Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Sets.EquivalenceRelations open import Numbers.Naturals.Semiring open import Numbers.Integers.Integers open import Numbers.Integers.Addition open import Groups.Lemmas open import Groups.Definition open import Groups.Cyclic.Definition open import Semirings.Definition module Groups.Cyclic.DefinitionLemmas {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} (G : Group S _+_) where open Setoid S open Group G open Equivalence eq elementPowerCommutes : (x : A) (n : ℕ) → (x + positiveEltPower G x n) ∼ ((positiveEltPower G x n) + x) elementPowerCommutes x zero = transitive identRight (symmetric identLeft) elementPowerCommutes x (succ n) = transitive (+WellDefined reflexive (elementPowerCommutes x n)) +Associative elementPowerCollapse : (x : A) (i j : ℤ) → Setoid._∼_ S ((elementPower G x i) + (elementPower G x j)) (elementPower G x (i +Z j)) elementPowerCollapse x (nonneg a) (nonneg b) rewrite equalityCommutative (+Zinherits a b) = positiveEltPowerCollapse G x a b elementPowerCollapse x (nonneg zero) (negSucc b) = identLeft elementPowerCollapse x (nonneg (succ a)) (negSucc zero) = transitive (+WellDefined (elementPowerCommutes x a) reflexive) (transitive (symmetric +Associative) (transitive (+WellDefined reflexive (transitive (+WellDefined reflexive (invContravariant G)) (transitive (+WellDefined reflexive (transitive (+WellDefined (invIdent G) reflexive) identLeft)) invRight))) identRight)) elementPowerCollapse x (nonneg (succ a)) (negSucc (succ b)) = transitive (transitive (+WellDefined (elementPowerCommutes x a) reflexive) (transitive (symmetric +Associative) (+WellDefined reflexive (transitive (transitive (+WellDefined reflexive (inverseWellDefined G (transitive (+WellDefined reflexive (elementPowerCommutes x b)) +Associative))) (transitive (+WellDefined reflexive (invContravariant G)) (transitive +Associative (transitive (+WellDefined invRight (invContravariant G)) identLeft)))) (symmetric (invContravariant G)))))) (elementPowerCollapse x (nonneg a) (negSucc b)) elementPowerCollapse x (negSucc zero) (nonneg zero) = identRight elementPowerCollapse x (negSucc zero) (nonneg (succ b)) = transitive (transitive +Associative (+WellDefined (transitive (+WellDefined (inverseWellDefined G identRight) reflexive) invLeft) reflexive)) identLeft elementPowerCollapse x (negSucc (succ a)) (nonneg zero) = identRight elementPowerCollapse x (negSucc (succ a)) (nonneg (succ b)) = transitive (transitive +Associative (+WellDefined (transitive (+WellDefined (invContravariant G) reflexive) (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight))) reflexive)) (elementPowerCollapse x (negSucc a) (nonneg b)) elementPowerCollapse x (negSucc a) (negSucc b) = transitive (+WellDefined reflexive (invContravariant G)) (transitive (transitive (transitive +Associative (+WellDefined (transitive (symmetric (invContravariant G)) (transitive (inverseWellDefined G +Associative) (transitive (inverseWellDefined G (+WellDefined (symmetric (elementPowerCommutes x b)) reflexive)) (transitive (inverseWellDefined G (symmetric +Associative)) (transitive (invContravariant G) (+WellDefined (inverseWellDefined G (transitive (positiveEltPowerCollapse G x b a) (identityOfIndiscernablesRight _∼_ reflexive (applyEquality (positiveEltPower G x) {b +N a} {a +N b} (Semiring.commutative ℕSemiring b a))))) reflexive)))))) reflexive)) (+WellDefined (symmetric (invContravariant G)) reflexive)) (symmetric (invContravariant G))) positiveEltPowerInverse : (m : ℕ) → (x : A) → (positiveEltPower G (inverse x) m) ∼ inverse (positiveEltPower G x m) positiveEltPowerInverse zero x = symmetric (invIdent G) positiveEltPowerInverse (succ m) x = transitive (+WellDefined reflexive (positiveEltPowerInverse m x)) (transitive (symmetric (invContravariant G)) (inverseWellDefined G (symmetric (elementPowerCommutes x m)))) positiveEltPowerMultiplies : (m n : ℕ) → (x : A) → (positiveEltPower G x (m *N n)) ∼ (positiveEltPower G (positiveEltPower G x n) m) positiveEltPowerMultiplies zero n x = reflexive positiveEltPowerMultiplies (succ m) n x = transitive (symmetric (positiveEltPowerCollapse G x n (m *N n))) (+WellDefined reflexive (positiveEltPowerMultiplies m n x)) powerZero : (m : ℕ) → positiveEltPower G 0G m ∼ 0G powerZero zero = reflexive powerZero (succ m) = transitive identLeft (powerZero m) elementPowerMultiplies : (m n : ℤ) → (x : A) → (elementPower G x (m *Z n)) ∼ (elementPower G (elementPower G x n) m) elementPowerMultiplies (nonneg m) (nonneg n) x = positiveEltPowerMultiplies m n x elementPowerMultiplies (nonneg zero) (negSucc n) x = reflexive elementPowerMultiplies (nonneg (succ m)) (negSucc n) x = transitive (transitive (inverseWellDefined G (transitive (transitive (elementPowerWellDefinedZ' G (nonneg (succ (n +N m *N n) +N m)) (nonneg (m *N succ n +N succ n)) (applyEquality nonneg (transitivity (applyEquality succ (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring n (m *N n) m)) (applyEquality (n +N_) (transitivity (transitivity (Semiring.commutative ℕSemiring _ m) (applyEquality (m +N_) (multiplicationNIsCommutative m n))) (multiplicationNIsCommutative (succ n) m))))) (Semiring.commutative ℕSemiring (succ n) _))) {x}) (symmetric (positiveEltPowerCollapse G x (m *N succ n) (succ n)))) (+WellDefined (positiveEltPowerMultiplies m (succ n) x) reflexive))) (invContravariant G)) (+WellDefined reflexive (symmetric (positiveEltPowerInverse m (x + positiveEltPower G x n)))) elementPowerMultiplies (negSucc m) (nonneg zero) r = transitive (symmetric (invIdent G)) (inverseWellDefined G (transitive (symmetric identLeft) (+WellDefined reflexive (symmetric (powerZero m))))) elementPowerMultiplies (negSucc m) (nonneg (succ n)) x = inverseWellDefined G (transitive (transitive (+WellDefined reflexive (transitive (elementPowerWellDefinedZ' G (nonneg ((m +N n *N m) +N n)) (nonneg (n +N m *N succ n)) (applyEquality nonneg (transitivity (Semiring.commutative ℕSemiring _ n) (applyEquality (n +N_) (multiplicationNIsCommutative _ m)))) {x}) (symmetric (positiveEltPowerCollapse G x n (m *N succ n))))) +Associative) (+WellDefined reflexive (positiveEltPowerMultiplies m (succ n) x))) elementPowerMultiplies (negSucc m) (negSucc n) r = transitive (transitive (transitive (transitive (elementPowerWellDefinedZ' G (nonneg (succ m *N succ n)) (nonneg (m *N succ n +N succ n)) (applyEquality nonneg (Semiring.commutative ℕSemiring (succ n) _)) {r}) (symmetric (positiveEltPowerCollapse G r (m *N succ n) (succ n)))) (transitive (elementPowerCollapse r (nonneg (m *N succ n)) (nonneg (succ n))) (transitive (transitive (elementPowerWellDefinedZ' G (nonneg (m *N succ n) +Z nonneg (succ n)) (nonneg (m *N succ n +N succ n)) (equalityCommutative (+Zinherits (m *N succ n) (succ n))) {r}) (symmetric (positiveEltPowerCollapse G r (m *N succ n) (succ n)))) (+WellDefined (positiveEltPowerMultiplies m (succ n) r) reflexive)))) (+WellDefined (transitive (symmetric (invTwice G _)) (inverseWellDefined G (symmetric (positiveEltPowerInverse m (r + positiveEltPower G r n))))) (symmetric (invTwice G _)))) (symmetric (invContravariant G)) positiveEltPowerHomAbelian : ({x y : A} → (x + y) ∼ (y + x)) → (x y : A) → (r : ℕ) → (positiveEltPower G (x + y) r) ∼ (positiveEltPower G x r + positiveEltPower G y r) positiveEltPowerHomAbelian ab x y zero = symmetric identRight positiveEltPowerHomAbelian ab x y (succ r) = transitive (symmetric +Associative) (transitive (+WellDefined reflexive (transitive (+WellDefined reflexive (positiveEltPowerHomAbelian ab x y r)) (transitive (+WellDefined reflexive ab) (transitive +Associative ab)))) +Associative) elementPowerHomAbelian : ({x y : A} → (x + y) ∼ (y + x)) → (x y : A) → (r : ℤ) → (elementPower G (x + y) r) ∼ (elementPower G x r + elementPower G y r) elementPowerHomAbelian ab x y (nonneg n) = positiveEltPowerHomAbelian ab x y n elementPowerHomAbelian ab x y (negSucc n) = transitive (transitive (inverseWellDefined G (positiveEltPowerHomAbelian ab x y (succ n))) (inverseWellDefined G ab)) (invContravariant G)
{ "alphanum_fraction": 0.7561902427, "avg_line_length": 131.5806451613, "ext": "agda", "hexsha": "72402de561f05694959156cb60ee9c2a50b883ac", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Cyclic/DefinitionLemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Cyclic/DefinitionLemmas.agda", "max_line_length": 940, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Cyclic/DefinitionLemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2471, "size": 8158 }
import cedille-options module rkt (options : cedille-options.options) where open import string open import char open import io open import maybe open import ctxt open import list open import trie open import general-util open import monad-instances open import toplevel-state options {IO} open import unit open import bool open import functions open import product open import cedille-types open import syntax-util private rkt-dbg-flag = ff rkt-dbg : string → rope → rope rkt-dbg msg out = [[ if rkt-dbg-flag then ("; " ^ msg ^ "\n") else "" ]] ⊹⊹ out -- constructs the name of a .racket directory for the given original directory rkt-dirname : string → string rkt-dirname dir = combineFileNames dir ".racket" -- constructs the fully-qualified name of a .rkt file for a .ced file at the given ced-path {-rkt-filename : (ced-path : string) → string rkt-filename ced-path = let dir = takeDirectory ced-path in let unit-name = base-filename (takeFileName ced-path) in combineFileNames (rkt-dirname dir) (unit-name ^ ".rkt")-} -- sanitize a Cedille identifier for Racket -- Racket does not allow "'" as part of a legal identifier, -- so swamp this out for "." rkt-iden : var → var rkt-iden = 𝕃char-to-string ∘ ((map λ c → if c =char '\'' then '.' else c) ∘ string-to-𝕃char) -- Racket string from erase Cedile term rkt-from-term : term → rope rkt-from-term (Lam _ KeptLam _ v _ tm) = [[ "(lambda (" ]] ⊹⊹ [[ rkt-iden v ]] ⊹⊹ [[ ")" ]] ⊹⊹ rkt-from-term tm ⊹⊹ [[ ")" ]] -- TODO untested rkt-from-term (Let _ (DefTerm _ v _ tm-def) tm-body) = [[ "(let ([" ]] ⊹⊹ [[ rkt-iden v ]] ⊹⊹ [[ " " ]] ⊹⊹ rkt-from-term tm-def ⊹⊹ [[ "]) " ]] ⊹⊹ rkt-from-term tm-body ⊹⊹ [[ ")\n" ]] rkt-from-term (Var _ v) = [[ rkt-iden v ]] rkt-from-term (App tm₁ x tm₂) = [[ "(" ]] ⊹⊹ rkt-from-term tm₁ ⊹⊹ [[ " " ]] ⊹⊹ rkt-from-term tm₂ ⊹⊹ [[ ")" ]] rkt-from-term (Hole x) = [[ "(error 'cedille-hole)" ]] rkt-from-term (Beta _ _ NoTerm) = [[ "(lambda (x) x)\n" ]] rkt-from-term _ = rkt-dbg "unsupported/unknown term" [[]] -- Racket define form from var, term rkt-define : var → term → rope rkt-define v tm = [[ "(define " ]] ⊹⊹ [[ rkt-iden v ]] ⊹⊹ rkt-from-term tm ⊹⊹ [[ ")" ]] ⊹⊹ [[ "\n" ]] -- Racket require form from file rkt-require-file : string → rope rkt-require-file fp = [[ "(require (file \"" ]] ⊹⊹ [[ fp ]] ⊹⊹ [[ "\"))" ]] -- Racket term from Cedille term sym-info rkt-from-sym-info : string → sym-info → rope rkt-from-sym-info n (term-def (just (ParamsCons (Decl _ _ _ v _ _) _)) _ tm ty , _) -- TODO not tested = rkt-dbg "term-def: paramsCons:" (rkt-define n tm) rkt-from-sym-info n (term-def (just ParamsNil) _ tm ty , _) = rkt-dbg "term-def: paramsNil:" (rkt-define n tm) rkt-from-sym-info n (term-def nothing _ tm ty , b) -- TODO not tested = rkt-dbg "term-def: nothing:" (rkt-define n tm) rkt-from-sym-info n (term-udef _ _ tm , _) = rkt-dbg "term-udef:" (rkt-define n tm) rkt-from-sym-info n (term-decl x , _) = rkt-dbg "term-decl" [[]] rkt-from-sym-info n (type-decl x , _) = rkt-dbg "type-decl:" [[]] rkt-from-sym-info n (type-def _ _ _ _ , _) = rkt-dbg "type-def:" [[]] rkt-from-sym-info n (kind-def _ _ , _) = rkt-dbg "kind-def:" [[]] rkt-from-sym-info n (rename-def v , _) -- TODO Not implemented! = rkt-dbg ("rename-def: " ^ v) [[]] rkt-from-sym-info n (var-decl , _) = rkt-dbg "var-decl:" [[]] rkt-from-sym-info n (const-def _ , _) = rkt-dbg "const-def:" [[]] rkt-from-sym-info n (datatype-def _ _ , _) = rkt-dbg "datatype-def:" [[]] to-rkt-file : (ced-path : string) → ctxt → include-elt → ((cede-filename : string) → string) → rope to-rkt-file ced-path (mk-ctxt _ (syms , _) i sym-occurences _) ie rkt-filename = rkt-header ⊹⊹ rkt-body where cdle-pair = trie-lookup𝕃2 syms ced-path cdle-mod = fst cdle-pair cdle-defs = snd cdle-pair qual-name : string → string qual-name name = cdle-mod ^ "." ^ name -- lang pragma, imports, and provides rkt-header rkt-body : rope rkt-header = [[ "#lang racket\n\n" ]] ⊹⊹ foldr (λ fn x → rkt-require-file (rkt-filename fn) ⊹⊹ x) [[ "\n" ]] (include-elt.deps ie) ⊹⊹ [[ "(provide (all-defined-out))\n\n" ]] -- in reverse order: lookup symbol defs from file, -- pair name with info, and convert to racket rkt-body = foldr (λ {(n , s) x → x ⊹⊹ [[ "\n" ]] ⊹⊹ rkt-from-sym-info (qual-name n) s}) [[]] (drop-nothing (map (λ name → maybe-map (λ syminf → name , syminf) (trie-lookup i (qual-name name))) cdle-defs)) {- -- write a Racket file to .racket subdirectory from Cedille file path, -- context, and include-elt write-rkt-file : (ced-path : string) → ctxt → include-elt → ((cede-filename : string) → string) → IO ⊤ write-rkt-file ced-path (mk-ctxt _ (syms , _) i sym-occurences) ie rkt-filename = let dir = takeDirectory ced-path in createDirectoryIfMissing tt (rkt-dirname dir) >> writeFile (rkt-filename ced-path) (rkt-header ^ rkt-body) where cdle-mod = fst (trie-lookup𝕃2 syms ced-path) cdle-defs = snd (trie-lookup𝕃2 syms ced-path) qual-name : string → string qual-name name = cdle-mod ^ "." ^ name -- lang pragma, imports, and provides rkt-header rkt-body : string rkt-header = "#lang racket\n\n" ^ (string-concat-sep "\n" (map (rkt-require-file ∘ rkt-filename) (include-elt.deps ie))) ^ "\n" ^ "(provide (all-defined-out))\n\n" -- in reverse order: lookup symbol defs from file, -- pair name with info, and convert to racket rkt-body = string-concat-sep "\n" (map (λ { (n , s) → rkt-from-sym-info (qual-name n) s}) (reverse (drop-nothing (map (λ name → maybe-map (λ syminf → name , syminf) (trie-lookup i (qual-name name))) cdle-defs)))) -}
{ "alphanum_fraction": 0.588021178, "avg_line_length": 36.6303030303, "ext": "agda", "hexsha": "3463427f0f7d0f4b5ca2fef2a2ceb9284e44f406", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/rkt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/rkt.agda", "max_line_length": 131, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/rkt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2018, "size": 6044 }
open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Sigma open import Agda.Builtin.List open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) data Fin : Nat → Set where zero : {n : Nat} → Fin (suc n) suc : {n : Nat} → Fin n → Fin (suc n) test : (x : Nat) (y : Fin x) {z : Nat} → x ≡ suc z → Set test .(suc z) y {z} refl = Nat -- Telescope: (z : Nat) (y : Fin (suc z)) -- agda rep: ("z" , Nat) ("y" , Fin (suc @0)) -- Patterns: test .(suc @1) @0 @1 refl = ? macro testDef : Term → TC _ testDef goal = do d ← getDefinition (quote test) `d ← quoteTC d unify `d goal foo : Definition foo = testDef fooTest : foo ≡ function (clause (("z" , arg (arg-info hidden relevant) (def (quote Nat) [])) ∷ ("y" , arg (arg-info visible relevant) (def (quote Fin) (arg (arg-info visible relevant) (con (quote Nat.suc) (arg (arg-info visible relevant) (var 0 []) ∷ [])) ∷ []))) ∷ []) (arg (arg-info visible relevant) (dot (con (quote Nat.suc) (arg (arg-info visible relevant) (var 1 []) ∷ []))) ∷ arg (arg-info visible relevant) (var 0) ∷ arg (arg-info hidden relevant) (var 1) ∷ arg (arg-info visible relevant) (con (quote refl) []) ∷ []) (def (quote Nat) []) ∷ []) fooTest = refl defBar : (name : Name) → TC _ defBar x = do function cls ← returnTC foo where _ → typeError [] defineFun x cls bar : (x : Nat) (y : Fin x) {z : Nat} → x ≡ suc z → Set unquoteDef bar = defBar bar
{ "alphanum_fraction": 0.4741100324, "avg_line_length": 31.4237288136, "ext": "agda", "hexsha": "a21aceae91f01ef7bc2c25509af3694ff9792da1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue2151-ClauseTelescope.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2151-ClauseTelescope.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2151-ClauseTelescope.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 529, "size": 1854 }
open import Structure.Setoid open import Structure.Category open import Type module Structure.Category.CoMonad {ℓₒ ℓₘ ℓₑ} {cat : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}} where import Function.Equals open Function.Equals.Dependent open import Functional.Dependent using () renaming (_∘_ to _∘ᶠⁿ_) import Lvl open import Logic.Predicate open import Structure.Category.Functor open import Structure.Category.Functor.Functors as Functors open import Structure.Category.NaturalTransformation open import Structure.Category.NaturalTransformation.NaturalTransformations as NaturalTransformations open CategoryObject(cat) open Category.ArrowNotation(category) open Category(category) open Functors.Wrapped open NaturalTransformations.Raw(intro category)(intro category) private instance _ = cat record CoMonad (T : Object → Object) ⦃ functor : Functor(category)(category)(T) ⦄ : Type{Lvl.of(Type.of(cat))} where open Functor(functor) functor-object : cat →ᶠᵘⁿᶜᵗᵒʳ cat functor-object = [∃]-intro T ⦃ functor ⦄ private Tᶠᵘⁿᶜᵗᵒʳ = functor-object field Η : (Tᶠᵘⁿᶜᵗᵒʳ →ᴺᵀ idᶠᵘⁿᶜᵗᵒʳ) Μ : (Tᶠᵘⁿᶜᵗᵒʳ →ᴺᵀ (Tᶠᵘⁿᶜᵗᵒʳ ∘ᶠᵘⁿᶜᵗᵒʳ Tᶠᵘⁿᶜᵗᵒʳ)) η = [∃]-witness Η μ = [∃]-witness Μ η-natural : ∀{x y}{f} → (η(y) ∘ map f ≡ f ∘ η(x)) η-natural = NaturalTransformation.natural([∃]-proof Η) μ-natural : ∀{x y}{f} → (μ(y) ∘ map f ≡ map(map f) ∘ μ(x)) μ-natural = NaturalTransformation.natural([∃]-proof Μ) field μ-functor-[∘]-commutativity : ((μ ∘ᶠⁿ T) ∘ᴺᵀ μ ⊜ (map ∘ᶠⁿ μ) ∘ᴺᵀ μ) μ-functor-[∘]-identityₗ : ((map ∘ᶠⁿ η) ∘ᴺᵀ μ ⊜ idᴺᵀ) μ-functor-[∘]-identityᵣ : ((η ∘ᶠⁿ T) ∘ᴺᵀ μ ⊜ idᴺᵀ) module FunctionalNames where extract : ∀{x} → (T(x) ⟶ x) extract{x} = [∃]-witness Η(x) duplicate : ∀{x} → (T(x) ⟶ T(T(x))) duplicate{x} = [∃]-witness Μ(x)
{ "alphanum_fraction": 0.6822222222, "avg_line_length": 31.0344827586, "ext": "agda", "hexsha": "7e72db9fa74dfebcbe94bf78b06304e24066ba04", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/CoMonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/CoMonad.agda", "max_line_length": 116, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/CoMonad.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 803, "size": 1800 }
{-# OPTIONS --no-termination-check #-} module SafeFlagNoTermination where data Empty : Set where inhabitant : Empty inhabitant = inhabitant
{ "alphanum_fraction": 0.7730496454, "avg_line_length": 20.1428571429, "ext": "agda", "hexsha": "5c7025e440eba4bc633ce6cff46192d2735e9278", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/SafeFlagNoTermination.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/SafeFlagNoTermination.agda", "max_line_length": 38, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/SafeFlagNoTermination.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 34, "size": 141 }
open import Agda.Primitive using (_⊔_) import Categories.Category as Category import Categories.Category.Cartesian as Cartesian open import SingleSorted.AlgebraicTheory import SingleSorted.Power as Power module SingleSorted.Interpretation {o ℓ e} (Σ : Signature) {𝒞 : Category.Category o ℓ e} (cartesian-𝒞 : Cartesian.Cartesian 𝒞) where open Signature Σ open Category.Category 𝒞 open Power 𝒞 -- An interpretation of Σ in 𝒞 record Interpretation : Set (o ⊔ ℓ ⊔ e) where field interp-carrier : Obj interp-pow : Powered interp-carrier interp-oper : ∀ (f : oper) → Powered.pow interp-pow (oper-arity f) ⇒ interp-carrier open Powered interp-pow -- the interpretation of a term interp-term : ∀ {Γ : Context} → Term Γ → (pow Γ) ⇒ interp-carrier interp-term (tm-var x) = π x interp-term (tm-oper f ts) = interp-oper f ∘ tuple (oper-arity f) (λ i → interp-term (ts i)) -- the interpretation of a context interp-ctx : Context → Obj interp-ctx Γ = pow Γ -- the interpretation of a substitution interp-subst : ∀ {Γ Δ} → Γ ⇒s Δ → interp-ctx Γ ⇒ interp-ctx Δ interp-subst {Γ} {Δ} σ = tuple Δ λ i → interp-term (σ i) -- interpretation commutes with substitution open HomReasoning interp-[]s : ∀ {Γ Δ} {t : Term Δ} {σ : Γ ⇒s Δ} → interp-term (t [ σ ]s) ≈ interp-term t ∘ interp-subst σ interp-[]s {Γ} {Δ} {tm-var x} {σ} = ⟺ (project {Γ = Δ}) interp-[]s {Γ} {Δ} {tm-oper f ts} {σ} = (∘-resp-≈ʳ (tuple-cong {fs = λ i → interp-term (ts i [ σ ]s)} {gs = λ z → interp-term (ts z) ∘ interp-subst σ} (λ i → interp-[]s {t = ts i} {σ = σ}) ○ (∘-distribʳ-tuple {Γ = oper-arity f} {fs = λ z → interp-term (ts z)} {g = interp-subst σ}))) ○ (Equiv.refl ○ sym-assoc) -- -- Every signature has the trivial interpretation Trivial : Interpretation Trivial = let open Cartesian.Cartesian cartesian-𝒞 in record { interp-carrier = ⊤ ; interp-pow = StandardPowered cartesian-𝒞 ⊤ ; interp-oper = λ f → ! } record HomI (A B : Interpretation) : Set (o ⊔ ℓ ⊔ e) where open Interpretation open Powered field hom-morphism : interp-carrier A ⇒ interp-carrier B hom-commute : ∀ (f : oper) → hom-morphism ∘ interp-oper A f ≈ interp-oper B f ∘ tuple (interp-pow B) (oper-arity f) (λ i → hom-morphism ∘ π (interp-pow A) i) -- The identity homomorphism IdI : ∀ (A : Interpretation) → HomI A A IdI A = let open Interpretation A in let open HomReasoning in let open Powered interp-pow in record { hom-morphism = id ; hom-commute = λ f → begin (id ∘ interp-oper f) ≈⟨ identityˡ ⟩ interp-oper f ≈˘⟨ identityʳ ⟩ (interp-oper f ∘ id) ≈˘⟨ refl⟩∘⟨ unique (λ i → identityʳ ○ ⟺ identityˡ) ⟩ (interp-oper f ∘ tuple (oper-arity f) (λ i → id ∘ π i)) ∎ } -- Compositon of homomorphisms _∘I_ : ∀ {A B C : Interpretation} → HomI B C → HomI A B → HomI A C _∘I_ {A} {B} {C} ϕ ψ = let open HomI in record { hom-morphism = hom-morphism ϕ ∘ hom-morphism ψ ; hom-commute = let open Interpretation in let open Powered in let open HomReasoning in λ f → begin (((hom-morphism ϕ) ∘ hom-morphism ψ) ∘ interp-oper A f) ≈⟨ assoc ⟩ (hom-morphism ϕ ∘ hom-morphism ψ ∘ interp-oper A f) ≈⟨ (refl⟩∘⟨ hom-commute ψ f) ⟩ (hom-morphism ϕ ∘ interp-oper B f ∘ tuple (interp-pow B) (oper-arity f) (λ i → hom-morphism ψ ∘ π (interp-pow A) i)) ≈˘⟨ assoc ⟩ ((hom-morphism ϕ ∘ interp-oper B f) ∘ tuple (interp-pow B) (oper-arity f) (λ i → hom-morphism ψ ∘ π (interp-pow A) i)) ≈⟨ (hom-commute ϕ f ⟩∘⟨refl) ⟩ ((interp-oper C f ∘ tuple (interp-pow C) (oper-arity f) (λ i → hom-morphism ϕ ∘ π (interp-pow B) i)) ∘ tuple (interp-pow B) (oper-arity f) (λ i → hom-morphism ψ ∘ π (interp-pow A) i)) ≈⟨ assoc ⟩ (interp-oper C f ∘ tuple (interp-pow C) (oper-arity f) (λ i → hom-morphism ϕ ∘ π (interp-pow B) i) ∘ tuple (interp-pow B) (oper-arity f) (λ i → hom-morphism ψ ∘ π (interp-pow A) i)) ≈⟨ (refl⟩∘⟨ ⟺ (∘-distribʳ-tuple (interp-pow C))) ⟩ (interp-oper C f ∘ tuple (interp-pow C) (oper-arity f) (λ x → (hom-morphism ϕ ∘ π (interp-pow B) x) ∘ tuple (interp-pow B) (oper-arity f) (λ i → hom-morphism ψ ∘ π (interp-pow A) i))) ≈⟨ (refl⟩∘⟨ tuple-cong (interp-pow C) λ i → assoc) ⟩ (interp-oper C f ∘ tuple (interp-pow C) (oper-arity f) (λ z → hom-morphism ϕ ∘ π (interp-pow B) z ∘ tuple (interp-pow B) (oper-arity f) (λ i → hom-morphism ψ ∘ π (interp-pow A) i))) ≈⟨ (refl⟩∘⟨ tuple-cong (interp-pow C) λ i → refl⟩∘⟨ project (interp-pow B)) ⟩ (interp-oper C f ∘ tuple (interp-pow C) (oper-arity f) (λ z → hom-morphism ϕ ∘ hom-morphism ψ ∘ π (interp-pow A) z)) ≈⟨ (refl⟩∘⟨ tuple-cong (interp-pow C) λ i → sym-assoc) ⟩ (interp-oper C f ∘ tuple (interp-pow C) (oper-arity f) (λ z → (hom-morphism ϕ ∘ hom-morphism ψ) ∘ π (interp-pow A) z)) ∎}
