Search is not available for this dataset
text
string
meta
dict
{-# POLARITY F #-}
{ "alphanum_fraction": 0.4736842105, "avg_line_length": 9.5, "ext": "agda", "hexsha": "3a721b24232f5379c71dbf74c7f4c9445936333c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Fail/Unknown-name-in-polarity-pragma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Fail/Unknown-name-in-polarity-pragma.agda", "max_line_length": 18, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Fail/Unknown-name-in-polarity-pragma.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 6, "size": 19 }
module Imports.Issue1913-M where data D : Set where d : D
{ "alphanum_fraction": 0.7049180328, "avg_line_length": 12.2, "ext": "agda", "hexsha": "9e24000036980d1e259e94e233ddbacb9f6d764b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Imports/Issue1913-M.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Imports/Issue1913-M.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Imports/Issue1913-M.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 20, "size": 61 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types import LibraBFT.Yasm.Base as LYB -- This module provides a single import for all Yasm modules module LibraBFT.Yasm.Yasm (ℓ-EC : Level) (EpochConfig : Set ℓ-EC) (epochId : EpochConfig → EpochId) (authorsN : EpochConfig → ℕ) (parms : LYB.SystemParameters ℓ-EC EpochConfig epochId authorsN) (senderPKOK : (ec : EpochConfig) → PK → LYB.SystemParameters.PeerId parms → Set) where open LYB.SystemParameters parms open import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN using (AvailableEpochs) renaming (lookup' to EC-lookup; lookup'' to EC-lookup') public open import LibraBFT.Yasm.Base ℓ-EC EpochConfig epochId authorsN public open import LibraBFT.Yasm.System ℓ-EC EpochConfig epochId authorsN parms public open import LibraBFT.Yasm.Properties ℓ-EC EpochConfig epochId authorsN parms senderPKOK public open import Util.FunctionOverride PeerId _≟PeerId_ public
{ "alphanum_fraction": 0.7086671522, "avg_line_length": 49.0357142857, "ext": "agda", "hexsha": "dc910eb4db889c24ee89fe92aa902bab5e02cf1d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "haroldcarr/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Yasm/Yasm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "haroldcarr/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Yasm/Yasm.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "haroldcarr/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Yasm/Yasm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 367, "size": 1373 }
module Vehicle.Data.Tensor where open import Level using (Level) open import Data.Empty.Polymorphic using (⊥) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.List.Base using (List; []; _∷_) open import Data.Vec.Functional using (Vector) private variable a : Level A : Set a n : ℕ Tensor : Set a → List ℕ → Set a Tensor A [] = ⊥ Tensor A (n ∷ []) = Vector A n Tensor A (m ∷ n ∷ ns) = Vector (Tensor A (n ∷ ns)) m
{ "alphanum_fraction": 0.6339869281, "avg_line_length": 24.1578947368, "ext": "agda", "hexsha": "a37ee9979fb3fd8f0d0bdfb8d0275018a1b8328f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z", "max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z", "max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vehicle-lang/vehicle", "max_forks_repo_path": "src/agda/Vehicle/Data/Tensor.agda", "max_issues_count": 53, "max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "wenkokke/vehicle", "max_issues_repo_path": "src/agda/Vehicle/Data/Tensor.agda", "max_line_length": 52, "max_stars_count": 11, "max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "wenkokke/vehicle", "max_stars_repo_path": "src/agda/Vehicle/Data/Tensor.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z", "num_tokens": 144, "size": 459 }
postulate X A : Set module Foo {{x : X}} where postulate B C : Set foo : A → B → C → Set module Bar {{x : X}} where open Foo postulate -- The following fails to infer the instance argument if we do not either: -- * apply {{x}} explicitly to foo -- * apply {{x}} explicitly when opening module Foo -- * define fail1 in module Foo fail1 : ∀ {a b b' c c'} → foo a b c → foo a b' c' -- However, the following works work1 : ∀ {a b c} → foo a b c → foo a b c work2 : ∀ {a a' b c} → foo a b c → foo a' b c work3 : ∀ {a b b' c} → foo a b c → foo a b' c work4 : ∀ {a a' b b' c} → foo a b c → foo a' b' c work5 : ∀ {a b c c'} → foo a b c → foo a b c' work6 : ∀ {a a' b c c'} → foo a b c → foo a' b c' work7 : ∀ {a a' b b' c c'} → foo a b c → foo a' b' c' data Nat : Set where suc : Nat → Nat instance zero : Nat instance one = suc zero data IsSuc : Nat → Set where isSuc : ∀{n} → IsSuc (suc n) postulate F : {{x : Nat}} (p : IsSuc x) → Set test = F isSuc -- yellow, but should not be
{ "alphanum_fraction": 0.5251396648, "avg_line_length": 23.8666666667, "ext": "agda", "hexsha": "763f9feab2a2a1e13e32b44f0764959e493a0703", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2325.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2325.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2325.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 403, "size": 1074 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.WedgeExtension import homotopy.SuspAdjointLoop as SAL module homotopy.Freudenthal where {- lemma (move this where?) -} private move1-left-on-left : ∀ {i} {A : Type i} {x y : A} (p : x == y) (q : x == y) → ((! q) ∙ p == idp → p == q) move1-left-on-left p idp h = h module FreudenthalEquiv {i} (n k : ℕ₋₂) (kle : k ≤T S n +2+ S n) (X : Ptd i) {{cX : is-connected (S (S n)) (de⊙ X)}} where Q : Susp (de⊙ X) → Type i Q x = Trunc k (north == x) ⊙up : X ⊙→ ⊙Ω (⊙Susp (de⊙ X)) ⊙up = SAL.η _ up = fst ⊙up Codes-mer-args : args {a₀ = pt X} {b₀ = [_] {n = k} (pt X)} Codes-mer-args = record {n = S n; m = S n; P = λ _ _ → (Trunc k (de⊙ X) , raise-level-≤T kle Trunc-level); f = [_]; g = idf _; p = idp} module CodesExt = WedgeExt {a₀ = pt X} {b₀ = [_] {n = k} (pt X)} Codes-mer-args Codes-mer : de⊙ X → Trunc k (de⊙ X) → Trunc k (de⊙ X) Codes-mer = CodesExt.ext Codes-mer-β-l : (λ a → Codes-mer a [ pt X ]) == [_] Codes-mer-β-l = λ= CodesExt.β-l Codes-mer-β-r : (λ b → Codes-mer (pt X) b) == idf _ Codes-mer-β-r = λ= $ CodesExt.β-r Codes-mer-coh : app= Codes-mer-β-l (pt X) == app= Codes-mer-β-r [ pt X ] Codes-mer-coh = app= Codes-mer-β-l (pt X) =⟨ app=-β CodesExt.β-l (pt X) ⟩ CodesExt.β-l (pt X) =⟨ ! (move1-left-on-left _ _ CodesExt.coh) ⟩ CodesExt.β-r [ pt X ] =⟨ ! (app=-β CodesExt.β-r [ pt X ]) ⟩ app= Codes-mer-β-r [ pt X ] ∎ Codes-mer-is-equiv : (x : de⊙ X) → is-equiv (Codes-mer x) Codes-mer-is-equiv = conn-extend (pointed-conn-out {n = S n} (de⊙ X) (pt X)) (λ x' → (is-equiv (Codes-mer x') , is-equiv-level)) (λ tt → transport is-equiv (! (Codes-mer-β-r)) (idf-is-equiv _)) Codes-mer-equiv : (x : de⊙ X) → Trunc k (de⊙ X) ≃ Trunc k (de⊙ X) Codes-mer-equiv x = (Codes-mer x , Codes-mer-is-equiv x) Codes-mer-inv-x₀ : <– (Codes-mer-equiv (pt X)) == idf _ Codes-mer-inv-x₀ = ap is-equiv.g (conn-extend-β (pointed-conn-out (de⊙ X) (pt X)) (λ x' → (is-equiv (Codes-mer x') , is-equiv-level)) _ unit) ∙ lemma (! (Codes-mer-β-r)) (snd $ ide _) where lemma : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B} (α : f == g) (e : is-equiv f) → is-equiv.g (transport is-equiv α e) == is-equiv.g e lemma idp e = idp module CodesRec = SuspRec (Trunc k (de⊙ X)) (Trunc k (de⊙ X)) (ua ∘ Codes-mer-equiv) Codes : Susp (de⊙ X) → Type i Codes = CodesRec.f Codes-has-level : (x : Susp (de⊙ X)) → has-level k (Codes x) Codes-has-level = Susp-elim Trunc-level Trunc-level (λ _ → prop-has-all-paths-↓) {- favonia: This equation should be true: [⊙Trunc-fmap ⊙up = (decodeN , decodeN-pt)]. Maybe there is a way to refactor the following code so that pointedness is handled more elegantly. -} decodeN : Codes north → Trunc k (north' (de⊙ X) == north) decodeN = Trunc-fmap up decodeN-pt : decodeN [ pt X ] == [ idp ] decodeN-pt = snd (⊙Trunc-fmap ⊙up) decodeS : Codes south → Q south decodeS = Trunc-fmap merid encode₀ : {x : Susp (de⊙ X)} → north == x → Codes x encode₀ α = transport Codes α [ pt X ] encode : {x : Susp (de⊙ X)} → Trunc k (north == x) → Codes x encode {x} tα = Trunc-rec {{Codes-has-level x}} encode₀ tα ⊙decodeN : ⊙Trunc k X ⊙→ ⊙Trunc k (⊙Ω (⊙Susp (de⊙ X))) ⊙decodeN = decodeN , ap [_] (!-inv-r (merid (pt X))) ⊙encodeN : ⊙Trunc k (⊙Ω (⊙Susp (de⊙ X))) ⊙→ ⊙Trunc k X ⊙encodeN = encode , idp abstract encode-decodeN : (c : Codes north) → encode (decodeN c) == c encode-decodeN = Trunc-elim {{λ _ → =-preserves-level Trunc-level}} (λ x → encode (decodeN [ x ]) =⟨ idp ⟩ coe (ap Codes (merid x ∙ ! (merid (pt X)))) [ pt X ] =⟨ ap-∙ Codes (merid x) (! (merid (pt X))) |in-ctx (λ w → coe w [ pt X ]) ⟩ coe (ap Codes (merid x) ∙ ap Codes (! (merid (pt X)))) [ pt X ] =⟨ coe-∙ (ap Codes (merid x)) (ap Codes (! (merid (pt X)))) [ pt X ] ⟩ coe (ap Codes (! (merid (pt X)))) (coe (ap Codes (merid x)) [ pt X ]) =⟨ SuspRec.merid-β _ _ (ua ∘ Codes-mer-equiv) x |in-ctx (λ w → coe (ap Codes (! (merid (pt X)))) (coe w [ pt X ])) ⟩ coe (ap Codes (! (merid (pt X)))) (coe (ua (Codes-mer-equiv x)) [ pt X ]) =⟨ coe-β (Codes-mer-equiv x) [ pt X ] |in-ctx (λ w → coe (ap Codes (! (merid (pt X)))) w) ⟩ coe (ap Codes (! (merid (pt X)))) (Codes-mer x [ pt X ]) =⟨ app= Codes-mer-β-l x |in-ctx (λ w → coe (ap Codes (! (merid (pt X)))) w) ⟩ coe (ap Codes (! (merid (pt X)))) [ x ] =⟨ coe-ap-! Codes (merid (pt X)) [ x ] ⟩ coe! (ap Codes (merid (pt X))) [ x ] =⟨ SuspRec.merid-β _ _ (ua ∘ Codes-mer-equiv) (pt X) |in-ctx (λ w → coe! w [ x ]) ⟩ coe! (ua (Codes-mer-equiv (pt X))) [ x ] =⟨ coe!-β (Codes-mer-equiv (pt X)) [ x ] ⟩ <– (Codes-mer-equiv (pt X)) [ x ] =⟨ app= Codes-mer-inv-x₀ [ x ] ⟩ [ x ] ∎) decode : {x : Susp (de⊙ X)} → Codes x → Q x decode {x} = Susp-elim {P = λ y → Codes y → Q y} decodeN decodeS (λ x' → ↓-→-from-transp (λ= (STS x'))) x where abstract coh : {s₁ s₂ : Susp (de⊙ X)} (p : s₁ == s₂) → (ap (λ s → s ∙ p) (!-inv-r p)) == ∙-assoc p (! p) p ∙ ap (λ s → p ∙ s) (!-inv-l p) ∙ ∙-unit-r p coh idp = idp P : de⊙ X → de⊙ X → (S (n +2+ (S n))) -Type (lmax i i) P = λ x₁ x₂ → ((transport Q (merid x₁) (Trunc-fmap up [ x₂ ]) == Trunc-fmap merid (transport Codes (merid x₁) [ x₂ ])), =-preserves-level (raise-level-≤T kle Trunc-level)) f : (a : de⊙ X) → fst (P a (pt X)) f a = transport Q (merid a) [ up (pt X) ] =⟨ transport-Trunc' (north ==_) (merid a) (up (pt X)) ⟩ [ transport (north ==_) (merid a) (up (pt X)) ] =⟨ ap [_] $ transp-cst=idf {A = Susp (de⊙ X)} (merid a) (up (pt X)) ⟩ [ (merid (pt X) ∙ ! (merid (pt X))) ∙ merid a ] =⟨ ap [_] $ ap (λ s → s ∙ merid a) (!-inv-r (merid (pt X))) ⟩ [ merid a ] =⟨ idp ⟩ Trunc-fmap merid [ a ] =⟨ ap (Trunc-fmap merid) (! (app= Codes-mer-β-l a)) ⟩ Trunc-fmap merid (Codes-mer a [ pt X ]) =⟨ ap (Trunc-fmap merid) (! (coe-β (Codes-mer-equiv a) [ pt X ])) ⟩ Trunc-fmap merid (coe (ua (Codes-mer-equiv a)) [ pt X ]) =⟨ ! (SuspRec.merid-β _ _ (ua ∘ Codes-mer-equiv) a) |in-ctx (λ w → Trunc-fmap merid (coe w [ pt X ])) ⟩ Trunc-fmap merid (transport Codes (merid a) [ pt X ]) ∎ g : (b : de⊙ X) → fst (P (pt X) b) g b = transport Q (merid (pt X)) [ up b ] =⟨ transport-Trunc' (north ==_) (merid (pt X)) (up b) ⟩ [ transport (north ==_) (merid (pt X)) (up b) ] =⟨ ap [_] $ transp-cst=idf {A = Susp (de⊙ X)} (merid (pt X)) (up b) ⟩ [ (merid b ∙ ! (merid (pt X))) ∙ merid (pt X) ] =⟨ ap [_] $ ∙-assoc (merid b) (! (merid (pt X))) (merid (pt X)) ∙ ap (λ s → merid b ∙ s) (!-inv-l (merid (pt X))) ∙ ∙-unit-r (merid b) ⟩ [ merid b ] =⟨ idp ⟩ Trunc-fmap merid [ b ] =⟨ ap (Trunc-fmap merid) (! (app= Codes-mer-β-r [ b ])) ⟩ Trunc-fmap merid (Codes-mer (pt X) [ b ]) =⟨ ap (Trunc-fmap merid) (! (coe-β (Codes-mer-equiv (pt X)) [ b ])) ⟩ Trunc-fmap merid (coe (ua (Codes-mer-equiv (pt X))) [ b ]) =⟨ ! (SuspRec.merid-β _ _ (ua ∘ Codes-mer-equiv) (pt X)) |in-ctx (λ w → Trunc-fmap merid (coe w [ b ])) ⟩ Trunc-fmap merid (transport Codes (merid (pt X)) [ b ]) ∎ p : f (pt X) == g (pt X) p = ap2 (λ p₁ p₂ → transport Q (merid (pt X)) [ up (pt X) ] =⟨ transport-Trunc' (north ==_) (merid (pt X)) (up (pt X)) ⟩ [ transport (north ==_) (merid (pt X)) (up (pt X)) ] =⟨ ap [_] $ transp-cst=idf {A = Susp (de⊙ X)} (merid (pt X)) (up (pt X)) ⟩ [ (merid (pt X) ∙ ! (merid (pt X))) ∙ merid (pt X) ] =⟨ ap [_] p₁ ⟩ [ merid (pt X) ] =⟨ idp ⟩ Trunc-fmap merid [ pt X ] =⟨ ap (Trunc-fmap merid) (! p₂) ⟩ Trunc-fmap merid (Codes-mer (pt X) [ pt X ]) =⟨ ap (Trunc-fmap merid) (! (coe-β (Codes-mer-equiv (pt X)) [ pt X ])) ⟩ Trunc-fmap merid (coe (ua (Codes-mer-equiv (pt X))) [ pt X ]) =⟨ ! (SuspRec.merid-β _ _ (ua ∘ Codes-mer-equiv) (pt X)) |in-ctx (λ w → Trunc-fmap merid (coe w [ pt X ])) ⟩ Trunc-fmap merid (transport Codes (merid (pt X)) [ pt X ]) ∎) (coh (merid (pt X))) Codes-mer-coh STS-args : args {a₀ = pt X} {b₀ = pt X} STS-args = record {n = S n; m = S n; P = P; f = f; g = g; p = p} STS : (x' : de⊙ X) (c : Codes north) → transport Q (merid x') (Trunc-fmap up c) == Trunc-fmap merid (transport Codes (merid x') c) STS x' = Trunc-elim {{λ _ → =-preserves-level Trunc-level}} (WedgeExt.ext STS-args x') abstract decode-encode : {x : Susp (de⊙ X)} (tα : Q x) → decode {x} (encode {x} tα) == tα decode-encode {x} = Trunc-elim {P = λ tα → decode {x} (encode {x} tα) == tα} {{λ _ → =-preserves-level Trunc-level}} (J (λ y p → decode {y} (encode {y} [ p ]) == [ p ]) (ap [_] (!-inv-r (merid (pt X))))) eq : Trunc k (de⊙ X) ≃ Trunc k (north' (de⊙ X) == north) eq = equiv decodeN encode decode-encode encode-decodeN ⊙eq : ⊙Trunc k X ⊙≃ ⊙Trunc k (⊙Ω (⊙Susp (de⊙ X))) ⊙eq = ≃-to-⊙≃ eq (snd ⊙decodeN) abstract ⊙decodeN-⊙encodeN : ⊙decodeN ⊙∘ ⊙encodeN == ⊙idf _ ⊙decodeN-⊙encodeN = ⊙λ=' {X = ⊙Trunc k (⊙Ω (⊙Susp (de⊙ X)))} {Y = ⊙Trunc k (⊙Ω (⊙Susp (de⊙ X)))} decode-encode $ ↓-idf=cst-in $ ! (∙-unit-r (ap [_] (!-inv-r (merid (pt X))))) ⊙<–-⊙eq : ⊙<– ⊙eq == ⊙encodeN ⊙<–-⊙eq = –>-is-inj (post⊙∘-equiv {Z = ⊙Trunc k (⊙Ω (⊙Susp (de⊙ X)))} ⊙eq) (⊙<– ⊙eq) ⊙encodeN $ ⊙decodeN ⊙∘ ⊙<– ⊙eq =⟨ ⊙<–-inv-r ⊙eq ⟩ ⊙idf _ =⟨ ! ⊙decodeN-⊙encodeN ⟩ ⊙decodeN ⊙∘ ⊙encodeN =∎ path : Trunc k (de⊙ X) == Trunc k (north' (de⊙ X) == north) path = ua eq ⊙path : ⊙Trunc k X == ⊙Trunc k (⊙Ω (⊙Susp (de⊙ X))) ⊙path = ⊙ua ⊙eq {- timjb: it is probably easier to show the naturality of ⊙decodeN and deduce the naturality of ⊙encodeN from that than to show the naturality of ⊙encodeN directly (as done below) -} module FreudenthalEquivNatural {i} (n k : ℕ₋₂) (kle : k ≤T S n +2+ S n) {X Y : Ptd i} (f : X ⊙→ Y) {{cX : is-connected (S (S n)) (de⊙ X)}} {{cY : is-connected (S (S n)) (de⊙ Y)}} where private module FX = FreudenthalEquiv n k kle X {{cX}} module FY = FreudenthalEquiv n k kle Y {{cY}} Codes-mer-map : ∀ (x : de⊙ X) (tx : Trunc k (de⊙ X)) → Trunc-fmap (fst f) (FX.Codes-mer x tx) == FY.Codes-mer (fst f x) (Trunc-fmap (fst f) tx) Codes-mer-map = WedgeExt.ext {A = de⊙ X} {a₀ = pt X} {B = Trunc k (de⊙ X)} {b₀ = [ pt X ]} $ record { n = S n; m = S n ; P = λ x tx → (P x tx , P-level x tx) ; f = λ x → ↯ (f-seq x) ; g = λ tx → ↯ (g-seq tx) ; p = =ₛ-out p } where P : de⊙ X → Trunc k (de⊙ X) → Type i P x tx = Trunc-fmap (fst f) (FX.Codes-mer x tx) == FY.Codes-mer (fst f x) (Trunc-fmap (fst f) tx) P-level : ∀ x tx → has-level (S n +2+ S n) (P x tx) P-level x tx = =-preserves-level (raise-level-≤T kle Trunc-level) f-seq : ∀ x → Trunc-fmap (fst f) (FX.Codes-mer x [ pt X ]) =-= FY.Codes-mer (fst f x) (Trunc-fmap (fst f) [ pt X ]) f-seq x = Trunc-fmap (fst f) (FX.Codes-mer x [ pt X ]) =⟪ ap (Trunc-fmap (fst f)) (FX.CodesExt.β-l x) ⟫ [ fst f x ] =⟪ ! (FY.CodesExt.β-l (fst f x)) ⟫ FY.Codes-mer (fst f x) [ pt Y ] =⟪ ap (FY.Codes-mer (fst f x) ∘ [_]) (! (snd f)) ⟫ FY.Codes-mer (fst f x) [ fst f (pt X) ] ∎∎ g-seq : ∀ tx → Trunc-fmap (fst f) (FX.Codes-mer (pt X) tx) =-= FY.Codes-mer (fst f (pt X)) (Trunc-fmap (fst f) tx) g-seq tx = Trunc-fmap (fst f) (FX.Codes-mer (pt X) tx) =⟪ ap (Trunc-fmap (fst f)) (FX.CodesExt.β-r tx) ⟫ Trunc-fmap (fst f) tx =⟪ ! (FY.CodesExt.β-r (Trunc-fmap (fst f) tx)) ⟫ FY.Codes-mer (pt Y) (Trunc-fmap (fst f) tx) =⟪ ap (λ y → FY.Codes-mer y (Trunc-fmap (fst f) tx)) (! (snd f)) ⟫ FY.Codes-mer (fst f (pt X)) (Trunc-fmap (fst f) tx) ∎∎ p : f-seq (pt X) =ₛ g-seq [ pt X ] p = ap (Trunc-fmap (fst f)) (FX.CodesExt.β-l (pt X)) ◃∙ ! (FY.CodesExt.β-l (fst f (pt X))) ◃∙ ap (FY.Codes-mer (fst f (pt X)) ∘ [_]) (! (snd f)) ◃∎ =ₛ⟨ 0 & 1 & ap-seq-=ₛ (Trunc-fmap (fst f)) $ pre-rotate-out {p = FX.CodesExt.β-l (pt X)} {q = []} {r = FX.CodesExt.β-r [ pt X ] ◃∎} $ =ₛ-in $ ! $ FX.CodesExt.coh ⟩ ap (Trunc-fmap (fst f)) (FX.CodesExt.β-r [ pt X ]) ◃∙ ! (FY.CodesExt.β-l (fst f (pt X))) ◃∙ ap (FY.Codes-mer (fst f (pt X)) ∘ [_]) (! (snd f)) ◃∎ =ₛ⟨ 1 & 1 & pre-rotate-in $ homotopy-naturality [_] (λ y → FY.Codes-mer y [ pt Y ]) (! ∘ FY.CodesExt.β-l) (! (snd f)) ⟩ ap (Trunc-fmap (fst f)) (FX.CodesExt.β-r [ pt X ]) ◃∙ ! (ap [_] (! (snd f))) ◃∙ ! (FY.CodesExt.β-l (pt Y)) ◃∙ ap (λ y → FY.Codes-mer y [ pt Y ]) (! (snd f)) ◃∙ ap (FY.Codes-mer (fst f (pt X)) ∘ [_]) (! (snd f)) ◃∎ =ₛ⟨ 3 & 2 & ap-comm-=ₛ (λ y y' → FY.Codes-mer y [ y' ]) (! (snd f)) (! (snd f)) ⟩ ap (Trunc-fmap (fst f)) (FX.CodesExt.β-r [ pt X ]) ◃∙ ! (ap [_] (! (snd f))) ◃∙ ! (FY.CodesExt.β-l (pt Y)) ◃∙ ap (λ y → FY.Codes-mer (pt Y) [ y ]) (! (snd f)) ◃∙ ap (λ y → FY.Codes-mer y [ fst f (pt X) ]) (! (snd f)) ◃∎ =ₛ⟨ 2 & 1 & !-=ₛ $ pre-rotate-out {p = FY.CodesExt.β-l (pt Y)} {q = []} {r = FY.CodesExt.β-r [ pt Y ] ◃∎} $ =ₛ-in $ ! $ FY.CodesExt.coh ⟩ ap (Trunc-fmap (fst f)) (FX.CodesExt.β-r [ pt X ]) ◃∙ ! (ap [_] (! (snd f))) ◃∙ ! (FY.CodesExt.β-r [ pt Y ]) ◃∙ ap (λ y → FY.Codes-mer (pt Y) [ y ]) (! (snd f)) ◃∙ ap (λ y → FY.Codes-mer y [ fst f (pt X) ]) (! (snd f)) ◃∎ =ₛ⟨ 1 & 3 & !ₛ $ pre-rotate-in $ homotopy-naturality [_] (FY.Codes-mer (pt Y) ∘ [_]) (! ∘ FY.CodesExt.β-r ∘ [_]) (! (snd f)) ⟩ ap (Trunc-fmap (fst f)) (FX.CodesExt.β-r [ pt X ]) ◃∙ ! (FY.CodesExt.β-r (Trunc-fmap (fst f) [ pt X ])) ◃∙ ap (λ y → FY.Codes-mer y [ fst f (pt X) ]) (! (snd f)) ◃∎ ∎ₛ Codes-fmap : ∀ {x : Susp (de⊙ X)} → FX.Codes x → FY.Codes (Susp-fmap (fst f) x) Codes-fmap {x} = Susp-elim {P = λ x → FX.Codes x → FY.Codes (Susp-fmap (fst f) x)} (Trunc-fmap (fst f)) (Trunc-fmap (fst f)) (λ x → ↓-→-from-transp $ λ= $ Trunc-elim {{λ tx → =-preserves-level Trunc-level}} $ λ x' → transport (FY.Codes ∘ Susp-fmap (fst f)) (merid x) [ fst f x' ] =⟨ ap (λ q → coe q [ fst f x' ]) (ap-∘ FY.Codes (Susp-fmap (fst f)) (merid x)) ⟩ transport FY.Codes (ap (Susp-fmap (fst f)) (merid x)) [ fst f x' ] =⟨ ap (λ p → transport FY.Codes p [ fst f x' ]) $ SuspFmap.merid-β (fst f) x ⟩ transport FY.Codes (merid (fst f x)) [ fst f x' ] =⟨ ap (λ p → coe p [ fst f x' ]) (FY.CodesRec.merid-β (fst f x)) ⟩ coe (ua (FY.Codes-mer-equiv (fst f x))) [ fst f x' ] =⟨ coe-β (FY.Codes-mer-equiv (fst f x)) [ fst f x' ] ⟩ FY.Codes-mer (fst f x) [ fst f x' ] =⟨ ! (Codes-mer-map x [ x' ]) ⟩ Trunc-fmap (fst f) (FX.Codes-mer x [ x' ]) =⟨ ap (Trunc-fmap (fst f)) (! (coe-β (FX.Codes-mer-equiv x) [ x' ])) ⟩ Trunc-fmap (fst f) (coe (ua (FX.Codes-mer-equiv x)) [ x' ]) =⟨ ap (λ p → Trunc-fmap (fst f) (coe p [ x' ])) (! (FX.CodesRec.merid-β x)) ⟩ Trunc-fmap (fst f) (transport FX.Codes (merid x) [ x' ]) =∎) x encode-natural : ∀ {x : Susp (de⊙ X)} (tα : Trunc k (north == x)) → FY.encode (Trunc-fmap (ap (Susp-fmap (fst f))) tα) == Codes-fmap {x} (FX.encode tα) encode-natural {x} = Trunc-elim {{λ tα → =-preserves-level (FY.Codes-has-level (Susp-fmap (fst f) x))}} $ J (λ x p → FY.encode (Trunc-fmap (ap (Susp-fmap (fst f))) [ p ]) == Codes-fmap {x} (FX.encode [ p ])) $ ! (ap [_] (snd f)) ⊙encodeN-natural : FY.⊙encodeN ◃⊙∘ ⊙Trunc-fmap (⊙Ω-fmap (⊙Susp-fmap (fst f))) ◃⊙idf =⊙∘ ⊙Trunc-fmap f ◃⊙∘ FX.⊙encodeN ◃⊙idf ⊙encodeN-natural = =⊙∘-in $ ⊙λ=' {X = ⊙Trunc k (⊙Ω (⊙Susp (de⊙ X)))} {Y = ⊙Trunc k Y} (encode-natural {north}) $ ↓-idf=cst-in {p = ! (ap [_] (snd f))} $ ! $ !-inv-l (ap [_] (snd f)) {- Used to prove stability in iterated suspensions -} module FreudenthalIso {i} (n : ℕ₋₂) (k : ℕ) (kle : ⟨ S k ⟩ ≤T S n +2+ S n) (X : Ptd i) {{_ : is-connected (S (S n)) (de⊙ X)}} where open FreudenthalEquiv n ⟨ S k ⟩ kle X public hom : Ω^S-group k (⊙Trunc ⟨ S k ⟩ X) →ᴳ Ω^S-group k (⊙Trunc ⟨ S k ⟩ (⊙Ω (⊙Susp (de⊙ X)))) hom = Ω^S-group-fmap k (decodeN , decodeN-pt) iso : Ω^S-group k (⊙Trunc ⟨ S k ⟩ X) ≃ᴳ Ω^S-group k (⊙Trunc ⟨ S k ⟩ (⊙Ω (⊙Susp (de⊙ X)))) iso = Ω^S-group-emap k ⊙eq
{ "alphanum_fraction": 0.4734616923, "avg_line_length": 40.2367816092, "ext": "agda", "hexsha": "078cbbccd5e27f73c853c702e01853f8ed590536", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/Freudenthal.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/Freudenthal.agda", "max_line_length": 108, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/Freudenthal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 7416, "size": 17503 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.List.Relation.Binary.Equality.Setoid directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid) module Data.List.Relation.Equality.Setoid {a ℓ} (S : Setoid a ℓ) where open import Data.List.Relation.Binary.Equality.Setoid S public {-# WARNING_ON_IMPORT "Data.List.Relation.Equality.Setoid was deprecated in v1.0. Use Data.List.Relation.Binary.Equality.Setoid instead." #-}
{ "alphanum_fraction": 0.579778831, "avg_line_length": 31.65, "ext": "agda", "hexsha": "ee14f6cb799af6e8507634839d3308f747bc3238", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Equality/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Equality/Setoid.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Equality/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 127, "size": 633 }
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite data ⊥ : Set where postulate T : Set t0 : T t1 : T postulate foo : ⊥ → t0 ≡ t1 {-# REWRITE foo #-} test : t0 ≡ t1 test = refl
{ "alphanum_fraction": 0.6285714286, "avg_line_length": 12.8947368421, "ext": "agda", "hexsha": "39e3e950bcf0c59bb227ee8f23da272657f64490", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue5238.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue5238.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue5238.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 90, "size": 245 }
open import Common.Prelude open import Common.Reflection data D (A : Set) : Nat → Set where d : ∀ {n} → A → D A n term : Term term = con (quote d) (hArg (def (quote Nat) []) ∷ vArg (con (quote zero) []) ∷ []) -- There was a bug where extra implicit arguments were inserted for the parameters, resulting in -- the unquoted value 'd {_} {Nat} zero' instead of 'd {Nat} zero'. value : D Nat zero value = unquote (give term)
{ "alphanum_fraction": 0.6557377049, "avg_line_length": 28.4666666667, "ext": "agda", "hexsha": "fa8a4221ef63b052e467797bbdd228b078cc3df5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1237.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1237.agda", "max_line_length": 96, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1237.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 129, "size": 427 }
{-# OPTIONS --cubical --safe #-} module Data.Empty.Base where open import Cubical.Data.Empty using (⊥; ⊥-elim; isProp⊥) public open import Level infix 4.5 ¬_ ¬_ : Type a → Type a ¬ A = A → ⊥
{ "alphanum_fraction": 0.6443298969, "avg_line_length": 17.6363636364, "ext": "agda", "hexsha": "3f3223ca434efd65f9808da438ddbc50140fee0b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Empty/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Empty/Base.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Empty/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 69, "size": 194 }
-- Andreas, 2016-06-20 -- Issue #1653 reported by Jesper -- Fixed by Ulf's AIM XXIII code sprint "instantiating module parameters" open import Common.Equality module _ (A : Set₁) where -- Matching on refl works with new instantiateable module parameters. test : A ≡ Set → Set₁ test refl = A -- Case splitting thus should also work. foo : A ≡ Set → Set₁ foo e = {!e!} -- C-c C-c
{ "alphanum_fraction": 0.6767676768, "avg_line_length": 22, "ext": "agda", "hexsha": "36611a2443d2629871665523a8cbc633459fc9ba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1653.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1653.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1653.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 118, "size": 396 }
open import Algebra.Apartness using (HeytingField) module Data.Real.Abstract.Bundles c ℓ₁ ℓ₂ r where open import Relation.Binary using (Rel) open import Data.Real.Abstract.Structures open import Level using (_⊔_; suc) record OrderedHeytingField : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂ ⊔ r)) where field f : HeytingField c ℓ₁ ℓ₂ open HeytingField f public field _<_ : Rel Carrier r isOrderedHeytingField : IsOrderedHeytingField f _<_ record ArchimedanHeytingField : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂ ⊔ r)) where field f : HeytingField c ℓ₁ ℓ₂ open HeytingField f public field _<_ : Rel Carrier r isArchimedanHeytingField : IsArchimedanHeytingField f _<_
{ "alphanum_fraction": 0.7193500739, "avg_line_length": 22.5666666667, "ext": "agda", "hexsha": "d93e3e6c46cfddbb05026d3d477ee73c3b07e2b4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "cspollard/reals", "max_forks_repo_path": "src/Data/Real/Abstract/Bundles.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "cspollard/reals", "max_issues_repo_path": "src/Data/Real/Abstract/Bundles.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "cspollard/reals", "max_stars_repo_path": "src/Data/Real/Abstract/Bundles.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 225, "size": 677 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Rationals.QuoQ.Properties where open import Cubical.Foundations.Everything hiding (_⁻¹) open import Cubical.HITs.Ints.QuoInt as ℤ using (ℤ; Sign; signed; pos; neg; posneg; sign) open import Cubical.HITs.SetQuotients as SetQuotient using () renaming (_/_ to _//_) open import Cubical.Data.Nat as ℕ using (ℕ; zero; suc) open import Cubical.Data.NatPlusOne open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.Relation.Nullary open import Cubical.HITs.Rationals.QuoQ.Base ℚ-cancelˡ : ∀ {a b} (c : ℕ₊₁) → [ ℕ₊₁→ℤ c ℤ.· a / c ·₊₁ b ] ≡ [ a / b ] ℚ-cancelˡ {a} {b} c = eq/ _ _ (cong (ℤ._· ℕ₊₁→ℤ b) (ℤ.·-comm (ℕ₊₁→ℤ c) a) ∙ sym (ℤ.·-assoc a (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b))) ℚ-cancelʳ : ∀ {a b} (c : ℕ₊₁) → [ a ℤ.· ℕ₊₁→ℤ c / b ·₊₁ c ] ≡ [ a / b ] ℚ-cancelʳ {a} {b} c = eq/ _ _ (sym (ℤ.·-assoc a (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b)) ∙ cong (a ℤ.·_) (ℤ.·-comm (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b))) -- useful functions for defining operations on ℚ onCommonDenom : (g : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ) (g-eql : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d ≡ c ℤ.· ℕ₊₁→ℤ b) → ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) ≡ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f))) (g-eqr : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f ≡ e ℤ.· ℕ₊₁→ℤ d) → (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f ≡ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d) → ℚ → ℚ → ℚ onCommonDenom g g-eql g-eqr = SetQuotient.rec2 isSetℚ (λ { (a , b) (c , d) → [ g (a , b) (c , d) / b ·₊₁ d ] }) (λ { (a , b) (c , d) (e , f) p → eql (a , b) (c , d) (e , f) p }) (λ { (a , b) (c , d) (e , f) p → eqr (a , b) (c , d) (e , f) p }) where eql : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d ≡ c ℤ.· ℕ₊₁→ℤ b) → [ g (a , b) (e , f) / b ·₊₁ f ] ≡ [ g (c , d) (e , f) / d ·₊₁ f ] eql (a , b) (c , d) (e , f) p = [ g (a , b) (e , f) / b ·₊₁ f ] ≡⟨ sym (ℚ-cancelˡ d) ⟩ [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / d ·₊₁ (b ·₊₁ f) ] ≡[ i ]⟨ [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / ·₊₁-assoc d b f i ] ⟩ [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / (d ·₊₁ b) ·₊₁ f ] ≡[ i ]⟨ [ g-eql (a , b) (c , d) (e , f) p i / ·₊₁-comm d b i ·₊₁ f ] ⟩ [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / (b ·₊₁ d) ·₊₁ f ] ≡[ i ]⟨ [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / ·₊₁-assoc b d f (~ i) ] ⟩ [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / b ·₊₁ (d ·₊₁ f) ] ≡⟨ ℚ-cancelˡ b ⟩ [ g (c , d) (e , f) / d ·₊₁ f ] ∎ eqr : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f ≡ e ℤ.· ℕ₊₁→ℤ d) → [ g (a , b) (c , d) / b ·₊₁ d ] ≡ [ g (a , b) (e , f) / b ·₊₁ f ] eqr (a , b) (c , d) (e , f) p = [ g (a , b) (c , d) / b ·₊₁ d ] ≡⟨ sym (ℚ-cancelʳ f) ⟩ [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / (b ·₊₁ d) ·₊₁ f ] ≡[ i ]⟨ [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / ·₊₁-assoc b d f (~ i) ] ⟩ [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / b ·₊₁ (d ·₊₁ f) ] ≡[ i ]⟨ [ g-eqr (a , b) (c , d) (e , f) p i / b ·₊₁ ·₊₁-comm d f i ] ⟩ [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / b ·₊₁ (f ·₊₁ d) ] ≡[ i ]⟨ [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / ·₊₁-assoc b f d i ] ⟩ [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / (b ·₊₁ f) ·₊₁ d ] ≡⟨ ℚ-cancelʳ d ⟩ [ g (a , b) (e , f) / b ·₊₁ f ] ∎ onCommonDenomSym : (g : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ) (g-sym : ∀ x y → g x y ≡ g y x) (g-eql : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d ≡ c ℤ.· ℕ₊₁→ℤ b) → ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) ≡ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f))) → ℚ → ℚ → ℚ onCommonDenomSym g g-sym g-eql = onCommonDenom g g-eql q-eqr where q-eqr : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f ≡ e ℤ.· ℕ₊₁→ℤ d) → (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f ≡ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d q-eqr (a , b) (c , d) (e , f) p = (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f ≡[ i ]⟨ ℤ.·-comm (g-sym (a , b) (c , d) i) (ℕ₊₁→ℤ f) i ⟩ ℕ₊₁→ℤ f ℤ.· (g (c , d) (a , b)) ≡⟨ g-eql (c , d) (e , f) (a , b) p ⟩ ℕ₊₁→ℤ d ℤ.· (g (e , f) (a , b)) ≡[ i ]⟨ ℤ.·-comm (ℕ₊₁→ℤ d) (g-sym (e , f) (a , b) i) i ⟩ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d ∎ onCommonDenomSym-comm : ∀ {g} g-sym {g-eql} (x y : ℚ) → onCommonDenomSym g g-sym g-eql x y ≡ onCommonDenomSym g g-sym g-eql y x onCommonDenomSym-comm g-sym = SetQuotient.elimProp2 (λ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) i → [ g-sym (a , b) (c , d) i / ·₊₁-comm b d i ] }) -- basic arithmetic operations on ℚ infixl 6 _+_ infixl 7 _·_ private lem₁ : ∀ a b c d e (p : a ℤ.· b ≡ c ℤ.· d) → b ℤ.· (a ℤ.· e) ≡ d ℤ.· (c ℤ.· e) lem₁ a b c d e p = ℤ.·-assoc b a e ∙ cong (ℤ._· e) (ℤ.·-comm b a ∙ p ∙ ℤ.·-comm c d) ∙ sym (ℤ.·-assoc d c e) lem₂ : ∀ a b c → a ℤ.· (b ℤ.· c) ≡ c ℤ.· (b ℤ.· a) lem₂ a b c = cong (a ℤ.·_) (ℤ.·-comm b c) ∙ ℤ.·-assoc a c b ∙ cong (ℤ._· b) (ℤ.·-comm a c) ∙ sym (ℤ.·-assoc c a b) ∙ cong (c ℤ.·_) (ℤ.·-comm a b) _+_ : ℚ → ℚ → ℚ _+_ = onCommonDenomSym (λ { (a , b) (c , d) → a ℤ.· (ℕ₊₁→ℤ d) ℤ.+ c ℤ.· (ℕ₊₁→ℤ b) }) (λ { (a , b) (c , d) → ℤ.+-comm (a ℤ.· (ℕ₊₁→ℤ d)) (c ℤ.· (ℕ₊₁→ℤ b)) }) (λ { (a , b) (c , d) (e , f) p → ℕ₊₁→ℤ d ℤ.· (a ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ b) ≡⟨ sym (ℤ.·-distribˡ (ℕ₊₁→ℤ d) (a ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ b)) ⟩ ℕ₊₁→ℤ d ℤ.· (a ℤ.· ℕ₊₁→ℤ f) ℤ.+ ℕ₊₁→ℤ d ℤ.· (e ℤ.· ℕ₊₁→ℤ b) ≡[ i ]⟨ lem₁ a (ℕ₊₁→ℤ d) c (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ f) p i ℤ.+ lem₂ (ℕ₊₁→ℤ d) e (ℕ₊₁→ℤ b) i ⟩ ℕ₊₁→ℤ b ℤ.· (c ℤ.· ℕ₊₁→ℤ f) ℤ.+ ℕ₊₁→ℤ b ℤ.· (e ℤ.· ℕ₊₁→ℤ d) ≡⟨ ℤ.·-distribˡ (ℕ₊₁→ℤ b) (c ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ d) ⟩ ℕ₊₁→ℤ b ℤ.· (c ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ d) ∎ }) +-comm : ∀ x y → x + y ≡ y + x +-comm = onCommonDenomSym-comm (λ { (a , b) (c , d) → ℤ.+-comm (a ℤ.· (ℕ₊₁→ℤ d)) (c ℤ.· (ℕ₊₁→ℤ b)) }) +-identityˡ : ∀ x → 0 + x ≡ x +-identityˡ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) i → [ ℤ.·-identityʳ a i / ·₊₁-identityˡ b i ] }) +-identityʳ : ∀ x → x + 0 ≡ x +-identityʳ x = +-comm x _ ∙ +-identityˡ x +-assoc : ∀ x y z → x + (y + z) ≡ (x + y) + z +-assoc = SetQuotient.elimProp3 (λ _ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) (e , f) i → [ eq a (ℕ₊₁→ℤ b) c (ℕ₊₁→ℤ d) e (ℕ₊₁→ℤ f) i / ·₊₁-assoc b d f i ] }) where eq₁ : ∀ a b c → (a ℤ.· b) ℤ.· c ≡ a ℤ.· (c ℤ.· b) eq₁ a b c = sym (ℤ.·-assoc a b c) ∙ cong (a ℤ.·_) (ℤ.·-comm b c) eq₂ : ∀ a b c → (a ℤ.· b) ℤ.· c ≡ (a ℤ.· c) ℤ.· b eq₂ a b c = eq₁ a b c ∙ ℤ.·-assoc a c b eq : ∀ a b c d e f → Path ℤ _ _ eq a b c d e f = a ℤ.· (d ℤ.· f) ℤ.+ (c ℤ.· f ℤ.+ e ℤ.· d) ℤ.· b ≡[ i ]⟨ a ℤ.· (d ℤ.· f) ℤ.+ ℤ.·-distribʳ (c ℤ.· f) (e ℤ.· d) b (~ i) ⟩ a ℤ.· (d ℤ.· f) ℤ.+ ((c ℤ.· f) ℤ.· b ℤ.+ (e ℤ.· d) ℤ.· b) ≡[ i ]⟨ ℤ.+-assoc (ℤ.·-assoc a d f i) (eq₂ c f b i) (eq₁ e d b i) i ⟩ ((a ℤ.· d) ℤ.· f ℤ.+ (c ℤ.· b) ℤ.· f) ℤ.+ e ℤ.· (b ℤ.· d) ≡[ i ]⟨ ℤ.·-distribʳ (a ℤ.· d) (c ℤ.· b) f i ℤ.+ e ℤ.· (b ℤ.· d) ⟩ (a ℤ.· d ℤ.+ c ℤ.· b) ℤ.· f ℤ.+ e ℤ.· (b ℤ.· d) ∎ _·_ : ℚ → ℚ → ℚ _·_ = onCommonDenomSym (λ { (a , _) (c , _) → a ℤ.· c }) (λ { (a , _) (c , _) → ℤ.·-comm a c }) (λ { (a , b) (c , d) (e , _) p → lem₁ a (ℕ₊₁→ℤ d) c (ℕ₊₁→ℤ b) e p }) ·-comm : ∀ x y → x · y ≡ y · x ·-comm = onCommonDenomSym-comm (λ { (a , _) (c , _) → ℤ.·-comm a c }) ·-identityˡ : ∀ x → 1 · x ≡ x ·-identityˡ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) i → [ ℤ.·-identityˡ a i / ·₊₁-identityˡ b i ] }) ·-identityʳ : ∀ x → x · 1 ≡ x ·-identityʳ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) i → [ ℤ.·-identityʳ a i / ·₊₁-identityʳ b i ] }) ·-zeroˡ : ∀ x → 0 · x ≡ 0 ·-zeroˡ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) → (λ i → [ p a b i / 1 ·₊₁ b ]) ∙ ℚ-cancelʳ b }) where p : ∀ a b → 0 ℤ.· a ≡ 0 ℤ.· ℕ₊₁→ℤ b p a b = ℤ.·-zeroˡ {ℤ.spos} a ∙ sym (ℤ.·-zeroˡ {ℤ.spos} (ℕ₊₁→ℤ b)) ·-zeroʳ : ∀ x → x · 0 ≡ 0 ·-zeroʳ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) → (λ i → [ p a b i / b ·₊₁ 1 ]) ∙ ℚ-cancelˡ b }) where p : ∀ a b → a ℤ.· 0 ≡ ℕ₊₁→ℤ b ℤ.· 0 p a b = ℤ.·-zeroʳ {ℤ.spos} a ∙ sym (ℤ.·-zeroʳ {ℤ.spos} (ℕ₊₁→ℤ b)) ·-assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z ·-assoc = SetQuotient.elimProp3 (λ _ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) (e , f) i → [ ℤ.·-assoc a c e i / ·₊₁-assoc b d f i ] }) ·-distribˡ : ∀ x y z → (x · y) + (x · z) ≡ x · (y + z) ·-distribˡ = SetQuotient.elimProp3 (λ _ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) (e , f) → eq a b c d e f }) where lem : ∀ {ℓ} {A : Type ℓ} (_·_ : A → A → A) (·-comm : ∀ x y → x · y ≡ y · x) (·-assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z) a c b d → (a · c) · (b · d) ≡ (a · (c · d)) · b lem _·_ ·-comm ·-assoc a c b d = (a · c) · (b · d) ≡[ i ]⟨ (a · c) · ·-comm b d i ⟩ (a · c) · (d · b) ≡⟨ ·-assoc (a · c) d b ⟩ ((a · c) · d) · b ≡[ i ]⟨ ·-assoc a c d (~ i) · b ⟩ (a · (c · d)) · b ∎ lemℤ = lem ℤ._·_ ℤ.·-comm ℤ.·-assoc lemℕ₊₁ = lem _·₊₁_ ·₊₁-comm ·₊₁-assoc eq : ∀ a b c d e f → [ (a ℤ.· c) ℤ.· ℕ₊₁→ℤ (b ·₊₁ f) ℤ.+ (a ℤ.· e) ℤ.· ℕ₊₁→ℤ (b ·₊₁ d) / (b ·₊₁ d) ·₊₁ (b ·₊₁ f) ] ≡ [ a ℤ.· (c ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ d) / b ·₊₁ (d ·₊₁ f) ] eq a b c d e f = (λ i → [ lemℤ a c (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ f) i ℤ.+ lemℤ a e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) i / lemℕ₊₁ b d b f i ]) ∙ (λ i → [ ℤ.·-distribʳ (a ℤ.· (c ℤ.· ℕ₊₁→ℤ f)) (a ℤ.· (e ℤ.· ℕ₊₁→ℤ d)) (ℕ₊₁→ℤ b) i / (b ·₊₁ (d ·₊₁ f)) ·₊₁ b ]) ∙ ℚ-cancelʳ {a ℤ.· (c ℤ.· ℕ₊₁→ℤ f) ℤ.+ a ℤ.· (e ℤ.· ℕ₊₁→ℤ d)} {b ·₊₁ (d ·₊₁ f)} b ∙ (λ i → [ ℤ.·-distribˡ a (c ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ d) i / b ·₊₁ (d ·₊₁ f) ]) ·-distribʳ : ∀ x y z → (x · z) + (y · z) ≡ (x + y) · z ·-distribʳ x y z = (λ i → ·-comm x z i + ·-comm y z i) ∙ ·-distribˡ z x y ∙ ·-comm z (x + y) -_ : ℚ → ℚ - x = -1 · x negate-invol : ∀ x → - - x ≡ x negate-invol x = ·-assoc -1 -1 x ∙ ·-identityˡ x negateEquiv : ℚ ≃ ℚ negateEquiv = isoToEquiv (iso -_ -_ negate-invol negate-invol) negateEq : ℚ ≡ ℚ negateEq = ua negateEquiv +-inverseˡ : ∀ x → (- x) + x ≡ 0 +-inverseˡ x = (λ i → (-1 · x) + ·-identityˡ x (~ i)) ∙ ·-distribʳ -1 1 x ∙ ·-zeroˡ x _-_ : ℚ → ℚ → ℚ x - y = x + (- y) +-inverseʳ : ∀ x → x - x ≡ 0 +-inverseʳ x = +-comm x (- x) ∙ +-inverseˡ x +-injˡ : ∀ x y z → x + y ≡ x + z → y ≡ z +-injˡ x y z p = sym (q y) ∙ cong ((- x) +_) p ∙ q z where q : ∀ y → (- x) + (x + y) ≡ y q y = +-assoc (- x) x y ∙ cong (_+ y) (+-inverseˡ x) ∙ +-identityˡ y +-injʳ : ∀ x y z → x + y ≡ z + y → x ≡ z +-injʳ x y z p = +-injˡ y x z (+-comm y x ∙ p ∙ +-comm z y)
{ "alphanum_fraction": 0.3828060142, "avg_line_length": 44.0691056911, "ext": "agda", "hexsha": "7095a27720c8c3202c831cbb7f9f161630773ad8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Rationals/QuoQ/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Rationals/QuoQ/Properties.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Rationals/QuoQ/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6259, "size": 10841 }
{-# OPTIONS --copatterns #-} module CopatternCheckingNYI where record Stream (A : Set) : Set where coinductive field head : A tail : Stream A open Stream data Nat : Set where zero : Nat suc : Nat -> Nat alternate : Stream Nat ( (head alternate)) = zero (head (tail alternate)) = suc zero (tail (tail alternate)) = tail alternate -- does not yet termination-check
{ "alphanum_fraction": 0.6701030928, "avg_line_length": 18.4761904762, "ext": "agda", "hexsha": "cf0bfa5780b16e640706a249ca395010efe0d8c6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/CopatternCheckingNYI.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/CopatternCheckingNYI.agda", "max_line_length": 40, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/fail/CopatternCheckingNYI.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 107, "size": 388 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Relation.Binary.Raw module Cubical.Relation.Binary.Reasoning.Base.Partial {a ℓ} {A : Type a} (_∼_ : RawRel A ℓ) (transitive : Transitive _∼_) where open import Cubical.Foundations.Prelude infix 4 _IsRelatedTo_ infix 2 _∎⟨_⟩ infixr 1 _∼⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ infixr 1 _≡⟨⟩_ infix 0 begin_ ------------------------------------------------------------------------ -- Definition of "related to" -- This seemingly unnecessary type is used to make it possible to -- infer arguments even if the underlying equality evaluates. data _IsRelatedTo_ (x y : A) : Type ℓ where relTo : (x∼y : x ∼ y) → x IsRelatedTo y ------------------------------------------------------------------------ -- Reasoning combinators -- Beginning of a proof begin_ : ∀ {x y} → x IsRelatedTo y → x ∼ y begin relTo x∼y = x∼y -- Standard step with the relation _∼⟨_⟩_ : ∀ x {y z} → x ∼ y → y IsRelatedTo z → x IsRelatedTo z _ ∼⟨ x∼y ⟩ relTo y∼z = relTo (transitive x∼y y∼z) -- Step with a non-trivial propositional equality _≡⟨_⟩_ : ∀ x {y z} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z _≡⟨_⟩_ x {_} {z} x≡y y∼z = J (λ w _ → w IsRelatedTo z) y∼z (sym x≡y) -- Step with a flipped non-trivial propositional equality _≡˘⟨_⟩_ : ∀ x {y z} → y ≡ x → y IsRelatedTo z → x IsRelatedTo z x ≡˘⟨ y≡x ⟩ y∼z = x ≡⟨ sym y≡x ⟩ y∼z -- Step with a trivial propositional equality _≡⟨⟩_ : ∀ x {y} → x IsRelatedTo y → x IsRelatedTo y _ ≡⟨⟩ x∼y = x∼y -- Syntax for path definition ≡⟨⟩-syntax : ∀ x {y z : A} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z ≡⟨⟩-syntax = _≡⟨_⟩_ infixr 1 ≡⟨⟩-syntax syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y ≡˘⟨⟩-syntax : ∀ x {y z : A} → y ≡ x → y IsRelatedTo z → x IsRelatedTo z ≡˘⟨⟩-syntax = _≡˘⟨_⟩_ infixr 1 ≡˘⟨⟩-syntax syntax ≡˘⟨⟩-syntax x (λ i → B) y = x ≡˘[ i ]⟨ B ⟩ y -- Termination step _∎⟨_⟩ : ∀ x → x ∼ x → x IsRelatedTo x _ ∎⟨ x∼x ⟩ = relTo x∼x
{ "alphanum_fraction": 0.5728796343, "avg_line_length": 27.3472222222, "ext": "agda", "hexsha": "1346890d19c2a86dd9930481857de606f990501f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Reasoning/Base/Partial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Reasoning/Base/Partial.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Reasoning/Base/Partial.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 828, "size": 1969 }
------------------------------------------------------------------------ -- Squashing ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --prop --safe #-} import Equality.Path as P module Squash {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Decidable-UIP equality-with-J open import Double-negation equality-with-J as DN using (¬¬_) open import Embedding equality-with-J using (Embedding; Is-embedding) open import Equality.Decision-procedures equality-with-J open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Equivalence.Erased equality-with-J using (_≃ᴱ_) open import For-iterated-equality equality-with-J open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as Trunc using (∥_∥) open import Injection equality-with-J using (_↣_) open import Monad equality-with-J open import Surjection equality-with-J using (_↠_; Split-surjective) private variable a b ℓ p : Level A B : Type a P : A → Type p k x y : A n : ℕ ------------------------------------------------------------------------ -- The squash type -- Any two elements of type Squash′ A are definitionally equal. data Squash′ (A : Type a) : Prop a where squash′ : A → Squash′ A -- However, Squash′ A does not have type Type a. The following wrapper -- makes it possible to use squashed types in, say, lists. record Squash (A : Type a) : Type a where constructor squash field squashed : Squash′ A pattern [_] x = squash (squash′ x) private -- A unit test. test : [ 4 ] ∷ [ 5 ] ∷ [] ≡ [ 3 ] ∷ [ 9 ] ∷ [] test = refl _ -- Squashed types are propositions. Squash-propositional : Is-proposition (Squash A) Squash-propositional = λ _ _ → refl _ ------------------------------------------------------------------------ -- Squash is a monad -- A universe-polymorphic variant of bind. infixl 5 _>>=′_ _>>=′_ : Squash A → (A → Squash B) → Squash B _>>=′_ {A = A} {B = B} (squash x) f = squash (lemma x) where lemma : Squash′ A → Squash′ B lemma (squash′ x) = Squash.squashed (f x) instance -- Squash is a monad. raw-monad : Raw-monad {c = ℓ} Squash Raw-monad.return raw-monad = [_] Raw-monad._>>=_ raw-monad = _>>=′_ monad : Monad {c = ℓ} Squash Monad.raw-monad monad = raw-monad Monad.left-identity monad = λ _ _ → refl _ Monad.right-identity monad = λ _ → refl _ Monad.associativity monad = λ _ _ _ → refl _ ------------------------------------------------------------------------ -- Squash preserves all kinds of functions private -- Squash preserves functions. Squash-cong-→ : (A → B) → Squash A → Squash B Squash-cong-→ A→B x = x >>=′ return ∘ A→B -- If A and B are logically equivalent, then Squash A and Squash B are -- equivalent. Squash-cong-⇔ : A ⇔ B → Squash A ≃ Squash B Squash-cong-⇔ A⇔B = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = Squash-cong-→ (_⇔_.to A⇔B) ; from = Squash-cong-→ (_⇔_.from A⇔B) } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ }) -- If there is a split surjection from A to B, then Squash A and -- Squash B are equivalent. Squash-cong-↠ : A ↠ B → Squash A ≃ Squash B Squash-cong-↠ = Squash-cong-⇔ ∘ _↠_.logical-equivalence private -- Some lemmas used in Squash-cong. Squash-cong-↔ : A ↔ B → Squash A ↔ Squash B Squash-cong-↔ = from-isomorphism ∘ Squash-cong-⇔ ∘ _↔_.logical-equivalence Squash-cong-≃ : A ≃ B → Squash A ≃ Squash B Squash-cong-≃ = Squash-cong-⇔ ∘ _≃_.logical-equivalence Squash-cong-≃ᴱ : A ≃ᴱ B → Squash A ≃ᴱ Squash B Squash-cong-≃ᴱ = from-isomorphism ∘ Squash-cong-⇔ ∘ _≃ᴱ_.logical-equivalence Squash-cong-↣ : A ↣ B → Squash A ↣ Squash B Squash-cong-↣ A↣B = record { to = Squash-cong-→ (_↣_.to A↣B) ; injective = λ _ → refl _ } Squash-cong-Embedding : Embedding A B → Embedding (Squash A) (Squash B) Squash-cong-Embedding A↣B = record { to = Squash-cong-→ (Embedding.to A↣B) ; is-embedding = λ x y → _≃_.is-equivalence $ _↠_.from (Eq.≃↠⇔ (⇒≡ 1 Squash-propositional) (⇒≡ 1 Squash-propositional)) (record { from = λ _ → refl _ }) } Squash-cong : A ↝[ k ] B → Squash A ↝[ k ] Squash B Squash-cong {k = implication} = Squash-cong-→ Squash-cong {k = logical-equivalence} = from-isomorphism ∘ Squash-cong-⇔ Squash-cong {k = injection} = Squash-cong-↣ Squash-cong {k = embedding} = Squash-cong-Embedding Squash-cong {k = surjection} = from-isomorphism ∘ Squash-cong-↠ Squash-cong {k = bijection} = Squash-cong-↔ Squash-cong {k = equivalence} = Squash-cong-≃ Squash-cong {k = equivalenceᴱ} = Squash-cong-≃ᴱ ------------------------------------------------------------------------ -- Some isomorphisms -- Squash ⊤ is isomorphic to ⊤. Squash-⊤↔⊤ : Squash ⊤ ↔ ⊤ Squash-⊤↔⊤ = record { surjection = record { logical-equivalence = record { from = λ _ → [ _ ] } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- Squash ⊥ is isomorphic to ⊥. Squash-⊥↔⊥ : Squash (⊥ {ℓ = ℓ}) ↔ ⊥ {ℓ = ℓ} Squash-⊥↔⊥ = record { surjection = record { logical-equivalence = record { to = λ x → ⊥-in-prop→⊥ (Squash-⊥→⊥-in-prop x) ; from = λ () } ; right-inverse-of = λ () } ; left-inverse-of = λ _ → refl _ } where -- An empty type in Prop. data ⊥-in-prop : Prop where -- Squash ⊥ implies ⊥-in-prop. Squash-⊥→⊥-in-prop : Squash (⊥ {ℓ = ℓ}) → ⊥-in-prop Squash-⊥→⊥-in-prop [ () ] -- ⊥-in-prop implies ⊥. ⊥-in-prop→⊥ : ⊥-in-prop → ⊥ {ℓ = ℓ} ⊥-in-prop→⊥ () -- Squash commutes with _×_. -- -- This lemma was suggested by Jesper Cockx. Squash-×↔× : Squash (A × B) ↔ Squash A × Squash B Squash-×↔× = record { surjection = record { logical-equivalence = record { to = λ p → Squash-cong proj₁ p , Squash-cong proj₂ p ; from = λ (x , y) → x >>=′ λ x → y >>=′ λ y → return (x , y) } ; right-inverse-of = refl } ; left-inverse-of = refl } -- Squash commutes with ↑ ℓ. Squash-↑↔↑ : Squash (↑ ℓ A) ↔ ↑ ℓ (Squash A) Squash-↑↔↑ = record { surjection = record { logical-equivalence = record { to = λ { x .lower → Squash-cong lower x } ; from = λ (lift x) → Squash-cong lift x } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } ------------------------------------------------------------------------ -- Some properties -- ∥ A ∥ implies Squash A. ∥∥→Squash : ∥ A ∥ → Squash A ∥∥→Squash = Trunc.rec Squash-propositional [_] -- Squash A implies ¬ ¬ A. Squash→¬¬ : Squash A → ¬ ¬ A Squash→¬¬ {A = A} = curry ( Squash A × ¬ A ↝⟨ uncurry (flip Squash-cong) ⟩ Squash ⊥ ↔⟨ Squash-⊥↔⊥ ⟩□ ⊥ □) -- It is not in general the case that [ x ] ≡ [ y ] implies -- Squash (x ≡ y). ¬-[]≡[]→Squash-≡ : ¬ ({A : Type a} {x y : A} → [ x ] ≡ [ y ] → Squash (x ≡ y)) ¬-[]≡[]→Squash-≡ {a = a} = ({A : Type a} {x y : A} → [ x ] ≡ [ y ] → Squash (x ≡ y)) ↝⟨ _$ refl _ ⟩ Squash (lift true ≡ lift false) ↝⟨ Squash-cong (cong lower) ⟩ Squash (true ≡ false) ↝⟨ Squash-cong Bool.true≢false ⟩ Squash ⊥ ↔⟨ Squash-⊥↔⊥ ⟩□ ⊥ □ -- [_] is split surjective for decided types. Split-surjective-[] : Dec A → Split-surjective {A = A} [_] Split-surjective-[] (yes x) _ = x , refl _ Split-surjective-[] (no ¬x) x = ⊥-elim (_↔_.to Squash-⊥↔⊥ (Squash-cong ¬x x)) ------------------------------------------------------------------------ -- Stability -- A type A is stable if Squash A implies A. Stable : Type a → Type a Stable A = Squash A → A -- A type A is very stable if Squash A is equivalent to A. Very-stable : Type a → Type a Very-stable A = Squash A ≃ A -- Variants of the definitions above for equality. Stable-≡ : Type a → Type a Stable-≡ = For-iterated-equality 1 Stable Very-stable-≡ : Type a → Type a Very-stable-≡ = For-iterated-equality 1 Very-stable ------------------------------------------------------------------------ -- Some lemmas related to stability -- Very stable types are stable. Very-stable→Stable : ∀ n → For-iterated-equality n Very-stable A → For-iterated-equality n Stable A Very-stable→Stable n = For-iterated-equality-cong₁ _ n _≃_.to -- Very-stable is propositional (assuming extensionality). Very-stable-propositional : {A : Type a} → Extensionality a a → Is-proposition (Very-stable A) Very-stable-propositional ext = Eq.left-closure ext 0 Squash-propositional private -- The previous result can be generalised. For-iterated-equality-Very-stable-propositional : {A : Type a} → Extensionality a a → ∀ n → Is-proposition (For-iterated-equality n Very-stable A) For-iterated-equality-Very-stable-propositional ext n = H-level-For-iterated-equality ext 1 n (Very-stable-propositional ext) -- A type is very stable if and only if [_] is an equivalence for that -- type. Very-stable↔Is-equivalence-[] : {A : Type a} → Very-stable A ↝[ a ∣ a ] Is-equivalence {A = A} [_] Very-stable↔Is-equivalence-[] = generalise-ext?-prop (record { from = inverse ∘ Eq.⟨ _ ,_⟩ ; to = λ s → _≃_.is-equivalence $ Eq.with-other-function (inverse s) [_] (λ _ → refl _) }) Very-stable-propositional (λ ext → Eq.propositional ext _) -- A type is very stable if and only if it is a stable proposition. Very-stable↔Stable×Is-proposition : {A : Type a} → Very-stable A ↝[ a ∣ a ] Stable A × Is-proposition A Very-stable↔Stable×Is-proposition = generalise-ext?-prop (record { to = λ s → _≃_.to s , H-level-cong _ 1 s Squash-propositional ; from = λ (s , prop) → _↠_.from (Eq.≃↠⇔ Squash-propositional prop) (record { to = s; from = [_] }) }) Very-stable-propositional (λ ext → [inhabited⇒+]⇒+ 0 λ (_ , prop) → ×-closure 1 (Π-closure ext 1 (λ _ → prop)) (H-level-propositional ext 1)) -- If A has h-level 1 + n and is stable "n levels up", then A is very -- stable "n levels up". Stable→H-level-suc→Very-stable : ∀ n → For-iterated-equality n Stable A → H-level (suc n) A → For-iterated-equality n Very-stable A Stable→H-level-suc→Very-stable {A = A} n = curry ( For-iterated-equality n Stable A × H-level (suc n) A ↝⟨ (∃-cong λ _ → lemma) ⟩ For-iterated-equality n Stable A × For-iterated-equality n Is-proposition A ↝⟨ For-iterated-equality-commutes-× n _ ⟩ For-iterated-equality n (λ A → Stable A × Is-proposition A) A ↝⟨ For-iterated-equality-cong₁ _ n $ uncurry (curry $ _⇔_.from (Very-stable↔Stable×Is-proposition _)) ⟩ For-iterated-equality n Very-stable A □) where lemma = H-level (suc n) A ↝⟨ _⇔_.to H-level⇔H-level′ ⟩ H-level′ (suc n) A ↝⟨ inverse-ext? (For-iterated-equality-For-iterated-equality n 1) _ ⟩ For-iterated-equality n (H-level′ 1) A ↝⟨ For-iterated-equality-cong₁ _ n $ _⇔_.from (H-level⇔H-level′ {n = 1}) ⟩□ For-iterated-equality n Is-proposition A □ -- Types with h-level n are very stable "n levels up". H-level→Very-stable : ∀ n → H-level n A → For-iterated-equality n Very-stable A H-level→Very-stable {A = A} n = H-level n A ↝⟨ _⇔_.to H-level⇔H-level′ ⟩ H-level′ n A ↝⟨ For-iterated-equality-cong₁ _ n Contractible→Very-stable ⟩□ For-iterated-equality n Very-stable A □ where Contractible→Very-stable : ∀ {A} → Contractible A → Very-stable A Contractible→Very-stable c = _⇔_.from (Very-stable↔Stable×Is-proposition _) ( (λ _ → proj₁ c) , mono₁ 0 c ) -- If A is very stable, then [_] {A = A} is an embedding. Very-stable→Is-embedding-[] : Very-stable A → Is-embedding {A = A} [_] Very-stable→Is-embedding-[] s x y = _≃_.is-equivalence ( x ≡ y ↝⟨ inverse $ Eq.