Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K --exact-split #-} module 08-contractible-types where import 07-equivalences open 07-equivalences public -- Section 6.1 Contractible types is-contr : {i : Level} → UU i → UU i is-contr A = Σ A (λ a → (x : A) → Id a x) abstract center : {i : Level} {A : UU i} → is-contr A → A center (pair c is-contr-A) = c -- We make sure that the contraction is coherent in a straightforward way contraction : {i : Level} {A : UU i} (is-contr-A : is-contr A) → (const A A (center is-contr-A) ~ id) contraction (pair c C) x = (inv (C c)) ∙ (C x) coh-contraction : {i : Level} {A : UU i} (is-contr-A : is-contr A) → Id (contraction is-contr-A (center is-contr-A)) refl coh-contraction (pair c C) = left-inv (C c) -- We show that contractible types satisfy an induction principle akin to the induction principle of the unit type: singleton induction. This can be helpful to give short proofs of many facts. ev-pt : {i j : Level} (A : UU i) (a : A) (B : A → UU j) → ((x : A) → B x) → B a ev-pt A a B f = f a abstract sing-ind-is-contr : {i j : Level} (A : UU i) (is-contr-A : is-contr A) (B : A → UU j) → (a : A) → B a → (x : A) → B x sing-ind-is-contr A is-contr-A B a b x = tr B ((inv (contraction is-contr-A a)) ∙ (contraction is-contr-A x)) b sing-comp-is-contr : {i j : Level} (A : UU i) (is-contr-A : is-contr A) (B : A → UU j) (a : A) → ((ev-pt A a B) ∘ (sing-ind-is-contr A is-contr-A B a)) ~ id sing-comp-is-contr A is-contr-A B a b = ap (λ ω → tr B ω b) (left-inv (contraction is-contr-A a)) sec-ev-pt-is-contr : {i j : Level} (A : UU i) (is-contr-A : is-contr A) (B : A → UU j) (a : A) → sec (ev-pt A a B) sec-ev-pt-is-contr A is-contr-A B a = pair ( sing-ind-is-contr A is-contr-A B a) ( sing-comp-is-contr A is-contr-A B a) abstract is-sing-is-contr : {i j : Level} (A : UU i) (is-contr-A : is-contr A) (B : A → UU j) → ( a : A) → sec (ev-pt A a B) is-sing-is-contr A is-contr-A B a = pair ( sing-ind-is-contr A is-contr-A B a) ( sing-comp-is-contr A is-contr-A B a) is-sing : {i : Level} (A : UU i) → A → UU (lsuc i) is-sing {i} A a = (B : A → UU i) → sec (ev-pt A a B) abstract is-contr-sing-ind : {i : Level} (A : UU i) (a : A) → ((P : A → UU i) → P a → (x : A) → P x) → is-contr A is-contr-sing-ind A a S = pair a (S (λ x → Id a x) refl) abstract is-contr-is-sing : {i : Level} (A : UU i) (a : A) → is-sing A a → is-contr A is-contr-is-sing A a S = is-contr-sing-ind A a (λ P → pr1 (S P)) abstract is-sing-unit : is-sing unit star is-sing-unit B = pair ind-unit (λ b → refl) is-contr-unit : is-contr unit is-contr-unit = is-contr-is-sing unit star (is-sing-unit) abstract is-sing-total-path : {i : Level} (A : UU i) (a : A) → is-sing (Σ A (λ x → Id a x)) (pair a refl) is-sing-total-path A a B = pair (ind-Σ ∘ (ind-Id a _)) (λ b → refl) abstract is-contr-total-path : {i : Level} {A : UU i} (a : A) → is-contr (Σ A (λ x → Id a x)) is-contr-total-path {A = A} a = is-contr-is-sing _ _ (is-sing-total-path A a) -- Section 6.2 Contractible maps -- We first introduce the notion of a fiber of a map. fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (b : B) → UU (i ⊔ j) fib f b = Σ _ (λ x → Id (f x) b) fib' : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (b : B) → UU (i ⊔ j) fib' f b = Σ _ (λ x → Id b (f x)) -- A map is said to be contractible if its fibers are contractible in the usual sense. is-contr-map : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) is-contr-map f = (y : _) → is-contr (fib f y) -- Our goal is to show that contractible maps are equivalences. -- First we construct the inverse of a contractible map. inv-is-contr-map : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-contr-map f → B → A inv-is-contr-map is-contr-f y = pr1 (center (is-contr-f y)) -- Then we show that the inverse is a section. issec-is-contr-map : {i j : Level} {A : UU i} {B : UU j} {f : A → B} (is-contr-f : is-contr-map f) → (f ∘ (inv-is-contr-map is-contr-f)) ~ id issec-is-contr-map is-contr-f y = pr2 (center (is-contr-f y)) -- Then we show that the inverse is also a retraction. isretr-is-contr-map : {i j : Level} {A : UU i} {B : UU j} {f : A → B} (is-contr-f : is-contr-map f) → ((inv-is-contr-map is-contr-f) ∘ f) ~ id isretr-is-contr-map {_} {_} {A} {B} {f} is-contr-f x = ap ( pr1 {B = λ z → Id (f z) (f x)}) ( ( inv ( contraction ( is-contr-f (f x)) ( pair ( inv-is-contr-map is-contr-f (f x)) ( issec-is-contr-map is-contr-f (f x))))) ∙ ( contraction (is-contr-f (f x)) (pair x refl))) -- Finally we put it all together to show that contractible maps are equivalences. abstract is-equiv-is-contr-map : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-contr-map f → is-equiv f is-equiv-is-contr-map is-contr-f = is-equiv-has-inverse ( inv-is-contr-map is-contr-f) ( issec-is-contr-map is-contr-f) ( isretr-is-contr-map is-contr-f) -- Section 6.3 Equivalences are contractible maps -- The goal in this section is to show that all equivalences are contractible maps. This theorem is much harder than anything we've seen so far, but many future results will depend on it. -- We characterize the identity types of fibers Eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → fib f y → fib f y → UU (i ⊔ j) Eq-fib f y s t = Σ (Id (pr1 s) (pr1 t)) (λ α → Id ((ap f α) ∙ (pr2 t)) (pr2 s)) reflexive-Eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → (s : fib f y) → Eq-fib f y s s reflexive-Eq-fib f y s = pair refl refl Eq-fib-eq : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → {s t : fib f y} → (Id s t) → Eq-fib f y s t Eq-fib-eq f y {s} refl = reflexive-Eq-fib f y s eq-Eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → {s t : fib f y} → Eq-fib f y s t → Id s t eq-Eq-fib f y {pair x p} {pair .x .p} (pair refl refl) = refl issec-eq-Eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → {s t : fib f y} → ((Eq-fib-eq f y {s} {t}) ∘ (eq-Eq-fib f y {s} {t})) ~ id issec-eq-Eq-fib f y {pair x p} {pair .x .p} (pair refl refl) = refl isretr-eq-Eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → {s t : fib f y} → ((eq-Eq-fib f y {s} {t}) ∘ (Eq-fib-eq f y {s} {t})) ~ id isretr-eq-Eq-fib f y {pair x p} {.(pair x p)} refl = refl abstract is-equiv-Eq-fib-eq : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → {s t : fib f y} → is-equiv (Eq-fib-eq f y {s} {t}) is-equiv-Eq-fib-eq f y {s} {t} = is-equiv-has-inverse ( eq-Eq-fib f y) ( issec-eq-Eq-fib f y) ( isretr-eq-Eq-fib f y) abstract is-equiv-eq-Eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → {s t : fib f y} → is-equiv (eq-Eq-fib f y {s} {t}) is-equiv-eq-Eq-fib f y {s} {t} = is-equiv-has-inverse ( Eq-fib-eq f y) ( isretr-eq-Eq-fib f y) ( issec-eq-Eq-fib f y) -- Next, we improve the homotopy G : f ∘ g ~ id if f comes equipped with the -- structure has-inverse f. inv-has-inverse : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → has-inverse f → B → A inv-has-inverse inv-f = pr1 inv-f issec-inv-has-inverse : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (inv-f : has-inverse f) → (f ∘ (inv-has-inverse inv-f)) ~ id issec-inv-has-inverse {f = f} (pair g (pair G H)) y = (inv (G (f (g y)))) ∙ (ap f (H (g y)) ∙ (G y)) isretr-inv-has-inverse : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (inv-f : has-inverse f) → ((inv-has-inverse inv-f) ∘ f) ~ id isretr-inv-has-inverse inv-f = pr2 (pr2 inv-f) -- Before we start we will develop some of the ingredients of the construction. -- We will need the naturality of homotopies. htpy-nat : {i j : Level} {A : UU i} {B : UU j} {f g : A → B} (H : f ~ g) {x y : A} (p : Id x y) → Id ((H x) ∙ (ap g p)) ((ap f p) ∙ (H y)) htpy-nat H refl = right-unit -- We will also need to undo concatenation on the left and right. One might notice that, in the terminology of Lecture 9, we almost show here that concat p and concat' q are embeddings. left-unwhisk : {i : Level} {A : UU i} {x y z : A} (p : Id x y) {q r : Id y z} → Id (p ∙ q) (p ∙ r) → Id q r left-unwhisk refl s = (inv left-unit) ∙ (s ∙ left-unit) right-unwhisk : {i : Level} {A : UU i} {x y z : A} {p q : Id x y} (r : Id y z) → Id (p ∙ r) (q ∙ r) → Id p q right-unwhisk refl s = (inv right-unit) ∙ (s ∙ right-unit) -- We will also need to compute with homotopies to the identity function. htpy-red : {i : Level} {A : UU i} {f : A → A} (H : f ~ id) → (x : A) → Id (H (f x)) (ap f (H x)) htpy-red {_} {A} {f} H x = right-unwhisk (H x) ( ( ap (concat (H (f x)) x) (inv (ap-id (H x)))) ∙ ( htpy-nat H (H x))) square : {i : Level} {A : UU i} {x y1 y2 z : A} (p1 : Id x y1) (q1 : Id y1 z) (p2 : Id x y2) (q2 : Id y2 z) → UU i square p q p' q' = Id (p ∙ q) (p' ∙ q') sq-left-whisk : {i : Level} {A : UU i} {x y1 y2 z : A} {p1 p1' : Id x y1} (s : Id p1 p1') {q1 : Id y1 z} {p2 : Id x y2} {q2 : Id y2 z} → square p1 q1 p2 q2 → square p1' q1 p2 q2 sq-left-whisk refl sq = sq sq-top-whisk : {i : Level} {A : UU i} {x y1 y2 z : A} (p1 : Id x y1) (q1 : Id y1 z) (p2 : Id x y2) {p2' : Id x y2} (s : Id p2 p2') (q2 : Id y2 z) → square p1 q1 p2 q2 → square p1 q1 p2' q2 sq-top-whisk p1 q1 p2 refl q2 sq = sq coherence-inv-has-inverse : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (inv-f : has-inverse f) → (f ·l (isretr-inv-has-inverse inv-f)) ~ ((issec-inv-has-inverse inv-f) ·r f) coherence-inv-has-inverse {f = f} (pair g (pair G H)) x = inv-con ( G (f (g (f x)))) ( ap f (H x)) ( (ap f (H (g (f x)))) ∙ (G (f x))) ( sq-top-whisk ( G (f (g (f x)))) ( ap f (H x)) ( (ap (f ∘ (g ∘ f)) (H x))) ( (ap-comp f (g ∘ f) (H x)) ∙ (inv (ap (ap f) (htpy-red H x)))) ( G (f x)) ( htpy-nat (htpy-right-whisk G f) (H x))) -- Now the proof that equivalences are contractible maps really begins. Note that we have already shown that any equivalence has an inverse. Our strategy is therefore to first show that maps with inverses are contractible, and then deduce the claim about equivalences. abstract center-has-inverse : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → has-inverse f → (y : B) → fib f y center-has-inverse {i} {j} {A} {B} {f} inv-f y = pair ( inv-has-inverse inv-f y) ( issec-inv-has-inverse inv-f y) contraction-has-inverse : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (I : has-inverse f) → (y : B) → (t : fib f y) → Id (center-has-inverse I y) t contraction-has-inverse {i} {j} {A} {B} {f} ( pair g (pair G H)) y (pair x refl) = eq-Eq-fib f y (pair ( H x) ( ( right-unit) ∙ ( coherence-inv-has-inverse (pair g (pair G H)) x))) is-contr-map-has-inverse : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → has-inverse f → is-contr-map f is-contr-map-has-inverse inv-f y = pair ( center-has-inverse inv-f y) ( contraction-has-inverse inv-f y) is-contr-map-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → is-contr-map f is-contr-map-is-equiv = is-contr-map-has-inverse ∘ has-inverse-is-equiv abstract is-contr-total-path' : {i : Level} {A : UU i} (a : A) → is-contr (Σ A (λ x → Id x a)) is-contr-total-path' a = is-contr-map-is-equiv (is-equiv-id _) a -- Exercises -- Exercise 6.1 -- In this exercise we are asked to show that the identity types of a contractible type are again contractible. In the terminology of Lecture 8: we are showing that contractible types are propositions. abstract is-prop-is-contr : {i : Level} {A : UU i} → is-contr A → (x y : A) → is-contr (Id x y) is-prop-is-contr {i} {A} is-contr-A = sing-ind-is-contr A is-contr-A ( λ x → ((y : A) → is-contr (Id x y))) ( center is-contr-A) ( λ y → pair ( contraction is-contr-A y) ( ind-Id ( center is-contr-A) ( λ z (p : Id (center is-contr-A) z) → Id (contraction is-contr-A z) p) ( coh-contraction is-contr-A) ( y))) abstract is-prop-is-contr' : {i : Level} {A : UU i} → is-contr A → (x y : A) → Id x y is-prop-is-contr' is-contr-A x y = center (is-prop-is-contr is-contr-A x y) -- Exercise 6.2 -- In this exercise we are showing that contractible types are closed under retracts. abstract is-contr-retract-of : {i j : Level} {A : UU i} (B : UU j) → A retract-of B → is-contr B → is-contr A is-contr-retract-of B (pair i (pair r isretr)) is-contr-B = pair ( r (center is-contr-B)) ( λ x → (ap r (contraction is-contr-B (i x))) ∙ (isretr x)) -- Exercise 6.3 -- In this exercise we are showing that a type is contractible if and only if the constant map to the unit type is an equivalence. This can be used to derive a '3-for-2 property' for contractible types, which may come in handy sometimes. abstract is-equiv-const-is-contr : {i : Level} {A : UU i} → is-contr A → is-equiv (const A unit star) is-equiv-const-is-contr {i} {A} is-contr-A = pair ( pair (ind-unit (center is-contr-A)) (ind-unit refl)) ( pair (const unit A (center is-contr-A)) (contraction is-contr-A)) abstract is-contr-is-equiv-const : {i : Level} {A : UU i} → is-equiv (const A unit star) → is-contr A is-contr-is-equiv-const (pair (pair g issec) (pair h isretr)) = pair (h star) isretr abstract is-contr-is-equiv : {i j : Level} {A : UU i} (B : UU j) (f : A → B) → is-equiv f → is-contr B → is-contr A is-contr-is-equiv B f is-equiv-f is-contr-B = is-contr-is-equiv-const ( is-equiv-comp' ( const B unit star) ( f) ( is-equiv-f) ( is-equiv-const-is-contr is-contr-B)) abstract is-contr-equiv : {i j : Level} {A : UU i} (B : UU j) (e : A ≃ B) → is-contr B → is-contr A is-contr-equiv B (pair e is-equiv-e) is-contr-B = is-contr-is-equiv B e is-equiv-e is-contr-B abstract is-contr-is-equiv' : {i j : Level} (A : UU i) {B : UU j} (f : A → B) → is-equiv f → is-contr A → is-contr B is-contr-is-equiv' A f is-equiv-f is-contr-A = is-contr-is-equiv A ( inv-is-equiv is-equiv-f) ( is-equiv-inv-is-equiv is-equiv-f) ( is-contr-A) abstract is-contr-equiv' : {i j : Level} (A : UU i) {B : UU j} (e : A ≃ B) → is-contr A → is-contr B is-contr-equiv' A (pair e is-equiv-e) is-contr-A = is-contr-is-equiv' A e is-equiv-e is-contr-A abstract is-equiv-is-contr : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-contr A → is-contr B → is-equiv f is-equiv-is-contr {i} {j} {A} {B} f is-contr-A is-contr-B = is-equiv-has-inverse ( const B A (center is-contr-A)) ( sing-ind-is-contr B is-contr-B _ _ ( inv (contraction is-contr-B (f (center is-contr-A))))) ( contraction is-contr-A) equiv-is-contr : {i j : Level} {A : UU i} {B : UU j} → is-contr A → is-contr B → A ≃ B equiv-is-contr is-contr-A is-contr-B = pair ( λ a → center is-contr-B) ( is-equiv-is-contr _ is-contr-A is-contr-B) -- Exercise 6.4 -- In this exercise we will show that if the base type in a Σ-type is contractible, then the Σ-type is equivalent to the fiber at the center of contraction. This can be seen as a left unit law for Σ-types. We will derive a right unit law for Σ-types in Lecture 7 (not because it is unduable here, but it is useful to have some knowledge of fiberwise equivalences). left-unit-law-Σ-map : {i j : Level} {C : UU i} (B : C → UU j) (is-contr-C : is-contr C) → B (center is-contr-C) → Σ C B left-unit-law-Σ-map B is-contr-C y = pair (center is-contr-C) y left-unit-law-Σ-map-conv : {i j : Level} {C : UU i} (B : C → UU j) (is-contr-C : is-contr C) → Σ C B → B (center is-contr-C) left-unit-law-Σ-map-conv B is-contr-C = ind-Σ ( sing-ind-is-contr _ is-contr-C ( λ x → B x → B (center is-contr-C)) ( center is-contr-C) ( id)) left-inverse-left-unit-law-Σ-map-conv : {i j : Level} {C : UU i} (B : C → UU j) (is-contr-C : is-contr C) → ( ( left-unit-law-Σ-map-conv B is-contr-C) ∘ ( left-unit-law-Σ-map B is-contr-C)) ~ id left-inverse-left-unit-law-Σ-map-conv B is-contr-C y = ap ( λ (f : B (center is-contr-C) → B (center is-contr-C)) → f y) ( sing-comp-is-contr _ is-contr-C ( λ x → B x → B (center is-contr-C)) ( center is-contr-C) ( id)) right-inverse-left-unit-law-Σ-map-conv : {i j : Level} {C : UU i} (B : C → UU j) (is-contr-C : is-contr C) → ( ( left-unit-law-Σ-map B is-contr-C) ∘ ( left-unit-law-Σ-map-conv B is-contr-C)) ~ id right-inverse-left-unit-law-Σ-map-conv B is-contr-C = ind-Σ ( sing-ind-is-contr _ is-contr-C ( λ x → (y : B x) → Id ( ( ( left-unit-law-Σ-map B is-contr-C) ∘ ( left-unit-law-Σ-map-conv B is-contr-C)) ( pair x y)) ( id (pair x y))) (center is-contr-C) ( λ y → ap ( left-unit-law-Σ-map B is-contr-C) ( ap ( λ f → f y) ( sing-comp-is-contr _ is-contr-C ( λ x → B x → B (center is-contr-C)) (center is-contr-C) id)))) abstract is-equiv-left-unit-law-Σ-map : {i j : Level} {C : UU i} (B : C → UU j) (is-contr-C : is-contr C) → is-equiv (left-unit-law-Σ-map B is-contr-C) is-equiv-left-unit-law-Σ-map B is-contr-C = is-equiv-has-inverse ( left-unit-law-Σ-map-conv B is-contr-C) ( right-inverse-left-unit-law-Σ-map-conv B is-contr-C) ( left-inverse-left-unit-law-Σ-map-conv B is-contr-C) abstract is-equiv-left-unit-law-Σ-map-conv : {i j : Level} {C : UU i} (B : C → UU j) (is-contr-C : is-contr C) → is-equiv (left-unit-law-Σ-map-conv B is-contr-C) is-equiv-left-unit-law-Σ-map-conv B is-contr-C = is-equiv-has-inverse ( left-unit-law-Σ-map B is-contr-C) ( left-inverse-left-unit-law-Σ-map-conv B is-contr-C) ( right-inverse-left-unit-law-Σ-map-conv B is-contr-C) left-unit-law-Σ : {i j : Level} {C : UU i} (B : C → UU j) (is-contr-C : is-contr C) → B (center is-contr-C) ≃ Σ C B left-unit-law-Σ B is-contr-C = pair ( left-unit-law-Σ-map B is-contr-C) ( is-equiv-left-unit-law-Σ-map B is-contr-C) left-unit-law-Σ-map-gen : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) → is-contr A → (x : A) → B x → Σ A B left-unit-law-Σ-map-gen B is-contr-A x y = pair x y abstract is-equiv-left-unit-law-Σ-map-gen : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) → (is-contr-A : is-contr A) → (x : A) → is-equiv (left-unit-law-Σ-map-gen B is-contr-A x) is-equiv-left-unit-law-Σ-map-gen B is-contr-A x = is-equiv-comp ( left-unit-law-Σ-map-gen B is-contr-A x) ( left-unit-law-Σ-map B is-contr-A) ( tr B (inv (contraction is-contr-A x))) ( λ y → eq-pair (inv (contraction is-contr-A x)) refl) ( is-equiv-tr B (inv (contraction is-contr-A x))) ( is-equiv-left-unit-law-Σ-map B is-contr-A) left-unit-law-Σ-gen : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) → (is-contr-A : is-contr A) → (x : A) → B x ≃ Σ A B left-unit-law-Σ-gen B is-contr-A x = pair ( left-unit-law-Σ-map-gen B is-contr-A x) ( is-equiv-left-unit-law-Σ-map-gen B is-contr-A x) -- Exercise 6.6 -- In this exercise we show that the domain of a map is equivalent to the total space of its fibers. Σ-fib-to-domain : {i j : Level} {A : UU i} {B : UU j} (f : A → B ) → (Σ B (fib f)) → A Σ-fib-to-domain f t = pr1 (pr2 t) triangle-Σ-fib-to-domain : {i j : Level} {A : UU i} {B : UU j} (f : A → B ) → pr1 ~ (f ∘ (Σ-fib-to-domain f)) triangle-Σ-fib-to-domain f t = inv (pr2 (pr2 t)) domain-to-Σ-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → A → Σ B (fib f) domain-to-Σ-fib f x = pair (f x) (pair x refl) left-inverse-domain-to-Σ-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B ) → ((domain-to-Σ-fib f) ∘ (Σ-fib-to-domain f)) ~ id left-inverse-domain-to-Σ-fib f (pair .(f x) (pair x refl)) = refl right-inverse-domain-to-Σ-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B ) → ((Σ-fib-to-domain f) ∘ (domain-to-Σ-fib f)) ~ id right-inverse-domain-to-Σ-fib f x = refl abstract is-equiv-Σ-fib-to-domain : {i j : Level} {A : UU i} {B : UU j} (f : A → B ) → is-equiv (Σ-fib-to-domain f) is-equiv-Σ-fib-to-domain f = is-equiv-has-inverse ( domain-to-Σ-fib f) ( right-inverse-domain-to-Σ-fib f) ( left-inverse-domain-to-Σ-fib f) equiv-Σ-fib-to-domain : {i j : Level} {A : UU i} {B : UU j} (f : A → B ) → Σ B (fib f) ≃ A equiv-Σ-fib-to-domain f = pair (Σ-fib-to-domain f) (is-equiv-Σ-fib-to-domain f) -- Exercise 6.7 -- In this exercise we show that if a cartesian product is contractible, then so are its factors. We make use of the fact that contractible types are closed under retracts, just because that is a useful property to practice with. Other proofs are possible too. abstract is-contr-left-factor-prod : {i j : Level} (A : UU i) (B : UU j) → is-contr (A × B) → is-contr A is-contr-left-factor-prod A B is-contr-AB = is-contr-retract-of ( A × B) ( pair ( λ x → pair x (pr2 (center is-contr-AB))) ( pair pr1 (λ x → refl))) ( is-contr-AB) abstract is-contr-right-factor-prod : {i j : Level} (A : UU i) (B : UU j) → is-contr (A × B) → is-contr B is-contr-right-factor-prod A B is-contr-AB = is-contr-left-factor-prod B A ( is-contr-equiv ( A × B) ( equiv-swap-prod B A) ( is-contr-AB)) abstract is-contr-prod : {i j : Level} {A : UU i} {B : UU j} → is-contr A → is-contr B → is-contr (A × B) is-contr-prod {A = A} {B = B} is-contr-A is-contr-B = is-contr-equiv' B ( left-unit-law-Σ (λ x → B) is-contr-A) ( is-contr-B) -- Exercise 6.8 -- Given any family B over A, there is a map from the fiber of the projection map (pr1 : Σ A B → A) to the type (B a), i.e. the fiber of B at a. In this exercise we define this map, and show that it is an equivalence, for every a : A. fib-fam-fib-pr1 : {i j : Level} {A : UU i} (B : A → UU j) (a : A) → fib (pr1 {B = B}) a → B a fib-fam-fib-pr1 B a (pair (pair x y) p) = tr B p y fib-pr1-fib-fam : {i j : Level} {A : UU i} (B : A → UU j) (a : A) → B a → fib (pr1 {B = B}) a fib-pr1-fib-fam B a b = pair (pair a b) refl left-inverse-fib-pr1-fib-fam : {i j : Level} {A : UU i} (B : A → UU j) (a : A) → ((fib-pr1-fib-fam B a) ∘ (fib-fam-fib-pr1 B a)) ~ id left-inverse-fib-pr1-fib-fam B a (pair (pair .a y) refl) = refl right-inverse-fib-pr1-fib-fam : {i j : Level} {A : UU i} (B : A → UU j) (a : A) → ((fib-fam-fib-pr1 B a) ∘ (fib-pr1-fib-fam B a)) ~ id right-inverse-fib-pr1-fib-fam B a b = refl abstract is-equiv-fib-fam-fib-pr1 : {i j : Level} {A : UU i} (B : A → UU j) (a : A) → is-equiv (fib-fam-fib-pr1 B a) is-equiv-fib-fam-fib-pr1 B a = is-equiv-has-inverse ( fib-pr1-fib-fam B a) ( right-inverse-fib-pr1-fib-fam B a) ( left-inverse-fib-pr1-fib-fam B a) equiv-fib-fam-fib-pr1 : {i j : Level} {A : UU i} (B : A → UU j) (a : A) → fib (pr1 {B = B}) a ≃ B a equiv-fib-fam-fib-pr1 B a = pair (fib-fam-fib-pr1 B a) (is-equiv-fib-fam-fib-pr1 B a) abstract is-equiv-fib-pr1-fib-fam : {i j : Level} {A : UU i} (B : A → UU j) (a : A) → is-equiv (fib-pr1-fib-fam B a) is-equiv-fib-pr1-fib-fam B a = is-equiv-has-inverse ( fib-fam-fib-pr1 B a) ( left-inverse-fib-pr1-fib-fam B a) ( right-inverse-fib-pr1-fib-fam B a) equiv-fib-pr1-fib-fam : {i j : Level} {A : UU i} (B : A → UU j) (a : A) → B a ≃ fib (pr1 {B = B}) a equiv-fib-pr1-fib-fam B a = pair (fib-pr1-fib-fam B a) (is-equiv-fib-pr1-fib-fam B a) abstract is-equiv-pr1-is-contr : {i j : Level} {A : UU i} (B : A → UU j) → ((a : A) → is-contr (B a)) → is-equiv (pr1 {B = B}) is-equiv-pr1-is-contr B is-contr-B = is-equiv-is-contr-map ( λ x → is-contr-equiv ( B x) ( equiv-fib-fam-fib-pr1 B x) ( is-contr-B x)) equiv-pr1 : {i j : Level} {A : UU i} {B : A → UU j} → ((a : A) → is-contr (B a)) → (Σ A B) ≃ A equiv-pr1 is-contr-B = pair pr1 (is-equiv-pr1-is-contr _ is-contr-B) abstract is-contr-is-equiv-pr1 : {i j : Level} {A : UU i} (B : A → UU j) → (is-equiv (pr1 {B = B})) → ((a : A) → is-contr (B a)) is-contr-is-equiv-pr1 B is-equiv-pr1-B a = is-contr-equiv' ( fib pr1 a) ( equiv-fib-fam-fib-pr1 B a) ( is-contr-map-is-equiv is-equiv-pr1-B a) right-unit-law-Σ : {i j : Level} {A : UU i} (B : A → UU j) → ((a : A) → is-contr (B a)) → (Σ A B) ≃ A right-unit-law-Σ B is-contr-B = pair pr1 (is-equiv-pr1-is-contr B is-contr-B)
{ "alphanum_fraction": 0.559623431, "avg_line_length": 34.9592123769, "ext": "agda", "hexsha": "6de47ddf417ab28cef076e06c121acd6db42e38e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/08-contractible-types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/08-contractible-types.agda", "max_line_length": 364, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/08-contractible-types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9749, "size": 24856 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A bunch of properties about natural number operations ------------------------------------------------------------------------ -- See README.Nat for some examples showing how this module can be -- used. module Data.Nat.Properties where open import Data.Nat as Nat open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≡⟨_⟩'_) open import Relation.Binary open DecTotalOrder Nat.decTotalOrder using () renaming (refl to ≤-refl) open import Function open import Algebra open import Algebra.Structures open import Relation.Nullary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; cong; cong₂) open PropEq.≡-Reasoning import Algebra.FunctionProperties as P; open P (_≡_ {A = ℕ}) open import Data.Product open import Data.Sum ------------------------------------------------------------------------ -- basic lemmas about (ℕ, +, *, 0, 1): open import Data.Nat.Properties.Simple -- (ℕ, +, *, 0, 1) is a commutative semiring isCommutativeSemiring : IsCommutativeSemiring _≡_ _+_ _*_ 0 1 isCommutativeSemiring = record { +-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = PropEq.isEquivalence ; assoc = +-assoc ; ∙-cong = cong₂ _+_ } ; identityˡ = λ _ → refl ; comm = +-comm } ; *-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = PropEq.isEquivalence ; assoc = *-assoc ; ∙-cong = cong₂ _*_ } ; identityˡ = +-right-identity ; comm = *-comm } ; distribʳ = distribʳ-*-+ ; zeroˡ = λ _ → refl } commutativeSemiring : CommutativeSemiring _ _ commutativeSemiring = record { _+_ = _+_ ; _*_ = _*_ ; 0# = 0 ; 1# = 1 ; isCommutativeSemiring = isCommutativeSemiring } import Algebra.RingSolver.Simple as Solver import Algebra.RingSolver.AlmostCommutativeRing as ACR module SemiringSolver = Solver (ACR.fromCommutativeSemiring commutativeSemiring) _≟_ ------------------------------------------------------------------------ -- (ℕ, ⊔, ⊓, 0) is a commutative semiring without one private ⊔-assoc : Associative _⊔_ ⊔-assoc zero _ _ = refl ⊔-assoc (suc m) zero o = refl ⊔-assoc (suc m) (suc n) zero = refl ⊔-assoc (suc m) (suc n) (suc o) = cong suc $ ⊔-assoc m n o ⊔-identity : Identity 0 _⊔_ ⊔-identity = (λ _ → refl) , n⊔0≡n where n⊔0≡n : RightIdentity 0 _⊔_ n⊔0≡n zero = refl n⊔0≡n (suc n) = refl ⊔-comm : Commutative _⊔_ ⊔-comm zero n = sym $ proj₂ ⊔-identity n ⊔-comm (suc m) zero = refl ⊔-comm (suc m) (suc n) = begin suc m ⊔ suc n ≡⟨ refl ⟩ suc (m ⊔ n) ≡⟨ cong suc (⊔-comm m n) ⟩ suc (n ⊔ m) ≡⟨ refl ⟩ suc n ⊔ suc m ∎ ⊓-assoc : Associative _⊓_ ⊓-assoc zero _ _ = refl ⊓-assoc (suc m) zero o = refl ⊓-assoc (suc m) (suc n) zero = refl ⊓-assoc (suc m) (suc n) (suc o) = cong suc $ ⊓-assoc m n o ⊓-zero : Zero 0 _⊓_ ⊓-zero = (λ _ → refl) , n⊓0≡0 where n⊓0≡0 : RightZero 0 _⊓_ n⊓0≡0 zero = refl n⊓0≡0 (suc n) = refl ⊓-comm : Commutative _⊓_ ⊓-comm zero n = sym $ proj₂ ⊓-zero n ⊓-comm (suc m) zero = refl ⊓-comm (suc m) (suc n) = begin suc m ⊓ suc n ≡⟨ refl ⟩ suc (m ⊓ n) ≡⟨ cong suc (⊓-comm m n) ⟩ suc (n ⊓ m) ≡⟨ refl ⟩ suc n ⊓ suc m ∎ distrib-⊓-⊔ : _⊓_ DistributesOver _⊔_ distrib-⊓-⊔ = (distribˡ-⊓-⊔ , distribʳ-⊓-⊔) where distribʳ-⊓-⊔ : _⊓_ DistributesOverʳ _⊔_ distribʳ-⊓-⊔ (suc m) (suc n) (suc o) = cong suc $ distribʳ-⊓-⊔ m n o distribʳ-⊓-⊔ (suc m) (suc n) zero = cong suc $ refl distribʳ-⊓-⊔ (suc m) zero o = refl distribʳ-⊓-⊔ zero n o = begin (n ⊔ o) ⊓ 0 ≡⟨ ⊓-comm (n ⊔ o) 0 ⟩ 0 ⊓ (n ⊔ o) ≡⟨ refl ⟩ 0 ⊓ n ⊔ 0 ⊓ o ≡⟨ ⊓-comm 0 n ⟨ cong₂ _⊔_ ⟩ ⊓-comm 0 o ⟩ n ⊓ 0 ⊔ o ⊓ 0 ∎ distribˡ-⊓-⊔ : _⊓_ DistributesOverˡ _⊔_ distribˡ-⊓-⊔ m n o = begin m ⊓ (n ⊔ o) ≡⟨ ⊓-comm m _ ⟩ (n ⊔ o) ⊓ m ≡⟨ distribʳ-⊓-⊔ m n o ⟩ n ⊓ m ⊔ o ⊓ m ≡⟨ ⊓-comm n m ⟨ cong₂ _⊔_ ⟩ ⊓-comm o m ⟩ m ⊓ n ⊔ m ⊓ o ∎ ⊔-⊓-0-isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne _≡_ _⊔_ _⊓_ 0 ⊔-⊓-0-isCommutativeSemiringWithoutOne = record { isSemiringWithoutOne = record { +-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = PropEq.isEquivalence ; assoc = ⊔-assoc ; ∙-cong = cong₂ _⊔_ } ; identityˡ = proj₁ ⊔-identity ; comm = ⊔-comm } ; *-isSemigroup = record { isEquivalence = PropEq.isEquivalence ; assoc = ⊓-assoc ; ∙-cong = cong₂ _⊓_ } ; distrib = distrib-⊓-⊔ ; zero = ⊓-zero } ; *-comm = ⊓-comm } ⊔-⊓-0-commutativeSemiringWithoutOne : CommutativeSemiringWithoutOne _ _ ⊔-⊓-0-commutativeSemiringWithoutOne = record { _+_ = _⊔_ ; _*_ = _⊓_ ; 0# = 0 ; isCommutativeSemiringWithoutOne = ⊔-⊓-0-isCommutativeSemiringWithoutOne } ------------------------------------------------------------------------ -- (ℕ, ⊓, ⊔) is a lattice private absorptive-⊓-⊔ : Absorptive _⊓_ _⊔_ absorptive-⊓-⊔ = abs-⊓-⊔ , abs-⊔-⊓ where abs-⊔-⊓ : _⊔_ Absorbs _⊓_ abs-⊔-⊓ zero n = refl abs-⊔-⊓ (suc m) zero = refl abs-⊔-⊓ (suc m) (suc n) = cong suc $ abs-⊔-⊓ m n abs-⊓-⊔ : _⊓_ Absorbs _⊔_ abs-⊓-⊔ zero n = refl abs-⊓-⊔ (suc m) (suc n) = cong suc $ abs-⊓-⊔ m n abs-⊓-⊔ (suc m) zero = cong suc $ begin m ⊓ m ≡⟨ cong (_⊓_ m) $ sym $ proj₂ ⊔-identity m ⟩ m ⊓ (m ⊔ 0) ≡⟨ abs-⊓-⊔ m zero ⟩ m ∎ isDistributiveLattice : IsDistributiveLattice _≡_ _⊓_ _⊔_ isDistributiveLattice = record { isLattice = record { isEquivalence = PropEq.isEquivalence ; ∨-comm = ⊓-comm ; ∨-assoc = ⊓-assoc ; ∨-cong = cong₂ _⊓_ ; ∧-comm = ⊔-comm ; ∧-assoc = ⊔-assoc ; ∧-cong = cong₂ _⊔_ ; absorptive = absorptive-⊓-⊔ } ; ∨-∧-distribʳ = proj₂ distrib-⊓-⊔ } distributiveLattice : DistributiveLattice _ _ distributiveLattice = record { _∨_ = _⊓_ ; _∧_ = _⊔_ ; isDistributiveLattice = isDistributiveLattice } ------------------------------------------------------------------------ -- Converting between ≤ and ≤′ ≤-step : ∀ {m n} → m ≤ n → m ≤ 1 + n ≤-step z≤n = z≤n ≤-step (s≤s m≤n) = s≤s (≤-step m≤n) ≤′⇒≤ : _≤′_ ⇒ _≤_ ≤′⇒≤ ≤′-refl = ≤-refl ≤′⇒≤ (≤′-step m≤′n) = ≤-step (≤′⇒≤ m≤′n) z≤′n : ∀ {n} → zero ≤′ n z≤′n {zero} = ≤′-refl z≤′n {suc n} = ≤′-step z≤′n s≤′s : ∀ {m n} → m ≤′ n → suc m ≤′ suc n s≤′s ≤′-refl = ≤′-refl s≤′s (≤′-step m≤′n) = ≤′-step (s≤′s m≤′n) ≤⇒≤′ : _≤_ ⇒ _≤′_ ≤⇒≤′ z≤n = z≤′n ≤⇒≤′ (s≤s m≤n) = s≤′s (≤⇒≤′ m≤n) ------------------------------------------------------------------------ -- Various order-related properties ≤-steps : ∀ {m n} k → m ≤ n → m ≤ k + n ≤-steps zero m≤n = m≤n ≤-steps (suc k) m≤n = ≤-step (≤-steps k m≤n) m≤m+n : ∀ m n → m ≤ m + n m≤m+n zero n = z≤n m≤m+n (suc m) n = s≤s (m≤m+n m n) m≤′m+n : ∀ m n → m ≤′ m + n m≤′m+n m n = ≤⇒≤′ (m≤m+n m n) n≤′m+n : ∀ m n → n ≤′ m + n n≤′m+n zero n = ≤′-refl n≤′m+n (suc m) n = ≤′-step (n≤′m+n m n) n≤m+n : ∀ m n → n ≤ m + n n≤m+n m n = ≤′⇒≤ (n≤′m+n m n) n≤1+n : ∀ n → n ≤ 1 + n n≤1+n _ = ≤-step ≤-refl 1+n≰n : ∀ {n} → ¬ 1 + n ≤ n 1+n≰n (s≤s le) = 1+n≰n le ≤pred⇒≤ : ∀ m n → m ≤ pred n → m ≤ n ≤pred⇒≤ m zero le = le ≤pred⇒≤ m (suc n) le = ≤-step le ≤⇒pred≤ : ∀ m n → m ≤ n → pred m ≤ n ≤⇒pred≤ zero n le = le ≤⇒pred≤ (suc m) n le = start m ≤⟨ n≤1+n m ⟩ suc m ≤⟨ le ⟩ n □ ¬i+1+j≤i : ∀ i {j} → ¬ i + suc j ≤ i ¬i+1+j≤i zero () ¬i+1+j≤i (suc i) le = ¬i+1+j≤i i (≤-pred le) n∸m≤n : ∀ m n → n ∸ m ≤ n n∸m≤n zero n = ≤-refl n∸m≤n (suc m) zero = ≤-refl n∸m≤n (suc m) (suc n) = start n ∸ m ≤⟨ n∸m≤n m n ⟩ n ≤⟨ n≤1+n n ⟩ suc n □ n≤m+n∸m : ∀ m n → n ≤ m + (n ∸ m) n≤m+n∸m m zero = z≤n n≤m+n∸m zero (suc n) = ≤-refl n≤m+n∸m (suc m) (suc n) = s≤s (n≤m+n∸m m n) m⊓n≤m : ∀ m n → m ⊓ n ≤ m m⊓n≤m zero _ = z≤n m⊓n≤m (suc m) zero = z≤n m⊓n≤m (suc m) (suc n) = s≤s $ m⊓n≤m m n m≤m⊔n : ∀ m n → m ≤ m ⊔ n m≤m⊔n zero _ = z≤n m≤m⊔n (suc m) zero = ≤-refl m≤m⊔n (suc m) (suc n) = s≤s $ m≤m⊔n m n ⌈n/2⌉≤′n : ∀ n → ⌈ n /2⌉ ≤′ n ⌈n/2⌉≤′n zero = ≤′-refl ⌈n/2⌉≤′n (suc zero) = ≤′-refl ⌈n/2⌉≤′n (suc (suc n)) = s≤′s (≤′-step (⌈n/2⌉≤′n n)) ⌊n/2⌋≤′n : ∀ n → ⌊ n /2⌋ ≤′ n ⌊n/2⌋≤′n zero = ≤′-refl ⌊n/2⌋≤′n (suc n) = ≤′-step (⌈n/2⌉≤′n n) <-trans : Transitive _<_ <-trans {i} {j} {k} i<j j<k = start 1 + i ≤⟨ i<j ⟩ j ≤⟨ n≤1+n j ⟩ 1 + j ≤⟨ j<k ⟩ k □ ≰⇒> : _≰_ ⇒ _>_ ≰⇒> {zero} z≰n with z≰n z≤n ... | () ≰⇒> {suc m} {zero} _ = s≤s z≤n ≰⇒> {suc m} {suc n} m≰n = s≤s (≰⇒> (m≰n ∘ s≤s)) ------------------------------------------------------------------------ -- (ℕ, _≡_, _<_) is a strict total order m≢1+m+n : ∀ m {n} → m ≢ suc (m + n) m≢1+m+n zero () m≢1+m+n (suc m) eq = m≢1+m+n m (cong pred eq) strictTotalOrder : StrictTotalOrder _ _ _ strictTotalOrder = record { Carrier = ℕ ; _≈_ = _≡_ ; _<_ = _<_ ; isStrictTotalOrder = record { isEquivalence = PropEq.isEquivalence ; trans = <-trans ; compare = cmp ; <-resp-≈ = PropEq.resp₂ _<_ } } where 2+m+n≰m : ∀ {m n} → ¬ 2 + (m + n) ≤ m 2+m+n≰m (s≤s le) = 2+m+n≰m le cmp : Trichotomous _≡_ _<_ cmp m n with compare m n cmp .m .(suc (m + k)) | less m k = tri< (m≤m+n (suc m) k) (m≢1+m+n _) 2+m+n≰m cmp .n .n | equal n = tri≈ 1+n≰n refl 1+n≰n cmp .(suc (n + k)) .n | greater n k = tri> 2+m+n≰m (m≢1+m+n _ ∘ sym) (m≤m+n (suc n) k) ------------------------------------------------------------------------ -- Miscellaneous other properties 0∸n≡0 : LeftZero zero _∸_ 0∸n≡0 zero = refl 0∸n≡0 (suc _) = refl n∸n≡0 : ∀ n → n ∸ n ≡ 0 n∸n≡0 zero = refl n∸n≡0 (suc n) = n∸n≡0 n ∸-+-assoc : ∀ m n o → (m ∸ n) ∸ o ≡ m ∸ (n + o) ∸-+-assoc m n zero = cong (_∸_ m) (sym $ +-right-identity n) ∸-+-assoc zero zero (suc o) = refl ∸-+-assoc zero (suc n) (suc o) = refl ∸-+-assoc (suc m) zero (suc o) = refl ∸-+-assoc (suc m) (suc n) (suc o) = ∸-+-assoc m n (suc o) +-∸-assoc : ∀ m {n o} → o ≤ n → (m + n) ∸ o ≡ m + (n ∸ o) +-∸-assoc m (z≤n {n = n}) = begin m + n ∎ +-∸-assoc m (s≤s {m = o} {n = n} o≤n) = begin (m + suc n) ∸ suc o ≡⟨ cong (λ n → n ∸ suc o) (+-suc m n) ⟩ suc (m + n) ∸ suc o ≡⟨ refl ⟩ (m + n) ∸ o ≡⟨ +-∸-assoc m o≤n ⟩ m + (n ∸ o) ∎ m+n∸n≡m : ∀ m n → (m + n) ∸ n ≡ m m+n∸n≡m m n = begin (m + n) ∸ n ≡⟨ +-∸-assoc m (≤-refl {x = n}) ⟩ m + (n ∸ n) ≡⟨ cong (_+_ m) (n∸n≡0 n) ⟩ m + 0 ≡⟨ +-right-identity m ⟩ m ∎ m+n∸m≡n : ∀ {m n} → m ≤ n → m + (n ∸ m) ≡ n m+n∸m≡n {m} {n} m≤n = begin m + (n ∸ m) ≡⟨ sym $ +-∸-assoc m m≤n ⟩ (m + n) ∸ m ≡⟨ cong (λ n → n ∸ m) (+-comm m n) ⟩ (n + m) ∸ m ≡⟨ m+n∸n≡m n m ⟩ n ∎ m⊓n+n∸m≡n : ∀ m n → (m ⊓ n) + (n ∸ m) ≡ n m⊓n+n∸m≡n zero n = refl m⊓n+n∸m≡n (suc m) zero = refl m⊓n+n∸m≡n (suc m) (suc n) = cong suc $ m⊓n+n∸m≡n m n [m∸n]⊓[n∸m]≡0 : ∀ m n → (m ∸ n) ⊓ (n ∸ m) ≡ 0 [m∸n]⊓[n∸m]≡0 zero zero = refl [m∸n]⊓[n∸m]≡0 zero (suc n) = refl [m∸n]⊓[n∸m]≡0 (suc m) zero = refl [m∸n]⊓[n∸m]≡0 (suc m) (suc n) = [m∸n]⊓[n∸m]≡0 m n [i+j]∸[i+k]≡j∸k : ∀ i j k → (i + j) ∸ (i + k) ≡ j ∸ k [i+j]∸[i+k]≡j∸k zero j k = refl [i+j]∸[i+k]≡j∸k (suc i) j k = [i+j]∸[i+k]≡j∸k i j k -- TODO: Can this proof be simplified? An automatic solver which can -- handle ∸ would be nice... i∸k∸j+j∸k≡i+j∸k : ∀ i j k → i ∸ (k ∸ j) + (j ∸ k) ≡ i + j ∸ k i∸k∸j+j∸k≡i+j∸k zero j k = begin 0 ∸ (k ∸ j) + (j ∸ k) ≡⟨ cong (λ x → x + (j ∸ k)) (0∸n≡0 (k ∸ j)) ⟩ 0 + (j ∸ k) ≡⟨ refl ⟩ j ∸ k ∎ i∸k∸j+j∸k≡i+j∸k (suc i) j zero = begin suc i ∸ (0 ∸ j) + j ≡⟨ cong (λ x → suc i ∸ x + j) (0∸n≡0 j) ⟩ suc i ∸ 0 + j ≡⟨ refl ⟩ suc (i + j) ∎ i∸k∸j+j∸k≡i+j∸k (suc i) zero (suc k) = begin i ∸ k + 0 ≡⟨ +-right-identity _ ⟩ i ∸ k ≡⟨ cong (λ x → x ∸ k) (sym (+-right-identity _)) ⟩ i + 0 ∸ k ∎ i∸k∸j+j∸k≡i+j∸k (suc i) (suc j) (suc k) = begin suc i ∸ (k ∸ j) + (j ∸ k) ≡⟨ i∸k∸j+j∸k≡i+j∸k (suc i) j k ⟩ suc i + j ∸ k ≡⟨ cong (λ x → x ∸ k) (sym (+-suc i j)) ⟩ i + suc j ∸ k ∎ i+j≡0⇒i≡0 : ∀ i {j} → i + j ≡ 0 → i ≡ 0 i+j≡0⇒i≡0 zero eq = refl i+j≡0⇒i≡0 (suc i) () i+j≡0⇒j≡0 : ∀ i {j} → i + j ≡ 0 → j ≡ 0 i+j≡0⇒j≡0 i {j} i+j≡0 = i+j≡0⇒i≡0 j $ begin j + i ≡⟨ +-comm j i ⟩ i + j ≡⟨ i+j≡0 ⟩ 0 ∎ i*j≡0⇒i≡0∨j≡0 : ∀ i {j} → i * j ≡ 0 → i ≡ 0 ⊎ j ≡ 0 i*j≡0⇒i≡0∨j≡0 zero {j} eq = inj₁ refl i*j≡0⇒i≡0∨j≡0 (suc i) {zero} eq = inj₂ refl i*j≡0⇒i≡0∨j≡0 (suc i) {suc j} () i*j≡1⇒i≡1 : ∀ i j → i * j ≡ 1 → i ≡ 1 i*j≡1⇒i≡1 (suc zero) j _ = refl i*j≡1⇒i≡1 zero j () i*j≡1⇒i≡1 (suc (suc i)) (suc (suc j)) () i*j≡1⇒i≡1 (suc (suc i)) (suc zero) () i*j≡1⇒i≡1 (suc (suc i)) zero eq with begin 0 ≡⟨ *-comm 0 i ⟩ i * 0 ≡⟨ eq ⟩ 1 ∎ ... | () i*j≡1⇒j≡1 : ∀ i j → i * j ≡ 1 → j ≡ 1 i*j≡1⇒j≡1 i j eq = i*j≡1⇒i≡1 j i (begin j * i ≡⟨ *-comm j i ⟩ i * j ≡⟨ eq ⟩ 1 ∎) cancel-+-left : ∀ i {j k} → i + j ≡ i + k → j ≡ k cancel-+-left zero eq = eq cancel-+-left (suc i) eq = cancel-+-left i (cong pred eq) cancel-+-left-≤ : ∀ i {j k} → i + j ≤ i + k → j ≤ k cancel-+-left-≤ zero le = le cancel-+-left-≤ (suc i) (s≤s le) = cancel-+-left-≤ i le cancel-*-right : ∀ i j {k} → i * suc k ≡ j * suc k → i ≡ j cancel-*-right zero zero eq = refl cancel-*-right zero (suc j) () cancel-*-right (suc i) zero () cancel-*-right (suc i) (suc j) {k} eq = cong suc (cancel-*-right i j (cancel-+-left (suc k) eq)) cancel-*-right-≤ : ∀ i j k → i * suc k ≤ j * suc k → i ≤ j cancel-*-right-≤ zero _ _ _ = z≤n cancel-*-right-≤ (suc i) zero _ () cancel-*-right-≤ (suc i) (suc j) k le = s≤s (cancel-*-right-≤ i j k (cancel-+-left-≤ (suc k) le)) *-distrib-∸ʳ : _*_ DistributesOverʳ _∸_ *-distrib-∸ʳ i zero k = begin (0 ∸ k) * i ≡⟨ cong₂ _*_ (0∸n≡0 k) refl ⟩ 0 ≡⟨ sym $ 0∸n≡0 (k * i) ⟩ 0 ∸ k * i ∎ *-distrib-∸ʳ i (suc j) zero = begin i + j * i ∎ *-distrib-∸ʳ i (suc j) (suc k) = begin (j ∸ k) * i ≡⟨ *-distrib-∸ʳ i j k ⟩ j * i ∸ k * i ≡⟨ sym $ [i+j]∸[i+k]≡j∸k i _ _ ⟩ i + j * i ∸ (i + k * i) ∎ im≡jm+n⇒[i∸j]m≡n : ∀ i j m n → i * m ≡ j * m + n → (i ∸ j) * m ≡ n im≡jm+n⇒[i∸j]m≡n i j m n eq = begin (i ∸ j) * m ≡⟨ *-distrib-∸ʳ m i j ⟩ (i * m) ∸ (j * m) ≡⟨ cong₂ _∸_ eq (refl {x = j * m}) ⟩ (j * m + n) ∸ (j * m) ≡⟨ cong₂ _∸_ (+-comm (j * m) n) (refl {x = j * m}) ⟩ (n + j * m) ∸ (j * m) ≡⟨ m+n∸n≡m n (j * m) ⟩ n ∎ i+1+j≢i : ∀ i {j} → i + suc j ≢ i i+1+j≢i i eq = ¬i+1+j≤i i (reflexive eq) where open DecTotalOrder decTotalOrder ⌊n/2⌋-mono : ⌊_/2⌋ Preserves _≤_ ⟶ _≤_ ⌊n/2⌋-mono z≤n = z≤n ⌊n/2⌋-mono (s≤s z≤n) = z≤n ⌊n/2⌋-mono (s≤s (s≤s m≤n)) = s≤s (⌊n/2⌋-mono m≤n) ⌈n/2⌉-mono : ⌈_/2⌉ Preserves _≤_ ⟶ _≤_ ⌈n/2⌉-mono m≤n = ⌊n/2⌋-mono (s≤s m≤n) pred-mono : pred Preserves _≤_ ⟶ _≤_ pred-mono z≤n = z≤n pred-mono (s≤s le) = le _+-mono_ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ _+-mono_ {zero} {m₂} {n₁} {n₂} z≤n n₁≤n₂ = start n₁ ≤⟨ n₁≤n₂ ⟩ n₂ ≤⟨ n≤m+n m₂ n₂ ⟩ m₂ + n₂ □ s≤s m₁≤m₂ +-mono n₁≤n₂ = s≤s (m₁≤m₂ +-mono n₁≤n₂) _*-mono_ : _*_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ z≤n *-mono n₁≤n₂ = z≤n s≤s m₁≤m₂ *-mono n₁≤n₂ = n₁≤n₂ +-mono (m₁≤m₂ *-mono n₁≤n₂) ∸-mono : _∸_ Preserves₂ _≤_ ⟶ _≥_ ⟶ _≤_ ∸-mono z≤n (s≤s n₁≥n₂) = z≤n ∸-mono (s≤s m₁≤m₂) (s≤s n₁≥n₂) = ∸-mono m₁≤m₂ n₁≥n₂ ∸-mono {m₁} {m₂} m₁≤m₂ (z≤n {n = n₁}) = start m₁ ∸ n₁ ≤⟨ n∸m≤n n₁ m₁ ⟩ m₁ ≤⟨ m₁≤m₂ ⟩ m₂ □
{ "alphanum_fraction": 0.4329983754, "avg_line_length": 29.1561403509, "ext": "agda", "hexsha": "ccd5f258143213af6dc09540bc5411c3f7822225", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Nat/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Nat/Properties.agda", "max_line_length": 88, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Nat/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 8595, "size": 16619 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Lists.Lists open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Semirings.Definition open import Orders.Total.Definition module Numbers.BinaryNaturals.Definition where data Bit : Set where zero : Bit one : Bit BinNat : Set BinNat = List Bit ::Inj : {xs ys : BinNat} {i : Bit} → i :: xs ≡ i :: ys → xs ≡ ys ::Inj {i = zero} refl = refl ::Inj {i = one} refl = refl nonEmptyNotEmpty : {a : _} {A : Set a} {l1 : List A} {i : A} → i :: l1 ≡ [] → False nonEmptyNotEmpty {l1 = l1} {i} () -- TODO - maybe we should do the floating-point style of assuming there's a leading bit and not storing it. -- That way, everything is already canonical. canonical : BinNat → BinNat canonical [] = [] canonical (zero :: n) with canonical n canonical (zero :: n) | [] = [] canonical (zero :: n) | x :: bl = zero :: x :: bl canonical (one :: n) = one :: canonical n Canonicalised : Set Canonicalised = Sg BinNat (λ i → canonical i ≡ i) binNatToN : BinNat → ℕ binNatToN [] = 0 binNatToN (zero :: b) = 2 *N binNatToN b binNatToN (one :: b) = 1 +N (2 *N binNatToN b) incr : BinNat → BinNat incr [] = one :: [] incr (zero :: n) = one :: n incr (one :: n) = zero :: (incr n) incrNonzero : (x : BinNat) → canonical (incr x) ≡ [] → False incrPreservesCanonical : (x : BinNat) → (canonical x ≡ x) → canonical (incr x) ≡ incr x incrPreservesCanonical [] pr = refl incrPreservesCanonical (zero :: xs) pr with canonical xs incrPreservesCanonical (zero :: xs) pr | x :: t = applyEquality (one ::_) (::Inj pr) incrPreservesCanonical (one :: xs) pr with inspect (canonical (incr xs)) incrPreservesCanonical (one :: xs) pr | [] with≡ x = exFalso (incrNonzero xs x) incrPreservesCanonical (one :: xs) pr | (x₁ :: y) with≡ x rewrite x = applyEquality (zero ::_) (transitivity (equalityCommutative x) (incrPreservesCanonical xs (::Inj pr))) incrPreservesCanonical' : (x : BinNat) → canonical (incr x) ≡ incr (canonical x) incrC : Canonicalised → Canonicalised incrC (a , b) = incr a , incrPreservesCanonical a b NToBinNat : ℕ → BinNat NToBinNat zero = [] NToBinNat (succ n) with NToBinNat n NToBinNat (succ n) | t = incr t NToBinNatC : ℕ → Canonicalised NToBinNatC zero = [] , refl NToBinNatC (succ n) = incrC (NToBinNatC n) incrInj : {x y : BinNat} → incr x ≡ incr y → canonical x ≡ canonical y incrNonzero' : (x : BinNat) → (incr x) ≡ [] → False incrNonzero' (zero :: xs) () incrNonzero' (one :: xs) () canonicalRespectsIncr' : {x y : BinNat} → canonical (incr x) ≡ canonical (incr y) → canonical x ≡ canonical y binNatToNSucc : (n : BinNat) → binNatToN (incr n) ≡ succ (binNatToN n) NToBinNatSucc : (n : ℕ) → incr (NToBinNat n) ≡ NToBinNat (succ n) binNatToNZero : (x : BinNat) → binNatToN x ≡ 0 → canonical x ≡ [] binNatToNZero' : (x : BinNat) → canonical x ≡ [] → binNatToN x ≡ 0 NToBinNatZero : (n : ℕ) → NToBinNat n ≡ [] → n ≡ 0 NToBinNatZero zero pr = refl NToBinNatZero (succ n) pr with NToBinNat n NToBinNatZero (succ n) pr | zero :: bl = exFalso (nonEmptyNotEmpty pr) NToBinNatZero (succ n) pr | one :: bl = exFalso (nonEmptyNotEmpty pr) canonicalAscends : {i : Bit} → (a : BinNat) → 0 <N binNatToN a → i :: canonical a ≡ canonical (i :: a) canonicalAscends' : {i : Bit} → (a : BinNat) → (canonical a ≡ [] → False) → i :: canonical a ≡ canonical (i :: a) canonicalAscends' {i} a pr = canonicalAscends {i} a (t a pr) where t : (a : BinNat) → (canonical a ≡ [] → False) → 0 <N binNatToN a t a pr with TotalOrder.totality ℕTotalOrder 0 (binNatToN a) t a pr | inl (inl x) = x t a pr | inr x = exFalso (pr (binNatToNZero a (equalityCommutative x))) canonicalIdempotent : (a : BinNat) → canonical a ≡ canonical (canonical a) canonicalIdempotent [] = refl canonicalIdempotent (zero :: a) with inspect (canonical a) canonicalIdempotent (zero :: a) | [] with≡ y rewrite y = refl canonicalIdempotent (zero :: a) | (x :: bl) with≡ y = transitivity (equalityCommutative (canonicalAscends' {zero} a λ p → contr p y)) (transitivity (applyEquality (zero ::_) (canonicalIdempotent a)) (equalityCommutative v)) where contr : {a : _} {A : Set a} {l1 l2 : List A} → {x : A} → l1 ≡ [] → l1 ≡ x :: l2 → False contr {l1 = []} p1 () contr {l1 = x :: l1} () p2 u : canonical (canonical (zero :: a)) ≡ canonical (zero :: canonical a) u = applyEquality canonical (equalityCommutative (canonicalAscends' {zero} a λ p → contr p y)) v : canonical (canonical (zero :: a)) ≡ zero :: canonical (canonical a) v = transitivity u (equalityCommutative (canonicalAscends' {zero} (canonical a) λ p → contr (transitivity (canonicalIdempotent a) p) y)) canonicalIdempotent (one :: a) rewrite equalityCommutative (canonicalIdempotent a) = refl canonicalAscends'' : {i : Bit} → (a : BinNat) → canonical (i :: canonical a) ≡ canonical (i :: a) binNatToNInj : (x y : BinNat) → binNatToN x ≡ binNatToN y → canonical x ≡ canonical y NToBinNatInj : (x y : ℕ) → canonical (NToBinNat x) ≡ canonical (NToBinNat y) → x ≡ y NToBinNatIsCanonical : (x : ℕ) → NToBinNat x ≡ canonical (NToBinNat x) NToBinNatIsCanonical zero = refl NToBinNatIsCanonical (succ x) with NToBinNatC x NToBinNatIsCanonical (succ x) | a , b = equalityCommutative (incrPreservesCanonical (NToBinNat x) (equalityCommutative (NToBinNatIsCanonical x))) contr' : {a : _} {A : Set a} {l1 l2 : List A} → {x : A} → l1 ≡ [] → l1 ≡ x :: l2 → False contr' {l1 = []} p1 () contr' {l1 = x :: l1} () p2 binNatToNIsCanonical : (x : BinNat) → binNatToN (canonical x) ≡ binNatToN x binNatToNIsCanonical [] = refl binNatToNIsCanonical (zero :: x) with inspect (canonical x) binNatToNIsCanonical (zero :: x) | [] with≡ t rewrite t | binNatToNZero' x t = refl binNatToNIsCanonical (zero :: x) | (x₁ :: bl) with≡ t rewrite (equalityCommutative (canonicalAscends' {zero} x λ p → contr' p t)) | binNatToNIsCanonical x = refl binNatToNIsCanonical (one :: x) rewrite binNatToNIsCanonical x = refl -- The following two theorems demonstrate that Canonicalised is isomorphic to ℕ nToN : (x : ℕ) → binNatToN (NToBinNat x) ≡ x binToBin : (x : BinNat) → NToBinNat (binNatToN x) ≡ canonical x binToBin x = transitivity (NToBinNatIsCanonical (binNatToN x)) (binNatToNInj (NToBinNat (binNatToN x)) x (nToN (binNatToN x))) doubleIsBitShift' : (a : ℕ) → NToBinNat (2 *N succ a) ≡ zero :: NToBinNat (succ a) doubleIsBitShift' zero = refl doubleIsBitShift' (succ a) with doubleIsBitShift' a ... | bl rewrite Semiring.commutative ℕSemiring a (succ (succ (a +N 0))) | Semiring.commutative ℕSemiring (succ (a +N 0)) a | Semiring.commutative ℕSemiring a (succ (a +N 0)) | Semiring.commutative ℕSemiring (a +N 0) a | bl = refl doubleIsBitShift : (a : ℕ) → (0 <N a) → NToBinNat (2 *N a) ≡ zero :: NToBinNat a doubleIsBitShift zero () doubleIsBitShift (succ a) _ = doubleIsBitShift' a canonicalDescends : {a : Bit} (as : BinNat) → (prA : a :: as ≡ canonical (a :: as)) → as ≡ canonical as canonicalDescends {zero} as pr with canonical as canonicalDescends {zero} as pr | x :: bl = ::Inj pr canonicalDescends {one} as pr = ::Inj pr --- Proofs parity : (a b : ℕ) → succ (2 *N a) ≡ 2 *N b → False doubleInj : (a b : ℕ) → (2 *N a) ≡ (2 *N b) → a ≡ b incrNonzeroTwice : (x : BinNat) → canonical (incr (incr x)) ≡ one :: [] → False incrNonzeroTwice (zero :: xs) pr with canonical (incr xs) incrNonzeroTwice (zero :: xs) () | [] incrNonzeroTwice (zero :: xs) () | x :: bl incrNonzeroTwice (one :: xs) pr = exFalso (incrNonzero xs (::Inj pr)) canonicalRespectsIncr' {[]} {[]} pr = refl canonicalRespectsIncr' {[]} {zero :: y} pr with canonical y canonicalRespectsIncr' {[]} {zero :: y} pr | [] = refl canonicalRespectsIncr' {[]} {one :: y} pr with canonical (incr y) canonicalRespectsIncr' {[]} {one :: y} () | [] canonicalRespectsIncr' {[]} {one :: y} () | x :: bl canonicalRespectsIncr' {zero :: xs} {y} pr with canonical xs canonicalRespectsIncr' {zero :: xs} {[]} pr | [] = refl canonicalRespectsIncr' {zero :: xs} {zero :: y} pr | [] with canonical y canonicalRespectsIncr' {zero :: xs} {zero :: y} pr | [] | [] = refl canonicalRespectsIncr' {zero :: xs} {one :: y} pr | [] with canonical (incr y) canonicalRespectsIncr' {zero :: xs} {one :: y} () | [] | [] canonicalRespectsIncr' {zero :: xs} {one :: y} () | [] | x :: bl canonicalRespectsIncr' {zero :: xs} {zero :: ys} pr | x :: bl with canonical ys canonicalRespectsIncr' {zero :: xs} {zero :: ys} pr | x :: bl | x₁ :: th = applyEquality (zero ::_) (::Inj pr) canonicalRespectsIncr' {zero :: xs} {one :: ys} pr | x :: bl with canonical (incr ys) canonicalRespectsIncr' {zero :: xs} {one :: ys} () | x :: bl | [] canonicalRespectsIncr' {zero :: xs} {one :: ys} () | x :: bl | x₁ :: th canonicalRespectsIncr' {one :: xs} {[]} pr with canonical (incr xs) canonicalRespectsIncr' {one :: xs} {[]} () | [] canonicalRespectsIncr' {one :: xs} {[]} () | x :: bl canonicalRespectsIncr' {one :: xs} {zero :: ys} pr with canonical ys canonicalRespectsIncr' {one :: xs} {zero :: ys} pr | [] with canonical (incr xs) canonicalRespectsIncr' {one :: xs} {zero :: ys} () | [] | [] canonicalRespectsIncr' {one :: xs} {zero :: ys} () | [] | x :: t canonicalRespectsIncr' {one :: xs} {zero :: ys} pr | x :: bl with canonical (incr xs) canonicalRespectsIncr' {one :: xs} {zero :: ys} () | x :: bl | [] canonicalRespectsIncr' {one :: xs} {zero :: ys} () | x :: bl | x₁ :: t canonicalRespectsIncr' {one :: xs} {one :: ys} pr with inspect (canonical (incr xs)) canonicalRespectsIncr' {one :: xs} {one :: ys} pr | [] with≡ x = exFalso (incrNonzero xs x) canonicalRespectsIncr' {one :: xs} {one :: ys} pr | (x+1 :: x+1s) with≡ bad rewrite bad = applyEquality (one ::_) ans where ans : canonical xs ≡ canonical ys ans with inspect (canonical (incr ys)) ans | [] with≡ x = exFalso (incrNonzero ys x) ans | (x₁ :: y) with≡ x rewrite x = canonicalRespectsIncr' {xs} {ys} (transitivity bad (transitivity (::Inj pr) (equalityCommutative x))) binNatToNInj[] : (y : BinNat) → 0 ≡ binNatToN y → [] ≡ canonical y binNatToNInj[] [] pr = refl binNatToNInj[] (zero :: y) pr with productZeroImpliesOperandZero {2} {binNatToN y} (equalityCommutative pr) binNatToNInj[] (zero :: y) pr | inr x with inspect (canonical y) binNatToNInj[] (zero :: y) pr | inr x | [] with≡ canYPr rewrite canYPr = refl binNatToNInj[] (zero :: ys) pr | inr x | (y :: canY) with≡ canYPr with binNatToNZero ys x ... | r with canonical ys binNatToNInj[] (zero :: ys) pr | inr x | (y :: canY) with≡ canYPr | r | [] = refl binNatToNInj[] (zero :: ys) pr | inr x | (y :: canY) with≡ canYPr | () | x₁ :: t binNatToNInj [] y pr = binNatToNInj[] y pr binNatToNInj (zero :: xs) [] pr = equalityCommutative (binNatToNInj[] (zero :: xs) (equalityCommutative pr)) binNatToNInj (zero :: xs) (zero :: ys) pr with doubleInj (binNatToN xs) (binNatToN ys) pr ... | x=y with binNatToNInj xs ys x=y ... | t with canonical xs binNatToNInj (zero :: xs) (zero :: ys) pr | x=y | t | [] with canonical ys binNatToNInj (zero :: xs) (zero :: ys) pr | x=y | t | [] | [] = refl binNatToNInj (zero :: xs) (zero :: ys) pr | x=y | t | x :: cxs with canonical ys binNatToNInj (zero :: xs) (zero :: ys) pr | x=y | t | x :: cxs | x₁ :: cys = applyEquality (zero ::_) t binNatToNInj (zero :: xs) (one :: ys) pr = exFalso (parity (binNatToN ys) (binNatToN xs) (equalityCommutative pr)) binNatToNInj (one :: xs) (zero :: ys) pr = exFalso (parity (binNatToN xs) (binNatToN ys) pr) binNatToNInj (one :: xs) (one :: ys) pr = applyEquality (one ::_) (binNatToNInj xs ys (doubleInj (binNatToN xs) (binNatToN ys) (succInjective pr))) NToBinNatInj zero zero pr = refl NToBinNatInj zero (succ y) pr with NToBinNat y NToBinNatInj zero (succ y) pr | bl = exFalso (incrNonzero bl (equalityCommutative pr)) NToBinNatInj (succ x) zero pr with NToBinNat x ... | bl = exFalso (incrNonzero bl pr) NToBinNatInj (succ x) (succ y) pr with inspect (NToBinNat x) NToBinNatInj (succ zero) (succ zero) pr | [] with≡ nToBinXPr = refl NToBinNatInj (succ zero) (succ (succ y)) pr | [] with≡ nToBinXPr with NToBinNat y NToBinNatInj (succ zero) (succ (succ y)) pr | [] with≡ nToBinXPr | y' = exFalso (incrNonzeroTwice y' (equalityCommutative pr)) NToBinNatInj (succ (succ x)) (succ y) pr | [] with≡ nToBinXPr with NToBinNat x NToBinNatInj (succ (succ x)) (succ y) pr | [] with≡ nToBinXPr | t = exFalso (incrNonzero' t nToBinXPr) NToBinNatInj (succ x) (succ y) pr | (x₁ :: nToBinX) with≡ nToBinXPr with NToBinNatInj x y (canonicalRespectsIncr' {NToBinNat x} {NToBinNat y} pr) NToBinNatInj (succ x) (succ .x) pr | (x₁ :: nToBinX) with≡ nToBinXPr | refl = refl incrInj {[]} {[]} pr = refl incrInj {[]} {zero :: ys} pr rewrite equalityCommutative (::Inj pr) = refl incrInj {zero :: xs} {[]} pr rewrite ::Inj pr = refl incrInj {zero :: xs} {zero :: .xs} refl = refl incrInj {one :: xs} {one :: ys} pr = applyEquality (one ::_) (incrInj {xs} {ys} (l (incr xs) (incr ys) pr)) where l : (a : BinNat) → (b : BinNat) → zero :: a ≡ zero :: b → a ≡ b l a .a refl = refl doubleInj zero zero pr = refl doubleInj (succ a) (succ b) pr = applyEquality succ (doubleInj a b u) where t : a +N a ≡ b +N b t rewrite Semiring.commutative ℕSemiring (succ a) 0 | Semiring.commutative ℕSemiring (succ b) 0 | Semiring.commutative ℕSemiring a (succ a) | Semiring.commutative ℕSemiring b (succ b) = succInjective (succInjective pr) u : a +N (a +N zero) ≡ b +N (b +N zero) u rewrite Semiring.commutative ℕSemiring a 0 | Semiring.commutative ℕSemiring b 0 = t binNatToNZero [] pr = refl binNatToNZero (zero :: xs) pr with inspect (canonical xs) binNatToNZero (zero :: xs) pr | [] with≡ x rewrite x = refl binNatToNZero (zero :: xs) pr | (x₁ :: y) with≡ x with productZeroImpliesOperandZero {2} {binNatToN xs} pr binNatToNZero (zero :: xs) pr | (x₁ :: y) with≡ x | inr pr' with binNatToNZero xs pr' ... | bl with canonical xs binNatToNZero (zero :: xs) pr | (x₁ :: y) with≡ x | inr pr' | bl | [] = refl binNatToNZero (zero :: xs) pr | (x₁ :: y) with≡ x | inr pr' | () | x₂ :: t binNatToNSucc [] = refl binNatToNSucc (zero :: n) = refl binNatToNSucc (one :: n) rewrite Semiring.commutative ℕSemiring (binNatToN n) zero | Semiring.commutative ℕSemiring (binNatToN (incr n)) 0 | binNatToNSucc n = applyEquality succ (Semiring.commutative ℕSemiring (binNatToN n) (succ (binNatToN n))) incrNonzero (one :: xs) pr with inspect (canonical (incr xs)) incrNonzero (one :: xs) pr | [] with≡ x = incrNonzero xs x incrNonzero (one :: xs) pr | (y :: ys) with≡ x with canonical (incr xs) incrNonzero (one :: xs) pr | (y :: ys) with≡ () | [] incrNonzero (one :: xs) () | (.x₁ :: .th) with≡ refl | x₁ :: th nToN zero = refl nToN (succ x) with inspect (NToBinNat x) nToN (succ x) | [] with≡ pr = ans where t : x ≡ zero t = NToBinNatInj x 0 (applyEquality canonical pr) ans : binNatToN (incr (NToBinNat x)) ≡ succ x ans rewrite t | pr = refl nToN (succ x) | (bit :: xs) with≡ pr = transitivity (binNatToNSucc (NToBinNat x)) (applyEquality succ (nToN x)) parity zero (succ b) pr rewrite Semiring.commutative ℕSemiring b (succ (b +N 0)) = bad pr where bad : (1 ≡ succ (succ ((b +N 0) +N b))) → False bad () parity (succ a) (succ b) pr rewrite Semiring.commutative ℕSemiring b (succ (b +N 0)) | Semiring.commutative ℕSemiring a (succ (a +N 0)) | Semiring.commutative ℕSemiring (a +N 0) a | Semiring.commutative ℕSemiring (b +N 0) b = parity a b (succInjective (succInjective pr)) binNatToNZero' [] pr = refl binNatToNZero' (zero :: xs) pr with inspect (canonical xs) binNatToNZero' (zero :: xs) pr | [] with≡ p2 = ans where t : binNatToN xs ≡ 0 t = binNatToNZero' xs p2 ans : 2 *N binNatToN xs ≡ 0 ans rewrite t = refl binNatToNZero' (zero :: xs) pr | (y :: ys) with≡ p rewrite p = exFalso (bad pr) where bad : zero :: y :: ys ≡ [] → False bad () binNatToNZero' (one :: xs) () canonicalAscends {zero} a 0<a with inspect (canonical a) canonicalAscends {zero} (zero :: a) 0<a | [] with≡ x = exFalso (contr'' (binNatToN a) t v) where u : binNatToN (zero :: a) ≡ 0 u = binNatToNZero' (zero :: a) x v : binNatToN a ≡ 0 v with inspect (binNatToN a) v | zero with≡ x = x v | succ a' with≡ x with inspect (binNatToN (zero :: a)) v | succ a' with≡ x | zero with≡ pr2 rewrite pr2 = exFalso (TotalOrder.irreflexive ℕTotalOrder 0<a) v | succ a' with≡ x | succ y with≡ pr2 rewrite u = exFalso (TotalOrder.irreflexive ℕTotalOrder 0<a) t : 0 <N binNatToN a t with binNatToN a t | succ bl rewrite Semiring.commutative ℕSemiring (succ bl) 0 = succIsPositive bl contr'' : (x : ℕ) → (0 <N x) → (x ≡ 0) → False contr'' x 0<x x=0 rewrite x=0 = TotalOrder.irreflexive ℕTotalOrder 0<x canonicalAscends {zero} a 0<a | (x₁ :: y) with≡ x rewrite x = refl canonicalAscends {one} a 0<a = refl canonicalAscends'' {i} a with inspect (canonical a) canonicalAscends'' {zero} a | [] with≡ x rewrite x = refl canonicalAscends'' {one} a | [] with≡ x rewrite x = refl canonicalAscends'' {i} a | (x₁ :: y) with≡ x = transitivity (applyEquality canonical (canonicalAscends' {i} a λ p → contr p x)) (equalityCommutative (canonicalIdempotent (i :: a))) where contr : {a : _} {A : Set a} {l1 l2 : List A} → {x : A} → l1 ≡ [] → l1 ≡ x :: l2 → False contr {l1 = []} p1 () contr {l1 = x :: l1} () p2 incrPreservesCanonical' [] = refl incrPreservesCanonical' (zero :: xs) with inspect (canonical xs) incrPreservesCanonical' (zero :: xs) | [] with≡ x rewrite x = refl incrPreservesCanonical' (zero :: xs) | (x₁ :: y) with≡ x rewrite x = refl incrPreservesCanonical' (one :: xs) with inspect (canonical (incr xs)) ... | [] with≡ pr = exFalso (incrNonzero xs pr) ... | (_ :: _) with≡ pr rewrite pr = applyEquality (zero ::_) (transitivity (equalityCommutative pr) (incrPreservesCanonical' xs)) NToBinNatSucc zero = refl NToBinNatSucc (succ n) with NToBinNat n ... | [] = refl ... | a :: as = refl
{ "alphanum_fraction": 0.6511445682, "avg_line_length": 50.7585227273, "ext": "agda", "hexsha": "3758b1f870bbff50e795a6ad7514a01385c486c3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/BinaryNaturals/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/BinaryNaturals/Definition.agda", "max_line_length": 271, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/BinaryNaturals/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 6450, "size": 17867 }
module Id where {- postulate x : Set postulate y : Set postulate _p_ : Set -> Set -> Set e : Set e = x p y -} {- id2 : (A : Set0) -> (_ : A) -> A id2 = \ (C : Set) (z : C) -> z -} {- id : (A : Set) -> A -> A id = \ A x -> x -} {- idImp : {A : Set} -> A -> A idImp = \ {A} x -> x -} id : {A : Set} -> A -> A id x = x idd = id id
{ "alphanum_fraction": 0.4179104478, "avg_line_length": 10.8064516129, "ext": "agda", "hexsha": "3371e775a930a39e8056d1455347ea3223e65868", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/Id.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/Id.agda", "max_line_length": 33, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/Id.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 154, "size": 335 }
module deriveUtil where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat open import Data.Fin open import Data.List open import regex open import automaton open import nfa open import logic open NAutomaton open Automaton open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary open Bool data alpha2 : Set where a : alpha2 b : alpha2 a-eq? : (x y : alpha2) → Dec (x ≡ y) a-eq? a a = yes refl a-eq? b b = yes refl a-eq? a b = no (λ ()) a-eq? b a = no (λ ()) open Regex open import finiteSet fin-a : FiniteSet alpha2 fin-a = record { finite = finite0 ; Q←F = Q←F0 ; F←Q = F←Q0 ; finiso→ = finiso→0 ; finiso← = finiso←0 } where finite0 : ℕ finite0 = 2 Q←F0 : Fin finite0 → alpha2 Q←F0 zero = a Q←F0 (suc zero) = b F←Q0 : alpha2 → Fin finite0 F←Q0 a = # 0 F←Q0 b = # 1 finiso→0 : (q : alpha2) → Q←F0 ( F←Q0 q ) ≡ q finiso→0 a = refl finiso→0 b = refl finiso←0 : (f : Fin finite0 ) → F←Q0 ( Q←F0 f ) ≡ f finiso←0 zero = refl finiso←0 (suc zero) = refl open import derive alpha2 fin-a a-eq? test11 = regex→automaton ( < a > & < b > ) test12 = accept test11 record { state = < a > & < b > ; is-derived = unit } ( a ∷ b ∷ [] ) test13 = accept test11 record { state = < a > & < b > ; is-derived = unit } ( a ∷ a ∷ [] ) test14 = regex-match ( ( < a > & < b > ) * ) ( a ∷ b ∷ a ∷ a ∷ [] ) test15 = regex-derive ( ( < a > & < b > ) * ∷ [] ) test16 = regex-derive test15 test17 : regex-derive test16 ≡ test16 test17 = refl
{ "alphanum_fraction": 0.578782172, "avg_line_length": 22.7571428571, "ext": "agda", "hexsha": "23621f6e4d1a6eed7aa690d0c0084c8e1992797a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/deriveUtil.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/deriveUtil.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/deriveUtil.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 597, "size": 1593 }
{-# OPTIONS --without-K #-} module higher.interval where open import Relation.Binary.PropositionalEquality open import equality-groupoid postulate I : Set zero : I one : I path : zero ≡ one module DepElim (B : I → Set) (x : B zero) (y : B one) (p : subst B path x ≡ y) where postulate elim : (t : I) → B t β-zero : elim zero ≡ x β-one : elim one ≡ y β-path : ap (subst B path) (sym β-zero) · lem-naturality elim path · β-one ≡ p module Elim {X : Set} (x y : X) (p : x ≡ y) where open DepElim (λ _ → X) x y p postulate elim' : I → X β-zero' : elim zero ≡ x β-one' : elim one ≡ y β-path' : sym (β-zero') · ap elim path · β-one' ≡ p
{ "alphanum_fraction": 0.5038167939, "avg_line_length": 20.1538461538, "ext": "agda", "hexsha": "536ad0662e5134853fc801192986ba525b154761", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/higher/interval.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/higher/interval.agda", "max_line_length": 55, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/higher/interval.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 254, "size": 786 }
-- Jesper, 2019-09-12: The fix of #3541 introduced a regression: the -- index of the equality type is treated as a positive argument. data _≡_ (A : Set) : Set → Set where refl : A ≡ A postulate X : Set data D : Set where c : X ≡ D → D
{ "alphanum_fraction": 0.646090535, "avg_line_length": 20.25, "ext": "agda", "hexsha": "f0b91c0d0efaf24d8d7d773417acc8b9a3ed33f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/EqualityNotPositive.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "strake/agda", "max_issues_repo_path": "test/Fail/EqualityNotPositive.agda", "max_line_length": 68, "max_stars_count": 2, "max_stars_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "strake/agda", "max_stars_repo_path": "test/Fail/EqualityNotPositive.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 84, "size": 243 }
-- Andreas, 2017-07-26, issue #2331. -- Andrea found a counterexample against the "usable decrease" feature: open import Agda.Builtin.Size data D (i : Size) : Set where c : (j : Size< i) → D i mutual test : (i : Size) → D i → Set test i (c j) = (k : Size< j) (l : Size< k) → helper i j k (c l) helper : (i : Size) (j : Size< i) (k : Size< j) → D k → Set helper i j k d = test k d -- Should not termination check.
