 ≡ y ℕ.* 2 ℕ.* x lemma₁ x y = x ℕ.* y ℕ.* 2 ≡⟨ ℕ.*-assoc x y 2 ⟩ x ℕ.* (y ℕ.* 2) ≡⟨ ℕ.*-comm x (y ℕ.* 2) ⟩ y ℕ.* 2 ℕ.* x ∎ lemma₂ : ∀ x y → (x ℕ.+ x ℕ.* y) ℕ.* 2 ≡ x ℕ.+ (x ℕ.+ y ℕ.* 2 ℕ.* x) lemma₂ x y = (x ℕ.+ x ℕ.* y) ℕ.* 2 ≡⟨ ℕ.+-*-distrib x (x ℕ.* y) 2 ⟩ x ℕ.* 2 ℕ.+ x ℕ.* y ℕ.* 2 ≡⟨ cong₂ ℕ._+_ (sym (double-plus x)) (lemma₁ x y) ⟩ x ℕ.+ x ℕ.+ y ℕ.* 2 ℕ.* x ≡⟨ ℕ.+-assoc x x (y ℕ.* 2 ℕ.* x) ⟩ x ℕ.+ (x ℕ.+ y ℕ.* 2 ℕ.* x) ∎ *-cong : ∀ xs ys → ⟦ xs * ys ⇓⟧ ≡ ⟦ xs ⇓⟧ ℕ.* ⟦ ys ⇓⟧ *-cong 0ᵇ ys = refl *-cong (1ᵇ xs) ys = ⟦ ys + double (ys * xs) ⇓⟧ ≡⟨ +-cong ys (double (ys * xs)) ⟩ ⟦ ys ⇓⟧ ℕ.+ ⟦ double (ys * xs) ⇓⟧ ≡⟨ cong (⟦ ys ⇓⟧ ℕ.+_) (double-cong (ys * xs)) ⟩ ⟦ ys ⇓⟧ ℕ.+ ⟦ ys * xs ⇓⟧ ℕ.* 2 ≡⟨ cong (⟦ ys ⇓⟧ ℕ.+_) (cong (ℕ._* 2) (*-cong ys xs)) ⟩ ⟦ ys ⇓⟧ ℕ.+ ⟦ ys ⇓⟧ ℕ.* ⟦ xs ⇓⟧ ℕ.* 2 ≡⟨ cong (⟦ ys ⇓⟧ ℕ.+_) (lemma₁ ⟦ ys ⇓⟧ ⟦ xs ⇓⟧) ⟩ ⟦ ys ⇓⟧ ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2 ℕ.* ⟦ ys ⇓⟧ ∎ *-cong (2ᵇ xs) ys = ⟦ double (ys + ys * xs) ⇓⟧ ≡⟨ double-cong (ys + ys * xs) ⟩ ⟦ ys + ys * xs ⇓⟧ ℕ.* 2 ≡⟨ cong (ℕ._* 2) (+-cong ys (ys * xs)) ⟩ (⟦ ys ⇓⟧ ℕ.+ ⟦ ys * xs ⇓⟧) ℕ.* 2 ≡⟨ cong (ℕ._* 2) (cong (⟦ ys ⇓⟧ ℕ.+_) (*-cong ys xs)) ⟩ (⟦ ys ⇓⟧ ℕ.+ ⟦ ys ⇓⟧ ℕ.* ⟦ xs ⇓⟧) ℕ.* 2 ≡⟨ lemma₂ ⟦ ys ⇓⟧ ⟦ xs ⇓⟧ ⟩ ⟦ ys ⇓⟧ ℕ.+ (⟦ ys ⇓⟧ ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2 ℕ.* ⟦ ys ⇓⟧) ∎
{ "alphanum_fraction": 0.4842735896, "avg_line_length": 39.2745098039, "ext": "agda", "hexsha": "cbe5702d8fac49ab9b3a8b3ef3fb97b2ca52495e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/Multiplication/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/Multiplication/Properties.agda", "max_line_length": 90, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/Multiplication/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1073, "size": 2003 }
import Lvl open import Structure.Operator.Vector open import Structure.Setoid open import Type module Structure.Operator.Vector.Subspace {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ} {V : Type{ℓᵥ}} ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄ {S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ {_+ᵥ_ : V → V → V} {_⋅ₛᵥ_ : S → V → V} {_+ₛ_ _⋅ₛ_ : S → S → S} ⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄ where open VectorSpace(vectorSpace) open import Logic open import Logic.Predicate open import Logic.Predicate.Equiv open import Sets.ExtensionalPredicateSet as PredSet using (PredSet ; _∈_ ; [∋]-binaryRelator) open import Structure.Container.SetLike using (SetElement) private open module SetLikeFunctionProperties{ℓ} = Structure.Container.SetLike.FunctionProperties{C = PredSet{ℓ}(V)}(_∈_) open import Structure.Operator.Vector open import Structure.Operator.Vector.LinearCombination ⦃ vectorSpace = vectorSpace ⦄ open import Syntax.Transitivity private variable ℓ : Lvl.Level -- A subspace is a subset of V such that it is a vector space under the same operators. record Subspace (Vₛ : PredSet{ℓ}(V)) : Stmt{ℓᵥ Lvl.⊔ ℓₛ Lvl.⊔ ℓ} where constructor intro field ⦃ add-closure ⦄ : Vₛ closed-under₂ (_+ᵥ_) ⦃ mul-closure ⦄ : ∀{s} → (Vₛ closed-under₁ (s ⋅ₛᵥ_)) _+_ : SetElement(_∈_)(Vₛ) → SetElement(_∈_)(Vₛ) → SetElement(_∈_)(Vₛ) _+_ = [∃]-map₂(_+ᵥ_) (Vₛ closureUnder₂ (_+ᵥ_)) _⋅_ : S → SetElement(_∈_)(Vₛ) → SetElement(_∈_)(Vₛ) _⋅_ s = [∃]-map(s ⋅ₛᵥ_) (Vₛ closureUnder₁ (s ⋅ₛᵥ_)) -- TODO: A proof of this would be easier if a similar "substructure" relation was defined on groups and fields, but I am not sure if using PredSet is the correct choice (maybe this is unprovable when using this?). Another alternative is to use a general set structure by Structure.Container.SetLike postulate is-vectorSpace : VectorSpace{V = SetElement(_∈_)(Vₛ)}{S = S}(_+_)(_⋅_)(_+ₛ_)(_⋅ₛ_) -- is-vectorSpace = {!!} SubspaceObject : ∀{ℓ} → Stmt SubspaceObject{ℓ} = ∃(Subspace{ℓ})
{ "alphanum_fraction": 0.6991374937, "avg_line_length": 40.2244897959, "ext": "agda", "hexsha": "6e2027db85cf4c8b4d513b6257bc10471387f874", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Vector/Subspace.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Vector/Subspace.agda", "max_line_length": 300, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Vector/Subspace.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 775, "size": 1971 }
module plfa-code.Relations where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym; trans) open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Nat.Properties using (+-comm) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_) open import plfa-code.Reasoning-legacy open import Function data _≤_ : ℕ → ℕ → Set where z≤n : ∀ {n : ℕ} --------- → zero ≤ n s≤s : ∀ {m n : ℕ} → m ≤ n -------------- → suc m ≤ suc n infix 4 _≤_ _ : 2 ≤ 4 _ = s≤s (s≤s z≤n) inv-s≤s : ∀ {m n : ℕ} → suc m ≤ suc n ------------- → m ≤ n inv-s≤s (s≤s m≤n) = m≤n inv-z≤n : ∀ {m : ℕ} → m ≤ zero --------- → m ≡ zero inv-z≤n z≤n = refl ≤-refl : ∀ {n : ℕ} ------ → n ≤ n ≤-refl {zero} = z≤n ≤-refl {suc n} = s≤s ≤-refl ≤-trans : ∀ {m n p : ℕ} → m ≤ n → n ≤ p ------ → m ≤ p ≤-trans z≤n _ = z≤n ≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p) ≤-trans′ : ∀ (m n p : ℕ) → m ≤ n → n ≤ p ------ → m ≤ p ≤-trans′ zero _ _ z≤n _ = z≤n ≤-trans′ (suc m) (suc n) (suc p) (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans′ m n p m≤n n≤p) ≤-antisym : ∀ {m n : ℕ} → m ≤ n → n ≤ m ------- → m ≡ n ≤-antisym z≤n z≤n = refl ≤-antisym (s≤s m≤n) (s≤s n≤m) = cong suc (≤-antisym m≤n n≤m) -- when m is zero there is no instance for `n ≤ m`, the same as when n is zero data Total (m n : ℕ) : Set where forward : m ≤ n ---------- → Total m n flipped : n ≤ m ---------- → Total m n ≤-total : ∀ (m n : ℕ) → Total m n ≤-total zero n = forward z≤n ≤-total (suc m) zero = flipped z≤n ≤-total (suc m) (suc n) with ≤-total m n ... | forward m≤n = forward (s≤s m≤n) ... | flipped n≤m = flipped (s≤s n≤m) ≤-total′ : ∀ (m n : ℕ) → Total m n ≤-total′ zero n = forward z≤n ≤-total′ (suc m) zero = flipped z≤n ≤-total′ (suc m) (suc n) = helper (≤-total′ m n) where helper : Total m n → Total (suc m) (suc n) helper (forward m≤n) = forward (s≤s m≤n) helper (flipped n≤m) = flipped (s≤s n≤m) +-monoʳ-≤ : ∀ (n p q : ℕ) → p ≤ q -------------- → n + p ≤ n + q +-monoʳ-≤ zero p q p≤q = p≤q +-monoʳ-≤ (suc n) p q p≤q = s≤s (+-monoʳ-≤ n p q p≤q) +-monoˡ-≤ : ∀ (m n p : ℕ) → m ≤ n -------------- → m + p ≤ n + p +-monoˡ-≤ m n p m≤n rewrite +-comm m p | +-comm n p = +-monoʳ-≤ p m n m≤n +-mono-≤ : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q -------------- → m + p ≤ n + q +-mono-≤ m n p q m≤n p≤q = ≤-trans (+-monoˡ-≤ m n p m≤n) (+-monoʳ-≤ n p q p≤q) ---------- practice ---------- *-mono-≤ : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q → m * p ≤ n * q *-mono-≤ zero n p q m≤n p≤q = z≤n *-mono-≤ (suc m) (suc n) p q m≤n p≤q = +-mono-≤ p q (m * p) (n * q) p≤q (*-mono-≤ m n p q (inv-s≤s m≤n) p≤q) ------------------------------ infix 4 _<_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} ------------- → zero < suc n s<s : ∀ {m n : ℕ} → m < n -------------- → suc m < suc n ---------- practice ---------- inv-s<s : ∀ {m n : ℕ} → suc m < suc n → m < n inv-s<s (s<s mLTn) = mLTn <-trans : ∀ (m n p : ℕ) → m < n → n < p → m < p <-trans zero (suc n) (suc p) zLTsn snLTsp = z<s <-trans (suc m) (suc n) (suc p) smLTsn snLTsp = s<s (<-trans m n p (inv-s<s smLTsn) (inv-s<s snLTsp)) data Trichotomy (m n : ℕ) : Set where less : m < n → Trichotomy m n equal : m ≡ n → Trichotomy m n greater : n < m → Trichotomy m n <-trichotomy : ∀ (m n : ℕ) → Trichotomy m n <-trichotomy zero zero = equal refl <-trichotomy zero (suc n) = less z<s <-trichotomy (suc m) zero = greater z<s <-trichotomy (suc m) (suc n) with <-trichotomy m n ... | less mLTn = less (s<s mLTn) ... | equal refl = equal refl ... | greater nLTm = greater (s<s nLTm) +-monoʳ-< : ∀ (n p q : ℕ) → p < q → n + p < n + q +-monoʳ-< zero p q pLTq = pLTq +-monoʳ-< (suc n) p q pLTq = s<s (+-monoʳ-< n p q pLTq) +-monoˡ-< : ∀ (m n p : ℕ) → m < n → m + p < n + p +-monoˡ-< m n p mLTn rewrite +-comm m p | +-comm n p = +-monoʳ-< p m n mLTn +-mono-< : ∀ (m n p q : ℕ) → m < n → p < q → m + p < n + q +-mono-< m n p q mLTn pLTq = <-trans (m + p) (n + p) (n + q) (+-monoˡ-< m n p mLTn) (+-monoʳ-< n p q pLTq) ≤-iff-< : ∀ (m n : ℕ) → suc m ≤ n → m < n ≤-iff-< zero (suc n) _ = z<s ≤-iff-< (suc m) (suc n) ssm≤sn = s<s (≤-iff-< m n sm≤n) where sm≤n = inv-s≤s ssm≤sn <-iff-≤ : ∀ (m n : ℕ) → m < n → suc m ≤ n <-iff-≤ zero (suc n) mLTn = s≤s z≤n <-iff-≤ (suc m) (suc n) smLTn = s≤s (<-iff-≤ m n (inv-s<s smLTn)) <→≤ : ∀ (n p : ℕ) → n < p → n ≤ p <→≤ zero p nLTp = z≤n <→≤ (suc n) (suc p) nLTp = s≤s (<→≤ n p (inv-s<s nLTp)) <-trans-revisited : ∀ (m n p : ℕ) → m < n → n < p → m < p <-trans-revisited m n p mLTn nLTp = ≤-iff-< m p (inv-s≤s ssm≤sp) where ssm≤sp = s≤s (≤-trans (<-iff-≤ m n mLTn) (<→≤ n p nLTp)) ------------------------------ data even : ℕ → Set data odd : ℕ → Set data even where zero : --------- even zero suc : ∀ {n : ℕ} → odd n ------------- → even (suc n) data odd where suc : ∀ {n : ℕ} → even n ------------ → odd (suc n) e+e≡e : ∀ {m n : ℕ} → even m → even n ------------- → even (m + n) o+e≡o : ∀ {m n : ℕ} → odd m → even n ------------ → odd (m + n) e+e≡e zero en = en e+e≡e (suc om) en = suc (o+e≡o om en) o+e≡o (suc em) en = suc (e+e≡e em en) ---------- practice ---------- o+o≡e : ∀ {m n : ℕ} → odd m → odd n → even (m + n) o+o≡e (suc zero) on = suc on o+o≡e (suc (suc ox)) on = suc (suc (o+o≡e ox on)) open import plfa-code.Induction using (Bin; nil; x0_; x1_; inc; from; to; +1≡suc; suc-from-inc; from-to-const) data Can : Bin → Set data One : Bin → Set data One where one : One (x1 nil) x0_ : ∀ {b : Bin} → One b → One(x0 b) x1_ : ∀ {b : Bin} → One b → One(x1 b) data Can where zero : Can (x0 nil) can-one : ∀ {b : Bin} → One b → Can b one-inc : ∀ {x : Bin} → One x → One (inc x) one-inc one = x0 one one-inc (x0 x) = x1 x one-inc (x1 x) = x0 (one-inc x) can-inc : ∀ {x : Bin} → Can x → Can (inc x) can-inc zero = can-one one can-inc (can-one x) = can-one (one-inc x) one-to-n : ∀ (n : ℕ) → One (to (suc n)) one-to-n zero = one one-to-n (suc n) = one-inc (one-to-n n) can-to-n : ∀ (n : ℕ) → Can (to n) can-to-n zero = zero can-to-n (suc n) = can-one (one-to-n n) open Data.Nat.Properties using (+-identityʳ; +-suc) l0 : ∀ (n) → to (suc n) ≡ inc (to n) l0 zero = refl l0 (suc n) = refl 2n-eq-x0 : ∀ (n) → 1 ≤ n → to (n + n) ≡ x0 (to n) 2n-eq-x0 zero () 2n-eq-x0 (suc zero) (s≤s z≤n) = refl 2n-eq-x0 (suc (suc n)) (s≤s z≤n) = begin to (suc (suc n) + suc (suc n)) ≡⟨ cong (λ x → to x) (+-suc (suc (suc n)) (suc n)) ⟩ to (suc (suc (suc n + suc n))) ≡⟨⟩ inc (inc (to (suc n + suc n))) ≡⟨ cong (λ x → (inc (inc x))) (2n-eq-x0 (suc n) (s≤s z≤n)) ⟩ inc (inc (x0 (to (suc n)))) ≡⟨⟩ x0 (inc (to (suc n))) ≡⟨⟩ x0 (to (suc (suc n))) ∎ one-b-iff-1≤b : ∀ (b) → One b → 1 ≤ from b one-b-iff-1≤b (x0 b) (x0 ob) rewrite +-identityʳ (from b) = +-mono-≤ 1 n 0 n (one-b-iff-1≤b b ob) z≤n where n = from b one-b-iff-1≤b (x1 .nil) one = s≤s z≤n one-b-iff-1≤b (x1 b) (x1 ob) = s≤s z≤n one-tf-eq : ∀ {b} → One b → to (from b) ≡ b one-tf-eq {_} one = refl one-tf-eq {x0 b} (x0 x) = begin to (from (x0 b)) ≡⟨⟩ to (from b + (from b + zero)) ≡⟨ cong (λ n → to (from b + n)) (+-identityʳ (from b)) ⟩ to (from b + from b) ≡⟨ 2n-eq-x0 (from b) (one-b-iff-1≤b b x) ⟩ x0 (to (from b)) ≡⟨ cong x0_ (one-tf-eq x) ⟩ x0 b ∎ one-tf-eq {x1 b} (x1 x) = begin to (from (x1 b)) ≡⟨⟩ inc (to (from b + (from b + zero))) ≡⟨ cong (λ n → inc (to (from b + n))) (+-identityʳ (from b)) ⟩ inc (to (from b + from b)) ≡⟨ cong inc (2n-eq-x0 (from b) (one-b-iff-1≤b b x)) ⟩ inc (x0 (to (from b))) ≡⟨⟩ x1 (to (from b)) ≡⟨ cong x1_ (one-tf-eq x) ⟩ x1 b ∎ can-tf-eq : ∀ {x} → Can x → to (from x) ≡ x can-tf-eq {_} zero = refl can-tf-eq {b} (can-one x) = one-tf-eq x ------------------------------
{ "alphanum_fraction": 0.4452021432, "avg_line_length": 25.3456790123, "ext": "agda", "hexsha": "b315cafb37a022c48736248a726f91900222cd4c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Relations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Relations.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Relations.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3875, "size": 8212 }
------------------------------------------------------------------------ -- Pointwise equalities can be lifted ------------------------------------------------------------------------ module Stream.Pointwise where open import Codata.Musical.Notation hiding (∞) open import Stream open import Stream.Equality import Stream.Programs as Prog open Prog hiding (lift; ⟦_⟧) open import Data.Nat open import Data.Fin using (Fin; zero; suc) open import Data.Vec as Vec using (Vec; _∷_) open import Relation.Binary open import Relation.Binary.PropositionalEquality private module IsEq {A : Set} = IsEquivalence (Setoid.isEquivalence (Stream.setoid A)) ------------------------------------------------------------------------ -- Definitions infix 8 _∞ infixr 7 _·_ infix 6 _⟨_⟩_ -- Expressions corresponding to pointwise definitions of streams. -- Indexed on the number of variables. -- It is possible to generalise this type, allowing variables to -- correspond to streams containing elements of arbitrary type, and -- letting the function arguments of _·_ and _⟨_⟩_ be more general. -- However, this would complicate the development, so I hesitate to do -- so without evidence that it would be genuinely useful. data Pointwise A n : Set where var : (x : Fin n) → Pointwise A n _∞ : (x : A) → Pointwise A n _·_ : (f : A → A) (xs : Pointwise A n) → Pointwise A n _⟨_⟩_ : (xs : Pointwise A n) (_∙_ : A → A → A) (ys : Pointwise A n) → Pointwise A n -- Stream semantics. ⟦_⟧ : ∀ {A n} → Pointwise A n → (Vec (Prog A) n → Prog A) ⟦ var x ⟧ ρ = Vec.lookup ρ x ⟦ x ∞ ⟧ ρ = x ∞ ⟦ f · xs ⟧ ρ = f · ⟦ xs ⟧ ρ ⟦ xs ⟨ _∙_ ⟩ ys ⟧ ρ = ⟦ xs ⟧ ρ ⟨ _∙_ ⟩ ⟦ ys ⟧ ρ -- Pointwise semantics. ⟪_⟫ : ∀ {A n} → Pointwise A n → (Vec A n → A) ⟪ var x ⟫ ρ = Vec.lookup ρ x ⟪ x ∞ ⟫ ρ = x ⟪ f · xs ⟫ ρ = f (⟪ xs ⟫ ρ) ⟪ xs ⟨ _∙_ ⟩ ys ⟫ ρ = ⟪ xs ⟫ ρ ∙ ⟪ ys ⟫ ρ ------------------------------------------------------------------------ -- Some lemmas used below private -- lookup is natural. lookup-nat : ∀ {a b n} {A : Set a} {B : Set b} (f : A → B) (x : Fin n) ρ → f (Vec.lookup ρ x) ≡ Vec.lookup (Vec.map f ρ) x lookup-nat f zero (x ∷ ρ) = refl lookup-nat f (suc i) (x ∷ ρ) = lookup-nat f i ρ ------------------------------------------------------------------------ -- The two semantics above are related via the function lift private -- Lifts a pointwise function to a function on stream programs. lift : ∀ {A B n} → (Vec A n → B) → Vec (Prog A) n → Prog B lift f xs = f (Vec.map headP xs) ≺ ♯ lift f (Vec.map tailP xs) -- lift is a congruence in its first argument. lift-cong : ∀ {A B n} {f g : Vec A n → B} → (∀ ρ → f ρ ≡ g ρ) → ∀ ρ → lift f ρ ≊ lift g ρ lift-cong hyp ρ = hyp (Vec.map headP ρ) ≺ ♯ lift-cong hyp (Vec.map tailP ρ) -- unfold xs ρ is the one-step unfolding of ⟦ xs ⟧ ρ. Note the -- similarity to lift. unfold : ∀ {A n} (xs : Pointwise A n) ρ → Prog A unfold xs ρ = ⟪ xs ⟫ (Vec.map headP ρ) ≺♯ ⟦ xs ⟧ (Vec.map tailP ρ) unfold-lemma : ∀ {A n} (xs : Pointwise A n) ρ → ⟦ xs ⟧ ρ ≊ unfold xs ρ unfold-lemma (var x) ρ = Vec.lookup ρ x ≊⟨ ≊-η (Vec.lookup ρ x) ⟩ headP (Vec.lookup ρ x) ≺♯ tailP (Vec.lookup ρ x) ≊⟨ lookup-nat headP x ρ ≺ ♯ ≈⇒≅ (IsEq.reflexive (cong Prog.⟦_⟧ (lookup-nat tailP x ρ))) ⟩ Vec.lookup (Vec.map headP ρ) x ≺♯ Vec.lookup (Vec.map tailP ρ) x ≡⟨ refl ⟩ unfold (var x) ρ ∎ unfold-lemma (x ∞) ρ = x ∞ ∎ unfold-lemma (f · xs) ρ = f · ⟦ xs ⟧ ρ ≊⟨ ·-cong f (⟦ xs ⟧ ρ) (unfold xs ρ) (unfold-lemma xs ρ) ⟩ f · unfold xs ρ ∎ unfold-lemma (xs ⟨ ∙ ⟩ ys) ρ = ⟦ xs ⟧ ρ ⟨ ∙ ⟩ ⟦ ys ⟧ ρ ≊⟨ ⟨ ∙ ⟩-cong (⟦ xs ⟧ ρ) (unfold xs ρ) (unfold-lemma xs ρ) (⟦ ys ⟧ ρ) (unfold ys ρ) (unfold-lemma ys ρ) ⟩ unfold xs ρ ⟨ ∙ ⟩ unfold ys ρ ∎ -- The two semantics are related. main-lemma : ∀ {A n} (xs : Pointwise A n) → ∀ ρ → ⟦ xs ⟧ ρ ≊ lift ⟪ xs ⟫ ρ main-lemma xs ρ = ⟦ xs ⟧ ρ ≊⟨ unfold-lemma xs ρ ⟩ unfold xs ρ ≡⟨ refl ⟩ ⟪ xs ⟫ (Vec.map headP ρ) ≺♯ ⟦ xs ⟧ (Vec.map tailP ρ) ≊⟨ refl ≺ ♯ main-lemma xs (Vec.map tailP ρ) ⟩ lift ⟪ xs ⟫ ρ ∎ ------------------------------------------------------------------------ -- To prove that two streams which are defined pointwise are equal, it -- is enough to reason about a single (arbitrary) point -- This function is a bit awkward to use, since the user has to come -- up with a suitable environment manually. The alternative function -- pointwise below may be slightly easier to use. pointwise' : ∀ {A n} (xs ys : Pointwise A n) → (∀ ρ → ⟪ xs ⟫ ρ ≡ ⟪ ys ⟫ ρ) → (∀ ρ → ⟦ xs ⟧ ρ ≊ ⟦ ys ⟧ ρ) pointwise' xs ys hyp ρ = ⟦ xs ⟧ ρ ≊⟨ main-lemma xs ρ ⟩ lift ⟪ xs ⟫ ρ ≊⟨ lift-cong hyp ρ ⟩ lift ⟪ ys ⟫ ρ ≊⟨ ≅-sym (main-lemma ys ρ) ⟩ ⟦ ys ⟧ ρ ∎ open import Data.Vec.N-ary -- Applies the function to all possible variables. app : ∀ {A} n → N-ary n (Pointwise A n) (Pointwise A n) → Pointwise A n app n f = f $ⁿ Vec.map var (Vec.allFin n) -- The type signature of this function may be a bit daunting, but once -- n, f and g are instantiated with well-behaved concrete values the -- remaining type evaluates nicely. pointwise : ∀ {A} n (f g : N-ary n (Pointwise A n) (Pointwise A n)) → Eq n _≡_ (curryⁿ ⟪ app n f ⟫) (curryⁿ ⟪ app n g ⟫) → Eq n _≊_ (curryⁿ ⟦ app n f ⟧) (curryⁿ ⟦ app n g ⟧) pointwise n f g hyp = curryⁿ-cong _≊_ ⟦ app n f ⟧ ⟦ app n g ⟧ (pointwise' (app n f) (app n g) (curryⁿ-cong⁻¹ _≡_ ⟪ app n f ⟫ ⟪ app n g ⟫ hyp)) ------------------------------------------------------------------------ -- Some examples private example₁ : suc · 0 ∞ ≊ 1 ∞ example₁ = pointwise 0 (suc · 0 ∞) (1 ∞) refl example₂ : ∀ s → suc · s ≊ 1 ∞ ⟨ _+_ ⟩ s example₂ = pointwise 1 (λ s → suc · s) (λ s → 1 ∞ ⟨ _+_ ⟩ s) (λ _ → refl) example₃ : ∀ s t u → (s ⟨ _+_ ⟩ t) ⟨ _+_ ⟩ u ≊ s ⟨ _+_ ⟩ (t ⟨ _+_ ⟩ u) example₃ = pointwise 3 (λ s t u → (s ⟨ _+_ ⟩ t) ⟨ _+_ ⟩ u) (λ s t u → s ⟨ _+_ ⟩ (t ⟨ _+_ ⟩ u)) +-assoc where open import Data.Nat.Properties
{ "alphanum_fraction": 0.4973561431, "avg_line_length": 31.5196078431, "ext": "agda", "hexsha": "a967b51db6b7f8f8af079c1b2de4aa3612734dcf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Stream/Pointwise.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Stream/Pointwise.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Stream/Pointwise.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 2348, "size": 6430 }
-- from http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.LocalDefinition module Local where data Nat : Set where zero : Nat succ : Nat -> Nat infixl 5 _+_ _+_ : Nat -> Nat -> Nat zero + n = n (succ m) + n = succ (m + n) infixl 6 _*_ _*_ : Nat -> Nat -> Nat zero * _ = zero (succ m) * n = n + m * n f : Nat f = let h : Nat -> Nat h m = succ (succ m) in h zero + h (succ zero) t1 : Nat t1 = f h : Nat -> Nat h n = let add2 : Nat add2 = succ (succ n) twice : Nat -> Nat twice m = m * m in twice add2 g : Nat -> Nat g n = fib n + fact n where fib : Nat -> Nat fib zero = succ zero fib (succ zero) = succ zero fib (succ (succ n)) = fib (succ n) + fib n fact : Nat -> Nat fact zero = succ zero fact (succ n) = succ n * fact n k : Nat -> Nat k n = let aux : Nat -> Nat aux m = pred (g m) + h m in aux (pred n) where pred : Nat -> Nat pred zero = zero pred (succ m) = m
{ "alphanum_fraction": 0.4741613781, "avg_line_length": 20.4259259259, "ext": "agda", "hexsha": "20158d36df05ce3015237e0c6931bd5fd723f7f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/Local.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/Local.agda", "max_line_length": 88, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/Local.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 366, "size": 1103 }
{- This second-order equational theory was created from the following second-order syntax description: syntax TLC | Λ type N : 0-ary _↣_ : 2-ary | r30 𝟙 : 0-ary _⊗_ : 2-ary | l40 𝟘 : 0-ary _⊕_ : 2-ary | l30 term app : α ↣ β α -> β | _$_ l20 lam : α.β -> α ↣ β | ƛ_ r10 unit : 𝟙 pair : α β -> α ⊗ β | ⟨_,_⟩ fst : α ⊗ β -> α snd : α ⊗ β -> β abort : 𝟘 -> α inl : α -> α ⊕ β inr : β -> α ⊕ β case : α ⊕ β α.γ β.γ -> γ ze : N su : N -> N nrec : N α (α,N).α -> α theory (ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a] (ƛη) f : α ↣ β |> lam (x. app(f, x)) = f (𝟙η) u : 𝟙 |> u = unit (fβ) a : α b : β |> fst (pair(a, b)) = a (sβ) a : α b : β |> snd (pair(a, b)) = b (pη) p : α ⊗ β |> pair (fst(p), snd(p)) = p (𝟘η) e : 𝟘 c : α |> abort(e) = c (lβ) a : α f : α.γ g : β.γ |> case (inl(a), x.f[x], y.g[y]) = f[a] (rβ) b : β f : α.γ g : β.γ |> case (inr(b), x.f[x], y.g[y]) = g[b] (cη) s : α ⊕ β c : (α ⊕ β).γ |> case (s, x.c[inl(x)], y.c[inr(y)]) = c[s] (zeβ) z : α s : (α,N).α |> nrec (ze, z, r m. s[r,m]) = z (suβ) z : α s : (α,N).α n : N |> nrec (su (n), z, r m. s[r,m]) = s[nrec (n, z, r m. s[r,m]), n] (ift) t f : α |> if (true, t, f) = t (iff) t f : α |> if (false, t, f) = f -} module TLC.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import TLC.Signature open import TLC.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution Λ:Syn open import SOAS.Metatheory.SecondOrder.Equality Λ:Syn private variable α β γ τ : ΛT Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ Λ) α Γ → (𝔐 ▷ Λ) α Γ → Set where ƛβ : ⁅ α ⊩ β ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ (ƛ 𝔞⟨ x₀ ⟩) $ 𝔟 ≋ₐ 𝔞⟨ 𝔟 ⟩ ƛη : ⁅ α ↣ β ⁆̣ ▹ ∅ ⊢ ƛ (𝔞 $ x₀) ≋ₐ 𝔞 𝟙η : ⁅ 𝟙 ⁆̣ ▹ ∅ ⊢ 𝔞 ≋ₐ unit fβ : ⁅ α ⁆ ⁅ β ⁆̣ ▹ ∅ ⊢ fst (⟨ 𝔞 , 𝔟 ⟩) ≋ₐ 𝔞 sβ : ⁅ α ⁆ ⁅ β ⁆̣ ▹ ∅ ⊢ snd (⟨ 𝔞 , 𝔟 ⟩) ≋ₐ 𝔟 pη : ⁅ α ⊗ β ⁆̣ ▹ ∅ ⊢ ⟨ (fst 𝔞) , (snd 𝔞) ⟩ ≋ₐ 𝔞 𝟘η : ⁅ 𝟘 ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ abort 𝔞 ≋ₐ 𝔟 lβ : ⁅ α ⁆ ⁅ α ⊩ γ ⁆ ⁅ β ⊩ γ ⁆̣ ▹ ∅ ⊢ case (inl 𝔞) (𝔟⟨ x₀ ⟩) (𝔠⟨ x₀ ⟩) ≋ₐ 𝔟⟨ 𝔞 ⟩ rβ : ⁅ β ⁆ ⁅ α ⊩ γ ⁆ ⁅ β ⊩ γ ⁆̣ ▹ ∅ ⊢ case (inr 𝔞) (𝔟⟨ x₀ ⟩) (𝔠⟨ x₀ ⟩) ≋ₐ 𝔠⟨ 𝔞 ⟩ cη : ⁅ α ⊕ β ⁆ ⁅ (α ⊕ β) ⊩ γ ⁆̣ ▹ ∅ ⊢ case 𝔞 (𝔟⟨ inl x₀ ⟩) (𝔟⟨ inr x₀ ⟩) ≋ₐ 𝔟⟨ 𝔞 ⟩ zeβ : ⁅ α ⁆ ⁅ α · N ⊩ α ⁆̣ ▹ ∅ ⊢ nrec ze 𝔞 (𝔟⟨ x₀ ◂ x₁ ⟩) ≋ₐ 𝔞 suβ : ⁅ α ⁆ ⁅ α · N ⊩ α ⁆ ⁅ N ⁆̣ ▹ ∅ ⊢ nrec (su 𝔠) 𝔞 (𝔟⟨ x₀ ◂ x₁ ⟩) ≋ₐ 𝔟⟨ (nrec 𝔠 𝔞 (𝔟⟨ x₀ ◂ x₁ ⟩)) ◂ 𝔠 ⟩ open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning -- Derived equations ift : ⁅ α ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ if true 𝔞 𝔟 ≋ 𝔞 ift = ax lβ with《 unit ◃ 𝔞 ◃ 𝔟 》 iff : ⁅ α ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ if false 𝔞 𝔟 ≋ 𝔟 iff = ax rβ with《 unit ◃ 𝔞 ◃ 𝔟 》 -- Double beta reduction ƛβ² : ⁅ β · α ⊩ γ ⁆ ⁅ α ⁆ ⁅ β ⁆̣ ▹ ∅ ⊢ (ƛ (ƛ 𝔞⟨ x₀ ◂ x₁ ⟩)) $ 𝔟 $ 𝔠 ≋ 𝔞⟨ 𝔠 ◂ 𝔟 ⟩ ƛβ² = begin (ƛ (ƛ 𝔞⟨ x₀ ◂ x₁ ⟩)) $ 𝔟 $ 𝔠 ≋⟨ cong[ ax ƛβ with《 (ƛ 𝔞⟨ x₀ ◂ x₁ ⟩) ◃ 𝔟 》 ]inside ◌ᵈ $ 𝔠 ⟩ (ƛ 𝔞⟨ x₀ ◂ 𝔟 ⟩) $ 𝔠 ≋⟨ ax ƛβ with《 (𝔞⟨ x₀ ◂ 𝔟 ⟩) ◃ 𝔠 》 ⟩ 𝔞⟨ 𝔠 ◂ 𝔟 ⟩ ∎ -- Uncurrying and arithmetic 1+2 : ⁅⁆ ▹ ∅ ⊢ uncurry $ plus $ ⟨ su ze , su (su ze) ⟩ ≋ su (su (su ze)) 1+2 = begin uncurry $ plus $ ⟨ su ze , su (su ze) ⟩ ≋⟨ thm ƛβ² with《 x₁ $ fst x₀ $ snd x₀ ◃ plus ◃ ⟨ su ze , su (su ze) ⟩ 》 ⟩ plus $ fst ⟨ su ze , su (su ze) ⟩ $ snd ⟨ su ze , su (su ze) ⟩ ≋⟨ cong₂[ ax fβ with《 su ze ◃ su (su ze) 》 ][ ax sβ with《 su ze ◃ su (su ze) 》 ]inside plus $ ◌ᵃ $ ◌ᵇ ⟩ plus $ su ze $ su (su ze) ≋⟨ thm ƛβ² with《 nrec x₁ x₀ (su x₀) ◃ su ze ◃ su (su ze) 》 ⟩ nrec (su ze) (su (su ze)) (su x₀) ≋⟨ ax suβ with《 su (su ze) ◃ su x₀ ◃ ze 》 ⟩ su (nrec ze (su (su ze)) (su x₀)) ≋⟨ cong[ ax zeβ with《 su (su ze) ◃ su x₀ 》 ]inside su ◌ᵃ ⟩ su (su (su ze)) ∎
{ "alphanum_fraction": 0.4050814957, "avg_line_length": 35.3559322034, "ext": "agda", "hexsha": "586af86547cc5fa4a0337c1dedd4518949e8a40a", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/TLC/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/TLC/Equality.agda", "max_line_length": 113, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/TLC/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 2407, "size": 4172 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Data.Unit where open import Light.Library.Data.Unit using (Library ; Dependencies) instance dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation } where module Implementation where record Unit : Set where constructor unit
{ "alphanum_fraction": 0.7476851852, "avg_line_length": 28.8, "ext": "agda", "hexsha": "4ab48c08e942aa3458ce290ec6bb304034d8502b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Implementation/Data/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Implementation/Data/Unit.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Implementation/Data/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 76, "size": 432 }
-- 2018-09-05, reported by Andreas Abel -- The new type-directed rewriting was using the wrong type for -- constructors of parametrized datatypes. {-# OPTIONS --rewriting #-} module _ where module _ (Form : Set) where open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} data Cxt : Set where _∙_ : (Γ : Cxt) (A : Form) → Cxt data _≤_ : (Γ Δ : Cxt) → Set where id≤ : ∀{Γ} → Γ ≤ Γ lift : ∀{A Γ Δ} (τ : Γ ≤ Δ) → (Γ ∙ A) ≤ (Δ ∙ A) postulate lift-id≤ : ∀{Γ A} → lift id≤ ≡ id≤ {Γ ∙ A} {-# REWRITE lift-id≤ #-}
{ "alphanum_fraction": 0.5711678832, "avg_line_length": 21.92, "ext": "agda", "hexsha": "3fe8acfbd1721177f140904b9696445cba75702d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "test/Succeed/Issue3211.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "test/Succeed/Issue3211.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "test/Succeed/Issue3211.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 214, "size": 548 }
module Syntax.Transitivity where import Lvl open import Logic import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Type private variable ℓ₁ ℓ₂ ℓ₃ : Lvl.Level private variable T : Type{ℓ₁} -- The transitivity operator infixl 1000 _🝖_ _🝖_ : ∀{_▫_ : T → T → Stmt{ℓ₂}} → ⦃ _ : Transitivity(_▫_) ⦄ → Names.Transitivity(_▫_) _🝖_ {_▫_ = _▫_} = transitivity(_▫_) _🝖-subₗ_ : ∀{_▫₁_ : T → T → Stmt{ℓ₂}}{_▫₂_ : T → T → Stmt{ℓ₃}} → ⦃ _ : Subtransitivityₗ(_▫₁_)(_▫₂_) ⦄ → Names.Subtransitivityₗ(_▫₁_)(_▫₂_) _🝖-subₗ_ {_▫₁_ = _▫₁_} {_▫₂_ = _▫₂_} = subtransitivityₗ(_▫₁_)(_▫₂_) _🝖-subᵣ_ : ∀{_▫₁_ : T → T → Stmt{ℓ₂}}{_▫₂_ : T → T → Stmt{ℓ₃}} → ⦃ _ : Subtransitivityᵣ(_▫₁_)(_▫₂_) ⦄ → Names.Subtransitivityᵣ(_▫₁_)(_▫₂_) _🝖-subᵣ_ {_▫₁_ = _▫₁_} {_▫₂_ = _▫₂_} = subtransitivityᵣ(_▫₁_)(_▫₂_) -- Syntax for "equational reasoning" for reflexive-transitive relation infixr 1 _🝖[_]-[_]_ _🝖[_]-[_]_ : (x : T) → ∀{y z : T} → (_▫_ : T → T → Stmt{ℓ₂}) → ⦃ _ : Transitivity(_▫_) ⦄ → (x ▫ y) → (y ▫ z) → (x ▫ z) _🝖[_]-[_]_ (_)(_▫_) = transitivity(_▫_) infixr 1 _🝖[_]-[_]-sym_ _🝖[_]-[_]-sym_ : (x : T) → ∀{y z : T} → (_▫_ : T → T → Stmt{ℓ₂}) → ⦃ _ : Transitivity(_▫_) ⦄ → ⦃ _ : Symmetry(_▫_) ⦄ → (y ▫ x) → (y ▫ z) → (x ▫ z) _🝖[_]-[_]-sym_ (_)(_▫_) yx yz = transitivity(_▫_) (symmetry(_▫_) yx) (yz) infixr 1 _🝖[_]-[_]-sub_ _🝖[_]-[_]-sub_ : (x : T) → ∀{y z : T}{_▫₁_ : T → T → Stmt{ℓ₂}} (_▫₂_ : T → T → Stmt{ℓ₃}) → ⦃ _ : Subtransitivityₗ(_▫₁_)(_▫₂_) ⦄ → (x ▫₂ y) → (y ▫₁ z) → (x ▫₁ z) _🝖[_]-[_]-sub_ (_) {_▫₁_ = _▫₁_} (_▫₂_) = subtransitivityₗ(_▫₁_)(_▫₂_) infixr 1 _🝖[_]-[_]-super_ _🝖[_]-[_]-super_ : (x : T) → ∀{y z : T} (_▫₁_ : T → T → Stmt{ℓ₂}) {_▫₂_ : T → T → Stmt{ℓ₃}} → ⦃ _ : Subtransitivityᵣ(_▫₁_)(_▫₂_) ⦄ → (x ▫₁ y) → (y ▫₂ z) → (x ▫₁ z) _🝖[_]-[_]-super_ (_) (_▫₁_) {_▫₂_ = _▫₂_} = subtransitivityᵣ(_▫₁_)(_▫₂_) infixr 1 _🝖[_]-[]_ _🝖[_]-[]_ : (x : T) → ∀{y : T} → (_▫_ : T → T → Stmt{ℓ₂}) → (x ▫ y) → (x ▫ y) _🝖[_]-[]_ (_)(_▫_) xy = xy infixr 2 _🝖-semiend_🝖[_]-end-from-[_] _🝖-semiend_🝖[_]-end-from-[_] : (x y : T) → (_▫_ : T → T → Stmt{ℓ₂}) → ⦃ _ : Transitivity(_▫_) ⦄ → (x ▫ y) → (x ▫ y) _🝖-semiend_🝖[_]-end-from-[_] _ _ (_▫_) xy = xy infixr 2 _🝖[_]-end _🝖[_]-end : (x : T) → (_▫_ : T → T → Stmt{ℓ₂}) → ⦃ _ : Reflexivity(_▫_) ⦄ → (x ▫ x) _🝖[_]-end (_)(_▫_) = reflexivity(_▫_) -- Syntax for "equational reasoning" for reflexive-transitive relations. -- Example: -- import Lvl -- open import Logic -- open import Structure.Relator.Properties -- open import Type -- postulate ℓ₁ ℓ₂ : Lvl.Level -- postulate T : Type{ℓ₁} -- postulate _▫_ : T → T → Stmt{ℓ₂} -- instance postulate trans : Transitivity(_▫_) -- instance postulate sym : Symmetry (_▫_) -- instance postulate refl : Reflexivity (_▫_) -- postulate a b c e : T -- d = c -- postulate ab : (a ▫ b) -- postulate cb : (c ▫ b) -- postulate de : (d ▫ e) -- -- ac : (a ▫ e) -- ac = -- a 🝖-[ ab ] -- b 🝖-[ cb ]-sym -- c 🝖-[] -- d 🝖-[ de ] -- e 🝖-end infixr 1 _🝖-[_]_ _🝖-[_]_ : (x : T) → ∀{y z : T}{_▫_ : T → T → Stmt{ℓ₂}} → ⦃ _ : Transitivity(_▫_) ⦄ → (x ▫ y) → (y ▫ z) → (x ▫ z) _🝖-[_]_ (_) {_▫_ = _▫_} = transitivity(_▫_) infixr 1 _🝖-[_]-sym_ _🝖-[_]-sym_ : (x : T) → ∀{y z : T}{_▫_ : T → T → Stmt{ℓ₂}} → ⦃ _ : Transitivity(_▫_) ⦄ → ⦃ _ : Symmetry(_▫_) ⦄ → (y ▫ x) → (y ▫ z) → (x ▫ z) _🝖-[_]-sym_ (_) {_▫_ = _▫_} yx yz = transitivity(_▫_) (symmetry(_▫_) yx) (yz) infixr 1 _🝖-[_]-sub_ _🝖-[_]-sub_ : (x : T) → ∀{y z : T}{_▫₁_ : T → T → Stmt{ℓ₂}}{_▫₂_ : T → T → Stmt{ℓ₃}} → ⦃ _ : Subtransitivityₗ(_▫₁_)(_▫₂_) ⦄ → (x ▫₂ y) → (y ▫₁ z) → (x ▫₁ z) _🝖-[_]-sub_ (_) {_▫₁_ = _▫₁_} {_▫₂_ = _▫₂_} = subtransitivityₗ(_▫₁_)(_▫₂_) infixr 1 _🝖-[_]-super_ _🝖-[_]-super_ : (x : T) → ∀{y z : T}{_▫₁_ : T → T → Stmt{ℓ₂}}{_▫₂_ : T → T → Stmt{ℓ₃}} → ⦃ _ : Subtransitivityᵣ(_▫₁_)(_▫₂_) ⦄ → (x ▫₁ y) → (y ▫₂ z) → (x ▫₁ z) _🝖-[_]-super_ (_) {_▫₁_ = _▫₁_} {_▫₂_ = _▫₂_} = subtransitivityᵣ(_▫₁_)(_▫₂_) infixr 1 _🝖-[]_ _🝖-[]_ : (x : T) → ∀{y : T}{_▫_ : T → T → Stmt{ℓ₂}} → (x ▫ y) → (x ▫ y) _🝖-[]_ (_) xy = xy infixr 2 _🝖-semiend_🝖-end-from-[_] _🝖-semiend_🝖-end-from-[_] : (x y : T) → ∀{_▫_ : T → T → Stmt{ℓ₂}} → ⦃ _ : Transitivity(_▫_) ⦄ → (x ▫ y) → (x ▫ y) _🝖-semiend_🝖-end-from-[_] _ _ {_▫_ = _▫_} xy = xy infixr 2 _🝖-end _🝖-end : (x : T) → ∀{_▫_ : T → T → Stmt{ℓ₂}} → ⦃ _ : Reflexivity(_▫_) ⦄ → (x ▫ x) _🝖-end x {_▫_} = reflexivity(_▫_) -- syntax _🝖-[]_ a {b} ab = a 🝖-[ ab ]-end b
{ "alphanum_fraction": 0.5052036199, "avg_line_length": 39.4642857143, "ext": "agda", "hexsha": "cbbefe66809fca43551aaf7033dc5657c03d9537", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Syntax/Transitivity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Syntax/Transitivity.agda", "max_line_length": 163, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Syntax/Transitivity.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2465, "size": 4420 }
module UniDB.Subst.Inst where open import UniDB.Spec open import UniDB.Subst.Core open import UniDB.Subst.Pair open import UniDB.Subst.Shifts open import UniDB.Morph.Pair open import UniDB.Morph.Shift open import UniDB.Morph.Shifts open import UniDB.Morph.Unit -- These are two unused instances. Just to show that ApHComp is slightly -- stronger than ApPair, but given ApRel then ApPair and ApHComp become -- equivalent. Unfortunately neither ApPair nor ApHComp imply ApRel but -- both can be made stronger to do so. module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} {{apHCompTX : ApHComp T X}} where iApPair : ApPair T X ap-pair {{iApPair}} {Ξ} {Ζ} ξ ζ x = ap-⊡ {T} {X} {Ξ} {Ζ} {Pair Ξ Ζ} ξ ζ x module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} {{apRelTX : ApRel T X}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{wkmΞ : Wkm Ξ}} {{lkUpTΞ : LkUp T Ξ}} {{lkWkmTΞ : LkWkm T Ξ}} (Ζ : MOR) {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {{wkmΖ : Wkm Ζ}} {{lkUpTΖ : LkUp T Ζ}} {{lkWkmTΖ : LkWkm T Ζ}} where ap-wkm-rel : {γ : Dom} (δ : Dom) (x : X γ) → ap {T} (wkm {Ξ} δ) x ≡ ap {T} (wkm {Ζ} δ) x ap-wkm-rel {γ} δ = ap-rel≃ {T} lemma where lemma : [ T ] wkm {Ξ} {γ} δ ≃ wkm {Ζ} δ lk≃ lemma i = begin lk {T} (wkm {Ξ} δ) i ≡⟨ lk-wkm {T} {Ξ} δ i ⟩ vr (wk δ i) ≡⟨ sym (lk-wkm {T} {Ζ} δ i) ⟩ lk {T} (wkm {Ζ} δ) i ∎ module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} {{apPairTX : ApPair T X}} {{apRelTX : ApRel T X}} where iApHComp : ApHComp T X ap-⊡ {{iApHComp}} {Ξ} {Ζ} {Θ} ξ ζ x = begin ap {T} {X} {Θ} (ξ ⊡ ζ) x ≡⟨ ap-rel≅ {T} (≃-to-≅` lem) x ⟩ ap {T} {X} {Pair Ξ Ζ} (ξ ⊡ ζ) x ≡⟨ ap-pair {T} ξ ζ x ⟩ ap {T} {X} {Ζ} ζ (ap {T} {X} {Ξ} ξ x) ∎ where lem : (δ : Dom) → [ T ] ((_⊡_ {Θ = Θ} ξ ζ) ↑ δ) ≃ (ξ ⊗ ζ) ↑ δ lk≃ (lem δ) i = begin lk {T} {Θ} ((ξ ⊡ ζ) ↑ δ) i ≡⟨ cong (λ ρ → lk {T} {Θ} ρ i) (⊡-↑ {Ξ} {Ζ} {Θ} ξ ζ δ) ⟩ lk {T} {Θ} (ξ ↑ δ ⊡ ζ ↑ δ) i ≡⟨ lk-⊡-ap {T} {Ξ} {Ζ} {Θ} (ξ ↑ δ) (ζ ↑ δ) i ⟩ lk {T} {Pair Ξ Ζ} (ξ ↑ δ ⊗ ζ ↑ δ) i ≡⟨ cong (λ ρ → lk {T} {Pair Ξ Ζ} ρ i) (sym (⊡-↑ {Ξ} {Ζ} {Pair Ξ Ζ} ξ ζ δ)) ⟩ lk {T} {Pair Ξ Ζ} ((ξ ⊗ ζ) ↑ δ) i ∎ module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} {{apPairTX : ApPair T X}} {{apRelTX : ApRel T X}} where iApComp : ApComp T X ap-⊙ {{iApComp}} {Ξ} ξ ζ x = begin ap {T} (ξ ⊙ ζ) x ≡⟨ ap-rel≅ {T} (≃-to-≅` lem) x ⟩ ap {T} (ξ ⊗ ζ) x ≡⟨ ap-pair {T} ξ ζ x ⟩ ap {T} ζ (ap {T} ξ x) ∎ where lem : (δ : Dom) → [ T ] (ξ ⊙ ζ) ↑ δ ≃ (ξ ⊗ ζ) ↑ δ lk≃ (lem δ) i = begin lk ((ξ ⊙ ζ) ↑ δ) i ≡⟨ cong (λ ρ → lk ρ i) (⊙-↑ ξ ζ δ) ⟩ lk (ξ ↑ δ ⊙ ζ ↑ δ) i ≡⟨ lk-⊙-ap (ξ ↑ δ) (ζ ↑ δ) i ⟩ ap {T} (ζ ↑ δ) (lk (ξ ↑ δ) i) ≡⟨ refl ⟩ lk (ξ ↑ δ ⊗ ζ ↑ δ) i ≡⟨ refl ⟩ -- cong (λ ρ → lk ρ i) (sym (⊡-↑ {Ξ} {Ξ} {Pair Ξ Ξ} ξ ζ δ)) ⟩ lk ((ξ ⊗ ζ) ↑ δ) i ∎ module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{apVrT : ApVr T}} {{apWkmWkTT : ApWkmWk T T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} {{apWkmWkTX : ApWkmWk T X}} {{apPairTX : ApPair T X}} {{apRelTX : ApRel T X}} (Ρ : MOR) {{lkTΡ : Lk T Ρ}} {{upΡ : Up Ρ}} {{lkUpTΡ : LkUp T Ρ}} {{wkmΡ : Wkm Ρ}} {{lkWkmΡ : LkWkm T Ρ}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}} {{lkUpPairΞΡ : LkUp T (Pair Ξ Ρ)}} {{lkUpPairΞΡ : LkUp T (Pair Ρ Ξ)}} where ap-wk₁-gen : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (x : X γ₁) → ap {T} {X} {Ξ} (ξ ↑₁) (wk₁ x) ≡ wk₁ (ap {T} {X} {Ξ} ξ x) ap-wk₁-gen ξ x = begin ap {T} (ξ ↑₁) (wk₁ x) ≡⟨ cong (ap {T} (ξ ↑₁)) (sym (ap-wkm-wk₁ {T} {X} {Ρ} x)) ⟩ ap {T} (ξ ↑₁) (ap {T} (wkm {Ρ} 1) x) ≡⟨ sym (ap-pair {T} (wkm {Ρ} 1) (ξ ↑₁) x) ⟩ ap {T} (wkm {Ρ} 1 ⊗ ξ ↑₁) x ≡⟨ ap-rel≃ {T} lem x ⟩ ap {T} (ξ ⊗ wkm {Ρ} 1) x ≡⟨ ap-pair {T} ξ (wkm {Ρ} 1) x ⟩ ap {T} (wkm {Ρ} 1) (ap {T} ξ x) ≡⟨ ap-wkm-wk₁ {T} (ap {T} ξ x) ⟩ wk₁ (ap {T} ξ x) ∎ where lem : [ T ] (wkm {Ρ} 1 ⊗ ξ ↑₁) ≃ (ξ ⊗ wkm {Ρ} 1) lk≃ lem i = begin ap {T} (ξ ↑₁) (lk {T} (wkm {Ρ} 1) i) ≡⟨ cong (ap {T} (_↑₁ ξ)) (lk-wkm {T} {Ρ} 1 i) ⟩ ap {T} (ξ ↑₁) (vr (suc i)) ≡⟨ ap-vr {T} (ξ ↑₁) (suc i) ⟩ lk {T} (ξ ↑₁) (suc i) ≡⟨ lk-↑₁-suc {T} ξ i ⟩ wk₁ (lk {T} ξ i) ≡⟨ sym (ap-wkm-wk₁ {T} (lk {T} ξ i)) ⟩ ap {T} (wkm {Ρ} 1) (lk {T} ξ i) ∎ module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{wkVrT : WkVr T}} {{apVrT : ApVr T}} {{apWkmWkTT : ApWkmWk T T}} {{apPairTT : ApPair T T}} {{apRelTT : ApRel T T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} {{apWkmWkTX : ApWkmWk T X}} {{apPairTX : ApPair T X}} {{apRelTX : ApRel T X}} where private Ren : MOR Ren = Shift iApWk : ApWk T X ap-wk₁ {{iApWk}} {Ξ} = ap-wk₁-gen T X Ren Ξ where instance iLkUpRenRen : LkUp T (Pair Ren Ren) iLkUpRenRen = iLkUpPairRenaming T Ren Ren iLkUpRenΞ : LkUp T (Pair Ren Ξ) iLkUpRenΞ = iLkUpPairRenaming T Ren Ξ iLkUpΞRen : LkUp T (Pair Ξ Ren) iLkUpΞRen = iLkUpPairSubstitution T Ξ Ren (ap-wk₁-gen T T Ren Ren) {- module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{wkVrT : WkVr T}} {{apVrT : ApVr T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} {{apWkmWkTX : ApWkmWk T X}} {{apIdmTX : ApIdm T X}} {{apCompTX : ApComp T X}} where private module _ (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{idmΞ : Idm Ξ}} {{wkmΞ : Wkm Ξ}} {{compΞ : Comp Ξ}} {{lkUpTΞ : LkUp T Ξ}} {{lkWkmTΞ : LkWkm T Ξ}} {{lkIdmTΞ : LkIdm T Ξ}} {{upIdmΞ : UpIdm Ξ}} {{upCompΞ : UpComp Ξ}} {{lkCompTΞ : LkCompAp T Ξ}} {{wkmHomΞ : WkmHom Ξ}} where iWkHom` : WkHom X wk-zero {{iWkHom`}} x = begin wk 0 x ≡⟨ sym (ap-wkm-wk T X Ξ 0 x) ⟩ ap T X Ξ (wkm Ξ 0) x ≡⟨ cong (λ ξ → ap T X Ξ ξ x) (wkm-zero Ξ) ⟩ ap T X Ξ (idm Ξ _) x ≡⟨ ap-idm T X Ξ x ⟩ x ∎ wk-suc {{iWkHom`}} δ x = begin wk (suc δ) x ≡⟨ sym (ap-wkm-wk T X Ξ (suc δ) x) ⟩ ap T X Ξ (wkm Ξ (suc δ)) x ≡⟨ cong (λ ξ → ap T X Ξ ξ x) (wkm-suc Ξ δ) ⟩ ap T X Ξ (wkm Ξ δ ⊙ wkm Ξ 1) x ≡⟨ ap-⊙ T X Ξ (wkm Ξ δ) (wkm Ξ 1) x ⟩ ap T X Ξ (wkm Ξ 1) (ap T X Ξ (wkm Ξ δ) x) ≡⟨ ap-wkm-wk₁ T X Ξ (ap T X Ξ (wkm Ξ δ) x) ⟩ wk₁ (ap T X Ξ (wkm Ξ δ) x) ≡⟨ cong wk₁ (ap-wkm-wk T X Ξ δ x) ⟩ wk₁ (wk δ x) ∎ iWkHom : WkHom X iWkHom = iWkHom` Shifts -}
{ "alphanum_fraction": 0.4428840307, "avg_line_length": 39.9248554913, "ext": "agda", "hexsha": "4a9353e58127bb44955e3257fbbe42e610424470", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Subst/Inst.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Subst/Inst.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Subst/Inst.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3630, "size": 6907 }
{-# OPTIONS --copatterns #-} module Issue950a where postulate A : Set record R : Set where field x : A record S : Set where field y : A open R f : A x f = ? -- Bad error: -- Arguments left we cannot split on. TODO: better error message -- when checking that the clause x f = ? has type A -- Better error: -- Cannot eliminate type A with projection pattern x -- when checking that the clause x f = ? has type A
{ "alphanum_fraction": 0.6543778802, "avg_line_length": 14.4666666667, "ext": "agda", "hexsha": "9c0e057bb7da555071c236cbc56fed6606ec4e37", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue950a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue950a.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue950a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 120, "size": 434 }
module FFI.System.Exit where open import Agda.Builtin.Int using (Int) open import Agda.Builtin.IO using (IO) open import Agda.Builtin.Unit using (⊤) data ExitCode : Set where ExitSuccess : ExitCode ExitFailure : Int → ExitCode {-# FOREIGN GHC data AgdaExitCode = AgdaExitSuccess | AgdaExitFailure Integer #-} {-# COMPILE GHC ExitCode = data AgdaExitCode (AgdaExitSuccess | AgdaExitFailure) #-} {-# FOREIGN GHC import qualified System.Exit #-} {-# FOREIGN GHC toExitCode :: AgdaExitCode -> System.Exit.ExitCode toExitCode AgdaExitSuccess = System.Exit.ExitSuccess toExitCode (AgdaExitFailure n) = System.Exit.ExitFailure (fromIntegral n) fromExitCode :: System.Exit.ExitCode -> AgdaExitCode fromExitCode System.Exit.ExitSuccess = AgdaExitSuccess fromExitCode (System.Exit.ExitFailure n) = AgdaExitFailure (fromIntegral n) #-} postulate exitWith : ExitCode → IO ⊤ {-# COMPILE GHC exitWith = System.Exit.exitWith . toExitCode #-}
{ "alphanum_fraction": 0.7651434644, "avg_line_length": 31.3666666667, "ext": "agda", "hexsha": "fcf01395eca5bfb2d677d07b7d7c8a5404f87ce2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/FFI/System/Exit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/FFI/System/Exit.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/FFI/System/Exit.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 248, "size": 941 }
module Issue566 where open import Common.Level using (Level; _⊔_) data D (a : Level) (A : Set a) : Set a where d : D a A → D a A P-level : (a : Level) (A : Set a) → D a A → Level P-level a A (d x) = P-level a A x P : (a : Level) (A : Set a) (x : D a A) → Set (P-level a A x) P a A (d x) = P a A x postulate a : Level E : (b : Level) → Set b → Set a → Set (a ⊔ b) Q : (A : Set a) → D a A → Set a e : (A : Set a) (x : D a A) → E (P-level a A x) (P a A x) (Q A x) A : Set a x : D a A foo : E (P-level a A x) (P a A x) (Q A x) foo = e _ _ -- Bug.agda:23,7-12 -- P-level a A x ⊔ a != P-level a A x ⊔ a of type Level -- when checking that the expression e _ _ has type -- E (P-level a A x) (P a A x) (Q A x)
{ "alphanum_fraction": 0.5216178522, "avg_line_length": 23.9, "ext": "agda", "hexsha": "afb575e5ce7f1489d69133ea6ea677342ca3c986", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue566.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue566.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue566.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 307, "size": 717 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness --sized-types #-} open import Data.Empty open import Data.Unit open import Data.Product open import Data.Maybe open import Data.Sum open import Data.List using (_++_; []; _∷_; _∷ʳ_; length) open import Data.List.Properties using (∷-injective) open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Unary using (_∈_; _⊆_) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; subst; cong) open import Function.Base using (case_of_) open import Common module Divergence {ℙ : Set} (message : Message ℙ) where open import SessionType message open import Session message open import Trace message open import HasTrace message open import TraceSet message open import Transitions message open import Semantics message open import Subtyping message DivergeForward : SessionType -> SessionType -> Trace -> Set record _↑_ (T : SessionType) (S : SessionType) : Set where coinductive field trace : Trace with-trace : T HasTrace trace without-trace : ¬ S HasTrace trace divergence : DivergeForward T S trace DivergeForward T S φ = ∀{ψ x} (pre : ψ ⊑ φ) (tψx : T HasTrace (ψ ∷ʳ O x)) (sψx : S HasTrace (ψ ∷ʳ O x)) -> after tψx ↑ after sψx diverge-before-input : ∀{f g x} -> f x .force ↑ g x .force -> inp f ↑ inp g _↑_.trace (diverge-before-input {_} {_} {x} div) = I x ∷ _↑_.trace div _↑_.with-trace (diverge-before-input div) = inp-has-trace (_↑_.with-trace div) _↑_.without-trace (diverge-before-input div) = inp-has-no-trace (_↑_.without-trace div) _↑_.divergence (diverge-before-input div) none (_ , _ , step () _) _ _↑_.divergence (diverge-before-input div) (some le) (_ , tdef , step inp tr) (_ , sdef , step inp sr) = _↑_.divergence div le (_ , tdef , tr) (_ , sdef , sr) DivergeBackward : ∀{T S φ} -> T HasTrace φ -> S HasTrace φ -> Set DivergeBackward {_} {_} {φ} tφ sφ = ∀{ψ} (pre : ψ ⊑ φ) -> after (⊑-has-trace pre tφ) ↑ after (⊑-has-trace pre sφ) ⊑-diverge-backward : ∀{T S φ ψ} {tφ : T HasTrace φ} {sφ : S HasTrace φ} (pre : ψ ⊑ φ) -> DivergeBackward tφ sφ -> DivergeBackward (⊑-has-trace pre tφ) (⊑-has-trace pre sφ) ⊑-diverge-backward {_} {_} {_} {_} {tφ} {sφ} pre div pre' rewrite ⊑-tran-has-trace pre' pre tφ | ⊑-tran-has-trace pre' pre sφ = div (⊑-tran pre' pre) data DiscSet : SessionType -> SessionType -> Trace -> Set where inc : ∀{T S φ} (tφ : T HasTrace φ) (sφ : S HasTrace φ) (div←φ : DivergeBackward tφ sφ) -> DiscSet T S φ exc : ∀{T S φ ψ x} (eq : φ ≡ ψ ∷ʳ O x) (tψ : T HasTrace ψ) (sψ : S HasTrace ψ) (tφ : T HasTrace φ) (nsφ : ¬ S HasTrace φ) (div←ψ : DivergeBackward tψ sψ) -> DiscSet T S φ ⊑-proper : ∀{φ ψ α} -> φ ⊑ (ψ ∷ʳ α) -> φ ⊑ ψ ⊎ φ ≡ ψ ∷ʳ α ⊑-proper {[]} {[]} none = inj₁ none ⊑-proper {_ ∷ []} {[]} (some none) = inj₂ refl ⊑-proper {[]} {_ ∷ _} none = inj₁ none ⊑-proper {_} {_ ∷ _} (some pre) with ⊑-proper pre ... | inj₁ pre' = inj₁ (some pre') ... | inj₂ refl = inj₂ refl disc-set->closed : (T S : SessionType) -> PrefixClosed (DiscSet T S) disc-set->closed T S pre (inc tφ sφ div←φ) = inc (⊑-has-trace pre tφ) (⊑-has-trace pre sφ) (⊑-diverge-backward pre div←φ) disc-set->closed T S pre (exc refl tψ sψ tφ nsφ div←ψ) with ⊑-proper pre ... | inj₁ pre' = inc (⊑-has-trace pre' tψ) (⊑-has-trace pre' sψ) (⊑-diverge-backward pre' div←ψ) ... | inj₂ refl = exc refl tψ sψ tφ nsφ div←ψ input-lemma : ∀{φ x ψ χ y} -> φ ++ I x ∷ ψ ≡ χ ∷ʳ O y -> (φ ∷ʳ I x) ⊑ χ input-lemma {[]} {_} {_} {I x ∷ χ} refl = some none input-lemma {x ∷ φ} {_} {_} {[]} eq with ∷-injective eq ... | (_ , eq') = ⊥-elim (absurd-++-≡ eq') input-lemma {x ∷ φ} {_} {_} {y ∷ χ} eq with ∷-injective eq ... | (refl , eq'') = some (input-lemma eq'') disc-set-input : ∀{φ x ψ} {T S : SessionType} -> DiscSet T S (φ ++ I x ∷ ψ) -> T HasTrace (φ ∷ʳ I x) × S HasTrace (φ ∷ʳ I x) disc-set-input {φ} {x} {ψ} (inc tφ sφ div←φ) with ⊑-precong-++ {φ} {I x ∷ []} {I x ∷ ψ} (some none) ... | pre = ⊑-has-trace pre tφ , ⊑-has-trace pre sφ disc-set-input (exc eq tχ sχ _ _ _) with input-lemma eq ... | pre = ⊑-has-trace pre tχ , ⊑-has-trace pre sχ disc-set-output : ∀{φ x ψ} {T S : SessionType} -> DiscSet T S (φ ++ O x ∷ ψ) -> T HasTrace (φ ∷ʳ O x) disc-set-output {φ} {x} {ψ} (inc tφx sφx _) = let pre = ⊑-precong-++ {φ} {O x ∷ []} {O x ∷ ψ} (some none) in ⊑-has-trace pre tφx disc-set-output {φ} {x} {ψ} (exc _ _ _ tφx _ _) = let pre = ⊑-precong-++ {φ} {O x ∷ []} {O x ∷ ψ} (some none) in ⊑-has-trace pre tφx disc-set->coherent : (T S : SessionType) -> Coherent (DiscSet T S) disc-set->coherent T S ti to = let (ti[] , _) = disc-set-input ti in let to[] = disc-set-output to in ⊥-elim (coherent (sem-sound T) ti[] to[]) disc-set->semantics : (T S : SessionType) -> Semantics (DiscSet T S) closed (disc-set->semantics T S) = disc-set->closed T S coherent (disc-set->semantics T S) = disc-set->coherent T S disc-set-subset : ∀{T S} -> DiscSet T S ⊆ ⟦ T ⟧ disc-set-subset (inc tφ _ _) = tφ disc-set-subset (exc _ _ _ tφ _ _) = tφ disc-set-disjoint : ∀{T S φ} -> φ ∈ DiscSet T S -> ¬ S HasTrace φ -> ∃[ ψ ] ∃[ x ] (φ ≡ ψ ∷ʳ O x × S HasTrace ψ) disc-set-disjoint (inc _ sφ _) nsφ = ⊥-elim (nsφ sφ) disc-set-disjoint (exc eq _ sψ _ _ _) nsφ = _ , _ , eq , sψ -- --| BEGIN MAXIMAL TRACES |-- diverge-forward-input : ∀{f g x φ} -> DivergeForward (inp f) (inp g) (I x ∷ φ) -> DivergeForward (f x .force) (g x .force) φ diverge-forward-input div pre (_ , tdef , tr) (_ , sdef , sr) = div (some pre) (_ , tdef , step inp tr) (_ , sdef , step inp sr) diverge-forward-input' : ∀{f g x φ} -> DivergeForward (f x .force) (g x .force) φ -> DivergeForward (inp f) (inp g) (I x ∷ φ) diverge-forward-input' div none (_ , _ , step () _) (_ , _ , _) diverge-forward-input' div (some le) (_ , tdef , step inp tr) (_ , sdef , step inp sr) = div le (_ , tdef , tr) (_ , sdef , sr) diverge-forward-output : ∀{f g x φ} -> DivergeForward (out f) (out g) (O x ∷ φ) -> DivergeForward (f x .force) (g x .force) φ diverge-forward-output div pre (_ , tdef , tr) (_ , sdef , sr) = div (some pre) (_ , tdef , step (out (transitions+defined->defined tr tdef)) tr) (_ , sdef , step (out (transitions+defined->defined sr sdef)) sr) -- the next lemma says that if T ↑ S and φ is the trace that -- discriminates between them, then we have divergence along any -- common prefix of φ shared by both T and S diverge-forward->backward : ∀{T S φ ψ} (tφ : T HasTrace φ) (nsφ : ¬ S HasTrace φ) (div : DivergeForward T S φ) (pre : ψ ⊑ φ) (tψ : T HasTrace ψ) (sψ : S HasTrace ψ) -> DivergeBackward tψ sψ _↑_.trace (diverge-forward->backward tφ nsφ div pre tψ sψ none) = _ _↑_.with-trace (diverge-forward->backward tφ nsφ div pre tψ sψ none) = tφ _↑_.without-trace (diverge-forward->backward tφ nsφ div pre tψ sψ none) = nsφ _↑_.divergence (diverge-forward->backward tφ nsφ div pre tψ sψ none) = div diverge-forward->backward (_ , tdef , step inp tr) nsφ div (some pre) (_ , tdef' , step (inp {f}) tr') (_ , sdef , step (inp {g}) sr) (some pre') = diverge-forward->backward (_ , tdef , tr) (contraposition inp-has-trace nsφ) (diverge-forward-input {f} {g} div) pre (_ , tdef' , tr') (_ , sdef , sr) pre' diverge-forward->backward (_ , tdef , step (out _) tr) nsφ div (some pre) (_ , tdef' , step (out {f} _) tr') (_ , sdef , step (out {g} _) sr) (some pre') = diverge-forward->backward (_ , tdef , tr) (contraposition out-has-trace nsφ) (diverge-forward-output {f} {g} div) pre (_ , tdef' , tr') (_ , sdef , sr) pre' prefix-last-element : ∀{φ φ' ψ ψ' x y} -> φ ⊑ ψ -> φ ≡ φ' ++ O x ∷ [] -> ψ ≡ ψ' ∷ʳ O y -> ψ ≡ φ ⊎ φ ⊑ ψ' prefix-last-element none e1 e2 = inj₂ none prefix-last-element {φ' = []} {ψ' = []} (some pre) e1 e2 with ∷-injective e1 | ∷-injective e2 ... | (_ , e1') | (_ , e2') rewrite e1' | e2' = inj₁ refl prefix-last-element {φ' = []} {ψ' = x ∷ ψ'} (some _) e1 e2 with ∷-injective e1 | ∷-injective e2 ... | (eq1 , e1') | (eq2 , e2') rewrite eq1 | eq2 | e1' | e2' = inj₂ (some none) prefix-last-element {φ' = x ∷ φ'} {ψ' = []} (some pre) e1 e2 with ∷-injective e1 | ∷-injective e2 ... | (eq1 , e1') | (eq2 , e2') rewrite e1' | e2' = ⊥-elim (absurd-++-⊑ pre) prefix-last-element {φ' = x ∷ φ'} {ψ' = x₁ ∷ ψ'} (some pre) e1 e2 with ∷-injective e1 | ∷-injective e2 ... | (eq1 , e1') | (eq2 , e2') rewrite eq1 | eq2 with prefix-last-element pre e1' e2' ... | inj₁ eq rewrite eq = inj₁ refl ... | inj₂ pre' = inj₂ (some pre') disc-set-maximal-1 : ∀{T S φ} -> φ ∈ DiscSet T S -> ¬ S HasTrace φ -> φ ∈ Maximal (DiscSet T S) disc-set-maximal-1 dsφ nsφ with disc-set-disjoint dsφ nsφ ... | _ , _ , refl , sψ = maximal dsφ λ le ds' -> let _ , _ , eq , sψ' = disc-set-disjoint ds' (contraposition (⊑-has-trace le) nsφ) in case prefix-last-element le refl eq of λ { (inj₁ refl) → refl ; (inj₂ le') → ⊥-elim (contraposition (⊑-has-trace le') nsφ sψ') } has-trace-after : ∀{T φ ψ} (tφ : T HasTrace φ) -> after tφ HasTrace ψ -> T HasTrace (φ ++ ψ) has-trace-after (_ , _ , refl) tφψ = tφψ has-trace-after (_ , tdef , step inp tr) tφψ = inp-has-trace (has-trace-after (_ , tdef , tr) tφψ) has-trace-after (_ , tdef , step (out _) tr) tφψ = out-has-trace (has-trace-after (_ , tdef , tr) tφψ) has-no-trace-after : ∀{T φ ψ} (tφ : T HasTrace φ) -> ¬ after tφ HasTrace ψ -> ¬ T HasTrace (φ ++ ψ) has-no-trace-after (_ , _ , refl) tφ/nψ = tφ/nψ has-no-trace-after (_ , tdef , step inp tr) tφ/nψ = inp-has-no-trace (has-no-trace-after (_ , tdef , tr) tφ/nψ) has-no-trace-after (_ , tdef , step (out _) tr) tφ/nψ = out-has-no-trace (has-no-trace-after (_ , tdef , tr) tφ/nψ) append-diverge-backward : ∀{T S φ ψ} (tφ : T HasTrace φ) (sφ : S HasTrace φ) (tφ/ψ : after tφ HasTrace ψ) (sφ/ψ : after sφ HasTrace ψ) (div←φ : DivergeBackward tφ sφ) (divφ←ψ : DivergeBackward tφ/ψ sφ/ψ) -> DivergeBackward (has-trace-after tφ tφ/ψ) (has-trace-after sφ sφ/ψ) append-diverge-backward (_ , tdef , refl) (_ , sdef , refl) tφ/ψ sφ/ψ div←φ divφ←ψ pre = divφ←ψ pre append-diverge-backward (_ , tdef , step t tr) (_ , sdef , step s sr) tφ/ψ sφ/ψ div←φ divφ←ψ none = div←φ none append-diverge-backward (_ , tdef , step inp tr) (_ , sdef , step inp sr) tφ/ψ sφ/ψ div←φ divφ←ψ (some pre) = append-diverge-backward (_ , tdef , tr) (_ , sdef , sr) tφ/ψ sφ/ψ (λ pre -> div←φ (some pre)) divφ←ψ pre append-diverge-backward (_ , tdef , step (out _) tr) (_ , sdef , step (out _) sr) tφ/ψ sφ/ψ div←φ divφ←ψ (some pre) = append-diverge-backward (_ , tdef , tr) (_ , sdef , sr) tφ/ψ sφ/ψ (λ pre -> div←φ (some pre)) divφ←ψ pre append-snoc : ∀{φ ψ : Trace}{α : Action} -> φ ++ (ψ ∷ʳ α) ≡ (φ ++ ψ) ∷ʳ α append-snoc {[]} = refl append-snoc {β ∷ φ} = cong (β ∷_) (append-snoc {φ}) completion : ∀{φ T S} -> T <: S -> φ ∈ DiscSet T S -> (∃[ ψ ] (φ ⊏ ψ × ψ ∈ Maximal (DiscSet T S))) ⊎ (φ ∈ Maximal (DiscSet T S) × ¬ S HasTrace φ) completion {φ} sub (inc tφ sφ div←φ) with div←φ (⊑-refl _) ... | div rewrite ⊑-has-trace-after tφ | ⊑-has-trace-after sφ = let χ = _↑_.trace div in let tφ/χ = _↑_.with-trace div in let sφ/nχ = _↑_.without-trace div in let divφ→χ = _↑_.divergence div in let subφ = sub-after tφ sφ sub in let ψ , x , ψ⊑χ , tφ/ψ , sφ/ψ , tφ/ψx , sφ/nψx = sub-excluded subφ tφ/χ sφ/nχ in let tφψ = has-trace-after tφ tφ/ψ in let sφψ = has-trace-after sφ sφ/ψ in let tφψx = has-trace-after tφ tφ/ψx in let sφnψx = has-no-trace-after sφ sφ/nψx in let divφ←ψ = diverge-forward->backward tφ/χ sφ/nχ divφ→χ ψ⊑χ tφ/ψ sφ/ψ in let div←ψ = append-diverge-backward tφ sφ tφ/ψ sφ/ψ div←φ divφ←ψ in let ds = exc {_} {_} {φ ++ (ψ ∷ʳ O x)} {φ ++ ψ} {x} (append-snoc {φ} {ψ} {O x}) tφψ sφψ tφψx sφnψx div←ψ in inj₁ (φ ++ (ψ ∷ʳ O x) , ⊏-++ , disc-set-maximal-1 ds sφnψx) completion sub ds@(exc _ _ _ _ nsφ _) = inj₂ (disc-set-maximal-1 ds nsφ , nsφ) disc-set-maximal-2 : ∀{T S φ} -> T <: S -> φ ∈ Maximal (DiscSet T S) -> ¬ S HasTrace φ disc-set-maximal-2 sub (maximal dφ F) sφ with completion sub dφ ... | inj₁ (ψ , φ⊏ψ , maximal dψ _) = ⊏->≢ φ⊏ψ (sym (F (⊏->⊑ φ⊏ψ) dψ)) ... | inj₂ (_ , nsφ) = nsφ sφ --| END MAXIMAL TRACES |-- -- Sia R il session type determinato da disc-set T S quando T ↑ -- S. L'obiettivo è dimostrare che R |- T e ¬ R |- S -- -- R |- T -- -- Ogni riduzione di (R # T) può essere completata a (R' # T') in -- cui Win R' e Defined T' -- -- Siccome le tracce di R sono incluse in quelle di T, basta -- dimostrare che ogni traccia di R può essere completata, cioè che -- ogni traccia di disc-set T S è prefisso di una traccia completa -- di disc-set T S. -- -- ∀ φ ∈ R => ∃ ψ : φ ++ ψ ∈ Maximal R -- -- ¬ R |- S -- -- Dimostrare che ogni traccia completa di R non è una traccia di S. -- -- Maximal R ∩ ⟦ S ⟧ ≡ ∅
{ "alphanum_fraction": 0.6159816039, "avg_line_length": 43.3520249221, "ext": "agda", "hexsha": "43fb3dd079ddee5e344a43fe48590b814deaa3be", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/Divergence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/Divergence.agda", "max_line_length": 158, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/Divergence.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 5499, "size": 13916 }
module Lvl.MultiFunctions.Proofs where open import Data open import Lvl hiding (𝐒) open import Lvl.MultiFunctions open import Data.Tuple.Raise open import Data.Tuple.Raiseᵣ.Functions open import Lvl.MultiFunctions open import Numeral.Natural open import Relator.Equals open import Syntax.Number max-repeat : ∀{n}{ℓ} → ((ℓ ⊔ (⨆(repeat n ℓ))) ≡ ℓ) max-repeat {n = 0} = [≡]-intro max-repeat {n = 1} = [≡]-intro max-repeat {n = 𝐒(𝐒(n))} = max-repeat {n = 𝐒(n)} {- TODO: Is this possible? open import Relator.Equals.Proofs test2 : ∀{a b} → (eq : a ≡ b) → ([≡]-substitutionᵣ eq {\n → Set(n)} (Set(a)) ≡ Set(b)) test2 : ∀{a b} → (a ≡ b) → (Set(a) ≡ Set(b)) postulate ℓ : Level postulate n : ℕ postulate s : Set(ℓ ⊔ (⨆{n} (repeat n ℓ))) postulate p : Set(ℓ) → Set want : Set want rewrite max-repeat{n}{ℓ} = p s -}