≃-≡ $ Eq.⟨ _ , Very-stable↔Is-equivalence-[] _ s ⟩ ⟩□ [ x ] ≡ [ y ] □) -- If A is very stable, then [_] {A = A} is split surjective. Very-stable→Split-surjective-[] : Very-stable A → Split-surjective {A = A} [_] Very-stable→Split-surjective-[] {A = A} = Very-stable A ↝⟨ Very-stable↔Is-equivalence-[] _ ⟩ Is-equivalence [_] ↝⟨ (λ hyp → _↠_.split-surjective $ _≃_.surjection $ Eq.⟨ _ , hyp ⟩) ⟩ Split-surjective [_] □ -- Types that are stable for double negation are stable for Squash. ¬¬-Stable→Stable : (¬ ¬ A → A) → Stable A ¬¬-Stable→Stable ¬¬-Stable x = ¬¬-Stable (Squash→¬¬ x) -- Types for which it is known whether or not they are inhabited are -- stable. Dec→Stable : Dec A → Stable A Dec→Stable (yes x) _ = x Dec→Stable (no ¬x) x with () ← Squash→¬¬ x ¬x -- Every type is stable in the double negation monad. ¬¬-Stable : ¬¬ Stable A ¬¬-Stable = DN.map′ Dec→Stable DN.excluded-middle -- Bool is not very stable. (But it is stable, see Dec→Stable above.) ¬-Very-stable-Bool : ¬ Very-stable Bool ¬-Very-stable-Bool = Very-stable Bool ↝⟨ proj₂ ∘ Very-stable↔Stable×Is-proposition _ ⟩ Is-proposition Bool ↝⟨ ¬-Bool-propositional ⟩□ ⊥ □ -- If equality is decidable for A, then equality is very stable for A. Decidable-equality→Very-stable-≡ : Decidable-equality A → Very-stable-≡ A Decidable-equality→Very-stable-≡ dec _ _ = _⇔_.from (Very-stable↔Stable×Is-proposition _) ( Dec→Stable (dec _ _) , decidable⇒set dec ) ---------------------------------------------------------------------- -- Preservation lemmas -- Stable preserves some kinds of functions (those that are -- "symmetric"), possibly assuming extensionality. Stable-cong : {A : Type a} {B : Type b} → Extensionality? ⌊ k ⌋-sym (a ⊔ b) (a ⊔ b) → A ↝[ ⌊ k ⌋-sym ] B → Stable A ↝[ ⌊ k ⌋-sym ] Stable B Stable-cong {k = k} {A = A} {B = B} ext A↝B = Stable A ↔⟨⟩ (Squash A → A) ↝⟨ →-cong ext (Squash-cong A↝B) A↝B ⟩ (Squash B → B) ↔⟨⟩ Stable B □ -- A kind of map function for Stable. Stable-map : A ⇔ B → Stable A → Stable B Stable-map = _⇔_.to ∘ Stable-cong _ -- A kind of map function for Very-stable. Very-stable-map : A ↠ B → Very-stable A → Very-stable B Very-stable-map {A = A} {B = B} A↠B s = _↠_.from (Eq.≃↠⇔ Squash-propositional B-prop) (record { from = [_] ; to = Squash B ↝⟨ Squash-cong (_↠_.from A↠B) ⟩ Squash A ↔⟨ s ⟩ A ↝⟨ _↠_.to A↠B ⟩□ B □ }) where A-prop : Is-proposition A A-prop = proj₂ $ Very-stable↔Stable×Is-proposition _ s B-prop : Is-proposition B B-prop = H-level.respects-surjection A↠B 1 A-prop -- Very-stable preserves equivalences (assuming extensionality). Very-stable-cong : {A : Type a} {B : Type b} → Extensionality? k (a ⊔ b) (a ⊔ b) → A ≃ B → Very-stable A ↝[ k ] Very-stable B Very-stable-cong {A = A} {B = B} ext A≃B = Very-stable A ↔⟨⟩ Squash A ≃ A ↝⟨ generalise-ext? (Eq.≃-preserves-⇔ (Squash-cong A≃B) A≃B) (λ ext → let eq = Eq.≃-preserves ext (Squash-cong-≃ A≃B) A≃B in _≃_.right-inverse-of eq , _≃_.left-inverse-of eq) ext ⟩ Squash B ≃ B ↔⟨⟩ Very-stable B □ ------------------------------------------------------------------------ -- Closure properties -- Squash A is very stable. Very-stable-Squash : Very-stable (Squash A) Very-stable-Squash = _⇔_.from (Very-stable↔Stable×Is-proposition _) ( _>>= id , Squash-propositional ) -- ⊤ is very stable. Very-stable-⊤ : Very-stable ⊤ Very-stable-⊤ = Eq.↔⇒≃ Squash-⊤↔⊤ -- ⊥ is very stable. Very-stable-⊥ : Very-stable (⊥ {ℓ = ℓ}) Very-stable-⊥ = Eq.↔⇒≃ Squash-⊥↔⊥ -- Stable is closed under Π A. Stable-Π : (∀ x → Stable (P x)) → Stable ((x : A) → P x) Stable-Π {P = P} s = Squash (∀ x → P x) ↝⟨ (λ s x → Squash-cong (_$ x) s) ⟩ (∀ x → Squash (P x)) ↝⟨ ∀-cong _ s ⟩□ (∀ x → P x) □ -- Very-stable is closed under Π A (assuming extensionality). Very-stable-Π : {A : Type a} {P : A → Type p} → Extensionality a p → (∀ x → Very-stable (P x)) → Very-stable ((x : A) → P x) Very-stable-Π {P = P} ext s = _⇔_.from (Very-stable↔Stable×Is-proposition _) ( Stable-Π (Very-stable→Stable 0 ∘ s) , (Π-closure ext 1 λ x → H-level-cong _ 1 (s x) Squash-propositional) ) -- Stable is closed under _×_. Stable-× : Stable A → Stable B → Stable (A × B) Stable-× {A = A} {B = B} s₁ s₂ = Squash (A × B) ↔⟨ Squash-×↔× ⟩ Squash A × Squash B ↝⟨ s₁ ×-cong s₂ ⟩□ A × B □ -- Very-stable is closed under _×_. Very-stable-× : Very-stable A → Very-stable B → Very-stable (A × B) Very-stable-× s₁ s₂ = _⇔_.from (Very-stable↔Stable×Is-proposition _) ( Stable-× (Very-stable→Stable 0 s₁) (Very-stable→Stable 0 s₂) , ×-closure 1 (H-level-cong _ 1 s₁ Squash-propositional) (H-level-cong _ 1 s₂ Squash-propositional) ) -- Stable is closed under ↑ ℓ. Stable-↑ : Stable A → Stable (↑ ℓ A) Stable-↑ {A = A} s = Squash (↑ _ A) ↔⟨ Squash-↑↔↑ ⟩ ↑ _ (Squash A) ↝⟨ ↑-cong s ⟩□ ↑ _ A □ -- Very-stable is closed under ↑ ℓ. Very-stable-↑ : Very-stable A → Very-stable (↑ ℓ A) Very-stable-↑ {A = A} s = Squash (↑ _ A) ↔⟨ Squash-↑↔↑ ⟩ ↑ _ (Squash A) ↝⟨ ↑-cong s ⟩□ ↑ _ A □ -- If A is very stable, then equality is very stable for A. Very-stable→Very-stable-≡ : ∀ n → For-iterated-equality n Very-stable A → For-iterated-equality (suc n) Very-stable A Very-stable→Very-stable-≡ {A = A} n = For-iterated-equality n Very-stable A ↝⟨ For-iterated-equality-cong₁ _ n lemma ⟩ For-iterated-equality n Very-stable-≡ A ↝⟨ For-iterated-equality-For-iterated-equality n 1 _ ⟩□ For-iterated-equality (suc n) Very-stable A □ where lemma : ∀ {A} → Very-stable A → Very-stable-≡ A lemma {A = A} s x y = _⇔_.from (Very-stable↔Stable×Is-proposition _) ( (Squash (x ≡ y) ↝⟨ const prop ⟩ Is-proposition A ↝⟨ +⇒≡ ⟩ Contractible (x ≡ y) ↝⟨ proj₁ ⟩□ x ≡ y □) , ⇒≡ 1 prop ) where prop : Is-proposition A prop = proj₂ $ _⇔_.to (Very-stable↔Stable×Is-proposition _) s private -- Some examples showing how Very-stable→Very-stable-≡ can be -- used. -- Equalities between erased values are very stable. Very-stable-≡₀ : Very-stable-≡ (Squash A) Very-stable-≡₀ = Very-stable→Very-stable-≡ 0 Very-stable-Squash -- Equalities between equalities between erased values are very -- stable. Very-stable-≡₁ : For-iterated-equality 2 Very-stable (Squash A) Very-stable-≡₁ = Very-stable→Very-stable-≡ 1 Very-stable-≡₀ -- And so on… private -- A lemma. For-iterated-equality-Is-proposition↔H-level′-suc : {A : Type a} → ∀ n → For-iterated-equality n Is-proposition A ↝[ a ∣ a ] H-level′ (suc n) A For-iterated-equality-Is-proposition↔H-level′-suc {A = A} n ext = For-iterated-equality n Is-proposition A ↝⟨ For-iterated-equality-cong₁ ext n (H-level↔H-level′ {n = 1} ext) ⟩ For-iterated-equality n (H-level′ 1) A ↝⟨ For-iterated-equality-For-iterated-equality n 1 ext ⟩□ H-level′ (suc n) A □ -- If A is "stable 1 + n levels up", then H-level′ (suc n) A is -- stable. Stable-H-level′ : ∀ n → For-iterated-equality (suc n) Stable A → Stable (H-level′ (suc n) A) Stable-H-level′ {A = A} n = For-iterated-equality (suc n) Stable A ↝⟨ inverse-ext? (For-iterated-equality-For-iterated-equality n 1) _ ⟩ For-iterated-equality n Stable-≡ A ↝⟨ For-iterated-equality-cong₁ _ n lemma ⟩ For-iterated-equality n (Stable ∘ Is-proposition) A ↝⟨ For-iterated-equality-commutes-← _ Stable n Stable-Π ⟩ Stable (For-iterated-equality n Is-proposition A) ↝⟨ Stable-map (For-iterated-equality-Is-proposition↔H-level′-suc n _) ⟩□ Stable (H-level′ (suc n) A) □ where lemma : ∀ {A} → Stable-≡ A → Stable (Is-proposition A) lemma s = Stable-Π λ _ → Stable-Π λ _ → s _ _ -- If A is "stable 1 + n levels up", then H-level (suc n) A is -- stable. Stable-H-level : ∀ n → For-iterated-equality (suc n) Stable A → Stable (H-level (suc n) A) Stable-H-level {A = A} n = For-iterated-equality (suc n) Stable A ↝⟨ Stable-H-level′ n ⟩ Stable (H-level′ (suc n) A) ↝⟨ Stable-map (record { to = inverse-ext? H-level↔H-level′ _; from = H-level↔H-level′ _ }) ⟩□ Stable (H-level (suc n) A) □ -- If A is "very stable 1 + n levels up", then H-level′ (suc n) A is -- very stable (assuming extensionality). Very-stable-H-level′ : {A : Type a} → Extensionality a a → ∀ n → For-iterated-equality (suc n) Very-stable A → Very-stable (H-level′ (suc n) A) Very-stable-H-level′ {A = A} ext n = For-iterated-equality (suc n) Very-stable A ↝⟨ inverse-ext? (For-iterated-equality-For-iterated-equality n 1) _ ⟩ For-iterated-equality n Very-stable-≡ A ↝⟨ For-iterated-equality-cong₁ _ n lemma ⟩ For-iterated-equality n (Very-stable ∘ Is-proposition) A ↝⟨ For-iterated-equality-commutes-← _ Very-stable n (Very-stable-Π ext) ⟩ Very-stable (For-iterated-equality n Is-proposition A) ↝⟨ Very-stable-map (For-iterated-equality-Is-proposition↔H-level′-suc n ext) ⟩□ Very-stable (H-level′ (suc n) A) □ where lemma : ∀ {A} → Very-stable-≡ A → Very-stable (Is-proposition A) lemma s = Very-stable-Π ext λ _ → Very-stable-Π ext λ _ → s _ _ -- If A is "very stable 1 + n levels up", then H-level (suc n) A is -- very stable (assuming extensionality). Very-stable-H-level : {A : Type a} → Extensionality a a → ∀ n → For-iterated-equality (suc n) Very-stable A → Very-stable (H-level (suc n) A) Very-stable-H-level {A = A} ext n = For-iterated-equality (suc n) Very-stable A ↝⟨ Very-stable-H-level′ ext n ⟩ Very-stable (H-level′ (suc n) A) ↝⟨ Very-stable-cong _ (inverse $ H-level↔H-level′ ext) ⟩□ Very-stable (H-level (suc n) A) □ -- If equality is stable for A and B, then it is stable for A ⊎ B. Stable-≡-⊎ : ∀ n → For-iterated-equality (suc n) Stable A → For-iterated-equality (suc n) Stable B → For-iterated-equality (suc n) Stable (A ⊎ B) Stable-≡-⊎ n sA sB = For-iterated-equality-⊎-suc n (Stable-map ∘ from-isomorphism) (Very-stable→Stable 0 Very-stable-⊥) (For-iterated-equality-↑ _ (suc n) (Stable-map ∘ from-isomorphism) sA) (For-iterated-equality-↑ _ (suc n) (Stable-map ∘ from-isomorphism) sB) -- If equality is very stable for A and B, then it is very stable -- for A ⊎ B. Very-stable-≡-⊎ : ∀ n → For-iterated-equality (suc n) Very-stable A → For-iterated-equality (suc n) Very-stable B → For-iterated-equality (suc n) Very-stable (A ⊎ B) Very-stable-≡-⊎ n sA sB = For-iterated-equality-⊎-suc n lemma Very-stable-⊥ (For-iterated-equality-↑ _ (suc n) lemma sA) (For-iterated-equality-↑ _ (suc n) lemma sB) where lemma : A ↔ B → Very-stable A → Very-stable B lemma = Very-stable-cong _ ∘ from-isomorphism -- If equality is stable for A, then it is stable for List A. Stable-≡-List : ∀ n → For-iterated-equality (suc n) Stable A → For-iterated-equality (suc n) Stable (List A) Stable-≡-List n = For-iterated-equality-List-suc n (Stable-map ∘ from-isomorphism) (Very-stable→Stable 0 $ Very-stable-↑ Very-stable-⊤) (Very-stable→Stable 0 Very-stable-⊥) Stable-× -- If equality is very stable for A, then it is very stable for -- List A. Very-stable-≡-List : ∀ n → For-iterated-equality (suc n) Very-stable A → For-iterated-equality (suc n) Very-stable (List A) Very-stable-≡-List n = For-iterated-equality-List-suc n (Very-stable-cong _ ∘ from-isomorphism) (Very-stable-↑ Very-stable-⊤) Very-stable-⊥ Very-stable-× ---------------------------------------------------------------------- -- Simple corollaries or variants of results above -- A generalisation of Stable-Π. Stable-Πⁿ : {A : Type a} {P : A → Type p} → Extensionality a p → ∀ n → (∀ x → For-iterated-equality n Stable (P x)) → For-iterated-equality n Stable ((x : A) → P x) Stable-Πⁿ ext n = For-iterated-equality-Π ext n (Stable-map ∘ from-isomorphism) Stable-Π -- A generalisation of Very-stable-Π. Very-stable-Πⁿ : {A : Type a} {P : A → Type p} → Extensionality a p → ∀ n → (∀ x → For-iterated-equality n Very-stable (P x)) → For-iterated-equality n Very-stable ((x : A) → P x) Very-stable-Πⁿ ext n = For-iterated-equality-Π ext n (Very-stable-cong _ ∘ from-isomorphism) (Very-stable-Π ext) -- A generalisation of Stable-×. Stable-×ⁿ : ∀ n → For-iterated-equality n Stable A → For-iterated-equality n Stable B → For-iterated-equality n Stable (A × B) Stable-×ⁿ n = For-iterated-equality-× n (Stable-map ∘ from-isomorphism) Stable-× -- A generalisation of Very-stable-×. Very-stable-×ⁿ : ∀ n → For-iterated-equality n Very-stable A → For-iterated-equality n Very-stable B → For-iterated-equality n Very-stable (A × B) Very-stable-×ⁿ n = For-iterated-equality-× n (Very-stable-cong _ ∘ from-isomorphism) Very-stable-× -- A generalisation of Stable-↑. Stable-↑ⁿ : ∀ n → For-iterated-equality n Stable A → For-iterated-equality n Stable (↑ ℓ A) Stable-↑ⁿ n = For-iterated-equality-↑ _ n (Stable-map ∘ from-isomorphism) -- A generalisation of Very-stable-↑. Very-stable-↑ⁿ : ∀ n → For-iterated-equality n Very-stable A → For-iterated-equality n Very-stable (↑ ℓ A) Very-stable-↑ⁿ n = For-iterated-equality-↑ _ n (Very-stable-cong _ ∘ from-isomorphism)
{ "alphanum_fraction": 0.5733488529, "avg_line_length": 30.5774971297, "ext": "agda", "hexsha": "cd95c1f8532dea65fdda7c6255ebd441916396a1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Squash.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Squash.agda", "max_line_length": 139, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Squash.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 9560, "size": 26633 }
module RenamingAndSubstitution where open import Library open import Syntax open ≡-Reasoning infixr 4 _,_ ------------------------------------------------------------------------ -- Renaming ------------------------------------------------------------------------ -- Renamings from Γ to Δ are snoc-lists of variables living in Δ, -- one for each entry in Γ. data Ren (Δ : Cxt) : (Γ : Cxt) → Set where ε : Ren Δ ε _,_ : ∀ {Γ a} (ρ : Ren Δ Γ) (x : Var Δ a) → Ren Δ (Γ , a) -- A renaming in Ren Δ Γ is a code for a -- renaming function in Var Γ ∙→ Var Δ. lookr : ∀{Γ Δ} → Ren Δ Γ → ∀ {σ} → Var Γ σ → Var Δ σ lookr (xs , x) zero = x lookr (xs , x) (suc i) = lookr xs i -- Weaking a renaming by increasing all variables by 1. -- This lets them live in the extended context Γ , σ. wkr : ∀{Γ Δ σ} → Ren Γ Δ → Ren (Γ , σ) Δ wkr ε = ε wkr (xs , x) = wkr xs , suc x -- Lifting a renaming to go under a binder. liftr : ∀{Γ Δ σ} → Ren Γ Δ → Ren (Γ , σ) (Δ , σ) liftr xs = wkr xs , zero -- The category of renamings (operations only). ------------------------------------------------------------------------ -- The identity renaming. renId : ∀{Γ} → Ren Γ Γ renId {ε} = ε renId {Γ , _} = liftr (renId {Γ}) -- Forward composition of renamings. renComp : ∀{Φ Γ Δ} → Ren Δ Γ → Ren Γ Φ → Ren Δ Φ renComp xs ε = ε renComp xs (ys , y) = renComp xs ys , lookr xs y -- Various combinations of renamings. ------------------------------------------------------------------------ -- Weakening a renaming acts behaves like -- post-composing the renaming function with successor. lookrwkr : ∀{Γ Δ σ τ}(xs : Ren Δ Γ)(i : Var Γ σ) → lookr (wkr {σ = τ} xs) i ≡ suc (lookr xs i) lookrwkr (xs , _) zero = refl lookrwkr (xs , _) (suc i) = lookrwkr xs i -- A weakning cancels a renaming extension. lemrr : ∀{Φ Γ Δ σ}(xs : Ren Φ Γ)(x : Var Φ σ)(ys : Ren Γ Δ) → renComp (xs , x) (wkr ys) ≡ renComp xs ys lemrr xs x ε = refl lemrr xs x (ys , y) = cong (_, lookr xs y) (lemrr xs x ys) -- Associativity of renaming composition in case the first -- renaming is a weakening. wkrcomp : ∀{Φ Γ Δ σ}(xs : Ren Φ Γ)(ys : Ren Γ Δ) → renComp (wkr {σ = σ} xs) ys ≡ wkr {σ = σ} (renComp xs ys) wkrcomp xs ε = refl wkrcomp xs (ys , y) = cong₂ _,_ (wkrcomp xs ys) (lookrwkr xs y) -- Composition of liftings is a lifting. liftrcomp : ∀{Φ Γ Δ σ}(xs : Ren Φ Γ)(ys : Ren Γ Δ) → renComp (liftr {σ = σ} xs) (liftr {σ = σ} ys) ≡ liftr {σ = σ} (renComp xs ys) liftrcomp xs ys = begin renComp (wkr xs , zero) (wkr ys) , zero ≡⟨ cong (_, zero) (lemrr (wkr xs) zero ys) ⟩ renComp (wkr xs) ys , zero ≡⟨ cong (_, zero) (wkrcomp xs ys) ⟩ wkr (renComp xs ys) , zero ∎ -- lookr is a morphism from the category Ren -- to the category of the corresponding renaming functions on variables. ------------------------------------------------------------------------ -- The identity renaming corresponds to the identity function. lookrid : ∀{Γ σ}(x : Var Γ σ) → lookr renId x ≡ x lookrid zero = refl lookrid (suc x) = begin lookr (wkr renId) x ≡⟨ lookrwkr renId x ⟩ suc (lookr renId x) ≡⟨ cong suc (lookrid x) ⟩ suc x ∎ -- A composition of renamings corresponds to the composition -- of the corresponding renaming functions. lookrcomp : ∀{Φ Γ Δ}(f : Ren Δ Γ)(g : Ren Γ Φ){σ}(i : Var Φ σ) → lookr (renComp f g) i ≡ (lookr f ∘ lookr g) i lookrcomp f (g , v) zero = refl lookrcomp f (g , v) (suc i) = lookrcomp f g i -- Laws for the category of renamings. ------------------------------------------------------------------------ -- Left identity of forward composition lidr : ∀{Φ Γ}(xs : Ren Φ Γ) → renComp renId xs ≡ xs lidr ε = refl lidr (xs , x) = cong₂ _,_ (lidr xs) (lookrid x) -- Right identity of forward composition ridr : ∀{Φ Γ}(xs : Ren Φ Γ) → renComp xs renId ≡ xs ridr {Γ = ε} ε = refl ridr {Γ = Γ , σ} (xs , x) = begin renComp (xs , x) (wkr renId) , x ≡⟨ cong (_, x) (lemrr xs x renId) ⟩ renComp xs renId , x ≡⟨ cong (_, x) (ridr xs) ⟩ xs , x ∎ -- Renaming of terms. ------------------------------------------------------------------------ -- Renaming in a term. ren : ∀{Γ Δ} → Ren Δ Γ → ∀ {σ} → Tm Γ σ → Tm Δ σ ren xs (var x) = var (lookr xs x) ren xs (abs t) = abs (ren (liftr xs) t) ren xs (app t u) = app (ren xs t) (ren xs u) -- ren is a morphism from Ren -- to the corresponding category of renaming functions on terms. renid : ∀{Γ σ}(t : Tm Γ σ) → ren renId t ≡ t renid (var x) = cong var (lookrid x) renid (abs t) = cong abs (renid t) renid (app t u) = cong₂ app (renid t) (renid u) rencomp : ∀ {Φ Γ Δ}(f : Ren Δ Γ)(g : Ren Γ Φ){σ}(t : Tm Φ σ) → ren (renComp f g) t ≡ (ren f ∘ ren g) t rencomp f g (var x) = cong var (lookrcomp f g x) rencomp f g (abs t) = begin abs (ren (liftr (renComp f g)) t) ≡⟨ cong (λ xs → abs $ ren xs t) (sym $ liftrcomp f g) ⟩ abs (ren (renComp (liftr f) (liftr g)) t) ≡⟨ cong abs (rencomp (liftr f) (liftr g) t) ⟩ abs (ren (liftr f) (ren (liftr g) t)) ∎ rencomp f g (app t u) = cong₂ app (rencomp f g t) (rencomp f g u) -- Weakening a term. weak : ∀{Γ b} a → Tm Γ b → Tm (Γ , a) b weak a = ren (wkr renId) -- Renaming of normal forms. ------------------------------------------------------------------------ mutual rennf : ∀{Γ Δ} → Ren Γ Δ → ∀{a} → Nf Δ a → Nf Γ a rennf α (ne t) = ne (rennen α t) rennf α (abs t) = abs (rennf (liftr α) t) rennen : ∀{Γ Δ} → Ren Γ Δ → ∀{a} → Ne Δ a → Ne Γ a rennen α (var x) = var (lookr α x) rennen α (app n x) = app (rennen α n) (rennf α x) ------------------------------------------------------------------------ -- Substitution ------------------------------------------------------------------------ data Sub (Δ : Cxt) : (Γ : Cxt) → Set where ε : Sub Δ ε _,_ : ∀ {Γ a} (ρ : Sub Δ Γ) (v : Tm Δ a) → Sub Δ (Γ , a) ren2sub : ∀{Γ Δ} → Ren Γ Δ → Sub Γ Δ ren2sub ε = ε ren2sub (xs , x) = ren2sub xs , var x looks : ∀{Γ Δ} → Sub Δ Γ → ∀ {σ} → Var Γ σ → Tm Δ σ looks (xs , x) zero = x looks (xs , x) (suc i) = looks xs i wks : ∀{Γ Δ σ} → Sub Γ Δ → Sub (Γ , σ) Δ wks ε = ε wks (xs , x) = wks xs , ren (wkr renId) x lifts : ∀{Γ Δ σ} → Sub Γ Δ → Sub (Γ , σ) (Δ , σ) lifts xs = wks xs , var zero sub : ∀{Γ Δ} → Sub Δ Γ → ∀{σ} → Tm Γ σ → Tm Δ σ sub xs (var x) = looks xs x sub xs (abs t) = abs (sub (lifts xs) t) sub xs (app t u) = app (sub xs t) (sub xs u) subId : ∀{Γ} → Sub Γ Γ subId {ε} = ε subId {Γ , _} = lifts (subId {Γ}) subComp : ∀{Φ Γ Δ} → Sub Δ Γ → Sub Γ Φ → Sub Δ Φ subComp xs ε = ε subComp xs (ys , y) = subComp xs ys , sub xs y -- Substitute the last variable sub0 : ∀{Γ a b} → Tm (Γ , a) b → Tm Γ a → Tm Γ b sub0 t u = sub (subId , u) t -- Substitution laws lookswks : ∀{Γ Δ σ τ}(i : Var Γ σ)(xs : Sub Δ Γ) → looks (wks {σ = τ} xs) i ≡ ren (wkr {σ = τ} renId) (looks xs i) lookswks zero (xs , _) = refl lookswks (suc i) (xs , _) = lookswks i xs lemsr : ∀{Φ Γ Δ σ}(xs : Sub Φ Γ)(x : Tm Φ σ)(ys : Ren Γ Δ) → subComp (xs , x) (ren2sub (wkr ys)) ≡ subComp xs (ren2sub ys) lemsr xs x ε = refl lemsr xs x (ys , y) = cong (λ zs → zs , looks xs y) (lemsr xs x ys) lookslookr : ∀{Φ Γ Δ}(f : Sub Δ Γ)(g : Ren Γ Φ){σ}(x : Var Φ σ) → looks (subComp f (ren2sub g)) x ≡ looks f (lookr g x) lookslookr f (g , _) zero = refl lookslookr f (g , _) (suc x) = lookslookr f g x wksrcomp : ∀{Φ Γ Δ σ}(xs : Sub Φ Γ)(ys : Ren Γ Δ) → subComp (wks {σ = σ} xs) (ren2sub ys) ≡ wks {σ = σ} (subComp xs (ren2sub ys)) wksrcomp xs ε = refl wksrcomp xs (ys , y) = cong₂ Sub._,_ (wksrcomp xs ys) (lookswks y xs) liftsrcomp : ∀{Φ Γ Δ σ}(xs : Sub Φ Γ)(ys : Ren Γ Δ) → subComp (lifts {σ = σ} xs) (ren2sub (liftr ys)) ≡ lifts {σ = σ} (subComp xs (ren2sub ys)) liftsrcomp xs ys = begin subComp (wks xs , var zero) (ren2sub (wkr ys)) , var zero ≡⟨ cong (_, var zero) (lemsr (wks xs) (var zero) ys) ⟩ subComp (wks xs) (ren2sub ys) , var zero ≡⟨ cong (_, var zero) (wksrcomp xs ys) ⟩ wks (subComp xs (ren2sub ys)) , var zero ∎ subren : ∀{Φ Γ Δ}(f : Sub Δ Γ)(g : Ren Γ Φ){σ}(t : Tm Φ σ) → (sub f ∘ ren g) t ≡ sub (subComp f (ren2sub g)) t subren f g (var x) = sym $ lookslookr f g x subren f g (abs t) = begin abs (sub (lifts f) (ren (liftr g) t)) ≡⟨ cong abs $ subren (lifts f) (liftr g) t ⟩ abs (sub (subComp (lifts f) (ren2sub (liftr g))) t) ≡⟨ cong (λ f → abs (sub f t)) $ liftsrcomp f g ⟩ abs (sub (lifts (subComp f (ren2sub g))) t) ∎ subren f g (app t u) = cong₂ app (subren f g t) (subren f g u) looksid : ∀{Γ σ}(x : Var Γ σ) → looks subId x ≡ var x looksid zero = refl looksid (suc x) = begin looks (wks subId) x ≡⟨ lookswks x subId ⟩ ren (wkr renId) (looks subId x) ≡⟨ cong (ren (wkr renId)) (looksid x) ⟩ ren (wkr renId) (var x) ≡⟨⟩ var (lookr (wkr renId) x) ≡⟨ cong var $ lookrwkr renId x ⟩ var (suc (lookr renId x)) ≡⟨ cong (λ x → var (suc x)) (lookrid x) ⟩ -- using ∘ makes it go yellow var (suc x) ∎ subid : ∀{Γ σ}(t : Tm Γ σ) → sub subId t ≡ t subid (var x) = looksid x subid (abs t) = cong abs (subid t) subid (app t u) = cong₂ app (subid t) (subid u) sidl : ∀{Φ Γ}(xs : Sub Φ Γ) → subComp subId xs ≡ xs sidl ε = refl sidl (xs , t) = cong₂ _,_ (sidl xs) (subid t) sidr2 : ∀{Φ Γ}(xs : Sub Φ Γ) → subComp xs (ren2sub renId) ≡ xs sidr2 {Γ = ε} ε = refl sidr2 {Γ = Γ , a} (xs , x) = begin subComp (xs , x) (ren2sub (wkr renId)) , x ≡⟨ cong (_, x) (lemsr xs x renId) ⟩ subComp xs (ren2sub renId) , x ≡⟨ cong (_, x) (sidr2 xs) ⟩ xs , x ∎ liftSubRen : ∀{Γ Δ a b} (f : Sub Δ Γ) (t : Tm Γ b) → sub (lifts f) (weak a t) ≡ sub (wks f) t liftSubRen {a = a} f t = begin sub (lifts f) (weak a t) ≡⟨ subren (lifts f) (wkr renId) t ⟩ sub (subComp (lifts f) (ren2sub (wkr renId))) t ≡⟨ cong (λ f' → sub f' t) (lemsr (wks f) (var zero) renId) ⟩ sub (subComp (wks f) (ren2sub renId)) t ≡⟨ cong (λ f' → sub f' t) (sidr2 (wks f)) ⟩ sub (wks f) t ∎ lemss : ∀{Φ Γ Δ σ}(xs : Sub Φ Γ)(x : Tm Φ σ)(ys : Sub Γ Δ) → subComp (xs , x) (wks ys) ≡ subComp xs ys lemss xs x ε = refl lemss xs x (ys , y) = begin subComp (xs , x) (wks ys) , sub (xs , x) (ren (wkr renId) y) ≡⟨ cong₂ _,_ (lemss xs x ys) (subren (xs , x) (wkr renId) y) ⟩ subComp xs ys , sub (subComp (xs , x) (ren2sub (wkr renId))) y ≡⟨ cong (λ g → subComp xs ys , sub g y) (lemsr xs x renId) ⟩ subComp xs ys , sub (subComp xs (ren2sub renId)) y ≡⟨ cong (λ g → subComp xs ys , sub g y) (sidr2 xs) ⟩ subComp xs ys , sub xs y ∎ ren2sublook : ∀{Γ Δ σ}(f : Ren Δ Γ)(i : Var Γ σ) → var (lookr f i) ≡ looks (ren2sub f) i ren2sublook (f , _) zero = refl ren2sublook (f , _) (suc i) = ren2sublook f i ren2subwk : ∀{Γ Δ σ}(g : Ren Δ Γ) → ren2sub (wkr {σ = σ} g) ≡ wks {σ = σ} (ren2sub g) ren2subwk ε = refl ren2subwk (g , x) = begin (ren2sub (wkr g) , var (suc x)) ≡⟨ cong₂ (λ xs x → xs , var (suc x)) (ren2subwk g) (sym $ lookrid x) ⟩ (wks (ren2sub g) , var (suc (lookr renId x))) ≡⟨ cong (λ x → wks (ren2sub g) , var x) (sym $ lookrwkr renId x) ⟩ (wks (ren2sub g) , var (lookr (wkr renId) x)) ∎ ren2sublift : ∀{Γ Δ σ}(g : Ren Δ Γ) → ren2sub (liftr {σ = σ} g) ≡ lifts {σ = σ} (ren2sub g) ren2sublift g = cong (_, var zero) (ren2subwk g) ren2subren : ∀{Γ Δ σ}(f : Ren Δ Γ)(t : Tm Γ σ) → ren f t ≡ sub (ren2sub f) t ren2subren f (var x) = ren2sublook f x ren2subren f (abs t) = begin abs (ren (liftr f) t) ≡⟨ cong abs (ren2subren (liftr f) t) ⟩ abs (sub (ren2sub (liftr f)) t) ≡⟨ cong (λ f → abs (sub f t)) (ren2sublift f) ⟩ abs (sub (lifts (ren2sub f)) t) ∎ ren2subren f (app t u) = cong₂ app (ren2subren f t) (ren2subren f u) wkrscomp : ∀{Φ Γ Δ σ}(xs : Ren Φ Γ)(ys : Sub Γ Δ) → subComp (ren2sub (wkr {σ = σ} xs)) ys ≡ wks {σ = σ} (subComp (ren2sub xs) ys) wkrscomp xs ε = refl wkrscomp xs (ys , y) = begin subComp (ren2sub (wkr xs)) ys , sub (ren2sub (wkr xs)) y ≡⟨ cong₂ _,_ (wkrscomp xs ys) (sym $ ren2subren (wkr xs) y) ⟩ wks (subComp (ren2sub xs) ys) , ren (wkr xs) y ≡⟨ cong (λ f → wks (subComp (ren2sub xs) ys) , ren (wkr f) y) (sym $ lidr xs) ⟩ wks (subComp (ren2sub xs) ys) , ren (wkr (renComp renId xs)) y ≡⟨ cong (λ f → wks (subComp (ren2sub xs) ys) , ren f y) (sym $ wkrcomp renId xs) ⟩ wks (subComp (ren2sub xs) ys) , ren (renComp (wkr renId) xs) y ≡⟨ cong (wks (subComp (ren2sub xs) ys) ,_) (rencomp (wkr renId) xs y) ⟩ wks (subComp (ren2sub xs) ys) , ren (wkr renId) (ren xs y) ≡⟨ cong (λ t → wks (subComp (ren2sub xs) ys) , ren (wkr renId) t) (ren2subren xs y) ⟩ wks (subComp (ren2sub xs) ys) , ren (wkr renId) (sub (ren2sub xs) y) ∎ liftrscomp : ∀{Φ Γ Δ σ}(xs : Ren Φ Γ)(ys : Sub Γ Δ) → subComp (ren2sub (liftr {σ = σ} xs)) (lifts ys) ≡ lifts {σ = σ} (subComp (ren2sub xs) ys) liftrscomp xs ys = begin (subComp (ren2sub (wkr xs) , var zero) (wks ys) , var zero) ≡⟨ cong (_, var zero) (lemss (ren2sub (wkr xs)) (var zero) ys) ⟩ (subComp (ren2sub (wkr xs)) ys , var zero) ≡⟨ cong (_, var zero) (wkrscomp xs ys) ⟩ (wks (subComp (ren2sub xs) ys) , var zero) ∎ renlooks : ∀{Φ Γ Δ}(f : Ren Δ Γ)(g : Sub Γ Φ){σ}(x : Var Φ σ) → (ren f ∘ looks g) x ≡ looks (subComp (ren2sub f) g) x renlooks f (_ , v) zero = ren2subren f v renlooks f (g , _) (suc x) = renlooks f g x rensub : ∀{Φ Γ Δ}(f : Ren Δ Γ)(g : Sub Γ Φ){σ}(t : Tm Φ σ) → (ren f ∘ sub g) t ≡ sub (subComp (ren2sub f) g) t rensub f g (var x) = renlooks f g x rensub f g (abs t) = begin abs (ren (liftr f) (sub (lifts g) t)) ≡⟨ cong abs $ rensub (liftr f) (lifts g) t ⟩ abs (sub (subComp (ren2sub (liftr f)) (lifts g)) t) ≡⟨ cong (λ f → abs (sub f t)) (liftrscomp f g) ⟩ abs (sub (lifts (subComp (ren2sub f) g)) t) ∎ rensub f g (app t u) = cong₂ app (rensub f g t) (rensub f g u) lookscomp : ∀{Φ Γ Δ}(f : Sub Δ Γ)(g : Sub Γ Φ){σ}(x : Var Φ σ) → looks (subComp f g) x ≡ sub f (looks g x) lookscomp f (g , _) zero = refl lookscomp f (g , _) (suc x) = lookscomp f g x ren2subid : ∀{Γ} → subId {Γ} ≡ ren2sub renId ren2subid {ε} = refl ren2subid {Γ , a} = begin (wks subId , var zero) ≡⟨ cong (λ f → wks f , var zero) (ren2subid {Γ}) ⟩ (wks (ren2sub renId) , var zero) ≡⟨ cong (_, var zero) (sym $ ren2subwk renId) ⟩ (ren2sub (wkr renId) , var zero) ∎ wksscomp : ∀{Φ Γ Δ σ}(xs : Sub Φ Γ)(ys : Sub Γ Δ) → subComp (wks {σ = σ} xs) ys ≡ wks {σ = σ} (subComp xs ys) wksscomp xs ε = refl wksscomp xs (ys , y) = begin subComp (wks xs) ys , sub (wks xs) y ≡⟨ cong (λ f → subComp (wks xs) ys , sub (wks f) y) (sym $ sidl xs) ⟩ subComp (wks xs) ys , sub (wks (subComp subId xs)) y ≡⟨ cong₂ _,_ (wksscomp xs ys) (cong (λ f → sub (wks (subComp f xs)) y) ren2subid) ⟩ wks (subComp xs ys) , sub (wks (subComp (ren2sub renId) xs)) y ≡⟨ cong (λ f → wks (subComp xs ys) , sub f y) (sym $ wkrscomp renId xs) ⟩ wks (subComp xs ys) , sub (subComp (ren2sub (wkr renId)) xs) y ≡⟨ cong (wks (subComp xs ys) ,_) (sym $ rensub (wkr renId) xs y) ⟩ wks (subComp xs ys) , ren (wkr renId) (sub xs y) ∎ sidr : ∀{Φ Γ}(xs : Sub Φ Γ) → subComp xs subId ≡ xs sidr xs = begin subComp xs subId ≡⟨ cong (subComp xs) ren2subid ⟩ subComp xs (ren2sub renId) ≡⟨ sidr2 xs ⟩ xs ∎ liftscomp : ∀{Φ Γ Δ σ}(xs : Sub Φ Γ)(ys : Sub Γ Δ) → subComp (lifts {σ = σ} xs) (lifts ys) ≡ lifts {σ = σ} (subComp xs ys) liftscomp xs ys = begin subComp (wks xs , var zero) (wks ys) , var zero ≡⟨ cong (_, var zero) (lemss (wks xs) (var zero) ys) ⟩ subComp (wks xs) ys , var zero ≡⟨ cong (_, var zero) (wksscomp xs ys) ⟩ wks (subComp xs ys) , var zero ∎ subcomp : ∀{Φ Γ Δ}(f : Sub Δ Γ)(g : Sub Γ Φ){σ}(t : Tm Φ σ) → sub (subComp f g) t ≡ (sub f ∘ sub g) t subcomp f g (var x) = lookscomp f g x subcomp f g (abs t) = begin abs (sub (lifts (subComp f g)) t) ≡⟨ cong (λ f → abs (sub f t)) (sym $ liftscomp f g) ⟩ abs (sub (subComp (lifts f) (lifts g)) t) ≡⟨ cong abs (subcomp (lifts f) (lifts g) t) ⟩ abs (sub (lifts f) (sub (lifts g) t)) ∎ subcomp f g (app t u) = cong₂ app (subcomp f g t) (subcomp f g u) -- mutual renembNe : ∀{Γ Δ a}(u : Ne Γ a)(σ : Ren Δ Γ) → ren σ (embNe u) ≡ embNe (rennen σ u) renembNe (var x) σ = refl renembNe (app u n) σ = cong₂ app (renembNe u σ) (renembNf n σ) renembNf : ∀{Γ Δ a}(n : Nf Γ a)(σ : Ren Δ Γ) → ren σ (embNf n) ≡ embNf (rennf σ n) renembNf (abs n) σ = cong abs (renembNf n (liftr σ)) renembNf (ne n) σ = renembNe n σ -- -}
{ "alphanum_fraction": 0.5230823446, "avg_line_length": 41.5268292683, "ext": "agda", "hexsha": "ee03be0db93b994f21e4baa1660e5c6d037e98a2", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda/RenamingAndSubstitution.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda/RenamingAndSubstitution.agda", "max_line_length": 161, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda/RenamingAndSubstitution.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 6983, "size": 17026 }
module Issue127 where data C : Set where c : C d : C F : C → Set → Set F c = λ A → A F d = λ A → A data D : C → Set where d : (x : C) → F x (D x) → D x -- .-< no longer -- The following non-well-founded definition is / seemingly accepted by -- Agda: ∞ : (x : C) → D x ∞ x = d x (d x (∞ x))
{ "alphanum_fraction": 0.4482758621, "avg_line_length": 16.5714285714, "ext": "agda", "hexsha": "92bcae54f37cdf249c4ea2aa3b560829c4de9958", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue127.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue127.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue127.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 124, "size": 348 }
module test.StringLiteral where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ -- zerepoch/zerepoch-core/test/data/stringLiteral.plc postulate str1 : ByteString {-# FOREIGN GHC import qualified Data.ByteString.Char8 as BS #-} {-# COMPILE GHC str1 = BS.pack "4321758fabce1aa4780193f" #-} open import Relation.Binary.PropositionalEquality open import Agda.Builtin.TrustMe lemma1 : length str1 ≡ 23 lemma1 = primTrustMe open import Data.Nat lemma1' : BoundedB 100 str1 lemma1' rewrite lemma1 = gen _ _ _ stringLit : ∀{Γ} → Γ ⊢ con bytestring (size⋆ 100) stringLit = con (bytestring 100 str1 lemma1')
{ "alphanum_fraction": 0.7656903766, "avg_line_length": 25.6071428571, "ext": "agda", "hexsha": "231c0b0aa33747333e0b4c3386547f35f72e9e5c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-21T16:38:59.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-13T21:25:19.000Z", "max_forks_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "Quantum-One-DLT/zerepoch", "max_forks_repo_path": "zerepoch-metatheory/test/StringLiteral.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "Quantum-One-DLT/zerepoch", "max_issues_repo_path": "zerepoch-metatheory/test/StringLiteral.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "Quantum-One-DLT/zerepoch", "max_stars_repo_path": "zerepoch-metatheory/test/StringLiteral.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 221, "size": 717 }
------------------------------------------------------------------------ -- Simplification of parsers ------------------------------------------------------------------------ module TotalParserCombinators.Simplification where open import Algebra open import Codata.Musical.Notation open import Data.List using (List; []) import Data.List.Relation.Binary.BagAndSetEquality as BSEq open import Data.Maybe using (Maybe); open Data.Maybe.Maybe open import Data.Nat open import Data.Product open import Data.Vec.Recursive hiding ([]) open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; [_]) open import Relation.Binary.HeterogeneousEquality using (refl) renaming (_≅_ to _≅H_) private module BSMonoid {k} {A : Set} = CommutativeMonoid (BSEq.commutativeMonoid k A) open import TotalParserCombinators.Congruence hiding (return; fail; token) renaming (_∣_ to _∣′_) import TotalParserCombinators.Congruence.Sound as C import TotalParserCombinators.InitialBag as I open import TotalParserCombinators.Laws open import TotalParserCombinators.Parser ------------------------------------------------------------------------ -- Simplification of a single "layer" -- The result type used for single-layer simplification. record Simplify₁ {Tok R xs} (p : Parser Tok R xs) : Set₁ where constructor result field {bag} : List R parser : Parser Tok R bag correct : p ≅P parser -- The function simplify₁ simplifies the first "layer" of a parser, -- down to the first occurrences of ♯_. The following simplifications -- are applied in a bottom-up manner (in relevant cases also for -- delayed arguments): -- -- f <$> fail → fail -- f <$> return x → return (f x) -- fail ∣ p → p -- p ∣ fail → p -- token >>= p₁ ∣ token >>= p₂ → token >>= λ t → -- ♯ (♭? (p₁ t) ∣ ♭? (p₂ t)) -- fail ⊛ p → fail -- p ⊛ fail → fail -- return f ⊛ return x → return (f x) -- fail >>= p → fail -- return x >>= p → p x -- nonempty fail → fail -- nonempty (return x) → fail -- cast eq p → p -- -- Some ♯_'s may be removed, but care is taken to ensure that -- non-simplified parsers in the result are delayed. mutual simplify₁ : ∀ {Tok R xs} (p : Parser Tok R xs) → Simplify₁ p -- • return: simplify₁ (return x) = result _ (return x ∎) -- • fail: simplify₁ fail = result _ (fail ∎) -- • token: simplify₁ token = result _ (token ∎) -- • _<$>_: simplify₁ (f <$> p) with simplify₁ p ... | result fail p≅∅ = result _ ( f <$> p ≅⟨ (λ _ → refl) <$> p≅∅ ⟩ f <$> fail ≅⟨ <$>.zero ⟩ fail ∎) ... | result (return x) p≅ε = result _ ( f <$> p ≅⟨ (λ x → refl {x = f x}) <$> p≅ε ⟩ f <$> return x ≅⟨ <$>.homomorphism f ⟩ return (f x) ∎) ... | result p′ p≅p′ = result _ ( f <$> p ≅⟨ (λ _ → refl) <$> p≅p′ ⟩ f <$> p′ ∎) -- • _∣_: simplify₁ (p₁ ∣ p₂) with simplify₁ p₁ | simplify₁ p₂ ... | result fail p₁≅∅ | result p₂′ p₂≅p₂′ = result _ ( p₁ ∣ p₂ ≅⟨ p₁≅∅ ∣′ p₂≅p₂′ ⟩ fail ∣ p₂′ ≅⟨ AdditiveMonoid.left-identity p₂′ ⟩ p₂′ ∎) ... | result p₁′ p₁≅p₁′ | result fail p₂≅∅ = result _ ( p₁ ∣ p₂ ≅⟨ p₁≅p₁′ ∣′ p₂≅∅ ⟩ p₁′ ∣ fail ≅⟨ AdditiveMonoid.right-identity p₁′ ⟩ p₁′ ∎) ... | result (p₁₁ >>= p₁₂) p₁≅… | result (p₂₁ >>= p₂₂) p₂≅… = let h = helper p₁₁ refl p₁₂ p₂₁ refl p₂₂ in result _ ( p₁ ∣ p₂ ≅⟨ p₁≅… ∣′ p₂≅… ⟩ p₁₁ >>= p₁₂ ∣ p₂₁ >>= p₂₂ ≅⟨ Simplify₁.correct h ⟩ Simplify₁.parser h ∎) where helper : ∀ {Tok R₁ R₂ R xs₁ xs₁′ xs₂ xs₂′ f₁ f₂} (p₁₁ : ∞⟨ f₁ ⟩Parser Tok R₁ xs₁′) (eq₁ : xs₁′ ≡ flatten xs₁) (p₁₂ : (x : R₁) → ∞⟨ xs₁ ⟩Parser Tok R (apply f₁ x)) (p₂₁ : ∞⟨ f₂ ⟩Parser Tok R₂ xs₂′) (eq₂ : xs₂′ ≡ flatten xs₂) (p₂₂ : (x : R₂) → ∞⟨ xs₂ ⟩Parser Tok R (apply f₂ x)) → Simplify₁ (P.subst (∞⟨ f₁ ⟩Parser Tok R₁) eq₁ p₁₁ >>= p₁₂ ∣ P.subst (∞⟨ f₂ ⟩Parser Tok R₂) eq₂ p₂₁ >>= p₂₂) helper p₁₁ eq₁ p₁₂ p₂₁ eq₂ p₂₂ with ♭? p₁₁ | P.inspect ♭? p₁₁ | ♭? p₂₁ | P.inspect ♭? p₂₁ helper {Tok} {f₁ = f₁} {f₂} p₁₁ eq₁ p₁₂ p₂₁ eq₂ p₂₂ | token | [ eq₁′ ] | token | [ eq₂′ ] = result _ ( cast₁ p₁₁ >>= p₁₂ ∣ cast₂ p₂₁ >>= p₂₂ ≅⟨ [ forced? p₁₁ - ○ - forced?′ p₁₂ - ○ ] Subst.correct∞ eq₁ p₁₁ >>= (λ t → ♭? (p₁₂ t) ∎) ∣′ [ forced? p₂₁ - ○ - forced?′ p₂₂ - ○ ] Subst.correct∞ eq₂ p₂₁ >>= (λ t → ♭? (p₂₂ t) ∎) ⟩ ♭? p₁₁ >>= (♭? ∘ p₁₂) ∣ ♭? p₂₁ >>= (♭? ∘ p₂₂) ≅⟨ [ ○ - ○ - ○ - ○ ] P.subst (λ p → p ≅P token) (P.sym eq₁′) (token ∎) >>= (λ t → ♭? (p₁₂ t) ∎) ∣′ [ ○ - ○ - ○ - ○ ] P.subst (λ p → p ≅P token) (P.sym eq₂′) (token ∎) >>= (λ t → ♭? (p₂₂ t) ∎) ⟩ token >>= (♭? ∘ p₁₂) ∣ token >>= (♭? ∘ p₂₂) ≅⟨ sym $ Monad.left-distributive token (♭? ∘ p₁₂) (♭? ∘ p₂₂) ⟩ token >>= (λ t → ♭? (p₁₂ t) ∣ ♭? (p₂₂ t)) ≅⟨ [ ○ - ○ - ○ - ◌ ] token ∎ >>= (λ t → ♭? (p₁₂ t) ∣ ♭? (p₂₂ t) ∎) ⟩ token >>= (λ t → ♯ (♭? (p₁₂ t) ∣ ♭? (p₂₂ t))) ∎) where cast₁ = P.subst (∞⟨ f₁ ⟩Parser Tok Tok) eq₁ cast₂ = P.subst (∞⟨ f₂ ⟩Parser Tok Tok) eq₂ helper _ _ _ _ _ _ | _ | _ | _ | _ = result _ (_ ∎) simplify₁ (p₁ ∣ p₂) | result p₁′ p₁≅p₁′ | result p₂′ p₂≅p₂′ = result _ ( p₁ ∣ p₂ ≅⟨ p₁≅p₁′ ∣′ p₂≅p₂′ ⟩ p₁′ ∣ p₂′ ∎) -- • _⊛_: simplify₁ (p₁ ⊛ p₂) = helper _ _ p₁ p₂ (simplify₁∞ p₁) (simplify₁∞ p₂) refl refl where -- token ⊛ token is never type correct, but Agda's case-splitting -- machinery cannot see this, so instead of a with clause the -- following ugly machinery is used. cast₁ : ∀ {Tok R R₁ R₁′ xs xs′} {ys : Maybe (List R)} → (R≡ : R₁ ≡ R₁′) → xs ≅H xs′ → ∞⟨ ys ⟩Parser Tok R₁′ (flatten xs′) → ∞⟨ ys ⟩Parser Tok R₁ (flatten xs) cast₁ refl refl p = p helper : ∀ {Tok R₁ R₁′ R₂} fs xs {xs′} (p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs)) (p₂ : ∞⟨ fs ⟩Parser Tok R₁′ (flatten xs′)) → Simplify₁ (♭? p₁) → Simplify₁ (♭? p₂) → (R≡ : R₁ ≡ R₁′) (xs≅ : xs ≅H xs′) → Simplify₁ (p₁ ⊛ cast₁ R≡ xs≅ p₂) helper fs xs p₁ p₂ (result fail p₁≅∅) _ refl refl = result _ ( p₁ ⊛ p₂ ≅⟨ [ xs - ○ - fs - ○ ] p₁≅∅ ⊛ (♭? p₂ ∎) ⟩ fail ⊛ ♭? p₂ ≅⟨ ApplicativeFunctor.left-zero (♭? p₂) ⟩ fail ∎) helper fs xs p₁ p₂ _ (result fail p₂≅∅) refl refl = result _ ( p₁ ⊛ p₂ ≅⟨ [ xs - ○ - fs - ○ ] ♭? p₁ ∎ ⊛ p₂≅∅ ⟩ ♭? p₁ ⊛ fail ≅⟨ ApplicativeFunctor.right-zero (♭? p₁) ⟩ fail ∎) helper fs xs p₁ p₂ (result (return f) p₁≅ε) (result (return x) p₂≅ε) refl refl = result _ ( p₁ ⊛ p₂ ≅⟨ [ xs - ○ - fs - ○ ] p₁≅ε ⊛ p₂≅ε ⟩ return f ⊛ return x ≅⟨ ApplicativeFunctor.homomorphism f x ⟩ return (f x) ∎) helper fs xs p₁ p₂ p₁′ p₂′ R≡ xs≅ = helper′ fs xs p₁ p₂ p₁′ p₂′ R≡ xs≅ where helper′ : ∀ {Tok R₁ R₁′ R₂} fs xs {xs′} (p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs)) (p₂ : ∞⟨ fs ⟩Parser Tok R₁′ (flatten xs′)) → Simplify₁ (♭? p₁) → Simplify₁ (♭? p₂) → (R≡ : R₁ ≡ R₁′) (xs≅ : xs ≅H xs′) → Simplify₁ (p₁ ⊛ cast₁ R≡ xs≅ p₂) helper′ nothing nothing p₁ p₂ _ _ refl refl = result _ ( p₁ ⊛ p₂ ∎) helper′ (just fs) nothing p₁ p₂ _ (result p₂′ p₂≅p₂′) refl refl with BSEq.empty-unique $ I.cong $ C.sound $ sym p₂≅p₂′ helper′ (just fs) nothing p₁ p₂ _ (result p₂′ p₂≅p₂′) refl refl | refl = result _ ( p₁ ⊛ p₂ ≅⟨ [ ◌ - ◌ - ○ - ○ ] ♭ p₁ ∎ ⊛ p₂≅p₂′ ⟩ p₁ ⊛ p₂′ ∎) helper′ nothing (just xs) p₁ p₂ (result p₁′ p₁≅p₁′) _ refl refl with BSEq.empty-unique $ I.cong $ C.sound $ sym p₁≅p₁′ helper′ nothing (just xs) p₁ p₂ (result p₁′ p₁≅p₁′) _ refl refl | refl = result _ ( p₁ ⊛ p₂ ≅⟨ [ ○ - ○ - ◌ - ◌ ] p₁≅p₁′ ⊛ (♭ p₂ ∎) ⟩ p₁′ ⊛ p₂ ∎) helper′ (just fs) (just xs) p₁ p₂ (result p₁′ p₁≅p₁′) (result p₂′ p₂≅p₂′) refl refl = result _ ( p₁ ⊛ p₂ ≅⟨ [ ○ - ○ - ○ - ○ ] p₁≅p₁′ ⊛ p₂≅p₂′ ⟩ p₁′ ⊛ p₂′ ∎) -- • _>>=_: simplify₁ (_>>=_ {xs = xs} {f = f} p₁ p₂) with simplify₁∞ p₁ ... | result fail p₁≅∅ = result _ ( p₁ >>= p₂ ≅⟨ [ f - ○ - xs - ○ ] p₁≅∅ >>= (λ x → ♭? (p₂ x) ∎) ⟩ fail >>= (♭? ∘ p₂) ≅⟨ Monad.left-zero (♭? ∘ p₂) ⟩ fail ∎) ... | result (return x) p₁≅ε with simplify₁∞ (p₂ x) ... | result p₂x′ p₂x≅p₂x′ = result _ ( p₁ >>= p₂ ≅⟨ [ f - ○ - xs - ○ ] p₁≅ε >>= (λ x → ♭? (p₂ x) ∎) ⟩ return x >>= (♭? ∘ p₂) ≅⟨ Monad.left-identity x (♭? ∘ p₂) ⟩ ♭? (p₂ x) ≅⟨ p₂x≅p₂x′ ⟩ p₂x′ ∎) simplify₁ (p₁ >>= p₂) | result p₁′ p₁≅p₁′ with forced? p₁ | forced?′ p₂ ... | nothing | just xs = result _ ( p₁ >>= p₂ ≅⟨ [ ◌ - ◌ - ○ - ○ ] ♭ p₁ ∎ >>= (λ x → simplify₁-[]-correct (p₂ x)) ⟩ p₁ >>= (λ x → simplify₁-[] (p₂ x)) ∎) ... | just f | just xs = result _ ( p₁ >>= p₂ ≅⟨ [ ○ - ○ - ○ - ○ ] p₁≅p₁′ >>= (λ x → Simplify₁.correct (simplify₁ (p₂ x))) ⟩ p₁′ >>= (λ x → Simplify₁.parser $ simplify₁ (p₂ x)) ∎) ... | nothing | nothing = result _ ( p₁ >>= p₂ ∎) ... | just f | nothing = result _ ( p₁ >>= p₂ ≅⟨ [ ○ - ○ - ◌ - ○ ] p₁≅p₁′ >>= (λ x → ♭ (p₂ x) ∎) ⟩ p₁′ >>= (♭ ∘ p₂) ≅⟨ [ ○ - ○ - ○ - ◌ ] sym (Subst.correct lemma) >>= (λ x → ♭ (p₂ x) ∎) ⟩ cast-[] p₁′ >>= p₂ ∎) where lemma = BSEq.empty-unique $ I.cong $ C.sound $ sym p₁≅p₁′ cast-[] = P.subst (Parser _ _) lemma -- • nonempty: simplify₁ (nonempty p) with simplify₁ p ... | result fail p≅∅ = result _ ( nonempty p ≅⟨ nonempty p≅∅ ⟩ nonempty fail ≅⟨ Nonempty.zero ⟩ fail ∎) ... | result (return x) p≅ε = result _ ( nonempty p ≅⟨ nonempty p≅ε ⟩ nonempty (return x) ≅⟨ Nonempty.nonempty-return ⟩ fail ∎) ... | result p′ p≅p′ = result _ ( nonempty p ≅⟨ nonempty p≅p′ ⟩ nonempty p′ ∎) -- • cast: simplify₁ (cast xs₁≈xs₂ p) with simplify₁ p ... | result p′ p≅p′ = result _ ( cast xs₁≈xs₂ p ≅⟨ Cast.correct ⟩ p ≅⟨ p≅p′ ⟩ p′ ∎) private -- Note that if an argument parser is delayed, then simplification -- is not applied recursively (because this could lead to -- non-termination). simplify₁∞ : ∀ {Tok R R′ xs} {m : Maybe R′} (p : ∞⟨ m ⟩Parser Tok R xs) → Simplify₁ (♭? p) simplify₁∞ {m = nothing} p = result _ (♭ p ∎) simplify₁∞ {m = just _} p = simplify₁ p simplify₁-[] : ∀ {Tok R} → Parser Tok R [] → Parser Tok R [] simplify₁-[] p = P.subst (Parser _ _) ([]-lemma p) $ Simplify₁.parser $ simplify₁ p simplify₁-[]-correct : ∀ {Tok R} (p : Parser Tok R []) → p ≅P simplify₁-[] p simplify₁-[]-correct p = p ≅⟨ Simplify₁.correct (simplify₁ p) ⟩ Simplify₁.parser (simplify₁ p) ≅⟨ sym $ Subst.correct ([]-lemma p) ⟩ simplify₁-[] p ∎ []-lemma : ∀ {Tok R} (p : Parser Tok R []) → Simplify₁.bag (simplify₁ p) ≡ [] []-lemma p = BSEq.empty-unique $ I.cong $ C.sound $ sym $ Simplify₁.correct $ simplify₁ p ------------------------------------------------------------------------ -- Deep simplification -- The function simplify simplifies the first layer, then it traverses -- the result and simplifies the following layers, and so on. The -- extra traversals have been implemented to satisfy Agda's -- termination checker; they could perhaps be avoided. -- -- Note that simplifications in an upper layer do not get to take -- advantage of simplifications performed in lower layers. Consider -- ♯ p ⊛ token, for instance. If p can be simplified to fail, then one -- might believe that ♯ p ⊛ token is simplified to fail as well. -- However, this is only the case if p actually /computes/ to fail. -- -- If simplification of the upper layer were dependent on complete -- simplification of lower layers, then simplification could fail to -- terminate. This does not mean that one cannot propagate /any/ -- information from lower layers to upper layers, though: one could -- for instance perform partial simplification of lower layers, up to -- a certain depth, before an upper layer is simplified. mutual simplify : ∀ {Tok R xs} (p : Parser Tok R xs) → Parser Tok R (Simplify₁.bag $ simplify₁ p) simplify p = simplify↓ (Simplify₁.parser (simplify₁ p)) private simplify↓ : ∀ {Tok R xs} → Parser Tok R xs → Parser Tok R xs simplify↓ (return x) = return x simplify↓ fail = fail simplify↓ token = token simplify↓ (p₁ ∣ p₂) = simplify↓ p₁ ∣ simplify↓ p₂ simplify↓ (f <$> p) = f <$> simplify↓ p simplify↓ (nonempty p) = nonempty (simplify↓ p) simplify↓ (cast xs₁≈xs₂ p) = cast xs₁≈xs₂ (simplify↓ p) simplify↓ (p₁ ⊛ p₂) with forced? p₁ | forced? p₂ ... | just xs | just fs = simplify↓ p₁ ⊛ simplify↓ p₂ ... | just xs | nothing = simplify↓ p₁ ⊛ ♯ simplify (♭ p₂) ... | nothing | just fs = ♯ simplify (♭ p₁) ⊛ simplify↓ p₂ ... | nothing | nothing = ♯ simplify-[] (♭ p₁) ⊛ ♯ simplify-[] (♭ p₂) simplify↓ (p₁ >>= p₂) with forced? p₁ | forced?′ p₂ ... | just f | just xs = simplify↓ p₁ >>= λ x → simplify↓ (p₂ x) ... | just f | nothing = simplify↓ p₁ >>= λ x → ♯ simplify (♭ (p₂ x)) ... | nothing | just xs = ♯ simplify (♭ p₁) >>= λ x → simplify↓ (p₂ x) ... | nothing | nothing = ♯ simplify-[] (♭ p₁) >>= λ x → ♯ simplify-[] (♭ (p₂ x)) simplify-[] : ∀ {Tok R} → Parser Tok R [] → Parser Tok R [] simplify-[] p = simplify↓ (simplify₁-[] p) -- The simplifier is correct. mutual correct : ∀ {Tok R xs} (p : Parser Tok R xs) → simplify p ≅P p correct p = simplify↓ (Simplify₁.parser $ simplify₁ p) ≅⟨ correct↓ (Simplify₁.parser $ simplify₁ p) ⟩ Simplify₁.parser (simplify₁ p) ≅⟨ sym $ Simplify₁.correct $ simplify₁ p ⟩ p ∎ private correct↓ : ∀ {Tok R xs} (p : Parser Tok R xs) → simplify↓ p ≅P p correct↓ (return x) = return x ∎ correct↓ fail = fail ∎ correct↓ token = token ∎ correct↓ (p₁ ∣ p₂) = correct↓ p₁ ∣′ correct↓ p₂ correct↓ (f <$> p) = (λ _ → refl) <$> correct↓ p correct↓ (nonempty p) = nonempty (correct↓ p) correct↓ (cast xs₁≈xs₂ p) = cast (correct↓ p) correct↓ (p₁ ⊛ p₂) with forced? p₁ | forced? p₂ ... | just xs | just fs = [ just (○ , ○) - just (○ , ○) ] correct↓ p₁ ⊛ correct↓ p₂ ... | just xs | nothing = [ just (○ , ○) - nothing ] correct↓ p₁ ⊛ ♯ correct (♭ p₂) ... | nothing | just fs = [ nothing - just (○ , ○) ] ♯ correct (♭ p₁) ⊛ correct↓ p₂ ... | nothing | nothing = [ nothing - nothing ] ♯ correct-[] (♭ p₁) ⊛ ♯ correct-[] (♭ p₂) correct↓ (p₁ >>= p₂) with forced? p₁ | forced?′ p₂ ... | just f | just xs = [ just (○ , ○) - just (○ , ○) ] correct↓ p₁ >>= λ x → correct↓ (p₂ x) ... | just f | nothing = [ just (○ , ○) - nothing ] correct↓ p₁ >>= λ x → ♯ correct (♭ (p₂ x)) ... | nothing | just xs = [ nothing - just (○ , ○) ] ♯ correct (♭ p₁) >>= λ x → correct↓ (p₂ x) ... | nothing | nothing = [ nothing - nothing ] ♯ correct-[] (♭ p₁) >>= λ x → ♯ correct-[] (♭ (p₂ x)) correct-[] : ∀ {Tok R} (p : Parser Tok R []) → simplify-[] p ≅P p correct-[] p = simplify-[] p ≅⟨ correct↓ (simplify₁-[] p) ⟩ simplify₁-[] p ≅⟨ sym $ simplify₁-[]-correct p ⟩ p ∎
{ "alphanum_fraction": 0.4361508309, "avg_line_length": 46.9248704663, "ext": "agda", "hexsha": "fc30b0dfcb1c2b9cdde03b6c76108edc8471134e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Simplification.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Simplification.agda", "max_line_length": 135, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Simplification.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 6232, "size": 18113 }
import MJ.Classtable.Core as Core module MJ.Classtable.Membership {c}(Ct : Core.Classtable c) where open Core c open Classtable Ct open import Prelude open import Data.Star open import Data.Product hiding (Σ) open import Data.List open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.Any.Properties open import Data.List.First.Membership open import Data.Product.Relation.Binary.Pointwise.NonDependent open import Relation.Nullary.Decidable open import Data.Maybe open import Data.String as Str open import Function.Equality using (Π) open import Function.Inverse using (Inverse) open import MJ.Types as Types {- We can observe that a class declares a member in a particular namespace using a predicate Declares. -} Declares : Cid c → (ns : NS) → String → typing ns → Set Declares cid ns m ty = let cl = Σ cid in (m , ty) ∈ (Class.decls cl ns) {- We define a notion of *declarative membership* of C as the product of a witness that C inherits from P and a declaration in P. -} IsMember : Cid c → (ns : NS) → String → typing ns → Set IsMember cid ns m ty = let C = Σ cid in ∃ λ P → Σ ⊢ cid <: P × Declares P ns m ty {- We can prove that Object has no members. -} ∉Object : ∀ {ns m a} → ¬ IsMember Object ns m a ∉Object (.Object , ε , mem) rewrite Σ-Object = ¬x∈[] mem ∉Object (._ , () ◅ _ , _) {- And we can show that Declares and IsMember are decidable relations -} find-declaration : ∀ cid ns n ty → Dec (Declares cid ns n ty) find-declaration cid ns m ty = find (Str._≟_ ×-≟ _typing-≟_) (m , ty) (Class.decls (Σ cid) ns) find-member : ∀ cid ns n ty → Dec (IsMember cid ns n ty) find-member cid ns n ty = helper cid ns n ty (rooted cid) where helper : ∀ cid ns n ty → Σ ⊢ cid <: Object → Dec (IsMember cid ns n ty) helper cid ns n ty ε = no (⊥-elim ∘ ∉Object) helper cid ns n ty (super ◅ p) with find-declaration cid ns n ty ... | yes q = yes (cid , ε , q) ... | no ¬q with helper _ ns n ty p ... | yes (pid , s , d) = yes (pid , super ◅ s , d) ... | no ¬r = no impossible where impossible : ¬ (IsMember cid ns n ty) impossible (_ , ε , d) = ¬q d impossible (pid , Core.super ◅ s , d) = ¬r (pid , s , d) {- Using said decision procedures we can formalize a notion of accessible members. -} AccMember : Cid c → (ns : NS) → String → typing ns → Set AccMember cid ns n ty = True (find-member cid ns n ty) {- All accessible members are also declarative members, but not vice versa, because overrides make their super inaccessible. -} sound : ∀ {cid ns n ty} → AccMember cid ns n ty → IsMember cid ns n ty sound p = toWitness p {- Declarative members are inherited: -} inherit' : ∀ {C P ns m a} → Σ ⊢ C <: P → IsMember P ns m a → IsMember C ns m a inherit' S (_ , S' , def) = -, S ◅◅ S' , def {- Accessible members are inherited (but may point to different definitions thanks to overrides): -} inherit : ∀ {m ns ty pid} cid → Σ ⊢ cid <: pid → AccMember pid ns m ty → AccMember cid ns m ty inherit {m}{ns}{ty} cid s mb with find-member cid ns m ty ... | yes mb' = tt ... | no ¬mb = ⊥-elim (¬mb (inherit' s (sound mb)))
{ "alphanum_fraction": 0.6646321876, "avg_line_length": 33.4731182796, "ext": "agda", "hexsha": "f0ad55dc0c4499ca7ae82f2ff06bfc8854b1b304", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Classtable/Membership.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Classtable/Membership.agda", "max_line_length": 94, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Classtable/Membership.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 953, "size": 3113 }
