Search is not available for this dataset
text
string
meta
dict
infixr 2 _×_ infixr 2 _,_ record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A snd : B fst _×_ : Set → Set → Set A × B = Σ A λ _ → B syntax Σ A (λ x → B) = Σ[ x ∶ A ] B data W (A : Set) (B : A → Set) : Set where sup : (x : A) → ((p : B x) → W A B) → W A B -- Should be able to get φ (λ x → (k x) , rec φ (k x))) -- just using refine. rec : ∀ {S P}{X : Set} → (Σ[ s ∶ S ] (P s → W S P × X) → X) → W S P → X rec φ (sup s k) = {!!} postulate A : Set a : A -- Refine hole as far as possible. -- Should get: (? , ?) , (λ x → ?) , λ x → ? test-refine : (A × A) × (A → A) × (A → A) test-refine = {!!}
{ "alphanum_fraction": 0.4586583463, "avg_line_length": 20.6774193548, "ext": "agda", "hexsha": "d6699a04d2c34fa2a06ef32bbb99a4901f5b7161", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue737.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue737.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue737.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 286, "size": 641 }
-- Raw terms, weakening (renaming) and substitution. {-# OPTIONS --safe #-} module Definition.Untyped where open import Tools.Nat open import Tools.Product open import Tools.List import Tools.PropositionalEquality as PE import Data.Fin as Fin import Data.Nat as Nat infixl 30 _∙_^_ infix 30 Π_^_°_▹_°_°_ infixr 22 _^_°_▹▹_°_°_ infixl 30 _ₛ•ₛ_ _•ₛ_ _ₛ•_ infix 25 _[_] infix 25 _[_]↑ data Relevance : Set where ! : Relevance -- proof-relevant % : Relevance -- proof-irrelevant !≢% : ! PE.≢ % !≢% () -- two levels of small types data Level : Set where ⁰ : Level ¹ : Level ⁰≢¹ : ⁰ PE.≢ ¹ ⁰≢¹ () data _<_ : (i j : Level) → Set where 0<1 : ⁰ < ¹ data _≤_ (i j : Level) : Set where <is≤ : i < j → i ≤ j ≡is≤ : i PE.≡ j → i ≤ j -- Large type levels : ι ⁰, ι ¹, ∞ data TypeLevel : Set where ι : Level → TypeLevel ∞ : TypeLevel data _<∞_ : (i j : TypeLevel) → Set where emb< : ι ⁰ <∞ ι ¹ ∞< : ι ¹ <∞ ∞ -- ∞<⁰ : ι ⁰ <∞ ∞ data _≤∞_ (i j : TypeLevel) : Set where <∞is≤∞ : i <∞ j → i ≤∞ j ≡is≤∞ : i PE.≡ j → i ≤∞ j next : Level → TypeLevel next ⁰ = ι ¹ next ¹ = ∞ toLevel : TypeLevel → Level toLevel (ι ⁰) = ⁰ toLevel (ι ¹) = ¹ toLevel ∞ = ¹ predLevel : TypeLevel → Level predLevel (ι ⁰) = ⁰ predLevel (ι ¹) = ⁰ predLevel ∞ = ¹ maxLevel : (i : Level) → (j : Level) → Σ Level λ k → i ≤ k × j ≤ k maxLevel ⁰ ⁰ = ⁰ , ((≡is≤ PE.refl) , (≡is≤ PE.refl)) maxLevel ⁰ ¹ = ¹ , ((<is≤ 0<1) , (≡is≤ PE.refl)) maxLevel ¹ ⁰ = ¹ , ((≡is≤ PE.refl) , (<is≤ 0<1)) maxLevel ¹ ¹ = ¹ , ((≡is≤ PE.refl) , (≡is≤ PE.refl)) ⁰min : (i : Level) → ⁰ ≤ i ⁰min ⁰ = ≡is≤ PE.refl ⁰min ¹ = <is≤ 0<1 <next : ∀ {l} → ι l <∞ next l <next {⁰} = emb< <next {¹} = ∞< levelBounded : (i : Level) → Σ TypeLevel λ k → ι i <∞ k levelBounded i = next i , <next ιinj : ∀ {l l'} → ι l PE.≡ ι l' → l PE.≡ l' ιinj {⁰} {⁰} e = PE.refl ιinj {¹} {¹} e = PE.refl next-inj : ∀ {l l'} → next l PE.≡ next l' → l PE.≡ l' next-inj {⁰} {⁰} e = PE.refl next-inj {¹} {¹} e = PE.refl -- In a typing judgment, a type is generally annotated with a pair of a relevance and a level record TypeInfo : Set where constructor [_,_] field r : Relevance l : TypeLevel toTypeInfo : Relevance × Level → TypeInfo toTypeInfo ( r , l ) = [ r , ι l ] -- Typing contexts (snoc-lists, isomorphic to lists). data Con (A : Set) : Set where ε : Con A -- Empty context. _∙_^_ : Con A → A → TypeInfo → Con A -- Context extension. record GenT (A : Set) : Set where inductive constructor ⟦_,_⟧ field l : Nat t : A data Kind : Set where Ukind : Relevance → Level → Kind Pikind : Relevance → Level → Level → Level → Kind Natkind : Kind Lamkind : Level → Kind Appkind : Level → Kind Zerokind : Kind Suckind : Kind Natreckind : Level → Kind Emptykind : Level → Kind Emptyreckind : Level → Level → Kind Idkind : Kind Idreflkind : Kind Transpkind : Kind Castkind : Level → Kind Castreflkind : Kind Sigmakind : Kind Pairkind : Kind Fstkind : Kind Sndkind : Kind data Term : Set where var : (x : Nat) → Term gen : (k : Kind) (c : List (GenT Term)) → Term -- The Grammar of our language. -- We represent the expressions of our language as de Bruijn terms. -- Variables are natural numbers interpreted as de Bruijn indices. -- Π, lam, ∃ , transp and natrec are binders. -- Type constructors. -- Universes of proof-relevant types U : Level → Term U l = gen (Ukind ! l) [] -- Universes of proof-irrelevant types SProp : Level → Term SProp l = gen (Ukind % l) [] pattern Univ r l = gen (Ukind r l) [] -- Dependent product, with level annotations for the domain, codomain, and resulting type Π_^_°_▹_°_°_ : Term → Relevance → Level → Term → Level → Level → Term -- Dependent function type (B is a binder). Π A ^ r ° lA ▹ B ° lB ° lΠ = gen (Pikind r lA lB lΠ) (⟦ 0 , A ⟧ ∷ ⟦ 1 , B ⟧ ∷ []) -- Existential type : dependent pairs of proof-irrelevant terms ∃_▹_ : Term → Term → Term ∃ A ▹ B = gen Sigmakind (⟦ 0 , A ⟧ ∷ ⟦ 1 , B ⟧ ∷ []) -- Natural numbers ℕ : Term ℕ = gen Natkind [] -- Lambda-calculus. -- var : (x : Nat) → Term -- Variable (de Bruijn index). -- var = var lam_▹_^_ : Term → Term → Level → Term -- Function abstraction (binder). lam A ▹ t ^ l = gen (Lamkind l) (⟦ 0 , A ⟧ ∷ ⟦ 1 , t ⟧ ∷ []) _∘_^_ : (t u : Term) (l : Level) → Term -- Application. t ∘ u ^ l = gen (Appkind l) (⟦ 0 , t ⟧ ∷ ⟦ 0 , u ⟧ ∷ []) ⦅_,_,_⦆ : Term → Term → Term → Term -- Dependent pair formation ⦅ G , t , u ⦆ = gen Pairkind (⟦ 1 , G ⟧ ∷ ⟦ 0 , t ⟧ ∷ ⟦ 0 , u ⟧ ∷ []) fst : (t : Term) → Term -- Dependent pair elimination fst t = gen Fstkind (⟦ 0 , t ⟧ ∷ []) snd : (t : Term) → Term -- Dependent pair elimination snd t = gen Sndkind (⟦ 0 , t ⟧ ∷ []) -- Introduction and elimination of natural numbers. zero : Term -- Natural number zero. zero = gen Zerokind [] suc : (t : Term) → Term -- Successor. suc t = gen Suckind (⟦ 0 , t ⟧ ∷ []) natrec : (l : Level) (A t u v : Term) → Term -- Recursor (A is a binder). natrec l A t u v = gen (Natreckind l) (⟦ 1 , A ⟧ ∷ ⟦ 0 , t ⟧ ∷ ⟦ 0 , u ⟧ ∷ ⟦ 0 , v ⟧ ∷ []) -- Empty type Empty : Level → Term Empty l = gen (Emptykind l) [] -- Eliminator for the empty type Emptyrec : (l lEmpty : Level) (A e : Term) -> Term Emptyrec l lEmpty A e = gen (Emptyreckind l lEmpty) (⟦ 0 , A ⟧ ∷ ⟦ 0 , e ⟧ ∷ []) -- Identity type Id : (A t u : Term) → Term Id A t u = gen Idkind (⟦ 0 , A ⟧ ∷ ⟦ 0 , t ⟧ ∷ ⟦ 0 , u ⟧ ∷ []) -- witness of reflexivity of equality Idrefl : (A t : Term) → Term Idrefl A t = gen Idreflkind (⟦ 0 , A ⟧ ∷ ⟦ 0 , t ⟧ ∷ []) -- transport on propositions transp : (A P t s u e : Term) → Term transp A P t s u e = gen Transpkind (⟦ 0 , A ⟧ ∷ ⟦ 1 , P ⟧ ∷ ⟦ 0 , t ⟧ ∷ ⟦ 0 , s ⟧ ∷ ⟦ 0 , u ⟧ ∷ ⟦ 0 , e ⟧ ∷ []) -- cast between types, used to implement transport cast : Level → (A B e t : Term) → Term cast l A B e t = gen (Castkind l) (⟦ 0 , A ⟧ ∷ ⟦ 0 , B ⟧ ∷ ⟦ 0 , e ⟧ ∷ ⟦ 0 , t ⟧ ∷ []) -- propositional proof that casting with reflexivity is the identity castrefl : (A t : Term) → Term castrefl A t = gen Castreflkind (⟦ 0 , A ⟧ ∷ ⟦ 0 , t ⟧ ∷ []) -- Injectivity of term constructors w.r.t. propositional equality. -- If Π F G = Π H E then F = H and G = E. Π-PE-injectivity : ∀ {F rF lF G lG lΠ H rH lH E lE lΠ'} → Π F ^ rF ° lF ▹ G ° lG ° lΠ PE.≡ Π H ^ rH ° lH ▹ E ° lE ° lΠ' → F PE.≡ H × rF PE.≡ rH × lF PE.≡ lH × G PE.≡ E × lG PE.≡ lE × lΠ PE.≡ lΠ' Π-PE-injectivity PE.refl = PE.refl , PE.refl , PE.refl , PE.refl , PE.refl , PE.refl ∃-PE-injectivity : ∀ {F G H E} → ∃ F ▹ G PE.≡ ∃ H ▹ E → F PE.≡ H × G PE.≡ E ∃-PE-injectivity PE.refl = PE.refl , PE.refl -- If suc n = suc m then n = m. suc-PE-injectivity : ∀ {n m} → suc n PE.≡ suc m → n PE.≡ m suc-PE-injectivity PE.refl = PE.refl Univ-PE-injectivity : ∀ {r r' l l'} → Univ r l PE.≡ Univ r' l' → r PE.≡ r' × l PE.≡ l' Univ-PE-injectivity PE.refl = PE.refl , PE.refl -- Neutral terms. -- A term is neutral if -- either it has a variable in head position that blocks reduction. -- either it is of the form Emptyrec (or terms that should reduce to emptyrec, such as incompatible casts) data Neutral : Term → Set where var : ∀ n → Neutral (var n) ∘ₙ : ∀ {k u l} → Neutral k → Neutral (k ∘ u ^ l) natrecₙ : ∀ {l C c g k} → Neutral k → Neutral (natrec l C c g k) Idₙ : ∀ {A t u} → Neutral A → Neutral (Id A t u) Idℕₙ : ∀ {t u} → Neutral t → Neutral (Id ℕ t u) Idℕ0ₙ : ∀ {u} → Neutral u → Neutral (Id ℕ zero u) IdℕSₙ : ∀ {t u} → Neutral u → Neutral (Id ℕ (suc t) u) IdUₙ : ∀ {t u l} → Neutral t → Neutral (Id (U l) t u) IdUℕₙ : ∀ {u l} → Neutral u → Neutral (Id (U l) ℕ u) IdUΠₙ : ∀ {A rA lA B lB l u} → Neutral u → Neutral (Id (U l) (Π A ^ rA ° lA ▹ B ° lB ° l) u) castₙ : ∀ {l A B e t} → Neutral A → Neutral (cast l A B e t) castℕₙ : ∀ {l B e t} → Neutral B → Neutral (cast l ℕ B e t) castΠₙ : ∀ {l A rA lA P lP B e t} → Neutral B → Neutral (cast l (Π A ^ rA ° lA ▹ P ° lP ° l) B e t) castℕℕₙ : ∀ {l e t} → Neutral t → Neutral (cast l ℕ ℕ e t) castℕΠₙ : ∀ {l A rA B e t} → Neutral (cast l ℕ (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° l) e t) castΠℕₙ : ∀ {l A rA B e t} → Neutral (cast l (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° l) ℕ e t) castΠΠ%!ₙ : ∀ {l A B A' B' e t} → Neutral (cast l (Π A ^ % ° ⁰ ▹ B ° ⁰ ° l) (Π A' ^ ! ° ⁰ ▹ B' ° ⁰ ° l) e t) castΠΠ!%ₙ : ∀ {l A B A' B' e t} → Neutral (cast l (Π A ^ ! ° ⁰ ▹ B ° ⁰ ° l) (Π A' ^ % ° ⁰ ▹ B' ° ⁰ ° l) e t) Emptyrecₙ : ∀ {l lEmpty A e} -> Neutral (Emptyrec l lEmpty A e) -- Weak head normal forms (whnfs). -- These are the (lazy) values of our language. data Whnf : Term → Set where -- Type constructors are whnfs. Uₙ : ∀ {r l} → Whnf (Univ r l) Πₙ : ∀ {A r lA B lB l} → Whnf (Π A ^ r ° lA ▹ B ° lB ° l) ∃ₙ : ∀ {A B} → Whnf (∃ A ▹ B) ℕₙ : Whnf ℕ Emptyₙ : ∀ {l} → Whnf (Empty l) -- Introductions are whnfs. lamₙ : ∀ {A t l} → Whnf (lam A ▹ t ^ l) zeroₙ : Whnf zero sucₙ : ∀ {t} → Whnf (suc t) -- Neutrals are whnfs. ne : ∀ {n} → Neutral n → Whnf n -- Whnf inequalities. -- Different whnfs are trivially distinguished by propositional equality. -- (The following statements are sometimes called "no-confusion theorems".) U≢ℕ : ∀ {r l} → Univ r l PE.≢ ℕ U≢ℕ () U≢Empty : ∀ {r l l'} → Univ r l PE.≢ Empty l' U≢Empty () U≢Π : ∀ {r r' l F lF G lG l'} → Univ r l PE.≢ Π F ^ r' ° lF ▹ G ° lG ° l' U≢Π () U≢∃ : ∀ {r l F G} → Univ r l PE.≢ ∃ F ▹ G U≢∃ () U≢ne : ∀ {r l K} → Neutral K → Univ r l PE.≢ K U≢ne () PE.refl ℕ≢Π : ∀ {F r lF G lG l} → ℕ PE.≢ Π F ^ r ° lF ▹ G ° lG ° l ℕ≢Π () ℕ≢∃ : ∀ {F G} → ℕ PE.≢ ∃ F ▹ G ℕ≢∃ () ℕ≢Empty : ∀ {l} → ℕ PE.≢ Empty l ℕ≢Empty () Empty≢ℕ : ∀ {l} → Empty l PE.≢ ℕ Empty≢ℕ () ℕ≢ne : ∀ {K} → Neutral K → ℕ PE.≢ K ℕ≢ne () PE.refl Empty≢ne : ∀ {l K} → Neutral K → Empty l PE.≢ K Empty≢ne () PE.refl Empty≢Π : ∀ {F r lF G lG l l'} → Empty l' PE.≢ Π F ^ r ° lF ▹ G ° lG ° l Empty≢Π () Empty≢∃ : ∀ {l F G} → Empty l PE.≢ ∃ F ▹ G Empty≢∃ () Π≢ne : ∀ {F r lF G lG K l} → Neutral K → Π F ^ r ° lF ▹ G ° lG ° l PE.≢ K Π≢ne () PE.refl Π≢∃ : ∀ {F r lF G lG F' G' l} → Π F ^ r ° lF ▹ G ° lG ° l PE.≢ ∃ F' ▹ G' Π≢∃ () ∃≢ne : ∀ {F G K} → Neutral K → ∃ F ▹ G PE.≢ K ∃≢ne () PE.refl zero≢suc : ∀ {n} → zero PE.≢ suc n zero≢suc () zero≢ne : ∀ {k} → Neutral k → zero PE.≢ k zero≢ne () PE.refl suc≢ne : ∀ {n k} → Neutral k → suc n PE.≢ k suc≢ne () PE.refl -- Several views on whnfs (note: not recursive). -- A whnf of type ℕ is either zero, suc t, or neutral. data Natural : Term → Set where zeroₙ : Natural zero sucₙ : ∀ {t} → Natural (suc t) ne : ∀ {n} → Neutral n → Natural n -- A type in whnf is either Π A B, ℕ, or neutral. -- Large types could also be U. data Type : Term → Set where Πₙ : ∀ {A r lA B lB l} → Type (Π A ^ r ° lA ▹ B ° lB ° l) ℕₙ : Type ℕ Uₙ : ∀ {r l} → Type (Univ r l) Emptyₙ : ∀ {l} → Type (Empty l) ∃ₙ : ∀ {A B} → Type (∃ A ▹ B) ne : ∀{n} → Neutral n → Type n -- A whnf of type Π A B is either lam t or neutral. data Function : Term → Set where lamₙ : ∀{A t l} → Function (lam A ▹ t ^ l) ne : ∀{n} → Neutral n → Function n -- These views classify only whnfs. -- Natural, Type, and Function are a subsets of Whnf. naturalWhnf : ∀ {n} → Natural n → Whnf n naturalWhnf sucₙ = sucₙ naturalWhnf zeroₙ = zeroₙ naturalWhnf (ne x) = ne x typeWhnf : ∀ {A} → Type A → Whnf A typeWhnf Πₙ = Πₙ typeWhnf ℕₙ = ℕₙ typeWhnf Uₙ = Uₙ typeWhnf ∃ₙ = ∃ₙ typeWhnf Emptyₙ = Emptyₙ typeWhnf (ne x) = ne x functionWhnf : ∀ {f} → Function f → Whnf f functionWhnf lamₙ = lamₙ functionWhnf (ne x) = ne x ------------------------------------------------------------------------ -- Weakening -- In the following we define untyped weakenings η : Wk. -- The typed form could be written η : Γ ≤ Δ with the intention -- that η transport a term t living in context Δ to a context Γ -- that can bind additional variables (which cannot appear in t). -- Thus, if Δ ⊢ t : A and η : Γ ≤ Δ then Γ ⊢ wk η t : wk η A. -- -- Even though Γ is "larger" than Δ we write Γ ≤ Δ to be conformant -- with subtyping A ≤ B. With subtyping, relation Γ ≤ Δ could be defined as -- ``for all x ∈ dom(Δ) have Γ(x) ≤ Δ(x)'' (in the sense of subtyping) -- and this would be the natural extension of weakenings. data Wk : Set where id : Wk -- η : Γ ≤ Γ. step : Wk → Wk -- If η : Γ ≤ Δ then step η : Γ∙A ≤ Δ. lift : Wk → Wk -- If η : Γ ≤ Δ then lift η : Γ∙A ≤ Δ∙A. -- Composition of weakening. -- If η : Γ ≤ Δ and η′ : Δ ≤ Φ then η • η′ : Γ ≤ Φ. infixl 30 _•_ _•_ : Wk → Wk → Wk id • η′ = η′ step η • η′ = step (η • η′) lift η • id = lift η lift η • step η′ = step (η • η′) lift η • lift η′ = lift (η • η′) repeat : {A : Set} → (A → A) → A → Nat → A repeat f a 0 = a repeat f a (1+ n) = f (repeat f a n) -- Weakening of variables. -- If η : Γ ≤ Δ and x ∈ dom(Δ) then wkVar ρ x ∈ dom(Γ). wkVar : (ρ : Wk) (n : Nat) → Nat wkVar id n = n wkVar (step ρ) n = 1+ (wkVar ρ n) wkVar (lift ρ) 0 = 0 wkVar (lift ρ) (1+ n) = 1+ (wkVar ρ n) -- Weakening of terms. -- If η : Γ ≤ Δ and Δ ⊢ t : A then Γ ⊢ wk η t : wk η A. mutual wkGen : (ρ : Wk) (g : List (GenT Term)) → List (GenT Term) wkGen ρ [] = [] wkGen ρ (⟦ l , t ⟧ ∷ g) = ⟦ l , (wk (repeat lift ρ l) t) ⟧ ∷ wkGen ρ g wk : (ρ : Wk) (t : Term) → Term wk ρ (var x) = var (wkVar ρ x) wk ρ (gen x c) = gen x (wkGen ρ c) -- Adding one variable to the context requires wk1. -- If Γ ⊢ t : B then Γ∙A ⊢ wk1 t : wk1 B. wk1 : Term → Term wk1 = wk (step id) wk1d : Term → Term wk1d = wk (lift (step id)) -- Weakening of a neutral term. wkNeutral : ∀ {t} ρ → Neutral t → Neutral (wk ρ t) wkNeutral ρ (var n) = var (wkVar ρ n) wkNeutral ρ (∘ₙ n) = ∘ₙ (wkNeutral ρ n) wkNeutral ρ (natrecₙ n) = natrecₙ (wkNeutral ρ n) wkNeutral ρ Emptyrecₙ = Emptyrecₙ wkNeutral ρ (Idₙ A) = Idₙ (wkNeutral ρ A) wkNeutral ρ (Idℕₙ t) = Idℕₙ (wkNeutral ρ t) wkNeutral ρ (Idℕ0ₙ t) = Idℕ0ₙ (wkNeutral ρ t) wkNeutral ρ (IdℕSₙ t) = IdℕSₙ (wkNeutral ρ t) wkNeutral ρ (IdUₙ t) = IdUₙ (wkNeutral ρ t) wkNeutral ρ (IdUℕₙ t) = IdUℕₙ (wkNeutral ρ t) wkNeutral ρ (IdUΠₙ t) = IdUΠₙ (wkNeutral ρ t) wkNeutral ρ (castₙ A) = castₙ (wkNeutral ρ A) wkNeutral ρ (castℕₙ A) = castℕₙ (wkNeutral ρ A) wkNeutral ρ (castΠₙ A) = castΠₙ (wkNeutral ρ A) wkNeutral ρ (castℕℕₙ t) = castℕℕₙ (wkNeutral ρ t) wkNeutral ρ castℕΠₙ = castℕΠₙ wkNeutral ρ castΠℕₙ = castΠℕₙ wkNeutral ρ castΠΠ%!ₙ = castΠΠ%!ₙ wkNeutral ρ castΠΠ!%ₙ = castΠΠ!%ₙ -- Weakening can be applied to our whnf views. wkNatural : ∀ {t} ρ → Natural t → Natural (wk ρ t) wkNatural ρ sucₙ = sucₙ wkNatural ρ zeroₙ = zeroₙ wkNatural ρ (ne x) = ne (wkNeutral ρ x) wkType : ∀ {t} ρ → Type t → Type (wk ρ t) wkType ρ Πₙ = Πₙ wkType ρ ℕₙ = ℕₙ wkType ρ Uₙ = Uₙ wkType ρ ∃ₙ = ∃ₙ wkType ρ Emptyₙ = Emptyₙ wkType ρ (ne x) = ne (wkNeutral ρ x) wkFunction : ∀ {t} ρ → Function t → Function (wk ρ t) wkFunction ρ lamₙ = lamₙ wkFunction ρ (ne x) = ne (wkNeutral ρ x) wkWhnf : ∀ {t} ρ → Whnf t → Whnf (wk ρ t) wkWhnf ρ Uₙ = Uₙ wkWhnf ρ Πₙ = Πₙ wkWhnf ρ ∃ₙ = ∃ₙ wkWhnf ρ ℕₙ = ℕₙ wkWhnf ρ Emptyₙ = Emptyₙ wkWhnf ρ lamₙ = lamₙ wkWhnf ρ zeroₙ = zeroₙ wkWhnf ρ sucₙ = sucₙ wkWhnf ρ (ne x) = ne (wkNeutral ρ x) -- Non-dependent version of Π. _^_°_▹▹_°_°_ : Term → Relevance → Level → Term → Level → Level → Term A ^ r ° lA ▹▹ B ° lB ° l = Π A ^ r ° lA ▹ wk1 B ° lB ° l -- Non-dependent version of ∃. _××_ : Term → Term → Term A ×× B = ∃ A ▹ wk1 B ------------------------------------------------------------------------ -- Substitution -- The substitution operation subst σ t replaces the free de Bruijn indices -- of term t by chosen terms as specified by σ. -- The substitution σ itself is a map from natural numbers to terms. Subst : Set Subst = Nat → Term -- Given closed contexts ⊢ Γ and ⊢ Δ, -- substitutions may be typed via Γ ⊢ σ : Δ meaning that -- Γ ⊢ σ(x) : (subst σ Δ)(x) for all x ∈ dom(Δ). -- -- The substitution operation is then typed as follows: -- If Γ ⊢ σ : Δ and Δ ⊢ t : A, then Γ ⊢ subst σ t : subst σ A. -- -- Although substitutions are untyped, typing helps us -- to understand the operation on substitutions. -- We may view σ as the infinite stream σ 0, σ 1, ... -- Extract the substitution of the first variable. -- -- If Γ ⊢ σ : Δ∙A then Γ ⊢ head σ : subst σ A. head : Subst → Term head σ = σ 0 -- Remove the first variable instance of a substitution -- and shift the rest to accommodate. -- -- If Γ ⊢ σ : Δ∙A then Γ ⊢ tail σ : Δ. tail : Subst → Subst tail σ n = σ (1+ n) -- Substitution of a variable. -- -- If Γ ⊢ σ : Δ then Γ ⊢ substVar σ x : (subst σ Δ)(x). substVar : (σ : Subst) (x : Nat) → Term substVar σ x = σ x -- Identity substitution. -- Replaces each variable by itself. -- -- Γ ⊢ idSubst : Γ. idSubst : Subst idSubst = var -- Weaken a substitution by one. -- -- If Γ ⊢ σ : Δ then Γ∙A ⊢ wk1Subst σ : Δ. wk1Subst : Subst → Subst wk1Subst σ x = wk1 (σ x) -- Lift a substitution. -- -- If Γ ⊢ σ : Δ then Γ∙A ⊢ liftSubst σ : Δ∙A. liftSubst : (σ : Subst) → Subst liftSubst σ 0 = var 0 liftSubst σ (1+ x) = wk1Subst σ x -- Transform a weakening into a substitution. -- -- If ρ : Γ ≤ Δ then Γ ⊢ toSubst ρ : Δ. toSubst : Wk → Subst toSubst pr x = var (wkVar pr x) -- Apply a substitution to a term. -- -- If Γ ⊢ σ : Δ and Δ ⊢ t : A then Γ ⊢ subst σ t : subst σ A. mutual substGen : (σ : Subst) (g : List (GenT Term)) → List (GenT Term) substGen σ [] = [] substGen σ (⟦ l , t ⟧ ∷ g) = ⟦ l , (subst (repeat liftSubst σ l) t) ⟧ ∷ substGen σ g subst : (σ : Subst) (t : Term) → Term subst σ (var x) = substVar σ x subst σ (gen x c) = gen x (substGen σ c) -- Extend a substitution by adding a term as -- the first variable substitution and shift the rest. -- -- If Γ ⊢ σ : Δ and Γ ⊢ t : subst σ A then Γ ⊢ consSubst σ t : Δ∙A. consSubst : Subst → Term → Subst consSubst σ t 0 = t consSubst σ t (1+ n) = σ n -- Singleton substitution. -- -- If Γ ⊢ t : A then Γ ⊢ sgSubst t : Γ∙A. sgSubst : Term → Subst sgSubst = consSubst idSubst -- Compose two substitutions. -- -- If Γ ⊢ σ : Δ and Δ ⊢ σ′ : Φ then Γ ⊢ σ ₛ•ₛ σ′ : Φ. _ₛ•ₛ_ : Subst → Subst → Subst _ₛ•ₛ_ σ σ′ x = subst σ (σ′ x) -- Composition of weakening and substitution. -- -- If ρ : Γ ≤ Δ and Δ ⊢ σ : Φ then Γ ⊢ ρ •ₛ σ : Φ. _•ₛ_ : Wk → Subst → Subst _•ₛ_ ρ σ x = wk ρ (σ x) -- If Γ ⊢ σ : Δ and ρ : Δ ≤ Φ then Γ ⊢ σ ₛ• ρ : Φ. _ₛ•_ : Subst → Wk → Subst _ₛ•_ σ ρ x = σ (wkVar ρ x) -- Substitute the first variable of a term with an other term. -- -- If Γ∙A ⊢ t : B and Γ ⊢ s : A then Γ ⊢ t[s] : B[s]. _[_] : (t : Term) (s : Term) → Term t [ s ] = subst (sgSubst s) t -- Substitute the first variable of a term with an other term, -- but let the two terms share the same context. -- -- If Γ∙A ⊢ t : B and Γ∙A ⊢ s : A then Γ∙A ⊢ t[s]↑ : B[s]↑. _[_]↑ : (t : Term) (s : Term) → Term t [ s ]↑ = subst (consSubst (wk1Subst idSubst) s) t _[_]↑↑ : (t : Term) (s : Term) → Term t [ s ]↑↑ = subst (consSubst (wk1Subst (wk1Subst idSubst)) s) t -- Definition of syntaxic sugar Unit : ∀ {l} → Term Unit {l} = Π Empty l ^ % ° l ▹ Empty l ° l ° l Idsym : (A x y e : Term) → Term Idsym A x y e = transp A (Id (wk1 A) (var 0) (wk1 x)) x (Idrefl A x) y e
{ "alphanum_fraction": 0.5616374147, "avg_line_length": 28.1127379209, "ext": "agda", "hexsha": "e9ca9daaa39ae62d792f6a023d01fc0a4b16fc62", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Untyped.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Untyped.agda", "max_line_length": 119, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Untyped.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 8284, "size": 19201 }
{-# OPTIONS --cubical --safe #-} module Data.List.Membership where open import Data.List open import Data.Fin open import Data.Fin.Properties open import Prelude open import Relation.Nullary open import Path.Reasoning open import Data.List.Relation.Unary as Relation using (module Exists; module Congruence; ◇; ◇!) import Data.Nat as ℕ import Data.Nat.Properties as ℕ open import Data.Maybe.Properties using (just-inj) module _ {a} {A : Type a} {x : A} where open Exists (_≡ x) using (push; pull; push!; pull!; here!; _◇++_; _++◇_) renaming (◇? to _∈?_) public infixr 5 _∈_ _∈!_ _∉_ _∈_ : A → List A → Type _ x ∈ xs = ◇ (_≡ x) xs _∉_ : {A : Type a} → A → List A → Type a x ∉ xs = ¬ (x ∈ xs) _∈!_ : A → List A → Type _ x ∈! xs = ◇! (_≡ x) xs cong-∈ : ∀ (f : A → B) {x : A} xs → x ∈ xs → f x ∈ map f xs cong-∈ f {x} = Congruence.cong-◇ (_≡ x) (_≡ (f x)) (cong f) fin∈tabulate : ∀ {n} (f : Fin n → A) (i : Fin n) → f i ∈ tabulate n f fin∈tabulate {n = suc _} f f0 = f0 , refl fin∈tabulate {n = suc _} f (fs i) = push (fin∈tabulate (f ∘ fs) i) open import Function.Injective at : ∀ {xs : List A} (n : Fin (length xs)) → (xs ! n) ∈ xs at n = n , refl module _ {a} {A : Set a} (_≟_ : Discrete A) where isSet⟨A⟩ : isSet A isSet⟨A⟩ = Discrete→isSet _≟_ infixl 6 _\\_ _\\_ : List A → A → List A xs \\ x = foldr f [] xs where f : A → List A → List A f y xs with x ≟ y ... | yes p = xs ... | no p = y ∷ xs uniques : List A → List A uniques = foldr f [] where f : A → List A → List A f x xs = x ∷ (xs \\ x) x∉xs\\x : ∀ x xs → x ∉ xs \\ x x∉xs\\x x (y ∷ xs) (n , x∈xs) with x ≟ y x∉xs\\x x (y ∷ xs) (n , x∈xs) | yes p = x∉xs\\x x xs (n , x∈xs) x∉xs\\x x (y ∷ xs) (f0 , y≡x) | no ¬p = ¬p (sym y≡x) x∉xs\\x x (y ∷ xs) (fs n , x∈xs) | no ¬p = x∉xs\\x x xs (n , x∈xs) x∈!x∷xs\\x : ∀ x xs → x ∈! x ∷ xs \\ x x∈!x∷xs\\x x xs = here! (refl , isSet⟨A⟩ _ _ refl) (x∉xs\\x x xs) x∉xs⇒x∉xs\\y : ∀ (x : A) y xs → x ∉ xs → x ∉ xs \\ y x∉xs⇒x∉xs\\y x y (z ∷ xs) x∉xs x∈xs\\y with y ≟ z x∉xs⇒x∉xs\\y x y (z ∷ xs) x∉xs x∈xs\\y | yes p = x∉xs⇒x∉xs\\y x y xs (x∉xs ∘ push) x∈xs\\y x∉xs⇒x∉xs\\y x y (z ∷ xs) x∉xs (f0 , x∈xs\\y) | no ¬p = x∉xs (f0 , x∈xs\\y) x∉xs⇒x∉xs\\y x y (z ∷ xs) x∉xs (fs n , x∈xs\\y) | no ¬p = x∉xs⇒x∉xs\\y x y xs (x∉xs ∘ push) (n , x∈xs\\y) x∈!xs⇒x∈!xs\\y : ∀ (x : A) y xs → y ≢ x → x ∈! xs → x ∈! xs \\ y x∈!xs⇒x∈!xs\\y x y (z ∷ xs) y≢x x∈!xs with y ≟ z x∈!xs⇒x∈!xs\\y x y (z ∷ xs) y≢x x∈!xs | yes p = x∈!xs⇒x∈!xs\\y x y xs y≢x (pull! (y≢x ∘ p ;_) x∈!xs) x∈!xs⇒x∈!xs\\y x y (z ∷ xs) y≢x ((f0 , x∈xs) , uniq) | no ¬p = here! (x∈xs , isSet⟨A⟩ _ _ _) (x∉xs⇒x∉xs\\y x y xs (ℕ.znots ∘ cong FinToℕ ∘ cong fst ∘ uniq ∘ push)) x∈!xs⇒x∈!xs\\y x y (z ∷ xs) y≢x ((fs n , x∈xs) , uniq) | no ¬p = push! z≢x (x∈!xs⇒x∈!xs\\y x y xs y≢x (pull! z≢x ((fs n , x∈xs) , uniq))) where z≢x = ℕ.snotz ∘ cong FinToℕ ∘ cong fst ∘ uniq ∘ (f0 ,_) ∈⇒∈! : (x : A) (xs : List A) → x ∈ xs → x ∈! uniques xs ∈⇒∈! x (y ∷ xs) (f0 , x∈xs) = subst (_∈! (y ∷ uniques xs \\ y)) x∈xs (x∈!x∷xs\\x y (uniques xs)) ∈⇒∈! x (y ∷ xs) (fs n , x∈xs) with y ≟ x ... | yes p = subst (_∈! (y ∷ uniques xs \\ y)) p (x∈!x∷xs\\x y (uniques xs)) ... | no ¬p = push! ¬p (x∈!xs⇒x∈!xs\\y x y (uniques xs) ¬p (∈⇒∈! x xs (n , x∈xs))) infixr 5 _∈²_ _∈²_ : A → List (List A) → Type _ x ∈² xs = ◇ (x ∈_) xs ∈²→∈ : ∀ {x : A} xs → x ∈² xs → x ∈ concat xs ∈²→∈ = Relation.◇-concat (_≡ _)
{ "alphanum_fraction": 0.4824957651, "avg_line_length": 32.7962962963, "ext": "agda", "hexsha": "0fe1470cc2e48d5476942912d80ce01391a998ab", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/List/Membership.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/List/Membership.agda", "max_line_length": 104, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/List/Membership.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1860, "size": 3542 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal module Experiment.Categories.Category.Monoidal.Coherence {o ℓ e} {𝒞 : Category o ℓ e} (M : Monoidal 𝒞) where open import Level open import Data.Product using (Σ) open import Categories.Morphism 𝒞 open import Categories.Functor open Category 𝒞 open Monoidal M 𝒞′ : Category (o ⊔ ℓ ⊔ e) (ℓ ⊔ o) e 𝒞′ = categoryHelper record { Obj = Σ (Endofunctor 𝒞) λ E → ∀ {A B} → Functor.F₀ E A ⊗₀ B ≅ Functor.F₀ E (A ⊗₀ B) -- TODO and more coherence ; _⇒_ = {! !} ; _≈_ = {! !} ; id = {! !} ; _∘_ = {! !} ; assoc = {! !} ; identityˡ = {! !} ; identityʳ = {! !} ; equiv = {! !} ; ∘-resp-≈ = {! !} }
{ "alphanum_fraction": 0.5449936629, "avg_line_length": 23.9090909091, "ext": "agda", "hexsha": "c4a18a6f58466d7b7e4b10e01d2e886eb9cf7139", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Categories/Category/Monoidal/Coherence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Categories/Category/Monoidal/Coherence.agda", "max_line_length": 58, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Categories/Category/Monoidal/Coherence.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 289, "size": 789 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} {- This file defines sucPred : ∀ (i : Int) → sucInt (predInt i) ≡ i predSuc : ∀ (i : Int) → predInt (sucInt i) ≡ i discreteInt : discrete Int isSetInt : isSet Int addition of Int is defined _+_ : Int → Int → Int as well as its commutativity and associativity +-comm : ∀ (m n : Int) → m + n ≡ n + m +-assoc : ∀ (m n o : Int) → m + (n + o) ≡ (m + n) + o An alternate definition of _+_ is defined via ua, namely _+'_, which helps us to easily prove isEquivAddInt : (m : Int) → isEquiv (λ n → n + m) -} module Cubical.Data.Int.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit renaming (Unit to ⊤) open import Cubical.Data.Nat as ℕ using (ℕ; zero; suc; discreteℕ) renaming ( _·_ to _·ⁿ_ ; _+_ to _+ⁿ_ ; _⊓_ to _⊓ⁿ_ ; _⊔_ to _⊔ⁿ_ ) open import Cubical.Data.Nat.Order as ℕᵒ using () renaming ( _<_ to _<ⁿ_ ) open import Cubical.Data.Bool hiding (_≟_) open import Cubical.Data.Sum open import Cubical.Data.Int.Base open import Cubical.Functions.Logic using (pathTo⇒; ⊔-comm) open import Cubical.HITs.PropositionalTruncation as PropTrunc using (propTruncIsProp) open import Cubical.Foundations.Function using (_∘_) open import Cubical.Reflection.Base using (_$_) -- TODO: add this to Foundation.Function open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq abs : Int → ℕ abs (pos n) = n abs (negsuc n) = suc n Sign : Type₀ Sign = Bool pattern spos = Bool.false pattern sneg = Bool.true _·ˢ_ : Sign → Sign → Sign _·ˢ_ = _⊕_ sgn : Int → Bool sgn (pos n) = spos sgn (negsuc n) = sneg signed : Sign → ℕ → Int signed spos x = pos x signed sneg zero = pos 0 signed sneg (suc x) = neg (suc x) sgn-signed : ∀ s n → sgn (signed s (suc n)) ≡ s sgn-signed spos n = refl sgn-signed sneg n = refl abs-signed : ∀ s n → abs (signed s n) ≡ n abs-signed spos n = refl abs-signed sneg zero = refl abs-signed sneg (suc n) = refl signed-inv : ∀ a → signed (sgn a) (abs a) ≡ a signed-inv (pos n) = refl signed-inv (negsuc n) = refl signed-zero : ∀ s → signed s 0 ≡ 0 signed-zero spos = refl signed-zero sneg = refl signed-reflects-sgn : ∀ s₁ s₂ n m → signed s₁ (suc n) ≡ signed s₂ (suc m) → s₁ ≡ s₂ signed-reflects-sgn s₁ s₂ n m p = sym (sgn-signed s₁ n) ∙ (λ i → sgn (p i)) ∙ sgn-signed s₂ m signed-reflects-abs : ∀ s₁ s₂ n m → signed s₁ n ≡ signed s₂ m → n ≡ m signed-reflects-abs s₁ s₂ n m p = sym (abs-signed s₁ n) ∙ (λ i → abs (p i)) ∙ abs-signed s₂ m sign-abs-≡ : ∀ a b → sgn a ≡ sgn b → abs a ≡ abs b → a ≡ b sign-abs-≡ a b p q = transport (λ i → signed-inv a i ≡ signed-inv b i) λ i → signed (p i) (q i) sucPred : ∀ i → sucInt (predInt i) ≡ i sucPred (pos zero) = refl sucPred (pos (suc n)) = refl sucPred (negsuc n) = refl predSuc : ∀ i → predInt (sucInt i) ≡ i predSuc (pos n) = refl predSuc (negsuc zero) = refl predSuc (negsuc (suc n)) = refl predInt-inj : ∀ a b → predInt a ≡ predInt b → a ≡ b predInt-inj a b p = sym (sucPred a) ∙ cong sucInt p ∙ sucPred b injPos : ∀ {a b : ℕ} → pos a ≡ pos b → a ≡ b injPos {a} h = subst T h refl where T : Int → Type₀ T (pos x) = a ≡ x T (negsuc _) = ⊥ injNegsuc : ∀ {a b : ℕ} → negsuc a ≡ negsuc b → a ≡ b injNegsuc {a} h = subst T h refl where T : Int → Type₀ T (pos _) = ⊥ T (negsuc x) = a ≡ x posNotnegsuc : ∀ (a b : ℕ) → ¬ (pos a ≡ negsuc b) posNotnegsuc a b h = subst T h 0 where T : Int → Type₀ T (pos _) = ℕ T (negsuc _) = ⊥ negsucNotpos : ∀ (a b : ℕ) → ¬ (negsuc a ≡ pos b) negsucNotpos a b h = subst T h 0 where T : Int → Type₀ T (pos _) = ⊥ T (negsuc _) = ℕ discreteInt : Discrete Int discreteInt (pos n) (pos m) with discreteℕ n m ... | yes p = yes (cong pos p) ... | no p = no (λ x → p (injPos x)) discreteInt (pos n) (negsuc m) = no (posNotnegsuc n m) discreteInt (negsuc n) (pos m) = no (negsucNotpos n m) discreteInt (negsuc n) (negsuc m) with discreteℕ n m ... | yes p = yes (cong negsuc p) ... | no p = no (λ x → p (injNegsuc x)) isSetInt : isSet Int isSetInt = Discrete→isSet discreteInt _ℕ-_ : ℕ → ℕ → Int a ℕ- 0 = pos a 0 ℕ- suc b = negsuc b suc a ℕ- suc b = a ℕ- b _+pos_ : Int → ℕ → Int z +pos 0 = z z +pos (suc n) = sucInt (z +pos n) _+negsuc_ : Int → ℕ → Int z +negsuc 0 = predInt z z +negsuc (suc n) = predInt (z +negsuc n) infix 8 -_ infixl 7 _·_ _⊓_ infixl 6 _+_ _-_ _⊔_ infix 4 _<_ -- _≤_ _+_ : Int → Int → Int m + pos n = m +pos n m + negsuc n = m +negsuc n -- TODO: in `Cubical.Papers.RepresentationIndependence` we have -- -_ : ℤ → ℤ -- - x = 0 - x -- there might be an advantage of defining -_ by _-_ and not the other way around -- e.g. in Cubical.HITs.QuoInt we have -- -_ : ℤ → ℤ -- - signed s n = signed (not s) n -- - posneg i = posneg (~ i) -_ : Int → Int - pos zero = pos zero - pos (suc n) = negsuc n - negsuc n = pos (suc n) _-_ : Int → Int → Int m - n = m + (- n) _·_ : Int → Int → Int x · y = signed (sgn x ⊕ sgn y) (abs x ·ⁿ abs y) _<_ : ∀(x y : Int) → Type₀ pos x < pos y = x <ⁿ y pos x < negsuc y = ⊥ negsuc x < pos y = ⊤ negsuc x < negsuc y = y <ⁿ x _⊓_ : Int → Int → Int (pos x) ⊓ (pos y) = pos (x ⊓ⁿ y) (pos x) ⊓ (negsuc y) = negsuc y (negsuc x) ⊓ (pos y) = negsuc x (negsuc x) ⊓ (negsuc y) = negsuc (x ⊔ⁿ y) _⊔_ : Int → Int → Int (pos x) ⊔ (pos y) = pos (x ⊔ⁿ y) (pos x) ⊔ (negsuc y) = pos x (negsuc x) ⊔ (pos y) = pos y (negsuc x) ⊔ (negsuc y) = negsuc (x ⊓ⁿ y) neg-involutive : ∀ n → - - n ≡ n neg-involutive (pos zero ) = refl neg-involutive (pos (suc n)) = refl neg-involutive (negsuc n ) = refl neg-signed-not : ∀ s n → - signed s n ≡ signed (not s) n neg-signed-not spos zero = refl neg-signed-not sneg zero = refl neg-signed-not spos (suc n) = refl neg-signed-not sneg (suc n) = refl neg-abs : ∀ a → abs (- a) ≡ abs a neg-abs (pos zero) = refl neg-abs (pos (suc n)) = refl neg-abs (negsuc n) = refl neg-reflects-≡ : ∀ a b → - a ≡ - b → a ≡ b neg-reflects-≡ a b p = sym (neg-involutive a) ∙ (λ i → - p i) ∙ neg-involutive b abs-preserves-· : ∀ a b → abs (a · b) ≡ abs a ℕ.· abs b abs-preserves-· a b = abs-signed (sgn a ⊕ sgn b) _ sucInt+pos : ∀ n m → sucInt (m +pos n) ≡ (sucInt m) +pos n sucInt+pos zero m = refl sucInt+pos (suc n) m = cong sucInt (sucInt+pos n m) predInt+negsuc : ∀ n m → predInt (m +negsuc n) ≡ (predInt m) +negsuc n predInt+negsuc zero m = refl predInt+negsuc (suc n) m = cong predInt (predInt+negsuc n m) sucInt+negsuc : ∀ n m → sucInt (m +negsuc n) ≡ (sucInt m) +negsuc n sucInt+negsuc zero m = (sucPred _) ∙ (sym (predSuc _)) sucInt+negsuc (suc n) m = _ ≡⟨ sucPred _ ⟩ m +negsuc n ≡[ i ]⟨ predSuc m (~ i) +negsuc n ⟩ (predInt (sucInt m)) +negsuc n ≡⟨ sym (predInt+negsuc n (sucInt m)) ⟩ predInt (sucInt m +negsuc n) ∎ predInt+pos : ∀ n m → predInt (m +pos n) ≡ (predInt m) +pos n predInt+pos zero m = refl predInt+pos (suc n) m = _ ≡⟨ predSuc _ ⟩ m +pos n ≡[ i ]⟨ sucPred m (~ i) + pos n ⟩ (sucInt (predInt m)) +pos n ≡⟨ sym (sucInt+pos n (predInt m))⟩ (predInt m) +pos (suc n) ∎ predInt+ : ∀ m n → predInt (m + n) ≡ (predInt m) + n predInt+ m (pos n) = predInt+pos n m predInt+ m (negsuc n) = predInt+negsuc n m +predInt : ∀ m n → predInt (m + n) ≡ m + (predInt n) +predInt m (pos zero) = refl +predInt m (pos (suc n)) = (predSuc (m + pos n)) ∙ (cong (_+_ m) (sym (predSuc (pos n)))) +predInt m (negsuc n) = refl sucInt+ : ∀ m n → sucInt (m + n) ≡ (sucInt m) + n sucInt+ m (pos n) = sucInt+pos n m sucInt+ m (negsuc n) = sucInt+negsuc n m +sucInt : ∀ m n → sucInt (m + n) ≡ m + (sucInt n) +sucInt m (pos n) = refl +sucInt m (negsuc zero) = sucPred _ +sucInt m (negsuc (suc n)) = (sucPred (m +negsuc n)) ∙ (cong (_+_ m) (sym (sucPred (negsuc n)))) pos0+ : ∀ z → z ≡ pos 0 + z pos0+ (pos zero) = refl pos0+ (pos (suc n)) = cong sucInt (pos0+ (pos n)) pos0+ (negsuc zero) = refl pos0+ (negsuc (suc n)) = cong predInt (pos0+ (negsuc n)) negsuc0+ : ∀ z → predInt z ≡ negsuc 0 + z negsuc0+ (pos zero) = refl negsuc0+ (pos (suc n)) = (sym (sucPred (pos n))) ∙ (cong sucInt (negsuc0+ _)) negsuc0+ (negsuc zero) = refl negsuc0+ (negsuc (suc n)) = cong predInt (negsuc0+ (negsuc n)) ind-comm : {A : Type₀} (_∙_ : A → A → A) (f : ℕ → A) (g : A → A) (p : ∀ {n} → f (suc n) ≡ g (f n)) (g∙ : ∀ a b → g (a ∙ b) ≡ g a ∙ b) (∙g : ∀ a b → g (a ∙ b) ≡ a ∙ g b) (base : ∀ z → z ∙ f 0 ≡ f 0 ∙ z) → ∀ z n → z ∙ f n ≡ f n ∙ z ind-comm _∙_ f g p g∙ ∙g base z 0 = base z ind-comm _∙_ f g p g∙ ∙g base z (suc n) = z ∙ f (suc n) ≡[ i ]⟨ z ∙ p {n} i ⟩ z ∙ g (f n) ≡⟨ sym ( ∙g z (f n)) ⟩ g (z ∙ f n) ≡⟨ cong g IH ⟩ g (f n ∙ z) ≡⟨ g∙ (f n) z ⟩ g (f n) ∙ z ≡[ i ]⟨ p {n} (~ i) ∙ z ⟩ f (suc n) ∙ z ∎ where IH = ind-comm _∙_ f g p g∙ ∙g base z n ind-assoc : {A : Type₀} (_·_ : A → A → A) (f : ℕ → A) (g : A → A) (p : ∀ a b → g (a · b) ≡ a · (g b)) (q : ∀ {c} → f (suc c) ≡ g (f c)) (base : ∀ m n → (m · n) · (f 0) ≡ m · (n · (f 0))) (m n : A) (o : ℕ) → m · (n · (f o)) ≡ (m · n) · (f o) ind-assoc _·_ f g p q base m n 0 = sym (base m n) ind-assoc _·_ f g p q base m n (suc o) = m · (n · (f (suc o))) ≡[ i ]⟨ m · (n · q {o} i) ⟩ m · (n · (g (f o))) ≡[ i ]⟨ m · (p n (f o) (~ i)) ⟩ m · (g (n · (f o))) ≡⟨ sym (p m (n · (f o)))⟩ g (m · (n · (f o))) ≡⟨ cong g IH ⟩ g ((m · n) · (f o)) ≡⟨ p (m · n) (f o) ⟩ (m · n) · (g (f o)) ≡[ i ]⟨ (m · n) · q {o} (~ i) ⟩ (m · n) · (f (suc o)) ∎ where IH = ind-assoc _·_ f g p q base m n o +-comm : ∀ m n → m + n ≡ n + m +-comm m (pos n) = ind-comm _+_ pos sucInt refl sucInt+ +sucInt pos0+ m n +-comm m (negsuc n) = ind-comm _+_ negsuc predInt refl predInt+ +predInt negsuc0+ m n +-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o +-assoc m n (pos o) = ind-assoc _+_ pos sucInt +sucInt refl (λ _ _ → refl) m n o +-assoc m n (negsuc o) = ind-assoc _+_ negsuc predInt +predInt refl +predInt m n o ·-nullifiesʳ : ∀ x → x · 0 ≡ 0 ·-nullifiesʳ (pos n) i = signed spos (ℕ.·-nullifiesʳ n i) ·-nullifiesʳ (negsuc n) i = signed sneg (ℕ.·-nullifiesʳ n i) ·-nullifiesˡ : ∀ x → 0 · x ≡ 0 ·-nullifiesˡ (pos n) i = pos (ℕ.·-nullifiesˡ n i) ·-nullifiesˡ (negsuc n) = refl +-identityʳ : ∀ x → x + 0 ≡ x +-identityʳ x = refl +-identityˡ : ∀ x → 0 + x ≡ x +-identityˡ x = +-comm 0 x ·-identityʳ : ∀ x → x · 1 ≡ x ·-identityʳ x = cong₂ signed (⊕-comm (sgn x) spos) (ℕ.·-identityʳ (abs x)) ∙ signed-inv x ·-identityˡ : ∀ x → 1 · x ≡ x ·-identityˡ x = (λ i → signed (sgn x) (ℕ.+-comm (abs x) 0 i)) ∙ signed-inv x ·-comm : ∀ m n → m · n ≡ n · m ·-comm (pos m) n = cong₂ signed (⊕-comm spos (sgn n)) (ℕ.·-comm m (abs n)) ·-comm (negsuc m) n = cong₂ signed (⊕-comm sneg (sgn n)) (ℕ.·-comm (suc m) (abs n)) predInt-neg : ∀ a → predInt (- a) ≡ - (sucInt a) predInt-neg (pos zero ) = refl predInt-neg (pos (suc n)) = refl predInt-neg (negsuc zero ) = refl predInt-neg (negsuc (suc n)) = refl sucInt-neg : ∀ a → sucInt (- a) ≡ - (predInt a) sucInt-neg (pos zero ) = refl sucInt-neg (pos (suc zero) ) = refl sucInt-neg (pos (suc (suc n))) = refl sucInt-neg (negsuc zero ) = refl sucInt-neg (negsuc (suc n) ) = refl private lem : ∀ n → -(0 + n) ≡ 0 - n lem n i = +-identityˡ (- +-identityˡ n i) (~ i) negate-+ : ∀ m n → - (m + n) ≡ (- m) + (- n) negate-+ (pos zero) = lem negate-+ (pos (suc m)) n = (λ i → - sucInt+ (pos m) n (~ i)) ∙ sym (predInt-neg (pos m + n)) ∙ (λ i → predInt (negate-+ (pos m) n i)) ∙ predInt+ (- pos m) (- n) ∙ λ i → predInt-neg (pos m) i + - n negate-+ (negsuc zero) n = predInt-inj (- (negsuc zero + n)) (pos 1 + - n) $ predInt-neg (negsuc 0 + n) ∙ (λ i → - sucInt+ (negsuc 0) n i) ∙ lem n ∙ sym (predInt+ (pos 1) (- n)) negate-+ (negsuc (suc m)) n = (λ i → - predInt+ (negsuc m) n (~ i)) ∙ sym (sucInt-neg (negsuc m + n)) ∙ (λ i → sucInt (negate-+ (negsuc m) n i)) ∙ sucInt+ (pos (suc m)) (- n) negate-·ˡ : ∀ a b → -(a · b) ≡ (- a) · b negate-·ˡ (pos zero) b = neg-signed-not (sgn b) 0 ∙ signed-zero (not (sgn b)) ∙ sym (signed-zero (sgn b)) negate-·ˡ (pos (suc n)) b = neg-signed-not (sgn b) _ negate-·ˡ (negsuc n) b = neg-signed-not (not (sgn b)) _ ∙ cong₂ signed (notnot (sgn b)) refl negate-·ʳ : ∀ a b → -(a · b) ≡ a · (- b) negate-·ʳ a b = (λ i → - ·-comm a b i) ∙ negate-·ˡ b a ∙ ·-comm (- b) a negsuc+negsuc : ∀ a x → (negsuc a +negsuc x) ≡ negsuc (suc (a +ⁿ x)) negsuc+negsuc a zero = λ i → negsuc $ suc $ ℕ.+-comm 0 a i negsuc+negsuc a (suc x) = let r = negsuc+negsuc a x in predInt (negsuc a +negsuc x) ≡⟨ (λ i → predInt (r i)) ⟩ predInt (negsuc (suc (a +ⁿ x))) ≡⟨ refl ⟩ negsuc (suc (suc (a +ⁿ x))) ≡⟨ (λ i → negsuc $ suc $ ℕ.+-suc a x (~ i)) ⟩ negsuc (suc (a +ⁿ suc x)) ∎ signed-distrib : ∀ s m n → signed s (m +ⁿ n) ≡ signed s m + signed s n signed-distrib s zero n = (sym $ +-identityˡ (signed s n)) ∙ λ i → signed-zero s (~ i) + signed s n signed-distrib spos (suc m) n = cong sucInt (signed-distrib spos m n) ∙ sucInt+pos n (pos m) signed-distrib sneg (suc m) zero i = negsuc (ℕ.+-comm m 0 i) signed-distrib sneg (suc m) (suc n) = (λ i → negsuc (ℕ.+-suc m n i)) ∙ sym (negsuc+negsuc m n) ·-pos-suc : ∀ m n → pos (suc m) · n ≡ n + pos m · n ·-pos-suc m n = signed-distrib (sgn n) (abs n) (m ℕ.· abs n) ∙ λ i → signed-inv n i + signed (sgn n) (m ·ⁿ abs n) ·-negsuc-suc : ∀ m n → negsuc (suc m) · n ≡ - n + negsuc m · n ·-negsuc-suc m n = signed-distrib (not (sgn n)) (abs n) (suc m ℕ.· abs n) ∙ λ i → γ i + negsuc m · n where γ = sym (neg-signed-not (sgn n) (abs n)) ∙ cong -_ (signed-inv n) -- this is a similar proof to the one in Cubical.HITs.QuoInt.Properties -- but we have less definitional equalities -- ·-assoc : ∀ m n o → m · (n · o) ≡ m · n · o -- ·-assoc m n o with abs m | signed-inv m -- ... | zero | pm = {! !} -- ... | suc mⁿ | pm with abs n | signed-inv n -- ... | zero | pn = (λ i → signed s₁ (γ₁ i)) ∙ signed-zero s₁ ∙ sym (signed-zero s₂) ∙ (λ i → signed s₂ (γ₂ i)) where -- s₁ = sgn m ⊕ sgn (signed (sgn n ⊕ sgn o) 0) -- s₂ = sgn (signed (sgn m ⊕ sgn n) (mⁿ ·ⁿ 0)) ⊕ sgn o -- γ₁ = suc mⁿ ·ⁿ abs (signed (sgn n ⊕ sgn o) 0) ≡⟨ {! !} ⟩ -- suc mⁿ ·ⁿ 0 ≡⟨ {! !} ⟩ -- 0 ∎ -- γ₂ = 0 ≡⟨ {! !} ⟩ -- 0 ·ⁿ abs o ≡⟨ {! !} ⟩ -- (mⁿ ·ⁿ 0) ·ⁿ abs o ≡⟨ {! !} ⟩ -- abs (signed (sgn m ⊕ sgn n) (mⁿ ·ⁿ 0)) ·ⁿ abs o ∎ -- ... | suc nⁿ | pn with abs o | signed-inv o -- ... | zero | po = (λ i → signed s₁ (γ₁ i)) ∙ signed-zero s₁ ∙ sym (signed-zero s₂) ∙ (λ i → signed s₂ (γ₂ i)) where -- s₁ = sgn m ⊕ sgn (signed (sgn n ⊕ sgn o) (nⁿ ·ⁿ zero)) -- s₂ = sgn (signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ)) ⊕ sgn o -- γ₁ = suc mⁿ ·ⁿ abs (signed (sgn n ⊕ sgn o) (nⁿ ·ⁿ 0)) ≡[ i ]⟨ suc mⁿ ·ⁿ abs-signed (sgn n ⊕ sgn o) (nⁿ ·ⁿ 0) i ⟩ -- suc mⁿ ·ⁿ (nⁿ ·ⁿ 0) ≡[ i ]⟨ suc mⁿ ·ⁿ (ℕ.·-nullifiesʳ nⁿ i) ⟩ -- suc mⁿ ·ⁿ 0 ≡⟨ ℕ.·-nullifiesʳ (suc mⁿ) ⟩ -- 0 ∎ -- γ₂ = 0 ≡⟨ sym $ ℕ.·-nullifiesʳ (abs (signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ))) ⟩ -- abs (signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ)) ·ⁿ 0 ∎ -- ... | suc oⁿ | po = cong₂ signed γ₁ γ₂ where -- γ₁ = sgn m ⊕ sgn (signed (sgn n ⊕ sgn o) (suc nⁿ ·ⁿ suc oⁿ)) ≡[ i ]⟨ sgn m ⊕ sgn-signed (sgn n ⊕ sgn o) (oⁿ +ⁿ nⁿ ·ⁿ suc oⁿ) i ⟩ -- sgn m ⊕ (sgn n ⊕ sgn o) ≡⟨ ⊕-assoc (sgn m) (sgn n) (sgn o) ⟩ -- (sgn m ⊕ sgn n) ⊕ sgn o ≡[ i ]⟨ sgn-signed (sgn m ⊕ sgn n) (nⁿ +ⁿ mⁿ ·ⁿ suc nⁿ) (~ i) ⊕ sgn o ⟩ -- sgn (signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ)) ⊕ sgn o ∎ -- γ₂ = suc mⁿ ·ⁿ abs (signed (sgn n ⊕ sgn o) (suc nⁿ ·ⁿ suc oⁿ)) ≡[ i ]⟨ suc mⁿ ·ⁿ abs-signed (sgn n ⊕ sgn o) (suc nⁿ ·ⁿ suc oⁿ) i ⟩ -- suc mⁿ ·ⁿ (suc nⁿ ·ⁿ suc oⁿ) ≡⟨ ℕ.·-assoc (suc mⁿ) (suc nⁿ) (suc oⁿ) ⟩ -- (suc mⁿ ·ⁿ suc nⁿ) ·ⁿ suc oⁿ ≡[ i ]⟨ abs-signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ) (~ i) ·ⁿ suc oⁿ ⟩ -- abs (signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ)) ·ⁿ suc oⁿ ∎ private lemma2 : ∀ a b c → c +ⁿ (b +ⁿ a ·ⁿ suc b) ·ⁿ suc c ≡ (c +ⁿ b ·ⁿ suc c) +ⁿ a ·ⁿ suc (c +ⁿ b ·ⁿ suc c) lemma2 a b c = c +ⁿ (b +ⁿ a ·ⁿ suc b) ·ⁿ suc c ≡⟨ (λ i → c +ⁿ ℕ.·-distribʳ b (a ·ⁿ suc b) (suc c) (~ i)) ⟩ c +ⁿ (b ·ⁿ suc c +ⁿ (a ·ⁿ suc b) ·ⁿ suc c) ≡⟨ ℕ.+-assoc c _ _ ⟩ (c +ⁿ b ·ⁿ suc c) +ⁿ (a ·ⁿ suc b) ·ⁿ suc c ≡⟨ (λ i → (c +ⁿ b ·ⁿ suc c) +ⁿ ℕ.·-assoc a (suc b) (suc c) (~ i)) ⟩ (c +ⁿ b ·ⁿ suc c) +ⁿ a ·ⁿ (suc b ·ⁿ suc c) ≡⟨ refl ⟩ (c +ⁿ b ·ⁿ suc c) +ⁿ a ·ⁿ suc (c +ⁿ b ·ⁿ suc c) ∎ -- this is a proof ported from the non-cubical standard library ·-assoc : ∀ x y z → (x · y) · z ≡ x · (y · z) ·-assoc (pos 0) y z = (λ i → ·-nullifiesˡ y i · z) ∙ ·-nullifiesˡ z ∙ sym (·-nullifiesˡ (y · z)) ·-assoc x (pos 0) z = (λ i → ·-nullifiesʳ x i · z) ∙ ·-nullifiesˡ z ∙ sym (·-nullifiesʳ x) ∙ (λ i → x · ·-nullifiesˡ z (~ i)) ·-assoc x y (pos 0) = ·-nullifiesʳ (x · y) ∙ sym (·-nullifiesʳ x) ∙ (λ i → x · ·-nullifiesʳ y (~ i)) ·-assoc (negsuc a ) (negsuc b ) (pos (suc c)) i = (pos (suc (lemma2 a b c i))) ·-assoc (negsuc a ) (pos (suc b)) (negsuc c ) i = (pos (suc (lemma2 a b c i))) ·-assoc (pos (suc a)) (pos (suc b)) (pos (suc c)) i = (pos (suc (lemma2 a b c i))) ·-assoc (pos (suc a)) (negsuc b ) (negsuc c ) i = (pos (suc (lemma2 a b c i))) ·-assoc (negsuc a ) (negsuc b ) (negsuc c ) i = (negsuc (lemma2 a b c i) ) ·-assoc (negsuc a ) (pos (suc b)) (pos (suc c)) i = (negsuc (lemma2 a b c i) ) ·-assoc (pos (suc a)) (negsuc b ) (pos (suc c)) i = (negsuc (lemma2 a b c i) ) ·-assoc (pos (suc a)) (pos (suc b)) (negsuc c ) i = (negsuc (lemma2 a b c i) ) -- this is a similar proof to the one in Cubical.HITs.QuoInt.Properties ·-distribˡ-pos : ∀ o m n → (pos o · m) + (pos o · n) ≡ pos o · (m + n) ·-distribˡ-pos zero m n = (λ i → ·-nullifiesˡ m i + ·-nullifiesˡ n i) ∙ sym (·-nullifiesˡ (m + n)) ·-distribˡ-pos (suc o) m n = pos (suc o) · m + pos (suc o) · n ≡[ i ]⟨ ·-pos-suc o m i + ·-pos-suc o n i ⟩ m + pos o · m + (n + pos o · n) ≡⟨ +-assoc (m + pos o · m) n (pos o · n) ⟩ m + pos o · m + n + pos o · n ≡[ i ]⟨ +-assoc m (pos o · m) n (~ i) + pos o · n ⟩ m + (pos o · m + n) + pos o · n ≡[ i ]⟨ m + +-comm (pos o · m) n i + pos o · n ⟩ m + (n + pos o · m) + pos o · n ≡[ i ]⟨ +-assoc m n (pos o · m) i + pos o · n ⟩ m + n + pos o · m + pos o · n ≡⟨ sym (+-assoc (m + n) (pos o · m) (pos o · n)) ⟩ m + n + (pos o · m + pos o · n) ≡⟨ cong ((m + n) +_) (·-distribˡ-pos o m n) ⟩ m + n + pos o · (m + n) ≡⟨ sym (·-pos-suc o (m + n)) ⟩ pos (suc o) · (m + n) ∎ neg-pos-neg : ∀ x → - pos x ≡ neg x neg-pos-neg zero = refl neg-pos-neg (suc x) = refl ·-distribˡ-neg : ∀ o m n → (neg o · m) + (neg o · n) ≡ neg o · (m + n) ·-distribˡ-neg o m n = neg o · m + neg o · n ≡[ i ]⟨ neg-pos-neg o (~ i) · m + neg-pos-neg o (~ i) · n ⟩ - pos o · m + - pos o · n ≡[ i ]⟨ negate-·ˡ (pos o) m (~ i) + negate-·ˡ (pos o) n (~ i) ⟩ - (pos o · m) + - (pos o · n) ≡⟨ sym (negate-+ (pos o · m) (pos o · n)) ⟩ - (pos o · m + pos o · n) ≡⟨ cong -_ (·-distribˡ-pos o m n) ⟩ - (pos o · (m + n)) ≡⟨ negate-·ˡ (pos o) (m + n) ⟩ - pos o · (m + n) ≡[ i ]⟨ neg-pos-neg o i · (m + n) ⟩ neg o · (m + n) ∎ ·-distribˡ : ∀ o m n → (o · m) + (o · n) ≡ o · (m + n) ·-distribˡ (pos o) m n = ·-distribˡ-pos o m n ·-distribˡ (negsuc o) m n = ·-distribˡ-neg (suc o) m n ·-distribʳ : ∀ m n o → (m · o) + (n · o) ≡ (m + n) · o ·-distribʳ m n o = (λ i → ·-comm m o i + ·-comm n o i) ∙ ·-distribˡ o m n ∙ ·-comm o (m + n) ·-neg1 : ∀ x → -1 · x ≡ - x ·-neg1 x = sym (neg-signed-not (sgn x) (abs x +ⁿ 0)) ∙ (λ i → - signed (sgn x) (ℕ.+-comm (abs x) 0 i)) ∙ cong -_ (signed-inv x) private possuc+negsuc≡0 : ∀ n → (pos (suc n) +negsuc n) ≡ pos 0 possuc+negsuc≡0 zero = refl possuc+negsuc≡0 (suc n) = sym ind ∙ possuc+negsuc≡0 n where ind = pos (suc n) +negsuc n ≡⟨ refl ⟩ predInt (pos (suc (suc n))) +negsuc n ≡⟨ sym $ predInt+negsuc n (pos (suc (suc n))) ⟩ predInt (pos (suc (suc n)) +negsuc n) ∎ sucInt[negsuc+pos]≡0 : ∀ n → sucInt (negsuc n +pos n) ≡ pos 0 sucInt[negsuc+pos]≡0 zero = refl sucInt[negsuc+pos]≡0 (suc n) = let r = sucInt[negsuc+pos]≡0 n in sym ind ∙ r where ind = sucInt ( negsuc n +pos n ) ≡⟨ refl ⟩ sucInt (sucInt (negsuc (suc n)) +pos n ) ≡⟨ (λ i → sucInt $ sucInt+pos n (negsuc (suc n)) (~ i)) ⟩ sucInt (sucInt (negsuc (suc n) +pos n)) ∎ +-inverseʳ : ∀ a → a + (- a) ≡ 0 +-inverseʳ (pos zero ) = refl +-inverseʳ (pos (suc n)) = possuc+negsuc≡0 n +-inverseʳ (negsuc n ) = sucInt[negsuc+pos]≡0 n +-inverseˡ : ∀ a → (- a) + a ≡ 0 +-inverseˡ a = +-comm (- a) a ∙ +-inverseʳ a -- Compose sucPathInt with itself n times. Transporting along this -- will be addition, transporting with it backwards will be subtraction. -- Use this to define _+'_ for which is easier to prove -- isEquiv (λ n → n +' m) since _+'_ is defined by transport sucPathInt : Int ≡ Int sucPathInt = ua (sucInt , isoToIsEquiv (iso sucInt predInt sucPred predSuc)) addEq : ℕ → Int ≡ Int addEq zero = refl addEq (suc n) = (addEq n) ∙ sucPathInt predPathInt : Int ≡ Int predPathInt = ua (predInt , isoToIsEquiv (iso predInt sucInt predSuc sucPred)) subEq : ℕ → Int ≡ Int subEq zero = refl subEq (suc n) = (subEq n) ∙ predPathInt _+'_ : Int → Int → Int m +' pos n = transport (addEq n) m m +' negsuc n = transport (subEq (suc n)) m +'≡+ : _+'_ ≡ _+_ +'≡+ i m (pos zero) = m +'≡+ i m (pos (suc n)) = sucInt (+'≡+ i m (pos n)) +'≡+ i m (negsuc zero) = predInt m +'≡+ i m (negsuc (suc n)) = predInt (+'≡+ i m (negsuc n)) -- -- compPath (λ i → (+'≡+ i (predInt m) (negsuc n))) (sym (predInt+negsuc n m)) i isEquivAddInt' : (m : Int) → isEquiv (λ n → n +' m) isEquivAddInt' (pos n) = isEquivTransport (addEq n) isEquivAddInt' (negsuc n) = isEquivTransport (subEq (suc n)) isEquivAddInt : (m : Int) → isEquiv (λ n → n + m) isEquivAddInt = subst (λ add → (m : Int) → isEquiv (λ n → add n m)) +'≡+ isEquivAddInt' -- below is an alternate proof of isEquivAddInt for comparison -- We also have two useful lemma here. minusPlus : ∀ m n → (n - m) + m ≡ n minusPlus (pos zero) n = refl minusPlus (pos 1) = sucPred minusPlus (pos (suc (suc m))) n = sucInt ((n +negsuc (suc m)) +pos (suc m)) ≡⟨ sucInt+pos (suc m) _ ⟩ sucInt (n +negsuc (suc m)) +pos (suc m) ≡[ i ]⟨ sucPred (n +negsuc m) i +pos (suc m) ⟩ (n - pos (suc m)) +pos (suc m) ≡⟨ minusPlus (pos (suc m)) n ⟩ n ∎ minusPlus (negsuc zero) = predSuc minusPlus (negsuc (suc m)) n = predInt (sucInt (sucInt (n +pos m)) +negsuc m) ≡⟨ predInt+negsuc m _ ⟩ predInt (sucInt (sucInt (n +pos m))) +negsuc m ≡[ i ]⟨ predSuc (sucInt (n +pos m)) i +negsuc m ⟩ sucInt (n +pos m) +negsuc m ≡⟨ minusPlus (negsuc m) n ⟩ n ∎ plusMinus : ∀ m n → (n + m) - m ≡ n plusMinus (pos zero) n = refl plusMinus (pos (suc m)) = minusPlus (negsuc m) plusMinus (negsuc m) = minusPlus (pos (suc m)) private alternateProof : (m : Int) → isEquiv (λ n → n + m) alternateProof m = isoToIsEquiv (iso (λ n → n + m) (λ n → n - m) (minusPlus m) (plusMinus m)) <-irrefl : ∀ a → ¬ (a < a) <-irrefl (pos zero ) = ℕᵒ.<-irrefl 0 <-irrefl (pos (suc n)) = ℕᵒ.<-irrefl (suc n) <-irrefl (negsuc n ) = ℕᵒ.<-irrefl n <-trans : ∀ a b c → a < b → b < c → a < c <-trans (pos a) (pos b) (pos c) a<b b<c = ℕᵒ.<-trans a<b b<c <-trans (negsuc a) (pos b) (pos c) a<b b<c = tt <-trans (negsuc a) (negsuc b) (pos c) a<b b<c = tt <-trans (negsuc a) (negsuc b) (negsuc c) a<b b<c = ℕᵒ.<-trans b<c a<b <-asym : ∀ a b → a < b → ¬(b < a) <-asym a b p q = <-irrefl _ (<-trans _ _ _ p q) private swap-∥⊎∥ : ∀{ℓ ℓ'} (a : Type ℓ) (b : Type ℓ') → ∥ a ⊎ b ∥ → ∥ b ⊎ a ∥ swap-∥⊎∥ a b = PropTrunc.elim (λ _ → propTruncIsProp) λ{ (inl p) → ∣ inr p ∣ ; (inr p) → ∣ inl p ∣ } <-cotrans : ∀ a b x → a < b → ∥ (a < x) ⊎ (x < b) ∥ <-cotrans (pos a) (pos b) (pos x) a<b = ℕᵒ.<-cotrans _ _ x a<b <-cotrans (pos a) (pos b) (negsuc x) a<b = ∣ inr tt ∣ <-cotrans (negsuc a) (pos b) (pos x) a<b = ∣ inl tt ∣ <-cotrans (negsuc a) (pos b) (negsuc x) a<b = ∣ inr tt ∣ <-cotrans (negsuc a) (negsuc b) (pos x) a<b = ∣ inl tt ∣ <-cotrans (negsuc a) (negsuc b) (negsuc x) a<b = swap-∥⊎∥ _ _ (ℕᵒ.<-cotrans _ _ x a<b) data Trichotomy (m n : Int) : Type₀ where lt : m < n → Trichotomy m n eq : m ≡ n → Trichotomy m n gt : n < m → Trichotomy m n _≟_ : ∀ m n → Trichotomy m n pos a ≟ pos b with a ℕᵒ.≟ b ... | ℕᵒ.lt p = lt p ... | ℕᵒ.eq p = eq λ i → pos (p i) ... | ℕᵒ.gt p = gt p pos a ≟ negsuc b = gt tt negsuc a ≟ pos b = lt tt negsuc a ≟ negsuc b with a ℕᵒ.≟ b ... | ℕᵒ.lt p = gt p ... | ℕᵒ.eq p = eq λ i → negsuc (p i) ... | ℕᵒ.gt p = lt p sucInt-reflects-< : ∀ x y → sucInt x < sucInt y → x < y sucInt-reflects-< (pos x ) (pos y ) p = ℕᵒ.suc-reflects-< x y p sucInt-reflects-< (pos x ) (negsuc zero ) p = ℕᵒ.¬-<-zero p sucInt-reflects-< (negsuc x ) (pos y ) p = tt sucInt-reflects-< (negsuc zero ) (negsuc zero ) p = p sucInt-reflects-< (negsuc (suc x)) (negsuc zero ) p = ℕᵒ.zero-<-suc x sucInt-reflects-< (negsuc (suc x)) (negsuc (suc y)) p = ℕᵒ.suc-preserves-< y x p predInt-reflects-< : ∀ x y → predInt x < predInt y → x < y predInt-reflects-< (pos zero ) (pos zero ) p = p predInt-reflects-< (pos zero ) (pos (suc y)) p = ℕᵒ.zero-<-suc y predInt-reflects-< (pos (suc x)) (pos (suc y)) p = ℕᵒ.suc-preserves-< x y p predInt-reflects-< (pos zero ) (negsuc y ) p = ℕᵒ.¬-<-zero p predInt-reflects-< (negsuc x ) (pos y ) p = tt predInt-reflects-< (negsuc x ) (negsuc y ) p = ℕᵒ.suc-reflects-< y x p sucInt-preserves-< : ∀ x y → x < y → sucInt x < sucInt y sucInt-preserves-< (pos x ) (pos y ) p = ℕᵒ.suc-preserves-< x y p sucInt-preserves-< (negsuc zero ) (pos y ) p = ℕᵒ.zero-<-suc y sucInt-preserves-< (negsuc (suc x)) (pos y ) p = tt sucInt-preserves-< (negsuc zero ) (negsuc zero ) p = p sucInt-preserves-< (negsuc zero ) (negsuc (suc y)) p = ℕᵒ.¬-<-zero p sucInt-preserves-< (negsuc (suc x)) (negsuc zero ) p = tt sucInt-preserves-< (negsuc (suc x)) (negsuc (suc y)) p = ℕᵒ.suc-reflects-< y x p predInt-preserves-< : ∀ x y → x < y → predInt x < predInt y predInt-preserves-< (pos zero ) (pos zero ) p = p predInt-preserves-< (pos zero ) (pos (suc y)) p = tt predInt-preserves-< (pos (suc x)) (pos zero ) p = ℕᵒ.¬-<-zero p predInt-preserves-< (pos (suc x)) (pos (suc y)) p = ℕᵒ.suc-reflects-< x y p predInt-preserves-< (negsuc x ) (pos zero ) p = ℕᵒ.zero-<-suc x predInt-preserves-< (negsuc x ) (pos (suc y)) p = tt predInt-preserves-< (negsuc x ) (negsuc y ) p = ℕᵒ.suc-preserves-< y x p +-preserves-<ʳ : ∀ a b x → a < b → (a + x) < (b + x) +-preserves-<ʳ a b (pos zero ) a<b = a<b +-preserves-<ʳ a b (pos (suc n)) a<b = sucInt-preserves-< (a +pos n) (b +pos n) (+-preserves-<ʳ a b (pos n) a<b) +-preserves-<ʳ a b (negsuc zero ) a<b = predInt-preserves-< a b a<b +-preserves-<ʳ a b (negsuc (suc n)) a<b = predInt-preserves-< (a +negsuc n) (b +negsuc n) (+-preserves-<ʳ a b (negsuc n) a<b) +-reflects-<ʳ : ∀ a b x → (a + x) < (b + x) → a < b +-reflects-<ʳ a b x = a + x < b + x →⟨ +-preserves-<ʳ (a + x) (b + x) (- x) ⟩ a + x - x < b + x - x →⟨ transp (λ i → +-assoc a x (- x) (~ i) < +-assoc b x (- x) (~ i)) i0 ⟩ a + (x - x) < b + (x - x) →⟨ transp (λ i → (a + +-inverseʳ x i) < (b + +-inverseʳ x i)) i0 ⟩ a + 0 < b + 0 →⟨⟩ a < b ◼ +-reflects-<ˡ : ∀ a b x → (x + a) < (x + b) → a < b +-reflects-<ˡ a b x p = +-reflects-<ʳ a b x (transport (λ i → +-comm x a i < +-comm x b i) p) +-<-extensional : ∀ w x y z → (w + x) < (y + z) → ∥ (w < y) ⊎ (x < z) ∥ +-<-extensional w x y z r with w ≟ y | x ≟ z ... | lt w<y | q = ∣ inl w<y ∣ ... | eq w≡y | q = ∣ inr $ +-reflects-<ˡ x z y (transport (λ i → (w≡y i + x) < (y + z)) r) ∣ ... | gt y<w | q = PropTrunc.elim (λ _ → propTruncIsProp) γ (<-cotrans (w + x) (y + z) (y + x) r) where γ : _ ⊎ _ → _ γ (inl p) = ∣ inr (⊥.elim {A = λ _ → x < z} (<-asym y w y<w (+-reflects-<ʳ w y x p))) ∣ γ (inr p) = ∣ inr (+-reflects-<ˡ x z y p) ∣
{ "alphanum_fraction": 0.5229209065, "avg_line_length": 41.2389758179, "ext": "agda", "hexsha": "cb987957c6a6f310a18aebe2450a5bf498d659cc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/cubical", "max_forks_repo_path": "Cubical/Data/Int/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/cubical", "max_issues_repo_path": "Cubical/Data/Int/Properties.agda", "max_line_length": 196, "max_stars_count": null, "max_stars_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/cubical", "max_stars_repo_path": "Cubical/Data/Int/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 13410, "size": 28991 }
module UniDB.Examples.Lc where open import UniDB data Tm (γ : Dom) : Set where var : (i : Ix γ) → Tm γ abs : (t : Tm (suc γ)) → Tm γ app : (t₁ t₂ : Tm γ) → Tm γ instance iVrTm : Vr Tm vr {{iVrTm}} = var vr-inj {{iVrTm}} refl = refl iApTm : Ap Tm Tm ap {{iApTm}} ξ (var i) = lk ξ i ap {{iApTm}} ξ (abs t) = abs (ap {Tm} (ξ ↑₁) t ) ap {{iApTm}} ξ (app t t₁) = app (ap {Tm} ξ t) (ap {Tm} ξ t₁) iApVrTm : ApVr Tm ap-vr {{iApVrTm}} ξ i = refl iApIdmTm : ApIdm Tm Tm ap-idm {{iApIdmTm}} {Ξ} (var i) = lk-idm {Tm} {Ξ} i ap-idm {{iApIdmTm}} {Ξ} (abs t) = cong abs (begin ap {Tm} (idm {Ξ} _ ↑₁) t ≡⟨ cong₂ (ap {Tm}) (idm-↑₁ {Ξ}) (refl {x = t}) ⟩ ap {Tm} (idm {Ξ} _) t ≡⟨ ap-idm {Tm} t ⟩ t ∎) ap-idm {{iApIdmTm}} {Ξ} (app t t₁) = cong₂ app (ap-idm {Tm} t) (ap-idm {Tm} t₁) iApPairTm : ApPair Tm Tm ap-pair {{iApPairTm}} ξ ζ (var i) = refl ap-pair {{iApPairTm}} ξ ζ (abs x) = cong abs (ap-pair {Tm} (ξ ↑₁) (ζ ↑₁) x) ap-pair {{iApPairTm}} ξ ζ (app x₁ x₂) = cong₂ app (ap-pair {Tm} ξ ζ x₁) (ap-pair {Tm} ξ ζ x₂) iApRelTm : ApRel Tm Tm ap-rel≅ {{iApRelTm}} hyp (var i) = lk≃ (≅-to-≃ hyp) i ap-rel≅ {{iApRelTm}} hyp (abs t) = cong abs (ap-rel≅ {Tm} {Tm} (≅-↑₁ hyp) t) ap-rel≅ {{iApRelTm}} hyp (app t₁ t₂) = cong₂ app (ap-rel≅ {Tm} {Tm} hyp t₁) (ap-rel≅ {Tm} {Tm} hyp t₂) postulate Ρ : MOR instance iIdmΡ : Idm Ρ iWkmΡ : Wkm Ρ iUpΡ : Up Ρ iUpIdmΡ : UpIdm Ρ iCompΡ : Comp Ρ iWkmHomΡ : WkmHom Ρ iLkΡ : {T : STX} {{vrT : Vr T}} → Lk T Ρ iLkIdmΡ : {T : STX} {{vrT : Vr T}} → LkIdm T Ρ iLkWkmΡ : {T : STX} {{vrT : Vr T}} → LkWkm T Ρ iLkCompAp : {T : STX} {{vrT : Vr T}} {{apTT : Ap T T}} {{apVrT : ApVr T}} → LkCompAp T Ρ iLkUpΡ : {T : STX} {{vrT : Vr T}} {{wkT : Wk T}} → LkUp T Ρ iLkRenΡ : {T : STX} {{vrT : Vr T}} → LkRen T Ρ instance iWkTm : Wk Tm wk₁ {{iWkTm}} = ap {Tm} (wkm {Ρ} 1) wk {{iWkTm}} δ t = ap {Tm} (wkm {Ρ} δ) t wk-zero {{iWkTm}} t = begin ap {Tm} (wkm {Ρ} 0) t ≡⟨ ap-rel≅ {Tm} (Ix≅-to-≅ {Tm} (≃-to-≅` (≃-↑ {Ix} (record { lk≃ = λ i → begin lk (wkm {Ρ} 0) i ≡⟨ lk-wkm {Ix} {Ρ} 0 i ⟩ i ≡⟨ sym (lk-idm {Ix} {Ρ} i) ⟩ lk (idm {Ρ} _) i ∎ })))) t ⟩ ap {Tm} (idm {Ρ} _) t ≡⟨ ap-idm {Tm} {Tm} {Ρ} t ⟩ t ∎ wk-suc {{iWkTm}} δ t = begin ap {Tm} (wkm {Ρ} (suc δ)) t ≡⟨ cong (λ ζ → ap {Tm} {Tm} {Ρ} ζ t) (wkm-suc {Ρ} δ) ⟩ ap {Tm} (wkm {Ρ} δ ⊙ wkm {Ρ} 1) t ≡⟨ ap-rel≅ {Tm} (Ix≅-to-≅ {Tm} {Ρ} {Pair Ρ Ρ} (≃-to-≅` (≃-↑ {Ix} {Ρ} {Pair Ρ Ρ} {ξ = wkm {Ρ} δ ⊙ wkm {Ρ} 1} {wkm {Ρ} δ ⊗ wkm {Ρ} 1} (record { lk≃ = lk-⊙-ap {Ix} {Ρ} (wkm {Ρ} δ) (wkm {Ρ} 1) })))) t ⟩ ap {Tm} (wkm {Ρ} δ ⊗ wkm {Ρ} 1) t ≡⟨ ap-pair {Tm} (wkm {Ρ} δ) (wkm {Ρ} 1) t ⟩ ap {Tm} (wkm {Ρ} 1) (ap {Tm} (wkm {Ρ} δ) t) ∎ instance iWkVrTm : WkVr Tm wk₁-vr {{iWkVrTm}} i = lk-wkm {Tm} {Ρ} 1 i wk-vr {{iWkVrTm}} δ i = lk-wkm {Tm} {Ρ} δ i iApWkmWkTm : ApWkmWk Tm Tm ap-wkm-wk₁ {{iApWkmWkTm}} {Ξ} = ap-wkm-rel Tm Tm Ξ Ρ 1 ap-wkm-wk {{iApWkmWkTm}} {Ξ} = ap-wkm-rel Tm Tm Ξ Ρ -- iApCompTm : ApComp Tm Tm -- ap-⊙ {{iApCompTm}} {Ξ} ξ₁ ξ₂ (var i) = lk-⊙-ap {Tm} {Ξ} ξ₁ ξ₂ i -- ap-⊙ {{iApCompTm}} {Ξ} ξ₁ ξ₂ (abs t) rewrite ⊙-↑₁ {Ξ} ξ₁ ξ₂ = -- cong abs (ap-⊙ {Tm} (ξ₁ ↑₁) (ξ₂ ↑₁) t) -- ap-⊙ {{iApCompTm}} {Ξ} ξ₁ ξ₂ (app t₁ t₂) = -- cong₂ app (ap-⊙ {Tm} {Tm} {Ξ} ξ₁ ξ₂ t₁) (ap-⊙ {Tm} {Tm} {Ξ} ξ₁ ξ₂ t₂) iApCompTm : ApComp Tm Tm iApCompTm = iApComp Tm Tm iApWkTm : ApWk Tm Tm iApWkTm = iApWk Tm Tm {-} -------------------------------------------------------------------------------- subTm : {X : STX} {{apTmX : Ap Tm X}} {γ : Dom} (s : Tm γ) (x : X (suc γ)) → X γ subTm {X} s x = ap Tm X (Sub Tm) (beta Tm (Sub Tm) s) x data Eval {γ : Dom} : Tm γ → Tm γ → Set where e-app₁ : {t₁ t₁' t₂ : Tm γ} → Eval t₁ t₁' → Eval (app t₁ t₂) (app t₁' t₂) e-app₂ : {t₁ t₂ t₂' : Tm γ} → Eval t₂ t₂' → Eval (app t₁ t₂) (app t₁ t₂') e-abs : {t t' : Tm (suc γ)} → Eval t t' → Eval (abs t) (abs t') e-beta : {s : Tm γ} {t : Tm (suc γ)} → Eval (app (abs t) s) (subTm s t) -------------------------------------------------------------------------------- -}
{ "alphanum_fraction": 0.4568277804, "avg_line_length": 36.1186440678, "ext": "agda", "hexsha": "2ec5319c219b37239858cb674a90d7ba70c190fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Examples/Lc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Examples/Lc.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Examples/Lc.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2406, "size": 4262 }
-- Andreas, 2018-10-18, re #2757 -- Runtime-irrelevance analogue to issue #2640 -- {-# OPTIONS -v tc.lhs.unify:65 #-} -- {-# OPTIONS -v tc.irr:20 #-} -- {-# OPTIONS -v tc:30 #-} -- {-# OPTIONS -v treeless:20 #-} open import Common.Prelude data D : (n : Nat) → Set where c : (m : Nat) → D m test : (@0 n : Nat) → D n → Nat test n (c m) = m -- Should be rejected (projecting a forced argument). main = printNat (test 142 (c _)) -- The generated Haskell program segfaults.