{ "alphanum_fraction": 0.4703275835, "avg_line_length": 42.9863945578, "ext": "agda", "hexsha": "074f5712d92b48751ebc9c02c3bdb5c0f409c5d1", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SingleSorted/Interpretation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SingleSorted/Interpretation.agda", "max_line_length": 148, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SingleSorted/Interpretation.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 1915, "size": 6319 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Proofs.Bijection where open import Relation.Binary.PropositionalEquality open import Data.Binary.Operations.Unary open import Data.Binary.Proofs.Unary open import Data.Binary.Definitions open import Data.Binary.Operations.Semantics open import Data.Nat as ℕ using (ℕ; suc; zero) open import Relation.Binary.PropositionalEquality.FasterReasoning import Data.Nat.Properties as ℕ open import Function homo : ∀ n → ⟦ ⟦ n ⇑⟧ ⇓⟧ ≡ n homo zero = refl homo (suc n) = inc-homo ⟦ n ⇑⟧ ⟨ trans ⟩ cong suc (homo n) inj : ∀ {x y} → ⟦ x ⇓⟧ ≡ ⟦ y ⇓⟧ → x ≡ y inj {xs} {ys} eq = go (subst (IncView xs) eq (inc-view xs)) (inc-view ys) where go : ∀ {n xs ys} → IncView xs n → IncView ys n → xs ≡ ys go Izero Izero = refl go (Isuc refl xs) (Isuc refl ys) = cong inc (go xs ys) open import Function.Bijection 𝔹↔ℕ : 𝔹 ⤖ ℕ 𝔹↔ℕ = bijection ⟦_⇓⟧ ⟦_⇑⟧ inj homo
{ "alphanum_fraction": 0.6832779623, "avg_line_length": 30.1, "ext": "agda", "hexsha": "975378e8312630f11ce0165084073ef4fe764eb0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Proofs/Bijection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Proofs/Bijection.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Proofs/Bijection.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 333, "size": 903 }
record Foo : Set where field record A : Set₂ where B : Set₁ B = Set field record C : Set₂ where field B : Foo B = _ record D : Set₂ where B : Set₁ B = Set field F : Foo F = _
{ "alphanum_fraction": 0.5637254902, "avg_line_length": 9.2727272727, "ext": "agda", "hexsha": "f9c69361d459e156bb0917755ae343328f9565b8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3803.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3803.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3803.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 204 }
{-# OPTIONS --without-K #-} module ScaleDegree where open import Data.Fin using (Fin; toℕ; #_) open import Data.Nat using (ℕ; suc; _+_) open import Data.Nat.DivMod using (_mod_; _div_) open import Data.Product using (_×_; _,_) open import Data.Vec using (lookup) open import Pitch data ScaleDegree (n : ℕ) : Set where scaleDegree : Fin n → ScaleDegree n ScaleDegreeOctave : ℕ → Set ScaleDegreeOctave n = ScaleDegree n × Octave transposeScaleDegree : {n : ℕ} → ℕ → ScaleDegreeOctave (suc n) → ScaleDegreeOctave (suc n) transposeScaleDegree {n} k (scaleDegree d , octave o) = let d' = (toℕ d) + k in scaleDegree (d' mod (suc n)) , octave (o + (d' div (suc n))) scaleDegreeToPitchClass : {n : ℕ} → Scale n → ScaleDegree n → PitchClass scaleDegreeToPitchClass scale (scaleDegree d) = lookup scale d
{ "alphanum_fraction": 0.6842737095, "avg_line_length": 30.8518518519, "ext": "agda", "hexsha": "d22272a141676f802f37203c1f69e9fd437e1163", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "doc/icfp20/code/ScaleDegree.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "doc/icfp20/code/ScaleDegree.agda", "max_line_length": 90, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "doc/icfp20/code/ScaleDegree.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 253, "size": 833 }
module Data.Maybe.Instance where open import Class.Equality open import Class.Monad open import Data.Maybe open import Data.Maybe.Properties instance Maybe-Monad : ∀ {a} -> Monad (Maybe {a}) Maybe-Monad = record { _>>=_ = λ x f → maybe f nothing x ; return = just } Maybe-Eq : ∀ {A} {{_ : Eq A}} → Eq (Maybe A) Maybe-Eq ⦃ record { _≟_ = _≟_ } ⦄ = record { _≟_ = ≡-dec _≟_ } Maybe-EqB : ∀ {A} {{_ : Eq A}} → EqB (Maybe A) Maybe-EqB = Eq→EqB
{ "alphanum_fraction": 0.6118421053, "avg_line_length": 26.8235294118, "ext": "agda", "hexsha": "1462aac597a19b1ef12a067b992b6bd095a06539", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Maybe/Instance.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Maybe/Instance.agda", "max_line_length": 76, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Maybe/Instance.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 166, "size": 456 }
module _ where data Bool : Set where true false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} -- Not allowed: {-# COMPILED_DATA Bool Bool True False #-}
{ "alphanum_fraction": 0.64, "avg_line_length": 15.3846153846, "ext": "agda", "hexsha": "608b566ea4075abeda56cb670be272a2cfbf17b9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/CompiledBuiltinBool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/CompiledBuiltinBool.agda", "max_line_length": 42, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/CompiledBuiltinBool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 49, "size": 200 }
module proofs where open import lambdasyntax open import static open import dynamic open import Data.Empty open import Data.Nat open import Function open import Data.Vec using (Vec; []) open import Data.Bool using (Bool; true; false) open import Relation.Nullary open import Relation.Binary.PropositionalEquality -- label precision data _⊑ˡ_ : (ℓ₁ ℓ₂ : Label) → Set where ℓ⊑✭ : ∀ {ℓ} → ℓ ⊑ˡ ✭ ℓ⊑ℓ : ∀ {ℓ} → ℓ ⊑ˡ ℓ _⊑ˡ?_ : ∀ (ℓ₁ ℓ₂ : Label) → Dec (ℓ₁ ⊑ˡ ℓ₂) ⊤ ⊑ˡ? ⊤ = yes ℓ⊑ℓ ⊤ ⊑ˡ? ⊥ = no (λ ()) ⊤ ⊑ˡ? ✭ = yes ℓ⊑✭ ⊥ ⊑ˡ? ⊤ = no (λ ()) ⊥ ⊑ˡ? ⊥ = yes ℓ⊑ℓ ⊥ ⊑ˡ? ✭ = yes ℓ⊑✭ ✭ ⊑ˡ? ⊤ = no (λ ()) ✭ ⊑ˡ? ⊥ = no (λ ()) ✭ ⊑ˡ? ✭ = yes ℓ⊑✭ -- type precision data _⊑_ : (t₁ t₂ : GType) → Set where b⊑b : ∀ {ℓ₁ ℓ₂} → ℓ₁ ⊑ˡ ℓ₂ → bool ℓ₁ ⊑ bool ℓ₂ λ⊑λ : ∀ {s₁₁ s₂₁ s₁₂ s₂₂ ℓ₁ ℓ₂} → s₁₁ ⊑ s₂₁ → s₁₂ ⊑ s₂₂ → ℓ₁ ⊑ˡ ℓ₂ → ((s₁₁ ⇒ ℓ₁) s₁₂) ⊑ ((s₂₁ ⇒ ℓ₂) s₂₂) lem₁ : ∀ {t₁ t₂ t₃ t₄ ℓ ℓ₁} → (x : (t₁ ⇒ ℓ) t₂ ⊑ (t₃ ⇒ ℓ₁) t₄) → t₃ ⊑ t₁ lem₁ (λ⊑λ x x₁ x₂) = {! !} _⊑?_ : ∀ (t₁ t₂ : GType) → Dec (t₁ ⊑ t₂) bool x ⊑? bool x₁ with x ⊑ˡ? x₁ bool x ⊑? bool x₁ | yes p = yes (b⊑b p) bool x ⊑? bool x₁ | no ¬p = no (¬p ∘ lem) where lem : ∀ {ℓ₁ ℓ₂ : Label} → (bool ℓ₁ ⊑ bool ℓ₂) → ℓ₁ ⊑ˡ ℓ₂ lem (b⊑b x) = x bool x ⊑? (t₂ ⇒ x₁) t₃ = no (λ ()) bool x ⊑? err = no (λ ()) (t₁ ⇒ x) t₂ ⊑? bool x₁ = no (λ ()) (t₁ ⇒ ℓ) t₂ ⊑? (t₃ ⇒ ℓ₁) t₄ with t₃ ⊑? t₁ | t₂ ⊑? t₄ (t₁ ⇒ ℓ) t₂ ⊑? (t₃ ⇒ ℓ₁) t₄ | yes p | (yes p₁) = yes {! !} (t₁ ⇒ ℓ) t₂ ⊑? (t₃ ⇒ ℓ₁) t₄ | yes p | (no ¬p) = no (¬p ∘ lem) where lem : ∀ {t₁ t₂ t₃ t₄ ℓ ℓ₁} (x : (t₁ ⇒ ℓ) t₂ ⊑ (t₃ ⇒ ℓ₁) t₄) → t₂ ⊑ t₄ lem (λ⊑λ x x₁ x₂) = x₁ (t₁ ⇒ ℓ) t₂ ⊑? (t₃ ⇒ ℓ₁) t₄ | no ¬p | (yes p) = no {!!} (t₁ ⇒ ℓ) t₂ ⊑? (t₃ ⇒ ℓ₁) t₄ | no ¬p | (no ¬p₁) = no (¬p ∘ {! !}) (t₁ ⇒ x) t₂ ⊑? err = no (λ ()) err ⊑? bool x = no (λ ()) err ⊑? (t₂ ⇒ x) t₃ = no (λ ()) err ⊑? err = no (λ ())
{ "alphanum_fraction": 0.4616193481, "avg_line_length": 32.2372881356, "ext": "agda", "hexsha": "beb1a435a01a0b612dd2214b9b99e3bad732de5b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kellino/TypeSystems", "max_forks_repo_path": "Agda/Gradual Security/proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kellino/TypeSystems", "max_issues_repo_path": "Agda/Gradual Security/proofs.agda", "max_line_length": 108, "max_stars_count": 2, "max_stars_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kellino/TypeSystems", "max_stars_repo_path": "Agda/Gradual Security/proofs.agda", "max_stars_repo_stars_event_max_datetime": "2017-05-26T23:06:17.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-27T08:05:40.000Z", "num_tokens": 1093, "size": 1902 }
------------------------------------------------------------------------ -- Properties of combinatorial functions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --exact-split #-} module Math.Combinatorics.Function.Properties where -- agda-stdlib open import Data.Empty using (⊥-elim) open import Data.List as List open import Data.List.Properties import Data.List.All as All import Data.List.All.Properties as Allₚ open import Data.Maybe hiding (zipWith) open import Data.Nat open import Data.Nat.Properties open import Data.Nat.DivMod open import Data.Product open import Data.Sum open import Data.Unit using (tt) open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Decidable -- agda-combinatorics open import Math.Combinatorics.Function import Math.Combinatorics.Function.Properties.Lemma as Lemma -- agda-misc open import Math.NumberTheory.Product.Nat open ≤-Reasoning -- TODO: replace with Data.Nat.Predicate private _≠0 : ℕ → Set n ≠0 = False (n ≟ 0) ------------------------------------------------------------------------ -- Properties of _! private zero-product : ∀ m n → m * n ≡ 0 → m ≡ 0 ⊎ n ≡ 0 zero-product 0 n m*n≡0 = inj₁ refl zero-product (suc m) 0 m*n≡0 = inj₂ refl -- factorial never be 0 n!≢0 : ∀ n → (n !) ≢ 0 n!≢0 0 () n!≢0 (suc n) [1+n]!≡0 with zero-product (suc n) (n !) [1+n]!≡0 ... | inj₂ n!≡0 = n!≢0 n n!≡0 -- TODO: use Data.Nat.Predicate False[n!≟0] : ∀ n → False (n ! ≟ 0) False[n!≟0] n = fromWitnessFalse (n!≢0 n) 1≤n! : ∀ n → 1 ≤ n ! 1≤n! 0 = ≤-refl 1≤n! (suc n) = ≤-trans (1≤n! n) (m≤m+n (n !) _) 2≤[2+n]! : ∀ n → 2 ≤ (2 + n) ! 2≤[2+n]! 0 = ≤-refl 2≤[2+n]! (suc n) = ≤-trans (2≤[2+n]! n) (m≤m+n ((2 + n) !) _) !-mono-< : ∀ {m n} → suc m < n → suc m ! < n ! !-mono-< {0} {suc zero} (s≤s ()) !-mono-< {0} {suc (suc n)} _ = 2≤[2+n]! n !-mono-< {suc m} {suc n} (s≤s 1+m<n) = *-mono-< (s≤s 1+m<n) (!-mono-< 1+m<n) !-mono-<-≢0 : ∀ {m n} {wit : m ≠0} → m < n → m ! < n ! !-mono-<-≢0 {suc m} {n} {tt} m<n = !-mono-< m<n !-mono-<-≤ : ∀ {m n} → m < n → m ! ≤ n ! !-mono-<-≤ {0} {n} _ = 1≤n! n !-mono-<-≤ {suc m} {n} 1+m<n = <⇒≤ $ !-mono-< 1+m<n !-mono-≤ : ∀ {m n} → m ≤ n → m ! ≤ n ! !-mono-≤ {m} {n} m≤n with Lemma.≤⇒≡∨< m≤n ... | inj₁ refl = ≤-refl {m !} ... | inj₂ m<n = !-mono-<-≤ m<n !-injective : ∀ {m n} {m≢0 : m ≠0} {n≢0 : n ≠0} → m ! ≡ n ! → m ≡ n !-injective {m} {n} {m≢0} {n≢0} m!≡n! with <-cmp m n ... | tri< m<n _ _ = ⊥-elim $ <⇒≢ (!-mono-<-≢0 {m} {n} {m≢0} m<n) m!≡n! ... | tri≈ _ m≡n _ = m≡n ... | tri> _ _ n<m = ⊥-elim $ <⇒≢ (!-mono-<-≢0 {n} {m} {n≢0} n<m) (sym m!≡n!) n!≤n^n : ∀ n → n ! ≤ n ^ n n!≤n^n 0 = ≤-refl n!≤n^n (suc n) = begin suc n * n ! ≤⟨ *-monoʳ-≤ (suc n) (n!≤n^n n) ⟩ suc n * n ^ n ≤⟨ *-monoʳ-≤ (suc n) (Lemma.^-monoˡ-≤ n (≤-step ≤-refl)) ⟩ suc n * suc n ^ n ∎ 2^n≤[1+n]! : ∀ n → 2 ^ n ≤ (suc n) ! 2^n≤[1+n]! 0 = ≤-refl 2^n≤[1+n]! (suc n) = begin 2 ^ suc n ≡⟨⟩ 2 * 2 ^ n ≤⟨ *-mono-≤ (m≤m+n 2 n) (2^n≤[1+n]! n) ⟩ suc (suc n) * (suc n) ! ≡⟨⟩ (suc (suc n)) ! ∎ [1+n]!/[1+n]≡n! : ∀ n → (suc n) ! / suc n ≡ n ! [1+n]!/[1+n]≡n! n = sym $ Lemma.m*n≡o⇒m≡o/n (n !) (suc n) ((suc n) !) tt (*-comm (n !) (suc n)) -- relation with product n!≡Π[k<n]suc : ∀ n → n ! ≡ Π< n suc n!≡Π[k<n]suc zero = refl n!≡Π[k<n]suc (suc n) = begin-equality suc n * n ! ≡⟨ *-comm (suc n) (n !) ⟩ n ! * suc n ≡⟨ cong (_* suc n) $ n!≡Π[k<n]suc n ⟩ Π< n suc * suc n ∎ ------------------------------------------------------------------------ -- Properties of P P[n,1]≡n : ∀ n → P n 1 ≡ n P[n,1]≡n 0 = refl P[n,1]≡n (suc n) = *-identityʳ (suc n) P[n,n]≡n! : ∀ n → P n n ≡ n ! P[n,n]≡n! 0 = refl P[n,n]≡n! (suc n) = cong (suc n *_) (P[n,n]≡n! n) n<k⇒P[n,k]≡0 : ∀ {n k} → n < k → P n k ≡ 0 n<k⇒P[n,k]≡0 {0} {suc k} n<k = refl n<k⇒P[n,k]≡0 {suc n} {suc k} (s≤s n<k) = begin-equality P (suc n) (suc k) ≡⟨⟩ suc n * P n k ≡⟨ cong (suc n *_) $ n<k⇒P[n,k]≡0 n<k ⟩ suc n * 0 ≡⟨ *-zeroʳ (suc n) ⟩ 0 ∎ -- m = 3; n = 4; o = 2 -- 7 6 5 4 3 = 7 6 5 * 4 3 P-split : ∀ m n o → P (m + n) (m + o) ≡ P (m + n) m * P n o P-split 0 n o = sym $ +-identityʳ (P n o) P-split (suc m) n o = begin-equality P (suc m + n) (suc m + o) ≡⟨⟩ (suc m + n) * P (m + n) (m + o) ≡⟨ cong ((suc m + n) *_) $ P-split m n o ⟩ (suc m + n) * (P (m + n) m * P n o) ≡⟨ sym $ *-assoc (suc m + n) (P (m + n) m) (P n o) ⟩ P (suc m + n) (suc m) * P n o ∎ -- proved by P-split, P[n,n]≡n! -- m = 5; n = -- 9 8 7 6 5 -- * 4 3 2 1 = -- 9 8 7 6 5 4 3 2 1 P[m+n,m]*n!≡[m+n]! : ∀ m n → P (m + n) m * n ! ≡ (m + n) ! P[m+n,m]*n!≡[m+n]! m n = begin-equality P (m + n) m * n ! ≡⟨ cong (P (m + n) m *_) $ sym $ P[n,n]≡n! n ⟩ P (m + n) m * P n n ≡⟨ sym $ P-split m n n ⟩ P (m + n) (m + n) ≡⟨ P[n,n]≡n! (m + n) ⟩ (m + n) ! ∎ -- proved by P[m+n,m]*n!≡[m+n]! P[m+n,n]*m!≡[m+n]! : ∀ m n → P (m + n) n * m ! ≡ (m + n) ! P[m+n,n]*m!≡[m+n]! m n = begin-equality P (m + n) n * m ! ≡⟨ cong (λ v → P v n * m !) $ +-comm m n ⟩ P (n + m) n * m ! ≡⟨ P[m+n,m]*n!≡[m+n]! n m ⟩ (n + m) ! ≡⟨ cong (_!) $ +-comm n m ⟩ (m + n) ! ∎ -- proved by P[m+n,m]*n!≡[m+n]! P[n,k]*[n∸k]!≡n! : ∀ {n k} → k ≤ n → P n k * (n ∸ k) ! ≡ n ! P[n,k]*[n∸k]!≡n! {n} {k} k≤n = begin-equality P n k * m ! ≡⟨ cong (λ v → P v k * m !) $ sym $ k+m≡n ⟩ P (k + m) k * m ! ≡⟨ P[m+n,m]*n!≡[m+n]! k m ⟩ (k + m) ! ≡⟨ cong (_!) $ k+m≡n ⟩ n ! ∎ where m = n ∸ k k+m≡n : k + m ≡ n k+m≡n = m+[n∸m]≡n k≤n -- proved by P[n,k]*[n∸k]!≡n! P[n,k]≡n!/[n∸k]! : ∀ {n k} → k ≤ n → P n k ≡ _div_ (n !) ((n ∸ k) !) {False[n!≟0] (n ∸ k)} P[n,k]≡n!/[n∸k]! {n} {k} k≤n = Lemma.m*n≡o⇒m≡o/n (P n k) ((n ∸ k) !) (n !) (False[n!≟0] (n ∸ k)) (P[n,k]*[n∸k]!≡n! k≤n) P[m,m∸n]*n!≡m! : ∀ {m n} → n ≤ m → P m (m ∸ n) * n ! ≡ m ! P[m,m∸n]*n!≡m! {m} {n} n≤m = begin-equality P m o * n ! ≡⟨ sym $ cong (λ v → P v o * n !) o+n≡m ⟩ P (o + n) o * n ! ≡⟨ P[m+n,m]*n!≡[m+n]! o n ⟩ (o + n) ! ≡⟨ cong (_!) o+n≡m ⟩ m ! ∎ where o = m ∸ n o+n≡m : o + n ≡ m o+n≡m = m∸n+n≡m n≤m m!/n!≡P[m,m∸n] : ∀ {m n} → n ≤ m → (m ! / n !) {False[n!≟0] n} ≡ P m (m ∸ n) m!/n!≡P[m,m∸n] {m} {n} n≤m = sym $ Lemma.m≡n*o⇒n≡m/o (m !) (P m (m ∸ n)) (n !) (False[n!≟0] n) (sym $ P[m,m∸n]*n!≡m! n≤m) -- proved by P-split -- m = 2; n = 7 -- 9 8 7 = 9 8 * 7 P[m+n,1+m]≡P[m+n,m]*n : ∀ m n → P (m + n) (suc m) ≡ P (m + n) m * n P[m+n,1+m]≡P[m+n,m]*n m n = begin-equality P (m + n) (1 + m) ≡⟨ cong (P (m + n)) $ +-comm 1 m ⟩ P (m + n) (m + 1) ≡⟨ P-split m n 1 ⟩ P (m + n) m * P n 1 ≡⟨ cong (P (m + n) m *_) $ P[n,1]≡n n ⟩ P (m + n) m * n ∎ P[m+n,1+n]≡P[m+n,n]*m : ∀ m n → P (m + n) (suc n) ≡ P (m + n) n * m P[m+n,1+n]≡P[m+n,n]*m m n = begin-equality P (m + n) (suc n) ≡⟨ cong (λ v → P v (suc n)) $ +-comm m n ⟩ P (n + m) (suc n) ≡⟨ P[m+n,1+m]≡P[m+n,m]*n n m ⟩ P (n + m) n * m ≡⟨ cong (λ v → P v n * m) $ +-comm n m ⟩ P (m + n) n * m ∎ P[n,1+k]≡P[n,k]*[n∸k] : ∀ n k → P n (suc k) ≡ P n k * (n ∸ k) P[n,1+k]≡P[n,k]*[n∸k] n k with Lemma.lemma₃ k n ... | inj₁ (m , n≡m+k) = begin-equality P n (suc k) ≡⟨ cong (λ v → P v (suc k)) n≡m+k ⟩ P (m + k) (suc k) ≡⟨ P[m+n,1+n]≡P[m+n,n]*m m k ⟩ P (m + k) k * m ≡⟨ sym $ cong₂ _*_ (cong (λ v → P v k) n≡m+k) n∸k≡m ⟩ P n k * (n ∸ k) ∎ where n∸k≡m = Lemma.m≡n+o⇒m∸o≡n n m k n≡m+k ... | inj₂ n<k = begin-equality P n (suc k) ≡⟨ n<k⇒P[n,k]≡0 (≤-step n<k) ⟩ 0 ≡⟨ sym $ *-zeroʳ (P n k) ⟩ P n k * 0 ≡⟨ sym $ cong (P n k *_) $ m≤n⇒m∸n≡0 (<⇒≤ n<k) ⟩ P n k * (n ∸ k) ∎ P[n,1+k]≡[n∸k]*P[n,k] : ∀ n k → P n (suc k) ≡ (n ∸ k) * P n k P[n,1+k]≡[n∸k]*P[n,k] n k = trans (P[n,1+k]≡P[n,k]*[n∸k] n k) (*-comm (P n k) (n ∸ k)) -- proved by P[n,1+k]≡[n∸k]*P[n,k] and n<k⇒P[n,k]≡0 P[1+n,1+k]≡[1+k]*P[n,k]+P[n,1+k] : ∀ n k → P (suc n) (suc k) ≡ suc k * P n k + P n (suc k) P[1+n,1+k]≡[1+k]*P[n,k]+P[n,1+k] n k with k ≤? n ... | yes k≤n = begin-equality suc n * P n k ≡⟨ cong (_* P n k) 1+n≡[1+k]+[n∸k] ⟩ (suc k + (n ∸ k)) * P n k ≡⟨ *-distribʳ-+ (P n k) (suc k) (n ∸ k) ⟩ suc k * P n k + (n ∸ k) * P n k ≡⟨ sym $ cong (suc k * P n k +_) $ P[n,1+k]≡[n∸k]*P[n,k] n k ⟩ suc k * P n k + P n (suc k) ∎ where 1+n≡[1+k]+[n∸k] : suc n ≡ suc k + (n ∸ k) 1+n≡[1+k]+[n∸k] = sym $ begin-equality suc k + (n ∸ k) ≡⟨ +-assoc 1 k (n ∸ k) ⟩ suc (k + (n ∸ k)) ≡⟨ cong suc $ m+[n∸m]≡n k≤n ⟩ suc n ∎ ... | no k≰n = begin-equality P (suc n) (suc k) ≡⟨ n<k⇒P[n,k]≡0 (s≤s n<k) ⟩ 0 + 0 ≡⟨ sym $ cong (_+ 0) $ *-zeroʳ (suc k) ⟩ suc k * 0 + 0 ≡⟨ sym $ cong₂ _+_ (cong (suc k *_) (n<k⇒P[n,k]≡0 n<k)) (n<k⇒P[n,k]≡0 (≤-step n<k)) ⟩ suc k * P n k + P n (suc k) ∎ where n<k : n < k n<k = ≰⇒> k≰n P[1+n,n]≡[1+n]! : ∀ n → P (suc n) n ≡ (suc n) ! P[1+n,n]≡[1+n]! n = begin-equality P (1 + n) n ≡⟨ cong (λ v → P v n) (+-comm 1 n) ⟩ P (n + 1) n ≡⟨ sym $ *-identityʳ (P (n + 1) n) ⟩ P (n + 1) n * 1 ≡⟨ sym $ P-split n 1 1 ⟩ P (n + 1) (n + 1) ≡⟨ P[n,n]≡n! (n + 1) ⟩ (n + 1) ! ≡⟨ cong (_!) (+-comm n 1) ⟩ (1 + n) ! ∎ P-split-∸-alternative : ∀ {m n o} → o ≤ m → o ≤ n → P m n ≡ P m o * P (m ∸ o) (n ∸ o) P-split-∸-alternative {m} {n} {o} o≤m o≤n = begin-equality P m n ≡⟨ sym $ cong₂ P o+p≡m o+q≡n ⟩ P (o + p) (o + q) ≡⟨ P-split o p q ⟩ P (o + p) o * P p q ≡⟨ cong (λ v → P v o * P p q) o+p≡m ⟩ P m o * P p q ∎ where p = m ∸ o q = n ∸ o o+p≡m : o + p ≡ m o+p≡m = m+[n∸m]≡n o≤m o+q≡n : o + q ≡ n o+q≡n = m+[n∸m]≡n o≤n P-split-∸ : ∀ m n o → P m (n + o) ≡ P m n * P (m ∸ n) o P-split-∸ m n o with n ≤? m ... | yes n≤m = begin-equality P m (n + o) ≡⟨ sym $ cong (λ v → P v (n + o)) n+p≡m ⟩ P (n + p) (n + o) ≡⟨ P-split n p o ⟩ P (n + p) n * P p o ≡⟨ cong (λ v → P v n * P p o) n+p≡m ⟩ P m n * P p o ∎ where p = m ∸ n n+p≡m : n + p ≡ m n+p≡m = m+[n∸m]≡n n≤m ... | no n≰m = begin-equality P m (n + o) ≡⟨ n<k⇒P[n,k]≡0 m<n+o ⟩ 0 ≡⟨⟩ 0 * P (m ∸ n) o ≡⟨ sym $ cong (_* P (m ∸ n) o) $ n<k⇒P[n,k]≡0 m<n ⟩ P m n * P (m ∸ n) o ∎ where m<n : m < n m<n = ≰⇒> n≰m m<n+o : m < n + o m<n+o = begin-strict m <⟨ m<n ⟩ n ≤⟨ m≤m+n n o ⟩ n + o ∎ P-slide-∸ : ∀ m n o → P m n * P (m ∸ n) o ≡ P m o * P (m ∸ o) n P-slide-∸ m n o = begin-equality P m n * P (m ∸ n) o ≡⟨ sym $ P-split-∸ m n o ⟩ P m (n + o) ≡⟨ cong (P m) $ +-comm n o ⟩ P m (o + n) ≡⟨ P-split-∸ m o n ⟩ P m o * P (m ∸ o) n ∎ -- Properties of P and order relation k≤n⇒1≤P[n,k] : ∀ {n k} → k ≤ n → 1 ≤ P n k k≤n⇒1≤P[n,k] {n} {.0} z≤n = ≤-refl k≤n⇒1≤P[n,k] {.(suc n)} {.(suc k)} (s≤s {k} {n} k≤n) = begin 1 ≤⟨ s≤s z≤n ⟩ suc n ≡⟨ sym $ *-identityʳ (suc n) ⟩ suc n * 1 ≤⟨ *-monoʳ-≤ (suc n) (k≤n⇒1≤P[n,k] {n} {k} k≤n) ⟩ suc n * P n k ∎ k≤n⇒P[n,k]≢0 : ∀ {n k} → k ≤ n → P n k ≢ 0 k≤n⇒P[n,k]≢0 {n} {k} k≤n = Lemma.1≤n⇒n≢0 $ k≤n⇒1≤P[n,k] k≤n P[n,k]≡0⇒n<k : ∀ {n k} → P n k ≡ 0 → n < k P[n,k]≡0⇒n<k {n} {k} P[n,k]≡0 with n <? k ... | yes n<k = n<k ... | no n≮k = ⊥-elim $ k≤n⇒P[n,k]≢0 k≤n P[n,k]≡0 where k≤n = ≮⇒≥ n≮k P[n,k]≢0⇒k≤n : ∀ {n k} → P n k ≢ 0 → k ≤ n P[n,k]≢0⇒k≤n {n} {k} P[n,k]≢0 with k ≤? n ... | yes k≤n = k≤n ... | no k≰n = ⊥-elim $ P[n,k]≢0 $ n<k⇒P[n,k]≡0 n<k where n<k : n < k n<k = ≰⇒> k≰n P[n,k]≤n^k : ∀ n k → P n k ≤ n ^ k P[n,k]≤n^k n 0 = ≤-refl P[n,k]≤n^k 0 (suc k) = ≤-refl P[n,k]≤n^k (suc n) (suc k) = begin suc n * P n k ≤⟨ *-monoʳ-≤ (suc n) $ P[n,k]≤n^k n k ⟩ suc n * n ^ k ≤⟨ *-monoʳ-≤ (suc n) $ Lemma.^-monoˡ-≤ k $ ≤-step ≤-refl ⟩ suc n * suc n ^ k ≡⟨⟩ suc n ^ suc k ∎ k≤n⇒k!≤P[n,k] : ∀ {n k} → k ≤ n → k ! ≤ P n k k≤n⇒k!≤P[n,k] {n} {0} k≤n = ≤-refl k≤n⇒k!≤P[n,k] {suc n} {suc k} (s≤s k≤n) = begin suc k * k ! ≤⟨ *-mono-≤ (s≤s k≤n) (k≤n⇒k!≤P[n,k] k≤n) ⟩ suc n * P n k ∎ P[n,k]≤n! : ∀ n k → P n k ≤ n ! P[n,k]≤n! n 0 = 1≤n! n P[n,k]≤n! 0 (suc k) = ≤-step ≤-refl P[n,k]≤n! (suc n) (suc k) = begin suc n * P n k ≤⟨ *-monoʳ-≤ (suc n) (P[n,k]≤n! n k) ⟩ suc n * n ! ∎ P-monoʳ-< : ∀ {n k r} → 2 ≤ n → r < n → k < r → P n k < P n r P-monoʳ-< {suc zero} {k} {r} (s≤s ()) r<n k<r P-monoʳ-< {n@(suc (suc n-2))} {k} {r} 2≤n r<n k<r = *-cancelʳ-< (P n k) (P n r) $ begin-strict P n k * (n ∸ k) ! ≡⟨ P[n,k]*[n∸k]!≡n! k≤n ⟩ n ! ≡⟨ sym $ P[n,k]*[n∸k]!≡n! r≤n ⟩ P n r * (n ∸ r) ! <⟨ Lemma.*-monoʳ-<′ (P n r) (fromWitnessFalse P[n,r]≢0) (!-mono-<-≢0 {n ∸ r} {n ∸ k} {fromWitnessFalse n∸r≢0} n∸r<n∸k) ⟩ P n r * (n ∸ k) ! ∎ where k≤r = <⇒≤ k<r r≤n = <⇒≤ r<n k≤n = ≤-trans k≤r r≤n P[n,r]≢0 : P n r ≢ 0 P[n,r]≢0 = k≤n⇒P[n,k]≢0 {n} {r} r≤n n∸r≢0 : n ∸ r ≢ 0 n∸r≢0 = Lemma.m<n⇒n∸m≢0 r<n n∸r<n∸k : n ∸ r < n ∸ k n∸r<n∸k = ∸-monoʳ-< k<r r≤n P-monoʳ-≤ : ∀ {n k r} → r ≤ n → k ≤ r → P n k ≤ P n r P-monoʳ-≤ {zero} {zero} {zero} r≤n k≤r = ≤-refl P-monoʳ-≤ {zero} {suc k} {r} r≤n k≤r = z≤n P-monoʳ-≤ {suc zero} {zero} {zero} r≤n k≤r = ≤-refl P-monoʳ-≤ {suc zero} {zero} {suc zero} r≤n k≤r = ≤-refl P-monoʳ-≤ {suc zero} {zero} {suc (suc r)} (s≤s ()) k≤r P-monoʳ-≤ {suc zero} {suc zero} {suc zero} (s≤s r≤n) k≤r = ≤-refl P-monoʳ-≤ {suc zero} {suc (suc k)} {suc r} r≤n k≤r = z≤n P-monoʳ-≤ {suc (suc n)} {k} {r} r≤2+n k≤r with Lemma.≤⇒≡∨< r≤2+n P-monoʳ-≤ {suc (suc n)} {k} {r} r≤2+n k≤r | inj₁ r≡2+n = begin P (2 + n) k ≡⟨ cong (λ v → P v k) (sym r≡2+n) ⟩ P r k ≤⟨ P[n,k]≤n! r k ⟩ r ! ≡⟨ sym $ P[n,n]≡n! r ⟩ P r r ≡⟨ cong (λ v → P v r) $ r≡2+n ⟩ P (2 + n) r ∎ P-monoʳ-≤ {suc (suc n)} {k} {r} r≤2+n k≤r | inj₂ r<2+n with Lemma.≤⇒≡∨< k≤r P-monoʳ-≤ {suc (suc n)} {k} {r} r≤2+n k≤r | inj₂ r<2+n | inj₁ k≡r = begin P (2 + n) k ≡⟨ cong (P (2 + n)) k≡r ⟩ P (2 + n) r ∎ P-monoʳ-≤ {suc (suc n)} {k} {r} r≤2+n k≤r | inj₂ r<2+n | inj₂ k<r = <⇒≤ (P-monoʳ-< {2 + n} {k} {r} (s≤s (s≤s z≤n)) r<2+n k<r) P-monoˡ-< : ∀ {m n k} {wit : k ≠0} → k ≤ m → m < n → P m k < P n k P-monoˡ-< {suc m} {suc n} {1} {wit} k≤m (s≤s m<n) = s≤s $ begin-strict m * 1 ≡⟨ *-identityʳ m ⟩ m <⟨ m<n ⟩ n ≡⟨ sym $ *-identityʳ n ⟩ n * 1 ∎ P-monoˡ-< {suc m} {suc n} {suc (suc k-1)} {wit} (s≤s k≤m) (s≤s m<n) = begin-strict suc m * P m (suc k-1) <⟨ *-mono-< (s≤s m<n) (P-monoˡ-< {m} {n} {suc k-1} {tt} k≤m m<n) ⟩ suc n * P n (suc k-1) ∎ P-monoˡ-≤ : ∀ {m n} k → m ≤ n → P m k ≤ P n k P-monoˡ-≤ {m} {n} 0 m≤n = ≤-refl P-monoˡ-≤ {m} {n} k@(suc _) m≤n with k ≤? m P-monoˡ-≤ {m} {n} k@(suc _) m≤n | yes k≤m with Lemma.≤⇒≡∨< m≤n P-monoˡ-≤ {m} {n} k@(suc _) m≤n | yes k≤m | inj₁ refl = ≤-refl P-monoˡ-≤ {m} {n} k@(suc _) m≤n | yes k≤m | inj₂ m<n = <⇒≤ $ P-monoˡ-< k≤m m<n P-monoˡ-≤ {m} {n} k@(suc _) m≤n | no k≰m = begin P m k ≡⟨ n<k⇒P[n,k]≡0 (≰⇒> k≰m) ⟩ 0 ≤⟨ z≤n ⟩ P n k ∎ P[n,k]≡product[take[k,downFrom[1+n]]] : ∀ {n k} → k ≤ n → P n k ≡ product (take k (downFrom (suc n))) P[n,k]≡product[take[k,downFrom[1+n]]] {n} {zero} k≤n = refl P[n,k]≡product[take[k,downFrom[1+n]]] {suc n} {suc k} (s≤s k≤n) = begin-equality suc n * P n k ≡⟨ cong (suc n *_) $ P[n,k]≡product[take[k,downFrom[1+n]]] k≤n ⟩ suc n * product (take k (downFrom (suc n))) ∎ ------------------------------------------------------------------------ -- Properties of CRec -- proved by induction and P[1+n,1+k]≡[1+k]*P[n,k]+P[n,1+k] CRec[n,k]*k!≡P[n,k] : ∀ n k → CRec n k * k ! ≡ P n k CRec[n,k]*k!≡P[n,k] n 0 = refl CRec[n,k]*k!≡P[n,k] 0 (suc k) = refl CRec[n,k]*k!≡P[n,k] (suc n) (suc k) = begin-equality CRec (suc n) (suc k) * suc k ! ≡⟨⟩ (CRec n k + CRec n (suc k)) * (suc k * k !) ≡⟨ Lemma.lemma₅ (CRec n k) (CRec n (suc k)) (suc k) (k !) ⟩ suc k * (CRec n k * k !) + CRec n (suc k) * suc k ! ≡⟨ cong₂ _+_ (cong (suc k *_) $ CRec[n,k]*k!≡P[n,k] n k) (CRec[n,k]*k!≡P[n,k] n (suc k)) ⟩ suc k * P n k + P n (suc k) ≡⟨ sym $ P[1+n,1+k]≡[1+k]*P[n,k]+P[n,1+k] n k ⟩ P (suc n) (suc k) ∎ [1+k]*CRec[1+n,1+k]≡[1+n]*CRec[n,k] : ∀ n k → suc k * CRec (suc n) (suc k) ≡ suc n * CRec n k [1+k]*CRec[1+n,1+k]≡[1+n]*CRec[n,k] n k = Lemma.*-cancelʳ-≡′ (suc k * CRec (suc n) (suc k)) (suc n * CRec n k) (False[n!≟0] k) $ begin-equality suc k * CRec (suc n) (suc k) * k ! ≡⟨ sym $ Lemma.lemma₈ (CRec (suc n) (suc k)) (suc k) (k !) ⟩ CRec (suc n) (suc k) * (suc k) ! ≡⟨ CRec[n,k]*k!≡P[n,k] (suc n) (suc k) ⟩ P (suc n) (suc k) ≡⟨⟩ suc n * P n k ≡⟨ sym $ cong (suc n *_) $ CRec[n,k]*k!≡P[n,k] n k ⟩ suc n * (CRec n k * k !) ≡⟨ sym $ *-assoc (suc n) (CRec n k) (k !) ⟩ suc n * CRec n k * k ! ∎ CRec[1+n,1+k]≡[CRec[n,k]*[1+n]]/[1+k] : ∀ n k → CRec (suc n) (suc k) ≡ (CRec n k * suc n) / suc k CRec[1+n,1+k]≡[CRec[n,k]*[1+n]]/[1+k] n k = Lemma.m*n≡o⇒m≡o/n (CRec (suc n) (suc k)) (suc k) (CRec n k * suc n) tt ( begin-equality CRec (suc n) (suc k) * suc k ≡⟨ *-comm (CRec (suc n) (suc k)) (suc k) ⟩ suc k * CRec (suc n) (suc k) ≡⟨ [1+k]*CRec[1+n,1+k]≡[1+n]*CRec[n,k] n k ⟩ suc n * CRec n k ≡⟨ *-comm (suc n) (CRec n k) ⟩ CRec n k * suc n ∎ ) ------------------------------------------------------------------------ -- Properties of C C[n,k]≡CRec[n,k] : ∀ n k → C n k ≡ CRec n k C[n,k]≡CRec[n,k] n zero = refl C[n,k]≡CRec[n,k] zero (suc k) = refl C[n,k]≡CRec[n,k] (suc n) (suc k) = begin-equality (C n k * suc n) / suc k ≡⟨ cong (λ v → (v * suc n) / suc k) $ C[n,k]≡CRec[n,k] n k ⟩ (CRec n k * suc n) / suc k ≡⟨ sym $ CRec[1+n,1+k]≡[CRec[n,k]*[1+n]]/[1+k] n k ⟩ CRec (suc n) (suc k) ∎ -- TODO prove directly -- P n k ∣ k ! C[n,k]*k!