{ "alphanum_fraction": 0.5874125874, "avg_line_length": 25.2352941176, "ext": "agda", "hexsha": "1f88c4175b68fe591531ed882262798170465f50", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2331.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2331.agda", "max_line_length": 71, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2331.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 157, "size": 429 }
module ConstructorHeadedDivergenceIn2-2-10 where data ⊤ : Set where tt : ⊤ data ℕ : Set where zero : ℕ suc : ℕ → ℕ data _×_ (A B : Set) : Set where _,_ : A → B → A × B {- Brandon Moore reports (July 2011) In 2.2.10 the following code seems to cause typechecking to diverge. -} f : ℕ → Set f zero = ⊤ f (suc n) = ℕ × f n enum : (n : ℕ) → f n enum zero = tt enum (suc n) = n , enum n n : ℕ n = _ test : f n test = enum (suc n) {- This typechecks quickly if the definition of test is changed to test = enum n I think the problem is that the body has type ℕ × f n, and unifying it with the expected type f n invokes the constructor-headed function specialization to resolve n to suc n', and the process repeats. Brandon -} -- Andreas, 2011-07-28 This bug is not reproducible in the darcs -- version. -- -- This file should fail with unresolved metas.
{ "alphanum_fraction": 0.6697459584, "avg_line_length": 18.0416666667, "ext": "agda", "hexsha": "94e6b58bcfa257c2e5a2e9f28605c49c818ad918", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/ConstructorHeadedDivergenceIn2-2-10.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/ConstructorHeadedDivergenceIn2-2-10.agda", "max_line_length": 64, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/ConstructorHeadedDivergenceIn2-2-10.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 281, "size": 866 }
{-# OPTIONS --allow-unsolved-metas #-} data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x infix 0 _≡_ {-# BUILTIN EQUALITY _≡_ #-} data Sigma {l} (A : Set l) (B : A -> Set l) : Set l where _**_ : (a : A) -> B a -> Sigma A B sym : ∀ {a} {A : Set a} {x y : A} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {a} {A : Set a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl eq = eq subst : ∀ {a b} {x y : Set a} → (P : Set a → Set b) → x ≡ y → P x ≡ P y subst P refl = refl cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong f refl = refl fst : ∀ {l} -> {A : Set l}{B : A -> Set l} -> Sigma A B -> A fst (x ** _) = x snd : ∀ {l} -> {A : Set l}{B : A -> Set l} -> (sum : Sigma A B) -> B (fst sum) snd (x ** y) = y record Group {l} (G : Set l) (_op_ : G -> G -> G) : Set l where field assoc : {a b c : G} -> ((a op b) op c) ≡ (a op (b op c)) id : {a : G} -> Sigma G (\e -> e op a ≡ a) inv : {a : G} -> Sigma G (\a^-1 -> (a^-1 op a) ≡ (fst (id {a}))) e : {a : G} -> G e {a} = fst (id {a}) _^-1 : G -> G x ^-1 = fst (inv {x}) a^-1-op-a==e : {a : G} -> ((a ^-1) op a) ≡ e {a} a^-1-op-a==e {a} with inv {a} ... | (_ ** p) = p id-lem-right : {a : G} -> (e {a} op a) ≡ a id-lem-right {a} = snd (id {a}) id-lem-left : {a : G} -> (a op e {a}) ≡ a id-lem-left {a} rewrite id-lem-right {a} = {!!} -- In Agda 2.4.2.5 the error was: -- Function does not accept argument {r = _} -- when checking that {r = a} is a valid argument to a function of -- type {a : G} → G
{ "alphanum_fraction": 0.4349775785, "avg_line_length": 28.3818181818, "ext": "agda", "hexsha": "830142a7e7dea96b9b32d9926b7c0dfc8c5268b0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1934.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1934.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1934.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 702, "size": 1561 }
module plfa.part1.Naturals where data ℕ : Set where zero : ℕ suc : ℕ → ℕ seven = suc (suc (suc (suc (suc (suc (suc zero)))))) {-# BUILTIN NATURAL ℕ #-} import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) _+_ : ℕ → ℕ → ℕ zero + n = n (suc m) + n = suc (m + n) _ : 2 + 3 ≡ 5 _ = begin 2 + 3 ≡⟨⟩ -- is shorthand for (suc (suc zero)) + (suc (suc (suc zero))) ≡⟨⟩ -- inductive case suc ((suc zero) + (suc (suc (suc zero)))) ≡⟨⟩ -- inductive case suc (suc (zero + (suc (suc (suc zero))))) ≡⟨⟩ -- base case suc (suc (suc (suc (suc zero)))) ≡⟨⟩ -- is longhand for 5 ∎ _*_ : ℕ → ℕ → ℕ zero * n = zero (suc m) * n = n + (m * n) _̂_ : ℕ → ℕ → ℕ n ̂ zero = 1 n ̂ (suc m) = n * (n ̂ m) _ : 3 ̂ 4 ≡ 81 _ = begin 3 ̂ 4 ≡⟨⟩ 81 ∎ _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n
{ "alphanum_fraction": 0.4786235662, "avg_line_length": 17.4363636364, "ext": "agda", "hexsha": "8dc5e7fd843bee4768b8df42816faeafbdd5eba1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sym-cereal/proofs", "max_forks_repo_path": "plfa/part1/Naturals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sym-cereal/proofs", "max_issues_repo_path": "plfa/part1/Naturals.agda", "max_line_length": 52, "max_stars_count": 6, "max_stars_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UnsoundWitch/proofs", "max_stars_repo_path": "plfa/part1/Naturals.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T10:58:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-03T03:29:40.000Z", "num_tokens": 463, "size": 959 }
open import Categories open import Monads module Monads.Kleisli.Functors {a b}{C : Cat {a}{b}}(M : Monad C) where open import Library open import Functors open import Monads.Kleisli M open Cat C open Fun open Monad M KlL : Fun C Kl KlL = record{ OMap = id; HMap = comp η; fid = idr; fcomp = λ{_}{_}{_}{f}{g} → proof comp η (comp f g) ≅⟨ sym ass ⟩ comp (comp η f) g ≅⟨ cong (λ f → comp f g) (sym law2) ⟩ comp (comp (bind (comp η f)) η) g ≅⟨ ass ⟩ comp (bind (comp η f)) (comp η g) ∎} KlR : Fun Kl C KlR = record{ OMap = T; HMap = bind; fid = law1; fcomp = law3}
{ "alphanum_fraction": 0.5698412698, "avg_line_length": 17.5, "ext": "agda", "hexsha": "0773c8c5d940ec6ab115d5468714ce2b54261a0b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Monads/Kleisli/Functors.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Monads/Kleisli/Functors.agda", "max_line_length": 71, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Monads/Kleisli/Functors.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 266, "size": 630 }
mutual Loop : Set Loop = {!!} -- Should not solve ?0 := Loop → Loop solve : Loop → Loop → Loop solve x = x
{ "alphanum_fraction": 0.5378151261, "avg_line_length": 13.2222222222, "ext": "agda", "hexsha": "5124aef8ed39dfee6cda2ea0b8023665694808f8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2710.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2710.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2710.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 41, "size": 119 }
{-# OPTIONS --prop --without-K --rewriting #-} module Calf.Types.Unit where open import Calf.Prelude open import Calf.Metalanguage open import Data.Unit public using (⊤) renaming (tt to triv) unit : tp pos unit = U (meta ⊤)
{ "alphanum_fraction": 0.7074235808, "avg_line_length": 17.6153846154, "ext": "agda", "hexsha": "f71a07d5388221de144a91be6bddb1c5dad065d0", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Calf/Types/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Calf/Types/Unit.agda", "max_line_length": 60, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Calf/Types/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 64, "size": 229 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Group open import lib.types.List open import lib.types.Pi open import lib.types.SetQuotient open import lib.types.Word open import lib.groups.GeneratedGroup open import lib.groups.Homomorphism module lib.groups.GeneratedAbelianGroup {i} {m} where module GeneratedAbelianGroup (A : Type i) (R : Rel (Word A) m) where data AbGroupRel : Word A → Word A → Type (lmax i m) where agr-commutes : ∀ l₁ l₂ → AbGroupRel (l₁ ++ l₂) (l₂ ++ l₁) agr-rel : ∀ {l₁ l₂} → R l₁ l₂ → AbGroupRel l₁ l₂ private module Gen = GeneratedGroup A AbGroupRel open Gen hiding (module HomomorphismEquiv; rel-holds) public agr-reverse : (w : Word A) → QuotWordRel (reverse w) w agr-reverse nil = qwr-refl idp agr-reverse (x :: w) = reverse w ++ (x :: nil) qwr⟨ qwr-rel (agr-commutes (reverse w) (x :: nil)) ⟩ x :: reverse w qwr⟨ qwr-cong-r (x :: nil) (agr-reverse w) ⟩ x :: w qwr∎ GenAbGroup : AbGroup (lmax i m) GenAbGroup = grp , grp-is-abelian where grp : Group (lmax i m) grp = GenGroup module grp = Group grp grp-is-abelian : is-abelian grp grp-is-abelian = QuotWord-elim {P = λ a → ∀ b → grp.comp a b == grp.comp b a} (λ la → QuotWord-elim {P = λ b → grp.comp qw[ la ] b == grp.comp b qw[ la ]} (λ lb → quot-rel (qwr-rel (agr-commutes la lb))) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓ {{Π-level ⟨⟩}}) rel-holds : ∀ {w₁} {w₂} (r : R w₁ w₂) → qw[ w₁ ] == qw[ w₂ ] rel-holds r = Gen.rel-holds (agr-rel r) module GenAbGroup = AbGroup GenAbGroup {- Universal Properties -} module HomomorphismEquiv {j} (G : AbGroup j) where private module G = AbGroup G module R-RFs = RelationRespectingFunctions A R G.grp module AbGroupRel-RFs = RelationRespectingFunctions A AbGroupRel G.grp open R-RFs public private legal-functions-equiv : R-RFs.RelationRespectingFunction ≃ AbGroupRel-RFs.RelationRespectingFunction legal-functions-equiv = equiv to from (λ lf → AbGroupRel-RFs.RelationRespectingFunction= idp) (λ lf → R-RFs.RelationRespectingFunction= idp) where to : R-RFs.RelationRespectingFunction → AbGroupRel-RFs.RelationRespectingFunction to (R-RFs.rel-res-fun f respects-R) = AbGroupRel-RFs.rel-res-fun f respects-AbGroupRel where respects-AbGroupRel : AbGroupRel-RFs.respects-rel f respects-AbGroupRel (agr-commutes l₁ l₂) = Word-extendᴳ G.grp f (l₁ ++ l₂) =⟨ Word-extendᴳ-++ G.grp f l₁ l₂ ⟩ G.comp (Word-extendᴳ G.grp f l₁) (Word-extendᴳ G.grp f l₂) =⟨ G.comm (Word-extendᴳ G.grp f l₁) (Word-extendᴳ G.grp f l₂) ⟩ G.comp (Word-extendᴳ G.grp f l₂) (Word-extendᴳ G.grp f l₁) =⟨ ! (Word-extendᴳ-++ G.grp f l₂ l₁) ⟩ Word-extendᴳ G.grp f (l₂ ++ l₁) =∎ respects-AbGroupRel (agr-rel r) = respects-R r from : AbGroupRel-RFs.RelationRespectingFunction → R-RFs.RelationRespectingFunction from (AbGroupRel-RFs.rel-res-fun f respects-AbGroupRel) = R-RFs.rel-res-fun f respects-R where respects-R : R-RFs.respects-rel f respects-R r = respects-AbGroupRel (agr-rel r) extend-equiv : R-RFs.RelationRespectingFunction ≃ (GenAbGroup.grp →ᴳ G.grp) extend-equiv = Gen.HomomorphismEquiv.extend-equiv G.grp ∘e legal-functions-equiv extend : R-RFs.RelationRespectingFunction → (GenAbGroup.grp →ᴳ G.grp) extend = –> extend-equiv
{ "alphanum_fraction": 0.623987034, "avg_line_length": 37.3939393939, "ext": "agda", "hexsha": "8a816821c32daf4698960173cecb06140cba8385", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/GeneratedAbelianGroup.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/GeneratedAbelianGroup.agda", "max_line_length": 91, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/GeneratedAbelianGroup.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1185, "size": 3702 }
{-# OPTIONS --cubical --safe #-} module Cubical.Modalities.Everything where open import Cubical.Modalities.Modality public
{ "alphanum_fraction": 0.7822580645, "avg_line_length": 24.8, "ext": "agda", "hexsha": "f835e615dc7d7b831746fce9964e5286726119b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Modalities/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Modalities/Everything.agda", "max_line_length": 46, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Modalities/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 31, "size": 124 }
{- This second-order signature was created from the following second-order syntax description: syntax PCF type N : 0-ary _↣_ : 2-ary | r30 B : 0-ary term app : α ↣ β α -> β | _$_ l20 lam : α.β -> α ↣ β | ƛ_ r10 tr : B fl : B ze : N su : N -> N pr : N -> N iz : N -> B | 0? if : B α α -> α fix : α.α -> α theory (ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a] (ƛη) f : α ↣ β |> lam (x. app(f, x)) = f (zz) |> iz (ze) = tr (zs) n : N |> iz (su (n)) = fl (ps) n : N |> pr (su (n)) = n (ift) t f : α |> if (tr, t, f) = t (iff) t f : α |> if (fl, t, f) = f (fix) t : α.α |> fix (x.t[x]) = t[fix (x.t[x])] -} module PCF.Signature where open import SOAS.Context -- Type declaration data PCFT : Set where N : PCFT _↣_ : PCFT → PCFT → PCFT B : PCFT infixr 30 _↣_ open import SOAS.Syntax.Signature PCFT public open import SOAS.Syntax.Build PCFT public -- Operator symbols data PCFₒ : Set where appₒ lamₒ : {α β : PCFT} → PCFₒ trₒ flₒ zeₒ suₒ prₒ izₒ : PCFₒ ifₒ fixₒ : {α : PCFT} → PCFₒ -- Term signature PCF:Sig : Signature PCFₒ PCF:Sig = sig λ { (appₒ {α}{β}) → (⊢₀ α ↣ β) , (⊢₀ α) ⟼₂ β ; (lamₒ {α}{β}) → (α ⊢₁ β) ⟼₁ α ↣ β ; trₒ → ⟼₀ B ; flₒ → ⟼₀ B ; zeₒ → ⟼₀ N ; suₒ → (⊢₀ N) ⟼₁ N ; prₒ → (⊢₀ N) ⟼₁ N ; izₒ → (⊢₀ N) ⟼₁ B ; (ifₒ {α}) → (⊢₀ B) , (⊢₀ α) , (⊢₀ α) ⟼₃ α ; (fixₒ {α}) → (α ⊢₁ α) ⟼₁ α } open Signature PCF:Sig public
{ "alphanum_fraction": 0.4620418848, "avg_line_length": 21.5211267606, "ext": "agda", "hexsha": "641b7ede447f2fcbb1d109f679170fef2761bc90", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/PCF/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/PCF/Signature.agda", "max_line_length": 91, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/PCF/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 767, "size": 1528 }
module ShouldBeEmpty where data Zero : Set where data One : Set where one : One ok : Zero -> One ok () bad : One -> One bad ()
{ "alphanum_fraction": 0.6268656716, "avg_line_length": 9.5714285714, "ext": "agda", "hexsha": "e0b809086da7db462a10e3f0a313beaf251063de", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/ShouldBeEmpty.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/ShouldBeEmpty.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/ShouldBeEmpty.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 40, "size": 134 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Concrete.System.Parameters -- This module collects the implementation obligations for our (fake/simple, for now) -- "implementation" into the structure required by Concrete.Properties. open import LibraBFT.Impl.Handle.Properties import LibraBFT.Impl.Properties.VotesOnce as VO import LibraBFT.Impl.Properties.PreferredRound as PR open import LibraBFT.Concrete.Obligations open import LibraBFT.Concrete.System module LibraBFT.Impl.Properties where theImplObligations : ImplObligations theImplObligations = record { sps-cor = impl-sps-avp ; vo₁ = VO.vo₁ ; vo₂ = VO.vo₂ ; pr₁ = PR.pr₁ }
{ "alphanum_fraction": 0.7102983638, "avg_line_length": 43.2916666667, "ext": "agda", "hexsha": "b883978f40f438183378f0ac7b7c807e71d77fe6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Properties.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 265, "size": 1039 }
{-# OPTIONS --without-K #-} module Transport where open import GroupoidStructure open import PathOperations open import Types tr-post : ∀ {a} {A : Set a} (a : A) {x y : A} (p : x ≡ y) (q : a ≡ x) → tr (λ x → a ≡ x) p q ≡ q · p tr-post a = J (λ x _ p → (q : a ≡ x) → tr (λ x → a ≡ x) p q ≡ q · p) (λ _ q → p·id q ⁻¹) _ _ tr-pre : ∀ {a} {A : Set a} (a : A) {x y : A} (p : x ≡ y) (q : x ≡ a) → tr (λ x → x ≡ a) p q ≡ p ⁻¹ · q tr-pre a = J (λ x _ p → (q : x ≡ a) → tr (λ x → x ≡ a) p q ≡ p ⁻¹ · q) (λ _ q → id·p q ⁻¹) _ _ tr-both : ∀ {a} {A : Set a} (a : A) {x y : A} (p : x ≡ y) (q : x ≡ x) → tr (λ x → x ≡ x) p q ≡ p ⁻¹ · q · p tr-both a = J (λ x _ p → (q : x ≡ x) → tr (λ x → x ≡ x) p q ≡ p ⁻¹ · q · p) (λ _ q → p·id q ⁻¹ · id·p (q · refl) ⁻¹) _ _ tr-∘ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} (f : A → B) {x y : A} (p : x ≡ y) (u : P (f x)) → tr (P ∘ f) p u ≡ tr P (ap f p) u tr-∘ {P = P} f = J (λ x _ p → (u : P (f x)) → tr (P ∘ f) p u ≡ tr P (ap f p) u) (λ _ _ → refl) _ _
{ "alphanum_fraction": 0.3916423712, "avg_line_length": 27.0789473684, "ext": "agda", "hexsha": "e3b0929995e9b52f74cb0999eaccb7545e5dbb56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/Transport.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/Transport.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/Transport.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 555, "size": 1029 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Homogeneously-indexed binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Indexed.Homogeneous`. {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Indexed.Homogeneous.Core module Relation.Binary.Indexed.Homogeneous.Structures {i a ℓ} {I : Set i} (A : I → Set a) -- The underlying indexed sets (_≈ᵢ_ : IRel A ℓ) -- The underlying indexed equality relation where open import Data.Product using (_,_) open import Function using (_⟨_⟩_) open import Level using (Level; _⊔_; suc) open import Relation.Binary as B using (_⇒_) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Binary.Indexed.Homogeneous.Definitions ------------------------------------------------------------------------ -- Equivalences -- Indexed structures are laid out in a similar manner as to those -- in Relation.Binary. The main difference is each structure also -- contains proofs for the lifted version of the relation. record IsIndexedEquivalence : Set (i ⊔ a ⊔ ℓ) where field reflᵢ : Reflexive A _≈ᵢ_ symᵢ : Symmetric A _≈ᵢ_ transᵢ : Transitive A _≈ᵢ_ reflexiveᵢ : ∀ {i} → _≡_ ⟨ _⇒_ ⟩ _≈ᵢ_ {i} reflexiveᵢ P.refl = reflᵢ -- Lift properties reflexive : _≡_ ⇒ (Lift A _≈ᵢ_) reflexive P.refl i = reflᵢ refl : B.Reflexive (Lift A _≈ᵢ_) refl i = reflᵢ sym : B.Symmetric (Lift A _≈ᵢ_) sym x≈y i = symᵢ (x≈y i) trans : B.Transitive (Lift A _≈ᵢ_) trans x≈y y≈z i = transᵢ (x≈y i) (y≈z i) isEquivalence : B.IsEquivalence (Lift A _≈ᵢ_) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } record IsIndexedDecEquivalence : Set (i ⊔ a ⊔ ℓ) where infix 4 _≟ᵢ_ field _≟ᵢ_ : Decidable A _≈ᵢ_ isEquivalenceᵢ : IsIndexedEquivalence open IsIndexedEquivalence isEquivalenceᵢ public ------------------------------------------------------------------------ -- Preorders record IsIndexedPreorder {ℓ₂} (_∼ᵢ_ : IRel A ℓ₂) : Set (i ⊔ a ⊔ ℓ ⊔ ℓ₂) where field isEquivalenceᵢ : IsIndexedEquivalence reflexiveᵢ : _≈ᵢ_ ⇒[ A ] _∼ᵢ_ transᵢ : Transitive A _∼ᵢ_ module Eq = IsIndexedEquivalence isEquivalenceᵢ reflᵢ : Reflexive A _∼ᵢ_ reflᵢ = reflexiveᵢ Eq.reflᵢ ∼ᵢ-respˡ-≈ᵢ : Respectsˡ A _∼ᵢ_ _≈ᵢ_ ∼ᵢ-respˡ-≈ᵢ x≈y x∼z = transᵢ (reflexiveᵢ (Eq.symᵢ x≈y)) x∼z ∼ᵢ-respʳ-≈ᵢ : Respectsʳ A _∼ᵢ_ _≈ᵢ_ ∼ᵢ-respʳ-≈ᵢ x≈y z∼x = transᵢ z∼x (reflexiveᵢ x≈y) ∼ᵢ-resp-≈ᵢ : Respects₂ A _∼ᵢ_ _≈ᵢ_ ∼ᵢ-resp-≈ᵢ = ∼ᵢ-respʳ-≈ᵢ , ∼ᵢ-respˡ-≈ᵢ -- Lifted properties reflexive : Lift A _≈ᵢ_ B.⇒ Lift A _∼ᵢ_ reflexive x≈y i = reflexiveᵢ (x≈y i) refl : B.Reflexive (Lift A _∼ᵢ_) refl i = reflᵢ trans : B.Transitive (Lift A _∼ᵢ_) trans x≈y y≈z i = transᵢ (x≈y i) (y≈z i) ∼-respˡ-≈ : (Lift A _∼ᵢ_) B.Respectsˡ (Lift A _≈ᵢ_) ∼-respˡ-≈ x≈y x∼z i = ∼ᵢ-respˡ-≈ᵢ (x≈y i) (x∼z i) ∼-respʳ-≈ : (Lift A _∼ᵢ_) B.Respectsʳ (Lift A _≈ᵢ_) ∼-respʳ-≈ x≈y z∼x i = ∼ᵢ-respʳ-≈ᵢ (x≈y i) (z∼x i) ∼-resp-≈ : (Lift A _∼ᵢ_) B.Respects₂ (Lift A _≈ᵢ_) ∼-resp-≈ = ∼-respʳ-≈ , ∼-respˡ-≈ isPreorder : B.IsPreorder (Lift A _≈ᵢ_) (Lift A _∼ᵢ_) isPreorder = record { isEquivalence = Eq.isEquivalence ; reflexive = reflexive ; trans = trans } ------------------------------------------------------------------------ -- Partial orders record IsIndexedPartialOrder {ℓ₂} (_≤ᵢ_ : IRel A ℓ₂) : Set (i ⊔ a ⊔ ℓ ⊔ ℓ₂) where field isPreorderᵢ : IsIndexedPreorder _≤ᵢ_ antisymᵢ : Antisymmetric A _≈ᵢ_ _≤ᵢ_ open IsIndexedPreorder isPreorderᵢ public renaming ( ∼ᵢ-respˡ-≈ᵢ to ≤ᵢ-respˡ-≈ᵢ ; ∼ᵢ-respʳ-≈ᵢ to ≤ᵢ-respʳ-≈ᵢ ; ∼ᵢ-resp-≈ᵢ to ≤ᵢ-resp-≈ᵢ ; ∼-respˡ-≈ to ≤-respˡ-≈ ; ∼-respʳ-≈ to ≤-respʳ-≈ ; ∼-resp-≈ to ≤-resp-≈ ) antisym : B.Antisymmetric (Lift A _≈ᵢ_) (Lift A _≤ᵢ_) antisym x≤y y≤x i = antisymᵢ (x≤y i) (y≤x i) isPartialOrder : B.IsPartialOrder (Lift A _≈ᵢ_) (Lift A _≤ᵢ_) isPartialOrder = record { isPreorder = isPreorder ; antisym = antisym }
{ "alphanum_fraction": 0.5721987811, "avg_line_length": 27.8823529412, "ext": "agda", "hexsha": "cc43931143a136460367408553a91bfdf01edbfc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Structures.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1883, "size": 4266 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NConnected open import lib.types.Empty open import lib.types.Nat open import lib.types.Paths open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.TLevel open import lib.types.Truncation module lib.types.LoopSpace where {- loop space -} module _ {i} where ⊙Ω : Ptd i → Ptd i ⊙Ω ⊙[ A , a ] = ⊙[ (a == a) , idp ] Ω : Ptd i → Type i Ω = de⊙ ∘ ⊙Ω module _ {i} {X : Ptd i} where Ω-! : Ω X → Ω X Ω-! = ! Ω-∙ : Ω X → Ω X → Ω X Ω-∙ = _∙_ {- pointed versions of functions on paths -} ⊙Ω-∙ : ∀ {i} {X : Ptd i} → ⊙Ω X ⊙× ⊙Ω X ⊙→ ⊙Ω X ⊙Ω-∙ = (uncurry Ω-∙ , idp) ⊙Ω-fmap : ∀ {i j} {X : Ptd i} {Y : Ptd j} → X ⊙→ Y → ⊙Ω X ⊙→ ⊙Ω Y ⊙Ω-fmap (f , idp) = ap f , idp Ω-fmap : ∀ {i j} {X : Ptd i} {Y : Ptd j} → X ⊙→ Y → (Ω X → Ω Y) Ω-fmap F = fst (⊙Ω-fmap F) Ω-fmap-β : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) (p : Ω X) → Ω-fmap F p == ! (snd F) ∙ ap (fst F) p ∙' snd F Ω-fmap-β (_ , idp) _ = idp Ω-isemap : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) → is-equiv (fst F) → is-equiv (Ω-fmap F) Ω-isemap (f , idp) e = ap-is-equiv e _ _ Ω-emap : ∀ {i j} {X : Ptd i} {Y : Ptd j} → (X ⊙≃ Y) → (Ω X ≃ Ω Y) Ω-emap (F , F-is-equiv) = Ω-fmap F , Ω-isemap F F-is-equiv ⊙Ω-emap : ∀ {i j} {X : Ptd i} {Y : Ptd j} → (X ⊙≃ Y) → (⊙Ω X ⊙≃ ⊙Ω Y) ⊙Ω-emap (F , F-is-equiv) = ⊙Ω-fmap F , Ω-isemap F F-is-equiv ⊙Ω-fmap2 : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → X ⊙× Y ⊙→ Z → ⊙Ω X ⊙× ⊙Ω Y ⊙→ ⊙Ω Z ⊙Ω-fmap2 (f , idp) = (λ{(p , q) → ap2 (curry f) p q}) , idp ⊙Ω-fmap-∘ : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : Y ⊙→ Z) (f : X ⊙→ Y) → ⊙Ω-fmap (g ⊙∘ f) == ⊙Ω-fmap g ⊙∘ ⊙Ω-fmap f ⊙Ω-fmap-∘ (g , idp) (f , idp) = ⊙λ=' (λ p → ap-∘ g f p) idp ⊙Ω-csmap : ∀ {i₀ i₁ j₀ j₁} {X₀ : Ptd i₀} {X₁ : Ptd i₁} {Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁} {hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁} → ⊙CommSquare f g hX hY → ⊙CommSquare (⊙Ω-fmap f) (⊙Ω-fmap g) (⊙Ω-fmap hX) (⊙Ω-fmap hY) ⊙Ω-csmap {f = f} {g} {hX} {hY} (⊙comm-sqr cs) = ⊙comm-sqr $ ⊙app= $ ⊙Ω-fmap hY ⊙∘ ⊙Ω-fmap f =⟨ ! $ ⊙Ω-fmap-∘ hY f ⟩ ⊙Ω-fmap (hY ⊙∘ f) =⟨ ap ⊙Ω-fmap $ ⊙λ= cs ⟩ ⊙Ω-fmap (g ⊙∘ hX) =⟨ ⊙Ω-fmap-∘ g hX ⟩ ⊙Ω-fmap g ⊙∘ ⊙Ω-fmap hX =∎ ⊙Ω-csemap : ∀ {i₀ i₁ j₀ j₁} {X₀ : Ptd i₀} {X₁ : Ptd i₁} {Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁} {hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁} → ⊙CommSquareEquiv f g hX hY → ⊙CommSquareEquiv (⊙Ω-fmap f) (⊙Ω-fmap g) (⊙Ω-fmap hX) (⊙Ω-fmap hY) ⊙Ω-csemap {f = f} {g} {hX} {hY} (⊙comm-sqr cs , hX-ise , hY-ise) = (⊙comm-sqr $ ⊙app= $ ⊙Ω-fmap hY ⊙∘ ⊙Ω-fmap f =⟨ ! $ ⊙Ω-fmap-∘ hY f ⟩ ⊙Ω-fmap (hY ⊙∘ f) =⟨ ap ⊙Ω-fmap $ ⊙λ= cs ⟩ ⊙Ω-fmap (g ⊙∘ hX) =⟨ ⊙Ω-fmap-∘ g hX ⟩ ⊙Ω-fmap g ⊙∘ ⊙Ω-fmap hX =∎) , Ω-isemap hX hX-ise , Ω-isemap hY hY-ise ⊙Ω-fmap-idf : ∀ {i} {X : Ptd i} → ⊙Ω-fmap (⊙idf X) == ⊙idf _ ⊙Ω-fmap-idf = ⊙λ=' ap-idf idp ⊙Ω-fmap2-fst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → ⊙Ω-fmap2 {X = X} {Y = Y} ⊙fst == ⊙fst ⊙Ω-fmap2-fst = ⊙λ=' (uncurry ap2-fst) idp ⊙Ω-fmap2-snd : ∀ {i j} {X : Ptd i} {Y : Ptd j} → ⊙Ω-fmap2 {X = X} {Y = Y} ⊙snd == ⊙snd ⊙Ω-fmap2-snd = ⊙λ=' (uncurry ap2-snd) idp ⊙Ω-fmap-fmap2 : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (G : Z ⊙→ W) (F : X ⊙× Y ⊙→ Z) → ⊙Ω-fmap G ⊙∘ ⊙Ω-fmap2 F == ⊙Ω-fmap2 (G ⊙∘ F) ⊙Ω-fmap-fmap2 (g , idp) (f , idp) = ⊙λ=' (uncurry (ap-ap2 g (curry f))) idp ⊙Ω-fmap2-fmap : ∀ {i j k l m} {X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m} (G : (U ⊙× V) ⊙→ Z) (F₁ : X ⊙→ U) (F₂ : Y ⊙→ V) → ⊙Ω-fmap2 G ⊙∘ ⊙×-fmap (⊙Ω-fmap F₁) (⊙Ω-fmap F₂) == ⊙Ω-fmap2 (G ⊙∘ ⊙×-fmap F₁ F₂) ⊙Ω-fmap2-fmap (g , idp) (f₁ , idp) (f₂ , idp) = ⊙λ=' (λ {(p , q) → ap2-ap-l (curry g) f₁ p (ap f₂ q) ∙ ap2-ap-r (λ x v → g (f₁ x , v)) f₂ p q}) idp ⊙Ω-fmap2-diag : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙× X ⊙→ Y) → ⊙Ω-fmap2 F ⊙∘ ⊙diag == ⊙Ω-fmap (F ⊙∘ ⊙diag) ⊙Ω-fmap2-diag (f , idp) = ⊙λ=' (ap2-diag (curry f)) idp {- iterated loop spaces. [Ω^] and [Ω^'] iterates [Ω] from different sides: [Ω^ (S n) X = Ω (Ω^ n X)] and [Ω^' (S n) X = Ω^' n (Ω X)]. -} module _ {i} where ⊙Ω^ : (n : ℕ) → Ptd i → Ptd i ⊙Ω^ O X = X ⊙Ω^ (S n) X = ⊙Ω (⊙Ω^ n X) Ω^ : (n : ℕ) → Ptd i → Type i Ω^ n X = de⊙ (⊙Ω^ n X) ⊙Ω^' : (n : ℕ) → Ptd i → Ptd i ⊙Ω^' O X = X ⊙Ω^' (S n) X = (⊙Ω^' n (⊙Ω X)) Ω^' : (n : ℕ) → Ptd i → Type i Ω^' n X = de⊙ (⊙Ω^' n X) {- [⊙Ω^-fmap] and [⊙Ω^-fmap2] for higher loop spaces -} ⊙Ω^-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → X ⊙→ Y → ⊙Ω^ n X ⊙→ ⊙Ω^ n Y ⊙Ω^-fmap O F = F ⊙Ω^-fmap (S n) F = ⊙Ω-fmap (⊙Ω^-fmap n F) Ω^-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → X ⊙→ Y → (de⊙ (⊙Ω^ n X) → de⊙ (⊙Ω^ n Y)) Ω^-fmap n F = fst (⊙Ω^-fmap n F) ⊙Ω^-csmap : ∀ {i₀ i₁ j₀ j₁} (n : ℕ) {X₀ : Ptd i₀} {X₁ : Ptd i₁} {Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁} {hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁} → ⊙CommSquare f g hX hY → ⊙CommSquare (⊙Ω^-fmap n f) (⊙Ω^-fmap n g) (⊙Ω^-fmap n hX) (⊙Ω^-fmap n hY) ⊙Ω^-csmap O cs = cs ⊙Ω^-csmap (S n) cs = ⊙Ω-csmap (⊙Ω^-csmap n cs) ⊙Ω^'-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → X ⊙→ Y → ⊙Ω^' n X ⊙→ ⊙Ω^' n Y ⊙Ω^'-fmap O F = F ⊙Ω^'-fmap (S n) F = ⊙Ω^'-fmap n (⊙Ω-fmap F) ⊙Ω^'-csmap : ∀ {i₀ i₁ j₀ j₁} (n : ℕ) {X₀ : Ptd i₀} {X₁ : Ptd i₁} {Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁} {hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁} → ⊙CommSquare f g hX hY → ⊙CommSquare (⊙Ω^'-fmap n f) (⊙Ω^'-fmap n g) (⊙Ω^'-fmap n hX) (⊙Ω^'-fmap n hY) ⊙Ω^'-csmap O cs = cs ⊙Ω^'-csmap (S n) cs = ⊙Ω^'-csmap n (⊙Ω-csmap cs) Ω^'-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → X ⊙→ Y → (de⊙ (⊙Ω^' n X) → de⊙ (⊙Ω^' n Y)) Ω^'-fmap n F = fst (⊙Ω^'-fmap n F) ⊙Ω^-fmap2 : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → ((X ⊙× Y) ⊙→ Z) → ((⊙Ω^ n X ⊙× ⊙Ω^ n Y) ⊙→ ⊙Ω^ n Z) ⊙Ω^-fmap2 O F = F ⊙Ω^-fmap2 (S n) F = ⊙Ω-fmap2 (⊙Ω^-fmap2 n F) Ω^-fmap2 : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → ((X ⊙× Y) ⊙→ Z) → ((Ω^ n X) × (Ω^ n Y) → Ω^ n Z) Ω^-fmap2 n F = fst (⊙Ω^-fmap2 n F) ⊙Ω^'-fmap2 : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → ((X ⊙× Y) ⊙→ Z) → ((⊙Ω^' n X ⊙× ⊙Ω^' n Y) ⊙→ ⊙Ω^' n Z) ⊙Ω^'-fmap2 O F = F ⊙Ω^'-fmap2 (S n) F = ⊙Ω^'-fmap2 n (⊙Ω-fmap2 F) Ω^'-fmap2 : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → ((X ⊙× Y) ⊙→ Z) → ((Ω^' n X) × (Ω^' n Y) → Ω^' n Z) Ω^'-fmap2 n F = fst (⊙Ω^'-fmap2 n F) ⊙Ω^-fmap-∘ : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : Y ⊙→ Z) (f : X ⊙→ Y) → ⊙Ω^-fmap n (g ⊙∘ f) == ⊙Ω^-fmap n g ⊙∘ ⊙Ω^-fmap n f ⊙Ω^-fmap-∘ O _ _ = idp ⊙Ω^-fmap-∘ (S n) g f = ap ⊙Ω-fmap (⊙Ω^-fmap-∘ n g f) ∙ ⊙Ω-fmap-∘ (⊙Ω^-fmap n g) (⊙Ω^-fmap n f) ⊙Ω^-fmap-idf : ∀ {i} (n : ℕ) {X : Ptd i} → ⊙Ω^-fmap n (⊙idf X) == ⊙idf _ ⊙Ω^-fmap-idf O = idp ⊙Ω^-fmap-idf (S n) = ap ⊙Ω-fmap (⊙Ω^-fmap-idf n) ∙ ⊙Ω-fmap-idf Ω^-fmap-idf : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^-fmap n (⊙idf X) == idf _ Ω^-fmap-idf n = fst= $ ⊙Ω^-fmap-idf n ⊙Ω^'-fmap-idf : ∀ {i} (n : ℕ) {X : Ptd i} → ⊙Ω^'-fmap n (⊙idf X) == ⊙idf _ ⊙Ω^'-fmap-idf O = idp ⊙Ω^'-fmap-idf (S n) = ap (⊙Ω^'-fmap n) ⊙Ω-fmap-idf ∙ ⊙Ω^'-fmap-idf n Ω^'-fmap-idf : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^'-fmap n (⊙idf X) == idf _ Ω^'-fmap-idf n = fst= $ ⊙Ω^'-fmap-idf n ⊙Ω^-fmap-fmap2 : ∀ {i j k l} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (G : Z ⊙→ W) (F : (X ⊙× Y) ⊙→ Z) → ⊙Ω^-fmap n G ⊙∘ ⊙Ω^-fmap2 n F == ⊙Ω^-fmap2 n (G ⊙∘ F) ⊙Ω^-fmap-fmap2 O G F = idp ⊙Ω^-fmap-fmap2 (S n) G F = ⊙Ω-fmap-fmap2 (⊙Ω^-fmap n G) (⊙Ω^-fmap2 n F) ∙ ap ⊙Ω-fmap2 (⊙Ω^-fmap-fmap2 n G F) Ω^-fmap-fmap2 : ∀ {i j k l} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (G : Z ⊙→ W) (F : (X ⊙× Y) ⊙→ Z) → Ω^-fmap n G ∘ Ω^-fmap2 n F == Ω^-fmap2 n (G ⊙∘ F) Ω^-fmap-fmap2 n G F = fst= $ ⊙Ω^-fmap-fmap2 n G F ⊙Ω^-fmap2-fst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → ⊙Ω^-fmap2 n {X} {Y} ⊙fst == ⊙fst ⊙Ω^-fmap2-fst O = idp ⊙Ω^-fmap2-fst (S n) = ap ⊙Ω-fmap2 (⊙Ω^-fmap2-fst n) ∙ ⊙Ω-fmap2-fst Ω^-fmap2-fst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → Ω^-fmap2 n {X} {Y} ⊙fst == fst Ω^-fmap2-fst n = fst= $ ⊙Ω^-fmap2-fst n ⊙Ω^-fmap2-snd : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → ⊙Ω^-fmap2 n {X} {Y} ⊙snd == ⊙snd ⊙Ω^-fmap2-snd O = idp ⊙Ω^-fmap2-snd (S n) = ap ⊙Ω-fmap2 (⊙Ω^-fmap2-snd n) ∙ ⊙Ω-fmap2-snd Ω^-fmap2-snd : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → Ω^-fmap2 n {X} {Y} ⊙snd == snd Ω^-fmap2-snd n = fst= $ ⊙Ω^-fmap2-snd n ⊙Ω^-fmap2-fmap : ∀ {i j k l m} (n : ℕ) {X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m} (G : (U ⊙× V) ⊙→ Z) (F₁ : X ⊙→ U) (F₂ : Y ⊙→ V) → ⊙Ω^-fmap2 n G ⊙∘ ⊙×-fmap (⊙Ω^-fmap n F₁) (⊙Ω^-fmap n F₂) == ⊙Ω^-fmap2 n (G ⊙∘ ⊙×-fmap F₁ F₂) ⊙Ω^-fmap2-fmap O G F₁ F₂ = idp ⊙Ω^-fmap2-fmap (S n) G F₁ F₂ = ⊙Ω-fmap2-fmap (⊙Ω^-fmap2 n G) (⊙Ω^-fmap n F₁) (⊙Ω^-fmap n F₂) ∙ ap ⊙Ω-fmap2 (⊙Ω^-fmap2-fmap n G F₁ F₂) Ω^-fmap2-fmap : ∀ {i j k l m} (n : ℕ) {X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m} (G : (U ⊙× V) ⊙→ Z) (F₁ : X ⊙→ U) (F₂ : Y ⊙→ V) → Ω^-fmap2 n G ∘ ×-fmap (Ω^-fmap n F₁) (Ω^-fmap n F₂) == Ω^-fmap2 n (G ⊙∘ ⊙×-fmap F₁ F₂) Ω^-fmap2-fmap n G F₁ F₂ = fst= $ ⊙Ω^-fmap2-fmap n G F₁ F₂ ⊙Ω^-fmap2-diag : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (F : X ⊙× X ⊙→ Y) → ⊙Ω^-fmap2 n F ⊙∘ ⊙diag == ⊙Ω^-fmap n (F ⊙∘ ⊙diag) ⊙Ω^-fmap2-diag O F = idp ⊙Ω^-fmap2-diag (S n) F = ⊙Ω-fmap2-diag (⊙Ω^-fmap2 n F) ∙ ap ⊙Ω-fmap (⊙Ω^-fmap2-diag n F) Ω^-fmap2-diag : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (F : X ⊙× X ⊙→ Y) → Ω^-fmap2 n F ∘ diag == Ω^-fmap n (F ⊙∘ ⊙diag) Ω^-fmap2-diag n F = fst= $ ⊙Ω^-fmap2-diag n F {- for n ≥ 1, we have a group structure on the loop space -} module _ {i} (n : ℕ) {X : Ptd i} where Ω^S-! : Ω^ (S n) X → Ω^ (S n) X Ω^S-! = Ω-! Ω^S-∙ : Ω^ (S n) X → Ω^ (S n) X → Ω^ (S n) X Ω^S-∙ = Ω-∙ module _ {i} where Ω^'S-! : (n : ℕ) {X : Ptd i} → Ω^' (S n) X → Ω^' (S n) X Ω^'S-! O = Ω-! Ω^'S-! (S n) {X} = Ω^'S-! n {⊙Ω X} Ω^'S-∙ : (n : ℕ) {X : Ptd i} → Ω^' (S n) X → Ω^' (S n) X → Ω^' (S n) X Ω^'S-∙ O = Ω-∙ Ω^'S-∙ (S n) {X} = Ω^'S-∙ n {⊙Ω X} idp^ : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^ n X idp^ n {X} = pt (⊙Ω^ n X) idp^' : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^' n X idp^' n {X} = pt (⊙Ω^' n X) module _ {i} (n : ℕ) {X : Ptd i} where {- Prove these as lemmas now - so we don't have to deal with the n = O case later -} Ω^S-∙-unit-l : (q : Ω^ (S n) X) → (Ω^S-∙ n (idp^ (S n)) q) == q Ω^S-∙-unit-l _ = idp Ω^S-∙-unit-r : (q : Ω^ (S n) X) → (Ω^S-∙ n q (idp^ (S n))) == q Ω^S-∙-unit-r = ∙-unit-r Ω^S-∙-assoc : (p q r : Ω^ (S n) X) → Ω^S-∙ n (Ω^S-∙ n p q) r == Ω^S-∙ n p (Ω^S-∙ n q r) Ω^S-∙-assoc = ∙-assoc Ω^S-!-inv-l : (p : Ω^ (S n) X) → Ω^S-∙ n (Ω^S-! n p) p == idp^ (S n) Ω^S-!-inv-l = !-inv-l Ω^S-!-inv-r : (p : Ω^ (S n) X) → Ω^S-∙ n p (Ω^S-! n p) == idp^ (S n) Ω^S-!-inv-r = !-inv-r module _ {i} where Ω^'S-∙-unit-l : (n : ℕ) {X : Ptd i} (q : Ω^' (S n) X) → (Ω^'S-∙ n (idp^' (S n)) q) == q Ω^'S-∙-unit-l O _ = idp Ω^'S-∙-unit-l (S n) = Ω^'S-∙-unit-l n Ω^'S-∙-unit-r : (n : ℕ) {X : Ptd i} (q : Ω^' (S n) X) → (Ω^'S-∙ n q (idp^' (S n))) == q Ω^'S-∙-unit-r O = ∙-unit-r Ω^'S-∙-unit-r (S n) = Ω^'S-∙-unit-r n Ω^'S-∙-assoc : (n : ℕ) {X : Ptd i} (p q r : Ω^' (S n) X) → Ω^'S-∙ n (Ω^'S-∙ n p q) r == Ω^'S-∙ n p (Ω^'S-∙ n q r) Ω^'S-∙-assoc O = ∙-assoc Ω^'S-∙-assoc (S n) = Ω^'S-∙-assoc n Ω^'S-!-inv-l : (n : ℕ) {X : Ptd i} (p : Ω^' (S n) X) → Ω^'S-∙ n (Ω^'S-! n p) p == idp^' (S n) Ω^'S-!-inv-l O = !-inv-l Ω^'S-!-inv-l (S n) = Ω^'S-!-inv-l n Ω^'S-!-inv-r : (n : ℕ) {X : Ptd i} (p : Ω^' (S n) X) → Ω^'S-∙ n p (Ω^'S-! n p) == idp^' (S n) Ω^'S-!-inv-r O = !-inv-r Ω^'S-!-inv-r (S n) = Ω^'S-!-inv-r n module _ where Ω-fmap-∙ : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) (p q : Ω X) → Ω-fmap F (p ∙ q) == Ω-fmap F p ∙ Ω-fmap F q Ω-fmap-∙ (f , idp) p q = ap-∙ f p q Ω^S-fmap-∙ : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) (p q : Ω^ (S n) X) → Ω^-fmap (S n) F (Ω^S-∙ n p q) == Ω^S-∙ n (Ω^-fmap (S n) F p) (Ω^-fmap (S n) F q) Ω^S-fmap-∙ n F = Ω-fmap-∙ (⊙Ω^-fmap n F) Ω^'S-fmap-∙ : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) (p q : Ω^' (S n) X) → Ω^'-fmap (S n) F (Ω^'S-∙ n p q) == Ω^'S-∙ n (Ω^'-fmap (S n) F p) (Ω^'-fmap (S n) F q) Ω^'S-fmap-∙ O = Ω-fmap-∙ Ω^'S-fmap-∙ (S n) F = Ω^'S-fmap-∙ n (⊙Ω-fmap F) {- [Ω^] preserves (pointed) equivalences -} module _ {i j} {X : Ptd i} {Y : Ptd j} where Ω^-isemap : (n : ℕ) (F : X ⊙→ Y) (e : is-equiv (fst F)) → is-equiv (Ω^-fmap n F) Ω^-isemap O F e = e Ω^-isemap (S n) F e = Ω-isemap (⊙Ω^-fmap n F) (Ω^-isemap n F e) ⊙Ω^-isemap = Ω^-isemap Ω^-emap : (n : ℕ) → X ⊙≃ Y → Ω^ n X ≃ Ω^ n Y Ω^-emap n (F , e) = Ω^-fmap n F , Ω^-isemap n F e ⊙Ω^-emap : (n : ℕ) → X ⊙≃ Y → ⊙Ω^ n X ⊙≃ ⊙Ω^ n Y ⊙Ω^-emap n (F , e) = ⊙Ω^-fmap n F , ⊙Ω^-isemap n F e ⊙Ω^-csemap : ∀ {i₀ i₁ j₀ j₁} (n : ℕ) {X₀ : Ptd i₀} {X₁ : Ptd i₁} {Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁} {hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁} → ⊙CommSquareEquiv f g hX hY → ⊙CommSquareEquiv (⊙Ω^-fmap n f) (⊙Ω^-fmap n g) (⊙Ω^-fmap n hX) (⊙Ω^-fmap n hY) ⊙Ω^-csemap n {hX = hX} {hY} (cs , hX-ise , hY-ise) = ⊙Ω^-csmap n cs , Ω^-isemap n hX hX-ise , Ω^-isemap n hY hY-ise {- [Ω^'] preserves (pointed) equivalences too -} module _ {i j} where Ω^'-isemap : {X : Ptd i} {Y : Ptd j} (n : ℕ) (F : X ⊙→ Y) (e : is-equiv (fst F)) → is-equiv (Ω^'-fmap n F) Ω^'-isemap O F e = e Ω^'-isemap (S n) F e = Ω^'-isemap n (⊙Ω-fmap F) (Ω-isemap F e) ⊙Ω^'-isemap = Ω^'-isemap Ω^'-emap : {X : Ptd i} {Y : Ptd j} (n : ℕ) → X ⊙≃ Y → Ω^' n X ≃ Ω^' n Y Ω^'-emap n (F , e) = Ω^'-fmap n F , Ω^'-isemap n F e ⊙Ω^'-emap : {X : Ptd i} {Y : Ptd j} (n : ℕ) → X ⊙≃ Y → ⊙Ω^' n X ⊙≃ ⊙Ω^' n Y ⊙Ω^'-emap n (F , e) = ⊙Ω^'-fmap n F , ⊙Ω^'-isemap n F e ⊙Ω^'-csemap : ∀ {i₀ i₁ j₀ j₁} (n : ℕ) {X₀ : Ptd i₀} {X₁ : Ptd i₁} {Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁} {hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁} → ⊙CommSquareEquiv f g hX hY → ⊙CommSquareEquiv (⊙Ω^'-fmap n f) (⊙Ω^'-fmap n g) (⊙Ω^'-fmap n hX) (⊙Ω^'-fmap n hY) ⊙Ω^'-csemap n {hX = hX} {hY} (cs , hX-ise , hY-ise) = ⊙Ω^'-csmap n cs , Ω^'-isemap n hX hX-ise , Ω^'-isemap n hY hY-ise Ω^-level : ∀ {i} (m : ℕ₋₂) (n : ℕ) (X : Ptd i) → (has-level (⟨ n ⟩₋₂ +2+ m) (de⊙ X) → has-level m (Ω^ n X)) Ω^-level m O X pX = pX Ω^-level m (S n) X pX = has-level-apply (Ω^-level (S m) n X (transport (λ k → has-level k (de⊙ X)) (! (+2+-βr ⟨ n ⟩₋₂ m)) pX)) (idp^ n) (idp^ n) {- As for the levels of [Ω^'], these special cases can avoid trailing constants, and it seems we only need the following two special cases. -} Ω^'-is-set : ∀ {i} (n : ℕ) (X : Ptd i) → (has-level ⟨ n ⟩ (de⊙ X) → is-set (Ω^' n X)) Ω^'-is-set O X pX = pX Ω^'-is-set (S n) X pX = Ω^'-is-set n (⊙Ω X) (has-level-apply pX (pt X) (pt X)) Ω^'-is-prop : ∀ {i} (n : ℕ) (X : Ptd i) → (has-level ⟨ n ⟩₋₁ (de⊙ X) → is-prop (Ω^' n X)) Ω^'-is-prop O X pX = pX Ω^'-is-prop (S n) X pX = Ω^'-is-prop n (⊙Ω X) (has-level-apply pX (pt X) (pt X)) Ω^-conn : ∀ {i} (m : ℕ₋₂) (n : ℕ) (X : Ptd i) → (is-connected (⟨ n ⟩₋₂ +2+ m) (de⊙ X)) → is-connected m (Ω^ n X) Ω^-conn m O X pX = pX Ω^-conn m (S n) X pX = path-conn $ Ω^-conn (S m) n X $ transport (λ k → is-connected k (de⊙ X)) (! (+2+-βr ⟨ n ⟩₋₂ m)) pX {- Eckmann-Hilton argument -} module _ {i} {X : Ptd i} where Ω-fmap2-∙ : (α β : Ω^ 2 X) → ap2 _∙_ α β == Ω^S-∙ 1 α β Ω-fmap2-∙ α β = ap2-out _∙_ α β ∙ ap2 _∙_ (lemma α) (ap-idf β) where lemma : ∀ {i} {A : Type i} {x y : A} {p q : x == y} (α : p == q) → ap (λ r → r ∙ idp) α == ∙-unit-r p ∙ α ∙' ! (∙-unit-r q) lemma {p = idp} idp = idp ⊙Ω-fmap2-∙ : ⊙Ω-fmap2 (⊙Ω-∙ {X = X}) == ⊙Ω-∙ ⊙Ω-fmap2-∙ = ⊙λ=' (uncurry Ω-fmap2-∙) idp Ω^2-∙-comm : (α β : Ω^ 2 X) → Ω^S-∙ 1 α β == Ω^S-∙ 1 β α Ω^2-∙-comm α β = ! (⋆2=Ω^S-∙ α β) ∙ ⋆2=⋆'2 α β ∙ ⋆'2=Ω^S-∙ α β where ⋆2=Ω^S-∙ : (α β : Ω^ 2 X) → α ⋆2 β == Ω^S-∙ 1 α β ⋆2=Ω^S-∙ α β = ap (λ π → π ∙ β) (∙-unit-r α) ⋆'2=Ω^S-∙ : (α β : Ω^ 2 X) → α ⋆'2 β == Ω^S-∙ 1 β α ⋆'2=Ω^S-∙ α β = ap (λ π → β ∙ π) (∙-unit-r α) {- NOT USED and DUPLICATE of [Ω^S-Trunc-preiso] in lib.groups.HomotopyGroup. XXX Should be an equivalence. {- Pushing truncation through loop space -} module _ {i} where Trunc-Ω^-conv : (m : ℕ₋₂) (n : ℕ) (X : Ptd i) → ⊙Trunc m (⊙Ω^ n X) == ⊙Ω^ n (⊙Trunc (⟨ n ⟩₋₂ +2+ m) X) Trunc-Ω^-conv m O X = idp Trunc-Ω^-conv m (S n) X = ⊙Trunc m (⊙Ω^ (S n) X) =⟨ ! (pair= (Trunc=-path [ _ ] [ _ ]) (↓-idf-ua-in _ idp)) ⟩ ⊙Ω (⊙Trunc (S m) (⊙Ω^ n X)) =⟨ ap ⊙Ω (Trunc-Ω^-conv (S m) n X) ⟩ ⊙Ω^ (S n) (⊙Trunc (⟨ n ⟩₋₂ +2+ S m) X) =⟨ +2+-βr ⟨ n ⟩₋₂ m |in-ctx (λ k → ⊙Ω^ (S n) (⊙Trunc k X)) ⟩ ⊙Ω^ (S n) (⊙Trunc (S ⟨ n ⟩₋₂ +2+ m) X) =∎ Ω-Trunc-econv : (m : ℕ₋₂) (X : Ptd i) → Ω (⊙Trunc (S m) X) ≃ Trunc m (Ω X) Ω-Trunc-econv m X = Trunc=-equiv [ pt X ] [ pt X ] -} {- Our definition of [Ω^] builds up loops from the outside, - but this is equivalent to building up from the inside -} module _ {i} where ⊙Ω^-Ω-split : (n : ℕ) (X : Ptd i) → (⊙Ω^ (S n) X ⊙→ ⊙Ω^ n (⊙Ω X)) ⊙Ω^-Ω-split O _ = (idf _ , idp) ⊙Ω^-Ω-split (S n) X = ⊙Ω-fmap (⊙Ω^-Ω-split n X) Ω^-Ω-split : (n : ℕ) (X : Ptd i) → (Ω^ (S n) X → Ω^ n (⊙Ω X)) Ω^-Ω-split n X = fst (⊙Ω^-Ω-split n X) Ω^S-Ω-split-∙ : (n : ℕ) (X : Ptd i) (p q : Ω^ (S (S n)) X) → Ω^-Ω-split (S n) X (Ω^S-∙ (S n) p q) == Ω^S-∙ n (Ω^-Ω-split (S n) X p) (Ω^-Ω-split (S n) X q) Ω^S-Ω-split-∙ n X p q = Ω^S-fmap-∙ 0 (⊙Ω^-Ω-split n X) p q Ω^-Ω-split-is-equiv : (n : ℕ) (X : Ptd i) → is-equiv (Ω^-Ω-split n X) Ω^-Ω-split-is-equiv O X = is-eq (idf _) (idf _) (λ _ → idp) (λ _ → idp) Ω^-Ω-split-is-equiv (S n) X = ⊙Ω^-isemap 1 (⊙Ω^-Ω-split n X) (Ω^-Ω-split-is-equiv n X) Ω^-Ω-split-equiv : (n : ℕ) (X : Ptd i) → Ω^ (S n) X ≃ Ω^ n (⊙Ω X) Ω^-Ω-split-equiv n X = _ , Ω^-Ω-split-is-equiv n X module _ {i j} (X : Ptd i) (Y : Ptd j) where Ω-× : Ω (X ⊙× Y) ≃ Ω X × Ω Y Ω-× = equiv (λ p → fst×= p , snd×= p) (λ p → pair×= (fst p) (snd p)) (λ p → pair×= (fst×=-β (fst p) (snd p)) (snd×=-β (fst p) (snd p))) (! ∘ pair×=-η) ⊙Ω-× : ⊙Ω (X ⊙× Y) ⊙≃ ⊙Ω X ⊙× ⊙Ω Y ⊙Ω-× = ≃-to-⊙≃ Ω-× idp Ω-×-∙ : ∀ (p q : Ω (X ⊙× Y)) → –> Ω-× (p ∙ q) == (fst (–> Ω-× p) ∙ fst (–> Ω-× q) , snd (–> Ω-× p) ∙ snd (–> Ω-× q)) Ω-×-∙ p q = pair×= (Ω-fmap-∙ ⊙fst p q) (Ω-fmap-∙ ⊙snd p q) module _ {i j} where ⊙Ω^-× : ∀ (n : ℕ) (X : Ptd i) (Y : Ptd j) → ⊙Ω^ n (X ⊙× Y) ⊙≃ ⊙Ω^ n X ⊙× ⊙Ω^ n Y ⊙Ω^-× O _ _ = ⊙ide _ ⊙Ω^-× (S n) X Y = ⊙Ω-× (⊙Ω^ n X) (⊙Ω^ n Y) ⊙∘e ⊙Ω-emap (⊙Ω^-× n X Y) ⊙Ω^'-× : ∀ (n : ℕ) (X : Ptd i) (Y : Ptd j) → ⊙Ω^' n (X ⊙× Y) ⊙≃ ⊙Ω^' n X ⊙× ⊙Ω^' n Y ⊙Ω^'-× O _ _ = ⊙ide _ ⊙Ω^'-× (S n) X Y = ⊙Ω^'-× n (⊙Ω X) (⊙Ω Y) ⊙∘e ⊙Ω^'-emap n (⊙Ω-× X Y)
{ "alphanum_fraction": 0.4348333687, "avg_line_length": 34.0144404332, "ext": "agda", "hexsha": "e00a140c46c58d29d367c2faceb7db48143cacef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/LoopSpace.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/LoopSpace.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/LoopSpace.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 11870, "size": 18844 }
-- Step-indexed logical relations based on relational big-step semantics -- for ILC-based incremental computation. -- Goal: prove the fundamental lemma for a ternary logical relation (change -- validity) across t1, dt and t2. The fundamnetal lemma relates t, derive t and -- t. That is, we relate a term evaluated relative to an original environment, -- its derivative evaluated relative to a valid environment change, and the -- original term evaluated relative to an updated environment. -- -- Missing goal: here ⊕ isn't defined and wouldn't yet agree with change -- validity. -- -- This development is strongly inspired by "Imperative self-adjusting -- computation" (ISAC below), POPL'08, including the choice of using ANF syntax -- to simplify some step-indexing proofs. -- -- In fact, this development is typed, hence some parts of the model are closer -- to Ahmed (ESOP 2006), "Step-Indexed Syntactic Logical Relations for Recursive -- and Quantified Types". But for many relevant aspects, the two papers are -- very similar. In fact, I first defined similar logical relations -- without types, but they require a trickier recursion scheme for well-founded -- recursion, and I failed to do any proof in that setting. -- -- The original inspiration came from Dargaye and Leroy (2010), "A verified -- framework for higher-order uncurrying optimizations", but we ended up looking -- at their source. -- -- The main insight from the ISAC paper missing from the other one is how to -- step-index a big-step semantics correctly: just ensure that the steps in the -- big-step semantics agree with the ones in the small-step semantics. *Then* -- everything just works with big-step semantics. Quite a few other details are -- fiddly, but those are the same in small-step semantics. -- -- The crucial novelty here is that we relate two computations on different -- inputs. So we only conclude their results are related if both terminate; the -- relation for computations does not prove that if the first computation -- terminates, then the second terminates as well. -- -- Instead, e1, de and e2 are related at k steps if, whenever e1 terminates in j -- < k steps and e2 terminates with any step count, then de terminates (with any -- step count) and their results are related at k - j steps. -- -- Even when e1 terminates in j steps implies that e2 terminates, e2 gets no -- bound. Similarly, we do not bound in how many steps de terminates, since on -- big inputs it might take long. module Thesis.SIRelBigStep.README where -- Base language import Thesis.SIRelBigStep.Lang -- Which comprises: import Thesis.SIRelBigStep.Types import Thesis.SIRelBigStep.Syntax -- Denotational semantics: import Thesis.SIRelBigStep.DenSem -- Big-step operations semantics: import Thesis.SIRelBigStep.OpSem -- Show these two semantics are equivalent: import Thesis.SIRelBigStep.SemEquiv -- It follows that the big-step semantics is deterministic. -- To show that the big-step semantics is total, give a proof of (CBV) strong -- normalization for this calculus, using a unary logical relation. -- This is just TAPL Ch. 12, adapted to our environment-based big-step -- semantics. import Thesis.SIRelBigStep.Normalization -- Change language import Thesis.SIRelBigStep.DLang -- Which comprises: import Thesis.SIRelBigStep.DSyntax -- The operational semantics also defines ⊕: import Thesis.SIRelBigStep.DOpSem -- Differentiation: import Thesis.SIRelBigStep.DLangDerive -- Small extra arithmetic lemmas for step-indexes. import Thesis.SIRelBigStep.ArithExtra -- Step-indexed logical relations for validity, their monotonicity and agreement with ⊕ import Thesis.SIRelBigStep.IlcSILR -- Prove the fundamental property import Thesis.SIRelBigStep.FundamentalProperty -- Conclude our thesis import Thesis.SIRelBigStep.DeriveCorrect