{ "alphanum_fraction": 0.6387878788, "avg_line_length": 25, "ext": "agda", "hexsha": "7c33fbee060fbda5ceb30515b63a8cdd81323b4e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Lvl/MultiFunctions/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Lvl/MultiFunctions/Proofs.agda", "max_line_length": 86, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Lvl/MultiFunctions/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 313, "size": 825 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Rings.Definition module Rings.Divisible.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open Setoid S open Equivalence eq open Ring R open import Rings.Divisible.Definition R open import Rings.Units.Definition R divisionTransitive : (x y z : A) → x ∣ y → y ∣ z → x ∣ z divisionTransitive x y z (a , pr) (b , pr2) = (a * b) , transitive (transitive *Associative (*WellDefined pr reflexive)) pr2 divisionReflexive : (x : A) → x ∣ x divisionReflexive x = 1R , transitive *Commutative identIsIdent everythingDividesZero : (r : A) → r ∣ 0R everythingDividesZero r = 0R , timesZero nonzeroInherits : {x y : A} (nz : (x ∼ 0R) → False) → y ∣ x → (y ∼ 0R) → False nonzeroInherits {x} {y} nz (c , pr) y=0 = nz (transitive (symmetric pr) (transitive (*WellDefined y=0 reflexive) (transitive *Commutative timesZero))) nonunitInherits : {x y : A} (nonunit : Unit x → False) → x ∣ y → Unit y → False nonunitInherits nu (s , pr) (a , b) = nu ((s * a) , transitive (transitive *Associative (*WellDefined pr reflexive)) b)
{ "alphanum_fraction": 0.6825775656, "avg_line_length": 40.5483870968, "ext": "agda", "hexsha": "70623075906105b8808b7011e1efe30267009678", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Divisible/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Divisible/Lemmas.agda", "max_line_length": 150, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Divisible/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 432, "size": 1257 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Definition of the Arrow Category of a Category C module Categories.Category.Construction.Arrow {o ℓ e} (C : Category o ℓ e) where open import Level open import Data.Product using (_,_; _×_; map; zip) open import Function using (_$_) open import Relation.Binary using (Rel) import Categories.Morphism as M open M C open import Categories.Morphism.Reasoning C open Category C hiding (dom; cod) open HomReasoning private variable A B D E : Obj record Morphism : Set (o ⊔ ℓ) where field {dom} : Obj {cod} : Obj arr : dom ⇒ cod record Morphism⇒ (f g : Morphism) : Set (ℓ ⊔ e) where constructor mor⇒ private module f = Morphism f module g = Morphism g field {dom⇒} : f.dom ⇒ g.dom {cod⇒} : f.cod ⇒ g.cod square : CommutativeSquare f.arr dom⇒ cod⇒ g.arr Arrow : Category _ _ _ Arrow = record { Obj = Morphism ; _⇒_ = Morphism⇒ ; _≈_ = λ f g → dom⇒ f ≈ dom⇒ g × cod⇒ f ≈ cod⇒ g ; id = mor⇒ $ identityˡ ○ ⟺ identityʳ ; _∘_ = λ m₁ m₂ → mor⇒ $ glue (square m₁) (square m₂) ; assoc = assoc , assoc ; sym-assoc = sym-assoc , sym-assoc ; identityˡ = identityˡ , identityˡ ; identityʳ = identityʳ , identityʳ ; identity² = identity² , identity² ; equiv = record { refl = refl , refl ; sym = map sym sym ; trans = zip trans trans } ; ∘-resp-≈ = zip ∘-resp-≈ ∘-resp-≈ } where open Morphism⇒ private module MM = M Arrow module _ where open _≅_ lift-iso : ∀ {f h} → (iso₁ : A ≅ D) → (iso₂ : B ≅ E) → CommutativeSquare f (from iso₁) (from iso₂) h → record { arr = f } MM.≅ record { arr = h } lift-iso {f = f} {h = h} iso₁ iso₂ sq = record { from = record { square = sq } ; to = record { square = begin to iso₂ ∘ h ≈⟨ introʳ (isoʳ iso₁) ⟩ (to iso₂ ∘ h) ∘ from iso₁ ∘ to iso₁ ≈⟨ assoc ⟩ to iso₂ ∘ h ∘ from iso₁ ∘ to iso₁ ≈˘⟨ refl ⟩∘⟨ pushˡ sq ⟩ to iso₂ ∘ (from iso₂ ∘ f) ∘ to iso₁ ≈˘⟨ assoc ⟩ (to iso₂ ∘ (from iso₂ ∘ f)) ∘ to iso₁ ≈⟨ cancelˡ (isoˡ iso₂) ⟩∘⟨ refl ⟩ f ∘ to iso₁ ∎ } ; iso = record { isoˡ = isoˡ iso₁ , isoˡ iso₂ ; isoʳ = isoʳ iso₁ , isoʳ iso₂ } }
{ "alphanum_fraction": 0.5548442168, "avg_line_length": 27.5647058824, "ext": "agda", "hexsha": "d7dfc7a0f38a7b766948a510c0a5b755a1c1fccd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Construction/Arrow.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Construction/Arrow.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Construction/Arrow.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 882, "size": 2343 }
data Fun (A B : Set) : Set where fun : (A → B) → Fun A B syntax fun (λ x → y) = fn x , y foo : ∀ {A} → Fun A A → A foo (fn x , y) = y
{ "alphanum_fraction": 0.4604316547, "avg_line_length": 15.4444444444, "ext": "agda", "hexsha": "016a838a043ab21092c7a5688ebef01025d49772", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Fail/Issue5763.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Fail/Issue5763.agda", "max_line_length": 32, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "sseefried/agda", "max_stars_repo_path": "test/Fail/Issue5763.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 63, "size": 139 }
------------------------------------------------------------------------ -- Coinductive lists ------------------------------------------------------------------------ module Data.Colist where open import Coinduction open import Data.Bool using (Bool; true; false) open import Data.Maybe using (Maybe; nothing; just) open import Data.Nat using (ℕ; zero; suc) open import Data.Conat open import Data.List using (List; []; _∷_) open import Data.List.NonEmpty using (List⁺; _∷_) renaming ([_] to [_]⁺) open import Data.BoundedVec.Inefficient as BVec using (BoundedVec; []; _∷_) open import Data.Product using (_,_) open import Data.Function open import Relation.Binary ------------------------------------------------------------------------ -- The type infixr 5 _∷_ data Colist (A : Set) : Set where [] : Colist A _∷_ : (x : A) (xs : ∞ (Colist A)) → Colist A data Any {A} (P : A → Set) : Colist A → Set where here : ∀ {x xs} (px : P x) → Any P (x ∷ xs) there : ∀ {x xs} (pxs : Any P (♭ xs)) → Any P (x ∷ xs) data All {A} (P : A → Set) : Colist A → Set where [] : All P [] _∷_ : ∀ {x xs} (px : P x) (pxs : ∞ (All P (♭ xs))) → All P (x ∷ xs) ------------------------------------------------------------------------ -- Some operations null : ∀ {A} → Colist A → Bool null [] = true null (_ ∷ _) = false length : ∀ {A} → Colist A → Coℕ length [] = zero length (x ∷ xs) = suc (♯ length (♭ xs)) map : ∀ {A B} → (A → B) → Colist A → Colist B map f [] = [] map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) fromList : ∀ {A} → List A → Colist A fromList [] = [] fromList (x ∷ xs) = x ∷ ♯ fromList xs take : ∀ {A} (n : ℕ) → Colist A → BoundedVec A n take zero xs = [] take (suc n) [] = [] take (suc n) (x ∷ xs) = x ∷ take n (♭ xs) replicate : ∀ {A} → Coℕ → A → Colist A replicate zero x = [] replicate (suc n) x = x ∷ ♯ replicate (♭ n) x lookup : ∀ {A} → ℕ → Colist A → Maybe A lookup n [] = nothing lookup zero (x ∷ xs) = just x lookup (suc n) (x ∷ xs) = lookup n (♭ xs) infixr 5 _++_ _++_ : ∀ {A} → Colist A → Colist A → Colist A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ ♯ (♭ xs ++ ys) concat : ∀ {A} → Colist (List⁺ A) → Colist A concat [] = [] concat ([ x ]⁺ ∷ xss) = x ∷ ♯ concat (♭ xss) concat ((x ∷ xs) ∷ xss) = x ∷ ♯ concat (xs ∷ xss) [_] : ∀ {A} → A → Colist A [ x ] = x ∷ ♯ [] ------------------------------------------------------------------------ -- Equality and other relations -- xs ≈ ys means that xs and ys are equal. infix 4 _≈_ data _≈_ {A} : (xs ys : Colist A) → Set where [] : [] ≈ [] _∷_ : ∀ x {xs ys} (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → x ∷ xs ≈ x ∷ ys -- x ∈ xs means that x is a member of xs. infix 4 _∈_ data _∈_ {A : Set} : A → Colist A → Set where here : ∀ {x xs} → x ∈ x ∷ xs there : ∀ {x y xs} (x∈xs : x ∈ ♭ xs) → x ∈ y ∷ xs -- xs ⊑ ys means that xs is a prefix of ys. infix 4 _⊑_ data _⊑_ {A : Set} : Colist A → Colist A → Set where [] : ∀ {ys} → [] ⊑ ys _∷_ : ∀ x {xs ys} (p : ∞ (♭ xs ⊑ ♭ ys)) → x ∷ xs ⊑ x ∷ ys ------------------------------------------------------------------------ -- Some proofs setoid : Set → Setoid setoid A = record { carrier = Colist A ; _≈_ = _≈_ ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } where refl : Reflexive _≈_ refl {[]} = [] refl {x ∷ xs} = x ∷ ♯ refl sym : Symmetric _≈_ sym [] = [] sym (x ∷ xs≈) = x ∷ ♯ sym (♭ xs≈) trans : Transitive _≈_ trans [] [] = [] trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) poset : Set → Poset poset A = record { carrier = Colist A ; _≈_ = _≈_ ; _≤_ = _⊑_ ; isPartialOrder = record { isPreorder = record { isEquivalence = Setoid.isEquivalence (setoid A) ; reflexive = reflexive ; trans = trans ; ∼-resp-≈ = ((λ {_} → ⊑-resp-≈ˡ) , λ {_} → ⊑-resp-≈ʳ) } ; antisym = antisym } } where reflexive : _≈_ ⇒ _⊑_ reflexive [] = [] reflexive (x ∷ xs≈) = x ∷ ♯ reflexive (♭ xs≈) trans : Transitive _⊑_ trans [] _ = [] trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) ⊑-resp-≈ˡ : {xs : Colist A} → (λ ys → xs ⊑ ys) Respects _≈_ ⊑-resp-≈ˡ _ [] = [] ⊑-resp-≈ˡ (x ∷ xs≈) (.x ∷ p) = x ∷ ♯ ⊑-resp-≈ˡ (♭ xs≈) (♭ p) ⊑-resp-≈ʳ : {ys : Colist A} → (λ xs → xs ⊑ ys) Respects _≈_ ⊑-resp-≈ʳ [] _ = [] ⊑-resp-≈ʳ (x ∷ xs≈) (.x ∷ p) = x ∷ ♯ ⊑-resp-≈ʳ (♭ xs≈) (♭ p) antisym : Antisymmetric _≈_ _⊑_ antisym [] [] = [] antisym (x ∷ p₁) (.x ∷ p₂) = x ∷ ♯ antisym (♭ p₁) (♭ p₂) map-cong : ∀ {A B} (f : A → B) → _≈_ =[ map f ]⇒ _≈_ map-cong f [] = [] map-cong f (x ∷ xs≈) = f x ∷ ♯ map-cong f (♭ xs≈) take-⊑ : ∀ {A} n (xs : Colist A) → let toColist = fromList ∘ BVec.toList in toColist (take n xs) ⊑ xs take-⊑ zero xs = [] take-⊑ (suc n) [] = [] take-⊑ (suc n) (x ∷ xs) = x ∷ ♯ take-⊑ n (♭ xs)
{ "alphanum_fraction": 0.4214368037, "avg_line_length": 28.2934782609, "ext": "agda", "hexsha": "94519bcc9d6641c57639e2c66c8ee81831c97e81", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Colist.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Colist.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Colist.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 2031, "size": 5206 }
open import Categories open import Monads module Monads.CatofAdj.TermAdj {a b}{C : Cat {a}{b}}(M : Monad C) where open import Library open import Functors open import Monads.CatofAdj M open import Categories.Terminal open import Monads.CatofAdj.TermAdjObj M open import Monads.CatofAdj.TermAdjHom M open import Monads.CatofAdj.TermAdjUniq M EMIsTerm : Term CatofAdj EMObj EMIsTerm = record { t = λ {A} → EMHom A; law = λ {A} {V} → HomAdjEq _ _ (FunctorEq _ _ (omaplem A V) (iext λ _ → iext λ _ → ext $ hmaplem A V))}
{ "alphanum_fraction": 0.6814159292, "avg_line_length": 28.25, "ext": "agda", "hexsha": "7949c6a9d1eec0e026e3dd6dcd48c52837b158bc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Monads/CatofAdj/TermAdj.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Monads/CatofAdj/TermAdj.agda", "max_line_length": 76, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Monads/CatofAdj/TermAdj.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 185, "size": 565 }
{- Finitely presented algebras. An R-algebra A is finitely presented, if there merely is an exact sequence of R-modules: (a₁,⋯,aₘ) → R[X₁,⋯,Xₙ] → A → 0 -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.FPAlgebra where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat open import Cubical.Data.Vec open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommAlgebra open import Cubical.Algebra.CommAlgebra.FreeCommAlgebra open import Cubical.Algebra.CommAlgebra.QuotientAlgebra open import Cubical.Algebra.CommAlgebra.Ideal open import Cubical.Algebra.CommAlgebra.FGIdeal private variable ℓ : Level module _ {R : CommRing ℓ} where freeAlgebra : (n : ℕ) → CommAlgebra R ℓ freeAlgebra n = R [ Fin n ] makeFPAlgebra : {m : ℕ} (n : ℕ) (l : FinVec (fst (freeAlgebra n)) m) → CommAlgebra R ℓ makeFPAlgebra n l = freeAlgebra n / generatedIdeal (freeAlgebra n) l isFPAlgebra : (A : CommAlgebra R ℓ) → Type _ isFPAlgebra A = ∃[ ((n , m) , l) ∈ Σ[ (n , m) ∈ ℕ × ℕ ] FinVec (fst (freeAlgebra n)) m ] makeFPAlgebra n l ≡ A isFPAlgebraIsProp : {A : CommAlgebra R ℓ} → isProp (isFPAlgebra A) isFPAlgebraIsProp = isPropPropTrunc
{ "alphanum_fraction": 0.7103499628, "avg_line_length": 30.5227272727, "ext": "agda", "hexsha": "8e1d74d9fd9ed0fba444265576757279638c2fd7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/FPAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/FPAlgebra.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/FPAlgebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 449, "size": 1343 }
{-# OPTIONS --without-K #-} open import Level renaming (zero to lzero ; suc to lsuc) open import Syntax open import Data.List using (length ; [] ; _∷_ ) renaming ( _++_ to _++L_ ) open import Data.Vec using ([] ; _∷_ ) renaming ( _++_ to _++V_ ) open import Data.Vec.Relation.Unary.All using (All ; [] ; _∷_) open import Data.Nat open import Data.Product open import Function using () renaming (case_of_ to case*_of_) open import Size open import Relation.Binary.PropositionalEquality -- Sets indexed by invertible environments (that is, Θ and Ξ). This -- actually is our semantic domain. Dom : ∀ ℓ -> Set (lsuc ℓ) Dom ℓ = (Θ : TyEnv) -> (Ξ : MultEnv (length Θ)) -> Set ℓ -- A pairing operator, inspired by the Day convolution in category theory. data _⊛_ {ℓ : Level} (F : Dom ℓ) (G : Dom ℓ) (Θ : TyEnv) (Ξ : MultEnv (length Θ)) : Set ℓ where tup : ∀ Ξ₁ Ξ₂ -> (spΞ : Ξ₁ +ₘ Ξ₂ ≡ Ξ) -> (fst : F Θ Ξ₁) -> (snd : G Θ Ξ₂) -> (F ⊛ G) Θ Ξ -- mult is used for representing entries in value environments that are aware of multiplicities. data mult {ℓ : Level} (F : Dom ℓ) : (m : Multiplicity₀) -> Dom ℓ where -- An entry corresponds to multiplicity zero, i.e., nothing. mult-zero : ∀ {Θ Ξ} -> (eq : Ξ ≡ ∅) -> mult F zero Θ Ξ -- An entry corresponds to multiplicity one, a value must be used linearly. mult-one : ∀ {Θ Ξ} -> (v : F Θ Ξ) -> mult F one Θ Ξ -- An entry corresponds to multiplicity omega; such values must be indexed by the empty invertible environment. mult-omega : ∀ {Θ Ξ} -> (v : F Θ ∅) -> (eq : Ξ ≡ ∅) -> mult F omega Θ Ξ -- Values (Value), residuals (Residual) and value environments -- (ValEnv) are mutually defined. -- -- The sized types are used for termination checking with the presence -- of --without-K, which weakens termination analysis for -- with-abstractions that the original definitions used to have. data Value (Θ : TyEnv) : MultEnv (length Θ) -> Ty zero -> {i : Size} -> Set data Residual (Θ : TyEnv) : MultEnv (length Θ) -> Ty zero -> {i : Size} -> Set ValEnv : (Γ : TyEnv) -> (Δ : MultEnv (length Γ)) -> {i : Size} -> (Θ : TyEnv) -> MultEnv (length Θ) -> Set -- ValEnv Γ Δ : Dom 0 represents value environments conforms to Γ Δ. -- Intuitively, (Θ , Ξ) of ValEnv Γ Δ Θ Ξ represents typed resources contained in -- value environments. ValEnv [] Δ {i} = λ Θ Ξ -> Ξ ≡ ∅ ValEnv (A ∷ Γ) (m ∷ Δ) {i} = mult (V A) m ⊛ ValEnv Γ Δ {i} where V : Ty zero -> Dom 0ℓ V A Θ Ξ = Value Θ Ξ A {i} -- Values data Value Θ where clo : ∀ {Ξ Ξ' Γ' Δ' A B Ξₜ i} -> (m : Multiplicity) -> (spΞ : Ξ' +ₘ Ξₜ ≡ Ξ) -> (θ : ValEnv Γ' Δ' {i} Θ Ξ' ) -> (t : Term (A ∷ Γ') (M→M₀ m ∷ Δ') Θ Ξₜ B) -> Value Θ Ξ (A # m ~> B) {↑ i} unit : ∀ {Ξ i} -> (eq : ∅ ≡ Ξ) -> Value Θ Ξ tunit {↑ i} pair : ∀ {Ξ Ξ₁ Ξ₂ A B i} -> (spΞ : Ξ₁ +ₘ Ξ₂ ≡ Ξ) -> Value Θ Ξ₁ A {i} -> Value Θ Ξ₂ B {i} -> Value Θ Ξ (A ⊗ B) {↑ i} many : ∀ {Ξ Ξ₀ A i} -> (m : Multiplicity) -> (spΞ : m ×ₘ Ξ₀ ≡ Ξ) -> Value Θ Ξ₀ A {i} -> Value Θ Ξ (Many m A) {↑ i} inl : ∀ {Ξ} {A B i} -> Value Θ Ξ A {i} -> Value Θ Ξ (A ⊕ B) {↑ i} inr : ∀ {Ξ} {A B i} -> Value Θ Ξ B {i} -> Value Θ Ξ (A ⊕ B) {↑ i} roll : ∀ {Ξ F i} -> Value Θ Ξ (substTy F (μ F)) {i} -> Value Θ Ξ (μ F) {↑ i} inj : ∀ {Ξ A B i} -> (eq : ∅ ≡ Ξ) -> (r : Residual (A ∷ []) (one ∷ ∅) (B ●) {i}) -> Value Θ Ξ (A ↔ B) {↑ i} red : ∀ {Ξ A i} -> Residual Θ Ξ (A ●) {i} -> Value Θ Ξ (A ●) {↑ i} -- Residuals data Residual Θ where unit● : ∀ {i} -> Residual Θ ∅ (tunit ●) {↑ i} letunit● : ∀ {Ξ₀ Ξ A i} -> Residual Θ Ξ₀ (tunit ●) {i} -> Residual Θ Ξ (A ●) {i} -> Residual Θ (Ξ₀ +ₘ Ξ) (A ●) {↑ i} pair● : ∀ {Ξ₁ Ξ₂ A B i} -> Residual Θ Ξ₁ (A ●) {i} -> Residual Θ Ξ₂ (B ●) {i} -> Residual Θ (Ξ₁ +ₘ Ξ₂) ((A ⊗ B) ●) {↑ i} letpair● : ∀ {Ξ₀ Ξ A B C i} -> Residual Θ Ξ₀ ((A ⊗ B) ●) {i} -> Residual (A ∷ B ∷ Θ) (one ∷ one ∷ Ξ) (C ●) {i} -> Residual Θ (Ξ₀ +ₘ Ξ) (C ●) {↑ i} inl● : ∀ {Ξ} {A B} {i} -> Residual Θ Ξ (A ●) {i} -> Residual Θ Ξ ((A ⊕ B) ●) {↑ i} inr● : ∀ {Ξ} {A B} {i} -> Residual Θ Ξ (B ●) {i} -> Residual Θ Ξ ((A ⊕ B) ●) {↑ i} case● : ∀ {Ξ₀ Ξ Ξₑ Ξₜ Γ₁ Γ₂ Δ₁ Δ₂ A B C i} -> Residual Θ Ξ₀ ((A ⊕ B) ●) {i} -> (spΞ : Ξₑ +ₘ Ξₜ ≡ Ξ) -> (θ₁ : ValEnv Γ₁ Δ₁ {i} Θ Ξₑ) -> (t₁ : Term Γ₁ Δ₁ (A ∷ Θ) (one ∷ Ξₜ) (C ●)) -> (θ₂ : ValEnv Γ₂ Δ₂ {i} Θ Ξₑ) -> (t₂ : Term Γ₂ Δ₂ (B ∷ Θ) (one ∷ Ξₜ) (C ●)) -> (v : Value [] ∅ (C # omega ~> tbool) {i}) -> Residual Θ (Ξ₀ +ₘ Ξ) (C ●) {↑ i} var● : ∀ {Ξ A i} -> (x : Θ ∋ A) -> (ok : varOk● Θ x Ξ) -> Residual Θ Ξ (A ●) {↑ i} pin : ∀ {Ξ₁ Ξ₂ A B i} -> Residual Θ Ξ₁ (A ●) {i} -> (v : Value Θ Ξ₂ (A # omega ~> B ●) {i}) -> Residual Θ (Ξ₁ +ₘ Ξ₂) ((A ⊗ B) ●) {↑ i} open ≡-Reasoning -- A property on value environments that says discardable value environments cannot contain any resources. discardable-has-no-resources : ∀ {Γ Δ Θ Ξ} -> ValEnv Γ Δ Θ Ξ -> All discardable Δ -> Ξ ≡ ∅ discardable-has-no-resources {[]} {Δ} θ ad = θ discardable-has-no-resources {A ∷ Γ} {.omega ∷ Δ} (tup .∅ Ξ₂ spΞ (mult-omega v refl) snd) (omega ∷ ad) = begin _ ≡⟨ sym spΞ ⟩ ∅ +ₘ Ξ₂ ≡⟨ ∅-lid Ξ₂ ⟩ Ξ₂ ≡⟨ discardable-has-no-resources {Γ} {Δ} snd ad ⟩ ∅ ∎ discardable-has-no-resources {A ∷ Γ} {.zero ∷ Δ} (tup .∅ Ξ₂ spΞ (mult-zero refl) snd) (zero ∷ ad) = begin _ ≡⟨ sym spΞ ⟩ ∅ +ₘ Ξ₂ ≡⟨ ∅-lid Ξ₂ ⟩ Ξ₂ ≡⟨ discardable-has-no-resources {Γ} {Δ} snd ad ⟩ ∅ ∎ -- Looking up variables in an environment. Unlike the usual variable looking-up functions, this version -- takes varOk Γ x Δ instead of x to ensure that the variable can be looked up. Notice -- for example that we cannot look up variables with multiplicity zero. Also, the fact that the -- return type is Value Θ Ξ A means that the value environment cannot contain other resources. lookupVar : ∀ {Γ Δ Θ Ξ A} {x : Γ ∋ A} -> ValEnv Γ Δ Θ Ξ -> varOk Γ x Δ -> Value Θ Ξ A lookupVar (tup .(∅) Ξ₂ spΞ (mult-omega v refl) snd) (there omega ok) with (trans (sym (∅-lid _)) spΞ) ... | refl = lookupVar snd ok lookupVar (tup .∅ Ξ₂ spΞ (mult-zero refl) snd) (there zero ok) with (trans (sym (∅-lid _)) spΞ) ... | refl = lookupVar snd ok lookupVar {Γ = A ∷ Γ} {Δ = m ∷ Δ} (tup Ξ₁ Ξ₂ spΞ fst snd) (here u ad) with discardable-has-no-resources {Γ} {Δ} snd ad ... | refl with trans (sym (∅-rid _)) spΞ lookupVar {A ∷ Γ} {.omega ∷ Δ} (tup .∅ .∅ spΞ (mult-omega v refl) snd) (here omega ad) | refl | refl = v lookupVar {A ∷ Γ} {.one ∷ Δ} (tup Ξ₁ .∅ spΞ (mult-one v) snd) (here one ad) | refl | refl = v -- separateEnv separates value environments according to separation of -- (unidirectional) type environments. separateEnv : ∀ {Γ Θ Ξ} -> ∀ Δ₁ Δ₂ -> ValEnv Γ (Δ₁ +ₘ Δ₂) Θ Ξ -> (ValEnv Γ Δ₁ ⊛ ValEnv Γ Δ₂) Θ Ξ separateEnv {[]} Δ₁ Δ₂ refl = tup ∅ ∅ (∅-lid ∅) refl refl separateEnv {A ∷ Γ} (m₁ ∷ Δ₁) (m₂ ∷ Δ₂) (tup Ξ₁ Ξ₂ spΞ fst snd) with separateEnv {Γ} Δ₁ Δ₂ snd separateEnv {A ∷ Γ} {Θ = Θ} {Ξ = Ξ} (zero ∷ Δ₁) (m₂ ∷ Δ₂) (tup Ξ₁ Ξ₂ spΞ fst snd) | tup Ξ₁' Ξ₂' spΞ₂ θ₁ θ₂ = tup Ξ₁' (Ξ₁ +ₘ Ξ₂') lemma (tup ∅ Ξ₁' (∅-lid _) (mult-zero refl) θ₁) (tup Ξ₁ Ξ₂' refl fst θ₂) where open import Algebra.Solver.CommutativeMonoid (+ₘ-commutativeMonoid (length Θ)) renaming (_⊕_ to _⊞_) lemma : Ξ₁' +ₘ (Ξ₁ +ₘ Ξ₂') ≡ Ξ lemma = begin Ξ₁' +ₘ (Ξ₁ +ₘ Ξ₂') ≡⟨ solve 3 (λ x y z -> x ⊞ (y ⊞ z) ⊜ y ⊞ (x ⊞ z)) refl Ξ₁' Ξ₁ Ξ₂' ⟩ Ξ₁ +ₘ (Ξ₁' +ₘ Ξ₂') ≡⟨ cong (_ +ₘ_) spΞ₂ ⟩ Ξ₁ +ₘ Ξ₂ ≡⟨ spΞ ⟩ Ξ ∎ separateEnv {A ∷ Γ} {Ξ = Ξ} (one ∷ Δ₁) (zero ∷ Δ₂) (tup Ξ₁ Ξ₂ spΞ fst snd) | tup Ξ₁' Ξ₂' spΞ₂ θ₁ θ₂ = tup (Ξ₁ +ₘ Ξ₁') Ξ₂' lemma (tup Ξ₁ Ξ₁' refl fst θ₁) (tup ∅ Ξ₂' (∅-lid _) (mult-zero refl) θ₂) where lemma : Ξ₁ +ₘ Ξ₁' +ₘ Ξ₂' ≡ Ξ lemma = begin Ξ₁ +ₘ Ξ₁' +ₘ Ξ₂' ≡⟨ +ₘ-assoc Ξ₁ Ξ₁' _ ⟩ Ξ₁ +ₘ (Ξ₁' +ₘ Ξ₂') ≡⟨ cong (_ +ₘ_) spΞ₂ ⟩ Ξ₁ +ₘ Ξ₂ ≡⟨ spΞ ⟩ Ξ ∎ separateEnv {A ∷ Γ} (one ∷ Δ₁) (one ∷ Δ₂) (tup .(∅) .(Ξ₁' +ₘ Ξ₂') refl (mult-omega v refl) snd) | tup Ξ₁' Ξ₂' refl θ₁ θ₂ = tup Ξ₁' Ξ₂' (sym (∅-lid _)) (tup ∅ Ξ₁' (∅-lid _) (mult-one v) θ₁) (tup ∅ Ξ₂' (∅-lid _) (mult-one v) θ₂) separateEnv {A ∷ Γ} (one ∷ Δ₁) (omega ∷ Δ₂) (tup .(∅) .(Ξ₁' +ₘ Ξ₂') refl (mult-omega v refl) snd) | tup Ξ₁' Ξ₂' refl θ₁ θ₂ = tup Ξ₁' Ξ₂' (sym (∅-lid _)) (tup ∅ Ξ₁' (∅-lid _) (mult-one v) θ₁) (tup ∅ Ξ₂' (∅-lid _) (mult-omega v refl) θ₂) separateEnv {A ∷ Γ} (omega ∷ Δ₁) (zero ∷ Δ₂) (tup .(∅) .(Ξ₁' +ₘ Ξ₂') refl (mult-omega v refl) snd) | tup Ξ₁' Ξ₂' refl θ₁ θ₂ = tup Ξ₁' Ξ₂' (sym (∅-lid _)) (tup ∅ Ξ₁' (∅-lid _) (mult-omega v refl) θ₁) (tup ∅ Ξ₂' (∅-lid _) (mult-zero refl) θ₂) separateEnv {A ∷ Γ} (omega ∷ Δ₁) (one ∷ Δ₂) (tup .(∅) .(Ξ₁' +ₘ Ξ₂') refl (mult-omega v refl) snd) | tup Ξ₁' Ξ₂' refl θ₁ θ₂ = tup Ξ₁' Ξ₂' (sym (∅-lid _)) (tup ∅ Ξ₁' (∅-lid _) (mult-omega v refl) θ₁) (tup ∅ Ξ₂' (∅-lid _) (mult-one v) θ₂) separateEnv {A ∷ Γ} (omega ∷ Δ₁) (omega ∷ Δ₂) (tup .(∅) .(Ξ₁' +ₘ Ξ₂') refl (mult-omega v refl) snd) | tup Ξ₁' Ξ₂' refl θ₁ θ₂ = tup Ξ₁' Ξ₂' (sym (∅-lid _)) (tup ∅ Ξ₁' (∅-lid _) (mult-omega v refl) θ₁) (tup ∅ Ξ₂' (∅-lid _) (mult-omega v refl) θ₂) -- un×ₘ-valEnv is a counter of separateEnv for ×ₘ. un×ₘ-valEnv : ∀ Γ {m Δ Θ Ξ} -> ValEnv Γ (m ×ₘ Δ) Θ Ξ -> ∃[ Ξ' ] (ValEnv Γ Δ Θ Ξ' × m ×ₘ Ξ' ≡ Ξ) un×ₘ-valEnv [] {m} θ = ∅ , refl , trans (×ₘ∅ m) (sym θ) un×ₘ-valEnv (_ ∷ Γ) {Δ = mₓ ∷ Δ} (tup Ξ₁ Ξ₂ refl fst snd) with un×ₘ-valEnv Γ snd un×ₘ-valEnv (_ ∷ Γ) {one} {mₓ ∷ Δ} (tup Ξ₁ .(Data.Vec.map (λ y → y) Ξ') refl fst snd) | Ξ' , θ' , refl = Ξ₁ +ₘ Ξ' , tup Ξ₁ Ξ' refl fst θ' , lemma where open import Data.Vec.Properties using (map-id) lemma : Data.Vec.map (λ x -> x) (Ξ₁ +ₘ Ξ') ≡ Ξ₁ +ₘ Data.Vec.map (λ x -> x) Ξ' lemma = begin Data.Vec.map (λ x -> x) (Ξ₁ +ₘ Ξ') ≡⟨ map-id _ ⟩ Ξ₁ +ₘ Ξ' ≡⟨ cong (_ +ₘ_) (sym (map-id _)) ⟩ Ξ₁ +ₘ Data.Vec.map (λ x -> x) Ξ' ∎ un×ₘ-valEnv (_ ∷ Γ) {omega} {zero ∷ Δ} (tup .(∅) .(Data.Vec.map (mul₀ omega) Ξ') refl (mult-zero refl) snd) | Ξ' , θ' , refl = Ξ' , tup ∅ Ξ' (∅-lid _) (mult-zero refl) θ' , sym (∅-lid _) un×ₘ-valEnv (_ ∷ Γ) {omega} {one ∷ Δ} (tup .(∅) .(Data.Vec.map (mul₀ omega) Ξ') refl (mult-omega v refl) snd) | Ξ' , θ' , refl = Ξ' , tup ∅ Ξ' (∅-lid _) (mult-one v) θ' , sym (∅-lid _) un×ₘ-valEnv (_ ∷ Γ) {omega} {omega ∷ Δ} (tup .(∅) .(Data.Vec.map (mul₀ omega) Ξ') refl (mult-omega v refl) snd) | Ξ' , θ' , refl = Ξ' , tup ∅ Ξ' (∅-lid _) (mult-omega v refl) θ' , sym (∅-lid _) -- weakenΘ-value and weakenΘ-residual are counterparts of -- weakenΘ-term for values and residuals. weakenΘ-value : ∀ {Θ Ξ Θ' Ξ' A i} -> compatΘ Θ Ξ Θ' Ξ' -> Value Θ Ξ A {i} -> Value Θ' Ξ' A weakenΘ-residual : ∀ {Θ Ξ Θ' Ξ' A i} -> compatΘ Θ Ξ Θ' Ξ' -> Residual Θ Ξ A {i} -> Residual Θ' Ξ' A weakenΘ-valEnv : ∀ Γ {Δ Θ Ξ Θ' Ξ' i} -> compatΘ Θ Ξ Θ' Ξ' -> ValEnv Γ Δ {i} Θ Ξ -> ValEnv Γ Δ Θ' Ξ' weakenΘ-mult : ∀ {Θ Ξ Θ' Ξ' m A i} -> compatΘ Θ Ξ Θ' Ξ' -> mult (λ Θ Ξ -> Value Θ Ξ A {i}) m Θ Ξ -> mult (λ Θ Ξ -> Value Θ Ξ A) m Θ' Ξ' weakenΘ-value ext (clo {Γ' = Γ'} m refl θ t) = case* compatΘ-split ext of λ { (_ , _ , ext₁ , ext₂ , refl) -> clo m refl (weakenΘ-valEnv Γ' ext₁ θ) (weakenΘ-term ext₂ t) } weakenΘ-value ext (unit refl) = case* compatΘ-∅ ext of λ where refl -> unit refl weakenΘ-value ext (pair refl v₁ v₂) = case* compatΘ-split ext of λ where (_ , _ , ext₁ , ext₂ , refl) -> pair refl (weakenΘ-value ext₁ v₁) (weakenΘ-value ext₂ v₂) weakenΘ-value ext (many m refl v) = case* compatΘ-×ₘ ext of λ where (_ , ext' , refl) -> many m refl (weakenΘ-value ext' v) weakenΘ-value ext (inl v) = inl (weakenΘ-value ext v) weakenΘ-value ext (inr v) = inr (weakenΘ-value ext v) weakenΘ-value ext (roll v) = roll (weakenΘ-value ext v) weakenΘ-value ext (red x) = red (weakenΘ-residual ext x) weakenΘ-value ext (inj refl r) = case* compatΘ-∅ ext of λ { refl -> inj refl (weakenΘ-residual ext-id r) } weakenΘ-mult ext (mult-zero refl) = case* compatΘ-∅ ext of λ { refl -> mult-zero refl } weakenΘ-mult ext (mult-one v) = mult-one (weakenΘ-value ext v) weakenΘ-mult ext (mult-omega v refl) = case* compatΘ-∅ ext of λ { refl -> mult-omega (weakenΘ-value ext v) refl } weakenΘ-valEnv [] ext refl = case* compatΘ-∅ ext of λ { refl -> refl } weakenΘ-valEnv (_ ∷ Γ) {_ ∷ Δ} ext (tup Ξ₁ Ξ₂ refl mv θ) = case* compatΘ-split ext of λ { (Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl) -> tup Ξ₁' Ξ₂' refl (weakenΘ-mult ext₁ mv) (weakenΘ-valEnv Γ ext₂ θ) } weakenΘ-residual ext unit● = case* compatΘ-∅ ext of λ { refl -> unit● } weakenΘ-residual ext (letunit● r₁ r₂) = case* compatΘ-split ext of λ { (_ , _ , ext₁ , ext₂ , refl) -> letunit● (weakenΘ-residual ext₁ r₁) (weakenΘ-residual ext₂ r₂) } weakenΘ-residual ext (pair● r₁ r₂) = case* compatΘ-split ext of λ { (_ , _ , ext₁ , ext₂ , refl) -> pair● (weakenΘ-residual ext₁ r₁) (weakenΘ-residual ext₂ r₂) } weakenΘ-residual ext (letpair● r₁ r₂) = case* compatΘ-split ext of λ { (_ , _ , ext₁ , ext₂ , refl) -> letpair● (weakenΘ-residual ext₁ r₁) (weakenΘ-residual (compat-skip (compat-skip ext₂)) r₂) } weakenΘ-residual ext (inl● r) = inl● (weakenΘ-residual ext r) weakenΘ-residual ext (inr● r) = inr● (weakenΘ-residual ext r) weakenΘ-residual ext (case● {Γ₁ = Γ₁} {Γ₂} r refl θ₁ t₁ θ₂ t₂ v) with compatΘ-split ext ... | _ , _ , ext₁ , ext₂ , refl with compatΘ-split ext₂ ... | _ , _ , extₑ , extₜ , refl = case● (weakenΘ-residual ext₁ r) refl (weakenΘ-valEnv Γ₁ extₑ θ₁) (weakenΘ-term (compat-skip extₜ) t₁) (weakenΘ-valEnv Γ₂ extₑ θ₂) (weakenΘ-term (compat-skip extₜ) t₂) (weakenΘ-value adjust∅Θ v) weakenΘ-residual ext (var● x ok) = case* compatΘ-preserves-varOk● ext ok of λ { (x' , ok') -> var● x' ok' } weakenΘ-residual ext (pin r v) = case* compatΘ-split ext of λ { (_ , _ , ext₁ , ext₂ , refl) -> pin (weakenΘ-residual ext₁ r) (weakenΘ-value ext₂ v) } -- Converting a value (of multiplicty m) into an entry to be inserted to a value environment. value-to-multM : ∀ {Θ m Ξ A} -> all-no-omega (m ×ₘ Ξ) -> Value Θ Ξ A -> mult (λ Θ' Ξ' -> Value Θ' Ξ' A) (M→M₀ m) Θ (m ×ₘ Ξ) value-to-multM {Θ} {one} ano v = mult-one (subst (λ x -> Value Θ x _) (sym (one×ₘ _)) v ) value-to-multM {Θ} {omega} {Ξ} ano v with all-no-omega-omega×ₘ Ξ ano ... | refl = mult-omega v (×ₘ∅ _) -- Some specialized versions of subst. substV : ∀ {Θ Ξ Ξ' A} -> Ξ ≡ Ξ' -> Value Θ Ξ A -> Value Θ Ξ' A substV refl v = v substR : ∀ {Θ Ξ Ξ' A} -> Ξ ≡ Ξ' -> Residual Θ Ξ A -> Residual Θ Ξ' A substR refl E = E
{ "alphanum_fraction": 0.5206394042, "avg_line_length": 34.2351648352, "ext": "agda", "hexsha": "48a9fbb40570a2bd17e529a22f425e56b4358751", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "kztk-m/sparcl-agda", "max_forks_repo_path": "Value.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "kztk-m/sparcl-agda", "max_issues_repo_path": "Value.agda", "max_line_length": 193, "max_stars_count": null, "max_stars_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "kztk-m/sparcl-agda", "max_stars_repo_path": "Value.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6959, "size": 15577 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.Multivariate.Properties where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat renaming(_+_ to _+n_; _·_ to _·n_) open import Cubical.Data.Vec open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Polynomials.Multivariate.Base private variable ℓ ℓ' : Level module Nth-Poly-structure (A' : CommRing ℓ) (n : ℕ) where private A = fst A' Ar = CommRing→Ring A' open CommRingStr (snd A') open RingTheory Ar ----------------------------------------------------------------------------- Poly-com-adv : (P Q R S : Poly A' n) → ((P Poly+ Q) Poly+ (R Poly+ S) ≡ (P Poly+ R) Poly+ (Q Poly+ S)) Poly-com-adv P Q R S = ((P Poly+ Q) Poly+ (R Poly+ S) ≡⟨ Poly+-assoc (P Poly+ Q) R S ⟩ (((P Poly+ Q) Poly+ R) Poly+ S) ≡⟨ cong (λ X → X Poly+ S) (sym (Poly+-assoc P Q R)) ⟩ ((P Poly+ (Q Poly+ R)) Poly+ S) ≡⟨ cong (λ X → (P Poly+ X) Poly+ S) (Poly+-comm Q R) ⟩ ((P Poly+ (R Poly+ Q)) Poly+ S) ≡⟨ cong (λ X → X Poly+ S) (Poly+-assoc P R Q) ⟩ (((P Poly+ R) Poly+ Q) Poly+ S) ≡⟨ sym (Poly+-assoc (P Poly+ R) Q S) ⟩ ((P Poly+ R) Poly+ (Q Poly+ S)) ∎) Poly+-Lid : (P : Poly A' n) → 0P Poly+ P ≡ P Poly+-Lid P = (Poly+-comm 0P P) ∙ (Poly+-Rid P) Poly-inv : Poly A' n → Poly A' n Poly-inv = Poly-Rec-Set.f A' n (Poly A' n) trunc 0P (λ v a → base v (- a)) (λ PS RS → PS Poly+ RS) Poly+-assoc Poly+-Rid Poly+-comm (λ v → base v (- 0r) ≡⟨ cong (base v) 0Selfinverse ⟩ base v 0r ≡⟨ base-0P v ⟩ 0P ∎) λ v a b → (base-Poly+ v (- a) (- b)) ∙ (cong (base v) (-Dist a b)) Poly-invinv : (P : Poly A' n) → Poly-inv (Poly-inv P) ≡ P Poly-invinv = Poly-Ind-Prop.f A' n (λ P → Poly-inv (Poly-inv P) ≡ P) (λ _ → trunc _ _) refl (λ v a → cong (base v) (-Idempotent a)) λ {P Q} ind-P ind-Q → cong₂ _Poly+_ ind-P ind-Q Poly+-rinv : (P : Poly A' n ) → P Poly+ (Poly-inv P) ≡ 0P Poly+-rinv = Poly-Ind-Prop.f A' n (λ P → (P Poly+ Poly-inv P) ≡ 0P) (λ _ → trunc _ _) (Poly+-Rid 0P) (λ v a → (base-Poly+ v a (- a)) ∙ cong (base v) (+Rinv a) ∙ base-0P v) λ {P Q} ind-P ind-Q → ((P Poly+ Q) Poly+ ((Poly-inv P) Poly+ (Poly-inv Q))) ≡⟨ Poly-com-adv P Q (Poly-inv P) (Poly-inv Q) ⟩ ((P Poly+ Poly-inv P) Poly+ (Q Poly+ Poly-inv Q)) ≡⟨ cong₂ _Poly+_ ind-P ind-Q ⟩ (0P Poly+ 0P) ≡⟨ Poly+-Rid 0P ⟩ 0P ∎ Poly+-linv : (P : Poly A' n) → (Poly-inv P) Poly+ P ≡ 0P Poly+-linv = Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) (Poly+-Rid 0P) (λ v a → (base-Poly+ v (- a) a) ∙ cong (base v) (snd (+Inv a)) ∙ base-0P v) λ {U V} ind-U ind-V → Poly-com-adv (Poly-inv U) (Poly-inv V) U V ∙ cong₂ _Poly+_ ind-U ind-V ∙ Poly+-Rid 0P ----------------------------------------------------------------------------- _Poly*_ : Poly A' n → Poly A' n → Poly A' n _Poly*_ = -- Induction Left Argument Poly-Rec-Set.f A' n (Poly A' n → Poly A' n) (λ f g p q i j Q → trunc (f Q) (g Q) (λ X → p X Q) (λ X → q X Q) i j ) (λ Q → 0P) (λ v a → -- Induction Right Argument Poly-Rec-Set.f A' n (Poly A' n) trunc 0P (λ v' a' → base (v +n-vec v') (a · a')) _Poly+_ Poly+-assoc Poly+-Rid Poly+-comm (λ v' → (cong (base (v +n-vec v')) (0RightAnnihilates a)) ∙ (base-0P (v +n-vec v'))) λ v' b c → (base-Poly+ (v +n-vec v') (a · b) (a · c)) ∙ (cong (base (v +n-vec v')) (sym (·Rdist+ a b c)))) -- End Right induction (λ PS QS Q → (PS Q) Poly+ (QS Q) ) (λ PS QS RS i Q → Poly+-assoc (PS Q) (QS Q) (RS Q) i) (λ PS i Q → Poly+-Rid (PS Q) i) (λ PS QS i Q → Poly+-comm (PS Q) (QS Q) i) (λ v → funExt ( -- Induction Right Argument Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) refl (λ v' a' → (cong (base (v +n-vec v')) (0LeftAnnihilates a')) ∙ (base-0P (v +n-vec v'))) λ {P Q} ind-P ind-Q → (cong₂ _Poly+_ ind-P ind-Q) ∙ (Poly+-Rid 0P) )) -- End Right Induction λ v a b → funExt ( -- Induction Right Argument Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) (Poly+-Rid 0P) (λ v' c → (base-Poly+ (v +n-vec v') (a · c) (b · c)) ∙ (cong (base (v +n-vec v')) (sym (·Ldist+ a b c)))) λ {P Q} ind-P ind-Q → (Poly-com-adv _ _ _ _) ∙ (cong₂ _Poly+_ ind-P ind-Q)) -- End Right Induction -- End Left Induction Poly*-assoc : (P Q R : Poly A' n) → P Poly* (Q Poly* R) ≡ (P Poly* Q) Poly* R Poly*-assoc = Poly-Ind-Prop.f A' n _ (λ P p q i Q R j → trunc (P Poly* (Q Poly* R)) ((P Poly* Q) Poly* R) (p Q R) (q Q R) i j) (λ _ _ → refl) (λ v a → Poly-Ind-Prop.f A' n _ (λ Q p q i R j → trunc (base v a Poly* (Q Poly* R)) ((base v a Poly* Q) Poly* R) (p R) (q R) i j) (λ _ → refl) (λ v' a' → Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) refl (λ v'' a'' → cong₂ base (+n-vec-assoc v v' v'') (·Assoc a a' a'')) (λ {U V} ind-U ind-V → cong₂ _Poly+_ ind-U ind-V)) (λ {U V} ind-U ind-V R → cong₂ _Poly+_ (ind-U R) (ind-V R))) λ {U V} ind-U ind-V Q R → cong₂ _Poly+_ (ind-U Q R) (ind-V Q R) 0PLeftAnnihilatesPoly : (P : Poly A' n) → 0P Poly* P ≡ 0P 0PLeftAnnihilatesPoly P = refl 0PRightAnnihilatesPoly : (P : Poly A' n) → P Poly* 0P ≡ 0P 0PRightAnnihilatesPoly = Poly-Ind-Prop.f A' n (λ P → (P Poly* 0P) ≡ 0P) (λ _ → trunc _ _) refl (λ _ _ → refl) λ {P Q} ind-P ind-Q → (cong₂ _Poly+_ ind-P ind-Q) ∙ (Poly+-Rid 0P) 1P : Poly A' n 1P = base (replicate zero) 1r Poly*-Rid : (P : Poly A' n) → P Poly* 1P ≡ P Poly*-Rid = Poly-Ind-Prop.f A' n (λ P → (P Poly* 1P) ≡ P) (λ _ → trunc _ _) refl (λ v a → cong₂ base (+n-vec-rid v) (·Rid a)) (λ {P Q} ind-P ind-Q → cong₂ _Poly+_ ind-P ind-Q) Poly*-Lid : (P : Poly A' n) → 1P Poly* P ≡ P Poly*-Lid = Poly-Ind-Prop.f A' n (λ P → (1P Poly* P) ≡ P) (λ _ → trunc _ _) refl (λ v a → cong₂ base (+n-vec-lid v) (·Lid a)) λ {P Q} ind-P ind-Q → cong₂ _Poly+_ ind-P ind-Q Poly*-Rdist : (P Q R : Poly A' n) → P Poly* (Q Poly+ R) ≡ (P Poly* Q) Poly+ (P Poly* R) Poly*-Rdist = Poly-Ind-Prop.f A' n _ (λ P p q i Q R j → trunc (P Poly* (Q Poly+ R)) ((P Poly* Q) Poly+ (P Poly* R)) (p Q R) (q Q R) i j) (λ _ _ → sym (Poly+-Rid 0P)) (λ v a → λ Q R → refl) λ {U V} ind-U ind-V Q R → (cong₂ _Poly+_ (ind-U Q R) (ind-V Q R)) ∙ Poly-com-adv (U Poly* Q) (U Poly* R) (V Poly* Q) (V Poly* R) Poly*-Ldist : (P Q R : Poly A' n) → (P Poly+ Q) Poly* R ≡ (P Poly* R) Poly+ (Q Poly* R) Poly*-Ldist P Q R = refl Poly*-comm : (P Q : Poly A' n) → P Poly* Q ≡ Q Poly* P Poly*-comm = Poly-Ind-Prop.f A' n _ (λ P p q i Q j → trunc (P Poly* Q) (Q Poly* P) (p Q) (q Q) i j) (λ Q → sym (0PRightAnnihilatesPoly Q)) (λ v a → Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) refl (λ v' a' → cong₂ base (+n-vec-comm v v') (·Comm a a')) (λ {U V} ind-U ind-V → cong₂ _Poly+_ ind-U ind-V)) λ {U V} ind-U ind-V Q → ((cong₂ _Poly+_ (ind-U Q) (ind-V Q)) ∙ sym (Poly*-Rdist Q U V))
{ "alphanum_fraction": 0.4201866978, "avg_line_length": 46.8306010929, "ext": "agda", "hexsha": "8c9564d6045a61ce966670df1ff8fb6372bde71b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Properties.agda", "max_line_length": 144, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2966, "size": 8570 }
{-# OPTIONS --cubical --no-import-sorts #-} open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Function.Base using (_∋_; _$_) open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.HITs.PropositionalTruncation.Base -- ∣_∣ open import Cubical.HITs.PropositionalTruncation.Properties using (propTruncIsProp) renaming (elim to ∣∣-elim) open import Cubical.Foundations.Logic renaming ( inl to inlᵖ ; inr to inrᵖ ; _⇒_ to infixr 0 _⇒_ -- shifting by -6 ; _⇔_ to infixr -2 _⇔_ -- ; ∃[]-syntax to infix -4 ∃[]-syntax -- ; ∃[∶]-syntax to infix -4 ∃[∶]-syntax -- ; ∀[∶]-syntax to infix -4 ∀[∶]-syntax -- ; ∀[]-syntax to infix -4 ∀[]-syntax -- ) open import Utils open import MorePropAlgebra.Bundles open import MoreLogic.Definitions hiding (≡ˢ-syntax) open import MoreLogic.Reasoning open import MoreLogic.Properties module MorePropAlgebra.Properties.Lattice {ℓ} {ℓ'} (assumptions : Lattice {ℓ} {ℓ'}) where open Lattice assumptions renaming (Carrier to A) module OnType where abstract ≤-reflectsʳ-≡ : ∀ x y → [ (∀[ z ] z ≤ x ⇔ z ≤ y) ⇔ x ≡ₚ y ] ≤-reflectsʳ-≡ x y .fst z≤x⇔z≤y = ≤-antisym x y (z≤x⇔z≤y x .fst (≤-refl x)) (z≤x⇔z≤y y .snd (≤-refl y)) ≤-reflectsʳ-≡ x y .snd x≡y z .fst = substₚ (λ p → z ≤ p) x≡y ≤-reflectsʳ-≡ x y .snd x≡y z .snd = substₚ (λ p → z ≤ p) (symₚ x≡y) ≤-reflectsˡ-≡ : ∀ x y → [ (∀[ z ] x ≤ z ⇔ y ≤ z) ⇔ x ≡ₚ y ] ≤-reflectsˡ-≡ x y .fst x≤z⇔y≤z = ≤-antisym x y (x≤z⇔y≤z y .snd (≤-refl y)) (x≤z⇔y≤z x .fst (≤-refl x)) ≤-reflectsˡ-≡ x y .snd x≡y z .fst = substₚ (λ p → p ≤ z) x≡y ≤-reflectsˡ-≡ x y .snd x≡y z .snd = substₚ (λ p → p ≤ z) (symₚ x≡y) min-≤ : ∀ x y → [ (min x y ≤ x) ⊓ (min x y ≤ y) ] min-≤ x y = is-min x y (min x y) .fst (≤-refl (min x y)) max-≤ : ∀ x y → [ (x ≤ max x y) ⊓ (y ≤ max x y) ] max-≤ x y = is-max x y (max x y) .fst (≤-refl (max x y)) min-identity-≤ : ∀ x y → [ x ≤ y ] → [ min x y ≡ₚ x ] min-identity-≤ x y x≤y = symₚ $ ≤-antisym x (min x y) (is-min x y x .snd (≤-refl x , x≤y)) (min-≤ x y .fst) max-identity-≤ : ∀ x y → [ x ≤ y ] → [ max x y ≡ₚ y ] max-identity-≤ x y x≤y = symₚ $ ≤-antisym y (max x y) (max-≤ x y .snd) (is-max x y y .snd (x≤y , ≤-refl y)) -- min-≤-⊔ : ∀ x y z → [ min x y ≤ z ] → [ (x ≤ z) ⊔ (y ≤ z) ] -- min-≤-⊔ x y z mxy≤z = {! contraposition (x ≤ y) ⊓ (y ≤ z) (x ≤ z) $ uncurryₚ (x ≤ y) (y ≤ z) (x ≤ z)$ ≤-trans x y z !} min-identity : ∀ x → [ min x x ≡ₚ x ] min-identity x = let p = is-min x x x .snd (≤-refl x , ≤-refl x) q = min-≤ x x .fst in ≤-antisym (min x x) x q p min-comm : ∀ x y → [ min x y ≡ₚ min y x ] min-comm x y = ≤-reflectsʳ-≡ (min x y) (min y x) .fst γ where γ : ∀ z → [ (z ≤ min x y) ⇔ (z ≤ min y x) ] γ z .fst p = is-min y x z .snd (swap (is-min x y z .fst p)) γ z .snd p = is-min x y z .snd (swap (is-min y x z .fst p)) min-assoc : ∀ x y z → [ min (min x y) z ≡ₚ min x (min y z) ] min-assoc x y z = ≤-reflectsʳ-≡ (min (min x y) z) (min x (min y z)) .fst γ where γ : ∀ w → [ (w ≤ min (min x y) z) ⇔ (w ≤ min x (min y z)) ] γ w .fst p = let (w≤mxy , w≤z) = is-min (min x y) z w .fst p (w≤x , w≤y) = is-min x y w .fst w≤mxy w≤myz = is-min y z w .snd (w≤y , w≤z) in is-min x (min y z) w .snd (w≤x , w≤myz) γ w .snd p = let (w≤x , w≤myz) = is-min x (min y z) w .fst p (w≤y , w≤z ) = is-min y z w .fst w≤myz w≤mxy = is-min x y w .snd (w≤x , w≤y) in is-min (min x y) z w .snd (w≤mxy , w≤z) max-identity : ∀ x → [ max x x ≡ₚ x ] max-identity x = let p = is-max x x x .snd (≤-refl x , ≤-refl x) q = max-≤ x x .fst in symₚ $ ≤-antisym x (max x x) q p max-comm : ∀ x y → [ max x y ≡ₚ max y x ] max-comm x y = ≤-reflectsˡ-≡ (max x y) (max y x) .fst γ where γ : ∀ z → [ (max x y ≤ z) ⇔ (max y x ≤ z) ] γ z .fst p = is-max y x z .snd (swap (is-max x y z .fst p)) γ z .snd p = is-max x y z .snd (swap (is-max y x z .fst p)) max-assoc : ∀ x y z → [ max (max x y) z ≡ₚ max x (max y z) ] max-assoc x y z = ≤-reflectsˡ-≡ (max (max x y) z) (max x (max y z)) .fst γ where γ : ∀ w → [ (max (max x y) z ≤ w) ⇔ (max x (max y z)) ≤ w ] γ w .fst p = let (mxy≤w , z≤w) = is-max (max x y) z w .fst p (x≤w , y≤w) = is-max x y w .fst mxy≤w myz≤w = is-max y z w .snd (y≤w , z≤w) in is-max x (max y z) w .snd (x≤w , myz≤w) γ w .snd p = let (x≤w , myz≤w) = is-max x (max y z) w .fst p (y≤w , z≤w ) = is-max y z w .fst myz≤w mxy≤w = is-max x y w .snd (x≤w , y≤w) in is-max (max x y) z w .snd (mxy≤w , z≤w) min-max-absorptive : ∀ x y → [ min x (max x y) ≡ₚ x ] min-max-absorptive x y = ≤-reflectsʳ-≡ (min x (max x y)) x .fst γ where γ : ∀ z → [ (z ≤ min x (max x y)) ⇔ (z ≤ x) ] γ z .fst p = is-min x (max x y) z .fst p .fst γ z .snd p = is-min x (max x y) z .snd (p , ≤-trans _ _ _ p (max-≤ x y .fst)) max-min-absorptive : ∀ x y → [ max x (min x y) ≡ₚ x ] max-min-absorptive x y = ≤-reflectsˡ-≡ (max x (min x y)) x .fst γ where γ : ∀ z → [ (max x (min x y) ≤ z) ⇔ (x ≤ z) ] γ z .fst p = is-max x (min x y) z .fst p .fst γ z .snd p = is-max x (min x y) z .snd (p , ≤-trans _ _ _ (min-≤ x y .fst) p) -- min-split : ∀ x y → [ x ≤ min x y ⊔ y ≤ min x y ] -- min-split x y = {! is-min x y x !} -- min-elim : ∀ x y → P x → P y → P (min x y) -- w < x + z → w < -- w ≤ a + b → w ≤ a ⊔ w ≤ b -- also interesting: interaction of max and abs -- https://math.stackexchange.com/questions/3149575/max-and-min-inequality module +-inv⇒ (_+_ : A → A → A) (0f : A) (+-creates-≤ : ∀ a b x → [ (a ≤ b) ⇔ ((a + x) ≤ (b + x)) ]) (+-assoc : ∀ a b c → [ ((a + b) + c) ≡ₚ (a + (b + c)) ]) (+-identityʳ : ∀ x → [ (x + 0f) ≡ₚ x ]) (+-comm : ∀ a b → [ (a + b) ≡ₚ (b + a) ]) (+-inv'' : ∀ x → [ ∃[ y ] (x + y) ≡ₚ 0f ]) where ≤-min-+ : ∀ a b c w → [ w ≤ (a + c) ] → [ w ≤ (b + c) ] → [ w ≤ (min a b + c) ] ≤-min-+ a b c w w≤a+c w≤b+c = ∣∣-elim (λ _ → isProp[] (w ≤ (min a b + c))) (λ{ (-c , p) → γ -c p }) (+-inv'' c) where γ : ∀ -c → [ (c + -c) ≡ₚ 0f ] → [ w ≤ (min a b + c) ] γ -c p = ( (w ≤ (a + c) ) ⊓ (w ≤ (b + c) ) ⇒ᵖ⟨ (λ{ (q , r) → +-creates-≤ w (a + c) -c .fst q , +-creates-≤ w (b + c) -c .fst r}) ⟩ (w + -c ≤ (a + c) + -c) ⊓ (w + -c ≤ (b + c) + -c) ⇒ᵖ⟨ (λ{ (q , r) → substₚ (λ p → w + -c ≤ p) (+-assoc a c -c) q , substₚ (λ p → w + -c ≤ p) (+-assoc b c -c) r}) ⟩ (w + -c ≤ a + (c + -c)) ⊓ (w + -c ≤ b + (c + -c)) ⇒ᵖ⟨ (λ{ (q , r) → substₚ (λ p → w + -c ≤ a + p) p q , substₚ (λ p → w + -c ≤ b + p) p r}) ⟩ (w + -c ≤ a + 0f ) ⊓ (w + -c ≤ b + 0f ) ⇒ᵖ⟨ (λ{ (q , r) → substₚ (λ p → w + -c ≤ p) (+-identityʳ a) q , substₚ (λ p → w + -c ≤ p) (+-identityʳ b) r}) ⟩ (w + -c ≤ a ) ⊓ (w + -c ≤ b ) ⇒ᵖ⟨ is-min a b (w + -c) .snd ⟩ (w + -c ≤ min a b ) ⇒ᵖ⟨ +-creates-≤ (w + -c) (min a b) c .fst ⟩ ((w + -c) + c ≤ min a b + c) ⇒ᵖ⟨ substₚ (λ p → p ≤ min a b + c) (+-assoc w -c c) ⟩ (w + (-c + c) ≤ min a b + c) ⇒ᵖ⟨ substₚ (λ p → w + p ≤ min a b + c) (substₚ (λ p → p ≡ₚ 0f) (+-comm c -c) p) ⟩ (w + 0f ≤ min a b + c) ⇒ᵖ⟨ substₚ (λ p → p ≤ min a b + c) (+-identityʳ w) ⟩ (w ≤ min a b + c) ◼ᵖ) .snd (w≤a+c , w≤b+c) ≤-max-+ : ∀ a b c w → [ (a + c) ≤ w ] → [ (b + c) ≤ w ] → [ (max a b + c) ≤ w ] ≤-max-+ a b c w a+c≤w b+c≤ = ∣∣-elim (λ _ → isProp[] ((max a b + c) ≤ w)) (λ{ (-c , p) → γ -c p }) (+-inv'' c) where γ : ∀ -c → [ (c + -c) ≡ₚ 0f ] → [ (max a b + c) ≤ w ] γ -c p = ( ((a + c) ≤ w ) ⊓ ((b + c) ≤ w ) ⇒ᵖ⟨ (λ{ (q , r) → +-creates-≤ (a + c) w -c .fst q , +-creates-≤ (b + c) w -c .fst r }) ⟩ ((a + c) + -c ≤ w + -c) ⊓ ((b + c) + -c ≤ w + -c) ⇒ᵖ⟨ (λ{ (q , r) → substₚ (λ p → p ≤ w + -c) (+-assoc a c -c) q , substₚ (λ p → p ≤ w + -c) (+-assoc b c -c) r }) ⟩ (a + (c + -c) ≤ w + -c) ⊓ (b + (c + -c) ≤ w + -c) ⇒ᵖ⟨ (λ{ (q , r) → substₚ (λ p → a + p ≤ w + -c) p q , substₚ (λ p → b + p ≤ w + -c) p r }) ⟩ (a + 0f ≤ w + -c) ⊓ (b + 0f ≤ w + -c) ⇒ᵖ⟨ (λ{ (q , r) → substₚ (λ p → p ≤ w + -c) (+-identityʳ a) q , substₚ (λ p → p ≤ w + -c) (+-identityʳ b) r }) ⟩ (a ≤ w + -c) ⊓ (b ≤ w + -c) ⇒ᵖ⟨ is-max a b (w + -c) .snd ⟩ (max a b ≤ w + -c) ⇒ᵖ⟨ +-creates-≤ (max a b) (w + -c) c .fst ⟩ (max a b + c ≤ (w + -c) + c) ⇒ᵖ⟨ substₚ (λ p → max a b + c ≤ p) (+-assoc w -c c) ⟩ (max a b + c ≤ w + (-c + c)) ⇒ᵖ⟨ substₚ (λ p → max a b + c ≤ w + p) (substₚ (λ p → p ≡ₚ 0f) (+-comm c -c) p) ⟩ (max a b + c ≤ w + 0f) ⇒ᵖ⟨ substₚ (λ p → max a b + c ≤ p) (+-identityʳ w) ⟩ (max a b + c ≤ w) ◼ᵖ) .snd (a+c≤w , b+c≤) module ·-inv⇒ {ℓ} (_·_ : A → A → A) (_#_ : hPropRel A A ℓ) (0f 1f : A) (·-creates-≤ : ∀ a b x → [ 0f ≤ x ] → [ (a ≤ b) ⇔ ((a · x) ≤ (b · x)) ]) (·-assoc : ∀ a b c → [ ((a · b) · c) ≡ₚ (a · (b · c)) ]) (·-identityʳ : ∀ x → [ (x · 0f) ≡ₚ x ]) (·-comm : ∀ a b → [ (a · b) ≡ₚ (b · a) ]) (·-inv'' : ∀ x → [ ∃[ y ] (x · y) ≡ₚ 1f ]) where -- ≤-min-· : ∀ a b c w → [ w ≤ (a · c) ] → [ w ≤ (b · c) ] → [ w ≤ (min a b · c) ] -- ≤-min-· a b c w w≤a·c w≤b· = {! is-min a b !} -- -- ≤-max-· : ∀ a b c w → [ (a · c) ≤ w ] → [ (b · c) ≤ w ] → [ (max a b · c) ≤ w ] -- ≤-max-· a b c w a·c≤w b·c≤ = {! !} module ≤-dicho⇒+ (_+_ : A → A → A) (≤-dicho : ∀ x y → [ (x ≤ y) ⊔ (y ≤ x) ]) where ≤-min-+ : ∀ a b c w → [ w ≤ (a + c) ] → [ w ≤ (b + c) ] → [ w ≤ (min a b + c) ] ≤-min-+ a b c w w≤a+c w≤b+c = case ≤-dicho a b as (a ≤ b) ⊔ (b ≤ a) ⇒ (w ≤ (min a b + c)) of λ { (inl a≤b) → substₚ (λ p → w ≤ p + c) (symₚ (min-identity-≤ a b a≤b)) w≤a+c ; (inr b≤a) → substₚ (λ p → w ≤ p + c) (substₚ (λ p → b ≡ₚ p) (min-comm b a) (symₚ (min-identity-≤ b a b≤a))) w≤b+c } ≤-max-+ : ∀ a b c w → [ (a + c) ≤ w ] → [ (b + c) ≤ w ] → [ (max a b + c) ≤ w ] ≤-max-+ a b c w a+c≤w b+c≤w = case ≤-dicho a b as (a ≤ b) ⊔ (b ≤ a) ⇒ ((max a b + c) ≤ w) of λ { (inl a≤b) → substₚ (λ p → p + c ≤ w) (symₚ (max-identity-≤ a b a≤b)) b+c≤w ; (inr b≤a) → substₚ (λ p → p + c ≤ w) (substₚ (λ p → a ≡ₚ p) (max-comm b a) (symₚ (max-identity-≤ b a b≤a))) a+c≤w } module ≤-dicho⇒· (_·_ : A → A → A) (≤-dicho : ∀ x y → [ (x ≤ y) ⊔ (y ≤ x) ]) where ≤-min-· : ∀ a b c w → [ w ≤ (a · c) ] → [ w ≤ (b · c) ] → [ w ≤ (min a b · c) ] ≤-min-· a b c w w≤a·c w≤b·c = case ≤-dicho a b as (a ≤ b) ⊔ (b ≤ a) ⇒ (w ≤ (min a b · c)) of λ { (inl a≤b) → substₚ (λ p → w ≤ p · c) (symₚ (min-identity-≤ a b a≤b)) w≤a·c ; (inr b≤a) → substₚ (λ p → w ≤ p · c) (substₚ (λ p → b ≡ₚ p) (min-comm b a) (symₚ (min-identity-≤ b a b≤a))) w≤b·c } ≤-max-· : ∀ a b c w → [ (a · c) ≤ w ] → [ (b · c) ≤ w ] → [ (max a b · c) ≤ w ] ≤-max-· a b c w a·c≤w b·c≤w = case ≤-dicho a b as (a ≤ b) ⊔ (b ≤ a) ⇒ ((max a b · c) ≤ w) of λ { (inl a≤b) → substₚ (λ p → p · c ≤ w) (symₚ (max-identity-≤ a b a≤b)) b·c≤w ; (inr b≤a) → substₚ (λ p → p · c ≤ w) (substₚ (λ p → a ≡ₚ p) (max-comm b a) (symₚ (max-identity-≤ b a b≤a))) a·c≤w } +-min-distribʳ' : (_+_ : A → A → A) (+-creates-≤ : ∀ a b x → [ (a ≤ b) ⇔ ((a + x) ≤ (b + x)) ]) → ∀ x y z w → [ (w ≤ (min x y + z)) ⇒ (w ≤ min (x + z) (y + z)) ] +-min-distribʳ' _+_ +-creates-≤ x y z w p = ( ( min x y ≤ x ) ⊓ ( min x y ≤ y ) ⇒ᵖ⟨ (λ{ (q , r) → +-creates-≤ (min x y) x z .fst q , +-creates-≤ (min x y) y z .fst r}) ⟩ ((min x y + z ) ≤ (x + z)) ⊓ ((min x y + z) ≤ (y + z)) ⇒ᵖ⟨ (λ{ (q , r) → ≤-trans _ _ _ p q , ≤-trans _ _ _ p r}) ⟩ ( w ≤ (x + z)) ⊓ ( w ≤ (y + z)) ⇒ᵖ⟨ is-min (x + z) (y + z) w .snd ⟩ ( w ≤ min (x + z) (y + z)) ◼ᵖ) .snd (min-≤ x y) ·-min-distribʳ' : (0f : A) (_·_ : A → A → A) (·-creates-≤ : ∀ a b x → [ 0f ≤ x ] → [ (a ≤ b) ⇔ ((a · x) ≤ (b · x)) ]) → ∀ x y z w → [ 0f ≤ z ] → [ (w ≤ (min x y · z)) ⇒ (w ≤ min (x · z) (y · z)) ] ·-min-distribʳ' 0f _·_ ·-creates-≤ x y z w 0≤z p = ( ( min x y ≤ x ) ⊓ ( min x y ≤ y ) ⇒ᵖ⟨ (λ{ (q , r) → ·-creates-≤ (min x y) x z 0≤z .fst q , ·-creates-≤ (min x y) y z 0≤z .fst r}) ⟩ ((min x y · z) ≤ (x · z)) ⊓ ((min x y · z) ≤ (y · z)) ⇒ᵖ⟨ (λ{ (q , r) → ≤-trans _ _ _ p q , ≤-trans _ _ _ p r}) ⟩ ( w ≤ (x · z)) ⊓ ( w ≤ (y · z)) ⇒ᵖ⟨ is-min (x · z) (y · z) w .snd ⟩ ( w ≤ min (x · z) (y · z)) ◼ᵖ) .snd (min-≤ x y) +-max-distribʳ' : (_+_ : A → A → A) (+-creates-≤ : ∀ a b x → [ (a ≤ b) ⇔ ((a + x) ≤ (b + x)) ]) → ∀ x y z w → [ ((max x y + z) ≤ w) ⇒ (max (x + z) (y + z) ≤ w) ] +-max-distribʳ' _+_ +-creates-≤ x y z w p = ( ( x ≤ max x y ) ⊓ ( y ≤ max x y ) ⇒ᵖ⟨ (λ{ (q , r) → +-creates-≤ x (max x y) z .fst q , +-creates-≤ y (max x y) z .fst r}) ⟩ ((x + z) ≤ (max x y + z )) ⊓ ((y + z) ≤ (max x y + z)) ⇒ᵖ⟨ (λ{ (q , r) → ≤-trans _ _ _ q p , ≤-trans _ _ _ r p}) ⟩ ((x + z) ≤ w ) ⊓ ((y + z) ≤ w ) ⇒ᵖ⟨ is-max (x + z) (y + z) w .snd ⟩ ( max (x + z) (y + z) ≤ w) ◼ᵖ) .snd (max-≤ x y) ·-max-distribʳ' : (0f : A) (_·_ : A → A → A) (·-creates-≤ : ∀ a b x → [ 0f ≤ x ] → [ (a ≤ b) ⇔ ((a · x) ≤ (b · x)) ]) → ∀ x y z w → [ 0f ≤ z ] → [ ((max x y · z) ≤ w) ⇒ (max (x · z) (y · z) ≤ w) ] ·-max-distribʳ' 0f _·_ ·-creates-≤ x y z w 0≤z p = ( ( x ≤ max x y ) ⊓ (y ≤ max x y ) ⇒ᵖ⟨ (λ{ (q , r) → ·-creates-≤ x (max x y) z 0≤z .fst q , ·-creates-≤ y (max x y) z 0≤z .fst r}) ⟩ ((x · z) ≤ (max x y · z)) ⊓ ((y · z) ≤ (max x y · z)) ⇒ᵖ⟨ (λ{ (q , r) → ≤-trans _ _ _ q p , ≤-trans _ _ _ r p}) ⟩ ((x · z) ≤ w ) ⊓ ((y · z) ≤ w ) ⇒ᵖ⟨ is-max (x · z) (y · z) w .snd ⟩ ( max (x · z) (y · z) ≤ w) ◼ᵖ) .snd (max-≤ x y) +-min-distribʳ : (_+_ : A → A → A) → (+-creates-≤ : ∀ a b x → [ (a ≤ b) ⇔ ((a + x) ≤ (b + x)) ]) → (≤-min-+ : ∀ a b c w → [ w ≤ (a + c) ] → [ w ≤ (b + c) ] → [ w ≤ (min a b + c) ]) → ∀ x y z → [ (min x y + z) ≡ₚ min (x + z) (y + z) ] +-min-distribʳ _+_ +-creates-≤ ≤-min-+ x y z = ≤-reflectsʳ-≡ (min x y + z) (min (x + z) (y + z)) .fst γ where γ : ∀ w → [ (w ≤ (min x y + z)) ⇔ (w ≤ min (x + z) (y + z)) ] γ w .fst p = +-min-distribʳ' _+_ +-creates-≤ x y z w p γ w .snd p = let (w≤x+z , w≤y+z) = is-min (x + z) (y + z) w .fst p in ≤-min-+ x y z w w≤x+z w≤y+z ·-min-distribʳ : (0f : A) (_·_ : A → A → A) → (·-creates-≤ : ∀ a b x → [ 0f ≤ x ] → [ (a ≤ b) ⇔ ((a · x) ≤ (b · x)) ]) → (≤-min-· : ∀ a b c w → [ w ≤ (a · c) ] → [ w ≤ (b · c) ] → [ w ≤ (min a b · c) ]) → ∀ x y z → [ 0f ≤ z ] → [ (min x y · z) ≡ₚ min (x · z) (y · z) ] ·-min-distribʳ 0f _·_ ·-creates-≤ ≤-min-· x y z 0≤z = ≤-reflectsʳ-≡ (min x y · z) (min (x · z) (y · z)) .fst γ where γ : ∀ w → [ (w ≤ (min x y · z)) ⇔ (w ≤ min (x · z) (y · z)) ] γ w .fst p = ·-min-distribʳ' 0f _·_ ·-creates-≤ x y z w 0≤z p γ w .snd p = let (w≤x·z , w≤y·z) = is-min (x · z) (y · z) w .fst p in ≤-min-· x y z w w≤x·z w≤y·z +-max-distribʳ : (_+_ : A → A → A) → (+-creates-≤ : ∀ a b x → [ (a ≤ b) ⇔ ((a + x) ≤ (b + x)) ]) → (≤-max-+ : ∀ a b c w → [ (a + c) ≤ w ] → [ (b + c) ≤ w ] → [ (max a b + c) ≤ w ]) → ∀ x y z → [ (max x y + z) ≡ₚ max (x + z) (y + z) ] +-max-distribʳ _+_ +-creates-≤ ≤-max-+ x y z = ≤-reflectsˡ-≡ (max x y + z) (max (x + z) (y + z)) .fst γ where γ : ∀ w → [ ((max x y + z) ≤ w) ⇔ (max (x + z) (y + z) ≤ w) ] γ w .fst p = +-max-distribʳ' _+_ +-creates-≤ x y z w p γ w .snd p = let (w≤x+z , w≤y+z) = is-max (x + z) (y + z) w .fst p in ≤-max-+ x y z w w≤x+z w≤y+z ·-max-distribʳ : (0f : A) (_·_ : A → A → A) → (·-creates-≤ : ∀ a b x → [ 0f ≤ x ] → [ (a ≤ b) ⇔ ((a · x) ≤ (b · x)) ]) → (≤-max-· : ∀ a b c w → [ (a · c) ≤ w ] → [ (b · c) ≤ w ] → [ (max a b · c) ≤ w ]) → ∀ x y z → [ 0f ≤ z ] → [ (max x y · z) ≡ₚ max (x · z) (y · z) ] ·-max-distribʳ 0f _·_ ·-creates-≤ ≤-max-· x y z 0≤z = ≤-reflectsˡ-≡ (max x y · z) (max (x · z) (y · z)) .fst γ where γ : ∀ w → [ ((max x y · z) ≤ w) ⇔ (max (x · z) (y · z) ≤ w) ] γ w .fst p = ·-max-distribʳ' 0f _·_ ·-creates-≤ x y z w 0≤z p γ w .snd p = let (w≤x·z , w≤y·z) = is-max (x · z) (y · z) w .fst p in ≤-max-· x y z w w≤x·z w≤y·z -- -flips-min : ∀ x y → min (- x) (- y) ≡ - max x y -- -flips-min x y = ? -- -- -·-flips-min : ∀ x y z → [ z < 0 ] → min x y · z ≡ max (x · z) (y · z) -- -·-flips-min x y z = ? module OnSet (is-set : isSet A) (let _≡ˢ_ = λ(x y : A) → MoreLogic.Definitions.≡ˢ-syntax x y {is-set} infixl 4 _≡ˢ_ ) where open OnType public using (min-≤; max-≤) module ≤-dicho⇒+ = OnType.≤-dicho⇒+ module ≤-dicho⇒· = OnType.≤-dicho⇒· ≤-reflectsʳ-≡ : ∀ x y → [ (∀[ z ] z ≤ x ⇔ z ≤ y) ⇔ x ≡ˢ y ] ≤-reflectsʳ-≡ x y .fst p = ∣∣-elim (λ c → is-set x y) (λ x → x) (OnType.≤-reflectsʳ-≡ x y .fst p) ≤-reflectsʳ-≡ x y .snd p = OnType.≤-reflectsʳ-≡ x y .snd ∣ p ∣ ≤-reflectsˡ-≡ : ∀ x y → [ (∀[ z ] x ≤ z ⇔ y ≤ z) ⇔ x ≡ˢ y ] ≤-reflectsˡ-≡ x y .fst p = ∣∣-elim (λ c → is-set x y) (λ x → x) (OnType.≤-reflectsˡ-≡ x y .fst p) ≤-reflectsˡ-≡ x y .snd p = OnType.≤-reflectsˡ-≡ x y .snd ∣ p ∣ min-identity : ∀ x → [ min x x ≡ˢ x ] min-identity x = ∣∣-elim (λ c → is-set (min x x) x) (λ x → x) (OnType.min-identity x) min-identity-≤ : ∀ x y → [ x ≤ y ] → [ min x y ≡ˢ x ] min-identity-≤ x y p = ∣∣-elim (λ c → is-set (min x y) x) (λ x → x) (OnType.min-identity-≤ x y p) max-identity-≤ : ∀ x y → [ x ≤ y ] → [ max x y ≡ˢ y ] max-identity-≤ x y p = ∣∣-elim (λ c → is-set (max x y) y) (λ x → x) (OnType.max-identity-≤ x y p) min-comm : ∀ x y → [ min x y ≡ˢ min y x ] min-comm x y = ∣∣-elim (λ c → is-set (min x y) (min y x)) (λ x → x) (OnType.min-comm x y) min-assoc : ∀ x y z → [ min (min x y) z ≡ˢ min x (min y z) ] min-assoc x y z = ∣∣-elim (λ c → is-set (min (min x y) z) (min x (min y z))) (λ x → x) (OnType.min-assoc x y z) max-identity : ∀ x → [ max x x ≡ˢ x ] max-identity x = ∣∣-elim (λ c → is-set (max x x) x) (λ x → x) (OnType.max-identity x) max-comm : ∀ x y → [ max x y ≡ˢ max y x ] max-comm x y = ∣∣-elim (λ c → is-set (max x y) (max y x)) (λ x → x) (OnType.max-comm x y) max-assoc : ∀ x y z → [ max (max x y) z ≡ˢ max x (max y z) ] max-assoc x y z = ∣∣-elim (λ c → is-set (max (max x y) z) (max x (max y z))) (λ x → x) (OnType.max-assoc x y z) min-max-absorptive : ∀ x y → [ min x (max x y) ≡ˢ x ] min-max-absorptive x y = ∣∣-elim (λ c → is-set (min x (max x y)) x) (λ x → x) (OnType.min-max-absorptive x y) max-min-absorptive : ∀ x y → [ max x (min x y) ≡ˢ x ] max-min-absorptive x y = ∣∣-elim (λ c → is-set (max x (min x y)) x) (λ x → x) (OnType.max-min-absorptive x y) +-min-distribʳ : (_+_ : A → A → A) → (+-creates-≤ : ∀ a b x → [ (a ≤ b) ⇔ ((a + x) ≤ (b + x)) ]) → (≤-min-+ : ∀ a b c w → [ w ≤ (a + c) ] → [ w ≤ (b + c) ] → [ w ≤ (min a b + c) ]) → ∀ x y z → [ (min x y + z) ≡ˢ min (x + z) (y + z) ] +-min-distribʳ _+_ +-creates-≤ ≤-min-+ x y z = ∣∣-elim (λ c → is-set (min x y + z) (min (x + z) (y + z))) (λ x → x) (OnType.+-min-distribʳ _+_ +-creates-≤ ≤-min-+ x y z) ·-min-distribʳ : (0f : A) (_·_ : A → A → A) → (·-creates-≤ : ∀ a b x → [ 0f ≤ x ] → [ (a ≤ b) ⇔ ((a · x) ≤ (b · x)) ]) → (≤-min-· : ∀ a b c w → [ w ≤ (a · c) ] → [ w ≤ (b · c) ] → [ w ≤ (min a b · c) ]) → ∀ x y z → [ 0f ≤ z ] → [ (min x y · z) ≡ˢ min (x · z) (y · z) ] ·-min-distribʳ 0f _·_ ·-creates-≤ ≤-min-· x y z 0≤z = ∣∣-elim (λ c → is-set (min x y · z) (min (x · z) (y · z))) (λ x → x) (OnType.·-min-distribʳ 0f _·_ ·-creates-≤ ≤-min-· x y z 0≤z) +-max-distribʳ : (_+_ : A → A → A) → (+-creates-≤ : ∀ a b x → [ (a ≤ b) ⇔ ((a + x) ≤ (b + x)) ]) → (≤-max-+ : ∀ a b c w → [ (a + c) ≤ w ] → [ (b + c) ≤ w ] → [ (max a b + c) ≤ w ]) → ∀ x y z → [ (max x y + z) ≡ˢ max (x + z) (y + z) ] +-max-distribʳ _+_ +-creates-≤ ≤-max-+ x y z = ∣∣-elim (λ c → is-set (max x y + z) (max (x + z) (y + z))) (λ x → x) (OnType.+-max-distribʳ _+_ +-creates-≤ ≤-max-+ x y z) ·-max-distribʳ : (0f : A) (_·_ : A → A → A) → (·-creates-≤ : ∀ a b x → [ 0f ≤ x ] → [ (a ≤ b) ⇔ ((a · x) ≤ (b · x)) ]) → (≤-max-· : ∀ a b c w → [ (a · c) ≤ w ] → [ (b · c) ≤ w ] → [ (max a b · c) ≤ w ]) → ∀ x y z → [ 0f ≤ z ] → [ (max x y · z) ≡ˢ max (x · z) (y · z) ] ·-max-distribʳ 0f _·_ ·-creates-≤ ≤-max-· x y z 0≤z = ∣∣-elim (λ c → is-set (max x y · z) (max (x · z) (y · z))) (λ x → x) (OnType.·-max-distribʳ 0f _·_ ·-creates-≤ ≤-max-· x y z 0≤z)
{ "alphanum_fraction": 0.3854431257, "avg_line_length": 59.1612021858, "ext": "agda", "hexsha": "fa4c1d1d274da2f789f1448866036ccef04eee66", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/MorePropAlgebra/Properties/Lattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/MorePropAlgebra/Properties/Lattice.agda", "max_line_length": 185, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/MorePropAlgebra/Properties/Lattice.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 10582, "size": 21653 }