≡P[n,k] : ∀ n k → C n k * k ! ≡ P n k C[n,k]*k!≡P[n,k] n k = trans (cong (_* k !) (C[n,k]≡CRec[n,k] n k)) (CRec[n,k]*k!≡P[n,k] n k) C[n,k]≡P[n,k]/k! : ∀ n k → C n k ≡ _div_ (P n k) (k !) {False[n!≟0] k} C[n,k]≡P[n,k]/k! n k = Lemma.m*n≡o⇒m≡o/n _ _ _ (False[n!≟0] k) (C[n,k]*k!≡P[n,k] n k) C[1+n,1+k]≡C[n,k]+C[n,1+k] : ∀ n k → C (suc n) (suc k) ≡ C n k + C n (suc k) C[1+n,1+k]≡C[n,k]+C[n,1+k] n k = begin-equality C (suc n) (suc k) ≡⟨ C[n,k]≡CRec[n,k] (suc n) (suc k) ⟩ CRec n k + CRec n (suc k) ≡⟨ sym $ cong₂ _+_ (C[n,k]≡CRec[n,k] n k) (C[n,k]≡CRec[n,k] n (suc k)) ⟩ C n k + C n (suc k) ∎ n<k⇒C[n,k]≡0 : ∀ {n k} → n < k → C n k ≡ 0 n<k⇒C[n,k]≡0 {n} {k} n<k = begin-equality C n k ≡⟨ C[n,k]≡P[n,k]/k! n k ⟩ (P n k div k !) {False[n!≟0] k} ≡⟨ cong (λ v → (v div k !) {False[n!≟0] k}) $ n<k⇒P[n,k]≡0 n<k ⟩ (0 div k !) {False[n!≟0] k} ≡⟨ 0/n≡0 (k !) ⟩ 0 ∎ C[n,1]≡n : ∀ n → C n 1 ≡ n C[n,1]≡n n = begin-equality C n 1 ≡⟨ C[n,k]≡P[n,k]/k! n 1 ⟩ P n 1 div 1 ≡⟨ n/1≡n (P n 1) ⟩ P n 1 ≡⟨ P[n,1]≡n n ⟩ n ∎ C[n,n]≡1 : ∀ n → C n n ≡ 1 C[n,n]≡1 n = begin-equality C n n ≡⟨ C[n,k]≡P[n,k]/k! n n ⟩ (P n n div n !) {False[n!≟0] n} ≡⟨ cong (λ v → (v div n !) {False[n!≟0] n}) $ P[n,n]≡n! n ⟩ (n ! div n !) {False[n!≟0] n} ≡⟨ n/n≡1 (n !) ⟩ 1 ∎ -- proved by C[n,k]*k!≡P[n,k] and P[m+n,n]*m!≡[m+n]! C[m+n,n]*m!*n!≡[m+n]! : ∀ m n → C (m + n) n * m ! * n ! ≡ (m + n) ! C[m+n,n]*m!*n!≡[m+n]! m n = begin-equality C (m + n) n * m ! * n ! ≡⟨ Lemma.lemma₇ (C (m + n) n) (m !) (n !) ⟩ C (m + n) n * n ! * m ! ≡⟨ cong (_* m !) $ C[n,k]*k!≡P[n,k] (m + n) n ⟩ P (m + n) n * m ! ≡⟨ P[m+n,n]*m!≡[m+n]! m n ⟩ (m + n) ! ∎ -- proved by C[m+n,n]*m!*n!≡[m+n]! C[m+n,m]*m!*n!≡[m+n]! : ∀ m n → C (m + n) m * m ! * n ! ≡ (m + n) ! C[m+n,m]*m!*n!≡[m+n]! m n = begin-equality C (m + n) m * m ! * n ! ≡⟨ Lemma.lemma₇ (C (m + n) m) (m !) (n !) ⟩ C (m + n) m * n ! * m ! ≡⟨ cong (λ v → C v m * n ! * m !) $ +-comm m n ⟩ C (n + m) m * n ! * m ! ≡⟨ C[m+n,n]*m!*n!≡[m+n]! n m ⟩ (n + m) ! ≡⟨ cong (_!) $ +-comm n m ⟩ (m + n) ! ∎ C[n,k]*[n∸k]!*k!≡n! : ∀ {n k} → k ≤ n → C n k * (n ∸ k) ! * k ! ≡ n ! C[n,k]*[n∸k]!*k!≡n! {n} {k} k≤n = begin-equality C n k * m ! * k ! ≡⟨ cong (λ v → C v k * m ! * k !) $ sym $ m+k≡n ⟩ C (m + k) k * m ! * k ! ≡⟨ C[m+n,n]*m!*n!≡[m+n]! m k ⟩ (m + k) ! ≡⟨ cong (_!) $ m+k≡n ⟩ n ! ∎ where m = n ∸ k m+k≡n : m + k ≡ n m+k≡n = m∸n+n≡m k≤n private False[m!*n!≟0] : ∀ m n → False ((m ! * n !) ≟ 0) False[m!*n!≟0] m n = fromWitnessFalse $ Lemma.*-pres-≢0 (n!≢0 m) (n!≢0 n) C[n,k]≡n!/[[n∸k]!*k!] : ∀ {n k} → k ≤ n → C n k ≡ _div_ (n !) ((n ∸ k) ! * k !) {False[m!*n!≟0] (n ∸ k) k} C[n,k]≡n!/[[n∸k]!*k!] {n} {k} k≤n = Lemma.m*n≡o⇒m≡o/n (C n k) ((n ∸ k) ! * k !) (n !) (False[m!*n!≟0] (n ∸ k) k) $ begin-equality C n k * ((n ∸ k) ! * k !) ≡⟨ sym $ *-assoc (C n k) ((n ∸ k) !) (k !) ⟩ C n k * (n ∸ k) ! * k ! ≡⟨ C[n,k]*[n∸k]!*k!≡n! k≤n ⟩ n ! ∎ -- proved by C[m+n,n]*m!*n!≡[m+n]! and C[m+n,m]*m!*n!≡[m+n]! C-inv : ∀ m n → C (m + n) n ≡ C (m + n) m C-inv m n = Lemma.*-cancelʳ-≡′ (C (m + n) n) (C (m + n) m) (False[n!≟0] m) $ Lemma.*-cancelʳ-≡′ (C (m + n) n * m !) (C (m + n) m * m !) (False[n!≟0] n) $ begin-equality C (m + n) n * m ! * n ! ≡⟨ C[m+n,n]*m!*n!≡[m+n]! m n ⟩ (m + n) ! ≡⟨ sym $ C[m+n,m]*m!*n!≡[m+n]! m n ⟩ C (m + n) m * m ! * n ! ∎ C-inv-∸ : ∀ {n k} → k ≤ n → C n k ≡ C n (n ∸ k) C-inv-∸ {n} {k} k≤n = begin-equality C n k ≡⟨ cong (λ v → C v k) $ sym $ m+k≡n ⟩ C (m + k) k ≡⟨ C-inv m k ⟩ C (m + k) m ≡⟨ cong (λ v → C v m) $ m+k≡n ⟩ C n (n ∸ k) ∎ where m = n ∸ k m+k≡n : m + k ≡ n m+k≡n = m∸n+n≡m k≤n C[m+n,1+n]*[1+n]≡C[m+n,n]*m : ∀ m n → C (m + n) (suc n) * suc n ≡ C (m + n) n * m C[m+n,1+n]*[1+n]≡C[m+n,n]*m m n = Lemma.*-cancelʳ-≡′ (C (m + n) (suc n) * suc n) (C (m + n) n * m) (False[n!≟0] n) $ begin-equality C (m + n) (suc n) * suc n * n ! ≡⟨ *-assoc (C (m + n) (suc n)) (suc n) (n !) ⟩ C (m + n) (suc n) * suc n ! ≡⟨ C[n,k]*k!≡P[n,k] (m + n) (suc n) ⟩ P (m + n) (suc n) ≡⟨ P[m+n,1+n]≡P[m+n,n]*m m n ⟩ P (m + n) n * m ≡⟨ cong (_* m) $ sym $ C[n,k]*k!≡P[n,k] (m + n) n ⟩ (C (m + n) n * n !) * m ≡⟨ Lemma.lemma₇ (C (m + n) n) (n !) m ⟩ C (m + n) n * m * n ! ∎ C[n,1+k]*[1+k]≡C[n,k]*[n∸k] : ∀ n k → C n (suc k) * suc k ≡ C n k * (n ∸ k) C[n,1+k]*[1+k]≡C[n,k]*[n∸k] n k with k ≤? n ... | yes k≤n = begin-equality C n (suc k) * suc k ≡⟨ cong (λ v → C v (suc k) * suc k) (sym m+k≡n) ⟩ C (m + k) (suc k) * suc k ≡⟨ C[m+n,1+n]*[1+n]≡C[m+n,n]*m m k ⟩ C (m + k) k * m ≡⟨ cong (λ v → C v k * m) m+k≡n ⟩ C n k * (n ∸ k) ∎ where m = n ∸ k m+k≡n : m + k ≡ n m+k≡n = m∸n+n≡m k≤n ... | no k≰n = begin-equality C n (suc k) * suc k ≡⟨ cong (_* suc k) $ n<k⇒C[n,k]≡0 (≤-step n<k) ⟩ 0 * suc k ≡⟨⟩ 0 ≡⟨ sym $ *-zeroʳ (C n k) ⟩ C n k * 0 ≡⟨ cong (C n k *_) $ sym $ m≤n⇒m∸n≡0 (<⇒≤ n<k) ⟩ C n k * (n ∸ k) ∎ where n<k = ≰⇒> k≰n -- -- C n k = ((n + 1 - k) / k) * C n (k - 1) C[n,1+k]≡[C[n,k]*[n∸k]]/[1+k] : ∀ n k → C n (1 + k) ≡ (C n k * (n ∸ k)) / (1 + k) C[n,1+k]≡[C[n,k]*[n∸k]]/[1+k] n k = Lemma.m*n≡o⇒m≡o/n (C n (suc k)) (suc k) (C n k * (n ∸ k)) tt (C[n,1+k]*[1+k]≡C[n,k]*[n∸k] n k) -- C n k ≡ (n / k) * C (n - 1) (k - 1) -- proved by C[n,k]*k!≡P[n,k] [1+k]*C[1+n,1+k]≡[1+n]*C[n,k] : ∀ n k → suc k * C (suc n) (suc k) ≡ suc n * C n k [1+k]*C[1+n,1+k]≡[1+n]*C[n,k] n k = Lemma.*-cancelʳ-≡′ (suc k * C (suc n) (suc k)) (suc n * C n k) (False[n!≟0] k) $ begin-equality suc k * C (suc n) (suc k) * k ! ≡⟨ sym $ Lemma.lemma₈ (C (suc n) (suc k)) (suc k) (k !) ⟩ C (suc n) (suc k) * (suc k) ! ≡⟨ C[n,k]*k!≡P[n,k] (suc n) (suc k) ⟩ P (suc n) (suc k) ≡⟨⟩ suc n * P n k ≡⟨ cong (suc n *_) $ sym $ C[n,k]*k!≡P[n,k] n k ⟩ suc n * (C n k * k !) ≡⟨ sym $ *-assoc (suc n) (C n k) (k !) ⟩ suc n * C n k * k ! ∎ -- Multiply both sides by n ! * o ! C[m,n]*C[m∸n,o]≡C[m,o]*C[m∸o,n] : ∀ m n o → C m n * C (m ∸ n) o ≡ C m o * C (m ∸ o) n C[m,n]*C[m∸n,o]≡C[m,o]*C[m∸o,n] m n o = Lemma.*-cancelʳ-≡′ (C m n * C (m ∸ n) o) (C m o * C (m ∸ o) n) (False[n!≟0] n) $ Lemma.*-cancelʳ-≡′ (C m n * C (m ∸ n) o * n !) (C m o * C (m ∸ o) n * n !) (False[n!≟0] o) $ begin-equality C m n * C (m ∸ n) o * n ! * o ! ≡⟨ Lemma.lemma₁₀ (C m n) (C (m ∸ n) o) (n !) (o !) ⟩ (C m n * n !) * (C (m ∸ n) o * o !) ≡⟨ cong₂ _*_ (C[n,k]*k!≡P[n,k] m n) (C[n,k]*k!≡P[n,k] (m ∸ n) o) ⟩ P m n * P (m ∸ n) o ≡⟨ P-slide-∸ m n o ⟩ P m o * P (m ∸ o) n ≡⟨ sym $ cong₂ _*_ (C[n,k]*k!≡P[n,k] m o) (C[n,k]*k!≡P[n,k] (m ∸ o) n) ⟩ (C m o * o !) * (C (m ∸ o) n * n !) ≡⟨ Lemma.lemma₁₁ (C m o) (o !) (C (m ∸ o) n) (n !) ⟩ C m o * C (m ∸ o) n * n ! * o ! ∎ k≤n⇒1≤C[n,k] : ∀ {n k} → k ≤ n → 1 ≤ C n k k≤n⇒1≤C[n,k] {n} {k} k≤n = Lemma.*-cancelʳ-≤′ 1 (C n k) (False[n!≟0] k) $ begin 1 * k ! ≡⟨ *-identityˡ (k !) ⟩ k ! ≤⟨ k≤n⇒k!≤P[n,k] k≤n ⟩ P n k ≡⟨ sym $ C[n,k]*k!≡P[n,k] n k ⟩ C n k * k ! ∎ k≤n⇒C[n,k]≢0 : ∀ {n k} → k ≤ n → C n k ≢ 0 k≤n⇒C[n,k]≢0 {n} {k} k≤n = Lemma.1≤n⇒n≢0 $ k≤n⇒1≤C[n,k] k≤n C[n,k]≡0⇒n<k : ∀ {n k} → C n k ≡ 0 → n < k C[n,k]≡0⇒n<k {n} {k} C[n,k]≡0 with n <? k ... | yes n<k = n<k ... | no n≮k = ⊥-elim $ k≤n⇒C[n,k]≢0 (≮⇒≥ n≮k) C[n,k]≡0 C[n,k]≢0⇒k≤n : ∀ {n k} → C n k ≢ 0 → k ≤ n C[n,k]≢0⇒k≤n {n} {k} C[n,k]≢0 with k ≤? n ... | yes k≤n = k≤n ... | no k≰n = ⊥-elim $ C[n,k]≢0 $ n<k⇒C[n,k]≡0 (≰⇒> k≰n) ------------------------------------------------------------------------ -- Properties of double factorial !!-! : ∀ n → suc n !! * n !! ≡ suc n ! !!-! 0 = refl !!-! 1 = refl !!-! (suc (suc n)) = begin-equality (3 + n) !! * (2 + n) !! ≡⟨⟩ (3 + n) * (1 + n) !! * ((2 + n) * n !!) ≡⟨ Lemma.lemma₉ (3 + n) (suc n !!) (2 + n) (n !!) ⟩ (3 + n) * (2 + n) * ((1 + n) !! * n !!) ≡⟨ cong ((3 + n) * (2 + n) *_) $ !!-! n ⟩ (3 + n) * (2 + n) * (suc n !) ≡⟨ *-assoc (3 + n) (2 + n) (suc n !) ⟩ (3 + n) ! ∎ [2*n]!!≡n!*2^n : ∀ n → (2 * n) !! ≡ n ! * 2 ^ n [2*n]!!≡n!*2^n 0 = refl [2*n]!!≡n!*2^n (suc n) = begin-equality (2 * (1 + n)) !! ≡⟨ cong (_!!) $ *-distribˡ-+ 2 1 n ⟩ (2 + (2 * n)) !! ≡⟨⟩ (2 + 2 * n) * (2 * n) !! ≡⟨ cong ((2 + 2 * n) *_) $ [2*n]!!≡n!*2^n n ⟩ (2 + 2 * n) * (n ! * 2 ^ n) ≡⟨ cong (_* (n ! * 2 ^ n)) $ trans (sym $ *-distribˡ-+ 2 1 n) (*-comm 2 (suc n)) ⟩ (suc n * 2) * ((n !) * 2 ^ n) ≡⟨ Lemma.lemma₉ (suc n) 2 (n !) (2 ^ n) ⟩ (suc n) ! * 2 ^ suc n ∎ ------------------------------------------------------------------------ -- Properties of unsigned Stirling number of the first kind n<k⇒S1[n,k]≡0 : ∀ {n k} → n < k → S1 n k ≡ 0 n<k⇒S1[n,k]≡0 {0} {.(suc _)} (s≤s n<k) = refl n<k⇒S1[n,k]≡0 {suc n} {.(suc m)} (s≤s {_} {m} n<k) = begin-equality n * S1 n (suc m) + S1 n m ≡⟨ cong₂ _+_ (cong (n *_) $ n<k⇒S1[n,k]≡0 (≤-step n<k)) (n<k⇒S1[n,k]≡0 n<k) ⟩ n * 0 + 0 ≡⟨ cong (_+ 0) $ *-zeroʳ n ⟩ 0 ∎ S1[1+n,1]≡n! : ∀ n → S1 (suc n) 1 ≡ n ! S1[1+n,1]≡n! 0 = refl S1[1+n,1]≡n! (suc n) = begin-equality suc n * S1 (suc n) 1 + S1 (suc n) 0 ≡⟨⟩ suc n * S1 (suc n) 1 + 0 ≡⟨ +-identityʳ (suc n * S1 (suc n) 1) ⟩ suc n * S1 (suc n) 1 ≡⟨ cong (suc n *_) $ S1[1+n,1]≡n! n ⟩ (suc n) ! ∎ S1[n,n]≡1 : ∀ n → S1 n n ≡ 1 S1[n,n]≡1 0 = refl S1[n,n]≡1 (suc n) = begin-equality n * S1 n (suc n) + S1 n n ≡⟨ cong₂ _+_ (cong (n *_) $ n<k⇒S1[n,k]≡0 {n} {suc n} ≤-refl) (S1[n,n]≡1 n) ⟩ n * 0 + 1 ≡⟨ cong (_+ 1) $ *-zeroʳ n ⟩ 1 ∎ S1[1+n,n]≡C[1+n,2] : ∀ n → S1 (suc n) n ≡ C (suc n) 2 S1[1+n,n]≡C[1+n,2] 0 = refl S1[1+n,n]≡C[1+n,2] (suc n) = begin-equality S1 (suc (suc n)) (suc n) ≡⟨⟩ suc n * S1 (suc n) (suc n) + S1 (suc n) n ≡⟨ cong₂ _+_ (cong (suc n *_) (S1[n,n]≡1 (suc n))) (S1[1+n,n]≡C[1+n,2] n) ⟩ suc n * 1 + C (suc n) 2 ≡⟨ cong (_+ C (suc n) 2) lemma ⟩ C (suc n) 1 + C (suc n) 2 ≡⟨ sym $ C[1+n,1+k]≡C[n,k]+C[n,1+k] (suc n) 1 ⟩ C (suc (suc n)) 2 ∎ where lemma : suc n * 1 ≡ C (suc n) 1 lemma = trans (*-identityʳ (suc n)) (sym $ C[n,1]≡n (suc n)) ------------------------------------------------------------------------ -- Properties of Stirling number of the second kind n<k⇒S2[n,k]≡0 : ∀ {n k} → n < k → S2 n k ≡ 0 n<k⇒S2[n,k]≡0 {.0} {.(suc _)} (s≤s z≤n) = refl n<k⇒S2[n,k]≡0 {.(suc _)} {.(suc (suc _))} (s≤s (s≤s {n} {k} n≤k)) = begin-equality S2 (suc n) (suc (suc k)) ≡⟨⟩ 2+k * S2 n 2+k + S2 n (suc k) ≡⟨ cong₂ _+_ (cong (2+k *_) (n<k⇒S2[n,k]≡0 n<2+k)) (n<k⇒S2[n,k]≡0 n<1+k) ⟩ 2+k * 0 + 0 ≡⟨ cong (_+ 0) $ *-zeroʳ 2+k ⟩ 0 ∎ where 2+k = suc (suc k) n<1+k : n < 1 + k n<1+k = s≤s n≤k n<2+k : n < 2 + k n<2+k = ≤-step n<1+k S2[n,n]≡1 : ∀ n → S2 n n ≡ 1 S2[n,n]≡1 0 = refl S2[n,n]≡1 (suc n) = begin-equality suc n * S2 n (suc n) + S2 n n ≡⟨ cong₂ _+_ (cong (suc n *_) (n<k⇒S2[n,k]≡0 {n} {suc n} ≤-refl)) (S2[n,n]≡1 n) ⟩ suc n * 0 + 1 ≡⟨ cong (_+ 1) $ *-zeroʳ (suc n) ⟩ 1 ∎ S2[1+n,n]≡C[n,2] : ∀ n → S2 (suc n) n ≡ C (suc n) 2 S2[1+n,n]≡C[n,2] 0 = refl S2[1+n,n]≡C[n,2] (suc n) = begin-equality S2 (suc (suc n)) (suc n) ≡⟨⟩ suc n * S2 (suc n) (suc n) + S2 (suc n) n ≡⟨ cong₂ _+_ (cong (suc n *_) (S2[n,n]≡1 (suc n))) (S2[1+n,n]≡C[n,2] n) ⟩ suc n * 1 + C (suc n) 2 ≡⟨ cong (_+ C (suc n) 2) lemma ⟩ C (suc n) 1 + C (suc n) 2 ≡⟨ sym $ C[1+n,1+k]≡C[n,k]+C[n,1+k] (suc n) 1 ⟩ C (suc (suc n)) 2 ∎ where lemma : suc n * 1 ≡ C (suc n) 1 lemma = trans (*-identityʳ (suc n)) (sym $ C[n,1]≡n (suc n)) {- 1+S2[1+n,2]≡2^n : ∀ n → 1 + S2 (suc n) 2 ≡ 2 ^ n 1+S2[1+n,2]≡2^n 0 = refl 1+S2[1+n,2]≡2^n (suc n) = {! !} -} ------------------------------------------------------------------------ -- Properties of Lah number L[0,k]≡0 : ∀ k → L 0 k ≡ 0 L[0,k]≡0 0 = refl L[0,k]≡0 (suc k) = refl L-rec : ∀ n k → L (suc n) (suc (suc k)) ≡ (n + suc (suc k)) * L n (suc (suc k)) + L n (suc k) L-rec 0 k = sym $ trans (+-identityʳ (k * 0)) (*-zeroʳ k) L-rec (suc n) k = refl {- n<k⇒L[n,k]≡0 : ∀ {n k} → n < k → L n k ≡ 0 n<k⇒Lnk≡0 (s≤s z≤n) = refl n<k⇒Lnk≡0 {.(suc (suc n))} {.(suc (suc k))} (s≤s (s≤s {suc n} {k} n<k)) = begin (L (suc n) (suc (suc k)) + (n + suc (suc k)) * L (suc n) (suc (suc k))) + L (suc n) (suc k) ≡⟨ cong₂ _+_ (cong₂ _+_ lemma (cong ((n + suc (suc k)) *_) {! !}))n<k⇒L[n,k]≡0 (s≤s n<k)) ⟩ 0 + (n + suc (suc k)) * 0 + 0 ≡⟨ {! !} ⟩ 0 ∎ where lemma : L (suc n) (suc (suc k)) ≡ 0 lemma = n<k⇒L[n,k]≡0 (≤-step (s≤s n<k)) L[n,n] : ∀ n → L (suc n) (suc n) ≡ 1 L[n,n] 0 = refl L[n,n] (suc n) = {! !} -} ------------------------------------------------------------------------ -- Properties of Pochhammer symbol Poch[0,1+k]≡0 : ∀ k → Poch 0 (suc k) ≡ 0 Poch[0,1+k]≡0 k = refl Poch[n,1]≡n : ∀ n → Poch n 1 ≡ n Poch[n,1]≡n 0 = refl Poch[n,1]≡n (suc n) = cong suc (*-identityʳ n) Poch[1+n,k]*n!≡[n+k]! : ∀ n k → Poch (suc n) k * n ! ≡ (n + k) ! Poch[1+n,k]*n!≡[n+k]! n 0 = trans (+-identityʳ (n !)) (sym $ cong (_!) $ +-identityʳ n) Poch[1+n,k]*n!≡[n+k]! n (suc k) = begin-equality Poch (suc n) (suc k) * n ! ≡⟨⟩ suc n * Poch (suc (suc n)) k * n ! ≡⟨ Lemma.lemma₁₂ (suc n) (Poch (suc (suc n)) k) (n !) ⟩ Poch (suc (suc n)) k * (suc n) ! ≡⟨ Poch[1+n,k]*n!≡[n+k]! (suc n) k ⟩ (suc n + k) ! ≡⟨ sym $ cong (_!) $ +-suc n k ⟩ (n + suc k) ! ∎ Poch[1,k]≡k! : ∀ k → Poch 1 k ≡ k ! Poch[1,k]≡k! k = Lemma.*-cancelʳ-≡′ (Poch 1 k) (k !) {1 !} tt $ begin-equality Poch 1 k * 1 ! ≡⟨ Poch[1+n,k]*n!≡[n+k]! 0 k ⟩ k ! ≡⟨ sym $ *-identityʳ (k !) ⟩ k ! * 1 ! ∎ Poch[1+m,n]≡P[m+n,n] : ∀ m n → Poch (suc m) n ≡ P (m + n) n Poch[1+m,n]≡P[m+n,n] m n = Lemma.*-cancelʳ-≡′ (Poch (suc m) n) (P (m + n) n) (False[n!≟0] m) $ begin-equality Poch (suc m) n * m ! ≡⟨ Poch[1+n,k]*n!≡[n+k]! m n ⟩ (m + n) ! ≡⟨ sym $ P[m+n,n]*m!≡[m+n]! m n ⟩ P (m + n) n * m ! ∎ Poch[n,k]≡P[n+k∸1,n] : ∀ n k → Poch n k ≡ P (n + k ∸ 1) k Poch[n,k]≡P[n+k∸1,n] 0 0 = refl Poch[n,k]≡P[n+k∸1,n] 0 (suc k) = sym $ n<k⇒P[n,k]≡0 {k} {suc k} ≤-refl Poch[n,k]≡P[n+k∸1,n] (suc n) k = begin-equality Poch (suc n) k ≡⟨ Poch[1+m,n]≡P[m+n,n] n k ⟩ P (n + k) k ≡⟨⟩ P (suc n + k ∸ 1) k ∎ Poch[1+[n∸k],k]≡P[n,k] : ∀ {n k} → k ≤ n → Poch (suc (n ∸ k)) k ≡ P n k Poch[1+[n∸k],k]≡P[n,k] {n} {k} k≤n = begin-equality Poch (suc m) k ≡⟨ Poch[1+m,n]≡P[m+n,n] m k ⟩ P (m + k) k ≡⟨ cong (λ v → P v k) m+k≡n ⟩ P n k ∎ where m = n ∸ k m+k≡n = m∸n+n≡m k≤n Poch-split : ∀ m n o → Poch m (n + o) ≡ Poch m n * Poch (m + n) o Poch-split m 0 o = begin-equality Poch m o ≡⟨ sym $ cong (λ v → Poch v o) $ +-identityʳ m ⟩ Poch (m + 0) o ≡⟨ sym $ +-identityʳ (Poch (m + 0) o) ⟩ Poch (m + 0) o + 0 ∎ Poch-split m (suc n) o = begin-equality m * Poch (suc m) (n + o) ≡⟨ cong (m *_) $ Poch-split (suc m) n o ⟩ m * (Poch (suc m) n * Poch (suc m + n) o) ≡⟨ sym $ *-assoc m (Poch (suc m) n) (Poch (suc m + n) o) ⟩ m * Poch (suc m) n * Poch (suc m + n) o ≡⟨ cong (λ v → m * Poch (suc m) n * Poch v o) $ sym $ +-suc m n ⟩ m * Poch (suc m) n * Poch (m + suc n) o ∎ o≤n⇒Poch[m,n]≡Poch[m+o,n∸o]*Poch[m,o] : ∀ m {n o} → o ≤ n → Poch m n ≡ Poch (m + o) (n ∸ o) * Poch m o o≤n⇒Poch[m,n]≡Poch[m+o,n∸o]*Poch[m,o] m {n} {o} o≤n = begin-equality Poch m n ≡⟨ cong (Poch m) n≡o+p ⟩ Poch m (o + p) ≡⟨ Poch-split m o p ⟩ Poch m o * Poch (m + o) p ≡⟨ *-comm (Poch m o) (Poch (m + o) p) ⟩ Poch (m + o) p * Poch m o ∎ where p = n ∸ o n≡o+p : n ≡ o + (n ∸ o) n≡o+p = trans (sym $ m∸n+n≡m o≤n) (+-comm (n ∸ o) o) 1≤n⇒1≤Poch[n,k] : ∀ {n} k → 1 ≤ n → 1 ≤ Poch n k 1≤n⇒1≤Poch[n,k] {n} zero 1≤n = ≤-refl 1≤n⇒1≤Poch[n,k] {n} (suc k) 1≤n = begin 1 * 1 ≤⟨ *-mono-≤ 1≤n (1≤n⇒1≤Poch[n,k] k (≤-step 1≤n)) ⟩ n * Poch (suc n) k ∎ ------------------------------------------------------------------------ -- Properties of Central binomial coefficient private 2*n≡n+n : ∀ n → 2 * n ≡ n + n 2*n≡n+n n = cong (n +_) $ +-identityʳ n CB[n]*n!*n!≡[2*n]! : ∀ n → CB n * n ! * n ! ≡ (2 * n) ! CB[n]*n!*n!≡[2*n]! n = begin-equality C (2 * n) n * n ! * n ! ≡⟨ cong (λ v → C v n * n ! * n !) $ 2*n≡n+n n ⟩ C (n + n) n * n ! * n ! ≡⟨ C[m+n,m]*m!*n!≡[m+n]! n n ⟩ (n + n) ! ≡⟨ cong (_!) $ sym $ 2*n≡n+n n ⟩ (2 * n) ! ∎ CB[1+n]*[1+n]≡2*[1+2*n]*CB[n] : ∀ n → CB (suc n) * suc n ≡ 2 * (1 + 2 * n) * CB n CB[1+n]*[1+n]≡2*[1+2*n]*CB[n] n = Lemma.*-cancelʳ-≡′ (CB (1 + n) * suc n) (2 * (1 + 2 * n) * CB n) {o = suc n * n ! * n !} (fromWitnessFalse (Lemma.*-pres-≢0 (Lemma.*-pres-≢0 {a = suc n} (λ ()) ((n!≢0 n))) (n!≢0 n))) ( begin-equality CB (suc n) * suc n * (suc n * n ! * n !) ≡⟨ Lemma.lemma₁₄ (CB (1 + n)) (suc n) (n !) ⟩ CB (suc n) * (suc n) ! * (suc n) ! ≡⟨ CB[n]*n!*n!≡[2*n]! (suc n) ⟩ (2 * suc n) ! ≡⟨ cong (_!) $ *-distribˡ-+ 2 1 n ⟩ (2 + 2 * n) ! ≡⟨⟩ (2 + 2 * n) * ((1 + 2 * n) * (2 * n) !) ≡⟨ sym $ *-assoc (2 + 2 * n) (1 + 2 * n) ((2 * n) !) ⟩ (2 + 2 * n) * (1 + 2 * n) * (2 * n) ! ≡⟨ cong (_* (2 * n) !) $ Lemma.lemma₁₅ n ⟩ 2 * (1 + 2 * n) * (1 + n) * (2 * n) ! ≡⟨ sym $ cong (2 * (1 + 2 * n) * (1 + n) *_) $ CB[n]*n!*n!≡[2*n]! n ⟩ 2 * (1 + 2 * n) * (1 + n) * (CB n * n ! * n !) ≡⟨ Lemma.lemma₁₆ (2 * (1 + 2 * n)) (1 + n) (CB n) (n !) ⟩ 2 * (1 + 2 * n) * CB n * (suc n * n ! * n !) ∎ ) ------------------------------------------------------------------------ -- Properties of Catalan number -- Catelan n = C (2 * n) n / suc n private C[2*n,1+n]*[1+n]≡CB[n]*n : ∀ n → C (2 * n) (1 + n) * (1 + n) ≡ CB n * n C[2*n,1+n]*[1+n]≡CB[n]*n n = begin-equality C (2 * n) (1 + n) * (1 + n) ≡⟨ cong (λ v → C v (1 + n) * (1 + n)) $ 2*n≡n+n n ⟩ C (n + n) (1 + n) * (1 + n) ≡⟨ C[m+n,1+n]*[1+n]≡C[m+n,n]*m n n ⟩ C (n + n) n * n ≡⟨ cong (λ v → C v n * n) $ sym $ 2*n≡n+n n ⟩ C (2 * n) n * n ∎ [C[2*n,n]∸C[2*n,1+n]]*[1+n]≡CB[n] : ∀ n → (C (2 * n) n ∸ C (2 * n) (1 + n)) * (1 + n) ≡ CB n [C[2*n,n]∸C[2*n,1+n]]*[1+n]≡CB[n] n = begin-equality (C (2 * n) n ∸ C (2 * n) (1 + n)) * (1 + n) ≡⟨ *-distribʳ-∸ (1 + n) (C (2 * n) n) (C (2 * n) (1 + n)) ⟩ C (2 * n) n * (1 + n) ∸ C (2 * n) (1 + n) * (1 + n) ≡⟨ cong (C (2 * n) n * (1 + n) ∸_) $ C[2*n,1+n]*[1+n]≡CB[n]*n n ⟩ C (2 * n) n * (1 + n) ∸ C (2 * n) n * n ≡⟨ sym $ *-distribˡ-∸ (C (2 * n) n) (1 + n) n ⟩ C (2 * n) n * (suc n ∸ n) ≡⟨ cong (C (2 * n) n *_) $ m+n∸n≡m 1 n ⟩ C (2 * n) n * 1 ≡⟨ *-identityʳ (C (2 * n) n) ⟩ C (2 * n) n ∎ Catalan[n]≡C[2*n,n]∸C[2*n,1+n] : ∀ n → Catalan n ≡ C (2 * n) n ∸ C (2 * n) (1 + n) Catalan[n]≡C[2*n,n]∸C[2*n,1+n] n = sym $ Lemma.m*n≡o⇒m≡o/n (C (2 * n) n ∸ C (2 * n) (1 + n)) (suc n) (C (2 * n) n) tt ([C[2*n,n]∸C[2*n,1+n]]*[1+n]≡CB[n] n) Catalan[n]*[1+n]≡CB[n] : ∀ n → Catalan n * (1 + n) ≡ CB n Catalan[n]*[1+n]≡CB[n] n = begin-equality Catalan n * (1 + n) ≡⟨ cong (_* (1 + n)) $ Catalan[n]≡C[2*n,n]∸C[2*n,1+n] n ⟩ (C (2 * n) n ∸ C (2 * n) (1 + n)) * (1 + n) ≡⟨ [C[2*n,n]∸C[2*n,1+n]]*[1+n]≡CB[n] n ⟩ C (2 * n) n ∎ [1+n]!*n!*Catalan[n]≡[2*n]! : ∀ n → (1 + n) ! * n ! * Catalan n ≡ (2 * n) ! [1+n]!*n!*Catalan[n]≡[2*n]! n = begin-equality (suc n * n !) * n ! * Catalan n ≡⟨ Lemma.lemma₁₃ (suc n) (n !) (Catalan n) ⟩ (Catalan n * suc n) * n ! * n ! ≡⟨ cong (λ v → v * n ! * n !) $ Catalan[n]*[1+n]≡CB[n] n ⟩ CB n * n ! * n ! ≡⟨ CB[n]*n!*n!≡[2*n]! n ⟩ (2 * n) ! ∎ Catalan[n]≡[2*n]!/[[1+n]!*n!] : ∀ n → Catalan n ≡ _/_ ((2 * n) !) ((1 + n) ! * n !) {False[m!*n!≟0] (1 + n) n} Catalan[n]≡[2*n]!/[[1+n]!*n!] n = Lemma.m*n≡o⇒m≡o/n (Catalan n) ((1 + n) ! * n !) ((2 * n) !) (False[m!*n!≟0] (1 + n) n) ( begin-equality Catalan n * (suc n ! * n !) ≡⟨ *-comm (Catalan n) (suc n ! * n !) ⟩ suc n ! * n ! * Catalan n ≡⟨ [1+n]!*n!*Catalan[n]≡[2*n]! n ⟩ (2 * n) ! ∎ ) Catalan[1+n]*[2+n]≡2*[1+2*n]*Catalan[n] : ∀ n → Catalan (suc n) * (2 + n) ≡ 2 * (1 + 2 * n) * Catalan n Catalan[1+n]*[2+n]≡2*[1+2*n]*Catalan[n] n = Lemma.*-cancelʳ-≡′ (Catalan (suc n) * (2 + n)) (2 * (1 + 2 * n) * Catalan n) {o = suc n} tt (begin-equality Catalan (suc n) * (2 + n) * suc n ≡⟨ cong (_* suc n) $ Catalan[n]*[1+n]≡CB[n] (suc n) ⟩ CB (suc n) * suc n ≡⟨ CB[1+n]*[1+n]≡2*[1+2*n]*CB[n] n ⟩ 2 * (1 + 2 * n) * CB n ≡⟨ sym $ cong (2 * (1 + 2 * n) *_) $ Catalan[n]*[1+n]≡CB[n] n ⟩ 2 * (1 + 2 * n) * (Catalan n * suc n) ≡⟨ sym $ *-assoc (2 * (1 + 2 * n)) (Catalan n) (suc n) ⟩ 2 * (1 + 2 * n) * Catalan n * suc n ∎ ) {- TODO Catalan[1+n]≡Σ[i≤n][Catalan[i]*Catalan[n∸i]] : ∀ n → Catalan (suc n) ≡ Σ[ i ≤ n ] (Catalan i * Catalan (n ∸ i)) Catalan[1+n]≡Σ[i≤n][Catalan[i]*Catalan[n∸i]] n = ? -} ------------------------------------------------------------------ -- Properties of Multinomial coefficient product[map[!,xs]]*Multinomial[xs]≡sum[xs]! : ∀ xs → product (List.map _! xs) * Multinomial xs ≡ sum xs ! product[map[!,xs]]*Multinomial[xs]≡sum[xs]! [] = refl product[map[!,xs]]*Multinomial[xs]≡sum[xs]! xxs@(x ∷ xs) = begin-equality x ! * product (List.map _! xs) * (C (sum xxs) x * Multinomial xs) ≡⟨ Lemma.lemma₁₇ (x !) (product (List.map _! xs)) (C (sum xxs) x) (Multinomial xs) ⟩ C (x + sum xs) x * x ! * (product (List.map _! xs) * Multinomial xs) ≡⟨ cong (C (sum xxs) x * x ! *_) $ product[map[!,xs]]*Multinomial[xs]≡sum[xs]! xs ⟩ C (x + sum xs) x * x ! * sum xs ! ≡⟨ C[m+n,m]*m!*n!≡[m+n]! x (sum xs) ⟩ (x + sum xs) ! ∎ private 1≢0 : 1 ≢ 0 1≢0 () product[map[!,xs]]≢0 : ∀ xs → product (List.map _! xs) ≢ 0 product[map[!,xs]]≢0 xs = foldr-preservesᵇ {P = λ x → x ≢ 0} Lemma.*-pres-≢0 1≢0 (Allₚ.map⁺ {f = _!} $ All.universal n!≢0 xs) Multinomial[xs]≡sum[xs]!/product[map[!,xs]] : ∀ xs → Multinomial xs ≡ _/_ (sum xs !) (product (List.map _! xs)) {fromWitnessFalse (product[map[!,xs]]≢0 xs)} Multinomial[xs]≡sum[xs]!/product[map[!,xs]] xs = Lemma.m*n≡o⇒m≡o/n (Multinomial xs) (product (List.map _! xs)) (sum xs !) (fromWitnessFalse (product[map[!,xs]]≢0 xs)) (begin-equality Multinomial xs * product (List.map _! xs) ≡⟨ *-comm (Multinomial xs) (product (List.map _! xs)) ⟩ product (List.map _! xs) * Multinomial xs ≡⟨ product[map[!,xs]]*Multinomial[xs]≡sum[xs]! xs ⟩ sum xs ! ∎ ) Multinomial[[x]]≡1 : ∀ x → Multinomial (x ∷ []) ≡ 1 Multinomial[[x]]≡1 x = begin-equality C (x + 0) x * 1 ≡⟨ *-identityʳ (C (x + 0) x) ⟩ C (x + 0) x ≡⟨ cong (λ v → C v x) $ +-identityʳ x ⟩ C x x ≡⟨ C[n,n]≡1 x ⟩ 1 ∎ Multinomial[[m,n]]≡C[m+n,m] : ∀ m n → Multinomial (m ∷ n ∷ []) ≡ C (m + n) m Multinomial[[m,n]]≡C[m+n,m] m n = begin-equality C (m + (n + 0)) m * Multinomial (n ∷ []) ≡⟨ cong (C (m + (n + 0)) m *_) $ Multinomial[[x]]≡1 n ⟩ C (m + (n + 0)) m * 1 ≡⟨ *-identityʳ (C (m + (n + 0)) m) ⟩ C (m + (n + 0)) m ≡⟨ cong (λ v → C (m + v) m) $ +-identityʳ n ⟩ C (m + n) m ∎ ------------------------------------------------------------------------ -- Properties of Pascal's triangle module _ {a} {A : Set a} where length-gpascal : ∀ f (v0 v1 : A) n → length (gpascal f v0 v1 n) ≡ suc n length-gpascal f v0 v1 zero = refl length-gpascal f v0 v1 (suc n) = begin-equality length (zipWith f (v0 ∷ ps) (ps ∷ʳ v0)) ≡⟨ length-zipWith f (v0 ∷ ps) (ps ∷ʳ v0) ⟩ length (v0 ∷ ps) ⊓ length (ps ∷ʳ v0) ≡⟨ cong (suc (length ps) ⊓_) $ length-++ ps ⟩ suc (length ps) ⊓ (length ps + 1) ≡⟨ cong₂ (λ u v → suc u ⊓ v) hyp (trans (cong (_+ 1) hyp) (+-comm (suc n) 1)) ⟩ suc (suc n) ⊓ (suc (suc n)) ≡⟨ ⊓-idem (suc (suc n)) ⟩ suc (suc n) ∎ where ps = gpascal f v0 v1 n hyp = length-gpascal f v0 v1 n
{ "alphanum_fraction": 0.3907135032, "avg_line_length": 40.7416904084, "ext": "agda", "hexsha": "d7b6a6a74cc41cf9d7f6e1ebbdc27abd5a03a164", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-combinatorics", "max_forks_repo_path": "Math/Combinatorics/Function/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-combinatorics", "max_issues_repo_path": "Math/Combinatorics/Function/Properties.agda", "max_line_length": 144, "max_stars_count": 3, "max_stars_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-combinatorics", "max_stars_repo_path": "Math/Combinatorics/Function/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-25T07:25:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-25T08:24:15.000Z", "num_tokens": 23842, "size": 42901 }