{ "alphanum_fraction": 0.7790026247, "avg_line_length": 43.2954545455, "ext": "agda", "hexsha": "61f802b40e49d82271f16a05804f30e71d2d3cdc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/SIRelBigStep/README.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/SIRelBigStep/README.agda", "max_line_length": 87, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/SIRelBigStep/README.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 894, "size": 3810 }
module PiFrac.Eval where open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Data.List as L hiding (_∷_) open import Data.Maybe open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function using (_∘_) open import PiFrac.Syntax open import PiFrac.Opsem open import PiFrac.NoRepeat -- Stuck states must be either of the form [ c ∣ v ∣ ☐ ] or ⊠ Stuck : ∀ {st} → is-stuck st → (Σ[ A ∈ 𝕌 ] Σ[ B ∈ 𝕌 ] Σ[ c ∈ A ↔ B ] Σ[ v ∈ ⟦ B ⟧ ] st ≡ [ c ∣ v ∣ ☐ ]) ⊎ st ≡ ⊠ Stuck {⟨ uniti₊l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ unite₊l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ swap₊ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocl₊ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocr₊ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ unite⋆l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ uniti⋆l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ swap⋆ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocl⋆ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocr⋆ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ dist ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ factor ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ id↔ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₂)) Stuck {⟨ ηₓ v ∣ tt ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦η)) Stuck {⟨ εₓ v ∣ v' , ↻ ∣ κ ⟩} stuck with v ≟ v' ... | yes eq = ⊥-elim (stuck (_ , ↦ε₁ {eq = eq})) ... | no neq = ⊥-elim (stuck (_ , ↦ε₂ {neq = neq})) Stuck {⟨ c₁ ⨾ c₂ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₃)) Stuck {⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₄)) Stuck {⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₅)) Stuck {⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₆)) Stuck {[ c ∣ v ∣ ☐ ]} stuck = inj₁ (_ , _ , _ , _ , refl) Stuck {[ c ∣ v ∣ ☐⨾ c₂ • κ ]} stuck = ⊥-elim (stuck (_ , ↦₇)) Stuck {[ c ∣ v ∣ c₁ ⨾☐• κ ]} stuck = ⊥-elim (stuck (_ , ↦₁₀)) Stuck {[ c ∣ v ∣ ☐⊕ c₂ • κ ]} stuck = ⊥-elim (stuck (_ , ↦₁₁)) Stuck {[ c ∣ v ∣ c₁ ⊕☐• κ ]} stuck = ⊥-elim (stuck (_ , ↦₁₂)) Stuck {[ c ∣ v ∣ ☐⊗[ c₂ , y ]• κ ]} stuck = ⊥-elim (stuck (_ , ↦₈)) Stuck {[ c ∣ v ∣ [ c₁ , x ]⊗☐• κ ]} stuck = ⊥-elim (stuck (_ , ↦₉)) Stuck {⊠} stuck = inj₂ refl -- Auxiliary function for forward evaluator ev : ∀ {A B κ} → (c : A ↔ B) (v : ⟦ A ⟧) → Σ[ v' ∈ ⟦ B ⟧ ] ⟨ c ∣ v ∣ κ ⟩ ↦* [ c ∣ v' ∣ κ ] ⊎ ⟨ c ∣ v ∣ κ ⟩ ↦* ⊠ ev uniti₊l v = inj₁ ((inj₂ v) , ↦₁ ∷ ◾) ev unite₊l (inj₂ y) = inj₁ (y , ↦₁ ∷ ◾) ev swap₊ (inj₁ v) = inj₁ (inj₂ v , (↦₁ ∷ ◾)) ev swap₊ (inj₂ v) = inj₁ (inj₁ v , (↦₁ ∷ ◾)) ev assocl₊ (inj₁ v) = inj₁ (inj₁ (inj₁ v) , (↦₁ ∷ ◾)) ev assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₁ (inj₂ v) , (↦₁ ∷ ◾)) ev assocl₊ (inj₂ (inj₂ v)) = inj₁ (inj₂ v , (↦₁ ∷ ◾)) ev assocr₊ (inj₁ (inj₁ v)) = inj₁ (inj₁ v , (↦₁ ∷ ◾)) ev assocr₊ (inj₁ (inj₂ v)) = inj₁ (inj₂ (inj₁ v) , (↦₁ ∷ ◾)) ev assocr₊ (inj₂ v) = inj₁ (inj₂ (inj₂ v) , (↦₁ ∷ ◾)) ev unite⋆l (tt , v) = inj₁ (v , (↦₁ ∷ ◾)) ev uniti⋆l v = inj₁ ((tt , v) , (↦₁ ∷ ◾)) ev swap⋆ (x , y) = inj₁ ((y , x) , (↦₁ ∷ ◾)) ev assocl⋆ (x , (y , z)) = inj₁ (((x , y) , z) , (↦₁ ∷ ◾)) ev assocr⋆ ((x , y) , z) = inj₁ ((x , (y , z)) , (↦₁ ∷ ◾)) ev dist (inj₁ x , z) = inj₁ (inj₁ (x , z) , (↦₁ ∷ ◾)) ev dist (inj₂ y , z) = inj₁ (inj₂ (y , z) , (↦₁ ∷ ◾)) ev factor (inj₁ (x , z)) = inj₁ ((inj₁ x , z) , (↦₁ ∷ ◾)) ev factor (inj₂ (y , z)) = inj₁ ((inj₂ y , z) , (↦₁ ∷ ◾)) ev id↔ v = inj₁ (v , (↦₂ ∷ ◾)) ev {κ = κ} (c₁ ⨾ c₂) v₁ with ev {κ = ☐⨾ c₂ • κ} c₁ v₁ ... | inj₁ (v₂ , c₁↦*) with ev {κ = c₁ ⨾☐• κ} c₂ v₂ ... | inj₁ (v₃ , c₂↦*) = inj₁ (v₃ , ((↦₃ ∷ c₁↦* ++↦ (↦₇ ∷ ◾)) ++↦ (c₂↦* ++↦ (↦₁₀ ∷ ◾)))) ... | inj₂ c₂↦* = inj₂ ((↦₃ ∷ c₁↦* ++↦ (↦₇ ∷ ◾)) ++↦ c₂↦*) ev {κ = κ} (c₁ ⨾ c₂) v₁ | inj₂ c₁↦* = inj₂ (↦₃ ∷ c₁↦*) ev {κ = κ} (c₁ ⊕ c₂) (inj₁ x) with ev {κ = ☐⊕ c₂ • κ} c₁ x ... | inj₁ (x' , c₁↦*) = inj₁ (inj₁ x' , ↦₄ ∷ c₁↦* ++↦ (↦₁₁ ∷ ◾)) ... | inj₂ c₁↦* = inj₂ (↦₄ ∷ c₁↦*) ev {κ = κ} (c₁ ⊕ c₂) (inj₂ y) with ev {κ = c₁ ⊕☐• κ} c₂ y ... | inj₁ (y' , c₂↦*) = inj₁ (inj₂ y' , ↦₅ ∷ c₂↦* ++↦ (↦₁₂ ∷ ◾)) ... | inj₂ c₂↦* = inj₂ (↦₅ ∷ c₂↦*) ev {κ = κ} (c₁ ⊗ c₂) (x , y) with ev {κ = ☐⊗[ c₂ , y ]• κ} c₁ x ... | inj₁ (x' , c₁↦*) with ev {κ = [ c₁ , x' ]⊗☐• κ} c₂ y ... | inj₁ (y' , c₂↦*) = inj₁ ((x' , y') , ((↦₆ ∷ c₁↦*) ++↦ ((↦₈ ∷ c₂↦*) ++↦ (↦₉ ∷ ◾)))) ... | inj₂ c₂↦* = inj₂ ((↦₆ ∷ c₁↦*) ++↦ (↦₈ ∷ c₂↦*)) ev {κ = κ} (c₁ ⊗ c₂) (x , y) | inj₂ c₁↦* = inj₂ (↦₆ ∷ c₁↦*) ev (ηₓ v) tt = inj₁ ((v , ↻) , (↦η ∷ ◾)) ev (εₓ v) (v' , ↻) with v ≟ v' ... | yes eq = inj₁ (tt , (↦ε₁ {eq = eq} ∷ ◾)) ... | no neq = inj₂ (↦ε₂ {neq = neq} ∷ ◾) -- Forward evaluator for PiFrac eval : ∀ {A B} → (c : A ↔ B) → ⟦ A ⟧ → Maybe ⟦ B ⟧ eval c v = [ just ∘ proj₁ , (λ _ → nothing) ]′ (ev {κ = ☐} c v) -- Forward evaluator which returns execution trace evalₜᵣ : ∀ {A B} → (c : A ↔ B) → ⟦ A ⟧ → List State evalₜᵣ c v = [ convert ∘ proj₂ , convert ]′ (ev {κ = ☐} c v) where convert : ∀ {st st'} → st ↦* st' → List State convert (◾ {st}) = st L.∷ [] convert (_∷_ {st} r rs) = st L.∷ convert rs -- Auxiliary function for backward evaluator evᵣₑᵥ : ∀ {A B κ} → (c : A ↔ B) (v : ⟦ B ⟧) → Σ[ v' ∈ ⟦ A ⟧ ] [ c ∣ v ∣ κ ] ↦ᵣₑᵥ* ⟨ c ∣ v' ∣ κ ⟩ ⊎ ∃[ A ] (∃[ v' ] (∃[ v'' ] (∃[ κ' ] (v' ≢ v'' × [ c ∣ v ∣ κ ] ↦ᵣₑᵥ* [ ηₓ {A} v' ∣ (v'' , ↻) ∣ κ' ])))) evᵣₑᵥ uniti₊l (inj₂ v) = inj₁ (v , (↦₁ ᵣₑᵥ ∷ ◾)) evᵣₑᵥ unite₊l v = inj₁ ((inj₂ v) , (↦₁ ᵣₑᵥ ∷ ◾)) evᵣₑᵥ swap₊ (inj₁ x) = inj₁ (inj₂ x , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ swap₊ (inj₂ y) = inj₁ (inj₁ y , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl₊ (inj₁ (inj₁ x)) = inj₁ (inj₁ x , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl₊ (inj₁ (inj₂ y)) = inj₁ (inj₂ (inj₁ y) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl₊ (inj₂ z) = inj₁ (inj₂ (inj₂ z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr₊ (inj₁ x) = inj₁ (inj₁ (inj₁ x) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr₊ (inj₂ (inj₁ y)) = inj₁ (inj₁ (inj₂ y) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr₊ (inj₂ (inj₂ z)) = inj₁ (inj₂ z , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ unite⋆l v = inj₁ ((tt , v) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ uniti⋆l (tt , v) = inj₁ (v , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ swap⋆ (x , y) = inj₁ ((y , x) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl⋆ ((x , y) , z) = inj₁ ((x , (y , z)) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr⋆ (x , (y , z)) = inj₁ (((x , y) , z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ dist (inj₁ (x , z)) = inj₁ ((inj₁ x , z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ dist (inj₂ (y , z)) = inj₁ ((inj₂ y , z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ factor (inj₁ x , z) = inj₁ (inj₁ (x , z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ factor (inj₂ y , z) = inj₁ (inj₂ (y , z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ id↔ v = inj₁ (v , (↦₂ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ {κ = κ} (c₁ ⨾ c₂) v₃ with evᵣₑᵥ {κ = c₁ ⨾☐• κ} c₂ v₃ ... | inj₁ (v₂ , rs) with evᵣₑᵥ {κ = ☐⨾ c₂ • κ} c₁ v₂ ... | inj₁ (v₁ , rs') = inj₁ (v₁ , ((↦₁₀ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₇ ᵣₑᵥ) ∷ ◾))) ++↦ᵣₑᵥ (rs' ++↦ᵣₑᵥ ((↦₃ ᵣₑᵥ) ∷ ◾))) ... | inj₂ (_ , _ , _ , _ , neq , rs') = inj₂ (_ , _ , _ , _ , neq , (((↦₁₀ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₇ ᵣₑᵥ) ∷ ◾))) ++↦ᵣₑᵥ rs')) evᵣₑᵥ (c₁ ⨾ c₂) v₃ | inj₂ (_ , _ , _ , _ , neq , rs) = inj₂ (_ , _ , _ , _ , neq , (((↦₁₀ ᵣₑᵥ) ∷ ◾) ++↦ᵣₑᵥ rs)) evᵣₑᵥ {κ = κ} (c₁ ⊕ c₂) (inj₁ x) with evᵣₑᵥ {κ = ☐⊕ c₂ • κ} c₁ x ... | inj₁ (x' , rs) = inj₁ (inj₁ x' , (↦₁₁ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₄ ᵣₑᵥ) ∷ ◾))) ... | inj₂ (_ , _ , _ , _ , neq , rs) = inj₂ (_ , _ , _ , _ , neq , (↦₁₁ ᵣₑᵥ) ∷ rs) evᵣₑᵥ {κ = κ} (c₁ ⊕ c₂) (inj₂ y) with evᵣₑᵥ {κ = c₁ ⊕☐• κ} c₂ y ... | inj₁ (y' , rs) = inj₁ (inj₂ y' , (↦₁₂ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₅ ᵣₑᵥ) ∷ ◾))) ... | inj₂ (_ , _ , _ , _ , neq , rs) = inj₂ (_ , _ , _ , _ , neq , (↦₁₂ ᵣₑᵥ) ∷ rs) evᵣₑᵥ {κ = κ} (c₁ ⊗ c₂) (x , y) with evᵣₑᵥ {κ = [ c₁ , x ]⊗☐• κ} c₂ y ... | inj₁ (y' , rs) with evᵣₑᵥ {κ = ☐⊗[ c₂ , y' ]• κ} c₁ x ... | inj₁ (x' , rs') = inj₁ ((x' , y') , (((↦₉ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₈ ᵣₑᵥ) ∷ ◾))) ++↦ᵣₑᵥ (rs' ++↦ᵣₑᵥ ((↦₆ ᵣₑᵥ) ∷ ◾)))) ... | inj₂ (_ , _ , _ , _ , neq , rs') = inj₂ (_ , _ , _ , _ , neq , (((↦₉ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₈ ᵣₑᵥ) ∷ ◾))) ++↦ᵣₑᵥ rs')) evᵣₑᵥ (c₁ ⊗ c₂) (x , y) | inj₂ (_ , _ , _ , _ , neq , rs) = inj₂ (_ , _ , _ , _ , neq , ((↦₉ ᵣₑᵥ) ∷ rs)) evᵣₑᵥ (ηₓ v) (v' , ↻) with v ≟ v' ... | yes refl = inj₁ (tt , ((↦η ᵣₑᵥ) ∷ ◾)) ... | no neq = inj₂ (_ , _ , _ , _ , neq , ◾) evᵣₑᵥ (εₓ v) tt = inj₁ ((v , ↻) , ((↦ε₁ {eq = refl} ᵣₑᵥ) ∷ ◾)) -- Backward evaluator for Pi evalᵣₑᵥ : ∀ {A B} → (c : A ↔ B) → ⟦ B ⟧ → Maybe ⟦ A ⟧ evalᵣₑᵥ c v = [ just ∘ proj₁ , (λ _ → nothing) ]′ (evᵣₑᵥ {κ = ☐} c v)
{ "alphanum_fraction": 0.4382745472, "avg_line_length": 54.1419354839, "ext": "agda", "hexsha": "04bafb94ba90c4debc8181e0de4d78b3e392577b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiFrac/Eval.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiFrac/Eval.agda", "max_line_length": 123, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiFrac/Eval.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 5331, "size": 8392 }
{-# OPTIONS --no-termination-check --universe-polymorphism #-} module PiF where open import Level open import Data.Empty open import Data.Unit open import Data.Bool open import Data.Sum hiding (map) open import Data.Product hiding (map) open import Relation.Binary.PropositionalEquality hiding (sym; [_]) open import Singleton infixr 30 _⟷_ infixr 30 _⟺_ infixr 20 _◎_ ------------------------------------------------------------------------------ -- A universe of our value types mutual data BF : Set zero where ZEROF : BF ONEF : BF PLUSF : BF → BF → BF TIMESF : BF → BF → BF RECIP : BF → BF --data VF : Set where -- unitF : -- data hasType : -- normalize : (b : BF) → (hasType v b) → normalform v b -- fractional types are un-interpreted data Reciprocal (A : Set) : Set where rec : (b : A) → ((x : Singleton b) → ⊤) → Reciprocal A data Recip (A : Set) : Set where recip : (a : A) → Recip A ⟦_⟧F : BF → Set zero ⟦ ZEROF ⟧F = ⊥ ⟦ ONEF ⟧F = ⊤ ⟦ PLUSF b1 b2 ⟧F = ⟦ b1 ⟧F ⊎ ⟦ b2 ⟧F ⟦ TIMESF b1 b2 ⟧F = ⟦ b1 ⟧F × ⟦ b2 ⟧F ⟦ RECIP b ⟧F = -- Σ ⟦ b ⟧F (λ v → ((x : Singleton v) → ⊤)) Reciprocal ⟦ b ⟧F ------------------------------------------------------------------------------ -- Primitive isomorphisms data _⟷_ : BF → BF → Set where -- (+,0) commutative monoid unite₊ : { b : BF } → PLUSF ZEROF b ⟷ b uniti₊ : { b : BF } → b ⟷ PLUSF ZEROF b swap₊ : { b₁ b₂ : BF } → PLUSF b₁ b₂ ⟷ PLUSF b₂ b₁ assocl₊ : { b₁ b₂ b₃ : BF } → PLUSF b₁ (PLUSF b₂ b₃) ⟷ PLUSF (PLUSF b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : BF } → PLUSF (PLUSF b₁ b₂) b₃ ⟷ PLUSF b₁ (PLUSF b₂ b₃) -- (*,1) commutative monoid unite⋆ : { b : BF } → TIMESF ONEF b ⟷ b uniti⋆ : { b : BF } → b ⟷ TIMESF ONEF b swap⋆ : { b₁ b₂ : BF } → TIMESF b₁ b₂ ⟷ TIMESF b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : BF } → TIMESF b₁ (TIMESF b₂ b₃) ⟷ TIMESF (TIMESF b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : BF } → TIMESF (TIMESF b₁ b₂) b₃ ⟷ TIMESF b₁ (TIMESF b₂ b₃) -- * distributes over + dist : { b₁ b₂ b₃ : BF } → TIMESF (PLUSF b₁ b₂) b₃ ⟷ PLUSF (TIMESF b₁ b₃) (TIMESF b₂ b₃) factor : { b₁ b₂ b₃ : BF } → PLUSF (TIMESF b₁ b₃) (TIMESF b₂ b₃) ⟷ TIMESF (PLUSF b₁ b₂) b₃ -- id id⟷ : { b : BF } → b ⟷ b adjointP : { b₁ b₂ : BF } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁) adjointP unite₊ = uniti₊ adjointP uniti₊ = unite₊ adjointP swap₊ = swap₊ adjointP assocl₊ = assocr₊ adjointP assocr₊ = assocl₊ adjointP unite⋆ = uniti⋆ adjointP uniti⋆ = unite⋆ adjointP swap⋆ = swap⋆ adjointP assocl⋆ = assocr⋆ adjointP assocr⋆ = assocl⋆ adjointP dist = factor adjointP factor = dist adjointP id⟷ = id⟷ evalP : { b₁ b₂ : BF } → (b₁ ⟷ b₂) → ⟦ b₁ ⟧F → ⟦ b₂ ⟧F evalP unite₊ (inj₁ ()) evalP unite₊ (inj₂ v) = v evalP uniti₊ v = inj₂ v evalP swap₊ (inj₁ v) = inj₂ v evalP swap₊ (inj₂ v) = inj₁ v evalP assocl₊ (inj₁ v) = inj₁ (inj₁ v) evalP assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) evalP assocl₊ (inj₂ (inj₂ v)) = inj₂ v evalP assocr₊ (inj₁ (inj₁ v)) = inj₁ v evalP assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) evalP assocr₊ (inj₂ v) = inj₂ (inj₂ v) evalP unite⋆ (tt , v) = v evalP uniti⋆ v = (tt , v) evalP swap⋆ (v₁ , v₂) = (v₂ , v₁) evalP assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) evalP assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) evalP dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) evalP dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) evalP factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃) evalP factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) evalP id⟷ v = v -- normalize values in BF to x * 1/y and then decide equality of normalized values -- _≡B_ {b₁ = ONEF} {b₂ = ONEF} tt tt = true --_≡B_ {b₁ = TIMESF d c} {b₂ = TIMESF c d} (v₁ , v₃) (v₄ , v₂) = -- _≡B_ {b₁ = d} {b₂ = d} v₁ v₂ ∧ _≡B_ {b₁ = c} {b₂ = c} v₃ v₄ -- zero?? -- Backwards evaluator bevalP : { b₁ b₂ : BF } → (b₁ ⟷ b₂) → ⟦ b₂ ⟧F → ⟦ b₁ ⟧F bevalP c v = evalP (adjointP c) v ------------------------------------------------------------------------------ -- Closure combinators data _⟺_ : BF → BF → Set where iso : { b₁ b₂ : BF } → (b₁ ⟷ b₂) → (b₁ ⟺ b₂) sym : { b₁ b₂ : BF } → (b₁ ⟺ b₂) → (b₂ ⟺ b₁) _◎_ : { b₁ b₂ b₃ : BF } → (b₁ ⟺ b₂) → (b₂ ⟺ b₃) → (b₁ ⟺ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : BF } → (b₁ ⟺ b₃) → (b₂ ⟺ b₄) → (PLUSF b₁ b₂ ⟺ PLUSF b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : BF } → (b₁ ⟺ b₃) → (b₂ ⟺ b₄) → (TIMESF b₁ b₂ ⟺ TIMESF b₃ b₄) refe⋆ : { b : BF } → RECIP (RECIP b) ⟺ b refi⋆ : { b : BF } → b ⟺ RECIP (RECIP b) rile⋆ : { b : BF } → TIMESF b (TIMESF b (RECIP b)) ⟺ b rili⋆ : { b : BF } → b ⟺ TIMESF b (TIMESF b (RECIP b)) -- adjoint : { b₁ b₂ : BF } → (b₁ ⟺ b₂) → (b₂ ⟺ b₁) adjoint (iso c) = iso (adjointP c) adjoint (sym c) = c adjoint (c₁ ◎ c₂) = adjoint c₂ ◎ adjoint c₁ adjoint (c₁ ⊕ c₂) = adjoint c₁ ⊕ adjoint c₂ adjoint (c₁ ⊗ c₂) = adjoint c₁ ⊗ adjoint c₂ adjoint refe⋆ = refi⋆ adjoint refi⋆ = refe⋆ adjoint rile⋆ = rili⋆ adjoint rili⋆ = rile⋆ -- -- (Context a b c d) represents a combinator (c <-> d) with a hole -- requiring something of type (a <-> b). When we use these contexts, -- it is always the case that the (c <-> a) part of the computation -- has ALREADY been done and that we are about to evaluate (a <-> b) -- using a given 'a'. The continuation takes the output 'b' and -- produces a 'd'. data Context : BF → BF → BF → BF → Set where emptyC : {a b : BF} → Context a b a b seqC₁ : {a b c i o : BF} → (b ⟺ c) → Context a c i o → Context a b i o seqC₂ : {a b c i o : BF} → (a ⟺ b) → Context a c i o → Context b c i o leftC : {a b c d i o : BF} → (c ⟺ d) → Context (PLUSF a c) (PLUSF b d) i o → Context a b i o rightC : {a b c d i o : BF} → (a ⟺ b) → Context (PLUSF a c) (PLUSF b d) i o → Context c d i o -- the (i <-> a) part of the computation is completely done; so we must store -- the value of type [[ c ]] as part of the context fstC : {a b c d i o : BF} → ⟦ c ⟧F → (c ⟺ d) → Context (TIMESF a c) (TIMESF b d) i o → Context a b i o -- the (i <-> c) part of the computation and the (a <-> b) part of -- the computation are completely done; so we must store the value -- of type [[ b ]] as part of the context sndC : {a b c d i o : BF} → (a ⟺ b) → ⟦ b ⟧F → Context (TIMESF a c) (TIMESF b d) i o → Context c d i o -- Evaluation mutual -- The (c <-> a) part of the computation has been done. -- We have an 'a' and we are about to do the (a <-> b) computation. -- We get a 'b' and examine the context to get the 'd' eval_c : { a b c : BF } → (a ⟺ b) → ⟦ a ⟧F → Context a b c c → ⟦ c ⟧F eval_c (iso f) v C = eval_k (iso f) (evalP f v) C eval_c (sym c) v C = eval_c (adjoint c) v C eval_c (f ◎ g) v C = eval_c f v (seqC₁ g C) eval_c (f ⊕ g) (inj₁ v) C = eval_c f v (leftC g C) eval_c (f ⊕ g) (inj₂ v) C = eval_c g v (rightC f C) eval_c (f ⊗ g) (v₁ , v₂) C = eval_c f v₁ (fstC v₂ g C) eval_c refe⋆ (rec (rec v _) _) C = eval_k refe⋆ v C eval_c refi⋆ v C = eval_k refi⋆ (rec (rec v (λ x → tt)) ff) C where ff = λ x → tt eval_c rile⋆ (v₁ , (v₂ , rec v₃ _)) C = eval_k rile⋆ v₁ C eval_c rili⋆ v C = eval_k rili⋆ (v , (v , {!!})) C -- The (c <-> a) part of the computation has been done. -- The (a <-> b) part of the computation has been done. -- We need to examine the context to get the 'd'. -- We rebuild the combinator on the way out. eval_k : { a b c : BF } → (a ⟺ b) → ⟦ b ⟧F → Context a b c c → ⟦ c ⟧F eval_k f v emptyC = v eval_k f v (seqC₁ g C) = eval_c g v (seqC₂ f C) eval_k g v (seqC₂ f C) = eval_k (f ◎ g) v C eval_k f v (leftC g C) = eval_k (f ⊕ g) (inj₁ v) C eval_k g v (rightC f C) = eval_k (f ⊕ g) (inj₂ v) C eval_k f v₁ (fstC v₂ g C) = eval_c g v₂ (sndC f v₁ C) eval_k g v₂ (sndC f v₁ C) = eval_k (f ⊗ g) (v₁ , v₂) C -- Backwards evaluator -- The (d <-> b) part of the computation has been done. -- We have a 'b' and we are about to do the (a <-> b) computation backwards. -- We get an 'a' and examine the context to get the 'c' beval_c : { a b c : BF } → (a ⟺ b) → ⟦ b ⟧F → Context a b c c → ⟦ c ⟧F beval_c (iso f) v C = beval_k (iso f) (bevalP f v) C beval_c (sym c) v C = beval_c (adjoint c) v C beval_c (f ◎ g) v C = beval_c g v (seqC₂ f C) beval_c (f ⊕ g) (inj₁ v) C = beval_c f v (leftC g C) beval_c (f ⊕ g) (inj₂ v) C = beval_c g v (rightC f C) beval_c (f ⊗ g) (v₁ , v₂) C = beval_c g v₂ (sndC f v₁ C) beval_c refe⋆ v C = beval_k refe⋆ {!!} C beval_c refi⋆ _ C = beval_k refi⋆ {!!} C beval_c rile⋆ v C = beval_k rile⋆ (v , (v , {!!})) C beval_c rili⋆ (v₁ , (v₂ , _)) C = {!!} -- The (d <-> b) part of the computation has been done. -- The (a <-> b) backwards computation has been done. -- We have an 'a' and examine the context to get the 'c' beval_k : { a b c : BF } → (a ⟺ b) → ⟦ a ⟧F → Context a b c c → ⟦ c ⟧F beval_k f v emptyC = v beval_k g v (seqC₂ f C) = beval_c f v (seqC₁ g C) beval_k f v (seqC₁ g C) = beval_k (f ◎ g) v C beval_k f v (leftC g C) = beval_k (f ⊕ g) (inj₁ v) C beval_k g v (rightC f C) = beval_k (f ⊕ g) (inj₂ v) C beval_k g v₂ (sndC f v₁ C) = beval_c f v₁ (fstC v₂ g C) beval_k f v₁ (fstC v₂ g C) = beval_k (f ⊗ g) (v₁ , v₂) C ------------------------------------------------------------------------------ -- Top level eval eval : { a : BF } → (a ⟺ a) → ⟦ a ⟧F → ⟦ a ⟧F eval f v = eval_c f v emptyC -- BOOL : BF BOOL = PLUSF ONEF ONEF test1 : ⟦ BOOL ⟧F test1 = eval {BOOL} (iso swap₊) (inj₁ tt)
{ "alphanum_fraction": 0.5233827771, "avg_line_length": 37.1954022989, "ext": "agda", "hexsha": "8f3d034f6f6b59495d66088e055c6b8495d8c03d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "agda/PiF.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "agda/PiF.agda", "max_line_length": 84, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "agda/PiF.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4246, "size": 9708 }
-- Basic intuitionistic contextual modal logic, without ∨ or ⊥. -- Gentzen-style formalisation of syntax with context pairs, after Nanevski-Pfenning-Pientka. -- Simple terms. module BasicICML.Syntax.DyadicGentzen where open import BasicICML.Syntax.Common public -- Derivations. -- NOTE: Only var is an instance constructor, which allows the instance argument for mvar to be automatically inferred, in many cases. mutual infix 3 _⊢_ data _⊢_ : Cx² Ty Box → Ty → Set where instance var : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ A lam : ∀ {A B Γ Δ} → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ▻ B app : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B mvar : ∀ {Ψ A Γ Δ} → [ Ψ ] A ∈ Δ → {{_ : Γ ⁏ Δ ⊢⋆ Ψ}} → Γ ⁏ Δ ⊢ A box : ∀ {Ψ A Γ Δ} → Ψ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ [ Ψ ] A unbox : ∀ {Ψ A C Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] A → Γ ⁏ Δ , [ Ψ ] A ⊢ C → Γ ⁏ Δ ⊢ C pair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ∧ B fst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ A snd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ B unit : ∀ {Γ Δ} → Γ ⁏ Δ ⊢ ⊤ infix 3 _⊢⋆_ data _⊢⋆_ : Cx² Ty Box → Cx Ty → Set where instance ∙ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⋆ ∅ _,_ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ , A -- Monotonicity with respect to context inclusion. mutual mono⊢ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ A → Γ′ ⁏ Δ ⊢ A mono⊢ η (var i) = var (mono∈ η i) mono⊢ η (lam t) = lam (mono⊢ (keep η) t) mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u) mono⊢ η (mvar i {{ts}}) = mvar i {{mono⊢⋆ η ts}} mono⊢ η (box t) = box t mono⊢ η (unbox t u) = unbox (mono⊢ η t) (mono⊢ η u) mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u) mono⊢ η (fst t) = fst (mono⊢ η t) mono⊢ η (snd t) = snd (mono⊢ η t) mono⊢ η unit = unit mono⊢⋆ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ′ ⁏ Δ ⊢⋆ Ξ mono⊢⋆ η ∙ = ∙ mono⊢⋆ η (ts , t) = mono⊢⋆ η ts , mono⊢ η t -- Monotonicity with respect to modal context inclusion. mutual mmono⊢ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ′ ⊢ A mmono⊢ θ (var i) = var i mmono⊢ θ (lam t) = lam (mmono⊢ θ t) mmono⊢ θ (app t u) = app (mmono⊢ θ t) (mmono⊢ θ u) mmono⊢ θ (mvar i {{ts}}) = mvar (mono∈ θ i) {{mmono⊢⋆ θ ts}} mmono⊢ θ (box t) = box (mmono⊢ θ t) mmono⊢ θ (unbox t u) = unbox (mmono⊢ θ t) (mmono⊢ (keep θ) u) mmono⊢ θ (pair t u) = pair (mmono⊢ θ t) (mmono⊢ θ u) mmono⊢ θ (fst t) = fst (mmono⊢ θ t) mmono⊢ θ (snd t) = snd (mmono⊢ θ t) mmono⊢ θ unit = unit mmono⊢⋆ : ∀ {Ξ Δ Δ′ Γ} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ′ ⊢⋆ Ξ mmono⊢⋆ θ ∙ = ∙ mmono⊢⋆ θ (ts , t) = mmono⊢⋆ θ ts , mmono⊢ θ t -- Monotonicity using context pairs. mono²⊢ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ A → Π′ ⊢ A mono²⊢ (η , θ) = mono⊢ η ∘ mmono⊢ θ -- Shorthand for variables. v₀ : ∀ {A Γ Δ} → Γ , A ⁏ Δ ⊢ A v₀ = var i₀ v₁ : ∀ {A B Γ Δ} → Γ , A , B ⁏ Δ ⊢ A v₁ = var i₁ v₂ : ∀ {A B C Γ Δ} → Γ , A , B , C ⁏ Δ ⊢ A v₂ = var i₂ mv₀ : ∀ {Ψ A Γ Δ} → {{_ : Γ ⁏ Δ , [ Ψ ] A ⊢⋆ Ψ}} → Γ ⁏ Δ , [ Ψ ] A ⊢ A mv₀ = mvar i₀ mv₁ : ∀ {Ψ Ψ′ A B Γ Δ} → {{_ : Γ ⁏ Δ , [ Ψ ] A , [ Ψ′ ] B ⊢⋆ Ψ}} → Γ ⁏ Δ , [ Ψ ] A , [ Ψ′ ] B ⊢ A mv₁ = mvar i₁ mv₂ : ∀ {Ψ Ψ′ Ψ″ A B C Γ Δ} → {{_ : Γ ⁏ Δ , [ Ψ ] A , [ Ψ′ ] B , [ Ψ″ ] C ⊢⋆ Ψ}} → Γ ⁏ Δ , [ Ψ ] A , [ Ψ′ ] B , [ Ψ″ ] C ⊢ A mv₂ = mvar i₂ -- Generalised reflexivity. instance refl⊢⋆ : ∀ {Γ Ψ Δ} → {{_ : Ψ ⊆ Γ}} → Γ ⁏ Δ ⊢⋆ Ψ refl⊢⋆ {∅} {{done}} = ∙ refl⊢⋆ {Γ , A} {{skip η}} = mono⊢⋆ weak⊆ (refl⊢⋆ {{η}}) refl⊢⋆ {Γ , A} {{keep η}} = mono⊢⋆ weak⊆ (refl⊢⋆ {{η}}) , v₀ -- Deduction theorem is built-in. -- Modal deduction theorem. mlam : ∀ {Ψ A B Γ Δ} → Γ ⁏ Δ , [ Ψ ] A ⊢ B → Γ ⁏ Δ ⊢ [ Ψ ] A ▻ B mlam t = lam (unbox v₀ (mono⊢ weak⊆ t)) -- Detachment theorems. det : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ , A ⁏ Δ ⊢ B det t = app (mono⊢ weak⊆ t) v₀ mdet : ∀ {Ψ A B Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] A ▻ B → Γ ⁏ Δ , [ Ψ ] A ⊢ B mdet t = app (mmono⊢ weak⊆ t) (box mv₀) -- Cut and multicut. cut : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ B cut t u = app (lam u) t mcut : ∀ {Ψ A B Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] A → Γ ⁏ Δ , [ Ψ ] A ⊢ B → Γ ⁏ Δ ⊢ B mcut t u = app (mlam u) t multicut : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Ξ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A multicut ∙ u = mono⊢ bot⊆ u multicut (ts , t) u = app (multicut ts (lam u)) t -- Contraction. ccont : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ A ▻ B) ▻ A ▻ B ccont = lam (lam (app (app v₁ v₀) v₀)) cont : ∀ {A B Γ Δ} → Γ , A , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ B cont t = det (app ccont (lam (lam t))) mcont : ∀ {Ψ A B Γ Δ} → Γ ⁏ Δ , [ Ψ ] A , [ Ψ ] A ⊢ B → Γ ⁏ Δ , [ Ψ ] A ⊢ B mcont t = mdet (app ccont (mlam (mlam t))) -- Exchange, or Schönfinkel’s C combinator. cexch : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C cexch = lam (lam (lam (app (app v₂ v₀) v₁))) exch : ∀ {A B C Γ Δ} → Γ , A , B ⁏ Δ ⊢ C → Γ , B , A ⁏ Δ ⊢ C exch t = det (det (app cexch (lam (lam t)))) mexch : ∀ {Ψ Ψ′ A B C Γ Δ} → Γ ⁏ Δ , [ Ψ ] A , [ Ψ′ ] B ⊢ C → Γ ⁏ Δ , [ Ψ′ ] B , [ Ψ ] A ⊢ C mexch t = mdet (mdet (app cexch (mlam (mlam t)))) -- Composition, or Schönfinkel’s B combinator. ccomp : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ccomp = lam (lam (lam (app v₂ (app v₁ v₀)))) comp : ∀ {A B C Γ Δ} → Γ , B ⁏ Δ ⊢ C → Γ , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ C comp t u = det (app (app ccomp (lam t)) (lam u)) mcomp : ∀ {Ψ Ψ′ Ψ″ A B C Γ Δ} → Γ ⁏ Δ , [ Ψ′ ] B ⊢ [ Ψ″ ] C → Γ ⁏ Δ , [ Ψ ] A ⊢ [ Ψ′ ] B → Γ ⁏ Δ , [ Ψ ] A ⊢ [ Ψ″ ] C mcomp t u = mdet (app (app ccomp (mlam t)) (mlam u)) -- Useful theorems in functional form. dist : ∀ {Ψ A B Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] (A ▻ B) → Γ ⁏ Δ ⊢ [ Ψ ] A → Γ ⁏ Δ ⊢ [ Ψ ] B dist t u = unbox t (unbox (mmono⊢ weak⊆ u) (box (app mv₁ mv₀))) up : ∀ {Ψ A Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] A → Γ ⁏ Δ ⊢ [ Ψ ] [ Ψ ] A up t = unbox t (box (box mv₀)) down : ∀ {Ψ A Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] A → {{_ : Γ ⁏ Δ , [ Ψ ] A ⊢⋆ Ψ}} → Γ ⁏ Δ ⊢ A down t = unbox t mv₀ distup : ∀ {Ψ A B Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] ([ Ψ ] A ▻ B) → Γ ⁏ Δ ⊢ [ Ψ ] A → Γ ⁏ Δ ⊢ [ Ψ ] B distup t u = dist t (up u) -- Useful theorems in combinatory form. ci : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A ▻ A ci = lam v₀ ck : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A ck = lam (lam v₁) cs : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀)))) cdist : ∀ {Ψ A B Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] (A ▻ B) ▻ [ Ψ ] A ▻ [ Ψ ] B cdist = lam (lam (dist v₁ v₀)) cup : ∀ {Ψ A Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] A ▻ [ Ψ ] [ Ψ ] A cup = lam (up v₀) cdistup : ∀ {Ψ A B Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] ([ Ψ ] A ▻ B) ▻ [ Ψ ] A ▻ [ Ψ ] B cdistup = lam (lam (dist v₁ (up v₀))) cunbox : ∀ {Ψ A C Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ] A ▻ ([ Ψ ] A ▻ C) ▻ C cunbox = lam (lam (app v₀ v₁)) cpair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A ∧ B cpair = lam (lam (pair v₁ v₀)) cfst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ A cfst = lam (fst v₀) csnd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ B csnd = lam (snd v₀) -- Closure under context concatenation. concat : ∀ {A B Γ} Γ′ {Δ} → Γ , A ⁏ Δ ⊢ B → Γ′ ⁏ Δ ⊢ A → Γ ⧺ Γ′ ⁏ Δ ⊢ B concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u) mconcat : ∀ {Ψ A B Γ Δ} Δ′ → Γ ⁏ Δ , [ Ψ ] A ⊢ B → Γ ⁏ Δ′ ⊢ [ Ψ ] A → Γ ⁏ Δ ⧺ Δ′ ⊢ B mconcat Δ′ t u = app (mmono⊢ (weak⊆⧺₁ Δ′) (mlam t)) (mmono⊢ weak⊆⧺₂ u) -- Substitution. mutual [_≔_]_ : ∀ {A C Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ C → Γ ∖ i ⁏ Δ ⊢ C [ i ≔ s ] var j with i ≟∈ j [ i ≔ s ] var .i | same = s [ i ≔ s ] var ._ | diff j = var j [ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t) [ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u) [ i ≔ s ] mvar j {{ts}} = mvar j {{[ i ≔ s ]⋆ ts}} [ i ≔ s ] box t = box t [ i ≔ s ] unbox t u = unbox ([ i ≔ s ] t) ([ i ≔ mmono⊢ weak⊆ s ] u) [ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u) [ i ≔ s ] fst t = fst ([ i ≔ s ] t) [ i ≔ s ] snd t = snd ([ i ≔ s ] t) [ i ≔ s ] unit = unit [_≔_]⋆_ : ∀ {Ξ A Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ → Γ ∖ i ⁏ Δ ⊢⋆ Ξ [_≔_]⋆_ i s ∙ = ∙ [_≔_]⋆_ i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t -- Modal substitution. mutual m[_≔_]_ : ∀ {Ψ A C Γ Δ} → (i : [ Ψ ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢ C → Γ ⁏ Δ ∖ i ⊢ C m[ i ≔ s ] var j = var j m[ i ≔ s ] lam t = lam (m[ i ≔ s ] t) m[ i ≔ s ] app t u = app (m[ i ≔ s ] t) (m[ i ≔ s ] u) m[ i ≔ s ] mvar j {{ts}} with i ≟∈ j m[ i ≔ s ] mvar .i {{ts}} | same = multicut (m[ i ≔ s ]⋆ ts) s m[ i ≔ s ] mvar ._ {{ts}} | diff j = mvar j {{m[ i ≔ s ]⋆ ts}} m[ i ≔ s ] box t = box (m[ i ≔ s ] t) m[ i ≔ s ] unbox t u = unbox (m[ i ≔ s ] t) (m[ pop i ≔ mmono⊢ weak⊆ s ] u) m[ i ≔ s ] pair t u = pair (m[ i ≔ s ] t) (m[ i ≔ s ] u) m[ i ≔ s ] fst t = fst (m[ i ≔ s ] t) m[ i ≔ s ] snd t = snd (m[ i ≔ s ] t) m[ i ≔ s ] unit = unit m[_≔_]⋆_ : ∀ {Ξ Ψ A Γ Δ} → (i : [ Ψ ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ∖ i ⊢⋆ Ξ m[_≔_]⋆_ i s ∙ = ∙ m[_≔_]⋆_ i s (ts , t) = m[ i ≔ s ]⋆ ts , m[ i ≔ s ] t -- Convertibility. data _⋙_ {Δ : Cx Box} {Γ : Cx Ty} : ∀ {A} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A → Set where refl⋙ : ∀ {A} → {t : Γ ⁏ Δ ⊢ A} → t ⋙ t trans⋙ : ∀ {A} → {t t′ t″ : Γ ⁏ Δ ⊢ A} → t ⋙ t′ → t′ ⋙ t″ → t ⋙ t″ sym⋙ : ∀ {A} → {t t′ : Γ ⁏ Δ ⊢ A} → t ⋙ t′ → t′ ⋙ t conglam⋙ : ∀ {A B} → {t t′ : Γ , A ⁏ Δ ⊢ B} → t ⋙ t′ → lam t ⋙ lam t′ congapp⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ▻ B} → {u u′ : Γ ⁏ Δ ⊢ A} → t ⋙ t′ → u ⋙ u′ → app t u ⋙ app t′ u′ -- NOTE: Rejected by Pfenning and Davies. -- congbox⋙ : ∀ {Ψ A} → {t t′ : Ψ ⁏ Δ ⊢ A} -- → t ⋙ t′ -- → box t ⋙ box t′ congunbox⋙ : ∀ {Ψ A C} → {t t′ : Γ ⁏ Δ ⊢ [ Ψ ] A} → {u u′ : Γ ⁏ Δ , [ Ψ ] A ⊢ C} → t ⋙ t′ → u ⋙ u′ → unbox t u ⋙ unbox t′ u′ congpair⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A} → {u u′ : Γ ⁏ Δ ⊢ B} → t ⋙ t′ → u ⋙ u′ → pair t u ⋙ pair t′ u′ congfst⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ∧ B} → t ⋙ t′ → fst t ⋙ fst t′ congsnd⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ∧ B} → t ⋙ t′ → snd t ⋙ snd t′ beta▻⋙ : ∀ {A B} → {t : Γ , A ⁏ Δ ⊢ B} → {u : Γ ⁏ Δ ⊢ A} → app (lam t) u ⋙ ([ top ≔ u ] t) eta▻⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A ▻ B} → t ⋙ lam (app (mono⊢ weak⊆ t) v₀) beta□⋙ : ∀ {Ψ A C} → {t : Ψ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ , [ Ψ ] A ⊢ C} → unbox (box t) u ⋙ (m[ top ≔ t ] u) eta□⋙ : ∀ {Ψ A} → {t : Γ ⁏ Δ ⊢ [ Ψ ] A} → t ⋙ unbox t (box mv₀) -- TODO: What about commuting conversions for □? beta∧₁⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ ⊢ B} → fst (pair t u) ⋙ t beta∧₂⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ ⊢ B} → snd (pair t u) ⋙ u eta∧⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A ∧ B} → t ⋙ pair (fst t) (snd t) eta⊤⋙ : ∀ {t : Γ ⁏ Δ ⊢ ⊤} → t ⋙ unit -- Examples from the Nanevski-Pfenning-Pientka paper. -- NOTE: In many cases, the instance argument for mvar can be automatically inferred, but not always. module Examples where e₁ : ∀ {A C D Γ Δ} → Γ ⁏ Δ ⊢ [ ∅ , C ] A ▻ [ ∅ , C , D ] A e₁ = lam (unbox v₀ (box mv₀)) e₂ : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ [ ∅ , C , C ] A ▻ [ ∅ , C ] A e₂ = lam (unbox v₀ (box mv₀)) e₃ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ [ ∅ , A ] A e₃ = box v₀ e₄ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ [ ∅ , A ] B ▻ [ ∅ , A ] [ ∅ , B ] C ▻ [ ∅ , A ] C e₄ = lam (lam (unbox v₁ (unbox v₀ (box (unbox mv₀ (mv₀ {{∙ , mv₂}})))))) e₅ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ [ ∅ ] A ▻ A e₅ = lam (unbox v₀ mv₀) e₆ : ∀ {A C D Γ Δ} → Γ ⁏ Δ ⊢ [ ∅ , C ] A ▻ [ ∅ , D ] [ ∅ , C ] A e₆ = lam (unbox v₀ (box (box mv₀))) e₇ : ∀ {A B C D Γ Δ} → Γ ⁏ Δ ⊢ [ ∅ , C ] (A ▻ B) ▻ [ ∅ , D ] A ▻ [ ∅ , C , D ] B e₇ = lam (lam (unbox v₁ (unbox v₀ (box (app mv₁ mv₀))))) e₈ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ [ ∅ , A ] (A ▻ B) ▻ [ ∅ , B ] C ▻ [ ∅ , A ] C e₈ = lam (lam (unbox v₁ (unbox v₀ (box (mv₀ {{∙ , app mv₁ v₀}})))))
{ "alphanum_fraction": 0.3646430231, "avg_line_length": 29.6873563218, "ext": "agda", "hexsha": "8ea69984811c5f2e5028c4740cc3b26f024218ac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicICML/Syntax/DyadicGentzen.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicICML/Syntax/DyadicGentzen.agda", "max_line_length": 134, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicICML/Syntax/DyadicGentzen.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 6565, "size": 12914 }
{-# OPTIONS --without-K #-} module AC {a b c} {A : Set a} {B : A → Set b} {C : (x : A) → B x → Set c} where open import Equivalence open import FunExt open import Types left : Set _ left = (x : A) → Σ (B x) λ y → C x y right : Set _ right = Σ ((x : A) → B x) λ f → (x : A) → C x (f x) to : left → right to f = π₁ ∘ f , π₂ ∘ f from : right → left from f x = π₁ f x , π₂ f x AC∞ : right ≃ left AC∞ = from , (to , λ _ → refl) , (to , λ _ → refl)
{ "alphanum_fraction": 0.5098901099, "avg_line_length": 18.2, "ext": "agda", "hexsha": "9e3f6d2493228816b9dbba9ec35a8c3243d1905b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/AC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/AC.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/AC.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 193, "size": 455 }
module Oscar.Data.Vec.Properties where open import Oscar.Data.Vec open import Data.Vec.Properties public open import Data.Nat open import Data.Product renaming (map to mapP) open import Relation.Binary.PropositionalEquality open import Data.Fin map-∈ : ∀ {a b} {A : Set a} {B : Set b} {y : B} {f : A → B} {n} {xs : Vec A n} → y ∈ map f xs → ∃ λ x → f x ≡ y map-∈ {xs = []} () map-∈ {xs = x ∷ xs} here = x , refl map-∈ {xs = x ∷ xs} (there y∈mapfxs) = map-∈ y∈mapfxs ∈-map₂ : ∀ {a b} {A : Set a} {B : Set b} {m n : ℕ} → ∀ {c} {F : Set c} (f : A → B → F) {xs : Vec A m} {ys : Vec B n} {x y} → x ∈ xs → y ∈ ys → (f x y) ∈ map₂ f xs ys ∈-map₂ f {xs = x ∷ xs} {ys} here y∈ys = ∈-++ₗ (∈-map (f x) y∈ys) ∈-map₂ f {xs = x ∷ xs} {ys} (there x∈xs) y∈ys = ∈-++ᵣ (map (f x) ys) (∈-map₂ f x∈xs y∈ys) lookup-delete-thin : ∀ {a n} {A : Set a} (x : Fin (suc n)) (y : Fin n) (v : Vec A (suc n)) → lookup y (delete x v) ≡ lookup (thin x y) v lookup-delete-thin zero zero (_ ∷ _) = refl lookup-delete-thin zero (suc _) (_ ∷ _) = refl lookup-delete-thin (suc _) zero (_ ∷ _) = refl lookup-delete-thin (suc x) (suc y) (_ ∷ v) = lookup-delete-thin x y v
{ "alphanum_fraction": 0.5268373245, "avg_line_length": 36.696969697, "ext": "agda", "hexsha": "0b941fcf7f494f2277f5c7621d8d6913cb9fd426", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Vec/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Vec/Properties.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Vec/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 506, "size": 1211 }
{-# OPTIONS --copatterns #-} module IOExampleGraphicsDrawingProgram where open import Data.Bool.Base open import Data.Char.Base renaming (primCharEquality to charEquality) open import Data.Nat.Base hiding (_≟_;_⊓_; _+_; _*_) open import Data.List.Base hiding (_++_) open import Data.Integer.Base hiding (suc) open import Data.String.Base open import Data.Maybe.Base open import Function open import SizedIO.Base open import SizedIO.IOGraphicsLib open import NativeInt --PrimTypeHelpers open import NativeIO integerLess : ℤ → ℤ → Bool integerLess x y with ∣(y - (x ⊓ y))∣ ... | zero = true ... | z = false line : Point → Point → Graphic line p newpoint = withColor red (polygon (nativePoint x y ∷ nativePoint a b ∷ nativePoint (a + xAddition) (b + yAddition) ∷ nativePoint (x + xAddition) (y + yAddition) ∷ [] ) ) where x = nativeProj1Point p y = nativeProj2Point p a = nativeProj1Point newpoint b = nativeProj2Point newpoint diffx = + ∣ (a - x) ∣ diffy = + ∣ (b - y) ∣ diffx*3 = diffx * (+ 3) diffy*3 = diffy * (+ 3) condition = (integerLess diffx diffy*3) ∧ (integerLess diffy diffx*3) xAddition = if condition then + 2 else + 1 yAddition = if condition then + 2 else + 1 State = Maybe Point loop : ∀{i} → Window → State → IOGraphics i Unit force (loop w s) = exec' (getWindowEvent w) λ{ (Key c t) → if charEquality c 'x' then (exec (closeWindow w) return) else loop w s ; (MouseMove p₂) → case s of λ{ nothing → loop w (just p₂) ; (just p₁) → exec (drawInWindow w (line p₁ p₂)) λ _ → loop w (just p₂) } ; _ → loop w s } {- loop : ∀{i} → Window → State → IOGraphics i Unit force (loop w s) = exec' (getWindowEvent w) λ{ (Key c t) → if charEquality c 'x' then return _ else loop w s ; (MouseMove p₂) → case s of λ{ nothing → loop w (just p₂) ; (just p₁) → exec (drawInWindow w (line p₁ p₂)) λ _ → loop w (just p₂) } ; _ → loop w s } -} {- mutual loop : ∀{i} → Window → State → IOGraphics i Unit force (loop w s) = exec' (getWindowEvent w) (λ e → aux w e s) aux : ∀{i} → Window → Event → State → IOGraphics i Unit aux w (Key c t) s = if charEquality c 'x' then (exec (closeWindow w) λ _ → return _) else loop w s aux w (MouseMove p₂) (just p₁) = exec (drawInWindow w (line p₁ p₂)) (λ _ → loop w (just p₂)) aux w (MouseMove p₂) nothing = loop w (just p₂) aux w _ s = loop w s -} {- tailrecursion discussion mutual loop : ∀{i} → Window → State → IOGraphics i Unit command (force (loop w s)) = (getWindowEvent w) response (force (loop w s)) e = aux w e s aux : ∀{i} → Window → Event → State → IOGraphics i Unit command (aux w (MouseMove p₂) (just p₁)) = (drawInWindow w (line p₁ p₂)) response (aux w (MouseMove p₂) (just p₁)) _ = loop w (just p₂)) aux w (MouseMove p₂) nothing = loop w (just p₂) aux w _ s = loop w s -} {- λ{ (Key c t) → if charEquality c 'x' then (exec ? λ _ → return _) else loop w s ; (MouseMove p₂) → case s of λ{ nothing → loop w (just p₂) ; (just p₁) → exec (drawInWindow w (line p₁ p₂)) λ _ → loop w (just p₂) } ; _ → loop w s } -} myProgram : ∀{i} → IOGraphics i Unit myProgram = exec (openWindow "Drawing Program" nothing 1000 1000 nativeDrawGraphic nothing) λ window → loop window nothing main : NativeIO Unit main = nativeRunGraphics (translateIOGraphics myProgram)
{ "alphanum_fraction": 0.5366766467, "avg_line_length": 29.6888888889, "ext": "agda", "hexsha": "f55628e0bca153112da6bfeb8a55a3b3b0ed765d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/DrawingProgram/IOExampleGraphicsDrawingProgram.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/DrawingProgram/IOExampleGraphicsDrawingProgram.agda", "max_line_length": 99, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/DrawingProgram/IOExampleGraphicsDrawingProgram.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 1228, "size": 4008 }
------------------------------------------------------------------------------ -- Streams properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Stream.PropertiesI where open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.List.PropertiesI open import FOTC.Data.Conat open import FOTC.Data.Conat.Equality.Type open import FOTC.Data.Colist open import FOTC.Data.Colist.PropertiesI open import FOTC.Data.List open import FOTC.Data.List.PropertiesI open import FOTC.Data.Stream ----------------------------------------------------------------------------- -- Because a greatest post-fixed point is a fixed-point, then the -- Stream predicate is also a pre-fixed point of the functional -- StreamF, i.e. -- -- StreamF Stream ≤ Stream (see FOTC.Data.Stream.Type). Stream-in : ∀ {xs} → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs' → Stream xs Stream-in h = Stream-coind A h' h where A : D → Set A xs = ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs' h' : ∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs' h' (x' , xs' , prf , Sxs') = x' , xs' , prf , Stream-out Sxs' zeros-Stream : Stream zeros zeros-Stream = Stream-coind A h refl where A : D → Set A xs = xs ≡ zeros h : ∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs' h Axs = zero , zeros , trans Axs zeros-eq , refl ones-Stream : Stream ones ones-Stream = Stream-coind A h refl where A : D → Set A xs = xs ≡ ones h : ∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs' h Axs = succ₁ zero , ones , trans Axs ones-eq , refl ∷-Stream : ∀ {x xs} → Stream (x ∷ xs) → Stream xs ∷-Stream {x} {xs} h = ∷-Stream-helper (Stream-out h) where ∷-Stream-helper : ∃[ x' ] ∃[ xs' ] x ∷ xs ≡ x' ∷ xs' ∧ Stream xs' → Stream xs ∷-Stream-helper (x' , xs' , prf , Sxs') = subst Stream (sym (∧-proj₂ (∷-injective prf))) Sxs' -- Version using Agda with constructor. ∷-Stream' : ∀ {x xs} → Stream (x ∷ xs) → Stream xs ∷-Stream' h with Stream-out h ... | x' , xs' , prf , Sxs' = subst Stream (sym (∧-proj₂ (∷-injective prf))) Sxs' Stream→Colist : ∀ {xs} → Stream xs → Colist xs Stream→Colist {xs} Sxs = Colist-coind A h₁ h₂ where A : D → Set A ys = Stream ys h₁ : ∀ {xs} → A xs → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') h₁ Axs with Stream-out Axs ... | x' , xs' , prf , Sxs' = inj₂ (x' , xs' , prf , Sxs') h₂ : A xs h₂ = Sxs -- Adapted from (Sander 1992, p. 59). streamLength : ∀ {xs} → Stream xs → length xs ≈ ∞ streamLength {xs} Sxs = ≈-coind R h₁ h₂ where R : D → D → Set R m n = ∃[ xs ] Stream xs ∧ m ≡ length xs ∧ n ≡ ∞ h₁ : ∀ {m n} → R m n → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n') h₁ {m} {n} (xs , Sxs , m=lxs , n≡∞) = helper₁ (Stream-out Sxs) where helper₁ : (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs') → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n') helper₁ (x' , xs' , xs≡x'∷xs' , Sxs') = inj₂ (length xs' , ∞ , helper₂ , trans n≡∞ ∞-eq , (xs' , Sxs' , refl , refl)) where helper₂ : m ≡ succ₁ (length xs') helper₂ = trans m=lxs (trans (lengthCong xs≡x'∷xs') (length-∷ x' xs')) h₂ : R (length xs) ∞ h₂ = xs , Sxs , refl , refl -- Adapted from (Sander 1992, p. 59). Version using Agda with -- constructor. streamLength' : ∀ {xs} → Stream xs → length xs ≈ ∞ streamLength' {xs} Sxs = ≈-coind R h₁ h₂ where R : D → D → Set R m n = ∃[ xs ] Stream xs ∧ m ≡ length xs ∧ n ≡ ∞ h₁ : ∀ {m n} → R m n → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n') h₁ {m} (xs , Sxs , m=lxs , n≡∞) with Stream-out Sxs ... | x' , xs' , xs≡x'∷xs' , Sxs' = inj₂ (length xs' , ∞ , helper , trans n≡∞ ∞-eq , (xs' , Sxs' , refl , refl)) where helper : m ≡ succ₁ (length xs') helper = trans m=lxs (trans (lengthCong xs≡x'∷xs') (length-∷ x' xs')) h₂ : R (length xs) ∞ h₂ = xs , Sxs , refl , refl ------------------------------------------------------------------------------ -- References -- -- Sander, Herbert P. (1992). A Logic of Functional Programs with an -- Application to Concurrency. PhD thesis. Department of Computer -- Sciences: Chalmers University of Technology and University of -- Gothenburg.