{-# OPTIONS --without-K --exact-split #-} module rings-with-properties where import rings open rings public -------------------------------------------------------------------------------- {- Commutative rings -} is-commutative-Ring : { l : Level} → Ring l → UU l is-commutative-Ring R = (x y : type-Ring R) → Id (mul-Ring R x y) (mul-Ring R y x) is-prop-is-commutative-Ring : { l : Level} (R : Ring l) → is-prop (is-commutative-Ring R) is-prop-is-commutative-Ring R = is-prop-Π ( λ x → is-prop-Π ( λ y → is-set-type-Ring R (mul-Ring R x y) (mul-Ring R y x))) Comm-Ring : ( l : Level) → UU (lsuc l) Comm-Ring l = Σ (Ring l) is-commutative-Ring ring-Comm-Ring : { l : Level} → Comm-Ring l → Ring l ring-Comm-Ring = pr1 is-commutative-Comm-Ring : { l : Level} (R : Comm-Ring l) → is-commutative-Ring (ring-Comm-Ring R) is-commutative-Comm-Ring = pr2 hom-Comm-Ring : { l1 l2 : Level} → Comm-Ring l1 → Comm-Ring l2 → UU (l1 ⊔ l2) hom-Comm-Ring R1 R2 = hom-Ring (ring-Comm-Ring R1) (ring-Comm-Ring R2) iso-Comm-Ring : { l1 l2 : Level} → Comm-Ring l1 → Comm-Ring l2 → UU (l1 ⊔ l2) iso-Comm-Ring R1 R2 = iso-Ring (ring-Comm-Ring R1) (ring-Comm-Ring R2) is-contr-total-iso-Comm-Ring : { l1 : Level} (R1 : Comm-Ring l1) → is-contr (Σ (Comm-Ring l1) (iso-Comm-Ring R1)) is-contr-total-iso-Comm-Ring R1 = is-contr-total-Eq-substructure ( is-contr-total-iso-Ring (ring-Comm-Ring R1)) ( is-prop-is-commutative-Ring) ( ring-Comm-Ring R1) ( id-iso-Ring (ring-Comm-Ring R1)) ( is-commutative-Comm-Ring R1) -------------------------------------------------------------------------------- {- Division rings -} zero-neq-one-Ring : { l : Level} → Ring l → UU l zero-neq-one-Ring R = ¬ (Id (zero-Ring R) (unit-Ring R)) has-left-inverse-Ring : { l : Level} (R : Ring l) → type-Ring R → UU l has-left-inverse-Ring R x = Σ (type-Ring R) (λ y → Id (mul-Ring R y x) (unit-Ring R)) has-right-inverse-Ring : {l : Level} (R : Ring l) → type-Ring R → UU l has-right-inverse-Ring R x = Σ (type-Ring R) (λ y → Id (mul-Ring R x y) (unit-Ring R)) has-two-sided-inverse-Ring : {l : Level} (R : Ring l) → type-Ring R → UU l has-two-sided-inverse-Ring R x = ( has-left-inverse-Ring R x) × (has-right-inverse-Ring R x) is-invertible-Ring : {l : Level} (R : Ring l) → type-Ring R → UU l is-invertible-Ring R x = Σ ( type-Ring R) ( λ y → Id (mul-Ring R y x) (unit-Ring R) × Id (mul-Ring R x y) (unit-Ring R)) is-division-Ring : { l : Level} → Ring l → UU l is-division-Ring R = (zero-neq-one-Ring R) × ((x : type-Ring R) → ¬ (Id (zero-Ring R) x) → is-invertible-Ring R x) -------------------------------------------------------------------------------- {- Fields -} is-field-Comm-Ring : { l : Level} → Comm-Ring l → UU l is-field-Comm-Ring R = is-division-Ring (ring-Comm-Ring R)
{ "alphanum_fraction": 0.5593043478, "avg_line_length": 28.4653465347, "ext": "agda", "hexsha": "3face78a0305a7c727a5716fa9ce9138d3be8be3", "lang": "Agda", "max_forks_count": 30, "max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z", "max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_forks_repo_path": "Agda/rings-with-properties.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_issues_repo_path": "Agda/rings-with-properties.agda", "max_line_length": 80, "max_stars_count": 333, "max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_stars_repo_path": "Agda/rings-with-properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z", "num_tokens": 1024, "size": 2875 }
-- Andreas, 2017-01-12, issue #2386 -- Should be rejected: data Eq (A : Set) : (x y : A) → Set where refl : (x y : A) → Eq A x y {-# BUILTIN EQUALITY Eq #-} -- Expected error: -- Wrong type of constructor of BUILTIN EQUALITY -- when checking the pragma BUILTIN EQUALITY Eq
{ "alphanum_fraction": 0.6474820144, "avg_line_length": 23.1666666667, "ext": "agda", "hexsha": "4aa23e0fbe94e4d76482277d911dd5de26031376", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2386-b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2386-b.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2386-b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 87, "size": 278 }
------------------------------------------------------------------------ -- Reasoning about _⇔_ -- -- NOTE: we don’t use Relation.Binary.IsEquivalence here, since we’re reasoning -- about a heterogeneous equivalence relation (i.e., the types of the operands -- of _⇔_, which are themselves types, can be of different levels). In the proof -- of Chapter₁₅.problem₁, the fact that _⇔_ is heterogeneous is actually used, -- so we cannot use a homogeneous version of _⇔_. ------------------------------------------------------------------------ module Function.Equivalence.Reasoning where open import Function using (_⇔_) open import Function.Construct.Composition using (_∘-⇔_) public open import Function.Construct.Identity using (id-⇔) public open import Function.Construct.Symmetry using (sym-⇔) public open import Level using (Level) private variable a b c : Level infix 1 begin_ infixr 2 _⇔⟨⟩_ step-⇔ step-⇔˘ infix 3 _∎ begin_ : {A : Set a} {B : Set b} → A ⇔ B → A ⇔ B begin A⇔B = A⇔B _∎ : (A : Set a) → A ⇔ A _∎ = id-⇔ _⇔⟨⟩_ : (A : Set a) {B : Set b} → A ⇔ B → A ⇔ B A ⇔⟨⟩ A⇔B = A⇔B step-⇔ : (A : Set a) {B : Set b} {C : Set c} → A ⇔ B → B ⇔ C → A ⇔ C step-⇔ A = _∘-⇔_ syntax step-⇔ A A⇔B B⇔C = A ⇔⟨ A⇔B ⟩ B⇔C step-⇔˘ : (A : Set a) {B : Set b} {C : Set c} → B ⇔ A → B ⇔ C → A ⇔ C step-⇔˘ A B⇔A B⇔C = A ⇔⟨ sym-⇔ B⇔A ⟩ B⇔C syntax step-⇔˘ A B⇔A B⇔C = A ⇔˘⟨ B⇔A ⟩ B⇔C
{ "alphanum_fraction": 0.5526695527, "avg_line_length": 30.8, "ext": "agda", "hexsha": "2b87ade51ba6406dfab2aa6c02926dc0685232ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Function/Equivalence/Reasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Function/Equivalence/Reasoning.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Function/Equivalence/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 571, "size": 1386 }
{-# OPTIONS --rewriting #-} module Properties.StrictMode where import Agda.Builtin.Equality.Rewrite open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapL; mapR; mapLR; swapLR; cond) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; next; lookup-not-allocated) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ; ∅ to ∅ᴴ) open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr) open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_) open import Luau.Subtyping using (_≮:_; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_; Tree; Language; ¬Language) open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; string; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=) open import Luau.Type using (Type; nil; number; boolean; string; _⇒_; never; unknown; _∩_; _∪_; src; tgt; _≡ᵀ_; _≡ᴹᵀ_) open import Luau.TypeCheck using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orUnknown; srcBinOp; tgtBinOp) open import Luau.Var using (_≡ⱽ_) open import Luau.Addr using (_≡ᴬ_) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss; ⊕-swap; ⊕-over) renaming (_[_] to _[_]ⱽ) open import Luau.VarCtxt using (VarCtxt; ∅) open import Properties.Remember using (remember; _,_) open import Properties.Equality using (_≢_; sym; cong; trans; subst₁) open import Properties.Dec using (Dec; yes; no) open import Properties.Contradiction using (CONTRADICTION; ¬) open import Properties.Functions using (_∘_) open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; never-tgt-≮:; tgt-never-≮:; src-unknown-≮:; unknown-src-≮:; ≮:-trans; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never) open import Properties.TypeCheck using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴ) open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=; ··) open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=; ··) open import Luau.RuntimeType using (RuntimeType; valueType; number; string; boolean; nil; function) data _⊑_ (H : Heap yes) : Heap yes → Set where refl : (H ⊑ H) snoc : ∀ {H′ a O} → (H′ ≡ᴴ H ⊕ a ↦ O) → (H ⊑ H′) rednᴱ⊑ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (H ⊑ H′) rednᴮ⊑ : ∀ {H H′ B B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (H ⊑ H′) rednᴱ⊑ (function a p) = snoc p rednᴱ⊑ (app₁ s) = rednᴱ⊑ s rednᴱ⊑ (app₂ p s) = rednᴱ⊑ s rednᴱ⊑ (beta O v p q) = refl rednᴱ⊑ (block s) = rednᴮ⊑ s rednᴱ⊑ (return v) = refl rednᴱ⊑ done = refl rednᴱ⊑ (binOp₀ p) = refl rednᴱ⊑ (binOp₁ s) = rednᴱ⊑ s rednᴱ⊑ (binOp₂ s) = rednᴱ⊑ s rednᴮ⊑ (local s) = rednᴱ⊑ s rednᴮ⊑ (subst v) = refl rednᴮ⊑ (function a p) = snoc p rednᴮ⊑ (return s) = rednᴱ⊑ s data LookupResult (H : Heap yes) a V : Set where just : (H [ a ]ᴴ ≡ just V) → LookupResult H a V nothing : (H [ a ]ᴴ ≡ nothing) → LookupResult H a V lookup-⊑-nothing : ∀ {H H′} a → (H ⊑ H′) → (H′ [ a ]ᴴ ≡ nothing) → (H [ a ]ᴴ ≡ nothing) lookup-⊑-nothing {H} a refl p = p lookup-⊑-nothing {H} a (snoc defn) p with a ≡ᴬ next H lookup-⊑-nothing {H} a (snoc defn) p | yes refl = refl lookup-⊑-nothing {H} a (snoc o) p | no q = trans (lookup-not-allocated o q) p heap-weakeningᴱ : ∀ Γ H M {H′ U} → (H ⊑ H′) → (typeOfᴱ H′ Γ M ≮: U) → (typeOfᴱ H Γ M ≮: U) heap-weakeningᴱ Γ H (var x) h p = p heap-weakeningᴱ Γ H (val nil) h p = p heap-weakeningᴱ Γ H (val (addr a)) refl p = p heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p with a ≡ᴬ b heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = a} defn) p | yes refl = unknown-≮: p heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p | no r = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ (lookup-not-allocated q r))) p heap-weakeningᴱ Γ H (val (number x)) h p = p heap-weakeningᴱ Γ H (val (bool x)) h p = p heap-weakeningᴱ Γ H (val (string x)) h p = p heap-weakeningᴱ Γ H (M $ N) h p = never-tgt-≮: (heap-weakeningᴱ Γ H M h (tgt-never-≮: p)) heap-weakeningᴱ Γ H (function f ⟨ var x ∈ T ⟩∈ U is B end) h p = p heap-weakeningᴱ Γ H (block var b ∈ T is B end) h p = p heap-weakeningᴱ Γ H (binexp M op N) h p = p heap-weakeningᴮ : ∀ Γ H B {H′ U} → (H ⊑ H′) → (typeOfᴮ H′ Γ B ≮: U) → (typeOfᴮ H Γ B ≮: U) heap-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h p = heap-weakeningᴮ (Γ ⊕ f ↦ (T ⇒ U)) H B h p heap-weakeningᴮ Γ H (local var x ∈ T ← M ∙ B) h p = heap-weakeningᴮ (Γ ⊕ x ↦ T) H B h p heap-weakeningᴮ Γ H (return M ∙ B) h p = heap-weakeningᴱ Γ H M h p heap-weakeningᴮ Γ H done h p = p substitutivityᴱ : ∀ {Γ T U} H M v x → (typeOfᴱ H Γ (M [ v / x ]ᴱ) ≮: U) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) M ≮: U) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴱ-whenever : ∀ {Γ T U} H v x y (r : Dec(x ≡ y)) → (typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever r) ≮: U) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≮: U) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ : ∀ {Γ T U} H B v x → (typeOfᴮ H Γ (B [ v / x ]ᴮ) ≮: U) → Either (typeOfᴮ H (Γ ⊕ x ↦ T) B ≮: U) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ-unless : ∀ {Γ T U V} H B v x y (r : Dec(x ≡ y)) → (typeOfᴮ H (Γ ⊕ y ↦ U) (B [ v / x ]ᴮunless r) ≮: V) → Either (typeOfᴮ H ((Γ ⊕ x ↦ T) ⊕ y ↦ U) B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ-unless-yes : ∀ {Γ Γ′ T V} H B v x y (r : x ≡ y) → (Γ′ ≡ Γ) → (typeOfᴮ H Γ (B [ v / x ]ᴮunless yes r) ≮: V) → Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ-unless-no : ∀ {Γ Γ′ T V} H B v x y (r : x ≢ y) → (Γ′ ≡ Γ ⊕ x ↦ T) → (typeOfᴮ H Γ (B [ v / x ]ᴮunless no r) ≮: V) → Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴱ H (var y) v x p = substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p substitutivityᴱ H (val w) v x p = Left p substitutivityᴱ H (binexp M op N) v x p = Left p substitutivityᴱ H (M $ N) v x p = mapL never-tgt-≮: (substitutivityᴱ H M v x (tgt-never-≮: p)) substitutivityᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = Left p substitutivityᴱ H (block var b ∈ T is B end) v x p = Left p substitutivityᴱ-whenever H v x x (yes refl) q = swapLR (≮:-trans q) substitutivityᴱ-whenever H v x y (no p) q = Left (≡-trans-≮: (cong orUnknown (sym (⊕-lookup-miss x y _ _ p))) q) substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p = substitutivityᴮ-unless H B v x f (x ≡ⱽ f) p substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p = substitutivityᴮ-unless H B v x y (x ≡ⱽ y) p substitutivityᴮ H (return M ∙ B) v x p = substitutivityᴱ H M v x p substitutivityᴮ H done v x p = Left p substitutivityᴮ-unless H B v x y (yes p) q = substitutivityᴮ-unless-yes H B v x y p (⊕-over p) q substitutivityᴮ-unless H B v x y (no p) q = substitutivityᴮ-unless-no H B v x y p (⊕-swap p) q substitutivityᴮ-unless-yes H B v x y refl refl p = Left p substitutivityᴮ-unless-no H B v x y p refl q = substitutivityᴮ H B v x q binOpPreservation : ∀ H {op v w x} → (v ⟦ op ⟧ w ⟶ x) → (tgtBinOp op ≡ typeOfᴱ H ∅ (val x)) binOpPreservation H (+ m n) = refl binOpPreservation H (- m n) = refl binOpPreservation H (/ m n) = refl binOpPreservation H (* m n) = refl binOpPreservation H (< m n) = refl binOpPreservation H (> m n) = refl binOpPreservation H (<= m n) = refl binOpPreservation H (>= m n) = refl binOpPreservation H (== v w) = refl binOpPreservation H (~= v w) = refl binOpPreservation H (·· v w) = refl reflect-subtypingᴱ : ∀ H M {H′ M′ T} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (typeOfᴱ H′ ∅ M′ ≮: T) → Either (typeOfᴱ H ∅ M ≮: T) (Warningᴱ H (typeCheckᴱ H ∅ M)) reflect-subtypingᴮ : ∀ H B {H′ B′ T} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (typeOfᴮ H′ ∅ B′ ≮: T) → Either (typeOfᴮ H ∅ B ≮: T) (Warningᴮ H (typeCheckᴮ H ∅ B)) reflect-subtypingᴱ H (M $ N) (app₁ s) p = mapLR never-tgt-≮: app₁ (reflect-subtypingᴱ H M s (tgt-never-≮: p)) reflect-subtypingᴱ H (M $ N) (app₂ v s) p = Left (never-tgt-≮: (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (tgt-never-≮: p))) reflect-subtypingᴱ H (M $ N) (beta (function f ⟨ var y ∈ T ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong tgt (cong orUnknown (cong typeOfᴹᴼ q))) p) reflect-subtypingᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) p = Left p reflect-subtypingᴱ H (block var b ∈ T is B end) (block s) p = Left p reflect-subtypingᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) p = mapR BlockMismatch (swapLR (≮:-trans p)) reflect-subtypingᴱ H (block var b ∈ T is done end) done p = mapR BlockMismatch (swapLR (≮:-trans p)) reflect-subtypingᴱ H (binexp M op N) (binOp₀ s) p = Left (≡-trans-≮: (binOpPreservation H s) p) reflect-subtypingᴱ H (binexp M op N) (binOp₁ s) p = Left p reflect-subtypingᴱ H (binexp M op N) (binOp₂ s) p = Left p reflect-subtypingᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) p = mapLR (heap-weakeningᴮ _ _ B (snoc defn)) (CONTRADICTION ∘ ≮:-refl) (substitutivityᴮ _ B (addr a) f p) reflect-subtypingᴮ H (local var x ∈ T ← M ∙ B) (local s) p = Left (heap-weakeningᴮ (x ↦ T) H B (rednᴱ⊑ s) p) reflect-subtypingᴮ H (local var x ∈ T ← M ∙ B) (subst v) p = mapR LocalVarMismatch (substitutivityᴮ H B v x p) reflect-subtypingᴮ H (return M ∙ B) (return s) p = mapR return (reflect-subtypingᴱ H M s p) reflect-substitutionᴱ : ∀ {Γ T} H M v x → Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) → Either (Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) M)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴱ-whenever : ∀ {Γ T} H v x y (p : Dec(x ≡ y)) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever p)) → Either (Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y))) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ : ∀ {Γ T} H B v x → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) → Either (Warningᴮ H (typeCheckᴮ H (Γ ⊕ x ↦ T) B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ-unless : ∀ {Γ T U} H B v x y (r : Dec(x ≡ y)) → Warningᴮ H (typeCheckᴮ H (Γ ⊕ y ↦ U) (B [ v / x ]ᴮunless r)) → Either (Warningᴮ H (typeCheckᴮ H ((Γ ⊕ x ↦ T) ⊕ y ↦ U) B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ-unless-yes : ∀ {Γ Γ′ T} H B v x y (r : x ≡ y) → (Γ′ ≡ Γ) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) → Either (Warningᴮ H (typeCheckᴮ H Γ′ B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (r : x ≢ y) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) → Either (Warningᴮ H (typeCheckᴮ H Γ′ B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴱ H (var y) v x W = reflect-substitutionᴱ-whenever H v x y (x ≡ⱽ y) W reflect-substitutionᴱ H (val (addr a)) v x (UnallocatedAddress r) = Left (UnallocatedAddress r) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) with substitutivityᴱ H N v x p reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Right W = Right (Right W) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q with substitutivityᴱ H M v x (src-unknown-≮: q) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Left r = Left ((FunctionCallMismatch ∘ unknown-src-≮: q) r) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Right W = Right (Right W) reflect-substitutionᴱ H (M $ N) v x (app₁ W) = mapL app₁ (reflect-substitutionᴱ H M v x W) reflect-substitutionᴱ H (M $ N) v x (app₂ W) = mapL app₂ (reflect-substitutionᴱ H N v x W) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H B v x y (x ≡ⱽ y) q) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W) reflect-substitutionᴱ H (block var b ∈ T is B end) v x (BlockMismatch q) = mapLR BlockMismatch Right (substitutivityᴮ H B v x q) reflect-substitutionᴱ H (block var b ∈ T is B end) v x (block₁ W′) = mapL block₁ (reflect-substitutionᴮ H B v x W′) reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₁ q) = mapLR BinOpMismatch₁ Right (substitutivityᴱ H M v x q) reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₂ q) = mapLR BinOpMismatch₂ Right (substitutivityᴱ H N v x q) reflect-substitutionᴱ H (binexp M op N) v x (bin₁ W) = mapL bin₁ (reflect-substitutionᴱ H M v x W) reflect-substitutionᴱ H (binexp M op N) v x (bin₂ W) = mapL bin₂ (reflect-substitutionᴱ H N v x W) reflect-substitutionᴱ-whenever H a x x (yes refl) (UnallocatedAddress p) = Right (Left (UnallocatedAddress p)) reflect-substitutionᴱ-whenever H v x y (no p) (UnboundVariable q) = Left (UnboundVariable (trans (sym (⊕-lookup-miss x y _ _ p)) q)) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H C v x y (x ≡ⱽ y) q) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H C v x y (x ≡ⱽ y) W) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (function₂ W) = mapL function₂ (reflect-substitutionᴮ-unless H B v x f (x ≡ⱽ f) W) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (LocalVarMismatch q) = mapLR LocalVarMismatch Right (substitutivityᴱ H M v x q) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (local₁ W) = mapL local₁ (reflect-substitutionᴱ H M v x W) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (local₂ W) = mapL local₂ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W) reflect-substitutionᴮ H (return M ∙ B) v x (return W) = mapL return (reflect-substitutionᴱ H M v x W) reflect-substitutionᴮ-unless H B v x y (yes p) W = reflect-substitutionᴮ-unless-yes H B v x y p (⊕-over p) W reflect-substitutionᴮ-unless H B v x y (no p) W = reflect-substitutionᴮ-unless-no H B v x y p (⊕-swap p) W reflect-substitutionᴮ-unless-yes H B v x x refl refl W = Left W reflect-substitutionᴮ-unless-no H B v x y p refl W = reflect-substitutionᴮ H B v x W reflect-weakeningᴱ : ∀ Γ H M {H′} → (H ⊑ H′) → Warningᴱ H′ (typeCheckᴱ H′ Γ M) → Warningᴱ H (typeCheckᴱ H Γ M) reflect-weakeningᴮ : ∀ Γ H B {H′} → (H ⊑ H′) → Warningᴮ H′ (typeCheckᴮ H′ Γ B) → Warningᴮ H (typeCheckᴮ H Γ B) reflect-weakeningᴱ Γ H (var x) h (UnboundVariable p) = (UnboundVariable p) reflect-weakeningᴱ Γ H (val (addr a)) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p) reflect-weakeningᴱ Γ H (M $ N) h (FunctionCallMismatch p) = FunctionCallMismatch (heap-weakeningᴱ Γ H N h (unknown-src-≮: p (heap-weakeningᴱ Γ H M h (src-unknown-≮: p)))) reflect-weakeningᴱ Γ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ Γ H M h W) reflect-weakeningᴱ Γ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ Γ H N h W) reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₁ p) = BinOpMismatch₁ (heap-weakeningᴱ Γ H M h p) reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₂ p) = BinOpMismatch₂ (heap-weakeningᴱ Γ H N h p) reflect-weakeningᴱ Γ H (binexp M op N) h (bin₁ W′) = bin₁ (reflect-weakeningᴱ Γ H M h W′) reflect-weakeningᴱ Γ H (binexp M op N) h (bin₂ W′) = bin₂ (reflect-weakeningᴱ Γ H N h W′) reflect-weakeningᴱ Γ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (Γ ⊕ y ↦ T) H B h p) reflect-weakeningᴱ Γ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ ⊕ y ↦ T) H B h W) reflect-weakeningᴱ Γ H (block var b ∈ T is B end) h (BlockMismatch p) = BlockMismatch (heap-weakeningᴮ Γ H B h p) reflect-weakeningᴱ Γ H (block var b ∈ T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ Γ H B h W) reflect-weakeningᴮ Γ H (return M ∙ B) h (return W) = return (reflect-weakeningᴱ Γ H M h W) reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (LocalVarMismatch p) = LocalVarMismatch (heap-weakeningᴱ Γ H M h p) reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (local₁ W) = local₁ (reflect-weakeningᴱ Γ H M h W) reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (local₂ W) = local₂ (reflect-weakeningᴮ (Γ ⊕ y ↦ T) H B h W) reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (Γ ⊕ x ↦ T) H C h p) reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ ⊕ x ↦ T) H C h W) reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₂ W) = function₂ (reflect-weakeningᴮ (Γ ⊕ f ↦ (T ⇒ U)) H B h W) reflect-weakeningᴼ : ∀ H O {H′} → (H ⊑ H′) → Warningᴼ H′ (typeCheckᴼ H′ O) → Warningᴼ H (typeCheckᴼ H O) reflect-weakeningᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (x ↦ T) H B h p) reflect-weakeningᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (x ↦ T) H B h W) reflectᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴱ H′ (typeCheckᴱ H′ ∅ M′) → Either (Warningᴱ H (typeCheckᴱ H ∅ M)) (Warningᴴ H (typeCheckᴴ H)) reflectᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴮ H′ (typeCheckᴮ H′ ∅ B′) → Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H)) reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) = cond (Left ∘ FunctionCallMismatch ∘ heap-weakeningᴱ ∅ H N (rednᴱ⊑ s) ∘ unknown-src-≮: p) (Left ∘ app₁) (reflect-subtypingᴱ H M s (src-unknown-≮: p)) reflectᴱ H (M $ N) (app₁ s) (app₁ W′) = mapL app₁ (reflectᴱ H M s W′) reflectᴱ H (M $ N) (app₁ s) (app₂ W′) = Left (app₂ (reflect-weakeningᴱ ∅ H N (rednᴱ⊑ s) W′)) reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch q) = cond (λ r → Left (FunctionCallMismatch (unknown-src-≮: r (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (src-unknown-≮: r))))) (Left ∘ app₂) (reflect-subtypingᴱ H N s q) reflectᴱ H (M $ N) (app₂ p s) (app₁ W′) = Left (app₁ (reflect-weakeningᴱ ∅ H M (rednᴱ⊑ s) W′)) reflectᴱ H (M $ N) (app₂ p s) (app₂ W′) = mapL app₂ (reflectᴱ H N s W′) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) with substitutivityᴮ H B v x q reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Left r = Right (addr a p (FunctionDefnMismatch r)) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Right r = Left (FunctionCallMismatch (≮:-trans-≡ r ((cong src (cong orUnknown (cong typeOfᴹᴼ (sym p))))))) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) with reflect-substitutionᴮ _ B v x W′ reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Left W = Right (addr a p (function₁ W)) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Right (Left W) = Left (app₂ W) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Right (Right q) = Left (FunctionCallMismatch (≮:-trans-≡ q (cong src (cong orUnknown (cong typeOfᴹᴼ (sym p)))))) reflectᴱ H (block var b ∈ T is B end) (block s) (BlockMismatch p) = Left (cond BlockMismatch block₁ (reflect-subtypingᴮ H B s p)) reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W′) = mapL block₁ (reflectᴮ H B s W′) reflectᴱ H (block var b ∈ T is B end) (return v) W′ = Left (block₁ (return W′)) reflectᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ()) reflectᴱ H (binexp M op N) (binOp₀ ()) (UnallocatedAddress p) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) = Left (cond BinOpMismatch₁ bin₁ (reflect-subtypingᴱ H M s p)) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) = Left (BinOpMismatch₂ (heap-weakeningᴱ ∅ H N (rednᴱ⊑ s) p)) reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W′) = mapL bin₁ (reflectᴱ H M s W′) reflectᴱ H (binexp M op N) (binOp₁ s) (bin₂ W′) = Left (bin₂ (reflect-weakeningᴱ ∅ H N (rednᴱ⊑ s) W′)) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) = Left (BinOpMismatch₁ (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) p)) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) = Left (cond BinOpMismatch₂ bin₂ (reflect-subtypingᴱ H N s p)) reflectᴱ H (binexp M op N) (binOp₂ s) (bin₁ W′) = Left (bin₁ (reflect-weakeningᴱ ∅ H M (rednᴱ⊑ s) W′)) reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W′) = mapL bin₂ (reflectᴱ H N s W′) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (LocalVarMismatch p) = Left (cond LocalVarMismatch local₁ (reflect-subtypingᴱ H M s p)) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W′) = mapL local₁ (reflectᴱ H M s W′) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₂ W′) = Left (local₂ (reflect-weakeningᴮ (x ↦ T) H B (rednᴱ⊑ s) W′)) reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ = Left (cond local₂ (cond local₁ LocalVarMismatch) (reflect-substitutionᴮ H B v x W′)) reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ with reflect-substitutionᴮ _ B (addr a) f W′ reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ | Left W = Left (function₂ (reflect-weakeningᴮ (f ↦ (T ⇒ U)) H B (snoc defn) W)) reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ | Right (Left (UnallocatedAddress ())) reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ | Right (Right p) = CONTRADICTION (≮:-refl p) reflectᴮ H (return M ∙ B) (return s) (return W′) = mapL return (reflectᴱ H M s W′) reflectᴴᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴴ H′ (typeCheckᴴ H′) → Either (Warningᴱ H (typeCheckᴱ H ∅ M)) (Warningᴴ H (typeCheckᴴ H)) reflectᴴᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴴ H′ (typeCheckᴴ H′) → Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H)) reflectᴴᴱ H (M $ N) (app₁ s) W = mapL app₁ (reflectᴴᴱ H M s W) reflectᴴᴱ H (M $ N) (app₂ v s) W = mapL app₂ (reflectᴴᴱ H N s W) reflectᴴᴱ H (M $ N) (beta O v refl p) W = Right W reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (addr b refl W) with b ≡ᴬ a reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakeningᴮ (x ↦ T) H B (snoc defn) p)) reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x ↦ T) H B (snoc defn) W)) reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W)) reflectᴴᴱ H (block var b ∈ T is B end) (block s) W = mapL block₁ (reflectᴴᴮ H B s W) reflectᴴᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) W = Right W reflectᴴᴱ H (block var b ∈ T is done end) done W = Right W reflectᴴᴱ H (binexp M op N) (binOp₀ s) W = Right W reflectᴴᴱ H (binexp M op N) (binOp₁ s) W = mapL bin₁ (reflectᴴᴱ H M s W) reflectᴴᴱ H (binexp M op N) (binOp₂ s) W = mapL bin₂ (reflectᴴᴱ H N s W) reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a p) (addr b refl W) with b ≡ᴬ a reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakeningᴮ (x ↦ T) H C (snoc defn) p)) reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x ↦ T) H C (snoc defn) W)) reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W)) reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (local s) W = mapL local₁ (reflectᴴᴱ H M s W) reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (subst v) W = Right W reflectᴴᴮ H (return M ∙ B) (return s) W = mapL return (reflectᴴᴱ H M s W) reflect* : ∀ H B {H′ B′} → (H ⊢ B ⟶* B′ ⊣ H′) → Either (Warningᴮ H′ (typeCheckᴮ H′ ∅ B′)) (Warningᴴ H′ (typeCheckᴴ H′)) → Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H)) reflect* H B refl W = W reflect* H B (step s t) W = cond (reflectᴮ H B s) (reflectᴴᴮ H B s) (reflect* _ _ t W) isntNumber : ∀ H v → (valueType v ≢ number) → (typeOfᴱ H ∅ (val v) ≮: number) isntNumber H nil p = scalar-≢-impl-≮: nil number (λ ()) isntNumber H (addr a) p with remember (H [ a ]ᴴ) isntNumber H (addr a) p | (just (function f ⟨ var x ∈ T ⟩∈ U is B end) , q) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ q)) (function-≮:-scalar number) isntNumber H (addr a) p | (nothing , q) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ q)) (unknown-≮:-scalar number) isntNumber H (number x) p = CONTRADICTION (p refl) isntNumber H (bool x) p = scalar-≢-impl-≮: boolean number (λ ()) isntNumber H (string x) p = scalar-≢-impl-≮: string number (λ ()) isntString : ∀ H v → (valueType v ≢ string) → (typeOfᴱ H ∅ (val v) ≮: string) isntString H nil p = scalar-≢-impl-≮: nil string (λ ()) isntString H (addr a) p with remember (H [ a ]ᴴ) isntString H (addr a) p | (just (function f ⟨ var x ∈ T ⟩∈ U is B end) , q) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ q)) (function-≮:-scalar string) isntString H (addr a) p | (nothing , q) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ q)) (unknown-≮:-scalar string) isntString H (number x) p = scalar-≢-impl-≮: number string (λ ()) isntString H (bool x) p = scalar-≢-impl-≮: boolean string (λ ()) isntString H (string x) p = CONTRADICTION (p refl) isntFunction : ∀ H v {T U} → (valueType v ≢ function) → (typeOfᴱ H ∅ (val v) ≮: (T ⇒ U)) isntFunction H nil p = scalar-≮:-function nil isntFunction H (addr a) p = CONTRADICTION (p refl) isntFunction H (number x) p = scalar-≮:-function number isntFunction H (bool x) p = scalar-≮:-function boolean isntFunction H (string x) p = scalar-≮:-function string isntEmpty : ∀ H v → (typeOfᴱ H ∅ (val v) ≮: never) isntEmpty H nil = scalar-≮:-never nil isntEmpty H (addr a) with remember (H [ a ]ᴴ) isntEmpty H (addr a) | (just (function f ⟨ var x ∈ T ⟩∈ U is B end) , p) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ p)) function-≮:-never isntEmpty H (addr a) | (nothing , p) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ p)) unknown-≮:-never isntEmpty H (number x) = scalar-≮:-never number isntEmpty H (bool x) = scalar-≮:-never boolean isntEmpty H (string x) = scalar-≮:-never string runtimeBinOpWarning : ∀ H {op} v → BinOpError op (valueType v) → (typeOfᴱ H ∅ (val v) ≮: srcBinOp op) runtimeBinOpWarning H v (+ p) = isntNumber H v p runtimeBinOpWarning H v (- p) = isntNumber H v p runtimeBinOpWarning H v (* p) = isntNumber H v p runtimeBinOpWarning H v (/ p) = isntNumber H v p runtimeBinOpWarning H v (< p) = isntNumber H v p runtimeBinOpWarning H v (> p) = isntNumber H v p runtimeBinOpWarning H v (<= p) = isntNumber H v p runtimeBinOpWarning H v (>= p) = isntNumber H v p runtimeBinOpWarning H v (·· p) = isntString H v p runtimeWarningᴱ : ∀ H M → RuntimeErrorᴱ H M → Warningᴱ H (typeCheckᴱ H ∅ M) runtimeWarningᴮ : ∀ H B → RuntimeErrorᴮ H B → Warningᴮ H (typeCheckᴮ H ∅ B) runtimeWarningᴱ H (var x) UnboundVariable = UnboundVariable refl runtimeWarningᴱ H (val (addr a)) (SEGV p) = UnallocatedAddress p runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) = FunctionCallMismatch (unknown-src-≮: (isntEmpty H w) (isntFunction H v p)) runtimeWarningᴱ H (M $ N) (app₁ err) = app₁ (runtimeWarningᴱ H M err) runtimeWarningᴱ H (M $ N) (app₂ err) = app₂ (runtimeWarningᴱ H N err) runtimeWarningᴱ H (block var b ∈ T is B end) (block err) = block₁ (runtimeWarningᴮ H B err) runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₁ v w p) = BinOpMismatch₁ (runtimeBinOpWarning H v p) runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₂ v w p) = BinOpMismatch₂ (runtimeBinOpWarning H w p) runtimeWarningᴱ H (binexp M op N) (bin₁ err) = bin₁ (runtimeWarningᴱ H M err) runtimeWarningᴱ H (binexp M op N) (bin₂ err) = bin₂ (runtimeWarningᴱ H N err) runtimeWarningᴮ H (local var x ∈ T ← M ∙ B) (local err) = local₁ (runtimeWarningᴱ H M err) runtimeWarningᴮ H (return M ∙ B) (return err) = return (runtimeWarningᴱ H M err) wellTypedProgramsDontGoWrong : ∀ H′ B B′ → (∅ᴴ ⊢ B ⟶* B′ ⊣ H′) → (RuntimeErrorᴮ H′ B′) → Warningᴮ ∅ᴴ (typeCheckᴮ ∅ᴴ ∅ B) wellTypedProgramsDontGoWrong H′ B B′ t err with reflect* ∅ᴴ B t (Left (runtimeWarningᴮ H′ B′ err)) wellTypedProgramsDontGoWrong H′ B B′ t err | Right (addr a refl ()) wellTypedProgramsDontGoWrong H′ B B′ t err | Left W = W
{ "alphanum_fraction": 0.6530206405, "avg_line_length": 84.0518731988, "ext": "agda", "hexsha": "fd2cf2f2f8e017fdd4a7db289691b45b1e18e363", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MeltzDev/luau", "max_forks_repo_path": "prototyping/Properties/StrictMode.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MeltzDev/luau", "max_issues_repo_path": "prototyping/Properties/StrictMode.agda", "max_line_length": 323, "max_stars_count": null, "max_stars_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MeltzDev/luau", "max_stars_repo_path": "prototyping/Properties/StrictMode.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 12751, "size": 29166 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the heterogeneous suffix relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Suffix.Heterogeneous where open import Level open import Relation.Binary using (REL; _⇒_) open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Binary.Pointwise as Pointwise using (Pointwise; []; _∷_) module _ {a b r} {A : Set a} {B : Set b} (R : REL A B r) where data Suffix : REL (List A) (List B) (a ⊔ b ⊔ r) where here : ∀ {as bs} → Pointwise R as bs → Suffix as bs there : ∀ {b as bs} → Suffix as bs → Suffix as (b ∷ bs) data SuffixView (as : List A) : List B → Set (a ⊔ b ⊔ r) where _++_ : ∀ cs {ds} → Pointwise R as ds → SuffixView as (cs List.++ ds) module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where tail : ∀ {a as bs} → Suffix R (a ∷ as) bs → Suffix R as bs tail (here (_ ∷ rs)) = there (here rs) tail (there x) = there (tail x) module _ {a b r s} {A : Set a} {B : Set b} {R : REL A B r} {S : REL A B s} where map : R ⇒ S → Suffix R ⇒ Suffix S map R⇒S (here rs) = here (Pointwise.map R⇒S rs) map R⇒S (there suf) = there (map R⇒S suf) module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where toView : ∀ {as bs} → Suffix R as bs → SuffixView R as bs toView (here rs) = [] ++ rs toView (there {c} suf) with toView suf ... | cs ++ rs = (c ∷ cs) ++ rs fromView : ∀ {as bs} → SuffixView R as bs → Suffix R as bs fromView ([] ++ rs) = here rs fromView ((c ∷ cs) ++ rs) = there (fromView (cs ++ rs))
{ "alphanum_fraction": 0.5375722543, "avg_line_length": 36.0416666667, "ext": "agda", "hexsha": "4e8fc920b271e7aa581d36c35bdc387b50fbac9d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 591, "size": 1730 }
module PredicateName where open import OscarPrelude record PredicateName : Set where constructor ⟨_⟩ field name : Nat open PredicateName public instance EqPredicateName : Eq PredicateName Eq._==_ EqPredicateName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _)
{ "alphanum_fraction": 0.7472118959, "avg_line_length": 16.8125, "ext": "agda", "hexsha": "4a213ae0825e64637c78b95b88109a1bfb08ea1f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/PredicateName.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/PredicateName.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/PredicateName.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 76, "size": 269 }
{-# OPTIONS --copatterns --sized-types #-} open import Size open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning open import Algebra.Structures using (IsCommutativeSemiring; IsCommutativeMonoid) open import Data.Nat open import Data.Nat.Properties using (isCommutativeSemiring) open import Stream open ∼ˢ∞-Reasoning ⟦_⟧ : ℕ → Str ℕ hd (⟦ n ⟧) = n tl (⟦ n ⟧) = ⟦ 0 ⟧ _⊕_ : ∀{i} → Str {i} ℕ → Str {i} ℕ → Str {i} ℕ hd (s ⊕ t) = (hd s) + (hd t) tl (s ⊕ t) = (tl s) ⊕ (tl t) _×_ : ∀{i} → Str {i} ℕ → Str {i} ℕ → Str {i} ℕ hd (s × t) = hd s * hd t tl (s × t)= ((tl s) × t) ⊕ (⟦ hd s ⟧ × (tl t)) comm-* : ∀ m n → m * n ≡ n * m comm-* = IsCommutativeMonoid.comm (IsCommutativeSemiring.*-isCommutativeMonoid isCommutativeSemiring) comm-+ : ∀ m n → m + n ≡ n + m comm-+ = IsCommutativeMonoid.comm (IsCommutativeSemiring.+-isCommutativeMonoid isCommutativeSemiring) Bisim = _∼ˢ_ {- mutual comm-× : ∀{i} → (s t : Str {i} ℕ) → Bisim {ℕ} {i} (s × t) (t × s) hd≡ (comm-× s t) = comm-* (hd s) (hd t) tl∼ (comm-× s t) = lem-comm-× s t lem-comm-× : ∀{i} → ∀{j : Size< i} → (s t : Str {i} ℕ) → Bisim {ℕ} {j} ((tl s × t) ⊕ (⟦ hd s ⟧ × tl t)) ((tl t × s) ⊕ (⟦ hd t ⟧ × tl s)) hd≡ (lem-comm-× {i} {j} s t) = begin hd s' * hd t + hd s * hd t' ≡⟨ comm-+ (hd s' * hd t) (hd s * hd t') ⟩ hd s * hd t' + hd s' * hd t ≡⟨ cong (λ x → x + hd s' * hd t) (comm-* (hd s) (hd t')) ⟩ hd t' * hd s + hd s' * hd t ≡⟨ cong (λ x → hd t' * hd s + x) (comm-* (hd s') (hd t)) ⟩ hd t' * hd s + hd t * hd s' ∎ where s' = tl s {j} t' = tl t {j} tl∼ (lem-comm-× {i} {j} s t) {k} = lem {k} where s' = tl s {j} t' = tl t {j} lem : ∀{k : Size< j} → Bisim {ℕ} {k} (((tl s' × t) ⊕ (⟦ hd s' ⟧ × t')) ⊕ ((⟦ 0 ⟧ × t') ⊕ (⟦ hd s ⟧ × tl t'))) (((tl t' × s) ⊕ (⟦ hd t' ⟧ × s')) ⊕ ((⟦ 0 ⟧ × s') ⊕ (⟦ hd t ⟧ × tl s'))) lem = {!!} where s'' = tl s' {k} t'' = tl t' {k} -} zero-⊕-unit-l : (s : Str ℕ) → (⟦ 0 ⟧ ⊕ s) ∼ˢ∞ s hd≡∞ (zero-⊕-unit-l s) = refl tl∼∞ (zero-⊕-unit-l s) = zero-⊕-unit-l (tl s) zero-⊕-unit-r : (s : Str ℕ) → (s ⊕ ⟦ 0 ⟧) ∼ˢ∞ s hd≡∞ (zero-⊕-unit-r s) = comm-+ (hd s) 0 tl∼∞ (zero-⊕-unit-r s) = zero-⊕-unit-r (tl s) zero-×-annihil-l : (s : Str ℕ) → (⟦ 0 ⟧ × s) ∼ˢ∞ ⟦ 0 ⟧ hd≡∞ (zero-×-annihil-l s) = refl tl∼∞ (zero-×-annihil-l s) = beginˢ∞ tl (⟦ 0 ⟧ × s) ∼ˢ∞⟨ s-bisim∞-refl ⟩ (⟦ 0 ⟧ × s) ⊕ (⟦ 0 ⟧ × tl s) ∼ˢ∞⟨ {!!} ⟩ tl (⟦ 0 ⟧) ∎ˢ∞ mutual comm-× : (s t : Str ℕ) → (s × t) ∼ˢ∞ (t × s) hd≡∞ (comm-× s t) = comm-* (hd s) (hd t) tl∼∞ (comm-× s t) = lem-comm-× s t lem-comm-× : (s t : Str ℕ) → ((tl s × t) ⊕ (⟦ hd s ⟧ × tl t)) ∼ˢ∞ ((tl t × s) ⊕ (⟦ hd t ⟧ × tl s)) hd≡∞ (lem-comm-× s t) = begin hd s' * hd t + hd s * hd t' ≡⟨ comm-+ (hd s' * hd t) (hd s * hd t') ⟩ hd s * hd t' + hd s' * hd t ≡⟨ cong (λ x → x + hd s' * hd t) (comm-* (hd s) (hd t')) ⟩ hd t' * hd s + hd s' * hd t ≡⟨ cong (λ x → hd t' * hd s + x) (comm-* (hd s') (hd t)) ⟩ hd t' * hd s + hd t * hd s' ∎ where s' = tl s t' = tl t tl∼∞ (lem-comm-× s t) = lem where s' = tl s t' = tl t lem : (((tl s' × t) ⊕ (⟦ hd s' ⟧ × t')) ⊕ ((⟦ 0 ⟧ × t') ⊕ (⟦ hd s ⟧ × tl t'))) ∼ˢ∞ (((tl t' × s) ⊕ (⟦ hd t' ⟧ × s')) ⊕ ((⟦ 0 ⟧ × s') ⊕ (⟦ hd t ⟧ × tl s'))) lem = {!!} where s'' = tl s' t'' = tl t'
{ "alphanum_fraction": 0.4102351314, "avg_line_length": 27.5954198473, "ext": "agda", "hexsha": "59b44d99837bdbe86131fac7298e6c56609323f8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "Languages/SDE.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "Languages/SDE.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "Languages/SDE.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1765, "size": 3615 }
module _ where open import Agda.Builtin.Reflection open import Agda.Builtin.Unit open import Agda.Builtin.Nat open import Agda.Builtin.Equality variable A : Set super-tac : Term → TC ⊤ super-tac hole = unify hole (lit (nat 101)) solver : Nat → Term → TC ⊤ solver n hole = unify hole (lit (nat (n + 1))) foo : {@(tactic super-tac) n : Nat} {@(tactic solver n) x : A} → A foo {n = n} {x = x} = x number : Nat number = foo check : number ≡ 102 check = refl
{ "alphanum_fraction": 0.6483050847, "avg_line_length": 17.4814814815, "ext": "agda", "hexsha": "35628935d383ea19a87a9dabba496d144b554fe4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/TacticModality.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/TacticModality.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/TacticModality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 161, "size": 472 }
{-# OPTIONS --safe #-} module Cubical.Algebra.NatSolver.HornerForms where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat hiding (isZero) open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Data.Bool using (Bool; true; false; if_then_else_) private variable ℓ : Level {- This defines the type of multivariate Polynomials over ℕ. The construction is based on the algebraic fact ℕ[X₀][X₁]⋯[Xₙ] ≅ ℕ[X₀,⋯,Xₙ] BUT: Contrary to algebraic convetions, we will give 'Xₙ' the lowest index in the definition of 'Variable' below. So if 'Variable n k' is identified with 'Xₖ', what we construct should rather be denoted with ℕ[Xₙ][Xₙ₋₁]⋯[X₀] or, to be precise about the evaluation order: (⋯((ℕ[Xₙ])[Xₙ₋₁])⋯)[X₀] -} data IteratedHornerForms : ℕ → Type ℓ-zero where const : ℕ → IteratedHornerForms ℕ.zero 0H : {n : ℕ} → IteratedHornerForms (ℕ.suc n) _·X+_ : {n : ℕ} → IteratedHornerForms (ℕ.suc n) → IteratedHornerForms n → IteratedHornerForms (ℕ.suc n) eval : {n : ℕ} (P : IteratedHornerForms n) → Vec ℕ n → ℕ eval (const r) [] = r eval 0H (_ ∷ _) = 0 eval (P ·X+ Q) (x ∷ xs) = (eval P (x ∷ xs)) · x + eval Q xs module IteratedHornerOperations where private 1H' : (n : ℕ) → IteratedHornerForms n 1H' ℕ.zero = const 1 1H' (ℕ.suc n) = 0H ·X+ 1H' n 0H' : (n : ℕ) → IteratedHornerForms n 0H' ℕ.zero = const 0 0H' (ℕ.suc n) = 0H 1ₕ : {n : ℕ} → IteratedHornerForms n 1ₕ {n = n} = 1H' n 0ₕ : {n : ℕ} → IteratedHornerForms n 0ₕ {n = n} = 0H' n X : (n : ℕ) (k : Fin n) → IteratedHornerForms n X (ℕ.suc m) zero = 1ₕ ·X+ 0ₕ X (ℕ.suc m) (suc k) = 0ₕ ·X+ X m k _+ₕ_ : {n : ℕ} → IteratedHornerForms n → IteratedHornerForms n → IteratedHornerForms n (const r) +ₕ (const s) = const (r + s) 0H +ₕ Q = Q (P ·X+ r) +ₕ 0H = P ·X+ r (P ·X+ r) +ₕ (Q ·X+ s) = (P +ₕ Q) ·X+ (r +ₕ s) isZero : {n : ℕ} → IteratedHornerForms (ℕ.suc n) → Bool isZero 0H = true isZero (P ·X+ P₁) = false _⋆_ : {n : ℕ} → IteratedHornerForms n → IteratedHornerForms (ℕ.suc n) → IteratedHornerForms (ℕ.suc n) _·ₕ_ : {n : ℕ} → IteratedHornerForms n → IteratedHornerForms n → IteratedHornerForms n r ⋆ 0H = 0H r ⋆ (P ·X+ Q) = (r ⋆ P) ·X+ (r ·ₕ Q) const x ·ₕ const y = const (x · y) 0H ·ₕ Q = 0H (P ·X+ Q) ·ₕ S = let z = (P ·ₕ S) in if (isZero z) then (Q ⋆ S) else (z ·X+ 0ₕ) +ₕ (Q ⋆ S) Variable : (n : ℕ) (k : Fin n) → IteratedHornerForms n Variable n k = IteratedHornerOperations.X n k Constant : (n : ℕ) (r : ℕ) → IteratedHornerForms n Constant ℕ.zero r = const r Constant (ℕ.suc n) r = IteratedHornerOperations.0ₕ ·X+ Constant n r
{ "alphanum_fraction": 0.5920057616, "avg_line_length": 27.495049505, "ext": "agda", "hexsha": "1c63ca1bc8905f7ebedb9bb852c31905aeca7a32", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/NatSolver/HornerForms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/NatSolver/HornerForms.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/NatSolver/HornerForms.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1175, "size": 2777 }
module Basic.Compiler.SplitCode where open import Basic.Compiler.Code open import Basic.AST open import Basic.BigStep open import Utils.Monoid open import Data.Vec hiding (_++_; [_]; _∷ʳ_) open import Data.Bool renaming (if_then_else_ to ifBool_then_else_) open import Data.Nat open import Data.List hiding ([_]) open import Relation.Binary.PropositionalEquality open import Function open import Data.Product open import Algebra import Level as L private module LM {a}{A : Set a} = Algebra.Monoid (Data.List.monoid A) {- Exercise 3.5 This code logically belongs to either Compiler.Code or Compiler.CorrectFrom. It has its own module solely because it slows down typechecking for the module it's in, which is rather annoying. -} ▷*-split : ∀ {n}{s s' : State n}{e e'} c₁ {c₂} → (p : ⟨ c₁ <> c₂ , e , s ⟩▷*⟨ [] , e' , s' ⟩) → ∃₂ λ s'' e'' → ∃₂ λ (p1 : ⟨ c₁ , e , s ⟩▷*⟨ [] , e'' , s'' ⟩) (p2 : ⟨ c₂ , e'' , s'' ⟩▷*⟨ [] , e' , s' ⟩) → ▷*-length p1 + ▷*-length p2 ≡ ▷*-length p ▷*-split [] p = _ , _ , done , p , refl ▷*-split (.ADD ∷ cs) (ADD a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , ADD a b ∷ p1 , p2 , cong suc eqn ▷*-split (.MUL ∷ cs) (MUL a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , MUL a b ∷ p1 , p2 , cong suc eqn ▷*-split (.SUB ∷ cs) (SUB a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , SUB a b ∷ p1 , p2 , cong suc eqn ▷*-split (.EQ ∷ cs) (EQ a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , EQ a b ∷ p1 , p2 , cong suc eqn ▷*-split (.LT ∷ cs) (LT a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , LT a b ∷ p1 , p2 , cong suc eqn ▷*-split (.LTE ∷ cs) (LTE a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , LTE a b ∷ p1 , p2 , cong suc eqn ▷*-split (.AND ∷ cs) (AND a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , AND a b ∷ p1 , p2 , cong suc eqn ▷*-split (.(PUSH n₁) ∷ cs) (PUSH n₁ ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , PUSH n₁ ∷ p1 , p2 , cong suc eqn ▷*-split (.TRUE ∷ cs) (TRUE ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , TRUE ∷ p1 , p2 , cong suc eqn ▷*-split (.FALSE ∷ cs) (FALSE ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , FALSE ∷ p1 , p2 , cong suc eqn ▷*-split (.NOT ∷ cs) (NOT b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , NOT b ∷ p1 , p2 , cong suc eqn ▷*-split (.(FETCH x) ∷ cs) (FETCH x ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , FETCH x ∷ p1 , p2 , cong suc eqn ▷*-split (.(STORE x) ∷ cs) (STORE x ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , STORE x ∷ p1 , p2 , cong suc eqn ▷*-split (.NOOP ∷ cs) (NOOP ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , NOOP ∷ p1 , p2 , cong suc eqn ▷*-split (._ ∷ cs){c₂} (BRANCH{ca}{cb}{._}{t}{e} ∷ p) rewrite sym $ LM.assoc (ifBool t then ca else cb) cs c₂ with ▷*-split ((ifBool t then ca else cb) <> cs) p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , BRANCH ∷ p1 , p2 , cong suc eqn ▷*-split (._ ∷ cs){c₁} (LOOP{ca}{cb}{._}{e}{s} ∷ p) rewrite sym $ LM.assoc ca (BRANCH (cb ∷ʳ LOOP ca cb) (NOOP ∷ []) ∷ cs) c₁ with ▷*-split (ca <> (BRANCH (cb ∷ʳ LOOP ca cb) (NOOP ∷ []) ∷ cs)) p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , LOOP ∷ p1 , p2 , cong suc eqn
{ "alphanum_fraction": 0.5080011638, "avg_line_length": 45.8266666667, "ext": "agda", "hexsha": "4161353f8f6296cdc723e6706eeda3cddbcfd5b2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_forks_repo_path": "Basic/Compiler/SplitCode.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_issues_repo_path": "Basic/Compiler/SplitCode.agda", "max_line_length": 78, "max_stars_count": 8, "max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_stars_repo_path": "Basic/Compiler/SplitCode.agda", "max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z", "num_tokens": 1514, "size": 3437 }
-- Andreas, 2016-05-13 Issue 1973 reported by Nisse -- Problems with parameters to overloaded projections -- {-# OPTIONS -v tc.proj.amb:100 #-} -- {-# OPTIONS -v tc.deftype:100 #-} record R₁ : Set₁ where field f : Set open R₁ public postulate F : ∀ {a} → Set a → Set a module M (_ : Set₁) where record R₂ a (G : Set a → Set a) (A : Set a) : Set a where field f : G A open R₂ public open module N = M Set using (f) works : ∀ a (A : Set a) → N.R₂ a F A → F A works a A x = N.R₂.f x -- WAS: -- a F !=< F A of type Set -- when checking that the expression f x has type F A ill-formed-term-in-error-message : ∀ a (A : Set a) → N.R₂ a F A → F A ill-formed-term-in-error-message a A x = f x -- What Agda did here is to copy parameters from the reduced record type -- M.R₂ Set a F A -- to the unreduced projection -- N.R₂.f -- The number of projections (3) was queried from N.R₂.f, but the projections -- were taken from M.R₂ Set a F A. -- Now, take the original version of the projection, -- M.R₂.f -- which accepts 4 parameters, and these are the ones provided by M.R₂ Set a F A. -- WAS: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Substitute.hs:93 internal-error : (A : Set) → N.R₂ _ F A → F A internal-error A x = f x -- should work now.
{ "alphanum_fraction": 0.6442307692, "avg_line_length": 25.037037037, "ext": "agda", "hexsha": "117de5680fdffc4475c4f8f1d4c23e2ea0bb893a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1973.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1973.agda", "max_line_length": 82, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1973.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 430, "size": 1352 }
module Category.Monad.Reader {i}{I : Set i} where open import Category.Applicative.Indexed open import Category.Monad open import Category.Monad.Predicate open import Relation.Unary open import Relation.Unary.PredicateTransformer open import Data.Product open import Data.Unit open import Function open import Level ReaderT : Set i → Pt I i → Pt I i ReaderT E M P = λ i → E → M P i module ReaderT (E : Set i){M : Pt I i}(Mon : RawPMonad {ℓ = i} M) where module Mon = RawPMonad Mon open RawPMonad reader : RawPMonad {ℓ = i} (ReaderT E M) return? reader x e = Mon.return? x _=<?_ reader f m e = (λ x → f x e) Mon.=<? m e -- operations ask : ∀ {i : I} → ReaderT E M (λ _ → E) i ask E = return? Mon E asks : ∀ {A}{i : I} → (E → A i) → ReaderT E M A i asks f E = return? Mon (f E) local : ∀ {E'}{A}{i : I} → E' → ReaderT E' M A i → ReaderT E M A i local e' m = λ _ → m e'
{ "alphanum_fraction": 0.6344444444, "avg_line_length": 26.4705882353, "ext": "agda", "hexsha": "b748145aab13e7a9e2da8c66bc580f95af722a09", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Category/Monad/Reader.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Category/Monad/Reader.agda", "max_line_length": 71, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Category/Monad/Reader.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 315, "size": 900 }
-- Andreas, 2019-03-25, issue #3647, reported and bisected by nad. -- Regression introduced in refactoring a78d7f54e447cadf039da81b50ff40c81aa93909. {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v 90 #-} postulate A : Set P : A → Set Q : A → A → Set Q _ x = P x record R (P : A → Set) : Set where field f : (x : A) → P x → P x open R ⦃ … ⦄ module M {x : A} where instance postulate r₁ r₂ : R (Q x) postulate q₁ : (x : A) → P x q₂ : (x : A) → P x q₂ x = f _ (q₁ x) -- WAS: internal error. -- Should succeed with unsolved metas.