------------------------------------------------------------------------ -- Coinductive higher lenses ------------------------------------------------------------------------ -- Paolo Capriotti came up with these lenses, and provided an informal -- proof showing that this lens type is pointwise equivalent to his -- higher lenses. I turned this proof into the proof presented below, -- with help from Andrea Vezzosi (see -- Lens.Non-dependent.Higher.Coherently.Coinductive). {-# OPTIONS --cubical --guardedness #-} import Equality.Path as P module Lens.Non-dependent.Higher.Coinductive {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) import Coherently-constant eq as CC open import Colimit.Sequential eq as C using (∣_∣) open import Equality.Decidable-UIP equality-with-J using (Constant) open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) import Equivalence.Half-adjoint equality-with-J as HA open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as T using (∥_∥; ∣_∣) import H-level.Truncation.Propositional.Non-recursive eq as N open import H-level.Truncation.Propositional.One-step eq as O using (∥_∥¹; ∥_∥¹-out-^; ∥_∥¹-in-^; ∣_∣; ∣_,_∣-in-^) open import Preimage equality-with-J using (_⁻¹_) open import Univalence-axiom equality-with-J open import Lens.Non-dependent eq import Lens.Non-dependent.Higher eq as H import Lens.Non-dependent.Higher.Capriotti eq as Higher open import Lens.Non-dependent.Higher.Coherently.Coinductive eq private variable a b p : Level A B : Type a P : A → Type p f : (x : A) → P x ------------------------------------------------------------------------ -- Weakly constant functions -- A variant of Constant. Constant′ : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Constant′ {A = A} {B = B} f = ∃ λ (g : ∥ A ∥¹ → B) → ∀ x → g ∣ x ∣ ≡ f x -- Constant and Constant′ are pointwise equivalent. Constant≃Constant′ : (f : A → B) → Constant f ≃ Constant′ f Constant≃Constant′ f = Eq.↔→≃ (λ c → O.rec′ f c , λ x → O.rec′ f c ∣ x ∣ ≡⟨⟩ f x ∎) (λ (g , h) x y → f x ≡⟨ sym (h x) ⟩ g ∣ x ∣ ≡⟨ cong g (O.∣∣-constant x y) ⟩ g ∣ y ∣ ≡⟨ h y ⟩∎ f y ∎) (λ (g , h) → let lem = O.elim λ where .O.Elim.∣∣ʳ x → f x ≡⟨ sym (h x) ⟩∎ g ∣ x ∣ ∎ .O.Elim.∣∣-constantʳ x y → let g′ = O.rec′ f λ x y → trans (sym (h x)) (trans (cong g (O.∣∣-constant x y)) (h y)) in subst (λ z → g′ z ≡ g z) (O.∣∣-constant x y) (sym (h x)) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong g′ (O.∣∣-constant x y))) (trans (sym (h x)) (cong g (O.∣∣-constant x y))) ≡⟨ cong (flip trans _) $ cong sym O.rec-∣∣-constant ⟩ trans (sym (trans (sym (h x)) (trans (cong g (O.∣∣-constant x y)) (h y)))) (trans (sym (h x)) (cong g (O.∣∣-constant x y))) ≡⟨ trans (cong (flip trans _) $ trans (cong sym $ sym $ trans-assoc _ _ _) $ sym-trans _ _) $ trans-[trans-sym]- _ _ ⟩∎ sym (h y) ∎ in Σ-≡,≡→≡ (⟨ext⟩ lem) (⟨ext⟩ λ x → subst (λ g → ∀ x → g ∣ x ∣ ≡ f x) (⟨ext⟩ lem) (λ x → refl (f x)) x ≡⟨ sym $ push-subst-application _ _ ⟩ subst (λ g → g ∣ x ∣ ≡ f x) (⟨ext⟩ lem) (refl (f x)) ≡⟨ subst-∘ _ _ _ ⟩ subst (_≡ f x) (cong (_$ ∣ x ∣) (⟨ext⟩ lem)) (refl (f x)) ≡⟨ subst-trans-sym ⟩ trans (sym (cong (_$ ∣ x ∣) (⟨ext⟩ lem))) (refl (f x)) ≡⟨ trans-reflʳ _ ⟩ sym (cong (_$ ∣ x ∣) (⟨ext⟩ lem)) ≡⟨ cong sym $ cong-ext _ ⟩ sym (lem ∣ x ∣) ≡⟨⟩ sym (sym (h x)) ≡⟨ sym-sym _ ⟩∎ h x ∎)) (λ c → ⟨ext⟩ λ x → ⟨ext⟩ λ y → trans (sym (refl _)) (trans (cong (O.rec′ f c) (O.∣∣-constant x y)) (refl _)) ≡⟨ trans (cong₂ trans sym-refl (trans-reflʳ _)) $ trans-reflˡ _ ⟩ cong (O.rec′ f c) (O.∣∣-constant x y) ≡⟨ O.rec-∣∣-constant ⟩∎ c x y ∎) ------------------------------------------------------------------------ -- Coherently constant functions -- Coherently constant functions. Coherently-constant : {A : Type a} {B : Type b} (f : A → B) → Type (a ⊔ b) Coherently-constant = Coherently Constant O.rec′ -- Coherently constant functions are weakly constant. constant : Coherently-constant f → Constant f constant c = c .property -- An alternative to Coherently-constant. Coherently-constant′ : {A : Type a} {B : Type b} (f : A → B) → Type (a ⊔ b) Coherently-constant′ = Coherently Constant′ (λ _ → proj₁) -- Coherently-constant and Coherently-constant′ are pointwise -- equivalent (assuming univalence). Coherently-constant≃Coherently-constant′ : Block "Coherently-constant≃Coherently-constant′" → {A : Type a} {B : Type b} {f : A → B} → Univalence (a ⊔ b) → Coherently-constant f ≃ Coherently-constant′ f Coherently-constant≃Coherently-constant′ ⊠ univ = Coherently-cong univ Constant≃Constant′ (λ f c → O.rec′ f (_≃_.from (Constant≃Constant′ f) c) ≡⟨⟩ proj₁ (_≃_.to (Constant≃Constant′ f) (_≃_.from (Constant≃Constant′ f) c)) ≡⟨ cong proj₁ $ _≃_.right-inverse-of (Constant≃Constant′ f) _ ⟩∎ proj₁ c ∎) private -- Some definitions used in the implementation of -- ∃Coherently-constant′≃. module ∃Coherently-constant′≃ where to₁ : (f : A → B) → Coherently-constant′ f → ∀ n → ∥ A ∥¹-in-^ n → B to₁ f c zero = f to₁ f c (suc n) = to₁ (proj₁ (c .property)) (c .coherent) n to₂ : ∀ (f : A → B) (c : Coherently-constant′ f) n x → to₁ f c (suc n) ∣ n , x ∣-in-^ ≡ to₁ f c n x to₂ f c zero = proj₂ (c .property) to₂ f c (suc n) = to₂ (proj₁ (c .property)) (c .coherent) n from : (f : ∀ n → ∥ A ∥¹-in-^ n → B) → (∀ n x → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) → Coherently-constant′ (f 0) from f c .property = f 1 , c 0 from f c .coherent = from (f ∘ suc) (c ∘ suc) from-to : (f : A → B) (c : Coherently-constant′ f) → from (to₁ f c) (to₂ f c) P.≡ c from-to f c i .property = (c .property P.∎) i from-to f c i .coherent = from-to (proj₁ (c .property)) (c .coherent) i to₁-from : (f : ∀ n → ∥ A ∥¹-in-^ n → B) (c : ∀ n x → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) → ∀ n x → to₁ (f 0) (from f c) n x ≡ f n x to₁-from f c zero = refl ∘ f 0 to₁-from f c (suc n) = to₁-from (f ∘ suc) (c ∘ suc) n to₂-from : (f : ∀ n → ∥ A ∥¹-in-^ n → B) (c : ∀ n x → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) → ∀ n x → trans (sym (to₁-from f c (suc n) ∣ n , x ∣-in-^)) (trans (to₂ (f 0) (from f c) n x) (to₁-from f c n x)) ≡ c n x to₂-from f c (suc n) = to₂-from (f ∘ suc) (c ∘ suc) n to₂-from f c zero = λ x → trans (sym (refl _)) (trans (c 0 x) (refl _)) ≡⟨ trans (cong (flip trans _) sym-refl) $ trans-reflˡ _ ⟩ trans (c 0 x) (refl _) ≡⟨ trans-reflʳ _ ⟩∎ c 0 x ∎ -- "Functions from A to B that are coherently constant" can be -- expressed in a different way. ∃Coherently-constant′≃ : (∃ λ (f : A → B) → Coherently-constant′ f) ≃ (∃ λ (f : ∀ n → ∥ A ∥¹-in-^ n → B) → ∀ n x → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) ∃Coherently-constant′≃ = Eq.↔→≃ (λ (f , c) → to₁ f c , to₂ f c) (λ (f , c) → f 0 , from f c) (λ (f , c) → Σ-≡,≡→≡ (⟨ext⟩ λ n → ⟨ext⟩ λ x → to₁-from f c n x) (⟨ext⟩ λ n → ⟨ext⟩ λ x → subst (λ f → ∀ n x → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) (⟨ext⟩ λ n → ⟨ext⟩ λ x → to₁-from f c n x) (to₂ (f 0) (from f c)) n x ≡⟨ trans (cong (_$ x) $ sym $ push-subst-application _ _) $ sym $ push-subst-application _ _ ⟩ subst (λ f → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) (⟨ext⟩ λ n → ⟨ext⟩ λ x → to₁-from f c n x) (to₂ (f 0) (from f c) n x) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (λ f → f (suc n) ∣ n , x ∣-in-^) (⟨ext⟩ λ n → ⟨ext⟩ λ x → to₁-from f c n x))) (trans (to₂ (f 0) (from f c) n x) (cong (λ f → f n x) (⟨ext⟩ λ n → ⟨ext⟩ λ x → to₁-from f c n x))) ≡⟨ cong₂ (λ p q → trans (sym p) (trans (to₂ (f 0) (from f c) n x) q)) (trans (sym $ cong-∘ _ _ _) $ trans (cong (cong _) $ cong-ext _) $ cong-ext _) (trans (sym $ cong-∘ _ _ _) $ trans (cong (cong _) $ cong-ext _) $ cong-ext _) ⟩ trans (sym (to₁-from f c (suc n) ∣ n , x ∣-in-^)) (trans (to₂ (f 0) (from f c) n x) (to₁-from f c n x)) ≡⟨ to₂-from f c n x ⟩∎ c n x ∎)) (λ (f , c) → cong (f ,_) $ _↔_.from ≡↔≡ $ from-to f c) where open ∃Coherently-constant′≃ private -- A lemma that is used in the implementation of -- Coherently-constant′≃. Coherently-constant′≃-lemma : (∃ λ (f : A → B) → Coherently-constant′ f) ≃ (∃ λ (f : A → B) → ∃ λ (g : ∀ n → ∥ A ∥¹-in-^ (suc n) → B) → (∀ x → g 0 ∣ x ∣ ≡ f x) × (∀ n x → g (suc n) ∣ n , x ∣-in-^ ≡ g n x)) Coherently-constant′≃-lemma {A = A} {B = B} = (∃ λ (f : A → B) → Coherently-constant′ f) ↝⟨ ∃Coherently-constant′≃ ⟩ (∃ λ (f : ∀ n → ∥ A ∥¹-in-^ n → B) → ∀ n x → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) ↝⟨ Eq.↔→≃ (λ (f , eq) → f 0 , f ∘ suc , ℕ-case (eq 0) (eq ∘ suc)) (λ (f , g , eq) → ℕ-case f g , eq) (λ (f , g , eq) → cong (λ eq → f , g , eq) $ ⟨ext⟩ $ ℕ-case (refl _) (λ _ → refl _)) lemma ⟩ (∃ λ (f : A → B) → ∃ λ (g : ∀ n → ∥ A ∥¹-in-^ (suc n) → B) → ∀ n x → g n ∣ n , x ∣-in-^ ≡ ℕ-case {P = λ n → ∥ A ∥¹-in-^ n → B} f g n x) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → Πℕ≃ ext) ⟩□ (∃ λ (f : A → B) → ∃ λ (g : ∀ n → ∥ A ∥¹-in-^ (suc n) → B) → (∀ x → g 0 ∣ x ∣ ≡ f x) × (∀ n x → g (suc n) ∣ n , x ∣-in-^ ≡ g n x)) □ where -- An alternative (unused) proof of the second step above. If this -- proof is used instead of the other one, then the proof of -- from-Coherently-constant′≃ below fails (at least at the time of -- writing). second-step : (∃ λ (f : ∀ n → ∥ A ∥¹-in-^ n → B) → ∀ n x → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) ≃ (∃ λ (f : A → B) → ∃ λ (g : ∀ n → ∥ A ∥¹-in-^ (suc n) → B) → ∀ n x → g n ∣ n , x ∣-in-^ ≡ ℕ-case {P = λ n → ∥ A ∥¹-in-^ n → B} f g n x) second-step = from-bijection $ inverse $ (Σ-cong (inverse $ Πℕ≃ {k = equivalence} ext) λ _ → F.id) F.∘ Σ-assoc abstract lemma : (p@(f , eq) : ∃ λ (f : ∀ n → ∥ A ∥¹-in-^ n → B) → ∀ n x → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) → (ℕ-case (f 0) (f ∘ suc) , ℕ-case (eq 0) (eq ∘ suc)) ≡ p lemma (f , eq) = Σ-≡,≡→≡ (⟨ext⟩ $ ℕ-case (refl _) (λ _ → refl _)) (⟨ext⟩ λ n → ⟨ext⟩ λ x → let eq′ = ℕ-case (eq 0) (eq ∘ suc) r = ℕ-case (refl _) (λ _ → refl _) in subst {y = f} (λ f → ∀ n x → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) (⟨ext⟩ r) eq′ n x ≡⟨ sym $ trans (push-subst-application _ _) $ cong (_$ x) $ push-subst-application _ _ ⟩ subst (λ f → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) (⟨ext⟩ r) (eq′ n x) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (λ f → f (suc n) ∣ n , x ∣-in-^) (⟨ext⟩ r))) (trans (eq′ n x) (cong (λ f → f n x) (⟨ext⟩ r))) ≡⟨ trans (cong (flip trans _) $ trans (cong sym $ trans (sym $ cong-∘ _ _ _) $ trans (cong (cong (_$ ∣ n , x ∣-in-^)) $ cong-ext _) (cong-refl _)) sym-refl) $ trans-reflˡ _ ⟩ trans (eq′ n x) (cong (λ f → f n x) (⟨ext⟩ r)) ≡⟨ cong (trans _) $ trans (sym $ cong-∘ _ _ _) $ cong (cong (_$ x)) $ cong-ext _ ⟩ trans (eq′ n x) (cong (_$ x) $ r n) ≡⟨ ℕ-case {P = λ n → ∀ x → trans (eq′ n x) (cong (_$ x) $ r n) ≡ eq n x} (λ _ → trans (cong (trans _) $ cong-refl _) $ trans-reflʳ _) (λ _ _ → trans (cong (trans _) $ cong-refl _) $ trans-reflʳ _) n x ⟩∎ eq n x ∎) -- Coherently-constant′ can be expressed in a different way. Coherently-constant′≃ : Block "Coherently-constant′≃" → {f : A → B} → Coherently-constant′ f ≃ (∃ λ (g : ∀ n → ∥ A ∥¹-in-^ (suc n) → B) → (∀ x → g 0 ∣ x ∣ ≡ f x) × (∀ n x → g (suc n) ∣ n , x ∣-in-^ ≡ g n x)) Coherently-constant′≃ ⊠ {f = f} = Eq.⟨ _ , Eq.drop-Σ-map-id _ (_≃_.is-equivalence Coherently-constant′≃-lemma) f ⟩ -- A "computation" rule for Coherently-constant′≃. from-Coherently-constant′≃-property : (bl : Block "Coherently-constant′≃") → (f : A → B) {c@(g , g₀ , _) : ∃ λ (g : ∀ n → ∥ A ∥¹-in-^ (suc n) → B) → (∀ x → g 0 ∣ x ∣ ≡ f x) × (∀ n x → g (suc n) ∣ n , x ∣-in-^ ≡ g n x)} → _≃_.from (Coherently-constant′≃ bl) c .property ≡ (g 0 , g₀) from-Coherently-constant′≃-property {A = A} {B = B} ⊠ f {c = c@(g , g₀ , g₊)} = _≃_.from (Coherently-constant′≃ ⊠) c .property ≡⟨⟩ HA.inverse (Eq.drop-Σ-map-id _ (_≃_.is-equivalence Coherently-constant′≃-lemma) f) c .property ≡⟨ cong (λ c → c .property) $ Eq.inverse-drop-Σ-map-id {x = f} {eq = _≃_.is-equivalence Coherently-constant′≃-lemma} ⟩ subst Coherently-constant′ (cong proj₁ $ _≃_.right-inverse-of Coherently-constant′≃-lemma (f , c)) (proj₂ (_≃_.from Coherently-constant′≃-lemma (f , c))) .property ≡⟨ subst-Coherently-property ⟩ subst Constant′ (cong proj₁ $ _≃_.right-inverse-of Coherently-constant′≃-lemma (f , c)) (proj₂ (_≃_.from Coherently-constant′≃-lemma (f , c)) .property) ≡⟨⟩ subst Constant′ (cong proj₁ $ trans (cong {B = ∃ λ (f : A → B) → ∃ λ (g : ∀ n → ∥ A ∥¹-in-^ (suc n) → B) → (∀ x → g 0 ∣ x ∣ ≡ f x) × (∀ n x → g (suc n) ∣ n , x ∣-in-^ ≡ g n x)} (λ (f , eq) → f 0 , f ∘ suc , eq 0 , eq ∘ suc) $ _≃_.right-inverse-of ∃Coherently-constant′≃ (ℕ-case f g , ℕ-case g₀ g₊)) $ trans (cong (λ (f , g , eq) → f , g , eq 0 , eq ∘ suc) $ cong {B = ∃ λ (f : A → B) → ∃ λ (g : ∀ n → ∥ A ∥¹-in-^ (suc n) → B) → ∀ n x → g n ∣ n , x ∣-in-^ ≡ ℕ-case {P = λ n → ∥ A ∥¹-in-^ n → B} f g n x} {x = ℕ-case g₀ g₊} {y = ℕ-case g₀ g₊} (λ eq → f , g , eq) $ ⟨ext⟩ (ℕ-case (refl _) (λ _ → refl _))) $ cong (f ,_) (cong (g ,_) (refl _))) (g 0 , g₀) ≡⟨ cong (flip (subst Constant′) _) lemma ⟩ subst Constant′ (refl _) (g 0 , g₀) ≡⟨ subst-refl _ _ ⟩∎ g 0 , g₀ ∎ where lemma = (cong proj₁ $ trans (cong {B = ∃ λ (f : A → B) → ∃ λ (g : ∀ n → ∥ A ∥¹-in-^ (suc n) → B) → (∀ x → g 0 ∣ x ∣ ≡ f x) × (∀ n x → g (suc n) ∣ n , x ∣-in-^ ≡ g n x)} (λ (f , eq) → f 0 , f ∘ suc , eq 0 , eq ∘ suc) $ _≃_.right-inverse-of ∃Coherently-constant′≃ (ℕ-case f g , ℕ-case g₀ g₊)) $ trans (cong (λ (f , g , eq) → f , g , eq 0 , eq ∘ suc) $ cong {B = ∃ λ (f : A → B) → ∃ λ (g : ∀ n → ∥ A ∥¹-in-^ (suc n) → B) → ∀ n x → g n ∣ n , x ∣-in-^ ≡ ℕ-case {P = λ n → ∥ A ∥¹-in-^ n → B} f g n x} {x = ℕ-case g₀ g₊} {y = ℕ-case g₀ g₊} (λ eq → f , g , eq) $ ⟨ext⟩ (ℕ-case (refl _) (λ _ → refl _))) $ cong (f ,_) (cong (g ,_) (refl _))) ≡⟨ trans (cong-trans _ _ _) $ cong₂ trans (trans (cong-∘ _ _ _) $ sym $ cong-∘ _ _ _) (trans (cong-trans _ _ _) $ cong₂ trans (trans (cong-∘ _ _ _) $ cong-∘ _ _ _) (cong-∘ _ _ _)) ⟩ (trans (cong (_$ 0) $ cong proj₁ $ _≃_.right-inverse-of ∃Coherently-constant′≃ (ℕ-case f g , ℕ-case g₀ g₊)) $ trans (cong (const f) $ ⟨ext⟩ (ℕ-case (refl _) (λ _ → refl _))) $ cong (const f) (cong (g ,_) (refl _))) ≡⟨ trans (cong (trans _) $ trans (cong₂ trans (cong-const _) (cong-const _)) $ trans-refl-refl) $ trans-reflʳ _ ⟩ (cong (_$ 0) $ cong proj₁ $ _≃_.right-inverse-of ∃Coherently-constant′≃ (ℕ-case f g , ℕ-case g₀ g₊)) ≡⟨ cong (cong (_$ 0)) $ proj₁-Σ-≡,≡→≡ _ _ ⟩ (cong (_$ 0) $ ⟨ext⟩ λ n → ⟨ext⟩ λ x → ∃Coherently-constant′≃.to₁-from (ℕ-case f g) (ℕ-case g₀ g₊) n x) ≡⟨ cong-ext _ ⟩ (⟨ext⟩ λ x → ∃Coherently-constant′≃.to₁-from (ℕ-case f g) (ℕ-case g₀ g₊) 0 x) ≡⟨⟩ (⟨ext⟩ λ _ → refl _) ≡⟨ ext-refl ⟩∎ refl _ ∎ -- Functions from ∥ A ∥ can be expressed as coherently constant -- functions from A (assuming univalence). ∥∥→≃ : ∀ {A : Type a} {B : Type b} → Univalence (a ⊔ b) → (∥ A ∥ → B) ≃ (∃ λ (f : A → B) → Coherently-constant f) ∥∥→≃ {A = A} {B = B} univ = (∥ A ∥ → B) ↝⟨ N.∥∥→≃ ⟩ (∃ λ (f : ∀ n → ∥ A ∥¹-out-^ n → B) → ∀ n x → f (suc n) ∣ x ∣ ≡ f n x) ↝⟨ (Σ-cong {k₁ = equivalence} (∀-cong ext λ n → →-cong₁ ext (O.∥∥¹-out-^≃∥∥¹-in-^ n)) λ f → ∀-cong ext λ n → Π-cong-contra ext (inverse $ O.∥∥¹-out-^≃∥∥¹-in-^ n) λ x → ≡⇒↝ _ $ cong (λ y → f (suc n) y ≡ f n (_≃_.from (O.∥∥¹-out-^≃∥∥¹-in-^ n) x)) ( ∣ _≃_.from (O.∥∥¹-out-^≃∥∥¹-in-^ n) x ∣ ≡⟨ sym $ O.∣,∣-in-^≡∣∣ n ⟩∎ _≃_.from (O.∥∥¹-out-^≃∥∥¹-in-^ (suc n)) ∣ n , x ∣-in-^ ∎)) ⟩ (∃ λ (f : ∀ n → ∥ A ∥¹-in-^ n → B) → ∀ n x → f (suc n) ∣ n , x ∣-in-^ ≡ f n x) ↝⟨ inverse ∃Coherently-constant′≃ ⟩ (∃ λ (f : A → B) → Coherently-constant′ f) ↝⟨ (∃-cong λ _ → inverse $ Coherently-constant≃Coherently-constant′ ⊠ univ) ⟩□ (∃ λ (f : A → B) → Coherently-constant f) □ -- A function used in the statement of proj₂-to-∥∥→≃-property≡. proj₁-to-∥∥→≃-constant : {A : Type a} {B : Type b} (univ : Univalence (a ⊔ b)) → (f : ∥ A ∥ → B) → Constant (proj₁ (_≃_.to (∥∥→≃ univ) f)) proj₁-to-∥∥→≃-constant _ f x y = f ∣ x ∣ ≡⟨ cong f (T.truncation-is-proposition ∣ x ∣ ∣ y ∣) ⟩∎ f ∣ y ∣ ∎ -- A "computation rule" for ∥∥→≃. proj₂-to-∥∥→≃-property≡ : {A : Type a} {B : Type b} (univ : Univalence (a ⊔ b)) → {f : ∥ A ∥ → B} → proj₂ (_≃_.to (∥∥→≃ univ) f) .property ≡ proj₁-to-∥∥→≃-constant univ f proj₂-to-∥∥→≃-property≡ univ {f = f} = ⟨ext⟩ λ x → ⟨ext⟩ λ y → let g , c = _≃_.to C.universal-property (f ∘ _≃_.to N.∥∥≃∥∥) in proj₂ (_≃_.to (∥∥→≃ univ) f) .property x y ≡⟨⟩ _≃_.from (Coherently-constant≃Coherently-constant′ ⊠ univ) (proj₂ (_≃_.from ∃Coherently-constant′≃ (Σ-map (λ g n → g n ∘ _≃_.from (oi n)) (λ {g} c n x → ≡⇒→ (cong (λ y → g (suc n) y ≡ g n (_≃_.from (oi n) x)) (sym $ O.∣,∣-in-^≡∣∣ n)) (c n (_≃_.from (oi n) x))) (_≃_.to C.universal-property (f ∘ _≃_.to N.∥∥≃∥∥))))) .property x y ≡⟨⟩ _≃_.from (Constant≃Constant′ _) (proj₂ (_≃_.from ∃Coherently-constant′≃ (Σ-map (λ g n → g n ∘ _≃_.from (oi n)) (λ {g} c n x → ≡⇒→ (cong (λ y → g (suc n) y ≡ g n (_≃_.from (oi n) x)) (sym $ O.∣,∣-in-^≡∣∣ n)) (c n (_≃_.from (oi n) x))) (_≃_.to C.universal-property (f ∘ _≃_.to N.∥∥≃∥∥)))) .property) x y ≡⟨⟩ _≃_.from (Constant≃Constant′ _) ( g 1 , λ x → ≡⇒→ (cong (λ z → g 1 z ≡ g 0 x) (sym $ refl ∣ _ ∣)) (c 0 x) ) x y ≡⟨⟩ trans (sym (≡⇒→ (cong (λ z → g 1 z ≡ g 0 x) (sym $ refl ∣ _ ∣)) (c 0 x))) (trans (cong (g 1) (O.∣∣-constant x y)) (≡⇒→ (cong (λ z → g 1 z ≡ g 0 y) (sym $ refl ∣ _ ∣)) (c 0 y))) ≡⟨ cong₂ (λ p q → trans (sym p) (trans (cong (g 1) (O.∣∣-constant x y)) q)) (trans (cong (λ eq → ≡⇒→ (cong (λ z → g 1 z ≡ g 0 x) eq) (c 0 x)) sym-refl) $ trans (cong (λ eq → ≡⇒→ eq (c 0 x)) $ cong-refl _) $ cong (_$ c 0 x) ≡⇒→-refl) (trans (cong (λ eq → ≡⇒→ (cong (λ z → g 1 z ≡ g 0 y) eq) (c 0 y)) sym-refl) $ trans (cong (λ eq → ≡⇒→ eq (c 0 y)) $ cong-refl _) $ cong (_$ c 0 y) ≡⇒→-refl) ⟩ trans (sym (c 0 x)) (trans (cong (g 1) (O.∣∣-constant x y)) (c 0 y)) ≡⟨⟩ trans (sym (cong (f ∘ _≃_.to N.∥∥≃∥∥) (C.∣∣≡∣∣ x))) (trans (cong (f ∘ _≃_.to N.∥∥≃∥∥ ∘ ∣_∣) (O.∣∣-constant x y)) (cong (f ∘ _≃_.to N.∥∥≃∥∥) (C.∣∣≡∣∣ y))) ≡⟨ cong₂ (λ p q → trans (sym p) q) (sym $ cong-∘ _ _ _) (cong₂ trans (sym $ cong-∘ _ _ _) (sym $ cong-∘ _ _ _)) ⟩ trans (sym (cong f (cong (_≃_.to N.∥∥≃∥∥) (C.∣∣≡∣∣ x)))) (trans (cong f (cong (_≃_.to N.∥∥≃∥∥ ∘ ∣_∣) (O.∣∣-constant x y))) (cong f (cong (_≃_.to N.∥∥≃∥∥) (C.∣∣≡∣∣ y)))) ≡⟨ trans (cong₂ trans (sym $ cong-sym _ _) (sym $ cong-trans _ _ _)) $ sym $ cong-trans _ _ _ ⟩ cong f (trans (sym (cong (_≃_.to N.∥∥≃∥∥) (C.∣∣≡∣∣ x))) (trans (cong (_≃_.to N.∥∥≃∥∥ ∘ ∣_∣) (O.∣∣-constant x y)) (cong (_≃_.to N.∥∥≃∥∥) (C.∣∣≡∣∣ y)))) ≡⟨ cong (cong f) $ mono₁ 1 T.truncation-is-proposition _ _ ⟩∎ cong f (T.truncation-is-proposition ∣ x ∣ ∣ y ∣) ∎ where oi = O.∥∥¹-out-^≃∥∥¹-in-^ -- Two variants of Coherently-constant are pointwise equivalent -- (assuming univalence). Coherently-constant≃Coherently-constant : {A : Type a} {B : Type b} {f : A → B} → Univalence (a ⊔ b) → CC.Coherently-constant f ≃ Coherently-constant f Coherently-constant≃Coherently-constant {A = A} {B = B} {f = f} univ = CC.Coherently-constant f ↔⟨⟩ (∃ λ (g : ∥ A ∥ → B) → f ≡ g ∘ ∣_∣) ↝⟨ (Σ-cong (∥∥→≃ univ) λ _ → F.id) ⟩ (∃ λ ((g , _) : ∃ λ (g : A → B) → Coherently-constant g) → f ≡ g) ↔⟨ inverse Σ-assoc ⟩ (∃ λ (g : A → B) → Coherently-constant g × f ≡ g) ↝⟨ (∃-cong λ _ → ×-cong₁ λ eq → ≡⇒↝ _ $ cong Coherently-constant $ sym eq) ⟩ (∃ λ (g : A → B) → Coherently-constant f × f ≡ g) ↔⟨ ∃-comm ⟩ Coherently-constant f × (∃ λ (g : A → B) → f ≡ g) ↔⟨ (drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ (other-singleton-contractible _)) ⟩□ Coherently-constant f □ -- A "computation rule" for Coherently-constant≃Coherently-constant. to-Coherently-constant≃Coherently-constant-property : ∀ {A : Type a} {B : Type b} {f : A → B} {c : CC.Coherently-constant f} {x y} (univ : Univalence (a ⊔ b)) → _≃_.to (Coherently-constant≃Coherently-constant univ) c .property x y ≡ trans (cong (_$ x) (proj₂ c)) (trans (proj₁-to-∥∥→≃-constant univ (proj₁ c) _ _) (cong (_$ y) (sym (proj₂ c)))) to-Coherently-constant≃Coherently-constant-property {f = f} {c = c} {x = x} {y = y} univ = _≃_.to (Coherently-constant≃Coherently-constant univ) c .property x y ≡⟨⟩ ≡⇒→ (cong Coherently-constant $ sym (proj₂ c)) (proj₂ (_≃_.to (∥∥→≃ univ) (proj₁ c))) .property x y ≡⟨ cong (λ (c : Coherently-constant _) → c .property x y) $ sym $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩ subst Coherently-constant (sym (proj₂ c)) (proj₂ (_≃_.to (∥∥→≃ univ) (proj₁ c))) .property x y ≡⟨ cong (λ (f : Constant _) → f x y) subst-Coherently-property ⟩ subst Constant (sym (proj₂ c)) (proj₂ (_≃_.to (∥∥→≃ univ) (proj₁ c)) .property) x y ≡⟨ trans (cong (_$ y) $ sym $ push-subst-application _ _) $ sym $ push-subst-application _ _ ⟩ subst (λ f → f x ≡ f y) (sym (proj₂ c)) (proj₂ (_≃_.to (∥∥→≃ univ) (proj₁ c)) .property x y) ≡⟨ cong (λ (f : Constant _) → subst (λ f → f x ≡ f y) (sym (proj₂ c)) (f x y)) $ proj₂-to-∥∥→≃-property≡ univ ⟩ subst (λ f → f x ≡ f y) (sym (proj₂ c)) (proj₁-to-∥∥→≃-constant univ (proj₁ c) x y) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (_$ x) (sym (proj₂ c)))) (trans (proj₁-to-∥∥→≃-constant univ (proj₁ c) _ _) (cong (_$ y) (sym (proj₂ c)))) ≡⟨ cong (flip trans _) $ trans (sym $ cong-sym _ _) $ cong (cong (_$ x)) $ sym-sym _ ⟩∎ trans (cong (_$ x) (proj₂ c)) (trans (proj₁-to-∥∥→≃-constant univ (proj₁ c) _ _) (cong (_$ y) (sym (proj₂ c)))) ∎ ------------------------------------------------------------------------ -- Lenses, defined as getters with coherently constant fibres -- The lens type family. Lens : Type a → Type b → Type (lsuc (a ⊔ b)) Lens A B = ∃ λ (get : A → B) → Coherently-constant (get ⁻¹_) -- Some derived definitions. module Lens {A : Type a} {B : Type b} (l : Lens A B) where -- A getter. get : A → B get = proj₁ l -- The family of fibres of the getter is coherently constant. get⁻¹-coherently-constant : Coherently-constant (get ⁻¹_) get⁻¹-coherently-constant = proj₂ l -- All the getter's fibres are equivalent. get⁻¹-constant : (b₁ b₂ : B) → get ⁻¹ b₁ ≃ get ⁻¹ b₂ get⁻¹-constant b₁ b₂ = ≡⇒≃ (get⁻¹-coherently-constant .property b₁ b₂) -- A setter. set : A → B → A set a b = $⟨ _≃_.to (get⁻¹-constant (get a) b) ⟩ (get ⁻¹ get a → get ⁻¹ b) ↝⟨ _$ (a , refl _) ⟩ get ⁻¹ b ↝⟨ proj₁ ⟩□ A □ instance -- The lenses defined above have getters and setters. has-getter-and-setter : Has-getter-and-setter (Lens {a = a} {b = b}) has-getter-and-setter = record { get = Lens.get ; set = Lens.set } -- Lens is pointwise equivalent to Higher.Lens (assuming univalence). Higher-lens≃Lens : {A : Type a} {B : Type b} → Block "Higher-lens≃Lens" → Univalence (lsuc (a ⊔ b)) → Higher.Lens A B ≃ Lens A B Higher-lens≃Lens {A = A} {B = B} ⊠ univ = Higher.Lens A B ↔⟨⟩ (∃ λ (get : A → B) → CC.Coherently-constant (get ⁻¹_)) ↝⟨ (∃-cong λ _ → Coherently-constant≃Coherently-constant univ) ⟩□ (∃ λ (get : A → B) → Coherently-constant (get ⁻¹_)) □ -- The equivalence preserves getters and setters. Higher-lens≃Lens-preserves-getters-and-setters : {A : Type a} {B : Type b} (bl : Block "Higher-lens≃Lens") (univ : Univalence (lsuc (a ⊔ b))) → Preserves-getters-and-setters-⇔ A B (_≃_.logical-equivalence (Higher-lens≃Lens bl univ)) Higher-lens≃Lens-preserves-getters-and-setters {A = A} {B = B} bl univ = Preserves-getters-and-setters-→-↠-⇔ (_≃_.surjection (Higher-lens≃Lens bl univ)) (λ l → get-lemma bl l , set-lemma bl l) where get-lemma : ∀ bl (l : Higher.Lens A B) → Lens.get (_≃_.to (Higher-lens≃Lens bl univ) l) ≡ Higher.Lens.get l get-lemma ⊠ _ = refl _ set-lemma : ∀ bl (l : Higher.Lens A B) → Lens.set (_≃_.to (Higher-lens≃Lens bl univ) l) ≡ Higher.Lens.set l set-lemma bl@⊠ l = ⟨ext⟩ λ a → ⟨ext⟩ λ b → Lens.set (_≃_.to (Higher-lens≃Lens bl univ) l) a b ≡⟨⟩ proj₁ (≡⇒→ (≡⇒→ (cong Coherently-constant (sym get⁻¹-≡)) (proj₂ (_≃_.to (∥∥→≃ univ) H)) .property (get a) b) (a , refl (get a))) ≡⟨ cong (λ (c : Coherently-constant (get ⁻¹_)) → proj₁ (≡⇒→ (c .property (get a) b) (a , refl _))) $ sym $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩ proj₁ (≡⇒→ (subst Coherently-constant (sym get⁻¹-≡) (proj₂ (_≃_.to (∥∥→≃ univ) H)) .property (get a) b) (a , refl (get a))) ≡⟨ cong (λ (c : Constant (get ⁻¹_)) → proj₁ (≡⇒→ (c (get a) b) (a , refl _))) subst-Coherently-property ⟩ proj₁ (≡⇒→ (subst Constant (sym get⁻¹-≡) (proj₂ (_≃_.to (∥∥→≃ univ) H) .property) (get a) b) (a , refl (get a))) ≡⟨ cong (λ c → proj₁ (≡⇒→ (subst Constant (sym get⁻¹-≡) c (get a) b) (a , refl _))) $ proj₂-to-∥∥→≃-property≡ univ ⟩ proj₁ (≡⇒→ (subst Constant (sym get⁻¹-≡) (proj₁-to-∥∥→≃-constant univ H) (get a) b) (a , refl (get a))) ≡⟨ cong (λ eq → proj₁ (≡⇒→ eq (a , refl _))) $ trans (cong (_$ b) $ sym $ push-subst-application _ _) $ sym $ push-subst-application _ _ ⟩ proj₁ (≡⇒→ (subst (λ f → f (get a) ≡ f b) (sym get⁻¹-≡) (proj₁-to-∥∥→≃-constant univ H (get a) b)) (a , refl (get a))) ≡⟨ cong (λ eq → proj₁ (≡⇒→ eq (a , refl _))) $ subst-in-terms-of-trans-and-cong ⟩ proj₁ (≡⇒→ (trans (sym (cong (_$ get a) (sym get⁻¹-≡))) (trans (proj₁-to-∥∥→≃-constant univ H (get a) b) (cong (_$ b) (sym get⁻¹-≡)))) (a , refl (get a))) ≡⟨⟩ proj₁ (≡⇒→ (trans (sym (cong (_$ get a) (sym get⁻¹-≡))) (trans (cong H (T.truncation-is-proposition _ _)) (cong (_$ b) (sym get⁻¹-≡)))) (a , refl (get a))) ≡⟨ cong (λ f → proj₁ (f (a , refl _))) $ ≡⇒↝-trans equivalence ⟩ proj₁ (≡⇒→ (trans (cong H (T.truncation-is-proposition _ _)) (cong (_$ b) (sym get⁻¹-≡))) (≡⇒→ (sym (cong (_$ get a) (sym get⁻¹-≡))) (a , refl (get a)))) ≡⟨ cong (λ f → proj₁ (f (≡⇒→ (sym (cong (_$ get a) (sym get⁻¹-≡))) (a , refl _)))) $ ≡⇒↝-trans equivalence ⟩ proj₁ (≡⇒→ (cong (_$ b) (sym get⁻¹-≡)) (≡⇒→ (cong H (T.truncation-is-proposition _ _)) (≡⇒→ (sym (cong (_$ get a) (sym get⁻¹-≡))) (a , refl (get a))))) ≡⟨ cong₂ (λ p q → proj₁ (≡⇒→ p (≡⇒→ (cong H (T.truncation-is-proposition _ _)) (≡⇒→ q (a , refl _))))) (cong-sym _ _) (trans (cong sym $ cong-sym _ _) $ sym-sym _) ⟩ proj₁ (≡⇒→ (sym $ cong (_$ b) get⁻¹-≡) (≡⇒→ (cong H (T.truncation-is-proposition _ _)) (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl (get a))))) ≡⟨ cong (λ f → proj₁ (f (≡⇒→ (cong H (T.truncation-is-proposition _ _)) (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _))))) $ ≡⇒↝-sym equivalence ⟩ proj₁ (_≃_.from (≡⇒≃ (cong (_$ b) get⁻¹-≡)) (≡⇒→ (cong H (T.truncation-is-proposition _ _)) (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl (get a))))) ≡⟨⟩ set a b ∎ where open Higher.Lens l