{ "alphanum_fraction": 0.4971652857, "avg_line_length": 32.524822695, "ext": "agda", "hexsha": "598edf4561251944b74482cac06ffab0439dffa7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Stream/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Stream/PropertiesI.agda", "max_line_length": 80, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Stream/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1682, "size": 4586 }
{-# OPTIONS --sized-types #-} module SizedTypesScopeExtrusion where postulate Size : Set _^ : Size -> Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC _^ #-} {-# BUILTIN SIZEINF ∞ #-} data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {size ^} suc : {size : Size} -> Nat {size} -> Nat {size ^} data Empty : Set where data Unit : Set where unit : Unit Zero : (i : Size) -> Nat {i} -> Set Zero ._ zero = Unit Zero ._ (suc _) = Empty bla : Set bla = (x : Nat) -> (i : Size) -> Zero i x
{ "alphanum_fraction": 0.5586592179, "avg_line_length": 18.5172413793, "ext": "agda", "hexsha": "2fd98ceb26bf6e6b2dfda1d170f82e441792b2a7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/SizedTypesScopeExtrusion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/SizedTypesScopeExtrusion.agda", "max_line_length": 52, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/SizedTypesScopeExtrusion.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 180, "size": 537 }
module DifferentArities where open import Common.Equality open import Common.Prelude f : Nat → Nat → Nat f zero = λ x → x f (suc n) m = f n (suc m) testf1 : f zero ≡ λ x → x testf1 = refl testf2 : ∀ {n m} → f (suc n) m ≡ f n (suc m) testf2 = refl testf3 : f 4 5 ≡ 9 testf3 = refl -- Andreas, 2015-01-21 proper matching on additional argument Sum : Nat → Set Sum 0 = Nat Sum (suc n) = Nat → Sum n sum : (acc : Nat) (n : Nat) → Sum n sum acc 0 = acc sum acc (suc n) 0 = sum acc n sum acc (suc n) m = sum (m + acc) n nzero : (n : Nat) → Sum n nzero 0 = 0 nzero (suc n) m = nzero n mult : (acc : Nat) (n : Nat) → Sum n mult acc 0 = acc mult acc (suc n) 0 = nzero n mult acc (suc n) m = mult (m * acc) n
{ "alphanum_fraction": 0.5758807588, "avg_line_length": 18.9230769231, "ext": "agda", "hexsha": "6bf5d188dccca862699de5de5d91003d8b703f5b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/DifferentArities.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/DifferentArities.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/DifferentArities.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 308, "size": 738 }
module safety where open import Algebra open import Data.List open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.Rational open import Data.Rational.Properties open import Data.Nat using (z≤n; s≤s) open import Data.Integer using (+≤+; +<+; +_) open import Data.Vec using (_∷_) open import Level using (0ℓ) open import Relation.Binary.PropositionalEquality open import Vehicle.Data.Tensor open ≤-Reasoning ------------------------------------------------------------------------ -- Things to work out how to put in standard library 2ℚ = + 2 / 1 3ℚ = + 3 / 1 p+q-q≡p : ∀ p q → p + q - q ≡ p p+q-q≡p p q = begin-equality p + q - q ≡⟨ +-assoc p q (- q) ⟩ p + (q - q) ≡⟨ cong (λ v → p + v) (+-inverseʳ q) ⟩ p + 0ℚ ≡⟨ +-identityʳ p ⟩ p ∎ +-isCommutativeSemigroup : IsCommutativeSemigroup _≡_ _+_ +-isCommutativeSemigroup = isCommutativeSemigroup where open IsCommutativeMonoid +-0-isCommutativeMonoid +-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ +-commutativeSemigroup = record { isCommutativeSemigroup = +-isCommutativeSemigroup } 2*x≡x+x : ∀ p → 2ℚ * p ≡ p + p 2*x≡x+x p = begin-equality 2ℚ * p ≡⟨⟩ (1ℚ + 1ℚ) * p ≡⟨ *-distribʳ-+ p 1ℚ 1ℚ ⟩ 1ℚ * p + 1ℚ * p ≡⟨ cong₂ _+_ (*-identityˡ p) (*-identityˡ p) ⟩ p + p ∎ open import Algebra.Properties.CommutativeSemigroup +-commutativeSemigroup ------------------------------------------------------------------------ -- The controller postulate controller : ℚ → ℚ → ℚ postulate controller-lem : ∀ x y → ∣ x ∣ < 3ℚ → ∣ controller x y + 2ℚ * x - y ∣ < 2ℚ ------------------------------------------------------------------------ -- The model record State : Set where no-eta-equality field windSpeed : ℚ position : ℚ velocity : ℚ open State initialState : State initialState = record { windSpeed = 0ℚ ; position = 0ℚ ; velocity = 0ℚ } nextState : ℚ → State → State nextState changeInWindSpeed s = record { windSpeed = newWindSpeed ; position = newPosition ; velocity = velocity s + controller newPosition (position s) } where newWindSpeed = windSpeed s + changeInWindSpeed newPosition = position s + velocity s + newWindSpeed finalState : List ℚ → State finalState xs = foldr nextState initialState xs ------------------------------------------------------------------------ -- Definition and proof of safety stateSum : State → ℚ stateSum s = position s + velocity s + windSpeed s Safe : State → Set Safe s = ∣ position s ∣ < 3ℚ Good : State → Set Good s = ∣ stateSum s ∣ < 2ℚ LowWind : ℚ → Set LowWind x = ∣ x ∣ ≤ 1ℚ -- A state being good will imply the next state is safe good⇒nextSafe : ∀ dw → ∣ dw ∣ ≤ 1ℚ → ∀ s → Good s → Safe (nextState dw s) good⇒nextSafe dw ∣dw∣≤1 s ∣Σ∣<2 = begin-strict ∣ (position s + velocity s) + (windSpeed s + dw) ∣ ≡˘⟨ cong ∣_∣ (+-assoc (position s + velocity s) (windSpeed s) dw) ⟩ ∣ (position s + velocity s) + windSpeed s + dw ∣ ≤⟨ ∣p+q∣≤∣p∣+∣q∣ (stateSum s) dw ⟩ ∣ position s + velocity s + windSpeed s ∣ + ∣ dw ∣ <⟨ +-monoˡ-< ∣ dw ∣ ∣Σ∣<2 ⟩ 2ℚ + ∣ dw ∣ ≤⟨ +-monoʳ-≤ 2ℚ ∣dw∣≤1 ⟩ 2ℚ + 1ℚ ≡⟨⟩ 3ℚ ∎ -- Initial state is both safe and good initialState-safe : Safe initialState initialState-safe = *<* (+<+ (s≤s z≤n)) initialState-good : Good initialState initialState-good = *<* (+<+ (s≤s z≤n)) good⇒nextGood : ∀ dw → ∣ dw ∣ ≤ 1ℚ → ∀ s → Good s → Good (nextState dw s) good⇒nextGood dw ∣dw∣≤1 s Σ≤2 = let s' = nextState dw s dv = controller (position s') (position s) s'-safe = good⇒nextSafe dw ∣dw∣≤1 s Σ≤2 in begin-strict ∣ position s' + velocity s' + windSpeed s' ∣ ≡⟨⟩ ∣ position s' + (velocity s + dv) + windSpeed s' ∣ ≡⟨ cong (λ v → ∣ v + windSpeed s' ∣) (x∙yz≈zx∙y (position s') (velocity s) dv) ⟩ ∣ dv + position s' + velocity s + windSpeed s' ∣ ≡⟨ cong ∣_∣ (sym (p+q-q≡p (dv + position s' + velocity s + windSpeed s') (position s))) ⟩ ∣ dv + position s' + velocity s + windSpeed s' + position s - position s ∣ ≡⟨ cong (λ v → ∣ v + position s - position s ∣) (+-assoc (dv + position s') (velocity s) (windSpeed s')) ⟩ ∣ dv + position s' + (velocity s + windSpeed s') + position s - position s ∣ ≡⟨ cong (λ v → ∣ v - position s ∣) (+-assoc (dv + position s') (velocity s + windSpeed s') (position s)) ⟩ ∣ dv + position s' + (velocity s + windSpeed s' + position s) - position s ∣ ≡⟨ cong (λ v → ∣ dv + position s' + v - position s ∣) (xy∙z≈zx∙y (velocity s) (windSpeed s') (position s)) ⟩ ∣ dv + position s' + (position s + velocity s + windSpeed s') - position s ∣ ≡⟨⟩ ∣ dv + position s' + position s' - position s ∣ ≡⟨ cong (λ v → ∣ v - position s ∣) (+-assoc dv (position s') (position s')) ⟩ ∣ dv + (position s' + position s') - position s ∣ ≡⟨ cong (λ v → ∣ dv + v - position s ∣) (sym (2*x≡x+x (position s'))) ⟩ ∣ dv + 2ℚ * position s' - position s ∣ <⟨ controller-lem (position s') (position s) s'-safe ⟩ 2ℚ ∎ finalState-good : ∀ xs → All LowWind xs → Good (finalState xs) finalState-good [] [] = initialState-good finalState-good (x ∷ xs) (px ∷ pxs) = good⇒nextGood x px (finalState xs) (finalState-good xs pxs) finalState-safe : ∀ xs → All LowWind xs → Safe (finalState xs) finalState-safe [] [] = initialState-safe finalState-safe (x ∷ xs) (px ∷ pxs) = good⇒nextSafe x px (finalState xs) (finalState-good xs pxs)
{ "alphanum_fraction": 0.5424405485, "avg_line_length": 38.1523178808, "ext": "agda", "hexsha": "174851cb62043062127a61008e290c832c6ea967", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z", "max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z", "max_forks_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "wenkokke/vehicle", "max_forks_repo_path": "examples/network/windController/safety.agda", "max_issues_count": 53, "max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "wenkokke/vehicle", "max_issues_repo_path": "examples/network/windController/safety.agda", "max_line_length": 189, "max_stars_count": 11, "max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "wenkokke/vehicle", "max_stars_repo_path": "examples/network/windController/safety.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z", "num_tokens": 2012, "size": 5761 }
------------------------------------------------------------------------ -- Finite maps, i.e. lookup tables (currently only some type -- signatures) ------------------------------------------------------------------------ module Data.Map where open import Relation.Nullary open import Relation.Binary open import Data.List as L using (List) open import Data.Product module Map₁ (key-dto : DecTotalOrder) (elem-s : Setoid) where open DecTotalOrder key-dto renaming (carrier to key) open Setoid elem-s renaming (carrier to elem; _≈_ to _≗_) infixr 6 _∪_ infix 5 _∈?_ infix 4 _∈_ _|≈|_ abstract postulate decSetoid : DecSetoid Map : Set Map = Setoid.carrier (DecSetoid.setoid decSetoid) _|≈|_ : Rel Map _|≈|_ = Setoid._≈_ (DecSetoid.setoid decSetoid) abstract postulate empty : Map insert : key → elem → Map → Map _∪_ : Map → Map → Map _∈_ : key → Map → Set _↦_∈_ : key → elem → Map → Set data LookupResult (k : key) (s : Map) : Set where found : (e : elem) (k↦e∈s : k ↦ e ∈ s) → LookupResult k s notFound : (k∉s : ¬ k ∈ s) → LookupResult k s abstract postulate _∈?_ : (k : key) → (s : Map) → LookupResult k s toList : Map → List (key × elem) postulate prop-∈₁ : ∀ {x v s} → x ↦ v ∈ s → x ∈ s prop-∈₂ : ∀ {x s} → x ∈ s → Σ elem (λ v → x ↦ v ∈ s) prop-∈₃ : ∀ {x v w s} → x ↦ v ∈ s → x ↦ w ∈ s → v ≗ w prop-∈-insert₁ : ∀ {x y v w s} → x ≈ y → v ≗ w → x ↦ v ∈ insert y w s prop-∈-insert₂ : ∀ {x y v w s} → ¬ x ≈ y → x ↦ v ∈ s → x ↦ v ∈ insert y w s prop-∈-insert₃ : ∀ {x y v w s} → ¬ x ≈ y → x ↦ v ∈ insert y w s → x ↦ v ∈ s prop-∈-empty : ∀ {x} → ¬ x ∈ empty prop-∈-∪ : ∀ {x s₁ s₂} → x ∈ s₁ → x ∈ s₁ ∪ s₂ prop-∪₁ : ∀ {s₁ s₂} → s₁ ∪ s₂ |≈| s₂ ∪ s₁ prop-∪₂ : ∀ {s₁ s₂ s₃} → s₁ ∪ (s₂ ∪ s₃) |≈| (s₁ ∪ s₂) ∪ s₃ prop-∈-|≈|₁ : ∀ {x} → (λ s → x ∈ s) Respects _|≈|_ prop-∈-|≈|₂ : ∀ {x v} → (λ s → x ↦ v ∈ s) Respects _|≈|_ prop-∈-≈₁ : ∀ {s} → (λ x → x ∈ s) Respects _≈_ prop-∈-≈₂ : ∀ {v s} → (λ x → x ↦ v ∈ s) Respects _≈_ prop-∈-≗ : ∀ {x s} → (λ v → x ↦ v ∈ s) Respects _≗_ -- TODO: Postulates for toList. singleton : key → elem → Map singleton k v = insert k v empty ⋃_ : List Map → Map ⋃_ = L.foldr _∪_ empty fromList : List (key × elem) → Map fromList = L.foldr (uncurry insert) empty open Map₁ public renaming (Map to _⇰_)
{ "alphanum_fraction": 0.4748402556, "avg_line_length": 29.8095238095, "ext": "agda", "hexsha": "9f750245d487806e800a1de571c29747c8e42def", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Map.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Map.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Map.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 1014, "size": 2504 }
module List.Permutation.Alternative (A : Set) where open import Data.List data _∼_ : List A → List A → Set where ∼refl : {xs : List A} → xs ∼ xs ∼trans : {xs ys zs : List A} → xs ∼ ys → ys ∼ zs → xs ∼ zs ∼head : {xs ys : List A}(x : A) → xs ∼ ys → (x ∷ xs) ∼ (x ∷ ys) ∼swap : {xs ys : List A}{x y : A} → (x ∷ y ∷ xs) ∼ ys → (y ∷ x ∷ xs) ∼ ys
{ "alphanum_fraction": 0.349609375, "avg_line_length": 26.9473684211, "ext": "agda", "hexsha": "cc6da3a894dc4c47a0e9f9d18eda71eb33ae6c83", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/List/Permutation/Alternative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/List/Permutation/Alternative.agda", "max_line_length": 51, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/List/Permutation/Alternative.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 177, "size": 512 }
module Data.Binary.Tests.Semantics where open import Data.Binary.Definitions open import Data.Binary.Operations.Semantics open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.List as List using (List; _∷_; []) open import Relation.Binary.PropositionalEquality prop : ℕ → Set prop n = let xs = List.upTo n in List.map (λ x → ⟦ ⟦ x ⇑⟧ ⇓⟧ ) xs ≡ xs _ : prop 50 _ = refl
{ "alphanum_fraction": 0.7146596859, "avg_line_length": 25.4666666667, "ext": "agda", "hexsha": "5fae7cdcb7a47f3332895d4761e89b732e33108d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Tests/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Tests/Semantics.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Tests/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 119, "size": 382 }
module CTL.Modalities.AF where open import FStream.Core open import Library -- Certainly sometime : s₀ ⊧ φ ⇔ ∀ s₀ R s₁ R ... ∃ i . sᵢ ⊧ φ -- TODO Unclear whether this needs sizes data AF' {ℓ₁ ℓ₂} {C : Container ℓ₁} (props : FStream' C (Set ℓ₂)) : Set (ℓ₁ ⊔ ℓ₂) where alreadyA : head props → AF' props notYetA : A (fmap AF' (inF (tail props))) → AF' props open AF' public AF : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream C (Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂) AF props = APred AF' (inF props) mutual AFₛ' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream' C (Set ℓ₂) → FStream' {i} C (Set (ℓ₁ ⊔ ℓ₂)) head (AFₛ' props) = AF' props tail (AFₛ' props) = AFₛ (tail props) AFₛ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream C (Set ℓ₂) → FStream {i} C (Set (ℓ₁ ⊔ ℓ₂)) inF (AFₛ props) = fmap AFₛ' (inF props)
{ "alphanum_fraction": 0.5889570552, "avg_line_length": 30.1851851852, "ext": "agda", "hexsha": "7d9fc1e188183614605426e61ca2d388a815fbc9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "zimbatm/condatis", "max_forks_repo_path": "CTL/Modalities/AF.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "zimbatm/condatis", "max_issues_repo_path": "CTL/Modalities/AF.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Aerate/condatis", "max_stars_repo_path": "CTL/Modalities/AF.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z", "num_tokens": 362, "size": 815 }
-- Andreas, 2011-04-26 {-# OPTIONS --universe-polymorphism #-} module Issue411 where import Common.Irrelevance record A : Set₁ where field .foo : Set -- this yielded a panic "-1 not a valid deBruijn index" due to old code for assignS
{ "alphanum_fraction": 0.7148760331, "avg_line_length": 26.8888888889, "ext": "agda", "hexsha": "04bd6cdff0ff24a03f0ffb4fa5db934befb7eb72", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue411.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue411.agda", "max_line_length": 83, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue411.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 71, "size": 242 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel) open import Algebra.Structures.Bundles.Field module Algebra.Linear.Morphism.Definitions {k ℓᵏ} (K : Field k ℓᵏ) {a} (A : Set a) {b} (B : Set b) {ℓ} (_≈_ : Rel B ℓ) where open import Algebra.Linear.Core open import Function import Algebra.Morphism as Morphism open Morphism.Definitions A B _≈_ private K' : Set k K' = Field.Carrier K Linear : Morphism -> VectorAddition A -> ScalarMultiplication K' A -> VectorAddition B -> ScalarMultiplication K' B -> Set _ Linear ⟦_⟧ _+₁_ _∙₁_ _+₂_ _∙₂_ = ∀ (a b : K') (u v : A) -> ⟦ (a ∙₁ u) +₁ (b ∙₁ v) ⟧ ≈ ((a ∙₂ ⟦ u ⟧) +₂ (b ∙₂ ⟦ v ⟧)) ScalarHomomorphism : Morphism -> ScalarMultiplication K' A -> ScalarMultiplication K' B -> Set _ ScalarHomomorphism ⟦_⟧ _∙_ _∘_ = ∀ (c : K') (u : A) -> ⟦ c ∙ u ⟧ ≈ (c ∘ ⟦ u ⟧)
{ "alphanum_fraction": 0.5686695279, "avg_line_length": 25.1891891892, "ext": "agda", "hexsha": "fba40f9a8266e2e0089b07b0e1534ba4d92a718c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Morphism/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Morphism/Definitions.agda", "max_line_length": 78, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Morphism/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 344, "size": 932 }
module SafeFlagPrimTrustMe where open import Agda.Builtin.Equality private primitive primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y
{ "alphanum_fraction": 0.6879432624, "avg_line_length": 17.625, "ext": "agda", "hexsha": "2de86c90bd28fac9380b0cac29530a2a472dde90", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/SafeFlagPrimTrustMe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/SafeFlagPrimTrustMe.agda", "max_line_length": 52, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/SafeFlagPrimTrustMe.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 48, "size": 141 }
-- statically checked sorted lists -- see http://www2.tcs.ifi.lmu.de/~abel/DepTypes.pdf module SortedList where open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Bool using (Bool; true; false) ---------------------------------------------------------------------- -- Curry-Howard stuff Proposition = Set -- intentionally blank. signifies the empty set in the type system. data Absurd : Proposition where -- tt = trivially true data Truth : Proposition where tt : Truth -- ∧ = conjunction data _∧_ (A B : Proposition) : Proposition where _,_ : A → B → A ∧ B fst : {A B : Proposition} → A ∧ B → A fst (a , b) = a snd : {A B : Proposition} → A ∧ B → B snd (a , b) = b -- Cartesian product = conjunction _×_ = _∧_ -- ∨ = disjunction data _∨_ (A B : Proposition) : Proposition where inl : A → A ∨ B inr : B → A ∨ B -- given: A or B is true, A implies C, B implies C. then C is true. case : {A B C : Proposition} → A ∨ B → (A → C) → (B → C) → C case (inl a) f g = f a case (inr b) f g = g b -- map booleans to propositions by mapping true to Truth and false to Absurd True : Bool → Proposition True true = Truth True false = Absurd ---------------------------------------------------------------------- _≤_ : ℕ → ℕ → Bool zero ≤ n = true suc m ≤ zero = false suc m ≤ suc n = m ≤ n -- proposition: ≤ is reflexive. proof: induction. refl≤ : (n : ℕ) → True (n ≤ n) refl≤ zero = tt refl≤ (suc n) = refl≤ n ---------------------------------------------------------------------- data SortedList : ℕ → Set where ∅ : SortedList zero ⋉ : {n : ℕ} (m : ℕ) → True (n ≤ m) → SortedList n → SortedList m -- the arguments to ⋉ are -- m : a natural number to prepend to the given sorted list xs -- p : a proof that m (the new head) is ≥ head xs -- xs : a list such that head xs = n -- for constant natural numbers, proofs that n ≤ m are trivial since -- ≤ is decidable; this is why we pass in `tt` in the examples below -- examples: one : ℕ one = suc zero s1 = ⋉ one tt (⋉ zero tt ∅) -- s2 = ⋉ zero tt (⋉ one tt ∅) -- fails statically, as desired s3 = ⋉ one tt s1 -- normal form: ⋉ 1 tt (⋉ 1 tt (⋉ 0 tt ∅)) s4 = ⋉ (suc one) tt s1 -- normal form: ⋉ 2 tt (⋉ 1 tt (⋉ 0 tt ∅))
{ "alphanum_fraction": 0.5555555556, "avg_line_length": 26.0470588235, "ext": "agda", "hexsha": "815d3a9f967f4ac1f6d3bd8f1ebc2b6a4cb6a3cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e70ef1ea1891cff6157fba682a61c6f227a26fd8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sshastry/agda-examples", "max_forks_repo_path": "SortedList.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e70ef1ea1891cff6157fba682a61c6f227a26fd8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sshastry/agda-examples", "max_issues_repo_path": "SortedList.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "e70ef1ea1891cff6157fba682a61c6f227a26fd8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sshastry/agda-examples", "max_stars_repo_path": "SortedList.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 722, "size": 2214 }
module 110-natural-model where open import 010-false-true open import 020-equivalence open import 100-natural -- We prove that there is a model of the naturals within Agda's lambda -- calculus. This also shows that the Peano axioms are consistent. data ℕ : Set where zero : ℕ suc : ℕ -> ℕ thm-ℕ-is-natural : Natural zero suc _≡_ thm-ℕ-is-natural = record { equiv = thm-≡-is-equivalence; sucn!=zero = sucn!=zero; sucinjective = sucinjective; cong = cong; induction = induction } where sucn!=zero : ∀ {r} -> suc r ≡ zero -> False sucn!=zero () sucinjective : ∀ {r s} -> suc r ≡ suc s -> r ≡ s sucinjective refl = refl cong : ∀ {r s} -> r ≡ s -> suc r ≡ suc s cong refl = refl -- This is the only tricky bit: proving the principle of induction. induction : (p : ℕ -> Set) -> p zero -> (∀ n -> p n -> p (suc n)) -> ∀ n -> p n -- We first prove that p n holds for n equal to zero. This is just -- the base case. induction p base hypothesis zero = base -- Then we prove that p (suc n) holds, using induction on n, that is, -- we may assume that p n is proven, or more precisely, that -- "induction p base hypothesis n" is a proof of p n. induction p base hypothesis (suc n) = hypothesis n (induction p base hypothesis n)
{ "alphanum_fraction": 0.6357361963, "avg_line_length": 32.6, "ext": "agda", "hexsha": "e524375942c9c7a1700dfd574c911c429137b6e3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mcmtroffaes/agda-proofs", "max_forks_repo_path": "110-natural-model.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mcmtroffaes/agda-proofs", "max_issues_repo_path": "110-natural-model.agda", "max_line_length": 83, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mcmtroffaes/agda-proofs", "max_stars_repo_path": "110-natural-model.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z", "num_tokens": 401, "size": 1304 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Int open import lib.types.Group open import lib.types.List open import lib.types.Word open import lib.groups.Homomorphism open import lib.groups.Isomorphism open import lib.groups.FreeAbelianGroup open import lib.groups.GeneratedGroup open import lib.types.SetQuotient module lib.groups.Int where ℤ-group-structure : GroupStructure ℤ ℤ-group-structure = record { ident = 0 ; inv = ℤ~ ; comp = _ℤ+_ ; unit-l = ℤ+-unit-l ; assoc = ℤ+-assoc ; inv-l = ℤ~-inv-l } ℤ-group : Group₀ ℤ-group = group _ ℤ-group-structure ℤ-group-is-abelian : is-abelian ℤ-group ℤ-group-is-abelian = ℤ+-comm ℤ-abgroup : AbGroup₀ ℤ-abgroup = ℤ-group , ℤ-group-is-abelian private module OneGeneratorFreeAbGroup = FreeAbelianGroup Unit OneGenFreeAbGroup : AbGroup lzero OneGenFreeAbGroup = OneGeneratorFreeAbGroup.FreeAbGroup private module OneGenFreeAbGroup = AbGroup OneGenFreeAbGroup ℤ-iso-FreeAbGroup-Unit : ℤ-group ≃ᴳ OneGenFreeAbGroup.grp ℤ-iso-FreeAbGroup-Unit = ≃-to-≃ᴳ (equiv to from to-from from-to) to-pres-comp where open OneGeneratorFreeAbGroup module F = Freeness ℤ-abgroup to : Group.El ℤ-group → OneGenFreeAbGroup.El to = OneGenFreeAbGroup.exp qw[ inl unit :: nil ] from : OneGenFreeAbGroup.El → Group.El ℤ-group from = GroupHom.f (F.extend (λ _ → 1)) abstract to-pres-comp = OneGenFreeAbGroup.exp-+ qw[ inl unit :: nil ] to-from' : ∀ l → to (Word-extendᴳ ℤ-group (λ _ → 1) l) == qw[ l ] to-from' nil = idp to-from' (inl unit :: nil) = idp to-from' (inl unit :: l@(_ :: _)) = OneGenFreeAbGroup.exp-succ qw[ inl unit :: nil ] (Word-extendᴳ ℤ-group (λ _ → 1) l) ∙ ap (OneGenFreeAbGroup.comp qw[ inl unit :: nil ]) (to-from' l) to-from' (inr unit :: nil) = idp to-from' (inr unit :: l@(_ :: _)) = OneGenFreeAbGroup.exp-pred qw[ inl unit :: nil ] (Word-extendᴳ ℤ-group (λ _ → 1) l) ∙ ap (OneGenFreeAbGroup.comp qw[ inr unit :: nil ]) (to-from' l) to-from : ∀ fs → to (from fs) == fs to-from = QuotWord-elim to-from' (λ _ → prop-has-all-paths-↓) from-to : ∀ z → from (to z) == z from-to (pos 0) = idp from-to (pos 1) = idp from-to (negsucc 0) = idp from-to (pos (S (S n))) = GroupHom.pres-comp (F.extend (λ _ → 1)) qw[ inl unit :: nil ] (OneGenFreeAbGroup.exp qw[ inl unit :: nil ] (pos (S n))) ∙ ap succ (from-to (pos (S n))) from-to (negsucc (S n)) = GroupHom.pres-comp (F.extend (λ _ → 1)) qw[ inr unit :: nil ] (OneGenFreeAbGroup.exp qw[ inl unit :: nil ] (negsucc n)) ∙ ap pred (from-to (negsucc n)) exp-shom : ∀ {i} {GEl : Type i} (GS : GroupStructure GEl) (g : GEl) → ℤ-group-structure →ᴳˢ GS exp-shom GS g = group-structure-hom (GroupStructure.exp GS g) (GroupStructure.exp-+ GS g) exp-hom : ∀ {i} (G : Group i) (g : Group.El G) → ℤ-group →ᴳ G exp-hom G g = group-hom (Group.exp G g) (Group.exp-+ G g)
{ "alphanum_fraction": 0.6458752515, "avg_line_length": 33.8863636364, "ext": "agda", "hexsha": "4795b27b5ebf3bef970ff6e7911dbb26d6ad15b9", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/Int.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/Int.agda", "max_line_length": 94, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/Int.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1051, "size": 2982 }
module _ where open import Common.Prelude print : Float → IO Unit print x = putStrLn (primShowFloat x) printB : Bool → IO Unit printB true = putStrLn "true" printB false = putStrLn "false" _/_ = primFloatDiv _==_ = primFloatEquality _=N=_ = primFloatNumericalEquality _<N_ = primFloatNumericalLess _<_ = primFloatLess NaN : Float NaN = 0.0 / 0.0 -NaN : Float -NaN = primFloatNegate NaN Inf : Float Inf = 1.0 / 0.0 -Inf : Float -Inf = -1.0 / 0.0 sin = primSin cos = primCos tan = primTan asin = primASin acos = primACos atan = primATan atan2 = primATan2 isZero : Float → String isZero 0.0 = "pos" isZero -0.0 = "neg" isZero _ = "nonzero" main : IO Unit main = putStr "123.4 = " ,, print 123.4 ,, putStr "-42.9 = " ,, print -42.9 ,, -- Disabled because Issue #2359. -- putStr "1.0 = " ,, print 1.0 ,, -- putStr "-0.0 = " ,, print -0.0 ,, putStr "NaN = " ,, print NaN ,, putStr "Inf = " ,, print Inf ,, putStr "-Inf = " ,, print -Inf ,, putStr "Inf == Inf = " ,, printB (Inf == Inf) ,, -- Issues #2155 and #2194. putStr "NaN == NaN = " ,, printB (NaN == NaN) ,, -- Issue #2194. putStr "NaN == -NaN = " ,, printB (NaN == (primFloatNegate NaN)) ,, -- Issue #2169. putStr "0.0 == -0.0 = " ,, printB (0.0 == -0.0) ,, -- Issue #2216 putStr "isZero 0.0 = " ,, putStrLn (isZero 0.0) ,, putStr "isZero -0.0 = " ,, putStrLn (isZero -0.0) ,, putStr "isZero 1.0 = " ,, putStrLn (isZero 1.0) ,, -- numerical equality putStr "NaN =N= NaN = " ,, printB (NaN =N= NaN) ,, putStr "0.0 =N= -0.0 = " ,, printB (0.0 =N= -0.0) ,, putStr "0.0 =N= 12.0 = " ,, printB (0.0 =N= 12.0) ,, putStr "NaN < -Inf = " ,, printB (NaN < -Inf) ,, putStr "-Inf < NaN = " ,, printB (-Inf < NaN) ,, putStr "0.0 < -0.0 = " ,, printB (0.0 < -0.0) ,, putStr "-0.0 < 0.0 = " ,, printB (-0.0 < 0.0) ,, -- Issue #2208. putStr "NaN < NaN = " ,, printB (NaN < NaN) ,, putStr "-NaN < -NaN = " ,, printB (-NaN < -NaN) ,, putStr "NaN < -NaN = " ,, printB (NaN < -NaN) ,, putStr "-NaN < NaN = " ,, printB (-NaN < NaN) ,, putStr "NaN < -5.0 = " ,, printB (NaN < -5.0) ,, putStr "-5.0 < NaN = " ,, printB (-5.0 < NaN) ,, putStr "NaN <N -Inf = " ,, printB (NaN <N -Inf) ,, putStr "-Inf <N NaN = " ,, printB (-Inf <N NaN) ,, putStr "0.0 <N -0.0 = " ,, printB (0.0 <N -0.0) ,, putStr "-0.0 <N 0.0 = " ,, printB (-0.0 <N 0.0) ,, -- Issue #2208. putStr "NaN <N NaN = " ,, printB (NaN <N NaN) ,, putStr "-NaN <N -NaN = " ,, printB (-NaN <N -NaN) ,, putStr "NaN <N -NaN = " ,, printB (NaN <N -NaN) ,, putStr "-NaN <N NaN = " ,, printB (-NaN <N NaN) ,, putStr "NaN <N -5.0 = " ,, printB (NaN <N -5.0) ,, putStr "-5.0 <N NaN = " ,, printB (-5.0 <N NaN) ,, putStr "e = " ,, print (primExp 1.0) ,, putStr "sin (asin 0.6) = " ,, print (sin (asin 0.6)) ,, putStr "cos (acos 0.6) = " ,, print (cos (acos 0.6)) ,, putStr "tan (atan 0.4) = " ,, print (tan (atan 0.4)) ,, putStr "tan (atan2 0.4 1.0) = " ,, print (tan (atan2 0.4 1.0)) ,, return unit
{ "alphanum_fraction": 0.5114775299, "avg_line_length": 28.376146789, "ext": "agda", "hexsha": "52ae6865f280d4e4433fa501f4b04c0c35d2b4f6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Floats.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Compiler/simple/Floats.agda", "max_line_length": 69, "max_stars_count": 7, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Compiler/simple/Floats.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 1323, "size": 3093 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field module Algebra.Linear.Morphism {k ℓᵏ} (K : Field k ℓᵏ) where open import Algebra.Linear.Morphism.Definitions K public open import Algebra.Linear.Morphism.Bundles K public open import Algebra.Linear.Morphism.VectorSpace K public
{ "alphanum_fraction": 0.7680250784, "avg_line_length": 26.5833333333, "ext": "agda", "hexsha": "d5a326c6b68eb0f98ec84fc7f31d8ed7a1aa68ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Morphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Morphism.agda", "max_line_length": 56, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Morphism.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 81, "size": 319 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Reflection.StrictEquiv where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv.Base open import Cubical.Foundations.Isomorphism open import Cubical.Data.List.Base open import Cubical.Data.Unit.Base import Agda.Builtin.Reflection as R open import Cubical.Reflection.Base strictEquivClauses : R.Term → R.Term → List R.Clause strictEquivClauses f g = R.clause [] (R.proj (quote fst) v∷ []) f ∷ R.clause [] (R.proj (quote snd) v∷ R.proj (quote equiv-proof) v∷ []) (R.def (quote strictContrFibers) (g v∷ [])) ∷ [] strictEquivTerm : R.Term → R.Term → R.Term strictEquivTerm f g = R.pat-lam (strictEquivClauses f g) [] strictEquivMacro : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (A → B) → (B → A) → R.Term → R.TC Unit strictEquivMacro {A = A} {B} f g hole = R.quoteTC (A ≃ B) >>= λ equivTy → R.checkType hole equivTy >> R.quoteTC f >>= λ `f` → R.quoteTC g >>= λ `g` → R.unify (strictEquivTerm `f` `g`) hole strictIsoToEquivMacro : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → Iso A B → R.Term → R.TC Unit strictIsoToEquivMacro isom = strictEquivMacro (Iso.fun isom) (Iso.inv isom) -- For use with unquoteDef defStrictEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.Name → (A → B) → (B → A) → R.TC Unit defStrictEquiv idName f g = R.quoteTC f >>= λ `f` → R.quoteTC g >>= λ `g` → R.defineFun idName (strictEquivClauses `f` `g`) defStrictIsoToEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.Name → Iso A B → R.TC Unit defStrictIsoToEquiv idName isom = defStrictEquiv idName (Iso.fun isom) (Iso.inv isom) -- For use with unquoteDef declStrictEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.Name → (A → B) → (B → A) → R.TC Unit declStrictEquiv {A = A} {B = B} idName f g = R.quoteTC (A ≃ B) >>= λ ty → R.declareDef (varg idName) ty >> defStrictEquiv idName f g declStrictIsoToEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.Name → Iso A B → R.TC Unit declStrictIsoToEquiv idName isom = declStrictEquiv idName (Iso.fun isom) (Iso.inv isom) macro -- (f : A → B) → (g : B → A) → (A ≃ B) -- Assumes that `f` and `g` are inverse up to definitional equality strictEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (A → B) → (B → A) → R.Term → R.TC Unit strictEquiv = strictEquivMacro -- (isom : Iso A B) → (A ≃ B) -- Assumes that the functions defining `isom` are inverse up to definitional equality strictIsoToEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → Iso A B → R.Term → R.TC Unit strictIsoToEquiv = strictIsoToEquivMacro
{ "alphanum_fraction": 0.6320790574, "avg_line_length": 32.0853658537, "ext": "agda", "hexsha": "d3e14edf8536d7fcd3a08b1adfdde0fd117d9877", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Reflection/StrictEquiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Reflection/StrictEquiv.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Reflection/StrictEquiv.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 987, "size": 2631 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.ShapeView {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Agda.Primitive open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties.Escape open import Definition.LogicalRelation.Properties.Reflexivity open import Tools.Embedding open import Tools.Product open import Tools.Empty using (⊥; ⊥-elim ; ⊥-elimω) import Tools.PropositionalEquality as PE -- Type for maybe embeddings of reducible types data MaybeEmb (l : TypeLevel) (⊩⟨_⟩ : TypeLevel → Set) : Set where noemb : ⊩⟨ l ⟩ → MaybeEmb l ⊩⟨_⟩ emb : ∀ {l′} → l′ < l → MaybeEmb l′ ⊩⟨_⟩ → MaybeEmb l ⊩⟨_⟩ -- Specific reducible types with possible embedding _⊩⟨_⟩U : (Γ : Con Term) (l : TypeLevel) → Set Γ ⊩⟨ l ⟩U = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩U) _⊩⟨_⟩ℕ_ : (Γ : Con Term) (l : TypeLevel) (A : Term) → Set Γ ⊩⟨ l ⟩ℕ A = MaybeEmb l (λ l′ → Γ ⊩ℕ A) _⊩⟨_⟩ne_ : (Γ : Con Term) (l : TypeLevel) (A : Term) → Set Γ ⊩⟨ l ⟩ne A = MaybeEmb l (λ l′ → Γ ⊩ne A) data _⊩⟨_⟩Π_ (Γ : Con Term) (l : TypeLevel) (A : Term) : Setω where noemb : Γ ⊩′⟨ l ⟩Π A → Γ ⊩⟨ l ⟩Π A emb : ∀ {l′} → l′ < l → Γ ⊩⟨ l′ ⟩Π A → Γ ⊩⟨ l ⟩Π A -- -- Construct a general reducible type from a specific U-intr : ∀ {Γ l} → Γ ⊩⟨ l ⟩U → Γ ⊩⟨ l ⟩ U U-intr (noemb (Uᵣ l′ l< ⊢Γ)) = Uᵣ′ l′ l< ⊢Γ U-intr (emb 0<1 x) = emb′ 0<1 (U-intr x) ℕ-intr : ∀ {A Γ l} → Γ ⊩⟨ l ⟩ℕ A → Γ ⊩⟨ l ⟩ A ℕ-intr (noemb x) = ℕᵣ x ℕ-intr (emb 0<1 x) = emb′ 0<1 (ℕ-intr x) ne-intr : ∀ {A Γ l} → Γ ⊩⟨ l ⟩ne A → Γ ⊩⟨ l ⟩ A ne-intr (noemb x) = LRPack _ _ _ (LRne x) ne-intr (emb 0<1 x) = emb′ 0<1 (ne-intr x) Π-intr : ∀ {A Γ l} → Γ ⊩⟨ l ⟩Π A → Γ ⊩⟨ l ⟩ A Π-intr (noemb x) = LRPack _ _ _ (LRΠ x) Π-intr (emb 0<1 x) = emb′ 0<1 (Π-intr x) -- -- Construct a specific reducible type from a general with some criterion U-elim : ∀ {Γ l} → Γ ⊩⟨ l ⟩ U → Γ ⊩⟨ l ⟩U U-elim (Uᵣ′ l′ l< ⊢Γ) = noemb (Uᵣ l′ l< ⊢Γ) U-elim (ℕᵣ D) = ⊥-elim (U≢ℕ (whnfRed* (red D) Uₙ)) U-elim (ne′ K D neK K≡K) = ⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ)) U-elim (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = ⊥-elim (U≢Π (whnfRed* (red D) Uₙ)) U-elim (emb′ 0<1 x) with U-elim x U-elim (emb′ 0<1 x) | noemb x₁ = emb 0<1 (noemb x₁) U-elim (emb′ 0<1 x) | emb () x₁ ℕ-elim′ : ∀ {A Γ l} → Γ ⊢ A ⇒* ℕ → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ℕ A ℕ-elim′ D (Uᵣ′ l′ l< ⊢Γ) = ⊥-elim (U≢ℕ (whrDet* (id (Uⱼ ⊢Γ) , Uₙ) (D , ℕₙ))) ℕ-elim′ D (ℕᵣ D′) = noemb D′ ℕ-elim′ D (ne′ K D′ neK K≡K) = ⊥-elim (ℕ≢ne neK (whrDet* (D , ℕₙ) (red D′ , ne neK))) ℕ-elim′ D (Πᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = ⊥-elim (ℕ≢Π (whrDet* (D , ℕₙ) (red D′ , Πₙ))) ℕ-elim′ D (emb′ 0<1 x) with ℕ-elim′ D x ℕ-elim′ D (emb′ 0<1 x) | noemb x₁ = emb 0<1 (noemb x₁) ℕ-elim′ D (emb′ 0<1 x) | emb () x₂ ℕ-elim : ∀ {Γ l} → Γ ⊩⟨ l ⟩ ℕ → Γ ⊩⟨ l ⟩ℕ ℕ ℕ-elim [ℕ] = ℕ-elim′ (id (escape [ℕ])) [ℕ] ne-elim′ : ∀ {A Γ l K} → Γ ⊢ A ⇒* K → Neutral K → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ne A ne-elim′ D neK (Uᵣ′ l′ l< ⊢Γ) = ⊥-elim (U≢ne neK (whrDet* (id (Uⱼ ⊢Γ) , Uₙ) (D , ne neK))) ne-elim′ D neK (ℕᵣ D′) = ⊥-elim (ℕ≢ne neK (whrDet* (red D′ , ℕₙ) (D , ne neK))) ne-elim′ D neK (ne′ K D′ neK′ K≡K) = noemb (ne K D′ neK′ K≡K) ne-elim′ D neK (Πᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = ⊥-elim (Π≢ne neK (whrDet* (red D′ , Πₙ) (D , ne neK))) ne-elim′ D neK (emb′ 0<1 x) with ne-elim′ D neK x ne-elim′ D neK (emb′ 0<1 x) | noemb x₁ = emb 0<1 (noemb x₁) ne-elim′ D neK (emb′ 0<1 x) | emb () x₂ ne-elim : ∀ {Γ l K} → Neutral K → Γ ⊩⟨ l ⟩ K → Γ ⊩⟨ l ⟩ne K ne-elim neK [K] = ne-elim′ (id (escape [K])) neK [K] Π-elim′ : ∀ {A Γ F G l} → Γ ⊢ A ⇒* Π F ▹ G → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩Π A Π-elim′ D (Uᵣ′ l′ l< ⊢Γ) = ⊥-elimω (U≢Π (whrDet* (id (Uⱼ ⊢Γ) , Uₙ) (D , Πₙ))) Π-elim′ D (ℕᵣ D′) = ⊥-elimω (ℕ≢Π (whrDet* (red D′ , ℕₙ) (D , Πₙ))) Π-elim′ D (ne′ K D′ neK K≡K) = ⊥-elimω (Π≢ne neK (whrDet* (D , Πₙ) (red D′ , ne neK))) Π-elim′ D (Πᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = noemb (Πᵣ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) Π-elim′ D (emb′ 0<1 x) with Π-elim′ D x Π-elim′ D (emb′ 0<1 x) | noemb x₁ = emb 0<1 (noemb x₁) Π-elim′ D (emb′ 0<1 x) | emb () x₂ Π-elim : ∀ {Γ F G l} → Γ ⊩⟨ l ⟩ Π F ▹ G → Γ ⊩⟨ l ⟩Π Π F ▹ G Π-elim [Π] = Π-elim′ (id (escape [Π])) [Π] -- Extract a type and a level from a maybe embedding extractMaybeEmb : ∀ {l ⊩⟨_⟩} → MaybeEmb l ⊩⟨_⟩ → ∃ λ l′ → ⊩⟨ l′ ⟩ extractMaybeEmb (noemb x) = _ , x extractMaybeEmb (emb 0<1 x) = extractMaybeEmb x extractMaybeEmbΠl : ∀ {Γ A l} → Γ ⊩⟨ l ⟩Π A → TypeLevel extractMaybeEmbΠl {l = l} (noemb x) = l extractMaybeEmbΠl (emb 0<1 x) = ⁰ extractMaybeEmbΠ : ∀ {Γ A l} → ([A] : Γ ⊩⟨ l ⟩Π A) → Γ ⊩′⟨ extractMaybeEmbΠl [A] ⟩Π A extractMaybeEmbΠ {l = l} (noemb x) = x extractMaybeEmbΠ (emb 0<1 (noemb x)) = x -- emb, but with a propositional equality for the target level emb″ : ∀ {Γ A} (l : TypeLevel) → (l PE.≡ ¹) → (p : Γ ⊩⟨ ⁰ ⟩ A) → Γ ⊩⟨ l ⟩ A emb″ .¹ PE.refl p = emb′ 0<1 p -- A view for constructor equality of types where embeddings are ignored data ShapeView Γ (l l′ : TypeLevel) : ∀ A B (p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ B) → Set (lsuc (lsuc (toLevel l ⊔ toLevel l′))) where Uᵥ : ∀ l'A l<A ⊢ΓA l'B l<B ⊢ΓB → ShapeView Γ l l′ U U (LRPack _ _ _ (LRU ⊢ΓA l'A l<A)) (LRPack _ _ _ (LRU ⊢ΓB l'B l<B)) ℕᵥ : ∀ {A B} ℕA ℕB → ShapeView Γ l l′ A B (LRPack _ _ _ (LRℕ ℕA)) (LRPack _ _ _ (LRℕ ℕB)) ne : ∀ {A B} neA neB → ShapeView Γ l l′ A B (LRPack _ _ _ (LRne neA)) (LRPack _ _ _ (LRne neB)) Πᵥ : ∀ {A B} ΠA ΠB → ShapeView Γ l l′ A B (LRPack _ _ _ (LRΠ ΠA)) (LRPack _ _ _ (LRΠ ΠB)) emb⁰¹ : ∀ {A B p q} → (l≡ : l PE.≡ ¹) → ShapeView Γ ⁰ l′ A B p q → ShapeView Γ l l′ A B (emb″ l l≡ p) q emb¹⁰ : ∀ {A B p q} → (l≡ : l′ PE.≡ ¹) → ShapeView Γ l ⁰ A B p q → ShapeView Γ l l′ A B p (emb″ l′ l≡ q) -- Construct an shape view from an equality goodCases : ∀ {l l′ Γ A B} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → ShapeView Γ l l′ A B [A] [B] goodCases (Uᵣ′ lA l<A ⊢ΓA) (Uᵣ′ lB l<B ⊢ΓB) A≡B = Uᵥ lA l<A ⊢ΓA lB l<B ⊢ΓB goodCases (Uᵣ′ _ _ ⊢Γ) (ℕᵣ D) (U₌ PE.refl) = ⊥-elim (U≢ℕ (whnfRed* (red D) Uₙ)) goodCases (Uᵣ′ _ _ ⊢Γ) (ne′ K D neK K≡K) (U₌ PE.refl) = ⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ)) goodCases (Uᵣ′ _ _ ⊢Γ) (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (U₌ PE.refl) = ⊥-elim (U≢Π (whnfRed* (red D) Uₙ)) goodCases (ℕᵣ D) (Uᵣ′ _ _ ⊢Γ) (ιx (ℕ₌ A≡B)) = ⊥-elim (U≢ℕ (whnfRed* A≡B Uₙ)) goodCases (ℕᵣ ℕA) (ℕᵣ ℕB) A≡B = ℕᵥ ℕA ℕB goodCases (ℕᵣ D) (ne′ K D₁ neK K≡K) (ιx (ℕ₌ A≡B)) = ⊥-elim (ℕ≢ne neK (whrDet* (A≡B , ℕₙ) (red D₁ , ne neK))) goodCases (ℕᵣ D) (Πᵣ′ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) (ιx (ℕ₌ A≡B)) = ⊥-elim (ℕ≢Π (whrDet* (A≡B , ℕₙ) (red D₁ , Πₙ))) goodCases (ne′ K D neK K≡K) (Uᵣ′ _ _ ⊢Γ) (ιx (ne₌ M D′ neM K≡M)) = ⊥-elim (U≢ne neM (whnfRed* (red D′) Uₙ)) goodCases (ne′ K D neK K≡K) (ℕᵣ D₁) (ιx (ne₌ M D′ neM K≡M)) = ⊥-elim (ℕ≢ne neM (whrDet* (red D₁ , ℕₙ) (red D′ , ne neM))) goodCases (ne′ K D neK K≡K) (ne′ K′ D′ neK′ K≡K′) A≡B = ne (ne K D neK K≡K) (ne K′ D′ neK′ K≡K′) goodCases (ne′ K D neK K≡K) (Πᵣ′ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) (ιx (ne₌ M D′ neM K≡M)) = ⊥-elim (Π≢ne neM (whrDet* (red D₁ , Πₙ) (red D′ , ne neM))) goodCases (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Uᵣ′ _ _ ⊢Γ) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (U≢Π (whnfRed* D′ Uₙ)) goodCases (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ℕᵣ D₁) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (ℕ≢Π (whrDet* (red D₁ , ℕₙ) (D′ , Πₙ))) goodCases (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ne′ K D₁ neK K≡K) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (Π≢ne neK (whrDet* (D′ , Πₙ) (red D₁ , ne neK))) goodCases (LRPack _ _ _ (LRΠ ΠA)) (LRPack _ _ _ (LRΠ ΠB)) A≡B = Πᵥ ΠA ΠB goodCases {l} [A] (emb′ 0<1 x) A≡B = emb¹⁰ PE.refl (goodCases {l} {⁰} [A] x A≡B) goodCases {l′ = l} (emb′ 0<1 x) [B] (ιx A≡B) = emb⁰¹ PE.refl (goodCases {⁰} {l} x [B] A≡B) -- Construct an shape view between two derivations of the same type goodCasesRefl : ∀ {l l′ Γ A} ([A] : Γ ⊩⟨ l ⟩ A) ([A′] : Γ ⊩⟨ l′ ⟩ A) → ShapeView Γ l l′ A A [A] [A′] goodCasesRefl [A] [A′] = goodCases [A] [A′] (reflEq [A]) -- A view for constructor equality between three types data ShapeView₃ Γ (l l′ l″ : TypeLevel) : ∀ A B C (p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ B) (r : Γ ⊩⟨ l″ ⟩ C) → Set (lsuc (lsuc (toLevel l ⊔ toLevel l′ ⊔ toLevel l″))) where Uᵥ : ∀ lA l<A ⊢ΓA lB l<B ⊢ΓB lC l<C ⊢ΓC → ShapeView₃ Γ l l′ l″ U U U (LRPack _ _ _ (LRU ⊢ΓA lA l<A)) (LRPack _ _ _ (LRU ⊢ΓB lB l<B)) (LRPack _ _ _ (LRU ⊢ΓC lC l<C)) ℕᵥ : ∀ {A B C} ℕA ℕB ℕC → ShapeView₃ Γ l l′ l″ A B C (LRPack _ _ _ (LRℕ ℕA)) (LRPack _ _ _ (LRℕ ℕB)) (LRPack _ _ _ (LRℕ ℕC)) ne : ∀ {A B C} neA neB neC → ShapeView₃ Γ l l′ l″ A B C (LRPack _ _ _ (LRne neA)) (LRPack _ _ _ (LRne neB)) (LRPack _ _ _ (LRne neC)) Πᵥ : ∀ {A B C} ΠA ΠB ΠC → ShapeView₃ Γ l l′ l″ A B C (LRPack _ _ _ (LRΠ ΠA)) (LRPack _ _ _ (LRΠ ΠB)) (LRPack _ _ _ (LRΠ ΠC)) emb⁰¹¹ : ∀ {A B C p q r} → (l≡ : l PE.≡ ¹) → ShapeView₃ Γ ⁰ l′ l″ A B C p q r → ShapeView₃ Γ l l′ l″ A B C (emb″ l l≡ p) q r emb¹⁰¹ : ∀ {A B C p q r} → (l≡ : l′ PE.≡ ¹) → ShapeView₃ Γ l ⁰ l″ A B C p q r → ShapeView₃ Γ l l′ l″ A B C p (emb″ l′ l≡ q) r emb¹¹⁰ : ∀ {A B C p q r} → (l≡ : l″ PE.≡ ¹) → ShapeView₃ Γ l l′ ⁰ A B C p q r → ShapeView₃ Γ l l′ l″ A B C p q (emb″ l″ l≡ r) -- Combines two two-way views into a three-way view combine : ∀ {Γ l l′ l″ l‴ A B C [A] [B] [B]′ [C]} → ShapeView Γ l l′ A B [A] [B] → ShapeView Γ l″ l‴ B C [B]′ [C] → ShapeView₃ Γ l l′ l‴ A B C [A] [B] [C] combine (Uᵥ lA l<A ⊢ΓA lB l<B ⊢ΓB) (Uᵥ _ _ _ lC l<C ⊢ΓC) = Uᵥ lA l<A ⊢ΓA lB l<B ⊢ΓB lC l<C ⊢ΓC combine (Uᵥ lA l<A ⊢ΓA lB l<B ⊢ΓB) (ℕᵥ ℕA ℕB) = ⊥-elim (U≢ℕ (whnfRed* (red ℕA) Uₙ)) combine (Uᵥ lA l<A ⊢ΓA lB l<B ⊢ΓB) (ne (ne K D neK K≡K) neB) = ⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ)) combine (Uᵥ lA l<A ⊢ΓA lB l<B ⊢ΓB) (Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) = ⊥-elim (U≢Π (whnfRed* (red D) Uₙ)) combine (ℕᵥ ℕA ℕB) (Uᵥ lB l<B ⊢ΓB lC l<C ⊢ΓC) = ⊥-elim (U≢ℕ (whnfRed* (red ℕB) Uₙ)) combine (ℕᵥ ℕA₁ ℕB₁) (ℕᵥ ℕA ℕB) = ℕᵥ ℕA₁ ℕB₁ ℕB combine (ℕᵥ ℕA ℕB) (ne (ne K D neK K≡K) neB) = ⊥-elim (ℕ≢ne neK (whrDet* (red ℕB , ℕₙ) (red D , ne neK))) combine (ℕᵥ ℕA ℕB) (Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) = ⊥-elim (ℕ≢Π (whrDet* (red ℕB , ℕₙ) (red D , Πₙ))) combine (ne neA (ne K D neK K≡K)) (Uᵥ lB l<B ⊢ΓB lC l<C ⊢ΓC) = ⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ)) combine (ne neA (ne K D neK K≡K)) (ℕᵥ ℕA ℕB) = ⊥-elim (ℕ≢ne neK (whrDet* (red ℕA , ℕₙ) (red D , ne neK))) combine (ne neA₁ neB₁) (ne neA neB) = ne neA₁ neB₁ neB combine (ne neA (ne K D₁ neK K≡K)) (Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) = ⊥-elim (Π≢ne neK (whrDet* (red D , Πₙ) (red D₁ , ne neK))) combine (Πᵥ ΠA (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Uᵥ lB l<B ⊢ΓB lC l<C ⊢ΓC) = ⊥-elim (U≢Π (whnfRed* (red D) Uₙ)) combine (Πᵥ ΠA (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (ℕᵥ ℕA ℕB) = ⊥-elim (ℕ≢Π (whrDet* (red ℕA , ℕₙ) (red D , Πₙ))) combine (Πᵥ ΠA (Πᵣ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext)) (ne (ne K D neK K≡K) neB) = ⊥-elim (Π≢ne neK (whrDet* (red D₁ , Πₙ) (red D , ne neK))) combine (Πᵥ ΠA₁ ΠB₁) (Πᵥ ΠA ΠB) = Πᵥ ΠA₁ ΠB₁ ΠB combine (emb⁰¹ l≡ [AB]) [BC] = emb⁰¹¹ l≡ (combine [AB] [BC]) combine (emb¹⁰ l≡ [AB]) [BC] = emb¹⁰¹ l≡ (combine [AB] [BC]) combine [AB] (emb⁰¹ l≡ [BC]) = combine [AB] [BC] combine [AB] (emb¹⁰ l≡ [BC]) = emb¹¹⁰ l≡ (combine [AB] [BC])
{ "alphanum_fraction": 0.5163976648, "avg_line_length": 42.5109489051, "ext": "agda", "hexsha": "174ea97c7b130b7770743199372d92b1e2a0b0b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/ShapeView.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/ShapeView.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/ShapeView.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6622, "size": 11648 }
module IllTyped where data Nat : Set where zero : Nat suc : Nat -> Nat data Bool : Set where false : Bool true : Bool F : Nat -> Set F zero = Nat F (suc x) = Bool postulate D : (x:Nat)(y:F x) -> Set T : Nat -> Set f : {x:Nat -> Nat}{y:F (x zero)} -> (T (x zero) -> T (suc zero)) -> (D zero zero -> D (x zero) y) -> Nat test = f {?} (\x -> x) (\x -> x)
{ "alphanum_fraction": 0.4811083123, "avg_line_length": 14.7037037037, "ext": "agda", "hexsha": "0c591fb171cda1ed7c979f7da69285929e90e7d2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "notes/papers/implicit/examples/IllTyped.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "notes/papers/implicit/examples/IllTyped.agda", "max_line_length": 38, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "notes/papers/implicit/examples/IllTyped.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 152, "size": 397 }
------------------------------------------------------------------------ -- The Agda standard library -- -- 1 dimensional pretty printing of rose trees ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Text.Tree.Linear where open import Level using (Level) open import Size open import Data.Bool.Base using (Bool; true; false; if_then_else_; _∧_) open import Data.DifferenceList as DList renaming (DiffList to DList) using () open import Data.List.Base as List using (List; []; [_]; _∷_; _∷ʳ_) open import Data.Nat.Base using (ℕ; _∸_) open import Data.Product using (_×_; _,_) open import Data.String.Base open import Data.Tree.Rose using (Rose; node) open import Function.Base using (flip) private variable a : Level A : Set a i : Size display : Rose (List String) i → List String display t = DList.toList (go (([] , t) ∷ [])) where padding : Bool → List Bool → String → String padding dir? [] str = str padding dir? (b ∷ bs) str = (if dir? ∧ List.null bs then if b then " ├ " else " └ " else if b then " │ " else " ") ++ padding dir? bs str nodePrefixes : List A → List Bool nodePrefixes as = true ∷ List.replicate (List.length as ∸ 1) false childrenPrefixes : List A → List Bool childrenPrefixes as = List.replicate (List.length as ∸ 1) true ∷ʳ false go : List (List Bool × Rose (List String) i) → DList String go [] = DList.[] go ((bs , node a ts₁) ∷ ts) = let bs′ = List.reverse bs in DList.fromList (List.zipWith (flip padding bs′) (nodePrefixes a) a) DList.++ go (List.zip (List.map (_∷ bs) (childrenPrefixes ts₁)) ts₁) DList.++ go ts
{ "alphanum_fraction": 0.5893580104, "avg_line_length": 33.25, "ext": "agda", "hexsha": "353a9321a6fb64d3b1860d29c2c2bf01212d8f82", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Text/Tree/Linear.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Text/Tree/Linear.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Text/Tree/Linear.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 478, "size": 1729 }
{-# OPTIONS --type-in-type #-} Ty% : Set Ty% = (Ty% : Set) (nat top bot : Ty%) (arr prod sum : Ty% → Ty% → Ty%) → Ty% nat% : Ty%; nat% = λ _ nat% _ _ _ _ _ → nat% top% : Ty%; top% = λ _ _ top% _ _ _ _ → top% bot% : Ty%; bot% = λ _ _ _ bot% _ _ _ → bot% arr% : Ty% → Ty% → Ty%; arr% = λ A B Ty% nat% top% bot% arr% prod sum → arr% (A Ty% nat% top% bot% arr% prod sum) (B Ty% nat% top% bot% arr% prod sum) prod% : Ty% → Ty% → Ty%; prod% = λ A B Ty% nat% top% bot% arr% prod% sum → prod% (A Ty% nat% top% bot% arr% prod% sum) (B Ty% nat% top% bot% arr% prod% sum) sum% : Ty% → Ty% → Ty%; sum% = λ A B Ty% nat% top% bot% arr% prod% sum% → sum% (A Ty% nat% top% bot% arr% prod% sum%) (B Ty% nat% top% bot% arr% prod% sum%) Con% : Set; Con% = (Con% : Set) (nil : Con%) (snoc : Con% → Ty% → Con%) → Con% nil% : Con%; nil% = λ Con% nil% snoc → nil% snoc% : Con% → Ty% → Con%; snoc% = λ Γ A Con% nil% snoc% → snoc% (Γ Con% nil% snoc%) A Var% : Con% → Ty% → Set; Var% = λ Γ A → (Var% : Con% → Ty% → Set) (vz : ∀ Γ A → Var% (snoc% Γ A) A) (vs : ∀ Γ B A → Var% Γ A → Var% (snoc% Γ B) A) → Var% Γ A vz% : ∀{Γ A} → Var% (snoc% Γ A) A; vz% = λ Var% vz% vs → vz% _ _ vs% : ∀{Γ B A} → Var% Γ A → Var% (snoc% Γ B) A; vs% = λ x Var% vz% vs% → vs% _ _ _ (x Var% vz% vs%) Tm% : Con% → Ty% → Set; Tm% = λ Γ A → (Tm% : Con% → Ty% → Set) (var : ∀ Γ A → Var% Γ A → Tm% Γ A) (lam : ∀ Γ A B → Tm% (snoc% Γ A) B → Tm% Γ (arr% A B)) (app : ∀ Γ A B → Tm% Γ (arr% A B) → Tm% Γ A → Tm% Γ B) (tt : ∀ Γ → Tm% Γ top%) (pair : ∀ Γ A B → Tm% Γ A → Tm% Γ B → Tm% Γ (prod% A B)) (fst : ∀ Γ A B → Tm% Γ (prod% A B) → Tm% Γ A) (snd : ∀ Γ A B → Tm% Γ (prod% A B) → Tm% Γ B) (left : ∀ Γ A B → Tm% Γ A → Tm% Γ (sum% A B)) (right : ∀ Γ A B → Tm% Γ B → Tm% Γ (sum% A B)) (case : ∀ Γ A B C → Tm% Γ (sum% A B) → Tm% Γ (arr% A C) → Tm% Γ (arr% B C) → Tm% Γ C) (zero : ∀ Γ → Tm% Γ nat%) (suc : ∀ Γ → Tm% Γ nat% → Tm% Γ nat%) (rec : ∀ Γ A → Tm% Γ nat% → Tm% Γ (arr% nat% (arr% A A)) → Tm% Γ A → Tm% Γ A) → Tm% Γ A var% : ∀{Γ A} → Var% Γ A → Tm% Γ A; var% = λ x Tm% var% lam app tt pair fst snd left right case zero suc rec → var% _ _ x lam% : ∀{Γ A B} → Tm% (snoc% Γ A) B → Tm% Γ (arr% A B); lam% = λ t Tm% var% lam% app tt pair fst snd left right case zero suc rec → lam% _ _ _ (t Tm% var% lam% app tt pair fst snd left right case zero suc rec) app% : ∀{Γ A B} → Tm% Γ (arr% A B) → Tm% Γ A → Tm% Γ B; app% = λ t u Tm% var% lam% app% tt pair fst snd left right case zero suc rec → app% _ _ _ (t Tm% var% lam% app% tt pair fst snd left right case zero suc rec) (u Tm% var% lam% app% tt pair fst snd left right case zero suc rec) tt% : ∀{Γ} → Tm% Γ top%; tt% = λ Tm% var% lam% app% tt% pair fst snd left right case zero suc rec → tt% _ pair% : ∀{Γ A B} → Tm% Γ A → Tm% Γ B → Tm% Γ (prod% A B); pair% = λ t u Tm% var% lam% app% tt% pair% fst snd left right case zero suc rec → pair% _ _ _ (t Tm% var% lam% app% tt% pair% fst snd left right case zero suc rec) (u Tm% var% lam% app% tt% pair% fst snd left right case zero suc rec) fst% : ∀{Γ A B} → Tm% Γ (prod% A B) → Tm% Γ A; fst% = λ t Tm% var% lam% app% tt% pair% fst% snd left right case zero suc rec → fst% _ _ _ (t Tm% var% lam% app% tt% pair% fst% snd left right case zero suc rec) snd% : ∀{Γ A B} → Tm% Γ (prod% A B) → Tm% Γ B; snd% = λ t Tm% var% lam% app% tt% pair% fst% snd% left right case zero suc rec → snd% _ _ _ (t Tm% var% lam% app% tt% pair% fst% snd% left right case zero suc rec) left% : ∀{Γ A B} → Tm% Γ A → Tm% Γ (sum% A B); left% = λ t Tm% var% lam% app% tt% pair% fst% snd% left% right case zero suc rec → left% _ _ _ (t Tm% var% lam% app% tt% pair% fst% snd% left% right case zero suc rec) right% : ∀{Γ A B} → Tm% Γ B → Tm% Γ (sum% A B); right% = λ t Tm% var% lam% app% tt% pair% fst% snd% left% right% case zero suc rec → right% _ _ _ (t Tm% var% lam% app% tt% pair% fst% snd% left% right% case zero suc rec) case% : ∀{Γ A B C} → Tm% Γ (sum% A B) → Tm% Γ (arr% A C) → Tm% Γ (arr% B C) → Tm% Γ C; case% = λ t u v Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero suc rec → case% _ _ _ _ (t Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero suc rec) (u Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero suc rec) (v Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero suc rec) zero% : ∀{Γ} → Tm% Γ nat%; zero% = λ Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero% suc rec → zero% _ suc% : ∀{Γ} → Tm% Γ nat% → Tm% Γ nat%; suc% = λ t Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero% suc% rec → suc% _ (t Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero% suc% rec) rec% : ∀{Γ A} → Tm% Γ nat% → Tm% Γ (arr% nat% (arr% A A)) → Tm% Γ A → Tm% Γ A; rec% = λ t u v Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero% suc% rec% → rec% _ _ (t Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero% suc% rec%) (u Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero% suc% rec%) (v Tm% var% lam% app% tt% pair% fst% snd% left% right% case% zero% suc% rec%) v0% : ∀{Γ A} → Tm% (snoc% Γ A) A; v0% = var% vz% v1% : ∀{Γ A B} → Tm% (snoc% (snoc% Γ A) B) A; v1% = var% (vs% vz%) v2% : ∀{Γ A B C} → Tm% (snoc% (snoc% (snoc% Γ A) B) C) A; v2% = var% (vs% (vs% vz%)) v3% : ∀{Γ A B C D} → Tm% (snoc% (snoc% (snoc% (snoc% Γ A) B) C) D) A; v3% = var% (vs% (vs% (vs% vz%))) tbool% : Ty%; tbool% = sum% top% top% true% : ∀{Γ} → Tm% Γ tbool%; true% = left% tt% tfalse% : ∀{Γ} → Tm% Γ tbool%; tfalse% = right% tt% ifthenelse% : ∀{Γ A} → Tm% Γ (arr% tbool% (arr% A (arr% A A))); ifthenelse% = lam% (lam% (lam% (case% v2% (lam% v2%) (lam% v1%)))) times4% : ∀{Γ A} → Tm% Γ (arr% (arr% A A) (arr% A A)); times4% = lam% (lam% (app% v1% (app% v1% (app% v1% (app% v1% v0%))))) add% : ∀{Γ} → Tm% Γ (arr% nat% (arr% nat% nat%)); add% = lam% (rec% v0% (lam% (lam% (lam% (suc% (app% v1% v0%))))) (lam% v0%)) mul% : ∀{Γ} → Tm% Γ (arr% nat% (arr% nat% nat%)); mul% = lam% (rec% v0% (lam% (lam% (lam% (app% (app% add% (app% v1% v0%)) v0%)))) (lam% zero%)) fact% : ∀{Γ} → Tm% Γ (arr% nat% nat%); fact% = lam% (rec% v0% (lam% (lam% (app% (app% mul% (suc% v1%)) v0%))) (suc% zero%))
{ "alphanum_fraction": 0.4899184239, "avg_line_length": 38.6726190476, "ext": "agda", "hexsha": "66c6e66a70fd5214823df5fb7ac86a2881757b48", "lang": "Agda", "max_forks_count": 19, "max_forks_repo_forks_event_max_datetime": "2022-03-03T19:46:54.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-05T21:11:34.000Z", "max_forks_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "int-index/smalltt", "max_forks_repo_path": "bench/stlc_lessimpl.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_issues_repo_issues_event_max_datetime": "2022-02-28T21:51:10.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-16T09:14:57.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "int-index/smalltt", "max_issues_repo_path": "bench/stlc_lessimpl.agda", "max_line_length": 92, "max_stars_count": 377, "max_stars_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "int-index/smalltt", "max_stars_repo_path": "bench/stlc_lessimpl.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T21:31:01.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-26T16:57:16.000Z", "num_tokens": 2886, "size": 6497 }