{ "alphanum_fraction": 0.6033402923, "avg_line_length": 21.7727272727, "ext": "agda", "hexsha": "6077f98b274d7bda9712325bdcd85c24da150fbe", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Erasure-Issue2640.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Erasure-Issue2640.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Erasure-Issue2640.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 161, "size": 479 }
-- Fast exponentiation module Numeric.Nat.Pow where open import Prelude open import Numeric.Nat.DivMod open import Control.WellFounded open import Tactic.Nat open import Tactic.Cong module _ {a} {A : Set a} {{_ : Semiring A}} where private expAcc : A → (n : Nat) → Acc _<_ n → A expAcc a zero wf = one expAcc a (suc n) (acc wf) with n divmod 2 ... | qr q 0 _ eq = force (a * a) λ a² → expAcc a² q (wf q (by eq)) * a ... | qr q 1 _ eq = force (a * a) λ a² → expAcc a² (suc q) (wf (suc q) (by eq)) ... | qr q (suc (suc _)) lt _ = refute lt infixr 8 _^′_ _^′_ : A → Nat → A a ^′ n = expAcc a n (wfNat n) module _ (assoc : (a b c : A) → a * (b * c) ≡ (a * b) * c) (idr : (a : A) → a * one ≡ a) (idl : (a : A) → one * a ≡ a) where private force-eq : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) {f : ∀ x → B x} {y : B x} → f x ≡ y → force x f ≡ y force-eq x eq = forceLemma x _ ⟨≡⟩ eq on-assoc-l : {a b c a₁ b₁ c₁ : A} → (a * b) * c ≡ (a₁ * b₁) * c₁ → a * (b * c) ≡ a₁ * (b₁ * c₁) on-assoc-l eq = assoc _ _ _ ⟨≡⟩ eq ⟨≡⟩ʳ assoc _ _ _ on-assoc-r : {a b c a₁ b₁ c₁ : A} → a * (b * c) ≡ a₁ * (b₁ * c₁) → (a * b) * c ≡ (a₁ * b₁) * c₁ on-assoc-r eq = assoc _ _ _ ʳ⟨≡⟩ eq ⟨≡⟩ assoc _ _ _ lem-pow-mul-l : (a : A) (n : Nat) → a * a ^ n ≡ a ^ n * a lem-pow-mul-l a zero = idr _ ⟨≡⟩ʳ idl _ lem-pow-mul-l a (suc n) = assoc _ _ _ ⟨≡⟩ (_* a) $≡ lem-pow-mul-l a n lem-pow-mul-distr : (a : A) (n : Nat) → (a * a) ^ n ≡ a ^ n * a ^ n lem-pow-mul-distr a zero = sym (idl _) lem-pow-mul-distr a (suc n) = (_* (a * a)) $≡ lem-pow-mul-distr a n ⟨≡⟩ʳ on-assoc-r (((a ^ n) *_) $≡ (on-assoc-l ((_* a) $≡ lem-pow-mul-l a n))) lem-pow-add-distr : (a : A) (n m : Nat) → a ^ (n + m) ≡ a ^ n * a ^ m lem-pow-add-distr a zero m = sym (idl _) lem-pow-add-distr a (suc n) m = (_* a) $≡ lem-pow-add-distr a n m ⟨≡⟩ʳ on-assoc-r (((a ^ n) *_) $≡ lem-pow-mul-l a m) lem : ∀ a n (wf : Acc _<_ n) → expAcc a n wf ≡ a ^ n lem a zero wf = refl lem a (suc n) (acc wf) with n divmod 2 lem a (suc ._) (acc wf) | qr q 0 _ refl = force-eq (a * a) (cong (_* a) ( lem (a * a) q (wf q (diff _ auto)) ⟨≡⟩ lem-pow-mul-distr a q ⟨≡⟩ lem-pow-add-distr a q q ʳ⟨≡⟩ cong (_^_ a) {x = q + q} {y = q * 2 + 0} auto)) lem a (suc ._) (acc wf) | qr q 1 _ refl = force-eq (a * a) $ lem (a * a) (suc q) (wf (suc q) (diff _ auto)) ⟨≡⟩ (a * a) ^ q * (a * a) ≡⟨ by-cong (lem-pow-mul-distr a q ⟨≡⟩ʳ lem-pow-add-distr a q q) ⟩ a ^ (q + q) * (a * a) ≡⟨ by-cong {x = q + q} {y = q * 2} auto ⟩ a ^ (q * 2) * (a * a) ≡⟨ by-cong (idl a) ⟩ a ^ (q * 2) * (a ^ 1 * a) ≡⟨ assoc _ _ _ ⟩ a ^ (q * 2) * a ^ 1 * a ≡⟨ by-cong (lem-pow-add-distr a (q * 2) 1) ⟩ a ^ (q * 2 + 1) * a ∎ ... | qr _ (suc (suc _)) lt _ = refute lt lem-^′-sound : ∀ a n → a ^′ n ≡ a ^ n lem-^′-sound a n = lem a n (wfNat n) {-# DISPLAY expAcc a n _ = a ^′ n #-}
{ "alphanum_fraction": 0.4286602425, "avg_line_length": 37.8470588235, "ext": "agda", "hexsha": "f84046363ac562c485aa605a95989b88df0e4a43", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Numeric/Nat/Pow.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Numeric/Nat/Pow.agda", "max_line_length": 101, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Numeric/Nat/Pow.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 1437, "size": 3217 }
module BTree.Complete.Alternative.Correctness {A : Set} where open import BTree {A} open import BTree.Equality {A} open import BTree.Equality.Properties {A} open import BTree.Complete.Base {A} open import BTree.Complete.Base.Properties {A} open import BTree.Complete.Alternative {A} renaming (Complete to Complete' ; _⋘_ to _⋘'_ ; _⋙_ to _⋙'_ ; _⋗_ to _⋗'_) open import Data.Sum renaming (_⊎_ to _∨_) lemma-⋗'-⋗ : {l r : BTree} → l ⋗' r → l ⋗ r lemma-⋗'-⋗ (⋗lf x) = ⋗lf x lemma-⋗'-⋗ (⋗nd {r = r} {l' = l'} x x' _ l'≃r' l⋗'l') = ⋗nd x x' r l' (lemma-⋗-≃ (lemma-⋗'-⋗ l⋗'l') l'≃r') lemma-⋙'-⋗ : {l r : BTree} → l ⋙' r → l ⋗ r lemma-⋙'-⋗ (⋙lf x) = ⋗lf x lemma-⋙'-⋗ (⋙rl {r = r} {l' = l'} x x' l≃r l'⋘'r' l⋗'r') = ⋗nd x x' r l' (lemma-⋗'-⋗ l⋗'r') lemma-⋙'-⋗ (⋙rr {r = r} {l' = l'} x x' l≃r l'⋙'r' l≃l') = ⋗nd x x' r l' (lemma-≃-⋗ l≃l' (lemma-⋙'-⋗ l'⋙'r')) lemma-⋘'-⋗ : {l r : BTree} → l ⋘' r → l ≃ r ∨ l ⋗ r lemma-⋘'-⋗ lf⋘ = inj₁ ≃lf lemma-⋘'-⋗ (ll⋘ {r = r} {l' = l'} x x' l⋘'r l'≃r' r≃l') with lemma-⋘'-⋗ l⋘'r ... | inj₁ l≃r = inj₁ (≃nd x x' l≃r (trans≃ l≃r r≃l') l'≃r') ... | inj₂ l⋗r = inj₂ (⋗nd x x' r l' (lemma-⋗-≃ l⋗r (trans≃ r≃l' l'≃r'))) lemma-⋘'-⋗ (lr⋘ {r = r} {l' = l'} x x' _ l'≃r' l⋗'l') = inj₂ (⋗nd x x' r l' (lemma-⋗-≃ (lemma-⋗'-⋗ l⋗'l') l'≃r')) lemma-⋘'-⋘ : {l r : BTree} → l ⋘' r → l ⋘ r lemma-⋘'-⋘ lf⋘ = eq⋘ ≃lf lemma-⋘'-⋘ (ll⋘ {r = r} {l' = l'} x x' l⋘'r l'≃r' r≃l') with lemma-⋘'-⋗ l⋘'r ... | inj₁ l≃r = eq⋘ (≃nd x x' l≃r (trans≃ l≃r r≃l') l'≃r') ... | inj₂ l⋗r = gt⋘ (np⋗ x l⋗r) (p≃ x' l'≃r') (⋗nd x x' r l' (lemma-⋗-≃ l⋗r (trans≃ r≃l' l'≃r'))) lemma-⋘'-⋘ (lr⋘ {r = r} {l' = l'} x x' l⋙'r l'≃r' l⋗'l') = gt⋘ (np⋗ x (lemma-⋙'-⋗ l⋙'r)) (p≃ x' l'≃r') (⋗nd x x' r l' (lemma-⋗-≃ (lemma-⋗'-⋗ l⋗'l') l'≃r')) lemma-⋙'-⋙ : {l r : BTree} → l ⋙' r → l ⋙ r lemma-⋙'-⋙ l⋙'r = ⋙gt (lemma-⋙'-⋗ l⋙'r) lemma-complete'-complete : {t : BTree} → Complete' t → Complete t lemma-complete'-complete leaf = leaf lemma-complete'-complete (left x c'l c'r l⋘'r) = left x (lemma-complete'-complete c'l) (lemma-complete'-complete c'r) (lemma-⋘'-⋘ l⋘'r) lemma-complete'-complete (right x c'l c'r l⋙'r) = right x (lemma-complete'-complete c'l) (lemma-complete'-complete c'r) (lemma-⋙'-⋙ l⋙'r)
{ "alphanum_fraction": 0.493877551, "avg_line_length": 50.1136363636, "ext": "agda", "hexsha": "70fceb0ed30faadb49c88849c54b6dcbc1b8b6a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BTree/Complete/Alternative/Correctness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BTree/Complete/Alternative/Correctness.agda", "max_line_length": 155, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BTree/Complete/Alternative/Correctness.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 1363, "size": 2205 }
import Bundles import Construct.DirectProduct import Definitions import Definitions.Semiring import Morphism.Structures import Properties.RingWithoutOne import Structures
{ "alphanum_fraction": 0.8947368421, "avg_line_length": 21.375, "ext": "agda", "hexsha": "cc65c54f81945e68c6df42ea1f3c4b08c7795669", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/Agda-Algebra", "max_forks_repo_path": "Everything.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_issues_repo_issues_event_max_datetime": "2022-01-31T18:19:52.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-02T20:50:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/Agda-Algebra", "max_issues_repo_path": "Everything.agda", "max_line_length": 32, "max_stars_count": null, "max_stars_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/Agda-Algebra", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 34, "size": 171 }
{-# OPTIONS --show-irrelevant #-} -- {-# OPTIONS -v tc:20 #-} open import Agda.Primitive open import Issue2408.LevelDependentOnIrrelevant -- Provoke error message mentioning (ℓ a) provokeError : Set₁ provokeError = X where X = _ F' : (a : A) → X F' = F -- If #2408 is solved by replacing irrelevant vars in levels by Prop, -- we get a horrible error like: -- -- Set (.Agda.Primitive.lsuc (l .(Prop))) != Set₁ -- when checking that the expression X has type Set₁ -- Expected error: -- Set (lsuc (l a)) != Set₁ -- when checking that the expression F has type A → X
{ "alphanum_fraction": 0.6626506024, "avg_line_length": 22.3461538462, "ext": "agda", "hexsha": "17f1344cda3ab153511f7fe110b62359b1db015a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue2408-error.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue2408-error.agda", "max_line_length": 69, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue2408-error.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 174, "size": 581 }
module HasSalvation where open import OscarPrelude record HasSalvation (A : Set) : Set₁ where field ▷_ : A → Set open HasSalvation ⦃ … ⦄ public {-# DISPLAY HasSalvation.▷_ _ = ▷_ #-} record HasDecidableSalvation (A : Set) : Set₁ where field ⦃ hasSalvation ⦄ : HasSalvation A ▷?_ : (x : A) → Dec $ ▷ x open HasDecidableSalvation ⦃ … ⦄ public {-# DISPLAY HasDecidableSalvation.▷?_ _ = ▷?_ #-}
{ "alphanum_fraction": 0.6450839329, "avg_line_length": 17.375, "ext": "agda", "hexsha": "7bc3efcd9c991a081b3634df073078b220759a3e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/HasSalvation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/HasSalvation.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/HasSalvation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 156, "size": 417 }
-- Andreas, 2014-04-23 test case by Andrea Vezzosi {-# OPTIONS --sized-types --copatterns #-} -- {-# OPTIONS --show-implicit -v term:60 #-} module _ where open import Common.Size -- Invalid coinductive record, since not recursive. record ▸ (A : Size → Set) (i : Size) : Set where coinductive -- This should be an error, since non-recursive. constructor delay_ field force : ∀ {j : Size< i} → A j open ▸ -- This fixed-point combinator should not pass the termination checker. ∞fix : ∀ {A : Size → Set} → (∀ {i} → ▸ A i → A i) → ∀ {i} → ▸ A i force (∞fix {A} f {i}) {j} = f {j} (∞fix {A} f {j}) -- The following fixed-point combinator is not strongly normalizing! fix : ∀ {A : Size → Set} → (∀ {i} → (∀ {j : Size< i} → A j) → A i) → ∀ {i} {j : Size< i} → A j fix f = force (∞fix (λ {i} x → f {i} (force x))) -- test = fix {!!} -- C-c C-n test gives me a stack overflow
{ "alphanum_fraction": 0.5836139169, "avg_line_length": 33, "ext": "agda", "hexsha": "2589fee08031b16c8d90138779e17d0a34a4a4cd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Bugs/NonRecursiveCoinductiveRecord.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Bugs/NonRecursiveCoinductiveRecord.agda", "max_line_length": 94, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Bugs/NonRecursiveCoinductiveRecord.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 309, "size": 891 }
{-# OPTIONS --allow-unsolved-metas #-} module _ where open import Agda.Builtin.Equality module Case₀ where postulate I : Set P : I → Set variable p : P _ postulate D : P _ → Set d : D p module Case₁ where postulate I : Set P : I → Set Q : ∀ n → P n → Set variable q : Q _ _ postulate D : ∀ {p} → Q _ p → Set d : D q module Case₂ where postulate I : Set P : I → Set Q : ∀ n → P n → Set record R n (p : P n) : Set where constructor c field f : Q _ p variable q : Q _ _ data D {p} : R _ p → Set where d : D (c q) module Case₃ where variable A : Set a : A record B : Set where id = λ x → x ≡ x field b : id a
{ "alphanum_fraction": 0.5040214477, "avg_line_length": 12.2295081967, "ext": "agda", "hexsha": "192c5246872183b9704ff61b8df89584db7b730c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3390.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3390.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3390.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 272, "size": 746 }
{-# OPTIONS --without-K --safe #-} open import Algebra using (Monoid) module Data.FingerTree.MonoidSolver {ℓ₁ ℓ₂} (mon : Monoid ℓ₁ ℓ₂) where open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.List as List using (List; _∷_; []; foldr; _++_) open import Data.Vec as Vec using (Vec; _∷_; []) open import Data.Fin as Fin using (Fin) open import Data.String as String using (String) open import Data.Maybe as Maybe using (Maybe; just; nothing) open import Relation.Nullary using (Dec; yes; no) open import Data.Unit using (⊤; tt) open import Relation.Binary using (Setoid) open import Function open import Reflection open import Agda.Builtin.Reflection open Monoid mon data Expr : Set ℓ₁ where K : Carrier → Expr _⊕_ : Expr → Expr → Expr E : Expr ⟦_⟧ : Expr → Carrier ⟦ K x ⟧ = x ⟦ x ⊕ y ⟧ = ⟦ x ⟧ ∙ ⟦ y ⟧ ⟦ E ⟧ = ε Normal : Set ℓ₁ Normal = List Carrier norm : Expr → Normal norm (K x) = x ∷ [] norm (x ⊕ y) = norm x ++ norm y norm E = [] ⟦_,_⟧⁺⇓ : Carrier → Normal → Carrier ⟦ x , [] ⟧⁺⇓ = x ⟦ x₁ , x₂ ∷ xs ⟧⁺⇓ = x₁ ∙ ⟦ x₂ , xs ⟧⁺⇓ ⟦_⟧⇓ : Normal → Carrier ⟦ [] ⟧⇓ = ε ⟦ x ∷ xs ⟧⇓ = ⟦ x , xs ⟧⁺⇓ ++-homo : (xs ys : Normal) → ⟦ xs ++ ys ⟧⇓ ≈ ⟦ xs ⟧⇓ ∙ ⟦ ys ⟧⇓ ++-homo [] ys = sym (identityˡ ⟦ ys ⟧⇓) ++-homo (x ∷ xs) ys = go x xs ys where go : ∀ x xs ys → ⟦ x , xs ++ ys ⟧⁺⇓ ≈ ⟦ x , xs ⟧⁺⇓ ∙ ⟦ ys ⟧⇓ go x [] [] = sym (identityʳ x) go x [] (y ∷ ys) = refl go x₁ (x₂ ∷ xs) ys = ∙-cong refl (go x₂ xs ys) ⟨ trans ⟩ sym (assoc _ _ _) open import Data.FingerTree.Relation.Binary.Reasoning.FasterInference.Setoid setoid correct : (e : Expr) → ⟦ norm e ⟧⇓ ≈ ⟦ e ⟧ correct (K x) = refl correct (x ⊕ y) = ++-homo (norm x) (norm y) ⟨ trans ⟩ (correct x ⟨ ∙-cong ⟩ correct y ) correct E = refl infixr 5 _⟨∷⟩_ _⟅∷⟆_ pattern _⟨∷⟩_ x xs = arg (arg-info visible relevant) x ∷ xs pattern _⟅∷⟆_ x xs = arg (arg-info hidden relevant) x ∷ xs mutual E₂ : List (Arg Term) → Term E₂ (x ⟨∷⟩ y ⟨∷⟩ []) = quote _⊕_ ⟨ con ⟩ E′ x ⟨∷⟩ E′ y ⟨∷⟩ [] E₂ (x ∷ xs) = E₂ xs E₂ _ = unknown E′ : Term → Term E′ (def (quote Monoid._∙_) xs) = E₂ xs E′ (def (quote Monoid.ε) _) = quote E ⟨ con ⟩ [] E′ t = quote K ⟨ con ⟩ (t ⟨∷⟩ []) getVisible : Arg Term → Maybe Term getVisible (arg (arg-info visible relevant) x) = just x getVisible (arg (arg-info visible irrelevant) x) = nothing getVisible (arg (arg-info hidden r) x) = nothing getVisible (arg (arg-info instance′ r) x) = nothing getArgs : ∀ n → Term → Maybe (Vec Term n) getArgs n (def _ xs) = Maybe.map Vec.reverse (List.foldl f b (List.mapMaybe getVisible xs) n) where f : (∀ n → Maybe (Vec Term n)) → Term → ∀ n → Maybe (Vec Term n) f xs x zero = just Vec.[] f xs x (suc n) = Maybe.map (x Vec.∷_) (xs n) b : ∀ n → Maybe (Vec Term n) b zero = just Vec.[] b (suc _ ) = nothing getArgs _ _ = nothing infixr 5 _⋯⟅∷⟆_ _⋯⟅∷⟆_ : ℕ → List (Arg Term) → List (Arg Term) zero ⋯⟅∷⟆ xs = xs suc i ⋯⟅∷⟆ xs = unknown ⟅∷⟆ i ⋯⟅∷⟆ xs constructSoln : Term → Term → Term → Term constructSoln mon lhs rhs = quote Monoid.trans ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ (quote Monoid.sym ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ (quote correct ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ E′ lhs ⟨∷⟩ []) ⟨∷⟩ []) ⟨∷⟩ (quote correct ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ E′ rhs ⟨∷⟩ []) ⟨∷⟩ [] _>>=_ : ∀ {a b} {A : Set a} {B : Set b} → TC A → (A → TC B) → TC B _>>=_ = bindTC _>>_ : ∀ {a b} {A : Set a} {B : Set b} → TC A → TC B → TC B xs >> ys = xs >>= λ _ → ys solve-macro : Term → Term → TC ⊤ solve-macro mon hole = do hole′ ← inferType hole >>= normalise just (lhs ∷ rhs ∷ []) ← returnTC (getArgs 2 hole′) where nothing → typeError (termErr hole′ ∷ []) let soln = constructSoln mon lhs rhs unify hole soln
{ "alphanum_fraction": 0.5700164745, "avg_line_length": 29.136, "ext": "agda", "hexsha": "a7b3714e63ef321d2a1f69be5c093cf3ab69cb92", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-indexed-fingertree", "max_forks_repo_path": "src/Data/FingerTree/MonoidSolver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-indexed-fingertree", "max_issues_repo_path": "src/Data/FingerTree/MonoidSolver.agda", "max_line_length": 105, "max_stars_count": 1, "max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-indexed-fingertree", "max_stars_repo_path": "src/Data/FingerTree/MonoidSolver.agda", "max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z", "num_tokens": 1561, "size": 3642 }
{-# OPTIONS --cubical --safe #-} module Data.Pi where open import Data.Pi.Base public
{ "alphanum_fraction": 0.6931818182, "avg_line_length": 14.6666666667, "ext": "agda", "hexsha": "12457290036376d25e45faa2b1952ab9a96c4573", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Pi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Pi.agda", "max_line_length": 32, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Pi.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 23, "size": 88 }
------------------------------------------------------------------------------ -- The Agda standard library -- -- Additional properties for setoids ------------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Properties.Setoid {a ℓ} (S : Setoid a ℓ) where open Setoid S open import Data.Product using (_,_) open import Function using (_∘_; _$_) open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------------ -- Every setoid is a preorder with respect to propositional equality isPreorder : IsPreorder _≡_ _≈_ isPreorder = record { isEquivalence = P.isEquivalence ; reflexive = reflexive ; trans = trans } preorder : Preorder a a ℓ preorder = record { isPreorder = isPreorder } ------------------------------------------------------------------------------ -- Properties of _≉_ ≉-sym : Symmetric _≉_ ≉-sym x≉y = x≉y ∘ sym ≉-respˡ : _≉_ Respectsˡ _≈_ ≉-respˡ x≈x' x≉y = x≉y ∘ trans x≈x' ≉-respʳ : _≉_ Respectsʳ _≈_ ≉-respʳ y≈y' x≉y x≈y' = x≉y $ trans x≈y' (sym y≈y') ≉-resp₂ : _≉_ Respects₂ _≈_ ≉-resp₂ = ≉-respʳ , ≉-respˡ
{ "alphanum_fraction": 0.5073815074, "avg_line_length": 26.2653061224, "ext": "agda", "hexsha": "2559f8a8531292cf40ed92db99769aa32f1f182d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Properties/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Properties/Setoid.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Properties/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 377, "size": 1287 }
module cedille-options where open import general-util open import options-types public open import cedille-types record options : Set where constructor mk-options field include-path : 𝕃 string × stringset use-cede-files : 𝔹 make-rkt-files : 𝔹 generate-logs : 𝔹 show-qualified-vars : 𝔹 erase-types : 𝔹 datatype-encoding : maybe (filepath × maybe file) pretty-print-columns : ℕ -- Internal use only during-elaboration : 𝔹 pretty-print : 𝔹 show-progress-updates : 𝔹 default-options : options default-options = record { include-path = [] , empty-stringset; use-cede-files = tt; make-rkt-files = ff; generate-logs = ff; show-qualified-vars = ff; erase-types = tt; datatype-encoding = nothing; pretty-print-columns = 80; during-elaboration = ff; pretty-print = ff ; show-progress-updates = ff} include-path-insert : string → 𝕃 string × stringset → 𝕃 string × stringset include-path-insert s (l , ss) = if stringset-contains ss s then l , ss else s :: l , stringset-insert ss s options-to-rope : options → rope options-to-rope ops = comment "Cedille Options File" ⊹⊹ [[ "\n" ]] ⊹⊹ comment "List of directories to search for imported files in" ⊹⊹ comment "Each directory should be space-delimited and inside double quotes" ⊹⊹ comment "The current file's directory is automatically searched first, before import-directories" ⊹⊹ comment "If a filepath is relative, it is considered relative to this options file" ⊹⊹ option "import-directories" (𝕃-to-string (λ fp → "\"" ^ fp ^ "\"") " " (fst (options.include-path ops))) ⊹⊹ comment "Cache navigation spans for performance" ⊹⊹ option "use-cede-files" (𝔹-s options.use-cede-files) ⊹⊹ -- comment "Compile Cedille files to Racket after they are checked"⊹⊹ -- option "make-rkt-files" (𝔹-s options.make-rkt-files) ⊹⊹ comment "Write logs to ~/.cedille/log" ⊹⊹ option "generate-logs" (𝔹-s options.generate-logs) ⊹⊹ comment "Print variables fully qualified" ⊹⊹ option "show-qualified-vars" (𝔹-s options.show-qualified-vars) ⊹⊹ comment "Print types erased" ⊹⊹ option "erase-types" (𝔹-s options.erase-types) ⊹⊹ comment "Preferred number of columns to pretty print elaborated files with" ⊹⊹ option "pretty-print-columns" (ℕ-to-string (options.pretty-print-columns ops)) ⊹⊹ comment "Encoding to use when elaborating datatypes to Cedille Core" ⊹⊹ option "datatype-encoding" (maybe-else' (options.datatype-encoding ops) "" λ fp → "\"" ^ fst fp ^ "\"") where 𝔹-s : (options → 𝔹) → string 𝔹-s f = if f ops then "true" else "false" comment : string → rope comment s = [[ "-- " ]] ⊹⊹ [[ s ]] ⊹⊹ [[ "\n" ]] option : (name : string) → (value : string) → rope option name value = [[ name ]] ⊹⊹ [[ " = " ]] ⊹⊹ [[ value ]] ⊹⊹ [[ ".\n\n" ]]
{ "alphanum_fraction": 0.6568317527, "avg_line_length": 37.96, "ext": "agda", "hexsha": "2edcbecd537dea0c8536015ce14f5cebf75614a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ice1k/cedille", "max_forks_repo_path": "src/cedille-options.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ice1k/cedille", "max_issues_repo_path": "src/cedille-options.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ice1k/cedille", "max_stars_repo_path": "src/cedille-options.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 899, "size": 2847 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Duality where open import Level open import Data.Product using (Σ; _,_) open import Categories.Category open import Categories.Category.Construction.Cones as Con open import Categories.Category.Construction.Cocones as Coc open import Categories.Functor open import Categories.Functor.Continuous open import Categories.Functor.Cocontinuous open import Categories.Diagram.Limit as Lim open import Categories.Diagram.Colimit as Col open import Categories.Diagram.Duality open import Categories.Morphism.Duality as MorD private variable o ℓ e : Level C D E J : Category o ℓ e module _ (G : Functor C D) {J : Category o ℓ e} where private module C = Category C module D = Category D module G = Functor G module J = Category J coLimitPreserving⇒ColimitPreserving : ∀ {F : Functor J C} (L : Limit (Functor.op F)) → LimitPreserving G.op L → ColimitPreserving G (coLimit⇒Colimit C L) coLimitPreserving⇒ColimitPreserving L (L′ , iso) = coLimit⇒Colimit D L′ , op-≅⇒≅ D iso ColimitPreserving⇒coLimitPreserving : ∀ {F : Functor J C} (L : Colimit F) → ColimitPreserving G L → LimitPreserving G.op (Colimit⇒coLimit C L) ColimitPreserving⇒coLimitPreserving L (L′ , iso) = Colimit⇒coLimit D L′ , op-≅⇒≅ D.op iso module _ {o ℓ e} (G : Functor C D) where private module G = Functor G coContinuous⇒Cocontinuous : Continuous o ℓ e G.op → Cocontinuous o ℓ e G coContinuous⇒Cocontinuous Con L = coLimitPreserving⇒ColimitPreserving G (Colimit⇒coLimit C L) (Con (Colimit⇒coLimit C L)) Cocontinuous⇒coContinuous : Cocontinuous o ℓ e G → Continuous o ℓ e G.op Cocontinuous⇒coContinuous Coc L = ColimitPreserving⇒coLimitPreserving G (coLimit⇒Colimit C L) (Coc (coLimit⇒Colimit C L))
{ "alphanum_fraction": 0.6772540984, "avg_line_length": 37.5384615385, "ext": "agda", "hexsha": "495c876bc556ea466abc9f53c8264398b5afd8b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Duality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Duality.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Duality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 578, "size": 1952 }
open import Data.Product using ( _,_ ; proj₁ ; proj₂ ) open import Data.Sum using ( inj₁ ; inj₂ ) open import Relation.Unary using ( _⊆_ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; cong ) open import Web.Semantic.DL.ABox using ( ε ; _,_ ; _∼_ ; _∈₁_ ; _∈₂_ ; ⟨ABox⟩ ; Assertions ) open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ) open import Web.Semantic.DL.ABox.Model using ( ⊨a-impl-⊨b ; ⟨ABox⟩-Assertions ) open import Web.Semantic.DL.Category.Composition using ( _∙_ ) open import Web.Semantic.DL.Category.Object using ( Object ; _,_ ; IN ; fin ; iface ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; _⊑_ ; _≣_ ; _,_ ) open import Web.Semantic.DL.Category.Properties.Composition.RespectsEquiv using ( compose-resp-≣ ) open import Web.Semantic.DL.Category.Properties.Composition.RespectsWiring using ( compose-resp-wiring ) open import Web.Semantic.DL.Category.Properties.Equivalence using ( ≣-refl ; ≣-sym ; ≣-trans ) open import Web.Semantic.DL.Category.Properties.Tensor.RespectsEquiv using ( tensor-resp-≣ ) open import Web.Semantic.DL.Category.Properties.Tensor.RespectsWiring using ( tensor-resp-wiring ) open import Web.Semantic.DL.Category.Tensor using ( _⊗_ ; _⟨⊗⟩_ ) open import Web.Semantic.DL.Category.Unit using ( I ) open import Web.Semantic.DL.Category.Wiring using ( wiring ; wires ; wires-≈ ; wires-≈⁻¹ ; identity ; symm ; assoc ; assoc⁻¹ ; unit₁ ; unit₁⁻¹ ; unit₂ ; unit₂⁻¹ ; id✓ ; ⊎-swap✓ ; ⊎-assoc✓ ; ⊎-assoc⁻¹✓ ; inj₁✓ ; inj₂✓ ; ⊎-unit₁✓ ; ⊎-unit₂✓ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.DL.TBox.Interp using ( ≈-refl′ ; ≈-trans ) open import Web.Semantic.Util using ( id ; _∘_ ; inode ; _⟨⊎⟩_ ; ⊎-swap ; ⊎-assoc ; ⊎-assoc⁻¹ ; ⊎-unit₁ ; ⊎-unit₂ ) module Web.Semantic.DL.Category.Properties.Wiring {Σ : Signature} {S T : TBox Σ} where wiring-⊑-refl : ∀ (A B : Object S T) (f g : IN B → IN A) (f✓ : Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) (g✓ : Assertions (⟨ABox⟩ g (iface B)) ⊆ Assertions (iface A)) → (∀ x → f x ≡ g x) → (wiring A B f f✓ ⊑ wiring A B g g✓) wiring-⊑-refl A B f g f✓ g✓ f≡g I I⊨STA I⊨F = ⊨a-impl-⊨b I (wires g (proj₁ (fin B))) (wires-≈⁻¹ g (λ x → ≈-trans ⌊ I ⌋ (≈-refl′ ⌊ I ⌋ (cong (ind I ∘ inode) (sym (f≡g x)))) (wires-≈ f (proj₂ (fin B) x) I⊨F)) (proj₁ (fin B))) wiring-≣-refl : ∀ (A B : Object S T) (f g : IN B → IN A) (f✓ : Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) (g✓ : Assertions (⟨ABox⟩ g (iface B)) ⊆ Assertions (iface A)) → (∀ x → f x ≡ g x) → (wiring A B f f✓ ≣ wiring A B g g✓) wiring-≣-refl A B f g f✓ g✓ f≡g = ( wiring-⊑-refl A B f g f✓ g✓ f≡g , wiring-⊑-refl A B g f g✓ f✓ (λ x → sym (f≡g x)) ) ∘✓ : (A B C : Object S T) → (f : IN B → IN A) → (g : IN C → IN B) → (Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) → (Assertions (⟨ABox⟩ g (iface C)) ⊆ Assertions (iface B)) → (Assertions (⟨ABox⟩ (f ∘ g) (iface C)) ⊆ Assertions (iface A)) ∘✓ A B (X , X∈Fin , ε) f g f✓ g✓ () ∘✓ A B (X , X∈Fin , C₁ , C₂) f g f✓ g✓ (inj₁ a∈C₁) = ∘✓ A B (X , X∈Fin , C₁) f g f✓ (g✓ ∘ inj₁) a∈C₁ ∘✓ A B (X , X∈Fin , C₁ , C₂) f g f✓ g✓ (inj₂ a∈C₂) = ∘✓ A B (X , X∈Fin , C₂) f g f✓ (g✓ ∘ inj₂) a∈C₂ ∘✓ A B (X , X∈Fin , x ∼ y) f g f✓ g✓ refl = f✓ (⟨ABox⟩-Assertions f (iface B) (g✓ refl)) ∘✓ A B (X , X∈Fin , x ∈₁ c) f g f✓ g✓ refl = f✓ (⟨ABox⟩-Assertions f (iface B) (g✓ refl)) ∘✓ A B (X , X∈Fin , (x , y) ∈₂ r) f g f✓ g✓ refl = f✓ (⟨ABox⟩-Assertions f (iface B) (g✓ refl)) ⟨⊎⟩✓ : (A₁ A₂ B₁ B₂ : Object S T) → (f₁ : IN B₁ → IN A₁) → (f₂ : IN B₂ → IN A₂) → (Assertions (⟨ABox⟩ f₁ (iface B₁)) ⊆ Assertions (iface A₁)) → (Assertions (⟨ABox⟩ f₂ (iface B₂)) ⊆ Assertions (iface A₂)) → (Assertions (⟨ABox⟩ (f₁ ⟨⊎⟩ f₂) (iface (B₁ ⊗ B₂))) ⊆ Assertions (iface (A₁ ⊗ A₂))) ⟨⊎⟩✓ A₁ A₂ (X₁ , X₁∈Fin , ε) B₂ f₁ f₂ f₁✓ f₂✓ (inj₁ ()) ⟨⊎⟩✓ A₁ A₂ (X₁ , X₁∈Fin , B₁₁ , B₁₂) B₂ f₁ f₂ f₁✓ f₂✓ (inj₁ (inj₁ b∈B₁₁)) = ⟨⊎⟩✓ A₁ A₂ (X₁ , X₁∈Fin , B₁₁) B₂ f₁ f₂ (f₁✓ ∘ inj₁) f₂✓ (inj₁ b∈B₁₁) ⟨⊎⟩✓ A₁ A₂ (X₁ , X₁∈Fin , B₁₁ , B₁₂) B₂ f₁ f₂ f₁✓ f₂✓ (inj₁ (inj₂ b∈B₁₂)) = ⟨⊎⟩✓ A₁ A₂ (X₁ , X₁∈Fin , B₁₂) B₂ f₁ f₂ (f₁✓ ∘ inj₂) f₂✓ (inj₁ b∈B₁₂) ⟨⊎⟩✓ A₁ A₂ (X₁ , X₁∈Fin , x ∼ y) B₂ f₁ f₂ f₁✓ f₂✓ (inj₁ refl) = inj₁ (⟨ABox⟩-Assertions inj₁ (iface A₁) (f₁✓ refl)) ⟨⊎⟩✓ A₁ A₂ (X₁ , X₁∈Fin , x ∈₁ c) B₂ f₁ f₂ f₁✓ f₂✓ (inj₁ refl) = inj₁ (⟨ABox⟩-Assertions inj₁ (iface A₁) (f₁✓ refl)) ⟨⊎⟩✓ A₁ A₂ (X₁ , X₁∈Fin , (x , y) ∈₂ r) B₂ f₁ f₂ f₁✓ f₂✓ (inj₁ refl) = inj₁ (⟨ABox⟩-Assertions inj₁ (iface A₁) (f₁✓ refl)) ⟨⊎⟩✓ A₁ A₂ B₁ (X₂ , X₂∈Fin , ε) f₁ f₂ f₁✓ f₂✓ (inj₂ ()) ⟨⊎⟩✓ A₁ A₂ B₁ (X₂ , X₂∈Fin , B₂₁ , B₂₂) f₁ f₂ f₁✓ f₂✓ (inj₂ (inj₁ b∈B₂₁)) = ⟨⊎⟩✓ A₁ A₂ B₁ (X₂ , X₂∈Fin , B₂₁) f₁ f₂ f₁✓ (f₂✓ ∘ inj₁) (inj₂ b∈B₂₁) ⟨⊎⟩✓ A₁ A₂ B₁ (X₂ , X₂∈Fin , B₂₁ , B₂₂) f₁ f₂ f₁✓ f₂✓ (inj₂ (inj₂ b∈B₂₂)) = ⟨⊎⟩✓ A₁ A₂ B₁ (X₂ , X₂∈Fin , B₂₂) f₁ f₂ f₁✓ (f₂✓ ∘ inj₂) (inj₂ b∈B₂₂) ⟨⊎⟩✓ A₁ A₂ B₁ (X₂ , X₂∈Fin , x ∼ y) f₁ f₂ f₁✓ f₂✓ (inj₂ refl) = inj₂ (⟨ABox⟩-Assertions inj₂ (iface A₂) (f₂✓ refl)) ⟨⊎⟩✓ A₁ A₂ B₁ (X₂ , X₂∈Fin , x ∈₁ c) f₁ f₂ f₁✓ f₂✓ (inj₂ refl) = inj₂ (⟨ABox⟩-Assertions inj₂ (iface A₂) (f₂✓ refl)) ⟨⊎⟩✓ A₁ A₂ B₁ (X₂ , X₂∈Fin , (x , y) ∈₂ r) f₁ f₂ f₁✓ f₂✓ (inj₂ refl) = inj₂ (⟨ABox⟩-Assertions inj₂ (iface A₂) (f₂✓ refl)) data Rewrite : (A B : Object S T) (F : A ⇒ B) (f : IN B → IN A) → (Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) → Set₁ where rewrite-wiring : ∀ A B f (f✓ : Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) → Rewrite A B (wiring A B f f✓) f f✓ rewrite-compose : ∀ {A B C F G f g} {f✓ : Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)} {g✓ : Assertions (⟨ABox⟩ g (iface C)) ⊆ Assertions (iface B)} → Rewrite A B F f f✓ → Rewrite B C G g g✓ → Rewrite A C (F ∙ G) (f ∘ g) (∘✓ A B C f g f✓ g✓) rewrite-tensor : ∀ {A₁ A₂ B₁ B₂ F₁ F₂ f₁ f₂} {f₁✓ : Assertions (⟨ABox⟩ f₁ (iface B₁)) ⊆ Assertions (iface A₁)} {f₂✓ : Assertions (⟨ABox⟩ f₂ (iface B₂)) ⊆ Assertions (iface A₂)} → Rewrite A₁ B₁ F₁ f₁ f₁✓ → Rewrite A₂ B₂ F₂ f₂ f₂✓ → Rewrite (A₁ ⊗ A₂) (B₁ ⊗ B₂) (F₁ ⟨⊗⟩ F₂) (f₁ ⟨⊎⟩ f₂) (⟨⊎⟩✓ A₁ A₂ B₁ B₂ f₁ f₂ f₁✓ f₂✓) rewrite-identity : ∀ A → Rewrite A A (identity A) id (id✓ A) rewrite-identity A = rewrite-wiring A A id (id✓ A) rewrite-symm : ∀ A B → Rewrite (A ⊗ B) (B ⊗ A) (symm A B) ⊎-swap (⊎-swap✓ A B) rewrite-symm A B = rewrite-wiring (A ⊗ B) (B ⊗ A) ⊎-swap (⊎-swap✓ A B) rewrite-assoc : ∀ A B C → Rewrite ((A ⊗ B) ⊗ C) (A ⊗ (B ⊗ C)) (assoc A B C) ⊎-assoc⁻¹ (⊎-assoc⁻¹✓ A B C) rewrite-assoc A B C = rewrite-wiring ((A ⊗ B) ⊗ C) (A ⊗ (B ⊗ C)) ⊎-assoc⁻¹ (⊎-assoc⁻¹✓ A B C) rewrite-assoc⁻¹ : ∀ A B C → Rewrite (A ⊗ (B ⊗ C)) ((A ⊗ B) ⊗ C) (assoc⁻¹ A B C) ⊎-assoc (⊎-assoc✓ A B C) rewrite-assoc⁻¹ A B C = rewrite-wiring (A ⊗ (B ⊗ C)) ((A ⊗ B) ⊗ C) ⊎-assoc (⊎-assoc✓ A B C) rewrite-unit₁ : ∀ A → Rewrite (I ⊗ A) A (unit₁ A) inj₂ (inj₂✓ A) rewrite-unit₁ A = rewrite-wiring (I ⊗ A) A inj₂ (inj₂✓ A) rewrite-unit₁⁻¹ : ∀ A → Rewrite A (I ⊗ A) (unit₁⁻¹ A) ⊎-unit₁ (⊎-unit₁✓ A) rewrite-unit₁⁻¹ A = rewrite-wiring A (I ⊗ A) ⊎-unit₁ (⊎-unit₁✓ A) rewrite-unit₂ : ∀ A → Rewrite (A ⊗ I) A (unit₂ A) inj₁ (inj₁✓ A) rewrite-unit₂ A = rewrite-wiring (A ⊗ I) A inj₁ (inj₁✓ A) rewrite-unit₂⁻¹ : ∀ A → Rewrite A (A ⊗ I) (unit₂⁻¹ A) ⊎-unit₂ (⊎-unit₂✓ A) rewrite-unit₂⁻¹ A = rewrite-wiring A (A ⊗ I) ⊎-unit₂ (⊎-unit₂✓ A) rewriting : ∀ {A B F G f g} {f✓ : Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)} {g✓ : Assertions (⟨ABox⟩ g (iface B)) ⊆ Assertions (iface A)} → (Rewrite A B F f f✓) → (∀ x → f x ≡ g x) → (Rewrite A B G g g✓) → (F ≣ G) rewriting {A} {B} {F} {G} {f} {g} {f✓} {g✓} F⇓f f≡g G⇓g = ≣-trans (lemma F⇓f) (≣-trans (wiring-≣-refl A B f g f✓ g✓ f≡g) (≣-sym (lemma G⇓g))) where lemma : ∀ {A B F f} {f✓ : Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)} → (Rewrite A B F f f✓) → (F ≣ wiring A B f f✓) lemma (rewrite-wiring A B f f✓) = ≣-refl (wiring A B f f✓) lemma (rewrite-compose {A} {B} {C} {F} {G} {f} {g} {f✓} {g✓} F⇓f G⇓g) = ≣-trans (compose-resp-≣ (lemma F⇓f) (lemma G⇓g)) (compose-resp-wiring A B C f f✓ g g✓ (f ∘ g) (∘✓ A B C f g f✓ g✓) (λ x → refl)) lemma (rewrite-tensor {A₁} {A₂} {B₁} {B₂} {F₁} {F₂} {f₁} {f₂} {f₁✓} {f₂✓} F₁⇓f₁ F₂⇓f₂) = ≣-trans (tensor-resp-≣ (lemma F₁⇓f₁) (lemma F₂⇓f₂)) (tensor-resp-wiring A₁ A₂ B₁ B₂ f₁ f₁✓ f₂ f₂✓ (f₁ ⟨⊎⟩ f₂) (⟨⊎⟩✓ A₁ A₂ B₁ B₂ f₁ f₂ f₁✓ f₂✓) (λ x → refl) (λ x → refl))
{ "alphanum_fraction": 0.556851312, "avg_line_length": 56.4144736842, "ext": "agda", "hexsha": "373ee4b22eac419d19e96121a23510ee5c90a7be", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Wiring.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Wiring.agda", "max_line_length": 104, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Wiring.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 4361, "size": 8575 }
{-# OPTIONS --erased-cubical #-} -- Modules that use --cubical can be imported when --erased-cubical is -- used. import Erased-cubical-Module-application.Cubical module EC = Erased-cubical-Module-application.Cubical Set -- However, definitions from such modules can only be used in erased -- contexts. _ : {A : Set} → A → EC.∥ A ∥ _ = EC.∣_∣
{ "alphanum_fraction": 0.7023121387, "avg_line_length": 24.7142857143, "ext": "agda", "hexsha": "adde4aca29a803bf16228c42d7f2b6ff59f47484", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Erased-cubical-Module-application.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Erased-cubical-Module-application.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Erased-cubical-Module-application.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 106, "size": 346 }
------------------------------------------------------------------------ -- Definition of the size of an expression, along with some properties ------------------------------------------------------------------------ module Expression-size where open import Equality.Propositional open import Prelude hiding (const) open import List equality-with-J open import Nat equality-with-J -- To simplify the development, let's work with actual natural numbers -- as variables and constants (see -- Atom.one-can-restrict-attention-to-χ-ℕ-atoms). open import Atom open import Chi χ-ℕ-atoms open import Combinators open import Free-variables χ-ℕ-atoms open import Termination χ-ℕ-atoms open χ-atoms χ-ℕ-atoms ------------------------------------------------------------------------ -- A definition mutual -- The size of an expression. size : Exp → ℕ size (apply e₁ e₂) = 1 + size e₁ + size e₂ size (lambda x e) = 1 + size e size (case e bs) = 1 + size e + size-B⋆ bs size (rec x e) = 1 + size e size (var x) = 1 size (const c es) = 1 + size-⋆ es size-B : Br → ℕ size-B (branch c xs e) = 1 + length xs + size e size-⋆ : List Exp → ℕ size-⋆ [] = 1 size-⋆ (e ∷ es) = 1 + size e + size-⋆ es size-B⋆ : List Br → ℕ size-B⋆ [] = 1 size-B⋆ (b ∷ bs) = 1 + size-B b + size-B⋆ bs ------------------------------------------------------------------------ -- Properties -- Every expression has size at least one. 1≤size : ∀ e → 1 ≤ size e 1≤size (apply e₁ e₂) = suc≤suc (zero≤ _) 1≤size (lambda x e) = suc≤suc (zero≤ _) 1≤size (case e bs) = suc≤suc (zero≤ _) 1≤size (rec x e) = suc≤suc (zero≤ _) 1≤size (var x) = suc≤suc (zero≤ _) 1≤size (const c es) = suc≤suc (zero≤ _) 1≤size-⋆ : ∀ es → 1 ≤ size-⋆ es 1≤size-⋆ [] = suc≤suc (zero≤ _) 1≤size-⋆ (_ ∷ _) = suc≤suc (zero≤ _) 1≤size-B⋆ : ∀ bs → 1 ≤ size-B⋆ bs 1≤size-B⋆ [] = suc≤suc (zero≤ _) 1≤size-B⋆ (_ ∷ _) = suc≤suc (zero≤ _) -- Closed expressions have size at least two. closed→2≤size : ∀ e → Closed e → 2 ≤ size e closed→2≤size (apply e₁ e₂) cl = 2 ≤⟨ m≤m+n _ _ ⟩ 2 + size e₂ ≤⟨ (1 ∎≤) +-mono 1≤size e₁ +-mono (size e₂ ∎≤) ⟩∎ 1 + size e₁ + size e₂ ∎≤ closed→2≤size (lambda x e) cl = 2 ≤⟨ (1 ∎≤) +-mono 1≤size e ⟩∎ 1 + size e ∎≤ closed→2≤size (case e bs) cl = 2 ≤⟨ m≤m+n _ _ ⟩ 2 + size-B⋆ bs ≤⟨ (1 ∎≤) +-mono 1≤size e +-mono (size-B⋆ bs ∎≤) ⟩∎ 1 + size e + size-B⋆ bs ∎≤ closed→2≤size (rec x e) cl = 2 ≤⟨ (1 ∎≤) +-mono 1≤size e ⟩∎ 1 + size e ∎≤ closed→2≤size (var x) cl = ⊥-elim (cl x (λ ()) (var refl)) closed→2≤size (const c es) cl = 2 ≤⟨ (1 ∎≤) +-mono 1≤size-⋆ es ⟩∎ 1 + size-⋆ es ∎≤ -- Closed, non-terminating expressions of size two must have the form -- "rec x = x" (for some x). data Is-loop : Exp → Type where rec : ∀ {x y} → x ≡ y → Is-loop (rec x (var y)) closed-non-terminating-size≡2→loop : ∀ e → Closed e → ¬ Terminates e → size e ≡ 2 → Is-loop e closed-non-terminating-size≡2→loop (rec x e) cl _ size≡2 with e ... | apply e₁ e₂ = ⊥-elim $ +≮ 1 (4 ≤⟨ (2 ∎≤) +-mono 1≤size e₁ +-mono 1≤size e₂ ⟩ 2 + size e₁ + size e₂ ≡⟨ size≡2 ⟩≤ 2 ∎≤) ... | lambda _ e′ = ⊥-elim $ +≮ 0 (3 ≤⟨ (2 ∎≤) +-mono 1≤size e′ ⟩ 2 + size e′ ≡⟨ size≡2 ⟩≤ 2 ∎≤) ... | case e′ bs = ⊥-elim $ +≮ 0 (3 ≤⟨ (2 ∎≤) +-mono 1≤size e′ +-mono zero≤ _ ⟩ 2 + size e′ + size-B⋆ bs ≡⟨ size≡2 ⟩≤ 2 ∎≤) ... | rec _ e′ = ⊥-elim $ +≮ 0 (3 ≤⟨ (2 ∎≤) +-mono 1≤size e′ ⟩ 2 + size e′ ≡⟨ size≡2 ⟩≤ 2 ∎≤) ... | const _ es = ⊥-elim $ +≮ 0 (3 ≤⟨ (2 ∎≤) +-mono 1≤size-⋆ es ⟩ 2 + size-⋆ es ≡⟨ size≡2 ⟩≤ 2 ∎≤) ... | var y with x V.≟ y ... | yes x≡y = rec x≡y ... | no x≢y = ⊥-elim (cl y (λ ()) (rec (x≢y ∘ sym) (var refl))) closed-non-terminating-size≡2→loop (apply e₁ e₂) _ _ size≡2 = ⊥-elim $ +≮ 0 (3 ≤⟨ (1 ∎≤) +-mono 1≤size e₁ +-mono 1≤size e₂ ⟩ 1 + size e₁ + size e₂ ≡⟨ size≡2 ⟩≤ 2 ∎≤) closed-non-terminating-size≡2→loop (lambda x e) _ ¬⇓ _ = ⊥-elim (¬⇓ (_ , lambda)) closed-non-terminating-size≡2→loop (case e bs) _ _ size≡2 = ⊥-elim $ +≮ 0 (3 ≤⟨ (1 ∎≤) +-mono 1≤size e +-mono 1≤size-B⋆ bs ⟩ 1 + size e + size-B⋆ bs ≡⟨ size≡2 ⟩≤ 2 ∎≤) closed-non-terminating-size≡2→loop (var x) cl _ _ = ⊥-elim (cl x (λ ()) (var refl)) closed-non-terminating-size≡2→loop (const c []) _ ¬⇓ _ = ⊥-elim (¬⇓ (_ , const [])) closed-non-terminating-size≡2→loop (const c (e ∷ es)) _ _ size≡2 = ⊥-elim $ +≮ 1 (4 ≤⟨ (2 ∎≤) +-mono 1≤size e +-mono 1≤size-⋆ es ⟩ 2 + size e + size-⋆ es ≡⟨ size≡2 ⟩≤ 2 ∎≤) -- Closed, non-terminating expressions of minimal size must have the -- form "rec x = x" (for some x). minimal-closed-non-terminating→loop : let P : Exp → Type P e = Closed e × ¬ Terminates e in ∀ e → P e → (∀ e′ → P e′ → size e ≤ size e′) → Is-loop e minimal-closed-non-terminating→loop e (cl , ¬⇓) minimal = closed-non-terminating-size≡2→loop e cl ¬⇓ ( ≤-antisymmetric (minimal loop (loop-closed , ¬loop⇓)) (closed→2≤size e cl))
{ "alphanum_fraction": 0.4414930556, "avg_line_length": 34.9090909091, "ext": "agda", "hexsha": "8e372045175b7162d1c75b84559307a64d78ca8a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Expression-size.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Expression-size.agda", "max_line_length": 104, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Expression-size.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 2274, "size": 5760 }
-- Andreas, 2020-04-12, issue #4580 -- Highlighting for builtins FROMNAT, FROMNEG, FROMSTRING open import Agda.Builtin.Nat open import Agda.Builtin.Equality record Number (A : Set) : Set where field fromNat : Nat → A record Negative (A : Set) : Set where field fromNeg : Nat → A open Number {{...}} public open Negative {{...}} public {-# BUILTIN FROMNAT fromNat #-} -- Should be highlighted. {-# BUILTIN FROMNEG fromNeg #-} -- Jump to definition should work. instance NumberNat : Number Nat NumberNat = record { fromNat = λ n → n } data Int : Set where pos : Nat → Int neg : Nat → Int instance NumberInt : Number Int NumberInt = record { fromNat = pos } NegativeInt : Negative Int NegativeInt = record { fromNeg = λ { zero → pos 0 ; (suc n) → neg n } } minusFive : Int minusFive = -5 thm : -5 ≡ neg 4 thm = refl
{ "alphanum_fraction": 0.6643026005, "avg_line_length": 21.6923076923, "ext": "agda", "hexsha": "34622c93be234000908e38352a25ff6a87b7e7c8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/LaTeXAndHTML/succeed/Issue4580NegativeLiterals.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/LaTeXAndHTML/succeed/Issue4580NegativeLiterals.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/LaTeXAndHTML/succeed/Issue4580NegativeLiterals.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 261, "size": 846 }
-- Andreas, 2016-11-19 issue #2308 -- Since fix of #2197, in mutual blocks, records are no-eta-equality -- until the positivity checker has run. -- Thus, the record pattern translation might not kick in. -- Now, there is another pass of record pattern translation -- after the mutual block has finished. data Unit : Set where unit : Unit mutual -- needed to trigger issue record R : Set where -- needs to be in mutual block constructor wrap field f : Unit G : R → Set G (wrap _) = Unit -- match on wrap needed test : (x : R) → G x → Set₁ test _ unit = Set -- ERROR WAS: -- Type mismatch -- when checking that the pattern unit has type G x -- Should succeed.