{ "alphanum_fraction": 0.5897887324, "avg_line_length": 16.2285714286, "ext": "agda", "hexsha": "5b2040ade622ac2850049121f91f0a02484383b6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3647.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3647.agda", "max_line_length": 81, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3647.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 221, "size": 568 }
module Test where open import IO using (run; putStrLn) import IO.Primitive as Prim using (IO) open import Data.Nat.Show as Nat using (show) open import Data.Unit using (⊤) open import Vector main : Prim.IO ⊤ main = run (putStrLn (Nat.show (length gravity₂)))
{ "alphanum_fraction": 0.7366412214, "avg_line_length": 21.8333333333, "ext": "agda", "hexsha": "87f31af8a3fc83b23f1616248a46e08e292d814b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "neosimsim/merkdas", "max_forks_repo_path": "hello-agda/src/Test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "neosimsim/merkdas", "max_issues_repo_path": "hello-agda/src/Test.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "neosimsim/merkdas", "max_stars_repo_path": "hello-agda/src/Test.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-26T08:08:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-26T08:08:13.000Z", "num_tokens": 70, "size": 262 }
module Logic.Linear where open import Data.Nat using (ℕ; zero; suc) open import Data.Fin using (Fin; zero; suc) open import Data.Vec using (Vec; []; _∷_; _++_; map) open import Data.Empty using (⊥) -- Operator precedences. infix 10 _^⊥ e?_ e!_ infixl 9 _⊗_ _&_ infixl 8 _⊕_ _⅋_ infixl 7 _⊸_ infixl 6 _≡_ -- Primitive linear propositions. data LinearProp {a} (A : Set a) : Set a where atom : A → LinearProp A atom^⊥ : A → LinearProp A _⊗_ : LinearProp A → LinearProp A → LinearProp A _⊕_ : LinearProp A → LinearProp A → LinearProp A _&_ : LinearProp A → LinearProp A → LinearProp A _⅋_ : LinearProp A → LinearProp A → LinearProp A u0 : LinearProp A u1 : LinearProp A u⊥ : LinearProp A u⊤ : LinearProp A e!_ : LinearProp A → LinearProp A e?_ : LinearProp A → LinearProp A -- The equivalent of the propositional negation, called "dual". _^⊥ : ∀ {a} {A : Set a} → LinearProp A → LinearProp A (atom p) ^⊥ = atom^⊥ p (atom^⊥ p) ^⊥ = atom p (p ⊗ q) ^⊥ = (p ^⊥) ⅋ (q ^⊥) (p ⊕ q) ^⊥ = (p ^⊥) & (q ^⊥) (p ⅋ q) ^⊥ = (p ^⊥) ⊗ (q ^⊥) (p & q) ^⊥ = (p ^⊥) ⊕ (q ^⊥) u1 ^⊥ = u⊥ u0 ^⊥ = u⊤ u⊥ ^⊥ = u1 u⊤ ^⊥ = u0 (e! p) ^⊥ = e? (p ^⊥) (e? p) ^⊥ = e! (p ^⊥) -- The linear implication, also called "lollipop operator". _⊸_ : ∀ {a} {A : Set a} → LinearProp A → LinearProp A → LinearProp A p ⊸ q = p ^⊥ ⅋ q -- The equivalent of the propositional equivalence (lmao). _≡_ : ∀ {a} {A : Set a} → LinearProp A → LinearProp A → LinearProp A p ≡ q = (p ⊸ q) & (q ⊸ p) -- Swaps two elements with two given positions. Just a helper of `swap`. swap-vec : ∀ {a} {A : Set a} {n : ℕ} → Fin n → Fin n → Vec A n → Vec A n swap-vec = do-swap where insert : ∀ {a} {A : Set a} {n : ℕ} → A → Vec A (suc n) → Vec A (suc (suc n)) insert y (x ∷ xs) = x ∷ y ∷ xs swap-first : ∀ {a} {A : Set a} {n : ℕ} → Fin n → Vec A n → Vec A n swap-first zero xs = xs swap-first (suc zero) (x ∷ y ∷ xs) = y ∷ x ∷ xs swap-first (suc m) (x ∷ y ∷ xs) = insert y (swap-first m (x ∷ xs)) do-swap : ∀ {a} {A : Set a} {n : ℕ} → Fin n → Fin n → Vec A n → Vec A n do-swap zero zero xs = xs do-swap zero (suc m) xs = swap-first (suc m) xs do-swap (suc m) zero xs = swap-first (suc m) xs do-swap (suc k) (suc m) (x ∷ xs) = x ∷ do-swap k m xs -- List of inference rules. -- The S parameter is an axiom scheme. -- To prove somthing, it must be the only proposition in the sequent. data _⊢_ {a} {A : Set a} (S : LinearProp A → Set a) : {n : ℕ} → Vec (LinearProp A) n → Set a where empty : S ⊢ [] axiom : {p : LinearProp A} → S p → S ⊢ (p ∷ []) swap : {n : ℕ} {ps : Vec (LinearProp A) n} → (i j : Fin n) → S ⊢ ps → S ⊢ (swap-vec i j ps) ^⊥-i : (p : LinearProp A) → S ⊢ (p ∷ p ^⊥ ∷ []) ^⊥-e : {p : LinearProp A} {m n : ℕ} {ps : Vec (LinearProp A) m} → {qs : Vec (LinearProp A) n} → S ⊢ (p ∷ ps) → S ⊢ (p ^⊥ ∷ qs) → S ⊢ (ps ++ qs) ⊗-i : {p q : LinearProp A} {m n : ℕ} {ps : Vec (LinearProp A) m} → {qs : Vec (LinearProp A) n} → S ⊢ (p ∷ ps) → S ⊢ (q ∷ qs) → S ⊢ (p ⊗ q ∷ ps ++ qs) ⅋-i : {p q : LinearProp A} {n : ℕ} {ps : Vec (LinearProp A) n} → S ⊢ (p ∷ q ∷ ps) → S ⊢ (p ⅋ q ∷ ps) u1-i : S ⊢ (u1 ∷ []) u⊥-i : {n : ℕ} {ps : Vec (LinearProp A) n} → S ⊢ ps → S ⊢ (u⊥ ∷ ps) &-i : {p q : LinearProp A} {n : ℕ} {ps : Vec (LinearProp A) n} → S ⊢ (p ∷ ps) → S ⊢ (q ∷ ps) → S ⊢ (p & q ∷ ps) ⊕-i₁ : {p q : LinearProp A} {n : ℕ} {ps : Vec (LinearProp A) n} → S ⊢ (p ∷ ps) → S ⊢ (p ⊕ q ∷ ps) ⊕-i₂ : {p q : LinearProp A} {n : ℕ} {ps : Vec (LinearProp A) n} → S ⊢ (p ∷ ps) → S ⊢ (q ⊕ p ∷ ps) u⊤-i : {n : ℕ} {ps : Vec (LinearProp A) n} → S ⊢ (u⊤ ∷ ps) e?-i₁ : {p : LinearProp A} {n : ℕ} {ps : Vec (LinearProp A) n} → S ⊢ ps → S ⊢ (e? p ∷ ps) e?-i₂ : {p : LinearProp A} {n : ℕ} {ps : Vec (LinearProp A) n} → S ⊢ (p ∷ ps) → S ⊢ (e? p ∷ ps) e?-e : {p : LinearProp A} {n : ℕ} {ps : Vec (LinearProp A) n} → S ⊢ (e? p ∷ e? p ∷ ps) → S ⊢ (e? p ∷ ps) e!-i : {p : LinearProp A} {n : ℕ} {ps : Vec (LinearProp A) n} → S ⊢ (p ∷ map e?_ ps) → S ⊢ (e! p ∷ map e?_ ps) -- Empty axiom scheme. data NoAxioms {a} {A : Set a} : LinearProp A → Set a where -- Just a helper to hint something has been proven. Proof : ∀ {a} {A : Set a} → (LinearProp A → Set a) → LinearProp A → Set a Proof S p = S ⊢ (p ∷ [])
{ "alphanum_fraction": 0.4437005478, "avg_line_length": 26.2180851064, "ext": "agda", "hexsha": "c0f60c95981c204237a6860fbce3d92f3177937e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9ce2e8b0e801b3c68b7e00731f57bc322d89f222", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "brunoczim/linear-logic", "max_forks_repo_path": "src/Logic/Linear.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9ce2e8b0e801b3c68b7e00731f57bc322d89f222", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "brunoczim/linear-logic", "max_issues_repo_path": "src/Logic/Linear.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "9ce2e8b0e801b3c68b7e00731f57bc322d89f222", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "brunoczim/linear-logic", "max_stars_repo_path": "src/Logic/Linear.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2079, "size": 4929 }
{-# OPTIONS --without-K #-} module well-typed-syntax-interpreter where open import common public open import well-typed-syntax import well-typed-syntax-pre-interpreter open import well-typed-syntax-eq-dec max-level : Level max-level = well-typed-syntax-pre-interpreter.max-level Context⇓ : (Γ : Context) → Set (lsuc max-level) Context⇓ = well-typed-syntax-pre-interpreter.inner.Context⇓ (λ ℓ P Γ' dummy val → context-pick-if {P = P} dummy val) (λ ℓ P dummy val → context-pick-if-refl {P = P} {dummy}) Typ⇓ : {Γ : Context} → Typ Γ → Context⇓ Γ → Set max-level Typ⇓ = well-typed-syntax-pre-interpreter.inner.Typ⇓ (λ ℓ P Γ' dummy val → context-pick-if {P = P} dummy val) (λ ℓ P dummy val → context-pick-if-refl {P = P} {dummy}) Term⇓ : ∀ {Γ : Context} {T : Typ Γ} → Term T → (Γ⇓ : Context⇓ Γ) → Typ⇓ T Γ⇓ Term⇓ = well-typed-syntax-pre-interpreter.inner.Term⇓ (λ ℓ P Γ' dummy val → context-pick-if {P = P} dummy val) (λ ℓ P dummy val → context-pick-if-refl {P = P} {dummy})
{ "alphanum_fraction": 0.6452241715, "avg_line_length": 41.04, "ext": "agda", "hexsha": "c3a75f751cbe09b1b72411e3d71f323899f5467b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JasonGross/lob", "max_forks_repo_path": "internal/well-typed-syntax-interpreter.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JasonGross/lob", "max_issues_repo_path": "internal/well-typed-syntax-interpreter.agda", "max_line_length": 76, "max_stars_count": 19, "max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JasonGross/lob", "max_stars_repo_path": "internal/well-typed-syntax-interpreter.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z", "num_tokens": 348, "size": 1026 }
{-# OPTIONS --without-K #-} module ForAmr where open import Level using (Level) open import Relation.Nullary.Core open import Data.Vec using (Vec; tabulate; []; _∷_; lookup; allFin) renaming (_++_ to _++V_; map to mapV; concat to concatV) open import Data.Vec.Properties using (lookup-++-≥; lookup∘tabulate; tabulate-∘; tabulate∘lookup; map-cong) open import Function using (id;_∘_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; cong₂; subst; proof-irrelevance; _≗_; module ≡-Reasoning) open import Data.Nat using (ℕ; zero; suc; _+_; z≤n; _≟_) open import Data.Nat.Properties.Simple using (+-comm) open import Data.Nat.Properties using (m≤m+n) open import Data.Fin using (Fin; zero; suc; inject+; raise; reduce≥; toℕ; fromℕ≤) open import Data.Fin.Properties using (toℕ-injective; toℕ-raise; toℕ-fromℕ≤) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (proj₁) open import Function using (flip) open import Proofs open import Equiv open import FinEquiv open import Cauchy open import TypeEquiv using (swap₊; swapswap₊) ---------------------------------------------------- -- and now this is completely obvious. But not actually needed! swap+-idemp : {A B : Set} → {m n : ℕ} → (v : Vec (A ⊎ B) (m + n)) → swap+ {m} (swap+ {m} v) ≡ v swap+-idemp v = begin ( tabulate (λ i → swap₊ (tabulate (λ j → swap₊ (v !! j)) !! i)) ≡⟨ denest-tab-!! swap₊ swap₊ v ⟩ mapV (swap₊ ∘ swap₊) v ≡⟨ map-cong swapswap₊ v ⟩ mapV id v ≡⟨ map-id v ⟩ v ∎) where open ≡-Reasoning -- because this is 'pointwise', no need for swap+-idemp. pointwise-swap+v-idemp : {m n : ℕ} → ∀ i → lookup (lookup i (swap+v m n)) (swap+v n m) ≡ i pointwise-swap+v-idemp {m} {n} i = let fnm = swapper n m in let fmn = swapper m n in begin ( lookup (lookup i (swap+v m n)) (swap+v n m) ≡⟨ cong (λ x → lookup x (swap+v n m)) (lookup∘tabulate fmn i) ⟩ lookup (fmn i) (swap+v n m) ≡⟨ lookup∘tabulate fnm (fmn i) ⟩ fnm (fmn i) -- bingo! ≡⟨ cong (fwd ∘ swap₊) (bwd∘fwd~id (swap₊ (bwd {m} i))) ⟩ fwd (swap₊ (swap₊ (bwd {m} i))) ≡⟨ cong fwd (swapswap₊ (bwd {m} i)) ⟩ fwd (bwd {m} i) ≡⟨ fwd∘bwd~id {m} i ⟩ i ∎ ) where open ≡-Reasoning -- this is true, but the above is what is used in practice. swap+v-idemp : {m n : ℕ} → tabulate (λ i → lookup (lookup i (swap+v m n)) (swap+v n m)) ≡ tabulate id swap+v-idemp {m} = finext (pointwise-swap+v-idemp {m}) --------------------------------------------------------------- -- Everything below here is based on Cauchy as Vec (Fin n) n -- and might get tossed. Comment it out for now. {- -- the Cauchy version. swap+c : (m n : ℕ) → Cauchy (m + n) swap+c m n = subst (λ x → Vec (Fin x) (m + n)) (+-comm n m) (swap+v m n) -- the action of subst on swap+, pointwise switch-swap+ : {m n : ℕ} → (i : Fin (m + n)) → subst Fin (+-comm n m) (swapper m n i) ≡ swapper n m (subst Fin (+-comm m n) i) switch-swap+ {m} {n} i with m ≟ n switch-swap+ i | yes p = {!!} switch-swap+ i | no ¬p = {!!} {- switch-swap+ {m} {n} i with (toℕ i <? m) | (toℕ (subst Fin (+-comm m n) i) <? n) switch-swap+ {m} {n} i | yes p | yes q = {!!} {- toℕ-injective ( begin ( toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ p))) ≡⟨ toℕ-invariance (raise n (fromℕ≤ p)) (+-comm n m) ⟩ toℕ (raise n (fromℕ≤ p)) ≡⟨ toℕ-raise n (fromℕ≤ p) ⟩ n + toℕ (fromℕ≤ p) ≡⟨ cong (_+_ n) (toℕ-fromℕ≤ p) ⟩ n + toℕ i ≡⟨ {!!} ⟩ m + toℕ (subst Fin (+-comm m n) i) ≡⟨ sym (cong (_+_ m) (toℕ-fromℕ≤ q)) ⟩ m + toℕ (fromℕ≤ q) ≡⟨ sym (toℕ-raise m (fromℕ≤ q)) ⟩ toℕ (raise m (fromℕ≤ q)) ∎)) where open ≡-Reasoning -} switch-swap+ i | yes p | no ¬q = {!!} switch-swap+ i | no ¬p | yes q = {!!} switch-swap+ i | no ¬p | no ¬q = {!!} -} -- the Cauchy version: pcomp' : ∀ {m n} → Cauchy m → Cauchy n → Cauchy (m + n) pcomp' α β = mapV fwd (pcomp α β) -- the action of subst on swap+v switch-swap : {m n : ℕ} → (i : Fin (m + n)) → subst Fin (+-comm n m) ((swap+v m n) !! i) ≡ (swap+v n m) !! subst Fin (+-comm m n) i switch-swap {m} {n} i = let fnm = swapper n m in let fmn = swapper m n in begin ( subst Fin (+-comm n m) ((tabulate fmn) !! i) ≡⟨ cong (subst Fin (+-comm n m)) (lookup∘tabulate fmn i) ⟩ subst Fin (+-comm n m) (fmn i) ≡⟨ switch-swap+ {m} i ⟩ fnm (subst Fin (+-comm m n) i) ≡⟨ sym (lookup∘tabulate fnm (subst Fin (+-comm m n) i)) ⟩ tabulate (fnm) !! subst Fin (+-comm m n) i ∎) where open ≡-Reasoning -- the crucial part for the next theorem: swap+-idemp' : {m n : ℕ} → ∀ (i : Fin (m + n)) → lookup (subst (λ x → Vec (Fin x) (m + n)) (+-comm n m) (swap+v m n) !! i) (subst (λ x → Vec (Fin x) (m + n)) (+-comm n m) (swap+v m n)) ≡ i swap+-idemp' {m} {n} i = let j = subst (λ x → Vec (Fin x) (m + n)) (+-comm n m) (swap+v m n) !! i in begin ( lookup j (subst (λ x → Vec (Fin x) (m + n)) (+-comm n m) (swap+v m n)) ≡⟨ lookup-subst j (swap+v m n) (+-comm n m) ⟩ subst Fin (+-comm n m) ((swap+v m n) !! j) ≡⟨ cong (λ x → subst Fin (+-comm n m) ((swap+v m n) !! x)) (lookup-subst i (swap+v m n) (+-comm n m)) ⟩ subst Fin (+-comm n m) ((swap+v m n) !! subst Fin (+-comm n m) (swap+v m n !! i)) ≡⟨ cong (λ x → subst Fin (+-comm n m) ((swap+v m n) !! x)) (switch-swap {m} i) ⟩ subst Fin (+-comm n m) ((swap+v m n) !! (swap+v n m !! subst Fin (+-comm m n) i)) ≡⟨ cong (subst Fin (+-comm n m)) (pointwise-swap+v-idemp {n} (subst Fin (+-comm m n) i)) ⟩ subst Fin (+-comm n m) (subst Fin (+-comm m n) i) ≡⟨ subst-subst (+-comm n m) (+-comm m n) (proof-irrelevance (sym (+-comm n m)) (+-comm m n)) i ⟩ i ∎) where open ≡-Reasoning -- and let's see what that does to the Cauchy version: swap+c-idemp : {m n : ℕ} → scompcauchy (swap+c m n) (swap+c m n) ≡ allFin (m + n) swap+c-idemp {m} {n} = finext (swap+-idemp' {m} {n}) -}
{ "alphanum_fraction": 0.5278137128, "avg_line_length": 38.4099378882, "ext": "agda", "hexsha": "255cd4d6edc91fba58be5287e4e852dc3d721b71", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/ForAmr.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/ForAmr.agda", "max_line_length": 97, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/ForAmr.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2396, "size": 6184 }
------------------------------------------------------------------------ -- Parser indices ------------------------------------------------------------------------ module StructurallyRecursiveDescentParsing.Index where open import Data.Bool open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Function ------------------------------------------------------------------------ -- Indices to the parser type -- Does the parser accept empty strings? Empty : Set Empty = Bool -- The proper left corners of the parser, represented as a tree. See -- StructurallyRecursiveDescentParsing.Grammar. infix 5 _∪_ data Corners : Set where ε : Corners _∪_ : (c₁ c₂ : Corners) → Corners -- The index type. infix 4 _◇_ record Index : Set where constructor _◇_ field empty : Empty corners : Corners open Index public -- Type signature for non-terminals. The second argument is the result -- type. NonTerminalType : Set2 NonTerminalType = Index → Set → Set1 ------------------------------------------------------------------------ -- Operations on indices infixr 50 _·_ infixr 40 _∥_ 0I : Index 0I = false ◇ ε 1I : Index 1I = true ◇ ε _∥_ : Index → Index → Index i₁ ∥ i₂ = empty i₁ ∨ empty i₂ ◇ corners i₁ ∪ corners i₂ _·_ : Index → Index → Index i₁ · i₂ = (empty i₁ ∧ empty i₂) ◇ (if empty i₁ then corners i₁ ∪ corners i₂ else corners i₁) ------------------------------------------------------------------------ -- Testing indices for equality infix 15 _Index-≟_ _Corners-≟_ private drop-∪₁ : ∀ {c₁ c₂ c₃ c₄} → c₁ ∪ c₂ ≡ c₃ ∪ c₄ → c₁ ≡ c₃ drop-∪₁ refl = refl drop-∪₂ : ∀ {c₁ c₂ c₃ c₄} → c₁ ∪ c₂ ≡ c₃ ∪ c₄ → c₂ ≡ c₄ drop-∪₂ refl = refl _Corners-≟_ : Decidable {A = Corners} _≡_ ε Corners-≟ ε = yes refl (c₁ ∪ c₂) Corners-≟ ( c₃ ∪ c₄) with c₁ Corners-≟ c₃ | c₂ Corners-≟ c₄ (c₁ ∪ c₂) Corners-≟ (.c₁ ∪ .c₂) | yes refl | yes refl = yes refl (c₁ ∪ c₂) Corners-≟ ( c₃ ∪ c₄) | no ¬c₁≡c₂ | _ = no (¬c₁≡c₂ ∘ drop-∪₁) (c₁ ∪ c₂) Corners-≟ ( c₃ ∪ c₄) | _ | no ¬c₁≡c₂ = no (¬c₁≡c₂ ∘ drop-∪₂) ε Corners-≟ (_ ∪ _) = no λ() (_ ∪ _) Corners-≟ ε = no λ() _Index-≟_ : Decidable {A = Index} _≡_ i₁ Index-≟ i₂ with empty i₁ ≟ empty i₂ | corners i₁ Corners-≟ corners i₂ ... | yes e₁≡e₂ | yes c₁≡c₂ = yes (cong₂ _◇_ e₁≡e₂ c₁≡c₂) ... | no ¬e₁≡e₂ | _ = no (¬e₁≡e₂ ∘ cong empty) ... | _ | no ¬c₁≡c₂ = no (¬c₁≡c₂ ∘ cong corners)
{ "alphanum_fraction": 0.5155084413, "avg_line_length": 26.2577319588, "ext": "agda", "hexsha": "d92f27247a53da99c86f6a55bae468cb58404748", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "StructurallyRecursiveDescentParsing/Index.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "StructurallyRecursiveDescentParsing/Index.agda", "max_line_length": 81, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "StructurallyRecursiveDescentParsing/Index.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 891, "size": 2547 }
module LF where data Zero : Set where record One : Set where ★ : One ★ = record {} One-elim : (C : One -> Set) -> C ★ -> (a : One) -> C a One-elim C h _ = h One-elim₁ : (C : One -> Set1) -> C ★ -> (a : One) -> C a One-elim₁ C h _ = h -- data One' : Set1 where -- ★' : One' data Two : Set where ★₀ : Two ★₁ : Two case₂ : {A : Set1} -> Two -> A -> A -> A case₂ ★₀ x y = x case₂ ★₁ x y = y data _+_ (A : Set)(B : Set) : Set where inl : A -> A + B inr : B -> A + B record _×_ (A : Set)(B : A -> Set) : Set where field π₀ : A π₁ : B π₀ open _×_ public _,_ : {A : Set}{B : A -> Set}(a : A) -> B a -> A × B x , y = record { π₀ = x; π₁ = y } _*_ : (A B : Set) -> Set A * B = A × \_ -> B -- data _×'_ (A : Set)(B : A -> Set1) : Set1 where -- _,'_ : (a : A) -> B a -> A ×' B -- -- π₀' : {A : Set}{B : A -> Set1} -> A ×' B -> A -- π₀' (a ,' b) = a -- -- π₁' : {A : Set}{B : A -> Set1}(p : A ×' B) -> B (π₀' p) -- π₁' (a ,' b) = b
{ "alphanum_fraction": 0.421875, "avg_line_length": 17.4545454545, "ext": "agda", "hexsha": "53554ef70076219cc29b6231e2e881c014b712a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/LF.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/LF.agda", "max_line_length": 58, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/LF.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 434, "size": 960 }
-- We show by allowing the reminder of integer division to be -- negative, we can get more precise estimation of the rank of the -- remainder: rank reminder ≤ (rank divisor) / 2. {-# OPTIONS --without-K --safe #-} module Integer.EucDomain2 where -- ---------------------------------------------------------------------- -- ℕ is an "Euclidean SemiRing". module NatESR where -- ℕ satisfy the euc-eq and euc-rank property with the usual div and -- mod function. Still we need to do the translation from non-equality -- to NonZero predicate. -- imports form stdlib. open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Data.Nat as Nat using (ℕ ; zero ; suc) import Data.Nat.DivMod as NDM import Data.Nat.Properties as NatP -- imports from local. open import Instances -- We already make ℕ an instance of Rank. For convinence we restate it -- here. rank' : ℕ -> ℕ rank' x = x -- Division with the annoying translation from ¬ d ≡ 0 to NonZero -- predicate. div : ∀ (n d : ℕ) -> ¬ d ≡ 0 -> ℕ div n zero n0 with n0 refl ... | () div n (suc d) n0 = NDM._/_ n (suc d) -- Reminder. mod : ∀ (n d : ℕ) -> ¬ d ≡ 0 -> ℕ mod n zero n0 with n0 refl ... | () mod n (suc d) n0 = NDM._%_ n (suc d) -- Dividend = reminder + quotient * divisor. euc-eq : ∀ (n d : ℕ) (n0 : ¬ d ≡ 0) -> let r = mod n d n0 in let q = div n d n0 in n ≡ r + q * d euc-eq n zero n0 with n0 refl ... | () euc-eq n (suc d) n0 = NDM.m≡m%n+[m/n]*n n (suc d) -- rank reminder < rank divisor. euc-rank : ∀ (n d : ℕ) (n0 : ¬ d ≡ 0) -> let r = mod n d n0 in let q = div n d n0 in rank r < rank d euc-rank n zero n0 with n0 refl ... | () euc-rank n (suc d) n0 = NDM.m%n<n n (suc d) -- ---------------------------------------------------------------------- -- Allow Integer division to have negative reminder -- Let n, d be integers and d nonzero, by the usual divison with -- reminder we have q, r such that n = r + q * d and ∣ r ∣ < ∣ d ∣. -- What we want is q' and r' such that n = r' + q' * d and ∣ r' ∣ ≤ ∣ -- d ∣ / 2. Asssume d > 0, an easy calculation shows if ∣ r ∣ ≤ ∣ d ∣ -- / 2, we let q' = q and r' = r, and if ∣ r ∣ > ∣ d ∣ / 2, we let q' -- = q + 1 and r' = r - d. The case when d < 0 is similar. -- imports from stdlib. open import Relation.Nullary using (yes ; no ; ¬_) open import Relation.Binary.PropositionalEquality as PE using (_≡_ ; refl ; sym ; cong ; trans) open import Data.Empty using (⊥-elim) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Data.Bool using (T ; not) open import Data.Nat as Nat using (ℕ ; suc ; s≤s ; zero ; z≤n) import Data.Nat.DivMod as NDM import Data.Nat.Properties as NatP open import Data.Integer as Int using (ℤ ; ∣_∣ ; +_ ; +[1+_] ; -[1+_] ; 1ℤ ; _◃_ ; +<+ ; -<- ; -≤- ; -<+ ; -≤+ ; +≤+ ; 0ℤ) import Data.Integer.Properties as IntP open import Data.Integer.DivMod using (_div_ ; _mod_ ; a≡a%n+[a/n]*n ; n%d<d) open import Data.Integer.Solver -- imports from local. open import Instances -- Aother integer division allowing negative reminder. div' : ∀ (n d : ℤ) -> ¬ d ≡ 0ℤ -> ℤ div' n (+_ zero) n0 with n0 refl ... | () div' n d@(+[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = n div d ... | no np = 1ℤ + n div d div' n d@(-[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = n div d ... | no np = - 1ℤ + n div d -- Another integer mod allowing negative reminder. mod' : ∀ (n d : ℤ) -> ¬ d ≡ 0ℤ -> ℤ mod' n (+_ zero) n0 with n0 refl ... | () mod' n d@(+[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = + (n mod d) ... | no np = + (n mod d) - d mod' n d@(-[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = + (n mod d) ... | no np = + (n mod d) + d -- Dividend = reminder + quotient * divisor. euc-eq' : ∀ (n d : ℤ) (n0 : ¬ d ≡ 0ℤ) -> let r = mod' n d n0 in let q = div' n d n0 in n ≡ r + q * d euc-eq' n (+_ zero) n0 with n0 refl ... | () euc-eq' n d@(+[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = a≡a%n+[a/n]*n n d ... | no np = claim where claim : n ≡ (+ (n mod d) - d) + (1ℤ + n div d) * d claim = begin n ≡⟨ a≡a%n+[a/n]*n n d ⟩ + (n mod d) + (n div d) * d ≡⟨ solve 3 (\ x y z -> x :+ y :* z := x :- z :+ (con 1ℤ :+ y) :* z) refl (+ (n mod d)) (n div d) d ⟩ (+ (n mod d) - d) + (1ℤ + n div d) * d ∎ where open +-*-Solver open PE.≡-Reasoning euc-eq' n d@(-[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = a≡a%n+[a/n]*n n d ... | no np = claim where claim : n ≡ (+ (n mod d) + d) + (- 1ℤ + n div d) * d claim = begin n ≡⟨ a≡a%n+[a/n]*n n d ⟩ + (n mod d) + (n div d) * d ≡⟨ solve 3 (\ x y z -> x :+ y :* z := x :+ z :+ (con (- 1ℤ) :+ y) :* z) refl (+ (n mod d)) (n div d) d ⟩ (+ (n mod d) + d) + (- 1ℤ + n div d) * d ∎ where open +-*-Solver open PE.≡-Reasoning -- rank reminder ≤ (rank divisor) / 2. euc-rank' : ∀ (n d : ℤ) (n0 : ¬ d ≡ 0ℤ) -> let r = mod' n d n0 in let q = div' n d n0 in ∣ r ∣ ≤ ∣ d ∣ / 2 euc-rank' n (+_ zero) n0 with n0 refl ... | () euc-rank' n d@(+[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = pr ... | no ¬p = claim where r = + (n mod d) - d d≠0 : ¬ ∣ d ∣ ≡ 0 d≠0 = λ () -- We follow the steps to show ∣ r ∣ ≤ ∣ d ∣ / 2, in the current case, i.e. ∣ -- n % d - d ∣ ≤ d / 2. We follows the steps below: -- 1) d / 2 < n % d -- 2) d / 2 - d < n % d - d -- 3) n % d - d < 0, hence d / 2 - d < n % d - d < 0 -- 4) ∣ d / 2 - d ∣ > ∣ n % d - d ∣ -- 5) d / 2 - d ≡ - d / 2 or d / 2 - d ≡ - (d / 2 + 1) -- 6) ∣ d / 2 - d ∣ ≡ d / 2 or ∣ d / 2 - d ∣ ≡ d / 2 + 1 -- 7) d / 2 > ∣ n % d - d ∣ or d / 2 + 1 > ∣ n % d - d ∣ -- 8) d / 2 ≥ ∣ n % d - d ∣ -- By negate ¬p, we can show ∣ d ∣ / 2 < n mod d. -- By negation of ¬p (we are using the decidable order). open import Relation.Binary using (tri< ; tri≈ ; tri>) step1 : ∣ d ∣ / 2 < n mod d step1 with NatP.<-cmp (n mod d) (∣ d ∣ / 2) ... | tri< a ¬b ¬c = ⊥-elim (¬p (NatP.<⇒≤ a)) ... | tri≈ ¬a b ¬c = ⊥-elim (¬p (NatP.≤-reflexive b)) ... | tri> ¬a ¬b c = c where notle : ¬ (n mod d ≤ ∣ d ∣ / 2) notle = ¬p -- Step 2. ∣ d ∣ / 2 - ∣ d ∣ < n mod d - ∣ d ∣. Subtracting ∣ d ∣ -- from both sides of step1 preserves the inequality. step2 : + (∣ d ∣ / 2) - + ∣ d ∣ < + (n mod d) - + ∣ d ∣ step2 = IntP.+-monoʳ-< (- (+ ∣ d ∣)) (+<+ step1) -- Step 3. n mod d - ∣ d ∣ < 0 -- Some auxillary. n-n=0 : ∀ {n} -> n - n ≡ 0ℤ n-n=0 {n} = IntP.+-inverseʳ n step3 : + (n mod d) - (+ ∣ d ∣) < 0ℤ step3 rewrite (sym (n-n=0 {+ ∣ d ∣})) = r-d<d-d where -- n mod d < ∣ d ∣, by Euclidean property of integers. r<∣d∣ : + (n mod d) < + ∣ d ∣ r<∣d∣ = +<+ (n%d<d n d) -- Substract ∣ d ∣ on both sides of n mod d < ∣ d ∣. r-d<d-d : + (n mod d) - (+ ∣ d ∣) < (+ ∣ d ∣) - (+ ∣ d ∣) r-d<d-d = IntP.+-monoʳ-< (- + ∣ d ∣) r<∣d∣ -- Step 4. ∣ d / 2 - d ∣ > ∣ n % d - d ∣. By 2, we have -- d / 2 - d < n % d - d < 0. By taking absolute values, we show -- ∣ d / 2 - d ∣ > ∣ n % d - d ∣. -- Some lemmas about take absolute value of negative and nonpositive -- numbers. lemma-∣neg∣ : ∀ {a : ℤ} -> a < 0ℤ -> + ∣ a ∣ ≡ - a lemma-∣neg∣ -<+ = refl lemma-∣non-pos∣ : ∀ {a : ℤ} -> a ≤ 0ℤ -> + ∣ a ∣ ≡ - a lemma-∣non-pos∣ {.(-[1+ _ ])} -≤+ = refl lemma-∣non-pos∣ {.(+ zero)} (+≤+ z≤n) = refl -- The injection of natural numbers into integers reflect order. lemma-inj-reflect-ord : ∀ {a b} -> + a < + b -> a < b lemma-inj-reflect-ord (+<+ m<n) = m<n lemma-inj-reflect-ord' : ∀ {a b} -> + a ≤ + b -> a ≤ b lemma-inj-reflect-ord' (+≤+ m<n) = m<n -- Taking absolute value on both sides of a strict inequality of -- negative numbers (can relax this to non-positive numbers) -- reverses the order. lemma-∣neg<neg∣ : ∀ {a b} -> a < 0ℤ -> b < a -> ∣ a ∣ < ∣ b ∣ lemma-∣neg<neg∣ {a} {b} a<0 b<a = lemma-inj-reflect-ord claim where 0<b : b < 0ℤ 0<b = IntP.<-trans b<a a<0 claim : (+ ∣ a ∣) < (+ ∣ b ∣) claim = begin-strict + ∣ a ∣ ≡⟨ lemma-∣neg∣ {a} a<0 ⟩ - a <⟨ IntP.neg-mono-< b<a ⟩ - b ≡⟨ sym (lemma-∣neg∣ 0<b) ⟩ + ∣ b ∣ ∎ where open IntP.≤-Reasoning -- Goal step4 achieved. step4 : ∣ + (n mod d) - d ∣ < ∣ + (∣ d ∣ / 2) - d ∣ step4 = lemma-∣neg<neg∣ step3 step2 -- Step 5. d / 2 - d ≡ - d / 2 or d / 2 - d ≡ - (d / 2 + 1) -- Natural number version of Step 5. step5-nat : ∣ d ∣ / 2 + ∣ d ∣ / 2 ≡ ∣ d ∣ ⊎ suc (∣ d ∣ / 2 + ∣ d ∣ / 2) ≡ ∣ d ∣ step5-nat = lemma-div-by-2 ∣ d ∣ where -- An easy and useful fact. *2+ : ∀ {a} -> a * 2 ≡ a + a *2+ {zero} = refl *2+ {suc a} rewrite *2+ {a} | NatP.+-comm a (suc a) = refl -- Either d / 2 + d / 2 ≡ d or d / 2 + d / 2 + 1 ≡ d. lemma-div-by-2 : ∀ d -> let hd = d / 2 in hd + hd ≡ d ⊎ suc (hd + hd) ≡ d lemma-div-by-2 d with d / 2 | d % 2 | NatESR.euc-eq d 2 (λ { ()}) | NatESR.euc-rank d 2 (λ { ()}) ... | hd | zero | proj₁₁ | pr rewrite *2+ {hd} = inj₁ (sym proj₁₁) ... | hd | suc zero | proj₁₁ | pr rewrite *2+ {hd} = inj₂ (sym proj₁₁) ... | hd | suc (suc r₁) | proj₁₁ | pr = ⊥-elim ((c1 r₁) pr ) where c1 : ∀ a -> ¬ (suc (suc (suc a)) ≤ 2) c1 a = λ { (s≤s (s≤s ()))} -- Next we need inject naturals to integers. We do the two -- identities separately. -- Step 5a. If (d / 2) + (d / 2) ≡ d, we show d / 2 - d ≡ - d / 2. step5a : ∀ d -> (d / 2) + (d / 2) ≡ d -> let -_ = λ x -> - (+ x) in + (d / 2) - (+ d) ≡ - (d / 2) step5a d hyp = sym claim4 where open PE.≡-Reasoning claim : + (d / 2 + d / 2) ≡ + d claim = cong +_ hyp claim2 : + (d / 2) + + (d / 2) ≡ + d claim2 = begin + (d / 2) + + (d / 2) ≡⟨ IntP.pos-+-commute (d / 2) (d / 2) ⟩ + (d / 2 + d / 2) ≡⟨ cong +_ hyp ⟩ + d ∎ claim3 : + (d / 2) ≡ + d - + (d / 2) claim3 = begin + (d / 2) ≡⟨ (solve 1 (λ a -> a := a :+ a :- a) refl) (+ (d / 2)) ⟩ + (d / 2) + + (d / 2) - + (d / 2) ≡⟨ cong (_- + (d / 2)) claim2 ⟩ + d - + (d / 2) ∎ where open +-*-Solver claim4 : let -_ = λ x -> - (+ x) in - (d / 2) ≡ + (d / 2) - + d claim4 = begin - (+ (d / 2)) ≡⟨ cong -_ claim3 ⟩ - (+ d - + (d / 2)) ≡⟨ (solve 2 (λ a b -> :- (a :- b) := b :- a) refl) (+ d) (+ (d / 2)) ⟩ + (d / 2) - + d ∎ where open +-*-Solver -- Step 5b. If (d / 2) + (d / 2) + 1 ≡ d, we show d / 2 - d ≡ - (d -- / 2 + 1). (Note that we change the sign of the equality) step5b : ∀ d -> suc ((d / 2) + (d / 2)) ≡ d -> let -_ = λ x -> - (+ x) in (+ d) - + (d / 2) ≡ + (d / 2) + 1ℤ step5b d hyp = begin + d - + (d / 2) ≡⟨ cong (λ x → + x - + (d / 2)) (sym hyp) ⟩ + (suc (d / 2 + d / 2)) - + (d / 2) ≡⟨ refl ⟩ + (1 + (d / 2 + d / 2)) - + (d / 2) ≡⟨ cong (_- + (d / 2)) (IntP.pos-+-commute 1 (d / 2 + d / 2)) ⟩ + 1 + + (d / 2 + d / 2) - + (d / 2) ≡⟨ cong (λ x → + 1 + x - + (d / 2)) (IntP.pos-+-commute (d / 2) (d / 2)) ⟩ + 1 + + (d / 2) + + (d / 2) - + (d / 2) ≡⟨ solve 1 (λ x → (con 1ℤ) :+ (x :+ x) :- x := x :+ con 1ℤ) refl (+ (d / 2)) ⟩ + (d / 2) + 1ℤ ∎ where open +-*-Solver open PE.≡-Reasoning -- Goal 5. step5 : let -_ = λ x -> - (+ x) in + (∣ d ∣ / 2) - d ≡ - (∣ d ∣ / 2) ⊎ d - + (∣ d ∣ / 2) ≡ + (∣ d ∣ / 2) + 1ℤ step5 with step5-nat ... | inj₁ x = inj₁ (step5a ∣ d ∣ x) ... | inj₂ y = inj₂ (step5b ∣ d ∣ y) -- Step 6. ∣ d / 2 - d ∣ ≡ d / 2 or ∣ d / 2 - d ∣ ≡ d / 2 + 1 step6 : let -_ = λ x -> - (+ x) in ∣ + (∣ d ∣ / 2) - d ∣ ≡ ∣ d ∣ / 2 ⊎ ∣ d - + (∣ d ∣ / 2) ∣ ≡ ∣ d ∣ / 2 + 1 step6 with step5 ... | inj₁ x rewrite x = inj₁ (trans ∣-d/2∣≡∣d/2∣ ∣d/2∣≡d/2) where ∣-d/2∣≡∣d/2∣ : ∣ - (+ (∣ d ∣ / 2)) ∣ ≡ ∣ + (∣ d ∣ / 2) ∣ ∣-d/2∣≡∣d/2∣ = IntP.∣-i∣≡∣i∣ (+ (∣ d ∣ / 2)) ∣d/2∣≡d/2 : ∣ + (∣ d ∣ / 2) ∣ ≡ (∣ d ∣ / 2) ∣d/2∣≡d/2 = refl ... | inj₂ y rewrite y = inj₂ claim where claim : ∣ + (∣ d ∣ / 2) + 1ℤ ∣ ≡ ∣ d ∣ / 2 + 1 claim = begin ∣ + (∣ d ∣ / 2) + 1ℤ ∣ ≡⟨ refl ⟩ ∣ + ((∣ d ∣ / 2) + 1) ∣ ≡⟨ refl ⟩ ∣ d ∣ / 2 + 1 ∎ where open PE.≡-Reasoning -- Step 7. d / 2 > ∣ n % d - d ∣ or d / 2 + 1 > ∣ n % d - d ∣ step7 : ∣ + (n mod d) - d ∣ < ∣ d ∣ / 2 ⊎ ∣ + (n mod d) - d ∣ < ∣ d ∣ / 2 + 1 step7 with step6 ... | inj₁ x = inj₁ claim where claim : ∣ + (n mod d) - d ∣ < ∣ d ∣ / 2 claim = begin-strict ∣ + (n mod d) - d ∣ <⟨ step4 ⟩ ∣ + (∣ d ∣ / 2) - d ∣ ≡⟨ x ⟩ ∣ d ∣ / 2 ∎ where open NatP.≤-Reasoning ... | inj₂ y = inj₂ claim where claim : ∣ + (n mod d) - d ∣ < ∣ d ∣ / 2 + 1 claim = begin-strict ∣ + (n mod d) - d ∣ <⟨ step4 ⟩ ∣ + (∣ d ∣ / 2) - d ∣ ≡⟨ IntP.∣i-j∣≡∣j-i∣ (+ (∣ d ∣ / 2)) d ⟩ ∣ d - + (∣ d ∣ / 2) ∣ ≡⟨ y ⟩ ∣ d ∣ / 2 + 1 ∎ where open NatP.≤-Reasoning -- Step 8. d / 2 ≥ ∣ n % d - d ∣ step8 : ∣ + (n mod d) - d ∣ ≤ ∣ d ∣ / 2 step8 with step7 ... | inj₁ x = NatP.<⇒≤ x ... | inj₂ y = m<sucn⇒m≤n claim where m<sucn⇒m≤n : ∀ {m n : ℕ} → m < suc n → m ≤ n m<sucn⇒m≤n (s≤s le) = le lemma-+1 : ∀ {a : ℕ} -> a + 1 ≡ suc a lemma-+1 {zero} = refl lemma-+1 {suc a} = cong suc (lemma-+1 {a}) claim : ∣ + (n mod d) - d ∣ < suc (∣ d ∣ / 2) claim = begin-strict ∣ + (n mod d) - d ∣ <⟨ y ⟩ ∣ d ∣ / 2 + 1 ≡⟨ lemma-+1 ⟩ suc (∣ d ∣ / 2) ∎ where open NatP.≤-Reasoning claim : ∣ r ∣ ≤ ∣ d ∣ / 2 claim = step8 -- This case is solved by recursive call with argument n and - d. euc-rank' n d@(-[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 | euc-rank' n (+[1+ e ]) (λ {()}) ... | yes pr | hyp = pr ... | no ¬p | hyp = hyp -- We can relax the estimation. euc-rank'' : ∀ (n d : ℤ) (n0 : ¬ d ≡ 0ℤ) -> let r = mod' n d n0 in let q = div' n d n0 in ∣ r ∣ < ∣ d ∣ euc-rank'' n d n0 = let r = mod' n d n0 in let q = div' n d n0 in begin-strict ∣ r ∣ ≤⟨ euc-rank' n d n0 ⟩ ∣ d ∣ / 2 <⟨ aux ∣ d ∣ ∣d∣≠0 ⟩ ∣ d ∣ ∎ where open NatP.≤-Reasoning aux : ∀ n -> ¬ n ≡ 0 -> n / 2 < n aux zero n0 with n0 refl ... | () aux (suc n) n0 = NDM.m/n<m (suc n) 2 (s≤s (s≤s z≤n)) ∣d∣≠0 : ¬ ∣ d ∣ ≡ 0 ∣d∣≠0 x = n0 (IntP.∣i∣≡0⇒i≡0 x) -- ---------------------------------------------------------------------- -- Alternative Euclidean Structure -- The newly defined div' and mod' together with euc-eq' and -- euc-rank'' make ℤ an Euclidean Domain with more precise estimate on -- the rank of the reminder. open import Integer.EucDomain using (+-*-isEuclideanDomain ; +-*-euclideanDomain) import EuclideanDomain open EuclideanDomain.Bundles -- We update the old Euclidean structure in EucDomain. +-*-isEuclideanDomain' = record +-*-isEuclideanDomain { div = div' ; mod = mod' ; euc-eq = euc-eq' ; euc-rank = euc-rank'' } -- Bundle. +-*-euclideanDomain' : EuclideanDomainBundle _ _ +-*-euclideanDomain' = record { isEuclideanDomain = +-*-isEuclideanDomain' } -- ---------------------------------------------------------------------- -- Make a new instance for DivMod ℤ -- Translation between two nonzeros. nz : ∀ (x : ℤ) -> .{{NonZero x}} -> ¬ x ≡ 0# nz +[1+ n ] () -- We use the newly defined div and mod function. instance new-DMℤ : DivMod ℤ new-DMℤ .NZT = NZTℤ new-DMℤ ._/_ n d = div' n d (nz d) new-DMℤ ._%_ n d = mod' n d (nz d)
{ "alphanum_fraction": 0.4171656687, "avg_line_length": 36.0196078431, "ext": "agda", "hexsha": "34678a23735c93bcd85c0bc75be53012962f5a4d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "onestruggler/EucDomain", "max_forks_repo_path": "Integer/EucDomain2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "onestruggler/EucDomain", "max_issues_repo_path": "Integer/EucDomain2.agda", "max_line_length": 139, "max_stars_count": null, "max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "onestruggler/EucDomain", "max_stars_repo_path": "Integer/EucDomain2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7131, "size": 16533 }
module _ where data Nat : Set where postulate C Q : Set → Set unQ : ∀ {A} → Q A → A instance CQ : C (Q Nat) theC : {A : Set} {{_ : C A}} → A -- We shouldn't solve this based on CQ being the only instance available for Q _. dont-solve : _ dont-solve = unQ theC
{ "alphanum_fraction": 0.5992779783, "avg_line_length": 16.2941176471, "ext": "agda", "hexsha": "89730068ca93e9a18f713e35b0df9d09b6810b40", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/NonRigidlyConstrained.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/NonRigidlyConstrained.agda", "max_line_length": 81, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/NonRigidlyConstrained.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 99, "size": 277 }
{- Holey congruence where congruence is limited to specific functions. To use, open the module `AutoCong` with a database that maps function names to congruences for those functions. -} module Holes.Cong.Limited where open import Holes.Prelude open import Holes.Term open Holes.Prelude public using (quote-term) private find : ∀ {a} {A : Set a} → (A → Bool) → List A → Maybe A find p [] = nothing find p (x ∷ xs) = if p x then just x else find p xs last2 : ∀ {ℓ} {A : Set ℓ} → List A → Maybe (A × A) last2 (x ∷ y ∷ []) = just (x , y) last2 (x ∷ xs) = last2 xs last2 _ = nothing getArgs : Term → Maybe (List (Arg Term)) getArgs (con _ args) = just args getArgs (def _ args) = just args getArgs (var _ args) = just args getArgs _ = nothing decomposeEquiv : Term → Maybe (Term × Term) decomposeEquiv tm = getArgs tm >>= λ args → last2 args >>=² λ x y → return (getArg x , getArg y) Congruence = Name ArgPlace = ℕ private data CongErr : Set where termsDontMatch : ℕ → Term → HoleyTerm → CongErr typeNotEquivalence noHole : CongErr appliedVar : (varIdx : ℕ) (goalLhs : Term) → CongErr metaOnPath piOnPath lamOnPath sortOnPath : CongErr noCongAvailable : Name → ArgPlace → CongErr holeyErr : (goalLhs : Term) (holeyErr : HoleyErr) → CongErr fillErrLhs : Term → CongErr → CongErr fillErrLhs lhs (appliedVar v _) = appliedVar v lhs fillErrLhs lhs e = e natToTerm : ℕ → Term natToTerm zero = con (quote zero) [] natToTerm (suc n) = con (quote suc) (basicArg (natToTerm n) ∷ []) fillHoleyHole : HoleyTerm → Term fillHoleyHole = fillHoley′ (λ _ → quote-term ⌞_⌟) printCongErr : CongErr → List ErrorPart printCongErr (termsDontMatch depth original holey) = strErr "There was an attempt to create a path based on non-matching terms" ∷ termErr original ∷ strErr "and" ∷ termErr (fillHoleyHole holey) ∷ strErr "at depth" ∷ termErr (natToTerm depth) ∷ strErr "This is a bug in the holes library!" ∷ [] printCongErr typeNotEquivalence = strErr "The goal type does not appear to be a binary relation." ∷ [] printCongErr noHole = strErr "There is no hole the goal LHS." ∷ [] printCongErr (appliedVar v goalLhs) = strErr "Variable applications on the path to the hole are not supported. The applied variable was" ∷ termErr (var v []) ∷ strErr "and the goal LHS was:" ∷ termErr goalLhs ∷ [] printCongErr metaOnPath = strErr "Metavariables in the goal LHS are not supported." ∷ [] printCongErr piOnPath = strErr "Pi types in the goal LHS are not supported." ∷ [] printCongErr lamOnPath = strErr "Lambdas in the goal LHS are not supported." ∷ [] printCongErr sortOnPath = strErr "Sorts in the goal LHS are not supported." ∷ [] printCongErr (noCongAvailable nm argPlace) = strErr "No congruence available for function" ∷ nameErr nm ∷ strErr "at required argument place, index" ∷ termErr (natToTerm argPlace) ∷ [] printCongErr (holeyErr goalLhs h) = printHoleyErr goalLhs h printCongErrs : List CongErr → List ErrorPart printCongErrs (e ∷ []) = printCongErr e printCongErrs es = strErr "One of these errors happened:\n" ∷ (intercalate (strErr ";\n" ∷ []) ∘ map printCongErr) es data HolePath : Set where hole : HolePath app : (nm : Name) (index : ℕ) (allArgs : List (Arg Term)) → HolePath → HolePath module AutoCong (database : List (Name × ArgPlace × Congruence)) where private findCong : Name → ArgPlace → Maybe Congruence findCong nm argPlace = proj₂ ∘ proj₂ <$> find ((λ { (nm′ , argPlace′ , _) → (nm =Name? nm′) ∧ (argPlace =ℕ? argPlace′) })) database -- Tries to apply the given function to each element of the list, and -- returns the first successful result. If none of the results are -- successful, accumulates the errors using the error monoid. findOk : ∀ {a e r} {A : Set a} {E : Set e} {{errMonoid : RawMonoid E}} {R : Set r} → (ℕ → A → Result E R) → List A → Result E R findOk {A = A}{E}{R} = go 0 where go : ℕ → (ℕ → A → Result E R) → List A → Result E R go i f [] = err mempty go i f (x ∷ xs) with f i x ... | ok y = ok y ... | err e₁ with go (1 + i) f xs ... | ok y = ok y ... | err e₂ = err (e₁ <> e₂) zipArglists : ∀ {A B : Set} → List (Arg A) → List (Arg B) → List (Arg (A × B)) zipArglists xs ys = map (λ { (arg i x , arg _ y) → arg i (x , y)}) (zip xs ys) mutual findHole : ℕ → List (Arg (Term × HoleyTerm)) → Result (List CongErr) (ℕ × HolePath) findHole depth = findOk (λ { n (arg i (t , h)) → (n ,_) <$> buildPath depth t h }) {-# TERMINATING #-} buildPath : ℕ → Term → HoleyTerm → Result (List CongErr) HolePath buildPath depth original (hole _) = return hole buildPath depth (lit _) (lit l) = err (noHole ∷ []) buildPath depth unknown unknown = err (noHole ∷ []) buildPath depth (var _ _) (var x _) = err (appliedVar x unknown ∷ []) buildPath depth (con _ originalArgs) (con nm args) = findHole (suc depth) (zipArglists originalArgs args) >>=² λ argPlace nextPath → return (app nm argPlace originalArgs nextPath) buildPath depth (def _ originalArgs) (def nm args) = findHole (suc depth) (zipArglists originalArgs args) >>=² λ argPlace nextPath → return (app nm argPlace originalArgs nextPath) buildPath depth (lam _ _) (lam _ _) = err (lamOnPath ∷ []) buildPath depth (lam _ _) (pi _ _) = err (piOnPath ∷ []) buildPath depth (lam _ _) (meta _ _) = err (metaOnPath ∷ []) buildPath depth (agda-sort _) (agda-sort _) = err (sortOnPath ∷ []) buildPath depth original holey = err (termsDontMatch depth original holey ∷ []) pathToCong : HolePath → Term → Result (List CongErr) Term pathToCong hole eq = return eq pathToCong (app nm argPlace allArgs hp) eq = liftMaybe (noCongAvailable nm argPlace ∷ []) (findCong nm argPlace) >>= λ cong → pathToCong hp eq >>= λ rec → return (def cong (allArgs ++ (basicArg rec ∷ []))) fillErrHoley : HoleyTerm → CongErr → CongErr fillErrHoley = fillErrLhs ∘ fillHoleyHole autoCong : Term → Term → RTC (List CongErr) ⊤ autoCong equiv goal = -- Infer the type of the goal liftTC (inferType goal) >>= λ goalType → -- Try to decompose the goal type into a left and right hand side. liftMaybe (typeNotEquivalence ∷ []) (decomposeEquiv goalType) >>=² λ goalLhs goalRhs → -- Try to convert the goal LHS to a holey term. liftResult′ (singleton ∘ holeyErr goalLhs) (termToHoley goalLhs) >>= λ holeyLhs → -- Try to build a path to a hole in the LHS. liftResult′ (map (fillErrHoley holeyLhs)) (buildPath 0 goalLhs holeyLhs) >>= λ lhsPath → -- Try to convert the path to a chain of congruence applications. liftResult (pathToCong lhsPath equiv) >>= λ congTerm → -- Try to unify the result with the goal to complete the proof. liftTC (unify congTerm goal) autoCongDebug : Term → Term → RTC (List CongErr) ⊤ autoCongDebug equiv goal = liftTC (inferType goal) >>= λ goalType → liftMaybe (singleton typeNotEquivalence) (decomposeEquiv goalType) >>=² λ goalLhs goalRhs → liftResult′ (singleton ∘ holeyErr goalLhs) (termToHoley goalLhs) >>= λ holeyLhs → let showArgs = map (termErr ∘ getArg) ∘ getArglist in typeError′ (showArgs goalLhs ++ (strErr "and" ∷ showArgs (fillHoleyHole holeyLhs))) >>= λ (_ : ⊤) → liftResult′ (map (fillErrHoley holeyLhs)) (buildPath 0 goalLhs holeyLhs) >>= λ lhsPath → liftResult (pathToCong lhsPath equiv) >>= λ congTerm → liftTC (unify congTerm goal) macro cong! : Term → Term → TC ⊤ cong! equiv = runRtcOrTypeError printCongErrs ∘ autoCong equiv -- debug version cong!Debug : Term → Term → TC ⊤ cong!Debug equiv = runRtcOrTypeError printCongErrs ∘ autoCongDebug equiv
{ "alphanum_fraction": 0.6413165441, "avg_line_length": 41.1333333333, "ext": "agda", "hexsha": "c9f15bf5f6c80a9669e26b02bb7dcbe71ce34f28", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-02T18:57:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-01-27T14:57:39.000Z", "max_forks_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-holes", "max_forks_repo_path": "src/Holes/Cong/Limited.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_issues_repo_issues_event_max_datetime": "2020-08-31T20:58:33.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-16T10:47:58.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-holes", "max_issues_repo_path": "src/Holes/Cong/Limited.agda", "max_line_length": 131, "max_stars_count": 24, "max_stars_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-holes", "max_stars_repo_path": "src/Holes/Cong/Limited.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-03T15:02:41.000Z", "max_stars_repo_stars_event_min_datetime": "2017-01-28T10:56:46.000Z", "num_tokens": 2536, "size": 8021 }