-- Andreas, 2012-09-07 module DataParameterPolarity where data Bool : Set where true false : Bool data ⊥ : Set where record ⊤ : Set where -- True uses its first argument. True : Bool → Set True true = ⊤ True false = ⊥ -- Hence, D also uses its first argument. -- A buggy polarity analysis may consider D as constant. data D (b : Bool) : Set where c : True b → D b d : {b : Bool} → D b → True b d (c x) = x -- This cast is fatal, possible if D is considered constant. cast : (a b : Bool) → D a → D b cast a b x = x bot : ⊥ bot = d (cast true false (c _))
{ "alphanum_fraction": 0.6378091873, "avg_line_length": 19.5172413793, "ext": "agda", "hexsha": "6163633df36039c9f50882d1a8a40efe9fc54166", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/DataParameterPolarity.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/DataParameterPolarity.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/DataParameterPolarity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 184, "size": 566 }
{- This file contains: - Id, refl and J (with definitional computation rule) - Basic theory about Id, proved using J - Lemmas for going back and forth between Path and Id - Function extensionality for Id - fiber, isContr, equiv all defined using Id - The univalence axiom expressed using only Id ([EquivContr]) - Propositional truncation and its elimination principle -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Id where open import Cubical.Foundations.Prelude public hiding ( _≡_ ; _≡⟨_⟩_ ; _∎ ; isPropIsContr) renaming ( refl to reflPath ; transport to transportPath ; J to JPath ; JRefl to JPathRefl ; sym to symPath ; _∙_ to compPath ; cong to congPath ; funExt to funExtPath ; isContr to isContrPath ; isProp to isPropPath ; isSet to isSetPath ; fst to pr₁ -- as in the HoTT book ; snd to pr₂ ) open import Cubical.Core.Glue renaming ( isEquiv to isEquivPath ; _≃_ to EquivPath ; equivFun to equivFunPath ) open import Cubical.Foundations.Equiv renaming ( fiber to fiberPath ; equivIsEquiv to equivIsEquivPath ; equivCtr to equivCtrPath ) hiding ( isPropIsEquiv ) open import Cubical.Foundations.Univalence renaming ( EquivContr to EquivContrPath ) open import Cubical.HITs.PropositionalTruncation public renaming ( squash to squashPath ; recPropTrunc to recPropTruncPath ; elimPropTrunc to elimPropTruncPath ) open import Cubical.Core.Id public private variable ℓ ℓ' : Level A : Type ℓ -- Version of the constructor for Id where the y is also -- explicit. This is sometimes useful when it is needed for -- typechecking (see JId below). conId : ∀ {x : A} φ (y : A [ φ ↦ (λ _ → x) ]) (w : (Path _ x (outS y)) [ φ ↦ (λ { (φ = i1) → λ _ → x}) ]) → x ≡ outS y conId φ _ w = ⟨ φ , outS w ⟩ -- Reflexivity refl : ∀ {x : A} → x ≡ x refl {x = x} = ⟨ i1 , (λ _ → x) ⟩ -- Definition of J for Id module _ {x : A} (P : ∀ (y : A) → Id x y → Type ℓ') (d : P x refl) where J : ∀ {y : A} (w : x ≡ y) → P y w J {y = y} = elimId P (λ φ y w → comp (λ i → P _ (conId (φ ∨ ~ i) (inS (outS w i)) (inS (λ j → outS w (i ∧ j))))) (λ i → λ { (φ = i1) → d}) d) {y = y} -- Check that J of refl is the identity function Jdefeq : Path _ (J refl) d Jdefeq _ = d -- Basic theory about Id, proved using J transport : ∀ (B : A → Type ℓ') {x y : A} → x ≡ y → B x → B y transport B {x} p b = J (λ y p → B y) b p _⁻¹ : {x y : A} → x ≡ y → y ≡ x _⁻¹ {x = x} p = J (λ z _ → z ≡ x) refl p ap : ∀ {B : Type ℓ'} (f : A → B) → ∀ {x y : A} → x ≡ y → f x ≡ f y ap f {x} = J (λ z _ → f x ≡ f z) refl _∙_ : ∀ {x y z : A} → x ≡ y → y ≡ z → x ≡ z _∙_ {x = x} p = J (λ y _ → x ≡ y) p infix 4 _∙_ infix 3 _∎ infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ p ⟩ q = p ∙ q _∎ : (x : A) → x ≡ x _ ∎ = refl -- Convert between Path and Id pathToId : ∀ {x y : A} → Path _ x y → Id x y pathToId {x = x} = JPath (λ y _ → Id x y) refl pathToIdRefl : ∀ {x : A} → Path _ (pathToId (λ _ → x)) refl pathToIdRefl {x = x} = JPathRefl (λ y _ → Id x y) refl idToPath : ∀ {x y : A} → Id x y → Path _ x y idToPath {x = x} = J (λ y _ → Path _ x y) (λ _ → x) idToPathRefl : ∀ {x : A} → Path _ (idToPath {x = x} refl) reflPath idToPathRefl {x = x} _ _ = x pathToIdToPath : ∀ {x y : A} → (p : Path _ x y) → Path _ (idToPath (pathToId p)) p pathToIdToPath {x = x} = JPath (λ y p → Path _ (idToPath (pathToId p)) p) (λ i → idToPath (pathToIdRefl i)) idToPathToId : ∀ {x y : A} → (p : Id x y) → Path _ (pathToId (idToPath p)) p idToPathToId {x = x} = J (λ b p → Path _ (pathToId (idToPath p)) p) pathToIdRefl -- We get function extensionality by going back and forth between Path and Id funExt : ∀ {B : A → Type ℓ'} {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g funExt p = pathToId (λ i x → idToPath (p x) i) -- Equivalences expressed using Id fiber : ∀ {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ') fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) record isEquiv {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where field equiv-proof : (y : B) → isContr (fiber f y) open isEquiv public infix 4 _≃_ _≃_ : ∀ (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') A ≃ B = Σ[ f ∈ (A → B) ] (isEquiv f) equivFun : ∀ {B : Type ℓ'} → A ≃ B → A → B equivFun e = pr₁ e equivIsEquiv : ∀ {B : Type ℓ'} (e : A ≃ B) → isEquiv (equivFun e) equivIsEquiv e = pr₂ e equivCtr : ∀ {B : Type ℓ'} (e : A ≃ B) (y : B) → fiber (equivFun e) y equivCtr e y = e .pr₂ .equiv-proof y .pr₁ -- Functions for going between the various definitions. This could -- also be achieved by making lines in the universe and transporting -- back and forth along them. fiberPathToFiber : ∀ {B : Type ℓ'} {f : A → B} {y : B} → fiberPath f y → fiber f y fiberPathToFiber (x , p) = (x , pathToId p) fiberToFiberPath : ∀ {B : Type ℓ'} {f : A → B} {y : B} → fiber f y → fiberPath f y fiberToFiberPath (x , p) = (x , idToPath p) fiberToFiber : ∀ {B : Type ℓ'} {f : A → B} {y : B} (p : fiber f y) → Path _ (fiberPathToFiber (fiberToFiberPath p)) p fiberToFiber (x , p) = λ i → x , idToPathToId p i fiberPathToFiberPath : ∀ {B : Type ℓ'} {f : A → B} {y : B} (p : fiberPath f y) → Path _ (fiberToFiberPath (fiberPathToFiber p)) p fiberPathToFiberPath (x , p) = λ i → x , pathToIdToPath p i isContrPathToIsContr : isContrPath A → isContr A isContrPathToIsContr (ctr , p) = (ctr , λ y → pathToId (p y)) isContrToIsContrPath : isContr A → isContrPath A isContrToIsContrPath (ctr , p) = (ctr , λ y → idToPath (p y)) isPropPathToIsProp : isPropPath A → isProp A isPropPathToIsProp H x y = pathToId (H x y) isPropToIsPropPath : isProp A → isPropPath A isPropToIsPropPath H x y i = idToPath (H x y) i -- Specialized helper lemmas for going back and forth between -- isContrPath and isContr: helper1 : ∀ {A B : Type ℓ} (f : A → B) (g : B → A) (h : ∀ y → Path _ (f (g y)) y) → isContrPath A → isContr B helper1 f g h (x , p) = (f x , λ y → pathToId (λ i → hcomp (λ j → λ { (i = i0) → f x ; (i = i1) → h y j }) (f (p (g y) i)))) helper2 : ∀ {A B : Type ℓ} (f : A → B) (g : B → A) (h : ∀ y → Path _ (g (f y)) y) → isContr B → isContrPath A helper2 {A = A} f g h (x , p) = (g x , λ y → idToPath (rem y)) where rem : ∀ (y : A) → g x ≡ y rem y = g x ≡⟨ ap g (p (f y)) ⟩ g (f y) ≡⟨ pathToId (h y) ⟩ y ∎ -- This proof is essentially the one for proving that isContr with -- Path is a proposition, but as we are working with Id we have to -- insert a lof of conversion functions. It is still nice that is -- works like this though. isPropIsContr : ∀ (p1 p2 : isContr A) → Path (isContr A) p1 p2 isPropIsContr (a0 , p0) (a1 , p1) j = ( idToPath (p0 a1) j , hcomp (λ i → λ { (j = i0) → λ x → idToPathToId (p0 x) i ; (j = i1) → λ x → idToPathToId (p1 x) i }) (λ x → pathToId (λ i → hcomp (λ k → λ { (i = i0) → idToPath (p0 a1) j ; (i = i1) → idToPath (p0 x) (j ∨ k) ; (j = i0) → idToPath (p0 x) (i ∧ k) ; (j = i1) → idToPath (p1 x) i }) (idToPath (p0 (idToPath (p1 x) i)) j)))) -- We now prove that isEquiv is a proposition isPropIsEquiv : ∀ {A : Type ℓ} {B : Type ℓ} → {f : A → B} → (h1 h2 : isEquiv f) → Path _ h1 h2 equiv-proof (isPropIsEquiv {f = f} h1 h2 i) y = isPropIsContr {A = fiber f y} (h1 .equiv-proof y) (h2 .equiv-proof y) i -- Go from a Path equivalence to an Id equivalence equivPathToEquiv : ∀ {A : Type ℓ} {B : Type ℓ'} → EquivPath A B → A ≃ B equivPathToEquiv (f , p) = (f , λ { .equiv-proof y → helper1 fiberPathToFiber fiberToFiberPath fiberToFiber (p .equiv-proof y) }) -- Go from an Id equivalence to a Path equivalence equivToEquivPath : ∀ {A : Type ℓ} {B : Type ℓ'} → A ≃ B → EquivPath A B equivToEquivPath (f , p) = (f , λ { .equiv-proof y → helper2 fiberPathToFiber fiberToFiberPath fiberPathToFiberPath (p .equiv-proof y) }) equivToEquiv : ∀ {A : Type ℓ} {B : Type ℓ} → (p : A ≃ B) → Path _ (equivPathToEquiv (equivToEquivPath p)) p equivToEquiv (f , p) i = (f , isPropIsEquiv (λ { .equiv-proof y → helper1 fiberPathToFiber fiberToFiberPath fiberToFiber (helper2 fiberPathToFiber fiberToFiberPath fiberPathToFiberPath (p .equiv-proof y)) }) p i) -- We can finally prove univalence with Id everywhere from the one for Path EquivContr : ∀ (A : Type ℓ) → isContr (Σ[ T ∈ Type ℓ ] (T ≃ A)) EquivContr A = helper1 f1 f2 f12 (EquivContrPath A) where f1 : ∀ {ℓ} {A : Type ℓ} → Σ[ T ∈ Type ℓ ] (EquivPath T A) → Σ[ T ∈ Type ℓ ] (T ≃ A) f1 (x , p) = x , equivPathToEquiv p f2 : ∀ {ℓ} {A : Type ℓ} → Σ[ T ∈ Type ℓ ] (T ≃ A) → Σ[ T ∈ Type ℓ ] (EquivPath T A) f2 (x , p) = x , equivToEquivPath p f12 : ∀ {ℓ} {A : Type ℓ} → (y : Σ[ T ∈ Type ℓ ] (T ≃ A)) → Path _ (f1 (f2 y)) y f12 (x , p) = λ i → x , equivToEquiv p i -- Propositional truncation ∥∥-isProp : ∀ (x y : ∥ A ∥) → x ≡ y ∥∥-isProp x y = pathToId (squashPath x y) ∥∥-recursion : ∀ {A : Type ℓ} {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P ∥∥-recursion Pprop f x = recPropTruncPath (isPropToIsPropPath Pprop) f x ∥∥-induction : ∀ {A : Type ℓ} {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a ∥∥-induction Pprop f x = elimPropTruncPath (λ a → isPropToIsPropPath (Pprop a)) f x
{ "alphanum_fraction": 0.5438492651, "avg_line_length": 35.3205574913, "ext": "agda", "hexsha": "4ccbd9a5a95a308885d928382f26d278e70319ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Foundations/Id.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Foundations/Id.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Foundations/Id.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3907, "size": 10137 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Binary.Pointwise.Extensional directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Relation.Pointwise.Inductive where open import Data.Vec.Relation.Binary.Pointwise.Inductive public
{ "alphanum_fraction": 0.5092592593, "avg_line_length": 33.2307692308, "ext": "agda", "hexsha": "7f3ef250339de10df9d8d4034b988068b9f64903", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Pointwise/Inductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Pointwise/Inductive.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Pointwise/Inductive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 71, "size": 432 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.Nat test : (n : Nat) → Nat test n with zero ... | n = {!n!}
{ "alphanum_fraction": 0.5952380952, "avg_line_length": 15.75, "ext": "agda", "hexsha": "9f59153d554c7dda605b9b7fadbdafaee285624e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue1820.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue1820.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue1820.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 126 }
-- This file is imported by Issue1597.Main module Issue1597 where module A where module M where -- needs to be module postulate Nat : Set
{ "alphanum_fraction": 0.7328767123, "avg_line_length": 18.25, "ext": "agda", "hexsha": "afb99281370bb3e7062e7fd9090ebbbb9bb6adde", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1597.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1597.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1597.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 38, "size": 146 }
------------------------------------------------------------------------------ -- The division specification ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Program.Division.Specification where open import LTC-PCF.Base open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Inequalities ------------------------------------------------------------------------------ -- Specification: The division is total and the result is correct. divSpec : D → D → D → Set divSpec i j q = N q ∧ (∃[ r ] N r ∧ r < j ∧ i ≡ j * q + r)
{ "alphanum_fraction": 0.4212651413, "avg_line_length": 37.15, "ext": "agda", "hexsha": "5b4f0df9092a3a087e22277674b719fa349d0996", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Program/Division/Specification.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Program/Division/Specification.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Program/Division/Specification.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 140, "size": 743 }
module Categories.Ran where open import Level open import Categories.Category open import Categories.Functor hiding (_≡_) open import Categories.NaturalTransformation record Ran {o₀ ℓ₀ e₀} {o₁ ℓ₁ e₁} {o₂ ℓ₂ e₂} {A : Category o₀ ℓ₀ e₀} {B : Category o₁ ℓ₁ e₁} {C : Category o₂ ℓ₂ e₂} (F : Functor A B) (X : Functor A C) : Set (o₀ ⊔ ℓ₀ ⊔ e₀ ⊔ o₁ ⊔ ℓ₁ ⊔ e₁ ⊔ o₂ ⊔ ℓ₂ ⊔ e₂) where field R : Functor B C η : NaturalTransformation (R ∘ F) X δ : (M : Functor B C) → (α : NaturalTransformation (M ∘ F) X) → NaturalTransformation M R .δ-unique : {M : Functor B C} → {α : NaturalTransformation (M ∘ F) X} → (δ′ : NaturalTransformation M R) → α ≡ η ∘₁ (δ′ ∘ʳ F) → δ′ ≡ δ M α .commutes : (M : Functor B C) → (α : NaturalTransformation (M ∘ F) X) → α ≡ η ∘₁ (δ M α ∘ʳ F)
{ "alphanum_fraction": 0.5917375456, "avg_line_length": 41.15, "ext": "agda", "hexsha": "a777c14a9943731332b55c2caebe04f343c3bf9b", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Ran.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Ran.agda", "max_line_length": 103, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Ran.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 323, "size": 823 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Hash open import LibraBFT.Base.PKCS open import LibraBFT.Base.Encode -- This module brings in the base types used through libra -- and those necessary for the abstract model. module LibraBFT.Abstract.Types where open import LibraBFT.Base.Types public -- Simple way to flag meta-information without having it getting -- in the way. Meta : ∀{ℓ} → Set ℓ → Set ℓ Meta x = x -- An epoch-configuration carries only simple data about the epoch; the complicated -- parts will be provided by the System, defined below. -- -- The reason for the separation is that we should be able to provide -- an EpochConfig from a single peer state. record EpochConfig : Set₁ where constructor mkEpochConfig field -- TODO-2 : This should really be a UID as Hash should not show up in the Abstract -- namespace. This will require some refactoring of modules and reordering of -- module parameters. genesisUID : Hash epochId : EpochId authorsN : ℕ -- The set of members of this epoch. Member : Set Member = Fin authorsN -- There is a partial isomorphism between NodeIds and the -- authors participating in this epoch. field toNodeId : Member → NodeId isMember? : NodeId → Maybe Member nodeid-author-id : ∀{α} → isMember? (toNodeId α) ≡ just α author-nodeid-id : ∀{nid α} → isMember? nid ≡ just α → toNodeId α ≡ nid getPubKey : Member → PK PK-inj : ∀ {m1 m2} → getPubKey m1 ≡ getPubKey m2 → m1 ≡ m2 IsQuorum : List Member → Set bft-assumption : ∀ {xs ys} → IsQuorum xs → IsQuorum ys → ∃[ α ] (α ∈ xs × α ∈ ys × Meta-Honest-PK (getPubKey α)) open EpochConfig toNodeId-inj : ∀{𝓔}{x y : Member 𝓔} → toNodeId 𝓔 x ≡ toNodeId 𝓔 y → x ≡ y toNodeId-inj {𝓔} hyp = just-injective (trans (sym (nodeid-author-id 𝓔)) (trans (cong (isMember? 𝓔) hyp) (nodeid-author-id 𝓔))) record EpochConfigFor (eid : ℕ) : Set₁ where field epochConfig : EpochConfig forEpochId : epochId epochConfig ≡ eid MemberSubst : ∀ {𝓔} {𝓔'} → 𝓔' ≡ 𝓔 → EpochConfig.Member 𝓔 → EpochConfig.Member 𝓔' MemberSubst refl = id -- A member of an epoch is considered "honest" iff its public key is honest. Meta-Honest-Member : (𝓔 : EpochConfig) → Member 𝓔 → Set Meta-Honest-Member 𝓔 α = Meta-Honest-PK (getPubKey 𝓔 α) -- Naturally, if two witnesses that two authors belong -- in the epoch are the same, then the authors are also the same. -- -- This proof is very Galois-like, because of the way we structured -- our partial isos. It's actually pretty nice! :) member≡⇒author≡ : ∀{α β}{𝓔 : EpochConfig} → (authorα : Is-just (isMember? 𝓔 α)) → (authorβ : Is-just (isMember? 𝓔 β)) → to-witness authorα ≡ to-witness authorβ → α ≡ β member≡⇒author≡ {α} {β} {𝓔} a b prf with isMember? 𝓔 α | inspect (isMember? 𝓔) α ...| nothing | [ _ ] = ⊥-elim (maybe-any-⊥ a) member≡⇒author≡ {α} {β} {𝓔} (just _) b prf | just ra | [ RA ] with isMember? 𝓔 β | inspect (isMember? 𝓔) β ...| nothing | [ _ ] = ⊥-elim (maybe-any-⊥ b) member≡⇒author≡ {α} {β} {𝓔} (just _) (just _) prf | just ra | [ RA ] | just rb | [ RB ] = trans (sym (author-nodeid-id 𝓔 RA)) (trans (cong (toNodeId 𝓔) prf) (author-nodeid-id 𝓔 RB)) -- The abstract model is connected to the implementaton by means of -- 'VoteEvidence'. The record module will be parameterized by a -- v of type 'VoteEvidence 𝓔 UID'; this v will provide evidence -- that a given author voted for a given block (identified by the UID) -- on the specified round. -- -- When it comes time to instantiate the v above concretely, it will -- be something that states that we have a signature from the specified -- author voting for the specified block. record AbsVoteData (𝓔 : EpochConfig)(UID : Set) : Set where constructor mkAbsVoteData field abs-vRound : Round abs-vMember : EpochConfig.Member 𝓔 abs-vBlockUID : UID open AbsVoteData public AbsVoteData-η : ∀ {𝓔} {UID : Set} {r1 r2 : Round} {m1 m2 : EpochConfig.Member 𝓔} {b1 b2 : UID} → r1 ≡ r2 → m1 ≡ m2 → b1 ≡ b2 → mkAbsVoteData {𝓔} {UID} r1 m1 b1 ≡ mkAbsVoteData r2 m2 b2 AbsVoteData-η refl refl refl = refl VoteEvidence : EpochConfig → Set → Set₁ VoteEvidence 𝓔 UID = AbsVoteData 𝓔 UID → Set
{ "alphanum_fraction": 0.6142456983, "avg_line_length": 37.0222222222, "ext": "agda", "hexsha": "08e17a3d9ecface32c6106c9750dca465b1462c1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_forks_repo_path": "LibraBFT/Abstract/Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_issues_repo_path": "LibraBFT/Abstract/Types.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_stars_repo_path": "LibraBFT/Abstract/Types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1536, "size": 4998 }
module Thesis.Syntax where open import Thesis.Types public open import Thesis.Contexts public data Const : (τ : Type) → Set where unit : Const unit lit : ℤ → Const int plus : Const (int ⇒ int ⇒ int) minus : Const (int ⇒ int ⇒ int) cons : ∀ {t1 t2} → Const (t1 ⇒ t2 ⇒ pair t1 t2) fst : ∀ {t1 t2} → Const (pair t1 t2 ⇒ t1) snd : ∀ {t1 t2} → Const (pair t1 t2 ⇒ t2) linj : ∀ {t1 t2} → Const (t1 ⇒ sum t1 t2) rinj : ∀ {t1 t2} → Const (t2 ⇒ sum t1 t2) match : ∀ {t1 t2 t3} → Const (sum t1 t2 ⇒ (t1 ⇒ t3) ⇒ (t2 ⇒ t3) ⇒ t3) data Term (Γ : Context) : (τ : Type) → Set where -- constants aka. primitives const : ∀ {τ} → (c : Const τ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ -- we use de Bruijn indices, so we don't need binding occurrences. abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (const c) = const c weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x)
{ "alphanum_fraction": 0.5178389399, "avg_line_length": 26.16, "ext": "agda", "hexsha": "96b9b4eda38a03342eae5dfe8c2af427bf8cfd86", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/Syntax.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/Syntax.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 903, "size": 1962 }
open import Common.Reflection macro round-trip : Term → Tactic round-trip v hole = unify v hole module M (A : Set) where data D : Set where test : Set test = round-trip D
{ "alphanum_fraction": 0.6702702703, "avg_line_length": 14.2307692308, "ext": "agda", "hexsha": "53651da983ceea7cfa8115c433ab77cbb55fe09f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1890.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1890.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1890.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 58, "size": 185 }
module MissingWithClauses where data D : Set where c : D f : D -> D f c with c
{ "alphanum_fraction": 0.6506024096, "avg_line_length": 10.375, "ext": "agda", "hexsha": "de1355df4499f5450d14a19ace45a1269d22f7b0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/MissingWithClauses.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/MissingWithClauses.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/MissingWithClauses.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 29, "size": 83 }
module PiInSet where Rel : Set -> Set1 Rel A = A -> A -> Set Reflexive : {A : Set} -> Rel A -> Set Reflexive {A} _R_ = forall x -> x R x Symmetric : {A : Set} -> Rel A -> Set Symmetric {A} _R_ = forall x y -> x R y -> y R x data True : Set where tt : True data False : Set where data Nat : Set where zero : Nat suc : Nat -> Nat _==_ : Rel Nat zero == zero = True zero == suc _ = False suc _ == zero = False suc n == suc m = n == m refl== : Reflexive _==_ refl== zero = tt refl== (suc n) = refl== n sym== : Symmetric _==_ sym== zero zero tt = tt sym== zero (suc _) () sym== (suc _) zero () sym== (suc n) (suc m) n==m = sym== n m n==m
{ "alphanum_fraction": 0.5402985075, "avg_line_length": 17.6315789474, "ext": "agda", "hexsha": "d9eaa5691a8368591e1f3dffeff48089d92f43f0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/PiInSet.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/PiInSet.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/PiInSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 263, "size": 670 }
{-# OPTIONS --without-K --allow-unsolved-metas --exact-split #-} module 21-pushouts where import 20-pullbacks open 20-pullbacks public -- Section 14.1 {- We define the type of cocones with vertex X on a span. Since we will use it later on, we will also characterize the identity type of the type of cocones with a given vertex X. -} cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → UU l4 → UU _ cocone {A = A} {B = B} f g X = Σ (A → X) (λ i → Σ (B → X) (λ j → (i ∘ f) ~ (j ∘ g))) {- We characterize the identity type of the type of cocones with vertex C. -} coherence-htpy-cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) → (K : (pr1 c) ~ (pr1 c')) (L : (pr1 (pr2 c)) ~ (pr1 (pr2 c'))) → UU (l1 ⊔ l4) coherence-htpy-cocone f g c c' K L = ((pr2 (pr2 c)) ∙h (L ·r g)) ~ ((K ·r f) ∙h (pr2 (pr2 c'))) htpy-cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} → cocone f g X → cocone f g X → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) htpy-cocone f g c c' = Σ ((pr1 c) ~ (pr1 c')) ( λ K → Σ ((pr1 (pr2 c)) ~ (pr1 (pr2 c'))) ( coherence-htpy-cocone f g c c' K)) reflexive-htpy-cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → htpy-cocone f g c c reflexive-htpy-cocone f g (pair i (pair j H)) = pair refl-htpy (pair refl-htpy htpy-right-unit) htpy-cocone-eq : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) → Id c c' → htpy-cocone f g c c' htpy-cocone-eq f g c .c refl = reflexive-htpy-cocone f g c is-contr-total-htpy-cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → is-contr (Σ (cocone f g X) (htpy-cocone f g c)) is-contr-total-htpy-cocone f g c = is-contr-total-Eq-structure ( λ i' jH' K → Σ ((pr1 (pr2 c)) ~ (pr1 jH')) ( coherence-htpy-cocone f g c (pair i' jH') K)) ( is-contr-total-htpy (pr1 c)) ( pair (pr1 c) refl-htpy) ( is-contr-total-Eq-structure ( λ j' H' → coherence-htpy-cocone f g c ( pair (pr1 c) (pair j' H')) ( refl-htpy)) ( is-contr-total-htpy (pr1 (pr2 c))) ( pair (pr1 (pr2 c)) refl-htpy) ( is-contr-is-equiv' ( Σ (((pr1 c) ∘ f) ~ ((pr1 (pr2 c)) ∘ g)) (λ H' → (pr2 (pr2 c)) ~ H')) ( tot (λ H' M → htpy-right-unit ∙h M)) ( is-equiv-tot-is-fiberwise-equiv (λ H' → is-equiv-htpy-concat _ _)) ( is-contr-total-htpy (pr2 (pr2 c))))) is-equiv-htpy-cocone-eq : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) → is-equiv (htpy-cocone-eq f g c c') is-equiv-htpy-cocone-eq f g c = fundamental-theorem-id c ( reflexive-htpy-cocone f g c) ( is-contr-total-htpy-cocone f g c) ( htpy-cocone-eq f g c) eq-htpy-cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) → htpy-cocone f g c c' → Id c c' eq-htpy-cocone f g c c' = inv-is-equiv (is-equiv-htpy-cocone-eq f g c c') {- Given a cocone c on a span S with vertex X, and a type Y, the function cocone-map sends a function X → Y to a new cocone with vertex Y. -} cocone-map : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} {Y : UU l5} → cocone f g X → (X → Y) → cocone f g Y cocone-map f g (pair i (pair j H)) h = pair (h ∘ i) (pair (h ∘ j) (h ·l H)) cocone-map-id : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → Id (cocone-map f g c id) c cocone-map-id f g (pair i (pair j H)) = eq-pair refl (eq-pair refl (eq-htpy (λ s → ap-id (H s)))) cocone-map-comp : {l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) {Y : UU l5} (h : X → Y) {Z : UU l6} (k : Y → Z) → Id (cocone-map f g c (k ∘ h)) (cocone-map f g (cocone-map f g c h) k) cocone-map-comp f g (pair i (pair j H)) h k = eq-pair refl (eq-pair refl (eq-htpy (λ s → ap-comp k h (H s)))) {- A cocone c on a span S is said to satisfy the universal property of the pushout of S if the function cocone-map is an equivalence for every type Y. -} universal-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} → cocone f g X → UU _ universal-property-pushout l f g c = (Y : UU l) → is-equiv (cocone-map f g {Y = Y} c) map-universal-property-pushout : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → ( up-c : {l : Level} → universal-property-pushout l f g c) {Y : UU l5} → cocone f g Y → (X → Y) map-universal-property-pushout f g c up-c {Y} = inv-is-equiv (up-c Y) htpy-cocone-map-universal-property-pushout : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} ( f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → ( up-c : {l : Level} → universal-property-pushout l f g c) { Y : UU l5} (d : cocone f g Y) → htpy-cocone f g ( cocone-map f g c ( map-universal-property-pushout f g c up-c d)) ( d) htpy-cocone-map-universal-property-pushout f g c up-c {Y} d = htpy-cocone-eq f g ( cocone-map f g c (map-universal-property-pushout f g c up-c d)) ( d) ( issec-inv-is-equiv (up-c Y) d) uniqueness-map-universal-property-pushout : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} ( f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → ( up-c : {l : Level} → universal-property-pushout l f g c) → { Y : UU l5} (d : cocone f g Y) → is-contr ( Σ (X → Y) (λ h → htpy-cocone f g (cocone-map f g c h) d)) uniqueness-map-universal-property-pushout f g c up-c {Y} d = is-contr-is-equiv' ( fib (cocone-map f g c) d) ( tot (λ h → htpy-cocone-eq f g (cocone-map f g c h) d)) ( is-equiv-tot-is-fiberwise-equiv ( λ h → is-equiv-htpy-cocone-eq f g (cocone-map f g c h) d)) ( is-contr-map-is-equiv (up-c Y) d) {- We derive a 3-for-2 property of pushouts, analogous to the 3-for-2 property of pullbacks. -} triangle-cocone-cocone : { l1 l2 l3 l4 l5 l6 : Level} { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5} { f : S → A} {g : S → B} (c : cocone f g X) (d : cocone f g Y) ( h : X → Y) (KLM : htpy-cocone f g (cocone-map f g c h) d) ( Z : UU l6) → ( cocone-map f g d) ~ ((cocone-map f g c) ∘ (λ (k : Y → Z) → k ∘ h)) triangle-cocone-cocone {Y = Y} {f = f} {g = g} c d h KLM Z k = inv ( ( cocone-map-comp f g c h k) ∙ ( ap ( λ t → cocone-map f g t k) ( eq-htpy-cocone f g (cocone-map f g c h) d KLM))) is-equiv-up-pushout-up-pushout : { l1 l2 l3 l4 l5 : Level} { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5} ( f : S → A) (g : S → B) (c : cocone f g X) (d : cocone f g Y) → ( h : X → Y) (KLM : htpy-cocone f g (cocone-map f g c h) d) → ( up-c : {l : Level} → universal-property-pushout l f g c) → ( up-d : {l : Level} → universal-property-pushout l f g d) → is-equiv h is-equiv-up-pushout-up-pushout f g c d h KLM up-c up-d = is-equiv-is-equiv-precomp h ( λ l Z → is-equiv-right-factor ( cocone-map f g d) ( cocone-map f g c) ( precomp h Z) ( triangle-cocone-cocone c d h KLM Z) ( up-c Z) ( up-d Z)) up-pushout-up-pushout-is-equiv : { l1 l2 l3 l4 l5 : Level} { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5} ( f : S → A) (g : S → B) (c : cocone f g X) (d : cocone f g Y) → ( h : X → Y) (KLM : htpy-cocone f g (cocone-map f g c h) d) → is-equiv h → ( up-c : {l : Level} → universal-property-pushout l f g c) → {l : Level} → universal-property-pushout l f g d up-pushout-up-pushout-is-equiv f g c d h KLM is-equiv-h up-c Z = is-equiv-comp ( cocone-map f g d) ( cocone-map f g c) ( precomp h Z) ( triangle-cocone-cocone c d h KLM Z) ( is-equiv-precomp-is-equiv h is-equiv-h Z) ( up-c Z) up-pushout-is-equiv-up-pushout : { l1 l2 l3 l4 l5 : Level} { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5} ( f : S → A) (g : S → B) (c : cocone f g X) (d : cocone f g Y) → ( h : X → Y) (KLM : htpy-cocone f g (cocone-map f g c h) d) → ( up-d : {l : Level} → universal-property-pushout l f g d) → is-equiv h → {l : Level} → universal-property-pushout l f g c up-pushout-is-equiv-up-pushout f g c d h KLM up-d is-equiv-h Z = is-equiv-left-factor ( cocone-map f g d) ( cocone-map f g c) ( precomp h Z) ( triangle-cocone-cocone c d h KLM Z) ( up-d Z) ( is-equiv-precomp-is-equiv h is-equiv-h Z) uniquely-unique-pushout : { l1 l2 l3 l4 l5 : Level} { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5} ( f : S → A) (g : S → B) (c : cocone f g X) (d : cocone f g Y) → ( up-c : {l : Level} → universal-property-pushout l f g c) → ( up-d : {l : Level} → universal-property-pushout l f g d) → is-contr ( Σ (X ≃ Y) (λ e → htpy-cocone f g (cocone-map f g c (map-equiv e)) d)) uniquely-unique-pushout f g c d up-c up-d = is-contr-total-Eq-substructure ( uniqueness-map-universal-property-pushout f g c up-c d) ( is-subtype-is-equiv) ( map-universal-property-pushout f g c up-c d) ( htpy-cocone-map-universal-property-pushout f g c up-c d) ( is-equiv-up-pushout-up-pushout f g c d ( map-universal-property-pushout f g c up-c d) ( htpy-cocone-map-universal-property-pushout f g c up-c d) ( up-c) ( up-d)) {- We will assume that every span has a pushout. Moreover, we will introduce some further terminology to facilitate working with these pushouts. -} postulate pushout : {l1 l2 l3 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → UU (l1 ⊔ l2 ⊔ l3) postulate inl-pushout : {l1 l2 l3 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → A → pushout f g postulate inr-pushout : {l1 l2 l3 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → B → pushout f g postulate glue-pushout : {l1 l2 l3 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → ((inl-pushout f g) ∘ f) ~ ((inr-pushout f g) ∘ g) cocone-pushout : {l1 l2 l3 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → cocone f g (pushout f g) cocone-pushout f g = pair ( inl-pushout f g) ( pair ( inr-pushout f g) ( glue-pushout f g)) postulate up-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → universal-property-pushout l4 f g (cocone-pushout f g) cogap : { l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} ( f : S → A) (g : S → B) → { X : UU l4} (c : cocone f g X) → pushout f g → X cogap f g = map-universal-property-pushout f g ( cocone-pushout f g) ( up-pushout f g) is-pushout : { l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} ( f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-pushout f g c = is-equiv (cogap f g c) -- Section 14.2 Suspensions suspension-structure : {l1 l2 : Level} (X : UU l1) (Y : UU l2) → UU (l1 ⊔ l2) suspension-structure X Y = Σ Y (λ N → Σ Y (λ S → (x : X) → Id N S)) suspension-cocone' : {l1 l2 : Level} (X : UU l1) (Y : UU l2) → UU (l1 ⊔ l2) suspension-cocone' X Y = cocone (const X unit star) (const X unit star) Y cocone-suspension-structure : {l1 l2 : Level} (X : UU l1) (Y : UU l2) → suspension-structure X Y → suspension-cocone' X Y cocone-suspension-structure X Y (pair N (pair S merid)) = pair ( const unit Y N) ( pair ( const unit Y S) ( merid)) universal-property-suspension' : (l : Level) {l1 l2 : Level} (X : UU l1) (Y : UU l2) (susp-str : suspension-structure X Y) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-suspension' l X Y susp-str-Y = universal-property-pushout l ( const X unit star) ( const X unit star) ( cocone-suspension-structure X Y susp-str-Y) is-suspension : (l : Level) {l1 l2 : Level} (X : UU l1) (Y : UU l2) → UU (lsuc l ⊔ l1 ⊔ l2) is-suspension l X Y = Σ (suspension-structure X Y) (universal-property-suspension' l X Y) suspension : {l : Level} → UU l → UU l suspension X = pushout (const X unit star) (const X unit star) N-susp : {l : Level} {X : UU l} → suspension X N-susp {X = X} = inl-pushout (const X unit star) (const X unit star) star S-susp : {l : Level} {X : UU l} → suspension X S-susp {X = X} = inr-pushout (const X unit star) (const X unit star) star merid-susp : {l : Level} {X : UU l} → X → Id (N-susp {X = X}) (S-susp {X = X}) merid-susp {X = X} = glue-pushout (const X unit star) (const X unit star) sphere : ℕ → UU lzero sphere zero-ℕ = bool sphere (succ-ℕ n) = suspension (sphere n) N-sphere : (n : ℕ) → sphere n N-sphere zero-ℕ = true N-sphere (succ-ℕ n) = N-susp S-sphere : (n : ℕ) → sphere n S-sphere zero-ℕ = false S-sphere (succ-ℕ n) = S-susp {- We now work towards Lemma 17.2.2. -} suspension-cocone : {l1 l2 : Level} (X : UU l1) (Z : UU l2) → UU _ suspension-cocone X Z = Σ Z (λ z1 → Σ Z (λ z2 → (x : X) → Id z1 z2)) ev-suspension : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} → (susp-str-Y : suspension-structure X Y) → (Z : UU l3) → (Y → Z) → suspension-cocone X Z ev-suspension (pair N (pair S merid)) Z h = pair (h N) (pair (h S) (h ·l merid)) universal-property-suspension : (l : Level) {l1 l2 : Level} (X : UU l1) (Y : UU l2) → suspension-structure X Y → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-suspension l X Y susp-str-Y = (Z : UU l) → is-equiv (ev-suspension susp-str-Y Z) comparison-suspension-cocone : {l1 l2 : Level} (X : UU l1) (Z : UU l2) → suspension-cocone' X Z ≃ suspension-cocone X Z comparison-suspension-cocone X Z = equiv-toto ( λ z1 → Σ Z (λ z2 → (x : X) → Id z1 z2)) ( equiv-ev-star' Z) ( λ z1 → equiv-toto ( λ z2 → (x : X) → Id (z1 star) z2) ( equiv-ev-star' Z) ( λ z2 → equiv-id ((x : X) → Id (z1 star) (z2 star)))) map-comparison-suspension-cocone : {l1 l2 : Level} (X : UU l1) (Z : UU l2) → suspension-cocone' X Z → suspension-cocone X Z map-comparison-suspension-cocone X Z = map-equiv (comparison-suspension-cocone X Z) is-equiv-map-comparison-suspension-cocone : {l1 l2 : Level} (X : UU l1) (Z : UU l2) → is-equiv (map-comparison-suspension-cocone X Z) is-equiv-map-comparison-suspension-cocone X Z = is-equiv-map-equiv (comparison-suspension-cocone X Z) triangle-ev-suspension : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} → (susp-str-Y : suspension-structure X Y) → (Z : UU l3) → ( ( map-comparison-suspension-cocone X Z) ∘ ( cocone-map ( const X unit star) ( const X unit star) ( cocone-suspension-structure X Y susp-str-Y))) ~ ( ev-suspension susp-str-Y Z) triangle-ev-suspension (pair N (pair S merid)) Z h = refl is-equiv-ev-suspension : { l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} → ( susp-str-Y : suspension-structure X Y) → ( up-Y : universal-property-suspension' l3 X Y susp-str-Y) → ( Z : UU l3) → is-equiv (ev-suspension susp-str-Y Z) is-equiv-ev-suspension {X = X} susp-str-Y up-Y Z = is-equiv-comp ( ev-suspension susp-str-Y Z) ( map-comparison-suspension-cocone X Z) ( cocone-map ( const X unit star) ( const X unit star) ( cocone-suspension-structure X _ susp-str-Y)) ( htpy-inv (triangle-ev-suspension susp-str-Y Z)) ( up-Y Z) ( is-equiv-map-comparison-suspension-cocone X Z) {- Pointed maps and pointed homotopies. -} pointed-fam : {l1 : Level} (l : Level) (X : UU-pt l1) → UU (lsuc l ⊔ l1) pointed-fam l (pair X x) = Σ (X → UU l) (λ P → P x) pointed-Π : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → UU (l1 ⊔ l2) pointed-Π (pair X x) (pair P p) = Σ ((x' : X) → P x') (λ f → Id (f x) p) pointed-htpy : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → (f g : pointed-Π X P) → UU (l1 ⊔ l2) pointed-htpy (pair X x) (pair P p) (pair f α) g = pointed-Π (pair X x) (pair (λ x' → Id (f x') (pr1 g x')) (α ∙ (inv (pr2 g)))) pointed-refl-htpy : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → (f : pointed-Π X P) → pointed-htpy X P f f pointed-refl-htpy (pair X x) (pair P p) (pair f α) = pair refl-htpy (inv (right-inv α)) pointed-htpy-eq : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → (f g : pointed-Π X P) → Id f g → pointed-htpy X P f g pointed-htpy-eq X P f .f refl = pointed-refl-htpy X P f is-contr-total-pointed-htpy : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) (f : pointed-Π X P) → is-contr (Σ (pointed-Π X P) (pointed-htpy X P f)) is-contr-total-pointed-htpy (pair X x) (pair P p) (pair f α) = is-contr-total-Eq-structure ( λ g β (H : f ~ g) → Id (H x) (α ∙ (inv β))) ( is-contr-total-htpy f) ( pair f refl-htpy) ( is-contr-equiv' ( Σ (Id (f x) p) (λ β → Id β α)) ( equiv-tot (λ β → equiv-con-inv refl β α)) ( is-contr-total-path' α)) is-equiv-pointed-htpy-eq : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → (f g : pointed-Π X P) → is-equiv (pointed-htpy-eq X P f g) is-equiv-pointed-htpy-eq X P f = fundamental-theorem-id f ( pointed-refl-htpy X P f) ( is-contr-total-pointed-htpy X P f) ( pointed-htpy-eq X P f) eq-pointed-htpy : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → (f g : pointed-Π X P) → (pointed-htpy X P f g) → Id f g eq-pointed-htpy X P f g = inv-is-equiv (is-equiv-pointed-htpy-eq X P f g) -- Section 14.3 Duality of pushouts and pullbacks {- The universal property of the pushout of a span S can also be stated as a pullback-property: a cocone c = (pair i (pair j H)) with vertex X satisfies the universal property of the pushout of S if and only if the square Y^X -----> Y^B | | | | V V Y^A -----> Y^S is a pullback square for every type Y. Below, we first define the cone of this commuting square, and then we introduce the type pullback-property-pushout, which states that the above square is a pullback. -} htpy-precomp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {f g : A → B} (H : f ~ g) (C : UU l3) → (precomp f C) ~ (precomp g C) htpy-precomp H C h = eq-htpy (h ·l H) compute-htpy-precomp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : UU l3) → (htpy-precomp (refl-htpy' f) C) ~ refl-htpy compute-htpy-precomp f C h = eq-htpy-refl-htpy (h ∘ f) cone-pullback-property-pushout : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (Y : UU l) → cone (λ (h : A → Y) → h ∘ f) (λ (h : B → Y) → h ∘ g) (X → Y) cone-pullback-property-pushout f g {X} c Y = pair ( precomp (pr1 c) Y) ( pair ( precomp (pr1 (pr2 c)) Y) ( htpy-precomp (pr2 (pr2 c)) Y)) pullback-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ (l4 ⊔ lsuc l)))) pullback-property-pushout l {S} {A} {B} f g {X} c = (Y : UU l) → is-pullback ( precomp f Y) ( precomp g Y) ( cone-pullback-property-pushout f g c Y) {- In order to show that the universal property of pushouts is equivalent to the pullback property, we show that the maps cocone-map and the gap map fit in a commuting triangle, where the third map is an equivalence. The claim then follows from the 3-for-2 property of equivalences. -} triangle-pullback-property-pushout-universal-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → {l : Level} (Y : UU l) → ( cocone-map f g c) ~ ( ( tot (λ i' → tot (λ j' p → htpy-eq p))) ∘ ( gap (λ h → h ∘ f) (λ h → h ∘ g) (cone-pullback-property-pushout f g c Y))) triangle-pullback-property-pushout-universal-property-pushout {S = S} {A = A} {B = B} f g (pair i (pair j H)) Y h = eq-pair refl (eq-pair refl (inv (issec-eq-htpy (h ·l H)))) pullback-property-pushout-universal-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → universal-property-pushout l f g c → pullback-property-pushout l f g c pullback-property-pushout-universal-property-pushout l f g (pair i (pair j H)) up-c Y = let c = (pair i (pair j H)) in is-equiv-right-factor ( cocone-map f g c) ( tot (λ i' → tot (λ j' p → htpy-eq p))) ( gap (λ h → h ∘ f) (λ h → h ∘ g) (cone-pullback-property-pushout f g c Y)) ( triangle-pullback-property-pushout-universal-property-pushout f g c Y) ( is-equiv-tot-is-fiberwise-equiv ( λ i' → is-equiv-tot-is-fiberwise-equiv ( λ j' → funext (i' ∘ f) (j' ∘ g)))) ( up-c Y) universal-property-pushout-pullback-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → pullback-property-pushout l f g c → universal-property-pushout l f g c universal-property-pushout-pullback-property-pushout l f g (pair i (pair j H)) pb-c Y = let c = (pair i (pair j H)) in is-equiv-comp ( cocone-map f g c) ( tot (λ i' → tot (λ j' p → htpy-eq p))) ( gap (λ h → h ∘ f) (λ h → h ∘ g) (cone-pullback-property-pushout f g c Y)) ( triangle-pullback-property-pushout-universal-property-pushout f g c Y) ( pb-c Y) ( is-equiv-tot-is-fiberwise-equiv ( λ i' → is-equiv-tot-is-fiberwise-equiv ( λ j' → funext (i' ∘ f) (j' ∘ g)))) cocone-compose-horizontal : { l1 l2 l3 l4 l5 l6 : Level} { A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} ( f : A → X) (i : A → B) (k : B → C) → ( c : cocone f i Y) (d : cocone (pr1 (pr2 c)) k Z) → cocone f (k ∘ i) Z cocone-compose-horizontal f i k (pair j (pair g H)) (pair l (pair h K)) = pair ( l ∘ j) ( pair ( h) ( (l ·l H) ∙h (K ·r i))) {- is-pushout-rectangle-is-pushout-right-square : ( l : Level) { l1 l2 l3 l4 l5 l6 : Level} { A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} ( f : A → X) (i : A → B) (k : B → C) → ( c : cocone f i Y) (d : cocone (pr1 (pr2 c)) k Z) → universal-property-pushout l f i c → universal-property-pushout l (pr1 (pr2 c)) k d → universal-property-pushout l f (k ∘ i) (cocone-compose-horizontal f i k c d) is-pushout-rectangle-is-pushout-right-square l f i k c d up-Y up-Z = universal-property-pushout-pullback-property-pushout l f (k ∘ i) ( cocone-compose-horizontal f i k c d) ( λ T → is-pullback-htpy {!!} {!!} {!!} {!!} {!!} {!!} {!!}) -} -- Examples of pushouts {- The cofiber of a map. -} cofiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) cofiber {A = A} f = pushout f (const A unit star) cocone-cofiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → cocone f (const A unit star) (cofiber f) cocone-cofiber {A = A} f = cocone-pushout f (const A unit star) inl-cofiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → B → cofiber f inl-cofiber {A = A} f = pr1 (cocone-cofiber f) inr-cofiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → unit → cofiber f inr-cofiber f = pr1 (pr2 (cocone-cofiber f)) pt-cofiber : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → cofiber f pt-cofiber {A = A} f = inr-cofiber f star cofiber-ptd : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → UU-pt (l1 ⊔ l2) cofiber-ptd f = pair (cofiber f) (pt-cofiber f) up-cofiber : { l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → ( {l : Level} → universal-property-pushout l f (const A unit star) (cocone-cofiber f)) up-cofiber {A = A} f = up-pushout f (const A unit star) _*_ : {l1 l2 : Level} (A : UU l1) (B : UU l2) → UU (l1 ⊔ l2) A * B = pushout (pr1 {A = A} {B = λ x → B}) pr2 cocone-join : {l1 l2 : Level} (A : UU l1) (B : UU l2) → cocone (pr1 {A = A} {B = λ x → B}) pr2 (A * B) cocone-join A B = cocone-pushout pr1 pr2 up-join : {l1 l2 : Level} (A : UU l1) (B : UU l2) → ( {l : Level} → universal-property-pushout l ( pr1 {A = A} {B = λ x → B}) pr2 (cocone-join A B)) up-join A B = up-pushout pr1 pr2 inl-join : {l1 l2 : Level} (A : UU l1) (B : UU l2) → A → A * B inl-join A B = pr1 (cocone-join A B) inr-join : {l1 l2 : Level} (A : UU l1) (B : UU l2) → B → A * B inr-join A B = pr1 (pr2 (cocone-join A B)) glue-join : {l1 l2 : Level} (A : UU l1) (B : UU l2) (t : A × B) → Id (inl-join A B (pr1 t)) (inr-join A B (pr2 t)) glue-join A B = pr2 (pr2 (cocone-join A B)) _∨_ : {l1 l2 : Level} (A : UU-pt l1) (B : UU-pt l2) → UU-pt (l1 ⊔ l2) A ∨ B = pair ( pushout ( const unit (pr1 A) (pr2 A)) ( const unit (pr1 B) (pr2 B))) ( inl-pushout ( const unit (pr1 A) (pr2 A)) ( const unit (pr1 B) (pr2 B)) ( pr2 A)) indexed-wedge : {l1 l2 : Level} (I : UU l1) (A : I → UU-pt l2) → UU-pt (l1 ⊔ l2) indexed-wedge I A = pair ( cofiber (λ i → pair i (pr2 (A i)))) ( pt-cofiber (λ i → pair i (pr2 (A i)))) wedge-inclusion : {l1 l2 : Level} (A : UU-pt l1) (B : UU-pt l2) → pr1 (A ∨ B) → (pr1 A) × (pr1 B) wedge-inclusion {l1} {l2} (pair A a) (pair B b) = inv-is-equiv ( up-pushout ( const unit A a) ( const unit B b) ( A × B)) ( pair ( λ x → pair x b) ( pair ( λ y → pair a y) ( refl-htpy))) -- Exercises -- Exercise 13.1 -- Exercise 13.2 is-equiv-universal-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (f : S → A) (g : S → B) (c : cocone f g C) → is-equiv f → ({l : Level} → universal-property-pushout l f g c) → is-equiv (pr1 (pr2 c)) is-equiv-universal-property-pushout {A = A} {B} f g (pair i (pair j H)) is-equiv-f up-c = is-equiv-is-equiv-precomp j ( λ l T → is-equiv-is-pullback' ( λ (h : A → T) → h ∘ f) ( λ (h : B → T) → h ∘ g) ( cone-pullback-property-pushout f g (pair i (pair j H)) T) ( is-equiv-precomp-is-equiv f is-equiv-f T) ( pullback-property-pushout-universal-property-pushout l f g (pair i (pair j H)) up-c T)) equiv-universal-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (e : S ≃ A) (g : S → B) (c : cocone (map-equiv e) g C) → ({l : Level} → universal-property-pushout l (map-equiv e) g c) → B ≃ C equiv-universal-property-pushout e g c up-c = pair ( pr1 (pr2 c)) ( is-equiv-universal-property-pushout ( map-equiv e) ( g) ( c) ( is-equiv-map-equiv e) ( up-c)) is-equiv-universal-property-pushout' : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (f : S → A) (g : S → B) (c : cocone f g C) → is-equiv g → ({l : Level} → universal-property-pushout l f g c) → is-equiv (pr1 c) is-equiv-universal-property-pushout' f g (pair i (pair j H)) is-equiv-g up-c = is-equiv-is-equiv-precomp i ( λ l T → is-equiv-is-pullback ( precomp f T) ( precomp g T) ( cone-pullback-property-pushout f g (pair i (pair j H)) T) ( is-equiv-precomp-is-equiv g is-equiv-g T) ( pullback-property-pushout-universal-property-pushout l f g (pair i (pair j H)) up-c T)) equiv-universal-property-pushout' : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (f : S → A) (e : S ≃ B) (c : cocone f (map-equiv e) C) → ({l : Level} → universal-property-pushout l f (map-equiv e) c) → A ≃ C equiv-universal-property-pushout' f e c up-c = pair ( pr1 c) ( is-equiv-universal-property-pushout' ( f) ( map-equiv e) ( c) ( is-equiv-map-equiv e) ( up-c)) universal-property-pushout-is-equiv : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (f : S → A) (g : S → B) (c : cocone f g C) → is-equiv f → is-equiv (pr1 (pr2 c)) → ({l : Level} → universal-property-pushout l f g c) universal-property-pushout-is-equiv f g (pair i (pair j H)) is-equiv-f is-equiv-j {l} = let c = (pair i (pair j H)) in universal-property-pushout-pullback-property-pushout l f g c ( λ T → is-pullback-is-equiv' ( λ h → h ∘ f) ( λ h → h ∘ g) ( cone-pullback-property-pushout f g c T) ( is-equiv-precomp-is-equiv f is-equiv-f T) ( is-equiv-precomp-is-equiv j is-equiv-j T)) universal-property-pushout-is-equiv' : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (f : S → A) (g : S → B) (c : cocone f g C) → is-equiv g → is-equiv (pr1 c) → ({l : Level} → universal-property-pushout l f g c) universal-property-pushout-is-equiv' f g (pair i (pair j H)) is-equiv-g is-equiv-i {l} = let c = (pair i (pair j H)) in universal-property-pushout-pullback-property-pushout l f g c ( λ T → is-pullback-is-equiv ( precomp f T) ( precomp g T) ( cone-pullback-property-pushout f g c T) ( is-equiv-precomp-is-equiv g is-equiv-g T) ( is-equiv-precomp-is-equiv i is-equiv-i T)) is-contr-suspension-is-contr : {l : Level} {X : UU l} → is-contr X → is-contr (suspension X) is-contr-suspension-is-contr {l} {X} is-contr-X = is-contr-is-equiv' ( unit) ( pr1 (pr2 (cocone-pushout (const X unit star) (const X unit star)))) ( is-equiv-universal-property-pushout ( const X unit star) ( const X unit star) ( cocone-pushout ( const X unit star) ( const X unit star)) ( is-equiv-is-contr (const X unit star) is-contr-X is-contr-unit) ( up-pushout (const X unit star) (const X unit star))) ( is-contr-unit) is-contr-cofiber-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f → is-contr (cofiber f) is-contr-cofiber-is-equiv {A = A} {B} f is-equiv-f = is-contr-is-equiv' ( unit) ( pr1 (pr2 (cocone-cofiber f))) ( is-equiv-universal-property-pushout ( f) ( const A unit star) ( cocone-cofiber f) ( is-equiv-f) ( up-cofiber f)) ( is-contr-unit) is-equiv-cofiber-point : {l : Level} {B : UU l} (b : B) → is-equiv (pr1 (cocone-pushout (const unit B b) (const unit unit star))) is-equiv-cofiber-point {l} {B} b = is-equiv-universal-property-pushout' ( const unit B b) ( const unit unit star) ( cocone-pushout (const unit B b) (const unit unit star)) ( is-equiv-is-contr (const unit unit star) is-contr-unit is-contr-unit) ( up-pushout (const unit B b) (const unit unit star)) is-equiv-inr-join-empty : {l : Level} (X : UU l) → is-equiv (inr-join empty X) is-equiv-inr-join-empty X = is-equiv-universal-property-pushout ( pr1 {A = empty} {B = λ t → X}) ( pr2) ( cocone-join empty X) ( is-equiv-pr1-prod-empty X) ( up-join empty X) left-unit-law-join : {l : Level} (X : UU l) → X ≃ (empty * X) left-unit-law-join X = pair (inr-join empty X) (is-equiv-inr-join-empty X) is-equiv-inl-join-empty : {l : Level} (X : UU l) → is-equiv (inl-join X empty) is-equiv-inl-join-empty X = is-equiv-universal-property-pushout' ( pr1) ( pr2) ( cocone-join X empty) ( is-equiv-pr2-prod-empty X) ( up-join X empty) right-unit-law-join : {l : Level} (X : UU l) → X ≃ (X * empty) right-unit-law-join X = pair (inl-join X empty) (is-equiv-inl-join-empty X) inv-map-left-unit-law-prod : {l : Level} (X : UU l) → X → (unit × X) inv-map-left-unit-law-prod X = pair star issec-inv-map-left-unit-law-prod : {l : Level} (X : UU l) → (pr2 ∘ (inv-map-left-unit-law-prod X)) ~ id issec-inv-map-left-unit-law-prod X x = refl isretr-inv-map-left-unit-law-prod : {l : Level} (X : UU l) → ((inv-map-left-unit-law-prod X) ∘ pr2) ~ id isretr-inv-map-left-unit-law-prod X (pair star x) = refl is-equiv-left-unit-law-prod : {l : Level} (X : UU l) → is-equiv (pr2 {A = unit} {B = λ t → X}) is-equiv-left-unit-law-prod X = is-equiv-has-inverse ( inv-map-left-unit-law-prod X) ( issec-inv-map-left-unit-law-prod X) ( isretr-inv-map-left-unit-law-prod X) left-unit-law-prod : {l : Level} (X : UU l) → (unit × X) ≃ X left-unit-law-prod X = pair pr2 (is-equiv-left-unit-law-prod X) is-equiv-inl-join-unit : {l : Level} (X : UU l) → is-equiv (inl-join unit X) is-equiv-inl-join-unit X = is-equiv-universal-property-pushout' ( pr1) ( pr2) ( cocone-join unit X) ( is-equiv-left-unit-law-prod X) ( up-join unit X) left-zero-law-join : {l : Level} (X : UU l) → is-contr (unit * X) left-zero-law-join X = is-contr-equiv' ( unit) ( pair (inl-join unit X) (is-equiv-inl-join-unit X)) ( is-contr-unit) inv-map-right-unit-law-prod : {l : Level} (X : UU l) → X → X × unit inv-map-right-unit-law-prod X x = pair x star issec-inv-map-right-unit-law-prod : {l : Level} (X : UU l) → (pr1 ∘ (inv-map-right-unit-law-prod X)) ~ id issec-inv-map-right-unit-law-prod X x = refl isretr-inv-map-right-unit-law-prod : {l : Level} (X : UU l) → ((inv-map-right-unit-law-prod X) ∘ pr1) ~ id isretr-inv-map-right-unit-law-prod X (pair x star) = refl is-equiv-right-unit-law-prod : {l : Level} (X : UU l) → is-equiv (pr1 {A = X} {B = λ t → unit}) is-equiv-right-unit-law-prod X = is-equiv-has-inverse ( inv-map-right-unit-law-prod X) ( issec-inv-map-right-unit-law-prod X) ( isretr-inv-map-right-unit-law-prod X) right-unit-law-prod : {l : Level} (X : UU l) → (X × unit) ≃ X right-unit-law-prod X = pair pr1 (is-equiv-right-unit-law-prod X) is-equiv-inr-join-unit : {l : Level} (X : UU l) → is-equiv (inr-join X unit) is-equiv-inr-join-unit X = is-equiv-universal-property-pushout ( pr1) ( pr2) ( cocone-join X unit) ( is-equiv-right-unit-law-prod X) ( up-join X unit) right-zero-law-join : {l : Level} (X : UU l) → is-contr (X * unit) right-zero-law-join X = is-contr-equiv' ( unit) ( pair (inr-join X unit) (is-equiv-inr-join-unit X)) ( is-contr-unit) unit-pt : UU-pt lzero unit-pt = pair unit star is-contr-pt : {l : Level} → UU-pt l → UU l is-contr-pt A = is-contr (pr1 A) -- Exercise 16.2 -- ev-disjunction : -- {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) → -- ((type-Prop P) * (type-Prop Q) → (type-Prop R)) → -- (type-Prop P → type-Prop R) × (type-Prop Q → type-Prop R) -- ev-disjunction P Q R f = -- pair -- ( f ∘ (inl-join (type-Prop P) (type-Prop Q))) -- ( f ∘ (inr-join (type-Prop P) (type-Prop Q))) -- comparison-ev-disjunction : -- {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) → -- cocone-join (type-Prop P) (type-Prop Q) (type-Prop R) -- universal-property-disjunction-join-prop : -- {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) → -- is-equiv (ev-disjunction P Q R)