{ "alphanum_fraction": 0.6842105263, "avg_line_length": 22.8, "ext": "agda", "hexsha": "9699692ac49d3b2d22e87e688401fbc0d148d372", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2308.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue2308.agda", "max_line_length": 68, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue2308.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 183, "size": 684 }
open import Oscar.Prelude open import Oscar.Class.HasEquivalence import Oscar.Data.Constraint module Oscar.Class.Properthing where record Properthing {𝔬} ℓ (𝔒 : Ø 𝔬) : Ø 𝔬 ∙̂ ↑̂ ℓ where infixr 15 _∧_ field ➊ : 𝔒 _∧_ : 𝔒 → 𝔒 → 𝔒 ⦃ ⌶HasEquivalence ⦄ : HasEquivalence 𝔒 ℓ Nothing : 𝔒 → Ø ℓ fact2 : ∀ {P Q} → P ≈ Q → Nothing P → Nothing Q ∧-leftIdentity : ∀ P → ➊ ∧ P ≈ P open Properthing ⦃ … ⦄ public
{ "alphanum_fraction": 0.6209302326, "avg_line_length": 22.6315789474, "ext": "agda", "hexsha": "55a80ec5efd6207ebe7075355187966c9c770a92", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Properthing.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Properthing.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Properthing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 188, "size": 430 }
-- Andreas, 2016-07-21 -- Test case to ensure postfix printing of projections. {-# OPTIONS --postfix-projections #-} open import Common.Product open import Common.Equality testProj : {A : Set}{B : A → Set}(y z : Σ A B) → let X : Σ A B X = _ in X .proj₁ ≡ y .proj₁ → X .proj₂ ≡ z .proj₂ testProj y z = _ , _
{ "alphanum_fraction": 0.625, "avg_line_length": 22.8571428571, "ext": "agda", "hexsha": "739656bf74f388efdd1c86d3ab2cc8e7c25354de", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1963I380.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1963I380.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1963I380.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 109, "size": 320 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Unsafe String operations and proofs ------------------------------------------------------------------------ {-# OPTIONS --with-K #-} module Data.String.Unsafe where import Data.List.Base as List import Data.List.Properties as Listₚ open import Data.Nat.Base using (_+_) open import Data.String.Base open import Relation.Binary.PropositionalEquality; open ≡-Reasoning open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) ------------------------------------------------------------------------ -- Properties of conversion functions toList∘fromList : ∀ s → toList (fromList s) ≡ s toList∘fromList s = trustMe fromList∘toList : ∀ s → fromList (toList s) ≡ s fromList∘toList s = trustMe toList-++ : ∀ s t → toList (s ++ t) ≡ toList s List.++ toList t toList-++ s t = trustMe length-++ : ∀ s t → length (s ++ t) ≡ length s + length t length-++ s t = begin length (s ++ t) ≡⟨⟩ List.length (toList (s ++ t)) ≡⟨ cong List.length (toList-++ s t) ⟩ List.length (toList s List.++ toList t) ≡⟨ Listₚ.length-++ (toList s) ⟩ length s + length t ∎ length-replicate : ∀ n {c} → length (replicate n c) ≡ n length-replicate n {c} = let cs = List.replicate n c in begin length (replicate n c) ≡⟨ cong List.length (toList∘fromList cs) ⟩ List.length cs ≡⟨ Listₚ.length-replicate n ⟩ n ∎
{ "alphanum_fraction": 0.5442448436, "avg_line_length": 34.9534883721, "ext": "agda", "hexsha": "c9648d07806de475357bfc98626e52d813b75625", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/String/Unsafe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/String/Unsafe.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/String/Unsafe.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 405, "size": 1503 }
module Formalization.ClassicalPropositionalLogic.Semantics where import Lvl open import Data.Boolean open import Data.Boolean.Stmt open import Formalization.ClassicalPropositionalLogic.Syntax open import Functional open import Logic import Logic.Propositional as Logic import Logic.Predicate as Logic import Sets.PredicateSet open Sets.PredicateSet.BoundedQuantifiers open import Type private variable ℓₚ ℓ ℓ₁ ℓ₂ : Lvl.Level module _ where private variable P : Type{ℓₚ} -- Model. -- A model decides which propositional constants that are true or false. Model : Type{ℓₚ} → Type{ℓₚ} Model(P) = (P → Bool) -- Satisfication relation. -- (𝔐 ⊧ φ) means that the formula φ is satisfied in the model 𝔐. -- Or in other words: A formula is true in the model 𝔐. _⊧_ : Model(P) → Formula(P) → Stmt 𝔐 ⊧ (• p) = IsTrue(𝔐(p)) -- A model decides whether a propositional constant is satisifed. 𝔐 ⊧ ⊤ = Logic.⊤ -- Any model satisfies top. 𝔐 ⊧ ⊥ = Logic.⊥ -- No model satisfies bottom. 𝔐 ⊧ (¬ φ) = Logic.¬(𝔐 ⊧ φ) -- A model satisfies a negated proposition when it does not satisfy the proposition. 𝔐 ⊧ (φ ∧ ψ) = (𝔐 ⊧ φ) Logic.∧ (𝔐 ⊧ ψ) -- A model satisfies a conjunction when it satisfies both of the propositions. 𝔐 ⊧ (φ ∨ ψ) = (𝔐 ⊧ φ) Logic.∨ (𝔐 ⊧ ψ) -- A model satisfies a disjunction when it satisfies any one of the propositions. 𝔐 ⊧ (φ ⟶ ψ) = Logic.¬(𝔐 ⊧ φ) Logic.∨ (𝔐 ⊧ ψ) 𝔐 ⊧ (φ ⟷ ψ) = ((𝔐 ⊧ φ) Logic.∧ (𝔐 ⊧ ψ)) Logic.∨ (Logic.¬(𝔐 ⊧ φ) Logic.∧ Logic.¬(𝔐 ⊧ ψ)) -- Satisfication of a set of formulas. -- This means that a model satisfies all formulas at the same time. _⊧₊_ : Model(P) → Formulas(P){ℓ} → Stmt 𝔐 ⊧₊ Γ = ∀ₛ(Γ) (𝔐 ⊧_) -- Validity of a formula. -- A formula is valid when it is true independent of any model. Valid : Formula(P) → Stmt Valid(φ) = Logic.∀ₗ(_⊧ φ) -- Satisfiability of sets of formulas. -- A set of formulas is valid when there is a model that satisfies all of them at the same time. Satisfiable : Formulas(P){ℓ} → Stmt Satisfiable(Γ) = Logic.∃(_⊧₊ Γ) -- Unsatisfiability of sets of formulas. Unsatisfiable : Formulas(P){ℓ} → Stmt Unsatisfiable{ℓ} = Logic.¬_ ∘ Satisfiable{ℓ} -- Semantic entailment of a formula. -- A hypothetical statement. If a model would satisfy all formulas in Γ, then this same model satisifes the formula φ. _⊨_ : Formulas(P){ℓ} → Formula(P) → Stmt Γ ⊨ φ = ∀{𝔐} → (𝔐 ⊧₊ Γ) → (𝔐 ⊧ φ) _⊭_ : Formulas(P){ℓ} → Formula(P) → Stmt _⊭_ = Logic.¬_ ∘₂ _⊨_ -- Axiomatization of a theory by a set of axioms. -- A set of axioms is a set of formulas. -- A theory is the closure of a set of axioms. -- An axiomatization is a subset of formulas of the theory which entails all formulas in the axiomatized theory. _axiomatizes_ : Formulas(P){ℓ₁} → Formulas(P){ℓ₂} → Stmt Γ₁ axiomatizes Γ₂ = ∀{φ} → (Γ₁ ⊨ φ) → Γ₂(φ) -- A set of formulas is closed when it includes all formulas that it entails. Closed : Formulas(P){ℓ} → Stmt Closed(Γ) = Γ axiomatizes Γ _⊨₊_ : Formulas(P){ℓ} → Formulas(P){ℓ} → Stmt Γ₁ ⊨₊ Γ₂ = ∀{𝔐} → (𝔐 ⊧₊ Γ₁) → (𝔐 ⊧₊ Γ₂) _⊭₊_ : Formulas(P){ℓ} → Formulas(P){ℓ} → Stmt _⊭₊_ = Logic.¬_ ∘₂ _⊨₊_
{ "alphanum_fraction": 0.6457748675, "avg_line_length": 39.5925925926, "ext": "agda", "hexsha": "9c731a96d6568b2fe8227fe765d45e11486e7018", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ClassicalPropositionalLogic/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ClassicalPropositionalLogic/Semantics.agda", "max_line_length": 121, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ClassicalPropositionalLogic/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1212, "size": 3207 }
{-# OPTIONS --safe --without-K #-} module Generics.Mu.All where open import Generics.Prelude hiding (lookup) open import Generics.Telescope open import Generics.Desc open import Generics.Mu private variable P : Telescope ⊤ p : ⟦ P ⟧tel tt V I : ExTele P ℓ c : Level n : ℕ AllIndArgωω : {X : ⟦ P , I ⟧xtel → Setω} (Pr : ∀ {i} → X (p , i) → Setω) (C : ConDesc P V I) → ∀ {v} → ⟦ C ⟧IndArgω X (p , v) → Setω AllIndArgωω Pr (var _) x = Pr x AllIndArgωω Pr (π (n , ai) S C) x = (s : < relevance ai > S _) → AllIndArgωω Pr C (x s) AllIndArgωω Pr (A ⊗ B) (xa , xb) = AllIndArgωω Pr A xa ×ω AllIndArgωω Pr B xb AllConωω : {X : ⟦ P , I ⟧xtel → Setω} (Pr : ∀ {i} → X (p , i) → Setω) (C : ConDesc P V I) → ∀ {v i} → ⟦ C ⟧Conω X (p , v , i) → Setω AllConωω Pr (var f) x = ⊤ω AllConωω Pr (π ia S C) (_ , x) = AllConωω Pr C x AllConωω Pr (A ⊗ B) (xa , xb) = AllIndArgωω Pr A xa ×ω AllConωω Pr B xb AllDataωω : {X : ⟦ P , I ⟧xtel → Setω} (Pr : ∀ {i} → X (p , i) → Setω) (D : DataDesc P I n) → ∀ {i} (x : ⟦ D ⟧Dataω X (p , i)) → Setω AllDataωω Pr D (k , x) = AllConωω Pr (lookupCon D k) x All : ∀ (D : DataDesc P I n) {c} (Pr : ∀ {i} → μ D (p , i) → Set c) → ∀ {i} → μ D (p , i) → Setω All D Pr ⟨ x ⟩ = AllDataωω (λ x → Liftω (Pr x)) D x
{ "alphanum_fraction": 0.5115931189, "avg_line_length": 25.7115384615, "ext": "agda", "hexsha": "30b140163a13dc8e738e56c788aa8a379fdb0fb6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "src/Generics/Mu/All.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "src/Generics/Mu/All.agda", "max_line_length": 87, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "src/Generics/Mu/All.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 594, "size": 1337 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of All predicate transformer for fresh lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Fresh.Relation.Unary.All.Properties where open import Level using (Level; _⊔_; Lift) open import Data.Empty open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Product using (_,_) open import Function using (_∘′_) open import Relation.Nullary open import Relation.Unary as U open import Relation.Binary as B using (Rel) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong) open import Data.List.Fresh using (List#; []; cons; _∷#_; _#_) open import Data.List.Fresh.Relation.Unary.All private variable a p r : Level A : Set a module _ {R : Rel A r} where fromAll : ∀ {x} {xs : List# A R} → All (R x) xs → x # xs fromAll [] = _ fromAll (p ∷ ps) = p , fromAll ps toAll : ∀ {x} {xs : List# A R} → x # xs → All (R x) xs toAll {xs = []} _ = [] toAll {xs = a ∷# as} (p , ps) = p ∷ toAll ps module _ {R : Rel A r} {P : Pred A p} where append⁺ : {xs ys : List# A R} {ps : All (_# ys) xs} → All P xs → All P ys → All P (append xs ys ps) append⁺ [] pys = pys append⁺ (px ∷ pxs) pys = px ∷ append⁺ pxs pys
{ "alphanum_fraction": 0.555316092, "avg_line_length": 30.9333333333, "ext": "agda", "hexsha": "25e8cd006ddb7c84fa1085cf95b10041dd2a7ea9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Fresh/Relation/Unary/All/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Fresh/Relation/Unary/All/Properties.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Fresh/Relation/Unary/All/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 410, "size": 1392 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on machine words ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Word.Properties where import Data.Nat.Base as ℕ open import Data.Bool.Base using (Bool) open import Data.Word.Base import Data.Nat.Properties as ℕₚ open import Function open import Relation.Nullary.Decidable using (map′; ⌊_⌋) open import Relation.Binary using ( _⇒_; Reflexive; Symmetric; Transitive; Substitutive ; Decidable; DecidableEquality; IsEquivalence; IsDecEquivalence ; Setoid; DecSetoid; StrictTotalOrder) import Relation.Binary.Construct.On as On open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Primitive properties open import Agda.Builtin.Word.Properties renaming (primWord64ToNatInjective to toℕ-injective) public ------------------------------------------------------------------------ -- Properties of _≈_ ≈⇒≡ : _≈_ ⇒ _≡_ ≈⇒≡ = toℕ-injective _ _ ≈-reflexive : _≡_ ⇒ _≈_ ≈-reflexive = cong toℕ ≈-refl : Reflexive _≈_ ≈-refl = refl ≈-sym : Symmetric _≈_ ≈-sym = sym ≈-trans : Transitive _≈_ ≈-trans = trans ≈-subst : ∀ {ℓ} → Substitutive _≈_ ℓ ≈-subst P x≈y p = subst P (≈⇒≡ x≈y) p infix 4 _≈?_ _≈?_ : Decidable _≈_ x ≈? y = toℕ x ℕₚ.≟ toℕ y ≈-isEquivalence : IsEquivalence _≈_ ≈-isEquivalence = record { refl = λ {i} → ≈-refl {i} ; sym = λ {i j} → ≈-sym {i} {j} ; trans = λ {i j k} → ≈-trans {i} {j} {k} } ≈-setoid : Setoid _ _ ≈-setoid = record { isEquivalence = ≈-isEquivalence } ≈-isDecEquivalence : IsDecEquivalence _≈_ ≈-isDecEquivalence = record { isEquivalence = ≈-isEquivalence ; _≟_ = _≈?_ } ≈-decSetoid : DecSetoid _ _ ≈-decSetoid = record { isDecEquivalence = ≈-isDecEquivalence } ------------------------------------------------------------------------ -- Properties of _≡_ infix 4 _≟_ _≟_ : DecidableEquality Word64 x ≟ y = map′ ≈⇒≡ ≈-reflexive (x ≈? y) ≡-setoid : Setoid _ _ ≡-setoid = setoid Word64 ≡-decSetoid : DecSetoid _ _ ≡-decSetoid = decSetoid _≟_ ------------------------------------------------------------------------ -- Boolean equality test. infix 4 _==_ _==_ : Word64 → Word64 → Bool w₁ == w₂ = ⌊ w₁ ≟ w₂ ⌋ ------------------------------------------------------------------------ -- Properties of _<_ infix 4 _<?_ _<?_ : Decidable _<_ _<?_ = On.decidable toℕ ℕ._<_ ℕₚ._<?_ <-strictTotalOrder-≈ : StrictTotalOrder _ _ _ <-strictTotalOrder-≈ = On.strictTotalOrder ℕₚ.<-strictTotalOrder toℕ
{ "alphanum_fraction": 0.5409466566, "avg_line_length": 24.8785046729, "ext": "agda", "hexsha": "42b6dadc0353b58340c0d243603ac90e1068304d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Word/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Word/Properties.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Word/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 857, "size": 2662 }
{-# OPTIONS --without-K #-} module function.extensionality.proof where open import level open import sum open import equality open import function.extensionality.core open import hott.univalence open import hott.level.core open import hott.level.closure.core open import hott.equivalence.core open import sets.unit top : ∀ {i} → Set i top = ↑ _ ⊤ ⊤-contr' : ∀ {i} → contr (↑ i ⊤) ⊤-contr' {i} = lift tt , λ { (lift tt) → refl } -- this uses definitional η for ⊤ contr-exp-⊤ : ∀ {i j}{A : Set i} → contr (A → top {j}) contr-exp-⊤ = (λ _ → lift tt) , (λ f → refl) module Weak where →-contr : ∀ {i j}{A : Set i}{B : Set j} → contr B → contr (A → B) →-contr {A = A}{B = B} hB = subst contr p contr-exp-⊤ where p : (A → top) ≡ (A → B) p = ap (λ X → A → X) (unique-contr ⊤-contr' hB) funext : ∀ {i j}{A : Set i}{B : Set j} → (f : A → B)(b : B)(h : (x : A) → b ≡ f x) → (λ _ → b) ≡ f funext f b h = ap (λ u x → proj₁ (u x)) (contr⇒prop (→-contr (singl-contr b)) (λ _ → (b , refl)) (λ x → f x , h x)) abstract Π-contr : ∀ {i j}{A : Set i}{B : A → Set j} → ((x : A) → contr (B x)) → contr ((x : A) → B x) Π-contr {i}{j}{A}{B} hB = subst contr p contr-exp-⊤ where p₀ : (λ _ → top) ≡ B p₀ = Weak.funext B top (λ x → unique-contr ⊤-contr' (hB x)) p : (A → top {j}) ≡ ((x : A) → B x) p = ap (λ Z → (x : A) → Z x) p₀ private funext₀ : ∀ {i j} → Extensionality' i j funext₀ {i}{j}{X = X}{Y = Y}{f = f}{g = g} h = ap (λ u x → proj₁ (u x)) lem where C : X → Set j C x = Σ (Y x) λ y → f x ≡ y f' g' : (x : X) → C x f' x = (f x , refl) g' x = (g x , h x) lem : f' ≡ g' lem = contr⇒prop (Π-contr (λ x → singl-contr (f x))) f' g' abstract funext : ∀ {i j} → Extensionality' i j funext h = funext₀ h · sym (funext₀ (λ _ → refl)) funext-id : ∀ {i j}{X : Set i}{Y : X → Set j} → (f : (x : X) → Y x) → funext (λ x → refl {x = f x}) ≡ refl funext-id _ = left-inverse (funext₀ (λ _ → refl))
{ "alphanum_fraction": 0.4738317757, "avg_line_length": 28.1578947368, "ext": "agda", "hexsha": "e0736ddd514f059bf5e59e35d35dc87b168048bc", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "function/extensionality/proof.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "function/extensionality/proof.agda", "max_line_length": 79, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "function/extensionality/proof.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 843, "size": 2140 }
module Oscar.AgdaPatternSyntaxTrick where record ⊤ : Set where constructor tt data List (A : Set) : Set where ∅ : List A _∷_ : A → List A → List A Nat = List ⊤ pattern ‼ xs = tt ∷ xs syntax ‼ xs = ! xs data Fin : Nat → Set where ∅ : ∀ {n} → Fin (! n) ! : ∀ {n} → Fin n → Fin (! n) test : Fin (! (! ∅)) -- OOPS test = ! ∅ -- record ⊤ : Set where -- constructor tt -- data List (A : Set) : Set where -- ∅ : List A -- _∷_ : A → List A → List A -- Nat = List ⊤ -- pattern ‼ xs = tt ∷ xs -- data Fin : Nat → Set where -- ∅ : ∀ {n} → Fin (‼ n) -- BOO! -- ! : ∀ {n} → Fin n → Fin (‼ n)
{ "alphanum_fraction": 0.4926108374, "avg_line_length": 17.4, "ext": "agda", "hexsha": "c3fb233a19e5806d2fc7292a681fee94ab48718d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/AgdaPatternSyntaxTrick.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/AgdaPatternSyntaxTrick.agda", "max_line_length": 41, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/AgdaPatternSyntaxTrick.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 245, "size": 609 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module groups.CoefficientExtensionality where module _ {i} {A : Type i} (dec : has-dec-eq A) where Word-coef : Word A → (A → ℤ) Word-coef nil a = 0 Word-coef (inl a' :: w) a with dec a' a Word-coef (inl a' :: w) a | inl a'=a = succ $ Word-coef w a Word-coef (inl a' :: w) a | inr a'≠a = Word-coef w a Word-coef (inr a' :: w) a with dec a' a Word-coef (inr a' :: w) a | inl a'=a = pred $ Word-coef w a Word-coef (inr a' :: w) a | inr a'≠a = Word-coef w a abstract Word-coef-++ : ∀ w₁ w₂ a → Word-coef (w₁ ++ w₂) a == Word-coef w₁ a ℤ+ Word-coef w₂ a Word-coef-++ nil w₂ a = idp Word-coef-++ (inl a' :: w₁) w₂ a with dec a' a Word-coef-++ (inl a' :: w₁) w₂ a | inl a'=a = ap succ (Word-coef-++ w₁ w₂ a) ∙ ! (succ-+ (Word-coef w₁ a) (Word-coef w₂ a)) Word-coef-++ (inl a' :: w₁) w₂ a | inr a'≠a = Word-coef-++ w₁ w₂ a Word-coef-++ (inr a' :: w₁) w₂ a with dec a' a Word-coef-++ (inr a' :: w₁) w₂ a | inl a'=a = ap pred (Word-coef-++ w₁ w₂ a) ∙ ! (pred-+ (Word-coef w₁ a) (Word-coef w₂ a)) Word-coef-++ (inr a' :: w₁) w₂ a | inr a'≠a = Word-coef-++ w₁ w₂ a Word-coef-flip : ∀ w a → Word-coef (Word-flip w) a == ℤ~ (Word-coef w a) Word-coef-flip nil a = idp Word-coef-flip (inl a' :: w) a with dec a' a Word-coef-flip (inl a' :: w) a | inl a'=a = ap pred (Word-coef-flip w a) ∙ ! (ℤ~-succ (Word-coef w a)) Word-coef-flip (inl a' :: w) a | inr a'≠a = Word-coef-flip w a Word-coef-flip (inr a' :: w) a with dec a' a Word-coef-flip (inr a' :: w) a | inl a'=a = ap succ (Word-coef-flip w a) ∙ ! (ℤ~-pred (Word-coef w a)) Word-coef-flip (inr a' :: w) a | inr a'≠a = Word-coef-flip w a private abstract FormalSum-coef-rel : {w₁ w₂ : Word A} → FormalSumRel w₁ w₂ → ∀ a → Word-coef w₁ a == Word-coef w₂ a FormalSum-coef-rel (fsr-refl p) a = ap (λ w → Word-coef w a) p FormalSum-coef-rel (fsr-trans fwr₁ fwr₂) a = (FormalSum-coef-rel fwr₁ a) ∙ (FormalSum-coef-rel fwr₂ a) FormalSum-coef-rel (fsr-sym fsr) a = ! $ FormalSum-coef-rel fsr a FormalSum-coef-rel (fsr-cons x fwr) a = Word-coef-++ (x :: nil) _ a ∙ ap (Word-coef (x :: nil) a ℤ+_) (FormalSum-coef-rel fwr a) ∙ ! (Word-coef-++ (x :: nil) _ a) FormalSum-coef-rel (fsr-swap x y w) a = Word-coef-++ (x :: y :: nil) _ a ∙ ap (_ℤ+ Word-coef w a) ( Word-coef-++ (x :: nil) (y :: nil) a ∙ ℤ+-comm (Word-coef (x :: nil) a) (Word-coef (y :: nil) a) ∙ ! (Word-coef-++ (y :: nil) (x :: nil) a)) ∙ ! (Word-coef-++ (y :: x :: nil) _ a) FormalSum-coef-rel (fsr-flip x w) a = Word-coef-++ (x :: flip x :: nil) w a ∙ ap (_ℤ+ Word-coef w a) ( Word-coef-++ (x :: nil) (flip x :: nil) a ∙ ap (Word-coef (x :: nil) a ℤ+_) (Word-coef-flip (x :: nil) a) ∙ ℤ~-inv-r (Word-coef (x :: nil) a) ) ∙ ℤ+-unit-l (Word-coef w a) FormalSum-coef : FormalSum A → (A → ℤ) FormalSum-coef = FormalSum-rec Word-coef (λ r → λ= $ FormalSum-coef-rel r) -- Theorem : if coef w a == 0 then FormalSumRel w nil private abstract Word-exp-succ : ∀ (a : A) z → FormalSumRel (inl a :: Word-exp a z) (Word-exp a (succ z)) Word-exp-succ a (pos _) = fsr-refl idp Word-exp-succ a (negsucc 0) = fsr-flip (inl a) nil Word-exp-succ a (negsucc (S n)) = fsr-flip (inl a) (Word-exp a (negsucc n)) Word-exp-pred : ∀ (a : A) z → FormalSumRel (inr a :: Word-exp a z) (Word-exp a (pred z)) Word-exp-pred a (pos 0) = fsr-refl idp Word-exp-pred a (pos (S n)) = fsr-flip (inr a) (Word-exp a (pos n)) Word-exp-pred a (negsucc _) = fsr-refl idp Word-coef-inl-eq : ∀ {a b} (p : b == a) w → Word-coef (inl b :: w) a == succ (Word-coef w a) Word-coef-inl-eq {a} {b} p w with dec b a Word-coef-inl-eq {a} {b} p w | inl _ = idp Word-coef-inl-eq {a} {b} p w | inr ¬p = ⊥-rec (¬p p) Word-coef-inr-eq : ∀ {a b} (p : b == a) w → Word-coef (inr b :: w) a == pred (Word-coef w a) Word-coef-inr-eq {a} {b} p w with dec b a Word-coef-inr-eq {a} {b} p w | inl _ = idp Word-coef-inr-eq {a} {b} p w | inr ¬p = ⊥-rec (¬p p) Word-coef-inl-neq : ∀ {a b} (p : b ≠ a) w → Word-coef (inl b :: w) a == Word-coef w a Word-coef-inl-neq {a} {b} ¬p w with dec b a Word-coef-inl-neq {a} {b} ¬p w | inl p = ⊥-rec (¬p p) Word-coef-inl-neq {a} {b} ¬p w | inr _ = idp Word-coef-inr-neq : ∀ {a b} (p : b ≠ a) w → Word-coef (inr b :: w) a == Word-coef w a Word-coef-inr-neq {a} {b} ¬p w with dec b a Word-coef-inr-neq {a} {b} ¬p w | inl p = ⊥-rec (¬p p) Word-coef-inr-neq {a} {b} ¬p w | inr _ = idp -- TODO maybe there is a better way to prove the final theorem? -- Here we are collecting all elements [inl a] and [inr a], and recurse on the rest. -- The [right-shorter] field makes sure that it is terminating. record CollectSplitIH (a : A) {n : ℕ} (w : Word A) (len : length w == n) : Type i where field left-exponent : ℤ left-captures-all : Word-coef w a == left-exponent right-list : Word A right-shorter : length right-list ≤ n fsr : FormalSumRel w (Word-exp a left-exponent ++ right-list) abstract collect-split : ∀ a {n} w (len=n : length w == n) → CollectSplitIH a w len=n collect-split a nil idp = record { left-exponent = 0; left-captures-all = idp; right-list = nil; right-shorter = inl idp; fsr = fsr-refl idp} collect-split a (inl b :: w) idp with dec b a ... | inl b=a = record { left-exponent = succ left-exponent; left-captures-all = Word-coef-inl-eq b=a w ∙ ap succ left-captures-all; right-list = right-list; right-shorter = ≤-trans right-shorter (inr ltS); fsr = fsr-trans (fsr-refl (ap (λ a → inl a :: w) b=a)) $ fsr-trans (fsr-cons (inl a) fsr) $ (FormalSumRel-cong-++-l (Word-exp-succ a left-exponent) right-list)} where open CollectSplitIH (collect-split a w idp) ... | inr b≠a = record { left-exponent = left-exponent; left-captures-all = Word-coef-inl-neq b≠a w ∙ left-captures-all; right-list = inl b :: right-list; right-shorter = ≤-ap-S right-shorter; fsr = fsr-trans (fsr-cons (inl b) fsr) $ fsr-sym (FormalSumRel-swap1 (inl b) (Word-exp a left-exponent) right-list)} where open CollectSplitIH (collect-split a w idp) collect-split a (inr b :: w) idp with dec b a ... | inl b=a = record { left-exponent = pred left-exponent; left-captures-all = Word-coef-inr-eq b=a w ∙ ap pred left-captures-all; right-list = right-list; right-shorter = ≤-trans right-shorter (inr ltS); fsr = fsr-trans (fsr-refl (ap (λ a → inr a :: w) b=a)) $ fsr-trans (fsr-cons (inr a) fsr) $ (FormalSumRel-cong-++-l (Word-exp-pred a left-exponent) right-list)} where open CollectSplitIH (collect-split a w idp) ... | inr b≠a = record { left-exponent = left-exponent; left-captures-all = Word-coef-inr-neq b≠a w ∙ left-captures-all; right-list = inr b :: right-list; right-shorter = ≤-ap-S right-shorter; fsr = fsr-trans (fsr-cons (inr b) fsr) $ fsr-sym (FormalSumRel-swap1 (inr b) (Word-exp a left-exponent) right-list)} where open CollectSplitIH (collect-split a w idp) -- We simulate strong induction by recursing on both [m] and [n≤m]. -- We could develop a general framework for strong induction but I am lazy. -Favonia zero-coef-is-ident' : ∀ {m n} (n≤m : n ≤ m) (w : Word A) (len : length w == n) → (∀ a → Word-coef w a == 0) → FormalSumRel w nil zero-coef-is-ident' (inr ltS) w len zero-coef = zero-coef-is-ident' (inl idp) w len zero-coef zero-coef-is-ident' (inr (ltSR lt)) w len zero-coef = zero-coef-is-ident' (inr lt) w len zero-coef zero-coef-is-ident' {m = O} (inl idp) nil _ _ = fsr-refl idp zero-coef-is-ident' {m = O} (inl idp) (_ :: _) len _ = ⊥-rec $ ℕ-S≠O _ len zero-coef-is-ident' {m = S m} (inl idp) nil len _ = ⊥-rec $ ℕ-S≠O _ (! len) zero-coef-is-ident' {m = S m} (inl idp) (inl a :: w) len zero-coef = fsr-trans whole-is-right (zero-coef-is-ident' right-shorter right-list idp right-zero-coef) where open CollectSplitIH (collect-split a w (ℕ-S-is-inj _ _ len)) left-exponent-is-minus-one : left-exponent == -1 left-exponent-is-minus-one = succ-is-inj left-exponent -1 $ ap succ (! left-captures-all) ∙ ! (Word-coef-inl-eq idp w) ∙ zero-coef a whole-is-right : FormalSumRel (inl a :: w) right-list whole-is-right = fsr-trans (fsr-cons (inl a) fsr) $ fsr-trans (fsr-refl (ap (λ e → inl a :: Word-exp a e ++ right-list) left-exponent-is-minus-one)) $ fsr-flip (inl a) right-list right-zero-coef : ∀ a' → Word-coef right-list a' == 0 right-zero-coef a' = ! (FormalSum-coef-rel whole-is-right a') ∙ zero-coef a' zero-coef-is-ident' {m = S m} (inl idp) (inr a :: w) len zero-coef = fsr-trans whole-is-right (zero-coef-is-ident' right-shorter right-list idp right-zero-coef) where open CollectSplitIH (collect-split a w (ℕ-S-is-inj _ _ len)) left-exponent-is-one : left-exponent == 1 left-exponent-is-one = pred-is-inj left-exponent 1 $ ap pred (! left-captures-all) ∙ ! (Word-coef-inr-eq idp w) ∙ zero-coef a whole-is-right : FormalSumRel (inr a :: w) right-list whole-is-right = fsr-trans (fsr-cons (inr a) fsr) $ fsr-trans (fsr-refl (ap (λ e → inr a :: Word-exp a e ++ right-list) left-exponent-is-one)) $ fsr-flip (inr a) right-list right-zero-coef : ∀ a' → Word-coef right-list a' == 0 right-zero-coef a' = ! (FormalSum-coef-rel whole-is-right a') ∙ zero-coef a' zero-coef-is-ident : ∀ (w : Word A) → (∀ a → Word-coef w a == 0) → FormalSumRel w nil zero-coef-is-ident w = zero-coef-is-ident' (inl idp) w idp abstract FormalSum-coef-ext' : ∀ w₁ w₂ → (∀ a → Word-coef w₁ a == Word-coef w₂ a) → fs[ w₁ ] == fs[ w₂ ] FormalSum-coef-ext' w₁ w₂ same-coef = G.inv-is-inj fs[ w₁ ] fs[ w₂ ] $ G.inv-unique-l (G.inv fs[ w₂ ]) fs[ w₁ ] $ quot-rel $ zero-coef-is-ident (Word-flip w₂ ++ w₁) (λ a → Word-coef-++ (Word-flip w₂) w₁ a ∙ ap2 _ℤ+_ (Word-coef-flip w₂ a) (same-coef a) ∙ ℤ~-inv-l (Word-coef w₂ a)) where module G = FreeAbGroup A FormalSum-coef-ext : ∀ fs₁ fs₂ → (∀ a → FormalSum-coef fs₁ a == FormalSum-coef fs₂ a) → fs₁ == fs₂ FormalSum-coef-ext = FormalSum-elim (λ w₁ → FormalSum-elim (λ w₂ → FormalSum-coef-ext' w₁ w₂) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓) has-finite-support : (A → ℤ) → Type i has-finite-support f = Σ (FormalSum A) λ fs → ∀ a → f a == FormalSum-coef fs a module _ {i} {A : Type i} {dec : has-dec-eq A} where abstract has-finite-support-is-prop : ∀ f → is-prop (has-finite-support dec f) has-finite-support-is-prop f = all-paths-is-prop λ{(fs₁ , match₁) (fs₂ , match₂) → pair= (FormalSum-coef-ext dec fs₁ fs₂ λ a → ! (match₁ a) ∙ match₂ a) prop-has-all-paths-↓} module _ where private abstract Word-coef-exp-diag-pos : ∀ {I} (<I : Fin I) n → Word-coef Fin-has-dec-eq (Word-exp <I (pos n)) <I == pos n Word-coef-exp-diag-pos <I O = idp Word-coef-exp-diag-pos <I (S n) with Fin-has-dec-eq <I <I ... | inl _ = ap succ (Word-coef-exp-diag-pos <I n) ... | inr ¬p = ⊥-rec (¬p idp) Word-coef-exp-diag-negsucc : ∀ {I} (<I : Fin I) n → Word-coef Fin-has-dec-eq (Word-exp <I (negsucc n)) <I == negsucc n Word-coef-exp-diag-negsucc <I O with Fin-has-dec-eq <I <I ... | inl _ = idp ... | inr ¬p = ⊥-rec (¬p idp) Word-coef-exp-diag-negsucc <I (S n) with Fin-has-dec-eq <I <I ... | inl _ = ap pred (Word-coef-exp-diag-negsucc <I n) ... | inr ¬p = ⊥-rec (¬p idp) Word-coef-exp-diag : ∀ {I} (<I : Fin I) z → Word-coef Fin-has-dec-eq (Word-exp <I z) <I == z Word-coef-exp-diag <I (pos n) = Word-coef-exp-diag-pos <I n Word-coef-exp-diag <I (negsucc n) = Word-coef-exp-diag-negsucc <I n Word-coef-exp-≠-pos : ∀ {I} {<I <I' : Fin I} (_ : <I ≠ <I') n → Word-coef Fin-has-dec-eq (Word-exp <I (pos n)) <I' == 0 Word-coef-exp-≠-pos _ O = idp Word-coef-exp-≠-pos {<I = <I} {<I'} neq (S n) with Fin-has-dec-eq <I <I' ... | inl p = ⊥-rec (neq p) ... | inr ¬p = Word-coef-exp-≠-pos neq n Word-coef-exp-≠-negsucc : ∀ {I} {<I <I' : Fin I} (_ : <I ≠ <I') n → Word-coef Fin-has-dec-eq (Word-exp <I (negsucc n)) <I' == 0 Word-coef-exp-≠-negsucc {<I = <I} {<I'} neq O with Fin-has-dec-eq <I <I' ... | inl p = ⊥-rec (neq p) ... | inr ¬p = idp Word-coef-exp-≠-negsucc {<I = <I} {<I'} neq (S n) with Fin-has-dec-eq <I <I' ... | inl p = ⊥-rec (neq p) ... | inr ¬p = Word-coef-exp-≠-negsucc neq n Word-coef-exp-≠ : ∀ {I} {<I <I' : Fin I} (_ : <I ≠ <I') z → Word-coef Fin-has-dec-eq (Word-exp <I z) <I' == 0 Word-coef-exp-≠ neq (pos n) = Word-coef-exp-≠-pos neq n Word-coef-exp-≠ neq (negsucc n) = Word-coef-exp-≠-negsucc neq n Word-sum' : ∀ (I : ℕ) {A : Type₀} (F : Fin I → A) (f : Fin I → ℤ) → Word A Word-sum' 0 F f = nil Word-sum' (S I) F f = Word-sum' I (F ∘ Fin-S) (f ∘ Fin-S) ++ Word-exp (F (I , ltS)) (f (I , ltS)) Word-sum : ∀ {I : ℕ} (f : Fin I → ℤ) → Word (Fin I) Word-sum {I} f = Word-sum' I (idf (Fin I)) f abstract Word-coef-sum'-late : ∀ n m (I : ℕ) (f : Fin I → ℤ) → Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n) ∘ Fin-S^' m) f) (Fin-S^' n (ℕ-S^' m I , ltS)) == 0 Word-coef-sum'-late n m 0 f = idp Word-coef-sum'-late n m (S I) f = Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n) ∘ Fin-S^' (S m)) (f ∘ Fin-S) ++ Word-exp (Fin-S^' (S n) (Fin-S^' m (I , ltS))) (f (I , ltS))) (Fin-S^' n (ℕ-S^' (S m) I , ltS)) =⟨ Word-coef-++ Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n) ∘ Fin-S^' (S m)) (f ∘ Fin-S)) (Word-exp (Fin-S^' (S n) (Fin-S^' m (I , ltS))) (f (I , ltS))) (Fin-S^' n (ℕ-S^' (S m) I , ltS)) ⟩ Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n) ∘ Fin-S^' (S m)) (f ∘ Fin-S)) (Fin-S^' n (ℕ-S^' (S m) I , ltS)) ℤ+ Word-coef Fin-has-dec-eq (Word-exp (Fin-S^' (S n) (Fin-S^' m (I , ltS))) (f (I , ltS))) (Fin-S^' n (ℕ-S^' (S m) I , ltS)) =⟨ ap2 _ℤ+_ (Word-coef-sum'-late n (S m) I (f ∘ Fin-S)) (Word-coef-exp-≠ (Fin-S^'-≠ n (ltSR≠ltS _)) (f (I , ltS))) ⟩ 0 =∎ Word-coef-sum' : ∀ n {I} (f : Fin I → ℤ) <I → Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' n) f) (Fin-S^' n <I) == f <I Word-coef-sum' n f (I , ltS) = Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S) ++ Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' n (I , ltS)) =⟨ Word-coef-++ Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S)) (Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' n (I , ltS)) ⟩ Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S)) (Fin-S^' n (I , ltS)) ℤ+ Word-coef Fin-has-dec-eq (Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' n (I , ltS)) =⟨ ap2 _ℤ+_ (Word-coef-sum'-late n 0 I (f ∘ Fin-S)) (Word-coef-exp-diag (Fin-S^' n (I , ltS)) (f (I , ltS))) ⟩ f (I , ltS) =∎ Word-coef-sum' n {I = S I} f (m , ltSR m<I) = Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S) ++ Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' (S n) (m , m<I)) =⟨ Word-coef-++ Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S)) (Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' (S n) (m , m<I)) ⟩ Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S)) (Fin-S^' (S n) (m , m<I)) ℤ+ Word-coef Fin-has-dec-eq (Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' (S n) (m , m<I)) =⟨ ap2 _ℤ+_ (Word-coef-sum' (S n) {I} (f ∘ Fin-S) (m , m<I)) (Word-coef-exp-≠ (Fin-S^'-≠ n (ltS≠ltSR (m , m<I))) (f (I , ltS))) ⟩ f (m , ltSR m<I) ℤ+ 0 =⟨ ℤ+-unit-r _ ⟩ f (m , ltSR m<I) =∎ FormalSum-sum' : ∀ n (I : ℕ) (f : Fin I → ℤ) → FormalSum (Fin (ℕ-S^' n I)) FormalSum-sum' n I f = Group.sum (FreeAbGroup.grp (Fin (ℕ-S^' n I))) (λ <I → Group.exp (FreeAbGroup.grp (Fin (ℕ-S^' n I))) fs[ inl (Fin-S^' n <I) :: nil ] (f <I)) FormalSum-sum : ∀ {I : ℕ} (f : Fin I → ℤ) → FormalSum (Fin I) FormalSum-sum {I} = FormalSum-sum' 0 I private abstract FormalSum-sum'-β : ∀ n (I : ℕ) (f : Fin I → ℤ) → FormalSum-sum' n I f == fs[ Word-sum' I (Fin-S^' n) f ] FormalSum-sum'-β n O f = idp FormalSum-sum'-β n (S I) f = ap2 (Group.comp (FreeAbGroup.grp (Fin (ℕ-S^' (S n) I)))) (FormalSum-sum'-β (S n) I (f ∘ Fin-S)) (! (FormalSumRel-pres-exp (Fin-S^' n (I , ltS)) (f (I , ltS)))) Fin→-has-finite-support : ∀ {I} (f : Fin I → ℤ) → has-finite-support Fin-has-dec-eq f Fin→-has-finite-support {I} f = FormalSum-sum f , lemma where abstract lemma = λ <I → ! (ap (λ fs → FormalSum-coef Fin-has-dec-eq fs <I) (FormalSum-sum'-β 0 I f) ∙ Word-coef-sum' 0 f <I)
{ "alphanum_fraction": 0.5142083149, "avg_line_length": 47.4750656168, "ext": "agda", "hexsha": "50f15a7215fe5a8e7823dbd33d1781c354776919", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/groups/CoefficientExtensionality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/groups/CoefficientExtensionality.agda", "max_line_length": 134, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/groups/CoefficientExtensionality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7039, "size": 18088 }
open import Agda.Primitive _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) data D {a} (A : Set a) : Set a where d : D A → D A data E {a} (A : Set a) : Set a where e : A → E A F : ∀ {a} {A : Set a} → A → D A → Set a F x (d ys) = E (F x ys) G : ∀ {a} {A : Set a} → D A → D A → Set a G xs ys = ∀ x → F x xs → F x ys postulate H : ∀ {a} {A : Set a} {xs ys : D A} → G xs ys → Set variable a : Level A : Set a P : A → Set a x : A xs : D A postulate h : {f : G xs xs} (_ : P x) → F x xs → H (λ _ → e ∘ f _)
{ "alphanum_fraction": 0.3943028486, "avg_line_length": 19.6176470588, "ext": "agda", "hexsha": "8ddc65d7898f67bb5a6b8c63ad04563bba57f432", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3672b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3672b.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3672b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 327, "size": 667 }
module Data.Char where postulate Char : Set {-# BUILTIN CHAR Char #-}
{ "alphanum_fraction": 0.6756756757, "avg_line_length": 9.25, "ext": "agda", "hexsha": "2877dd924ec94b13557c0ad5509ae76365af0b75", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Char.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Char.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Char.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 18, "size": 74 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import groups.Cokernel open import cohomology.Theory open import cw.CW module cw.cohomology.ZerothCohomologyGroup {i} (OT : OrdinaryTheory i) (⊙skel : ⊙Skeleton {i} 1) (ac : ⊙has-cells-with-choice 0 ⊙skel i) where open OrdinaryTheory OT open import cw.cohomology.TipCoboundary OT ⊙skel open import cw.cohomology.TipAndAugment OT (⊙cw-init ⊙skel) open import cw.cohomology.TipGrid OT ⊙skel ac {- C(X₀)<------C(X₁) = C(X) ^ | | C(X₁/X₀) WoC WoC := Wedges of Cells -} open import groups.KernelSndImageInl (C2 0) {H = CX₀ 0} {K = C 1 (⊙Cofiber (⊙cw-incl-last ⊙skel))} cw-co∂-head' cw-co∂-head (λ _ → idp) (C2×CX₀-is-abelian 0) module CokerCoε = Coker cw-coε (C2×CX₀-is-abelian 0) open import groups.KernelImage cw-co∂-head cw-coε (C2×CX₀-is-abelian 0) C-cw-iso-ker/im : C 0 ⊙⟦ ⊙skel ⟧ ≃ᴳ Ker/Im C-cw-iso-ker/im = Ker-φ-snd-quot-Im-inl ∘eᴳ Ker-cw-co∂-head'
{ "alphanum_fraction": 0.6222005842, "avg_line_length": 25.675, "ext": "agda", "hexsha": "bfa4e86f2da4f3aa573b1dae605acb45c3c0cadb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/ZerothCohomologyGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/ZerothCohomologyGroup.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/ZerothCohomologyGroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 407, "size": 1027 }
{- Definitions for functions -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Function where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude -- The identity function idfun : ∀ {ℓ} → (A : Type ℓ) → A → A idfun _ x = x infixr 9 _∘_ _∘_ : ∀ {ℓ ℓ′ ℓ″} {A : Type ℓ} {B : A → Type ℓ′} {C : (a : A) → B a → Type ℓ″} (g : {a : A} → (b : B a) → C a b) → (f : (a : A) → B a) → (a : A) → C a (f a) g ∘ f = λ x → g (f x) ∘-assoc : ∀ {ℓ ℓ′ ℓ″ ℓ‴} {A : Type ℓ} {B : A → Type ℓ′} {C : (a : A) → B a → Type ℓ″} {D : (a : A) (b : B a) → C a b → Type ℓ‴} (h : {a : A} {b : B a} → (c : C a b) → D a b c) (g : {a : A} → (b : B a) → C a b) (f : (a : A) → B a) → (h ∘ g) ∘ f ≡ h ∘ (g ∘ f) ∘-assoc h g f i x = h (g (f x)) ∘-idˡ : ∀ {ℓ ℓ′} {A : Type ℓ} {B : A → Type ℓ′} (f : (a : A) → B a) → f ∘ idfun A ≡ f ∘-idˡ f i x = f x ∘-idʳ : ∀ {ℓ ℓ′} {A : Type ℓ} {B : A → Type ℓ′} (f : (a : A) → B a) → (λ {a} → idfun (B a)) ∘ f ≡ f ∘-idʳ f i x = f x const : ∀ {ℓ ℓ′} {A : Type ℓ} {B : Type ℓ′} → A → B → A const x = λ _ → x case_of_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} → (x : A) → (∀ x → B x) → B x case x of f = f x case_return_of_ : ∀ {ℓ ℓ'} {A : Type ℓ} (x : A) (B : A → Type ℓ') → (∀ x → B x) → B x case x return P of f = f x uncurry : ∀{ℓ ℓ′ ℓ″} {A : Type ℓ} {B : A → Type ℓ′} {C : (a : A) → B a → Type ℓ″} → ((x : A) → (y : B x) → C x y) → (p : Σ A B) → C (fst p) (snd p) uncurry f (x , y) = f x y module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where -- Notions of 'coherently constant' functions for low dimensions. -- These are the properties of functions necessary to e.g. eliminate -- from the propositional truncation. -- 2-Constant functions are coherently constant if B is a set. 2-Constant : (A → B) → Type _ 2-Constant f = ∀ x y → f x ≡ f y 2-Constant-isProp : isSet B → (f : A → B) → isProp (2-Constant f) 2-Constant-isProp Bset f link1 link2 i x y j = Bset (f x) (f y) (link1 x y) (link2 x y) i j -- 3-Constant functions are coherently constant if B is a groupoid. record 3-Constant (f : A → B) : Type (ℓ-max ℓ ℓ') where field link : 2-Constant f coh₁ : ∀ x y z → Square refl (link x y) (link x z) (link y z) coh₂ : ∀ x y z → Square (link x y) (link x z) (link y z) refl coh₂ x y z i j = hcomp (λ k → λ { (j = i0) → link x y i ; (i = i0) → link x z (j ∧ k) ; (j = i1) → link x z (i ∨ k) ; (i = i1) → link y z j }) (coh₁ x y z j i) link≡refl : ∀ x → refl ≡ link x x link≡refl x i j = hcomp (λ k → λ { (i = i0) → link x x (j ∧ ~ k) ; (i = i1) → link x x j ; (j = i0) → f x ; (j = i1) → link x x (~ i ∧ ~ k) }) (coh₁ x x x (~ i) j) downleft : ∀ x y → Square refl (link x y) refl (link y x) downleft x y i j = hcomp (λ k → λ { (i = i0) → link x y j ; (i = i1) → link≡refl x (~ k) j ; (j = i0) → f x ; (j = i1) → link y x i }) (coh₁ x y x i j) link≡symlink : ∀ x y → link x y ≡ sym (link y x) link≡symlink x y i j = hcomp (λ k → λ { (i = i0) → link x y j ; (i = i1) → link y x (~ j ∨ ~ k) ; (j = i0) → f x ; (j = i1) → link y x (i ∧ ~ k) }) (downleft x y i j)
{ "alphanum_fraction": 0.429396477, "avg_line_length": 32.3644859813, "ext": "agda", "hexsha": "e21564bdcf697d6b2db92747eb16e3c09ac67636", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Foundations/Function.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Foundations/Function.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Foundations/Function.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1505, "size": 3463 }
{-# OPTIONS --without-K --rewriting #-} open import PathInduction open import Pushout module JamesFirstComposite {i} (A : Type i) (⋆A : A) where open import JamesTwoMaps A ⋆A ap-from-αJ-δJ : (a : A) (x : JA) → ap from (ap (αJ a) (δJ x)) == ap (α∞ a) (δ∞ (from x)) ap-from-αJ-δJ a x = ap-from-αJ a (δJ x) ∙ ap (ap (α∞ a)) (δJ-β x) ap-from-γ : (a : A) (x : JA) → ap from (γJ a x) == γ∞ a (from x) ap-from-γ = λ a x → ap-!∙ from (ap (αJ a) (δJ x)) (δJ (αJ a x)) ∙ & coh (ap-from-αJ-δJ a x) (δJ-β (αJ a x)) module ApFromγ where coh : Coh ({A : Type i} {a b : A} {p p' : b == a} (p= : p == p') {c : A} {q q' : b == c} (q= : q == q') → ! p ∙ q == ! p' ∙ q') coh = path-induction ap-from-η : (x : JA) → Square (ap (ap from) (ηJ x)) (ap-from-γ ⋆A x) idp (η∞ (from x)) ap-from-η x = & (η-ify-coh from) (ap-δJ (δJ x)) ∙□ & η-coh-homotopy from-δJ-δJ where -- [ap] commutes with [ηIfy.coh] -- This lemma would also be true for arbitrary [αJ], [δJ], [α∞] and [δ∞], but for simplicity -- we do not abstract over them. We do abstract over [from] because otherwise Agda uses a -- crazy amount of memory. η-ify-coh : (from : JA → J∞A) → Coh ({a b : JA} {p : a == b} {c : JA} {q r : b == c} (sq : Square p p q r) → Square (ap (ap from) (& (ηIfy.coh αJ δJ) sq)) (ap-!∙ from q r) idp (& (ηIfy.coh α∞ δ∞) (ap-square from sq))) η-ify-coh = path-induction from-δJ-δJ : FlatCube (ap-square from (natural-square δJ (δJ x) (ap-idf (δJ x)) idp)) (natural-square δ∞ (δ∞ (from x)) (ap-idf (δ∞ (from x))) idp) (δJ-β x) (δJ-β x) (ap-from-αJ-δJ ⋆A x) (δJ-β (αJ ⋆A x)) from-δJ-δJ = adapt-flatcube ∙idp idp∙ idp∙ ∙idp (& (ap-square-natural-square from) (δJ x) δJ (& coh) ∙idp /∙³ & natural-square-homotopy (δJ-β) (δJ x) ∙fc & (natural-square-∘ (δJ x) from) δ∞ (& coh') idp /∙³ & natural-square= δ∞ (δJ-β x) (& ap2-idf) (& coh'')) where coh : {A B : Type i} {f : A → B} → Coh ({x y : A} {p : x == y} → ap-∘ f (λ z → z) p ∙ ap (ap f) (ap-idf p) == idp) coh = path-induction coh' : {A B : Type i} {f : A → B} → Coh ({x y : A} {p : x == y} → ∘-ap (λ z → z) f p ∙ idp == ap-idf _) coh' = path-induction coh'' : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : c == a} {d : A} {r : c == d} → Square p (! q ∙ r) idp ((! r ∙ q) ∙ p)) coh'' = path-induction -- If [sq] and [sq'] are equal (via a FlatCube), then applying [ηIfy.coh] to them give equal terms -- (via a Square). η-coh-homotopy : Coh ({a b : J∞A} {p : a == b} {c : J∞A} {q : b == c} {r : b == c} {sq : Square p p q r} {p' : a == b} {p= : p == p'} {q' : b == c} {q= : q == q'} {r' : b == c} {r= : r == r'} {sq' : Square p' p' q' r'} (cube : FlatCube sq sq' p= p= q= r=) → Square (& (ηIfy.coh α∞ δ∞) sq) (& ApFromγ.coh q= r=) idp (& (ηIfy.coh α∞ δ∞) sq')) η-coh-homotopy = path-induction comp-square2 : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : b == c} → Square p idp q (p ∙ q)) comp-square2 = path-induction ap-square-comp-square2 : {A B : Type i} (f : A → B) → Coh ({a b : A} {p : a == b} {c : A} {q : b == c} → FlatCube (ap-square f (& comp-square2 {p = p} {q = q})) (& comp-square2) idp idp idp (ap-∙ f p q)) ap-square-comp-square2 f = path-induction {- First composite -} -- As for [inJ], we need both [from-inJ] and [from-inJS] for the termination checker from-inJ : (n : ℕ) (x : J n) → from (inJ n x) == in∞ n x from-inJS : (n : ℕ) (x : J (S n)) → from (inJS n x) == in∞ (S n) x -- Those three describe [from ∘ inJS] applied to [ι], [α] and [β], in the case [S n] as it is -- the only one we need. from-inJSS-ι : (n : ℕ) (x : J (S n)) → from (inJS (S n) (ι (S n) x)) == in∞ (S (S n)) (ι (S n) x) from-inJSS-ι n x = ap (α∞ ⋆A) (from-inJS n x) ∙ ap (in∞ (S (S n))) (β (S n) x) from-inJSS-α : (n : ℕ) (a : A) (x : J (S n)) → from (inJS (S n) (α (S n) a x)) == in∞ (S (S n)) (α (S n) a x) from-inJSS-α n a x = ap (α∞ a) (from-inJS n x) from-inJSS-β : (n : ℕ) (x : J (S n)) → Square (ap from (ap (inJS (S n)) (β (S n) x))) (from-inJSS-α n ⋆A x) (from-inJSS-ι n x) (ap (in∞ (S (S n))) (β (S n) x)) from-inJSS-β n x = ap (ap from) (inJS-βS n x) |∙ comp-square -- Those three terms describe what happens when we apply [from-inJS] to [ι], [α] or [β]. -- Note that the naming scheme is slightly ambiguous, they do *not* describe [from (inJS (ι _ _))] as above. -- They are defined later, as we need to know the definition of [from-inJS]. from-inJS-ι : (n : ℕ) (x : J n) → Square (from-inJS n (ι n x)) (ap from (inJS-ι n x)) idp (ap (α∞ ⋆A) (from-inJ n x) ∙ ap (in∞ (S n)) (β n x)) from-inJS-α : (n : ℕ) (a : A) (x : J n) → Square (from-inJS n (α n a x)) (ap from (inJS-α n a x)) idp (ap (α∞ a) (from-inJ n x)) from-inJS-β : (n : ℕ) (x : J n) → Cube (natural-square (from-inJS n) (β n x) (ap-∘ from (inJS n) (β n x)) idp) (& comp-square2) (from-inJS-α n ⋆A x) (ap-square from (inJS-β n x)) hid-square (from-inJS-ι n x) -- The following three terms show that the two ways of reducing [from ∘ inJS (S n) ∘ (ι (S n) | α (S n) a) ∘ (ι n | α n a)] -- are equal. For some reason, we don’t need it with α twice side1 : (n : ℕ) (a : A) (x : J n) → ap (α∞ a) (ap from (inJS-ι n x)) ∙ ap (α∞ a) (ap (α∞ ⋆A) (from-inJ n x)) ∙ ap (in∞ (S (S n))) (ap (α (S n) a) (β n x)) == from-inJSS-α n a (ι n x) side1 n = λ a x → & coh (ap-∙ _ _ _) (ap-square (α∞ a) (from-inJS-ι n x)) (ap-α∞-in∞ (S n) a (β n x)) module Side1 where coh : Coh ({A : Type i} {a c : A} {q : a == c} {d : A} {s1 : c == d} {b : A} {s2 : d == b} {s : c == b} (s= : s == s1 ∙ s2) {p : a == b} (sq : Square p q idp s) {s2' : d == b} (s2= : s2 == s2') → q ∙ s1 ∙ s2' == p) coh = path-induction side2 : (n : ℕ) (a : A) (x : J n) → ap (α∞ ⋆A) (ap from (inJS-α n a x)) ∙ ap (α∞ ⋆A) (ap (α∞ a) (from-inJ n x)) ∙ ap (in∞ (S (S n))) (β (S n) (α n a x)) == from-inJSS-ι n (α n a x) side2 n = λ a x → & coh (ap-square (α∞ ⋆A) (from-inJS-α n a x)) module Side2 where coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : a == c} {s : c == b} (sq : Square p q idp s) {e : A} {t : b == e} → q ∙ s ∙ t == p ∙ t) coh = path-induction side3 : (n : ℕ) (x : J n) → ap (α∞ ⋆A) (ap from (inJS-ι n x)) ∙ ap (α∞ ⋆A) (ap (α∞ ⋆A) (from-inJ n x)) ∙ ap (in∞ (S (S n))) (β (S n) (α n ⋆A x)) ∙ ap (in∞ (S (S n))) (ap (ι (S n)) (β n x)) == from-inJSS-ι n (ι n x) side3 n = λ x → & coh (ap-∙ _ _ _) (ap-α∞-in∞ (S n) ⋆A (β n x)) (ap-square (α∞ ⋆A) (from-inJS-ι n x)) (ap-square (in∞ (S (S n))) (natural-square (β (S n)) (β n x) idp idp)) module Side3 where coh : Coh ({A : Type i} {a c : A} {q : a == c} {d : A} {s : c == d} {b : A} {r : d == b} {rs : c == b} (rs= : rs == s ∙ r) {r' : d == b} (r= : r == r') {p : a == b} (sq : Square p q idp rs) {e : A} {t : d == e} {f : A} {u : e == f} {v : b == f} (sq2 : Square t r' u v) → q ∙ s ∙ t ∙ u == p ∙ v) coh = path-induction piece1 : (n : ℕ) (a : A) (x : J n) → Square (ap from (ap (inJS (S n)) (γ n a x))) (ap (α∞ a) (ap from (inJS-ι n x))) (ap (α∞ ⋆A) (ap from (inJS-α n a x))) (ap from (γJ a (inJ n x))) piece1 n a x = adapt-square (ap-square from (inJSS-γ n a x)) (ap-from-αJ a (inJS-ι n x)) (ap-from-αJ ⋆A (inJS-α n a x)) from-inJSS-γ : (n : ℕ) (a : A) (x : J n) → Square (ap from (ap (inJS (S n)) (γ n a x))) (from-inJSS-α n a (ι n x)) (from-inJSS-ι n (α n a x)) (ap (in∞ (S (S n))) (γ n a x)) from-inJSS-γ n a x = adapt-square (piece1 n a x ∙□ ap-from-γ a (inJ n x) |∙ natural-square (γ∞ a) (from-inJ n x) (ap-∘ (α∞ a) (α∞ ⋆A) (from-inJ n x)) (ap-∘ (α∞ ⋆A) (α∞ a) (from-inJ n x)) ∙□ γ∞-in a n x) (side1 n a x) (side2 n a x) adapt-eq : Coh ({A : Type i} {a b : A} {q : a == b} {sq : Square idp q q idp} (sq= : sq == vid-square) {q' : a == b} {p : q == q'} → adapt-square sq p p == vid-square) adapt-eq = path-induction natural-square-idp : {A B : Type i} {f : A → B} {x y : A} {p : x == y} {fp : f x == f y} {fp= : ap f p == fp} → natural-square (λ a → idp {a = f a}) p fp= fp= == vid-square natural-square-idp {p = idp} {fp= = idp} = idp vid-square∙□vid-square∙□vid-square : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : b == c} {d : A} {r : c == d} → vid-square {p = p} ∙□ vid-square {p = q} ∙□ vid-square {p = r} == vid-square {p = p ∙ q ∙ r}) vid-square∙□vid-square∙□vid-square = path-induction adapt-square-natural-square : ∀ {i j} {A : Type i} {B : Type j} → Coh ({f g : A → B} {h : (a : A) → f a == g a} {x y : A} {p : x == y} {pf' : f x == f y} {q : ap f p == pf'} {pg' : g x == g y} {r : ap g p == pg'} → adapt-square (natural-square h p idp idp) q r == natural-square h p q r) adapt-square-natural-square = path-induction piece1-η : (n : ℕ) (x : J n) → Cube (ap-square from (ap-square (inJS (S n)) (η n x))) (horiz-degen-square (ap (ap from) (ηJ (inJ n x)))) (piece1 n ⋆A x) vid-square _ _ piece1-η n x = & (ap-shapeInJSη from) {to = ηJ (inJ n x)} (inJSS-η n x) (ap-from-αJ ⋆A (inJS-α n ⋆A x)) (ap-from-αJ ⋆A (inJS-ι n x)) coh-blip : {A B : Type i} {a b : A} (p : a == b) → Coh ({f g : A → B} {k : (a : A) → f a == g a} {h : A → B} {l : (a : A) → g a == h a} {fp : _} {fp= : ap f p == fp} {gp : _} (gp= : ap g p == gp) {hp : _} {hp= : ap h p == hp} → square-symmetry (natural-square (λ x → k x ∙ l x) p fp= hp=) == square-symmetry (natural-square k p fp= gp=) ∙□ square-symmetry (natural-square l p gp= hp=)) coh-blip {a = a} idp = path-induction ap-square-hid : {A B : Type i} {f : A → B} {x y : A} {p : x == y} → ap-square f (hid-square {p = p}) == hid-square ap-square-hid {p = idp} = idp from-inJSS-η : (n : ℕ) (x : J n) → Cube (ap-square from (ap-square (inJS (S n)) (η n x))) (ap-square (in∞ (S (S n))) (η n x)) (from-inJSS-γ n ⋆A x) vid-square (square-symmetry (natural-square (from-inJSS-ι n) (β n x) (ap-∘ _ _ _ ∙ ap-∘ _ _ _) (ap-∘ _ _ _))) (from-inJSS-β n (ι n x)) from-inJSS-η n x = adapt-cube (piece1-η n x ∙³x ap-from-η (inJ n x) -|∙³ natural-cube-η∞ η∞ (from-inJ n x) ∙³x η∞-in n x) (side1 n ⋆A x) (side2 n ⋆A x) (side1 n ⋆A x) (side3 n x) idp (& adapt-eq (& vid-square∙□vid-square∙□vid-square)) (& coh4 (ap-square-from-αJ ⋆A (inJS-β n x)) (& (ap-square-comp-square2 (α∞ ⋆A))) ap-square-hid (ap-cube (α∞ ⋆A) (from-inJS-β n x)) eq1 eq2 ∙ ! (& (coh-blip (β n x)) (ap-∘ (in∞ (S (S n))) (α (S n) ⋆A) (β n x)))) (& coh (ap (ap from) (inJS-βS n (ι n x)))) where coh : {A : Type i} {a : A} → Coh ({p : a == a} (sq : p == idp) {b : A} {s : a == b} {c : A} {q : b == c} {d : A} {u u'' : c == d} {u= : u'' == u} {u' : b == d} {u'= : u' == q ∙ u''} {e : A} {t : c == e} {f : A} {v : e == f} {w : d == f} {ββ : Square t u v w} {k : a == d} {X : Square k s idp u'} → adapt-square ((sq |∙ vid-square {p = s}) ∙□ idp |∙ vid-square {p = q} ∙□ skew ββ) (& (Side1.coh n) u'= X u=) (& (Side3.coh n) u'= u= X ββ) == sq |∙ comp-square) coh = path-induction eq1 : natural-square (λ a₁ → ap (α∞ ⋆A) (from-inJS n a₁)) (β n x) (ap-∘ (from ∘ inJS (S n)) inr (β n x) ∙ ap-∘ from (inJS (S n)) (ap inr (β n x))) (ap-∘ (in∞ (S (S n))) (α (S n) ⋆A) (β n x)) == adapt-square (ap-square (α∞ ⋆A) (natural-square (from-inJS n) (β n x) (ap-∘ from (inJS n) (β n x)) idp)) (! (ap-from-αJ ⋆A (ap (inJS n) (β n x))) ∙ ! (ap (ap from) (ap-inJSS-ι n (β n x)))) (ap-α∞-in∞ (S n) ⋆A (β n x)) eq1 = & (natural-square-ap (α∞ ⋆A)) (β n x) (from-inJS n) (coh' (β n x)) (coh'' (β n x)) where coh' : {x y : _} (p : x == y) → Square (∘-ap (α∞ ⋆A) (λ z → from (inJS n z)) p) (ap (ap (α∞ ⋆A)) (ap-∘ from (inJS n) p)) (ap-∘ (from ∘ inJS (S n)) inr p ∙ ap-∘ from (inJS (S n)) (ap inr p)) (! (ap-from-αJ ⋆A (ap (inJS n) p)) ∙ ! (ap (ap from) (ap-inJSS-ι n p))) coh' idp = ids coh'' : {x y : _} (p : x == y) → Square (∘-ap (α∞ ⋆A) (λ z → in∞ (S n) z) p) idp (ap-∘ (in∞ (S (S n))) (α (S n) ⋆A) p) (ap-α∞-in∞ (S n) ⋆A p) coh'' idp = ids eq2 : ap-square (in∞ (S (S n))) (natural-square (β (S n)) (β n x) idp idp) == natural-square (λ a₁ → ap (in∞ (S (S n))) (β (S n) a₁)) (β n x) (ap-∘ (in∞ (S (S n))) (α (S n) ⋆A) (β n x)) (ap-∘ (in∞ (S (S n))) inr (β n x)) eq2 = & (ap-square-natural-square (in∞ (S (S n)))) (β n x) (β (S n)) ∙idp ∙idp coh4 : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q q'' : a == c} {q''= : q'' == q} {q' : a == c} {q'= : q' == q''} {d : A} {r r' : b == d} {r= : r == r'} {s : c == d} {sq1 : Square p q r s} {e : A} {t : b == e} {f : A} {u : e == f} {v : d == f} {sqββ : Square t r' u v} {g : A} {k k' : a == g} {k= : k == k'} {l : c == g} {sq2 : Square q'' k l idp} {l' : c == g} {l= : l == l'} {u : g == b} {sqα : Square p k' idp u} {ur : g == d} {ur= : ur == u ∙ r} {sq3 : Square q k' l' idp} (cube-right : FlatCube sq2 sq3 q''= k= l= idp) {comp-square2' : _} (comp-square2'= : FlatCube comp-square2' (& comp-square2) idp idp idp ur=) {hid' : _} (hid'= : hid' == hid-square) {sqι : Square s l' idp ur} (cube-left : Cube sq1 comp-square2' sqα sq3 hid' sqι) {sqx : _} (eq1 : sqx == adapt-square sq1 (! q''= ∙ ! q'=) r=) {sqy : _} (eq2 : sqββ == sqy) → adapt-square (adapt-square (q'= |∙ sq2) k= l= ∙□ vid-square {p = u} ∙□ comp-square) (& (Side2.coh n) sqα) (& (Side3.coh n) ur= r= sqι sqββ) == square-symmetry sqx ∙□ square-symmetry sqy) coh4 = path-induction from-inJ O ε = idp from-inJ (S n) x = from-inJS n x hdpssvs : Coh ({A : Type i} {x y : A} {p : x == y} → idp == horiz-degen-path (square-symmetry (vid-square {p = p}))) hdpssvs = path-induction from-inJS O a = idp from-inJS (S n) = JSS-elim n (from-inJSS-ι n) (from-inJSS-α n) (λ x → ↓-='-from-square (ap-∘ from (inJS (S n)) (β (S n) x)) idp (square-symmetry (from-inJSS-β n x))) (λ a x → ↓-='-from-square (ap-∘ from (inJS (S n)) (γ n a x)) idp (square-symmetry (from-inJSS-γ n a x))) (λ x → cube-to-↓-square (from-inJSS-γ n ⋆A x) (& hdpssvs) (↓-ap-in-=' (ι (S n)) (from-inJSS-ι n)) (from-inJSS-β n (ι n x)) (ap-square-∘ from (inJS (S n)) (η n x) |∙³ from-inJSS-η n x)) from-inJS-ι O ε = ids from-inJS-ι (S n) x = hid-square from-inJS-α O a ε = ids from-inJS-α (S n) a x = hid-square from-inJS-β O ε = idc from-inJS-β (S n) x = & coh (ap-square-horiz-degen-square (inJS-βS n x)) (natural-square-β (from-inJS (S n)) (β (S n) x) (push-βd _)) where coh : Coh ({A : Type i} {a b : A} {p : a == b} {q : a == a} {k : q == idp} {k' : Square q idp idp idp} (k= : k' == horiz-degen-square k) {c : A} {r : b == c} {sq : Square p q r (p ∙ r)} → sq == square-symmetry (k |∙ comp-square) → Cube sq (& comp-square2) hid-square k' hid-square hid-square) coh = path-induction from-pushJ : (n : ℕ) (x : J n) → Square (ap from (pushJ n x)) (from-inJ n x) (from-inJ (S n) (ι n x)) (push∞ n x) from-pushJ n x = & coh (δJ-β (inJ n x)) (ap from (inJS-ι n x)) (ap-∙! from _ _) (natural-square δ∞ (from-inJ n x) (ap-idf (from-inJ n x)) idp) (from-inJS-ι n x) where coh : Coh ({A : Type i} {a d : A} {p p' : a == d} (p= : p == p') {b : A} (q : b == d) {pq : a == b} (pq= : pq == p ∙ ! q) {c : A} {r : a == c} {f : A} {u : c == f} {e : A} {v : e == f} {s : d == e} (sq : Square p' r s (u ∙ ! v)) {t : b == f} (sq2 : Square t q idp (s ∙ v)) → Square pq r t u) coh = path-induction from-to : (x : J∞A) → from (to x) == x from-to = J∞A-elim from-inJ (λ n x → ↓-='-from-square (ap-∘ from to (push∞ n x) ∙ ap (ap from) (push∞-β n x)) (ap-idf (push∞ n x)) (square-symmetry (from-pushJ n x)))
{ "alphanum_fraction": 0.4381989748, "avg_line_length": 56.6600660066, "ext": "agda", "hexsha": "73a5f0f6cb2a9795768a93b3de077e31615073b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/JamesConstruction", "max_forks_repo_path": "JamesFirstComposite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/JamesConstruction", "max_issues_repo_path": "JamesFirstComposite.agda", "max_line_length": 229, "max_stars_count": 5, "max_stars_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/JamesConstruction", "max_stars_repo_path": "JamesFirstComposite.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-16T22:10:16.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-07T04:34:52.000Z", "num_tokens": 7308, "size": 17168 }
-- A binding to a Haskell natural numbers type open import Data.Nat using ( ℕ ) renaming ( zero to zero' ; suc to suc' ) module Data.Natural where open import Data.Natural.Primitive public using ( Natural ; zero ; suc ; _+_ ; toString ; foldl ; foldl' ; foldr ) renaming ( fromℕ to # ) % : Natural → ℕ % = foldr suc' zero'
{ "alphanum_fraction": 0.670694864, "avg_line_length": 25.4615384615, "ext": "agda", "hexsha": "22382a51ee783fd27c8efcabd325d58d64eb48de", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:40:14.000Z", "max_forks_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-data-bindings", "max_forks_repo_path": "src/Data/Natural.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-data-bindings", "max_issues_repo_path": "src/Data/Natural.agda", "max_line_length": 74, "max_stars_count": 2, "max_stars_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-data-bindings", "max_stars_repo_path": "src/Data/Natural.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T13:51:16.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-02T23:17:59.000Z", "num_tokens": 93, "size": 331 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory module cw.cohomology.InnerGrid {i} (OT : OrdinaryTheory i) (n : ℤ) {X Y Z W : Ptd i} (f : X ⊙→ Y) (g : Y ⊙→ Z) (h : Z ⊙→ W) where open OrdinaryTheory OT open import cohomology.PtdMapSequence cohomology-theory {- X --> Y ---> Z ---> W | | | | v | v v 1 ----+---> Z/X -> W/X | | this | v v one v 1 --> Z/Y -> W/Y -} import cw.cohomology.GridPtdMap open cw.cohomology.GridPtdMap (g ⊙∘ f) h using () renaming (Y/X-to-Z/X to Z/X-to-W/X; B/A-to-C/A to C/A-to-D/A; module B/AToC/A to C/AToD/A) open cw.cohomology.GridPtdMap f g using (Z/X-to-Z/Y; C/A-to-C/B; module C/AToC/B) open cw.cohomology.GridPtdMap f (h ⊙∘ g) using () renaming (Z/X-to-Z/Y to W/X-to-W/Y; C/A-to-C/B to D/A-to-D/B; module C/AToC/B to D/AToD/B) open cw.cohomology.GridPtdMap g h using () renaming (Y/X-to-Z/X to Z/Y-to-W/Y; B/A-to-C/A to C/B-to-D/B; module B/AToC/A to C/BToD/B) inner-grid-comm-sqr : CommSquare C/A-to-D/A C/B-to-D/B C/A-to-C/B D/A-to-D/B inner-grid-comm-sqr = comm-sqr $ Cofiber-elim idp (λ _ → idp) (λ a → ↓-='-in' $ ap-∘ C/B-to-D/B C/A-to-C/B (glue a) ∙ ap (ap C/B-to-D/B) (C/AToC/B.glue-β a) ∙ C/BToD/B.glue-β ((fst f) a) ∙ ! (D/AToD/B.glue-β a) ∙ ap (ap D/A-to-D/B) (! (C/AToD/A.glue-β a)) ∙ ∘-ap D/A-to-D/B C/A-to-D/A (glue a)) C-inner-grid-commutes : CommSquareᴳ (C-fmap n Z/Y-to-W/Y) (C-fmap n Z/X-to-W/X) (C-fmap n W/X-to-W/Y) (C-fmap n Z/X-to-Z/Y) C-inner-grid-commutes = C-comm-square n inner-grid-comm-sqr
{ "alphanum_fraction": 0.5256188831, "avg_line_length": 32.7735849057, "ext": "agda", "hexsha": "7b0a7c756f9ae911376ea3a381f52e5f2006339d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/InnerGrid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/InnerGrid.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/InnerGrid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 679, "size": 1737 }
-- {-# OPTIONS -v tc.meta:50 #-} -- Andreas 2012-03-27, record pattern unification {-# OPTIONS --irrelevant-projections #-} module Issue376-irrelevant-projections where open import Common.Equality open import Common.Irrelevance bla4 : (A : Set) -> let A' = Squash (Squash A) in let X : .(z : A') -> (C : .A' -> Set) -> (.(z : A') -> C z) -> C z X = _ in (a : A)(C : .A' -> Set)(k : .(z : A') -> C z) -> X (squash (squash a)) C k ≡ k (squash (squash a)) bla4 A a C k = refl
{ "alphanum_fraction": 0.5575757576, "avg_line_length": 29.1176470588, "ext": "agda", "hexsha": "4bb182a70bafad623e18c24a7e8d861855197ab1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue376-irrelevant-projections.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue376-irrelevant-projections.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue376-irrelevant-projections.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 182, "size": 495 }
{- 1. Booleans -} data Bool : Set where true : Bool false : Bool not : Bool → Bool not true = false not false = true _∧_ : Bool → Bool → Bool true ∧ true = true true ∧ false = false false ∧ true = false false ∧ false = false _∨_ : Bool → Bool → Bool true ∨ true = true true ∨ false = true false ∨ true = true false ∨ false = false {- 2. Equality -} data _≡_ {A : Set} (x : A) : (y : A) → Set where refl : x ≡ x infix 4 _≡_ not-inv : (b : Bool) → not (not b) ≡ b not-inv true = refl not-inv false = refl f : (b : Bool) → (not b) ∧ b ≡ false f true = refl f false = refl
{ "alphanum_fraction": 0.5829059829, "avg_line_length": 15.3947368421, "ext": "agda", "hexsha": "b6f61cc449028916401ed577c8f3181101912d89", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "erwinkn/program-eq-proof", "max_forks_repo_path": "TD6/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "erwinkn/program-eq-proof", "max_issues_repo_path": "TD6/Bool.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "erwinkn/program-eq-proof", "max_stars_repo_path": "TD6/Bool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 220, "size": 585 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of left-scaling ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary -- The properties are parameterised by the two carriers and -- the result equality. module Algebra.Module.Definitions.Left {a b ℓb} (A : Set a) {B : Set b} (_≈_ : Rel B ℓb) where open import Data.Sum open import Data.Product ------------------------------------------------------------------------ -- Binary operations open import Algebra.Core ------------------------------------------------------------------------ -- Properties of operations LeftIdentity : A → Opₗ A B → Set _ LeftIdentity a _∙ᴮ_ = ∀ m → (a ∙ᴮ m) ≈ m Associative : Op₂ A → Opₗ A B → Set _ Associative _∙ᴬ_ _∙ᴮ_ = ∀ x y m → ((x ∙ᴬ y) ∙ᴮ m) ≈ (x ∙ᴮ (y ∙ᴮ m)) _DistributesOverˡ_ : Opₗ A B → Op₂ B → Set _ _*_ DistributesOverˡ _+_ = ∀ x m n → (x * (m + n)) ≈ ((x * m) + (x * n)) _DistributesOverʳ_⟶_ : Opₗ A B → Op₂ A → Op₂ B → Set _ _*_ DistributesOverʳ _+ᴬ_ ⟶ _+ᴮ_ = ∀ x m n → ((m +ᴬ n) * x) ≈ ((m * x) +ᴮ (n * x)) LeftZero : A → B → Opₗ A B → Set _ LeftZero zᴬ zᴮ _∙_ = ∀ x → (zᴬ ∙ x) ≈ zᴮ RightZero : B → Opₗ A B → Set _ RightZero z _∙_ = ∀ x → (x ∙ z) ≈ z Commutative : Opₗ A B → Set _ Commutative _∙_ = ∀ x y m → (x ∙ (y ∙ m)) ≈ (y ∙ (x ∙ m)) LeftCongruent : Opₗ A B → Set _ LeftCongruent _∙_ = ∀ {x} → (x ∙_) Preserves _≈_ ⟶ _≈_ RightCongruent : ∀ {ℓa} → Rel A ℓa → Opₗ A B → Set _ RightCongruent ≈ᴬ _∙_ = ∀ {m} → (_∙ m) Preserves ≈ᴬ ⟶ _≈_ Congruent : ∀ {ℓa} → Rel A ℓa → Opₗ A B → Set _ Congruent ≈ᴬ ∙ = ∙ Preserves₂ ≈ᴬ ⟶ _≈_ ⟶ _≈_
{ "alphanum_fraction": 0.4838520258, "avg_line_length": 28.3833333333, "ext": "agda", "hexsha": "409344ec96accd42862e35e64bd7c49aec9d696f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Module/Definitions/Left.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Module/Definitions/Left.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Module/Definitions/Left.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 664, "size": 1703 }