open import Prelude open import Nat open import dynamics-core open import contexts open import contraction open import weakening open import exchange open import lemmas-disjointness open import binders-disjoint-checks module lemmas-subst-ta where -- this is what makes the binders-unique assumption below good enough: it -- tells us that we can pick fresh variables mutual binders-envfresh : ∀{Δ Γ Γ' y σ} → Δ , Γ ⊢ σ :s: Γ' → y # Γ → unbound-in-σ y σ → binders-unique-σ σ → envfresh y σ binders-envfresh {Γ' = Γ'} {y = y} (STAId x) apt unbound unique with ctxindirect Γ' y binders-envfresh {Γ' = Γ'} {y = y} (STAId x₁) apt unbound unique | Inl x = abort (somenotnone (! (x₁ y (π1 x) (π2 x)) · apt)) binders-envfresh (STAId x₁) apt unbound unique | Inr x = EFId x binders-envfresh {Γ = Γ} {y = y} (STASubst {y = z} subst x₁) apt (UBσSubst x₂ unbound neq) (BUσSubst zz x₃ x₄) = EFSubst (binders-fresh {y = y} x₁ zz x₂ apt) (binders-envfresh subst (apart-extend1 Γ neq apt) unbound x₃) neq binders-fresh : ∀{Δ Γ d2 τ y} → Δ , Γ ⊢ d2 :: τ → binders-unique d2 → unbound-in y d2 → Γ y == None → fresh y d2 binders-fresh TANum BUHole UBNum apt = FNum binders-fresh {y = y} (TAVar {x = x} x₁) BUVar UBVar apt with natEQ y x binders-fresh (TAVar x₂) BUVar UBVar apt | Inl refl = abort (somenotnone (! x₂ · apt)) binders-fresh (TAVar x₂) BUVar UBVar apt | Inr x₁ = FVar x₁ binders-fresh {y = y} (TALam {x = x} x₁ wt) bu2 ub apt with natEQ y x binders-fresh (TALam x₂ wt) bu2 (UBLam2 x₁ ub) apt | Inl refl = abort (x₁ refl) binders-fresh {Γ = Γ} (TALam {x = x} x₂ wt) (BULam bu2 x₃) (UBLam2 x₄ ub) apt | Inr x₁ = FLam x₁ (binders-fresh wt bu2 ub (apart-extend1 Γ x₄ apt)) binders-fresh (TAAp wt wt₁) (BUAp bu2 bu3 x) (UBAp ub ub₁) apt = FAp (binders-fresh wt bu2 ub apt) (binders-fresh wt₁ bu3 ub₁ apt) binders-fresh (TAEHole x₁ x₂) (BUEHole x) (UBHole x₃) apt = FHole (binders-envfresh x₂ apt x₃ x ) binders-fresh (TANEHole x₁ wt x₂) (BUNEHole bu2 x) (UBNEHole x₃ ub) apt = FNEHole (binders-envfresh x₂ apt x₃ x) (binders-fresh wt bu2 ub apt) binders-fresh (TACast wt x₁) (BUCast bu2) (UBCast ub) apt = FCast (binders-fresh wt bu2 ub apt) binders-fresh (TAFailedCast wt x x₁ x₂) (BUFailedCast bu2) (UBFailedCast ub) apt = FFailedCast (binders-fresh wt bu2 ub apt) binders-fresh (TAInl wt) (BUInl bu) (UBInl ub) apt = FInl (binders-fresh wt bu ub apt) binders-fresh (TAInr wt) (BUInr bu) (UBInr ub) apt = FInr (binders-fresh wt bu ub apt) binders-fresh {Γ = Γ} (TACase wt x wt₁ x₁ wt₂) (BUCase bu bu₁ bu₂ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀) (UBCase ub x₁₁ ub₁ x₁₂ ub₂) apt = FCase (binders-fresh wt bu ub apt) x₁₁ (binders-fresh wt₁ bu₁ ub₁ (apart-extend1 Γ x₁₁ apt)) x₁₂ (binders-fresh wt₂ bu₂ ub₂ (apart-extend1 Γ x₁₂ apt)) binders-fresh (TAPlus wt wt₁) (BUPlus bu bu₁ x) (UBPlus ub ub₁) apt = FPlus (binders-fresh wt bu ub apt) (binders-fresh wt₁ bu₁ ub₁ apt) binders-fresh (TAPair wt wt₁) (BUPair bu bu₁ x) (UBPair ub ub₁) apt = FPair (binders-fresh wt bu ub apt) (binders-fresh wt₁ bu₁ ub₁ apt) binders-fresh (TAFst wt) (BUFst bu) (UBFst ub) apt = FFst (binders-fresh wt bu ub apt) binders-fresh (TASnd wt) (BUSnd bu) (UBSnd ub) apt = FSnd (binders-fresh wt bu ub apt) -- the substition lemma for preservation lem-subst : ∀{Δ Γ x τ1 d1 τ d2} → x # Γ → binders-disjoint d1 d2 → binders-unique d2 → Δ , Γ ,, (x , τ1) ⊢ d1 :: τ → Δ , Γ ⊢ d2 :: τ1 → Δ , Γ ⊢ [ d2 / x ] d1 :: τ lem-subst apt bd bu2 (TANum) wt = TANum lem-subst apt (BDPlus bd bd₁) bu2 (TAPlus wt1 wt2) wt3 = TAPlus (lem-subst apt bd bu2 wt1 wt3) (lem-subst apt bd₁ bu2 wt2 wt3) lem-subst {x = x} apt bd bu2 (TAVar {x = x'} x₂) wt2 with natEQ x' x ... | Inl refl with natEQ x x ... | Inr x≠x = abort (x≠x refl) ... | Inl refl with someinj x₂ ... | refl = wt2 lem-subst {x = x} apt bd bu2 (TAVar {x = x'} x₂) wt2 | Inr x'≠x with natEQ x x' ... | Inl refl = abort (x'≠x refl) ... | Inr x'≠x = TAVar x₂ lem-subst {Δ = Δ} {Γ = Γ} {x = x} {d2 = d2} x#Γ (BDLam bd bd') bu2 (TALam {x = y} {τ1 = τ1} {d = d} {τ2 = τ2} x₂ wt1) wt2 with natEQ y x ... | Inl refl with natEQ x x ... | Inr x≠x = abort (x≠x refl) ... | Inl refl = abort (somenotnone x₂) lem-subst {Δ = Δ} {Γ = Γ} {x = x} {d2 = d2} x#Γ (BDLam bd bd') bu2 (TALam {x = y} {τ1 = τ1} {d = d} {τ2 = τ2} x₂ wt1) wt2 | Inr y≠x with natEQ x y ... | Inl refl = abort (y≠x refl) ... | Inr x≠y = TALam x₂ (lem-subst (apart-extend1 Γ x≠y x#Γ) bd bu2 (exchange-ta-Γ x≠y wt1) (weaken-ta (binders-fresh wt2 bu2 bd' x₂) wt2)) lem-subst apt (BDAp bd bd₁) bu3 (TAAp wt1 wt2) wt3 = TAAp (lem-subst apt bd bu3 wt1 wt3) (lem-subst apt bd₁ bu3 wt2 wt3) lem-subst apt bd bu2 (TAEHole inΔ sub) wt2 = TAEHole inΔ (STASubst sub wt2) lem-subst apt (BDNEHole x₁ bd) bu2 (TANEHole x₃ wt1 x₄) wt2 = TANEHole x₃ (lem-subst apt bd bu2 wt1 wt2) (STASubst x₄ wt2) lem-subst apt (BDCast bd) bu2 (TACast wt1 x₁) wt2 = TACast (lem-subst apt bd bu2 wt1 wt2) x₁ lem-subst apt (BDFailedCast bd) bu2 (TAFailedCast wt1 x₁ x₂ x₃) wt2 = TAFailedCast (lem-subst apt bd bu2 wt1 wt2) x₁ x₂ x₃ lem-subst apt (BDInl bd) bu (TAInl wt1) wt2 = TAInl (lem-subst apt bd bu wt1 wt2) lem-subst apt (BDInr bd) bu (TAInr wt1) wt2 = TAInr (lem-subst apt bd bu wt1 wt2) lem-subst {Δ = Δ} {Γ = Γ} {x = x} {d1 = .(case _ _ _ _ _)} {d2 = d2} apt (BDCase bd x₁ bd₁ x₂ bd₂) bu (TACase {d = d} {τ1 = τ1} {τ2 = τ2} {x = y} {y = z} wt1 x₃ wt3 x₄ wt4) wt2 with natEQ y x | natEQ z x ... | Inl refl | Inl refl with natEQ x x ... | Inr x≠x = abort (x≠x refl) ... | Inl refl = abort (somenotnone x₄) lem-subst {Δ = Δ} {Γ = Γ} {x = x} {d1 = .(case _ _ _ _ _)} {d2 = d2} apt (BDCase bd x₁ bd₁ x₂ bd₂) bu (TACase {d = d} {τ1 = τ1} {τ2 = τ2} {x = y} {y = z} wt1 x₃ wt3 x₄ wt4) wt2 | Inl refl | Inr z≠x with natEQ x x ... | Inr x≠x = abort (x≠x refl) ... | Inl refl = abort (somenotnone x₃) lem-subst {Δ = Δ} {Γ = Γ} {x = x} {d1 = .(case _ _ _ _ _)} {d2 = d2} apt (BDCase bd x₁ bd₁ x₂ bd₂) bu (TACase {d = d} {τ1 = τ1} {τ2 = τ2} {x = y} {y = z} wt1 x₃ wt3 x₄ wt4) wt2 | Inr y≠x | Inl refl with natEQ x x ... | Inr x≠x = abort (x≠x refl) ... | Inl refl = abort (somenotnone x₄) lem-subst {Δ = Δ} {Γ = Γ} {x = x} {d1 = .(case _ _ _ _ _)} {d2 = d2} apt (BDCase bd x₁ bd₁ x₂ bd₂) bu (TACase {d = d} {τ1 = τ1} {τ2 = τ2} {x = y} {y = z} wt1 x₃ wt3 x₄ wt4) wt2 | Inr y≠x | Inr z≠x with natEQ x z ... | Inl refl = abort (z≠x refl) ... | Inr x≠z with natEQ x y ... | Inl refl = abort (y≠x refl) ... | Inr x≠y = TACase (lem-subst apt bd bu wt1 wt2) x₃ (lem-subst (apart-extend1 Γ x≠y apt) bd₁ bu (exchange-ta-Γ x≠y wt3) (weaken-ta (binders-fresh wt2 bu x₁ x₃) wt2)) x₄ (lem-subst (apart-extend1 Γ x≠z apt) bd₂ bu (exchange-ta-Γ x≠z wt4) (weaken-ta (binders-fresh wt2 bu x₂ x₄) wt2)) lem-subst apt (BDPair bd bd₁) bu (TAPair wt1 wt3) wt2 = TAPair (lem-subst apt bd bu wt1 wt2) (lem-subst apt bd₁ bu wt3 wt2) lem-subst apt (BDFst bd) bu (TAFst wt1) wt2 = TAFst (lem-subst apt bd bu wt1 wt2) lem-subst apt (BDSnd bd) bu (TASnd wt1) wt2 = TASnd (lem-subst apt bd bu wt1 wt2) lem-subst-cast-sta : ∀{Δ Γ x τ1 τ2 σ Γ'} → x # Γ → τ1 ~ τ2 → Δ , Γ ,, (x , τ2) ⊢ σ :s: Γ' → Δ , Γ ,, (x , τ1) ⊢ Subst (X x ⟨ τ1 ⇒ τ2 ⟩) x σ :s: Γ' lem-subst-cast-sta {Γ = Γ} {x = x} {τ1 = τ1} {τ2 = τ2} {Γ' = Γ'} x#Γ con (STAId sub) = STASubst (STAId Γ'⊆) (TACast (TAVar (ctx-top Γ x τ1 x#Γ)) con) where Γ'⊆ : (y : Nat) (τ : htyp) → (y , τ) ∈ Γ' → (y , τ) ∈ (Γ ,, (x , τ1) ,, (x , τ2)) Γ'⊆ y τ y∈Γ' with lem-dom-union {Δ1 = ■(x , τ2)} {Δ2 = Γ} (sub y τ y∈Γ') ... | Inl y∈x with natEQ x y ... | Inr x≠y = abort (somenotnone (! y∈x)) ... | Inl refl = y∈x Γ'⊆ y τ y∈Γ' | Inr y∈Γ with natEQ x y ... | Inl refl = abort (somenotnone ((! y∈Γ) · x#Γ)) ... | Inr x≠y with natEQ x y ... | Inl refl = abort (x≠y refl) ... | Inr x≠y' = y∈Γ lem-subst-cast-sta {Δ = Δ} {Γ = Γ} {x = x} {τ1 = τ1} {τ2 = τ2} {Γ' = Γ'} x#Γ con (STASubst {σ = σ} {y = y} {d = d} {τ = τ} wsta wt) = STASubst (STASubst (tr (λ c → Δ , c ,, (y , τ) ⊢ σ :s: Γ') (! (update Γ x τ1 τ2)) wsta) (tr (λ c → Δ , c ⊢ d :: τ) (! (update Γ x τ1 τ2)) wt)) (TACast (TAVar (ctx-top Γ x τ1 x#Γ)) con) lem-subst-cast-ta : ∀{Δ Γ d x τ1 τ2 τ} → x # Γ → binders-unique d → τ1 ~ τ2 → Δ , Γ ,, (x , τ2) ⊢ d :: τ → Δ , Γ ,, (x , τ1) ⊢ [ (X x ⟨ τ1 ⇒ τ2 ⟩) / x ] d :: τ lem-subst-cast-ta apt bu con TANum = TANum lem-subst-cast-ta apt (BUPlus bu bu₁ x) con (TAPlus wt wt₁) = TAPlus (lem-subst-cast-ta apt bu con wt) (lem-subst-cast-ta apt bu₁ con wt₁) lem-subst-cast-ta {Γ = Γ} {x = x} {τ1 = τ1} {τ2 = τ2} apt bu con (TAVar {x = x'} x₁) with natEQ x x' ... | Inl refl with natEQ x' x ... | Inr x'≠x = abort (x'≠x refl) ... | Inl refl with Γ x ... | None with natEQ x x ... | Inr x≠x = abort (x≠x refl) ... | Inl refl with someinj x₁ ... | refl = TACast (TAVar (x∈∪l (■ (x , τ1)) Γ x τ1 (x∈■ x τ1))) con lem-subst-cast-ta {Γ = Γ} {x = x} {τ1 = τ1} {τ2 = τ2} apt bu con (TAVar {x = x} x₁) | Inl refl | Inl refl | Some t with someinj x₁ ... | refl = abort (somenotnone apt) lem-subst-cast-ta {Γ = Γ} {x = x} {τ1 = τ1} {τ2 = τ2} {τ = τ} apt bu con (TAVar {x = x'} x₁) | Inr x≠x' with natEQ x' x ... | Inl refl = abort (x≠x' refl) ... | Inr x'≠x = TAVar (x∈∪r (■(x , τ1)) Γ x' τ x₁ (apart-singleton (λ refl → abort (x'≠x refl)))) lem-subst-cast-ta {Δ = Δ} {Γ = Γ} {x = x} {τ = τ1 ==> τ3} apt (BULam bu x₁) con (TALam {x = y} x₂ wt) with natEQ x y ... | Inl refl = abort (somenotnone x₂) ... | Inr x≠y with natEQ y x ... | Inl refl = abort (x≠y refl) ... | Inr y≠x = TALam (apart-extend1 Γ y≠x x₂) (exchange-ta-Γ y≠x (lem-subst-cast-ta (apart-extend1 Γ x≠y apt) bu con (exchange-ta-Γ x≠y wt))) lem-subst-cast-ta {Γ = Γ} apt (BUAp bu bu₁ x) con (TAAp wt wt₁) = TAAp (lem-subst-cast-ta {Γ = Γ} apt bu con wt) (lem-subst-cast-ta {Γ = Γ} apt bu₁ con wt₁) lem-subst-cast-ta {Γ = Γ} apt (BUInl bu) con (TAInl wt) = TAInl (lem-subst-cast-ta {Γ = Γ} apt bu con wt) lem-subst-cast-ta {Γ = Γ} apt (BUInr bu) con (TAInr wt) = TAInr (lem-subst-cast-ta {Γ = Γ} apt bu con wt) lem-subst-cast-ta {x = x} apt (BUCase bu bu₁ bu₂ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀) con (TACase {x = y} {y = z} wt apty wt₁ aptz wt₂) with natEQ y x | natEQ z x ... | Inl refl | Inl refl with natEQ x x ... | Inr x≠x = abort (x≠x refl) ... | Inl refl = abort (somenotnone aptz) lem-subst-cast-ta {x = x} apt (BUCase bu bu₁ bu₂ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀) con (TACase {x = y} {y = z} wt apty wt₁ aptz wt₂) | Inl refl | Inr z≠x with natEQ x x ... | Inr x≠x = abort (x≠x refl) ... | Inl refl = abort (somenotnone apty) lem-subst-cast-ta {x = x} apt (BUCase bu bu₁ bu₂ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀) con (TACase {x = y} {y = z} wt apty wt₁ aptz wt₂) | Inr y≠x | Inl refl with natEQ x x ... | Inr x≠x = abort (x≠x refl) ... | Inl refl = abort (somenotnone aptz) lem-subst-cast-ta {Γ = Γ} {x = x} apt (BUCase bu bu₁ bu₂ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀) con (TACase {x = y} {y = z} wt apty wt₁ aptz wt₂) | Inr y≠x | Inr z≠x with natEQ x z ... | Inl refl = abort (z≠x refl) ... | Inr x≠z with natEQ x y ... | Inl refl = abort (y≠x refl) ... | Inr x≠y = TACase (lem-subst-cast-ta apt bu con wt) (apart-extend1 Γ y≠x apty) (exchange-ta-Γ y≠x (lem-subst-cast-ta (apart-extend1 Γ x≠y apt) bu₁ con (exchange-ta-Γ x≠y wt₁))) (apart-extend1 Γ z≠x aptz) (exchange-ta-Γ z≠x (lem-subst-cast-ta (apart-extend1 Γ x≠z apt) bu₂ con (exchange-ta-Γ x≠z wt₂))) lem-subst-cast-ta apt (BUEHole x₂) con (TAEHole x x₁) = TAEHole x (lem-subst-cast-sta apt con x₁) lem-subst-cast-ta apt (BUNEHole bu x₂) con (TANEHole x wt x₁) = TANEHole x (lem-subst-cast-ta apt bu con wt) (lem-subst-cast-sta apt con x₁) lem-subst-cast-ta apt (BUCast bu) con (TACast wt x) = TACast (lem-subst-cast-ta apt bu con wt) x lem-subst-cast-ta apt (BUFailedCast bu) con (TAFailedCast wt x x₁ x₂) = TAFailedCast (lem-subst-cast-ta apt bu con wt) x x₁ x₂ lem-subst-cast-ta apt (BUPair bu bu₁ x) con (TAPair wt wt₁) = TAPair (lem-subst-cast-ta apt bu con wt) (lem-subst-cast-ta apt bu₁ con wt₁) lem-subst-cast-ta apt (BUFst bu) con (TAFst wt) = TAFst (lem-subst-cast-ta apt bu con wt) lem-subst-cast-ta apt (BUSnd bu) con (TASnd wt) = TASnd (lem-subst-cast-ta apt bu con wt)
{ "alphanum_fraction": 0.5657129743, "avg_line_length": 73.0279329609, "ext": "agda", "hexsha": "6af44759371c2b1ba889cf209fb97157d29fb092", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "lemmas-subst-ta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "lemmas-subst-ta.agda", "max_line_length": 320, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "lemmas-subst-ta.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5793, "size": 13072 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.LoopSpaceCircle open import homotopy.PinSn open import homotopy.SphereEndomorphism open import homotopy.SuspAdjointLoop open import groups.FromSusp open import groups.Int open import groups.Pointed open import groups.SuspAdjointLoop open import groups.ToOmega module groups.SphereEndomorphism where ⊙SphereS-endo-group-structure : ∀ n → GroupStructure (⊙Sphere-endo (S n)) ⊙SphereS-endo-group-structure n = Susp⊙→-group-structure (⊙Sphere n) (⊙Sphere (S n)) {- ⊙LiftSphereS-endo-group-structure : ∀ {i} n → GroupStructure (⊙LiftSphere-endo {i} (S n)) ⊙LiftSphereS-endo-group-structure {i} n = LiftSusp⊙→-group-structure {j = i} (⊙Sphere n) (⊙Lift {j = i} (⊙Sphere (S n))) ⊙SphereS-endo-siso-⊙LiftSphereS-endo : ∀ {i} n → ⊙SphereS-endo-group-structure n ≃ᴳˢ ⊙LiftSphereS-endo-group-structure {i} n ⊙SphereS-endo-siso-⊙LiftSphereS-endo {i} n = ≃-to-≃ᴳˢ ⊙Lift-fmap-equiv (λ f g → ap (_⊙∘ ⊙pinch (⊙Sphere n) ⊙∘ ⊙lower {j = i}) $ ! $ ⊙∨-rec (⊙Lift-fmap f) (⊙Lift-fmap g) ⊙∘ ⊙∨-fmap ⊙lift ⊙lift =⟨ ⊙λ= $ ⊙∨-rec-fmap (⊙Lift-fmap f) (⊙Lift-fmap g) ⊙lift ⊙lift ⟩ ⊙∨-rec (⊙lift ⊙∘ f) (⊙lift ⊙∘ g) =⟨ ! $ ⊙λ= $ ⊙∨-rec-post∘ ⊙lift f g ⟩ ⊙lift ⊙∘ ⊙∨-rec f g =∎) -} Trunc-⊙SphereS-endo-group : ∀ n → Group₀ Trunc-⊙SphereS-endo-group n = Trunc-Susp⊙→-group (⊙Sphere n) (⊙Sphere (S n)) {- Trunc-⊙LiftSphereS-endo-group : ∀ {i} n → Group i Trunc-⊙LiftSphereS-endo-group {i} n = Trunc-LiftSusp⊙→-group {j = i} (⊙Sphere n) (⊙Lift {j = i} (⊙Sphere (S n))) -} Trunc-⊙SphereS-endo-⊙group : ∀ n → ⊙Group₀ Trunc-⊙SphereS-endo-⊙group n = ⊙[ Trunc-⊙SphereS-endo-group n , [ ⊙idf _ ] ]ᴳ {- Trunc-⊙LiftSphereS-endo-⊙group : ∀ {i} n → ⊙Group i Trunc-⊙LiftSphereS-endo-⊙group {i} n = ⊙[ Trunc-⊙LiftSphereS-endo-group {i = i} n , [ ⊙idf _ ] ]ᴳ -} Trunc-⊙S¹-endo-group-iso-ℤ : Trunc-⊙SphereS-endo-group 0 ≃ᴳ ℤ-group Trunc-⊙S¹-endo-group-iso-ℤ = Trunc-⊙SphereS-endo-group 0 ≃ᴳ⟨ Trunc-Susp⊙→-iso-Trunc-⊙→Ω ⊙Bool ⊙S¹ ⟩ Trunc-⊙→Ω-group ⊙Bool ⊙S¹ ≃ᴳ⟨ Trunc-⊙Bool→Ω-iso-π₁ ⊙S¹ ⟩ πS 0 ⊙S¹ ≃ᴳ⟨ πS-SphereS-iso-ℤ 0 ⟩ ℤ-group ≃ᴳ∎ Trunc-⊙S¹-endo-⊙group-iso-⊙ℤ : Trunc-⊙SphereS-endo-⊙group 0 ⊙≃ᴳ ℤ-⊙group Trunc-⊙S¹-endo-⊙group-iso-⊙ℤ = Trunc-⊙S¹-endo-group-iso-ℤ , equiv-adj' ΩS¹-equiv-ℤ {a = ap (idf _) loop} {b = 1} (ap-idf loop) Trunc-⊙S¹-endo-⊙group-is-infinite-cyclic : is-infinite-cyclic (Trunc-⊙SphereS-endo-⊙group 0) Trunc-⊙S¹-endo-⊙group-is-infinite-cyclic = isomorphism-preserves'-infinite-cyclic Trunc-⊙S¹-endo-⊙group-iso-⊙ℤ ℤ-is-infinite-cyclic Trunc-⊙SphereS-endo-Susp-fmap-iso : ∀ n → Trunc-⊙SphereS-endo-group n ≃ᴳ Trunc-⊙SphereS-endo-group (S n) Trunc-⊙SphereS-endo-Susp-fmap-iso n = Trunc-group-fmap (Susp⊙→-Susp-fmap-shom (⊙Sphere n) (⊙Sphere (S n))) , Trunc-⊙SphereS-endo-Susp-is-equiv n Trunc-⊙SphereS-endo-Susp-fmap-⊙iso : ∀ n → Trunc-⊙SphereS-endo-⊙group n ⊙≃ᴳ Trunc-⊙SphereS-endo-⊙group (S n) Trunc-⊙SphereS-endo-Susp-fmap-⊙iso n = Trunc-⊙SphereS-endo-Susp-fmap-iso n , ap [_] (⊙Susp-fmap-idf (⊙Sphere (S n))) Trunc-⊙SphereS-endo-⊙group-is-infinite-cyclic : ∀ n → is-infinite-cyclic (Trunc-⊙SphereS-endo-⊙group n) Trunc-⊙SphereS-endo-⊙group-is-infinite-cyclic O = Trunc-⊙S¹-endo-⊙group-is-infinite-cyclic Trunc-⊙SphereS-endo-⊙group-is-infinite-cyclic (S n) = isomorphism-preserves-infinite-cyclic (Trunc-⊙SphereS-endo-Susp-fmap-⊙iso n) (Trunc-⊙SphereS-endo-⊙group-is-infinite-cyclic n) {- Trunc-⊙SphereS-endo-iso-Trunc-⊙LiftSphereS-endo : ∀ {i} n → Trunc-⊙SphereS-endo-group n ≃ᴳ Trunc-⊙LiftSphereS-endo-group {i} n Trunc-⊙SphereS-endo-iso-Trunc-⊙LiftSphereS-endo {i} n = Trunc-group-emap (⊙SphereS-endo-siso-⊙LiftSphereS-endo {i} n) Trunc-⊙SphereS-endo-⊙iso-Trunc-⊙LiftSphereS-endo : ∀ {i} n → Trunc-⊙SphereS-endo-⊙group n ⊙≃ᴳ Trunc-⊙LiftSphereS-endo-⊙group {i} n Trunc-⊙SphereS-endo-⊙iso-Trunc-⊙LiftSphereS-endo {i} n = Trunc-⊙SphereS-endo-iso-Trunc-⊙LiftSphereS-endo {i} n , idp Trunc-⊙LiftSphereS-endo-⊙group-is-infinite-cyclic : ∀ {i} n → is-infinite-cyclic (Trunc-⊙LiftSphereS-endo-⊙group {i} n) Trunc-⊙LiftSphereS-endo-⊙group-is-infinite-cyclic {i} n = isomorphism-preserves-infinite-cyclic (Trunc-⊙SphereS-endo-⊙iso-Trunc-⊙LiftSphereS-endo {i} n) (Trunc-⊙SphereS-endo-⊙group-is-infinite-cyclic n) -} {- definition of degree -} Trunc-⊙SphereS-endo-degree : ∀ n → Trunc-⊙Sphere-endo (S n) → ℤ Trunc-⊙SphereS-endo-degree n = is-equiv.g (Trunc-⊙SphereS-endo-⊙group-is-infinite-cyclic n) abstract Trunc-⊙SphereS-endo-degree-Susp : ∀ n f → Trunc-⊙SphereS-endo-degree (S n) (Trunc-fmap ⊙Susp-fmap f) == Trunc-⊙SphereS-endo-degree n f Trunc-⊙SphereS-endo-degree-Susp n f = ap (Trunc-⊙SphereS-endo-degree n) (GroupIso.g-f (Trunc-⊙SphereS-endo-Susp-fmap-iso n) f) ⊙SphereS-endo-degree : ∀ n → ⊙Sphere-endo (S n) → ℤ ⊙SphereS-endo-degree n = Trunc-⊙SphereS-endo-degree n ∘ [_] abstract ⊙SphereS-endo-degree-Susp : ∀ n f → ⊙SphereS-endo-degree (S n) (⊙Susp-fmap f) == ⊙SphereS-endo-degree n f ⊙SphereS-endo-degree-Susp n f = Trunc-⊙SphereS-endo-degree-Susp n [ f ] ⊙SphereS-endo-degree-Susp' : ∀ n f → ⊙SphereS-endo-degree (S n) (Susp-fmap f , idp) == Trunc-⊙SphereS-endo-degree n (Trunc-⊙SphereS-endo-in n [ f ]) ⊙SphereS-endo-degree-Susp' n f = ⊙SphereS-endo-degree (S n) (Susp-fmap f , idp) =⟨ ap (Trunc-⊙SphereS-endo-degree (S n) ∘ Trunc-fmap (λ f → Susp-fmap f , idp)) (! $ is-equiv.f-g (Trunc-⊙SphereS-endo-out-is-equiv n) [ f ]) ⟩ Trunc-⊙SphereS-endo-degree (S n) (Trunc-fmap (λ f → Susp-fmap f , idp) (Trunc-fmap fst (Trunc-⊙SphereS-endo-in n [ f ]))) =⟨ ap (Trunc-⊙SphereS-endo-degree (S n)) (Trunc-fmap-∘ (λ f → Susp-fmap f , idp) fst (Trunc-⊙SphereS-endo-in n [ f ])) ⟩ Trunc-⊙SphereS-endo-degree (S n) (Trunc-fmap ⊙Susp-fmap (Trunc-⊙SphereS-endo-in n [ f ])) =⟨ Trunc-⊙SphereS-endo-degree-Susp n (Trunc-⊙SphereS-endo-in n [ f ]) ⟩ Trunc-⊙SphereS-endo-degree n (Trunc-⊙SphereS-endo-in n [ f ]) =∎ ⊙SphereS-endo-degree-base-indep : ∀ n {f g} → fst f ∼ fst g → ⊙SphereS-endo-degree n f == ⊙SphereS-endo-degree n g ⊙SphereS-endo-degree-base-indep n {f} {g} f∼g = ! (⊙SphereS-endo-degree-Susp n f) ∙ ap (λ f → ⊙SphereS-endo-degree (S n) (Susp-fmap f , idp)) (λ= f∼g) ∙ ⊙SphereS-endo-degree-Susp n g {- Trunc-⊙LiftSphereS-endo-degree : ∀ {i} n → Trunc-⊙LiftSphere-endo {i} (S n) → ℤ Trunc-⊙LiftSphereS-endo-degree {i} n = is-equiv.g (Trunc-⊙LiftSphereS-endo-⊙group-is-infinite-cyclic {i} n) abstract Trunc-⊙LiftSphereS-endo-degree-Susp : ∀ {i} n f → Trunc-⊙LiftSphereS-endo-degree {i} (S n) (Trunc-fmap (λ f → ⊙Lift-fmap (⊙Susp-fmap (⊙lower ⊙∘ f ⊙∘ ⊙lift))) f) == Trunc-⊙LiftSphereS-endo-degree {i} n f Trunc-⊙LiftSphereS-endo-degree-Susp {i} n = Trunc-elim {{λ _ → =-preserves-level ℤ-is-set}} (λ f → ⊙SphereS-endo-degree-Susp n (⊙lower ⊙∘ f ⊙∘ ⊙lift)) ⊙LiftSphereS-endo-degree : ∀ {i} n → ⊙LiftSphere-endo {i} (S n) → ℤ ⊙LiftSphereS-endo-degree {i} n = Trunc-⊙LiftSphereS-endo-degree {i} n ∘ [_] abstract ⊙LiftSphereS-endo-degree-Susp : ∀ {i} n f → ⊙LiftSphereS-endo-degree {i} (S n) (⊙Lift-fmap (⊙Susp-fmap (⊙lower ⊙∘ f ⊙∘ ⊙lift))) == ⊙LiftSphereS-endo-degree {i} n f ⊙LiftSphereS-endo-degree-Susp {i} n f = Trunc-⊙LiftSphereS-endo-degree-Susp {i} n [ f ] ⊙LiftSphereS-endo-degree-base-indep : ∀ {i} n {f g} → fst f ∼ fst g → ⊙LiftSphereS-endo-degree {i} n f == ⊙LiftSphereS-endo-degree {i} n g ⊙LiftSphereS-endo-degree-base-indep {i} n {f} {g} f∼g = ! (⊙LiftSphereS-endo-degree-Susp {i} n f) ∙ ap (λ f → ⊙LiftSphereS-endo-degree {i} (S n) (⊙Lift-fmap (Susp-fmap (lower ∘ f ∘ lift) , idp))) (λ= f∼g) ∙ ⊙LiftSphereS-endo-degree-Susp {i} n g -}
{ "alphanum_fraction": 0.6238291495, "avg_line_length": 43.5163043478, "ext": "agda", "hexsha": "e4819710d3952542f061c9170886000a118d0858", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/groups/SphereEndomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/groups/SphereEndomorphism.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/groups/SphereEndomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3768, "size": 8007 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ open import Algebra module Algebra.Properties.AbelianGroup {g₁ g₂} (G : AbelianGroup g₁ g₂) where import Algebra.Properties.Group as GP open import Data.Product open import Function import Relation.Binary.EqReasoning as EqR open AbelianGroup G open EqR setoid open GP group public private lemma : ∀ x y → x ∙ y ∙ x ⁻¹ ≈ y lemma x y = begin x ∙ y ∙ x ⁻¹ ≈⟨ comm _ _ ⟨ ∙-cong ⟩ refl ⟩ y ∙ x ∙ x ⁻¹ ≈⟨ assoc _ _ _ ⟩ y ∙ (x ∙ x ⁻¹) ≈⟨ refl ⟨ ∙-cong ⟩ proj₂ inverse _ ⟩ y ∙ ε ≈⟨ proj₂ identity _ ⟩ y ∎ ⁻¹-∙-comm : ∀ x y → x ⁻¹ ∙ y ⁻¹ ≈ (x ∙ y) ⁻¹ ⁻¹-∙-comm x y = begin x ⁻¹ ∙ y ⁻¹ ≈⟨ comm _ _ ⟩ y ⁻¹ ∙ x ⁻¹ ≈⟨ sym $ lem ⟨ ∙-cong ⟩ refl ⟩ x ∙ (y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹) ∙ x ⁻¹ ≈⟨ lemma _ _ ⟩ y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹ ≈⟨ lemma _ _ ⟩ (x ∙ y) ⁻¹ ∎ where lem = begin x ∙ (y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹) ≈⟨ sym $ assoc _ _ _ ⟩ x ∙ (y ∙ (x ∙ y) ⁻¹) ∙ y ⁻¹ ≈⟨ sym $ assoc _ _ _ ⟨ ∙-cong ⟩ refl ⟩ x ∙ y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹ ≈⟨ proj₂ inverse _ ⟨ ∙-cong ⟩ refl ⟩ ε ∙ y ⁻¹ ≈⟨ proj₁ identity _ ⟩ y ⁻¹ ∎
{ "alphanum_fraction": 0.4016913319, "avg_line_length": 31.5333333333, "ext": "agda", "hexsha": "244cf76db9fa4cb9c1c275fff2763c48b70cb078", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/AbelianGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/AbelianGroup.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/AbelianGroup.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 586, "size": 1419 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block import LibraBFT.Impl.Consensus.ConsensusTypes.TimeoutCertificate as TimeoutCertificate open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.Hash open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Consensus.ConsensusTypes.ProposalMsg where verifyWellFormed : ProposalMsg → Either ErrLog Unit verifyWellFormed self = do lcheck (not (Block.isNilBlock (self ^∙ pmProposal))) (here' ("Proposal for a NIL block" ∷ [])) withErrCtx' ("Failed to verify ProposalMsg's block" ∷ []) (Block.verifyWellFormed (self ^∙ pmProposal)) lcheck (self ^∙ pmProposal ∙ bRound >? 0) (here' ("Proposal for has round <= 0" ∷ [])) lcheck (self ^∙ pmProposal ∙ bEpoch == self ^∙ pmSyncInfo ∙ siEpoch) (here' ("ProposalMsg has different epoch than SyncInfo" ∷ [])) -- lsSI (self ^∙ pmSyncInfo) lcheck (self ^∙ pmProposal ∙ bParentId == self ^∙ pmSyncInfo ∙ siHighestQuorumCert ∙ qcCertifiedBlock ∙ biId) (here' ( "Proposal SyncInfo HQC CertifiedBlock id not eq to block parent id" ∷ [])) -- lsSI (self ^∙ pmSyncInfo) let previousRound = self ^∙ pmProposal ∙ bRound ∸ 1 -- NOTE: monus usage let highestCertifiedRound = max (self ^∙ pmProposal ∙ bQuorumCert ∙ qcCertifiedBlock ∙ biRound) (maybe 0 (_^∙ tcRound) (self ^∙ pmSyncInfo ∙ siHighestTimeoutCert)) lcheck (previousRound == highestCertifiedRound) (here' ("Proposal does not have a certified round" ∷ [])) -- lsMTC (self ^∙ pmSyncInfo ∙ siHighestTimeoutCert) lcheck (is-just (self ^∙ pmProposal ∙ bAuthor)) (here' ("Proposal does not have an author" ∷ [])) -- LBFT-DIFF : this check used to live in EventProcessor ∙ processProposedBlockM -- TODO: is it needed? -- Safety invariant: For any valid proposed block -- , its parent block == the block pointed to by its QC. lcheck (self ^∙ pmProposal ∙ bParentId == self ^∙ pmProposal ∙ bQuorumCert ∙ qcCertifiedBlock ∙ biId) (here' ("parent id /= qcCB" ∷ [])) -- show (self ^∙ pmProposal) where here' : List String → List String here' t = "ProposalMsg" ∷ "verifyWellFormed" {-∷ lsPM self-} ∷ t verify : ProposalMsg → ValidatorVerifier → Either ErrLog Unit verify self validator = do Block.validateSignature (self ^∙ pmProposal) validator TimeoutCertificate.verify' (self ^∙ pmSyncInfo ∙ siHighestTimeoutCert) validator verifyWellFormed self
{ "alphanum_fraction": 0.6624057686, "avg_line_length": 50.0163934426, "ext": "agda", "hexsha": "0d7df635d46c8cce0d46316206a62f825ebff5f9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/ProposalMsg.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/ProposalMsg.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/ProposalMsg.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 845, "size": 3051 }
module Issue2487 where open import Issue2487.b
{ "alphanum_fraction": 0.8333333333, "avg_line_length": 12, "ext": "agda", "hexsha": "56575d140b8adc52f9f5d97ef6319f9d1167802c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2487.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2487.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2487.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 13, "size": 48 }
module nodcap.Base where open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Pos as ℕ⁺ using (ℕ⁺; suc; _+_) open import Data.List as L using (List; []; _∷_; _++_) open import Data.List.Any using (Any; here; there) open import Data.List.Any.Membership.Propositional using (_∈_; _∼[_]_; bag) open import Data.Product using (_×_; _,_; uncurry; map) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function using (id; _$_) open import Relation.Binary.PropositionalEquality as P using (_≡_) -- Types. data Type : Set where 𝟏 : Type ⊥ : Type 𝟎 : Type ⊤ : Type _⊗_ : (A B : Type) → Type _⅋_ : (A B : Type) → Type _⊕_ : (A B : Type) → Type _&_ : (A B : Type) → Type ![_]_ : (n : ℕ⁺) (A : Type) → Type ?[_]_ : (n : ℕ⁺) (A : Type) → Type -- Duality. _^ : Type → Type 𝟏 ^ = ⊥ ⊥ ^ = 𝟏 𝟎 ^ = ⊤ ⊤ ^ = 𝟎 (A ⊗ B) ^ = (A ^) ⅋ (B ^) (A ⅋ B) ^ = (A ^) ⊗ (B ^) (A ⊕ B) ^ = (A ^) & (B ^) (A & B) ^ = (A ^) ⊕ (B ^) (![ n ] A) ^ = ?[ n ] (A ^) (?[ n ] A) ^ = ![ n ] (A ^) ^-inv : (A : Type) → A ^ ^ ≡ A ^-inv 𝟏 = P.refl ^-inv ⊥ = P.refl ^-inv 𝟎 = P.refl ^-inv ⊤ = P.refl ^-inv (A ⊗ B) = P.cong₂ _⊗_ (^-inv A) (^-inv B) ^-inv (A ⅋ B) = P.cong₂ _⅋_ (^-inv A) (^-inv B) ^-inv (A ⊕ B) = P.cong₂ _⊕_ (^-inv A) (^-inv B) ^-inv (A & B) = P.cong₂ _&_ (^-inv A) (^-inv B) ^-inv (![ n ] A) = P.cong ![ n ]_ (^-inv A) ^-inv (?[ n ] A) = P.cong ?[ n ]_ (^-inv A) -- Lollipop. _⊸_ : (A B : Type) → Type A ⊸ B = (A ^) ⅋ B -- Polarity. data Pos : (A : Type) → Set where 𝟎 : Pos 𝟎 𝟏 : Pos 𝟏 _⊗_ : (A B : Type) → Pos (A ⊗ B) _⊕_ : (A B : Type) → Pos (A ⊕ B) ![_]_ : (n : ℕ⁺) (A : Type) → Pos (![ n ] A) data Neg : (A : Type) → Set where ⊥ : Neg ⊥ ⊤ : Neg ⊤ _⅋_ : (A B : Type) → Neg (A ⅋ B) _&_ : (A B : Type) → Neg (A & B) ?[_]_ : (n : ℕ⁺) (A : Type) → Neg (?[ n ] A) pol? : (A : Type) → Pos A ⊎ Neg A pol? 𝟏 = inj₁ 𝟏 pol? ⊥ = inj₂ ⊥ pol? 𝟎 = inj₁ 𝟎 pol? ⊤ = inj₂ ⊤ pol? (A ⊗ B) = inj₁ (A ⊗ B) pol? (A ⅋ B) = inj₂ (A ⅋ B) pol? (A ⊕ B) = inj₁ (A ⊕ B) pol? (A & B) = inj₂ (A & B) pol? (![ n ] A) = inj₁ (![ n ] A) pol? (?[ n ] A) = inj₂ (?[ n ] A) ^-posneg : {A : Type} (P : Pos A) → Neg (A ^) ^-posneg 𝟎 = ⊤ ^-posneg 𝟏 = ⊥ ^-posneg (A ⊗ B) = (A ^) ⅋ (B ^) ^-posneg (A ⊕ B) = (A ^) & (B ^) ^-posneg (![ n ] A) = ?[ n ] (A ^) ^-negpos : {A : Type} (N : Neg A) → Pos (A ^) ^-negpos ⊥ = 𝟏 ^-negpos ⊤ = 𝟎 ^-negpos (A ⅋ B) = (A ^) ⊗ (B ^) ^-negpos (A & B) = (A ^) ⊕ (B ^) ^-negpos (?[ n ] A) = ![ n ] (A ^) -- Environments. Environment : Set Environment = List Type -- Injectivity. private infix 10 _≈_ _≈_ : Type → Type → Set A ≈ B = A ≡ B ⊗-inj : {A B C D : Type} → A ⊗ B ≈ C ⊗ D → A ≈ C × B ≈ D ⊗-inj P.refl = P.refl , P.refl ⅋-inj : {A B C D : Type} → A ⅋ B ≈ C ⅋ D → A ≈ C × B ≈ D ⅋-inj P.refl = P.refl , P.refl ⊕-inj : {A B C D : Type} → A ⊕ B ≈ C ⊕ D → A ≈ C × B ≈ D ⊕-inj P.refl = P.refl , P.refl &-inj : {A B C D : Type} → A & B ≈ C & D → A ≈ C × B ≈ D &-inj P.refl = P.refl , P.refl !-inj : {A B : Type} {m n : ℕ⁺} → ![ m ] A ≈ ![ n ] B → m ≡ n × A ≈ B !-inj P.refl = P.refl , P.refl ?-inj : {A B : Type} {m n : ℕ⁺} → ?[ m ] A ≈ ?[ n ] B → m ≡ n × A ≈ B ?-inj P.refl = P.refl , P.refl -- This is one of those proofs for which I wish Agda had tactics. ^-inj : {A B : Type} → A ^ ≈ B ^ → A ≈ B ^-inj {A = 𝟏} {B = 𝟏} p = P.refl ^-inj {A = 𝟏} {B = ⊥} () ^-inj {A = 𝟏} {B = 𝟎} () ^-inj {A = 𝟏} {B = ⊤} () ^-inj {A = 𝟏} {B = C ⊗ D} () ^-inj {A = 𝟏} {B = C ⅋ D} () ^-inj {A = 𝟏} {B = C ⊕ D} () ^-inj {A = 𝟏} {B = C & D} () ^-inj {A = 𝟏} {B = ![ n ] C} () ^-inj {A = 𝟏} {B = ?[ n ] C} () ^-inj {A = ⊥} {B = 𝟏} () ^-inj {A = ⊥} {B = ⊥} p = P.refl ^-inj {A = ⊥} {B = 𝟎} () ^-inj {A = ⊥} {B = ⊤} () ^-inj {A = ⊥} {B = C ⊗ D} () ^-inj {A = ⊥} {B = C ⅋ D} () ^-inj {A = ⊥} {B = C ⊕ D} () ^-inj {A = ⊥} {B = C & D} () ^-inj {A = ⊥} {B = ![ n ] C} () ^-inj {A = ⊥} {B = ?[ n ] C} () ^-inj {A = 𝟎} {B = 𝟏} () ^-inj {A = 𝟎} {B = ⊥} () ^-inj {A = 𝟎} {B = 𝟎} p = P.refl ^-inj {A = 𝟎} {B = ⊤} () ^-inj {A = 𝟎} {B = C ⊗ D} () ^-inj {A = 𝟎} {B = C ⅋ D} () ^-inj {A = 𝟎} {B = C ⊕ D} () ^-inj {A = 𝟎} {B = C & D} () ^-inj {A = 𝟎} {B = ![ n ] C} () ^-inj {A = 𝟎} {B = ?[ n ] C} () ^-inj {A = ⊤} {B = 𝟏} () ^-inj {A = ⊤} {B = ⊥} () ^-inj {A = ⊤} {B = 𝟎} () ^-inj {A = ⊤} {B = ⊤} p = P.refl ^-inj {A = ⊤} {B = C ⊗ D} () ^-inj {A = ⊤} {B = C ⅋ D} () ^-inj {A = ⊤} {B = C ⊕ D} () ^-inj {A = ⊤} {B = C & D} () ^-inj {A = ⊤} {B = ![ n ] C} () ^-inj {A = ⊤} {B = ?[ n ] C} () ^-inj {A = A ⊗ B} {B = 𝟏} () ^-inj {A = A ⊗ B} {B = ⊥} () ^-inj {A = A ⊗ B} {B = 𝟎} () ^-inj {A = A ⊗ B} {B = ⊤} () ^-inj {A = A ⊗ B} {B = C ⊗ D} p = uncurry (P.cong₂ _⊗_) (map ^-inj ^-inj (⅋-inj p)) ^-inj {A = A ⊗ B} {B = C ⅋ D} () ^-inj {A = A ⊗ B} {B = C ⊕ D} () ^-inj {A = A ⊗ B} {B = C & D} () ^-inj {A = A ⊗ B} {B = ![ n ] C} () ^-inj {A = A ⊗ B} {B = ?[ n ] C} () ^-inj {A = A ⅋ B} {B = 𝟏} () ^-inj {A = A ⅋ B} {B = ⊥} () ^-inj {A = A ⅋ B} {B = 𝟎} () ^-inj {A = A ⅋ B} {B = ⊤} () ^-inj {A = A ⅋ B} {B = C ⊗ D} () ^-inj {A = A ⅋ B} {B = C ⅋ D} p = uncurry (P.cong₂ _⅋_) (map ^-inj ^-inj (⊗-inj p)) ^-inj {A = A ⅋ B} {B = C ⊕ D} () ^-inj {A = A ⅋ B} {B = C & D} () ^-inj {A = A ⅋ B} {B = ![ n ] C} () ^-inj {A = A ⅋ B} {B = ?[ n ] C} () ^-inj {A = A ⊕ B} {B = 𝟏} () ^-inj {A = A ⊕ B} {B = ⊥} () ^-inj {A = A ⊕ B} {B = 𝟎} () ^-inj {A = A ⊕ B} {B = ⊤} () ^-inj {A = A ⊕ B} {B = C ⊗ D} () ^-inj {A = A ⊕ B} {B = C ⅋ D} () ^-inj {A = A ⊕ B} {B = C ⊕ D} p = uncurry (P.cong₂ _⊕_) (map ^-inj ^-inj (&-inj p)) ^-inj {A = A ⊕ B} {B = C & D} () ^-inj {A = A ⊕ B} {B = ![ n ] C} () ^-inj {A = A ⊕ B} {B = ?[ n ] C} () ^-inj {A = A & B} {B = 𝟏} () ^-inj {A = A & B} {B = ⊥} () ^-inj {A = A & B} {B = 𝟎} () ^-inj {A = A & B} {B = ⊤} () ^-inj {A = A & B} {B = C ⊗ D} () ^-inj {A = A & B} {B = C ⅋ D} () ^-inj {A = A & B} {B = C ⊕ D} () ^-inj {A = A & B} {B = C & D} p = uncurry (P.cong₂ _&_) (map ^-inj ^-inj (⊕-inj p)) ^-inj {A = A & B} {B = ![ n ] C} () ^-inj {A = A & B} {B = ?[ n ] C} () ^-inj {A = ![ m ] A} {B = 𝟏} () ^-inj {A = ![ m ] A} {B = ⊥} () ^-inj {A = ![ m ] A} {B = 𝟎} () ^-inj {A = ![ m ] A} {B = ⊤} () ^-inj {A = ![ m ] A} {B = C ⊗ D} () ^-inj {A = ![ m ] A} {B = C ⅋ D} () ^-inj {A = ![ m ] A} {B = C ⊕ D} () ^-inj {A = ![ m ] A} {B = C & D} () ^-inj {A = ![ m ] A} {B = ![ n ] C} p = uncurry (P.cong₂ ![_]_) (map id ^-inj (?-inj p)) ^-inj {A = ![ m ] A} {B = ?[ n ] C} () ^-inj {A = ?[ m ] A} {B = 𝟏} () ^-inj {A = ?[ m ] A} {B = ⊥} () ^-inj {A = ?[ m ] A} {B = 𝟎} () ^-inj {A = ?[ m ] A} {B = ⊤} () ^-inj {A = ?[ m ] A} {B = C ⊗ D} () ^-inj {A = ?[ m ] A} {B = C ⅋ D} () ^-inj {A = ?[ m ] A} {B = C ⊕ D} () ^-inj {A = ?[ m ] A} {B = C & D} () ^-inj {A = ?[ m ] A} {B = ![ n ] C} () ^-inj {A = ?[ m ] A} {B = ?[ n ] C} p = uncurry (P.cong₂ ?[_]_) (map id ^-inj (!-inj p))
{ "alphanum_fraction": 0.3223510807, "avg_line_length": 32.0168776371, "ext": "agda", "hexsha": "dac1bd6e59c53b7a21b7783a55448d9a928843a4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "pepijnkokke/nodcap", "max_forks_repo_path": "src/cpnd1/nodcap/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "pepijnkokke/nodcap", "max_issues_repo_path": "src/cpnd1/nodcap/Base.agda", "max_line_length": 90, "max_stars_count": 4, "max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/nodcap", "max_stars_repo_path": "src/cpnd1/nodcap/Base.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z", "num_tokens": 3974, "size": 7588 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Sigma {- Some miscellaneous lemmas for types with decidable equality. -} module Util.DecEq where ×-has-dec-eq : {i j : ULevel} {A : Type i} {B : Type j} → (has-dec-eq A) → (has-dec-eq B) → (has-dec-eq (A × B)) ×-has-dec-eq Adec Bdec (a , b) (a' , b') = ⊔-rec (⊔-rec (λ p q → inl (pair×= q p)) (λ f _ → inr (λ p → f (ap snd p))) (Bdec b b')) (λ f → inr (λ p → f (ap fst p))) (Adec a a') equiv-preserves-dec-eq : {i j : ULevel} {A : Type i} {B : Type j} → (A ≃ B) → (has-dec-eq B) → has-dec-eq A equiv-preserves-dec-eq e Adec a a' = ⊔-rec (λ p → inl (–>-is-inj e a a' p)) (λ f → inr (λ p → f (ap (–> e) p))) (Adec (–> e a) (–> e a'))
{ "alphanum_fraction": 0.5434210526, "avg_line_length": 33.0434782609, "ext": "agda", "hexsha": "3757ac8691d8fc5c1b3eab625bf0594c25f518b5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "awswan/nielsenschreier-hott", "max_forks_repo_path": "main/Util/DecEq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "awswan/nielsenschreier-hott", "max_issues_repo_path": "main/Util/DecEq.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "awswan/nielsenschreier-hott", "max_stars_repo_path": "main/Util/DecEq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 325, "size": 760 }
module Category.Core where open import Level open import Data.Product -- open import Relation.Binary as B using () open import Relation.Binary as B using () open import Relation.Binary.Indexed open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl) record IsMorphism {𝒸 ℓ : Level} {Object : Set 𝒸} {Carrier : (Object × Object) → Set 𝒸} (_≈_ : Rel Carrier ℓ) (_∘_ : ∀ {a b c} → Carrier (b , c) → Carrier (a , b) → Carrier (a , c)) (id : (a : Object) → Carrier (a , a)) : Set (suc (𝒸 ⊔ ℓ)) where _⇒_ = curry Carrier field assoc : ∀ {a b c d : Object} → (f : a ⇒ b) → (g : b ⇒ c) → (h : c ⇒ d) → ((h ∘ g) ∘ f) ≈ (h ∘ (g ∘ f)) left-identity : ∀ {a b : Object} → (f : a ⇒ b) → (id b ∘ f) ≈ f right-identity : ∀ {a b : Object} → (f : a ⇒ b) → (f ∘ id a) ≈ f cong : ∀ {a b c a' b' c' : Object} {x : Carrier (b , c)} {y : Carrier (b' , c')} {u : Carrier (a , b)} {v : Carrier (a' , b')} → x ≈ y → u ≈ v → (x ∘ u) ≈ (y ∘ v) record MorphismStructure (𝒸 ℓ : Level) (Object : Set 𝒸) : Set (suc (𝒸 ⊔ ℓ)) where infixr 9 _∘_ infix 4 _≈_ field Carrier : (Object × Object) → Set 𝒸 _≈_ : Rel Carrier ℓ isEquivalence : IsEquivalence Carrier _≈_ setoid : Setoid (Object × Object) _ _ setoid = record { isEquivalence = isEquivalence } -- Arrows _⇒_ : Object → Object → Set 𝒸 _⇒_ = curry Carrier field _∘_ : ∀ {a b c : Object} → b ⇒ c → a ⇒ b → a ⇒ c id : (a : Object) → a ⇒ a isMorphism : IsMorphism _≈_ _∘_ id record Category (𝒸 ℓ : Level) : Set (suc (𝒸 ⊔ ℓ)) where field Objects : B.Setoid 𝒸 ℓ Object : Set 𝒸 Object = B.Setoid.Carrier Objects _≈o_ : Object → Object → Set ℓ _≈o_ = B.Setoid._≈_ Objects field Morphisms : MorphismStructure 𝒸 ℓ Object open MorphismStructure Morphisms public hom[-,_] : Object → Set 𝒸 hom[-, b ] = Σ[ a ∈ Object ] a ⇒ b -- hom[_,_] : Object → Object → Set 𝒸 -- hom[ a , b ] = a ⇒ b record IsFunctor {𝒸₀ ℓ₀ 𝒸₁ ℓ₁ : Level} {C : Category 𝒸₀ ℓ₀} {D : Category 𝒸₁ ℓ₁} (mapObject : Category.Object C → Category.Object D) (mapMorphism : ∀ {a b} → (Category._⇒_ C) a b → (Category._⇒_ D) (mapObject a) (mapObject b)) : Set (𝒸₀ ⊔ ℓ₀ ⊔ 𝒸₁ ⊔ ℓ₁) where module C = Category C open Category D field preserve-id : (a : C.Object) → mapMorphism (C.id a) ≈ id (mapObject a) preserve-∘ : {a b c : C.Object} (f : a C.⇒ b) (g : b C.⇒ c) → mapMorphism (C._∘_ g f) ≈ mapMorphism g ∘ mapMorphism f record Functor {𝒸₀ ℓ₀ 𝒸₁ ℓ₁ : Level} (C : Category 𝒸₀ ℓ₀) (D : Category 𝒸₁ ℓ₁) : Set (𝒸₀ ⊔ ℓ₀ ⊔ 𝒸₁ ⊔ ℓ₁) where module C = Category C module D = Category D field mapObject : C.Object → D.Object mapMorphism : ∀ {a b} → a C.⇒ b → mapObject a D.⇒ mapObject b isFunctor : IsFunctor {𝒸₀} {ℓ₀} {𝒸₁} {ℓ₁} {C} {D} mapObject mapMorphism
{ "alphanum_fraction": 0.4963054187, "avg_line_length": 30.9333333333, "ext": "agda", "hexsha": "1509c4baa38e5341910d3ba95e6708dafa18d056", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/categories", "max_forks_repo_path": "src/Category/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/categories", "max_issues_repo_path": "src/Category/Core.agda", "max_line_length": 91, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/categories", "max_stars_repo_path": "src/Category/Core.agda", "max_stars_repo_stars_event_max_datetime": "2018-01-04T23:19:30.000Z", "max_stars_repo_stars_event_min_datetime": "2018-01-04T23:19:30.000Z", "num_tokens": 1203, "size": 3248 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Monads on indexed sets (predicates) ------------------------------------------------------------------------ -- Note that currently the monad laws are not included here. {-# OPTIONS --without-K --safe #-} module Category.Monad.Predicate where open import Category.Applicative.Indexed open import Category.Monad open import Category.Monad.Indexed open import Data.Unit open import Data.Product open import Function open import Level open import Relation.Binary.PropositionalEquality open import Relation.Unary open import Relation.Unary.PredicateTransformer using (Pt) ------------------------------------------------------------------------ record RawPMonad {i ℓ} {I : Set i} (M : Pt I (i ⊔ ℓ)) : Set (suc i ⊔ suc ℓ) where infixl 1 _?>=_ _?>_ _>?>_ infixr 1 _=<?_ _<?<_ -- ``Demonic'' operations (the opponent chooses the state). field return? : ∀ {P} → P ⊆ M P _=<?_ : ∀ {P Q} → P ⊆ M Q → M P ⊆ M Q _?>=_ : ∀ {P Q} → M P ⊆ const (P ⊆ M Q) ⇒ M Q m ?>= f = f =<? m _?>=′_ : ∀ {P Q} → M P ⊆ const (∀ j → {_ : P j} → j ∈ M Q) ⇒ M Q m ?>=′ f = m ?>= λ {j} p → f j {p} _?>_ : ∀ {P Q} → M P ⊆ const (∀ {j} → j ∈ M Q) ⇒ M Q m₁ ?> m₂ = m₁ ?>= λ _ → m₂ join? : ∀ {P} → M (M P) ⊆ M P join? m = m ?>= id _>?>_ : {P Q R : _} → P ⊆ M Q → Q ⊆ M R → P ⊆ M R f >?> g = _=<?_ g ∘ f _<?<_ : ∀ {P Q R} → Q ⊆ M R → P ⊆ M Q → P ⊆ M R g <?< f = f >?> g -- ``Angelic'' operations (the player knows the state). rawIMonad : RawIMonad (λ i j A → i ∈ M (const A ∩ { j })) rawIMonad = record { return = λ x → return? (x , refl) ; _>>=_ = λ m k → m ?>= λ { {._} (x , refl) → k x } } open RawIMonad rawIMonad public
{ "alphanum_fraction": 0.4720982143, "avg_line_length": 27.5692307692, "ext": "agda", "hexsha": "38b039eb647dd9d278e31e23431503ccbeda4809", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Predicate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Predicate.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Predicate.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 612, "size": 1792 }
module CoinductiveCK where open import Data.Product open import Data.Sum open import Data.Empty open import Data.Nat open import Data.Bool using (Bool; if_then_else_; true; false) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; cong; subst) open PropEq.≡-Reasoning open import Relation.Nullary open import Relation.Nullary.Negation using (¬∃⟶∀¬; Excluded-Middle) open import Function using (_$_; _∘_) open import Relation.Binary.Core using (IsEquivalence) renaming (Rel to RelL) open import Level as L using () renaming (_⊔_ to _⊔L_) -- to be classical, we need the law of excluded middle -- the following defns. were adapted from: -- http://stackoverflow.com/questions/36669072/law-of-excluded-middle-in-agda postulate LEM : ∀ {ℓ} (A : Set ℓ) → Dec A ¬¬A⇒A : ∀ {ℓ} {A : Set ℓ} → ¬ (¬ A) → A ¬¬A⇒A {_} {A} ¬¬p with LEM A ... | yes p = p ... | no ¬p = ⊥-elim (¬¬p ¬p) ¬∀⟶∃¬ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : A → Set ℓ'} → ¬ (∀ a → B a) → ∃ λ a → ¬ (B a) ¬∀⟶∃¬ {A = A} {B} ¬∀ with LEM (∃ λ a → ¬ B a) ... | (yes p) = p ... | (no ¬p) = ⊥-elim $ ¬∀ (¬¬A⇒A ∘ ¬∃⟶∀¬ ¬p) postulate State : Set Event : ∀ {ℓ} → Set (L.suc ℓ) Event {ℓ} = State → Set ℓ _∧_ : ∀ {ℓ ℓ'} → Event {ℓ} → Event {ℓ'} → Event e1 ∧ e2 = λ w → e1 w × e2 w _∨_ : ∀ {ℓ ℓ'} → Event {ℓ} → Event {ℓ'} → Event e1 ∨ e2 = λ w → e1 w ⊎ e2 w _⟶_ : ∀ {ℓ ℓ'} → Event {ℓ} → Event {ℓ'} → Event e1 ⟶ e2 = λ w → e1 w → e2 w _⇒_ : ∀ {ℓ ℓ'} → Event {ℓ} → Event {ℓ'} → Set _ e1 ⇒ e2 = ∀ w → e1 w → e2 w ~_ : ∀ {ℓ} → Event {ℓ} → Event ~ e = λ w → e w → ⊥ All : ∀ {ℓ} → Event {ℓ} → Set _ All e = ∀ w → e w ⇒All⟶ : ∀ {ℓ ℓ'} (e1 : Event {ℓ}) (e2 : Event {ℓ'}) → e1 ⇒ e2 → All (e1 ⟶ e2) ⇒All⟶ e1 e2 e1⇒e2 w e1w = e1⇒e2 w e1w mapE : ∀ {ℓ ℓ' ℓ''} {X : Set ℓ} → (Event {ℓ'} → Event {ℓ''}) → (X → Event) → X → Event {ℓ''} mapE K E = λ n → K (E n) _⊂_ : ∀ {ℓ ℓ' ℓ''} {X : Set ℓ} → (X → Event {ℓ'}) → Event {ℓ''} → Set (ℓ ⊔L ℓ' ⊔L ℓ'') _⊂_ {X = X} E e = ∀ w → (∀ (x : X) → E x w) → e w ⇒Trans : ∀ {ℓ ℓ' ℓ''} {e1 : Event {ℓ}} {e2 : Event {ℓ'}} {e3 : Event {ℓ''}} → e1 ⇒ e2 → e2 ⇒ e3 → e1 ⇒ e3 ⇒Trans e1⇒e2 e2⇒e3 w e1w = e2⇒e3 w (e1⇒e2 w e1w) ⊂Trans : ∀ {ℓ ℓ' ℓ'' ℓ'''} {X : Set ℓ} {E : X → Event {ℓ'}} {e1 : Event {ℓ''}} {e2 : Event {ℓ'''}} → E ⊂ e1 → e1 ⇒ e2 → E ⊂ e2 ⊂Trans E⊂e1 e1⇒e2 w ∀xExw = e1⇒e2 w (E⊂e1 w ∀xExw) -- Definition of preservation of semantic implication. Sem⊂ : ∀ {ℓ ℓ' ℓ''} → (Event {ℓ'} → Event {ℓ''}) → Set (L.suc (ℓ ⊔L ℓ') ⊔L ℓ'') Sem⊂ {ℓ} {ℓ'} {ℓ''} K = ∀ {X : Set ℓ} {E : X → Event {ℓ'}} {e : Event {ℓ'}} → _⊂_ {ℓ} {ℓ'} {ℓ'} E e → (mapE K E) ⊂ K e -- Knowledge Operators record KOp {ℓ ℓ'} (K : Event {ℓ} → Event {ℓ}) : Set (L.suc (ℓ ⊔L ℓ')) where field axiomN : ∀ {e} → All e → All (K e) axiomK : ∀ {e1 e2} → K (e1 ⟶ e2) ⇒ (K e1 ⟶ K e2) axiomT : ∀ {e} → K e ⇒ e axiom4 : ∀ {e} → K e ⇒ K (K e) axiom5 : ∀ {e} → (~ K e) ⇒ K (~ K e) -- Infinitary deduction axiomInf : Sem⊂ {ℓ'} K -- axiomN follows from axiomInf, using the empty family emptyFam : ∀ {ℓ} → ⊥ → Event {ℓ} emptyFam () All_emptyFam : ∀ {ℓ ℓ'} (e : Event {ℓ}) → All e → (emptyFam {ℓ'}) ⊂ e All_emptyFam e Alle w ∀xExw = Alle w emptyFam_All : ∀ {ℓ ℓ'} (e : Event {ℓ}) → (emptyFam {ℓ'}) ⊂ e → All e emptyFam_All e emptyFam⊂e w = emptyFam⊂e w (λ x → ⊥-elim x) infN : ∀ {ℓ ℓ'} → (K : Event {ℓ} → Event {ℓ'}) → Sem⊂ K → ∀ e → All e → All (K e) infN {ℓ} K Sem⊂K e Alle = emptyFam_All (K e) aux where aux : (emptyFam {ℓ}) ⊂ (K e) aux w _ = Sem⊂K (All_emptyFam e Alle) w (λ x → ⊥-elim x) -- Similarly, axiomK follows from axiomInf using a family with two members: -- A "modus ponens" family. mpFam : ∀ {ℓ ℓ'} (e1 : Event {ℓ ⊔L ℓ'}) (e2 : Event {ℓ'}) → Bool → Event {ℓ ⊔L ℓ'} mpFam e1 e2 = λ b → if b then (e1 ⟶ e2) else e1 infK : ∀ {ℓ} → (K : Event {ℓ} → Event {ℓ}) → Sem⊂ K → ∀ (e1 : Event {ℓ}) (e2 : Event {ℓ}) → K (e1 ⟶ e2) ⇒ (K e1 ⟶ K e2) infK {ℓ} K Sem⊂K e1 e2 w Ke1⟶e2w Ke1w = Sem⊂K {E = mpFam {ℓ} e1 e2} aux₁ w aux₂ where aux₁ : mpFam {ℓ} e1 e2 ⊂ e2 aux₁ w ∀x⦃e1⟶e2,e1⦄xw = ∀x⦃e1⟶e2,e1⦄xw true (∀x⦃e1⟶e2,e1⦄xw false) aux₂ : (x : Bool) → mapE K (mpFam {ℓ} e1 e2) x w aux₂ true = Ke1⟶e2w aux₂ false = Ke1w natK : ∀ {ℓ ℓ'} {X : Set ℓ'} {K : Event {ℓ} → Event {ℓ}} → KOp {ℓ} {ℓ'} K → ∀ {E : X → Event} {e} → E ⊂ e → (mapE K E) ⊂ (K e) natK KOpK E⊂e = KOp.axiomInf KOpK E⊂e K⇒ : ∀ {ℓ ℓ'} {K : Event {ℓ} → Event {ℓ}} → KOp {ℓ} {ℓ'} K → ∀ {e1 e2} → e1 ⇒ e2 → (K e1) ⇒ (K e2) K⇒ KOpK {e1} {e2} e1⇒e2 w Ke1w = KOp.axiomK KOpK {e1} {e2} w (KOp.axiomN KOpK e1⇒e2 w) Ke1w ~e⇒K~Ke : ∀ {ℓ ℓ'} {K : Event {ℓ} → Event {ℓ}} → KOp {ℓ} {ℓ'} K → ∀ {e} → (~ e) ⇒ K (~ K e) ~e⇒K~Ke KOpK {e} w ~ew = KOp.axiom5 KOpK w (λ Kew → ~ew (KOp.axiomT KOpK {e} w Kew)) -- COINDUCTIVE DEFINITION OF COMMON KNOWLEDGE postulate Agent : Set postulate an_agent : Agent postulate 𝕂 : ∀ {ℓ} → Agent → Event {ℓ} → Event {ℓ} postulate 𝕂KOp : ∀ {ℓ ℓ'} a → KOp {ℓ} {ℓ'} (𝕂 a) 𝕂⇒ : ∀ {ℓ} {e1 : Event {ℓ}} {e2 : Event {ℓ}} {i : Agent} → e1 ⇒ e2 → 𝕂 i e1 ⇒ 𝕂 i e2 𝕂⇒ {ℓ} {e1} {e2} {i} e1⇒e2 w 𝕂ie1w = KOp.axiomK (𝕂KOp {ℓ} {ℓ} i) {e1} {e2} w (KOp.axiomN (𝕂KOp {ℓ} {ℓ} i) e1⇒e2 w) 𝕂ie1w -- Everybody Knows EK : ∀ {ℓ ℓ'} {K : Agent → Event {ℓ} → Event {ℓ'}} → Event → Event EK {ℓ} {ℓ'} {K} e = λ w → ∀ {i : Agent} → K i e w E𝕂 : ∀ {ℓ} → Event {ℓ} → Event {ℓ} E𝕂 = EK {K = 𝕂} -- Common Knowledge -- Coinductive Definition record cCK {ℓ} {K : Agent → Event {ℓ} → Event {ℓ}} (e : Event {ℓ}) (w : State) : Set ℓ where coinductive field intro : (EK {ℓ} {ℓ} {K} e ∧ cCK {ℓ} {K} (EK {ℓ} {ℓ} {K} e)) w cC𝕂 : ∀ {ℓ} → Event {ℓ} → Event {ℓ} cC𝕂 = cCK {K = 𝕂} cCK⇒EK : ∀ {ℓ} {e : Event {ℓ}} {K : Agent → Event {ℓ} → Event {ℓ}} → cCK {K = K} e ⇒ EK {K = K} e cCK⇒EK w cCKe = proj₁ (cCK.intro cCKe) cCK⇒cCKEK : ∀ {ℓ} {e : Event {ℓ}} {K : Agent → Event {ℓ} → Event {ℓ}} → cCK {K = K} e ⇒ cCK {K = K} (EK {K = K} e) cCK⇒cCKEK w cCKe = proj₂ (cCK.intro cCKe) -- knowledge operator properties of E𝕂 E𝕂axiomInf : ∀ {ℓ ℓ'} → Sem⊂ {ℓ'} (E𝕂 {ℓ}) E𝕂axiomInf {X = X} {E} {e} E⊂e w ∀xEKExw {i} = KOp.axiomInf (𝕂KOp i) {X} {E} {e} E⊂e w (λ x → ∀xEKExw x) E𝕂axiomN : ∀ {ℓ} {e : Event {ℓ}} → All e → All (E𝕂 e) E𝕂axiomN {ℓ} Alle w {i} = KOp.axiomN (𝕂KOp {ℓ} {ℓ} i) Alle w E𝕂axiomK : ∀ {ℓ} {e1 e2 : Event {ℓ}} → E𝕂 (e1 ⟶ e2) ⇒ (E𝕂 e1 ⟶ E𝕂 e2) E𝕂axiomK {ℓ} {e1 = e1} {e2} w E𝕂e1⟶e2w E𝕂e1w {i} = KOp.axiomK (𝕂KOp {ℓ} {ℓ} i) {e1} w E𝕂e1⟶e2w E𝕂e1w E𝕂axiomT : ∀ {ℓ} {e : Event {ℓ}} → E𝕂 e ⇒ e E𝕂axiomT {ℓ} w E𝕂ew = KOp.axiomT (𝕂KOp {ℓ} {ℓ} an_agent) w E𝕂ew E𝕂⇒ : ∀ {ℓ} {e1 e2 : Event {ℓ}} → e1 ⇒ e2 → E𝕂 e1 ⇒ E𝕂 e2 E𝕂⇒ e1⇒e2 w E𝕂e1w = 𝕂⇒ e1⇒e2 w E𝕂e1w -- EK_axiom4 doesn't hold - if it did, (EK e) would imply (EK (EK e)), -- and applying this ad infinitum would imply (cCK e) E𝕂cC𝕂 : ∀ {ℓ} {e : Event {ℓ}} → e ⇒ E𝕂 e → e ⇒ cC𝕂 e cCK.intro (E𝕂cC𝕂 {e} e⇒E𝕂e w ew) = e⇒E𝕂e w ew , E𝕂cC𝕂 (E𝕂⇒ e⇒E𝕂e) w (e⇒E𝕂e w ew) ~K⇒~EK : ∀ {ℓ} {e : Event {ℓ}} {K : Agent → Event {ℓ} → Event {ℓ}} {a} → (~ K a e) ⇒ (~ EK {K = K} e) ~K⇒~EK w ~Kae EKew = ~Kae EKew 𝕂~𝕂⇒𝕂~E𝕂 : ∀ {ℓ} {e : Event {ℓ}} {a} → 𝕂 a (~ 𝕂 a e) ⇒ 𝕂 a (~ E𝕂 e) 𝕂~𝕂⇒𝕂~E𝕂 = 𝕂⇒ (~K⇒~EK {K = 𝕂}) ~e⇒E𝕂~E𝕂 : ∀ {ℓ} {e : Event {ℓ}} → (~ e) ⇒ E𝕂 (~ E𝕂 e) ~e⇒E𝕂~E𝕂 {ℓ} w ~ew {i} = 𝕂~𝕂⇒𝕂~E𝕂 w (~e⇒K~Ke (𝕂KOp {ℓ} {ℓ} i) w ~ew) -- cCK equivalent of recursive EK recEK : ∀ {ℓ} {K : Agent → Event {ℓ} → Event {ℓ}} → Event {ℓ} → ℕ → Event {ℓ} recEK {K = K} e zero = EK {K = K} e recEK {K = K} e (suc n) = EK {K = K} (recEK {K = K} e n) recE𝕂 : ∀ {ℓ} → Event {ℓ} → ℕ → Event {ℓ} recE𝕂 = recEK {K = 𝕂} recEK-EK≡EK-recEK : ∀ {ℓ} {K : Agent → Event {ℓ} → Event {ℓ}} (e : Event {ℓ}) n → recEK {K = K} (EK {K = K} e) n ≡ EK {K = K} (recEK {K = K} e n) recEK-EK≡EK-recEK _ zero = refl recEK-EK≡EK-recEK {K = K} e (suc n) = cong (EK {K = K}) (recEK-EK≡EK-recEK {K = K} e n) cCK⇒recEK : ∀ {ℓ} {K : Agent → Event {ℓ} → Event {ℓ}} (e : Event {ℓ}) n → cCK {K = K} e ⇒ recEK {K = K} e n cCK⇒recEK e zero w cCKew {i} = proj₁ (cCK.intro cCKew) cCK⇒recEK {K = K} e (suc n) = ⇒Trans {e2 = cCK {K = K} (EK {K = K} e)} cCK⇒cCKEK (⇒Trans {e2 = recEK {K = K} (EK {K = K} e) n} ih aux) where ih : cCK {K = K} (EK {K = K} e) ⇒ recEK {K = K} (EK {K = K} e) n ih = cCK⇒recEK (EK {K = K} e) n aux : recEK {K = K} (EK {K = K} e) n ⇒ recEK {K = K} e (suc n) aux rewrite recEK-EK≡EK-recEK {K = K} e n = λ w EKrecEKenw {i} → EKrecEKenw recEK⊂cCK : ∀ {ℓ} {K : Agent → Event {ℓ} → Event {ℓ}} (e : Event {ℓ}) → (recEK {K = K} e) ⊂ (cCK {K = K} e) cCK.intro (recEK⊂cCK {K = K} e w ∀xrecEKexw) = ∀xrecEKexw zero , ih w (λ n → subst (λ P → P) (aux n) (∀xrecEKexw (suc n))) where ih : (recEK {K = K} (EK {K = K} e)) ⊂ (cCK {K = K} (EK {K = K} e)) ih = recEK⊂cCK (EK {K = K} e) aux : ∀ n → (EK {K = K} (recEK {K = K} e n)) w ≡ (recEK {K = K} (EK {K = K} e) n) w aux n = cong (λ P → P w) {EK {K = K} (recEK {K = K} e n)} {recEK {K = K} (EK {K = K} e) n} (sym (recEK-EK≡EK-recEK e n)) -- knowledge operator properties of cCK E𝕂cC𝕂⇒cC𝕂E𝕂 : ∀ {ℓ} (e : Event {ℓ}) → E𝕂 (cC𝕂 e) ⇒ cC𝕂 (E𝕂 e) E𝕂cC𝕂⇒cC𝕂E𝕂 e w E𝕂cC𝕂ew = cCK⇒cCKEK w (E𝕂axiomT w E𝕂cC𝕂ew) cCKEK⇒EKcCK : ∀ {ℓ} {K : Agent → Event {ℓ} → Event {ℓ}} {KOpK : ∀ a -> KOp {ℓ} {L.zero} (K a)} (e : Event {ℓ}) → cCK {K = K} (EK {K = K} e) ⇒ EK {K = K} (cCK {K = K} e) cCKEK⇒EKcCK {K = K} {KOpK} e w cCKEKew {i} = natK {X = ℕ} (KOpK i) (recEK⊂cCK e) w (λ n → aux n w (subst (λ P → P w) {recEK {K = K} (EK {K = K} e) n} {EK {K = K} (recEK {K = K} e n)} (recEK-EK≡EK-recEK e n) (cCK⇒recEK (EK {K = K} e) n w cCKEKew))) where aux : ∀ n → EK {K = K} (recEK {K = K} e n) ⇒ mapE (K i) (recEK {K = K} e) n aux n w EKrecEKen = EKrecEKen cCK⇒EKcCK : ∀ {ℓ} {K : Agent → Event {ℓ} → Event {ℓ}} (KOpK : ∀ a -> KOp {ℓ} {L.zero} (K a)) (e : Event {ℓ}) → cCK {K = K} e ⇒ EK {K = K} (cCK {K = K} e) cCK⇒EKcCK {K = K} KOpK e = ⇒Trans {e2 = cCK {K = K} (EK {K = K} e)} cCK⇒cCKEK (cCKEK⇒EKcCK {K = K} {KOpK} e) E𝕂recE𝕂 : ∀ {ℓ} (e1 e2 : Event {ℓ}) n → e1 ⇒ E𝕂 e2 → recE𝕂 e1 n ⇒ recE𝕂 e2 (suc n) E𝕂recE𝕂 e1 e2 zero e1⇒E𝕂e2 w recE𝕂e1nw {i} = E𝕂⇒ {e1 = e1} e1⇒E𝕂e2 w recE𝕂e1nw E𝕂recE𝕂 e1 e2 (suc n) e1⇒E𝕂e2 w recE𝕂e1nw {i} = E𝕂⇒ {e1 = recEK e1 n} ih w recE𝕂e1nw where ih : recE𝕂 e1 n ⇒ recE𝕂 e2 (suc n) ih = E𝕂recE𝕂 e1 e2 n e1⇒E𝕂e2 cC𝕂⇒recE𝕂cC𝕂 : ∀ {ℓ} (e : Event {ℓ}) n → cC𝕂 e ⇒ recE𝕂 (cC𝕂 e) n cC𝕂⇒recE𝕂cC𝕂 e zero = cCK⇒EKcCK 𝕂KOp e cC𝕂⇒recE𝕂cC𝕂 e (suc n) = ⇒Trans {e2 = E𝕂 (cC𝕂 e)} (cCK⇒EKcCK 𝕂KOp e) ih where ih : E𝕂 (cC𝕂 e) ⇒ E𝕂 (recE𝕂 (cC𝕂 e) n) ih = E𝕂⇒ (cC𝕂⇒recE𝕂cC𝕂 e n) cC𝕂axiomInf : ∀ {ℓ ℓ'} → Sem⊂ {ℓ} {ℓ'} {ℓ'} cC𝕂 cCK.intro (cC𝕂axiomInf {X = X} {E} {e} E⊂e w mapEcC𝕂E) = E𝕂axiomInf {X = X} {E} E⊂e w (λ x → cCK⇒EK w (mapEcC𝕂E x)) , cC𝕂axiomInf {E = λ x → E𝕂 (E x)} (E𝕂axiomInf {X = X} {E} E⊂e) w (λ x → cCK⇒cCKEK w (mapEcC𝕂E x)) cC𝕂axiom4 : ∀ {ℓ} {e : Event {ℓ}} → cC𝕂 e ⇒ cC𝕂 (cC𝕂 e) cC𝕂axiom4 {e = e} w cC𝕂e = recEK⊂cCK (cC𝕂 e) w ((λ n → cC𝕂⇒recE𝕂cC𝕂 e n w cC𝕂e)) cC𝕂axiomN : ∀ {ℓ} {e : Event {ℓ}} → All e → All (cC𝕂 e) cC𝕂axiomN {e = e} = infN cC𝕂 cC𝕂axiomInf e cC𝕂axiomT : ∀ {ℓ} {e : Event {ℓ}} → cC𝕂 e ⇒ e cC𝕂axiomT w cC𝕂ew = E𝕂axiomT w (proj₁ (cCK.intro cC𝕂ew)) cC𝕂axiomK : ∀ {ℓ} {e1 e2 : Event {ℓ}} → cC𝕂 (e1 ⟶ e2) ⇒ (cC𝕂 e1 ⟶ cC𝕂 e2) cC𝕂axiomK {_} {e1} {e2} = infK cC𝕂 cC𝕂axiomInf e1 e2 ~cC𝕂⇒E𝕂~cC𝕂 : ∀ {ℓ} {e : Event {ℓ}} → (~ cC𝕂 e) ⇒ E𝕂 (~ cC𝕂 e) ~cC𝕂⇒E𝕂~cC𝕂 {e = e} w ~cC𝕂ew = cut (λ ∀nrecE𝕂enw → ~cC𝕂ew (recEK⊂cCK e w ∀nrecE𝕂enw)) where cut : (¬(∀ n → recE𝕂 e n w)) → E𝕂 (~ cC𝕂 e) w cut ¬∀nrecE𝕂enw = E𝕂⇒ {e1 = ~ recE𝕂 e (suc n)} (λ w ~recE𝕂eSn cC𝕂ew → ~recE𝕂eSn (cCK⇒recEK e (suc n) w cC𝕂ew)) w (~e⇒E𝕂~E𝕂 w ¬recE𝕂enw) where neg : ∃ (λ n → ¬ (recE𝕂 e n w)) neg = ¬∀⟶∃¬ ¬∀nrecE𝕂enw n = proj₁ neg ¬recE𝕂enw = proj₂ neg cC𝕂axiom5 : ∀ {ℓ} {e : Event {ℓ}} → (~ cC𝕂 e) ⇒ cC𝕂 (~ cC𝕂 e) cC𝕂axiom5 = E𝕂cC𝕂 ~cC𝕂⇒E𝕂~cC𝕂 cC𝕂KOp : ∀ {ℓ ℓ'} → KOp {ℓ} {ℓ'} cC𝕂 cC𝕂KOp = record { axiomN = cC𝕂axiomN ; axiomK = cC𝕂axiomK ; axiomT = cC𝕂axiomT ; axiom4 = cC𝕂axiom4 ; axiom5 = cC𝕂axiom5 ; axiomInf = cC𝕂axiomInf } -- Equivalence Relations RelToK : ∀ {ℓ ℓ'} → RelL State ℓ → Event {ℓ'} → Event {ℓ ⊔L ℓ'} RelToK R e w = ∀ v → R w v → e v KtoRel : ∀ {ℓ} → (Event → Event {ℓ}) → RelL State (L.suc ℓ) KtoRel K w v = ∀ e → K e w → K e v -- Proof that RelToK on an equivalence relation yields a K satisfying S5 *) axiomN' : ∀ {ℓ ℓ'} → (R : RelL State ℓ) → IsEquivalence R → ∀ {e : Event {ℓ'}} → All e → All ((RelToK R) e) axiomN' _ _ Alle _ v _ = Alle v axiomK' : ∀ {ℓ ℓ' ℓ''} → (R : RelL State ℓ) → IsEquivalence R → ∀ {e1 : Event {ℓ'}} {e2 : Event {ℓ''}} → (RelToK R) (e1 ⟶ e2) ⇒ ((RelToK R) e1 ⟶ (RelToK R) e2) axiomK' R _ {e1} {e2} w Ke1⟶e2 Ke1w = λ v Rwv → Ke1⟶e2 v Rwv (Ke1w v Rwv) axiomT' : ∀ {ℓ ℓ'} → (R : RelL State ℓ) → IsEquivalence R → ∀ {e : Event {ℓ'}} → (RelToK R) e ⇒ e axiomT' R IsEqR {e} w Kew = Kew w (IsEquivalence.refl IsEqR) axiom4' : ∀ {ℓ ℓ'} → (R : RelL State ℓ) → IsEquivalence R → ∀ {e : Event {ℓ'}} → (RelToK R) e ⇒ (RelToK R) ((RelToK R) e) axiom4' R IsEqR {e} w Kew v Rwv u Rvu = Kew u (IsEquivalence.trans IsEqR Rwv Rvu) axiom5' : ∀ {ℓ ℓ'} → (R : RelL State ℓ) → IsEquivalence R → ∀ {e : Event {ℓ'}} → (~ (RelToK R) e) ⇒ (RelToK R) (~ ((RelToK R) e)) axiom5' R IsEqR {e} w ~Kew v Rwv Kev = ~Kew (λ u Rwu → Kev u (IsEquivalence.trans IsEqR (IsEquivalence.sym IsEqR Rwv) Rwu)) axiomInf' : ∀ {ℓ ℓ'} → (R : RelL State ℓ) → IsEquivalence R → Sem⊂ {ℓ'} {ℓ} (RelToK R) axiomInf' R IsEqR E⊂e w ∀x v Rwv = E⊂e v (λ x → ∀x x v Rwv) KOpRelToK : ∀ {ℓ ℓ'} → (R : RelL State ℓ) → IsEquivalence R → KOp {ℓ} {ℓ'} (RelToK R) KOpRelToK R IsEqR = record { axiomN = axiomN' R IsEqR ; axiomK = axiomK' R IsEqR ; axiomT = axiomT' R IsEqR ; axiom4 = axiom4' R IsEqR ; axiom5 = axiom5' R IsEqR ; axiomInf = axiomInf' R IsEqR } -- Proof that K_to_Rel on a K satisfying S5 yields an equivalence relation eqRefl' : ∀ {ℓ ℓ'} → (K : Event {ℓ} → Event) → KOp {ℓ} {ℓ'} K → ∀ {w : State} → (KtoRel K) w w eqRefl' K KopK = λ e Kew → Kew eqSym' : ∀ {ℓ ℓ'} → (K : Event {ℓ} → Event) → KOp {ℓ} {ℓ'} K → ∀ {w v : State} → (KtoRel K) w v → (KtoRel K) v w eqSym' K KOpK {w} {v} Rwv e Kev = ¬¬A⇒A (λ ¬Kew → KOp.axiomT KOpK {~ K e} v (Rwv (~ K e) (KOp.axiom5 KOpK {e} w ¬Kew)) Kev) eqTrans' : ∀ {ℓ ℓ'} → (K : Event {ℓ} → Event) → KOp {ℓ} {ℓ'} K → ∀ {w v u : State} → (KtoRel K) w v → (KtoRel K) v u → (KtoRel K) w u eqTrans' K _ {w} {v} {u} Rwv Rvu e Kew = Rvu e (Rwv e Kew) EqRelKtoRel : ∀ {ℓ ℓ'} → (K : Event {ℓ} → Event) → KOp {ℓ} {ℓ'} K → IsEquivalence (KtoRel K) EqRelKtoRel K KOpK = record { refl = eqRefl' K KOpK ; sym = eqSym' K KOpK ; trans = eqTrans' K KOpK } -- The two transformations are an isomorphism EqRelKIso1 : ∀ {ℓ ℓ'} → {K : Event → Event {ℓ}} → KOp {ℓ} {ℓ'} K → ∀ (e : Event {ℓ}) → (K e) ⇒ (RelToK (KtoRel K) e) EqRelKIso1 {K = K} KOpK e w Kew v Rwv = KOp.axiomT KOpK v (Rwv e Kew) data Indexed {ℓ ℓ'} (K : Event {ℓ} → Event {ℓ'}) (w : State) : Set (L.suc (ℓ ⊔L ℓ')) where index : ∀ (e : Event) → K e w → Indexed K w KFam : ∀ {ℓ} {K : Event {ℓ} → Event {ℓ}} {w : State} → Indexed K w → Event {ℓ} KFam {K = K} (index e Kew) = K e Rew→KFam⊂e : ∀ {ℓ} → {K : Event → Event {ℓ}} → ∀ (e : Event {ℓ}) w → RelToK (KtoRel K) e w → (KFam {K = K} {w}) ⊂ e Rew→KFam⊂e {ℓ} {K} e w R2K-K2Rew v ∀xKFamxv = R2K-K2Rew v (λ e' Ke'w → ∀xKFamxv (index e' Ke'w)) EqRelKIso2 : ∀ {ℓ} → {K : Event → Event {ℓ}} → KOp {ℓ} {L.suc ℓ} K → ∀ (e : Event {ℓ}) → (RelToK (KtoRel K) e) ⇒ (K e) EqRelKIso2 {ℓ} {K} KOpK e w R2K-K2Rew = KOp.axiomInf KOpK aux w aux₁ where aux : _⊂_ {L.suc ℓ} {ℓ} {ℓ} (KFam {ℓ} {K} {w}) e aux = Rew→KFam⊂e e w R2K-K2Rew aux₁ : (x : Indexed K w) → K (KFam x) w aux₁ (index e Kew) = KOp.axiom4 KOpK w Kew KeqRelIso1 : ∀ {ℓ} → (R : RelL State ℓ) → IsEquivalence R → ∀ w v → R w v → KtoRel {ℓ} (RelToK R) w v KeqRelIso1 R IsEqR w v Rwv e R2Kew u Rvu = R2Kew u (IsEquivalence.trans IsEqR Rwv Rvu) KeqRelIso2 : ∀ {ℓ} → (R : RelL State ℓ) → IsEquivalence R → ∀ w v → KtoRel {ℓ} (RelToK R) w v → R w v KeqRelIso2 R IsEqR w v K2R-R2Kwv = K2R-R2Kwv (R w) (λ v₁ z → z) v (IsEquivalence.refl IsEqR) -- RELATIONAL DEFINITION OF COMMON KNOWLEDGE postulate 𝕂R : ∀ {ℓ} → Agent → RelL State ℓ postulate IsEq𝕂R : ∀ {ℓ} a → IsEquivalence (𝕂R {ℓ} a) 𝕂ᵣ : ∀ {ℓ} (i : Agent) → Event {ℓ} → Event {ℓ} 𝕂ᵣ {ℓ} i = RelToK (𝕂R {ℓ} i) 𝕂ᵣKOp : ∀ {ℓ ℓ'} i -> KOp {ℓ} {ℓ'} (𝕂ᵣ i) 𝕂ᵣKOp i = KOpRelToK (𝕂R i) (IsEq𝕂R i) 𝕂ᵣe→e : ∀ {ℓ} i (e : Event {ℓ}) w → 𝕂ᵣ i e w → e w 𝕂ᵣe→e i e w 𝕂ᵣiew = 𝕂ᵣiew w (IsEquivalence.refl (IsEq𝕂R i)) 𝕂ᵣe→𝕂ᵣ𝕂ᵣe : ∀ {ℓ} i (e : Event {ℓ}) w → 𝕂ᵣ i e w → 𝕂ᵣ i (𝕂ᵣ i e) w 𝕂ᵣe→𝕂ᵣ𝕂ᵣe i e w 𝕂ᵣiew v 𝕂Riwv u 𝕂Rivu = 𝕂ᵣiew u (IsEquivalence.trans (IsEq𝕂R i) 𝕂Riwv 𝕂Rivu) E𝕂ᵣ : ∀ {ℓ} → Event {ℓ} → Event {ℓ} E𝕂ᵣ = EK {K = 𝕂ᵣ} cC𝕂ᵣ : ∀ {ℓ} → Event {ℓ} → Event {ℓ} cC𝕂ᵣ = cCK {K = 𝕂ᵣ} cC𝕂ᵣ→E𝕂ᵣcC𝕂ᵣ : ∀ {ℓ} {e : Event {ℓ}} {w : State} → cC𝕂ᵣ e w -> E𝕂ᵣ (cC𝕂ᵣ e) w cC𝕂ᵣ→E𝕂ᵣcC𝕂ᵣ {ℓ} {e} {w} = cCK⇒EKcCK {K = 𝕂ᵣ} 𝕂ᵣKOp e w data C𝕂R {ℓ} : RelL State ℓ where base : ∀ i w v -> 𝕂R {ℓ} i w v -> C𝕂R w v trans : ∀ {w v u} -> C𝕂R {ℓ} w v -> C𝕂R {ℓ} v u -> C𝕂R {ℓ} w u C𝕂Rrefl : ∀ {ℓ} → Relation.Binary.Core.Reflexive (C𝕂R {ℓ}) C𝕂Rrefl {x = w} = base an_agent w w (IsEquivalence.refl (IsEq𝕂R an_agent)) C𝕂Rsym : ∀ {ℓ} → Relation.Binary.Core.Symmetric (C𝕂R {ℓ}) C𝕂Rsym (base i w v 𝕂Riwv) = base i v w (IsEquivalence.sym (IsEq𝕂R i) 𝕂Riwv) C𝕂Rsym (trans C𝕂Rwv C𝕂Rvu) = trans (C𝕂Rsym C𝕂Rvu) (C𝕂Rsym C𝕂Rwv) EqRelC𝕂R : ∀ {ℓ} → IsEquivalence (C𝕂R {ℓ}) EqRelC𝕂R = record { refl = C𝕂Rrefl ; sym = C𝕂Rsym ; trans = trans } C𝕂ᵣ : ∀ {ℓ} → Event {ℓ} → Event {ℓ} C𝕂ᵣ {ℓ} = RelToK (C𝕂R {ℓ}) C𝕂ᵣ→E𝕂ᵣ : ∀ {ℓ} {e : Event {ℓ}} {w : State} → C𝕂ᵣ e w -> E𝕂ᵣ e w C𝕂ᵣ→E𝕂ᵣ {_} {e} {w} C𝕂ᵣew {i} v 𝕂Riwv = C𝕂ᵣew v (base i w v 𝕂Riwv) C𝕂ᵣ→E𝕂ᵣC𝕂ᵣ : ∀ {ℓ} {e : Event {ℓ}} {w : State} → C𝕂ᵣ e w -> E𝕂ᵣ (C𝕂ᵣ e) w C𝕂ᵣ→E𝕂ᵣC𝕂ᵣ {_} {e} {w} C𝕂ᵣew {i} v 𝕂Riwv u C𝕂Rvu = C𝕂ᵣew u (trans (base i w v 𝕂Riwv) C𝕂Rvu) C𝕂ᵣ→C𝕂ᵣE𝕂ᵣ : ∀ {ℓ} {e : Event {ℓ}} {w : State} → C𝕂ᵣ e w -> C𝕂ᵣ (E𝕂ᵣ e) w C𝕂ᵣ→C𝕂ᵣE𝕂ᵣ {_} {e} {w} C𝕂ᵣew v C𝕂Rwv {i} u 𝕂Rivu = C𝕂ᵣew u (trans C𝕂Rwv (base i v u 𝕂Rivu)) C𝕂ᵣ→cC𝕂ᵣ : ∀ {ℓ} {e : Event {ℓ}} {w : State} → C𝕂ᵣ e w -> cC𝕂ᵣ e w cCK.intro (C𝕂ᵣ→cC𝕂ᵣ {ℓ} {e} {w} C𝕂ᵣew) = C𝕂ᵣ→E𝕂ᵣ C𝕂ᵣew , C𝕂ᵣ→cC𝕂ᵣ (C𝕂ᵣ→C𝕂ᵣE𝕂ᵣ C𝕂ᵣew) C𝕂transport : ∀ {ℓ} {e : Event {ℓ}} {w v : State} → cC𝕂ᵣ e w -> C𝕂R {ℓ} w v -> cC𝕂ᵣ e v C𝕂transport {_} {e} cC𝕂ᵣew (base i w v 𝕂Riwv) = record { intro = proj₁ (cCK.intro (proj₂ (cCK.intro cC𝕂ᵣew))) v 𝕂Riwv , aux v 𝕂Riwv } where aux : E𝕂ᵣ (cC𝕂ᵣ (E𝕂ᵣ e)) w aux = cC𝕂ᵣ→E𝕂ᵣcC𝕂ᵣ (record { intro = cCK.intro (proj₂ (cCK.intro cC𝕂ᵣew)) }) C𝕂transport cC𝕂ᵣew (trans C𝕂Rwv C𝕂Rvu) = C𝕂transport (C𝕂transport cC𝕂ᵣew C𝕂Rwv) C𝕂Rvu cC𝕂ᵣ→C𝕂ᵣ : ∀ {ℓ} {e : Event {ℓ}} {w : State} → cC𝕂ᵣ e w -> C𝕂ᵣ e w cC𝕂ᵣ→C𝕂ᵣ {ℓ} {e} cC𝕂ᵣew v (base i w .v x) = proj₁ (cCK.intro cC𝕂ᵣew) v x cC𝕂ᵣ→C𝕂ᵣ {ℓ} {e} {w} cC𝕂ᵣew v (trans {v = v'} C𝕂Rwv' C𝕂Rv'v) = cC𝕂ᵣ→C𝕂ᵣ (C𝕂transport cC𝕂ᵣew C𝕂Rwv') v C𝕂Rv'v