{ "alphanum_fraction": 0.5655887562, "avg_line_length": 35.4670719352, "ext": "agda", "hexsha": "ac93ee92b5b9acec082b7b0ae81f36dd4c098318", "lang": "Agda", "max_forks_count": 30, "max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z", "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/21-pushouts.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/21-pushouts.agda", "max_line_length": 161, "max_stars_count": 333, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/21-pushouts.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z", "num_tokens": 14274, "size": 35006 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal -- the definition used here is not very similar to what one usually sees in nLab or -- any textbook. the difference is that usually closed monoidal category is defined -- through a right adjoint of -⊗X, which is [X,-]. then there is an induced bifunctor -- [-,-]. -- -- but in proof relevant context, the induced bifunctor [-,-] does not have to be -- exactly the intended bifunctor! in fact, one can probably only show that the -- intended bifunctor is only naturally isomorphic to the induced one, which is -- significantly weaker. -- -- the approach taken here as an alternative is to BEGIN with a bifunctor -- already. however, is it required to have mates between any given two adjoints. this -- definition can be shown equivalent to the previous one but just works better. module Categories.Category.Monoidal.Closed {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where private module C = Category C open Category C variable X Y A B : Obj open import Level open import Data.Product using (_,_) open import Categories.Adjoint open import Categories.Adjoint.Mate open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.Functor.Hom open import Categories.Category.Instance.Setoids open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Properties open import Categories.NaturalTransformation.NaturalIsomorphism as NI record Closed : Set (levelOfTerm M) where open Monoidal M public field [-,-] : Bifunctor C.op C C adjoint : (-⊗ X) ⊣ appˡ [-,-] X mate : (f : X ⇒ Y) → Mate (adjoint {X}) (adjoint {Y}) (appʳ-nat ⊗ f) (appˡ-nat [-,-] f) module [-,-] = Functor [-,-] module adjoint {X} = Adjoint (adjoint {X}) module mate {X Y} f = Mate (mate {X} {Y} f) [_,-] : Obj → Functor C C [_,-] = appˡ [-,-] [-,_] : Obj → Functor C.op C [-,_] = appʳ [-,-] [_,_]₀ : Obj → Obj → Obj [ X , Y ]₀ = [-,-].F₀ (X , Y) [_,_]₁ : A ⇒ B → X ⇒ Y → [ B , X ]₀ ⇒ [ A , Y ]₀ [ f , g ]₁ = [-,-].F₁ (f , g) Hom[-⊗_,-] : ∀ X → Bifunctor C.op C (Setoids ℓ e) Hom[-⊗ X ,-] = adjoint.Hom[L-,-] {X} Hom[-,[_,-]] : ∀ X → Bifunctor C.op C (Setoids ℓ e) Hom[-,[ X ,-]] = adjoint.Hom[-,R-] {X} Hom-NI : ∀ {X : Obj} → NaturalIsomorphism Hom[-⊗ X ,-] Hom[-,[ X ,-]] Hom-NI = Hom-NI′ adjoint
{ "alphanum_fraction": 0.6552706553, "avg_line_length": 33.6575342466, "ext": "agda", "hexsha": "071597c56ad1ea8ad85fa6f5a17c3b28044ea33c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Closed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Closed.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Closed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 765, "size": 2457 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Bifunctor where open import Level open import Data.Product using (_,_; swap) open import Categories.Category open import Categories.Functor public open import Categories.Product Bifunctor : ∀ {o ℓ e} {o′ ℓ′ e′} {o′′ ℓ′′ e′′} → Category o ℓ e → Category o′ ℓ′ e′ → Category o′′ ℓ′′ e′′ → Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ o′′ ⊔ ℓ′′ ⊔ e′′) Bifunctor C D E = Functor (Product C D) E overlap-× : ∀ {o ℓ e} {o′₁ ℓ′₁ e′₁} {o′₂ ℓ′₂ e′₂} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {D₂ : Category o′₂ ℓ′₂ e′₂} (H : Bifunctor D₁ D₂ C) {o″ ℓ″ e″} {E : Category o″ ℓ″ e″} (F : Functor E D₁) (G : Functor E D₂) → Functor E C overlap-× H F G = H ∘ (F ※ G) reduce-× : ∀ {o ℓ e} {o′₁ ℓ′₁ e′₁} {o′₂ ℓ′₂ e′₂} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {D₂ : Category o′₂ ℓ′₂ e′₂} (H : Bifunctor D₁ D₂ C) {o″₁ ℓ″₁ e″₁} {E₁ : Category o″₁ ℓ″₁ e″₁} (F : Functor E₁ D₁) {o″₂ ℓ″₂ e″₂} {E₂ : Category o″₂ ℓ″₂ e″₂} (G : Functor E₂ D₂) → Bifunctor E₁ E₂ C reduce-× H F G = H ∘ (F ⁂ G) flip-bifunctor : ∀ {o ℓ e} {o′ ℓ′ e′} {o′′ ℓ′′ e′′} {C : Category o ℓ e} → {D : Category o′ ℓ′ e′} → {E : Category o′′ ℓ′′ e′′} → Bifunctor C D E → Bifunctor D C E flip-bifunctor {C = C} {D = D} {E = E} b = _∘_ b (Swap {C = C} {D = D})
{ "alphanum_fraction": 0.5598425197, "avg_line_length": 55.2173913043, "ext": "agda", "hexsha": "758b5c5163d6200a16a7e5dda444dcb44e58ae7e", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Bifunctor.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Bifunctor.agda", "max_line_length": 293, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Bifunctor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 630, "size": 1270 }
module Cats.Functor.Op where open import Cats.Category.Base open import Cats.Category.Op using (_ᵒᵖ) open import Cats.Functor using (Functor) open Functor Op : ∀ {lo la l≈ lo′ la′ l≈′} → {C : Category lo la l≈} {D : Category lo′ la′ l≈′} → Functor C D → Functor (C ᵒᵖ) (D ᵒᵖ) Op F = record { fobj = fobj F ; fmap = fmap F ; fmap-resp = fmap-resp F ; fmap-id = fmap-id F ; fmap-∘ = fmap-∘ F }
{ "alphanum_fraction": 0.5962441315, "avg_line_length": 20.2857142857, "ext": "agda", "hexsha": "969bf0996be77272e621693b2c92400b645cf26f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Functor/Op.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Functor/Op.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Functor/Op.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 168, "size": 426 }
module Tactic.Deriving.Quotable where open import Prelude open import Container.Traversable open import Tactic.Reflection open import Tactic.Reflection.Quote.Class open import Tactic.Deriving private -- Bootstrapping qVis : Visibility → Term qVis visible = con (quote visible) [] qVis hidden = con (quote hidden) [] qVis instance′ = con (quote instance′) [] qRel : Relevance → Term qRel relevant = con (quote relevant) [] qRel irrelevant = con (quote irrelevant) [] qArgInfo : ArgInfo → Term qArgInfo (arg-info v r) = con₂ (quote arg-info) (qVis v) (qRel r) qArg : Arg Term → Term qArg (arg i x) = con₂ (quote arg) (qArgInfo i) x qList : List Term → Term qList = foldr (λ x xs → con₂ (quote List._∷_) x xs) (con₀ (quote List.[])) -- Could compute this from the type of the dictionary constructor quoteType : Name → TC Type quoteType d = caseM instanceTelescope d (quote Quotable) of λ { (tel , vs) → pure $ telPi tel $ def d vs `→ def (quote Term) [] } dictConstructor : TC Name dictConstructor = caseM getConstructors (quote Quotable) of λ { (c ∷ []) → pure c ; _ → typeErrorS "impossible" } patArgs : Telescope → List (Arg Pattern) patArgs tel = map (var "x" <$_) tel quoteArgs′ : Nat → Telescope → List Term quoteArgs′ 0 _ = [] quoteArgs′ _ [] = [] quoteArgs′ (suc n) (a ∷ tel) = qArg (def₁ (quote `) (var n []) <$ a) ∷ quoteArgs′ n tel quoteArgs : Nat → Telescope → Term quoteArgs pars tel = qList $ replicate pars (qArg $ hArg (con₀ (quote Term.unknown))) ++ quoteArgs′ (length tel) tel constructorClause : Nat → Name → TC Clause constructorClause pars c = do tel ← drop pars ∘ fst ∘ telView <$> getType c pure (clause (vArg (con c (patArgs tel)) ∷ []) (con₂ (quote Term.con) (lit (name c)) (quoteArgs pars tel))) quoteClauses : Name → TC (List Clause) quoteClauses d = do n ← getParameters d caseM getConstructors d of λ where [] → pure [ absurd-clause (vArg absurd ∷ []) ] cs → mapM (constructorClause n) cs declareQuotableInstance : Name → Name → TC ⊤ declareQuotableInstance iname d = declareDef (iArg iname) =<< instanceType d (quote Quotable) defineQuotableInstance : Name → Name → TC ⊤ defineQuotableInstance iname d = do fname ← freshName ("quote[" & show d & "]") declareDef (vArg fname) =<< quoteType d dictCon ← dictConstructor defineFun iname (clause [] (con₁ dictCon (def₀ fname)) ∷ []) defineFun fname =<< quoteClauses d return _ deriveQuotable : Name → Name → TC ⊤ deriveQuotable iname d = declareQuotableInstance iname d >> defineQuotableInstance iname d
{ "alphanum_fraction": 0.6488888889, "avg_line_length": 31.0344827586, "ext": "agda", "hexsha": "f3e4d9074df431b9183f6373b114ee0703a088ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Deriving/Quotable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Deriving/Quotable.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Deriving/Quotable.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 824, "size": 2700 }
open import Data.Product using ( _×_ ) open import FRP.LTL.ISet.Core using ( ISet ; ⌈_⌉ ; M⟦_⟧ ) open import FRP.LTL.Time using ( Time ) open import FRP.LTL.Time.Bound using ( fin ; _≺_ ) open import FRP.LTL.Time.Interval using ( [_⟩ ; sing ) module FRP.LTL.ISet.Until where data _Until_ (A B : ISet) (t : Time) : Set where now : M⟦ B ⟧ (sing t) → (A Until B) t later : ∀ {u} → .(t≺u : fin t ≺ fin u) → M⟦ A ⟧ [ t≺u ⟩ → M⟦ B ⟧ (sing u) → (A Until B) t _U_ : ISet → ISet → ISet A U B = ⌈ A Until B ⌉
{ "alphanum_fraction": 0.5940594059, "avg_line_length": 36.0714285714, "ext": "agda", "hexsha": "bdd848e8a8323d77b7f56206f4503f29626b24fb", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z", "max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-frp-ltl", "max_forks_repo_path": "src/FRP/LTL/ISet/Until.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-frp-ltl", "max_issues_repo_path": "src/FRP/LTL/ISet/Until.agda", "max_line_length": 91, "max_stars_count": 21, "max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-frp-ltl", "max_stars_repo_path": "src/FRP/LTL/ISet/Until.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z", "num_tokens": 216, "size": 505 }
module Sets.ExtensionalPredicateSet where import Lvl open import Data open import Data.Boolean open import Data.Either as Either using (_‖_) open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Function.Equals open import Function.Equals.Proofs open import Function.Inverse open import Function.Proofs open import Logic open import Logic.Propositional open import Logic.Propositional.Theorems open import Logic.Predicate open import Structure.Setoid renaming (_≡_ to _≡ₑ_) open import Structure.Function.Domain open import Structure.Function.Domain.Proofs open import Structure.Function open import Structure.Relator.Equivalence import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Structure.Relator.Proofs open import Structure.Relator open import Syntax.Transitivity open import Type open import Type.Size private variable ℓ ℓₒ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓ₁ ℓ₂ ℓ₃ : Lvl.Level private variable T A A₁ A₂ B : Type{ℓ} -- A set of objects of a certain type where equality is based on setoids. -- This is defined by the containment predicate (_∋_) and a proof that it respects the setoid structure. -- (A ∋ a) is read "The set A contains the element a". -- Note: This is only a "set" within a certain type, so a collection of type PredSet(T) is actually a subcollection of T. record PredSet {ℓ ℓₒ ℓₑ} (T : Type{ℓₒ}) ⦃ equiv : Equiv{ℓₑ}(T) ⦄ : Type{Lvl.𝐒(ℓ) Lvl.⊔ ℓₒ Lvl.⊔ ℓₑ} where constructor intro field _∋_ : T → Stmt{ℓ} ⦃ preserve-equiv ⦄ : UnaryRelator(_∋_) open PredSet using (_∋_) public open PredSet using (preserve-equiv) -- Element-set relations. module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where -- The membership relation. -- (a ∈ A) is read "The element a is included in the set A". _∈_ : T → PredSet{ℓ}(T) → Stmt _∈_ = swap(_∋_) _∉_ : T → PredSet{ℓ}(T) → Stmt _∉_ = (¬_) ∘₂ (_∈_) _∌_ : PredSet{ℓ}(T) → T → Stmt _∌_ = (¬_) ∘₂ (_∋_) NonEmpty : PredSet{ℓ}(T) → Stmt NonEmpty(S) = ∃(_∈ S) -- Set-bounded quantifiers. module _ {T : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where ∀ₛ : PredSet{ℓ}(T) → (T → Stmt{ℓ₁}) → Stmt{ℓ Lvl.⊔ ℓ₁ Lvl.⊔ ℓₒ} ∀ₛ(S) P = ∀{elem : T} → (elem ∈ S) → P(elem) ∃ₛ : PredSet{ℓ}(T) → (T → Stmt{ℓ₁}) → Stmt{ℓ Lvl.⊔ ℓ₁ Lvl.⊔ ℓₒ} ∃ₛ(S) P = ∃(elem ↦ (elem ∈ S) ∧ P(elem)) -- Sets and set operations. module _ {T : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where -- An empty set. -- Contains nothing. ∅ : PredSet{ℓ}(T) ∅ ∋ x = Empty UnaryRelator.substitution (preserve-equiv ∅) = const id -- An universal set. -- Contains everything. -- Note: Everything as in every object of type T. 𝐔 : PredSet{ℓ}(T) 𝐔 ∋ x = Unit UnaryRelator.substitution (preserve-equiv 𝐔) = const id -- A singleton set (a set containing only one element). •_ : T → PredSet(T) (• a) ∋ x = x ≡ₑ a UnaryRelator.substitution (preserve-equiv (• a)) xy xa = symmetry(_≡ₑ_) xy 🝖 xa -- An union of two sets. -- Contains the elements that any of the both sets contain. _∪_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → PredSet(T) (A ∪ B) ∋ x = (A ∋ x) ∨ (B ∋ x) UnaryRelator.substitution (preserve-equiv (A ∪ B)) xy = Either.map (substitute₁(A ∋_) xy) (substitute₁(B ∋_) xy) infixr 1000 _∪_ -- An intersection of two sets. -- Contains the elements that both of the both sets contain. _∩_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → PredSet(T) (A ∩ B) ∋ x = (A ∋ x) ∧ (B ∋ x) UnaryRelator.substitution (preserve-equiv (A ∩ B)) xy = Tuple.map (substitute₁(A ∋_) xy) (substitute₁(B ∋_) xy) infixr 1001 _∩_ -- A complement of a set. -- Contains the elements that the set does not contain. ∁_ : PredSet{ℓ}(T) → PredSet(T) (∁ A) ∋ x = A ∌ x UnaryRelator.substitution (preserve-equiv (∁ A)) xy = contrapositiveᵣ (substitute₁(A ∋_) (symmetry(_≡ₑ_) xy)) infixr 1002 ∁_ -- A relative complement of a set. -- Contains the elements that the left set contains without the elements included in the right set.. _∖_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → PredSet(T) A ∖ B = (A ∩ (∁ B)) infixr 1001 _∖_ filter : (P : T → Stmt{ℓ₁}) ⦃ _ : UnaryRelator(P) ⦄ → PredSet{ℓ₂}(T) → PredSet(T) filter P(A) ∋ x = (x ∈ A) ∧ P(x) _⨯_.left (UnaryRelator.substitution (preserve-equiv (filter P A)) xy ([∧]-intro xA Px)) = substitute₁(A ∋_) xy xA _⨯_.right (UnaryRelator.substitution (preserve-equiv (filter P A)) xy ([∧]-intro xA Px)) = substitute₁(P) xy Px unapply : ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ → (f : A → B) ⦃ func-f : Function(f) ⦄ → B → PredSet(A) unapply f(y) ∋ x = f(x) ≡ₑ y preserve-equiv (unapply f(y)) = [∘]-unaryRelator ⦃ rel = binary-unaryRelatorᵣ ⦃ rel-P = [≡]-binaryRelator ⦄ ⦄ ⊶ : ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → (f : A → B) → PredSet(B) ⊶ f ∋ y = ∃(x ↦ f(x) ≡ₑ y) preserve-equiv (⊶ f) = [∃]-unaryRelator ⦃ rel-P = binary-unaryRelatorₗ ⦃ rel-P = [≡]-binaryRelator ⦄ ⦄ unmap : ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → (f : A → B) ⦃ _ : Function(f) ⦄ → PredSet{ℓ}(B) → PredSet(A) (unmap f(Y)) ∋ x = f(x) ∈ Y preserve-equiv (unmap f x) = [∘]-unaryRelator map : ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → (f : A → B) → PredSet{ℓ}(A) → PredSet(B) map f(S) ∋ y = ∃(x ↦ (x ∈ S) ∧ (f(x) ≡ₑ y)) preserve-equiv (map f S) = [∃]-unaryRelator ⦃ rel-P = [∧]-unaryRelator ⦃ rel-Q = binary-unaryRelatorₗ ⦃ rel-P = [≡]-binaryRelator ⦄ ⦄ ⦄ map₂ : ⦃ _ : Equiv{ℓₑ₁}(A₁) ⦄ ⦃ _ : Equiv{ℓₑ₂}(A₂) ⦄ ⦃ _ : Equiv{ℓₑ₃}(B) ⦄ → (_▫_ : A₁ → A₂ → B) → PredSet{ℓ₁}(A₁) → PredSet{ℓ₂}(A₂) → PredSet(B) map₂(_▫_) S₁ S₂ ∋ y = ∃{Obj = _ ⨯ _}(\{(x₁ , x₂) → (x₁ ∈ S₁) ∧ (x₂ ∈ S₂) ∧ ((x₁ ▫ x₂) ≡ₑ y)}) preserve-equiv (map₂ (_▫_) S₁ S₂) = [∃]-unaryRelator ⦃ rel-P = [∧]-unaryRelator ⦃ rel-P = [∧]-unaryRelator ⦄ ⦃ rel-Q = binary-unaryRelatorₗ ⦃ rel-P = [≡]-binaryRelator ⦄ ⦄ ⦄ -- Set-set relations. module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where record _⊆_ (A : PredSet{ℓ₁}(T)) (B : PredSet{ℓ₂}(T)) : Stmt{Lvl.of(T) Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{x} → (x ∈ A) → (x ∈ B) record _⊇_ (A : PredSet{ℓ₁}(T)) (B : PredSet{ℓ₂}(T)) : Stmt{Lvl.of(T) Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{x} → (x ∈ A) ← (x ∈ B) record _≡_ (A : PredSet{ℓ₁}(T)) (B : PredSet{ℓ₂}(T)) : Stmt{Lvl.of(T) Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{x} → (x ∈ A) ↔ (x ∈ B) instance [≡]-reflexivity : Reflexivity(_≡_ {ℓ}) Reflexivity.proof [≡]-reflexivity = intro [↔]-reflexivity instance [≡]-symmetry : Symmetry(_≡_ {ℓ}) Symmetry.proof [≡]-symmetry (intro xy) = intro([↔]-symmetry xy) [≡]-transitivity-raw : ∀{A : PredSet{ℓ₁}(T)}{B : PredSet{ℓ₂}(T)}{C : PredSet{ℓ₃}(T)} → (A ≡ B) → (B ≡ C) → (A ≡ C) [≡]-transitivity-raw (intro xy) (intro yz) = intro([↔]-transitivity xy yz) instance [≡]-transitivity : Transitivity(_≡_ {ℓ}) Transitivity.proof [≡]-transitivity (intro xy) (intro yz) = intro([↔]-transitivity xy yz) instance [≡]-equivalence : Equivalence(_≡_ {ℓ}) [≡]-equivalence = intro instance [≡]-equiv : Equiv(PredSet{ℓ}(T)) Equiv._≡_ ([≡]-equiv {ℓ}) x y = x ≡ y Equiv.equivalence [≡]-equiv = [≡]-equivalence module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where instance -- Note: The purpose of this module is to satisfy this property for arbitrary equivalences. [∋]-binaryRelator : BinaryRelator(_∋_ {ℓ}{T = T}) BinaryRelator.substitution [∋]-binaryRelator (intro pₛ) pₑ p = [↔]-to-[→] pₛ(substitute₁(_) pₑ p) instance [∋]-unaryRelatorₗ : ∀{a : T} → UnaryRelator(A ↦ _∋_ {ℓ} A a) [∋]-unaryRelatorₗ = BinaryRelator.left [∋]-binaryRelator -- TODO: There are level problems here that I am not sure how to solve. The big union of a set of sets are not of the same type as the inner sets. So, for example it would be useful if (⋃ As : PredSet{ℓₒ Lvl.⊔ Lvl.𝐒(ℓ₁)}(T)) and (A : PredSet{ℓ₁}(T)) for (A ∈ As) had the same type/levels when (As : PredSet{Lvl.𝐒(ℓ₁)}(PredSet{ℓ₁}(T))) so that they become comparable. But here, the result of big union is a level greater. module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where -- ⋃_ : PredSet{Lvl.𝐒(ℓ₁)}(PredSet{ℓ₁}(T)) → PredSet{ℓₒ Lvl.⊔ Lvl.𝐒(ℓ₁)}(T) ⋃ : PredSet{ℓ₁}(PredSet{ℓ₂}(T)) → PredSet(T) (⋃ As) ∋ x = ∃(A ↦ (A ∈ As) ∧ (x ∈ A)) UnaryRelator.substitution (preserve-equiv (⋃ As)) xy = [∃]-map-proof (Tuple.mapRight (substitute₁(_) xy)) ⋂ : PredSet{ℓ₁}(PredSet{ℓ₂}(T)) → PredSet(T) (⋂ As) ∋ x = ∀{A} → (A ∈ As) → (x ∈ A) UnaryRelator.substitution (preserve-equiv (⋂ As)) xy = substitute₁(_) xy ∘_ -- Indexed set operations. module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where ⋃ᵢ : ∀{I : Type{ℓ₁}} → (I → PredSet{ℓ₂}(T)) → PredSet{ℓ₁ Lvl.⊔ ℓ₂}(T) (⋃ᵢ Ai) ∋ x = ∃(i ↦ x ∈ Ai(i)) UnaryRelator.substitution (preserve-equiv (⋃ᵢ Ai)) xy = [∃]-map-proof (\{i} → substitute₁(_) ⦃ preserve-equiv(Ai(i)) ⦄ xy) ⋂ᵢ : ∀{I : Type{ℓ₁}} → (I → PredSet{ℓ₂}(T)) → PredSet{ℓ₁ Lvl.⊔ ℓ₂}(T) (⋂ᵢ Ai) ∋ x = ∀ₗ(i ↦ x ∈ Ai(i)) UnaryRelator.substitution (preserve-equiv (⋂ᵢ Ai)) xy p {i} = substitute₁(_) ⦃ preserve-equiv(Ai(i)) ⦄ xy p -- When the indexed union is indexed by a boolean, it is the same as the small union. ⋃ᵢ-of-boolean : ∀{A B : PredSet{ℓ}(T)} → ((⋃ᵢ{I = Bool}(if_then B else A)) ≡ (A ∪ B)) ∃.witness (_⨯_.left (_≡_.proof ⋃ᵢ-of-boolean) ([∨]-introₗ p)) = 𝐹 ∃.proof (_⨯_.left (_≡_.proof ⋃ᵢ-of-boolean) ([∨]-introₗ p)) = p ∃.witness (_⨯_.left (_≡_.proof ⋃ᵢ-of-boolean) ([∨]-introᵣ p)) = 𝑇 ∃.proof (_⨯_.left (_≡_.proof ⋃ᵢ-of-boolean) ([∨]-introᵣ p)) = p _⨯_.right (_≡_.proof ⋃ᵢ-of-boolean) ([∃]-intro 𝐹 ⦃ p ⦄) = [∨]-introₗ p _⨯_.right (_≡_.proof ⋃ᵢ-of-boolean) ([∃]-intro 𝑇 ⦃ p ⦄) = [∨]-introᵣ p -- When the indexed intersection is indexed by a boolean, it is the same as the small intersection. ⋂ᵢ-of-boolean : ∀{A B : PredSet{ℓ}(T)} → ((⋂ᵢ{I = Bool}(if_then B else A)) ≡ (A ∩ B)) _⨯_.left (_≡_.proof ⋂ᵢ-of-boolean) p {𝐹} = [∧]-elimₗ p _⨯_.left (_≡_.proof ⋂ᵢ-of-boolean) p {𝑇} = [∧]-elimᵣ p _⨯_.left (_⨯_.right (_≡_.proof ⋂ᵢ-of-boolean) p) = p{𝐹} _⨯_.right (_⨯_.right (_≡_.proof ⋂ᵢ-of-boolean) p) = p{𝑇} module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where ⋃ᵢ-of-bijection : ∀{f : B → PredSet{ℓ}(T)} ⦃ func-f : Function(f)⦄ → (([∃]-intro g) : A ≍ B) → (⋃ᵢ{I = A}(f ∘ g) ≡ ⋃ᵢ{I = B}(f)) ∃.witness (_⨯_.left (_≡_.proof (⋃ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄))) ([∃]-intro b ⦃ p ⦄)) = inv g ⦃ bijective-to-invertible ⦄ (b) ∃.proof (_⨯_.left (_≡_.proof (⋃ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄))) ([∃]-intro b ⦃ p ⦄)) = substitute₂(_∋_) (symmetry(_≡_) (congruence₁(f) (inverse-right(g)(inv g ⦃ bijective-to-invertible ⦄) ⦃ [∧]-elimᵣ([∃]-proof bijective-to-invertible) ⦄))) (reflexivity(_≡ₑ_)) p ∃.witness (_⨯_.right (_≡_.proof (⋃ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄))) ([∃]-intro a ⦃ p ⦄)) = g(a) ∃.proof (_⨯_.right (_≡_.proof (⋃ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄))) ([∃]-intro b ⦃ p ⦄)) = p ⋂ᵢ-of-bijection : ∀{f : B → PredSet{ℓ}(T)} ⦃ func-f : Function(f)⦄ → (([∃]-intro g) : A ≍ B) → (⋂ᵢ{I = A}(f ∘ g) ≡ ⋂ᵢ{I = B}(f)) _⨯_.left (_≡_.proof (⋂ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄)) {x}) p {b} = p{g(b)} _⨯_.right (_≡_.proof (⋂ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄)) {x}) p {b} = substitute₂(_∋_) (congruence₁(f) (inverse-right(g)(inv g ⦃ bijective-to-invertible ⦄) ⦃ [∧]-elimᵣ([∃]-proof bijective-to-invertible) ⦄)) (reflexivity(_≡ₑ_)) (p{inv g ⦃ bijective-to-invertible ⦄ (b)}) module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where instance singleton-function : ∀{A : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(A) ⦄ → Function{A = A}(•_) _≡_.proof (Function.congruence singleton-function {x} {y} xy) {a} = [↔]-intro (_🝖 symmetry(_≡ₑ_) xy) (_🝖 xy)
{ "alphanum_fraction": 0.602348269, "avg_line_length": 47.0853658537, "ext": "agda", "hexsha": "f076e2b6b55f56b70fd04938e927f5baf1ece2c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Sets/ExtensionalPredicateSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Sets/ExtensionalPredicateSet.agda", "max_line_length": 420, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Sets/ExtensionalPredicateSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 5319, "size": 11583 }
open import MLib.Prelude open import MLib.Algebra.PropertyCode open import MLib.Algebra.PropertyCode.Structures module MLib.Matrix.Plus {c ℓ} (struct : Struct bimonoidCode c ℓ) {m n : ℕ} where open import MLib.Matrix.Core open import MLib.Matrix.Equality struct open FunctionProperties -- Pointwise addition -- infixl 6 _⊕_ _⊕_ : Matrix S m n → Matrix S m n → Matrix S m n (A ⊕ B) i j = A i j ⟨ + ⟩ B i j ⊕-cong : Congruent₂ _⊕_ ⊕-cong p q = λ i j → S.cong + (p i j) (q i j) ⊕-assoc : ⦃ props : Has₁ (associative on +) ⦄ → Associative _⊕_ ⊕-assoc ⦃ props ⦄ A B C i j = from props (associative on +) (A i j) (B i j) (C i j) 0● : Matrix S m n 0● _ _ = ⟦ 0# ⟧ ⊕-identityˡ : ⦃ props : Has₁ (0# is leftIdentity for +) ⦄ → LeftIdentity 0● _⊕_ ⊕-identityˡ ⦃ props ⦄ A i j = from props (0# is leftIdentity for +) (A i j) ⊕-identityʳ : ⦃ props : Has₁ (0# is rightIdentity for +) ⦄ → RightIdentity 0● _⊕_ ⊕-identityʳ ⦃ props ⦄ A i j = from props (0# is rightIdentity for +) (A i j) ⊕-comm : ⦃ props : Has₁ (commutative on +) ⦄ → Commutative _⊕_ ⊕-comm ⦃ props ⦄ A B i j = from props (commutative on +) (A i j) (B i j)
{ "alphanum_fraction": 0.6366071429, "avg_line_length": 31.1111111111, "ext": "agda", "hexsha": "79902a4d181cad529c65860cc45c7ba8782a380b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Matrix/Plus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Matrix/Plus.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Matrix/Plus.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 480, "size": 1120 }
{- Practical Relational Algebra Toon Nolten based on The Power Of Pi -} module relational-algebra where open import Data.Empty open import Data.Unit hiding (_≤_) open import Data.Bool open import Data.Nat open import Data.Integer hiding (show) open import Data.List open import Data.Char hiding (_==_) renaming (show to charToString) open import Data.Vec hiding (_++_; lookup; map; foldr; _>>=_) open import Data.String using (String; toVec; _==_; strictTotalOrder) renaming (_++_ to _∥_) open import Data.Product using (_×_; _,_; proj₁) open import Coinduction open import IO open import Relation.Binary open StrictTotalOrder Data.String.strictTotalOrder renaming (compare to str_cmp) data Order : Set where LT EQ GT : Order module InsertionSort where insert : {A : Set} → (A → A → Order) → A → List A → List A insert _ e [] = e ∷ [] insert cmp e (l ∷ ls) with cmp e l ... | GT = l ∷ insert cmp e ls ... | _ = e ∷ l ∷ ls sort : {A : Set} → (A → A → Order) → List A → List A sort cmp = foldr (insert cmp) [] open InsertionSort using (insert; sort) -- Universe U exists of type U and el : U → Set data U : Set where CHAR NAT BOOL : U VEC : U → ℕ → U el : U → Set el CHAR = Char el NAT = ℕ el (VEC u n) = Vec (el u) n el BOOL = Bool parens : String → String parens str = "(" ∥ str ∥ ")" show : {u : U} → el u → String show {CHAR } c = charToString c show {NAT } zero = "Zero" show {NAT } (suc k) = "Succ " ∥ parens (show k) show {VEC u zero } Nil = "Nil" show {VEC u (suc k)} (x ∷ xs) = parens (show x) ∥ " ∷ " ∥ parens (show xs) show {BOOL } true = "True" show {BOOL } false = "False" _=ᴺ_ : ℕ → ℕ → Bool zero =ᴺ zero = true suc m =ᴺ suc n = (m =ᴺ n) _ =ᴺ _ = false _≤ᴺ_ : ℕ → ℕ → Order zero ≤ᴺ zero = EQ zero ≤ᴺ _ = LT _ ≤ᴺ zero = GT suc a ≤ᴺ suc b = a ≤ᴺ b _=ᵁ_ : U → U → Bool CHAR =ᵁ CHAR = true NAT =ᵁ NAT = true BOOL =ᵁ BOOL = true VEC u x =ᵁ VEC u' x' = (u =ᵁ u') ∧ (x =ᴺ x') _ =ᵁ _ = false _≤ᵁ_ : U → U → Order CHAR ≤ᵁ CHAR = EQ CHAR ≤ᵁ _ = LT _ ≤ᵁ CHAR = GT NAT ≤ᵁ NAT = EQ NAT ≤ᵁ _ = LT _ ≤ᵁ NAT = GT BOOL ≤ᵁ BOOL = EQ BOOL ≤ᵁ _ = LT _ ≤ᵁ BOOL = GT VEC a x ≤ᵁ VEC b y with a ≤ᵁ b ... | LT = LT ... | EQ = x ≤ᴺ y ... | GT = GT So : Bool → Set So true = ⊤ So false = ⊥ data SqlValue : Set where SqlString : String → SqlValue SqlChar : Char → SqlValue SqlBool : Bool → SqlValue SqlInteger : ℤ → SqlValue --{-# COMPILED_DATA SqlValue SqlValue SqlString SqlChar SqlBool SqlInteger #-} module OrderedSchema where SchemaDescription = List (List SqlValue) Attribute : Set Attribute = String × U -- Compare on type if names are equal. -- SQL DB's probably don't allow columns with the same name -- but nothing prevents us from writing a Schema that does, -- this is necessary to make our sort return a unique answer. attr_cmp : Attribute → Attribute → Order attr_cmp (nm₁ , U₁) (nm₂ , U₂) with str_cmp nm₁ nm₂ | U₁ ≤ᵁ U₂ ... | tri< _ _ _ | _ = LT ... | tri≈ _ _ _ | U₁≤U₂ = U₁≤U₂ ... | tri> _ _ _ | _ = GT data Schema : Set where sorted : List Attribute → Schema mkSchema : List Attribute → Schema mkSchema xs = sorted (sort attr_cmp xs) expandSchema : Attribute → Schema → Schema expandSchema x (sorted xs) = sorted (insert attr_cmp x xs) schemify : SchemaDescription → Schema schemify sdesc = {!!} disjoint : Schema → Schema → Bool disjoint (sorted [] ) (_ ) = true disjoint (_ ) (sorted [] ) = true disjoint (sorted (x ∷ xs)) (sorted (y ∷ ys)) with attr_cmp x y ... | LT = disjoint (sorted xs ) (sorted (y ∷ ys)) ... | EQ = false ... | GT = disjoint (sorted (x ∷ xs)) (sorted ys ) sub : Schema → Schema → Bool sub (sorted [] ) (_ ) = true sub (sorted (x ∷ _) ) (sorted [] ) = false sub (sorted (x ∷ xs)) (sorted (X ∷ Xs)) with attr_cmp x X ... | LT = false ... | EQ = sub (sorted xs ) (sorted Xs) ... | GT = sub (sorted (x ∷ xs)) (sorted Xs) same' : List Attribute → List Attribute → Bool same' ([] ) ([] ) = true same' ((nm₁ , ty₁) ∷ xs) ((nm₂ , ty₂) ∷ ys) = (nm₁ == nm₂) ∧ (ty₁ =ᵁ ty₂) ∧ same' xs ys same' (_ ) (_ ) = false same : Schema → Schema → Bool same (sorted xs) (sorted ys) = same' xs ys occurs : String → Schema → Bool occurs nm (sorted s) = any (_==_ nm) (map (proj₁) s) lookup' : (nm : String) → (s : List Attribute) → So (occurs nm (sorted s)) → U lookup' _ [] () lookup' nm ((name , type) ∷ s') p with nm == name ... | true = type ... | false = lookup' nm s' p lookup : (nm : String) → (s : Schema) → So (occurs nm s) → U lookup nm (sorted s) = lookup' nm s append : (s s' : Schema) → Schema append (sorted s) (sorted s') = mkSchema (s ++ s') open OrderedSchema using (Schema; mkSchema; expandSchema; schemify; disjoint; sub; same; occurs; lookup; append) data Row : Schema → Set where EmptyRow : Row (mkSchema []) ConsRow : ∀ {name u s} → el u → Row s → Row (expandSchema (name , u) s) Table : Schema → Set Table s = List (Row s) DatabasePath = String TableName = String postulate Connection : Set connectSqlite3 : DatabasePath → IO Connection describe_table : TableName → Connection → IO (List (List SqlValue)) -- {-# COMPILED_TYPE Connection Connection #-} -- {-# COMPILED connectSqlite3 connectSqlite3 #-} -- {-# COMPILED describe_table describe_table #-} data Handle : Schema → Set where conn : Connection → (s : Schema) → Handle s -- Connect currently ignores differences between -- the expected schema and the actual schema. -- According to tpop this should result in -- "a *runtime exception* in the *IO* monad." -- Agda does not have exceptions(?) -- -> postulate error with a compiled pragma? connect : DatabasePath → TableName → (s : Schema) → IO (Handle s) connect DB table schema_expect = ♯ (connectSqlite3 DB) >>= (λ sqlite_conn → ♯ (♯ (describe_table table sqlite_conn) >>= (λ description → ♯ (♯ (return (schemify description)) >>= (λ schema_actual → ♯ (♯ (return (same schema_expect schema_actual)) >>= (λ { true → ♯ (return (conn sqlite_conn schema_expect)); false → ♯ (return (conn sqlite_conn schema_expect)) }))))))) data Expr : Schema → U → Set where equal : ∀ {u s} → Expr s u → Expr s u → Expr s BOOL lessThan : ∀ {u s} → Expr s u → Expr s u → Expr s BOOL _!_ : (s : Schema) → (nm : String) → {p : So (occurs nm s)} → Expr s (lookup nm s p) data RA : Schema → Set where Read : ∀ {s} → Handle s → RA s Union : ∀ {s} → RA s → RA s → RA s Diff : ∀ {s} → RA s → RA s → RA s Product : ∀ {s s'} → {_ : So (disjoint s s')} → RA s → RA s' → RA (append s s') Project : ∀ {s} → (s' : Schema) → {_ : So (sub s' s)} → RA s → RA s' Select : ∀ {s} → Expr s BOOL → RA s → RA s -- ... {- As we mentioned previously, we have taken a very minimal set of relational algebra operators. It should be fairly straightforward to add operators for the many other operators in relational algebra, such as the natural join, θ-join, equijoin, renaming, or division, using the same techniques. Alternatively, you can define many of these operations in terms of the operations we have implemented in the RA data type. -} -- We could: postulate toSQL : ∀ {s} → RA s → String -- We can do much better: postulate query : {s : Schema} → RA s → IO (List (Row s)) {- The *query* function uses *toSQL* to produce a query, and passes this to the database server. When the server replies, however, we know exactly how to parse the response: we know the schema of the table resulting from our query, and can use this to parse the database server's response in a type-safe manner. The type checker can then statically check that the program uses the returned list in a way consistent with its type. -} Cars : Schema Cars = mkSchema (("Model" , VEC CHAR 20) ∷ ("Time" , VEC CHAR 6) ∷ ("Wet" , BOOL) ∷ []) zonda : Row Cars zonda = ConsRow (toVec "Pagani Zonda C12 F ") (ConsRow (toVec "1:18.4") (ConsRow false EmptyRow)) Models : Schema Models = mkSchema (("Model" , VEC CHAR 20) ∷ []) models : Handle Cars → RA Models models h = Project Models (Read h) wet : Handle Cars → RA Models wet h = Project Models (Select (Cars ! "Wet") (Read h)) {- Discussion ========== There are many, many aspects of this proposal that can be improved. Some attributes of a schema contain *NULL*-values; we should close our universe under *Maybe* accordingly. Some database servers silently truncate strings longer than 255 characters. We would do well to ensure statically that this never happens. Our goal, however, was not to provide a complete model of all of SQL's quirks and idiosyncrasies: we want to show how a language with dependent types can schine where Haskell struggles. Our choice of *Schema* data type suffers from the usual disadvantages of using a list to represent a set: our *Schema* data type may contain duplicates and the order of the elements matters. The first problem is easy to solve. Using an implicit proof argument in the *Cons* case, we can define a data type for lists that do not contain duplicates. The type of *Cons* then becomes: Cons : (nm : String) → (u : U) → (s : Schema) → {_ : So (not (elem nm s))} → Schema The second point is a bit trickier. The real solution would involve quotient types to make the order of the elements unobservable. As Agda does not support quotient types, however, the best we can do is parameterise our constructors by an additional proof argument, when necessary. For example, the *Union* constructor could be defined as follows: Union : ∀ {s s'} → {_ : So (permute s s')} → RA s → RA s' → RA s Instead of requiring that both arguments of *Union* are indexed by the same schema, we should only require that the two schemas are equal up to a permutation of the elements. Alternatively, we could represent the *Schema* using a data structure that fixes the order in which its constituent elements occur, such as a trie or sorted list. Finally, we would like to return to our example table. We chose to model the lap time as a fixed-length string ─ clearly, a triple of integers would be a better representation. Unfortunately, most database servers only support a handful of built-in types, such as strings, numbers, bits. There is no way to extend these primitive types. This problem is sometimes referred to as the *object-relational impedance mismatch*. We believe the generic programming techniques and views from the previous sections can be used to marshall data between a low-level representation in the database and the high-level representation in our programming language. -}
{ "alphanum_fraction": 0.6199928788, "avg_line_length": 34.0424242424, "ext": "agda", "hexsha": "4424fe3b3f4b8be02715101ee6918423a5a5857f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b397a6d9b84e29bbaa260f85f036869d511eb3eb", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "toonn/agda-casestt", "max_forks_repo_path": "relational-algebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b397a6d9b84e29bbaa260f85f036869d511eb3eb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "toonn/agda-casestt", "max_issues_repo_path": "relational-algebra.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "b397a6d9b84e29bbaa260f85f036869d511eb3eb", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "toonn/agda-casestt", "max_stars_repo_path": "relational-algebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3344, "size": 11234 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U open import Definition.Typed open import Definition.Typed.Weakening open import Agda.Primitive open import Tools.Product open import Tools.Embedding import Tools.PropositionalEquality as PE -- The different cases of the logical relation are spread out through out -- this file. This is due to them having different dependencies. -- We will refer to expressions that satisfies the logical relation as reducible. -- Reducibility of Neutrals: -- Neutral type record _⊩ne_ (Γ : Con Term) (A : Term) : Set where constructor ne field K : Term D : Γ ⊢ A :⇒*: K neK : Neutral K K≡K : Γ ⊢ K ~ K ∷ U -- Neutral type equality record _⊩ne_≡_/_ (Γ : Con Term) (A B : Term) ([A] : Γ ⊩ne A) : Set where constructor ne₌ open _⊩ne_ [A] field M : Term D′ : Γ ⊢ B :⇒*: M neM : Neutral M K≡M : Γ ⊢ K ~ M ∷ U -- Neutral term in WHNF record _⊩neNf_∷_ (Γ : Con Term) (k A : Term) : Set where inductive constructor neNfₜ field neK : Neutral k ⊢k : Γ ⊢ k ∷ A k≡k : Γ ⊢ k ~ k ∷ A -- Neutral term record _⊩ne_∷_/_ (Γ : Con Term) (t A : Term) ([A] : Γ ⊩ne A) : Set where inductive constructor neₜ open _⊩ne_ [A] field k : Term d : Γ ⊢ t :⇒*: k ∷ K nf : Γ ⊩neNf k ∷ K -- Neutral term equality in WHNF record _⊩neNf_≡_∷_ (Γ : Con Term) (k m A : Term) : Set where inductive constructor neNfₜ₌ field neK : Neutral k neM : Neutral m k≡m : Γ ⊢ k ~ m ∷ A -- Neutral term equality record _⊩ne_≡_∷_/_ (Γ : Con Term) (t u A : Term) ([A] : Γ ⊩ne A) : Set where constructor neₜ₌ open _⊩ne_ [A] field k m : Term d : Γ ⊢ t :⇒*: k ∷ K d′ : Γ ⊢ u :⇒*: m ∷ K nf : Γ ⊩neNf k ≡ m ∷ K -- Reducibility of natural numbers: -- Natural number type _⊩ℕ_ : (Γ : Con Term) (A : Term) → Set Γ ⊩ℕ A = Γ ⊢ A :⇒*: ℕ -- Natural number type equality data _⊩ℕ_≡_ (Γ : Con Term) (A B : Term) : Set where ℕ₌ : Γ ⊢ B ⇒* ℕ → Γ ⊩ℕ A ≡ B mutual -- Natural number term data _⊩ℕ_∷ℕ (Γ : Con Term) (t : Term) : Set where ℕₜ : (n : Term) (d : Γ ⊢ t :⇒*: n ∷ ℕ) (n≡n : Γ ⊢ n ≅ n ∷ ℕ) (prop : Natural-prop Γ n) → Γ ⊩ℕ t ∷ℕ -- WHNF property of natural number terms data Natural-prop (Γ : Con Term) : (n : Term) → Set where sucᵣ : ∀ {n} → Γ ⊩ℕ n ∷ℕ → Natural-prop Γ (suc n) zeroᵣ : Natural-prop Γ zero ne : ∀ {n} → Γ ⊩neNf n ∷ ℕ → Natural-prop Γ n mutual -- Natural number term equality data _⊩ℕ_≡_∷ℕ (Γ : Con Term) (t u : Term) : Set where ℕₜ₌ : (k k′ : Term) (d : Γ ⊢ t :⇒*: k ∷ ℕ) (d′ : Γ ⊢ u :⇒*: k′ ∷ ℕ) (k≡k′ : Γ ⊢ k ≅ k′ ∷ ℕ) (prop : [Natural]-prop Γ k k′) → Γ ⊩ℕ t ≡ u ∷ℕ -- WHNF property of Natural number term equality data [Natural]-prop (Γ : Con Term) : (n n′ : Term) → Set where sucᵣ : ∀ {n n′} → Γ ⊩ℕ n ≡ n′ ∷ℕ → [Natural]-prop Γ (suc n) (suc n′) zeroᵣ : [Natural]-prop Γ zero zero ne : ∀ {n n′} → Γ ⊩neNf n ≡ n′ ∷ ℕ → [Natural]-prop Γ n n′ -- Natural extraction from term WHNF property natural : ∀ {Γ n} → Natural-prop Γ n → Natural n natural (sucᵣ x) = sucₙ natural zeroᵣ = zeroₙ natural (ne (neNfₜ neK ⊢k k≡k)) = ne neK -- Natural extraction from term equality WHNF property split : ∀ {Γ a b} → [Natural]-prop Γ a b → Natural a × Natural b split (sucᵣ x) = sucₙ , sucₙ split zeroᵣ = zeroₙ , zeroₙ split (ne (neNfₜ₌ neK neM k≡m)) = ne neK , ne neM -- Type levels data TypeLevel : Set where ⁰ : TypeLevel ¹ : TypeLevel data _<_ : (i j : TypeLevel) → Set where 0<1 : ⁰ < ¹ toLevel : TypeLevel → Level toLevel ⁰ = lzero toLevel ¹ = lsuc lzero -- Logical relation record LogRelKit (ℓ : Level) : Set (lsuc (lsuc ℓ)) where constructor Kit field _⊩U : (Γ : Con Term) → Set (lsuc ℓ) _⊩Π_ : (Γ : Con Term) → Term → Set (lsuc ℓ) _⊩_ : (Γ : Con Term) → Term → Set (lsuc ℓ) _⊩_≡_/_ : (Γ : Con Term) (A B : Term) → Γ ⊩ A → Set ℓ _⊩_∷_/_ : (Γ : Con Term) (t A : Term) → Γ ⊩ A → Set ℓ _⊩_≡_∷_/_ : (Γ : Con Term) (t u A : Term) → Γ ⊩ A → Set ℓ module LogRel (l : TypeLevel) (rec : ∀ {l′} → l′ < l → LogRelKit (toLevel l)) where record _⊩¹U (Γ : Con Term) : Set (lsuc (lsuc (toLevel l))) where constructor Uᵣ field l′ : TypeLevel l< : l′ < l ⊢Γ : ⊢ Γ -- Universe type equality record _⊩¹U≡_ (Γ : Con Term) (B : Term) : Set (lsuc (toLevel l)) where constructor U₌ field B≡U : B PE.≡ U -- Universe term record _⊩¹U_∷U/_ {l′} (Γ : Con Term) (t : Term) (l< : l′ < l) : Set (lsuc (toLevel l)) where constructor Uₜ open LogRelKit (rec l<) field A : Term d : Γ ⊢ t :⇒*: A ∷ U typeA : Type A A≡A : Γ ⊢ A ≅ A ∷ U [t] : Γ ⊩ t -- Universe term equality record _⊩¹U_≡_∷U/_ {l′} (Γ : Con Term) (t u : Term) (l< : l′ < l) : Set (lsuc (toLevel l)) where constructor Uₜ₌ open LogRelKit (rec l<) field A B : Term d : Γ ⊢ t :⇒*: A ∷ U d′ : Γ ⊢ u :⇒*: B ∷ U typeA : Type A typeB : Type B A≡B : Γ ⊢ A ≅ B ∷ U [t] : Γ ⊩ t [u] : Γ ⊩ u [t≡u] : Γ ⊩ t ≡ u / [t] RedRel : Set (lsuc (lsuc (lsuc (toLevel l)))) RedRel = Con Term → Term → (Term → Set (lsuc (toLevel l))) → (Term → Set (lsuc (toLevel l))) → (Term → Term → Set (lsuc (toLevel l))) → Set (lsuc (lsuc (toLevel l))) record _⊩⁰_/_ (Γ : Con Term) (A : Term) (_⊩_▸_▸_▸_ : RedRel) : Set (lsuc (lsuc (toLevel l))) where inductive eta-equality constructor LRPack field ⊩Eq : Term → Set (lsuc (toLevel l)) ⊩Term : Term → Set (lsuc (toLevel l)) ⊩EqTerm : Term → Term → Set (lsuc (toLevel l)) ⊩LR : Γ ⊩ A ▸ ⊩Eq ▸ ⊩Term ▸ ⊩EqTerm _⊩⁰_≡_/_ : {R : RedRel} (Γ : Con Term) (A B : Term) → Γ ⊩⁰ A / R → Set (lsuc (toLevel l)) Γ ⊩⁰ A ≡ B / LRPack ⊩Eq ⊩Term ⊩EqTerm ⊩Red = ⊩Eq B _⊩⁰_∷_/_ : {R : RedRel} (Γ : Con Term) (t A : Term) → Γ ⊩⁰ A / R → Set (lsuc (toLevel l)) Γ ⊩⁰ t ∷ A / LRPack ⊩Eq ⊩Term ⊩EqTerm ⊩Red = ⊩Term t _⊩⁰_≡_∷_/_ : {R : RedRel} (Γ : Con Term) (t u A : Term) → Γ ⊩⁰ A / R → Set (lsuc (toLevel l)) Γ ⊩⁰ t ≡ u ∷ A / LRPack ⊩Eq ⊩Term ⊩EqTerm ⊩Red = ⊩EqTerm t u record _⊩¹Π_/_ (Γ : Con Term) (A : Term) (R : RedRel) : Set (lsuc (lsuc (toLevel l))) where inductive eta-equality constructor Πᵣ field F : Term G : Term D : Γ ⊢ A :⇒*: Π F ▹ G ⊢F : Γ ⊢ F ⊢G : Γ ∙ F ⊢ G A≡A : Γ ⊢ Π F ▹ G ≅ Π F ▹ G [F] : ∀ {ρ Δ} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Δ ⊩⁰ U.wk ρ F / R [G] : ∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ → Δ ⊩⁰ U.wk (lift ρ) G [ a ] / R G-ext : ∀ {ρ Δ a b} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ) → ([b] : Δ ⊩⁰ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ) → Δ ⊩⁰ a ≡ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ → Δ ⊩⁰ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G [ b ] / [G] [ρ] ⊢Δ [a] record _⊩¹Π_≡_/_ {R : RedRel} (Γ : Con Term) (A B : Term) ([A] : Γ ⊩¹Π A / R) : Set (lsuc (toLevel l)) where inductive eta-equality constructor Π₌ open _⊩¹Π_/_ [A] field F′ : Term G′ : Term D′ : Γ ⊢ B ⇒* Π F′ ▹ G′ A≡B : Γ ⊢ Π F ▹ G ≅ Π F′ ▹ G′ [F≡F′] : ∀ {ρ Δ} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⁰ U.wk ρ F ≡ U.wk ρ F′ / [F] [ρ] ⊢Δ [G≡G′] : ∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ) → Δ ⊩⁰ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G′ [ a ] / [G] [ρ] ⊢Δ [a] -- Term of Π-type _⊩¹Π_∷_/_ : {R : RedRel} (Γ : Con Term) (t A : Term) ([A] : Γ ⊩¹Π A / R) → Set (lsuc (toLevel l)) Γ ⊩¹Π t ∷ A / Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext = ∃ λ f → Γ ⊢ t :⇒*: f ∷ Π F ▹ G × Function f × Γ ⊢ f ≅ f ∷ Π F ▹ G × (∀ {ρ Δ a b} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) ([a] : Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ) ([b] : Δ ⊩⁰ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ) ([a≡b] : Δ ⊩⁰ a ≡ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ) → Δ ⊩⁰ U.wk ρ f ∘ a ≡ U.wk ρ f ∘ b ∷ U.wk (lift ρ) G [ a ] / [G] [ρ] ⊢Δ [a]) × (∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ) → Δ ⊩⁰ U.wk ρ f ∘ a ∷ U.wk (lift ρ) G [ a ] / [G] [ρ] ⊢Δ [a]) -- Issue: Agda complains about record use not being strictly positive. -- Therefore we have to use × -- Term equality of Π-type _⊩¹Π_≡_∷_/_ : {R : RedRel} (Γ : Con Term) (t u A : Term) ([A] : Γ ⊩¹Π A / R) → Set (lsuc (toLevel l)) Γ ⊩¹Π t ≡ u ∷ A / Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext = let [A] = Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext in ∃₂ λ f g → Γ ⊢ t :⇒*: f ∷ Π F ▹ G × Γ ⊢ u :⇒*: g ∷ Π F ▹ G × Function f × Function g × Γ ⊢ f ≅ g ∷ Π F ▹ G × Γ ⊩¹Π t ∷ A / [A] × Γ ⊩¹Π u ∷ A / [A] × (∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ) → Δ ⊩⁰ U.wk ρ f ∘ a ≡ U.wk ρ g ∘ a ∷ U.wk (lift ρ) G [ a ] / [G] [ρ] ⊢Δ [a]) -- Issue: Same as above. -- Logical relation definition data _⊩LR_▸_▸_▸_ : RedRel where LRU : ∀ {Γ} (⊢Γ : ⊢ Γ) → (l' : TypeLevel) → (l< : l' < l) → Γ ⊩LR U ▸ (λ B → Γ ⊩¹U≡ B) ▸ (λ t → Γ ⊩¹U t ∷U/ l<) ▸ (λ t u → Γ ⊩¹U t ≡ u ∷U/ l<) LRℕ : ∀ {Γ A} → Γ ⊩ℕ A → Γ ⊩LR A ▸ (λ B → ι′ (Γ ⊩ℕ A ≡ B)) ▸ (λ t → ι′ (Γ ⊩ℕ t ∷ℕ)) ▸ (λ t u → ι′ (Γ ⊩ℕ t ≡ u ∷ℕ)) LRne : ∀ {Γ A} → (neA : Γ ⊩ne A) → Γ ⊩LR A ▸ (λ B → ι′ (Γ ⊩ne A ≡ B / neA)) ▸ (λ t → ι′ (Γ ⊩ne t ∷ A / neA)) ▸ (λ t u → ι′ (Γ ⊩ne t ≡ u ∷ A / neA)) LRΠ : ∀ {Γ A} → (ΠA : Γ ⊩¹Π A / _⊩LR_▸_▸_▸_) → Γ ⊩LR A ▸ (λ B → Γ ⊩¹Π A ≡ B / ΠA) ▸ (λ t → Γ ⊩¹Π t ∷ A / ΠA) ▸ (λ t u → Γ ⊩¹Π t ≡ u ∷ A / ΠA) LRemb : ∀ {Γ A l′} (l< : l′ < l) (let open LogRelKit (rec l<)) ([A] : Γ ⊩ A) → Γ ⊩LR A ▸ (λ B → ι (Γ ⊩ A ≡ B / [A])) ▸ (λ t → ι (Γ ⊩ t ∷ A / [A])) ▸ (λ t u → ι (Γ ⊩ t ≡ u ∷ A / [A])) _⊩¹_ : (Γ : Con Term) → (A : Term) → Set (lsuc (lsuc (toLevel l))) Γ ⊩¹ A = Γ ⊩⁰ A / _⊩LR_▸_▸_▸_ _⊩¹_≡_/_ : (Γ : Con Term) (A B : Term) → Γ ⊩¹ A → Set (lsuc (toLevel l)) Γ ⊩¹ A ≡ B / [A] = Γ ⊩⁰ A ≡ B / [A] _⊩¹_∷_/_ : (Γ : Con Term) (t A : Term) → Γ ⊩¹ A → Set (lsuc (toLevel l)) Γ ⊩¹ t ∷ A / [A] = Γ ⊩⁰ t ∷ A / [A] _⊩¹_≡_∷_/_ : (Γ : Con Term) (t u A : Term) → Γ ⊩¹ A → Set (lsuc (toLevel l)) Γ ⊩¹ t ≡ u ∷ A / [A] = Γ ⊩⁰ t ≡ u ∷ A / [A] open LogRel public using (Uᵣ; Πᵣ; Π₌; U₌ ; Uₜ; Uₜ₌ ; LRU ; LRℕ ; LRne ; LRΠ ; LRemb ; LRPack) pattern Πₜ f d funcF f≡f [f] [f]₁ = f , d , funcF , f≡f , [f] , [f]₁ pattern Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g] = f , g , d , d′ , funcF , funcG , f≡g , [f] , [g] , [f≡g] pattern ℕᵣ a = LRPack _ _ _ (LRℕ a) pattern emb′ a b = LRPack _ _ _ (LRemb a b) pattern Uᵣ′ a b c = LRPack _ _ _ (LRU c a b) pattern ne′ a b c d = LRPack _ _ _ (LRne (ne a b c d)) pattern Πᵣ′ a b c d e f g h i = LRPack _ _ _ (LRΠ (Πᵣ a b c d e f g h i)) kit₀ : LogRelKit (lsuc (lzero)) kit₀ = Kit _⊩¹U (λ Γ A → Γ ⊩¹Π A / _⊩LR_▸_▸_▸_) _⊩¹_ _⊩¹_≡_/_ _⊩¹_∷_/_ _⊩¹_≡_∷_/_ where open LogRel ⁰ (λ ()) logRelRec : ∀ l {l′} → l′ < l → LogRelKit (toLevel l) logRelRec ⁰ = λ () logRelRec ¹ 0<1 = kit₀ kit : ∀ (l : TypeLevel) → LogRelKit (lsuc (toLevel l)) kit l = Kit _⊩¹U (λ Γ A → Γ ⊩¹Π A / _⊩LR_▸_▸_▸_) _⊩¹_ _⊩¹_≡_/_ _⊩¹_∷_/_ _⊩¹_≡_∷_/_ where open LogRel l (logRelRec l) -- a bit of repetition in "kit ¹" definition, would work better with Fin 2 for -- TypeLevel because you could recurse. record _⊩′⟨_⟩U (Γ : Con Term) (l : TypeLevel) : Set where constructor Uᵣ field l′ : TypeLevel l< : l′ < l ⊢Γ : ⊢ Γ _⊩′⟨_⟩Π_ : (Γ : Con Term) (l : TypeLevel) → Term → Set (lsuc (lsuc (toLevel l))) Γ ⊩′⟨ l ⟩Π A = Γ ⊩Π A where open LogRelKit (kit l) _⊩⟨_⟩_ : (Γ : Con Term) (l : TypeLevel) → Term → Set (lsuc (lsuc (toLevel l))) Γ ⊩⟨ l ⟩ A = Γ ⊩ A where open LogRelKit (kit l) _⊩⟨_⟩_≡_/_ : (Γ : Con Term) (l : TypeLevel) (A B : Term) → Γ ⊩⟨ l ⟩ A → Set (lsuc (toLevel l)) Γ ⊩⟨ l ⟩ A ≡ B / [A] = Γ ⊩ A ≡ B / [A] where open LogRelKit (kit l) _⊩⟨_⟩_∷_/_ : (Γ : Con Term) (l : TypeLevel) (t A : Term) → Γ ⊩⟨ l ⟩ A → Set (lsuc (toLevel l)) Γ ⊩⟨ l ⟩ t ∷ A / [A] = Γ ⊩ t ∷ A / [A] where open LogRelKit (kit l) _⊩⟨_⟩_≡_∷_/_ : (Γ : Con Term) (l : TypeLevel) (t u A : Term) → Γ ⊩⟨ l ⟩ A → Set (lsuc (toLevel l)) Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] = Γ ⊩ t ≡ u ∷ A / [A] where open LogRelKit (kit l)
{ "alphanum_fraction": 0.4754398535, "avg_line_length": 33.496, "ext": "agda", "hexsha": "149bd472fc276de373587569edf725c866936553", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation.agda", "max_line_length": 167, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6351, "size": 12561 }
{-# OPTIONS --verbose=10 #-} module leafsF where open import Data.Nat open import Data.Vec open import Agda.Builtin.Sigma open import Data.Product open import Data.Fin using (fromℕ) open import trees open import optics open import lemmas leafsTreeF : {A : Set} -> (t : Tree A) -> Vec A (#leafs t) × (Vec A (#leafs t) -> Tree A) leafsTreeF empty = ([] , λ _ -> empty) -- leafsTreeF (node empty root empty) = (root ∷ [] , λ { (hd ∷ []) -> node empty hd empty }) leafsTreeF {A} (node t₁ x t₂) with t₁ | t₂ ... | empty | empty = (x ∷ [] , λ { (hd ∷ []) -> node empty hd empty }) leafsTreeF _ | node t11 x1 t12 | t2 with leafsTreeF (node t11 x1 t12) | leafsTreeF t2 ... | (g₁ , p₁) | (g₂ , p₂) = -- (g₁ ++ g₂ , λ v -> node (p₁ (take n₁ v)) x (p₂ (drop n₁ v))) ({!!} , λ v -> node (p₁ {!!}) x1 (p₂ {!!})) where n₁ = #leafs (node t11 x1 t12) n₂ = #leafs t2 leafsTreeF (node t₁ x t₂) | _ | (node _ _ _) with leafsTreeF t₁ | leafsTreeF t₂ ... | (g₁ , p₁) | (g₂ , p₂) = -- (g₁ ++ g₂ , λ v -> node (p₁ (take n₁ v)) x (p₂ (drop n₁ v))) ({!!} , λ v -> node (p₁ {!!}) x (p₂ {!!})) where n₁ = #leafs t₁ n₂ = #leafs t₂ module tests where tree1 : Tree ℕ tree1 = node (node empty 1 empty) 3 empty open Traversal
{ "alphanum_fraction": 0.4759972955, "avg_line_length": 36.975, "ext": "agda", "hexsha": "48ae20f2bf3fcb2668e14487ccca92f607790218", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "hablapps/safeoptics", "max_forks_repo_path": "src/main/agda/leafsF.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "hablapps/safeoptics", "max_issues_repo_path": "src/main/agda/leafsF.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "hablapps/safeoptics", "max_stars_repo_path": "src/main/agda/leafsF.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 515, "size": 1479 }
{-# OPTIONS --no-sized-types #-} postulate Size : Set _^ : Size -> Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC _^ #-} {-# BUILTIN SIZEINF ∞ #-} data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {size ^} suc : {size : Size} -> Nat {size} -> Nat {size ^} weak : {i : Size} -> Nat {i} -> Nat {∞} weak x = x -- Should give error without sized types. -- .i != ∞ of type Size -- when checking that the expression x has type Nat
{ "alphanum_fraction": 0.5523012552, "avg_line_length": 20.7826086957, "ext": "agda", "hexsha": "192c50dc5c3b5c3d7590d3c77a5ad4ac51948b8a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/NoSizedTypes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/NoSizedTypes.agda", "max_line_length": 52, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/NoSizedTypes.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 154, "size": 478 }
{-# OPTIONS --cubical #-} module Properties where open import Data.Fin renaming (zero to Fzero; suc to Fsuc) hiding (_+_; _≟_) open import Data.Nat open import Data.Nat.DivMod using (_mod_; _div_; m≡m%n+[m/n]*n) open import Data.Nat.Properties using (+-comm) open import Data.Product open import Function using (_∘_) open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable using (False) open ≡-Reasoning open import Pitch RelAbs : (n : Pitch) → (relativeToAbsolute ∘ absoluteToRelative) n ≡ n RelAbs (pitch zero) = refl RelAbs (pitch (suc n)) = begin (relativeToAbsolute ∘ absoluteToRelative) (pitch (suc n)) ≡⟨ refl ⟩ relativeToAbsolute (pitchClass ((suc n) mod chromaticScaleSize) , octave ((suc n) div chromaticScaleSize)) ≡⟨ refl ⟩ pitch (((suc n) div chromaticScaleSize) * chromaticScaleSize + (toℕ ((suc n) mod chromaticScaleSize))) ≡⟨ cong pitch (+-comm (((suc n) div chromaticScaleSize) * chromaticScaleSize) (toℕ ((suc n) mod chromaticScaleSize))) ⟩ pitch ((toℕ ((suc n) mod chromaticScaleSize)) + (((suc n) div chromaticScaleSize) * chromaticScaleSize)) ≡⟨ cong pitch (sym {!!}) ⟩ -- ≡⟨ cong pitch (sym (m≡m%n+[m/n]*n n chromaticScaleSize)) ⟩ pitch (suc n) ∎ {- absRelAbs (pitch (+_ zero)) = refl absRelAbs (pitch (+_ (suc n))) = let x = absRelAbs (pitch (+ n)) in {!!} absRelAbs (pitch (-[1+_] zero)) = refl absRelAbs (pitch (-[1+_] (suc n))) = {!!} -} AbsRel : (n : PitchOctave) → (absoluteToRelative ∘ relativeToAbsolute) n ≡ n AbsRel (pitchClass p , octave o) = begin (absoluteToRelative ∘ relativeToAbsolute) (pitchClass p , octave o) ≡⟨ refl ⟩ absoluteToRelative (pitch (o * chromaticScaleSize + (toℕ p))) ≡⟨ refl ⟩ (pitchClass ((o * chromaticScaleSize + (toℕ p)) mod chromaticScaleSize) , octave ((o * chromaticScaleSize + (toℕ p)) div chromaticScaleSize)) ≡⟨ {!!} ⟩ (pitchClass p , octave o) ∎ {- relAbsRel (relativePitch zero , octave (+_ zero)) = refl relAbsRel (relativePitch zero , octave (+_ (suc n))) = {!!} relAbsRel (relativePitch zero , octave (-[1+_] zero)) = refl relAbsRel (relativePitch zero , octave (-[1+_] (suc n))) = {!!} relAbsRel (relativePitch (suc n) , octave (+_ zero)) = {!!} relAbsRel (relativePitch (suc n) , octave (+_ (suc o))) = {!!} relAbsRel (relativePitch (suc n) , octave (-[1+_] zero)) = {!!} relAbsRel (relativePitch (suc n) , octave (-[1+_] (suc o))) = {!!} -}
{ "alphanum_fraction": 0.6245120999, "avg_line_length": 37.6764705882, "ext": "agda", "hexsha": "7614e02203468c62fac5362e9d0716a042ba91f1", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Properties.agda", "max_line_length": 84, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 842, "size": 2562 }
open import Agda.Builtin.IO open import Agda.Builtin.Nat open import Agda.Builtin.Unit private n : Nat n = 7 {-# COMPILE GHC n as n #-} postulate main : IO ⊤ {-# COMPILE GHC main = print n #-}
{ "alphanum_fraction": 0.6568627451, "avg_line_length": 12.75, "ext": "agda", "hexsha": "f9132e3bc88b4c0f83e2ef00be5d3bb72a611dcc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2914.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2914.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2914.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 66, "size": 204 }
-- Also works for parts of operators. module NotInScope where postulate X : Set if_then_else_ : X -> X -> X -> X x : X bad = if x thenn x else x -- The error message should /not/ claim that "if" is out of scope.