------------------------------------------------------------------------------ -- Discussion about the inductive approach ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Andrés: From our discussion about the inductive approach, can I -- conclude that it is possible to rewrite the proofs using pattern -- matching on _≡_, by proofs using only subst, because the types -- associated with these proofs haven't proof terms? -- Peter: Yes, provided the RHS of the definition does not refer to the -- function defined, i e, there is no recursion. module FOT.FOTC.InductiveApproach.Recursion where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.PropertiesI open import FOTC.Data.Nat open import FOTC.Data.Nat.PropertiesI ------------------------------------------------------------------------------ -- foo is recursive and we pattern matching on _≡_. foo : ∀ {m n} → N m → m ≡ n → N (m + n) foo nzero refl = subst N (sym (+-leftIdentity zero)) nzero foo (nsucc {m} Nm) refl = subst N helper (nsucc (nsucc (foo Nm refl))) where helper : succ₁ (succ₁ (m + m)) ≡ succ₁ m + succ₁ m helper = succ₁ (succ₁ (m + m)) ≡⟨ succCong (sym (+-Sx m m)) ⟩ succ₁ (succ₁ m + m) ≡⟨ succCong (+-comm (nsucc Nm) Nm) ⟩ succ₁ (m + succ₁ m) ≡⟨ sym (+-Sx m (succ₁ m)) ⟩ succ₁ m + succ₁ m ∎ -- foo' is recursive and we only use subst. foo' : ∀ {m n} → N m → m ≡ n → N (m + n) foo' {n = n} nzero h = subst N (sym (+-leftIdentity n)) (subst N h nzero) foo' {n = n} (nsucc {m} Nm) h = subst N helper (nsucc (nsucc (foo' Nm refl))) where helper : succ₁ (succ₁ (m + m)) ≡ succ₁ m + n helper = succ₁ (succ₁ (m + m)) ≡⟨ succCong (sym (+-Sx m m)) ⟩ succ₁ (succ₁ m + m) ≡⟨ succCong (+-comm (nsucc Nm) Nm) ⟩ succ₁ (m + succ₁ m) ≡⟨ sym (+-Sx m (succ₁ m)) ⟩ succ₁ m + succ₁ m ≡⟨ +-rightCong h ⟩ succ₁ m + n ∎
{ "alphanum_fraction": 0.5439429929, "avg_line_length": 39.7169811321, "ext": "agda", "hexsha": "da14393a4f912cd00ae5048a3d40de0db4612ec8", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/InductiveApproach/Recursion.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/InductiveApproach/Recursion.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/InductiveApproach/Recursion.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 652, "size": 2105 }
{-# OPTIONS --safe --without-K #-} module Generics.Telescope where open import Data.String using (String) open import Generics.Prelude hiding (curry) private variable l : Level A B : Set l a x y : A data Telescope (A : Set l) : Setω private variable T : Telescope A levelOfTel : Telescope A → Level ⟦_⟧tel : (T : Telescope A) → A → Set (levelOfTel T) infixl 7 _⊢<_>_ _⊢_ data Telescope A where ε : Telescope A _⊢<_>_ : ∀ (T : Telescope A) (ai : String × ArgInfo) {ℓ} (f : Σ A ⟦ T ⟧tel → Set ℓ) → Telescope A _⊢_ : ∀ (T : Telescope A) {ℓ} (f : Σ A ⟦ T ⟧tel → Set ℓ) → Telescope A T ⊢ f = T ⊢< "_" , arg-info visible (modality relevant quantity-ω) > f extendTel : (T : Telescope A) (f : ∀ {x} → ⟦ T ⟧tel x → Set l) → Telescope A extendTel T f = T ⊢ f ∘ proj₂ infixr 3 extendTel syntax extendTel A (λ x → B) = x ∶ A , B levelOfTel ε = lzero levelOfTel (_⊢<_>_ T _ {ℓ} f) = levelOfTel T ⊔ ℓ ⟦ ε ⟧tel x = ⊤ ⟦ T ⊢< n , i > f ⟧tel x = Σ[ t ∈ ⟦ T ⟧tel x ] < relevance i > f (x , t) hideInfo : ArgInfo → ArgInfo hideInfo i = arg-info hidden (getModality i) ExTele : Telescope ⊤ → Setω ExTele T = Telescope (⟦ T ⟧tel tt) ⟦_,_⟧xtel : (P : Telescope ⊤) (I : ExTele P) → Set (levelOfTel P ⊔ levelOfTel I) ⟦ P , V ⟧xtel = Σ (⟦ P ⟧tel tt) ⟦ V ⟧tel ⟦_,_&_⟧xtel : (P : Telescope ⊤) (V I : ExTele P) → Set (levelOfTel P ⊔ levelOfTel V ⊔ levelOfTel I) ⟦ P , V & I ⟧xtel = Σ[ p ∈ ⟦ P ⟧tel tt ] ⟦ V ⟧tel p × ⟦ I ⟧tel p ---------------------- -- Telescope currying Curried′ : (T : Telescope A) → (⟦ T ⟧tel x → Set l) → Set (l ⊔ levelOfTel T) Curried′ ε P = P tt Curried′ (T ⊢< ai > g) P = Curried′ T λ t → Π< ai > (g (_ , t)) λ y → P (t , y) Pred′ : (T : Telescope A) → (⟦ T ⟧tel x → Set l) → Set (l ⊔ levelOfTel T) Pred′ ε P = P tt Pred′ (T ⊢< n , i > g) P = Pred′ T λ t → Π< n , hideInfo i > (g (_ , t)) λ y → P (t , y) uncurry′ : (T : Telescope A) (P : ⟦ T ⟧tel x → Set l) (B : Curried′ T P) → (y : ⟦ T ⟧tel x) → P y uncurry′ ε P B tt = B uncurry′ (T ⊢< i > f) P B (tx , gx) = app< i > (uncurry′ T (λ p → Π< i > (f (_ , p)) (λ y → P (p , y))) B tx) _ curry′ : (T : Telescope A) (P : ⟦ T ⟧tel x → Set l) → ((y : ⟦ T ⟧tel x) → P y) → Curried′ T P curry′ ε P f = f tt curry′ (T ⊢< i > S) P f = curry′ T _ λ t → fun< i > λ s → f (t , s) unpred′ : (T : Telescope A) (P : ⟦ T ⟧tel x → Set l) (B : Pred′ T P) → (y : ⟦ T ⟧tel x) → P y unpred′ ε P B tt = B unpred′ (T ⊢< n , i > f) P B (tx , gx) = app< n , hideInfo i > (unpred′ T (λ p → Π< n , hideInfo i > (f (_ , p)) λ y → P (p , y)) B tx) _ pred′ : (T : Telescope A) (P : ⟦ T ⟧tel x → Set l) → ((y : ⟦ T ⟧tel x) → P y) → Pred′ T P pred′ ε P f = f tt pred′ (T ⊢< n , i > S) P f = pred′ T _ λ t → fun< n , hideInfo i > λ s → f (t , s) Curried : ∀ P (I : ExTele P) {ℓ} (Pr : ⟦ P , I ⟧xtel → Set ℓ) → Set (levelOfTel P ⊔ levelOfTel I ⊔ ℓ) Curried P I {ℓ} Pr = Curried′ P λ p → Curried′ I λ i → Pr (p , i) curry : ∀ {P} {I : ExTele P} {ℓ} {Pr : ⟦ P , I ⟧xtel → Set ℓ} → ((pi : ⟦ P , I ⟧xtel) → Pr pi) → Curried P I Pr curry f = curry′ _ _ λ p → curry′ _ _ λ i → f (p , i) uncurry : ∀ P (I : ExTele P) {ℓ} {Pr : ⟦ P , I ⟧xtel → Set ℓ} → Curried P I Pr → (pi : ⟦ P , I ⟧xtel) → Pr pi uncurry P I C (p , i) = uncurry′ I _ (uncurry′ P _ C p) i -- Type of parametrized, indexed sets: (p₁ : A₁) ... (pₙ : Aₙ) (i₁ : B₁) ... (iₚ : Bₚ) → Set ℓ Indexed : ∀ P (I : ExTele P) ℓ → Set (levelOfTel P ⊔ levelOfTel I ⊔ lsuc ℓ) Indexed P I ℓ = Curried P I (const (Set ℓ)) unindexed : ∀ P (I : ExTele P) ℓ → Indexed P I ℓ → ⟦ P , I ⟧xtel → Set ℓ unindexed P I ℓ = uncurry P I -- Type of predicates on parametrized & indexed families: -- {p₁ : A₁} ... {pₙ : Aₙ} {i₁ : B₁} ... {iₚ : Bₚ} → X (p₁ ... iₚ) → Set ℓ Pred : ∀ P (I : ExTele P) {a} (X : ⟦ P , I ⟧xtel → Set a) ℓ → Set (levelOfTel P ⊔ levelOfTel I ⊔ a ⊔ lsuc ℓ) Pred P I X ℓ = Pred′ P λ p → Pred′ I λ i → X (p , i) → Set ℓ unpred : ∀ P (I : ExTele P) {a} {X : ⟦ P , I ⟧xtel → Set a} ℓ → Pred P I X ℓ → (pi : ⟦ P , I ⟧xtel) → X pi → Set ℓ unpred P I ℓ C (p , i) = unpred′ I _ (unpred′ P _ C p) i
{ "alphanum_fraction": 0.5171817058, "avg_line_length": 34.8706896552, "ext": "agda", "hexsha": "82b089c9bff2f1023e98500dfaac51e09149fbce", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "src/Generics/Telescope.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "src/Generics/Telescope.agda", "max_line_length": 109, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "src/Generics/Telescope.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 1854, "size": 4045 }
{- Basic properties of the Can function and utilities used in the reasoning. The basic properties of the Can function include - Can-θ function shadows the environment canθ-shadowing-irr' : ∀ sigs' S'' p S status θ θo → S ∈ map (_+_ S'') (SigMap.keys sigs') → Canθ sigs' S'' p ((θ ← [ (S ₛ) ↦ status ]) ← θo) ≡ Canθ sigs' S'' p (θ ← θo) canθ-shadowing-irr : ∀ sigs' S'' p S status θ → Signal.unwrap S ∈ map (_+_ S'') (SigMap.keys sigs') → Canθ sigs' S'' p θ ≡ Canθ sigs' S'' p (θ ← [ S ↦ status ]) - Can only look at signals in the environment. Actually, if we define Can on top of SigMap instead of the whole Env, this would be unnecessary: can-shr-var-irr : ∀ p θ θ' → Env.sig θ ≡ Env.sig θ' → Can p θ ≡ Can p θ' - term-nothing captures those terms that cause a side-effect and reduce to nothin. canₖ-term-nothin : ∀ {r} θ → term-nothin r → Canₖ r θ ≡ (Code.nothin ∷ []) So the result of the Can function will not change: canₖ-term-nothin-lemma : ∀ {r₁ r₂} θ E → term-nothin r₁ → term-nothin r₂ → ∀ k → k ∈ Canₖ (E ⟦ r₁ ⟧e) θ → k ∈ Canₖ (E ⟦ r₂ ⟧e) θ - paused terms have return code pause. canₖ-paused : ∀ {p} θ → paused p → Canₖ p θ ≡ (Code.pause ∷ []) - done terms basically do nothing -- their Canₛ and Canₛₕ are empty. canₛ-done : ∀ {p} θ → done p → Canₛ p θ ≡ [] - Canₛ and Canₛₕ only captures free variables -- bound variables are removed. This property has a weaker converse: emit S and s ⇐ e in some *evaluation context* will be captured by Can. canₛ-⊆-FV-lemma : ∀ {p BV FV} θ → CorrectBinding p BV FV → ∀ S → S ∈ Canₛ p θ → S ∈ proj₁ FV (and its canₛₕ counterpart) canₛ-capture-emit-signal : ∀ {p S E} θ → p ≐ E ⟦ emit S ⟧e → Signal.unwrap S ∈ Canₛ p θ canₛₕ-capture-set-shared : ∀ {p s e E} θ → p ≐ E ⟦ s ⇐ e ⟧e → SharedVar.unwrap s ∈ Canₛₕ p θ - Subset relation of Can bubbles up through Canθ (a weaker version). Note that the lemmas for codes and shared variables requires subset relation of the signals as well. canθₛ-subset : ∀ sigs S'' p q θ → (∀ θ' S → Signal.unwrap S ∈ Canₛ p θ' → Signal.unwrap S ∈ Canₛ q θ') → ∀ S → Signal.unwrap S ∈ Canθₛ sigs S'' p θ → Signal.unwrap S ∈ Canθₛ sigs S'' q θ canθₛₕ-subset : ∀ sigs S'' p q θ → (∀ θ' S → Signal.unwrap S ∈ Canₛ p θ' → Signal.unwrap S ∈ Canₛ q θ') → (∀ θ' s → SharedVar.unwrap s ∈ Canₛₕ p θ' → SharedVar.unwrap s ∈ Canₛₕ q θ') → ∀ s → SharedVar.unwrap s ∈ Canθₛₕ sigs S'' p θ → SharedVar.unwrap s ∈ Canθₛₕ sigs S'' q θ canθ'ₛ-subset-lemma : ∀ sigs S'' κ κ' θ → (∀ θ' S → S ∈ proj₁ (κ θ') → S ∈ proj₁ (κ' θ')) → (∀ θ S status S' → S' ∈ proj₁ (κ' (θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) → S' ∈ proj₁ (κ' (θ ← [S]-env S))) → ∀ S → S ∈ proj₁ (Canθ' sigs S'' κ θ) → S ∈ proj₁ (Canθ' sigs S'' κ' θ) - Certain type of mootonicity relationship between the Can-θ function and the evaluation context canθₛ-p⊆canθₛ-E₁⟦p⟧ : ∀ sigs S'' θ E₁ pin → ∀ S' → Signal.unwrap S' ∈ Canθₛ sigs S'' pin θ → Signal.unwrap S' ∈ Canθₛ sigs S'' ((E₁ ∷ []) ⟦ pin ⟧e) θ canθₛ-E₁⟦p⟧⊆canθₛ-p : ∀ {pin E₁ E₁⟦nothin⟧ BV FV} sigs S'' θ → E₁⟦nothin⟧ ≐ (E₁ ∷ []) ⟦ nothin ⟧e → CorrectBinding E₁⟦nothin⟧ BV FV → distinct' (map (_+_ S'') (SigMap.keys sigs)) (proj₁ FV) → ∀ S' → Signal.unwrap S' ∉ proj₁ FV → Signal.unwrap S' ∈ Canθₛ sigs S'' ((E₁ ∷ []) ⟦ pin ⟧e) θ → Signal.unwrap S' ∈ Canθₛ sigs S'' pin θ -} module Esterel.Lang.CanFunction.Base where open import utility renaming (_U̬_ to _∪_ ; _|̌_ to _-_) open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.SetSigMonotonic public -- weird dependency here open import Esterel.Lang.Properties using (halted ; paused ; done) open import Esterel.Context using (EvaluationContext1 ; EvaluationContext ; _⟦_⟧e ; _≐_⟦_⟧e) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open EvaluationContext1 open _≐_⟦_⟧e open import Data.Bool using (Bool ; not ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; _++_ ; map) open import Data.List.Properties using (map-id) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using (++⁻) renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _≟_ ; _+_) open import Data.Nat.Properties.Simple using (+-comm ; +-right-identity) open import Data.Product using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; trans ; sym ; cong ; subst) open halted open paused open done open ListSet Data.Nat._≟_ using (set-subtract ; set-subtract-[] ; set-subtract-merge ; set-subtract-split ; set-remove ; set-remove-removed ; set-remove-mono-∈ ; set-remove-not-removed ; set-subtract-[a]≡set-remove) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM -- Shorter local notation used in Can lemmas [_↦_] : Signal → Signal.Status → Env [ S ↦ status ] = Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty data term-nothin : Term → Set where tnothin : term-nothin nothin temit : ∀ S → term-nothin (emit S) tset-shr : ∀ s e → term-nothin (s ⇐ e) tset-var : ∀ x e → term-nothin (x ≔ e) data term-raise : ShrMap.Map (SharedVar.Status × ℕ) → VarMap.Map ℕ → Term → Term → Set where tshared : ∀ n s e p → term-raise ShrMap.[ s ↦ (SharedVar.old ,′ n) ] VarMap.empty (shared s ≔ e in: p) p tvar : ∀ n x e p → term-raise ShrMap.empty VarMap.[ x ↦ n ] (var x ≔ e in: p) p canₖ-term-nothin : ∀ {r} θ → term-nothin r → Canₖ r θ ≡ (Code.nothin ∷ []) canₖ-term-nothin θ tnothin = refl canₖ-term-nothin θ (temit S) = refl canₖ-term-nothin θ (tset-shr s e) = refl canₖ-term-nothin θ (tset-var x e) = refl canₖ-paused : ∀ {p} θ → paused p → Canₖ p θ ≡ (Code.pause ∷ []) canₖ-paused θ ppause = refl canₖ-paused θ (psuspend p/paused) rewrite canₖ-paused θ p/paused = refl canₖ-paused θ (ptrap p/paused) rewrite canₖ-paused θ p/paused = refl canₖ-paused θ (ppar p/paused q/paused) rewrite canₖ-paused θ p/paused | canₖ-paused θ q/paused = refl canₖ-paused {p >> q} θ (pseq p/paused) with any (Code._≟_ Code.nothin) (Canₖ p θ) ... | no nothin∉can-p rewrite canₖ-paused θ p/paused = refl ... | yes nothin∈can-p rewrite canₖ-paused θ p/paused with nothin∈can-p ... | here () ... | there () canₖ-paused {loopˢ p q} θ (ploopˢ p/paused) = canₖ-paused θ p/paused canₛ-done : ∀ {p} θ → done p → Canₛ p θ ≡ [] canₛ-done θ (dhalted hnothin) = refl canₛ-done θ (dhalted (hexit _)) = refl canₛ-done θ (dpaused ppause) = refl canₛ-done θ (dpaused (ppar p/paused q/paused)) rewrite canₛ-done θ (dpaused p/paused) | canₛ-done θ (dpaused q/paused) = refl canₛ-done θ (dpaused (psuspend p/paused)) rewrite canₛ-done θ (dpaused p/paused) = refl canₛ-done θ (dpaused (ptrap p/paused)) rewrite canₛ-done θ (dpaused p/paused) = refl canₛ-done {loopˢ p q} θ (dpaused (ploopˢ p/paused)) = canₛ-done θ (dpaused p/paused) canₛ-done {p >> q} θ (dpaused (pseq p/paused)) with any (Code._≟_ Code.nothin) (Canₖ p θ) ... | no nothin∉can-p rewrite canₛ-done θ (dpaused p/paused) = refl ... | yes nothin∈can-p rewrite canₖ-paused θ p/paused with nothin∈can-p ... | here () ... | there () canₛₕ-done : ∀ {p} θ → done p → Canₛₕ p θ ≡ [] canₛₕ-done θ (dhalted hnothin) = refl canₛₕ-done θ (dhalted (hexit _)) = refl canₛₕ-done θ (dpaused ppause) = refl canₛₕ-done θ (dpaused (ppar p/paused q/paused)) rewrite canₛₕ-done θ (dpaused p/paused) | canₛₕ-done θ (dpaused q/paused) = refl canₛₕ-done θ (dpaused (psuspend p/paused)) rewrite canₛₕ-done θ (dpaused p/paused) = refl canₛₕ-done θ (dpaused (ptrap p/paused)) rewrite canₛₕ-done θ (dpaused p/paused) = refl canₛₕ-done {loopˢ p q} θ (dpaused (ploopˢ p/paused)) = canₛₕ-done θ (dpaused p/paused) canₛₕ-done {p >> q} θ (dpaused (pseq p/paused)) with any (Code._≟_ Code.nothin) (Canₖ p θ) ... | no nothin∉can-p rewrite canₛₕ-done θ (dpaused p/paused) = refl ... | yes nothin∈can-p rewrite canₖ-paused θ p/paused with nothin∈can-p ... | here () ... | there () can-shr-var-irr : ∀ p θ θ' → Env.sig θ ≡ Env.sig θ' → Can p θ ≡ Can p θ' canθ-shr-var-irr : ∀ sigs S'' p θ θ' → Env.sig θ ≡ Env.sig θ' → Canθ sigs S'' p θ ≡ Canθ sigs S'' p θ' canθ-shr-var-irr [] S'' p θ θ' θₛ≡θ'ₛ = can-shr-var-irr p θ θ' θₛ≡θ'ₛ canθ-shr-var-irr (just Signal.present ∷ sigs) S'' p θ θ' θₛ≡θ'ₛ rewrite canθ-shr-var-irr sigs (suc S'') p (θ ← [S]-env-present (S'' ₛ)) (θ' ← [S]-env-present (S'' ₛ)) (cong (λ sig* → SigMap.union sig* (Env.sig ([S]-env-present (S'' ₛ)))) θₛ≡θ'ₛ) = refl canθ-shr-var-irr (just Signal.absent ∷ sigs) S'' p θ θ' θₛ≡θ'ₛ rewrite canθ-shr-var-irr sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) (θ' ← [S]-env-absent (S'' ₛ)) (cong (λ sig* → SigMap.union sig* (Env.sig ([S]-env-absent (S'' ₛ)))) θₛ≡θ'ₛ) = refl canθ-shr-var-irr (just Signal.unknown ∷ sigs) S'' p θ θ' θₛ≡θ'ₛ with any (S'' ≟_) (proj₁ (Canθ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))) | any (S'' ≟_) (proj₁ (Canθ sigs (suc S'') p (θ' ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ-θ←[S] | yes S''∈canθ-θ'←[S] rewrite canθ-shr-var-irr sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) (θ' ← [S]-env (S'' ₛ)) (cong (λ sig* → SigMap.union sig* (Env.sig ([S]-env (S'' ₛ)))) θₛ≡θ'ₛ) = refl ... | no S''∉canθ-θ←[S] | no S''∉canθ-θ'←[S] rewrite canθ-shr-var-irr sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) (θ' ← [S]-env-absent (S'' ₛ)) (cong (λ sig* → SigMap.union sig* (Env.sig ([S]-env-absent (S'' ₛ)))) θₛ≡θ'ₛ) = refl ... | no S''∉canθ-θ←[S] | yes S''∈canθ-θ'←[S] rewrite canθ-shr-var-irr sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) (θ' ← [S]-env (S'' ₛ)) (cong (λ sig* → SigMap.union sig* (Env.sig ([S]-env (S'' ₛ)))) θₛ≡θ'ₛ) = ⊥-elim (S''∉canθ-θ←[S] S''∈canθ-θ'←[S]) ... | yes S''∈canθ-θ←[S] | no S''∉canθ-θ'←[S] rewrite canθ-shr-var-irr sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) (θ' ← [S]-env (S'' ₛ)) (cong (λ sig* → SigMap.union sig* (Env.sig ([S]-env (S'' ₛ)))) θₛ≡θ'ₛ) = ⊥-elim (S''∉canθ-θ'←[S] S''∈canθ-θ←[S]) canθ-shr-var-irr (nothing ∷ sigs) S'' p θ θ' θₛ≡θ'ₛ rewrite canθ-shr-var-irr sigs (suc S'') p θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr nothin θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr pause θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (signl S p) θ θ' θₛ≡θ'ₛ rewrite canθ-shr-var-irr (Env.sig ([S]-env S)) 0 p θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (present S ∣⇒ p ∣⇒ q) (Θ Ss ss xs) (Θ .Ss ss' xs') refl with Env.Sig∈ S (Θ Ss ss xs) ... | yes S∈ rewrite can-shr-var-irr p (Θ Ss ss xs) (Θ Ss ss' xs') refl | can-shr-var-irr q (Θ Ss ss xs) (Θ Ss ss' xs') refl = refl ... | no S∉ rewrite can-shr-var-irr p (Θ Ss ss xs) (Θ Ss ss' xs') refl | can-shr-var-irr q (Θ Ss ss xs) (Θ Ss ss' xs') refl = refl can-shr-var-irr (emit S) θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (p ∥ q) θ θ' θₛ≡θ'ₛ rewrite can-shr-var-irr p θ θ' θₛ≡θ'ₛ | can-shr-var-irr q θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (loop p) θ θ' θₛ≡θ'ₛ = can-shr-var-irr p θ θ' θₛ≡θ'ₛ can-shr-var-irr (loopˢ p q) θ θ' θₛ≡θ'ₛ = can-shr-var-irr p θ θ' θₛ≡θ'ₛ can-shr-var-irr (p >> q) θ θ' θₛ≡θ'ₛ with any (Code._≟_ Code.nothin) (Canₖ p θ) | any (Code._≟_ Code.nothin) (Canₖ p θ') ... | yes nothin∈can-p-θ | yes nothin∈can-p-θ' rewrite can-shr-var-irr p θ θ' θₛ≡θ'ₛ | can-shr-var-irr q θ θ' θₛ≡θ'ₛ = refl ... | yes nothin∈can-p-θ | (no nothin∉can-p-θ') rewrite can-shr-var-irr p θ θ' θₛ≡θ'ₛ = ⊥-elim (nothin∉can-p-θ' nothin∈can-p-θ) ... | no nothin∉can-p-θ | yes nothin∈can-p-θ' rewrite can-shr-var-irr p θ θ' θₛ≡θ'ₛ = ⊥-elim (nothin∉can-p-θ nothin∈can-p-θ') ... | no nothin∉can-p-θ | no nothin∉can-p-θ' rewrite can-shr-var-irr p θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (suspend p S) θ θ' θₛ≡θ'ₛ = can-shr-var-irr p θ θ' θₛ≡θ'ₛ can-shr-var-irr (trap p) θ θ' θₛ≡θ'ₛ rewrite can-shr-var-irr p θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (exit x) θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (shared s ≔ e in: p) θ θ' θₛ≡θ'ₛ rewrite can-shr-var-irr p θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (s ⇐ e) θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (var x ≔ e in: p) θ θ' θₛ≡θ'ₛ rewrite can-shr-var-irr p θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (x ≔ e) θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (if x ∣⇒ p ∣⇒ q) θ θ' θₛ≡θ'ₛ rewrite can-shr-var-irr p θ θ' θₛ≡θ'ₛ | can-shr-var-irr q θ θ' θₛ≡θ'ₛ = refl can-shr-var-irr (ρ⟨ θ'' , A ⟩· p) θ θ' θₛ≡θ'ₛ rewrite canθ-shr-var-irr (Env.sig θ'') 0 p θ θ' θₛ≡θ'ₛ = refl canₛ-capture-emit-signal : ∀ {p S E} θ → p ≐ E ⟦ emit S ⟧e → Signal.unwrap S ∈ Canₛ p θ canₛ-capture-emit-signal θ dehole = here refl canₛ-capture-emit-signal θ (depar₁ p≐E⟦emit⟧) = ++ˡ (canₛ-capture-emit-signal θ p≐E⟦emit⟧) canₛ-capture-emit-signal {p ∥ _} θ (depar₂ p≐E⟦emit⟧) = ++ʳ (Canₛ p θ) (canₛ-capture-emit-signal θ p≐E⟦emit⟧) canₛ-capture-emit-signal {loopˢ p _} θ (deloopˢ p≐E⟦emit⟧) = canₛ-capture-emit-signal θ p≐E⟦emit⟧ canₛ-capture-emit-signal {p >> _} θ (deseq p≐E⟦emit⟧) with any (Code._≟_ Code.nothin) (Canₖ p θ) ... | yes nothin∈can-p = ++ˡ (canₛ-capture-emit-signal θ p≐E⟦emit⟧) ... | no nothin∉can-p = canₛ-capture-emit-signal θ p≐E⟦emit⟧ canₛ-capture-emit-signal θ (desuspend p≐E⟦emit⟧) = canₛ-capture-emit-signal θ p≐E⟦emit⟧ canₛ-capture-emit-signal θ (detrap p≐E⟦emit⟧) = canₛ-capture-emit-signal θ p≐E⟦emit⟧ canₛₕ-capture-set-shared : ∀ {p s e E} θ → p ≐ E ⟦ s ⇐ e ⟧e → SharedVar.unwrap s ∈ Canₛₕ p θ canₛₕ-capture-set-shared θ dehole = here refl canₛₕ-capture-set-shared θ (depar₁ p≐E⟦s⇐e⟧) = ++ˡ (canₛₕ-capture-set-shared θ p≐E⟦s⇐e⟧) canₛₕ-capture-set-shared {p ∥ _} θ (depar₂ q≐E⟦s⇐e⟧) = ++ʳ (Canₛₕ p θ) (canₛₕ-capture-set-shared θ q≐E⟦s⇐e⟧) canₛₕ-capture-set-shared {loopˢ p _} θ (deloopˢ p≐E⟦s⇐e⟧) = canₛₕ-capture-set-shared θ p≐E⟦s⇐e⟧ canₛₕ-capture-set-shared {p >> _} θ (deseq p≐E⟦s⇐e⟧) with any (Code._≟_ Code.nothin) (Canₖ p θ) ... | yes nothin∈can-p = ++ˡ (canₛₕ-capture-set-shared θ p≐E⟦s⇐e⟧) ... | no nothin∉can-p = canₛₕ-capture-set-shared θ p≐E⟦s⇐e⟧ canₛₕ-capture-set-shared θ (desuspend p≐E⟦s⇐e⟧) = canₛₕ-capture-set-shared θ p≐E⟦s⇐e⟧ canₛₕ-capture-set-shared θ (detrap p≐E⟦s⇐e⟧) = canₛₕ-capture-set-shared θ p≐E⟦s⇐e⟧ canθₛ-membership : ∀ sigs S'' p θ S → (∀ θ' → Signal.unwrap S ∈ Canₛ p θ') → Signal.unwrap S ∈ Canθₛ sigs S'' p θ canθₛ-membership [] S'' p θ S S∈can-p = S∈can-p θ canθₛ-membership (nothing ∷ sigs) S'' p θ S S∈can-p = canθₛ-membership sigs (suc S'') p θ S S∈can-p canθₛ-membership (just Signal.present ∷ sigs) S'' p θ S S∈can-p = canθₛ-membership sigs (suc S'') p (θ ← [S]-env-present (S'' ₛ)) S S∈can-p canθₛ-membership (just Signal.absent ∷ sigs) S'' p θ S S∈can-p = canθₛ-membership sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) S S∈can-p canθₛ-membership (just Signal.unknown ∷ sigs) S'' p θ S S∈can-p with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-p-θ←[S''] = canθₛ-membership sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) S S∈can-p ... | no S''∉canθ-p-θ←[S''] = canθₛ-membership sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) S S∈can-p canθₛₕ-membership : ∀ sigs S'' p θ s → (∀ θ' → SharedVar.unwrap s ∈ Canₛₕ p θ') → SharedVar.unwrap s ∈ Canθₛₕ sigs S'' p θ canθₛₕ-membership [] S'' p θ s s∈can-p = s∈can-p θ canθₛₕ-membership (nothing ∷ sigs) S'' p θ s s∈can-p = canθₛₕ-membership sigs (suc S'') p θ s s∈can-p canθₛₕ-membership (just Signal.present ∷ sigs) S'' p θ s s∈can-p = canθₛₕ-membership sigs (suc S'') p (θ ← [S]-env-present (S'' ₛ)) s s∈can-p canθₛₕ-membership (just Signal.absent ∷ sigs) S'' p θ s s∈can-p = canθₛₕ-membership sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) s s∈can-p canθₛₕ-membership (just Signal.unknown ∷ sigs) S'' p θ s s∈can-p with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-p-θ←[S''] = canθₛₕ-membership sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) s s∈can-p ... | no S''∉canθ-p-θ←[S''] = canθₛₕ-membership sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) s s∈can-p canₛ-⊆-FV-lemma : ∀ {p BV FV} θ → CorrectBinding p BV FV → ∀ S → S ∈ Canₛ p θ → S ∈ proj₁ FV canθₛ-⊆-FV-lemma : ∀ {p BV FV} sigs S'' θ → CorrectBinding p BV FV → ∀ S → S ∈ proj₁ (Canθ sigs S'' p θ) → S ∈ proj₁ FV canθₛ-⊆-FV-lemma {FV = FV} [] S'' θ cb S S∈canθ-p-θ = canₛ-⊆-FV-lemma θ cb S S∈canθ-p-θ canθₛ-⊆-FV-lemma (just Signal.present ∷ sigs) S'' θ cb S S∈canθ-p-θ = canθₛ-⊆-FV-lemma sigs (suc S'') (θ ← [S]-env-present (S'' ₛ)) cb S S∈canθ-p-θ canθₛ-⊆-FV-lemma (just Signal.absent ∷ sigs) S'' θ cb S S∈canθ-p-θ = canθₛ-⊆-FV-lemma sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) cb S S∈canθ-p-θ canθₛ-⊆-FV-lemma {p} (just Signal.unknown ∷ sigs) S'' θ cb S S∈canθ-p-θ with any (S'' ≟_) (proj₁ (Canθ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ-p-θ←[S] = canθₛ-⊆-FV-lemma sigs (suc S'') (θ ← [S]-env (S'' ₛ)) cb S S∈canθ-p-θ ... | no S''∉canθ-p-θ←[S] = canθₛ-⊆-FV-lemma sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) cb S S∈canθ-p-θ canθₛ-⊆-FV-lemma (nothing ∷ sigs) S'' θ cb S S∈canθ-p-θ = canθₛ-⊆-FV-lemma sigs (suc S'') θ cb S S∈canθ-p-θ canₛ-⊆-FV-lemma θ CBnothing S () canₛ-⊆-FV-lemma θ CBpause S () canₛ-⊆-FV-lemma {signl S' p} θ (CBsig {FV = FV} cb) S S∈can-sig-p with Signal.unwrap S' Data.Nat.≟ S ... | yes refl = ⊥-elim (set-remove-removed {S} {Canθₛ (Env.sig ([S]-env S')) 0 p θ} S∈can-sig-p) ... | no S'≢S rewrite set-subtract-[a]≡set-remove (proj₁ FV) (Signal.unwrap S') = set-remove-not-removed S'≢S (canθₛ-⊆-FV-lemma (Env.sig ([S]-env S')) 0 θ cb S (set-remove-mono-∈ (Signal.unwrap S') S∈can-sig-p)) canₛ-⊆-FV-lemma {present S' ∣⇒ p ∣⇒ q} θ (CBpresent {FVp = FVp} cbp cbq) S S∈can-S'?p:q with Env.Sig∈ S' θ canₛ-⊆-FV-lemma {present S' ∣⇒ p ∣⇒ q} θ (CBpresent {FVp = FVp} cbp cbq) S S∈can-S'ᵘ?p:q | no S'∉Domθ with ++⁻ (Canₛ p θ) S∈can-S'ᵘ?p:q ... | inj₁ S∈can-p = ++ʳ (Signal.unwrap S' ∷ []) (++ˡ (canₛ-⊆-FV-lemma θ cbp S S∈can-p)) ... | inj₂ S∈can-q = ++ʳ (Signal.unwrap S' ∷ proj₁ FVp) (canₛ-⊆-FV-lemma θ cbq S S∈can-q) canₛ-⊆-FV-lemma {present S' ∣⇒ p ∣⇒ q} θ (CBpresent {FVp = FVp} cbp cbq) S S∈can-S'ᵘ?p:q | yes S'∈Domθ with Env.sig-stats {S'} θ S'∈Domθ ... | Signal.present = ++ʳ (Signal.unwrap S' ∷ []) (++ˡ (canₛ-⊆-FV-lemma θ cbp S S∈can-S'ᵘ?p:q)) ... | Signal.absent = ++ʳ (Signal.unwrap S' ∷ proj₁ FVp) (canₛ-⊆-FV-lemma θ cbq S S∈can-S'ᵘ?p:q) ... | Signal.unknown with ++⁻ (Canₛ p θ) S∈can-S'ᵘ?p:q ... | inj₁ S∈can-p = ++ʳ (Signal.unwrap S' ∷ []) (++ˡ (canₛ-⊆-FV-lemma θ cbp S S∈can-p)) ... | inj₂ S∈can-q = ++ʳ (Signal.unwrap S' ∷ proj₁ FVp) (canₛ-⊆-FV-lemma θ cbq S S∈can-q) canₛ-⊆-FV-lemma θ CBemit S S∈can-p = S∈can-p canₛ-⊆-FV-lemma {p ∥ q} θ (CBpar {FVp = FVp} cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) S S∈can-p∥q with ++⁻ (Canₛ p θ) S∈can-p∥q ... | inj₁ S∈can-p = ++ˡ (canₛ-⊆-FV-lemma θ cbp S S∈can-p) ... | inj₂ S∈can-q = ++ʳ (proj₁ FVp) (canₛ-⊆-FV-lemma θ cbq S S∈can-q) canₛ-⊆-FV-lemma θ (CBloop cb BV≠FV) S S∈can-p = canₛ-⊆-FV-lemma θ cb S S∈can-p canₛ-⊆-FV-lemma θ (CBloopˢ CBp CBq BVp≠FVq BVq≠FVq) S S∈can-loopˢp with canₛ-⊆-FV-lemma θ CBp S S∈can-loopˢp ... | sub = ++ˡ sub canₛ-⊆-FV-lemma {p >> q} θ (CBseq {FVp = FVp} cbp cbq BVp≠FVq) S S∈can-p>>q with any (Code._≟_ Code.nothin) (Canₖ p θ) ... | no nothin∉can-p = ++ˡ (canₛ-⊆-FV-lemma θ cbp S S∈can-p>>q) ... | yes nothin∈can-p with ++⁻ (Canₛ p θ) S∈can-p>>q ... | inj₁ S∈can-p = ++ˡ (canₛ-⊆-FV-lemma θ cbp S S∈can-p) ... | inj₂ S∈can-q = ++ʳ (proj₁ FVp) (canₛ-⊆-FV-lemma θ cbq S S∈can-q) canₛ-⊆-FV-lemma θ (CBsusp cb [S]≠BVp) S S∈can-p = there (canₛ-⊆-FV-lemma θ cb S S∈can-p) canₛ-⊆-FV-lemma θ CBexit S () canₛ-⊆-FV-lemma θ (CBtrap cb) S S∈can-p = canₛ-⊆-FV-lemma θ cb S S∈can-p canₛ-⊆-FV-lemma {shared _ ≔ e in: _} θ (CBshared {FV = FV} cb) S S∈can-p rewrite set-subtract-[] (proj₁ FV) = ++ʳ (proj₁ (FVₑ e)) (canₛ-⊆-FV-lemma θ cb S S∈can-p) canₛ-⊆-FV-lemma θ CBsset S () canₛ-⊆-FV-lemma {var _ ≔ e in: _} θ (CBvar {FV = FV} cb) S S∈can-p rewrite set-subtract-[] (proj₁ FV) = ++ʳ (proj₁ (FVₑ e)) (canₛ-⊆-FV-lemma θ cb S S∈can-p) canₛ-⊆-FV-lemma θ CBvset S () canₛ-⊆-FV-lemma {if _ ∣⇒ p ∣⇒ q} θ (CBif {FVp = FVp} cbp cbq) S S∈can-if-p-q with ++⁻ (Canₛ p θ) S∈can-if-p-q ... | inj₁ S∈can-p = ++ˡ (canₛ-⊆-FV-lemma θ cbp S S∈can-p) ... | inj₂ S∈can-q = ++ʳ (proj₁ FVp) (canₛ-⊆-FV-lemma θ cbq S S∈can-q) canₛ-⊆-FV-lemma {ρ⟨ θ' , A ⟩· p} θ (CBρ cb) S S∈can-ρθp with set-subtract-merge {proj₁ (Canθ (Env.sig θ') 0 p θ)} {proj₁ (Dom θ')} S∈can-ρθp ... | S∈can-p-θ←θ' , S∉Domθ' with set-subtract-split (canθₛ-⊆-FV-lemma (Env.sig θ') 0 θ cb S S∈can-p-θ←θ') ... | inj₁ S∈FV = S∈FV ... | inj₂ S∈Domθ' = ⊥-elim (S∉Domθ' S∈Domθ') canₛ-⊆-FV : ∀ {p BV FV} θ → CorrectBinding p BV FV → ∀ S → Signal.unwrap S ∈ Canₛ p θ → Signal.unwrap S ∈ proj₁ FV canₛ-⊆-FV θ cb S = canₛ-⊆-FV-lemma θ cb (Signal.unwrap S) canₛₕ-⊆-FV-lemma : ∀ {p BV FV} θ → CorrectBinding p BV FV → ∀ s → s ∈ Canₛₕ p θ → s ∈ proj₁ (proj₂ FV) canθₛₕ-⊆-FV-lemma : ∀ {p BV FV} sigs S'' θ → CorrectBinding p BV FV → ∀ s → s ∈ proj₂ (proj₂ (Canθ sigs S'' p θ)) → s ∈ proj₁ (proj₂ FV) canθₛₕ-⊆-FV-lemma {FV = FV} [] S'' θ cb s s∈canθ-p-θ = canₛₕ-⊆-FV-lemma θ cb s s∈canθ-p-θ canθₛₕ-⊆-FV-lemma (just Signal.present ∷ sigs) S'' θ cb s s∈canθ-p-θ = canθₛₕ-⊆-FV-lemma sigs (suc S'') (θ ← [S]-env-present (S'' ₛ)) cb s s∈canθ-p-θ canθₛₕ-⊆-FV-lemma (just Signal.absent ∷ sigs) S'' θ cb s s∈canθ-p-θ = canθₛₕ-⊆-FV-lemma sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) cb s s∈canθ-p-θ canθₛₕ-⊆-FV-lemma {p} (just Signal.unknown ∷ sigs) S'' θ cb s s∈canθ-p-θ with any (S'' ≟_) (proj₁ (Canθ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ-p-θ←[S] = canθₛₕ-⊆-FV-lemma sigs (suc S'') (θ ← [S]-env (S'' ₛ)) cb s s∈canθ-p-θ ... | no S''∉canθ-p-θ←[S] = canθₛₕ-⊆-FV-lemma sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) cb s s∈canθ-p-θ canθₛₕ-⊆-FV-lemma (nothing ∷ sigs) S'' θ cb s s∈canθ-p-θ = canθₛₕ-⊆-FV-lemma sigs (suc S'') θ cb s s∈canθ-p-θ canₛₕ-⊆-FV-lemma θ CBnothing s () canₛₕ-⊆-FV-lemma θ CBpause s () canₛₕ-⊆-FV-lemma {signl S' p} θ (CBsig {FV = FV} cb) s s∈can-p rewrite set-subtract-[] (proj₁ (proj₂ FV)) = canθₛₕ-⊆-FV-lemma (Env.sig ([S]-env S')) 0 θ cb s s∈can-p canₛₕ-⊆-FV-lemma {present S' ∣⇒ p ∣⇒ q} θ (CBpresent {FVp = FVp} cbp cbq) s s∈can-S'?p:q with Env.Sig∈ S' θ canₛₕ-⊆-FV-lemma {present S' ∣⇒ p ∣⇒ q} θ (CBpresent {FVp = FVp} cbp cbq) s s∈can-S'ᵘ?p:q | no S'∉Domθ with ++⁻ (Canₛₕ p θ) s∈can-S'ᵘ?p:q ... | inj₁ s∈can-p = ++ˡ (canₛₕ-⊆-FV-lemma θ cbp s s∈can-p) ... | inj₂ s∈can-q = ++ʳ (proj₁ (proj₂ FVp)) (canₛₕ-⊆-FV-lemma θ cbq s s∈can-q) canₛₕ-⊆-FV-lemma {present S' ∣⇒ p ∣⇒ q} θ (CBpresent {FVp = FVp} cbp cbq) s s∈can-S'ᵘ?p:q | yes S'∈Domθ with Env.sig-stats {S'} θ S'∈Domθ ... | Signal.present = ++ˡ (canₛₕ-⊆-FV-lemma θ cbp s s∈can-S'ᵘ?p:q) ... | Signal.absent = ++ʳ (proj₁ (proj₂ FVp)) (canₛₕ-⊆-FV-lemma θ cbq s s∈can-S'ᵘ?p:q) ... | Signal.unknown with ++⁻ (Canₛₕ p θ) s∈can-S'ᵘ?p:q ... | inj₁ s∈can-p = ++ˡ (canₛₕ-⊆-FV-lemma θ cbp s s∈can-p) ... | inj₂ s∈can-q = ++ʳ (proj₁ (proj₂ FVp)) (canₛₕ-⊆-FV-lemma θ cbq s s∈can-q) canₛₕ-⊆-FV-lemma θ CBemit s () canₛₕ-⊆-FV-lemma {p ∥ q} θ (CBpar {FVp = FVp} cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) s s∈can-p∥q with ++⁻ (Canₛₕ p θ) s∈can-p∥q ... | inj₁ s∈can-p = ++ˡ (canₛₕ-⊆-FV-lemma θ cbp s s∈can-p) ... | inj₂ s∈can-q = ++ʳ (proj₁ (proj₂ FVp)) (canₛₕ-⊆-FV-lemma θ cbq s s∈can-q) canₛₕ-⊆-FV-lemma θ (CBloop cb BV≠FV) s s∈can-p = canₛₕ-⊆-FV-lemma θ cb s s∈can-p canₛₕ-⊆-FV-lemma θ (CBloopˢ CBp CBq BVp≠FVq BVq≠FVq) s s∈can-loopˢpq with canₛₕ-⊆-FV-lemma θ CBp s s∈can-loopˢpq ... | sub = ++ˡ sub canₛₕ-⊆-FV-lemma {p >> q} θ (CBseq {FVp = FVp} cbp cbq BVp≠FVq) s s∈can-p>>q with any (Code._≟_ Code.nothin) (Canₖ p θ) ... | no nothin∉can-p = ++ˡ (canₛₕ-⊆-FV-lemma θ cbp s s∈can-p>>q) ... | yes nothin∈can-p with ++⁻ (Canₛₕ p θ) s∈can-p>>q ... | inj₁ s∈can-p = ++ˡ (canₛₕ-⊆-FV-lemma θ cbp s s∈can-p) ... | inj₂ s∈can-q = ++ʳ (proj₁ (proj₂ FVp)) (canₛₕ-⊆-FV-lemma θ cbq s s∈can-q) canₛₕ-⊆-FV-lemma θ (CBsusp cb [S]≠BVp) s s∈can-p = canₛₕ-⊆-FV-lemma θ cb s s∈can-p canₛₕ-⊆-FV-lemma θ CBexit s () canₛₕ-⊆-FV-lemma θ (CBtrap cb) s s∈can-p = canₛₕ-⊆-FV-lemma θ cb s s∈can-p canₛₕ-⊆-FV-lemma {shared s' ≔ e in: p} θ (CBshared {FV = FV} cb) s s∈can-shared-p with SharedVar.unwrap s' Data.Nat.≟ s ... | yes refl = ⊥-elim (set-remove-removed {s} {Canₛₕ p θ} s∈can-shared-p) ... | no s'≢s rewrite set-subtract-[a]≡set-remove (proj₁ (proj₂ FV)) (SharedVar.unwrap s') = ++ʳ (proj₁ (proj₂ (FVₑ e))) (set-remove-not-removed s'≢s (canₛₕ-⊆-FV-lemma θ cb s (set-remove-mono-∈ (SharedVar.unwrap s') s∈can-shared-p))) canₛₕ-⊆-FV-lemma {s' ⇐ e} θ CBsset s s∈can-p = ++ˡ s∈can-p canₛₕ-⊆-FV-lemma {var _ ≔ e in: _} θ (CBvar {FV = FV} cb) s s∈can-p rewrite set-subtract-[] (proj₁ (proj₂ FV)) = ++ʳ (proj₁ (proj₂ (FVₑ e))) (canₛₕ-⊆-FV-lemma θ cb s s∈can-p) canₛₕ-⊆-FV-lemma θ CBvset s () canₛₕ-⊆-FV-lemma {if _ ∣⇒ p ∣⇒ q} θ (CBif {FVp = FVp} cbp cbq) s s∈can-if-p-q with ++⁻ (Canₛₕ p θ) s∈can-if-p-q ... | inj₁ s∈can-p = ++ˡ (canₛₕ-⊆-FV-lemma θ cbp s s∈can-p) ... | inj₂ s∈can-q = ++ʳ (proj₁ (proj₂ FVp)) (canₛₕ-⊆-FV-lemma θ cbq s s∈can-q) canₛₕ-⊆-FV-lemma {ρ⟨ θ' , A ⟩· p} θ (CBρ cb) s s∈can-ρθp with set-subtract-merge {proj₂ (proj₂ (Canθ (Env.sig θ') 0 p θ))} {proj₁ (proj₂ (Dom θ'))} s∈can-ρθp ... | s∈can-p-θ←θ' , s∉Domθ' with set-subtract-split (canθₛₕ-⊆-FV-lemma (Env.sig θ') 0 θ cb s s∈can-p-θ←θ') ... | inj₁ s∈FV = s∈FV ... | inj₂ s∈Domθ' = ⊥-elim (s∉Domθ' s∈Domθ') canₛₕ-⊆-FV : ∀ {p BV FV} θ → CorrectBinding p BV FV → ∀ s → SharedVar.unwrap s ∈ Canₛₕ p θ → SharedVar.unwrap s ∈ proj₁ (proj₂ FV) canₛₕ-⊆-FV θ cb s = canₛₕ-⊆-FV-lemma θ cb (SharedVar.unwrap s) canₖ-term-nothin-lemma : ∀ {r₁ r₂} θ E → term-nothin r₁ → term-nothin r₂ → ∀ k → k ∈ Canₖ (E ⟦ r₁ ⟧e) θ → k ∈ Canₖ (E ⟦ r₂ ⟧e) θ canₖ-term-nothin-lemma θ [] r₁' r₂' k k∈can-E⟦r2⟧-θ' rewrite canₖ-term-nothin θ r₁' | canₖ-term-nothin θ r₂' = k∈can-E⟦r2⟧-θ' canₖ-term-nothin-lemma θ (epar₁ q ∷ E) r₁' r₂' k k∈can-E⟦r2⟧-θ' = map-mono² Code._⊔_ (canₖ-term-nothin-lemma θ E r₁' r₂') (λ _ → id) k k∈can-E⟦r2⟧-θ' canₖ-term-nothin-lemma θ (epar₂ p ∷ E) r₁' r₂' k k∈can-E⟦r2⟧-θ' = map-mono² {xs = Canₖ p θ} Code._⊔_ (λ _ → id) (canₖ-term-nothin-lemma θ E r₁' r₂') k k∈can-E⟦r2⟧-θ' canₖ-term-nothin-lemma {r₁} {r₂} θ (eloopˢ q ∷ E) r₁' r₂' k k∈can-E⟦r2⟧-θ' = canₖ-term-nothin-lemma θ E r₁' r₂' k k∈can-E⟦r2⟧-θ' canₖ-term-nothin-lemma {r₁} {r₂} θ (eseq q ∷ E) r₁' r₂' k k∈can-E⟦r2⟧-θ' with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r₁ ⟧e) θ) | any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r₂ ⟧e) θ) ... | yes nothin∈can-E⟦r₁⟧ | no nothin∉can-E⟦r₂⟧ = ⊥-elim (nothin∉can-E⟦r₂⟧ (canₖ-term-nothin-lemma θ E r₁' r₂' Code.nothin nothin∈can-E⟦r₁⟧)) ... | no nothin∉can-E⟦r₁⟧ | yes nothin∈can-E⟦r₂⟧ = ⊥-elim (nothin∉can-E⟦r₁⟧ (canₖ-term-nothin-lemma θ E r₂' r₁' Code.nothin nothin∈can-E⟦r₂⟧)) ... | no nothin∉can-E⟦r₁⟧ | no nothin∉can-E⟦r₂⟧ = canₖ-term-nothin-lemma θ E r₁' r₂' k k∈can-E⟦r2⟧-θ' ... | yes nothin∈can-E⟦r₁⟧ | yes nothin∈can-E⟦r₂⟧ with ++⁻ (CodeSet.set-remove (Canₖ (E ⟦ r₁ ⟧e) θ) Code.nothin) k∈can-E⟦r2⟧-θ' ... | inj₂ k∈can-q = ++ʳ (CodeSet.set-remove (Canₖ (E ⟦ r₂ ⟧e) θ) Code.nothin) k∈can-q ... | inj₁ k∈can-E⟦r1⟧-nothin with Code.nothin Code.≟ k ... | yes refl = ⊥-elim (CodeSet.set-remove-removed {Code.nothin} {Canₖ (E ⟦ r₁ ⟧e) θ} k∈can-E⟦r1⟧-nothin) ... | no nothin≢k = ++ˡ (CodeSet.set-remove-not-removed nothin≢k (canₖ-term-nothin-lemma θ E r₁' r₂' k (CodeSet.set-remove-mono-∈ Code.nothin k∈can-E⟦r1⟧-nothin))) canₖ-term-nothin-lemma θ (esuspend S' ∷ E) r₁' r₂' k k∈can-E⟦r2⟧-θ' = canₖ-term-nothin-lemma θ E r₁' r₂' k k∈can-E⟦r2⟧-θ' canₖ-term-nothin-lemma θ (etrap ∷ E) r₁' r₂' k k∈can-E⟦r2⟧-θ' = map-mono Code.↓* (canₖ-term-nothin-lemma θ E r₁' r₂') k k∈can-E⟦r2⟧-θ' canθₛ-subset-lemma : ∀ sigs S'' p q θ → (∀ θ' S → S ∈ Canₛ p θ' → S ∈ Canₛ q θ') → ∀ S → S ∈ Canθₛ sigs S'' p θ → S ∈ Canθₛ sigs S'' q θ canθₛ-subset-lemma [] S'' p q θ canₛ-p⊆canₛ-q S S∈canθ-p-θ = canₛ-p⊆canₛ-q θ S S∈canθ-p-θ canθₛ-subset-lemma (nothing ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q S S∈canθ-p-θ = canθₛ-subset-lemma sigs (suc S'') p q θ canₛ-p⊆canₛ-q S S∈canθ-p-θ canθₛ-subset-lemma (just Signal.present ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q S S∈canθ-p-θ = canθₛ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-present (S'' ₛ)) canₛ-p⊆canₛ-q S S∈canθ-p-θ canθₛ-subset-lemma (just Signal.absent ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q S S∈canθ-p-θ = canθₛ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-absent (S'' ₛ)) canₛ-p⊆canₛ-q S S∈canθ-p-θ canθₛ-subset-lemma (just Signal.unknown ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q S S∈canθ-p-θ with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') q (θ ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-p-θ' | yes S''∈canθ-q-θ' = canθₛ-subset-lemma sigs (suc S'') p q (θ ← [S]-env (S'' ₛ)) canₛ-p⊆canₛ-q S S∈canθ-p-θ ... | no S''∉canθ-p-θ' | no S''∉canθ-q-θ' = canθₛ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-absent (S'' ₛ)) canₛ-p⊆canₛ-q S S∈canθ-p-θ ... | yes S''∈canθ-p-θ' | no S''∉canθ-q-θ' = ⊥-elim (S''∉canθ-q-θ' (canθₛ-subset-lemma sigs (suc S'') p q (θ ← [S]-env (S'' ₛ)) canₛ-p⊆canₛ-q S'' S''∈canθ-p-θ')) ... | no S''∉canθ-p-θ' | yes S''∈canθ-q-θ' = canθₛ-add-sig-monotonic sigs (suc S'') q θ (S'' ₛ) Signal.absent S (canθₛ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-absent (S'' ₛ)) canₛ-p⊆canₛ-q S S∈canθ-p-θ) canθₛ-subset : ∀ sigs S'' p q θ → (∀ θ' S → Signal.unwrap S ∈ Canₛ p θ' → Signal.unwrap S ∈ Canₛ q θ') → ∀ S → Signal.unwrap S ∈ Canθₛ sigs S'' p θ → Signal.unwrap S ∈ Canθₛ sigs S'' q θ canθₛ-subset sigs S'' p q θ canₛ-p⊆canₛ-q S S∈canθ-p-θ = canθₛ-subset-lemma sigs S'' p q θ (λ θ' S → canₛ-p⊆canₛ-q θ' (S ₛ)) (Signal.unwrap S) S∈canθ-p-θ canθₛₕ-subset-lemma : ∀ sigs S'' p q θ → (∀ θ' S → S ∈ Canₛ p θ' → S ∈ Canₛ q θ') → (∀ θ' s → s ∈ Canₛₕ p θ' → s ∈ Canₛₕ q θ') → ∀ s → s ∈ Canθₛₕ sigs S'' p θ → s ∈ Canθₛₕ sigs S'' q θ canθₛₕ-subset-lemma [] S'' p q θ canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ = canₛₕ-p⊆canₛₕ-q θ s s∈canθ-p-θ canθₛₕ-subset-lemma (nothing ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ = canθₛₕ-subset-lemma sigs (suc S'') p q θ canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ canθₛₕ-subset-lemma (just Signal.present ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ = canθₛₕ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-present (S'' ₛ)) canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ canθₛₕ-subset-lemma (just Signal.absent ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ = canθₛₕ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-absent (S'' ₛ)) canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ canθₛₕ-subset-lemma (just Signal.unknown ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') q (θ ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-p-θ' | yes S''∈canθ-q-θ' = canθₛₕ-subset-lemma sigs (suc S'') p q (θ ← [S]-env (S'' ₛ)) canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ ... | no S''∉canθ-p-θ' | no S''∉canθ-q-θ' = canθₛₕ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-absent (S'' ₛ)) canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ ... | yes S''∈canθ-p-θ' | no S''∉canθ-q-θ' = ⊥-elim (S''∉canθ-q-θ' (canθₛ-subset-lemma sigs (suc S'') p q (θ ← [S]-env (S'' ₛ)) canₛ-p⊆canₛ-q S'' S''∈canθ-p-θ')) ... | no S''∉canθ-p-θ' | yes S''∈canθ-q-θ' = canθₛₕ-add-sig-monotonic sigs (suc S'') q θ (S'' ₛ) Signal.absent s (canθₛₕ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-absent (S'' ₛ)) canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ) canθₛₕ-subset : ∀ sigs S'' p q θ → (∀ θ' S → Signal.unwrap S ∈ Canₛ p θ' → Signal.unwrap S ∈ Canₛ q θ') → (∀ θ' s → SharedVar.unwrap s ∈ Canₛₕ p θ' → SharedVar.unwrap s ∈ Canₛₕ q θ') → ∀ s → SharedVar.unwrap s ∈ Canθₛₕ sigs S'' p θ → SharedVar.unwrap s ∈ Canθₛₕ sigs S'' q θ canθₛₕ-subset sigs S'' p q θ canₛ-p⊆canₛ-q canₛₕ-p⊆canₛₕ-q s s∈canθ-p-θ = canθₛₕ-subset-lemma sigs S'' p q θ (λ θ' S → canₛ-p⊆canₛ-q θ' (S ₛ)) (λ θ' s → canₛₕ-p⊆canₛₕ-q θ' (s ₛₕ)) (SharedVar.unwrap s) s∈canθ-p-θ canθₖ-subset-lemma : ∀ sigs S'' p q θ → (∀ θ' S → S ∈ Canₛ p θ' → S ∈ Canₛ q θ') → (∀ θ' k → k ∈ Canₖ p θ' → k ∈ Canₖ q θ') → ∀ k → k ∈ Canθₖ sigs S'' p θ → k ∈ Canθₖ sigs S'' q θ canθₖ-subset-lemma [] S'' p q θ canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ = canₖ-p⊆canₖ-q θ k k∈canθ-p-θ canθₖ-subset-lemma (nothing ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ = canθₖ-subset-lemma sigs (suc S'') p q θ canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ canθₖ-subset-lemma (just Signal.present ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ = canθₖ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-present (S'' ₛ)) canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ canθₖ-subset-lemma (just Signal.absent ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ = canθₖ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-absent (S'' ₛ)) canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ canθₖ-subset-lemma (just Signal.unknown ∷ sigs) S'' p q θ canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') q (θ ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-p-θ' | yes S''∈canθ-q-θ' = canθₖ-subset-lemma sigs (suc S'') p q (θ ← [S]-env (S'' ₛ)) canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ ... | no S''∉canθ-p-θ' | no S''∉canθ-q-θ' = canθₖ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-absent (S'' ₛ)) canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ ... | yes S''∈canθ-p-θ' | no S''∉canθ-q-θ' = ⊥-elim (S''∉canθ-q-θ' (canθₛ-subset-lemma sigs (suc S'') p q (θ ← [S]-env (S'' ₛ)) canₛ-p⊆canₛ-q S'' S''∈canθ-p-θ')) ... | no S''∉canθ-p-θ' | yes S''∈canθ-q-θ' = canθₖ-add-sig-monotonic sigs (suc S'') q θ (S'' ₛ) Signal.absent k (canθₖ-subset-lemma sigs (suc S'') p q (θ ← [S]-env-absent (S'' ₛ)) canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ) canθₖ-subset : ∀ sigs S'' p q θ → (∀ θ' S → Signal.unwrap S ∈ Canₛ p θ' → Signal.unwrap S ∈ Canₛ q θ') → (∀ θ' k → k ∈ Canₖ p θ' → k ∈ Canₖ q θ') → ∀ k → k ∈ Canθₖ sigs S'' p θ → k ∈ Canθₖ sigs S'' q θ canθₖ-subset sigs S'' p q θ canₛ-p⊆canₛ-q canₖ-p⊆canₖ-q k k∈canθ-p-θ = canθₖ-subset-lemma sigs S'' p q θ (λ θ' S → canₛ-p⊆canₛ-q θ' (S ₛ)) canₖ-p⊆canₖ-q k k∈canθ-p-θ canθₛ-E₁⟦p⟧⊆canθₛ-p : ∀ {pin E₁ E₁⟦nothin⟧ BV FV} sigs S'' θ → -- distinct (Dom sigs) (FV (E₁ ⟦ nothin ⟧)) E₁⟦nothin⟧ ≐ (E₁ ∷ []) ⟦ nothin ⟧e → CorrectBinding E₁⟦nothin⟧ BV FV → distinct' (map (_+_ S'') (SigMap.keys sigs)) (proj₁ FV) → ∀ S' → Signal.unwrap S' ∉ proj₁ FV → Signal.unwrap S' ∈ Canθₛ sigs S'' ((E₁ ∷ []) ⟦ pin ⟧e) θ → Signal.unwrap S' ∈ Canθₛ sigs S'' pin θ canθₛ-E₁⟦p⟧⊆canθₛ-p {pin} [] S'' θ (depar₁ pin≐E₁⟦nothin⟧) cb@(CBpar {FVp = FVp} cbp cbq _ _ _ _) map-S''-+-sigs≠FV S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ with ++⁻ (Canₛ pin θ) S'∈canθ-E₁⟦pin⟧-θ ... | inj₁ S'∈can-pin-θ = S'∈can-pin-θ ... | inj₂ S'∈can-q-θ = ⊥-elim (S'∉FV (++ʳ (proj₁ FVp) (canₛ-⊆-FV θ cbq S' S'∈can-q-θ))) canθₛ-E₁⟦p⟧⊆canθₛ-p {pin} {epar₂ p} [] S'' θ (depar₂ pin≐E₁⟦nothin⟧) cb@(CBpar cbp cbq _ _ _ _) map-S''-+-sigs≠FV S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ with ++⁻ (Canₛ p θ) S'∈canθ-E₁⟦pin⟧-θ ... | inj₂ S'∈can-pin-θ = S'∈can-pin-θ ... | inj₁ S'∈can-p-θ = ⊥-elim (S'∉FV (++ˡ (canₛ-⊆-FV θ cbp S' S'∈can-p-θ))) canθₛ-E₁⟦p⟧⊆canθₛ-p {pin} [] S'' θ (deloopˢ pin≐E₁⟦nothin⟧) cb@(CBloopˢ {FVp = FVp} cbp cbq _ _) = λ _ S' _ z → z canθₛ-E₁⟦p⟧⊆canθₛ-p {pin} [] S'' θ (deseq pin≐E₁⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) map-S''-+-sigs≠FV S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ with any (Code._≟_ Code.nothin) (Canₖ pin θ) ... | no nothin∉can-pin = S'∈canθ-E₁⟦pin⟧-θ ... | yes nothin∈can-pin with ++⁻ (Canₛ pin θ) S'∈canθ-E₁⟦pin⟧-θ ... | inj₁ S∈can-pin-θ = S∈can-pin-θ ... | inj₂ S∈can-q-θ = ⊥-elim (S'∉FV (++ʳ (proj₁ FVp) (canₛ-⊆-FV θ cbq S' S∈can-q-θ))) canθₛ-E₁⟦p⟧⊆canθₛ-p {pin} [] S'' θ (desuspend pin≐E₁⟦nothin⟧) cb@(CBsusp cb' _) map-S''-+-sigs≠FV S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ = S'∈canθ-E₁⟦pin⟧-θ canθₛ-E₁⟦p⟧⊆canθₛ-p {pin} [] S'' θ (detrap pin≐E₁⟦nothin⟧) cb@(CBtrap cb') map-S''-+-sigs≠FV S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ = S'∈canθ-E₁⟦pin⟧-θ canθₛ-E₁⟦p⟧⊆canθₛ-p (nothing ∷ sigs) S'' θ pin≐E₁⟦nothin⟧ cb map-S''-+-sigs≠FV S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛ-E₁⟦p⟧⊆canθₛ-p sigs (suc S'') θ pin≐E₁⟦nothin⟧ cb map-S''-+-sigs≠FV S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ canθₛ-E₁⟦p⟧⊆canθₛ-p (just Signal.present ∷ sigs) S'' θ pin≐E₁⟦nothin⟧ cb map-S''-+-sigs≠FV S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛ-E₁⟦p⟧⊆canθₛ-p sigs (suc S'') (θ ← [S]-env-present (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV))) S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ canθₛ-E₁⟦p⟧⊆canθₛ-p (just Signal.absent ∷ sigs) S'' θ pin≐E₁⟦nothin⟧ cb map-S''-+-sigs≠FV S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛ-E₁⟦p⟧⊆canθₛ-p sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV)) ) S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ canθₛ-E₁⟦p⟧⊆canθₛ-p {pin} {E₁} (just Signal.unknown ∷ sigs) S'' θ pin≐E₁⟦nothin⟧ cb map-S''-+-sigs≠FV S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ with any (_≟_ S'') (Canθₛ sigs (suc S'') pin (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') ((E₁ ∷ []) ⟦ pin ⟧e) (θ ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-p-θ←[S] | yes S''∈canθ-E₁⟦p⟧-θ←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛ-E₁⟦p⟧⊆canθₛ-p sigs (suc S'') (θ ← [S]-env (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV))) S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ ... | no S''∉canθ-p-θ←[S] | no S''∉canθ-E₁⟦p⟧-θ←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛ-E₁⟦p⟧⊆canθₛ-p sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV))) S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ ... | yes S''∈canθ-p-θ←[S] | no S''∉canθ-E₁⟦p⟧-θ←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛ-add-sig-monotonic sigs (suc S'') pin θ (S'' ₛ) Signal.absent (Signal.unwrap S') (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV))) S' S'∉FV S'∈canθ-E₁⟦pin⟧-θ) ... | no S''∉canθ-p-θ←[S] | yes S''∈canθ-E₁⟦p⟧-θ←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = ⊥-elim (S''∉canθ-p-θ←[S] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs (suc S'') (θ ← [S]-env (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV))) (S'' ₛ) (map-S''-+-sigs≠FV S'' (here refl)) S''∈canθ-E₁⟦p⟧-θ←[S])) canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p : ∀ {pin E₁ E₁⟦nothin⟧ BV FV} sigs S'' θ → -- distinct (Dom sigs) (FV (E₁ ⟦ nothin ⟧)) E₁⟦nothin⟧ ≐ (E₁ ∷ []) ⟦ nothin ⟧e → CorrectBinding E₁⟦nothin⟧ BV FV → distinct' (map (_+_ S'') (SigMap.keys sigs)) (proj₁ FV) → ∀ s → SharedVar.unwrap s ∉ proj₁ (proj₂ FV) → SharedVar.unwrap s ∈ Canθₛₕ sigs S'' ((E₁ ∷ []) ⟦ pin ⟧e) θ → SharedVar.unwrap s ∈ Canθₛₕ sigs S'' pin θ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p {pin} [] S'' θ (depar₁ pin≐E₁⟦nothin⟧) cb@(CBpar {FVp = FVp} cbp cbq _ _ _ _) map-S''-+-sigs≠FV s s∉FV s∈canθ-E₁⟦pin⟧-θ with ++⁻ (Canₛₕ pin θ) s∈canθ-E₁⟦pin⟧-θ ... | inj₁ s∈can-pin-θ = s∈can-pin-θ ... | inj₂ s∈can-q-θ = ⊥-elim (s∉FV (++ʳ (proj₁ (proj₂ FVp)) (canₛₕ-⊆-FV θ cbq s s∈can-q-θ))) canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p {pin} {epar₂ p} [] S'' θ (depar₂ pin≐E₁⟦nothin⟧) cb@(CBpar cbp cbq _ _ _ _) map-S''-+-sigs≠FV s s∉FV s∈canθ-E₁⟦pin⟧-θ with ++⁻ (Canₛₕ p θ) s∈canθ-E₁⟦pin⟧-θ ... | inj₂ s∈can-pin-θ = s∈can-pin-θ ... | inj₁ s∈can-p-θ = ⊥-elim (s∉FV (++ˡ (canₛₕ-⊆-FV θ cbp s s∈can-p-θ))) canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p {pin} [] S'' θ (deloopˢ pin≐E₁⟦nothin⟧) cb@(CBloopˢ {FVp = FVp} cbp cbq _ _) = λ _ s _ z → z canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p {pin} [] S'' θ (deseq pin≐E₁⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) map-S''-+-sigs≠FV s s∉FV s∈canθ-E₁⟦pin⟧-θ with any (Code._≟_ Code.nothin) (Canₖ pin θ) ... | no nothin∉can-pin = s∈canθ-E₁⟦pin⟧-θ ... | yes nothin∈can-pin with ++⁻ (Canₛₕ pin θ) s∈canθ-E₁⟦pin⟧-θ ... | inj₁ s∈can-pin-θ = s∈can-pin-θ ... | inj₂ s∈can-q-θ = ⊥-elim (s∉FV (++ʳ (proj₁ (proj₂ FVp)) (canₛₕ-⊆-FV θ cbq s s∈can-q-θ))) canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p {pin} [] S'' θ (desuspend pin≐E₁⟦nothin⟧) cb@(CBsusp cb' _) map-S''-+-sigs≠FV s s∉FV s∈canθ-E₁⟦pin⟧-θ = s∈canθ-E₁⟦pin⟧-θ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p {pin} [] S'' θ (detrap pin≐E₁⟦nothin⟧) cb@(CBtrap cb') map-S''-+-sigs≠FV s s∉FV s∈canθ-E₁⟦pin⟧-θ = s∈canθ-E₁⟦pin⟧-θ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p (nothing ∷ sigs) S'' θ pin≐E₁⟦nothin⟧ cb map-S''-+-sigs≠FV s s∉FV s∈canθ-E₁⟦pin⟧-θ rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p sigs (suc S'') θ pin≐E₁⟦nothin⟧ cb map-S''-+-sigs≠FV s s∉FV s∈canθ-E₁⟦pin⟧-θ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p (just Signal.present ∷ sigs) S'' θ pin≐E₁⟦nothin⟧ cb map-S''-+-sigs≠FV s s∉FV s∈canθ-E₁⟦pin⟧-θ rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p sigs (suc S'') (θ ← [S]-env-present (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV))) s s∉FV s∈canθ-E₁⟦pin⟧-θ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p (just Signal.absent ∷ sigs) S'' θ pin≐E₁⟦nothin⟧ cb map-S''-+-sigs≠FV s s∉FV s∈canθ-E₁⟦pin⟧-θ rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV)) ) s s∉FV s∈canθ-E₁⟦pin⟧-θ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p {pin} {E₁} (just Signal.unknown ∷ sigs) S'' θ pin≐E₁⟦nothin⟧ cb map-S''-+-sigs≠FV s s∉FV s∈canθ-E₁⟦pin⟧-θ with any (_≟_ S'') (Canθₛ sigs (suc S'') pin (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') ((E₁ ∷ []) ⟦ pin ⟧e) (θ ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-p-θ←[S] | yes S''∈canθ-E₁⟦p⟧-θ←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p sigs (suc S'') (θ ← [S]-env (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV))) s s∉FV s∈canθ-E₁⟦pin⟧-θ ... | no S''∉canθ-p-θ←[S] | no S''∉canθ-E₁⟦p⟧-θ←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV))) s s∉FV s∈canθ-E₁⟦pin⟧-θ ... | yes S''∈canθ-p-θ←[S] | no S''∉canθ-E₁⟦p⟧-θ←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛₕ-add-sig-monotonic sigs (suc S'') pin θ (S'' ₛ) Signal.absent (SharedVar.unwrap s) (canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV))) s s∉FV s∈canθ-E₁⟦pin⟧-θ) ... | no S''∉canθ-p-θ←[S] | yes S''∈canθ-E₁⟦p⟧-θ←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = ⊥-elim (S''∉canθ-p-θ←[S] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs (suc S'') (θ ← [S]-env (S'' ₛ)) pin≐E₁⟦nothin⟧ cb (distinct'-sym (dist':: (distinct'-sym map-S''-+-sigs≠FV))) (S'' ₛ) (map-S''-+-sigs≠FV S'' (here refl)) S''∈canθ-E₁⟦p⟧-θ←[S])) canθₛ-p⊆canθₛ-E₁⟦p⟧ : ∀ sigs S'' θ E₁ pin → ∀ S' → Signal.unwrap S' ∈ Canθₛ sigs S'' pin θ → Signal.unwrap S' ∈ Canθₛ sigs S'' ((E₁ ∷ []) ⟦ pin ⟧e) θ canθₛ-p⊆canθₛ-E₁⟦p⟧ [] S'' θ (epar₁ q) pin S' S'∈canθ-sigs-pin-θ = ++ˡ S'∈canθ-sigs-pin-θ canθₛ-p⊆canθₛ-E₁⟦p⟧ [] S'' θ (epar₂ p) pin S' S'∈canθ-sigs-pin-θ = ++ʳ (Canₛ p θ) S'∈canθ-sigs-pin-θ canθₛ-p⊆canθₛ-E₁⟦p⟧ [] S'' θ (eloopˢ q) pin S' S'∈canθ-sigs-pin-θ = S'∈canθ-sigs-pin-θ canθₛ-p⊆canθₛ-E₁⟦p⟧ [] S'' θ (eseq q) pin S' S'∈canθ-sigs-pin-θ with any (Code._≟_ Code.nothin) (Canₖ pin θ) ... | yes nothin∈can-pin = ++ˡ S'∈canθ-sigs-pin-θ ... | no nothin∉can-pin = S'∈canθ-sigs-pin-θ canθₛ-p⊆canθₛ-E₁⟦p⟧ [] S'' θ (esuspend S) pin S' S'∈canθ-sigs-pin-θ = S'∈canθ-sigs-pin-θ canθₛ-p⊆canθₛ-E₁⟦p⟧ [] S'' θ etrap pin S' S'∈canθ-sigs-pin-θ = S'∈canθ-sigs-pin-θ canθₛ-p⊆canθₛ-E₁⟦p⟧ (nothing ∷ sigs) S'' θ E₁ pin S' S'∈canθ-sigs-pin-θ = canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs (suc S'') θ E₁ pin S' S'∈canθ-sigs-pin-θ canθₛ-p⊆canθₛ-E₁⟦p⟧ (just Signal.present ∷ sigs) S'' θ E₁ pin S' S'∈canθ-sigs-pin-θ = canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env-present (S'' ₛ)) E₁ pin S' S'∈canθ-sigs-pin-θ canθₛ-p⊆canθₛ-E₁⟦p⟧ (just Signal.absent ∷ sigs) S'' θ E₁ pin S' S'∈canθ-sigs-pin-θ = canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) E₁ pin S' S'∈canθ-sigs-pin-θ canθₛ-p⊆canθₛ-E₁⟦p⟧ (just Signal.unknown ∷ sigs) S'' θ E₁ pin S' S'∈canθ-sigs-pin-θ with any (_≟_ S'') (Canθₛ sigs (suc S'') ((E₁ ∷ []) ⟦ pin ⟧e) (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') pin (θ ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-sigs-E₁⟦pin⟧-θ | yes S''∈canθ-sigs-pin-θ = canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env (S'' ₛ)) E₁ pin S' S'∈canθ-sigs-pin-θ ... | no S''∉canθ-sigs-E₁⟦pin⟧ | no S''∉canθ-sigs-pin-θ = canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) E₁ pin S' S'∈canθ-sigs-pin-θ ... | yes S''∈canθ-sigs-E₁⟦pin⟧ | no S''∉canθ-sigs-pin-θ = canθₛ-add-sig-monotonic sigs (suc S'') ((E₁ ∷ []) ⟦ pin ⟧e) θ (S'' ₛ) Signal.absent (Signal.unwrap S') (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) E₁ pin S' S'∈canθ-sigs-pin-θ) ... | no S''∉canθ-sigs-E₁⟦pin⟧ | yes S''∈canθ-sigs-pin-θ = ⊥-elim (S''∉canθ-sigs-E₁⟦pin⟧ (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env (S'' ₛ)) E₁ pin (S'' ₛ) S''∈canθ-sigs-pin-θ)) canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ : ∀ sigs S'' θ E₁ pin → ∀ s → SharedVar.unwrap s ∈ Canθₛ sigs S'' pin θ → SharedVar.unwrap s ∈ Canθₛ sigs S'' ((E₁ ∷ []) ⟦ pin ⟧e) θ canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ [] S'' θ (epar₁ q) pin s s∈canθ-sigs-pin-θ = ++ˡ s∈canθ-sigs-pin-θ canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ [] S'' θ (epar₂ p) pin s s∈canθ-sigs-pin-θ = ++ʳ (Canₛ p θ) s∈canθ-sigs-pin-θ canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ [] S'' θ (eloopˢ q) pin s s∈canθ-sigs-pin-θ = s∈canθ-sigs-pin-θ canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ [] S'' θ (eseq q) pin s s∈canθ-sigs-pin-θ with any (Code._≟_ Code.nothin) (Canₖ pin θ) ... | yes nothin∈can-pin = ++ˡ s∈canθ-sigs-pin-θ ... | no nothin∉can-pin = s∈canθ-sigs-pin-θ canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ [] S'' θ (esuspend S) pin s s∈canθ-sigs-pin-θ = s∈canθ-sigs-pin-θ canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ [] S'' θ etrap pin s s∈canθ-sigs-pin-θ = s∈canθ-sigs-pin-θ canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ (nothing ∷ sigs) S'' θ E₁ pin s s∈canθ-sigs-pin-θ = canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ sigs (suc S'') θ E₁ pin s s∈canθ-sigs-pin-θ canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ (just Signal.present ∷ sigs) S'' θ E₁ pin s s∈canθ-sigs-pin-θ = canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env-present (S'' ₛ)) E₁ pin s s∈canθ-sigs-pin-θ canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ (just Signal.absent ∷ sigs) S'' θ E₁ pin s s∈canθ-sigs-pin-θ = canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) E₁ pin s s∈canθ-sigs-pin-θ canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ (just Signal.unknown ∷ sigs) S'' θ E₁ pin s s∈canθ-sigs-pin-θ with any (_≟_ S'') (Canθₛ sigs (suc S'') ((E₁ ∷ []) ⟦ pin ⟧e) (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') pin (θ ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-sigs-E₁⟦pin⟧-θ | yes S''∈canθ-sigs-pin-θ = canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env (S'' ₛ)) E₁ pin s s∈canθ-sigs-pin-θ ... | no S''∉canθ-sigs-E₁⟦pin⟧ | no S''∉canθ-sigs-pin-θ = canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) E₁ pin s s∈canθ-sigs-pin-θ ... | yes S''∈canθ-sigs-E₁⟦pin⟧ | no S''∉canθ-sigs-pin-θ = canθₛ-add-sig-monotonic sigs (suc S'') ((E₁ ∷ []) ⟦ pin ⟧e) θ (S'' ₛ) Signal.absent (SharedVar.unwrap s) (canθₛₕ-p⊆canθₛₕ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env-absent (S'' ₛ)) E₁ pin s s∈canθ-sigs-pin-θ) ... | no S''∉canθ-sigs-E₁⟦pin⟧ | yes S''∈canθ-sigs-pin-θ = ⊥-elim (S''∉canθ-sigs-E₁⟦pin⟧ (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs (suc S'') (θ ← [S]-env (S'' ₛ)) E₁ pin (S'' ₛ) S''∈canθ-sigs-pin-θ)) canθ-shadowing-irr' : ∀ sigs' S'' p S status θ θo → S ∈ map (_+_ S'') (SigMap.keys sigs') → Canθ sigs' S'' p ((θ ← [ (S ₛ) ↦ status ]) ← θo) ≡ Canθ sigs' S'' p (θ ← θo) canθ-shadowing-irr' [] S'' p S status θ θo () canθ-shadowing-irr' (nothing ∷ sigs') S'' p S status θ θo S∈map-+-S''-sigs' rewrite map-+-compose-suc S'' (SigMap.keys sigs') = canθ-shadowing-irr' sigs' (suc S'') p S status θ θo S∈map-+-S''-sigs' canθ-shadowing-irr' (just Signal.present ∷ sigs') S'' p S status θ θo (here refl) rewrite +-comm S'' 0 | Env.sig-set-inner-clobber θ θo ([S]-env-present (S'' ₛ)) (S'' ₛ) status (Env.sig-∈-single (S'' ₛ) Signal.present) = refl canθ-shadowing-irr' (just Signal.absent ∷ sigs') S'' p S status θ θo (here refl) rewrite +-comm S'' 0 | Env.sig-set-inner-clobber θ θo ([S]-env-absent (S'' ₛ)) (S'' ₛ) status (Env.sig-∈-single (S'' ₛ) Signal.absent) = refl canθ-shadowing-irr' (just Signal.unknown ∷ sigs') S'' p S status θ θo (here refl) with any (_≟_ S'') (Canθₛ sigs' (suc S'') p (((θ ← [ (S ₛ) ↦ status ]) ← θo) ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs' (suc S'') p ((θ ← θo) ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-sigs-θ←[S]-absent←θo←[S''] | yes S''∈canθ-sigs-θ←[S]←θo←[S''] rewrite +-comm S'' 0 | Env.sig-set-inner-clobber θ θo ([S]-env (S'' ₛ)) (S'' ₛ) status (Env.sig-∈-single (S'' ₛ) Signal.unknown) = refl ... | no S''∉canθ-sigs-θ←[S]-absent←θo←[S''] | no S''∉canθ-sigs-θ←[S]←θo←[S''] rewrite +-comm S'' 0 | Env.sig-set-inner-clobber θ θo ([S]-env-absent (S'' ₛ)) (S'' ₛ) status (Env.sig-∈-single (S'' ₛ) Signal.absent) = refl ... | yes S''∈canθ-sigs-θ←[S]-absent←θo←[S''] | no S''∉canθ-sigs-θ←[S]←θo←[S''] rewrite +-comm S'' 0 | Env.sig-set-inner-clobber θ θo ([S]-env (S'' ₛ)) (S'' ₛ) status (Env.sig-∈-single (S'' ₛ) Signal.unknown) = ⊥-elim (S''∉canθ-sigs-θ←[S]←θo←[S''] S''∈canθ-sigs-θ←[S]-absent←θo←[S'']) ... | no S''∉canθ-sigs-θ←[S]-absent←θo←[S''] | yes S''∈canθ-sigs-θ←[S]←θo←[S''] rewrite +-comm S'' 0 | Env.sig-set-inner-clobber θ θo ([S]-env (S'' ₛ)) (S'' ₛ) status (Env.sig-∈-single (S'' ₛ) Signal.unknown) = ⊥-elim (S''∉canθ-sigs-θ←[S]-absent←θo←[S''] S''∈canθ-sigs-θ←[S]←θo←[S'']) canθ-shadowing-irr' (just Signal.present ∷ sigs') S'' p S status θ θo (there S∈map-+-S''-sigs') rewrite map-+-compose-suc S'' (SigMap.keys sigs') | sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env-present (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env-present (S'' ₛ))) = canθ-shadowing-irr' sigs' (suc S'') p S status θ (θo ← [S]-env-present (S'' ₛ)) S∈map-+-S''-sigs' canθ-shadowing-irr' (just Signal.absent ∷ sigs') S'' p S status θ θo (there S∈map-+-S''-sigs') rewrite map-+-compose-suc S'' (SigMap.keys sigs') | sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env-absent (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env-absent (S'' ₛ))) = canθ-shadowing-irr' sigs' (suc S'') p S status θ (θo ← [S]-env-absent (S'' ₛ)) S∈map-+-S''-sigs' canθ-shadowing-irr' (just Signal.unknown ∷ sigs') S'' p S status θ θo (there S∈map-+-S''-sigs') with any (_≟_ S'') (Canθₛ sigs' (suc S'') p (((θ ← [ (S ₛ) ↦ status ]) ← θo) ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs' (suc S'') p ((θ ← θo) ← [S]-env (S'' ₛ))) ... | yes S''∈canθ-sigs-θ←[S]-absent←θo←[S''] | yes S''∈canθ-sigs-θ←[S]←θo←[S''] rewrite map-+-compose-suc S'' (SigMap.keys sigs') | sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env (S'' ₛ))) = canθ-shadowing-irr' sigs' (suc S'') p S status θ (θo ← [S]-env (S'' ₛ)) S∈map-+-S''-sigs' ... | no S''∉canθ-sigs-θ←[S]-absent←θo←[S''] | no S''∉canθ-sigs-θ←[S]←θo←[S''] rewrite map-+-compose-suc S'' (SigMap.keys sigs') | sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env-absent (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env-absent (S'' ₛ))) = canθ-shadowing-irr' sigs' (suc S'') p S status θ (θo ← [S]-env-absent (S'' ₛ)) S∈map-+-S''-sigs' ... | yes S''∈canθ-sigs-θ←[S]-absent←θo←[S''] | no S''∉canθ-sigs-θ←[S]←θo←[S''] rewrite map-+-compose-suc S'' (SigMap.keys sigs') | sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env (S'' ₛ))) | canθ-shadowing-irr' sigs' (suc S'') p S status θ (θo ← [S]-env (S'' ₛ)) S∈map-+-S''-sigs' = ⊥-elim (S''∉canθ-sigs-θ←[S]←θo←[S''] S''∈canθ-sigs-θ←[S]-absent←θo←[S'']) ... | no S''∉canθ-sigs-θ←[S]-absent←θo←[S''] | yes S''∈canθ-sigs-θ←[S]←θo←[S''] rewrite map-+-compose-suc S'' (SigMap.keys sigs') | sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env (S'' ₛ))) | canθ-shadowing-irr' sigs' (suc S'') p S status θ (θo ← [S]-env (S'' ₛ)) S∈map-+-S''-sigs' = ⊥-elim (S''∉canθ-sigs-θ←[S]-absent←θo←[S''] S''∈canθ-sigs-θ←[S]←θo←[S'']) canθ-shadowing-irr : ∀ sigs' S'' p S status θ → Signal.unwrap S ∈ map (_+_ S'') (SigMap.keys sigs') → Canθ sigs' S'' p θ ≡ Canθ sigs' S'' p (θ ← [ S ↦ status ]) canθ-shadowing-irr sigs' S'' p S status θ S∈map-+-S''-sigs' rewrite Env.←-comm Env.[]env (θ ← [ S ↦ status ]) distinct-empty-left | cong (Canθ sigs' S'' p) (Env.←-comm Env.[]env θ distinct-empty-left) = sym (canθ-shadowing-irr' sigs' S'' p (Signal.unwrap S) status θ Env.[]env S∈map-+-S''-sigs') Canθₛunknown->Canₛunknown-help : ∀ S S' p → (S + S') ∈ Canθₛ SigMap.[ (S ₛ) ↦ Signal.unknown ] S' p Env.[]env → (S + S') ∈ Canₛ p [ ((S + S') ₛ) ↦ Signal.unknown ] Canθₛunknown->Canₛunknown-help zero S' p S+S'∈canθ-[S↦unknown]-S' with any (S' ≟_) (Canₛ p [ (S' ₛ) ↦ Signal.unknown ]) ... | yes S'∈can-p-[S↦unknown] = S+S'∈canθ-[S↦unknown]-S' ... | no S'∉can-p-[S↦unknown] = Data.Empty.⊥-elim (S'∉can-p-[S↦unknown] (Esterel.Lang.CanFunction.SetSigMonotonic.canθₛ-add-sig-monotonic [] 0 p Env.[]env (S' ₛ) Signal.absent S' S+S'∈canθ-[S↦unknown]-S')) Canθₛunknown->Canₛunknown-help (suc S) S' p S+S'∈canθ-[S↦unknown]-S' -- trans (cong suc (+-comm S S')) (+-comm (suc S') S) : suc (S + S') ≡ S + (suc S') rewrite cong (λ n → Canₛ p [ (n ₛ) ↦ Signal.unknown ]) (trans (cong suc (+-comm S S')) (+-comm (suc S') S)) | trans (cong suc (+-comm S S')) (+-comm (suc S') S) = Canθₛunknown->Canₛunknown-help S (suc S') p S+S'∈canθ-[S↦unknown]-S' Canθₛunknown->Canₛunknown : ∀ S p -> (Signal.unwrap S) ∈ Canθₛ SigMap.[ S ↦ Signal.unknown ] 0 p Env.[]env → (Signal.unwrap S) ∈ Canₛ p [ S ↦ Signal.unknown ] Canθₛunknown->Canₛunknown S p fact rewrite +-right-identity (Signal.unwrap S) with Canθₛunknown->Canₛunknown-help (Signal.unwrap S) zero p (add-zero (Signal.unwrap S) _ fact) where add-zero : ∀ s x -> s ∈ x -> (s + 0) ∈ x add-zero s x s+0∈x rewrite +-right-identity s = s+0∈x ... | thing rewrite +-right-identity (Signal.unwrap S) = thing
{ "alphanum_fraction": 0.5723517643, "avg_line_length": 45.7706645057, "ext": "agda", "hexsha": "6df277c3b3891413f5bf3e26fc5b7a553b61f2ce", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Esterel/Lang/CanFunction/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Esterel/Lang/CanFunction/Base.agda", "max_line_length": 128, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Esterel/Lang/CanFunction/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 30384, "size": 56481 }
{-# OPTIONS --allow-unsolved-metas #-} -- Andreas, 2014-12-06 -- Reported by sanzhiyan, Dec 4 2014 open import Data.Vec open import Data.Fin open import Data.Nat renaming (_+_ to _+N_) open import Data.Nat.Solver open import Relation.Binary.PropositionalEquality hiding ([_]) open +-*-Solver using (prove; solve; _:=_; con; var; _:+_; _:*_; :-_; _:-_) data prop : Set where F T : prop _∧_ _∨_ : prop → prop → prop infixl 4 _∧_ _∨_ Γ : (n : ℕ) → Set Γ n = Vec prop n infix 1 _⊢_ data _⊢_ : ∀ {n} → Γ n → prop → Set where hyp : ∀ {n}(C : Γ n)(v : Fin n) → C ⊢ (lookup v C) andI : ∀ {n}{C : Γ n}{p p' : prop} → C ⊢ p → C ⊢ p' → C ⊢ p ∧ p' andEL : ∀ {n}{C : Γ n}{p p' : prop} → C ⊢ p ∧ p' → C ⊢ p andER : ∀ {n}{C : Γ n}{p p' : prop} → C ⊢ p ∧ p' → C ⊢ p' orIL : ∀ {n}{C : Γ n}{p : prop}(p' : prop) → C ⊢ p → C ⊢ p ∨ p' orIR : ∀ {n}{C : Γ n}{p' : prop}(p : prop) → C ⊢ p' → C ⊢ p ∨ p' orE : ∀ {n}{C : Γ n}{p p' c : prop} → C ⊢ p ∨ p' → p ∷ C ⊢ c → p' ∷ C ⊢ c → C ⊢ c -- WAS: -- The first two _ could not be solved before today's (2014-12-06) improvement of pruning. -- Except for variables, they were applied to a huge neutral proof term coming from the ring solver. -- Agda could not prune before the improved neutrality check implemented by Andrea(s) 2014-12-05/06. -- -- As a consequence, Agda would often reattempt solving, each time doing the expensive -- occurs check. This would extremely slow down Agda. weakening : ∀ {n m p p'}(C : Γ n)(C' : Γ m) → C ++ C' ⊢ p → C ++ [ p' ] ++ C' ⊢ p weakening {n} {m} {p' = p'} C C' (hyp .(C ++ C') v) = subst (λ R → C ++ (_ ∷ C') ⊢ R) {!!} (hyp (C ++ (_ ∷ C')) (subst (λ x → Fin x) proof (inject₁ v))) where proof : suc (n +N m) ≡ n +N suc m proof = (solve 2 (λ n₁ m₁ → con 1 :+ (n₁ :+ m₁) := n₁ :+ (con 1 :+ m₁)) refl n m) weakening C C' (andI prf prf') = andI (weakening C C' prf) (weakening C C' prf') weakening C C' (andEL prf) = andEL (weakening C C' prf) weakening C C' (andER prf) = andER (weakening C C' prf) weakening C C' (orIL p'' prf) = orIL p'' (weakening C C' prf) weakening C C' (orIR p prf) = orIR p (weakening C C' prf) weakening C C' (orE prf prf₁ prf₂) = orE (weakening C C' prf) (weakening (_ ∷ C) C' prf₁) (weakening (_ ∷ C) C' prf₂) -- Should check fast now and report the ? as unsolved meta.