{ "alphanum_fraction": 0.5322982354, "avg_line_length": 37.0019607843, "ext": "agda", "hexsha": "ba3c60b46bc5f02bf199f135fa1d3a2e1f40d95d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "81242e3362683c3f100fdc3c310cf64e65e43b96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "goodlyrottenapple/coinductiveCK", "max_forks_repo_path": "CoinductiveCK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "81242e3362683c3f100fdc3c310cf64e65e43b96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "goodlyrottenapple/coinductiveCK", "max_issues_repo_path": "CoinductiveCK.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "81242e3362683c3f100fdc3c310cf64e65e43b96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "goodlyrottenapple/coinductiveCK", "max_stars_repo_path": "CoinductiveCK.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 11308, "size": 18871 }
{-# OPTIONS --safe #-} module Cubical.HITs.Wedge.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.HITs.Pushout.Base open import Cubical.Data.Sigma open import Cubical.Data.Unit _⋁_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Type (ℓ-max ℓ ℓ') _⋁_ (A , ptA) (B , ptB) = Pushout {A = Unit} {B = A} {C = B} (λ _ → ptA) (λ _ → ptB) -- Pointed versions _⋁∙ₗ_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Pointed (ℓ-max ℓ ℓ') A ⋁∙ₗ B = (A ⋁ B) , (inl (snd A)) _⋁∙ᵣ_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Pointed (ℓ-max ℓ ℓ') A ⋁∙ᵣ B = (A ⋁ B) , (inr (snd B)) -- Wedge sums of functions _∨→_ : ∀ {ℓ ℓ' ℓ''} {A : Pointed ℓ} {B : Pointed ℓ'} {C : Pointed ℓ''} → (f : A →∙ C) (g : B →∙ C) → A ⋁ B → fst C (f ∨→ g) (inl x) = fst f x (f ∨→ g) (inr x) = fst g x (f ∨→ g) (push a i₁) = (snd f ∙ sym (snd g)) i₁ -- Pointed version ∨→∙ : ∀ {ℓ ℓ' ℓ''} {A : Pointed ℓ} {B : Pointed ℓ'} {C : Pointed ℓ''} → (f : A →∙ C) (g : B →∙ C) → ((A ⋁∙ₗ B) →∙ C) fst (∨→∙ {A = A} f g) = f ∨→ g snd (∨→∙ {A = A} f g) = snd f -- Wedge sum of Units is contractible isContr-Unit⋁Unit : isContr ((Unit , tt) ⋁ (Unit , tt)) fst isContr-Unit⋁Unit = inl tt snd isContr-Unit⋁Unit (inl tt) = refl snd isContr-Unit⋁Unit (inr tt) = push tt snd isContr-Unit⋁Unit (push tt i) j = push tt (i ∧ j) ⋁↪ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} → A ⋁ B → typ A × typ B ⋁↪ {B = B} (inl x) = x , pt B ⋁↪ {A = A} (inr x) = pt A , x ⋁↪ {A = A} {B = B} (push a i) = pt A , pt B
{ "alphanum_fraction": 0.5258964143, "avg_line_length": 32.0425531915, "ext": "agda", "hexsha": "f2094d066e3e87cb27b992a647b030fb4b85f8e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lpw25/cubical", "max_forks_repo_path": "Cubical/HITs/Wedge/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lpw25/cubical", "max_issues_repo_path": "Cubical/HITs/Wedge/Base.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lpw25/cubical", "max_stars_repo_path": "Cubical/HITs/Wedge/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 762, "size": 1506 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Instances.Int where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Data.Int renaming (_+_ to _+ℤ_ ; _-_ to _-ℤ_; -_ to -ℤ_ ; _·_ to _·ℤ_) open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open GroupStr ℤGroup : Group₀ fst ℤGroup = ℤ 1g (snd ℤGroup) = 0 _·_ (snd ℤGroup) = _+ℤ_ inv (snd ℤGroup) = -ℤ_ isGroup (snd ℤGroup) = isGroupℤ where abstract isGroupℤ : IsGroup (pos 0) (_+ℤ_) (-ℤ_) isGroupℤ = makeIsGroup isSetℤ +Assoc (λ _ → refl) (+Comm 0) -Cancel -Cancel' ℤHom : (n : ℤ) → GroupHom ℤGroup ℤGroup fst (ℤHom n) x = n ·ℤ x snd (ℤHom n) = makeIsGroupHom λ x y → ·DistR+ n x y negEquivℤ : GroupEquiv ℤGroup ℤGroup fst negEquivℤ = isoToEquiv (iso (GroupStr.inv (snd ℤGroup)) (GroupStr.inv (snd ℤGroup)) (GroupTheory.invInv ℤGroup) (GroupTheory.invInv ℤGroup)) snd negEquivℤ = makeIsGroupHom -Dist+
{ "alphanum_fraction": 0.6704249783, "avg_line_length": 25.6222222222, "ext": "agda", "hexsha": "131a3ec8758c9d5c4f52cb6816cb762b66d741ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Instances/Int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Instances/Int.agda", "max_line_length": 63, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Instances/Int.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 403, "size": 1153 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Homogeneously-indexed binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Indexed.Homogeneous`. {-# OPTIONS --without-K --safe #-} module Relation.Binary.Indexed.Homogeneous.Core where open import Level using (Level; _⊔_) open import Data.Product using (_×_) open import Relation.Binary as B using (REL; Rel) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl) import Relation.Binary.Indexed.Heterogeneous as I open import Relation.Unary.Indexed using (IPred) private variable a b c ℓ : Level I : Set c ------------------------------------------------------------------------ -- Homegeneously indexed binary relations -- Heterogeneous types IREL : (I → Set a) → (I → Set b) → (ℓ : Level) → Set _ IREL A B ℓ = ∀ {i} → REL (A i) (B i) ℓ -- Homogeneous types IRel : (I → Set a) → (ℓ : Level) → Set _ IRel A = IREL A A ------------------------------------------------------------------------ -- Lifting to non-indexed binary relations -- Ideally this should be in: `Construct.Lift` but we want this relation -- to be exported by the various structures & bundles. Lift : (A : I → Set a) → IRel A ℓ → Rel (∀ i → A i) _ Lift _ _∼_ x y = ∀ i → x i ∼ y i ------------------------------------------------------------------------ -- Conversion between homogeneous and heterogeneously indexed relations module _ {i a b} {I : Set i} {A : I → Set a} {B : I → Set b} where OverPath : ∀ {ℓ} → IREL A B ℓ → ∀ {i j} → i ≡ j → REL (A i) (B j) ℓ OverPath _∼_ refl = _∼_ toHetIndexed : ∀ {ℓ} → IREL A B ℓ → I.IREL A B (i ⊔ ℓ) toHetIndexed _∼_ {i} {j} x y = (p : i ≡ j) → OverPath _∼_ p x y fromHetIndexed : ∀ {ℓ} → I.IREL A B ℓ → IREL A B ℓ fromHetIndexed _∼_ = _∼_
{ "alphanum_fraction": 0.5280373832, "avg_line_length": 31.5737704918, "ext": "agda", "hexsha": "e04c011fad2a2421854cf06e99067ceff650a966", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Core.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 541, "size": 1926 }
open import Agda.Primitive using (lzero; lsuc; _⊔_) open import Agda.Builtin.Nat open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Data.Fin open import Relation.Binary module SingleSorted.AlgebraicTheory where open import SingleSorted.Context public Arity : Set Arity = Context arg : Arity → Set arg = var -- an algebraic signature record Signature : Set₁ where field oper : Set -- operations oper-arity : oper → Arity -- the arity of an operation -- terms over a signature in a context of a given sort data Term (Γ : Context) : Set where tm-var : var Γ → Term Γ tm-oper : ∀ (f : oper) → (arg (oper-arity f) → Term Γ) → Term Γ -- Substitutions (definitions - some useful properties are in another file) _⇒s_ : ∀ (Γ Δ : Context) → Set Γ ⇒s Δ = var Δ → Term Γ infix 4 _⇒s_ -- identity substitution id-s : ∀ {Γ : Context} → Γ ⇒s Γ id-s = tm-var -- the action of a substitution on a term (contravariant) _[_]s : ∀ {Γ Δ : Context} → Term Δ → Γ ⇒s Δ → Term Γ (tm-var x) [ σ ]s = σ x (tm-oper f x) [ σ ]s = tm-oper f (λ i → x i [ σ ]s) infixr 6 _[_]s -- composition of substitutions _∘s_ : ∀ {Γ Δ Θ : Context} → Δ ⇒s Θ → Γ ⇒s Δ → Γ ⇒s Θ (σ ∘s ρ) x = σ x [ ρ ]s infixl 7 _∘s_ -- Axioms are equations in context record Equation : Set where field eq-ctx : Context eq-lhs : Term eq-ctx eq-rhs : Term eq-ctx -- Theory -- an equational theory is a family of equations over a given sort record Theory ℓ (Σ : Signature) : Set (lsuc ℓ) where open Signature Σ public field ax : Set ℓ -- the axiom names ax-eq : ax → Equation -- the axioms ax-ctx : ax → Context ax-ctx ε = Equation.eq-ctx (ax-eq ε) ax-lhs : ∀ (ε : ax) → Term (ax-ctx ε) ax-lhs ε = Equation.eq-lhs (ax-eq ε) ax-rhs : ∀ (ε : ax) → Term (ax-ctx ε) ax-rhs ε = Equation.eq-rhs (ax-eq ε) infix 4 _⊢_≈_ -- equality of terms data _⊢_≈_ : (Γ : Context) → Term Γ → Term Γ → Set (lsuc ℓ) where -- general rules eq-refl : ∀ {Γ} {t : Term Γ} → Γ ⊢ t ≈ t eq-symm : ∀ {Γ} {s t : Term Γ} → Γ ⊢ s ≈ t → Γ ⊢ t ≈ s eq-tran : ∀ {Γ} {s t u : Term Γ} → Γ ⊢ s ≈ t → Γ ⊢ t ≈ u → Γ ⊢ s ≈ u -- congruence rule eq-congr : ∀ {Γ} {f : oper} {xs ys : arg (oper-arity f) → Term Γ} → (∀ i → Γ ⊢ xs i ≈ ys i) → Γ ⊢ tm-oper f xs ≈ tm-oper f ys -- equational axiom eq-axiom : ∀ (ε : ax) {Γ : Context} (σ : Γ ⇒s (ax-ctx ε)) → Γ ⊢ ax-lhs ε [ σ ]s ≈ ax-rhs ε [ σ ]s ≡-⊢-≈ : {Γ : Context} {s t : Term Γ} → s ≡ t → Γ ⊢ s ≈ t ≡-⊢-≈ refl = eq-refl -- the action of the identity substitution is the identity id-action : ∀ {Γ : Context} {a : Term Γ} → (Γ ⊢ a ≈ (a [ id-s ]s)) id-action {a = tm-var a} = eq-refl id-action {a = tm-oper f x} = eq-congr (λ i → id-action {a = x i}) eq-axiom-id : ∀ (ε : ax) → ax-ctx ε ⊢ ax-lhs ε ≈ ax-rhs ε eq-axiom-id ε = eq-tran id-action (eq-tran (eq-axiom ε id-s) (eq-symm id-action)) eq-setoid : ∀ (Γ : Context) → Setoid lzero (lsuc ℓ) eq-setoid Γ = record { Carrier = Term Γ ; _≈_ = λ s t → (Γ ⊢ s ≈ t) ; isEquivalence = record { refl = eq-refl ; sym = eq-symm ; trans = eq-tran } }
{ "alphanum_fraction": 0.5305466238, "avg_line_length": 29.747826087, "ext": "agda", "hexsha": "25250c3543b40f994f02da89d57216e896e0d4f2", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SingleSorted/AlgebraicTheory.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SingleSorted/AlgebraicTheory.agda", "max_line_length": 85, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SingleSorted/AlgebraicTheory.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 1258, "size": 3421 }
module +-swap where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) open import Data.Nat using (ℕ; _+_) open import Induction′ using (+-assoc; +-comm) +-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p) +-swap m n p = begin m + (n + p) ≡⟨ sym (+-assoc m n p) ⟩ (m + n) + p ≡⟨ cong (_+ p) (+-comm m n) ⟩ (n + m) + p ≡⟨ +-assoc n m p ⟩ n + (m + p) ∎
{ "alphanum_fraction": 0.5172413793, "avg_line_length": 22.0952380952, "ext": "agda", "hexsha": "d860e91bf833cfc18c2306fa5ff647ee1a81455e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/induction/+-swap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/induction/+-swap.agda", "max_line_length": 53, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/induction/+-swap.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 203, "size": 464 }
------------------------------------------------------------------------------ -- Testing nested axioms ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} {- Processing this file should be generate a TPTP file with the following axioms fof(..., axiom, ( a = b )). fof(..., axiom, ( b = c )). fof(..., axiom, ( c = d )). -} module NestedAxioms.C where open import NestedAxioms.A open import NestedAxioms.B ------------------------------------------------------------------------------ postulate d : D c≡d : c ≡ d {-# ATP axiom c≡d #-} postulate foo : d ≡ a {-# ATP prove foo #-}
{ "alphanum_fraction": 0.396965866, "avg_line_length": 23.2647058824, "ext": "agda", "hexsha": "9fd5494eaeb7e21a9aafdb8ef1940c3263897b05", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/NestedAxioms/C.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/NestedAxioms/C.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/NestedAxioms/C.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 167, "size": 791 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Cartesians where open import Level open import Categories.Category open import Categories.Category.Helper open import Categories.Category.Cartesian.Structure open import Categories.Functor.Cartesian open import Categories.Functor.Cartesian.Properties open import Categories.NaturalTransformation.NaturalIsomorphism module _ o ℓ e where Cartesians : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) Cartesians = categoryHelper record { Obj = CartesianCategory o ℓ e ; _⇒_ = CartesianF ; _≈_ = λ F G → CF.F F ≃ CF.F G ; id = idF-CartesianF _ ; _∘_ = ∘-CartesianF ; assoc = λ {_ _ _ _ F G H} → associator (CF.F F) (CF.F G) (CF.F H) ; identityˡ = unitorˡ ; identityʳ = unitorʳ ; equiv = record { refl = ≃.refl ; sym = ≃.sym ; trans = ≃.trans } ; ∘-resp-≈ = _ⓘₕ_ } where module CF = CartesianF
{ "alphanum_fraction": 0.621703854, "avg_line_length": 29, "ext": "agda", "hexsha": "fb9ed4e58b5068b38723aa921a36ba53bb3fa5b6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Cartesians.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Cartesians.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Cartesians.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 320, "size": 986 }
{-# OPTIONS --without-K --safe #-} module Data.Nat.DivMod where open import Data.Nat.Base open import Agda.Builtin.Nat as Nat open import Data.Bool nonZero : ℕ → Bool nonZero (suc _) = true nonZero zero = false infixl 8 _÷_ _÷_ : (n m : ℕ) → { m≢0 : T (nonZero m) } → ℕ _÷_ n (suc m) = Nat.div-helper 0 m n m rem : (n m : ℕ) → { m≢0 : T (nonZero m) } → ℕ rem n (suc m) = Nat.mod-helper 0 m n m even : ℕ → Bool even n = rem n 2 Nat.== 0
{ "alphanum_fraction": 0.602247191, "avg_line_length": 20.2272727273, "ext": "agda", "hexsha": "bfa036510333488b6419150a568106e0a49ba18f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Nat/DivMod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Nat/DivMod.agda", "max_line_length": 45, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Nat/DivMod.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 180, "size": 445 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Almost commutative rings ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Tactic.RingSolver.Core.AlmostCommutativeRing where open import Level open import Relation.Binary open import Algebra.Core using (Op₁; Op₂) open import Algebra.Structures using (IsCommutativeSemiring) open import Algebra.Definitions open import Algebra.Bundles using (RawRing; CommutativeRing; CommutativeSemiring) import Algebra.Morphism as Morphism open import Function open import Level open import Data.Maybe.Base as Maybe using (Maybe; just; nothing) record IsAlmostCommutativeRing {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (_+_ _*_ : A → A → A) (-_ : A → A) (0# 1# : A) : Set (a ⊔ ℓ) where field isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# -‿cong : -_ Preserves _≈_ ⟶ _≈_ -‿*-distribˡ : ∀ x y → ((- x) * y) ≈ (- (x * y)) -‿+-comm : ∀ x y → ((- x) + (- y)) ≈ (- (x + y)) open IsCommutativeSemiring isCommutativeSemiring public import Algebra.Operations.Ring as Exp record AlmostCommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ infixr 8 _^_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 0≟_ : (x : Carrier) → Maybe (0# ≈ x) 1# : Carrier isAlmostCommutativeRing : IsAlmostCommutativeRing _≈_ _+_ _*_ -_ 0# 1# open IsAlmostCommutativeRing isAlmostCommutativeRing hiding (refl) public open import Data.Nat.Base as ℕ using (ℕ) commutativeSemiring : CommutativeSemiring _ _ commutativeSemiring = record { isCommutativeSemiring = isCommutativeSemiring } open CommutativeSemiring commutativeSemiring public using ( +-semigroup; +-monoid; +-commutativeMonoid ; *-semigroup; *-monoid; *-commutativeMonoid ; semiring ) rawRing : RawRing _ _ rawRing = record { _≈_ = _≈_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0# ; 1# = 1# } _^_ : Carrier → ℕ → Carrier _^_ = Exp._^_ rawRing {-# NOINLINE _^_ #-} refl : ∀ {x} → x ≈ x refl = IsAlmostCommutativeRing.refl isAlmostCommutativeRing record _-Raw-AlmostCommutative⟶_ {r₁ r₂ r₃ r₄} (From : RawRing r₁ r₂) (To : AlmostCommutativeRing r₃ r₄) : Set (r₁ ⊔ r₂ ⊔ r₃ ⊔ r₄) where private module F = RawRing From module T = AlmostCommutativeRing To open Morphism.Definitions F.Carrier T.Carrier T._≈_ field ⟦_⟧ : Morphism +-homo : Homomorphic₂ ⟦_⟧ F._+_ T._+_ *-homo : Homomorphic₂ ⟦_⟧ F._*_ T._*_ -‿homo : Homomorphic₁ ⟦_⟧ F.-_ T.-_ 0-homo : Homomorphic₀ ⟦_⟧ F.0# T.0# 1-homo : Homomorphic₀ ⟦_⟧ F.1# T.1# -raw-almostCommutative⟶ : ∀ {r₁ r₂} (R : AlmostCommutativeRing r₁ r₂) → AlmostCommutativeRing.rawRing R -Raw-AlmostCommutative⟶ R -raw-almostCommutative⟶ R = record { ⟦_⟧ = id ; +-homo = λ _ _ → refl ; *-homo = λ _ _ → refl ; -‿homo = λ _ → refl ; 0-homo = refl ; 1-homo = refl } where open AlmostCommutativeRing R -- A homomorphism induces a notion of equivalence on the raw ring. Induced-equivalence : ∀ {c₁ c₂ c₃ ℓ} {Coeff : RawRing c₁ c₂} {R : AlmostCommutativeRing c₃ ℓ} → Coeff -Raw-AlmostCommutative⟶ R → Rel (RawRing.Carrier Coeff) ℓ Induced-equivalence {R = R} morphism a b = ⟦ a ⟧ ≈ ⟦ b ⟧ where open AlmostCommutativeRing R open _-Raw-AlmostCommutative⟶_ morphism ------------------------------------------------------------------------ -- Conversions -- Commutative rings are almost commutative rings. fromCommutativeRing : ∀ {r₁ r₂} (CR : CommutativeRing r₁ r₂) → (open CommutativeRing CR) → (∀ x → Maybe (0# ≈ x)) → AlmostCommutativeRing _ _ fromCommutativeRing CR 0≟_ = record { isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = -‿cong ; -‿*-distribˡ = -‿*-distribˡ ; -‿+-comm = ⁻¹-∙-comm } ; 0≟_ = 0≟_ } where open CommutativeRing CR open import Algebra.Properties.Ring ring open import Algebra.Properties.AbelianGroup +-abelianGroup fromCommutativeSemiring : ∀ {r₁ r₂} (CS : CommutativeSemiring r₁ r₂) (open CommutativeSemiring CS) → (∀ x → Maybe (0# ≈ x)) → AlmostCommutativeRing _ _ fromCommutativeSemiring CS 0≟_ = record { -_ = id ; isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = id ; -‿*-distribˡ = λ _ _ → refl ; -‿+-comm = λ _ _ → refl } ; 0≟_ = 0≟_ } where open CommutativeSemiring CS
{ "alphanum_fraction": 0.5607240171, "avg_line_length": 31.9130434783, "ext": "agda", "hexsha": "7eb859d28ca4c0ea3abf4723a0b0324848a4225a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/AlmostCommutativeRing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/AlmostCommutativeRing.agda", "max_line_length": 81, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/AlmostCommutativeRing.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1723, "size": 5138 }
open import Data.Product using ( _×_ ; _,_ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.ABox using ( ABox ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.Util using ( Finite ) module Web.Semantic.DL.Category.Object {Σ : Signature} where infixr 4 _,_ data Object (S T : TBox Σ) : Set₁ where _,_ : ∀ X → (X ∈ Finite × ABox Σ X) → Object S T IN : ∀ {S T} → Object S T → Set IN (X , X∈Fin , A) = X fin : ∀ {S T} → (A : Object S T) → (IN A ∈ Finite) fin (X , X∈Fin , A) = X∈Fin iface : ∀ {S T} → (A : Object S T) → (ABox Σ (IN A)) iface (X , X∈Fin , A) = A
{ "alphanum_fraction": 0.6214605067, "avg_line_length": 29.1739130435, "ext": "agda", "hexsha": "73dfb3ce74df1c2358cca2504a52baf42e4815b2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Object.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Object.agda", "max_line_length": 60, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Object.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 249, "size": 671 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Concrete.System.Parameters -- This module collects the implementation obligations for our (fake/simple, for now) -- "implementation" into the structure required by Concrete.Properties. open import LibraBFT.Impl.Properties.Aux import LibraBFT.Impl.Properties.VotesOnce as VO import LibraBFT.Impl.Properties.LockedRound as LR open import LibraBFT.Concrete.Obligations open import LibraBFT.Concrete.System impl-sps-avp module LibraBFT.Impl.Properties where theImplObligations : ImplObligations theImplObligations = record { sps-cor = impl-sps-avp ; vo₁ = VO.vo₁ ; vo₂ = VO.vo₂ ; lr₁ = LR.lr₁ }
{ "alphanum_fraction": 0.7093690249, "avg_line_length": 43.5833333333, "ext": "agda", "hexsha": "9be371a67fd4d776fb8cdc5b23921c1ce5f22944", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "haroldcarr/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "haroldcarr/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Properties.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "haroldcarr/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 272, "size": 1046 }
{-# OPTIONS --cubical #-} module Type.Cubical.Logic where open import Functional import Logic.Propositional as Logic import Logic.Predicate as Logic import Lvl open import Type open import Type.Cubical.Path.Equality open import Type.Cubical.HTrunc₁ open import Type.Properties.Homotopy open import Type.Properties.MereProposition open import Structure.Relator open import Syntax.Function private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T A B C Obj : Type{ℓ} private variable Pred : Obj → Type{ℓ} open import Logic.Propositional public using ( _∧_ ; [∧]-intro ; [∧]-elimₗ ; [∧]-elimᵣ ; _←_ ; [←]-intro ; [←]-elim ; _↔_ ; [↔]-intro ; [↔]-elimₗ ; [↔]-elimᵣ ; [↔]-to-[←] ; [↔]-to-[→] ; ¬_ ; [¬]-intro ; [¬]-elim ; ⊥ ; [⊥]-elim ; ⊤ ; [⊤]-intro ) _∨_ : Type{ℓ₁} → Type{ℓ₂} → Type _∨_ = HTrunc₁ ∘₂ (Logic._∨_) [∨]-introₗ : A → (A ∨ B) [∨]-introₗ = trunc ∘ Logic.[∨]-introₗ [∨]-introᵣ : B → (A ∨ B) [∨]-introᵣ = trunc ∘ Logic.[∨]-introᵣ [∨]-elim : ⦃ prop-C : MereProposition(C) ⦄ → (A → C) → (B → C) → (A ∨ B) → C [∨]-elim = HTrunc₁-function ∘₂ Logic.[∨]-elim instance [∨]-prop : MereProposition(A ∨ B) [∨]-prop = HTrunc₁-prop ∃ : (Obj → Type{ℓ}) → Type ∃ = HTrunc₁ ∘ Logic.∃ [∃]-intro : (witness : Obj) → ⦃ proof : Pred(witness) ⦄ → ∃(Pred) [∃]-intro witness = trunc(Logic.[∃]-intro witness) [∃]-elim : ⦃ prop-A : MereProposition(A) ⦄ → (∀{x : Obj} → Pred(x) → A) → ∃(Pred) → A [∃]-elim = HTrunc₁-function ∘ Logic.[∃]-elim instance [∃]-prop : MereProposition(∃ Pred) [∃]-prop = HTrunc₁-prop
{ "alphanum_fraction": 0.5948387097, "avg_line_length": 26.724137931, "ext": "agda", "hexsha": "da71e1cdd0b3cc7e8b62d2e9c96521759a1c3fff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Cubical/Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Cubical/Logic.agda", "max_line_length": 85, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Cubical/Logic.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 663, "size": 1550 }
{-# OPTIONS --type-in-type #-} module dyn.fib where open import prelude open import functors open import prelude.Stream using (take) open import prelude.io open import dyn fib : Dyn fib = (plus ⊠⊠⊠ delay ℕ) ⟫ λ ( f , f₋ ) → f₋ , λ (.tt) → ((f₋ , f) , f ) where plus = fun→dyn (uncurry _ℕ+_) main : IO ⊤ main = printStream (run fib auto (1 , 1))
{ "alphanum_fraction": 0.5789473684, "avg_line_length": 21.1111111111, "ext": "agda", "hexsha": "aff36861f7c7ad2d4e69910f05db337b9bc05d62", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-30T11:45:57.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-10T17:19:37.000Z", "max_forks_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dspivak/poly", "max_forks_repo_path": "code-examples/agda/dyn/fib.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_issues_repo_issues_event_max_datetime": "2022-01-12T10:06:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-02T02:29:39.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dspivak/poly", "max_issues_repo_path": "code-examples/agda/dyn/fib.agda", "max_line_length": 42, "max_stars_count": 53, "max_stars_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mstone/poly", "max_stars_repo_path": "code-examples/agda/dyn/fib.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:08:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-18T16:31:04.000Z", "num_tokens": 138, "size": 380 }
open import Categories.Category import Categories.Functor as Fun open import Categories.Monad open import Categories.Object.BinaryCoproducts import Categories.Normalise as Nm module Categories.Monad.Coproduct {o ℓ e} (C : Category o ℓ e) (coprod : BinCoproducts C) where open Category C open Equiv open BinCoproducts C coprod module Internal where module +Reasoning = Nm.+Reasoning C coprod {- ---------------------------------------------------------------------------- Functoriality of left ---------------------------------------------------------------------------- -} .left-id : ∀ {X Y} → left id ≡ id {X ∐ Y} left-id {X} {Y} = by computation {↑ X ⊎ ↑ Y} (#left #id) #id where open +Reasoning .left-∘ : ∀ {X Y Z W} {f : X ⇒ Y} {g : Y ⇒ Z} → left {C = W} (g ∘ f) ≡ left g ∘ left f left-∘ {X} {Y} {Z} {W} {f = f} {g} = by computation {↑ X ⊎ ↑ W} (#left (↑↑ g #∘ ↑↑ f)) (#left (↑↑ g) #∘ #left (↑↑ f)) where open +Reasoning .left-resp-≡ : ∀ {x y z} → {f g : x ⇒ y} → f ≡ g → left {C = z} f ≡ left {C = z} g left-resp-≡ {f = f} {g} p = begin [ i₁ ∘ f , i₂ ∘ id ] ↓⟨ []-cong₂ (∘-resp-≡ʳ p) refl ⟩ [ i₁ ∘ g , i₂ ∘ id ] ∎ where open HomReasoning {- ---------------------------------------------------------------------------- Functoriality of right ---------------------------------------------------------------------------- -} .right-id : ∀ {X Y} → right id ≡ id {X ∐ Y} right-id {X} {Y} = by computation {↑ X ⊎ ↑ Y} (#right #id) #id where open +Reasoning .right-∘ : ∀ {X Y Z W} {f : X ⇒ Y} {g : Y ⇒ Z} → right {A = W} (g ∘ f) ≡ right g ∘ right f right-∘ {X} {W = W} {f = f} {g} = by computation {↑ W ⊎ ↑ X} (#right (↑↑ g #∘ ↑↑ f)) (#right (↑↑ g) #∘ #right (↑↑ f)) where open +Reasoning .right-resp-≡ : ∀ {x y z} → {f g : x ⇒ y} → f ≡ g → right {A = z} f ≡ right {A = z} g right-resp-≡ {f = f} {g} p = begin [ i₁ ∘ id , i₂ ∘ f ] ↓⟨ []-cong₂ refl (∘-resp-≡ʳ p) ⟩ [ i₁ ∘ id , i₂ ∘ g ] ∎ where open HomReasoning {- ---------------------------------------------------------------------------- Left/Right functors ---------------------------------------------------------------------------- -} Left : Obj → Fun.Functor C C Left A = record { F₀ = λ X → X ∐ A ; F₁ = left ; identity = left-id ; homomorphism = left-∘ ; F-resp-≡ = left-resp-≡ } Right : Obj → Fun.Functor C C Right A = record { F₀ = _∐_ A ; F₁ = right ; identity = right-id ; homomorphism = right-∘ ; F-resp-≡ = right-resp-≡ } private module I = Internal {- ---------------------------------------------------------------------------- Left/Right monads ---------------------------------------------------------------------------- -} Left : Obj -> Monad C Left c = record { F = I.Left c ; η = unit ; μ = join ; assoc = (λ {x} → by computation {#Left (#Left (#Left (↑ x)))} (#join #∘ #left #join) (#join #∘ #join)) ; identityˡ = λ {x} → by computation {#Left (↑ x)} (#join #∘ #left #i₁) #id ; identityʳ = λ {x} → by computation {#Left (↑ x)} (#join #∘ #i₁) #id } module Left where open I.+Reasoning #Left = λ x → x ⊎ ↑ c unit = record { η = λ X → i₁ ; commute = λ {X} {Y} f → by computation {↑ X} {#Left (↑ Y)} (#i₁ #∘ ↑↑ f) (#left (↑↑ f) #∘ #i₁) } #join : ∀ {A} -> Term (#Left (#Left A)) (#Left A) #join = #[ #id , #i₂ ] join = record { η = λ X → [ id , i₂ ] ; commute = λ {X} {Y} f → by computation {#Left (#Left (↑ X))} (#join #∘ #left (#left (↑↑ f))) (#left (↑↑ f) #∘ #join) } Right : Obj -> Monad C Right c = record { F = I.Right c ; η = unit ; μ = join ; assoc = (λ {x} → by computation {#Right (#Right (#Right (↑ x)))} (#join #∘ #right #join) (#join #∘ #join)) ; identityˡ = λ {x} → by computation {#Right (↑ x)} (#join #∘ #right #i₂) #id ; identityʳ = λ {x} → by computation {#Right (↑ x)} (#join #∘ #i₂) #id } module Right where open I.+Reasoning #Right = λ x → ↑ c ⊎ x unit = record { η = λ X → i₂ ; commute = λ {X} {Y} f → by computation {↑ X} {#Right (↑ Y)} (#i₂ #∘ ↑↑ f) (#right (↑↑ f) #∘ #i₂) } #join : ∀ {A} -> Term (#Right (#Right A)) (#Right A) #join = #[ #i₁ , #id ] join = record { η = λ X → [ i₁ , id ] ; commute = λ {X} {Y} f → by computation {#Right (#Right (↑ X))} (#join #∘ #right (#right (↑↑ f))) (#right (↑↑ f) #∘ #join) }
{ "alphanum_fraction": 0.3677596701, "avg_line_length": 30.8666666667, "ext": "agda", "hexsha": "7a254cdf4a03d8cf8bc05f5415bc50583bf0c076", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Monad/Coproduct.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Monad/Coproduct.agda", "max_line_length": 96, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Monad/Coproduct.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1649, "size": 5093 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Product where open import Level open import Function using () renaming (_∘_ to _∙_) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap) open import Categories.Utils.Product open import Categories.Category using (Category) open import Categories.Category.Groupoid using (IsGroupoid) open import Categories.Functor renaming (id to idF) open import Categories.NaturalTransformation.Core open import Categories.NaturalTransformation.NaturalIsomorphism hiding (refl) import Categories.Morphism as Morphism private variable o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level o₁ ℓ₁ e₁ o′₁ ℓ′₁ e′₁ o₂ ℓ₂ e₂ o′₂ ℓ′₂ e′₂ : Level C C₁ C₂ D D₁ D₂ : Category o ℓ e Product : (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) Product C D = record { Obj = C.Obj × D.Obj ; _⇒_ = C._⇒_ -< _×_ >- D._⇒_ ; _≈_ = C._≈_ -< _×_ >- D._≈_ ; _∘_ = zip C._∘_ D._∘_ ; id = C.id , D.id ; assoc = C.assoc , D.assoc ; sym-assoc = C.sym-assoc , D.sym-assoc ; identityˡ = C.identityˡ , D.identityˡ ; identityʳ = C.identityʳ , D.identityʳ ; identity² = C.identity² , D.identity² ; equiv = record { refl = C.Equiv.refl , D.Equiv.refl ; sym = map C.Equiv.sym D.Equiv.sym ; trans = zip C.Equiv.trans D.Equiv.trans } ; ∘-resp-≈ = zip C.∘-resp-≈ D.∘-resp-≈ } where module C = Category C module D = Category D -- product of functors sharing the same domain infixr 2 _※_ _※_ : ∀ (F : Functor C D₁) → (G : Functor C D₂) → Functor C (Product D₁ D₂) F ※ G = record { F₀ = < F.F₀ , G.F₀ > ; F₁ = < F.F₁ , G.F₁ > ; identity = F.identity , G.identity ; homomorphism = F.homomorphism , G.homomorphism ; F-resp-≈ = < F.F-resp-≈ , G.F-resp-≈ > } where module F = Functor F module G = Functor G -- general product of functors infixr 2 _⁂_ _⁂_ : ∀ (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) → Functor (Product C₁ C₂) (Product D₁ D₂) F ⁂ G = record { F₀ = map F.F₀ G.F₀ ; F₁ = map F.F₁ G.F₁ ; identity = F.identity , G.identity ; homomorphism = F.homomorphism , G.homomorphism ; F-resp-≈ = map F.F-resp-≈ G.F-resp-≈ } where module F = Functor F module G = Functor G -- Natural Transformations respect the ⁂ product infixr 5 _⁂ⁿ_ _⁂ⁿ_ : ∀ {C₁ : Category o₁ ℓ₁ e₁} {D₁ : Category o′₁ ℓ′₁ e′₁} {C₂ : Category o₂ ℓ₂ e₂} {D₂ : Category o′₂ ℓ′₂ e′₂} {F₁ G₁ : Functor C₁ D₁} {F₂ G₂ : Functor C₂ D₂} (α : NaturalTransformation F₁ G₁) (β : NaturalTransformation F₂ G₂) → NaturalTransformation (F₁ ⁂ F₂) (G₁ ⁂ G₂) α ⁂ⁿ β = ntHelper record { η = map⁎′ α.η β.η ; commute = map⁎′ α.commute β.commute } where module α = NaturalTransformation α module β = NaturalTransformation β -- Natural Transformations respect the ※ product as well infixr 5 _※ⁿ_ _※ⁿ_ : ∀ {D₁ : Category o ℓ e} {D₂ : Category o′ ℓ′ e′} {F₁ G₁ : Functor C D₁} {F₂ G₂ : Functor C D₂} (α : NaturalTransformation F₁ G₁) → (β : NaturalTransformation F₂ G₂) → NaturalTransformation (F₁ ※ F₂) (G₁ ※ G₂) α ※ⁿ β = ntHelper record { η = < α.η , β.η > ; commute = < α.commute , β.commute > } where module α = NaturalTransformation α module β = NaturalTransformation β -- Natural Isomorphisms too infixr 5 _⁂ⁿⁱ_ _⁂ⁿⁱ_ : ∀ {C₁ : Category o₁ ℓ₁ e₁} {D₁ : Category o′₁ ℓ′₁ e′₁} {C₂ : Category o₂ ℓ₂ e₂} {D₂ : Category o′₂ ℓ′₂ e′₂} {F₁ G₁ : Functor C₁ D₁} {F₂ G₂ : Functor C₂ D₂} (α : NaturalIsomorphism F₁ G₁) (β : NaturalIsomorphism F₂ G₂) → NaturalIsomorphism (F₁ ⁂ F₂) (G₁ ⁂ G₂) α ⁂ⁿⁱ β = record { F⇒G = α.F⇒G ⁂ⁿ β.F⇒G ; F⇐G = α.F⇐G ⁂ⁿ β.F⇐G ; iso = λ where (X , Y) → record { isoˡ = isoˡ (α.iso X) , isoˡ (β.iso Y) ; isoʳ = isoʳ (α.iso X) , isoʳ (β.iso Y) } } where module α = NaturalIsomorphism α module β = NaturalIsomorphism β open Morphism.Iso -- Natural Isomorphisms too infixr 5 _※ⁿⁱ_ _※ⁿⁱ_ : ∀ {D₁ : Category o ℓ e} {D₂ : Category o′ ℓ′ e′} {F₁ G₁ : Functor C D₁} {F₂ G₂ : Functor C D₂} (α : NaturalIsomorphism F₁ G₁) → (β : NaturalIsomorphism F₂ G₂) → NaturalIsomorphism (F₁ ※ F₂) (G₁ ※ G₂) α ※ⁿⁱ β = record { F⇒G = α.F⇒G ※ⁿ β.F⇒G ; F⇐G = α.F⇐G ※ⁿ β.F⇐G ; iso = λ X → record { isoˡ = isoˡ (α.iso X) , isoˡ (β.iso X) ; isoʳ = isoʳ (α.iso X) , isoʳ (β.iso X) } } where module α = NaturalIsomorphism α module β = NaturalIsomorphism β open Morphism.Iso module _ (C₁ : Category o ℓ e) (C₂ : Category o′ ℓ′ e′) (C₃ : Category o″ ℓ″ e″) where private module C₁ = Category C₁ module C₂ = Category C₂ module C₃ = Category C₃ assocˡ : Functor (Product (Product C₁ C₂) C₃) (Product C₁ (Product C₂ C₃)) assocˡ = record { F₀ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > > ; F₁ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > > ; identity = C₁.Equiv.refl , C₂.Equiv.refl , C₃.Equiv.refl ; homomorphism = C₁.Equiv.refl , C₂.Equiv.refl , C₃.Equiv.refl ; F-resp-≈ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > > } assocʳ : Functor (Product C₁ (Product C₂ C₃)) (Product (Product C₁ C₂) C₃) assocʳ = record { F₀ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ > ; F₁ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ > ; identity = (C₁.Equiv.refl , C₂.Equiv.refl) , C₃.Equiv.refl ; homomorphism = (C₁.Equiv.refl , C₂.Equiv.refl) , C₃.Equiv.refl ; F-resp-≈ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ > } module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} where private module C = Category C module D = Category D πˡ : Functor (Product C D) C πˡ = record { F₀ = proj₁ ; F₁ = proj₁ ; identity = refl ; homomorphism = refl ; F-resp-≈ = proj₁ } where open C.Equiv using (refl) πʳ : Functor (Product C D) D πʳ = record { F₀ = proj₂ ; F₁ = proj₂ ; identity = refl ; homomorphism = refl ; F-resp-≈ = proj₂ } where open D.Equiv using (refl) Swap : Functor (Product C D) (Product D C) Swap = record { F₀ = swap ; F₁ = swap ; identity = D.Equiv.refl , C.Equiv.refl ; homomorphism = D.Equiv.refl , C.Equiv.refl ; F-resp-≈ = swap } -- Groupoid Product Groupoid-× : {C : Category o₁ ℓ₁ e₁} {D : Category o₂ ℓ₂ e₂} → IsGroupoid C → IsGroupoid D → IsGroupoid (Product C D) Groupoid-× c₁ c₂ = record { _⁻¹ = map (IsGroupoid._⁻¹ c₁) (IsGroupoid._⁻¹ c₂) ; iso = record { isoˡ = Iso.isoˡ i₁ , Iso.isoˡ i₂ ; isoʳ = Iso.isoʳ i₁ , Iso.isoʳ i₂ } } where open Morphism i₁ = IsGroupoid.iso c₁ i₂ = IsGroupoid.iso c₂
{ "alphanum_fraction": 0.5684754522, "avg_line_length": 33.0142180095, "ext": "agda", "hexsha": "16beb7221f632ee7ebc27ed9d94cdd816cf671d9", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Product.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Product.agda", "max_line_length": 92, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 2727, "size": 6966 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.HSpace open import homotopy.EilenbergMacLane1 using (EM₁-level₁) module homotopy.EM1HSpace where module EM₁HSpace {i} (G : AbGroup i) where private module G = AbGroup G emloop-commutes : (g g' : G.El) → emloop g ∙ emloop g' == emloop g' ∙ emloop g emloop-commutes g g' = emloop g ∙ emloop g' =⟨ ! (emloop-comp' G.grp g g') ⟩ emloop (G.comp g g') =⟨ ap (emloop' G.grp) (G.comm g g') ⟩ emloop (G.comp g' g) =⟨ emloop-comp' G.grp g' g ⟩ emloop g' ∙ emloop g =∎ mult-loop : G.El → (x : EM₁ G.grp) → x == x mult-loop g = EM₁-set-elim {P = λ x → x == x} {{λ x → has-level-apply (EM₁-level₁ G.grp) x x}} (emloop g) (λ g' → ↓-idf=idf-in' (emloop-commutes g g' ∙ ∙=∙' (emloop g') (emloop g))) private EM₁-endo-Ω-group : Group i EM₁-endo-Ω-group = Ω^S-group 0 ⊙[ (EM₁ G.grp → EM₁ G.grp) , (λ x → x) ] mult-hom : GroupHom G.grp EM₁-endo-Ω-group mult-hom = record {f = λ= ∘ mult-loop; pres-comp = pres-comp} where abstract pres-comp' : (g₁ g₂ : G.El) (x : EM₁ G.grp) → mult-loop (G.comp g₁ g₂) x == mult-loop g₁ x ∙ mult-loop g₂ x pres-comp' g₁ g₂ = EM₁-prop-elim {P = λ x → mult-loop (G.comp g₁ g₂) x == mult-loop g₁ x ∙ mult-loop g₂ x} {{λ x → has-level-apply (has-level-apply (EM₁-level₁ G.grp) _ _) _ _}} (emloop-comp g₁ g₂) pres-comp : (g₁ g₂ : G.El) → λ= (mult-loop (G.comp g₁ g₂)) == Group.comp EM₁-endo-Ω-group (λ= (mult-loop g₁)) (λ= (mult-loop g₂)) pres-comp g₁ g₂ = ap λ= (λ= (pres-comp' g₁ g₂)) ∙ =ₛ-out (λ=-∙ (mult-loop g₁) (mult-loop g₂)) module MultRec = EM₁Level₁Rec {G = G.grp} {C = EM₁ G.grp → EM₁ G.grp} (λ x → x) mult-hom abstract mult : EM₁ G.grp → EM₁ G.grp → EM₁ G.grp mult = MultRec.f mult-embase-β : mult embase ↦ (λ x → x) mult-embase-β = MultRec.embase-β {-# REWRITE mult-embase-β #-} mult-emloop-β : ∀ g y → ap (λ x → mult x y) (emloop g) == mult-loop g y mult-emloop-β g y = ap (λ x → mult x y) (emloop g) =⟨ ap-∘ (λ f → f y) mult (emloop g) ⟩ app= (ap mult (emloop g)) y =⟨ ap (λ w → app= w y) (MultRec.emloop-β g) ⟩ app= (λ= (mult-loop g)) y =⟨ app=-β (mult-loop g) y ⟩ mult-loop g y =∎ H-⊙EM₁ : HSpaceStructure (⊙EM₁ G.grp) H-⊙EM₁ = from-alt-h-space $ record { μ = mult; unit-l = unit-l; unit-r = unit-r; coh = coh } where unit-l : (x : EM₁ G.grp) → mult embase x == x unit-l x = idp unit-r : (x : EM₁ G.grp) → mult x embase == x unit-r = EM₁-set-elim {P = λ x → mult x embase == x} {{λ x → has-level-apply (EM₁-level₁ G.grp) (mult x embase) x}} idp (λ g → ↓-app=idf-in $ idp ∙' emloop g =⟨ ∙'-unit-l (emloop g) ⟩ emloop g =⟨ ! (mult-emloop-β g embase) ⟩ ap (λ z → mult z embase) (emloop g) =⟨ ! (∙-unit-r (ap (λ z → mult z embase) (emloop g))) ⟩ ap (λ z → mult z embase) (emloop g) ∙ idp ∎) coh : unit-l embase == unit-r embase coh = idp open HSpaceStructure H-⊙EM₁
{ "alphanum_fraction": 0.5202598206, "avg_line_length": 32.9897959184, "ext": "agda", "hexsha": "3cfecb41745c606125b68202cabbaf6823e0bc22", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/EM1HSpace.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/EM1HSpace.agda", "max_line_length": 94, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/EM1HSpace.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1260, "size": 3233 }
module InstanceArgumentsConstraintsModule where data Bool : Set where true false : Bool module M (A1 A2 B C : Set) (a1 : A1) (a2 : A2) where record Class (R : Bool → Set) : Set where field f : (t : Bool) → R t open Class {{...}} public instance class1 : Class (λ _ → A1) class1 = record { f = λ _ → a1 } class2 : Class (λ _ → A2) class2 = record { f = λ _ → a2 } module N (A1 A2 B C : Set) (a1 : A1) (a2 : A2) where postulate someF : A1 → C open M A1 A2 B C a1 a2 test : C test = someF (f true)
{ "alphanum_fraction": 0.5719557196, "avg_line_length": 18.6896551724, "ext": "agda", "hexsha": "4436f7f7d33447bdbae9e3c356133f2982a6edf2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/InstanceArgumentsConstraintsModule.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/InstanceArgumentsConstraintsModule.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/InstanceArgumentsConstraintsModule.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 205, "size": 542 }