{ "alphanum_fraction": 0.3543564356, "avg_line_length": 48.2676224612, "ext": "agda", "hexsha": "f46e9e9cb54de4412d98b7b7033f404c5ce475f2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent/Higher/Coinductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent/Higher/Coinductive.agda", "max_line_length": 148, "max_stars_count": 3, "max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent/Higher/Coinductive.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z", "num_tokens": 13182, "size": 40400 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Comma where open import Categories.Category open import Categories.Functor open import Data.Product using (_×_; ∃; _,_; proj₁; proj₂; zip; map) open import Level open import Relation.Binary using (Rel) open import Categories.Support.EqReasoning Comma : {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃ : Level} {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} → Functor A C → Functor B C → Category (o₁ ⊔ o₂ ⊔ ℓ₃) (ℓ₁ ⊔ ℓ₂ ⊔ e₃) (e₁ ⊔ e₂) Comma {o₁}{ℓ₁}{e₁} {o₂}{ℓ₂}{e₂} {o₃}{ℓ₃}{e₃} {A}{B}{C} T S = record { Obj = Obj ; _⇒_ = Hom ; _≡_ = _≡′_ ; _∘_ = _∘′_ ; id = id′ ; assoc = A.assoc , B.assoc ; identityˡ = A.identityˡ , B.identityˡ ; identityʳ = A.identityʳ , B.identityʳ ; equiv = record { refl = A.Equiv.refl , B.Equiv.refl ; sym = map A.Equiv.sym B.Equiv.sym ; trans = zip A.Equiv.trans B.Equiv.trans } ; ∘-resp-≡ = zip A.∘-resp-≡ B.∘-resp-≡ } module Comma where module A = Category A module B = Category B module C = Category C module T = Functor T module S = Functor S open T using () renaming (F₀ to T₀; F₁ to T₁) open S using () renaming (F₀ to S₀; F₁ to S₁) infixr 9 _∘′_ infix 4 _≡′_ infix 10 _,_,_ _,_[_] record Obj : Set (o₁ ⊔ o₂ ⊔ ℓ₃) where eta-equality constructor _,_,_ field α : A.Obj β : B.Obj f : C [ T₀ α , S₀ β ] record Hom (X₁ X₂ : Obj) : Set (ℓ₁ ⊔ ℓ₂ ⊔ e₃) where eta-equality constructor _,_[_] open Obj X₁ renaming (α to α₁; β to β₁; f to f₁) open Obj X₂ renaming (α to α₂; β to β₂; f to f₂) field g : A [ α₁ , α₂ ] h : B [ β₁ , β₂ ] .commutes : C.CommutativeSquare f₁ (T₁ g) (S₁ h) f₂ _≡′_ : ∀ {X₁ X₂} → Rel (Hom X₁ X₂) _ (g₁ , h₁ [ _ ]) ≡′ (g₂ , h₂ [ _ ]) = A [ g₁ ≡ g₂ ] × B [ h₁ ≡ h₂ ] id′ : {A : Obj} → Hom A A id′ { A } = A.id , B.id [ begin C [ S₁ B.id ∘ f ] ↓⟨ S.identity ⟩∘⟨ refl ⟩ C [ C.id ∘ f ] ↓⟨ C.identityˡ ⟩ f ↑⟨ C.identityʳ ⟩ C [ f ∘ C.id ] ↑⟨ refl ⟩∘⟨ T.identity ⟩ C [ f ∘ T₁ A.id ] ∎ ] where open Obj A open C.HomReasoning open C.Equiv _∘′_ : ∀ {X₁ X₂ X₃} → Hom X₂ X₃ → Hom X₁ X₂ → Hom X₁ X₃ _∘′_ {X₁}{X₂}{X₃} (g₁ , h₁ [ commutes₁ ]) (g₂ , h₂ [ commutes₂ ]) = A [ g₁ ∘ g₂ ] , B [ h₁ ∘ h₂ ] [ begin -- commutes₁ : C [ C [ S₁ h₁ ∘ f₂ ] ≡ C [ f₃ ∘ T₁ g₁ ] ] -- commutes₂ : C [ C [ S₁ h₂ ∘ f₁ ] ≡ C [ f₂ ∘ T₁ g₂ ] ] C [ S₁ (B [ h₁ ∘ h₂ ]) ∘ f₁ ] ↓⟨ S.homomorphism ⟩∘⟨ refl ⟩ C [ C [ S₁ h₁ ∘ S₁ h₂ ] ∘ f₁ ] ↓⟨ C.assoc ⟩ C [ S₁ h₁ ∘ C [ S₁ h₂ ∘ f₁ ] ] ↓⟨ refl ⟩∘⟨ commutes₂ ⟩ C [ S₁ h₁ ∘ C [ f₂ ∘ T₁ g₂ ] ] ↑⟨ C.assoc ⟩ C [ C [ S₁ h₁ ∘ f₂ ] ∘ T₁ g₂ ] ↓⟨ commutes₁ ⟩∘⟨ refl ⟩ C [ C [ f₃ ∘ T₁ g₁ ] ∘ T₁ g₂ ] ↓⟨ C.assoc ⟩ C [ f₃ ∘ C [ T₁ g₁ ∘ T₁ g₂ ] ] ↑⟨ refl ⟩∘⟨ T.homomorphism ⟩ C [ f₃ ∘ T₁ (A [ g₁ ∘ g₂ ]) ] ∎ ] where open C.HomReasoning open C.Equiv open Obj X₁ renaming (α to α₁; β to β₁; f to f₁) open Obj X₂ renaming (α to α₂; β to β₂; f to f₂) open Obj X₃ renaming (α to α₃; β to β₃; f to f₃) _↓_ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} → {A : Category o₁ ℓ₁ e₁} → {B : Category o₂ ℓ₂ e₂} → {C : Category o₃ ℓ₃ e₃} → (S : Functor B C) (T : Functor A C) → Category _ _ _ T ↓ S = Comma T S Dom : {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃ : Level} {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} → (T : Functor A C) → (S : Functor B C) → Functor (Comma T S) A Dom {A = A} {B} {C} T S = record { F₀ = Obj.α ; F₁ = Hom.g ; identity = refl ; homomorphism = refl ; F-resp-≡ = proj₁ } where open Comma T S open A.Equiv Cod : {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃ : Level} {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} → (T : Functor A C) → (S : Functor B C) → Functor (Comma T S) B Cod {A = A} {B} {C} T S = record { F₀ = Obj.β ; F₁ = Hom.h ; identity = refl ; homomorphism = refl ; F-resp-≡ = proj₂ } where open Comma T S open B.Equiv open import Categories.Functor.Diagonal open import Categories.FunctorCategory open import Categories.Categories open import Categories.NaturalTransformation CommaF : ∀ {o ℓ e o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} → {O : Category o ℓ e } → {A : Category o₁ ℓ₁ e₁} → {B : Category o₂ ℓ₂ e₂} → {C : Category o₃ ℓ₃ e₃} → (T : Functor A C) (S : Functor O (Functors B C)) -> Functor O (Categories _ _ _) CommaF {O = O} {A} {B} {C} T S = record { F₀ = λ o → Comma T (S.F₀ o) ; F₁ = λ {o₁} {o₂} f → record { F₀ = λ { (a Comma., b , g) → a Comma., b , (S₁.η f b C.∘ g) } ; F₁ = λ { {a₁ Comma., b₁ , g₁} {a₂ Comma., b₂ , g₂} (g Comma., h [ comm ]) → g Comma., h [ begin S₀.F₁ o₂ h C.∘ S₁.η f b₁ C.∘ g₁ ↓⟨ C.Equiv.sym C.assoc ⟩ (S₀.F₁ o₂ h C.∘ S₁.η f b₁) C.∘ g₁ ↓⟨ C.∘-resp-≡ˡ (C.Equiv.sym (S₁.commute f h)) ⟩ (S₁.η f b₂ C.∘ S₀.F₁ o₁ h) C.∘ g₁ ↓⟨ C.assoc ⟩ S₁.η f b₂ C.∘ S₀.F₁ o₁ h C.∘ g₁ ↓⟨ C.∘-resp-≡ʳ comm ⟩ S₁.η f b₂ C.∘ g₂ C.∘ T.F₁ g ↓⟨ C.Equiv.sym C.assoc ⟩ (S₁.η f b₂ C.∘ g₂) C.∘ T.F₁ g ∎ ]}; identity = TODO; homomorphism = TODO; F-resp-≡ = TODO } ; identity = TODO ; homomorphism = TODO ; F-resp-≡ = TODO } where module C = Category C module T = Functor T module S = Functor S module S₀ o = Functor (S.F₀ o) module S₁ {a b} f = NaturalTransformation (S.F₁ {a} {b} f) postulate TODO : ∀ {l} {A : Set l} -> A open C.HomReasoning
{ "alphanum_fraction": 0.4410958904, "avg_line_length": 31.5865384615, "ext": "agda", "hexsha": "ffe95765b61d3bdf0736b9e92e4344bfb0b361d4", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Comma.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Comma.agda", "max_line_length": 88, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Comma.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2635, "size": 6570 }
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Union where open import Prelude open import Path.Reasoning open import Algebra open import Algebra.Construct.Free.Semilattice.Definition open import Algebra.Construct.Free.Semilattice.Eliminators infixr 5 _∪_ _∪_ : 𝒦 A → 𝒦 A → 𝒦 A _∪_ = λ xs ys → [ union′ ys ]↓ xs where union′ : 𝒦 A → A ↘ 𝒦 A [ union′ ys ]-set = trunc [ union′ ys ] x ∷ xs = x ∷ xs [ union′ ys ][] = ys [ union′ ys ]-dup = dup [ union′ ys ]-com = com ∪-assoc : (xs ys zs : 𝒦 A) → (xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs) ∪-assoc = λ xs ys zs → ∥ ∪-assoc′ ys zs ∥⇓ xs where ∪-assoc′ : (ys zs : 𝒦 A) → xs ∈𝒦 A ⇒∥ (xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs) ∥ ∥ ∪-assoc′ ys zs ∥-prop = trunc _ _ ∥ ∪-assoc′ ys zs ∥[] = refl ∥ ∪-assoc′ ys zs ∥ x ∷ xs ⟨ Pxs ⟩ = cong (x ∷_) Pxs ∪-identityʳ : (xs : 𝒦 A) → xs ∪ [] ≡ xs ∪-identityʳ = ∥ ∪-identityʳ′ ∥⇓ where ∪-identityʳ′ : xs ∈𝒦 A ⇒∥ xs ∪ [] ≡ xs ∥ ∥ ∪-identityʳ′ ∥-prop = trunc _ _ ∥ ∪-identityʳ′ ∥[] = refl ∥ ∪-identityʳ′ ∥ x ∷ xs ⟨ Pxs ⟩ = cong (x ∷_) Pxs cons-distrib-∪ : (x : A) (xs ys : 𝒦 A) → x ∷ xs ∪ ys ≡ xs ∪ (x ∷ ys) cons-distrib-∪ = λ x xs ys → ∥ cons-distrib-∪′ x ys ∥⇓ xs where cons-distrib-∪′ : (x : A) (ys : 𝒦 A) → xs ∈𝒦 A ⇒∥ x ∷ xs ∪ ys ≡ xs ∪ (x ∷ ys) ∥ ∥ cons-distrib-∪′ x ys ∥-prop = trunc _ _ ∥ cons-distrib-∪′ x ys ∥[] = refl ∥ cons-distrib-∪′ x ys ∥ z ∷ xs ⟨ Pxs ⟩ = x ∷ ((z ∷ xs) ∪ ys) ≡⟨⟩ x ∷ z ∷ (xs ∪ ys) ≡⟨ com x z (xs ∪ ys) ⟩ z ∷ x ∷ (xs ∪ ys) ≡⟨ cong (z ∷_) Pxs ⟩ ((z ∷ xs) ∪ (x ∷ ys)) ∎ ∪-comm : (xs ys : 𝒦 A) → xs ∪ ys ≡ ys ∪ xs ∪-comm = λ xs ys → ∥ ∪-comm′ ys ∥⇓ xs where ∪-comm′ : (ys : 𝒦 A) → xs ∈𝒦 A ⇒∥ xs ∪ ys ≡ ys ∪ xs ∥ ∥ ∪-comm′ ys ∥-prop = trunc _ _ ∥ ∪-comm′ ys ∥[] = sym (∪-identityʳ ys) ∥ ∪-comm′ ys ∥ x ∷ xs ⟨ Pxs ⟩ = (x ∷ xs) ∪ ys ≡⟨⟩ x ∷ (xs ∪ ys) ≡⟨ cong (x ∷_) Pxs ⟩ x ∷ (ys ∪ xs) ≡⟨⟩ (x ∷ ys) ∪ xs ≡⟨ cons-distrib-∪ x ys xs ⟩ ys ∪ (x ∷ xs) ∎ ∪-idem : (xs : 𝒦 A) → xs ∪ xs ≡ xs ∪-idem = ∥ ∪-idem′ ∥⇓ where ∪-idem′ : xs ∈𝒦 A ⇒∥ xs ∪ xs ≡ xs ∥ ∥ ∪-idem′ ∥-prop = trunc _ _ ∥ ∪-idem′ ∥[] = refl ∥ ∪-idem′ ∥ x ∷ xs ⟨ Pxs ⟩ = ((x ∷ xs) ∪ (x ∷ xs)) ≡˘⟨ cons-distrib-∪ x (x ∷ xs) xs ⟩ x ∷ x ∷ (xs ∪ xs) ≡⟨ dup x (xs ∪ xs) ⟩ x ∷ (xs ∪ xs) ≡⟨ cong (x ∷_) Pxs ⟩ x ∷ xs ∎ module _ {a} {A : Type a} where open Semilattice open CommutativeMonoid open Monoid 𝒦-semilattice : Semilattice a 𝒦-semilattice .commutativeMonoid .monoid .𝑆 = 𝒦 A 𝒦-semilattice .commutativeMonoid .monoid ._∙_ = _∪_ 𝒦-semilattice .commutativeMonoid .monoid .ε = [] 𝒦-semilattice .commutativeMonoid .monoid .assoc = ∪-assoc 𝒦-semilattice .commutativeMonoid .monoid .ε∙ _ = refl 𝒦-semilattice .commutativeMonoid .monoid .∙ε = ∪-identityʳ 𝒦-semilattice .commutativeMonoid .comm = ∪-comm 𝒦-semilattice .idem = ∪-idem
{ "alphanum_fraction": 0.5169133192, "avg_line_length": 31.8876404494, "ext": "agda", "hexsha": "24b00b2cb299db021f03d6c69d280619d3350743", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Union.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Union.agda", "max_line_length": 81, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Union.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1496, "size": 2838 }
module Properties.Contradiction where data ⊥ : Set where ¬ : Set → Set ¬ A = A → ⊥ CONTRADICTION : ∀ {A : Set} → ⊥ → A CONTRADICTION ()
{ "alphanum_fraction": 0.6115107914, "avg_line_length": 13.9, "ext": "agda", "hexsha": "e9a92ad59d09da726deef1b6e1cf9cebf019f0a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Properties/Contradiction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Properties/Contradiction.agda", "max_line_length": 37, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Properties/Contradiction.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-06T08:03:00.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-06T08:03:00.000Z", "num_tokens": 50, "size": 139 }
{-# OPTIONS --without-K #-} module container.core where open import level open import sum open import equality open import function module _ {li}{I : Set li} where -- homsets in the slice category _→ⁱ_ : ∀ {lx ly} → (I → Set lx) → (I → Set ly) → Set _ X →ⁱ Y = (i : I) → X i → Y i -- identity of the slice category idⁱ : ∀ {lx}{X : I → Set lx} → X →ⁱ X idⁱ i x = x -- composition in the slice category _∘ⁱ_ : ∀ {lx ly lz} {X : I → Set lx}{Y : I → Set ly}{Z : I → Set lz} → (Y →ⁱ Z) → (X →ⁱ Y) → (X →ⁱ Z) (f ∘ⁱ g) i = f i ∘ g i infixl 9 _∘ⁱ_ -- extensionality funext-isoⁱ : ∀ {lx ly} {X : I → Set lx}{Y : (i : I) → X i → Set ly} → {f g : (i : I)(x : X i) → Y i x} → (∀ i x → f i x ≡ g i x) ≅ (f ≡ g) funext-isoⁱ {f = f}{g = g} = (Π-ap-iso refl≅ λ i → strong-funext-iso) ·≅ strong-funext-iso funext-invⁱ : ∀ {lx ly} {X : I → Set lx}{Y : (i : I) → X i → Set ly} → {f g : (i : I)(x : X i) → Y i x} → f ≡ g → ∀ i x → f i x ≡ g i x funext-invⁱ = invert funext-isoⁱ funextⁱ : ∀ {lx ly} {X : I → Set lx}{Y : (i : I) → X i → Set ly} → {f g : (i : I)(x : X i) → Y i x} → (∀ i x → f i x ≡ g i x) → f ≡ g funextⁱ = apply funext-isoⁱ -- Definition 1 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) record Container (li la lb : Level) : Set (lsuc (li ⊔ la ⊔ lb)) where constructor container field I : Set li A : I → Set la B : {i : I} → A i → Set lb r : {i : I}{a : A i} → B a → I -- Definition 2 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) -- functor associated to this indexed container F : ∀ {lx} → (I → Set lx) → I → Set _ F X i = Σ (A i) λ a → (b : B a) → X (r b) F-ap-iso : ∀ {lx ly}{X : I → Set lx}{Y : I → Set ly} → (∀ i → X i ≅ Y i) → ∀ i → F X i ≅ F Y i F-ap-iso isom i = Σ-ap-iso refl≅ λ a → Π-ap-iso refl≅ λ b → isom (r b) -- morphism map for the functor F imap : ∀ {lx ly} → {X : I → Set lx} → {Y : I → Set ly} → (X →ⁱ Y) → (F X →ⁱ F Y) imap g i (a , f) = a , λ b → g (r b) (f b) -- action of a functor on homotopies hmap : ∀ {lx ly} → {X : I → Set lx} → {Y : I → Set ly} → {f g : X →ⁱ Y} → (∀ i x → f i x ≡ g i x) → (∀ i x → imap f i x ≡ imap g i x) hmap p i (a , u) = ap (_,_ a) (funext (λ b → p (r b) (u b))) hmap-id : ∀ {lx ly} → {X : I → Set lx} → {Y : I → Set ly} → (f : X →ⁱ Y) → ∀ i x → hmap (λ i x → refl {x = f i x}) i x ≡ refl hmap-id f i (a , u) = ap (ap (_,_ a)) (funext-id _)
{ "alphanum_fraction": 0.4441558442, "avg_line_length": 30.2808988764, "ext": "agda", "hexsha": "3d6f4cf44e208c2635dda6c4ebfca12fc3e9a122", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/core.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/core.agda", "max_line_length": 80, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1135, "size": 2695 }
-- TODO: Move these to stuff related to metric spaces module Continuity where open Limit -- Statement that the point x of function f is a continous point ContinuousPoint : (ℝ → ℝ) → ℝ → Stmt ContinuousPoint f(x) = (⦃ limit : Lim f(x) ⦄ → (lim f(x)⦃ limit ⦄ ≡ f(x))) -- Statement that the function f is continous Continuous : (ℝ → ℝ) → Stmt Continuous f = ∀{x} → ContinuousPoint f(x) module Proofs where -- instance postulate DifferentiablePoint-to-ContinuousPoint : ∀{f}{x}{diff} → ⦃ _ : DifferentiablePoint f(x)⦃ diff ⦄ ⦄ → ContinuousPoint f(x) -- instance postulate Differentiable-to-Continuous : ∀{f}{diff} → ⦃ _ : Differentiable(f)⦃ diff ⦄ ⦄ → Continuous(f)
{ "alphanum_fraction": 0.6739766082, "avg_line_length": 40.2352941176, "ext": "agda", "hexsha": "b15c35006f86db1fb111bc81c19e99c4cfe51999", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Real/Continuity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Real/Continuity.agda", "max_line_length": 144, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Real/Continuity.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 222, "size": 684 }
-- Andreas, 2021-08-17, issue #5508, reported by james-smith-69781 -- On a case-insensitive file system, an inconsistency slipped into -- the ModuleToSource map, leading to a failure in getting the module -- name from the file name, in turn leading to a crash for certain errors. module Issue5508 where -- case variant intended! -- WAS: Crash in termination error A : Set A = A record R : Set2 where field f : Set1 record S : Set2 where field g : Set1 record T : Set2 where field g : Set1 open S open T -- Now, g is ambiguous. -- WAS: crash in "Cannot eliminate ... with projection" error test : R test .g = Set
{ "alphanum_fraction": 0.7097288676, "avg_line_length": 20.9, "ext": "agda", "hexsha": "8df3987acd669b4515f65eed3fb8ef19301798cc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/customised/iSSue5508.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/customised/iSSue5508.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/customised/iSSue5508.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 177, "size": 627 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} ------------------------------------------------------------------------------ open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.BlockStorage.BlockStore as BlockStore import LibraBFT.Impl.Consensus.BlockStorage.SyncManager as SyncManager import LibraBFT.Impl.Consensus.ConsensusTypes.ExecutedBlock as ExecutedBlock import LibraBFT.Impl.Consensus.ConsensusTypes.SyncInfo as SyncInfo import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote import LibraBFT.Impl.Consensus.Liveness.ProposerElection as ProposerElection import LibraBFT.Impl.Consensus.Liveness.ProposalGenerator as ProposalGenerator import LibraBFT.Impl.Consensus.Liveness.RoundState as RoundState import LibraBFT.Impl.Consensus.PersistentLivenessStorage as PersistentLivenessStorage import LibraBFT.Impl.Consensus.SafetyRules.SafetyRules as SafetyRules open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open import Optics.All open import Util.ByteString open import Util.Hash import Util.KVMap as Map open import Util.PKCS open import Util.Prelude ----------------------------------------------------------------------------- open import Data.String using (String) ------------------------------------------------------------------------------ module LibraBFT.Impl.Consensus.RoundManager where ------------------------------------------------------------------------------ processCertificatesM : Instant → LBFT Unit ------------------------------------------------------------------------------ processCommitM : LedgerInfoWithSignatures → LBFT (List ExecutedBlock) processCommitM finalityProof = pure [] ------------------------------------------------------------------------------ generateProposalM : Instant → NewRoundEvent → LBFT (Either ErrLog ProposalMsg) processNewRoundEventM : Instant → NewRoundEvent → LBFT Unit processNewRoundEventM now nre@(NewRoundEvent∙new r _ _) = do logInfo fakeInfo -- (InfoNewRoundEvent nre) use (lRoundManager ∙ pgAuthor) >>= λ where nothing → logErr fakeErr -- (here ["lRoundManager.pgAuthor", "Nothing"]) (just author) → do v ← ProposerElection.isValidProposer <$> use lProposerElection <*> pure author <*> pure r whenD v $ do rcvrs ← use (lRoundManager ∙ rmObmAllAuthors) generateProposalM now nre >>= λ where -- (Left (ErrEpochEndedNoProposals t)) -> logInfoL (lEC.|.lPM) (here ("EpochEnded":t)) (Left e) → logErr (withErrCtx (here' ("Error generating proposal" ∷ [])) e) (Right proposalMsg) → act (BroadcastProposal proposalMsg rcvrs) where here' : List String → List String here' t = "RoundManager" ∷ "processNewRoundEventM" ∷ t abstract processNewRoundEventM-abs = processNewRoundEventM processNewRoundEventM-abs-≡ : processNewRoundEventM-abs ≡ processNewRoundEventM processNewRoundEventM-abs-≡ = refl generateProposalM now newRoundEvent = ProposalGenerator.generateProposalM now (newRoundEvent ^∙ nreRound) ∙?∙ λ proposal → SafetyRules.signProposalM proposal ∙?∙ λ signedProposal → Right ∘ ProposalMsg∙new signedProposal <$> BlockStore.syncInfoM ------------------------------------------------------------------------------ ensureRoundAndSyncUpM : Instant → Round → SyncInfo → Author → Bool → LBFT (Either ErrLog Bool) processProposalM : Block → LBFT Unit executeAndVoteM : Block → LBFT (Either ErrLog Vote) -- external entry point -- TODO-2: The sync info that the peer requests if it discovers that its round -- state is behind the sender's should be sent as an additional argument, for now. module processProposalMsgM (now : Instant) (pm : ProposalMsg) where step₀ : LBFT Unit step₁ : Author → LBFT Unit step₂ : Either ErrLog Bool → LBFT Unit step₀ = caseMD pm ^∙ pmProposer of λ where nothing → logInfo fakeInfo -- proposal with no author (just pAuthor) → step₁ pAuthor step₁ pAuthor = ensureRoundAndSyncUpM now (pm ^∙ pmProposal ∙ bRound) (pm ^∙ pmSyncInfo) pAuthor true >>= step₂ step₂ = λ where (Left e) → logErr e (Right true) → processProposalM (pm ^∙ pmProposal) (Right false) → do currentRound ← use (lRoundState ∙ rsCurrentRound) logInfo fakeInfo -- dropping proposal for old round abstract processProposalMsgM = processProposalMsgM.step₀ processProposalMsgM≡ : processProposalMsgM ≡ processProposalMsgM.step₀ processProposalMsgM≡ = refl ------------------------------------------------------------------------------ module syncUpM (now : Instant) (syncInfo : SyncInfo) (author : Author) (_helpRemote : Bool) where step₀ : LBFT (Either ErrLog Unit) step₁ step₂ : SyncInfo → LBFT (Either ErrLog Unit) step₃ step₄ : SyncInfo → ValidatorVerifier → LBFT (Either ErrLog Unit) here' : List String → List String step₀ = do -- logEE (here' []) $ do localSyncInfo ← BlockStore.syncInfoM -- TODO helpRemote step₁ localSyncInfo step₁ localSyncInfo = do ifD SyncInfo.hasNewerCertificates syncInfo localSyncInfo then step₂ localSyncInfo else ok unit step₂ localSyncInfo = do vv ← use (lRoundManager ∙ rmEpochState ∙ esVerifier) SyncInfo.verifyM syncInfo vv ∙^∙ withErrCtx (here' []) ∙?∙ λ _ → step₃ localSyncInfo vv step₃ localSyncInfo vv = SyncManager.addCertsM {- reason -} syncInfo (BlockRetriever∙new now author) ∙^∙ withErrCtx (here' []) ∙?∙ λ _ → step₄ localSyncInfo vv step₄ localSyncInfo vv = do processCertificatesM now ok unit here' t = "RoundManager" ∷ "syncUpM" ∷ t syncUpM : Instant → SyncInfo → Author → Bool → LBFT (Either ErrLog Unit) syncUpM = syncUpM.step₀ ------------------------------------------------------------------------------ module ensureRoundAndSyncUpM (now : Instant) (messageRound : Round) (syncInfo : SyncInfo) (author : Author) (helpRemote : Bool) where step₀ : LBFT (Either ErrLog Bool) step₁ : LBFT (Either ErrLog Bool) step₂ : LBFT (Either ErrLog Bool) step₀ = do currentRound ← use (lRoundState ∙ rsCurrentRound) ifD messageRound <? currentRound then ok false else step₁ step₁ = syncUpM now syncInfo author helpRemote ∙?∙ λ _ → step₂ step₂ = do currentRound' ← use (lRoundState ∙ rsCurrentRound) ifD messageRound /= currentRound' then bail fakeErr -- error: after sync, round does not match local else ok true ensureRoundAndSyncUpM = ensureRoundAndSyncUpM.step₀ ------------------------------------------------------------------------------ -- In Haskell, RoundManager.processSyncInfoMsgM is NEVER called. -- -- When processing other messaging (i.e., Proposal and Vote) the first thing that happens, -- before handling the specific message, is that ensureRoundAndSyncUpM is called to deal -- with the SyncInfo message in the ProposalMsg or VoteMsg. -- If a SyncInfo message ever did arrive by itself, all that would happen is that the -- SyncInfo would be handled by ensureRoundAndSyncUpM (just like other messages). -- And nothing else (except ensureRoundAndSyncUpM might do "catching up") -- -- The only place the Haskell implementation uses SyncInfo only messages it during EpochChange. -- And, in that case, the SyncInfo message is handled in the EpochManager, not here. processSyncInfoMsgM : Instant → SyncInfo → Author → LBFT Unit processSyncInfoMsgM now syncInfo peer = -- logEE (lEC.