{ "alphanum_fraction": 0.5588865096, "avg_line_length": 43.2407407407, "ext": "agda", "hexsha": "29d8ea9310c99795cfde7ce2d245a4681a3aa6e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/LibSucceed/Issue1382.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/LibSucceed/Issue1382.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/LibSucceed/Issue1382.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 954, "size": 2335 }
{-# OPTIONS --without-K #-} -- Inspired by Thorsten Altenkirch's definition of Groupoids -- see his OmegaCats repo on github. And copumpkin's definition of -- Category (see his categories repo, also on github). module Groupoid where open import Level using (zero) open import Data.Empty using (⊥) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; proj₁; proj₂; _,_) open import Function using (flip) open import Relation.Binary using (Rel; IsEquivalence; Reflexive; Symmetric; Transitive; module IsEquivalence) ------------------------------------------------------------------------------ -- Useful Rel0 : Set → Set₁ Rel0 A = Rel A zero -- 1-groupoids are those where the various laws hold up to ≈. record 1Groupoid : Set₁ where infixr 9 _∘_ infixr 5 _↝_ infix 4 _≈_ field set : Set₀ _↝_ : set → set → Set _≈_ : ∀ {A B} → A ↝ B → A ↝ B → Set id : ∀ {x} → x ↝ x _∘_ : ∀ {x y z} → y ↝ z → x ↝ y → x ↝ z _⁻¹ : ∀ {x y} → x ↝ y → y ↝ x lneutr : ∀ {x y} (α : x ↝ y) → id ∘ α ≈ α rneutr : ∀ {x y} (α : x ↝ y) → α ∘ id ≈ α assoc : ∀ {w x y z} (α : y ↝ z) (β : x ↝ y) (δ : w ↝ x) → (α ∘ β) ∘ δ ≈ α ∘ (β ∘ δ) equiv : ∀ {x y} → IsEquivalence (_≈_ {x} {y}) linv : ∀ {x y}(α : x ↝ y) → α ⁻¹ ∘ α ≈ id {x} rinv : ∀ {x y}(α : x ↝ y) → α ∘ α ⁻¹ ≈ id {y} ∘-resp-≈ : ∀ {x y z} {f h : y ↝ z} {g i : x ↝ y} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i _[_,_] : (C : 1Groupoid) → 1Groupoid.set C → 1Groupoid.set C → Set _[_,_] = 1Groupoid._↝_ open 1Groupoid _⊎G_ : 1Groupoid → 1Groupoid → 1Groupoid A ⊎G B = record { set = A.set ⊎ B.set ; _↝_ = _⇛_ ; _≈_ = λ {x} → mk≈ {x} ; id = λ {x} → id⇛ {x} ; _∘_ = λ {x} → _∙G_ {x = x} ; _⁻¹ = λ {x} → inv {x = x} ; lneutr = λ {x} → lid⇛ {x} ; rneutr = λ {x} → rid⇛ {x} ; assoc = λ {x} a b g → assoc∙ {x} a b g ; equiv = λ {x} → equiv≈ {x} ; linv = λ {x} → linv⇛ {x} ; rinv = λ {x} → rinv⇛ {x} ; ∘-resp-≈ = λ {x} → resp {x} } where module A = 1Groupoid A module B = 1Groupoid B C : Set C = set A ⊎ set B _⇛_ : set A ⊎ set B → set A ⊎ set B → Set _⇛_ (inj₁ x) (inj₁ y) = A._↝_ x y _⇛_ (inj₁ _) (inj₂ _) = ⊥ _⇛_ (inj₂ _) (inj₁ _) = ⊥ _⇛_ (inj₂ x) (inj₂ y) = B._↝_ x y mk≈ : {x y : set A ⊎ set B} → x ⇛ y → x ⇛ y → Set mk≈ {inj₁ z} {inj₁ z'} a b = A._≈_ a b mk≈ {inj₁ x} {inj₂ y} () () mk≈ {inj₂ y} {inj₁ x} () () mk≈ {inj₂ y} {inj₂ y'} a b = B._≈_ a b id⇛ : {x : set A ⊎ set B} → x ⇛ x id⇛ {inj₁ _} = id A id⇛ {inj₂ _} = id B _∙G_ : {x y z : set A ⊎ set B} → y ⇛ z → x ⇛ y → x ⇛ z _∙G_ {inj₁ _} {inj₁ _} {inj₁ _} a b = A._∘_ a b _∙G_ {inj₁ _} {inj₁ _} {inj₂ _} () b _∙G_ {inj₁ x} {inj₂ y} a () _∙G_ {inj₂ y} {inj₁ x} a () _∙G_ {inj₂ y} {inj₂ y₁} {inj₁ x} () b _∙G_ {inj₂ _} {inj₂ _} {inj₂ _} a b = B._∘_ a b inv : {x y : set A ⊎ set B} → x ⇛ y → y ⇛ x inv {inj₁ _} {inj₁ _} a = A._⁻¹ a inv {inj₁ _} {inj₂ _} () inv {inj₂ _} {inj₁ _} () inv {inj₂ _} {inj₂ _} a = B._⁻¹ a lid⇛ : {x y : C} (α : x ⇛ y) → mk≈ {x} (_∙G_ {x} (id⇛ {y}) α) α lid⇛ {inj₁ _} {inj₁ _} a = A.lneutr a lid⇛ {inj₁ _} {inj₂ _} () lid⇛ {inj₂ _} {inj₁ _} () lid⇛ {inj₂ _} {inj₂ _} a = B.lneutr a rid⇛ : {x y : A.set ⊎ B.set} (α : x ⇛ y) → mk≈ {x} (_∙G_ {x} α (id⇛ {x})) α rid⇛ {inj₁ _} {inj₁ _} α = A.rneutr α rid⇛ {inj₁ _} {inj₂ _} () rid⇛ {inj₂ _} {inj₁ _} () rid⇛ {inj₂ _} {inj₂ _} α = B.rneutr α assoc∙ : {w x y z : C} (α : y ⇛ z) (β : x ⇛ y) (δ : w ⇛ x) → mk≈ {w} {z} (_∙G_ {w} (_∙G_ {x} α β) δ) (_∙G_ {w} α (_∙G_ {w} β δ)) assoc∙ {inj₁ x} {inj₁ x₁} {inj₁ x₂} {inj₁ x₃} α β γ = A.assoc α β γ assoc∙ {inj₁ x} {inj₁ x₁} {inj₁ x₂} {inj₂ y} () _ _ assoc∙ {inj₁ x} {inj₁ x₁} {inj₂ y} _ () _ assoc∙ {inj₁ x} {inj₂ y} _ _ () assoc∙ {inj₂ y} {inj₁ x} _ _ () assoc∙ {inj₂ y} {inj₂ y₁} {inj₁ x} _ () _ assoc∙ {inj₂ y} {inj₂ y₁} {inj₂ y₂} {inj₁ x} () _ _ assoc∙ {inj₂ y} {inj₂ y₁} {inj₂ y₂} {inj₂ y₃} α β γ = B.assoc α β γ linv⇛ : {x y : C} (α : x ⇛ y) → mk≈ {x} (_∙G_ {x} (inv {x} α) α) (id⇛ {x}) linv⇛ {inj₁ _} {inj₁ _} α = A.linv α linv⇛ {inj₁ x} {inj₂ y} () linv⇛ {inj₂ y} {inj₁ x} () linv⇛ {inj₂ _} {inj₂ _} α = B.linv α rinv⇛ : {x y : C} (α : x ⇛ y) → mk≈ {y} (_∙G_ {y} α (inv {x} α)) (id⇛ {y}) rinv⇛ {inj₁ _} {inj₁ _} α = A.rinv α rinv⇛ {inj₁ x} {inj₂ y} () rinv⇛ {inj₂ y} {inj₁ x} () rinv⇛ {inj₂ _} {inj₂ _} α = B.rinv α refl≈ : {x y : C} → Reflexive (mk≈ {x} {y}) refl≈ {inj₁ _} {inj₁ _} = IsEquivalence.refl A.equiv refl≈ {inj₁ _} {inj₂ _} {()} refl≈ {inj₂ _} {inj₁ _} {()} refl≈ {inj₂ y} {inj₂ y₁} = IsEquivalence.refl B.equiv sym≈ : {x y : C} → Symmetric (mk≈ {x} {y}) sym≈ {inj₁ _} {inj₁ _} = IsEquivalence.sym A.equiv sym≈ {inj₁ _} {inj₂ _} {()} sym≈ {inj₂ _} {inj₁ _} {()} sym≈ {inj₂ y} {inj₂ y₁} = IsEquivalence.sym B.equiv trans≈ : {x y : C} → Transitive (mk≈ {x} {y}) trans≈ {inj₁ _} {inj₁ _} = IsEquivalence.trans A.equiv trans≈ {inj₁ _} {inj₂ _} {()} trans≈ {inj₂ _} {inj₁ _} {()} trans≈ {inj₂ _} {inj₂ _} = IsEquivalence.trans B.equiv equiv≈ : {x y : C} → IsEquivalence (mk≈ {x} {y}) equiv≈ {x} = record { refl = refl≈ {x}; sym = sym≈ {x}; trans = trans≈ {x} } resp : {x y z : C} {f h : y ⇛ z} {g i : x ⇛ y} → mk≈ {y} f h → mk≈ {x} g i → mk≈ {x} (_∙G_ {x} f g) (_∙G_ {x} h i) resp {inj₁ _} {inj₁ _} {inj₁ _} = A.∘-resp-≈ resp {inj₁ _} {inj₁ _} {inj₂ _} {()} resp {inj₁ _} {inj₂ _} {_} {_} {_} {()} resp {inj₂ _} {inj₁ _} {_} {_} {_} {()} resp {inj₂ _} {inj₂ _} {inj₁ _} {()} resp {inj₂ _} {inj₂ _} {inj₂ _} = B.∘-resp-≈ _×G_ : 1Groupoid → 1Groupoid → 1Groupoid A ×G B = record { set = A.set × B.set ; _↝_ = liftG A._↝_ B._↝_ ; _≈_ = liftG A._≈_ B._≈_ ; id = A.id , B.id ; _∘_ = liftOp2 {Z₁ = A._↝_} {B._↝_} A._∘_ B._∘_ ; _⁻¹ = λ x₁ → A._⁻¹ (proj₁ x₁) , B._⁻¹ (proj₂ x₁) ; lneutr = λ α → A.lneutr (proj₁ α) , B.lneutr (proj₂ α) ; rneutr = λ α → A.rneutr (proj₁ α) , B.rneutr (proj₂ α) ; assoc = λ α β δ → A.assoc (proj₁ α) (proj₁ β) (proj₁ δ) , B.assoc (proj₂ α) (proj₂ β) (proj₂ δ) ; equiv = λ {x} {y} → let module W = IsEquivalence (A.equiv {proj₁ x} {proj₁ y}) module Z = IsEquivalence (B.equiv {proj₂ x} {proj₂ y}) in record { refl = W.refl , Z.refl ; sym = λ i≈j → W.sym (proj₁ i≈j) , Z.sym (proj₂ i≈j) ; trans = λ i≈j j≈k → (W.trans (proj₁ i≈j) (proj₁ j≈k)) , ((Z.trans (proj₂ i≈j) (proj₂ j≈k))) } ; linv = λ α → A.linv (proj₁ α) , B.linv (proj₂ α) ; rinv = λ α → A.rinv (proj₁ α) , B.rinv (proj₂ α) ; ∘-resp-≈ = λ x₁ x₂ → (A.∘-resp-≈ (proj₁ x₁) (proj₁ x₂)) , B.∘-resp-≈ (proj₂ x₁) (proj₂ x₂) } where module A = 1Groupoid A module B = 1Groupoid B C : Set C = A.set × B.set liftG : {X Y : Set} → Rel0 X → Rel0 Y → X × Y → X × Y → Set liftG F G = λ x y → F (proj₁ x) (proj₁ y) × G (proj₂ x) (proj₂ y) liftOp2 : {A₁ A₂ : Set} {x y z : A₁ × A₂} {Z₁ : Rel0 A₁} {Z₂ : Rel0 A₂} → let _⇛_ = liftG Z₁ Z₂ in let _↝₁_ : (a b : A₁ × A₂) → Set _↝₁_ = λ a b → Z₁ (proj₁ a) (proj₁ b) _↝₂_ : (a b : A₁ × A₂) → Set _↝₂_ = λ a b → Z₂ (proj₂ a) (proj₂ b) in (y ↝₁ z → x ↝₁ y → x ↝₁ z) → (y ↝₂ z → x ↝₂ y → x ↝₂ z) → y ⇛ z → x ⇛ y → x ⇛ z liftOp2 F G = λ x y → F (proj₁ x) (proj₁ y) , G (proj₂ x) (proj₂ y) -- Discrete paths. Essentially ≡. data DPath {A : Set} (x : A) : A → Set where reflD : DPath x x transD : {A : Set} {x y z : A} → DPath y z → DPath x y → DPath x z transD reflD reflD = reflD symD : {A : Set} {x y : A} → DPath x y → DPath y x symD reflD = reflD lidD : {A : Set} {x y : A} (α : DPath x y) → DPath (transD reflD α) α lidD reflD = reflD ridD : {A : Set} {x y : A} (α : DPath x y) → DPath (transD α reflD) α ridD reflD = reflD assocD : {A : Set} {w x y z : A} (α : DPath y z) (β : DPath x y) (δ : DPath w x) → DPath (transD (transD α β) δ) (transD α (transD β δ)) assocD reflD reflD reflD = reflD linvD : {A : Set} {x y : A} (α : DPath x y) → DPath (transD (symD α) α) reflD linvD reflD = reflD rinvD : {A : Set} {x y : A} (α : DPath x y) → DPath (transD α (symD α)) reflD rinvD reflD = reflD equivD : {A : Set} {x y : A} → IsEquivalence {_} {_} {DPath x y} DPath equivD = λ {A} {x} {y} → record { refl = reflD ; sym = symD ; trans = flip transD } respD : {A : Set} {x y z : A} {f h : DPath y z} {g i : DPath x y} → DPath f h → DPath g i → DPath (transD f g) (transD h i) respD reflD reflD = reflD discrete : Set → 1Groupoid discrete a = record { set = a ; _↝_ = DPath ; _≈_ = DPath -- or could use _≡_ . ; id = reflD ; _∘_ = transD ; _⁻¹ = symD ; lneutr = lidD ; rneutr = ridD ; assoc = assocD ; linv = linvD ; rinv = rinvD ; equiv = equivD ; ∘-resp-≈ = respD } ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4530380942, "avg_line_length": 35.2925925926, "ext": "agda", "hexsha": "98d4c9589542d6f1cc8fc03b006ab85b4bee8ee1", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Groupoid.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Groupoid.agda", "max_line_length": 79, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Groupoid.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4594, "size": 9529 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Instance.Discrete where -- Discrete Functor -- from Sets to Cats. This works, unlike in the previous version of the library, -- because the equality in Cats is properly NaturalIsomorphism instead of something stricter, -- no need for that pesky Heterogeneous anything. open import Categories.Category open import Categories.Functor open import Categories.Category.Instance.Sets open import Categories.Category.Instance.Cats open import Categories.NaturalTransformation using (ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism import Categories.Category.Discrete as D import Relation.Binary.PropositionalEquality as ≡ open import Function renaming (id to idf; _∘_ to _●_) Discrete : ∀ {o} → Functor (Sets o) (Cats o o o) Discrete {o} = record { F₀ = D.Discrete ; F₁ = DiscreteFunctor ; identity = DiscreteId ; homomorphism = PointwiseHom ; F-resp-≈ = ExtensionalityNI } where DiscreteFunctor : {A B : Set o} → (A → B) → Cats o o o [ D.Discrete A , D.Discrete B ] DiscreteFunctor f = record { F₀ = f ; F₁ = ≡.cong f ; identity = ≡.refl ; homomorphism = λ { {_} {_} {_} {≡.refl} {≡.refl} → ≡.refl} ; F-resp-≈ = λ g≡h → ≡.cong (≡.cong f) g≡h -- marvel at the weirdness involved } DiscreteId : {A : Set o} → NaturalIsomorphism (DiscreteFunctor {A} idf) id DiscreteId = record { F⇒G = record { η = λ X → ≡.refl ; commute = λ { ≡.refl → ≡.refl } ; sym-commute = λ { ≡.refl → ≡.refl} } ; F⇐G = record { η = λ _ → ≡.refl ; commute = λ { ≡.refl → ≡.refl } ; sym-commute = λ { ≡.refl → ≡.refl} } ; iso = λ X → record { isoˡ = ≡.refl ; isoʳ = ≡.refl } } PointwiseHom : {X Y Z : Set o} {g : X → Y} {h : Y → Z} → NaturalIsomorphism (DiscreteFunctor (h ● g)) (DiscreteFunctor h ∘F DiscreteFunctor g) PointwiseHom = record { F⇒G = record { η = λ _ → ≡.refl ; commute = λ { ≡.refl → ≡.refl} ; sym-commute = λ { ≡.refl → ≡.refl} } ; F⇐G = record { η = λ _ → ≡.refl ; commute = λ { ≡.refl → ≡.refl} ; sym-commute = λ { ≡.refl → ≡.refl} } ; iso = λ X → record { isoˡ = ≡.refl ; isoʳ = ≡.refl } } ExtensionalityNI : {A B : Set o} {g h : A → B} → ({x : A} → g x ≡.≡ h x) → NaturalIsomorphism (DiscreteFunctor g) (DiscreteFunctor h) ExtensionalityNI g≡h = record { F⇒G = ntHelper record { η = λ X → g≡h {X} ; commute = λ { ≡.refl → ≡.sym (≡.trans-reflʳ g≡h)} } ; F⇐G = ntHelper record { η = λ X → ≡.sym (g≡h {X}) ; commute = λ { ≡.refl → ≡.sym (≡.trans-reflʳ _)} } ; iso = λ X → record { isoˡ = ≡.trans-symʳ g≡h ; isoʳ = ≡.trans-symˡ g≡h } }
{ "alphanum_fraction": 0.5935887988, "avg_line_length": 47.6140350877, "ext": "agda", "hexsha": "022ddf4d99362acf2208275c70eb2356a106a6aa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Instance/Discrete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Instance/Discrete.agda", "max_line_length": 113, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Instance/Discrete.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1017, "size": 2714 }
-- Andreas, 2018-06-14, issue #2513, surviving shape-irrelevance annotations. data Wrap (A : Set) : Set where @shape-irrelevant wrap : A → Wrap A
{ "alphanum_fraction": 0.7046979866, "avg_line_length": 29.8, "ext": "agda", "hexsha": "1735b9c7460fd14086364e5d6abbb761dd09e057", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/ShapeIrrelevantConstructor.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/ShapeIrrelevantConstructor.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/ShapeIrrelevantConstructor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 48, "size": 149 }
module Lec2 where data Zero : Set where {- cannaeMake : Zero cannaeMake = cannaeMake -} magic : {X : Set} -> Zero -> X magic () record One : Set where constructor <> tryit : One tryit = <> tryit2 : One tryit2 = record {} data List (X : Set) : Set where [] : List X _::_ : X -> List X -> List X NonEmpty : {X : Set} -> List X -> Set NonEmpty [] = Zero NonEmpty (x :: xs) = One head : {X : Set} -> (xs : List X) -> NonEmpty xs -> X head [] () head (x :: xs) _ = x {- examples : List Zero examples = {!-l!} examples2 : List One examples2 = {!-l!} -} data Two : Set where tt : Two ff : Two if_then_else_ : {X : Set} -> Two -> X -> X -> X if b then t else e = e -- if ff then t else e = t caseTwo : {P : Two -> Set} -> P tt -> P ff -> (b : Two) -> P b caseTwo pt pf tt = pt caseTwo pt pf ff = pf not : Two -> Two not tt = ff not ff = tt xor : Two -> Two -> Two xor x y with not y xor tt y | tt = tt xor ff y | tt = ff xor tt y | ff = ff xor ff y | ff = tt
{ "alphanum_fraction": 0.5537359263, "avg_line_length": 15.265625, "ext": "agda", "hexsha": "5332e341e88900b0e4609923d1dafe770025c266", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "Lec2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "Lec2.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "Lec2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 361, "size": 977 }
{-# OPTIONS --safe #-} module Cubical.Algebra.DirectSum.DirectSumHIT.UniversalProperty where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.AbGroup open import Cubical.Algebra.AbGroup.Instances.DirectSumHIT open import Cubical.Algebra.DirectSum.DirectSumHIT.Base private variable ℓ ℓ' ℓ'' : Level open AbGroupStr open IsGroupHom ----------------------------------------------------------------------------- -- Definition module _ (Idx : Type ℓ) (G : (k : Idx) → Type ℓ') (Gstr : (k : Idx) → AbGroupStr (G k)) (HAbGr@(H , Hstr) : AbGroup ℓ'') (fHhom : (k : Idx) → AbGroupHom ((G k) , (Gstr k)) HAbGr) where private fH : (k : Idx) → G k → H fH = λ k → fst (fHhom k) fHstr : (k : Idx) → _ fHstr = λ k → snd (fHhom k) injₖ : (k : Idx) → G k → ⊕HIT Idx G Gstr injₖ k a = base k a injₖ-hom : (k : Idx) → AbGroupHom ((G k) , (Gstr k)) (⊕HIT-AbGr Idx G Gstr) injₖ-hom k = injₖ k , (makeIsGroupHom λ a b → sym (base-add _ _ _) ) -- universalProperty : ⊕HIT→H : ⊕HIT Idx G Gstr → H ⊕HIT→H = DS-Rec-Set.f _ _ _ _ (is-set Hstr) (0g Hstr) (λ k a → fH k a) (Hstr ._+_) (+Assoc Hstr) (+IdR Hstr) (+Comm Hstr) (λ k → pres1 (fHstr k)) λ k a b → sym (pres· (fHstr k) _ _) ⊕HIT→H-hom : AbGroupHom (⊕HIT-AbGr Idx G Gstr) HAbGr ⊕HIT→H-hom = ⊕HIT→H , (makeIsGroupHom (λ _ _ → refl)) -- Universal Property up∃⊕HIT : (k : Idx) → fHhom k ≡ compGroupHom (injₖ-hom k) ⊕HIT→H-hom up∃⊕HIT k = ΣPathTransport→PathΣ _ _ ((funExt (λ _ → refl)) , isPropIsGroupHom _ _ _ _) upUnicity⊕HIT : (hhom : AbGroupHom (⊕HIT-AbGr Idx G Gstr) HAbGr) → (eqInj : (k : Idx) → fHhom k ≡ compGroupHom (injₖ-hom k) hhom) → hhom ≡ ⊕HIT→H-hom upUnicity⊕HIT (h , hstr) eqInj = ΣPathTransport→PathΣ _ _ (helper , isPropIsGroupHom _ _ _ _) where helper : _ helper = funExt (DS-Ind-Prop.f _ _ _ _ (λ _ → is-set Hstr _ _) (pres1 hstr) (λ k a → sym (funExt⁻ (cong fst (eqInj k)) a)) λ {U V} ind-U ind-V → pres· hstr _ _ ∙ cong₂ (_+_ Hstr) ind-U ind-V)
{ "alphanum_fraction": 0.5398946942, "avg_line_length": 31.253164557, "ext": "agda", "hexsha": "26cb53b7c27bd6593ffd9595432af989a9c73630", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/DirectSum/DirectSumHIT/UniversalProperty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/DirectSum/DirectSumHIT/UniversalProperty.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/DirectSum/DirectSumHIT/UniversalProperty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 911, "size": 2469 }
module Nat where open import Eq data ℕ : Set where Z : ℕ S : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} infixl 6 _+_ infixl 7 _×_ _+_ : ℕ → ℕ → ℕ Z + n = n (S k) + n = S(k + n) {-# BUILTIN NATPLUS _+_ #-} _×_ : ℕ → ℕ → ℕ Z × n = Z S m × n = n + m × n {-# BUILTIN NATTIMES _×_ #-} *-right-zero : ∀ (n : ℕ) → n × Z ≡ Z *-right-zero Z = Refl *-right-zero (S n) = *-right-zero n testEq : (x : ℕ) → (y : ℕ) → (p : x ≡ y) → ℕ testEq x _ Refl = x
{ "alphanum_fraction": 0.4776785714, "avg_line_length": 14, "ext": "agda", "hexsha": "ffc4b0dc474cb23a87b07dbd2407312cb81c3008", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76743baacba0f07992bac5234ba8045d18706893", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "mjhopkins/PowerOfPi", "max_forks_repo_path": "Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76743baacba0f07992bac5234ba8045d18706893", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "mjhopkins/PowerOfPi", "max_issues_repo_path": "Nat.agda", "max_line_length": 44, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76743baacba0f07992bac5234ba8045d18706893", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "mjhopkins/PowerOfPi", "max_stars_repo_path": "Nat.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-25T13:12:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-25T13:12:15.000Z", "num_tokens": 197, "size": 448 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Monoid.Instances.NatVec where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ ; isSetℕ) open import Cubical.Data.Vec open import Cubical.Data.Vec.OperationsNat open import Cubical.Algebra.Monoid NatVecMonoid : (n : ℕ) → Monoid ℓ-zero fst (NatVecMonoid n) = Vec ℕ n MonoidStr.ε (snd (NatVecMonoid n)) = replicate 0 MonoidStr._·_ (snd (NatVecMonoid n)) = _+n-vec_ MonoidStr.isMonoid (snd (NatVecMonoid n)) = makeIsMonoid (VecPath.isOfHLevelVec 0 n isSetℕ) +n-vec-assoc +n-vec-rid +n-vec-lid
{ "alphanum_fraction": 0.688, "avg_line_length": 32.8947368421, "ext": "agda", "hexsha": "ff2a19041e3af9025ac1b31295ae66a8304a1639", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Monoid/Instances/NatVec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Monoid/Instances/NatVec.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Monoid/Instances/NatVec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 201, "size": 625 }
{-# OPTIONS --without-K --rewriting --exact-split #-} open import lib.Basics open import lib.types.Paths open import lib.types.Coproduct open import Graphs.Definition open import Coequalizers.Definition module Coequalizers.TrivialExtension where module TExtensionCoeq-l {i : ULevel} {V : Type i} (v : V) where instance tegph : Graph ⊤ (V ⊔ ⊤) tegph = record { π₀ = λ _ → inl v ; π₁ = λ _ → inr unit } extn-equiv : V ≃ ((V ⊔ ⊤) / ⊤) extn-equiv = equiv ((c[_] ∘ inl)) (((Coeq-rec (⊔-rec (idf V) (λ _ → v)) λ e → idp))) ((Coeq-elim _ (λ { (inl v') → idp ; (inr x) → quot x}) λ {unit → ↓-app=idf-in (∙'-unit-l _ ∙ ! lem ∙ᵣ quot unit)})) λ _ → idp where lem : ap (c[_] ∘ inl ∘ (Coeq-rec (⊔-rec (λ x → x) (λ _ → v)) (λ e → idp ))) (quot unit) == idp lem = ap (c[_] ∘ inl ∘ (Coeq-rec (⊔-rec (λ x → x) (λ _ → v)) (λ e → idp ))) (quot unit) =⟨ ap-∘ (c[_] ∘ inl) (Coeq-rec (⊔-rec (λ x → x) (λ _ → v)) (λ e → idp )) (quot unit) ⟩ ap (c[_] ∘ inl) (ap (Coeq-rec (⊔-rec (λ x → x) (λ _ → v)) (λ e → idp )) (quot unit)) =⟨ ap (ap (c[_] ∘ inl)) (Coeq-rec-β= _ _ _) ⟩ ap (c[_] ∘ inl) idp =⟨ idp ⟩ idp =∎ module TExtensionCoeq-r {i : ULevel} {V : Type i} (v : V) where instance tegph : Graph ⊤ (V ⊔ ⊤) tegph = record { π₀ = λ _ → inr unit ; π₁ = λ _ → inl v } extn-equiv : V ≃ ((V ⊔ ⊤) / ⊤) extn-equiv = equiv ((c[_] ∘ inl)) (((Coeq-rec (⊔-rec (idf V) (λ _ → v)) λ e → idp))) ((Coeq-elim _ (λ { (inl v') → idp ; (inr x) → ! (quot x)}) λ {unit → ↓-app=idf-in ((!-inv'-l (quot unit) ∙ ! lem ∙ ! (∙-unit-r _)))})) λ _ → idp where lem : ap (c[_] ∘ inl ∘ (Coeq-rec (⊔-rec (λ x → x) (λ _ → v)) (λ e → idp ))) (quot unit) == idp lem = ap (c[_] ∘ inl ∘ (Coeq-rec (⊔-rec (λ x → x) (λ _ → v)) (λ e → idp ))) (quot unit) =⟨ ap-∘ (c[_] ∘ inl) (Coeq-rec (⊔-rec (λ x → x) (λ _ → v)) (λ e → idp )) (quot unit) ⟩ ap (c[_] ∘ inl) (ap (Coeq-rec (⊔-rec (λ x → x) (λ _ → v)) (λ e → idp )) (quot unit)) =⟨ ap (ap (c[_] ∘ inl)) (Coeq-rec-β= _ _ _) ⟩ ap (c[_] ∘ inl) idp =⟨ idp ⟩ idp =∎
{ "alphanum_fraction": 0.4552882433, "avg_line_length": 42.3653846154, "ext": "agda", "hexsha": "bfde01ddda97276041b3c86b3862933a10f2c5d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "awswan/nielsenschreier-hott", "max_forks_repo_path": "main/Coequalizers/TrivialExtension.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "awswan/nielsenschreier-hott", "max_issues_repo_path": "main/Coequalizers/TrivialExtension.agda", "max_line_length": 221, "max_stars_count": null, "max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "awswan/nielsenschreier-hott", "max_stars_repo_path": "main/Coequalizers/TrivialExtension.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 987, "size": 2203 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Properties.Setoids.Exact where open import Categories.Category using (Category) open import Categories.Category.Exact using (Exact) open import Categories.Category.Instance.Properties.Setoids.Limits.Canonical using (pullback; FiberProduct; mk-×; FP-≈) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) open import Categories.Category.Regular using (Regular) open import Categories.Diagram.Coequalizer using (Coequalizer; IsCoequalizer; Coequalizer⇒Epi) open import Categories.Diagram.Coequalizer.Properties open import Categories.Diagram.KernelPair using (KernelPair) open import Categories.Diagram.Pullback using (Pullback; up-to-iso) open import Categories.Diagram.Pullback.Properties open import Categories.Morphism using (_≅_; Epi) open import Categories.Morphism.Regular using (RegularEpi) open import Categories.Object.InternalRelation using (Equivalence; EqSpan; KP⇒Relation; KP⇒EqSpan; KP⇒Equivalence; module Relation; rel) open import Data.Bool.Base using (Bool; true; false; T) open import Data.Empty.Polymorphic using (⊥) open import Data.Fin using (Fin; zero) renaming (suc to nzero) open import Data.Product using (∃; proj₁; proj₂; _,_; Σ-syntax; _×_; -,_; map; zip; swap; map₂) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Unit.Polymorphic.Base using (⊤; tt) open import Function using (flip) renaming (id to id→; _∘′_ to _∘→_) open import Function.Equality as SΠ using (Π; _⇨_) renaming (id to ⟶-id; _∘_ to _∘⟶_) open import Function.Definitions using (Surjective) open import Level open import Relation.Binary using (Setoid; Rel; IsEquivalence) import Relation.Binary.Reasoning.Setoid as SR open import Categories.Category.Instance.SingletonSet open Setoid renaming (_≈_ to [_][_≈_]; Carrier to ∣_∣) using (isEquivalence; refl; sym; trans) open Π using (_⟨$⟩_; cong) module _ ℓ where private S = Setoids ℓ ℓ open Category S hiding (_≈_) module S = Category S open Pullback using (P; p₁; p₂) -- the next bits all depend on a Setoid X and an Equivalence E, factor those out module _ {X : Setoid ℓ ℓ} (E : Equivalence S X) where -- let some things have short names open Equivalence E using (R; module R; eqspan) module ES = EqSpan eqspan private module X = Setoid X using (refl; sym; trans; _≈_) -- convenient inline versions infix 2 ⟺ infixr 3 _○_ ⟺ : {x₁ x₂ : ∣ X ∣} → x₁ X.≈ x₂ → x₂ X.≈ x₁ ⟺ = Setoid.sym X _○_ : {x₁ x₂ x₃ : ∣ X ∣} → x₁ X.≈ x₂ → x₂ X.≈ x₃ → x₁ X.≈ x₃ _○_ = Setoid.trans X record Equation (x₁ x₂ : ∣ X ∣) : Set ℓ where constructor eqn open Setoid X using (_≈_) field name : ∣ R.dom ∣ x₁≈ : R.p₁ ⟨$⟩ name ≈ x₁ ≈x₂ : R.p₂ ⟨$⟩ name ≈ x₂ open Equation -- is re-used below, so make it easier to do so by exposing directly quotient-trans : {x₁ x₂ y₁ y₂ : ∣ X ∣} → (p : Equation x₁ y₁) → (q : Equation x₂ y₂) → [ X ][ x₁ ≈ x₂ ] → [ X ][ y₁ ≈ y₂ ] → [ R.dom ][ name p ≈ name q ] quotient-trans {x₁} {x₂} {y₁} {y₂} (eqn eq x₁≈ ≈y₁) (eqn eq′ x₂≈ ≈y₂) x₁≈x₂ y₁≈y₂ = R.relation {SingletonSetoid} (record { _⟨$⟩_ = λ _ → eq ; cong = λ _ → refl R.dom}) (record { _⟨$⟩_ = λ _ → eq′ ; cong = λ _ → refl R.dom}) (λ { zero _ → x₁≈ ○ x₁≈x₂ ○ ⟺ x₂≈ ; (nzero _) _ → ≈y₁ ○ y₁≈y₂ ○ ⟺ ≈y₂}) tt Quotient-Equivalence : IsEquivalence Equation Quotient-Equivalence = record { refl = eqn _ (ES.is-refl₁ X.refl) (ES.is-refl₂ X.refl) ; sym = λ { (eqn r eq₁ eq₂) → eqn (ES.sym ⟨$⟩ r) (ES.is-sym₁ D.refl ○ eq₂) (ES.is-sym₂ D.refl ○ eq₁) } ; trans = λ { (eqn r x≈ ≈y) (eqn s y≈ ≈z) → let t = record { elem₁ = _ ; elem₂ = _ ; commute = y≈ ○ ⟺ ≈y } in eqn (ES.trans ∘⟶ P₀⇒P₁ ⟨$⟩ t) (ES.is-trans₁ R×R.refl ○ (cong R.p₁ (p₂-≈ {t} {t} (D.refl , D.refl)) ○ x≈)) (ES.is-trans₂ R×R.refl ○ (cong R.p₂ (p₁-≈ {t} {t} (D.refl , D.refl)) ○ ≈z)) } } where module D = Setoid R.dom using (refl) module R×R = Setoid ES.R×R.dom using (refl) fp : Pullback S R.p₁ R.p₂ fp = pullback ℓ ℓ R.p₁ R.p₂ open IsoPb S fp ES.R×R using (P₀⇒P₁; p₁-≈; p₂-≈) Quotient-Setoid : Setoid ℓ ℓ Quotient-Setoid = record { Carrier = ∣ X ∣ ; _≈_ = Equation; isEquivalence = Quotient-Equivalence } Quotient-Coequalizer : Coequalizer S (Equivalence.R.p₁ E) (Equivalence.R.p₂ E) Quotient-Coequalizer = record { obj = X∼ ; arr = inj ; isCoequalizer = record { equality = inj-≈ ; coequalize = λ {_}{h} → quotient h ; universal = λ {_}{h} → cong h ; unique = λ {_}{h}{i}{eq′} → unique {_}{h}{i}{eq′} } } where X∼ : Setoid ℓ ℓ X∼ = Quotient-Setoid inj : X ⇒ X∼ inj = record { _⟨$⟩_ = id→ ; cong = λ {x₁} eq → eqn (ES.refl ⟨$⟩ x₁) (ES.is-refl₁ X.refl) (ES.is-refl₂ X.refl ○ eq) } inj-≈ : inj ∘ R.p₁ S.≈ inj ∘ R.p₂ inj-≈ {x} x≈y = eqn x X.refl (cong R.p₂ x≈y) -- coEqualizer wants the 'h' to be implicit, but can't figure it out, so make it explicit here quotient : {C : Obj} (h : X ⇒ C) → h ∘ R.p₁ S.≈ h ∘ R.p₂ → X∼ ⇒ C quotient {C} h eq = record { _⟨$⟩_ = h ⟨$⟩_ ; cong = λ { (eqn r x≈ ≈y) → trans C (cong h (X.sym x≈)) (trans C (eq (refl R.dom)) (cong h ≈y))} } unique : {C : Obj} {h : X ⇒ C} {i : X∼ ⇒ C} {eq : h ∘ R.p₁ S.≈ h ∘ R.p₂} → h S.≈ i ∘ inj → i S.≈ quotient h eq unique {C} {h} {i} {eq′} eq {x} {y} (eqn r x≈ ≈y) = begin i ⟨$⟩ x ≈˘⟨ eq X.refl ⟩ h ⟨$⟩ x ≈˘⟨ cong h x≈ ⟩ h ⟨$⟩ (R.p₁ ⟨$⟩ r) ≈⟨ eq′ (refl R.dom) ⟩ h ⟨$⟩ (R.p₂ ⟨$⟩ r) ≈⟨ cong h ≈y ⟩ h ⟨$⟩ y ∎ where open SR C -- Setoid Surjectivity SSurj : {A B : Setoid ℓ ℓ} (f : A ⇒ B) → Set ℓ SSurj {A} {B} f = Surjective (Setoid._≈_ A) (Setoid._≈_ B) (f ⟨$⟩_) -- Proposition 1 from "Olov Wilander, Setoids and universes" Epi⇒Surjective : ∀ {A B : Setoid ℓ ℓ} (f : A ⇒ B) → Epi S f → SSurj f Epi⇒Surjective {A}{B} f epi y = g≈h (refl B {y}) .proj₁ (λ ()) _ where infix 3 _↔_ _↔_ : Set ℓ → Set ℓ → Set ℓ A ↔ B = (A → B) × (B → A) B′ : Setoid ℓ ℓ B′ = record { Carrier = Bool × ∣ B ∣ ; _≈_ = λ { (a , x) (b , y) → ((T a → Σ[ z ∈ ∣ A ∣ ] [ B ][ f ⟨$⟩ z ≈ x ]) ↔ (T b → Σ[ z ∈ ∣ A ∣ ] [ B ][ f ⟨$⟩ z ≈ y ])) } ; isEquivalence = record { refl = id→ , id→ ; sym = swap ; trans = zip (flip _∘→_) _∘→_ } } g : B ⇒ B′ g = record { _⟨$⟩_ = λ x → false , x ; cong = λ _ → (λ _ ()) , (λ _ ()) } h : B ⇒ B′ h = record { _⟨$⟩_ = true ,_ ; cong = λ x≈y → (λ eq _ → map₂ (λ z → trans B z x≈y) (eq _)) , (λ eq _ → let (a , eq′) = eq _ in a , (trans B eq′ (sym B x≈y))) } g≈h : [ B ⇨ B′ ][ g ≈ h ] g≈h = epi g h λ {x}{y} x≈y → (λ u _ → x , cong f x≈y) , λ _ () -- not needed for exactness, but worthwhile Surjective⇒RegularEpi : ∀ {A B : Setoid ℓ ℓ} (f : A ⇒ B) → ((y : ∣ B ∣) → Σ[ x ∈ ∣ A ∣ ] [ B ][ f ⟨$⟩ x ≈ y ]) → RegularEpi S f Surjective⇒RegularEpi {A}{B} f surj = record { h = p₁ kp ; g = p₂ kp ; coequalizer = record { equality = λ {x} {y} → commute kp {x} {y} ; coequalize = λ {_} {h} → Coeq.coeq {h = h} ; universal = λ {C} {h} {eq} → Coeq.universal′ {C} {h} (λ {x} {y} → eq {x} {y}) ; unique = λ {_}{h}{i}{eq} h≈i∘f x≈y → Coeq.unique″ {_} {h} (λ {x} {y} → eq {x} {y}) {i} h≈i∘f x≈y } } where kp = pullback ℓ ℓ f f open Pullback module Coeq {C : S.Obj} {h : A S.⇒ C} where open SR C f⁻¹∘h : ∣ B ∣ → ∣ C ∣ f⁻¹∘h b = h ⟨$⟩ proj₁ (surj b) module _ (h∘p₁≈h∘p₂ : h S.∘ p₁ kp S.≈ h S.∘ p₂ kp) where cong′ : {i j : ∣ B ∣} → [ B ][ i ≈ j ] → [ C ][ h ⟨$⟩ proj₁ (surj i) ≈ h ⟨$⟩ proj₁ (surj j) ] cong′ {y₁}{y₂} y₁≈y₂ = h∘p₁≈h∘p₂ {pt₁} {pt₁} (refl A , refl A) where x₁ x₂ : ∣ A ∣ x₁ = surj y₁ .proj₁ x₂ = surj y₂ .proj₁ eq₁ : [ B ][ f ⟨$⟩ x₁ ≈ y₁ ] eq₁ = surj y₁ .proj₂ eq₂ : [ B ][ f ⟨$⟩ x₂ ≈ y₂ ] eq₂ = surj y₂ .proj₂ pt₁ : FiberProduct f f pt₁ = mk-× x₁ x₂ (trans B eq₁ (trans B y₁≈y₂ (sym B eq₂))) coeq : B S.⇒ C coeq = record { _⟨$⟩_ = f⁻¹∘h ; cong = cong′ } universal′ : h S.≈ coeq S.∘ f universal′ {x} {y} x≈y = begin h ⟨$⟩ x ≈⟨ cong h x≈y ⟩ h ⟨$⟩ y ≈⟨ h∘p₁≈h∘p₂ {mk-× y x₁ (sym B eq₁)} {mk-× x x₁ (trans B (cong f x≈y) (sym B eq₁))} (sym A x≈y , refl A) ⟩ h ⟨$⟩ proj₁ (surj (f ⟨$⟩ y)) ≡⟨⟩ -- by definition of f⁻¹∘h f⁻¹∘h (f ⟨$⟩ y) ≡⟨⟩ -- by definition of coeq coeq S.∘ f ⟨$⟩ y ∎ where x₁ : ∣ A ∣ x₁ = surj (f ⟨$⟩ y) .proj₁ eq₁ : [ B ][ f ⟨$⟩ x₁ ≈ f ⟨$⟩ y ] eq₁ = surj (f ⟨$⟩ y) .proj₂ unique″ : {i : B S.⇒ C} → h S.≈ i S.∘ f → i S.≈ coeq unique″ {i} h≈i∘f {x} {y} x≈y = begin i ⟨$⟩ x ≈⟨ cong i x≈y ⟩ i ⟨$⟩ y ≈⟨ cong i (sym B eq₁) ⟩ i ∘ f ⟨$⟩ x₁ ≈⟨ sym C (h≈i∘f (refl A)) ⟩ h ⟨$⟩ x₁ ≡⟨⟩ -- by definition of f⁻¹∘h f⁻¹∘h y ∎ where x₁ : ∣ A ∣ x₁ = surj y .proj₁ eq₁ : [ B ][ f ⟨$⟩ x₁ ≈ y ] eq₁ = surj y .proj₂ Setoids-Regular : Regular (Setoids ℓ ℓ) Setoids-Regular = record { finitely-complete = record { cartesian = Setoids-Cartesian ; equalizer = λ _ _ → pullback×cartesian⇒equalizer S (pullback ℓ ℓ) Setoids-Cartesian } ; coeq-of-kernelpairs = λ f kp → Quotient-Coequalizer record { R = KP⇒Relation S f kp ; eqspan = KP⇒EqSpan S f kp (pb kp) } ; pullback-of-regularepi-is-regularepi = pb-of-re-is-re } where pb : ∀ {A B} {f : A ⇒ B} (kp : KernelPair S f) → Pullback S (p₁ kp) (p₂ kp) pb kp = pullback ℓ ℓ (p₁ kp) (p₂ kp) pb-of-re-is-re : {A B D : Setoid ℓ ℓ} (f : B ⇒ A) {u : D ⇒ A} → RegularEpi S f → (pb : Pullback S f u) → RegularEpi S (p₂ pb) pb-of-re-is-re {A}{B}{D} f {u} record { C = C ; h = _ ; g = _ ; coequalizer = coeq } pb = Surjective⇒RegularEpi (p₂ pb) λ y → let (x , eq) = Epi⇒Surjective f (Coequalizer⇒Epi S record { arr = f ; isCoequalizer = coeq }) (u ⟨$⟩ y) in let pt = mk-× x y eq in P₀⇒P₁ ⟨$⟩ pt , p₂-≈ {pt} {pt} (refl B , refl D) where pb-fu : Pullback S f u pb-fu = pullback ℓ ℓ f u pb-ff : Pullback S f f pb-ff = pullback ℓ ℓ f f module B = Setoid B module C = Setoid C module D = Setoid D open IsoPb S pb-fu pb Setoids-Exact : Exact (Setoids ℓ ℓ) Setoids-Exact = record { regular = Setoids-Regular ; quotient = Quotient-Coequalizer ; effective = λ {X} E → record { commute = λ eq → eqn _ (refl X) (cong (Relation.p₂ (R E)) eq) ; universal = λ { {Z}{h₁}{h₂} → universal E h₁ h₂ } ; unique = λ {Z}{h₁}{h₂}{u}{eq} eq₁ eq₂ {x}{y} → Relation.relation (R E) u (universal E h₁ h₂ eq) λ { zero {x}{y} eq′ → trans X (eq₁ eq′) (sym X (p₁∘universal≈h₁ E h₁ h₂ eq (refl Z))) ; (nzero _) {x}{y} eq′ → trans X (eq₂ eq′) (sym X (p₂∘universal≈h₂ E h₁ h₂ eq (refl Z))) } ; p₁∘universal≈h₁ = λ {Z}{h₁}{h₂}{eq} → p₁∘universal≈h₁ E h₁ h₂ eq ; p₂∘universal≈h₂ = λ {Z}{h₁}{h₂}{eq} → p₂∘universal≈h₂ E h₁ h₂ eq } } where open Equivalence open Setoid open Coequalizer using (arr) universal : {X Z : Setoid ℓ ℓ} → (E : Equivalence S X) → (h₁ h₂ : Z ⇒ X) → (eq : [ Z ⇨ Quotient-Setoid E ][ arr (Quotient-Coequalizer E) ∘ h₁ ≈ arr (Quotient-Coequalizer E) ∘ h₂ ]) → Z ⇒ Relation.dom (R E) universal {X}{Z} E h₁ h₂ eq = record { _⟨$⟩_ = λ z → let (eqn eq _ _) = eq {z}{z} (refl Z) in eq ; cong = λ {z}{z′} z≈z′ → quotient-trans E (eq {z}{z} (refl Z)) (eq {z′}{z′} (refl Z)) (cong h₁ z≈z′) (cong h₂ z≈z′) } p₁∘universal≈h₁ : {X Z : Setoid ℓ ℓ} → (E : Equivalence S X) → (h₁ h₂ : Z ⇒ X) → (eq : [ Z ⇨ Quotient-Setoid E ][ arr (Quotient-Coequalizer E) ∘ h₁ ≈ arr (Quotient-Coequalizer E) ∘ h₂ ]) → [ Z ⇨ X ][ Relation.p₁ (R E) ∘ (universal E h₁ h₂ eq) ≈ h₁ ] p₁∘universal≈h₁ {X}{Z} _ h₁ h₂ eq x≈y = let (eqn _ p₁z≈ _) = eq (refl Z) in trans X p₁z≈ (cong h₁ x≈y) p₂∘universal≈h₂ : {X Z : Setoid ℓ ℓ} → (E : Equivalence S X) → (h₁ h₂ : Z ⇒ X) → (eq : [ Z ⇨ Quotient-Setoid E ][ arr (Quotient-Coequalizer E) ∘ h₁ ≈ arr (Quotient-Coequalizer E) ∘ h₂ ]) → [ Z ⇨ X ][ Relation.p₂ (R E) ∘ (universal E h₁ h₂ eq) ≈ h₂ ] p₂∘universal≈h₂ {X}{Z} _ h₁ h₂ eq x≈y = let (eqn _ _ p₂z≈) = eq (refl Z) in trans X p₂z≈ (cong h₂ x≈y)
{ "alphanum_fraction": 0.4984458259, "avg_line_length": 42.6246056782, "ext": "agda", "hexsha": "0a8353e4a8b7ea4c98451875819d5f4eb654ca57", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "maxsnew/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Exact.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "maxsnew/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Exact.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "maxsnew/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Exact.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5460, "size": 13512 }
open import Data.List renaming (_∷_ to _∷ₗ_ ; [_] to [_]ₗ) open import Data.Maybe open import Data.Product open import Data.Sum open import AEff open import EffectAnnotations open import Preservation open import Renamings open import Substitutions open import Types open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary module ProcessPreservation where -- REDUCTION OF PROCESS TYPES infix 10 _⇝_ data _⇝_ : {o o' : O} → PType o → PType o' → Set where id : {X : VType} {o : O} {i : I} → ---------------------- X ‼ o , i ⇝ X ‼ o , i act : {X : VType} {o o' o'' : O} {i i' i'' : I} → (ops : List Σₛ) → (op : Σₛ) → (o' , i') ≡ ops ↓↓ₑ (o , i) → (o'' , i'') ≡ ((ops ++ [ op ]ₗ) ↓↓ₑ (o , i)) → ---------------------------------------------- (X ‼ o' , i') ⇝ (X ‼ o'' , i'') par : {o o' o'' o''' : O} {PP : PType o} {QQ : PType o'} {PP' : PType o''} {QQ' : PType o'''} → PP ⇝ PP' → QQ ⇝ QQ' → ---------------------- (PP ∥ QQ) ⇝ (PP' ∥ QQ') -- REDUCTION OF PROCESS TYPES IS REFLEXIVE {- LEMMA 4.4 (1) -} ⇝-refl : {o : O} {PP : PType o} → PP ⇝ PP ⇝-refl {o} {X ‼ o , i} = id ⇝-refl {.(_ ∪ₒ _)} {PP ∥ QQ} = par ⇝-refl ⇝-refl -- ACTION OF INTERRUPTS ON GENERAL PROCESS TYPES IS A REDUCTION {- LEMMA 4.4 (2) -} ⇝-↓ₚ : {o : O} {PP : PType o} {op : Σₛ} → -------------- PP ⇝ op ↓ₚ PP ⇝-↓ₚ {.o} {X ‼ o , i} {op} = act [] op refl refl ⇝-↓ₚ {.(_ ∪ₒ _)} {PP ∥ QQ} {op} = par ⇝-↓ₚ ⇝-↓ₚ -- ACTION OF INTERRUPTS PRESERVES PROCESS TYPE REDUCTION {- LEMMA 4.4 (3) -} ⇝-↓ₚ-cong : {o o' : O} {PP : PType o} {QQ : PType o'} {op : Σₛ} → PP ⇝ QQ → -------------------- op ↓ₚ PP ⇝ op ↓ₚ QQ ⇝-↓ₚ-cong id = id ⇝-↓ₚ-cong {_} {_} {_} {_} {op} (act {_} {o} {o'} {o''} {i} {i'} {i''} ops op' p q) = act {o = o} {i = i} (op ∷ₗ ops) op' (cong (λ oi → op ↓ₑ oi) p) (cong (λ oi → op ↓ₑ oi) q) ⇝-↓ₚ-cong (par p q) = par (⇝-↓ₚ-cong p) (⇝-↓ₚ-cong q) -- PROCESS TYPE REDUCTION INCREASES SIGNAL INDEX {- LEMMA 4.4 (4) -} inj-proj₁ : {X Y : Set} {xy xy' : X × Y} → xy ≡ xy' → proj₁ xy ≡ proj₁ xy' inj-proj₁ refl = refl ⇝-⊑ₒ : {o o' : O} {PP : PType o} {QQ : PType o'} → PP ⇝ QQ → ------------------ o ⊑ₒ o' ⇝-⊑ₒ id = ⊑ₒ-refl ⇝-⊑ₒ (act {_} {o} {o'} {o''} {i} ops op p q) with inj-proj₁ p | inj-proj₁ q ... | r | s = subst (λ o → o ⊑ₒ o'') (sym r) (subst (λ o'' → proj₁ (ops ↓↓ₑ (o , i)) ⊑ₒ o'') (sym s) (subst (λ v → proj₁ (ops ↓↓ₑ (o , i)) ⊑ₒ proj₁ v) (sym (↓↓ₑ-act ops [ op ]ₗ)) (↓↓ₑ-⊑ₒ-act ops op))) ⇝-⊑ₒ (par p q) = ∪ₒ-fun (⇝-⊑ₒ p) (⇝-⊑ₒ q) -- EVALUATION CONTEXTS FOR PROCESSES infix 10 _⊢F⦂_ data _⊢F⦂_ (Γ : Ctx) : {o : O} → PType o → Set where [-] : {o : O} → {PP : PType o} → -------------- Γ ⊢F⦂ PP _∥ₗ_ : {o o' : O} {PP : PType o} {QQ : PType o'} → Γ ⊢F⦂ PP → Γ ⊢P⦂ QQ → ------------------ Γ ⊢F⦂ (PP ∥ QQ) _∥ᵣ_ : {o o' : O} {PP : PType o} {QQ : PType o'} → Γ ⊢P⦂ PP → Γ ⊢F⦂ QQ → ------------------ Γ ⊢F⦂ (PP ∥ QQ) ↑ : {o : O} {PP : PType o} → (op : Σₛ) → op ∈ₒ o → Γ ⊢V⦂ ``(payload op) → Γ ⊢F⦂ PP → ---------------------- Γ ⊢F⦂ PP ↓ : {o : O} {PP : PType o} (op : Σₛ) → Γ ⊢V⦂ ``(payload op) → Γ ⊢F⦂ PP → ---------------------- Γ ⊢F⦂ op ↓ₚ PP -- FINDING THE TYPE OF THE HOLE OF A WELL-TYPED PROCESS EVALUATION CONTEXT hole-ty-f : {Γ : Ctx} {o : O} {PP : PType o} → Γ ⊢F⦂ PP → Σ[ o' ∈ O ] (PType o') hole-ty-f {_} {o} {PP} [-] = o , PP hole-ty-f (_∥ₗ_ {o} {o'} {PP} {QQ} F Q) = proj₁ (hole-ty-f F) , proj₂ (hole-ty-f F) hole-ty-f (_∥ᵣ_ {o} {o'} {PP} {QQ} P F) = proj₁ (hole-ty-f F) , proj₂ (hole-ty-f F) hole-ty-f (↑ op p V F) = proj₁ (hole-ty-f F) , proj₂ (hole-ty-f F) hole-ty-f (↓ op V F) = proj₁ (hole-ty-f F) , proj₂ (hole-ty-f F) -- FILLING A WELL-TYPED PROCESS EVALUATION CONTEXT infix 30 _[_]f _[_]f : {Γ : Ctx} {o : O} {PP : PType o} → (F : Γ ⊢F⦂ PP) → (P : Γ ⊢P⦂ proj₂ (hole-ty-f F)) → Γ ⊢P⦂ PP [-] [ P ]f = P (F ∥ₗ Q) [ P ]f = (F [ P ]f) ∥ Q (Q ∥ᵣ F) [ P ]f = Q ∥ (F [ P ]f) (↑ op p V F) [ P ]f = ↑ op p V (F [ P ]f) (↓ op V F) [ P ]f = ↓ op V (F [ P ]f) -- TYPES OF WELL-TYPED PROCESS EVALUATION CONTEXTS ALSO REDUCE ⇝-f-⇝ : {Γ : Ctx} {o o' : O} {PP : PType o} {QQ : PType o'} → (F : Γ ⊢F⦂ PP) → proj₂ (hole-ty-f F) ⇝ QQ → ------------------------------------------ Σ[ o'' ∈ O ] Σ[ RR ∈ PType o'' ] (PP ⇝ RR) ⇝-f-⇝ {_} {_} {o'} {_} {QQ} [-] p = o' , QQ , p ⇝-f-⇝ (_∥ₗ_ {o} {o'} {PP} {QQ} F Q) p with ⇝-f-⇝ F p ... | o'' , RR , q = (o'' ∪ₒ o') , (RR ∥ QQ) , par q ⇝-refl ⇝-f-⇝ (_∥ᵣ_ {o} {o'} {PP} {QQ} P F) p with ⇝-f-⇝ F p ... | o'' , RR , q = (o ∪ₒ o'') , (PP ∥ RR) , par ⇝-refl q ⇝-f-⇝ (↑ op p V F) q with ⇝-f-⇝ F q ... | o'' , RR , r = o'' , RR , r ⇝-f-⇝ (↓ op V F) p with ⇝-f-⇝ F p ... | o'' , RR , q = proj₁ (op ↓ₚₚ RR) , (op ↓ₚ RR) , ⇝-↓ₚ-cong q ⇝-f-∈ₒ : {Γ : Ctx} {o o' : O} {PP : PType o} {QQ : PType o'} (F : Γ ⊢F⦂ PP) → (p : proj₂ (hole-ty-f F) ⇝ QQ) → -------------------------------- o ⊑ₒ proj₁ (⇝-f-⇝ F p) ⇝-f-∈ₒ [-] p = ⇝-⊑ₒ p ⇝-f-∈ₒ (F ∥ₗ Q) p = ∪ₒ-fun (⇝-f-∈ₒ F p) ⊑ₒ-refl ⇝-f-∈ₒ (P ∥ᵣ F) p = ∪ₒ-fun ⊑ₒ-refl (⇝-f-∈ₒ F p) ⇝-f-∈ₒ (↑ op p V F) q = ⇝-f-∈ₒ F q ⇝-f-∈ₒ (↓ {o} {PP} op V F) p = ⇝-f-∈ₒ-aux (⇝-f-⇝ F p) refl where ⇝-f-∈ₒ-aux : (orp : Σ[ o'' ∈ O ] Σ[ RR ∈ PType o'' ] (PP ⇝ RR)) → orp ≡ ⇝-f-⇝ F p → ---------------------------------------------------- proj₁ (op ↓ₚₚ PP) ⊑ₒ proj₁ (op ↓ₚₚ proj₁ (proj₂ orp)) ⇝-f-∈ₒ-aux (o'' , RR , r) q = ⇝-⊑ₒ (⇝-↓ₚ-cong r) {- LEMMA 4.6 -} ⇝-f : {Γ : Ctx} {o o' : O} {PP : PType o} {QQ : PType o'} → (F : Γ ⊢F⦂ PP) → (p : proj₂ (hole-ty-f F) ⇝ QQ) → --------------------------------- Γ ⊢F⦂ (proj₁ (proj₂ (⇝-f-⇝ F p))) ⇝-f [-] p = [-] ⇝-f (F ∥ₗ Q) p with ⇝-f F p ... | q = q ∥ₗ Q ⇝-f (Q ∥ᵣ F) p with ⇝-f F p ... | q = Q ∥ᵣ q ⇝-f (↑ op p V F) q with ⇝-f F q ... | r = ↑ op (⇝-f-∈ₒ F q op p) V r ⇝-f (↓ op V F) p with ⇝-f F p ... | q = ↓ op V q ⇝-f-tyₒ : {Γ : Ctx} {o o' : O} {PP : PType o} {QQ : PType o'} → (F : Γ ⊢F⦂ PP) → (p : proj₂ (hole-ty-f F) ⇝ QQ) → -------------------------------- o' ≡ proj₁ (hole-ty-f (⇝-f F p)) ⇝-f-tyₒ [-] p = refl ⇝-f-tyₒ (F ∥ₗ Q) p = ⇝-f-tyₒ F p ⇝-f-tyₒ (P ∥ᵣ F) p = ⇝-f-tyₒ F p ⇝-f-tyₒ (↑ op p V F) q = ⇝-f-tyₒ F q ⇝-f-tyₒ (↓ op V F) p = ⇝-f-tyₒ F p ⇝-f-ty : {Γ : Ctx} {o o' : O} {PP : PType o} {QQ : PType o'} → (F : Γ ⊢F⦂ PP) → (p : proj₂ (hole-ty-f F) ⇝ QQ) → -------------------------------------- subst (λ o → PType o) (⇝-f-tyₒ F p) QQ ≡ proj₂ (hole-ty-f (⇝-f F p)) ⇝-f-ty [-] p = refl ⇝-f-ty (F ∥ₗ Q) p = ⇝-f-ty F p ⇝-f-ty (P ∥ᵣ F) p = ⇝-f-ty F p ⇝-f-ty (↑ op p V F) q = ⇝-f-ty F q ⇝-f-ty (↓ op V F) p = ⇝-f-ty F p -- AUXILIARY TWO-LEVEL INDEXED SUBSTITUTION subst-i : {X : Set} {x x' : X} → (Y : X → Set) → {y : Y x} {y' : Y x'} → (Z : (x : X) → Y x → Set) → (p : x ≡ x') → subst Y p y ≡ y' → Z x y → Z x' y' subst-i Y Z refl refl z = z -- SMALL-STEP OPERATIONAL SEMANTICS FOR WELL-TYPED PROCESSES -- (ADDITIONALLY SERVES AS THE PRESERVATION THEOREM) {- THEOREM 4.7 -} infix 10 _[_]↝_ data _[_]↝_ {Γ : Ctx} : {o o' : O} {PP : PType o} {QQ : PType o'} → Γ ⊢P⦂ PP → PP ⇝ QQ → Γ ⊢P⦂ QQ → Set where -- RUNNING INDIVIDUAL COMPUTATIONS run : {X : VType} {o : O} {i : I} {M N : Γ ⊢M⦂ X ! (o , i)} → M ↝ N → --------------------------- (run M) [ id ]↝ (run N) -- BROADCAST RULES ↑-∥ₗ : {o o' : O} {PP : PType o} {QQ : PType o'} {op : Σₛ} → (p : op ∈ₒ o) → (V : Γ ⊢V⦂ `` (payload op)) → (P : Γ ⊢P⦂ PP) → (Q : Γ ⊢P⦂ QQ) → ------------------------------------------ ((↑ op p V P) ∥ Q) [ par ⇝-refl (⇝-↓ₚ {op = op}) ]↝ ↑ op (∪ₒ-inl op p) V (P ∥ ↓ op V Q) ↑-∥ᵣ : {o o' : O} {PP : PType o} {QQ : PType o'} {op : Σₛ} → (p : op ∈ₒ o') → (V : Γ ⊢V⦂ `` (payload op)) → (P : Γ ⊢P⦂ PP) → (Q : Γ ⊢P⦂ QQ) → ------------------------------------------ (P ∥ (↑ op p V Q)) [ par (⇝-↓ₚ {op = op}) ⇝-refl ]↝ ↑ op (∪ₒ-inr op p) V (↓ op V P ∥ Q) -- INTERRUPT PROPAGATION RULES ↓-run : {X : VType} {o : O} {i : I} {op : Σₛ} → (V : Γ ⊢V⦂ `` (payload op)) → (M : Γ ⊢M⦂ X ! (o , i)) → ----------------------------- ↓ op V (run M) [ id ]↝ run (↓ op V M) ↓-∥ : {o o' : O} {PP : PType o} {QQ : PType o'} {op : Σₛ} (V : Γ ⊢V⦂ `` (payload op)) → (P : Γ ⊢P⦂ PP) → (Q : Γ ⊢P⦂ QQ) → ----------------------------- ↓ op V (P ∥ Q) [ ⇝-refl ]↝ ((↓ op V P) ∥ (↓ op V Q)) ↓-↑ : {o : O} {PP : PType o} {op : Σₛ} {op' : Σₛ} → (p : op' ∈ₒ o) → (V : Γ ⊢V⦂ ``(payload op)) → (W : Γ ⊢V⦂ ``(payload op')) → (P : Γ ⊢P⦂ PP) → ----------------------------------- ↓ op V (↑ op' p W P) [ ⇝-refl ]↝ ↑ op' (↓ₚₚ-⊑ₒ PP op' p) W (↓ op V P) -- SIGNAL HOISTING RULE ↑ : {X : VType} {o : O} {i : I} → {op : Σₛ} → (p : op ∈ₒ o) → (V : Γ ⊢V⦂ `` (payload op)) → (M : Γ ⊢M⦂ X ! (o , i)) → ----------------------------- run (↑ op p V M) [ id ]↝ ↑ op p V (run M) -- EVALUATION CONTEXT RULE context : {o o' : O} {PP : PType o} {QQ : PType o'} (F : Γ ⊢F⦂ PP) → {P : Γ ⊢P⦂ proj₂ (hole-ty-f F)} {Q : Γ ⊢P⦂ QQ} {r : proj₂ (hole-ty-f F) ⇝ QQ} → P [ r ]↝ Q → ----------------------------------------------------------------------------- F [ P ]f [ proj₂ (proj₂ (⇝-f-⇝ F r)) ]↝ (⇝-f F r) [ subst-i PType (λ o QQ → Γ ⊢P⦂ QQ) (⇝-f-tyₒ F r) (⇝-f-ty F r) Q ]f
{ "alphanum_fraction": 0.3299496946, "avg_line_length": 24.6829268293, "ext": "agda", "hexsha": "3fa97512ec559f42d4b2f28624a2cbf8c1f157d1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danelahman/aeff-agda", "max_forks_repo_path": "ProcessPreservation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danelahman/aeff-agda", "max_issues_repo_path": "ProcessPreservation.agda", "max_line_length": 109, "max_stars_count": 4, "max_stars_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danelahman/aeff-agda", "max_stars_repo_path": "ProcessPreservation.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T22:48:48.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-17T00:15:00.000Z", "num_tokens": 5000, "size": 11132 }
{-# OPTIONS --without-K #-} module TheSame where open import Level using (_⊔_) renaming (zero to l0; suc to lsuc) open import Universe using (Universe) open import Categories.Category using (Category) open import Categories.Groupoid using (Groupoid) open import Categories.Functor using (Functor) open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Sum hiding ([_,_]) open import Data.Product open import Relation.Binary.PropositionalEquality as P open import Function using (flip) open import Data.Nat using (ℕ; zero; suc) open import Data.Integer using (+_) open import Categories.Groupoid.Sum using () renaming (Sum to GSum) open import Categories.Groupoid.Product using () renaming (Product to GProduct) open import PiU using (U; ZERO; ONE; PLUS; TIMES; toℕ) open import PiLevel0 open import PiLevel1 open import PiEquiv open import Equiv open import PiIter -- our values come in three flavours, base, up and down (i.e. #p and 1/# p) data Flavour : Set where base up down : Flavour -- all our values will be 'subtypes' of this: record V (fl : Flavour) (t₀ t₁ : U) (p : t₁ ⟷ t₁) : Set where constructor v field pt : ⟦ t₀ ⟧ auto : Iter p -- we need t₀ and t₁ to potentially be different to embed -- #p and 1/#p. The values of these are the same, but -- the homomorphisms will be different, and thus how to count them. -- We can embed our (current) values into V easily: embedBase : {t : U} → ⟦ t ⟧ → V base t ONE id⟷ embedBase w = v w (iter (+ 0) id⟷ id⇔) embed#p : {t : U} → {p : t ⟷ t} → Iter p → V up ONE t p embed#p it = v tt it embed1/#p : {t : U} → {p : t ⟷ t} → Iter p → V down ONE t p embed1/#p it = v tt it -- We can then define combinators on V as two actions, one on each part record C (s₀ s₁ t₀ t₁ : U) : Set where constructor cc field comb : s₀ ⟷ t₀ transp : s₁ ⟷ t₁ -- evaluation is then straightforward, just follow the types: evalV : {s₀ s₁ t₀ t₁ : U} {fl : Flavour} {p₀ : s₁ ⟷ s₁} → (c : C s₀ s₁ t₀ t₁) → (val : V fl s₀ s₁ p₀) → V fl t₀ t₁ (! (C.transp c) ◎ p₀ ◎ (C.transp c)) evalV {p₀ = p} (cc comb transp) (v pt (iter i q α)) = v (eval comb pt) (iter i (! transp ◎ (q ◎ transp)) {!!}) -- -- we should go backwards too evalVB : {s₀ s₁ t₀ t₁ : U} {fl : Flavour} {p₁ : t₁ ⟷ t₁} → (c : C s₀ s₁ t₀ t₁) → (val : V fl t₀ t₁ p₁) → V fl s₀ s₁ ((C.transp c) ◎ p₁ ◎ ! (C.transp c)) evalVB (cc comb transp) (v pt (iter i q α)) = v (evalB comb pt) (iter (+ 1) (transp ◎ (q ◎ ! transp)) {!!}) -- Next comes the (generic) type of morphisms. Note that this type is -- 'too big', in practice we use particular sub-types. record H {s₀ s₁ t₀ t₁ : U} {fl : Flavour} {p : s₁ ⟷ s₁} {q : t₁ ⟷ t₁} (a : V fl s₀ s₁ p) (b : V fl t₀ t₁ q) : Set where constructor mor open V field combi : C s₀ s₁ t₀ t₁ vb = evalV combi a field pt-eq : pt vb P.≡ pt b t-eq : Iter.p' (auto vb) ⇔ Iter.p' (auto b) -- should p transport to ⇔ q ? -- The above gives, implicitly, a notion of equality, which can -- be extracted as below. Note how we insist on the types being -- the same. This is basically the same as H when combi is id⟷ id⟷ record _≡V_ {s₀ s₁ : U} {fl : Flavour} {p q : s₁ ⟷ s₁} (a : V fl s₀ s₁ p) (b : V fl s₀ s₁ q) : Set where constructor veq open V field pt-eq : pt a P.≡ pt b t-eq : Iter.p' (auto a) ⇔ Iter.p' (auto b) p⇔q : p ⇔ q -- And now we can say what back-and-forth do: evBF : {s₀ s₁ t₀ t₁ : U} {fl : Flavour} {p₀ : s₁ ⟷ s₁} → (c : C s₀ s₁ t₀ t₁) → (val : V fl s₀ s₁ p₀) → evalVB c (evalV c val) ≡V val evBF (cc comb transp) (v pt (iter i p' α)) = veq (P.trans (lemma1 comb (eval comb pt)) ( P.trans (P.cong (proj₁ (sym≃ (c2equiv comb))) (lemma0 comb pt)) (isqinv.β (proj₂ (c2equiv comb)) pt))) {!!} {!!} -- and Homs. Note how the range of this is quite restricted embedBaseHom : {τ : U} → (s t : ⟦ τ ⟧) → s ≡ t → H (embedBase s) (embedBase t) embedBaseHom s .s P.refl = mor (cc id⟷ id⟷) P.refl (trans⇔ idl◎l idr◎l ) -- for #p. The only Homs are when p ^ i ⇔ p ^ j embed#pHom : {τ : U} → {p : τ ⟷ τ} → (v₀ v₁ : Iter p) → (Iter.p' v₀) ⇔ (Iter.p' v₁) → H (embed#p v₀) (embed#p v₁) embed#pHom {_} {p} (iter i q α) (iter j r β) iso = mor (cc id⟷ p) P.refl ( trans⇔ (id⇔ ⊡ (α ⊡ id⇔)) (trans⇔ (trans⇔ (id⇔ ⊡ (2! (assoc1g i))) (trans⇔ assoc◎l (trans⇔ (rinv◎l ⊡ (2! α)) idl◎l))) iso)) -- for 1/#p; a bit lazy here, q should be Iter p, but the core of the -- idea remains the same. embed1/#pHom : {τ : U} → (p : τ ⟷ τ) → (q : Iter p) → H (embed1/#p q) (embed1/#p q) embed1/#pHom p (iter i q α) = mor (cc id⟷ p) P.refl (trans⇔ (id⇔ ⊡ (α ⊡ id⇔)) (trans⇔ (id⇔ ⊡ 2! (assoc1g i)) (trans⇔ assoc◎l (trans⇔ (rinv◎l ⊡ id⇔) (trans⇔ idl◎l (2! α)))))) -- infix 40 _⇿_ infixl 50 ↑_ -- let's make the relationship much clearer data U↑ : Set where ↑_ : U → U↑ -- we need to do a more complicated lift of 1 𝟙 : {t : U} → (p : t ⟷ t) → U↑ #p : {t : U} → (p : t ⟷ t) → U↑ 1/#p : {t : U} → (p : t ⟷ t) → U↑ -- This corresponds exactly to Obj (proj₁ ⟦ t ⟧ ) from 2D/Frac.agda ⟦_⟧↑ : U↑ → Set ⟦ ↑ x ⟧↑ = ⟦ x ⟧ ⟦ 𝟙 p ⟧↑ = {!!} ⟦ #p p ⟧↑ = Iter p ⟦ 1/#p p ⟧↑ = ⊤ flavour : U↑ → Flavour flavour (↑ _) = base flavour (𝟙 p) = {!!} flavour (#p _) = up flavour (1/#p _) = down t₀↑ : U↑ → U t₀↑ (↑ t) = t t₀↑ (𝟙 p) = {!!} t₀↑ (#p p) = ONE t₀↑ (1/#p p) = ONE t₁↑ : U↑ → U t₁↑ (↑ t) = ONE t₁↑ (𝟙 p) = {!!} t₁↑ (#p {t} _) = t t₁↑ (1/#p {t} _) = t auto↑ : (t : U↑) → (t₁↑ t ⟷ t₁↑ t) auto↑ (↑ x) = id⟷ auto↑ (𝟙 p) = {!!} auto↑ (#p p) = p auto↑ (1/#p p) = id⟷ iter↑ : (t : U↑) → Iter (auto↑ t) iter↑ (↑ x) = iter (+ 0) id⟷ id⇔ iter↑ (𝟙 p) = {!!} iter↑ (#p p) = iter (+ 1) p idr◎r iter↑ (1/#p p) = iter (+ 0) id⟷ id⇔ ⟦_⟧V : (t : U↑) → Set ⟦ t ⟧V = V (flavour t) (t₀↑ t) (t₁↑ t) (auto↑ t) fwd : {t : U↑} → ⟦ t ⟧↑ → ⟦ t ⟧V fwd {↑ x} val = embedBase val fwd {𝟙 p} val = {!!} fwd {#p p} val = embed#p val fwd {1/#p p} tt = embed1/#p (iter (+ 0) id⟷ id⇔) bwd : {t : U↑} → ⟦ t ⟧V → ⟦ t ⟧↑ bwd {↑ x} val = V.pt val bwd {𝟙 p} val = {!!} bwd {#p p} val = V.auto val bwd {1/#p p} val = tt -- (This should be packed up to use ≡V) fwdbwd≈id : {t : U↑} → (x : ⟦ t ⟧V) → V.pt (fwd {t} (bwd x)) P.≡ V.pt x fwdbwd≈id {↑ x} (v pt auto) = P.refl fwdbwd≈id {𝟙 p} (v pt auto) = {!!} fwdbwd≈id {#p p} (v tt auto) = P.refl fwdbwd≈id {1/#p p} (v tt auto) = P.refl fb-auto : {t : U↑} → (x : ⟦ t ⟧V) → Iter.p' (V.auto (fwd {t} (bwd x))) ⇔ Iter.p' (V.auto x) fb-auto {↑ x} (v pt (iter i p' α)) = 2! (trans⇔ α (id^i≡id i)) fb-auto {𝟙 p} vv = {!!} fb-auto {#p p} (v pt (iter i p' α)) = id⇔ fb-auto {1/#p p} (v pt (iter i p' α)) = 2! (trans⇔ α (id^i≡id i)) bf-x : {t : U↑} → (x : ⟦ t ⟧↑) → bwd (fwd {t} x) P.≡ x bf-x {↑ x} x₁ = P.refl bf-x {𝟙 p} x = {!!} bf-x {#p p} x = P.refl bf-x {1/#p p} tt = P.refl {- data _⇿_ : U↑ → U↑ → Set where prim : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (↑ t₁ ⇿ ↑ t₂) -}
{ "alphanum_fraction": 0.5557661467, "avg_line_length": 30.8963963964, "ext": "agda", "hexsha": "56e372fe1f7ea6cff7534d8f3dc89b24301924d5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/TheSame.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/TheSame.agda", "max_line_length": 91, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/TheSame.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 3058, "size": 6859 }
open import Data.List open import Data.Product open import Relation.Unary hiding (_∈_) open import Relation.Ternary.Separation module Relation.Ternary.Separation.Monad.State where open import Level hiding (Lift) open import Function using (_∘_; case_of_) open import Relation.Binary.PropositionalEquality using (refl; _≡_) import Relation.Binary.HeterogeneousEquality as HEq open import Relation.Unary.PredicateTransformer hiding (_⊔_; [_]) open import Relation.Ternary.Separation.Construct.List open import Relation.Ternary.Separation.Construct.Product open import Relation.Ternary.Separation.Construct.Market open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad open import Data.Unit open import Data.Product open import Data.List.Relation.Ternary.Interleaving.Propositional as I open Monads module _ {ℓ} {C : Set ℓ} {{r : RawSep C}} {u} {{s : IsUnitalSep r u}} where open Morphism (market {A = C}) public STATET : (M : Pt (Market C) ℓ) → (l r : Pred (C × C) ℓ) → Pt C ℓ STATET M St St' P = (● St ─✴ M (J P ✴ ● St')) ∘ demand StateT : (M : Pt (Market C) ℓ) → Pred (C × C) ℓ → Pt C ℓ StateT M St = STATET M St St open import Relation.Ternary.Separation.Monad.Identity State : Pred (C × C) ℓ → Pt C ℓ State St = STATET Identity.Id St St module StateTransformer {ℓ} {C : Set ℓ} {u} {{r : RawSep C}} {{s : IsUnitalSep r u}} (M : Pt (Market C) ℓ) {{monad : Monads.Monad ⊤ ℓ (λ _ _ → M) }} {St : Pred (C × C) ℓ} where instance state-monad : Monad ⊤ _ (λ _ _ → StateT M St) app (Monad.return state-monad px) st σ₂ = return (inj px ×⟨ σ₂ ⟩ st ) app (app (Monad.bind state-monad {P = P} {Q = Q} f) m σ₁) st@(lift _ _) σ₂@(offerᵣ σ₅) with ⊎-assoc (demand σ₁) σ₂ ... | _ , σ₃ , σ₄ = app (bind bound) (app m st σ₄) σ₃ where bound : ((J P ✴ ● St) ─✴ M (J Q ✴ ● St)) (demand _) app bound (inj px ×⟨ offerᵣ σ₅ ⟩ st') (offerᵣ σ₆) with ⊎-unassoc σ₅ σ₆ ... | _ , τ₁ , τ₂ = let mq = app f px (⊎-comm τ₁) in app mq st' (offerᵣ τ₂) {- Lift an M computation into a transformed state operation -} liftM : ∀ {Φ P} → M P (demand Φ) → StateT M St (P ∘ demand) Φ app (liftM mp) (lift μ k) σ@(offerᵣ _) = app (mapM′ (wand λ where px σ@(offerₗ _) → inj px ×⟨ ⊎-comm σ ⟩ (lift μ k))) mp (⊎-comm σ) {- Lift a state computation into a transformed state operation -} liftState : ∀ {P} → ∀[ State St P ⇒ StateT M St P ] app (liftState mp) st σ = Monad.return monad (app mp st σ) module StateWithErr {ℓ} {C : Set ℓ} {u} {{r : RawSep C}} {{s : IsUnitalSep r u}} (Exc : Set ℓ) where open import Relation.Ternary.Separation.Monad.Error open ExceptMonad {A = Market C} Exc public open StateTransformer {C = C} (Except Exc) {{ monad = except-monad }} public open import Data.Sum State? : ∀ (S : Pred (C × C) ℓ) → Pt C ℓ State? = StateT (Except Exc) _orElse_ : ∀ {S P} {M : Pt (Market C) ℓ} {{monad : Monads.Monad ⊤ ℓ (λ _ _ → M) }} → ∀[ State? S P ⇒ (⋂[ _ ∶ Exc ] StateT M S P) ⇒ StateT M S P ] app (mp orElse mq) μ σ with app mp μ σ ... | error e = app (mq e) μ σ ... | ✓ px = return px try : ∀ {S P} → ε[ State? S P ] → ε[ State S (Emp ∪ P) ] app (try mp?) st σ with app mp? st σ ... | error e = inj (inj₁ empty) ×⟨ σ ⟩ st ... | ✓ (inj px ×⟨ σ' ⟩ st') = inj (inj₂ px) ×⟨ σ' ⟩ st' raise : ∀ {S P} → Exc → ∀[ State? S P ] app (raise {P} e) μ σ = partial (inj₁ e)
{ "alphanum_fraction": 0.6130057803, "avg_line_length": 36.0416666667, "ext": "agda", "hexsha": "eeaeaeed1b3b6aa108cbd4bf2711ec2f1112e874", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Monad/State.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Monad/State.agda", "max_line_length": 118, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Monad/State.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 1276, "size": 3460 }
module Formalization.Monoid where import Lvl open import Numeral.Finite using (𝕟) open import Numeral.Natural using (ℕ) open import Type open import Type.Dependent open import Syntax.Function private variable ℓ ℓₑ : Lvl.Level private variable T : Type{ℓ} private variable n n₁ n₂ : ℕ module Semigroup where -- A term in the language of a semigroup. -- It consists of a finite number of variables and a binary operator on its elements. data Term (n : ℕ) : Type{Lvl.𝟎} where var : 𝕟(n) → Term(n) _▫_ : Term(n) → Term(n) → Term(n) module Monoid where open import Data.List open import Data.List.Functions -- A term in the language of a monoid. -- It consists of a finite number of variables, an identity element, and a binary operator on its elements. data Term (n : ℕ) : Type{Lvl.𝟎} where var : 𝕟(n) → Term(n) _▫_ : Term(n) → Term(n) → Term(n) id : Term(n) -- A fully normalised term in the language of a monoid is always able to be represented as a list of variables. -- See `normalize` for how a term is represented as a list. NormalForm : ℕ → Type NormalForm(n) = List(𝕟(n)) -- Normalizes a term to its normal form. normalize : Term(n) → NormalForm(n) normalize (var v) = singleton v normalize (x ▫ y) = normalize x ++ normalize y normalize id = ∅ open import Structure.Function open import Structure.Function.Multi open import Structure.Operator open import Structure.Operator.Monoid open import Structure.Operator.Properties open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Transitivity module Semantics ⦃ equiv : Equiv{ℓₑ}(T) ⦄ (_∙_ : T → T → T) ⦃ monoid : Monoid(_∙_) ⦄ where open Structure.Operator.Monoid.Monoid(monoid) using () renaming (id to 𝑒) -- The environment for evaluating an expression is just a mapping from its variables to the values. Env : ℕ → Type Env(n) = (𝕟(n) → T) -- The semantics of the terms. eval : Env(n) → Term(n) → T eval env (var n) = env n eval env (x ▫ y) = eval env x ∙ eval env y eval env id = 𝑒 -- The semantics of the normal form. evalNormal : Env(n) → NormalForm(n) → T evalNormal env ∅ = 𝑒 evalNormal env (v ⊰ l) = env v ∙ evalNormal env l module Proofs where private variable env : Env(n) private variable e : Term(n) instance eval-preserves : Preserving₂(eval env)(_▫_)(_∙_) eval-preserves = intro(reflexivity(_≡_)) instance evalNormal-preserves : Preserving₂(evalNormal env)(_++_)(_∙_) evalNormal-preserves {env = env} = intro(\{x y} → proof{x}{y}) where proof : Names.Preserving₂(evalNormal env)(_++_)(_∙_) proof {∅} {ys} = symmetry(_≡_) (identityₗ(_∙_)(𝑒)) proof {x ⊰ xs} {ys} = evalNormal env ((x ⊰ xs) ++ ys) 🝖[ _≡_ ]-[] evalNormal env (x ⊰ (xs ++ ys)) 🝖[ _≡_ ]-[] env x ∙ evalNormal env (xs ++ ys) 🝖[ _≡_ ]-[ congruence₂ᵣ(_∙_)(_) (proof {xs}{ys}) ] env x ∙ (evalNormal env xs ∙ evalNormal env ys) 🝖[ _≡_ ]-[ associativity(_∙_) ]-sym (env x ∙ evalNormal env xs) ∙ evalNormal env ys 🝖[ _≡_ ]-[] evalNormal env (x ⊰ xs) ∙ evalNormal env ys 🝖-end normalize-eval-correctness : (evalNormal env (normalize e) ≡ eval env e) normalize-eval-correctness {env = env} {var v} = identityᵣ(_∙_)(𝑒) normalize-eval-correctness {env = env} {x ▫ y} = evalNormal env (normalize (x ▫ y)) 🝖[ _≡_ ]-[] evalNormal env (normalize x ++ normalize y) 🝖[ _≡_ ]-[ preserving₂(evalNormal env)(_++_)(_∙_) {normalize x}{normalize y} ] evalNormal env (normalize x) ∙ evalNormal env (normalize y) 🝖[ _≡_ ]-[ congruence₂(_∙_) (normalize-eval-correctness{env = env}{x}) (normalize-eval-correctness{env = env}{y}) ] eval env x ∙ eval env y 🝖[ _≡_ ]-[] eval env (x ▫ y) 🝖-end normalize-eval-correctness {env = env} {id} = reflexivity(_≡_) module CommutativeMonoid where module CommutativeRig where open import Data.ListSized open import Formalization.Polynomial as Polynomial using (Polynomial) -- A term in the language of a commutative rig. -- It consists of a finite number of variables and a binary operator on its elements. data Term (n : ℕ) : Type{Lvl.𝟎} where var : 𝕟(n) → Term(n) _➕_ : Term(n) → Term(n) → Term(n) _✖_ : Term(n) → Term(n) → Term(n) 𝟎 : Term(n) 𝟏 : Term(n) NormalForm : ℕ → Type NormalForm = Polynomial {- normalize : Term(n) → NormalForm(n) normalize (var x) = {!!} normalize (t ➕ t₁) = {!!} normalize (t ✖ t₁) = {!!} normalize 𝟎 = {!!} normalize 𝟏 = {!!} -}
{ "alphanum_fraction": 0.6049866062, "avg_line_length": 38.2125984252, "ext": "agda", "hexsha": "2a8ec93bc8b2b816e3bb242519b8653d94a18c7e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/Monoid.agda", "max_line_length": 183, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1521, "size": 4853 }
module Issue452 where data Bool : Set where true false : Bool data ⊥ : Set where record ⊤ : Set where constructor tt abstract id : Bool → Bool id b = b If_then_else_ : Bool → Set → Set → Set If true then t else f = t If false then t else f = f data D : (b : Bool) → If b then ⊤ else ⊥ → Set where d : D (id true) _ -- this meta variable (type If (id true) ...) is unsolvable foo : D true tt → ⊥ foo () -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Rules/LHS/Unify.hs:402 {- Trying to unify D true tt = D (id true) _ true = id true is postponed, but then tt is handled of type If (id true)... which is not a data or record type, causing the panic Solution: do not postpone but fail, since in D : (b : Bool) -> X X depends on b -}
{ "alphanum_fraction": 0.6507177033, "avg_line_length": 19.4418604651, "ext": "agda", "hexsha": "d18d83f9402acd97a2e18779ef14fdcc756e13b3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue452.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue452.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue452.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 258, "size": 836 }
module Delta (K : Set) \{\{bij : bij K Nat\}\} where DL : (V : Set) \altRArr Set DL V = List (Nat \altAnd V) data DD (V : Set) : Set where DD : DL V \altRArr DD V delta : \altFAll\{n m\} \altRArr n < m \altRArr Nat delta n<m = difference (n<m\altRArr1+n\ensuremath{\leq}m n<m) -- i.e. m - n - 1 -- lookup _\altLAng_\altRAng : \altFAll\{V\} \altRArr DD V \altRArr K \altRArr Maybe V (DD dd) \altLAng k \altRAng = lkup dd (toNat k) where lkup : \altFAll\{V\} \altRArr DL V \altRArr Nat \altRArr Maybe V lkup [] n = None lkup ((hn , ha) :: t) n with <dec n hn \fourChars{}... | Inl n<hn = None \fourChars{}... | Inr (Inl refl) = Some ha \fourChars{}... | Inr (Inr hn<n) = lkup t (delta hn<n) -- insert/extend _,,_ : \altFAll\{V\} \altRArr DD V \altRArr (K \altAnd V) \altRArr DD V (DD dd) ,, (k , v) = DD (ins dd (toNat k , v)) where ins : \altFAll\{V\} \altRArr DL V \altRArr (Nat \altAnd V) \altRArr DL V ins [] (n , v) = (n , v) :: [] ins ((hn , hv) :: t) (n , v) with <dec n hn \fourChars{}... | Inl n<hn = (n , v) :: (delta n<hn , hv) :: t \fourChars{}... | Inr (Inl refl) = (n , v) :: t \fourChars{}... | Inr (Inr hn<n) = (hn , hv) :: ins t (delta hn<n , v) destruct : \altFAll\{V\} \altRArr DD V \altRArr Maybe ((K \altAnd V) \altAnd DD V) destruct (DD []) = None destruct (DD ((n , v) :: [])) = Some ((fromNat n , v) , DD []) destruct (DD ((n , v) :: (m , v') :: t)) = Some ((fromNat n , v) , DD ((n + m + 1 , v') :: t))
{ "alphanum_fraction": 0.5215968586, "avg_line_length": 29.3846153846, "ext": "agda", "hexsha": "e142c7d96074e6f2cd0446f9a8045b686ca3a4d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1ae15eb2f3a3eac6d30ba55ebb1ed65bc15aa0a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nickcollins/dependent-dicts", "max_forks_repo_path": "code/Delta.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "1ae15eb2f3a3eac6d30ba55ebb1ed65bc15aa0a6", "max_issues_repo_issues_event_max_datetime": "2020-09-15T21:24:19.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-10T22:57:49.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nickcollins/dependent-dicts", "max_issues_repo_path": "code/Delta.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "1ae15eb2f3a3eac6d30ba55ebb1ed65bc15aa0a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nickcollins/dependent-dicts", "max_stars_repo_path": "code/Delta.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 649, "size": 1528 }
