Search is not available for this dataset
text
string | meta
dict |
---|---|
open import FRP.JS.Bool using ( Bool )
open import FRP.JS.True using ( ⊤ ; tt )
open import FRP.JS.String using ( String )
open import FRP.JS.True using ( True )
open import FRP.JS.RSet
open import FRP.JS.Behaviour
module FRP.JS.QUnit where
infixr 4 _,_
data Test : Set where
ε : Test
_,_ : Test → Test → Test
ok : String → (b : {t : ⊤} → Bool) → {b✓ : True b} → Test
ok! : String → (b : {t : ⊤} → Bool) → Test
ok◇ : String → (b : ⟦ Beh ⟨ Bool ⟩ ⟧) → Test
data TestSuite : Set where
ε : TestSuite
_,_ : TestSuite → TestSuite → TestSuite
test : String → Test → TestSuite
data TestSuites : Set where
ε : TestSuites
_,_ : TestSuites → TestSuites → TestSuites
suite : String → TestSuite → TestSuites
| {
"alphanum_fraction": 0.638121547,
"avg_line_length": 24.9655172414,
"ext": "agda",
"hexsha": "568124de0fea7163a8765947999952d358b44f57",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "test/agda/FRP/JS/QUnit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "test/agda/FRP/JS/QUnit.agda",
"max_line_length": 59,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "test/agda/FRP/JS/QUnit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 255,
"size": 724
} |
module _ where
module A where
data D : Set₁ where
!_ : Set → D
infix 3 !_
data C : Set₁ where
#_ : A.D → C
infix 2 #_
module B where
data D : Set₁ where
!_ : C → D
infix 1 !_
open A
open B
ok₁ : B.D → B.D
ok₁ (! # X) = ! # X
ok₂ : C → C
ok₂ (# ! X) = # ! X
| {
"alphanum_fraction": 0.3994413408,
"avg_line_length": 11.9333333333,
"ext": "agda",
"hexsha": "e309ca3b5f49eee0e18ec3015d345fdc40a6e3bb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1436-13.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1436-13.agda",
"max_line_length": 25,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1436-13.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 130,
"size": 358
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Homomorphisms.Definition
module Rings.Homomorphisms.Image {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_+A_ _*A_ : A → A → A} {_+B_ _*B_ : B → B → B} {R1 : Ring S _+A_ _*A_} {R2 : Ring T _+B_ _*B_} {f : A → B} (hom : RingHom R1 R2 f) where
open import Groups.Homomorphisms.Image (RingHom.groupHom hom)
open import Rings.Subrings.Definition
imageGroupSubring : Subring R2 imageGroupPred
Subring.isSubgroup imageGroupSubring = imageGroupSubgroup
Subring.containsOne imageGroupSubring = Ring.1R R1 , RingHom.preserves1 hom
Subring.closedUnderProduct imageGroupSubring {x} {y} (a , fa=x) (b , fb=y) = (a *A b) , transitive ringHom (Ring.*WellDefined R2 fa=x fb=y)
where
open Setoid T
open Equivalence eq
open RingHom hom
| {
"alphanum_fraction": 0.7128099174,
"avg_line_length": 42.0869565217,
"ext": "agda",
"hexsha": "1d91ad458432ea9020ab27bbff423c1be841e269",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Homomorphisms/Image.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Homomorphisms/Image.agda",
"max_line_length": 254,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Homomorphisms/Image.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 332,
"size": 968
} |
open import Data.Nat
open import Data.Vec
open import Data.List
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
module DependentFold where
Nat = ℕ
dfold : ∀ {a : Set}
→ {k : Nat}
→ (p : Nat → Set)
→ ((l : Nat) → a → p l → p (1 + l))
→ p 0
→ Vec a k
→ p k
dfold {k = 0} p step base [] = base
dfold {k = suc n} p step base (x ∷ xs) = step n x (dfold p step base xs)
foldrₗ : {a b : Set} -> (a -> b -> b) -> b -> List a -> b
foldrₗ step base [] = base
foldrₗ step base (x ∷ xs) = step x (foldrₗ step base xs)
map_motive : Set -> Nat -> Set
map_motive a l = Vec a l
dmap : {a b : Set} → {n : ℕ} → (a → b) → Vec a n → Vec b n
dmap {a} {b} {n} f xs = dfold (map_motive b) (λ _ x xs → f x ∷ xs) [] xs
_ : dmap (λ x → x + 3) (1 ∷ 2 ∷ 3 ∷ []) ≡ (4 ∷ 5 ∷ 6 ∷ [])
_ = refl
dappend : {a : Set} → {m n : ℕ} → Vec a m → Vec a n → Vec a (m + n)
dappend {a} {m} {n} xs ys = dfold (λ l → Vec a (l + n)) (λ _ x xs → x ∷ xs) ys xs
_ : dappend (1 ∷ 2 ∷ []) (3 ∷ 4 ∷ []) ≡ 1 ∷ 2 ∷ 3 ∷ 4 ∷ []
_ = refl
ind : {a : Set} {p : List a → Set}
→ ((x : a) → {xs : List a} → p xs → p (x ∷ xs))
→ p []
→ (l : List a)
→ p l
ind step base [] = base
ind step base (x ∷ xs) = step x (ind step base xs)
| {
"alphanum_fraction": 0.4880382775,
"avg_line_length": 26.125,
"ext": "agda",
"hexsha": "0880c9eb53eccb844cf42d2996287f3945e53d64",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c242aa97ef02ba1edf32f2ee96dd2d7b8ac6e1e4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "ryanorendorff/ryan.orendorff.io",
"max_forks_repo_path": "src/posts/2020-12-19-dependent-fold/DependentFold.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "c242aa97ef02ba1edf32f2ee96dd2d7b8ac6e1e4",
"max_issues_repo_issues_event_max_datetime": "2021-12-31T08:13:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-12-19T20:17:54.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "ryanorendorff/ryan.orendorff.io",
"max_issues_repo_path": "src/posts/2020-12-19-dependent-fold/DependentFold.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c242aa97ef02ba1edf32f2ee96dd2d7b8ac6e1e4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "ryanorendorff/ryan.orendorff.io",
"max_stars_repo_path": "src/posts/2020-12-19-dependent-fold/DependentFold.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 541,
"size": 1254
} |
module Issue1251.NonTerminating where
open import Common.Prelude -- an import is necessary to trigger internal error
-- a non-termination function using imported stuff
bla : Nat → Set
bla zero = bla zero
bla (suc x) = bla x
| {
"alphanum_fraction": 0.752173913,
"avg_line_length": 25.5555555556,
"ext": "agda",
"hexsha": "b9711bcbb19545af294f5f93514941daf5d9a6a6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1251/NonTerminating.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1251/NonTerminating.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1251/NonTerminating.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 58,
"size": 230
} |
------------------------------------------------------------------------------
-- Well-founded relation on lists based on their structure
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.List.WF-Relation.LT-Cons where
open import FOTC.Base
open import FOTC.Base.List
------------------------------------------------------------------------------
-- Well-founded relation on lists based on their structure.
LTC : D → D → Set
LTC xs ys = ∃[ x ] ys ≡ x ∷ xs
| {
"alphanum_fraction": 0.4041297935,
"avg_line_length": 35.6842105263,
"ext": "agda",
"hexsha": "c1d1eb28d3470514e31d187d2e2276b5a9aac2a3",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Cons.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Cons.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Cons.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 118,
"size": 678
} |
{-# OPTIONS --cubical --sized-types --type-in-type #-} -- Oh my Nathaniel Hawthorne
module n2o.Network.Internal where
open import proto.Base
open import proto.Map
open import proto.IO
{-# FOREIGN GHC import Network.N2O.Types #-}
postulate
Header : Set
data Event (A : Set) : Set where
Init : Event A
Message : A → Event A
Terminate : Event A
data Result (A : Set) : Set where
Reply : A → Result A
Ok : Result A
Unknown : Result A
Empty : Result A
record Request : Set where
constructor Req
field
reqPath : ByteString Strict
reqMeth : ByteString Strict
reqVers : ByteString Strict
reqHead : List Header
mutual
data N2OT (S : Set) (M : Set → Set) (A : Set) : Set where
runN2O : S → M A → N2OT S M A
N2O : (F : Set → Set) (A : Set) → Set → Set
N2O F A = N2OT (State F A) IO
-- N2O F A = ReaderT (IORef (Context F A)) IO
{-# NO_POSITIVITY_CHECK #-}
record Context (F : Set → Set) (A : Set) : Set where
constructor mkCx
field
cxHandler : Event A → N2O F A (Result A) → Context F A -- TODO : Strict Positivity
cxRequest : Request
cxMiddleware : List (Context F A → Context F A) -- TODO : Strict Positivity
cxProtos : List (Proto F A) -- TODO : Strict Positivity
cxActions : ByteString Strict
cxDict : Map (ByteString Strict) (ByteString Strict)
State : (F : Set → Set) (A : Set) → Set
State F A = IORef (Context F A) -- TODO : comp
record Proto (F : Set → Set) (A : Set) : Set where
inductive
constructor proto
field
protoInfo : F A → N2O F A (Result (F A))
{-# COMPILE GHC Context = data Network.N2O.Types.Context (mkCx) #-}
{-# COMPILE GHC Header = type Network.N2O.Types.Header #-}
{-# COMPILE GHC N2OT = data Network.N2O.Types.N2OT ( runN2O ) #-}
{-# COMPILE GHC Proto = data Network.N2O.Types.Proto ( protoInfo ) #-}
{-# COMPILE GHC Event = data Network.N2O.Types.Event ( Init | Message | Terminate ) #-}
{-# COMPILE GHC Request = data Network.N2O.Types.Request ( Req ) #-}
{-# COMPILE GHC Result = data Network.N2O.Types.Result ( Reply | Ok | Unknown | Empty ) #-}
| {
"alphanum_fraction": 0.5475704369,
"avg_line_length": 36.0147058824,
"ext": "agda",
"hexsha": "3b8346a6feb7c22b612be3d77a08e61b48e9f298",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "o4/n2o",
"max_forks_repo_path": "n2o/Network/Internal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "o4/n2o",
"max_issues_repo_path": "n2o/Network/Internal.agda",
"max_line_length": 104,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "o4/n2o",
"max_stars_repo_path": "n2o/Network/Internal.agda",
"max_stars_repo_stars_event_max_datetime": "2019-01-02T06:37:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-30T11:37:10.000Z",
"num_tokens": 670,
"size": 2449
} |
module Issue1839.A where
postulate
PrintThis : Set
| {
"alphanum_fraction": 0.7636363636,
"avg_line_length": 9.1666666667,
"ext": "agda",
"hexsha": "0a17598949d52a92339ac0cbf609d26cecff0787",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1839/A.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1839/A.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1839/A.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 17,
"size": 55
} |
module _ where
-- open import Common.Prelude
module Id (A : Set) where
id : A → A
id x = x
module _ (A : Set) where
open Id A
id2 = id
| {
"alphanum_fraction": 0.5945945946,
"avg_line_length": 10.5714285714,
"ext": "agda",
"hexsha": "0b486031f6a63887363c8e9ac7ba4a14dbcf80fb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/AnonymousModuleWithParameter.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/AnonymousModuleWithParameter.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/AnonymousModuleWithParameter.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 53,
"size": 148
} |
-- Copyright: (c) 2016 Ertugrul Söylemez
-- License: BSD3
-- Maintainer: Ertugrul Söylemez <[email protected]>
module Data.Nat where
open import Algebra.Group
open import Classes
open import Core
open import Data.Nat.Core
open import Data.Nat.Core public
using (ℕ; ℕ-Number; ℕ-Plus; ℕ-Times;
ℕ,≤; module ℕ,≤;
suc; zero)
ℕ,+ : Monoid
ℕ,+ =
record {
semigroup = record {
A = ℕ;
Eq = PropEq ℕ;
semigroupOver = record {
_⋄_ = _+_;
⋄-cong = cong2 _+_;
assoc = Props.+-assoc
}
};
isMonoid = record {
id = 0;
left-id = Props.+-left-id;
right-id = Props.+-right-id
}
}
module ℕ,+ = Monoid ℕ,+
ℕ,* : Monoid
ℕ,* =
record {
semigroup = record {
A = ℕ;
Eq = PropEq ℕ;
semigroupOver = record {
_⋄_ = _*_;
⋄-cong = cong2 _*_;
assoc = Props.*-assoc
}
};
isMonoid = record {
id = 1;
left-id = Props.*-left-id;
right-id = Props.*-right-id
}
}
module ℕ,* = Monoid ℕ,*
| {
"alphanum_fraction": 0.5219047619,
"avg_line_length": 17.7966101695,
"ext": "agda",
"hexsha": "48dd0d0ffda7fbe708019bab8cba90d1ecaadbd1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "esoeylemez/agda-simple",
"max_forks_repo_path": "Data/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "esoeylemez/agda-simple",
"max_issues_repo_path": "Data/Nat.agda",
"max_line_length": 48,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "esoeylemez/agda-simple",
"max_stars_repo_path": "Data/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z",
"num_tokens": 356,
"size": 1050
} |
module RecordConstructorOutOfScope where
record R : Set where
constructor con
id : R
id = con
| {
"alphanum_fraction": 0.7352941176,
"avg_line_length": 12.75,
"ext": "agda",
"hexsha": "06e26da8ad2b577ac8a4ea4fb3426133ee656c4b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/RecordConstructorOutOfScope.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/RecordConstructorOutOfScope.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/RecordConstructorOutOfScope.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 102
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.ZCohomology.RingStructure.CohomologyRing where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Data.Nat renaming (_+_ to _+n_ ; _·_ to _·n_)
open import Cubical.Data.Sigma
open import Cubical.Data.Sum
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Monoid.Instances.NatPlusBis
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Ring
open import Cubical.Algebra.GradedRing.DirectSumHIT
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
open import Cubical.Algebra.AbGroup.Instances.DirectSumHIT
open import Cubical.HITs.SetTruncation as ST
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.RingStructure.CupProduct
open import Cubical.ZCohomology.RingStructure.RingLaws
open import Cubical.ZCohomology.RingStructure.GradedCommutativity
private variable
ℓ ℓ' : Level
open Iso
-----------------------------------------------------------------------------
-- Definition Cohomology Ring
open PlusBis
open GradedRing-⊕HIT-index
open GradedRing-⊕HIT-⋆
module _ (A : Type ℓ) where
H*R : Ring ℓ
H*R = ⊕HITgradedRing-Ring
NatPlusBis-Monoid
(λ k → coHom k A)
(λ k → snd (coHomGroup k A))
1⌣
_⌣_
(λ {k} {l} → 0ₕ-⌣ k l)
(λ {k} {l} → ⌣-0ₕ k l)
(λ _ _ _ → sym (ΣPathTransport→PathΣ _ _ ((sym (+'-assoc _ _ _)) , (sym (assoc-⌣ _ _ _ _ _ _)))))
(λ _ → sym (ΣPathTransport→PathΣ _ _ (sym (+'-rid _) , sym (lUnit⌣ _ _))))
(λ _ → ΣPathTransport→PathΣ _ _ (refl , transportRefl _ ∙ rUnit⌣ _ _))
(λ _ _ _ → leftDistr-⌣ _ _ _ _ _)
λ _ _ _ → rightDistr-⌣ _ _ _ _ _
H* : Type ℓ
H* = fst H*R
module gradedRingProperties (A : Type ℓ) where
open RingStr (snd (H*R A)) renaming (_·_ to _cup_)
-----------------------------------------------------------------------------
-- Graded Comutative Ring
-- def + commutation with base
-^-gen : (n m : ℕ) → (p : isEvenT n ⊎ isOddT n) → (q : isEvenT m ⊎ isOddT m)
→ H* A → H* A
-^-gen n m (inl p) q x = x
-^-gen n m (inr p) (inl q) x = x
-^-gen n m (inr p) (inr q) x = - x
-^_·_ : (n m : ℕ) → H* A → H* A
-^_·_ n m x = -^-gen n m (evenOrOdd n) (evenOrOdd m) x
-^-gen-base : {k : ℕ} → (n m : ℕ) → (p : isEvenT n ⊎ isOddT n) → (q : isEvenT m ⊎ isOddT m)
(a : coHom k A) → -^-gen n m p q (base k a) ≡ base k (-ₕ^-gen n m p q a)
-^-gen-base n m (inl p) q a = refl
-^-gen-base n m (inr p) (inl q) a = refl
-^-gen-base n m (inr p) (inr q) a = refl
-^-base : {k : ℕ} → (n m : ℕ) → (a : coHom k A) → (-^ n · m) (base k a) ≡ base k ((-ₕ^ n · m) a)
-^-base n m a = -^-gen-base n m (evenOrOdd n) (evenOrOdd m) a
gradCommRing : (n m : ℕ) → (a : coHom n A) → (b : coHom m A) →
(base n a) cup (base m b) ≡ (-^ n · m) ((base m b) cup (base n a))
gradCommRing n m a b = base (n +' m) (a ⌣ b)
≡⟨ cong (base (n +' m)) (gradedComm-⌣ n m a b) ⟩
base (n +' m) ((-ₕ^ n · m) (subst (λ n₁ → coHom n₁ A) (+'-comm m n) (b ⌣ a)))
≡⟨ sym (-^-base n m (subst (λ k → coHom k A) (+'-comm m n) (b ⌣ a))) ⟩
(-^ n · m) (base (n +' m) (subst (λ k → coHom k A) (+'-comm m n) (b ⌣ a)))
≡⟨ cong (-^ n · m) (sym (constSubstCommSlice (λ k → coHom k A) (H* A) base (+'-comm m n) (b ⌣ a))) ⟩
(-^ n · m) (base (m +' n) (b ⌣ a)) ∎
-----------------------------------------------------------------------------
-- Equivalence of Type implies equivalence of Cohomology Ring
module CohomologyRing-Equiv
{X : Type ℓ}
{Y : Type ℓ'}
(e : Iso X Y)
where
open IsGroupHom
open RingStr (snd (H*R X)) using ()
renaming
( 0r to 0H*X
; 1r to 1H*X
; _+_ to _+H*X_
; -_ to -H*X_
; _·_ to _cupX_
; +Assoc to +H*XAssoc
; +IdR to +H*XIdR
; +Comm to +H*XComm
; ·Assoc to ·H*XAssoc
; is-set to isSetH*X )
open RingStr (snd (H*R Y)) using ()
renaming
( 0r to 0H*Y
; 1r to 1H*Y
; _+_ to _+H*Y_
; -_ to -H*Y_
; _·_ to _cupY_
; +Assoc to +H*YAssoc
; +IdR to +H*YIdR
; +Comm to +H*YComm
; ·Assoc to ·H*YAssoc
; is-set to isSetH*Y )
coHomGr-Iso : {n : ℕ} → GroupIso (coHomGr n X) (coHomGr n Y)
fst (coHomGr-Iso {n}) = is
where
is : Iso (coHom n X) (coHom n Y)
fun is = ST.rec squash₂ (λ f → ∣ (λ y → f (inv e y)) ∣₂)
inv is = ST.rec squash₂ (λ g → ∣ (λ x → g (fun e x)) ∣₂)
rightInv is = ST.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ f → cong ∣_∣₂ (funExt (λ y → cong f (rightInv e y))))
leftInv is = ST.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ g → cong ∣_∣₂ (funExt (λ x → cong g (leftInv e x))))
snd (coHomGr-Iso {n}) = makeIsGroupHom
(ST.elim (λ _ → isProp→isSet λ u v i y → squash₂ _ _ (u y) (v y) i)
(λ f → ST.elim (λ _ → isProp→isSet (squash₂ _ _))
(λ f' → refl)))
H*-X→H*-Y : H* X → H* Y
H*-X→H*-Y = DS-Rec-Set.f _ _ _ _ isSetH*Y
0H*Y
(λ n a → base n (fun (fst coHomGr-Iso) a))
_+H*Y_
+H*YAssoc
+H*YIdR
+H*YComm
(λ n → cong (base n) (pres1 (snd coHomGr-Iso)) ∙ base-neutral n)
λ n a b → base-add _ _ _ ∙ cong (base n) (sym (pres· (snd coHomGr-Iso) a b))
H*-Y→H*-X : H* Y → H* X
H*-Y→H*-X = DS-Rec-Set.f _ _ _ _ isSetH*X
0H*X
(λ m a → base m (inv (fst coHomGr-Iso) a))
_+H*X_
+H*XAssoc
+H*XIdR
+H*XComm
(λ m → cong (base m) (pres1 (snd (invGroupIso coHomGr-Iso))) ∙ base-neutral m)
λ m a b → base-add _ _ _ ∙ cong (base m) (sym (pres· (snd (invGroupIso coHomGr-Iso)) a b))
e-sect : (y : H* Y) → H*-X→H*-Y (H*-Y→H*-X y) ≡ y
e-sect = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*Y _ _)
refl
(λ m a → cong (base m) (rightInv (fst coHomGr-Iso) a))
(λ {U V} ind-U ind-V → cong₂ _+H*Y_ ind-U ind-V)
e-retr : (x : H* X) → H*-Y→H*-X (H*-X→H*-Y x) ≡ x
e-retr = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*X _ _)
refl
(λ n a → cong (base n) (leftInv (fst coHomGr-Iso) a))
(λ {U V} ind-U ind-V → cong₂ _+H*X_ ind-U ind-V)
H*-X→H*-Y-pres1 : H*-X→H*-Y 1H*X ≡ 1H*Y
H*-X→H*-Y-pres1 = refl
H*-X→H*-Y-pres+ : (x x' : H* X) → H*-X→H*-Y (x +H*X x') ≡ H*-X→H*-Y x +H*Y H*-X→H*-Y x'
H*-X→H*-Y-pres+ x x' = refl
H*-X→H*-Y-pres· : (x x' : H* X) → H*-X→H*-Y (x cupX x') ≡ H*-X→H*-Y x cupY H*-X→H*-Y x'
H*-X→H*-Y-pres· = DS-Ind-Prop.f _ _ _ _ (λ x u v i y → isSetH*Y _ _ (u y) (v y) i)
(λ _ → refl)
(λ n → ST.elim (λ x → isProp→isSet λ u v i y → isSetH*Y _ _ (u y) (v y) i)
(λ f → DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*Y _ _)
refl
(λ m → ST.elim (λ _ → isProp→isSet (isSetH*Y _ _))
(λ g → refl))
λ {U V} ind-U ind-V → cong₂ _+H*Y_ ind-U ind-V) )
(λ {U V} ind-U ind-V y → cong₂ _+H*Y_ (ind-U y) (ind-V y))
module _
{X : Type ℓ}
{Y : Type ℓ'}
(e : Iso X Y)
where
open CohomologyRing-Equiv e
CohomologyRing-Equiv : RingEquiv (H*R X) (H*R Y)
fst CohomologyRing-Equiv = isoToEquiv is
where
is : Iso (H* X) (H* Y)
fun is = H*-X→H*-Y
inv is = H*-Y→H*-X
rightInv is = e-sect
leftInv is = e-retr
snd CohomologyRing-Equiv = makeIsRingHom H*-X→H*-Y-pres1 H*-X→H*-Y-pres+ H*-X→H*-Y-pres·
| {
"alphanum_fraction": 0.4952251023,
"avg_line_length": 36.3198198198,
"ext": "agda",
"hexsha": "5cdf442ef40028d264b1a2b72cb59ef0836e0eed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/RingStructure/CohomologyRing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/RingStructure/CohomologyRing.agda",
"max_line_length": 133,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/RingStructure/CohomologyRing.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3122,
"size": 8063
} |
open import Relation.Binary
module Data.FingerTree.Relation.Binary.Reasoning.FasterInference.Setoid {ℓ₁ ℓ₂} (setoid : Setoid ℓ₁ ℓ₂) where
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open Setoid setoid
infix 4 _IsRelatedTo_
infix 3 _∎
infixr 2 step-≈ step-≈˘ step-≡ step-≡˘
infixr 2 _≡⟨⟩_
infix 1 begin_
data _IsRelatedTo_ (x y : Carrier) : Set ℓ₂ where
relTo : (x≈y : x ≈ y) → x IsRelatedTo y
begin_ : ∀ {x y} → x IsRelatedTo y → x ≈ y
begin relTo x≈y = x≈y
step-≈ : ∀ x {y z} → y IsRelatedTo z → x ≈ y → x IsRelatedTo z
step-≈ _ (relTo y≈z) x≈y = relTo (trans x≈y y≈z)
syntax step-≈ x y≈z x≈y = x ≈⟨ x≈y ⟩ y≈z
step-≈˘ : ∀ x {y z} → y IsRelatedTo z → y ≈ x → x IsRelatedTo z
step-≈˘ _ (relTo y≈z) y≈x = relTo (trans (sym y≈x) y≈z)
syntax step-≈˘ x y≈z y≈x = x ≈˘⟨ y≈x ⟩ y≈z
step-≡ : ∀ x {y z} → y IsRelatedTo z → x ≡ y → x IsRelatedTo z
step-≡ _ x≈z ≡.refl = x≈z
syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z
step-≡˘ : ∀ x {y z} → y IsRelatedTo z → y ≡ x → x IsRelatedTo z
step-≡˘ _ x≈z ≡.refl = x≈z
syntax step-≡˘ x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z
_≡⟨⟩_ : ∀ x {y} → x IsRelatedTo y → x IsRelatedTo y
_ ≡⟨⟩ x≈y = _ ≡⟨ ≡.refl ⟩ x≈y
_∎ : ∀ x → x IsRelatedTo x
_∎ _ = relTo refl
| {
"alphanum_fraction": 0.5947063689,
"avg_line_length": 26.2826086957,
"ext": "agda",
"hexsha": "da73f7eb2321a64de4b7dbae73153e589750c843",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-indexed-fingertree",
"max_forks_repo_path": "src/Data/FingerTree/Relation/Binary/Reasoning/FasterInference/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-indexed-fingertree",
"max_issues_repo_path": "src/Data/FingerTree/Relation/Binary/Reasoning/FasterInference/Setoid.agda",
"max_line_length": 109,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-indexed-fingertree",
"max_stars_repo_path": "src/Data/FingerTree/Relation/Binary/Reasoning/FasterInference/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z",
"num_tokens": 643,
"size": 1209
} |
module Generic.Test.Data.Vec where
open import Generic.Main
import Data.Vec as Vec
infixr 5 _∷ᵥ_
Vec : ∀ {α} -> Set α -> ℕ -> Set α
Vec = readData Vec.Vec
-- []ᵥ : ∀ {α} {A : Set α} -> Vec A 0
pattern []ᵥ = #₀ lrefl
-- _∷ᵥ_ : ∀ {n α} {A : Set α} -> A -> Vec A n -> Vec A (suc n)
pattern _∷ᵥ_ {n} x xs = !#₁ (relv n , relv x , xs , lrefl)
elimVec : ∀ {n α π} {A : Set α}
-> (P : ∀ {n} -> Vec A n -> Set π)
-> (∀ {n} {xs : Vec A n} x -> P xs -> P (x ∷ᵥ xs))
-> P []ᵥ
-> (xs : Vec A n)
-> P xs
elimVec P f z []ᵥ = z
elimVec P f z (x ∷ᵥ xs) = f x (elimVec P f z xs)
| {
"alphanum_fraction": 0.4634146341,
"avg_line_length": 23.6538461538,
"ext": "agda",
"hexsha": "c241d624b323f689d77a1091f3fa2dc0a239b16d",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Test/Data/Vec.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Test/Data/Vec.agda",
"max_line_length": 62,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Test/Data/Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 277,
"size": 615
} |
-- Andreas, issue reported by Matteo Acerbi, 2014-09-04.
-- Short summary: x = c x is not impossible for coinductive constructors c,
-- so x should not be considered a strictly rigid occurrence in (c x).
-- Matteo:
-- In the following I cannot understand what justifies the absurd pattern
-- in the definition of ¬id≡In: as νId is coinductive, elaboration of the
-- no-cycles check to eliminators should not be possible (as far as I know).
-- Any two inhabitants of νId are bisimilar, but it seems that current
-- pattern matching makes it inconsistent to assume that bisimilarity
-- implies equality for νId, which *might* upset some. :-)
{-# OPTIONS --copatterns #-}
-- False and equality.
⊥ = (X : Set) → X
data _≡_ {A : Set}(x : A) : A → Set where
<> : x ≡ x
-- The cofixpoint of the identity functor.
record νId : Set where
coinductive
constructor In
field Out : νId
open νId
-- The "only" inhabitant of νId.
tt : νId
Out tt = tt
-- x ≡ In x is considered absurd.
¬id≡In : {x : νId} → x ≡ In x → ⊥
¬id≡In ()
-- _≈_ is bisimilarity for elements of νId.
record _≈νId_ (x y : νId) : Set where
coinductive
field step : Out x ≈νId Out y
open _≈νId_
-- Any two elements are bisimilar.
trivial-≈νId : ∀ {x y} → x ≈νId y
step trivial-≈νId = trivial-≈νId
-- For νId it is not consistent to assume that bisimilarity implies
-- equality.
problem? : (ext : ∀ {x y} → x ≈νId y → x ≡ y) → ⊥
problem? ext = ¬id≡In {tt} (ext trivial-≈νId)
| {
"alphanum_fraction": 0.6689419795,
"avg_line_length": 24.8305084746,
"ext": "agda",
"hexsha": "43b605ba6176f2f50165213f11a8344aa454ad32",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/Issue1271.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/Issue1271.agda",
"max_line_length": 76,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/Issue1271.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 479,
"size": 1465
} |
open import Common.Prelude
open import Common.Level
open import Common.Reflection
open import Common.Equality
test₁ : quoteTerm lzero ≡ def (quote lzero) []
test₁ = refl
foo : (l : Level) → Bool → Bool
foo _ false = true
foo _ true = false
test₂ : quoteTerm (foo lzero) ≡ def (quote foo) (arg (argInfo visible relevant) (def (quote lzero) []) ∷ [])
test₂ = refl
test₃ : unquote (give (quoteTerm lzero)) ≡ lzero
test₃ = refl
| {
"alphanum_fraction": 0.7056074766,
"avg_line_length": 23.7777777778,
"ext": "agda",
"hexsha": "49632ae42d5dad124c950eeab6630c66ff2ae8d8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/UnquoteLevel.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/UnquoteLevel.agda",
"max_line_length": 108,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/UnquoteLevel.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 133,
"size": 428
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Results concerning uniqueness of identity proofs
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Axiom.UniquenessOfIdentityProofs where
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality.Core
------------------------------------------------------------------------
-- Definition
--
-- Uniqueness of Identity Proofs (UIP) states that all proofs of
-- equality are themselves equal. In other words, the equality relation
-- is irrelevant. Here we define UIP relative to a given type.
UIP : ∀ {a} (A : Set a) → Set a
UIP A = Irrelevant {A = A} _≡_
------------------------------------------------------------------------
-- Properties
-- UIP always holds when using axiom K
-- (see `Axiom.UniquenessOfIdentityProofs.WithK`).
-- The existence of a constant function over proofs of equality for
-- elements in A is enough to prove UIP for A. Indeed, we can relate any
-- proof to its image via this function which we then know is equal to
-- the image of any other proof.
module Constant⇒UIP
{a} {A : Set a} (f : _≡_ {A = A} ⇒ _≡_)
(f-constant : ∀ {a b} (p q : a ≡ b) → f p ≡ f q)
where
≡-canonical : ∀ {a b} (p : a ≡ b) → trans (sym (f refl)) (f p) ≡ p
≡-canonical refl = trans-symˡ (f refl)
≡-irrelevant : UIP A
≡-irrelevant p q = begin
p ≡⟨ sym (≡-canonical p) ⟩
trans (sym (f refl)) (f p) ≡⟨ cong (trans _) (f-constant p q) ⟩
trans (sym (f refl)) (f q) ≡⟨ ≡-canonical q ⟩
q ∎ where open ≡-Reasoning
-- If equality is decidable for a given type, then we can prove UIP for
-- that type. Indeed, the decision procedure allows us to define a
-- function over proofs of equality which is constant: it returns the
-- proof produced by the decision procedure.
module Decidable⇒UIP
{a} {A : Set a} (_≟_ : Decidable (_≡_ {A = A}))
where
≡-normalise : _≡_ {A = A} ⇒ _≡_
≡-normalise {a} {b} a≡b with a ≟ b
... | yes p = p
... | no ¬p = ⊥-elim (¬p a≡b)
≡-normalise-constant : ∀ {a b} (p q : a ≡ b) → ≡-normalise p ≡ ≡-normalise q
≡-normalise-constant {a} {b} p q with a ≟ b
... | yes _ = refl
... | no ¬p = ⊥-elim (¬p p)
≡-irrelevant : UIP A
≡-irrelevant = Constant⇒UIP.≡-irrelevant ≡-normalise ≡-normalise-constant
| {
"alphanum_fraction": 0.5584206285,
"avg_line_length": 34,
"ext": "agda",
"hexsha": "ab0bdc23664b35bd7deb2a33a4420a100692d39b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Axiom/UniquenessOfIdentityProofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Axiom/UniquenessOfIdentityProofs.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Axiom/UniquenessOfIdentityProofs.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 753,
"size": 2482
} |
------------------------------------------------------------------------------
-- Commutativity of addition of total natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Nat.AddComm where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Data.Nat
------------------------------------------------------------------------------
-- Auxiliary properties
succCong : ∀ {m n} → m ≡ n → succ₁ m ≡ succ₁ n
succCong refl = refl
+-leftIdentity : ∀ n → zero + n ≡ n
+-leftIdentity n = +-0x n
+-rightIdentity : ∀ {n} → N n → n + zero ≡ n
+-rightIdentity Nn = N-ind A A0 is Nn
where
A : D → Set
A i = i + zero ≡ i
A0 : A zero
A0 = +-leftIdentity zero
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = trans (+-Sx i zero) (succCong Ai)
x+Sy≡S[x+y] : ∀ {m} → N m → ∀ n → m + succ₁ n ≡ succ₁ (m + n)
x+Sy≡S[x+y] Nm n = N-ind A A0 is Nm
where
A : D → Set
A i = i + succ₁ n ≡ succ₁ (i + n)
A0 : A zero
A0 = zero + succ₁ n ≡⟨ +-leftIdentity (succ₁ n) ⟩
succ₁ n ≡⟨ succCong (sym (+-leftIdentity n)) ⟩
succ₁ (zero + n) ∎
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = succ₁ i + succ₁ n ≡⟨ +-Sx i (succ₁ n) ⟩
succ₁ (i + succ₁ n) ≡⟨ succCong Ai ⟩
succ₁ (succ₁ (i + n)) ≡⟨ succCong (sym (+-Sx i n)) ⟩
succ₁ (succ₁ i + n) ∎
+-comm-ind-instance :
∀ n →
zero + n ≡ n + zero →
(∀ {m} → m + n ≡ n + m → succ₁ m + n ≡ n + succ₁ m) →
∀ {m} → N m → m + n ≡ n + m
+-comm-ind-instance n = N-ind (λ i → i + n ≡ n + i)
------------------------------------------------------------------------------
-- Approach 1: Interactive proof using pattern matching
module M1 where
+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m
+-comm {n = n} nzero Nn =
zero + n ≡⟨ +-leftIdentity n ⟩
n ≡⟨ sym (+-rightIdentity Nn) ⟩
n + zero ∎
+-comm {n = n} (nsucc {m} Nm) Nn =
succ₁ m + n ≡⟨ +-Sx m n ⟩
succ₁ (m + n) ≡⟨ succCong (+-comm Nm Nn) ⟩
succ₁ (n + m) ≡⟨ sym (x+Sy≡S[x+y] Nn m) ⟩
n + succ₁ m ∎
------------------------------------------------------------------------------
-- Approach 2: Combined proof using pattern matching
module M2 where
+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m
+-comm {n = n} nzero Nn = prf
where postulate prf : zero + n ≡ n + zero
{-# ATP prove prf +-rightIdentity #-}
+-comm {n = n} (nsucc {m} Nm) Nn = prf (+-comm Nm Nn)
where postulate prf : m + n ≡ n + m → succ₁ m + n ≡ n + succ₁ m
{-# ATP prove prf x+Sy≡S[x+y] #-}
------------------------------------------------------------------------------
-- Approach 3: Interactive proof using the induction principle
module M3 where
+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m
+-comm {n = n} Nm Nn = N-ind A A0 is Nm
where
A : D → Set
A i = i + n ≡ n + i
A0 : A zero
A0 = zero + n ≡⟨ +-leftIdentity n ⟩
n ≡⟨ sym (+-rightIdentity Nn) ⟩
n + zero ∎
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = succ₁ i + n ≡⟨ +-Sx i n ⟩
succ₁ (i + n) ≡⟨ succCong Ai ⟩
succ₁ (n + i) ≡⟨ sym (x+Sy≡S[x+y] Nn i) ⟩
n + succ₁ i ∎
------------------------------------------------------------------------------
-- Approach 4: Combined proof using the induction principle
module M4 where
-- See Issue https://github.com/asr/apia/issues/81 .
+-commA : D → D → Set
+-commA n i = i + n ≡ n + i
{-# ATP definition +-commA #-}
+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m
+-comm {n = n} Nm Nn = N-ind (+-commA n) A0 is Nm
where
postulate A0 : +-commA n zero
{-# ATP prove A0 +-rightIdentity #-}
postulate is : ∀ {i} → +-commA n i → +-commA n (succ₁ i)
{-# ATP prove is x+Sy≡S[x+y] #-}
------------------------------------------------------------------------------
-- Approach 5: Interactive proof using an instance of the induction
-- principle
module M5 where
+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m
+-comm {n = n} Nm Nn = +-comm-ind-instance n A0 is Nm
where
A0 : zero + n ≡ n + zero
A0 = zero + n ≡⟨ +-leftIdentity n ⟩
n ≡⟨ sym (+-rightIdentity Nn) ⟩
n + zero ∎
is : ∀ {i} → i + n ≡ n + i → succ₁ i + n ≡ n + succ₁ i
is {i} ih = succ₁ i + n ≡⟨ +-Sx i n ⟩
succ₁ (i + n) ≡⟨ succCong ih ⟩
succ₁ (n + i) ≡⟨ sym (x+Sy≡S[x+y] Nn i) ⟩
n + succ₁ i ∎
------------------------------------------------------------------------------
-- Approach 6: Combined proof using an instance of the induction
-- principle
module M6 where
-- TODO (25 October 2012): Why is it not necessary the hypothesis
-- +-rightIdentity?
postulate +-comm : ∀ {m n} → N m → N n → m + n ≡ n + m
{-# ATP prove +-comm +-comm-ind-instance x+Sy≡S[x+y] #-}
| {
"alphanum_fraction": 0.4298454221,
"avg_line_length": 30.9570552147,
"ext": "agda",
"hexsha": "a84dd67f636207e7446f287ffd3dc04b692d97b2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/AddComm.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/AddComm.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/AddComm.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1741,
"size": 5046
} |
module _ where
id : {A : Set} → A → A
id x = x
{-# INLINE id #-}
-- Adding COMPILE to an INLINE'd function has no effect, since the
-- treeless compiler will inline all uses of the function. Hence, we
-- warn the user that the pragma is pointless when compiling.
{-# COMPILE GHC id = \ _ x -> x #-}
| {
"alphanum_fraction": 0.6589403974,
"avg_line_length": 25.1666666667,
"ext": "agda",
"hexsha": "4cd074018b8516b969b6f8ee970af30fe1716232",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/InlineCompiled.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/InlineCompiled.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/InlineCompiled.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 81,
"size": 302
} |
open import Data.Nat using ()
open import Data.Bool using (true; false)
open import Data.Product using (_×_; _,_)
open import Data.String using (String; _≟_)
open import Data.Empty using ()
open import Level using (suc; _⊔_)
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym)
open import IMP
open import OperationalSemantics
assn : ∀{l} → Set (suc l)
assn {a} = state → Set a
data ⊢[_]_[_] {l} : assn {l} → com → assn {l} → Set (suc l) where
Skip : ∀{P}
→ ⊢[ P ] SKIP [ P ]
Loc : ∀{Q a x}
→ ⊢[ (λ s → Q (s [ x ::= aval a s ])) ] (x ::= a) [ Q ]
Comp : ∀{P Q R c₁ c₂}
→ ⊢[ P ] c₁ [ Q ]
→ ⊢[ Q ] c₂ [ R ]
→ ⊢[ P ] c₁ :: c₂ [ R ]
If : ∀{P b c₁ Q c₂}
→ ⊢[ (λ s → P s × bval b s ≡ true) ] c₁ [ Q ]
→ ⊢[ (λ s → P s × bval b s ≡ false) ] c₂ [ Q ]
→ ⊢[ P ] (IF b THEN c₁ ELSE c₂) [ Q ]
While : ∀{P b c}
→ ⊢[ (λ s → P s × bval b s ≡ true) ] c [ P ]
→ ⊢[ P ] (WHILE b DO c) [ (λ s → P s × bval b s ≡ false) ]
Conseq : ∀{P Q P′ Q′ : assn} {c}
→ (∀ s → P′ s → P s)
→ ⊢[ P ] c [ Q ]
→ (∀ s → Q s → Q′ s)
→ ⊢[ P′ ] c [ Q′ ]
⊨[_]_[_] : assn → com → assn → Set
⊨[ P ] c [ Q ] = ∀{s t} → P s → ⦅ c , s ⦆⇒ t → Q t
| {
"alphanum_fraction": 0.4782939832,
"avg_line_length": 32.0243902439,
"ext": "agda",
"hexsha": "ce7569f3f092a4a0ed3044f60bb74789a429153e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/imp-semantics",
"max_forks_repo_path": "Hoare.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/imp-semantics",
"max_issues_repo_path": "Hoare.agda",
"max_line_length": 72,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/imp-semantics",
"max_stars_repo_path": "Hoare.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-24T22:29:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-08T11:54:07.000Z",
"num_tokens": 557,
"size": 1313
} |
module Structure.Relator.Properties.Proofs where
import Lvl
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Logic
-- open import Logic.Classical
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Structure.Relator.Properties
open import Structure.Relator
open import Structure.Setoid
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓₑ : Lvl.Level
private variable T A B : Type{ℓ}
private variable _<_ _▫_ _▫₁_ _▫₂_ : T → T → Stmt{ℓ}
private variable f : T → T
[asymmetry]-to-irreflexivity : ⦃ _ : Asymmetry(_<_) ⦄ → Irreflexivity(_<_)
Irreflexivity.proof([asymmetry]-to-irreflexivity {_<_ = _<_}) = [→]-redundancy(asymmetry(_<_))
[irreflexivity,transitivity]-to-asymmetry : ⦃ irrefl : Irreflexivity(_<_) ⦄ ⦃ trans : Transitivity(_<_) ⦄ → Asymmetry(_<_)
Asymmetry.proof([irreflexivity,transitivity]-to-asymmetry {_<_ = _<_}) = Tuple.curry(irreflexivity(_<_) ∘ (Tuple.uncurry(transitivity(_<_))))
converseTotal-to-reflexivity : ⦃ convTotal : ConverseTotal(_<_) ⦄ → Reflexivity(_<_)
Reflexivity.proof(converseTotal-to-reflexivity {_<_ = _<_}) = [∨]-elim id id (converseTotal(_<_))
reflexivity-to-negated-irreflexivity : ⦃ refl : Reflexivity(_<_) ⦄ → Irreflexivity((¬_) ∘₂ (_<_))
Irreflexivity.proof (reflexivity-to-negated-irreflexivity {_<_ = _<_}) irrefl = irrefl(reflexivity(_<_))
negated-symmetry : ⦃ sym : Symmetry(_<_) ⦄ → Symmetry((¬_) ∘₂ (_<_))
Symmetry.proof (negated-symmetry {_<_ = _<_}) nxy yx = nxy(symmetry(_<_) yx)
antisymmetry-irreflexivity-to-asymmetry : ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ rel : BinaryRelator{A = T}(_<_) ⦄ ⦃ antisym : Antisymmetry(_<_)(_≡_) ⦄ ⦃ irrefl : Irreflexivity(_<_) ⦄ → Asymmetry(_<_)
Asymmetry.proof (antisymmetry-irreflexivity-to-asymmetry {_<_ = _<_}) xy yx = irreflexivity(_<_) (substitute₂ᵣ(_<_) (antisymmetry(_<_)(_≡_) xy yx) yx)
asymmetry-to-antisymmetry : ⦃ asym : Asymmetry(_<_) ⦄ → Antisymmetry(_<_)(_▫_)
Antisymmetry.proof (asymmetry-to-antisymmetry {_<_ = _<_}) ab ba = [⊥]-elim(asymmetry(_<_) ab ba)
subrelation-transitivity-to-subtransitivityₗ : ⦃ sub : (_▫₁_) ⊆₂ (_▫₂_) ⦄ ⦃ trans : Transitivity(_▫₂_) ⦄ → Subtransitivityₗ(_▫₂_)(_▫₁_)
Subtransitivityₗ.proof (subrelation-transitivity-to-subtransitivityₗ {_▫₁_ = _▫₁_} {_▫₂_ = _▫₂_}) xy yz = transitivity(_▫₂_) (sub₂(_▫₁_)(_▫₂_) xy) yz
subrelation-transitivity-to-subtransitivityᵣ : ⦃ sub : (_▫₁_) ⊆₂ (_▫₂_) ⦄ ⦃ trans : Transitivity(_▫₂_) ⦄ → Subtransitivityᵣ(_▫₂_)(_▫₁_)
Subtransitivityᵣ.proof (subrelation-transitivity-to-subtransitivityᵣ {_▫₁_ = _▫₁_} {_▫₂_ = _▫₂_}) xy yz = transitivity(_▫₂_) xy (sub₂(_▫₁_)(_▫₂_) yz)
-- TODO: https://proofwiki.org/wiki/Definition%3aRelation_Compatible_with_Operation and substitution. Special case for (≡) and function application: ∀(x∊T)∀(y∊T). (x ≡ y) → (∀(f: T→T). f(x) ≡ f(y))
instance
-- A subrelation of a reflexive relation is reflexive.
-- ∀{_□_ _△_ : T → T → Type} → ((_□_) ⊆₂ (_△_)) → (Reflexivity(_□_) → Reflexivity(_△_))
subrelation-reflexivity : (_⊆₂_) ⊆₂ ((_→ᶠ_) on₂ Reflexivity{ℓ₂ = ℓ}{T = T})
_⊆₂_.proof subrelation-reflexivity (intro ab) (intro ra) = intro (ab ra)
instance
-- The negation of a subrelation is a superrelation.
-- ∀{_□_ _△_ : T → T → Type} → ((_□_) ⊆₂ (_△_)) → (((¬_) ∘₂ (_△_)) ⊆₂ ((¬_) ∘₂ (_□_)))
swapped-negated-subrelation : (_⊆₂_ {A = A}{B = B}{ℓ₁ = ℓ}) ⊆₂ ((_⊇₂_) on₂ ((¬_) ∘₂_))
_⊆₂_.proof (_⊆₂_.proof swapped-negated-subrelation (intro sub)) = _∘ sub
swap-reflexivity : ⦃ refl : Reflexivity(_▫_) ⦄ → Reflexivity(swap(_▫_))
swap-reflexivity {_▫_ = _▫_} = intro(reflexivity(_▫_))
on₂-reflexivity : ∀{_▫_ : B → B → Stmt{ℓ}}{f : A → B} → ⦃ refl : Reflexivity(_▫_) ⦄ → Reflexivity((_▫_) on₂ f)
on₂-reflexivity {_▫_ = _▫_} = intro(reflexivity(_▫_))
on₂-symmetry : ∀{_▫_ : B → B → Stmt{ℓ}}{f : A → B} → ⦃ sym : Symmetry(_▫_) ⦄ → Symmetry((_▫_) on₂ f)
on₂-symmetry {_▫_ = _▫_} = intro(symmetry(_▫_))
on₂-transitivity : ∀{_▫_ : B → B → Stmt{ℓ}}{f : A → B} → ⦃ trans : Transitivity(_▫_) ⦄ → Transitivity((_▫_) on₂ f)
on₂-transitivity {_▫_ = _▫_} = intro(transitivity(_▫_))
| {
"alphanum_fraction": 0.6712871287,
"avg_line_length": 56.1111111111,
"ext": "agda",
"hexsha": "75d2a8a09dcaa4b6d7cab5efdba110af74a818a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Relator/Properties/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Relator/Properties/Proofs.agda",
"max_line_length": 197,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Relator/Properties/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1662,
"size": 4040
} |
{-# OPTIONS --without-K --safe #-}
module Reasoning where
open import PiFrac
------------------------------------------------------------------------------
-- Useful for examples
infixr 2 _⟷⟨_⟩_
infix 3 _□
_⟷⟨_⟩_ : (t₁ : 𝕌) {t₂ : 𝕌} {t₃ : 𝕌} →
(t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_ ⟷⟨ α ⟩ β = α ⊚ β
_□ : (t : 𝕌) → {t : 𝕌} → (t ⟷ t)
_□ t = id⟷
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.2931818182,
"avg_line_length": 20.9523809524,
"ext": "agda",
"hexsha": "51686cdc8e4013226f56c330374d92b58abf679b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "fracGC/Reasoning.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "fracGC/Reasoning.agda",
"max_line_length": 78,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "fracGC/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 162,
"size": 440
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Permutation.Inductive directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Permutation.Inductive where
open import Data.List.Relation.Binary.Permutation.Inductive public
| {
"alphanum_fraction": 0.5170842825,
"avg_line_length": 33.7692307692,
"ext": "agda",
"hexsha": "9add0152db9a764a56179fadb0488f172c489bc5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Permutation/Inductive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Permutation/Inductive.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Permutation/Inductive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 72,
"size": 439
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lists where all elements satisfy a given property
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Unary.All where
open import Category.Applicative
open import Category.Monad
open import Data.List.Base as List using (List; []; _∷_)
open import Data.List.Relation.Unary.Any as Any using (here; there)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.Product as Prod using (_,_)
open import Function
open import Level
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Unary hiding (_∈_)
open import Relation.Binary.PropositionalEquality as P
------------------------------------------------------------------------
-- All P xs means that all elements in xs satisfy P.
infixr 5 _∷_
data All {a p} {A : Set a} (P : Pred A p) : Pred (List A) (a ⊔ p) where
[] : All P []
_∷_ : ∀ {x xs} (px : P x) (pxs : All P xs) → All P (x ∷ xs)
------------------------------------------------------------------------
-- Operations on All
head : ∀ {a p} {A : Set a} {P : Pred A p} {x xs} →
All P (x ∷ xs) → P x
head (px ∷ pxs) = px
tail : ∀ {a p} {A : Set a} {P : Pred A p} {x xs} →
All P (x ∷ xs) → All P xs
tail (px ∷ pxs) = pxs
lookup : ∀ {a p} {A : Set a} {P : Pred A p} {xs : List A} →
All P xs → (∀ {x} → x ∈ xs → P x)
lookup [] ()
lookup (px ∷ pxs) (here refl) = px
lookup (px ∷ pxs) (there x∈xs) = lookup pxs x∈xs
tabulate : ∀ {a p} {A : Set a} {P : Pred A p} {xs} →
(∀ {x} → x ∈ xs → P x) → All P xs
tabulate {xs = []} hyp = []
tabulate {xs = x ∷ xs} hyp = hyp (here refl) ∷ tabulate (hyp ∘ there)
map : ∀ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} →
P ⊆ Q → All P ⊆ All Q
map g [] = []
map g (px ∷ pxs) = g px ∷ map g pxs
------------------------------------------------------------------------
-- (weak) updateAt
module _ {a p}{A : Set a}{P : Pred A p} where
infixl 6 _[_]%=_ _[_]≔_
updateAt : ∀ {x xs} → x ∈ xs → (P x → P x) → All P xs → All P xs
updateAt () f []
updateAt (here refl) f (px ∷ pxs) = f px ∷ pxs
updateAt (there i) f (px ∷ pxs) = px ∷ updateAt i f pxs
_[_]%=_ : ∀ {x xs} → All P xs → x ∈ xs → (P x → P x) → All P xs
pxs [ i ]%= f = updateAt i f pxs
_[_]≔_ : ∀ {x xs} → All P xs → x ∈ xs → P x → All P xs
pxs [ i ]≔ px = pxs [ i ]%= const px
------------------------------------------------------------------------
-- (un/)zip(With/)
module _ {a p q r} {A : Set a} {P : Pred A p} {Q : Pred A q} {R : Pred A r} where
zipWith : P ∩ Q ⊆ R → All P ∩ All Q ⊆ All R
zipWith f ([] , []) = []
zipWith f (px ∷ pxs , qx ∷ qxs) = f (px , qx) ∷ zipWith f (pxs , qxs)
unzipWith : R ⊆ P ∩ Q → All R ⊆ All P ∩ All Q
unzipWith f [] = [] , []
unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (f rx) (unzipWith f rxs)
module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where
zip : All P ∩ All Q ⊆ All (P ∩ Q)
zip = zipWith id
unzip : All (P ∩ Q) ⊆ All P ∩ All Q
unzip = unzipWith id
------------------------------------------------------------------------
-- Traversable-like functions
module _ {a} p {A : Set a} {P : Pred A (a ⊔ p)} {F}
(App : RawApplicative {a ⊔ p} F) where
open RawApplicative App
sequenceA : All (F ∘′ P) ⊆ F ∘′ All P
sequenceA [] = pure []
sequenceA (x ∷ xs) = _∷_ <$> x ⊛ sequenceA xs
mapA : ∀ {q} {Q : Pred A q} → (Q ⊆ F ∘′ P) → All Q ⊆ (F ∘′ All P)
mapA f = sequenceA ∘′ map f
forA : ∀ {q} {Q : Pred A q} {xs} → All Q xs → (Q ⊆ F ∘′ P) → F (All P xs)
forA qxs f = mapA f qxs
module _ {a} p {A : Set a} {P : Pred A (a ⊔ p)} {M}
(Mon : RawMonad {a ⊔ p} M) where
private App = RawMonad.rawIApplicative Mon
sequenceM : All (M ∘′ P) ⊆ M ∘′ All P
sequenceM = sequenceA p App
mapM : ∀ {q} {Q : Pred A q} → (Q ⊆ M ∘′ P) → All Q ⊆ (M ∘′ All P)
mapM = mapA p App
forM : ∀ {q} {Q : Pred A q} {xs} → All Q xs → (Q ⊆ M ∘′ P) → M (All P xs)
forM = forA p App
------------------------------------------------------------------------
-- Properties of predicates preserved by All
module _ {a p} {A : Set a} {P : Pred A p} where
all : Decidable P → Decidable (All P)
all p [] = yes []
all p (x ∷ xs) with p x
... | yes px = Dec.map′ (px ∷_) tail (all p xs)
... | no ¬px = no (¬px ∘ head)
universal : Universal P → Universal (All P)
universal u [] = []
universal u (x ∷ xs) = u x ∷ universal u xs
irrelevant : Irrelevant P → Irrelevant (All P)
irrelevant irr [] [] = P.refl
irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) =
P.cong₂ _∷_ (irr px₁ px₂) (irrelevant irr pxs₁ pxs₂)
satisfiable : Satisfiable (All P)
satisfiable = [] , []
| {
"alphanum_fraction": 0.4735330324,
"avg_line_length": 32.0657894737,
"ext": "agda",
"hexsha": "b74da22dc36c1b825e781cd294bc2f7d1c126d17",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/All.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/All.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/All.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1714,
"size": 4874
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.Instances.Initial where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Unit
open import Cubical.Data.Sigma.Properties using (Σ≡Prop)
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Algebra.Base using (IsAlgebraHom)
open import Cubical.Algebra.Algebra.Properties
open import Cubical.Algebra.CommAlgebra
import Cubical.Algebra.Algebra.Properties
open AlgebraHoms
private
variable
ℓ : Level
module _ (R : CommRing ℓ) where
module _ where
open CommRingStr (snd R)
initialCAlg : CommAlgebra R ℓ
initialCAlg .fst = fst R
initialCAlg .snd .CommAlgebraStr.0a = _
initialCAlg .snd .CommAlgebraStr.1a = _
initialCAlg .snd .CommAlgebraStr._+_ = _
initialCAlg .snd .CommAlgebraStr._·_ = _
initialCAlg .snd .CommAlgebraStr.-_ = _
initialCAlg .snd .CommAlgebraStr._⋆_ r x = r · x
initialCAlg .snd .CommAlgebraStr.isCommAlgebra =
makeIsCommAlgebra (isSetRing (CommRing→Ring R))
+Assoc +Rid +Rinv +Comm
·Assoc ·Lid
·Ldist+ ·Comm
(λ x y z → sym (·Assoc x y z)) ·Ldist+ ·Rdist+ ·Lid
λ x y z → sym (·Assoc x y z)
module _ (A : CommAlgebra R ℓ) where
open CommAlgebraStr ⦃... ⦄
private
instance
_ : CommAlgebraStr R (fst A)
_ = snd A
_ : CommAlgebraStr R (fst R)
_ = snd initialCAlg
_*_ : fst R → (fst A) → (fst A)
r * a = CommAlgebraStr._⋆_ (snd A) r a
initialMap : CommAlgebraHom initialCAlg A
initialMap =
makeCommAlgebraHom {M = initialCAlg} {N = A}
(λ r → r * 1a)
(⋆-lid _)
(λ x y → ⋆-ldist x y 1a)
(λ x y → (x · y) * 1a ≡⟨ ⋆-assoc _ _ _ ⟩
x * (y * 1a) ≡[ i ]⟨ x * (·Lid (y * 1a) (~ i)) ⟩
x * (1a · (y * 1a)) ≡⟨ sym (⋆-lassoc _ _ _) ⟩
(x * 1a) · (y * 1a) ∎)
(λ r x → (r · x) * 1a ≡⟨ ⋆-assoc _ _ _ ⟩
(r * (x * 1a)) ∎)
initialMapEq : (f : CommAlgebraHom initialCAlg A)
→ f ≡ initialMap
initialMapEq f =
let open IsAlgebraHom (snd f)
in Σ≡Prop
(isPropIsCommAlgebraHom {M = initialCAlg} {N = A})
λ i x →
((fst f) x ≡⟨ cong (fst f) (sym (·Rid _)) ⟩
fst f (x · 1a) ≡⟨ pres⋆ x 1a ⟩
CommAlgebraStr._⋆_ (snd A) x (fst f 1a) ≡⟨ cong
(λ u → (snd A CommAlgebraStr.⋆ x) u)
pres1 ⟩
(CommAlgebraStr._⋆_ (snd A) x 1a) ∎) i
initialMapProp : (f g : CommAlgebraHom initialCAlg A)
→ f ≡ g
initialMapProp f g = initialMapEq f ∙ sym (initialMapEq g)
initialityIso : Iso (CommAlgebraHom initialCAlg A) (Unit* {ℓ = ℓ})
initialityIso = iso (λ _ → tt*)
(λ _ → initialMap)
(λ {tt*x → refl})
λ f → sym (initialMapEq f)
initialityPath : CommAlgebraHom initialCAlg A ≡ Unit*
initialityPath = isoToPath initialityIso
initialityContr : isContr (CommAlgebraHom initialCAlg A)
initialityContr = initialMap , λ ϕ → sym (initialMapEq ϕ)
{-
Show that any R-Algebra with the same universal property
as the initial R-Algebra, is isomorphic to the initial
R-Algebra.