-- Liang-Ting, 2022-01-14, issue #5734 {-# OPTIONS --cubical-compatible #-} open import Agda.Builtin.Unit open import Agda.Builtin.List open import Agda.Builtin.Sigma open import Agda.Builtin.Reflection renaming (returnTC to return; bindTC to _>>=_) open import Agda.Primitive private variable A B : Set _ reverseApp : List A → List A → List A reverseApp [] ys = ys reverseApp (x ∷ xs) ys = reverseApp xs (x ∷ ys) reverse : List A → List A reverse xs = reverseApp xs [] extend*Context : Telescope → TC A → TC A extend*Context [] m = m extend*Context ((s , a) ∷ tel) m = extendContext s a (extend*Context tel m) pattern vArg x = arg (arg-info visible (modality relevant quantity-ω)) x pattern visible-relevant-erased = arg-info visible (modality relevant quantity-0) pattern var₀ x = var x [] Γ : Telescope Γ = ("ℓ" , arg visible-relevant-erased (quoteTerm Level)) ∷ ("A" , vArg (agda-sort (set (var₀ 0)))) ∷ [] macro m : Term → TC ⊤ m hole = do _ ← extend*Context Γ do _ ← checkType (var₀ 0) (agda-sort (set (var₀ 1))) return tt inContext (reverse Γ) do return tt _ : ⊤ _ = m
{ "alphanum_fraction": 0.6527415144, "avg_line_length": 24.9782608696, "ext": "agda", "hexsha": "9bf877918b90cc6e997d1a291c143a0a54abbecf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue5734.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue5734.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue5734.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 364, "size": 1149 }
module _ where open import Common.IO renaming (then to _>>_ ) open import Agda.Builtin.Unit open import Agda.Builtin.Bool open import Agda.Builtin.Equality using (_≡_; refl) open import Agda.Builtin.Float renaming ( primFloatEquality to _≡ᵇ_ ; primFloatInequality to _≤ᵇ_ ; primFloatLess to _<ᵇ_ ; primFloatPlus to infixl 6 _+_ ; primFloatMinus to infixl 6 _-_ ; primFloatTimes to infixl 7 _*_ ; primFloatDiv to infixl 7 _÷_ ; primFloatPow to infix 8 _**_ ; primFloatNegate to infix 9 -_ ; primFloatSqrt to sqrt ; primFloatExp to e^_ ; primFloatLog to log ; primFloatSin to sin ; primFloatCos to cos ; primFloatTan to tan ; primFloatASin to asin ; primFloatACos to acos ; primFloatATan to atan ; primFloatATan2 to atan2 ; primFloatSinh to sinh ; primFloatCosh to cosh ; primFloatTanh to tanh ; primFloatASinh to asinh ; primFloatACosh to acosh ; primFloatATanh to atanh ; primFloatRound to round ; primFloatFloor to floor ; primFloatCeiling to ceiling ; primShowFloat to showF ; primFloatToWord64 to toWord ; primFloatToRatio to toRatio ; primRatioToFloat to fromRatio ; primFloatDecode to decode ; primFloatEncode to encode ; primFloatIsInfinite to isInfinite ; primFloatIsNaN to isNaN ; primFloatIsNegativeZero to isNegativeZero ; primFloatIsSafeInteger to isSafeInteger ) open import Agda.Builtin.Int using (Int; pos; negsuc) renaming ( primShowInteger to showI ) open import Agda.Builtin.Nat using (Nat) renaming ( _==_ to _==N_ ) open import Agda.Builtin.Maybe open import Agda.Builtin.Sigma open import Agda.Builtin.String using (String) renaming ( primStringEquality to _==S_ ; primShowNat to showN ; primStringAppend to _++_ ) open import Agda.Builtin.Word using (Word64) renaming ( primWord64ToNat to toℕ ) -- Prelude data ⊥ : Set where _≢_ : {A : Set} (P Q : A) → Set P ≢ Q = P ≡ Q → ⊥ NaN : Float NaN = 0.0 ÷ 0.0 -NaN : Float -NaN = - NaN Infinity : Float Infinity = 1.0 ÷ 0.0 -Infinity : Float -Infinity = - Infinity MaxFloat : Float MaxFloat = 1.7976931348623157e308 MinFloat : Float MinFloat = 2.2250738585072014e-308 MaxSafeIntF : Float MaxSafeIntF = 9007199254740991.0 MaxSafeIntZ : Int MaxSafeIntZ = pos 9007199254740991 -- * Tests showB : Bool → String showB false = "false" showB true = "true" maybeShow : {A : Set} (show : A → String) → Maybe A → String maybeShow show (just x) = "(just (" ++ (show x ++ "))") maybeShow show nothing = "nothing" pairShow : {A B : Set} (showA : A → String) (showB : B → String) → Σ A (λ _ → B) → String pairShow showA showB (x , y) = "(" ++ (showA x ++ (" , " ++ (showB y ++ ")"))) showR = pairShow showI showI newline : IO ⊤ newline = putStr "\n" T : Bool → Set T false = ⊥ T true = ⊤ _==F_ : Float → Float → Bool x ==F y = toℕ (toWord x) ==N toℕ (toWord x) _==B_ : Bool → Bool → Bool false ==B false = true false ==B true = false true ==B false = false true ==B true = true _==I_ : Int → Int → Bool pos n ==I pos m = n ==N m pos n ==I negsuc m = false negsuc n ==I pos m = false negsuc n ==I negsuc m = n ==N m maybeEq : {A : Set} (eq : A → A → Bool) → Maybe A → Maybe A → Bool maybeEq eq (just x) (just y) = eq x y maybeEq eq (just x) nothing = false maybeEq eq nothing (just y) = false maybeEq eq nothing nothing = true pairEq : {A B : Set} (eqA : A → A → Bool) (eqB : B → B → Bool) → Σ A (λ _ → B) → Σ A (λ _ → B) → Bool pairEq eqA eqB (x , y) (z , w) = eqA x z && eqB y w where _&&_ : Bool → Bool → Bool true && true = true x && y = false _==R_ = pairEq _==I_ _==I_ check : {A : Set} (show : A → String) (eq : A → A → Bool) (str : String) (exp act : A) {p : T (eq act exp)} → IO ⊤ check show eq str exp act = do putStr str; putStr " = "; putStr (show exp); putStr " = "; putStr (show act); newline checkB = check showB _==B_ checkS = check (λ x → x) _==S_ checkN = check showN _==N_ checkI = check showI _==I_ checkMI = check (maybeShow showI) (maybeEq _==I_) checkR = check showR _==R_ checkF = check showF _==F_ checkMR = check (maybeShow showR) (maybeEq _==R_) checkMF = check (maybeShow showF) (maybeEq _==F_) -- ** Relations main : IO ⊤ main = do -- ** Relations checkB " NaN ≡ᵇ NaN " false ( NaN ≡ᵇ NaN ) checkB "-NaN ≡ᵇ NaN " false (-NaN ≡ᵇ NaN ) checkB " NaN ≡ᵇ -NaN " false ( NaN ≡ᵇ -NaN ) checkB "-NaN ≡ᵇ -NaN " false (-NaN ≡ᵇ -NaN ) checkB " Infinity ≡ᵇ Infinity" true ( Infinity ≡ᵇ Infinity) checkB "-Infinity ≡ᵇ Infinity" false (-Infinity ≡ᵇ Infinity) checkB " Infinity ≡ᵇ -Infinity" false ( Infinity ≡ᵇ -Infinity) checkB "-Infinity ≡ᵇ -Infinity" true (-Infinity ≡ᵇ -Infinity) checkB " MaxFloat ≡ᵇ MaxFloat" true ( MaxFloat ≡ᵇ MaxFloat) checkB " MinFloat ≡ᵇ MinFloat" true ( MinFloat ≡ᵇ MinFloat) checkB " 1.0 ≡ᵇ 1.5 " false ( 1.0 ≡ᵇ 1.5 ) checkB " 1.0 ≡ᵇ 1.0 " true ( 1.0 ≡ᵇ 1.0 ) checkB " 1.5 ≡ᵇ 1.5 " true ( 1.5 ≡ᵇ 1.5 ) checkB " NaN ≤ᵇ NaN " false ( NaN ≤ᵇ NaN ) checkB "-NaN ≤ᵇ NaN " false (-NaN ≤ᵇ NaN ) checkB " NaN ≤ᵇ -NaN " false ( NaN ≤ᵇ -NaN ) checkB "-NaN ≤ᵇ -NaN " false (-NaN ≤ᵇ -NaN ) checkB " NaN ≤ᵇ 5.0 " false ( NaN ≤ᵇ 5.0 ) checkB "-NaN ≤ᵇ 5.0 " false (-NaN ≤ᵇ 5.0 ) checkB " 5.0 ≤ᵇ -NaN " false ( 5.0 ≤ᵇ -NaN ) checkB "-5.0 ≤ᵇ -NaN " false (-5.0 ≤ᵇ -NaN ) checkB " NaN ≤ᵇ Infinity" false ( NaN ≤ᵇ Infinity) checkB "-NaN ≤ᵇ Infinity" false (-NaN ≤ᵇ Infinity) checkB " Infinity ≤ᵇ -NaN " false ( Infinity ≤ᵇ -NaN ) checkB "-Infinity ≤ᵇ -NaN " false (-Infinity ≤ᵇ -NaN ) checkB " Infinity ≤ᵇ Infinity" true ( Infinity ≤ᵇ Infinity) checkB "-Infinity ≤ᵇ Infinity" true (-Infinity ≤ᵇ Infinity) checkB " Infinity ≤ᵇ -Infinity" false ( Infinity ≤ᵇ -Infinity) checkB "-Infinity ≤ᵇ -Infinity" true (-Infinity ≤ᵇ -Infinity) checkB " MaxFloat ≤ᵇ MaxFloat" true ( MaxFloat ≤ᵇ MaxFloat) checkB " MinFloat ≤ᵇ MinFloat" true ( MinFloat ≤ᵇ MinFloat) checkB " 1.0 ≤ᵇ 1.5 " true ( 1.0 ≤ᵇ 1.5 ) checkB " 1.0 ≤ᵇ 1.0 " true ( 1.0 ≤ᵇ 1.0 ) checkB " 1.5 ≤ᵇ 1.5 " true ( 1.5 ≤ᵇ 1.5 ) checkB " NaN <ᵇ NaN " false ( NaN <ᵇ NaN ) checkB "-NaN <ᵇ NaN " false (-NaN <ᵇ NaN ) checkB " NaN <ᵇ -NaN " false ( NaN <ᵇ -NaN ) checkB "-NaN <ᵇ -NaN " false (-NaN <ᵇ -NaN ) checkB " NaN <ᵇ 5.0 " false ( NaN <ᵇ 5.0 ) checkB "-NaN <ᵇ 5.0 " false (-NaN <ᵇ 5.0 ) checkB " 5.0 <ᵇ -NaN " false ( 5.0 <ᵇ -NaN ) checkB "-5.0 <ᵇ -NaN " false (-5.0 <ᵇ -NaN ) checkB " NaN <ᵇ Infinity" false ( NaN <ᵇ Infinity) checkB "-NaN <ᵇ Infinity" false (-NaN <ᵇ Infinity) checkB " Infinity <ᵇ -NaN " false ( Infinity <ᵇ -NaN ) checkB "-Infinity <ᵇ -NaN " false (-Infinity <ᵇ -NaN ) checkB " Infinity <ᵇ Infinity" false ( Infinity <ᵇ Infinity) checkB "-Infinity <ᵇ Infinity" true (-Infinity <ᵇ Infinity) checkB " Infinity <ᵇ -Infinity" false ( Infinity <ᵇ -Infinity) checkB "-Infinity <ᵇ -Infinity" false (-Infinity <ᵇ -Infinity) checkB " MaxFloat <ᵇ MaxFloat" false ( MaxFloat <ᵇ MaxFloat) checkB " MinFloat <ᵇ MinFloat" false ( MinFloat <ᵇ MinFloat) checkB " 1.0 <ᵇ 1.5 " true ( 1.0 <ᵇ 1.5 ) checkB " 1.0 <ᵇ 1.0 " false ( 1.0 <ᵇ 1.0 ) checkB " 1.5 <ᵇ 1.5 " false ( 1.5 <ᵇ 1.5 ) checkB "isNaN NaN " true (isNaN NaN ) checkB "isNaN -NaN " true (isNaN -NaN ) checkB "isNaN Infinity " false (isNaN Infinity ) checkB "isNaN -Infinity " false (isNaN -Infinity ) checkB "isNaN 0.0 " false (isNaN 0.0 ) checkB "isNaN -0.0 " false (isNaN -0.0 ) checkB "isNaN 1.0 " false (isNaN 1.0 ) checkB "isNaN 1.5 " false (isNaN 1.5 ) checkB "isInfinite NaN " false (isInfinite NaN ) checkB "isInfinite -NaN " false (isInfinite -NaN ) checkB "isInfinite Infinity " true (isInfinite Infinity ) checkB "isInfinite -Infinity " true (isInfinite -Infinity ) checkB "isInfinite 0.0 " false (isInfinite 0.0 ) checkB "isInfinite -0.0 " false (isInfinite -0.0 ) checkB "isInfinite 1.0 " false (isInfinite 1.0 ) checkB "isInfinite 1.5 " false (isInfinite 1.5 ) -- Depends on optimisation settings: -- -- - with -O0 the test succeeds -- - with -O the test fails -- -- checkB "isInfinite ((MaxFloat * MaxFloat) ÷ MaxFloat)" -- true -- (isInfinite ((MaxFloat * MaxFloat) ÷ MaxFloat)) checkB "isNegativeZero NaN " false (isNegativeZero NaN ) checkB "isNegativeZero -NaN " false (isNegativeZero -NaN ) checkB "isNegativeZero Infinity " false (isNegativeZero Infinity ) checkB "isNegativeZero -Infinity " false (isNegativeZero -Infinity ) checkB "isNegativeZero 0.0 " false (isNegativeZero 0.0 ) checkB "isNegativeZero -0.0 " true (isNegativeZero -0.0 ) checkB "isNegativeZero 1.0 " false (isNegativeZero 1.0 ) checkB "isNegativeZero 1.5 " false (isNegativeZero 1.5 ) checkB "isSafeInteger 1.0 " true (isSafeInteger 1.0 ) checkB "isSafeInteger 1.5 " false (isSafeInteger 1.5 ) checkB "isSafeInteger MaxFloat " false (isSafeInteger MaxFloat ) checkB "isSafeInteger MinFloat " false (isSafeInteger MinFloat ) checkB "isSafeInteger MaxSafeIntF " true (isSafeInteger MaxSafeIntF ) -- ** Conversions checkS "show NaN " "NaN" (showF NaN ) checkS "show -NaN " "NaN" (showF -NaN ) checkS "show 0.0 " "0.0" (showF 0.0 ) checkS "show -0.0 " "-0.0" (showF -0.0 ) checkS "show Infinity" "Infinity" (showF Infinity) checkS "show -Infinity" "-Infinity" (showF -Infinity) checkS "show 1.0 " "1.0" (showF 1.0 ) checkS "show 1.5 " "1.5" (showF 1.5 ) -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkN "toℕ (toWord 1.0) " 4607182418800017408 (toℕ (toWord 1.0) ) -- checkN "toℕ (toWord 1.5) " 4609434218613702656 (toℕ (toWord 1.5) ) -- checkN "toℕ (toWord 0.0) " 0 (toℕ (toWord 0.0) ) -- checkN "toℕ (toWord -0.0) " 9223372036854775808 (toℕ (toWord -0.0) ) -- checkN "toℕ (toWord NaN) " 18444492273895866368 (toℕ (toWord NaN) ) -- checkN "toℕ (toWord -NaN) " 18444492273895866368 (toℕ (toWord -NaN) ) -- checkN "toℕ (toWord Infinity) " 9218868437227405312 (toℕ (toWord Infinity) ) -- checkN "toℕ (toWord -Infinity)" 18442240474082181120 (toℕ (toWord -Infinity)) checkMI "round 1.0 " (just (pos 1)) (round 1.0 ) checkMI "round 1.5 " (just (pos 2)) (round 1.5 ) checkMI "round NaN " (nothing ) (round NaN ) checkMI "round -NaN " (nothing ) (round -NaN ) checkMI "round Infinity " (nothing ) (round Infinity ) checkMI "round -Infinity" (nothing ) (round -Infinity) checkMI "round MinFloat " (just (pos 0)) (round MinFloat ) -- -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkMI "round MaxFloat " (just (pos 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368)) (round MaxFloat ) checkMI "floor 1.0 " (just (pos 1)) (floor 1.0 ) checkMI "floor 1.5 " (just (pos 1)) (floor 1.5 ) checkMI "floor NaN " (nothing ) (floor NaN ) checkMI "floor -NaN " (nothing ) (floor -NaN ) checkMI "floor Infinity " (nothing ) (floor Infinity ) checkMI "floor -Infinity" (nothing ) (floor -Infinity) checkMI "floor MinFloat " (just (pos 0)) (floor MinFloat ) -- -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkMI "floor MaxFloat " (just (pos 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368)) (floor MaxFloat ) checkMI "ceiling 1.0 " (just (pos 1)) (ceiling 1.0 ) checkMI "ceiling 1.5 " (just (pos 2)) (ceiling 1.5 ) checkMI "ceiling NaN " (nothing ) (ceiling NaN ) checkMI "ceiling -NaN " (nothing ) (ceiling -NaN ) checkMI "ceiling Infinity " (nothing ) (ceiling Infinity ) checkMI "ceiling -Infinity" (nothing ) (ceiling -Infinity) checkMI "ceiling MinFloat " (just (pos 1)) (ceiling MinFloat ) -- -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkMI "ceiling MaxFloat " (just (pos 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368)) (ceiling MaxFloat ) checkMR "decode NaN " (nothing ) (decode NaN ) checkMR "decode Infinity" (nothing ) (decode Infinity) checkMR "decode -Infinity" (nothing ) (decode -Infinity) checkMR "decode 1.0 " (just (pos 1 , pos 0)) (decode 1.0 ) checkMR "decode 1.5 " (just (pos 3 , negsuc 0)) (decode 1.5 ) checkMR "decode MinFloat" (just (pos 1 , negsuc 1021)) (decode MinFloat) -- -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkMR "decode MaxFloat" (just (MaxSafeIntZ , pos 971)) (decode MaxFloat) checkMF "encode (pos 1) (pos 0)" (just 1.0 ) (encode (pos 1) (pos 0)) checkMF "encode (pos 3) (negsuc 0)" (just 1.5 ) (encode (pos 3) (negsuc 0)) -- -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkMF "encode MaxSafeIntZ (pos 0)" (just MaxSafeIntF) (encode MaxSafeIntZ (pos 0)) -- checkMF "encode MaxSafeIntZ (pos 971)" (just MaxFloat ) (encode MaxSafeIntZ (pos 971)) -- checkMF "encode MaxSafeIntZ (pos 972)" (nothing ) (encode MaxSafeIntZ (pos 972)) -- checkMF "encode (pos 1) (negsuc 1021)" (just MinFloat ) (encode (pos 1) (negsuc 1021)) -- checkMF "encode MaxSafeIntZ (negsuc 1075)" (nothing ) (encode MaxSafeIntZ (negsuc 1075)) checkR "toRatio NaN " (pos 0 , pos 0) (toRatio NaN ) checkR "toRatio Infinity" (pos 1 , pos 0) (toRatio Infinity) checkR "toRatio -Infinity" (negsuc 0 , pos 0) (toRatio -Infinity) checkR "toRatio 1.0 " (pos 1 , pos 1) (toRatio 1.0 ) checkR "toRatio 1.5 " (pos 3 , pos 2) (toRatio 1.5 ) checkF "fromRatio (pos 0) (pos 0)" ( NaN ) (fromRatio (pos 0) (pos 0)) checkF "fromRatio (pos 1) (pos 0)" ( Infinity) (fromRatio (pos 1) (pos 0)) checkF "fromRatio (negsuc 0) (pos 0)" (-Infinity) (fromRatio (negsuc 0) (pos 0)) checkF "fromRatio (pos 1) (pos 1)" ( 1.0 ) (fromRatio (pos 1) (pos 1)) checkF "fromRatio (pos 3) (pos 2)" ( 1.5 ) (fromRatio (pos 3) (pos 2)) checkF "e^ 1.0 " 2.718281828459045 (e^ 1.0 ) checkF "sin (asin 0.6) " 0.6 (sin (asin 0.6) ) checkF "cos (acos 0.6) " 0.6 (cos (acos 0.6) ) checkF "tan (atan 0.4) " 0.4 (tan (atan 0.4) ) checkF "tan (atan2 0.4 1.0)" 0.4 (tan (atan2 0.4 1.0))
{ "alphanum_fraction": 0.5602661924, "avg_line_length": 47.3668478261, "ext": "agda", "hexsha": "117ab25f63014c9dc44a615d1e32d6866ce01181", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Floats.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Floats.agda", "max_line_length": 375, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Floats.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 6201, "size": 17431 }
open import Prelude open import core module ground-decidable where ground-decidable : (τ : htyp) → (τ ground) + ((τ ground) → ⊥) ground-decidable b = Inl GBase ground-decidable ⦇-⦈ = Inr (λ ()) ground-decidable (b ==> b) = Inr (λ ()) ground-decidable (b ==> ⦇-⦈) = Inr (λ ()) ground-decidable (b ==> τ' ==> τ'') = Inr (λ ()) ground-decidable (⦇-⦈ ==> b) = Inr (λ ()) ground-decidable (⦇-⦈ ==> ⦇-⦈) = Inl GHole ground-decidable (⦇-⦈ ==> τ' ==> τ'') = Inr (λ ()) ground-decidable ((τ ==> τ₁) ==> b) = Inr (λ ()) ground-decidable ((τ ==> τ₁) ==> ⦇-⦈) = Inr (λ ()) ground-decidable ((τ ==> τ₁) ==> τ' ==> τ'') = Inr (λ ()) ground-arr-lem : (τ : htyp) → ((τ ground) → ⊥) → (τ ≠ ⦇-⦈) → Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] ((τ == (τ1 ==> τ2)) × ((τ1 ==> τ2) ≠ (⦇-⦈ ==> ⦇-⦈))) ground-arr-lem b ng nh = abort (ng GBase) ground-arr-lem ⦇-⦈ ng nh = abort (nh refl) ground-arr-lem (τ1 ==> τ2) ng nh = τ1 , τ2 , refl , (λ x → ng (lem' x)) where lem' : ∀{τ1 τ2} → τ1 ==> τ2 == ⦇-⦈ ==> ⦇-⦈ → (τ1 ==> τ2) ground lem' refl = GHole
{ "alphanum_fraction": 0.4796978281, "avg_line_length": 42.36, "ext": "agda", "hexsha": "5c3d8a0bb6a3c0c3ae976bc71c913c83e53ae12e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "ground-decidable.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "ground-decidable.agda", "max_line_length": 146, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "ground-decidable.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 491, "size": 1059 }
module ListsWithIrrelevantProofs where data _≡_ {A : Set}(a : A) : A → Set where refl : a ≡ a data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} postulate _≤_ : ℕ → ℕ → Set p1 : 0 ≤ 1 p2 : 0 ≤ 1 -- descending lists indexed by upper bound for largest element data SList (bound : ℕ) : Set where [] : SList bound scons : (head : ℕ) → .(head ≤ bound) → -- irrelevant proof, dotted non-dependent domain (tail : SList head) → SList bound l1 : SList 1 l1 = scons 0 p1 [] l2 : SList 1 l2 = scons 0 p2 [] -- proofs in list are irrelevant l1≡l2 : l1 ≡ l2 l1≡l2 = refl
{ "alphanum_fraction": 0.5707620529, "avg_line_length": 16.9210526316, "ext": "agda", "hexsha": "18a60b11fa16fcabeb708d228c01e7a98ed194a1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/ListsWithIrrelevantProofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/ListsWithIrrelevantProofs.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/succeed/ListsWithIrrelevantProofs.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 240, "size": 643 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Monoid.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Algebra.Semigroup hiding (⟨_⟩) open Iso private variable ℓ : Level record IsMonoid {A : Type ℓ} (ε : A) (_·_ : A → A → A) : Type ℓ where constructor ismonoid field isSemigroup : IsSemigroup _·_ identity : (x : A) → (x · ε ≡ x) × (ε · x ≡ x) open IsSemigroup isSemigroup public lid : (x : A) → ε · x ≡ x lid x = identity x .snd rid : (x : A) → x · ε ≡ x rid x = identity x .fst record Monoid : Type (ℓ-suc ℓ) where constructor monoid field Carrier : Type ℓ ε : Carrier _·_ : Carrier → Carrier → Carrier isMonoid : IsMonoid ε _·_ infixl 7 _·_ open IsMonoid isMonoid public -- semigrp : Semigroup -- semigrp = record { isSemigroup = isSemigroup } -- open Semigroup semigrp public -- Extractor for the carrier type ⟨_⟩ : Monoid → Type ℓ ⟨_⟩ = Monoid.Carrier η-isMonoid : {A : Type ℓ} {ε : A} {_∙_ : A → A → A} (b : IsMonoid ε _∙_) → ismonoid (IsMonoid.isSemigroup b) (IsMonoid.identity b) ≡ b IsMonoid.isSemigroup (η-isMonoid b i) = IsMonoid.isSemigroup b IsMonoid.identity (η-isMonoid b i) = IsMonoid.identity b -- Easier to use constructors makeIsMonoid : {M : Type ℓ} {ε : M} {_·_ : M → M → M} (is-setM : isSet M) (assoc : (x y z : M) → x · (y · z) ≡ (x · y) · z) (rid : (x : M) → x · ε ≡ x) (lid : (x : M) → ε · x ≡ x) → IsMonoid ε _·_ IsMonoid.isSemigroup (makeIsMonoid is-setM assoc rid lid) = issemigroup is-setM assoc IsMonoid.identity (makeIsMonoid is-setM assoc rid lid) = λ x → rid x , lid x makeMonoid : {M : Type ℓ} (ε : M) (_·_ : M → M → M) (is-setM : isSet M) (assoc : (x y z : M) → x · (y · z) ≡ (x · y) · z) (rid : (x : M) → x · ε ≡ x) (lid : (x : M) → ε · x ≡ x) → Monoid makeMonoid ε _·_ is-setM assoc rid lid = monoid _ ε _·_ (makeIsMonoid is-setM assoc rid lid) record MonoidEquiv (M N : Monoid {ℓ}) : Type ℓ where constructor monoidiso private module M = Monoid M module N = Monoid N field e : ⟨ M ⟩ ≃ ⟨ N ⟩ presε : equivFun e M.ε ≡ N.ε isHom : (x y : ⟨ M ⟩) → equivFun e (x M.· y) ≡ equivFun e x N.· equivFun e y module MonoidΣTheory {ℓ} where RawMonoidStructure : Type ℓ → Type ℓ RawMonoidStructure X = X × (X → X → X) RawMonoidEquivStr = AutoEquivStr RawMonoidStructure rawMonoidUnivalentStr : UnivalentStr _ RawMonoidEquivStr rawMonoidUnivalentStr = autoUnivalentStr RawMonoidStructure MonoidAxioms : (M : Type ℓ) → RawMonoidStructure M → Type ℓ MonoidAxioms M (e , _·_) = IsSemigroup _·_ × ((x : M) → (x · e ≡ x) × (e · x ≡ x)) MonoidStructure : Type ℓ → Type ℓ MonoidStructure = AxiomsStructure RawMonoidStructure MonoidAxioms MonoidΣ : Type (ℓ-suc ℓ) MonoidΣ = TypeWithStr ℓ MonoidStructure isPropMonoidAxioms : (M : Type ℓ) (s : RawMonoidStructure M) → isProp (MonoidAxioms M s) isPropMonoidAxioms M (e , _·_) = isPropΣ (isPropIsSemigroup _·_) λ α → isPropΠ λ _ → isProp× (IsSemigroup.is-set α _ _) (IsSemigroup.is-set α _ _) MonoidEquivStr : StrEquiv MonoidStructure ℓ MonoidEquivStr = AxiomsEquivStr RawMonoidEquivStr MonoidAxioms MonoidAxiomsIsoIsMonoid : {M : Type ℓ} (s : RawMonoidStructure M) → Iso (MonoidAxioms M s) (IsMonoid (s .fst) (s .snd)) fun (MonoidAxiomsIsoIsMonoid s) (x , y) = ismonoid x y inv (MonoidAxiomsIsoIsMonoid s) a = (IsMonoid.isSemigroup a) , IsMonoid.identity a rightInv (MonoidAxiomsIsoIsMonoid s) b = η-isMonoid b leftInv (MonoidAxiomsIsoIsMonoid s) _ = refl MonoidAxioms≡IsMonoid : {M : Type ℓ} (s : RawMonoidStructure M) → MonoidAxioms M s ≡ IsMonoid (s .fst) (s .snd) MonoidAxioms≡IsMonoid s = isoToPath (MonoidAxiomsIsoIsMonoid s) open Monoid Monoid→MonoidΣ : Monoid → MonoidΣ Monoid→MonoidΣ M = ⟨ M ⟩ , ((ε M) , _·_ M) , MonoidAxiomsIsoIsMonoid ((ε M) , _·_ M) .inv (isMonoid M) MonoidΣ→Monoid : MonoidΣ → Monoid MonoidΣ→Monoid (M , (ε , _·_) , isMonoidΣ) = monoid M ε _·_ (MonoidAxiomsIsoIsMonoid (ε , _·_) .fun isMonoidΣ) MonoidIsoMonoidΣ : Iso Monoid MonoidΣ MonoidIsoMonoidΣ = iso Monoid→MonoidΣ MonoidΣ→Monoid (λ _ → refl) helper where helper : _ Carrier (helper a i) = ⟨ a ⟩ ε (helper a i) = ε a _·_ (helper a i) = _·_ a isMonoid (helper a i) = η-isMonoid (isMonoid a) i monoidUnivalentStr : UnivalentStr MonoidStructure MonoidEquivStr monoidUnivalentStr = axiomsUnivalentStr _ isPropMonoidAxioms rawMonoidUnivalentStr MonoidΣPath : (M N : MonoidΣ) → (M ≃[ MonoidEquivStr ] N) ≃ (M ≡ N) MonoidΣPath = SIP monoidUnivalentStr MonoidEquivΣ : (M N : Monoid) → Type ℓ MonoidEquivΣ M N = Monoid→MonoidΣ M ≃[ MonoidEquivStr ] Monoid→MonoidΣ N MonoidIsoΣPath : {M N : Monoid} → Iso (MonoidEquiv M N) (MonoidEquivΣ M N) fun MonoidIsoΣPath (monoidiso e h1 h2) = (e , h1 , h2) inv MonoidIsoΣPath (e , h1 , h2) = monoidiso e h1 h2 rightInv MonoidIsoΣPath _ = refl leftInv MonoidIsoΣPath _ = refl MonoidPath : (M N : Monoid) → (MonoidEquiv M N) ≃ (M ≡ N) MonoidPath M N = MonoidEquiv M N ≃⟨ isoToEquiv MonoidIsoΣPath ⟩ MonoidEquivΣ M N ≃⟨ MonoidΣPath _ _ ⟩ Monoid→MonoidΣ M ≡ Monoid→MonoidΣ N ≃⟨ isoToEquiv (invIso (congIso MonoidIsoMonoidΣ)) ⟩ M ≡ N ■ RawMonoidΣ : Type (ℓ-suc ℓ) RawMonoidΣ = TypeWithStr ℓ RawMonoidStructure Monoid→RawMonoidΣ : Monoid → RawMonoidΣ Monoid→RawMonoidΣ A = ⟨ A ⟩ , (ε A) , (_·_ A) InducedMonoid : (M : Monoid) (N : RawMonoidΣ) (e : M .Monoid.Carrier ≃ N .fst) → RawMonoidEquivStr (Monoid→RawMonoidΣ M) N e → Monoid InducedMonoid M N e r = MonoidΣ→Monoid (transferAxioms rawMonoidUnivalentStr (Monoid→MonoidΣ M) N (e , r)) InducedMonoidPath : (M : Monoid {ℓ}) (N : RawMonoidΣ) (e : M .Monoid.Carrier ≃ N .fst) (E : RawMonoidEquivStr (Monoid→RawMonoidΣ M) N e) → M ≡ InducedMonoid M N e E InducedMonoidPath M N e E = MonoidPath M (InducedMonoid M N e E) .fst (monoidiso e (E .fst) (E .snd)) -- We now extract the important results from the above module isPropIsMonoid : {M : Type ℓ} (ε : M) (_·_ : M → M → M) → isProp (IsMonoid ε _·_) isPropIsMonoid ε _·_ = subst isProp (MonoidΣTheory.MonoidAxioms≡IsMonoid (ε , _·_)) (MonoidΣTheory.isPropMonoidAxioms _ (ε , _·_)) MonoidPath : (M N : Monoid {ℓ}) → (MonoidEquiv M N) ≃ (M ≡ N) MonoidPath = MonoidΣTheory.MonoidPath InducedMonoid : (M : Monoid {ℓ}) (N : MonoidΣTheory.RawMonoidΣ) (e : M .Monoid.Carrier ≃ N .fst) → MonoidΣTheory.RawMonoidEquivStr (MonoidΣTheory.Monoid→RawMonoidΣ M) N e → Monoid InducedMonoid = MonoidΣTheory.InducedMonoid InducedMonoidPath : (M : Monoid {ℓ}) (N : MonoidΣTheory.RawMonoidΣ) (e : M .Monoid.Carrier ≃ N .fst) (E : MonoidΣTheory.RawMonoidEquivStr (MonoidΣTheory.Monoid→RawMonoidΣ M) N e) → M ≡ InducedMonoid M N e E InducedMonoidPath = MonoidΣTheory.InducedMonoidPath module MonoidTheory {ℓ} (M' : Monoid {ℓ}) where open Monoid M' renaming ( Carrier to M ) -- Added for its use in groups -- If there exists a inverse of an element it is unique inv-lemma : (x y z : M) → y · x ≡ ε → x · z ≡ ε → y ≡ z inv-lemma x y z left-inverse right-inverse = y ≡⟨ sym (rid y) ⟩ y · ε ≡⟨ cong (λ - → y · -) (sym right-inverse) ⟩ y · (x · z) ≡⟨ assoc y x z ⟩ (y · x) · z ≡⟨ cong (λ - → - · z) left-inverse ⟩ ε · z ≡⟨ lid z ⟩ z ∎
{ "alphanum_fraction": 0.6129913312, "avg_line_length": 35.6822033898, "ext": "agda", "hexsha": "7bf7ea8e8b2a583bb3a63f74c7b2a496b51d8b79", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/Algebra/Monoid/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/Algebra/Monoid/Base.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/Algebra/Monoid/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3142, "size": 8421 }
module _ where data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} _+_ : (m n : Nat) → Nat zero + n = n suc m + n = suc (m + n) data Th : (m n : Nat) → Set where os : ∀ {m n} → Th m n → Th (suc m) (suc n) Fin : Nat → Set Fin = Th (suc zero) infixl 6 _++_ infix 4 _≈M_ postulate U : Set RCtx : Nat → Set _++_ : ∀ {m n} → RCtx m → RCtx n → RCtx (n + m) El : U → RCtx (suc zero) _≈M_ : ∀ {n} (Δ0 Δ1 : RCtx n) → Set infix 4 _⊢l-var_ data _⊢l-var_ : ∀ {n} (Δi : RCtx n) (i : Fin n) → Set where os : ∀ {n} {e : Th zero n} {Δ Δπ π} (iq : Δπ ≈M (Δ ++ El π)) → Δπ ⊢l-var os e ⊢l-var-sub : ∀ {n Δ} {i : Fin n} → Δ ⊢l-var i → Set ⊢l-var-sub (os iq) = Nat
{ "alphanum_fraction": 0.4621513944, "avg_line_length": 20.3513513514, "ext": "agda", "hexsha": "8af02ee8fbb2f88b1467223fabb2cc2cdcef8179", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3930.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3930.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3930.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 349, "size": 753 }
{-# OPTIONS --prop --rewriting #-} module Examples.Sorting.Sequential.Comparable where open import Calf.CostMonoid open import Calf.CostMonoids costMonoid = ℕ-CostMonoid open import Data.Nat using (ℕ) open CostMonoid costMonoid using (ℂ) fromℕ : ℕ → ℂ fromℕ n = n open import Examples.Sorting.Comparable costMonoid fromℕ public
{ "alphanum_fraction": 0.7754491018, "avg_line_length": 19.6470588235, "ext": "agda", "hexsha": "061da231777db5bd1355e1662709cf8f9557e7b0", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Sorting/Sequential/Comparable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Sorting/Sequential/Comparable.agda", "max_line_length": 63, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Sorting/Sequential/Comparable.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 98, "size": 334 }
module Type.Properties.Homotopy where open import Functional import Lvl open import Numeral.Natural open import Structure.Setoid open import Type open import Type.Dependent open import Syntax.Function private variable ℓ ℓ₁ ℓ₂ ℓₑ : Lvl.Level private variable T A B : Type{ℓ} private variable n : ℕ module _ {ℓ} ⦃ equiv : ∀{T : Type{ℓ}} → Equiv{ℓ}(T) ⦄ where -- TODO: Maybe the requirements can be relaxed to a tower of equivalences? module Names where HomotopyLevel : ℕ → (A : Type{ℓ}) → Type HomotopyLevel(𝟎) (A) = Σ(A)(x ↦ ∀{y} → (y ≡ x)) HomotopyLevel(𝐒(𝟎)) (A) = ∀{x y : A} → (x ≡ y) HomotopyLevel(𝐒(𝐒(n)))(A) = ∀{x y : A} → HomotopyLevel(𝐒(n))(x ≡ y) Truncation = HomotopyLevel ∘ 𝐒 ∘ 𝐒 record HomotopyLevel(n : ℕ) (A : Type{ℓ}) : Type{ℓ} where constructor intro field proof : Names.HomotopyLevel(n)(A) Truncation = HomotopyLevel ∘ 𝐒 ∘ 𝐒 -- TODO: Where should this be stated? -- ExcludedMiddle : (A : Type{ℓ}) ⦃ equiv-A : Equiv{ℓₑ}(A) ⦄ → Stmt -- ExcludedMiddle(A) = MereProposition(A) → (IsUnit(A) ∨ IsEmpty(A))
{ "alphanum_fraction": 0.6492048644, "avg_line_length": 32.3939393939, "ext": "agda", "hexsha": "89d2a5a463182f3b5743f9be809345b4d28a3cf2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Properties/Homotopy.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Properties/Homotopy.agda", "max_line_length": 134, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Properties/Homotopy.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 417, "size": 1069 }
open import Common.Prelude _test_test_ : Nat → Nat → Nat → Nat m test_test n = λ i → m + i + n
{ "alphanum_fraction": 0.6458333333, "avg_line_length": 19.2, "ext": "agda", "hexsha": "754c32f37acfb41bb1d8d335df398fb0f8974574", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Sections-12.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Sections-12.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Sections-12.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 32, "size": 96 }
-- A brief Agda tutorial. -- Martín Escardó, 7 Sep 2012 (updated to be compatible with Agda 2.4.2 2 Oct 2014). -- -- Agda is a computer-implemented dialect of Martin-Löf type theory. -- It can both check and run proofs. -- -- Propositions are types (also called sets, indicated by the keyword -- Set), and their witnesses or proofs are programs. -- -- If one ignores this view/encoding of propositions, Agda is simply a -- strongly typed, pure, functional programming language with -- dependent types and other kinds of fancy types. -- -- All programs normalize in Agda. --- -- Gödel's system T is included in Agda, but Platek-Scott-Plotkin's -- PCF is not. But Agda is much more expressive than system T: it -- defines many more functions ℕ → ℕ, for example, and encodes much -- higher ordinals. -- The Agda wiki http://wiki.portal.chalmers.se/agda/agda.php tells -- you how to install Agda and get started with editing. -- -- I recommend the tutorial paper --- http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf, -- among others available at -- http://wiki.portal.chalmers.se/agda/agda.php?n=Main.Documentation -- -- See also the standard library -- http://www.cse.chalmers.se/~nad/listings/lib-0.6/README.html -- which we will not use in this tutorial. module EscardoTutorial where -- An inductive definition: data ℕ : Set where zero : ℕ succ : ℕ → ℕ -- This notation uses unicode UTF-8. To enter unicode characters in emacs in Agda mode, see -- http://wiki.portal.chalmers.se/agda/agda.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode -- (usually LaTeX syntax works). -- Could instead write the following, which is equivalent with a -- different notation, using ascii characters only: data N : Set where zero : N succ : N -> N one : N -- But we will use the first definition. (Later we may prove that ℕ -- and N are isomorphic, as an exercise.) -- Our first function, inductively defined: _+_ : ℕ → ℕ → ℕ x + zero = x x + succ y = succ(x + y) -- We can define a simple-recursion combinator: rec : (X : Set) → X → (X → X) → (ℕ → X) rec X x f zero = x rec X x f (succ n) = f(rec X x f n) -- Or the primitive-recursion combinator: prim-rec : (X : Set) → X → (ℕ → X → X) → ℕ → X prim-rec X x f zero = x prim-rec X x f (succ n) = f n (prim-rec X x f n) -- Addition can then be instead defined as: _+₁_ : ℕ → ℕ → ℕ x +₁ y = rec ℕ x succ y -- We are using a subscript to indicate a different version. An -- identifier is a sequence of unicode (UTF-8 encoding) characters not -- containing white space or reserved characters @.(){};_. -- -- Quoting from the agda wiki, -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.LexicalMatters: -- -- Furthermore, the following set of reserved words cannot be used as name parts. -- -- -> : = ? \ | → ∀ -- λ -- abstract data forall hiding import in infix infixl infixr -- let module mutual open postulate primitive private public record -- renaming rewrite using where with -- Prop Set[0–9]* [0–9]+ -- -- This means that strings like x:A and A→B are valid names. To write -- the type signature and the function type, white space have to be -- inserted: x : A, and A → B. -- -- To illustrate some features, another equivalent definition is this: rec₁ : (X : Set) → X → (X → X) → (ℕ → X) rec₁ X x f = h where h : ℕ → X h zero = x h (succ n) = f(h n) -- Indentation matters. -- The parameter X of the definition of rec/rec₁ may be made implicit, -- and this is sensible: rec₂ : {X : Set} → X → (X → X) → (ℕ → X) rec₂ {X} x f = h where h : ℕ → X h zero = x h (succ n) = f(h n) -- Now we can define addition omitting the type ℕ: _+₂_ : ℕ → ℕ → ℕ x +₂ y = rec₂ x succ y -- Agda then infers (by unification) that this is the only possibly -- choice for the implicit argument. -- In cases when the inference fails, or when you want to implicitly -- supply the implicit parameter for emphasis, you can write: _+₃_ : ℕ → ℕ → ℕ x +₃ y = rec₂ {ℕ} x succ y -- You can also write: _+₄_ : ℕ → ℕ → ℕ _+₄_ x y = rec₂ {ℕ} x succ y -- or even, using η-contraction: _+₅_ : ℕ → ℕ → ℕ _+₅_ x = rec₂ {ℕ} x succ -- or: _+₆_ : ℕ → ℕ → ℕ _+₆_ = λ x → rec₂ {ℕ} x succ -- or, using only ascii characters: _+₇_ : ℕ → ℕ → ℕ _+₇_ = \x -> rec₂ {ℕ} x succ -- I prefer the original definition. -- You can also declare an associativity and precedence for (the -- various versions of) _+_ if you wish (valid from now on): infixl 5 _+_ -- Since we are discussing syntax, let also do: -- {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN NATURAL N #-} -- This allows you to write e.g. 0 to mean zero and 3 to mean -- Succ(Succ(Succ zero)). -- So far we have a few definitions. We want to prove something about -- them. -- Agda uses the Brouwer-Heyting-Kolmogorov-Curry-Howard -- representation of propositions as types. -- -- Types are called sets in Agda syntax, with the keyword "Set". -- (And in the early accounts by Martin-Löf too.) -- -- So a proposition is a set. -- -- * A set may be empty: this represents "false". -- -- * Or it may have an element: any inhabited set represents "true". -- -- So a proposition may be true in many ways: an element of its -- representing set is called a "witness" or a "realizer" or "a -- proof". -- -- -- A predicate on a type X is a function A : X → Set. -- For each element x : X it gives a set A x representing a -- proposition. -- -- -- * The BHKCH intepretation of implication: -- -- A realizer of the proposition "A implies B" is a function that -- given any realizer of A produces a realizer of B. -- -- Thus, the function type (A → B), built-in in Martin-Löf theory -- and in Agda, codes implication. -- -- -- * The BHKCH intepretation of universal quantification: -- -- A realizer of "for all x in X, A x" is a function that -- transforms any x in X into a realizer of A x. -- -- The interpretation of universal quantification is given by -- dependent products, again built-in in Martin-Löf theory and in -- Agda. -- -- In Martin-Löf type theory, it is written Π. In Agda, the -- notation (x : X) → A x is used, where A : X → Set. -- -- It is the type of functions that map any x : X to an element y : A x. -- Notice that the type of the output depends on the input. -- -- Agda allows you to write ∀(x : X) → A x to mean (x : X) → A x. -- When types can be inferred by Agda, you can also write ∀ x → A x. -- -- * The BHKCH intepretation of existential quantification: -- -- A realizer of "there is x in X s.t. A x" is a pair (x , a) -- where x is in X and a is a realizer of A x. -- -- In Martin-Löf type theory, Σ is used to define the -- interpretation of existential quantification. -- -- In Agda we need to (inductively) define it ourselves: data Σ {X : Set} (A : X → Set) : Set where _,_ : (x₀ : X) → A x₀ → Σ \(x : X) → A x -- Read Σ \(x : X) → A x as the sum of the sets A x for x : X. Agda -- is "intensional", but it uses the η rule. So Σ \(x : X) → A x is -- the same as Σ {X} A, because A is the same thing as \(x : X) → A x, -- and because X can be inferred now, as it is given in the definition -- \(x : X) → A x. π₀ : {X : Set} {A : X → Set} → (Σ \(x : X) → A x) → X π₀(x , a) = x π₁ : {X : Set} {A : X → Set} → (z : Σ \(x : X) → A x) → A(π₀ z) π₁(x , a) = a -- Martin-Löf instead works with the following elimination rule, which -- is a dependently type version of "uncurrying": Σ-elim : {X : Set} → {Y : X → Set} → {A : (Σ \(x : X) → Y x) → Set} → (∀(x : X) → ∀(y : Y x) → A(x , y)) → ∀(t : (Σ \(x : X) → Y x)) → A t Σ-elim f(x , y) = f x y -- Notice that Σ-elim defines the projections: π₀' : {X : Set} {A : X → Set} → (Σ \(x : X) → A x) → X π₀' = Σ-elim (λ x a → x) π₁' : {X : Set} {A : X → Set} → (z : Σ \(x : X) → A x) → A(π₀ z) π₁' = Σ-elim (λ x a → a) -- The converse holds if we assume "surjective-pairing", a form of the -- η-rule for sums. Now this may be confusing: the way we defined Σ -- using "data" doesn't give you that. But if you define Σ using a -- record, then you do get that. See -- http://www.cs.bham.ac.uk/~mhe/agda/SetsAndFunctions.html -- Cartesian products are a special case of dependent sums, where Y -- doesn't depend on x : X, which represent conjunctions in the BHKCH -- interpretation of logic: _×_ : Set → Set → Set X × Y = Σ \(x : X) → Y -- It is also useful to introduce ∃-notation: ∃ : {X : Set} → (A : X → Set) → Set ∃ = Σ -- We have developed enough material to be able to formulate and prove -- our first theorem: the Axiom of Choice: AC : {X Y : Set} {A : X → Y → Set} → (∀(x : X) → ∃ \(y : Y) → A x y) → ∃ \(f : X → Y) → ∀(x : X) → A x (f x) AC g = (λ x → π₀(g x)) , (λ x → π₁(g x)) -- We have a dependently typed version as well (not to be confused -- with dependent choice, which I will discuss later), with the same -- proof: AC' : {X : Set} {Y : X → Set} {A : (x : X) → Y x → Set} → (∀(x : X) → ∃ \(y : Y x) → A x y) → ∃ \(f : ((x : X) → Y x)) → ∀(x : X) → A x (f x) AC' g = ((λ x → π₀(g x)) , (λ x → π₁(g x))) -- I find the following use of an implicit argument useful in order -- to achieve a notation close to Martin-Löf's. Π : {X : Set} → (Y : X → Set) → Set Π {X} Y = (x : X) → Y x -- For example the axiom of choice becomes less surprising when we -- realize that it amounts to AC-in-ML-notation : {X : Set} {Y : X → Set} {A : (x : X) → Y x → Set} → (Π \(x : X) → Σ \(y : Y x) → A x y) → Σ \(f : ((x : X) → Y x)) → Π \(x : X) → A x (f x) AC-in-ML-notation g = ((λ x → π₀(g x)) , (λ x → π₁(g x))) -- (The axiom of choice usually fails in a topos, but the above always -- holds. In fact, the function AC-in-ML-notation is a -- (pointwise) isomorphism. Exercise: define its inverse in Agda.) -- Let's return to the natural numbers. -- We can also write an induction combinator: induction : {A : ℕ → Set} → A zero → (∀(k : ℕ) → A k → A(succ k)) → ∀(n : ℕ) → A n induction base step 0 = base induction base step (succ n) = step n (induction base step n) -- Notice that the realizer of the principle of induction has the same -- definition as primitive recursion. Only the types are different: -- that of primitive recursion is less general, and that of induction -- is the dependent-type generalization. prim-rec' : {X : Set} → X → (ℕ → X → X) → ℕ → X prim-rec' = induction -- The empty type, representing the false proposition. data ∅ : Set where -- no constructors given -- The "elimintation rule of false", or "ex-falso quod libet", or the -- function from the empty set to any set: from-∅ : {X : Set} → ∅ → X from-∅ () -- This is our first encounter of "()" patterns. They assert that a -- case is impossible (and Agda checks that), or that no constructor -- is available to perform a match. All uses of () can be reduced to -- from-∅, but sometimes it is clearer to use the "()" pattern. -- The type with one element, giving one way of representing the true -- proposition: data ① : Set where * : ① -- This is something like the terminal object: to-① : {X : Set} → X → ① to-① x = * -- * The BHKCH intepretation of disjunction is the binary co-product, -- inductively defined. It is natural to use the symbol "+" to -- denote the co-product, but in Agda there is no overloading other than -- constructors defined in (different) "data" definitions. So let's -- use "⨄" as in the standard library data _⨄_ (X₀ X₁ : Set) : Set where in₀ : X₀ → X₀ ⨄ X₁ in₁ : X₁ → X₀ ⨄ X₁ -- These constructors correspond to the introduction rules of disjunction. -- Definition by cases corresponds to the elimination rule: cases : {X₀ X₁ Y : Set} → (X₀ → Y) → (X₁ → Y) → (X₀ ⨄ X₁ → Y) cases f₀ f₁ (in₀ x₀) = f₀ x₀ cases f₀ f₁ (in₁ x₁) = f₁ x₁ -- See Bove & Dybjer's paper "Dependent types at work" for -- a dependently typed version of this: -- http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf -- Alternatively, work it out yourself as an exercise. -- Binary co-products can be alternatively defined from sums and the -- booleans in the presence of the "universe" Set. -- -- First define the set of binary digits (the booleans with another -- notation and perspective): data ② : Set where ₀ : ② ₁ : ② -- This amounts to if-then-else: ②-cases : {X : Set} → X → X → ② → X ②-cases x₀ x₁ ₀ = x₀ ②-cases x₀ x₁ ₁ = x₁ -- Here is the dependently-typed version: dep-②-cases : {X : ② → Set} → X ₀ → X ₁ → ((i : ②) → X i) dep-②-cases x₀ x₁ ₀ = x₀ dep-②-cases x₀ x₁ ₁ = x₁ -- The following has the same definition but a different type: ②-Cases : Set → Set → ② → Set ②-Cases X₀ X₁ ₀ = X₀ ②-Cases X₀ X₁ ₁ = X₁ -- Agda has universe polymorphism, but I won't mention it in this -- tutorial. It requires to rewrite all code we have written and we -- will write in this tutorial, everytime with a parameter for a -- universe level. Explore the standard library to see how this works. _⨄'_ : Set → Set → Set X₀ ⨄' X₁ = Σ \(i : ②) → ②-Cases X₀ X₁ i in₀' : {X₀ X₁ : Set} → X₀ → X₀ ⨄' X₁ in₀' x₀ = (₀ , x₀) in₁' : {X₀ X₁ : Set} → X₁ → X₀ ⨄' X₁ in₁' x₁ = (₁ , x₁) cases' : {X₀ X₁ Y : Set} → (X₀ → Y) → (X₁ → Y) → (X₀ ⨄' X₁ → Y) cases' {X₀} {X₁} {Y} f₀ f₁ = h where Y' : X₀ ⨄' X₁ → Set Y' z = Y f : (i : ②) → (x : ②-Cases X₀ X₁ i) → Y'(i , x) f = dep-②-cases f₀ f₁ g : (z : X₀ ⨄' X₁) → Y' z g = Σ-elim {②} {②-Cases X₀ X₁} {Y'} f h : X₀ ⨄' X₁ → Y h = g -- * The BHKCH intepretation of equality: -- -- Howards idea: x = y is interpreted by a type that is empty if x -- and y are equal, and has precisely one element if not. -- -- In set theory (classical or constructive), this can be written -- { z ∈ 1 | x = y }, where 1 is a singleton, say {0}. -- -- But notice that this cannot be written down in Martin-Löf's -- type theory, and already presuposes a notion of equality to be -- available. -- -- Martin-Löf's idea: inductively define this type. This is the -- so-called identity type, which is complicated and hence we will -- look at it later. -- Using the universe Set, one can easily define equality on the -- natural numbers by induction and show that the Martin-Löf induction -- priciple J holds for this notion of equality on ℕ. -- Notice that we use four stacked bars to denote the equality type on -- the type ℕ. Later we will use three to denote the equality type, or -- identity type, for any type (and in particular ℕ again). infix 3 _≣_ _≣_ : ℕ → ℕ → Set 0 ≣ 0 = ① (succ m) ≣ 0 = ∅ 0 ≣ (succ n) = ∅ (succ m) ≣ (succ n) = m ≣ n Reflℕ : ∀ n → n ≣ n Reflℕ 0 = * Reflℕ (succ n) = IH -- Notice that we needed to inhabit the set ((succ m) ≣ (succ n)) -- in this case, but we instead inhabited the set (m ≣ n) using IH. -- This works because, by definition, ((succ m) ≣ (succ n)) is (m ≣ n). where IH : n ≣ n IH = Reflℕ n -- We next show that _≣_ is the least reflexive relation on ℕ: weak-Jℕ : (A : ℕ → ℕ → Set) → (∀ n → A n n) → ∀ m n → m ≣ n → A m n weak-Jℕ A φ 0 0 * = φ 0 weak-Jℕ A φ 0 (succ n) () weak-Jℕ A φ (succ m) 0 () weak-Jℕ A φ (succ m) (succ n) e = weak-Jℕ A' φ' m n e where A' : ℕ → ℕ → Set A' m n = A (succ m) (succ n) φ' : ∀ n → A' n n φ' n = φ(succ n) -- If you don't like "()" patterns, you can use the function from-∅ -- (defined above using "()" patterns): weak-Jℕ' : (A : ℕ → ℕ → Set) → (∀ n → A n n) → ∀ m n → m ≣ n → A m n weak-Jℕ' A φ 0 0 * = φ 0 weak-Jℕ' A φ 0 (succ n) e = from-∅ e weak-Jℕ' A φ (succ m) 0 e = from-∅ e weak-Jℕ' A φ (succ m) (succ n) e = weak-Jℕ' (λ m n → A(succ m)(succ n)) (λ n → φ(succ n)) m n e -- There is a stronger, dependent(ly typed) version of weak-Jℕ: Jℕ : (A : (m n : ℕ) → m ≣ n → Set) → (∀ n → A n n (Reflℕ n)) → ∀ m n → ∀(e : m ≣ n) → A m n e Jℕ A φ 0 0 * = φ 0 Jℕ A φ 0 (succ n) () Jℕ A φ (succ m) 0 () Jℕ A φ (succ m) (succ n) e = Jℕ (λ m n → A (succ m) (succ n)) (λ n → φ(succ n)) m n e -- Of course we could have defined instead the weak version from the -- strong one: weak-Jℕ'' : (A : (m n : ℕ) → Set) → (∀ n → A n n) → ∀ m n → m ≣ n → A m n weak-Jℕ'' A = Jℕ (λ m n e → A m n) -- Jℕ can be regarded as an induction principle for equality on the -- type ℕ. Several properties of ≣ can be proved using J without -- reference to the inductive structure of the the type ℕ, and often -- its weak version suffices. symℕ : (x y : ℕ) → x ≣ y → y ≣ x symℕ = weak-Jℕ A φ where A : (x y : ℕ) → Set A x y = y ≣ x φ : (x : ℕ) → x ≣ x φ = Reflℕ transℕ : (x y z : ℕ) → x ≣ y → y ≣ z → x ≣ z transℕ x y z r s = transℕ' x y r z s where transℕ' : (x y : ℕ) → x ≣ y → (z : ℕ) → y ≣ z → x ≣ z transℕ' = weak-Jℕ A φ where A : (x y : ℕ) → Set A x y = ∀(z : ℕ) → y ≣ z → x ≣ z φ : (x : ℕ) → A x x φ x z s = s substℕ : (P : ℕ → Set) → (x y : ℕ) → x ≣ y → P x → P y substℕ P = weak-Jℕ A φ where A : (x y : ℕ) → Set A x y = P x → P y φ : (x : ℕ) → A x x φ x p = p -- Transitivity can be proved using substitution: sym-transℕ : (x y z : ℕ) → x ≣ y → x ≣ z → y ≣ z sym-transℕ x y z = rearrange z x y where rearrange : (z x y : ℕ) → x ≣ y → x ≣ z → y ≣ z rearrange z = substℕ (λ x → x ≣ z) transℕ' : (x y z : ℕ) → x ≣ y → y ≣ z → x ≣ z transℕ' x y z r s = sym-transℕ y x z (symℕ x y r) s congℕ→ℕ : (f : ℕ → ℕ) → (x x' : ℕ) → x ≣ x' → f x ≣ f x' congℕ→ℕ f = weak-Jℕ (λ x x' → f x ≣ f x') (λ x → Reflℕ(f x)) -- As another example, we show that addition is commutative: zero-is-left-neutral : ∀ n → 0 + n ≣ n zero-is-left-neutral 0 = * zero-is-left-neutral (succ n) = IH -- We need to inhabit the type (0 + succ n ≣ succ n). -- Expanding the definitions, -- (0 + succ n ≣ succ n) = -- (succ(0 + n) ≣ succ n) = -- (0 + n ≣ n). -- Here "=" is definitional equality, silently applied by Agda. where IH : 0 + n ≣ n IH = zero-is-left-neutral n -- Equivalently: zero-is-left-neutral' : ∀ n → 0 + n ≣ n zero-is-left-neutral' = induction base step where base : ① base = * step : ∀ n → 0 + n ≣ n → 0 + n ≣ n step n e = e -- This with the following shows that, of course, it is equivalent to -- define addition by induction on the first argument. The proof is by -- induction on the second argument, following the definition of _+_. addition-on-first : ∀ m n → (succ m) + n ≣ succ(m + n) addition-on-first m 0 = Reflℕ m addition-on-first m (succ n) = IH where IH : succ m + n ≣ succ(m + n) IH = addition-on-first m n -- Because the situation is symmetric, we can choose any of the two -- arguments to perform the induction in the following theorem: addition-commutative : ∀ m n → m + n ≣ n + m addition-commutative 0 n = zero-is-left-neutral n addition-commutative (succ m) n = lemma where IH : m + n ≣ n + m IH = addition-commutative m n claim : succ(m + n) ≣ succ(n + m) claim = congℕ→ℕ succ (m + n) (n + m) IH lemma : succ m + n ≣ succ (n + m) lemma = transℕ (succ m + n) (succ(m + n)) (succ (n + m)) (addition-on-first m n) claim -- Exercise. Prove the Peano axioms that are not covered above. -- The above theorem "Jℕ" motivates Martin-Löf's inductive definition -- of the identity type for any type X: data _≡_ {X : Set} : X → X → Set where refl : {x : X} → x ≡ x -- Martin-Löf's notation is the following: Id : (X : Set) → X → X → Set Id X x y = x ≡ y Refl : (X : Set) → (x : X) → Id X x x Refl X x = refl {X} {x} -- The induction principle is as for equality on ℕ defined earlier: J : {X : Set} → (A : (x x' : X) → x ≡ x' → Set) → (∀(x : X) → A x x refl) → ∀{x x' : X} → ∀(r : x ≡ x') → A x x' r J A f {x} refl = f x -- In Agda, one can prove the unique-of-identity proofs principle K by -- pattern matching: K : {X : Set} → ∀{x x' : X} → ∀(r s : x ≡ x') → r ≡ s K refl refl = refl -- This is not provable in intensional Martin-Löf type theory (Hofmann -- & Streicher's groupoid interpretation paper). -- -- However, it is known that the following is provable in MLTT: pseudo-K : {X : Set} → ∀{x x' : X} → ∀(r : x ≡ x') → (x , refl) ≡ (x' , r) pseudo-K {X} = J {X} A (λ x → refl) where A : ∀(x x' : X) → x ≡ x' → Set A x x' r = _≡_ {Σ \(x' : X) → x ≡ x'} (x , refl) (x' , r) -- It has been shown that types with decidable equality, such as ℕ and -- the booleans, satisfy the K-rule. Moreover, for ℕ it can be easily -- proved by induction (exercise, which we may eventually do). -- Conor McBride proved that having the K-rule is equivalent to having -- pattern matching over refl, which Agda does. But this can be -- disabled in Agda using the pragma {-# OPTIONS --without-K #-}. -- Without this pragma, many definitions by pattern matching, -- including that of J, are accepted, but that of K, and other -- definitions that require K, are not. -- Exercise: formulate and prove sym, subst, trans, cong, generalizing -- the above development for ℕ. Define a weak version of J from J, and -- use this in your proofs. -- The propositional "axiom of function extensionality" is Extensionality : Set₁ Extensionality = ∀(X Y : Set) → ∀(f g : X → Y) → (∀(x : X) → f x ≡ g x) → f ≡ g -- Here we have used the second universe. The first is Set = Set₀. We -- have Set₀ : Set₁, Set₁ : Set₂, and so on. The "small" sets (or -- types) live in Set₀. The large set Extensionality lives in Set₁ -- because it quantifies over elements of Set₀. -- It is neither possible to show that the set Extensionality is -- inhabited or that it is empty. That is, the extensionality axiom is -- independent of MLTT. We can, if we wish, postulate it, or rather -- postulate an inhabitant: postulate ext : Extensionality -- But then ext behaves like a constant, with no computation rules for -- it. Reduction gets stuck when it encounters this case. -- The principle of excluded middle is independent of MLTT. EM : Set₁ EM = ∀(X : Set) → X ⨄ (X → ∅) -- Notice that (X → ∅) represents negation because ∅ represents false. -- Notice also that the independence of EM follows from that of -- Extensionality if we don't have the above postulate. -- It would be good, too good, to have an inhabitant of EM without -- violating the computational character of MLTT. It would solve -- Hilbert's decision problem for large fragments of mathematics, -- including Peano arithmetic. It would amount to an algorithm for -- deciding whether a proposition has a realizer, or its negation has -- a realizer, and would also give the corresponding realizer. As is -- well known, this is not possible, and this is why EM cannot be -- inhabited in MLTT. -- This is not to say that EM is false in MLTT. -- In fact the set (EM → ∅) cannot be inhabited in MLTT either. This -- is because MLTT is compatible with classical mathematics (like -- Bishop mathematics). Set theory, say ZF with an inaccessible -- cardinal modeling the universe, or with a stack of inaccessible -- cardinals modelling a hierarchy of universes, can be used to give a -- model of MLTT in which EM is inhabited (by simply using the -- principle of excluded middle of ZF, whose consistency is not -- disputed, even by constructive mathematicians). -- The negation of EM is also consistent, because recursive models -- of MLTT, in which an inhabitant of EM needs to be given by an -- algorithm, exist, so that EM is empty and hence (EM → ∅) is -- inhabited in such models. There are also (classical and -- constructive) models in which all functions are continuous. In -- those models, (EM → ∅) has an inhabitant too. -- So it is very inaccurate to say that excluded middle "doesn't hold" -- in Martin-Löf type theory. What we have is that EM is independent -- of MLTT. Independence is a meta-theoretical property, which cannot -- be written down in MLTT itself, of course. Formalized versions of -- the assertions "all functions are computable" and "all functions -- are continuous" are also independent. In constructive mathematics -- in the style of Bishop or Martin-Löf, in which compatibility with -- classical and computational mathematics is desired, it is very easy -- to find independent statements, as there are plenty of theorems -- that hold classically but have no computable realizers (EM is one). -- To be continued. Jℕeq : (A : (m n : ℕ) → m ≣ n → Set) → (φ : (∀ n → A n n (Reflℕ n))) → ∀ m → Jℕ A φ m m (Reflℕ m) ≡ φ m Jℕeq A φ zero = refl Jℕeq A φ (succ m) = Jℕeq (λ m n → A (succ m) (succ n)) (λ n → φ(succ n)) m Jℕeq17 : (A : (m n : ℕ) → m ≣ n → Set) → (φ : (∀ n → A n n (Reflℕ n))) → Jℕ A φ 17 17 (Reflℕ 17) ≡ φ 17 Jℕeq17 A φ = refl
{ "alphanum_fraction": 0.6218299858, "avg_line_length": 32.1736292428, "ext": "agda", "hexsha": "e045909748249bf111d425a176c91b47f6031133", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/beyond/EscardoTutorial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/beyond/EscardoTutorial.agda", "max_line_length": 106, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/beyond/EscardoTutorial.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 8334, "size": 24645 }
------------------------------------------------------------------------------ -- Testing the translation of definitions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Definition11 where open import Common.FOL -- We test the translation of a definition which Agda η-reduces. P : D → Set P d = ∃ λ e → d ≡ e {-# ATP definition P #-} postulate bar : ∀ {d} → P d → ∃ λ e → e ≡ d {-# ATP prove bar #-}