{-# OPTIONS --prop --rewriting #-} open import Calf.CostMonoid module Calf.Types.BoundedFunction (costMonoid : CostMonoid) where open CostMonoid costMonoid open import Calf.Prelude open import Calf.Metalanguage open import Calf.Step costMonoid open import Calf.Types.Bounded costMonoid open import Level using (_⊔_) open import Relation.Binary open import Data.Product bounded : (A : tp pos) → cmp cost → tp neg bounded A n = Σ+- (U (F A)) λ u → IsBounded⁻ A u n Ψ : (A : tp pos) → (B : val A → tp pos) → (val A → ℂ) → tp neg Ψ A B p = Σ+- (U(Π A (λ a → F (B a)))) λ f → Π A λ a → IsBounded⁻ (B a) (f a) (p a) dom : ∀ {ℓ} {a} {A : Set a} {B : Set a} → Rel B ℓ → Rel (A → B) (a ⊔ ℓ) dom {A = A} r f1 f2 = ∀ (a : A) → r (f1 a) (f2 a) Ψ/relax : ∀ A B {p p'} → dom _≤_ p p' → (f : cmp (Ψ A B p)) → cmp (Ψ A B p') Ψ/relax A B h (func , prf) = func , λ a → bound/relax (λ _ → h a) (prf a)
{ "alphanum_fraction": 0.5695931478, "avg_line_length": 27.4705882353, "ext": "agda", "hexsha": "07965b66f9ddac2d8ac942dab979e7ecbe2bbccf", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Calf/Types/BoundedFunction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Calf/Types/BoundedFunction.agda", "max_line_length": 71, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Calf/Types/BoundedFunction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 376, "size": 934 }
{-# OPTIONS --without-K --rewriting #-} {- Adapted from Ulrik's work in Lean (released under Apache License 2.0) https://github.com/leanprover/lean/blob/master/hott/homotopy/cellcomplex.hlean -} open import HoTT renaming (pt to pt⊙) open import homotopy.DisjointlyPointedSet module cw.CW {i} where open import cw.Attached public {- Naming convention: most of them have the "cw-" prefix -} -- skeleton {- Disadvantages of alternative definitions: [Skeleton] as a data type: No η. ([Skeleton (S n)] does not expand.) [Skeleton] as a recursive record type: No η. [Skeleton] as a recursive fuction giving recursive Σ types: the current Agda sees that [Skeleton 0] and [Skeleton (S n)] have the same head symbol [Σ] and will not invert [Skeleton] during unification. The following is combines a recursive funcition and a non-recursive record type which should strike a good balance. -} record AttachedSkeleton n (Skel : Type (lsucc i)) (Real : Skel → Type i) : Type (lsucc i) where constructor attached-skeleton field skel : Skel cells : hSet i attaching : Attaching (Real skel) (fst cells) (Sphere n) Skeleton : ℕ → Type (lsucc i) Realizer : {n : ℕ} → Skeleton n → Type i Skeleton O = hSet i Skeleton (S n) = AttachedSkeleton n (Skeleton n) Realizer Realizer {n = O} A = fst A Realizer {n = S n} (attached-skeleton _ _ α) = Attached α ⟦_⟧ = Realizer -- Pointedness -- this function is needed for pointedness cw-head : ∀ {n : ℕ} → Skeleton n → Type i cw-head {n = O} cells = fst cells cw-head {n = S n} (attached-skeleton skel _ _) = cw-head skel -- this function is needed for pointedness incl^ : ∀ {n : ℕ} (skel : Skeleton n) → cw-head skel → ⟦ skel ⟧ incl^ {n = O} cells a = a incl^ {n = S n} (attached-skeleton skel _ _) a = incl (incl^ skel a) -- disjointly pointed skeletons record ⊙Skeleton (n : ℕ) : Type (lsucc i) where constructor ⊙skeleton field skel : Skeleton n pt : cw-head skel pt-dec : is-separable ⊙[ cw-head skel , pt ] ⊙Realizer : {n : ℕ} → ⊙Skeleton n → Ptd i ⊙Realizer (⊙skeleton skel pt _) = ⊙[ ⟦ skel ⟧ , incl^ skel pt ] ⊙⟦_⟧ = ⊙Realizer -- Take a prefix of a skeleton cw-init : ∀ {n} → Skeleton (S n) → Skeleton n cw-init (attached-skeleton skel _ _) = skel ⊙cw-init : ∀ {n} → ⊙Skeleton (S n) → ⊙Skeleton n ⊙cw-init (⊙skeleton skel pt dec) = ⊙skeleton (cw-init skel) pt dec cw-take : ∀ {m n : ℕ} (m≤n : m ≤ n) → Skeleton n → Skeleton m cw-take (inl idp) skel = skel cw-take (inr ltS) skel = cw-init skel cw-take (inr (ltSR m<n)) skel = cw-take (inr m<n) (cw-init skel) cw-init-take : ∀ {m n : ℕ} (Sm≤n : S m ≤ n) skel → cw-init (cw-take Sm≤n skel) == cw-take (≤-trans lteS Sm≤n) skel cw-init-take (inl idp) skel = idp cw-init-take (inr ltS) skel = idp cw-init-take (inr (ltSR lt)) skel = cw-init-take (inr lt) (cw-init skel) ⊙cw-take : ∀ {m n : ℕ} (m≤n : m ≤ n) → ⊙Skeleton n → ⊙Skeleton m ⊙cw-take (inl idp) ⊙skel = ⊙skel ⊙cw-take (inr ltS) ⊙skel = ⊙cw-init ⊙skel ⊙cw-take (inr (ltSR m<n)) ⊙skel = ⊙cw-take (inr m<n) (⊙cw-init ⊙skel) ⊙cw-head : ∀ {n : ℕ} → ⊙Skeleton n → Ptd i ⊙cw-head (⊙skeleton skel pt _) = ⊙[ cw-head skel , pt ] ⊙cw-init-take : ∀ {m n : ℕ} (Sm≤n : S m ≤ n) ⊙skel → ⊙cw-init (⊙cw-take Sm≤n ⊙skel) == ⊙cw-take (≤-trans lteS Sm≤n) ⊙skel ⊙cw-init-take (inl idp) ⊙skel = idp ⊙cw-init-take (inr ltS) ⊙skel = idp ⊙cw-init-take (inr (ltSR lt)) ⊙skel = ⊙cw-init-take (inr lt) (⊙cw-init ⊙skel) -- Access the [m]th cells cells-last : ∀ {n : ℕ} → Skeleton n → Type i cells-last {n = O} cells = fst cells cells-last {n = S n} (attached-skeleton _ cells _) = fst cells ⊙cells-last : ∀ {n : ℕ} → ⊙Skeleton n → Type i ⊙cells-last (⊙skeleton skel _ _) = cells-last skel cells-nth : ∀ {m n : ℕ} (m≤n : m ≤ n) → Skeleton n → Type i cells-nth m≤n = cells-last ∘ cw-take m≤n ⊙cells-nth : ∀ {m n : ℕ} (m≤n : m ≤ n) → ⊙Skeleton n → Type i ⊙cells-nth m≤n = ⊙cells-last ∘ ⊙cw-take m≤n -- Access the [m]th dimensional attaching map Realizer₋₁ : ∀ {n : ℕ} → Skeleton (S n) → Type i Realizer₋₁ = ⟦_⟧ ∘ cw-init ⟦_⟧₋₁ = Realizer₋₁ ⊙Realizer₋₁ : ∀ {n : ℕ} → ⊙Skeleton (S n) → Ptd i ⊙Realizer₋₁ = ⊙⟦_⟧ ∘ ⊙cw-init ⊙⟦_⟧₋₁ = ⊙Realizer₋₁ attaching-last : ∀ {n : ℕ} (skel : Skeleton (S n)) → cells-last skel → (Sphere n → ⟦ skel ⟧₋₁) attaching-last (attached-skeleton _ _ attaching) = attaching ⊙attaching-last : ∀ {n : ℕ} (⊙skel : ⊙Skeleton (S n)) → ⊙cells-last ⊙skel → (Sphere n → de⊙ ⊙⟦ ⊙skel ⟧₋₁) ⊙attaching-last = attaching-last ∘ ⊙Skeleton.skel attaching-nth : ∀ {m n : ℕ} (Sm≤n : S m ≤ n) (skel : Skeleton n) → cells-nth Sm≤n skel → (Sphere m → ⟦ cw-take Sm≤n skel ⟧₋₁) attaching-nth Sm≤n = attaching-last ∘ cw-take Sm≤n ⊙attaching-nth : ∀ {m n : ℕ} (Sm≤n : S m ≤ n) (⊙skel : ⊙Skeleton n) → ⊙cells-nth Sm≤n ⊙skel → Sphere m → de⊙ ⊙⟦ ⊙cw-take Sm≤n ⊙skel ⟧₋₁ ⊙attaching-nth Sm≤n = ⊙attaching-last ∘ ⊙cw-take Sm≤n -- Access the [m]th dimensional inclusion map cw-incl-last : ∀ {n} (skel : Skeleton (S n)) → (⟦ skel ⟧₋₁ → ⟦ skel ⟧) cw-incl-last _ = incl ⊙cw-incl-last : ∀ {n} (⊙skel : ⊙Skeleton (S n)) → (⊙⟦ ⊙skel ⟧₋₁ ⊙→ ⊙⟦ ⊙skel ⟧) ⊙cw-incl-last _ = incl , idp cw-incl-nth : ∀ {m n : ℕ} (Sm≤n : S m ≤ n) (skel : Skeleton n) → ⟦ cw-take Sm≤n skel ⟧₋₁ → ⟦ cw-take Sm≤n skel ⟧ cw-incl-nth Sm≤n = cw-incl-last ∘ cw-take Sm≤n ⊙cw-incl-nth : ∀ {m n : ℕ} (Sm≤n : S m ≤ n) (⊙skel : ⊙Skeleton n) → (⊙⟦ ⊙cw-take Sm≤n ⊙skel ⟧₋₁ ⊙→ ⊙⟦ ⊙cw-take Sm≤n ⊙skel ⟧) ⊙cw-incl-nth Sm≤n = ⊙cw-incl-last ∘ ⊙cw-take Sm≤n cw-incl-tail : ∀ {m n : ℕ} (m≤n : m ≤ n) (skel : Skeleton n) → (⟦ cw-take m≤n skel ⟧ → ⟦ skel ⟧) cw-incl-tail (inl idp) skel = idf ⟦ skel ⟧ cw-incl-tail (inr ltS) skel = cw-incl-last skel cw-incl-tail (inr (ltSR lt)) skel = cw-incl-last skel ∘ cw-incl-tail (inr lt) (cw-init skel) ⊙cw-incl-tail : ∀ {m n : ℕ} (m≤n : m ≤ n) (⊙skel : ⊙Skeleton n) → (⊙⟦ ⊙cw-take m≤n ⊙skel ⟧ ⊙→ ⊙⟦ ⊙skel ⟧) ⊙cw-incl-tail (inl idp) ⊙skel = ⊙idf ⊙⟦ ⊙skel ⟧ ⊙cw-incl-tail (inr ltS) ⊙skel = ⊙cw-incl-last ⊙skel ⊙cw-incl-tail (inr (ltSR lt)) ⊙skel = ⊙cw-incl-last ⊙skel ⊙∘ ⊙cw-incl-tail (inr lt) (⊙cw-init ⊙skel) -- Extra conditions on CW complexes -- 1. decidable equalities has-cells-with-dec-eq : ∀ {n} → Skeleton n → Type i has-cells-with-dec-eq {n = O} skel = has-dec-eq (cells-last skel) has-cells-with-dec-eq {n = S n} skel = has-cells-with-dec-eq (cw-init skel) × has-dec-eq (cells-last skel) ⊙has-cells-with-dec-eq : ∀ {n} → ⊙Skeleton n → Type i ⊙has-cells-with-dec-eq = has-cells-with-dec-eq ∘ ⊙Skeleton.skel cells-last-has-dec-eq : ∀ {n} (skel : Skeleton n) → has-cells-with-dec-eq skel → has-dec-eq (cells-last skel) cells-last-has-dec-eq {n = O} skel dec = dec cells-last-has-dec-eq {n = S n} skel dec = snd dec init-has-cells-with-dec-eq : ∀ {n} (skel : Skeleton (S n)) → has-cells-with-dec-eq skel → has-cells-with-dec-eq (cw-init skel) init-has-cells-with-dec-eq skel dec = fst dec take-has-cells-with-dec-eq : ∀ {m n} (m≤n : m ≤ n) (skel : Skeleton n) → has-cells-with-dec-eq skel → has-cells-with-dec-eq (cw-take m≤n skel) take-has-cells-with-dec-eq (inl idp) skel dec = dec take-has-cells-with-dec-eq (inr ltS) skel dec = init-has-cells-with-dec-eq skel dec take-has-cells-with-dec-eq (inr (ltSR lt)) skel dec = take-has-cells-with-dec-eq (inr lt) (cw-init skel) (init-has-cells-with-dec-eq skel dec) cells-nth-has-dec-eq : ∀ {m n} (m≤n : m ≤ n) (skel : Skeleton n) → has-cells-with-dec-eq skel → has-dec-eq (cells-nth m≤n skel) cells-nth-has-dec-eq m≤n skel dec = cells-last-has-dec-eq (cw-take m≤n skel) (take-has-cells-with-dec-eq m≤n skel dec) has-cells-with-dec-eq-is-prop : ∀ {n} {skel : Skeleton n} → is-prop (has-cells-with-dec-eq skel) has-cells-with-dec-eq-is-prop {n = O} = has-dec-eq-is-prop has-cells-with-dec-eq-is-prop {n = S n} = ×-level has-cells-with-dec-eq-is-prop has-dec-eq-is-prop -- 2. choice has-cells-with-choice : TLevel → {n : ℕ} → Skeleton n → (j : ULevel) → Type (lmax i (lsucc j)) has-cells-with-choice t {n = O} skel j = has-choice t (cells-last skel) j has-cells-with-choice t {n = S n} skel j = has-cells-with-choice t (cw-init skel) j × has-choice t (cells-last skel) j ⊙has-cells-with-choice : TLevel → {n : ℕ} → ⊙Skeleton n → (j : ULevel) → Type (lmax i (lsucc j)) ⊙has-cells-with-choice t ⊙skel j = has-cells-with-choice t (⊙Skeleton.skel ⊙skel) j ⊙cells-last-has-choice : {t : TLevel} {n : ℕ} (⊙skel : ⊙Skeleton n) {j : ULevel} → ⊙has-cells-with-choice t ⊙skel j → has-choice t (⊙cells-last ⊙skel) j ⊙cells-last-has-choice {n = O} ⊙skel ac = ac ⊙cells-last-has-choice {n = S n} ⊙skel ac = snd ac ⊙init-has-cells-with-choice : {t : TLevel} {n : ℕ} (⊙skel : ⊙Skeleton (S n)) {j : ULevel} → ⊙has-cells-with-choice t ⊙skel j → ⊙has-cells-with-choice t (⊙cw-init ⊙skel) j ⊙init-has-cells-with-choice ⊙skel ac = fst ac ⊙take-has-cells-with-choice : {t : TLevel} {m n : ℕ} (m≤n : m ≤ n) (⊙skel : ⊙Skeleton n) {j : ULevel} → ⊙has-cells-with-choice t ⊙skel j → ⊙has-cells-with-choice t (⊙cw-take m≤n ⊙skel) j ⊙take-has-cells-with-choice (inl idp) ⊙skel ac = ac ⊙take-has-cells-with-choice (inr ltS) ⊙skel ac = ⊙init-has-cells-with-choice ⊙skel ac ⊙take-has-cells-with-choice (inr (ltSR lt)) ⊙skel ac = ⊙take-has-cells-with-choice (inr lt) (⊙cw-init ⊙skel) (⊙init-has-cells-with-choice ⊙skel ac) ⊙cells-nth-has-choice : {t : TLevel} {m n : ℕ} (m≤n : m ≤ n) (⊙skel : ⊙Skeleton n) {j : ULevel} → ⊙has-cells-with-choice t ⊙skel j → has-choice t (⊙cells-nth m≤n ⊙skel) j ⊙cells-nth-has-choice m≤n ⊙skel ac = ⊙cells-last-has-choice (⊙cw-take m≤n ⊙skel) (⊙take-has-cells-with-choice m≤n ⊙skel ac) {- The following are not needed. -- Dimensional lifting cw-lift₁ : ∀ {n : ℕ} → Skeleton n → Skeleton (S n) cw-lift₁ skel = attached-skeleton skel (Lift Empty , Lift-level Empty-is-set) λ{(lift ()) _} -- This slightly stretches the naming convension -- to two skeletons being extensionally equal. cw-lift₁-equiv : ∀ {n} (skel : Skeleton n) → ⟦ cw-lift₁ skel ⟧ ≃ ⟦ skel ⟧ cw-lift₁-equiv skel = equiv to incl to-incl incl-to where to : ⟦ cw-lift₁ skel ⟧ → ⟦ skel ⟧ to = Attached-rec (idf ⟦ skel ⟧) (λ{(lift ())}) (λ{(lift ()) _}) to-incl : ∀ x → to (incl x) == x to-incl _ = idp incl-to : ∀ x → incl (to x) == x incl-to = Attached-elim (λ _ → idp) (λ{(lift ())}) (λ{(lift ()) _}) cw-lift : ∀ {n m : ℕ} → n < m → Skeleton n → Skeleton m cw-lift ltS = cw-lift₁ cw-lift (ltSR lt) = cw-lift₁ ∘ cw-lift lt -}
{ "alphanum_fraction": 0.6189238618, "avg_line_length": 35.7010309278, "ext": "agda", "hexsha": "002d630c0cd8ca1732e7ef2032796362d2116195", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/CW.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/CW.agda", "max_line_length": 101, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/CW.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 4444, "size": 10389 }
module MLib.Finite where open import MLib.Prelude import MLib.Fin.Parts as P import MLib.Fin.Parts.Simple as PS open import MLib.Prelude.RelProps open import Data.List.All as All using (All; []; _∷_) hiding (module All) open import Data.List.Any as Any using (Any; here; there) hiding (module Any) import Data.List.Membership.Setoid as Membership import Data.List.Membership.Propositional as PropMembership import Relation.Binary.Indexed as I import Relation.Unary as U using (Decidable) open LeftInverse using () renaming (_∘_ to _ⁱ∘_) open FE using (_⇨_; cong) open import Function.Related using () renaming (module EquationalReasoning to RelReasoning) import Data.Product.Relation.SigmaPropositional as OverΣ open Algebra using (IdempotentCommutativeMonoid) -------------------------------------------------------------------------------- -- Main Definition -------------------------------------------------------------------------------- record IsFiniteSetoid {c ℓ} (setoid : Setoid c ℓ) (N : ℕ) : Set (c ⊔ˡ ℓ) where open Setoid setoid public open Setoid setoid using () renaming (Carrier to A) OntoFin : ℕ → Set _ OntoFin N = LeftInverse setoid (≡.setoid (Fin N)) field ontoFin : OntoFin N fromIx : Fin N → A fromIx i = LeftInverse.from ontoFin ⟨$⟩ i toIx : A → Fin N toIx x = LeftInverse.to ontoFin ⟨$⟩ x fromIx-toIx : ∀ x → fromIx (toIx x) ≈ x fromIx-toIx = LeftInverse.left-inverse-of ontoFin enumₜ : Table A N enumₜ = tabulate fromIx enumₗ : List A enumₗ = Table.toList enumₜ IsFiniteSet : ∀ {a} → Set a → ℕ → Set a IsFiniteSet = IsFiniteSetoid ∘ ≡.setoid record FiniteSet c ℓ : Set (sucˡ (c ⊔ˡ ℓ)) where field setoid : Setoid c ℓ N : ℕ isFiniteSetoid : IsFiniteSetoid setoid N open IsFiniteSetoid isFiniteSetoid public -------------------------------------------------------------------------------- -- Combinators -------------------------------------------------------------------------------- -- An enumerable setoid is finite module _ {c ℓ} (setoid : Setoid c ℓ) where open Setoid setoid open Membership setoid Any-cong : ∀ {xs} → (∀ x → x ∈ xs) → Set _ Any-cong f = ∀ {x y} → x ≈ y → Any.index (f x) ≡ Any.index (f y) private from : ∀ xs → Fin (List.length xs) → Carrier from List.[] () from (x List.∷ xs) Fin.zero = x from (x List.∷ xs) (Fin.suc i) = from xs i left-inverse-of : ∀ {xs} (f : ∀ x → x ∈ xs) x → from xs (Any.index (f x)) ≈ x left-inverse-of f x = go (f x) where go : ∀ {xs} (p : x ∈ xs) → from xs (Any.index p) ≈ x go (here px) = sym px go (there p) = go p enumerable-isFiniteSetoid : ∀ {xs} (f : ∀ x → x ∈ xs) → Any-cong f → IsFiniteSetoid setoid (List.length xs) enumerable-isFiniteSetoid {xs} f f-cong = record { ontoFin = record { to = record { _⟨$⟩_ = Any.index ∘ f ; cong = f-cong } ; from = ≡.→-to-⟶ (from xs) ; left-inverse-of = left-inverse-of f } } -- As a special case of the previous theorem requiring fewer conditions, an -- enumerable set is finite. module _ {a} {A : Set a} where open PropMembership enumerable-isFiniteSet : (xs : List A) (f : ∀ x → x ∈ xs) → IsFiniteSet A (List.length xs) enumerable-isFiniteSet _ f = enumerable-isFiniteSetoid (≡.setoid _) f (≡.cong (Any.index ∘ f)) -- Given a function with a left inverse from some 'A' to a finite set, 'A' must also be finite. extendedIsFinite : ∀ {c ℓ c′ ℓ′} {S : Setoid c ℓ} (F : FiniteSet c′ ℓ′) → LeftInverse S (FiniteSet.setoid F) → IsFiniteSetoid S (FiniteSet.N F) extendedIsFinite finiteSet ontoF = record { ontoFin = ontoFin ⁱ∘ ontoF } where open FiniteSet finiteSet using (ontoFin) extendFinite : ∀ {c ℓ c′ ℓ′} {S : Setoid c ℓ} (F : FiniteSet c′ ℓ′) → LeftInverse S (FiniteSet.setoid F) → FiniteSet c ℓ extendFinite finiteSet ontoF = record { isFiniteSetoid = extendedIsFinite finiteSet ontoF } module _ {c ℓ c′ ℓ′} {S : Setoid c ℓ} (F : FiniteSet c′ ℓ′) where extendedIsFinite′N : (¬ Setoid.Carrier S) ⊎ LeftInverse S (FiniteSet.setoid F) → ℕ extendedIsFinite′N (inj₁ x) = 0 extendedIsFinite′N (inj₂ y) = FiniteSet.N F extendedIsFinite′ : (inj : (¬ Setoid.Carrier S) ⊎ LeftInverse S (FiniteSet.setoid F)) → IsFiniteSetoid S (extendedIsFinite′N inj) extendedIsFinite′ (inj₂ f) = extendedIsFinite F f extendedIsFinite′ (inj₁ p) = record { ontoFin = record { to = record { _⟨$⟩_ = ⊥-elim ∘ p ; cong = λ {i} → ⊥-elim (p i) } ; from = ≡.→-to-⟶ λ () ; left-inverse-of = ⊥-elim ∘ p } } -- Given a family of finite sets, indexed by a finite set, the sum over the entire family is finite. module _ {c} {A : Set c} {N} (isFiniteSet : IsFiniteSet A N) where private finiteSet : FiniteSet c c finiteSet = record { isFiniteSetoid = isFiniteSet } module F = FiniteSet finiteSet Σᶠ : ∀ {p} → (A → Set p) → Set p Σᶠ P = ∃ (P ∘ lookup F.enumₜ) module _ {p ℓ} (finiteAt : A → FiniteSet p ℓ) where private module PW x = FiniteSet (finiteAt x) open PW using () renaming (Carrier to P) parts : P.Parts A PW.N parts = record { numParts = N ; parts = F.enumₜ } open P.Parts parts hiding (parts) Σ-isFiniteSetoid : IsFiniteSetoid (OverΣ.setoid PW.setoid) totalSize Σ-isFiniteSetoid = record { ontoFin = Inverse.left-inverse (Inverse.sym asParts) ⁱ∘ intoCoords ⁱ∘ Σ-↞′ {B-setoid = PW.setoid} F.ontoFin } where P-setoidᶠ : Fin N → Setoid _ _ P-setoidᶠ i = record { Carrier = P (F.fromIx i) ; _≈_ = PW._≈_ _ ; isEquivalence = record { refl = PW.refl _ ; sym = PW.sym _ ; trans = PW.trans _ } } ΣᶠP-setoid = OverΣ.setoid P-setoidᶠ open Setoid ΣᶠP-setoid using () renaming (_≈_ to _≈ᶠ_) to : Σᶠ P → Σ (Fin N) (Fin ∘ sizeAt) to (_ , px) = _ , PW.toIx _ px to-cong : ∀ {x y} → x ≈ᶠ y → to x ≡ to y to-cong (≡.refl , q) = OverΣ.to-≡ (≡.refl , cong (LeftInverse.to (PW.ontoFin _)) q) from : Σ (Fin N) (Fin ∘ sizeAt) → Σᶠ P from (i , j) = _ , PW.fromIx _ j left-inverse-of : ∀ x → from (to x) ≈ᶠ x left-inverse-of (i , x) = ≡.refl , PW.fromIx-toIx _ _ intoCoords : LeftInverse ΣᶠP-setoid (≡.setoid (Σ (Fin N) (Fin ∘ sizeAt))) intoCoords = record { to = record { _⟨$⟩_ = to ; cong = to-cong } ; from = ≡.→-to-⟶ from ; left-inverse-of = left-inverse-of } Σ-finiteSet : FiniteSet _ _ Σ-finiteSet = record { isFiniteSetoid = Σ-isFiniteSetoid } module All′ {a} {A : Set a} where module _ {p ℓ} (setoid : A → Setoid p ℓ) where module P′ x = Setoid (setoid x) module P′′ {x} = P′ x open P′ using () renaming (Carrier to P) open P′′ using (_≈_) data PW : {xs : List A} → All P xs → All P xs → Set (p ⊔ˡ ℓ) where [] : PW [] [] _∷_ : ∀ {x xs} {px py : P x} {apx apy : All P xs} → px ≈ py → PW apx apy → PW (px ∷ apx) (py ∷ apy) PW-setoid : List A → Setoid _ _ Setoid.Carrier (PW-setoid xs) = All P xs Setoid._≈_ (PW-setoid xs) = PW IsEquivalence.refl (Setoid.isEquivalence (PW-setoid .[])) {[]} = [] IsEquivalence.refl (Setoid.isEquivalence (PW-setoid .(_ ∷ _))) {px ∷ ap} = P′′.refl ∷ IsEquivalence.refl (Setoid.isEquivalence (PW-setoid _)) IsEquivalence.sym (Setoid.isEquivalence (PW-setoid .[])) [] = [] IsEquivalence.sym (Setoid.isEquivalence (PW-setoid .(_ ∷ _))) (p ∷ q) = P′′.sym p ∷ IsEquivalence.sym (Setoid.isEquivalence (PW-setoid _)) q IsEquivalence.trans (Setoid.isEquivalence (PW-setoid .[])) [] [] = [] IsEquivalence.trans (Setoid.isEquivalence (PW-setoid .(_ ∷ _))) (p ∷ q) (p′ ∷ q′) = P′′.trans p p′ ∷ IsEquivalence.trans (Setoid.isEquivalence (PW-setoid _)) q q′ module _ {p} (P : A → Set p) where PW-≡ : ∀ {xs} {apx apy : All P xs} → PW (≡.setoid ∘ P) apx apy → apx ≡ apy PW-≡ [] = ≡.refl PW-≡ (p ∷ q) = ≡.cong₂ _∷_ p (PW-≡ q) -- module _ {c ℓ} (finiteSet : FiniteSet c ℓ) where -- private -- module A = FiniteSet finiteSet -- open A using (_≈_) renaming (Carrier to A) -- open IsFiniteSetoid -- open LeftInverse -- private -- boolToFin : Bool → Fin 2 -- boolToFin false = Fin.zero -- boolToFin true = Fin.suc Fin.zero -- open Nat using (_^_; _+_; _*_) -- _ℕ+_ : ∀ {n} (m : ℕ) → Fin n → Fin (m + n) -- zero ℕ+ i = i -- suc m ℕ+ i = Fin.suc (m ℕ+ i) -- -- ℕ*-+ m "i" "k" = "i + m * k" -- ℕ*-+′ : ∀ {n} (m : ℕ) → Fin m → Fin n → Fin (n * m) -- ℕ*-+′ {zero} m i () -- ℕ*-+′ {suc n} m i Fin.zero = Fin.inject+ (n * m) i -- ℕ*-+′ {suc n} m i (Fin.suc k) = m ℕ+ (ℕ*-+′ m i k) -- -- ℕ*-+ m "i" "k" = "i + m * k" -- ℕ*-+ : ∀ {n} m → Fin m → Fin n → Fin (m * n) -- ℕ*-+ m i k = ≡.subst Fin (Nat.*-comm _ m) (ℕ*-+′ m i k) -- from-n-ary : ∀ {n m} → Table (Fin n) m → Fin (n ^ m) -- from-n-ary {m = zero} _ = Fin.zero -- an empty table represents an empty n-ary string -- from-n-ary {n} {suc m} t = ℕ*-+ n (Table.lookup t Fin.zero) (from-n-ary (Table.tail t)) -- from-n-ary-cong : ∀ {n m} (t t′ : Table (Fin n) m) → t Table.≗ t′ → from-n-ary t ≡ from-n-ary t′ -- from-n-ary-cong {m = zero} t t′ eq = ≡.refl -- from-n-ary-cong {n} {suc m} t t′ eq = ≡.cong₂ (ℕ*-+ n) (eq Fin.zero) (from-n-ary-cong (Table.tail t) (Table.tail t′) (eq ∘ Fin.suc)) -- -- div-rem m i = "i % m" , "i / m" -- div-rem : ∀ {n} m → Fin (m * n) → Fin m × Fin n -- div-rem zero () -- div-rem {zero} (suc m) i with ≡.subst Fin (Nat.*-zeroʳ m) i -- div-rem {zero} (suc m) i | () -- div-rem {suc n} (suc m) Fin.zero = Fin.zero , Fin.zero -- div-rem {suc n} (suc m) (Fin.suc i) = {!!} -- to-n-ary : ∀ {n m} → Fin (n ^ m) → Table (Fin n) m -- to-n-ary {m = zero} _ = tabulate λ () -- to-n-ary {n} {suc m} k = -- let r , d = div-rem n k -- ind = to-n-ary {n} {m} d -- in tabulate λ -- { Fin.zero → r -- ; (Fin.suc i) → lookup ind i -- } -- boolF-isFiniteSetoid : IsFiniteSetoid (A.setoid ⇨ ≡.setoid Bool) (2 Nat.^ A.N) -- _⟨$⟩_ (to (ontoFin boolF-isFiniteSetoid)) f = -- let digits = Table.map (boolToFin ∘ (f ⟨$⟩_)) A.enumₜ -- in from-n-ary digits -- cong (to (ontoFin boolF-isFiniteSetoid)) {f} {f′} p = -- let t = Table.map (boolToFin ∘ (f ⟨$⟩_)) A.enumₜ -- in from-n-ary-cong t _ λ _ → ≡.cong boolToFin (p A.refl) -- _⟨$⟩_ (_⟨$⟩_ (from (ontoFin boolF-isFiniteSetoid)) i) x = {!!} -- cong (_⟨$⟩_ (from (ontoFin boolF-isFiniteSetoid)) i) = {!!} -- cong (from (ontoFin boolF-isFiniteSetoid)) ≡.refl = {!≡.cong ?!} -- left-inverse-of (ontoFin boolF-isFiniteSetoid) = {!!} -- module _ {c₁ ℓ₁ c₂ ℓ₂} (A-finiteSet : FiniteSet c₁ ℓ₁) (B-finiteSet : FiniteSet c₂ ℓ₂) where -- private -- module A = FiniteSet A-finiteSet -- module B = FiniteSet B-finiteSet -- open A using (_≈_) renaming (Carrier to A) -- open B using () renaming (Carrier to B; _≈_ to _≈′_) -- open IsFiniteSetoid -- open LeftInverse -- function-isFiniteSetoid : IsFiniteSetoid (A.setoid ⇨ B.setoid) (B.N Nat.^ A.N) -- _⟨$⟩_ (to (ontoFin function-isFiniteSetoid)) f = {!!} -- cong (to (ontoFin function-isFiniteSetoid)) = {!!} -- _⟨$⟩_ (from (ontoFin function-isFiniteSetoid)) i = {!!} -- cong (from (ontoFin function-isFiniteSetoid)) = {!!} -- left-inverse-of (ontoFin function-isFiniteSetoid) = {!!} -- TODO: Prove dependent function spaces with finite domain and codomain are -- finite sets, and recast as an instance of that. module _ {a p ℓ} {A : Set a} (finiteAt : A → FiniteSet p ℓ) where private module PW x = FiniteSet (finiteAt x) module PW′ {x} = PW x open PW using () renaming (Carrier to P; N to boundAt) open PW′ using (_≈_) All≈ = All′.PW PW.setoid All-setoid = All′.PW-setoid PW.setoid open All′.PW PW.setoid finiteAllSize : List A → ℕ finiteAllSize = List.product ∘ List.map boundAt All-isFiniteSetoid : (xs : List A) → IsFiniteSetoid (All-setoid xs) _ All-isFiniteSetoid _ = record { ontoFin = record { to = record { _⟨$⟩_ = to ; cong = to-cong } ; from = ≡.→-to-⟶ from ; left-inverse-of = left-inverse-of } } where to : ∀ {xs} → All P xs → Fin (finiteAllSize xs) to [] = Fin.zero to (_∷_ {x} {xs} px ap) = PS.fromParts (PW.toIx _ px , to ap) to-cong : ∀ {xs}{apx apy : All P xs} → All≈ apx apy → to apx ≡ to apy to-cong [] = ≡.refl to-cong (p ∷ q) = ≡.cong₂ (curry PS.fromParts) (cong (LeftInverse.to PW′.ontoFin) p) (to-cong q) from : ∀ {xs} → Fin (finiteAllSize xs) → All P xs from {List.[]} _ = [] from {x List.∷ xs} i = (PW.fromIx _ (proj₁ (PS.toParts i))) ∷ from {xs} (proj₂ (PS.toParts {boundAt x} i)) left-inverse-of : ∀ {xs} (ap : All P xs) → All≈ (from (to ap)) ap left-inverse-of [] = Setoid.refl (All-setoid _) left-inverse-of (px ∷ ap) rewrite Inverse.right-inverse-of PS.asParts (PW.toIx _ px , to ap) = PW′.fromIx-toIx px ∷ left-inverse-of ap All-finiteSet : List A → FiniteSet _ _ All-finiteSet xs = record { isFiniteSetoid = All-isFiniteSetoid xs } 1-Truncate : ∀ {c ℓ} (setoid : Setoid c ℓ) → Setoid _ _ 1-Truncate setoid = record { Carrier = Carrier ; _≈_ = λ _ _ → ⊤ ; isEquivalence = record { refl = _ ; sym = _ ; trans = _ } } where open Setoid setoid module DecFinite {a p} {A : Set a} {P : A → Set p} (decP : U.Decidable P) where P-setoid : A → Setoid _ _ P-setoid = 1-Truncate ∘ ≡.setoid ∘ P P-size : A → ℕ P-size x = if ⌊ decP x ⌋ then 1 else 0 P-isFinite : ∀ x → IsFiniteSetoid (P-setoid x) (P-size x) P-isFinite x with decP x P-isFinite x | yes p = record { ontoFin = record { to = record { _⟨$⟩_ = λ _ → Fin.zero ; cong = λ _ → ≡.refl } ; from = ≡.→-to-⟶ λ _ → p ; left-inverse-of = _ } } P-isFinite x | no ¬p = record { ontoFin = record { to = record { _⟨$⟩_ = ⊥-elim ∘ ¬p ; cong = λ {x} → ⊥-elim (¬p x) } ; from = ≡.→-to-⟶ λ () ; left-inverse-of = _ } } Decidable-finite : A → FiniteSet p _ Decidable-finite x = record { isFiniteSetoid = P-isFinite x } module _ {c} {A : Set c} {N} (isFiniteSet : IsFiniteSet A N) {p} {P : A → Set p} (decP : U.Decidable P) where open IsFiniteSetoid isFiniteSet subsetFinite : FiniteSet _ _ subsetFinite = Σ-finiteSet isFiniteSet (DecFinite.Decidable-finite decP) subset-isFiniteSet : ∀ {a′} {A′ : Set a′} → LeftInverse (≡.setoid A′) (FiniteSet.setoid subsetFinite) → IsFiniteSet A′ _ subset-isFiniteSet = extendedIsFinite subsetFinite
{ "alphanum_fraction": 0.5649790172, "avg_line_length": 34.8443396226, "ext": "agda", "hexsha": "a66072515c35affe17acc503378ed562dc83308b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Finite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Finite.agda", "max_line_length": 143, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Finite.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5341, "size": 14774 }
open import Prelude open import MJ.Classtable.Core module MJ.LexicalScope c where open import Data.List open import Data.List.Membership.Propositional open import MJ.Types Ctx : Set Ctx = List (Ty c) Var : Ctx → Ty c → Set Var Γ a = a ∈ Γ _+local_ : Ctx → Ty c → Ctx _+local_ Γ a = a ∷ Γ
{ "alphanum_fraction": 0.7064846416, "avg_line_length": 16.2777777778, "ext": "agda", "hexsha": "f137caaccb425cbcc67f3aa6bab14d942197f489", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/LexicalScope.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/LexicalScope.agda", "max_line_length": 46, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/LexicalScope.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 96, "size": 293 }
{-# OPTIONS --no-qualified-instances #-} module JVM.Printer.Printer {t} (T : Set t) where open import Function using (_$_; _∘_) open import Data.Unit open import Data.Nat open import Data.Nat.Show as Nat open import Data.Product open import Data.List as List open import Data.List.Relation.Unary.All open import Relation.Unary hiding (Empty) open import Relation.Unary.PredicateTransformer using (Pt) open import Relation.Binary.PropositionalEquality open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Structures.Syntax open import JVM.Model T open Disjoint using (bags; bags-isMonoid) open import Relation.Ternary.Data.Bigstar open import Relation.Ternary.Construct.Market intf-rel open import Relation.Ternary.Monad.Identity as Id hiding (id-monad; id-functor) open import Relation.Ternary.Monad.State intf-rel open import JVM.Syntax.Labeling T public open import JVM.Printer.Jasmin Names : List T → Set _ Names = All (λ _ → ℕ) LabelNames : Pred Intf _ LabelNames (u ⇅ d) = Names u × Names d PState : Pred Intf _ PState = (λ _ → ℕ × List Stat) ∩ LabelNames counter : ∀ {Φ} → PState Φ → ℕ counter = proj₁ ∘ proj₁ Printer : Pt Intf _ Printer = StateT Id PState open StateTransformer Id {{Id.id-strong}} {PState} public open import Relation.Ternary.Construct.Bag.Properties open import Level module Envs where open import Category.Monad open import Category.Monad.State as S Fresh : Set t → Set _ Fresh = S.State (Lift t ℕ) open RawMonadState (StateMonadState (Lift t ℕ)) public open import Relation.Ternary.Construct.List duplicate as L open import Data.List.Relation.Binary.Permutation.Propositional open import Data.List.Relation.Binary.Permutation.Propositional.Properties fresh : Fresh (Lift _ ℕ) fresh (lift n) = let n' = ℕ.suc n in lift n , lift n' freshNames : ∀ xs → Fresh (Names xs) freshNames [] = return [] freshNames (x ∷ xs) = do lift n ← fresh ns ← freshNames xs return (n ∷ ns) env-split-list : ∀ {xs ys zs} → Names xs → L.Split xs ys zs → Fresh (Names ys × Names zs) env-split-list nxs [] = return ([] , []) env-split-list nxs (consʳ σ) = do lift n ← fresh nys , nzs ← env-split-list nxs σ return (n ∷ nys , n ∷ nzs) env-split-list (nx ∷ nxs) (divide x σ) = do nys , nzs ← env-split-list nxs σ return (nx ∷ nys , nx ∷ nzs) env-split-list (nx ∷ nxs) (consˡ σ) = do nys , nzs ← env-split-list nxs σ return (nys , nx ∷ nzs) env-split-bag : ∀ {xs ys zs} → Names xs → Overlap.BagSplit xs ys zs → Fresh (Names ys × Names zs) env-split-bag nxs (Overlap.hustle ρx ρy ρz σ) = do let nxs' = All-resp-↭ (↭-sym ρx) nxs (nys , nzs) ← env-split-list nxs' σ return (All-resp-↭ ρy nys , All-resp-↭ ρz nzs) splitEnv : ∀ {xs ys zs} → xs ∙ ys ≣ zs → LabelNames zs → Fresh (LabelNames xs × LabelNames ys) splitEnv (ex (sub {e = e} x x₁) (sub {e = e'} x₄ x₅) σ↑ σ↓) (unv , dnv) = do let nu₁' , nu₂' = splitAll (λ ()) σ↑ unv let nd₁' , nd₂' = splitAll (λ dup px → px , px ) σ↓ dnv nse , nu₂ ← env-split-bag nu₂' x₁ nse' , nu₁ ← env-split-bag nu₁' x₅ let nd₁ = joinAll (λ ()) x nd₂' nse let nd₂ = joinAll (λ ()) x₄ nd₁' nse' return ((nu₁ , nd₁) , (nu₂ , nd₂)) module _ where open import Relation.Ternary.Monad lookUp : ∀ {τ} → ∀[ Up (One τ) ⇒ Printer (Empty ℕ) ] lookUp (↑ u) ⟨ supplyᵣ σ ⟩ lift ((n , st) , env) with Envs.splitEnv σ env (lift n) ... | ((lab ∷ [] , []) , env₂) , lift n' = lift (emp lab) ∙⟨ ∙-idˡ ⟩ lift ((n' , st) , env₂) lookDown : ∀ {τ} → ∀[ Down (One τ) ⇒ Printer (Empty ℕ) ] lookDown (↓ u) ⟨ supplyᵣ σ ⟩ lift ((n , st) , env) with Envs.splitEnv σ env (lift n) ... | (([] , lab ∷ []) , env₂) , lift n' = lift (emp lab) ∙⟨ ∙-idˡ ⟩ lift ((n' , st) , env₂) print : Stat → ε[ Printer Emp ] print s ⟨ σ ⟩ lift ((n , st) , env) = lift refl ∙⟨ σ ⟩ lift ((n , s ∷ st) , env) print-label : ∀ {τ} → ∀[ Up (One τ) ⇒ Printer Emp ] print-label l = do emp n ← lookUp l print (label (Nat.show n)) {-# TERMINATING #-} print-labels' : ∀ {τ} → ∀[ Up (Bigstar (One τ)) ⇒ Printer Emp ] print-labels' (↑ emp) = return refl print-labels' (↑ (cons (x ∙⟨ σ ⟩ xs))) = do xs ← ✴-id⁻ʳ ⟨$⟩ (print-label (↑ x) &⟨ ∙-comm $ liftUp σ ⟩ ↑ xs) print-labels' xs where open Disjoint using (bags; bags-isMonoid) print-labels : ∀ {τ} → ∀[ Up (Labeling τ) ⇒ Printer Emp ] print-labels (↑ (x ∙⟨ σ ⟩ xs)) = do xs ← ✴-id⁻ʳ ⟨$⟩ (print-label (↑ x) &⟨ ∙-comm $ liftUp σ ⟩ ↑ xs) print-labels' xs -- give it a kick execPrinter : ∀ {P Φ} → Printer P Φ → List Stat execPrinter pr with pr ⟨ supplyᵣ ∙-idʳ ⟩ proj₁ (initState (lift 0)) where open Envs initState : ∀ {Φ} → Envs.Fresh (● PState (supply Φ)) initState {Φ↑ ⇅ Φ↓} = do ns↑ ← freshNames Φ↑ ns↓ ← freshNames Φ↓ lift n ← get return (lift ((n , []) , (ns↑ , ns↓))) ... | (lift px ∙⟨ σ ⟩ lift ((_ , st) , _)) = reverse st
{ "alphanum_fraction": 0.614203072, "avg_line_length": 33.42, "ext": "agda", "hexsha": "7a1b3868afded9834c68d2405467b034e337a3a9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Printer/Printer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Printer/Printer.agda", "max_line_length": 99, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Printer/Printer.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 1770, "size": 5013 }
{-# OPTIONS --without-K -v 2 #-} module Leftovers.Monad where open import Category.Functor open import Category.Applicative open import Category.Monad open import Level open import Data.Unit open import Data.List import Reflection as TC open import Reflection.TypeChecking.Monad.Instances open import Reflection.Abstraction as Abstraction public using (Abs; abs) open import Reflection.Argument as Argument public using (Arg; arg; Args; vArg; hArg; iArg) open import Reflection.Definition as Definition public using (Definition) open import Reflection.Meta as Meta public using (Meta) open import Reflection.Name as Name public using (Name; Names) open import Reflection.Literal as Literal public using (Literal) open import Reflection.Pattern as Pattern public using (Pattern) open import Reflection.Term as Term public using (Term; Type; Clause; Clauses; Sort) open import Reflection using (ErrorPart ; strErr; termErr ; nameErr) public open import Data.Bool import Reflection.Argument.Relevance as Relevance import Reflection.Argument.Visibility as Visibility import Reflection.Argument.Information as Information open Definition.Definition public open Information.ArgInfo public open Literal.Literal public open Relevance.Relevance public open Term.Term public open Visibility.Visibility public private variable ℓ : Level A : Set ℓ B : Set ℓ record Hole : Set where constructor mkHole field holeMeta : Meta hole : Term context : List (Arg Type) import Relation.Binary.PropositionalEquality as Eq import Relation.Binary.Definitions as D open import Data.Empty using (⊥) EquivHole : ∀ (x y : Hole) → Set EquivHole (mkHole x _ _ ) (mkHole y _ _) = x Eq.≡ y open import Relation.Nullary using (yes ; no) equivDec : D.Decidable EquivHole equivDec (mkHole x _ _) (mkHole y _ _) = x Meta.≟ y where import Reflection.Meta as Meta -- equivDec (mkHole (var x args) _) (mkHole y _) = no (λ z → z) -- equivDec (mkHole (con c args) _) (mkHole y _) = no (λ z → z) -- equivDec (mkHole (def f args) _) (mkHole y _) = no (λ z → z) -- equivDec (mkHole (lam v t) _) (mkHole y _) = no (λ z → z) -- equivDec (mkHole (pat-lam cs args) _) (mkHole y _) = no (λ z → z) -- equivDec (mkHole (pi a b) _) (mkHole y _) = no (λ z → z) -- equivDec (mkHole (Term.sort s) _) (mkHole y _) = no (λ z → z) -- equivDec (mkHole (lit l) _) (mkHole y _) = no (λ z → z) -- equivDec (mkHole unknown _) (mkHole y _) = no (λ z → z) -- equivDec (mkHole (meta x x₁) _) (mkHole (var x₂ args) _) = no (λ z → z) -- equivDec (mkHole (meta x x₁) _) (mkHole (con c args) _) = no (λ z → z) -- equivDec (mkHole (meta x x₁) _) (mkHole (def f args) _) = no (λ z → z) -- equivDec (mkHole (meta x x₁) _) (mkHole (lam v t) _) = no (λ z → z) -- equivDec (mkHole (meta x x₁) _) (mkHole (pat-lam cs args) _) = no (λ z → z) -- equivDec (mkHole (meta x x₁) _) (mkHole (pi a b) _) = no (λ z → z) -- equivDec (mkHole (meta x x₁) _) (mkHole (Term.sort s) _) = no (λ z → z) -- equivDec (mkHole (meta x x₁) _) (mkHole (lit l) _) = no (λ z → z) -- equivDec (mkHole (meta x x₁) _) (mkHole unknown _) = no (λ z → z) open import Category.Monad.State open import Category.Monad.Indexed using (RawIMonad ; RawIMonadPlus) open import Category.Applicative.Indexed using (RawIApplicative ; RawIAlternative) open import Data.Product using (_×_ ; _,_) Leftovers : Set ℓ → Set ℓ Leftovers = StateT (Lift _ (List Hole)) TC.TC leftoversMonad : RawMonad {f = ℓ} Leftovers leftoversMonad = StateTMonad _ tcMonad leftoversApplicative : RawApplicative {f = ℓ} Leftovers leftoversApplicative = RawIMonad.rawIApplicative leftoversMonad leftoversFunctor : RawFunctor {ℓ = ℓ} Leftovers leftoversFunctor = RawIApplicative.rawFunctor leftoversApplicative leftoversMonadZero : RawMonadZero {f = ℓ} Leftovers leftoversMonadZero = StateTMonadZero _ tcMonadZero leftoversMonadPlus : RawMonadPlus {f = ℓ} Leftovers leftoversMonadPlus = StateTMonadPlus _ tcMonadPlus private -- Lift a TC operation into the Leftovers Monad -- WARNING: this will *NOT* track metas declared in the TC operation -- and should only be used for primitive operations liftTC : TC.TC A → Leftovers A liftTC comp s = TC.bindTC comp λ a → TC.return (a , s) liftTCA1 : (B → TC.TC A) → B → Leftovers A liftTCA1 comp x = liftTC (comp x) liftTCA2 : ∀ {A B C : Set ℓ} → (C → B → TC.TC A) → C → B → Leftovers A liftTCA2 comp x y = liftTC (comp x y) ------------------------------------------------------------------------ -- Monad syntax returnLeftovers : A → Leftovers A returnLeftovers = RawMonad.return leftoversMonad bindLeftovers : ∀ {A B : Set ℓ } -> Leftovers A → (A → Leftovers B) → Leftovers B bindLeftovers a f = RawMonad._=<<_ leftoversMonad f a pure : A → Leftovers A pure = returnLeftovers {-# INLINE pure #-} infixl 3 _<|>_ _<|>_ : Leftovers A → Leftovers A → Leftovers A _<|>_ = RawIAlternative._∣_ (RawIMonadPlus.alternative leftoversMonadPlus) {-# INLINE _<|>_ #-} infixl 1 _>>=_ _>>_ _<&>_ _>>=_ : ∀ {A B : Set ℓ} → Leftovers A → (A → Leftovers B) → Leftovers B _>>=_ = bindLeftovers {-# INLINE _>>=_ #-} _>>_ : ∀ {A B : Set ℓ} → Leftovers A → Leftovers B → Leftovers B xs >> ys = bindLeftovers xs (λ _ → ys) {-# INLINE _>>_ #-} infixl 4 _<$>_ _<*>_ _<$_ _<*>_ : ∀ {A B : Set ℓ} → Leftovers (A → B) → Leftovers A → Leftovers B fs <*> xs = bindLeftovers fs (λ f → bindLeftovers xs (λ x → returnLeftovers (f x))) {-# INLINE _<*>_ #-} _<$>_ : ∀ {A B : Set ℓ} →(A → B) → Leftovers A → Leftovers B f <$> xs = bindLeftovers xs (λ x → returnLeftovers (f x)) {-# INLINE _<$>_ #-} _<$_ : ∀ {A B : Set ℓ} →A → Leftovers B → Leftovers A x <$ xs = bindLeftovers xs (λ _ → returnLeftovers x) {-# INLINE _<$_ #-} _<&>_ : ∀ {A B : Set ℓ} → Leftovers A → (A → B) → Leftovers B xs <&> f = bindLeftovers xs (λ x → returnLeftovers (f x)) {-# INLINE _<&>_ #-} logHole : Hole → Leftovers ⊤ logHole hole = do RawMonadState.modify (StateTMonadState _ tcMonad) λ { (lift lst) → lift (hole ∷ lst)} pure tt -- logHole hole = RawMonadState.modify (StateTMonadState _ tcMonad) -- (λ {lst → ?}) -- pure tt freshMeta : Type → Leftovers Term freshMeta t = do theMeta ← liftTC (TC.newMeta t) liftTC (TC.debugPrint "freshMeta" 2 (strErr "Fresh meta " ∷ termErr theMeta ∷ strErr " with type " ∷ termErr t ∷ [])) ctx ← liftTC TC.getContext m ← liftTC (getMeta theMeta) logHole (mkHole m theMeta ctx) pure theMeta where getMeta : Term → TC.TC Meta getMeta (meta m _ ) = TC.return m getMeta t = (TC.typeError (strErr "Foo" ∷ [])) open import Data.String -- Re-export all of the TC functions unify : Term → Term → Leftovers ⊤ unify = liftTCA2 TC.unify typeError : ∀ {A : Set ℓ} → List TC.ErrorPart → Leftovers A typeError x = liftTC (TC.typeError x) inferType : Term → Leftovers Type inferType = liftTCA1 TC.inferType checkType : Term → Type → Leftovers Term checkType = liftTCA2 TC.checkType normalise : Term → Leftovers Term normalise = liftTCA1 TC.normalise reduce : Term → Leftovers Term reduce = liftTCA1 TC.reduce catchLeftovers : ∀ {A : Set ℓ} → Leftovers A → Leftovers A → Leftovers A catchLeftovers comp fallback s = --We revert any state changes if we have to go to the fallback TC.catchTC (comp s) (fallback s) quoteLeftovers : ∀ {A : Set ℓ} → A → Leftovers Term quoteLeftovers = liftTCA1 TC.quoteTC unquoteLeftovers : ∀ {A : Set ℓ} → Term → Leftovers A unquoteLeftovers = liftTCA1 TC.unquoteTC getContext : Leftovers (List (Arg Type)) getContext = liftTC TC.getContext extendContext : ∀ {A : Set ℓ} → Arg Type → Leftovers A → Leftovers A extendContext x comp s = TC.extendContext x (comp s) extendContexts : ∀ {A : Set ℓ} → List (Arg Type) → Leftovers A → Leftovers A extendContexts [] x = x extendContexts (h ∷ t) x = extendContext h (extendContexts t x) inContext : ∀ {A : Set ℓ} → List (Arg Type) → Leftovers A → Leftovers A inContext ctx comp s = TC.inContext ctx (comp s) freshName : String → Leftovers Name freshName = liftTCA1 TC.freshName declareDef : Arg Name → Type → Leftovers ⊤ declareDef = liftTCA2 TC.declareDef declarePostulate : Arg Name → Type → Leftovers ⊤ declarePostulate = liftTCA2 TC.declarePostulate defineFun : Name → List Clause → Leftovers ⊤ defineFun = liftTCA2 TC.defineFun getType : Name → Leftovers Type getType = liftTCA1 TC.getType getDefinition : Name → Leftovers Definition getDefinition = liftTCA1 TC.getDefinition blockOnMeta : ∀ {A : Set ℓ} → Meta → Leftovers A blockOnMeta = liftTCA1 TC.blockOnMeta --TODO: is there state stuff to do here? commitLeftovers : Leftovers ⊤ commitLeftovers = liftTC TC.commitTC isMacro : Name → Leftovers Bool isMacro = liftTCA1 TC.isMacro open import Data.Nat -- If the argument is 'true' makes the following primitives also normalise -- their results: inferType, checkType, quoteLeftovers, getType, and getContext withNormalisation : ∀ {a} {A : Set a} → Bool → Leftovers A → Leftovers A withNormalisation flag comp s = TC.withNormalisation flag (comp s) -- Prints the third argument if the corresponding verbosity level is turned -- on (with the -v flag to Agda). debugPrint : String → ℕ → List TC.ErrorPart → Leftovers ⊤ debugPrint s n err = liftTC (TC.debugPrint s n err) -- Fail if the given computation gives rise to new, unsolved -- "blocking" constraints. noConstraints : ∀ {a} {A : Set a} → Leftovers A → Leftovers A noConstraints comp s = TC.noConstraints (comp s) -- Run the given Leftovers action and return the first component. Resets to -- the old Leftovers state if the second component is 'false', or keep the -- new Leftovers state if it is 'true'. runSpeculative : ∀ {a} {A : Set a} → Leftovers (A × Bool) → Leftovers A runSpeculative comp oldState = TC.bindTC (TC.runSpeculative (TC.bindTC (comp oldState) λ{((a , flag) , midState) → TC.return (((a , flag) , midState) , flag)})) λ { -- Only keep state if the computation succeeds ((a , false) , newState) → TC.return ((a , oldState)) ; ((a , true) , newState) → TC.return (a , newState)} runLeftovers : Leftovers A → TC.TC (A × List Hole) runLeftovers comp = TC.bindTC (comp (lift [])) ((λ { (a , lift holes) → TC.return (a , holes) }) )
{ "alphanum_fraction": 0.6749588617, "avg_line_length": 33.7614379085, "ext": "agda", "hexsha": "dba5c723a1974fe7b18dce8e7889f947ecfb631c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/AgdaLeftovers", "max_forks_repo_path": "src/Leftovers/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/AgdaLeftovers", "max_issues_repo_path": "src/Leftovers/Monad.agda", "max_line_length": 123, "max_stars_count": null, "max_stars_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/AgdaLeftovers", "max_stars_repo_path": "src/Leftovers/Monad.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3226, "size": 10331 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.Higher where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.Pointed open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Homotopy.Connected open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Higher open import Cubical.Algebra.Group.EilenbergMacLane1 open import Cubical.HITs.EilenbergMacLane1 open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Meta.Isomorphism open import Cubical.DStructures.Structures.Universe open import Cubical.DStructures.Structures.Type open import Cubical.DStructures.Structures.Group open import Cubical.DStructures.Structures.Constant private variable ℓ ℓ' : Level 𝒮ᴰ-connected : {ℓ : Level} (k : ℕ) → URGStrᴰ (𝒮-universe {ℓ}) (isConnected k) ℓ-zero 𝒮ᴰ-connected k = Subtype→Sub-𝒮ᴰ (λ A → isConnected k A , isPropIsContr) 𝒮-universe 𝒮ᴰ-truncated : {ℓ : Level} (n : ℕ) → URGStrᴰ (𝒮-universe {ℓ}) (isOfHLevel n) ℓ-zero 𝒮ᴰ-truncated n = Subtype→Sub-𝒮ᴰ (λ A → isOfHLevel n A , isPropIsOfHLevel n) 𝒮-universe 𝒮ᴰ-BGroup : (n k : ℕ) → URGStrᴰ (𝒮-universe {ℓ}) (λ A → A × (isConnected (k + 1) A) × (isOfHLevel (n + k + 2) A)) ℓ 𝒮ᴰ-BGroup n k = combine-𝒮ᴰ 𝒮ᴰ-pointed (combine-𝒮ᴰ (𝒮ᴰ-connected (k + 1)) (𝒮ᴰ-truncated (n + k + 2))) 𝒮-BGroup : (n k : ℕ) → URGStr (Σ[ A ∈ Type ℓ ] A × (isConnected (k + 1) A) × (isOfHLevel (n + k + 2) A)) ℓ 𝒮-BGroup n k = ∫⟨ 𝒮-universe ⟩ 𝒮ᴰ-BGroup n k 𝒮-1BGroup : URGStr 1BGroupΣ ℓ 𝒮-1BGroup = 𝒮-BGroup 0 1 𝒮-Iso-BGroup-Group : {ℓ : Level} → 𝒮-PIso (𝒮-group ℓ) 𝒮-1BGroup RelIso.fun 𝒮-Iso-BGroup-Group G = EM₁ G , embase , EM₁Connected G , EM₁Groupoid G RelIso.inv 𝒮-Iso-BGroup-Group = π₁-1BGroupΣ RelIso.leftInv 𝒮-Iso-BGroup-Group = π₁EM₁≃ RelIso.rightInv 𝒮-Iso-BGroup-Group BG = basetype-≅ , basepoint-≅ , tt , tt where -- notation type = fst BG * = fst (snd BG) conn = fst (snd (snd BG)) trunc = snd (snd (snd BG)) BG' = (bgroup (type , *) conn trunc) π₁BG : Group π₁BG = π₁-1BGroupΣ BG EM₁π₁BG : 1BGroupΣ EM₁π₁BG = EM₁ π₁BG , embase , EM₁Connected π₁BG , EM₁Groupoid π₁BG -- equivalences basetype-≅ : EM₁ π₁BG ≃ type fst basetype-≅ = EM₁-functor-lInv-function π₁BG BG' (GroupEquiv.hom (π₁EM₁≃ π₁BG)) snd basetype-≅ = EM₁-functor-lInv-onIso-isEquiv π₁BG BG' (π₁EM₁≃ π₁BG) basepoint-≅ : * ≡ * basepoint-≅ = refl 𝒮ᴰ-BGroupHom : (n k : ℕ) → URGStrᴰ (𝒮-BGroup {ℓ} n k ×𝒮 𝒮-BGroup {ℓ'} n k) (λ (BG , BH) → BGroupHomΣ BG BH) (ℓ-max ℓ ℓ') 𝒮ᴰ-BGroupHom n k = make-𝒮ᴰ (λ {(BG , BH)} {(BG' , BH')} f (((eᴳ , _) , eᴳ-pt , _), ((eᴴ , _) , eᴴ-pt , _)) f' → ((eᴴ , eᴴ-pt) ∘∙ f) ∙∼ (f' ∘∙ (eᴳ , eᴳ-pt))) (λ {(BG , BH)} f → q {(BG , BH)} f) contrSingl where module _ {(BG , BH) : BGroupΣ n k × BGroupΣ n k} (f : BGroupHomΣ BG BH) where q : (id∙ (baseΣ BH) ∘∙ f) ∙∼ (f ∘∙ id∙ (baseΣ BG)) q = funExt∙⁻ (id∙ (baseΣ BH) ∘∙ f ≡⟨ ∘∙-idʳ f ⟩ f ≡⟨ sym (∘∙-idˡ f) ⟩ (f ∘∙ id∙ (baseΣ BG)) ∎) module _ ((BG , BH) : BGroupΣ n k × BGroupΣ n k) (f : BGroupHomΣ BG BH) where contrSingl : isContr (Σ[ f' ∈ BGroupHomΣ BG BH ] ((id∙ (baseΣ BH) ∘∙ f) ∙∼ (f' ∘∙ id∙ (baseΣ BG)))) contrSingl = isContrRespectEquiv (Σ-cong-equiv-snd (λ f' → f ≡ f' ≃⟨ invEquiv (funExt∙≃ f f') ⟩ f ∙∼ f' ≃⟨ pathToEquiv (cong (_∙∼ f') (sym (∘∙-idʳ f)) ∙ cong ((id∙ (baseΣ BH) ∘∙ f) ∙∼_) (sym (∘∙-idˡ f'))) ⟩ (id∙ (baseΣ BH) ∘∙ f) ∙∼ (f' ∘∙ id∙ (baseΣ BG)) ■)) (isContrSingl f)
{ "alphanum_fraction": 0.5324015248, "avg_line_length": 37.776, "ext": "agda", "hexsha": "0e03e0a0b8e1f38f380d61fc2c5d20885d97859e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Structures/Higher.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Structures/Higher.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Structures/Higher.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1773, "size": 4722 }
open import Agda.Primitive using (lzero; lsuc; _⊔_ ;Level) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; setoid; cong; trans) import Function.Equality open import Relation.Binary using (Setoid) import Categories.Category import Categories.Functor import Categories.Category.Instance.Setoids import Categories.Monad.Relative import Categories.Category.Equivalence import Categories.Category.Cocartesian import Categories.Category.Construction.Functors import Categories.NaturalTransformation.Equivalence import Relation.Binary.Core import SecondOrder.Arity import SecondOrder.Signature import SecondOrder.Metavariable import SecondOrder.VRenaming import SecondOrder.MRenaming import SecondOrder.Term import SecondOrder.IndexedCategory import SecondOrder.RelativeKleisli import SecondOrder.Substitution module SecondOrder.VRelativeMonad {ℓ} {𝔸 : SecondOrder.Arity.Arity} (Σ : SecondOrder.Signature.Signature ℓ 𝔸) where open SecondOrder.Signature.Signature Σ open SecondOrder.Metavariable Σ open SecondOrder.Term Σ open SecondOrder.VRenaming Σ open SecondOrder.MRenaming Σ open SecondOrder.Substitution Σ -- TERMS FORM A RELATIVE MONAD -- (FOR A FUNCTOR WHOSE DOMAIN IS THE -- CATEGORY OF VARIABLE CONTEXTS AND RENAMINGS) module _ where open Categories.Category open Categories.Functor using (Functor) open Categories.Category.Instance.Setoids open Categories.Monad.Relative open Function.Equality using () renaming (setoid to Π-setoid) open Categories.Category.Equivalence using (StrongEquivalence) open import SecondOrder.IndexedCategory open import SecondOrder.RelativeKleisli open Categories.Category.Construction.Functors open Categories.NaturalTransformation.Equivalence open Relation.Binary.Core hiding (_⇒_) -- The carrier of the codomain of Jⱽ (morally ∀ Γ → A ∈ Δ ,, Γ) record Codomain-Jⱽ-Elt : Set ((lsuc ℓ)) where open Category (Setoids ℓ ℓ) open Setoid field F₀ : VContext → MContext → Obj F₁ : ∀ {Θ ψ Δ Ξ} (ρ : Δ ⇒ᵛ Ξ) (ι : Θ ⇒ᵐ ψ) → (F₀ Δ Θ) ⇒ (F₀ Ξ ψ) identity : ∀ {Θ Δ} → Category._≈_ (Setoids ℓ ℓ) (F₁ (idᵛ {Δ}) (idᵐ {Θ})) (id {F₀ Δ Θ}) homomorphism : ∀ {Θ ψ Ω Γ Δ Ξ} {ρ : Γ ⇒ᵛ Δ} {ι : Θ ⇒ᵐ ψ} {τ : Δ ⇒ᵛ Ξ} {μ : ψ ⇒ᵐ Ω} → Category._≈_ (Setoids ℓ ℓ) (F₁ (τ ∘ᵛ ρ) (μ ∘ᵐ ι)) ((F₁ τ μ) ∘ (F₁ ρ ι)) F-resp-≈ : ∀ {Θ ψ Γ Δ} {ρ τ : Γ ⇒ᵛ Δ} {ι μ : Θ ⇒ᵐ ψ} → (ρ ≡ᵛ τ) → (ι ≡ᵐ μ) → (Category._≈_ (Setoids ℓ ℓ) (F₁ ρ ι) (F₁ τ μ)) -- Transformation for Codomain-Jⱽ (analogue to natural transformations) record NaturalTransformation-Jⱽ (Fⱽ Gⱽ : Codomain-Jⱽ-Elt) : Set (lsuc ℓ) where private module Fⱽ = Codomain-Jⱽ-Elt Fⱽ module Gⱽ = Codomain-Jⱽ-Elt Gⱽ open Fⱽ using (F₀; F₁) open Category (Setoids ℓ ℓ) field η : ∀ Θ Γ → (F₀ Γ Θ) ⇒ (Gⱽ.F₀ Γ Θ) commute : ∀ {Θ ψ Γ Δ} (ρ : Γ ⇒ᵛ Δ) (ι : Θ ⇒ᵐ ψ) → Category._≈_ (Setoids ℓ ℓ) ((η ψ Δ) ∘ (F₁ ρ ι)) ((Gⱽ.F₁ ρ ι) ∘ (η Θ Γ)) -- ignore-MCtx : ∀ Θ Ω Γ → (∀ (x : F₀ Γ Θ)) open NaturalTransformation-Jⱽ -- Equivalence of NaturalTransformation-Jⱽ (analogue to the one -- of the natural transformations) infix 4 _≃Jⱽ_ _≃Jⱽ_ : ∀ {Fⱽ Gⱽ : Codomain-Jⱽ-Elt} → Rel (NaturalTransformation-Jⱽ Fⱽ Gⱽ) ℓ 𝒩 ≃Jⱽ ℳ = ∀ {Θ Γ} → Category._≈_ (Setoids ℓ ℓ) (η 𝒩 Θ Γ) (η ℳ Θ Γ) -- Identity transformation analogue to the one -- of the natural transformations, for NaturalTransformation-Jⱽ idN-Jⱽ : ∀ {Fⱽ : Codomain-Jⱽ-Elt} → NaturalTransformation-Jⱽ Fⱽ Fⱽ idN-Jⱽ {Fⱽ} = record { η = λ Θ Γ → record { _⟨$⟩_ = λ x → x ; cong = λ x → x } ; commute = λ {Θ} {ψ} {Γ} {Δ} ρ ι ξ → Codomain-Jⱽ-Elt.F-resp-≈ Fⱽ {Θ} {ψ} {Γ} {Δ} {ρ} {ρ} {ι} {ι} (λ x₁ → refl) (λ M → refl) ξ } -- Composition of NaturalTransformation-Jⱽ (analogue to the one -- of the natural transformations) _∘-Jⱽ_ : ∀ {Fⱽ Gⱽ Hⱽ : Codomain-Jⱽ-Elt} (𝒩 : NaturalTransformation-Jⱽ Gⱽ Hⱽ) (ℳ : NaturalTransformation-Jⱽ Fⱽ Gⱽ) → NaturalTransformation-Jⱽ Fⱽ Hⱽ _∘-Jⱽ_ {Fⱽ} {Gⱽ} {Hⱽ} 𝒩 ℳ = let open Category (Setoids ℓ ℓ) in let open NaturalTransformation-Jⱽ in let open Codomain-Jⱽ-Elt in record { η = λ Θ Γ → η 𝒩 Θ Γ ∘ η ℳ Θ Γ ; commute = λ {Θ} {ψ} {Γ} {Δ} ρ ι → let open HomReasoning {F₀ Fⱽ Γ Θ} {F₀ Hⱽ Δ ψ} in begin (Category._∘_ (Setoids ℓ ℓ) (η {Gⱽ} {Hⱽ} 𝒩 ψ Δ) ((η {Fⱽ} {Gⱽ} ℳ ψ Δ) ∘ (F₁ Fⱽ ρ ι))) ≈⟨ assoc {f = F₁ Fⱽ ρ ι} {g = η ℳ ψ Δ} {h = η 𝒩 ψ Δ} ⟩ (η 𝒩 ψ Δ ∘ (η ℳ ψ Δ) ∘ (F₁ Fⱽ ρ ι)) ≈⟨ refl⟩∘⟨_ {f = η 𝒩 ψ Δ} {g = (η ℳ ψ Δ) ∘ (F₁ Fⱽ ρ ι)} {i = (F₁ Gⱽ ρ ι) ∘ (η ℳ Θ Γ)} (commute ℳ ρ ι) ⟩ (η 𝒩 ψ Δ ∘ ((F₁ Gⱽ ρ ι) ∘ (η ℳ Θ Γ))) ≈⟨ sym-assoc {f = η ℳ Θ Γ} {g = F₁ Gⱽ ρ ι} {h = η 𝒩 ψ Δ}⟩ ((η 𝒩 ψ Δ) ∘ (F₁ Gⱽ ρ ι)) ∘ (η ℳ Θ Γ) ≈⟨ _⟩∘⟨refl {f = (η 𝒩 ψ Δ) ∘ (F₁ Gⱽ ρ ι)} {h = (F₁ Hⱽ ρ ι) ∘ (η 𝒩 Θ Γ)} {g = η ℳ Θ Γ} (commute 𝒩 ρ ι) ⟩ (((F₁ Hⱽ ρ ι) ∘ (η 𝒩 Θ Γ)) ∘ (η ℳ Θ Γ)) ≈⟨ assoc {f = η ℳ Θ Γ} {g = η 𝒩 Θ Γ} {h = F₁ Hⱽ ρ ι} ⟩ (((F₁ Hⱽ ρ ι) ∘ (η 𝒩 Θ Γ)) ∘ (η ℳ Θ Γ)) ∎} -- Proof that the category of Codomain-Jⱽ and NaturalTransformation-Jⱽ is indeed a category -- associativity of composition -- (surprisingly enough, the proof of "sym-assoc-Jⱽ" is exactly the same : -- Is there a problem in the definitions ?) assoc-Jⱽ : {A B C D : Codomain-Jⱽ-Elt} {ℒ : NaturalTransformation-Jⱽ A B} {ℳ : NaturalTransformation-Jⱽ B C} {𝒩 : NaturalTransformation-Jⱽ C D} → ((𝒩 ∘-Jⱽ ℳ) ∘-Jⱽ ℒ) ≃Jⱽ (𝒩 ∘-Jⱽ (ℳ ∘-Jⱽ ℒ)) assoc-Jⱽ {A} {B} {C} {D} {ℒ} {ℳ} {𝒩} {Θ} {Γ} ξ = Function.Equality.Π.cong (η 𝒩 Θ Γ) (Function.Equality.Π.cong (η ℳ Θ Γ) (Function.Equality.cong (η ℒ Θ Γ) ξ)) -- identity is identity identityˡ-Jⱽ : {A B : Codomain-Jⱽ-Elt} {𝒩 : NaturalTransformation-Jⱽ A B} → (idN-Jⱽ ∘-Jⱽ 𝒩) ≃Jⱽ 𝒩 identityˡ-Jⱽ {𝒩 = 𝒩} {Θ = Θ} {Γ = Γ} ξ = Function.Equality.cong (η 𝒩 Θ Γ) ξ -- Codomain of Jⱽ (the category with Codomain-Jⱽ-Elt as objects and NaturalTransformation-Jⱽ as maps) Codomain-Jⱽ : Category (lsuc ℓ) (lsuc ℓ) ℓ Codomain-Jⱽ = record { Obj = Codomain-Jⱽ-Elt ; _⇒_ = NaturalTransformation-Jⱽ ; _≈_ = _≃Jⱽ_ ; id = idN-Jⱽ ; _∘_ = _∘-Jⱽ_ ; assoc = λ {Fⱽ} {Gⱽ} {Hⱽ} {Kⱽ} {𝒩} {ℳ} {ℒ} → assoc-Jⱽ {ℒ = 𝒩} {ℳ = ℳ} {𝒩 = ℒ} ; sym-assoc = λ {Fⱽ} {Gⱽ} {Hⱽ} {Kⱽ} {𝒩} {ℳ} {ℒ} → assoc-Jⱽ {ℒ = 𝒩} {ℳ = ℳ} {𝒩 = ℒ} ; identityˡ = λ {Fⱽ} {Gⱽ} {𝒩} → identityˡ-Jⱽ {𝒩 = 𝒩} ; identityʳ = λ {Fⱽ} {Gⱽ} {𝒩} → identityˡ-Jⱽ {𝒩 = 𝒩} ; identity² = λ {Fⱽ} ξ → ξ ; equiv = λ {Fⱽ} {Gⱽ} → record { refl = λ {𝒩 = 𝒩} {Θ = Θ} {Γ = Γ} {x} {y} ξ → Function.Equality.cong (η 𝒩 Θ Γ) ξ ; sym = λ {𝒩} {ℳ} ξᴺ {Θ} {Γ} ξ → Category.Equiv.sym (Setoids ℓ ℓ) {_} {_} {η 𝒩 Θ Γ} {η ℳ Θ Γ} ξᴺ ξ ; trans = λ {𝒩} {ℳ} {ℒ} ξᴺ₂ ξᴺ₁ {Θ} {Γ} ξ → Category.Equiv.trans (Setoids ℓ ℓ) {_} {_} {η 𝒩 Θ Γ} {η ℳ Θ Γ} {η ℒ Θ Γ} ξᴺ₂ ξᴺ₁ ξ} ; ∘-resp-≈ = λ {Fⱽ} {Gⱽ} {Hⱽ} {𝒩} {ℳ} {ℒ} {𝒦} ξᴺ₁ ξᴺ₂ {Θ} {Γ} ξ → Category.∘-resp-≈ (Setoids ℓ ℓ) {_} {_} {_} {η 𝒩 Θ Γ} {η ℳ Θ Γ} {η ℒ Θ Γ} {η 𝒦 Θ Γ} ξᴺ₁ ξᴺ₂ ξ } -- The embedding of contexts into setoids indexed by sorts, metavariable telescope and variable telescope Jⱽ : Functor VContexts (IndexedCategory sort Codomain-Jⱽ) Jⱽ = record { F₀ = λ Γ A → record { F₀ = λ Δ Θ → setoid (A ∈ (Γ ,, Δ)) ; F₁ = λ ρ ι → record { _⟨$⟩_ = [ inlᵛ , inrᵛ ∘ᵛ ρ ]ᵛ ; cong = λ {x} {y} ξ → ρ-resp-≡ {ρ = [ var-inl , var-inr ∘ᵛ ρ ]ᵛ} ξ} ; identity = λ {Θ} {Δ} {x} ξ → trans (idᵛ+idᵛ x) ξ ; homomorphism = λ {Θ} {ψ} {Ω} {Δ} {Ξ} {Λ} {ρ} {ι} {τ} {μ} {x} {y} ξ → trans (ʳ⇑ᵛ-resp-∘ᵛ x) (ρ-resp-≡ {ρ = [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ} (ρ-resp-≡ {ρ = [ var-inl , (λ x₁ → var-inr (ρ x₁)) ]ᵛ} ξ)) ; F-resp-≈ = λ {Θ} {ψ} {Δ} {Ξ} {ρ} {τ} {ι} {μ} ξᵛ ξᵐ {x} {y} ξ → trans ([,]ᵛ-resp-≡ᵛ (λ x₁ → refl) (∘ᵛ-resp-≡ᵛ {τ₁ = λ x₁ → var-inr x₁} (λ x₁ → refl) λ x₁ → ξᵛ x₁) x) (ρ-resp-≡ {ρ = [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ} ξ) } ; F₁ = λ ρ A → record { η = λ Θ Γ → record { _⟨$⟩_ = ⇑ᵛ ρ ; cong = cong (⇑ᵛ ρ) } ; commute = λ τ ι {x} ξ → trans (uniqueᵛ² {τ = [ (λ x₁ → var-inl (ρ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ ∘ᵛ [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ} {σ = [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ ∘ᵛ [ (λ x₁ → var-inl (ρ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ} (λ x₁ → refl) (λ x₁ → refl) x) (ρ-resp-≡ {ρ = [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ ∘ᵛ [ (λ x₁ → var-inl (ρ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ} ξ)} ; identity = λ A {Θ} {Γ} {x} ξ → trans (idᵛ+idᵛ x) ξ ; homomorphism = λ {Δ} {Ξ} {Λ} {ρ} {τ} A {_} {_} {x} ξ → trans (uniqueᵛ² {τ = [ (λ x₁ → var-inl (τ (ρ x₁))) , (λ x₁ → var-inr x₁) ]ᵛ} {σ = [ (λ x₁ → var-inl (τ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ ∘ᵛ [ (λ x₁ → var-inl (ρ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ} (λ x₁ → refl) (λ x₁ → refl) x) (ρ-resp-≡ {ρ = [ (λ x₁ → var-inl (τ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ ∘ᵛ [ (λ x₁ → var-inl (ρ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ } ξ) ; F-resp-≈ = λ {_} {_} {ρ} {τ} ξρ A {_} {_} {x} {y} ξ → trans (([,]ᵛ-resp-≡ᵛ {ρ₁ = λ x₁ → var-inl (ρ x₁)} {τ₁ = var-inr} (λ x₁ → ∘ᵛ-resp-≡ᵛ {τ₁ = var-inl} (λ x₃ → refl) ξρ x₁) (λ x₁ → refl) x)) (ρ-resp-≡ {ρ = ⇑ᵛ τ} ξ) } factor-empty-ctx : ∀ {Θ Ω Γ Δ A} (x : Setoid.Carrier ((Codomain-Jⱽ-Elt.F₀((Categories.Functor.Functor.F₀ Jⱽ) Γ A)) Δ Θ)) → x ≡ ( Function.Equality._⟨$⟩_ ((NaturalTransformation-Jⱽ.η ((Categories.Functor.Functor.F₁ Jⱽ) idᵛ A)) Ω Δ) x) factor-empty-ctx (var-inl x) = refl factor-empty-ctx (var-inr x) = refl -- The relative monad over Jⱽ module _ {Θ : MContext} where open Categories.Category open Categories.Functor using (Functor) open Categories.Category.Instance.Setoids open Categories.Category.Category (Setoids ℓ ℓ) open Categories.Monad.Relative open Function.Equality using () renaming (setoid to Π-setoid) open Categories.Category.Equivalence using (StrongEquivalence) open import SecondOrder.IndexedCategory open import SecondOrder.RelativeKleisli open NaturalTransformation-Jⱽ open Function.Equality using (_⟨$⟩_) renaming (cong to func-cong) open import Relation.Binary.Reasoning.MultiSetoid -- Setoids≈-⟨$⟩ : ∀ {From To} (f g : From Function.Equality.⟶ To) → (Category._≈_ (Setoids ℓ ℓ) f g) → (∀ (x : Setoid.Carrier From) → Setoid._≈_ To (f ⟨$⟩ x) (g ⟨$⟩ x)) -- Setoids≈-⟨$⟩ = {!!} VMonad : Monad Jⱽ Codomain-Jⱽ-Elt.F₀ (Monad.F₀ VMonad Γ A) Δ ψ = Term-setoid Θ (Γ ,, Δ) A _⟨$⟩_ (Codomain-Jⱽ-Elt.F₁ (Monad.F₀ VMonad Γ A) ρ ι) = [ ʳ⇑ᵛ ρ ]ᵛ_ func-cong (Codomain-Jⱽ-Elt.F₁ (Monad.F₀ VMonad Γ A) ρ ι) ξ = []ᵛ-resp-≈ ξ Codomain-Jⱽ-Elt.identity (Monad.F₀ VMonad Γ A) ξ = ≈-trans ([]ᵛ-resp-≡ᵛ idᵛ+idᵛ) (≈-trans [idᵛ] ξ) Codomain-Jⱽ-Elt.homomorphism (Monad.F₀ VMonad Γ A) {ρ = ρ} {ι = ι} {τ = τ} {μ = μ} {x = x} {y = y} ξ = begin⟨ Term-setoid Θ _ _ ⟩ [ ʳ⇑ᵛ (τ ∘ᵛ ρ) ]ᵛ x ≈⟨ []ᵛ-resp-≈ ξ ⟩ [ ʳ⇑ᵛ (τ ∘ᵛ ρ) ]ᵛ y ≈⟨ []ᵛ-resp-≡ᵛ (λ x₁ → uniqueᵛ² {τ = [ (λ x₂ → var-inl x₂) , (λ x₂ → var-inr (τ (ρ x₂))) ]ᵛ} {σ = σ' } (λ x₂ → refl) (λ x₂ → refl) x₁) ⟩ [ σ' ]ᵛ y ≈⟨ [∘ᵛ] ⟩ ((Codomain-Jⱽ-Elt.F₁ (Monad.F₀ VMonad Γ A) τ μ ∘ Codomain-Jⱽ-Elt.F₁ (Monad.F₀ VMonad Γ A) ρ ι) ⟨$⟩ y) ∎ where σ' : (Γ ,, _) ⇒ᵛ Γ ,, _ σ' = [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ ∘ᵛ [ var-inl , (λ x₁ → var-inr (ρ x₁)) ]ᵛ Codomain-Jⱽ-Elt.F-resp-≈ (Monad.F₀ VMonad Γ A) {ψ} {Ω} {Δ} {Ξ} {ρ} {τ} {ι} {μ} ξᵛ ξᵐ {t} {u} ξ = begin⟨ Term-setoid Θ _ _ ⟩ ([ [ (λ x₁ → var-inl x₁) , (λ x₁ → var-inr (ρ x₁)) ]ᵛ ]ᵛ t) ≈⟨ []ᵛ-resp-≈ ξ ⟩ ([ [ (λ x₁ → var-inl x₁) , (λ x₁ → var-inr (ρ x₁)) ]ᵛ ]ᵛ u) ≈⟨ []ᵛ-resp-≡ᵛ ([,]ᵛ-resp-≡ᵛ (λ x → refl) λ x → ρ-resp-≡ {ρ = var-inr} (ξᵛ x)) ⟩ ([ [ (λ x₁ → var-inl x₁) , (λ x₁ → var-inr (τ x₁)) ]ᵛ ]ᵛ u) ∎ _⟨$⟩_ (η (Monad.unit VMonad A) ψ Γ) = tm-var func-cong (η (Monad.unit VMonad A) ψ Γ) ξ = congˢ-var {σ = tm-var} ξ commute (Monad.unit VMonad A) ρ ι ξ = congˢ-var {σ = tm-var} (ρ-resp-≡ {ρ = [ var-inl , (λ x₁ → var-inr (ρ x₁)) ]ᵛ} ξ) _⟨$⟩_ (η (Monad.extend VMonad {Δ} {Ξ} σ A) ψ Γ) t = [ (λ {B} x → η (σ B) ψ Γ ⟨$⟩ x) ]ˢ t func-cong (η (Monad.extend VMonad σ A) ψ Γ) = []ˢ-resp-≈ ((λ {B} x → η (σ B) ψ Γ ⟨$⟩ x) ) commute (Monad.extend VMonad {Υ} {Ω} σ A) {Ξ} {Ψ} {Γ} {Δ} ρ ι {x} {y} x≈y = begin⟨ Term-setoid Θ _ _ ⟩ ([ (λ {B} → _⟨$⟩_ (η (σ B) Ψ Δ)) ]ˢ ([ [ (λ x₁ → var-inl x₁) , (λ x₁ → var-inr (ρ x₁)) ]ᵛ ]ᵛ x)) ≈⟨ ≈-sym ([ˢ∘ᵛ] x) ⟩ ([(λ {B} → _⟨$⟩_ (η (σ B) Ψ Δ)) ˢ∘ᵛ [ (λ x₁ → var-inl x₁) , (λ x₁ → var-inr (ρ x₁)) ]ᵛ ]ˢ x) ≈⟨ {!!} ⟩ {!!} ≈⟨ {!!} ⟩ ([ [ (λ x₁ → var-inl x₁) , (λ x₁ → var-inr (ρ x₁)) ]ᵛ ]ᵛ ([ (λ {B} → _⟨$⟩_ (η (σ B) Ξ Γ)) ]ˢ y)) ∎ -- where -- is-subst : ∀ (𝒩 : NaturalTransformation-Jⱽ (Jⱽ Γ A) (Monad.F₀ VMonad Ω i)) → Σ -- begin⟨ Term-setoid Θ _ _ ⟩ -- (η (Monad.extend VMonad σ A) Ψ Δ ∘ -- Codomain-Jⱽ-Elt.F₁ (Monad.F₀ VMonad Υ A) ρ ι -- ⟨$⟩ x) -- ≈⟨ ≈-sym ([ˢ∘ᵛ] x) ⟩ -- ([ (λ {B} x₁ → η (σ B) Θ Δ ⟨$⟩ x₁) ˢ∘ᵛ (ʳ⇑ᵛ ρ) ]ˢ x) ≈⟨ []ˢ-resp-≈ ((λ {B} → _⟨$⟩_ (η (σ B) Θ Δ)) ˢ∘ᵛ(ʳ⇑ᵛ ρ)) x≈y ⟩ -- ([ (λ {B} → _⟨$⟩_ (η (σ B) Θ Δ)) ˢ∘ᵛ (ʳ⇑ᵛ ρ) ]ˢ y) ≈⟨ []ˢ-resp-≈ˢ y (η-ˢ∘ᵛ ρ ι) ⟩ -- ([ ʳ⇑ᵛ ρ ᵛ∘ˢ (λ {B} x₁ → η (σ B) Θ Γ ⟨$⟩ x₁) ]ˢ y) ≈⟨ [ᵛ∘ˢ] y ⟩ -- (Codomain-Jⱽ-Elt.F₁ (Monad.F₀ VMonad Ω A) ρ ι ∘ -- η (Monad.extend VMonad σ A) Ξ Γ -- ⟨$⟩ y) -- ∎ where 𝒩-to-subst : ∀ {Γ Δ Ξ} (𝒩 : ∀ A → NaturalTransformation-Jⱽ (Categories.Functor.Functor.F₀ Jⱽ Γ A) (Monad.F₀ VMonad Ξ A)) → (Θ ⊕ (Γ ,, Δ) ⇒ˢ (Ξ ,, Δ)) 𝒩-to-subst 𝒩 {A} (var-inl z) = η (𝒩 A) _ _ ⟨$⟩ (var-inl z) 𝒩-to-subst 𝒩 {A} (var-inr z) = tm-var (var-inr z) 𝒩-is-subst : ∀ {Ω Γ Ξ} (𝒩 : ∀ A → NaturalTransformation-Jⱽ (Categories.Functor.Functor.F₀ Jⱽ Γ A) (Monad.F₀ VMonad Ξ A)) x → SecondOrder.Term._≈_ Σ ((NaturalTransformation-Jⱽ.η (𝒩 A) Ω Γ) ⟨$⟩ x) (𝒩-to-subst 𝒩 x) 𝒩-is-subst 𝒩 (var-inl z) = {!!} 𝒩-is-subst 𝒩 (var-inr z) = {!!} η-ˢ∘ᵛ : ∀ {Ξ} {ψ} {Γ} {Δ} (ρ : Γ ⇒ᵛ Δ) (ι : Ξ ⇒ᵐ ψ) → (λ {B} → _⟨$⟩_ (η (σ B) ψ Δ)) ˢ∘ᵛ (ʳ⇑ᵛ ρ) ≈ˢ ʳ⇑ᵛ ρ ᵛ∘ˢ (λ {B} x₁ → η (σ B) Ψ Γ ⟨$⟩ x₁) η-ˢ∘ᵛ {Ξ = Ξ′} {ψ = ψ} {Γ = Γ′} {Δ′} ρ ι (var-inl x) = begin⟨ Term-setoid Θ _ _ ⟩ ((λ {B} → _⟨$⟩_ (η (σ B) ψ Δ′)) ˢ∘ᵛ (ʳ⇑ᵛ ρ)) (var-inl x) ≈⟨ {!!} ⟩ {![]!} ≈⟨ {!!} ⟩ {!!} ≈⟨ {! ˢ∘ᵛ-η (σ A₁) Θ Γ₁η (σ A₁) Θ Γ₁ᵛ∘ˢ-disjoint ˢ∘ᵛ-ᵛ∘uˢ-disjoint!} ⟩ (ʳ⇑ᵛ ρ ᵛ∘ˢ (λ {B} → _⟨$⟩_ (η (σ B) Ψ _))) (var-inl x) ∎ where ˢ∘ᵛ-ᵛ∘ˢ-disjoint : ∀ {ψ} {Γ Ξ Δ Λ} (σ : ψ ⊕ Ξ ⇒ˢ Λ) (ρ : Γ ⇒ᵛ Δ) → ⇑ˢ σ ˢ∘ᵛ ʳ⇑ᵛ ρ ≈ˢ ʳ⇑ᵛ ρ ᵛ∘ˢ ⇑ˢ σ ˢ∘ᵛ-ᵛ∘ˢ-disjoint σ τ (var-inl x) = begin⟨ Term-setoid _ _ _ ⟩ ([ var-inl ]ᵛ σ x) ≈⟨ []ᵛ-resp-≡ᵛ (λ x₃ → refl) ⟩ ([ [ (λ x₃ → var-inl x₃) , (λ x₃ → var-inr (τ x₃)) ]ᵛ ∘ᵛ var-inl ]ᵛ σ x) ≈⟨ [∘ᵛ] ⟩ ([ [ (λ x₃ → var-inl x₃) , (λ x₃ → var-inr (τ x₃)) ]ᵛ ]ᵛ ([ var-inl ]ᵛ σ x)) ∎ ˢ∘ᵛ-ᵛ∘ˢ-disjoint σ τ (var-inr x) = ≈-refl η-ˢ∘ᵛ ρ ι (var-inr x) = begin⟨ Term-setoid Θ _ _ ⟩ {!!