|.lSI) (here []) $ ensureRoundAndSyncUpM now (syncInfo ^∙ siHighestRound + 1) syncInfo peer false >>= λ where (Left e) → logErr (withErrCtx (here' []) e) (Right _) → pure unit where here' : List String → List String here' t = "RoundManager" ∷ "processSyncInfoMsgM" ∷ {- lsA peer ∷ lsSI syncInfo ∷ -} t ------------------------------------------------------------------------------ -- external entry point processLocalTimeoutM : Instant → Epoch → Round → LBFT Unit processLocalTimeoutM now obmEpoch round = do -- logEE lTO (here []) $ ifMD (RoundState.processLocalTimeoutM now obmEpoch round) continue1 (pure unit) where here' : List String → List String continue2 : LBFT Unit continue3 : (Bool × Vote) → LBFT Unit continue4 : Vote → LBFT Unit continue1 = ifMD (use (lRoundManager ∙ rmSyncOnly)) -- In Haskell, rmSyncOnly is ALWAYS false. -- It is used for an unimplemented "sync only" mode for nodes. -- "sync only" mode is an optimization for nodes catching up. (do si ← BlockStore.syncInfoM rcvrs ← use (lRoundManager ∙ rmObmAllAuthors) act (BroadcastSyncInfo si rcvrs)) continue2 continue2 = use (lRoundState ∙ rsVoteSent) >>= λ where (just vote) → ifD (vote ^∙ vVoteData ∙ vdProposed ∙ biRound == round) -- already voted in this round, so resend the vote, but with a timeout signature then continue3 (true , vote) else local-continue2-continue _ → local-continue2-continue where local-continue2-continue : LBFT Unit local-continue2-continue = -- have not voted in this round, so create and vote on NIL block with timeout signature ProposalGenerator.generateNilBlockM round >>= λ where (Left e) → logErr e (Right nilBlock) → executeAndVoteM nilBlock >>= λ where (Left e) → logErr e (Right nilVote) → continue3 (false , nilVote) continue3 (useLastVote , timeoutVote) = do proposer ← ProposerElection.getValidProposer <$> use lProposerElection <*> pure round logInfo fakeInfo -- (here [ if useLastVote then "already executed and voted, will send timeout vote" -- else "generate nil timeout vote" -- , "expected proposer", lsA proposer ]) if not (Vote.isTimeout timeoutVote) then (SafetyRules.signTimeoutM (Vote.timeout timeoutVote) >>= λ where (Left e) → logErr (withErrCtx (here' []) e) (Right s) → continue4 (Vote.addTimeoutSignature timeoutVote s)) -- makes it a timeout vote else continue4 timeoutVote continue4 timeoutVote = do RoundState.recordVoteM timeoutVote timeoutVoteMsg ← VoteMsg∙new timeoutVote <$> BlockStore.syncInfoM rcvrs ← use (lRoundManager ∙ rmObmAllAuthors) -- IMPL-DIFF this is BroadcastVote in Haskell (an alias) act (SendVote timeoutVoteMsg rcvrs) here' t = "RoundManager" ∷ "processLocalTimeoutM" ∷ {-lsE obmEpoch:lsR round-} t ------------------------------------------------------------------------------ processCertificatesM now = do syncInfo ← BlockStore.syncInfoM maybeSMP-RWS (RoundState.processCertificatesM now syncInfo) unit (processNewRoundEventM now) ------------------------------------------------------------------------------ -- This function is broken into smaller pieces to aid in the verification -- effort. The style of indentation used is to make side-by-side reading of the -- Haskell prototype and Agda model easier. module processProposalM (proposal : Block) where step₀ : LBFT Unit step₁ : BlockStore → (Either ObmNotValidProposerReason Unit) → LBFT Unit step₂ : Either ErrLog Vote → LBFT Unit step₃ : Vote → SyncInfo → LBFT Unit step₀ = do bs ← use lBlockStore vp ← ProposerElection.isValidProposalM proposal step₁ bs vp step₁ bs vp = ifD‖ isLeft vp ≔ logErr fakeErr -- proposer for block is not valid for this round ‖ is-nothing (BlockStore.getQuorumCertForBlock (proposal ^∙ bParentId) bs) ≔ logErr fakeErr -- QC of parent is not in BS ‖ not (maybeS (BlockStore.getBlock (proposal ^∙ bParentId) bs) false λ parentBlock → ⌊ parentBlock ^∙ ebRound <?ℕ proposal ^∙ bRound ⌋) ≔ logErr fakeErr -- parentBlock < proposalRound ‖ otherwise≔ do executeAndVoteM proposal >>= step₂ step₂ = λ where (Left e) → logErr e (Right vote) → do RoundState.recordVoteM vote si ← BlockStore.syncInfoM step₃ vote si step₃ vote si = do recipient ← ProposerElection.getValidProposer <$> use lProposerElection <*> pure (proposal ^∙ bRound + 1) act (SendVote (VoteMsg∙new vote si) (recipient ∷ [])) -- TODO-2: mkNodesInOrder1 recipient processProposalM = processProposalM.step₀ ------------------------------------------------------------------------------ module executeAndVoteM (b : Block) where step₀ : LBFT (Either ErrLog Vote) step₁ : ExecutedBlock → LBFT (Either ErrLog Vote) step₂ : ExecutedBlock → LBFT (Either ErrLog Vote) step₃ : Vote → LBFT (Either ErrLog Vote) step₀ = BlockStore.executeAndInsertBlockM b ∙^∙ withErrCtx ("" ∷ []) ∙?∙ step₁ step₁ eb = do cr ← use (lRoundState ∙ rsCurrentRound) vs ← use (lRoundState ∙ rsVoteSent) so ← use (lRoundManager ∙ rmSyncOnly) ifD‖ is-just vs ≔ bail fakeErr -- error: already voted this round ‖ so ≔ bail fakeErr -- error: sync-only set ‖ otherwise≔ step₂ eb step₂ eb = do let maybeSignedVoteProposal' = ExecutedBlock.maybeSignedVoteProposal eb SafetyRules.constructAndSignVoteM maybeSignedVoteProposal' {- ∙^∙ logging -} ∙?∙ step₃ step₃ vote = PersistentLivenessStorage.saveVoteM vote ∙?∙ λ _ → ok vote executeAndVoteM = executeAndVoteM.step₀ ------------------------------------------------------------------------------ processVoteM : Instant → Vote → LBFT Unit addVoteM : Instant → Vote → LBFT Unit newQcAggregatedM : Instant → QuorumCert → Author → LBFT Unit newTcAggregatedM : Instant → TimeoutCertificate → LBFT Unit processVoteMsgM : Instant → VoteMsg → LBFT Unit processVoteMsgM now voteMsg = do -- TODO ensureRoundAndSyncUp processVoteM now (voteMsg ^∙ vmVote) processVoteM now vote = ifD not (Vote.isTimeout vote) then (do let nextRound = vote ^∙ vVoteData ∙ vdProposed ∙ biRound + 1 use (lRoundManager ∙ pgAuthor) >>= λ where nothing → logErr fakeErr -- "lRoundManager.pgAuthor", "Nothing" (just author) → do v ← ProposerElection.isValidProposer <$> use lProposerElection <*> pure author <*> pure nextRound if v then continue else logErr fakeErr) -- "received vote, but I am not proposer for round" else continue where continue : LBFT Unit continue = do let blockId = vote ^∙ vVoteData ∙ vdProposed ∙ biId bs ← use lBlockStore ifD (is-just (BlockStore.getQuorumCertForBlock blockId bs)) then logInfo fakeInfo -- "block already has QC", "dropping unneeded vote" else do logInfo fakeInfo -- "before" addVoteM now vote pvA ← use lPendingVotes logInfo fakeInfo -- "after" addVoteM now vote = do bs ← use lBlockStore maybeSD (bs ^∙ bsHighestTimeoutCert) continue λ tc → ifD vote ^∙ vRound == tc ^∙ tcRound then logInfo fakeInfo -- "block already has TC", "dropping unneeded vote" else continue where continue : LBFT Unit continue = do verifier ← use (rmEpochState ∙ esVerifier) r ← RoundState.insertVoteM vote verifier case r of λ where (NewQuorumCertificate qc) → newQcAggregatedM now qc (vote ^∙ vAuthor) (NewTimeoutCertificate tc) → newTcAggregatedM now tc _ → pure unit newQcAggregatedM now qc a = SyncManager.insertQuorumCertM qc (BlockRetriever∙new now a) >>= λ where (Left e) → logErr e (Right unit) → processCertificatesM now newTcAggregatedM now tc = BlockStore.insertTimeoutCertificateM tc >>= λ where (Left e) → logErr e (Right unit) → processCertificatesM now ------------------------------------------------------------------------------ -- TODO-1 PROVE IT TERMINATES {-# TERMINATING #-} mkRsp : BlockRetrievalRequest → (Author × Epoch × Round) → BlockStore → List Block → HashValue → BlockRetrievalResponse -- external entry point processBlockRetrievalRequestM : Instant → BlockRetrievalRequest → LBFT Unit processBlockRetrievalRequestM _now request = do -- logEE lSI (here []) $ do use (lRoundManager ∙ rmObmMe) >>= λ where nothing → logErr fakeErr -- should not happen (just me) → continue me where continue : Author → LBFT Unit continue me = do e ← use (lRoundManager ∙ rmSafetyRules ∙ srPersistentStorage ∙ pssSafetyData ∙ sdEpoch) r ← use (lRoundManager ∙ rmRoundState ∙ rsCurrentRound) let meer = (me , e , r) bs ← use lBlockStore act (SendBRP (request ^∙ brqObmFrom) (mkRsp request meer bs [] (request ^∙ brqBlockId))) mkRsp request meer bs blocks id = if-dec length blocks <? request ^∙ brqNumBlocks then (case BlockStore.getBlock id bs of λ where (just executedBlock) → mkRsp request meer bs (blocks ++ (executedBlock ^∙ ebBlock ∷ [])) (executedBlock ^∙ ebParentId) nothing → BlockRetrievalResponse∙new meer (if null blocks then BRSIdNotFound else BRSNotEnoughBlocks) blocks) else BlockRetrievalResponse∙new meer BRSSucceeded blocks ------------------------------------------------------------------------------ module start (now : Instant) (lastVoteSent : Maybe Vote) where step₁ step₁-abs : SyncInfo → LBFT Unit step₂ step₂-abs : Maybe NewRoundEvent → LBFT Unit step₃ step₄ step₃-abs step₄-abs : NewRoundEvent → LBFT Unit step₀ : LBFT Unit step₀ = do syncInfo ← BlockStore.syncInfoM step₁-abs syncInfo step₁ syncInfo = do RoundState.processCertificatesM-abs now syncInfo >>= step₂-abs here' : List String → List String here' t = "RoundManager" ∷ "start" ∷ t step₂ = λ where nothing → logErr fakeErr -- (here' ["Cannot jump start a round_state from existing certificates."])) (just nre) → step₃-abs nre step₃ nre = do maybeSMP (pure lastVoteSent) unit RoundState.recordVoteM step₄-abs nre step₄ nre = processNewRoundEventM-abs now nre -- error!("[RoundManager] Error during start: {:?}", e); abstract step₁-abs = step₁ step₁-abs-≡ : step₁-abs ≡ step₁ step₁-abs-≡ = refl step₂-abs = step₂ step₂-abs-≡ : step₂-abs ≡ step₂ step₂-abs-≡ = refl step₃-abs = step₃ step₃-abs-≡ : step₃-abs ≡ step₃ step₃-abs-≡ = refl step₄-abs = step₄ step₄-abs-≡ : step₄-abs ≡ step₄ step₄-abs-≡ = refl abstract start-abs = start.step₀ start-abs-≡ : start-abs ≡ start.step₀ start-abs-≡ = refl
{ "alphanum_fraction": 0.6224609276, "avg_line_length": 39.0516898608, "ext": "agda", "hexsha": "fa0594164f9bddb67f7ec3a16bdcaf044fecb2a2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/RoundManager.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/RoundManager.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/RoundManager.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5151, "size": 19643 }
module Introduction.Universes where data Nat : Set where zero : Nat suc : Nat -> Nat postulate IsEven : Nat -> Prop data Even : Set where even : (n : Nat) -> IsEven n -> Even
{ "alphanum_fraction": 0.6417112299, "avg_line_length": 14.3846153846, "ext": "agda", "hexsha": "cb192eab5daae544a3fcbd5ab29bbc048cf81a94", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/Introduction/Universes.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/Introduction/Universes.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/Introduction/Universes.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 57, "size": 187 }
module Nat.Unary where open import Data.Sum open import Function open import Nat.Class open import Relation.Binary.PropositionalEquality open ≡-Reasoning data ℕ₁ : Set where zero : ℕ₁ succ : ℕ₁ → ℕ₁ ind : (P : ℕ₁ → Set) → P zero → (∀ {k} → P k → P (succ k)) → ∀ n → P n ind P z s zero = z ind P z s (succ n) = ind (P ∘ succ) (s z) (λ {k} → s {succ k}) n ind′ : (P : ℕ₁ → Set) → P zero → (∀ {k} → P k → P (succ k)) → ∀ n → P n ind′ P z s zero = z ind′ P z s (succ n) = s (ind′ P z s n) rec : {A : Set} → A → (A → A) → ℕ₁ → A rec {A} z s n = ind (const A) z (λ {_} → s) n rec-succ : ∀ {A} z (s : A → A) n → rec (s z) s n ≡ s (rec z s n) rec-succ z s zero = refl rec-succ z s (succ n) = begin rec (s z) s (succ n) ≡⟨⟩ rec (s (s z)) s n ≡⟨ rec-succ (s z) s n ⟩ s (rec (s z) s n) ≡⟨⟩ s (rec z s (succ n)) ∎ data _<_ : ℕ₁ → ℕ₁ → Set where z<s : ∀ {n} → zero < succ n s<s : ∀ {m n} → m < n → succ m < succ n n<sn : ∀ {n} → n < succ n n<sn {zero} = z<s n<sn {succ n} = s<s n<sn tighten : ∀ {m n} → m < succ n → m < n ⊎ m ≡ n tighten {zero} {zero} z<s = inj₂ refl tighten {zero} {succ n′} z<s = inj₁ z<s tighten {succ m′} {succ n′} (s<s m′<sn′) with tighten m′<sn′ tighten {succ m′} {succ n′} (s<s m′<sn′) | inj₁ m′<n′ = inj₁ (s<s m′<n′) tighten {succ m′} {succ n′} (s<s m′<sn′) | inj₂ m′≡n′ = inj₂ (cong succ m′≡n′) SIndHyp : (ℕ₁ → Set) → ℕ₁ → Set SIndHyp P n = ∀ {m} → m < n → P m sind : (P : ℕ₁ → Set) → (∀ {k} → SIndHyp P k → P k) → ∀ n → P n sind P h n = prf (succ n) {n} n<sn where lem : {p : ℕ₁} (hp : SIndHyp P p) → SIndHyp P (succ p) lem hp m<sp with tighten m<sp lem hp m<sp | inj₁ m<p = hp m<p lem hp m<sp | inj₂ refl = h hp prf : ∀ n → SIndHyp P n prf = ind (SIndHyp P) (λ ()) lem _+_ : ℕ₁ → ℕ₁ → ℕ₁ m + n = rec n succ m +-zero : ∀ {n} → zero + n ≡ n +-zero = refl +-succ : ∀ {m n} → succ m + n ≡ m + succ n +-succ = refl instance Nat-ℕ₁ : Nat ℕ₁ Nat-ℕ₁ = record { zero = zero ; succ = succ ; ind = ind ; _+_ = _+_ ; +-zero = +-zero ; +-succ = λ {m n} → +-succ {m} {n} }
{ "alphanum_fraction": 0.4932756964, "avg_line_length": 24.4941176471, "ext": "agda", "hexsha": "e1b570dd0db17f40f521addf45531c3bdffba4d6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-28T12:49:47.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-28T12:49:47.000Z", "max_forks_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iblech/agda-quotients", "max_forks_repo_path": "src/Nat/Unary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iblech/agda-quotients", "max_issues_repo_path": "src/Nat/Unary.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iblech/agda-quotients", "max_stars_repo_path": "src/Nat/Unary.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-29T13:10:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-29T13:10:27.000Z", "num_tokens": 971, "size": 2082 }
module Relation.Ternary.Separation.Monad.Delay where open import Level open import Function open import Function using (_∘_; case_of_) open import Relation.Binary.PropositionalEquality open import Relation.Unary open import Relation.Unary.PredicateTransformer hiding (_⊔_) open import Relation.Ternary.Separation open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Morphisms open import Codata.Delay as D using (now; later) public open import Data.Unit open Monads module _ {ℓ} {C : Set ℓ} {u} {{r : RawSep C}} {{us : IsUnitalSep r u}} where Delay : ∀ {ℓ} i → Pt C ℓ Delay i P c = D.Delay (P c) i instance delay-monad : ∀ {i} → Monad ⊤ ℓ (λ _ _ → Delay i) Monad.return delay-monad px = D.now px app (Monad.bind delay-monad f) ►px σ = D.bind ►px λ px → app f px σ
{ "alphanum_fraction": 0.7218863362, "avg_line_length": 27.5666666667, "ext": "agda", "hexsha": "15a2d9e64735790c8f82bba2a5d7db9ed4770bff", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Monad/Delay.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Monad/Delay.agda", "max_line_length": 71, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Monad/Delay.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 248, "size": 827 }
module Cats.Trans where open import Level using (_⊔_) open import Cats.Category.Base open import Cats.Functor using (Functor) open Functor module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} where infixr 9 _∘_ private module C = Category C module D = Category D open D.≈-Reasoning record Trans (F G : Functor C D) : Set (lo ⊔ la ⊔ la′ ⊔ l≈′) where field component : (c : C.Obj) → fobj F c D.⇒ fobj G c natural : ∀ {c d} {f : c C.⇒ d} → component d D.∘ fmap F f D.≈ fmap G f D.∘ component c open Trans public id : ∀ {F} → Trans F F id {F} = record { component = λ _ → D.id ; natural = D.≈.trans D.id-l (D.≈.sym D.id-r) } _∘_ : ∀ {F G H} → Trans G H → Trans F G → Trans F H _∘_ {F} {G} {H} θ ι = record { component = λ c → component θ c D.∘ component ι c ; natural = λ {c} {d} {f} → begin (component θ d D.∘ component ι d) D.∘ fmap F f ≈⟨ D.assoc ⟩ component θ d D.∘ component ι d D.∘ fmap F f ≈⟨ D.∘-resp-r (natural ι) ⟩ component θ d D.∘ fmap G f D.∘ component ι c ≈⟨ D.unassoc ⟩ (component θ d D.∘ fmap G f) D.∘ component ι c ≈⟨ D.∘-resp-l (natural θ) ⟩ (fmap H f D.∘ component θ c) D.∘ component ι c ≈⟨ D.assoc ⟩ fmap H f D.∘ component θ c D.∘ component ι c ∎ }
{ "alphanum_fraction": 0.5058823529, "avg_line_length": 24.9137931034, "ext": "agda", "hexsha": "53e72ba21e9717a1468cacc42026a29505830c0a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Trans.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Trans.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Trans.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 577, "size": 1445 }
module IID-New-Proof-Setup where open import LF open import Identity open import IID open import IIDr open import DefinitionalEquality OPg : Set -> Set1 OPg I = OP I I -- Encoding indexed inductive types as non-indexed types. ε : {I : Set}(γ : OPg I) -> OPr I ε (ι i) j = σ (i == j) (\_ -> ι ★) ε (σ A γ) j = σ A (\a -> ε (γ a) j) ε (δ H i γ) j = δ H i (ε γ j) -- Adds a reflexivity proof. g→rArgs : {I : Set}(γ : OPg I)(U : I -> Set) (a : Args γ U) -> rArgs (ε γ) U (index γ U a) g→rArgs (ι e) U arg = (refl , ★) g→rArgs (σ A γ) U arg = (π₀ arg , g→rArgs (γ (π₀ arg)) U (π₁ arg)) g→rArgs (δ H i γ) U arg = (π₀ arg , g→rArgs γ U (π₁ arg))
{ "alphanum_fraction": 0.5558867362, "avg_line_length": 24.8518518519, "ext": "agda", "hexsha": "b4c6e17ed3db69a5b9f03eaa8ecf41a01c6365c0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/IID-New-Proof-Setup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/IID-New-Proof-Setup.agda", "max_line_length": 68, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/IID-New-Proof-Setup.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 273, "size": 671 }
module Data.Collection.Equivalence where open import Data.Collection.Core open import Function using (id; _∘_) open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence) open Function.Equivalence.Equivalence open import Relation.Binary.PropositionalEquality open import Level using (zero) open import Relation.Nullary open import Relation.Unary open import Relation.Binary nach : ∀ {f t} {A : Set f} {B : Set t} → (A ⇔ B) → A → B nach = _⟨$⟩_ ∘ to von : ∀ {f t} {A : Set f} {B : Set t} → (A ⇔ B) → B → A von = _⟨$⟩_ ∘ from infixr 5 _≋_ _≋_ : Rel Membership _ A ≋ B = {x : Element} → x ∈ A ⇔ x ∈ B ≋-Reflexive : Reflexive _≋_ ≋-Reflexive = equivalence id id ≋-Symmetric : Symmetric _≋_ ≋-Symmetric z = record { to = from z ; from = to z } ≋-Transitive : Transitive _≋_ ≋-Transitive P≋Q Q≋R = equivalence (nach Q≋R ∘ nach P≋Q) (von P≋Q ∘ von Q≋R) ≋-IsEquivalence : IsEquivalence _≋_ ≋-IsEquivalence = record { refl = equivalence id id ; sym = ≋-Symmetric ; trans = ≋-Transitive } ≋-Setoid : Setoid _ _ ≋-Setoid = record { Carrier = Pred Element zero ; _≈_ = _≋_ ; isEquivalence = ≋-IsEquivalence } -------------------------------------------------------------------------------- -- Conditional Equivalence -------------------------------------------------------------------------------- _≋[_]_ : ∀ {a} → Membership → Pred Element a → Membership → Set a A ≋[ P ] B = {x : Element} → P x → x ∈ A ⇔ x ∈ B -- prefix version of _≋[_]_, with the predicate being the first argument [_]≋ : ∀ {a} → Pred Element a → Membership → Membership → Set a [_]≋ P A B = A ≋[ P ] B ≋[]-Reflexive : ∀ {a} {P : Pred Element a} → Reflexive [ P ]≋ ≋[]-Reflexive A = equivalence id id ≋[]-Symmetric : ∀ {a} {P : Pred Element a} → Symmetric [ P ]≋ ≋[]-Symmetric z ∈P = record { to = from (z ∈P) ; from = to (z ∈P) } ≋[]-Transitive : ∀ {a} {P : Pred Element a} → Transitive [ P ]≋ ≋[]-Transitive P≋Q Q≋R ∈P = equivalence (nach (Q≋R ∈P) ∘ nach (P≋Q ∈P)) (von (P≋Q ∈P) ∘ von (Q≋R ∈P)) ≋[]-IsEquivalence : ∀ {a} {P : Pred Element a} → IsEquivalence [ P ]≋ ≋[]-IsEquivalence {p} = record { refl = λ _ → equivalence id id ; sym = ≋[]-Symmetric ; trans = ≋[]-Transitive }
{ "alphanum_fraction": 0.559262511, "avg_line_length": 26.8, "ext": "agda", "hexsha": "2fcfa3f6ed97b0f21b28f47d89fa793270e01fdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/lambda-calculus", "max_forks_repo_path": "Data/Collection/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/lambda-calculus", "max_issues_repo_path": "Data/Collection/Equivalence.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/lambda-calculus", "max_stars_repo_path": "Data/Collection/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 822, "size": 2278 }
{-# OPTIONS --universe-polymorphism #-} -- Free category generated by a directed graph. -- The graph is given by a type (Obj) of nodes and a (Obj × Obj)-indexed -- Setoid of (directed) edges. Every inhabitant of the node type is -- considered to be a (distinct) node of the graph, and (equivalence -- classes of) inhabitants of the edge type (for a given pair of -- nodes) are considered edges of the graph. module Categories.Free.Core where open import Categories.Category open import Categories.Functor using (Functor) open import Categories.Support.Equivalence open import Graphs.Graph open import Graphs.GraphMorphism open import Relation.Binary using (module IsEquivalence) open import Relation.Binary.PropositionalEquality using () renaming (_≡_ to _≣_; refl to ≣-refl) open import Data.Star open import Categories.Support.StarEquality open import Data.Star.Properties using (gmap-◅◅) open import Level using (_⊔_) EdgeSetoid : ∀ {o ℓ e} → (G : Graph o ℓ e) (A B : Graph.Obj G) → Setoid ℓ e EdgeSetoid G A B = Graph.edge-setoid G {A}{B} module PathEquality {o ℓ e} (G : Graph o ℓ e) = StarEquality (EdgeSetoid G) Free₀ : ∀ {o ℓ e} → Graph o ℓ e → Category o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e) Free₀ {o}{ℓ}{e} G = record { Obj = Obj ; _⇒_ = Star _↝_ ; id = ε ; _∘_ = _▻▻_ ; _≡_ = _≡_ ; equiv = equiv ; assoc = λ{A}{B}{C}{D} {f}{g}{h} → ▻▻-assoc {A}{B}{C}{D} f g h ; identityˡ = IsEquivalence.reflexive equiv f◅◅ε≣f ; identityʳ = IsEquivalence.reflexive equiv ≣-refl ; ∘-resp-≡ = _▻▻-cong_ } where open Graph G hiding (equiv) open PathEquality G renaming (_≈_ to _≡_; isEquivalence to equiv) f◅◅ε≣f : ∀ {A B}{f : Star _↝_ A B} -> (f ◅◅ ε) ≣ f f◅◅ε≣f {f = ε} = ≣-refl f◅◅ε≣f {f = x ◅ xs} rewrite f◅◅ε≣f {f = xs} = ≣-refl Free₁ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {A : Graph o₁ ℓ₁ e₁} {B : Graph o₂ ℓ₂ e₂} → GraphMorphism A B → Functor (Free₀ A) (Free₀ B) Free₁ {o₁}{ℓ₁}{e₁}{o₂}{ℓ₂}{e₂}{A}{B} G = record { F₀ = G₀ ; F₁ = gmap G₀ G₁ ; identity = refl ; homomorphism = λ {X}{Y}{Z}{f}{g} → homomorphism {X}{Y}{Z}{f}{g} ; F-resp-≡ = F-resp-≡ } where open GraphMorphism G renaming (F₀ to G₀; F₁ to G₁; F-resp-≈ to G-resp-≈) open Category.Equiv (Free₀ B) .homomorphism : ∀ {X Y Z} {f : Free₀ A [ X , Y ]} {g : Free₀ A [ Y , Z ]} → Free₀ B [ gmap G₀ G₁ (f ◅◅ g) ≡ gmap G₀ G₁ f ◅◅ gmap G₀ G₁ g ] homomorphism {f = f}{g} = reflexive (gmap-◅◅ G₀ G₁ f g) .F-resp-≡ : ∀ {X Y} {f g : Free₀ A [ X , Y ]} → Free₀ A [ f ≡ g ] → Free₀ B [ gmap G₀ G₁ f ≡ gmap G₀ G₁ g ] F-resp-≡ {X}{Y}{f}{g} f≡g = gmap-cong G₀ G₁ G₁ (λ x y x≈y → G-resp-≈ x≈y) f g f≡g where open StarCong₂ (EdgeSetoid A) (EdgeSetoid B)
{ "alphanum_fraction": 0.5782073814, "avg_line_length": 32.7011494253, "ext": "agda", "hexsha": "b3141e4bcbe49af77c9c8c9d25f96e6b833061fb", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Free/Core.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Free/Core.agda", "max_line_length": 75, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Free/Core.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1150, "size": 2845 }
-- 2010-10-06 Andreas module TerminationRecordPatternListAppend where data Empty : Set where record Unit : Set where constructor unit data Bool : Set where true false : Bool T : Bool -> Set T true = Unit T false = Empty -- Thorsten suggests on the Agda list thread "Coinductive families" -- to encode lists as records record List (A : Set) : Set where constructor list field isCons : Bool head : T isCons -> A tail : T isCons -> List A open List public -- if the record constructor list was counted as structural increase -- Thorsten's function would not be rejected append : {A : Set} -> List A -> List A -> List A append (list true h t) l' = list true h (\ _ -> append (t _) l') append (list false _ _) l' = l' -- but translating away the record pattern produces something -- that is in any case rejected by the termination checker append1 : {A : Set} -> List A -> List A -> List A append1 l l' = append1' l l' (isCons l) where append1' : {A : Set} -> List A -> List A -> Bool -> List A append1' l l' true = list true (head l) (\ _ -> append (tail l) l') append1' l l' false = l' -- NEED inspect!