{ "alphanum_fraction": 0.4243902439, "avg_line_length": 27.9545454545, "ext": "agda", "hexsha": "ccbf48885c9ad09f0886a49f3dea68cbc2e0f18f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/Definition11.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/Definition11.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/Definition11.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 122, "size": 615 }
{-# OPTIONS --no-syntactic-equality #-} open import Agda.Primitive variable ℓ : Level A : Set ℓ P : A → Set ℓ
{ "alphanum_fraction": 0.6271186441, "avg_line_length": 13.1111111111, "ext": "agda", "hexsha": "c710fa4c6b51730268ad49fe9eb0f0e5f60540a6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4265b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4265b.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4265b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 118 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRingSolver.EvalHom where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Int.Base hiding (_+_ ; _·_ ; -_) open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Data.Bool open import Cubical.Relation.Nullary.Base open import Cubical.Algebra.CommRingSolver.Utility open import Cubical.Algebra.CommRingSolver.RawAlgebra open import Cubical.Algebra.CommRingSolver.IntAsRawRing open import Cubical.Algebra.CommRingSolver.HornerForms open import Cubical.Algebra.CommRingSolver.HornerEval open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring private variable ℓ : Level module HomomorphismProperties (R : CommRing ℓ) where private νR = CommRing→RawℤAlgebra R open CommRingStr (snd R) open RingTheory (CommRing→Ring R) open IteratedHornerOperations νR EvalHom+0 : {n : ℕ} (P : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval (0ₕ +ₕ P) xs ≡ eval P xs EvalHom+0 {n = ℕ.zero} (const x) [] = cong (scalar R) (+Ridℤ x) EvalHom+0 {n = ℕ.suc _} P xs = refl Eval0H : {n : ℕ} (xs : Vec ⟨ νR ⟩ n) → eval {A = νR} 0ₕ xs ≡ 0r Eval0H [] = refl Eval0H (x ∷ xs) = refl Eval1ₕ : {n : ℕ} (xs : Vec ⟨ νR ⟩ n) → eval {A = νR} 1ₕ xs ≡ 1r Eval1ₕ [] = refl Eval1ₕ (x ∷ xs) = eval 1ₕ (x ∷ xs) ≡⟨ refl ⟩ eval (0H ·X+ 1ₕ) (x ∷ xs) ≡⟨ combineCasesEval R 0H 1ₕ x xs ⟩ eval {A = νR} 0H (x ∷ xs) · x + eval 1ₕ xs ≡⟨ cong (λ u → u · x + eval 1ₕ xs) (Eval0H (x ∷ xs)) ⟩ 0r · x + eval 1ₕ xs ≡⟨ cong (λ u → 0r · x + u) (Eval1ₕ xs) ⟩ 0r · x + 1r ≡⟨ cong (λ u → u + 1r) (0LeftAnnihilates _) ⟩ 0r + 1r ≡⟨ +IdL _ ⟩ 1r ∎ -EvalDist : {n : ℕ} (P : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval (-ₕ P) xs ≡ - eval P xs -EvalDist (const x) [] = -DistScalar R x -EvalDist 0H xs = eval (-ₕ 0H) xs ≡⟨ Eval0H xs ⟩ 0r ≡⟨ sym 0Selfinverse ⟩ - 0r ≡⟨ cong -_ (sym (Eval0H xs)) ⟩ - eval 0H xs ∎ -EvalDist (P ·X+ Q) (x ∷ xs) = eval (-ₕ (P ·X+ Q)) (x ∷ xs) ≡⟨ refl ⟩ eval ((-ₕ P) ·X+ (-ₕ Q)) (x ∷ xs) ≡⟨ combineCasesEval R (-ₕ P) (-ₕ Q) x xs ⟩ (eval (-ₕ P) (x ∷ xs)) · x + eval (-ₕ Q) xs ≡⟨ cong (λ u → u · x + eval (-ₕ Q) xs) (-EvalDist P _) ⟩ (- eval P (x ∷ xs)) · x + eval (-ₕ Q) xs ≡⟨ cong (λ u → (- eval P (x ∷ xs)) · x + u) (-EvalDist Q _) ⟩ (- eval P (x ∷ xs)) · x + - eval Q xs ≡[ i ]⟨ -DistL· (eval P (x ∷ xs)) x i + - eval Q xs ⟩ - ((eval P (x ∷ xs)) · x) + (- eval Q xs) ≡⟨ -Dist _ _ ⟩ - ((eval P (x ∷ xs)) · x + eval Q xs) ≡[ i ]⟨ - combineCasesEval R P Q x xs (~ i) ⟩ - eval (P ·X+ Q) (x ∷ xs) ∎ combineCases+ : {n : ℕ} (P Q : IteratedHornerForms νR (ℕ.suc n)) (r s : IteratedHornerForms νR n) (x : fst R) (xs : Vec (fst R) n) → eval ((P ·X+ r) +ₕ (Q ·X+ s)) (x ∷ xs) ≡ eval ((P +ₕ Q) ·X+ (r +ₕ s)) (x ∷ xs) combineCases+ {n = n} P Q r s x xs with (isZero νR (P +ₕ Q) and isZero νR (r +ₕ s)) ≟ true ... | yes p = compute+ₕEvalBothZero R n P Q r s x xs p ... | no p = compute+ₕEvalNotBothZero R n P Q r s x xs (¬true→false _ p) +Homeval : {n : ℕ} (P Q : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval (P +ₕ Q) xs ≡ (eval P xs) + (eval Q xs) +Homeval (const x) (const y) [] = +HomScalar R x y +Homeval 0H Q xs = eval (0H +ₕ Q) xs ≡⟨ refl ⟩ eval Q xs ≡⟨ sym (+IdL _) ⟩ 0r + eval Q xs ≡⟨ cong (λ u → u + eval Q xs) (sym (Eval0H xs)) ⟩ eval 0H xs + eval Q xs ∎ +Homeval (P ·X+ Q) 0H xs = eval ((P ·X+ Q) +ₕ 0H) xs ≡⟨ refl ⟩ eval (P ·X+ Q) xs ≡⟨ sym (+IdR _) ⟩ eval (P ·X+ Q) xs + 0r ≡⟨ cong (λ u → eval (P ·X+ Q) xs + u) (sym (Eval0H xs)) ⟩ eval (P ·X+ Q) xs + eval 0H xs ∎ +Homeval (P ·X+ Q) (S ·X+ T) (x ∷ xs) = eval ((P ·X+ Q) +ₕ (S ·X+ T)) (x ∷ xs) ≡⟨ combineCases+ P S Q T x xs ⟩ eval ((P +ₕ S) ·X+ (Q +ₕ T)) (x ∷ xs) ≡⟨ combineCasesEval R (P +ₕ S) (Q +ₕ T) x xs ⟩ (eval (P +ₕ S) (x ∷ xs)) · x + eval (Q +ₕ T) xs ≡⟨ cong (λ u → (eval (P +ₕ S) (x ∷ xs)) · x + u) (+Homeval Q T xs) ⟩ (eval (P +ₕ S) (x ∷ xs)) · x + (eval Q xs + eval T xs) ≡⟨ cong (λ u → u · x + (eval Q xs + eval T xs)) (+Homeval P S (x ∷ xs)) ⟩ (eval P (x ∷ xs) + eval S (x ∷ xs)) · x + (eval Q xs + eval T xs) ≡⟨ cong (λ u → u + (eval Q xs + eval T xs)) (·DistL+ _ _ _) ⟩ (eval P (x ∷ xs)) · x + (eval S (x ∷ xs)) · x + (eval Q xs + eval T xs) ≡⟨ +ShufflePairs _ _ _ _ ⟩ ((eval P (x ∷ xs)) · x + eval Q xs) + ((eval S (x ∷ xs)) · x + eval T xs) ≡[ i ]⟨ combineCasesEval R P Q x xs (~ i) + combineCasesEval R S T x xs (~ i) ⟩ eval (P ·X+ Q) (x ∷ xs) + eval (S ·X+ T) (x ∷ xs) ∎ ⋆Homeval : {n : ℕ} (r : IteratedHornerForms νR n) (P : IteratedHornerForms νR (ℕ.suc n)) (x : ⟨ νR ⟩) (xs : Vec ⟨ νR ⟩ n) → eval (r ⋆ P) (x ∷ xs) ≡ eval r xs · eval P (x ∷ xs) ⋆0LeftAnnihilates : {n : ℕ} (P : IteratedHornerForms νR (ℕ.suc n)) (xs : Vec ⟨ νR ⟩ (ℕ.suc n)) → eval (0ₕ ⋆ P) xs ≡ 0r ⋆0LeftAnnihilates 0H xs = Eval0H xs ⋆0LeftAnnihilates {n = ℕ.zero} (P ·X+ Q) (x ∷ xs) = refl ⋆0LeftAnnihilates {n = ℕ.suc _} (P ·X+ Q) (x ∷ xs) = refl ⋆isZeroLeftAnnihilates : {n : ℕ} (r : IteratedHornerForms νR n) (P : IteratedHornerForms νR (ℕ.suc n)) (xs : Vec ⟨ νR ⟩ (ℕ.suc n)) → isZero νR r ≡ true → eval (r ⋆ P) xs ≡ 0r ⋆isZeroLeftAnnihilates r P xs isZero-r = evalIsZero R (r ⋆ P) xs (isZeroPresLeft⋆ r P isZero-r) ·0LeftAnnihilates : {n : ℕ} (P : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval (0ₕ ·ₕ P) xs ≡ 0r ·0LeftAnnihilates (const x) xs = eval (const _) xs ≡⟨ Eval0H xs ⟩ 0r ∎ ·0LeftAnnihilates 0H xs = Eval0H xs ·0LeftAnnihilates (P ·X+ P₁) xs = Eval0H xs ·isZeroLeftAnnihilates : {n : ℕ} (P Q : IteratedHornerForms νR n) (xs : Vec (fst R) n) → isZero νR P ≡ true → eval (P ·ₕ Q) xs ≡ 0r ·isZeroLeftAnnihilates P Q xs isZeroP = evalIsZero R (P ·ₕ Q) xs (isZeroPresLeft·ₕ P Q isZeroP) ·Homeval : {n : ℕ} (P Q : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval (P ·ₕ Q) xs ≡ (eval P xs) · (eval Q xs) combineCases⋆ : {n : ℕ} (x : fst R) (xs : Vec (fst R) n) → (r : IteratedHornerForms νR n) → (P : IteratedHornerForms νR (ℕ.suc n)) → (Q : IteratedHornerForms νR n) → eval (r ⋆ (P ·X+ Q)) (x ∷ xs) ≡ eval ((r ⋆ P) ·X+ (r ·ₕ Q)) (x ∷ xs) combineCases⋆ x xs r P Q with isZero νR r ≟ true ... | yes p = eval (r ⋆ (P ·X+ Q)) (x ∷ xs) ≡⟨ ⋆isZeroLeftAnnihilates r (P ·X+ Q) (x ∷ xs) p ⟩ 0r ≡⟨ someCalculation R ⟩ 0r · x + 0r ≡⟨ step1 ⟩ eval (r ⋆ P) (x ∷ xs) · x + eval (r ·ₕ Q) xs ≡⟨ sym (combineCasesEval R (r ⋆ P) (r ·ₕ Q) x xs) ⟩ eval ((r ⋆ P) ·X+ (r ·ₕ Q)) (x ∷ xs) ∎ where step1 : 0r · x + 0r ≡ eval (r ⋆ P) (x ∷ xs) · x + eval (r ·ₕ Q) xs step1 i = ⋆isZeroLeftAnnihilates r P (x ∷ xs) p (~ i) · x + ·isZeroLeftAnnihilates r Q xs p (~ i) ... | no p with isZero νR r ... | true = byAbsurdity (p refl) ... | false = refl ⋆Homeval r 0H x xs = eval (r ⋆ 0H) (x ∷ xs) ≡⟨ refl ⟩ 0r ≡⟨ sym (0RightAnnihilates _) ⟩ eval r xs · 0r ≡⟨ refl ⟩ eval r xs · eval {A = νR} 0H (x ∷ xs) ∎ ⋆Homeval r (P ·X+ Q) x xs = eval (r ⋆ (P ·X+ Q)) (x ∷ xs) ≡⟨ combineCases⋆ x xs r P Q ⟩ eval ((r ⋆ P) ·X+ (r ·ₕ Q)) (x ∷ xs) ≡⟨ combineCasesEval R (r ⋆ P) (r ·ₕ Q) x xs ⟩ (eval (r ⋆ P) (x ∷ xs)) · x + eval (r ·ₕ Q) xs ≡⟨ cong (λ u → u · x + eval (r ·ₕ Q) xs) (⋆Homeval r P x xs) ⟩ (eval r xs · eval P (x ∷ xs)) · x + eval (r ·ₕ Q) xs ≡⟨ cong (λ u → (eval r xs · eval P (x ∷ xs)) · x + u) (·Homeval r Q xs) ⟩ (eval r xs · eval P (x ∷ xs)) · x + eval r xs · eval Q xs ≡⟨ cong (λ u → u + eval r xs · eval Q xs) (sym (·Assoc _ _ _)) ⟩ eval r xs · (eval P (x ∷ xs) · x) + eval r xs · eval Q xs ≡⟨ sym (·DistR+ _ _ _) ⟩ eval r xs · ((eval P (x ∷ xs) · x) + eval Q xs) ≡[ i ]⟨ eval r xs · combineCasesEval R P Q x xs (~ i) ⟩ eval r xs · eval (P ·X+ Q) (x ∷ xs) ∎ lemmaForCombineCases· : {n : ℕ} (Q : IteratedHornerForms νR n) (P S : IteratedHornerForms νR (ℕ.suc n)) (xs : Vec (fst R) (ℕ.suc n)) → isZero νR (P ·ₕ S) ≡ true → eval ((P ·X+ Q) ·ₕ S) xs ≡ eval (Q ⋆ S) xs lemmaForCombineCases· Q P S xs isZeroProd with isZero νR (P ·ₕ S) ... | true = refl ... | false = byBoolAbsurdity isZeroProd combineCases· : {n : ℕ} (Q : IteratedHornerForms νR n) (P S : IteratedHornerForms νR (ℕ.suc n)) (xs : Vec (fst R) (ℕ.suc n)) → eval ((P ·X+ Q) ·ₕ S) xs ≡ eval (((P ·ₕ S) ·X+ 0ₕ) +ₕ (Q ⋆ S)) xs combineCases· Q P S (x ∷ xs) with isZero νR (P ·ₕ S) ≟ true ... | yes p = eval ((P ·X+ Q) ·ₕ S) (x ∷ xs) ≡⟨ lemmaForCombineCases· Q P S (x ∷ xs) p ⟩ eval (Q ⋆ S) (x ∷ xs) ≡⟨ sym (+IdL _) ⟩ 0r + eval (Q ⋆ S) (x ∷ xs) ≡⟨ step1 ⟩ eval ((P ·ₕ S) ·X+ 0ₕ) (x ∷ xs) + eval (Q ⋆ S) (x ∷ xs) ≡⟨ step2 ⟩ eval (((P ·ₕ S) ·X+ 0ₕ) +ₕ (Q ⋆ S)) (x ∷ xs) ∎ where lemma = eval ((P ·ₕ S) ·X+ 0ₕ) (x ∷ xs) ≡⟨ combineCasesEval R (P ·ₕ S) 0ₕ x xs ⟩ eval (P ·ₕ S) (x ∷ xs) · x + eval 0ₕ xs ≡[ i ]⟨ evalIsZero R (P ·ₕ S) (x ∷ xs) p i · x + Eval0H xs i ⟩ 0r · x + 0r ≡⟨ sym (someCalculation R) ⟩ 0r ∎ step1 : _ ≡ _ step1 i = lemma (~ i) + eval (Q ⋆ S) (x ∷ xs) step2 = sym (+Homeval ((P ·ₕ S) ·X+ 0ₕ) (Q ⋆ S) (x ∷ xs)) ... | no p with isZero νR (P ·ₕ S) ... | true = byAbsurdity (p refl) ... | false = refl ·Homeval (const x) (const y) [] = ·HomScalar R x y ·Homeval 0H Q xs = eval (0H ·ₕ Q) xs ≡⟨ Eval0H xs ⟩ 0r ≡⟨ sym (0LeftAnnihilates _) ⟩ 0r · eval Q xs ≡⟨ cong (λ u → u · eval Q xs) (sym (Eval0H xs)) ⟩ eval 0H xs · eval Q xs ∎ ·Homeval (P ·X+ Q) S (x ∷ xs) = eval ((P ·X+ Q) ·ₕ S) (x ∷ xs) ≡⟨ combineCases· Q P S (x ∷ xs) ⟩ eval (((P ·ₕ S) ·X+ 0ₕ) +ₕ (Q ⋆ S)) (x ∷ xs) ≡⟨ +Homeval ((P ·ₕ S) ·X+ 0ₕ) (Q ⋆ S) (x ∷ xs) ⟩ eval ((P ·ₕ S) ·X+ 0ₕ) (x ∷ xs) + eval (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → u + eval (Q ⋆ S) (x ∷ xs)) (combineCasesEval R (P ·ₕ S) 0ₕ x xs) ⟩ (eval (P ·ₕ S) (x ∷ xs) · x + eval 0ₕ xs) + eval (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → u + eval (Q ⋆ S) (x ∷ xs)) ((eval (P ·ₕ S) (x ∷ xs) · x + eval 0ₕ xs) ≡⟨ cong (λ u → eval (P ·ₕ S) (x ∷ xs) · x + u) (Eval0H xs) ⟩ (eval (P ·ₕ S) (x ∷ xs) · x + 0r) ≡⟨ +IdR _ ⟩ (eval (P ·ₕ S) (x ∷ xs) · x) ≡⟨ cong (λ u → u · x) (·Homeval P S (x ∷ xs)) ⟩ ((eval P (x ∷ xs) · eval S (x ∷ xs)) · x) ≡⟨ sym (·Assoc _ _ _) ⟩ (eval P (x ∷ xs) · (eval S (x ∷ xs) · x)) ≡⟨ cong (λ u → eval P (x ∷ xs) · u) (·Comm _ _) ⟩ (eval P (x ∷ xs) · (x · eval S (x ∷ xs))) ≡⟨ ·Assoc _ _ _ ⟩ (eval P (x ∷ xs) · x) · eval S (x ∷ xs) ∎) ⟩ (eval P (x ∷ xs) · x) · eval S (x ∷ xs) + eval (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → (eval P (x ∷ xs) · x) · eval S (x ∷ xs) + u) (⋆Homeval Q S x xs) ⟩ (eval P (x ∷ xs) · x) · eval S (x ∷ xs) + eval Q xs · eval S (x ∷ xs) ≡⟨ sym (·DistL+ _ _ _) ⟩ ((eval P (x ∷ xs) · x) + eval Q xs) · eval S (x ∷ xs) ≡⟨ cong (λ u → u · eval S (x ∷ xs)) (sym (combineCasesEval R P Q x xs)) ⟩ eval (P ·X+ Q) (x ∷ xs) · eval S (x ∷ xs) ∎
{ "alphanum_fraction": 0.4502549988, "avg_line_length": 44.7572463768, "ext": "agda", "hexsha": "207e82bc85da54b13f56bdba2db9ef5e28f847d2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRingSolver/EvalHom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRingSolver/EvalHom.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRingSolver/EvalHom.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5479, "size": 12353 }
-- Applicative with law {-# OPTIONS --without-K --safe #-} module Experiment.Applicative where open import Data.Product as Prod open import Data.Unit open import Function.Base open import Relation.Binary.PropositionalEquality record Functor (F : Set → Set) : Set₁ where field fmap : ∀ {A B} → (A → B) → F A → F B field fmap-id : ∀ {A} (x : F A) → fmap id x ≡ x fmap-∘ : ∀ {A B C} (f : B → C) (g : A → B) (x : F A) → fmap f (fmap g x) ≡ fmap (f ∘′ g) x fmap-cong : ∀ {A B} {f g : A → B} {x : F A} → (∀ v → f v ≡ g v) → fmap f x ≡ fmap g x _<$>_ : ∀ {A B} → (A → B) → F A → F B _<$>_ = fmap ×-assoc : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A × B) × C → A × (B × C) ×-assoc ((x , y) , z) = x , (y , z) ×-assoc⁻¹ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A × (B × C) → (A × B) × C ×-assoc⁻¹ (x , (y , z)) = (x , y) , z app : ∀ {a} {b} {A : Set a} {B : Set b} → (A → B) × A → B app = uncurry _$′_ record Applicative (F : Set → Set) : Set₁ where infixl 5 _<*>_ field functor : Functor F unit : F ⊤ _<,>_ : ∀ {A B} → F A → F B → F (A × B) open Functor functor public field natural : ∀ {A B C D} (f : A → C) (g : B → D) (fx : F A) (fy : F B) → fmap f fx <,> fmap g fy ≡ fmap (Prod.map f g) (fx <,> fy) assoc : ∀ {A B C} (fx : F A) (fy : F B) (fz : F C) → fmap ×-assoc ((fx <,> fy) <,> fz) ≡ (fx <,> (fy <,> fz)) unitˡ : ∀ {B} (fy : F B) → fmap proj₂ (unit <,> fy) ≡ fy unitʳ : ∀ {A} (fx : F A) → fmap proj₁ (fx <,> unit) ≡ fx pure : ∀ {A} → A → F A pure {A} x = fmap (λ _ → x) unit _<*>_ : ∀ {A B} → F (A → B) → F A → F B _<*>_ ff fx = fmap app (ff <,> fx) liftA2 : ∀ {A B C} → (A → B → C) → F A → F B → F C liftA2 f fx fy = fmap (uncurry f) (fx <,> fy) natural₁ : ∀ {A B C} (f : A → C) (fx : F A) (fy : F B) → fmap f fx <,> fy ≡ fmap (Prod.map₁ f) (fx <,> fy) natural₁ f fx fy = begin fmap f fx <,> fy ≡⟨ cong (fmap f fx <,>_) $ sym $ fmap-id fy ⟩ fmap f fx <,> fmap id fy ≡⟨ natural f id fx fy ⟩ fmap (Prod.map₁ f) (fx <,> fy) ∎ where open ≡-Reasoning natural₂ : ∀ {A B D} (g : B → D) (fx : F A) (fy : F B) → fx <,> fmap g fy ≡ fmap (Prod.map₂ g) (fx <,> fy) natural₂ g fx fy = begin fx <,> fmap g fy ≡⟨ cong (_<,> fmap g fy) $ sym $ fmap-id fx ⟩ fmap id fx <,> fmap g fy ≡⟨ natural id g fx fy ⟩ fmap (Prod.map₂ g) (fx <,> fy) ∎ where open ≡-Reasoning assoc⁻¹ : ∀ {A B C} (fx : F A) (fy : F B) (fz : F C) → fmap ×-assoc⁻¹ (fx <,> (fy <,> fz)) ≡ (fx <,> fy) <,> fz assoc⁻¹ fx fy fz = begin fmap ×-assoc⁻¹ (fx <,> (fy <,> fz)) ≡⟨ sym $ cong (fmap ×-assoc⁻¹) (assoc fx fy fz) ⟩ fmap ×-assoc⁻¹ (fmap ×-assoc ((fx <,> fy) <,> fz)) ≡⟨ fmap-∘ ×-assoc⁻¹ ×-assoc ((fx <,> fy) <,> fz) ⟩ fmap (×-assoc⁻¹ ∘′ ×-assoc) ((fx <,> fy) <,> fz) ≡⟨⟩ fmap id ((fx <,> fy) <,> fz) ≡⟨ fmap-id ((fx <,> fy) <,> fz) ⟩ (fx <,> fy) <,> fz ∎ where open ≡-Reasoning unit-pure : unit ≡ pure tt unit-pure = begin unit ≡⟨ sym $ fmap-id unit ⟩ fmap id unit ≡⟨ refl ⟩ fmap (λ _ → tt) unit ∎ where open ≡-Reasoning fmap-pure : ∀ {A B} (f : A → B) (x : A) → fmap f (pure x) ≡ pure (f x) fmap-pure f x = begin fmap f (fmap (λ _ → x) unit) ≡⟨ fmap-∘ f (λ _ → x) unit ⟩ fmap (λ _ → f x) unit ∎ where open ≡-Reasoning unitˡʳ : ∀ {A} (fx : F A) → fmap proj₂ (unit <,> fx) ≡ fmap proj₁ (fx <,> unit) unitˡʳ fx = trans (unitˡ fx) (sym $ unitʳ fx) unitˡ′ : ∀ {B} (fy : F B) → unit <,> fy ≡ fmap (tt ,_) fy unitˡ′ fy = begin unit <,> fy ≡⟨ sym $ fmap-id (unit <,> fy) ⟩ fmap id (unit <,> fy) ≡⟨ fmap-cong (λ _ → refl) ⟩ fmap ((tt ,_) ∘′ proj₂) (unit <,> fy) ≡⟨ sym $ fmap-∘ (tt ,_) proj₂ (unit <,> fy) ⟩ fmap (tt ,_) (fmap proj₂ (unit <,> fy)) ≡⟨ cong (fmap (tt ,_)) (unitˡ fy) ⟩ fmap (tt ,_) fy ∎ where open ≡-Reasoning unitʳ′ : ∀ {A} (fx : F A) → fx <,> unit ≡ fmap (_, tt) fx unitʳ′ fx = begin fx <,> unit ≡⟨ sym $ fmap-id (fx <,> unit) ⟩ fmap id (fx <,> unit) ≡⟨⟩ fmap ((_, tt) ∘′ proj₁) (fx <,> unit) ≡⟨ sym $ fmap-∘ (_, tt) proj₁ (fx <,> unit) ⟩ fmap (_, tt) (fmap proj₁ (fx <,> unit)) ≡⟨ cong (fmap (_, tt)) (unitʳ fx) ⟩ fmap (_, tt) fx ∎ where open ≡-Reasoning <,>-pureˡ : ∀ {A B} (x : A) (fy : F B) → pure x <,> fy ≡ fmap (x ,_) fy <,>-pureˡ x fy = begin fmap (λ _ → x) unit <,> fy ≡⟨ natural₁ (λ _ → x) unit fy ⟩ fmap (Prod.map₁ (λ _ → x)) (unit <,> fy) ≡⟨ cong (fmap (Prod.map₁ (λ _ → x))) (unitˡ′ fy) ⟩ fmap (Prod.map₁ (λ _ → x)) (fmap (tt ,_) fy) ≡⟨ fmap-∘ (Prod.map₁ (λ _ → x)) (tt ,_) fy ⟩ fmap (Prod.map₁ (λ _ → x) ∘′ (tt ,_)) fy ≡⟨⟩ fmap (x ,_) fy ∎ where open ≡-Reasoning <,>-pureʳ : ∀ {A B} (fx : F A) (y : B) → fx <,> pure y ≡ fmap (_, y) fx <,>-pureʳ fx y = begin fx <,> fmap (λ _ → y) unit ≡⟨ natural₂ (λ _ → y) fx unit ⟩ fmap (Prod.map₂ (λ _ → y)) (fx <,> unit) ≡⟨ cong (fmap (Prod.map₂ (λ _ → y))) (unitʳ′ fx) ⟩ fmap (Prod.map₂ (λ _ → y)) (fmap (_, tt) fx) ≡⟨ fmap-∘ (Prod.map₂ (λ _ → y)) (_, tt) fx ⟩ fmap (Prod.map₂ (λ _ → y) ∘′ (_, tt)) fx ≡⟨⟩ fmap (_, y) fx ∎ where open ≡-Reasoning pure-<,> : ∀ {A B} (x : A) (y : B) → pure x <,> pure y ≡ pure (x , y) pure-<,> x y = begin pure x <,> pure y ≡⟨ <,>-pureˡ x (pure y) ⟩ fmap (x ,_) (pure y) ≡⟨ fmap-pure (x ,_) y ⟩ pure (x , y) ∎ where open ≡-Reasoning <*>-fmap : ∀ {A B} (f : A → B) (fx : F A) → pure f <*> fx ≡ fmap f fx <*>-fmap f fx = begin fmap app (pure f <,> fx) ≡⟨ cong (fmap app) $ <,>-pureˡ f fx ⟩ fmap app (fmap (f ,_) fx) ≡⟨ fmap-∘ app (f ,_) fx ⟩ fmap (app ∘′ (f ,_)) fx ≡⟨⟩ fmap f fx ∎ where open ≡-Reasoning <*>-identity : ∀ {A} (v : F A) → pure id <*> v ≡ v <*>-identity v = begin fmap (uncurry _$′_) (pure id <,> v) ≡⟨ cong (fmap (uncurry _$′_)) $ <,>-pureˡ id v ⟩ fmap (uncurry _$′_) (fmap (id ,_) v) ≡⟨ fmap-∘ (uncurry _$′_) (id ,_) v ⟩ fmap (uncurry _$′_ ∘′ (id ,_)) v ≡⟨ fmap-cong (λ _ → refl) ⟩ fmap id v ≡⟨ fmap-id v ⟩ v ∎ where open ≡-Reasoning <*>-composition : ∀ {A B C} (u : F (A → C)) (v : F (B → A)) (w : F B) → pure _∘′_ <*> u <*> v <*> w ≡ u <*> (v <*> w) <*>-composition u v w = begin pure _∘′_ <*> u <*> v <*> w ≡⟨ cong (λ t → t <*> v <*> w) $ <*>-fmap _∘′_ u ⟩ fmap _∘′_ u <*> v <*> w ≡⟨⟩ fmap app (fmap _∘′_ u <,> v) <*> w ≡⟨⟩ fmap app (fmap app (fmap _∘′_ u <,> v) <,> w) ≡⟨ cong (λ t → fmap app (fmap app t <,> w)) $ natural₁ _∘′_ u v ⟩ fmap app (fmap app (fmap (Prod.map₁ _∘′_) (u <,> v)) <,> w) ≡⟨ cong (fmap app) $ natural₁ app (fmap (Prod.map₁ _∘′_) (u <,> v)) w ⟩ fmap app (fmap (Prod.map₁ app) (fmap (Prod.map₁ _∘′_) (u <,> v) <,> w)) ≡⟨ fmap-∘ app (Prod.map₁ app) _ ⟩ fmap (app ∘′ Prod.map₁ app) (fmap (Prod.map₁ _∘′_) (u <,> v) <,> w) ≡⟨ cong (fmap (app ∘′ Prod.map₁ app)) $ natural₁ (Prod.map₁ _∘′_) (u <,> v) w ⟩ fmap (app ∘′ Prod.map₁ app) (fmap (Prod.map₁ (Prod.map₁ _∘′_)) ((u <,> v) <,> w)) ≡⟨ fmap-∘ (app ∘′ Prod.map₁ app) (Prod.map₁ (Prod.map₁ _∘′_)) _ ⟩ fmap (app ∘′ Prod.map₁ app ∘′ Prod.map₁ (Prod.map₁ _∘′_)) ((u <,> v) <,> w) ≡⟨ fmap-cong (λ _ → refl) ⟩ fmap (app ∘′ Prod.map₂ app ∘′ ×-assoc) ((u <,> v) <,> w) ≡⟨ sym $ fmap-∘ (app ∘′ Prod.map₂ app) ×-assoc ((u <,> v) <,> w) ⟩ fmap (app ∘′ Prod.map₂ app) (fmap ×-assoc ((u <,> v) <,> w)) ≡⟨ cong (fmap (app ∘′ Prod.map₂ app)) (assoc u v w) ⟩ fmap (app ∘′ Prod.map₂ app) (u <,> (v <,> w)) ≡⟨ sym $ fmap-∘ app (Prod.map₂ app) (u <,> (v <,> w)) ⟩ fmap app (fmap (Prod.map₂ app) (u <,> (v <,> w))) ≡⟨ sym $ cong (fmap app) $ natural₂ app u (v <,> w) ⟩ fmap app (u <,> fmap app (v <,> w)) ≡⟨⟩ u <*> (v <*> w) ∎ where open ≡-Reasoning <*>-homomorphism : ∀ {A B} (f : A → B) (x : A) → pure f <*> pure x ≡ pure (f x) <*>-homomorphism f x = begin pure f <*> pure x ≡⟨ <*>-fmap f (pure x) ⟩ fmap f (pure x) ≡⟨ fmap-pure f x ⟩ pure (f x) ∎ where open ≡-Reasoning <*>-interchange : ∀ {A B} (u : F (A → B)) (y : A) → u <*> pure y ≡ pure (_$ y) <*> u <*>-interchange u y = begin u <*> pure y ≡⟨⟩ fmap app (u <,> pure y) ≡⟨ cong (fmap app) (<,>-pureʳ u y) ⟩ fmap app (fmap (_, y) u) ≡⟨ fmap-∘ app (_, y) u ⟩ fmap (app ∘′ (_, y)) u ≡⟨⟩ fmap (_$ y) u ≡⟨ sym $ <*>-fmap (_$ y) u ⟩ pure (_$ y) <*> u ∎ where open ≡-Reasoning liftA2-defn : ∀ {A B C} (f : A → B → C) (fx : F A) (fy : F B) → liftA2 f fx fy ≡ pure f <*> fx <*> fy liftA2-defn f fx fy = begin fmap (uncurry f) (fx <,> fy) ≡⟨⟩ fmap (app ∘′ Prod.map₁ f) (fx <,> fy) ≡⟨ sym $ fmap-∘ app (Prod.map₁ f) (fx <,> fy) ⟩ fmap app (fmap (Prod.map₁ f) (fx <,> fy)) ≡⟨ cong (fmap app) $ sym $ natural₁ f fx fy ⟩ fmap app (fmap f fx <,> fy) ≡⟨⟩ fmap f fx <*> fy ≡⟨ sym $ cong (_<*> fy) $ <*>-fmap f fx ⟩ pure f <*> fx <*> fy ∎ where open ≡-Reasoning liftA2-cong : ∀ {A B C} {f g : A → B → C} {fx : F A} {fy : F B} → (∀ x y → f x y ≡ g x y) → liftA2 f fx fy ≡ liftA2 g fx fy liftA2-cong {_} {_} {_} {f} {g} {fx} {gx} f≡g = fmap-cong λ v → f≡g (proj₁ v) (proj₂ v) <*>-defn : ∀ {A B} (ff : F (A → B)) (fx : F A) → ff <*> fx ≡ liftA2 _$′_ ff fx <*>-defn ff fx = refl -- liftA2 f fx fy = pure f <*> fx <*> fy {- forall x y. p (q x y) = f x . g y it follows from the above that liftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v -} record ApplicativeViaAp (F : Set → Set) : Set₁ where infixl 5 _<*>_ field functor : Functor F pure : ∀ {A} → A → F A _<*>_ : ∀ {A B} → F (A → B) → F A → F B open Functor functor public field identity : ∀ {A} (fx : F A) → pure id <*> fx ≡ fx composition : ∀ {A B C} (u : F (A → C)) (v : F (B → A)) (w : F B) → pure _∘′_ <*> u <*> v <*> w ≡ u <*> (v <*> w) homomorphism : ∀ {A B} (f : A → B) (x : A) → pure f <*> pure x ≡ pure (f x) interchange : ∀ {A B} (u : F (A → B)) (y : A) → u <*> pure y ≡ pure (_$ y) <*> u <*>-fmap : ∀ {A B} (f : A → B) (fx : F A) → pure f <*> fx ≡ fmap f fx _<,>_ : ∀ {A B} → F A → F B → F (A × B) fx <,> fy = pure _,_ <*> fx <*> fy liftA2 : ∀ {A B C} → (A → B → C) → F A → F B → F C liftA2 f fx fy = fmap (uncurry f) (fx <,> fy) unit : F ⊤ unit = pure tt {- <,>-natural : ∀ {A B C D} (f : A → C) (g : B → D) (fx : F A) (fy : F B) → fmap f fx <,> fmap g fy ≡ fmap (Prod.map f g) (fx <,> fy) <,>-natural f g fx fy = begin pure _,_ <*> fmap f fx <*> fmap g fy ≡⟨ cong (_<*> fmap g fy) $ <*>-fmap _,_ (fmap f fx) ⟩ fmap _,_ (fmap f fx) <*> fmap g fy ≡⟨ cong (_<*> fmap g fy) $ fmap-∘ _,_ f fx ⟩ fmap (_,_ ∘′ f) fx <*> fmap g fy ≡⟨ {! !} ⟩ fmap (Prod.map f g) (fmap _,_ fx <*> fy) ≡⟨ sym $ cong (λ t → fmap (Prod.map f g) (t <*> fy)) $ <*>-fmap _,_ fx ⟩ fmap (Prod.map f g) (pure _,_ <*> fx <*> fy) ∎ where open ≡-Reasoning liftA2-defn : ∀ {A B C} (f : A → B → C) (fx : F A) (fy : F B) → liftA2 f fx fy ≡ pure f <*> fx <*> fy liftA2-defn f fx fy = {! !} -} record Monad (F : Set → Set) : Set₁ where infixl 5 _>>=_ field functor : Functor F return : ∀ {A} → A → F A join : ∀ {A} → F (F A) → F A open Functor functor public field assoc : ∀ {A} (fffx : F (F (F A))) → join (fmap join fffx) ≡ join (join fffx) identityˡ : ∀ {A} (fx : F A) → join (fmap return fx) ≡ fx identityʳ : ∀ {A} (fx : F A) → join (return fx) ≡ fx join-natural : ∀ {A B} (f : A → B) (ffx : F (F A)) → join (fmap (fmap f) ffx) ≡ fmap f (join ffx) return-natural : ∀ {A B} (f : A → B) (x : A) → return (f x) ≡ fmap f (return x) _>>=_ : ∀ {A B} → F A → (A → F B) → F B _>>=_ m k = join (fmap k m) _=<<_ : ∀ {A B} → (A → F B) → F A → F B _=<<_ = flip _>>=_ liftM : ∀ {A B} → (A → B) → F A → F B liftM f fx = fx >>= λ x → return (f x) ap : ∀ {A B} → F (A → B) → F A → F B ap ff fx = ff >>= λ f → fmap f fx pair : ∀ {A B} → F A → F B → F (A × B) pair fx fy = fx >>= λ x → fmap (λ y → x , y) fy unitM : F ⊤ unitM = return tt liftM-is-fmap : ∀ {A B} (f : A → B) (fx : F A) → liftM f fx ≡ fmap f fx liftM-is-fmap f fx = begin join (fmap (λ x → return (f x)) fx) ≡⟨ sym $ cong join $ fmap-∘ return f fx ⟩ join (fmap return (fmap f fx)) ≡⟨ identityˡ (fmap f fx) ⟩ fmap f fx ∎ where open ≡-Reasoning >>=-cong : ∀ {A B} {f g : A → F B} {fx : F A} → (∀ x → f x ≡ g x) → fx >>= f ≡ fx >>= g >>=-cong f≡g = cong join (fmap-cong f≡g) fmap-lemma : ∀ {A B C} (f : A → B) (fx : F A) (k : B → F C) → fmap f fx >>= k ≡ fx >>= λ x → k (f x) fmap-lemma f fx k = begin fmap f fx >>= k ≡⟨⟩ join (fmap k (fmap f fx)) ≡⟨ cong join (fmap-∘ k f fx) ⟩ join (fmap (λ x → (k (f x))) fx) ∎ where open ≡-Reasoning liftM-lemma : ∀ {A B C} (f : A → B) (fx : F A) (k : B → F C) → liftM f fx >>= k ≡ fx >>= λ x → k (f x) liftM-lemma f fx k = begin liftM f fx >>= k ≡⟨ cong (_>>= k) $ liftM-is-fmap f fx ⟩ fmap f fx >>= k ≡⟨ fmap-lemma f fx k ⟩ fx >>= (λ x → k (f x)) ∎ where open ≡-Reasoning {- kleisli-assoc -} {- kleisli-identityˡ : ∀ {A B : Set} (f : A → F B) (x : A) → join (fmap return (f x)) ≡ f x kleisli-identityˡ f x = identityˡ (f x) kleisli-identityʳ : ∀ {A B : Set} (f : A → F B) (x : A) → join (fmap f (return x)) ≡ f x kleisli-identityʳ f x = >>=-identityˡ f x -} fmap-return : ∀ {A B} (f : A → B) (x : A) → fmap f (return x) ≡ return (f x) fmap-return f x = sym $ return-natural f x >>=-identityˡ : ∀ {A B} (a : A) (k : A → F B) → return a >>= k ≡ k a >>=-identityˡ a k = begin join (fmap k (return a)) ≡⟨ cong join $ fmap-return k a ⟩ join (return (k a)) ≡⟨ identityʳ (k a) ⟩ k a ∎ where open ≡-Reasoning >>=-identityʳ : ∀ {A} (m : F A) → m >>= return ≡ m >>=-identityʳ m = identityˡ m >>=-assoc : ∀ {A B C} (m : F A) (k : A → F B) (h : B → F C) → m >>= (λ x → k x >>= h) ≡ (m >>= k) >>= h >>=-assoc m k h = begin m >>= (λ x → k x >>= h) ≡⟨⟩ join (fmap (λ x → join (fmap h (k x))) m) ≡⟨ sym $ cong join $ fmap-∘ join (fmap h ∘′ k) m ⟩ join (fmap join (fmap (fmap h ∘′ k) m)) ≡⟨ assoc (fmap (fmap h ∘′ k) m) ⟩ join (join (fmap (fmap h ∘′ k) m)) ≡⟨ cong join (begin join (fmap (fmap h ∘′ k) m) ≡⟨ sym $ cong join $ fmap-∘ (fmap h) k m ⟩ join (fmap (fmap h) (fmap k m)) ≡⟨ join-natural h (fmap k m) ⟩ fmap h (join (fmap k m)) ∎ ) ⟩ join (fmap h (join (fmap k m))) ≡⟨⟩ (m >>= k) >>= h ∎ where open ≡-Reasoning fmap->>= : ∀ {A B C} (f : B → C) (m : F A) (k : A → F B) → fmap f (m >>= k) ≡ m >>= (λ x → fmap f (k x)) fmap->>= f m k = begin fmap f (m >>= k) ≡⟨⟩ fmap f (join (fmap k m)) ≡⟨ sym $ join-natural f (fmap k m) ⟩ join (fmap (fmap f) (fmap k m)) ≡⟨ cong join $ fmap-∘ (fmap f) k m ⟩ join (fmap (fmap f ∘′ k) m) ≡⟨⟩ m >>= (λ x → fmap f (k x)) ∎ where open ≡-Reasoning fmap-move : ∀ {A B C D} (f : C → D) (g : A → B → C) (m1 : F A) (m2 : F B) → fmap f (m1 >>= λ x → fmap (g x) m2) ≡ m1 >>= (λ x → fmap (f ∘′ g x) m2) fmap-move f g m1 m2 = begin fmap f (m1 >>= λ x → fmap (g x) m2) ≡⟨ fmap->>= f m1 (λ x → fmap (g x) m2) ⟩ m1 >>= (λ x → fmap f (fmap (g x) m2)) ≡⟨ >>=-cong (λ x → fmap-∘ f (g x) m2) ⟩ m1 >>= (λ x → fmap (f ∘′ g x) m2) ∎ where open ≡-Reasoning {- applicative : Applicative F applicative = record { functor = functor ; unit = unitM ; _<,>_ = pair ; natural = λ f g fx fy → begin pair (fmap f fx) (fmap g fy) ≡⟨⟩ fmap f fx >>= (λ x → fmap (λ y → x , y) (fmap g fy)) ≡⟨ fmap-lemma f fx _ ⟩ fx >>= (λ x → fmap (λ y → f x , y) (fmap g fy) ) ≡⟨ >>=-cong (λ x → fmap-∘ (f x ,_) g fy) ⟩ fx >>= (λ x → fmap (λ y → f x , g y) fy) ≡⟨⟩ fx >>= (λ x → fmap (λ y → Prod.map f g (x , y) ) fy ) ≡⟨ sym $ fmap-move (Prod.map f g) _,_ fx fy ⟩ fmap (Prod.map f g) (fx >>= λ x → fmap (λ y → x , y) fy) ≡⟨⟩ fmap (Prod.map f g) (pair fx fy) ∎ ; assoc = λ fx fy fz → fmap ×-assoc (pair (pair fx fy) fz) ≡⟨⟩ fmap ×-assoc ((fx >>= λ x → fmap (x ,_) fy) >>= λ xy → fmap (xy ,_) fz) ≡⟨ {! sym $ >>=-assoc fx !} ⟩ fx >>= (λ x → fy >>= λ y → fmap (λ z → x , (y , z)) fz) ≡⟨ sym $ >>=-cong (λ x → fmap-move (x ,_) _,_ fy fz) ⟩ fx >>= (λ x → fmap (x ,_) (fy >>= λ y → fmap (y ,_) fz)) ≡⟨⟩ pair fx (pair fy fz) ∎ ; unitˡ = {! !} ; unitʳ = {! !} } where open ≡-Reasoning -}
{ "alphanum_fraction": 0.4306936416, "avg_line_length": 37.1244635193, "ext": "agda", "hexsha": "bdfe8d84591c935afaf139e1d7b2607c242c3f4c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Applicative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Applicative.agda", "max_line_length": 93, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Applicative.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 7739, "size": 17300 }
------------------------------------------------------------------------------ -- FOTC version of a nested recursive function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From: Ana Bove and Venanzio Capretta. Nested general recursion and -- partiality in type theory. Vol. 2152 of LNCS. 2001. module FOT.FOTC.Program.Nest.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Data.Nat.Type open import FOTC.Program.Nest.Nest ------------------------------------------------------------------------------ nestCong : ∀ {m n} → m ≡ n → nest m ≡ nest n nestCong refl = refl nest-x≡0 : ∀ {n} → N n → nest n ≡ zero nest-x≡0 nzero = nest-0 nest-x≡0 (nsucc {n} Nn) = nest (succ₁ n) ≡⟨ nest-S n ⟩ nest (nest n) ≡⟨ nestCong (nest-x≡0 Nn) ⟩ nest zero ≡⟨ nest-0 ⟩ zero ∎ nest-N : ∀ {n} → N n → N (nest n) nest-N Nn = subst N (sym (nest-x≡0 Nn)) nzero
{ "alphanum_fraction": 0.4881057269, "avg_line_length": 31.5277777778, "ext": "agda", "hexsha": "d4e9e2fb51d324ee2bfc0dbbb9dfdb6b62cfd0b7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Nest/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Nest/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Nest/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 315, "size": 1135 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.Bouquet {- Various lemmas that will be used in cohomology.DisjointlyPointedSet. Many of them, for example the choice lemma about coproducts, should be put into core/. -} module homotopy.DisjointlyPointedSet where module _ {i} where is-separable : (X : Ptd i) → Type i is-separable X = has-dec-onesided-eq (pt X) abstract is-separable-is-prop : {X : Ptd i} → is-prop (is-separable X) is-separable-is-prop = has-dec-onesided-eq-is-prop MinusPoint : (X : Ptd i) → Type i MinusPoint X = Σ (de⊙ X) (pt X ≠_) MinusPoint-prop : (X : Ptd i) → SubtypeProp (de⊙ X) i MinusPoint-prop X = (pt X ≠_) , ⟨⟩ abstract MinusPoint-has-dec-eq : {X : Ptd i} → has-dec-eq (de⊙ X) → has-dec-eq (MinusPoint X) MinusPoint-has-dec-eq {X} X-dec = Subtype-has-dec-eq (MinusPoint-prop X) X-dec unite-pt : (X : Ptd i) → (⊤ ⊔ MinusPoint X → de⊙ X) unite-pt X (inl _) = pt X unite-pt X (inr (x , _)) = x separate-pt : {X : Ptd i} → is-separable X → (de⊙ X → ⊤ ⊔ (Σ (de⊙ X) (pt X ≠_))) separate-pt dec x with dec x separate-pt dec x | inl _ = inl unit separate-pt dec x | inr ¬p = inr (x , ¬p) has-disjoint-pt : (X : Ptd i) → Type i has-disjoint-pt X = is-equiv (unite-pt X) separable-has-disjoint-pt : {X : Ptd i} → is-separable X → has-disjoint-pt X separable-has-disjoint-pt {X} dec = is-eq _ (separate-pt dec) unite-sep sep-unite where abstract sep-unite : ∀ x → separate-pt dec (unite-pt X x) == x sep-unite (inl _) with dec (pt X) sep-unite (inl _) | inl _ = idp sep-unite (inl _) | inr ¬p = ⊥-rec (¬p idp) sep-unite (inr (x , ¬p)) with dec x sep-unite (inr (x , ¬p)) | inl p = ⊥-rec (¬p p) sep-unite (inr (x , ¬p)) | inr ¬p' = ap inr $ pair= idp (prop-has-all-paths ¬p' ¬p) unite-sep : ∀ x → unite-pt X (separate-pt dec x) == x unite-sep x with dec x unite-sep x | inl p = p unite-sep x | inr ¬p = idp disjoint-pt-is-separable : {X : Ptd i} → has-disjoint-pt X → is-separable X disjoint-pt-is-separable unite-ise x with unite.g x | unite.f-g x where module unite = is-equiv unite-ise disjoint-pt-is-separable unite-ise x | inl unit | p = inl p disjoint-pt-is-separable unite-ise x | inr (y , pt≠y) | y=x = inr λ pt=x → pt≠y (pt=x ∙ ! y=x) separable-unite-equiv : ∀ {X} → is-separable X → (⊤ ⊔ MinusPoint X ≃ de⊙ X) separable-unite-equiv dX = _ , separable-has-disjoint-pt dX module _ {i j k} n (A : Type i) (B : Type j) where {- Hmm. Where should we put this lemma? -} abstract ⊔-has-choice-implies-inr-has-choice : has-choice n (A ⊔ B) k → has-choice n B k ⊔-has-choice-implies-inr-has-choice ⊔-ac W = transport is-equiv (λ= lemma₃) (snd lemma₂ ∘ise ⊔-ac W' ∘ise is-equiv-inverse (snd (Trunc-emap lemma₁))) where W' : A ⊔ B → Type k W' (inl _) = Lift {j = k} ⊤ W' (inr b) = W b lemma₁ : Π (A ⊔ B) W' ≃ Π B W lemma₁ = equiv to from to-from from-to where to : Π (A ⊔ B) W' → Π B W to f b = f (inr b) from : Π B W → Π (A ⊔ B) W' from f (inl a) = lift tt from f (inr b) = f b abstract to-from : ∀ f → to (from f) == f to-from f = λ= λ b → idp from-to : ∀ f → from (to f) == f from-to f = λ= λ{(inl a) → idp; (inr b) → idp} lemma₂ : Π (A ⊔ B) (Trunc n ∘ W') ≃ Π B (Trunc n ∘ W) lemma₂ = equiv to from to-from from-to where to : Π (A ⊔ B) (Trunc n ∘ W') → Π B (Trunc n ∘ W) to f b = f (inr b) from : Π B (Trunc n ∘ W) → Π (A ⊔ B) (Trunc n ∘ W') from f (inl a) = [ lift tt ] from f (inr b) = f b abstract to-from : ∀ f → to (from f) == f to-from f = λ= λ b → idp from-to : ∀ f → from (to f) == f from-to f = λ= λ{ (inl a) → Trunc-elim {P = λ t → [ lift tt ] == t} (λ _ → idp) (f (inl a)); (inr b) → idp} lemma₃ : ∀ f → –> lemma₂ (unchoose (<– (Trunc-emap lemma₁) f)) == unchoose f lemma₃ = Trunc-elim {P = λ f → –> lemma₂ (unchoose (<– (Trunc-emap lemma₁) f)) == unchoose f} (λ f → λ= λ b → idp) module _ {i j} {n} {X : Ptd i} (X-sep : is-separable X) where abstract MinusPoint-has-choice : has-choice n (de⊙ X) j → has-choice n (MinusPoint X) j MinusPoint-has-choice X-ac = ⊔-has-choice-implies-inr-has-choice n ⊤ (MinusPoint X) $ transport! (λ A → has-choice n A j) (ua (_ , separable-has-disjoint-pt X-sep)) X-ac module _ {i} {X : Ptd i} (X-sep : is-separable X) where Bouquet-equiv-X : Bouquet (MinusPoint X) 0 ≃ de⊙ X Bouquet-equiv-X = equiv to from to-from from-to where from : de⊙ X → BigWedge {A = MinusPoint X} (λ _ → ⊙Bool) from x with X-sep x from x | inl p = bwbase from x | inr ¬p = bwin (x , ¬p) false module To = BigWedgeRec {A = MinusPoint X} {X = λ _ → ⊙Bool} (pt X) (λ{_ true → pt X; (x , _) false → x}) (λ _ → idp) to = To.f abstract from-to : ∀ x → from (to x) == x from-to = BigWedge-elim base* in* glue* where base* : from (pt X) == bwbase base* with X-sep (pt X) base* | inl _ = idp base* | inr ¬p = ⊥-rec (¬p idp) in* : (wp : MinusPoint X) (b : Bool) → from (to (bwin wp b)) == bwin wp b in* wp true with X-sep (pt X) in* wp true | inl _ = bwglue wp in* wp true | inr pt≠pt = ⊥-rec (pt≠pt idp) in* (x , pt≠x) false with X-sep x in* (x , pt≠x) false | inl pt=x = ⊥-rec (pt≠x pt=x) in* (x , pt≠x) false | inr pt≠'x = ap (λ ¬p → bwin (x , ¬p) false) $ prop-has-all-paths pt≠'x pt≠x glue* : (wp : MinusPoint X) → base* == in* wp true [ (λ x → from (to x) == x) ↓ bwglue wp ] glue* wp = ↓-∘=idf-from-square from to $ ap (ap from) (To.glue-β wp) ∙v⊡ square where square : Square base* idp (bwglue wp) (in* wp true) square with X-sep (pt X) square | inl _ = br-square (bwglue wp) square | inr ¬p = ⊥-rec (¬p idp) to-from : ∀ x → to (from x) == x to-from x with X-sep x to-from x | inl pt=x = pt=x to-from x | inr pt≠x = idp Bouquet-⊙equiv-X : ⊙Bouquet (MinusPoint X) 0 ⊙≃ X Bouquet-⊙equiv-X = ≃-to-⊙≃ Bouquet-equiv-X idp
{ "alphanum_fraction": 0.5173774473, "avg_line_length": 35.4247311828, "ext": "agda", "hexsha": "fa2c77fe215254d73e6a753f940d09531a5f2805", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/DisjointlyPointedSet.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/DisjointlyPointedSet.agda", "max_line_length": 96, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/DisjointlyPointedSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2489, "size": 6589 }
------------------------------------------------------------------------ -- Normalisation by evaluation ------------------------------------------------------------------------ import Axiom.Extensionality.Propositional as E import Level open import Data.Universe -- The code makes use of the assumption that propositional equality of -- functions is extensional. module README.DependentlyTyped.NBE (Uni₀ : Universe Level.zero Level.zero) (ext : E.Extensionality Level.zero Level.zero) where open import Data.Empty open import Data.Product renaming (curry to c) open import deBruijn.Substitution.Data open import Function hiding (_∋_) renaming (const to k) import README.DependentlyTyped.NormalForm as NF open NF Uni₀ renaming ([_] to [_]n) import README.DependentlyTyped.Term as Term; open Term Uni₀ import README.DependentlyTyped.Term.Substitution as S; open S Uni₀ import Relation.Binary.PropositionalEquality as P open import Relation.Nullary using (¬_) open P.≡-Reasoning -- The values that are used by the NBE algorithm. import README.DependentlyTyped.NBE.Value as Value open Value Uni₀ public -- Weakening for the values. import README.DependentlyTyped.NBE.Weakening as Weakening open Weakening Uni₀ ext public -- Application. infix 9 [_]_·̌_ [_]_·̌_ : ∀ {Γ sp₁ sp₂} σ → V̌alue Γ (π sp₁ sp₂ , σ) → (v : V̌alue Γ (fst σ)) → V̌alue Γ (snd σ /̂ ŝub ⟦̌ v ⟧) [ _ ] f ·̌ v = proj₁ f ε v abstract -- Lifting can be expressed using žero. ∘̂-ŵk-▻̂-žero : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) σ → ρ̂ ∘̂ ŵk ▻̂[ σ ] ⟦ žero _ (proj₂ σ /̂I ρ̂) ⟧n ≅-⇨̂ ρ̂ ↑̂ σ ∘̂-ŵk-▻̂-žero ρ̂ σ = begin [ ρ̂ ∘̂ ŵk ▻̂ ⟦ žero _ _ ⟧n ] ≡⟨ ▻̂-cong P.refl P.refl (ňeutral-to-normal-identity _ (var zero)) ⟩ [ ρ̂ ∘̂ ŵk ▻̂ ⟦ var zero ⟧ ] ≡⟨ P.refl ⟩ [ ρ̂ ↑̂ ] ∎ mutual -- Evaluation. eval : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢ σ → Sub V̌al ρ̂ → V̌alue Δ (σ /̂ ρ̂) eval (var x) ρ = x /∋ ρ eval (ƛ t) ρ = (eval[ƛ t ] ρ) , eval[ƛ t ] ρ well-behaved eval (t₁ · t₂) ρ = eval[ t₁ · t₂ ] ρ -- Some abbreviations. eval[ƛ_] : ∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ} → Γ ▻ σ ⊢ τ → Sub V̌al ρ̂ → V̌alue-π Δ _ _ (IType-π σ τ /̂I ρ̂) eval[ƛ t ] ρ Γ₊ v = eval t (V̌al-subst.wk-subst₊ Γ₊ ρ ▻ v) eval[_·_] : ∀ {Γ Δ sp₁ sp₂ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢ (π sp₁ sp₂ , σ) → (t₂ : Γ ⊢ fst σ) → Sub V̌al ρ̂ → V̌alue Δ (snd σ /̂ ŝub ⟦ t₂ ⟧ ∘̂ ρ̂) eval[_·_] {σ = σ} t₁ t₂ ρ = cast ([ σ /I ρ ] eval t₁ ρ ·̌ eval t₂ ρ) where cast = P.subst (λ v → V̌alue _ (snd σ /̂ ⟦ ρ ⟧⇨ ↑̂ /̂ ŝub v)) (≅-Value-⇒-≡ $ P.sym $ eval-lemma t₂ ρ) abstract -- The ƛ case is well-behaved. eval[ƛ_]_well-behaved : ∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ▻ σ ⊢ τ) (ρ : Sub V̌al ρ̂) → W̌ell-behaved _ _ (IType-π σ τ /I ρ) (eval[ƛ t ] ρ) eval[ƛ_]_well-behaved {σ = σ} {τ = τ} t ρ Γ₊ v = let υ = IType-π σ τ /I ρ in begin [ (⟦̌ υ ∣ eval[ƛ t ] ρ ⟧-π /̂Val ŵk₊ Γ₊) ˢ ⟦̌ v ⟧ ] ≡⟨ ˢ-cong (/̂Val-cong (P.sym $ eval-lemma-ƛ t ρ) P.refl) P.refl ⟩ [ (c ⟦ t ⟧ /̂Val ⟦ ρ ⟧⇨ ∘̂ ŵk₊ Γ₊) ˢ ⟦̌ v ⟧ ] ≡⟨ P.refl ⟩ [ ⟦ t ⟧ /̂Val (⟦ ρ ⟧⇨ ∘̂ ŵk₊ Γ₊ ▻̂ ⟦̌ v ⟧) ] ≡⟨ eval-lemma t _ ⟩ [ ⟦̌ eval t (V̌al-subst.wk-subst₊ Γ₊ ρ ▻ v) ⟧ ] ∎ -- An unfolding lemma. eval-· : ∀ {Γ Δ sp₁ sp₂ σ} {ρ̂ : Γ ⇨̂ Δ} (t₁ : Γ ⊢ π sp₁ sp₂ , σ) (t₂ : Γ ⊢ fst σ) (ρ : Sub V̌al ρ̂) → eval[ t₁ · t₂ ] ρ ≅-V̌alue [ σ /I ρ ] eval t₁ ρ ·̌ eval t₂ ρ eval-· {σ = σ} t₁ t₂ ρ = drop-subst-V̌alue (λ v → snd σ /̂ ⟦ ρ ⟧⇨ ↑̂ /̂ ŝub v) (≅-Value-⇒-≡ $ P.sym $ eval-lemma t₂ ρ) -- The evaluator is correct (with respect to the standard -- semantics). eval-lemma : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ⊢ σ) (ρ : Sub V̌al ρ̂) → ⟦ t ⟧ /Val ρ ≅-Value ⟦̌ eval t ρ ⟧ eval-lemma (var x) ρ = V̌al-subst./̂∋-⟦⟧⇨ x ρ eval-lemma (ƛ t) ρ = eval-lemma-ƛ t ρ eval-lemma (_·_ {σ = σ} t₁ t₂) ρ = begin [ ⟦ t₁ · t₂ ⟧ /Val ρ ] ≡⟨ P.refl ⟩ [ (⟦ t₁ ⟧ /Val ρ) ˢ (⟦ t₂ ⟧ /Val ρ) ] ≡⟨ ˢ-cong (eval-lemma t₁ ρ) (eval-lemma t₂ ρ) ⟩ [ ⟦̌_⟧ {σ = σ /I ρ} (eval t₁ ρ) ˢ ⟦̌ eval t₂ ρ ⟧ ] ≡⟨ proj₂ (eval t₁ ρ) ε (eval t₂ ρ) ⟩ [ ⟦̌ [ σ /I ρ ] eval t₁ ρ ·̌ eval t₂ ρ ⟧ ] ≡⟨ ⟦̌⟧-cong (P.sym $ eval-· t₁ t₂ ρ) ⟩ [ ⟦̌ eval[ t₁ · t₂ ] ρ ⟧ ] ∎ private eval-lemma-ƛ : ∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ▻ σ ⊢ τ) (ρ : Sub V̌al ρ̂) → ⟦ ƛ t ⟧ /Val ρ ≅-Value ⟦̌ IType-π σ τ /I ρ ∣ eval[ƛ t ] ρ ⟧-π eval-lemma-ƛ {σ = σ} {τ = τ} t ρ = let υ = IType-π σ τ /I ρ ρ↑ = V̌al-subst.wk-subst₊ (σ / ρ ◅ ε) ρ ▻ v̌ar ⊙ zero in begin [ c ⟦ t ⟧ /Val ρ ] ≡⟨ P.refl ⟩ [ c (⟦ t ⟧ /̂Val ⟦ ρ ⟧⇨ ↑̂) ] ≡⟨ curry-cong $ /̂Val-cong (P.refl {x = [ ⟦ t ⟧ ]}) (P.sym $ ∘̂-ŵk-▻̂-žero ⟦ ρ ⟧⇨ _) ⟩ [ c (⟦ t ⟧ /Val ρ↑) ] ≡⟨ curry-cong (eval-lemma t ρ↑) ⟩ [ c ⟦̌ eval t ρ↑ ⟧ ] ≡⟨ P.sym $ unfold-⟦̌∣⟧-π υ (eval[ƛ t ] ρ) ⟩ [ ⟦̌ υ ∣ eval[ƛ t ] ρ ⟧-π ] ∎ -- Normalisation. normalise : ∀ {Γ σ} → Γ ⊢ σ → Γ ⊢ σ ⟨ no ⟩ normalise t = řeify _ (eval t V̌al-subst.id) -- Normalisation is semantics-preserving. normalise-lemma : ∀ {Γ σ} (t : Γ ⊢ σ) → ⟦ t ⟧ ≅-Value ⟦ normalise t ⟧n normalise-lemma t = eval-lemma t V̌al-subst.id -- Some congruence lemmas. ·̌-cong : ∀ {Γ₁ sp₁₁ sp₂₁ σ₁} {f₁ : V̌alue Γ₁ (π sp₁₁ sp₂₁ , σ₁)} {v₁ : V̌alue Γ₁ (fst σ₁)} {Γ₂ sp₁₂ sp₂₂ σ₂} {f₂ : V̌alue Γ₂ (π sp₁₂ sp₂₂ , σ₂)} {v₂ : V̌alue Γ₂ (fst σ₂)} → σ₁ ≅-IType σ₂ → _≅-V̌alue_ {σ₁ = -, σ₁} f₁ {σ₂ = -, σ₂} f₂ → v₁ ≅-V̌alue v₂ → [ σ₁ ] f₁ ·̌ v₁ ≅-V̌alue [ σ₂ ] f₂ ·̌ v₂ ·̌-cong P.refl P.refl P.refl = P.refl eval-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {t₁ : Γ₁ ⊢ σ₁} {ρ₁ : Sub V̌al ρ̂₁} {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {t₂ : Γ₂ ⊢ σ₂} {ρ₂ : Sub V̌al ρ̂₂} → t₁ ≅-⊢ t₂ → ρ₁ ≅-⇨ ρ₂ → eval t₁ ρ₁ ≅-V̌alue eval t₂ ρ₂ eval-cong P.refl P.refl = P.refl normalise-cong : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ σ₁} {Γ₂ σ₂} {t₂ : Γ₂ ⊢ σ₂} → t₁ ≅-⊢ t₂ → normalise t₁ ≅-⊢n normalise t₂ normalise-cong P.refl = P.refl abstract -- Note that we can /not/ prove that normalise takes semantically -- equal terms to identical normal forms, assuming extensionality -- and the existence of a universe code which decodes to an empty -- type: normal-forms-not-unique : E.Extensionality Level.zero Level.zero → (∃ λ (bot : U₀) → ¬ El₀ bot) → ¬ (∀ {Γ σ} (t₁ t₂ : Γ ⊢ σ) → ⟦ t₁ ⟧ ≅-Value ⟦ t₂ ⟧ → normalise t₁ ≅-⊢n normalise t₂) normal-forms-not-unique ext (bot , empty) hyp = ⊥-elim (x₁≇x₂ x₁≅x₂) where Γ : Ctxt Γ = ε ▻ (⋆ , _) ▻ (⋆ , _) ▻ (el , k bot) x₁ : Γ ∋ (⋆ , _) x₁ = suc (suc zero) x₂ : Γ ∋ (⋆ , _) x₂ = suc zero x₁≇x₂ : ¬ (ne ⋆ (var x₁) ≅-⊢n ne ⋆ (var x₂)) x₁≇x₂ () ⟦x₁⟧≡⟦x₂⟧ : ⟦ var x₁ ⟧ ≅-Value ⟦ var x₂ ⟧ ⟦x₁⟧≡⟦x₂⟧ = P.cong [_] (ext λ γ → ⊥-elim $ empty $ proj₂ γ) norm-x₁≅norm-x₂ : normalise (var x₁) ≅-⊢n normalise (var x₂) norm-x₁≅norm-x₂ = hyp (var x₁) (var x₂) ⟦x₁⟧≡⟦x₂⟧ lemma : (x : Γ ∋ (⋆ , _)) → normalise (var x) ≅-⊢n ne ⋆ (var x) lemma x = begin [ normalise (var x) ]n ≡⟨ P.refl ⟩ [ ne ⋆ (x /∋ V̌al-subst.id) ]n ≡⟨ ne-cong $ ≅-Value-⋆-⇒-≅-⊢n $ V̌al-subst./∋-id x ⟩ [ ne ⋆ (var x) ]n ∎ x₁≅x₂ : ne ⋆ (var x₁) ≅-⊢n ne ⋆ (var x₂) x₁≅x₂ = begin [ ne ⋆ (var x₁) ]n ≡⟨ P.sym $ lemma x₁ ⟩ [ normalise (var x₁) ]n ≡⟨ norm-x₁≅norm-x₂ ⟩ [ normalise (var x₂) ]n ≡⟨ lemma x₂ ⟩ [ ne ⋆ (var x₂) ]n ∎
{ "alphanum_fraction": 0.4743921366, "avg_line_length": 35.4678899083, "ext": "agda", "hexsha": "23f2816284495c7828793df5804b81a580c84e57", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "README/DependentlyTyped/NBE.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "README/DependentlyTyped/NBE.agda", "max_line_length": 125, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "README/DependentlyTyped/NBE.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 3844, "size": 7732 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Showing natural numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Show where open import Data.Nat open import Relation.Nullary.Decidable using (True) open import Data.String.Base as String using (String) open import Data.Digit open import Data.Product using (proj₁) open import Function open import Data.List.Base -- showInBase b n is a string containing the representation of n in -- base b. showInBase : (base : ℕ) {base≥2 : True (2 ≤? base)} {base≤16 : True (base ≤? 16)} → ℕ → String showInBase base {base≥2} {base≤16} n = String.fromList $ map (showDigit {base≤16 = base≤16}) $ reverse $ proj₁ $ toDigits base {base≥2 = base≥2} n -- show n is a string containing the decimal expansion of n (starting -- with the most significant digit). show : ℕ → String show = showInBase 10
{ "alphanum_fraction": 0.5795121951, "avg_line_length": 27.7027027027, "ext": "agda", "hexsha": "3b2233c93f4d5c67e1ea6b7c2b4f467c9be412f0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Show.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Show.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Show.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 249, "size": 1025 }
module Issue641 where Foo : Set Foo = Set
{ "alphanum_fraction": 0.7380952381, "avg_line_length": 10.5, "ext": "agda", "hexsha": "6d8376d264b145f056535de8694c2910275f0fef", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue641.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue641.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue641.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 13, "size": 42 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.Subgroup where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Algebra open import Cubical.Algebra.Group.Morphism open import Cubical.Algebra.Monoid.Submonoid open import Cubical.Relation.Unary open import Cubical.Relation.Unary.Subtype open import Cubical.HITs.PropositionalTruncation record IsSubgroup {c ℓ} (G : Group c) (Member : Pred ⟨ G ⟩ ℓ) : Type (ℓ-max c ℓ) where constructor issubgroup private module G = Group G field preservesOp : G._•_ Preserves₂ Member preservesInv : G._⁻¹ Preserves Member preservesId : G.ε ∈ Member isSubmonoid : IsSubmonoid G.monoid Member isSubmonoid = record { preservesOp = preservesOp ; preservesId = preservesId } open IsSubmonoid isSubmonoid hiding (preservesOp; preservesId; _^_) public _⁻¹ : Op₁ Carrier (x , subx) ⁻¹ = x G.⁻¹ , preservesInv subx inverseˡ : LeftInverse ε _⁻¹ _•_ inverseˡ _ = ΣPathTransport→PathΣ _ _ (G.inverseˡ _ , isProp[ Member ] _ _ _) inverseʳ : RightInverse ε _⁻¹ _•_ inverseʳ _ = ΣPathTransport→PathΣ _ _ (G.inverseʳ _ , isProp[ Member ] _ _ _) inverse : Inverse ε _⁻¹ _•_ inverse = inverseˡ , inverseʳ isGroup : IsGroup Carrier _•_ ε _⁻¹ isGroup = record { isMonoid = isMonoid ; inverse = inverse } group : Group _ group = record { isGroup = isGroup } open Group group using ( _^_ ; _/_ ; _/ˡ_ ; inv-uniqueˡ ; inv-uniqueʳ ; cancelˡ ; cancelʳ ) public record Subgroup {c} (G : Group c) ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where constructor mksubgroup private module G = Group G field Member : Pred ⟨ G ⟩ ℓ isSubgroup : IsSubgroup G Member open IsSubgroup isSubgroup public submonoid : Submonoid G.monoid ℓ submonoid = record { isSubmonoid = isSubmonoid } open Submonoid submonoid using (submagma; subsemigroup) instance SubgroupCarrier : ∀ {c ℓ} {G : Group c} → HasCarrier (Subgroup G ℓ) _ SubgroupCarrier = record { ⟨_⟩ = Subgroup.Carrier } private variable c ℓ : Level G : Group c module _ {G : Group c} where open Group G ε-isSubgroup : IsSubgroup G { ε } ε-isSubgroup = record { preservesOp = map2 λ p q → cong₂ _•_ p q ∙ identityʳ ε ; preservesInv = map λ p → cong _⁻¹ p ∙ cancelʳ ε (inverseˡ ε ∙ sym (identityʳ ε)) ; preservesId = ∣ refl ∣ } ε-subgroup : Subgroup G _ ε-subgroup = record { isSubgroup = ε-isSubgroup } U-isSubgroup : IsSubgroup G U U-isSubgroup = record {} -- trivial U-subgroup : Subgroup G _ U-subgroup = record { isSubgroup = U-isSubgroup } IsNormal : Subgroup G ℓ → Type _ IsNormal {G = G} N = ∀ ((n , _) : ⟨ N ⟩) (g : ⟨ G ⟩) → g • n • g ⁻¹ ∈ Subgroup.Member N where open Group G NormalSubgroup : Group c → (ℓ : Level) → Type _ NormalSubgroup G ℓ = Σ (Subgroup G ℓ) IsNormal
{ "alphanum_fraction": 0.6733735748, "avg_line_length": 23.6666666667, "ext": "agda", "hexsha": "819cb2cd7193bc4830150da229a4a71564c21e3f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Group/Subgroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Group/Subgroup.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Group/Subgroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1019, "size": 2982 }
-- An ATP definition must be used with functions. -- This error is detected by Syntax.Translation.ConcreteToAbstract. module ATPBadDefinition1 where data Bool : Set where false true : Bool {-# ATP definition false #-}
{ "alphanum_fraction": 0.7544642857, "avg_line_length": 20.3636363636, "ext": "agda", "hexsha": "fa02c7b8cd5ed225cc23a65cff54d33cc44d6b00", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/fail/ATPBadDefinition1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/fail/ATPBadDefinition1.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/fail/ATPBadDefinition1.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 48, "size": 224 }
-- Andreas, 2017-01-20, issue #2329 -- Neutral sizes cannot be used by the size solver, -- thus, should be handled by coerceSize. -- {-# OPTIONS -v tc:10 #-} -- {-# OPTIONS -v tc.conv.coerce:20 #-} -- {-# OPTIONS -v tc.size:20 #-} -- {-# OPTIONS -v tc.size.solve:50 #-} open import Agda.Builtin.Size record R (i : Size) : Set where field j : Size< i postulate f : ∀ i → R i works : ∀ i → R i R.j (works i) = R.j {i} (f i) test : ∀ i → R i R.j (test i) = R.j (f i) -- Error WAS: -- Unsolved constraint: -- ↑ R.j (f i) =< i : Size
{ "alphanum_fraction": 0.5651376147, "avg_line_length": 18.7931034483, "ext": "agda", "hexsha": "20be4f0630f18af1ca5786bcecfc58203b373d8f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2329.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2329.agda", "max_line_length": 51, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2329.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 192, "size": 545 }
module VecMap where open import Prelude map : forall {A B n} -> (A -> B) -> Vec A n -> Vec B n map f xs = {!!}
{ "alphanum_fraction": 0.5663716814, "avg_line_length": 16.1428571429, "ext": "agda", "hexsha": "740bc3e199add219e2a6ab5a4b7e5f0c39648692", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "carlostome/martin", "max_forks_repo_path": "data/test-files/VecMap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "carlostome/martin", "max_issues_repo_path": "data/test-files/VecMap.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "carlostome/martin", "max_stars_repo_path": "data/test-files/VecMap.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 38, "size": 113 }
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) open import Function.Equivalence using (_⇔_; equivalence; Equivalence) open import Data.Bool using (Bool; true; false; if_then_else_) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Data.Sum using (_⊎_) open import IMP open import OperationalSemantics open import Hoare wp : ∀{l} → com → assn {l} → assn {l} wp c Q s = ∀ t → ⦅ c , s ⦆⇒ t → Q t fatto : ∀{P Q : assn} {c} → ⊨[ P ] c [ Q ] → (∀ s → P s → wp c Q s) fatto = λ z s z₁ t → z z₁ fatto-converse : ∀{P Q : assn} {c} → (∀ s → P s → wp c Q s) → ⊨[ P ] c [ Q ] fatto-converse = (λ z {s} {t} z₁ → z s z₁ t) wp-hoare : ∀ c {l} {Q : assn {l}} → ⊢[ wp c Q ] c [ Q ] wp-hoare SKIP = Conseq (λ s z → z s Skip) Skip (λ s z → z) wp-hoare (x ::= a) = Conseq (λ s wpe → wpe (s [ x ::= aval a s ]) Loc) Loc (λ s r → r) wp-hoare (c :: c₁) = Comp (Conseq (λ s z x x₁ x₂ x₃ → z x₂ (Comp x₁ x₃)) (wp-hoare c) (λ s z → z)) (wp-hoare c₁) wp-hoare (IF x THEN c ELSE c₁) = If (Conseq (λ s z x x₁ → proj₁ z x (IfTrue (proj₂ z) x₁)) (wp-hoare c) (λ s z → z)) (Conseq (λ s z x x₁ → proj₁ z x (IfFalse (proj₂ z) x₁)) (wp-hoare c₁) (λ s z → z)) wp-hoare (WHILE b DO c) = Conseq (λ s x → x) (While (Conseq (λ s z x x₁ x₂ x₃ → proj₁ z x₂ (WhileTrue (proj₂ z) x₁ x₃)) (wp-hoare c) (λ s z → z))) (λ s z → proj₁ z s (WhileFalse (proj₂ z))) completeness : ∀ c {P Q : assn} → ⊨[ P ] c [ Q ] → ⊢[ P ] c [ Q ] completeness c cc = Conseq (fatto cc) (wp-hoare c) (λ r x → x)
{ "alphanum_fraction": 0.5267363245, "avg_line_length": 38.7380952381, "ext": "agda", "hexsha": "0876315b0f5e07413e9b76fd39e03fb5317d2f7b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iwilare/imp-semantics", "max_forks_repo_path": "HoareCompleteness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iwilare/imp-semantics", "max_issues_repo_path": "HoareCompleteness.agda", "max_line_length": 118, "max_stars_count": 6, "max_stars_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iwilare/imp-semantics", "max_stars_repo_path": "HoareCompleteness.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-24T22:29:44.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-08T11:54:07.000Z", "num_tokens": 663, "size": 1627 }
{-# OPTIONS --type-in-type #-} module DescFix where open import DescTT aux : (C : Desc)(D : Desc)(P : Mu C -> Set)(x : [| D |] (Mu C)) -> Set aux C id P (con y) = P (con y) * aux C C P y aux C (const K) P k = Unit aux C (prod D D') P (s , t) = aux C D P s * aux C D' P t aux C (sigma S T) P (s , t) = aux C (T s) P t aux C (pi S T) P f = (s : S) -> aux C (T s) P (f s) gen : (C : Desc)(D : Desc)(P : Mu C -> Set) (rec : (y : [| C |] Mu C) -> aux C C P y -> P (con y)) (x : [| D |] Mu C) -> aux C D P x gen C id P rec (con x) = rec x (gen C C P rec x) , gen C C P rec x gen C (const K) P rec k = Void gen C (prod D D') P rec (s , t) = gen C D P rec s , gen C D' P rec t gen C (sigma S T) P rec (s , t) = gen C (T s) P rec t gen C (pi S T) P rec f = \ s -> gen C (T s) P rec (f s) fix : (D : Desc)(P : Mu D -> Set) (rec : (y : [| D |] Mu D) -> aux D D P y -> P (con y)) (x : Mu D) -> P x fix D P rec (con x) = rec x (gen D D P rec x) plus : Nat -> Nat -> Nat plus (con (Ze , Void)) n = n plus (con (Suc , m)) n = suc (plus m n) fib : Nat -> Nat fib = fix NatD (\ _ -> Nat) help where help : (m : [| NatD |] Nat) -> aux NatD NatD (\ _ -> Nat) m -> Nat help (Ze , x) a = suc ze help (Suc , con (Ze , _)) a = suc ze help (Suc , con (Suc , con n)) (fib-n , (fib-sn , a)) = plus fib-n fib-sn
{ "alphanum_fraction": 0.464, "avg_line_length": 31.976744186, "ext": "agda", "hexsha": "0178a67fd129f47ed17d7eba8efcc324ffd95217", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "models/DescFix.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "models/DescFix.agda", "max_line_length": 77, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "models/DescFix.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 561, "size": 1375 }
-- Andreas, 2014-09-23 -- Syntax declaration for overloaded constructor. -- {-# OPTIONS -v scope.operators:50 #-} syntax c x = ⟦ x ⟧ data D1 : Set where c : D1 data D2 : Set where c : D1 → D2 test : D2 test = ⟦ c ⟧ -- Should work.