-}
module _ (A : CommAlgebra R ℓ) where
equivByInitiality :
(isInitial : (B : CommAlgebra R ℓ) → isContr (CommAlgebraHom A B))
→ CommAlgebraEquiv A (initialCAlg)
equivByInitiality isInitial = isoToEquiv asIso , snd to
where
open CommAlgebraHoms
to : CommAlgebraHom A initialCAlg
to = fst (isInitial initialCAlg)
from : CommAlgebraHom initialCAlg A
from = initialMap A
asIso : Iso (fst A) (fst initialCAlg)
Iso.fun asIso = fst to
Iso.inv asIso = fst from
Iso.rightInv asIso =
λ x i → cong
fst
(isContr→isProp (initialityContr initialCAlg) (to ∘a from) (idCAlgHom initialCAlg))
i x
Iso.leftInv asIso =
λ x i → cong
fst
(isContr→isProp (isInitial A) (from ∘a to) (idCAlgHom A))
i x
| {
"alphanum_fraction": 0.5371169616,
"avg_line_length": 35.3740458015,
"ext": "agda",
"hexsha": "ba5a12f8688247bb0d093b23561c73ea6b9485f8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "gmagaf/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Initial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "gmagaf/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Initial.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "gmagaf/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Initial.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1437,
"size": 4634
} |
module _ where
module Batch4 where
data D1 (open Star) (A : ★) : ★ where
c : (x : A) → D1 A
data D2 (open Star) : ★ where
data D3 (open Star) : ★₁ where
c : (A : ★) → D3
data D4 : (open Star) → ★ where
data D0 (A : Set) (let B = A → A) : B → Set where
c : (f : B) → D0 A f
module _ where
data D5 (open Star) (A : ★) (open MEndo A) : ★
data D5 A (open MEndo A) where
c : (f : Endo) → D5 A
data D6 (open Star) (A : ★) (open MEndo A) : Endo → ★ where
c : (f : Endo) → D6 A f
module Batch5 where
data D1 (open Star) (A : ★) : ★
data D1 A where
c : (x : A) → D1 A
data D2 (open Star) : ★
data D2 where
data D3 (open Star) : ★₁
data D3 where
c : (A : ★) → D3
data D4 : (open Star) → ★
data D4 where
open import Common.Equality
module Batch6 where
BinOp : (A : Set) → Set
BinOp A = A → A → A
record IsAssoc {A : Set} (_∘_ : BinOp A) : Set where
field
assoc : ∀ {a b c} →
((a ∘ b) ∘ c) ≡ (a ∘ (b ∘ c))
record RawSemiGroup : Set₁ where
field
Carrier : Set
_∘_ : Carrier → Carrier → Carrier
record SemiGroupLaws1 (G : RawSemiGroup) : Set where
open RawSemiGroup G
field
isAssoc : IsAssoc _∘_
module _ where
record SemiGroupBLA
(G : RawSemiGroup)
(open RawSemiGroup G)
(ass : IsAssoc _∘_) : Set
where
record SemiGroupLaws (G : RawSemiGroup) (open RawSemiGroup G) : Set where
field
isAssoc : IsAssoc {A = Carrier} _∘_
record SemiGroup : Set₁ where
field
rawSemiGroup : RawSemiGroup
semiGroupLaws : SemiGroupLaws rawSemiGroup
| {
"alphanum_fraction": 0.5578817734,
"avg_line_length": 20.3,
"ext": "agda",
"hexsha": "7603433005d29b7c725a5f0a026e2d965d1256a9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/TelescopingLetDataRecord.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/TelescopingLetDataRecord.agda",
"max_line_length": 75,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/TelescopingLetDataRecord.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 624,
"size": 1624
} |
open import Level hiding ( suc ; zero )
open import Algebra
module sym4 where
open import Symmetric
open import Data.Unit
open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
open import Function
open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero)
open import Relation.Nullary
open import Data.Empty
open import Data.Product
open import Gutil
open import Putil
open import Solvable using (solvable)
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Data.Fin
open import Data.Fin.Permutation hiding (_∘ₚ_)
infixr 200 _∘ₚ_
_∘ₚ_ = Data.Fin.Permutation._∘ₚ_
sym4solvable : solvable (Symmetric 4)
solvable.dervied-length sym4solvable = 3
solvable.end sym4solvable x d = solved1 x d where
open import Data.List using ( List ; [] ; _∷_ )
open Solvable (Symmetric 4)
-- Klien
--
-- 1 (1,2),(3,4) (1,3),(2,4) (1,4),(2,3)
-- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] , 1 ∷ 0 ∷ 3 ∷ 2 ∷ [] , 2 ∷ 3 ∷ 0 ∷ 1 ∷ [] , 3 ∷ 2 ∷ 1 ∷ 0 ∷ [] ,
a0 = pid {4}
a1 = pswap (pswap (pid {0}))
a2 = pid {4} ∘ₚ pins (n≤ 3) ∘ₚ pins (n≤ 3 )
a3 = pins (n≤ 3) ∘ₚ pins (n≤ 2) ∘ₚ pswap (pid {2})
k3 = plist (a1 ∘ₚ a2 ) ∷ plist (a1 ∘ₚ a3) ∷ plist (a2 ∘ₚ a1 ) ∷ []
open import FLutil
open import Data.List.Fresh hiding ([_])
open import Relation.Nary using (⌊_⌋)
p0id : FL→perm ((# 0) :: (# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid
p0id = pleq _ _ refl
open import Data.List.Fresh.Relation.Unary.Any
open import FLComm
stage3FList : CommFListN 4 3 ≡ cons (zero :: zero :: zero :: zero :: f0) [] (Level.lift tt)
stage3FList = refl
st3 = proj₁ (toList ( CommFListN 4 2 ))
-- st4 = {!!}
solved1 : (x : Permutation 4 4) → deriving 3 x → x =p= pid
solved1 x dr = CommSolved 4 x ( CommFListN 4 3 ) stage3FList p0id solved2 where
-- p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid
solved2 : Any (perm→FL x ≡_) ( CommFListN 4 3 )
solved2 = CommStage→ 4 3 x dr
| {
"alphanum_fraction": 0.5884955752,
"avg_line_length": 30.8181818182,
"ext": "agda",
"hexsha": "9ffda672b10be6aae69d65e9e2bfd3bc657324bf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/Galois",
"max_forks_repo_path": "src/sym4.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/Galois",
"max_issues_repo_path": "src/sym4.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/Galois",
"max_stars_repo_path": "src/sym4.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z",
"num_tokens": 815,
"size": 2034
} |
open import Logic
open import Type
module Structure.Sets.Quantifiers {ℓₑ ℓₛ ℓₗ}{E : Type{ℓₑ}}{S : Type{ℓₛ}} (_∈_ : E → S → Stmt{ℓₗ}) where
import Lvl
open import Logic.Propositional
open import Logic.Predicate
open import Syntax.Function
private variable ℓ : Lvl.Level
-- Set restricted existential quantifier.
∃ₛ : S → (E → Stmt{ℓ}) → Stmt
∃ₛ(A) P = ∃(x ↦ (x ∈ A) ∧ P(x))
-- Set restricted universal quantifier.
∀ₛ : S → (E → Stmt{ℓ}) → Stmt
∀ₛ(A) P = ∀ₗ(x ↦ ((x ∈ A) → P(x)))
| {
"alphanum_fraction": 0.6352459016,
"avg_line_length": 24.4,
"ext": "agda",
"hexsha": "a01b4c72566969d806fd1d458eafa3bf570e0eab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Sets/Quantifiers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Sets/Quantifiers.agda",
"max_line_length": 103,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Sets/Quantifiers.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 193,
"size": 488
} |
{-# OPTIONS --without-K --safe #-}
module Source.Term where
open import Source.Size as S using
( Size ; _<_ ; Δ ; Δ′ ; Δ″ ; Ω ; Ω′ ; Ω″ ; n ; m ; o ; b ; v0 ; v1 ; ⋆ )
open import Source.Size.Substitution.Theory
open import Source.Size.Substitution.Canonical as SC using () renaming
( Sub⊢ to Subₛ⊢ )
open import Source.Size.Substitution.Universe as SU using
( ⟨_⟩ ) renaming
( Sub⊢ᵤ to Subₛ⊢ᵤ )
open import Source.Type as T using
( Type ; Ctx ; T ; U ; V ; Γ ; Γ′ ; Γ″ ; Ψ ; Ψ′ ; Ψ″ ; SubTheory-Type
; SubTheory-Ctx )
open import Util.Prelude hiding (id ; _∘_)
open Ctx
open S.Ctx
open S.Size
open S.Var
open Type
infix 0 _,_⊢_∶_ _,_⊢ₓ_∶_ Sub⊢
infix 3 _⊇_
infixl 5 sub-syntax-Termₛ sub-syntax-Subₛ sub-syntax-Term sub-syntax-⊇
infixr 6 Λ_,_ Λₛ_,_
infixl 7 _·_ _·ₛ_
Var : Set
Var = ℕ
variable x y : Var
data Term Δ : Set where
var : (x : Var) → Term Δ
Λ_,_ : (T : Type Δ) (t : Term Δ) → Term Δ
_·_ : (t u : Term Δ) → Term Δ
Λₛ_,_ : (n : Size Δ) (t : Term (Δ ∙ n)) → Term Δ
_·ₛ_ : (t : Term Δ) (m : Size Δ) → Term Δ
zero : (n : Size Δ) → Term Δ
suc : (n m : Size Δ) (i : Term Δ) → Term Δ
cons : (i : Term Δ) (n : Size Δ) (is : Term Δ) → Term Δ
head : (n : Size Δ) (is : Term Δ) → Term Δ
tail : (n : Size Δ) (is : Term Δ) (m : Size Δ) → Term Δ
caseNat : (T : Type Δ) (n : Size Δ) (i : Term Δ) (z : Term Δ) (s : Term Δ)
→ Term Δ
fix : (T : Type (Δ ∙ ⋆)) (t : Term Δ) (n : Size Δ) → Term Δ
variable t u v w i is z s t′ u′ v′ w′ i′ is′ z′ s′ : Term Δ
data _,_⊢ₓ_∶_ : ∀ Δ (Γ : Ctx Δ) (x : Var) (T : Type Δ) → Set where
zero
: Δ , Γ ∙ T ⊢ₓ zero ∶ T
suc
: (⊢x : Δ , Γ ⊢ₓ x ∶ T)
→ Δ , Γ ∙ U ⊢ₓ suc x ∶ T
data _,_⊢_∶_ : ∀ Δ (Γ : Ctx Δ) (t : Term Δ) (T : Type Δ) → Set where
var
: (⊢x : Δ , Γ ⊢ₓ x ∶ T)
→ Δ , Γ ⊢ var x ∶ T
abs
: (⊢t : Δ , Γ ∙ T ⊢ t ∶ U)
→ Δ , Γ ⊢ Λ T , t ∶ T ⇒ U
app
: (⊢t : Δ , Γ ⊢ t ∶ T ⇒ U)
→ (⊢u : Δ , Γ ⊢ u ∶ T)
→ Δ , Γ ⊢ t · u ∶ U
absₛ
: (⊢t : Δ ∙ n , Ψ ⊢ t ∶ T)
→ Ψ ≡ Γ [ SC.Wk ]
→ Δ , Γ ⊢ Λₛ n , t ∶ Π n , T
appₛ
: (m<n : m < n)
→ (⊢t : Δ , Γ ⊢ t ∶ (Π n , T))
→ U ≡ T [ SC.Sing m ]
→ Δ , Γ ⊢ t ·ₛ m ∶ U
zero
: (n<⋆ : n < ⋆)
→ Δ , Γ ⊢ zero n ∶ Nat n
suc
: (n<⋆ : n < ⋆)
→ (m<n : m < n)
→ (⊢i : Δ , Γ ⊢ i ∶ Nat m)
→ Δ , Γ ⊢ suc n m i ∶ Nat n
cons
: (n<⋆ : n < ⋆)
→ (⊢i : Δ , Γ ⊢ i ∶ Nat ∞)
→ (⊢is : Δ , Γ ⊢ is ∶ Π n , Stream v0)
→ Δ , Γ ⊢ cons i n is ∶ Stream n
head
: (n<⋆ : n < ⋆)
→ (⊢is : Δ , Γ ⊢ is ∶ Stream n)
→ Δ , Γ ⊢ head n is ∶ Nat ∞
tail
: (n<⋆ : n < ⋆)
→ (m<n : m < n)
→ (⊢is : Δ , Γ ⊢ is ∶ Stream n)
→ Δ , Γ ⊢ tail n is m ∶ Stream m
caseNat
: (n<⋆ : n < ⋆)
→ (⊢i : Δ , Γ ⊢ i ∶ Nat n)
→ (⊢z : Δ , Γ ⊢ z ∶ T)
→ (⊢s : Δ , Γ ⊢ s ∶ Π n , Nat v0 ⇒ U)
→ U ≡ T [ SC.Wk ]
→ Δ , Γ ⊢ caseNat T n i z s ∶ T
fix
: (n<⋆ : n < ⋆)
→ (⊢t : Δ , Γ ⊢ t ∶ Π ⋆ , (Π v0 , U) ⇒ T)
→ U ≡ T [ SC.Skip ]
→ V ≡ T [ SC.Sing n ]
→ Δ , Γ ⊢ fix T t n ∶ V
subₛ : SC.Sub Δ Ω → Term Ω → Term Δ
subₛ σ (var x) = var x
subₛ σ (Λ T , t) = Λ T [ σ ] , subₛ σ t
subₛ σ (t · u) = subₛ σ t · subₛ σ u
subₛ σ (Λₛ n , t) = Λₛ n [ σ ] , subₛ (SC.Lift σ) t
subₛ σ (t ·ₛ m) = subₛ σ t ·ₛ (m [ σ ])
subₛ σ (zero n) = zero (n [ σ ])
subₛ σ (suc n m i) = suc (n [ σ ]) (m [ σ ]) (subₛ σ i)
subₛ σ (cons i n is) = cons (subₛ σ i) (n [ σ ]) (subₛ σ is)
subₛ σ (head n is) = head (n [ σ ]) (subₛ σ is)
subₛ σ (tail n is m) = tail (n [ σ ]) (subₛ σ is) (m [ σ ])
subₛ σ (caseNat T n i z s)
= caseNat (T [ σ ]) (n [ σ ]) (subₛ σ i) (subₛ σ z) (subₛ σ s)
subₛ σ (fix T t n) = fix (T [ SC.Lift σ ]) (subₛ σ t) (n [ σ ])
sub-syntax-Termₛ = subₛ
syntax sub-syntax-Termₛ σ t = t [ σ ]ₛ
abstract
subₛ-resp-⊢ₓ : ∀ {σ}
→ σ ∶ Δ ⇒ Ω
→ Ω , Γ ⊢ₓ x ∶ T
→ Δ , Γ [ σ ] ⊢ₓ x ∶ T [ σ ]
subₛ-resp-⊢ₓ ⊢σ zero = zero
subₛ-resp-⊢ₓ ⊢σ (suc ⊢x) = suc (subₛ-resp-⊢ₓ ⊢σ ⊢x)
subₛ-resp-⊢ : ∀ {σ}
→ σ ∶ Δ ⇒ Ω
→ Ω , Γ ⊢ t ∶ T
→ Δ , Γ [ σ ] ⊢ subₛ σ t ∶ T [ σ ]
subₛ-resp-⊢ ⊢σ (var ⊢x) = var (subₛ-resp-⊢ₓ ⊢σ ⊢x)
subₛ-resp-⊢ ⊢σ (abs ⊢t) = abs (subₛ-resp-⊢ ⊢σ ⊢t)
subₛ-resp-⊢ ⊢σ (app ⊢t ⊢u) = app (subₛ-resp-⊢ ⊢σ ⊢t) (subₛ-resp-⊢ ⊢σ ⊢u)
subₛ-resp-⊢ {Δ} {Γ = Γ} {σ = σ} ⊢σ (absₛ {Ψ = Ψ} ⊢t p)
= absₛ (subₛ-resp-⊢ (SC.Lift⊢ ⊢σ refl) ⊢t) eq
where
eq : Ψ [ SC.Lift σ ] ≡ Γ [ σ ] [ SC.Wk ]
eq = trans (cong (λ Ψ → Ψ [ SC.Lift σ ]) p)
([>>]″ (SC.Lift σ) SC.Wk SC.Wk σ Γ SC.Lift>>Wk)
subₛ-resp-⊢ {σ = σ} ⊢σ (appₛ {m = m} {T = T} {U = U} m<n ⊢t p)
= appₛ (SC.sub-resp-< ⊢σ m<n) (subₛ-resp-⊢ ⊢σ ⊢t) eq
where
eq : U [ σ ] ≡ T [ SC.Lift σ ] [ SC.Sing (m [ σ ]) ]
eq = trans (cong (λ U → U [ σ ]) p)
([>>]″ _ _ _ _ _ (sym (SC.Sing>>Lift m)))
subₛ-resp-⊢ ⊢σ (zero n<⋆)
= zero (SC.sub-resp-< ⊢σ n<⋆)
subₛ-resp-⊢ ⊢σ (suc n<⋆ m<n ⊢i)
= suc (SC.sub-resp-< ⊢σ n<⋆) (SC.sub-resp-< ⊢σ m<n) (subₛ-resp-⊢ ⊢σ ⊢i)
subₛ-resp-⊢ ⊢σ (cons n<⋆ ⊢i ⊢is)
= cons (SC.sub-resp-< ⊢σ n<⋆) (subₛ-resp-⊢ ⊢σ ⊢i) (subₛ-resp-⊢ ⊢σ ⊢is)
subₛ-resp-⊢ ⊢σ (head n<⋆ ⊢is)
= head (SC.sub-resp-< ⊢σ n<⋆) (subₛ-resp-⊢ ⊢σ ⊢is)
subₛ-resp-⊢ ⊢σ (tail n<⋆ m<n ⊢is)
= tail (SC.sub-resp-< ⊢σ n<⋆) (SC.sub-resp-< ⊢σ m<n) (subₛ-resp-⊢ ⊢σ ⊢is)
subₛ-resp-⊢ {σ = σ} ⊢σ (caseNat {T = T} {U = U} n<⋆ ⊢i ⊢z ⊢s p)
= caseNat (SC.sub-resp-< ⊢σ n<⋆) (subₛ-resp-⊢ ⊢σ ⊢i) (subₛ-resp-⊢ ⊢σ ⊢z)
(subₛ-resp-⊢ ⊢σ ⊢s) eq
where
eq : U [ SC.Lift σ ] ≡ T [ σ ] [ SC.Wk ]
eq = trans (cong (λ U → U [ SC.Lift σ ]) p)
([>>]″ _ _ _ _ _ SC.Lift>>Wk)
subₛ-resp-⊢ {σ = σ} ⊢σ (fix {n = n} {U = U} {T = T} {V = V} n<⋆ ⊢t p q)
= fix (SC.sub-resp-< ⊢σ n<⋆) (subₛ-resp-⊢ ⊢σ ⊢t) eq₀ eq₁
where
eq₀ : U [ SC.Lift (SC.Lift σ) ] ≡ T [ SC.Lift σ ] [ SC.Skip ]
eq₀ = trans (cong (λ U → U [ SC.Lift (SC.Lift σ) ]) p)
([>>]″ _ _ _ _ _ SC.LiftLift>>Skip)
eq₁ : V [ σ ] ≡ T [ SC.Lift σ ] [ SC.Sing (n [ σ ]) ]
eq₁ = trans (cong (λ V → V [ σ ]) q)
([>>]″ _ _ _ _ _ (sym (SC.Sing>>Lift n)))
subₛ-Id : (t : Term Δ) → subₛ SC.Id t ≡ t
subₛ-Id (var x) = refl
subₛ-Id (Λ T , t) = cong₂ Λ_,_ ([Id] T) (subₛ-Id t)
subₛ-Id (t · u) = cong₂ _·_ (subₛ-Id t) (subₛ-Id u)
subₛ-Id (Λₛ n , t)
rewrite [Id] n | subₛ-Id t
= refl
subₛ-Id (t ·ₛ m) = cong₂ _·ₛ_ (subₛ-Id t) ([Id] m)
subₛ-Id (zero n) = cong zero ([Id] n)
subₛ-Id (suc n m i)
rewrite [Id] n | [Id] m | subₛ-Id i
= refl
subₛ-Id (cons i n is)
rewrite subₛ-Id i | [Id] n | subₛ-Id is
= refl
subₛ-Id (head n is) = cong₂ head ([Id] n) (subₛ-Id is)
subₛ-Id (tail n is m)
rewrite [Id] n | subₛ-Id is | [Id] m
= refl
subₛ-Id (caseNat T n i z s)
rewrite [Id] T | [Id] n | subₛ-Id i | subₛ-Id z | subₛ-Id s
= refl
subₛ-Id (fix T t n)
rewrite [Id] T | subₛ-Id t | [Id] n
= refl
subₛ->> : ∀ (σ : SC.Sub Δ Δ′) (τ : SC.Sub Δ′ Δ″) t
→ subₛ (σ SC.>> τ) t ≡ subₛ σ (subₛ τ t)
subₛ->> σ τ (var x) = refl
subₛ->> σ τ (Λ T , t) = cong₂ Λ_,_ ([>>] σ τ T) (subₛ->> σ τ t)
subₛ->> σ τ (t · u) = cong₂ _·_ (subₛ->> σ τ t) (subₛ->> σ τ u)
subₛ->> σ τ (Λₛ n , t)
rewrite [>>] σ τ n
= cong (λ t → Λₛ SC.sub σ (SC.sub τ n) , t)
(trans (cong (λ σ → subₛ σ t) (sym (SC.Lift>>Lift {n = n [ τ ]})))
(subₛ->> (SC.Lift σ) (SC.Lift τ) t))
subₛ->> σ τ (t ·ₛ m)
= cong₂ _·ₛ_ (subₛ->> σ τ t) ([>>] σ τ m)
subₛ->> σ τ (zero n) = cong zero ([>>] σ τ n)
subₛ->> σ τ (suc n m i)
rewrite [>>] σ τ n | [>>] σ τ m | subₛ->> σ τ i
= refl
subₛ->> σ τ (cons i n is)
rewrite subₛ->> σ τ i | [>>] σ τ n | subₛ->> σ τ is
= refl
subₛ->> σ τ (head n is)
rewrite [>>] σ τ n | subₛ->> σ τ is
= refl
subₛ->> σ τ (tail n is m)
rewrite [>>] σ τ n | subₛ->> σ τ is | [>>] σ τ m
= refl
subₛ->> σ τ (caseNat T n i z s)
rewrite [>>] σ τ T | [>>] σ τ n | subₛ->> σ τ i | subₛ->> σ τ z
| subₛ->> σ τ s
= refl
subₛ->> σ τ (fix T t n)
rewrite subₛ->> σ τ t | [>>] σ τ n
= cong (λ T → fix T (subₛ σ (subₛ τ t)) (n [ τ ] [ σ ]))
([>>]′ _ _ _ _ (sym SC.Lift>>Lift))
subₛᵤ : SU.Sub Δ Ω → Term Ω → Term Δ
subₛᵤ σ = subₛ ⟨ σ ⟩
abstract
subₛᵤ-resp-⊢ : ∀ {σ}
→ σ ∶ Δ ⇒ᵤ Ω
→ Ω , Γ ⊢ t ∶ T
→ Δ , Γ [ σ ]ᵤ ⊢ subₛᵤ σ t ∶ T [ σ ]ᵤ
subₛᵤ-resp-⊢ ⊢σ ⊢t = subₛ-resp-⊢ (SU.⟨⟩-resp-⊢ ⊢σ) ⊢t
subₛᵤ-Id : (t : Term Δ) → subₛᵤ SU.Id t ≡ t
subₛᵤ-Id t = subₛ-Id t
subₛᵤ->> : ∀ (σ : SU.Sub Δ Δ′) (τ : SU.Sub Δ′ Δ″) t
→ subₛᵤ (σ SU.>> τ) t ≡ subₛᵤ σ (subₛᵤ τ t)
subₛᵤ->> σ τ t = subₛ->> ⟨ σ ⟩ ⟨ τ ⟩ t
data _⊇_ {Δ} : (Γ Ψ : Ctx Δ) → Set where
[] : [] ⊇ []
keep : (α : Γ ⊇ Ψ) (T : Type Δ) → Γ ∙ T ⊇ Ψ ∙ T
weak : (α : Γ ⊇ Ψ) (T : Type Δ) → Γ ∙ T ⊇ Ψ
variable α β γ : Γ ⊇ Ψ
sub⊇ : (σ : SC.Sub Δ Ω) → Γ ⊇ Ψ → Γ [ σ ] ⊇ Ψ [ σ ]
sub⊇ σ [] = []
sub⊇ σ (keep α T) = keep (sub⊇ σ α) (T [ σ ])
sub⊇ σ (weak α T) = weak (sub⊇ σ α) (T [ σ ])
sub-syntax-⊇ = sub⊇
syntax sub-syntax-⊇ σ α = α [ σ ]α
renV : Γ ⊇ Ψ → Var → Var
renV [] x = x -- impossible if x is well-scoped
renV (keep α T) zero = zero
renV (keep α T) (suc x) = suc (renV α x)
renV (weak α T) x = suc (renV α x)
ren : {Γ Ψ : Ctx Δ} → Γ ⊇ Ψ → Term Δ → Term Δ
ren α (var x) = var (renV α x)
ren α (Λ T , t) = Λ T , ren (keep α T) t
ren α (t · u) = ren α t · ren α u
ren α (Λₛ n , t) = Λₛ n , ren (α [ SC.Wk ]α) t
ren α (t ·ₛ m) = ren α t ·ₛ m
ren α (zero n) = zero n
ren α (suc n m i) = suc n m (ren α i)
ren α (cons i n is) = cons (ren α i) n (ren α is)
ren α (head n is) = head n (ren α is)
ren α (tail n is m) = tail n (ren α is) m
ren α (caseNat T n i z s) = caseNat T n (ren α i) (ren α z) (ren α s)
ren α (fix T t n) = fix T (ren α t) n
abstract
renV-resp-⊢ₓ
: (α : Γ ⊇ Ψ)
→ Δ , Ψ ⊢ₓ x ∶ T
→ Δ , Γ ⊢ₓ renV α x ∶ T
renV-resp-⊢ₓ (keep α T) zero = zero
renV-resp-⊢ₓ (keep α T) (suc ⊢x) = suc (renV-resp-⊢ₓ α ⊢x)
renV-resp-⊢ₓ (weak α T) ⊢x = suc (renV-resp-⊢ₓ α ⊢x)
ren-resp-⊢
: (α : Γ ⊇ Ψ)
→ Δ , Ψ ⊢ t ∶ T
→ Δ , Γ ⊢ ren α t ∶ T
ren-resp-⊢ α (var ⊢x) = var (renV-resp-⊢ₓ α ⊢x)
ren-resp-⊢ α (abs ⊢t)
= abs (ren-resp-⊢ (keep α _) ⊢t)
ren-resp-⊢ α (app ⊢t ⊢u) = app (ren-resp-⊢ α ⊢t) (ren-resp-⊢ α ⊢u)
ren-resp-⊢ α (absₛ ⊢t refl)
= absₛ (ren-resp-⊢ (α [ SC.Wk ]α) ⊢t) refl
ren-resp-⊢ α (appₛ m<n ⊢t p) = appₛ m<n (ren-resp-⊢ α ⊢t) p
ren-resp-⊢ α (zero n<⋆) = zero n<⋆
ren-resp-⊢ α (suc n<⋆ m<n ⊢i) = suc n<⋆ m<n (ren-resp-⊢ α ⊢i)
ren-resp-⊢ α (cons n<⋆ ⊢i ⊢is)
= cons n<⋆ (ren-resp-⊢ α ⊢i) (ren-resp-⊢ α ⊢is)
ren-resp-⊢ α (head n<⋆ ⊢is) = head n<⋆ (ren-resp-⊢ α ⊢is)
ren-resp-⊢ α (tail n<⋆ m<n ⊢is) = tail n<⋆ m<n (ren-resp-⊢ α ⊢is)
ren-resp-⊢ α (caseNat n<⋆ ⊢i ⊢z ⊢s p)
= caseNat n<⋆ (ren-resp-⊢ α ⊢i) (ren-resp-⊢ α ⊢z) (ren-resp-⊢ α ⊢s) p
ren-resp-⊢ α (fix n<⋆ ⊢t p q) = fix n<⋆ (ren-resp-⊢ α ⊢t) p q
Id⊇ : (Γ : Ctx Δ) → Γ ⊇ Γ
Id⊇ [] = []
Id⊇ (Γ ∙ T) = keep (Id⊇ Γ) T
Wk⊇ : ∀ (Γ : Ctx Δ) T → Γ ∙ T ⊇ Γ
Wk⊇ Γ T = weak (Id⊇ Γ) _
data Sub {Δ} (Γ : Ctx Δ) : (Ψ : Ctx Δ) → Set where
[] : Sub Γ []
Snoc : (ν : Sub Γ Ψ) (t : Term Δ) → Sub Γ (Ψ ∙ T)
variable ν φ : Sub Γ Ψ
data Sub⊢ {Δ} (Γ : Ctx Δ) : ∀ Ψ → Sub Γ Ψ → Set where
[] : Sub⊢ Γ [] []
Snoc : (⊢ν : Sub⊢ Γ Ψ ν) (⊢t : Δ , Γ ⊢ t ∶ T) → Sub⊢ Γ (Ψ ∙ T) (Snoc ν t)
syntax Sub⊢ Γ Ψ ν = ν ∶ Γ ⇛ Ψ
Weaken : Sub Γ Ψ → Sub (Γ ∙ T) Ψ
Weaken [] = []
Weaken {Γ = Γ} {T = T} (Snoc ν t) = Snoc (Weaken ν) (ren (Wk⊇ Γ T) t)
abstract
Weaken⊢ : ν ∶ Γ ⇛ Ψ → Weaken ν ∶ Γ ∙ T ⇛ Ψ
Weaken⊢ [] = []
Weaken⊢ (Snoc ⊢ν ⊢t)
= Snoc (Weaken⊢ ⊢ν) (ren-resp-⊢ (Wk⊇ _ _) ⊢t)
Lift : Sub Γ Ψ → ∀ T → Sub (Γ ∙ T) (Ψ ∙ T)
Lift σ T = Snoc (Weaken σ) (var zero)
abstract
Lift⊢ : ν ∶ Γ ⇛ Ψ → Lift ν T ∶ Γ ∙ T ⇛ Ψ ∙ T
Lift⊢ ⊢ν = Snoc (Weaken⊢ ⊢ν) (var zero)
Id : Sub Γ Γ
Id {Γ = []} = []
Id {Γ = Γ ∙ T} = Lift Id T
abstract
Id⊢ : Id ∶ Γ ⇛ Γ
Id⊢ {Γ = []} = []
Id⊢ {Γ = Γ ∙ T} = Snoc (Weaken⊢ Id⊢) (var zero)
Wk : Sub (Γ ∙ T) Γ
Wk = Weaken Id
abstract
Wk⊢ : Wk ∶ Γ ∙ T ⇛ Γ
Wk⊢ = Weaken⊢ Id⊢
Fill : ∀ (Γ : Ctx Δ) T → Term Δ → Sub Γ (Γ ∙ T)
Fill Γ T t = Snoc Id t
abstract
Fill⊢ : Δ , Γ ⊢ t ∶ T → Fill Γ T t ∶ Γ ⇛ Γ ∙ T
Fill⊢ ⊢t = Snoc Id⊢ ⊢t
subν : (σ : SC.Sub Δ Ω) → Sub Γ Ψ → Sub (Γ [ σ ]) (Ψ [ σ ])
subν σ [] = []
subν σ (Snoc ν t) = Snoc (subν σ ν) (t [ σ ]ₛ)
abstract
subν-resp-⊢ : ∀ {σ} → σ ∶ Δ ⇒ Ω → ν ∶ Γ ⇛ Ψ → subν σ ν ∶ Γ [ σ ] ⇛ Ψ [ σ ]
subν-resp-⊢ ⊢σ [] = []
subν-resp-⊢ ⊢σ (Snoc ⊢ν ⊢t) = Snoc (subν-resp-⊢ ⊢σ ⊢ν) (subₛ-resp-⊢ ⊢σ ⊢t)
sub-syntax-Subₛ = subν
syntax sub-syntax-Subₛ σ ν = ν [ σ ]ν
subV : Sub {Δ} Γ Ψ → Var → Term Δ
subV [] x = var x -- impossible if x is well-scoped
subV (Snoc ν t) zero = t
subV (Snoc ν t) (suc x) = subV ν x
sub : Sub {Δ} Γ Ψ → Term Δ → Term Δ
sub ν (var x) = subV ν x
sub ν (Λ T , t) = Λ T , sub (Lift ν T) t
sub ν (t · u) = sub ν t · sub ν u
sub ν (Λₛ n , t) = Λₛ n , sub (ν [ SC.Wk ]ν) t
sub ν (t ·ₛ m) = sub ν t ·ₛ m
sub ν (zero n) = zero n
sub ν (suc n m i) = suc n m (sub ν i)
sub ν (cons i n is) = cons (sub ν i) n (sub ν is)
sub ν (head n is) = head n (sub ν is)
sub ν (tail n is m) = tail n (sub ν is) m
sub ν (caseNat T n i z s) = caseNat T n (sub ν i) (sub ν z) (sub ν s)
sub ν (fix T t n) = fix T (sub ν t) n
sub-syntax-Term = sub
syntax sub-syntax-Term ν t = t [ ν ]t
abstract
subV-resp-⊢
: ν ∶ Γ ⇛ Ψ
→ Δ , Ψ ⊢ₓ x ∶ T
→ Δ , Γ ⊢ subV ν x ∶ T
subV-resp-⊢ (Snoc ⊢ν ⊢t) zero = ⊢t
subV-resp-⊢ (Snoc ⊢ν ⊢t) (suc ⊢x) = subV-resp-⊢ ⊢ν ⊢x
sub-resp-⊢
: ν ∶ Γ ⇛ Ψ
→ Δ , Ψ ⊢ t ∶ T
→ Δ , Γ ⊢ sub ν t ∶ T
sub-resp-⊢ ⊢ν (var ⊢x)
= subV-resp-⊢ ⊢ν ⊢x
sub-resp-⊢ ⊢ν (abs ⊢t)
= abs (sub-resp-⊢ (Lift⊢ ⊢ν) ⊢t)
sub-resp-⊢ ⊢ν (app ⊢t ⊢u)
= app (sub-resp-⊢ ⊢ν ⊢t) (sub-resp-⊢ ⊢ν ⊢u)
sub-resp-⊢ ⊢ν (absₛ ⊢t refl)
= absₛ (sub-resp-⊢ (subν-resp-⊢ SC.Wk⊢ ⊢ν) ⊢t) refl
sub-resp-⊢ ⊢ν (appₛ m<n ⊢t p)
= appₛ m<n (sub-resp-⊢ ⊢ν ⊢t) p
sub-resp-⊢ ⊢ν (zero n<⋆)
= zero n<⋆
sub-resp-⊢ ⊢ν (suc n<⋆ m<n ⊢i)
= suc n<⋆ m<n (sub-resp-⊢ ⊢ν ⊢i)
sub-resp-⊢ ⊢ν (cons n<⋆ ⊢i ⊢is)
= cons n<⋆ (sub-resp-⊢ ⊢ν ⊢i) (sub-resp-⊢ ⊢ν ⊢is)
sub-resp-⊢ ⊢ν (head n<⋆ ⊢is)
= head n<⋆ (sub-resp-⊢ ⊢ν ⊢is)
sub-resp-⊢ ⊢ν (tail n<⋆ m<n ⊢is)
= tail n<⋆ m<n (sub-resp-⊢ ⊢ν ⊢is)
sub-resp-⊢ ⊢ν (caseNat n<⋆ ⊢i ⊢z ⊢s p)
= caseNat n<⋆ (sub-resp-⊢ ⊢ν ⊢i) (sub-resp-⊢ ⊢ν ⊢z) (sub-resp-⊢ ⊢ν ⊢s) p
sub-resp-⊢ ⊢ν (fix n<⋆ ⊢t p q)
= fix n<⋆ (sub-resp-⊢ ⊢ν ⊢t) p q
| {
"alphanum_fraction": 0.4572007547,
"avg_line_length": 28.0058708415,
"ext": "agda",
"hexsha": "57da3c7eb2baec75e0925cad734fd0a63e98934f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Source/Term.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Source/Term.agda",
"max_line_length": 77,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Source/Term.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 7983,
"size": 14311
} |
module Structure.Operator.Group.Proofs where
open import Functional hiding (id)
open import Function.Iteration.Order
import Lvl
open import Lang.Instance
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Setoid
open import Structure.Function.Domain
open import Structure.Operator.Group
open import Structure.Operator.Monoid
open import Structure.Operator.Properties
open import Structure.Operator.Proofs
open import Structure.Relator.Properties
open import Syntax.Transitivity
open import Type
{-
module _ {ℓ₁ ℓ₂} {X : Type{ℓ₁}} ⦃ _ : Equiv(X) ⦄ {_▫X_ : X → X → X} ⦃ structureₗ : Group(_▫X_) ⦄ {Y : Type{ℓ₂}} ⦃ _ : Equiv(Y) ⦄ {_▫Y_ : Y → Y → Y} ⦃ structureᵣ : Group(_▫Y_) ⦄ (f : X → Y) where
monomorphic-cyclic : ⦃ (_▫X_) ↣ (_▫Y_) ⦄ → Cyclic(_▫X_) → Cyclic(_▫Y_)
monomorphic-cyclic ⦃ [∃]-intro θ ⦃ θ-proof ⦄ ⦄ ([∃]-intro index ⦃ intro a ⦄) = {!!}
-}
{-
module _ {T : Type{ℓ₂}} {_▫_ : T → T → T} ⦃ group : Group(_▫_) ⦄ where
open Group {T} ⦃ [≡]-equiv ⦄ {_▫_} (group)
open Monoid {T} ⦃ [≡]-equiv ⦄ {_▫_} (monoid)
commutationₗ : ∀{x y} → (x ▫ y ≡ y ▫ x) ← ((x ▫ y) ▫ inv (x) ≡ y)
commutationₗ {x}{y} (comm) =
symmetry(
(congruence₁(_▫ x)
(symmetry comm)
)
🝖 (associativity)
🝖 (congruence₁((x ▫ y) ▫_)) (inverseₗ)
🝖 (identityᵣ)
)
-- (x▫y)▫inv(x) = y //comm
-- y = (x▫y)▫inv(x) //[≡]-symmetry
-- y▫x
-- = ((x▫y)▫inv(x))▫x //congruence₁(expr ↦ expr ▫ x) (..)
-- = (x▫y)▫(inv(x)▫x) //Group.associativity
-- = (x▫y)▫id //congruence₁(_) Group.inverseₗ
-- = x▫y //Group.identityᵣ
-- x▫y = y▫x //[≡]-symmetry
commutationᵣ : ∀{x y} → (x ▫ y ≡ y ▫ x) → ((x ▫ y) ▫ inv(x) ≡ y)
commutationᵣ {x}{y} (comm) =
(congruence₁(_▫ inv(x)) comm)
🝖 (associativity)
🝖 (congruence₁(y ▫_) (inverseᵣ))
🝖 (identityᵣ)
-- x▫y = y▫x //comm
-- (x▫y)▫inv(x)
-- = (y▫x)▫inv(x) //congruence₁(expr ↦ expr ▫ inv(x)) (..)
-- = y▫(x▫inv(x)) //Group.associativity
-- = y▫id //congruence₁(expr ↦ y ▫ expr) Group.inverseᵣ
-- = y //Group.identityᵣ
module _ {T : Type} {_▫_ : T → T → T} ⦃ commGroup : CommutativeGroup(_▫_) ⦄ where
open CommutativeGroup {T} ⦃ [≡]-equiv ⦄ {_▫_} (commGroup)
open Group {T} ⦃ [≡]-equiv ⦄ {_▫_} (group)
open Monoid {T} ⦃ [≡]-equiv ⦄ {_▫_} (monoid)
commutation : ∀{x y} → ((x ▫ y) ▫ inv(x) ≡ y)
commutation = commutationᵣ(commutativity)
module _ {T : Type} {_▫_ : T → T → T} ⦃ associativity : Associativity(_▫_) ⦄ where
-}
| {
"alphanum_fraction": 0.5763052209,
"avg_line_length": 34.1095890411,
"ext": "agda",
"hexsha": "954a08027f83747e831a538eaae515ea8bdc06cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Group/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Group/Proofs.agda",
"max_line_length": 194,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Group/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1103,
"size": 2490
} |
open import Agda.Builtin.Nat
data Vec (a : Set) : {n : Nat} → Set where
Nil : Vec a {0}
Cons : {n : Nat} → a → Vec a {n} → Vec a {suc n}
{-# COMPILE AGDA2HS Vec #-}
mapV : {a b : Set} {n : Nat} (f : a → b) → Vec a {n} → Vec b {n}
mapV f Nil = Nil
mapV f (Cons x xs) = Cons (f x) (mapV f xs)
{-# COMPILE AGDA2HS mapV #-}
tailV : {a : Set} {n : Nat} → Vec a {suc n} → Vec a {n}
tailV (Cons x xs) = xs
{-# COMPILE AGDA2HS tailV #-}
-- Using erasure instead of implicit arguments
data Vec' (a : Set) : (@0 n : Nat) → Set where
Nil' : Vec' a 0
Cons' : {@0 n : Nat} → a → Vec' a n → Vec' a (suc n)
{-# COMPILE AGDA2HS Vec' #-}
mapV' : {a b : Set} {@0 n : Nat} (f : a → b) → Vec' a n → Vec' b n
mapV' f Nil' = Nil'
mapV' f (Cons' x xs) = Cons' (f x) (mapV' f xs)
{-# COMPILE AGDA2HS mapV' #-}
tailV' : {a : Set} {@0 n : Nat} → Vec' a (suc n) → Vec' a n
tailV' (Cons' x xs) = xs
{-# COMPILE AGDA2HS tailV' #-}
| {
"alphanum_fraction": 0.5278080698,
"avg_line_length": 28.65625,
"ext": "agda",
"hexsha": "58796ec97fe6a08920635b97e92256fe68275f53",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "test/Vector.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "test/Vector.agda",
"max_line_length": 66,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "703c66db29023f5538eaa841f38dc34e89473a3e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jespercockx/agda2hs",
"max_stars_repo_path": "test/Vector.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 390,
"size": 917
} |
{-
The goal of this file is to prove the iso π₄S³≅ℤ/β
where β is a natural number (aka "the Brunerie number",
defined below).
-}
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Homotopy.Group.Pi4S3.BrunerieNumber where
open import Cubical.Homotopy.Loopspace
open import Cubical.Homotopy.Group.Base
open import Cubical.Homotopy.HopfInvariant.Base
open import Cubical.Homotopy.Group.Pi3S2
open import Cubical.Homotopy.Group.PinSn
open import Cubical.Homotopy.BlakersMassey
open import Cubical.Homotopy.Whitehead
open import Cubical.Homotopy.Connected
open import Cubical.Homotopy.Group.LES
open import Cubical.Homotopy.Group.Pi4S3.S3PushoutIso2
open import Cubical.Homotopy.Group.Pi4S3.S3PushoutIso
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.Data.Nat
open import Cubical.Data.Int
renaming (ℤ to Z ; _·_ to _·Z_ ; _+_ to _+Z_)
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp
open import Cubical.HITs.Wedge
open import Cubical.HITs.Pushout
open import Cubical.HITs.PropositionalTruncation
renaming (rec to pRec ; elim to pElim ; map to pMap)
open import Cubical.HITs.SetTruncation
renaming (rec to sRec ; rec2 to sRec2
; elim to sElim ; elim2 to sElim2 ; elim3 to sElim3
; map to sMap)
open import Cubical.HITs.Truncation renaming
(rec to trRec ; elim to trElim ; elim2 to trElim2 ; map to trMap)
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Exact
open import Cubical.Algebra.Group.ZAction
open import Cubical.Algebra.Group.Instances.IntMod
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Unit
open import Cubical.Algebra.Group.GroupPath
open Iso
open Exact4
-- The Brunerie number (see Corollary 3.4.5 in Brunerie's PhD thesis)
Brunerie : ℕ
Brunerie =
abs (HopfInvariant-π' 0 [ ∣ idfun∙ (S₊∙ 2) ∣₂ ∣ ∣ idfun∙ (S₊∙ 2) ∣₂ ]π')
-- First we need to define the following maps.
W : S₊ 3 → (S₊∙ 2 ⋁ S₊∙ 2)
W = joinTo⋁ {A = S₊∙ 1} {B = S₊∙ 1} ∘ Iso.inv (IsoSphereJoin 1 1)
fold∘W : S₊ 3 → S₊ 2
fold∘W = fold⋁ ∘ W
{-
We will now instantiate Blakers Massey to get a square:
fold∘W
S³ --------------> S²
|\ ↗ |
| \ ↗ |
| \ ↗ |
| X | inr
| / |
| / |
| / |
v / v
1 -----------> coFib fold∘W
inl
where X is the pullback of inl and inr and the map S³ → X is
surjective on π₃. This will give us a sequence
π₃ S³ --ᶠ→ π₃ S² → π₃ (coFib fold∘W) → π₂ X ≅ 0, where f is
the function induced by fold∘W. From this, we can deduce that
π₃ (coFib fold∘W) ≅ ℤ/ f(1) where f(1) is interpreted as an
integer via the isos π₃ S³ ≅ π₃ S² ≅ ℤ
(Recall that π₃(coFib fold∘W) ≅ π₄S³)
For clarity:
X, above will have two names (via a trivial iso) below:
TotalPushoutPath× (the version the falls out of BM)
P = fiber inr (Same name as in Brunerie's prop 4.3.4.)