------------------------------------------------------------------------ -- Properties of homogeneous binary relations ------------------------------------------------------------------------ module Relation.Binary where open import Data.Product open import Data.Sum open import Data.Function import Relation.Binary.PropositionalEquality.Core as PropEq open import Relation.Binary.Consequences open import Relation.Binary.Core as Core using (_≡_) ------------------------------------------------------------------------ -- Simple properties and equivalence relations open Core public hiding (_≡_; refl; _≢_) ------------------------------------------------------------------------ -- Preorders record IsPreorder {a : Set} (_≈_ : Rel a) -- The underlying equality. (_∼_ : Rel a) -- The relation. : Set where field isEquivalence : IsEquivalence _≈_ -- Reflexivity is expressed in terms of an underlying equality: reflexive : _≈_ ⇒ _∼_ trans : Transitive _∼_ ∼-resp-≈ : _∼_ Respects₂ _≈_ module Eq = IsEquivalence isEquivalence refl : Reflexive _∼_ refl = reflexive Eq.refl record Preorder : Set₁ where infix 4 _≈_ _∼_ field carrier : Set _≈_ : Rel carrier -- The underlying equality. _∼_ : Rel carrier -- The relation. isPreorder : IsPreorder _≈_ _∼_ open IsPreorder isPreorder public ------------------------------------------------------------------------ -- Setoids -- Equivalence relations are defined in Relation.Binary.Core. record Setoid : Set₁ where infix 4 _≈_ field carrier : Set _≈_ : Rel carrier isEquivalence : IsEquivalence _≈_ open IsEquivalence isEquivalence public isPreorder : IsPreorder _≡_ _≈_ isPreorder = record { isEquivalence = PropEq.isEquivalence ; reflexive = reflexive ; trans = trans ; ∼-resp-≈ = PropEq.resp₂ _≈_ } preorder : Preorder preorder = record { isPreorder = isPreorder } ------------------------------------------------------------------------ -- Decidable equivalence relations record IsDecEquivalence {a : Set} (_≈_ : Rel a) : Set where field isEquivalence : IsEquivalence _≈_ _≟_ : Decidable _≈_ open IsEquivalence isEquivalence public record DecSetoid : Set₁ where infix 4 _≈_ field carrier : Set _≈_ : Rel carrier isDecEquivalence : IsDecEquivalence _≈_ open IsDecEquivalence isDecEquivalence public setoid : Setoid setoid = record { isEquivalence = isEquivalence } open Setoid setoid public using (preorder) ------------------------------------------------------------------------ -- Partial orders record IsPartialOrder {a : Set} (_≈_ _≤_ : Rel a) : Set where field isPreorder : IsPreorder _≈_ _≤_ antisym : Antisymmetric _≈_ _≤_ open IsPreorder isPreorder public renaming (∼-resp-≈ to ≤-resp-≈) record Poset : Set₁ where infix 4 _≈_ _≤_ field carrier : Set _≈_ : Rel carrier _≤_ : Rel carrier isPartialOrder : IsPartialOrder _≈_ _≤_ open IsPartialOrder isPartialOrder public preorder : Preorder preorder = record { isPreorder = isPreorder } ------------------------------------------------------------------------ -- Strict partial orders record IsStrictPartialOrder {a : Set} (_≈_ _<_ : Rel a) : Set where field isEquivalence : IsEquivalence _≈_ irrefl : Irreflexive _≈_ _<_ trans : Transitive _<_ <-resp-≈ : _<_ Respects₂ _≈_ module Eq = IsEquivalence isEquivalence record StrictPartialOrder : Set₁ where infix 4 _≈_ _<_ field carrier : Set _≈_ : Rel carrier _<_ : Rel carrier isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ open IsStrictPartialOrder isStrictPartialOrder public ------------------------------------------------------------------------ -- Total orders record IsTotalOrder {a : Set} (_≈_ _≤_ : Rel a) : Set where field isPartialOrder : IsPartialOrder _≈_ _≤_ total : Total _≤_ open IsPartialOrder isPartialOrder public record TotalOrder : Set₁ where infix 4 _≈_ _≤_ field carrier : Set _≈_ : Rel carrier _≤_ : Rel carrier isTotalOrder : IsTotalOrder _≈_ _≤_ open IsTotalOrder isTotalOrder public poset : Poset poset = record { isPartialOrder = isPartialOrder } open Poset poset public using (preorder) ------------------------------------------------------------------------ -- Decidable total orders record IsDecTotalOrder {a : Set} (_≈_ _≤_ : Rel a) : Set where field isTotalOrder : IsTotalOrder _≈_ _≤_ _≟_ : Decidable _≈_ _≤?_ : Decidable _≤_ private module TO = IsTotalOrder isTotalOrder open TO public hiding (module Eq) module Eq where isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = TO.isEquivalence ; _≟_ = _≟_ } open IsDecEquivalence isDecEquivalence public record DecTotalOrder : Set₁ where infix 4 _≈_ _≤_ field carrier : Set _≈_ : Rel carrier _≤_ : Rel carrier isDecTotalOrder : IsDecTotalOrder _≈_ _≤_ private module DTO = IsDecTotalOrder isDecTotalOrder open DTO public hiding (module Eq) totalOrder : TotalOrder totalOrder = record { isTotalOrder = isTotalOrder } open TotalOrder totalOrder public using (poset; preorder) module Eq where decSetoid : DecSetoid decSetoid = record { isDecEquivalence = DTO.Eq.isDecEquivalence } open DecSetoid decSetoid public ------------------------------------------------------------------------ -- Strict total orders -- Note that these orders are decidable (see compare). record IsStrictTotalOrder {a : Set} (_≈_ _<_ : Rel a) : Set where field isEquivalence : IsEquivalence _≈_ trans : Transitive _<_ compare : Trichotomous _≈_ _<_ <-resp-≈ : _<_ Respects₂ _≈_ _≟_ : Decidable _≈_ _≟_ = tri⟶dec≈ compare isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = _≟_ } module Eq = IsDecEquivalence isDecEquivalence isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = tri⟶irr <-resp-≈ Eq.sym compare ; trans = trans ; <-resp-≈ = <-resp-≈ } open IsStrictPartialOrder isStrictPartialOrder using (irrefl) record StrictTotalOrder : Set₁ where infix 4 _≈_ _<_ field carrier : Set _≈_ : Rel carrier _<_ : Rel carrier isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ open IsStrictTotalOrder isStrictTotalOrder public hiding (module Eq) strictPartialOrder : StrictPartialOrder strictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder } decSetoid : DecSetoid decSetoid = record { isDecEquivalence = isDecEquivalence } module Eq = DecSetoid decSetoid
{ "alphanum_fraction": 0.5800360961, "avg_line_length": 26.9775280899, "ext": "agda", "hexsha": "d5c03b88dbc38579b2947cbe5e8414129d797564", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 1954, "size": 7203 }
{- Day 2, 2nd part -} module a2b where open import Agda.Builtin.IO using (IO) open import Agda.Builtin.Unit using (⊤) open import Agda.Builtin.String using (String; primShowNat; primStringAppend) open import Agda.Builtin.Equality open import Data.Nat open import Data.Bool using (if_then_else_) open import Data.List open import Data.Maybe renaming (map to maybeMap) postulate putStrLn : String → IO ⊤ {-# FOREIGN GHC import qualified Data.Text as T #-} {-# COMPILE GHC putStrLn = putStrLn . T.unpack #-} -- helper shopMaybeNat : Maybe ℕ → String shopMaybeNat (just n) = primShowNat n shopMaybeNat nothing = "nothing" data Command : Set where forward : ℕ → Command up : ℕ → Command down : ℕ → Command record Position : Set where constructor pos field h : ℕ d : ℕ {- Alignment of the submarine, i.e. position and aim -} record Alignment : Set where constructor state field h : ℕ d : ℕ aim : ℕ open Position apply : Command → Alignment → Maybe Alignment apply (forward x) (state h d aim) = just (state (h + x) (d + (x * aim)) aim) apply (up x) (state h d aim) = if aim <ᵇ x then nothing else just (state h d ∣ aim - x ∣) apply (down x) (state h d aim) = just (state h d (aim + x)) iterate : List Command → Alignment → Maybe Alignment iterate [] a = just a iterate (command ∷ list) a with apply command a ... | just a' = iterate list a' ... | nothing = nothing doTask : List Command → Maybe ℕ doTask list = let maybeResult = iterate list (state 0 0 0) in maybeMap multiplyComponents maybeResult where multiplyComponents : Alignment → ℕ multiplyComponents (state h d aim) = h * d input : List Command input = forward 2 ∷ forward 3 ∷ forward 5 ∷ forward 6 ∷ down 7 ∷ forward 8 ∷ forward 4 ∷ forward 7 ∷ forward 5 ∷ forward 5 ∷ down 4 ∷ down 9 ∷ forward 8 ∷ forward 5 ∷ up 5 ∷ down 5 ∷ forward 3 ∷ down 4 ∷ down 8 ∷ forward 9 ∷ down 1 ∷ up 9 ∷ down 7 ∷ up 7 ∷ up 1 ∷ forward 1 ∷ down 1 ∷ down 4 ∷ down 4 ∷ down 8 ∷ down 4 ∷ up 3 ∷ down 1 ∷ down 3 ∷ forward 7 ∷ down 6 ∷ forward 3 ∷ forward 5 ∷ forward 2 ∷ up 9 ∷ forward 7 ∷ up 5 ∷ down 3 ∷ forward 1 ∷ forward 2 ∷ down 3 ∷ down 8 ∷ down 3 ∷ forward 8 ∷ up 5 ∷ down 5 ∷ forward 3 ∷ down 5 ∷ forward 9 ∷ down 3 ∷ down 4 ∷ down 9 ∷ down 7 ∷ up 3 ∷ down 9 ∷ up 9 ∷ up 1 ∷ forward 3 ∷ up 4 ∷ down 3 ∷ forward 7 ∷ forward 7 ∷ up 7 ∷ forward 6 ∷ down 7 ∷ down 6 ∷ forward 2 ∷ forward 9 ∷ down 5 ∷ forward 4 ∷ up 6 ∷ down 1 ∷ down 9 ∷ down 9 ∷ forward 4 ∷ down 1 ∷ forward 6 ∷ down 1 ∷ down 5 ∷ down 4 ∷ down 4 ∷ forward 4 ∷ forward 9 ∷ up 1 ∷ down 2 ∷ down 8 ∷ down 5 ∷ down 8 ∷ down 8 ∷ up 2 ∷ forward 8 ∷ up 1 ∷ forward 4 ∷ down 5 ∷ down 1 ∷ up 2 ∷ forward 6 ∷ forward 9 ∷ forward 2 ∷ forward 6 ∷ forward 9 ∷ up 6 ∷ forward 9 ∷ up 4 ∷ down 7 ∷ up 6 ∷ forward 2 ∷ down 1 ∷ up 3 ∷ forward 1 ∷ forward 8 ∷ down 6 ∷ down 8 ∷ down 8 ∷ forward 8 ∷ forward 2 ∷ forward 2 ∷ down 2 ∷ up 1 ∷ down 9 ∷ up 9 ∷ down 9 ∷ up 3 ∷ forward 9 ∷ up 4 ∷ up 7 ∷ up 6 ∷ down 9 ∷ forward 1 ∷ down 3 ∷ down 4 ∷ forward 8 ∷ down 3 ∷ down 9 ∷ up 3 ∷ forward 2 ∷ up 5 ∷ down 3 ∷ forward 8 ∷ up 3 ∷ down 3 ∷ forward 2 ∷ forward 9 ∷ down 1 ∷ down 9 ∷ down 4 ∷ up 7 ∷ down 4 ∷ up 6 ∷ forward 5 ∷ down 6 ∷ forward 3 ∷ down 2 ∷ forward 1 ∷ forward 8 ∷ down 4 ∷ forward 1 ∷ up 7 ∷ forward 6 ∷ up 9 ∷ forward 6 ∷ down 3 ∷ forward 2 ∷ down 4 ∷ forward 6 ∷ down 3 ∷ down 6 ∷ down 1 ∷ down 1 ∷ down 5 ∷ forward 3 ∷ forward 9 ∷ forward 8 ∷ down 3 ∷ forward 7 ∷ up 9 ∷ forward 9 ∷ up 2 ∷ forward 4 ∷ up 3 ∷ forward 1 ∷ up 6 ∷ up 8 ∷ down 5 ∷ down 6 ∷ up 9 ∷ down 6 ∷ down 9 ∷ up 9 ∷ down 4 ∷ forward 5 ∷ up 2 ∷ down 3 ∷ up 3 ∷ down 1 ∷ forward 3 ∷ down 5 ∷ forward 7 ∷ down 6 ∷ down 7 ∷ down 5 ∷ forward 2 ∷ up 6 ∷ down 9 ∷ down 4 ∷ down 3 ∷ forward 9 ∷ up 8 ∷ forward 2 ∷ down 2 ∷ forward 4 ∷ up 6 ∷ down 4 ∷ up 8 ∷ down 7 ∷ down 2 ∷ up 6 ∷ up 4 ∷ down 2 ∷ forward 5 ∷ up 4 ∷ down 8 ∷ forward 3 ∷ forward 1 ∷ down 7 ∷ forward 8 ∷ forward 7 ∷ down 7 ∷ up 4 ∷ forward 8 ∷ down 5 ∷ up 9 ∷ forward 1 ∷ forward 4 ∷ forward 9 ∷ forward 7 ∷ down 9 ∷ up 9 ∷ down 1 ∷ down 7 ∷ forward 7 ∷ down 7 ∷ down 7 ∷ down 3 ∷ down 5 ∷ forward 3 ∷ down 2 ∷ forward 6 ∷ down 9 ∷ up 5 ∷ up 3 ∷ forward 5 ∷ down 6 ∷ down 1 ∷ forward 4 ∷ down 3 ∷ forward 8 ∷ down 7 ∷ forward 7 ∷ forward 7 ∷ up 7 ∷ up 2 ∷ up 3 ∷ forward 9 ∷ down 5 ∷ up 2 ∷ forward 5 ∷ up 5 ∷ forward 2 ∷ forward 2 ∷ down 8 ∷ forward 2 ∷ up 4 ∷ forward 1 ∷ forward 3 ∷ up 8 ∷ up 9 ∷ forward 5 ∷ down 1 ∷ up 8 ∷ down 4 ∷ down 8 ∷ up 4 ∷ forward 9 ∷ down 6 ∷ down 8 ∷ up 2 ∷ up 3 ∷ down 7 ∷ down 4 ∷ forward 5 ∷ down 6 ∷ forward 3 ∷ forward 3 ∷ forward 8 ∷ down 1 ∷ down 7 ∷ down 9 ∷ down 2 ∷ down 7 ∷ forward 7 ∷ down 7 ∷ down 6 ∷ up 6 ∷ forward 8 ∷ forward 5 ∷ up 5 ∷ down 2 ∷ up 8 ∷ up 4 ∷ down 9 ∷ up 2 ∷ forward 5 ∷ up 2 ∷ down 4 ∷ up 4 ∷ forward 2 ∷ forward 4 ∷ forward 9 ∷ forward 9 ∷ up 4 ∷ up 5 ∷ down 1 ∷ down 6 ∷ down 1 ∷ down 4 ∷ down 5 ∷ down 3 ∷ forward 3 ∷ down 9 ∷ forward 6 ∷ down 3 ∷ down 9 ∷ down 2 ∷ up 2 ∷ down 2 ∷ down 7 ∷ forward 9 ∷ down 3 ∷ down 3 ∷ down 2 ∷ down 3 ∷ forward 2 ∷ down 9 ∷ down 9 ∷ up 5 ∷ up 3 ∷ forward 4 ∷ up 7 ∷ forward 8 ∷ up 6 ∷ forward 7 ∷ down 7 ∷ down 1 ∷ forward 5 ∷ down 2 ∷ up 1 ∷ down 8 ∷ up 3 ∷ forward 2 ∷ up 9 ∷ down 1 ∷ down 3 ∷ down 6 ∷ down 2 ∷ down 7 ∷ up 2 ∷ forward 5 ∷ forward 7 ∷ down 2 ∷ forward 5 ∷ forward 4 ∷ forward 5 ∷ down 3 ∷ forward 7 ∷ down 7 ∷ forward 8 ∷ down 3 ∷ down 2 ∷ up 1 ∷ forward 6 ∷ down 4 ∷ down 2 ∷ forward 7 ∷ up 3 ∷ down 4 ∷ forward 2 ∷ up 6 ∷ down 3 ∷ up 6 ∷ up 8 ∷ down 9 ∷ up 6 ∷ forward 8 ∷ forward 9 ∷ forward 4 ∷ forward 7 ∷ down 2 ∷ forward 9 ∷ down 7 ∷ up 9 ∷ down 5 ∷ down 6 ∷ up 5 ∷ down 4 ∷ forward 8 ∷ forward 4 ∷ forward 4 ∷ down 6 ∷ forward 3 ∷ forward 6 ∷ down 9 ∷ down 9 ∷ up 2 ∷ forward 7 ∷ down 8 ∷ down 9 ∷ down 9 ∷ forward 7 ∷ forward 3 ∷ down 7 ∷ down 8 ∷ forward 8 ∷ down 6 ∷ down 5 ∷ down 9 ∷ down 3 ∷ forward 1 ∷ down 5 ∷ forward 2 ∷ forward 8 ∷ down 2 ∷ forward 6 ∷ forward 3 ∷ down 7 ∷ down 4 ∷ forward 8 ∷ forward 1 ∷ down 6 ∷ forward 9 ∷ forward 6 ∷ up 1 ∷ up 3 ∷ down 8 ∷ forward 1 ∷ up 5 ∷ down 4 ∷ forward 7 ∷ up 3 ∷ down 2 ∷ forward 1 ∷ forward 9 ∷ down 9 ∷ down 7 ∷ forward 8 ∷ down 4 ∷ up 3 ∷ down 4 ∷ forward 2 ∷ forward 6 ∷ down 7 ∷ forward 6 ∷ down 6 ∷ down 4 ∷ down 1 ∷ up 9 ∷ down 4 ∷ down 7 ∷ up 4 ∷ down 9 ∷ forward 6 ∷ down 3 ∷ forward 2 ∷ down 4 ∷ forward 3 ∷ down 5 ∷ up 9 ∷ forward 8 ∷ up 7 ∷ up 6 ∷ up 4 ∷ forward 1 ∷ down 1 ∷ forward 4 ∷ up 6 ∷ forward 5 ∷ forward 4 ∷ forward 5 ∷ up 6 ∷ down 1 ∷ forward 3 ∷ up 7 ∷ down 9 ∷ up 9 ∷ down 5 ∷ forward 6 ∷ forward 4 ∷ up 1 ∷ down 4 ∷ up 1 ∷ forward 3 ∷ forward 1 ∷ down 3 ∷ forward 7 ∷ down 2 ∷ forward 3 ∷ up 2 ∷ forward 8 ∷ down 3 ∷ up 9 ∷ down 5 ∷ forward 6 ∷ down 1 ∷ down 8 ∷ down 5 ∷ forward 1 ∷ down 6 ∷ up 2 ∷ forward 6 ∷ down 2 ∷ down 1 ∷ up 6 ∷ up 7 ∷ down 5 ∷ forward 7 ∷ forward 6 ∷ forward 6 ∷ down 7 ∷ forward 4 ∷ down 5 ∷ up 5 ∷ down 1 ∷ up 8 ∷ down 8 ∷ down 2 ∷ down 2 ∷ down 9 ∷ up 9 ∷ forward 2 ∷ forward 7 ∷ down 7 ∷ down 4 ∷ down 4 ∷ down 8 ∷ forward 5 ∷ forward 2 ∷ up 9 ∷ down 9 ∷ forward 7 ∷ up 9 ∷ down 2 ∷ down 7 ∷ up 2 ∷ up 8 ∷ forward 8 ∷ down 4 ∷ forward 3 ∷ forward 4 ∷ forward 6 ∷ forward 2 ∷ down 1 ∷ down 2 ∷ forward 2 ∷ up 1 ∷ down 1 ∷ forward 5 ∷ up 3 ∷ up 3 ∷ down 3 ∷ down 1 ∷ down 4 ∷ up 5 ∷ up 6 ∷ forward 5 ∷ up 7 ∷ forward 6 ∷ down 4 ∷ down 7 ∷ up 8 ∷ forward 1 ∷ down 5 ∷ up 4 ∷ up 3 ∷ up 5 ∷ down 1 ∷ up 5 ∷ forward 3 ∷ up 5 ∷ forward 2 ∷ forward 2 ∷ forward 5 ∷ forward 2 ∷ up 9 ∷ forward 4 ∷ down 1 ∷ down 3 ∷ down 5 ∷ up 2 ∷ down 8 ∷ forward 8 ∷ forward 9 ∷ down 1 ∷ down 3 ∷ forward 8 ∷ forward 2 ∷ down 2 ∷ down 1 ∷ up 7 ∷ forward 2 ∷ forward 8 ∷ down 9 ∷ forward 1 ∷ forward 4 ∷ down 7 ∷ down 4 ∷ up 7 ∷ down 3 ∷ down 1 ∷ down 4 ∷ up 7 ∷ down 6 ∷ forward 7 ∷ down 8 ∷ up 2 ∷ up 4 ∷ up 6 ∷ down 9 ∷ down 9 ∷ down 8 ∷ forward 6 ∷ up 3 ∷ up 1 ∷ forward 9 ∷ forward 6 ∷ up 4 ∷ up 2 ∷ up 7 ∷ forward 5 ∷ up 9 ∷ up 9 ∷ forward 9 ∷ up 6 ∷ down 1 ∷ down 3 ∷ forward 3 ∷ down 2 ∷ down 2 ∷ down 6 ∷ down 9 ∷ forward 3 ∷ forward 7 ∷ up 3 ∷ forward 3 ∷ down 5 ∷ forward 9 ∷ up 6 ∷ down 2 ∷ forward 8 ∷ down 3 ∷ up 5 ∷ down 6 ∷ forward 9 ∷ down 5 ∷ down 2 ∷ down 6 ∷ forward 8 ∷ forward 6 ∷ down 1 ∷ forward 6 ∷ up 1 ∷ up 7 ∷ down 4 ∷ down 7 ∷ forward 4 ∷ forward 7 ∷ down 4 ∷ forward 8 ∷ down 8 ∷ down 7 ∷ forward 9 ∷ down 1 ∷ down 3 ∷ down 6 ∷ forward 7 ∷ forward 6 ∷ forward 3 ∷ forward 8 ∷ down 5 ∷ down 3 ∷ up 1 ∷ down 9 ∷ down 8 ∷ forward 3 ∷ down 6 ∷ down 1 ∷ forward 5 ∷ forward 5 ∷ forward 9 ∷ up 5 ∷ down 6 ∷ up 9 ∷ down 7 ∷ down 6 ∷ up 1 ∷ forward 5 ∷ forward 7 ∷ forward 8 ∷ forward 7 ∷ forward 6 ∷ forward 3 ∷ forward 1 ∷ forward 2 ∷ up 4 ∷ forward 3 ∷ forward 4 ∷ forward 5 ∷ up 2 ∷ up 3 ∷ forward 4 ∷ down 9 ∷ up 4 ∷ forward 7 ∷ down 6 ∷ down 6 ∷ down 1 ∷ forward 2 ∷ down 2 ∷ forward 2 ∷ down 3 ∷ forward 7 ∷ forward 8 ∷ down 4 ∷ up 7 ∷ forward 7 ∷ down 7 ∷ forward 7 ∷ forward 9 ∷ down 7 ∷ up 2 ∷ down 3 ∷ forward 7 ∷ down 1 ∷ forward 8 ∷ forward 2 ∷ up 9 ∷ down 3 ∷ forward 2 ∷ up 4 ∷ forward 9 ∷ down 4 ∷ down 4 ∷ forward 4 ∷ down 2 ∷ down 9 ∷ forward 4 ∷ down 2 ∷ down 6 ∷ forward 9 ∷ forward 2 ∷ up 1 ∷ forward 2 ∷ forward 3 ∷ down 5 ∷ up 8 ∷ down 4 ∷ down 4 ∷ forward 7 ∷ down 2 ∷ up 6 ∷ down 9 ∷ forward 9 ∷ up 1 ∷ forward 3 ∷ down 5 ∷ forward 3 ∷ down 3 ∷ forward 4 ∷ up 3 ∷ down 6 ∷ down 7 ∷ down 4 ∷ down 8 ∷ down 4 ∷ down 5 ∷ up 9 ∷ up 1 ∷ down 7 ∷ up 3 ∷ up 3 ∷ down 3 ∷ up 4 ∷ up 6 ∷ forward 8 ∷ down 1 ∷ forward 7 ∷ forward 4 ∷ down 9 ∷ down 1 ∷ forward 7 ∷ forward 9 ∷ forward 1 ∷ down 3 ∷ down 2 ∷ forward 3 ∷ forward 2 ∷ down 7 ∷ forward 9 ∷ forward 6 ∷ up 9 ∷ down 2 ∷ forward 9 ∷ up 6 ∷ forward 8 ∷ up 1 ∷ down 5 ∷ down 8 ∷ forward 1 ∷ down 1 ∷ forward 9 ∷ up 1 ∷ forward 9 ∷ forward 1 ∷ forward 1 ∷ down 7 ∷ forward 3 ∷ forward 6 ∷ down 5 ∷ forward 7 ∷ forward 1 ∷ down 7 ∷ down 6 ∷ down 6 ∷ forward 5 ∷ up 6 ∷ down 6 ∷ forward 8 ∷ up 2 ∷ down 8 ∷ down 3 ∷ up 5 ∷ up 8 ∷ down 6 ∷ forward 4 ∷ forward 2 ∷ up 3 ∷ forward 5 ∷ forward 3 ∷ up 8 ∷ forward 6 ∷ up 8 ∷ forward 1 ∷ up 8 ∷ up 7 ∷ up 6 ∷ forward 2 ∷ down 9 ∷ down 9 ∷ forward 3 ∷ down 7 ∷ forward 3 ∷ down 6 ∷ forward 9 ∷ up 5 ∷ down 1 ∷ forward 7 ∷ down 1 ∷ down 5 ∷ down 9 ∷ forward 8 ∷ forward 9 ∷ forward 7 ∷ down 9 ∷ up 4 ∷ forward 5 ∷ down 5 ∷ forward 5 ∷ down 9 ∷ forward 9 ∷ forward 3 ∷ up 5 ∷ forward 8 ∷ up 5 ∷ down 1 ∷ forward 8 ∷ down 3 ∷ forward 6 ∷ up 9 ∷ forward 8 ∷ down 4 ∷ forward 3 ∷ down 5 ∷ forward 8 ∷ forward 9 ∷ forward 2 ∷ down 1 ∷ down 6 ∷ down 4 ∷ forward 9 ∷ up 2 ∷ down 3 ∷ down 6 ∷ down 3 ∷ down 9 ∷ down 1 ∷ up 6 ∷ down 2 ∷ down 7 ∷ up 5 ∷ forward 5 ∷ up 1 ∷ down 7 ∷ forward 6 ∷ up 6 ∷ down 2 ∷ down 3 ∷ forward 3 ∷ down 5 ∷ forward 8 ∷ down 9 ∷ down 7 ∷ down 8 ∷ up 7 ∷ down 1 ∷ forward 1 ∷ forward 1 ∷ down 2 ∷ up 4 ∷ forward 2 ∷ down 3 ∷ up 2 ∷ down 3 ∷ down 2 ∷ forward 7 ∷ down 1 ∷ up 7 ∷ down 2 ∷ down 1 ∷ forward 6 ∷ down 9 ∷ up 9 ∷ down 4 ∷ down 6 ∷ up 9 ∷ forward 7 ∷ forward 9 ∷ forward 7 ∷ down 4 ∷ down 1 ∷ forward 7 ∷ down 4 ∷ down 7 ∷ down 3 ∷ down 5 ∷ forward 3 ∷ down 8 ∷ forward 8 ∷ forward 7 ∷ forward 8 ∷ down 4 ∷ down 9 ∷ forward 2 ∷ forward 7 ∷ up 8 ∷ forward 4 ∷ down 6 ∷ up 8 ∷ down 2 ∷ forward 3 ∷ down 6 ∷ down 8 ∷ forward 8 ∷ forward 2 ∷ forward 9 ∷ up 6 ∷ forward 7 ∷ down 3 ∷ down 5 ∷ forward 8 ∷ forward 9 ∷ down 3 ∷ forward 3 ∷ forward 2 ∷ forward 3 ∷ down 8 ∷ up 9 ∷ up 5 ∷ up 2 ∷ up 6 ∷ up 1 ∷ up 1 ∷ up 5 ∷ forward 3 ∷ forward 2 ∷ down 3 ∷ forward 4 ∷ [] main : IO ⊤ main = putStrLn (shopMaybeNat (doTask input)) private -- checks from the exercise text _ : apply (forward 5) (state 0 0 0) ≡ just (state 5 0 0) _ = refl _ : apply (down 5) (state 5 0 0) ≡ just (state 5 0 5) _ = refl _ : apply (forward 8) (state 5 0 5) ≡ just (state 13 (8 * 5) 5) _ = refl _ : apply (up 3) (state 13 40 5) ≡ just (state 13 40 2) _ = refl _ : apply (down 8) (state 13 40 2) ≡ just (state 13 40 10) _ = refl _ : apply (forward 2) (state 13 40 10) ≡ just (state 15 60 10) _ = refl -- submarine does not 'fly' _ : apply (up 7) (state 13 2 2) ≡ nothing _ = refl
{ "alphanum_fraction": 0.5084313448, "avg_line_length": 12.8309090909, "ext": "agda", "hexsha": "4de2b378cd81099f3a4b144a121025d624a95453", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felixwellen/adventOfCode", "max_forks_repo_path": "a2b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felixwellen/adventOfCode", "max_issues_repo_path": "a2b.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felixwellen/adventOfCode", "max_stars_repo_path": "a2b.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7761, "size": 14114 }
module Oscar.Class.Injectivity where open import Oscar.Level record Injectivity {a} {A : Set a} {b} {B : Set b} {ℓ₁} (_≋₁_ : A → B → Set ℓ₁) {i} {I : Set i} {ℓ₂} (_≋₂_ : I → I → Set ℓ₂) (f : I → A) (g : I → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ i ⊔ ℓ₂) where field injectivity : ∀ {x y} → f x ≋₁ g y → x ≋₂ y open Injectivity ⦃ … ⦄ public record Injectivityoid a b ℓ₁ i ℓ₂ : Set (lsuc (a ⊔ b ⊔ ℓ₁ ⊔ i ⊔ ℓ₂)) where field {A} : Set a {B} : Set b _≋₁_ : A → B → Set ℓ₁ I : Set i _≋₂_ : I → I → Set ℓ₂ μₗ : I → A μᵣ : I → B `injectivity : ∀ {x y} → μₗ x ≋₁ μᵣ y → x ≋₂ y
{ "alphanum_fraction": 0.447806354, "avg_line_length": 25.4230769231, "ext": "agda", "hexsha": "9c6f5e8996cdb820cfc72b19e0d78e32072686e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/Injectivity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/Injectivity.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/Injectivity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 308, "size": 661 }
-- {-# OPTIONS -v tc.lhs:100 #-} module IrrelevantData where data T (A : Set) : Set where c : .A → T A d : ∀ {A} → T A → A d (c x) = x -- needs to fail since x is irrelevant under c
{ "alphanum_fraction": 0.5698924731, "avg_line_length": 18.6, "ext": "agda", "hexsha": "42c969f01e9c7b4fe595a512bb3c979a0286efdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/IrrelevantData.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/IrrelevantData.agda", "max_line_length": 46, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/IrrelevantData.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 68, "size": 186 }
{-# OPTIONS --prop --allow-unsolved-metas #-} {-# TERMINATING #-} makeloop : {P : Prop} → P → P makeloop p = makeloop p postulate A : Set B : A → Prop record AB : Set where constructor _,_ field a : A b : B a open AB public id : AB → AB id ab = a ab , makeloop (b ab) postulate f : (id* : AB → AB) → A → Set C : A → Set C = f id postulate D : (C : A → Set) (a : A) (c : C a) → Set -- Works if you either give the type of v (C u) or the second argument of D (u) loops : (u : A) (v : _) → D C _ v loops = {!!}
{ "alphanum_fraction": 0.5447761194, "avg_line_length": 16.2424242424, "ext": "agda", "hexsha": "a8a33dc607ab26a98e7fadbecacb0b964291fede", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4120.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4120.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4120.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 203, "size": 536 }
{-# OPTIONS --guardedness --cubical #-} module Issue2799 where open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path record Stream (A : Set) : Set where coinductive constructor _,_ field head : A tail : Stream A open Stream mapS : ∀ {A B} → (A → B) → Stream A → Stream B head (mapS f xs) = f (head xs) tail (mapS f xs) = mapS f (tail xs) mapS-id : ∀ {A} {xs : Stream A} → mapS (λ x → x) xs ≡ xs head (mapS-id {xs = xs} i) = head xs tail (mapS-id {xs = xs} i) = mapS-id {xs = tail xs} i
{ "alphanum_fraction": 0.6197718631, "avg_line_length": 21.04, "ext": "agda", "hexsha": "37c9a75155bdeeb38ee86bba6f78f63f336059ff", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2799.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2799.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2799.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 191, "size": 526 }
module half where open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Size data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} half : ℕ → ℕ half zero = zero half (suc zero) = zero half (suc (suc i)) = suc (half i) _ : half 5 ≡ 2 _ = refl data ℕₛ (n : Size) : Set where zero : ℕₛ n suc : (m : Size< n) → ℕₛ m → ℕₛ n _ : ∀ {n} → ℕₛ n _ = zero _ : ∀ {n} (m : Size< n) → ℕₛ m → ℕₛ n _ = suc halfₛ : ∀ n → ℕₛ n → ℕₛ n halfₛ n zero = zero halfₛ n (suc m zero) = zero halfₛ n (suc m (suc k i)) = suc k (halfₛ k i)
{ "alphanum_fraction": 0.573943662, "avg_line_length": 16.2285714286, "ext": "agda", "hexsha": "4df67933ac16d89064b44ba83ae4c5b647b1f0c2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a6b4cf13104112c76a07d17a9dd18f3d3589d449", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis", "max_forks_repo_path": "slides/agda/half.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a6b4cf13104112c76a07d17a9dd18f3d3589d449", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis", "max_issues_repo_path": "slides/agda/half.agda", "max_line_length": 68, "max_stars_count": 1, "max_stars_repo_head_hexsha": "a6b4cf13104112c76a07d17a9dd18f3d3589d449", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis", "max_stars_repo_path": "slides/agda/half.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-14T01:30:46.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-14T01:30:46.000Z", "num_tokens": 246, "size": 568 }
module UnquoteDecl where open import Common.Prelude open import Common.Reflection open import Common.Equality open import Agda.Builtin.Sigma infixr 3 _`⇒_ pattern _`⇒_ a b = pi (vArg a) (abs "_" b) pattern `Nat = def (quote Nat) [] unquoteDecl x = define (vArg x) (funDef `Nat (clause [] [] (quoteTerm 15) ∷ [])) y = x + 4 -- unquoteDecl loop = define loop (funDef `Nat (clause [] (def (quote loop) []) ∷ [])) pattern `zero = con (quote zero) [] pattern `suc n = con (quote suc) (vArg n ∷ []) -- Note that in the body of the unquote, 'plus' really means 'quote plus'. unquoteDecl plus = define (vArg plus) ( funDef (`Nat `⇒ `Nat `⇒ `Nat) ( clause (("y" , vArg unknown) ∷ []) (vArg (con (quote zero) []) ∷ vArg (var 0) ∷ []) (var 0 []) ∷ clause (("y" , vArg unknown) ∷ ("x" , vArg unknown) ∷ []) (vArg (con (quote suc) (vArg (var 1) ∷ [])) ∷ vArg (var 0) ∷ []) (`suc (def plus (vArg (var 1 []) ∷ vArg (var 0 []) ∷ []))) ∷ [])) prf : plus 1 1 ≡ 2 prf = refl magicDef : FunDef magicDef = funDef (def (quote ⊥) [] `⇒ `Nat) (absurdClause (("()" , vArg unknown) ∷ []) (vArg absurd ∷ []) ∷ []) unquoteDecl magic = define (vArg magic) magicDef
{ "alphanum_fraction": 0.5586319218, "avg_line_length": 29.2380952381, "ext": "agda", "hexsha": "f5398bca992070674b9e688660de7c59893dccae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/UnquoteDecl.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/UnquoteDecl.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/UnquoteDecl.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 437, "size": 1228 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Congruity open import Oscar.Class.Reflexivity open import Oscar.Class.Symmetry open import Oscar.Class.Transitivity open import Oscar.Class.HasEquivalence open import Oscar.Class.Transassociativity open import Oscar.Class.Transleftidentity open import Oscar.Class.Transrightidentity open import Oscar.Class.IsPrecategory open import Oscar.Class.IsCategory open import Oscar.Class.Precategory open import Oscar.Class.Category open import Oscar.Data.¶ open import Oscar.Data.Descender open import Oscar.Data.Proposequality import Oscar.Property.Setoid.Proposequality import Oscar.Class.Congruity.Proposequality import Oscar.Class.Transextensionality.Proposequality import Oscar.Data.Constraint module Oscar.Property.Category.AListProposequality where module _ {a} {A : ¶ → Set a} where private AList = Descender⟨ A ⟩ instance 𝓡eflexivityAList : Reflexivity.class AList 𝓡eflexivityAList .⋆ = ∅ 𝓣ransitivityAList : Transitivity.class AList 𝓣ransitivityAList .⋆ f ∅ = f 𝓣ransitivityAList .⋆ f (x , g) = let _∙'_ = λ g f → 𝓣ransitivityAList .⋆ f g in -- FIXME needed to help Agda prove termination x , g ∙' f 𝓣ransitivityAList' : Transitivity.class (flip AList) 𝓣ransitivityAList' .⋆ f g = transitivity g f HasEquivalenceAList : ∀ {m n} → HasEquivalence (AList m n) _ HasEquivalenceAList = ∁ Proposequality 𝓣ransassociativityAList : Transassociativity.class AList Proposequality transitivity 𝓣ransassociativityAList .⋆ f g ∅ = ∅ 𝓣ransassociativityAList .⋆ f g (x , h) = congruity (x ,_) $ 𝓣ransassociativityAList .⋆ _ _ h -- h ⟨∙ _ ⟨∙ _ 𝓣ransassociativityAList' : Transassociativity.class (flip AList) Proposequality transitivity 𝓣ransassociativityAList' .⋆ f g h = symmetry (transassociativity h g f) -- Sym.[] {!!} IsPrecategoryAList : IsPrecategory AList Proposequality transitivity IsPrecategoryAList = ∁ IsPrecategoryAList' : IsPrecategory (flip AList) Proposequality transitivity IsPrecategoryAList' = ∁ 𝓣ransleftidentityAList : Transleftidentity.class AList Proposequality ε transitivity 𝓣ransleftidentityAList .⋆ = ∅ 𝓣ransrightidentityAList : Transrightidentity.class AList Proposequality ε transitivity 𝓣ransrightidentityAList .⋆ {f = ∅} = ∅ 𝓣ransrightidentityAList .⋆ {f = x , f} rewrite 𝓣ransrightidentityAList .⋆ {f = f} = ∅ -- 𝓣ransrightidentityAList .⋆ {f = x , f} = congruity (x ,_) (transrightidentity {_∼_ = AList} {_∼̇_ = Proposequality}) -- 𝓣ransrightidentityAList .⋆ {f = x , f} rewrite (f ∙ ε[ AList ] ≡ f) ∋ transrightidentity {_∼_ = AList} = ∅ 𝓣ransleftidentityAList' : Transleftidentity.class (flip AList) Proposequality ε transitivity 𝓣ransleftidentityAList' .⋆ = transrightidentity {_∼_ = AList} 𝓣ransrightidentityAList' : Transrightidentity.class (flip AList) Proposequality ε transitivity 𝓣ransrightidentityAList' .⋆ = transleftidentity {_∼_ = AList} IsCategoryAList : IsCategory AList Proposequality ε transitivity IsCategoryAList = ∁ IsCategoryAList' : IsCategory (flip AList) Proposequality ε transitivity IsCategoryAList' = ∁ module _ {a} (A : ¶ → Ø a) where private AList = Descender⟨ A ⟩ PrecategoryAListProposequality : Precategory _ _ _ PrecategoryAListProposequality = ∁ AList Proposequality transitivity CategoryAListProposequality : Category _ _ _ CategoryAListProposequality = ∁ AList Proposequality ε transitivity PrecategoryAList'Proposequality : Precategory _ _ _ PrecategoryAList'Proposequality = ∁ (flip AList) Proposequality transitivity CategoryAList'Proposequality : Category _ _ _ CategoryAList'Proposequality = ∁ (flip AList) Proposequality ε transitivity
{ "alphanum_fraction": 0.7548472776, "avg_line_length": 39.21875, "ext": "agda", "hexsha": "5c08bb4470ccd47a2c61d167cfdecfd6342579a4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Property/Category/AListProposequality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Property/Category/AListProposequality.agda", "max_line_length": 123, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Property/Category/AListProposequality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1187, "size": 3765 }
-- Andreas, 2017-10-06, issue #2751 -- Highlighting for unsolved constraints module _ where open import Agda.Builtin.Size module UnsolvedSizeConstraints where mutual data D (i : Size) (A : Set) : Set where c : D′ i A → D i A record D′ (i : Size) (A : Set) : Set where inductive field size : Size< i force : D size A open D′ Map : (F : Set → Set) → Set₁ Map F = {A B : Set} → F A → F B mutual map-D : ∀ {i} → Map (D i) map-D (c xs) = c (map-D′ xs) map-D′ : ∀ {i} → Map (D′ i) size (map-D′ {i} t) = foo where postulate foo : {!Size< i!} force (map-D′ {i} t) = map-D {i = i} (force t) -- correct is i = foo -- Produces an unsolved size constraint. -- Problem WAS: no highlighting for unsolved constraints. -- Now: yellow highlighting in last rhs. -- Test also highlighting for unsolved level constraints: module UnsolvedLevelConstraints where mutual l = _ data D {a} (A : Set a) : Set l where c : A → D A -- highlighted data E (A : Set l) : Set1 where c : A → E A -- highlighted
{ "alphanum_fraction": 0.5740236149, "avg_line_length": 21.5882352941, "ext": "agda", "hexsha": "6b8478d40b213f3520b7ae30d39dfb5ada9b9dbd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/interaction/Issue2751.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2751.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2751.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 365, "size": 1101 }
open import Prelude open import Data.Vec open import Data.List.Properties open import Data.List.Any hiding (map) open import Data.List.All as All using () open import Extensions.Vec open import Data.Product hiding (map) module Implicits.Resolution.Ambiguous.Semantics where open import Implicits.Syntax open import Implicits.Resolution.Ambiguous.Resolution open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Implicits.Semantics open import Implicits.Semantics.Lemmas open import SystemF.Everything as F using () module DerivationSemantics where ⟦_,_⟧r : ∀ {ν n} {Δ} {Γ : Ctx ν n} {a} → Δ ⊢ᵣ a → Γ # Δ → ∃ λ t → ⟦ Γ ⟧ctx→ F.⊢ t ∈ ⟦ a ⟧tp→ ⟦_,_⟧r (r-tabs {r = r} p) m with ⟦ p , #tvar m ⟧r ⟦_,_⟧r {Γ = Γ} (r-tabs {r = r} p) m | _ , x = , F.Λ (subst (λ u → u F.⊢ _ ∈ ⟦ r ⟧tp→) (⟦weaken⟧ctx→ Γ) x) ⟦_,_⟧r (r-tapp a p) m with ⟦ p , m ⟧r ⟦_,_⟧r {Γ = Γ} (r-tapp {r = a} b p) m | _ , x = , subst (λ u → ⟦ Γ ⟧ctx→ F.⊢ _ ∈ u) (sym $ ⟦a/sub⟧tp→ a b) (x F.[ ⟦ b ⟧tp→ ]) ⟦_,_⟧r {Γ = Γ} {a = a} (r-ivar x) m with ∈⟶index (All.lookup m x) ⟦_,_⟧r {Γ = Γ} {a = a} (r-ivar x) m | i , lookup-i≡r = , subst (λ u → _ F.⊢ F.var i ∈ u) eq (F.var i) where eq = begin lookup i ⟦ Γ ⟧ctx→ ≡⟨ sym $ lookup-⟦⟧ctx→ Γ i ⟩ ⟦ lookup i Γ ⟧tp→ ≡⟨ cong ⟦_⟧tp→ lookup-i≡r ⟩ ⟦ a ⟧tp→ ∎ ⟦_,_⟧r (r-iabs {a = a} p) m = , F.λ' ⟦ a ⟧tp→ (proj₂ ⟦ p , #ivar a m ⟧r) ⟦_,_⟧r (r-iapp p p₁) m = , (proj₂ ⟦ p , m ⟧r) F.· (proj₂ ⟦ p₁ , m ⟧r) open Semantics _⊢ᵣ_ DerivationSemantics.⟦_,_⟧r public
{ "alphanum_fraction": 0.5606720597, "avg_line_length": 33.4791666667, "ext": "agda", "hexsha": "270016f1ba133a46fd5cab81e10d7c54b9c09d1f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Ambiguous/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Ambiguous/Semantics.agda", "max_line_length": 74, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Ambiguous/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 725, "size": 1607 }
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Gentzen-style formalisation of labelled syntax, after Basin-Matthews-Viganò. module BasicIS4.Syntax.LabelledGentzen where open import BasicIS4.Syntax.Common public -- Labels, as in Gabbay’s labelled deductive systems. postulate Label : Set -- Label pairs, or relational access tokens. -- x ↝ y means the world labelled y is accessible from the world labelled x. infix 6 _↝_ record Token : Set where constructor _↝_ field x : Label y : Label -- Labelled types. -- A ◎ x means the type A is inhabited at the world labelled x. infix 6 _◎_ record LabelledTy : Set where constructor _◎_ field A : Ty x : Label infix 6 _◎⋆_ _◎⋆_ : Cx Ty → Label → Cx LabelledTy ∅ ◎⋆ x = ∅ (Ξ , A) ◎⋆ x = Ξ ◎⋆ x , A ◎ x -- Derivations. infix 3 _⊢ᴿ_ data _⊢ᴿ_ (Λ : Cx Token) : Token → Set where rvar : ∀ {x y} → x ↝ y ∈ Λ → Λ ⊢ᴿ x ↝ y rrefl : ∀ {x} → Λ ⊢ᴿ x ↝ x rtrans : ∀ {x y z} → Λ ⊢ᴿ x ↝ y → Λ ⊢ᴿ y ↝ z → Λ ⊢ᴿ x ↝ z infix 3 _⊢_ data _⊢_ : Cx² Ty Token → LabelledTy → Set where var : ∀ {x A Γ Λ} → A ∈ Γ → Γ ⁏ Λ ⊢ A ◎ x lam : ∀ {x A B Γ Λ} → Γ , A ⁏ Λ ⊢ B ◎ x → Γ ⁏ Λ ⊢ A ▻ B ◎ x app : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ▻ B ◎ x → Γ ⁏ Λ ⊢ A ◎ x → Γ ⁏ Λ ⊢ B ◎ x scan : ∀ {x A Γ Λ} → (∀ {y} → Γ ⁏ Λ , x ↝ y ⊢ A ◎ y) → Γ ⁏ Λ ⊢ □ A ◎ x move : ∀ {x y A Γ Λ} → Γ ⁏ Λ ⊢ □ A ◎ x → Λ ⊢ᴿ x ↝ y → Γ ⁏ Λ ⊢ A ◎ y pair : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ◎ x → Γ ⁏ Λ ⊢ B ◎ x → Γ ⁏ Λ ⊢ A ∧ B ◎ x fst : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ∧ B ◎ x → Γ ⁏ Λ ⊢ A ◎ x snd : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ∧ B ◎ x → Γ ⁏ Λ ⊢ B ◎ x unit : ∀ {x Γ Λ} → Γ ⁏ Λ ⊢ ⊤ ◎ x infix 3 _⊢⋆_ _⊢⋆_ : Cx² Ty Token → Cx LabelledTy → Set Γ ⁏ Λ ⊢⋆ ∅ = 𝟙 Γ ⁏ Λ ⊢⋆ Ξ , A = Γ ⁏ Λ ⊢⋆ Ξ × Γ ⁏ Λ ⊢ A -- Monotonicity with respect to context inclusion. mono⊢ : ∀ {x A Γ Γ′ Λ} → Γ ⊆ Γ′ → Γ ⁏ Λ ⊢ A ◎ x → Γ′ ⁏ Λ ⊢ A ◎ x mono⊢ η (var i) = var (mono∈ η i) mono⊢ η (lam t) = lam (mono⊢ (keep η) t) mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u) mono⊢ η (scan t) = scan (mono⊢ η t) mono⊢ η (move t u) = move (mono⊢ η t) u mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u) mono⊢ η (fst t) = fst (mono⊢ η t) mono⊢ η (snd t) = snd (mono⊢ η t) mono⊢ η unit = unit mono⊢⋆ : ∀ {Ξ x Γ Γ′ Λ} → Γ ⊆ Γ′ → Γ ⁏ Λ ⊢⋆ Ξ ◎⋆ x → Γ′ ⁏ Λ ⊢⋆ Ξ ◎⋆ x mono⊢⋆ {∅} η ∙ = ∙ mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t -- Monotonicity with respect to relational context inclusion. rmono⊢ᴿ : ∀ {x y Λ Λ′} → Λ ⊆ Λ′ → Λ ⊢ᴿ x ↝ y → Λ′ ⊢ᴿ x ↝ y rmono⊢ᴿ ρ (rvar i) = rvar (mono∈ ρ i) rmono⊢ᴿ ρ rrefl = rrefl rmono⊢ᴿ ρ (rtrans t u) = rtrans (rmono⊢ᴿ ρ t) (rmono⊢ᴿ ρ u) rmono⊢ : ∀ {x A Γ Λ Λ′} → Λ ⊆ Λ′ → Γ ⁏ Λ ⊢ A ◎ x → Γ ⁏ Λ′ ⊢ A ◎ x rmono⊢ ρ (var i) = var i rmono⊢ ρ (lam t) = lam (rmono⊢ ρ t) rmono⊢ ρ (app t u) = app (rmono⊢ ρ t) (rmono⊢ ρ u) rmono⊢ ρ (scan t) = scan (rmono⊢ (keep ρ) t) rmono⊢ ρ (move t u) = move (rmono⊢ ρ t) (rmono⊢ᴿ ρ u) rmono⊢ ρ (pair t u) = pair (rmono⊢ ρ t) (rmono⊢ ρ u) rmono⊢ ρ (fst t) = fst (rmono⊢ ρ t) rmono⊢ ρ (snd t) = snd (rmono⊢ ρ t) rmono⊢ ρ unit = unit rmono⊢⋆ : ∀ {Ξ x Γ Λ Λ′} → Λ ⊆ Λ′ → Γ ⁏ Λ ⊢⋆ Ξ ◎⋆ x → Γ ⁏ Λ′ ⊢⋆ Ξ ◎⋆ x rmono⊢⋆ {∅} ρ ∙ = ∙ rmono⊢⋆ {Ξ , A} ρ (ts , t) = rmono⊢⋆ ρ ts , rmono⊢ ρ t -- Monotonicity using context pairs. mono²⊢ : ∀ {x A Π Π′} → Π ⊆² Π′ → Π ⊢ A ◎ x → Π′ ⊢ A ◎ x mono²⊢ (η , ρ) = mono⊢ η ∘ rmono⊢ ρ -- Shorthand for variables. v₀ : ∀ {x A Γ Λ} → Γ , A ⁏ Λ ⊢ A ◎ x v₀ = var i₀ v₁ : ∀ {x A B Γ Λ} → Γ , A , B ⁏ Λ ⊢ A ◎ x v₁ = var i₁ v₂ : ∀ {x A B C Γ Λ} → Γ , A , B , C ⁏ Λ ⊢ A ◎ x v₂ = var i₂ rv₀ : ∀ {x y Λ} → Λ , x ↝ y ⊢ᴿ x ↝ y rv₀ = rvar i₀ rv₁ : ∀ {x y x′ y′ Λ} → Λ , x ↝ y , x′ ↝ y′ ⊢ᴿ x ↝ y rv₁ = rvar i₁ rv₂ : ∀ {x y x′ y′ x″ y″ Λ} → Λ , x ↝ y , x′ ↝ y′ , x″ ↝ y″ ⊢ᴿ x ↝ y rv₂ = rvar i₂ -- Reflexivity. refl⊢⋆ : ∀ {Γ x Λ} → Γ ⁏ Λ ⊢⋆ Γ ◎⋆ x refl⊢⋆ {∅} = ∙ refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀ -- Deduction theorem is built-in. lam⋆ : ∀ {Ξ x A Γ Λ} → Γ ⧺ Ξ ⁏ Λ ⊢ A ◎ x → Γ ⁏ Λ ⊢ Ξ ▻⋯▻ A ◎ x lam⋆ {∅} = I lam⋆ {Ξ , B} = lam⋆ {Ξ} ∘ lam lam⋆₀ : ∀ {Γ x A Λ} → Γ ⁏ Λ ⊢ A ◎ x → ∅ ⁏ Λ ⊢ Γ ▻⋯▻ A ◎ x lam⋆₀ {∅} = I lam⋆₀ {Γ , B} = lam⋆₀ ∘ lam -- Detachment theorem. det : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ▻ B ◎ x → Γ , A ⁏ Λ ⊢ B ◎ x det t = app (mono⊢ weak⊆ t) v₀ det⋆ : ∀ {Ξ x A Γ Λ} → Γ ⁏ Λ ⊢ Ξ ▻⋯▻ A ◎ x → Γ ⧺ Ξ ⁏ Λ ⊢ A ◎ x det⋆ {∅} = I det⋆ {Ξ , B} = det ∘ det⋆ {Ξ} det⋆₀ : ∀ {Γ x A Λ} → ∅ ⁏ Λ ⊢ Γ ▻⋯▻ A ◎ x → Γ ⁏ Λ ⊢ A ◎ x det⋆₀ {∅} = I det⋆₀ {Γ , B} = det ∘ det⋆₀ -- Cut and multicut. cut : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ◎ x → Γ , A ⁏ Λ ⊢ B ◎ x → Γ ⁏ Λ ⊢ B ◎ x cut t u = app (lam u) t multicut : ∀ {Ξ x A Γ Λ} → Γ ⁏ Λ ⊢⋆ Ξ ◎⋆ x → Ξ ⁏ Λ ⊢ A ◎ x → Γ ⁏ Λ ⊢ A ◎ x multicut {∅} ∙ u = mono⊢ bot⊆ u multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t -- Transitivity. trans⊢⋆ : ∀ {Γ″ x Γ′ Γ Λ} → Γ ⁏ Λ ⊢⋆ Γ′ ◎⋆ x → Γ′ ⁏ Λ ⊢⋆ Γ″ ◎⋆ x → Γ ⁏ Λ ⊢⋆ Γ″ ◎⋆ x trans⊢⋆ {∅} ts ∙ = ∙ trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u -- Contraction. ccont : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ (A ▻ A ▻ B) ▻ A ▻ B ◎ x ccont = lam (lam (app (app v₁ v₀) v₀)) cont : ∀ {x A B Γ Λ} → Γ , A , A ⁏ Λ ⊢ B ◎ x → Γ , A ⁏ Λ ⊢ B ◎ x cont t = det (app ccont (lam (lam t))) -- Exchange, or Schönfinkel’s C combinator. cexch : ∀ {x A B C Γ Λ} → Γ ⁏ Λ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C ◎ x cexch = lam (lam (lam (app (app v₂ v₀) v₁))) exch : ∀ {x A B C Γ Λ} → Γ , A , B ⁏ Λ ⊢ C ◎ x → Γ , B , A ⁏ Λ ⊢ C ◎ x exch t = det (det (app cexch (lam (lam t)))) -- Composition, or Schönfinkel’s B combinator. ccomp : ∀ {x A B C Γ Λ} → Γ ⁏ Λ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ◎ x ccomp = lam (lam (lam (app v₂ (app v₁ v₀)))) comp : ∀ {x A B C Γ Λ} → Γ , B ⁏ Λ ⊢ C ◎ x → Γ , A ⁏ Λ ⊢ B ◎ x → Γ , A ⁏ Λ ⊢ C ◎ x comp t u = det (app (app ccomp (lam t)) (lam u)) -- Useful theorems in functional form. dist : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ □ (A ▻ B) ◎ x → Γ ⁏ Λ ⊢ □ A ◎ x → Γ ⁏ Λ ⊢ □ B ◎ x dist t u = scan (app (move (rmono⊢ weak⊆ t) rv₀) (move (rmono⊢ weak⊆ u) rv₀)) up : ∀ {x A Γ Λ} → Γ ⁏ Λ ⊢ □ A ◎ x → Γ ⁏ Λ ⊢ □ □ A ◎ x up t = scan (scan (move (rmono⊢ (trans⊆ weak⊆ weak⊆) t) (rtrans rv₁ rv₀))) down : ∀ {x A Γ Λ} → Γ ⁏ Λ ⊢ □ A ◎ x → Γ ⁏ Λ ⊢ A ◎ x down t = move t rrefl distup : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ □ (□ A ▻ B) ◎ x → Γ ⁏ Λ ⊢ □ A ◎ x → Γ ⁏ Λ ⊢ □ B ◎ x distup t u = dist t (up u) box : ∀ {x A Γ Λ} → (∀ {y} → ∅ ⁏ Λ , x ↝ y ⊢ A ◎ y) → Γ ⁏ Λ ⊢ □ A ◎ x box t = scan (mono⊢ bot⊆ t) unbox : ∀ {x A C Γ Λ} → Γ ⁏ Λ ⊢ □ A ◎ x → Γ , □ A ⁏ Λ ⊢ C ◎ x → Γ ⁏ Λ ⊢ C ◎ x unbox t u = app (lam u) t -- Useful theorems in combinatory form. ci : ∀ {x A Γ Λ} → Γ ⁏ Λ ⊢ A ▻ A ◎ x ci = lam v₀ ck : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ▻ B ▻ A ◎ x ck = lam (lam v₁) cs : ∀ {x A B C Γ Λ} → Γ ⁏ Λ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ◎ x cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀)))) cdist : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ □ (A ▻ B) ▻ □ A ▻ □ B ◎ x cdist = lam (lam (scan (app (move v₁ rv₀) (move v₀ rv₀)))) cup : ∀ {x A Γ Λ} → Γ ⁏ Λ ⊢ □ A ▻ □ □ A ◎ x cup = lam (scan (scan (move v₀ (rtrans rv₁ rv₀)))) cdown : ∀ {x A Γ Λ} → Γ ⁏ Λ ⊢ □ A ▻ A ◎ x cdown = lam (move v₀ rrefl) cdistup : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ □ (□ A ▻ B) ▻ □ A ▻ □ B ◎ x cdistup = lam (lam (app (app cdist v₁) (app cup v₀))) cunbox : ∀ {x A C Γ Λ} → Γ ⁏ Λ ⊢ □ A ▻ (□ A ▻ C) ▻ C ◎ x cunbox = lam (lam (app v₀ v₁)) cpair : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ▻ B ▻ A ∧ B ◎ x cpair = lam (lam (pair v₁ v₀)) cfst : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ∧ B ▻ A ◎ x cfst = lam (fst v₀) csnd : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ∧ B ▻ B ◎ x csnd = lam (snd v₀) -- Internalisation, or lifting, and additional theorems. lift : ∀ {Γ x A Λ} → (∀ {y} → Γ ⁏ Λ , x ↝ y ⊢ A ◎ y) → □⋆ Γ ⁏ Λ ⊢ □ A ◎ x lift {∅} t = box t lift {Γ , B} t = det (app cdist (lift (lam t))) hypup : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ A ▻ B ◎ x → Γ ⁏ Λ ⊢ □ A ▻ B ◎ x hypup t = lam (app (mono⊢ weak⊆ t) (down v₀)) hypdown : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ □ □ A ▻ B ◎ x → Γ ⁏ Λ ⊢ □ A ▻ B ◎ x hypdown t = lam (app (mono⊢ weak⊆ t) (up v₀)) cxup : ∀ {Γ x A Λ} → Γ ⁏ Λ ⊢ A ◎ x → □⋆ Γ ⁏ Λ ⊢ A ◎ x cxup {∅} t = t cxup {Γ , B} t = det (hypup (cxup (lam t))) cxdown : ∀ {Γ x A Λ} → □⋆ □⋆ Γ ⁏ Λ ⊢ A ◎ x → □⋆ Γ ⁏ Λ ⊢ A ◎ x cxdown {∅} t = t cxdown {Γ , B} t = det (hypdown (cxdown (lam t))) box⋆ : ∀ {Ξ x Γ Λ} → (∀ {y} → ∅ ⁏ Λ , x ↝ y ⊢⋆ Ξ ◎⋆ y) → Γ ⁏ Λ ⊢⋆ □⋆ Ξ ◎⋆ x box⋆ {∅} f = ∙ box⋆ {Ξ , A} f = box⋆ (π₁ f) , box (π₂ f) lift⋆ : ∀ {Ξ x Γ Λ} → (∀ {y} → Γ ⁏ Λ , x ↝ y ⊢⋆ Ξ ◎⋆ y) → □⋆ Γ ⁏ Λ ⊢⋆ □⋆ Ξ ◎⋆ x lift⋆ {∅} f = ∙ lift⋆ {Ξ , A} f = lift⋆ (π₁ f) , lift (π₂ f) up⋆ : ∀ {Ξ x Γ Λ} → Γ ⁏ Λ ⊢⋆ □⋆ Ξ ◎⋆ x → Γ ⁏ Λ ⊢⋆ □⋆ □⋆ Ξ ◎⋆ x up⋆ {∅} f = ∙ up⋆ {Ξ , A} f = up⋆ (π₁ f) , up (π₂ f) down⋆ : ∀ {Ξ x Γ Λ} → Γ ⁏ Λ ⊢⋆ □⋆ Ξ ◎⋆ x → Γ ⁏ Λ ⊢⋆ Ξ ◎⋆ x down⋆ {∅} f = ∙ down⋆ {Ξ , A} f = down⋆ (π₁ f) , down (π₂ f) multibox : ∀ {Ξ x A Γ Λ} → Γ ⁏ Λ ⊢⋆ □⋆ Ξ ◎⋆ x → (∀ {y} → □⋆ Ξ ⁏ ∅ , x ↝ y ⊢ A ◎ y) → Γ ⁏ Λ ⊢ □ A ◎ x multibox ts u = multicut (up⋆ ts) (rmono⊢ bot⊆ (lift u)) dist′ : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ □ (A ▻ B) ◎ x → Γ ⁏ Λ ⊢ □ A ▻ □ B ◎ x dist′ t = lam (dist (mono⊢ weak⊆ t) v₀) mpair : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ □ A ◎ x → Γ ⁏ Λ ⊢ □ B ◎ x → Γ ⁏ Λ ⊢ □ (A ∧ B) ◎ x mpair t u = scan (pair (move (rmono⊢ weak⊆ t) rv₀) (move (rmono⊢ weak⊆ u) rv₀)) mfst : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ □ (A ∧ B) ◎ x → Γ ⁏ Λ ⊢ □ A ◎ x mfst t = scan (fst (move (rmono⊢ weak⊆ t) rv₀)) msnd : ∀ {x A B Γ Λ} → Γ ⁏ Λ ⊢ □ (A ∧ B) ◎ x → Γ ⁏ Λ ⊢ □ B ◎ x msnd t = scan (snd (move (rmono⊢ weak⊆ t) rv₀)) -- Closure under context concatenation. concat : ∀ {x A B Γ} Γ′ {Λ} → Γ , A ⁏ Λ ⊢ B ◎ x → Γ′ ⁏ Λ ⊢ A ◎ x → Γ ⧺ Γ′ ⁏ Λ ⊢ B ◎ x concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u) -- TODO: Substitution. -- [_≔_]_ : ∀ {x A B Γ Λ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Λ ⊢ A ◎ x → Γ ⁏ Λ ⊢ B ◎ x → Γ ∖ i ⁏ Λ ⊢ B ◎ x -- [ i ≔ s ] var j with i ≟∈ j -- [ i ≔ s ] var .i | same = s -- [ i ≔ s ] var ._ | diff j = var j -- [ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t) -- [ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u) -- [ i ≔ s ] scan t = scan {![ i ≔ rmono⊢ weak⊆ s ] t!} -- [ i ≔ s ] move t u = move {![ i ≔ s ] t!} u -- [ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u) -- [ i ≔ s ] fst t = fst ([ i ≔ s ] t) -- [ i ≔ s ] snd t = snd ([ i ≔ s ] t) -- [ i ≔ s ] unit = unit -- TODO: Convertibility.
{ "alphanum_fraction": 0.4324589842, "avg_line_length": 29.5901162791, "ext": "agda", "hexsha": "c186125ffeb454fc92721b28a3e4212d0cc56e6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIS4/Syntax/LabelledGentzen.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIS4/Syntax/LabelledGentzen.agda", "max_line_length": 100, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIS4/Syntax/LabelledGentzen.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 6143, "size": 10179 }
A : {!!} A a = Set -- Display constraints (C-c C-=): -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Interaction/BasicOps.hs:457
{ "alphanum_fraction": 0.688172043, "avg_line_length": 26.5714285714, "ext": "agda", "hexsha": "e79a3a2997810663bb54cfb12daca1ad5d1fed83", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3503.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3503.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3503.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 52, "size": 186 }
open import Common.Product open import Agda.Builtin.Equality data ⊥ : Set where record Empty : Set where field absurdity : ⊥ magic₁ : Empty → ⊥ magic₁ () record EmptyIrr : Set where field .absurdity : ⊥ magic₂ : EmptyIrr → ⊥ magic₂ () test : ∀ x y → magic₂ x ≡ magic₂ y test x y = refl postulate whatever : Set magic₃ : Σ ⊥ (λ _ → whatever) → ⊥ magic₃ () magic₄ : Σ whatever (λ _ → ⊥) → ⊥ magic₄ () data D : whatever → Set where magic₅ : Σ whatever D → ⊥ magic₅ ()
{ "alphanum_fraction": 0.64375, "avg_line_length": 14.5454545455, "ext": "agda", "hexsha": "62e3e805395394d876beecf4ab6d604f864eb3c1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/EtaExpandEmptyRecord.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/EtaExpandEmptyRecord.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/EtaExpandEmptyRecord.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 172, "size": 480 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Group open import lib.types.Lift open import lib.groups.Homomorphism open import lib.groups.Isomorphism module lib.groups.Lift where Lift-group-structure : ∀ {i j} {A : Type i} → GroupStructure A → GroupStructure (Lift {j = j} A) Lift-group-structure GS = record { ident = lift ident ; inv = λ {(lift x) → lift (inv x)} ; comp = λ {(lift x) (lift y) → lift (comp x y)} ; unit-l = λ {(lift y) → ap lift (unit-l y)} ; assoc = λ {(lift x) (lift y) (lift z) → ap lift (assoc x y z)} ; inv-l = λ {(lift x) → ap lift (inv-l x)} } where open GroupStructure GS Lift-group : ∀ {i j} → Group i → Group (lmax i j) Lift-group {j = j} G = group (Lift {j = j} El) (Lift-level El-level) (Lift-group-structure group-struct) where open Group G lift-hom : ∀ {i j} {G : Group i} → (G →ᴳ Lift-group {j = j} G) lift-hom = group-hom lift (λ _ _ → idp) lower-hom : ∀ {i j} {G : Group i} → (Lift-group {j = j} G →ᴳ G) lower-hom = group-hom lower (λ _ _ → idp) lift-iso : ∀ {i j} {G : Group i} → (G ≃ᴳ Lift-group {j = j} G) lift-iso = lift-hom , snd lift-equiv lower-iso : ∀ {i j} {G : Group i} → (Lift-group {j = j} G ≃ᴳ G) lower-iso = lower-hom , snd lower-equiv Lift-group-is-abelian : ∀ {i j} (G : Group i) → is-abelian G → is-abelian (Lift-group {j = j} G) Lift-group-is-abelian G comm (lift g₁) (lift g₂) = ap lift (comm g₁ g₂) Lift-abgroup : ∀ {i j} (G : AbGroup i) → AbGroup (lmax i j) Lift-abgroup {j = j} G = Lift-group {j = j} (AbGroup.grp G) , Lift-group-is-abelian (AbGroup.grp G) (AbGroup.comm G)
{ "alphanum_fraction": 0.6017156863, "avg_line_length": 35.4782608696, "ext": "agda", "hexsha": "02e7ff7fa2f368c9bc5b109183c2a1b1a1e36627", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/Lift.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/Lift.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/Lift.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 598, "size": 1632 }
-- Andreas, 2019-04-10, issue #3689, reported by andrejtokarcik -- Regression introduced by #3533 (dropping trivially impossible clauses -- during case-splitting). -- {-# OPTIONS -v interaction.case:100 #-} -- {-# OPTIONS -v tc.cover:100 #-} data _≡_ {A : Set} (a : A) : A → Set where refl : a ≡ a record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A snd : B fst record R (A : Set) : Set where field π : A fun : {A : Set} (xyz : Σ (R A) λ r → Σ (R.π r ≡ R.π r) λ _ → R.π r ≡ R.π r) → Set fun (x , y) = {!y !} -- C-c C-c -- WAS: internal error. -- Should succeed.