{ "alphanum_fraction": 0.6058091286, "avg_line_length": 13.3888888889, "ext": "agda", "hexsha": "9758f755207d822e5a7d58d8ca1f1d9cc18846fc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1194c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1194c.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1194c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 86, "size": 241 }
-- P: (vcd) <E[send c v]> | <F[recv d]> --> (vcd) <E[c]> | <F[(d,v)]> -- P: (vcd) <E[close c]> | <F[wait d]> --> (vcd) <E[()]> | <F[()]> module Properties.StepCloseWait where open import Data.Maybe hiding (All) open import Data.List open import Data.List.All open import Data.Product open import Data.Sum open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Typing open import Syntax open import Global open import Channel open import Values open import Session open import Schedule open import ProcessSyntax open import ProcessRun open import Properties.Base mkclose : ∀ {Φ} → Expr (TUnit ∷ Φ) TUnit → Expr (TChan send! ∷ Φ) TUnit mkclose = λ e → letbind (left (split-all-right _)) (close (here [])) e mkwait : ∀ {Φ} → Expr (TUnit ∷ Φ) TUnit → Expr (TChan send? ∷ Φ) TUnit mkwait = λ e → letbind (left (split-all-right _)) (wait (here [])) e module General where mklhs : ∀ {Φ Φ₁ Φ₂} → Split Φ Φ₁ Φ₂ → Expr (TUnit ∷ Φ₁) TUnit → Expr (TUnit ∷ Φ₂) TUnit → Proc Φ mklhs sp e f = res (delay send!) (par (left (rght sp)) (exp (mkclose e)) (exp (mkwait f))) mkrhs : ∀ {Φ Φ₁ Φ₂} → Split Φ Φ₁ Φ₂ → Expr (TUnit ∷ Φ₁) TUnit → Expr (TUnit ∷ Φ₂) TUnit → Proc Φ mkrhs sp e f = par sp (exp (letbind (split-all-right _) (unit []) e)) (exp (letbind (split-all-right _) (unit []) f)) -- obviously true, but requires a nasty inductive proof postulate weaken2-ident : ∀ {G Φ} (ϱ : VEnv G Φ) → weaken2-venv [] [] ϱ ≡ ϱ postulate weaken1-ident : ∀ {G Φ} (ϱ : VEnv G Φ) → weaken1-venv [] ϱ ≡ ϱ reductionT : Set reductionT = ∀ { Φ Φ₁ Φ₂ } (sp : Split Φ Φ₁ Φ₂) (ϱ : VEnv [] Φ) (p : ∃ λ ϱ₁ → ∃ λ ϱ₂ → split-env sp (lift-venv ϱ) ≡ (((nothing ∷ []) , (nothing ∷ [])) , (ss-both ss-[]) , ϱ₁ , ϱ₂)) (e : Expr (TUnit ∷ Φ₁) TUnit) (f : Expr (TUnit ∷ Φ₂) TUnit) → let lhs = (runProc [] (mklhs sp e f) ϱ) in let rhs = (runProc [] (mkrhs sp e f) ϱ) in one-step lhs ≡ (Closed , nothing ∷ proj₁ rhs , lift-threadpool (proj₂ rhs)) reduction : reductionT reduction{Φ}{Φ₁}{Φ₂} sp ϱ p e f with ssplit-refl-left-inactive [] ... | G' , ina-G' , ss-GG' with split-env-lemma-2 sp ϱ ... | ϱ₁ , ϱ₂ , spe== , sp== rewrite spe== | sp== with ssplit-compose{just (send! , POSNEG) ∷ []} (ss-posneg ss-[]) (ss-left ss-[]) ... | ssc rewrite split-env-right-lemma ϱ₁ with ssplit-compose{just (send! , POSNEG) ∷ []} (ss-left ss-[]) (ss-left ss-[]) ... | ssc-ll rewrite split-env-right-lemma ϱ₂ with ssplit-compose2 (ss-both ss-[]) (ss-both ss-[]) ... | ssc2 rewrite weaken2-ident (lift-venv ϱ₁) | split-rotate-lemma {Φ₁} | split-rotate-lemma {Φ₂} | split-env-right-lemma0 ϱ₁ | split-env-right-lemma0 ϱ₂ | weaken2-ident ϱ₁ | weaken1-ident (lift-venv ϱ₂) | weaken1-ident ϱ₂ = refl module ClosedWithContext where mklhs : Expr (TUnit ∷ []) TUnit → Expr (TUnit ∷ []) TUnit → Proc [] mklhs e f = res (delay send!) (par (left (rght [])) (exp (mkclose e)) (exp (mkwait f))) mkrhs : Expr (TUnit ∷ []) TUnit → Expr (TUnit ∷ []) TUnit → Proc [] mkrhs e f = par [] (exp (letbind [] (unit []) e)) (exp (letbind [] (unit []) f)) reduction : (e f : Expr (TUnit ∷ []) TUnit) → let lhs = (runProc [] (mklhs e f) (vnil []-inactive)) in let rhs = (runProc [] (mkrhs e f) (vnil []-inactive)) in one-step lhs ≡ (Closed , nothing ∷ proj₁ rhs , lift-threadpool (proj₂ rhs)) reduction e f with ssplit-refl-left-inactive [] ... | G' , ina-G' , ss-GG' = refl
{ "alphanum_fraction": 0.5641163793, "avg_line_length": 29, "ext": "agda", "hexsha": "3efed919c078141230db123d6f14c3e6a219fca6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/Properties/StepCloseWait.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/Properties/StepCloseWait.agda", "max_line_length": 104, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/Properties/StepCloseWait.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 1392, "size": 3712 }
module Prelude.Level where open import Agda.Primitive public using (Level) renaming (lzero to zero; lsuc to suc; _⊔_ to max)
{ "alphanum_fraction": 0.7293233083, "avg_line_length": 22.1666666667, "ext": "agda", "hexsha": "80fe213f5d17930aa11cc27d7f10a2101d3db14d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/epic/Prelude/Level.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/epic/Prelude/Level.agda", "max_line_length": 51, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/epic/Prelude/Level.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 40, "size": 133 }
open import Everything module Test.Symmetrical where test-𝓢ymmetrical𝓢ymmetry : ∀ {𝔬} {𝔒 : Ø 𝔬} {ℓ} {_∼_ : 𝔒 → 𝔒 → Ø ℓ} ⦃ _ : Symmetry.class _∼_ ⦄ → Symmetry.type _∼_ -- test-𝓢ymmetrical𝓢ymmetry = symmetrical _ _ -- FIXME no longer works after 𝓢ymmetrical𝓢ymmetry was "rationalised" test-𝓢ymmetrical𝓢ymmetry {𝔒 = 𝔒} = symmetrical {𝔄 = 𝔒} _ _ test-𝓢ymmetrical𝓢ymmetry-alternate : ∀ {𝔬} {𝔒 : Ø 𝔬} {ℓ} {_∼_ : 𝔒 → 𝔒 → Ø ℓ} ⦃ _ : Symmetry.class _∼_ ⦄ → Symmetry.type _∼_ test-𝓢ymmetrical𝓢ymmetry-alternate {x = x} = symmetrical x _ lhs-test1 : ∀ {𝔬} {𝔒 : Ø 𝔬} {ℓ} {_∼_ : 𝔒 → 𝔒 → Ø ℓ} ⦃ _ : Symmetry.class _∼_ ⦄ {_∼'_ : 𝔒 → 𝔒 → Ø ℓ} ⦃ _ : Symmetry.class _∼'_ ⦄ → ∀ x y → _ lhs-test1 {_∼_ = _∼_} = symmetrical⟦ _∼_ / (λ x y → x → y) ⟧ module OverlappingInstances {𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} {ℓ} {_↦_ : 𝔅 → 𝔅 → Ø ℓ} {_↦'_ : 𝔅 → 𝔅 → Ø ℓ} {_∼1_ : 𝔄 → 𝔄 → 𝔅} {_∼2_ : 𝔄 → 𝔄 → 𝔅} ⦃ _ : Symmetrical _∼1_ _↦_ ⦄ ⦃ _ : Symmetrical _∼1_ _↦'_ ⦄ ⦃ _ : Symmetrical _∼2_ _↦_ ⦄ ⦃ _ : Symmetrical _∼2_ _↦'_ ⦄ (x y : 𝔄) where test1 = symmetrical {_∼_ = _∼1_} {_↦_ = _↦_} x y test2 : (x ∼1 y) ↦ (y ∼1 x) test2 = symmetrical⟦ _ / _↦_ ⟧ x y test2a : (x ∼1 y) ↦ (y ∼1 x) test2a = symmetrical x y test3 = symmetrical⟦ _∼1_ / _↦_ ⟧ x y lhs-test2a : ∀ {𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} (_∼_ : 𝔄 → 𝔄 → 𝔅) {ℓ} (_↦_ : 𝔅 → 𝔅 → Ø ℓ) ⦃ _ : Symmetrical _∼_ _↦_ ⦄ → ∀ (x y : 𝔄) → _ ↦ _ lhs-test2a _∼_ _↦_ x y = symmetrical x y -- works -- symmetrical⟦ _∼_ / _↦_ ⟧ x y -- works -- symmetrical⟦ _ / _↦_ ⟧ x y -- works -- symmetrical⟦ _∼_ / _ ⟧ x y -- works open import Oscar.Data.Proposequality lhs-test2a' : ∀ {𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} (_∼_ : 𝔄 → 𝔄 → 𝔅) {_∼'_ : 𝔄 → 𝔄 → 𝔅} {ℓ} (_↦_ : 𝔅 → 𝔅 → Ø ℓ) {_↦'_ : 𝔅 → 𝔅 → Ø ℓ} ⦃ _ : Symmetrical _∼_ _↦_ ⦄ ⦃ _ : Symmetrical _∼'_ _↦_ ⦄ ⦃ _ : Symmetrical _∼_ _↦'_ ⦄ ⦃ _ : Symmetrical _∼'_ _↦'_ ⦄ → ∀ (x y : 𝔄) → -- _ _ ↦ _ -- (x ∼ y) ↦ (y ∼ x) lhs-test2a' _∼_ _↦_ x y = symmetrical⟦ _∼_ / _ ⟧ x y -- symmetrical x y -- fails, as expected -- symmetrical⟦ _ / _ ⟧ x y -- fails, as expected -- symmetrical⟦ _ / _↦_ ⟧ x y -- fails, as expected lhs-test2a'' : ∀ {𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} (_∼_ : 𝔄 → 𝔄 → 𝔅) {_∼'_ : 𝔄 → 𝔄 → 𝔅} {ℓ} (_↦_ : 𝔅 → 𝔅 → Ø ℓ) {_↦'_ : 𝔅 → 𝔅 → Ø ℓ} ⦃ _ : Symmetrical _∼_ _↦_ ⦄ ⦃ _ : Symmetrical _∼'_ _↦_ ⦄ ⦃ _ : Symmetrical _∼_ _↦'_ ⦄ ⦃ _ : Symmetrical _∼'_ _↦'_ ⦄ → ∀ (x y : 𝔄) → -- _ -- _ ↦ _ (x ∼ y) ↦ (y ∼ x) lhs-test2a'' _∼_ _↦_ x y = symmetrical {_∼_ = _∼_} x y -- symmetrical'' {_↦_ = _↦_} x y -- symmetrical'' {_∼_ = _∼_} {_↦_ = _↦_} x y -- symmetrical'' x y
{ "alphanum_fraction": 0.4566655064, "avg_line_length": 28.1666666667, "ext": "agda", "hexsha": "9f5621fb2409415adcebcdf89e7d43ef3cdb9e76", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/Symmetrical.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/Symmetrical.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/Symmetrical.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1570, "size": 2873 }
{-# OPTIONS --rewriting #-} module DualLMRefined where open import Data.Bool open import Data.Nat hiding (compare) open import Data.Nat.Properties open import Data.Fin hiding (_+_) open import Data.Product open import Function open import Relation.Binary.PropositionalEquality hiding (Extensionality) open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite open import Extensionality open import Direction -- variables variable n m : ℕ ---------------------------------------------------------------------- -- auxiliaries for automatic rewriting n+1=suc-n : n + 1 ≡ suc n n+1=suc-n {zero} = refl n+1=suc-n {suc n} = cong suc (n+1=suc-n {n}) {-# REWRITE n+1=suc-n #-} n+0=n : n + 0 ≡ n n+0=n {zero} = refl n+0=n {suc n} = cong suc (n+0=n {n}) {-# REWRITE n+0=n #-} inject+0-x=x : {x : Fin m} → inject+ 0 x ≡ x inject+0-x=x {x = zero} = refl inject+0-x=x {x = suc x} = cong suc inject+0-x=x {-# REWRITE inject+0-x=x #-} n+sucm : n + suc m ≡ suc (n + m) n+sucm {0} = refl n+sucm {suc n} = cong suc (n+sucm{n}) {-# REWRITE n+sucm #-} n=fromℕtoℕn : (toℕ (fromℕ n)) ≡ n n=fromℕtoℕn {zero} = refl n=fromℕtoℕn {suc n} = cong suc (n=fromℕtoℕn {n}) {-# REWRITE n=fromℕtoℕn #-} sucn∸suctoℕx≡n∸toℕx : {n : ℕ} {x : Fin n} → suc (n ∸ suc (toℕ x)) ≡ n ∸ (toℕ x) sucn∸suctoℕx≡n∸toℕx {suc n} {zero} = refl sucn∸suctoℕx≡n∸toℕx {suc n} {suc x} = sucn∸suctoℕx≡n∸toℕx{n}{x} sym-sucn∸suctoℕx≡n∸toℕx : {n : ℕ} {x : Fin n} → n ∸ (toℕ x) ≡ suc (n ∸ suc (toℕ x)) sym-sucn∸suctoℕx≡n∸toℕx {n} {x} = sym (sucn∸suctoℕx≡n∸toℕx{n}{x}) {-# REWRITE sym-sucn∸suctoℕx≡n∸toℕx #-} n∸n≡0F : n ∸ n ≡ 0 n∸n≡0F {0} = refl n∸n≡0F {suc n} = n∸n≡0F{n} {-# REWRITE n∸n≡0F #-} {-# REWRITE m+n∸n≡m #-} ---------------------------------------------------------------------- -- some more required properties on natural numbers and fin toℕx≤n : {n : ℕ} {x : Fin n} → Data.Nat._≤_ (toℕ x) n toℕx≤n {suc n} {zero} = z≤n toℕx≤n {suc n} {suc x} = s≤s toℕx≤n toℕx≤n' : {n : ℕ} {x : Fin (suc n)} → Data.Nat._≤_ (toℕ x) n toℕx≤n' {0} {zero} = z≤n toℕx≤n' {suc n} {zero} = z≤n toℕx≤n' {suc n} {suc x} = s≤s (toℕx≤n'{n}{x}) n∸x+x≡n : {n x : ℕ} → Data.Nat._≤_ x n → n ∸ x + x ≡ n n∸x+x≡n {0} {zero} le = refl n∸x+x≡n {0} {suc x} () n∸x+x≡n {suc n} {zero} le = refl n∸x+x≡n {suc n} {suc x} (s≤s le) = cong suc (n∸x+x≡n le) toℕx<n : {n : ℕ} {x : Fin n} → Data.Nat._<_ (toℕ x) n toℕx<n {suc n} {zero} = s≤s z≤n toℕx<n {suc n} {suc x} = s≤s toℕx<n n∸x≡suc[n∸sucx] : {n x : ℕ} → Data.Nat._<_ x n → n ∸ x ≡ suc (n ∸ (suc x)) n∸x≡suc[n∸sucx] {suc n} {0} le = refl n∸x≡suc[n∸sucx] {suc n} {suc x} (s≤s le) = n∸x≡suc[n∸sucx] le suc[n+x]≡n+sucx : {n x : ℕ} → suc (n + x) ≡ (n + suc x) suc[n+x]≡n+sucx {0} {x} = refl suc[n+x]≡n+sucx {suc n} {x} = refl suc[n∸sucx+x]≡n : {n x : ℕ} → Data.Nat._<_ x n → suc (n ∸ (suc x) + x) ≡ n suc[n∸sucx+x]≡n {suc n} {0} le = refl suc[n∸sucx+x]≡n {suc n} {suc x} (s≤s le) = cong suc (suc[n∸sucx+x]≡n {n} {x} le) suc[n∸suc[toℕi]+toℕi]≡n : {n : ℕ} {i : Fin n} → suc (n ∸ (suc (toℕ i)) + toℕ i) ≡ n suc[n∸suc[toℕi]+toℕi]≡n {n} {i} = suc[n∸sucx+x]≡n{n}{toℕ i} toℕx<n {-# REWRITE suc[n∸suc[toℕi]+toℕi]≡n #-} m∸toℕ+toℕ≡m : {n : ℕ} {i : Fin (suc n)} → n ∸ (toℕ i) + (toℕ i) ≡ n m∸toℕ+toℕ≡m {n} {i} = m∸n+n≡m{n}{toℕ i} toℕx≤n' {-# REWRITE m∸toℕ+toℕ≡m #-} <suc : {n x : ℕ} → Data.Nat._<_ x n → Data.Nat._<_ x (suc n) <suc {suc n} {0} le = s≤s z≤n <suc {suc n} {suc x} (s≤s le) = s≤s (<suc {n} {x} le) ≤suc : {n x : ℕ} → Data.Nat._≤_ x n → Data.Nat._≤_ x (suc n) ≤suc {n} {0} le = z≤n ≤suc {suc n} {suc x} (s≤s le) = s≤s (≤suc {n} {x} le) ---------------------------------------------------------------------- module IND where mutual data Type (n : ℕ) : Set where TUnit TInt : Type n TPair : Type n → Type n → Type n TChan : SType n → Type n data SType (n : ℕ) : Set where gdd : (gst : GType n) → SType n rec : (gst : GType (suc n)) → SType n var : (x : Fin n) → SType n data GType (n : ℕ) : Set where transmit : (d : Dir) (t : Type n) (s : SType n) → GType n choice : (d : Dir) (m : ℕ) (alt : Fin m → SType n) → GType n end : GType n data MClType (n : ℕ) : Set where MClTUnit MClTInt : MClType n MClTPair : MClType n → MClType n → MClType n MClTChan : SType 0 → MClType n data MClSType (n : ℕ) : Set where tgdd : (tgst : MClGType n) → MClSType n trec : (tgst : MClGType (suc n)) → MClSType n tvar : (x : Fin n) → MClSType n data MClGType (n : ℕ) : Set where ttransmit : (d : Dir) (t : MClType n) (s : MClSType n) → MClGType n tchoice : (d : Dir) (m : ℕ) (alt : Fin m → MClSType n) → MClGType n end : MClGType n ---------------------------------------------------------------------- weaken1'N : Fin (suc n) → Fin n → Fin (suc n) weaken1'N zero x = suc x weaken1'N (suc i) zero = zero weaken1'N (suc i) (suc x) = suc (weaken1'N i x) weaken1'S : Fin (suc n) → SType n → SType (suc n) weaken1'G : Fin (suc n) → GType n → GType (suc n) weaken1'T : Fin (suc n) → Type n → Type (suc n) weaken1'S i (gdd gst) = gdd (weaken1'G i gst) weaken1'S i (rec gst) = rec (weaken1'G (suc i) gst) weaken1'S i (var x) = var (weaken1'N i x) weaken1'G i (transmit d t s) = transmit d (weaken1'T i t) (weaken1'S i s) weaken1'G i (choice d m alt) = choice d m (weaken1'S i ∘ alt) weaken1'G i end = end weaken1'T i TUnit = TUnit weaken1'T i TInt = TInt weaken1'T i (TPair t₁ t₂) = TPair (weaken1'T i t₁) (weaken1'T i t₂) weaken1'T i (TChan x) = TChan (weaken1'S i x) weaken1S : SType n → SType (suc n) weaken1G : GType n → GType (suc n) weaken1T : Type n → Type (suc n) weaken1S = weaken1'S zero weaken1G = weaken1'G zero weaken1T = weaken1'T zero weakenS : (n : ℕ) → SType m → SType (m + n) weakenG : (n : ℕ) → GType m → GType (m + n) weakenT : (n : ℕ) → Type m → Type (m + n) weakenS n (gdd gst) = gdd (weakenG n gst) weakenS n (rec gst) = rec (weakenG n gst) weakenS n (var x) = var (inject+ n x) weakenG n (transmit d t s) = transmit d (weakenT n t) (weakenS n s) weakenG n (choice d m alt) = choice d m (λ i → weakenS n (alt i)) weakenG n end = end weakenT n TUnit = TUnit weakenT n TInt = TInt weakenT n (TPair ty ty₁) = TPair (weakenT n ty) (weakenT n ty₁) weakenT n (TChan x) = TChan (weakenS n x) ---------------------------------------------------------------------- -- Single substitution with SType 0 st-substS : SType (suc n) → Fin (suc n) → SType 0 → SType n st-substG : GType (suc n) → Fin (suc n) → SType 0 → GType n st-substT : Type (suc n) → Fin (suc n) → SType 0 → Type n st-substS (gdd gst) i st0 = gdd (st-substG gst i st0) st-substS (rec gst) i st0 = rec (st-substG gst (suc i) st0) st-substS {n} (var zero) zero st0 = weakenS n st0 st-substS {suc n} (var zero) (suc i) st0 = var zero st-substS {suc n} (var (suc x)) zero st0 = var x st-substS {suc n} (var (suc x)) (suc i) st0 = weaken1S (st-substS (var x) i st0) st-substG (transmit d t s) i st0 = transmit d (st-substT t i st0) (st-substS s i st0) st-substG (choice d m alt) i st0 = choice d m (λ j → st-substS (alt j) i st0) st-substG end i st0 = end st-substT TUnit i st0 = TUnit st-substT TInt i st0 = TInt st-substT (TPair ty ty₁) i st0 = TPair (st-substT ty i st0) (st-substT ty₁ i st0) st-substT (TChan st) i st0 = TChan (st-substS st i st0) -- Single substitution with SType n st-substS' : Fin (suc n) → SType n → SType (suc n) → SType n st-substG' : Fin (suc n) → SType n → GType (suc n) → GType n st-substT' : Fin (suc n) → SType n → Type (suc n) → Type n st-substS' i st (gdd gst) = gdd (st-substG' i st gst) st-substS' i st (rec gst) = rec (st-substG' (suc i) (weaken1S st) gst) st-substS' i st (var x) with compare x i st-substS' i st (var .(inject least)) | less .i least = var (inject! least) st-substS' .x st (var x) | equal .x = st st-substS' .(inject least) st (var (suc x)) | greater .(suc x) least = var x st-substG' i st (transmit d t s) = transmit d (st-substT' i st t) (st-substS' i st s) st-substG' i st (choice d m alt) = choice d m (λ j → st-substS' i st (alt j)) st-substG' i st end = end st-substT' i st TUnit = TUnit st-substT' i st TInt = TInt st-substT' i st (TPair ty ty₁) = TPair (st-substT' i st ty) (st-substT' i st ty₁) st-substT' i st (TChan s) = TChan (st-substS' i st s) ---------------------------------------------------------------------- ---------------------------------------------------------------------- ---------------------------------------------------------------------- open IND data Stack : ℕ → Set where ε : Stack 0 ⟪_,_⟫ : Stack n → IND.GType (suc n) → Stack (suc n) data StackS : ℕ → Set where ε : StackS 0 ⟪_,_⟫ : StackS n → IND.SType n → StackS (suc n) data StackS0 : ℕ → Set where ε : StackS0 0 ⟪_,_⟫ : StackS0 n → IND.SType 0 → StackS0 (suc n) data StackMCl : ℕ → Set where ε : StackMCl 0 ⟪_,_⟫ : StackMCl n → IND.MClGType (suc n) → StackMCl (suc n) -- Stack of length m starting at arbitrary type size n data Stack' : ℕ → ℕ → Set where ε : Stack' n 0 ⟪_,_⟫ : Stack' n m → IND.GType (suc (n + m)) → Stack' n (suc m) data Stack'S : ℕ → ℕ → Set where ε : Stack'S n 0 ⟪_,_⟫ : Stack'S n m → IND.SType (n + m) → Stack'S n (suc m) data Stack'Sn : ℕ → ℕ → Set where ε : Stack'Sn n 0 ⟪_,_⟫ : Stack'Sn n m → IND.SType n → Stack'Sn n (suc m) get : {n : ℕ} → (i : Fin n) → Stack n → Stack (n ∸ (suc (toℕ i))) × IND.GType (n ∸ (toℕ i)) get {suc n} zero ⟪ σ , x ⟫ = σ , x get {suc n} (suc i) ⟪ σ , x ⟫ = get i σ getS : {n : ℕ} → (i : Fin n) → StackS n → StackS (n ∸ (suc (toℕ i))) × IND.SType (n ∸ (suc (toℕ i))) getS {suc n} zero ⟪ σ , x ⟫ = σ , x getS {suc n} (suc i) ⟪ σ , x ⟫ = getS i σ getS0 : {n : ℕ} → (i : Fin n) → StackS0 n → StackS0 (n ∸ (suc (toℕ i))) × IND.SType 0 getS0 {suc n} zero ⟪ σ , x ⟫ = σ , x getS0 {suc n} (suc i) ⟪ σ , x ⟫ = getS0 i σ getMCl : {n : ℕ} → (i : Fin n) → StackMCl n → StackMCl (n ∸ (suc (toℕ i))) × IND.MClGType (n ∸ (toℕ i)) getMCl {suc n} zero ⟪ σ , x ⟫ = σ , x getMCl {suc n} (suc i) ⟪ σ , x ⟫ = getMCl i σ get' : {n m : ℕ} → (i : Fin m) → Stack' n m → Stack' n (m ∸ (suc (toℕ i))) × IND.GType (n + (m ∸ (toℕ i))) get' {n} {suc m} zero ⟪ σ , x ⟫ = σ , x get' {n} {suc m} (suc i) ⟪ σ , x ⟫ = get' i σ get'S : {n m : ℕ} → (i : Fin m) → Stack'S n m → Stack'S n (m ∸ (suc (toℕ i))) × IND.SType (n + (m ∸ (suc (toℕ i)))) get'S {n} {suc m} zero ⟪ σ , x ⟫ = σ , x get'S {n} {suc m} (suc i) ⟪ σ , x ⟫ = get'S i σ get'Sn : {n m : ℕ} → (i : Fin m) → Stack'Sn n m → Stack'Sn n (m ∸ (suc (toℕ i))) × IND.SType n get'Sn {n} {suc m} zero ⟪ σ , x ⟫ = σ , x get'Sn {n} {suc m} (suc i) ⟪ σ , x ⟫ = get'Sn i σ ---------------------------------------------------------------------- stack-split : (i : Fin (suc n)) → Stack n → Stack (n ∸ toℕ i) × Stack' (n ∸ toℕ i) (toℕ i) stack-split zero σ = σ , ε stack-split{n} (suc i) ⟪ σ , x ⟫ with stack-split i σ ... | σ' , σ'' = σ' , ⟪ σ'' , x ⟫ -- couldn't achieve this by rewriting alone suc[n+[m∸sucx]+x]≡n+m : {n m x : ℕ} → Data.Nat._<_ x m → suc (n + (m ∸ suc x) + x) ≡ n + m suc[n+[m∸sucx]+x]≡n+m {0} {m} {x} le = suc[n∸sucx+x]≡n{m}{x} le suc[n+[m∸sucx]+x]≡n+m {suc n} {suc m} {0} le = refl suc[n+[m∸sucx]+x]≡n+m {suc n} {suc m} {suc x} (s≤s le) = cong suc (cong suc (suc[n+[m∸sucx]+x]≡n+m le)) -- i from the top of the stack stack'-m-i : {n m : ℕ} → (i : Fin m) → Stack' n m → Stack' (n + (m ∸ (toℕ i))) (toℕ i) stack'-m-i {n} {m} zero σ = ε stack'-m-i {n} {suc m} (suc i) ⟪ σ , x ⟫ rewrite (sym (suc[n+[m∸sucx]+x]≡n+m{n}{m}{toℕ i} toℕx<n)) = ⟪ (stack'-m-i i σ) , x ⟫ weaken1-Stack' : (i : Fin (suc n)) → Stack' n m → Stack' (suc n) m weaken1-Stack' i ε = ε weaken1-Stack'{n}{m} i ⟪ σ , x ⟫ = ⟪ (weaken1-Stack' i σ) , (weaken1'G (inject+ m i) x) ⟫ weaken1-Stack'Sn : (i : Fin (suc n)) → Stack'Sn n m → Stack'Sn (suc n) m weaken1-Stack'Sn i ε = ε weaken1-Stack'Sn{n}{m} i ⟪ σ , x ⟫ = ⟪ (weaken1-Stack'Sn i σ) , (weaken1'S i x) ⟫ -- substitute after index i, required for rec case stack-sim-substS-i> : (i : Fin n) → StackS0 (n ∸ (toℕ (suc i))) → SType n → SType (toℕ (suc i)) stack-sim-substG-i> : (i : Fin n) → StackS0 (n ∸ (toℕ (suc i))) → GType n → GType (toℕ (suc i)) stack-sim-substT-i> : (i : Fin n) → StackS0 (n ∸ (toℕ (suc i))) → Type n → Type (toℕ (suc i)) stack-sim-substS-i> i σ (gdd gst) = gdd (stack-sim-substG-i> i σ gst) stack-sim-substS-i> i σ (rec gst) = rec (stack-sim-substG-i> (suc i) σ gst) stack-sim-substS-i>{suc n} zero σ (var zero) = var zero stack-sim-substS-i> zero σ (var (suc x)) with getS0 x σ ... | σ' , s = weaken1S s stack-sim-substS-i> (suc i) σ (var zero) = var zero stack-sim-substS-i> (suc i) σ (var (suc x)) = weaken1S (stack-sim-substS-i> i σ (var x)) stack-sim-substG-i> i σ (transmit d t s) = transmit d (stack-sim-substT-i> i σ t) (stack-sim-substS-i> i σ s) stack-sim-substG-i> i σ (choice d m alt) = choice d m (λ x → stack-sim-substS-i> i σ (alt x)) stack-sim-substG-i> i σ end = end stack-sim-substT-i> i σ TUnit = TUnit stack-sim-substT-i> i σ TInt = TInt stack-sim-substT-i> i σ (TPair t t₁) = TPair (stack-sim-substT-i> i σ t) (stack-sim-substT-i> i σ t₁) stack-sim-substT-i> i σ (TChan x) = TChan (stack-sim-substS-i> i σ x) -- substitute stack stack-sim-substS : StackS0 n → SType n → SType 0 stack-sim-substG : StackS0 n → GType n → GType 0 stack-sim-substT : StackS0 n → Type n → Type 0 stack-sim-substS σ (gdd gst) = gdd (stack-sim-substG σ gst) stack-sim-substS σ (rec gst) = rec (stack-sim-substG-i> zero σ gst) -- Apply stack substitution to variables 1, ..., suc n; keep 0F; can't extend StackS0 since only SType 0F allowed stack-sim-substS σ (var x) with getS0 x σ ... | σ' , s = s stack-sim-substG σ (transmit d t s) = transmit d (stack-sim-substT σ t) (stack-sim-substS σ s) stack-sim-substG σ (choice d m alt) = choice d m (λ x → stack-sim-substS σ (alt x)) stack-sim-substG σ end = end stack-sim-substT σ TUnit = TUnit stack-sim-substT σ TInt = TInt stack-sim-substT σ (TPair t t₁) = TPair (stack-sim-substT σ t) (stack-sim-substT σ t₁) stack-sim-substT σ (TChan x) = TChan (stack-sim-substS σ x) stack-sim-substS'-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → SType m → SType (n + toℕ i) stack-sim-substG'-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → GType m → GType (n + toℕ i) stack-sim-substT'-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → Type m → Type (n + toℕ i) stack-sim-substS'-i≥ i σ (gdd gst) = gdd (stack-sim-substG'-i≥ i σ gst) stack-sim-substS'-i≥ i σ (rec gst) = rec (stack-sim-substG'-i≥ (suc i) σ gst) stack-sim-substS'-i≥ zero σ (var x) with get'Sn x σ ... | σ' , y = y stack-sim-substS'-i≥ (suc i) σ (var zero) = var zero stack-sim-substS'-i≥ (suc i) σ (var (suc x)) = weaken1S (stack-sim-substS'-i≥ i σ (var x)) stack-sim-substG'-i≥ i σ (transmit d t s) = transmit d (stack-sim-substT'-i≥ i σ t) (stack-sim-substS'-i≥ i σ s) stack-sim-substG'-i≥ i σ (choice d m alt) = choice d m (λ x → stack-sim-substS'-i≥ i σ (alt x)) stack-sim-substG'-i≥ i σ end = end stack-sim-substT'-i≥ i σ TUnit = TUnit stack-sim-substT'-i≥ i σ TInt = TInt stack-sim-substT'-i≥ i σ (TPair t t₁) = TPair (stack-sim-substT'-i≥ i σ t) (stack-sim-substT'-i≥ i σ t₁) stack-sim-substT'-i≥ i σ (TChan x) = TChan (stack-sim-substS'-i≥ i σ x) -- substitute stack' stack-sim-substS' : Stack'Sn n m → SType m → SType n stack-sim-substG' : Stack'Sn n m → GType m → GType n stack-sim-substT' : Stack'Sn n m → Type m → Type n stack-sim-substS' σ (gdd gst) = gdd (stack-sim-substG' σ gst) stack-sim-substS'{n}{m} σ (rec gst) = rec (stack-sim-substG'-i≥ (suc zero) σ gst) stack-sim-substS' σ (var x) with get'Sn x σ ... | σ' , s = s stack-sim-substG' σ (transmit d t s) = transmit d (stack-sim-substT' σ t) (stack-sim-substS' σ s) stack-sim-substG' σ (choice d m alt) = choice d m (λ x → stack-sim-substS' σ (alt x)) stack-sim-substG' σ end = end stack-sim-substT' σ TUnit = TUnit stack-sim-substT' σ TInt = TInt stack-sim-substT' σ (TPair t t₁) = TPair (stack-sim-substT' σ t) (stack-sim-substT' σ t₁) stack-sim-substT' σ (TChan x) = TChan (stack-sim-substS' σ x) {- required for alt. def. of rec case of stack-sim-substS'-top stack-sim-substS'-top-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → SType (n + m) → SType (n + toℕ i) stack-sim-substG'-top-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → GType (n + m) → GType (n + toℕ i) stack-sim-substT'-top-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → Type (n + m) → Type (n + toℕ i) stack-sim-substS'-top-i≥ i σ (gdd gst) = {!!} stack-sim-substS'-top-i≥ i σ (rec gst) = rec (stack-sim-substG'-top-i≥ (suc i) σ gst) stack-sim-substS'-top-i≥ i σ (var x) = {!!} stack-sim-substS'-top-i≥' : (i : Fin (suc m)) → Stack'Sn (n + toℕ i) (toℕ i) → SType (n + m) → SType (n + m ∸ toℕ i) stack-sim-substG'-top-i≥' : (i : Fin (suc m)) → Stack'Sn (n + toℕ i) (toℕ i) → GType (n + m) → GType (n + m ∸ toℕ i) stack-sim-substS'-top-i≥'{m = m}{n = suc n} i σ (rec gst) = rec (stack-sim-substG'-top-i≥' {!!} {!!} gst) -} -- substitute top variables from stack' stack-sim-substS'-top : Stack'Sn n m → SType (n + m) → SType n stack-sim-substG'-top : Stack'Sn n m → GType (n + m) → GType n stack-sim-substT'-top : Stack'Sn n m → Type (n + m) → Type n stack-sim-substS'-top σ (gdd gst) = gdd (stack-sim-substG'-top σ gst) stack-sim-substS'-top{n}{m} σ (rec gst) = rec (stack-sim-substG'-top{m = m} (weaken1-Stack'Sn zero σ) gst) -- alternative: rec (stack-sim-substG'-top-i≥ 1 σ gst) stack-sim-substS'-top{n}{m} σ (var x) = {!!} -- <= n => var n, > n => substitute -- Transform Stack of STypes to Stack of closed STypes by substitution -- ⟪ ε , SType 0 , SType 1 , SType 2 , ⋯ ⟫ -- ⟪ ε , SType 0 , SType 1 [0 ↦ SType 0], SType 2 [0 ↦ SType 0, 1 ↦ SType 1 [0 ↦ SType 0]], ⋯ ⟫ -- ⟪ ε , SType 0 , SType 0 , SType 0 , ⋯ ⟫ stack-transform : StackS n → StackS0 n stack-transform ε = ε stack-transform ⟪ σ , x ⟫ with stack-transform σ ... | σ' = ⟪ σ' , (stack-sim-substS σ' x) ⟫ stack-transform' : Stack'S n m → Stack'Sn n m stack-transform' ε = ε stack-transform'{n} ⟪ σ , x ⟫ with stack-transform' σ ... | σ' = ⟪ σ' , stack-sim-substS'-top σ' x ⟫ stack-cat : Stack n → Stack' n m → Stack (n + m) stack-cat σ ε = σ stack-cat σ ⟪ σ' , x ⟫ = ⟪ (stack-cat σ σ') , x ⟫ stack-cat' : Stack' 0 n → Stack' n m → Stack' 0 (n + m) stack-cat' σ ε = σ stack-cat' σ ⟪ σ' , x ⟫ = ⟪ (stack-cat' σ σ') , x ⟫ stack-sim-substS-refl : (s : SType 0) → stack-sim-substS ε s ≡ s stack-sim-substG-refl : (g : GType 0) → stack-sim-substG ε g ≡ g stack-sim-substT-refl : (t : Type 0) → stack-sim-substT ε t ≡ t stack-sim-substS-refl (gdd gst) = cong gdd (stack-sim-substG-refl gst) stack-sim-substS-refl (rec gst) = {!!} -- requires stack-sim-substG-i>-refl stack-sim-substG-refl (transmit d t s) = cong₂ (transmit d) (stack-sim-substT-refl t) (stack-sim-substS-refl s) stack-sim-substG-refl (choice d m alt) = cong (choice d m) (ext (λ x → stack-sim-substS-refl (alt x))) stack-sim-substG-refl end = refl stack-sim-substT-refl TUnit = refl stack-sim-substT-refl TInt = refl stack-sim-substT-refl (TPair t t₁) = cong₂ TPair (stack-sim-substT-refl t) (stack-sim-substT-refl t₁) stack-sim-substT-refl (TChan x) = cong TChan (stack-sim-substS-refl x) ---------------------------------------------------------------------- -- Message closure mclS : (σ : StackS n) → SType n → MClSType n mclG : (σ : StackS n) → GType n → MClGType n mclT : (σ : StackS n) → Type n → MClType n mclS σ (gdd gst) = tgdd (mclG σ gst) mclS σ (rec gst) = trec (mclG ⟪ σ , (rec gst) ⟫ gst) mclS σ (var x) = tvar x mclG σ (transmit d t s) = ttransmit d (mclT σ t) (mclS σ s) mclG σ (choice d m alt) = tchoice d m (λ x → mclS σ (alt x)) mclG σ end = end mclT σ TUnit = MClTUnit mclT σ TInt = MClTInt mclT σ (TPair t t₁) = MClTPair (mclT σ t) (mclT σ t₁) mclT σ (TChan x) = MClTChan (stack-sim-substS (stack-transform σ) x) ---------------------------------------------------------------------- -- Any mcl type is a normal type with weakening mcl2indS : MClSType n → SType n mcl2indG : MClGType n → GType n mcl2indT : MClType n → Type n mcl2indS (tgdd tgst) = gdd (mcl2indG tgst) mcl2indS (trec tgst) = rec (mcl2indG tgst) mcl2indS (tvar x) = var x mcl2indG (ttransmit d t s) = transmit d (mcl2indT t) (mcl2indS s) mcl2indG (tchoice d m alt) = choice d m (λ x → mcl2indS (alt x)) mcl2indG end = end mcl2indT MClTUnit = TUnit mcl2indT MClTInt = TInt mcl2indT (MClTPair t t₁) = TPair (mcl2indT t) (mcl2indT t₁) mcl2indT{n} (MClTChan x) = TChan (weakenS n x) ---------------------------------------------------------------------- stack2StackS : Stack n → StackS n stack2StackS ε = ε stack2StackS ⟪ σ , x ⟫ = ⟪ (stack2StackS σ) , (rec x) ⟫ stackMCl2Stack : StackMCl n → Stack n stackMCl2Stack ε = ε stackMCl2Stack ⟪ σ , x ⟫ = ⟪ (stackMCl2Stack σ) , (mcl2indG x) ⟫ stackMCl2StackS : StackMCl n → StackS n stackMCl2StackS ε = ε stackMCl2StackS ⟪ σ , x ⟫ = ⟪ (stackMCl2StackS σ) , (rec (mcl2indG x)) ⟫ stack2StackMCl : Stack n → StackMCl n stack2StackMCl ε = ε stack2StackMCl ⟪ σ , x ⟫ = ⟪ (stack2StackMCl σ) , (mclG ⟪ stack2StackS σ , rec x ⟫ x) ⟫ stack2Stack' : Stack n → Stack' 0 n stack2Stack' ε = ε stack2Stack' ⟪ σ , x ⟫ = ⟪ stack2Stack' σ , x ⟫ stack'2Stack : Stack' 0 n → Stack n stack'2Stack ε = ε stack'2Stack ⟪ σ , x ⟫ = ⟪ stack'2Stack σ , x ⟫ stack'2Stack'S : Stack' n m → Stack'S n m stack'2Stack'S ε = ε stack'2Stack'S ⟪ σ , x ⟫ = ⟪ (stack'2Stack'S σ) , (rec x) ⟫ stack-stack'-refl : (σ : Stack n) → (stack'2Stack (stack2Stack' σ)) ≡ σ stack-stack'-refl ε = refl stack-stack'-refl ⟪ σ , x ⟫ rewrite (stack-stack'-refl σ) = refl {-# REWRITE stack-stack'-refl #-} ---------------------------------------------------------------------- naive-dualS : SType n → SType n naive-dualG : GType n → GType n naive-dualT : Type n → Type n naive-dualS (gdd gst) = gdd (naive-dualG gst) naive-dualS (rec gst) = rec (naive-dualG gst) naive-dualS (var x) = var x naive-dualG (transmit d t s) = transmit (dual-dir d) (naive-dualT t) (naive-dualS s) naive-dualG (choice d m alt) = choice (dual-dir d) m (λ x → naive-dualS (alt x)) naive-dualG end = end naive-dualT TUnit = TUnit naive-dualT TInt = TInt naive-dualT (TPair t t₁) = TPair (naive-dualT t) (naive-dualT t₁) naive-dualT (TChan x) = TChan (naive-dualS x) naive-dualSt : MClSType n → MClSType n naive-dualGt : MClGType n → MClGType n naive-dualTt : MClType n → MClType n naive-dualSt (tgdd tgst) = tgdd (naive-dualGt tgst) naive-dualSt (trec tgst) = trec (naive-dualGt tgst) naive-dualSt (tvar x) = tvar x naive-dualGt (ttransmit d t s) = ttransmit (dual-dir d) (naive-dualTt t) (naive-dualSt s) naive-dualGt (tchoice d m alt) = tchoice (dual-dir d) m (λ x → naive-dualSt (alt x)) naive-dualGt end = end naive-dualTt MClTUnit = MClTUnit naive-dualTt MClTInt = MClTInt naive-dualTt (MClTPair t t₁) = MClTPair (naive-dualTt t) (naive-dualTt t₁) naive-dualTt (MClTChan x) = MClTChan (naive-dualS x) ---------------------------------------------------------------------- dualS : (σ : StackS n) → SType n → MClSType n dualG : (σ : StackS n) → GType n → MClGType n dualT : (σ : StackS n) → Type n → MClType n dualS σ (gdd gst) = tgdd (dualG σ gst) dualS σ (rec gst) = trec (dualG ⟪ σ , (rec gst) ⟫ gst) dualS σ (var x) = (tvar x) dualG{n} σ (transmit d t s) = ttransmit (dual-dir d) (dualT σ t) (dualS σ s) dualG σ (choice d m alt) = tchoice (dual-dir d) m ((dualS σ) ∘ alt) dualG σ end = end dualT σ TUnit = MClTUnit dualT σ TInt = MClTInt dualT σ (TPair t t₁) = MClTPair (dualT σ t) (dualT σ t₁) dualT σ (TChan x) = MClTChan (stack-sim-substS (stack-transform σ) x) module sanity-check where -- μx.!x.x → μx.?(μx.!x.x).x S : SType 0 S = rec (transmit SND (TChan (var zero)) (var zero)) DS = rec (transmit RCV (weaken1T (TChan S)) (var zero)) _ : mclS ε DS ≡ dualS ε S _ = refl -- μx.!x.!x.x → μx.?(μx.!x.!x.x).?(μx.!x.!x.x).x S' : SType 0 S' = rec (transmit SND (TChan (var zero)) (gdd ((transmit SND (TChan (var zero)) (var zero))))) DS' = rec (transmit RCV (weaken1T (TChan S')) (gdd ((transmit RCV (weaken1T (TChan S')) (var zero))))) _ : mclS ε DS' ≡ dualS ε S' _ = refl -- μx.!x.(μy.!y.y) → μx.?(μx.!x.(μy.!y.y)).(μy.?(μy.!y.y).y) S'' : SType 0 S'' = rec (transmit SND (TChan (var zero)) (rec (transmit SND (TChan (var zero)) (var zero)))) DS'' = rec (transmit RCV (weaken1T (TChan S'')) (weaken1S DS)) _ : mclS ε DS'' ≡ dualS ε S'' _ = refl ---------------------------------------------------------------------- open import DualCoinductive hiding (n ; m) _≈_ = COI._≈_ _≈'_ = COI._≈'_ _≈ᵗ_ = COI._≈ᵗ_ -- IND to Coinductive using two stacks -- e.g. i = 0 => σ -- i = 1 => σ , g -- g = get σ' 0 -- i = 2F => σ , g' , g -- g = get σ' 0; g' = get σ' 1 -- i = n => σ' ind2coiS' : (i : Fin (suc n)) → Stack (n ∸ toℕ i) → Stack' (n ∸ toℕ i) (toℕ i) → IND.SType n → COI.SType ind2coiG' : (i : Fin (suc n)) → Stack (n ∸ toℕ i) → Stack' (n ∸ toℕ i) (toℕ i) → IND.GType n → COI.STypeF COI.SType ind2coiT' : (i : Fin (suc n)) → Stack (n ∸ toℕ i) → Stack' (n ∸ toℕ i) (toℕ i) → IND.Type n → COI.Type COI.SType.force (ind2coiS' i σ σ' (gdd gst)) = ind2coiG' i σ σ' gst COI.SType.force (ind2coiS'{n} i σ σ' (rec gst)) = ind2coiG' (suc i) σ ⟪ σ' , gst ⟫ gst COI.SType.force (ind2coiS' i σ σ' (var x)) = {!!} -- IND to Coinductive ind2coiS : Stack n → IND.SType n → COI.SType ind2coiG : Stack n → IND.GType n → COI.STypeF COI.SType ind2coiT : Stack n → IND.Type n → COI.Type ind2coiT σ TUnit = COI.TUnit ind2coiT σ TInt = COI.TInt ind2coiT σ (TPair t t₁) = COI.TPair (ind2coiT σ t) (ind2coiT σ t₁) ind2coiT σ (TChan x) = COI.TChan (ind2coiS σ x) COI.SType.force (ind2coiS σ (gdd gst)) = ind2coiG σ gst COI.SType.force (ind2coiS σ (rec gst)) = ind2coiG ⟪ σ , gst ⟫ gst COI.SType.force (ind2coiS{n} σ (var x)) with get x σ ... | σ' , gxs rewrite (n∸x≡suc[n∸sucx]{n}{toℕ x} toℕx<n) = ind2coiG ⟪ σ' , gxs ⟫ gxs ind2coiG σ (transmit d t s) = COI.transmit d (ind2coiT σ t) (ind2coiS σ s) ind2coiG σ (choice d m alt) = COI.choice d m (λ x → ind2coiS σ (alt x)) ind2coiG σ end = COI.end -- IND to Coinductive using StackS0 ind2coiS'' : StackS0 n → IND.SType n → COI.SType ind2coiG'' : StackS0 n → IND.GType n → COI.STypeF COI.SType COI.SType.force (ind2coiS'' σ (gdd gst)) = ind2coiG'' σ gst COI.SType.force (ind2coiS''{n} σ (rec gst)) = ind2coiG''{suc n} ⟪ σ , stack-sim-substS σ (rec gst) ⟫ gst ind2coiS'' σ (var x) with getS0 x σ ... | σ' , gxs = ind2coiS'' ε gxs -- Equivalence of IND to COI with one stack and IND to COI with two stacks ind2coiS≈ind2coiS' : (σ : Stack' 0 n) (s : IND.SType n) → ind2coiS' (fromℕ n) ε σ s ≈ ind2coiS (stack'2Stack σ) s ind2coiG≈ind2coiG' : (σ : Stack' 0 n) (g : IND.GType n) → ind2coiG' (fromℕ n) ε σ g ≈' ind2coiG (stack'2Stack σ) g COI.Equiv.force (ind2coiS≈ind2coiS' σ (gdd gst)) = ind2coiG≈ind2coiG' σ gst COI.Equiv.force (ind2coiS≈ind2coiS'{n} σ (rec gst)) = ind2coiG≈ind2coiG'{suc n} ⟪ σ , gst ⟫ gst COI.Equiv.force (ind2coiS≈ind2coiS' σ (var x)) = {!!} -- Message closure to Coinductive mcl2coiT : StackMCl n → MClType n → COI.Type mcl2coiS : StackMCl n → MClSType n → COI.SType mcl2coiG : StackMCl n → MClGType n → COI.STypeF COI.SType mcl2coiT σ MClTUnit = COI.TUnit mcl2coiT σ MClTInt = COI.TInt mcl2coiT σ (MClTPair t t₁) = COI.TPair (mcl2coiT σ t) (mcl2coiT σ t₁) mcl2coiT σ (MClTChan s) = COI.TChan (ind2coiS ε s) COI.SType.force (mcl2coiS σ (tgdd g)) = mcl2coiG σ g COI.SType.force (mcl2coiS σ (trec g)) = mcl2coiG ⟪ σ , g ⟫ g COI.SType.force (mcl2coiS{n} σ (tvar x)) with getMCl x σ ... | σ' , gxs rewrite (n∸x≡suc[n∸sucx]{n}{toℕ x} toℕx<n) = mcl2coiG ⟪ σ' , gxs ⟫ gxs mcl2coiG σ (ttransmit d t s) = COI.transmit d (mcl2coiT σ t) (mcl2coiS σ s) mcl2coiG σ (tchoice d m alt) = COI.choice d m (mcl2coiS σ ∘ alt) mcl2coiG σ end = COI.end ---------------------------------------------------------------------- -- lemm 1 -- stack-sim-substS (stack-transform ⟪ stack2StackS σ , (rec x) ⟫) s ≡ stack-sim-substS (stack-transform (stack2StackS σ)) (st-substS' 0 (rec x) s) -- lemm 2 -- ind2coiS ⟪ σ , x ⟫ s ≈ ind2coiS σ (st-substS' 0 (rec x) s) -- unfolding vs single substitution ind2coi-substS : (σ : Stack n) (g : GType (suc n)) (s : SType (suc n)) → ind2coiS ⟪ σ , g ⟫ s ≈ ind2coiS σ (st-substS' zero (rec g) s) ind2coi-substG : (σ : Stack n) (g : GType (suc n)) (g' : GType (suc n)) → ind2coiG ⟪ σ , g ⟫ g' ≈' ind2coiG σ (st-substG' zero (rec g) g') COI.Equiv.force (ind2coi-substS σ g (gdd gst)) = ind2coi-substG σ g gst COI.Equiv.force (ind2coi-substS σ g (rec gst)) = {!!} -- the following line for rec-case is a contradiction for gst = transmit d t (var 1) -- COI.≈'-trans (COI.≈'-trans (ind2coi-substG ⟪ σ , g ⟫ gst gst) (ind2coi-substG σ g (st-substG' 0 (rec gst) gst))) (COI.≈'-trans {!!} (COI.≈'-symm (ind2coi-substG σ (st-substG' 1 (weaken1S (rec g)) gst) (st-substG' 1 (weaken1S (rec g)) gst)))) COI.Equiv.force (ind2coi-substS σ g (var zero)) = COI.≈'-refl COI.Equiv.force (ind2coi-substS {n} σ g (var (suc x))) = {!!} ind2coi-substG σ g (transmit d t s) = COI.eq-transmit d {!!} (ind2coi-substS σ g s) ind2coi-substG σ g (choice d m alt) = COI.eq-choice d λ i → ind2coi-substS σ g (alt i) ind2coi-substG σ g end = COI.eq-end -- unfolding vs simultaneous substitution: special, needed case st-unfold : {n : ℕ} (σ : Stack n) (s : IND.SType n) → ind2coiS ε (stack-sim-substS (stack-transform (stack2StackS σ)) s) ≈ ind2coiS σ s st-unfold {0} ε s rewrite (stack-sim-substS-refl s) = COI.≈-refl st-unfold {suc n} ⟪ σ , x ⟫ s = {!st-unfold σ (st-substS' 0 (rec x) s)!} -- provable if lemm 1 & lemm 2 hold -- unfolding vs simultaneous substitution: general case stack-unfoldS : (σ : Stack n) (σ' : Stack' n m) (s : IND.SType (n + m)) → ind2coiS σ (stack-sim-substS'-top (stack-transform' (stack'2Stack'S σ')) s) ≈ ind2coiS (stack-cat σ σ') s COI.Equiv.force (stack-unfoldS {n} σ σ' (gdd gst)) = {!!} COI.Equiv.force (stack-unfoldS σ σ' (rec gst)) = {!!} COI.Equiv.force (stack-unfoldS {n} σ σ' (var x)) = {!!} -- unfolding vs simultaneous substition: general case w/ alt. def. for ind2coiS stack-unfoldS' : (i : Fin (suc n)) (σ : Stack (n ∸ toℕ i)) (σ' : Stack' (n ∸ toℕ i) (toℕ i)) (s : IND.SType n) → ind2coiS σ (stack-sim-substS'-top (stack-transform' (stack'2Stack'S σ')) s) ≈ ind2coiS' i σ σ' s COI.Equiv.force (stack-unfoldS' i σ σ' (gdd gst)) = {!!} COI.Equiv.force (stack-unfoldS' i σ σ' (rec gst)) = {!!} -- req. first lemma from graveyard of lemmas COI.Equiv.force (stack-unfoldS' i σ σ' (var x)) = {!!} ---------------------------------------------------------------------- -- proof idea for var case: -- mcl2coiS (stack2StackMCl σ) (tvar x) -------- getMCl x (stack2StackMCl σ) = σ' , g -- => mcl2coiG ⟪ σ' , g ⟫ g -------- getMCl x (stack2StackMCl σ) = (stack2StackMCl (get x σ).1 , mclG ⟪ stack2StackS (get x σ).1 , rec (get x σ).2 ⟫ (get x σ).2 -- => mcl2coiG ⟪ (stack2StackMCl (get x σ).1 , mclG ⟪ stack2StackS (get x σ).1 , rec (get x σ).2 ⟫ (get x σ).2 ⟫ (mclG ⟪ stack2StackS (get x σ).1 , rec (get x σ).2 ⟫ (get x σ).2) ------- which by definition of stack2StackMCl and stack2StackS is equivalent to -- = mcl2coiG (stack2StackMCl ⟪ (get x σ).1 , (get x σ).2 ⟫) (mclG (stack2StackS ⟪ (get x σ).1 , (get x σ).2 ⟫) g) ------- which, by mcl-equiv-G -- ≈' ind2coiG ⟪ (get x σ).1 , (get x σ).2 ⟫ (get x σ).2 -- = ind2coiG σ (var x) getMCl-get : (x : Fin n) (σ : Stack n) → getMCl x (stack2StackMCl σ) ≡ (stack2StackMCl (proj₁ (get x σ)) , mclG ⟪ stack2StackS (proj₁ (get x σ)) , rec (proj₂ (get x σ)) ⟫ (proj₂ (get x σ))) getMCl-get zero ⟪ σ , x ⟫ = refl getMCl-get (suc x) ⟪ σ , x₁ ⟫ = getMCl-get x σ ---------------------------------------------------------------------- mcl-equiv-S : (σ : Stack n) (s : IND.SType n) → mcl2coiS (stack2StackMCl σ) (mclS (stack2StackS σ) s) ≈ ind2coiS σ s mcl-equiv-G : (σ : Stack n) (g : IND.GType n) → mcl2coiG (stack2StackMCl σ) (mclG (stack2StackS σ) g) ≈' ind2coiG σ g mcl-equiv-T : (σ : Stack n) (t : IND.Type n) → mcl2coiT (stack2StackMCl σ) (mclT (stack2StackS σ) t) ≈ᵗ ind2coiT σ t COI.Equiv.force (mcl-equiv-S σ (gdd gst)) = mcl-equiv-G σ gst COI.Equiv.force (mcl-equiv-S σ (rec gst)) = mcl-equiv-G ⟪ σ , gst ⟫ gst COI.Equiv.force (mcl-equiv-S{n} σ (var x)) rewrite (getMCl-get x σ) with (proj₁ (get x σ)) | (proj₂ (get x σ)) ... | σ' | g rewrite (n∸x≡suc[n∸sucx]{n}{toℕ x} toℕx<n) = mcl-equiv-G ⟪ σ' , g ⟫ g mcl-equiv-G σ (transmit d t s) = COI.eq-transmit d (mcl-equiv-T σ t) (mcl-equiv-S σ s) mcl-equiv-G σ (choice d m alt) = COI.eq-choice d (λ i → mcl-equiv-S σ (alt i)) mcl-equiv-G σ end = COI.eq-end mcl-equiv-T σ TUnit = COI.eq-unit mcl-equiv-T σ TInt = COI.eq-int mcl-equiv-T σ (TPair t t₁) = COI.eq-pair (mcl-equiv-T σ t) (mcl-equiv-T σ t₁) mcl-equiv-T {n} σ (TChan x) = COI.eq-chan {!!} σ : Stack 1 σ = ⟪ ε , end ⟫ g : GType 2 g = transmit SND TInt (var (suc zero)) s : COI.SType s = ind2coiS σ (rec g) s' : COI.SType s' = ind2coiS ε (stack-sim-substS (stack-transform (stack2StackS σ)) (rec g)) s≈s' : s ≈ s' COI.Equiv.force s≈s' = COI.eq-transmit SND COI.eq-int (record { force = COI.eq-end }) -- naive-mcl-dual : (σ : StackMCl n) (s : IND.SType n) → -- mcl2coiS σ (naive-dualSt (mclS (stackTail2StackS σ) s)) ≈ mcl2coiS σ (dualS (stackTail2StackS σ) s) {- graveyard of attempted lemmas -- idea: "move" a substitution that is done at stack unfolding to a simultaneous subtitution before unfolding -- problem: cannot formulate this for SType since Stack requires a GType stack-unfold-lemmaG : {m n : ℕ} (σ : Stack n) (σ' : Stack' n m) (g : GType (suc (n + m))) → ind2coiG ⟪ σ , stack-sim-substG'-top (weaken1-Stack'Sn 0 (stack-transform' (stack'2Stack'S σ'))) g ⟫ (stack-sim-substG'-top (weaken1-Stack'Sn 0 (stack-transform' (stack'2Stack'S σ'))) g) ≈' ind2coiG σ (stack-sim-substG'-top (stack-transform' (stack'2Stack'S ⟪ σ' , g ⟫)) g) stack-unfold-lemmaG {m} {n} σ σ' (transmit d t s) = {!!} stack-unfold-lemmaG {m} {n} σ σ' (choice d m₁ alt) = {!!} stack-unfold-lemmaG {m} {n} σ σ' end = {!!} ------------------------------------------------------------ -- won't work for the same reason as below stack-unfoldS-i : (i : Fin n) (σ : Stack n) (s : IND.SType (suc (n ∸ suc (toℕ i) + toℕ i))) → ind2coiS (proj₁ (stack-split i σ)) (stack-sim-substS'-top (stack-transform' (stack'2Stack'S (proj₂ (stack-split i σ)))) s) ≈ ind2coiS σ (rewrfixS{n}{i} s) stack-unfoldG-i : (i : Fin n) (σ : Stack n) (g : IND.GType (suc (n ∸ suc (toℕ i) + toℕ i))) → ind2coiG (proj₁ (stack-split i σ)) (stack-sim-substG'-top (stack-transform' (stack'2Stack'S (proj₂ (stack-split i σ)))) g) ≈' ind2coiG σ (rewrfixG{n}{i} g) COI.Equiv.force (stack-unfoldS-i i σ (gdd gst)) = {!!} COI.Equiv.force (stack-unfoldS-i{n} i σ (rec gst)) = {!stack-unfoldG-i (suc i) ? gst!} COI.Equiv.force (stack-unfoldS-i i σ (var x)) = {!!} -- won't work. rec case adds something to σ on the left side, but something at the end of (stack-cat σ σ') on the right side. stack-unfoldS' : (σ : Stack n) (σ' : Stack' n m) (s : IND.SType (n + m)) → ind2coiS σ (stack-sim-substS'-top (stack-transform' (stack'2Stack'S σ')) s) ≈ ind2coiS (stack-cat σ σ') s stack-unfoldG' : (σ : Stack n) (σ' : Stack' n m) (g : IND.GType (n + m)) → ind2coiG σ (stack-sim-substG'-top (stack-transform' (stack'2Stack'S σ')) g) ≈' ind2coiG (stack-cat σ σ') g COI.Equiv.force (stack-unfoldS' σ σ' (gdd gst)) = {!!} COI.Equiv.force (stack-unfoldS'{n}{m} σ σ' (rec gst)) = {!!} -- {!stack-unfoldG'{suc n}{m} ⟪ σ , stack-sim-substG'-top-i≥ 1 (stack-transform' (stack'2Stack'S σ')) gst ⟫ (weaken1-Stack' 0 σ') gst!} COI.Equiv.force (stack-unfoldS' σ σ' (var x)) = {!!} -}
{ "alphanum_fraction": 0.5814800291, "avg_line_length": 40.0246636771, "ext": "agda", "hexsha": "234a6affb8e5961024afba6d03f3eee8693eabf4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "kcaliban/dual-session", "max_forks_repo_path": "src/DualLMRefined.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "kcaliban/dual-session", "max_issues_repo_path": "src/DualLMRefined.agda", "max_line_length": 244, "max_stars_count": null, "max_stars_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "kcaliban/dual-session", "max_stars_repo_path": "src/DualLMRefined.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 15757, "size": 35702 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.Solver where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Nat.Order using (zero-≤) open import Cubical.Data.Vec.Base open import Cubical.Algebra.RingSolver.AlmostRing open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ) open import Cubical.Algebra.RingSolver.RingExpression open import Cubical.Algebra.RingSolver.HornerForms open import Cubical.Algebra.RingSolver.EvaluationHomomorphism private variable ℓ : Level module EqualityToNormalform (R : AlmostRing {ℓ}) where νR = AlmostRing→RawRing R open AlmostRing R open Theory R open Eval νR open IteratedHornerOperations νR open HomomorphismProperties R normalize : (n : ℕ) → Expr ⟨ R ⟩ n → IteratedHornerForms νR n normalize n (K r) = Constant n νR r normalize n (∣ k) = Variable n νR k normalize n (x ⊕ y) = (normalize n x) +ₕ (normalize n y) normalize n (x ⊗ y) = (normalize n x) ·ₕ (normalize n y) normalize n (⊝ x) = -ₕ (normalize n x) isEqualToNormalform : (n : ℕ) (e : Expr ⟨ R ⟩ n) (xs : Vec ⟨ R ⟩ n) → eval n (normalize n e) xs ≡ ⟦ e ⟧ xs isEqualToNormalform ℕ.zero (K r) [] = refl isEqualToNormalform (ℕ.suc n) (K r) (x ∷ xs) = eval (ℕ.suc n) (Constant (ℕ.suc n) νR r) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) (0ₕ ·X+ Constant n νR r) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) 0ₕ (x ∷ xs) · x + eval n (Constant n νR r) xs ≡⟨ cong (λ u → u · x + eval n (Constant n νR r) xs) (eval0H _ (x ∷ xs)) ⟩ 0r · x + eval n (Constant n νR r) xs ≡⟨ cong (λ u → u + eval n (Constant n νR r) xs) (0LeftAnnihilates _) ⟩ 0r + eval n (Constant n νR r) xs ≡⟨ +Lid _ ⟩ eval n (Constant n νR r) xs ≡⟨ isEqualToNormalform n (K r) xs ⟩ r ∎ isEqualToNormalform (ℕ.suc n) (∣ zero) (x ∷ xs) = eval (ℕ.suc n) (1ₕ ·X+ 0ₕ) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) 1ₕ (x ∷ xs) · x + eval n 0ₕ xs ≡⟨ cong (λ u → u · x + eval n 0ₕ xs) (eval1ₕ _ (x ∷ xs)) ⟩ 1r · x + eval n 0ₕ xs ≡⟨ cong (λ u → 1r · x + u ) (eval0H _ xs) ⟩ 1r · x + 0r ≡⟨ +Rid _ ⟩ 1r · x ≡⟨ ·Lid _ ⟩ x ∎ isEqualToNormalform (ℕ.suc n) (∣ (suc k)) (x ∷ xs) = eval (ℕ.suc n) (0ₕ ·X+ Variable n νR k) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) 0ₕ (x ∷ xs) · x + eval n (Variable n νR k) xs ≡⟨ cong (λ u → u · x + eval n (Variable n νR k) xs) (eval0H _ (x ∷ xs)) ⟩ 0r · x + eval n (Variable n νR k) xs ≡⟨ cong (λ u → u + eval n (Variable n νR k) xs) (0LeftAnnihilates _) ⟩ 0r + eval n (Variable n νR k) xs ≡⟨ +Lid _ ⟩ eval n (Variable n νR k) xs ≡⟨ isEqualToNormalform n (∣ k) xs ⟩ ⟦ ∣ (suc k) ⟧ (x ∷ xs) ∎ isEqualToNormalform ℕ.zero (⊝ e) [] = eval ℕ.zero (-ₕ (normalize ℕ.zero e)) [] ≡⟨ -evalDist ℕ.zero (normalize ℕ.zero e) [] ⟩ - eval ℕ.zero (normalize ℕ.zero e) [] ≡⟨ cong -_ (isEqualToNormalform ℕ.zero e [] ) ⟩ - ⟦ e ⟧ [] ∎ isEqualToNormalform (ℕ.suc n) (⊝ e) (x ∷ xs) = eval (ℕ.suc n) (-ₕ (normalize (ℕ.suc n) e)) (x ∷ xs) ≡⟨ -evalDist (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs) ⟩ - eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs) ≡⟨ cong -_ (isEqualToNormalform (ℕ.suc n) e (x ∷ xs) ) ⟩ - ⟦ e ⟧ (x ∷ xs) ∎ isEqualToNormalform ℕ.zero (e ⊕ e₁) [] = eval ℕ.zero (normalize ℕ.zero e +ₕ normalize ℕ.zero e₁) [] ≡⟨ +Homeval ℕ.zero (normalize ℕ.zero e) _ [] ⟩ eval ℕ.zero (normalize ℕ.zero e) [] + eval ℕ.zero (normalize ℕ.zero e₁) [] ≡⟨ cong (λ u → u + eval ℕ.zero (normalize ℕ.zero e₁) []) (isEqualToNormalform ℕ.zero e []) ⟩ ⟦ e ⟧ [] + eval ℕ.zero (normalize ℕ.zero e₁) [] ≡⟨ cong (λ u → ⟦ e ⟧ [] + u) (isEqualToNormalform ℕ.zero e₁ []) ⟩ ⟦ e ⟧ [] + ⟦ e₁ ⟧ [] ∎ isEqualToNormalform (ℕ.suc n) (e ⊕ e₁) (x ∷ xs) = eval (ℕ.suc n) (normalize (ℕ.suc n) e +ₕ normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ +Homeval (ℕ.suc n) (normalize (ℕ.suc n) e) _ (x ∷ xs) ⟩ eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs) + eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ cong (λ u → u + eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)) (isEqualToNormalform (ℕ.suc n) e (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) + eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) + u) (isEqualToNormalform (ℕ.suc n) e₁ (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) + ⟦ e₁ ⟧ (x ∷ xs) ∎ isEqualToNormalform ℕ.zero (e ⊗ e₁) [] = eval ℕ.zero (normalize ℕ.zero e ·ₕ normalize ℕ.zero e₁) [] ≡⟨ ·Homeval ℕ.zero (normalize ℕ.zero e) _ [] ⟩ eval ℕ.zero (normalize ℕ.zero e) [] · eval ℕ.zero (normalize ℕ.zero e₁) [] ≡⟨ cong (λ u → u · eval ℕ.zero (normalize ℕ.zero e₁) []) (isEqualToNormalform ℕ.zero e []) ⟩ ⟦ e ⟧ [] · eval ℕ.zero (normalize ℕ.zero e₁) [] ≡⟨ cong (λ u → ⟦ e ⟧ [] · u) (isEqualToNormalform ℕ.zero e₁ []) ⟩ ⟦ e ⟧ [] · ⟦ e₁ ⟧ [] ∎ isEqualToNormalform (ℕ.suc n) (e ⊗ e₁) (x ∷ xs) = eval (ℕ.suc n) (normalize (ℕ.suc n) e ·ₕ normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ ·Homeval (ℕ.suc n) (normalize (ℕ.suc n) e) _ (x ∷ xs) ⟩ eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs) · eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ cong (λ u → u · eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)) (isEqualToNormalform (ℕ.suc n) e (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) · eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) · u) (isEqualToNormalform (ℕ.suc n) e₁ (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) · ⟦ e₁ ⟧ (x ∷ xs) ∎ solve : {n : ℕ} (e₁ e₂ : Expr ⟨ R ⟩ n) (xs : Vec ⟨ R ⟩ n) (p : eval n (normalize n e₁) xs ≡ eval n (normalize n e₂) xs) → ⟦ e₁ ⟧ xs ≡ ⟦ e₂ ⟧ xs solve e₁ e₂ xs p = ⟦ e₁ ⟧ xs ≡⟨ sym (isEqualToNormalform _ e₁ xs) ⟩ eval _ (normalize _ e₁) xs ≡⟨ p ⟩ eval _ (normalize _ e₂) xs ≡⟨ isEqualToNormalform _ e₂ xs ⟩ ⟦ e₂ ⟧ xs ∎
{ "alphanum_fraction": 0.4652130254, "avg_line_length": 46.1655629139, "ext": "agda", "hexsha": "7eac9627c0ceceabd863a633b4a950ed728ffc41", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/Solver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/Solver.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/Solver.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2641, "size": 6971 }