{ "alphanum_fraction": 0.6561085973, "avg_line_length": 18.4166666667, "ext": "agda", "hexsha": "9bce6a14a2d534bfff8499bd1be2e0328aa5a240", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/NotInScope.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/NotInScope.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/NotInScope.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 69, "size": 221 }
-- It would be nice if this worked. The constraint we can't solve is -- P x y = ? (x, y) -- Solution: extend the notion of Miller patterns to include record -- constructions. -- -- Andreas, 2012-02-27 works now! (see issues 376 and 456) module UncurryMeta where data Unit : Set where unit : Unit record R : Set where field x : Unit y : Unit _,_ : Unit -> Unit -> R x , y = record {x = x; y = y} data P : Unit -> Unit -> Set where mkP : forall x y -> P x y data D : (R -> Set) -> Set1 where d : {F : R -> Set} -> (forall x y -> F (x , y)) -> D F unD : {F : R -> Set} -> D F -> Unit unD (d _) = unit test : Unit test = unD (d mkP)
{ "alphanum_fraction": 0.5764525994, "avg_line_length": 21.0967741935, "ext": "agda", "hexsha": "7371735decbdbe265ec27680be37df2f19ae1fb6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/UncurryMeta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/UncurryMeta.agda", "max_line_length": 68, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/UncurryMeta.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 225, "size": 654 }
-- Category of indexed families module SOAS.Families.Core {T : Set} where open import SOAS.Common open import SOAS.Context {T} open import SOAS.Sorting {T} -- | Unsorted -- Sets indexed by a context Family : Set₁ Family = Ctx → Set -- Indexed functions between families _⇾_ : Family → Family → Set X ⇾ Y = ∀{Γ : Ctx} → X Γ → Y Γ infixr 10 _⇾_ -- Category of indexed families of sets and indexed functions between them 𝔽amilies : Category 1ℓ 0ℓ 0ℓ 𝔽amilies = categoryHelper record { Obj = Family ; _⇒_ = _⇾_ ; _≈_ = λ {X}{Y} f g → ∀{Γ : Ctx}{x : X Γ} → f x ≡ g x ; id = id ; _∘_ = λ g f → g ∘ f ; assoc = refl ; identityˡ = refl ; identityʳ = refl ; equiv = record { refl = refl ; sym = λ p → sym p ; trans = λ p q → trans p q } ; ∘-resp-≈ = λ where {f = f} p q → trans (cong f q) p } module 𝔽am = Category 𝔽amilies -- | Sorted -- Category of sorted families 𝔽amiliesₛ : Category 1ℓ 0ℓ 0ℓ 𝔽amiliesₛ = 𝕊orted 𝔽amilies module 𝔽amₛ = Category 𝔽amiliesₛ -- Type of sorted families Familyₛ : Set₁ Familyₛ = 𝔽amₛ.Obj -- Maps between sorted families _⇾̣_ : Familyₛ → Familyₛ → Set _⇾̣_ = 𝔽amₛ._⇒_ infixr 10 _⇾̣_ -- Turn sorted family into unsorted by internally quantifying over the sort ∀[_] : Familyₛ → Family ∀[ 𝒳 ] Γ = {τ : T} → 𝒳 τ Γ -- Maps between Familyₛ functors _⇾̣₂_ : (Familyₛ → Familyₛ) → (Familyₛ → Familyₛ) → Set₁ (𝓧 ⇾̣₂ 𝓨) = {𝒵 : Familyₛ} → 𝓧 𝒵 ⇾̣ 𝓨 𝒵
{ "alphanum_fraction": 0.6375358166, "avg_line_length": 22.8852459016, "ext": "agda", "hexsha": "e42e73f1e68c19c76be0017c088120f5c53a8496", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Families/Core.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Families/Core.agda", "max_line_length": 82, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Families/Core.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 599, "size": 1396 }
{- In this file we apply the cubical machinery to Martin Hötzel-Escardó's structure identity principle: https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.SIP where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence renaming (ua-pathToEquiv to ua-pathToEquiv') open import Cubical.Foundations.Transport open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.FunExtEquiv open import Cubical.Foundations.Equiv open import Cubical.Foundations.HAEquiv open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.Prod.Base hiding (_×_) renaming (_×Σ_ to _×_) private variable ℓ ℓ' ℓ'' ℓ''' ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ : Level -- For technical reasons we reprove ua-pathToEquiv using the -- particular proof constructed by iso→HAEquiv. The reason is that we -- want to later be able to extract -- -- eq : ua-au (ua e) ≡ cong ua (au-ua e) -- uaHAEquiv : (A B : Type ℓ) → HAEquiv (A ≃ B) (A ≡ B) uaHAEquiv A B = iso→HAEquiv (iso ua pathToEquiv ua-pathToEquiv' pathToEquiv-ua) open isHAEquiv -- We now extract the particular proof constructed from iso→HAEquiv -- for reasons explained above. ua-pathToEquiv : {A B : Type ℓ} (e : A ≡ B) → ua (pathToEquiv e) ≡ e ua-pathToEquiv e = uaHAEquiv _ _ .snd .ret e -- A structure is a type-family S : Type ℓ → Type ℓ', i.e. for X : Type ℓ and s : S X, the pair (X , s) -- means that X is equipped with a S-structure, which is witnessed by s. -- An S-structure should have a notion of S-homomorphism, or rather S-isomorphism. -- This will be implemented by a function ι -- that gives us for any two types with S-structure (X , s) and (Y , t) a family: -- ι (X , s) (Y , t) : (X ≃ Y) → Type ℓ'' -- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be -- a proposition. Indeed this type should correspond to the ways s and t can be identified -- as S-structures. This we call a standard notion of structure or SNS. -- We will use a different definition, but the two definitions are interchangeable. SNS : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → Type (ℓ-max (ℓ-max(ℓ-suc ℓ) ℓ') ℓ'') SNS {ℓ = ℓ} S ι = ∀ {X : (Type ℓ)} (s t : S X) → ((s ≡ t) ≃ ι (X , s) (X , t) (idEquiv X)) -- We introduce the notation for structure preserving equivalences a bit differently, -- but this definition doesn't actually change from Escardó's notes. _≃[_]_ : {S : Type ℓ → Type ℓ'} → (A : Σ[ X ∈ (Type ℓ) ] (S X)) → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → (B : Σ[ X ∈ (Type ℓ) ] (S X)) → Type (ℓ-max ℓ ℓ'') A ≃[ ι ] B = Σ[ f ∈ ((A .fst) ≃ (B. fst)) ] (ι A B f) -- Before we can formulate our version of an SNS we introduce a bit of -- notation and prove a few basic results. First, we define the -- "cong-≃": _⋆_ : (S : Type ℓ → Type ℓ') → {X Y : Type ℓ} → (X ≃ Y) → S X ≃ S Y S ⋆ f = pathToEquiv (cong S (ua f)) -- Next, we prove a couple of helpful results about this ⋆ operation: ⋆-idEquiv : (S : Type ℓ → Type ℓ') (X : Type ℓ) → S ⋆ (idEquiv X) ≡ idEquiv (S X) ⋆-idEquiv S X = S ⋆ (idEquiv X) ≡⟨ cong (λ p → pathToEquiv (cong S p)) uaIdEquiv ⟩ pathToEquiv refl ≡⟨ pathToEquivRefl ⟩ idEquiv (S X) ∎ ⋆-char : (S : Type ℓ → Type ℓ') {X Y : Type ℓ} (f : X ≃ Y) → ua (S ⋆ f) ≡ cong S (ua f) ⋆-char S f = ua-pathToEquiv (cong S (ua f)) PathP-⋆-lemma : (S : Type ℓ → Type ℓ') (A B : Σ[ X ∈ (Type ℓ) ] (S X)) (f : A .fst ≃ B .fst) → (PathP (λ i → ua (S ⋆ f) i) (A .snd) (B .snd)) ≡ (PathP (λ i → S ((ua f) i)) (A .snd) (B .snd)) PathP-⋆-lemma S A B f i = PathP (λ j → (⋆-char S f) i j) (A .snd) (B .snd) -- Our new definition of standard notion of structure SNS' using the ⋆ notation. -- This is easier to work with than SNS wrt Glue-types SNS' : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → Type (ℓ-max (ℓ-max(ℓ-suc ℓ) ℓ') ℓ'') SNS' S ι = (A B : Σ[ X ∈ (Type _) ] (S X)) → (f : A .fst ≃ B .fst) → (equivFun (S ⋆ f) (A .snd) ≡ (B .snd)) ≃ (ι A B f) -- We can unfold SNS' as follows: SNS'' : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → Type (ℓ-max (ℓ-max(ℓ-suc ℓ) ℓ') ℓ'') SNS'' S ι = (A B : Σ[ X ∈ (Type _) ] (S X)) → (f : A .fst ≃ B .fst) → (transport (λ i → S (ua f i)) (A .snd) ≡ (B .snd)) ≃ (ι A B f) SNS'≡SNS'' : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → SNS' S ι ≡ SNS'' S ι SNS'≡SNS'' S ι = refl -- A quick sanity-check that our definition is interchangeable with -- Escardó's. The direction SNS→SNS' corresponds more or less to an -- EquivJ formulation of Escardó's homomorphism-lemma. SNS'→SNS : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → SNS' S ι → SNS S ι SNS'→SNS S ι θ {X = X} s t = subst (λ x → (equivFun x s ≡ t) ≃ ι (X , s) (X , t) (idEquiv X)) (⋆-idEquiv S X) θ-id where θ-id = θ (X , s) (X , t) (idEquiv X) SNS→SNS' : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → SNS S ι → SNS' S ι SNS→SNS' S ι θ A B f = EquivJ P C (B .fst) (A .fst) f (B .snd) (A .snd) where P : (X Y : Type _) → Y ≃ X → Type _ P X Y g = (s : S X) (t : S Y) → (equivFun (S ⋆ g) t ≡ s) ≃ ι (Y , t) (X , s) g C : (X : Type _) → (s t : S X) → (equivFun (S ⋆ (idEquiv X)) t ≡ s) ≃ ι (X , t) (X , s) (idEquiv X) C X s t = subst (λ u → (u ≡ s) ≃ (ι (X , t) (X , s) (idEquiv X))) (sym ( cong (λ f → (equivFun f) t) (⋆-idEquiv S X))) (θ t s) -- The following transport-free version of SNS'' is a bit easier to -- work with for the proof of the SIP SNS''' : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → Type (ℓ-max (ℓ-max(ℓ-suc ℓ) ℓ') ℓ'') SNS''' S ι = (A B : Σ[ X ∈ (Type _) ] (S X)) → (e : A .fst ≃ B .fst) → (PathP (λ i → S (ua e i)) (A .snd) (B .snd)) ≃ ι A B e -- We can easily go between SNS'' (which is def. equal to SNS') and SNS''' -- We should be able to find are more direct version of PathP≃Path for the family (λ i → S (ua f i)) -- using glue and unglue terms. SNS''→SNS''' : {S : Type ℓ → Type ℓ'} → {ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ''} → SNS'' S ι → SNS''' S ι SNS''→SNS''' {S = S} h A B f = PathP (λ i → S (ua f i)) (A .snd) (B .snd) ≃⟨ PathP≃Path (λ i → S (ua f i)) (A .snd) (B .snd) ⟩ h A B f SNS'''→SNS'' : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → SNS''' S ι → SNS'' S ι SNS'''→SNS'' S ι h A B f = transport (λ i → S (ua f i)) (A .snd) ≡ (B .snd) ≃⟨ invEquiv (PathP≃Path (λ i → S (ua f i)) (A .snd) (B .snd)) ⟩ h A B f -- We can now directly define a function -- sip : A ≃[ ι ] B → A ≡ B -- together with is inverse. -- Here, these functions use SNS''' and are expressed using a Σ-type instead as it is a bit -- easier to work with sip : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → (θ : SNS''' S ι) → (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A ≃[ ι ] B → Σ (A .fst ≡ B .fst) (λ p → PathP (λ i → S (p i)) (A .snd) (B .snd)) sip S ι θ A B (e , p) = ua e , invEq (θ A B e) p -- The inverse to sip using the following little lemma lem : (S : Type ℓ → Type ℓ') (A B : Σ[ X ∈ (Type ℓ) ] (S X)) (e : A .fst ≡ B .fst) → PathP (λ i → S (ua (pathToEquiv e) i)) (A .snd) (B .snd) ≡ PathP (λ i → S (e i)) (A .snd) (B .snd) lem S A B e i = PathP (λ j → S (ua-pathToEquiv e i j)) (A .snd) (B .snd) sip⁻ : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → (θ : SNS''' S ι) → (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → Σ (A .fst ≡ B .fst) (λ p → PathP (λ i → S (p i)) (A .snd) (B .snd)) → A ≃[ ι ] B sip⁻ S ι θ A B (e , r) = pathToEquiv e , θ A B (pathToEquiv e) .fst q where q : PathP (λ i → S (ua (pathToEquiv e) i)) (A .snd) (B .snd) q = transport (λ i → lem S A B e (~ i)) r -- we can rather directly show that sip and sip⁻ are mutually inverse: sip-sip⁻ : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → (θ : SNS''' S ι) → (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → (r : Σ (A .fst ≡ B .fst) (λ p → PathP (λ i → S (p i)) (A .snd) (B .snd))) → sip S ι θ A B (sip⁻ S ι θ A B r) ≡ r sip-sip⁻ S ι θ A B (p , q) = sip S ι θ A B (sip⁻ S ι θ A B (p , q)) ≡⟨ refl ⟩ ua (pathToEquiv p) , invEq (θ A B (pathToEquiv p)) (θ A B (pathToEquiv p) .fst (transport (λ i → lem S A B p (~ i)) q)) ≡⟨ (λ i → ua (pathToEquiv p) , secEq (θ A B (pathToEquiv p)) (transport (λ i → lem S A B p (~ i)) q) i) ⟩ ua (pathToEquiv p) , transport (λ i → lem S A B p (~ i)) q ≡⟨ (λ i → ua-pathToEquiv p i , transp (λ k → PathP (λ j → S (ua-pathToEquiv p (i ∧ k) j)) (A .snd) (B .snd)) (~ i) (transport (λ i → lem S A B p (~ i)) q)) ⟩ p , transport (λ i → lem S A B p i) (transport (λ i → lem S A B p (~ i)) q) ≡⟨ (λ i → p , transportTransport⁻ (lem S A B p) q i) ⟩ p , q ∎ -- The trickier direction: sip⁻-sip : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → (θ : SNS''' S ι) → (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → (r : A ≃[ ι ] B) → sip⁻ S ι θ A B (sip S ι θ A B r) ≡ r sip⁻-sip S ι θ A B (e , p) = sip⁻ S ι θ A B (sip S ι θ A B (e , p)) ≡⟨ refl ⟩ pathToEquiv (ua e) , θ A B (pathToEquiv (ua e)) .fst (f⁺ p') ≡⟨ (λ i → pathToEquiv-ua e i , θ A B (pathToEquiv-ua e i) .fst (pth' i)) ⟩ e , θ A B e .fst (f⁻ (f⁺ p')) ≡⟨ (λ i → e , θ A B e .fst (transportTransport⁻ (lem S A B (ua e)) p' i)) ⟩ e , θ A B e .fst (invEq (θ A B e) p) ≡⟨ (λ i → e , (retEq (θ A B e) p i)) ⟩ e , p ∎ where p' : PathP (λ i → S (ua e i)) (A .snd) (B .snd) p' = invEq (θ A B e) p f⁺ : PathP (λ i → S (ua e i)) (A .snd) (B .snd) → PathP (λ i → S (ua (pathToEquiv (ua e)) i)) (A .snd) (B .snd) f⁺ = transport (λ i → PathP (λ j → S (ua-pathToEquiv (ua e) (~ i) j)) (A .snd) (B .snd)) f⁻ : PathP (λ i → S (ua (pathToEquiv (ua e)) i)) (A .snd) (B .snd) → PathP (λ i → S (ua e i)) (A .snd) (B .snd) f⁻ = transport (λ i → PathP (λ j → S (ua-pathToEquiv (ua e) i j)) (A .snd) (B .snd)) -- We can prove the following as in sip∘pis-id, but the type is not -- what we want as it should be "cong ua (pathToEquiv-ua e)" pth : PathP (λ j → PathP (λ k → S (ua-pathToEquiv (ua e) j k)) (A .snd) (B .snd)) (f⁺ p') (f⁻ (f⁺ p')) pth i = transp (λ k → PathP (λ j → S (ua-pathToEquiv (ua e) (i ∧ k) j)) (A .snd) (B .snd)) (~ i) (f⁺ p') -- So we build an equality that we want to cast the types with casteq : PathP (λ j → PathP (λ k → S (ua-pathToEquiv (ua e) j k)) (A .snd) (B .snd)) (f⁺ p') (f⁻ (f⁺ p')) ≡ PathP (λ j → PathP (λ k → S (cong ua (pathToEquiv-ua e) j k)) (A .snd) (B .snd)) (f⁺ p') (f⁻ (f⁺ p')) casteq i = PathP (λ j → PathP (λ k → S (eq i j k)) (A .snd) (B .snd)) (f⁺ p') (f⁻ (f⁺ p')) where -- This is where we need the half-adjoint equivalence property eq : ua-pathToEquiv (ua e) ≡ cong ua (pathToEquiv-ua e) eq = sym (uaHAEquiv (A .fst) (B .fst) .snd .com e) -- We then get a term of the type we need pth' : PathP (λ j → PathP (λ k → S (cong ua (pathToEquiv-ua e) j k)) (A .snd) (B .snd)) (f⁺ p') (f⁻ (f⁺ p')) pth' = transport (λ i → casteq i) pth -- Finally package everything up to get the cubical SIP SIP : (S : Type ℓ → Type ℓ') → (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') → (θ : SNS''' S ι) → (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A ≃[ ι ] B ≃ (A ≡ B) SIP S ι θ A B = (A ≃[ ι ] B ) ≃⟨ eq ⟩ Σ≡ where eq : A ≃[ ι ] B ≃ Σ (A .fst ≡ B .fst) (λ p → PathP (λ i → S (p i)) (A .snd) (B .snd)) eq = isoToEquiv (iso (sip S ι θ A B) (sip⁻ S ι θ A B) (sip-sip⁻ S ι θ A B) (sip⁻-sip S ι θ A B)) -- Now, we want to add axioms (i.e. propositions) to our Structure S that don't affect the ι. -- For this and the remainder of this file we will work with SNS' -- We use a lemma due to Zesen Qian, which can now be found in Foundations.Prelude: -- https://github.com/riaqn/cubical/blob/hgroup/Cubical/Data/Group/Properties.agda#L83 add-to-structure : (S : Type ℓ → Type ℓ') (axioms : (X : Type ℓ) → (S X) → Type ℓ''') → Type ℓ → Type (ℓ-max ℓ' ℓ''') add-to-structure S axioms X = Σ[ s ∈ S X ] (axioms X s) add-to-iso : (S : Type ℓ → Type ℓ') (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') (axioms : (X : Type ℓ) → (S X) → Type ℓ''') → (A B : Σ[ X ∈ (Type ℓ) ] (add-to-structure S axioms X)) → A .fst ≃ B .fst → Type ℓ'' add-to-iso S ι axioms (X , (s , a)) (Y , (t , b)) f = ι (X , s) (Y , t) f add-⋆-lemma : (S : Type ℓ → Type ℓ') (axioms : (X : Type ℓ) → (S X) → Type ℓ''') (axioms-are-Props : (X : Type ℓ) (s : S X) → isProp (axioms X s)) {X Y : Type ℓ} {s : S X} {t : S Y} {a : axioms X s} {b : axioms Y t} (f : X ≃ Y) → (equivFun (add-to-structure S axioms ⋆ f) (s , a) ≡ (t , b)) ≃ (equivFun (S ⋆ f) s ≡ t) add-⋆-lemma S axioms axioms-are-Props {Y = Y} {s = s} {t = t} {a = a} {b = b} f = isoToEquiv (iso φ ψ η ε) where φ : equivFun ((add-to-structure S axioms) ⋆ f) (s , a) ≡ (t , b) → equivFun (S ⋆ f) s ≡ t φ r i = r i .fst ψ : equivFun (S ⋆ f) s ≡ t → equivFun ((add-to-structure S axioms) ⋆ f) (s , a) ≡ (t , b) ψ p i = p i , isProp→PathP (λ j → axioms-are-Props Y (p j)) (equivFun (add-to-structure S axioms ⋆ f) (s , a) .snd) b i η : section φ ψ η p = refl ε : retract φ ψ ε r i j = r j .fst , isProp→isSet-PathP (λ k → axioms-are-Props Y (r k .fst)) _ _ (isProp→PathP (λ j → axioms-are-Props Y (r j .fst)) (equivFun (add-to-structure S axioms ⋆ f) (s , a) .snd) b) (λ k → r k .snd) i j add-axioms-SNS' : (S : Type ℓ → Type ℓ') (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A .fst ≃ B .fst → Type ℓ'') (axioms : (X : Type ℓ) → (S X) → Type ℓ''') (axioms-are-Props : (X : Type ℓ) (s : S X) → isProp (axioms X s)) (θ : SNS' S ι) → SNS' (add-to-structure S axioms) (add-to-iso S ι axioms) add-axioms-SNS' S ι axioms axioms-are-Props θ (X , (s , a)) (Y , (t , b)) f = equivFun (add-to-structure S axioms ⋆ f) (s , a) ≡ (t , b) ≃⟨ add-⋆-lemma S axioms axioms-are-Props f ⟩ equivFun (S ⋆ f) s ≡ t ≃⟨ θ (X , s) (Y , t) f ⟩ add-to-iso S ι axioms (X , (s , a)) (Y , (t , b)) f ■ -- Now, we want to join two structures. Together with the adding of -- axioms this will allow us to prove that a lot of mathematical -- structures are a standard notion of structure technical-×-lemma : {A : Type ℓ₁} {B : Type ℓ₂} {C : Type ℓ₃} {D : Type ℓ₄} → A ≃ C → B ≃ D → A × B ≃ C × D technical-×-lemma {A = A} {B = B} {C = C} {D = D} f g = isoToEquiv (iso φ ψ η ε) where φ : (A × B) → (C × D) φ (a , b) = equivFun f a , equivFun g b ψ : (C × D) → (A × B) ψ (c , d) = equivFun (invEquiv f) c , equivFun (invEquiv g) d η : section φ ψ η (c , d) i = retEq f c i , retEq g d i ε : retract φ ψ ε (a , b) i = secEq f a i , secEq g b i join-structure : (S₁ : Type ℓ₁ → Type ℓ₂) (S₂ : Type ℓ₁ → Type ℓ₄) → Type ℓ₁ → Type (ℓ-max ℓ₂ ℓ₄) join-structure S₁ S₂ X = S₁ X × S₂ X join-iso : {S₁ : Type ℓ₁ → Type ℓ₂} (ι₁ : (A B : Σ[ X ∈ (Type ℓ₁) ] (S₁ X)) → A .fst ≃ B .fst → Type ℓ₃) {S₂ : Type ℓ₁ → Type ℓ₄} (ι₂ : (A B : Σ[ X ∈ (Type ℓ₁) ] (S₂ X)) → A .fst ≃ B .fst → Type ℓ₅) (A B : Σ[ X ∈ (Type ℓ₁) ] (join-structure S₁ S₂ X)) → A .fst ≃ B .fst → Type (ℓ-max ℓ₃ ℓ₅) join-iso ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) f = (ι₁ (X , s₁) (Y , t₁) f) × (ι₂ (X , s₂) (Y , t₂) f) join-⋆-lemma : (S₁ : Type ℓ₁ → Type ℓ₂) (S₂ : Type ℓ₁ → Type ℓ₄) {X Y : Type ℓ₁} {s₁ : S₁ X} {s₂ : S₂ X} {t₁ : S₁ Y} {t₂ : S₂ Y} (f : X ≃ Y) → (equivFun (join-structure S₁ S₂ ⋆ f) (s₁ , s₂) ≡ (t₁ , t₂)) ≃ (equivFun (S₁ ⋆ f) s₁ ≡ t₁) × (equivFun (S₂ ⋆ f) s₂ ≡ t₂) join-⋆-lemma S₁ S₂ {Y = Y} {s₁ = s₁} {s₂ = s₂} {t₁ = t₁} {t₂ = t₂} f = isoToEquiv (iso φ ψ η ε) where φ : equivFun (join-structure S₁ S₂ ⋆ f) (s₁ , s₂) ≡ (t₁ , t₂) → (equivFun (S₁ ⋆ f) s₁ ≡ t₁) × (equivFun (S₂ ⋆ f) s₂ ≡ t₂) φ p = (λ i → p i .fst) , (λ i → p i .snd) ψ : (equivFun (S₁ ⋆ f) s₁ ≡ t₁) × (equivFun (S₂ ⋆ f) s₂ ≡ t₂) → equivFun (join-structure S₁ S₂ ⋆ f) (s₁ , s₂) ≡ (t₁ , t₂) ψ (p , q) i = (p i) , (q i) η : section φ ψ η (p , q) = refl ε : retract φ ψ ε p = refl join-SNS' : (S₁ : Type ℓ₁ → Type ℓ₂) (ι₁ : (A B : Σ[ X ∈ (Type ℓ₁) ] (S₁ X)) → A .fst ≃ B .fst → Type ℓ₃) (θ₁ : SNS' S₁ ι₁) (S₂ : Type ℓ₁ → Type ℓ₄) (ι₂ : (A B : Σ[ X ∈ (Type ℓ₁) ] (S₂ X)) → A .fst ≃ B .fst → Type ℓ₅) (θ₂ : SNS' S₂ ι₂) → SNS' (join-structure S₁ S₂) (join-iso ι₁ ι₂) join-SNS' S₁ ι₁ θ₁ S₂ ι₂ θ₂ (X , s₁ , s₂) (Y , t₁ , t₂) f = equivFun (join-structure S₁ S₂ ⋆ f) (s₁ , s₂) ≡ (t₁ , t₂) ≃⟨ join-⋆-lemma S₁ S₂ f ⟩ (equivFun (S₁ ⋆ f) s₁ ≡ t₁) × (equivFun (S₂ ⋆ f) s₂ ≡ t₂) ≃⟨ technical-×-lemma (θ₁ (X , s₁) (Y , t₁) f) (θ₂ (X , s₂) (Y , t₂) f) ⟩ join-iso ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) f ■ -- Now, we want to do Monoids as an example. We begin by showing SNS' for simple structures, i.e. pointed types and ∞-magmas. -- Pointed types with SNS' pointed-structure : Type ℓ → Type ℓ pointed-structure X = X Pointed-Type : Type (ℓ-suc ℓ) Pointed-Type {ℓ = ℓ} = Σ (Type ℓ) pointed-structure pointed-iso : (A B : Pointed-Type) → A .fst ≃ B .fst → Type ℓ pointed-iso A B f = equivFun f (A .snd) ≡ B .snd pointed-is-SNS' : SNS' {ℓ = ℓ} pointed-structure pointed-iso pointed-is-SNS' A B f = transportEquiv (λ i → transportRefl (equivFun f (A .snd)) i ≡ B .snd) -- ∞-Magmas with SNS' -- We need function extensionality for binary functions. -- TODO: upstream funExtBin : {A : Type ℓ} {B : A → Type ℓ'} {C : (x : A) → B x → Type ℓ''} {f g : (x : A) → (y : B x) → C x y} → ((x : A) (y : B x) → f x y ≡ g x y) → f ≡ g funExtBin p i x y = p x y i module _ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} {C : (x : A) → B x → Type ℓ''} {f g : (x : A) → (y : B x) → C x y} where private appl : f ≡ g → ∀ x y → f x y ≡ g x y appl eq x y i = eq i x y fib : (p : f ≡ g) → fiber funExtBin p fib p = (appl p , refl) funExtBin-fiber-isContr : (p : f ≡ g) → (fi : fiber funExtBin p) → fib p ≡ fi funExtBin-fiber-isContr p (h , eq) i = (appl (eq (~ i)) , λ j → eq (~ i ∨ j)) funExtBin-isEquiv : isEquiv funExtBin equiv-proof funExtBin-isEquiv p = (fib p , funExtBin-fiber-isContr p) funExtBinEquiv : (∀ x y → f x y ≡ g x y) ≃ (f ≡ g) funExtBinEquiv = (funExtBin , funExtBin-isEquiv) -- ∞-Magmas ∞-magma-structure : Type ℓ → Type ℓ ∞-magma-structure X = X → X → X ∞-Magma : Type (ℓ-suc ℓ) ∞-Magma {ℓ = ℓ} = Σ (Type ℓ) ∞-magma-structure ∞-magma-iso : (A B : ∞-Magma) → A .fst ≃ B .fst → Type ℓ ∞-magma-iso (X , _·_) (Y , _∗_) f = (x x' : X) → equivFun f (x · x') ≡ (equivFun f x) ∗ (equivFun f x') ∞-magma-is-SNS' : SNS' {ℓ = ℓ} ∞-magma-structure ∞-magma-iso ∞-magma-is-SNS' (X , _·_) (Y , _∗_) f = SNS→SNS' ∞-magma-structure ∞-magma-iso C (X , _·_) (Y , _∗_) f where C : {X : Type ℓ} (_·_ _∗_ : X → X → X) → (_·_ ≡ _∗_) ≃ ((x x' : X) → (x · x') ≡ (x ∗ x')) C _·_ _∗_ = invEquiv funExtBinEquiv -- Now we're getting serious: Monoids raw-monoid-structure : Type ℓ → Type ℓ raw-monoid-structure X = X × (X → X → X) raw-monoid-iso : (M N : Σ (Type ℓ) raw-monoid-structure) → (M .fst) ≃ (N .fst) → Type ℓ raw-monoid-iso (M , e , _·_) (N , d , _∗_) f = (equivFun f e ≡ d) × ((x y : M) → equivFun f (x · y) ≡ (equivFun f x) ∗ (equivFun f y)) -- If we ignore the axioms we get something like a "raw" monoid, which essentially is the join of a pointed type and an ∞-magma raw-monoid-is-SNS' : SNS' {ℓ = ℓ} raw-monoid-structure raw-monoid-iso raw-monoid-is-SNS' = join-SNS' pointed-structure pointed-iso pointed-is-SNS' ∞-magma-structure ∞-magma-iso ∞-magma-is-SNS' -- Now define monoids monoid-axioms : (X : Type ℓ) → raw-monoid-structure X → Type ℓ monoid-axioms X (e , _·_ ) = isSet X × ((x y z : X) → (x · (y · z)) ≡ ((x · y) · z)) × ((x : X) → (x · e) ≡ x) × ((x : X) → (e · x) ≡ x) monoid-structure : Type ℓ → Type ℓ monoid-structure = add-to-structure (raw-monoid-structure) monoid-axioms -- TODO: it might be nicer to formulate the SIP lemmas so that they're -- easier to use for things that are not "completely packaged" Monoids : Type (ℓ-suc ℓ) Monoids = Σ (Type _) monoid-structure monoid-iso : (M N : Monoids) → M .fst ≃ N .fst → Type ℓ monoid-iso = add-to-iso raw-monoid-structure raw-monoid-iso monoid-axioms -- We have to show that the monoid axioms are indeed Propositions monoid-axioms-are-Props : (X : Type ℓ) (s : raw-monoid-structure X) → isProp (monoid-axioms X s) monoid-axioms-are-Props X (e , _·_) s = β s where α = s .fst β = isOfHLevelΣ 1 isPropIsSet λ _ → isOfHLevelΣ 1 (hLevelPi 1 (λ x → hLevelPi 1 λ y → hLevelPi 1 λ z → α (x · (y · z)) ((x · y) · z))) λ _ → isOfHLevelΣ 1 (hLevelPi 1 λ x → α (x · e) x) λ _ → hLevelPi 1 λ x → α (e · x) x monoid-is-SNS' : SNS' {ℓ = ℓ} monoid-structure monoid-iso monoid-is-SNS' = add-axioms-SNS' raw-monoid-structure raw-monoid-iso monoid-axioms monoid-axioms-are-Props raw-monoid-is-SNS' MonoidPath : (M N : Monoids {ℓ}) → (M ≃[ monoid-iso ] N) ≃ (M ≡ N) MonoidPath M N = SIP monoid-structure monoid-iso (SNS''→SNS''' monoid-is-SNS') M N
{ "alphanum_fraction": 0.5066508626, "avg_line_length": 44.2310679612, "ext": "agda", "hexsha": "f73bd50aa946cb0426f27d27408ad154d3123298", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Foundations/SIP.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Foundations/SIP.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Foundations/SIP.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9834, "size": 22779 }
module WrongHidingInApplication where id : (A : Set) -> A -> A id A x = x foo : (A : Set) -> A -> A foo A x = id {A} x
{ "alphanum_fraction": 0.5365853659, "avg_line_length": 12.3, "ext": "agda", "hexsha": "25f70fb69d82134b0ef439a5164ef92ede77d5a4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/WrongHidingInApplication.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/WrongHidingInApplication.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/WrongHidingInApplication.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 49, "size": 123 }
module GTFL where open import Data.Nat hiding (_⊓_; erase; _≟_; _≤_) open import Data.Bool hiding (_≟_) open import Data.Fin using (Fin; zero; suc; toℕ) open import Data.Vec open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Data.Empty open import Function using (_∘_) -- | Types infixr 30 _⇒_ data GType : Set where nat : GType bool : GType _⇒_ : GType → GType → GType ✭ : GType err : GType -- easier to model this as a type in Agda -- | Untyped Expressions data Expr : Set where litNat : ℕ → Expr litBool : Bool → Expr dyn : Expr err : Expr var : ℕ → Expr lam : GType → Expr → Expr _∙_ : Expr → Expr → Expr _⊕_ : Expr → Expr → Expr if_thn_els_ : Expr → Expr → Expr → Expr Ctx : ℕ → Set Ctx = Vec GType infixr 10 _~_ data _~_ {A B : Set} (x : A) (y : B) : Set where cons : x ~ y ~dom : ∀ (t : GType) → GType ~dom (t ⇒ t₁) = t₁ ~dom _ = err ~cod : ∀ (t : GType) → GType ~cod (t ⇒ t₁) = t₁ ~cod _ = err _⊓_ : ∀ (t₁ t₂ : GType) → GType nat ⊓ nat = nat bool ⊓ bool = bool t₁ ⊓ ✭ = t₁ ✭ ⊓ t₂ = t₂ (t₁ ⇒ t₂) ⊓ (t₃ ⇒ t₄) = (t₁ ⊓ t₃) ⇒ (t₂ ⊓ t₄) _ ⊓ _ = err -- | Typed Terms data Term {n} (Γ : Ctx n) : GType → Set where Tx : ∀ {t} (v : Fin n) → t ≡ lookup v Γ → Term Γ t Tn : ℕ → Term Γ nat Tb : Bool → Term Γ bool Tdy : Term Γ ✭ _T∙_ : ∀ {t₁ t₂} → Term Γ t₁ → Term Γ t₂ → t₂ ~ (~dom t₁) → Term Γ (~cod t₁) _T⊕_ : ∀ {t₁ t₂} → Term Γ t₁ → Term Γ t₂ → (t₁ ~ nat) → (t₂ ~ nat) → Term Γ (t₁ ⊓ t₂) Tif : ∀ {t₁ t₂ t₃} → Term Γ t₁ → Term Γ t₂ → Term Γ t₃ → (t₁ ~ bool) → Term Γ (t₂ ⊓ t₃) Tlam : ∀ t₁ {t₂} → Term (t₁ ∷ Γ) t₂ → Term Γ (t₁ ⇒ t₂) erase : ∀ {n} {Γ : Ctx n} {t} → Term Γ t → Expr erase (Tx v x) = var (toℕ v) erase (Tn x) = litNat x erase (Tb x) = litBool x erase Tdy = dyn erase ((term T∙ term₁) _) = (erase term) ∙ (erase term₁) erase ((term T⊕ term₁) _ _) = (erase term) ⊕ (erase term₁) erase (Tif b tt ff _) = if erase b thn erase tt els erase ff erase (Tlam t₁ term) = lam t₁ (erase term) data Fromℕ (n : ℕ) : ℕ → Set where yes : (m : Fin n) → Fromℕ n (toℕ m) no : (m : ℕ) → Fromℕ n (n + m) fromℕ : ∀ n m → Fromℕ n m fromℕ zero m = no m fromℕ (suc n) zero = yes zero fromℕ (suc n) (suc m) with fromℕ n m fromℕ (suc n) (suc .(toℕ m)) | yes m = yes (suc m) fromℕ (suc n) (suc .(n + m)) | no m = no m data Check {n} (Γ : Ctx n) : Expr → Set where yes : (τ : GType) (t : Term Γ τ) → Check Γ (erase t) no : {e : Expr} → Check Γ e staticCheck : ∀ {n} (Γ : Ctx n) (t : Expr) → Check Γ t -- | primitives staticCheck Γ (litNat x) = yes nat (Tn x) staticCheck Γ (litBool x) = yes bool (Tb x) staticCheck {n} Γ dyn = yes ✭ Tdy staticCheck Γ err = no -- | var lookup staticCheck {n} Γ (var v) with fromℕ n v staticCheck {n} Γ (var .(toℕ m)) | yes m = yes (lookup m Γ) (Tx m refl) staticCheck {n} Γ (var .(n + m)) | no m = no -- | lambda abstraction staticCheck Γ (lam x t) with staticCheck (x ∷ Γ) t staticCheck Γ (lam x .(erase t)) | yes τ t = yes (x ⇒ τ) (Tlam x t) -- double check this staticCheck Γ (lam x t) | no = no -- | application staticCheck Γ (t₁ ∙ t₂) with staticCheck Γ t₁ | staticCheck Γ t₂ staticCheck Γ (.(erase t₁) ∙ .(erase t)) | yes (τ₁ ⇒ τ₂) t₁ | (yes τ t) = yes τ₂ ((t₁ T∙ t) cons) staticCheck Γ (.(erase t₁) ∙ .(erase t)) | yes _ t₁ | (yes τ t) = no -- not sure about this staticCheck Γ (t₁ ∙ t₂) | _ | _ = no -- | addition staticCheck Γ (t₁ ⊕ t₂) with staticCheck Γ t₁ | staticCheck Γ t₂ staticCheck Γ (.(erase t₁) ⊕ .(erase t)) | yes nat t₁ | (yes nat t) = yes nat ((t₁ T⊕ t) cons cons) staticCheck Γ (.(erase t₁) ⊕ .(erase t)) | yes ✭ t₁ | (yes nat t) = yes (✭ ⊓ nat) ((t₁ T⊕ t) cons cons) staticCheck Γ (.(erase t₁) ⊕ .(erase t)) | yes nat t₁ | (yes ✭ t) = yes (nat ⊓ ✭) ((t₁ T⊕ t) cons cons) staticCheck Γ (.(erase t₁) ⊕ .(erase t)) | yes ✭ t₁ | (yes ✭ t) = yes ✭ ((t₁ T⊕ t) cons cons) staticCheck Γ (t₁ ⊕ t₂) | _ | _ = no -- | if ... then ... else staticCheck Γ (if t thn t₁ els t₂) with staticCheck Γ t staticCheck Γ (if .(erase t) thn t₁ els t₂) | yes bool t with staticCheck Γ t₁ | staticCheck Γ t₂ staticCheck Γ (if .(erase t₂) thn .(erase t₁) els .(erase t)) | yes bool t₂ | (yes τ₁ t₁) | (yes τ₂ t) = yes (τ₁ ⊓ τ₂) (Tif t₂ t₁ t cons) staticCheck Γ (if .(erase t₁) thn .(erase t) els t₂) | yes bool t₁ | (yes τ t) | no = no staticCheck Γ (if .(erase t₂) thn t₁ els .(erase t)) | yes bool t₂ | no | (yes τ t) = no staticCheck Γ (if .(erase t) thn t₁ els t₂) | yes bool t | no | _ = no staticCheck Γ (if .(erase t) thn t₁ els t₂) | yes ✭ t with staticCheck Γ t₁ | staticCheck Γ t₂ staticCheck Γ (if .(erase t₂) thn .(erase t₁) els .(erase t)) | yes ✭ t₂ | (yes τ₁ t₁) | (yes τ₂ t) = yes (τ₁ ⊓ τ₂) (Tif t₂ t₁ t cons) staticCheck Γ (if .(erase t₁) thn .(erase t) els t₂) | yes ✭ t₁ | (yes τ t) | no = no staticCheck Γ (if .(erase t₂) thn t₁ els .(erase t)) | yes ✭ t₂ | no | (yes τ t) = no staticCheck Γ (if .(erase t) thn t₁ els t₂) | yes ✭ t | no | no = no staticCheck Γ (if .(erase t) thn t₁ els t₂) | yes _ t = no staticCheck Γ (if t thn t₁ els t₂) | no = no extractType : ∀ {n} {Γ : Ctx n} {t : Expr} → Check Γ t → GType extractType (yes τ t) = τ extractType no = err -- Type Precision data _⊑_ : GType → GType → Set where n⊑✭ : nat ⊑ ✭ b⊑✭ : bool ⊑ ✭ ⇒⊑ : ∀ (t₁ t₂ : GType) → (t₁ ⇒ t₂) ⊑ ✭ n⊑n : nat ⊑ nat b⊑b : bool ⊑ bool ✭⊑✭ : ✭ ⊑ ✭ app⊑ : ∀ (t₁ t₂ t₃ t₄ : GType) → t₁ ⊑ t₃ → t₂ ⊑ t₄ → (t₁ ⇒ t₃) ⊑ (t₃ ⇒ t₄) -- Term Precision data _≤_ : Expr → Expr → Set where n≤n : ∀ {n} → litNat n ≤ litNat n b≤b : ∀ {b} → litBool b ≤ litBool b n≤✭ : ∀ {n} → litNat n ≤ dyn b≤✭ : ∀ {b} → litBool b ≤ dyn d≤d : dyn ≤ dyn ssG : ∀ {n} {Γ : Ctx n} {e₁ e₂ : Expr} → e₁ ≤ e₂ → extractType (staticCheck Γ e₁) ⊑ extractType (staticCheck Γ e₂) ssG n≤n = n⊑n ssG b≤b = b⊑b ssG n≤✭ = n⊑✭ ssG b≤✭ = b⊑✭ ssG d≤d = ✭⊑✭
{ "alphanum_fraction": 0.5450799407, "avg_line_length": 36.1130952381, "ext": "agda", "hexsha": "1c08b2d9fe68d84d5fb0fa1648c8c509ece8a357", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kellino/TypeSystems", "max_forks_repo_path": "Agda/GTFL.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kellino/TypeSystems", "max_issues_repo_path": "Agda/GTFL.agda", "max_line_length": 137, "max_stars_count": 2, "max_stars_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kellino/TypeSystems", "max_stars_repo_path": "Agda/GTFL.agda", "max_stars_repo_stars_event_max_datetime": "2017-05-26T23:06:17.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-27T08:05:40.000Z", "num_tokens": 2630, "size": 6067 }
------------------------------------------------------------------------------ -- Arithmetic properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.PropertiesI open import FOTC.Data.Nat open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.TotalityI ------------------------------------------------------------------------------ -- Congruence properties +-leftCong : ∀ {m n o} → m ≡ n → m + o ≡ n + o +-leftCong refl = refl +-rightCong : ∀ {m n o} → n ≡ o → m + n ≡ m + o +-rightCong refl = refl ∸-leftCong : ∀ {m n o} → m ≡ n → m ∸ o ≡ n ∸ o ∸-leftCong refl = refl ∸-rightCong : ∀ {m n o} → n ≡ o → m ∸ n ≡ m ∸ o ∸-rightCong refl = refl *-leftCong : ∀ {m n o} → m ≡ n → m * o ≡ n * o *-leftCong refl = refl *-rightCong : ∀ {m n o} → n ≡ o → m * n ≡ m * o *-rightCong refl = refl ------------------------------------------------------------------------------ Sx≢x : ∀ {n} → N n → succ₁ n ≢ n Sx≢x nzero h = ⊥-elim (0≢S (sym h)) Sx≢x (nsucc Nn) h = ⊥-elim (Sx≢x Nn (succInjective h)) +-leftIdentity : ∀ n → zero + n ≡ n +-leftIdentity = +-0x +-rightIdentity : ∀ {n} → N n → n + zero ≡ n +-rightIdentity nzero = +-leftIdentity zero +-rightIdentity (nsucc {n} Nn) = trans (+-Sx n zero) (succCong (+-rightIdentity Nn)) pred-N : ∀ {n} → N n → N (pred₁ n) pred-N nzero = subst N (sym pred-0) nzero pred-N (nsucc {n} Nn) = subst N (sym (pred-S n)) Nn +-N : ∀ {m n} → N m → N n → N (m + n) +-N {n = n} nzero Nn = subst N (sym (+-leftIdentity n)) Nn +-N {n = n} (nsucc {m} Nm) Nn = subst N (sym (+-Sx m n)) (nsucc (+-N Nm Nn)) ∸-N : ∀ {m n} → N m → N n → N (m ∸ n) ∸-N {m} Nm nzero = subst N (sym (∸-x0 m)) Nm ∸-N {m} Nm (nsucc {n} Nn) = subst N (sym (∸-xS m n)) (pred-N (∸-N Nm Nn)) +-assoc : ∀ {m} → N m → ∀ n o → m + n + o ≡ m + (n + o) +-assoc nzero n o = zero + n + o ≡⟨ +-leftCong (+-leftIdentity n) ⟩ n + o ≡⟨ sym (+-leftIdentity (n + o)) ⟩ zero + (n + o) ∎ +-assoc (nsucc {m} Nm) n o = succ₁ m + n + o ≡⟨ +-leftCong (+-Sx m n) ⟩ succ₁ (m + n) + o ≡⟨ +-Sx (m + n) o ⟩ succ₁ (m + n + o) ≡⟨ succCong (+-assoc Nm n o) ⟩ succ₁ (m + (n + o)) ≡⟨ sym (+-Sx m (n + o)) ⟩ succ₁ m + (n + o) ∎ x+Sy≡S[x+y] : ∀ {m} → N m → ∀ n → m + succ₁ n ≡ succ₁ (m + n) x+Sy≡S[x+y] nzero n = zero + succ₁ n ≡⟨ +-leftIdentity (succ₁ n) ⟩ succ₁ n ≡⟨ succCong (sym (+-leftIdentity n)) ⟩ succ₁ (zero + n) ∎ x+Sy≡S[x+y] (nsucc {m} Nm) n = succ₁ m + succ₁ n ≡⟨ +-Sx m (succ₁ n) ⟩ succ₁ (m + succ₁ n) ≡⟨ succCong (x+Sy≡S[x+y] Nm n) ⟩ succ₁ (succ₁ (m + n)) ≡⟨ succCong (sym (+-Sx m n)) ⟩ succ₁ (succ₁ m + n) ∎ +-comm : ∀ {m n} → N m → N n → m + n ≡ n + m +-comm {n = n} nzero Nn = zero + n ≡⟨ +-leftIdentity n ⟩ n ≡⟨ sym (+-rightIdentity Nn) ⟩ n + zero ∎ +-comm {n = n} (nsucc {m} Nm) Nn = succ₁ m + n ≡⟨ +-Sx m n ⟩ succ₁ (m + n) ≡⟨ succCong (+-comm Nm Nn) ⟩ succ₁ (n + m) ≡⟨ sym (x+Sy≡S[x+y] Nn m) ⟩ n + succ₁ m ∎ 0∸x : ∀ {n} → N n → zero ∸ n ≡ zero 0∸x nzero = ∸-x0 zero 0∸x (nsucc {n} Nn) = zero ∸ succ₁ n ≡⟨ ∸-xS zero n ⟩ pred₁ (zero ∸ n) ≡⟨ predCong (0∸x Nn) ⟩ pred₁ zero ≡⟨ pred-0 ⟩ zero ∎ S∸S : ∀ {m n} → N m → N n → succ₁ m ∸ succ₁ n ≡ m ∸ n S∸S {m} _ nzero = succ₁ m ∸ succ₁ zero ≡⟨ ∸-xS (succ₁ m) zero ⟩ pred₁ (succ₁ m ∸ zero) ≡⟨ predCong (∸-x0 (succ₁ m)) ⟩ pred₁ (succ₁ m) ≡⟨ pred-S m ⟩ m ≡⟨ sym (∸-x0 m) ⟩ m ∸ zero ∎ S∸S {m} Nm (nsucc {n} Nn) = succ₁ m ∸ succ₁ (succ₁ n) ≡⟨ ∸-xS (succ₁ m) (succ₁ n) ⟩ pred₁ (succ₁ m ∸ succ₁ n) ≡⟨ predCong (S∸S Nm Nn) ⟩ pred₁ (m ∸ n) ≡⟨ sym (∸-xS m n) ⟩ m ∸ succ₁ n ∎ x∸x≡0 : ∀ {n} → N n → n ∸ n ≡ zero x∸x≡0 nzero = ∸-x0 zero x∸x≡0 (nsucc Nn) = trans (S∸S Nn Nn) (x∸x≡0 Nn) Sx∸x≡1 : ∀ {n} → N n → succ₁ n ∸ n ≡ 1' Sx∸x≡1 nzero = ∸-x0 1' Sx∸x≡1 (nsucc Nn) = trans (S∸S (nsucc Nn) Nn) (Sx∸x≡1 Nn) [x+Sy]∸y≡Sx : ∀ {m n} → N m → N n → m + succ₁ n ∸ n ≡ succ₁ m [x+Sy]∸y≡Sx {n = n} nzero Nn = zero + succ₁ n ∸ n ≡⟨ ∸-leftCong (+-leftIdentity (succ₁ n)) ⟩ succ₁ n ∸ n ≡⟨ Sx∸x≡1 Nn ⟩ 1' ∎ [x+Sy]∸y≡Sx (nsucc {m} Nm) nzero = succ₁ m + 1' ∸ zero ≡⟨ ∸-leftCong (+-Sx m 1') ⟩ succ₁ (m + 1') ∸ zero ≡⟨ ∸-x0 (succ₁ (m + 1')) ⟩ succ₁ (m + 1') ≡⟨ succCong (+-comm Nm 1-N) ⟩ succ₁ (1' + m) ≡⟨ succCong (+-Sx zero m) ⟩ succ₁ (succ₁ (zero + m)) ≡⟨ succCong (succCong (+-leftIdentity m)) ⟩ succ₁ (succ₁ m) ∎ [x+Sy]∸y≡Sx (nsucc {m} Nm) (nsucc {n} Nn) = succ₁ m + succ₁ (succ₁ n) ∸ succ₁ n ≡⟨ ∸-leftCong (+-Sx m (succ₁ (succ₁ n))) ⟩ succ₁ (m + succ₁ (succ₁ n)) ∸ succ₁ n ≡⟨ S∸S (+-N Nm (nsucc (nsucc Nn))) Nn ⟩ m + succ₁ (succ₁ n) ∸ n ≡⟨ ∸-leftCong (x+Sy≡S[x+y] Nm (succ₁ n)) ⟩ succ₁ (m + succ₁ n) ∸ n ≡⟨ ∸-leftCong (sym (+-Sx m (succ₁ n))) ⟩ succ₁ m + succ₁ n ∸ n ≡⟨ [x+Sy]∸y≡Sx (nsucc Nm) Nn ⟩ succ₁ (succ₁ m) ∎ [x+y]∸[x+z]≡y∸z : ∀ {m n o} → N m → N n → N o → (m + n) ∸ (m + o) ≡ n ∸ o [x+y]∸[x+z]≡y∸z {n = n} {o} nzero _ _ = (zero + n) ∸ (zero + o) ≡⟨ ∸-leftCong (+-leftIdentity n) ⟩ n ∸ (zero + o) ≡⟨ ∸-rightCong (+-leftIdentity o) ⟩ n ∸ o ∎ [x+y]∸[x+z]≡y∸z {n = n} {o} (nsucc {m} Nm) Nn No = (succ₁ m + n) ∸ (succ₁ m + o) ≡⟨ ∸-leftCong (+-Sx m n) ⟩ succ₁ (m + n) ∸ (succ₁ m + o) ≡⟨ ∸-rightCong (+-Sx m o) ⟩ succ₁ (m + n) ∸ succ₁ (m + o) ≡⟨ S∸S (+-N Nm Nn) (+-N Nm No) ⟩ (m + n) ∸ (m + o) ≡⟨ [x+y]∸[x+z]≡y∸z Nm Nn No ⟩ n ∸ o ∎ *-leftZero : ∀ n → zero * n ≡ zero *-leftZero = *-0x *-rightZero : ∀ {n} → N n → n * zero ≡ zero *-rightZero nzero = *-leftZero zero *-rightZero (nsucc {n} Nn) = trans (*-Sx n zero) (trans (+-leftIdentity (n * zero)) (*-rightZero Nn)) *-N : ∀ {m n} → N m → N n → N (m * n) *-N {n = n} nzero Nn = subst N (sym (*-leftZero n)) nzero *-N {n = n} (nsucc {m} Nm) Nn = subst N (sym (*-Sx m n)) (+-N Nn (*-N Nm Nn)) *-leftIdentity : ∀ {n} → N n → 1' * n ≡ n *-leftIdentity {n} Nn = 1' * n ≡⟨ *-Sx zero n ⟩ n + zero * n ≡⟨ +-rightCong (*-leftZero n) ⟩ n + zero ≡⟨ +-rightIdentity Nn ⟩ n ∎ x*Sy≡x+xy : ∀ {m n} → N m → N n → m * succ₁ n ≡ m + m * n x*Sy≡x+xy {n = n} nzero Nn = sym ( zero + zero * n ≡⟨ +-rightCong (*-leftZero n) ⟩ zero + zero ≡⟨ +-leftIdentity zero ⟩ zero ≡⟨ sym (*-leftZero (succ₁ n)) ⟩ zero * succ₁ n ∎ ) x*Sy≡x+xy {n = n} (nsucc {m} Nm) Nn = succ₁ m * succ₁ n ≡⟨ *-Sx m (succ₁ n) ⟩ succ₁ n + m * succ₁ n ≡⟨ +-rightCong (x*Sy≡x+xy Nm Nn) ⟩ succ₁ n + (m + m * n) ≡⟨ +-Sx n (m + m * n) ⟩ succ₁ (n + (m + m * n)) ≡⟨ succCong (sym (+-assoc Nn m (m * n))) ⟩ succ₁ (n + m + m * n) ≡⟨ succCong (+-leftCong (+-comm Nn Nm)) ⟩ succ₁ (m + n + m * n) ≡⟨ succCong (+-assoc Nm n (m * n)) ⟩ succ₁ (m + (n + m * n)) ≡⟨ sym (+-Sx m (n + m * n)) ⟩ succ₁ m + (n + m * n) ≡⟨ +-rightCong (sym (*-Sx m n)) ⟩ succ₁ m + succ₁ m * n ∎ *-comm : ∀ {m n} → N m → N n → m * n ≡ n * m *-comm {n = n} nzero Nn = trans (*-leftZero n) (sym (*-rightZero Nn)) *-comm {n = n} (nsucc {m} Nm) Nn = succ₁ m * n ≡⟨ *-Sx m n ⟩ n + m * n ≡⟨ +-rightCong (*-comm Nm Nn) ⟩ n + n * m ≡⟨ sym (x*Sy≡x+xy Nn Nm) ⟩ n * succ₁ m ∎ *-rightIdentity : ∀ {n} → N n → n * 1' ≡ n *-rightIdentity {n} Nn = trans (*-comm Nn (nsucc nzero)) (*-leftIdentity Nn) *∸-leftDistributive : ∀ {m n o} → N m → N n → N o → (m ∸ n) * o ≡ m * o ∸ n * o *∸-leftDistributive {m} {o = o} _ nzero _ = (m ∸ zero) * o ≡⟨ *-leftCong (∸-x0 m) ⟩ m * o ≡⟨ sym (∸-x0 (m * o)) ⟩ m * o ∸ zero ≡⟨ ∸-rightCong (sym (*-leftZero o)) ⟩ m * o ∸ zero * o ∎ *∸-leftDistributive {o = o} nzero (nsucc {n} Nn) No = (zero ∸ succ₁ n) * o ≡⟨ *-leftCong (0∸x (nsucc Nn)) ⟩ zero * o ≡⟨ *-leftZero o ⟩ zero ≡⟨ sym (0∸x (*-N (nsucc Nn) No)) ⟩ zero ∸ succ₁ n * o ≡⟨ ∸-leftCong (sym (*-leftZero o)) ⟩ zero * o ∸ succ₁ n * o ∎ *∸-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) nzero = (succ₁ m ∸ succ₁ n) * zero ≡⟨ *-comm (∸-N (nsucc Nm) (nsucc Nn)) nzero ⟩ zero * (succ₁ m ∸ succ₁ n) ≡⟨ *-leftZero (succ₁ m ∸ succ₁ n) ⟩ zero ≡⟨ sym (0∸x (*-N (nsucc Nn) nzero)) ⟩ zero ∸ succ₁ n * zero ≡⟨ ∸-leftCong (sym (*-leftZero (succ₁ m))) ⟩ zero * succ₁ m ∸ succ₁ n * zero ≡⟨ ∸-leftCong (*-comm nzero (nsucc Nm)) ⟩ succ₁ m * zero ∸ succ₁ n * zero ∎ *∸-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) = (succ₁ m ∸ succ₁ n) * succ₁ o ≡⟨ *-leftCong (S∸S Nm Nn) ⟩ (m ∸ n) * succ₁ o ≡⟨ *∸-leftDistributive Nm Nn (nsucc No) ⟩ m * succ₁ o ∸ n * succ₁ o ≡⟨ sym ([x+y]∸[x+z]≡y∸z (nsucc No) (*-N Nm (nsucc No)) (*-N Nn (nsucc No))) ⟩ (succ₁ o + m * succ₁ o) ∸ (succ₁ o + n * succ₁ o) ≡⟨ ∸-leftCong (sym (*-Sx m (succ₁ o))) ⟩ (succ₁ m * succ₁ o) ∸ (succ₁ o + n * succ₁ o) ≡⟨ ∸-rightCong (sym (*-Sx n (succ₁ o))) ⟩ (succ₁ m * succ₁ o) ∸ (succ₁ n * succ₁ o) ∎ *+-leftDistributive : ∀ {m n o} → N m → N n → N o → (m + n) * o ≡ m * o + n * o *+-leftDistributive {m} {n} Nm Nn nzero = (m + n) * zero ≡⟨ *-comm (+-N Nm Nn) nzero ⟩ zero * (m + n) ≡⟨ *-leftZero (m + n) ⟩ zero ≡⟨ sym (*-leftZero m) ⟩ zero * m ≡⟨ *-comm nzero Nm ⟩ m * zero ≡⟨ sym (+-rightIdentity (*-N Nm nzero)) ⟩ m * zero + zero ≡⟨ +-rightCong (trans (sym (*-leftZero n)) (*-comm nzero Nn)) ⟩ m * zero + n * zero ∎ *+-leftDistributive {n = n} nzero Nn (nsucc {o} No) = (zero + n) * succ₁ o ≡⟨ *-leftCong (+-leftIdentity n) ⟩ n * succ₁ o ≡⟨ sym (+-leftIdentity (n * succ₁ o)) ⟩ zero + n * succ₁ o ≡⟨ +-leftCong (sym (*-leftZero (succ₁ o))) ⟩ zero * succ₁ o + n * succ₁ o ∎ *+-leftDistributive (nsucc {m} Nm) nzero (nsucc {o} No) = (succ₁ m + zero) * succ₁ o ≡⟨ *-leftCong (+-rightIdentity (nsucc Nm)) ⟩ succ₁ m * succ₁ o ≡⟨ sym (+-rightIdentity (*-N (nsucc Nm) (nsucc No))) ⟩ succ₁ m * succ₁ o + zero ≡⟨ +-rightCong (sym (*-leftZero (succ₁ o))) ⟩ succ₁ m * succ₁ o + zero * succ₁ o ∎ *+-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) = (succ₁ m + succ₁ n) * succ₁ o ≡⟨ *-leftCong (+-Sx m (succ₁ n)) ⟩ succ₁ (m + succ₁ n) * succ₁ o ≡⟨ *-Sx (m + succ₁ n) (succ₁ o) ⟩ succ₁ o + (m + succ₁ n) * succ₁ o ≡⟨ +-rightCong (*+-leftDistributive Nm (nsucc Nn) (nsucc No)) ⟩ succ₁ o + (m * succ₁ o + succ₁ n * succ₁ o) ≡⟨ sym (+-assoc (nsucc No) (m * succ₁ o) (succ₁ n * succ₁ o)) ⟩ succ₁ o + m * succ₁ o + succ₁ n * succ₁ o ≡⟨ +-leftCong (sym (*-Sx m (succ₁ o))) ⟩ succ₁ m * succ₁ o + succ₁ n * succ₁ o ∎ xy≡0→x≡0∨y≡0 : ∀ {m n} → N m → N n → m * n ≡ zero → m ≡ zero ∨ n ≡ zero xy≡0→x≡0∨y≡0 nzero _ _ = inj₁ refl xy≡0→x≡0∨y≡0 (nsucc Nm) nzero _ = inj₂ refl xy≡0→x≡0∨y≡0 (nsucc {m} Nm) (nsucc {n} Nn) SmSn≡0 = ⊥-elim (0≢S prf) where prf : zero ≡ succ₁ (n + m * succ₁ n) prf = zero ≡⟨ sym SmSn≡0 ⟩ succ₁ m * succ₁ n ≡⟨ *-Sx m (succ₁ n) ⟩ succ₁ n + m * succ₁ n ≡⟨ +-Sx n (m * succ₁ n) ⟩ succ₁ (n + m * succ₁ n) ∎ xy≡1→x≡1 : ∀ {m n} → N m → N n → m * n ≡ 1' → m ≡ 1' xy≡1→x≡1 {n = n} nzero Nn h = ⊥-elim (0≢S (trans (sym (*-leftZero n)) h)) xy≡1→x≡1 (nsucc nzero) Nn h = refl xy≡1→x≡1 (nsucc (nsucc {m} Nm)) nzero h = ⊥-elim (0≢S (trans (sym (*-rightZero (nsucc (nsucc Nm)))) h)) xy≡1→x≡1 (nsucc (nsucc {m} Nm)) (nsucc {n} Nn) h = ⊥-elim (0≢S prf₂) where prf₁ : 1' ≡ succ₁ (succ₁ (m + n * succ₁ (succ₁ m))) prf₁ = 1' ≡⟨ sym h ⟩ succ₁ (succ₁ m) * succ₁ n ≡⟨ *-comm (nsucc (nsucc Nm)) (nsucc Nn) ⟩ succ₁ n * succ₁ (succ₁ m) ≡⟨ *-Sx n (succ₁ (succ₁ m)) ⟩ succ₁ (succ₁ m) + n * succ₁ (succ₁ m) ≡⟨ +-Sx (succ₁ m) (n * succ₁ (succ₁ m)) ⟩ succ₁ (succ₁ m + n * succ₁ (succ₁ m)) ≡⟨ succCong (+-Sx m (n * succ₁ (succ₁ m))) ⟩ succ₁ (succ₁ (m + n * succ₁ (succ₁ m))) ∎ prf₂ : zero ≡ succ₁ (m + n * succ₁ (succ₁ m)) prf₂ = succInjective prf₁ xy≡1→y≡1 : ∀ {m n} → N m → N n → m * n ≡ 1' → n ≡ 1' xy≡1→y≡1 Nm Nn h = xy≡1→x≡1 Nn Nm (trans (*-comm Nn Nm) h) -- Feferman's axiom as presented by (Beeson 1986, p. 74). succOnto : ∀ {n} → N n → n ≢ zero → succ₁ (pred₁ n) ≡ n succOnto nzero h = ⊥-elim (h refl) succOnto (nsucc {n} Nn) h = succCong (pred-S n) ------------------------------------------------------------------------------ -- References -- -- Beeson, M. J. (1986). Proving Programs and Programming Proofs. In: -- Logic, Methodology and Philosophy of Science VII (1983). Ed. by -- Barcan Marcus, Ruth, Dorn, George J. W. and Weingartner, -- Paul. Vol. 114. Studies in Logic and the Foundations of -- Mathematics. Elsevier, pp. 51–82.