-}
-- Before instantiating, we need to show that
-- any map S³ → S² is 0-connected
isConnectedS3→S2 : (f : S₊ 3 → S₊ 2) → isConnectedFun 2 f
isConnectedS3→S2 f p =
trRec (isProp→isOfHLevelSuc 1 isPropIsContr)
(J (λ p _ → isConnected 2 (fiber f p))
(∣ north , refl ∣
, (trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _)
(uncurry
(sphereElim 2
(λ _ → isOfHLevelΠ 3
λ _ → isOfHLevelPath 3
(isOfHLevelSuc 2 (isOfHLevelTrunc 2)) _ _)
λ p → trRec (isOfHLevelTrunc 2 _ _)
(λ r → cong ∣_∣ₕ (ΣPathP (refl , r)))
(fun (PathIdTruncIso 1)
(isContr→isProp
(isConnectedPath 2 (sphereConnected 2)
(f north) (f north)) ∣ refl ∣ ∣ p ∣)))))))
(fun (PathIdTruncIso 2)
(isContr→isProp (sphereConnected 2) ∣ f north ∣ ∣ p ∣))
-- We get our square
module BM-inst =
BlakersMassey□
(λ _ → tt) fold∘W 3 1
(λ _ → subst (isConnected 4)
(isoToPath (invIso fiberUnitIso))
(sphereConnected 3))
(isConnectedS3→S2 fold∘W)
open BM-inst
-- The central types
coFib-fold∘W : Type
coFib-fold∘W = Pushout (λ _ → tt) fold∘W
coFib-fold∘W∙ : Pointed₀
coFib-fold∘W∙ = coFib-fold∘W , inl tt
TotalPushoutPath×∙ : Pointed ℓ-zero
fst TotalPushoutPath×∙ = Σ (Unit × S₊ 2) PushoutPath×
snd TotalPushoutPath×∙ = (tt , north) , push north
S³→TotalPushoutPath× : S₊ 3 → Σ (Unit × S₊ 2) PushoutPath×
S³→TotalPushoutPath× = toPullback
private
inr' : S₊ 2 → coFib-fold∘W
inr' = inr
inr∙ : S₊∙ 2 →∙ coFib-fold∘W∙
fst inr∙ = inr'
snd inr∙ = sym (push north)
fiberinr'Iso' : Iso (fiber inr' (inl tt))
(Σ (Unit × S₊ 2) PushoutPath×)
fiberinr'Iso' =
compIso (Σ-cong-iso-snd (λ x → symIso))
(Σ-cong-iso-fst (invIso lUnit×Iso))
fiberinr'Iso : Iso (fiber inr' (inl tt))
(Σ (Unit × S₊ 2) PushoutPath×)
fun fiberinr'Iso (x , p) = (tt , x) , (sym p)
inv fiberinr'Iso ((tt , x) , p) = x , (sym p)
rightInv fiberinr'Iso _ = refl
leftInv fiberinr'Iso _ = refl
P : Pointed₀
P = (fiber inr' (inl tt) , north , (sym (push north)))
π'P→π'TotalPath× : (n : ℕ)
→ GroupEquiv (π'Gr n TotalPushoutPath×∙) (π'Gr n P)
fst (fst (π'P→π'TotalPath× n)) =
π'eqFun n ((invEquiv (isoToEquiv fiberinr'Iso)) , refl)
snd (fst (π'P→π'TotalPath× n)) = π'eqFunIsEquiv n _
snd (π'P→π'TotalPath× n) = π'eqFunIsHom n _
-- Time to invoke the long exact sequence of homotopy groups on
-- inr : S² → coFib-fold∘W
module LESinst = πLES {A = S₊∙ 2} {B = coFib-fold∘W∙} inr∙
-- We instantiate the sequence
-- π₃ P → π₃ S² → π₃ coFib-fold∘W∙ → π₂ P
P→S²→Pushout :
Exact4 (πGr 2 P) (πGr 2 (S₊∙ 2)) (πGr 2 coFib-fold∘W∙) (πGr 1 P)
(LESinst.fib→A 2)
(LESinst.A→B 2)
(LESinst.B→fib 1)
Exact4.ImG→H⊂KerH→L P→S²→Pushout = LESinst.Im-fib→A⊂Ker-A→B 2
Exact4.KerH→L⊂ImG→H P→S²→Pushout = LESinst.Ker-A→B⊂Im-fib→A 2
Exact4.ImH→L⊂KerL→R P→S²→Pushout = LESinst.Im-A→B⊂Ker-B→fib 1
Exact4.KerL→R⊂ImH→L P→S²→Pushout = LESinst.Ker-B→fib⊂Im-A→B 1
-- The goal now is to rewrite it as
-- π₃ S³ → π₃ S² → π₃ coFib-fold∘W∙ → Unit using the
-- "functions from spheres"-definition of πₙ.
-- Here, the first map is the one induced by fold∘W. We do this by:
-- (1) showing that π₂ P is trivial
-- (2) extending the sequence by appending surjections
-- π₃ S³ → π₃ TotalPushoutPath×∙ → π₃ P on the left.
-- (3) proving that this new composition is indeed the appropriate map
-- Step 1: π₂ P is trivial
π₂P≅0 : GroupEquiv (πGr 1 P) UnitGroup₀
π₂P≅0 = compGroupEquiv (πIso (isoToEquiv fiberinr'Iso , refl) 1)
(GroupIso→GroupEquiv
(contrGroupIsoUnit
(isOfHLevelRetractFromIso 0 (invIso iso₂) isContrπ₂S³)))
where
iso₁ : Iso (hLevelTrunc 4 (S₊ 3))
(hLevelTrunc 4 (Σ (Unit × S₊ 2) PushoutPath×))
iso₁ = connectedTruncIso 4 S³→TotalPushoutPath× isConnected-toPullback
iso₂ : Iso (π 2 (hLevelTrunc∙ 4 (S₊∙ 3)))
(π 2 TotalPushoutPath×∙)
iso₂ =
(compIso (setTruncIso
(equivToIso (_ ,
(isEquivΩ^→ 2 (fun iso₁ , refl) (isoToIsEquiv iso₁)))))
(invIso (πTruncIso 2)))
isContrπ₂S³ : isContr (π 2 (hLevelTrunc∙ 4 (S₊∙ 3)))
isContrπ₂S³ =
subst (λ x → isContr (π 2 x))
(λ i → ((sym (isContr→≡Unit (sphereConnected 3))) i)
, transp (λ j → isContr→≡Unit
(sphereConnected 3) (~ i ∧ j)) i ∣ north ∣)
(∣ refl ∣₂ , sElim (λ _ → isSetPathImplicit)
λ p → cong ∣_∣₂
(isProp→isSet
(isOfHLevelPath 1 isPropUnit _ _) _ _ _ p))
-- Step 2. We transform our original sequence to one for the
-- the "maps from spheres" definition of πₙ and where π₂ P is
-- replaced by the trivial group:
-- π₃ P → π₃ S² → π₃ coFib-fold∘W∙ → 0
P→S²→Pushout→P' :
Exact4 (π'Gr 2 P) (π'Gr 2 (S₊∙ 2)) (π'Gr 2 coFib-fold∘W∙) UnitGroup₀
(π'∘∙Hom 2 (fst , refl))
(π'∘∙Hom 2 inr∙)
(→UnitHom _)
P→S²→Pushout→P' =
transportExact4
(sym (GroupPath _ _ .fst ((GroupIso→GroupEquiv (π'Gr≅πGr 2 P)))))
(sym (GroupPath _ _ .fst ((GroupIso→GroupEquiv (π'Gr≅πGr 2 (S₊∙ 2))))))
(sym (GroupPath _ _ .fst ((GroupIso→GroupEquiv (π'Gr≅πGr 2 coFib-fold∘W∙)))))
(sym (GroupPath _ _ .fst π₂P≅0))
_ _ _ _ _
P→S²→Pushout
(ΣPathPProp (λ _ → isPropIsGroupHom _ _)
λ i → fst (π∘∙fib→A-PathP 2 inr∙ i))
(ΣPathPProp (λ _ → isPropIsGroupHom _ _)
λ i → fst (π∘∙A→B-PathP 2 inr∙ i))
-- The two surjections in question
π₃S³→π₃P : GroupHom (π'Gr 2 (S₊∙ 3)) (π'Gr 2 TotalPushoutPath×∙)
π₃S³→π₃P = π'∘∙Hom 2 (S³→TotalPushoutPath× , refl)
TotalPushoutPath×∙→P : TotalPushoutPath×∙ →∙ P -- Surjective, and in particular on π₃
fst TotalPushoutPath×∙→P x = (snd (fst x)) , (sym (snd x))
snd TotalPushoutPath×∙→P = refl
-- This surjectivity is where Blakers-Massey is used
-- In particular, it uses isConnected-toPullback
isSurjective-π₃S³→π₃TotalPushoutPath× : isSurjective π₃S³→π₃P
isSurjective-π₃S³→π₃TotalPushoutPath× =
transport (λ i → isSurjective (transportLem i))
isSurjective-π₃S³→π₃TotalPushoutPath×'
where
π₃S³→π₃TotalPushoutPath× : GroupHom (πGr 2 (S₊∙ 3)) (πGr 2 TotalPushoutPath×∙)
π₃S³→π₃TotalPushoutPath× = πHom 2 (S³→TotalPushoutPath× , refl)
isSurjective-π₃S³→π₃TotalPushoutPath×' : isSurjective π₃S³→π₃TotalPushoutPath×
isSurjective-π₃S³→π₃TotalPushoutPath×' =
sElim (λ _ → isProp→isSet squash₁)
λ p → trRec squash₁
(λ s → ∣ ∣ fst s ∣₂ , (cong ∣_∣₂ (snd s)) ∣₁)
(((isConnectedΩ^→ 3 3 (S³→TotalPushoutPath× , refl)
isConnected-toPullback) p) .fst)
transportLem : PathP (λ i → GroupHomπ≅π'PathP (S₊∙ 3) TotalPushoutPath×∙ 2 i)
π₃S³→π₃TotalPushoutPath× π₃S³→π₃P
transportLem =
toPathP (Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(π'∘∙Hom'≡π'∘∙fun {A = S₊∙ 3} {B = TotalPushoutPath×∙}
2 (S³→TotalPushoutPath× , refl)))
-- We get a sequence on the right form π₃S³ → π₃S² → π₃ Pushout → Unit
S³→S²→Pushout→Unit'' :
Exact4 (π'Gr 2 (S₊∙ 3)) (π'Gr 2 (S₊∙ 2)) (π'Gr 2 coFib-fold∘W∙) UnitGroup₀
(compGroupHom π₃S³→π₃P
(compGroupHom
(π'∘∙Hom 2 TotalPushoutPath×∙→P) (π'∘∙Hom 2 (fst , refl))))
(π'∘∙Hom 2 inr∙)
(→UnitHom (π'Gr 2 coFib-fold∘W∙))
S³→S²→Pushout→Unit'' =
extendExact4Surjective _ _ _ _ _ _ _ _ _
isSurjective-π₃S³→π₃TotalPushoutPath×
(extendExact4Surjective _ _ _ _ _ _ _ _ _
((sElim (λ _ → isProp→isSet squash₁)
(λ f → ∣ ∣ (λ x → (tt , fst f x .fst) , sym (fst f x .snd))
, ΣPathP ((ΣPathP (refl , cong fst (snd f)))
, λ j i → snd f j .snd (~ i)) ∣₂
, cong ∣_∣₂ (ΣPathP (refl , sym (rUnit _))) ∣₁)))
P→S²→Pushout→P')
-- Step 3: We need to show that the map π₃S³ → π₃S² in the above sequence
-- indeed comes from fold∘W
tripleComp≡ :
(compGroupHom π₃S³→π₃P
(compGroupHom
(π'∘∙Hom 2 TotalPushoutPath×∙→P) (π'∘∙Hom 2 (fst , refl))))
≡ π'∘∙Hom 2 (fold∘W , refl)
tripleComp≡ =
Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(funExt (sElim (λ _ → isSetPathImplicit)
λ f → cong ∣_∣₂ (ΣPathP (refl , (cong (_∙ refl)
(λ j → cong fst (rUnit (cong (fst TotalPushoutPath×∙→P)
(rUnit (cong S³→TotalPushoutPath× (snd f)) (~ j))) (~ j))))))))
-- We finally get the correct sequence
S³→S²→Pushout→Unit :
Exact4 (π'Gr 2 (S₊∙ 3)) (π'Gr 2 (S₊∙ 2)) (π'Gr 2 coFib-fold∘W∙) UnitGroup₀
(π'∘∙Hom 2 (fold∘W , refl))
(π'∘∙Hom 2 inr∙)
(→UnitHom (π'Gr 2 coFib-fold∘W∙))
S³→S²→Pushout→Unit =
subst
(λ F → Exact4 (π'Gr 2 (S₊∙ 3)) (π'Gr 2 (S₊∙ 2)) (π'Gr 2 coFib-fold∘W∙) UnitGroup₀
F (π'∘∙Hom 2 inr∙)
(→UnitHom (π'Gr 2 coFib-fold∘W∙)))
tripleComp≡
S³→S²→Pushout→Unit''
-- We need to throw around some pushouts
module _ where
Pushout-coFibW-fold⋁≃coFib-fold∘W :
Pushout {B = (Pushout W (λ _ → tt))} inl fold⋁ ≃ fst coFib-fold∘W∙
Pushout-coFibW-fold⋁≃coFib-fold∘W = compEquiv
(compEquiv pushoutSwitchEquiv
(isoToEquiv (PushoutDistr.PushoutDistrIso fold⋁ W λ _ → tt)))
pushoutSwitchEquiv
coFibW≅coFibW' : Pushout W (λ _ → tt) ≃ cofibW S¹ S¹ base base
coFibW≅coFibW' = pushoutEquiv W (λ _ → tt) joinTo⋁ (λ _ → tt)
(isoToEquiv (invIso (IsoSphereJoin 1 1)))
(idEquiv _)
(idEquiv _)
refl
refl
Pushout-coFibW-fold⋁≃Pushout⋁↪fold⋁ :
Pushout {B = (Pushout W (λ _ → tt))} inl fold⋁
≃ fst (Pushout⋁↪fold⋁∙ (S₊∙ 2))
Pushout-coFibW-fold⋁≃Pushout⋁↪fold⋁ = pushoutEquiv inl _ ⋁↪ fold⋁
(idEquiv _)
(compEquiv coFibW≅coFibW'
(isoToEquiv (invIso (Iso-Susp×Susp-cofibJoinTo⋁ S¹ S¹ base base))))
(idEquiv _)
(Susp×Susp→cofibW≡ S¹ S¹ base base)
refl
Pushout-coFibW-fold⋁≃Pushout⋁↪fold⋁∙ :
(Pushout {B = (Pushout W (λ _ → tt))} inl fold⋁ , inr north)
≃∙ (Pushout⋁↪fold⋁∙ (S₊∙ 2))
fst Pushout-coFibW-fold⋁≃Pushout⋁↪fold⋁∙ =
Pushout-coFibW-fold⋁≃Pushout⋁↪fold⋁
snd Pushout-coFibW-fold⋁≃Pushout⋁↪fold⋁∙ =
sym (push (inl north))
π₄S³≅π₃coFib-fold∘W∙ : GroupEquiv (π'Gr 3 (S₊∙ 3)) (π'Gr 2 coFib-fold∘W∙)
π₄S³≅π₃coFib-fold∘W∙ =
compGroupEquiv
(GroupIso→GroupEquiv
(compGroupIso
(π'Gr≅πGr 3 (S₊∙ 3))
(compGroupIso
π₄S³≅π₃PushS²
(invGroupIso (π'Gr≅πGr 2 (Pushout⋁↪fold⋁∙ (S₊∙ 2)))))))
(compGroupEquiv
(invGroupEquiv (π'Iso 2 Pushout-coFibW-fold⋁≃Pushout⋁↪fold⋁∙))
(π'Iso 2 (Pushout-coFibW-fold⋁≃coFib-fold∘W , sym (push north))))
-- We get the iso
-- For type checking reasons, let's first prove it for the abstract
-- definition of ℤ/_
-- To get everything on the same form as in Brunerie's thesis, we
-- first need the following:
fold∘W≡Whitehead :
fst (π'∘∙Hom 2 (fold∘W , refl)) ∣ idfun∙ (S₊∙ 3) ∣₂
≡ ∣ [ idfun∙ (S₊∙ 2) ∣ idfun∙ (S₊∙ 2) ]₂ ∣₂
fold∘W≡Whitehead =
pRec (squash₂ _ _)
(cong ∣_∣₂)
(indΠ₃S₂ _ _
(funExt (λ x → funExt⁻ (sym (cong fst (id∨→∙id {A = S₊∙ 2}))) (W x))))
where
indΠ₃S₂ : ∀ {ℓ} {A : Pointed ℓ}
→ (f g : A →∙ S₊∙ 2)
→ fst f ≡ fst g → ∥ f ≡ g ∥₁
indΠ₃S₂ {A = A} f g p =
trRec squash₁
(λ r → ∣ ΣPathP (p , r) ∣₁)
(isConnectedPathP 1 {A = (λ i → p i (snd A) ≡ north)}
(isConnectedPathSⁿ 1 (fst g (pt A)) north) (snd f) (snd g) .fst )
BrunerieIsoAbstract : GroupEquiv (π'Gr 3 (S₊∙ 3)) (abstractℤGroup/ Brunerie)
BrunerieIsoAbstract =
compGroupEquiv π₄S³≅π₃coFib-fold∘W∙
(invGroupEquiv
(GroupEquiv-abstractℤ/abs-gen
(π'Gr 2 (S₊∙ 3)) (π'Gr 2 (S₊∙ 2)) (π'Gr 2 coFib-fold∘W∙)
(GroupIso→GroupEquiv (invGroupIso (πₙ'Sⁿ≅ℤ 2)))
(invGroupEquiv hopfInvariantEquiv)
(π'∘∙Hom 2 (fold∘W , refl))
_
S³→S²→Pushout→Unit Brunerie main))
where
mainPath :
fst (π'∘∙Hom 2 (fold∘W , refl))
(Iso.inv (fst (πₙ'Sⁿ≅ℤ 2)) 1)
≡ [ ∣ idfun∙ (S₊∙ 2) ∣₂ ∣ ∣ idfun∙ (S₊∙ 2) ∣₂ ]π'
mainPath =
cong (fst (π'∘∙Hom 2 (fold∘W , refl)))
(cong (Iso.inv (fst (πₙ'Sⁿ≅ℤ 2))) (sym (πₙ'Sⁿ≅ℤ-idfun∙ 2))
∙ (Iso.leftInv (fst (πₙ'Sⁿ≅ℤ 2)) ∣ idfun∙ (S₊∙ 3) ∣₂))
∙ fold∘W≡Whitehead
∙ cong ∣_∣₂ (sym ([]≡[]₂ (idfun∙ (S₊∙ 2)) (idfun∙ (S₊∙ 2))))
main : _ ≡ Brunerie
main i = abs (HopfInvariant-π' 0 (mainPath i))
-- And, finally, we get the actual iso
-- (as in Corollary 3.4.5 in Brunerie's thesis)
BrunerieIso : GroupEquiv (π'Gr 3 (S₊∙ 3)) (ℤGroup/ Brunerie)
BrunerieIso =
compGroupEquiv BrunerieIsoAbstract (abstractℤ/≅ℤ Brunerie)
| {
"alphanum_fraction": 0.6146356784,
"avg_line_length": 35.5357142857,
"ext": "agda",
"hexsha": "051358e8e2fcb4f63db6dabbb162adc427b37ccd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Group/Pi4S3/BrunerieNumber.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Group/Pi4S3/BrunerieNumber.agda",
"max_line_length": 85,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Group/Pi4S3/BrunerieNumber.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 6822,
"size": 15920
} |
module UniDB.Morph.WeakenPrime where
open import UniDB.Spec
open import UniDB.Morph.ShiftsPrime
open import Function
--------------------------------------------------------------------------------
data Weaken` : MOR where
baseW : {γ : Dom} → Weaken` γ γ
stepW : {γ₁ γ₂ : Dom} → Weaken` γ₁ γ₂ → Weaken` γ₁ (suc γ₂)
lkWeakenIx` : {γ₁ γ₂ : Dom} → Weaken` γ₁ γ₂ → Ix γ₁ → Ix γ₂
lkWeakenIx` baseW i = i
lkWeakenIx` (stepW ξ) i = suc (lkWeakenIx` ξ i)
instance
iLkWeaken` : {T : STX} {{vrT : Vr T}} → Lk T Weaken`
lk {{iLkWeaken`}} ξ i = vr (lkWeakenIx` ξ i)
iWkmWeaken` : Wkm Weaken`
Wkm.wkm iWkmWeaken` zero = baseW
Wkm.wkm iWkmWeaken` (suc δ) = stepW (wkm {Weaken`} δ)
iIdmWeaken` : Idm Weaken`
idm {{iIdmWeaken`}} γ = baseW
iWkWeaken` : {γ₁ : Dom} → Wk (Weaken` γ₁)
wk₁ {{iWkWeaken`}} ξ = stepW ξ
wk {{iWkWeaken`}} zero x = x
wk {{iWkWeaken`}} (suc δ) x = wk₁ (wk δ x)
wk-zero {{iWkWeaken`}} x = refl
wk-suc {{iWkWeaken`}} δ x = refl
lkWeakenIx`-wkm : {γ : Dom} (δ : Dom) (i : Ix γ) →
lkWeakenIx` (wkm {Weaken`} δ) i ≡ wk δ i
lkWeakenIx`-wkm zero i = refl
lkWeakenIx`-wkm (suc δ) i = cong suc (lkWeakenIx`-wkm δ i)
instance
iLkWkmWeaken` : {T : STX} {{vrT : Vr T}} → LkWkm T Weaken`
lk-wkm {{iLkWkmWeaken` {T}}} δ i = cong (vr {T}) (lkWeakenIx`-wkm δ i)
iCompWeaken` : Comp Weaken`
_⊙_ {{iCompWeaken`}} ξ baseW = ξ
_⊙_ {{iCompWeaken`}} ξ (stepW ξ₂) = stepW (ξ ⊙ ξ₂)
wk-comp` : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Weaken` γ₁ γ₂) (ξ₂ : Weaken` γ₂ γ₃)
(δ : Dom) → wk δ (ξ₁ ⊙ ξ₂) ≡ ξ₁ ⊙ wk δ ξ₂
wk-comp` ξ₁ ξ₂ zero = refl
wk-comp` ξ₁ ξ₂ (suc δ) = cong stepW (wk-comp` ξ₁ ξ₂ δ)
lkIx-wk-weaken` : {γ₁ γ₂ : Dom} (δ : Dom) (ξ : Weaken` γ₁ γ₂) (i : Ix γ₁) →
lk {Ix} {Weaken`} (wk δ ξ) i ≡ wk δ (lk {Ix} {Weaken`} ξ i)
lkIx-wk-weaken` zero ξ i = refl
lkIx-wk-weaken` (suc δ) ξ i = cong suc (lkIx-wk-weaken` δ ξ i)
module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{wkVrT : WkVr T}} where
lk-wk₁-weaken` :
{γ₁ γ₂ : Dom} (ξ : Weaken` γ₁ γ₂) (i : Ix γ₁) →
lk {T} {Weaken`} (wk₁ ξ) i ≡ wk₁ (lk {T} {Weaken`} ξ i)
lk-wk₁-weaken` ξ i = sym (wk₁-vr {T} (lk {Ix} {Weaken`} ξ i) )
lk-wk-weaken` :
{γ₁ γ₂ : Dom} (δ : Dom) (ξ : Weaken` γ₁ γ₂) (i : Ix γ₁) →
lk {T} {Weaken`} (wk δ ξ) i ≡ wk δ (lk {T} {Weaken`} ξ i)
lk-wk-weaken` δ ξ i = trans
(cong (vr {T}) (lkIx-wk-weaken` δ ξ i))
(sym (wk-vr {T} δ (lk {Ix} {Weaken`} ξ i)))
lkWeakenIx`-comp :
{γ₁ γ₂ γ₃ : Dom} (ξ₁ : Weaken` γ₁ γ₂) (ξ₂ : Weaken` γ₂ γ₃)
(i : Ix γ₁) →
lkWeakenIx` ((iCompWeaken` Comp.⊙ ξ₁) ξ₂) i ≡
lkWeakenIx` ξ₂ (lkWeakenIx` ξ₁ i)
lkWeakenIx`-comp ξ₁ baseW i = refl
lkWeakenIx`-comp ξ₁ (stepW ξ₂) i = cong suc (lkWeakenIx`-comp ξ₁ ξ₂ i)
instance
iLkRenWeaken` : {T : STX} {{vrT : Vr T}} → LkRen T Weaken`
lk-ren {{iLkRenWeaken`}} ξ i = refl
iLkRenCompWeaken` : {T : STX} {{vrT : Vr T}} → LkRenComp T Weaken`
lk-ren-comp {{iLkRenCompWeaken` {T}}} ξ₁ ξ₂ i =
cong (vr {T}) (lkWeakenIx`-comp ξ₁ ξ₂ i)
iCompIdmWeaken` : CompIdm Weaken`
⊙-idm {{iCompIdmWeaken`}} ξ = refl
idm-⊙ {{iCompIdmWeaken`}} baseW = refl
idm-⊙ {{iCompIdmWeaken`}} (stepW ξ) = cong stepW (idm-⊙ {Weaken`} ξ)
iCompAssocWeaken` : CompAssoc Weaken`
⊙-assoc {{iCompAssocWeaken`}} ξ₁ ξ₂ baseW = refl
⊙-assoc {{iCompAssocWeaken`}} ξ₁ ξ₂ (stepW ξ₃) =
cong stepW (⊙-assoc {Weaken`} ξ₁ ξ₂ ξ₃)
⊙-wkm-weaken` : {γ₁ γ₂ : Dom} (ξ : Weaken` γ₁ γ₂) (δ : Dom) →
ξ ⊙ wkm {Weaken`} δ ≡ wk δ ξ
⊙-wkm-weaken` ξ zero = refl
⊙-wkm-weaken` ξ (suc δ) = cong stepW (⊙-wkm-weaken` ξ δ)
extensionality-weaken` : {γ₁ γ₂ : Dom} (ξ₁ ξ₂ : Weaken` γ₁ γ₂)
(hyp : (i : Ix γ₁) → lk {Ix} ξ₁ i ≡ lk {Ix} ξ₂ i) →
ξ₁ ≡ ξ₂
extensionality-weaken` baseW baseW hyp = refl
extensionality-weaken` baseW (stepW ξ₂) hyp = case hyp zero of λ ()
extensionality-weaken` (stepW ξ₁) baseW hyp = case hyp zero of λ ()
extensionality-weaken` (stepW ξ₁) (stepW ξ₂) hyp =
cong stepW (extensionality-weaken` ξ₁ ξ₂ (suc-inj ∘ hyp))
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.5643491124,
"avg_line_length": 35.5789473684,
"ext": "agda",
"hexsha": "87137066ca572551e6f9aa5500ad5dad56fbb231",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Morph/WeakenPrime.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Morph/WeakenPrime.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Morph/WeakenPrime.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1939,
"size": 4056
} |
{-# OPTIONS --without-K --safe #-}
-- A cartesian functor preserves products (of cartesian categories)
module Categories.Functor.Cartesian where
open import Data.Product using (Σ; _,_)
open import Level
open import Categories.Category.Cartesian
open import Categories.Category using (Category; _[_,_])
open import Categories.Category.Product
open import Categories.Functor using (Functor; _∘F_)
open import Categories.NaturalTransformation using (NaturalTransformation)
private
variable
o ℓ e o′ ℓ′ e′ : Level
record CartesianF {A : Category o ℓ e} {B : Category o′ ℓ′ e′} (CA : Cartesian A) (CB : Cartesian B)
(F : Functor A B) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module CA = Cartesian CA
module CB = Cartesian CB
field
-- F is product preserving
ε : B [ CB.⊤ , Functor.F₀ F CA.⊤ ]
⊗-homo : NaturalTransformation (CB.⊗ ∘F (F ⁂ F)) (F ∘F CA.⊗)
| {
"alphanum_fraction": 0.6883408072,
"avg_line_length": 31.8571428571,
"ext": "agda",
"hexsha": "99cf0f4f98fb06fc56bea7afc9a7042999e8fb0d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bond15/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Cartesian.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bond15/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Cartesian.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bond15/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Cartesian.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 270,
"size": 892
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Adjoint.Instance.0-Truncation where
-- The adjunction between 0-truncation and the inclusion functor from
-- Setoids to Categories/Groupoids.
open import Level using (Lift)
open import Data.Unit using (⊤)
import Function
open import Relation.Binary using (Setoid)
open import Function.Equality using (Π) renaming (id to idΠ)
open import Categories.Adjoint using (_⊣_)
open import Categories.Category.Construction.0-Groupoid using (0-Groupoid)
open import Categories.Category.Groupoid using (Groupoid)
open import Categories.Category.Instance.Groupoids using (Groupoids)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Instance.0-Truncation using (Trunc)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism using (refl)
-- The inclusion functor from Setoids to Groupoids
Inclusion : ∀ {c ℓ} e → Functor (Setoids c ℓ) (Groupoids c ℓ e)
Inclusion {c} {ℓ} e = record
{ F₀ = 0-Groupoid e
; F₁ = λ f → record { F₀ = f ⟨$⟩_ ; F₁ = cong f }
; identity = refl
; homomorphism = refl
; F-resp-≈ = λ {S T f g} f≗g →
let module S = Setoid S
module T = Setoid T
in record
{ F⇒G = record { η = λ _ → f≗g S.refl }
; F⇐G = record { η = λ _ → T.sym (f≗g S.refl) }
}
}
where open Π
-- Trunc is left-adjoint to the inclusion functor from Setoids to Groupoids
TruncAdj : ∀ {o ℓ e} → Trunc ⊣ Inclusion {o} {ℓ} e
TruncAdj {o} {ℓ} {e} = record
{ unit = unit
; counit = counit
; zig = Function.id
; zag = refl
}
where
open Π
open Groupoid using (category)
unit : NaturalTransformation idF (Inclusion e ∘F Trunc)
unit = record
{ η = λ _ → record { F₀ = Function.id ; F₁ = Function.id }
; commute = λ _ → refl
; sym-commute = λ _ → refl
}
counit : NaturalTransformation (Trunc ∘F Inclusion e) idF
counit = ntHelper record { η = λ S → idΠ ; commute = λ f → cong f }
| {
"alphanum_fraction": 0.6668211307,
"avg_line_length": 33.71875,
"ext": "agda",
"hexsha": "3d0a60b0e1e40effb03dab5360ee5209a1c5a4e4",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint/Instance/0-Truncation.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint/Instance/0-Truncation.agda",
"max_line_length": 84,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint/Instance/0-Truncation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 652,
"size": 2158
} |
module AbstractInterfaces where
open import Prelude public
-- Process identifiers.
record IsProc : Set₁ where
field
Proc : Set
_≡ₚ?_ : Decidable (_≡_ {A = Proc})
_<ₚ_ : Proc → Proc → Set
trans<ₚ : Transitive _<ₚ_
tri<ₚ : Trichotomous _≡_ _<ₚ_
_≮ₚ_ : Proc → Proc → Set
P ≮ₚ P′ = ¬ (P <ₚ P′)
open IsProc {{…}} public
-- Process clocks, message timestamps, and event timestamps.
record IsTime : Set₁ where
field
Time : Set
_≡ₜ?_ : Decidable (_≡_ {A = Time})
_<ₜ_ : Time → Time → Set
trans<ₜ : Transitive _<ₜ_
tri<ₜ : Trichotomous _≡_ _<ₜ_
irrefl<ₜ : Irreflexive _<ₜ_
sucₜ : Time → Time
_⊔ₜ_ : Time → Time → Time
n<s[n⊔m]ₜ : ∀ T T′ → T <ₜ sucₜ (T ⊔ₜ T′)
_≮ₜ_ : Time → Time → Set
T ≮ₜ T′ = ¬ (T <ₜ T′)
open IsTime {{…}} public
-- Messages.
record IsMsg {{_ : IsProc}} {{_ : IsTime}} : Set₁ where
field
Msg : (Pᵢ Pⱼ : Proc) (Tₘ : Time) → Set
open IsMsg {{…}} public
-- Events within one process.
record IsEvent {{_ : IsProc}} {{_ : IsTime}} {{_ : IsMsg}} : Set₁ where
field
Event : Proc → Time → Set
isSendₑ : ∀ {Cᵢ Pᵢ Pⱼ Tₘ} {{_ : Tₘ ≡ sucₜ Cᵢ}} →
Msg Pᵢ Pⱼ Tₘ → Event Pᵢ Tₘ → Set
isRecvₑ : ∀ {Cⱼ Pᵢ Pⱼ Tₘ Tⱼ} {{_ : Tⱼ ≡ sucₜ (Tₘ ⊔ₜ Cⱼ)}} →
Msg Pᵢ Pⱼ Tₘ → Event Pⱼ Tⱼ → Set
absurdₑ : ∀ {Cᵢ Cⱼ P T} {m : Msg P P T} {a : Event P T} →
{{_ : T ≡ sucₜ Cᵢ}} {{_ : T ≡ sucₜ (T ⊔ₜ Cⱼ)}} →
¬ (isSendₑ {Cᵢ} m a × isRecvₑ {Cⱼ} m a)
open IsEvent {{…}} public
| {
"alphanum_fraction": 0.522829582,
"avg_line_length": 22.8676470588,
"ext": "agda",
"hexsha": "08b2ff6522768951bc24d6c19922f3055da0183e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/lamport-timestamps",
"max_forks_repo_path": "AbstractInterfaces.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/lamport-timestamps",
"max_issues_repo_path": "AbstractInterfaces.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/lamport-timestamps",
"max_stars_repo_path": "AbstractInterfaces.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 716,
"size": 1555
} |
-- Andreas, 2016-12-30, issue #1886, reported by nad
--
-- Omitted hidden parameters are not in scope.
postulate
A : Set
P : A → Set
data D {a} (X : P a) : Set₁
data D X where
c : P a → D _
-- Expected error:
--
-- Not in scope: a
| {
"alphanum_fraction": 0.5975103734,
"avg_line_length": 14.1764705882,
"ext": "agda",
"hexsha": "62411bab9da0bd709e2cbc33ec6995a553dafcae",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1886-omitted-not-in-scope.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1886-omitted-not-in-scope.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1886-omitted-not-in-scope.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 86,
"size": 241
} |
{-# OPTIONS --without-K #-}
module Ch2-1 where
open import Level
infixl 4 _≡_
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
J : {a b : Level} (A : Set a) (C : (x y : A) → x ≡ y → Set b)
→ ((x : A) → C x x refl)
→ (x y : A) (P : x ≡ y)
→ C x y P
J A C b x .x refl = b x
-- K : (A : Set) (x : A) (C : x ≡ x → Set)
-- → C refl
-- → (loop : x ≡ x)
-- → C loop
-- K A x C b p = {! p !}
-- Lemma 2.1.1 (inversion of paths)
infix 6 ¬_
¬_ : {a : Level} {A : Set a} {x y : A} → x ≡ y → y ≡ x
¬_ {a} {A} {x} {y} p = J A D d x y p
where
D : (x y : A) (p : x ≡ y) → Set a
D x y p = y ≡ x
d : (x : A) → D x x refl
d x = refl
-- Lemma 2.1.2 (concatenation of paths)
infixl 5 _∙_
_∙_ : {a : Level} {A : Set a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
_∙_ {a} {A} {x} {y} {z} p q = J {a} {a} A D d x y p z q
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set a
D x y p = (z : A) (q : y ≡ z) → x ≡ z
-- base case
d : (x : A) → D x x refl
d x z q = J A E e x z q
where
-- the predicate
E : (x z : A) (q : x ≡ z) → Set a
E x z q = x ≡ z
-- base case
e : (x : A) → E x x refl
e x = refl
-- Lemma 2.1.4.i (identity of path concatenation)
∙-identityʳ : {a : Level} {A : Set a} {x y : A} (p : x ≡ y) → p ≡ p ∙ refl
∙-identityʳ {a} {A} {x} {y} p = J A D d x y p
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set a
D x y p = p ≡ p ∙ refl
-- base case
d : (x : A) → D x x refl
d x = refl
∙-identityˡ : {a : Level} {A : Set a} {x y : A} (p : x ≡ y) → p ≡ refl ∙ p
∙-identityˡ {a} {A} {x} {y} p = J A D d x y p
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set a
D x y p = p ≡ refl ∙ p
-- base case
d : (x : A) → D x x refl
d x = refl
-- Lemma 2.1.4.ii (identity of path inversion)
¬-identityʳ : {a : Level} {A : Set a} {x y : A} (p : x ≡ y) → ¬ p ∙ p ≡ refl
¬-identityʳ {a} {A} {x} {y} p = J A D d x y p
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set a
D x y p = ¬ p ∙ p ≡ refl
-- base case
d : (x : A) → D x x refl
d x = refl
¬-identityˡ : {a : Level} {A : Set a} {x y : A} (p : x ≡ y) → p ∙ ¬ p ≡ refl
¬-identityˡ {a} {A} {x} {y} p = J A D d x y p
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set a
D x y p = p ∙ ¬ p ≡ refl
-- base case
d : (x : A) → D x x refl
d x = refl
-- Lemma 2.1.4.iii (involution of path inversion)
involution : {A : Set} {x y : A} (p : x ≡ y) → ¬ ¬ p ≡ p
involution {A} {x} {y} p = J A D d x y p
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set
D x y p = ¬ ¬ p ≡ p
-- base case
d : (x : A) → D x x refl
d x = refl
-- Lemma 2.1.4.iv (associativity of path concatenation)
∙-assoc : {a : Level} {A : Set a} {w x y z : A}
→ (p : w ≡ x) (q : x ≡ y) (r : y ≡ z)
→ p ∙ (q ∙ r) ≡ (p ∙ q) ∙ r
∙-assoc {a} {A} {w} {x} {y} {z} p q r = J A D d w x p y q z r
where
-- the predicate
D : (w x : A) (p : w ≡ x) → Set a
D w x p = (y : A) (q : x ≡ y)
→ (z : A) (r : y ≡ z)
→ p ∙ (q ∙ r) ≡ (p ∙ q) ∙ r
-- base case
d : (x : A) → D x x refl
d x y q z r = J A E e x y q z r
where
-- the predicate
E : (x y : A) (q : x ≡ y) → Set a
E x y q = (z : A) (r : y ≡ z)
→ refl ∙ (q ∙ r) ≡ refl ∙ q ∙ r
-- base case
e : (x : A) → E x x refl
e x z r = J A F f x z r
where
-- the predicate
F : (y z : A) (r : y ≡ z) → Set a
F y z r = refl ∙ (refl ∙ r) ≡ refl ∙ refl ∙ r
-- base case
f : (x : A) → F x x refl
f x = refl
open import Relation.Binary
isEquivalence : ∀ {a} {A : Set a} → IsEquivalence (_≡_ {a} {A})
isEquivalence = record
{ refl = refl
; sym = ¬_
; trans = _∙_
}
setoid : ∀ {a} → Set a → Setoid _ _
setoid {a} A = record
{ Carrier = A
; _≈_ = _≡_
; isEquivalence = isEquivalence {a} {A}
}
-- module EckmannHilton where
--
-- -- begin
-- -- p ∙ refl
-- -- ≈⟨ ¬ ∙-identityʳ p ⟩
-- -- p
-- -- ≈⟨ α ⟩
-- -- q
-- -- ≈⟨ ∙-identityʳ q ⟩
-- -- q ∙ refl
-- -- ∎
-- -- where
-- -- open import Relation.Binary.Reasoning.Setoid (setoid (a ≡ x))
--
-- -- whisker right
-- infixl 6 _∙r_
-- _∙r_ : {A : Set} {a b c : A} {p q : a ≡ b}
-- → (α : p ≡ q) (r : b ≡ c)
-- → p ∙ r ≡ q ∙ r
-- _∙r_ {A} {a} {b} {c} {p} {q} α r = J A D d b c r a p q α
-- where
-- -- the predicate
-- D : (b c : A) (r : b ≡ c) → Set
-- D b c r = (a : A) (p q : a ≡ b) (α : p ≡ q)
-- → p ∙ r ≡ q ∙ r
--
-- -- base case
-- d : (x : A) → D x x refl
-- d x a p q α = J A E e a x p q
-- where
-- -- the predicate
-- E : (a x : A) (p : a ≡ x) → Set
-- E a x p = (q : a ≡ x) → p ∙ refl ≡ q ∙ refl
--
-- -- base case
-- e : (x : A) → E x x refl
-- e x q = {! !}
-- where
-- -- the predicate
-- F : (a x : A) (q : a ≡ x) → Set
-- F a x q = {! !}
-- -- refl ∙ refl ≡ q ∙ refl
-- -- refl ∙ refl ≡ q ∙ refl
--
-- -- base case
-- f : (x : A) → F x x refl
-- f x = {! !}
-- --
-- -- ¬ ∙-identityʳ p ∙ α ∙ ∙-identityʳ q
-- --
-- --
-- -- -- whisker left
-- -- infixl 6 _∙l_
-- -- _∙l_ : {A : Set} {a b c : A} {r s : b ≡ c}
-- -- → (q : a ≡ b) (β : r ≡ s)
-- -- → q ∙ r ≡ q ∙ s
-- -- _∙l_ {A} {a} {b} {c} {r} {s} q β = J A D d a b q c r s β
-- -- where
-- -- -- the predicate
-- -- D : (a b : A) (q : a ≡ b) → Set
-- -- D a b q = (c : A) (r s : b ≡ c) (β : r ≡ s)
-- -- → q ∙ r ≡ q ∙ s
-- --
-- -- -- base case
-- -- d : (x : A) → D x x refl
-- -- d x c r s β = ¬ ∙-identityˡ r ∙ β ∙ ∙-identityˡ s
-- --
-- -- -- horizontal composition
-- -- _⋆_ : {A : Set} {a b c : A} {p q : a ≡ b} {r s : b ≡ c}
-- -- → (α : p ≡ q) (β : r ≡ s)
-- -- → p ∙ r ≡ q ∙ s
-- -- _⋆_ {A} {a} {b} {c} {p} {q} {r} {s} α β = (α ∙r r) ∙ (q ∙l β)
-- --
-- -- where
-- -- whisker-right-lemma : ∀ {A : Set} {a b : A}
-- -- → {p q : a ≡ b} {α : p ≡ q}
-- -- → α ∙r refl ≡ ¬ ∙-identityʳ p ∙ α ∙ ∙-identityʳ q
-- -- whisker-right-lemma {A} {a} {b} {p} {q} {α} = refl
-- --
-- -- whisker-left-lemma : ∀ {A : Set} {b c : A}
-- -- → {r s : b ≡ c} {β : r ≡ s}
-- -- → refl ∙l β ≡ ¬ ∙-identityˡ r ∙ β ∙ ∙-identityˡ s
-- -- whisker-left-lemma {A} {b} {c} {r} {s} {α} = refl
-- --
-- -- cong : {A B : Set} {x y : A}
-- -- → (f : A → B) (p : x ≡ y)
-- -- → f x ≡ f y
-- -- cong {A} {B} {x} {y} f p = J A D d x y p f
-- -- where
-- -- -- the predicate
-- -- D : (x y : A) (p : x ≡ y) → Set
-- -- D x y p = (f : A → B) → f x ≡ f y
-- --
-- -- -- base case
-- -- d : (x : A) → D x x refl
-- -- d x f = refl
-- --
-- -- cong2 : {A B C : Set} {x y : A} {a b : B}
-- -- → (f : A → B → C) (p : x ≡ y) (q : a ≡ b)
-- -- → f x a ≡ f y b
-- -- cong2 {A} {B} {C} {x} {y} {a} {b} f p q = J A D d x y p a b q f
-- -- -- J A D d x y p f
-- -- where
-- -- -- the predicate
-- -- D : (x y : A) (p : x ≡ y) → Set
-- -- D x y p = (a b : B) (q : a ≡ b) (f : A → B → C) → f x a ≡ f y b
-- --
-- -- -- base case
-- -- d : (x : A) → D x x refl
-- -- d x a b q f = cong (f x) q
-- --
-- --
-- -- -- theorem : {A : Set} {a b c : A}
-- -- -- → {p q : a ≡ b} {r s : b ≡ c}
-- -- -- → (α : p ≡ q) (β : r ≡ s)
-- -- -- → α ⋆ β ≡ cong2 _∙_ α β
-- -- -- theorem {A} {a} {b} {c} {p} {q} {r} {s} α β = J A D d a b p q c r s α β
-- -- --
-- -- -- where
-- -- -- -- the predicate
-- -- -- D : (a b : A) (p : a ≡ b) → Set
-- -- -- D a b p = (q : a ≡ b) (c : A) (r s : b ≡ c) (α : p ≡ q) (β : r ≡ s)
-- -- -- → α ⋆ β ≡ cong2 _∙_ α β
-- -- --
-- -- -- -- base case ʳˡ
-- -- -- d : (x : A) → D x x refl
-- -- -- d x q c r s α β = J A E e x c r s q α β
-- -- --
-- -- -- where
-- -- -- -- the predicate
-- -- -- E : (b c : A) (r : b ≡ c) → Set
-- -- -- E b c r = (s : b ≡ c) (q : b ≡ b) (α : refl ≡ q) (β : r ≡ s)
-- -- -- → α ⋆ β ≡ cong2 _∙_ α β
-- -- --
-- -- -- -- base case
-- -- -- e : (x : A) → E x x refl
-- -- -- e x s q α β = {! !}
| {
"alphanum_fraction": 0.3445592846,
"avg_line_length": 28.2327868852,
"ext": "agda",
"hexsha": "90f8a2a29cdd48a1a9481e6c6eb133450176fb2f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/hott",
"max_forks_repo_path": "src/Ch2-1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/hott",
"max_issues_repo_path": "src/Ch2-1.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/hott",
"max_stars_repo_path": "src/Ch2-1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3968,
"size": 8611
} |
------------------------------------------------------------------------
-- The "interval"
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
-- Partly based on the HoTT book.
-- The module is parametrised by a notion of equality. The higher
-- constructor of the HIT defining the interval uses path equality,
-- but the supplied notion of equality is used for many other things.
import Equality.Path as P
module Interval
{c⁺} (eq : ∀ {a p} → P.Equality-with-paths a p c⁺) where
private
open module D = P.Derived-definitions-and-properties eq hiding (elim)
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J using (_↔_)
import Equality.Path.Isomorphisms eq as I
open import Equivalence equality-with-J hiding (_∘_)
open import Function-universe equality-with-J hiding (_∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J using (ext⁻¹)
private
variable
a p : Level
A B C : Type a
------------------------------------------------------------------------
-- The interval
-- The interval, defined as a higher inductive type.
data Interval : Type where
[0] [1] : Interval
0≡1ᴾ : [0] P.≡ [1]
-- [0] is equal to [1].
0≡1 : [0] ≡ [1]
0≡1 = _↔_.from ≡↔≡ 0≡1ᴾ
-- An eliminator, expressed using paths.
elimᴾ :
(P : Interval → Type p)
(p₀ : P [0])
(p₁ : P [1]) →
P.[ (λ i → P (0≡1ᴾ i)) ] p₀ ≡ p₁ →
(x : Interval) → P x
elimᴾ P p₀ p₁ p₀≡p₁ = λ where
[0] → p₀
[1] → p₁
(0≡1ᴾ i) → p₀≡p₁ i
-- A non-dependent eliminator, expressed using paths.
recᴾ : (p₀ p₁ : A) → p₀ P.≡ p₁ → Interval → A
recᴾ = elimᴾ _
-- An eliminator.
module Elim
(P : Interval → Type p)
(p₀ : P [0])
(p₁ : P [1])
(p₀≡p₁ : subst P 0≡1 p₀ ≡ p₁)
where
-- The eliminator.
elim : (x : Interval) → P x
elim = elimᴾ P p₀ p₁ (I.subst≡→[]≡ p₀≡p₁)
-- A "computation" rule for elim.
elim-0≡1 : dcong elim 0≡1 ≡ p₀≡p₁
elim-0≡1 = I.dcong-subst≡→[]≡ (refl _)
open Elim public
-- A non-dependent eliminator.
module Rec
(p₀ p₁ : A)
(p₀≡p₁ : p₀ ≡ p₁)
where
-- The eliminator.
rec : Interval → A
rec = recᴾ p₀ p₁ (_↔_.to ≡↔≡ p₀≡p₁)
-- A computation rule for rec.
rec-0≡1 : cong rec 0≡1 ≡ p₀≡p₁
rec-0≡1 = I.cong-≡↔≡ (refl _)
open Rec public
------------------------------------------------------------------------
-- Contractibility
-- The interval is contractible.
interval-contractible : Contractible Interval
interval-contractible = [1] , sym ∘ f
where
f : (x : Interval) → x ≡ [1]
f = elim (_≡ [1]) 0≡1 (refl _)
(subst (_≡ [1]) 0≡1 0≡1 ≡⟨ cong (λ p → subst (_≡ [1]) p 0≡1)
(sym $ sym-sym 0≡1) ⟩
subst (_≡ [1]) (sym (sym 0≡1)) 0≡1 ≡⟨ subst-trans (sym 0≡1) ⟩
trans (sym 0≡1) 0≡1 ≡⟨ trans-symˡ 0≡1 ⟩∎
refl _ ∎)
-- A simplification lemma for rec p p.
rec-const :
∀ {p} {P : Type p} (p : P) (p≡p : p ≡ p) i →
rec p p p≡p i ≡ p
rec-const p p≡p i =
rec p p p≡p i ≡⟨ cong (rec p p p≡p) (mono₁ 0 interval-contractible i [0]) ⟩∎
rec p p p≡p [0] ∎
------------------------------------------------------------------------
-- Extensionality
-- The definition of bad-ext has been placed in a separate abstract
-- block to ensure that the definitions in the other abstract block
-- below do not accidentally depend on the implementation of bad-ext.
private
module Separate-abstract-block where
abstract
-- The interval can be used to prove that equality of functions is
-- extensional.
--
-- The proof bad-ext is perhaps not less "good" than ext (I don't
-- know), it is called this simply because it is not defined using
-- good-ext.
private
-- ext-helper {f = f} {g = g} f≡g reduces to λ x → f x when the
-- input is [0], and to λ x → g x when the input is [1].
ext-helper :
∀ {a b} {A : Type a} {B : A → Type b} {f g : (x : A) → B x} →
(∀ x → f x ≡ g x) → Interval → (x : A) → B x
ext-helper {f = f} {g} f≡g i =
λ x → rec (f x) (g x) (f≡g x) i
bad-ext : ∀ {a b} → Extensionality a b
apply-ext bad-ext {f = f} {g = g} f≡g =
f ≡⟨⟩
ext-helper f≡g [0] ≡⟨ cong (ext-helper f≡g) 0≡1 ⟩∎
ext-helper f≡g [1] ∎
open Separate-abstract-block public
ext : ∀ {a b} → Extensionality a b
ext = good-ext bad-ext
⟨ext⟩ : ∀ {a b} {A : Type a} {B : A → Type b} → Extensionality′ A B
⟨ext⟩ = apply-ext ext
abstract
-- The function ⟨ext⟩ is an equivalence.
ext-is-equivalence :
∀ {a b} {A : Type a} {B : A → Type b} {f g : (x : A) → B x} →
Is-equivalence {A = ∀ x → f x ≡ g x} ⟨ext⟩
ext-is-equivalence = good-ext-is-equivalence bad-ext
-- Equality rearrangement lemmas for ⟨ext⟩.
ext-refl :
∀ {a b} {A : Type a} {B : A → Type b} (f : (x : A) → B x) →
⟨ext⟩ (λ x → refl (f x)) ≡ refl f
ext-refl = good-ext-refl bad-ext
ext-const :
∀ {a b} {A : Type a} {B : Type b} {x y : B}
(x≡y : x ≡ y) →
⟨ext⟩ (const {B = A} x≡y) ≡ cong const x≡y
ext-const = good-ext-const bad-ext
cong-ext :
∀ {a b} {A : Type a} {B : A → Type b} {f g : (x : A) → B x}
(f≡g : ∀ x → f x ≡ g x) {x} →
cong (_$ x) (⟨ext⟩ f≡g) ≡ f≡g x
cong-ext = cong-good-ext bad-ext
ext-cong :
∀ {a b c} {A : Type a} {B : Type b} {C : B → Type c}
{f : A → (x : B) → C x} {x y : A} {x≡y : x ≡ y} →
⟨ext⟩ (λ z → cong (flip f z) x≡y) ≡ cong f x≡y
ext-cong = good-ext-cong bad-ext
subst-ext :
∀ {a b p} {A : Type a} {B : A → Type b} {f g : (x : A) → B x} {x}
(P : B x → Type p) {p} (f≡g : ∀ x → f x ≡ g x) →
subst (λ f → P (f x)) (⟨ext⟩ f≡g) p ≡ subst P (f≡g x) p
subst-ext = subst-good-ext bad-ext
elim-ext :
∀ {a b p} {A : Type a} {B : A → Type b} {x : A}
(P : B x → B x → Type p)
(p : (y : B x) → P y y)
{f g : (x : A) → B x}
(f≡g : ∀ x → f x ≡ g x) →
D.elim (λ {f g} _ → P (f x) (g x)) (p ∘ (_$ x)) (⟨ext⟩ f≡g) ≡
D.elim (λ {x y} _ → P x y) p (f≡g x)
elim-ext = elim-good-ext bad-ext
-- I based the statements of the following three lemmas on code in
-- the Lean Homotopy Type Theory Library with Jakob von Raumer and
-- Floris van Doorn listed as authors. The file was claimed to have
-- been ported from the Coq HoTT library. (The third lemma has later
-- been generalised.)
ext-sym :
∀ {a b} {A : Type a} {B : A → Type b} {f g : (x : A) → B x}
(f≡g : ∀ x → f x ≡ g x) →
⟨ext⟩ (sym ∘ f≡g) ≡ sym (⟨ext⟩ f≡g)
ext-sym = good-ext-sym bad-ext
ext-trans :
∀ {a b} {A : Type a} {B : A → Type b} {f g h : (x : A) → B x}
(f≡g : ∀ x → f x ≡ g x) (g≡h : ∀ x → g x ≡ h x) →
⟨ext⟩ (λ x → trans (f≡g x) (g≡h x)) ≡ trans (⟨ext⟩ f≡g) (⟨ext⟩ g≡h)
ext-trans = good-ext-trans bad-ext
cong-post-∘-ext :
∀ {a b c} {A : Type a} {B : A → Type b} {C : A → Type c}
{f g : (x : A) → B x} {h : ∀ {x} → B x → C x}
(f≡g : ∀ x → f x ≡ g x) →
cong (h ∘_) (⟨ext⟩ f≡g) ≡ ⟨ext⟩ (cong h ∘ f≡g)
cong-post-∘-ext {h = h} = cong-post-∘-good-ext {h = h} bad-ext bad-ext
cong-pre-∘-ext :
∀ {a b c} {A : Type a} {B : Type b} {C : B → Type c}
{f g : (x : B) → C x} {h : A → B}
(f≡g : ∀ x → f x ≡ g x) →
cong (_∘ h) (⟨ext⟩ f≡g) ≡ ⟨ext⟩ (f≡g ∘ h)
cong-pre-∘-ext = cong-pre-∘-good-ext bad-ext bad-ext
cong-∘-ext :
{f g : B → C}
(f≡g : ∀ x → f x ≡ g x) →
cong {B = (A → B) → (A → C)}
(λ f → f ∘_) (⟨ext⟩ f≡g) ≡
⟨ext⟩ λ h → ⟨ext⟩ λ x → f≡g (h x)
cong-∘-ext = cong-∘-good-ext bad-ext bad-ext bad-ext
| {
"alphanum_fraction": 0.5007199895,
"avg_line_length": 28.7180451128,
"ext": "agda",
"hexsha": "b34f01441aaf4189a8e0878b012cc5dc5b660b02",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Interval.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Interval.agda",
"max_line_length": 81,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Interval.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3060,
"size": 7639
} |
-- Andreas, 2017-01-26.