} Monad.identityʳ VMonad {_} {_} {𝒩s} = λ i {k = Ω} {Γ = Γ} {x = x} {y = y} x≈y → (func-cong (η (𝒩s i) Ω Γ) (x≈y)) Monad.identityˡ VMonad = λ i x≈y → ≈-trans [idˢ] x≈y Monad.assoc VMonad {Γ} {Δ} {Ξ} {k} {l} = λ A {ψ} {Λ} {x} {y} ξ → begin⟨ Term-setoid Θ _ _ ⟩ ([ (λ {B} x₁ → [ (λ {B = B₁} → _⟨$⟩_ (η (l B₁) ψ Λ)) ]ˢ (η (k B) ψ Λ ⟨$⟩ x₁)) ]ˢ x) ≈⟨ []ˢ-resp-≈ (λ {B} x₁ → [ (λ {B = B₁} → _⟨$⟩_ (η (l B₁) ψ Λ)) ]ˢ (η (k B) ψ Λ ⟨$⟩ x₁)) ξ ⟩ ([ (λ {B} x₁ → [ (λ {B = B₁} → _⟨$⟩_ (η (l B₁) ψ Λ)) ]ˢ (η (k B) ψ Λ ⟨$⟩ x₁)) ]ˢ y) ≈⟨ [∘ˢ] y ⟩ ([ (λ {B} → _⟨$⟩_ (η (l B) ψ Λ)) ]ˢ ([ (λ {B} → _⟨$⟩_ (η (k B) ψ Λ)) ]ˢ y)) ∎ Monad.extend-≈ VMonad {Γ} {Δ} {k} {h} = λ ξ A {ψ} {Λ} {t} {u} ξᵗ → begin⟨ Term-setoid Θ _ _ ⟩ ([ (λ {B} → _⟨$⟩_ (η (k B) ψ Λ)) ]ˢ t) ≈⟨ []ˢ-resp-≈ (λ {B} → _⟨$⟩_ (η (k B) ψ Λ)) ξᵗ ⟩ ([ (λ {B} → _⟨$⟩_ (η (k B) ψ Λ)) ]ˢ u) ≈⟨ []ˢ-resp-≈ˢ u (λ {A = C} x → ξ C refl) ⟩ ([ (λ {B} → _⟨$⟩_ (η (h B) ψ Λ)) ]ˢ u) ∎ -- ************************************************************************************* -- open import Agda.Primitive using (lzero; lsuc; _⊔_ ;Level) -- open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; setoid; cong; trans) -- import Function.Equality -- open import Relation.Binary using (Setoid) -- import Categories.Category -- import Categories.Functor -- import Categories.Category.Instance.Setoids -- import Categories.Monad.Relative -- import Categories.Category.Equivalence -- import Categories.Category.Cocartesian -- import Categories.Category.Construction.Functors -- import Categories.NaturalTransformation.Equivalence -- import Relation.Binary.Core -- import SecondOrder.Arity -- import SecondOrder.Signature -- import SecondOrder.Metavariable -- import SecondOrder.VRenaming -- import SecondOrder.MRenaming -- import SecondOrder.Term -- import SecondOrder.IndexedCategory -- import SecondOrder.RelativeKleisli -- import SecondOrder.Substitution -- module SecondOrder.VRelMon -- {ℓ} -- {𝔸 : SecondOrder.Arity.Arity} -- (Σ : SecondOrder.Signature.Signature ℓ 𝔸) -- where -- open SecondOrder.Signature.Signature Σ -- open SecondOrder.Metavariable Σ -- open SecondOrder.Term Σ -- open SecondOrder.VRenaming Σ -- open SecondOrder.MRenaming Σ -- open SecondOrder.Substitution Σ -- -- TERMS FORM A RELATIVE MONAD -- -- (FOR A FUNCTOR WHOSE DOMAIN IS THE -- -- CATEGORY OF VARIABLE CONTEXTS AND RENAMINGS) -- module _ where -- open Categories.Category -- open Categories.Functor using (Functor) -- open Categories.Category.Instance.Setoids -- open Categories.Monad.Relative -- open Function.Equality using () renaming (setoid to Π-setoid) -- open Categories.Category.Equivalence using (StrongEquivalence) -- open import SecondOrder.IndexedCategory -- open import SecondOrder.RelativeKleisli -- open Categories.Category.Construction.Functors -- open Categories.NaturalTransformation.Equivalence -- open Relation.Binary.Core hiding (_⇒_) -- -- The carrier of the codomain of Jⱽ (morally ∀ Γ → A ∈ Δ ,, Γ) -- record Codomain-Jⱽ-Elt : Set ((lsuc ℓ)) where -- open Category (Setoids ℓ ℓ) -- open Setoid -- field -- F₀ : VContext → MContext → Obj -- F₁ : ∀ {Θ ψ Δ Ξ} (ρ : Δ ⇒ᵛ Ξ) (ι : Θ ⇒ᵐ ψ) -- → (F₀ Δ Θ) ⇒ (F₀ Ξ ψ) -- identity : ∀ {Θ Δ} -- → Category._≈_ (Setoids ℓ ℓ) (F₁ (idᵛ {Δ}) (idᵐ {Θ})) (id {F₀ Δ Θ}) -- homomorphism : ∀ {Θ ψ Ω Γ Δ Ξ} {ρ : Γ ⇒ᵛ Δ} {ι : Θ ⇒ᵐ ψ} {τ : Δ ⇒ᵛ Ξ} {μ : ψ ⇒ᵐ Ω} -- → Category._≈_ (Setoids ℓ ℓ) (F₁ (τ ∘ᵛ ρ) (μ ∘ᵐ ι)) ((F₁ τ μ) ∘ (F₁ ρ ι)) -- F-resp-≈ : ∀ {Θ ψ Γ Δ} {ρ τ : Γ ⇒ᵛ Δ} {ι μ : Θ ⇒ᵐ ψ} -- → (ρ ≡ᵛ τ) → (ι ≡ᵐ μ) → (Category._≈_ (Setoids ℓ ℓ) (F₁ ρ ι) (F₁ τ μ)) -- -- Transformation for Codomain-Jⱽ (analogue to natural transformations) -- record NaturalTransformation-Jⱽ (Fⱽ Gⱽ : Codomain-Jⱽ-Elt) : Set (lsuc ℓ) -- where -- private -- module Fⱽ = Codomain-Jⱽ-Elt Fⱽ -- module Gⱽ = Codomain-Jⱽ-Elt Gⱽ -- open Fⱽ using (F₀; F₁) -- open Category (Setoids ℓ ℓ) -- field -- η : ∀ Θ Γ → (F₀ Γ Θ) ⇒ (Gⱽ.F₀ Γ Θ) -- commute : ∀ {Θ ψ Γ Δ} (ρ : Γ ⇒ᵛ Δ) (ι : Θ ⇒ᵐ ψ) -- → Category._≈_ (Setoids ℓ ℓ) ((η ψ Δ) ∘ (F₁ ρ ι)) ((Gⱽ.F₁ ρ ι) ∘ (η Θ Γ)) -- open NaturalTransformation-Jⱽ -- -- Equivalence of NaturalTransformation-Jⱽ (analogue to the one -- -- of the natural transformations) -- infix 4 _≃Jⱽ_ -- _≃Jⱽ_ : ∀ {Fⱽ Gⱽ : Codomain-Jⱽ-Elt} → Rel (NaturalTransformation-Jⱽ Fⱽ Gⱽ) ℓ -- 𝒩 ≃Jⱽ ℳ = ∀ {Θ Γ} → Category._≈_ (Setoids ℓ ℓ) -- (η 𝒩 Θ Γ) -- (η ℳ Θ Γ) -- -- Identity transformation analogue to the one -- -- of the natural transformations, for NaturalTransformation-Jⱽ -- idN-Jⱽ : ∀ {Fⱽ : Codomain-Jⱽ-Elt} → NaturalTransformation-Jⱽ Fⱽ Fⱽ -- idN-Jⱽ {Fⱽ} = -- record -- { η = λ Θ Γ → -- record -- { _⟨$⟩_ = λ x → x -- ; cong = λ x → x } -- ; commute = λ {Θ} {ψ} {Γ} {Δ} ρ ι ξ -- → Codomain-Jⱽ-Elt.F-resp-≈ Fⱽ {Θ} {ψ} {Γ} {Δ} {ρ} {ρ} {ι} {ι} -- (λ x₁ → refl) (λ M → refl) ξ } -- -- Composition of NaturalTransformation-Jⱽ (analogue to the one -- -- of the natural transformations) -- _∘-Jⱽ_ : ∀ {Fⱽ Gⱽ Hⱽ : Codomain-Jⱽ-Elt} (𝒩 : NaturalTransformation-Jⱽ Gⱽ Hⱽ) (ℳ : NaturalTransformation-Jⱽ Fⱽ Gⱽ) → NaturalTransformation-Jⱽ Fⱽ Hⱽ -- _∘-Jⱽ_ {Fⱽ} {Gⱽ} {Hⱽ} 𝒩 ℳ = -- let open Category (Setoids ℓ ℓ) in -- let open NaturalTransformation-Jⱽ in -- let open Codomain-Jⱽ-Elt in -- record -- { η = λ Θ Γ → η 𝒩 Θ Γ ∘ η ℳ Θ Γ -- ; commute = λ {Θ} {ψ} {Γ} {Δ} ρ ι → -- let open HomReasoning {F₀ Fⱽ Γ Θ} {F₀ Hⱽ Δ ψ} in -- begin -- (Category._∘_ (Setoids ℓ ℓ) (η {Gⱽ} {Hⱽ} 𝒩 ψ Δ) ((η {Fⱽ} {Gⱽ} ℳ ψ Δ) ∘ (F₁ Fⱽ ρ ι))) ≈⟨ assoc {f = F₁ Fⱽ ρ ι} {g = η ℳ ψ Δ} {h = η 𝒩 ψ Δ} ⟩ -- (η 𝒩 ψ Δ ∘ (η ℳ ψ Δ) ∘ (F₁ Fⱽ ρ ι)) ≈⟨ refl⟩∘⟨_ -- {f = η 𝒩 ψ Δ} {g = (η ℳ ψ Δ) ∘ (F₁ Fⱽ ρ ι)} -- {i = (F₁ Gⱽ ρ ι) ∘ (η ℳ Θ Γ)} -- (commute ℳ ρ ι) ⟩ -- (η 𝒩 ψ Δ ∘ ((F₁ Gⱽ ρ ι) ∘ (η ℳ Θ Γ))) ≈⟨ sym-assoc {f = η ℳ Θ Γ} {g = F₁ Gⱽ ρ ι} {h = η 𝒩 ψ Δ}⟩ -- ((η 𝒩 ψ Δ) ∘ (F₁ Gⱽ ρ ι)) ∘ (η ℳ Θ Γ) ≈⟨ _⟩∘⟨refl -- {f = (η 𝒩 ψ Δ) ∘ (F₁ Gⱽ ρ ι)} {h = (F₁ Hⱽ ρ ι) ∘ (η 𝒩 Θ Γ)} -- {g = η ℳ Θ Γ} -- (commute 𝒩 ρ ι) ⟩ -- (((F₁ Hⱽ ρ ι) ∘ (η 𝒩 Θ Γ)) ∘ (η ℳ Θ Γ)) ≈⟨ assoc {f = η ℳ Θ Γ} {g = η 𝒩 Θ Γ} {h = F₁ Hⱽ ρ ι} ⟩ -- (((F₁ Hⱽ ρ ι) ∘ (η 𝒩 Θ Γ)) ∘ (η ℳ Θ Γ)) ∎} -- -- Proof that the category of Codomain-Jⱽ and NaturalTransformation-Jⱽ is indeed a category -- -- associativity of composition -- -- (surprisingly enough, the proof of "sym-assoc-Jⱽ" is exactly the same : -- -- Is there a problem in the definitions ?) -- assoc-Jⱽ : {A B C D : Codomain-Jⱽ-Elt} -- {ℒ : NaturalTransformation-Jⱽ A B} -- {ℳ : NaturalTransformation-Jⱽ B C} -- {𝒩 : NaturalTransformation-Jⱽ C D} -- → ((𝒩 ∘-Jⱽ ℳ) ∘-Jⱽ ℒ) ≃Jⱽ (𝒩 ∘-Jⱽ (ℳ ∘-Jⱽ ℒ)) -- assoc-Jⱽ {A} {B} {C} {D} {ℒ} {ℳ} {𝒩} {Θ} {Γ} ξ = Function.Equality.Π.cong (η 𝒩 Θ Γ) -- (Function.Equality.Π.cong (η ℳ Θ Γ) -- (Function.Equality.cong (η ℒ Θ Γ) ξ)) -- -- identity is identity -- identityˡ-Jⱽ : {A B : Codomain-Jⱽ-Elt} -- {𝒩 : NaturalTransformation-Jⱽ A B} -- → (idN-Jⱽ ∘-Jⱽ 𝒩) ≃Jⱽ 𝒩 -- identityˡ-Jⱽ {𝒩 = 𝒩} {Θ = Θ} {Γ = Γ} ξ = Function.Equality.cong (η 𝒩 Θ Γ) ξ -- -- Codomain of Jⱽ (the category with Codomain-Jⱽ-Elt as objects and NaturalTransformation-Jⱽ as maps) -- Codomain-Jⱽ : Category (lsuc ℓ) (lsuc ℓ) ℓ -- Codomain-Jⱽ = record -- { Obj = Codomain-Jⱽ-Elt -- ; _⇒_ = NaturalTransformation-Jⱽ -- ; _≈_ = _≃Jⱽ_ -- ; id = idN-Jⱽ -- ; _∘_ = _∘-Jⱽ_ -- ; assoc = λ {Fⱽ} {Gⱽ} {Hⱽ} {Kⱽ} {𝒩} {ℳ} {ℒ} → assoc-Jⱽ {ℒ = 𝒩} {ℳ = ℳ} {𝒩 = ℒ} -- ; sym-assoc = λ {Fⱽ} {Gⱽ} {Hⱽ} {Kⱽ} {𝒩} {ℳ} {ℒ} → assoc-Jⱽ {ℒ = 𝒩} {ℳ = ℳ} {𝒩 = ℒ} -- ; identityˡ = λ {Fⱽ} {Gⱽ} {𝒩} → identityˡ-Jⱽ {𝒩 = 𝒩} -- ; identityʳ = λ {Fⱽ} {Gⱽ} {𝒩} → identityˡ-Jⱽ {𝒩 = 𝒩} -- ; identity² = λ {Fⱽ} ξ → ξ -- ; equiv = λ {Fⱽ} {Gⱽ} -- → record -- { refl = λ {𝒩 = 𝒩} {Θ = Θ} {Γ = Γ} {x} {y} ξ -- → Function.Equality.cong (η 𝒩 Θ Γ) ξ -- ; sym = λ {𝒩} {ℳ} ξᴺ {Θ} {Γ} ξ -- → Category.Equiv.sym (Setoids ℓ ℓ) -- {_} {_} {η 𝒩 Θ Γ} {η ℳ Θ Γ} ξᴺ ξ -- ; trans = λ {𝒩} {ℳ} {ℒ} ξᴺ₂ ξᴺ₁ {Θ} {Γ} ξ -- → Category.Equiv.trans (Setoids ℓ ℓ) -- {_} {_} {η 𝒩 Θ Γ} {η ℳ Θ Γ} {η ℒ Θ Γ} ξᴺ₂ ξᴺ₁ ξ} -- ; ∘-resp-≈ = λ {Fⱽ} {Gⱽ} {Hⱽ} {𝒩} {ℳ} {ℒ} {𝒦} ξᴺ₁ ξᴺ₂ {Θ} {Γ} ξ -- → Category.∘-resp-≈ (Setoids ℓ ℓ) -- {_} {_} {_} -- {η 𝒩 Θ Γ} {η ℳ Θ Γ} {η ℒ Θ Γ} {η 𝒦 Θ Γ} -- ξᴺ₁ ξᴺ₂ ξ -- } -- -- The embedding of contexts into setoids indexed by sorts, metavariable telescope and variable telescope -- Jⱽ : Functor VContexts (IndexedCategory sort Codomain-Jⱽ) -- Jⱽ = record -- { F₀ = λ Γ A → -- record -- { F₀ = λ Δ Θ → setoid (A ∈ (Γ ,, Δ)) -- ; F₁ = λ ρ ι → record -- { _⟨$⟩_ = [ inlᵛ , inrᵛ ∘ᵛ ρ ]ᵛ -- ; cong = λ {x} {y} ξ → ρ-resp-≡ {ρ = [ var-inl , var-inr ∘ᵛ ρ ]ᵛ} ξ} -- ; identity = λ {Θ} {Δ} {x} ξ → trans (idᵛ+idᵛ x) ξ -- ; homomorphism = λ {Θ} {ψ} {Ω} {Δ} {Ξ} {Λ} {ρ} {ι} {τ} {μ} {x} {y} ξ -- → trans -- (ʳ⇑ᵛ-resp-∘ᵛ x) -- (ρ-resp-≡ {ρ = [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ} -- (ρ-resp-≡ {ρ = [ var-inl , (λ x₁ → var-inr (ρ x₁)) ]ᵛ} ξ)) -- ; F-resp-≈ = λ {Θ} {ψ} {Δ} {Ξ} {ρ} {τ} {ι} {μ} ξᵛ ξᵐ {x} {y} ξ -- → trans -- ([,]ᵛ-resp-≡ᵛ (λ x₁ → refl) (∘ᵛ-resp-≡ᵛ {τ₁ = λ x₁ → var-inr x₁} (λ x₁ → refl) λ x₁ → ξᵛ x₁) x) -- (ρ-resp-≡ {ρ = [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ} ξ) -- } -- ; F₁ = λ ρ A → record -- { η = λ Θ Γ → record { _⟨$⟩_ = ⇑ᵛ ρ ; cong = cong (⇑ᵛ ρ) } -- ; commute = λ τ ι {x} ξ -- → trans -- (uniqueᵛ² -- {τ = [ (λ x₁ → var-inl (ρ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ ∘ᵛ [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ} -- {σ = [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ ∘ᵛ [ (λ x₁ → var-inl (ρ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ} (λ x₁ → refl) (λ x₁ → refl) x) -- (ρ-resp-≡ -- {ρ = [ var-inl , (λ x₁ → var-inr (τ x₁)) ]ᵛ ∘ᵛ [ (λ x₁ → var-inl (ρ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ} ξ)} -- ; identity = λ A {Θ} {Γ} {x} ξ → trans (idᵛ+idᵛ x) ξ -- ; homomorphism = λ {Δ} {Ξ} {Λ} {ρ} {τ} A {_} {_} {x} ξ -- → trans -- (uniqueᵛ² -- {τ = [ (λ x₁ → var-inl (τ (ρ x₁))) , (λ x₁ → var-inr x₁) ]ᵛ} -- {σ = [ (λ x₁ → var-inl (τ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ ∘ᵛ [ (λ x₁ → var-inl (ρ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ} -- (λ x₁ → refl) (λ x₁ → refl) x) -- (ρ-resp-≡ -- {ρ = [ (λ x₁ → var-inl (τ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ ∘ᵛ [ (λ x₁ → var-inl (ρ x₁)) , (λ x₁ → var-inr x₁) ]ᵛ } ξ) -- ; F-resp-≈ = λ {_} {_} {ρ} {τ} ξρ A {_} {_} {x} {y} ξ -- → trans -- (([,]ᵛ-resp-≡ᵛ {ρ₁ = λ x₁ → var-inl (ρ x₁)} {τ₁ = var-inr} (λ x₁ → ∘ᵛ-resp-≡ᵛ {τ₁ = var-inl} (λ x₃ → refl) ξρ x₁) (λ x₁ → refl) x)) -- (ρ-resp-≡ {ρ = ⇑ᵛ τ} ξ) -- } -- -- The relative monad over Jⱽ -- module _ {Θ : MContext} where -- open Categories.Category -- open Categories.Functor using (Functor) -- open Categories.Category.Instance.Setoids -- open Categories.Monad.Relative -- open Function.Equality using () renaming (setoid to Π-setoid) -- open Categories.Category.Equivalence using (StrongEquivalence) -- open import SecondOrder.IndexedCategory -- open import SecondOrder.RelativeKleisli -- open NaturalTransformation-Jⱽ -- VMonad : Monad Jⱽ -- VMonad = -- let open Function.Equality using (_⟨$⟩_) renaming (cong to func-cong) in -- record -- { F₀ = λ Γ A → record -- { F₀ = λ Δ ψ → Term-setoid Θ (Γ ,, Δ) A -- ; F₁ = λ ρ ι → record { _⟨$⟩_ = [_]ᵛ_ (ʳ⇑ᵛ ρ) ; cong = λ ξ → []ᵛ-resp-≈ ξ } -- ; identity = λ ξ → ≈-trans ([]ᵛ-resp-≡ᵛ idᵛ+idᵛ) (≈-trans [idᵛ] ξ) -- ; homomorphism = λ {_} {_} {_} {_} {_} {_} {ρ} {_} {τ} ξ -- → ≈-trans -- ([]ᵛ-resp-≈ ξ) -- (≈-trans -- ([]ᵛ-resp-≡ᵛ λ x₁ -- → uniqueᵛ² -- {τ = [ (λ x₂ → var-inl x₂) , (λ x₂ → var-inr (τ (ρ x₂))) ]ᵛ} -- {σ = [ (λ x₁ → var-inl x₁) , (λ x₁ → var-inr (τ x₁)) ]ᵛ ∘ᵛ [ (λ x₁ → var-inl x₁) , (λ x₁ → var-inr (ρ x₁)) ]ᵛ } -- (λ x₂ → refl) (λ x₂ → refl) x₁) -- [∘ᵛ]) -- ; F-resp-≈ = λ ξᵛ ξᵐ ξ → ≈-trans ([]ᵛ-resp-≈ ξ) ([]ᵛ-resp-≡ᵛ λ x → [,]ᵛ-resp-≡ᵛ (λ x₁ → refl) (λ x₁ → ρ-resp-≡ {ρ = var-inr} (ξᵛ x₁)) x ) -- } -- ; unit = λ A -- → record -- { η = λ ψ Γ -- → record -- { _⟨$⟩_ = λ x → tm-var x -- ; cong = λ ξ → congˢ-var {σ = tm-var} ξ } -- ; commute = λ ρ ι ξ → congˢ-var {σ = tm-var} (ρ-resp-≡ {ρ = [ var-inl , (λ x₁ → var-inr (ρ x₁)) ]ᵛ} ξ) } -- ; extend = {!!} -- ; identityʳ = λ A ξ → {!!} -- ; identityˡ = {!!} -- ; assoc = {!!} -- ; extend-≈ = {!!} -- } -- -- Other possibility, if the above doesn't work : -- -- Jⱽ′ : Functor VContexts (Functors MContexts (Functors VContexts (IndexedCategory sort (Setoids ℓ ℓ)))) -- -- Jⱽ′ = record -- -- { F₀ = {!!} -- λ Γ A → setoid (A ∈ Γ) -- -- ; F₁ = {!!} -- λ ρ A → record { _⟨$⟩_ = ρ ; cong = cong ρ } -- -- ; identity = {!!} -- λ A ξ → ξ -- -- ; homomorphism = {!!} -- λ {_} {_} {_} {ρ} {σ} A {_} {_} ξ → cong σ (cong ρ ξ) -- -- ; F-resp-≈ = {!!} -- λ ξ A ζ → trans (ξ _) (cong _ ζ) -- -- }
{ "alphanum_fraction": 0.405308167, "avg_line_length": 51.544935806, "ext": "agda", "hexsha": "6656c3a09a4b03f8696f2a5f988b2f865eb51fb8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SecondOrder/VRelativeMonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SecondOrder/VRelativeMonad.agda", "max_line_length": 235, "max_stars_count": 1, "max_stars_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejbauer/formal", "max_stars_repo_path": "src/SecondOrder/VRelativeMonad.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:00.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:00.000Z", "num_tokens": 14751, "size": 36133 }
module Issue759a where import Common.Level abstract record Wrap (A : Set) : Set where field wrapped : A open Wrap public wrap : {A : Set} → A → Wrap A wrap a = record { wrapped = a } -- WAS: Broken error message: -- Not in scope: -- Issue759a.recCon-NOT-PRINTED at -- when checking the definition of wrap -- NOW: -- Expected non-abstract record type, found Wrap -- when checking that the expression record { wrapped = a } has type -- Wrap .A
{ "alphanum_fraction": 0.6782608696, "avg_line_length": 18.4, "ext": "agda", "hexsha": "7736557b3d33c4eb2e6f196b9bdc74296c59a0e5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue759a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue759a.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue759a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 126, "size": 460 }
open import SOAS.Common -- Free construction with respect to a forgetful functor between categories module SOAS.Construction.Free {ℂ 𝕊 : Category 1ℓ 0ℓ 0ℓ} (U : Functor 𝕊 ℂ) where open import Categories.Adjoint import Categories.Morphism.Reasoning as MR open import Categories.Category.Equivalence using (WeakInverse; StrongEquivalence) open import Categories.Adjoint.Properties open import Categories.Monad private module ℂ = Category ℂ private module 𝕊 = Category 𝕊 private module U = Functor U -- Mapping from an object of the carrier category to the carrier of an object -- from the structure category _↪_ : ℂ.Obj → 𝕊.Obj → Set C ↪ S = ℂ [ C , U.₀ S ] -- Definition of F being a free structure over a carrier C: -- any carrier map c : C → S into the carrier of a structure S factorises -- through a unique extension of c to a structure homomorphism ĉ : F C → S: -- -- ⌊-⌋ -- C ────────────── FC -- ╰─────── S ───────╯ -- c ĉ record FreeConstruction (F : ℂ.Obj → 𝕊.Obj) (C : ℂ.Obj) (embed : C ↪ F C) (S : 𝕊.Obj) (c : C ↪ S) : Set₁ where field -- Given another structure S, any mapping from C to the carrier of S can be -- extended into a structure homomorphism from F C to S. extend : 𝕊 [ F C , S ] -- Any map from C to the carrier of a structure S factors through the -- embedding and extension factor : U.₁ extend ℂ.∘ embed ℂ.≈ c -- Extension is the unique factorising morphism unique : (e : 𝕊 [ F C , S ]) → (p : (U.₁ e ℂ.∘ embed) ℂ.≈ c) → 𝕊 [ e ≈ extend ] record FreeMapping (F : ℂ.Obj → 𝕊.Obj) : Set₁ where field embed : {C : ℂ.Obj} → C ↪ F C univ : (C : ℂ.Obj) (S : 𝕊.Obj)(c : C ↪ S) → FreeConstruction F C embed S c module Universal C S c = FreeConstruction (univ C S c) module _ {C : ℂ.Obj} {S : 𝕊.Obj}(c : C ↪ S) where open Universal C S c public open MR ℂ open ℂ.HomReasoning private module 𝕊R = 𝕊.HomReasoning open NT -- The uniqueness of the factors means that any two morphisms -- that factorise the same arrow must be equal equate : {C : ℂ.Obj}{S : 𝕊.Obj} → (f g : 𝕊 [ F C , S ]) → (p : U.₁ f ℂ.∘ embed ℂ.≈ U.₁ g ℂ.∘ embed) → 𝕊 [ f ≈ g ] equate f g p = unique _ f p 𝕊R.○ 𝕊R.⟺ (unique _ g ℂ.Equiv.refl) -- Infix shorthand [_≋_]! : {C : ℂ.Obj}{S : 𝕊.Obj} → (f g : 𝕊 [ F C , S ]) → (p : U.₁ f ℂ.∘ embed ℂ.≈ U.₁ g ℂ.∘ embed) → 𝕊 [ f ≈ g ] [ f ≋ g ]! p = equate f g p -- Extensions of equal embeddings are equal extend-cong : {C : ℂ.Obj}{S : 𝕊.Obj}(c₁ c₂ : C ↪ S) → ℂ [ c₁ ≈ c₂ ] → 𝕊 [ extend c₁ ≈ extend c₂ ] extend-cong {C}{S} c₁ c₂ p = unique _ (extend c₁) (factor c₁ ○ p) -- | Freeness makes F into a functor map : {C D : ℂ.Obj} → C ℂ.⇒ D → F C 𝕊.⇒ F D map {C}{D} f = extend (embed ℂ.∘ f) embed-commute : {C D : ℂ.Obj}(f : C ℂ.⇒ D) → embed ℂ.∘ f ℂ.≈ (U.₁ (map f) ℂ.∘ embed) embed-commute {C}{D} f = ⟺ (factor (embed ℂ.∘ f)) identity : {C : ℂ.Obj} → map (ℂ.id {C}) 𝕊.≈ 𝕊.id identity {C} = 𝕊R.⟺ $ᶠ unique _ 𝕊.id (begin U.₁ 𝕊.id ℂ.∘ embed ≈⟨ U.identity ⟩∘⟨refl ⟩ ℂ.id ℂ.∘ embed ≈⟨ id-comm-sym ⟩ embed ℂ.∘ ℂ.id ∎) homomorphism : {C D E : ℂ.Obj} {f : ℂ [ C , D ]} {g : ℂ [ D , E ]} → 𝕊 [ map (ℂ [ g ∘ f ]) ≈ 𝕊 [ map g ∘ map f ] ] homomorphism {C}{D}{E}{f}{g} = 𝕊R.⟺ $ᶠ unique _ (𝕊 [ map g ∘ map f ]) (begin U.₁ (map g 𝕊.∘ map f) ℂ.∘ embed ≈⟨ pushˡ U.homomorphism ⟩ U.₁ (map g) ℂ.∘ U.₁ (map f) ℂ.∘ embed ≈⟨ pushʳ (⟺ (embed-commute f)) ⟩ (U.₁ (map g) ℂ.∘ embed) ℂ.∘ f ≈⟨ pushˡ (⟺ (embed-commute g)) ⟩ embed ℂ.∘ g ℂ.∘ f ∎) -- Free functor from ℂ to 𝕊 Free : Functor ℂ 𝕊 Free = record { F₀ = F ; F₁ = map ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = λ {C}{D}{f}{g} p → extend-cong (embed ℂ.∘ f) (embed ℂ.∘ g) (ℂ.∘-resp-≈ʳ p) } module F = Functor Free -- | Freeness also induces a free-forgetful adjunction -- Embedding is a natural transformation embed-NT : NT idF (U ∘F Free) embed-NT = ntHelper record { η = λ C → embed ; commute = embed-commute } -- Extension of the identity on US is a natural transformation extract : (S : 𝕊.Obj) → F (U.₀ S) 𝕊.⇒ S extract S = extend ℂ.id -- Extraction is a natural transformation extract-NT : NT (Free ∘F U) idF extract-NT = ntHelper record { η = extract ; commute = λ {S}{T} f → [ extract T 𝕊.∘ F.₁ (U.₁ f) ≋ f 𝕊.∘ extract S ]! (begin U.₁ (extract T 𝕊.∘ F.₁ (U.₁ f)) ℂ.∘ embed ≈⟨ pushˡ U.homomorphism ⟩ U.₁ (extract T) ℂ.∘ U.₁ (F.₁ (U.₁ f)) ℂ.∘ embed ≈⟨ refl⟩∘⟨ sym-commute embed-NT (U.₁ f) ⟩ U.₁ (extract T) ℂ.∘ embed ℂ.∘ U.₁ f ≈⟨ pullˡ (factor ℂ.id) ○ ℂ.identityˡ ⟩ U.₁ f ≈˘⟨ (refl⟩∘⟨ factor ℂ.id) ○ ℂ.identityʳ ⟩ U.₁ f ℂ.∘ U.₁ (extract S) ℂ.∘ embed ≈˘⟨ pushˡ U.homomorphism ⟩ U.₁ (f 𝕊.∘ extract S) ℂ.∘ embed ∎) } -- The free-forgetful adjunction arising from the universal morphisms Free⊣Forgetful : Free ⊣ U Free⊣Forgetful = record { unit = embed-NT ; counit = extract-NT ; zig = λ {C} → [ extract (F.₀ C) 𝕊.∘ F.₁ embed ≋ 𝕊.id ]! (begin U.₁ (extract (F.₀ C) 𝕊.∘ F.₁ embed) ℂ.∘ embed ≈⟨ pushˡ U.homomorphism ⟩ U.₁ (extract (F.₀ C)) ℂ.∘ U.₁ (F.₁ embed) ℂ.∘ embed ≈⟨ refl⟩∘⟨ (sym-commute embed-NT embed) ⟩ U.₁ (extract (F.₀ C)) ℂ.∘ (embed ℂ.∘ embed) ≈⟨ pullˡ (factor (ℂ.id)) ⟩ ℂ.id ℂ.∘ embed ≈˘⟨ U.identity ⟩∘⟨refl ⟩ U.₁ 𝕊.id ℂ.∘ embed ∎) ; zag = factor ℂ.id } FreeMonad : Monad ℂ FreeMonad = adjoint⇒monad Free⊣Forgetful
{ "alphanum_fraction": 0.5208885942, "avg_line_length": 32.6054054054, "ext": "agda", "hexsha": "d34fec2a022092a6f01f5d9812bbac369cc96bb6", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Construction/Free.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Construction/Free.agda", "max_line_length": 83, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Construction/Free.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 2423, "size": 6032 }
-- The following deeply left-nested expression illustrates both a -- problem in a previous implementation of the occurrence machinery, -- and a problem in the one that is current at the time of writing. F : Set → Set F X = (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((X → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X)) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X) → X
{ "alphanum_fraction": 0.171728972, "avg_line_length": 3546.2857142857, "ext": "agda", "hexsha": "0968ea29ca2b4e23507100d1fbdb2240a7dc7b2f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "benchmark/misc/SlowOccurrences.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "benchmark/misc/SlowOccurrences.agda", "max_line_length": 24605, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "benchmark/misc/SlowOccurrences.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 13357, "size": 24824 }
------------------------------------------------------------------------ -- Function setoids and related constructions ------------------------------------------------------------------------ module Relation.Binary.FunctionSetoid where open import Data.Function open import Relation.Binary infixr 0 _↝_ _⟶_ _⇨_ _≡⇨_ -- A logical relation (i.e. a relation which relates functions which -- map related things to related things). _↝_ : ∀ {A B} → (∼₁ : Rel A) (∼₂ : Rel B) → Rel (A → B) _∼₁_ ↝ _∼₂_ = λ f g → ∀ {x y} → x ∼₁ y → f x ∼₂ g y -- Functions which preserve equality. record _⟶_ (From To : Setoid) : Set where open Setoid infixl 5 _⟨$⟩_ field _⟨$⟩_ : carrier From → carrier To pres : _⟨$⟩_ Preserves _≈_ From ⟶ _≈_ To open _⟶_ public ↝-isEquivalence : ∀ {A B C} {∼₁ : Rel A} {∼₂ : Rel B} (fun : C → (A → B)) → (∀ f → fun f Preserves ∼₁ ⟶ ∼₂) → IsEquivalence ∼₁ → IsEquivalence ∼₂ → IsEquivalence ((∼₁ ↝ ∼₂) on₁ fun) ↝-isEquivalence _ pres eq₁ eq₂ = record { refl = λ {f} x∼₁y → pres f x∼₁y ; sym = λ f∼g x∼y → sym eq₂ (f∼g (sym eq₁ x∼y)) ; trans = λ f∼g g∼h x∼y → trans eq₂ (f∼g (refl eq₁)) (g∼h x∼y) } where open IsEquivalence -- Function setoids. _⇨_ : Setoid → Setoid → Setoid S₁ ⇨ S₂ = record { carrier = S₁ ⟶ S₂ ; _≈_ = (_≈_ S₁ ↝ _≈_ S₂) on₁ _⟨$⟩_ ; isEquivalence = ↝-isEquivalence _⟨$⟩_ pres (isEquivalence S₁) (isEquivalence S₂) } where open Setoid; open _⟶_ -- A generalised variant of (_↝_ _≡_). ≡↝ : ∀ {A} {B : A → Set} → (∀ x → Rel (B x)) → Rel ((x : A) → B x) ≡↝ R = λ f g → ∀ x → R x (f x) (g x) ≡↝-isEquivalence : {A : Set} {B : A → Set} {R : ∀ x → Rel (B x)} → (∀ x → IsEquivalence (R x)) → IsEquivalence (≡↝ R) ≡↝-isEquivalence eq = record { refl = λ _ → refl ; sym = λ f∼g x → sym (f∼g x) ; trans = λ f∼g g∼h x → trans (f∼g x) (g∼h x) } where open module Eq {x} = IsEquivalence (eq x) _≡⇨_ : (A : Set) → (A → Setoid) → Setoid A ≡⇨ S = record { carrier = (x : A) → carrier (S x) ; _≈_ = ≡↝ (λ x → _≈_ (S x)) ; isEquivalence = ≡↝-isEquivalence (λ x → isEquivalence (S x)) } where open Setoid
{ "alphanum_fraction": 0.4993209597, "avg_line_length": 32.0144927536, "ext": "agda", "hexsha": "c7f9f404c7d6ad394e8c10391f94aa9aa444e723", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/FunctionSetoid.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/FunctionSetoid.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/FunctionSetoid.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 896, "size": 2209 }
------------------------------------------------------------------------ -- A binary representation of natural numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality import Erased.Without-box-cong module Nat.Binary {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) -- An instantiation of the []-cong axioms. (ax : ∀ {a} → Erased.Without-box-cong.[]-cong-axiomatisation eq a) where open Derived-definitions-and-properties eq open import Dec open import Logical-equivalence using (_⇔_) open import Prelude hiding (suc; _^_) renaming (_+_ to _⊕_; _*_ to _⊛_) open import Bijection eq using (_↔_) open import Equality.Decision-procedures eq open import Erased eq ax open import Function-universe eq hiding (id; _∘_) open import List eq open import Nat.Solver eq import Nat.Wrapper eq as Wrapper open import Surjection eq using (_↠_) private module N where open import Nat eq public open Prelude public using (zero; suc; _^_) variable A : Type inv n : A b : Bool bs : List Bool ------------------------------------------------------------------------ -- The underlying representation private module Bin′ where abstract -- The underlying representation of binary natural numbers. The -- least significant digit comes first; true stands for one and -- false for zero. Leading zeros (at the end of the lists) are -- not allowed. -- -- The type is abstract to ensure that a change to a different -- representation does not break code that uses this module. mutual infixr 5 _∷_ data Bin′ : Type where [] : Bin′ _∷_ : (b : Bool) (n : Bin′) { @0 invariant : Invariant b n } → Bin′ private Invariant : Bool → Bin′ → Type Invariant true _ = ⊤ Invariant false (_ ∷ _) = ⊤ Invariant false [] = ⊥ -- A variant of _∷_ with three explicit arguments. pattern _∷_⟨_⟩ b n inv = _∷_ b n {invariant = inv} -- Synonyms that can be used in type signatures (Bin′ is -- abstract, so the constructors cannot be used there). []′ : Bin′ []′ = [] _∷_⟨_⟩′ : (b : Bool) (n : Bin′) → @0 Invariant b n → Bin′ _∷_⟨_⟩′ = _∷_⟨_⟩ private -- The underlying list. to-List : Bin′ → List Bool to-List [] = [] to-List (b ∷ bs) = b ∷ to-List bs -- The invariant implies that the last element in the -- underlying list, if any, is not false, so there are no -- leading zeros in the number. invariant-correct : ∀ n bs → ¬ to-List n ≡ bs ++ false ∷ [] invariant-correct [] bs = [] ≡ bs ++ false ∷ [] ↝⟨ []≢++∷ bs ⟩□ ⊥ □ invariant-correct (true ∷ n) [] = true ∷ to-List n ≡ false ∷ [] ↝⟨ List.cancel-∷-head ⟩ true ≡ false ↝⟨ Bool.true≢false ⟩□ ⊥ □ invariant-correct (false ∷ n@(_ ∷ _)) [] = false ∷ to-List n ≡ false ∷ [] ↝⟨ List.cancel-∷-tail ⟩ to-List n ≡ [] ↝⟨ List.[]≢∷ ∘ sym ⟩□ ⊥ □ invariant-correct (b ∷ n) (b′ ∷ bs) = b ∷ to-List n ≡ b′ ∷ bs ++ false ∷ [] ↝⟨ List.cancel-∷-tail ⟩ to-List n ≡ bs ++ false ∷ [] ↝⟨ invariant-correct n bs ⟩□ ⊥ □ -- The invariant is propositional. Invariant-propositional : {b : Bool} {n : Bin′} → Is-proposition (Invariant b n) Invariant-propositional {b = true} _ _ = refl _ Invariant-propositional {b = false} {n = _ ∷ _} _ _ = refl _ -- Converts from Bool to ℕ. from-Bool : Bool → ℕ from-Bool = if_then 1 else 0 -- Converts from List Bool to ℕ. List-to-ℕ : List Bool → ℕ List-to-ℕ = foldr (λ b n → from-Bool b ⊕ 2 ⊛ n) 0 -- Converts from Bin′ to ℕ. to-ℕ′ : Bin′ → ℕ to-ℕ′ = List-to-ℕ ∘ to-List private -- A smart constructor. infixr 5 _∷ˢ_ _∷ˢ_ : Bool → Bin′ → Bin′ true ∷ˢ n = true ∷ n false ∷ˢ [] = [] false ∷ˢ n@(_ ∷ _) = false ∷ n -- A lemma relating to-ℕ′ and _∷ˢ_. to-ℕ′-∷ˢ : ∀ b n → to-ℕ′ (b ∷ˢ n) ≡ from-Bool b ⊕ 2 ⊛ to-ℕ′ n to-ℕ′-∷ˢ true _ = refl _ to-ℕ′-∷ˢ false [] = refl _ to-ℕ′-∷ˢ false (_ ∷ _) = refl _ -- Zero. zero′ : Bin′ zero′ = [] -- A lemma relating zero′ and N.zero. to-ℕ′-zero′ : to-ℕ′ zero′ ≡ N.zero to-ℕ′-zero′ = refl _ -- The number's successor. suc′ : Bin′ → Bin′ suc′ [] = true ∷ˢ [] suc′ (false ∷ n) = true ∷ˢ n suc′ (true ∷ n) = false ∷ˢ suc′ n private -- The successor of the smart cons constructor applied to -- false and n is the smart cons constructor applied to true -- and n. suc′-false-∷ˢ : ∀ n → suc′ (false ∷ˢ n) ≡ true ∷ˢ n suc′-false-∷ˢ [] = refl _ suc′-false-∷ˢ (_ ∷ _) = refl _ -- A lemma relating suc′ and N.suc. to-ℕ′-suc′ : ∀ bs → to-ℕ′ (suc′ bs) ≡ N.suc (to-ℕ′ bs) to-ℕ′-suc′ [] = refl _ to-ℕ′-suc′ n@(false ∷ n′) = to-ℕ′ (suc′ n) ≡⟨⟩ to-ℕ′ (true ∷ˢ n′) ≡⟨ to-ℕ′-∷ˢ true n′ ⟩ 1 ⊕ 2 ⊛ to-ℕ′ n′ ≡⟨⟩ N.suc (to-ℕ′ n) ∎ to-ℕ′-suc′ n@(true ∷ n′) = to-ℕ′ (suc′ n) ≡⟨⟩ to-ℕ′ (false ∷ˢ suc′ n′) ≡⟨ to-ℕ′-∷ˢ false (suc′ n′) ⟩ 2 ⊛ to-ℕ′ (suc′ n′) ≡⟨ cong (2 ⊛_) (to-ℕ′-suc′ n′) ⟩ 2 ⊛ N.suc (to-ℕ′ n′) ≡⟨ solve 1 (λ n → con 2 :* (con 1 :+ n) := con 2 :+ con 2 :* n) (refl _) _ ⟩ 2 ⊕ 2 ⊛ to-ℕ′ n′ ≡⟨⟩ N.suc (to-ℕ′ n) ∎ private -- Converts from ℕ to Bin′. from-ℕ′ : ℕ → Bin′ from-ℕ′ zero = [] from-ℕ′ (N.suc n) = suc′ (from-ℕ′ n) -- The function from-ℕ′ commutes with "multiplication by two". from-ℕ′-2-⊛ : ∀ n → from-ℕ′ (2 ⊛ n) ≡ false ∷ˢ from-ℕ′ n from-ℕ′-2-⊛ zero = refl _ from-ℕ′-2-⊛ (N.suc n) = from-ℕ′ (2 ⊛ N.suc n) ≡⟨⟩ suc′ (from-ℕ′ (n ⊕ N.suc (n ⊕ 0))) ≡⟨ cong (suc′ ∘ from-ℕ′) $ sym $ N.suc+≡+suc n ⟩ suc′ (from-ℕ′ (N.suc (2 ⊛ n))) ≡⟨⟩ suc′ (suc′ (from-ℕ′ (2 ⊛ n))) ≡⟨ cong (suc′ ∘ suc′) (from-ℕ′-2-⊛ n) ⟩ suc′ (suc′ (false ∷ˢ from-ℕ′ n)) ≡⟨ cong suc′ (suc′-false-∷ˢ (from-ℕ′ n)) ⟩ suc′ (true ∷ˢ from-ℕ′ n) ≡⟨⟩ false ∷ˢ suc′ (from-ℕ′ n) ≡⟨⟩ false ∷ˢ from-ℕ′ (N.suc n) ∎ -- There is a bijection from Bin′ to ℕ. Bin′↔ℕ : Bin′ ↔ ℕ Bin′↔ℕ = record { surjection = record { logical-equivalence = record { to = to-ℕ′ ; from = from-ℕ′ } ; right-inverse-of = to-ℕ′∘from-ℕ′ } ; left-inverse-of = from-ℕ′∘to-ℕ′ } where abstract to-ℕ′∘from-ℕ′ : ∀ n → to-ℕ′ (from-ℕ′ n) ≡ n to-ℕ′∘from-ℕ′ zero = refl _ to-ℕ′∘from-ℕ′ (N.suc n) = to-ℕ′ (from-ℕ′ (N.suc n)) ≡⟨⟩ to-ℕ′ (suc′ (from-ℕ′ n)) ≡⟨ to-ℕ′-suc′ (from-ℕ′ n) ⟩ N.suc (to-ℕ′ (from-ℕ′ n)) ≡⟨ cong N.suc (to-ℕ′∘from-ℕ′ n) ⟩∎ N.suc n ∎ from-ℕ′∘to-ℕ′ : ∀ n → from-ℕ′ (to-ℕ′ n) ≡ n from-ℕ′∘to-ℕ′ [] = refl _ from-ℕ′∘to-ℕ′ n@(true ∷ n′) = from-ℕ′ (to-ℕ′ n) ≡⟨⟩ from-ℕ′ (1 ⊕ 2 ⊛ to-ℕ′ n′) ≡⟨⟩ suc′ (from-ℕ′ (2 ⊛ to-ℕ′ n′)) ≡⟨ cong suc′ (from-ℕ′-2-⊛ (to-ℕ′ n′)) ⟩ suc′ (false ∷ˢ from-ℕ′ (to-ℕ′ n′)) ≡⟨ cong (suc′ ∘ (false ∷ˢ_)) (from-ℕ′∘to-ℕ′ n′) ⟩ suc′ (false ∷ˢ n′) ≡⟨ suc′-false-∷ˢ n′ ⟩ true ∷ˢ n′ ≡⟨⟩ n ∎ from-ℕ′∘to-ℕ′ n@(false ∷ n′@(_ ∷ _)) = from-ℕ′ (to-ℕ′ n) ≡⟨⟩ from-ℕ′ (2 ⊛ to-ℕ′ n′) ≡⟨ from-ℕ′-2-⊛ (to-ℕ′ n′) ⟩ false ∷ˢ from-ℕ′ (to-ℕ′ n′) ≡⟨ cong (false ∷ˢ_) (from-ℕ′∘to-ℕ′ n′) ⟩ false ∷ˢ n′ ≡⟨⟩ n ∎ abstract private -- Helper functions used to implement addition. add-with-carryᴮ : Bool → Bool → Bool → Bool × Bool add-with-carryᴮ false false false = false , false add-with-carryᴮ false false true = true , false add-with-carryᴮ false true false = true , false add-with-carryᴮ false true true = false , true add-with-carryᴮ true false false = true , false add-with-carryᴮ true false true = false , true add-with-carryᴮ true true false = false , true add-with-carryᴮ true true true = true , true add-with-carry₁ : Bool → Bin′ → Bin′ add-with-carry₁ false = id add-with-carry₁ true = suc′ add-with-carry₂ : Bool → Bin′ → Bin′ → Bin′ add-with-carry₂ b [] n = add-with-carry₁ b n add-with-carry₂ b m@(_ ∷ _) [] = add-with-carry₁ b m add-with-carry₂ b (c ∷ m) (d ∷ n) = case add-with-carryᴮ b c d of λ where (e , f) → e ∷ˢ add-with-carry₂ f m n to-ℕ′-add-with-carry₁ : ∀ b cs → to-ℕ′ (add-with-carry₁ b cs) ≡ from-Bool b ⊕ to-ℕ′ cs to-ℕ′-add-with-carry₁ false n = refl _ to-ℕ′-add-with-carry₁ true n = to-ℕ′-suc′ n to-ℕ′-add-with-carry₂ : ∀ b m n → to-ℕ′ (add-with-carry₂ b m n) ≡ from-Bool b ⊕ (to-ℕ′ m ⊕ to-ℕ′ n) to-ℕ′-add-with-carry₂ b [] n = to-ℕ′-add-with-carry₁ b n to-ℕ′-add-with-carry₂ b m@(_ ∷ _) [] = to-ℕ′ (add-with-carry₁ b m) ≡⟨ to-ℕ′-add-with-carry₁ b m ⟩ from-Bool b ⊕ to-ℕ′ m ≡⟨ solve 2 (λ b c → b :+ c := b :+ (c :+ con 0)) (refl _) (from-Bool b) _ ⟩ from-Bool b ⊕ (to-ℕ′ m ⊕ 0) ≡⟨⟩ from-Bool b ⊕ (to-ℕ′ m ⊕ to-ℕ′ []) ∎ to-ℕ′-add-with-carry₂ false m@(false ∷ m′) n@(false ∷ n′) = to-ℕ′ (false ∷ˢ add-with-carry₂ false m′ n′) ≡⟨ to-ℕ′-∷ˢ false (add-with-carry₂ false m′ n′) ⟩ 2 ⊛ to-ℕ′ (add-with-carry₂ false m′ n′) ≡⟨ cong (2 ⊛_) (to-ℕ′-add-with-carry₂ false m′ n′) ⟩ 2 ⊛ (to-ℕ′ m′ ⊕ to-ℕ′ n′) ≡⟨ solve 2 (λ c d → con 2 :* (c :+ d) := con 2 :* c :+ con 2 :* d) (refl _) (to-ℕ′ m′) _ ⟩ 2 ⊛ to-ℕ′ m′ ⊕ 2 ⊛ to-ℕ′ n′ ≡⟨⟩ to-ℕ′ m ⊕ to-ℕ′ n ∎ to-ℕ′-add-with-carry₂ false m@(false ∷ m′) n@(true ∷ n′) = to-ℕ′ (true ∷ˢ add-with-carry₂ false m′ n′) ≡⟨ to-ℕ′-∷ˢ true (add-with-carry₂ false m′ n′) ⟩ 1 ⊕ 2 ⊛ to-ℕ′ (add-with-carry₂ false m′ n′) ≡⟨ cong ((1 ⊕_) ∘ (2 ⊛_)) (to-ℕ′-add-with-carry₂ false m′ n′) ⟩ 1 ⊕ 2 ⊛ (to-ℕ′ m′ ⊕ to-ℕ′ n′) ≡⟨ solve 2 (λ c d → con 1 :+ con 2 :* (c :+ d) := con 2 :* c :+ (con 1 :+ con 2 :* d)) (refl _) (to-ℕ′ m′) _ ⟩ 2 ⊛ to-ℕ′ m′ ⊕ (1 ⊕ 2 ⊛ to-ℕ′ n′) ≡⟨⟩ to-ℕ′ m ⊕ to-ℕ′ n ∎ to-ℕ′-add-with-carry₂ false m@(true ∷ m′) n@(false ∷ n′) = to-ℕ′ (true ∷ˢ add-with-carry₂ false m′ n′) ≡⟨ to-ℕ′-∷ˢ true (add-with-carry₂ false m′ n′) ⟩ 1 ⊕ 2 ⊛ to-ℕ′ (add-with-carry₂ false m′ n′) ≡⟨ cong ((1 ⊕_) ∘ (2 ⊛_)) (to-ℕ′-add-with-carry₂ false m′ n′) ⟩ 1 ⊕ 2 ⊛ (to-ℕ′ m′ ⊕ to-ℕ′ n′) ≡⟨ solve 2 (λ c d → con 1 :+ con 2 :* (c :+ d) := con 1 :+ con 2 :* c :+ con 2 :* d) (refl _) (to-ℕ′ m′) _ ⟩ 1 ⊕ 2 ⊛ to-ℕ′ m′ ⊕ 2 ⊛ to-ℕ′ n′ ≡⟨⟩ to-ℕ′ m ⊕ to-ℕ′ n ∎ to-ℕ′-add-with-carry₂ false m@(true ∷ m′) n@(true ∷ n′) = to-ℕ′ (false ∷ˢ add-with-carry₂ true m′ n′) ≡⟨ to-ℕ′-∷ˢ false (add-with-carry₂ true m′ n′) ⟩ 2 ⊛ to-ℕ′ (add-with-carry₂ true m′ n′) ≡⟨ cong (2 ⊛_) (to-ℕ′-add-with-carry₂ true m′ n′) ⟩ 2 ⊛ (1 ⊕ to-ℕ′ m′ ⊕ to-ℕ′ n′) ≡⟨ solve 2 (λ c d → con 2 :* (con 1 :+ c :+ d) := con 1 :+ con 2 :* c :+ (con 1 :+ con 2 :* d)) (refl _) (to-ℕ′ m′) _ ⟩ 1 ⊕ 2 ⊛ to-ℕ′ m′ ⊕ (1 ⊕ 2 ⊛ to-ℕ′ n′) ≡⟨⟩ to-ℕ′ m ⊕ to-ℕ′ n ∎ to-ℕ′-add-with-carry₂ true m@(false ∷ m′) n@(false ∷ n′) = to-ℕ′ (true ∷ˢ add-with-carry₂ false m′ n′) ≡⟨ to-ℕ′-∷ˢ true (add-with-carry₂ false m′ n′) ⟩ 1 ⊕ 2 ⊛ to-ℕ′ (add-with-carry₂ false m′ n′) ≡⟨ cong ((1 ⊕_) ∘ (2 ⊛_)) (to-ℕ′-add-with-carry₂ false m′ n′) ⟩ 1 ⊕ 2 ⊛ (to-ℕ′ m′ ⊕ to-ℕ′ n′) ≡⟨ solve 2 (λ c d → con 1 :+ con 2 :* (c :+ d) := con 1 :+ con 2 :* c :+ con 2 :* d) (refl _) (to-ℕ′ m′) _ ⟩ 1 ⊕ 2 ⊛ to-ℕ′ m′ ⊕ 2 ⊛ to-ℕ′ n′ ≡⟨⟩ 1 ⊕ to-ℕ′ m ⊕ to-ℕ′ n ∎ to-ℕ′-add-with-carry₂ true m@(false ∷ m′) n@(true ∷ n′) = to-ℕ′ (false ∷ˢ add-with-carry₂ true m′ n′) ≡⟨ to-ℕ′-∷ˢ false (add-with-carry₂ true m′ n′) ⟩ 2 ⊛ to-ℕ′ (add-with-carry₂ true m′ n′) ≡⟨ cong (2 ⊛_) (to-ℕ′-add-with-carry₂ true m′ n′) ⟩ 2 ⊛ (1 ⊕ to-ℕ′ m′ ⊕ to-ℕ′ n′) ≡⟨ solve 2 (λ c d → con 2 :* (con 1 :+ c :+ d) := con 1 :+ con 2 :* c :+ (con 1 :+ con 2 :* d)) (refl _) (to-ℕ′ m′) _ ⟩ 1 ⊕ 2 ⊛ to-ℕ′ m′ ⊕ (1 ⊕ 2 ⊛ to-ℕ′ n′) ≡⟨⟩ 1 ⊕ to-ℕ′ m ⊕ to-ℕ′ n ∎ to-ℕ′-add-with-carry₂ true m@(true ∷ m′) n@(false ∷ n′) = to-ℕ′ (false ∷ˢ add-with-carry₂ true m′ n′) ≡⟨ to-ℕ′-∷ˢ false (add-with-carry₂ true m′ n′) ⟩ 2 ⊛ to-ℕ′ (add-with-carry₂ true m′ n′) ≡⟨ cong (2 ⊛_) (to-ℕ′-add-with-carry₂ true m′ n′) ⟩ 2 ⊛ (1 ⊕ to-ℕ′ m′ ⊕ to-ℕ′ n′) ≡⟨ solve 2 (λ c d → con 2 :* (con 1 :+ c :+ d) := con 2 :+ con 2 :* c :+ con 2 :* d) (refl _) (to-ℕ′ m′) _ ⟩ 2 ⊕ 2 ⊛ to-ℕ′ m′ ⊕ 2 ⊛ to-ℕ′ n′ ≡⟨⟩ 1 ⊕ to-ℕ′ m ⊕ to-ℕ′ n ∎ to-ℕ′-add-with-carry₂ true m@(true ∷ m′) n@(true ∷ n′) = to-ℕ′ (true ∷ˢ add-with-carry₂ true m′ n′) ≡⟨ to-ℕ′-∷ˢ true (add-with-carry₂ true m′ n′) ⟩ 1 ⊕ 2 ⊛ to-ℕ′ (add-with-carry₂ true m′ n′) ≡⟨ cong ((1 ⊕_) ∘ (2 ⊛_)) (to-ℕ′-add-with-carry₂ true m′ n′) ⟩ 1 ⊕ 2 ⊛ (1 ⊕ to-ℕ′ m′ ⊕ to-ℕ′ n′) ≡⟨ solve 2 (λ c d → con 1 :+ con 2 :* (con 1 :+ c :+ d) := con 2 :+ con 2 :* c :+ (con 1 :+ con 2 :* d)) (refl _) (to-ℕ′ m′) _ ⟩ 2 ⊕ 2 ⊛ to-ℕ′ m′ ⊕ (1 ⊕ 2 ⊛ to-ℕ′ n′) ≡⟨⟩ 1 ⊕ to-ℕ′ m ⊕ to-ℕ′ n ∎ -- Addition. add-with-carry : Bin′ → Bin′ → Bin′ add-with-carry = add-with-carry₂ false to-ℕ′-add-with-carry : ∀ m n → to-ℕ′ (add-with-carry m n) ≡ to-ℕ′ m ⊕ to-ℕ′ n to-ℕ′-add-with-carry = to-ℕ′-add-with-carry₂ false -- Division by two, rounded downwards. ⌊_/2⌋ : Bin′ → Bin′ ⌊ [] /2⌋ = [] ⌊ _ ∷ n /2⌋ = n to-ℕ′-⌊/2⌋ : ∀ n → to-ℕ′ ⌊ n /2⌋ ≡ N.⌊ to-ℕ′ n /2⌋ to-ℕ′-⌊/2⌋ [] = refl _ to-ℕ′-⌊/2⌋ (false ∷ n) = to-ℕ′ n ≡⟨ sym $ N.⌊2*/2⌋≡ _ ⟩∎ N.⌊ 2 ⊛ to-ℕ′ n /2⌋ ∎ to-ℕ′-⌊/2⌋ (true ∷ n) = to-ℕ′ n ≡⟨ sym $ N.⌊1+2*/2⌋≡ _ ⟩∎ N.⌊ 1 ⊕ 2 ⊛ to-ℕ′ n /2⌋ ∎ -- Division by two, rounded upwards. ⌈_/2⌉ : Bin′ → Bin′ ⌈ [] /2⌉ = [] ⌈ false ∷ n /2⌉ = n ⌈ true ∷ n /2⌉ = suc′ n to-ℕ′-⌈/2⌉ : ∀ n → to-ℕ′ ⌈ n /2⌉ ≡ N.⌈ to-ℕ′ n /2⌉ to-ℕ′-⌈/2⌉ [] = refl _ to-ℕ′-⌈/2⌉ (false ∷ n) = to-ℕ′ n ≡⟨ sym $ N.⌈2*/2⌉≡ _ ⟩∎ N.⌈ 2 ⊛ to-ℕ′ n /2⌉ ∎ to-ℕ′-⌈/2⌉ (true ∷ n) = to-ℕ′ (suc′ n) ≡⟨ to-ℕ′-suc′ n ⟩ 1 ⊕ to-ℕ′ n ≡⟨ sym $ N.⌈1+2*/2⌉≡ _ ⟩∎ N.⌈ 1 ⊕ 2 ⊛ to-ℕ′ n /2⌉ ∎ -- Multiplication. infixl 7 _*_ _*_ : Bin′ → Bin′ → Bin′ [] * n = zero′ (b ∷ m) * n = (if b then add-with-carry n else id) (false ∷ˢ m * n) to-ℕ′-* : ∀ m n → to-ℕ′ (m * n) ≡ to-ℕ′ m ⊛ to-ℕ′ n to-ℕ′-* [] n = refl _ to-ℕ′-* (false ∷ m ⟨ inv ⟩) n = to-ℕ′ (false ∷ˢ m * n) ≡⟨ to-ℕ′-∷ˢ false (m * n) ⟩ 2 ⊛ to-ℕ′ (m * n) ≡⟨ cong (2 ⊛_) (to-ℕ′-* m _) ⟩ 2 ⊛ (to-ℕ′ m ⊛ to-ℕ′ n) ≡⟨ N.*-assoc 2 {n = to-ℕ′ m} ⟩ (2 ⊛ to-ℕ′ m) ⊛ to-ℕ′ n ≡⟨⟩ to-ℕ′ (false ∷ m ⟨ inv ⟩) ⊛ to-ℕ′ n ∎ to-ℕ′-* (true ∷ m) n = to-ℕ′ (add-with-carry n (false ∷ˢ m * n)) ≡⟨ to-ℕ′-add-with-carry n _ ⟩ to-ℕ′ n ⊕ to-ℕ′ (false ∷ˢ m * n) ≡⟨ cong (to-ℕ′ n ⊕_) (to-ℕ′-∷ˢ false (m * n)) ⟩ to-ℕ′ n ⊕ 2 ⊛ to-ℕ′ (m * n) ≡⟨ cong (λ x → to-ℕ′ n ⊕ 2 ⊛ x) (to-ℕ′-* m _) ⟩ to-ℕ′ n ⊕ 2 ⊛ (to-ℕ′ m ⊛ to-ℕ′ n) ≡⟨ solve 2 (λ m n → n :+ con 2 :* (m :* n) := (con 1 :+ con 2 :* m) :* n) (refl _) (to-ℕ′ m) _ ⟩ (1 ⊕ 2 ⊛ to-ℕ′ m) ⊛ to-ℕ′ n ≡⟨⟩ to-ℕ′ (true ∷ m) ⊛ to-ℕ′ n ∎ -- Exponentiation. infixr 8 _^_ _^_ : Bin′ → Bin′ → Bin′ m ^ [] = suc′ zero′ m ^ (b ∷ n) = (if b then (m *_) else id) ((m * m) ^ n) to-ℕ′-^ : ∀ m n → to-ℕ′ (m ^ n) ≡ to-ℕ′ m N.^ to-ℕ′ n to-ℕ′-^ m [] = refl _ to-ℕ′-^ m (false ∷ n ⟨ inv ⟩) = to-ℕ′ (m ^ (false ∷ n ⟨ inv ⟩)) ≡⟨⟩ to-ℕ′ ((m * m) ^ n) ≡⟨ to-ℕ′-^ (m * m) n ⟩ to-ℕ′ (m * m) N.^ to-ℕ′ n ≡⟨ cong (N._^ to-ℕ′ n) (to-ℕ′-* m m) ⟩ (to-ℕ′ m ⊛ to-ℕ′ m) N.^ to-ℕ′ n ≡⟨ cong (λ x → (to-ℕ′ m ⊛ x) N.^ to-ℕ′ n) (sym (N.*-right-identity (to-ℕ′ m))) ⟩ (to-ℕ′ m N.^ 2) N.^ to-ℕ′ n ≡⟨ N.^^≡^* 2 {k = to-ℕ′ n} ⟩ to-ℕ′ m N.^ (2 ⊛ to-ℕ′ n) ≡⟨⟩ to-ℕ′ m N.^ to-ℕ′ (false ∷ n ⟨ inv ⟩) ∎ to-ℕ′-^ m (true ∷ n) = to-ℕ′ (m ^ (true ∷ n)) ≡⟨⟩ to-ℕ′ (m * (m * m) ^ n) ≡⟨ to-ℕ′-* m ((m * m) ^ n) ⟩ to-ℕ′ m ⊛ to-ℕ′ ((m * m) ^ n) ≡⟨ cong (to-ℕ′ m ⊛_) (to-ℕ′-^ (m * m) n) ⟩ to-ℕ′ m ⊛ to-ℕ′ (m * m) N.^ to-ℕ′ n ≡⟨ cong (λ x → to-ℕ′ m ⊛ x N.^ to-ℕ′ n) (to-ℕ′-* m m) ⟩ to-ℕ′ m ⊛ (to-ℕ′ m ⊛ to-ℕ′ m) N.^ to-ℕ′ n ≡⟨ cong (λ x → to-ℕ′ m ⊛ (to-ℕ′ m ⊛ x) N.^ to-ℕ′ n) (sym (N.*-right-identity (to-ℕ′ m))) ⟩ to-ℕ′ m ⊛ (to-ℕ′ m N.^ 2) N.^ to-ℕ′ n ≡⟨ cong₂ _⊛_ (sym (N.^-right-identity {n = to-ℕ′ m})) (N.^^≡^* 2 {k = to-ℕ′ n}) ⟩ to-ℕ′ m N.^ 1 ⊛ to-ℕ′ m N.^ (2 ⊛ to-ℕ′ n) ≡⟨ sym $ N.^+≡^*^ {m = to-ℕ′ m} 1 {k = 2 ⊛ to-ℕ′ n} ⟩ to-ℕ′ m N.^ (1 ⊕ 2 ⊛ to-ℕ′ n) ≡⟨⟩ to-ℕ′ m N.^ to-ℕ′ (true ∷ n) ∎ -- "Left shift". infixl 8 _*2^_ _*2^_ : Bin′ → ℕ → Bin′ m *2^ zero = m m *2^ N.suc n = (false ∷ˢ m) *2^ n to-ℕ′-*2^ : ∀ m n → to-ℕ′ (m *2^ n) ≡ to-ℕ′ m ⊛ 2 N.^ n to-ℕ′-*2^ m zero = to-ℕ′ m ≡⟨ sym $ N.*-right-identity _ ⟩∎ to-ℕ′ m ⊛ 1 ∎ to-ℕ′-*2^ m (N.suc n) = to-ℕ′ ((false ∷ˢ m) *2^ n) ≡⟨ to-ℕ′-*2^ (false ∷ˢ m) n ⟩ to-ℕ′ (false ∷ˢ m) ⊛ 2 N.^ n ≡⟨ cong (_⊛ _) $ to-ℕ′-∷ˢ false m ⟩ 2 ⊛ to-ℕ′ m ⊛ 2 N.^ n ≡⟨ cong (_⊛ (2 N.^ n)) $ N.*-comm 2 {n = to-ℕ′ m} ⟩ to-ℕ′ m ⊛ 2 ⊛ 2 N.^ n ≡⟨ sym $ N.*-assoc (to-ℕ′ m) ⟩∎ to-ℕ′ m ⊛ 2 N.^ N.suc n ∎ private -- The empty list is not equal to any non-empty list. []≢∷ : []′ ≢ b ∷ n ⟨ inv ⟩′ []≢∷ {b = b} {n = n} = [] ≡ b ∷ n ↝⟨ cong to-List ⟩ [] ≡ b ∷ to-List n ↝⟨ List.[]≢∷ ⟩□ ⊥ □ -- Equality is decidable for Bin′. -- -- This definition uses Dec-Erased instead of Dec ∘ Erased -- because I thought this made the code a little less -- complicated. equal? : (m n : Bin′) → Dec-Erased (m ≡ n) equal? [] [] = yes [ refl _ ] equal? [] (b ∷ n) = no [ []≢∷ ] equal? (b ∷ n) [] = no [ []≢∷ ∘ sym ] equal? (b₁ ∷ n₁) (b₂ ∷ n₂) = helper₁ _ _ (b₁ Bool.≟ b₂) where helper₂ : ∀ n₁ n₂ (@0 inv₁ : Invariant b₁ n₁) (@0 inv₂ : Invariant b₂ n₂) → b₁ ≡ b₂ → Dec-Erased (n₁ ≡ n₂) → Dec-Erased ((b₁ ∷ n₁ ⟨ inv₁ ⟩′) ≡ (b₂ ∷ n₂ ⟨ inv₂ ⟩′)) helper₂ n₁ n₂ _ _ _ (no [ n₁≢n₂ ]) = no [ (b₁ ∷ n₁ ⟨ _ ⟩) ≡ (b₂ ∷ n₂ ⟨ _ ⟩) ↝⟨ cong to-List ⟩ b₁ ∷ to-List n₁ ≡ b₂ ∷ to-List n₂ ↝⟨ List.cancel-∷-tail ⟩ to-List n₁ ≡ to-List n₂ ↝⟨ cong List-to-ℕ ⟩ to-ℕ′ n₁ ≡ to-ℕ′ n₂ ↝⟨ _↔_.injective Bin′↔ℕ ⟩ n₁ ≡ n₂ ↝⟨ n₁≢n₂ ⟩□ ⊥ □ ] helper₂ n₁ n₂ inv₁ inv₂ b₁≡b₂ (yes [ n₁≡n₂ ]) = yes [ $⟨ b₁≡b₂ , n₁≡n₂ ⟩ b₁ ≡ b₂ × n₁ ≡ n₂ ↝⟨ Σ-map id (cong to-List) ⟩ b₁ ≡ b₂ × to-List n₁ ≡ to-List n₂ ↔⟨ inverse ∷≡∷↔≡×≡ ⟩ b₁ ∷ to-List n₁ ≡ b₂ ∷ to-List n₂ ↝⟨ cong List-to-ℕ ⟩ to-ℕ′ (b₁ ∷ n₁ ⟨ inv₁ ⟩) ≡ to-ℕ′ (b₂ ∷ n₂ ⟨ inv₂ ⟩) ↝⟨ _↔_.injective Bin′↔ℕ ⟩□ b₁ ∷ n₁ ≡ b₂ ∷ n₂ □ ] helper₁ : ∀ n₁ n₂ {@0 inv₁ : Invariant b₁ n₁} {@0 inv₂ : Invariant b₂ n₂} → Dec (b₁ ≡ b₂) → Dec-Erased ((b₁ ∷ n₁ ⟨ inv₁ ⟩′) ≡ (b₂ ∷ n₂ ⟨ inv₂ ⟩′)) helper₁ n₁ n₂ (yes b₁≡b₂) = helper₂ _ _ _ _ b₁≡b₂ (equal? n₁ n₂) helper₁ n₁ n₂ (no b₁≢b₂) = no [ b₁ ∷ n₁ ≡ b₂ ∷ n₂ ↝⟨ cong to-List ⟩ b₁ ∷ to-List n₁ ≡ b₂ ∷ to-List n₂ ↝⟨ List.cancel-∷-head ⟩ b₁ ≡ b₂ ↝⟨ b₁≢b₂ ⟩□ ⊥ □ ] -- An equality test. infix 4 _≟_ _≟_ : (m n : Bin′) → Dec (Erased (to-ℕ′ m ≡ to-ℕ′ n)) m ≟ n = $⟨ equal? m n ⟩ Dec-Erased (m ≡ n) ↝⟨ Dec-Erased-map lemma ⟩ Dec-Erased (to-ℕ′ m ≡ to-ℕ′ n) ↝⟨ Dec-Erased↔Dec-Erased _ ⟩□ Dec (Erased (to-ℕ′ m ≡ to-ℕ′ n)) □ where lemma : m ≡ n ⇔ to-ℕ′ m ≡ to-ℕ′ n lemma = record { to = cong to-ℕ′; from = _↔_.injective Bin′↔ℕ } private -- A lemma used to prove that from-bits and to-bits are -- correct. to-ℕ′-foldr-∷ˢ-[] : ∀ bs → to-ℕ′ (foldr _∷ˢ_ []′ bs) ≡ foldr (λ b n → from-Bool b ⊕ 2 ⊛ n) 0 bs to-ℕ′-foldr-∷ˢ-[] [] = refl _ to-ℕ′-foldr-∷ˢ-[] (b ∷ bs) = to-ℕ′ (foldr _∷ˢ_ [] (b ∷ bs)) ≡⟨⟩ to-ℕ′ (b ∷ˢ foldr _∷ˢ_ [] bs) ≡⟨ to-ℕ′-∷ˢ b _ ⟩ from-Bool b ⊕ 2 ⊛ to-ℕ′ (foldr _∷ˢ_ [] bs) ≡⟨ cong (λ n → from-Bool b ⊕ 2 ⊛ n) (to-ℕ′-foldr-∷ˢ-[] bs) ⟩ from-Bool b ⊕ 2 ⊛ foldr (λ b n → from-Bool b ⊕ 2 ⊛ n) 0 bs ≡⟨⟩ foldr (λ b n → from-Bool b ⊕ 2 ⊛ n) 0 (b ∷ bs) ∎ -- Converts from lists of bits. (The most significant bit comes -- first.) from-bits : List Bool → Bin′ from-bits = foldr _∷ˢ_ [] ∘ reverse to-ℕ′-from-bits : ∀ bs → to-ℕ′ (from-bits bs) ≡ foldl (λ n b → (if b then 1 else 0) ⊕ 2 ⊛ n) 0 bs to-ℕ′-from-bits bs = to-ℕ′ (from-bits bs) ≡⟨⟩ to-ℕ′ (foldr _∷ˢ_ [] (reverse bs)) ≡⟨ to-ℕ′-foldr-∷ˢ-[] (reverse bs) ⟩ foldr (λ b n → from-Bool b ⊕ 2 ⊛ n) 0 (reverse bs) ≡⟨ foldr-reverse bs ⟩∎ foldl (λ n b → from-Bool b ⊕ 2 ⊛ n) 0 bs ∎ -- Converts to lists of bits. (The most significant bit comes -- first.) to-bits : Bin′ → List Bool to-bits = reverse ∘ to-List to-ℕ′-from-bits-to-bits : ∀ n → to-ℕ′ (from-bits (to-bits n)) ≡ to-ℕ′ n to-ℕ′-from-bits-to-bits n = to-ℕ′ (foldr _∷ˢ_ [] (reverse (reverse (to-List n)))) ≡⟨ cong (to-ℕ′ ∘ foldr _∷ˢ_ []) (reverse-reverse (to-List n)) ⟩ to-ℕ′ (foldr _∷ˢ_ [] (to-List n)) ≡⟨ to-ℕ′-foldr-∷ˢ-[] (to-List n) ⟩ foldr (λ b n → from-Bool b ⊕ 2 ⊛ n) 0 (to-List n) ≡⟨⟩ to-ℕ′ n ∎ ------------------------------------------------------------------------ -- Binary natural numbers private module Bin-wrapper = Wrapper Bin′.Bin′ Bin′.Bin′↔ℕ open Bin-wrapper using (Operations) -- Some definitions from Nat.Wrapper are reexported. open Bin-wrapper public using (⌊_⌋; ⌈_⌉; ≡⌊⌋; nullary-[]; nullary; nullary-correct; unary-[]; unary; unary-correct; binary-[]; binary; binary-correct; n-ary-[]; n-ary; n-ary-correct) renaming ( Nat-[_] to Bin-[_] ; Nat to Bin ; Nat-[]↔Σℕ to Bin-[]↔Σℕ ) open Bin-wrapper.[]-cong ax public using (≡-for-indices↔≡) renaming ( Nat-[]-propositional to Bin-[]-propositional ; Nat↔ℕ to Bin↔ℕ ) private -- An implementation of some operations for Bin′. Operations-for-Bin′ : Operations Operations-for-Bin′ = λ where .Operations.zero → Bin′.zero′ .Operations.to-ℕ-zero → Bin′.to-ℕ′-zero′ .Operations.suc → Bin′.suc′ .Operations.to-ℕ-suc → Bin′.to-ℕ′-suc′ .Operations._+_ → Bin′.add-with-carry .Operations.to-ℕ-+ → Bin′.to-ℕ′-add-with-carry .Operations._*_ → Bin′._*_ .Operations.to-ℕ-* → Bin′.to-ℕ′-* .Operations._^_ → Bin′._^_ .Operations.to-ℕ-^ → Bin′.to-ℕ′-^ .Operations.⌊_/2⌋ → Bin′.⌊_/2⌋ .Operations.to-ℕ-⌊/2⌋ → Bin′.to-ℕ′-⌊/2⌋ .Operations.⌈_/2⌉ → Bin′.⌈_/2⌉ .Operations.to-ℕ-⌈/2⌉ → Bin′.to-ℕ′-⌈/2⌉ .Operations._*2^_ → Bin′._*2^_ .Operations.to-ℕ-*2^ → Bin′.to-ℕ′-*2^ .Operations._≟_ → Bin′._≟_ .Operations.from-bits → Bin′.from-bits .Operations.to-ℕ-from-bits → Bin′.to-ℕ′-from-bits .Operations.to-bits → Bin′.to-bits .Operations.to-ℕ-from-bits-to-bits → Bin′.to-ℕ′-from-bits-to-bits -- Operations for Bin-[_]. module Operations-for-Bin-[] = Bin-wrapper.Operations-for-Nat-[] Operations-for-Bin′ -- Operations for Bin. module Operations-for-Bin = Bin-wrapper.Operations-for-Nat Operations-for-Bin′ ------------------------------------------------------------------------ -- Some examples private module Bin-[]-examples where open Operations-for-Bin-[] -- Converts unary natural numbers to binary natural numbers. from-ℕ : ∀ n → Bin-[ n ] from-ℕ = proj₂ ∘ _↔_.from Bin↔ℕ -- Bin n is a proposition, so it is easy to prove that two values -- of this type are equal. example₁ : from-ℕ 4 + ⌊ from-ℕ 12 /2⌋ ≡ from-ℕ 10 example₁ = Bin-[]-propositional _ _ -- However, stating that two values of type Bin m and Bin n are -- equal, for equal natural numbers m and n, can be awkward. @0 example₂ : {@0 m n : ℕ} (b : Bin-[ m ]) (c : Bin-[ n ]) → subst (λ n → Bin-[ n ]) (N.+-comm m) (b + c) ≡ c + b example₂ _ _ = Bin-[]-propositional _ _ module Bin-examples where open Operations-for-Bin -- If Bin is used instead of Bin-[_], then it can be easier to -- state that two values are equal. example₁ : ⌈ 4 ⌉ + ⌊ ⌈ 12 ⌉ /2⌋ ≡ ⌈ 10 ⌉ example₁ = _↔_.to ≡-for-indices↔≡ [ refl _ ] example₂ : ∀ m n → m + n ≡ n + m example₂ m n = _↔_.to ≡-for-indices↔≡ [ ⌊ m ⌋ ⊕ ⌊ n ⌋ ≡⟨ N.+-comm ⌊ m ⌋ ⟩∎ ⌊ n ⌋ ⊕ ⌊ m ⌋ ∎ ] -- One can construct a proof showing that ⌈ 5 ⌉ is either equal or -- not equal to ⌈ 2 ⌉ + ⌈ 3 ⌉, but the proof does not compute to -- "inj₁ something" at compile-time. example₃ : Dec (⌈ 5 ⌉ ≡ ⌈ 2 ⌉ + ⌈ 3 ⌉) example₃ = Dec-map (_↔_.logical-equivalence ≡-for-indices↔≡) (⌈ 5 ⌉ ≟ ⌈ 2 ⌉ + ⌈ 3 ⌉)
{ "alphanum_fraction": 0.3922590625, "avg_line_length": 39.335978836, "ext": "agda", "hexsha": "da6b98a927728a8319996acccb0bb800e57d73eb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Nat/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Nat/Binary.agda", "max_line_length": 141, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Nat/Binary.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 12539, "size": 29738 }
module Structure.Operator.Monoid.Submonoid where import Lvl open import Logic open import Logic.Predicate open import Logic.Predicate.Equiv open import Sets.PredicateSet renaming (_≡_ to _≡ₛ_) open import Structure.Setoid open import Structure.Operator.Monoid open import Structure.Operator.Properties open import Structure.Operator open import Type private variable ℓ ℓₑ : Lvl.Level private variable T : Type{ℓ} module _ {ℓₛ} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ {_▫_ : T → T → T} (M : Monoid(_▫_)) where record Submonoid (S : PredSet{ℓₛ}(T)) : Stmt{Lvl.of(T) Lvl.⊔ ℓₛ} where constructor intro open Monoid(M) using (id) field ⦃ contains-identity ⦄ : (id ∈ S) ⦃ operator-closure ⦄ : ∀{x y} → ⦃ x ∈ S ⦄ → ⦃ y ∈ S ⦄ → ((x ▫ y) ∈ S) Object = ∃(S) _▫ₛ_ : Object → Object → Object ([∃]-intro x) ▫ₛ ([∃]-intro y) = [∃]-intro (x ▫ y) instance monoid : Monoid(_▫ₛ_) BinaryOperator.congruence (Monoid.binary-operator monoid) = congruence₂(_▫_) Associativity.proof (Monoid.associativity monoid) = associativity(_▫_) ∃.witness (Monoid.identity-existence monoid) = [∃]-intro id Identityₗ.proof (Identity.left (∃.proof (Monoid.identity-existence monoid))) = identityₗ(_▫_)(id) Identityᵣ.proof (Identity.right (∃.proof (Monoid.identity-existence monoid))) = identityᵣ(_▫_)(id)
{ "alphanum_fraction": 0.6289529164, "avg_line_length": 38.4594594595, "ext": "agda", "hexsha": "b517a8701263d5282d4a0d84dcb147fdebac5978", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Monoid/Submonoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Monoid/Submonoid.agda", "max_line_length": 104, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Monoid/Submonoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 479, "size": 1423 }
open import Structures open import SacTy module ExtractSac where open import Data.String as S hiding (_++_) renaming (_≟_ to _≟s_) open import Data.List as L hiding (_++_) open import Data.List.Categorical open import Data.List.Properties as L open import Data.Nat as N open import Agda.Builtin.Nat using (div-helper; mod-helper) open import Data.Nat.Properties as N open import Data.Nat.Show renaming (show to showNat) open import Data.Product as Σ hiding (map) open import Data.Sum hiding (map) open import Data.Vec as V using (Vec; [] ; _∷_) open import Data.Char using (Char) renaming (_≈?_ to _c≈?_) open import Data.Bool open import Data.Fin as F using (Fin; zero; suc; inject₁; fromℕ<; #_) open import Data.Maybe as M using (Maybe; just; nothing) open import Data.Unit open import Category.Monad open import Category.Monad.State open import Relation.Binary.PropositionalEquality as Eq hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Decidable hiding (map) open import Reflection hiding (return; _>>=_; _>>_) open import Reflection.Term import Reflection.Name as RN open import Reflection.Annotated open import Reflection.Universe open import Reflection.Annotated.Free open import Function open import Array.Base open import Array.Properties open import APL2 using (reduce-1d; _↑_; _↓_; ▴_; ▾_; _-↑⟨_⟩_; _↑⟨_⟩_) open import Agda.Builtin.Float open RawMonad ⦃ ... ⦄ -- Glorified sigma type for variable-type pairs record VarTy : Set where constructor _∈_~_ field v : String s : Err SacTy t : Arg Type -- Glorified sigma type for variable-assertion pairs record Assrt : Set where constructor mk field v : String a : String Assrts = List Assrt -- The state used when traversing a Pi type. record PS : Set where field cnt : ℕ -- The source of unique variable names cur : String -- Current variable name (used to collect assertions from its type) ctx : List VarTy -- Names in the telscopes to resolve deBruijn indices ret : String -- Variable that the function returns as a result. -- We assume that there is always a single variable and its name -- is known upfront. We need this to generate assertions from the -- return type. assrts : Assrts -- Assertions that we generate per each variable. kst : KS -- Compilation state (in case we have to extract some functions used in types) defaultPS : PS defaultPS = record { cnt = 1 ; cur = "" ; ctx = [] ; ret = "__ret" ; assrts = [] ; kst = defaultKS } -- Pack the information about new variables generated -- by patterns in the clause, assignments to these, -- and the list of conditions for "getting into" the -- clause. E.g. -- foo : List ℕ → ℕ -- foo (x ∷ xs) 2 = ... -- -- Assume that we named top-level arguments [a, b] -- Then, new variables for this clause are going to be -- [x, xs] -- Assignments are: -- [x = hd a, xs = tl a] -- Conditions are: -- [is-cons a, b == 2] -- -- `cnt` is merely a source of fresh variables. record PatSt : Set where constructor mk field vars : List (String × ℕ) --Strings assigns : Strings conds : Strings cnt : ℕ defaultPatSt : PatSt defaultPatSt = mk [] [] [] 1 SPS = State PS -- The main function kit to extract sac functions. kompile-fun : Type → Term → Name → SKS Prog kompile-pi : Type → SPS (Err SacTy) --Prog kompile-cls : Clauses → (vars : Strings) → (ret : String) → SKS Prog kompile-clpats : Telescope → (pats : List $ Arg Pattern) → (vars : Strings) → PatSt → Err PatSt {-# TERMINATING #-} kompile-term : Term → {- (varctx : Strings) -} {- List VarTy -} Telescope → SKS Prog -- Normalise the name of the symbols (functions, constructors, ...) -- that we obtain from showName, i.e. remove dots, replace weird -- symbols with ascii. nnorm : String → String nnorm s = replace '.' "_" $ replace '-' "_" $ replace '+' "plus" $ replace 'α' "alpha" $ replace 'ω' "omega" $ replace '→' "to" $ s where repchar : (from : Char) (to : String) (x : Char) → String repchar from to x with does $ x c≈? from ... | true = to ... | false = fromList (x ∷ []) replace : (from : Char) (to : String) → String → String replace f t s = "" ++/ L.map (repchar f t) (toList s) private kf : String → Prog kf x = error $ "kompile-fun: " ++ x validate-ty : Err SacTy → Prog validate-ty (error x) = error x validate-ty (ok τ) = let τ′ = sacty-normalise τ in case nested? τ′ of λ where hom → ok $ sacty-to-string τ′ nes → error $ "sac does not support nested types, but `" ++ sacty-to-string τ′ ++ "` found" module R = RawMonadState (StateMonadState KS) kompile-fun ty (pat-lam [] []) n = return $ kf "got zero clauses in a lambda term" kompile-fun ty (pat-lam cs []) n = do kst ← R.get let (rt , ps) = kompile-pi ty $ record defaultPS{ kst = kst } rt = validate-ty rt rv = PS.ret ps ns = showName n args = ok ", " ++/ L.map (λ where (v ∈ t ~ _) → validate-ty t ⊕ " " ⊕ v) (PS.ctx ps) ret-assrts = list-filter (λ where (mk v _) → v ≈? rv) $ PS.assrts ps arg-assrts = list-filter (dec-neg λ where (mk v _) → v ≈? rv) $ PS.assrts ps assrt-to-code = ("/* " ++_) ∘ (_++ " */") ∘ Assrt.a R.put $ PS.kst ps --b ← if does (showName n S.≟ "Example-02.testn") then kompile-cls cs (L.map (λ where (v ∈ _ ~ _) → v) $ PS.ctx ps) rv else (return $ ok "XX") b ← kompile-cls cs (L.map (λ where (v ∈ _ ~ _) → v) $ PS.ctx ps) rv return $ "// Function " ⊕ ns ⊕ "\n" ⊕ rt ⊕ "\n" ⊕ nnorm ns ⊕ "(" ⊕ args ⊕ ") {\n" ⊕ "\n" ++/ L.map assrt-to-code arg-assrts ⊕ rt ⊕ " " ⊕ rv ⊕ ";\n" ⊕ b -- function body ⊕ "\n" ++/ L.map assrt-to-code ret-assrts ⊕ "return " ⊕ rv ⊕ ";\n" ⊕ "}\n\n" kompile-fun _ _ _ = return $ kf "expected pattern-matching lambda" private kp : ∀ {X} → String → SPS (Err X) kp x = return $ error $ "kompile-pi: " ++ x ke : ∀ {X} → String → SPS (Err X) ke x = return $ error x module P = RawMonadState (StateMonadState PS) infixl 10 _p+=c_ _p+=a_ _p+=c_ : PS → ℕ → PS ps p+=c n = record ps{ cnt = PS.cnt ps + n } _p+=a_ : PS → Assrt → PS ps p+=a a = record ps{ assrts = a ∷ PS.assrts ps } ps-fresh : String → SPS String ps-fresh x = do ps ← P.get P.modify (_p+=c 1) return $ x ++ showNat (PS.cnt ps) lift-ks : ∀ {X} → SKS X → SPS X lift-ks xf sps = let (x , sks) = xf (PS.kst sps) in x , record sps {kst = sks} sps-kompile-term : Term → SPS Prog sps-kompile-term t = do ps ← P.get lift-ks $ kompile-term t $ (L.map (λ where (v ∈ _ ~ t) → (v , t)) $ PS.ctx ps) kompile-ty : Type → (pi-ok : Bool) → SPS (Err SacTy) kompile-ty (Π[ s ∶ arg i x ] y) false = kp "higher-order functions are not supported" kompile-ty (Π[ s ∶ arg i x ] y) true = do v ← ps-fresh "x_" P.modify λ k → record k { cur = v } (ok t) ← kompile-ty x false where e → return e P.modify λ k → record k { cur = PS.ret k -- In case this is a return type ; ctx = PS.ctx k ++ [ v ∈ ok t ~ arg i x ] } kompile-ty y true kompile-ty (con c args) pi-ok = kp $ "don't know how to handle `" ++ showName c ++ "` constructor" kompile-ty (def (quote ℕ) args) _ = return $ ok int kompile-ty (def (quote Bool) args) _ = return $ ok bool kompile-ty (def (quote Float) args) _ = return $ ok float kompile-ty (def (quote Fin) (arg _ x ∷ [])) _ = do ok p ← sps-kompile-term x where error x → ke x v ← PS.cur <$> P.get P.modify $ _p+=a (mk v $′ "assert (" ++ v ++ " < " ++ p ++ ")") return $ ok int kompile-ty (def (quote L.List) (_ ∷ arg _ ty ∷ _)) _ = do el ← ps-fresh "el_" v , as ← < PS.cur , PS.assrts > <$> P.get -- Any constraints that the subsequent call would -- generate will be constraints about the elements -- of the list. P.modify λ k → record k { cur = el ; assrts = [] } ok τ ← kompile-ty ty false where e → return e P.modify λ k → record k { cur = v; assrts = as ++ (L.map {B = Assrt} (λ where (mk _ a) → mk v ("foreach-v " ++ el ++ " in " ++ v ++ ": " ++ a)) $ PS.assrts k) -- No need to modify context, as we don't allow higher order functions, so it stays the same. } return $ ok $ akd nes τ (error "lists do not have static shape") 1 kompile-ty (def (quote V.Vec) (_ ∷ arg _ ty ∷ arg _ n ∷ [])) _ = do el ← ps-fresh "el_" v , as ← < PS.cur , PS.assrts > <$> P.get ok p ← sps-kompile-term n where error x → ke x P.modify λ k → record k { cur = el ; assrts = [] } ok τ ← kompile-ty ty false where e → return e P.modify λ k → record k { cur = v; assrts = as ++ (L.map {B = Assrt} (λ where (mk _ a) → mk v ("foreach-v " ++ el ++ " in " ++ v ++ ": " ++ a)) $ PS.assrts k) ++ [ mk v $′ "assert (shape (" ++ v ++ ")[[0]] == " ++ p ++ ")" ] } let sh = "[" ⊕ p ⊕ "]" case n of λ where -- XXX can we possibly miss on any constant expressions? (lit (nat n′)) → return $ ok $ aks hom τ sh 1 V.[ n′ ] _ → return $ ok $ akd hom τ sh 1 kompile-ty (def (quote Ar) (_ ∷ arg _ el-ty ∷ arg _ dim ∷ arg _ sh ∷ [])) _ = do el ← ps-fresh "el_" v , as ← < PS.cur , PS.assrts > <$> P.get ok d ← sps-kompile-term dim where error x → ke x ok s ← sps-kompile-term sh where error x → ke x P.modify λ k → record k { cur = el ; assrts = [] } ok τ ← kompile-ty el-ty false where e → return e P.modify λ k → record k { cur = v; assrts = as ++ (L.map {B = Assrt} (λ where (mk _ a) → mk v ("foreach-a sh=" ++ s ++ " " ++ el ++ " in " ++ v ++ ": " ++ a)) $ PS.assrts k) ++ [ mk v $′ "assert (take (" ++ d ++ ", shape (" ++ v ++ ")) == " ++ s ++ ")" ] -- XXX do we want to assert stuff about rank? } case dim of λ where -- XXX can we possibly miss on any constant expressions? -- FIXME consider AKS case here! (lit (nat d′)) → return $ ok $ akd hom τ (ok s) d′ _ → return $ ok $ aud hom τ (ok s) kompile-ty (def (quote Ix) (arg _ dim ∷ arg _ s ∷ [])) _ = do v ← PS.cur <$> P.get ok d ← sps-kompile-term dim where error x → ke x ok s ← sps-kompile-term s where error x → ke x P.modify $ _p+=a (mk v $′ "assert (dim (" ++ v ++ ") == " ++ d ++ ")") ∘ _p+=a (mk v $′ "assert (" ++ v ++ " < " ++ s ++ ")") case dim of λ where (lit (nat d′)) → return $ ok $ aks hom int (ok s) 1 V.[ d′ ] _ → return $ ok $ akd hom int (ok s) 1 kompile-ty (def (quote _≡_) (_ ∷ arg _ ty ∷ arg _ x ∷ arg _ y ∷ [])) _ = do ok x ← sps-kompile-term x where error x → ke x ok y ← sps-kompile-term y where error x → ke x v ← PS.cur <$> P.get P.modify $ _p+=a (mk v $′ "assert (" ++ x ++ " == " ++ y ++ ")") return $ ok unit kompile-ty (def (quote _≥a_) (_ ∷ _ ∷ arg _ x ∷ arg _ y ∷ [])) _ = do ok x ← sps-kompile-term x where error x → ke x ok y ← sps-kompile-term y where error x → ke x v ← PS.cur <$> P.get P.modify $ _p+=a (mk v $′ "assert (" ++ x ++ " >= " ++ y ++ ")") return $ ok unit kompile-ty (def (quote _<a_) (_ ∷ _ ∷ arg _ x ∷ arg _ y ∷ [])) _ = do ok x ← sps-kompile-term x where error x → ke x ok y ← sps-kompile-term y where error x → ke x v ← PS.cur <$> P.get P.modify $ _p+=a (mk v $′ "assert (" ++ x ++ " < " ++ y ++ ")") return $ ok unit kompile-ty (def (quote Dec) (_ ∷ arg _ p ∷ [])) _ = do _ ← kompile-ty p false return $ ok bool kompile-ty (def n _) _ = kp $ "cannot handle `" ++ showName n ++ "` type" kompile-ty t _ = kp $ "failed with the term `" ++ showTerm t ++ "`" kompile-pi x = kompile-ty x true -- The names in the telescopes very oftern are not unique, which -- would be pretty disasterous if the code generation relies on them. -- see https://github.com/agda/agda/issues/5048 for more details. -- -- This function simply ensures that variable names are unique in -- in the telescope. tel-rename : Telescope → (db : List (String × ℕ)) → Telescope tel-rename [] db = [] tel-rename ((v , ty) ∷ tel) db with list-find-el ((_≟s v) ∘ proj₁) db ... | just (_ , n) = (v ++ "_" ++ showNat n , ty) ∷ tel-rename tel (list-update-fst ((_≟s v) ∘ proj₁) db (Σ.map₂ suc)) ... | nothing = (v , ty) ∷ tel-rename tel ((v , 1) ∷ db) private kc : String → SKS Prog kc x = return $ error $ "kompile-cls: " ++ x _>>=e_ : ∀ {a}{X : Set a} → Err X → (X → SKS Prog) → SKS Prog (error s) >>=e _ = return $ error s (ok x) >>=e f = f x -- sort in increasing order list-sort : ∀ {a}{X : Set a} → (acc l : List (X × ℕ)) → List (X × ℕ) list-sort acc [] = acc list-sort acc (x ∷ l) = list-sort (insert acc x) l where insert : _ → _ → _ insert [] y = y ∷ [] insert (x ∷ xs) y with proj₂ y N.<? proj₂ x ... | yes y<x = y ∷ x ∷ xs ... | no y≥x = x ∷ insert xs y isperm : ∀ {a}{X : Set a} → (n max : ℕ) → (db : List ℕ) → List (X × ℕ) → Bool isperm 0 0 [] [] = true isperm n max db [] = does (1 + max N.≟ n) ∧ does (L.length db N.≟ n) isperm n max db ((_ , x) ∷ xs) with list-has-el (N._≟ x) db ... | true = false ... | false = isperm n (max N.⊔ x) (x ∷ db) xs perm : Telescope → List (String × ℕ) → Err (List String) perm tel vs with isperm (L.length tel) 0 [] vs ... | false = error $ ", " ++/ L.map (λ where (x , y) → "(" ++ x ++ ", " ++ showNat y ++ ")") vs ++ " is not a permutation of the telescope " ++ showTel tel ... | true = ok $ L.reverse $ L.map proj₁ $ list-sort [] vs module test-perm where test₀ : isperm {X = ℕ} 0 0 [] [] ≡ true test₀ = refl test₁ : isperm 1 0 [] (("" , 0) ∷ []) ≡ true test₁ = refl test₂′ : isperm 2 0 [] (("" , 1) ∷ ("" , 0) ∷ []) ≡ true test₂′ = refl test₃ : isperm 3 0 [] (("" , 2) ∷ ("" , 0) ∷ ("" , 1) ∷ []) ≡ true test₃ = refl test₄ : isperm 4 0 [] (("" , 2) ∷ ("" , 2) ∷ ("" , 1) ∷ ("" , 3) ∷ []) ≡ false test₄ = refl kompile-tel : Telescope → SPS (Err ⊤) kompile-tel [] = return $ ok tt kompile-tel ((v , t@(arg i x)) ∷ tel) = do --(ok τ) ← kompile-ty x false where (error x) → return $ error x P.modify λ k → record k{ ctx = PS.ctx k ++ [ v ∈ error "?" ~ t ] } kompile-tel tel kompile-cls [] ctx ret = kc "zero clauses found" kompile-cls (clause tel ps t ∷ []) ctx ret = -- Make telscope names unique. let tel = (tel-rename $! tel) $! [] in kompile-clpats tel ps ctx defaultPatSt >>=e λ pst → do let (mk vars assgns _ _) = pst --in t ← kompile-term t $! tel let as = "\n" ++/ assgns return $ as ⊕ "\n" ⊕ ret ⊕ " = " ⊕ t ⊕ ";\n" kompile-cls (absurd-clause tel ps ∷ []) ctx ret = -- Exactly the same as above -- We don't really need to make this call, but we keep it -- for sanity checks. I.e. if we'll get an error in the -- patterns, it will bubble up to the caller. kompile-clpats ((tel-rename $! tel) $! []) ps ctx defaultPatSt >>=e λ pst → do return $ ok "unreachable ();" kompile-cls (absurd-clause tel ps ∷ ts@(_ ∷ _)) ctx ret = kompile-clpats ((tel-rename $! tel) $! []) ps ctx defaultPatSt >>=e λ pst → do let (mk vars _ conds _) = pst cs = " && " ++/ (if L.length conds N.≡ᵇ 0 then [ "true" ] else conds) r ← kompile-cls ts ctx ret return $ "if (" ⊕ cs ⊕ ") {\n" ⊕ "unreachable();\n" ⊕ "} else {\n" ⊕ r ⊕ "\n" ⊕ "}\n" kompile-cls (clause tel ps t ∷ ts@(_ ∷ _)) ctx ret = kompile-clpats ((tel-rename $! tel) $! []) ps ctx defaultPatSt >>=e λ pst → do let (mk vars assgns conds _) = pst cs = " && " ++/ (if L.length conds N.≡ᵇ 0 then [ "true" ] else conds) as = "\n" ++/ assgns t ← kompile-term t $! tel --telv --{!!} --PS.ctx ps r ← kompile-cls ts ctx ret return $ "if (" ⊕ cs ⊕ ") {\n" ⊕ as ⊕ "\n" ⊕ ret ⊕ " = " ⊕ t ⊕ ";\n" ⊕ "} else {\n" ⊕ r ⊕ "\n" ⊕ "}\n" tel-lookup-name : Telescope → ℕ → Prog tel-lookup-name tel n with n N.<? L.length (reverse tel) ... | yes n<l = ok $ proj₁ $ lookup (reverse tel) $ fromℕ< n<l ... | no _ = error "Variable lookup in telescope failed" private kcp : String → Err PatSt kcp x = error $ "kompile-clpats: " ++ x infixl 10 _+=c_ _+=a_ _+=v_ _+=n_ _+=c_ : PatSt → String → PatSt p +=c c = record p { conds = PatSt.conds p ++ [ c ] } _+=a_ : PatSt → String → PatSt p +=a a = record p { assigns = PatSt.assigns p ++ [ a ] } _+=v_ : PatSt → String × ℕ → PatSt p +=v v = record p { vars = PatSt.vars p ++ [ v ] } _+=n_ : PatSt → ℕ → PatSt p +=n n = record p { cnt = PatSt.cnt p + 1 } pst-fresh : PatSt → String → Err $ String × PatSt pst-fresh pst x = return $ x ++ showNat (PatSt.cnt pst) , pst +=n 1 kompile-clpats tel (arg i (con (quote true) ps) ∷ l) (v ∷ ctx) pst = kompile-clpats tel l ctx $ pst +=c (v {- == true -}) kompile-clpats tel (arg i (con (quote false) ps) ∷ l) (v ∷ ctx) pst = kompile-clpats tel l ctx $ pst +=c ("!" ++ v) kompile-clpats tel (arg i (con (quote N.zero) ps) ∷ l) (v ∷ ctx) pst = kompile-clpats tel l ctx $ pst +=c (v ++ " == 0") kompile-clpats tel (arg i (con (quote N.suc) ps) ∷ l) (v ∷ ctx) pst = kompile-clpats tel (ps ++ l) ((v ++ " - 1") ∷ ctx) $ pst +=c (v ++ " > 0") kompile-clpats tel (arg i (con (quote F.zero) ps) ∷ l) (v ∷ ctx) pst = kompile-clpats tel l ctx $ pst +=c (v ++ " == 0") kompile-clpats tel (arg i (con (quote F.suc) ps@(_ ∷ _ ∷ [])) ∷ l) (v ∷ ctx) pst = do (ub , pst) ← pst-fresh pst "ub_" -- XXX here we are not using `ub` in conds. For two reasons: -- 1) as we have assertions, we should check the upper bound on function entry -- 2) typically, the value of this argument would be Pat.dot, which we ignore -- right now. It is possible to capture the value of the dot-patterns, as -- they carry the value when reconstructed. kompile-clpats tel (ps ++ l) (ub ∷ (v ++ " - 1") ∷ ctx) $ pst +=c (v ++ " > 0") kompile-clpats tel (arg i (con (quote L.List.