{ "alphanum_fraction": 0.4656471125, "avg_line_length": 35.8119891008, "ext": "agda", "hexsha": "8b7c4b048c6a7e5f47f94f408bb505d086a2bbb0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Nat/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Nat/PropertiesI.agda", "max_line_length": 81, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Nat/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 6314, "size": 13143 }
module datatype-util where open import constants open import ctxt open import syntax-util open import general-util open import type-util open import cedille-types open import subst open import rename open import free-vars {-# TERMINATING #-} decompose-arrows : ctxt → type → params × type decompose-arrows Γ (TpAbs me x atk T) = let x' = fresh-var-new Γ x in case decompose-arrows (ctxt-var-decl x' Γ) (rename-var Γ x x' T) of λ where (ps , T') → Param me x' atk :: ps , T' decompose-arrows Γ T = [] , T decompose-ctr-type : ctxt → type → type × params × 𝕃 tmtp decompose-ctr-type Γ T with decompose-arrows Γ T ...| ps , Tᵣ with decompose-tpapps Tᵣ ...| Tₕ , as = Tₕ , ps , as {-# TERMINATING #-} kind-to-indices : ctxt → kind → indices kind-to-indices Γ (KdAbs x atk k) = let x' = fresh-var-new Γ x in Index x' atk :: kind-to-indices (ctxt-var-decl x' Γ) (rename-var Γ x x' k) kind-to-indices Γ _ = [] rename-indices-h : ctxt → renamectxt → indices → 𝕃 tmtp → indices rename-indices-h Γ ρ (Index x atk :: is) (ty :: tys) = Index x' atk' :: rename-indices-h (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') is tys where x' = fresh-var-renamectxt Γ ρ (maybe-else x id (is-var-unqual ty)) atk' = subst-renamectxt Γ ρ -tk atk rename-indices-h Γ ρ (Index x atk :: is) [] = let x' = fresh-var-renamectxt Γ ρ x in Index x' (subst-renamectxt Γ ρ -tk atk) :: rename-indices-h (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') is [] rename-indices-h _ _ [] _ = [] rename-indices : ctxt → indices → 𝕃 tmtp → indices rename-indices Γ = rename-indices-h Γ empty-renamectxt positivity : Set positivity = 𝔹 × 𝔹 -- occurs positively × occurs negatively pattern occurs-nil = ff , ff pattern occurs-pos = tt , ff pattern occurs-neg = ff , tt pattern occurs-all = tt , tt --positivity-inc : positivity → positivity --positivity-dec : positivity → positivity positivity-neg : positivity → positivity positivity-add : positivity → positivity → positivity --positivity-inc = map-fst λ _ → tt --positivity-dec = map-snd λ _ → tt positivity-neg = uncurry $ flip _,_ positivity-add (+ₘ , -ₘ) (+ₙ , -ₙ) = (+ₘ || +ₙ) , (-ₘ || -ₙ) data ctorCheckT : Set where ctorOk : ctorCheckT ctorNotInReturnType : ctorCheckT ctorNegative : ctorCheckT posₒ = fst negₒ = snd occurs : positivity → ctorCheckT occurs p = if (negₒ p) then ctorNegative else ctorOk or-ctorCheckT : ctorCheckT → ctorCheckT → ctorCheckT or-ctorCheckT ctorOk r = r or-ctorCheckT ctorNegative _ = ctorNegative or-ctorCheckT ctorNotInReturnType _ = ctorNotInReturnType posM : Set → Set posM A = 𝕃 tpkd → A × 𝕃 tpkd run-posM : ∀{A : Set} → posM A → A × 𝕃 tpkd run-posM p = p [] extract-pos : ∀{A : Set} → posM A → A extract-pos = fst ∘ run-posM instance posM-monad : monad posM return ⦃ posM-monad ⦄ a = λ l → a , l _>>=_ ⦃ posM-monad ⦄ p ap l with p l _>>=_ ⦃ posM-monad ⦄ p ap l | a , l' = ap a l' posM-functor : functor posM fmap ⦃ posM-functor ⦄ g m l with m l fmap ⦃ posM-functor ⦄ g m l | a , l' = g a , l' posM-applicative : applicative posM pure ⦃ posM-applicative ⦄ = return _<*>_ ⦃ posM-applicative ⦄ mab ma l with mab l _<*>_ ⦃ posM-applicative ⦄ mab ma l | f , l' with ma l' _<*>_ ⦃ posM-applicative ⦄ mab ma l | f , l' | a , l'' = f a , l'' add-posM : tpkd → posM ⊤ add-posM x = λ l → triv , x :: l module positivity (x : var) where open import conversion if-free : ∀ {ed} → ⟦ ed ⟧ → positivity if-free t with is-free-in x t ...| f = f , f if-free-args : args → positivity if-free-args as = let c = stringset-contains (free-vars-args as) x in c , c hnf' : ∀ {ed} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ hnf' Γ T = hnf Γ unfold-no-defs T mtt = maybe-else tt id mff = maybe-else ff id {-# TERMINATING #-} type+ : ctxt → type → posM positivity kind+ : ctxt → kind → posM positivity tpkd+ : ctxt → tpkd → posM positivity tpapp+ : ctxt → type → posM positivity type+h : ctxt → type → posM positivity kind+h : ctxt → kind → posM positivity tpkd+h : ctxt → tpkd → posM positivity tpapp+h : ctxt → type → posM positivity type+ Γ T = type+h Γ T -- >>= λ p → add-posM (Tkt T) >> return p kind+ Γ k = kind+h Γ k tpkd+ Γ x = tpkd+h Γ x tpapp+ Γ T = tpapp+h Γ T type+h Γ (TpAbs me x' atk T) = let Γ' = ctxt-var-decl x' Γ in pure positivity-add <*> (fmap positivity-neg $ tpkd+ Γ $ hnf' Γ -tk atk) <*> (type+ Γ' $ hnf' Γ' T) type+h Γ (TpIota x' T T') = let Γ' = ctxt-var-decl x' Γ in pure positivity-add <*> (type+ Γ $ hnf' Γ T) <*> (type+ Γ' $ hnf' Γ' T') type+h Γ (TpApp T tT) = tpapp+ Γ $ hnf' Γ $ TpApp T tT type+h Γ (TpEq tₗ tᵣ) = pure occurs-nil type+h Γ (TpHole _) = pure occurs-nil type+h Γ (TpLam x' atk T)= let Γ' = ctxt-var-decl x' Γ in pure positivity-add <*> (fmap positivity-neg $ tpkd+ Γ $ hnf' Γ -tk atk) <*> (type+ Γ' (hnf' Γ' T)) type+h Γ (TpVar x') = pure $ x =string x' , ff kind+h Γ (KdAbs x' atk k) = let Γ' = ctxt-var-decl x' Γ in pure positivity-add <*> (fmap positivity-neg $ tpkd+ Γ $ hnf' Γ -tk atk) <*> (kind+ Γ' k) kind+h Γ _ = pure occurs-nil tpkd+h Γ (Tkt T) = type+ Γ (hnf' Γ T) tpkd+h Γ (Tkk k) = kind+ Γ k tpapp+h Γ T with decompose-tpapps T tpapp+h Γ T | TpVar x' , as = let f = if-free-args (tmtps-to-args NotErased as) in if x =string x' then pure (positivity-add occurs-pos f) else maybe-else' (data-lookup Γ x' as) (pure f) λ {(mk-data-info x'' xₒ'' asₚ asᵢ ps kᵢ k cs csₚₛ eds gds) → let s = (inst-type Γ ps asₚ (hnf' Γ $ TpAbs tt x'' (Tkk k) $ foldr (uncurry λ cₓ cₜ → TpAbs ff ignored-var (Tkt cₜ)) (TpVar x'') cs)) in add-posM (Tkt s) >> type+ Γ s } tpapp+h Γ T | _ , _ = pure $ if-free T {-# TERMINATING #-} arrs+ : ctxt → type → posM ctorCheckT arrs+ Γ (TpAbs me x' atk T) = let Γ' = ctxt-var-decl x' Γ in pure or-ctorCheckT <*> (fmap occurs (tpkd+ Γ $ hnf' Γ -tk atk)) <*> (arrs+ Γ' (hnf' Γ' T)) arrs+ Γ (TpApp T tT) = fmap occurs (tpapp+ Γ $ hnf' Γ (TpApp T tT)) arrs+ Γ (TpLam x' atk T) = let Γ' = ctxt-var-decl x' Γ in pure or-ctorCheckT <*> (fmap occurs (tpkd+ Γ $ hnf' Γ -tk atk)) <*> (arrs+ Γ' (hnf' Γ' T)) arrs+ Γ (TpVar x') = return $ if (x =string x') then ctorOk else ctorNotInReturnType arrs+ _ _ = return ctorNegative ctr-positive : ctxt → type → posM ctorCheckT ctr-positive Γ = (arrs+ Γ ∘ hnf' Γ) -- build the evidence for a sigma-term, given datatype X with associated info μ sigma-build-evidence : var → datatype-info → term sigma-build-evidence X μ = if datatype-info.name μ =string X then recompose-apps (datatype-info.asₚ μ) (Var (data-is/ X)) else Var (mu-isType/' X)
{ "alphanum_fraction": 0.6118586426, "avg_line_length": 31.9009433962, "ext": "agda", "hexsha": "61b9033ed6e1ebdd4ef0bd942164b82d6632bc85", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ice1k/cedille", "max_forks_repo_path": "src/datatype-util.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ice1k/cedille", "max_issues_repo_path": "src/datatype-util.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ice1k/cedille", "max_stars_repo_path": "src/datatype-util.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2500, "size": 6763 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Ring.DirectProd where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Algebra.Ring.Base private variable ℓ ℓ' ℓ'' ℓ''' : Level module _ (A'@(A , Ar) : Ring ℓ) (B'@(B , Br) : Ring ℓ') where open RingStr Ar using () renaming ( 0r to 0A ; 1r to 1A ; _+_ to _+A_ ; -_ to -A_ ; _·_ to _·A_ ; +Assoc to +AAssoc ; +IdR to +AIdR ; +IdL to +AIdL ; +InvR to +AInvR ; +InvL to +AInvL ; +Comm to +AComm ; ·Assoc to ·AAssoc ; ·IdL to ·AIdL ; ·IdR to ·AIdR ; ·DistR+ to ·ADistR+ ; ·DistL+ to ·ADistL+ ; is-set to isSetA ) open RingStr Br using () renaming ( 0r to 0B ; 1r to 1B ; _+_ to _+B_ ; -_ to -B_ ; _·_ to _·B_ ; +Assoc to +BAssoc ; +IdR to +BIdR ; +IdL to +BIdL ; +InvR to +BInvR ; +InvL to +BInvL ; +Comm to +BComm ; ·Assoc to ·BAssoc ; ·IdL to ·BIdL ; ·IdR to ·BIdR ; ·DistR+ to ·BDistR+ ; ·DistL+ to ·BDistL+ ; is-set to isSetB ) DirectProd-Ring : Ring (ℓ-max ℓ ℓ') fst DirectProd-Ring = A × B RingStr.0r (snd DirectProd-Ring) = 0A , 0B RingStr.1r (snd DirectProd-Ring) = 1A , 1B (snd DirectProd-Ring RingStr.+ (a , b)) (a' , b') = (a +A a') , (b +B b') (snd DirectProd-Ring RingStr.· (a , b)) (a' , b') = (a ·A a') , (b ·B b') (RingStr.- snd DirectProd-Ring) (a , b) = (-A a) , (-B b) RingStr.isRing (snd DirectProd-Ring) = makeIsRing (isSet× isSetA isSetB) (λ x y z i → +AAssoc (fst x) (fst y) (fst z) i , +BAssoc (snd x) (snd y) (snd z) i) (λ x i → (+AIdR (fst x) i) , (+BIdR (snd x) i)) (λ x i → (+AInvR (fst x) i) , +BInvR (snd x) i) (λ x y i → (+AComm (fst x) (fst y) i) , (+BComm (snd x) (snd y) i)) (λ x y z i → (·AAssoc (fst x) (fst y) (fst z) i) , (·BAssoc (snd x) (snd y) (snd z) i)) (λ x i → (·AIdR (fst x) i) , (·BIdR (snd x) i)) (λ x i → (·AIdL (fst x) i) , (·BIdL (snd x) i)) (λ x y z i → (·ADistR+ (fst x) (fst y) (fst z) i) , (·BDistR+ (snd x) (snd y) (snd z) i)) (λ x y z i → (·ADistL+ (fst x) (fst y) (fst z) i) , (·BDistL+ (snd x) (snd y) (snd z) i)) module Coproduct-Equiv {Xr@(X , Xstr) : Ring ℓ} {Yr@(Y , Ystr) : Ring ℓ'} {X'r@(X' , X'str) : Ring ℓ''} {Y'r@(Y' , Y'str) : Ring ℓ'''} where open Iso open IsRingHom open RingStr _+X×X'_ : X × X' → X × X' → X × X' _+X×X'_ = _+_ (snd (DirectProd-Ring Xr X'r)) _+Y×Y'_ : Y × Y' → Y × Y' → Y × Y' _+Y×Y'_ = _+_ (snd (DirectProd-Ring Yr Y'r)) _·X×X'_ : X × X' → X × X' → X × X' _·X×X'_ = _·_ (snd (DirectProd-Ring Xr X'r)) _·Y×Y'_ : Y × Y' → Y × Y' → Y × Y' _·Y×Y'_ = _·_ (snd (DirectProd-Ring Yr Y'r)) re×re' : (re : RingEquiv Xr Yr) → (re' : RingEquiv X'r Y'r) → (X × X') ≃ (Y × Y') re×re' re re' = ≃-× (fst re) (fst re') Coproduct-Equiv-12 : (re : RingEquiv Xr Yr) → (re' : RingEquiv X'r Y'r) → RingEquiv (DirectProd-Ring Xr X'r) (DirectProd-Ring Yr Y'r) fst (Coproduct-Equiv-12 re re') = re×re' re re' snd (Coproduct-Equiv-12 re re') = makeIsRingHom fun-pres1 fun-pres+ fun-pres· where fun-pres1 : (fst (re×re' re re')) (1r Xstr , 1r X'str) ≡ (1r (Yr .snd) , 1r (Y'r .snd)) fun-pres1 = ≡-× (pres1 (snd re)) (pres1 (snd re')) fun-pres+ : (x1 x2 : X × X') → (fst (re×re' re re')) (x1 +X×X' x2) ≡ (( (fst (re×re' re re')) x1) +Y×Y' ( (fst (re×re' re re')) x2)) fun-pres+ (x1 , x'1) (x2 , x'2) = ≡-× (pres+ (snd re) x1 x2) (pres+ (snd re') x'1 x'2) fun-pres· : (x1 x2 : X × X') → (fst (re×re' re re')) (x1 ·X×X' x2) ≡ (( (fst (re×re' re re')) x1) ·Y×Y' ( (fst (re×re' re re')) x2)) fun-pres· (x1 , x'1) (x2 , x'2) = ≡-× (pres· (snd re) x1 x2) (pres· (snd re') x'1 x'2)
{ "alphanum_fraction": 0.495412844, "avg_line_length": 34.1779661017, "ext": "agda", "hexsha": "56ec50b91408939872b6dce0b59b274f88a09253", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Ring/DirectProd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Ring/DirectProd.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Ring/DirectProd.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1819, "size": 4033 }
module Issue213 where postulate Prod : Set → Set → Set A : Set Foo : Set Foo = let infixr 3 _×_ _×_ : Set → Set → Set _×_ = Prod in A × A × A
{ "alphanum_fraction": 0.4943820225, "avg_line_length": 13.6923076923, "ext": "agda", "hexsha": "86ac4df98cfa6b647111c90ad59564089ed3217a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue213.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue213.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue213.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 64, "size": 178 }
module Categories.Functor.Construction.Product where open import Categories.Category open import Categories.Category.Cartesian open import Categories.Category.BinaryProducts open import Categories.Functor.Bifunctor open import Data.Product using (_,_) module _ {o ℓ e} (𝒞 : Category o ℓ e) (cartesian : Cartesian 𝒞) where open Cartesian cartesian open BinaryProducts products open Category 𝒞 Product : Bifunctor 𝒞 𝒞 𝒞 Product = record { F₀ = λ (x , y) → x × y ; F₁ = λ (f , g) → f ⁂ g ; identity = Equiv.trans (⟨⟩-cong₂ identityˡ identityˡ) η ; homomorphism = Equiv.sym ⁂∘⁂ ; F-resp-≈ = λ (x , y) → ⁂-cong₂ x y }
{ "alphanum_fraction": 0.6292134831, "avg_line_length": 29.6666666667, "ext": "agda", "hexsha": "9eb90f241ad0820219201e5fae999c8fc79b59c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "elpinal/exsub-ccc", "max_forks_repo_path": "Categories/Functor/Construction/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "elpinal/exsub-ccc", "max_issues_repo_path": "Categories/Functor/Construction/Product.agda", "max_line_length": 71, "max_stars_count": 3, "max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "elpinal/exsub-ccc", "max_stars_repo_path": "Categories/Functor/Construction/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z", "num_tokens": 219, "size": 712 }
{-# OPTIONS --allow-unsolved-metas #-} -- FIXME open import Everything module Test.Test3 where module _ {𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂} where postulate instance functor : Functor 𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂ open Functor ⦃ … ⦄ test : asInstance `IsFunctor $ {!Transextensionality!.type _∼₁_ _∼̇₁_!} test = asInstance `IsFunctor transextensionality -- -- Test1.test-functor-transextensionality
{ "alphanum_fraction": 0.6873449132, "avg_line_length": 26.8666666667, "ext": "agda", "hexsha": "05c980053c952572f107b04e82f85807708a116a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/Test3.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/Test3.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/Test3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 158, "size": 403 }
{-# OPTIONS --type-in-type #-} module Record where open import Prelude record Sigma (A : Set)(B : A -> Set) : Set record Sigma A B where constructor pair field fst : A snd : B fst open Sigma data Unit : Set data Unit where tt : Unit Cat : Set Cat = Sigma Set (\ Obj -> Sigma (Obj -> Obj -> Set) (\ Hom -> Sigma ((X : _) -> Hom X X) (\ id -> Sigma ((X Y Z : _) -> Hom Y Z -> Hom X Y -> Hom X Z) (\ comp -> Sigma ((X Y : _)(f : Hom X Y) -> comp _ _ _ (id Y) f == f) (\ idl -> Sigma ((X Y : _)(f : Hom X Y) -> comp _ _ _ f (id X) == f) (\ idr -> Sigma ((W X Y Z : _) (f : Hom W X)(g : Hom X Y)(h : Hom Y Z) -> comp _ _ _ (comp _ _ _ h g) f == comp _ _ _ h (comp _ _ _ g f)) (\ assoc -> Unit))))))) Obj : (C : Cat) -> Set Obj C = fst C Hom : (C : Cat) -> Obj C -> Obj C -> Set Hom C = fst (snd C) id : (C : Cat) -> (X : _) -> Hom C X X id C = fst (snd (snd C)) comp : (C : Cat) -> (X Y Z : _) -> Hom C Y Z -> Hom C X Y -> Hom C X Z comp C = fst (snd (snd (snd C))) idl : (C : Cat) -> (X Y : _)(f : Hom C X Y) -> comp C _ _ _ (id C Y) f == f idl C = fst (snd (snd (snd (snd C)))) idr : (C : Cat) -> (X Y : _)(f : Hom C X Y) -> comp C _ _ _ f (id C X) == f idr C = fst (snd (snd (snd (snd (snd C))))) assoc : (C : Cat) -> (W X Y Z : _) (f : Hom C W X)(g : Hom C X Y)(h : Hom C Y Z) -> comp C _ _ _ (comp C _ _ _ h g) f == comp C _ _ _ h (comp C _ _ _ g f) assoc C = fst (snd (snd (snd (snd (snd (snd C))))))
{ "alphanum_fraction": 0.423030303, "avg_line_length": 28.4482758621, "ext": "agda", "hexsha": "e1dd10f5c29cdbebdfefa96061db49560f993689", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "src/prototyping/term/examples/Record.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "src/prototyping/term/examples/Record.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "src/prototyping/term/examples/Record.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 576, "size": 1650 }
-- By Philipp Hausmann. open import Agda.Builtin.Bool open import Agda.Builtin.Equality open import Agda.Builtin.Float data ⊥ : Set where _/_ = primFloatDiv _<_ = primFloatNumericalLess cong : {A B : Set} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl 0eq : 0.0 ≡ -0.0 0eq = refl bug : ⊥ bug = f (cong (λ x → (1.0 / x) < 0.0) 0eq) where f : false ≡ true → ⊥ f ()
{ "alphanum_fraction": 0.5888324873, "avg_line_length": 16.4166666667, "ext": "agda", "hexsha": "5371388c8a861cba9170149414fe7fb279fbe078", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2169.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue2169.agda", "max_line_length": 60, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue2169.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 165, "size": 394 }
module Data.BinaryTree.Properties where import Lvl open import Data hiding (empty) open import Data.BinaryTree open import Data.Boolean open import Functional as Fn open import Logic.Propositional open import Numeral.Natural open import Type private variable ℓ ℓᵢ ℓₗ ℓₙ ℓₒ : Lvl.Level private variable n : ℕ private variable N N₁ N₂ L T A B : Type{ℓ} -- A tree is full when every node has no or all children. data Full {L : Type{ℓₗ}}{N : Type{ℓₙ}} : BinaryTree L N → Type{ℓₗ Lvl.⊔ ℓₙ} where leaf : ∀{l} → Full(Leaf l) single : ∀{a}{l₁ l₂} → Full(Node a (Leaf l₁) (Leaf l₂)) step : ∀{al ar a}{cll clr crl crr} → Full(Node al cll clr) → Full(Node ar crl crr) → Full(Node a (Node al cll clr) (Node ar crl crr)) -- A tree is perfect at depth `n` when all leaves are at height `n`. -- In other words, a tree is perfect when all leaves are at the same height. data Perfect {L : Type{ℓₗ}}{N : Type{ℓₙ}} : BinaryTree L N → ℕ → Type{ℓₗ Lvl.⊔ ℓₙ} where leaf : ∀{l} → Perfect(Leaf l)(𝟎) step : ∀{a}{l r}{h} → Perfect(l)(h) → Perfect(r)(h) → Perfect(Node a l r)(𝐒(h)) data Complete {L : Type{ℓₗ}}{N : Type{ℓₙ}} : BinaryTree L N → ℕ → Bool → Type{ℓₗ Lvl.⊔ ℓₙ} where perfect-leaf : ∀{l} → Complete(Leaf l)(𝟎)(𝑇) imperfect-leaf : ∀{l} → Complete(Leaf l)(𝐒(𝟎))(𝐹) step₀ : ∀{a}{l r}{h} → Complete(l)(h)(𝐹) → Complete(r)(h)(𝐹) → Complete(Node a l r)(𝐒(h))(𝐹) step₁ : ∀{a}{l r}{h} → Complete(l)(h)(𝑇) → Complete(r)(h)(𝐹) → Complete(Node a l r)(𝐒(h))(𝐹) step₂ : ∀{a}{l r}{h} → Complete(l)(h)(𝑇) → Complete(r)(h)(𝑇) → Complete(Node a l r)(𝐒(h))(𝑇) data DepthOrdered {L : Type{ℓₗ}}{N : Type{ℓₙ}} (_≤_ : N → N → Type{ℓₒ}) : BinaryTree L N → Type{ℓₗ Lvl.⊔ ℓₙ Lvl.⊔ ℓₒ} where leaf : ∀{l} → DepthOrdered(_≤_)(Leaf l) step : ∀{a}{l₁ l₂} → DepthOrdered(_≤_)(Node a (Leaf l₁) (Leaf l₂)) stepₗ : ∀{a al ar}{l}{rl rr} → (a ≤ al) → DepthOrdered(_≤_)(Node al rl rr) → DepthOrdered(_≤_)(Node a (Leaf l) (Node ar rl rr)) stepᵣ : ∀{a al ar}{l}{ll lr} → (a ≤ ar) → DepthOrdered(_≤_)(Node ar ll lr) → DepthOrdered(_≤_)(Node a (Node al ll lr) (Leaf l)) stepₗᵣ : ∀{a al ar}{ll lr rl rr} → (a ≤ al) → DepthOrdered(_≤_)(Node al ll lr) → (a ≤ ar) → DepthOrdered(_≤_)(Node ar rl rr) → DepthOrdered(_≤_)(Node a (Node al ll lr) (Node ar rl rr)) Heap : ∀{L : Type{ℓₗ}}{N : Type{ℓₙ}} → (N → N → Type{ℓₒ}) → BinaryTree L N → ℕ → Bool → Type Heap(_≤_) tree height perfect = DepthOrdered(_≤_)(tree) ∧ Complete(tree)(height)(perfect)
{ "alphanum_fraction": 0.5813323005, "avg_line_length": 53.7916666667, "ext": "agda", "hexsha": "27cf4b9b3813e538f4e770a9b8b84702fdbcd4f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/BinaryTree/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/BinaryTree/Properties.agda", "max_line_length": 137, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/BinaryTree/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1032, "size": 2582 }
record Unit : Set where constructor unit module S {A : Set} where id : {A : Set} → A → A id a = a module T {A : Set} = S Sid : (A : Set) → A → A Sid A = S.id {A = Unit} {A = A} Tid : (A : Set) → A → A Tid A = T.id {A = Unit} {A = Unit} {A = A}
{ "alphanum_fraction": 0.4862745098, "avg_line_length": 15.9375, "ext": "agda", "hexsha": "5f969a3a00e42dfa7fb8faae77cd8c0e82ab91d6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2572.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2572.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2572.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 110, "size": 255 }
module trie-thms where open import bool open import bool-thms open import bool-thms2 open import char open import eq open import list open import list-thms open import maybe open import product open import product-thms open import sum open import string open import trie trie-lookup-empty-h : ∀ {A} x → trie-lookup-h{A} empty-trie x ≡ nothing trie-lookup-empty-h [] = refl trie-lookup-empty-h (_ :: _) = refl trie-lookup-empty : ∀ {A} x → trie-lookup{A} empty-trie x ≡ nothing trie-lookup-empty x = trie-lookup-empty-h (string-to-𝕃char x) trie-cal-insert-nonempty : ∀{A : Set}(ts : cal (trie A))(c : char)(t : trie A) → trie-nonempty t ≡ tt → trie-cal-nonempty (cal-insert ts c t) ≡ tt trie-cal-insert-nonempty [] c t p rewrite p = refl trie-cal-insert-nonempty ((c , t') :: ts) c' t p with c' =char c trie-cal-insert-nonempty ((c , t') :: ts) c' t p | tt rewrite p = refl trie-cal-insert-nonempty ((c , t') :: ts) c' t p | ff rewrite (trie-cal-insert-nonempty ts c' t p) = ||-tt (trie-nonempty t') trie-insert-h-nonempty : ∀{A : Set}(t : trie A)(cs : 𝕃 char)(a : A) → trie-nonempty (trie-insert-h t cs a) ≡ tt trie-insert-h-nonempty (Node x x₁) [] a = refl trie-insert-h-nonempty (Node x ts) (c :: cs) a with cal-lookup ts c trie-insert-h-nonempty (Node (just x) ts) (c :: cs) a | just t = refl trie-insert-h-nonempty (Node nothing ts) (c :: cs) a | just t = trie-cal-insert-nonempty ts c (trie-insert-h t cs a) (trie-insert-h-nonempty t cs a) trie-insert-h-nonempty (Node (just x) ts) (c :: cs) a | nothing = refl trie-insert-h-nonempty (Node nothing ts) (c :: cs) a | nothing rewrite (trie-insert-h-nonempty empty-trie cs a) = refl trie-insert-nonempty : ∀{A : Set}(t : trie A)(s : string)(a : A) → trie-nonempty (trie-insert t s a) ≡ tt trie-insert-nonempty t s a = trie-insert-h-nonempty t (string-to-𝕃char s) a trie-mappings-h-nonempty : ∀ {A : Set}(t : trie A)(prev-str : 𝕃 char) → trie-nonempty t ≡ tt → is-empty (trie-mappings-h t prev-str) ≡ ff trie-cal-mappings-h-nonempty : ∀ {A : Set}(ts : cal (trie A))(prev-str : 𝕃 char) → trie-cal-nonempty ts ≡ tt → is-empty (trie-cal-mappings-h ts prev-str) ≡ ff trie-mappings-h-nonempty (Node (just x) x₁) prev-str _ = refl trie-mappings-h-nonempty (Node nothing ts) prev-str p = trie-cal-mappings-h-nonempty ts prev-str p trie-cal-mappings-h-nonempty [] prev-str () trie-cal-mappings-h-nonempty ((a , t) :: ts) prev-str p rewrite is-empty-++ (trie-mappings-h t (a :: prev-str)) (trie-cal-mappings-h ts prev-str) with ||-elim{trie-nonempty t} p trie-cal-mappings-h-nonempty ((a , t) :: ts) prev-str _ | inj₁ p rewrite trie-mappings-h-nonempty t (a :: prev-str) p = refl trie-cal-mappings-h-nonempty ((a , t) :: ts) prev-str _ | inj₂ p rewrite trie-cal-mappings-h-nonempty ts prev-str p | &&-ff (is-empty (trie-mappings-h t (a :: prev-str))) = refl trie-mappings-nonempty : ∀ {A : Set}(t : trie A) → trie-nonempty t ≡ tt → is-empty (trie-mappings t) ≡ ff trie-mappings-nonempty t p = trie-mappings-h-nonempty t [] p
{ "alphanum_fraction": 0.6449742268, "avg_line_length": 53.5172413793, "ext": "agda", "hexsha": "96c9b72b236bde0caeebe9c7c915b697905a4385", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "trie-thms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "trie-thms.agda", "max_line_length": 178, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "trie-thms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 976, "size": 3104 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Level polymorphic Empty type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Empty.Polymorphic where open import Level data ⊥ {ℓ : Level} : Set ℓ where ⊥-elim : ∀ {w ℓ} {Whatever : Set w} → ⊥ {ℓ} → Whatever ⊥-elim ()
{ "alphanum_fraction": 0.4029850746, "avg_line_length": 23.6470588235, "ext": "agda", "hexsha": "6a37cbcc7518136b5b16ca890185d92ca099d363", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Empty/Polymorphic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Empty/Polymorphic.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Empty/Polymorphic.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 89, "size": 402 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Rings.Definition open import Rings.Orders.Partial.Definition open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Functions.Definition open import Fields.Fields open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.Orders.Partial.Definition {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) where open Ring R record PartiallyOrderedField {p} {_<_ : Rel {_} {p} A} (pOrder : SetoidPartialOrder S _<_) : Set (lsuc (m ⊔ n ⊔ p)) where field oRing : PartiallyOrderedRing R pOrder
{ "alphanum_fraction": 0.6926536732, "avg_line_length": 35.1052631579, "ext": "agda", "hexsha": "2f657fd873efee8d1aa5e836d8beb1fd3755a41a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/Orders/Partial/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/Orders/Partial/Definition.agda", "max_line_length": 161, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/Orders/Partial/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 212, "size": 667 }
{-# OPTIONS --cubical --safe #-} open import Algebra open import Relation.Binary open import Algebra.Monus module Data.MonoidalHeap {s} (monus : TMPOM s) where open TMPOM monus open import Prelude open import Data.List using (List; _∷_; []) import Data.Nat as ℕ import Data.Nat.Properties as ℕ 𝒮 : Type s 𝒮 = 𝑆 → 𝑆 ⟦_⇑⟧ : 𝑆 → 𝒮 ⟦_⇑⟧ = _∙_ ⟦_⇓⟧ : 𝒮 → 𝑆 ⟦ x ⇓⟧ = x ε infixl 10 _⊙_ _⊙_ : (𝑆 → A) → 𝑆 → 𝑆 → A f ⊙ x = λ y → f (x ∙ y) infixr 6 _∹_&_ data Heap (V : 𝑆 → Type a) : Type (a ℓ⊔ s) where [] : Heap V _∹_&_ : (key : 𝑆) (val : V key) (children : List (Heap (V ⊙ key))) → Heap V Heap⋆ : (V : 𝑆 → Type a) → Type (a ℓ⊔ s) Heap⋆ V = List (Heap V) private variable v : Level V : 𝑆 → Type v ⊙ε : V ≡ V ⊙ ε ⊙ε {V = V} i x = V (sym (ε∙ x) i) lemma : ∀ x y k → x ≡ y ∙ k → ⟦ x ⇑⟧ ≡ ⟦ y ⇑⟧ ∘ ⟦ k ⇑⟧ lemma x y k x≡y∙k i z = (cong (_∙ z) x≡y∙k ; assoc y k z) i merge : Heap V → Heap V → Heap V merge [] ys = ys merge (x ∹ xv & xs) [] = x ∹ xv & xs merge {V = V} (x ∹ xv & xs) (y ∹ yv & ys) with x ≤|≥ y ... | inl (k , x≤y) = x ∹ xv & (k ∹ subst V x≤y yv & subst (List ∘ Heap ∘ _∘_ V) (lemma y x k x≤y) ys ∷ xs) ... | inr (k , x≥y) = y ∹ yv & (k ∹ subst V x≥y xv & subst (List ∘ Heap ∘ _∘_ V) (lemma x y k x≥y) xs ∷ ys) mergeQs⁺ : Heap V → Heap⋆ V → Heap V mergeQs⁺ x₁ [] = x₁ mergeQs⁺ x₁ (x₂ ∷ []) = merge x₁ x₂ mergeQs⁺ x₁ (x₂ ∷ x₃ ∷ xs) = merge (merge x₁ x₂) (mergeQs⁺ x₃ xs) mergeQs : Heap⋆ V → Heap V mergeQs [] = [] mergeQs (x ∷ xs) = mergeQs⁺ x xs singleton : ∀ x → V x → Heap V singleton x xv = x ∹ xv & [] insert : ∀ x → V x → Heap V → Heap V insert x xv = merge (singleton x xv) minView : Heap V → Maybe (∃ p × V p × Heap (V ⊙ p)) minView [] = nothing minView (x ∹ xv & xs) = just (x , xv , mergeQs xs) variable v₁ v₂ : Level V₁ : 𝑆 → Type v₁ V₂ : 𝑆 → Type v₂ mutual maps : (∀ {x} → V₁ x → V₂ x) → Heap⋆ V₁ → Heap⋆ V₂ maps f [] = [] maps f (x ∷ xs) = map f x ∷ maps f xs map : (∀ {x} → V₁ x → V₂ x) → Heap V₁ → Heap V₂ map f [] = [] map f (k ∹ v & xs) = k ∹ f v & maps f xs mutual size : Heap V → ℕ size [] = zero size (_ ∹ _ & xs) = suc (sizes xs) sizes : Heap⋆ V → ℕ sizes [] = 0 sizes (x ∷ xs) = size x ℕ.+ sizes xs open import Data.Maybe using (maybe) open import Path.Reasoning open import Cubical.Foundations.Prelude using (substRefl) lemma₂ : ∀ {x y : 𝑆 → 𝑆} xs (p : x ≡ y) → sizes (subst (List ∘ Heap ∘ _∘_ V) p xs) ≡ sizes xs lemma₂ {V = V} xs = J (λ _ p → sizes (subst (List ∘ Heap ∘ _∘_ V) p xs) ≡ sizes xs) (cong sizes (substRefl {B = List ∘ Heap ∘ _∘_ V} xs)) merge-size : (xs ys : Heap V) → size (merge xs ys) ≡ size xs ℕ.+ size ys merge-size [] ys = refl merge-size (x ∹ xv & xs) [] = sym (ℕ.+-idʳ _) merge-size {V = V} (x ∹ xv & xs) (y ∹ yv & ys) with x ≤|≥ y merge-size {V = V} (x ∹ xv & xs) (y ∹ yv & ys) | inr (k , x≥y) = suc (suc (sizes (subst (List ∘ Heap ∘ _∘_ V) (lemma x y k x≥y) xs)) ℕ.+ sizes ys) ≡˘⟨ ℕ.+-suc _ (sizes ys) ⟩ suc (sizes (subst (List ∘ Heap ∘ _∘_ V) (lemma x y k x≥y) xs)) ℕ.+ suc (sizes ys) ≡⟨ cong (ℕ._+ suc (sizes ys)) (cong suc (lemma₂ {V = V} xs (lemma x y k x≥y))) ⟩ suc (sizes xs) ℕ.+ suc (sizes ys) ∎ merge-size {V = V} (x ∹ xv & xs) (y ∹ yv & ys) | inl (k , x≤y) = suc (suc (sizes (subst (List ∘ Heap ∘ _∘_ V) (lemma y x k x≤y) ys)) ℕ.+ sizes xs) ≡˘⟨ ℕ.+-suc _ (sizes xs) ⟩ suc (sizes (subst (List ∘ Heap ∘ _∘_ V) (lemma y x k x≤y) ys)) ℕ.+ suc (sizes xs) ≡⟨ cong (ℕ._+ suc (sizes xs)) (cong suc (lemma₂ {V = V} ys (lemma y x k x≤y))) ⟩ suc (sizes ys) ℕ.+ suc (sizes xs) ≡⟨ ℕ.+-comm (suc (sizes ys)) (suc (sizes xs)) ⟩ suc (sizes xs) ℕ.+ suc (sizes ys) ∎ mutual minViewSizes : (xs : Heap⋆ V) → sizes xs ≡ size (mergeQs xs) minViewSizes [] = refl minViewSizes (x ∷ xs) = minViewSizes⁺ x xs minViewSizes⁺ : (x : Heap V) → (xs : Heap⋆ V) → sizes (x ∷ xs) ≡ size (mergeQs⁺ x xs) minViewSizes⁺ x₁ [] = ℕ.+-idʳ _ minViewSizes⁺ x₁ (x₂ ∷ []) = cong (λ z → size x₁ ℕ.+ z) (ℕ.+-idʳ _) ; sym (merge-size x₁ x₂) minViewSizes⁺ x₁ (x₂ ∷ x₃ ∷ xs) = size x₁ ℕ.+ (size x₂ ℕ.+ sizes (x₃ ∷ xs)) ≡˘⟨ ℕ.+-assoc (size x₁) (size x₂) (sizes (x₃ ∷ xs)) ⟩ (size x₁ ℕ.+ size x₂) ℕ.+ sizes (x₃ ∷ xs) ≡⟨ cong ((size x₁ ℕ.+ size x₂) ℕ.+_) (minViewSizes⁺ x₃ xs) ⟩ (size x₁ ℕ.+ size x₂) ℕ.+ size (mergeQs⁺ x₃ xs) ≡˘⟨ cong (ℕ._+ size (mergeQs⁺ x₃ xs)) (merge-size x₁ x₂) ⟩ size (merge x₁ x₂) ℕ.+ size (mergeQs⁺ x₃ xs) ≡˘⟨ merge-size (merge x₁ x₂) (mergeQs⁺ x₃ xs) ⟩ size (merge (merge x₁ x₂) (mergeQs⁺ x₃ xs)) ∎ minViewSize : (xs : Heap V) → size xs ≡ maybe zero (suc ∘ size ∘ snd ∘ snd) (minView xs) minViewSize [] = refl minViewSize (x ∹ xv & xs) = cong suc (minViewSizes xs) zer : Heap⋆ V zer = [] one : Heap⋆ V one = [] ∷ [] open import Data.List using (_++_; concatMap) _<+>_ : Heap⋆ V → Heap⋆ V → Heap⋆ V _<+>_ = _++_ multIn : (p : 𝑆 → 𝑆) → (c : ∀ {x y} → V (p x) → V y → V (p (x ∙ y))) → (V ⇒ V ∘ p) → Heap⋆ (V ∘ p) → Heap⋆ V → Heap⋆ (V ∘ p) multIn {V = V} p c f [] ys = [] multIn {V = V} p c f ([] ∷ xs) ys = maps f ys ++ multIn p c f xs ys multIn {V = V} p c f (x ∹ xv & xc ∷ xs) ys = x ∹ xv & multIn (p ∘ ⟦ x ⇑⟧) (λ v₁ v₂ → subst V (cong p (assoc x _ _)) (c v₁ v₂)) (c xv) xc ys ∷ multIn p c f xs ys appl : (∀ {x y} → V x → V y → V (x ∙ y)) → Heap⋆ V → Heap⋆ V → Heap⋆ V appl {V = V} f xs ys = multIn {V = V} id f id xs ys
{ "alphanum_fraction": 0.5301250474, "avg_line_length": 33.8333333333, "ext": "agda", "hexsha": "0700fd0bced6aac8c7e6e1ea33898fc78bf19e05", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/MonoidalHeap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/MonoidalHeap.agda", "max_line_length": 164, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/MonoidalHeap.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 2553, "size": 5278 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Group open import lib.types.List open import lib.types.Pi open import lib.types.Sigma open import lib.types.Word open import lib.groups.Homomorphism open import lib.groups.GeneratedGroup open import lib.groups.GeneratedAbelianGroup open import lib.groups.Isomorphism module lib.groups.TensorProduct where module TensorProduct₀ {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G = AbGroup G module H = AbGroup H ⊗-pair : Type (lmax i j) ⊗-pair = G.El × H.El data ⊗-rel : Word ⊗-pair → Word ⊗-pair → Type (lmax i j) where linear-l : (g₁ g₂ : G.El) (h : H.El) → ⊗-rel (inl (G.comp g₁ g₂ , h) :: nil) (inl (g₁ , h) :: inl (g₂ , h) :: nil) linear-r : (g : G.El) (h₁ h₂ : H.El) → ⊗-rel (inl (g , H.comp h₁ h₂) :: nil) (inl (g , h₁) :: inl (g , h₂) :: nil) private module Gen = GeneratedAbelianGroup ⊗-pair ⊗-rel open Gen hiding (GenGroup; GenAbGroup; El) public abstract abgroup : AbGroup (lmax i j) abgroup = Gen.GenAbGroup open AbGroup abgroup public abstract infixr 80 _⊗_ _⊗_ : G.El → H.El → El _⊗_ g h = insert (g , h) ⊗-lin-l : ∀ g₁ g₂ h → G.comp g₁ g₂ ⊗ h == comp (g₁ ⊗ h) (g₂ ⊗ h) ⊗-lin-l g₁ g₂ h = rel-holds (linear-l g₁ g₂ h) ⊗-lin-r : ∀ g h₁ h₂ → g ⊗ H.comp h₁ h₂ == comp (g ⊗ h₁) (g ⊗ h₂) ⊗-lin-r g h₁ h₂ = rel-holds (linear-r g h₁ h₂) ⊗-unit-l : ∀ h → G.ident ⊗ h == ident ⊗-unit-l h = cancel-l (G.ident ⊗ h) $ comp (G.ident ⊗ h) (G.ident ⊗ h) =⟨ ! (⊗-lin-l G.ident G.ident h) ⟩ G.comp G.ident G.ident ⊗ h =⟨ ap (_⊗ h) (G.unit-l G.ident) ⟩ G.ident ⊗ h =⟨ ! (unit-r (G.ident ⊗ h)) ⟩ comp (G.ident ⊗ h) ident =∎ ⊗-unit-r : ∀ g → g ⊗ H.ident == ident ⊗-unit-r g = cancel-r (g ⊗ H.ident) $ comp (g ⊗ H.ident) (g ⊗ H.ident) =⟨ ! (⊗-lin-r g H.ident H.ident) ⟩ g ⊗ H.comp H.ident H.ident =⟨ ap (g ⊗_) (H.unit-l H.ident) ⟩ g ⊗ H.ident =⟨ ! (unit-r (g ⊗ H.ident)) ⟩ comp (g ⊗ H.ident) ident =∎ ins-l-hom : H.El → G.grp →ᴳ grp ins-l-hom h = group-hom (_⊗ h) (λ g₁ g₂ → ⊗-lin-l g₁ g₂ h) ins-r-hom : G.El → H.grp →ᴳ grp ins-r-hom g = group-hom (g ⊗_) (⊗-lin-r g) module BilinearMaps {k} (L : AbGroup k) where private module L = AbGroup L module HE = Gen.HomomorphismEquiv L is-linear-l : (G.El → H.El → L.El) → Type (lmax i (lmax j k)) is-linear-l b = ∀ g₁ g₂ h → b (G.comp g₁ g₂) h == L.comp (b g₁ h) (b g₂ h) is-linear-l-is-prop : (b : G.El → H.El → L.El) → is-prop (is-linear-l b) is-linear-l-is-prop b = Π-level $ λ g₁ → Π-level $ λ g₂ → Π-level $ λ h → has-level-apply L.El-level _ _ is-linear-r : (G.El → H.El → L.El) → Type (lmax i (lmax j k)) is-linear-r b = ∀ g h₁ h₂ → b g (H.comp h₁ h₂) == L.comp (b g h₁) (b g h₂) is-linear-r-is-prop : (b : G.El → H.El → L.El) → is-prop (is-linear-r b) is-linear-r-is-prop b = Π-level $ λ g → Π-level $ λ h₁ → Π-level $ λ h₂ → has-level-apply L.El-level _ _ record BilinearMap : Type (lmax i (lmax j k)) where field bmap : G.El → H.El → L.El linearity-l : is-linear-l bmap linearity-r : is-linear-r bmap BilinearMap= : {b b' : BilinearMap} → BilinearMap.bmap b == BilinearMap.bmap b' → b == b' BilinearMap= {b} {b'} idp = ap2 mk-bilinear-map (prop-path (is-linear-l-is-prop b.bmap) b.linearity-l b'.linearity-l) (prop-path (is-linear-r-is-prop b.bmap) b.linearity-r b'.linearity-r) where module b = BilinearMap b module b' = BilinearMap b' mk-bilinear-map : is-linear-l b.bmap → is-linear-r b.bmap → BilinearMap mk-bilinear-map lin-l lin-r = record { bmap = b.bmap; linearity-l = lin-l; linearity-r = lin-r } bilinear-to-legal-equiv : BilinearMap ≃ HE.RelationRespectingFunction bilinear-to-legal-equiv = equiv to from (λ lf → HE.RelationRespectingFunction= idp) (λ b → BilinearMap= idp) where to : BilinearMap → HE.RelationRespectingFunction to b = HE.rel-res-fun f f-respects where module b = BilinearMap b f : ⊗-pair → L.El f (g , h) = b.bmap g h f-respects : HE.respects-rel f f-respects (linear-l g₁ g₂ h) = b.linearity-l g₁ g₂ h f-respects (linear-r g h₁ h₂) = b.linearity-r g h₁ h₂ from : HE.RelationRespectingFunction → BilinearMap from (HE.rel-res-fun f f-respects) = record { bmap = bmap; linearity-l = linearity-l; linearity-r = linearity-r } where bmap : G.El → H.El → L.El bmap g h = f (g , h) linearity-l : is-linear-l bmap linearity-l g₁ g₂ h = f-respects (linear-l g₁ g₂ h) linearity-r : is-linear-r bmap linearity-r g h₁ h₂ = f-respects (linear-r g h₁ h₂) module UniversalProperty {k} (L : AbGroup k) where open BilinearMaps L public private module HE = Gen.HomomorphismEquiv L abstract extend-equiv : BilinearMap ≃ (grp →ᴳ AbGroup.grp L) extend-equiv = HE.extend-equiv ∘e bilinear-to-legal-equiv extend : BilinearMap → (grp →ᴳ AbGroup.grp L) extend = –> extend-equiv restrict : (grp →ᴳ AbGroup.grp L) → BilinearMap restrict = <– extend-equiv extend-β : ∀ b g h → GroupHom.f (extend b) (g ⊗ h) == BilinearMap.bmap b g h extend-β b g h = idp hom= : ∀ {ϕ ψ : grp →ᴳ AbGroup.grp L} → (∀ g h → GroupHom.f ϕ (g ⊗ h) == GroupHom.f ψ (g ⊗ h)) → ϕ == ψ hom= {ϕ} {ψ} e = ϕ =⟨ ! (<–-inv-r extend-equiv ϕ) ⟩ extend (restrict ϕ) =⟨ ap extend (BilinearMap= (λ= (λ g → λ= (λ h → e g h)))) ⟩ extend (restrict ψ) =⟨ <–-inv-r extend-equiv ψ ⟩ ψ =∎ module TensorProduct₁ {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G⊗H = TensorProduct₀ G H module H⊗G = TensorProduct₀ H G module F = G⊗H.UniversalProperty H⊗G.abgroup b : F.BilinearMap b = record { bmap = λ g h → h H⊗G.⊗ g ; linearity-l = λ g₁ g₂ h → H⊗G.⊗-lin-r h g₁ g₂ ; linearity-r = λ g h₁ h₂ → H⊗G.⊗-lin-l h₁ h₂ g } swap : (G⊗H.grp →ᴳ H⊗G.grp) swap = F.extend b swap-β : ∀ g h → GroupHom.f swap (g G⊗H.⊗ h) == h H⊗G.⊗ g swap-β g h = F.extend-β b g h open G⊗H public module TensorProduct₂ {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G⊗H = TensorProduct₁ G H module H⊗G = TensorProduct₁ H G swap-swap : ∀ s → GroupHom.f (H⊗G.swap ∘ᴳ G⊗H.swap) s == s swap-swap s = ap (λ ϕ → GroupHom.f ϕ s) $ G⊗H.UniversalProperty.hom= G⊗H.abgroup {ϕ = H⊗G.swap ∘ᴳ G⊗H.swap} {ψ = idhom _} $ λ g h → ap (GroupHom.f H⊗G.swap) (G⊗H.swap-β g h) ∙ H⊗G.swap-β h g swap-swap-idhom : H⊗G.swap ∘ᴳ G⊗H.swap == idhom G⊗H.grp swap-swap-idhom = group-hom= (λ= swap-swap) open G⊗H public module TensorProduct {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G⊗H = TensorProduct₂ G H module H⊗G = TensorProduct₂ H G swap-is-equiv : is-equiv (GroupHom.f G⊗H.swap) swap-is-equiv = is-eq _ (GroupHom.f H⊗G.swap) H⊗G.swap-swap G⊗H.swap-swap commutative : G⊗H.grp ≃ᴳ H⊗G.grp commutative = G⊗H.swap , swap-is-equiv open G⊗H public
{ "alphanum_fraction": 0.5603202606, "avg_line_length": 31.2245762712, "ext": "agda", "hexsha": "df9190f8cd5e848276bd51406937d4cdb602de8c", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/TensorProduct.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/TensorProduct.agda", "max_line_length": 85, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/TensorProduct.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2860, "size": 7369 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} open import LibraBFT.Base.Types open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Crypto open import Optics.All open import Util.Encode open import Util.KVMap as Map open import Util.Lemmas open import Util.PKCS open import Util.Prelude open import LibraBFT.Abstract.Types.EpochConfig UID NodeId -- This module defines types for connecting abstract and concrete -- votes by defining what constitutes enough "evidence" that a -- vote was cast, which is passed around in the abstract model as -- the variable (𝓥 : VoteEvidence); here we instantiate it to -- 'ConcreteVoteEvidence'. -- -- Some of the types in this module depend on an EpochConfig, but -- never inspect it. Consequently, we define everything over an -- abstract 𝓔 passed around as module parameter to an inner module -- WithEC. Before that, we define some definitions relevant to -- constructing EpochConfigs from RoundManager. module LibraBFT.ImplShared.Consensus.Types.EpochDep where -- Note that the definitions below are relevant only to the verification, not the implementation. -- They should probably move somewhere else. -- ValidatorVerifier-correct imposes requirements on a ValidatorVerifier that are sufficient to -- ensure that we can construct an abstract EpochConfig based on it (see α-EC-VV below). ValidatorVerifier-correct : ValidatorVerifier → Set ValidatorVerifier-correct vv = let authorsInfo = List-map proj₂ (kvm-toList (vv ^∙ vvAddressToValidatorInfo)) totalVotPower = f-sum (_^∙ vciVotingPower) authorsInfo quorumVotPower = vv ^∙ vvQuorumVotingPower bizF = totalVotPower ∸ quorumVotPower pksAll≢ = ∀ v₁ v₂ nId₁ nId₂ → nId₁ ≢ nId₂ → lookup nId₁ (vv ^∙ vvAddressToValidatorInfo) ≡ just v₁ → lookup nId₂ (vv ^∙ vvAddressToValidatorInfo) ≡ just v₂ → v₁ ^∙ vciPublicKey ≢ v₂ ^∙ vciPublicKey in 3 * bizF < totalVotPower × quorumVotPower ≤ totalVotPower × pksAll≢ × f-sum (_^∙ vciVotingPower) (List-filter (Meta-DishonestPK? ∘ (_^∙ vciPublicKey)) authorsInfo) ≤ bizF open DecLemmas {A = NodeId} _≟_ import LibraBFT.Abstract.BFT -- α-EC-VV computes an abstract EpochConfig given a ValidatorVerifier -- that satisfies the conditions stipulated by ValidVerifier-correct α-EC-VV : Σ ValidatorVerifier ValidatorVerifier-correct → Epoch → EpochConfig α-EC-VV (vv , ok) epoch = EpochConfig∙new bsId epoch numAuthors toNodeId (list-index (_≟_ ∘ proj₁) authors) (index∘lookup-id authors proj₁ authorsIDs≢) (λ lkp≡α → lookup∘index-id authors proj₁ authorsIDs≢ lkp≡α) getPubKey getPKey-Inj (λ quorum → qsize ≤ VotPowerMembers quorum × allDistinct quorum) λ q₁ q₂ → LibraBFT.Abstract.BFT.bft-lemma numAuthors (_^∙ vciVotingPower ∘ getAuthorInfo) (f-sum (_^∙ vciVotingPower) authorsInfo ∸ qsize) (≤-trans (proj₁ ok) (≡⇒≤ totalVotPower≡)) getPubKey (let disMembers = List-filter (Meta-DishonestPK? ∘ getPubKey) members sumDisM≡ = sum-f∘g disMembers (_^∙ vciVotingPower) getAuthorInfo disM≡disNId = map∘filter members authorsInfo getAuthorInfo (Meta-DishonestPK? ∘ (_^∙ vciPublicKey)) getAuthInfo≡VCI sumDis≤bizF = (proj₂ ∘ proj₂ ∘ proj₂) ok in ≤-trans (≡⇒≤ (trans sumDisM≡ (cong (f-sum _vciVotingPower) disM≡disNId))) sumDis≤bizF) (proj₂ q₁) (proj₂ q₂) (≤-trans (≡⇒≤ N∸bizF≡Qsize) (proj₁ q₁)) (≤-trans (≡⇒≤ N∸bizF≡Qsize) (proj₁ q₂)) -- TODO-2: this takes the per-epoch genesisUID from the GenesisInfo -- for the *first* epoch (soon to be renamed to BootStrapInfo avoid -- this confusion). This is temporary until we do epoch change; then -- it will need to be provided by the caller. where bsId = fakeBootstrapInfo ^∙ bsiLIWS ∙ liwsLedgerInfo ∙ liConsensusDataHash authorsMap = vv ^∙ vvAddressToValidatorInfo authors = kvm-toList authorsMap authorsIDs≢ = kvm-keys-All≢ authorsMap authorsInfo = List-map proj₂ authors numAuthors = length authors members = allFin numAuthors qsize = vv ^∙ vvQuorumVotingPower toNodeId = proj₁ ∘ List-lookup authors getAuthorInfo = proj₂ ∘ List-lookup authors getPubKey = _^∙ vciPublicKey ∘ getAuthorInfo VotPowerMembers = f-sum (_^∙ vciVotingPower ∘ getAuthorInfo) VotPowerAuthors = f-sum (_^∙ vciVotingPower) bizF = VotPowerAuthors authorsInfo ∸ qsize getAuthInfo≡VCI : List-map getAuthorInfo members ≡ authorsInfo getAuthInfo≡VCI = trans (List-map-compose members) (cong (List-map proj₂) (map-lookup-allFin authors)) totalVotPower≡ : VotPowerAuthors authorsInfo ≡ VotPowerMembers members totalVotPower≡ = let sumf∘g = sum-f∘g members (_^∙ vciVotingPower) getAuthorInfo in sym (trans sumf∘g (cong (f-sum (_^∙ vciVotingPower)) getAuthInfo≡VCI)) N∸bizF≡Qsize = subst ((_≡ qsize) ∘ (_∸ bizF)) totalVotPower≡ (m∸[m∸n]≡n ((proj₁ ∘ proj₂) ok)) getPKey-Inj : ∀ {m₁ m₂} → getPubKey m₁ ≡ getPubKey m₂ → m₁ ≡ m₂ getPKey-Inj {m₁} {m₂} pk≡ with m₁ ≟Fin m₂ ...| yes m₁≡m₂ = m₁≡m₂ ...| no m₁≢m₂ = let nIdm₁≢nIdm₂ = allDistinct-Map {xs = authors} proj₁ authorsIDs≢ m₁≢m₂ pksAll≢ = (proj₁ ∘ proj₂ ∘ proj₂) ok in ⊥-elim (pksAll≢ (getAuthorInfo m₁) (getAuthorInfo m₂) (toNodeId m₁) (toNodeId m₂) nIdm₁≢nIdm₂ (kvm-toList-lookup authorsMap) (kvm-toList-lookup authorsMap) pk≡) postulate -- TODO-2: define BootstrapInfo to match implementation and write these functions init-EC : BootstrapInfo → EpochConfig module WithEC (𝓔 : EpochConfig) where open EpochConfig 𝓔 open WithAbsVote 𝓔 -- A 'ConcreteVoteEvidence' is a piece of information that -- captures that the 'vd : AbsVoteData' in question was not /invented/ -- but instead, comes from a concrete vote that is /valid/ (that is, -- signature has been checked and author belongs to this epoch). -- -- Moreover, we will also store the RecordChain that leads to the vote; -- this requires some mutually-recursive shenanigans, so we first declare -- ConcreteVoteEvidence, then import the necessary modules, and then define it. record ConcreteVoteEvidence (vd : AbsVoteData) : Set open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 ConcreteVoteEvidence as Abs hiding (qcVotes; Vote) data VoteCoherence (v : Vote) (b : Abs.Block) : Set where initial : v ^∙ vParentId ≡ genesisUID → v ^∙ vParentRound ≡ 0 → Abs.bPrevQC b ≡ nothing → VoteCoherence v b ¬initial : ∀{b' q} → v ^∙ vParentId ≢ genesisUID → v ^∙ vParentRound ≢ 0 → v ^∙ vParentId ≡ Abs.bId b' → v ^∙ vParentRound ≡ Abs.bRound b' → (Abs.B b') ← (Abs.Q q) → (Abs.Q q) ← (Abs.B b) → VoteCoherence v b -- Estabilishing validity of a concrete vote involves checking: -- -- i) Vote author belongs to the current epoch -- ii) Vote signature is correctly verified -- iii) Existence of a RecordChain up to the voted-for block. -- iv) Coherence of 'vdParent' field with the above record chain. -- record IsValidVote (v : Vote) : Set where constructor IsValidVote∙new inductive field _ivvMember : Member _ivvAuthor : isMember? (_vAuthor v) ≡ just _ivvMember _ivvSigned : WithVerSig (getPubKey _ivvMember) v _ivvVDhash : v ^∙ vLedgerInfo ∙ liConsensusDataHash ≡ hashVD (v ^∙ vVoteData) -- A valid vote must vote for a block that exists and is -- inserted in a RecordChain. _ivvBlock : Abs.Block _ivvBlockId : v ^∙ vProposedId ≡ Abs.bId _ivvBlock -- Moreover; we must check that the 'parent' field of the vote is coherent. _ivvCoherent : VoteCoherence v _ivvBlock -- Finally, the vote is for the correct epoch _ivvEpoch : v ^∙ vEpoch ≡ epoch _ivvEpoch2 : v ^∙ vParent ∙ biEpoch ≡ epoch -- Not needed? open IsValidVote public -- A valid vote can be directly mapped to an AbsVoteData. Abstraction of QCs -- and blocks will be given in LibraBFT.Concrete.Records, since those are -- more involved functions. α-ValidVote : (v : Vote) → Member → AbsVoteData α-ValidVote v mbr = AbsVoteData∙new (v ^∙ vProposed ∙ biRound) mbr (v ^∙ vProposed ∙ biId) -- α-ValidVote is the same for two votes that have the same vAuthor, vdProposed and vOrder α-ValidVote-≡ : ∀ {cv v'} {m : Member} → _vdProposed (_vVoteData cv) ≡ _vdProposed (_vVoteData v') → α-ValidVote cv m ≡ α-ValidVote v' m α-ValidVote-≡ {cv} {v'} prop≡ = AbsVoteData-η (cong _biRound prop≡) refl (cong _biId prop≡) -- Finally; evidence for some abstract vote consists of a concrete valid vote -- that is coherent with the abstract vote data. record ConcreteVoteEvidence vd where constructor CVE∙new inductive field _cveVote : Vote _cveIsValidVote : IsValidVote _cveVote _cveIsAbs : α-ValidVote _cveVote (_ivvMember _cveIsValidVote) ≡ vd open ConcreteVoteEvidence public -- Gets the signature of a concrete vote evidence _cveSignature : ∀{vd} → ConcreteVoteEvidence vd → Signature _cveSignature = _vSignature ∘ _cveVote -- A valid quorum certificate contains a collection of valid votes, such that -- the members represented by those votes (which exist because the votes are valid) -- constitutes a quorum. record MetaIsValidQC (qc : QuorumCert) : Set where field _ivqcMetaVotesValid : All (IsValidVote ∘ rebuildVote qc) (qcVotes qc) _ivqcMetaIsQuorum : IsQuorum (All-reduce _ivvMember _ivqcMetaVotesValid) open MetaIsValidQC public -- A valid TimeoutCertificate has a quorum of signatures that are valid for the current -- EpochConfig. There will be a lot of overlap with MetaIsValidQc and IsValidVote. -- TODO-2: flesh out the details. postulate -- TODO-1: defined if needed (see draft below) MetaIsValidTimeoutCert : TimeoutCertificate → Set {- record MetaIsValidTimeoutCert (tc : TimeoutCertificate) : Set where field _ivtcMetaSigsValid : _ivtcMetaIsQuorum : -} vqcMember : (qc : QuorumCert) → MetaIsValidQC qc → ∀ {as} → as ∈ qcVotes qc → Member vqcMember qc v {α , _ , _} as∈qc with All-lookup (_ivqcMetaVotesValid v) as∈qc ...| prf = _ivvMember prf
{ "alphanum_fraction": 0.6130290456, "avg_line_length": 49.1836734694, "ext": "agda", "hexsha": "cf703553e52e8753385f4cf5f0dc925fba1015d2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/ImplShared/Consensus/Types/EpochDep.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/ImplShared/Consensus/Types/EpochDep.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/ImplShared/Consensus/Types/EpochDep.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3380, "size": 12050 }
{-# OPTIONS --without-K #-} module isos-examples where open import Function open import Function.Related.TypeIsomorphisms.NP import Function.Inverse.NP as FI open FI using (_↔_; inverses; module Inverse) renaming (_$₁_ to to; _$₂_ to from) import Function.Related as FR open import Type hiding (★) open import Data.Product.NP open import Data.Bool.NP using (✓) open import Data.One using (𝟙) open import Data.Bits open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_; subst) _≈₂_ : ∀ {a} {A : ★ a} (f g : A → Bit) → ★ _ _≈₂_ {A = A} f g = Σ A (✓ ∘ f) ↔ Σ A (✓ ∘ g) module _ {a r} {A : ★ a} {R : ★ r} where _≈_ : (f g : A → R) → ★ _ f ≈ g = ∀ (O : R → ★ r) → Σ A (O ∘ f) ↔ Σ A (O ∘ g) ≈-refl : Reflexive {A = A → R} _≈_ ≈-refl _ = FI.id ≈-trans : Transitive {A = A → R} _≈_ ≈-trans p q O = q O FI.∘ p O ≈-sym : Symmetric {A = A → R} _≈_ ≈-sym p O = FI.sym (p O) module _ {a r} {A : ★ a} {R : ★ r} (f : A → R) (p : A ↔ A) where stable : f ≈ (f ∘ from p) stable _ = first-iso p stable′ : f ≈ (f ∘ to p) stable′ _ = first-iso (FI.sym p) module _ {a b r} {A : ★ a} {B : ★ b} {R : ★ r} where _≋_ : (f : A → R) (g : B → R) → ★ _ f ≋ g = (f ∘ proj₁) ≈ (g ∘ proj₂) module _ {a b r} {A : ★ a} {B : ★ b} {R : ★ r} where _≋′_ : (f : A → R) (g : B → R) → ★ _ f ≋′ g = ∀ (O : R → ★ r) → (B × Σ A (O ∘ f)) ↔ (A × Σ B (O ∘ g)) module _ {f : A → R} {g : B → R} where open FR.EquationalReasoning ≋′→≋ : f ≋′ g → f ≋ g ≋′→≋ h O = Σ (A × B) (O ∘ f ∘ proj₁) ↔⟨ Σ×-swap ⟩ Σ (B × A) (O ∘ f ∘ proj₂) ↔⟨ Σ-assoc ⟩ (B × Σ A (O ∘ f)) ↔⟨ h O ⟩ (A × Σ B (O ∘ g)) ↔⟨ FI.sym Σ-assoc ⟩ Σ (A × B) (O ∘ g ∘ proj₂) ∎ ≋→≋′ : f ≋ g → f ≋′ g ≋→≋′ h O = (B × Σ A (O ∘ f)) ↔⟨ FI.sym Σ-assoc ⟩ Σ (B × A) (O ∘ f ∘ proj₂) ↔⟨ Σ×-swap ⟩ Σ (A × B) (O ∘ f ∘ proj₁) ↔⟨ h O ⟩ Σ (A × B) (O ∘ g ∘ proj₂) ↔⟨ Σ-assoc ⟩ (A × Σ B (O ∘ g)) ∎ -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.4046140195, "avg_line_length": 27.487804878, "ext": "agda", "hexsha": "10e0eae92cab52c912df6290a66ff88da1f1e01e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Experimental/iso-probabilistic-reasoning.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Experimental/iso-probabilistic-reasoning.agda", "max_line_length": 81, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Experimental/iso-probabilistic-reasoning.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 987, "size": 2254 }
{-# OPTIONS --without-K #-} open import container.core module container.w.algebra {li la lb}(c : Container li la lb) where open import sum open import equality open import container.w.core open import function.extensionality open import function.isomorphism open import hott.level.core open Container c Alg : ∀ ℓ → Set _ Alg ℓ = Σ (I → Set ℓ) λ X → F X →ⁱ X carrier : ∀ {ℓ} → Alg ℓ → I → Set ℓ carrier (X , _) = X IsMor : ∀ {ℓ₁ ℓ₂}(𝓧 : Alg ℓ₁)(𝓨 : Alg ℓ₂) → (carrier 𝓧 →ⁱ carrier 𝓨) → Set _ IsMor (X , θ) (Y , ψ) f = ψ ∘ⁱ imap f ≡ f ∘ⁱ θ Mor : ∀ {ℓ₁ ℓ₂} → Alg ℓ₁ → Alg ℓ₂ → Set _ Mor 𝓧 𝓨 = Σ (carrier 𝓧 →ⁱ carrier 𝓨) (IsMor 𝓧 𝓨) 𝓦 : Alg _ 𝓦 = W c , inW c module _ {ℓ₁ ℓ₂}(𝓧 : Alg ℓ₁)(𝓨 : Alg ℓ₂) where private X = proj₁ 𝓧; θ = proj₂ 𝓧 Y = proj₁ 𝓨; ψ = proj₂ 𝓨 is-mor-transp : {f g : X →ⁱ Y}(p : f ≡ g) → (α : IsMor 𝓧 𝓨 f) → sym (ap (λ h → ψ ∘ⁱ imap h) p) · α · ap (λ h → h ∘ⁱ θ) p ≡ subst (IsMor 𝓧 𝓨) p α is-mor-transp {f} {.f} refl α = left-unit α MorEq : Mor 𝓧 𝓨 → Mor 𝓧 𝓨 → Set _ MorEq (f , α) (g , β) = Σ (f ≡ g) λ p → sym (ap (λ h → ψ ∘ⁱ imap h) p) · α · ap (λ h → h ∘ⁱ θ) p ≡ β MorH : Mor 𝓧 𝓨 → Mor 𝓧 𝓨 → Set _ MorH (f , α) (g , β) = Σ (∀ i x → f i x ≡ g i x) λ p → ∀ i x → sym (ap (ψ i) (hmap p i x)) · funext-invⁱ α i x · p i (θ i x) ≡ funext-invⁱ β i x mor-eq-h-iso : (f g : Mor 𝓧 𝓨) → MorEq f g ≅ MorH f g mor-eq-h-iso (f , α) (g , β) = Σ-ap-iso (sym≅ funext-isoⁱ) λ p → lem f g α β p where lem : (f g : X →ⁱ Y)(α : IsMor 𝓧 𝓨 f)(β : IsMor 𝓧 𝓨 g)(p : f ≡ g) → (sym (ap (λ h → ψ ∘ⁱ imap h) p) · α · ap (λ h → h ∘ⁱ θ) p ≡ β) ≅ (∀ i x → sym (ap (ψ i) (hmap (funext-invⁱ p) i x)) · funext-invⁱ α i x · funext-invⁱ p i (θ i x) ≡ funext-invⁱ β i x) lem f .f α β refl = begin (α · refl ≡ β) ≅⟨ sym≅ (trans≡-iso (left-unit α)) ⟩ (α ≡ β) ≅⟨ iso≡ (sym≅ funext-isoⁱ) ⟩ (funext-invⁱ α ≡ funext-invⁱ β) ≅⟨ sym≅ ((Π-ap-iso refl≅ λ _ → strong-funext-iso) ·≅ strong-funext-iso) ⟩ (∀ i x → funext-invⁱ α i x ≡ funext-invⁱ β i x) ≅⟨ ( Π-ap-iso refl≅ λ i → Π-ap-iso refl≅ λ x → trans≡-iso (comp i x) ) ⟩ (∀ i x → sym (ap (ψ i) (hmap (funext-invⁱ p₀) i x)) · funext-invⁱ α i x · refl ≡ funext-invⁱ β i x) ∎ where open ≅-Reasoning p₀ : f ≡ f p₀ = refl comp : ∀ i x → sym (ap (ψ i) (hmap (funext-invⁱ (refl {x = f})) i x)) · funext-invⁱ α i x · refl ≡ funext-invⁱ α i x comp i x = ap (λ q → sym (ap (ψ i) q) · funext-invⁱ α i x · refl) (hmap-id f i x) · left-unit (funext-invⁱ α i x) eq-mor-iso : {f g : Mor 𝓧 𝓨} → (f ≡ g) ≅ MorH f g eq-mor-iso {f , α} {g , β} = begin ((f , α) ≡ (g , β)) ≅⟨ sym≅ Σ-split-iso ⟩ (Σ (f ≡ g) λ p → subst (IsMor 𝓧 𝓨) p α ≡ β) ≅⟨ (Σ-ap-iso refl≅ λ p → trans≡-iso (is-mor-transp p α)) ⟩ MorEq (f , α) (g , β) ≅⟨ mor-eq-h-iso _ _ ⟩ MorH (f , α) (g , β) ∎ where open ≅-Reasoning module _ {ℓ} (𝓧 : Alg ℓ) where private X = proj₁ 𝓧; θ = proj₂ 𝓧 lem : ∀ {ℓ}{A : Set ℓ}{x y z w : A} → (p : x ≡ w) (q : y ≡ x) (r : y ≡ z) (s : z ≡ w) → p ≡ sym q · r · s → sym r · q · p ≡ s lem p refl refl refl α = α W-mor-prop : (f g : Mor 𝓦 𝓧) → f ≡ g W-mor-prop (f , α) (g , β) = invert (eq-mor-iso 𝓦 𝓧) (p , p-h) where p : ∀ i x → f i x ≡ g i x p i (sup a u) = sym (funext-invⁱ α i (a , u)) · ap (θ i) (ap (_,_ a) (funext (λ b → p (r b) (u b)))) · funext-invⁱ β i (a , u) p-h : ∀ i x → sym (ap (θ i) (hmap p i x)) · funext-invⁱ α i x · p i (inW c i x) ≡ funext-invⁱ β i x p-h i (a , u) = lem (p i (sup a u)) (funext-invⁱ α i (a , u)) _ (funext-invⁱ β i (a , u)) refl W-mor : Mor 𝓦 𝓧 W-mor = fold c θ , funextⁱ (λ i x → fold-β c θ x) W-initial : ∀ {ℓ} (𝓧 : Alg ℓ) → contr (Mor 𝓦 𝓧) W-initial 𝓧 = W-mor 𝓧 , W-mor-prop 𝓧 (W-mor 𝓧) -- special case of the isomorphism above, with better -- computational behaviour W-initial-W : contr (Mor 𝓦 𝓦) W-initial-W = id-mor , W-mor-prop 𝓦 id-mor where id-mor : Mor 𝓦 𝓦 id-mor = (λ i x → x) , refl
{ "alphanum_fraction": 0.4441027894, "avg_line_length": 31.4, "ext": "agda", "hexsha": "ca1f43aa38d118ad00e5cf55945d30ae88206be5", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/w/algebra.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/w/algebra.agda", "max_line_length": 81, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/w/algebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 2050, "size": 4553 }