-- The --no-eta-equality option
{-# OPTIONS --no-eta-equality #-}
{-# OPTIONS --allow-unsolved-metas #-}
-- is only valid for the record types defined in this file.
open import HaveEtaForImportedRecords.EtaRecord
-- Eta holds for the imported record.
test-imported : ∀{x y : ⊤} → x ≡ y
test-imported = refl
-- Eta does not hold for a record defined here
record Unit : Set where
test : Unit
test = _ -- Should be yellow!
| {
"alphanum_fraction": 0.6850220264,
"avg_line_length": 20.6363636364,
"ext": "agda",
"hexsha": "c4b6a7bc9881785607fad8b01042662b11d315b6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/HaveEtaForImportedRecords.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/HaveEtaForImportedRecords.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/HaveEtaForImportedRecords.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 129,
"size": 454
} |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Correctness of differentiation (Lemma 3.10 and Theorem 3.11).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
import Parametric.Change.Specification as Specification
import Parametric.Change.Type as ChangeType
import Parametric.Change.Term as ChangeTerm
import Parametric.Change.Value as ChangeValue
import Parametric.Change.Evaluation as ChangeEvaluation
import Parametric.Change.Derive as Derive
import Parametric.Change.Implementation as Implementation
module Parametric.Change.Correctness
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(apply-base : ChangeTerm.ApplyStructure Const ΔBase)
(diff-base : ChangeTerm.DiffStructure Const ΔBase)
(nil-base : ChangeTerm.NilStructure Const ΔBase)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(⟦nil-base⟧ : ChangeValue.NilStructure Const ⟦_⟧Base ΔBase)
(meaning-⊕-base : ChangeEvaluation.ApplyStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base nil-base ⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧)
(meaning-⊝-base : ChangeEvaluation.DiffStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base nil-base ⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧)
(meaning-onil-base : ChangeEvaluation.NilStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base nil-base ⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧)
{{validity-structure : Validity.Structure ⟦_⟧Base}}
(derive-const : Derive.Structure Const ΔBase)
(implementation-structure : Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase
⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧ derive-const)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base {{validity-structure}}
open Specification.Structure Const ⟦_⟧Base ⟦_⟧Const
open ChangeType.Structure Base ΔBase
open ChangeTerm.Structure Const ΔBase apply-base diff-base nil-base
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧
open ChangeEvaluation.Structure
⟦_⟧Base ⟦_⟧Const ΔBase
apply-base diff-base nil-base
⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧
meaning-⊕-base meaning-⊝-base meaning-onil-base
open Derive.Structure Const ΔBase derive-const
open Implementation.Structure implementation-structure
-- The denotational properties of the `derive` transformation.
-- In particular, the main theorem about it producing the correct
-- incremental behavior.
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
-- Extension point: A proof that change evaluation for a
-- primitive is related to the value of incrementalizing
-- this primitive.
Structure : Set
Structure = ∀ {τ} (c : Const τ) →
nil₍ τ ₎ ⟦ c ⟧Const ≈₍ τ ₎ ⟦ derive-const c ⟧Term ∅
module Structure (derive-const-correct : Structure) where
deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′)
deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′
deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′
derive-const-env-irrelevant : ∀ {Γ τ} (c : Const τ) → (ρ : ⟦ ΔContext Γ ⟧) → ⟦ weaken ∅≼Γ (derive-const c) ⟧Term ρ ≡
⟦ derive-const c ⟧Term ∅
derive-const-env-irrelevant {Γ} c ρ =
trans
(weaken-sound {Γ₁≼Γ₂ = (∅≼Γ {ΔContext Γ})} (derive-const c) ρ)
(cong ⟦ derive-const c ⟧Term (⟦∅≼Γ⟧-∅ ρ))
-- We provide: A variant of Lemma 3.10 for arbitrary contexts.
derive-correct : ∀ {τ Γ} (t : Term Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′)
derive-correct {τ} {Γ} (const c) ρ dρ ρ′ dρ≈ρ′ =
subst (implements τ (nil₍ τ ₎ ⟦ c ⟧Const))
(sym (derive-const-env-irrelevant c (alternate ρ ρ′)))
(derive-const-correct c)
derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ =
deriveVar-correct x ρ dρ ρ′ dρ≈ρ′
derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′
= subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′)
(derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′
(⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′))
derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ =
λ w dw w′ dw≈w′ →
derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′)
derive-correct-closed : ∀ {τ} (t : Term ∅ τ) →
⟦ t ⟧Δ ∅ ∅ ≈₍ τ ₎ ⟦ derive t ⟧ ∅
derive-correct-closed t = derive-correct t ∅ ∅ ∅ ∅
-- And we proof Theorem 3.11, finally.
main-theorem : ∀ {σ τ}
{f : Term ∅ (σ ⇒ τ)} {s : Term ∅ σ} {ds : Term ∅ (ΔType σ)} →
{dv : Δ₍ σ ₎ (⟦ s ⟧ ∅)} {erasure : dv ≈₍ σ ₎ (⟦ ds ⟧ ∅)} →
⟦ app f (s ⊕₍ σ ₎ ds) ⟧ ≡ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧
main-theorem {σ} {τ} {f} {s} {ds} {dv} {erasure} =
let
g = ⟦ f ⟧ ∅
Δg = ⟦ f ⟧Δ ∅ ∅
Δg′ = ⟦ derive f ⟧ ∅
v = ⟦ s ⟧ ∅
dv′ = ⟦ ds ⟧ ∅
u = ⟦ s ⊕₍ σ ₎ ds ⟧ ∅
-- Δoutput-term = app (app (derive f) x) (y ⊝ x)
in
ext {A = ⟦ ∅ ⟧Context} (λ { ∅ →
begin
g u
≡⟨ cong g (sym (meaning-⊕ {t = s} {Δt = ds})) ⟩
g (v ⟦⊕₍ σ ₎⟧ dv′)
≡⟨ cong g (sym (carry-over {σ} dv erasure)) ⟩
g (v ⊞₍ σ ₎ dv)
≡⟨ corollary-closed {σ} {τ} f v dv ⟩
g v ⊞₍ τ ₎ call-change {σ} {τ} Δg v dv
≡⟨ carry-over {τ} (call-change {σ} {τ} Δg v dv)
(derive-correct-closed f v dv dv′ erasure) ⟩
g v ⟦⊕₍ τ ₎⟧ Δg′ v dv′
≡⟨ meaning-⊕ {t = app f s} {Δt = app (app (derive f) s) ds} ⟩
⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ ∅
∎}) where open ≡-Reasoning
| {
"alphanum_fraction": 0.6119706204,
"avg_line_length": 43.8287671233,
"ext": "agda",
"hexsha": "bce94e2e7c31f3e5b226c015df22ef10d941bd05",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Parametric/Change/Correctness.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Parametric/Change/Correctness.agda",
"max_line_length": 136,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Parametric/Change/Correctness.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 2509,
"size": 6399
} |
module Data.Nat.Properties.Extra where
open import Data.Nat
open import Data.Product
open import Data.Nat.Properties
open import Data.Nat.Properties.Simple
open import Function
open import Level using ()
open import Relation.Binary
open import Relation.Binary.Core
open import Relation.Nullary.Negation
open import Relation.Nullary
-- open import Relation.Nullary.Decidable
open import Relation.Binary.PropositionalEquality hiding (isPreorder)
open ≡-Reasoning
open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_)
open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl)
------------------------------------------------------------------------
-- Misc
------------------------------------------------------------------------
isDecTotalOrder : IsDecTotalOrder {A = ℕ} _≡_ _≤_
isDecTotalOrder = DecTotalOrder.isDecTotalOrder decTotalOrder
isTotalOrder : IsTotalOrder {A = ℕ} _≡_ _≤_
isTotalOrder = IsDecTotalOrder.isTotalOrder isDecTotalOrder
isPartialOrder : IsPartialOrder {A = ℕ} _≡_ _≤_
isPartialOrder = IsTotalOrder.isPartialOrder isTotalOrder
isPreorder : IsPreorder {A = ℕ} _≡_ _≤_
isPreorder = IsPartialOrder.isPreorder isPartialOrder
open import Algebra.Structures
import Algebra.FunctionProperties as P; open P (_≡_ {A = ℕ})
isSemiringWithoutOne : IsSemiringWithoutOne _≡_ _⊔_ _⊓_ zero
isSemiringWithoutOne = IsCommutativeSemiringWithoutOne.isSemiringWithoutOne ⊔-⊓-0-isCommutativeSemiringWithoutOne
+-isCommutativeMonoid : IsCommutativeMonoid _≡_ _⊔_ zero
+-isCommutativeMonoid = IsSemiringWithoutOne.+-isCommutativeMonoid isSemiringWithoutOne
cmp : Trichotomous _≡_ _<_
cmp = StrictTotalOrder.compare strictTotalOrder
⊓-comm : Commutative _⊓_
⊓-comm = IsCommutativeSemiringWithoutOne.*-comm ⊔-⊓-0-isCommutativeSemiringWithoutOne
⊔-comm : Commutative _⊔_
⊔-comm = IsCommutativeMonoid.comm +-isCommutativeMonoid
------------------------------------------------------------------------
-- Equational
------------------------------------------------------------------------
-- ℕ
cancel-suc : ∀ {x y} → suc x ≡ suc y → x ≡ y
cancel-suc {x} {.x} refl = refl
-- cancel-suc : ∀ {x y} → suc x ≡ suc y → x ≡ y
-- cancel-suc {x} {.x} refl = refl
-- _+_
[a+b]+c≡[a+c]+b : ∀ a b c → a + b + c ≡ a + c + b
[a+b]+c≡[a+c]+b a b c =
begin
a + b + c
≡⟨ +-assoc a b c ⟩
a + (b + c)
≡⟨ cong (λ x → a + x) (+-comm b c) ⟩
a + (c + b)
≡⟨ sym (+-assoc a c b) ⟩
a + c + b
∎
a+[b+c]≡b+[a+c] : ∀ a b c → a + (b + c) ≡ b + (a + c)
a+[b+c]≡b+[a+c] a b c =
begin
a + (b + c)
≡⟨ sym (+-assoc a b c) ⟩
a + b + c
≡⟨ cong (λ x → x + c) (+-comm a b) ⟩
b + a + c
≡⟨ +-assoc b a c ⟩
b + (a + c)
∎
cancel-+-right : ∀ k {i j} → i + k ≡ j + k → i ≡ j
cancel-+-right zero {i} {j} p =
begin
i
≡⟨ sym (+-right-identity i) ⟩
i + zero
≡⟨ p ⟩
j + zero
≡⟨ +-right-identity j ⟩
j
∎
cancel-+-right (suc k) {i} {j} p = cancel-+-right k lemma
where lemma : i + k ≡ j + k
lemma = cancel-suc $
begin
suc (i + k)
≡⟨ sym (+-suc i k) ⟩
i + suc k
≡⟨ p ⟩
j + suc k
≡⟨ +-suc j k ⟩
suc (j + k)
∎
-- _*_
*-right-identity : ∀ n → n * 1 ≡ n
*-right-identity zero = refl
*-right-identity (suc n) = cong suc (*-right-identity n)
*-left-identity : ∀ n → 1 * n ≡ n
*-left-identity zero = refl
*-left-identity (suc n) = cong suc (*-left-identity n)
distrib-left-*-+ : ∀ m n o → m * (n + o) ≡ m * n + m * o
distrib-left-*-+ m n o =
begin
m * (n + o)
≡⟨ *-comm m (n + o) ⟩
(n + o) * m
≡⟨ distribʳ-*-+ m n o ⟩
n * m + o * m
≡⟨ cong₂ _+_ (*-comm n m) (*-comm o m) ⟩
m * n + m * o
∎
-- _∸_
m∸n+n≡m : ∀ {m n} → n ≤ m → m ∸ n + n ≡ m
m∸n+n≡m {m} {n} n≤m =
begin
m ∸ n + n
≡⟨ +-comm (m ∸ n) n ⟩
n + (m ∸ n)
≡⟨ m+n∸m≡n n≤m ⟩
m
∎
m∸[o∸n]+o≡m+n : ∀ m n o
→ n ≤ o
→ o ∸ n ≤ m
→ m ∸ ( o ∸ n ) + o ≡ m + n
m∸[o∸n]+o≡m+n m n o n≤o o∸n≤m =
begin
m ∸ (o ∸ n) + o
≡⟨ +-comm (m ∸ (o ∸ n)) o ⟩
o + (m ∸ (o ∸ n))
≡⟨ cong (λ x → x + (m ∸ (o ∸ n))) (sym (m+n∸m≡n {n} {o} n≤o)) ⟩
(n + (o ∸ n)) + (m ∸ (o ∸ n))
≡⟨ +-assoc n (o ∸ n) (m ∸ (o ∸ n)) ⟩
n + ((o ∸ n) + (m ∸ (o ∸ n)))
≡⟨ cong (λ w → n + w) (m+n∸m≡n {o ∸ n} o∸n≤m) ⟩
n + m
≡⟨ +-comm n m ⟩
m + n
∎
------------------------------------------------------------------------
-- Relational
------------------------------------------------------------------------
-- _≤_
≤-trans : Transitive _≤_
≤-trans = IsPreorder.trans isPreorder
<⇒≤ : _<_ ⇒ _≤_
<⇒≤ {zero} p = z≤n
<⇒≤ {suc i} (s≤s p) = s≤s (<⇒≤ p)
>⇒≰ : _>_ ⇒ _≰_
>⇒≰ {zero} () q
>⇒≰ {suc m} (s≤s p) (s≤s q) = >⇒≰ p q
≤⇒≯ : _≤_ ⇒ _≯_
≤⇒≯ {zero} p ()
≤⇒≯ {suc m} (s≤s p) (s≤s q) = ≤⇒≯ p q
<⇒≱ : _<_ ⇒ _≱_
<⇒≱ {zero} () z≤n
<⇒≱ {suc i} (s≤s p) (s≤s q) = <⇒≱ p q
>⇒≢ : _>_ ⇒ _≢_
>⇒≢ {zero} () refl
>⇒≢ {suc m} (s≤s m>n) refl = >⇒≢ m>n refl
≥⇒≮ : _≥_ ⇒ _≮_
≥⇒≮ z≤n ()
≥⇒≮ (s≤s m) (s≤s p) = ≥⇒≮ m p
<⇒≢ : _<_ ⇒ _≢_
<⇒≢ {zero} () refl
<⇒≢ {suc m} (s≤s m<n) refl = <⇒≢ m<n refl
≤∧≢⇒< : ∀ {m n} → m ≤ n → m ≢ n → m < n
≤∧≢⇒< {zero} {zero} p q = contradiction refl q
≤∧≢⇒< {zero} {suc n} p q = s≤s z≤n
≤∧≢⇒< {suc m} {zero} () q
≤∧≢⇒< {suc m} {suc n} (s≤s p) q = s≤s (≤∧≢⇒< p (q ∘ cong suc))
≥∧≢⇒> : ∀ {m n} → m ≥ n → m ≢ n → m > n
≥∧≢⇒> {zero} {zero} p q = contradiction refl q
≥∧≢⇒> {zero} {suc n} () q
≥∧≢⇒> {suc m} {zero} p q = s≤s z≤n
≥∧≢⇒> {suc m} {suc n} (s≤s p) q = s≤s (≥∧≢⇒> p (q ∘ cong suc))
≤0⇒≡0 : ∀ n → n ≤ 0 → n ≡ 0
≤0⇒≡0 zero n≤0 = refl
≤0⇒≡0 (suc n) ()
-- ≤-suc : ∀ {m n} → m ≤ n → suc m ≤ suc n
-- ≤-suc z≤n = s≤s z≤n
-- ≤-suc (s≤s rel) = s≤s (s≤s rel)
-- i*j>0⇒i>0∧j>0 : ∀ i j → i * j > 0 → (i > 0 × j > 0)
-- i*j>0⇒i>0∧j>0 zero j ()
-- i*j>0⇒i>0∧j>0 (suc i) zero p = contradiction (proj₂ (i*j>0⇒i>0∧j>0 i 0 p)) (λ ())
-- i*j>0⇒i>0∧j>0 (suc i) (suc j) p = s≤s z≤n , s≤s z≤n
-- _+_
-- m≡n+o⇒m≥o : ∀ {m} {o} n → m ≡ n + o → m ≥ o
-- m≡n+o⇒m≥o {.(n + o)} {o} n refl = n≤m+n o n
n+-mono : ∀ n → (λ x → n + x) Preserves _≤_ ⟶ _≤_
n+-mono n = _+-mono_ {n} {n} ≤-refl
n+-mono-inverse : ∀ n → ∀ {a b} → n + a ≤ n + b → a ≤ b
n+-mono-inverse zero a≤b = a≤b
n+-mono-inverse (suc n) (s≤s a≤b) = n+-mono-inverse n a≤b
+n-mono : ∀ n → (λ x → x + n) Preserves _≤_ ⟶ _≤_
+n-mono n {a} {b} a≤b = _+-mono_ {a} {b} {n} {n} a≤b ≤-refl
+n-mono-inverse : ∀ n → ∀ {a b} → a + n ≤ b + n → a ≤ b
+n-mono-inverse zero {a} {b} p =
start
a
≈⟨ sym (+-right-identity a) ⟩
a + 0
≤⟨ p ⟩
b + 0
≈⟨ +-right-identity b ⟩
b
□
+n-mono-inverse (suc n) {a} {b} p = +n-mono-inverse n p'
where p' : a + n ≤ b + n
p' = ≤-pred $ start
suc (a + n)
≈⟨ sym (+-suc a n) ⟩
a + suc n
≤⟨ p ⟩
b + suc n
≈⟨ +-suc b n ⟩
suc (b + n)
□
+-mono-contra : ∀ {a b c d} → a ≥ b → a + c < b + d → c < d
+-mono-contra {zero} {zero} p q = q
+-mono-contra {zero} {suc b} () q
+-mono-contra {suc a} {zero} {c} {d} p q =
start
suc c
≤⟨ n≤m+n (suc a) (suc c) ⟩
suc a + suc c
≈⟨ +-suc (suc a) c ⟩
suc (suc a) + c
≤⟨ q ⟩
d
□
+-mono-contra {suc a} {suc b} (s≤s p) (s≤s q) = +-mono-contra p q
-- _∸_
∸n-mono : ∀ n → (λ x → x ∸ n) Preserves _≤_ ⟶ _≤_
∸n-mono n {a} {b} a≤b = ∸-mono {a} {b} {n} {n} a≤b ≤-refl
∸n-mono-inverse : ∀ n → ∀ {a b} → a > n → a ∸ n ≤ b ∸ n → a ≤ b
∸n-mono-inverse zero p q = q
∸n-mono-inverse (suc n) {zero} {zero} p q = q
∸n-mono-inverse (suc n) {zero} {suc b} p q = z≤n
∸n-mono-inverse (suc n) {suc a} {zero} p q = contradiction (≤-pred p) (≤⇒≯ q')
where
q' : a ≤ n
q' = ∸n-mono-inverse n (≤-pred p) $
start
a ∸ n
≤⟨ q ⟩
zero
≈⟨ sym (n∸n≡0 n) ⟩
n ∸ n
□
∸n-mono-inverse (suc n) {suc a} {suc b} p q = s≤s (∸n-mono-inverse n (≤-pred p) q)
n∸-mono : ∀ n → (λ x → n ∸ x) Preserves _≥_ ⟶ _≤_
n∸-mono n {a} {b} a≥b = ∸-mono {n} {n} {a} {b} ≤-refl a≥b
m≥n+o⇒m∸o≥n : ∀ m n o → m ≥ n + o → m ∸ o ≥ n
m≥n+o⇒m∸o≥n m n o p =
start
n
≈⟨ sym (m+n∸n≡m n o) ⟩
n + o ∸ o
≤⟨ ∸-mono {n + o} {m} {o} p ≤-refl ⟩
m ∸ o
□
cancel-∸-right : ∀ {m n} o → m ≥ o → n ≥ o → m ∸ o ≡ n ∸ o → m ≡ n
cancel-∸-right zero p q eq = eq
cancel-∸-right {zero} (suc o) () q eq
cancel-∸-right {suc m} {zero} (suc o) p () eq
cancel-∸-right {suc m} {suc n} (suc o) p q eq = cong suc (cancel-∸-right o (≤-pred p) (≤-pred q) eq)
-- _*_
n*-mono : ∀ n → (λ x → n * x) Preserves _≤_ ⟶ _≤_
n*-mono n = _*-mono_ {n} {n} ≤-refl
n*-mono-strict-inverse : ∀ n {a} {b} → n * a < n * b → a < b
n*-mono-strict-inverse zero ()
n*-mono-strict-inverse (suc n) {a} {b} p with suc a ≤? b
n*-mono-strict-inverse (suc n) {a} {b} p | yes q = q
n*-mono-strict-inverse (suc n) {a} {b} p | no ¬q = contradiction p ¬p
where
¬q' : b ≤ a
¬q' = ≤-pred (≰⇒> ¬q)
¬p : suc (suc n * a) ≰ suc n * b
¬p = >⇒≰ (s≤s (n*-mono (suc n) ¬q'))
*n-mono : ∀ n → (λ x → x * n) Preserves _≤_ ⟶ _≤_
*n-mono n {a} {b} a≤b = _*-mono_ {a} {b} {n} {n} a≤b ≤-refl
*-comm-mono : ∀ {a b c d} → a * b ≤ c * d → b * a ≤ d * c
*-comm-mono {a} {b} {c} {d} p =
start
b * a
≈⟨ *-comm b a ⟩
a * b
≤⟨ p ⟩
c * d
≈⟨ *-comm c d ⟩
d * c
□
*-comm-mono-strict : ∀ {a b c d} → a * b < c * d → b * a < d * c
*-comm-mono-strict {a} {b} {c} {d} p =
start
suc (b * a)
≈⟨ cong suc (*-comm b a) ⟩
suc (a * b)
≤⟨ p ⟩
c * d
≈⟨ *-comm c d ⟩
d * c
□
*n-mono-inverse : ∀ n {a} {b} → a * (suc n) ≤ b * (suc n) → a ≤ b
*n-mono-inverse n {zero} p = z≤n
*n-mono-inverse n {suc a} {zero} ()
*n-mono-inverse n {suc a} {suc b} (s≤s p) = s≤s (*n-mono-inverse n (n+-mono-inverse n p))
*n-mono-strict-inverse : ∀ n {a} {b} → a * n < b * n → a < b
*n-mono-strict-inverse n {a} {b} p = n*-mono-strict-inverse n (*-comm-mono-strict {a} {n} {b} {n} p)
m≤m*1+n : ∀ m n → m ≤ m * suc n
m≤m*1+n m zero = reflexive (sym (*-right-identity m))
m≤m*1+n m (suc n) =
start
m
≤⟨ m≤m+n m (m * suc n) ⟩
m + m * suc n
≈⟨ sym (+-*-suc m (suc n)) ⟩
m * suc (suc n)
□
-- _⊔_
m≤n⊔m : ∀ m n → m ≤ n ⊔ m
m≤n⊔m zero n = z≤n
m≤n⊔m (suc m) zero = s≤s (m≤n⊔m m zero)
m≤n⊔m (suc m) (suc n) = s≤s (m≤n⊔m m n)
m⊓n≤n : ∀ m n → m ⊓ n ≤ n
m⊓n≤n zero n = z≤n
m⊓n≤n (suc m) zero = z≤n
m⊓n≤n (suc m) (suc n) = s≤s (m⊓n≤n m n)
⊔-upper-bound : ∀ m n o → m + n ≥ o → o ⊔ n ≤ m + n
⊔-upper-bound zero zero zero p = p
⊔-upper-bound zero zero (suc o) ()
⊔-upper-bound zero (suc n) zero p = s≤s (⊔-upper-bound zero n zero z≤n)
⊔-upper-bound zero (suc n) (suc o) p = s≤s (⊔-upper-bound zero n o (≤-pred p))
⊔-upper-bound (suc m) zero zero p = p
⊔-upper-bound (suc m) zero (suc o) p = p
⊔-upper-bound (suc m) (suc n) zero p =
start
suc n
≤⟨ s≤s (≤-step ≤-refl) ⟩
suc (suc n)
≤⟨ s≤s (n≤m+n m (suc n)) ⟩
suc (m + suc n)
□
⊔-upper-bound (suc m) (suc n) (suc o) p =
start
suc (o ⊔ n)
≤⟨ s≤s (⊔-upper-bound (suc m) n o $
start
o
≤⟨ ≤-pred p ⟩
m + suc n
≈⟨ +-suc m n ⟩
suc (m + n)
□
) ⟩
suc (suc (m + n))
≈⟨ cong suc (sym (+-suc m n)) ⟩
suc (m + suc n)
□
m⊔n≤m+n : ∀ m n → m ⊔ n ≤ m + n
m⊔n≤m+n zero n = ≤-refl
m⊔n≤m+n (suc m) zero = s≤s (m≤m+n m zero)
m⊔n≤m+n (suc m) (suc n) = s≤s $
start
m ⊔ n
≤⟨ m⊔n≤m+n m n ⟩
m + n
≤⟨ n+-mono m (n≤m+n 1 n) ⟩
m + suc n
□
-- double : ∀ m → m + m ≡ m * 2
-- double m =
-- begin
-- m + m
-- ≡⟨ cong (λ w → m + w) (sym (+-right-identity m)) ⟩
-- m + (m + zero)
-- ≡⟨ *-comm (suc (suc zero)) m ⟩
-- m * suc (suc zero)
-- ∎
-- cancel-∸-right-inverse : ∀ m n o → n ≥ o → m + o ≡ n → m ≡ n ∸ o
-- cancel-∸-right-inverse m n zero p eq =
-- begin
-- m
-- ≡⟨ sym (+-right-identity m) ⟩
-- m + 0
-- ≡⟨ eq ⟩
-- n
-- ∎
-- cancel-∸-right-inverse m zero (suc o) () eq
-- cancel-∸-right-inverse m (suc n) (suc o) p eq =
-- begin
-- m
-- ≡⟨ cancel-∸-right-inverse m n o (≤-pred p) $ cancel-+-left 1 $
-- begin
-- suc m + o
-- ≡⟨ sym (+-suc m o) ⟩
-- m + suc o
-- ≡⟨ eq ⟩
-- suc n
-- ∎
-- ⟩
-- n ∸ o
-- ∎
| {
"alphanum_fraction": 0.4241977988,
"avg_line_length": 26.9352818372,
"ext": "agda",
"hexsha": "a7fc225938e5da735d88d0aeb74c2caa1ac198fe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "Data/Nat/Properties/Extra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "Data/Nat/Properties/Extra.agda",
"max_line_length": 113,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "Data/Nat/Properties/Extra.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 6177,
"size": 12902
} |
open import Data.List using () renaming
( List to ♭List ; [] to []♭ ; _∷_ to _∷♭_ ; _++_ to _++♭_
; length to length♭ ; map to ♭map )
open import Data.Maybe using ( Maybe ; just ; nothing )
open import Data.Nat using ( zero ; suc ) renaming ( _+_ to _+♭_ )
open import Function using () renaming ( _∘′_ to _∘_ )
open import Relation.Binary.PropositionalEquality using
( _≡_ ; refl ; sym ; subst ; cong ; cong₂ )
open import AssocFree.Util using ( ≡-relevant ) renaming ( lookup to lookup♭ )
open import AssocFree.DNat using ( ℕ ; ♯0 ; _+_ ; iso-resp-+ ) renaming
( ♭ to ♭ⁿ ; ♯ to ♯ⁿ ; iso to isoⁿ ; iso⁻¹ to isoⁿ⁻¹ )
module AssocFree.DList where
open Relation.Binary.PropositionalEquality.≡-Reasoning using ( begin_ ; _≡⟨_⟩_ ; _∎ )
infixr 4 _++_
infixl 3 _≪_
infixr 2 _≫_
cat : ∀ {A : Set} → ♭List A → ♭List A → ♭List A
cat = _++♭_
cat-assoc : ∀ {A} (as bs : ♭List A) → (cat (cat as bs) ≡ ((cat as) ∘ (cat bs)))
cat-assoc []♭ bs = refl
cat-assoc (a ∷♭ as) bs = cong (_∘_ (_∷♭_ a)) (cat-assoc as bs)
cat-unit : ∀ {A} (as : ♭List A) → cat as []♭ ≡ as
cat-unit []♭ = refl
cat-unit (a ∷♭ as) = cong (_∷♭_ a) (cat-unit as)
-- List A is isomorphic to ♭List A, but has associativity of concatenation
-- up to beta reduction, not just up to propositional equality.
-- We keep track of the length explicitly to ensure that length is a monoid
-- homomorphism up to beta-reduction, not just up to ≡.
record List (A : Set) : Set where
constructor list
field
length : ℕ
fun : ♭List A → ♭List A
.length✓ : length ≡ ♯ⁿ (length♭ (fun []♭))
.fun✓ : fun ≡ cat (fun []♭)
open List public
-- Convert any ♭List into a List and back
♯ : ∀ {A} → ♭List A → List A
♯ as = list
(♯ⁿ (length♭ as))
(cat as)
(cong (♯ⁿ ∘ length♭) (sym (cat-unit as)))
(cong cat (sym (cat-unit as)))
♭ : ∀ {A} → List A → ♭List A
♭ (list n f n✓ f✓) = f []♭
-- Map
map : ∀ {A B} → (A → B) → List A → List B
map f as = ♯ (♭map f (♭ as))
-- Empty list
[] : ∀ {A} → List A
[] = ♯ []♭
-- Singleton
[_] : ∀ {A} → A → List A
[ a ] = ♯ (a ∷♭ []♭)
-- Concatenation
length♭-resp-++ : ∀ {A : Set} (as bs : ♭List A) → length♭ (as ++♭ bs) ≡ (length♭ as +♭ length♭ bs)
length♭-resp-++ []♭ bs = refl
length♭-resp-++ (a ∷♭ as) bs = cong (_+♭_ 1) (length♭-resp-++ as bs)
_++_ : ∀ {A} → List A → List A → List A
list m f m✓ f✓ ++ list n g n✓ g✓ = list (m + n) (f ∘ g) m+n✓ f∘g✓ where
.m+n✓ : (m + n) ≡ ♯ⁿ (length♭ (f (g []♭)))
m+n✓ = begin
m + n
≡⟨ cong₂ _+_ m✓ n✓ ⟩
♯ⁿ (length♭ (f []♭)) + ♯ⁿ (length♭ (g []♭))
≡⟨ sym (isoⁿ (♯ⁿ (length♭ (f []♭)) + ♯ⁿ (length♭ (g []♭)))) ⟩
♯ⁿ (♭ⁿ (♯ⁿ (length♭ (f []♭)) + ♯ⁿ (length♭ (g []♭))))
≡⟨ cong ♯ⁿ (iso-resp-+ (♯ⁿ (length♭ (f []♭))) (♯ⁿ (length♭ (g []♭)))) ⟩
♯ⁿ (♭ⁿ (♯ⁿ (length♭ (f []♭))) +♭ ♭ⁿ (♯ⁿ (length♭ (g []♭))))
≡⟨ cong ♯ⁿ (cong₂ _+♭_ (isoⁿ⁻¹ (length♭ (f []♭))) (isoⁿ⁻¹ (length♭ (g []♭)))) ⟩
♯ⁿ (length♭ (f []♭) +♭ length♭ (g []♭))
≡⟨ cong ♯ⁿ (sym (length♭-resp-++ (f []♭) (g []♭))) ⟩
♯ⁿ (length♭ (f []♭ ++♭ g []♭))
≡⟨ cong (λ X → ♯ⁿ (length♭ (X (g []♭)))) (sym f✓) ⟩
♯ⁿ (length♭ (f (g []♭)))
∎
.f∘g✓ : (f ∘ g) ≡ cat (f (g []♭))
f∘g✓ = begin
f ∘ g
≡⟨ cong₂ _∘_ f✓ g✓ ⟩
cat (f []♭) ∘ cat (g []♭)
≡⟨ sym (cat-assoc (f []♭) (g []♭)) ⟩
cat (f []♭ ++♭ g []♭)
≡⟨ cong (λ X → cat (X (g []♭))) (sym f✓) ⟩
cat (f (g []♭))
∎
-- Cons
_∷_ : ∀ {A} → A → List A → List A
a ∷ as = [ a ] ++ as
-- Ismorphism between List and ♭List which respects ++ and length
inject : ∀ {A} (as bs : List A) → (length as ≡ length bs) → (fun as ≡ fun bs) → (as ≡ bs)
inject (list m f m✓ f✓) (list .m .f n✓ g✓) refl refl = refl
iso : ∀ {A} (as : List A) → ♯ (♭ as) ≡ as
iso as = inject (♯ (♭ as)) as (sym (≡-relevant (length✓ as))) (sym (≡-relevant (fun✓ as)))
iso⁻¹ : ∀ {A} (as : ♭List A) → ♭ (♯ as) ≡ as
iso⁻¹ = cat-unit
iso-resp-++ : ∀ {A} (as bs : List A) → ♭ (as ++ bs) ≡ (♭ as ++♭ ♭ bs)
iso-resp-++ (list m f m✓ f✓) (list n g n✓ g✓) = cong (λ X → X (g []♭)) (≡-relevant f✓)
iso-resp-length : ∀ {A} (as : List A) → ♭ⁿ (length as) ≡ length♭ (♭ as)
iso-resp-length as =
begin
♭ⁿ (length as)
≡⟨ cong (♭ⁿ ∘ length) (sym (iso as)) ⟩
♭ⁿ (♯ⁿ (length♭ (♭ as)))
≡⟨ isoⁿ⁻¹ (length♭ (♭ as)) ⟩
length♭ (♭ as)
∎
-- Associtivity and units on the nose
++-assoc : ∀ {A} (as bs cs : List A) → ((as ++ bs) ++ cs) ≡ (as ++ (bs ++ cs))
++-assoc as bs cs = refl
++-unit₁ : ∀ {A} (as : List A) → (([] ++ as) ≡ as)
++-unit₁ as = refl
++-unit₂ : ∀ {A} (as : List A) → ((as ++ []) ≡ as)
++-unit₂ as = refl
-- Length is a monoid homomorphism on the nose
length-resp-++ : ∀ {A} (as bs : List A) → (length (as ++ bs) ≡ (length as + length bs))
length-resp-++ as bs = refl
length-resp-[] : ∀ {A} → (length {A} [] ≡ ♯0)
length-resp-[] = refl
-- Lookup
lookup : ∀ {A} → List A → ℕ → Maybe A
lookup as n = lookup♭ (♭ as) (♭ⁿ n)
lookup♭₁ : ∀ {A : Set} {a : A} as bs n →
(lookup♭ as n ≡ just a) → (lookup♭ (as ++♭ bs) n ≡ just a)
lookup♭₁ []♭ bs n ()
lookup♭₁ (a ∷♭ as) bs zero refl = refl
lookup♭₁ (a ∷♭ as) bs (suc n) as[n]≡a = lookup♭₁ as bs n as[n]≡a
lookup♭₂ : ∀ {A : Set} {a : A} as bs n →
(lookup♭ bs n ≡ just a) → (lookup♭ (as ++♭ bs) (length♭ as +♭ n) ≡ just a)
lookup♭₂ []♭ bs n bs[n]≡a = bs[n]≡a
lookup♭₂ (a ∷♭ as) bs n bs[n]≡a = lookup♭₂ as bs n bs[n]≡a
lookup₁ : ∀ {A} {a : A} as bs n →
(lookup as n ≡ just a) → (lookup (as ++ bs) n ≡ just a)
lookup₁ {A} {a} as bs n as[n]≡a =
begin
lookup♭ (♭ (as ++ bs)) (♭ⁿ n)
≡⟨ cong (λ X → lookup♭ X (♭ⁿ n)) (iso-resp-++ as bs) ⟩
lookup♭ (♭ as ++♭ ♭ bs) (♭ⁿ n)
≡⟨ lookup♭₁ (♭ as) (♭ bs) (♭ⁿ n) as[n]≡a ⟩
just a
∎
lookup₂ : ∀ {A} {a : A} as bs n →
(lookup bs n ≡ just a) → (lookup (as ++ bs) (length as + n) ≡ just a)
lookup₂ {A} {a} as bs n bs[n]≡a =
begin
lookup♭ (♭ (as ++ bs)) (♭ⁿ (length as + n))
≡⟨ cong₂ lookup♭ (iso-resp-++ as bs) (iso-resp-+ (length as) n) ⟩
lookup♭ (♭ as ++♭ ♭ bs) (♭ⁿ (length as) +♭ ♭ⁿ n)
≡⟨ cong (λ X → lookup♭ (♭ as ++♭ ♭ bs) (X +♭ ♭ⁿ n)) (iso-resp-length as) ⟩
lookup♭ (♭ as ++♭ ♭ bs) (length♭ (♭ as) +♭ ♭ⁿ n)
≡⟨ lookup♭₂ (♭ as) (♭ bs) (♭ⁿ n) bs[n]≡a ⟩
just a
∎
-- Membership
record _∈_ {A} (a : A) (as : List A) : Set where
constructor _,_
field
index : ℕ
.index✓ : lookup as index ≡ just a
open _∈_ public
-- Extending membership on the left and right
_≪_ : ∀ {A} {a : A} {as} → (a ∈ as) → ∀ bs → (a ∈ (as ++ bs))
_≪_ {A} {a} {as} (n , n✓) bs = (n , lookup₁ as bs n n✓)
_≫_ : ∀ {A} {a : A} as {bs} → (a ∈ bs) → (a ∈ (as ++ bs))
_≫_ as {bs} (n , n✓) = ((length as + n) , lookup₂ as bs n n✓)
-- Membership extensions have units
≪-unit : ∀ {A} {a : A} as (a∈as : a ∈ as) →
(a∈as ≪ []) ≡ a∈as
≪-unit as a∈as = refl
≫-unit : ∀ {A} {a : A} as (a∈as : a ∈ as) →
([] ≫ a∈as) ≡ a∈as
≫-unit as a∈as = refl
-- Membership extension is associative on the nose
≪-assoc : ∀ {A} {a : A} as bs cs (a∈as : a ∈ as) →
(a∈as ≪ bs ≪ cs) ≡ (a∈as ≪ bs ++ cs)
≪-assoc as bs cs a∈as = refl
≫-≪-assoc : ∀ {A} {a : A} as bs cs (a∈bs : a ∈ bs) →
((as ≫ a∈bs) ≪ cs) ≡ (as ≫ (a∈bs ≪ cs))
≫-≪-assoc as bs cs a∈bs = refl
≫-assoc : ∀ {A} {a : A} as bs cs (a∈cs : a ∈ cs) →
(as ≫ bs ≫ a∈cs) ≡ (as ≫ bs ≫ a∈cs)
≫-assoc as bs cs a∈cs = refl
-- Index is a monoid homomorphism on the nose
≪-index : ∀ {A} {a : A} as bs (a∈as : a ∈ as) →
index (a∈as ≪ bs) ≡ index a∈as
≪-index as bs a∈as = refl
≫-index : ∀ {A} {a : A} as bs (a∈bs : a ∈ bs) →
index (as ≫ a∈bs) ≡ (length as + index a∈bs)
≫-index as bs a∈bs = refl
-- Index is injective
index-inj : ∀ {A} (a : A) {as} (a∈as₁ a∈as₂ : a ∈ as) →
(index a∈as₁ ≡ index a∈as₂) → (a∈as₁ ≡ a∈as₂)
index-inj a (m , m✓) (.m , n✓) refl = refl
-- Membership of empty list
absurd : ∀ {β} {A} {B : Set β} {a : A} → (a ∈ []) → B
absurd (n , ())
-- Membership of singleton
lookup-uniq : ∀ {A} {a : A} {m} {b} n → (♯ⁿ n ≡ m) →
(lookup (b ∷ []) m ≡ just a) → (b ≡ a)
lookup-uniq zero refl refl = refl
lookup-uniq (suc n) refl ()
uniq : ∀ {A} {a b : A} → (a ∈ [ b ]) → (b ≡ a)
uniq (n , n✓) = lookup-uniq (♭ⁿ n) (isoⁿ n) (≡-relevant n✓)
singleton : ∀ {A} (a : A) → (a ∈ [ a ])
singleton a = (♯0 , refl)
-- Case on membership
data Case {A} a (as bs : List A) : Set where
inj₁ : (a∈as : a ∈ as) → Case a as bs
inj₂ : (a∈bs : a ∈ bs) → Case a as bs
-- Case function
_⋙_ : ∀ {A a} as {bs cs} → Case {A} a bs cs → Case a (as ++ bs) cs
as ⋙ inj₁ a∈bs = inj₁ (as ≫ a∈bs)
as ⋙ inj₂ a∈cs = inj₂ a∈cs
lookup♭-case : ∀ {A} {a : A} cs ds n →
.(lookup♭ (cs ++♭ ds ++♭ []♭) (n +♭ 0) ≡ just a) → (Case a (♯ cs) (♯ ds))
lookup♭-case []♭ ds n n✓ = inj₂ (♯ⁿ n , n✓)
lookup♭-case (c ∷♭ cs) ds zero n✓ = inj₁ (♯0 , n✓)
lookup♭-case (c ∷♭ cs) ds (suc n) n✓ = [ c ] ⋙ lookup♭-case cs ds n n✓
lookup-case : ∀ {A a as bs m} cs ds n →
.(lookup (as ++ bs) m ≡ just a) → (♯ cs ≡ as) → (♯ ds ≡ bs) → (♯ⁿ n ≡ m) →
Case {A} a as bs
lookup-case cs ds n n✓ refl refl refl = lookup♭-case cs ds n n✓
case : ∀ {A a} as bs → (a ∈ (as ++ bs)) → Case {A} a as bs
case {A} {a} as bs (n , n✓) =
lookup-case {A} {a} {as} {bs} {n} (♭ as) (♭ bs) (♭ⁿ n) n✓ (iso as) (iso bs) (isoⁿ n)
-- Beta for case with ≪
lookup♭-case-≪ : ∀ {A} {a : A} cs ds n .n✓₁ .n✓₂ →
lookup♭-case {A} {a} cs ds n n✓₂ ≡ inj₁ (♯ⁿ n , n✓₁)
lookup♭-case-≪ []♭ ds n () n✓₂
lookup♭-case-≪ (c ∷♭ cs) ds zero n✓₁ n✓₂ = refl
lookup♭-case-≪ (c ∷♭ cs) ds (suc n) n✓₁ n✓₂ = cong (_⋙_ [ c ]) (lookup♭-case-≪ cs ds n n✓₁ n✓₂)
lookup-case-≪ : ∀ {A} {a : A} {as bs m} cs ds n .m✓₁ .m✓₂ cs≡as ds≡bs n≡m →
lookup-case {A} {a} {as} {bs} {m} cs ds n m✓₂ cs≡as ds≡bs n≡m
≡ inj₁ (m , m✓₁)
lookup-case-≪ cs ds n m✓₁ m✓₂ refl refl refl = lookup♭-case-≪ cs ds n m✓₁ m✓₂
case-≪ : ∀ {A a as} (a∈as : a ∈ as) bs → (case {A} {a} as bs (a∈as ≪ bs) ≡ inj₁ a∈as)
case-≪ {A} {a} {as} (n , n✓) bs =
lookup-case-≪ {A} {a} {as} {bs} {n} (♭ as) (♭ bs) (♭ⁿ n) n✓
(lookup₁ as bs n n✓) (iso as) (iso bs) (isoⁿ n)
-- Beta for case with ≫
lookup♭-case-≫ : ∀ {A} {a : A} cs ds n₁ n₂ .n✓₁ .n✓₂ → (n₂ ≡ n₁) →
lookup♭-case {A} {a} cs ds (length♭ cs +♭ n₂) n✓₂ ≡ inj₂ (♯ⁿ n₁ , n✓₁)
lookup♭-case-≫ []♭ ds n .n n✓₁ n✓₂ refl = refl
lookup♭-case-≫ (c ∷♭ cs) ds n .n n✓₁ n✓₂ refl = cong (_⋙_ [ c ]) (lookup♭-case-≫ cs ds n n n✓₁ n✓₂ refl)
lookup-case-≫ : ∀ {A} {a : A} {as bs m l+m} cs ds n .m✓₁ .m✓₂ cs≡as ds≡bs l+n≡l+m → (♯ⁿ n ≡ m) →
lookup-case {A} {a} {as} {bs} {l+m} cs ds (♭ⁿ (length as + m)) m✓₂ cs≡as ds≡bs l+n≡l+m
≡ inj₂ (m , m✓₁)
lookup-case-≫ cs ds n m✓₁ m✓₂ refl refl refl refl =
lookup♭-case-≫ cs ds n (n +♭ 0) m✓₁ m✓₂ (isoⁿ⁻¹ n)
case-≫ : ∀ {A a} as {bs} (a∈bs : a ∈ bs) → (case {A} {a} as bs (as ≫ a∈bs) ≡ inj₂ a∈bs)
case-≫ {A} {a} as {bs} (n , n✓) =
lookup-case-≫ {A} {a} {as} {bs} {n} {length as + n} (♭ as) (♭ bs) (♭ⁿ n) n✓
(lookup₂ as bs n n✓) (iso as) (iso bs) (isoⁿ (length as + n)) (isoⁿ n)
-- A variant of case which remembers its argument
data Case+ {A} {a} (as bs : List A) : (a ∈ (as ++ bs)) → Set where
inj₁ : (a∈as : a ∈ as) → Case+ as bs (a∈as ≪ bs)
inj₂ : (a∈bs : a ∈ bs) → Case+ as bs (as ≫ a∈bs)
_⋙+_ : ∀ {A a} as {bs cs} {a∈bs++cs} →
Case+ {A} {a} bs cs a∈bs++cs → Case+ (as ++ bs) cs (as ≫ a∈bs++cs)
as ⋙+ inj₁ a∈bs = inj₁ (as ≫ a∈bs)
as ⋙+ inj₂ a∈cs = inj₂ a∈cs
lookup♭-case+ : ∀ {A a} cs ds n .n✓ → (Case+ {A} {a} (♯ cs) (♯ ds) (♯ⁿ n , n✓))
lookup♭-case+ []♭ ds n n✓ = inj₂ (♯ⁿ n , n✓)
lookup♭-case+ (c ∷♭ cs) ds zero n✓ = inj₁ (♯0 , n✓)
lookup♭-case+ (c ∷♭ cs) ds (suc n) n✓ = [ c ] ⋙+ lookup♭-case+ cs ds n n✓
lookup-case+ : ∀ {A a as bs m} cs ds n .m✓ → (♯ cs ≡ as) → (♯ ds ≡ bs) → (♯ⁿ n ≡ m) →
Case+ {A} {a} as bs (m , m✓)
lookup-case+ cs ds n n✓ refl refl refl = lookup♭-case+ cs ds n n✓
case+ : ∀ {A a} as bs a∈as++bs → Case+ {A} {a} as bs a∈as++bs
case+ {A} {a} as bs (n , n✓) =
lookup-case+ {A} {a} {as} {bs} {n} (♭ as) (♭ bs) (♭ⁿ n) n✓ (iso as) (iso bs) (isoⁿ n)
-- Inverse of case
case⁻¹ : ∀ {A a as bs} → Case {A} a as bs → (a ∈ (as ++ bs))
case⁻¹ {A} {a} {as} {bs} (inj₁ a∈as) = (a∈as ≪ bs)
case⁻¹ {A} {a} {as} {bs} (inj₂ a∈bs) = (as ≫ a∈bs)
case-iso : ∀ {A a} as bs (a∈as++bs : a ∈ (as ++ bs)) →
case⁻¹ (case {A} {a} as bs a∈as++bs) ≡ a∈as++bs
case-iso as bs a∈as++bs with case+ as bs a∈as++bs
case-iso as bs .(a∈as ≪ bs) | inj₁ a∈as = cong case⁻¹ (case-≪ a∈as bs)
case-iso as bs .(as ≫ a∈bs) | inj₂ a∈bs = cong case⁻¹ (case-≫ as a∈bs)
case-iso⁻¹ : ∀ {A a} as bs (a∈as++bs : Case a as bs) →
case {A} {a} as bs (case⁻¹ a∈as++bs) ≡ a∈as++bs
case-iso⁻¹ as bs (inj₁ a∈as) = case-≪ a∈as bs
case-iso⁻¹ as bs (inj₂ a∈bs) = case-≫ as a∈bs
-- ⋙ distributes through case
case-⋙ : ∀ {A} {a : A} as bs cs (a∈bs++cs : a ∈ (bs ++ cs)) →
(as ⋙ case bs cs a∈bs++cs) ≡ (case (as ++ bs) cs (as ≫ a∈bs++cs))
case-⋙ as bs cs a∈bs++cs with case+ bs cs a∈bs++cs
case-⋙ as bs cs .(a∈bs ≪ cs) | inj₁ a∈bs =
begin
as ⋙ case bs cs (a∈bs ≪ cs)
≡⟨ cong (_⋙_ as) (case-≪ a∈bs cs) ⟩
inj₁ (as ≫ a∈bs)
≡⟨ sym (case-≪ (as ≫ a∈bs) cs) ⟩
case (as ++ bs) cs (as ≫ a∈bs ≪ cs)
∎
case-⋙ as bs cs .(bs ≫ a∈cs) | inj₂ a∈cs =
begin
as ⋙ case bs cs (bs ≫ a∈cs)
≡⟨ cong (_⋙_ as) (case-≫ bs a∈cs) ⟩
inj₂ a∈cs
≡⟨ sym (case-≫ (as ++ bs) a∈cs) ⟩
case (as ++ bs) cs (as ≫ bs ≫ a∈cs)
∎
-- Three-way case, used for proving associativity properties
data Case₃ {A} (a : A) as bs cs : Set where
inj₁ : (a ∈ as) → Case₃ a as bs cs
inj₂ : (a ∈ bs) → Case₃ a as bs cs
inj₃ : (a ∈ cs) → Case₃ a as bs cs
case₂₃ : ∀ {A} {a : A} as bs cs → (Case a bs cs) → (Case₃ a as bs cs)
case₂₃ as bs cs (inj₁ a∈bs) = inj₂ a∈bs
case₂₃ as bs cs (inj₂ a∈cs) = inj₃ a∈cs
case₁₃ : ∀ {A} {a : A} as bs cs → (Case a as (bs ++ cs)) → (Case₃ a as bs cs)
case₁₃ as bs cs (inj₁ a∈as) = inj₁ a∈as
case₁₃ as bs cs (inj₂ a∈bs++cs) = case₂₃ as bs cs (case bs cs a∈bs++cs)
case₃ : ∀ {A} {a : A} as bs cs → (a ∈ (as ++ bs ++ cs)) → (Case₃ a as bs cs)
case₃ as bs cs a∈as++bs++cs = case₁₃ as bs cs (case as (bs ++ cs) a∈as++bs++cs)
-- Associating case₃ to the left gives case
caseˡ : ∀ {A} {a : A} {as bs cs} → Case₃ a as bs cs → Case a (as ++ bs) cs
caseˡ {bs = bs} (inj₁ a∈as) = inj₁ (a∈as ≪ bs)
caseˡ {as = as} (inj₂ a∈bs) = inj₁ (as ≫ a∈bs)
caseˡ (inj₃ a∈cs) = inj₂ a∈cs
caseˡ₂₃ : ∀ {A a} as bs cs {a∈bs++cs} → Case+ {A} {a} bs cs a∈bs++cs →
caseˡ (case₂₃ as bs cs (case bs cs a∈bs++cs)) ≡ case (as ++ bs) cs (as ≫ a∈bs++cs)
caseˡ₂₃ as bs cs (inj₁ a∈bs) =
begin
caseˡ (case₂₃ as bs cs (case bs cs (a∈bs ≪ cs)))
≡⟨ cong (caseˡ ∘ case₂₃ as bs cs) (case-≪ a∈bs cs) ⟩
inj₁ (as ≫ a∈bs)
≡⟨ sym (case-≪ (as ≫ a∈bs) cs) ⟩
case (as ++ bs) cs (as ≫ a∈bs ≪ cs)
∎
caseˡ₂₃ as bs cs (inj₂ a∈cs) =
begin
caseˡ (case₂₃ as bs cs (case bs cs (bs ≫ a∈cs)))
≡⟨ cong (caseˡ ∘ case₂₃ as bs cs) (case-≫ bs a∈cs) ⟩
inj₂ a∈cs
≡⟨ sym (case-≫ (as ++ bs) a∈cs) ⟩
case (as ++ bs) cs (as ≫ bs ≫ a∈cs)
∎
caseˡ₁₃ : ∀ {A a} as bs cs {a∈as++bs++cs} → Case+ {A} {a} as (bs ++ cs) a∈as++bs++cs →
caseˡ (case₁₃ as bs cs (case as (bs ++ cs) a∈as++bs++cs)) ≡ case (as ++ bs) cs a∈as++bs++cs
caseˡ₁₃ as bs cs (inj₁ a∈as) =
begin
caseˡ (case₁₃ as bs cs (case as (bs ++ cs) (a∈as ≪ bs ≪ cs)))
≡⟨ cong (caseˡ ∘ case₁₃ as bs cs) (case-≪ a∈as (bs ++ cs)) ⟩
inj₁ (a∈as ≪ bs)
≡⟨ sym (case-≪ (a∈as ≪ bs) cs) ⟩
case (as ++ bs) cs (a∈as ≪ bs ≪ cs)
∎
caseˡ₁₃ as bs cs (inj₂ a∈bs++cs) =
begin
caseˡ (case₁₃ as bs cs (case as (bs ++ cs) (as ≫ a∈bs++cs)))
≡⟨ cong (caseˡ ∘ case₁₃ as bs cs) (case-≫ as a∈bs++cs) ⟩
caseˡ (case₂₃ as bs cs (case bs cs a∈bs++cs))
≡⟨ caseˡ₂₃ as bs cs (case+ bs cs a∈bs++cs) ⟩
case (as ++ bs) cs (as ≫ a∈bs++cs)
∎
caseˡ₃ : ∀ {A} {a : A} as bs cs (a∈as++bs++cs : a ∈ (as ++ bs ++ cs)) →
caseˡ (case₃ as bs cs a∈as++bs++cs) ≡ case (as ++ bs) cs a∈as++bs++cs
caseˡ₃ as bs cs a∈as++bs++cs = caseˡ₁₃ as bs cs (case+ as (bs ++ cs) a∈as++bs++cs)
-- Associating case₃ to the right gives case
caseʳ : ∀ {A} {a : A} {as bs cs} → Case₃ a as bs cs → Case a as (bs ++ cs)
caseʳ (inj₁ a∈as) = inj₁ a∈as
caseʳ {cs = cs} (inj₂ a∈bs) = inj₂ (a∈bs ≪ cs)
caseʳ {bs = bs} (inj₃ a∈cs) = inj₂ (bs ≫ a∈cs)
caseʳ₂₃ : ∀ {A a} as bs cs {a∈bs++cs} → Case+ {A} {a} bs cs a∈bs++cs →
caseʳ (case₂₃ as bs cs (case bs cs a∈bs++cs)) ≡ inj₂ a∈bs++cs
caseʳ₂₃ as bs cs (inj₁ a∈bs) = cong (caseʳ ∘ case₂₃ as bs cs) (case-≪ a∈bs cs)
caseʳ₂₃ as bs cs (inj₂ a∈cs) = cong (caseʳ ∘ case₂₃ as bs cs) (case-≫ bs a∈cs)
caseʳ₁₃ : ∀ {A a} as bs cs {a∈as++bs++cs} → Case+ {A} {a} as (bs ++ cs) a∈as++bs++cs →
caseʳ (case₁₃ as bs cs (case as (bs ++ cs) a∈as++bs++cs)) ≡ case as (bs ++ cs) a∈as++bs++cs
caseʳ₁₃ as bs cs (inj₁ a∈as) =
begin
caseʳ (case₁₃ as bs cs (case as (bs ++ cs) (a∈as ≪ bs ≪ cs)))
≡⟨ cong (caseʳ ∘ case₁₃ as bs cs) (case-≪ a∈as (bs ++ cs)) ⟩
inj₁ a∈as
≡⟨ sym (case-≪ a∈as (bs ++ cs)) ⟩
case as (bs ++ cs) (a∈as ≪ bs ≪ cs)
∎
caseʳ₁₃ as bs cs (inj₂ a∈bs++cs) =
begin
caseʳ (case₁₃ as bs cs (case as (bs ++ cs) (as ≫ a∈bs++cs)))
≡⟨ cong (caseʳ ∘ case₁₃ as bs cs) (case-≫ as a∈bs++cs) ⟩
caseʳ (case₂₃ as bs cs (case bs cs a∈bs++cs))
≡⟨ caseʳ₂₃ as bs cs (case+ bs cs a∈bs++cs) ⟩
inj₂ a∈bs++cs
≡⟨ sym (case-≫ as a∈bs++cs) ⟩
case as (bs ++ cs) (as ≫ a∈bs++cs)
∎
caseʳ₃ : ∀ {A} {a : A} as bs cs (a∈as++bs++cs : a ∈ (as ++ bs ++ cs)) →
caseʳ (case₃ as bs cs a∈as++bs++cs) ≡ case as (bs ++ cs) a∈as++bs++cs
caseʳ₃ as bs cs a∈as++bs++cs = caseʳ₁₃ as bs cs (case+ as (bs ++ cs) a∈as++bs++cs)
| {
"alphanum_fraction": 0.4957824066,
"avg_line_length": 34.5773809524,
"ext": "agda",
"hexsha": "e3c6f489c449abbb073ad30a790ec55151d43485",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:38:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-03-03T04:39:31.000Z",
"max_forks_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-assoc-free",
"max_forks_repo_path": "src/AssocFree/DList.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-assoc-free",
"max_issues_repo_path": "src/AssocFree/DList.agda",
"max_line_length": 104,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-assoc-free",
"max_stars_repo_path": "src/AssocFree/DList.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-27T20:56:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-11-22T11:48:31.000Z",
"num_tokens": 9010,
"size": 17427
} |
-- Andreas, 2012-02-14. No short-circuit conversion test for sizes!