{ "alphanum_fraction": 0.5730706076, "avg_line_length": 22.5555555556, "ext": "agda", "hexsha": "2830d8e66efc2349cd389604d859f42f2e7ec22b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3689.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3689.agda", "max_line_length": 81, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3689.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 227, "size": 609 }
-- Andreas, 2020-05-19, issue #4157, reported by nad -- In old-style mutual blocks, it should be possible to have -- several anonymous definitions. open import Agda.Builtin.Equality mutual _ : Set₁ _ = Set _ : Set → Set _ = λ A → A mutual F : Set → Set F = _ _ : F ≡ λ A → A _ = refl G : Set → Set G = _ _ : G ≡ λ A → A → A _ = refl -- Should pass
{ "alphanum_fraction": 0.5744125326, "avg_line_length": 12.3548387097, "ext": "agda", "hexsha": "6eed04d296d65f14a9e918e8d7f46092c29aca28", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4157.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4157.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4157.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 140, "size": 383 }
module LocalOpenImplicit where record Id (a : Set) : Set where field id : a -> a foo : {a b : Set} -> Id a -> Id b -> (a -> b) -> a -> b foo id1 id2 f x = id id2 (f (id id1 x)) where open Id
{ "alphanum_fraction": 0.5505050505, "avg_line_length": 19.8, "ext": "agda", "hexsha": "96094cdd05ea602ff79a1ef58f06eb9d17c53e15", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/LocalOpenImplicit.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/LocalOpenImplicit.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/LocalOpenImplicit.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 74, "size": 198 }
module _ where postulate C : Set → Set A : Set i : C A foo : {X : Set} {{_ : C X}} → X -- Let bindings need to be declared 'instance' to be eligible. bar : A bar = let z = i in foo
{ "alphanum_fraction": 0.5729166667, "avg_line_length": 14.7692307692, "ext": "agda", "hexsha": "6be2b948474c580f57a57526ca081c0fda23686f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/LetInstance.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/LetInstance.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/LetInstance.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 70, "size": 192 }
-------------------------------------------------------------------------------- -- Author : Bradley Hardy -------------------------------------------------------------------------------- -- The first exercise from the ACS Algebraic Path Problems course, taught by -- Timothy Griffin -- -- Final proofs of 'fun fun facts' are at the bottom of the file; the rest -- consists of definitions and supplementary proofs. -------------------------------------------------------------------------------- module MLib.Lattices {ℓ} {S : Set ℓ} where open import Matrix.Prelude open import Function using (flip) open Algebra.FunctionProperties (_≡_ {A = S}) using (Associative; Idempotent; Commutative) module OperatorProperties (_∙_ : S → S → S) where _≤L_ = λ a b → a ≡ a ∙ b _≤R_ = λ a b → b ≡ a ∙ b -- open OperatorProperties using (Associative; Idempotent; Commutative) -------------------------------------------------------------------------------- -- Semigroups -------------------------------------------------------------------------------- record IsCISemigroup (_∙_ : S → S → S) : Set ℓ where field isAssociative : Associative _∙_ isIdempotent : Idempotent _∙_ isCommutative : Commutative _∙_ open OperatorProperties _∙_ public ≤L→flip≤R : ∀ {x y} → x ≤L y → y ≤R x ≤L→flip≤R p = ≡.trans p (isCommutative _ _) ≤R→flip≤L : ∀ {x y} → x ≤R y → y ≤L x ≤R→flip≤L p = ≡.trans p (isCommutative _ _) ≤L-isPartialOrder : IsPartialOrder _≡_ _≤L_ ≤L-isPartialOrder = record { isPreorder = record { isEquivalence = ≡.isEquivalence ; reflexive = λ {i j} p → begin i ≡⟨ ≡.sym (isIdempotent _) ⟩ i ∙ i ≡⟨ ≡.cong₂ _∙_ ≡.refl p ⟩ i ∙ j ∎ ; trans = λ {i j k} p q → begin i ≡⟨ p ⟩ i ∙ j ≡⟨ ≡.cong₂ _∙_ ≡.refl q ⟩ i ∙ (j ∙ k) ≡⟨ ≡.sym (isAssociative _ _ _) ⟩ (i ∙ j) ∙ k ≡⟨ ≡.cong₂ _∙_ (≡.sym p) ≡.refl ⟩ i ∙ k ∎ } ; antisym = λ {x y} p q → begin x ≡⟨ p ⟩ x ∙ y ≡⟨ isCommutative _ _ ⟩ y ∙ x ≡⟨ ≡.sym q ⟩ y ∎ } where open ≡.≡-Reasoning -- Prove this by deferring to ≤L-isPartialOrder and taking advantage of the -- fact that _≤L_ and _≤R_ are dual. ≤R-isPartialOrder : IsPartialOrder _≡_ _≤R_ ≤R-isPartialOrder = record { isPreorder = record { isEquivalence = ≡.isEquivalence ; reflexive = λ p → fromL (≤L.reflexive (≡.sym p)) ; trans = λ {i j k} p q → fromL (≤L.trans (toL q) (toL p)) } ; antisym = λ {x y} p q → ≤L.antisym (toL q) (toL p) } where module ≤L = IsPartialOrder ≤L-isPartialOrder fromL = ≤L→flip≤R toL = ≤R→flip≤L -------------------------------------------------------------------------------- -- (Greatest) lower and (least) upper bounds -------------------------------------------------------------------------------- record IsLowerBound (_≤_ : S → S → Set ℓ) (c a b : S) : Set ℓ where field ≤L : c ≤ a ≤R : c ≤ b record IsGlb (_≤_ : S → S → Set ℓ) (c a b : S) : Set ℓ where field isLowerBound : IsLowerBound _≤_ c a b isGreatest : ∀ {d} → d ≤ a → d ≤ b → d ≤ c open IsLowerBound isLowerBound public record IsUpperBound (_≤_ : S → S → Set ℓ) (c a b : S) : Set ℓ where field L≤ : a ≤ c R≤ : b ≤ c record IsLub (_≤_ : S → S → Set ℓ) (c a b : S) : Set ℓ where field isUpperBound : IsUpperBound _≤_ c a b isLeast : ∀ {d} → a ≤ d → b ≤ d → c ≤ d open IsUpperBound isUpperBound public -- A least upper bound is a greatest lower bound with respect to the reversed -- order. flipGlb : IsGlb (flip _≤_) c a b flipGlb = record { isLowerBound = record { ≤L = L≤ ; ≤R = R≤ } ; isGreatest = isLeast } module IsGlbProperties {≤ c a b} (isGlb : IsGlb ≤ c a b) where open IsGlb isGlb public sym : IsGlb ≤ c b a sym = record { isLowerBound = record { ≤L = ≤R ; ≤R = ≤L } ; isGreatest = λ x y → isGreatest y x } -- A greatest lower bound is a least upper bound with respect to the reversed -- order. flipLub : IsLub (flip ≤) c a b flipLub = record { isUpperBound = record { L≤ = ≤L ; R≤ = ≤R } ; isLeast = isGreatest } module PartialOrderProperties (_≤_ : S → S → Set ℓ) (isPartialOrder : IsPartialOrder _≡_ _≤_) where module ≤ = IsPartialOrder isPartialOrder IsGlb-self : ∀ {a} → IsGlb _≤_ a a a IsGlb-self = record { isLowerBound = record { ≤L = ≤.refl ; ≤R = ≤.refl } ; isGreatest = λ x y → x } -- In a partial order, there is at most one greatest lower bound for any given -- pair of values. IsGlb-unique : ∀ {a b c} → IsGlb _≤_ c a b → ∀ {d} → IsGlb _≤_ d a b → c ≡ d IsGlb-unique p q = ≤.antisym (IsGlb.isGreatest q (IsGlb.≤L p) (IsGlb.≤R p)) (IsGlb.isGreatest p (IsGlb.≤L q) (IsGlb.≤R q)) flipIsPartialOrder : IsPartialOrder _≡_ (flip _≤_) flipIsPartialOrder = record { isPreorder = record { isEquivalence = ≡.isEquivalence ; reflexive = λ p → ≤.reflexive (≡.sym p) ; trans = flip ≤.trans } ; antisym = flip ≤.antisym } -------------------------------------------------------------------------------- -- Semilattices -------------------------------------------------------------------------------- record IsMeetSemilattice (_≤_ : S → S → Set ℓ) (_⊓_ : S → S → S) : Set ℓ where field isPartialOrder : IsPartialOrder _≡_ _≤_ isGlb : ∀ {a b} → IsGlb _≤_ (a ⊓ b) a b open PartialOrderProperties _≤_ isPartialOrder public module This {a b} = IsGlbProperties (isGlb {a} {b}) open This public -- In a meet semilattice, the only greatest lower bound of any pair 'a' and -- 'b' is 'a ⊓ b'. glb-intro : ∀ {c a b} → IsGlb _≤_ c a b → c ≡ a ⊓ b glb-intro p = IsGlb-unique p isGlb module CISemigroup where isCommutative : Commutative _⊓_ isCommutative _ _ = glb-intro (IsGlbProperties.sym isGlb) isIdempotent : Idempotent _⊓_ isIdempotent _ = ≡.sym (glb-intro IsGlb-self) isAssociative : Associative _⊓_ isAssociative a b c = let d = (a ⊓ b) ⊓ c d≤a : d ≤ a d≤a = ≤.trans ≤L ≤L d≤b : d ≤ b d≤b = ≤.trans ≤L ≤R d≤c : d ≤ c d≤c = ≤R d≤b⊓c : d ≤ (b ⊓ c) d≤b⊓c = isGreatest d≤b d≤c d-greatest : ∀ {d′} → d′ ≤ a → d′ ≤ b → d′ ≤ c → d′ ≤ d d-greatest p q r = isGreatest (isGreatest p q) r in glb-intro ( record { isLowerBound = record { ≤L = ≤.trans ≤L ≤L ; ≤R = d≤b⊓c} ; isGreatest = λ p q → d-greatest p (≤.trans q ≤L) (≤.trans q ≤R) }) -- A meet semilattic is also a commutative idempotent semigroup isCISemigroup : IsCISemigroup _⊓_ isCISemigroup = record { CISemigroup } record IsJoinSemilattice (≤ : S → S → Set ℓ) (_⊔_ : S → S → S) : Set ℓ where field isPartialOrder : IsPartialOrder _≡_ ≤ isLub : ∀ {a b} → IsLub ≤ (a ⊔ b) a b open PartialOrderProperties ≤ isPartialOrder public module This {a b} = IsLub (isLub {a} {b}) open This -- A join semilattice is a meet semilattice with respect to the reversed order flipIsMeetSemilattice : IsMeetSemilattice (flip ≤) _⊔_ flipIsMeetSemilattice = record { isPartialOrder = flipIsPartialOrder ; isGlb = flipGlb } -- A join semilattice is also a commutative idempotent semigroup open IsMeetSemilattice flipIsMeetSemilattice using (isCISemigroup) public module MeetSemilatticeProperties {≤ ⊓} (isMeetSemilattice : IsMeetSemilattice ≤ ⊓) where open IsMeetSemilattice isMeetSemilattice -- A meet semilattice is a join semilattice with respect to the reversed order flipIsJoinSemilattice : IsJoinSemilattice (flip ≤) ⊓ flipIsJoinSemilattice = record { isPartialOrder = flipIsPartialOrder ; isLub = flipLub } -------------------------------------------------------------------------------- -- Proofs of fun fun facts -------------------------------------------------------------------------------- -- Commutative idempotent semigroups create meet and join semilattices from -- their left and right natural orders respectively. module FunFunFact1 {_∙_ : S → S → S} (isCISemigroup : IsCISemigroup _∙_) where open IsCISemigroup isCISemigroup funFunFact1Meet : IsMeetSemilattice _≤L_ _∙_ funFunFact1Meet = record { isPartialOrder = ≤L-isPartialOrder ; isGlb = λ {a b} → record { isLowerBound = record { ≤L = begin a ∙ b ≡⟨ ≡.cong₂ _∙_ (≡.sym (isIdempotent _)) ≡.refl ⟩ (a ∙ a) ∙ b ≡⟨ isAssociative _ _ _ ⟩ a ∙ (a ∙ b) ≡⟨ isCommutative _ _ ⟩ (a ∙ b) ∙ a ∎ ; ≤R = begin a ∙ b ≡⟨ ≡.cong₂ _∙_ ≡.refl (≡.sym (isIdempotent _)) ⟩ a ∙ (b ∙ b) ≡⟨ ≡.sym (isAssociative _ _ _) ⟩ (a ∙ b) ∙ b ∎ } ; isGreatest = λ {d} p q → begin d ≡⟨ ≡.sym (isIdempotent _) ⟩ d ∙ d ≡⟨ ≡.cong₂ _∙_ p q ⟩ (d ∙ a) ∙ (d ∙ b) ≡⟨ isAssociative _ _ _ ⟩ d ∙ (a ∙ (d ∙ b)) ≡⟨ ≡.cong₂ _∙_ ≡.refl (≡.sym (isAssociative _ _ _)) ⟩ d ∙ ((a ∙ d) ∙ b) ≡⟨ ≡.cong₂ _∙_ ≡.refl (≡.cong₂ _∙_ (isCommutative _ _) ≡.refl) ⟩ d ∙ ((d ∙ a) ∙ b) ≡⟨ ≡.cong₂ _∙_ ≡.refl (isAssociative _ _ _) ⟩ d ∙ (d ∙ (a ∙ b)) ≡⟨ ≡.sym (isAssociative _ _ _) ⟩ (d ∙ d) ∙ (a ∙ b) ≡⟨ ≡.cong₂ _∙_ (isIdempotent _) ≡.refl ⟩ d ∙ (a ∙ b) ∎ } } where open ≡.≡-Reasoning -- Prove for join by symmetry with meet funFunFact1Join : IsJoinSemilattice _≤R_ _∙_ funFunFact1Join = record { isPartialOrder = ≤R-isPartialOrder ; isLub = λ {a b} → record { isUpperBound = record { L≤ = fromL Meet.≤L ; R≤ = fromL Meet.≤R } ; isLeast = λ {d} p q → fromL (Meet.isGreatest (toL p) (toL q)) } } where open ≡.≡-Reasoning module Meet = IsMeetSemilattice funFunFact1Meet toL = ≤R→flip≤L fromL = ≤L→flip≤R -- Semilattices are commutative idempotent semigroups module FunFunFact2 {≤ : S → S → Set ℓ} where funFunFact2Meet : ∀ {⊓} → IsMeetSemilattice ≤ ⊓ → IsCISemigroup ⊓ funFunFact2Meet ijs = isCISemigroup where open IsMeetSemilattice ijs -- Note this is using 'isCISemigroup' from the flipped /meet/ semilattice. funFunFact2Join : ∀ {⊔} → IsJoinSemilattice ≤ ⊔ → IsCISemigroup ⊔ funFunFact2Join ijs = isCISemigroup where open IsJoinSemilattice ijs
{ "alphanum_fraction": 0.513400335, "avg_line_length": 32.5636363636, "ext": "agda", "hexsha": "4985295ad157a9df38c7a28ca33b0d18d8da9e9b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Lattices.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Lattices.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Lattices.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3843, "size": 10746 }
{-# OPTIONS --rewriting #-} module Luau.OpSem where open import Agda.Builtin.Equality using (_≡_) open import Agda.Builtin.Float using (Float; primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv; primFloatEquality; primFloatLess; primFloatInequality) open import Agda.Builtin.Bool using (Bool; true; false) open import Agda.Builtin.String using (primStringEquality; primStringAppend) open import Utility.Bool using (not; _or_; _and_) open import Agda.Builtin.Nat using () renaming (_==_ to _==ᴬ_) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Heap using (Heap; _≡_⊕_↦_; _[_]; function_is_end) open import Luau.Substitution using (_[_/_]ᴮ) open import Luau.Syntax using (Value; Expr; Stat; Block; nil; addr; val; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; fun; arg; binexp; BinaryOperator; +; -; *; /; <; >; ==; ~=; <=; >=; ··; number; bool; string) open import Luau.RuntimeType using (RuntimeType; valueType) open import Properties.Product using (_×_; _,_) evalEqOp : Value → Value → Bool evalEqOp Value.nil Value.nil = true evalEqOp (addr x) (addr y) = (x ==ᴬ y) evalEqOp (number x) (number y) = primFloatEquality x y evalEqOp (bool true) (bool y) = y evalEqOp (bool false) (bool y) = not y evalEqOp _ _ = false evalNeqOp : Value → Value → Bool evalNeqOp (number x) (number y) = primFloatInequality x y evalNeqOp x y = not (evalEqOp x y) data _⟦_⟧_⟶_ : Value → BinaryOperator → Value → Value → Set where + : ∀ m n → (number m) ⟦ + ⟧ (number n) ⟶ number (primFloatPlus m n) - : ∀ m n → (number m) ⟦ - ⟧ (number n) ⟶ number (primFloatMinus m n) / : ∀ m n → (number m) ⟦ / ⟧ (number n) ⟶ number (primFloatTimes m n) * : ∀ m n → (number m) ⟦ * ⟧ (number n) ⟶ number (primFloatDiv m n) < : ∀ m n → (number m) ⟦ < ⟧ (number n) ⟶ bool (primFloatLess m n) > : ∀ m n → (number m) ⟦ > ⟧ (number n) ⟶ bool (primFloatLess n m) <= : ∀ m n → (number m) ⟦ <= ⟧ (number n) ⟶ bool ((primFloatLess m n) or (primFloatEquality m n)) >= : ∀ m n → (number m) ⟦ >= ⟧ (number n) ⟶ bool ((primFloatLess n m) or (primFloatEquality m n)) == : ∀ v w → v ⟦ == ⟧ w ⟶ bool (evalEqOp v w) ~= : ∀ v w → v ⟦ ~= ⟧ w ⟶ bool (evalNeqOp v w) ·· : ∀ x y → (string x) ⟦ ·· ⟧ (string y) ⟶ string (primStringAppend x y) data _⊢_⟶ᴮ_⊣_ {a} : Heap a → Block a → Block a → Heap a → Set data _⊢_⟶ᴱ_⊣_ {a} : Heap a → Expr a → Expr a → Heap a → Set data _⊢_⟶ᴱ_⊣_ where function : ∀ a {H H′ F B} → H′ ≡ H ⊕ a ↦ (function F is B end) → ------------------------------------------- H ⊢ (function F is B end) ⟶ᴱ val(addr a) ⊣ H′ app₁ : ∀ {H H′ M M′ N} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → ----------------------------- H ⊢ (M $ N) ⟶ᴱ (M′ $ N) ⊣ H′ app₂ : ∀ v {H H′ N N′} → H ⊢ N ⟶ᴱ N′ ⊣ H′ → ----------------------------- H ⊢ (val v $ N) ⟶ᴱ (val v $ N′) ⊣ H′ beta : ∀ O v {H a F B} → (O ≡ function F is B end) → H [ a ] ≡ just(O) → ----------------------------------------------------------------------------- H ⊢ (val (addr a) $ val v) ⟶ᴱ (block (fun F) is (B [ v / name(arg F) ]ᴮ) end) ⊣ H block : ∀ {H H′ B B′ b} → H ⊢ B ⟶ᴮ B′ ⊣ H′ → ---------------------------------------------------- H ⊢ (block b is B end) ⟶ᴱ (block b is B′ end) ⊣ H′ return : ∀ v {H B b} → -------------------------------------------------------- H ⊢ (block b is return (val v) ∙ B end) ⟶ᴱ val v ⊣ H done : ∀ {H b} → -------------------------------------------- H ⊢ (block b is done end) ⟶ᴱ (val nil) ⊣ H binOp₀ : ∀ {H op v₁ v₂ w} → v₁ ⟦ op ⟧ v₂ ⟶ w → -------------------------------------------------- H ⊢ (binexp (val v₁) op (val v₂)) ⟶ᴱ (val w) ⊣ H binOp₁ : ∀ {H H′ x x′ op y} → H ⊢ x ⟶ᴱ x′ ⊣ H′ → --------------------------------------------- H ⊢ (binexp x op y) ⟶ᴱ (binexp x′ op y) ⊣ H′ binOp₂ : ∀ {H H′ x op y y′} → H ⊢ y ⟶ᴱ y′ ⊣ H′ → --------------------------------------------- H ⊢ (binexp x op y) ⟶ᴱ (binexp x op y′) ⊣ H′ data _⊢_⟶ᴮ_⊣_ where local : ∀ {H H′ x M M′ B} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → ------------------------------------------------- H ⊢ (local x ← M ∙ B) ⟶ᴮ (local x ← M′ ∙ B) ⊣ H′ subst : ∀ v {H x B} → ------------------------------------------------------ H ⊢ (local x ← val v ∙ B) ⟶ᴮ (B [ v / name x ]ᴮ) ⊣ H function : ∀ a {H H′ F B C} → H′ ≡ H ⊕ a ↦ (function F is C end) → -------------------------------------------------------------- H ⊢ (function F is C end ∙ B) ⟶ᴮ (B [ addr a / name(fun F) ]ᴮ) ⊣ H′ return : ∀ {H H′ M M′ B} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → -------------------------------------------- H ⊢ (return M ∙ B) ⟶ᴮ (return M′ ∙ B) ⊣ H′ data _⊢_⟶*_⊣_ {a} : Heap a → Block a → Block a → Heap a → Set where refl : ∀ {H B} → ---------------- H ⊢ B ⟶* B ⊣ H step : ∀ {H H′ H″ B B′ B″} → H ⊢ B ⟶ᴮ B′ ⊣ H′ → H′ ⊢ B′ ⟶* B″ ⊣ H″ → ------------------ H ⊢ B ⟶* B″ ⊣ H″
{ "alphanum_fraction": 0.4507667474, "avg_line_length": 34.4166666667, "ext": "agda", "hexsha": "1f616c7e0830803ed5b3e9d7b3304da8006f3152", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Luau/OpSem.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Luau/OpSem.agda", "max_line_length": 242, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Luau/OpSem.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 1924, "size": 4956 }
module Numeric.Nat.Prime where open import Prelude hiding (less-antirefl) open import Numeric.Nat.GCD open import Numeric.Nat.Divide open import Numeric.Nat.Divide.Properties open import Numeric.Nat.DivMod open import Numeric.Nat.Sqrt open import Numeric.Nat.Properties open import Tactic.Nat data Prime (n : Nat) : Set where prime : n > 1 → (∀ k → k Divides n → Either (k ≡ 1) (k ≡ n)) → Prime n private lem : (a b : Nat) → b > 1 → suc a < suc a * b lem a .(suc (k + 1)) (diff! k) = auto data Composite (n : Nat) : Set where composite : ∀ a b → a > 1 → b > 1 → a * b ≡ n → Composite n pattern composite! a b 1<a 1<b = composite a b 1<a 1<b refl composite-not-prime : ∀ {n} → Composite n → Prime n → ⊥ composite-not-prime (composite! 0 b (diff _ ()) _) composite-not-prime (composite! (suc a) b sa>1 b>1) (prime _ f) = case f (suc a) (divides-mul-l b divides-refl) of λ { (left sa=1) → less-antirefl sa>1 (sym sa=1) ; (right sa=sab) → less-antirefl (lem a b b>1) sa=sab } data Prime? n : Set where yes : Prime n → Prime? n no : Composite n → Prime? n tiny : LessNat n 2 → Prime? n private less-inv : ∀ {a b} → ¬ LessNat a b → LessNat b (suc a) less-inv {a} {b} a≮b with compare a b less-inv a≮b | less a<b = ⊥-elim (a≮b a<b) less-inv a≮b | equal refl = diff! 0 less-inv a≮b | greater a>b = by a>b data _∈[_,_] (n a b : Nat) : Set where in-range : a ≤ n → n ≤ b → n ∈[ a , b ] empty-range : ∀ {n a b} → a > b → ¬ (n ∈[ a , b ]) empty-range a>b (in-range a≤n n≤b) = less-not-geq a>b (a≤n ⟨≤⟩ n≤b) below-range : ∀ {n a b} → n < a → ¬ (n ∈[ a , b ]) below-range n<a (in-range a≤n _) = less-not-geq n<a a≤n range-lower-bound : ∀ {n a b} → n ∈[ a , b ] → a ≤ n range-lower-bound (in-range a<n _) = a<n range-upper-bound : ∀ {n a b} → n ∈[ a , b ] → n ≤ b range-upper-bound (in-range _ n<b) = n<b singleton-range : ∀ {n a} → n ∈[ a , a ] → a ≡ n singleton-range (in-range a<n n<a) = leq-antisym a<n n<a suc-range-r : ∀ {n a b} → n ∈[ a , b ] → n ∈[ a , suc b ] suc-range-r (in-range a<n n<b) = in-range a<n (by n<b) suc-range-l : ∀ {n a b} → n ∈[ suc a , b ] → n ∈[ a , b ] suc-range-l (in-range a<n n<b) = in-range (by a<n) n<b in-range-l : ∀ {a b} → a ≤ b → a ∈[ a , b ] in-range-l a<b = in-range (diff! 0) a<b in-range-r : ∀ {a b} → a ≤ b → b ∈[ a , b ] in-range-r a<b = in-range a<b (diff! 0) non-zero-range : ∀ {n a b} → n ∈[ suc a , b ] → NonZero n non-zero-range {zero} {a} (in-range (diff k eq) _) = refute eq non-zero-range {suc _} _ = _ erase-in-range : ∀ {n a b} → n ∈[ a , b ] → n ∈[ a , b ] erase-in-range r = in-range (fast-diff (range-lower-bound r)) (fast-diff (range-upper-bound r)) data _∈[_,_]? k a b : Set where inside : k ∈[ a , b ] → k ∈[ a , b ]? below : k < a → k ∈[ a , b ]? above : k > b → k ∈[ a , b ]? cmp-leq : (a b : Nat) → Either (a < b) (b ≤ a) cmp-leq a b with compare a b cmp-leq a b | less a<b = left a<b cmp-leq a b | equal a=b = right (diff 0 (cong suc a=b)) cmp-leq a b | greater a>b = right (by a>b) in-range? : ∀ k a b → k ∈[ a , b ]? in-range? k a b with cmp-leq k a in-range? k a b | left k<a = below k<a in-range? k a b | right k≥a with cmp-leq b k in-range? k a b | right k≥a | left k>b = above k>b in-range? k a b | right k≥a | right k≤b = inside (in-range k≥a k≤b) data FindInRange {ℓ} a b (P : Nat → Set ℓ) : Set ℓ where here : ∀ k → k ∈[ a , b ] → P k → FindInRange a b P none : (∀ k → k ∈[ a , b ] → ¬ P k) → FindInRange a b P -- Version with less evidence. Faster to compute. data FindInRange! {ℓ} (P : Nat → Set ℓ) : Set ℓ where here : ∀ k → P k → FindInRange! P none : FindInRange! P private not-first : ∀ {ℓ} {P : Nat → Set ℓ} {a b} → ¬ P a → (∀ k → k ∈[ suc a , b ] → ¬ P k) → ∀ k → k ∈[ a , b ] → ¬ P k not-first {a = a} !pa !pa+ k k∈r pk with compare k a not-first !pa !pa+ k k∈r pk | less k<a = below-range k<a k∈r not-first !pa !pa+ k k∈r pk | equal refl = !pa pk not-first !pa !pa+ k (in-range _ k≤b) pk | greater k>a = !pa+ k (in-range (by k>a) k≤b) pk find! : ∀ {ℓ} {P : Nat → Set ℓ} (a d : Nat) → (∀ k → Dec (P k)) → FindInRange! P find! a zero check = none find! a (suc d) check with check a find! a (suc d) check | yes pa = here a pa find! a (suc d) check | no _ = force a λ a → find! (suc a) d check found-in-range : ∀ {ℓ} {P : Nat → Set ℓ} a b d (eq : d + a ≡ suc b) (check : ∀ k → Dec (P k)) → ∀ k (pk : P k) → find! a d check ≡ here k pk → k ∈[ a , b ] found-in-range a b zero eq check k pk () found-in-range a b (suc d) eq check k pk feq with check a found-in-range a b (suc d) eq check .a pa refl | yes .pa = in-range-l (by eq) found-in-range 0 b (suc d) eq check k pk feq | no !pa with find! 1 d check | found-in-range 1 b d (by eq) check found-in-range 0 b (suc d) eq check k pk refl | no !pa | here .k .pk | rec = suc-range-l (rec _ _ refl) found-in-range 0 b (suc d) eq check k pk () | no !pa | none | rec found-in-range (suc a) b (suc d) eq check k pk feq | no !pa with find! (2 + a) d check | found-in-range (2 + a) b d (by eq) check found-in-range (suc a) b (suc d) eq check k pk refl | no !pa | here .k .pk | rec = suc-range-l (rec _ _ refl) found-in-range (suc a) b (suc d) eq check k pk () | no !pa | none | rec not-found-in-range : ∀ {ℓ} {P : Nat → Set ℓ} a b d (eq : d + a ≡ suc b) (check : ∀ k → Dec (P k)) → find! a d check ≡ none → ∀ k → k ∈[ a , b ] → ¬ P k not-found-in-range 0 b zero eq check prf k k∈ab pk = empty-range (diff 0 eq) k∈ab not-found-in-range (suc _) b zero eq check prf k k∈ab pk = empty-range (diff 0 eq) k∈ab not-found-in-range a b (suc d) eq check prf k (in-range a<k k<b) pk with check a not-found-in-range a b (suc d) eq check () k (in-range a<k k<b) pk | yes pa not-found-in-range 0 b (suc d) eq check prf k (in-range a<k k<b) pk | no !pa with find! 1 d check | not-found-in-range 1 b d (by eq) check not-found-in-range 0 b (suc d) eq check () k (in-range a<k k<b) pk | no !pa | here _ _ | rec not-found-in-range 0 b (suc d) eq check prf k (in-range a<k k<b) pk | no !pa | none | rec = not-first !pa (rec refl) k (in-range a<k k<b) pk not-found-in-range (suc a) b (suc d) eq check prf k (in-range a<k k<b) pk | no !pa with find! (suc (suc a)) d check | not-found-in-range (suc (suc a)) b d (by eq) check not-found-in-range (suc a) b (suc d) eq check () k (in-range a<k k<b) pk | no !pa | here _ _ | rec not-found-in-range (suc a) b (suc d) eq check prf k (in-range a<k k<b) pk | no !pa | none | rec = not-first !pa (rec refl) k (in-range a<k k<b) pk find : ∀ {ℓ} {P : Nat → Set ℓ} a b d → d + a ≡ suc b → (∀ k → Dec (P k)) → FindInRange a b P find a b d eq check with inspect (find! a d check) ... | here k pk with≡ prf = here k (erase-in-range (found-in-range a b d eq check k pk prf)) pk ... | none with≡ prf = none (not-found-in-range a b d eq check prf) findInRange : ∀ {ℓ} {P : Nat → Set ℓ} a b → (∀ k → Dec (P k)) → FindInRange a b P findInRange a b check with compare a b findInRange a ._ check | less (diff! k) = find a _ (2 + k) refl check findInRange a .a check | equal refl = find a _ 1 refl check findInRange a b check | greater gt = none (λ k k∈ab _ → empty-range gt k∈ab) --- Reducing the required search space to 2..√a --- private lem-less : {n r d q : Nat} → r ^ 2 ≥ n → q * d ≡ n → r < d → suc r ≤ q → ⊥ lem-less (diff k eq) refl (diff j refl) (diff! i) = refute eq non-zero-less : ∀ {a} {{_ : NonZero a}} → 0 < a non-zero-less {0} {{}} non-zero-less {suc a} = diff a auto div-unique : ∀ q {a b} {{_ : NonZero b}} → q * b ≡ a → a div b ≡ q div-unique q {a} {b} eq = quot-unique (qr (a div b) (a mod b) (mod-less b a) (divmod-sound b a)) (qr q 0 non-zero-less (by eq)) divide-smaller : ∀ n r d {{_ : NonZero d}} → n ≤ r ^ 2 → d Divides n → d > r → n div d ≤ r divide-smaller n r d n<r² (factor q eq) d>r = let n/d=q : n div d ≡ q n/d=q = div-unique q eq in less-raa (lem-less n<r² (cong (_* d) n/d=q ⟨≡⟩ eq) d>r) divide-bigger : ∀ n k {{_ : NonZero k}} → k < n → k Divides n → n div k ≥ 2 divide-bigger ._ k (diff! k₁) (factor zero eq) = refute eq divide-bigger n k k<n (factor 1 eq) = ⊥-elim (less-antirefl k<n (by eq)) divide-bigger n k k<n (factor (suc (suc q)) eq) = by (sym (div-unique (2 + q) {b = k} eq)) up-to-root : ∀ r n → r ≤ n → r ^ 2 ≥ suc n → FindInRange 2 r (_Divides suc n) → FindInRange 2 n (_Divides suc n) up-to-root r n r<n r²>n (none k∤sn) = none λ k k∈2n k|sn → erase-⊥ $ case in-range? k 2 r of λ { (inside k∈2r) → k∤sn k k∈2r k|sn ; (below k<2) → less-not-geq k<2 (range-lower-bound k∈2n) ; (above k>r) → let instance k≠0 : NonZero k k≠0 = non-zero-range k∈2n hi : suc n div k ≤ r hi = divide-smaller (suc n) r k r²>n k|sn k>r lo : suc n div k ≥ 2 lo = divide-bigger (suc n) k (range-upper-bound k∈2n) k|sn in k∤sn (suc n div k) (in-range lo hi) (factor k (by (div-divides k|sn))) } up-to-root 0 _ _ _ (here k k∈⊥ _) = ⊥-elim (empty-range (diff! 1) k∈⊥) up-to-root (suc r) n r<n r²>n (here k (in-range 2<k k<r) pk) = here k (in-range 2<k (k<r ⟨≤⟩ r<n)) pk private is-1-or-n : ∀ {n} → (∀ k → k ∈[ 2 , n ] → k Divides suc n → ⊥) → ∀ k → k Divides suc n → Either (k ≡ 1) (k ≡ suc n) is-1-or-n {n} no-div k (factor q kq=n) with in-range? k 2 n is-1-or-n no-div k (factor q kq=n) | inside inr = ⊥-elim (no-div k inr (factor q kq=n)) is-1-or-n no-div .1 (factor q kq=n) | below (diff! zero) = left refl is-1-or-n {n} no-div k (factor q kq=n) | below (diff (suc k₁) eq) = refute (divides-zero (transport (_Divides suc n) (by eq) (factor q kq=n))) is-1-or-n {n} no-div k (factor q kq=n) | above k>n = right (leq-antisym {A = Nat} (divides-less (factor q kq=n)) (by k>n)) lem₂ : ∀ {n d : Nat} q → q * d ≡ suc n → d < suc n → q > 1 lem₂ 0 eq d≤n = refute eq lem₂ 1 eq d≤n = ⊥-elim (less-antirefl d≤n (by eq)) lem₂ (suc (suc q)) eq d≤n = auto two-is-prime : ∀ k → k Divides 2 → Either (k ≡ 1) (k ≡ 2) two-is-prime k k|2 with divides-less k|2 two-is-prime 0 (factor q eq) | k≤2 = refute eq two-is-prime 1 k|2 | k≤2 = left refl two-is-prime 2 k|2 | k≤2 = right refl two-is-prime (suc (suc (suc k))) k|2 | lt = refute lt lem-sqrt : (n r : Nat) → r ^ 2 < 4 + n → ¬ (suc n < r) lem-sqrt n ._ lt (diff! c) = refute lt sqrt-less : (n : Nat) → n > 2 → suc (sqrt! n) < n sqrt-less 0 (diff k ()) sqrt-less 1 (diff k eq) = refute eq sqrt-less 2 (diff k eq) = refute eq sqrt-less (suc (suc (suc n))) _ with sqrt (3 + n) sqrt-less (suc (suc (suc n))) _ | root r lt _ = less-raa λ n<r → lem-sqrt n r lt (by n<r) isPrimeAux : ∀ n → Comparison _<_ 2 n → Prime? n isPrimeAux 0 _ = tiny (diff! 1) isPrimeAux 1 _ = tiny (diff! 0) isPrimeAux 2 _ = yes (prime (diff! 0) two-is-prime) isPrimeAux (suc (suc (suc n))) (greater (diff k eq)) = refute eq isPrimeAux (suc (suc (suc _))) (equal ()) isPrimeAux (suc n) (less n>2) with sqrt (suc n) | sqrt-less _ n>2 ... | root r r²<n sr²>n | r<n with up-to-root (suc r) n r<n (by sr²>n) $ findInRange 2 (suc r) (λ k → k divides? suc n) ... | none p = yes (prime (by n>2) (is-1-or-n p)) ... | here d (in-range 2≤d d≤n) (factor q eq) = no (composite d q (by 2≤d) (lem₂ q eq d≤n) (by eq)) isPrime : ∀ n → Prime? n isPrime n = isPrimeAux n (compare 2 n) isPrime! : Nat → Bool isPrime! n with isPrime n ... | yes _ = true ... | no _ = false ... | tiny _ = false decPrime : ∀ p → Dec (Prime p) decPrime p = case isPrime p of λ where (yes isp) → yes isp (no comp) → no (composite-not-prime comp) (tiny p<2) → no λ where (prime p>1 dp) → less-not-geq p>1 p<2 -- Benchmarking -- Todo: test only odd numbers -- Composite -- 5.0s + isPrime 1927 (41 * 47) -- 40ms recurse from below -- 5.2s + isPrime (1021 * 1021) -- 0.2s remove range argument from check -- 0.8s + isPrime (3581 * 3581) -- 0.3s don't compute in-range proof in find! -- Prime (no proof) -- 2.3s + isPrime! 1021 -- 5.0s recurse from below -- 0.1s remove range argument from check -- 0.7s + isPrime! 3581 -- Prime (run proof: cheap because we're not actually running the (negative) function computed by find) -- 0.7s + testPrimeProof 3581 -- Prime (print proof) -- 1.8s + isPrime 83 -- 3.4s recurse from below -- 2.6s remove range argument from check -- 0.1s split negative proof into separate function -- 0.6s + isPrime 3581 -- 0.2s only check up to sqrt -- 0.7s + isPrime 12823607 -- 2.3s + isPrime 234576373 -- 1.4s don't compute in-range proof in find!
{ "alphanum_fraction": 0.5466237942, "avg_line_length": 42.6862745098, "ext": "agda", "hexsha": "20b6f65465cdb14baa846d7c92240a9d9c653790", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Numeric/Nat/Prime.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Numeric/Nat/Prime.agda", "max_line_length": 114, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Numeric/Nat/Prime.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 5189, "size": 13062 }
open import Oscar.Prelude open import Oscar.Data.¶ open import Oscar.Data.Fin open import Oscar.Data.Vec module Oscar.Data.Term where module Term {𝔭} (𝔓 : Ø 𝔭) where mutual Terms : ¶ → ¶ → Ø 𝔭 Terms N n = ⟨ Term n ∞ ⟩¶⟨≤ N ⟩ data Term (n : ¶) : Ø 𝔭 where i : (x : ¶⟨< n ⟩) → Term n leaf : Term n _fork_ : (s t : Term n) → Term n function : 𝔓 → ∀ {N} → Terms N n → Term n
{ "alphanum_fraction": 0.5469879518, "avg_line_length": 19.7619047619, "ext": "agda", "hexsha": "244dd98182bb96bd5bf4c492991a18e9e34cdbad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Term.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Term.agda", "max_line_length": 47, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Term.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 163, "size": 415 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.QuotientAlgebra where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Powerset using (_∈_; _⊆_) open import Cubical.Foundations.Structure open import Cubical.HITs.SetQuotients hiding (_/_) open import Cubical.Data.Unit open import Cubical.Data.Sigma.Properties using (Σ≡Prop) open import Cubical.Algebra.CommRing import Cubical.Algebra.CommRing.QuotientRing as CommRing import Cubical.Algebra.Ring.QuotientRing as Ring open import Cubical.Algebra.CommRing.Ideal hiding (IdealsIn) open import Cubical.Algebra.CommAlgebra open import Cubical.Algebra.CommAlgebra.Ideal open import Cubical.Algebra.CommAlgebra.Kernel open import Cubical.Algebra.CommAlgebra.Instances.Unit open import Cubical.Algebra.Algebra.Base using (IsAlgebraHom; isPropIsAlgebraHom) open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Ideal using (isIdeal) open import Cubical.Algebra.CommRingSolver.Reflection open import Cubical.Algebra.Algebra.Properties open AlgebraHoms using (compAlgebraHom) private variable ℓ : Level module _ {R : CommRing ℓ} (A : CommAlgebra R ℓ) (I : IdealsIn A) where open CommRingStr {{...}} hiding (_-_; -_; dist; ·Lid; ·Rdist+) renaming (_·_ to _·R_; _+_ to _+R_) open CommAlgebraStr {{...}} open RingTheory (CommRing→Ring (CommAlgebra→CommRing A)) using (-DistR·) instance _ : CommRingStr _ _ = snd R _ : CommAlgebraStr _ _ _ = snd A _/_ : CommAlgebra R ℓ _/_ = commAlgebraFromCommRing ((CommAlgebra→CommRing A) CommRing./ I) (λ r → elim (λ _ → squash/) (λ x → [ r ⋆ x ]) (eq r)) (λ r s → elimProp (λ _ → squash/ _ _) λ x i → [ ((r ·R s) ⋆ x ≡⟨ ⋆-assoc r s x ⟩ r ⋆ (s ⋆ x) ∎) i ]) (λ r s → elimProp (λ _ → squash/ _ _) λ x i → [ ((r +R s) ⋆ x ≡⟨ ⋆-ldist r s x ⟩ r ⋆ x + s ⋆ x ∎) i ]) (λ r → elimProp2 (λ _ _ → squash/ _ _) λ x y i → [ (r ⋆ (x + y) ≡⟨ ⋆-rdist r x y ⟩ r ⋆ x + r ⋆ y ∎) i ]) (elimProp (λ _ → squash/ _ _) (λ x i → [ (1r ⋆ x ≡⟨ ⋆-lid x ⟩ x ∎) i ])) λ r → elimProp2 (λ _ _ → squash/ _ _) λ x y i → [ ((r ⋆ x) · y ≡⟨ ⋆-lassoc r x y ⟩ r ⋆ (x · y) ∎) i ] where open CommIdeal using (isCommIdeal) eq : (r : fst R) (x y : fst A) → x - y ∈ (fst I) → [ r ⋆ x ] ≡ [ r ⋆ y ] eq r x y x-y∈I = eq/ _ _ (subst (λ u → u ∈ fst I) ((r ⋆ 1a) · (x - y) ≡⟨ ·Rdist+ (r ⋆ 1a) x (- y) ⟩ (r ⋆ 1a) · x + (r ⋆ 1a) · (- y) ≡[ i ]⟨ (r ⋆ 1a) · x + -DistR· (r ⋆ 1a) y i ⟩ (r ⋆ 1a) · x - (r ⋆ 1a) · y ≡[ i ]⟨ ⋆-lassoc r 1a x i - ⋆-lassoc r 1a y i ⟩ r ⋆ (1a · x) - r ⋆ (1a · y) ≡[ i ]⟨ r ⋆ (·Lid x i) - r ⋆ (·Lid y i) ⟩ r ⋆ x - r ⋆ y ∎ ) (isCommIdeal.·Closed (snd I) _ x-y∈I)) quotientHom : CommAlgebraHom A (_/_) fst quotientHom x = [ x ] IsAlgebraHom.pres0 (snd quotientHom) = refl IsAlgebraHom.pres1 (snd quotientHom) = refl IsAlgebraHom.pres+ (snd quotientHom) _ _ = refl IsAlgebraHom.pres· (snd quotientHom) _ _ = refl IsAlgebraHom.pres- (snd quotientHom) _ = refl IsAlgebraHom.pres⋆ (snd quotientHom) _ _ = refl module _ {R : CommRing ℓ} (A : CommAlgebra R ℓ) (I : IdealsIn A) where open CommRingStr {{...}} hiding (_-_; -_; dist; ·Lid; ·Rdist+) renaming (_·_ to _·R_; _+_ to _+R_) open CommAlgebraStr ⦃...⦄ instance _ : CommRingStr _ _ = snd R _ : CommAlgebraStr _ _ _ = snd A private LRing = CommAlgebra→Ring (A / I) RRing = (CommAlgebra→Ring A) Ring./ (CommIdeal→Ideal I) -- sanity check / maybe a helper function some day CommForget/ : RingEquiv (CommAlgebra→Ring (A / I)) ((CommAlgebra→Ring A) Ring./ (CommIdeal→Ideal I)) fst CommForget/ = isoToEquiv (iso (rec (isSetRing LRing) (λ a → [ a ]) λ a b a-b∈I → eq/ a b a-b∈I) (rec (isSetRing RRing) (λ a → [ a ]) (λ a b a-b∈I → eq/ a b a-b∈I)) (elimProp (λ _ → isSetRing LRing _ _) λ _ → refl) (elimProp (λ _ → isSetRing RRing _ _) (λ _ → refl))) IsRingHom.pres0 (snd CommForget/) = refl IsRingHom.pres1 (snd CommForget/) = refl IsRingHom.pres+ (snd CommForget/) = elimProp2 (λ _ _ → isSetRing RRing _ _) (λ _ _ → refl) IsRingHom.pres· (snd CommForget/) = elimProp2 (λ _ _ → isSetRing RRing _ _) (λ _ _ → refl) IsRingHom.pres- (snd CommForget/) = elimProp (λ _ → isSetRing RRing _ _) (λ _ → refl) open IsAlgebraHom inducedHom : (B : CommAlgebra R ℓ) (ϕ : CommAlgebraHom A B) → (fst I) ⊆ (fst (kernel A B ϕ)) → CommAlgebraHom (A / I) B fst (inducedHom B ϕ I⊆kernel) = let open RingTheory (CommRing→Ring (CommAlgebra→CommRing B)) instance _ : CommAlgebraStr R _ _ = snd B _ : CommRingStr _ _ = snd (CommAlgebra→CommRing B) in rec (isSetCommAlgebra B) (λ x → fst ϕ x) λ a b a-b∈I → equalByDifference (fst ϕ a) (fst ϕ b) ((fst ϕ a) - (fst ϕ b) ≡⟨ cong (λ u → (fst ϕ a) + u) (sym (IsAlgebraHom.pres- (snd ϕ) _)) ⟩ (fst ϕ a) + (fst ϕ (- b)) ≡⟨ sym (IsAlgebraHom.pres+ (snd ϕ) _ _) ⟩ fst ϕ (a - b) ≡⟨ I⊆kernel (a - b) a-b∈I ⟩ 0r ∎) pres0 (snd (inducedHom B ϕ kernel⊆I)) = pres0 (snd ϕ) pres1 (snd (inducedHom B ϕ kernel⊆I)) = pres1 (snd ϕ) pres+ (snd (inducedHom B ϕ kernel⊆I)) = elimProp2 (λ _ _ → isSetCommAlgebra B _ _) (pres+ (snd ϕ)) pres· (snd (inducedHom B ϕ kernel⊆I)) = elimProp2 (λ _ _ → isSetCommAlgebra B _ _) (pres· (snd ϕ)) pres- (snd (inducedHom B ϕ kernel⊆I)) = elimProp (λ _ → isSetCommAlgebra B _ _) (pres- (snd ϕ)) pres⋆ (snd (inducedHom B ϕ kernel⊆I)) = λ r → elimProp (λ _ → isSetCommAlgebra B _ _) (pres⋆ (snd ϕ) r) injectivePrecomp : (B : CommAlgebra R ℓ) (f g : CommAlgebraHom (A / I) B) → f ∘a (quotientHom A I) ≡ g ∘a (quotientHom A I) → f ≡ g injectivePrecomp B f g p = Σ≡Prop (λ h → isPropIsAlgebraHom (CommRing→Ring R) (snd (CommAlgebra→Algebra (A / I))) h (snd (CommAlgebra→Algebra B))) (descendMapPath (fst f) (fst g) (isSetCommAlgebra B) λ x → λ i → fst (p i) x) {- trivial quotient -} module _ {R : CommRing ℓ} (A : CommAlgebra R ℓ) where open CommAlgebraStr (snd A) oneIdealQuotient : CommAlgebraEquiv (A / (1Ideal A)) (UnitCommAlgebra R) fst oneIdealQuotient = isoToEquiv (iso (fst (terminalMap R (A / (1Ideal A)))) (λ _ → [ 0a ]) (λ _ → isPropUnit* _ _) (elimProp (λ _ → squash/ _ _) λ a → eq/ 0a a tt*)) snd oneIdealQuotient = snd (terminalMap R (A / (1Ideal A))) zeroIdealQuotient : CommAlgebraEquiv A (A / (0Ideal A)) fst zeroIdealQuotient = let open RingTheory (CommRing→Ring (CommAlgebra→CommRing A)) in isoToEquiv (iso (fst (quotientHom A (0Ideal A))) (rec (isSetCommAlgebra A) (λ x → x) λ x y x-y≡0 → equalByDifference x y x-y≡0) (elimProp (λ _ → squash/ _ _) λ _ → refl) λ _ → refl) snd zeroIdealQuotient = snd (quotientHom A (0Ideal A)) [_]/ : {R : CommRing ℓ} {A : CommAlgebra R ℓ} {I : IdealsIn A} → (a : fst A) → fst (A / I) [ a ]/ = [ a ] module _ {R : CommRing ℓ} (A : CommAlgebra R ℓ) (I : IdealsIn A) where open CommIdeal using (isPropIsCommIdeal) private π = quotientHom A I kernel≡I : kernel A (A / I) π ≡ I kernel≡I = kernel A (A / I) π ≡⟨ Σ≡Prop (isPropIsCommIdeal (CommAlgebra→CommRing A)) refl ⟩ _ ≡⟨ CommRing.kernel≡I {R = CommAlgebra→CommRing A} I ⟩ I ∎ private module _ (R : CommRing ℓ) where open CommRingStr (snd R) lemma : (y : (fst R)) → y ≡ y - 0r lemma = solve R isZeroFromIdeal : {R : CommRing ℓ} {A : CommAlgebra R ℓ} {I : IdealsIn A} → (x : ⟨ A ⟩) → x ∈ (fst I) → fst (quotientHom A I) x ≡ CommAlgebraStr.0a (snd (A / I)) isZeroFromIdeal {A = A} {I = I} x x∈I = eq/ x 0a (subst (λ y → y ∈ (fst I)) step x∈I ) where open CommAlgebraStr (snd A) step : x ≡ x - 0a step = lemma (CommAlgebra→CommRing A) x 0' : ⟨ A / I ⟩ 0' = fst (quotientHom A I) 0a
{ "alphanum_fraction": 0.5460331894, "avg_line_length": 42.5024154589, "ext": "agda", "hexsha": "444053fba5b1ed5675e3a6c73004e8c6b2f294f6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "gmagaf/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/QuotientAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "gmagaf/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/QuotientAlgebra.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "gmagaf/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/QuotientAlgebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3198, "size": 8798 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Fst {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening as Wk hiding (wk; wkTerm; wkEqTerm) open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Weakening open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Tools.Product import Tools.PropositionalEquality as PE fst-subst* : ∀ {Γ F G t t′} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ⇒* t′ ∷ Σ F ▹ G → Γ ⊢ fst t ⇒* fst t′ ∷ F fst-subst* ⊢F ⊢G (id x) = id (fstⱼ ⊢F ⊢G x) fst-subst* ⊢F ⊢G (x ⇨ t⇒t′) = fst-subst ⊢F ⊢G x ⇨ fst-subst* ⊢F ⊢G t⇒t′ -- Reducibility of fst with a specific typing derivation fst′ : ∀ {F G t Γ l l′} ([F] : Γ ⊩⟨ l′ ⟩ F) ([ΣFG] : Γ ⊩⟨ l ⟩B⟨ BΣ ⟩ Σ F ▹ G) ([t] : Γ ⊩⟨ l ⟩ t ∷ Σ F ▹ G / B-intr BΣ [ΣFG]) → Γ ⊩⟨ l′ ⟩ fst t ∷ F / [F] fst′ {F = F} {t = t} {Γ = Γ} [F] (noemb (Bᵣ F' G' D ⊢F ⊢G A≡A [F'] [G'] G-ext)) (Σₜ p d pProd p≅p [fstp] [sndp]) with B-PE-injectivity BΣ (whnfRed* (red D) Σₙ) ... | PE.refl , PE.refl = let [fstp] : Γ ⊩⟨ _ ⟩ fst p ∷ F / [F] [fstp] = irrelevanceTerm′ (wk-id F) ([F'] id (wf ⊢F)) [F] [fstp] in proj₁ (redSubst*Term (fst-subst* ⊢F ⊢G (redₜ d)) [F] [fstp]) fst′ {t = t} {Γ = Γ} {l = l} [F] (emb 0<1 x) [t] = fst′ [F] x [t] -- Reducibility of fst with a general typing derivation fst″ : ∀ {F G t Γ l l′} ([F] : Γ ⊩⟨ l′ ⟩ F) ([ΣFG] : Γ ⊩⟨ l ⟩ Σ F ▹ G) ([t] : Γ ⊩⟨ l ⟩ t ∷ Σ F ▹ G / [ΣFG]) → Γ ⊩⟨ l′ ⟩ fst t ∷ F / [F] fst″ {t = t} {Γ = Γ} {l = l} [F] [ΣFG] [t] = let [t]′ = irrelevanceTerm [ΣFG] (B-intr BΣ (Σ-elim [ΣFG])) [t] in fst′ [F] (Σ-elim [ΣFG]) [t]′ fst-cong′ : ∀ {F G t t′ Γ l l′} ([F] : Γ ⊩⟨ l′ ⟩ F) ([ΣFG] : Γ ⊩⟨ l ⟩B⟨ BΣ ⟩ Σ F ▹ G) ([t≡t′] : Γ ⊩⟨ l ⟩ t ≡ t′ ∷ Σ F ▹ G / B-intr BΣ [ΣFG]) → Γ ⊩⟨ l′ ⟩ fst t ≡ fst t′ ∷ F / [F] fst-cong′ {F = F} {G = G} {Γ = Γ} [F] [ΣFG]@(noemb (Bᵣ F' G' D ⊢F ⊢G A≡A [F'] [G'] G-ext)) [t≡t′]@(Σₜ₌ p p′ d d′ pProd pProd′ p≅p′ [t] [t′] [fstp] [fstp′] [fst≡] [snd≡]) with B-PE-injectivity BΣ (whnfRed* (red D) Σₙ) ... | PE.refl , PE.refl = let ⊢Γ = wf ⊢F [fstp]₁ = irrelevanceTerm′ (wk-id F) ([F'] id ⊢Γ) [F] [fstp] [fstp′]₁ = irrelevanceTerm′ (wk-id F) ([F'] id ⊢Γ) [F] [fstp′] [fst≡]₁ = irrelevanceEqTerm′ (wk-id F) ([F'] id ⊢Γ) [F] [fst≡] [fstt≡fstp] = proj₂ (redSubst*Term (fst-subst* ⊢F ⊢G (redₜ d)) [F] [fstp]₁) [fstt′≡fstp′] = proj₂ (redSubst*Term (fst-subst* ⊢F ⊢G (redₜ d′)) [F] [fstp′]₁) in transEqTerm [F] [fstt≡fstp] (transEqTerm [F] [fst≡]₁ (symEqTerm [F] [fstt′≡fstp′])) fst-cong′ [F] (emb 0<1 x) = fst-cong′ [F] x -- Reducibility of congruence of fst fst-cong″ : ∀ {F G t t′ Γ l l′} ([F] : Γ ⊩⟨ l′ ⟩ F) ([ΣFG] : Γ ⊩⟨ l ⟩ Σ F ▹ G) ([t≡t′] : Γ ⊩⟨ l ⟩ t ≡ t′ ∷ Σ F ▹ G / [ΣFG]) → Γ ⊩⟨ l′ ⟩ fst t ≡ fst t′ ∷ F / [F] fst-cong″ {F} {G} [F] [ΣFG] [t≡t′] = let [t≡t′] = irrelevanceEqTerm [ΣFG] (B-intr BΣ (Σ-elim [ΣFG])) [t≡t′] in fst-cong′ [F] (Σ-elim [ΣFG]) [t≡t′] fst-congᵛ : ∀ {F G t t′ Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ Σ F ▹ G / [Γ] / Σᵛ {F} {G} [Γ] [F] [G]) ([t′] : Γ ⊩ᵛ⟨ l ⟩ t′ ∷ Σ F ▹ G / [Γ] / Σᵛ {F} {G} [Γ] [F] [G]) ([t≡t′] : Γ ⊩ᵛ⟨ l ⟩ t ≡ t′ ∷ Σ F ▹ G / [Γ] / Σᵛ {F} {G} [Γ] [F] [G]) → Γ ⊩ᵛ⟨ l ⟩ fst t ≡ fst t′ ∷ F / [Γ] / [F] fst-congᵛ {F} {G} [Γ] [F] [G] [t] [t′] [t≡t′] ⊢Δ [σ] = let [ΣFG] = Σᵛ {F} {G} [Γ] [F] [G] ⊩σF = proj₁ ([F] ⊢Δ [σ]) ⊩σΣFG = proj₁ ([ΣFG] ⊢Δ [σ]) ⊩σt≡t′ = [t≡t′] ⊢Δ [σ] in fst-cong″ ⊩σF ⊩σΣFG ⊩σt≡t′ -- Validity of first projection fstᵛ : ∀ {F G t Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ Σ F ▹ G / [Γ] / Σᵛ {F} {G} [Γ] [F] [G]) → Γ ⊩ᵛ⟨ l ⟩ fst t ∷ F / [Γ] / [F] fstᵛ {F} {G} {t} {Γ} {l} [Γ] [F] [G] [t] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [ΣFG] = Σᵛ {F} {G} [Γ] [F] [G] σfst : ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩⟨ l ⟩ subst σ (fst t) ∷ subst σ F / proj₁ ([F] ⊢Δ [σ]) σfst {Δ} {σ} ⊢Δ [σ] = let ⊩σF = proj₁ ([F] ⊢Δ [σ]) ⊩σΣFG = proj₁ ([ΣFG] ⊢Δ [σ]) ⊩σt = proj₁ ([t] ⊢Δ [σ]) in fst″ ⊩σF ⊩σΣFG ⊩σt in σfst ⊢Δ [σ] , (λ {σ′} [σ′] [σ≡σ′] → let [σF] = proj₁ ([F] ⊢Δ [σ]) [σΣFG] = proj₁ ([ΣFG] ⊢Δ [σ]) [σt≡σ′t] = proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′] in fst-cong″ [σF] [σΣFG] [σt≡σ′t])
{ "alphanum_fraction": 0.4638712093, "avg_line_length": 42.062992126, "ext": "agda", "hexsha": "820bec07353c6b5db1b8da8fc68a75a30efc6b0e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Fst.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Fst.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Fst.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2697, "size": 5342 }
------------------------------------------------------------------------------ -- The LTC-PCF natural numbers type ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat.Type where open import LTC-PCF.Base ------------------------------------------------------------------------------ -- The inductive predicate 'N' represents the type of the natural -- numbers. They are a subset of 'D'. -- The LTC-PCF natural numbers type (inductive predicate for total -- natural numbers). data N : D → Set where nzero : N zero nsucc : ∀ {n} → N n → N (succ₁ n) -- Induction principle for N (elimination rule). N-ind : (A : D → Set) → A zero → (∀ {n} → A n → A (succ₁ n)) → ∀ {n} → N n → A n N-ind A A0 h nzero = A0 N-ind A A0 h (nsucc Nn) = h (N-ind A A0 h Nn)
{ "alphanum_fraction": 0.4347399411, "avg_line_length": 32.8709677419, "ext": "agda", "hexsha": "a87c86e9b45752b70d90ad9b49d577c379866b64", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/Type.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 242, "size": 1019 }
open import Data.Product using ( _,_ ) open import Data.Sum using ( inj₁ ; inj₂ ) open import FRP.LTL.ISet.Core using ( ISet ; I⟦_⟧ ; M⟦_⟧ ; ⟦_⟧ ; ⌈_⌉ ; splitM⟦_⟧ ; subsumM⟦_⟧ ; i→m ; m→i ) renaming ( [_] to [_]′ ) open import FRP.LTL.ISet.Stateless using ( _⇒_ ; _$_ ) open import FRP.LTL.Time.Bound using ( fin ; +∞ ; +∞-top ; ≼-refl ; _≼-trans_ ; _≼-total_ ; _≼-asym_ ; ≺-impl-⋡ ) open import FRP.LTL.Time.Interval using ( ↑ ; [_⟩; _⊑_ ; lb≺ub ; lb≼ ; _,_ ; Int ) open import FRP.LTL.Util using ( ≡-relevant ; ⊥-elim ) open import Relation.Binary.PropositionalEquality using ( refl ) open import Relation.Unary using ( _∈_ ) module FRP.LTL.ISet.Globally where -- □ A is "A holds globally in the future" □ : ISet → ISet □ A = ⌈( λ t → M⟦ A ⟧ (↑ t) )⌉ -- Comonad structure of □ extend : ∀ {A B} → ⟦ A ⇒ B ⟧ → ⟦ □ A ⇒ □ B ⟧ extend {A} {B} f [ [ σ ]′ ]′ = [ (λ t t∈i → i→m (λ j j⊑↑t → f [ subsumM⟦ A ⟧ j (↑ t) j⊑↑t (σ t t∈i) ]′)) ]′ extract : ∀ {A} → ⟦ □ A ⇒ A ⟧ extract {A} {[_⟩ {fin s} {t} s≺t} [ [ σ ]′ ]′ = m→i (subsumM⟦ A ⟧ [ s≺t ⟩ (↑ s) (≼-refl , +∞-top) (σ s (≼-refl , s≺t))) extract {A} {[_⟩ {+∞} {t} ∞≺t} [ [ σ ]′ ]′ = ⊥-elim (≺-impl-⋡ ∞≺t +∞-top) duplicate : ∀ {A} → ⟦ □ A ⇒ □ (□ A) ⟧ duplicate {A} [ [ σ ]′ ]′ = [ (λ t t∈i → [ (λ u u∈↑t → subsumM⟦ A ⟧ (↑ u) (↑ t) (lb≼ u∈↑t , ≼-refl) (σ t t∈i)) ]′) ]′ -- Applicative structure of □ [_] : ∀ {A} → ⟦ A ⟧ → ⟦ □ A ⟧ [ σ ] = [ (λ t t∈i → i→m (λ j j⊑↑t → σ)) ]′ _⟨*⟩_ : ∀ {A B} → ⟦ □ (A ⇒ B) ⇒ □ A ⇒ □ B ⟧ [ [ f ]′ ]′ ⟨*⟩ [ [ σ ]′ ]′ = [ (λ t t∈i → (f t t∈i) $ (σ t t∈i)) ]′
{ "alphanum_fraction": 0.4660691421, "avg_line_length": 35.5, "ext": "agda", "hexsha": "cdfd48f08cb180869941a1057830c895c015269e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z", "max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-frp-ltl", "max_forks_repo_path": "src/FRP/LTL/ISet/Globally.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-frp-ltl", "max_issues_repo_path": "src/FRP/LTL/ISet/Globally.agda", "max_line_length": 114, "max_stars_count": 21, "max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-frp-ltl", "max_stars_repo_path": "src/FRP/LTL/ISet/Globally.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z", "num_tokens": 829, "size": 1562 }
{- NEW TRANSLATION STUFF: same thing but interpret source nat as ♭nat-} open import Preliminaries open import Source open import Complexity module Translation where mutual ⟨⟨_⟩⟩ : Tp → CTp ⟨⟨ unit ⟩⟩ = unit ⟨⟨ nat ⟩⟩ = nat ⟨⟨ susp A ⟩⟩ = || A || ⟨⟨ A ->s B ⟩⟩ = ⟨⟨ A ⟩⟩ ->c || B || ⟨⟨ A ×s B ⟩⟩ = ⟨⟨ A ⟩⟩ ×c ⟨⟨ B ⟩⟩ ⟨⟨ list A ⟩⟩ = list ⟨⟨ A ⟩⟩ ⟨⟨ bool ⟩⟩ = bool ||_|| : Tp → CTp || τ || = C ×c ⟨⟨ τ ⟩⟩ ⟨⟨_⟩⟩c : Source.Ctx → Complexity.Ctx ⟨⟨ [] ⟩⟩c = [] ⟨⟨ x :: Γ ⟩⟩c = ⟨⟨ x ⟩⟩ :: ⟨⟨ Γ ⟩⟩c interp-Cost : ∀{Γ} → Cost → Γ Complexity.|- C interp-Cost 0c = 0C interp-Cost 1c = 1C interp-Cost (m +c n) = plusC (interp-Cost m) (interp-Cost n) lookup : ∀{Γ τ} → τ Source.∈ Γ → ⟨⟨ τ ⟩⟩ Complexity.∈ ⟨⟨ Γ ⟩⟩c lookup i0 = i0 lookup (iS x) = iS (lookup x) _+C_ : ∀ {Γ τ} → Γ Complexity.|- C → Γ Complexity.|- (C ×c τ)→ Γ Complexity.|- (C ×c τ) c +C e = prod (plusC c (l-proj e)) (r-proj e) -- translation from source expressions to complexity expressions ||_||e : ∀{Γ τ} → Γ Source.|- τ → ⟨⟨ Γ ⟩⟩c Complexity.|- || τ || || unit ||e = prod 0C unit || var x ||e = prod 0C (var (lookup x)) || z ||e = prod 0C z || suc e ||e = prod (l-proj (|| e ||e)) (s (r-proj (|| e ||e))) || rec e e0 e1 ||e = (l-proj (|| e ||e)) +C (rec (r-proj || e ||e) (1C +C || e0 ||e) (1C +C || e1 ||e)) || lam e ||e = prod 0C (lam || e ||e) || app e1 e2 ||e = prod (plusC (plusC (plusC 1C (l-proj || e1 ||e)) (l-proj || e2 ||e)) (l-proj (app (r-proj || e1 ||e) (r-proj || e2 ||e)))) (r-proj (app (r-proj || e1 ||e) (r-proj || e2 ||e))) || prod e1 e2 ||e = prod (plusC (l-proj (|| e1 ||e)) (l-proj (|| e2 ||e))) (prod (r-proj (|| e1 ||e)) (r-proj (|| e2 ||e))) || delay e ||e = prod 0C (|| e ||e) || force e ||e = prod (plusC (l-proj (|| e ||e)) (l-proj (r-proj || e ||e))) (r-proj (r-proj (|| e ||e))) || split e0 e1 ||e = prod (plusC (l-proj (|| e0 ||e)) (l-proj E1)) (r-proj E1) where E1 = (Complexity.subst || e1 ||e (Complexity.lem4 (l-proj (r-proj || e0 ||e)) (r-proj (r-proj || e0 ||e)))) || nil ||e = prod 0C nil || e ::s e₁ ||e = prod (plusC (l-proj || e ||e) (l-proj || e₁ ||e)) ((r-proj || e ||e) ::c (r-proj || e₁ ||e)) || listrec e e₁ e₂ ||e = l-proj || e ||e +C listrec (r-proj || e ||e) (1C +C || e₁ ||e) (1C +C || e₂ ||e) || true ||e = prod 0C true || false ||e = prod 0C false -- new translation with let bindings to reduce exponential increase in term size throw-s : ∀ {Γ Γ' τ} → Complexity.sctx Γ (τ :: Γ') → Complexity.sctx Γ Γ' throw-s Θ x = Θ (iS x) _+C'_ : ∀ {Γ τ} → Γ Complexity.|- C → Γ Complexity.|- (C ×c τ)→ Γ Complexity.|- (C ×c τ) c +C' e = letc (prod (plusC (Complexity.wkn c) (l-proj (var i0))) (r-proj (var i0))) e ||_||e' : ∀{Γ τ} → Γ Source.|- τ → ⟨⟨ Γ ⟩⟩c Complexity.|- || τ || || unit ||e' = prod 0C unit || var x ||e' = prod 0C (var (lookup x)) || z ||e' = prod 0C z || suc e ||e' = (letc (prod (l-proj (var i0)) (s (r-proj (var i0)))) || e ||e') -- || rec e e0 e1 ||e = (l-proj (|| e ||e)) +C (rec (r-proj || e ||e) (1C +C || e0 ||e) (1C +C || e1 ||e)) || rec e e0 e1 ||e' = letc (l-proj (var i0) +C' rec (r-proj (var i0)) (Complexity.wkn (1C +C' || e0 ||e')) (Complexity.subst (1C +C' || e1 ||e') (Complexity.s-extend (Complexity.s-extend (throw-s Complexity.ids))))) || e ||e' || lam e ||e' = prod 0C (lam || e ||e') || app e1 e2 ||e' = letc (letc (prod (plusC (plusC (plusC 1C (l-proj (var (iS i0)))) (l-proj (var i0))) (l-proj (app (r-proj (var (iS i0))) (r-proj (var i0))))) (r-proj (app (r-proj (var (iS i0))) (r-proj (var i0))))) (Complexity.wkn || e2 ||e')) || e1 ||e' || prod e1 e2 ||e' = letc (letc (prod (plusC (l-proj (var (iS i0))) (l-proj (var i0))) (prod (r-proj (var (iS i0))) (r-proj (var i0)))) (Complexity.wkn || e2 ||e')) || e1 ||e' || delay e ||e' = prod 0C || e ||e' || force e ||e' = letc (prod (plusC (l-proj (var i0)) (l-proj (r-proj (var i0)))) (r-proj (r-proj (var i0)))) || e ||e' || split e0 e1 ||e' = letc (prod (plusC (Complexity.wkn (l-proj || e0 ||e')) (l-proj (var i0))) (r-proj (var i0))) E1 where E1 = letc (Complexity.subst || e1 ||e' (Complexity.lem4 (l-proj (r-proj (var i0))) (r-proj (r-proj (var i0))) Complexity.ss Complexity.s-extend (Complexity.s-extend (throw-s Complexity.ids)))) || e0 ||e' || nil ||e' = prod 0C nil || e ::s e₁ ||e' = letc (letc (prod (plusC (l-proj (var (iS i0))) (l-proj (var i0))) (r-proj (var (iS i0)) ::c r-proj (var i0))) (Complexity.wkn || e₁ ||e')) || e ||e' || listrec e e₁ e₂ ||e' = letc (l-proj (var i0) +C' listrec (r-proj (var i0)) (Complexity.wkn (1C +C' || e₁ ||e')) (Complexity.subst (1C +C' || e₂ ||e') (Complexity.s-extend (Complexity.s-extend (Complexity.s-extend (throw-s Complexity.ids)))))) || e ||e' || true ||e' = prod 0C true || false ||e' = prod 0C false {- try prove ||.||old <=/=> ||.||new trans-eq-l : ∀ {Γ τ} → (e : Γ Source.|- τ) → || e ||e ≤s || e ||e' trans-eq-l unit = refl-s trans-eq-l (var x) = refl-s trans-eq-l z = refl-s trans-eq-l (suc e) = (cong-prod (cong-lproj (trans-eq-l e)) (cong-suc (cong-rproj (trans-eq-l e))) trans lam-s) trans letc-app-r trans-eq-l (rec e e₁ e₂) = {!!} trans-eq-l (lam e) = cong-prod refl-s (cong-lam (trans-eq-l e)) trans-eq-l (app e e₁) = {!!} trans-eq-l (prod e e₁) = (((cong-prod (cong-+ (cong-lproj {!!}) (cong-lproj {!!})) {!!} trans lam-s) trans letc-app-r) trans lam-s) trans letc-app-r trans-eq-l (delay e) = {!!} trans-eq-l (force e) = {!!} trans-eq-l (split e e₁) = {!!} trans-eq-l nil = {!!} trans-eq-l (e ::s e₁) = {!!} trans-eq-l (listrec e e₁ e₂) = {!!} trans-eq-l true = refl-s trans-eq-l false = refl-s -}
{ "alphanum_fraction": 0.4987012987, "avg_line_length": 50.2173913043, "ext": "agda", "hexsha": "b89b0950585383f3475950bd7377687aa2803155", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity/complexity-final/submit/Translation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity/complexity-final/submit/Translation.agda", "max_line_length": 216, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity/complexity-final/submit/Translation.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 2505, "size": 5775 }
{-# OPTIONS --allow-unsolved-metas #-} data U : ∀ t → Set data T t : Set
{ "alphanum_fraction": 0.5810810811, "avg_line_length": 14.8, "ext": "agda", "hexsha": "c0f3d59d632829b47dd58f99772247e29bcb43a1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/MissingDefinitionData.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/MissingDefinitionData.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/MissingDefinitionData.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 24, "size": 74 }
module Quantifiers where -- Imports import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Relation.Nullary using (¬_) open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) -- open import plfa.part1.Isomorphism using (_≃_; extensionality) -- 同型 (isomorphism) infix 0 _≃_ record _≃_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ postulate -- 外延性の公理 extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g -- Universals -- 全称量化子の除去則 ∀-elim : ∀ {A : Set} {B : A → Set} → (L : ∀ (x : A) → B x) → (M : A) --------------------- → B M ∀-elim L M = L M -- Existentials -- 依存和型 (dependent sum type) data Σ (A : Set) (B : A → Set) : Set where ⟨_,_⟩ : (x : A) → B x → Σ A B Σ-syntax = Σ infix 2 Σ-syntax syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B record Σ′ (A : Set) (B : A → Set) : Set where field proj₁′ : A proj₂′ : B proj₁′ -- 存在量化子 (existential quantifier) ∃ : ∀ {A : Set} (B : A → Set) → Set ∃ {A} B = Σ A B ∃-syntax = ∃ syntax ∃-syntax (λ x → B) = ∃[ x ] B -- 存在量化子の除去則 ∃-elim : ∀ {A : Set} {B : A → Set} {C : Set} → (∀ x → B x → C) → ∃[ x ] B x --------------- → C ∃-elim f ⟨ x , y ⟩ = f x y ∀∃-currying : ∀ {A : Set} {B : A → Set} {C : Set} → (∀ x → B x → C) ≃ (∃[ x ] B x → C) ∀∃-currying = record { to = λ{ f → λ{ ⟨ x , y ⟩ → f x y }} ; from = λ{ g → λ{ x → λ{ y → g ⟨ x , y ⟩ }}} ; from∘to = λ{ f → refl } ; to∘from = λ{ g → extensionality λ{ ⟨ x , y ⟩ → refl }} } -- An existential example data even : ℕ → Set data odd : ℕ → Set data even where even-zero : even zero even-suc : ∀ {n : ℕ} → odd n ------------ → even (suc n) data odd where odd-suc : ∀ {n : ℕ} → even n ----------- → odd (suc n) even-∃ : ∀ {n : ℕ} → even n → ∃[ m ] ( m * 2 ≡ n) odd-∃ : ∀ {n : ℕ} → odd n → ∃[ m ] (1 + m * 2 ≡ n) even-∃ even-zero = ⟨ zero , refl ⟩ even-∃ (even-suc o) with odd-∃ o ... | ⟨ m , refl ⟩ = ⟨ suc m , refl ⟩ odd-∃ (odd-suc e) with even-∃ e ... | ⟨ m , refl ⟩ = ⟨ m , refl ⟩ ∃-even : ∀ {n : ℕ} → ∃[ m ] ( m * 2 ≡ n) → even n ∃-odd : ∀ {n : ℕ} → ∃[ m ] (1 + m * 2 ≡ n) → odd n ∃-even ⟨ zero , refl ⟩ = even-zero ∃-even ⟨ suc m , refl ⟩ = even-suc (∃-odd ⟨ m , refl ⟩) ∃-odd ⟨ m , refl ⟩ = odd-suc (∃-even ⟨ m , refl ⟩) -- Existentials, Universals, and Negation -- B(x)が成り立たないxが存在することと、任意のxについてB(x)が成り立たないことは同型 ¬∃≃∀¬ : ∀ {A : Set} {B : A → Set} → (¬ ∃[ x ] B x) ≃ ∀ x → ¬ B x ¬∃≃∀¬ = record { to = λ{ ¬∃xy x y → ¬∃xy ⟨ x , y ⟩ } ; from = λ{ ∀¬xy ⟨ x , y ⟩ → ∀¬xy x y } ; from∘to = λ{ ¬∃xy → extensionality λ{ ⟨ x , y ⟩ → refl } } ; to∘from = λ{ ∀¬xy → refl } }
{ "alphanum_fraction": 0.4455117589, "avg_line_length": 23.2230769231, "ext": "agda", "hexsha": "b1a3b68db2004c0d105e568daab767c3b70a6912", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/quantifiers/Quantifiers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/quantifiers/Quantifiers.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/quantifiers/Quantifiers.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 1349, "size": 3019 }