{-# OPTIONS --cubical --no-import-sorts #-} module Number.Instances.Nat where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ) -- open import Cubical.Structures.Ring -- open import Cubical.Structures.Group -- open import Cubical.Structures.AbGroup open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_) open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Sigma open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim` open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ) open import Function.Base using (it; _∋_; _$_) open import Cubical.HITs.PropositionalTruncation --.Properties open import Utils using (!_; !!_) open import MoreLogic.Reasoning open import MoreLogic.Definitions open import MoreLogic.Properties open import MorePropAlgebra.Definitions hiding (_≤''_) open import MorePropAlgebra.Structures open import MorePropAlgebra.Bundles open import MorePropAlgebra.Consequences open import Number.Structures2 open import Number.Bundles2 open import Cubical.Data.Nat as Nat renaming (_*_ to _·_) open import Cubical.Data.Nat.Order renaming (_<_ to _<ᵗ_) open import Cubical.Data.Nat.Properties using ( inj-*sm ; inj-sm* ) renaming ( *-distribʳ to ·-distribʳ ; *-distribˡ to ·-distribˡ ; *-assoc to ·-assoc ; *-comm to ·-comm ; *-identityʳ to ·-identityʳ ; *-identityˡ to ·-identityˡ ) -- open import Data.Nat.Properties using (+-assoc) open import Data.Nat.Base using () renaming ( _⊔_ to max ; _⊓_ to min ) -- _<_ as an hProp-valued relation _<_ : (x y : ℕ) → hProp ℓ-zero (x < y) .fst = x <ᵗ y (x < y) .snd (k₁ , k₁+sx≡y) (k₂ , k₂+sx≡y) = φ where abstract φ = Σ≡Prop (λ k → isSetℕ _ _) (inj-+m (k₁+sx≡y ∙ sym k₂+sx≡y)) 0<suc : ∀ a → 0 <ᵗ suc a 0<suc a = a , +-comm a 1 ·-nullifiesˡ : ∀ x → 0 · x ≡ 0 ·-nullifiesˡ x = refl ·-nullifiesʳ : ∀ x → x · 0 ≡ 0 ·-nullifiesʳ zero = refl ·-nullifiesʳ (suc x) = ·-nullifiesʳ x abstract lemma10 : ∀ n → (n <ᵗ 0) ≡ [ ⊥ ] lemma10 n = isoToPath (iso (λ{ (k , p) → snotz (sym (+-suc k n) ∙ p) }) ⊥-elim (λ b → isProp⊥ _ _) (λ a → isProp[] (n < 0) _ _)) lemma10'' : ∀ n → (n < 0) ≡ ⊥ lemma10'' n = ⇔toPath (transport (lemma10 n)) (transport (sym (lemma10 n))) lemma12 : ∀ n → [ 0 < suc n ] ≡ [ ⊤ ] lemma12 n = isoToPath (iso (λ _ → tt) (λ _ → n , +-suc n 0 ∙ (λ i → suc (+-zero n i))) (λ b → isProp⊤ _ _) (λ a → isProp[] (0 < suc n) _ _)) lemma12'' : ∀ n → (0 < suc n) ≡ ⊤ lemma12'' n = ⇔toPath (transport (lemma12 n)) (transport (sym (lemma12 n))) abstract <-irrefl : (a : ℕ) → [ ¬ (a < a) ] <-irrefl zero q = transp (λ i → [ lemma10'' 0 i ]) i0 q <-irrefl (suc a) (k , p) = snotz (inj-m+ {a} (+-suc a k ∙ (λ i → suc (+-comm a k i)) ∙ sym (+-suc k a) ∙ inj-m+ {1} (sym (+-suc k (suc a)) ∙ p) ∙ sym (+-zero a))) suc-creates-< : ∀ a b → [ a < b ⇔ suc a < suc b ] suc-creates-< a b .fst (k , p) = k , (+-suc k (suc a)) ∙ (λ i → suc (p i)) suc-creates-< a b .snd (k , p) = k , inj-m+ {1} (sym (+-suc k (suc a)) ∙ p) +-createsˡ-< : ∀ a b x → [ a < b ⇔ (x + a) < (x + b) ] +-createsˡ-< a b zero .fst a<b = a<b +-createsˡ-< a b (suc x) .fst a<b = suc-creates-< (x + a) (x + b) .fst $ +-createsˡ-< a b x .fst a<b +-createsˡ-< a b zero .snd a<b = a<b +-createsˡ-< a b (suc x) .snd p = +-createsˡ-< a b x .snd (suc-creates-< (x + a) (x + b) .snd p) +-createsʳ-< : ∀ a b x → [ a < b ⇔ (a + x) < (b + x) ] +-createsʳ-< a b x .fst p = transport (λ i → [ +-comm x a i < +-comm x b i ]) $ +-createsˡ-< a b x .fst p +-createsʳ-< a b x .snd p = +-createsˡ-< a b x .snd (transport (λ i → [ +-comm a x i < +-comm b x i ]) p) <-cotrans : (a b : ℕ) → [ a < b ] → (x : ℕ) → [ (a < x) ⊔ (x < b) ] <-cotrans zero zero q c = ⊥-elim {A = λ _ → [ (zero < c) ⊔ (c < zero) ]} (<-irrefl _ q) <-cotrans zero (suc b) q zero = inrᵖ q <-cotrans zero (suc b) q (suc c) = inlᵖ (c , +-comm c 1) <-cotrans (suc a) zero (k , p) c = ⊥-elim {A = λ _ → [ (suc a < c) ⊔ (c < zero) ]} (snotz (sym (+-suc k (suc a)) ∙ p)) <-cotrans (suc a) (suc b) q zero = inrᵖ (b , +-comm b 1) <-cotrans (suc a) (suc b) q (suc c) = transport (λ i → [ r i ⊔ s i ]) (<-cotrans a b (suc-creates-< a b .snd q) c) where r : (a < c) ≡ (suc a < suc c) s : (c < b) ≡ (suc c < suc b) r = ⇔toPath (suc-creates-< a c .fst) (suc-creates-< a c .snd) s = ⇔toPath (suc-creates-< c b .fst) (suc-creates-< c b .snd) ·-reflects-≡ʳ : ∀ a b x → [ 0 < x ] → a · x ≡ b · x → a ≡ b ·-reflects-≡ʳ a b zero p q = ⊥-elim {A = λ _ → a ≡ b} $ <-irrefl 0 p ·-reflects-≡ʳ a b (suc x) p q = inj-*sm {l = a} {m = x} {n = b} q ·-reflects-≡ˡ : ∀ a b x → [ 0 < x ] → x · a ≡ x · b → a ≡ b ·-reflects-≡ˡ a b zero p q = ⊥-elim {A = λ _ → a ≡ b} $ <-irrefl 0 p ·-reflects-≡ˡ a b (suc x) p q = inj-sm* {m = x} {l = a} {n = b} q ¬suc<0 : ∀ x → [ ¬ (suc x < 0) ] ¬suc<0 x (k , p) = snotz $ sym (+-suc k (suc x)) ∙ p ·-reflects-< : ∀ a b x → [ 0 < x ] → [ (a · x) < (b · x) ] → [ a < b ] ·-reflects-< zero zero x p q = q ·-reflects-< zero (suc b) x p q = 0<suc b ·-reflects-< (suc a) zero x p q = ⊥-elim {A = λ _ → [ suc a < 0 ]} $ ¬-<-zero q ·-reflects-< (suc a) (suc b) x p q = suc-creates-< a b .fst $ ·-reflects-< a b x p (+-createsˡ-< (a · x) (b · x) x .snd q) min-comm : ∀ x y → min x y ≡ min y x min-comm zero zero = refl min-comm zero (suc y) = refl min-comm (suc x) zero = refl min-comm (suc x) (suc y) i = suc $ min-comm x y i min-tightˡ : ∀ x y → [ x < y ] → min x y ≡ x min-tightˡ zero zero x<y = refl min-tightˡ zero (suc y) x<y = refl min-tightˡ (suc x) zero x<y = ⊥-elim {A = λ _ → zero ≡ suc x} (¬suc<0 x x<y) min-tightˡ (suc x) (suc y) x<y i = suc $ min-tightˡ x y (suc-creates-< x y .snd x<y) i min-tightʳ : ∀ x y → [ y < x ] → min x y ≡ y min-tightʳ x y y<x = min-comm x y ∙ min-tightˡ y x y<x min-identity : ∀ x → min x x ≡ x min-identity zero = refl min-identity (suc x) i = suc $ min-identity x i max-comm : ∀ x y → max x y ≡ max y x max-comm zero zero = refl max-comm zero (suc y) = refl max-comm (suc x) zero = refl max-comm (suc x) (suc y) i = suc $ max-comm x y i max-tightˡ : ∀ x y → [ y < x ] → max x y ≡ x max-tightˡ zero zero y<x = refl max-tightˡ zero (suc y) y<x = ⊥-elim {A = λ _ → suc y ≡ zero} (¬suc<0 y y<x) max-tightˡ (suc x) zero y<x = refl max-tightˡ (suc x) (suc y) y<x i = suc $ max-tightˡ x y (suc-creates-< y x .snd y<x) i max-tightʳ : ∀ x y → [ x < y ] → max x y ≡ y max-tightʳ x y x<y = max-comm x y ∙ max-tightˡ y x x<y max-identity : ∀ x → max x x ≡ x max-identity zero = refl max-identity (suc x) i = suc $ max-identity x i -- +-reflects-< : ∀ a b x → [ a + x < b + x ] → [ a < b ] -- +-reflects-< a b x -- suc-preserves-min : ∀ x y → suc (min x y) ≡ min (suc x) (suc y) -- suc-preserves-min zero y = refl -- suc-preserves-min (suc x) zero = refl -- suc-preserves-min (suc x) (suc y) = refl -- -- min-dichotomy : ∀ x y → (min x y ≡ x) ⊎ (min x y ≡ y) -- min-dichotomy zero y = inl refl -- min-dichotomy (suc x) zero = inr refl -- min-dichotomy (suc x) (suc y) with min-dichotomy x y -- ... | inl p = inl λ i → suc (p i) -- ... | inr p = inr λ i → suc (p i) data MinTrichtotomy (x y : ℕ) : Type where min-lt : min x y ≡ x → [ x < y ] → MinTrichtotomy x y min-gt : min x y ≡ y → [ y < x ] → MinTrichtotomy x y min-eq : min x y ≡ x → min x y ≡ y → MinTrichtotomy x y data MaxTrichtotomy (x y : ℕ) : Type where max-lt : max x y ≡ y → [ x < y ] → MaxTrichtotomy x y max-gt : max x y ≡ x → [ y < x ] → MaxTrichtotomy x y max-eq : max x y ≡ x → max x y ≡ y → MaxTrichtotomy x y abstract min-trichotomy : ∀ x y → MinTrichtotomy x y min-trichotomy zero zero = min-eq refl refl min-trichotomy zero (suc y) = min-lt refl (y , (+-comm y 1)) min-trichotomy (suc x) zero = min-gt refl (x , (+-comm x 1)) min-trichotomy (suc x) (suc y) with min-trichotomy x y ... | min-lt p (k , q) = min-lt (λ i → suc (p i)) (k , (+-assoc k 1 (suc x) ∙ (λ i → +-comm k 1 i + suc x) ∙ (λ i → 1 + q i))) ... | min-gt p (k , q) = min-gt (λ i → suc (p i)) (k , (+-assoc k 1 (suc y) ∙ (λ i → +-comm k 1 i + suc y) ∙ (λ i → 1 + q i))) ... | min-eq p q = min-eq (λ i → suc (p i)) (λ i → suc (q i)) max-trichotomy : ∀ x y → MaxTrichtotomy x y max-trichotomy zero zero = max-eq refl refl max-trichotomy zero (suc y) = max-lt refl (y , (+-comm y 1)) max-trichotomy (suc x) zero = max-gt refl (x , (+-comm x 1)) max-trichotomy (suc x) (suc y) with max-trichotomy x y ... | max-lt p (k , q) = max-lt (λ i → suc (p i)) (k , (+-assoc k 1 (suc x) ∙ (λ i → +-comm k 1 i + suc x) ∙ (λ i → 1 + q i))) ... | max-gt p (k , q) = max-gt (λ i → suc (p i)) (k , (+-assoc k 1 (suc y) ∙ (λ i → +-comm k 1 i + suc y) ∙ (λ i → 1 + q i))) ... | max-eq p q = max-eq (λ i → suc (p i)) (λ i → suc (q i)) is-min : (x y z : ℕ) → [ ¬ᵖ (min x y < z) ⇔ ¬ᵖ (x < z) ⊓ ¬ᵖ (y < z) ] is-min x y z .fst z≤minxy with min-trichotomy x y ... | min-lt p x<y = (λ x<z → z≤minxy $ pathTo⇐ (λ i → p i < z) x<z) , (λ y<z → z≤minxy $ pathTo⇐ (λ i → p i < z) $ <-trans {x} {y} {z} x<y y<z) ... | min-gt p y<x = (λ x<z → z≤minxy $ pathTo⇐ (λ i → p i < z) $ <-trans {y} {x} {z} y<x x<z) , (λ y<z → z≤minxy $ pathTo⇐ (λ i → p i < z) y<z) ... | min-eq p q = (λ x<z → z≤minxy $ pathTo⇐ (λ i → p i < z) x<z) , (λ y<z → z≤minxy $ pathTo⇐ (λ i → q i < z) y<z) is-min x y z .snd (z≤x , z≤y) minxy<z with min-trichotomy x y ... | min-lt p _ = z≤x $ pathTo⇒ (λ i → p i < z) minxy<z ... | min-gt p _ = z≤y $ pathTo⇒ (λ i → p i < z) minxy<z ... | min-eq p q = z≤x $ pathTo⇒ (λ i → p i < z) minxy<z is-max : (x y z : ℕ) → [ ¬ᵖ (z < max x y) ⇔ ¬ᵖ (z < x) ⊓ ¬ᵖ (z < y) ] is-max x y z .fst maxxy≤z with max-trichotomy x y ... | max-gt p y<x = (λ z<x → maxxy≤z $ pathTo⇐ (λ i → z < p i) z<x ) , (λ z<y → maxxy≤z $ pathTo⇐ (λ i → z < p i) $ <-trans {z} {y} {x} z<y y<x ) ... | max-lt p x<y = (λ z<x → maxxy≤z $ pathTo⇐ (λ i → z < p i) $ <-trans {z} {x} {y} z<x x<y ) , (λ z<y → maxxy≤z $ pathTo⇐ (λ i → z < p i) z<y ) ... | max-eq p q = (λ z<x → maxxy≤z $ pathTo⇐ (λ i → z < p i) z<x ) , (λ z<y → maxxy≤z $ pathTo⇐ (λ i → z < q i) z<y ) is-max x y z .snd (z≤x , z≤y) maxxy<z with max-trichotomy x y ... | max-gt p _ = z≤x $ pathTo⇒ (λ i → z < p i) maxxy<z ... | max-lt p _ = z≤y $ pathTo⇒ (λ i → z < p i) maxxy<z ... | max-eq p q = z≤x $ pathTo⇒ (λ i → z < p i) maxxy<z abstract -- NOTE: maybe some clever use of cotrans makes this a bit shorter +-<-ext : (w x y z : ℕ) → [ (w + x) < (y + z) ] → [ (w < y) ⊔ (x < z) ] +-<-ext w x y z (k , k+suc[w+x]≡y+z) with w ≟ y | x ≟ z ... | lt w<y | q = ∣ inl w<y ∣ ... | gt (l , l+suc[y]≡w) | q = inrᵖ (k + suc l , inj-m+ (( y + ((k + suc l) + suc x) ≡⟨ +-assoc y (k + suc l) (suc x) ⟩ (y + (k + suc l)) + suc x ≡⟨ (λ i → +-assoc y k (suc l) i + suc x) ⟩ ((y + k) + suc l) + suc x ≡⟨ (λ i → (+-comm y k i + suc l) + suc x) ⟩ ((k + y) + suc l) + suc x ≡⟨ (λ i → +-assoc k y (suc l) (~ i) + suc x) ⟩ (k + (y + suc l)) + suc x ≡⟨ sym $ +-assoc k (y + suc l) (suc x) ⟩ k + ((y + suc l) + suc x) ≡⟨ (λ i → k + (+-suc y l i + suc x)) ⟩ k + (suc (y + l) + suc x) ≡⟨ (λ i → k + (suc (+-comm y l i) + suc x)) ⟩ k + (suc (l + y) + suc x) ≡⟨ (λ i → k + (+-suc l y (~ i) + suc x)) ⟩ k + ((l + suc y) + suc x) ≡⟨ (λ i → k + +-suc (l + suc y) x i) ⟩ k + suc ((l + suc y) + x) ≡⟨ (λ i → k + suc (l+suc[y]≡w i + x)) ⟩ k + suc (w + x) ∎) ∙ k+suc[w+x]≡y+z)) ... | eq w≡y | q = inrᵖ (k , inj-m+ (( y + (k + suc x) ≡⟨ +-assoc y k (suc x) ⟩ (y + k) + suc x ≡⟨ (λ i → +-comm y k i + suc x) ⟩ (k + y) + suc x ≡⟨ sym $ +-assoc k y (suc x) ⟩ k + (y + suc x) ≡⟨ (λ i → k + +-suc y x i) ⟩ k + suc (y + x) ≡⟨ (λ i → k + suc (w≡y (~ i) + x)) ⟩ k + suc (w + x) ∎) ∙ k+suc[w+x]≡y+z)) -- NOTE: instead of equational reasoning, this might follow more easily from induction on `z`? ·-preserves-< : (x y z : ℕ) → [ 0 < z ] → [ x < y ] → [ (x · z) < (y · z) ] ·-preserves-< x y z (k , k+1≡z) (l , l+suc[x]≡y) = l · z + k , ( (l · z + k) + suc (x · z) ≡⟨ sym $ +-assoc (l · z) k (suc (x · z)) ⟩ l · z + (k + suc (x · z)) ≡⟨ refl ⟩ -- 1 + x ≡ suc x holds definitionally l · z + (k + (1 + x · z)) ≡⟨ (λ i → l · z + +-assoc k 1 (x · z) i) ⟩ l · z + ((k + 1) + x · z) ≡⟨ (λ i → l · z + (k+1≡z i + x · z)) ⟩ l · z + (z + x · z) ≡⟨ refl ⟩ -- suc x · z ≡ z + x · z holds definitionally l · z + (suc x) · z ≡⟨ ·-distribʳ l (suc x) z ⟩ (l + suc x) · z ∎) ∙ (λ i → l+suc[x]≡y i · z) ∙ refl -- ·-reflects-< : (x y z : ℕ) → [ 0 < z ] → [ (x · z) < (y · z) ] → [ x < y ] -- ·-reflects-< x y zero (k , k+1≡z) _ = ⊥-elim {A = λ _ → [ x < y ]} $ snotz (sym (+-comm k 1) ∙ k+1≡z) -- ·-reflects-< x y (suc zero) _ (l , l+suc[xz]≡yz) = l , (λ i → l + suc (·-identityʳ x (~ i))) ∙ l+suc[xz]≡yz ∙ ·-identityʳ y -- ·-reflects-< x y (suc (suc z)) _ p@(l , l+suc[xz]≡yz) = -- let ind = {! ·-reflects-< x y (suc z) (0<suc z) !} -- -- (x · suc (suc z)) < (y · suc (suc z)) -- -- x + x · suc z < y + y · suc z -- -- (x + x · suc z) + < (y + y · suc z) -- in {! ·-suc x (suc z) !} -- -- ·-reflects-< x y zero 0<z xz<yz = {! !} -- ·-suc x z -- -- ·-reflects-< x y (suc z) 0<z xz<yz = {! ·-reflects-< x y z !} -- -- (x · suc z) < (y · suc z) +-Semigroup : [ isSemigroup _+_ ] +-Semigroup .IsSemigroup.is-set = isSetℕ +-Semigroup .IsSemigroup.is-assoc = +-assoc ·-Semigroup : [ isSemigroup _·_ ] ·-Semigroup .IsSemigroup.is-set = isSetℕ ·-Semigroup .IsSemigroup.is-assoc = ·-assoc +-Monoid : [ isMonoid 0 _+_ ] +-Monoid .IsMonoid.is-Semigroup = +-Semigroup +-Monoid .IsMonoid.is-identity x = +-zero x , refl ·-Monoid : [ isMonoid 1 _·_ ] ·-Monoid .IsMonoid.is-Semigroup = ·-Semigroup ·-Monoid .IsMonoid.is-identity x = ·-identityʳ x , ·-identityˡ x is-Semiring : [ isSemiring 0 1 _+_ _·_ ] is-Semiring .IsSemiring.+-Monoid = +-Monoid is-Semiring .IsSemiring.·-Monoid = ·-Monoid is-Semiring .IsSemiring.+-comm = +-comm is-Semiring .IsSemiring.is-dist x y z = sym (·-distribˡ x y z) , sym (·-distribʳ x y z) is-CommSemiring : [ isCommSemiring 0 1 _+_ _·_ ] is-CommSemiring .IsCommSemiring.is-Semiring = is-Semiring is-CommSemiring .IsCommSemiring.·-comm = ·-comm <-StrictLinearOrder : [ isStrictLinearOrder _<_ ] <-StrictLinearOrder .IsStrictLinearOrder.is-irrefl = <-irrefl <-StrictLinearOrder .IsStrictLinearOrder.is-trans a b c = <-trans {a} {b} {c} <-StrictLinearOrder .IsStrictLinearOrder.is-tricho a b with a ≟ b ... | lt a<b = inl (inl a<b) ... | eq a≡b = inr ∣ a≡b ∣ ... | gt b<a = inl (inr b<a) ≤-Lattice : [ isLattice (λ x y → ¬ᵖ (y < x)) min max ] ≤-Lattice .IsLattice.≤-PartialOrder = linearorder⇒partialorder _ (≤'-isLinearOrder <-StrictLinearOrder) ≤-Lattice .IsLattice.is-min = is-min ≤-Lattice .IsLattice.is-max = is-max is-LinearlyOrderedCommSemiring : [ isLinearlyOrderedCommSemiring 0 1 _+_ _·_ _<_ min max ] is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.is-CommSemiring = is-CommSemiring is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.<-StrictLinearOrder = <-StrictLinearOrder is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.≤-Lattice = ≤-Lattice is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.+-<-ext = +-<-ext is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.·-preserves-< = ·-preserves-< bundle : LinearlyOrderedCommSemiring {ℓ-zero} {ℓ-zero} bundle .LinearlyOrderedCommSemiring.Carrier = ℕ bundle .LinearlyOrderedCommSemiring.0f = 0 bundle .LinearlyOrderedCommSemiring.1f = 1 bundle .LinearlyOrderedCommSemiring._+_ = _+_ bundle .LinearlyOrderedCommSemiring._·_ = _·_ bundle .LinearlyOrderedCommSemiring.min = min bundle .LinearlyOrderedCommSemiring.max = max bundle .LinearlyOrderedCommSemiring._<_ = _<_ bundle .LinearlyOrderedCommSemiring.is-LinearlyOrderedCommSemiring = is-LinearlyOrderedCommSemiring
{ "alphanum_fraction": 0.5270805812, "avg_line_length": 48.2724637681, "ext": "agda", "hexsha": "337a3a286b9e52ae0d2582d657309315f76dafc7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Instances/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Instances/Nat.agda", "max_line_length": 143, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Instances/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 7347, "size": 16654 }
{- https://lists.chalmers.se/pipermail/agda/2013/006033.html http://code.haskell.org/~Saizan/unification/ 18-Nov-2013 Andrea Vezzosi -} module Unify-monolithic-EnhancedTerm where -- some equivalences needed to adapt Tactic.Nat to the standard library module EquivalenceOf≤ where open import Agda.Builtin.Equality open import Agda.Builtin.Nat open import Data.Nat using (less-than-or-equal) renaming (_≤_ to _≤s_) open import Data.Nat.Properties using (≤⇒≤″; ≤″⇒≤) open import Prelude using (diff; id) renaming (_≤_ to _≤p_) open import Tactic.Nat.Generic (quote _≤p_) (quote id) (quote id) using (by) ≤p→≤s : ∀ {a b} → a ≤p b → a ≤s b ≤p→≤s (diff k b₊₁≡k₊₁+a) = ≤″⇒≤ (less-than-or-equal {k = k} (by b₊₁≡k₊₁+a)) ≤s→≤p : ∀ {a b} → a ≤s b → a ≤p b ≤s→≤p a≤sb with ≤⇒≤″ a≤sb ≤s→≤p _ | less-than-or-equal {k = k} a+k≡b = diff k (by a+k≡b) module _ where open EquivalenceOf≤ open import Data.Nat open import Tactic.Nat.Generic (quote _≤_) (quote ≤s→≤p) (quote ≤p→≤s) public open import Data.Fin using (Fin; suc; zero) open import Data.Nat hiding (_≤_) --open import Relation.Binary.PropositionalEquality open import Relation.Binary.PropositionalEquality hiding ([_]) open import Function open import Relation.Nullary --open import Data.Product open import Data.Product renaming (map to _***_) open import Data.Empty open import Data.List renaming (_++_ to _++L_) {- -- not enhanced data Term (n : ℕ) : Set where i : (x : Fin n) -> Term n leaf : Term n _fork_ : (s t : Term n) -> Term n -} data Term (n : _) : Set where i : (x : Fin n) -> Term n function : ℕ → List (Term n) → Term n term-function-inj₁ : ∀ {x₁ x₂} {n} {ts₁ : List (Term n)} {ts₂} → Term.function x₁ ts₁ ≡ function x₂ ts₂ → x₁ ≡ x₂ term-function-inj₁ refl = refl term-function-inj₂ : ∀ {x₁ x₂} {n} {ts₁ : List (Term n)} {ts₂} → Term.function x₁ ts₁ ≡ function x₂ ts₂ → ts₁ ≡ ts₂ term-function-inj₂ refl = refl --data Term (n : ℕ) (I : Size) : Set where -- i : (x : Fin n) -> Term n I -- function : ℕ → (J : Size< I) → SizedList J (Term n J) → Term n I {- data Term : ℕ -> Set where i : ∀ ..{n} -> (x : Fin n) -> Term n leaf : ∀ ..{n} -> Term n _fork_ : ∀ ..{n} -> (s t : Term n) -> Term n -} _~>_ : (m n : ℕ) -> Set (m ~> n) = Fin m -> Term n ▹ : ∀ {m n} -> (r : Fin m -> Fin n) -> Fin m -> Term n ▹ r = i ∘ r mutual infixr 20 _◃s_ _◃s_ : ∀ {m n} -> (f : m ~> n) -> List (Term m) -> List (Term n) _◃s_ f [] = [] _◃s_ f (x ∷ xs) = (f ◃ x) ∷ f ◃s xs _◃_ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n f ◃ (i x) = f x f ◃ (function n ts) = function n (f ◃s ts) {- _◃_ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n _◃_ = _◃ -} _≐_ : {m n : ℕ} -> (Fin m -> Term n) -> (Fin m -> Term n) -> Set f ≐ g = ∀ x -> f x ≡ g x mutual ◃ext : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> ∀ t -> f ◃ t ≡ g ◃ t ◃ext p (i x) = p x ◃ext p (function x ts) = cong (function x) (◃exts p ts) ◃exts : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> ∀ ts -> f ◃s ts ≡ g ◃s ts ◃exts p [] = refl ◃exts p (t ∷ ts) = cong₂ _∷_ (◃ext p t) (◃exts p ts) _◇_ : ∀ {l m n : ℕ } -> (f : Fin m -> Term n) (g : Fin l -> Term m) -> Fin l -> Term n f ◇ g = (f ◃_) ∘ g ≐-cong : ∀ {m n o} {f : m ~> n} {g} (h : _ ~> o) -> f ≐ g -> (h ◇ f) ≐ (h ◇ g) ≐-cong h f≐g t = cong (h ◃_) (f≐g t) ≐-sym : ∀ {m n} {f : m ~> n} {g} -> f ≐ g -> g ≐ f ≐-sym f≐g = sym ∘ f≐g module Sub where mutual fact1 : ∀ {n} -> (t : Term n) -> i ◃ t ≡ t fact1 (i x) = refl fact1 (function x ts) = cong (function x) (fact1s ts) fact1s : ∀ {n} -> (ts : List (Term n)) -> i ◃s ts ≡ ts fact1s [] = refl fact1s (t ∷ ts) = cong₂ _∷_ (fact1 t) (fact1s ts) mutual fact2 : ∀ {l m n} -> (f : Fin m -> Term n) (g : _) (t : Term l) -> (f ◇ g) ◃ t ≡ f ◃ (g ◃ t) fact2 f g (i x) = refl fact2 f g (function x ts) = cong (function x) (fact2s f g ts) fact2s : ∀ {l m n} -> (f : Fin m -> Term n) (g : _) (ts : List (Term l)) -> (f ◇ g) ◃s ts ≡ f ◃s g ◃s ts fact2s f g [] = refl fact2s f g (t ∷ ts) = cong₂ _∷_ (fact2 f g t) (fact2s f g ts) fact3 : ∀ {l m n} (f : Fin m -> Term n) (r : Fin l -> Fin m) -> (f ◇ (▹ r)) ≡ (f ∘ r) fact3 f r = refl -- ext (λ _ -> refl) ◃ext' : ∀ {m n o} {f : Fin m -> Term n}{g : Fin m -> Term o}{h} -> f ≐ (h ◇ g) -> ∀ t -> f ◃ t ≡ h ◃ (g ◃ t) ◃ext' p t = trans (◃ext p t) (Sub.fact2 _ _ t) s : ℕ -> ℕ s = suc thin : ∀ {n} -> (x : Fin (s n)) (y : Fin n) -> Fin (s n) thin zero y = suc y thin (suc x) zero = zero thin (suc x) (suc y) = suc (thin x y) p : ∀ {n} -> Fin (suc (suc n)) -> Fin (suc n) p (suc x) = x p zero = zero module Thin where fact1 : ∀ {n} x y z -> thin {n} x y ≡ thin x z -> y ≡ z fact1 zero y .y refl = refl fact1 (suc x) zero zero r = refl fact1 (suc x) zero (suc z) () fact1 (suc x) (suc y) zero () fact1 (suc x) (suc y) (suc z) r = cong suc (fact1 x y z (cong p r)) fact2 : ∀ {n} x y -> ¬ thin {n} x y ≡ x fact2 zero y () fact2 (suc x) zero () fact2 (suc x) (suc y) r = fact2 x y (cong p r) fact3 : ∀{n} x y -> ¬ x ≡ y -> ∃ λ y' -> thin {n} x y' ≡ y fact3 zero zero ne = ⊥-elim (ne refl) fact3 zero (suc y) _ = y , refl fact3 {zero} (suc ()) _ _ fact3 {suc n} (suc x) zero ne = zero , refl fact3 {suc n} (suc x) (suc y) ne with y | fact3 x y (ne ∘ cong suc) ... | .(thin x y') | y' , refl = suc y' , refl open import Data.Maybe open import Category.Functor open import Category.Monad import Level open RawMonad (Data.Maybe.monad {Level.zero}) thick : ∀ {n} -> (x y : Fin (suc n)) -> Maybe (Fin n) thick zero zero = nothing thick zero (suc y) = just y thick {zero} (suc ()) _ thick {suc _} (suc x) zero = just zero thick {suc _} (suc x) (suc y) = suc <$> (thick x y) open import Data.Sum _≡Fin_ : ∀ {n} -> (x y : Fin n) -> Dec (x ≡ y) zero ≡Fin zero = yes refl zero ≡Fin suc y = no λ () suc x ≡Fin zero = no λ () suc {suc _} x ≡Fin suc y with x ≡Fin y ... | yes r = yes (cong suc r) ... | no r = no λ e -> r (cong p e) suc {zero} () ≡Fin _ module Thick where half1 : ∀ {n} (x : Fin (suc n)) -> thick x x ≡ nothing half1 zero = refl half1 {suc _} (suc x) = cong (_<$>_ suc) (half1 x) half1 {zero} (suc ()) half2 : ∀ {n} (x : Fin (suc n)) y -> ∀ y' -> thin x y' ≡ y -> thick x y ≡ just y' half2 zero zero y' () half2 zero (suc y) .y refl = refl half2 {suc n} (suc x) zero zero refl = refl half2 {suc _} (suc _) zero (suc _) () half2 {suc n} (suc x) (suc y) zero () half2 {suc n} (suc x) (suc .(thin x y')) (suc y') refl with thick x (thin x y') | half2 x (thin x y') y' refl ... | .(just y') | refl = refl half2 {zero} (suc ()) _ _ _ fact1 : ∀ {n} (x : Fin (suc n)) y r -> thick x y ≡ r -> x ≡ y × r ≡ nothing ⊎ ∃ λ y' -> thin x y' ≡ y × r ≡ just y' fact1 x y .(thick x y) refl with x ≡Fin y fact1 x .x ._ refl | yes refl = inj₁ (refl , half1 x) ... | no el with Thin.fact3 x y el ... | y' , thinxy'=y = inj₂ (y' , ( thinxy'=y , half2 x y y' thinxy'=y )) mutual check : ∀{n} (x : Fin (suc n)) (t : Term (suc n)) -> Maybe (Term n) check x (i y) = i <$> thick x y check x (function v ts) = (function v) <$> checks x ts checks : ∀{n} (x : Fin (suc n)) (t : List (Term (suc n))) -> Maybe (List (Term n)) checks x [] = just [] checks x (t ∷ ts) = _∷_ <$> check x t ⊛ checks x ts _for_ : ∀ {n} (t' : Term n) (x : Fin (suc n)) -> Fin (suc n) -> Term n (t' for x) y = maybe′ i t' (thick x y) data AList : ℕ -> ℕ -> Set where anil : ∀ {n} -> AList n n _asnoc_/_ : ∀ {m n} (σ : AList m n) (t' : Term m) (x : Fin (suc m)) -> AList (suc m) n sub : ∀ {m n} (σ : AList m n) -> Fin m -> Term n sub anil = i sub (σ asnoc t' / x) = sub σ ◇ (t' for x) _++_ : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> AList l n ρ ++ anil = ρ ρ ++ (σ asnoc t' / x) = (ρ ++ σ) asnoc t' / x ++-assoc : ∀ {l m n o} (ρ : AList l m) (σ : AList n _) (τ : AList o _) -> ρ ++ (σ ++ τ) ≡ (ρ ++ σ) ++ τ ++-assoc ρ σ anil = refl ++-assoc ρ σ (τ asnoc t / x) = cong (λ s -> s asnoc t / x) (++-assoc ρ σ τ) module SubList where anil-id-l : ∀ {m n} (σ : AList m n) -> anil ++ σ ≡ σ anil-id-l anil = refl anil-id-l (σ asnoc t' / x) = cong (λ σ -> σ asnoc t' / x) (anil-id-l σ) fact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> sub (ρ ++ σ) ≐ (sub ρ ◇ sub σ) fact1 ρ anil v = refl fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms ◃-assoc where t = (t' for x) v hyp-on-terms = ◃ext (fact1 r s) t ◃-assoc = Sub.fact2 (sub r) (sub s) t _∃asnoc_/_ : ∀ {m} (a : ∃ (AList m)) (t' : Term m) (x : Fin (suc m)) -> ∃ (AList (suc m)) (n , σ) ∃asnoc t' / x = n , σ asnoc t' / x flexFlex : ∀ {m} (x y : Fin m) -> ∃ (AList m) flexFlex {suc m} x y with thick x y ... | just y' = m , anil asnoc i y' / x ... | nothing = suc m , anil flexFlex {zero} () _ flexRigid : ∀ {m} (x : Fin m) (t : Term m) -> Maybe (∃(AList m)) flexRigid {suc m} x t with check x t ... | just t' = just (m , anil asnoc t' / x) ... | nothing = nothing flexRigid {zero} () _ mutual amgu : ∀ {m} (s t : Term m) (acc : ∃ (AList m)) -> Maybe (∃ (AList m)) amgu (function x ts) (function x' ts') acc with x ≟ x' … | yes refl = amgus ts ts' acc … | no neq = nothing amgu (i x) (i y) (m , anil) = just (flexFlex x y) amgu (i x) t (m , anil) = flexRigid x t amgu t (i x) (m , anil) = flexRigid x t amgu s t (n , σ asnoc r / z) = (λ σ -> σ ∃asnoc r / z) <$> amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ) amgus : ∀ {m} (ss ts : List (Term m)) (acc : ∃ (AList m)) -> Maybe (∃ (AList m)) amgus [] [] acc = just acc amgus [] (_ ∷ _) acc = nothing amgus (_ ∷ _) [] acc = nothing amgus (s ∷ ss) (t ∷ ts) acc = amgus ss ts =<< amgu s t acc mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m)) mgu {m} s t = amgu s t (m , anil) {- open import Data.Fin using (Fin; suc; zero) open import Data.Nat hiding (_≤_) open import Relation.Binary.PropositionalEquality hiding ([_]) open import Function open import Relation.Nullary open import Data.Product renaming (map to _***_) open import Data.Empty -} open import Data.Maybe using (maybe; maybe′; nothing; just; monad; Maybe) open import Data.Sum --open import Unify --open import Data.List renaming (_++_ to _++L_) open ≡-Reasoning open import Category.Functor open import Category.Monad import Level as L --open RawMonad (Data.Maybe.monad {L.zero}) record Σ₁ (A : Set1) (F : A -> Set) : Set1 where field π₁ : A π₂ : F π₁ _,,_ : ∀ {A F} (x : A) -> F x -> Σ₁ A F x ,, b = record{ π₁ = x; π₂ = b } open Σ₁ Property⋆ : (m : ℕ) -> Set1 Property⋆ m = ∀ {n} -> (Fin m -> Term n) -> Set Extensional : {m : ℕ} -> Property⋆ m -> Set Extensional P = ∀ {m f g} -> f ≐ g -> P {m} f -> P g Property : (m : ℕ) -> Set1 Property m = Σ₁ (Property⋆ m) Extensional prop-id : ∀ {m n} {f : _ ~> n} {P : Property m} -> π₁ P f -> π₁ P (i ◇ f) prop-id {_} {_} {f} {P'} Pf = π₂ P' (λ x → sym (Sub.fact1 (f x))) Pf Unifies⋆ : ∀ {m} (s t : Term m) -> Property⋆ m Unifies⋆ s t f = f ◃ s ≡ f ◃ t Unifies : ∀ {m} (s t : Term m) -> Property m Unifies s t = (λ {_} -> Unifies⋆ s t) ,, λ {_} {f} {g} f≐g f◃s=f◃t -> begin g ◃ s ≡⟨ sym (◃ext f≐g s) ⟩ f ◃ s ≡⟨ f◃s=f◃t ⟩ f ◃ t ≡⟨ ◃ext f≐g t ⟩ g ◃ t ∎ _∧⋆_ : ∀{m} -> (P Q : Property⋆ m) -> Property⋆ m P ∧⋆ Q = (λ f -> P f × Q f) _∧_ : ∀{m} -> (P Q : Property m) -> Property m P ∧ Q = (λ {_} f -> π₁ P f × π₁ Q f) ,, λ {_} {_} {_} f≐g Pf×Qf -> π₂ P f≐g (proj₁ Pf×Qf) , π₂ Q f≐g (proj₂ Pf×Qf) _⇔⋆_ : ∀{m} -> (P Q : Property⋆ m) -> Set P ⇔⋆ Q = ∀ {n} f -> (P {n} f -> Q f) × (Q f -> P f) _⇔_ : ∀{m} -> (P Q : Property m) -> Set P ⇔ Q = ∀ {n} f -> (π₁ P {n} f -> π₁ Q f) × (π₁ Q f -> π₁ P f) switch⋆ : ∀ {m} (P Q : Property⋆ m) -> P ⇔⋆ Q -> Q ⇔⋆ P switch⋆ _ _ P⇔Q f = proj₂ (P⇔Q f) , proj₁ (P⇔Q f) switch : ∀ {m} (P Q : Property m) -> P ⇔ Q -> Q ⇔ P switch _ _ P⇔Q f = proj₂ (P⇔Q f) , proj₁ (P⇔Q f) Nothing⋆ : ∀{m} -> (P : Property⋆ m) -> Set Nothing⋆ P = ∀{n} f -> P {n} f -> ⊥ Nothing : ∀{m} -> (P : Property m) -> Set Nothing P = ∀{n} f -> π₁ P {n} f -> ⊥ _[-◇⋆_] : ∀{m n} (P : Property⋆ m) (f : Fin m -> Term n) -> Property⋆ n (P [-◇⋆ f ]) g = P (g ◇ f) _[-◇_] : ∀{m n} (P : Property m) (f : Fin m -> Term n) -> Property n P [-◇ f ] = (λ {_} g -> π₁ P (g ◇ f)) ,, λ {_} {f'} {g'} f'≐g' Pf'◇f -> π₂ P (◃ext f'≐g' ∘ f) Pf'◇f module Properties where fact1 : ∀ {m} {s t : Term m} -> (Unifies s t) ⇔ (Unifies t s) fact1 _ = sym , sym {- fact1'⋆ : ∀ {m} {x1 x2} {s1 t1 : Term m} {s2 t2 : List (Term m)} -> Unifies⋆ (function x1 (s1 ∷ s2)) (function x2 (t1 ∷ t2)) ⇔⋆ (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ (function x1 s2) (function x2 t2)) fact1'⋆ f = (λ x → {!deconstr!}) , {!!} -- deconstr _ _ _ _ _ _ _ , {!uncurry (cong₂ function)!} where deconstr : ∀ {m} x1 x2 (s1 t1 : Term m) (s2 t2 : List (Term m)) -> function x1 (s1 ∷ s2) ≡ function x2 (t1 ∷ t2) -> (x1 ≡ x2) × (s1 ≡ t1) × (s2 ≡ t2) deconstr x1 .x1 s1 .s1 s2 .s2 refl = refl , refl , refl -} {- fact1' : ∀ {m} {s1 s2 t1 t2 : Term m} -> Unifies (s1 fork s2) (t1 fork t2) ⇔ (Unifies s1 t1 ∧ Unifies s2 t2) fact1' f = deconstr _ _ _ _ , uncurry (cong₂ _fork_) where deconstr : ∀ {m} (s1 s2 t1 t2 : Term m) -> (s1 fork s2) ≡ (t1 fork t2) -> (s1 ≡ t1) × (s2 ≡ t2) deconstr s1 s2 .s1 .s2 refl = refl , refl -} fact2⋆ : ∀ {m} (P Q : Property⋆ m) -> P ⇔⋆ Q -> Nothing⋆ P -> Nothing⋆ Q fact2⋆ P Q iff notp f q with iff f ... | (p2q , q2p) = notp f (q2p q) fact2 : ∀ {m} (P Q : Property m) -> P ⇔ Q -> Nothing P -> Nothing Q fact2 P Q iff notp f q with iff f ... | (p2q , q2p) = notp f (q2p q) fact3 : ∀ {m} {P : Property m} -> P ⇔ (P [-◇ i ]) fact3 f = id , id fact4 : ∀{m n} {P : Property m} (f : _ -> Term n) -> Nothing P -> Nothing (P [-◇ f ]) fact4 f nop g = nop (g ◇ f) fact5⋆ : ∀{m n} (P Q : Property⋆ _) (f : m ~> n) -> P ⇔⋆ Q -> (P [-◇⋆ f ]) ⇔⋆ (Q [-◇⋆ f ]) fact5⋆ _ _ f P⇔Q f' = P⇔Q (f' ◇ f) fact5 : ∀{m n} (P Q : Property _) (f : m ~> n) -> P ⇔ Q -> (P [-◇ f ]) ⇔ (Q [-◇ f ]) fact5 _ _ f P⇔Q f' = P⇔Q (f' ◇ f) fact6 : ∀{m n} P {f g : m ~> n} -> f ≐ g -> (P [-◇ f ]) ⇔ (P [-◇ g ]) fact6 P f≐g h = π₂ P (≐-cong h f≐g) , π₂ P (≐-sym (≐-cong h f≐g)) {- fact5 : ∀ {l m n} {f : Fin n -> Term l} {g : Fin m -> Term n} {P : Property _ } -> (P [-◇ g ]) [-◇ f ] ⇔ P [-◇ (f ◇ g) ] fact5 h = {!!} , {!!} -} _≤_ : ∀ {m n n'} (f : Fin m -> Term n) (g : Fin m -> Term n') -> Set f ≤ g = ∃ λ f' -> f ≐ (f' ◇ g) module Order where reflex : ∀ {m n} {f : Fin m -> Term n} -> f ≤ f reflex = i , λ _ -> sym (Sub.fact1 _) transitivity : ∀ {l m n o} {f : Fin l -> Term m}{g : _ -> Term n} {h : _ -> Term o} -> f ≤ g -> g ≤ h -> f ≤ h transitivity {l} {_} {_} {_} {f} {g} {h} (fg , pfg) (gh , pgh) = fg ◇ gh , proof where proof : (x : Fin l) → f x ≡ (λ x' → fg ◃ (gh x')) ◃ (h x) proof x = trans z (sym (Sub.fact2 fg gh (h x))) where z = trans (pfg x) (cong (fg ◃_) (pgh x)) i-max : ∀ {m n} (f : Fin m -> Term n) -> f ≤ i i-max f = f , λ _ -> refl dist : ∀{l m n o}{f : Fin l -> Term m}{g : _ -> Term n}(h : Fin o -> _) -> f ≤ g -> (f ◇ h) ≤ (g ◇ h) dist h (fg , pfg) = fg , λ x -> trans (◃ext pfg (h x)) (Sub.fact2 _ _ (h x)) Max⋆ : ∀ {m} (P : Property⋆ m) -> Property⋆ m Max⋆ P f = P f × (∀ {n} f' -> P {n} f' -> f' ≤ f) Max : ∀ {m} (P : Property m) -> Property m Max P' = (λ {_} → Max⋆ P) ,, λ {_} {_} {_} -> lemma1 where open Σ₁ P' renaming (π₁ to P; π₂ to Peq) lemma1 : {m : ℕ} {f : Fin _ → Term m} {g : Fin _ → Term m} → f ≐ g → P f × ({n : ℕ} (f' : Fin _ → Term n) → P f' → f' ≤ f) → P g × ({n : ℕ} (f' : Fin _ → Term n) → P f' → f' ≤ g) lemma1 {_} {f} {g} f≐g (Pf , MaxPf) = Peq f≐g Pf , λ {_} -> lemma2 where lemma2 : ∀ {n} f' → P {n} f' → ∃ λ f0 → f' ≐ (f0 ◇ g) lemma2 f' Pf' = f0 , λ x -> trans (f'≐f0◇f x) (cong (f0 ◃_) (f≐g x)) where f0 = proj₁ (MaxPf f' Pf') f'≐f0◇f = proj₂ (MaxPf f' Pf') module Max where fact : ∀{m}(P Q : Property m) -> P ⇔ Q -> Max P ⇔ Max Q fact {m} P Q a f = (λ maxp → pq (proj₁ maxp) , λ f' → proj₂ maxp f' ∘ qp) , λ maxq → qp (proj₁ maxq) , λ f' → proj₂ maxq f' ∘ pq where pq : {n : ℕ} {f0 : Fin m → Term n} → (π₁ P f0 → π₁ Q f0) pq {_} {f} = proj₁ (a f) qp : {n : ℕ} {f0 : Fin m → Term n} → (π₁ Q f0 → π₁ P f0) qp {_} {f} = proj₂ (a f) DClosed : ∀{m} (P : Property m) -> Set DClosed P = ∀ {n} f {o} g -> f ≤ g -> π₁ P {o} g -> π₁ P {n} f module DClosed where fact1 : ∀ {m} s t -> DClosed {m} (Unifies s t) fact1 s t f g (f≤g , p) gs=gt = begin f ◃ s ≡⟨ ◃ext' p s ⟩ f≤g ◃ (g ◃ s) ≡⟨ cong (f≤g ◃_) gs=gt ⟩ f≤g ◃ (g ◃ t) ≡⟨ sym (◃ext' p t) ⟩ f ◃ t ∎ optimist : ∀ {l m n o} (a : Fin _ -> Term n) (p : Fin _ -> Term o) (q : Fin _ -> Term l) (P Q : Property m) -> DClosed P -> π₁ (Max (P [-◇ a ])) p -> π₁ (Max (Q [-◇ (p ◇ a) ])) q -> π₁ (Max ((P ∧ Q) [-◇ a ])) (q ◇ p) optimist a p q P' Q' DCP (Ppa , pMax) (Qqpa , qMax) = (Peq (sym ∘ (Sub.fact2 _ _) ∘ a) (DCP (q ◇ (p ◇ a)) (p ◇ a) (q , λ _ -> refl) Ppa) , Qeq (sym ∘ (Sub.fact2 _ _) ∘ a) Qqpa ) , λ {_} -> aux where open Σ₁ P' renaming (π₁ to P; π₂ to Peq) open Σ₁ Q' renaming (π₁ to Q; π₂ to Qeq) aux : ∀ {n} (f : _ -> Term n) -> P (f ◇ a) × Q (f ◇ a) -> f ≤ (q ◇ p) aux f (Pfa , Qfa) = h , λ x -> trans (f≐g◇p x) (◃ext' g≐h◇q (p x)) where one = pMax f Pfa g = proj₁ one f≐g◇p = proj₂ one Qgpa : Q (g ◇ (p ◇ a)) Qgpa = Qeq (λ x -> ◃ext' f≐g◇p (a x)) Qfa g≤q = qMax g Qgpa h = proj₁ g≤q g≐h◇q = proj₂ g≤q module failure-propagation where first⋆ : ∀ {m n} (a : _ ~> n) (P Q : Property⋆ m) -> Nothing⋆ (P [-◇⋆ a ]) -> Nothing⋆ ((P ∧⋆ Q) [-◇⋆ a ]) first⋆ a P' Q' noP-a f (Pfa , Qfa) = noP-a f Pfa first : ∀ {m n} (a : _ ~> n) (P Q : Property m) -> Nothing (P [-◇ a ]) -> Nothing ((P ∧ Q) [-◇ a ]) first a P' Q' noP-a f (Pfa , Qfa) = noP-a f Pfa {- second⋆ : ∀ {m n o} (a : _ ~> n) (p : _ ~> o)(P Q : Property⋆ m) -> (Max⋆ (P [-◇⋆ a ])) p -> Nothing⋆ (Q [-◇⋆ (p ◇ a)]) -> Nothing⋆ ((P ∧⋆ Q) [-◇⋆ a ]) second⋆ a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) = noQ-p◇a g Qgpa where f≤p = pMax f Pfa g = proj₁ f≤p f≐g◇p = proj₂ f≤p Qgpa : Q' (g ◇ (p ◇ a)) Qgpa = {!!} {- noQ-p◇a g Qgpa where f≤p = pMax f Pfa g = proj₁ f≤p f≐g◇p = proj₂ f≤p Qgpa : π₁ Q' (g ◇ (p ◇ a)) Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa -} -} second⋆ : ∀ {m n o} (a : _ ~> n) (p : _ ~> o)(P : Property⋆ m)(Q : Property m) -> (Max⋆ (P [-◇⋆ a ])) p -> Nothing⋆ (π₁ Q [-◇⋆ (p ◇ a)]) -> Nothing⋆ ((P ∧⋆ π₁ Q) [-◇⋆ a ]) second⋆ a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) = noQ-p◇a g Qgpa where f≤p = pMax f Pfa g = proj₁ f≤p f≐g◇p = proj₂ f≤p Qgpa : π₁ Q' (g ◇ (p ◇ a)) Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa second : ∀ {m n o} (a : _ ~> n) (p : _ ~> o)(P Q : Property m) -> π₁ (Max (P [-◇ a ])) p -> Nothing (Q [-◇ (p ◇ a)]) -> Nothing ((P ∧ Q) [-◇ a ]) second a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) = noQ-p◇a g Qgpa where f≤p = pMax f Pfa g = proj₁ f≤p f≐g◇p = proj₂ f≤p Qgpa : π₁ Q' (g ◇ (p ◇ a)) Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa trivial-problem : ∀ {m n t} {f : m ~> n} -> π₁ (Max ((Unifies t t) [-◇ f ])) i trivial-problem = refl , λ f' _ → f' , λ _ → refl var-elim : ∀ {m} (x : Fin (suc m)) (t' : Term _) -> π₁ (Max ((Unifies (i x) ((▹ (thin x) ◃_) t')))) (t' for x) var-elim x t' = first , \{_} -> second where lemma : ∀{m}(x : Fin (suc m)) t → i ≐ ((t for x) ◇ (▹ (thin x))) lemma x t x' = sym (cong (maybe i t) (Thick.half2 x _ x' refl)) first = begin (t' for x) ◃ (i x) ≡⟨ cong (maybe i t') (Thick.half1 x) ⟩ t' ≡⟨ sym (Sub.fact1 t') ⟩ i ◃ t' ≡⟨ ◃ext' (lemma x t') t' ⟩ (t' for x) ◃ ((▹ (thin x) ◃_) t') ∎ second : ∀ {n} (f : _ ~> n) → f x ≡ f ◃ ((▹ (thin x) ◃_) t') → f ≤ (t' for x) second f Unifiesf = (f ∘ thin x) , third where third : ((x' : Fin _) → f x' ≡ (f ∘ thin x) ◃ (maybe′ i t' (thick x x'))) third x' with thick x x' | Thick.fact1 x x' (thick x x') refl third .x | .nothing | inj₁ (refl , refl) = sym (begin (f ∘ thin x) ◃ t' ≡⟨ cong (λ g -> (g ◃_) t') (sym (Sub.fact3 f (thin x))) ⟩ (f ◇ (▹ (thin x))) ◃ t' ≡⟨ Sub.fact2 f (▹ (thin x)) t' ⟩ f ◃ ((▹ (thin x) ◃_) t') ≡⟨ sym Unifiesf ⟩ f x ∎) third x' | .(just y) | inj₂ (y , ( thinxy≡x' , refl)) = sym (cong f thinxy≡x') var-elim-i : ∀ {m} (x : Fin (suc m)) (t' : Term _) -> π₁ (Max ((Unifies (i x) ((▹ (thin x) ◃_) t')))) (i ◇ (t' for x)) var-elim-i {m} x t = prop-id {_} {_} {t for x} {Max (Unifies (i x) ((▹ (thin x) ◃_) t))} (var-elim {m} x t) var-elim-i-≡ : ∀ {m} {t'} (x : Fin (suc m)) t1 -> t1 ≡ (i ∘ thin x) ◃ t' -> π₁ (Max (Unifies (i x) t1)) (i ◇ (t' for x)) var-elim-i-≡ {_} {t'} x .((i ∘ thin x) ◃ t') refl = var-elim-i x t' data Step (n : ℕ) : Set where step : ℕ → List (Term n) → List (Term n) → Step n open Data.List using () renaming (map to mapL) fmapS : ∀ {n m} (f : Term n -> Term m) (s : Step n) -> Step m fmapS f (step x ls rs) = step x (mapL f ls) (mapL f rs) infixl 10 _⊹_ _⊹_ : ∀ {n} (ps : List (Step n)) (t : Term n) -> Term n ([] ⊹ t) = t ((step x ls rs ∷ ps) ⊹ t) = function x (ls ++L (ps ⊹ t ∷ rs)) _◃S_ : ∀ {n m} (f : n ~> m) -> List (Step n) -> List (Step m) _◃S_ f = mapL (fmapS (f ◃_)) map-[] : ∀ {n m} (f : n ~> m) ps -> f ◃S ps ≡ [] -> ps ≡ [] map-[] f [] _ = refl map-[] f (x ∷ xs) () module StepM where lemma1 : ∀ {n} (x : Step n) xs t -> [ x ] ⊹ ( xs ⊹ t ) ≡ (x ∷ xs) ⊹ t lemma1 (step x ls rs) xs t = refl lemma2 : ∀ {n} {r} {t} {xs} (x : Step n) -> xs ⊹ t ≡ r -> ((x ∷ xs) ⊹ t ) ≡ [ x ] ⊹ r lemma2 (step x ls rs) eq = cong (λ t → function x (ls ++L t ∷ rs)) eq -- cong (λ t -> t fork y) eq fact1 : ∀ {n} ps qs (t : Term n) -> (ps ++L qs) ⊹ t ≡ ps ⊹ (qs ⊹ t) fact1 [] qs t = refl fact1 (p ∷ ps) qs t = begin (p ∷ (ps ++L qs)) ⊹ t ≡⟨ lemma2 p (fact1 ps qs t) ⟩ [ p ] ⊹ (ps ⊹ (qs ⊹ t)) ≡⟨ lemma1 p ps (qs ⊹ t) ⟩ (p ∷ ps) ⊹ (qs ⊹ t) ∎ lemma3 : ∀ {m n} (f : m ~> n) ls rs → f ◃s (ls ++L rs) ≡ mapL (f ◃_) ls ++L mapL (f ◃_) rs lemma3 f [] (r ∷ rs) = cong (f ◃ r ∷_) (lemma3 f [] rs) lemma3 f (l ∷ ls) rs = cong (f ◃ l ∷_) (lemma3 f ls rs) lemma3 f [] [] = refl fact2 : ∀ {m n} (f : m ~> n) t ps -> f ◃ (ps ⊹ t) ≡ f ◃S ps ⊹ f ◃ t fact2 f t [] = refl fact2 f t (step x [] [] ∷ xs) = cong (function x) (cong (λ section → section ∷ []) (fact2 f t xs)) fact2 f t (step x [] (r ∷ rs) ∷ xs) rewrite lemma3 f [] rs = cong (function x) (cong₂ _∷_ (fact2 f t xs) refl) fact2 f t (step x (l ∷ ls) rs ∷ xs) rewrite sym $ fact2 f t xs | lemma3 f ls (xs ⊹ t ∷ rs) = cong (function x) (cong (f ◃ l ∷_) refl) mutual check-prop : ∀ {m} (x : Fin (suc m)) t -> (∃ λ t' -> t ≡ ▹ (thin x) ◃ t' × check x t ≡ just t') ⊎ (∃ λ ps -> t ≡ (ps ⊹ i x) × check x t ≡ nothing) check-prop x (i x') with Thick.fact1 x x' (thick x x') refl check-prop x (i .x) | inj₁ (refl , e) = inj₂ ([] , refl , cong (_<$>_ i) e) ... | inj₂ (y , thinxy≡x' , thickxx'≡justy') = inj₁ (i y , cong i (sym (thinxy≡x')) , cong (_<$>_ i) thickxx'≡justy' ) check-prop x (function xx ts) with checks-prop x ts … | inj₁ (asdf , df , er) rewrite df | er = inj₁ (function xx asdf , refl , refl) … | inj₂ (ls , ps , rs , ts= , checks=) rewrite ts= | checks= = inj₂ (step xx ls rs ∷ ps , refl , refl) checks-prop : ∀ {m} (x : Fin (suc m)) ts -> (∃ λ ts' -> ts ≡ (▹ (thin x) ◃s_) ts' × checks x ts ≡ just ts') ⊎ ∃ λ ls → ∃ λ ps → ∃ λ rs -> ts ≡ ls ++L (ps ⊹ i x) ∷ rs × checks x ts ≡ nothing -- (∃ λ pss -> ts ≡ (pss ⊹s i x) × checks x ts ≡ nothing) checks-prop x [] = inj₁ ([] , refl , refl) checks-prop x (t ∷ ts) with check-prop x t | checks-prop x ts … | inj₁ (t' , t= , check=) | inj₁ (ts' , ts= , checks=) rewrite t= | check= | ts= | checks= = inj₁ (t' ∷ ts' , refl , refl) … | inj₂ (ps , t= , check=) | _ rewrite t= | check= = inj₂ ([] , ps , ts , refl , refl) … | _ | inj₂ (ls , ps , rs , ts= , checks=) rewrite ts= | checks= = inj₂ (t ∷ ls , ps , rs , refl , lemma (_ <$> check _ t)) where lemma : ∀ {a b : Set} {y : b} (x : Maybe a) -> maybe (λ _ → y) y x ≡ y lemma (just x') = refl lemma nothing = refl function++ : ∀ {m} {x} {t : Term m} {ls rs : List (Term m)} ps -> (ps ⊹ (function x (ls ++L t ∷ rs)) ≡ (ps ++L [ step x ls rs ]) ⊹ t) function++ [] = refl function++ (step x ls rs ∷ ps) = cong (function x) (cong (λ t → ls ++L t ∷ rs) (sym $ StepM.fact1 ps (step _ _ _ ∷ []) _)) open import Data.List.Properties using (∷-injective; ∷ʳ-injective) list-craz : ∀ {a} {A : Set a} {x : A} {xs} → x ∷ xs ≡ [] → ⊥ list-craz () listʳ-craz : ∀ {a} {A : Set a} {x : A} {xs} → xs ∷ʳ x ≡ [] → ⊥ listʳ-craz {x = x} {[]} () listʳ-craz {x = x} {x₁ ∷ xs} () mutual termSize : ∀ {m} → Term m → ℕ termSize (i x₁) = 1 termSize (function x₁ x₂) = suc (termsSize x₂) termsSize : ∀ {m} → List (Term m) → ℕ termsSize [] = 0 termsSize (x₁ ∷ x₂) = termSize x₁ + termsSize x₂ sizeFact1 : ∀ {m} (ls rs : List (Term m)) → termsSize (ls ++L rs) ≡ termsSize ls + termsSize rs sizeFact1 [] rs = refl sizeFact1 (x ∷ ls) rs rewrite sizeFact1 ls rs = auto sizeFact2a : ∀ {m} (p : Step m) (ps : List (Step m)) (t : Term m) → termSize (ps ⊹ t) Data.Nat.≤ termSize ((p ∷ ps) ⊹ t) sizeFact2a (step x x₁ x₂) ps t rewrite sizeFact1 x₁ (ps ⊹ t ∷ x₂) = auto ≤-trans : ∀ {x y z} → x Data.Nat.≤ y → y Data.Nat.≤ z → x Data.Nat.≤ z ≤-trans z≤n z≤n = auto ≤-trans z≤n (s≤s x₂) = auto ≤-trans (s≤s x₁) (s≤s x₂) = by (≤-trans x₁ x₂) sizeFact2 : ∀ {m} (ps : List (Step m)) x (t : Term m) (ts : List (Term m)) → suc (termSize t + termsSize ts) Data.Nat.≤ termSize (ps ⊹ function x (t ∷ ts)) sizeFact2 [] x t ts = auto sizeFact2 (p ∷ ps) x t ts with sizeFact2 ps x t ts | sizeFact2a p ps (function x (t ∷ ts)) … | siz1 | siz2 = ≤-trans siz1 siz2 where open import Data.Nat.Properties No-Cycle : ∀{m} (t : Term m) ps -> t ≡ ps ⊹ t -> ps ≡ [] No-Cycle _ [] ref = refl No-Cycle (i x) (step x₁ x₂ x₃ ∷ ps) () No-Cycle (function x []) (step x' [] rs ∷ ps) () No-Cycle (function x []) (step x' (x₁ ∷ ls) rs ∷ ps) () No-Cycle (function x (t ∷ ts)) (step x' [] rs ∷ ps) r with No-Cycle t (ps ++L step x [] ts ∷ []) $ trans (proj₁ ∘ ∷-injective $ term-function-inj₂ r) (function++ {x = x} {t = t} {ls = []} {rs = ts} ps) … | dfsd = ⊥-elim (listʳ-craz {x = step x [] ts} {xs = ps} dfsd) No-Cycle (function x (t ∷ ts)) (step x' ls@(l ∷ ls') rs ∷ ps) r with (proj₂ ∘ ∷-injective $ term-function-inj₂ r) … | ts=ls+ps+rs with cong termsSize ts=ls+ps+rs … | sizs with sizeFact1 ls' (ps ⊹ function x (t ∷ ts) ∷ rs) … | siz1 rewrite siz1 | sizs with sizeFact2 ps x t ts … | siz2 with termsSize ts | termSize t | termsSize rs | termsSize ls' | termSize (ps ⊹ function x (t ∷ ts)) … | a | b | c | d | e rewrite sizs = refute siz2 where module Step2 where fact : ∀{m} (x : Fin m) p ps -> Nothing (Unifies (i x) ((p ∷ ps) ⊹ i x)) fact x p ps f r with No-Cycle (f x) (f ◃S (p ∷ ps)) (trans r (StepM.fact2 f (i x) (p ∷ ps))) ... | () ◇-assoc : ∀ {l m n o} (f : l ~> m) (g : n ~> _) (h : o ~> _) -> (f ◇ (g ◇ h)) ≐ ((f ◇ g) ◇ h) ◇-assoc f g h x = sym (Sub.fact2 f g (h x)) bind-assoc : ∀ {l m n o} (f : l ~> m) (g : n ~> _) (h : o ~> _) t -> (f ◇ g) ◃ (h ◃ t) ≡ (f ◇ (g ◇ h)) ◃ t bind-assoc f g h t = sym (begin (f ◇ (g ◇ h)) ◃ t ≡⟨ ◃ext (◇-assoc f g h) t ⟩ ((f ◇ g) ◇ h) ◃ t ≡⟨ Sub.fact2 (f ◇ g) h t ⟩ (f ◇ g) ◃ (h ◃ t) ∎) step-prop : ∀ {m n} (s t : Term (suc m)) (σ : AList m n) r z -> (Unifies s t [-◇ sub (σ asnoc r / z) ]) ⇔ (Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub σ ]) step-prop s t σ r z f = to , from where lemma1 : ∀ t -> (f ◇ sub σ) ◃ ((r for z) ◃ t) ≡ (f ◇ (sub σ ◇ (r for z))) ◃ t lemma1 t = bind-assoc f (sub σ) (r for z) t to = λ a → begin (f ◇ sub σ) ◃ ((r for z) ◃ s) ≡⟨ lemma1 s ⟩ (f ◇ (sub σ ◇ (r for z))) ◃ s ≡⟨ a ⟩ (f ◇ (sub σ ◇ (r for z))) ◃ t ≡⟨ sym (lemma1 t) ⟩ (f ◇ sub σ) ◃ ((r for z) ◃ t) ∎ from = λ a → begin (f ◇ (sub σ ◇ (r for z))) ◃ s ≡⟨ sym (lemma1 s) ⟩ (f ◇ sub σ) ◃ ((r for z) ◃ s) ≡⟨ a ⟩ (f ◇ sub σ) ◃ ((r for z) ◃ t) ≡⟨ lemma1 t ⟩ (f ◇ (sub σ ◇ (r for z))) ◃ t ∎ -- We use a view so that we need to handle fewer cases in the main proof data Amgu : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Maybe (∃ (AList m)) -> Set where Flip : ∀ {m s t acc} -> amgu t s acc ≡ amgu s t acc -> Amgu {m} t s acc (amgu t s acc) -> Amgu s t acc (amgu s t acc) fn-neq : ∀ {m x y ss ts acc} -> x ≢ y → Amgu {m} (function x ss) (function y ts) acc nothing leaf-leaf : ∀ {m x acc} -> Amgu {m} (function x []) (function x []) acc (just acc) leaf-fork : ∀ {m x t ts acc} -> Amgu {m} (function x []) (function x (t ∷ ts)) acc nothing fork-leaf : ∀ {m x s ss acc} -> Amgu {m} (function x (s ∷ ss)) (function x []) acc nothing fork-fork : ∀ {m x s ss t ts acc} → Amgu {m} (function x (s ∷ ss)) (function x (t ∷ ts)) acc (amgus ss ts =<< amgu s t acc) var-var : ∀ {m x y} -> Amgu (i x) (i y) (m , anil) (just (flexFlex x y)) var-t : ∀ {m x t} -> i x ≢ t -> Amgu (i x) t (m , anil) (flexRigid x t) s-t : ∀{m s t n σ r z} -> Amgu {suc m} s t (n , σ asnoc r / z) ((λ σ -> σ ∃asnoc r / z) <$> amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)) view : ∀ {m : ℕ} -> (s t : Term m) -> (acc : ∃ (AList m)) -> Amgu s t acc (amgu s t acc) view (function x ss) (function y ts) acc with x ≟ y view (function x []) (function .x []) acc | yes refl = leaf-leaf view (function x []) (function .x (x₁ ∷ ts)) acc | yes refl = leaf-fork view (function x (x₁ ∷ ss)) (function .x []) acc | yes refl = fork-leaf view (function x (s ∷ ss)) (function .x (t ∷ ts)) acc | yes refl = fork-fork … | no neq = fn-neq neq view (i x) (i x₁) (proj₃ , anil) = var-var view (i x) (i x₁) (proj₃ , (proj₄ asnoc t' / x₂)) = s-t view (i x) (function x₁ x₂) (proj₃ , anil) = var-t (λ ()) view (i x) (function x₁ x₂) (proj₃ , (proj₄ asnoc t' / x₃)) = s-t view (function x x₁) (i x₂) (proj₃ , anil) = Flip refl (var-t (λ ())) view (function x x₁) (i x₂) (proj₃ , (proj₄ asnoc t' / x₃)) = s-t amgu-Correctness : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set amgu-Correctness s t (l , ρ) = (∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ )) ⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing) amgu-Correctness⋆ : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set amgu-Correctness⋆ s t (l , ρ) = (∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ )) ⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing) amgu-Ccomm : ∀ {m} s t acc -> amgu {m} s t acc ≡ amgu t s acc -> amgu-Correctness s t acc -> amgu-Correctness t s acc amgu-Ccomm s t (l , ρ) st≡ts = lemma where Unst = (Unifies s t) [-◇ sub ρ ] Unts = (Unifies t s) [-◇ sub ρ ] Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ]) Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t}) lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ) lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) = inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just) lemma (inj₂ (NoUnst , amgu≡nothing)) = inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing) amgu-Ccomm⋆ : ∀ {m} s t acc -> amgu {m} s t acc ≡ amgu t s acc -> amgu-Correctness⋆ s t acc -> amgu-Correctness⋆ t s acc amgu-Ccomm⋆ s t (l , ρ) st≡ts = lemma where Unst = (Unifies s t) [-◇ sub ρ ] Unts = (Unifies t s) [-◇ sub ρ ] Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ]) Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t}) lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ) lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) = inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just) lemma (inj₂ (NoUnst , amgu≡nothing)) = inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing) amgu-c⋆ : ∀ {m s t l ρ} -> Amgu s t (l , ρ) (amgu s t (l , ρ)) -> (∃ λ n → ∃ λ σ → (Max⋆ ((Unifies⋆ s t) [-◇⋆ sub ρ ])) (sub σ) × amgu {m} s t (l , ρ) ≡ just (n , σ ++ ρ )) ⊎ (Nothing⋆ ((Unifies⋆ s t) [-◇⋆ sub ρ ]) × amgu {m} s t (l , ρ) ≡ nothing) amgu-c⋆ {m} {s} {t} {l} {ρ} amg with amgu s t (l , ρ) amgu-c⋆ {m} {l = l} {ρ} leaf-leaf | _ = inj₁ (l , anil , (refl , λ f' x → f' , λ x₁ → refl) , cong (just ∘ _,_ l) (sym $ SubList.anil-id-l ρ)) amgu-c⋆ {m} {s} {t} {l} {ρ} (Flip amguts≡amgust amguts) | _ = amgu-Ccomm⋆ t s (l , ρ) amguts≡amgust (amgu-c⋆ amguts) amgu-c⋆ {m} {l = l} {ρ} (fn-neq x₁) | _ = inj₂ ((λ f x → x₁ (term-function-inj₁ x)) , refl) amgu-c⋆ {m} {l = l} {ρ} leaf-fork | _ = inj₂ ((λ f x → case term-function-inj₂ x of λ ()) , refl) amgu-c⋆ {m} {l = l} {ρ} fork-leaf | _ = inj₂ (((λ f x → case term-function-inj₂ x of λ ()) , refl)) amgu-c⋆ {m} {function x1 (s1 ∷ s1s)} {function .x1 (t1 ∷ t1s)} {l = l} {ρ} fork-fork | _ with amgu s1 t1 (l , ρ) | amgu-c⋆ $ view s1 t1 (l , ρ) … | nothing | inj₂ (nounify , refl) = inj₂ ((λ {n} f x → {!!}) , refl) {- where P = Unifies⋆ (function x1 (s1 ∷ s1s)) (function x1 (t1 ∷ t1s)) Q = (Unifies⋆ s1 t1 ∧⋆ {!Unifies⋆ s2 t2!}) Q⇔P : Q ⇔⋆ P Q⇔P = switch⋆ P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2}) No[Q◇ρ]→No[P◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -> Nothing⋆ (P [-◇⋆ sub ρ ]) No[Q◇ρ]→No[P◇ρ] = Properties.fact2⋆ (Q [-◇⋆ sub ρ ]) (P [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q P (sub ρ) Q⇔P) No[Q◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) No[Q◇ρ] = failure-propagation.first⋆ (sub ρ) (Unifies⋆ s1 t1) (Unifies⋆ s2 t2) nounify -} … | just x | (inj₁ x₁) = {!!} … | nothing | inj₁ (_ , _ , _ , ()) … | just x | (inj₂ (_ , ())) amgu-c⋆ {m} var-var | _ = {!!} amgu-c⋆ {m} {t = t} (var-t x₁) | _ = {!!} amgu-c⋆ {s = s} {t} {l} s-t | _ = {!!} -- amgu-c⋆ {m} {s} {t} {l} {ρ} amg with amgu s t (l , ρ) -- amgu-c⋆ {l = l} {ρ} leaf-leaf | ._ -- = inj₁ (l , anil , trivial-problem {_} {_} {leaf} {sub ρ} , cong (λ x -> just (l , x)) (sym (SubList.anil-id-l ρ)) ) -- amgu-c⋆ leaf-fork | .nothing = inj₂ ((λ _ () ) , refl) -- amgu-c⋆ {m} {s1 fork s2} {t1 fork t2} {l} {ρ} fork-fork | ._ -- with amgu s1 t1 (l , ρ) | amgu-c⋆ $ view s1 t1 (l , ρ) -- ... | .nothing | inj₂ (nounify , refl) = inj₂ ((λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl) -- where -- P = Unifies⋆ (s1 fork s2) (t1 fork t2) -- Q = (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2) -- Q⇔P : Q ⇔⋆ P -- Q⇔P = switch⋆ P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2}) -- No[Q◇ρ]→No[P◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -> Nothing⋆ (P [-◇⋆ sub ρ ]) -- No[Q◇ρ]→No[P◇ρ] = Properties.fact2⋆ (Q [-◇⋆ sub ρ ]) (P [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q P (sub ρ) Q⇔P) -- No[Q◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -- No[Q◇ρ] = failure-propagation.first⋆ (sub ρ) (Unifies⋆ s1 t1) (Unifies⋆ s2 t2) nounify -- ... | .(just (n , σ ++ ρ)) | inj₁ (n , σ , a , refl) -- with amgu s2 t2 (n , σ ++ ρ) | amgu-c⋆ (view s2 t2 (n , (σ ++ ρ))) -- ... | .nothing | inj₂ (nounify , refl) = inj₂ ( (λ {_} -> No[Q◇ρ]→No[P◇ρ]⋆ No[Q◇ρ]⋆) , refl) -- where -- P⋆ = Unifies⋆ (s1 fork s2) (t1 fork t2) -- Q⋆ = (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2) -- Q⇔P⋆ : Q⋆ ⇔⋆ P⋆ -- Q⇔P⋆ = switch⋆ P⋆ Q⋆ (Properties.fact1'⋆ {_} {s1} {s2} {t1} {t2}) -- No[Q◇ρ]→No[P◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) -> Nothing⋆ (P⋆ [-◇⋆ sub ρ ]) -- No[Q◇ρ]→No[P◇ρ]⋆ = Properties.fact2⋆ (Q⋆ [-◇⋆ sub ρ ]) (P⋆ [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q⋆ P⋆ (sub ρ) Q⇔P⋆) -- No[Q◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) -- No[Q◇ρ]⋆ = failure-propagation.second⋆ (sub ρ) (sub σ) (Unifies⋆ s1 t1) (Unifies s2 t2) a -- (λ f → nounify f ∘ π₂ (Unifies s2 t2) (cong (f ◃) ∘ sym ∘ SubList.fact1 σ ρ)) -- {- -- No[Q◇ρ]⋆ = failure-propagation.second (sub ρ) (sub σ) (Unifies s1 t1) (Unifies s2 t2) a -- -- (λ f Unifs2t2-f◇σ◇ρ → nounify f ((π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))) Unifs2t2-f◇σ◇ρ))) -- -- (λ f → nounify f ∘ π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t)))) -- (λ f → nounify f ∘ π₂ (Unifies s2 t2) (cong (f ◃) ∘ sym ∘ SubList.fact1 σ ρ)) -- -} -- P = Unifies (s1 fork s2) (t1 fork t2) -- Q = (Unifies s1 t1 ∧ Unifies s2 t2) -- Q⇔P : Q ⇔ P -- Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2}) -- No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ]) -- No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P) -- No[Q◇ρ] : Nothing (Q [-◇ sub ρ ]) -- No[Q◇ρ] = failure-propagation.second (sub ρ) (sub σ) (Unifies s1 t1) (Unifies s2 t2) a -- (λ f Unifs2t2-f◇σ◇ρ → nounify f (π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))) Unifs2t2-f◇σ◇ρ)) -- ... | .(just (n1 , σ1 ++ (σ ++ ρ))) | inj₁ (n1 , σ1 , b , refl) -- = inj₁ (n1 , σ1 ++ σ , Max[P∧Q◇ρ][σ1++σ] , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ)) -- where -- P = Unifies s1 t1 -- Q = Unifies s2 t2 -- P∧Q = P ∧ Q -- C = Unifies (s1 fork s2) (t1 fork t2) -- Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ]) -- Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ) -- (Properties.fact1' {_} {s1} {s2} {t1} {t2})) -- Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ]) -- Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ)) -- Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ)) -- Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ)) -- (proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ)) -- (optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 s1 t1) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b))) -- amgu-c⋆ {suc l} {i x} {i y} (var-var) | .(just (flexFlex x y)) -- with thick x y | Thick.fact1 x y (thick x y) refl -- ... | .(just y') | inj₂ (y' , thinxy'≡y , refl ) -- = inj₁ (l , anil asnoc i y' / x , var-elim-i-≡ x (i y) (sym (cong i thinxy'≡y)) , refl ) -- ... | .nothing | inj₁ ( x≡y , refl ) rewrite sym x≡y -- = inj₁ (suc l , anil , trivial-problem {_} {_} {i x} {sub anil} , refl) -- amgu-c⋆ {suc l} {i x} {t} (var-t ix≢t) | .(flexRigid x t) -- with check x t | check-prop x t -- ... | .nothing | inj₂ ( ps , r , refl) = inj₂ ( (λ {_} -> No-Unifier ) , refl) -- where -- No-Unifier : {n : ℕ} (f : Fin (suc l) → Term n) → f x ≡ f ◃ t → ⊥ -- No-Unifier f fx≡f◃t = ix≢t (sym (trans r (cong (λ ps -> ps ⊹ i x) ps≡[]))) -- where -- ps≡[] : ps ≡ [] -- ps≡[] = map-[] f ps (No-Cycle (f x) ((f ◃S) ps) -- (begin f x ≡⟨ fx≡f◃t ⟩ -- f ◃ t ≡⟨ cong (f ◃) r ⟩ -- f ◃ (ps ⊹ i x) ≡⟨ StepM.fact2 f (i x) ps ⟩ -- (f ◃S) ps ⊹ f x ∎)) -- ... | .(just t') | inj₁ (t' , r , refl) = inj₁ ( l , anil asnoc t' / x , var-elim-i-≡ x t r , refl ) -- amgu-c⋆ {suc m} {s} {t} {l} {ρ asnoc r / z} s-t -- | .((λ x' → x' ∃asnoc r / z) <$> -- (amgu ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ))) -- with amgu-c⋆ (view ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ)) -- ... | inj₂ (nounify , ra) = inj₂ ( (λ {_} -> NoQ→NoP nounify) , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra ) -- where -- P = Unifies s t [-◇ sub (ρ asnoc r / z) ] -- Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ] -- NoQ→NoP : Nothing Q → Nothing P -- NoQ→NoP = Properties.fact2 Q P (switch P Q (step-prop s t ρ r z)) -- ... | inj₁ (n , σ , a , ra) = inj₁ (n , σ , proj₂ (MaxP⇔MaxQ (sub σ)) a , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra) -- where -- P = Unifies s t [-◇ sub (ρ asnoc r / z) ] -- Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ] -- MaxP⇔MaxQ : Max P ⇔ Max Q -- MaxP⇔MaxQ = Max.fact P Q (step-prop s t ρ r z) -- amgu-c⋆ {m} {s} {t} {l} {ρ} (Flip amguts≡amgust amguts) | ._ = amgu-Ccomm⋆ t s (l , ρ) amguts≡amgust (amgu-c⋆ amguts) -- amgu-c⋆ {zero} {i ()} _ | _ mgu-c⋆ : ∀ {m} (s t : Term m) -> (∃ λ n → ∃ λ σ → (Max⋆ (Unifies⋆ s t)) (sub σ) × mgu s t ≡ just (n , σ)) ⊎ (Nothing⋆ (Unifies⋆ s t) × mgu s t ≡ nothing) mgu-c⋆ {m} s t = amgu-c⋆ (view s t (m , anil))
{ "alphanum_fraction": 0.460938415, "avg_line_length": 41.8109696376, "ext": "agda", "hexsha": "b31f3bfa821a2e72c8c35b5fe7ffe7d64c5d3ef4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Unify-monolithic-EnhancedTerm.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Unify-monolithic-EnhancedTerm.agda", "max_line_length": 157, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Unify-monolithic-EnhancedTerm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 19355, "size": 42689 }
------------------------------------------------------------------------------ -- The Collatz function: A function without a termination proof ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Collatz.CollatzConditionals where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Program.Collatz.Data.Nat ------------------------------------------------------------------------------ -- The Collatz function. postulate collatz : D → D collatz-eq : ∀ n → collatz n ≡ (if (iszero₁ n) then 1' else (if (iszero₁ (pred₁ n)) then 1' else (if (even n) then collatz (div n 2') else collatz (3' * n + 1')))) {-# ATP axiom collatz-eq #-}
{ "alphanum_fraction": 0.390070922, "avg_line_length": 37.6, "ext": "agda", "hexsha": "70aeb1fd3d156f9b069618f73d938bfc933a4e15", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Collatz/CollatzConditionals.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Collatz/CollatzConditionals.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Collatz/CollatzConditionals.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 214, "size": 1128 }
module STLC.Kovacs.Completeness where open import STLC.Kovacs.Normalisation public open import STLC.Kovacs.Convertibility public -------------------------------------------------------------------------------- -- (_≈_) infix 3 _≫_ _≫_ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A → Set _≫_ {⎵} {Γ} M N = M ∼ embⁿᶠ N _≫_ {A ⇒ B} {Γ} M f = ∀ {Γ′} → (η : Γ′ ⊇ Γ) {N : Γ′ ⊢ A} {a : Γ′ ⊩ A} (p : N ≫ a) → ren η M ∙ N ≫ f η a -- (_≈ᶜ_) infix 3 _≫⋆_ data _≫⋆_ : ∀ {Γ Ξ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ → Set where ∅ : ∀ {Γ} → ∅ {Γ = Γ} ≫⋆ ∅ _,_ : ∀ {Γ Ξ A} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ⊩⋆ Ξ} {M : Γ ⊢ A} {a : Γ ⊩ A} → (χ : σ ≫⋆ ρ) (p : M ≫ a) → σ , M ≫⋆ ρ , a -------------------------------------------------------------------------------- -- (_∼◾≈_) coe≫ : ∀ {A Γ} → {M₁ M₂ : Γ ⊢ A} {a : Γ ⊩ A} → M₁ ∼ M₂ → M₁ ≫ a → M₂ ≫ a coe≫ {⎵} p q = p ⁻¹ ⦙ q coe≫ {A ⇒ B} p f = λ η q → coe≫ (ren∼ η p ∙∼ refl∼) (f η q) -------------------------------------------------------------------------------- -- (≈ₑ) acc≫ : ∀ {A Γ Γ′} → (η : Γ′ ⊇ Γ) → {M : Γ ⊢ A} {a : Γ ⊩ A} → M ≫ a → ren η M ≫ acc η a acc≫ {⎵} η {M} {N} p = coe ((λ N′ → ren η M ∼ N′) & (natembⁿᶠ η N ⁻¹)) (ren∼ η p) acc≫ {A ⇒ B} η {M} {f} g η′ rewrite ren○ η′ η M ⁻¹ = g (η ○ η′) -- (≈ᶜₑ) -- NOTE: _⬖≫_ = ∂acc≫⋆ _⬖≫_ : ∀ {Γ Γ′ Ξ} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ⊩⋆ Ξ} → (χ : σ ≫⋆ ρ) (η : Γ′ ⊇ Γ) → σ ◐ η ≫⋆ ρ ⬖ η ∅ ⬖≫ η = ∅ (χ , p) ⬖≫ η = χ ⬖≫ η , acc≫ η p -------------------------------------------------------------------------------- -- (∈≈) get≫ : ∀ {Γ Ξ A} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ⊩⋆ Ξ} → σ ≫⋆ ρ → (i : Ξ ∋ A) → getₛ σ i ≫ getᵥ ρ i get≫ (χ , p) zero = p get≫ (χ , p) (suc i) = get≫ χ i -- (Tm≈) eval≫ : ∀ {Γ Ξ A} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ⊩⋆ Ξ} → σ ≫⋆ ρ → (M : Ξ ⊢ A) → sub σ M ≫ eval ρ M eval≫ χ (𝓋 i) = get≫ χ i eval≫ {σ = σ} χ (ƛ M) η {N} q = coe≫ (coe (((ƛ (ren (liftₑ η) (sub (liftₛ σ) M)) ∙ N) ∼_) & ( sub◑ (idₛ , N) (liftₑ η) (sub (liftₛ σ) M) ⁻¹ ⦙ sub● (liftₑ η ◑ (idₛ , N)) (liftₛ σ) M ⁻¹ ⦙ (λ σ′ → sub (σ′ , N) M) & ( comp●◑ (η ◑ idₛ , N) (wkₑ idₑ) σ ⦙ (σ ●_) & lid◑ (η ◑ idₛ) ⦙ comp●◑ idₛ η σ ⁻¹ ⦙ rid● (σ ◐ η) ) )) (red⇒ (ren (liftₑ η) (sub (liftₛ σ) M)) N) ⁻¹) (eval≫ (χ ⬖≫ η , q) M) eval≫ {σ = σ} χ (M ∙ N) rewrite idren (sub σ M) ⁻¹ = eval≫ χ M idₑ (eval≫ χ N) -------------------------------------------------------------------------------- mutual -- (q≈) reify≫ : ∀ {A Γ} → {M : Γ ⊢ A} {a : Γ ⊩ A} → (p : M ≫ a) → M ∼ embⁿᶠ (reify a) reify≫ {⎵} {M = M} p = p reify≫ {A ⇒ B} {M = M} f = exp⇒ M ⦙ ƛ∼ (reify≫ (f (wkₑ idₑ) (reflect≫ 0))) -- (u≈) reflect≫ : ∀ {A Γ} → (M : Γ ⊢ⁿᵉ A) → embⁿᵉ M ≫ reflect M reflect≫ {⎵} M = refl∼ reflect≫ {A ⇒ B} M η {N} {a} p rewrite natembⁿᵉ η M ⁻¹ = coe≫ (refl∼ ∙∼ reify≫ p ⁻¹) (reflect≫ (renⁿᵉ η M ∙ reify a)) -- (uᶜ≈) id≫⋆ : ∀ {Γ} → idₛ {Γ} ≫⋆ idᵥ id≫⋆ {∅} = ∅ id≫⋆ {Γ , A} = id≫⋆ ⬖≫ wkₑ idₑ , reflect≫ 0 complete : ∀ {Γ A} → (M : Γ ⊢ A) → M ∼ embⁿᶠ (nf M) complete M = coe ((_∼ embⁿᶠ (reify (eval idᵥ M))) & idsub M) (reify≫ (eval≫ id≫⋆ M)) --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.2620087336, "avg_line_length": 27.4154929577, "ext": "agda", "hexsha": "9bd8b56a10f14863dec9d4ca99087118ad008866", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand-kovacs", "max_forks_repo_path": "src/STLC/Kovacs/Completeness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand-kovacs", "max_issues_repo_path": "src/STLC/Kovacs/Completeness.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand-kovacs", "max_stars_repo_path": "src/STLC/Kovacs/Completeness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1802, "size": 3893 }