{-# OPTIONS --sized-types --show-implicit #-}
-- {-# OPTIONS -v tc.size.solve:20 -v tc.conv.size:20 -v tc.term.con:50 -v tc.term.args:50 #-}
module Issue298b where
open import Common.Size
data BTree : {size : Size} → Set where
leaf : {i : Size} → BTree {↑ i}
node : {i : Size} → BTree {i} → BTree {i} → BTree {↑ i}
works : ∀ {i} → BTree {i} → BTree
works (node (node t1 t2) t3) = node (works t1) (node t2 t3)
works t = t
| {
"alphanum_fraction": 0.6184738956,
"avg_line_length": 31.125,
"ext": "agda",
"hexsha": "8f38873acc1755f8f315a10b0ebe455cb62b97fc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue298b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue298b.agda",
"max_line_length": 94,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue298b.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 180,
"size": 498
} |
{-# OPTIONS --without-K #-}
module PiTracedLevel0 where
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit using (⊤; tt)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
------------------------------------------------------------------------------
-- Level 0 of Pi (with trace)
--
-- ZERO is a type with no elements
-- ONE is a type with one element 'tt'
-- PLUS ONE ONE is a type with elements 'false' and 'true'
-- and so on for all finite types built from ZERO, ONE, PLUS, and TIMES
--
-- We also have that U is a type with elements ZERO, ONE, PLUS ONE ONE,
-- TIMES BOOL BOOL, etc.
data U : Set where
ZERO : U
ONE : U
PLUS : U → U → U
TIMES : U → U → U
⟦_⟧ : U → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧
⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
infix 30 _⟷_
infixr 50 _◎_
-- Combinators, permutations, or paths depending on the perspective
data _⟷_ : U → U → Set where
unite₊ : {t : U} → PLUS ZERO t ⟷ t
uniti₊ : {t : U} → t ⟷ PLUS ZERO t
swap₊ : {t₁ t₂ : U} → PLUS t₁ t₂ ⟷ PLUS t₂ t₁
assocl₊ : {t₁ t₂ t₃ : U} → PLUS t₁ (PLUS t₂ t₃) ⟷ PLUS (PLUS t₁ t₂) t₃
assocr₊ : {t₁ t₂ t₃ : U} → PLUS (PLUS t₁ t₂) t₃ ⟷ PLUS t₁ (PLUS t₂ t₃)
unite⋆ : {t : U} → TIMES ONE t ⟷ t
uniti⋆ : {t : U} → t ⟷ TIMES ONE t
swap⋆ : {t₁ t₂ : U} → TIMES t₁ t₂ ⟷ TIMES t₂ t₁
assocl⋆ : {t₁ t₂ t₃ : U} → TIMES t₁ (TIMES t₂ t₃) ⟷ TIMES (TIMES t₁ t₂) t₃
assocr⋆ : {t₁ t₂ t₃ : U} → TIMES (TIMES t₁ t₂) t₃ ⟷ TIMES t₁ (TIMES t₂ t₃)
absorbr : {t : U} → TIMES ZERO t ⟷ ZERO
absorbl : {t : U} → TIMES t ZERO ⟷ ZERO
factorzr : {t : U} → ZERO ⟷ TIMES t ZERO
factorzl : {t : U} → ZERO ⟷ TIMES ZERO t
dist : {t₁ t₂ t₃ : U} →
TIMES (PLUS t₁ t₂) t₃ ⟷ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃)
factor : {t₁ t₂ t₃ : U} →
PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) ⟷ TIMES (PLUS t₁ t₂) t₃
id⟷ : {t : U} → t ⟷ t
_◎_ : {t₁ t₂ t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_⊕_ : {t₁ t₂ t₃ t₄ : U} →
(t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (PLUS t₁ t₂ ⟷ PLUS t₃ t₄)
_⊗_ : {t₁ t₂ t₃ t₄ : U} →
(t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (TIMES t₁ t₂ ⟷ TIMES t₃ t₄)
trace : {t t₁ t₂ : U} → (PLUS t₁ t ⟷ PLUS t₂ t) → (t₁ ⟷ t₂)
! : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁)
! unite₊ = uniti₊
! uniti₊ = unite₊
! swap₊ = swap₊
! assocl₊ = assocr₊
! assocr₊ = assocl₊
! unite⋆ = uniti⋆
! uniti⋆ = unite⋆
! swap⋆ = swap⋆
! assocl⋆ = assocr⋆
! assocr⋆ = assocl⋆
! absorbl = factorzr
! absorbr = factorzl
! factorzl = absorbr
! factorzr = absorbl
! dist = factor
! factor = dist
! id⟷ = id⟷
! (c₁ ◎ c₂) = ! c₂ ◎ ! c₁
! (c₁ ⊕ c₂) = (! c₁) ⊕ (! c₂)
! (c₁ ⊗ c₂) = (! c₁) ⊗ (! c₂)
! (trace c) = trace (! c)
------------------------------------------------------------------------------
-- Cat
open import Level using () renaming (zero to lzero)
open import Data.Unit
open import Relation.Binary.Core using (IsEquivalence)
open import Data.Product using (_,_)
open import Categories.Category
open import Categories.Groupoid
open import Categories.Monoidal
open import Categories.Monoidal.Helpers
open import Categories.Bifunctor
open import Categories.NaturalIsomorphism
open import Categories.Monoidal.Braided
open import Categories.Monoidal.Symmetric
open import Categories.RigCategory
open import Categories.Monoidal.Traced
triv≡ : {t₁ t₂ : U} → (f g : t₁ ⟷ t₂) → Set
triv≡ _ _ = ⊤
triv≡Equiv : {t₁ t₂ : U} → IsEquivalence (triv≡ {t₁} {t₂})
triv≡Equiv = record
{ refl = tt
; sym = λ _ → tt
; trans = λ _ _ → tt
}
PiCat : Category lzero lzero lzero
PiCat = record
{ Obj = U
; _⇒_ = _⟷_
; _≡_ = triv≡
; id = id⟷
; _∘_ = λ y⟷z x⟷y → x⟷y ◎ y⟷z
; assoc = tt
; identityˡ = tt
; identityʳ = tt
; equiv = triv≡Equiv
; ∘-resp-≡ = λ _ _ → tt
}
-- and a groupoid
PiGroupoid : Groupoid PiCat
PiGroupoid = record
{ _⁻¹ = !
; iso = record { isoˡ = tt ; isoʳ = tt }
}
-- additive bifunctor and monoidal structure
⊕-bifunctor : Bifunctor PiCat PiCat PiCat
⊕-bifunctor = record
{ F₀ = λ {(u , v) → PLUS u v}
; F₁ = λ {(x⟷y , z⟷w) → x⟷y ⊕ z⟷w }
; identity = tt
; homomorphism = tt
; F-resp-≡ = λ _ → tt
}
module ⊎h = MonoidalHelperFunctors PiCat ⊕-bifunctor ZERO
0⊕x≡x : NaturalIsomorphism ⊎h.id⊗x ⊎h.x
0⊕x≡x = record
{ F⇒G = record
{ η = λ X → unite₊
; commute = λ _ → tt }
; F⇐G = record
{ η = λ X → uniti₊
; commute = λ _ → tt }
; iso = λ X → record { isoˡ = tt; isoʳ = tt }
}
x⊕0≡x : NaturalIsomorphism ⊎h.x⊗id ⊎h.x
x⊕0≡x = record
{ F⇒G = record
{ η = λ X → swap₊ ◎ unite₊ -- !!!
; commute = λ _ → tt
}
; F⇐G = record
{ η = λ X → uniti₊ ◎ swap₊
; commute = λ _ → tt
}
; iso = λ X → record
{ isoˡ = tt
; isoʳ = tt
}
}
[x⊕y]⊕z≡x⊕[y⊕z] : NaturalIsomorphism ⊎h.[x⊗y]⊗z ⊎h.x⊗[y⊗z]
[x⊕y]⊕z≡x⊕[y⊕z] = record
{ F⇒G = record
{ η = λ X → assocr₊
; commute = λ f → tt
}
; F⇐G = record
{ η = λ X → assocl₊
; commute = λ _ → tt
}
; iso = λ X → record
{ isoˡ = tt
; isoʳ = tt
}
}
M⊕ : Monoidal PiCat
M⊕ = record
{ ⊗ = ⊕-bifunctor
; id = ZERO
; identityˡ = 0⊕x≡x
; identityʳ = x⊕0≡x
; assoc = [x⊕y]⊕z≡x⊕[y⊕z]
; triangle = tt
; pentagon = tt
}
-- multiplicative bifunctor and monoidal structure
⊗-bifunctor : Bifunctor PiCat PiCat PiCat
⊗-bifunctor = record
{ F₀ = λ {(u , v) → TIMES u v}
; F₁ = λ {(x⟷y , z⟷w) → x⟷y ⊗ z⟷w }
; identity = tt
; homomorphism = tt
; F-resp-≡ = λ _ → tt
}
module ⊗h = MonoidalHelperFunctors PiCat ⊗-bifunctor ONE
1⊗x≡x : NaturalIsomorphism ⊗h.id⊗x ⊗h.x
1⊗x≡x = record
{ F⇒G = record
{ η = λ X → unite⋆
; commute = λ _ → tt }
; F⇐G = record
{ η = λ X → uniti⋆
; commute = λ _ → tt }
; iso = λ X → record { isoˡ = tt; isoʳ = tt }
}
x⊗1≡x : NaturalIsomorphism ⊗h.x⊗id ⊗h.x
x⊗1≡x = record
{ F⇒G = record
{ η = λ X → swap⋆ ◎ unite⋆ -- !!!
; commute = λ _ → tt
}
; F⇐G = record
{ η = λ X → uniti⋆ ◎ swap⋆
; commute = λ _ → tt
}
; iso = λ X → record
{ isoˡ = tt
; isoʳ = tt
}
}
[x⊗y]⊗z≡x⊗[y⊗z] : NaturalIsomorphism ⊗h.[x⊗y]⊗z ⊗h.x⊗[y⊗z]
[x⊗y]⊗z≡x⊗[y⊗z] = record
{ F⇒G = record
{ η = λ X → assocr⋆
; commute = λ f → tt
}
; F⇐G = record
{ η = λ X → assocl⋆
; commute = λ _ → tt
}
; iso = λ X → record
{ isoˡ = tt
; isoʳ = tt
}
}
M⊗ : Monoidal PiCat
M⊗ = record
{ ⊗ = ⊗-bifunctor
; id = ONE
; identityˡ = 1⊗x≡x
; identityʳ = x⊗1≡x
; assoc = [x⊗y]⊗z≡x⊗[y⊗z]
; triangle = tt
; pentagon = tt
}
x⊕y≡y⊕x : NaturalIsomorphism ⊎h.x⊗y ⊎h.y⊗x
x⊕y≡y⊕x = record
{ F⇒G = record { η = λ X → swap₊ ; commute = λ f → tt }
; F⇐G = record { η = λ X → swap₊ ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt } }
BM⊕ : Braided M⊕
BM⊕ = record { braid = x⊕y≡y⊕x ; hexagon₁ = tt ; hexagon₂ = tt }
x⊗y≡y⊗x : NaturalIsomorphism ⊗h.x⊗y ⊗h.y⊗x
x⊗y≡y⊗x = record
{ F⇒G = record { η = λ X → swap⋆ ; commute = λ f → tt }
; F⇐G = record { η = λ X → swap⋆ ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt } }
BM⊗ : Braided M⊗
BM⊗ = record { braid = x⊗y≡y⊗x ; hexagon₁ = tt ; hexagon₂ = tt }
SBM⊕ : Symmetric BM⊕
SBM⊕ = record { symmetry = tt }
-- trace
Pi0Traced : Traced SBM⊕
Pi0Traced = record {
trace = trace
; vanish_id = tt
; vanish_⊗ = tt
; superpose = tt
; yank = tt
}
--
SBM⊗ : Symmetric BM⊗
SBM⊗ = record { symmetry = tt }
module r = BimonoidalHelperFunctors SBM⊕ BM⊗
x⊗0≡0 : NaturalIsomorphism r.x⊗0 r.0↑
x⊗0≡0 = record
{ F⇒G = record { η = λ X → absorbl ; commute = λ f → tt }
; F⇐G = record { η = λ X → factorzr ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt }
}
0⊗x≡0 : NaturalIsomorphism r.0⊗x r.0↑
0⊗x≡0 = record
{ F⇒G = record { η = λ X → absorbr ; commute = λ f → tt }
; F⇐G = record { η = λ X → factorzl ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt }
}
x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] : NaturalIsomorphism r.x⊗[y⊕z] r.[x⊗y]⊕[x⊗z]
x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] = record -- this probably says we need distl/distr
{ F⇒G = record { η = λ X → swap⋆ ◎ dist ◎ (swap⋆ ⊕ swap⋆) ; commute = λ f → tt }
; F⇐G = record { η = λ X → (swap⋆ ⊕ swap⋆) ◎ factor ◎ swap⋆ ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt }
}
[x⊕y]⊗z≡[x⊗z]⊕[y⊗z] : NaturalIsomorphism r.[x⊕y]⊗z r.[x⊗z]⊕[y⊗z]
[x⊕y]⊗z≡[x⊗z]⊕[y⊗z] = record
{ F⇒G = record { η = λ X → dist ; commute = λ f → tt }
; F⇐G = record { η = λ X → factor ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt }
}
Pi0Rig : RigCategory SBM⊕ BM⊗
Pi0Rig = record
{ distribₗ = x⊗[y⊕z]≡[x⊗y]⊕[x⊗z]
; distribᵣ = [x⊕y]⊗z≡[x⊗z]⊕[y⊗z]
; annₗ = x⊗0≡0
; annᵣ = 0⊗x≡0
}
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.5127800923,
"avg_line_length": 25.5201149425,
"ext": "agda",
"hexsha": "b5ec6d44bcb2a1ac2c25906a645839bee0ac1171",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/PiTracedLevel0.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/PiTracedLevel0.agda",
"max_line_length": 84,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/PiTracedLevel0.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 4355,
"size": 8881
} |
{-# OPTIONS --rewriting --without-K #-}
open import Prelude
open import GSeTT.Syntax
open import GSeTT.Rules
open import GSeTT.Disks
open import GSeTT.Uniqueness-Derivations
open import GSeTT.Dec-Type-Checking
open import CaTT.Ps-contexts
open import CaTT.Relation
open import CaTT.Uniqueness-Derivations-Ps
module CaTT.Decidability-ps where
∅-is-not-ps : ∀ x A → ¬ (nil ⊢ps x # A)
∅-is-not-ps x A ∅⊢psx with psvar ∅⊢psx
... | var _ ()
ps-carrier : ∀{Γ A B C x y z} → ((Γ :: (x , A)) :: (y , B)) ⊢ps z # C → ((Σ Pre-Tm λ a → (⇒ A a (Var x) == B)) × (x == length Γ)) × (y == S (length Γ))
ps-carrier (psd Γ⊢ps) = ps-carrier Γ⊢ps
ps-carrier (pse _ idp idp idp idp idp) = ((_ , idp) , idp) , idp
Γ+⊢ps→Γ⊢ps : ∀ {Γ x A a y B z} → ((Γ :: (y , B)) :: (z , ⇒ B (Var a) (Var y))) ⊢ps x # A → Γ ⊢ps a # B
Γ+⊢ps→Γ⊢ps (psd Γ⊢ps) = Γ+⊢ps→Γ⊢ps Γ⊢ps
Γ+⊢ps→Γ⊢ps (pse Γ⊢ps idp idp p idp idp) = transport ((=Var (snd (fst (=⇒ p)))) ^) Γ⊢ps
𝔻0-var : ∀ x A → Pre-𝔻 0 ⊢t (Var x) # A → x == 0
𝔻0-var x A (var _ (inr (idp , _))) = idp
𝔻0-type : ∀ x A → Pre-𝔻 0 ⊢t (Var x) # A → A == ∗
𝔻0-type x A (var _ (inr (idp , idp))) = idp
⊢psx→⊢ps : ∀ {Γ x A} → Γ ⊢ps x # A → Γ ⊢ps
⊢psx→⊢ps {A = ∗} Γ⊢psx = ps Γ⊢psx
⊢psx→⊢ps {A = ⇒ A (Var _) (Var _)} Γ⊢psx = ⊢psx→⊢ps (psd Γ⊢psx)
dec-⊢-dim : ∀ {Γ} → Γ ⊢C → (n : ℕ) → dec (Σ (ℕ × Pre-Ty) (λ (x , A) → (Γ ⊢t (Var x) # A) × (dim A == n)))
dec-⊢-dim {nil} _ n = inr λ{((x , A) , ((var _ ()) , _))}
dec-⊢-dim {Γ :: (x , A)} Γ+⊢@(cc Γ⊢ _ _) n with eqdecℕ (dim A) n
... | inl idp = inl ((x , A) , (var Γ+⊢ (inr (idp , idp)) , idp))
... | inr dimA≠n with dec-⊢-dim Γ⊢ n
... | inl ((y , B) , ((var _ y∈Γ) , dimB=n)) = inl ((y , B ), (var Γ+⊢ (inl y∈Γ) , dimB=n))
... | inr ¬∃y = inr λ{((z , C) , ((var _ (inl z∈Γ)) , idp)) → ¬∃y ((z , C) , (var Γ⊢ z∈Γ , idp));
((z , C) , ((var _ (inr (idp , idp))) , idp)) → dimA≠n idp}
dim-pse : ∀ {Γ x A y B} → ((Γ :: (x , A)) :: (y , B)) ⊢ps y # B → (∀ z C → ((Γ :: (x , A)) :: (y , B)) ⊢ps z # C → dim C ≤ dim B)
dim-pse Γ⊢psy z C (psd Γ⊢psf) = Sn≤m→n≤m (dim-pse Γ⊢psy _ _ Γ⊢psf)
dim-pse Γ⊢psy z C (pse Γ⊢psz idp idp idp idp idp) = n≤n _
private
tgt-⟿ : ∀ {Γ x A y z a} → Γ ⊢t Var x # ⇒ A (Var y) (Var z) → Γ , x ⟿ a → z ≠ a → Γ , z ⟿ a
tgt-⟿ Γ⊢x (∂⁺⟿ Γ⊢'x) z≠a with unique-type Γ⊢x Γ⊢'x idp
... | idp = ⊥-elim (z≠a idp)
tgt-⟿ Γ⊢x (x⟿∂⁺ Γ⊢'x x⟿a) z≠a with unique-type Γ⊢x Γ⊢'x idp
... | idp = x⟿a
⇒≠∗ : ∀ {A t u} → ⇒ A t u ≠ ∗
⇒≠∗ ()
dec-Σ⊢T : ∀ {Γ t} → dec (Σ Pre-Ty λ A → Γ ⊢t t # A)
dec-Σ⊢T {nil} {Var x} = inr λ{(_ , var _ ())}
dec-Σ⊢T {Γ+@(Γ :: (y , B))} {Var x} with dec-⊢C Γ+ | eqdecℕ x y
... | inr Γ+⊬ | _ = inr λ (A , Γ+⊢x) → Γ+⊬ (Γ⊢t:A→Γ⊢ Γ+⊢x)
... | inl Γ+⊢ | inl idp = inl (B , var Γ+⊢ (inr (idp , idp)))
... | inl Γ+⊢ | inr x≠y with dec-Σ⊢T {Γ} {Var x}
... | inl (A , Γ⊢x)= inl (A , wkt Γ⊢x Γ+⊢)
... | inr Γ⊬x = inr λ{ (B , var _ (inr (idp , idp))) → x≠y idp;
(B , var (cc Γ⊢ _ _) (inl x#B∈Γ)) → Γ⊬x (B , var Γ⊢ x#B∈Γ)}
dec-⟿ : ∀ Γ x y → dec (Γ , x ⟿ y)
dec-⟿-aux : ∀ Γ x A y → Γ ⊢t (Var x) # A → dec (Γ , x ⟿ y)
dec-⟿-aux Γ x ∗ y Γ⊢x = inr λ{(∂⁺⟿ Γ⊢'x) → ⇒≠∗ (unique-type Γ⊢'x Γ⊢x idp) ; (x⟿∂⁺ Γ⊢'x _) → ⇒≠∗ (unique-type Γ⊢'x Γ⊢x idp)}
dec-⟿-aux Γ x (⇒ A (Var _) (Var z)) y Γ⊢x with eqdecℕ z y | dec-⟿-aux Γ z A y (Γ⊢tgt (Γ⊢t:A→Γ⊢A Γ⊢x))
... | inl idp | _ = inl (∂⁺⟿ Γ⊢x)
... | inr _ | inl x⟿z = inl (x⟿∂⁺ Γ⊢x x⟿z)
... | inr z≠y | inr ¬x⟿z = inr λ x⟿y → ¬x⟿z (tgt-⟿ Γ⊢x x⟿y z≠y)
dec-⟿ Γ x y with dec-Σ⊢T {Γ} {Var x}
... | inr Γ⊬x = inr λ{(∂⁺⟿ Γ⊢x) → Γ⊬x (_ , Γ⊢x) ; (x⟿∂⁺ Γ⊢x _) → Γ⊬x (_ , Γ⊢x)}
... | inl (A , Γ⊢x) = dec-⟿-aux Γ x A y Γ⊢x
Γ⊢psx-dim-⟿ : ∀ {Γ x A y B} → Γ ⊢ps x # A → Γ ⊢ps y # B → dim B < dim A → Γ , x ⟿ y
Γ⊢psx-dim-⟿ Γ⊢psx pss dB<dA with 𝔻0-type _ _ (psvar Γ⊢psx)
... | idp = ⊥-elim (Sn≰n _ dB<dA)
Γ⊢psx-dim-⟿ {Γ} {x} {A} {y} {B} Γ⊢psx (psd Γ⊢psf) dB<dA with eqdecℕ (S (dim B)) (dim A)
... | inl SdB=dA = transport {B = λ a → Γ , a ⟿ y} (Γ⊢psx-dim Γ⊢psf Γ⊢psx SdB=dA) (∂⁺⟿ (psvar Γ⊢psf))
... | inr SdB≠dA = T⟿ (Γ⊢psx-dim-⟿ Γ⊢psx Γ⊢psf (≤×≠→< dB<dA SdB≠dA)) (∂⁺⟿ (psvar Γ⊢psf))
Γ⊢psx-dim-⟿ Γ⊢psx Γ⊢psy@(pse _ idp idp idp idp idp) dB<dA = ⊥-elim (Sn≰n _ (≤T dB<dA (dim-pse Γ⊢psy _ _ Γ⊢psx)))
⟿→psx : ∀ {Γ x A y} → Γ ⊢ps x # A → Γ , x ⟿ y → Σ Pre-Ty λ B → Γ ⊢ps y # B
⟿→psx Γ⊢psx (∂⁺⟿ Γ⊢x) with unique-type (psvar Γ⊢psx) Γ⊢x idp
... | idp = _ , (psd Γ⊢psx)
⟿→psx Γ⊢psx (x⟿∂⁺ Γ⊢x z⟿y) with unique-type (psvar Γ⊢psx) Γ⊢x idp
... | idp = ⟿→psx (psd Γ⊢psx) z⟿y
pse-max : ∀ {Γ x A y B} → ((Γ :: (x , A)) :: (y , B)) ⊢ps y # B → (∀ z C → ((Γ :: (x , A)) :: (y , B)) ⊢ps z # C → (y == z) + (((Γ :: (x , A)) :: (y , B)) , y ⟿ z))
pse-max {B = B} Γ⊢psy z C Γ⊢psz with ℕ-trichotomy (dim B) (dim C)
... | inl (inl dimB<dimC) = ⊥-elim (Sn≰n _ (≤T dimB<dimC (dim-pse Γ⊢psy _ _ Γ⊢psz)) )
... | inl (inr dimC<dimB) = inr (Γ⊢psx-dim-⟿ Γ⊢psy Γ⊢psz dimC<dimB)
... | inr dimB=dimC = inl (Γ⊢psx-dim Γ⊢psy Γ⊢psz dimB=dimC)
⊢psx→max : ∀ {Γ x A} → Γ ⊢ps x # A → (Σ (ℕ × Pre-Ty) λ (y , B) → (Γ ⊢ps y # B) × (∀ z C → Γ ⊢ps z # C → (y == z) + (Γ , y ⟿ z)))
⊢psx→max pss = (0 , ∗) , (pss , λ z C 𝔻0⊢psx → inl (𝔻0-var z C (psvar 𝔻0⊢psx) ^))
⊢psx→max (psd Γ⊢psx) = ⊢psx→max Γ⊢psx
⊢psx→max {((Γ :: (_ , B)) :: (_ , C))} {x} {A} Γ+⊢ps@(pse Γ⊢psx idp idp idp idp idp) = (S (length Γ) , C) , (Γ+⊢ps , pse-max Γ+⊢ps)
-- TODO : move case_of_ in Prelude
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
ill-formed-1st-var : ∀ {y A} → ¬ ((nil :: (S y , A)) ⊢C)
ill-formed-1st-var (cc _ _ ())
ill-formed-1st-type : ∀ {y A a b} → ¬ ((nil :: (y , ⇒ A a b)) ⊢C)
ill-formed-1st-type (cc _ (ar (var _ ()) _) _)
dec-⊢psx-max : ∀ {Γ} → dec (Σ (ℕ × Pre-Ty) λ (x , A) → (Γ ⊢ps x # A) × (∀ y B → Γ ⊢ps y # B → (x == y) + (Γ , x ⟿ y)))
dec-⊢psx-max {nil} = inr λ ((x , A) , (nil⊢psx , _ )) → ∅-is-not-ps _ _ nil⊢psx
dec-⊢psx-max {nil :: (O , ∗)} = inl ((0 , ∗) , (pss , λ y B 𝔻0⊢psy → inl (𝔻0-var _ _ (psvar 𝔻0⊢psy) ^)))
dec-⊢psx-max {nil :: (O , ⇒ _ _ _)} = inr λ ((x , A) , (Γ⊢psx , _ )) → ill-formed-1st-type (psv Γ⊢psx)
dec-⊢psx-max {nil :: (S z , C)} = inr λ ((x , A) , (Γ⊢psx , _ )) → ill-formed-1st-var (psv Γ⊢psx)
dec-⊢psx-max {(Γ :: (z , C)) :: (f , ∗)} = inr λ ((x , A) , (Γ+⊢psx , _)) → ⇒≠∗ (snd (fst (fst (ps-carrier Γ+⊢psx))))
dec-⊢psx-max {(Γ :: (z , C)) :: (f , ⇒ D (Var a) (Var b))} with eqdec-PreTy C D | eqdecℕ z (length Γ) | eqdecℕ (length Γ) b | eqdecℕ f (S (length Γ))
... | inr C≠D | _ | _ | _ = inr λ ((x , A) , (Γ+⊢psx , _)) → C≠D (fst (fst (=⇒ (snd (fst (fst (ps-carrier Γ+⊢psx)))))))
... | inl idp | inr z≠l | _ | _ = inr λ ((x , A) , (Γ+⊢psx , _)) → z≠l (snd (fst (ps-carrier Γ+⊢psx)))
... | inl idp | inl idp | inr l≠b | _ = inr λ ((x , A) , (Γ+⊢psx , _)) → l≠b (=Var (snd (=⇒ (snd (fst (fst (ps-carrier Γ+⊢psx)))))))
... | inl idp | inl idp | inl idp | inr f≠Sl = inr λ ((x , A) , (Γ+⊢psx , _)) → f≠Sl (snd (ps-carrier Γ+⊢psx))
... | inl idp | inl idp | inl idp | inl idp with dec-⊢psx-max {Γ}
... | inr ¬Γ⊢ps = inr λ ((x , A) , (Γ+⊢psx , _)) → ¬Γ⊢ps (⊢psx→max (Γ+⊢ps→Γ⊢ps Γ+⊢psx))
... | inl ((c , E) , (Γ⊢psc , cmax)) with eqdecℕ c a | eqdec-PreTy E C
... | inl idp | inl idp = let Γ+⊢ps = pse Γ⊢psc idp idp idp idp idp in inl ((S (length Γ) , ⇒ C (Var a) (Var (length Γ))) , (Γ+⊢ps , pse-max Γ+⊢ps))
... | inl idp | inr E≠C = inr λ ((x , A) , (Γ+⊢psx , _)) → E≠C (unique-type (psvar Γ⊢psc) (psvar (Γ+⊢ps→Γ⊢ps Γ+⊢psx)) idp)
... | inr c≠a | _ with dec-⟿ Γ c a
... | inr ¬c⟿a = inr λ ((x , A) , (Γ+⊢psx , _)) → case cmax _ _ (Γ+⊢ps→Γ⊢ps Γ+⊢psx) of λ{(inl c=a) → c≠a c=a; (inr c⟿a) → ¬c⟿a c⟿a }
... | inl c⟿a with (⟿→psx Γ⊢psc c⟿a)
... | (F , Γ⊢psa) with eqdec-PreTy F C
... | inl idp = let Γ+⊢ps = pse Γ⊢psa idp idp idp idp idp in inl ((S (length Γ) , ⇒ C (Var a) (Var (length Γ))) , (Γ+⊢ps , pse-max Γ+⊢ps))
... | inr F≠C = inr λ ((x , A) , (Γ+⊢psx , _)) → F≠C (unique-type (psvar Γ⊢psa) (psvar (Γ+⊢ps→Γ⊢ps Γ+⊢psx)) idp)
dec-⊢ps : ∀ Γ → dec(Γ ⊢ps)
dec-⊢ps Γ with dec-⊢psx-max {Γ}
... | inl ((x , A) , (Γ⊢psx , _)) = inl (⊢psx→⊢ps Γ⊢psx)
... | inr ¬Γ⊢psx = inr λ {(ps Γ⊢psy) → ¬Γ⊢psx (⊢psx→max Γ⊢psy)}
| {
"alphanum_fraction": 0.455499939,
"avg_line_length": 56.4896551724,
"ext": "agda",
"hexsha": "effc9ef69509680f6e34d8b23cb6e30fc0e4970b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "CaTT/Decidability-ps.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "CaTT/Decidability-ps.agda",
"max_line_length": 166,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "CaTT/Decidability-ps.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4913,
"size": 8191
} |
open import FRP.JS.String using ( _<_ )
open import FRP.JS.True using ( True )
module FRP.JS.String.Properties where
postulate
<-trans : ∀ {k l m} → True (k < l) → True (l < m) → True (k < m)
| {
"alphanum_fraction": 0.6275510204,
"avg_line_length": 24.5,
"ext": "agda",
"hexsha": "fef552b8617b5dfcb7e743e5f978937d914bab43",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/String/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/String/Properties.agda",
"max_line_length": 66,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/String/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 66,
"size": 196
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using () renaming (Category to Setoid-Category)
open import Categories.Category.Monoidal using (Monoidal)
module Categories.Enriched.Functor {o ℓ e} {V : Setoid-Category o ℓ e}
(M : Monoidal V) where
open import Level
open import Categories.Enriched.Category M
open import Categories.Functor using () renaming (Functor to Setoid-Functor)
open import Categories.Morphism.Reasoning V
open import Categories.Category.Monoidal.Reasoning M using (⊗-distrib-over-∘)
open Setoid-Category V renaming (Obj to ObjV; id to idV)
open Commutation
open HomReasoning
open Monoidal M
record Functor {c d} (C : Category c) (D : Category d) : Set (ℓ ⊔ e ⊔ c ⊔ d) where
eta-equality
private
module C = Category C
module D = Category D
field
map₀ : C.Obj → D.Obj
map₁ : ∀ {X Y} → C [ X , Y ] ⇒ D [ map₀ X , map₀ Y ]
identity : ∀ {X} → map₁ ∘ C.id ≈ D.id {map₀ X}
homomorphism : ∀ {X Y Z} →
[ C [ Y , Z ] ⊗₀ C [ X , Y ] ⇒ D [ map₀ X , map₀ Z ] ]⟨
C.⊚ ⇒⟨ C [ X , Z ] ⟩ map₁
≈ map₁ ⊗₁ map₁ ⇒⟨ D [ _ , _ ] ⊗₀ D [ _ , _ ] ⟩ D.⊚
⟩
-- We don't need an analogue of F-resp-≈ because |hom A B| is not
-- a hom-Setoid but a hom-object (in V) and the functorial action
-- is not a Setoid-map but a V-morphism. Whether V-objects have a
-- notion of equality, and whether such equalities are preserved
-- by V-morphisms, depends entirely on V.
-- Shorthands for the functorial actions that work well as
-- post-projections.
₀ = map₀
₁ = map₁
Endofunctor : ∀ {c} → Category c → Set (ℓ ⊔ e ⊔ c)
Endofunctor C = Functor C C
id : ∀ {c} {C : Category c} → Endofunctor C
id {_} {C} = record
{ map₀ = λ X → X
; map₁ = idV
; identity = identityˡ
; homomorphism = id-comm-sym ○ ∘-resp-≈ʳ (⟺ ⊗.identity)
}
where
open Category C
module ⊗ = Setoid-Functor ⊗
infixr 9 _∘F_
_∘F_ : ∀ {c d e} {C : Category c} {D : Category d} {E : Category e} →
Functor D E → Functor C D → Functor C E
_∘F_ {_} {_} {_} {C} {D} {E} G F = record
{ map₀ = λ X → G.₀ (F.₀ X)
; map₁ = G.₁ ∘ F.₁
; identity = begin
(G.₁ ∘ F.₁) ∘ C.id ≈⟨ pullʳ F.identity ⟩
G.₁ ∘ D.id ≈⟨ G.identity ⟩
E.id ∎
; homomorphism = begin
(G.₁ ∘ F.₁) ∘ C.⊚ ≈⟨ pullʳ F.homomorphism ⟩
G.₁ ∘ (D.⊚ ∘ F.₁ ⊗₁ F.₁) ≈⟨ pullˡ G.homomorphism ⟩
(E.⊚ ∘ G.₁ ⊗₁ G.₁) ∘ F.₁ ⊗₁ F.₁ ≈˘⟨ pushʳ ⊗-distrib-over-∘ ⟩
E.⊚ ∘ (G.₁ ∘ F.₁) ⊗₁ (G.₁ ∘ F.₁) ∎
}
where
module C = Category C
module D = Category D
module E = Category E
module F = Functor F
module G = Functor G
-- A V-enriched functor induces an ordinary functor on the underlying
-- categories.
module _ {c d} {C : Category c} {D : Category d} where
UnderlyingFunctor : Functor C D → Setoid-Functor (Underlying C) (Underlying D)
UnderlyingFunctor F = record
{ F₀ = F.₀
; F₁ = F.₁ ∘_
; identity = F.identity
; homomorphism = λ {_} {_} {_} {f} {g} → begin
F.₁ ∘ C.⊚ ∘ g ⊗₁ f ∘ λ⇐ ≈⟨ pullˡ F.homomorphism ⟩
(D.⊚ ∘ F.₁ ⊗₁ F.₁) ∘ g ⊗₁ f ∘ λ⇐ ≈˘⟨ pushʳ (pushˡ ⊗-distrib-over-∘) ⟩
D.⊚ ∘ (F.₁ ∘ g) ⊗₁ (F.₁ ∘ f) ∘ λ⇐ ∎
; F-resp-≈ = ∘-resp-≈ʳ
}
where
module C = Category C
module D = Category D
module F = Functor F
λ⇐ = unitorˡ.to
module UnderlyingFunctor F = Setoid-Functor (UnderlyingFunctor F)
| {
"alphanum_fraction": 0.5501817165,
"avg_line_length": 31.9375,
"ext": "agda",
"hexsha": "80d982f485bca48cea84c66392a3845fd03303da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Enriched/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Enriched/Functor.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Enriched/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1386,
"size": 3577
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Unsafe machine word operations
------------------------------------------------------------------------
{-# OPTIONS --with-K #-}
module Data.Word.Unsafe where
import Data.Nat as ℕ
open import Data.Word using (Word64; toℕ)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Binary.PropositionalEquality.TrustMe
------------------------------------------------------------------------
-- An informative equality test.
_≟_ : (a b : Word64) → Dec (a ≡ b)
a ≟ b with toℕ a ℕ.≟ toℕ b
... | yes _ = yes trustMe
... | no _ = no whatever
where postulate whatever : _
| {
"alphanum_fraction": 0.5052493438,
"avg_line_length": 30.48,
"ext": "agda",
"hexsha": "42a8e90525f55921ff15561d95d2e49989a5a8f4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Word/Unsafe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Word/Unsafe.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Word/Unsafe.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 162,
"size": 762
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
open import groups.Exactness
open import groups.ExactSequence
open import cw.CW
module cw.cohomology.HigherCoboundaryGrid {i} (OT : OrdinaryTheory i)
{n} (⊙skel : ⊙Skeleton {i} (S (S n))) (ac : ⊙has-cells-with-choice 0 ⊙skel i) where
open OrdinaryTheory OT
open import cw.cohomology.WedgeOfCells OT
open import cw.cohomology.HigherCoboundary OT ⊙skel
open import cw.cohomology.GridPtdMap (⊙cw-incl-last (⊙cw-init ⊙skel)) (⊙cw-incl-last ⊙skel)
import cw.cohomology.GridLongExactSequence
private
module GLES n = cw.cohomology.GridLongExactSequence
cohomology-theory n (⊙cw-incl-last (⊙cw-init ⊙skel)) (⊙cw-incl-last ⊙skel)
{-
Xn --> X(n+1) -----> X(n+2)
| | |
v v v
1 -> X(n+1)/n ---> X(n+2)/n
| this |
v one v
1 -----> X(n+2)/(n+1)
-}
private
n≤SSn : n ≤ S (S n)
n≤SSn = inr (ltSR ltS)
private
-- separate lemmas to speed up the type checking
abstract
lemma₀-exact₀ : is-exact
(C-fmap (ℕ-to-ℤ (S n)) Z/X-to-Z/Y)
(C-fmap (ℕ-to-ℤ (S n)) Y/X-to-Z/X)
lemma₀-exact₀ = exact-seq-index 2 $ GLES.C-grid-cofiber-exact-seq (ℕ-to-ℤ n)
lemma₀-exact₁ : is-exact (C-fmap (ℕ-to-ℤ (S n)) Y/X-to-Z/X) cw-co∂-last
lemma₀-exact₁ = exact-seq-index 0 $ GLES.C-grid-cofiber-exact-seq (ℕ-to-ℤ (S n))
lemma₀-trivial : is-trivialᴳ (C (ℕ-to-ℤ (S n)) Z/Y)
lemma₀-trivial = CXₙ/Xₙ₋₁-<-is-trivial ⊙skel ltS ac
Ker-cw-co∂-last : C (ℕ-to-ℤ (S n)) (⊙Cofiber (⊙cw-incl-tail n≤SSn ⊙skel))
≃ᴳ Ker.grp cw-co∂-last
Ker-cw-co∂-last = Exact2.G-trivial-implies-H-iso-ker
lemma₀-exact₀ lemma₀-exact₁ lemma₀-trivial
private
-- separate lemmas to speed up the type checking
abstract
lemma₁-exact₀ : is-exact cw-co∂-last (C-fmap (ℕ-to-ℤ (S (S n))) Z/X-to-Z/Y)
lemma₁-exact₀ = exact-seq-index 1 $ GLES.C-grid-cofiber-exact-seq (ℕ-to-ℤ (S n))
lemma₁-exact₁ : is-exact
(C-fmap (ℕ-to-ℤ (S (S n))) Z/X-to-Z/Y)
(C-fmap (ℕ-to-ℤ (S (S n))) Y/X-to-Z/X)
lemma₁-exact₁ = exact-seq-index 2 $ GLES.C-grid-cofiber-exact-seq (ℕ-to-ℤ (S n))
lemma₁-trivial : is-trivialᴳ (C (ℕ-to-ℤ (S (S n))) Y/X)
lemma₁-trivial = CXₙ/Xₙ₋₁->-is-trivial (⊙cw-init ⊙skel) ltS
(⊙init-has-cells-with-choice ⊙skel ac)
Coker-cw-co∂-last : CokerCo∂ ≃ᴳ C (ℕ-to-ℤ (S (S n))) (⊙Cofiber (⊙cw-incl-tail n≤SSn ⊙skel))
Coker-cw-co∂-last = Exact2.L-trivial-implies-coker-iso-K
lemma₁-exact₀ lemma₁-exact₁ (CXₙ/Xₙ₋₁-is-abelian ⊙skel (ℕ-to-ℤ (S (S n)))) lemma₁-trivial
| {
"alphanum_fraction": 0.6177039041,
"avg_line_length": 35.4383561644,
"ext": "agda",
"hexsha": "5ac8179a4234ff43260df77ae9252f56d23d3167",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/HigherCoboundaryGrid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/HigherCoboundaryGrid.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/HigherCoboundaryGrid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1092,
"size": 2587
} |
-- Andreas, 2019-04-10, re #3687, better test case for #1926
-- {-# OPTIONS -v interaction.contents.record:20 #-}
module _ (Foo : Set) where
open import Agda.Builtin.Sigma
test : {A : Set} {B : A → Set} (r : Σ A B) → Set
test r = {!r!} -- C-c C-o
| {
"alphanum_fraction": 0.5992063492,
"avg_line_length": 22.9090909091,
"ext": "agda",
"hexsha": "736d9f11255104d02542789e5b656cb8ad2a1654",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1926.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1926.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1926.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 93,
"size": 252
} |
{- Conatural numbers (Tesla Ice Zhang, Feb. 2019)
This file defines:
- A coinductive natural number representation which is dual to
the inductive version (zero | suc Nat → Nat) of natural numbers.
- Trivial operations (succ, pred) and the pattern synonyms on conaturals.
While this definition can be seen as a coinductive wrapper of an inductive
datatype, another way of definition is to define an inductive datatype that
wraps a coinductive thunk of Nat.
The standard library uses the second approach:
https://github.com/agda/agda-stdlib/blob/master/src/Codata/Conat.agda
The first approach is chosen to exploit guarded recursion and to avoid the use
of Sized Types.