[]) []) ∷ l) (v ∷ ctx) pst = kompile-clpats tel l ctx $ pst +=c ("emptyvec_p (" ++ v ++ ")") kompile-clpats tel (arg i (con (quote L.List._∷_) ps@(_ ∷ _ ∷ [])) ∷ l) (v ∷ ctx) pst = kompile-clpats tel (ps ++ l) (("hd (" ++ v ++ ")") ∷ ("tl (" ++ v ++ ")") ∷ ctx) $ pst +=c ("nonemptyvec_p (" ++ v ++ ")") -- Almost the same as List (extra parameter in cons) kompile-clpats tel (arg i (con (quote V.Vec.[]) []) ∷ l) (v ∷ ctx) pst = kompile-clpats tel l ctx $ pst +=c ("emptyvec_p (" ++ v ++ ")") kompile-clpats tel (arg i (con (quote V.Vec._∷_) ps@(_ ∷ _ ∷ _ ∷ [])) ∷ l) (v ∷ ctx) pst = kompile-clpats tel (ps ++ l) (("len (" ++ v ++ ") - 1") ∷ ("hd (" ++ v ++ ")") ∷ ("tl (" ++ v ++ ")") ∷ ctx) $ pst +=c ("nonemptyvec_p (" ++ v ++ ")") -- Patterns for Ix constructors kompile-clpats tel (arg i (con (quote Ix.[]) []) ∷ l) (v ∷ ctx) pst = kompile-clpats tel l ctx $ pst +=c ("emptyvec_p (" ++ v ++ ")") kompile-clpats tel (arg i (con (quote Ix._∷_) ps@(d ∷ arg _ (dot s) ∷ arg _ (dot x) ∷ finx ∷ tailix ∷ [])) ∷ l) (v ∷ ctx) pst = kompile-clpats tel (d ∷ finx ∷ tailix ∷ l) (("len (" ++ v ++ ") - 1") ∷ ("hd (" ++ v ++ ")") ∷ ("tl (" ++ v ++ ")") ∷ ctx) $ pst +=c ("nonemptyvec_p (" ++ v ++ ")") kompile-clpats tel (arg i (con (quote Ix._∷_) _) ∷ l) (v ∷ ctx) pst = kcp $ "matching on `s` and `x` in the Ix._∷_ is not supported, please rewrite the pattern" kompile-clpats tel (arg _ (con (quote imap) (arg _ (var i) ∷ [])) ∷ l) (v ∷ ctx) pst = do (ub , pst) ← pst-fresh pst $ "IMAP_" ++ v ++ "_" -- The only thing that `x` could be is a variable, and since -- we don't have higher-order functions in sac, we define a local -- macro. Note that we do not pass x further, to avoid assignment. kompile-clpats tel l ctx $ pst +=v (ub , i) +=a ("#define " ++ ub ++ "(__x) (" ++ v ++ ")[__x]") kompile-clpats tel (arg i (con (quote imap) (arg _ (dot _) ∷ [])) ∷ l) (v ∷ ctx) pst = -- We simply ignore this inner function entirely. kompile-clpats tel l ctx $ pst kompile-clpats tel (arg i (con (quote imap) (arg _ (absurd _) ∷ [])) ∷ l) (v ∷ ctx) pst = kcp "don't know how to handle absurd pattern as an argument to imap" kompile-clpats tel (arg i (con (quote refl) ps) ∷ l) (v ∷ ctx) pst = -- No constraints, as there could only be a single value. kompile-clpats tel l ctx pst kompile-clpats tel (arg i (con (quote _because_) ps) ∷ l) (v ∷ ctx) pst = do pf , pst ← pst-fresh pst $ "pf_" kompile-clpats tel (ps ++ l) (v ∷ pf ∷ ctx) pst kompile-clpats tel (arg i (con (quote Reflects.ofʸ) ps) ∷ l) (v ∷ ctx) pst = kompile-clpats tel (ps ++ l) ("true" ∷ ctx) pst kompile-clpats tel (arg i (con (quote Reflects.ofⁿ) ps) ∷ l) (v ∷ ctx) pst = kompile-clpats tel (ps ++ l) ("false" ∷ ctx) pst -- End of constructors here. kompile-clpats tel (arg (arg-info _ r) (var i) ∷ l) (v ∷ vars) pst = do -- Note that we do not distinguish between hidden and visible variables s ← tel-lookup-name tel i let s = nnorm s -- If the order of variable binding doesn't match the order -- of the variables in the telescope, we have to consider `i` as well. -- This changed with https://github.com/agda/agda/issues/5075 let pst = pst +=v (s , i) let pst = if does (s ≈? "_") then pst else pst +=a (s ++ " = " ++ v ++ ";") {- -- XXX If I replace the above if with this one, I end up with -- the unsolved meta in the test₂ in Example.agda. Is this a bug? let pst = case (s ≈? "_") of λ where (yes _) → pst (no _) → pst +=a (s ++ " = " ++ v ++ ";") -} kompile-clpats tel l vars pst kompile-clpats tel (arg i (dot t) ∷ l) (v ∷ vars) pst = -- For now we just skip dot patterns. kompile-clpats tel l vars pst kompile-clpats tel (arg i (absurd _) ∷ l) (v ∷ ctx) pst = -- If have met the absurd pattern, we are done, as -- we have accumulated enough conditions to derive -- impossibility. So we are simply done. ok pst kompile-clpats _ [] [] pst = ok pst kompile-clpats tel ps ctx patst = kcp $ "failed on pattern: [" ++ (", " ++/ L.map (λ where (arg _ x) → showPattern x) ps) ++ "], ctx: [" ++ (", " ++/ ctx) ++ "]" private kt : String → SKS Prog kt x = return $ error $ "kompile-term: " ++ x kt-fresh : String → SKS String kt-fresh x = do ps ← R.get R.modify λ k → record k{ cnt = 1 + KS.cnt k } return $ x ++ showNat (KS.cnt ps) var-lookup : List VarTy → ℕ → SKS Prog var-lookup [] _ = kt "Variable lookup failed" var-lookup (v ∈ _ ~ _ ∷ xs) zero = return $ ok v var-lookup (x ∷ xs) (suc n) = var-lookup xs n vty-lookup : List VarTy → ℕ → Err (VarTy) vty-lookup [] _ = error "Variable lookup failed" vty-lookup (x ∷ xs) zero = ok x vty-lookup (x ∷ xs) (suc n) = vty-lookup xs n mk-mask : (n : ℕ) → List $ Fin n mk-mask zero = [] mk-mask (suc n) = L.reverse $ go n (suc n) N.≤-refl where sa<b⇒a<b : ∀ a b → suc a N.< b → a N.< b sa<b⇒a<b zero (suc b) _ = s≤s z≤n sa<b⇒a<b (suc a) (suc n) (s≤s pf) = s≤s $ sa<b⇒a<b a n pf go : (m n : ℕ) → m N.< n → List $ Fin n go 0 (suc _) _ = zero ∷ [] go (suc m) n pf = F.fromℕ< pf ∷ go m n (sa<b⇒a<b m n pf) te-to-lvt : Telescope → List VarTy te-to-lvt tel = L.map (λ where (v , t) → v ∈ error "?" ~ t) tel -- TODO lift it up SAC-funs : List (Name × String) SAC-funs = (quote _+_ , "_add_SxS_") ∷ (quote _*_ , "_mul_SxS_") ∷ (quote primFloatPlus , "_add_SxS_") ∷ (quote primFloatMinus , "_sub_SxS_") ∷ (quote primFloatTimes , "_mul_SxS_") ∷ (quote primFloatDiv , "_div_SxS_") ∷ (quote primFloatExp , "Math::exp") ∷ (quote primFloatNegate , "_neg_S_") ∷ [] private module mask-tests where test-mk-mask₁ : mk-mask 0 ≡ [] test-mk-mask₁ = refl test-mk-mask₂ : mk-mask 1 ≡ # 0 ∷ [] test-mk-mask₂ = refl test-mk-mask₃ : mk-mask 2 ≡ # 0 ∷ # 1 ∷ [] test-mk-mask₃ = refl kompile-arglist : (n : ℕ) → List $ Arg Term → List $ Fin n → Telescope → SKS Prog kompile-arglist n args mask varctx with L.length args N.≟ n | V.fromList args ... | yes p | vargs rewrite p = do l ← mapM (λ where (arg _ x) → kompile-term x varctx) $ L.map (V.lookup vargs) mask return $ ok ", " ++/ l where open TraversableM (StateMonad KS) ... | no ¬p | _ = kt "Incorrect argument mask" kompile-term (var x []) vars = return $ tel-lookup-name vars x kompile-term (var x args@(_ ∷ _)) vars = do let f = tel-lookup-name vars x l = L.length args args ← kompile-arglist l args (mk-mask l) vars return $ f ⊕ "(" ⊕ args ⊕ ")" kompile-term (lit l@(float _)) vars = return $ showLiteral l ⊕ "f" kompile-term (lit l) vars = return $ ok $ showLiteral l kompile-term (con (quote N.zero) _) _ = return $ ok "0" kompile-term (con (quote N.suc) args) vars = do args ← kompile-arglist 1 args [ # 0 ] vars return $ "(1 + " ⊕ args ⊕ ")" kompile-term (con (quote Fin.zero) _) _ = return $ ok "0" kompile-term (con (quote Fin.suc) args) vars = do args ← kompile-arglist 2 args [ # 1 ] vars return $ "(1 + " ⊕ args ⊕ ")" kompile-term (con (quote L.List.[]) (_ ∷ (arg _ ty) ∷ [])) vars = do -- We want to call kompile-ty, and we need a context that "should" -- contain vars with their types. But, we never actually access these -- types in the context, we only refer to variables, therefore the -- following hack is justified. kst ← R.get let ctx = L.map (λ where (v , t) → v ∈ error "?" ~ t) $ vars (rt , ps) = kompile-ty ty false $ record defaultPS{ kst = kst; ctx = ctx } in-sh = sacty-shape =<< rt --R.put (PS.kst ps) return $ "empty (" ⊕ in-sh ⊕ ")" --ok "[]" kompile-term (con (quote L.List._∷_) args) vars = do args ← kompile-arglist 4 args (# 2 ∷ # 3 ∷ []) vars return $ "cons (" ⊕ args ⊕ ")" -- Almost the same as List kompile-term (con (quote V.Vec.[]) (_ ∷ (arg _ ty) ∷ [])) vars = do kst ← R.get let ctx = L.map (λ where (v , t) → v ∈ error "?" ~ t) $ vars (rt , ps) = kompile-ty ty false $ record defaultPS{ kst = kst; ctx = ctx } in-sh = sacty-shape =<< rt R.put (PS.kst ps) return $ "empty (" ⊕ in-sh ⊕ ")" kompile-term (con (quote V.Vec._∷_) args) vars = do args ← kompile-arglist 5 args (# 3 ∷ # 4 ∷ []) vars return $ "cons (" ⊕ args ⊕ ")" -- Ix constructors kompile-term (con (quote Ix.[]) []) vars = return $ ok "[]" kompile-term (con (quote Ix._∷_) args) vars = do args ← kompile-arglist 5 args (# 3 ∷ # 4 ∷ []) vars return $ "cons (" ⊕ args ⊕ ")" kompile-term (con (quote refl) _) _ = return $ ok "tt" -- Imaps with explicit lambdas kompile-term (con (quote Array.Base.imap) (_ ∷ arg _ ty ∷ arg _ d ∷ X@(arg _ s) ∷ arg _ (vLam x e) ∷ [])) vars = do kst ← R.get let ctx = L.map (λ where (v , t) → v ∈ error "?" ~ t) $ vars (rt , ps) = kompile-ty ty false $ record defaultPS{ kst = kst; ctx = ctx } in-sh = sacty-shape =<< rt bt = bt <$> rt R.put (PS.kst ps) iv ← kt-fresh "iv_" let iv-type = vArg (def (quote Ix) ((vArg d) ∷ vArg s ∷ [])) s ← kompile-term s vars b ← kompile-term e $! vars ++ [ (iv , iv-type) ] return $! "with { (. <= " ⊕ iv ⊕ " <= .): " ⊕ b ⊕ "; }: genarray (" ⊕ s ⊕ ", zero_" ⊕ bt ⊕ " (" ⊕ in-sh ⊕ "))" -- Imaps with an expression kompile-term (con (quote Array.Base.imap) (_ ∷ arg _ ty ∷ _ ∷ arg _ s ∷ arg _ e ∷ [])) vars = do kst ← R.get let ctx = L.map (λ where (v , t) → v ∈ error "?" ~ t) $ vars (rt , ps) = kompile-ty ty false $ record defaultPS{ kst = kst; ctx = ctx } in-sh = sacty-shape =<< rt bt = bt <$> rt R.put (PS.kst ps) iv ← kt-fresh "iv_" s ← kompile-term s vars b ← kompile-term e $ vars return $ "with { (. <= " ⊕ iv ⊕ " <= .): " ⊕ b ⊕ " (" ⊕ iv ⊕ "); }: genarray (" ⊕ s ⊕ ", zero_" ⊕ bt ⊕ " (" ⊕ in-sh ⊕ "))" kompile-term (con c _) vars = kt $ "don't know constructor " ++ (showName c) -- Definitions -- From Agda.Builtin.Nat: div-helper k m n j = k + (n + m - j) div (1 + m) kompile-term (def (quote div-helper) (arg _ k ∷ arg _ m ∷ arg _ n ∷ arg _ j ∷ [])) vars = do k ← kompile-term k vars m ← kompile-term m vars n ← kompile-term n vars j ← kompile-term j vars return $ "_div_SxS_ (" ⊕ k ⊕ " + (" ⊕ n ⊕ " + " ⊕ m ⊕ " - " ⊕ j ⊕ "), 1 + " ⊕ m ⊕ ")" kompile-term (def (quote N._≟_) (arg _ a ∷ arg _ b ∷ [])) vars = do a ← kompile-term a vars b ← kompile-term b vars return $ a ⊕ " == " ⊕ b kompile-term (def (quote V._++_) args) vars = do args ← kompile-arglist 6 args (# 4 ∷ # 5 ∷ []) vars return $ "concat (" ⊕ args ⊕ ")" kompile-term (def (quote V.tabulate) (_ ∷ arg _ ty ∷ X@(arg _ l) ∷ arg _ (vLam x e) ∷ [])) vars = do kst ← R.get let ctx = te-to-lvt vars --L.map (λ where (v , t) → v ∈ error "?" ~ t) $ TelView.tel vars (rt , ps) = kompile-ty ty false $ record defaultPS{ kst = kst; ctx = ctx } in-sh = sacty-shape =<< rt bt = bt <$> rt R.put (PS.kst ps) iv ← kt-fresh "iv_" let iv-type = vArg (def (quote Fin) (vArg l ∷ [])) l ← kompile-term l vars b ← kompile-term e $ vars ++ [(iv , iv-type)] return $ "with { (. <= " ⊕ iv ⊕ " <= .): " ⊕ b ⊕ "; }: genarray ([" ⊕ l ⊕ "], zero_" ⊕ bt ⊕ " (" ⊕ in-sh ⊕ "))" kompile-term (def (quote ix-tabulate) (arg _ d ∷ X ∷ arg _ (vLam x e) ∷ [])) vars = do iv ← kt-fresh "iv_" let iv-type = vArg (def (quote Fin) (vArg d ∷ [])) d ← kompile-term d vars b ← kompile-term e $ vars ++ [(iv , iv-type)] return $ "with { (. <= " ⊕ iv ⊕ " <= .): " ⊕ b ⊕ "; }: genarray ([" ⊕ d ⊕ "], 0)" -- Array stuff kompile-term (def (quote sel) (_ ∷ _ ∷ _ ∷ _ ∷ arg _ a ∷ arg _ iv ∷ [])) vars = do a ← kompile-term a vars iv ← kompile-term iv vars return $ a ⊕ "[" ⊕ iv ⊕ "]" kompile-term (def (quote ix-lookup) (_ ∷ _ ∷ arg _ iv ∷ arg _ el ∷ [])) vars = do iv ← kompile-term iv vars el ← kompile-term el vars return $ iv ⊕ "[" ⊕ el ⊕ "]" kompile-term (def (quote V.lookup) (_ ∷ _ ∷ _ ∷ arg _ v ∷ arg _ i ∷ [])) vars = do v ← kompile-term v vars i ← kompile-term i vars return $ v ⊕ "[" ⊕ i ⊕ "]" kompile-term (def (quote V.foldr) (_ ∷ _ ∷ ty₁ ∷ arg _ (vLam _ ty₂) ∷ arg _ len ∷ arg _ (hLam _ (def f args)) ∷ arg _ neut ∷ arg _ arr ∷ [])) vars = do let f = case list-find-el ((RN._≟ f) ∘ proj₁) SAC-funs of λ where (just (_ , f)) → f _ → nnorm $ showName f len ← kompile-term len vars neut ← kompile-term neut vars arr ← kompile-term arr vars iv ← kt-fresh "iv_" return $ "with { ([0] <= " ⊕ iv ⊕ " < [" ⊕ len ⊕ "]): " ⊕ arr ⊕ "[" ⊕ iv ⊕ "]; }: fold (" ⊕ f ⊕ ", " ⊕ neut ⊕ ")" kompile-term (def (quote reduce-1d) (_ ∷ _ ∷ arg _ s ∷ arg _ (def f args) ∷ arg _ ε ∷ arg _ a ∷ [])) vars = do let f = case list-find-el ((RN._≟ f) ∘ proj₁) SAC-funs of λ where (just (_ , f)) → f _ → nnorm $ showName f ε ← kompile-term ε vars a ← kompile-term a vars s ← kompile-term s vars iv ← kt-fresh "iv_" return $ "with { ([0] <= " ⊕ iv ⊕ " < " ⊕ s ⊕ "): " ⊕ a ⊕ "[" ⊕ iv ⊕ "]; }: fold (" ⊕ f ⊕ ", " ⊕ ε ⊕ ")" kompile-term (def (quote reduce-1d) (Xa@(arg _ X) ∷ Ya@(arg _ Y) ∷ arg _ s ∷ arg _ L@(vLam a (vLam b e)) ∷ arg _ ε ∷ arg _ arr ∷ [])) vars = do a ← kt-fresh "a" b ← kt-fresh "b" kst ← R.get let (Xs , ps) = kompile-ty X false $ record defaultPS{ kst = kst; ctx = te-to-lvt vars } (Ys , ps) = kompile-ty Y false $ record ps { ctx = PS.ctx ps ++ [ a ∈ Xs ~ Xa ] } R.put $ PS.kst ps t ← kompile-term e $ vars ++ (a , Xa) ∷ (b , Ya) ∷ [] -- (PS.ctx ps ++ [ b ∈ Ys ~ Ya ]) kst ← R.get fname ← kt-fresh "lifted_" let e , ps = kompile-ctx vars $ record defaultPS{ kst = kst } vs = L.map {B = String × Prog} (λ where (v ∈ τ ~ _) → (v , (sacty-to-string <$> τ))) $′ PS.ctx ps vs = vs ++ ((a , (sacty-to-string <$> Xs)) ∷ (b , (sacty-to-string <$> Ys)) ∷ []) vs = ok ", " ++/ L.map (λ where (v , τ) → τ ⊕ " " ⊕ v) vs fun = (sacty-to-string <$> Ys) ⊕ " " ⊕ fname ⊕ "(" ⊕ vs ⊕ ") " ⊕ "{ return " ⊕ t ⊕ "; }" -- error out in case our current context was broken (ok _) ← return e where (error x) → return (error x) --R.modify $! λ k → record k{ defs = (KS.defs k ⊕_) $! fun } kst ← R.get R.put $! record kst{ defs = KS.defs kst ⊕ fun } let part-app = fname ⊕ "(" ⊕ ", " ++/ L.map proj₁ vars ⊕ ")" ε ← kompile-term ε vars arr ← kompile-term arr vars s ← kompile-term s vars iv ← kt-fresh "iv_" return $! "with { ([0] <= " ⊕ iv ⊕ " < " ⊕ s ⊕ "): " ⊕ arr ⊕ "[" ⊕ iv ⊕ "]; }: fold (" ⊕ part-app ⊕ ", " ⊕ ε ⊕ ")" where kompile-ctx : Telescope → SPS (Err ⊤) kompile-ctx [] = return $ ok tt kompile-ctx ((v , t@(arg i x)) ∷ ctx) = do (ok τ) ← kompile-ty x false where (error x) → return $ error x P.modify λ k → record k{ ctx = PS.ctx k ++ [ v ∈ ok τ ~ t ] } kompile-ctx ctx -- A bunch of functions that are mapped to id in sac -- XXX get rid of id call, only keeping for debugging purposes. kompile-term (def (quote F.fromℕ<) args) vars = ("id (" ⊕_) ∘ (_⊕ ")") <$> kompile-arglist 3 args (# 0 ∷ []) vars kompile-term (def (quote F.toℕ) args) vars = ("id (" ⊕_) ∘ (_⊕ ")") <$> kompile-arglist 2 args (# 1 ∷ []) vars kompile-term (def (quote subst-ar) args) vars = ("id (" ⊕_) ∘ (_⊕ ")") <$> kompile-arglist 7 args (# 6 ∷ []) vars kompile-term (def (quote subst-ix) args) vars = ("id (" ⊕_) ∘ (_⊕ ")") <$> kompile-arglist 5 args (# 4 ∷ []) vars kompile-term (def (quote ▾_) args) vars = ("id (" ⊕_) ∘ (_⊕ ")") <$> kompile-arglist 6 args (# 5 ∷ []) vars kompile-term (def (quote ▴_) args) vars = ("id (" ⊕_) ∘ (_⊕ ")") <$> kompile-arglist 6 args (# 5 ∷ []) vars kompile-term (def (quote a→ix) args) vars = ("id (" ⊕_) ∘ (_⊕ ")") <$> kompile-arglist 4 args (# 1 ∷ []) vars kompile-term (def (quote a→s) args) vars = ("id (" ⊕_) ∘ (_⊕ ")") <$> kompile-arglist 2 args (# 1 ∷ []) vars kompile-term (def (quote Array.Base.magic-fin) args) vars = return $ ok "unreachable ()" kompile-term (def (quote Array.Base.off→idx) args) vars = do args ← kompile-arglist 3 args (# 1 ∷ # 2 ∷ []) vars return $ "off_to_idx (" ⊕ args ⊕ ")" kompile-term (def (quote _↑_) args) vars = do args ← kompile-arglist 7 args (# 4 ∷ # 5 ∷ []) vars return $ "take (" ⊕ args ⊕ ")" kompile-term (def (quote _↓_) args) vars = do args ← kompile-arglist 7 args (# 4 ∷ # 5 ∷ []) vars return $ "drop (" ⊕ args ⊕ ")" kompile-term (def (quote _↑⟨_⟩_) args) vars = do args ← kompile-arglist 7 args (# 4 ∷ # 5 ∷ # 6 ∷ []) vars return $ "overtake (" ⊕ args ⊕ ")" kompile-term (def (quote _-↑⟨_⟩_) args) vars = do args ← kompile-arglist 7 args (# 4 ∷ # 5 ∷ # 6 ∷ []) vars return $ "overtake_back (" ⊕ args ⊕ ")" -- The last pattern in the list of `def` matches kompile-term (def n []) _ = kt $ "attempting to compile `" ++ showName n ++ "` as function with 0 arguments" kompile-term (def n args@(_ ∷ _)) vars with list-find-el ((RN._≟ n) ∘ proj₁) SAC-funs ... | just (_ , f) = do let l = L.length args args ← kompile-arglist l args (mk-mask l) vars return $ f ⊕ " (" ⊕ args ⊕ ")" ... | nothing = do R.modify λ k → record k { funs = KS.funs k ++ [ n ] } let n = nnorm $ showName n l = L.length args args ← kompile-arglist l args (mk-mask l) vars return $ n ⊕ " (" ⊕ args ⊕ ")" kompile-term t vctx = kt $ "failed to compile term `" ++ showTerm t ++ "`"
{ "alphanum_fraction": 0.5436640238, "avg_line_length": 38.052238806, "ext": "agda", "hexsha": "fc80c9e9e5af7dc98d0354eaa7f0d90414086e0e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "ExtractSac.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "ExtractSac.agda", "max_line_length": 151, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "ExtractSac.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 12859, "size": 35693 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by strict partial orders ------------------------------------------------------------------------ open import Relation.Binary module Relation.Binary.Properties.StrictPartialOrder {s₁ s₂ s₃} (SPO : StrictPartialOrder s₁ s₂ s₃) where open Relation.Binary.StrictPartialOrder SPO renaming (trans to <-trans) import Relation.Binary.StrictToNonStrict as Conv open Conv _≈_ _<_ ------------------------------------------------------------------------ -- Strict partial orders can be converted to posets poset : Poset _ _ _ poset = record { isPartialOrder = record { isPreorder = record { isEquivalence = isEquivalence ; reflexive = reflexive ; trans = trans isEquivalence <-resp-≈ <-trans } ; antisym = antisym isEquivalence <-trans irrefl } } open Poset poset public
{ "alphanum_fraction": 0.5398963731, "avg_line_length": 29.2424242424, "ext": "agda", "hexsha": "d62d245e11a916e1317fd67bcf04514c96faf230", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/StrictPartialOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/StrictPartialOrder.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/StrictPartialOrder.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 203, "size": 965 }
module Function.DomainRaise where open import Data open import Data.Boolean import Functional as Fn import Lvl open import Numeral.Natural open import Numeral.Natural.Oper.Comparisons open import Syntax.Number open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T X Y Z : Type{ℓ} private variable n : ℕ -- Repeated function type like an n-ary operator. -- Examples: -- (a →̂ b)(0) = (b) -- (a →̂ b)(1) = (a → b) -- (a →̂ b)(2) = (a → a → b) -- (a →̂ b)(3) = (a → a → a → b) -- (a →̂ b)(4) = (a → a → a → a → b) _→̂_ : Type{ℓ₁} → Type{ℓ₂} → (n : ℕ) → Type{if positive?(n) then (ℓ₁ Lvl.⊔ ℓ₂) else ℓ₂} -- TODO: Is the level thing really working? (A →̂ B)(𝟎) = B (A →̂ B)(𝐒(𝟎)) = A → B (A →̂ B)(𝐒(𝐒(n))) = A → (A →̂ B)(𝐒(n)) open import Data.Tuple open import Data.Tuple.Raise apply₁ : let _ = n in X → (X →̂ Y)(𝐒(n)) → (X →̂ Y)(n) apply₁ {𝟎} = Fn.apply apply₁ {𝐒 _} = Fn.apply apply₊ : let _ = n in (X ^ n) → (X →̂ Y)(n) → Y apply₊ {𝟎} <> f = f apply₊ {𝐒(𝟎)} x f = f(x) apply₊ {𝐒(𝐒(n))} (x , xs) f = apply₊ {𝐒(n)} xs (f(x)) -- Applies the same argument on all arguments. -- Examples: -- f : (a →̂ b)(5) -- applyRepeated{0} f(x) = f -- applyRepeated{1} f(x) = f(x) -- applyRepeated{2} f(x) = f(x)(x) -- applyRepeated{3} f(x) = f(x)(x)(x) -- applyRepeated{2}(applyRepeated{3} f(x)) (y) = f(x)(x)(y)(y)(y) applyRepeated : let _ = n in (X →̂ Y)(n) → (X → Y) applyRepeated{𝟎} f(x) = f applyRepeated{𝐒(𝟎)} f(x) = f(x) applyRepeated{𝐒(𝐒(n))} f(x) = applyRepeated{𝐒(n)} (f(x)) (x) {- -- Applies arguments from a function. -- Almost (not really) like a composition operation. -- Examples: -- f : (a →̂ b)(3) -- applyFn f g = f (g(2)) (g(1)) (g(0)) applyFn : ∀{n}{T₁}{T₂} → (T₁ →̂ T₂)(n) → (𝕟(n) → T₁) → T₂ applyFn{𝟎} f g = f applyFn{𝐒(n)} f g = applyFn{n} (f(g(ℕ-to-𝕟 (n) {𝐒(n)} ⦃ [<?]-𝐒 {n} ⦄))) (g ∘ (bound-𝐒{n})) -- TODO: Examples: -- swapReverse {3} f (y₂) (y₁) (y₀) -- = swapReverse {2} (f(y₂)) (y₁) (y₀) -- = swapReverse {1} (f(y₂) (y₁)) (y₀) -- = swapReverse {0} (f(y₂) (y₁) (y₀)) -- = f(y₂) (y₁) (y₀) -- swapReverse : ∀{n}{T₁}{T₂} → (T₁ →̂ T₂)(n) → (T₁ →̂ T₂)(n) -- swapReverse {𝟎} y₀ = y₀ -- swapReverse {𝐒(n)} f(yₙ) = (swapReverse {n} f) ∘ (f(yₙ)) -- directOp : ∀{n}{X}{Y} → ((X → Y) →̂ ((X ^ n) → (Y ^ n)))(n) -} -- Function composition on a multi-argument function (Like PrimitiveRecursion.Composition). -- Examples: -- (f ∘₄ g) x₁ x₂ x₃ x₄ -- = (f ∘₃ g x₁) x₂ x₃ x₄ -- = (f ∘₂ g x₁ x₂) x₃ x₄ -- = (f ∘₁ g x₁ x₂ x₃) x₄ -- = (f ∘ g x₁ x₂ x₃) x₄ -- = f(g x₁ x₂ x₃ x₄) _∘_ : let _ = n ; _ = X ; _ = Y ; _ = Z in (Y → Z) → (X →̂ Y)(n) → (X →̂ Z)(n) _∘_ {𝟎} = Fn.id _∘_ {𝐒(𝟎)} = Fn._∘_ _∘_ {𝐒(𝐒(n))} = Fn._∘_ Fn.∘ (_∘_) -- (f ∘ₙ₊₂ g)(x) = f ∘ₙ₊₁ g(x) _∘[_]_ : let _ = X ; _ = Y ; _ = Z in (Y → Z) → (n : ℕ) → (X →̂ Y)(n) → (X →̂ Z)(n) f ∘[ n ] g = _∘_ {n = n} f g _∘₀_ = _∘_ {0} _∘₁_ = _∘_ {1} _∘₂_ = _∘_ {2} _∘₃_ = _∘_ {3} _∘₄_ = _∘_ {4} _∘₅_ = _∘_ {5} _∘₆_ = _∘_ {6} _∘₇_ = _∘_ {7} _∘₈_ = _∘_ {8} _∘₉_ = _∘_ {9} -- TODO: Flip the arguments and make n explicit -- Single function composition on every argument. -- (f on g)(y₁)(y₂).. = g (f(y₁)) (f(y₂)) .. -- Examples: -- _on_ {3} f g (y₂) (y₁) (y₀) -- = _on_ {2} f (g (f(y₂))) (y₁) (y₀) -- = _on_ {1} f (g (f(y₂)) (f(y₁))) (y₀) -- = _on_ {0} f (g (f(y₂)) (f(y₁)) (f(y₀))) -- = g (f(y₂)) (f(y₁)) (f(y₀)) on : let _ = n ; _ = X ; _ = Y ; _ = Z in (Y →̂ Z)(n) → (X → Y) → (X →̂ Z)(n) on {n = 𝟎} = Fn.const on {n = 𝐒(𝟎)} = Fn._∘_ on {n = 𝐒(𝐒(n))} f g(yₙ) = on {n = 𝐒(n)} (f(g(yₙ))) g -- applyOnFn : ∀{n}{X}{Y} → (Y →̂ Y)(n) → ((X → Y) →̂ (X → Y))(n) -- applyOnFn -- Constructs a left-associated n-ary operator from a binary operator. -- Example: -- naryₗ{3} (_▫_) x₁ x₂ x₃ x₄ x₅ -- = ((naryₗ{2} (_▫_)) Fn.∘ (x₁ ▫_)) x₂ x₃ x₄ -- = (naryₗ{2} (_▫_) (x₁ ▫ x₂)) x₃ x₄ x₅ -- = ((naryₗ{1} (_▫_)) Fn.∘ ((x₁ ▫ x₂) ▫_)) x₃ x₄ x₅ -- = (naryₗ{1} (_▫_) ((x₁ ▫ x₂) ▫ x₃)) x₄ x₅ -- = ((naryₗ{0} (_▫_)) Fn.∘ (((x₁ ▫ x₂) ▫ x₃) ▫_)) x₃ x₄ x₅ -- = (naryₗ{0} (_▫_) (((x₁ ▫ x₂) ▫ x₃) ▫ x₄)) x₅ -- = ((_▫_) (((x₁ ▫ x₂) ▫ x₃) ▫ x₄)) x₅ -- = ((((x₁ ▫ x₂) ▫ x₃) ▫ x₄) ▫_) x₅ -- = (((x₁ ▫ x₂) ▫ x₃) ▫ x₄) x₅ naryₗ : (n : ℕ) → (X → X → X) → (X →̂ X)(𝐒(𝐒(n))) naryₗ(𝟎) (_▫_) = (_▫_) naryₗ(𝐒(n)) (_▫_) x = (naryₗ(n) (_▫_)) Fn.∘ (x ▫_) -- Constructs a right-associated n-ary operator from a binary operator. -- Example: -- naryᵣ{3} (_▫_) x₁ x₂ x₃ x₄ x₅ -- = ((x₁ ▫_) ∘[ 4 ] (naryᵣ{2} (_▫_))) x₂ x₃ x₄ x₅ -- = x₁ ▫ (naryᵣ{2} (_▫_) x₂ x₃ x₄ x₅) -- = x₁ ▫ (((x₂ ▫_) ∘[ 3 ] (naryᵣ{1} (_▫_))) x₃ x₄ x₅) -- = x₁ ▫ (x₂ ▫ (naryᵣ{1} (_▫_) x₃ x₄ x₅)) -- = x₁ ▫ (x₂ ▫ (((x₃ ▫_) ∘[ 2 ] (naryᵣ{0} (_▫_))) x₄ x₅)) -- = x₁ ▫ (x₂ ▫ (x₃ ▫ (naryᵣ{0} (_▫_) x₄ x₅))) -- = x₁ ▫ (x₂ ▫ (x₃ ▫ ((_▫_) x₄ x₅))) -- = x₁ ▫ (x₂ ▫ (x₃ ▫ (x₄ ▫ x₅))) naryᵣ : (n : ℕ) → (X → X → X) → (X →̂ X)(𝐒(𝐒(n))) naryᵣ(𝟎) (_▫_) = (_▫_) naryᵣ(𝐒(n)) (_▫_) x = (x ▫_) ∘[ 𝐒(𝐒(n)) ] (naryᵣ(n) (_▫_)) {- [→̂]-to-[⇉] : (n : ℕ) → ∀{X : Type{ℓ₁}}{Y : Type{ℓ₂}} → (X →̂ Y)(n) → (RaiseType.repeat(n) X ⇉ Y) [→̂]-to-[⇉] 0 f = f [→̂]-to-[⇉] 1 f = f [→̂]-to-[⇉] (𝐒(𝐒(n))) f = [→̂]-to-[⇉] (𝐒(n)) ∘ f -}
{ "alphanum_fraction": 0.4508758568, "avg_line_length": 33.4522292994, "ext": "agda", "hexsha": "5ec00190515975ad679243188b2b5aaf2e76a26a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function/DomainRaise.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function/DomainRaise.agda", "max_line_length": 131, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function/DomainRaise.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2971, "size": 5252 }
data Unit : Set where tt : Unit f : Unit mutual f = tt
{ "alphanum_fraction": 0.5901639344, "avg_line_length": 7.625, "ext": "agda", "hexsha": "db0d97da195d3096dbdf9236e2e8ae46d12dd165", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3932-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3932-2.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3932-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 23, "size": 61 }
{-# OPTIONS --without-K --exact-split --rewriting #-} module index where -- An organised list of modules: import Pi.Everything -- An exhaustive list of all modules:
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 18.6666666667, "ext": "agda", "hexsha": "d87f2ae4b5001660ae1c58a2144e03aecb0c0941", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9626b9f570f248158ee14024c53831a4068109bf", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "vikraman/popl22-symmetries-artifact", "max_forks_repo_path": "index.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "9626b9f570f248158ee14024c53831a4068109bf", "max_issues_repo_issues_event_max_datetime": "2021-10-23T00:49:43.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-02T00:20:40.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "vikraman/popl22-symmetries-artifact", "max_issues_repo_path": "index.agda", "max_line_length": 53, "max_stars_count": 4, "max_stars_repo_head_hexsha": "9626b9f570f248158ee14024c53831a4068109bf", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "vikraman/popl22-symmetries-artifact", "max_stars_repo_path": "index.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-09T01:49:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-20T03:36:59.000Z", "num_tokens": 37, "size": 168 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Transitivity module Oscar.Class.Transassociativity where module Transassociativity {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) {ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ) (let infix 4 _∼̇_ ; _∼̇_ = _∼̇_) (transitivity : Transitivity.type _∼_) (let infixr 9 _∙_ ; _∙_ : FlipTransitivity.type _∼_; _∙_ g f = transitivity f g) = ℭLASS (λ {x y} → _∼̇_ {x} {y} , (λ {x y z} → transitivity {x} {y} {z})) (∀ {w x y z} (f : w ∼ x) (g : x ∼ y) (h : y ∼ z) → (h ∙ g) ∙ f ∼̇ h ∙ g ∙ f) module _ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} {ℓ} {_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ} {transitivity : Transitivity.type _∼_} where transassociativity = Transassociativity.method _∼_ _∼̇_ transitivity syntax transassociativity f g h = h ⟨∙ g ⟨∙ f module Transassociativity! {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) {ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ) ⦃ _ : Transitivity.class _∼_ ⦄ = Transassociativity (_∼_) (_∼̇_) transitivity module _ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} {ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ) ⦃ _ : Transitivity.class _∼_ ⦄ where transassociativity![_] = Transassociativity.method _∼_ _∼̇_ transitivity
{ "alphanum_fraction": 0.5427419355, "avg_line_length": 31.7948717949, "ext": "agda", "hexsha": "7ef49ea357b3fdbfa23d8e9612047fca5ccad215", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Transassociativity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Transassociativity.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Transassociativity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 639, "size": 1240 }
{-# OPTIONS --universe-polymorphism #-} -- {-# OPTIONS --verbose tc.records.ifs:15 #-} -- {-# OPTIONS --verbose tc.constr.findInScope:15 #-} -- {-# OPTIONS --verbose tc.term.args.ifs:15 #-} -- {-# OPTIONS --verbose cta.record.ifs:15 #-} -- {-# OPTIONS --verbose tc.section.apply:25 #-} -- {-# OPTIONS --verbose tc.mod.apply:100 #-} -- {-# OPTIONS --verbose scope.rec:15 #-} -- {-# OPTIONS --verbose tc.rec.def:15 #-} module 07-subclasses where open import Data.Bool hiding (_≟_) open import Data.Nat hiding (_<_) open import Relation.Nullary.Decidable open import Function using (_$_; id) record Eq (A : Set) : Set where field eq : A → A → Bool primEqBool : Bool → Bool → Bool primEqBool true = id primEqBool false = not eqBool : Eq Bool eqBool = record { eq = primEqBool } primEqNat : ℕ → ℕ → Bool primEqNat a b = ⌊ a ≟ b ⌋ primLtNat : ℕ → ℕ → Bool primLtNat 0 _ = true primLtNat (suc a) (suc b) = primLtNat a b primLtNat _ _ = false neq : {t : Set} → {{eqT : Eq t}} → t → t → Bool neq a b = not $ eq a b where open Eq {{...}} record Ord₁ (A : Set) : Set where field _<_ : A → A → Bool eqA : Eq A ord₁Nat : Ord₁ ℕ ord₁Nat = record { _<_ = primLtNat; eqA = eqNat } where eqNat : Eq ℕ eqNat = record { eq = primEqNat } record Ord₂ {A : Set} (eqA : Eq A) : Set where field _<_ : A → A → Bool ord₂Nat : Ord₂ (record { eq = primEqNat }) ord₂Nat = record { _<_ = primLtNat } record Ord₃ (A : Set) : Set where field _<_ : A → A → Bool eqA : Eq A open Eq eqA public ord₃Nat : Ord₃ ℕ ord₃Nat = record { _<_ = primLtNat; eqA = eqNat } where eqNat : Eq ℕ eqNat = record { eq = primEqNat } record Ord₄ {A : Set} (eqA : Eq A) : Set where field _<_ : A → A → Bool open Eq eqA public ord₄Nat : Ord₄ (record { eq = primEqNat }) ord₄Nat = record { _<_ = primLtNat } module test₁ where open Ord₁ {{...}} open Eq {{...}} eqNat = eqA test₁ = 5 < 3 test₂ = eq 5 3 test₃ = eq true false test₄ : {A : Set} → {{ ordA : Ord₁ A }} → A → A → Bool test₄ a b = a < b ∨ eq a b where eqA' = eqA module test₂ where open Ord₂ {{...}} open Eq {{...}} eqNat : Eq ℕ eqNat = record { eq = primEqNat } test₁ = 5 < 3 test₂ = eq 5 3 test₃ = eq true false test₄ : {A : Set} → {eqA : Eq A} → {{ ordA : Ord₂ eqA }} → A → A → Bool test₄ a b = a < b ∨ eq a b module test₃ where open Ord₃ {{...}} open Eq {{...}} renaming (eq to eq') test₁ = 5 < 3 test₂ = eq 5 3 test₃ = eq' true false test₄ : {A : Set} → {{ ordA : Ord₃ A }} → A → A → Bool test₄ a b = a < b ∨ eq a b module test₄ where open Ord₄ {{...}} open Eq {{...}} renaming (eq to eq') test₁ = 5 < 3 test₂ = eq 5 3 test₃ = eq' true false test₄ : {A : Set} → {eqA : Eq A} → {{ ordA : Ord₄ eqA }} → A → A → Bool test₄ a b = a < b ∨ eq a b module test₄′ where open Ord₄ {{...}} hiding (eq) open Eq {{...}} eqNat : Eq ℕ eqNat = record { eq = primEqNat } test₁ = 5 < 3 test₂ = eq 5 3 test₃ = eq true false test₄ : {A : Set} → {eqA : Eq A} → {{ ordA : Ord₄ eqA }} → A → A → Bool test₄ a b = a < b ∨ eq a b
{ "alphanum_fraction": 0.5657809462, "avg_line_length": 22.8592592593, "ext": "agda", "hexsha": "a9541a57d7c9990c191a58a727e7ca7ce8699df9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dagit/agda", "max_forks_repo_path": "examples/instance-arguments/07-subclasses.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dagit/agda", "max_issues_repo_path": "examples/instance-arguments/07-subclasses.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/instance-arguments/07-subclasses.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z", "num_tokens": 1177, "size": 3086 }
module QualifiedConstructors where data Nat₁ : Set where zero : Nat₁ suc : Nat₁ → Nat₁ data Nat₂ : Set where zero : Nat₂ suc : Nat₂ → Nat₂ zero₁ = Nat₁.zero one₂ = Nat₂.suc Nat₂.zero record Suc : Set where constructor suc field n : Nat₁ one₃ = Suc.suc zero₁ pred : Suc → Nat₁ pred s = Suc.n s conv : Nat₂ → Nat₁ conv Nat₂.zero = Nat₁.zero conv (Nat₂.suc n) = Nat₁.suc (conv n) data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x inj : (n m : Nat₁) → Nat₁.suc n ≡ suc m → n ≡ m inj .m m refl = refl
{ "alphanum_fraction": 0.6214689266, "avg_line_length": 16.0909090909, "ext": "agda", "hexsha": "1744dcf992da82c2f80b2f7024b41e5b4f7f276c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Succeed/QualifiedConstructors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/QualifiedConstructors.agda", "max_line_length": 47, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/QualifiedConstructors.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 211, "size": 531 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Weight biased leftist heap that proves rank invariant and uses -- -- a single-pass merging algorithm. -- ---------------------------------------------------------------------- module SinglePassMerge.RankProof where open import Basics -- We import rank proofs conducted earlier - they will be re-used. open import TwoPassMerge.RankProof using ( makeT-lemma ) renaming ( proof-1 to proof-1a; proof-2 to proof-2a ) data Heap : Nat → Set where empty : Heap zero node : Priority → {l r : Nat} → l ≥ r → Heap l → Heap r → Heap (suc (l + r)) -- Note [Privoving rank invariant in single-pass merge] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- Recall that in TwoPassMerge.RankProof we need to prove that: -- -- 1) makeT constructs node of correct size. There were two cases: -- -- a) constructing a node without swapping l and r subtrees passed -- to makeT. No extra proof was required as everything followed -- from definitions. -- -- b) constructing a node by swapping l and r subtrees (when rank -- of r was greater than rank of l). We had to prove that: -- -- suc (a + b) ≡ suc (b + a) -- -- This proof is supplied by a function makeT-lemma. -- -- 2) resulting heap produced by merge has correct size. Merge has 4 -- cases (see [Two-pass merging algorithm]): -- -- a) h1 is empty. No extra proof required (everything follows -- from definition of +). See [merge, proof 0a]. -- -- b) h2 is empty. We had to prove that: -- -- h1 ≡ h1 + 0 -- -- This proof is supplied by +0 (in Basics.Reasoning) and is -- inlined in the definition of merge. See [merge, proof 0b]. -- -- c) priority p1 is higher than p2. We had to prove: -- -- suc (l1 + (r1 + suc (l2 + r2))) -- ≡ suc ((l1 + r1) + suc (l2 + r2)) -- -- This proof is supplied by proof-1 (renamed to proof-1a in -- this module). See [merge, proof 1] for details. -- -- d) priority p2 is higher than p1. We had to prove: -- -- suc (l2 + (r2 + suc (l1 + r1))) -- ≡ suc ((l1 + r1) + suc (l2 + r2)) -- -- This proof is supplied by proof-2 (renamed to proof-2a in -- this module). See [merge, proof 2] for details. -- -- Now that we inline makeT into merge and we will have to construct -- new proofs of merge that take into account the fact that makeT has -- been inlinined. Let's take a detailed look into the problem and -- analyze possible solutions. -- -- First of all let us note that we only made calls to makeT in -- inductive cases of merge (points 2c and 2d above). This means that -- implementation of base cases of merge (2a and 2b above) remains -- unchanged. Let's take a look at proofs we need to supply for each -- of four inductive cases of merge (see [Single-pass merging -- algorithm] for description of each case): -- -- 1) case c described in [Single-pass merging algorithm]. Call to -- makeT would not swap left and right when creating a node from -- parameters passed to it. Required proof is: -- -- suc (l1 + (r1 + suc (l2 + r2))) -- ≡ suc ((l1 + r1) + suc (l2 + r2)) -- -- 2) case d described in [Single-pass merging algorithm]. Call to -- makeT would swap left and right when creating a node from -- parameters passed to it. Required proof is: -- -- suc ((r1 + suc (l2 + r2)) + l1) -- ≡ suc ((l1 + r1) + suc (l2 + r2)) -- -- 3) case e described in [Single-pass merging algorithm]. Call to -- makeT would not swap left and right when creating a node from -- parameters passed to it. Required proof is: -- -- suc (l2 + (r2 + suc (l1 + r1))) -- ≡ suc ((l1 + r1) + suc (l2 + r2)) -- -- 4) case f described in [Single-pass merging algorithm]. Call to -- makeT would swap left and right when creating a node from -- parameters passed to it. Required proof is: -- -- suc ((r2 + suc (l1 + r1)) + l2) -- ≡ suc ((l1 + r1) + suc (l2 + r2)) -- -- First of all we must note that proofs required in cases 1 and 3 are -- exactly the same as in the two-pass merging algorithm. This allows -- us to re-use the old proofs (renamed to proof-1a and proof-2a -- here). What about proofs of cases 2 and 4? One thing we could do is -- construct proofs of these properties using technique described in -- Note [Constructing equality proofs using transitivity]. This is -- left as an exercise to the reader. Here we will proceed in a -- different way. Notice that properties we have to prove in cases for -- 2 and 4 are very similar to properties 1 and 3 (we omit the RHS -- since it is always the same): -- -- 1: suc (l1 + (r1 + suc (l2 + r2))) -- 2: suc ((r1 + suc (l2 + r2)) + l1) -- -- 3: suc (l2 + (r2 + suc (l1 + r1))) -- 4: suc ((r2 + suc (l1 + r1)) + l2) -- -- The only difference between 1 and 2 and between 3 and 4 is the -- order of parameters inside outer suc. This is expected: in cases 2 -- and 4 we swap left and right subtree passed to node and this is -- reflected in the types. Now, if we could prove that: -- -- suc ((r1 + suc (l2 + r2)) + l1) -- ≡ suc (l1 + (r1 + suc (l2 + r2))) -- -- and -- -- suc ((r2 + suc (l1 + r1)) + l2) -- ≡ suc (l2 + (r2 + suc (l1 + r1))) -- -- then we could use transitivity to combine these new proofs with old -- proof-1a and proof-2a. If we abstract the parameters in the above -- equalities we see that the property we need to prove is: -- -- suc (a + b) ≡ suc (b + a) -- -- And that happens to be makeT-lemma! New version of merge was -- created by inlining calls to make and now it turns out we can -- construct proofs of that implementation by using proofs of -- makeT. This leads us to very elegant solutions presented below. proof-1b : (l1 r1 l2 r2 : Nat) → suc ((r1 + suc (l2 + r2)) + l1) ≡ suc ((l1 + r1) + suc (l2 + r2)) proof-1b l1 r1 l2 r2 = trans (makeT-lemma (r1 + suc (l2 + r2)) l1) (proof-1a l1 r1 l2 r2) proof-2b : (l1 r1 l2 r2 : Nat) → suc ((r2 + suc (l1 + r1)) + l2) ≡ suc ((l1 + r1) + suc (l2 + r2)) proof-2b l1 r1 l2 r2 = trans (makeT-lemma (r2 + suc (l1 + r1)) l2) (proof-2a l1 r1 l2 r2) -- We can now use proof-1a, proof-1b, proof-2a and proof-2b in -- definition of merge. merge : {l r : Nat} → Heap l → Heap r → Heap (l + r) merge {zero} {_} empty h2 = h2 merge {suc l} {zero} h1 empty = subst Heap (sym (+0 (suc l))) h1 merge {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node p1 {l1-rank} {r1-rank} l1≥r1 l1 r1) (node p2 {l2-rank} {r2-rank} l2≥r2 l2 r2) with p1 < p2 | order l1-rank (r1-rank + suc (l2-rank + r2-rank)) | order l2-rank (r2-rank + suc (l1-rank + r1-rank)) merge {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node p1 {l1-rank} {r1-rank} l1≥r1 l1 r1) (node p2 {l2-rank} {r2-rank} l2≥r2 l2 r2) | true | ge l1≥r1+h2 | _ = subst Heap (proof-1a l1-rank r1-rank l2-rank r2-rank) (node p1 l1≥r1+h2 l1 (merge r1 (node p2 l2≥r2 l2 r2))) merge {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node p1 {l1-rank} {r1-rank} l1≥r1 l1 r1) (node p2 {l2-rank} {r2-rank} l2≥r2 l2 r2) | true | le l1≤r1+h2 | _ = subst Heap (proof-1b l1-rank r1-rank l2-rank r2-rank) (node p1 l1≤r1+h2 (merge r1 (node p2 l2≥r2 l2 r2)) l1) merge {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node p1 {l1-rank} {r1-rank} l1≥r1 l1 r1) (node p2 {l2-rank} {r2-rank} l2≥r2 l2 r2) | false | _ | ge l2≥r2+h1 = subst Heap (proof-2a l1-rank r1-rank l2-rank r2-rank) (node p2 l2≥r2+h1 l2 (merge r2 (node p1 l1≥r1 l1 r1))) merge {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node p1 {l1-rank} {r1-rank} l1≥r1 l1 r1) (node p2 {l2-rank} {r2-rank} l2≥r2 l2 r2) | false | _ | le l2≤r2+h1 = subst Heap (proof-2b l1-rank r1-rank l2-rank r2-rank) (node p2 l2≤r2+h1 (merge r2 (node p1 l1≥r1 l1 r1)) l2)
{ "alphanum_fraction": 0.5639494834, "avg_line_length": 41.875, "ext": "agda", "hexsha": "d5e00bbf93142864f4d6ef41175f416092cfaca2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/SinglePassMerge/RankProof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/SinglePassMerge/RankProof.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/SinglePassMerge/RankProof.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 2841, "size": 8710 }
{-# OPTIONS --without-K --safe --overlapping-instances #-} module Examples where open import Data.Nat -- local imports open import Interpreter pf : y' ∈ y' ::: `ℕ , (x' ::: `ℕ , ·) pf = H pf2 : x' ∈ y' ::: `ℕ , (x' ::: `ℕ , ·) pf2 = TH testSimpleLambda : · ⊢ `ℕ testSimpleLambda = (`λ x' `: `ℕ ⇨ (`v x' `+ `v x')) `₋ `n 10 testSimpleLambda2 : · ⊢ `ℕ `⇨ `ℕ testSimpleLambda2 = `λ x' `: `ℕ ⇨ (`v x') `+ (`v x') testNestedLambda : · ⊢ `ℕ testNestedLambda = (`λ x' `: `ℕ ⇨ (`λ_`:_⇨_ y' `ℕ (`v x' `* `v y'))) `₋ `n 10 `₋ `n 15 testNestedLambda2 : · ⊢ `ℕ `⇨ `ℕ `⇨ `ℕ testNestedLambda2 = (`λ x' `: `ℕ ⇨ (`λ_`:_⇨_ y' `ℕ (`v x' `* `v y'))) -- The following definitions do not type check. They are a relic from -- when the interpreter still had some bugs. Uncomment them to verify -- they don't type check -- testNamingNotWorking : · ⊢ `Bool -- testNamingNotWorking = (`λ x' `: `Bool ⇨ (`λ x' `: `⊤ ⇨ `v x')) `₋ `true `₋ `tt -- testNamingNotWorking2 : · ⊢ `Bool `⇨ `⊤ `⇨ `Bool -- incorrect type! -- testNamingNotWorking2 = `λ x' `: `Bool ⇨ (`λ x' `: `⊤ ⇨ `v x') testNamingWorking : · ⊢ `⊤ testNamingWorking = (`λ x' `: `Bool ⇨ (`λ x' `: `⊤ ⇨ `v x')) `₋ `true `₋ `tt testNamingWorking2 : · ⊢ `Bool `⇨ `⊤ `⇨ `⊤ testNamingWorking2 = `λ x' `: `Bool ⇨ (`λ x' `: `⊤ ⇨ `v x') testSum1 : · ⊢ `ℕ testSum1 = `let z' `= `case `left (`n 10) `of `λ z' `: `ℕ ⇨ `v z' || `λ x' `: `Bool ⇨ `if `v x' `then `n 1 `else `n 0 `in `v z' testSum2 : · ⊢ `ℕ testSum2 = `let z' `= `case `right `true `of `λ z' `: `ℕ ⇨ `v z' || `λ x' `: `Bool ⇨ `if `v x' `then `n 1 `else `n 0 `in `v z' testProduct1 : · ⊢ `Bool testProduct1 = `fst (`true `, (`n 10 `, `tt )) testProduct2 : · ⊢ `ℕ `× `⊤ testProduct2 = `snd (`true `, (`n 10 `, `tt )) testDeMorganFullOr : · ⊢ `Bool testDeMorganFullOr = `let z' `= `λ x' `: `Bool ⇨ `λ y' `: `Bool ⇨ `¬ (`v x' `∨ `v y') `in `v z' `₋ `true `₋ `true testDeMorganBrokenAnd : · ⊢ `Bool testDeMorganBrokenAnd = `let z' `= `λ x' `: `Bool ⇨ `λ y' `: `Bool ⇨ `¬ `v x' `∧ `¬ `v y' `in `v z' `₋ `true `₋ `true tester : Set tester = {! interpret testSimpleLambda2 !}
{ "alphanum_fraction": 0.4782608696, "avg_line_length": 31.3055555556, "ext": "agda", "hexsha": "2cea4ed3e8ddad15d1d3c7e98c02fb21ee56c6bb", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-06-18T12:31:11.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-18T06:14:18.000Z", "max_forks_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sseefried/well-typed-agda-interpreter", "max_forks_repo_path": "Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sseefried/well-typed-agda-interpreter", "max_issues_repo_path": "Examples.agda", "max_line_length": 89, "max_stars_count": 3, "max_stars_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sseefried/well-typed-agda-interpreter", "max_stars_repo_path": "Examples.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-18T12:37:46.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-18T12:06:14.000Z", "num_tokens": 975, "size": 2254 }
module Data.Bin.Rec where open import Data.Bin hiding (suc; fromℕ) open import Induction.WellFounded open import Data.Nat using (ℕ; zero; suc) renaming (_<_ to _ℕ<_) open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality open import Data.Bin.Bijection import Induction.Nat wf : Well-founded _<_ wf x = go' x where P : ℕ → Set P x = Acc _<_ (fromℕ x) podgon : ∀ {y} → P (toℕ y) → Acc _<_ y podgon = subst (λ q → Acc _<_ q) (fromToℕ-inverse _) go'' : (x : ℕ) → ((y : ℕ) → y ℕ< x → P y) → P x go'' x rec = acc (λ { y (less ty<tfx) → podgon (rec (toℕ y) (subst (λ q → toℕ y ℕ< q) (toFromℕ-inverse x) ty<tfx ) )}) go : (x : ℕ) → P x go = Induction.Nat.<-rec P go'' go' : (x : Bin) → Acc _<_ x go' x = podgon (go (toℕ x)) open All wf rec : ∀ (P : Bin → Set) → ((a : Bin) → ((a' : Bin) → (a' < a) → P a') → P a) → (a : Bin) → P a rec P f = wfRec _ P f
{ "alphanum_fraction": 0.578539823, "avg_line_length": 25.1111111111, "ext": "agda", "hexsha": "8d0f1a07fc3fca664bd82c6b246b6f3acb32d888", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "Rotsor/BinDivMod", "max_forks_repo_path": "Data/Bin/Rec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "Rotsor/BinDivMod", "max_issues_repo_path": "Data/Bin/Rec.agda", "max_line_length": 120, "max_stars_count": 1, "max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Rotsor/BinDivMod", "max_stars_repo_path": "Data/Bin/Rec.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z", "num_tokens": 364, "size": 904 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Core lemmas needed to make list argmin/max functions work ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Trans; TotalOrder; Setoid) module Data.List.Extrema.Core {b ℓ₁ ℓ₂} (totalOrder : TotalOrder b ℓ₁ ℓ₂) where open import Algebra.Core open import Algebra.Definitions import Algebra.Construct.NaturalChoice.Min as Min import Algebra.Construct.NaturalChoice.Max as Max open import Data.Product using (_×_; _,_) open import Data.Sum.Base using (_⊎_; inj₁; inj₂) open import Level using (Level) open import Relation.Binary.PropositionalEquality using (_≡_) open import Algebra.Construct.LiftedChoice open TotalOrder totalOrder renaming (Carrier to B) open import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ using (_<_; <-≤-trans; ≤-<-trans) ------------------------------------------------------------------------ -- Setup -- open NonStrictToStrict totalOrder using (_<_; ≤-<-trans; <-≤-trans) open Max totalOrder open Min totalOrder private variable a : Level A : Set a <-transʳ : Trans _≤_ _<_ _<_ <-transʳ = ≤-<-trans trans antisym ≤-respˡ-≈ <-transˡ : Trans _<_ _≤_ _<_ <-transˡ = <-≤-trans Eq.sym trans antisym ≤-respʳ-≈ module _ (f : A → B) where lemma₁ : ∀ {x y v} → f x ≤ v → f x ⊓ f y ≈ f y → f y ≤ v lemma₁ fx≤v fx⊓fy≈fy = trans (x⊓y≈y⇒y≤x fx⊓fy≈fy) fx≤v lemma₂ : ∀ {x y v} → f y ≤ v → f x ⊓ f y ≈ f x → f x ≤ v lemma₂ fy≤v fx⊓fy≈fx = trans (x⊓y≈x⇒x≤y fx⊓fy≈fx) fy≤v lemma₃ : ∀ {x y v} → f x < v → f x ⊓ f y ≈ f y → f y < v lemma₃ fx<v fx⊓fy≈fy = <-transʳ (x⊓y≈y⇒y≤x fx⊓fy≈fy) fx<v lemma₄ : ∀ {x y v} → f y < v → f x ⊓ f y ≈ f x → f x < v lemma₄ fx<v fx⊓fy≈fy = <-transʳ (x⊓y≈x⇒x≤y fx⊓fy≈fy) fx<v ------------------------------------------------------------------------ -- Definition of lifted max and min ⊓ᴸ : (A → B) → Op₂ A ⊓ᴸ = Lift _≈_ _⊓_ ⊓-sel ⊔ᴸ : (A → B) → Op₂ A ⊔ᴸ = Lift _≈_ _⊔_ ⊔-sel ------------------------------------------------------------------------ -- Properties of ⊓ᴸ ⊓ᴸ-sel : ∀ f → Selective {A = A} _≡_ (⊓ᴸ f) ⊓ᴸ-sel f = sel-≡ ⊓-isSelectiveMagma f ⊓ᴸ-presᵒ-≤v : ∀ f {v} (x y : A) → f x ≤ v ⊎ f y ≤ v → f (⊓ᴸ f x y) ≤ v ⊓ᴸ-presᵒ-≤v f = preservesᵒ ⊓-isSelectiveMagma f (lemma₁ f) (lemma₂ f) ⊓ᴸ-presᵒ-<v : ∀ f {v} (x y : A) → f x < v ⊎ f y < v → f (⊓ᴸ f x y) < v ⊓ᴸ-presᵒ-<v f = preservesᵒ ⊓-isSelectiveMagma f (lemma₃ f) (lemma₄ f) ⊓ᴸ-presᵇ-v≤ : ∀ f {v} {x y : A} → v ≤ f x → v ≤ f y → v ≤ f (⊓ᴸ f x y) ⊓ᴸ-presᵇ-v≤ f {v} = preservesᵇ ⊓-isSelectiveMagma {P = λ x → v ≤ f x} f ⊓ᴸ-presᵇ-v< : ∀ f {v} {x y : A} → v < f x → v < f y → v < f (⊓ᴸ f x y) ⊓ᴸ-presᵇ-v< f {v} = preservesᵇ ⊓-isSelectiveMagma {P = λ x → v < f x} f ⊓ᴸ-forcesᵇ-v≤ : ∀ f {v} (x y : A) → v ≤ f (⊓ᴸ f x y) → v ≤ f x × v ≤ f y ⊓ᴸ-forcesᵇ-v≤ f {v} = forcesᵇ ⊓-isSelectiveMagma f (λ v≤fx fx⊓fy≈fx → trans v≤fx (x⊓y≈x⇒x≤y fx⊓fy≈fx)) (λ v≤fy fx⊓fy≈fy → trans v≤fy (x⊓y≈y⇒y≤x fx⊓fy≈fy)) ------------------------------------------------------------------------ -- Properties of ⊔ᴸ ⊔ᴸ-sel : ∀ f → Selective {A = A} _≡_ (⊔ᴸ f) ⊔ᴸ-sel f = sel-≡ ⊔-isSelectiveMagma f ⊔ᴸ-presᵒ-v≤ : ∀ f {v} (x y : A) → v ≤ f x ⊎ v ≤ f y → v ≤ f (⊔ᴸ f x y) ⊔ᴸ-presᵒ-v≤ f {v} = preservesᵒ ⊔-isSelectiveMagma f (λ v≤fx fx⊔fy≈fy → trans v≤fx (x⊔y≈y⇒x≤y fx⊔fy≈fy)) (λ v≤fy fx⊔fy≈fx → trans v≤fy (x⊔y≈x⇒y≤x fx⊔fy≈fx)) ⊔ᴸ-presᵒ-v< : ∀ f {v} (x y : A) → v < f x ⊎ v < f y → v < f (⊔ᴸ f x y) ⊔ᴸ-presᵒ-v< f {v} = preservesᵒ ⊔-isSelectiveMagma f (λ v<fx fx⊔fy≈fy → <-transˡ v<fx (x⊔y≈y⇒x≤y fx⊔fy≈fy)) (λ v<fy fx⊔fy≈fx → <-transˡ v<fy (x⊔y≈x⇒y≤x fx⊔fy≈fx)) ⊔ᴸ-presᵇ-≤v : ∀ f {v} {x y : A} → f x ≤ v → f y ≤ v → f (⊔ᴸ f x y) ≤ v ⊔ᴸ-presᵇ-≤v f {v} = preservesᵇ ⊔-isSelectiveMagma {P = λ x → f x ≤ v} f ⊔ᴸ-presᵇ-<v : ∀ f {v} {x y : A} → f x < v → f y < v → f (⊔ᴸ f x y) < v ⊔ᴸ-presᵇ-<v f {v} = preservesᵇ ⊔-isSelectiveMagma {P = λ x → f x < v} f ⊔ᴸ-forcesᵇ-≤v : ∀ f {v} (x y : A) → f (⊔ᴸ f x y) ≤ v → f x ≤ v × f y ≤ v ⊔ᴸ-forcesᵇ-≤v f {v} = forcesᵇ ⊔-isSelectiveMagma f (λ fx≤v fx⊔fy≈fx → trans (x⊔y≈x⇒y≤x fx⊔fy≈fx) fx≤v) (λ fy≤v fx⊔fy≈fy → trans (x⊔y≈y⇒x≤y fx⊔fy≈fy) fy≤v)
{ "alphanum_fraction": 0.5043601226, "avg_line_length": 35.0661157025, "ext": "agda", "hexsha": "845582cfcd468b1ec9f5a46785b6fcfd45d11fcd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Extrema/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Extrema/Core.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Extrema/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2158, "size": 4243 }
{-# OPTIONS -W error #-} module Issue2596a where {-# REWRITE #-} -- We will never encounter this, because the harmless warning above -- has been turned into an error f : Set f = f
{ "alphanum_fraction": 0.6868131868, "avg_line_length": 18.2, "ext": "agda", "hexsha": "c8a3d76d925d402755d337bba4fd9ad0553a21ea", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2596a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2596a.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2596a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 46, "size": 182 }
module Issue450 where open import Common.Level open import Common.Coinduction data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x data Wrap (A : Set) : Set where con : A -> Wrap A out : forall {A} -> Wrap A -> A out (con x) = x out' : forall {A} -> ∞ (Wrap A) -> A out' y = out (♭ y) inn : forall {A} -> A -> ∞ (Wrap A) inn y = ♯ (con y) prf : (A : Set)(x : A) → out' (inn x) ≡ x prf A x = refl test : forall {A : Set}{x : A} -> out (con x) ≡ x test = refl -- these work test1 : forall {A}{x : A} -> out' (inn x) ≡ x test1 {A} {x} = test test2 : forall {A}{x : A} -> out' (inn x) ≡ x test2 {A} {x} = test {A} -- but the following ones won't typecheck test3 : forall {A}{x : A} -> out' (inn x) ≡ x test3 {A} {x} = test {A} {x} test4 : forall {A}{x : A} -> out' (inn x) ≡ x test4 {A} {x} = refl
{ "alphanum_fraction": 0.5263803681, "avg_line_length": 19.4047619048, "ext": "agda", "hexsha": "731d4f62d17502b2854eea6208f48efb4f79585c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue450.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue450.agda", "max_line_length": 49, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue450.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 346, "size": 815 }
-- Andreas, 2017-09-09, re issue #2732 -- eta-contraction needed in termination checker -- {-# OPTIONS -v term:30 #-} open import Agda.Builtin.Equality data O (A : Set) : Set where leaf : O A node : (A → O A) → O A postulate A : Set a : A test1 : (t u : O A) → O A test1 leaf leaf = leaf test1 leaf (node g) = test1 leaf (g a) test1 (node f) leaf = test1 (f a) (node f) test1 (node f) (node g) = test1 (node λ x → f x) (g a) -- Should pass even with the eta-expansion. data Q (A : Set) : Set where leaf : Q A node : (f g : A → Q A) (p : f ≡ g) → Q A -- Having various call arguments in eta-expanded form. test : (t u : Q A) → Q A test leaf leaf = leaf test leaf (node f g p) = test leaf (f a) test (node f g p) leaf = test (g a) (node f g p) test (node f .f refl) (node g g' p) = test (node (λ x → f x) _ refl) (g' a)
{ "alphanum_fraction": 0.5826494725, "avg_line_length": 25.8484848485, "ext": "agda", "hexsha": "f589490310bf7a82fefec302e8ec05725580b1a4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2732-termination.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2732-termination.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2732-termination.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 321, "size": 853 }
-- Andreas, 2017-10-11, issue #2796 -- A failed check for projection-likeness -- made the overloaded projection not resolve. -- {-# OPTIONS -v tc.proj.like:100 #-} -- {-# OPTIONS -v tc.proj.amb:100 #-} postulate L : Set lzero : L Type : L → Set El : ∀{l} → Type l → Set record Pred (A : Set) l : Set where -- Works without l field app : A → Type l record Sub l : Set1 where field Carrier : Set pred : Pred Carrier l open Pred pred public open Pred -- Works without this (of course) open Sub test : (S T : Sub lzero) → (f : S .Carrier → T .Carrier) → Set test S T f = (a : S .Carrier) → El (S .app a) → El (T .app (f a)) -- Problem WAS: -- Cannot resolve overloaded projection app because no matching candidate found -- when checking that the expression S .app a has type -- Type (_l_22 S T f a) -- Should succeed.
{ "alphanum_fraction": 0.6245654693, "avg_line_length": 23.3243243243, "ext": "agda", "hexsha": "de905e89be317b58b8a62ec110f5b00ddcbc67e4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2796.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2796.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2796.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 267, "size": 863 }
-- Andreas, 2012-01-13, error reported by Rob Simmons module Issue555 where data Exp : Set data Exp Γ where -- internal error
{ "alphanum_fraction": 0.7421875, "avg_line_length": 18.2857142857, "ext": "agda", "hexsha": "f54cc8014c386789dbed7e347988dd5a65f42d6b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue555.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue555.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue555.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 35, "size": 128 }
open import Oscar.Prelude open import Oscar.Data.𝟘 module Oscar.Data.Decidable where data Decidable {a} (A : Ø a) : Ø a where ↑_ : A → Decidable A ↓_ : ¬ A → Decidable A
{ "alphanum_fraction": 0.6723163842, "avg_line_length": 17.7, "ext": "agda", "hexsha": "51983468e78936d23fd3079b722c0870e9ed9964", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Decidable.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Decidable.agda", "max_line_length": 40, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Decidable.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 61, "size": 177 }
open import Relation.Binary hiding (_⇒_) module Category.Monad.Monotone.Error {i}(pre : Preorder i i i)(Exc : Set i) where open Preorder pre renaming (Carrier to I; _∼_ to _≤_; refl to ≤-refl) open import Function open import Level hiding (lift) open import Data.Sum open import Relation.Unary open import Relation.Unary.Monotone pre open import Relation.Unary.PredicateTransformer open import Category.Monad.Monotone pre open import Category.Monad.Monotone.Identity pre pattern left x = inj₁ x pattern right x = inj₂ x ErrorT : Pt I i → Pt I i ErrorT M P = M (λ i → Exc ⊎ P i) Error = ErrorT Identity record ErrorMonad (M : Pt I i) : Set (suc i) where field throw : ∀ {P i} → Exc → M P i try_catch_ : ∀ {P} → M P ⊆ ((const Exc ↗ M P) ⇒ M P) module _ {M} ⦃ Mon : RawMPMonad M ⦄ where private module M = RawMPMonad Mon open RawMPMonad errorT-monad : RawMPMonad (ErrorT M) return errorT-monad px = M.return (right px) _≥=_ errorT-monad {P}{Q} px f = px M.≥= λ where _ (left e) → M.return (left e) w (right x) → f w x open ErrorMonad errorT-monad-ops : ErrorMonad (ErrorT M) throw errorT-monad-ops e = M.return (left e) try_catch_ errorT-monad-ops c f = c M.≥= λ where w (left e) → f w e w (right x) → M.return (right x) lift-error : ∀ {P} → M P ⊆ ErrorT M P lift-error x = x M.>>= (λ z → M.return (right z)) module Instances where -- Defining instances for the transformer -- leads to divergence of instance search, -- because M is on the outside. instance open RawMPMonad error-monad : RawMPMonad Error error-monad = errorT-monad open ErrorMonad error-monad-ops : ErrorMonad Error error-monad-ops = errorT-monad-ops
{ "alphanum_fraction": 0.67112922, "avg_line_length": 27.2698412698, "ext": "agda", "hexsha": "36fbd50dda712bf553063904008c34931aee35d5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Category/Monad/Monotone/Error.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Category/Monad/Monotone/Error.agda", "max_line_length": 81, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Category/Monad/Monotone/Error.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 561, "size": 1718 }
{-# OPTIONS --cubical-compatible --sized-types #-} ------------------------------------------------------------------------ -- From the Agda standard library -- -- Sizes for Agda's sized types ------------------------------------------------------------------------ module Common.Size where open import Agda.Builtin.Size public
{ "alphanum_fraction": 0.4090909091, "avg_line_length": 30, "ext": "agda", "hexsha": "cff04195bfe81bb74229a17ea1513f607e956753", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Common/Size.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Common/Size.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Common/Size.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 48, "size": 330 }
{-# OPTIONS --experimental-irrelevance #-} -- Andreas, 2015-05-18 Irrelevant module parameters -- should not be resurrected in module body. postulate A : Set module M .(a : A) where bad : (..(_ : A) -> Set) -> Set bad f = f a -- SHOULD FAIL: variable a is declared irrelevant, -- so it cannot be used here. -- This fails of course: -- fail : .(a : A) -> (..(_ : A) -> Set) -> Set -- fail a f = f a
{ "alphanum_fraction": 0.5909090909, "avg_line_length": 22, "ext": "agda", "hexsha": "d0f3fcada2a1b2eb4693ccf9aeb5c9e83bdf41fe", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1114.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1114.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1114.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 131, "size": 418 }
module Capability where open import Relation.Nullary using (yes; no) open import Data.List using (List; []; [_]; _∷_; _++_) open import Data.String using (String; _≟_) open import Relation.Binary.PropositionalEquality using (_≢_; refl; _≡_) -- Local modules --------------------------------------------------------------- open import Common using (Id) -- Capabilities Definition ----------------------------------------------------- infix 50 `_ infixr 15 _∙_ data Capability : Set where `_ : Id → Capability -- Name In : Id → Capability -- Can enter Out : Id → Capability -- Can exit Open : Id → Capability -- Can open ε : Capability -- Null _∙_ : Capability → Capability → Capability -- Path -- Free variable --------------------------------------------------------------- freeVar : Capability -> List Id freeVar (` a) = [ a ] freeVar (a ∙ b) = (freeVar a) ++ (freeVar b) freeVar _ = [] -- Capability substitution ----------------------------------------------------- _[_/_] : Capability -> Id -> Capability -> Capability ` x [ y / M ] with x ≟ y ... | yes _ = M ... | no _ = ` x (N ∙ R) [ y / M ] = N [ y / M ] ∙ R [ y / M ] C [ _ / _ ] = C module Test where a = "a" b = "b" ------------------------------------------------------------------------------ _ : freeVar (` a) ≡ [ a ] _ = refl _ : freeVar (` a ∙ ` b) ≡ a ∷ b ∷ [] _ = refl ------------------------------------------------------------------------------ _ : ∀ {M} → ` a [ a / M ] ≡ M _ = refl _ : ∀ {M} → ` b [ a / M ] ≡ ` b _ = refl
{ "alphanum_fraction": 0.3707929264, "avg_line_length": 25.0428571429, "ext": "agda", "hexsha": "5182e4c3ac71acfe844884283fbeb4a7026f6aec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "d-plaindoux/colca", "max_forks_repo_path": "src/Capability.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "d-plaindoux/colca", "max_issues_repo_path": "src/Capability.agda", "max_line_length": 80, "max_stars_count": 2, "max_stars_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "d-plaindoux/colca", "max_stars_repo_path": "src/Capability.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-04T09:35:36.000Z", "max_stars_repo_stars_event_min_datetime": "2021-03-12T18:31:14.000Z", "num_tokens": 438, "size": 1753 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Identity module HoTT.Transport.Identity where open variables unitₗᵣ : {x y : A} {p : x == y} → p == refl ∙ p ∙ refl unitₗᵣ {p = refl} = refl -- Theorem 2.11.3 transport= : {a a' : A} (f g : A → B) (p : a == a') (q : f a == g a) → transport (λ x → f x == g x) p q == ap f p ⁻¹ ∙ q ∙ ap g p transport= _ _ refl _ = unitₗᵣ transport=-id-const : (a : A) {x₁ x₂ : A} (p : x₁ == x₂) (q : x₁ == a) → transport (λ x → x == a) p q == p ⁻¹ ∙ q transport=-id-const _ refl refl = refl transport=-const-id : {x₁ x₂ : A} (p : x₁ == x₂) (a : A) (q : a == x₁) → transport (λ x → a == x) p q == q ∙ p transport=-const-id refl _ refl = refl transport=-id-id : {x₁ x₂ : A} (p : x₁ == x₂) (q : x₁ == x₁) → transport (λ x → x == x) p q == p ⁻¹ ∙ q ∙ p transport=-id-id refl _ = unitₗᵣ transport=-constₗ : (b : B) (f : A → B) {x₁ x₂ : A} (p : x₁ == x₂) (q : b == f x₁) → transport (λ x → b == f x) p q == q ∙ ap f p transport=-constₗ _ _ refl _ = unitᵣ transport=-constᵣ : (f : A → B) (b : B) {x₁ x₂ : A} (p : x₁ == x₂) (q : f x₁ == b) → transport (λ x → f x == b) p q == ap f p ⁻¹ ∙ q transport=-constᵣ _ _ refl refl = refl transport=-idₗ : (f : A → A) {x₁ x₂ : A} (p : x₁ == x₂) (q : x₁ == f x₁) → transport (λ x → x == f x) p q == p ⁻¹ ∙ q ∙ ap f p transport=-idₗ _ refl _ = unitₗᵣ transport=-idᵣ : (f : A → A) {x₁ x₂ : A} (p : x₁ == x₂) (q : f x₁ == x₁) → transport (λ x → f x == x) p q == ap f p ⁻¹ ∙ q ∙ p transport=-idᵣ _ refl _ = unitₗᵣ
{ "alphanum_fraction": 0.4688067838, "avg_line_length": 37.5227272727, "ext": "agda", "hexsha": "e1a5c1360686c88b29a2eae694da8f4575dadf98", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Transport/Identity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Transport/Identity.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Transport/Identity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 707, "size": 1651 }