------------------------------------------------------------------------ -- Upper bounds of colists containing natural numbers ------------------------------------------------------------------------ module Upper-bounds where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude open import Prelude.Size open import Colist equality-with-J as Colist open import Conat equality-with-J as Conat hiding (pred) renaming (_+_ to _⊕_; _∸_ to _⊖_) open import Equality.Decision-procedures equality-with-J open import Function-universe equality-with-J as F hiding (id; _∘_) open import Nat equality-with-J as Nat using (_≤_; _<_; pred) open import Omniscience equality-with-J ------------------------------------------------------------------------ -- Upper bounds -- [ ∞ ] ms ⊑ n means that n is an upper bound of every number in ms. infix 4 [_]_⊑_ [_]_⊑′_ [_]_⊑_ : Size → Colist ℕ ∞ → Conat ∞ → Type [ i ] ms ⊑ n = □ i (λ m → [ ∞ ] ⌜ m ⌝ ≤ n) ms [_]_⊑′_ : Size → Colist ℕ ∞ → Conat ∞ → Type [ i ] ms ⊑′ n = □′ i (λ m → [ ∞ ] ⌜ m ⌝ ≤ n) ms -- The conatural number infinity is always an upper bound. infix 4 _⊑infinity _⊑infinity : ∀ {i} ns → [ i ] ns ⊑ infinity _⊑infinity = □-replicate (_≤infinity ∘ ⌜_⌝) -- A form of transitivity. transitive-⊑≤ : ∀ {i ms n o} → [ i ] ms ⊑ n → [ ∞ ] n ≤ o → [ i ] ms ⊑ o transitive-⊑≤ p q = □-map (flip transitive-≤ q) p -- Another form of transitivity. transitive-◇≤⊑ : ∀ {m ns o i} → ◇ i (m ≤_) ns → [ i ] ns ⊑ o → [ i ] ⌜ m ⌝ ≤ o transitive-◇≤⊑ {m} {ns} {o} {i} = curry ( ◇ i (m ≤_) ns × [ i ] ns ⊑ o ↝⟨ Σ-map id swap ∘ uncurry □◇-witness ∘ swap ⟩ (∃ λ n → m ≤ n × [ i ] ⌜ n ⌝ ≤ o) ↝⟨ (λ { (_ , m≤n , n≤o) → transitive-≤ (⌜⌝-mono m≤n) n≤o }) ⟩□ [ i ] ⌜ m ⌝ ≤ o □) -- If m is an upper bound of ms, and no natural number is an upper -- bound, then m is bisimilar to infinity. no-finite→infinite : ∀ {m ms} → (∀ n → ¬ [ ∞ ] ms ⊑ ⌜ n ⌝) → [ ∞ ] ms ⊑ m → Conat.[ ∞ ] m ∼ infinity no-finite→infinite {m} {ms} no-finite = [ ∞ ] ms ⊑ m ↝⟨ (λ ms⊑n → uncurry λ n → Conat.[ ∞ ] m ∼ ⌜ n ⌝ ↝⟨ ∼→≤ ⟩ [ ∞ ] m ≤ ⌜ n ⌝ ↝⟨ transitive-⊑≤ ms⊑n ⟩ [ ∞ ] ms ⊑ ⌜ n ⌝ ↝⟨ no-finite n ⟩□ ⊥ □) ⟩ Infinite m ↝⟨ Infinite→∼infinity ⟩□ Conat.[ ∞ ] m ∼ infinity □ -- No natural number is an upper bound of nats. nats⋢ : ∀ n → ¬ [ ∞ ] nats ⊑ ⌜ n ⌝ nats⋢ zero = [ ∞ ] nats ⊑ ⌜ 0 ⌝ ↝⟨ □-head ∘ □-tail ⟩ Conat.[ ∞ ] ⌜ 1 ⌝ ≤ ⌜ 0 ⌝ ↝⟨ ≮0 ⟩□ ⊥ □ nats⋢ (suc n) = [ ∞ ] nats ⊑ ⌜ suc n ⌝ ↝⟨ □-tail ⟩ [ ∞ ] map suc nats ⊑ ⌜ suc n ⌝ ↝⟨ □-map′ (⌜⌝-mono ∘ Nat.suc≤suc⁻¹ ∘ ⌜⌝-mono⁻¹) ⟩ [ ∞ ] map id nats ⊑ ⌜ id n ⌝ ↝⟨ □-∼ (map-id _) ⟩ [ ∞ ] nats ⊑ ⌜ n ⌝ ↝⟨ nats⋢ n ⟩□ ⊥ □ -- The number ⌜ n ⌝ is an upper bound of replicate m n. replicate⊑ : ∀ {i} m {n} → [ i ] replicate m n ⊑ ⌜ n ⌝ replicate⊑ {i} zero {n} = [] replicate⊑ {i} (suc m) {n} = $⟨ (λ { _ refl → reflexive-≤ _ }) ⟩ (∀ o → o ≡ n → [ ∞ ] ⌜ o ⌝ ≤ ⌜ n ⌝) ↝⟨ (λ hyp _ → hyp _ ∘ _⇔_.to ◇-replicate-suc⇔) ⟩ (∀ o → ◇ i (o ≡_) (replicate (suc m) n) → [ ∞ ] ⌜ o ⌝ ≤ ⌜ n ⌝) ↔⟨⟩ (∀ o → [ i ] o ∈ replicate (suc m) n → [ ∞ ] ⌜ o ⌝ ≤ ⌜ n ⌝) ↝⟨ _⇔_.from □⇔∈→ ⟩ □ i (λ o → [ ∞ ] ⌜ o ⌝ ≤ ⌜ n ⌝) (replicate (suc m) n) ↝⟨ id ⟩□ [ i ] replicate (suc m) n ⊑ ⌜ n ⌝ □ ------------------------------------------------------------------------ -- Least upper bounds -- The least upper bound of a colist of natural numbers. LUB : Colist ℕ ∞ → Conat ∞ → Type LUB ns n = [ ∞ ] ns ⊑ n × (∀ n′ → [ ∞ ] ns ⊑ n′ → [ ∞ ] n ≤ n′) -- Least upper bounds are unique. lub-unique : ∀ {ns n₁ n₂ i} → LUB ns n₁ → LUB ns n₂ → Conat.[ i ] n₁ ∼ n₂ lub-unique (lub₁₁ , lub₁₂) (lub₂₁ , lub₂₂) = antisymmetric-≤ (lub₁₂ _ lub₂₁) (lub₂₂ _ lub₁₁) -- LUB respects bisimilarity. LUB-∼ : ∀ {ms ns m n} → Colist.[ ∞ ] ms ∼ ns → Conat.[ ∞ ] m ∼ n → LUB ms m → LUB ns n LUB-∼ {ms} {ns} {m} {n} p q = Σ-map ([ ∞ ] ms ⊑ m ↝⟨ □-∼ p ⟩ [ ∞ ] ns ⊑ m ↝⟨ □-map (flip transitive-≤ (∼→≤ q)) ⟩□ [ ∞ ] ns ⊑ n □) (λ hyp n′ → [ ∞ ] ns ⊑ n′ ↝⟨ □-∼ (Colist.symmetric-∼ p) ⟩ [ ∞ ] ms ⊑ n′ ↝⟨ hyp n′ ⟩ [ ∞ ] m ≤ n′ ↝⟨ transitive-≤ (∼→≤ (Conat.symmetric-∼ q)) ⟩□ [ ∞ ] n ≤ n′ □) -- The least upper bound of the empty colist is 0. lub-[] : LUB [] ⌜ 0 ⌝ lub-[] = [] , λ _ _ → zero -- Some lemmas that can be used to establish the least upper bound of -- a non-empty colist. lub-∷ˡ : ∀ {m ms n} → [ ∞ ] n ≤ ⌜ m ⌝ → LUB (ms .force) n → LUB (m ∷ ms) ⌜ m ⌝ lub-∷ˡ {m} {ms} {n} n≤m = Σ-map ([ ∞ ] ms .force ⊑ n ↝⟨ (λ hyp → reflexive-≤ _ ∷ λ { .force → □-map (flip transitive-≤ n≤m) hyp }) ⟩□ [ ∞ ] m ∷ ms ⊑ ⌜ m ⌝ □) ((∀ n′ → [ ∞ ] ms .force ⊑ n′ → [ ∞ ] n ≤ n′) ↝⟨ (λ _ _ → □-head) ⟩□ (∀ n′ → [ ∞ ] m ∷ ms ⊑ n′ → [ ∞ ] ⌜ m ⌝ ≤ n′) □) lub-∷ʳ : ∀ {m ms n} → [ ∞ ] ⌜ m ⌝ ≤ n → LUB (ms .force) n → LUB (m ∷ ms) n lub-∷ʳ {m} {ms} {n} m≤n = Σ-map ([ ∞ ] ms .force ⊑ n ↝⟨ (λ hyp → m≤n ∷ λ { .force → hyp }) ⟩□ [ ∞ ] m ∷ ms ⊑ n □) ((∀ n′ → [ ∞ ] ms .force ⊑ n′ → [ ∞ ] n ≤ n′) ↝⟨ (λ hyp n′ → hyp n′ ∘ □-tail) ⟩□ (∀ n′ → [ ∞ ] m ∷ ms ⊑ n′ → [ ∞ ] n ≤ n′) □) -- If m ∷ ms has a least upper bound, then cycle m ms has the same -- least upper bound. lub-cycle : ∀ {m ms n} → LUB (m ∷ ms) n → LUB (cycle m ms) n lub-cycle {m} {ms} {n} = Σ-map ([ ∞ ] m ∷ ms ⊑ n ↝⟨ _⇔_.from □-cycle⇔ ⟩□ [ ∞ ] cycle m ms ⊑ n □) ((∀ n′ → [ ∞ ] m ∷ ms ⊑ n′ → [ ∞ ] n ≤ n′) ↝⟨ (∀-cong _ λ _ → →-cong-→ (_⇔_.to □-cycle⇔) id) ⟩□ (∀ n′ → [ ∞ ] cycle m ms ⊑ n′ → [ ∞ ] n ≤ n′) □) -- The least upper bound of nats is infinity. lub-nats-infinity : LUB nats Conat.infinity lub-nats-infinity = (nats ⊑infinity) , λ n → [ ∞ ] nats ⊑ n ↝⟨ flip no-finite→infinite ⟩ ((∀ n → ¬ [ ∞ ] nats ⊑ ⌜ n ⌝) → Conat.[ ∞ ] n ∼ infinity) ↝⟨ _$ nats⋢ ⟩ Conat.[ ∞ ] n ∼ infinity ↝⟨ Conat.symmetric-∼ ⟩ Conat.[ ∞ ] infinity ∼ n ↝⟨ ∼→≤ ⟩□ [ ∞ ] infinity ≤ n □ -- If WLPO holds, then the least upper bound of a colist of natural -- numbers can be determined. -- -- (In fact, WLPO is logically equivalent to the codomain of this -- lemma, see Unbounded-space.wlpo⇔lub.) -- -- I received help with this proof from Andreas Abel and Ulf Norell: I -- had presented a proof that used LPO. Andreas Abel came up with the -- idea for the following, less complicated proof, and Ulf Norell -- suggested that one could get away with WLPO instead of LPO. wlpo→lub : WLPO → (∀ ms → ∃ λ n → LUB ms n) wlpo→lub wlpo = λ ms → lub ms , □ˢ∞→□∞ (upper-bound ms) , least ms where -- The boolean >0 ms n is true if the n-th number (counting from -- zero) of ms is positive. >0 : Colist ℕ ∞ → ℕ → Bool >0 [] _ = false >0 (m ∷ ms) (suc n) = >0 (ms .force) n >0 (zero ∷ ms) zero = false >0 (suc m ∷ ms) zero = true -- The number lub ms is the least upper bound of ms. lub : ∀ {i} → Colist ℕ ∞ → Conat i lub ms with wlpo (>0 ms) ... | inj₁ _ = zero ... | inj₂ _ = suc λ { .force → lub (map pred ms) } -- Zero is an upper bound of ms iff >0 ms is universally false. ⊑0⇔≡false : ∀ ms → [ ∞ ] ms ⊑ zero ⇔ (∀ n → >0 ms n ≡ false) ⊑0⇔≡false = λ ms → record { to = to ms; from = from ms } where to : ∀ ms → [ ∞ ] ms ⊑ zero → (∀ n → >0 ms n ≡ false) to _ [] _ = refl to (zero ∷ ms) _ zero = refl to (suc _ ∷ _) (() ∷ _) _ to (m ∷ ms) (_ ∷ ms⊑0) (suc n) = to (ms .force) (ms⊑0 .force) n from : ∀ {i} ms → (∀ n → >0 ms n ≡ false) → [ i ] ms ⊑ zero from [] _ = [] from (suc m ∷ ms) ≡false = ⊥-elim (Bool.true≢false (≡false zero)) from (zero ∷ ms) ≡false = zero ∷ λ { .force → from (ms .force) (≡false ∘ suc) } -- If n .force is an upper bound of map pred ms, then suc n is an -- upper bound of ms. Note that the lemma is size-preserving and -- takes □ˢ′ to □ˢ. pred-lemma₁ : ∀ {i n} ms → □ˢ′ i (λ i m → [ i ] ⌜ m ⌝ ≤ n .force) (map pred ms) → □ˢ i (λ i m → [ i ] ⌜ m ⌝ ≤ suc n) ms pred-lemma₁ [] hyp = [] pred-lemma₁ (m ∷ ms) hyp = helper m hyp ∷ λ { .force → pred-lemma₁ (ms .force) λ { .force → □ˢ-tail (hyp .force) }} where helper : ∀ {i n} m → □ˢ′ i (λ i m → [ i ] ⌜ m ⌝ ≤ n .force) (map pred (m ∷ ms)) → [ i ] ⌜ m ⌝ ≤ suc n helper zero hyp = zero helper (suc m) hyp = suc λ { .force → □ˢ-head (hyp .force) } -- If suc n is an upper bound of ms, then n .force is an upper bound -- of map pred ms. pred-lemma₂ : ∀ {n ms i} → [ i ] ms ⊑ suc n → [ i ] map pred ms ⊑ n .force pred-lemma₂ [] = [] pred-lemma₂ {n} (_∷_ {x = m} m≤1+n ms⊑1+n) = (⌜ pred m ⌝ ∼⟨ ⌜⌝-pred m ⟩≤ Conat.pred ⌜ m ⌝ ≤⟨ pred-mono m≤1+n ⟩∎ n .force ∎≤) ∷ λ { .force → pred-lemma₂ (ms⊑1+n .force) } -- The number lub ms is an upper bound of ms. upper-bound : ∀ {i} ms → □ˢ i (λ i m → [ i ] ⌜ m ⌝ ≤ lub ms) ms upper-bound {i} ms with wlpo (>0 ms) ... | inj₂ _ = pred-lemma₁ _ (λ { .force → upper-bound (map pred ms) }) ... | inj₁ ≡false = $⟨ ≡false ⟩ (∀ n → >0 ms n ≡ false) ↝⟨ _⇔_.from (⊑0⇔≡false ms) ⟩ [ ∞ ] ms ⊑ zero ↝⟨ id ⟩ [ i ] ms ⊑ zero ↝⟨ _⇔_.from □ˢ⇔□ ⟩ □ˢ i (λ _ m → [ ∞ ] ⌜ m ⌝ ≤ zero) ms ↝⟨ id ⟩□ □ˢ i (λ i m → [ i ] ⌜ m ⌝ ≤ zero) ms □ -- The number lub ms is less than or equal to every number that is -- an upper bound of ms. least : ∀ {i} ms ub → [ ∞ ] ms ⊑ ub → [ i ] lub ms ≤ ub least ms ub ms⊑ub with wlpo (>0 ms) least ms ub ms⊑ub | inj₁ _ = zero least ms (suc ub) ms⊑1+ub | inj₂ _ = suc λ { .force → least (map pred ms) (ub .force) (pred-lemma₂ ms⊑1+ub) } least ms zero ms⊑0 | inj₂ ¬≡false = $⟨ ms⊑0 ⟩ [ ∞ ] ms ⊑ zero ↝⟨ _⇔_.to (⊑0⇔≡false _) ⟩ (∀ n → >0 ms n ≡ false) ↝⟨ ¬≡false ⟩ ⊥ ↝⟨ ⊥-elim ⟩□ _ □ ------------------------------------------------------------------------ -- A relation that can be used to relate the least upper bounds of two -- colists -- [ ∞ ] ms ≲ ns means that every upper bound of ns is also an upper -- bound of ms. infix 4 [_]_≲_ [_]_≲′_ [_]_≲_ : Size → Colist ℕ ∞ → Colist ℕ ∞ → Type [ i ] ms ≲ ns = ∀ {n} → [ ∞ ] ns ⊑ n → [ i ] ms ⊑ n [_]_≲′_ : Size → Colist ℕ ∞ → Colist ℕ ∞ → Type [ i ] ms ≲′ ns = ∀ {n} → [ ∞ ] ns ⊑ n → [ i ] ms ⊑′ n -- Bounded m ns means that m is smaller than or equal to some element -- in ns, or equal to zero. Bounded : ℕ → Colist ℕ ∞ → Type Bounded m ns = ◇ ∞ (m ≤_) ns ⊎ m ≡ zero -- If Bounded m ns holds, then m is less than or equal to every upper -- bound of ns. bounded-lemma : ∀ {m ns n} → Bounded m ns → [ ∞ ] ns ⊑ n → [ ∞ ] ⌜ m ⌝ ≤ n bounded-lemma (inj₁ ◇m≤ns) = transitive-◇≤⊑ ◇m≤ns bounded-lemma (inj₂ refl) = const zero -- The empty colist is bounded by any other. []≲ : ∀ {ns i} → [ i ] [] ≲ ns []≲ = λ _ → [] -- Some derived cons-like operations. consʳ-≲ : ∀ {ms ns n i} → [ i ] ms ≲ ns .force → [ i ] ms ≲ n ∷ ns consʳ-≲ = _∘ □-tail consˡ-≲ : ∀ {i m ms ns} → Bounded m ns → [ i ] ms .force ≲′ ns → [ i ] m ∷ ms ≲ ns consˡ-≲ ◇m≤ns ms≲′ns ns⊑n = bounded-lemma ◇m≤ns ns⊑n ∷ λ { .force → ms≲′ns ns⊑n .force } cons-≲ : ∀ {i m ms n ns} → Bounded m (n ∷ ns) → [ i ] ms .force ≲′ ns .force → [ i ] m ∷ ms ≲ n ∷ ns cons-≲ {i} {m} {ms} {n} {ns} ◇m≤n∷ns = [ i ] ms .force ≲′ ns .force ↝⟨ (λ { ms≲′ns hyp .force → consʳ-≲ (λ hyp → ms≲′ns hyp .force) hyp }) ⟩ [ i ] ms .force ≲′ n ∷ ns ↝⟨ consˡ-≲ ◇m≤n∷ns ⟩□ [ i ] m ∷ ms ≲ n ∷ ns □ cons′-≲ : ∀ {i m ms ns} → [ i ] ms .force ≲′ ns .force → [ i ] m ∷ ms ≲ m ∷ ns cons′-≲ = cons-≲ (inj₁ (here Nat.≤-refl)) -- If the combinator consʳ-≲ had taken the primed variant of the -- relation as an argument instead of the unprimed variant, then any -- colist would have been bounded by any infinite colist. consʳ-≲′→≲-infinite : (∀ {i ms ns n} → [ i ] ms ≲′ ns .force → [ i ] ms ≲ n ∷ ns) → (∀ {i ms ns} → Conat.[ ∞ ] length ns ∼ infinity → [ i ] ms ≲ ns) consʳ-≲′→≲-infinite consʳ-≲′ {ns = []} () consʳ-≲′→≲-infinite consʳ-≲′ {ns = _ ∷ _} (suc p) = consʳ-≲′ λ { hyp .force → consʳ-≲′→≲-infinite consʳ-≲′ (p .force) hyp } -- Thus one cannot make this argument's type primed. ¬-consʳ-≲′ : ¬ (∀ {i ms ns n} → [ i ] ms ≲′ ns .force → [ i ] ms ≲ n ∷ ns) ¬-consʳ-≲′ = (∀ {i ms ns n} → [ i ] ms ≲′ ns .force → [ i ] ms ≲ n ∷ ns) ↝⟨ consʳ-≲′→≲-infinite ⟩ (∀ {i ms ns} → Conat.[ ∞ ] length ns ∼ infinity → [ i ] ms ≲ ns) ↝⟨ (λ hyp → hyp (length-replicate _)) ⟩ [ ∞ ] repeat 1 ≲ repeat 0 ↝⟨ _$ replicate⊑ _ ⟩ [ ∞ ] repeat 1 ⊑ zero ↝⟨ □-head ⟩ [ ∞ ] ⌜ 1 ⌝ ≤ ⌜ 0 ⌝ ↝⟨ ≮0 ⟩□ ⊥ □ -- Bisimilarity is contained in the relation. ∼→≲ : ∀ {i ms ns} → Colist.[ i ] ms ∼ ns → [ i ] ms ≲ ns ∼→≲ [] = []≲ ∼→≲ (refl ∷ ps) = cons′-≲ λ { hyp .force → ∼→≲ (ps .force) hyp } -- "Equational" reasoning combinators. infix -1 _□≲ finally-≲ finally-≲∼ infixr -2 step-≲ step-≡≲ _≡⟨⟩≲_ step-∼≲ step-≲ : ∀ {i} ms {ns os} → [ ∞ ] ns ≲ os → [ i ] ms ≲ ns → [ i ] ms ≲ os step-≲ {i} ms {ns} {os} ns≲os ms≲ns {n = n} = [ ∞ ] os ⊑ n ↝⟨ ns≲os ⟩ [ ∞ ] ns ⊑ n ↝⟨ ms≲ns ⟩□ [ i ] ms ⊑ n □ syntax step-≲ ms ns≲os ms≲ns = ms ≲⟨ ms≲ns ⟩ ns≲os step-≡≲ : ∀ {i} ms {ns os} → [ i ] ns ≲ os → ms ≡ ns → [ i ] ms ≲ os step-≡≲ _ ns≲os refl = ns≲os syntax step-≡≲ ms ns≲os ms≡ns = ms ≡⟨ ms≡ns ⟩≲ ns≲os _≡⟨⟩≲_ : ∀ {i} ms {ns} → [ i ] ms ≲ ns → [ i ] ms ≲ ns _ ≡⟨⟩≲ ms≲ns = ms≲ns step-∼≲ : ∀ {i} ms {ns os} → [ i ] ns ≲ os → Colist.[ i ] ms ∼ ns → [ i ] ms ≲ os step-∼≲ {i} ms {ns} {os} ns≲os ms∼ns {n} = [ ∞ ] os ⊑ n ↝⟨ ns≲os ⟩ [ i ] ns ⊑ n ↝⟨ □-∼ (Colist.symmetric-∼ ms∼ns) ⟩□ [ i ] ms ⊑ n □ syntax step-∼≲ ms ns≲os ms∼ns = ms ∼⟨ ms∼ns ⟩≲ ns≲os finally-≲ : ∀ {i} ms ns → [ i ] ms ≲ ns → [ i ] ms ≲ ns finally-≲ _ _ = id syntax finally-≲ ms ns ms≲ns = ms ≲⟨ ms≲ns ⟩□ ns finally-≲∼ : ∀ {i} ms ns → Colist.[ i ] ms ∼ ns → [ i ] ms ≲ ns finally-≲∼ _ _ = ∼→≲ syntax finally-≲∼ ms ns ms∼ns = ms ∼⟨ ms∼ns ⟩□≲ ns _□≲ : ∀ {i} ns → [ i ] ns ≲ ns _□≲ {i} ns {n} = [ ∞ ] ns ⊑ n ↝⟨ id ⟩□ [ i ] ns ⊑ n □ -- The transitivity proof can not be made size-preserving in the other -- argument. ¬-transitivity-size-preservingʳ : ¬ (∀ {i ms ns os} → [ ∞ ] ms ≲ ns → [ i ] ns ≲ os → [ i ] ms ≲ os) ¬-transitivity-size-preservingʳ trans = contradiction where ones : ∀ {i} → Colist′ ℕ i ones .force = repeat 1 bad : ∀ {i} → [ i ] 0 ∷ ones ≲ repeat 0 bad {n = n} hyp = zero ∷ λ { .force {j} → $⟨ (λ {_} → consʳ-≲ (repeat 1 □≲)) ⟩ [ ∞ ] repeat 1 ≲ 0 ∷ ones ↝⟨ flip trans bad ⟩ [ j ] repeat 1 ≲ repeat 0 ↝⟨ (λ f → f hyp) ⟩□ [ j ] repeat 1 ⊑ n □ } contradiction = $⟨ (λ {_} → bad) ⟩ [ ∞ ] 0 ∷ ones ≲ repeat 0 ↝⟨ _$ replicate⊑ _ ⟩ [ ∞ ] 0 ∷ ones ⊑ zero ↝⟨ □-head ∘ □-tail ⟩ [ ∞ ] ⌜ 1 ⌝ ≤ ⌜ 0 ⌝ ↝⟨ ≮0 ⟩□ ⊥ □ -- The transitivity proof can not be made size-preserving in both -- arguments. ¬-transitivity-size-preserving : ¬ (∀ {i ms ns os} → [ i ] ms ≲ ns → [ i ] ns ≲ os → [ i ] ms ≲ os) ¬-transitivity-size-preserving = ¬-transitivity-size-preservingʳ -- If the least upper bound of ms is m and the least upper bound of ns -- is n, then [ ∞ ] ms ≲ ns holds if and only if [ ∞ ] m ≤ n holds. ≲⇔least-upper-bounds-≤ : ∀ {m n ms ns} → LUB ms m → LUB ns n → [ ∞ ] ms ≲ ns ⇔ [ ∞ ] m ≤ n ≲⇔least-upper-bounds-≤ {⨆ms} {⨆ns} {ms} {ns} ⨆ms-lub ⨆ns-lub = record { to = λ ms≲ns → $⟨ proj₁ ⨆ns-lub ⟩ [ ∞ ] ns ⊑ ⨆ns ↝⟨ ms≲ns ⟩ [ ∞ ] ms ⊑ ⨆ns ↝⟨ proj₂ ⨆ms-lub _ ⟩□ [ ∞ ] ⨆ms ≤ ⨆ns □ ; from = λ ⨆ms≤⨆ns {n} → [ ∞ ] ns ⊑ n ↝⟨ proj₂ ⨆ns-lub n ⟩ [ ∞ ] ⨆ns ≤ n ↝⟨ transitive-≤ ⨆ms≤⨆ns ⟩ [ ∞ ] ⨆ms ≤ n ↝⟨ transitive-⊑≤ (proj₁ ⨆ms-lub) ⟩□ [ ∞ ] ms ⊑ n □ } ------------------------------------------------------------------------ -- Another relation that can be used to relate the least upper bounds -- of two colists -- [ ∞ ] ms ≂ ns means that every upper bound of ns is also an upper -- bound of ms, and vice versa. infix 4 [_]_≂_ [_]_≂′_ [_]_≂_ : Size → Colist ℕ ∞ → Colist ℕ ∞ → Type [ i ] ms ≂ ns = [ i ] ms ≲ ns × [ i ] ns ≲ ms [_]_≂′_ : Size → Colist ℕ ∞ → Colist ℕ ∞ → Type [ i ] ms ≂′ ns = [ i ] ms ≲′ ns × [ i ] ns ≲′ ms -- The relation is symmetric. symmetric-≂ : ∀ {i ms ns} → [ i ] ms ≂ ns → [ i ] ns ≂ ms symmetric-≂ = swap -- Some derived cons-like operations. consʳ-≂ : ∀ {i ms n ns} → Bounded n ms → [ i ] ms ≂ ns .force → [ i ] ms ≂ n ∷ ns consʳ-≂ ◇n≤ms = Σ-map consʳ-≲ (λ ns≲ms → consˡ-≲ ◇n≤ms λ hyp → λ { .force → ns≲ms hyp }) consˡ-≂ : ∀ {i m ms ns} → Bounded m ns → [ i ] ms .force ≂ ns → [ i ] m ∷ ms ≂ ns consˡ-≂ ◇m≤ns = symmetric-≂ ∘ consʳ-≂ ◇m≤ns ∘ symmetric-≂ cons-≂ : ∀ {i m ms n ns} → Bounded m (n ∷ ns) → Bounded n (m ∷ ms) → [ i ] ms .force ≂′ ns .force → [ i ] m ∷ ms ≂ n ∷ ns cons-≂ ◇m≤n∷ns ◇n≤m∷ms = Σ-map (cons-≲ ◇m≤n∷ns) (cons-≲ ◇n≤m∷ms) cons′-≂ : ∀ {i m ms ns} → [ i ] ms .force ≂′ ns .force → [ i ] m ∷ ms ≂ m ∷ ns cons′-≂ = Σ-map cons′-≲ cons′-≲ cons″-≂ : ∀ {i m ms ns} → [ i ] ms .force ≂ ns .force → [ i ] m ∷ ms ≂ m ∷ ns cons″-≂ = cons′-≂ ∘ Σ-map (λ { ms≲ns hyp .force → ms≲ns hyp }) (λ { ns≲ms hyp .force → ns≲ms hyp }) -- Bisimilarity is contained in the relation. ∼→≂ : ∀ {i ms ns} → Colist.[ i ] ms ∼ ns → [ i ] ms ≂ ns ∼→≂ ms∼ns = ∼→≲ ms∼ns , ∼→≲ (Colist.symmetric-∼ ms∼ns) -- "Equational" reasoning combinators. infix -1 _□≂ finally-≂ finally-≂∼ infixr -2 step-≂ step-≡≂ _≡⟨⟩≂_ step-∼≂ step-≂∼ step-≂ : ∀ {i} ms {ns os} → [ ∞ ] ns ≂ os → [ ∞ ] ms ≂ ns → [ i ] ms ≂ os step-≂ _ = Σ-zip (step-≲ _) (flip (step-≲ _)) syntax step-≂ ms ns≂os ms≂ns = ms ≂⟨ ms≂ns ⟩ ns≂os step-≡≂ : ∀ {i} ms {ns os} → [ i ] ns ≂ os → ms ≡ ns → [ i ] ms ≂ os step-≡≂ _ ns≂os refl = ns≂os syntax step-≡≂ ms ns≂os ms≡ns = ms ≡⟨ ms≡ns ⟩≂ ns≂os _≡⟨⟩≂_ : ∀ {i} ms {ns} → [ i ] ms ≂ ns → [ i ] ms ≂ ns _ ≡⟨⟩≂ ms≂ns = ms≂ns step-∼≂ : ∀ {i} ms {ns os} → [ i ] ns ≂ os → Colist.[ ∞ ] ms ∼ ns → [ i ] ms ≂ os step-∼≂ {i} ms {ns} {os} (ns≲os , os≲ns) ms∼ns = step-∼≲ ms ns≲os ms∼ns , λ {n} → [ ∞ ] ms ⊑ n ↝⟨ □-∼ ms∼ns ⟩ [ ∞ ] ns ⊑ n ↝⟨ os≲ns ⟩□ [ i ] os ⊑ n □ syntax step-∼≂ ms ns≂os ms∼ns = ms ∼⟨ ms∼ns ⟩≂ ns≂os step-≂∼ : ∀ {i} ms {ns os} → Colist.[ ∞ ] ns ∼ os → [ i ] ms ≂ ns → [ i ] ms ≂ os step-≂∼ _ ns∼os ms≂ns = symmetric-≂ (step-∼≂ _ (symmetric-≂ ms≂ns) (Colist.symmetric-∼ ns∼os)) syntax step-≂∼ ms ns∼os ms≂ns = ms ≂⟨ ms≂ns ⟩∼ ns∼os finally-≂ : ∀ {i} ms ns → [ i ] ms ≂ ns → [ i ] ms ≂ ns finally-≂ _ _ = id syntax finally-≂ ms ns ms≂ns = ms ≂⟨ ms≂ns ⟩□ ns finally-≂∼ : ∀ {i} ms ns → Colist.[ i ] ms ∼ ns → [ i ] ms ≂ ns finally-≂∼ _ _ = ∼→≂ syntax finally-≂∼ ms ns ms∼ns = ms ∼⟨ ms∼ns ⟩□≂ ns _□≂ : ∀ {i} ns → [ i ] ns ≂ ns ns □≂ = (ns □≲) , (ns □≲) -- If the least upper bound of ms is m and the least upper bound of ns -- is n, then [ ∞ ] ms ≂ ns holds if and only if m and n are -- bisimilar. ≂⇔least-upper-bounds-∼ : ∀ {m n ms ns} → LUB ms m → LUB ns n → [ ∞ ] ms ≂ ns ⇔ Conat.[ ∞ ] m ∼ n ≂⇔least-upper-bounds-∼ {⨆ms} {⨆ns} {ms} {ns} ⨆ms-lub ⨆ns-lub = [ ∞ ] ms ≂ ns ↝⟨ ≲⇔least-upper-bounds-≤ ⨆ms-lub ⨆ns-lub ×-cong ≲⇔least-upper-bounds-≤ ⨆ns-lub ⨆ms-lub ⟩ [ ∞ ] ⨆ms ≤ ⨆ns × [ ∞ ] ⨆ns ≤ ⨆ms ↝⟨ record { to = uncurry antisymmetric-≤ ; from = λ hyp → ∼→≤ hyp , ∼→≤ (Conat.symmetric-∼ hyp) } ⟩□ Conat.[ ∞ ] ⨆ms ∼ ⨆ns □ -- The predicate flip LUB n respects [ ∞ ]_≂_. LUB-≂ : ∀ {ms ns n} → [ ∞ ] ms ≂ ns → LUB ms n → LUB ns n LUB-≂ {ms} {ns} {n} (ms≲ns , ns≲ms) = Σ-map ([ ∞ ] ms ⊑ n ↝⟨ ns≲ms ⟩□ [ ∞ ] ns ⊑ n □) ((∀ n′ → [ ∞ ] ms ⊑ n′ → [ ∞ ] n ≤ n′) ↝⟨ (λ hyp n′ → hyp n′ ∘ ms≲ns) ⟩□ (∀ n′ → [ ∞ ] ns ⊑ n′ → [ ∞ ] n ≤ n′) □) -- If [ ∞ ] ms ≂ ns holds, then ms and ns have the same least upper -- bounds. LUB-cong : ∀ {ms ns n} → [ ∞ ] ms ≂ ns → LUB ms n ⇔ LUB ns n LUB-cong ms≂ns = record { to = LUB-≂ ms≂ns ; from = LUB-≂ (symmetric-≂ ms≂ns) } -- A workaround for what might be an Agda bug. cast-≂ : ∀ {i} {j : Size< i} {ms ns} → [ i ] ms ≂ ns → [ j ] ms ≂ ns cast-≂ p = proj₁ p , proj₂ p ------------------------------------------------------------------------ -- Variants of [_]_≲′_ and [_]_≂′_ that are intended to make certain -- proofs easier to write -- Using consˡ-≲/cons-≲/cons′-≲ in recursive proofs can be awkward. -- [_]_≲″_ is intended to make it a little easier. infix 4 [_]_≲″_ record [_]_≲″_ (i : Size) (ms ns : Colist ℕ ∞) : Type where coinductive field force : {j : Size< i} → [ j ] ms ≲ ns open [_]_≲″_ public -- Interprets [_]_≲″_. ⌊_⌋≲″ : ∀ {i ms ns} → [ i ] ms ≲″ ns → [ i ] ms ≲′ ns ⌊ p ⌋≲″ hyp .force = p .force hyp -- [_]_≲′_ and [_]_≲″_ are pointwise logically equivalent. ≲′⇔≲″ : ∀ {i ms ns} → [ i ] ms ≲′ ns ⇔ [ i ] ms ≲″ ns ≲′⇔≲″ = record { to = λ { p .force hyp → p hyp .force } ; from = λ { p hyp .force → p .force hyp } } -- Using cons-≂/cons′-≂ in recursive proofs can be awkward. [_]_≂″_ is -- intended to make it a little easier. infix 4 [_]_≂″_ record [_]_≂″_ (i : Size) (ms ns : Colist ℕ ∞) : Type where coinductive field force : {j : Size< i} → [ j ] ms ≂ ns open [_]_≂″_ public -- [_]_≂′_ and [_]_≂″_ are pointwise logically equivalent. ≂′⇔≂″ : ∀ {i ms ns} → [ i ] ms ≂′ ns ⇔ [ i ] ms ≂″ ns ≂′⇔≂″ = record { to = λ { p .force → (λ hyp → proj₁ p hyp .force) , (λ hyp → proj₂ p hyp .force) } ; from = λ p → (λ { hyp .force → proj₁ (p .force) hyp }) , (λ { hyp .force → proj₂ (p .force) hyp }) }
{ "alphanum_fraction": 0.444297608, "avg_line_length": 32.1089108911, "ext": "agda", "hexsha": "93e2c7dcc2f0e29f570fbdc03a78a5963d293075", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Upper-bounds.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Upper-bounds.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Upper-bounds.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10578, "size": 22701 }
{-# OPTIONS --without-K #-} open import Base module Algebra.FreeGroupAsReducedWords {i} (A : Set i) (eq : has-dec-eq A) where A-is-set : is-set A A-is-set = dec-eq-is-set eq data word : Set i where ε : word _∷_ : A → word → word _′∷_ : A → word → word is-reduced : word → Set i is-reduced ε = unit is-reduced (x ∷ ε) = unit is-reduced (x ∷ (y ∷ w)) = is-reduced (y ∷ w) is-reduced (x ∷ (y ′∷ w)) = (x ≢ y) × is-reduced (y ′∷ w) is-reduced (x ′∷ ε) = unit is-reduced (x ′∷ (y ∷ w)) = (x ≢ y) × is-reduced (y ∷ w) is-reduced (x ′∷ (y ′∷ w)) = is-reduced (y ′∷ w) is-reduced-is-prop : (w : word) → is-prop (is-reduced w) is-reduced-is-prop ε = unit-is-prop is-reduced-is-prop (x ∷ ε) = unit-is-prop is-reduced-is-prop (x ∷ (y ∷ w)) = is-reduced-is-prop (y ∷ w) is-reduced-is-prop (x ∷ (y ′∷ w)) = ×-is-truncated _ (Π-is-truncated _ (λ _ → λ ())) (is-reduced-is-prop (y ′∷ w)) is-reduced-is-prop (x ′∷ ε) = unit-is-prop is-reduced-is-prop (x ′∷ (y ∷ w)) = ×-is-truncated _ (Π-is-truncated _ (λ _ → λ ())) (is-reduced-is-prop (y ∷ w)) is-reduced-is-prop (x ′∷ (y ′∷ w)) = is-reduced-is-prop (y ′∷ w) reduced-word : Set i reduced-word = Σ word is-reduced word-total-path : {x y : A} (p : x ≡ y) {v w : word} (q : v ≡ w) → (x ∷ v ≡ y ∷ w) word-total-path refl refl = refl word'-total-path : {x y : A} (p : x ≡ y) {v w : word} (q : v ≡ w) → (x ′∷ v ≡ y ′∷ w) word'-total-path refl refl = refl -- The following six functions prove things like if [x ∷ v ≡ y ∷ w], -- then [x ≡ y]. -- This is not as easy as it sounds, you cannot directly induct on the equality -- (because [x ∷ v] is not a general element of type word), so you have to -- extract the head, but it’s not always possible… word-comp-path-type : (v w : word) → Set i word-comp-path-type ε ε = unit word-comp-path-type ε (y ∷ w) = ⊥ word-comp-path-type ε (y ′∷ w) = ⊥ word-comp-path-type (x ∷ v) ε = ⊥ word-comp-path-type (x ∷ v) (y ∷ w) = (x ≡ y) × (v ≡ w) word-comp-path-type (x ∷ v) (y ′∷ w) = ⊥ word-comp-path-type (x ′∷ v) ε = ⊥ word-comp-path-type (x ′∷ v) (y ∷ w) = ⊥ word-comp-path-type (x ′∷ v) (y ′∷ w) = (x ≡ y) × (v ≡ w) word-comp-path : {v w : word} (p : v ≡ w) → word-comp-path-type v w word-comp-path {v = ε} refl = tt word-comp-path {v = x ∷ v} refl = (refl , refl) word-comp-path {v = x ′∷ v} refl = (refl , refl) word-base-path : {x y : A} {v w : word} (p : x ∷ v ≡ y ∷ w) → x ≡ y word-base-path p = π₁ (word-comp-path p) word-fiber-path : {x y : A} {v w : word} (p : x ∷ v ≡ y ∷ w) → v ≡ w word-fiber-path p = π₂ (word-comp-path p) word'-base-path : {x y : A} {v w : word} (p : x ′∷ v ≡ y ′∷ w) → x ≡ y word'-base-path p = π₁ (word-comp-path p) word'-fiber-path : {x y : A} {v w : word} (p : x ′∷ v ≡ y ′∷ w) → v ≡ w word'-fiber-path p = π₂ (word-comp-path p) -- This one goes to Set and is used to prove that the constructors of [word] are -- disjoint word-cst-dis : (v w : word) → Set word-cst-dis ε ε = unit word-cst-dis ε (y ∷ w) = ⊥ word-cst-dis ε (y ′∷ w) = ⊥ word-cst-dis (x ∷ v) ε = ⊥ word-cst-dis (x ∷ v) (y ∷ w) = unit word-cst-dis (x ∷ v) (y ′∷ w) = ⊥ word-cst-dis (x ′∷ v) ε = ⊥ word-cst-dis (x ′∷ v) (y ∷ w) = ⊥ word-cst-dis (x ′∷ v) (y ′∷ w) = unit word-has-dec-eq : has-dec-eq word word-has-dec-eq ε ε = inl refl word-has-dec-eq ε (x ∷ w) = inr (λ p → transport (word-cst-dis ε) p tt) word-has-dec-eq ε (x ′∷ w) = inr (λ p → transport (word-cst-dis ε) p tt) word-has-dec-eq (x ∷ v) ε = inr (λ p → transport (word-cst-dis (x ∷ v)) p tt) word-has-dec-eq (x ∷ v) (y ∷ w) with (eq x y) word-has-dec-eq (x ∷ v) (y ∷ w) | inl x≡y with (word-has-dec-eq v w) word-has-dec-eq (x ∷ v) (y ∷ w) | inl x≡y | inl v≡w = inl (word-total-path x≡y v≡w) word-has-dec-eq (x ∷ v) (y ∷ w) | inl x≡y | inr v≢w = inr (λ p → v≢w (word-fiber-path p)) word-has-dec-eq (x ∷ v) (y ∷ w) | inr x≢y = inr (λ p → x≢y (word-base-path p)) word-has-dec-eq (x ∷ v) (y ′∷ w) = inr (λ p → transport (word-cst-dis (x ∷ v)) p tt) word-has-dec-eq (x ′∷ v) ε = inr (λ p → transport (word-cst-dis (x ′∷ v)) p tt) word-has-dec-eq (x ′∷ v) (y ∷ w) = inr (λ p → transport (word-cst-dis (x ′∷ v)) p tt) word-has-dec-eq (x ′∷ v) (y ′∷ w) with (eq x y) word-has-dec-eq (x ′∷ v) (y ′∷ w) | inl x≡y with (word-has-dec-eq v w) word-has-dec-eq (x ′∷ v) (y ′∷ w) | inl x≡y | inl v≡w = inl (word'-total-path x≡y v≡w) word-has-dec-eq (x ′∷ v) (y ′∷ w) | inl x≡y | inr v≢w = inr (λ p → v≢w (word'-fiber-path p)) word-has-dec-eq (x ′∷ v) (y ′∷ w) | inr x≢y = inr (λ p → x≢y (word'-base-path p)) word-is-set : is-set word word-is-set = dec-eq-is-set word-has-dec-eq abstract reduced-is-set : is-set reduced-word reduced-is-set = subtype-truncated-S-is-truncated-S _ word-is-set is-reduced-is-prop tail-is-reduced : (x : A) (w : word) (r : is-reduced (x ∷ w)) → is-reduced w tail-is-reduced x ε red = tt tail-is-reduced x (y ∷ w) red = red tail-is-reduced x (y ′∷ w) red = π₂ red tail'-is-reduced : (x : A) (w : word) (r : is-reduced (x ′∷ w)) → is-reduced w tail'-is-reduced x ε red = tt tail'-is-reduced x (y ∷ w) red = π₂ red tail'-is-reduced x (y ′∷ w) red = red import Algebra.FreeGroup as F open F A import Algebra.FreeGroupProps as Fp open Fp A reduced-to-freegroup : reduced-word → freegroup reduced-to-freegroup (ε , _) = e reduced-to-freegroup ((x ∷ w) , r) = x · reduced-to-freegroup (w , tail-is-reduced x w r) reduced-to-freegroup ((x ′∷ w) , r) = x ⁻¹· reduced-to-freegroup (w , tail'-is-reduced x w r) mul-reduce : A → reduced-word → reduced-word mul-reduce x (ε , red) = ((x ∷ ε) , tt) mul-reduce x ((y ∷ w) , red) = ((x ∷ (y ∷ w)) , red) mul-reduce x ((y ′∷ w) , red) with (eq x y) mul-reduce x ((y ′∷ w) , red) | inl equal = (w , tail'-is-reduced y w red) mul-reduce x ((y ′∷ w) , red) | inr different = ((x ∷ (y ′∷ w)) , (different , red)) mul'-reduce : A → reduced-word → reduced-word mul'-reduce x (ε , red) = ((x ′∷ ε) , tt) mul'-reduce x ((y ∷ w) , red) with (eq x y) mul'-reduce x ((y ∷ w) , red) | inl equal = (w , tail-is-reduced y w red) mul'-reduce x ((y ∷ w) , red) | inr different = ((x ′∷ (y ∷ w)) , (different , red)) mul'-reduce x ((y ′∷ w) , red) = (x ′∷ (y ′∷ w)) , red abstract mul-mul'-reduce : (x : A) (w : reduced-word) → mul-reduce x (mul'-reduce x w) ≡ w mul-mul'-reduce x (ε , red) with (eq x x) mul-mul'-reduce x (ε , red) | inl obvious = refl mul-mul'-reduce x (ε , red) | inr absurd = abort-nondep (absurd refl) mul-mul'-reduce x ((y ∷ w) , red) with (eq x y) mul-mul'-reduce x ((y ∷ ε) , red) | inl equal = ap _ equal mul-mul'-reduce x ((y ∷ (z ∷ w)) , red) | inl equal = ap _ equal mul-mul'-reduce x ((y ∷ (z ′∷ w)) , red) | inl equal with (eq x z) mul-mul'-reduce x ((y ∷ (z ′∷ w)) , red) | inl equal | inl absurd = abort-nondep (π₁ red (! equal ∘ absurd)) mul-mul'-reduce x ((y ∷ (z ′∷ w)) , red) | inl equal | inr obvious = Σ-eq (ap _ equal) (π₁ (is-reduced-is-prop (y ∷ (z ′∷ w)) _ _)) mul-mul'-reduce x ((y ∷ w) , red) | inr different with (eq x x) mul-mul'-reduce x ((y ∷ w) , red) | inr different | inl obvious = refl mul-mul'-reduce x ((y ∷ w) , red) | inr different | inr absurd = abort-nondep (absurd refl) mul-mul'-reduce x ((y ′∷ w) , red) with (eq x x) mul-mul'-reduce x ((y ′∷ w) , red) | inl obvious = refl mul-mul'-reduce x ((y ′∷ w) , red) | inr absurd = abort-nondep (absurd refl) abstract mul'-mul-reduce : (x : A) (w : reduced-word) → mul'-reduce x (mul-reduce x w) ≡ w mul'-mul-reduce x (ε , red) with (eq x x) mul'-mul-reduce x (ε , red) | inl obvious = refl mul'-mul-reduce x (ε , red) | inr absurd = abort-nondep (absurd refl) mul'-mul-reduce x ((y ′∷ w) , red) with (eq x y) mul'-mul-reduce x ((y ′∷ ε) , red) | inl equal = ap _ equal mul'-mul-reduce x ((y ′∷ (z ′∷ w)) , red) | inl equal = ap _ equal mul'-mul-reduce x ((y ′∷ (z ∷ w)) , red) | inl equal with (eq x z) mul'-mul-reduce x ((y ′∷ (z ∷ w)) , red) | inl equal | inl absurd = abort-nondep (π₁ red (! equal ∘ absurd)) mul'-mul-reduce x ((y ′∷ (z ∷ w)) , red) | inl equal | inr obvious = Σ-eq (ap _ equal) (π₁ (is-reduced-is-prop (y ′∷ (z ∷ w)) _ _)) mul'-mul-reduce x ((y ′∷ w) , red) | inr different with (eq x x) mul'-mul-reduce x ((y ′∷ w) , red) | inr different | inl obvious = refl mul'-mul-reduce x ((y ′∷ w) , red) | inr different | inr absurd = abort-nondep (absurd refl) mul'-mul-reduce x ((y ∷ w) , red) with (eq x x) mul'-mul-reduce x ((y ∷ w) , red) | inl obvious = refl mul'-mul-reduce x ((y ∷ w) , red) | inr absurd = abort-nondep (absurd refl) freegroup-to-reduced : freegroup → reduced-word freegroup-to-reduced = freegroup-rec-nondep reduced-word (ε , tt) mul-reduce mul'-reduce mul-mul'-reduce mul'-mul-reduce reduced-is-set abstract mul-reduce-reduced : (x : A) (w : word) (red : is-reduced (x ∷ w)) → mul-reduce x (w , tail-is-reduced x w red) ≡ ((x ∷ w) , red) mul-reduce-reduced x ε red = refl mul-reduce-reduced x (y ∷ w) red = refl mul-reduce-reduced x (y ′∷ w) red with (eq x y) mul-reduce-reduced x (y ′∷ w) red | inl absurd = abort-nondep (π₁ red absurd) mul-reduce-reduced x (y ′∷ w) red | inr obvious = Σ-eq refl (π₁ (is-reduced-is-prop (x ∷ (y ′∷ w)) _ _)) abstract mul'-reduce-reduced : (x : A) (w : word) (red : is-reduced (x ′∷ w)) → mul'-reduce x (w , tail'-is-reduced x w red) ≡ ((x ′∷ w) , red) mul'-reduce-reduced x ε red = refl mul'-reduce-reduced x (y ∷ w) red with (eq x y) mul'-reduce-reduced x (y ∷ w) red | inl absurd = abort-nondep (π₁ red absurd) mul'-reduce-reduced x (y ∷ w) red | inr obvious = Σ-eq refl (π₁ (is-reduced-is-prop (x ′∷ (y ∷ w)) _ _)) mul'-reduce-reduced x (y ′∷ w) red = refl inv₁ : (w : reduced-word) → freegroup-to-reduced (reduced-to-freegroup w) ≡ w inv₁ (ε , red) = refl inv₁ ((x ∷ w) , red) = ap (mul-reduce x) (inv₁ (w , tail-is-reduced x w red)) ∘ mul-reduce-reduced x w red inv₁ ((x ′∷ w) , red) = ap (mul'-reduce x) (inv₁ (w , tail'-is-reduced x w red)) ∘ mul'-reduce-reduced x w red reduced-to-freegroup-mul-reduce : (x : A) (v : reduced-word) → reduced-to-freegroup (mul-reduce x v) ≡ x · (reduced-to-freegroup v) reduced-to-freegroup-mul-reduce x (ε , red) = refl reduced-to-freegroup-mul-reduce x ((y ∷ v) , red) = refl reduced-to-freegroup-mul-reduce x ((y ′∷ v) , red) with (eq x y) reduced-to-freegroup-mul-reduce x ((.x ′∷ v) , red) | inl refl = ! (right-inverse-· x (reduced-to-freegroup (v , tail'-is-reduced x v red))) reduced-to-freegroup-mul-reduce x ((y ′∷ v) , red) | inr different = refl reduced-to-freegroup-mul'-reduce : (x : A) (v : reduced-word) → reduced-to-freegroup (mul'-reduce x v) ≡ x ⁻¹· (reduced-to-freegroup v) reduced-to-freegroup-mul'-reduce x (ε , red) = refl reduced-to-freegroup-mul'-reduce x ((y ∷ v) , red) with (eq x y) reduced-to-freegroup-mul'-reduce x ((.x ∷ v) , red) | inl refl = ! (left-inverse-· x (reduced-to-freegroup (v , tail-is-reduced x v red))) reduced-to-freegroup-mul'-reduce x ((y ∷ v) , red) | inr different = refl reduced-to-freegroup-mul'-reduce x ((y ′∷ v) , red) = refl inv₂ : (a : freegroup) → reduced-to-freegroup (freegroup-to-reduced a) ≡ a inv₂ = freegroup-rec _ refl (λ x u p → reduced-to-freegroup-mul-reduce x (freegroup-to-reduced u) ∘ ap (λ t → x · t) {y = u} p) (λ x u p → reduced-to-freegroup-mul'-reduce x (freegroup-to-reduced u) ∘ ap (λ t → x ⁻¹· t) {y = u} p) (λ x u t → π₁ (freegroup-is-set _ _ _ _)) (λ x u t → π₁ (freegroup-is-set _ _ _ _)) (λ u → truncated-is-truncated-S _ (freegroup-is-set _ _)) freegroup-equiv-reduced : freegroup ≃ reduced-word freegroup-equiv-reduced = (freegroup-to-reduced , iso-is-eq _ reduced-to-freegroup inv₁ inv₂)
{ "alphanum_fraction": 0.5769131888, "avg_line_length": 41.675, "ext": "agda", "hexsha": "0e6a9aa1ef2e36f2dfd66ad80034cbf7ef4f7dff", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Algebra/FreeGroupAsReducedWords.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Algebra/FreeGroupAsReducedWords.agda", "max_line_length": 80, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Algebra/FreeGroupAsReducedWords.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 4865, "size": 11669 }
{- Types Summer School 2007 Bertinoro Aug 19 - 31, 2007 Agda Ulf Norell -} module Filter where open import Nat data Bool : Set where false : Bool true : Bool infixr 40 _::_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A filter : {A : Set} -> (A -> Bool) -> List A -> List A filter p [] = [] filter p (x :: xs) with p x filter p (x :: xs) | true = x :: filter p xs filter p (x :: xs) | false = filter p xs infix 20 _⊆_ data _⊆_ {A : Set} : List A -> List A -> Set where stop : [] ⊆ [] drop : forall {xs y ys} -> xs ⊆ ys -> xs ⊆ y :: ys keep : forall {x xs ys} -> xs ⊆ ys -> x :: xs ⊆ x :: ys subset : {A : Set}(p : A -> Bool)(xs : List A) -> filter p xs ⊆ xs subset p [] = stop subset p (x :: xs) with p x ... | true = keep (subset p xs) ... | false = drop (subset p xs) {- subset p (x :: xs) with p x subset p (x :: xs) | true = keep (subset p xs) subset p (x :: xs) | false = drop (subset p xs) -}
{ "alphanum_fraction": 0.4961685824, "avg_line_length": 19.6981132075, "ext": "agda", "hexsha": "d5a4ab741e949572bd2caebb13922bf097195665", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/SummerSchool07/Lecture/Filter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/SummerSchool07/Lecture/Filter.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/SummerSchool07/Lecture/Filter.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 367, "size": 1044 }
module local where data Nat : Set where zero : Nat suc : Nat -> Nat infixr 15 _::_ data List (A : Set) : Set where nil : List A _::_ : A -> List A -> List A reverse : {A : Set} -> List A -> List A reverse {A} xs = rev xs nil where rev : List A -> List A -> List A rev nil ys = ys rev (x :: xs) ys = rev xs (x :: ys) postulate xs : List Nat
{ "alphanum_fraction": 0.5382585752, "avg_line_length": 15.7916666667, "ext": "agda", "hexsha": "82d4598f7a2edb3371a0f7acd08d85a29e1e80d8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/local.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/local.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/local.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 135, "size": 379 }
{- This file contains: - Rijke finiteness is closed under forming Σ-type. -} {-# OPTIONS --safe #-} module Cubical.Data.FinType.Sigma where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.HITs.SetTruncation as Set open import Cubical.HITs.SetTruncation.Fibers open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Data.FinSet open import Cubical.Data.FinSet.DecidablePredicate open import Cubical.Data.FinSet.Constructors open import Cubical.Data.FinSet.Quotients open import Cubical.Data.FinType open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidablePropositions hiding (DecProp) renaming (DecProp' to DecProp) private variable ℓ ℓ' : Level module _ (X : Type ℓ ) (Y : Type ℓ') (h : isFinType 1 Y) (f : X → Y) (q : (y : Y) → isFinType 0 (fiber f y)) where private ∥f∥₂ : ∥ X ∥₂ → ∥ Y ∥₂ ∥f∥₂ = Set.map f module _ (y : Y) where isDecPropFiberRel : (x x' : ∥ fiber f y ∥₂) → isDecProp (fiberRel f y x x') isDecPropFiberRel x x' = isDecPropRespectEquiv (fiberRel1≃2 f y x x') (isDecProp∃ (_ , h .snd y y) (λ _ → _ , isDecProp≡ (_ , q y) _ _)) isFinSetFiber∥∥₂' : isFinSet (fiber ∥f∥₂ ∣ y ∣₂) isFinSetFiber∥∥₂' = EquivPresIsFinSet (∥fiber∥₂/R≃fiber∥∥₂ f y) (isFinSetQuot (_ , q y) (fiberRel f y) (isEquivRelFiberRel f y) isDecPropFiberRel) isFinSetFiber∥∥₂ : (y : ∥ Y ∥₂) → isFinSet (fiber ∥f∥₂ y) isFinSetFiber∥∥₂ = Set.elim (λ _ → isProp→isSet isPropIsFinSet) isFinSetFiber∥∥₂' isFinType0Total : isFinType 0 X isFinType0Total = isFinSetTotal ∥ X ∥₂ (∥ Y ∥₂ , h .fst) ∥f∥₂ isFinSetFiber∥∥₂ module _ (X : FinType ℓ 1) (Y : X .fst → FinType ℓ' 0) where isFinType0Σ : isFinType 0 (Σ (X .fst) (λ x → Y x .fst)) isFinType0Σ = isFinType0Total (Σ (X .fst) (λ x → Y x .fst)) (X .fst) (X .snd) fst (λ x → EquivPresIsFinType 0 (fiberProjEquiv _ _ x) (Y x .snd)) -- the main result isFinTypeΣ : {n : ℕ} (X : FinType ℓ (1 + n)) (Y : X .fst → FinType ℓ' n) → isFinType n (Σ (X .fst) (λ x → Y x .fst)) isFinTypeΣ {n = 0} = isFinType0Σ isFinTypeΣ {n = suc n} X Y .fst = isFinType0Σ (_ , isFinTypeSuc→isFinType1 {n = suc n} (X .snd)) (λ x → _ , isFinType→isFinType0 {n = suc n} (Y x .snd)) isFinTypeΣ {n = suc n} X Y .snd a b = EquivPresIsFinType n (ΣPathTransport≃PathΣ a b) (isFinTypeΣ {n = n} (_ , X .snd .snd _ _) (λ _ → _ , Y _ .snd .snd _ _))
{ "alphanum_fraction": 0.6500809061, "avg_line_length": 29.4285714286, "ext": "agda", "hexsha": "eb3f949c70600faf769c793b1cf0ac43d1e64d13", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/FinType/Sigma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/FinType/Sigma.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/FinType/Sigma.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1018, "size": 2472 }
------------------------------------------------------------------------------ -- Comparing styles for equational reasoning ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.Common.FOL.Relation.Binary.PreorderReasoning.Comparison where infix 7 _≡_ infixl 9 _+_ data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x trans : {A : Set}{x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl postulate ℕ : Set zero : ℕ _+_ : ℕ → ℕ → ℕ +-comm : (m n : ℕ) → m + n ≡ n + m +-rightIdentity : (n : ℕ) → n + zero ≡ n module Thesis where -- From Ulf's thesis (p. 112). infix 7 _≃_ infix 6 chain>_ infixl 5 _===_by_ infix 4 _qed data _≃_ (x y : ℕ) : Set where prf : x ≡ y → x ≃ y chain>_ : (x : ℕ) → x ≃ x chain> x = prf refl _===_by_ : {x y : ℕ} → x ≃ y → (z : ℕ) → y ≡ z → x ≃ z prf p === z by q = prf (trans {_} {_} {_} p q) _qed : {x y : ℕ} → x ≃ y → x ≡ y prf p qed = p -- Example. +-leftIdentity : (n : ℕ) → zero + n ≡ n +-leftIdentity n = chain> zero + n === n + zero by +-comm zero n === n by +-rightIdentity n qed module SL where -- Adapted from the Agda standard library 0.8.1 (see -- Relation/Binary/PreorderReasoning.agda). infix 7 _≃_ infix 4 begin_ infixr 5 _≡⟨_⟩_ infix 6 _∎ data _≃_ (x y : ℕ) : Set where prf : x ≡ y → x ≃ y begin_ : {x y : ℕ} → x ≃ y → x ≡ y begin prf x≡y = x≡y _≡⟨_⟩_ : (x : ℕ){y z : ℕ} → x ≡ y → y ≃ z → x ≃ z _ ≡⟨ x≡y ⟩ prf y≡z = prf (trans x≡y y≡z) _∎ : (x : ℕ) → x ≃ x _∎ _ = prf refl -- Example. +-leftIdentity : (n : ℕ) → zero + n ≡ n +-leftIdentity n = begin zero + n ≡⟨ +-comm zero n ⟩ n + zero ≡⟨ +-rightIdentity n ⟩ n ∎ module NonWrapper where -- A set of combinators without request a wrapper data type (Mu, -- S.-C., Ko, H.-S. and Jansson, P. (2009)). infixr 5 _≡⟨_⟩_ infix 6 _∎ _≡⟨_⟩_ : (x : ℕ){y z : ℕ} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z _∎ : (x : ℕ) → x ≡ x _∎ _ = refl -- Example. +-leftIdentity : (n : ℕ) → zero + n ≡ n +-leftIdentity n = zero + n ≡⟨ +-comm zero n ⟩ n + zero ≡⟨ +-rightIdentity n ⟩ n ∎ ------------------------------------------------------------------------------ -- References -- -- Mu, S.-C., Ko, H.-S. and Jansson, P. (2009). Algebra of programming -- in Agda: Dependent types for relational program derivation. Journal -- of Functional Programming 19.5, pp. 545–579.
{ "alphanum_fraction": 0.4527959332, "avg_line_length": 24.8108108108, "ext": "agda", "hexsha": "fe949cdc997178e2299d47b9405593b00f354b06", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/Common/FOL/Relation/Binary/PreorderReasoning/Comparison.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/Common/FOL/Relation/Binary/PreorderReasoning/Comparison.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/Common/FOL/Relation/Binary/PreorderReasoning/Comparison.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1040, "size": 2754 }
module _ where data N : Set where zero : N suc : N → N record P : Set where constructor p field fst : N snd : N open P -- f = λ z → z internally f : P → P f z = p (fst z) (snd z) -- This should also be λ z → z, but was not due to #2157. g : P → P g (p x y) = p x y
{ "alphanum_fraction": 0.5344827586, "avg_line_length": 13.1818181818, "ext": "agda", "hexsha": "b5111526055bfe24310a2e603a42bcfeba5dd6d1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2571.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2571.agda", "max_line_length": 57, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2571.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 112, "size": 290 }
{-# OPTIONS --safe --without-K #-} module JVM.Types where open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Product open import Data.List open import Data.String open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable open import Relation.Nullary -- Primitive types data Ty : Set where boolean : Ty byte short int long char : Ty ref : String → Ty array : Ty → Ty Integer = ref "java/lang/Integer" Boolean = ref "java/lang/Boolean" data Ret : Set where ty : Ty → Ret void : Ret -- clearly void is not a type... right? (Spec accurate) IsIntegral : Ty → Set IsIntegral boolean = ⊤ -- int instructions compatible with boolean IsIntegral byte = ⊤ IsIntegral short = ⊤ IsIntegral int = ⊤ IsIntegral long = ⊤ IsIntegral char = ⊤ IsIntegral _ = ⊥ StackTy = List Ty LocalsTy = List Ty Labels = List StackTy _:?:_ : Ret → StackTy → StackTy ty a :?: ψ = a ∷ ψ void :?: ψ = ψ record Fun : Set where constructor _/_:⟨_⟩_ field cls : String name : String sf_args : List Ty sf_ret : Ret record Fld : Set where constructor _/_∶_ field fld_cls : String fld_name : String fld_ty : Ty data Constant : Set where class : String → Constant fieldref : Fld → Constant staticref : Fld → Constant -- in the actual constant pool static fields are fields virtual : Fun → Constant staticfun : Fun → Constant Constantpool = List Constant FrameTy = LocalsTy variable 𝑪 : Constantpool 𝑹₁ 𝑹₂ 𝑹₃ 𝑹₄ 𝑹 : LocalsTy 𝑭₁ 𝑭₂ 𝑭₃ 𝑭₄ 𝑭 : FrameTy 𝑎 𝑏 : Fld 𝑐 𝑛 𝑚 : String 𝑓 𝑔 : Fun a b c r s t : Ty as bs cs : List Ty ψ₁ ψ₂ ψ₃ ψ : StackTy -- stack typings
{ "alphanum_fraction": 0.6162420382, "avg_line_length": 23.2592592593, "ext": "agda", "hexsha": "a78b6a6c3dd39529300103082172ce560cde1b09", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Types.agda", "max_line_length": 84, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Types.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 593, "size": 1884 }
{- The Existence of Smith Normal Form for Integer Matrices (KANG Rongji, Jan. 2022) -} {-# OPTIONS --safe #-} module Cubical.Algebra.IntegerMatrix.Smith.Normalization where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Nat hiding (_·_) renaming (_+_ to _+ℕ_ ; +-assoc to +Assocℕ) open import Cubical.Data.Nat.Order open import Cubical.Data.Nat.Divisibility using (m∣n→m≤n) renaming (∣-trans to ∣ℕ-trans) open import Cubical.Data.Int hiding (_+_ ; _·_ ; _-_ ; -_ ; addEq) open import Cubical.Data.Int.Divisibility open import Cubical.Data.FinData open import Cubical.Data.Empty as Empty open import Cubical.Data.Sum open import Cubical.Algebra.Matrix open import Cubical.Algebra.Matrix.CommRingCoefficient open import Cubical.Algebra.Matrix.Elementaries open import Cubical.Algebra.IntegerMatrix.Base open import Cubical.Algebra.IntegerMatrix.Elementaries open import Cubical.Algebra.IntegerMatrix.Smith.NormalForm open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤ to ℤRing) open import Cubical.Relation.Nullary open import Cubical.Induction.WellFounded private variable m n k : ℕ open CommRingStr (ℤRing .snd) open Coefficient ℤRing open Sim -- The elementary transformations needed open ElemTransformation ℤRing open ElemTransformationℤ open SwapFirstRow open SwapPivot open AddFirstRow open RowsImproved open ColsImproved -- Operations used in the reduction step record RowsImprovedTrick (M : Mat (suc m) (suc n)) : Type where field sim : Sim M div : (i : Fin (suc m)) → sim .result zero zero ∣ M i zero const : (i : Fin m) → sim .result (suc i) zero ≡ sim .result zero zero nonZero : ¬ sim .result zero zero ≡ 0 open RowsImprovedTrick improveRowsTrick : (M : Mat (suc m) (suc n))(p : ¬ M zero zero ≡ 0) → RowsImprovedTrick M improveRowsTrick M p = let improveM = improveRows M p trickM = addFirstRow (improveM .sim .result) inv₀₀ = (λ t → trickM .inv₀ t zero) in record { sim = compSim (improveM .sim) (trickM .sim) ; div = (λ i → subst (λ a → a ∣ M i zero) inv₀₀ (improveM .div i)) ; const = (λ i → sym (trickM .addEq i zero) ∙ (λ t → improveM .sim .result zero zero + improveM .vanish i t) ∙ +Rid _ ∙ inv₀₀) ; nonZero = (λ r → improveM .nonZero (inv₀₀ ∙ r)) } -- Reduce the pivot record PivotReduced (M : Mat (suc m) (suc n)) : Type where field sim : Sim M nonZero : ¬ sim .result zero zero ≡ 0 div : (i : Fin (suc m))(j : Fin (suc n)) → sim .result zero zero ∣ sim .result i j open PivotReduced simPivotReduced : {M : Mat (suc m) (suc n)} (SimM : Sim M)(prSimM : PivotReduced (SimM .result)) → PivotReduced M simPivotReduced simM prSimM .sim = compSim simM (prSimM .sim) simPivotReduced _ prSimM .nonZero = prSimM .nonZero simPivotReduced _ prSimM .div = prSimM .div -- Helpers to do structural recursion record RowsImprovedTrickHelper (M : Mat (suc m) (suc n)) : Type where field sim : Sim M const : (i : Fin m) → sim .result (suc i) zero ≡ sim .result zero zero nonZero : ¬ sim .result zero zero ≡ 0 open RowsImprovedTrickHelper record InductionHelper (M : Mat (suc m) (suc n)) : Type where field improved : RowsImprovedTrickHelper M normIneq : abs (improved .sim .result zero zero) < abs (M zero zero) open InductionHelper private reducePivot-induction-helper : (M : Mat (suc m) (suc n)) → (p : ¬ M zero zero ≡ 0) → (j : Fin n)(q : ¬ M zero zero ∣ M zero (suc j)) → InductionHelper M reducePivot-induction-helper M p j q = let improveColsM = improveCols M p improveM = improveRowsTrick (improveColsM .sim .result) (improveColsM .nonZero) in record { improved = record { sim = compSim (improveColsM .sim) (improveM .sim) ; const = improveM .const ; nonZero = improveM .nonZero } ; normIneq = ≤<-trans (m∣n→m≤n (¬x≡0→¬abs≡0 (improveColsM .nonZero)) (∣→∣ℕ (improveM .div zero))) (stDivIneq p q (improveColsM .div zero) (improveColsM .div (suc j))) } reducePivot-helper : (M : Mat (suc m) (suc n)) → (p : ¬ M zero zero ≡ 0)(h : Norm (M zero zero)) → (cst : (i : Fin m) → M (suc i) zero ≡ M zero zero) → (pivot? : PivotOrNot (M zero zero) M) → PivotReduced M reducePivot-helper M _ _ _ (noPivot q) .sim = idSim M reducePivot-helper _ p _ _ (noPivot q) .nonZero = p reducePivot-helper _ _ _ _ (noPivot q) .div = q reducePivot-helper _ _ _ _ (pivot zero zero q) = Empty.rec (q (∣-refl refl)) reducePivot-helper M _ _ cst (pivot (suc i) zero q) = Empty.rec (q (subst (λ a → (M zero zero) ∣ a) (sym (cst i)) (∣-refl refl))) reducePivot-helper M p (acc ind) _ (pivot zero (suc j) q) = let helperM = reducePivot-induction-helper M p j q reduceM = reducePivot-helper (helperM .improved .sim .result) (helperM .improved .nonZero) (ind _ (helperM .normIneq)) (helperM .improved .const) (findPivot _ _) in simPivotReduced (helperM .improved .sim) reduceM reducePivot-helper M p (acc ind) cst (pivot (suc i) (suc j) q) = let swapM = swapFirstRow i M swapNonZero = (λ r → p (sym (cst i) ∙ (swapM .swapEq zero) ∙ r)) swapDiv = (transport ((λ t → ¬ cst i (~ t) ∣ M (suc i) (suc j)) ∙ (λ t → ¬ swapM .swapEq zero t ∣ swapM .swapEq (suc j) t)) q) helperM = reducePivot-induction-helper _ swapNonZero j swapDiv swapNorm = subst (λ a → abs (helperM . improved .sim .result zero zero) < abs a) (sym (sym (cst i) ∙ (swapM .swapEq zero))) (helperM .normIneq) reduceM = reducePivot-helper (helperM .improved .sim .result) (helperM .improved .nonZero) (ind _ swapNorm) (helperM .improved .const) (findPivot _ _) in simPivotReduced (compSim (swapM .sim) (helperM .improved .sim)) reduceM -- The reduction of pivot reducePivot : (M : Mat (suc m) (suc n))(p : ¬ M zero zero ≡ 0) → PivotReduced M reducePivot M p = let improveM = improveRowsTrick M p reduceM = reducePivot-helper (improveM .sim .result) (improveM .nonZero) (<-wellfounded _) (improveM .const) (findPivot _ _) in simPivotReduced (improveM .sim) reduceM -- One induction step towards normal form open isSmithNormal open Smith record SmithStep (M : Mat (suc m) (suc n)) : Type where field sim : Sim M firstColClean : (i : Fin m) → sim .result (suc i) zero ≡ 0 firstRowClean : (j : Fin n) → sim .result zero (suc j) ≡ 0 nonZero : ¬ sim .result zero zero ≡ 0 div : (i : Fin m)(j : Fin n) → sim .result zero zero ∣ sim .result (suc i) (suc j) open SmithStep private smithStep-helper : (M : Mat (suc m) (suc n)) → NonZeroOrNot M → SmithStep M ⊎ (M ≡ 𝟘) smithStep-helper _ (allZero p) = inr p smithStep-helper M (hereIs i j p) = let swapM = swapPivot i j M swapNonZero = (λ r → p (swapM .swapEq ∙ r)) reduceM = reducePivot (swapM .sim .result) swapNonZero improveColM = improveCols (reduceM .sim .result) (reduceM .nonZero) divCol = (λ i j → bézoutRows-commonDivInv _ (reduceM .nonZero) (λ i j → reduceM .div j i) j i) improveRowM = improveRows (improveColM .sim .result) (improveColM .nonZero) invCol = bézoutRows-inv _ (improveColM .nonZero) (λ i → divCol (suc i) zero) in inl record { sim = compSim (swapM .sim) (compSim (reduceM .sim) (compSim (improveColM .sim) (improveRowM .sim))) ; firstColClean = improveRowM .vanish ; firstRowClean = (λ j → (λ t → invCol (~ t) (suc j)) ∙ improveColM .vanish j) ; nonZero = improveRowM .nonZero ; div = (λ i j → bézoutRows-commonDivInv _ (improveColM .nonZero) divCol (suc i) (suc j)) } smithStep : (M : Mat (suc m) (suc n)) → SmithStep M ⊎ (M ≡ 𝟘) smithStep M = smithStep-helper M (findNonZero _) -- The main procedure private smithReduction-helper : (M : Mat (suc m) (suc n))(step : SmithStep M) → step .sim .result ≡ step .sim .result zero zero ⊕ sucMat (step .sim .result) smithReduction-helper M step t zero zero = step .sim .result zero zero smithReduction-helper M step t zero (suc j) = step .firstRowClean j t smithReduction-helper M step t (suc i) zero = step .firstColClean i t smithReduction-helper M step t (suc i) (suc j) = step .sim .result (suc i) (suc j) consIsSmithNormal : (a : ℤ)(M : Mat m n) → (p : ¬ a ≡ 0) → (div : (i : Fin m)(j : Fin n) → a ∣ M i j) → isSmithNormal M → isSmithNormal (a ⊕ M) consIsSmithNormal a _ p d isNorm .divs = cons a (isNorm .divs) (smith∣ a isNorm p d) consIsSmithNormal _ _ _ _ isNorm .rowNull = isNorm .rowNull consIsSmithNormal _ _ _ _ isNorm .colNull = isNorm .colNull consIsSmithNormal _ _ _ _ isNorm .rowEq = (λ t → suc (isNorm .rowEq t)) consIsSmithNormal _ _ _ _ isNorm .colEq = (λ t → suc (isNorm .colEq t)) consIsSmithNormal a _ _ _ isNorm .matEq = (λ t → a ⊕ isNorm .matEq t) smithReduction : (a : ℤ)(M : Mat m n) → (p : ¬ a ≡ 0) → (div : (i : Fin m)(j : Fin n) → a ∣ M i j) → Smith M → Smith (a ⊕ M) smithReduction a _ _ _ smithnorm .sim = ⊕Sim a (smithnorm .sim) smithReduction a _ p d smithnorm .isnormal = consIsSmithNormal a _ p (sim∣ _ _ (smithnorm .sim) d) (smithnorm .isnormal) -- The Existence of Smith Normal Form smith : (M : Mat m n) → Smith M smith {m = 0} = smithEmpty smith {m = suc m} {n = 0} = smithEmptyᵗ smith {m = suc m} {n = suc n} M = helper (smithStep _) where helper : SmithStep M ⊎ (M ≡ 𝟘) → Smith M helper (inr p) = subst Smith (sym p) smith𝟘 helper (inl stepM) = let sucM = sucMat (stepM .sim .result) smithM = smithReduction _ _ (stepM .nonZero) (stepM .div) (smith sucM) in simSmith (compSim (stepM .sim) (≡Sim (smithReduction-helper _ stepM))) smithM -- TODO: The uniqueness of Smith normal form up to unit multiplication.