-}
{-# OPTIONS --cubical --no-import-sorts --safe --guardedness #-}
module Cubical.Codata.Conat.Base where
open import Cubical.Data.Unit
open import Cubical.Data.Sum
open import Cubical.Core.Everything
record Conat : Type₀
Conat′ = Unit ⊎ Conat
record Conat where
coinductive
constructor conat′
field force : Conat′
open Conat public
pattern zero = inl tt
pattern suc n = inr n
conat : Conat′ → Conat
force (conat a) = a
succ : Conat → Conat
force (succ a) = suc a
succ′ : Conat′ → Conat′
succ′ n = suc λ where .force → n
pred′ : Conat′ → Conat′
pred′ zero = zero
pred′ (suc x) = force x
pred′′ : Conat′ → Conat
force (pred′′ zero) = zero
pred′′ (suc x) = x
| {
"alphanum_fraction": 0.7319054653,
"avg_line_length": 24.1785714286,
"ext": "agda",
"hexsha": "2bfe565a9bf83b6a3fcf9691015ba9d7c2d82346",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/Conat/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/Conat/Base.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/Conat/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 392,
"size": 1354
} |
-- Andreas, 2016-06-21, issue #2054
-- Size solver should not default to ∞ in where block signatures
-- {-# OPTIONS --v tc.size:20 #-}
-- {-# BUILTIN SIZEUNIV SizeU #-}
-- {-# BUILTIN SIZE Size #-}
-- {-# BUILTIN SIZESUC ↑_ #-}
-- {-# BUILTIN SIZEINF ∞ #-}
open import Common.Size
data N : Size → Set where
suc : ∀{i} (a : N i) → N (↑ i)
record R (j : Size) : Set where
field num : N j
postulate
W : ∀ {j} (ft : R j) → Set
E : ∀ {j} (ft : R j) (P : (w : W ft) → Set) → Set
test : ∀ {j} (ft : R j) → Set
test {j} ft = E {j} ft testw
where
postulate
testw : ∀ {ft : R _} (w : W ft) → Set
-- Should work
-- _ should not set to ∞, but to j
| {
"alphanum_fraction": 0.5205882353,
"avg_line_length": 21.935483871,
"ext": "agda",
"hexsha": "a828fac8b09d10bac596265faeaff4cd2f410062",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2054.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2054.agda",
"max_line_length": 64,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2054.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 257,
"size": 680
} |
open import Agda.Builtin.Nat
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
cons : (n : Nat) → A → Vec A n → Vec A (suc n)
tail : {A : Set} (n : Nat) → Vec A (suc n) → Vec A n
tail n (cons n x xs) = xs
tail' : {A : Set} (n : Nat) → Vec A (suc n) → Vec A n
tail' 0 (cons 0 x []) = []
tail' (suc n) (cons (suc n) x (cons n x₁ xs)) = (cons n x₁ xs)
| {
"alphanum_fraction": 0.5168539326,
"avg_line_length": 27.3846153846,
"ext": "agda",
"hexsha": "cb160dc6dfebd8b91ccba3674d3bafb50e1537c4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/ImplicitlyDottedVariable.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/ImplicitlyDottedVariable.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/ImplicitlyDottedVariable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 156,
"size": 356
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Successor {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.ShapeView
open import Tools.Embedding
open import Tools.Product
-- Helper function for successors for specific reducible derivations.
sucTerm′ : ∀ {l Γ n}
([ℕ] : Γ ⊩⟨ l ⟩ℕ ℕ)
→ Γ ⊩⟨ l ⟩ n ∷ ℕ / ℕ-intr [ℕ]
→ Γ ⊩⟨ l ⟩ suc n ∷ ℕ / ℕ-intr [ℕ]
sucTerm′ (noemb D) (ιx (ℕₜ n [ ⊢t , ⊢u , d ] n≡n prop)) =
let natN = natural prop
in ιx (ℕₜ _ [ sucⱼ ⊢t , sucⱼ ⊢t , id (sucⱼ ⊢t) ]
(≅-suc-cong (≅ₜ-red (red D) d d ℕₙ
(naturalWhnf natN) (naturalWhnf natN) n≡n))
(sucᵣ (ℕₜ n [ ⊢t , ⊢u , d ] n≡n prop)))
sucTerm′ (emb 0<1 x) (ιx [n]) = ιx (sucTerm′ x [n])
-- Reducible natural numbers can be used to construct reducible successors.
sucTerm : ∀ {l Γ n} ([ℕ] : Γ ⊩⟨ l ⟩ ℕ)
→ Γ ⊩⟨ l ⟩ n ∷ ℕ / [ℕ]
→ Γ ⊩⟨ l ⟩ suc n ∷ ℕ / [ℕ]
sucTerm [ℕ] [n] =
let [n]′ = irrelevanceTerm [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [n]
in irrelevanceTerm (ℕ-intr (ℕ-elim [ℕ]))
[ℕ]
(sucTerm′ (ℕ-elim [ℕ]) [n]′)
-- Helper function for successor equality for specific reducible derivations.
sucEqTerm′ : ∀ {l Γ n n′}
([ℕ] : Γ ⊩⟨ l ⟩ℕ ℕ)
→ Γ ⊩⟨ l ⟩ n ≡ n′ ∷ ℕ / ℕ-intr [ℕ]
→ Γ ⊩⟨ l ⟩ suc n ≡ suc n′ ∷ ℕ / ℕ-intr [ℕ]
sucEqTerm′ (noemb D) (ιx (ℕₜ₌ k k′ [ ⊢t , ⊢u , d ]
[ ⊢t₁ , ⊢u₁ , d₁ ] t≡u prop)) =
let natK , natK′ = split prop
in ιx (ℕₜ₌ _ _ (idRedTerm:*: (sucⱼ ⊢t)) (idRedTerm:*: (sucⱼ ⊢t₁))
(≅-suc-cong (≅ₜ-red (red D) d d₁ ℕₙ (naturalWhnf natK) (naturalWhnf natK′) t≡u))
(sucᵣ (ℕₜ₌ k k′ [ ⊢t , ⊢u , d ] [ ⊢t₁ , ⊢u₁ , d₁ ] t≡u prop)))
sucEqTerm′ (emb 0<1 x) (ιx [n≡n′]) = ιx (sucEqTerm′ x [n≡n′])
-- Reducible natural number equality can be used to construct reducible equality
-- of the successors of the numbers.
sucEqTerm : ∀ {l Γ n n′} ([ℕ] : Γ ⊩⟨ l ⟩ ℕ)
→ Γ ⊩⟨ l ⟩ n ≡ n′ ∷ ℕ / [ℕ]
→ Γ ⊩⟨ l ⟩ suc n ≡ suc n′ ∷ ℕ / [ℕ]
sucEqTerm [ℕ] [n≡n′] =
let [n≡n′]′ = irrelevanceEqTerm [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [n≡n′]
in irrelevanceEqTerm (ℕ-intr (ℕ-elim [ℕ])) [ℕ]
(sucEqTerm′ (ℕ-elim [ℕ]) [n≡n′]′)
| {
"alphanum_fraction": 0.5379771743,
"avg_line_length": 39.703125,
"ext": "agda",
"hexsha": "e36e0e48ce04b50b7eefc6c33d2f838d95d7e869",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Successor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Successor.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Successor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1099,
"size": 2541
} |
open import Nat
open import Prelude
open import core
open import contexts
open import typed-elaboration
open import lemmas-gcomplete
open import lemmas-complete
module complete-elaboration where
mutual
complete-elaboration-synth : ∀{e τ Γ Δ d} →
Γ gcomplete →
e ecomplete →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
(d dcomplete × τ tcomplete × Δ == ∅)
complete-elaboration-synth gc ec ESConst = DCConst , TCBase , refl
complete-elaboration-synth gc ec (ESVar x₁) = DCVar , gc _ _ x₁ , refl
complete-elaboration-synth gc (ECLam2 ec x₁) (ESLam x₂ exp)
with complete-elaboration-synth (gcomp-extend gc x₁ x₂) ec exp
... | ih1 , ih2 , ih3 = DCLam ih1 x₁ , TCArr x₁ ih2 , ih3
complete-elaboration-synth gc (ECAp ec ec₁) (ESAp _ _ x MAHole x₂ x₃)
with comp-synth gc ec x
... | ()
complete-elaboration-synth gc (ECAp ec ec₁) (ESAp {Δ1 = Δ1} {Δ2 = Δ2} _ _ x MAArr x₂ x₃)
with comp-synth gc ec x
... | TCArr t1 t2
with complete-elaboration-ana gc ec (TCArr t1 t2) x₂ | complete-elaboration-ana gc ec₁ t1 x₃
... | ih1 , _ , ih4 | ih2 , _ , ih3 = DCAp (DCCast ih1 (comp-ana gc x₂ ih1) (TCArr t1 t2)) (DCCast ih2 (comp-ana gc x₃ ih2) t1) ,
t2 ,
tr (λ qq → (qq ∪ Δ2) == ∅) (! ih4) (tr (λ qq → (∅ ∪ qq) == ∅) (! ih3) refl)
complete-elaboration-synth gc () ESEHole
complete-elaboration-synth gc () (ESNEHole _ exp)
complete-elaboration-synth gc (ECAsc x ec) (ESAsc x₁)
with complete-elaboration-ana gc ec x x₁
... | ih1 , _ , ih2 = DCCast ih1 (comp-ana gc x₁ ih1) x , x , ih2
complete-elaboration-ana : ∀{e τ τ' Γ Δ d} →
Γ gcomplete →
e ecomplete →
τ tcomplete →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
(d dcomplete × τ' tcomplete × Δ == ∅)
complete-elaboration-ana gc (ECLam1 ec) () (EALam x₁ MAHole exp)
complete-elaboration-ana gc (ECLam1 ec) (TCArr t1 t2) (EALam x₁ MAArr exp)
with complete-elaboration-ana (gcomp-extend gc t1 x₁) ec t2 exp
... | ih , ih3 , ih2 = DCLam ih t1 , TCArr t1 ih3 , ih2
complete-elaboration-ana gc ec tc (EASubsume x x₁ x₂ x₃)
with complete-elaboration-synth gc ec x₂
... | ih1 , ih2 , ih3 = ih1 , ih2 , ih3
-- this is just a convenience since it shows up a few times above
comp-ana : ∀{Γ e τ d τ' Δ} →
Γ gcomplete →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
d dcomplete →
τ' tcomplete
comp-ana gc ex dc = complete-ta gc (π2 (typed-elaboration-ana ex)) dc
| {
"alphanum_fraction": 0.5505494505,
"avg_line_length": 47.0689655172,
"ext": "agda",
"hexsha": "f58d226e93dc40b3e4292001399afcdbbc9fd557",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "complete-elaboration.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "complete-elaboration.agda",
"max_line_length": 134,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "complete-elaboration.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 934,
"size": 2730
} |
------------------------------------------------------------------------
-- Universe levels
------------------------------------------------------------------------
module Common.Level where
postulate
Level : Set
lzero : Level
lsuc : (i : Level) → Level
_⊔_ : Level -> Level -> Level
{-# IMPORT Common.FFI #-}
{-# COMPILED_TYPE Level Common.FFI.Level #-}
{-# COMPILED lzero Common.FFI.Zero #-}
{-# COMPILED lsuc Common.FFI.Suc #-}
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO lzero #-}
{-# BUILTIN LEVELSUC lsuc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
infixl 6 _⊔_
-- Lifting.
record Lift {a ℓ} (A : Set a) : Set (a ⊔ ℓ) where
constructor lift
field lower : A
open Lift public
| {
"alphanum_fraction": 0.4929378531,
"avg_line_length": 21.4545454545,
"ext": "agda",
"hexsha": "e755024662bafda81ff041a6c9b11b73f127cc36",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/Common/Level.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/Common/Level.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/Common/Level.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 185,
"size": 708
} |
module Forcing4 where
open import Common.Nat renaming (zero to Z; suc to S)
open import Lib.Fin
open import Common.Equality
open import Common.String
open import Common.IO
open import Common.Unit
{-
toNat : {n : Nat} → Fin n → Nat
toNat (zero _) = 0
toNat (suc _ i) = suc (toNat i)
-}
Rel : (X : Set) -> Set1
Rel X = X -> X -> Set
data _<=_ : Rel Nat where
z<=n : ∀ n → Z <= n
s<=s : ∀ m n (m<=n : m <= n) → S m <= S n
_ℕ<_ : Rel Nat
m ℕ< n = S m <= n
fromℕ≤ : ∀ {m n} → m ℕ< n → Fin n
fromℕ≤ (s<=s .0 n (z<=n .n)) = fz {n}
fromℕ≤ (s<=s .(S m) .(S n) (s<=s m n m<=n)) = fs {S n} (fromℕ≤ (s<=s m n m<=n))
fromℕ≤-toℕ : ∀ m (i : Fin m) (i<m : forget i ℕ< m) → fromℕ≤ i<m ≡ i
fromℕ≤-toℕ .(S n) (fz {n}) (s<=s .0 .n (z<=n .n)) = refl
fromℕ≤-toℕ .(S (S n)) (fs .{S n} y) (s<=s .(S (forget y)) .(S n) (s<=s .(forget y) n m≤n)) = cong (\ n -> fs n) (fromℕ≤-toℕ (S n) y (s<=s (forget y) n m≤n))
[_/2] : Nat -> Nat
[ 0 /2] = 0
[ 1 /2] = 0
[ S (S n) /2] = S [ n /2]
[1/2]-mono : (m n : Nat) -> m <= n -> [ m /2] <= [ n /2]
[1/2]-mono .0 .n (z<=n n) = z<=n [ n /2]
[1/2]-mono .1 .(S n) (s<=s .0 .n (z<=n n)) = z<=n [ S n /2]
[1/2]-mono .(S (S m)) .(S (S n)) (s<=s .(S m) .(S n) (s<=s m n m<=n)) = s<=s [ m /2] [ n /2] ([1/2]-mono m n m<=n)
showEq : {X : Set}{A : X} -> A ≡ A -> String
showEq refl = "refl"
show<= : {m n : Nat} -> m <= n -> String
show<= (z<=n n) = "0 <= " +S+ natToString n
show<= (s<=s m n m<=n) = natToString (S m) +S+ " <= " +S+ natToString (S n)
data Bot : Set where
-- Only to check that it compiles..
foo : (n : Nat) -> S n <= n -> Bot
foo .(S n) (s<=s .(S n) n le) = foo n le
main : IO Unit
main = putStrLn (showEq (fromℕ≤-toℕ 3 (inc (inject 1)) le)) ,,
putStrLn (show<= ([1/2]-mono 4 6 le'))
where
le : 2 <= 3
le = s<=s _ _ (s<=s _ _ (z<=n _))
le' : 4 <= 6
le' = s<=s _ _ (s<=s _ _ (s<=s _ _ (s<=s _ _ (z<=n _))))
| {
"alphanum_fraction": 0.4630021142,
"avg_line_length": 28.6666666667,
"ext": "agda",
"hexsha": "58139761632cc12e0a44ba2fc45c5242c78f4849",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Compiler/simple/Forcing4.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Compiler/simple/Forcing4.agda",
"max_line_length": 156,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Compiler/simple/Forcing4.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z",
"num_tokens": 926,
"size": 1892
} |
module NatIf3 where
open import Data.Nat
open import Data.Vec
natIf3 : (a : Set) -> a -> a -> a -> ℕ -> a
natIf3 a x y z zero = x
natIf3 a x y z (suc zero) = y
natIf3 a x y z (suc (suc n)) = z
nilNat : Vec ℕ 0
nilNat = []
--test1 = natIf3 _ 1 nilNat 3 0
test2 = natIf3 _ nilNat 2 3 0
| {
"alphanum_fraction": 0.6089965398,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "16a9389fee61c23fd79e5e2999be09a0f7158dc5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_forks_repo_path": "examples/NatIf3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_issues_repo_path": "examples/NatIf3.agda",
"max_line_length": 43,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_stars_repo_path": "examples/NatIf3.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-05T20:21:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-16T11:14:56.000Z",
"num_tokens": 127,
"size": 289
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.Common.FOL.Existential.Syntax where
-- We add 3 to the fixities of the Agda standard library 0.8.1 (see
-- Relation.Binary.Core).
infix 7 _≡_
postulate
D : Set
_≡_ : D → D → Set
refl : ∀ {d} → d ≡ d
d : D
module ∃₁ where
-- We add 3 to the fixities of the Agda standard library 0.8.1 (see
-- Data/Product.agda, Data/Sum.agda and Relation/Nullary/Core.agda).
infixr 7 _,_
infix 5 ∃
data ∃ (P : D → Set) : Set where
_,_ : (x : D) → P x → ∃ P
syntax ∃ (λ x → e) = ∃[ x ] e
t₁ : ∃ λ x → x ≡ x
t₁ = d , refl
t₂ : ∃[ x ] x ≡ x
t₂ = d , refl
t₃ : ∃ λ x → ∃ λ y → x ≡ y
t₃ = d , d , refl
t₄ : ∃[ x ] ∃[ y ] x ≡ y
t₄ = d , d , refl
module ∃₂ where
infixr 7 _,_,_
data ∃₂ (P : D → D → Set) : Set where
_,_,_ : (x y : D) → P x y → ∃₂ P
-- Agda issue: 536
-- syntax ∃₂ (λ x y → e) = ∃₂[ x , y ] e
t₁ : ∃₂ λ x y → x ≡ y
t₁ = d , d , refl
| {
"alphanum_fraction": 0.4931129477,
"avg_line_length": 20.5471698113,
"ext": "agda",
"hexsha": "7c1f9ed4bf1ee29126f97c0215b073851f7f8edf",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/Common/FOL/Existential/Syntax.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/Common/FOL/Existential/Syntax.agda",
"max_line_length": 70,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/Common/FOL/Existential/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 459,
"size": 1089
} |
module prelude.int where
open import Data.Nat as Nat renaming (suc to s; zero to z)
open import Agda.Builtin.Int public
⁺1 : Int → Int
⁺1 (pos n) = pos (s n)
⁺1 (negsuc z) = pos z
⁺1 (negsuc (s n)) = negsuc n
⁻1 : Int → Int
⁻1 (pos Nat.zero) = negsuc Nat.zero
⁻1 (pos (Nat.suc n)) = pos n
⁻1 (negsuc n) = negsuc (Nat.suc n)
| {
"alphanum_fraction": 0.6319018405,
"avg_line_length": 23.2857142857,
"ext": "agda",
"hexsha": "269379a9de8fd7a098ff0ee4cb97af244611b457",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-30T11:45:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-07-10T17:19:37.000Z",
"max_forks_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dspivak/poly",
"max_forks_repo_path": "code-examples/agda/prelude/int.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea",
"max_issues_repo_issues_event_max_datetime": "2022-01-12T10:06:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-02T02:29:39.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dspivak/poly",
"max_issues_repo_path": "code-examples/agda/prelude/int.agda",
"max_line_length": 58,
"max_stars_count": 53,
"max_stars_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mstone/poly",
"max_stars_repo_path": "code-examples/agda/prelude/int.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:08:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-18T16:31:04.000Z",
"num_tokens": 141,
"size": 326
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Cartesian.Properties {o ℓ e} (C : Category o ℓ e) where
open import Function using (_$_)
open import Categories.Category.Cartesian C
open import Categories.Diagram.Pullback C
open import Categories.Diagram.Equalizer C
open import Categories.Morphism.Reasoning C
private
open Category C
variable
A B X Y : Obj
f g : A ⇒ B
-- all binary products and pullbacks implies equalizers
module _ (prods : BinaryProducts) (pullbacks : ∀ {A B X} (f : A ⇒ X) (g : B ⇒ X) → Pullback f g) where
open BinaryProducts prods
open HomReasoning
prods×pullbacks⇒equalizers : Equalizer f g
prods×pullbacks⇒equalizers {f = f} {g = g} = record
{ arr = pb′.p₁
; equality = begin
f ∘ pb′.p₁ ≈⟨ refl⟩∘⟨ helper₁ ⟩
f ∘ pb.p₁ ∘ pb′.p₂ ≈⟨ pullˡ pb.commute ⟩
(g ∘ pb.p₂) ∘ pb′.p₂ ≈˘⟨ pushʳ helper₂ ⟩
g ∘ pb′.p₁ ∎
; equalize = λ {_ i} eq → pb′.universal $ begin
⟨ id , id ⟩ ∘ i ≈⟨ ⟨⟩∘ ⟩
⟨ id ∘ i , id ∘ i ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩
⟨ i , i ⟩ ≈˘⟨ ⟨⟩-cong₂ pb.p₁∘universal≈h₁ pb.p₂∘universal≈h₂ ⟩
⟨ pb.p₁ ∘ pb.universal eq , pb.p₂ ∘ pb.universal eq ⟩ ≈˘⟨ ⟨⟩∘ ⟩
h ∘ pb.universal eq ∎
; universal = ⟺ pb′.p₁∘universal≈h₁
; unique = λ eq → pb′.unique (⟺ eq) (pb.unique (pullˡ (⟺ helper₁) ○ ⟺ eq) (pullˡ (⟺ helper₂) ○ ⟺ eq))
}
where pb : Pullback f g
pb = pullbacks _ _
module pb = Pullback pb
h = ⟨ pb.p₁ , pb.p₂ ⟩
pb′ : Pullback ⟨ id , id ⟩ h
pb′ = pullbacks _ _
module pb′ = Pullback pb′
helper₁ : pb′.p₁ ≈ pb.p₁ ∘ pb′.p₂
helper₁ = begin
pb′.p₁ ≈˘⟨ cancelˡ project₁ ⟩
π₁ ∘ ⟨ id , id ⟩ ∘ pb′.p₁ ≈⟨ refl⟩∘⟨ pb′.commute ⟩
π₁ ∘ h ∘ pb′.p₂ ≈⟨ pullˡ project₁ ⟩
pb.p₁ ∘ pb′.p₂ ∎
helper₂ : pb′.p₁ ≈ pb.p₂ ∘ pb′.p₂
helper₂ = begin
pb′.p₁ ≈˘⟨ cancelˡ project₂ ⟩
π₂ ∘ ⟨ id , id ⟩ ∘ pb′.p₁ ≈⟨ refl⟩∘⟨ pb′.commute ⟩
π₂ ∘ h ∘ pb′.p₂ ≈⟨ pullˡ project₂ ⟩
pb.p₂ ∘ pb′.p₂ ∎
| {
"alphanum_fraction": 0.4735112936,
"avg_line_length": 38.6507936508,
"ext": "agda",
"hexsha": "2ab6a7810d32f5c9a98bad1d5461544417a77ab5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Category/Cartesian/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Category/Cartesian/Properties.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Category/Cartesian/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 893,
"size": 2435
} |
-- Andreas, 2012-11-06 this has been fixed with issue 655
module Issue378 where
infix 7 _≡_
infixl 9 _+_
postulate
ℕ : Set
_≡_ : ℕ → ℕ → Set
zero : ℕ
_+_ : ℕ → ℕ → ℕ
postulate
S₁ : ∀ {m n o} → m ≡ n → m ≡ o → n ≡ o
S₅ : ∀ n → zero + n ≡ n
-- Calling Auto on the hole generates the invalid expression
-- S₁ (S₅ .n) (S₅ .n).
refl : ∀ {n} → n ≡ n
refl = {!-m!}
-- C-c C-a should work now
| {
"alphanum_fraction": 0.5503685504,
"avg_line_length": 18.5,
"ext": "agda",
"hexsha": "a31928e98a0780ab48ea13fb9624da3cfc471ff9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue378.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue378.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue378.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 181,
"size": 407
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Creates trivially indexed records from their non-indexed counterpart.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Indexed.Heterogeneous.Construct.Trivial
{i} {I : Set i} where
open import Relation.Binary
open import Relation.Binary.Indexed.Heterogeneous hiding (Rel)
hiding (IsEquivalence; Setoid)
------------------------------------------------------------------------
-- Structures
module _ {a} {A : Set a} where
private
Aᵢ : I → Set a
Aᵢ i = A
isIndexedEquivalence : ∀ {ℓ} {_≈_ : Rel A ℓ} → IsEquivalence _≈_ →
IsIndexedEquivalence Aᵢ _≈_
isIndexedEquivalence isEq = record
{ refl = refl
; sym = sym
; trans = trans
}
where open IsEquivalence isEq
isIndexedPreorder : ∀ {ℓ₁ ℓ₂} {_≈_ : Rel A ℓ₁} {_∼_ : Rel A ℓ₂} →
IsPreorder _≈_ _∼_ →
IsIndexedPreorder Aᵢ _≈_ _∼_
isIndexedPreorder isPreorder = record
{ isEquivalence = isIndexedEquivalence isEquivalence
; reflexive = reflexive
; trans = trans
}
where open IsPreorder isPreorder
------------------------------------------------------------------------
-- Packages
indexedSetoid : ∀ {a ℓ} → Setoid a ℓ → IndexedSetoid I a ℓ
indexedSetoid S = record
{ isEquivalence = isIndexedEquivalence isEquivalence
}
where open Setoid S
indexedPreorder : ∀ {a ℓ₁ ℓ₂} → Preorder a ℓ₁ ℓ₂ →
IndexedPreorder I a ℓ₁ ℓ₂
indexedPreorder O = record
{ isPreorder = isIndexedPreorder isPreorder
}
where open Preorder O
| {
"alphanum_fraction": 0.5386836028,
"avg_line_length": 29.3559322034,
"ext": "agda",
"hexsha": "0f6de2a7f901958ee376848bae02be71a0898dd0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous/Construct/Trivial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous/Construct/Trivial.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous/Construct/Trivial.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 464,
"size": 1732
} |
open import Oscar.Prelude
open import Oscar.Class.Reflexivity
open import Oscar.Class.Transitivity
open import Oscar.Class.Transextensionality
open import Oscar.Class.Transassociativity
module Oscar.Class.IsPrecategory where
module _
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯)
{ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ) (let infix 4 _∼̇_ ; _∼̇_ = _∼̇_)
(_↦_ : Transitivity.type _∼_)
where
record IsPrecategory : Ø 𝔬 ∙̂ 𝔯 ∙̂ ℓ where
constructor ∁
field
⦃ `𝓣ransextensionality ⦄ : Transextensionality.class _∼_ _∼̇_ _↦_
⦃ `𝓣ransassociativity ⦄ : Transassociativity.class _∼_ _∼̇_ _↦_
| {
"alphanum_fraction": 0.6617647059,
"avg_line_length": 29.1428571429,
"ext": "agda",
"hexsha": "d7646527929992675d20e4ed572795c40f0a523c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/IsPrecategory.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/IsPrecategory.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/IsPrecategory.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 267,
"size": 612
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
module LibraBFT.ImplShared.Util.Dijkstra.EitherD where
data EitherD (E : Set) : Set → Set₁ where
-- Primitive combinators
EitherD-return : ∀ {A} → A → EitherD E A
EitherD-bind : ∀ {A B} → EitherD E A → (A → EitherD E B) → EitherD E B
EitherD-bail : ∀ {A} → E → EitherD E A
-- Branching conditionals (used for creating more convenient contracts)
EitherD-if : ∀ {A} → Guards (EitherD E A) → EitherD E A
EitherD-either : ∀ {A B C} → Either B C
→ (B → EitherD E A) → (C → EitherD E A) → EitherD E A
EitherD-maybe : ∀ {A B} → Maybe A → EitherD E B → (A → EitherD E B) → EitherD E B
pattern LeftD x = EitherD-bail x
pattern RightD x = EitherD-return x
private
variable
E : Set
A B C : Set
EitherD-run : EitherD E A → Either E A
EitherD-run (EitherD-return x) = Right x
EitherD-run (EitherD-bind m f)
with EitherD-run m
... | Left x = Left x
... | Right y = EitherD-run (f y)
EitherD-run (EitherD-bail x) = Left x
EitherD-run (EitherD-if (clause (b ≔ c) gs)) =
if toBool b then EitherD-run c else EitherD-run (EitherD-if gs)
EitherD-run (EitherD-if (otherwise≔ c)) =
EitherD-run c
EitherD-run (EitherD-either (Left x) f₁ f₂) = EitherD-run (f₁ x)
EitherD-run (EitherD-either (Right y) f₁ f₂) = EitherD-run (f₂ y)
EitherD-run (EitherD-maybe nothing n s) = EitherD-run n
EitherD-run (EitherD-maybe (just x) n s) = EitherD-run (s x)
EitherD-Pre : (E A : Set) → Set₁
EitherD-Pre E A = Set
EitherD-Post : (E A : Set) → Set₁
EitherD-Post E A = Either E A → Set
EitherD-PredTrans : (E A : Set) → Set₁
EitherD-PredTrans E A = EitherD-Post E A → EitherD-Pre E A
EitherD-weakestPre-bindPost : (f : A → EitherD E B) → EitherD-Post E B → EitherD-Post E A
EitherD-weakestPre : (m : EitherD E A) → EitherD-PredTrans E A
EitherD-weakestPre (EitherD-return x) P = P (Right x)
EitherD-weakestPre (EitherD-bind m f) P =
EitherD-weakestPre m (EitherD-weakestPre-bindPost f P)
EitherD-weakestPre (EitherD-bail x) P = P (Left x)
EitherD-weakestPre (EitherD-if (clause (b ≔ c) gs)) P =
(toBool b ≡ true → EitherD-weakestPre c P)
× (toBool b ≡ false → EitherD-weakestPre (EitherD-if gs) P)
EitherD-weakestPre (EitherD-if (otherwise≔ x)) P =
EitherD-weakestPre x P
EitherD-weakestPre (EitherD-either e f₁ f₂) P =
(∀ x → e ≡ Left x → EitherD-weakestPre (f₁ x) P)
× (∀ y → e ≡ Right y → EitherD-weakestPre (f₂ y) P)
EitherD-weakestPre (EitherD-maybe m n s) P =
(m ≡ nothing → EitherD-weakestPre n P)
× (∀ j → m ≡ just j → EitherD-weakestPre (s j) P)
EitherD-weakestPre-bindPost f P (Left x) =
P (Left x)
EitherD-weakestPre-bindPost f P (Right y) =
∀ c → c ≡ y → EitherD-weakestPre (f c) P
EitherD-Contract : (m : EitherD E A) → Set₁
EitherD-Contract{E}{A} m =
(P : EitherD-Post E A)
→ EitherD-weakestPre m P → P (EitherD-run m)
EitherD-contract : (m : EitherD E A) → EitherD-Contract m
EitherD-contract (EitherD-return x) P wp = wp
EitherD-contract (EitherD-bind m f) P wp
with EitherD-contract m _ wp
...| wp'
with EitherD-run m
... | Left x = wp'
... | Right y = EitherD-contract (f y) P (wp' y refl)
EitherD-contract (EitherD-bail x) P wp = wp
EitherD-contract{E}{A} (EitherD-if gs) P wp =
EitherD-contract-if gs P wp
where
EitherD-contract-if : (gs : Guards (EitherD E A)) → EitherD-Contract (EitherD-if gs)
EitherD-contract-if (clause (b ≔ c) gs) P wp
with toBool b
... | false = EitherD-contract-if gs P (proj₂ wp refl)
... | true = EitherD-contract c P (proj₁ wp refl)
EitherD-contract-if (otherwise≔ x) P wp = EitherD-contract x P wp
EitherD-contract (EitherD-either (Left x) f₁ f₂) P wp =
EitherD-contract (f₁ x) P (proj₁ wp x refl)
EitherD-contract (EitherD-either (Right y) f₁ f₂) P wp =
EitherD-contract (f₂ y) P (proj₂ wp y refl)
EitherD-contract (EitherD-maybe nothing f₁ f₂) P wp =
EitherD-contract f₁ P (proj₁ wp refl)
EitherD-contract (EitherD-maybe (just x) f₁ f₂) P wp =
EitherD-contract (f₂ x) P (proj₂ wp x refl)
| {
"alphanum_fraction": 0.6694371883,
"avg_line_length": 38.2818181818,
"ext": "agda",
"hexsha": "1612b26c6e06682650c25ba4a37beaaba7c01e66",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z",
"max_forks_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "oracle/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/ImplShared/Util/Dijkstra/EitherD.agda",
"max_issues_count": 72,
"max_issues_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z",
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "oracle/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/ImplShared/Util/Dijkstra/EitherD.agda",
"max_line_length": 111,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "oracle/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/ImplShared/Util/Dijkstra/EitherD.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z",
"num_tokens": 1497,
"size": 4211
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommMonoid.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid.Base
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Reflection.RecordEquiv
open Iso
private
variable
ℓ ℓ' : Level
record IsCommMonoid {A : Type ℓ} (ε : A) (_·_ : A → A → A) : Type ℓ where
constructor iscommmonoid
field
isMonoid : IsMonoid ε _·_
comm : (x y : A) → x · y ≡ y · x
open IsMonoid isMonoid public
unquoteDecl IsCommMonoidIsoΣ = declareRecordIsoΣ IsCommMonoidIsoΣ (quote IsCommMonoid)
record CommMonoidStr (A : Type ℓ) : Type ℓ where
constructor commmonoidstr
field
ε : A
_·_ : A → A → A
isCommMonoid : IsCommMonoid ε _·_
infixl 7 _·_
open IsCommMonoid isCommMonoid public
CommMonoid : ∀ ℓ → Type (ℓ-suc ℓ)
CommMonoid ℓ = TypeWithStr ℓ CommMonoidStr
commmonoid : (A : Type ℓ) (ε : A) (_·_ : A → A → A) (h : IsCommMonoid ε _·_) → CommMonoid ℓ
commmonoid A ε _·_ h = A , commmonoidstr ε _·_ h
-- Easier to use constructors
makeIsCommMonoid : {M : Type ℓ} {ε : M} {_·_ : M → M → M}
(is-setM : isSet M)
(assoc : (x y z : M) → x · (y · z) ≡ (x · y) · z)
(rid : (x : M) → x · ε ≡ x)
(lid : (x : M) → ε · x ≡ x)
(comm : (x y : M) → x · y ≡ y · x)
→ IsCommMonoid ε _·_
IsCommMonoid.isMonoid (makeIsCommMonoid is-setM assoc rid lid comm) =
makeIsMonoid is-setM assoc rid lid
IsCommMonoid.comm (makeIsCommMonoid is-setM assoc rid lid comm) = comm
makeCommMonoid : {M : Type ℓ} (ε : M) (_·_ : M → M → M)
(is-setM : isSet M)
(assoc : (x y z : M) → x · (y · z) ≡ (x · y) · z)
(rid : (x : M) → x · ε ≡ x)
(lid : (x : M) → ε · x ≡ x)
(comm : (x y : M) → x · y ≡ y · x)
→ CommMonoid ℓ
makeCommMonoid ε _·_ is-setM assoc rid lid comm =
commmonoid _ ε _·_ (makeIsCommMonoid is-setM assoc rid lid comm)
CommMonoidStr→MonoidStr : {A : Type ℓ} → CommMonoidStr A → MonoidStr A
CommMonoidStr→MonoidStr (commmonoidstr _ _ H) = monoidstr _ _ (IsCommMonoid.isMonoid H)
CommMonoid→Monoid : CommMonoid ℓ → Monoid ℓ
CommMonoid→Monoid (_ , commmonoidstr _ _ H) = _ , monoidstr _ _ (IsCommMonoid.isMonoid H)
CommMonoidHom : (L : CommMonoid ℓ) (M : CommMonoid ℓ') → Type (ℓ-max ℓ ℓ')
CommMonoidHom L M = MonoidHom (CommMonoid→Monoid L) (CommMonoid→Monoid M)
IsCommMonoidEquiv : {A : Type ℓ} {B : Type ℓ'}
(M : CommMonoidStr A) (e : A ≃ B) (N : CommMonoidStr B) → Type (ℓ-max ℓ ℓ')
IsCommMonoidEquiv M e N = IsMonoidHom (CommMonoidStr→MonoidStr M) (e .fst) (CommMonoidStr→MonoidStr N)
CommMonoidEquiv : (M : CommMonoid ℓ) (N : CommMonoid ℓ') → Type (ℓ-max ℓ ℓ')
CommMonoidEquiv M N = Σ[ e ∈ (M .fst ≃ N .fst) ] IsCommMonoidEquiv (M .snd) e (N .snd)
isPropIsCommMonoid : {M : Type ℓ} (ε : M) (_·_ : M → M → M)
→ isProp (IsCommMonoid ε _·_)
isPropIsCommMonoid ε _·_ (iscommmonoid MM MC) (iscommmonoid SM SC) =
λ i → iscommmonoid (isPropIsMonoid _ _ MM SM i) (isPropComm MC SC i)
where
isSetM : isSet _
isSetM = MM .IsMonoid.isSemigroup .IsSemigroup.is-set
isPropComm : isProp ((x y : _) → x · y ≡ y · x)
isPropComm = isPropΠ2 λ _ _ → isSetM _ _
𝒮ᴰ-CommMonoid : DUARel (𝒮-Univ ℓ) CommMonoidStr ℓ
𝒮ᴰ-CommMonoid =
𝒮ᴰ-Record (𝒮-Univ _) IsCommMonoidEquiv
(fields:
data[ ε ∣ autoDUARel _ _ ∣ presε ]
data[ _·_ ∣ autoDUARel _ _ ∣ isHom ]
prop[ isCommMonoid ∣ (λ _ _ → isPropIsCommMonoid _ _) ])
where
open CommMonoidStr
open IsMonoidHom
CommMonoidPath : (M N : CommMonoid ℓ) → CommMonoidEquiv M N ≃ (M ≡ N)
CommMonoidPath = ∫ 𝒮ᴰ-CommMonoid .UARel.ua
| {
"alphanum_fraction": 0.6449858089,
"avg_line_length": 33.5555555556,
"ext": "agda",
"hexsha": "7bec68f71e5a3c06afeb62c74c171198c75aa955",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommMonoid/Base.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommMonoid/Base.agda",
"max_line_length": 102,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommMonoid/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 1569,
"size": 4228
} |
module Common where
open import Agda.Builtin.Size public
using (Size ; Size<_)
renaming (ω to ∞)
open import Agda.Primitive public
using ()
renaming (_⊔_ to _⊔ᴸ_ ; lsuc to sucᴸ)
open import Data.Bool public
using (true ; false)
renaming (Bool to 𝔹 ; _∧_ to _∧ᴮ_ ; _∨_ to _∨ᴮ_ ; not to ¬ᴮ_ ; if_then_else_ to ifᴮ)
open import Data.Empty public
using ()
renaming (⊥ to 𝟘 ; ⊥-elim to elim𝟘)
open import Data.Fin public
using (Fin ; zero ; suc)
open import Data.List public
using (List ; [] ; _∷_)
open import Data.Nat public
using (ℕ ; zero ; suc)
renaming (_≟_ to _≟ᴺ_)
open import Data.Sum public
using (_⊎_)
renaming (inj₁ to ι₁ ; inj₂ to ι₂)
open import Data.Unit public
using ()
renaming (⊤ to 𝟙 ; tt to ∙)
open import Function public
using (_∘_ ; _$_)
renaming (id to I ; const to K ; _ˢ_ to S)
open import Relation.Binary.PropositionalEquality public
using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; subst)
renaming (cong₂ to cong²)
open import Relation.Nullary public
using (Dec ; yes ; no)
renaming (¬_ to Not)
open import Relation.Nullary.Decidable public
using ()
renaming (map′ to mapDec)
open import Relation.Nullary.Negation public
using ()
renaming (contradiction to _↯_)
-- Abstract symbols, or atoms.
abstract
Atom : Set
Atom = ℕ
_≟ᵅ_ : (P P′ : Atom) → Dec (P ≡ P′)
_≟ᵅ_ = _≟ᴺ_
-- Products, with custom fixities.
infixl 5 _,_
record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ᴸ b) where
constructor _,_
field
π₁ : A
π₂ : B π₁
open Σ public
∃ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ᴸ b)
∃ = Σ _
infix 2 _×_
_×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ᴸ b)
A × B = Σ A (λ _ → B)
-- Elimination for disjoint unions.
elim⊎ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
→ A ⊎ B → (A → C) → (B → C) → C
elim⊎ (ι₁ x) f g = f x
elim⊎ (ι₂ y) f g = g y
-- Double-argument K combinator.
K² : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
→ A → B → C → A
K² x _ _ = x
-- Triple-argument congruence.
cong³ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
(f : A → B → C → D) {x x′ y y′ z z′}
→ x ≡ x′ → y ≡ y′ → z ≡ z′ → f x y z ≡ f x′ y′ z′
cong³ f refl refl refl = refl
-- Iteration and recursion for naturals.
itᴺ : ∀ {a} {A : Set a} → ℕ → (A → A) → A → A
itᴺ zero f x = x
itᴺ (suc n) f x = f (itᴺ n f x)
recᴺ : ∀ {a} {A : Set a} → ℕ → (ℕ → A → A) → A → A
recᴺ zero f x = x
recᴺ (suc n) f x = f n (recᴺ n f x)
-- Iteration and recursion for lists.
itᴸ : ∀ {a b} {A : Set a} {B : Set b} → List A → (A → B → B) → B → B
itᴸ [] f x = x
itᴸ (k ∷ ks) f x = f k (itᴸ ks f x)
recᴸ : ∀ {a b} {A : Set a} {B : Set b} → List A → (A → List A → B → B) → B → B
recᴸ [] f x = x
recᴸ (k ∷ ks) f x = f k ks (recᴸ ks f x)
-- Composition, supremum, and infimum for relations.
module _ {W : Set} where
_⨾_ : (W → W → Set) → (W → W → Set) → (W → W → Set)
_R_ ⨾ _Q_ = λ w w′ → ∃ (λ v → w R v × v Q w′)
_⊔_ : (W → W → Set) → (W → W → Set) → (W → W → Set)
_R_ ⊔ _Q_ = λ w w′ → ∃ (λ v → w R v × w′ Q v)
_⊓_ : (W → W → Set) → (W → W → Set) → (W → W → Set)
_R_ ⊓ _Q_ = λ w w′ → ∃ (λ v → v R w × v Q w′)
| {
"alphanum_fraction": 0.5390894819,
"avg_line_length": 22.1180555556,
"ext": "agda",
"hexsha": "54c52af49aba8248c30616774804994b045bc097",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "Common.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "Common.agda",
"max_line_length": 86,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "Common.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1401,
"size": 3185
} |
------------------------------------------------------------------------
-- Lists where at least one element satisfies a given property
------------------------------------------------------------------------
module Data.List.Any where
open import Data.Empty
open import Data.Fin
open import Data.Function
open import Data.List as List using (List; []; _∷_)
import Data.List.Equality as ListEq
open import Data.Product as Prod using (∃; _×_; _,_)
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Unary using (Pred) renaming (_⊆_ to _⋐_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_)
-- Any P xs means that at least one element in xs satisfies P.
data Any {A} (P : A → Set) : List A → Set where
here : ∀ {x xs} (px : P x) → Any P (x ∷ xs)
there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs)
-- Map.
map : ∀ {A} {P Q : Pred A} → P ⋐ Q → Any P ⋐ Any Q
map g (here px) = here (g px)
map g (there pxs) = there (map g pxs)
-- If the head does not satisfy the predicate, then the tail will.
tail : ∀ {A x xs} {P : A → Set} → ¬ P x → Any P (x ∷ xs) → Any P xs
tail ¬px (here px) = ⊥-elim (¬px px)
tail ¬px (there pxs) = pxs
-- Decides Any.
any : ∀ {A} {P : A → Set} →
(∀ x → Dec (P x)) → (xs : List A) → Dec (Any P xs)
any p [] = no λ()
any p (x ∷ xs) with p x
any p (x ∷ xs) | yes px = yes (here px)
any p (x ∷ xs) | no ¬px = Dec.map (there , tail ¬px) (any p xs)
-- index x∈xs is the list position (zero-based) which x∈xs points to.
index : ∀ {A} {P : A → Set} {xs} → Any P xs → Fin (List.length xs)
index (here px) = zero
index (there pxs) = suc (index pxs)
------------------------------------------------------------------------
-- List membership and some related definitions
module Membership (S : Setoid) where
private
open module S = Setoid S using (_≈_) renaming (carrier to A)
open module L = ListEq.Equality S
using ([]; _∷_) renaming (_≈_ to _≋_)
-- If a predicate P respects the underlying equality then Any P
-- respects the list equality.
lift-resp : ∀ {P} → P Respects _≈_ → Any P Respects _≋_
lift-resp resp [] ()
lift-resp resp (x≈y ∷ xs≈ys) (here px) = here (resp x≈y px)
lift-resp resp (x≈y ∷ xs≈ys) (there pxs) =
there (lift-resp resp xs≈ys pxs)
-- List membership.
infix 4 _∈_ _∉_
_∈_ : A → List A → Set
x ∈ xs = Any (_≈_ x) xs
_∉_ : A → List A → Set
x ∉ xs = ¬ x ∈ xs
-- Subsets.
infix 4 _⊆_ _⊈_
_⊆_ : List A → List A → Set
xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys
_⊈_ : List A → List A → Set
xs ⊈ ys = ¬ xs ⊆ ys
-- Equality is respected by the predicate which is used to define
-- _∈_.
∈-resp-≈ : ∀ {x} → (_≈_ x) Respects _≈_
∈-resp-≈ = flip S.trans
-- List equality is respected by _∈_.
∈-resp-list-≈ : ∀ {x} → _∈_ x Respects _≋_
∈-resp-list-≈ = lift-resp ∈-resp-≈
-- _⊆_ is a preorder.
⊆-preorder : Preorder
⊆-preorder = record
{ carrier = List A
; _≈_ = _≋_
; _∼_ = _⊆_
; isPreorder = record
{ isEquivalence = Setoid.isEquivalence L.setoid
; reflexive = reflexive
; trans = λ ys⊆zs xs⊆ys → xs⊆ys ∘ ys⊆zs
; ∼-resp-≈ =
(λ ys₁≋ys₂ xs⊆ys₁ → reflexive ys₁≋ys₂ ∘ xs⊆ys₁)
, (λ xs₁≋xs₂ xs₁⊆ys → xs₁⊆ys ∘ reflexive (L.sym xs₁≋xs₂))
}
}
where
reflexive : _≋_ ⇒ _⊆_
reflexive eq = ∈-resp-list-≈ eq
module ⊆-Reasoning where
import Relation.Binary.PreorderReasoning as PreR
open PreR ⊆-preorder public
renaming (_∼⟨_⟩_ to _⊆⟨_⟩_)
infix 1 _∈⟨_⟩_
_∈⟨_⟩_ : ∀ x {xs ys} → x ∈ xs → xs IsRelatedTo ys → x ∈ ys
x ∈⟨ x∈xs ⟩ xs⊆ys = (begin xs⊆ys) x∈xs
-- A variant of List.map.
map-with-∈ : ∀ {B} (xs : List A) → (∀ {x} → x ∈ xs → B) → List B
map-with-∈ [] f = []
map-with-∈ (x ∷ xs) f = f (here S.refl) ∷ map-with-∈ xs (f ∘ there)
-- Finds an element satisfying the predicate.
find : ∀ {P : A → Set} {xs} → Any P xs → ∃ λ x → x ∈ xs × P x
find (here px) = (_ , here S.refl , px)
find (there pxs) = Prod.map id (Prod.map there id) (find pxs)
lose : ∀ {P x xs} → P Respects _≈_ → x ∈ xs → P x → Any P xs
lose resp x∈xs px = map (flip resp px) x∈xs
-- The code above instantiated (and slightly changed) for
-- propositional equality.
module Membership-≡ {A : Set} where
private
open module M = Membership (PropEq.setoid A) public
hiding (lift-resp; lose; ⊆-preorder; module ⊆-Reasoning)
lose : ∀ {P x xs} → x ∈ xs → P x → Any P xs
lose {P} = M.lose (PropEq.subst P)
-- _⊆_ is a preorder.
⊆-preorder : Preorder
⊆-preorder = record
{ carrier = List A
; _≈_ = _≡_
; _∼_ = _⊆_
; isPreorder = record
{ isEquivalence = PropEq.isEquivalence
; reflexive = λ eq → PropEq.subst (_∈_ _) eq
; trans = λ ys⊆zs xs⊆ys → xs⊆ys ∘ ys⊆zs
; ∼-resp-≈ = PropEq.resp₂ _⊆_
}
}
module ⊆-Reasoning where
import Relation.Binary.PreorderReasoning as PreR
open PreR ⊆-preorder public
renaming (_∼⟨_⟩_ to _⊆⟨_⟩_; _≈⟨_⟩_ to _≡⟨_⟩_)
infix 1 _∈⟨_⟩_
_∈⟨_⟩_ : ∀ x {xs ys} → x ∈ xs → xs IsRelatedTo ys → x ∈ ys
x ∈⟨ x∈xs ⟩ xs⊆ys = (begin xs⊆ys) x∈xs
------------------------------------------------------------------------
-- Another function
-- If any element satisfies P, then P is satisfied.
satisfied : ∀ {A} {P : A → Set} {xs} → Any P xs → ∃ P
satisfied = Prod.map id Prod.proj₂ ∘ Membership-≡.find
| {
"alphanum_fraction": 0.5404378506,
"avg_line_length": 28.7864583333,
"ext": "agda",
"hexsha": "9dad3e9cc8a60f424d9471245ea35f33f86780ce",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/List/Any.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/List/Any.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/List/Any.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 2051,
"size": 5527
} |
-- The category of monadic functions.
open import Level
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Axiom.FunctionExtensionality
open import Control.Monad
open import Control.Category
module Control.Kleisli where
-- The type of monadic functions.
Kleisli : (M : Set → Set) (A : Set) (B : Set) → Set
Kleisli M A B = A → M B
KleisliHom : (M : Set → Set) (A : Set) (B : Set) → Setoid zero zero
KleisliHom M A B = setoid (Kleisli M A B)
-- The laws of a Kleisli category correspond to the Monad laws,
-- modulo function extensionality.
kleisliIsCategory : {M : Set → Set} (monad : IsMonad M) → IsCategory (KleisliHom M)
kleisliIsCategory monad = record
{ ops = record
{ id = return
; _⟫_ = _⟫_
}
; laws = record
{ id-first = fun-ext (bind-β _)
; id-last = fun-ext (λ a → bind-η _)
; ∘-assoc = λ f → fun-ext (λ a → bind-assoc (f a))
; ∘-cong = cong₂ _⟫_
}
}
where
open IsMonad monad
open T-CategoryOps (KleisliHom _)
_⟫_ : T-⟫
f ⟫ g = λ a → f a >>= g
-- The Kleisli category over a Monad on Set
KLEISLI : {M : Set → Set} (monad : IsMonad M) → Category _ _ _
KLEISLI monad = record { Hom = KleisliHom _; isCategory = kleisliIsCategory monad }
| {
"alphanum_fraction": 0.6496815287,
"avg_line_length": 25.6326530612,
"ext": "agda",
"hexsha": "b4a7d5c1a43ce2551ba785bd6e1a93d79759ff83",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Kleisli.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Kleisli.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Kleisli.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 430,
"size": 1256
} |
------------------------------------------------------------------------------
-- The FOTC types without using data, i.e. using Agda as a logical framework
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Predicates where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Base.List.PropertiesI
open import FOTC.Base.PropertiesI
------------------------------------------------------------------------------
-- The existential proyections.
∃-proj₁ : ∀ {A} → ∃ A → D
∃-proj₁ (x , _) = x
∃-proj₂ : ∀ {A} → (h : ∃ A) → A (∃-proj₁ h)
∃-proj₂ (_ , Ax) = Ax
------------------------------------------------------------------------------
-- The inductive FOTC types using postulates.
module Pure where
-- The FOTC natural numbers type.
postulate
N : D → Set
nzero : N zero
nsucc : ∀ {n} → N n → N (succ₁ n)
-- Example.
[1] : D
[1] = succ₁ zero
1-N : N [1]
1-N = nsucc nzero
-- The FOTC lists type.
postulate
List : D → Set
lnil : List []
lcons : ∀ x {xs} → List xs → List (x ∷ xs)
-- Example.
l : List (zero ∷ true ∷ [])
l = lcons zero (lcons true lnil)
-- The FOTC list of natural numbers type.
postulate
ListN : D → Set
lnnil : ListN []
lncons : ∀ {n ns} → N n → ListN ns → ListN (n ∷ ns)
-- Example.
ln : ListN (zero ∷ [1] ∷ [])
ln = lncons nzero (lncons 1-N lnnil)
------------------------------------------------------------------------------
-- The inductive FOTC types using data.
module Inductive where
-- The FOTC natural numbers type.
data N : D → Set where
nzero : N zero
nsucc : ∀ {n} → N n → N (succ₁ n)
-- Example.
[1] : D
[1] = succ₁ zero
1-N : N [1]
1-N = nsucc nzero
-- The FOTC lists type.
data List : D → Set where
lnil : List []
lcons : ∀ x {xs} → List xs → List (x ∷ xs)
-- Example.
l : List (zero ∷ true ∷ [])
l = lcons zero (lcons true lnil)
-- The FOTC list of natural numbers type.
data ListN : D → Set where
lnnil : ListN []
lncons : ∀ {n ns} → N n → ListN ns → ListN (n ∷ ns)
-- Example.
ln : ListN (zero ∷ [1] ∷ [])
ln = lncons nzero (lncons 1-N lnnil)
------------------------------------------------------------------------------
-- The least fixed-point operator.
module LFP where
postulate
-- Least fixed-points correspond to inductively defined types.
--
-- N.B. We cannot write μ in first-order logic. We should use an
-- instance instead.
μ : ((D → Set) → D → Set) → D → Set
-- In FOTC, we cannot use the equality on predicates, i.e. we
-- cannot write
--
-- (f : (D → Set) → D → Set) → f (μ f) ≡ μ f (1)
--
-- because the type of the equality is
--
-- _≡_ : D → D → Set,
--
-- therefore we postulate both directions of the conversion rule (1).
-- LFP₁ : (f : (D → Set) → D → Set)(d : D) → μ f d → f (μ f) d
μ-in : (f : (D → Set) → D → Set)(d : D) → f (μ f) d → μ f d
------------------------------------------------------------------------------
-- The greatest fixed-point operator.
-- N.B. At the moment, the definitions of μ and ν are the same.
module GFP where
postulate
-- Greatest fixed-points correspond to co-inductively defined
-- types.
ν : ((D → Set) → D → Set) → D → Set
ν-out : (f : (D → Set) → D → Set)(d : D) → ν f d → f (ν f) d
GFP₂ : (f : (D → Set) → D → Set)(d : D) → f (ν f) d → ν f d
------------------------------------------------------------------------------
-- The FOTC natural numbers type as the least fixed-point of a
-- functor.
module NLFP where
open LFP
-- Functor for the FOTC natural numbers type.
-- From Peter: NatF if D was an inductive type.
--
-- NatF : (D → Set) → D → Set
-- NatF X zero = ⊤
-- NatF X (succ₁ n) = X n
-- From Peter: NatF in pure predicate logic.
NatF : (D → Set) → D → Set
NatF X n = n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ X n')
-- The FOTC natural numbers type using μ.
N : D → Set
N = μ NatF
-- The data constructors of N.
nzero : N zero
nzero = μ-in NatF zero (inj₁ refl)
nsucc : {n : D} → N n → N (succ₁ n)
nsucc {n} Nn = μ-in NatF (succ₁ n) (inj₂ (n , refl , Nn))
-- Example.
[1] : D
[1] = succ₁ zero
1-N : N [1]
1-N = nsucc nzero
------------------------------------------------------------------------------
-- The FOTC list type as the least fixed-point of a functor.
module ListLFT where
open LFP
-- Functor for the FOTC lists type.
ListF : (D → Set) → D → Set
ListF X xs = xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ X xs')
-- The FOTC list type using μ.
List : D → Set
List = μ ListF
-- The data constructors of List.
lnil : List []
lnil = μ-in ListF [] (inj₁ refl)
lcons : ∀ x {xs} → List xs → List (x ∷ xs)
lcons x {xs} Lxs = μ-in ListF (x ∷ xs) (inj₂ (x , xs , refl , Lxs))
-- Example.
l : List (zero ∷ true ∷ [])
l = lcons zero (lcons true lnil)
------------------------------------------------------------------------------
-- The FOTC list of natural numbers type as the least fixed-point of a
-- functor.
module ListNLFT where
open LFP
open NLFP
-- Functor for the FOTC list of natural numbers type.
ListNF : (D → Set) → D → Set
ListNF X ns = ns ≡ [] ∨ (∃[ n' ] ∃[ ns' ] ns ≡ n' ∷ ns' ∧ N n' ∧ X ns')
-- The FOTC list type using μ.
ListN : D → Set
ListN = μ ListNF
-- The data constructors of ListN.
lnnil : ListN []
lnnil = μ-in ListNF [] (inj₁ refl)
lncons : ∀ {n ns} → N n → ListN ns → ListN (n ∷ ns)
lncons {n} {ns} Nn LNns =
μ-in ListNF (n ∷ ns) (inj₂ (n , ns , refl , Nn , LNns))
-- Example.
ln : ListN (zero ∷ [1] ∷ [])
ln = lncons nzero (lncons 1-N lnnil)
------------------------------------------------------------------------------
-- The FOTC Colist type as the greatest fixed-point of a functor.
module CoList where
open GFP
-- Functor for the FOTC Colists type (the same functor that for the
-- List type).
ColistF : (D → Set) → D → Set
ColistF X xs = xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ X xs')
-- The FOTC Colist type using ν.
Colist : D → Set
Colist = ν ColistF
-- The data constructors of Colist.
nilCL : Colist []
nilCL = GFP₂ ColistF [] (inj₁ refl)
consCL : ∀ x xs → Colist xs → Colist (x ∷ xs)
consCL x xs CLxs = GFP₂ ColistF (x ∷ xs) (inj₂ (x , xs , refl , CLxs))
-- Example (finite colist).
l : Colist (zero ∷ true ∷ [])
l = consCL zero (true ∷ []) (consCL true [] nilCL)
-- TODO: Example (infinite colist).
-- zerosCL : Colist {!!}
-- zerosCL = consCL zero {!!} zerosCL
------------------------------------------------------------------------------
-- The FOTC Stream type as the greatest fixed-point of a functor.
module Stream where
open GFP
-- Functor for the FOTC Stream type.
StreamF : (D → Set) → D → Set
StreamF X xs = ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ X xs'
-- The FOTC Stream type using ν.
Stream : D → Set
Stream = ν StreamF
-- The data constructor of Stream.
consS : ∀ x {xs} → Stream xs → Stream (x ∷ xs)
consS x {xs} Sxs = GFP₂ StreamF (x ∷ xs) (x , xs , refl , Sxs)
-- TODO: Example
-- zerosS : Stream {!!}
-- zerosS = consS zero {!!} zerosS
headS : ∀ {x xs} → Stream (x ∷ xs) → D
headS {x} _ = x
tailS : ∀ {x xs} → Stream (x ∷ xs) → Stream xs
tailS {x} {xs} Sx∷xs = Sxs
where
unfoldS : StreamF (ν StreamF) (x ∷ xs)
unfoldS = ν-out StreamF (x ∷ xs) Sx∷xs
e : D
e = ∃-proj₁ unfoldS
Pe : ∃ λ es → x ∷ xs ≡ e ∷ es ∧ ν StreamF es
Pe = ∃-proj₂ unfoldS
es : D
es = ∃-proj₁ Pe
Pes : x ∷ xs ≡ e ∷ es ∧ ν StreamF es
Pes = ∃-proj₂ Pe
xs≡es : xs ≡ es
xs≡es = ∧-proj₂ (∷-injective (∧-proj₁ Pes))
Sxs : ν StreamF xs
Sxs = subst (ν StreamF) (sym xs≡es) (∧-proj₂ Pes)
| {
"alphanum_fraction": 0.4881682734,
"avg_line_length": 25.4363057325,
"ext": "agda",
"hexsha": "bbf5d673866e2931d45ae00a48d344d7b1696534",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/fixed-points/Predicates.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/fixed-points/Predicates.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/fixed-points/Predicates.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 2648,
"size": 7987
} |
{-# OPTIONS --safe #-}
module Issue639-2 where
postulate A : Set
| {
"alphanum_fraction": 0.6666666667,
"avg_line_length": 13.2,
"ext": "agda",
"hexsha": "3eb2fbf0b41c122c64e6dda7c8217d2a25388421",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue639-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue639-2.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue639-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 18,
"size": 66
} |
module Trees where
open import Data.Unit using (⊤)
data BinTree {a} (A : Set a) : Set a where
Empty : A → BinTree A
Node : A → BinTree A → BinTree A → BinTree A
BareBinTree : Set
BareBinTree = BinTree ⊤
| {
"alphanum_fraction": 0.6603773585,
"avg_line_length": 17.6666666667,
"ext": "agda",
"hexsha": "43cad849307a16e785df19b686f498cc1f9d5dd8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Trees.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Trees.agda",
"max_line_length": 47,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Trees.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 75,
"size": 212
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to list membership
------------------------------------------------------------------------
-- List membership is defined in Data.List.Any. This module does not
-- treat the general variant of list membership, parametrised on a
-- setoid, only the variant where the equality is fixed to be
-- propositional equality.
module Data.List.Any.Membership where
open import Algebra
open import Category.Monad
open import Data.Bool
open import Data.Empty
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (module Equivalence)
import Function.Injection as Inj
open import Function.Inverse as Inv using (_↔_; module Inverse)
import Function.Related as Related
open import Function.Related.TypeIsomorphisms
open import Data.List as List
open import Data.List.Any as Any using (Any; here; there)
open import Data.List.Any.Properties
open import Data.Nat as Nat
import Data.Nat.Properties as NatProp
open import Data.Product as Prod
open import Data.Sum as Sum
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl; _≗_)
import Relation.Binary.Properties.DecTotalOrder as DTOProperties
import Relation.Binary.Sigma.Pointwise as Σ
open import Relation.Unary using (_⟨×⟩_)
open import Relation.Nullary
open import Relation.Nullary.Negation
open Any.Membership-≡
private
module ×⊎ {k ℓ} = CommutativeSemiring (×⊎-CommutativeSemiring k ℓ)
open module ListMonad {ℓ} = RawMonad (List.monad {ℓ = ℓ})
------------------------------------------------------------------------
-- Properties relating _∈_ to various list functions
-- Isomorphisms.
map-∈↔ : ∀ {a b} {A : Set a} {B : Set b} {f : A → B} {y xs} →
(∃ λ x → x ∈ xs × y ≡ f x) ↔ y ∈ List.map f xs
map-∈↔ {a} {b} {f = f} {y} {xs} =
(∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Any↔ {a = a} {p = b} ⟩
Any (λ x → y ≡ f x) xs ↔⟨ map↔ {a = a} {b = b} {p = b} ⟩
y ∈ List.map f xs ∎
where open Related.EquationalReasoning
concat-∈↔ : ∀ {a} {A : Set a} {x : A} {xss} →
(∃ λ xs → x ∈ xs × xs ∈ xss) ↔ x ∈ concat xss
concat-∈↔ {a} {x = x} {xss} =
(∃ λ xs → x ∈ xs × xs ∈ xss) ↔⟨ Σ.cong {a₁ = a} {b₁ = a} {b₂ = a} Inv.id $ ×⊎.*-comm _ _ ⟩
(∃ λ xs → xs ∈ xss × x ∈ xs) ↔⟨ Any↔ {a = a} {p = a} ⟩
Any (Any (_≡_ x)) xss ↔⟨ concat↔ {a = a} {p = a} ⟩
x ∈ concat xss ∎
where open Related.EquationalReasoning
>>=-∈↔ : ∀ {ℓ} {A B : Set ℓ} {xs} {f : A → List B} {y} →
(∃ λ x → x ∈ xs × y ∈ f x) ↔ y ∈ (xs >>= f)
>>=-∈↔ {ℓ} {xs = xs} {f} {y} =
(∃ λ x → x ∈ xs × y ∈ f x) ↔⟨ Any↔ {a = ℓ} {p = ℓ} ⟩
Any (Any (_≡_ y) ∘ f) xs ↔⟨ >>=↔ {ℓ = ℓ} {p = ℓ} ⟩
y ∈ (xs >>= f) ∎
where open Related.EquationalReasoning
⊛-∈↔ : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) {xs y} →
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔ y ∈ fs ⊛ xs
⊛-∈↔ {ℓ} fs {xs} {y} =
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔⟨ Σ.cong {a₁ = ℓ} {b₁ = ℓ} {b₂ = ℓ} Inv.id (∃∃↔∃∃ {a = ℓ} {b = ℓ} {p = ℓ} _) ⟩
(∃ λ f → f ∈ fs × ∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Σ.cong {a₁ = ℓ} {b₁ = ℓ} {b₂ = ℓ}
Inv.id ((_ ∎) ⟨ ×⊎.*-cong {ℓ = ℓ} ⟩ Any↔ {a = ℓ} {p = ℓ}) ⟩
(∃ λ f → f ∈ fs × Any (_≡_ y ∘ f) xs) ↔⟨ Any↔ {a = ℓ} {p = ℓ} ⟩
Any (λ f → Any (_≡_ y ∘ f) xs) fs ↔⟨ ⊛↔ ⟩
y ∈ fs ⊛ xs ∎
where open Related.EquationalReasoning
⊗-∈↔ : ∀ {A B : Set} {xs ys} {x : A} {y : B} →
(x ∈ xs × y ∈ ys) ↔ (x , y) ∈ (xs ⊗ ys)
⊗-∈↔ {A} {B} {xs} {ys} {x} {y} =
(x ∈ xs × y ∈ ys) ↔⟨ ⊗↔′ ⟩
Any (_≡_ x ⟨×⟩ _≡_ y) (xs ⊗ ys) ↔⟨ Any-cong helper (_ ∎) ⟩
(x , y) ∈ (xs ⊗ ys) ∎
where
open Related.EquationalReasoning
helper : (p : A × B) → (x ≡ proj₁ p × y ≡ proj₂ p) ↔ (x , y) ≡ p
helper (x′ , y′) = record
{ to = P.→-to-⟶ (uncurry $ P.cong₂ _,_)
; from = P.→-to-⟶ < P.cong proj₁ , P.cong proj₂ >
; inverse-of = record
{ left-inverse-of = λ _ → P.cong₂ _,_ (P.proof-irrelevance _ _)
(P.proof-irrelevance _ _)
; right-inverse-of = λ _ → P.proof-irrelevance _ _
}
}
-- Other properties.
filter-∈ : ∀ {a} {A : Set a} (p : A → Bool) (xs : List A) {x} →
x ∈ xs → p x ≡ true → x ∈ filter p xs
filter-∈ p [] () _
filter-∈ p (x ∷ xs) (here refl) px≡true rewrite px≡true = here refl
filter-∈ p (y ∷ xs) (there pxs) px≡true with p y
... | true = there (filter-∈ p xs pxs px≡true)
... | false = filter-∈ p xs pxs px≡true
------------------------------------------------------------------------
-- Properties relating _∈_ to various list functions
-- Various functions are monotone.
mono : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} →
xs ⊆ ys → Any P xs → Any P ys
mono xs⊆ys =
_⟨$⟩_ (Inverse.to Any↔) ∘′
Prod.map id (Prod.map xs⊆ys id) ∘
_⟨$⟩_ (Inverse.from Any↔)
map-mono : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {xs ys} →
xs ⊆ ys → List.map f xs ⊆ List.map f ys
map-mono f xs⊆ys =
_⟨$⟩_ (Inverse.to map-∈↔) ∘
Prod.map id (Prod.map xs⊆ys id) ∘
_⟨$⟩_ (Inverse.from map-∈↔)
_++-mono_ : ∀ {a} {A : Set a} {xs₁ xs₂ ys₁ ys₂ : List A} →
xs₁ ⊆ ys₁ → xs₂ ⊆ ys₂ → xs₁ ++ xs₂ ⊆ ys₁ ++ ys₂
_++-mono_ xs₁⊆ys₁ xs₂⊆ys₂ =
_⟨$⟩_ (Inverse.to ++↔) ∘
Sum.map xs₁⊆ys₁ xs₂⊆ys₂ ∘
_⟨$⟩_ (Inverse.from ++↔)
concat-mono : ∀ {a} {A : Set a} {xss yss : List (List A)} →
xss ⊆ yss → concat xss ⊆ concat yss
concat-mono {a} xss⊆yss =
_⟨$⟩_ (Inverse.to $ concat-∈↔ {a = a}) ∘
Prod.map id (Prod.map id xss⊆yss) ∘
_⟨$⟩_ (Inverse.from $ concat-∈↔ {a = a})
>>=-mono : ∀ {ℓ} {A B : Set ℓ} (f g : A → List B) {xs ys} →
xs ⊆ ys → (∀ {x} → f x ⊆ g x) →
(xs >>= f) ⊆ (ys >>= g)
>>=-mono {ℓ} f g xs⊆ys f⊆g =
_⟨$⟩_ (Inverse.to $ >>=-∈↔ {ℓ = ℓ}) ∘
Prod.map id (Prod.map xs⊆ys f⊆g) ∘
_⟨$⟩_ (Inverse.from $ >>=-∈↔ {ℓ = ℓ})
_⊛-mono_ : ∀ {ℓ} {A B : Set ℓ}
{fs gs : List (A → B)} {xs ys : List A} →
fs ⊆ gs → xs ⊆ ys → (fs ⊛ xs) ⊆ (gs ⊛ ys)
_⊛-mono_ {fs = fs} {gs} fs⊆gs xs⊆ys =
_⟨$⟩_ (Inverse.to $ ⊛-∈↔ gs) ∘
Prod.map id (Prod.map id (Prod.map fs⊆gs (Prod.map xs⊆ys id))) ∘
_⟨$⟩_ (Inverse.from $ ⊛-∈↔ fs)
_⊗-mono_ : {A B : Set} {xs₁ ys₁ : List A} {xs₂ ys₂ : List B} →
xs₁ ⊆ ys₁ → xs₂ ⊆ ys₂ → (xs₁ ⊗ xs₂) ⊆ (ys₁ ⊗ ys₂)
xs₁⊆ys₁ ⊗-mono xs₂⊆ys₂ =
_⟨$⟩_ (Inverse.to ⊗-∈↔) ∘
Prod.map xs₁⊆ys₁ xs₂⊆ys₂ ∘
_⟨$⟩_ (Inverse.from ⊗-∈↔)
any-mono : ∀ {a} {A : Set a} (p : A → Bool) →
∀ {xs ys} → xs ⊆ ys → T (any p xs) → T (any p ys)
any-mono {a} p xs⊆ys =
_⟨$⟩_ (Equivalence.to $ any⇔ {a = a}) ∘
mono xs⊆ys ∘
_⟨$⟩_ (Equivalence.from $ any⇔ {a = a})
map-with-∈-mono :
∀ {a b} {A : Set a} {B : Set b}
{xs : List A} {f : ∀ {x} → x ∈ xs → B}
{ys : List A} {g : ∀ {x} → x ∈ ys → B}
(xs⊆ys : xs ⊆ ys) → (∀ {x} → f {x} ≗ g ∘ xs⊆ys) →
map-with-∈ xs f ⊆ map-with-∈ ys g
map-with-∈-mono {f = f} {g = g} xs⊆ys f≈g {x} =
_⟨$⟩_ (Inverse.to map-with-∈↔) ∘
Prod.map id (Prod.map xs⊆ys (λ {x∈xs} x≡fx∈xs → begin
x ≡⟨ x≡fx∈xs ⟩
f x∈xs ≡⟨ f≈g x∈xs ⟩
g (xs⊆ys x∈xs) ∎)) ∘
_⟨$⟩_ (Inverse.from map-with-∈↔)
where open P.≡-Reasoning
-- Other properties.
filter-⊆ : ∀ {a} {A : Set a} (p : A → Bool) →
(xs : List A) → filter p xs ⊆ xs
filter-⊆ _ [] = λ ()
filter-⊆ p (x ∷ xs) with p x | filter-⊆ p xs
... | false | hyp = there ∘ hyp
... | true | hyp =
λ { (here eq) → here eq
; (there ∈filter) → there (hyp ∈filter)
}
------------------------------------------------------------------------
-- Other properties
-- Only a finite number of distinct elements can be members of a
-- given list.
finite : ∀ {a} {A : Set a}
(f : Inj.Injection (P.setoid ℕ) (P.setoid A)) →
∀ xs → ¬ (∀ i → Inj.Injection.to f ⟨$⟩ i ∈ xs)
finite inj [] ∈[] with ∈[] zero
... | ()
finite {A = A} inj (x ∷ xs) ∈x∷xs = excluded-middle helper
where
open Inj.Injection inj
module DTO = DecTotalOrder Nat.decTotalOrder
module STO = StrictTotalOrder
(DTOProperties.strictTotalOrder Nat.decTotalOrder)
module CS = CommutativeSemiring NatProp.commutativeSemiring
not-x : ∀ {i} → ¬ (to ⟨$⟩ i ≡ x) → to ⟨$⟩ i ∈ xs
not-x {i} ≢x with ∈x∷xs i
... | here ≡x = ⊥-elim (≢x ≡x)
... | there ∈xs = ∈xs
helper : ¬ Dec (∃ λ i → to ⟨$⟩ i ≡ x)
helper (no ≢x) = finite inj xs (λ i → not-x (≢x ∘ _,_ i))
helper (yes (i , ≡x)) = finite inj′ xs ∈xs
where
open P
f : ℕ → A
f j with STO.compare i j
f j | tri< _ _ _ = to ⟨$⟩ suc j
f j | tri≈ _ _ _ = to ⟨$⟩ suc j
f j | tri> _ _ _ = to ⟨$⟩ j
∈-if-not-i : ∀ {j} → i ≢ j → to ⟨$⟩ j ∈ xs
∈-if-not-i i≢j = not-x (i≢j ∘ injective ∘ trans ≡x ∘ sym)
lemma : ∀ {k j} → k ≤ j → suc j ≢ k
lemma 1+j≤j refl = NatProp.1+n≰n 1+j≤j
∈xs : ∀ j → f j ∈ xs
∈xs j with STO.compare i j
∈xs j | tri< (i≤j , _) _ _ = ∈-if-not-i (lemma i≤j ∘ sym)
∈xs j | tri> _ i≢j _ = ∈-if-not-i i≢j
∈xs .i | tri≈ _ refl _ =
∈-if-not-i (NatProp.m≢1+m+n i ∘
subst (_≡_ i ∘ suc) (sym $ proj₂ CS.+-identity i))
injective′ : Inj.Injective {B = P.setoid A} (→-to-⟶ f)
injective′ {j} {k} eq with STO.compare i j | STO.compare i k
... | tri< _ _ _ | tri< _ _ _ = cong pred $ injective eq
... | tri< _ _ _ | tri≈ _ _ _ = cong pred $ injective eq
... | tri< (i≤j , _) _ _ | tri> _ _ (k≤i , _) = ⊥-elim (lemma (DTO.trans k≤i i≤j) $ injective eq)
... | tri≈ _ _ _ | tri< _ _ _ = cong pred $ injective eq
... | tri≈ _ _ _ | tri≈ _ _ _ = cong pred $ injective eq
... | tri≈ _ i≡j _ | tri> _ _ (k≤i , _) = ⊥-elim (lemma (subst (_≤_ k) i≡j k≤i) $ injective eq)
... | tri> _ _ (j≤i , _) | tri< (i≤k , _) _ _ = ⊥-elim (lemma (DTO.trans j≤i i≤k) $ sym $ injective eq)
... | tri> _ _ (j≤i , _) | tri≈ _ i≡k _ = ⊥-elim (lemma (subst (_≤_ j) i≡k j≤i) $ sym $ injective eq)
... | tri> _ _ (j≤i , _) | tri> _ _ (k≤i , _) = injective eq
inj′ = record
{ to = →-to-⟶ {B = P.setoid A} f
; injective = injective′
}
| {
"alphanum_fraction": 0.467140825,
"avg_line_length": 38.4854014599,
"ext": "agda",
"hexsha": "4e948ef27402dea805b28223d1925235cd550860",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/List/Any/Membership.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/List/Any/Membership.agda",
"max_line_length": 126,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/List/Any/Membership.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 4378,
"size": 10545
} |
{-# OPTIONS --without-K --safe #-}
module Cats.Util.SetoidReasoning where
open import Relation.Binary.Reasoning.MultiSetoid public
open import Relation.Binary using (Setoid)
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S
triangle :
∀ m {x y}
→ x ≈ m
→ y ≈ m
→ x ≈ y
triangle m x≈m y≈m = trans x≈m (sym y≈m)
| {
"alphanum_fraction": 0.6312684366,
"avg_line_length": 18.8333333333,
"ext": "agda",
"hexsha": "22480955c2d9f5ccae7a4f946d66ef6b13a776c7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Util/SetoidReasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Util/SetoidReasoning.agda",
"max_line_length": 56,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Util/SetoidReasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 117,
"size": 339
} |
-- {-# OPTIONS -v tc.meta:30 #-}
module GiveSize where
{-# BUILTIN SIZE Size #-}
postulate
A : Size → Set
c : ∀ i → A i
k : ∀ i → A i
k i = c {!i!}
| {
"alphanum_fraction": 0.5064102564,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "7b0f151528c97f23fc22ea97e25325e5455afbd0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/GiveSize.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/GiveSize.agda",
"max_line_length": 32,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/GiveSize.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 57,
"size": 156
} |
{-# OPTIONS --allow-unsolved-metas #-}
-- This file documents a bug caused by one of the fixes for issue 153.
module Issue153 where
open import Common.Coinduction
record R : Set₁ where
field
S : Set
T : S → Set
module D (r : R) (s : R.S r) where
open R r
data D (t : T s) : Set where
module M (r : R) (s : R.S r) where
open R r
open D _ s
postulate
t : T s
d : D t
foo : ∞ (D t)
foo = ♯ d
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/Interaction/Highlighting/Generate.hs:383
| {
"alphanum_fraction": 0.6284722222,
"avg_line_length": 18,
"ext": "agda",
"hexsha": "16f62f8b3d4a8f518c706b8b673845d94c74db3b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue153.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue153.agda",
"max_line_length": 80,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue153.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 190,
"size": 576
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
-- Following Part IB's course Groups, Rings, and Modules, we take rings to be commutative with one.
module Rings.Definition where
record Ring {n m} {A : Set n} (S : Setoid {n} {m} A) (_+_ : A → A → A) (_*_ : A → A → A) : Set (lsuc n ⊔ m) where
field
additiveGroup : Group S _+_
open Group additiveGroup
open Setoid S
open Equivalence eq
0R : A
0R = 0G
_-R_ : A → A → A
a -R b = a + (inverse b)
field
*WellDefined : {r s t u : A} → (r ∼ t) → (s ∼ u) → r * s ∼ t * u
1R : A
groupIsAbelian : {a b : A} → a + b ∼ b + a
*Associative : {a b c : A} → (a * (b * c)) ∼ (a * b) * c
*Commutative : {a b : A} → a * b ∼ b * a
*DistributesOver+ : {a b c : A} → a * (b + c) ∼ (a * b) + (a * c)
identIsIdent : {a : A} → 1R * a ∼ a
timesZero : {a : A} → a * 0R ∼ 0R
timesZero {a} = symmetric (transitive (transitive (symmetric invLeft) (+WellDefined reflexive (transitive (*WellDefined {a} {a} reflexive (symmetric identRight)) *DistributesOver+))) (transitive +Associative (transitive (+WellDefined invLeft reflexive) identLeft)))
timesZero' : {a : A} → 0R * a ∼ 0R
timesZero' {a} = transitive *Commutative timesZero
*DistributesOver+' : {a b c : A} → (a + b) * c ∼ (a * c) + (b * c)
*DistributesOver+' = transitive *Commutative (transitive *DistributesOver+ (+WellDefined *Commutative *Commutative))
*Associative' : {a b c : A} → ((a * b) * c) ∼ (a * (b * c))
*Associative' = symmetric *Associative
identIsIdent' : {a : A} → a * 1R ∼ a
identIsIdent' = transitive *Commutative identIsIdent
| {
"alphanum_fraction": 0.606613455,
"avg_line_length": 43.85,
"ext": "agda",
"hexsha": "1cfb0c1afa18b3878632c6274971e0c4b23d0dac",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Definition.agda",
"max_line_length": 267,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 671,
"size": 1754
} |
module MLib.Matrix.Core where
open import MLib.Prelude
open import MLib.Algebra.PropertyCode
open import MLib.Algebra.PropertyCode.Structures
import Relation.Binary.Indexed as I
Matrix : ∀ {a} → Set a → ℕ → ℕ → Set a
Matrix A m n = Fin m → Fin n → A
module _ {a} (A : Set a) where
row : ∀ {m n} → Fin m → Matrix A m n → Table A n
row i M .lookup j = M i j
col : ∀ {m n} → Fin n → Matrix A m n → Table A m
col j M .lookup i = M i j
| {
"alphanum_fraction": 0.6418918919,
"avg_line_length": 24.6666666667,
"ext": "agda",
"hexsha": "1e87fdfe1a825fb5d2f855db728a9d8b6eb8d232",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/Matrix/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/Matrix/Core.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/Matrix/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 151,
"size": 444
} |
module to-string-tests where
open import lib
open import cedille-types
open import syntax-util
open import to-string
t = mapp (mapp (mvar "plus") (mvar "Z")) (mvar "Z")
s = term-to-string t
| {
"alphanum_fraction": 0.71875,
"avg_line_length": 19.2,
"ext": "agda",
"hexsha": "b36706b016b6c0bcc43d998215f2b569cf5224d5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/to-string-tests.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/to-string-tests.agda",
"max_line_length": 51,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/to-string-tests.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 59,
"size": 192
} |
-- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness #-}
open import Level
open import Data.Empty
open import Data.Unit
open import Data.Product
open import Data.Sum
open import Data.Bool
open import Data.List using (List)
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Unary using (Pred; _∈_; _⊆_; Empty; Satisfiable)
open import Relation.Binary.PropositionalEquality using (_≡_; refl ; subst ; cong)
open import Common
module SessionType {ℙ : Set} (message : Message ℙ)
where
data SessionType : Set
record ∞SessionType : Set where
constructor box_
coinductive
field force : SessionType
open ∞SessionType public
Continuation : Set
Continuation = ℙ -> ∞SessionType
data SessionType where
nil : SessionType
inp : (f : Continuation) -> SessionType
out : (f : Continuation) -> SessionType
data Defined : SessionType -> Set where
inp : ∀{f} -> Defined (inp f)
out : ∀{f} -> Defined (out f)
Defined? : (T : SessionType) -> Dec (Defined T)
Defined? nil = no λ ()
Defined? (inp _) = yes inp
Defined? (out _) = yes out
Defined-eq : ∀{T : SessionType} (p : Defined T) (q : Defined T) -> p ≡ q
Defined-eq inp inp = refl
Defined-eq out out = refl
dom : Continuation -> Pred ℙ Level.zero
dom f x = Defined (f x .force)
_∈?_ : (x : ℙ) (f : Continuation) -> Dec (x ∈ dom f)
x ∈? f with f x .force
... | nil = no λ ()
... | inp _ = yes inp
... | out _ = yes out
EmptyContinuation : Continuation -> Set
EmptyContinuation f = Empty (dom f)
Witness : Continuation -> Set
Witness f = Satisfiable (dom f)
Empty? : (f : Continuation) -> EmptyContinuation f ⊎ Witness f
Empty? f with excluded-middle {Witness f}
... | yes w = inj₂ w
... | no nw = inj₁ λ x def -> nw (x , def)
-- WARNING: Win and End must be different predicates, because
-- client-wise they are different, whereas Server-wise they are
-- equivalent. inp cannot be End or else an ended client may receive
-- a message and fail!
data Win : SessionType -> Set where
out : ∀{f} (U : EmptyContinuation f) -> Win (out f)
data End : SessionType -> Set where
inp : ∀{f} (U : EmptyContinuation f) -> End (inp f)
out : ∀{f} (U : EmptyContinuation f) -> End (out f)
win : SessionType
win = out λ _ -> λ where .force -> nil
Win-win : Win win
Win-win = out λ { _ () }
win->defined : ∀{T} -> Win T -> Defined T
win->defined (out _) = out
-- if T is not Defined, then it is nil
not-def->nil : ∀{T} → ¬ (Defined T) → T ≡ nil
not-def->nil {nil} nd = refl
not-def->nil {inp f} nd = ⊥-elim (nd inp)
not-def->nil {out f} nd = ⊥-elim (nd out)
not-nil-defined : Defined nil → ⊥
not-nil-defined ()
open Message message
if-≡-ch : (x y : ℙ) → SessionType → SessionType → SessionType
if-≡-ch x y S T with x ?= y
... | no ¬p = T
... | yes refl = S
sample-cont : ℙ → SessionType → SessionType → Continuation
force (sample-cont t S T x) = if-≡-ch x t S T
cont-not-def : ∀{t} → ¬ (Defined (sample-cont t nil win t .force))
cont-not-def {t} ok with t ?= t
cont-not-def {t} () | yes refl
... | no ¬eq = ⊥-elim (¬eq refl)
force-eq : ∀{t S T} → S ≡ (sample-cont t S T) t .force
force-eq {t} with t ?= t
... | no ¬p = ⊥-elim (¬p refl)
... | yes refl = refl
wit-cont : ∀{t S T} → Defined S → Witness (sample-cont t S T)
wit-cont {t} def = t , subst Defined force-eq def
sample-in : (t : ℙ) → SessionType → SessionType
sample-in t S = inp (sample-cont t S nil)
sample-out : (t : ℙ) → SessionType → SessionType
sample-out t S = out (sample-cont t S nil)
full-cont : SessionType → Continuation
force (full-cont S _) = S | {
"alphanum_fraction": 0.6766222604,
"avg_line_length": 30.0258064516,
"ext": "agda",
"hexsha": "6243d2ebb1f033025aae7fea73892348f0eece2b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/SessionType.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/SessionType.agda",
"max_line_length": 82,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/SessionType.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 1358,
"size": 4654
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution {{eqrel : EqRelSet}} where
open import Agda.Primitive
open import Definition.Untyped
open import Definition.Typed
open import Definition.LogicalRelation
open import Tools.Embedding
open import Tools.Product
open import Tools.Unit
-- The validity judgements:
-- We consider expressions that satisfy these judgments valid
ValRel : Setω₂
ValRel = (Γ : Con Term) → (⊩Subst : (Δ : Con Term) → Subst → ⊢ Δ → Setω)
→ (⊩EqSubst : (Δ : Con Term) → (σ σ′ : Subst) → (⊢Δ : ⊢ Δ) → (⊩Subst Δ σ ⊢Δ) → Setω)
→ Setω₁
record ⊩ᵛ⁰_/_ (Γ : Con Term) (_⊩_▸_ : ValRel) : Setω₁ where
inductive
eta-equality
constructor VPack
field
⊩Subst : (Δ : Con Term) → Subst → ⊢ Δ → Setω
⊩EqSubst : (Δ : Con Term) → (σ σ′ : Subst) → (⊢Δ : ⊢ Δ) → (⊩Subst Δ σ ⊢Δ) → Setω
⊩V : Γ ⊩ ⊩Subst ▸ ⊩EqSubst
_⊩ˢ⁰_∷_/_/_ : {R : ValRel} (Δ : Con Term) (σ : Subst) (Γ : Con Term) ([Γ] : ⊩ᵛ⁰ Γ / R) (⊢Δ : ⊢ Δ)
→ Setω
Δ ⊩ˢ⁰ σ ∷ Γ / VPack ⊩Subst ⊩EqSubst ⊩V / ⊢Δ = ⊩Subst Δ σ ⊢Δ
_⊩ˢ⁰_≡_∷_/_/_/_ : {R : ValRel} (Δ : Con Term) (σ σ′ : Subst) (Γ : Con Term) ([Γ] : ⊩ᵛ⁰ Γ / R)
(⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ⁰ σ ∷ Γ / [Γ] / ⊢Δ) → Setω
Δ ⊩ˢ⁰ σ ≡ σ′ ∷ Γ / VPack ⊩Subst ⊩EqSubst ⊩V / ⊢Δ / [σ] = ⊩EqSubst Δ σ σ′ ⊢Δ [σ]
-- Validity of types
_⊩ᵛ⁰⟨_⟩_/_ : {R : ValRel} (Γ : Con Term) (l : TypeLevel) (A : Term) → ⊩ᵛ⁰ Γ / R → Setω
_⊩ᵛ⁰⟨_⟩_/_ Γ l A [Γ] =
∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ⁰ σ ∷ Γ / [Γ] / ⊢Δ)
→ Σω₀ (Δ ⊩⟨ l ⟩ subst σ A) (λ [Aσ]
→ ∀ {σ′} ([σ′] : Δ ⊩ˢ⁰ σ′ ∷ Γ / [Γ] / ⊢Δ)
([σ≡σ′] : Δ ⊩ˢ⁰ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ])
→ Δ ⊩⟨ l ⟩ subst σ A ≡ subst σ′ A / [Aσ])
data _⊩V_▸_ : ValRel where
Vε : ε
⊩V (λ Δ σ ⊢Δ → ⊤′)
▸ (λ Δ σ σ′ ⊢Δ [σ] → ⊤′)
V∙ : ∀ {Γ A l}
→ ([Γ] : ⊩ᵛ⁰ Γ / _⊩V_▸_)
→ ([A] : Γ ⊩ᵛ⁰⟨ l ⟩ A / [Γ])
→ Γ ∙ A
⊩V (λ Δ σ ⊢Δ → Σω₂ (Δ ⊩ˢ⁰ tail σ ∷ Γ / [Γ] / ⊢Δ)
(λ [tailσ] → (Δ ⊩⟨ l ⟩ head σ ∷ subst (tail σ) A / proj₁ ([A] ⊢Δ [tailσ]))))
▸ (λ Δ σ σ′ ⊢Δ [σ] → (Δ ⊩ˢ⁰ tail σ ≡ tail σ′ ∷ Γ / [Γ] / ⊢Δ / proj₁ [σ]) ×ω₂
(Δ ⊩⟨ l ⟩ head σ ≡ head σ′ ∷ subst (tail σ) A / proj₁ ([A] ⊢Δ (proj₁ [σ]))))
⊩ᵛ : Con Term → Setω₁
⊩ᵛ Γ = ⊩ᵛ⁰ Γ / _⊩V_▸_
_⊩ˢ_∷_/_/_ : (Δ : Con Term) (σ : Subst) (Γ : Con Term) ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
→ Setω
Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ = Δ ⊩ˢ⁰ σ ∷ Γ / [Γ] / ⊢Δ
_⊩ˢ_≡_∷_/_/_/_ : (Δ : Con Term) (σ σ′ : Subst) (Γ : Con Term) ([Γ] : ⊩ᵛ Γ)
(⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Setω
Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ] = Δ ⊩ˢ⁰ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]
-- Validity of types
_⊩ᵛ⟨_⟩_/_ : (Γ : Con Term) (l : TypeLevel) (A : Term) → ⊩ᵛ Γ → Setω
Γ ⊩ᵛ⟨ l ⟩ A / [Γ] = Γ ⊩ᵛ⁰⟨ l ⟩ A / [Γ]
-- Validity of terms
_⊩ᵛ⟨_⟩_∷_/_/_ : (Γ : Con Term) (l : TypeLevel) (t A : Term) ([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Setω
Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A] =
∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) →
Σω₀ (Δ ⊩⟨ l ⟩ subst σ t ∷ subst σ A / proj₁ ([A] ⊢Δ [σ])) λ [tσ] →
∀ {σ′} → Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ → Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]
→ Δ ⊩⟨ l ⟩ subst σ t ≡ subst σ′ t ∷ subst σ A / proj₁ ([A] ⊢Δ [σ])
-- Validity of type equality
_⊩ᵛ⟨_⟩_≡_/_/_ : (Γ : Con Term) (l : TypeLevel) (A B : Term) ([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Setω
Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A] =
∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩⟨ l ⟩ subst σ A ≡ subst σ B / proj₁ ([A] ⊢Δ [σ])
-- Validity of term equality
_⊩ᵛ⟨_⟩_≡_∷_/_/_ : (Γ : Con Term) (l : TypeLevel) (t u A : Term) ([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Setω
Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A] =
∀ {Δ σ} → (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩⟨ l ⟩ subst σ t ≡ subst σ u ∷ subst σ A / proj₁ ([A] ⊢Δ [σ])
-- Valid term equality with validity of its type and terms
record [_⊩ᵛ⟨_⟩_≡_∷_/_] (Γ : Con Term) (l : TypeLevel)
(t u A : Term) ([Γ] : ⊩ᵛ Γ) : Setω where
constructor modelsTermEq
field
[A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]
[t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]
[u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ A / [Γ] / [A]
[t≡u] : Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A]
-- Validity of reduction of terms
_⊩ᵛ_⇒_∷_/_ : (Γ : Con Term) (t u A : Term) ([Γ] : ⊩ᵛ Γ) → Setω
Γ ⊩ᵛ t ⇒ u ∷ A / [Γ] = ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊢ subst σ t ⇒ subst σ u ∷ subst σ A
_∙″_ : ∀ {Γ A l} → ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ l ⟩ A / [Γ] → ⊩ᵛ (Γ ∙ A)
[Γ] ∙″ [A] = (VPack _ _ (V∙ [Γ] [A]))
pattern ε′ = (VPack _ _ Vε)
pattern _∙′_ [Γ] [A] = (VPack _ _ (V∙ [Γ] [A]))
| {
"alphanum_fraction": 0.4327510917,
"avg_line_length": 37.5409836066,
"ext": "agda",
"hexsha": "7f9ece4430062d3e453afe2ab75a23e650e3a8b3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2685,
"size": 4580
} |
module ExpressionChanging where
open import ParseTree
open import Data.Maybe hiding (map)
open import Data.List.NonEmpty
open import ParseTreeOperations
open import AgdaHelperFunctions
open import Data.List
open import Data.Nat
open import Data.Vec using (Vec)
open import Data.Fin
open import ScopeState
import Data.Nat.Properties
open import Relation.Nullary
import Data.String
open import Data.Nat.Show
open import Data.Bool
{-# TERMINATING #-}
applyToExpressionsAndSubExpressions : (List⁺ Expr -> List⁺ Expr) -> Expr -> Expr
applyToExpressionsAndSubExpressions i e = listToExpression $ head newTop ∷ newRest
where newTop = i $ expressionToList e
newRest = Data.List.map (applyToExpressionsAndSubExpressions i) $ tail newTop
applyToAllInSignature : (List⁺ Expr -> List⁺ Expr) -> TypeSignature -> TypeSignature
applyToAllInSignature i (typeSignature funcName funcType) = typeSignature funcName $ applyToExpressionsAndSubExpressions i funcType
applyToAllExpressions : (List⁺ Expr -> List⁺ Expr) -> ParseTree -> ParseTree
applyToAllExpressions instructions (signature signature₁ range₁) =
signature (applyToAllInSignature instructions signature₁) range₁
applyToAllExpressions instructions (functionDefinition definitionOf params body range₁) =
functionDefinition definitionOf (tail newParams)
(applyToExpressionsAndSubExpressions instructions body) range₁
where newParams = instructions (ident definitionOf ∷ Data.List.map (applyToExpressionsAndSubExpressions instructions) params)
applyToAllExpressions instructions (dataStructure dataName parameters indexInfo constructors range₁ {c} ) =
dataStructure
dataName
(Data.List.map (applyToAllInSignature instructions) parameters)
(applyToExpressionsAndSubExpressions instructions indexInfo)
(Data.List.map (applyToAllInSignature instructions) constructors)
range₁ {c}
applyToAllExpressions instructions x = x
applyToProgram : (List⁺ Expr -> List⁺ Expr) -> Data.List.List ParseTree -> Data.List.List ParseTree
applyToProgram i c = Data.List.map (applyToAllExpressions i) c
makeFin : {n : ℕ} -> Vec Expr (n) -> ℕ -> ScopeState (Fin n)
makeFin {n} v number with number Data.Nat.Properties.<? n
makeFin {n} v number | yes p = return $ fromℕ≤ p
makeFin {n} v number | no ¬p = fail $ "Got a non-existing argument: " Data.String.++ Data.Nat.Show.show n Data.String.++ Data.Nat.Show.show (Data.List.length $ Data.Vec.toList v)
makeFin2 : {n : ℕ} -> Vec Expr (suc n) -> ℕ -> ScopeState (Fin n)
makeFin2 {n} v number with number Data.Nat.Properties.<? n
makeFin2 {n} v number | yes p = return $ fromℕ≤ p
makeFin2 {n} v number | no ¬p = fail $ "Got a non-existing argument: " Data.String.++ Data.Nat.Show.show n Data.String.++ Data.Nat.Show.show (Data.List.length $ Data.Vec.toList v)
--TODO: try to give this a better type
updateSignature : ℕ -> List⁺ Expr ->
(alterSignature : {n : ℕ} -> Vec Expr (suc n) -> Fin n -> ScopeState (Vec Expr (suc n))) ->
ScopeState (List⁺ Expr)
updateSignature argNo type f
with toVec type
... | c = do
-- In a signature, we always have at least one item which is not an argument: the result type
newFin <- makeFin2 c argNo
newVec <- f c newFin
return $ Data.List.NonEmpty.fromVec newVec
doForArgument : List ParseTree -> ℕ -> ℕ ->
(alterSignature : {n : ℕ} -> Vec Expr (suc n) -> Fin n -> ScopeState (Vec Expr (suc n))) ->
(alterExpression : TypeSignature -> ℕ -> ScopeState (List⁺ Expr -> List⁺ Expr)) ->
ScopeState (List ParseTree)
doForArgument [] funcID whichArgument f1 f2 = fail "funcId not found in doForArgument"
doForArgument (signature (typeSignature (identifier name isInRange scope declaration) funcType) range₁ ∷ code) funcID whichArgument f1 f2 with Data.Nat.compare declaration funcID
doForArgument (signature (typeSignature (identifier name isInRange scope declaration {e}{b} {a}) funcType) range₁ ∷ code) .declaration whichArgument f1 f2 | equal .declaration = do
newType <- updateSignature whichArgument (typeToList funcType) f1
instruction <- f2 ((typeSignature (identifier name isInRange scope declaration {e}{b} {a})) funcType) whichArgument
return $ applyToProgram instruction $
signature (typeSignature
(identifier name isInRange scope declaration {e}{b} {a})
(listToType newType)) range₁ ∷ code
doForArgument (signature (typeSignature (identifier name isInRange scope declaration {e}{b} {a}) funcType) range₁ ∷ code) funcID whichArgument f1 f2 | _ = do
newxs <- doForArgument code funcID whichArgument f1 f2
return $ (signature (typeSignature (identifier name isInRange scope declaration {e}{b} {a}) funcType) range₁) ∷ newxs
doForArgument (x ∷ xs) funcID whichArgument f1 f2 = do
newxs <- doForArgument xs funcID whichArgument f1 f2
return $ x ∷ newxs
makeInstruction : TypeSignature -> ℕ -> (makeIns : {n : ℕ} -> Vec Expr n -> Fin n -> (List Expr -> List Expr)) -> ScopeState (List⁺ Expr -> List⁺ Expr)
makeInstruction (typeSignature funcName funcType) argNo f
with toVec (typeToList funcType)
... | c = do
newFin <- makeFin c argNo
return $ function $ f c newFin
where function : (List Expr -> List Expr) -> (List⁺ Expr -> List⁺ Expr)
function f (ident identifier₁ ∷ tail₁)
with sameId identifier₁ funcName
function f (ident identifier₁ ∷ tail₁) | false =
(ident identifier₁ ∷ tail₁)
function f (ident identifier₁ ∷ tail₁) | true =
ident identifier₁ ∷ f tail₁
function f list = list
| {
"alphanum_fraction": 0.7305247866,
"avg_line_length": 51.9528301887,
"ext": "agda",
"hexsha": "a67f088f3dbad130ebaf0449c1d24221038e9ed0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/ExpressionChanging.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/ExpressionChanging.agda",
"max_line_length": 180,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/ExpressionChanging.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 1470,
"size": 5507
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Adjoint.Instance.Core where
-- The adjunction between the forgetful functor from Cats to Groupoids
-- and the Core functor.
open import Level using (_⊔_)
import Function
open import Categories.Adjoint using (_⊣_)
open import Categories.Category using (Category)
import Categories.Category.Construction.Core as C
open import Categories.Category.Groupoid using (Groupoid)
open import Categories.Category.Instance.Cats using (Cats)
open import Categories.Category.Instance.Groupoids using (Groupoids)
open import Categories.Functor using (Functor; _∘F_; id)
open import Categories.Functor.Instance.Core using (Core)
import Categories.Morphism as Morphism
import Categories.Morphism.Reasoning as MR
open import Categories.Morphism.IsoEquiv using (⌞_⌟)
open import Categories.NaturalTransformation using (ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism using (refl; _≃_)
-- The forgetful functor from Groupoids to Cats
Forgetful : ∀ {o ℓ e} → Functor (Groupoids o ℓ e) (Cats o ℓ e)
Forgetful = record
{ F₀ = category
; F₁ = Function.id
; identity = refl
; homomorphism = refl
; F-resp-≈ = Function.id
}
where open Groupoid
-- Core is right-adjoint to the forgetful functor from Groupoids to
-- Cats
CoreAdj : ∀ {o ℓ e} → Forgetful {o} {ℓ ⊔ e} {e} ⊣ Core
CoreAdj = record
{ unit = ntHelper record { η = unit ; commute = λ {G} {H} F → unit-commute {G} {H} F }
; counit = ntHelper record { η = counit ; commute = counit-commute }
; zig = λ {G} → zig {G}
; zag = zag
}
where
open Groupoid using (category)
module Core = Functor Core
unit : ∀ G → Functor (category G) (C.Core (category G))
unit G = record
{ F₀ = Function.id
; F₁ = λ f → record { from = f ; to = f ⁻¹ ; iso = iso }
; identity = ⌞ Equiv.refl ⌟
; homomorphism = ⌞ Equiv.refl ⌟
; F-resp-≈ = λ eq → ⌞ eq ⌟
}
where open Groupoid G
unit-commute : ∀ {G H} (F : Functor (category G) (category H)) →
unit H ∘F F ≃ Core.F₁ F ∘F unit G
unit-commute {G} {H} F = record
{ F⇒G = record { η = λ _ → ≅.refl ; commute = λ _ → ⌞ MR.id-comm-sym (category H) ⌟ ; sym-commute = λ _ → ⌞ MR.id-comm (category H) ⌟ }
; F⇐G = record { η = λ _ → ≅.refl ; commute = λ _ → ⌞ MR.id-comm-sym (category H) ⌟ ; sym-commute = λ _ → ⌞ MR.id-comm (category H) ⌟ }
; iso = λ _ → record { isoˡ = ⌞ identityˡ ⌟ ; isoʳ = ⌞ identityˡ ⌟ }
}
where
open Category (category H)
open Morphism (category H)
counit : ∀ C → Functor (C.Core C) C
counit C = record
{ F₀ = Function.id
; F₁ = _≅_.from
; identity = Equiv.refl
; homomorphism = Equiv.refl
; F-resp-≈ = λ where ⌞ eq ⌟ → eq
}
where
open Category C
open Morphism C
counit-commute : ∀ {C D} (F : Functor C D) →
counit D ∘F Core.F₁ F ≃ F ∘F counit C
counit-commute {C} {D} F = record
{ F⇒G = record { η = λ _ → D.id ; commute = λ _ → MR.id-comm-sym D ; sym-commute = λ _ → MR.id-comm D }
; F⇐G = record { η = λ _ → D.id ; commute = λ _ → MR.id-comm-sym D ; sym-commute = λ _ → MR.id-comm D }
; iso = λ _ → _≅_.iso ≅.refl
}
where
module D = Category D
open Morphism D
zig : ∀ {G} → counit (category G) ∘F unit G ≃ id
zig {G} = record
{ F⇒G = record { η = λ _ → G.id ; commute = λ _ → MR.id-comm-sym (category G) ; sym-commute = λ _ → MR.id-comm (category G) }
; F⇐G = record { η = λ _ → G.id ; commute = λ _ → MR.id-comm-sym (category G) ; sym-commute = λ _ → MR.id-comm (category G) }
; iso = λ _ → _≅_.iso ≅.refl
}
where
module G = Groupoid G
open Morphism G.category
zag : ∀ {B} → Core.F₁ (counit B) ∘F unit (Core.F₀ B) ≃ id
zag {B} = record
{ F⇒G = record { η = λ _ → ≅.refl ; commute = λ _ → ⌞ MR.id-comm-sym B ⌟ ; sym-commute = λ _ → ⌞ MR.id-comm B ⌟ }
; F⇐G = record { η = λ _ → ≅.refl ; commute = λ _ → ⌞ MR.id-comm-sym B ⌟ ; sym-commute = λ _ → ⌞ MR.id-comm B ⌟ }
; iso = λ _ → record { isoˡ = ⌞ identityˡ ⌟ ; isoʳ = ⌞ identityˡ ⌟ }
}
where
open Category B
open Morphism B
| {
"alphanum_fraction": 0.58261276,
"avg_line_length": 37.5350877193,
"ext": "agda",
"hexsha": "d67a4bae2983e71b99420284c94dd7ede97f9262",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint/Instance/Core.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint/Instance/Core.agda",
"max_line_length": 142,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint/Instance/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1477,
"size": 4279
} |
{-# OPTIONS --without-K #-}
module Fiber where
open import Equivalence
open import NTypes.Contractible
open import PathOperations
open import Types
fib : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) (y : B) →
Set _
fib {A = A} f y = Σ A λ x → f x ≡ y
fib→dom : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) →
Σ B (fib f) → A
fib→dom f (b , a , p) = a
dom→fib : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) →
A → Σ B (fib f)
dom→fib f a = f a , a , refl
fib-dom-eq : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) →
Σ B (fib f) ≃ A
fib-dom-eq {A = A} {B = B} f
= fib→dom f
, (dom→fib f , λ _ → refl)
, (dom→fib f , λ {(b , a , p) →
ap (swap ∘ _,_ a) (π₂ (pp-space-contr (f a)) (b , p))})
where
swap : (Σ A λ x → Σ B λ y → f x ≡ y) → Σ B (fib f)
swap (b , a , p) = a , b , p
| {
"alphanum_fraction": 0.47,
"avg_line_length": 25,
"ext": "agda",
"hexsha": "312ea657da89b7f2ce1dcc552474d1d0661e1f03",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/Fiber.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/Fiber.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/Fiber.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 372,
"size": 800
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Monoidal.Braided.Helpers where
open import Categories.Monoidal.Helpers
open import Data.Nat using (_+_)
open import Function using (flip)
open import Categories.Category
import Categories.Functor
open import Categories.Bifunctor hiding (identityˡ; identityʳ; assoc) renaming (id to idF; _≡_ to _≡F_; _∘_ to _∘F_)
open import Categories.NaturalIsomorphism
open import Categories.NaturalTransformation using (_∘₀_; _∘₁_; _∘ˡ_; _∘ʳ_; NaturalTransformation) renaming (_≡_ to _≡ⁿ_; id to idⁿ)
module BraidedHelperFunctors {o ℓ e} (C : Category o ℓ e) (—⊗— : Bifunctor C C C) (id : Category.Obj C) where
open MonoidalHelperFunctors C —⊗— id
private module C = Category C
open C hiding (id; identityˡ; identityʳ)
import Categories.Power.NaturalTransformation
private module PowNat = Categories.Power.NaturalTransformation C
open PowNat
private module ⊗ = Functor —⊗— renaming (F₀ to ⊗₀; F₁ to ⊗₁; F-resp-≡ to ⊗-resp-≡)
open ⊗
module Braiding (identityˡ : NaturalIsomorphism id⊗x x)
(identityʳ : NaturalIsomorphism x⊗id x)
(assoc : NaturalIsomorphism [x⊗y]⊗z x⊗[y⊗z])
(braid : NaturalIsomorphism x⊗y y⊗x) where
open NaturalIsomorphism identityˡ using () renaming (F⇒G to υˡ)
open NaturalIsomorphism identityʳ using () renaming (F⇒G to υʳ)
open NaturalIsomorphism assoc using () renaming (F⇒G to α; F⇐G to α₂)
open NaturalIsomorphism braid using () renaming (F⇒G to B)
α-over : ∀ {n} (F₁ F₂ F₃ : Powerendo n) → NaturalTransformation ((F₁ ⊗₂ F₂) ⊗₂ F₃) (overlap2ʳ —⊗— F₁ F₂ F₃)
α-over F₁ F₂ F₃ = α ∘ʳ plex {3} F₁ F₂ F₃ -- ((hyp F₁ ∥ hyp F₂) ∥ hyp F₃)
α₂-over : ∀ {n} (F₁ F₂ F₃ : Powerendo n) → NaturalTransformation (overlap2ʳ —⊗— F₁ F₂ F₃) ((F₁ ⊗₂ F₂) ⊗₂ F₃)
α₂-over F₁ F₂ F₃ = α₂ ∘ʳ plex {3} F₁ F₂ F₃
B-over : ∀ {n} (F₁ F₂ : Powerendo n) → NaturalTransformation (F₁ ⊗₂ F₂) (F₂ ⊗₂ F₁)
B-over F₁ F₂ = B ∘ʳ plex {2} F₁ F₂
BTriangleTop : NaturalTransformation id⊗x x⊗id
BTriangleTop = B-over (widenˡ 1 id↑) x
BTriangleLeft : NaturalTransformation id⊗x x
BTriangleLeft = υˡ
BTriangleRight : NaturalTransformation x⊗id x
BTriangleRight = υʳ
Hexagon1TopA : NaturalTransformation [x⊗y]⊗z x⊗[y⊗z]
Hexagon1TopA = α-over (select 0) (select 1) (select 2)
Hexagon1TopB : NaturalTransformation x⊗[y⊗z] [y⊗z]⊗x
Hexagon1TopB = B-over (select 0) (select 1 ⊗₂ select 2)
Hexagon1SideB : NaturalTransformation [y⊗z]⊗x y⊗[z⊗x]
Hexagon1SideB = α-over (select 1) (select 2) (select 0)
Hexagon1SideA : NaturalTransformation [x⊗y]⊗z [y⊗x]⊗z
Hexagon1SideA = B-over (select 0) (select 1) ⊗ⁿ′ id3 {select 2}
Hexagon1BottomA : NaturalTransformation [y⊗x]⊗z y⊗[x⊗z]
Hexagon1BottomA = α-over (select 1) (select 0) (select 2)
Hexagon1BottomB : NaturalTransformation y⊗[x⊗z] y⊗[z⊗x]
Hexagon1BottomB = id3 {select 1} ⊗ⁿ′ B-over (select 0) (select 2)
Hexagon2TopA : NaturalTransformation x⊗[y⊗z] [x⊗y]⊗z
Hexagon2TopA = α₂-over (select 0) (select 1) (select 2)
Hexagon2TopB : NaturalTransformation [x⊗y]⊗z z⊗[x⊗y]
Hexagon2TopB = B-over (select 0 ⊗₂ select 1) (select 2)
Hexagon2SideB : NaturalTransformation z⊗[x⊗y] [z⊗x]⊗y
Hexagon2SideB = α₂-over (select 2) (select 0) (select 1)
Hexagon2SideA : NaturalTransformation x⊗[y⊗z] x⊗[z⊗y]
Hexagon2SideA = id3 {select 0} ⊗ⁿ′ B-over (select 1) (select 2)
Hexagon2BottomA : NaturalTransformation x⊗[z⊗y] [x⊗z]⊗y
Hexagon2BottomA = α₂-over (select 0) (select 2) (select 1)
Hexagon2BottomB : NaturalTransformation [x⊗z]⊗y [z⊗x]⊗y
Hexagon2BottomB = B-over (select 0) (select 2) ⊗ⁿ′ id3 {select 1}
| {
"alphanum_fraction": 0.6656914894,
"avg_line_length": 43.7209302326,
"ext": "agda",
"hexsha": "8a98179c567de135730eeb7a9b3f9e7c66c0c741",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Monoidal/Braided/Helpers.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Monoidal/Braided/Helpers.agda",
"max_line_length": 132,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Monoidal/Braided/Helpers.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1561,
"size": 3760
} |
module Data.ListNonEmpty where
open import Data.Boolean
import Data.IndexedList
open import Functional
import Lvl
open import Numeral.Natural
open import Type
private variable ℓ : Lvl.Level
private variable T : Type{ℓ}
module _ (T : Type{ℓ}) where
open Data.IndexedList(T){Bool} using (IndexedList ; intro)
-- A non-empty list.