{ "alphanum_fraction": 0.6367588933, "avg_line_length": 35.8865248227, "ext": "agda", "hexsha": "a3a2a33d1b0bba75e41095a7d73d2abb4beb5e2f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/IntegerMatrix/Smith/Normalization.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/IntegerMatrix/Smith/Normalization.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/IntegerMatrix/Smith/Normalization.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3444, "size": 10120 }
{-# OPTIONS --cubical #-} module SolutionsSession1 where open import Part1 hiding (B) variable B : A → Type ℓ -- Solutions to ExerciseSession1 -- Exercise 1: funExtDep : {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g funExtDep p i x = p x i -- Exercise 2: congP : {x y : A} {B : A → Type ℓ'} (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) congP f p i = f (p i) -- Exercise 3: isContrInhProp : isProp A → A → isContr A isContrInhProp p x = x , p x -- We could have stated isProp as follows: isProp' : Type ℓ → Type ℓ isProp' A = (x y : A) → isContr (x ≡ y) -- Exercise 4: isProp'→isProp : isProp' A → isProp A isProp'→isProp h = λ x y → h x y .fst -- Exercise 5: isPropΠ : (h : (x : A) → isProp (B x)) → isProp ((x : A) → B x) isPropΠ h p q i x = h x (p x) (q x) i -- Exercise 6: funExt⁻ : {f g : (x : A) → B x} → f ≡ g → ((x : A) → f x ≡ g x) funExt⁻ eq x i = eq i x -- Exercise 7: isSetΠ : (h : (x : A) → isSet (B x)) → isSet ((x : A) → B x) isSetΠ h f g p q i j x = h x (f x) (g x) (funExt⁻ p x) (funExt⁻ q x) i j -- We could have defined the type of singletons as follows singl' : {A : Type ℓ} (a : A) → Type ℓ singl' {A = A} a = Σ[ x ∈ A ] x ≡ a -- Exercise 8: isContrSingl' : (x : A) → isContr (singl' x) isContrSingl' x = ctr , prf where ctr : singl' x ctr = x , refl prf : (s : singl' x) → ctr ≡ s prf (y , pax) i = (pax (~ i)) , λ j → pax (~ i ∨ j)
{ "alphanum_fraction": 0.5175983437, "avg_line_length": 23.3709677419, "ext": "agda", "hexsha": "964c6e4e0b22728db2f86ea5d9621872df96fb8b", "lang": "Agda", "max_forks_count": 14, "max_forks_repo_forks_event_max_datetime": "2022-03-22T19:37:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-03-19T12:36:53.000Z", "max_forks_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "williamdemeo/EPIT-2020", "max_forks_repo_path": "04-cubical-type-theory/material/SolutionsSession1.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c", "max_issues_repo_issues_event_max_datetime": "2021-04-13T09:03:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-03-31T18:27:23.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "williamdemeo/EPIT-2020", "max_issues_repo_path": "04-cubical-type-theory/material/SolutionsSession1.agda", "max_line_length": 72, "max_stars_count": 97, "max_stars_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "williamdemeo/EPIT-2020", "max_stars_repo_path": "04-cubical-type-theory/material/SolutionsSession1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-15T13:58:25.000Z", "max_stars_repo_stars_event_min_datetime": "2021-03-19T14:13:37.000Z", "num_tokens": 638, "size": 1449 }
{-# OPTIONS --cubical --no-import-sorts --postfix-projections --safe #-} module Cubical.Categories.TypesOfCategories.TypeCategory where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma import Cubical.Functions.Fibration as Fibration open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.Presheaf open import Cubical.Categories.Limits.Pullback open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Instances.Sets open Fibration.ForSets record isTypeCategory {ℓ ℓ' ℓ''} (C : Precategory ℓ ℓ') : Type (ℓ-max ℓ (ℓ-max ℓ' (ℓ-suc ℓ''))) where open Precategory C open Cospan open PullbackLegs open isPullback field -- a Type of types over a context Ty[_] : ob → Type ℓ'' -- extend a context with a type cext : ∀ (Γ : _) → (A : Ty[ Γ ]) → Σ[ ΓA ∈ ob ] (C [ ΓA , Γ ]) -- the new object from a context extension _⍮_ : (Γ : _) → (A : Ty[ Γ ]) → ob Γ ⍮ A = fst (cext Γ A) -- the projection from the extended context to the original π : (Γ : _) → (A : Ty[ Γ ]) → C [ Γ ⍮ A , Γ ] π Γ A = snd (cext Γ A) field -- pullback over context extentions reindex : ∀ {Γ' Γ} → C [ Γ' , Γ ] → (Ty[ Γ ] → Ty[ Γ' ]) q⟨_,_⟩ : ∀ {Γ' Γ} → (f : C [ Γ' , Γ ]) → (A : Ty[ Γ ]) → C [ Γ' ⍮ (reindex f A) , Γ ⍮ A ] isPB : ∀ {Γ' Γ : ob} (f : C [ Γ' , Γ ]) (A : Ty[ Γ ]) → isPullback {C = C} (cospan Γ' Γ (Γ ⍮ A) f (π Γ A)) (pblegs (π Γ' (reindex f A)) q⟨ f , A ⟩) -- presheaves are type contexts module _ {ℓ ℓ' ℓ'' : Level} (C : Precategory ℓ ℓ') where open isTypeCategory open Precategory open Functor open NatTrans open isPullback private -- types over Γ are types with a "projection" (aka surjection) to Γ PSTy[_] : PreShv C ℓ'' .ob → Type _ PSTy[ Γ ] = Σ[ ΓA ∈ PreShv C ℓ'' .ob ] Σ[ π ∈ ΓA ⇒ Γ ] (∀ (c : C .ob) → isSurjSET {A = ΓA ⟅ c ⟆} {Γ ⟅ c ⟆} (π ⟦ c ⟧)) -- just directly use types from above as context extensions PSCext : (Γ : _) → PSTy[ Γ ] → Σ[ ΓA ∈ PreShv C ℓ'' .ob ] ΓA ⇒ Γ PSCext Γ (ΓA , π , _) = ΓA , π -- the pullback or reindexed set is the disjoint union of the fibers -- from the projection module _ {Δ Γ : PreShv C ℓ'' .ob} (γ : Δ ⇒ Γ) (A'@(ΓA , π , isSurjπ) : PSTy[ Γ ]) where ΔA : PreShv C ℓ'' .ob ΔA .F-ob c = ΔATy , isSetΔA where ΔATy = (Σ[ x ∈ fst (Δ ⟅ c ⟆) ] fiber (π ⟦ c ⟧) ((γ ⟦ c ⟧) x)) isSetΔA : isSet ΔATy isSetΔA = isOfHLevelΣ 2 (snd (Δ ⟅ c ⟆)) λ Γc → isOfHLevelΣ 2 (snd (ΓA ⟅ c ⟆)) λ ΓAc → isProp→isSet (snd (Γ ⟅ c ⟆) _ _) -- for morphisms, we apply Δ ⟪ f ⟫ to the first component -- and ΓA ⟪ f ⟫ to the second -- the fiber rule ΔA .F-hom {c} {d} f (δax , γax , eq) = ((Δ ⟪ f ⟫) δax) , (((ΓA ⟪ f ⟫) γax) , ((π ⟦ d ⟧) ((ΓA ⟪ f ⟫) γax) ≡[ i ]⟨ π .N-hom f i γax ⟩ (Γ ⟪ f ⟫) ((π ⟦ c ⟧) γax) ≡[ i ]⟨ (Γ ⟪ f ⟫) (eq i) ⟩ (Γ ⟪ f ⟫) ((γ ⟦ c ⟧) δax) ≡[ i ]⟨ γ .N-hom f (~ i) δax ⟩ (γ ⟦ d ⟧) ((Δ ⟪ f ⟫) δax) ∎)) ΔA .F-id {x = c} = funExt λ (δax , γax , eq) → ΣPathP ((λ i → Δ .F-id i δax) , fibersEqIfRepsEq {isSetB = snd (Γ ⟅ c ⟆)} _ (λ i → ΓA .F-id i γax)) ΔA .F-seq {a} {b} {c} f g = funExt λ (δax , γax , eq) → ΣPathP ((λ i → Δ .F-seq f g i δax) , fibersEqIfRepsEq {isSetB = snd (Γ ⟅ c ⟆)} _ λ i → ΓA .F-seq f g i γax) π' : ΔA ⇒ Δ π' .N-ob c (x , snd) = x π' .N-hom f = refl PSReindex : PSTy[ Δ ] PSReindex = ΔA , (π' , isSurj) where isSurj : ∀ (c : C .ob) → isSurjSET {A = ΔA ⟅ c ⟆} {B = Δ ⟅ c ⟆} (π' ⟦ c ⟧) isSurj c δx = (δx , isSurjπ c ((γ ⟦ c ⟧) δx)) , refl PSq : ΔA ⇒ ΓA PSq .N-ob c (δax , γax , eq) = γax PSq .N-hom {c} {d} f = funExt λ (δax , γax , eq) → refl PSIsPB : isPullback {C = PreShv C ℓ''} (cospan Δ Γ (fst (PSCext Γ A')) γ (snd (PSCext Γ A'))) (pblegs (snd (PSCext Δ PSReindex)) (PSq)) PSIsPB .sq = makeNatTransPath (funExt sqExt) where sqExt : ∀ (c : C .ob) → _ sqExt c = funExt λ (δax , γax , eq) → sym eq PSIsPB .up {Θ} (cone (pblegs p₁ p₂) sq) = ((α , eq) , unique) where α : Θ ⇒ ΔA α .N-ob c t = ((p₁ ⟦ c ⟧) t) , (((p₂ ⟦ c ⟧) t) , (λ i → (sq (~ i) ⟦ c ⟧) t)) α .N-hom {d} {c} f = funExt αHomExt where αHomExt : ∀ (t : fst (Θ ⟅ d ⟆)) → ((p₁ ⟦ c ⟧) ((Θ ⟪ f ⟫) t) , (p₂ ⟦ c ⟧) ((Θ ⟪ f ⟫) t), _) ≡ ((Δ ⟪ f ⟫) ((p₁ ⟦ d ⟧) t) , (ΓA ⟪ f ⟫) ((p₂ ⟦ d ⟧) t) , _) αHomExt t = ΣPathP ((λ i → p₁ .N-hom f i t) , fibersEqIfRepsEq {isSetB = snd (Γ ⟅ c ⟆)} _ (λ i → p₂ .N-hom f i t)) eq : _ eq = makeNatTransPath (funExt (λ _ → funExt λ _ → refl)) , makeNatTransPath (funExt (λ _ → funExt λ _ → refl)) unique : ∀ (βeq : Σ[ β ∈ Θ ⇒ ΔA ] _) → (α , eq) ≡ βeq unique (β , eqβ) = ΣPathP (α≡β , eq≡eqβ) where α≡β : α ≡ β α≡β = makeNatTransPath (funExt λ c → funExt λ t → eqExt c t) where eqβ1 = eqβ .fst eqβ2 = eqβ .snd eqExt : ∀ (c : C .ob) → (t : fst (Θ ⟅ c ⟆)) → (α ⟦ c ⟧) t ≡ (β ⟦ c ⟧) t eqExt c t = ΣPathP ((λ i → (eqβ1 i ⟦ c ⟧) t) , fibersEqIfRepsEq {isSetB = snd (Γ ⟅ c ⟆)} _ (λ i → (eqβ2 i ⟦ c ⟧) t)) eq≡eqβ : PathP (λ i → (p₁ ≡ (α≡β i) ●ᵛ π') × (p₂ ≡ (α≡β i) ●ᵛ PSq)) eq eqβ eq≡eqβ = ΣPathP ( isPropNatP1 (eq .fst) (eqβ .fst) α≡β , isPropNatP2 (eq .snd) (eqβ .snd) α≡β) where isPropNatP1 : isOfHLevelDep 1 (λ γ → p₁ ≡ γ ●ᵛ π') isPropNatP1 = isOfHLevel→isOfHLevelDep 1 (λ _ → isSetNat _ _) isPropNatP2 : isOfHLevelDep 1 (λ γ → p₂ ≡ γ ●ᵛ PSq) isPropNatP2 = isOfHLevel→isOfHLevelDep 1 (λ _ → isSetNat _ _) -- putting everything together isTypeCategoryPresheaf : isTypeCategory (PreShv C ℓ'') isTypeCategoryPresheaf .Ty[_] Γ = PSTy[ Γ ] isTypeCategoryPresheaf .cext = PSCext isTypeCategoryPresheaf .reindex = PSReindex isTypeCategoryPresheaf .q⟨_,_⟩ = PSq isTypeCategoryPresheaf .isPB = PSIsPB
{ "alphanum_fraction": 0.4504377295, "avg_line_length": 37.670212766, "ext": "agda", "hexsha": "3b74ccb02d979699cd578502b7dd80183960ff01", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Categories/TypesOfCategories/TypeCategory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Categories/TypesOfCategories/TypeCategory.agda", "max_line_length": 128, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Categories/TypesOfCategories/TypeCategory.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2716, "size": 7082 }
-- This bug was reported by Christian Sattler. (I modified his example -- slightly.) -- {-# OPTIONS -v tc.meta.assign:49 #-} module Issue903 where record T : Set where constructor tt postulate Id : (A : Set) → A → Set e : (B : Set) (f : T → B) → Id B (f tt) → Id (T → B) f k : (P : Set → Set) (u : P T) → Id (P T) u → T h : Id T tt q : T q = k {!!} {!!} (e {!!} _ {!h!}) -- WAS: If one tries to give h: -- -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/MetaVars.hs:654
{ "alphanum_fraction": 0.5770609319, "avg_line_length": 23.25, "ext": "agda", "hexsha": "48426ab2e6e3ca5c05dc5dd8a55941c1c4874e9e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue903.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue903.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue903.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 196, "size": 558 }
-- Andreas, 2017-06-14, issue #2603 -- reported by rfindler, shrunk test case by Ulf -- {-# OPTIONS -v tc.conv:40 -v tc.conv.atom:50 -v tc:80 -v tc.meta.assign:70 #-} {-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.Equality data List (A : Set) : Set where [] : List A postulate Signal : Set data Any (xs : List Signal) : Set where no : Any xs any : ∀ xs → Any xs any [] = no record Env : Set where field sig : List Signal open Env Can : (θ : Env) → Any (sig θ) → Set Can θ no = Signal postulate elephant : ∀ θ → Can θ (any (sig θ)) ≡ Signal lemma2 : Set lemma2 rewrite elephant _ = Signal -- Should succeed. -- This lead to an internal error when the conversion checker -- tried to eta expand a meta variable but dontAssignMetas was on.
{ "alphanum_fraction": 0.6619354839, "avg_line_length": 20.3947368421, "ext": "agda", "hexsha": "a0175e3274dfe8203a003332c102357b0a3a4a87", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2603.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2603.agda", "max_line_length": 81, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2603.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 245, "size": 775 }
module Prelude.Fin where open import Prelude.Eq open import Prelude.Nat data Fin : Nat -> Set where fz : ∀{n} -> Fin (S n) fs : ∀{n} -> Fin n -> Fin (S n) forget : {n : Nat} -> Fin n -> Nat forget fz = Z forget (fs n) = S (forget n) inject : (n : Nat) -> Fin (S n) inject Z = fz inject (S n) = fs (inject n) inc : {n : Nat} -> Fin n -> Fin (S n) inc fz = fz inc (fs n) = fs (inc n)
{ "alphanum_fraction": 0.5438596491, "avg_line_length": 19, "ext": "agda", "hexsha": "bcd8ec4ffd940f44530bf16b6f04a0abd0600dd2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/epic/Prelude/Fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/epic/Prelude/Fin.agda", "max_line_length": 37, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/epic/Prelude/Fin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 147, "size": 399 }
module Thesis.Lang where open import Thesis.Syntax public open import Thesis.Environments public ⟦_⟧Const : ∀ {τ} → Const τ → ⟦ τ ⟧Type ⟦ unit ⟧Const = tt ⟦ lit n ⟧Const = n ⟦ plus ⟧Const = _+_ ⟦ minus ⟧Const = _-_ ⟦ cons ⟧Const v1 v2 = v1 , v2 ⟦ fst ⟧Const (v1 , v2) = v1 ⟦ snd ⟧Const (v1 , v2) = v2 ⟦ linj ⟧Const v1 = inj₁ v1 ⟦ rinj ⟧Const v2 = inj₂ v2 ⟦ match ⟧Const (inj₁ x) f g = f x ⟦ match ⟧Const (inj₂ y) f g = g y ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type ⟦ const c ⟧Term ρ = ⟦ c ⟧Const ⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ ⟦ app s t ⟧Term ρ = ⟦ s ⟧Term ρ (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) open import Theorem.CongApp open import Postulate.Extensionality weaken-sound : ∀ {Γ₁ Γ₂ τ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (t : Term Γ₁ τ) (ρ : ⟦ Γ₂ ⟧Context) → ⟦ weaken Γ₁≼Γ₂ t ⟧Term ρ ≡ ⟦ t ⟧Term (⟦ Γ₁≼Γ₂ ⟧≼ ρ) weaken-sound {Γ₁≼Γ₂ = Γ₁≼Γ₂} (var x) ρ = weaken-var-sound Γ₁≼Γ₂ x ρ weaken-sound (app s t) ρ = weaken-sound s ρ ⟨$⟩ weaken-sound t ρ weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound (const c) ρ = refl
{ "alphanum_fraction": 0.5930122757, "avg_line_length": 31.1470588235, "ext": "agda", "hexsha": "20f96b3bc3593229e09f75cce6df5153eea6e5fb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/Lang.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/Lang.agda", "max_line_length": 91, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/Lang.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 537, "size": 1059 }
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Ints.HAEquivInt.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HAEquiv data HAEquivInt : Type₀ where zero : HAEquivInt suc : HAEquivInt -> HAEquivInt -- suc is a HAEquiv: pred : HAEquivInt -> HAEquivInt suc-pred : ∀ z -> suc (pred z) ≡ z pred-suc : ∀ z -> pred (suc z) ≡ z coh : ∀ z → (λ i → suc (pred-suc z i)) ≡ suc-pred (suc z) suc-haequiv : HAEquiv HAEquivInt HAEquivInt suc-haequiv = suc , record { g = pred ; sec = pred-suc ; ret = suc-pred ; com = coh } -- OPEN: prove HAEquivInt ≃ Int! See Experiments/HInt.agda
{ "alphanum_fraction": 0.6656101426, "avg_line_length": 26.2916666667, "ext": "agda", "hexsha": "560ee5e8763625fcd32381e6d0cea8b373cf3b5e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/HITs/Ints/HAEquivInt/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/HITs/Ints/HAEquivInt/Base.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/HITs/Ints/HAEquivInt/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 229, "size": 631 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Strings: builtin type and basic operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.String.Base where open import Data.Nat.Base as Nat using (ℕ) open import Data.List.Base as List using (List) open import Data.List.NonEmpty as NE using (List⁺) open import Agda.Builtin.Char using (Char) open import Function ------------------------------------------------------------------------ -- From Agda.Builtin: type and renamed primitives -- Note that we do not re-export primStringAppend because we want to -- give it an infix definition and be able to assign it a level. import Agda.Builtin.String as String open String public using ( String ) renaming ( primStringToList to toList ; primStringFromList to fromList ; primShowString to show ) ------------------------------------------------------------------------ -- Operations -- Additional conversion functions fromList⁺ : List⁺ Char → String fromList⁺ = fromList ∘ NE.toList -- List-like functions infixr 5 _++_ _++_ : String → String → String _++_ = String.primStringAppend length : String → ℕ length = List.length ∘ toList replicate : ℕ → Char → String replicate n = fromList ∘ List.replicate n concat : List String → String concat = List.foldr _++_ "" -- String-specific functions unlines : List String → String unlines = concat ∘ List.intersperse "\n"
{ "alphanum_fraction": 0.5885826772, "avg_line_length": 25.8305084746, "ext": "agda", "hexsha": "af017b2d8dbca2fb51a3ce1266f24561cd2ba34c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Base.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 329, "size": 1524 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Bundles using (Semiring) -- Credit: This definition is taken from the stdlib issue #1175 -- As given by @MatthewDaggitt and @mechvel module Definitions.Semiring {α α≈} (R : Semiring α α≈) where open Semiring R record NonZero (x : Carrier) : Set α≈ where constructor mkNonZero field nonZero : x ≉ 0#
{ "alphanum_fraction": 0.6753926702, "avg_line_length": 23.875, "ext": "agda", "hexsha": "7cd7654b58328c39d0085354770a0f64ed44ef57", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/Agda-Algebra", "max_forks_repo_path": "src/Definitions/Semiring.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_issues_repo_issues_event_max_datetime": "2022-01-31T18:19:52.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-02T20:50:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/Agda-Algebra", "max_issues_repo_path": "src/Definitions/Semiring.agda", "max_line_length": 63, "max_stars_count": 2, "max_stars_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/Agda-Algebra", "max_stars_repo_path": "src/Definitions/Semiring.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 114, "size": 382 }
{-# OPTIONS --without-K #-} open import library.Basics hiding (Type ; Σ ; S) open import library.types.Sigma open import Sec2preliminaries open import Sec3hedberg open import Sec4hasConstToSplit open import Sec5factorConst open import Sec6hasConstToDecEq open import Sec7populatedness module Sec8taboos where -- Subsection 8.1 all-hasConst : Type₁ all-hasConst = (X : Type) → hasConst X -- Theorem 8.1 module functional-subrelation (ac : all-hasConst) (X : Type) (R : X × X → Type) where all-sets : (Y : Type) → is-set Y all-sets Y = pathHasConst→isSet (λ y₁ y₂ → ac _) R₋ : (x : X) → Type R₋ x = Σ X λ y → R(x , y) k : (x : X) → (R₋ x) → (R₋ x) k x = fst (ac _) kc : (x : X) → const (k x) kc x = snd (ac _) S : X × X → Type S (x , y) = Σ (R(x , y)) λ a → (y , a) == k x (y , a) -- the relation S S₋ : (x : X) → Type S₋ x = Σ X λ y → S(x , y) -- fix kₓ is equivalent to Sₓ -- This is just Σ-assoc. We try to make it more readable by adding some (trivial) steps. fixk-S : (x : X) → (fix (k x)) ≃ S₋ x fixk-S x = (fix (k x)) ≃⟨ ide _ ⟩ (Σ (Σ X λ y → R(x , y)) λ a → a == k x a) ≃⟨ Σ-assoc ⟩ (Σ X λ y → Σ (R(x , y)) λ r → (y , r) == k x (y , r)) ≃⟨ ide _ ⟩ (S₋ x) ≃∎ -- claim (0) subrelation : (x y : X) → S(x , y) → R(x , y) subrelation x y (r , _) = r -- claim (1) prop-Sx : (x : X) → is-prop (S₋ x) prop-Sx x = equiv-preserves-level {A = fix (k x)} {B = (S₋ x)} (fixk-S x) (fixed-point _ (kc x)) -- claim (2) same-domain : (x : X) → (R₋ x) ↔ (S₋ x) same-domain x = rs , sr where rs : (R₋ x) → (S₋ x) rs a = –> (fixk-S x) (to-fix (k x) (kc x) a) sr : (S₋ x) → (R₋ x) sr (y , r , _) = y , r -- claim (3) prop-S : (x y : X) → is-prop (S (x , y)) prop-S x y = all-paths-is-prop all-paths where all-paths : (s₁ s₂ : S(x , y)) → s₁ == s₂ all-paths s₁ s₂ = ss where yss : (y , s₁) == (y , s₂) yss = prop-has-all-paths (prop-Sx x) _ _ ss : s₁ == s₂ ss = set-lemma (all-sets _) y s₁ s₂ yss -- intermediate definition -- see the caveat about the notion 'epimorphism' in the article is-split-epimorphism : {U V : Type} → (U → V) → Type is-split-epimorphism {U} {V} e = Σ (V → U) λ s → (v : V) → e (s v) == v is-epimorphism : {U V : Type} → (U → V) → Type₁ is-epimorphism {U} {V} e = (W : Type) → (f g : V → W) → ((u : U) → f (e u) == g (e u)) → (v : V) → f v == g v -- Lemma 8.2 path-trunc-epi→set : {Y : Type} → ((y₁ y₂ : Y) → is-epimorphism (∣_∣ {X = y₁ == y₂})) → is-set Y path-trunc-epi→set {Y} path-epi = reminder special-case where f : (y₁ y₂ : Y) → Trunc (y₁ == y₂) → Y f y₁ _ _ = y₁ g : (y₁ y₂ : Y) → Trunc (y₁ == y₂) → Y g _ y₂ _ = y₂ special-case : (y₁ y₂ : Y) → Trunc (y₁ == y₂) → y₁ == y₂ special-case y₁ y₂ = path-epi y₁ y₂ Y (f y₁ y₂) (g y₁ y₂) (idf _) reminder : hseparated Y → is-set Y reminder = fst set-characterizations ∘ snd (snd set-characterizations) -- Theorem 8.3 (1) all-split→all-deceq : ((X : Type) → is-split-epimorphism (∣_∣ {X = X})) → (X : Type) → has-dec-eq X all-split→all-deceq all-split = all-hasConst→dec-eq ac where ac : (X : Type) → hasConst X ac X = snd hasConst↔splitSup (fst (all-split X)) -- Theorem 8.3 (2) all-epi→all-set : ((X : Type) → is-epimorphism (∣_∣ {X = X})) → (X : Type) → is-set X all-epi→all-set all-epi X = path-trunc-epi→set (λ y₁ y₂ → all-epi (y₁ == y₂)) -- Subsection 8.2 -- Lemma 8.4, first proof pop-splitSup-1 : {X : Type} → Pop (splitSup X) pop-splitSup-1 {X} f c = to-fix f c (hasConst→splitSup (g , gc)) where g : X → X g x = f (λ _ → x) ∣ x ∣ gc : const g gc x₁ x₂ = g x₁ =⟨ idp ⟩ f (λ _ → x₁) ∣ x₁ ∣ =⟨ ap (λ k → k ∣ x₁ ∣) (c (λ _ → x₁) (λ _ → x₂)) ⟩ f (λ _ → x₂) ∣ x₁ ∣ =⟨ ap (f (λ _ → x₂)) (prop-has-all-paths (h-tr X) ∣ x₁ ∣ ∣ x₂ ∣) ⟩ f (λ _ → x₂) ∣ x₂ ∣ =⟨ idp ⟩ g x₂ ∎ -- Lemma 8.4, second proof pop-splitSup-2 : {X : Type} → Pop (splitSup X) pop-splitSup-2 {X} = snd (pop-alt₂ {splitSup X}) get-P where get-P : (P : Type) → is-prop P → splitSup X ↔ P → P get-P P pp (hstp , phst) = hstp free-hst where xp : X → P xp x = hstp (λ _ → x) zp : Trunc X → P zp = rec pp xp free-hst : splitSup X free-hst z = phst (zp z) z -- Lemma 8.5, third proof pop-splitSup-3 : {X : Type} → Pop (splitSup X) pop-splitSup-3 {X} = snd pop-alt translation where translation-aux : splitSup (splitSup X) → splitSup X translation-aux = λ hsthst z → hsthst (trunc-functorial {X = X} {Y = splitSup X} (λ x _ → x) z) z translation : Trunc (splitSup (splitSup X)) → Trunc (splitSup X) translation = trunc-functorial translation-aux -- Theorem 8.5 module thm85 where One = (X : Type) → Pop X → Trunc X Two = (X : Type) → Trunc (splitSup X) Three = (P : Type) → is-prop P → (Y : P → Type) → ((p : P) → Trunc (Y p)) → Trunc ((p : P) → Y p) Four = (X Y : Type) → (X → Y) → (Pop X → Pop Y) One→Two : One → Two One→Two poptr X = poptr (splitSup X) pop-splitSup-1 Two→One : Two → One Two→One trhst X pop = fst pop-alt pop (trhst X) One→Four : One → Four One→Four poptr X Y f = Trunc→Pop ∘ (trunc-functorial f) ∘ (poptr X) Four→One : Four → One Four→One funct X px = prop-pop (h-tr _) pz where pz : Pop (Trunc X) pz = funct X (Trunc X) ∣_∣ px -- only very slightly different to the proof in the article One→Three : One → Three One→Three poptr P pp Y = λ py → poptr _ (snd pop-alt' (λ hst p₀ → hst (contr-trick p₀ py) p₀)) where contr-trick : (p₀ : P) → ((p : P) → Trunc (Y p)) → Trunc ((p : P) → Y p) contr-trick p₀ py = rec {X = Y p₀} {P = Trunc ((p : P) → Y p)} (h-tr _) (λ y₀ → ∣ <– (thm55aux.neutral-contr-exp {P = P} {Y = Y} pp p₀) y₀ ∣) (py p₀) Three→Two : Three → Two Three→Two proj X = proj (Trunc X) (h-tr _) (λ _ → X) (idf _) -- Subsection 8.3 -- Some very simple lemmata -- If P is a proposition, so is P + ¬ P dec-is-prop : {P : Type} → (Funext {X = P} {Y = Empty}) → is-prop P → is-prop (P + ¬ P) dec-is-prop {P} fext pp = all-paths-is-prop (λ { (inl p₁) (inl p₂) → ap inl (prop-has-all-paths pp _ _) ; (inl p₁) (inr np₂) → Empty-elim {A = λ _ → inl p₁ == inr np₂} (np₂ p₁) ; (inr np₁) (inl p₂) → Empty-elim {A = λ _ → inr np₁ == inl p₂} (np₁ p₂) ; (inr np₁) (inr np₂) → ap inr (fext np₁ np₂ (λ p → prop-has-all-paths (λ ()) _ _)) }) -- Theorem 8.7 nonempty-pop→lem : ((X : Type) → Funext {X} {Empty}) → ((X : Type) → (¬(¬ X) → Pop X)) → LEM nonempty-pop→lem fext nn-pop P pp = from-fix {X = dec} (idf _) (nn-pop dec nndec (idf _) idc) where dec : Type dec = P + ¬ P idc : const (idf dec) idc = λ _ _ → prop-has-all-paths (dec-is-prop {P} (fext P) pp) _ _ nndec : ¬(¬ dec) nndec ndec = (λ np → ndec (inr np)) λ p → ndec (inl p) -- Corollary 8.8 nonempty-pop↔lem : ((X : Type) → Funext {X} {Empty}) → ((X : Type) → (¬(¬ X) → Pop X)) ↔₁₁ LEM nonempty-pop↔lem fext = nonempty-pop→lem fext , other where other : LEM → ((X : Type) → (¬(¬ X) → Pop X)) other lem X nnX = p where pnp : Pop X + ¬ (Pop X) pnp = lem (Pop X) pop-property₂ p : Pop X p = match pnp withl idf _ withr (λ np → Empty-elim {A = λ _ → Pop X} (nnX (λ x → np (pop-property₁ x))))
{ "alphanum_fraction": 0.516381483, "avg_line_length": 32.0808510638, "ext": "agda", "hexsha": "68aa2f293d3b2ac5e047dceee4a7ad7c60a91604", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/anonymousExistence/Sec8taboos.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/anonymousExistence/Sec8taboos.agda", "max_line_length": 116, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/anonymousExistence/Sec8taboos.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 3094, "size": 7539 }
module Issue268 where module Example₁ where open import Common.Coinduction module Record where record Stream : Set where constructor cons field tail : ∞ Stream module Data where data Stream : Set where cons : ∞ Stream → Stream -- open Data open Record id : Stream → Stream id (cons xs) = cons (♯ id (♭ xs)) postulate P : Stream → Set f : ∀ xs → P (id xs) → Set xs : Stream p : P (id xs) Foo : Set Foo = f _ p -- The code type checks when Data is opened, but not when Record is -- opened: -- -- Bug.agda:34,11-12 -- (Stream.tail (id xs)) != (.Bug.♯-0 _40) of type (∞ Stream) -- when checking that the expression p has type P (id (cons _40)) module Example₂ where data D : Set where d : D id : D → D id d = d module Record where record E : Set where constructor e field f : D module Data where data E : Set where e : D → E -- open Data open Record id′ : E → E id′ (e xs) = e (id xs) postulate P : E → Set f : (x : E) → P (id′ x) → Set x : E p : P (id′ x) Foo : Set Foo = f _ p
{ "alphanum_fraction": 0.5470232959, "avg_line_length": 15.6621621622, "ext": "agda", "hexsha": "7cb9e40f4b32a3f00e9c6d47feadce21d0f38bdf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/succeed/Issue268.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/succeed/Issue268.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue268.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 388, "size": 1159 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.DirProd where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Monoid open import Cubical.Algebra.Semigroup open GroupStr open IsGroup hiding (·IdR ; ·IdL ; ·InvR ; ·InvL) open IsMonoid hiding (·IdR ; ·IdL) open IsSemigroup DirProd : ∀ {ℓ ℓ'} → Group ℓ → Group ℓ' → Group (ℓ-max ℓ ℓ') fst (DirProd G H) = (fst G) × (fst H) 1g (snd (DirProd G H)) = (1g (snd G)) , (1g (snd H)) _·_ (snd (DirProd G H)) (g , h) (g' , h') = _·_ (snd G) g g' , _·_ (snd H) h h' inv (snd (DirProd G H)) (g , h) = (inv (snd G) g) , (inv (snd H) h) isGroup (snd (DirProd G H)) = makeIsGroup (isSet× (is-set (snd G)) (is-set (snd H))) (λ x y z → ≡-× (·Assoc (snd G) _ _ _) (·Assoc (snd H) _ _ _)) (λ x → ≡-× (·IdR (snd G) _) (·IdR (snd H) _)) (λ x → ≡-× (·IdL (snd G) _) (·IdL (snd H) _)) (λ x → ≡-× (·InvR (snd G) _) (·InvR (snd H) _)) λ x → ≡-× (·InvL (snd G) _) (·InvL (snd H) _)
{ "alphanum_fraction": 0.5110565111, "avg_line_length": 43.6071428571, "ext": "agda", "hexsha": "ad3f0b4e5c67aa2a7318e913c5866110bda8a9c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/DirProd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/DirProd.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/DirProd.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 441, "size": 1221 }
{-# OPTIONS --warning=error --allow-unsolved-metas #-} -- This file contains everything that cannot be compiled in --safe mode. --open import Lists.SortList module Everything.Unsafe where
{ "alphanum_fraction": 0.7486910995, "avg_line_length": 23.875, "ext": "agda", "hexsha": "aac3ee53d172c3e479a5f5cd148a052535827562", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Everything/Unsafe.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Everything/Unsafe.agda", "max_line_length": 72, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Everything/Unsafe.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 41, "size": 191 }
module StrongArrows where open import Library open import Categories open import Functors open import MonoidalCat open import WeakArrows record SArrow {l m}(J : Monoidal {l}{m}) : Set (lsuc (l ⊔ m)) where constructor sarrow open Monoidal J open Cat C open Fun field A : Arrow C open Arrow A field fst' : ∀{X X' Y} -> R X' X -> R (OMap ⊗ (X' , Y)) (OMap ⊗ (X , Y)) -- laws later
{ "alphanum_fraction": 0.6574307305, "avg_line_length": 20.8947368421, "ext": "agda", "hexsha": "7ea81484f79d040154b5d1ad23b7fc399c3c5664", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "StrongArrows.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "StrongArrows.agda", "max_line_length": 74, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "StrongArrows.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 137, "size": 397 }
{- Functions between structures S and T: X ↦ S X → T X -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Function where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.SIP open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Nat open import Cubical.Data.Vec private variable ℓ ℓ₁ ℓ₁' ℓ₂ ℓ₂' : Level -- General function structure FunctionStructure : (S : Type ℓ → Type ℓ₁) (T : Type ℓ → Type ℓ₂) → Type ℓ → Type (ℓ-max ℓ₁ ℓ₂) FunctionStructure S T X = S X → T X FunctionEquivStr : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} → StrEquiv S ℓ₁' → StrEquiv T ℓ₂' → StrEquiv (FunctionStructure S T) (ℓ-max ℓ₁ (ℓ-max ℓ₁' ℓ₂')) FunctionEquivStr {S = S} {T} ι₁ ι₂ (X , f) (Y , g) e = {s : S X} {t : S Y} → ι₁ (X , s) (Y , t) e → ι₂ (X , f s) (Y , g t) e functionUnivalentStr : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} (ι₁ : StrEquiv S ℓ₁') (θ₁ : UnivalentStr S ι₁) (ι₂ : StrEquiv T ℓ₂') (θ₂ : UnivalentStr T ι₂) → UnivalentStr (FunctionStructure S T) (FunctionEquivStr ι₁ ι₂) functionUnivalentStr ι₁ θ₁ ι₂ θ₂ e = compEquiv (equivImplicitΠCod (equivImplicitΠCod (equiv→ (θ₁ e) (θ₂ e)))) funExtDepEquiv functionEquivAction : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} → EquivAction S → EquivAction T → EquivAction (FunctionStructure S T) functionEquivAction α₁ α₂ e = equiv→ (α₁ e) (α₂ e) functionTransportStr : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} (α₁ : EquivAction S) (τ₁ : TransportStr α₁) (α₂ : EquivAction T) (τ₂ : TransportStr α₂) → TransportStr (functionEquivAction α₁ α₂) functionTransportStr {S = S} α₁ τ₁ α₂ τ₂ e f = funExt λ t → cong (equivFun (α₂ e) ∘ f) (invTransportStr α₁ τ₁ e t) ∙ τ₂ e (f (subst⁻ S (ua e) t)) -- Definition of structured equivalence using an action in the domain FunctionEquivStr+ : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} → EquivAction S → StrEquiv T ℓ₂' → StrEquiv (FunctionStructure S T) (ℓ-max ℓ₁ ℓ₂') FunctionEquivStr+ {S = S} {T} α₁ ι₂ (X , f) (Y , g) e = (s : S X) → ι₂ (X , f s) (Y , g (equivFun (α₁ e) s)) e functionUnivalentStr+ : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} (α₁ : EquivAction S) (τ₁ : TransportStr α₁) (ι₂ : StrEquiv T ℓ₂') (θ₂ : UnivalentStr T ι₂) → UnivalentStr (FunctionStructure S T) (FunctionEquivStr+ α₁ ι₂) functionUnivalentStr+ {S = S} {T} α₁ τ₁ ι₂ θ₂ {X , f} {Y , g} e = compEquiv (compEquiv (equivΠCod λ s → compEquiv (θ₂ e) (pathToEquiv (cong (PathP (λ i → T (ua e i)) (f s) ∘ g) (τ₁ e s)))) (invEquiv heteroHomotopy≃Homotopy)) funExtDepEquiv
{ "alphanum_fraction": 0.6584089323, "avg_line_length": 34.5301204819, "ext": "agda", "hexsha": "e0437624b8909a6a665f8a916d6bffdd67a16dd4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/Function.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/Function.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/Function.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1136, "size": 2866 }
module examplesPaperJFP.triangleRightOperator where _▹_ : ∀{A B : Set} → A → (A → B) → B a ▹ f = f a
{ "alphanum_fraction": 0.5833333333, "avg_line_length": 21.6, "ext": "agda", "hexsha": "72428a32eda14aed249431bf99be5bcf7ca51afd", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/triangleRightOperator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/triangleRightOperator.agda", "max_line_length": 51, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/triangleRightOperator.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 46, "size": 108 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types open import LibraBFT.Prelude import LibraBFT.Yasm.Base as LYB import LibraBFT.Yasm.System as LYS -- This module provides a single import for all Yasm modules module LibraBFT.Yasm.Yasm (ℓ-PeerState : Level) (ℓ-VSFP : Level) (parms : LYB.SystemTypeParameters ℓ-PeerState) (iiah : LYB.SystemInitAndHandlers ℓ-PeerState parms) (ValidSenderForPK : LYS.WithInitAndHandlers.ValidSenderForPK-type ℓ-PeerState ℓ-VSFP parms iiah) (ValidSenderForPK-stable : LYS.WithInitAndHandlers.ValidSenderForPK-stable-type ℓ-PeerState ℓ-VSFP parms iiah ValidSenderForPK) where open LYB.SystemTypeParameters parms open LYB.SystemInitAndHandlers iiah open import LibraBFT.Yasm.Base public open import LibraBFT.Yasm.Types public open import LibraBFT.Yasm.System ℓ-PeerState ℓ-VSFP parms public open import LibraBFT.Yasm.Properties ℓ-PeerState ℓ-VSFP parms iiah ValidSenderForPK ValidSenderForPK-stable public open WithInitAndHandlers iiah public open import Util.FunctionOverride PeerId _≟PeerId_ public
{ "alphanum_fraction": 0.626035503, "avg_line_length": 54.5161290323, "ext": "agda", "hexsha": "535166f5e71e14e1ec8a6842bfbc0347ef0180db", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z", "max_forks_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "oracle/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Yasm/Yasm.agda", "max_issues_count": 72, "max_issues_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z", "max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "oracle/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Yasm/Yasm.agda", "max_line_length": 130, "max_stars_count": 4, "max_stars_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "oracle/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Yasm/Yasm.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z", "num_tokens": 402, "size": 1690 }
{-# OPTIONS --cubical-compatible #-} postulate A : Set B : A → Set @0 T : Set T = (@0 x : A) → B x _ : Set₁ _ = (@0 A : Set) → @0 A → (@0 x : A) → Set data D : Set₁ where @0 c : (@0 A : Set) → A → (x : A) → D
{ "alphanum_fraction": 0.4449541284, "avg_line_length": 15.5714285714, "ext": "agda", "hexsha": "05b090368ef840d82982606ef2fb8ff984d7e97c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue4784.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue4784.agda", "max_line_length": 42, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue4784.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 97, "size": 218 }
------------------------------------------------------------------------------ -- Inductive Peano arithmetic base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Inductive.Base where infixl 7 _*_ infixl 6 _+_ ------------------------------------------------------------------------------ -- PA universe open import PA.Inductive.Base.Core public -- First-order logic (without equality) -- open import Common.FOL.FOL public hiding ( _,_ ; ∃ ) -- 2012-04-24. Agda bug? Why it is necessary to use the modifier -- @using@ in the following importation? open import PA.Inductive.Existential public using ( _,_ ; ∃ ) -- The induction principle on the PA universe ℕ-ind : (A : ℕ → Set) → A zero → (∀ n → A n → A (succ n)) → ∀ n → A n ℕ-ind A A0 h zero = A0 ℕ-ind A A0 h (succ n) = h n (ℕ-ind A A0 h n) -- The identity type on the PA universe open import PA.Inductive.Relation.Binary.PropositionalEquality public -- PA primitive recursive functions _+_ : ℕ → ℕ → ℕ zero + n = n succ m + n = succ (m + n) _*_ : ℕ → ℕ → ℕ zero * n = zero succ m * n = n + m * n ------------------------------------------------------------------------------ -- ATPs helper -- We don't traslate the body of functions, only the types. Therefore -- we need to feed the ATPs with the functions' equations. -- Addition axioms +-0x : ∀ n → zero + n ≡ n +-0x n = refl -- {-# ATP hint +-0x #-} +-Sx : ∀ m n → succ m + n ≡ succ (m + n) +-Sx m n = refl {-# ATP hint +-Sx #-} -- Multiplication axioms *-0x : ∀ n → zero * n ≡ zero *-0x n = refl -- {-# ATP hint *-0x #-} *-Sx : ∀ m n → succ m * n ≡ n + m * n *-Sx m n = refl -- {-# ATP hint *-Sx #-}
{ "alphanum_fraction": 0.493485342, "avg_line_length": 28.3384615385, "ext": "agda", "hexsha": "e36be06e94c6b04021132f144c6d306e6b5ab382", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Inductive/Base.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Inductive/Base.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Inductive/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 506, "size": 1842 }
{-# OPTIONS --safe #-} module Cubical.Algebra.MonoidSolver.Reflection where open import Cubical.Foundations.Prelude hiding (Type) open import Agda.Builtin.Reflection hiding (Type) open import Agda.Builtin.String open import Cubical.Reflection.Base open import Cubical.Data.Maybe open import Cubical.Data.Sigma open import Cubical.Data.List open import Cubical.Data.Nat open import Cubical.Data.FinData using () renaming (zero to fzero; suc to fsuc) open import Cubical.Data.Bool open import Cubical.Data.Vec using (Vec) renaming ([] to emptyVec; _∷_ to _∷vec_) public open import Cubical.Algebra.Monoid.Base open import Cubical.Algebra.CommMonoid.Base open import Cubical.Algebra.MonoidSolver.Solver renaming (solve to naiveSolve) open import Cubical.Algebra.MonoidSolver.CommSolver renaming (solve to naiveCommSolve) open import Cubical.Algebra.MonoidSolver.MonoidExpression private variable ℓ : Level module ReflectionSolver (op unit solver : Name) where _==_ = primQNameEquality {-# INLINE _==_ #-} record VarInfo : Type ℓ-zero where field varName : String varType : Arg Term index : ℕ {- `getLastTwoArgsOf` maps a term 'def n (z₁ ∷ … ∷ zₙ ∷ x ∷ y ∷ [])' to the pair '(x,y)' non-visible arguments are ignored. -} getLastTwoArgsOf : Name → Term → Maybe (Term × Term) getLastTwoArgsOf n' (def n xs) = if n == n' then go xs else nothing where go : List (Arg Term) → Maybe (Term × Term) go (varg x ∷ varg y ∷ []) = just (x , y) go (x ∷ xs) = go xs go _ = nothing getLastTwoArgsOf n' _ = nothing {- `getArgs` maps a term 'x ≡ y' to the pair '(x,y)' -} getArgs : Term → Maybe (Term × Term) getArgs = getLastTwoArgsOf (quote PathP) firstVisibleArg : List (Arg Term) → Maybe Term firstVisibleArg [] = nothing firstVisibleArg (varg x ∷ l) = just x firstVisibleArg (x ∷ l) = firstVisibleArg l {- If the solver needs to be applied during equational reasoning, the right hand side of the equation to solve cannot be given to the solver directly. The following function extracts this term y from a more complex expression as in: x ≡⟨ solve ... ⟩ (y ≡⟨ ... ⟩ z ∎) -} getRhs : Term → Maybe Term getRhs reasoningToTheRight@(def n xs) = if n == (quote _∎) then firstVisibleArg xs else (if n == (quote _≡⟨_⟩_) then firstVisibleArg xs else nothing) getRhs _ = nothing private solverCallAsTerm : Term → Arg Term → Term → Term → Term solverCallAsTerm M varList lhs rhs = def solver (varg M ∷ varg lhs ∷ varg rhs ∷ varList ∷ varg (def (quote refl) []) ∷ []) solverCallWithLambdas : ℕ → List VarInfo → Term → Term → Term → Term solverCallWithLambdas n varInfos M lhs rhs = encloseWithIteratedLambda (map VarInfo.varName varInfos) (solverCallAsTerm M (variableList (rev varInfos)) lhs rhs) where encloseWithIteratedLambda : List String → Term → Term encloseWithIteratedLambda (varName ∷ xs) t = lam visible (abs varName (encloseWithIteratedLambda xs t)) encloseWithIteratedLambda [] t = t variableList : List VarInfo → Arg Term variableList [] = varg (con (quote emptyVec) []) variableList (varInfo ∷ varInfos) = varg (con (quote _∷vec_) (varg (var (VarInfo.index varInfo) []) ∷ (variableList varInfos) ∷ [])) solverCallByVarIndices : ℕ → List ℕ → Term → Term → Term → Term solverCallByVarIndices n varIndices R lhs rhs = solverCallAsTerm R (variableList (rev varIndices)) lhs rhs where variableList : List ℕ → Arg Term variableList [] = varg (con (quote emptyVec) []) variableList (varIndex ∷ varIndices) = varg (con (quote _∷vec_) (varg (var (varIndex) []) ∷ (variableList varIndices) ∷ [])) module _ (monoid : Term) where `ε⊗` : Term `ε⊗` = con (quote ε⊗) [] mutual `_⊗_` : List (Arg Term) → Term `_⊗_` (harg _ ∷ xs) = `_⊗_` xs `_⊗_` (varg _ ∷ varg x ∷ varg y ∷ []) = con (quote _⊗_) (varg (buildExpression x) ∷ varg (buildExpression y) ∷ []) `_⊗_` _ = unknown finiteNumberAsTerm : ℕ → Term finiteNumberAsTerm ℕ.zero = con (quote fzero) [] finiteNumberAsTerm (ℕ.suc n) = con (quote fsuc) (varg (finiteNumberAsTerm n) ∷ []) buildExpression : Term → Term buildExpression (var index _) = con (quote ∣) (varg (finiteNumberAsTerm index) ∷ []) buildExpression t@(def n xs) = if (n == op) then `_⊗_` xs else if (n == unit) then `ε⊗` else unknown buildExpression t = unknown toMonoidExpression : Maybe (Term × Term) → Maybe (Term × Term) toMonoidExpression nothing = nothing toMonoidExpression (just (lhs , rhs)) = just (buildExpression lhs , buildExpression rhs) adjustDeBruijnIndex : (n : ℕ) → Term → Term adjustDeBruijnIndex n (var k args) = var (k + n) args adjustDeBruijnIndex n _ = unknown extractVarIndices : Maybe (List Term) → Maybe (List ℕ) extractVarIndices (just ((var index _) ∷ l)) with extractVarIndices (just l) ... | just indices = just (index ∷ indices) ... | nothing = nothing extractVarIndices (just []) = just [] extractVarIndices _ = nothing getVarsAndEquation : Term → Maybe (List VarInfo × Term) getVarsAndEquation t = let (rawVars , equationTerm) = extractVars t maybeVars = addIndices (length rawVars) rawVars in map-Maybe (_, equationTerm) maybeVars where extractVars : Term → List (String × Arg Term) × Term extractVars (pi argType (abs varName t)) with extractVars t ... | xs , equation = (varName , argType) ∷ xs , equation extractVars equation = [] , equation addIndices : ℕ → List (String × Arg Term) → Maybe (List VarInfo) addIndices ℕ.zero [] = just [] addIndices (ℕ.suc countVar) ((varName , argType) ∷ list) = map-Maybe (λ varList → record { varName = varName ; varType = argType ; index = countVar } ∷ varList) (addIndices countVar list) addIndices _ _ = nothing toListOfTerms : Term → Maybe (List Term) toListOfTerms (con c []) = if (c == (quote [])) then just [] else nothing toListOfTerms (con c (varg t ∷ varg s ∷ args)) with toListOfTerms s ... | just terms = if (c == (quote _∷_)) then just (t ∷ terms) else nothing ... | nothing = nothing toListOfTerms (con c (harg t ∷ args)) = toListOfTerms (con c args) toListOfTerms _ = nothing solve-macro : Term → Term → TC Unit solve-macro monoid hole = do hole′ ← inferType hole >>= normalise just (varInfos , equation) ← returnTC (getVarsAndEquation hole′) where nothing → typeError (strErr "Something went wrong when getting the variable names in " ∷ termErr hole′ ∷ []) {- The call to the monoid solver will be inside a lamba-expression. That means, that we have to adjust the deBruijn-indices of the variables in 'monoid' -} adjustedMonoid ← returnTC (adjustDeBruijnIndex (length varInfos) monoid) just (lhs , rhs) ← returnTC (toMonoidExpression adjustedMonoid (getArgs equation)) where nothing → typeError( strErr "Error while trying to build ASTs for the equation " ∷ termErr equation ∷ []) let solution = solverCallWithLambdas (length varInfos) varInfos adjustedMonoid lhs rhs unify hole solution macro solveMonoid : Term → Term → TC _ solveMonoid = ReflectionSolver.solve-macro (quote MonoidStr._·_) (quote MonoidStr.ε) (quote naiveSolve) solveCommMonoid : Term → Term → TC _ solveCommMonoid = ReflectionSolver.solve-macro (quote CommMonoidStr._·_) (quote CommMonoidStr.ε) (quote naiveCommSolve)
{ "alphanum_fraction": 0.627246808, "avg_line_length": 36.3378378378, "ext": "agda", "hexsha": "3c33ed3fc9b9699d51420188043495d8fc98cbfd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/MonoidSolver/Reflection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/MonoidSolver/Reflection.agda", "max_line_length": 121, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/MonoidSolver/Reflection.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 2304, "size": 8067 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Commutation) -- The "four middle interchange" for monoidal categories. -- -- Aka the "interchange law" or "exchange law" (though those terms are -- more comonly used in the more general context of composition in -- 2-categories). -- Section 5.3 of the PhD thesis of Geoff Cruttwell states most (all?) -- the properties in the module, starting on p. 57 (starting with Prop. 5.3.4). -- It also has nice string-diagrammatic proofs. -- See also further comments in https://github.com/agda/agda-categories/pull/294#issuecomment-897697009 module Categories.Category.Monoidal.Interchange {o ℓ e} {C : Category o ℓ e} where open import Level using (_⊔_) import Categories.Category.Monoidal.Construction.Product as MonoidalProduct open import Categories.Category.Monoidal.Core using (Monoidal) import Categories.Category.Monoidal.Utilities as MonoidalUtilities open import Categories.Category.Product using (_⁂_) open import Categories.Functor using (_∘F_) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper) open import Categories.Morphism C using (_≅_; module ≅) open Category C using (Obj; id; _⇒_; _∘_; _≈_) open Commutation C private variable W W₁ W₂ X X₁ X₂ Y Y₁ Y₂ Z Z₁ Z₂ : Obj f g h i : X ⇒ Y -- An abstract definition of an interchange map with the minimal set -- of coherence laws required to make the tensor product ⊗ of C a -- monoidal functor. (See also Categories.Functor.Monoidal.Tensor.) record HasInterchange (M : Monoidal C) : Set (o ⊔ ℓ ⊔ e) where open Monoidal M using (_⊗₀_; _⊗₁_; unit; ⊗) open MonoidalUtilities.Shorthands M using (α⇒; λ⇐; λ⇒; ρ⇒) -- The "four middle interchange" for tensor products. field swapInner : ∀ {W X Y Z} → (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) module swapInner {W X Y Z} = _≅_ (swapInner {W} {X} {Y} {Z}) private i⇒ = swapInner.from i⇐ = swapInner.to -- Naturality and coherence laws of the interchange. field natural : i⇒ ∘ (f ⊗₁ g) ⊗₁ (h ⊗₁ i) ≈ (f ⊗₁ h) ⊗₁ (g ⊗₁ i) ∘ i⇒ assoc : [ ((X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⇒ (X₁ ⊗₀ (Y₁ ⊗₀ Z₁)) ⊗₀ (X₂ ⊗₀ (Y₂ ⊗₀ Z₂)) ]⟨ i⇒ ⊗₁ id ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⟩ i⇒ ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ Z₁) ⊗₀ ((X₂ ⊗₀ Y₂) ⊗₀ Z₂) ⟩ α⇒ ⊗₁ α⇒ ≈ α⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Y₂) ⊗₀ (Z₁ ⊗₀ Z₂)) ⟩ id ⊗₁ i⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Z₁) ⊗₀ (Y₂ ⊗₀ Z₂)) ⟩ i⇒ ⟩ unitˡ : [ unit ⊗₀ (X ⊗₀ Y) ⇒ (X ⊗₀ Y) ]⟨ λ⇐ ⊗₁ id ⇒⟨ (unit ⊗₀ unit) ⊗₀ (X ⊗₀ Y) ⟩ i⇒ ⇒⟨ (unit ⊗₀ X) ⊗₀ (unit ⊗₀ Y) ⟩ λ⇒ ⊗₁ λ⇒ ≈ λ⇒ ⟩ unitʳ : [ (X ⊗₀ Y) ⊗₀ unit ⇒ (X ⊗₀ Y) ]⟨ id ⊗₁ λ⇐ ⇒⟨ (X ⊗₀ Y) ⊗₀ (unit ⊗₀ unit) ⟩ i⇒ ⇒⟨ (X ⊗₀ unit) ⊗₀ (Y ⊗₀ unit) ⟩ ρ⇒ ⊗₁ ρ⇒ ≈ ρ⇒ ⟩ -- The interchange is a natural isomorphism. naturalIso : ⊗ ∘F (⊗ ⁂ ⊗) ≃ ⊗ ∘F MonoidalProduct.⊗ M M naturalIso = niHelper (record { η = λ _ → i⇒ ; η⁻¹ = λ _ → i⇐ ; commute = λ _ → natural ; iso = λ _ → swapInner.iso })
{ "alphanum_fraction": 0.567867036, "avg_line_length": 35.3152173913, "ext": "agda", "hexsha": "ec71ea38969f7b53f30451d0f2b6da54e5fd7c2b", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Interchange.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Interchange.agda", "max_line_length": 106, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Interchange.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1290, "size": 3249 }
postulate A : Set data D : Set where c : A → D data P : D → Set where d : (x : A) → P (c x) g : (x : D) → P x → D g blargh (d y) with Set g glurph (d y) | w = {!!} -- Expected: glurph = c y : D, y : A, w : Set₁ h : D → D h x@(c y) with Set h (c z) | w = {!!} -- Expected: z : A, w : Set₁
{ "alphanum_fraction": 0.4584717608, "avg_line_length": 15.8421052632, "ext": "agda", "hexsha": "4b57ce2608000113c7ca2e8e444729b5d3be0268", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/interaction/Issue2303.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/interaction/Issue2303.agda", "max_line_length": 48, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/interaction/Issue2303.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 139, "size": 301 }
-- 2018-05-25, Reported by Sergei Meshveliani on the Agda list open import Common.Prelude record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B f : List (Nat × Nat) → List (Nat × Nat) f ps = map (\p → let (x , y) = p in (x , suc y)) ps
{ "alphanum_fraction": 0.5833333333, "avg_line_length": 19.7142857143, "ext": "agda", "hexsha": "f1d6224feb9db865775ba94e28e0061e75983d8c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3085.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3085.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3085.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 99, "size": 276 }
module Esterel.CompletionCode where open import Data.Nat using (ℕ ; zero ; suc) renaming (_≟_ to _≟ℕ_ ; _⊔_ to _⊔ℕ_ ; _≤_ to _≤N_ ; _≤?_ to _≤?N_) open import Data.Nat.Properties using (⊔-⊓-isCommutativeSemiringWithoutOne) open import Function using (_∘_) open import Relation.Nullary using (Dec ; yes ; no) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong) import Level import Relation.Binary open import Data.List using (List ; _∷_ ; [] ; _++_) open import Data.List.Any.Properties using (++⁻) renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Data.Empty using (⊥-elim) import Data.Bool open import Algebra.Structures using (IsCommutativeSemiringWithoutOne ; IsCommutativeMonoid) open import utility data CompletionCode : Set where nothin : CompletionCode pause : CompletionCode exit : ℕ → CompletionCode ↓* : CompletionCode → CompletionCode ↓* nothin = nothin ↓* pause = pause ↓* (exit zero) = nothin ↓* (exit (suc n)) = exit n exit-injective : ∀{n m} → exit n ≡ exit m → n ≡ m exit-injective refl = refl _≟_ : Decidable {A = CompletionCode} _≡_ nothin ≟ nothin = yes refl nothin ≟ pause = no λ() nothin ≟ exit _ = no λ() pause ≟ nothin = no λ() pause ≟ pause = yes refl pause ≟ exit _ = no λ() exit _ ≟ nothin = no λ() exit _ ≟ pause = no λ() exit n ≟ exit m with n ≟ℕ m ... | yes n≡m = yes (cong exit n≡m) ... | no ¬n≡m = no (¬n≡m ∘ exit-injective) open ListSet _≟_ _⊔_ : CompletionCode → CompletionCode → CompletionCode nothin ⊔ r = r pause ⊔ nothin = pause pause ⊔ r = r exit n ⊔ nothin = exit n exit n ⊔ pause = exit n exit n ⊔ exit m = exit (n ⊔ℕ m) ⊔-comm : ∀ c₁ c₂ → c₁ ⊔ c₂ ≡ c₂ ⊔ c₁ ⊔-comm nothin nothin = refl ⊔-comm nothin pause = refl ⊔-comm nothin (exit m) = refl ⊔-comm pause nothin = refl ⊔-comm pause pause = refl ⊔-comm pause (exit m) = refl ⊔-comm (exit n) nothin = refl ⊔-comm (exit n) pause = refl ⊔-comm (exit n) (exit m) rewrite IsCommutativeMonoid.comm (IsCommutativeSemiringWithoutOne.+-isCommutativeMonoid ⊔-⊓-isCommutativeSemiringWithoutOne) n m = refl data _≤_ : Relation.Binary.Rel CompletionCode Level.zero where nothin≤c : ∀ {c} -> nothin ≤ c pause≤pause : pause ≤ pause pause≤exit : ∀ {n} -> pause ≤ exit n exit≤exit : ∀ {n} {m} -> (n ≤N m) -> exit n ≤ exit m _≤?_ : Decidable _≤_ nothin ≤? c2 = yes nothin≤c pause ≤? nothin = no (λ ()) pause ≤? pause = yes pause≤pause pause ≤? exit x = yes pause≤exit exit n ≤? nothin = no (λ ()) exit n ≤? pause = no (λ ()) exit n ≤? exit m with n ≤?N m exit n ≤? exit m | yes n≤m = yes (exit≤exit n≤m) exit n ≤? exit m | no ¬n≤m = no ¬≤ where ¬≤ : Relation.Nullary.¬ (exit n ≤ exit m) ¬≤ (exit≤exit n) = ¬n≤m n codessub : (List CompletionCode) → (List CompletionCode) → Set codessub codes' codes = (∀ a → a ∈ codes' → a ∈ codes) codesub++ll : ∀{a b c} → codessub a b → codessub a (b ++ c) codesub++ll sub a a∈ = ++ˡ (sub a a∈) codesub++both : ∀{a b c d} → codessub a c → codessub b d → codessub (a ++ b) (c ++ d) codesub++both{a}{b}{c}{d} a⊂c b⊂d z z∈ with ++⁻ a z∈ ... | inj₁ z∈1 = ++ˡ (a⊂c z z∈1) ... | inj₂ z∈2 = ++ʳ c (b⊂d z z∈2) codesub- : ∀{a b} z → codessub a b → codessub (set-remove a z) (set-remove b z) codesub-{a}{b} z a⊂b x x∈ with z ≟ x ... | yes refl = ⊥-elim (set-remove-removed{x}{a} x∈) ... | no ¬refl = set-remove-not-removed ¬refl (a⊂b x (set-remove-mono-∈ z x∈))
{ "alphanum_fraction": 0.6054459572, "avg_line_length": 31.8495575221, "ext": "agda", "hexsha": "2ef6db7f3ba8bf114042e351c32557504a4580b6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Esterel/CompletionCode.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Esterel/CompletionCode.agda", "max_line_length": 91, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Esterel/CompletionCode.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 1417, "size": 3599 }
mmodule silly1 where
{ "alphanum_fraction": 0.8181818182, "avg_line_length": 7.3333333333, "ext": "agda", "hexsha": "d0697094c3788eb2e791d40e7890efd8442ad9e8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "silly1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "silly1.agda", "max_line_length": 20, "max_stars_count": null, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "silly1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6, "size": 22 }
module Values where open import Data.Bool open import Data.List open import Data.List.All open import Data.Nat open import Data.Product open import Data.Sum open import Relation.Binary.PropositionalEquality open import Typing open import Syntax open import Global open import Channel mutual -- a value indexed by a *relevant* session context, which is "used up" by the value data Val (G : SCtx) : Type → Set where VUnit : (inaG : Inactive G) → Val G TUnit VInt : (i : ℕ) → (inaG : Inactive G) → Val G TInt VPair : ∀ {t₁ t₂ G₁ G₂} → (ss-GG₁G₂ : SSplit G G₁ G₂) → (v₁ : Val G₁ t₁) → (v₂ : Val G₂ t₂) → Val G (TPair t₁ t₂) VChan : ∀ {s} → (ce : ChannelEnd) → (cr : ChannelRef G ce s) → Val G (TChan s) VFun : ∀ {φ lu t₁ t₂} → (lu ≡ LL ⊎ All Unr φ) → (ϱ : VEnv G φ) → (e : Expr (t₁ ∷ φ) t₂) → Val G (TFun lu t₁ t₂) -- type environment-indexed value environment -- session context G describes the entire environment, it splits over all (channel) values data VEnv (G : SCtx) : TCtx → Set where vnil : (ina : Inactive G) → VEnv G [] vcons : ∀{t φ G₁ G₂} → (ssp : SSplit G G₁ G₂) → (v : Val G₁ t) → (ϱ : VEnv G₂ φ) → VEnv G (t ∷ φ) unrestricted-val : ∀ {t G} → Unr t → Val G t → Inactive G unrestricted-venv : ∀ {φ G} → All Unr φ → VEnv G φ → Inactive G unrestricted-val UUnit (VUnit x) = x unrestricted-val UInt (VInt i x) = x unrestricted-val (UPair unrt unrt₁) (VPair x v v₁) = ssplit-inactive x (unrestricted-val unrt v) (unrestricted-val unrt₁ v₁) unrestricted-val {TFun UU t₁ t₂} UFun (VFun (inj₁ ()) ϱ e) unrestricted-val {TFun UU t₁ t₂} UFun (VFun (inj₂ unr-φ) ϱ e) = unrestricted-venv unr-φ ϱ unrestricted-venv unr-φ (vnil ina) = ina unrestricted-venv (px ∷ unr-φ) (vcons ssp v ϱ) = ssplit-inactive ssp (unrestricted-val px v) (unrestricted-venv unr-φ ϱ) -- access a value in an indexed environment access : ∀ {φ t} {G : SCtx} → VEnv G φ → t ∈ φ → ∃ λ G₁ → ∃ λ G₂ → Inactive G₂ × SSplit G G₁ G₂ × Val G₁ t access (vcons ssp v ϱ) (here allUnr) = _ , _ , unrestricted-venv allUnr ϱ , ssp , v access (vcons ssp x₀ ϱ) (there unrX₀ x) with access ϱ x access (vcons ssp x₀ ϱ) (there unrX₀ x) | G₁ , G₂ , inaG₂ , ssp12 , v with ssplit-compose4 ssp ssp12 ... | Gi , ssp1 , ssp2 = G₁ , Gi , ssplit-inactive ssp2 (unrestricted-val unrX₀ x₀) inaG₂ , ssp1 , v -- coerce a value to a supertype coerce : ∀ {G t t'} → Val G t → SubT t t' → Val G t' coerce (VUnit inaG) sub-unit = VUnit inaG coerce (VInt i inaG) sub-int = VInt i inaG coerce (VPair ss-GG₁G₂ v v₁) (sub-pair t≤t' t≤t'') = VPair ss-GG₁G₂ (coerce v t≤t') (coerce v₁ t≤t'') coerce (VChan b vcr) (sub-chan s≲s') = VChan b (vcr-coerce vcr s≲s') coerce (VFun lu ϱ e) (sub-fun t≤t' t≤t'') = VFun lu ϱ (expr-coerce e t≤t'' t≤t') rewrite-ssplit : ∀ {G G' G₁ G₂} → G ≡ G' → SSplit G G₁ G₂ → SSplit G' G₁ G₂ rewrite-ssplit p ssp rewrite p = ssp rewrite-ssplit1 : ∀ {G G₁ G₁' G₂} → G₁ ≡ G₁' → SSplit G G₁ G₂ → SSplit G G₁' G₂ rewrite-ssplit1 p ssp rewrite p = ssp -- split environment according to type context split split-env : ∀ {Φ Φ₁ Φ₂} {G : SCtx} → Split Φ Φ₁ Φ₂ → VEnv G Φ → Σ (SCtx × SCtx) λ { (G₁ , G₂) → SSplit G G₁ G₂ × VEnv G₁ Φ₁ × VEnv G₂ Φ₂ } split-env{G = G} [] (vnil ina) = (G , G) , inactive-ssplit-trivial ina , vnil ina , vnil ina split-env (dupl unrt sp) (vcons ssp v ϱ) with split-env sp ϱ | unrestricted-val unrt v split-env (dupl unrt sp) (vcons ssp v ϱ) | (G₁' , G₂') , ssp12 , ϱ₁' , ϱ₂' | unr-v rewrite inactive-left-ssplit ssp unr-v with ssplit-compose4 ssp ssp12 | ssplit-compose3 ssp ssp12 ... | Gi , ssp-GG1Gi , ssp-GiG1G2' | Gi-1 , ssp-GGiG2' , ssp-GiG1G1' = let p₁ = (inactive-left-ssplit ssp-GiG1G1' unr-v) in let p₂ = (inactive-left-ssplit ssp-GiG1G2' unr-v) in (G₁' , G₂') , ssp12 , vcons (rewrite-ssplit p₁ ssp-GiG1G1') v ϱ₁' , vcons (rewrite-ssplit p₂ ssp-GiG1G2') v ϱ₂' split-env (drop px sp) (vcons ssp v ϱ) rewrite inactive-left-ssplit ssp (unrestricted-val px v) = split-env sp ϱ split-env (left sp) (vcons ssp v ϱ) with split-env sp ϱ split-env{G = G} (left sp) (vcons ssp v ϱ) | (G₁' , G₂') , ssp12 , ϱ₁' , ϱ₂' with ssplit-compose3 ssp ssp12 ... | Gi , ssp-GiG2' , ssp-GiG1G1' = (Gi , G₂') , ssp-GiG2' , vcons ssp-GiG1G1' v ϱ₁' , ϱ₂' split-env (rght sp) (vcons ssp v ϱ) with split-env sp ϱ split-env (rght sp) (vcons ssp v ϱ) | (G₁' , G₂') , ssp12 , ϱ₁' , ϱ₂' with ssplit-compose4 ssp ssp12 ...| Gi , ssp-GG1'Gi , ssp-GiG1G2' = (G₁' , Gi) , ssp-GG1'Gi , ϱ₁' , vcons ssp-GiG1G2' v ϱ₂'
{ "alphanum_fraction": 0.6305788776, "avg_line_length": 44.3725490196, "ext": "agda", "hexsha": "65feba4ac439636d1e401845b14cb88dd436cb0d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/Values.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/Values.agda", "max_line_length": 180, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/Values.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 1927, "size": 4526 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.IsEquivalence open import Oscar.Data.𝟙 module Oscar.Class.HasEquivalence where module _ {𝔬} (𝔒 : Ø 𝔬) ℓ where 𝔥asEquivalence : Rℭlass 𝟙 𝔥asEquivalence = ∁ (𝔒 → 𝔒 → Ø ℓ) IsEquivalence open Rℭlass 𝔥asEquivalence using () renaming (GET-CLASS to HasEquivalence) public module _ {𝔬} (𝔒 : Ø 𝔬) {ℓ} where open Rℭlass (𝔥asEquivalence 𝔒 ℓ) using () renaming (GET-METHOD to Equivalence[_]) public infix 4 ≈-syntax ≈-syntax = Equivalence[_] syntax ≈-syntax 𝔒 x y = x ≈[ 𝔒 ] y module _ {𝔬} {𝔒 : Ø 𝔬} {ℓ} where open Rℭlass (𝔥asEquivalence 𝔒 ℓ) using () renaming (GET-METHOD to Equivalence) public infix 4 _≈_ _≈_ = Equivalence
{ "alphanum_fraction": 0.7029288703, "avg_line_length": 22.40625, "ext": "agda", "hexsha": "b702a24498b5c414347e73259f577180b2633cd8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/HasEquivalence.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/HasEquivalence.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/HasEquivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 301, "size": 717 }
module _ where module A where postulate C : Set → Set → Set syntax C X Y = X , Y module B where postulate C : Set open A open B Foo : Set → Set Foo X = X , X
{ "alphanum_fraction": 0.5445026178, "avg_line_length": 10.6111111111, "ext": "agda", "hexsha": "a88fb8976b99d42d015fb9ce06699c42a288ea0e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1194l.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1194l.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1194l.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 66, "size": 191 }
open import Type open import Structure.Relator open import Structure.Setoid renaming (_≡_ to _≡ₑ_) module Structure.Sets.Quantifiers.Proofs {ℓₛ ℓₗ ℓₑ} {S : Type{ℓₛ}} ⦃ equiv : Equiv{ℓₑ}(S) ⦄ (_∈_ : S → S → Type{ℓₗ}) ⦃ [∈]-binaryRelator : BinaryRelator(_∈_) ⦄ where import Lvl open import Structure.Relator.Proofs renaming ([≡]-binaryRelator to [≡ₑ]-binaryRelator) open import Structure.Sets.Quantifiers(_∈_) open import Syntax.Function private variable ℓ : Lvl.Level private variable A : S [∃ₛ]-unaryRelator : ∀{P : S → S → Type{ℓ}} → ⦃ rel-P : ∀{x} → UnaryRelator(P(x)) ⦄ → UnaryRelator(\y → ∃ₛ(A)(x ↦ P(x)(y))) [∃ₛ]-unaryRelator = [∃]-unaryRelator ⦃ rel-P = [∧]-unaryRelator ⦄ [∀ₛ]-unaryRelator : ∀{P : S → S → Type{ℓ}} → ⦃ rel-P : ∀{x} → UnaryRelator(P(x)) ⦄ → UnaryRelator(\y → ∀ₛ(A)(x ↦ P(x)(y))) [∀ₛ]-unaryRelator = [∀]-unaryRelator ⦃ rel-P = [→]-unaryRelator ⦄ [∃ₛ]-binaryRelator : ∀{P : S → S → S → Type{ℓ}} → ⦃ rel-P : ∀{x} → BinaryRelator(P(x)) ⦄ → BinaryRelator(\A y → ∃ₛ(A)(x ↦ P(x)(A)(y))) [∃ₛ]-binaryRelator = binaryRelator-from-unaryRelator ⦃ relₗ = [∃]-unaryRelator ⦃ rel-P = [∧]-unaryRelator ⦃ rel-P = binary-unaryRelatorₗ ⦄ ⦃ rel-Q = binary-unaryRelatorᵣ ⦄ ⦄ ⦄ ⦃ relᵣ = [∃]-unaryRelator ⦃ rel-P = [∧]-unaryRelator ⦃ rel-Q = binary-unaryRelatorₗ ⦄ ⦄ ⦄ [∀ₛ]-binaryRelator : ∀{P : S → S → S → Type{ℓ}} → ⦃ rel-P : ∀{x} → BinaryRelator(P(x)) ⦄ → BinaryRelator(\A y → ∀ₛ(A)(x ↦ P(x)(A)(y))) [∀ₛ]-binaryRelator = binaryRelator-from-unaryRelator ⦃ relₗ = [∀]-unaryRelator ⦃ rel-P = [→]-unaryRelator ⦃ rel-P = binary-unaryRelatorₗ ⦄ ⦃ rel-Q = binary-unaryRelatorᵣ ⦄ ⦄ ⦄ ⦃ relᵣ = [∀]-unaryRelator ⦃ rel-P = [→]-unaryRelator ⦃ rel-Q = binary-unaryRelatorₗ ⦄ ⦄ ⦄
{ "alphanum_fraction": 0.6189349112, "avg_line_length": 56.3333333333, "ext": "agda", "hexsha": "60c1ad1199b764ea6ea22a9e9d93db3307c03ea9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Sets/Quantifiers/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Sets/Quantifiers/Proofs.agda", "max_line_length": 165, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Sets/Quantifiers/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 808, "size": 1690 }