List₊ : Type{ℓ}
List₊ = IndexedList(intro 𝐹 (const(const 𝑇)))(𝑇)
module _ {T : Type{ℓ}} where
open Data.IndexedList(T){Bool} using (∅ ; _⊰_ ; singleton) public
pattern ‥ = _ ⊰ _
open import Data.List
import Data.List.Functions as List
-- A list from a non-empty list.
list : List₊(T) → List(T)
list (singleton(x)) = List.singleton(x)
list (x ⊰ l@‥) = x List.⊰ list(l)
-- A list without its first element.
tail₀ : List₊(T) → List(T)
tail₀ (singleton(_)) = List.∅
tail₀ (_ ⊰ l@‥) = list(l)
-- List concatenation.
_++_ : List₊(T) → List₊(T) → List₊(T)
singleton(x) ++ y = x ⊰ y
(x ⊰ xl@‥) ++ y = x ⊰ (xl ++ y)
-- The first element of the list.
head : List₊(T) → T
head(singleton x) = x
head(x ⊰ l@‥) = x
-- Applies a binary operator to each element in the list starting with the initial element.
-- Example:
-- reduceᵣ(_▫_) [a] = a
-- reduceᵣ(_▫_) [a,b] = a ▫ b
-- reduceᵣ(_▫_) [a,b,c] = a ▫ (b ▫ c)
-- reduceᵣ(_▫_) [a,b,c,d,e] = a ▫ (b ▫ (c ▫ (d ▫ e)))
reduceᵣ : (T → T → T) → List₊(T) → T
reduceᵣ(_) (singleton(x)) = x
reduceᵣ(_▫_) (x ⊰ l@‥) = x ▫ (reduceᵣ(_▫_) l)
| {
"alphanum_fraction": 0.5948509485,
"avg_line_length": 25.8947368421,
"ext": "agda",
"hexsha": "0ff42ff380a6ecd860b5a19ae1631e49a4a36a4f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/ListNonEmpty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/ListNonEmpty.agda",
"max_line_length": 91,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/ListNonEmpty.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 569,
"size": 1476
} |
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
open import Categories.Support.Equivalence
module Categories.Morphism.Indexed {o ℓ e c q} (C : Category o ℓ e) (B : Setoid c q) where
open import Level using (_⊔_)
open import Data.Product as P using (_,_; _×_)
open import Function as F using () renaming (_∘_ to _⋆_; _∘′_ to _⋆′_)
open import Relation.Binary as B using ()
open import Relation.Binary.HeterogeneousEquality as HE using (_≅_)
open import Categories.Support.PropositionalEquality
open import Categories.Support.SetoidFunctions as SF using (_⟶_; ⟪_,_⟫′)
open import Categories.Support.SetoidPi as SΠ public using (Π; IndexedSetoid) renaming (_⟨$⟩_ to _‼_; cong to cong₁)
import Categories.Object.Indexed as IxOb
open IxOb C B
open Category C
open Heterogeneous C
open Setoid B using () renaming (Carrier to Bc; _≈_ to _≈B_)
open Setoid using () renaming (_≈_ to _[_≈_])
ihom-setoid : {S : Set o} → (S → (Obj × Obj)) → (B ⟶ (set→setoid S)) → IndexedSetoid Bc _≈B_ _ _
ihom-setoid {S} F Xs = record
-- ok, this is massively ugly, but it gets around some weird problems introduced in 2.5.1.1 (JC)
{ Carrier = λ i → (P.proj₁ (F (_⟶_._⟨$⟩_ Xs i)) ⇒ P.proj₂ (F (_⟶_._⟨$⟩_ Xs i)))
; _≈_ = λ f g → f ∼ g
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
; resp = λ {i} {j} i≈j → SΠ.resp-per′ (at′ i) (at′ j) (resp₁ i≈j) (resp₂ i≈j)
}
where
-- fake 'at' for resp
at′ : Bc → Setoid _ _
at′ i = record
{ Carrier = (P.proj₁ (F (_⟶_._⟨$⟩_ Xs i)) ⇒ P.proj₂ (F (_⟶_._⟨$⟩_ Xs i)))
; _≈_ = λ f g → f ∼ g
; isEquivalence = record { refl = refl; sym = sym; trans = trans }
}
at-≈ : (X : S) → B.Rel ((P.uncurry _⇒_ ⋆′ F) X) (ℓ ⊔ e)
at-≈ X = λ f g → f ∼ g
.resp₁ : ∀ {i j} → (i ≈B j) → (P.proj₁ (F (_⟶_._⟨$⟩_ Xs i)) ⇒ P.proj₂ (F (_⟶_._⟨$⟩_ Xs i))) ≣ (P.proj₁ (F (_⟶_._⟨$⟩_ Xs j)) ⇒ P.proj₂ (F (_⟶_._⟨$⟩_ Xs j)))
resp₁ i≈j = ≣-cong (P.uncurry _⇒_ ⋆′ F) (cong₀ Xs i≈j)
.resp₂ : ∀ {i j} → (i ≈B j) → Setoid._≈_ (at′ i) ≅ Setoid._≈_ (at′ j)
resp₂ i≈j = HE.cong at-≈ (HE.≡-to-≅ (cong₀ Xs i≈j))
Fan : Obj → Dust → Set _
Fan X Ys = Π B (ihom-setoid (λ Y → X , Y) Ys)
fan-setoid : Obj → Dust → Setoid _ _
fan-setoid X Ys = SΠ.setoid B (ihom-setoid (λ Y → X , Y) Ys)
_⇒∗_ = Fan
_⇨∗_ = fan-setoid
Plume : Dust → Obj → Set _
Plume Xs Y = Π B (ihom-setoid (λ X → X , Y) Xs)
plume-setoid : Dust → Obj → Setoid _ _
plume-setoid Xs Y = SΠ.setoid B (ihom-setoid (λ X → X , Y) Xs)
_∗⇒_ = Plume
_∗⇨_ = plume-setoid
Dance : Dust → Dust → Set _
Dance Xs Ys = Π B (ihom-setoid F.id ⟪ Xs , Ys ⟫′)
dance-setoid : Dust → Dust → Setoid _ _
dance-setoid Xs Ys = SΠ.setoid B (ihom-setoid F.id ⟪ Xs , Ys ⟫′)
_∗⇒∗_ = Dance
_∗⇨∗_ = dance-setoid
_◃_ : ∀ {Xs Y Z} (f : Y ⇒ Z) (g : Xs ∗⇒ Y) → Xs ∗⇒ Z
f ◃ g = record { _⟨$⟩_ = λ x → f ∘ (g ‼ x)
; cong = λ x≈y → ∘-resp-∼ʳ (cong₁ g x≈y) }
_▹_ : ∀ {X Y Zs} (f : Y ⇒∗ Zs) (g : X ⇒ Y) → X ⇒∗ Zs
f ▹ g = record { _⟨$⟩_ = λ x → (f ‼ x) ∘ g
; cong = λ x≈y → ∘-resp-∼ˡ (cong₁ f x≈y) }
_⋊_ : ∀ {Xs Ys Z} (f : Ys ∗⇒ Z) (g : Xs ∗⇒∗ Ys) → Xs ∗⇒ Z
f ⋊ g = record { _⟨$⟩_ = λ x → (f ‼ x) ∘ (g ‼ x)
; cong = λ x≈y → ∘-resp-∼ (cong₁ f x≈y) (cong₁ g x≈y) }
_⋉_ : ∀ {X Ys Zs} (f : Ys ∗⇒∗ Zs) (g : X ⇒∗ Ys) → X ⇒∗ Zs
f ⋉ g = record { _⟨$⟩_ = λ x → (f ‼ x) ∘ (g ‼ x)
; cong = λ x≈y → ∘-resp-∼ (cong₁ f x≈y) (cong₁ g x≈y) }
_⋈_ : ∀ {Xs Y Zs} (f : Y ⇒∗ Zs) (g : Xs ∗⇒ Y) → Xs ∗⇒∗ Zs
f ⋈ g = record { _⟨$⟩_ = λ x → (f ‼ x) ∘ (g ‼ x)
; cong = λ x≈y → ∘-resp-∼ (cong₁ f x≈y) (cong₁ g x≈y) }
_◽_ : ∀ {Xs Ys Zs} (f : Ys ∗⇒∗ Zs) (g : Xs ∗⇒∗ Ys) → Xs ∗⇒∗ Zs
f ◽ g = record { _⟨$⟩_ = λ x → (f ‼ x) ∘ (g ‼ x)
; cong = λ x≈y → ∘-resp-∼ (cong₁ f x≈y) (cong₁ g x≈y) }
.assoc-◽⋉ : ∀ {X Ys Zs Ws} {f : Zs ∗⇒∗ Ws} {g : Ys ∗⇒∗ Zs} {h : X ⇒∗ Ys}
→ (X ⇨∗ Ws) [ _⋉_ {Ys = Ys} {Ws} (_◽_ {Ys} {Zs} {Ws} f g) h ≈ _⋉_ {Ys = Zs} {Ws} f (_⋉_ {Ys = Ys} {Zs} g h) ]
assoc-◽⋉ {Ys = Ys} {Zs} {Ws} {f = f} {g} {h} {i} {j} i≈j with Ys _⟶_.⟨$⟩ j | cong₀ Ys i≈j | Zs _⟶_.⟨$⟩ j | cong₀ Zs i≈j | Ws _⟶_.⟨$⟩ j | cong₀ Ws i≈j | f ‼ j | cong₁ f i≈j | g ‼ j | cong₁ g i≈j | h ‼ j | cong₁ h i≈j
assoc-◽⋉ {f = f} {g} {h} {i} i≈j | ._ | ≣-refl | ._ | ≣-refl | ._ | ≣-refl | fj | ≡⇒∼ fi≡fj | gj | ≡⇒∼ gi≡gj | hj | ≡⇒∼ hi≡hj =
≡⇒∼ (begin
((f ‼ i) ∘ (g ‼ i)) ∘ (h ‼ i)
↓⟨ ∘-resp-≡ (∘-resp-≡ fi≡fj gi≡gj) hi≡hj ⟩
(fj ∘ gj) ∘ hj
↓⟨ assoc ⟩
fj ∘ (gj ∘ hj)
∎)
where
open Heterogeneous C hiding (≡⇒∼)
open HomReasoning
| {
"alphanum_fraction": 0.5072976559,
"avg_line_length": 37.0655737705,
"ext": "agda",
"hexsha": "c26953efc5357f5f63e5d7a4caa38adf1dab05bc",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Morphism/Indexed.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Morphism/Indexed.agda",
"max_line_length": 215,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Morphism/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 2376,
"size": 4522
} |
{-# OPTIONS --cubical --safe #-}
-- Counterpoint Exercises
module Exercises where
open import MidiEvent
open import Note
open import Pitch
open import Data.Fin
open import Data.List
open import Data.Nat
-- Exercise 5.4
cantusFirmus : List Pitch
cantusFirmus = a 4 ∷ c 5 ∷ b 4 ∷ c 5 ∷ d 5 ∷ e 5 ∷ c 5 ∷ b 4 ∷ a 4 ∷ []
cfNotes : List Note
cfNotes = Data.List.map (λ p → tone whole p) cantusFirmus
----
instrument : InstrumentNumber-1
instrument = # 0 -- piano
channel : Channel-1
channel = # 0
tempo : ℕ
tempo = 120
cfTrack : List MidiTrack
cfTrack = track "Piano" instrument channel tempo (notes→events defaultVelocity cfNotes) ∷ []
| {
"alphanum_fraction": 0.6972049689,
"avg_line_length": 17.8888888889,
"ext": "agda",
"hexsha": "166b6d8300799ece541f93b8a409896762de6108",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "agda/Exercises.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "agda/Exercises.agda",
"max_line_length": 92,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "agda/Exercises.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 211,
"size": 644
} |
module examplesPaperJFP.SpaceShipSimpleVar where
open import SizedIO.Base
open import StateSizedIO.GUI.BaseStateDependent
open import Data.Bool.Base
open import Data.List.Base
open import Data.Integer
open import Data.Product hiding (map)
open import SizedIO.Object
open import SizedIO.IOObject
open import NativeIO
open import StateSizedIO.GUI.WxBindingsFFI
open import StateSizedIO.GUI.VariableList
open import StateSizedIO.GUI.WxGraphicsLib
open import StateSized.GUI.BitMaps
VarType = ℤ
varInit : VarType
varInit = (+ 150)
onPaint : ∀{i} → VarType → DC → Rect → IO GuiLev1Interface i VarType
onPaint z dc rect = exec (drawBitmap dc ship (z , (+ 150)) true) λ _ →
return z
moveSpaceShip : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType
moveSpaceShip fra z = return (z + (+ 20))
callRepaint : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType
callRepaint fra z = exec (repaint fra) λ _ → return z
buttonHandler : ∀{i} → Frame → List (VarType → IO GuiLev1Interface i VarType)
buttonHandler fra = moveSpaceShip fra ∷ [ callRepaint fra ]
program : ∀{i} → IOˢ GuiLev2Interface i (λ _ → Unit) []
program = execˢ (level1C makeFrame) λ fra →
execˢ (level1C (makeButton fra)) λ bt →
execˢ (level1C (addButton fra bt)) λ _ →
execˢ (createVar varInit) λ _ →
execˢ (setButtonHandler bt (moveSpaceShip fra
∷ [ callRepaint fra ])) λ _ →
execˢ (setOnPaint fra [ onPaint ])
returnˢ
main : NativeIO Unit
main = start (translateLev2 program)
| {
"alphanum_fraction": 0.6638194021,
"avg_line_length": 29.8,
"ext": "agda",
"hexsha": "14170963b9eaba7c8374cfbea6570062b6ebe204",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/SpaceShipSimpleVar.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/SpaceShipSimpleVar.agda",
"max_line_length": 78,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/SpaceShipSimpleVar.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 479,
"size": 1639
} |
-- {-# OPTIONS --no-coverage #-}
-- {-# OPTIONS -v tc.cover:20 #-}
open import Common.Bool
open import Common.Equality
_∨_ : Bool → Bool → Bool
a ∨ b = if a then true else b
module Works where
data Term : Bool → Set where
I : Term false
App : ∀ a b c → a ∨ b ≡ c → Term a → Term b → Term c
-- The following clause works for the coverage checker:
test : Term false → Set
test (App false false .false refl I x) = Bool
module Fails where
data Term : Bool -> Set where
I : Term false
App : ∀ a b c → Term a → Term b → a ∨ b ≡ c → Term c
-- If we put the equality proof later in App, it fails:
test : Term false → Set
test (App false false .false I x refl) = Bool
-- The following checks, until you split at p.
-- test (App false false .false I x p) = {!p!}
| {
"alphanum_fraction": 0.6109725686,
"avg_line_length": 25.0625,
"ext": "agda",
"hexsha": "54b94a4bfb22e8c7ae139d7c091035c6aef6a1cc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1384.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1384.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1384.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 247,
"size": 802
} |
{-# OPTIONS --without-K --safe #-}
open import Algebra
module Data.FingerTree.View
{r m}
(ℳ : Monoid r m)
where
open import Level using (_⊔_)
open import Data.Product
open import Function
open import Data.List as List using (List; _∷_; [])
open import Data.FingerTree.Structures ℳ
open import Data.FingerTree.Reasoning ℳ
open import Data.FingerTree.Measures ℳ
open import Data.FingerTree.Cons ℳ
open σ ⦃ ... ⦄
{-# DISPLAY σ.μ _ = μ #-}
{-# DISPLAY μ-tree _ x = μ x #-}
{-# DISPLAY μ-deep _ x = μ x #-}
open Monoid ℳ renaming (Carrier to 𝓡)
infixr 5 _◃_
data Viewₗ {a b} (A : Set a) (Σ : Set b) : Set (a ⊔ b) where
nilₗ : Viewₗ A Σ
_◃_ : A → Σ → Viewₗ A Σ
instance
σ-Viewₗ : ∀ {a b} {A : Set a} {Σ : Set b} ⦃ _ : σ A ⦄ ⦃ _ : σ Σ ⦄ → σ (Viewₗ A Σ)
μ ⦃ σ-Viewₗ ⦄ nilₗ = ε
μ ⦃ σ-Viewₗ ⦄ (x ◃ xs) = μ x ∙ μ xs
viewₗ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (xs : Tree Σ) → μ⟨ Viewₗ Σ (Tree Σ) ⟩≈ (μ xs)
viewₗ empty = nilₗ ⇑
viewₗ (single x) = (x ◃ empty) ⇑[ ℳ ↯ ]
viewₗ (deep (𝓂 ↤ (D₂ a b & m & rs) ⇑[ 𝓂≈ ])) = a ◃ deep ⟪ D₁ b & m & rs ⇓⟫ ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewₗ (deep (𝓂 ↤ (D₃ a b c & m & rs) ⇑[ 𝓂≈ ])) = a ◃ deep ⟪ D₂ b c & m & rs ⇓⟫ ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewₗ (deep (𝓂 ↤ (D₄ a b c d & m & rs) ⇑[ 𝓂≈ ])) = a ◃ deep ⟪ D₃ b c d & m & rs ⇓⟫ ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewₗ (deep (𝓂 ↤ (D₁ a & m & rs) ⇑[ 𝓂≈ ])) with viewₗ m
... | (μ⟨y⟩ ↤ N₂ y₁ y₂ ⇑[ yp ]) ◃ ys ⇑[ p ] = a ◃ deep (μ m ∙ μ rs ↤ D₂ y₁ y₂ & ys & rs ⇑[ ℳ ↯ ] ≈[ ≪∙ (≪∙ yp ⍮ p) ]′) ⇑[ 𝓂≈ ]
... | (μ⟨y⟩ ↤ N₃ y₁ y₂ y₃ ⇑[ yp ]) ◃ ys ⇑[ p ] = a ◃ deep (μ m ∙ μ rs ↤ D₃ y₁ y₂ y₃ & ys & rs ⇑[ ℳ ↯ ] ≈[ ≪∙ (≪∙ yp ⍮ p) ]′) ⇑[ 𝓂≈ ]
... | nilₗ ⇑[ p ] = (digitToTree rs [ _ ∙> r ⟿ r ] >>= (λ rs′ → (a ◃ rs′) ⇑)) ≈[ ∙≫ sym (identityˡ _) ⍮ (∙≫ ≪∙ p) ⍮ 𝓂≈ ]
infixl 5 _▹_
data Viewᵣ {a b} (A : Set a) (Σ : Set b) : Set (a ⊔ b) where
nilᵣ : Viewᵣ A Σ
_▹_ : Σ → A → Viewᵣ A Σ
instance
σ-Viewᵣ : ∀ {a b} {A : Set a} {Σ : Set b} ⦃ _ : σ A ⦄ ⦃ _ : σ Σ ⦄ → σ (Viewᵣ A Σ)
μ ⦃ σ-Viewᵣ ⦄ nilᵣ = ε
μ ⦃ σ-Viewᵣ ⦄ (xs ▹ x) = μ xs ∙ μ x
viewᵣ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (xs : Tree Σ) → μ⟨ Viewᵣ Σ (Tree Σ) ⟩≈ (μ xs)
viewᵣ empty = nilᵣ ⇑
viewᵣ (single x) = empty ▹ x ⇑[ ℳ ↯ ]
viewᵣ (deep (𝓂 ↤ (ls & m & D₂ a b ) ⇑[ 𝓂≈ ])) = (deep ⟪ ls & m & D₁ a ⇓⟫ ▹ b) ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewᵣ (deep (𝓂 ↤ (ls & m & D₃ a b c ) ⇑[ 𝓂≈ ])) = (deep ⟪ ls & m & D₂ a b ⇓⟫ ▹ c) ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewᵣ (deep (𝓂 ↤ (ls & m & D₄ a b c d) ⇑[ 𝓂≈ ])) = (deep ⟪ ls & m & D₃ a b c ⇓⟫ ▹ d) ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewᵣ (deep (𝓂 ↤ (ls & m & D₁ a) ⇑[ 𝓂≈ ])) with viewᵣ m
... | ys ▹ (μ⟨y⟩ ↤ N₂ y₁ y₂ ⇑[ yp ]) ⇑[ p ] = deep (μ ls ∙ μ m ↤ ls & ys & D₂ y₁ y₂ ⇑[ ℳ ↯ ] ≈[ ∙≫ (∙≫ yp ⍮ p) ]′) ▹ a ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
... | ys ▹ (μ⟨y⟩ ↤ N₃ y₁ y₂ y₃ ⇑[ yp ]) ⇑[ p ] = deep (μ ls ∙ μ m ↤ ls & ys & D₃ y₁ y₂ y₃ ⇑[ ℳ ↯ ] ≈[ ∙≫ (∙≫ yp ⍮ p) ]′) ▹ a ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
... | nilᵣ ⇑[ p ] = (digitToTree ls [ l <∙ _ ⟿ l ] >>= (λ ls′ → (ls′ ▹ a) ⇑)) ≈[ ℳ ↯ ↣ μ ls ∙ (ε ∙ μ a) ] ≈[ ∙≫ ≪∙ p ⍮ 𝓂≈ ]′
deepₗ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (l : List Σ) → (m : Tree ⟪ Node Σ ⟫) → (r : Digit Σ) → μ⟨ Tree Σ ⟩≈ (μ l ∙ (μ m ∙ μ r))
deepₗ [] m r with viewₗ m
deepₗ [] m r | nilₗ ⇑[ n≈ ] = digitToTree r ≈[ ℳ ↯ ↣ ε ∙ (ε ∙ μ r) ] ≈[ ∙≫ ≪∙ n≈ ]′
deepₗ [] m r | ((μ⟨y⟩ ↤ N₂ y₁ y₂ ⇑[ yp ]) ◃ ys) ⇑[ ys≈ ] = deep (μ m ∙ μ r ↤ D₂ y₁ y₂ & ys & r ⇑[ ≪∙ yp ⍮ sym (assoc _ _ _) ⍮ ≪∙ ys≈ ]) ⇑[ ℳ ↯ ]
deepₗ [] m r | ((μ⟨y⟩ ↤ N₃ y₁ y₂ y₃ ⇑[ yp ]) ◃ ys) ⇑[ ys≈ ] = deep (μ m ∙ μ r ↤ D₃ y₁ y₂ y₃ & ys & r ⇑[ ≪∙ yp ⍮ sym (assoc _ _ _) ⍮ ≪∙ ys≈ ]) ⇑[ ℳ ↯ ]
deepₗ (l ∷ ls) m r = go l ls m r
where
go : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (l : Σ) → (ls : List Σ) → (m : Tree ⟪ Node Σ ⟫) → (r : Digit Σ) → μ⟨ Tree Σ ⟩≈ (μ l ∙ μ ls ∙ (μ m ∙ μ r))
go l [] m r = deep ⟪ D₁ l & m & r ⇓⟫ ⇑[ ℳ ↯ ]
go l₁ (l₂ ∷ ls) m r = (go l₂ ls m r [ _ ∙> ls′ ⟿ ls′ ] >>= (l₁ ◂_)) ≈[ ℳ ↯ ]
deepᵣ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (l : Digit Σ) → (m : Tree ⟪ Node Σ ⟫) → (r : List Σ) → μ⟨ Tree Σ ⟩≈ (μ l ∙ (μ m ∙ μ r))
deepᵣ l m [] with viewᵣ m
deepᵣ l m [] | nilᵣ ⇑[ p ] = digitToTree l ≈[ sym (identityʳ _) ⍮ ∙≫ (p ⍮ sym (identityʳ _)) ]
deepᵣ l m [] | (ys ▹ (μ⟨y⟩ ↤ N₂ y₁ y₂ ⇑[ μ⟨y⟩≈ ])) ⇑[ p ] = deep (μ l ∙ μ m ↤ l & ys & D₂ y₁ y₂ ⇑[ ∙≫ (∙≫ μ⟨y⟩≈ ⍮ p) ]) ⇑[ ℳ ↯ ]
deepᵣ l m [] | (ys ▹ (μ⟨y⟩ ↤ N₃ y₁ y₂ y₃ ⇑[ μ⟨y⟩≈ ])) ⇑[ p ] = deep (μ l ∙ μ m ↤ l & ys & D₃ y₁ y₂ y₃ ⇑[ ∙≫ (∙≫ μ⟨y⟩≈ ⍮ p) ]) ⇑[ ℳ ↯ ]
deepᵣ l m (r ∷ rs) = go (deep ⟪ l & m & D₁ r ⇓⟫ ⇑) rs ≈[ ℳ ↯ ]
where
go : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → ∀ {xs} → μ⟨ Tree Σ ⟩≈ xs → (rs : List Σ) → μ⟨ Tree Σ ⟩≈ (xs ∙ μ rs)
go xs [] = xs ≈[ sym (identityʳ _) ]
go xs (r ∷ rs) = go (xs [ sz <∙ _ ⟿ sz ] >>= (_▸ r)) rs ≈[ ℳ ↯ ]
| {
"alphanum_fraction": 0.4154114822,
"avg_line_length": 50.9,
"ext": "agda",
"hexsha": "268576458d0b5e0e55137bd7bb8322ac23b1470c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-indexed-fingertree",
"max_forks_repo_path": "src/Data/FingerTree/View.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-indexed-fingertree",
"max_issues_repo_path": "src/Data/FingerTree/View.agda",
"max_line_length": 150,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-indexed-fingertree",
"max_stars_repo_path": "src/Data/FingerTree/View.agda",
"max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z",
"num_tokens": 2838,
"size": 4581
} |
module Logic.Predicate.Multi where
open import Data.Tuple.RaiseTypeᵣ
open import Function.Multi
open import Function.Multi.Functions
open import Numeral.Natural
open import Logic.Predicate
open import Logic
-- Universal quantification of multiple variables.
-- Example:
-- ∀₊(3) P = ∀{x}{y}{z} → P(x)(y)(z)
∀₊ : (n : ℕ) → ∀{ℓ}{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (As ⇉ Stmt{ℓ}) → Stmt
∀₊(n) = quantifier₊(n) ∀ₗ
-- Existential quantification of multiple variables.
-- Example:
-- ∃₊(3) P = ∃(x ↦ ∃(y ↦ ∃(z ↦ P(x)(y)(z))))
∃₊ : (n : ℕ) → ∀{ℓ}{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (As ⇉ Stmt{ℓ}) → Stmt
∃₊(n) = quantifier₊(n) ∃
| {
"alphanum_fraction": 0.6108374384,
"avg_line_length": 29,
"ext": "agda",
"hexsha": "7b2ac8cf654da3d667e10f18473bde98c392eca3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Logic/Predicate/Multi.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Logic/Predicate/Multi.agda",
"max_line_length": 66,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Logic/Predicate/Multi.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 259,
"size": 609
} |
{-# OPTIONS --cubical --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Cubical.Glue where
open import Agda.Primitive
open import Agda.Builtin.Sigma
open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_;
primHComp to hcomp; primTransp to transp; primComp to comp;
itIsOne to 1=1)
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to ouc)
import Agda.Builtin.Cubical.HCompU as HCompU
module Helpers = HCompU.Helpers
open Helpers
-- We make this a record so that isEquiv can be proved using
-- copatterns. This is good because copatterns don't get unfolded
-- unless a projection is applied so it should be more efficient.
record isEquiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (ℓ ⊔ ℓ') where
no-eta-equality
field
equiv-proof : (y : B) → isContr (fiber f y)
open isEquiv public
infix 4 _≃_
_≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A ≃ B = Σ (A → B) \ f → (isEquiv f)
equivFun : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A ≃ B → A → B
equivFun e = fst e
-- Improved version of equivProof compared to Lemma 5 in CCHM. We put
-- the (φ = i0) face in contr' making it be definitionally c in this
-- case. This makes the computational behavior better, in particular
-- for transp in Glue.
equivProof : ∀ {la lt} (T : Set la) (A : Set lt) → (w : T ≃ A) → (a : A)
→ ∀ ψ → (Partial ψ (fiber (w .fst) a)) → fiber (w .fst) a
equivProof A B w a ψ fb = contr' {A = fiber (w .fst) a} (w .snd .equiv-proof a) ψ fb
where
contr' : ∀ {ℓ} {A : Set ℓ} → isContr A → (φ : I) → (u : Partial φ A) → A
contr' {A = A} (c , p) φ u = hcomp (λ i → λ { (φ = i1) → p (u 1=1) i
; (φ = i0) → c }) c
{-# BUILTIN EQUIV _≃_ #-}
{-# BUILTIN EQUIVFUN equivFun #-}
{-# BUILTIN EQUIVPROOF equivProof #-}
primitive
primGlue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I}
→ (T : Partial φ (Set ℓ')) → (e : PartialP φ (λ o → T o ≃ A))
→ Set ℓ'
prim^glue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I}
→ {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)}
→ (t : PartialP φ T) → (a : A) → primGlue A T e
prim^unglue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I}
→ {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)}
→ primGlue A T e → A
-- Needed for transp in Glue.
primFaceForall : (I → I) → I
module _ {ℓ : I → Level} (P : (i : I) → Set (ℓ i)) where
private
E : (i : I) → Set (ℓ i)
E = λ i → P i
~E : (i : I) → Set (ℓ (~ i))
~E = λ i → P (~ i)
A = P i0
B = P i1
f : A → B
f x = transp E i0 x
g : B → A
g y = transp ~E i0 y
u : ∀ i → A → E i
u i x = transp (λ j → E (i ∧ j)) (~ i) x
v : ∀ i → B → E i
v i y = transp (λ j → ~E ( ~ i ∧ j)) i y
fiberPath : (y : B) → (xβ0 xβ1 : fiber f y) → xβ0 ≡ xβ1
fiberPath y (x0 , β0) (x1 , β1) k = ω , λ j → δ (~ j) where
module _ (j : I) where
private
sys : A → ∀ i → PartialP (~ j ∨ j) (λ _ → E (~ i))
sys x i (j = i0) = v (~ i) y
sys x i (j = i1) = u (~ i) x
ω0 = comp ~E (sys x0) ((β0 (~ j)))
ω1 = comp ~E (sys x1) ((β1 (~ j)))
θ0 = fill ~E (sys x0) (inc (β0 (~ j)))
θ1 = fill ~E (sys x1) (inc (β1 (~ j)))
sys = λ {j (k = i0) → ω0 j ; j (k = i1) → ω1 j}
ω = hcomp sys (g y)
θ = hfill sys (inc (g y))
δ = λ (j : I) → comp E
(λ i → λ { (j = i0) → v i y ; (k = i0) → θ0 j (~ i)
; (j = i1) → u i ω ; (k = i1) → θ1 j (~ i) })
(θ j)
γ : (y : B) → y ≡ f (g y)
γ y j = comp E (λ i → λ { (j = i0) → v i y
; (j = i1) → u i (g y) }) (g y)
pathToisEquiv : isEquiv f
pathToisEquiv .equiv-proof y .fst .fst = g y
pathToisEquiv .equiv-proof y .fst .snd = sym (γ y)
pathToisEquiv .equiv-proof y .snd = fiberPath y _
pathToEquiv : A ≃ B
pathToEquiv .fst = f
pathToEquiv .snd = pathToisEquiv
| {
"alphanum_fraction": 0.4899685763,
"avg_line_length": 33.3629032258,
"ext": "agda",
"hexsha": "2d9fd1f8871d782a304895515332e9c030213342",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "f275daf2443ac348c287e08cb53ffec7db59625d",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/my-agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f275daf2443ac348c287e08cb53ffec7db59625d",
"max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/my-agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda",
"max_line_length": 104,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f275daf2443ac348c287e08cb53ffec7db59625d",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/my-agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda",
"max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z",
"num_tokens": 1640,
"size": 4137
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.RingSolver.NatAsAlmostRing where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat
open import Cubical.Algebra.RingSolver.AlmostRing
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.AbGroup
ℕAsAlmostRing : AlmostRing {ℓ-zero}
ℕAsAlmostRing = almostring ℕ 0 1 _+_ _·_ (λ n → n) (isalmostring
(ismonoid (issemigroup isSetℕ +-assoc) (λ n → (+-zero n) , refl))
(ismonoid (issemigroup isSetℕ ·-assoc) λ n → (·-identityʳ n) , (·-identityˡ n))
+-comm
·-comm
(λ k l n → sym (·-distribˡ k l n) )
(λ k l n → sym (·-distribʳ k l n))
(λ _ _ → refl) (λ _ _ → refl)
(λ _ → refl) λ x → sym (0≡m·0 x))
| {
"alphanum_fraction": 0.5782997763,
"avg_line_length": 40.6363636364,
"ext": "agda",
"hexsha": "3792920bc6c7e6954b6992f1f8a654b8772dff17",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Algebra/RingSolver/NatAsAlmostRing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Algebra/RingSolver/NatAsAlmostRing.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Algebra/RingSolver/NatAsAlmostRing.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 280,
"size": 894
} |
open import Nat
open import Prelude
open import core
open import contexts
open import lemmas-consistency
open import type-assignment-unicity
open import binders-disjoint-checks
open import lemmas-subst-ta
module preservation where
-- if d and d' both result from filling the hole in ε with terms of the
-- same type, they too have the same type.
wt-different-fill : ∀{ Δ Γ d ε d1 d2 d' τ τ1 } →
d == ε ⟦ d1 ⟧ →
Δ , Γ ⊢ d :: τ →
Δ , Γ ⊢ d1 :: τ1 →
Δ , Γ ⊢ d2 :: τ1 →
d' == ε ⟦ d2 ⟧ →
Δ , Γ ⊢ d' :: τ
wt-different-fill FHOuter D1 D2 D3 FHOuter
with type-assignment-unicity D1 D2
... | refl = D3
wt-different-fill (FHAp1 eps) (TAAp D1 D2) D3 D4 (FHAp1 D5) = TAAp (wt-different-fill eps D1 D3 D4 D5) D2
wt-different-fill (FHAp2 eps) (TAAp D1 D2) D3 D4 (FHAp2 D5) = TAAp D1 (wt-different-fill eps D2 D3 D4 D5)
wt-different-fill (FHNEHole eps) (TANEHole x D1 x₁) D2 D3 (FHNEHole D4) = TANEHole x (wt-different-fill eps D1 D2 D3 D4) x₁
wt-different-fill (FHCast eps) (TACast D1 x) D2 D3 (FHCast D4) = TACast (wt-different-fill eps D1 D2 D3 D4) x
wt-different-fill (FHFailedCast x) (TAFailedCast y x₁ x₂ x₃) D3 D4 (FHFailedCast eps) = TAFailedCast (wt-different-fill x y D3 D4 eps) x₁ x₂ x₃
-- if a well typed term results from filling the hole in ε, then the term
-- that filled the hole is also well typed
wt-filling : ∀{ ε Δ Γ d τ d' } →
Δ , Γ ⊢ d :: τ →
d == ε ⟦ d' ⟧ →
Σ[ τ' ∈ htyp ] (Δ , Γ ⊢ d' :: τ')
wt-filling TAConst FHOuter = _ , TAConst
wt-filling (TAVar x₁) FHOuter = _ , TAVar x₁
wt-filling (TALam f ta) FHOuter = _ , TALam f ta
wt-filling (TAAp ta ta₁) FHOuter = _ , TAAp ta ta₁
wt-filling (TAAp ta ta₁) (FHAp1 eps) = wt-filling ta eps
wt-filling (TAAp ta ta₁) (FHAp2 eps) = wt-filling ta₁ eps
wt-filling (TAEHole x x₁) FHOuter = _ , TAEHole x x₁
wt-filling (TANEHole x ta x₁) FHOuter = _ , TANEHole x ta x₁
wt-filling (TANEHole x ta x₁) (FHNEHole eps) = wt-filling ta eps
wt-filling (TACast ta x) FHOuter = _ , TACast ta x
wt-filling (TACast ta x) (FHCast eps) = wt-filling ta eps
wt-filling (TAFailedCast x y z w) FHOuter = _ , TAFailedCast x y z w
wt-filling (TAFailedCast x x₁ x₂ x₃) (FHFailedCast y) = wt-filling x y
-- instruction transitions preserve type
preserve-trans : ∀{ Δ Γ d τ d' } →
binders-unique d →
Δ , Γ ⊢ d :: τ →
d →> d' →
Δ , Γ ⊢ d' :: τ
preserve-trans bd TAConst ()
preserve-trans bd (TAVar x₁) ()
preserve-trans bd (TALam _ ta) ()
preserve-trans (BUAp (BULam bd x₁) bd₁ (BDLam x₂ x₃)) (TAAp (TALam apt ta) ta₁) ITLam = lem-subst apt x₂ bd₁ ta ta₁
preserve-trans bd (TAAp (TACast ta TCRefl) ta₁) ITApCast = TACast (TAAp ta (TACast ta₁ TCRefl)) TCRefl
preserve-trans bd (TAAp (TACast ta (TCArr x x₁)) ta₁) ITApCast = TACast (TAAp ta (TACast ta₁ (~sym x))) x₁
preserve-trans bd (TAEHole x x₁) ()
preserve-trans bd (TANEHole x ta x₁) ()
preserve-trans bd (TACast ta x) (ITCastID) = ta
preserve-trans bd (TACast (TACast ta x) x₁) (ITCastSucceed x₂) = ta
preserve-trans bd (TACast ta x) (ITGround (MGArr x₁)) = TACast (TACast ta (TCArr TCHole1 TCHole1)) TCHole1
preserve-trans bd (TACast ta TCHole2) (ITExpand (MGArr x₁)) = TACast (TACast ta TCHole2) (TCArr TCHole2 TCHole2)
preserve-trans bd (TACast (TACast ta x) x₁) (ITCastFail w y z) = TAFailedCast ta w y z
preserve-trans bd (TAFailedCast x y z q) ()
lem-bd-ε1 : ∀{ d ε d0} → d == ε ⟦ d0 ⟧ → binders-unique d → binders-unique d0
lem-bd-ε1 FHOuter bd = bd
lem-bd-ε1 (FHAp1 eps) (BUAp bd bd₁ x) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHAp2 eps) (BUAp bd bd₁ x) = lem-bd-ε1 eps bd₁
lem-bd-ε1 (FHNEHole eps) (BUNEHole bd x) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHCast eps) (BUCast bd) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHFailedCast eps) (BUFailedCast bd) = lem-bd-ε1 eps bd
-- this is the main preservation theorem, gluing together the above
preservation : {Δ : hctx} {d d' : ihexp} {τ : htyp} {Γ : tctx} →
binders-unique d →
Δ , Γ ⊢ d :: τ →
d ↦ d' →
Δ , Γ ⊢ d' :: τ
preservation bd D (Step x x₁ x₂)
with wt-filling D x
... | (_ , wt) = wt-different-fill x D wt (preserve-trans (lem-bd-ε1 x bd) wt x₁) x₂
-- note that the exact statement of preservation in the paper, where Γ is
-- empty indicating that the terms are closed, is an immediate corrolary
-- of the slightly more general statement above.
preservation' : {Δ : hctx} {d d' : ihexp} {τ : htyp} →
binders-unique d →
Δ , ∅ ⊢ d :: τ →
d ↦ d' →
Δ , ∅ ⊢ d' :: τ
preservation' = preservation
| {
"alphanum_fraction": 0.6214893617,
"avg_line_length": 46.5346534653,
"ext": "agda",
"hexsha": "e6d38a11175909f65f0453e2881642dfa31e11bd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "preservation.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "preservation.agda",
"max_line_length": 145,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "preservation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 1831,
"size": 4700
} |
{-# OPTIONS --without-K --safe #-}
module Categories.NaturalTransformation.NaturalIsomorphism.Properties where
open import Level
open import Categories.Category
open import Categories.Category.Instance.Setoids
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Construction.LiftSetoids
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.NaturalTransformation.Properties
import Categories.Morphism as Mor
import Categories.Morphism.Properties as Morₚ
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D : Category o ℓ e
module _ {F G : Functor C D} (α : NaturalIsomorphism F G) where
private module C = Category C
open Category D
open Mor D
open Functor F
open Functor G renaming (F₀ to G₀; F₁ to G₁)
open NaturalIsomorphism α
-- We can move equations along natural isomorphism.
module _ {A B} {f g : A C.⇒ B} where
push-eq : F₁ f ≈ F₁ g → G₁ f ≈ G₁ g
push-eq hyp = MR.push-eq D FX≅GX (⇒.commute f) (⇒.commute g) hyp
pull-eq : G₁ f ≈ G₁ g → F₁ f ≈ F₁ g
pull-eq hyp = MR.push-eq D (≅.sym FX≅GX) (⇐.commute f) (⇐.commute g) hyp
-- properties of natural isomorphisms over an endofunctor
module _ {F : Endofunctor C} where
private
module C = Category C
module F = Functor F
module MC = Mor C
module _ (α : F ≃ idF) where
open C
open HomReasoning
open F
open MC
open MR C
open Mor C
open Morₚ C
open NaturalIsomorphism α
F≃id-comm₁ : ∀ {A} → ⇒.η (F₀ A) ≈ F₁ (⇒.η A)
F≃id-comm₁ {A} = begin
⇒.η (F₀ A) ≈⟨ introʳ (F-resp-≈ (iso.isoˡ _) ○ identity) ⟩
⇒.η (F₀ A) ∘ F₁ (⇐.η A ∘ ⇒.η A) ≈⟨ refl⟩∘⟨ homomorphism ⟩
⇒.η (F₀ A) ∘ F₁ (⇐.η A) ∘ F₁ (⇒.η A) ≈⟨ cancelˡ (⇒.commute _ ○ iso.isoˡ _) ⟩
F₁ (⇒.η A) ∎
F≃id-comm₂ : ∀ {A} → ⇐.η (F₀ A) ≈ F₁ (⇐.η A)
F≃id-comm₂ {A} = begin
⇐.η (F₀ A) ≈⟨ introˡ (F-resp-≈ (iso.isoˡ _) ○ identity) ⟩
F₁ (⇐.η A ∘ ⇒.η A) ∘ ⇐.η (F₀ A) ≈⟨ homomorphism ⟩∘⟨refl ⟩
(F₁ (⇐.η A) ∘ F₁ (⇒.η A)) ∘ ⇐.η (F₀ A) ≈⟨ cancelʳ (⟺ (⇐.commute _) ○ iso.isoˡ _) ⟩
F₁ (⇐.η A) ∎
F≃id⇒id : ∀ {A} {f : A ⇒ A} → F₁ f ≈ id → f ≈ id
F≃id⇒id {A} {f} eq = Iso⇒Mono (Iso-swap (iso A)) _ _ helper
where helper : ⇐.η A ∘ f ≈ ⇐.η A ∘ id
helper = begin
⇐.η A ∘ f ≈⟨ ⇐.commute f ⟩
F₁ f ∘ ⇐.η A ≈⟨ eq ⟩∘⟨refl ⟩
id ∘ ⇐.η A ≈˘⟨ id-comm ⟩
⇐.η A ∘ id ∎
-- unlift universe level
module _ {c ℓ ℓ′ e} {F G : Functor C (Setoids c ℓ)} (α : LiftSetoids ℓ′ e ∘F F ≃ LiftSetoids ℓ′ e ∘F G) where
open NaturalIsomorphism α
unlift-≃ : F ≃ G
unlift-≃ = record
{ F⇒G = unlift-nat F⇒G
; F⇐G = unlift-nat F⇐G
; iso = λ X → record
{ isoˡ = λ eq → lower (iso.isoˡ X (lift eq))
; isoʳ = λ eq → lower (iso.isoʳ X (lift eq))
}
}
| {
"alphanum_fraction": 0.5543695797,
"avg_line_length": 31.2291666667,
"ext": "agda",
"hexsha": "203011ed06635edc7194ae5254616ee0cc46eeff",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Properties.agda",
"max_line_length": 109,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1237,
"size": 2998
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Implementation.Standard where
module Data where
module Empty where open import Light.Implementation.Standard.Data.Empty public
module Unit where open import Light.Implementation.Standard.Data.Unit public
module These where open import Light.Implementation.Standard.Data.These public
module Product where open import Light.Implementation.Standard.Data.Product public
module Relation where
module Decidable where open import Light.Implementation.Standard.Relation.Decidable public
module Sets where open import Light.Implementation.Standard.Relation.Sets public
| {
"alphanum_fraction": 0.799132948,
"avg_line_length": 49.4285714286,
"ext": "agda",
"hexsha": "28c5e0b771f0b32f2dbbde4d3c1d9989469e6c4f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "bindings/stdlib/Light/Implementation/Standard.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "bindings/stdlib/Light/Implementation/Standard.agda",
"max_line_length": 96,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "bindings/stdlib/Light/Implementation/Standard.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 123,
"size": 692
} |
module Oscar.Data where
open import Agda.Builtin.Unit
open import Oscar.Function
open import Oscar.Level
infixr 20 ∷_
infixr 20 _∷_
data NAT : Set where
∅ : NAT
∷_ : NAT → NAT
testNAT : NAT
testNAT = ∷ ∷ ∷ ∅
-- List
data ⟦_⟧ {a} (A : Set a) : Set a where
∅ : ⟦ A ⟧
_∷_ : A → ⟦ A ⟧ → ⟦ A ⟧
-- Nat
⟦⟧ = ⟦ ⊤ ⟧
test⟦⟧ : ⟦⟧
test⟦⟧ = {!(tt ∷_) ∅ !}
infix 21 ¡_
pattern ¡_ ⟦A⟧ = tt ∷ ⟦A⟧
--¡ : ⟦⟧ → ⟦⟧
--¡ ⟦A⟧ = tt ∷ ⟦A⟧
-- Fin (with a payload)
-- n-1 , ... 0
data ⟦_⟧[_] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[ ¡ n ]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ n ] → ⟦ A ⟧[ ¡ n ]
⟦⟧[_] = ⟦ const ⊤ ⟧[_]
-- Vec (with an (optional) index)
-- 0 ≤ n, counting down from n to 0
data ⟦_⟧[_₀] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ ∅ ₀]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ n ₀] → ⟦ A ⟧[ ¡ n ₀]
⟦⟧[_₀] = ⟦ const ⊤ ⟧[_₀]
-- Interval↓
-- Interval⟨_⟩[_↙_)
-- Descenderval
-- m ≤ n, counting down from n-1 to m
data ⟦_⟧[_≤_↓] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ m ≤ m ↓]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ m ≤ n ↓] → ⟦ A ⟧[ m ≤ ¡ n ↓]
⟦⟧[_≤_↓] = ⟦ const ⊤ ⟧[_≤_↓]
-- Fin⟨_⟩ = λ A n → Interval↓ A 0 n
-- Vec n = Descenderval 0 (↑ n)
-- Interval⟨_⟩[_↗_)
-- Ascenderval
-- m ≤ n, counting up from m to n-1
data ⟦_⟧[↑_≤_] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[↑ m ≤ m ]
_∷_ : ∀ {n} → A m → ⟦ A ⟧[↑ ¡ m ≤ n ] → ⟦ A ⟧[↑ m ≤ n ]
⟦⟧[↑_≤_] = ⟦ const ⊤ ⟧[↑_≤_]
-- Inj (almost)
-- m ≤ n, m-1...0, n-1...n-m
-- Paradescenderval
data ⟦_⟧[↓_≤_↓] {a} (A : ⟦⟧ → ⟦⟧ → Set a) : ⟦⟧ → ⟦⟧ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[↓ ∅ ≤ n ↓]
_∷_ : ∀ {m n} → A m n → ⟦ A ⟧[↓ m ≤ n ↓] → ⟦ A ⟧[↓ ¡ m ≤ ¡ n ↓]
-- Inj = Paradescenderval (λ _ → Fin ∘ ↑_)
⟦⟧[↓_≤_↓] = ⟦ const const ⊤ ⟧[↓_≤_↓]
infix 21 ‼_
pattern ‼_ ⟦A⟧ = tt ∷ ⟦A⟧ -- tricky, works for all above _∷_ constructors only because it is defined afterwards, won't work for any later-defined constructors
{-
Function (B m → B n)
Fin
Term
AList (SubstitutionList) Substilist
Step
List
FinTerm (SubstitutionFunction) Substifunction
SubstitutionFunction.internal
SubstitutionFunction.Morphism
SubstitutionFunction.IsSemigroupoid
SubstitutionFunction.IsCategory
IsSemigroupoid
IsCategory
-}
--Nat = ⟦⟧
--Vec :
-- mutual
-- Terms : Nat → Nat → Set 𝔣
-- Terms N m = Vec (Term m) N
-- data Term (m : Nat) : Set 𝔣 where
-- i : (x : Fin m) → Term m
-- leaf : Term m
-- _fork_ : (s t : Term m) → Term m
-- function : FunctionName → ∀ {N} → Terms N m → Term m
| {
"alphanum_fraction": 0.485472155,
"avg_line_length": 20.3114754098,
"ext": "agda",
"hexsha": "a2d429267dd7e305bbc4f8b394d267a5aa56b16e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data.agda",
"max_line_length": 158,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1245,
"size": 2478
} |
open import Agda.Builtin.Nat
record R : Set where
field
x : Nat
open R {{...}}
f₁ f₂ : R
-- This is fine.
x ⦃ f₁ ⦄ = 0
-- THIS WORKS BUT MAKES NO SENSE!!!
f₂ ⦃ .x ⦄ = 0
| {
"alphanum_fraction": 0.5555555556,
"avg_line_length": 11.25,
"ext": "agda",
"hexsha": "227b9eca4a1844031ef1029d34b836dc36b477c5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3289.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3289.agda",
"max_line_length": 35,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3289.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 78,
"size": 180
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.