{ "alphanum_fraction": 0.6556808326, "avg_line_length": 27.4523809524, "ext": "agda", "hexsha": "b106dc5773c908a2a768604804fe9e75d3bde7e8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/fail/TerminationRecordPatternListAppend.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/fail/TerminationRecordPatternListAppend.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/TerminationRecordPatternListAppend.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 330, "size": 1153 }
{-# OPTIONS --without-K #-} module Pif where open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; subst₂; cong; cong₂; setoid; proof-irrelevance; module ≡-Reasoning) open import Data.Nat.Properties using (m≢1+m+n; i+j≡0⇒i≡0; i+j≡0⇒j≡0) open import Data.Nat.Properties.Simple using (+-right-identity; +-suc; +-assoc; +-comm; *-assoc; *-comm; *-right-zero; distribʳ-*-+) open import Relation.Binary.Core using (Transitive) open import Data.String using (String) renaming (_++_ to _++S_) open import Data.Nat.Show using (show) open import Data.Bool using (Bool; false; true; _∧_; _∨_) open import Data.Nat using (ℕ; suc; _+_; _∸_; _*_; _<_; _≮_; _≤_; _≰_; z≤n; s≤s; _≟_; _≤?_; module ≤-Reasoning) open import Data.Fin using (Fin; zero; suc; toℕ; fromℕ; _ℕ-_; _≺_; raise; inject+; inject₁; inject≤; _≻toℕ_) renaming (_+_ to _F+_) open import Data.Vec using (Vec; tabulate; []; _∷_ ; tail; lookup; zip; zipWith; splitAt; _[_]≔_; allFin; toList) renaming (_++_ to _++V_; map to mapV; concat to concatV) open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import PiLevel0 open import Cauchy open import Perm open import Proofs open import CauchyProofs open import CauchyProofsT open import CauchyProofsS open import Groupoid ------------------------------------------------------------------------------ -- A combinator t₁ ⟷ t₂ denotes a permutation. c2cauchy : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → Cauchy (size t₁) -- the cases that do not inspect t₁ and t₂ should be at the beginning -- so that Agda would unfold them c2cauchy (c₁ ◎ c₂) = scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂)) c2cauchy (c₁ ⊕ c₂) = pcompcauchy (c2cauchy c₁) (c2cauchy c₂) c2cauchy (c₁ ⊗ c₂) = tcompcauchy (c2cauchy c₁) (c2cauchy c₂) c2cauchy {PLUS ZERO t} unite₊ = idcauchy (size t) c2cauchy {t} uniti₊ = idcauchy (size t) c2cauchy {PLUS t₁ t₂} swap₊ = swap+cauchy (size t₁) (size t₂) c2cauchy {PLUS t₁ (PLUS t₂ t₃)} assocl₊ = idcauchy (size t₁ + (size t₂ + size t₃)) c2cauchy {PLUS (PLUS t₁ t₂) t₃} assocr₊ = idcauchy ((size t₁ + size t₂) + size t₃) c2cauchy {TIMES ONE t} unite⋆ = subst Cauchy (sym (+-right-identity (size t))) (idcauchy (size t)) c2cauchy {t} uniti⋆ = idcauchy (size t) c2cauchy {TIMES t₁ t₂} {TIMES .t₂ .t₁} swap⋆ = swap⋆cauchy (size t₁) (size t₂) c2cauchy {TIMES t₁ (TIMES t₂ t₃)} assocl⋆ = idcauchy (size t₁ * (size t₂ * size t₃)) c2cauchy {TIMES (TIMES t₁ t₂) t₃} assocr⋆ = idcauchy ((size t₁ * size t₂) * size t₃) c2cauchy {TIMES ZERO t} distz = [] c2cauchy factorz = [] c2cauchy {TIMES (PLUS t₁ t₂) t₃} dist = idcauchy ((size t₁ + size t₂) * size t₃) c2cauchy {PLUS (TIMES t₁ t₃) (TIMES t₂ .t₃)} factor = idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃)) c2cauchy {t} id⟷ = idcauchy (size t) c2perm : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → Permutation (size t₁) -- the cases that do not inspect t₁ and t₂ should be at the beginning -- so that Agda would unfold them c2perm (c₁ ◎ c₂) = scompperm (c2perm c₁) (subst Permutation (size≡! c₁) (c2perm c₂)) c2perm (c₁ ⊕ c₂) = pcompperm (c2perm c₁) (c2perm c₂) c2perm (c₁ ⊗ c₂) = tcompperm (c2perm c₁) (c2perm c₂) c2perm unfoldBool = idperm 2 c2perm foldBool = idperm 2 c2perm {PLUS ZERO t} unite₊ = idperm (size t) c2perm {t} uniti₊ = idperm (size t) c2perm {PLUS t₁ t₂} swap₊ = swap+perm (size t₁) (size t₂) c2perm {PLUS t₁ (PLUS t₂ t₃)} assocl₊ = idperm (size t₁ + (size t₂ + size t₃)) c2perm {PLUS (PLUS t₁ t₂) t₃} assocr₊ = idperm ((size t₁ + size t₂) + size t₃) c2perm {TIMES ONE t} unite⋆ = subst Permutation (sym (+-right-identity (size t))) (idperm (size t)) c2perm {t} uniti⋆ = idperm (size t) c2perm {TIMES t₁ t₂} {TIMES .t₂ .t₁} swap⋆ = swap⋆perm (size t₁) (size t₂) c2perm {TIMES t₁ (TIMES t₂ t₃)} assocl⋆ = idperm (size t₁ * (size t₂ * size t₃)) c2perm {TIMES (TIMES t₁ t₂) t₃} assocr⋆ = idperm ((size t₁ * size t₂) * size t₃) c2perm {TIMES ZERO t} distz = emptyperm c2perm factorz = emptyperm c2perm {TIMES (PLUS t₁ t₂) t₃} dist = idperm ((size t₁ + size t₂) * size t₃) c2perm {PLUS (TIMES t₁ t₃) (TIMES t₂ .t₃)} factor = idperm ((size t₁ * size t₃) + (size t₂ * size t₃)) c2perm {t} id⟷ = idperm (size t) -- Looking forward to Sec. 2.2 (Functions are functors). The -- corresponding statement to Lemma 2.2.1 in our setting would be the -- following. Given any *size preserving* function f : U → U, it is -- the case that a combinator (path) c : t₁ ⟷ t₂ maps to a combinator -- (path) ap_f(c) : f(t₁) ⟷ f(t₂). ------------------------------------------------------------------------------ -- Extensional equivalence of combinators -- Two combinators are equivalent if they denote the same -- permutation. Generally we would require that the two permutations -- map the same value x to values y and z that have a path between -- them, but because the internals of each type are discrete -- groupoids, this reduces to saying that y and z are identical, and -- hence that the permutations are identical. infix 10 _∼_ _∼_ : {t₁ t₂ : U} → (c₁ c₂ : t₁ ⟷ t₂) → Set c₁ ∼ c₂ = (c2cauchy c₁ ≡ c2cauchy c₂) -- The relation ~ is an equivalence relation refl∼ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ∼ c) refl∼ = refl sym∼ : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₂ ∼ c₁) sym∼ = sym trans∼ : {t₁ t₂ : U} {c₁ c₂ c₃ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₂ ∼ c₃) → (c₁ ∼ c₃) trans∼ = trans assoc∼ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → c₁ ◎ (c₂ ◎ c₃) ∼ (c₁ ◎ c₂) ◎ c₃ assoc∼ {t₁} {t₂} {t₃} {t₄} {c₁} {c₂} {c₃} = begin (c2cauchy (c₁ ◎ (c₂ ◎ c₃)) ≡⟨ refl ⟩ scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (scompcauchy (c2cauchy c₂) (subst Cauchy (size≡! c₂) (c2cauchy c₃)))) ≡⟨ cong (scompcauchy (c2cauchy c₁)) (subst-dist scompcauchy (size≡! c₁) (c2cauchy c₂) (subst Cauchy (size≡! c₂) (c2cauchy c₃))) ⟩ scompcauchy (c2cauchy c₁) (scompcauchy (subst Cauchy (size≡! c₁) (c2cauchy c₂)) (subst Cauchy (size≡! c₁) (subst Cauchy (size≡! c₂) (c2cauchy c₃)))) ≡⟨ cong (λ x → scompcauchy (c2cauchy c₁) (scompcauchy (subst Cauchy (size≡! c₁) (c2cauchy c₂)) x)) (subst-trans (size≡! c₁) (size≡! c₂) (c2cauchy c₃)) ⟩ scompcauchy (c2cauchy c₁) (scompcauchy (subst Cauchy (size≡! c₁) (c2cauchy c₂)) (subst Cauchy (trans (size≡! c₂) (size≡! c₁)) (c2cauchy c₃))) ≡⟨ scompassoc (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂)) (subst Cauchy (trans (size≡! c₂) (size≡! c₁)) (c2cauchy c₃)) ⟩ scompcauchy (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂))) (subst Cauchy (trans (size≡! c₂) (size≡! c₁)) (c2cauchy c₃)) ≡⟨ refl ⟩ c2cauchy ((c₁ ◎ c₂) ◎ c₃) ∎) where open ≡-Reasoning -- The combinators c : t₁ ⟷ t₂ are paths; we can transport -- size-preserving properties across c. In particular, for some -- appropriate P we want P(t₁) to map to P(t₂) via c. -- The relation ~ validates the groupoid laws c◎id∼c : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ◎ id⟷ ∼ c c◎id∼c {t₁} {t₂} {c} = begin (c2cauchy (c ◎ id⟷) ≡⟨ refl ⟩ scompcauchy (c2cauchy c) (subst Cauchy (size≡! c) (allFin (size t₂))) ≡⟨ cong (λ x → scompcauchy (c2cauchy c) x) (congD! {B = Cauchy} allFin (size≡! c)) ⟩ scompcauchy (c2cauchy c) (allFin (size t₁)) ≡⟨ scomprid (c2cauchy c) ⟩ c2cauchy c ∎) where open ≡-Reasoning id◎c∼c : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ◎ c ∼ c id◎c∼c {t₁} {t₂} {c} = begin (c2cauchy (id⟷ ◎ c) ≡⟨ refl ⟩ scompcauchy (allFin (size t₁)) (subst Cauchy refl (c2cauchy c)) ≡⟨ refl ⟩ scompcauchy (allFin (size t₁)) (c2cauchy c) ≡⟨ scomplid (c2cauchy c) ⟩ c2cauchy c ∎) where open ≡-Reasoning linv∼ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ◎ ! c ∼ id⟷ linv∼ {PLUS ZERO t} {.t} {unite₊} = begin (c2cauchy {PLUS ZERO t} (unite₊ ◎ uniti₊) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t)) (idcauchy (size t)) ≡⟨ scomplid (idcauchy (size t)) ⟩ c2cauchy {PLUS ZERO t} id⟷ ∎) where open ≡-Reasoning linv∼ {t} {PLUS ZERO .t} {uniti₊} = begin (c2cauchy {t} (uniti₊ ◎ unite₊) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t)) (idcauchy (size t)) ≡⟨ scomplid (idcauchy (size t)) ⟩ c2cauchy {t} id⟷ ∎) where open ≡-Reasoning linv∼ {PLUS t₁ t₂} {PLUS .t₂ .t₁} {swap₊} = begin (c2cauchy {PLUS t₁ t₂} (swap₊ ◎ swap₊) ≡⟨ refl ⟩ scompcauchy (swap+cauchy (size t₁) (size t₂)) (subst Cauchy (+-comm (size t₂) (size t₁)) (swap+cauchy (size t₂) (size t₁))) ≡⟨ swap+idemp (size t₁) (size t₂) ⟩ c2cauchy {PLUS t₁ t₂} id⟷ ∎) where open ≡-Reasoning linv∼ {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} {assocl₊} = begin (c2cauchy {PLUS t₁ (PLUS t₂ t₃)} (assocl₊ ◎ assocr₊) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t₁ + (size t₂ + size t₃))) (subst Cauchy (+-assoc (size t₁) (size t₂) (size t₃)) (idcauchy ((size t₁ + size t₂) + size t₃))) ≡⟨ cong (scompcauchy (idcauchy (size t₁ + (size t₂ + size t₃)))) (congD! idcauchy (+-assoc (size t₁) (size t₂) (size t₃))) ⟩ scompcauchy (idcauchy (size t₁ + (size t₂ + size t₃))) (idcauchy (size t₁ + (size t₂ + size t₃))) ≡⟨ scomplid (idcauchy (size t₁ + (size t₂ + size t₃))) ⟩ c2cauchy {PLUS t₁ (PLUS t₂ t₃)} id⟷ ∎) where open ≡-Reasoning linv∼ {PLUS (PLUS t₁ t₂) t₃} {PLUS .t₁ (PLUS .t₂ .t₃)} {assocr₊} = begin (c2cauchy {PLUS (PLUS t₁ t₂) t₃} (assocr₊ ◎ assocl₊) ≡⟨ refl ⟩ scompcauchy (idcauchy ((size t₁ + size t₂) + size t₃)) (subst Cauchy (sym (+-assoc (size t₁) (size t₂) (size t₃))) (idcauchy (size t₁ + (size t₂ + size t₃)))) ≡⟨ cong (scompcauchy (idcauchy ((size t₁ + size t₂) + size t₃))) (congD! idcauchy (sym (+-assoc (size t₁) (size t₂) (size t₃)))) ⟩ scompcauchy (idcauchy ((size t₁ + size t₂) + size t₃)) (idcauchy ((size t₁ + size t₂) + size t₃)) ≡⟨ scomplid (idcauchy ((size t₁ + size t₂) + size t₃)) ⟩ c2cauchy {PLUS (PLUS t₁ t₂) t₃} id⟷ ∎) where open ≡-Reasoning linv∼ {TIMES ONE t} {.t} {unite⋆} = begin (c2cauchy {TIMES ONE t} (unite⋆ ◎ uniti⋆) ≡⟨ refl ⟩ scompcauchy (subst Cauchy (sym (+-right-identity (size t))) (idcauchy (size t))) (subst Cauchy (sym (+-right-identity (size t))) (idcauchy (size t))) ≡⟨ cong (λ x → scompcauchy x x) (congD! idcauchy (sym (+-right-identity (size t)))) ⟩ scompcauchy (idcauchy (size t + 0)) (idcauchy (size t + 0)) ≡⟨ scomplid (idcauchy (size t + 0)) ⟩ c2cauchy {TIMES ONE t} id⟷ ∎) where open ≡-Reasoning linv∼ {t} {TIMES ONE .t} {uniti⋆} = begin (c2cauchy {t} (uniti⋆ ◎ unite⋆) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t)) (subst Cauchy (+-right-identity (size t)) (subst Cauchy (sym (+-right-identity (size t))) (idcauchy (size t)))) ≡⟨ cong (scompcauchy (idcauchy (size t))) (subst-trans (+-right-identity (size t)) (sym (+-right-identity (size t))) (idcauchy (size t))) ⟩ scompcauchy (idcauchy (size t)) (subst Cauchy (trans (sym (+-right-identity (size t))) (+-right-identity (size t))) (idcauchy (size t))) ≡⟨ cong (λ x → scompcauchy (idcauchy (size t)) (subst Cauchy x (idcauchy (size t)))) (trans-syml (+-right-identity (size t))) ⟩ scompcauchy (idcauchy (size t)) (subst Cauchy refl (idcauchy (size t))) ≡⟨ scomplid (idcauchy (size t)) ⟩ c2cauchy {t} id⟷ ∎) where open ≡-Reasoning linv∼ {TIMES t₁ t₂} {TIMES .t₂ .t₁} {swap⋆} = begin (c2cauchy {TIMES t₁ t₂} (swap⋆ ◎ swap⋆) ≡⟨ refl ⟩ scompcauchy (swap⋆cauchy (size t₁) (size t₂)) (subst Cauchy (*-comm (size t₂) (size t₁)) (swap⋆cauchy (size t₂) (size t₁))) ≡⟨ swap⋆idemp (size t₁) (size t₂) ⟩ c2cauchy {TIMES t₁ t₂} id⟷ ∎) where open ≡-Reasoning linv∼ {TIMES t₁ (TIMES t₂ t₃)} {TIMES (TIMES .t₁ .t₂) .t₃} {assocl⋆} = begin (c2cauchy {TIMES t₁ (TIMES t₂ t₃)} (assocl⋆ ◎ assocr⋆) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t₁ * (size t₂ * size t₃))) (subst Cauchy (*-assoc (size t₁) (size t₂) (size t₃)) (idcauchy ((size t₁ * size t₂) * size t₃))) ≡⟨ cong (scompcauchy (idcauchy (size t₁ * (size t₂ * size t₃)))) (congD! idcauchy (*-assoc (size t₁) (size t₂) (size t₃))) ⟩ scompcauchy (idcauchy (size t₁ * (size t₂ * size t₃))) (idcauchy (size t₁ * (size t₂ * size t₃))) ≡⟨ scomplid (idcauchy (size t₁ * (size t₂ * size t₃))) ⟩ c2cauchy {TIMES t₁ (TIMES t₂ t₃)} id⟷ ∎) where open ≡-Reasoning linv∼ {TIMES (TIMES t₁ t₂) t₃} {TIMES .t₁ (TIMES .t₂ .t₃)} {assocr⋆} = begin (c2cauchy {TIMES (TIMES t₁ t₂) t₃} (assocr⋆ ◎ assocl⋆) ≡⟨ refl ⟩ scompcauchy (idcauchy ((size t₁ * size t₂) * size t₃)) (subst Cauchy (sym (*-assoc (size t₁) (size t₂) (size t₃))) (idcauchy (size t₁ * (size t₂ * size t₃)))) ≡⟨ cong (scompcauchy (idcauchy ((size t₁ * size t₂) * size t₃))) (congD! idcauchy (sym (*-assoc (size t₁) (size t₂) (size t₃)))) ⟩ scompcauchy (idcauchy ((size t₁ * size t₂) * size t₃)) (idcauchy ((size t₁ * size t₂) * size t₃)) ≡⟨ scomplid (idcauchy ((size t₁ * size t₂) * size t₃)) ⟩ c2cauchy {TIMES (TIMES t₁ t₂) t₃} id⟷ ∎) where open ≡-Reasoning linv∼ {TIMES ZERO t} {ZERO} {distz} = refl linv∼ {ZERO} {TIMES ZERO t} {factorz} = refl linv∼ {TIMES (PLUS t₁ t₂) t₃} {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} {dist} = begin (c2cauchy {TIMES (PLUS t₁ t₂) t₃} (dist ◎ factor) ≡⟨ refl ⟩ scompcauchy (idcauchy ((size t₁ + size t₂) * size t₃)) (subst Cauchy (sym (distribʳ-*-+ (size t₃) (size t₁) (size t₂))) (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃)))) ≡⟨ cong (scompcauchy (idcauchy ((size t₁ + size t₂) * size t₃))) (congD! idcauchy (sym (distribʳ-*-+ (size t₃) (size t₁) (size t₂)))) ⟩ scompcauchy (idcauchy ((size t₁ + size t₂) * size t₃)) (idcauchy ((size t₁ + size t₂) * size t₃)) ≡⟨ scomplid (idcauchy ((size t₁ + size t₂) * size t₃)) ⟩ c2cauchy {TIMES (PLUS t₁ t₂) t₃} id⟷ ∎) where open ≡-Reasoning linv∼ {PLUS (TIMES t₁ t₃) (TIMES t₂ .t₃)} {TIMES (PLUS .t₁ .t₂) .t₃} {factor} = begin (c2cauchy {PLUS (TIMES t₁ t₃) (TIMES t₂ t₃)} (factor ◎ dist) ≡⟨ refl ⟩ scompcauchy (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃))) (subst Cauchy (distribʳ-*-+ (size t₃) (size t₁) (size t₂)) (idcauchy ((size t₁ + size t₂) * size t₃))) ≡⟨ cong (scompcauchy (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃)))) (congD! idcauchy (distribʳ-*-+ (size t₃) (size t₁) (size t₂))) ⟩ scompcauchy (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃))) (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃))) ≡⟨ scomplid (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃))) ⟩ c2cauchy {PLUS (TIMES t₁ t₃) (TIMES t₂ t₃)} id⟷ ∎) where open ≡-Reasoning linv∼ {t} {.t} {id⟷} = begin (c2cauchy {t} (id⟷ ◎ id⟷) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t)) (idcauchy (size t)) ≡⟨ scomplid (idcauchy (size t)) ⟩ c2cauchy {t} id⟷ ∎) where open ≡-Reasoning linv∼ {t₁} {t₃} {_◎_ {t₂ = t₂} c₁ c₂} = begin (c2cauchy {t₁} ((c₁ ◎ c₂) ◎ ((! c₂) ◎ (! c₁))) ≡⟨ refl ⟩ scompcauchy (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂))) (subst Cauchy (trans (size≡! c₂) (size≡! c₁)) (scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))))) ≡⟨ sym (scompassoc (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂)) (subst Cauchy (trans (size≡! c₂) (size≡! c₁)) (scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁)))))) ⟩ scompcauchy (c2cauchy c₁) (scompcauchy (subst Cauchy (size≡! c₁) (c2cauchy c₂)) (subst Cauchy (trans (size≡! c₂) (size≡! c₁)) (scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁)))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy c₁) (scompcauchy (subst Cauchy (size≡! c₁) (c2cauchy c₂)) x)) (sym (subst-trans (size≡! c₁) (size≡! c₂) (scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁)))))) ⟩ scompcauchy (c2cauchy c₁) (scompcauchy (subst Cauchy (size≡! c₁) (c2cauchy c₂)) (subst Cauchy (size≡! c₁) (subst Cauchy (size≡! c₂) (scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))))))) ≡⟨ cong (scompcauchy (c2cauchy c₁)) (sym (subst-dist scompcauchy (size≡! c₁) (c2cauchy c₂) (subst Cauchy (size≡! c₂) (scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))))))) ⟩ scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (scompcauchy (c2cauchy c₂) (subst Cauchy (size≡! c₂) (scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (scompcauchy (c2cauchy c₂) x))) (subst-dist scompcauchy (size≡! c₂) (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁)))) ⟩ scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (scompcauchy (c2cauchy c₂) (scompcauchy (subst Cauchy (size≡! c₂) (c2cauchy (! c₂))) (subst Cauchy (size≡! c₂) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) x)) (scompassoc (c2cauchy c₂) (subst Cauchy (size≡! c₂) (c2cauchy (! c₂))) (subst Cauchy (size≡! c₂) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))))) ⟩ scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (scompcauchy (scompcauchy (c2cauchy c₂) (subst Cauchy (size≡! c₂) (c2cauchy (! c₂)))) (subst Cauchy (size≡! c₂) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁)))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (scompcauchy x (subst Cauchy (size≡! c₂) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))))))) (linv∼ {t₂} {t₃} {c₂}) ⟩ scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (scompcauchy (allFin (size t₂)) (subst Cauchy (size≡! c₂) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁)))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) x)) (scomplid (subst Cauchy (size≡! c₂) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))))) ⟩ scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (subst Cauchy (size≡! c₂) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) x)) (subst-trans (size≡! c₂) (size≡! (! c₂)) (c2cauchy (! c₁))) ⟩ scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (subst Cauchy (trans (size≡! (! c₂)) (size≡! c₂)) (c2cauchy (! c₁)))) ≡⟨ cong (λ x → scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (subst Cauchy x (c2cauchy (! c₁))))) (trans (cong (λ y → trans y (size≡! c₂)) (size≡!! c₂)) (trans-syml (size≡! c₂))) ⟩ scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy (! c₁))) ≡⟨ linv∼ {t₁} {t₂} {c₁} ⟩ c2cauchy {t₁} id⟷ ∎) where open ≡-Reasoning linv∼ {PLUS t₁ t₂} {PLUS t₃ t₄} {c₁ ⊕ c₂} = begin (c2cauchy {PLUS t₁ t₂} ((c₁ ⊕ c₂) ◎ ((! c₁) ⊕ (! c₂))) ≡⟨ refl ⟩ scompcauchy (pcompcauchy (c2cauchy c₁) (c2cauchy c₂)) (subst Cauchy (cong₂ _+_ (size≡! c₁) (size≡! c₂)) (pcompcauchy (c2cauchy (! c₁)) (c2cauchy (! c₂)))) ≡⟨ cong (scompcauchy (pcompcauchy (c2cauchy c₁) (c2cauchy c₂))) (subst₂+ (size≡! c₁) (size≡! c₂) (c2cauchy (! c₁)) (c2cauchy (! c₂)) pcompcauchy) ⟩ scompcauchy (pcompcauchy (c2cauchy c₁) (c2cauchy c₂)) (pcompcauchy (subst Cauchy (size≡! c₁) (c2cauchy (! c₁))) (subst Cauchy (size≡! c₂) (c2cauchy (! c₂)))) ≡⟨ pcomp-dist (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy (! c₁))) (c2cauchy c₂) (subst Cauchy (size≡! c₂) (c2cauchy (! c₂))) ⟩ pcompcauchy (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy (! c₁)))) (scompcauchy (c2cauchy c₂) (subst Cauchy (size≡! c₂) (c2cauchy (! c₂)))) ≡⟨ cong₂ pcompcauchy (linv∼ {t₁} {t₃} {c₁}) (linv∼ {t₂} {t₄} {c₂}) ⟩ pcompcauchy (c2cauchy {t₁} id⟷) (c2cauchy {t₂} id⟷) ≡⟨ pcomp-id {size t₁} {size t₂} ⟩ c2cauchy {PLUS t₁ t₂} id⟷ ∎) where open ≡-Reasoning linv∼ {TIMES t₁ t₂} {TIMES t₃ t₄} {c₁ ⊗ c₂} = begin (c2cauchy {TIMES t₁ t₂} ((c₁ ⊗ c₂) ◎ ((! c₁) ⊗ (! c₂))) ≡⟨ refl ⟩ scompcauchy (tcompcauchy (c2cauchy c₁) (c2cauchy c₂)) (subst Cauchy (cong₂ _*_ (size≡! c₁) (size≡! c₂)) (tcompcauchy (c2cauchy (! c₁)) (c2cauchy (! c₂)))) ≡⟨ cong (scompcauchy (tcompcauchy (c2cauchy c₁) (c2cauchy c₂))) (subst₂* (size≡! c₁) (size≡! c₂) (c2cauchy (! c₁)) (c2cauchy (! c₂)) tcompcauchy) ⟩ scompcauchy (tcompcauchy (c2cauchy c₁) (c2cauchy c₂)) (tcompcauchy (subst Cauchy (size≡! c₁) (c2cauchy (! c₁))) (subst Cauchy (size≡! c₂) (c2cauchy (! c₂)))) ≡⟨ tcomp-dist (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy (! c₁))) (c2cauchy c₂) (subst Cauchy (size≡! c₂) (c2cauchy (! c₂))) ⟩ tcompcauchy (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy (! c₁)))) (scompcauchy (c2cauchy c₂) (subst Cauchy (size≡! c₂) (c2cauchy (! c₂)))) ≡⟨ cong₂ tcompcauchy (linv∼ {t₁} {t₃} {c₁}) (linv∼ {t₂} {t₄} {c₂}) ⟩ tcompcauchy (c2cauchy {t₁} id⟷) (c2cauchy {t₂} id⟷) ≡⟨ tcomp-id {size t₁} {size t₂} ⟩ c2cauchy {TIMES t₁ t₂} id⟷ ∎) where open ≡-Reasoning linv∼ {PLUS ONE ONE} {BOOL} {foldBool} = begin (c2cauchy {PLUS ONE ONE} (foldBool ◎ unfoldBool) ≡⟨ refl ⟩ scompcauchy (idcauchy 2) (idcauchy 2) ≡⟨ scomplid (idcauchy 2) ⟩ c2cauchy {PLUS ONE ONE} id⟷ ∎) where open ≡-Reasoning linv∼ {BOOL} {PLUS ONE ONE} {unfoldBool} = begin (c2cauchy {BOOL} (unfoldBool ◎ foldBool) ≡⟨ refl ⟩ scompcauchy (idcauchy 2) (idcauchy 2) ≡⟨ scomplid (idcauchy 2) ⟩ c2cauchy {BOOL} id⟷ ∎) where open ≡-Reasoning rinv∼ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → ! c ◎ c ∼ id⟷ rinv∼ {PLUS ZERO t} {.t} {unite₊} = begin (c2cauchy {t} (uniti₊ ◎ unite₊) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t)) (idcauchy (size t)) ≡⟨ scomplid (idcauchy (size t)) ⟩ c2cauchy {t} id⟷ ∎) where open ≡-Reasoning rinv∼ {t} {PLUS ZERO .t} {uniti₊} = begin (c2cauchy {PLUS ZERO t} (unite₊ ◎ uniti₊) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t)) (idcauchy (size t)) ≡⟨ scomplid (idcauchy (size t)) ⟩ c2cauchy {PLUS ZERO t} id⟷ ∎) where open ≡-Reasoning rinv∼ {PLUS t₁ t₂} {PLUS .t₂ .t₁} {swap₊} = begin (c2cauchy {PLUS t₂ t₁} (swap₊ ◎ swap₊) ≡⟨ refl ⟩ scompcauchy (swap+cauchy (size t₂) (size t₁)) (subst Cauchy (+-comm (size t₁) (size t₂)) (swap+cauchy (size t₁) (size t₂))) ≡⟨ swap+idemp (size t₂) (size t₁) ⟩ c2cauchy {PLUS t₂ t₁} id⟷ ∎) where open ≡-Reasoning rinv∼ {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} {assocl₊} = begin (c2cauchy {PLUS (PLUS t₁ t₂) t₃} (assocr₊ ◎ assocl₊) ≡⟨ refl ⟩ scompcauchy (idcauchy ((size t₁ + size t₂) + size t₃)) (subst Cauchy (sym (+-assoc (size t₁) (size t₂) (size t₃))) (idcauchy (size t₁ + (size t₂ + size t₃)))) ≡⟨ cong (scompcauchy (idcauchy ((size t₁ + size t₂) + size t₃))) (congD! idcauchy (sym (+-assoc (size t₁) (size t₂) (size t₃)))) ⟩ scompcauchy (idcauchy ((size t₁ + size t₂) + size t₃)) (idcauchy ((size t₁ + size t₂) + size t₃)) ≡⟨ scomplid (idcauchy ((size t₁ + size t₂) + size t₃)) ⟩ c2cauchy {PLUS (PLUS t₁ t₂) t₃} id⟷ ∎) where open ≡-Reasoning rinv∼ {PLUS (PLUS t₁ t₂) t₃} {PLUS .t₁ (PLUS .t₂ .t₃)} {assocr₊} = begin (c2cauchy {PLUS t₁ (PLUS t₂ t₃)} (assocl₊ ◎ assocr₊) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t₁ + (size t₂ + size t₃))) (subst Cauchy (+-assoc (size t₁) (size t₂) (size t₃)) (idcauchy ((size t₁ + size t₂) + size t₃))) ≡⟨ cong (scompcauchy (idcauchy (size t₁ + (size t₂ + size t₃)))) (congD! idcauchy (+-assoc (size t₁) (size t₂) (size t₃))) ⟩ scompcauchy (idcauchy (size t₁ + (size t₂ + size t₃))) (idcauchy (size t₁ + (size t₂ + size t₃))) ≡⟨ scomplid (idcauchy (size t₁ + (size t₂ + size t₃))) ⟩ c2cauchy {PLUS t₁ (PLUS t₂ t₃)} id⟷ ∎) where open ≡-Reasoning rinv∼ {TIMES ONE t} {.t} {unite⋆} = begin (c2cauchy {t} (uniti⋆ ◎ unite⋆) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t)) (subst Cauchy (+-right-identity (size t)) (subst Cauchy (sym (+-right-identity (size t))) (idcauchy (size t)))) ≡⟨ cong (scompcauchy (idcauchy (size t))) (subst-trans (+-right-identity (size t)) (sym (+-right-identity (size t))) (idcauchy (size t))) ⟩ scompcauchy (idcauchy (size t)) (subst Cauchy (trans (sym (+-right-identity (size t))) (+-right-identity (size t))) (idcauchy (size t))) ≡⟨ cong (λ x → scompcauchy (idcauchy (size t)) (subst Cauchy x (idcauchy (size t)))) (trans-syml (+-right-identity (size t))) ⟩ scompcauchy (idcauchy (size t)) (subst Cauchy refl (idcauchy (size t))) ≡⟨ scomplid (idcauchy (size t)) ⟩ c2cauchy {t} id⟷ ∎) where open ≡-Reasoning rinv∼ {t} {TIMES ONE .t} {uniti⋆} = begin (c2cauchy {TIMES ONE t} (unite⋆ ◎ uniti⋆) ≡⟨ refl ⟩ scompcauchy (subst Cauchy (sym (+-right-identity (size t))) (idcauchy (size t))) (subst Cauchy (sym (+-right-identity (size t))) (idcauchy (size t))) ≡⟨ cong (λ x → scompcauchy x x) (congD! idcauchy (sym (+-right-identity (size t)))) ⟩ scompcauchy (idcauchy (size t + 0)) (idcauchy (size t + 0)) ≡⟨ scomplid (idcauchy (size t + 0)) ⟩ c2cauchy {TIMES ONE t} id⟷ ∎) where open ≡-Reasoning rinv∼ {TIMES t₁ t₂} {TIMES .t₂ .t₁} {swap⋆} = begin (c2cauchy {TIMES t₂ t₁} (swap⋆ ◎ swap⋆) ≡⟨ refl ⟩ scompcauchy (swap⋆cauchy (size t₂) (size t₁)) (subst Cauchy (*-comm (size t₁) (size t₂)) (swap⋆cauchy (size t₁) (size t₂))) ≡⟨ swap⋆idemp (size t₂) (size t₁) ⟩ c2cauchy {TIMES t₂ t₁} id⟷ ∎) where open ≡-Reasoning rinv∼ {TIMES t₁ (TIMES t₂ t₃)} {TIMES (TIMES .t₁ .t₂) .t₃} {assocl⋆} = begin (c2cauchy {TIMES (TIMES t₁ t₂) t₃} (assocr⋆ ◎ assocl⋆) ≡⟨ refl ⟩ scompcauchy (idcauchy ((size t₁ * size t₂) * size t₃)) (subst Cauchy (sym (*-assoc (size t₁) (size t₂) (size t₃))) (idcauchy (size t₁ * (size t₂ * size t₃)))) ≡⟨ cong (scompcauchy (idcauchy ((size t₁ * size t₂) * size t₃))) (congD! idcauchy (sym (*-assoc (size t₁) (size t₂) (size t₃)))) ⟩ scompcauchy (idcauchy ((size t₁ * size t₂) * size t₃)) (idcauchy ((size t₁ * size t₂) * size t₃)) ≡⟨ scomplid (idcauchy ((size t₁ * size t₂) * size t₃)) ⟩ c2cauchy {TIMES (TIMES t₁ t₂) t₃} id⟷ ∎) where open ≡-Reasoning rinv∼ {TIMES (TIMES t₁ t₂) t₃} {TIMES .t₁ (TIMES .t₂ .t₃)} {assocr⋆} = begin (c2cauchy {TIMES t₁ (TIMES t₂ t₃)} (assocl⋆ ◎ assocr⋆) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t₁ * (size t₂ * size t₃))) (subst Cauchy (*-assoc (size t₁) (size t₂) (size t₃)) (idcauchy ((size t₁ * size t₂) * size t₃))) ≡⟨ cong (scompcauchy (idcauchy (size t₁ * (size t₂ * size t₃)))) (congD! idcauchy (*-assoc (size t₁) (size t₂) (size t₃))) ⟩ scompcauchy (idcauchy (size t₁ * (size t₂ * size t₃))) (idcauchy (size t₁ * (size t₂ * size t₃))) ≡⟨ scomplid (idcauchy (size t₁ * (size t₂ * size t₃))) ⟩ c2cauchy {TIMES t₁ (TIMES t₂ t₃)} id⟷ ∎) where open ≡-Reasoning rinv∼ {TIMES ZERO t} {ZERO} {distz} = refl rinv∼ {ZERO} {TIMES ZERO t} {factorz} = refl rinv∼ {TIMES (PLUS t₁ t₂) t₃} {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} {dist} = begin (c2cauchy {PLUS (TIMES t₁ t₃) (TIMES t₂ t₃)} (factor ◎ dist) ≡⟨ refl ⟩ scompcauchy (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃))) (subst Cauchy (distribʳ-*-+ (size t₃) (size t₁) (size t₂)) (idcauchy ((size t₁ + size t₂) * size t₃))) ≡⟨ cong (scompcauchy (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃)))) (congD! idcauchy (distribʳ-*-+ (size t₃) (size t₁) (size t₂))) ⟩ scompcauchy (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃))) (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃))) ≡⟨ scomplid (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃))) ⟩ c2cauchy {PLUS (TIMES t₁ t₃) (TIMES t₂ t₃)} id⟷ ∎) where open ≡-Reasoning rinv∼ {PLUS (TIMES t₁ t₃) (TIMES t₂ .t₃)} {TIMES (PLUS .t₁ .t₂) .t₃} {factor} = begin (c2cauchy {TIMES (PLUS t₁ t₂) t₃} (dist ◎ factor) ≡⟨ refl ⟩ scompcauchy (idcauchy ((size t₁ + size t₂) * size t₃)) (subst Cauchy (sym (distribʳ-*-+ (size t₃) (size t₁) (size t₂))) (idcauchy ((size t₁ * size t₃) + (size t₂ * size t₃)))) ≡⟨ cong (scompcauchy (idcauchy ((size t₁ + size t₂) * size t₃))) (congD! idcauchy (sym (distribʳ-*-+ (size t₃) (size t₁) (size t₂)))) ⟩ scompcauchy (idcauchy ((size t₁ + size t₂) * size t₃)) (idcauchy ((size t₁ + size t₂) * size t₃)) ≡⟨ scomplid (idcauchy ((size t₁ + size t₂) * size t₃)) ⟩ c2cauchy {TIMES (PLUS t₁ t₂) t₃} id⟷ ∎) where open ≡-Reasoning rinv∼ {t} {.t} {id⟷} = begin (c2cauchy {t} (id⟷ ◎ id⟷) ≡⟨ refl ⟩ scompcauchy (idcauchy (size t)) (idcauchy (size t)) ≡⟨ scomplid (idcauchy (size t)) ⟩ c2cauchy {t} id⟷ ∎) where open ≡-Reasoning rinv∼ {t₁} {t₃} {_◎_ {t₂ = t₂} c₁ c₂} = begin (c2cauchy {t₃} (((! c₂) ◎ (! c₁)) ◎ (c₁ ◎ c₂)) ≡⟨ refl ⟩ scompcauchy (scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁)))) (subst Cauchy (trans (size≡! (! c₁)) (size≡! (! c₂))) (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂)))) ≡⟨ sym (scompassoc (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))) (subst Cauchy (trans (size≡! (! c₁)) (size≡! (! c₂))) (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂))))) ⟩ scompcauchy (c2cauchy (! c₂)) (scompcauchy (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))) (subst Cauchy (trans (size≡! (! c₁)) (size≡! (! c₂))) (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy (! c₂)) (scompcauchy (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))) x)) (sym (subst-trans (size≡! (! c₂)) (size≡! (! c₁)) (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂))))) ⟩ scompcauchy (c2cauchy (! c₂)) (scompcauchy (subst Cauchy (size≡! (! c₂)) (c2cauchy (! c₁))) (subst Cauchy (size≡! (! c₂)) (subst Cauchy (size≡! (! c₁)) (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂)))))) ≡⟨ cong (scompcauchy (c2cauchy (! c₂))) (sym (subst-dist scompcauchy (size≡! (! c₂)) (c2cauchy (! c₁)) (subst Cauchy (size≡! (! c₁)) (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂)))))) ⟩ scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (scompcauchy (c2cauchy (! c₁)) (subst Cauchy (size≡! (! c₁)) (scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂)))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (scompcauchy (c2cauchy (! c₁)) x))) (subst-dist scompcauchy (size≡! (! c₁)) (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₂))) ⟩ scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (scompcauchy (c2cauchy (! c₁)) (scompcauchy (subst Cauchy (size≡! (! c₁)) (c2cauchy c₁)) (subst Cauchy (size≡! (! c₁)) (subst Cauchy (size≡! c₁) (c2cauchy c₂)))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) x)) (scompassoc (c2cauchy (! c₁)) (subst Cauchy (size≡! (! c₁)) (c2cauchy c₁)) (subst Cauchy (size≡! (! c₁)) (subst Cauchy (size≡! c₁) (c2cauchy c₂)))) ⟩ scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (scompcauchy (scompcauchy (c2cauchy (! c₁)) (subst Cauchy (size≡! (! c₁)) (c2cauchy c₁))) (subst Cauchy (size≡! (! c₁)) (subst Cauchy (size≡! c₁) (c2cauchy c₂))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (scompcauchy x (subst Cauchy (size≡! (! c₁)) (subst Cauchy (size≡! c₁) (c2cauchy c₂)))))) (rinv∼ {t₁} {t₂} {c₁}) ⟩ scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (scompcauchy (allFin (size t₂)) (subst Cauchy (size≡! (! c₁)) (subst Cauchy (size≡! c₁) (c2cauchy c₂))))) ≡⟨ cong (λ x → scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) x)) (scomplid (subst Cauchy (size≡! (! c₁)) (subst Cauchy (size≡! c₁) (c2cauchy c₂)))) ⟩ scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (subst Cauchy (size≡! (! c₁)) (subst Cauchy (size≡! c₁) (c2cauchy c₂)))) ≡⟨ cong (λ x → scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) x)) (subst-trans (size≡! (! c₁)) (size≡! c₁) (c2cauchy c₂)) ⟩ scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (subst Cauchy (trans (size≡! c₁) (size≡! (! c₁))) (c2cauchy c₂))) ≡⟨ cong (λ x → scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (subst Cauchy x (c2cauchy c₂)))) (trans (cong (λ y → trans (size≡! c₁) y) (size≡!! c₁)) (trans-symr (size≡! c₁))) ⟩ scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy c₂)) ≡⟨ rinv∼ {t₂} {t₃} {c₂} ⟩ c2cauchy {t₃} id⟷ ∎) where open ≡-Reasoning rinv∼ {PLUS t₁ t₂} {PLUS t₃ t₄} {c₁ ⊕ c₂} = begin (c2cauchy {PLUS t₃ t₄} (((! c₁) ⊕ (! c₂)) ◎ (c₁ ⊕ c₂)) ≡⟨ refl ⟩ scompcauchy (pcompcauchy (c2cauchy (! c₁)) (c2cauchy (! c₂))) (subst Cauchy (cong₂ _+_ (size≡! (! c₁)) (size≡! (! c₂))) (pcompcauchy (c2cauchy c₁) (c2cauchy c₂))) ≡⟨ cong (scompcauchy (pcompcauchy (c2cauchy (! c₁)) (c2cauchy (! c₂)))) (subst₂+ (size≡! (! c₁)) (size≡! (! c₂)) (c2cauchy c₁) (c2cauchy c₂) pcompcauchy) ⟩ scompcauchy (pcompcauchy (c2cauchy (! c₁)) (c2cauchy (! c₂))) (pcompcauchy (subst Cauchy (size≡! (! c₁)) (c2cauchy c₁)) (subst Cauchy (size≡! (! c₂)) (c2cauchy c₂))) ≡⟨ pcomp-dist (c2cauchy (! c₁)) (subst Cauchy (size≡! (! c₁)) (c2cauchy c₁)) (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy c₂)) ⟩ pcompcauchy (scompcauchy (c2cauchy (! c₁)) (subst Cauchy (size≡! (! c₁)) (c2cauchy c₁))) (scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy c₂))) ≡⟨ cong₂ pcompcauchy (rinv∼ {t₁} {t₃} {c₁}) (rinv∼ {t₂} {t₄} {c₂}) ⟩ pcompcauchy (c2cauchy {t₃} id⟷) (c2cauchy {t₄} id⟷) ≡⟨ pcomp-id {size t₃} {size t₄} ⟩ c2cauchy {PLUS t₃ t₄} id⟷ ∎) where open ≡-Reasoning rinv∼ {TIMES t₁ t₂} {TIMES t₃ t₄} {c₁ ⊗ c₂} = begin (c2cauchy {TIMES t₃ t₄} (((! c₁) ⊗ (! c₂)) ◎ (c₁ ⊗ c₂)) ≡⟨ refl ⟩ scompcauchy (tcompcauchy (c2cauchy (! c₁)) (c2cauchy (! c₂))) (subst Cauchy (cong₂ _*_ (size≡! (! c₁)) (size≡! (! c₂))) (tcompcauchy (c2cauchy c₁) (c2cauchy c₂))) ≡⟨ cong (scompcauchy (tcompcauchy (c2cauchy (! c₁)) (c2cauchy (! c₂)))) (subst₂* (size≡! (! c₁)) (size≡! (! c₂)) (c2cauchy c₁) (c2cauchy c₂) tcompcauchy) ⟩ scompcauchy (tcompcauchy (c2cauchy (! c₁)) (c2cauchy (! c₂))) (tcompcauchy (subst Cauchy (size≡! (! c₁)) (c2cauchy c₁)) (subst Cauchy (size≡! (! c₂)) (c2cauchy c₂))) ≡⟨ tcomp-dist (c2cauchy (! c₁)) (subst Cauchy (size≡! (! c₁)) (c2cauchy c₁)) (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy c₂)) ⟩ tcompcauchy (scompcauchy (c2cauchy (! c₁)) (subst Cauchy (size≡! (! c₁)) (c2cauchy c₁))) (scompcauchy (c2cauchy (! c₂)) (subst Cauchy (size≡! (! c₂)) (c2cauchy c₂))) ≡⟨ cong₂ tcompcauchy (rinv∼ {t₁} {t₃} {c₁}) (rinv∼ {t₂} {t₄} {c₂}) ⟩ tcompcauchy (c2cauchy {t₃} id⟷) (c2cauchy {t₄} id⟷) ≡⟨ tcomp-id {size t₃} {size t₄} ⟩ c2cauchy {TIMES t₃ t₄} id⟷ ∎) where open ≡-Reasoning rinv∼ {PLUS ONE ONE} {BOOL} {foldBool} = begin (c2cauchy {BOOL} (unfoldBool ◎ foldBool) ≡⟨ refl ⟩ scompcauchy (idcauchy 2) (idcauchy 2) ≡⟨ scomplid (idcauchy 2) ⟩ c2cauchy {BOOL} id⟷ ∎) where open ≡-Reasoning rinv∼ {BOOL} {PLUS ONE ONE} {unfoldBool} = begin (c2cauchy {PLUS ONE ONE} (foldBool ◎ unfoldBool) ≡⟨ refl ⟩ scompcauchy (idcauchy 2) (idcauchy 2) ≡⟨ scomplid (idcauchy 2) ⟩ c2cauchy {PLUS ONE ONE} id⟷ ∎) where open ≡-Reasoning resp∼ : {t₁ t₂ t₃ : U} {c₁ c₂ : t₁ ⟷ t₂} {c₃ c₄ : t₂ ⟷ t₃} → (c₁ ∼ c₂) → (c₃ ∼ c₄) → (c₁ ◎ c₃ ∼ c₂ ◎ c₄) resp∼ {t₁} {t₂} {t₃} {c₁} {c₂} {c₃} {c₄} c₁∼c₂ c₃∼c₄ = begin (c2cauchy (c₁ ◎ c₃) ≡⟨ refl ⟩ scompcauchy (c2cauchy c₁) (subst Cauchy (size≡! c₁) (c2cauchy c₃)) ≡⟨ cong₂ (λ x y → scompcauchy x (subst Cauchy (size≡! c₁) y)) c₁∼c₂ c₃∼c₄ ⟩ scompcauchy (c2cauchy c₂) (subst Cauchy (size≡! c₁) (c2cauchy c₄)) ≡⟨ cong (λ x → scompcauchy (c2cauchy c₂) (subst Cauchy x (c2cauchy c₄))) (size∼! c₁ c₂) ⟩ scompcauchy (c2cauchy c₂) (subst Cauchy (size≡! c₂) (c2cauchy c₄)) ≡⟨ refl ⟩ c2cauchy (c₂ ◎ c₄) ∎) where open ≡-Reasoning -- The equivalence ∼ of paths makes U a 1groupoid: the points are -- types (t : U); the 1paths are ⟷; and the 2paths between them are -- based on extensional equivalence ∼ G : 1Groupoid G = record { set = U ; _↝_ = _⟷_ ; _≈_ = _∼_ ; id = id⟷ ; _∘_ = λ p q → q ◎ p ; _⁻¹ = ! ; lneutr = λ c → c◎id∼c {c = c} ; rneutr = λ c → id◎c∼c {c = c} ; assoc = λ c₃ c₂ c₁ → assoc∼ {c₁ = c₁} {c₂ = c₂} {c₃ = c₃} ; equiv = record { refl = λ {c} → refl∼ {c = c} ; sym = λ {c₁} {c₂} → sym∼ {c₁ = c₁} {c₂ = c₂} ; trans = λ {c₁} {c₂} {c₃} → trans∼ {c₁ = c₁} {c₂ = c₂} {c₃ = c₃} } ; linv = λ c → linv∼ {c = c} ; rinv = λ c → rinv∼ {c = c} ; ∘-resp-≈ = λ {t₁} {t₂} {t₃} {p} {q} {r} {s} p∼q r∼s → resp∼ {t₁} {t₂} {t₃} {r} {s} {p} {q} r∼s p∼q } -- There are additional laws that should hold: -- -- assoc⊕∼ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} -- {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → -- c₁ ⊕ (c₂ ⊕ c₃) ∼ assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊ -- -- assoc⊗∼ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} -- {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → -- c₁ ⊗ (c₂ ⊗ c₃) ∼ assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆ -- -- but we will turn our attention to completeness below (in Pif2) in a more -- systematic way. ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4673349758, "avg_line_length": 42.4945848375, "ext": "agda", "hexsha": "d3c5b30a83d3d6e2bb5d7e6beda3ed76c869d830", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/Pif.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/Pif.agda", "max_line_length": 81, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/Pif.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 19037, "size": 47084 }
{-# OPTIONS --cubical #-} open import Agda.Builtin.Cubical.Path data D : Set where c : (@0 x y : D) → x ≡ y
{ "alphanum_fraction": 0.5892857143, "avg_line_length": 16, "ext": "agda", "hexsha": "158fe1231413cb81d57c05aecc2bd023b4374f3d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue5434-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue5434-2.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue5434-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 40, "size": 112 }
{- Axiom of Finite Choice - Yep, it's a theorem actually. -} {-# OPTIONS --safe #-} module Cubical.Data.FinSet.FiniteChoice where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_) open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.Data.Nat open import Cubical.Data.Unit open import Cubical.Data.Empty open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.SumFin open import Cubical.Data.FinSet.Base open import Cubical.Data.FinSet.Properties private variable ℓ ℓ' : Level choice≃Fin : {n : ℕ}(Y : Fin n → Type ℓ) → ((x : Fin n) → ∥ Y x ∥) ≃ ∥ ((x : Fin n) → Y x) ∥ choice≃Fin {n = 0} Y = isContr→≃Unit (isContrΠ⊥) ⋆ Unit≃Unit* ⋆ invEquiv (propTruncIdempotent≃ isPropUnit*) ⋆ propTrunc≃ (invEquiv (isContr→≃Unit* (isContrΠ⊥ {A = Y}))) choice≃Fin {n = suc n} Y = Π⊎≃ ⋆ Σ-cong-equiv-fst (ΠUnit (λ x → ∥ Y (inl x) ∥)) ⋆ Σ-cong-equiv-snd (λ _ → choice≃Fin {n = n} (λ x → Y (inr x))) ⋆ Σ-cong-equiv-fst (propTrunc≃ (invEquiv (ΠUnit (λ x → Y (inl x))))) ⋆ ∥∥-×-≃ ⋆ propTrunc≃ (invEquiv (Π⊎≃ {E = Y})) module _ (X : Type ℓ)(p : isFinOrd X) (Y : X → Type ℓ') where private e = p .snd choice≃' : ((x : X) → ∥ Y x ∥) ≃ ∥ ((x : X) → Y x) ∥ choice≃' = equivΠ {B' = λ x → ∥ Y (invEq e x) ∥} e (transpFamily p) ⋆ choice≃Fin _ ⋆ propTrunc≃ (invEquiv (equivΠ {B' = λ x → Y (invEq e x)} e (transpFamily p))) module _ (X : FinSet ℓ) (Y : X .fst → Type ℓ') where choice≃ : ((x : X .fst) → ∥ Y x ∥) ≃ ∥ ((x : X .fst) → Y x) ∥ choice≃ = Prop.rec (isOfHLevel≃ 1 (isPropΠ (λ x → isPropPropTrunc)) isPropPropTrunc) (λ p → choice≃' (X .fst) (_ , p) Y) (X .snd .snd) choice : ((x : X .fst) → ∥ Y x ∥) → ∥ ((x : X .fst) → Y x) ∥ choice = choice≃ .fst
{ "alphanum_fraction": 0.5939167556, "avg_line_length": 26.3943661972, "ext": "agda", "hexsha": "eb5657278b99a77e9372e52fc0eea40953e0b3c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/FinSet/FiniteChoice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/FinSet/FiniteChoice.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/FinSet/FiniteChoice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 810, "size": 1874 }
module CS410-Monoid where open import CS410-Prelude record Monoid (M : Set) : Set where field -- OPERATIONS ---------------------------------------- e : M op : M -> M -> M -- LAWS ---------------------------------------------- lunit : forall m -> op e m == m runit : forall m -> op m e == m assoc : forall m m' m'' -> op m (op m' m'') == op (op m m') m''
{ "alphanum_fraction": 0.3814180929, "avg_line_length": 25.5625, "ext": "agda", "hexsha": "46d0a07ba9c60bb8cb47a8d3b065cd89284faf2a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "CS410-Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "CS410-Monoid.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "CS410-Monoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 114, "size": 409 }
------------------------------------------------------------------------ -- A combinator for running two computations in parallel ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Delay-monad.Parallel where import Equality.Propositional as Eq open import Prelude open import Prelude.Size open import Conat Eq.equality-with-J as Conat using (zero; suc; force; max) open import Delay-monad open import Delay-monad.Bisimilarity open import Delay-monad.Bisimilarity.Kind open import Delay-monad.Monad import Delay-monad.Sequential as S private variable a b : Level A B : Type a i : Size k : Kind f f₁ f₂ g : Delay (A → B) ∞ x x₁ x₂ y y₁ y₂ : Delay A ∞ f′ : Delay′ (A → B) ∞ x′ : Delay′ A ∞ h : A → B z : A ------------------------------------------------------------------------ -- The _⊛_ operator -- Parallel composition of computations. infixl 6 _⊛_ _⊛_ : Delay (A → B) i → Delay A i → Delay B i now f ⊛ now x = now (f x) now f ⊛ later x = later λ { .force → now f ⊛ x .force } later f ⊛ now x = later λ { .force → f .force ⊛ now x } later f ⊛ later x = later λ { .force → f .force ⊛ x .force } -- The number of later constructors in f ⊛ x is bisimilar to the -- maximum of the number of later constructors in f and the number of -- later constructors in x. steps-⊛∼max-steps-steps : Conat.[ i ] steps (f ⊛ x) ∼ max (steps f) (steps x) steps-⊛∼max-steps-steps {f = now _} {x = now _} = zero steps-⊛∼max-steps-steps {f = now _} {x = later _} = suc λ { .force → steps-⊛∼max-steps-steps } steps-⊛∼max-steps-steps {f = later _} {x = now _} = suc λ { .force → steps-⊛∼max-steps-steps } steps-⊛∼max-steps-steps {f = later _} {x = later _} = suc λ { .force → steps-⊛∼max-steps-steps } -- Rearrangement lemmas for _⊛_. later-⊛ : later f′ ⊛ x ∼ later (record { force = f′ .force ⊛ drop-later x }) later-⊛ {x = now _} = later λ { .force → _ ∎ } later-⊛ {x = later _} = later λ { .force → _ ∎ } ⊛-later : f ⊛ later x′ ∼ later (record { force = drop-later f ⊛ x′ .force }) ⊛-later {f = now _} = later λ { .force → _ ∎ } ⊛-later {f = later _} = later λ { .force → _ ∎ } -- The _⊛_ operator preserves strong and weak bisimilarity and -- expansion. infixl 6 _⊛-cong_ _⊛-cong_ : [ i ] f₁ ⟨ k ⟩ f₂ → [ i ] x₁ ⟨ k ⟩ x₂ → [ i ] f₁ ⊛ x₁ ⟨ k ⟩ f₂ ⊛ x₂ now ⊛-cong now = now now ⊛-cong later q = later λ { .force → now ⊛-cong q .force } now ⊛-cong laterˡ q = laterˡ (now ⊛-cong q) now ⊛-cong laterʳ q = laterʳ (now ⊛-cong q) later p ⊛-cong now = later λ { .force → p .force ⊛-cong now } laterˡ p ⊛-cong now = laterˡ (p ⊛-cong now) laterʳ p ⊛-cong now = laterʳ (p ⊛-cong now) later p ⊛-cong later q = later λ { .force → p .force ⊛-cong q .force } laterʳ p ⊛-cong laterʳ q = laterʳ (p ⊛-cong q) laterˡ p ⊛-cong laterˡ q = laterˡ (p ⊛-cong q) later {x = f₁} {y = f₂} p ⊛-cong laterˡ {x = x₁} {y = x₂} q = later f₁ ⊛ later x₁ ∼⟨ (later λ { .force → _ ∎ }) ⟩ later (record { force = f₁ .force ⊛ x₁ .force }) ?⟨ (later λ { .force → p .force ⊛-cong drop-laterʳ q }) ⟩∼ later (record { force = f₂ .force ⊛ drop-later x₂ }) ∼⟨ symmetric later-⊛ ⟩ later f₂ ⊛ x₂ ∎ later {x = f₁} {y = f₂} p ⊛-cong laterʳ {x = x₁} {y = x₂} q = later f₁ ⊛ x₁ ∼⟨ later-⊛ ⟩ later (record { force = f₁ .force ⊛ drop-later x₁ }) ≈⟨ (later λ { .force → p .force ⊛-cong drop-laterˡ q }) ⟩∼ later (record { force = f₂ .force ⊛ x₂ .force }) ∼⟨ (later λ { .force → _ ∎ }) ⟩ later f₂ ⊛ later x₂ ∎ laterˡ {x = f₁} {y = f₂} p ⊛-cong later {x = x₁} {y = x₂} q = later f₁ ⊛ later x₁ ∼⟨ (later λ { .force → _ ∎ }) ⟩ later (record { force = f₁ .force ⊛ x₁ .force }) ?⟨ (later λ { .force → drop-laterʳ p ⊛-cong q .force }) ⟩∼ later (record { force = drop-later f₂ ⊛ x₂ .force }) ∼⟨ symmetric ⊛-later ⟩ f₂ ⊛ later x₂ ∎ laterʳ {x = f₁} {y = f₂} p ⊛-cong later {x = x₁} {y = x₂} q = f₁ ⊛ later x₁ ∼⟨ ⊛-later ⟩ later (record { force = drop-later f₁ ⊛ x₁ .force }) ≈⟨ (later λ { .force → drop-laterˡ p ⊛-cong q .force }) ⟩∼ later (record { force = f₂ .force ⊛ x₂ .force }) ∼⟨ (later λ { .force → _ ∎ }) ⟩ later f₂ ⊛ later x₂ ∎ laterˡ {x = f₁} {y = f₂} p ⊛-cong laterʳ {x = x₁} {y = x₂} q = later f₁ ⊛ x₁ ∼⟨ later-⊛ ⟩ later (record { force = f₁ .force ⊛ drop-later x₁ }) ≈⟨ (later λ { .force → drop-laterʳ p ⊛-cong drop-laterˡ q }) ⟩∼ later (record { force = drop-later f₂ ⊛ x₂ .force }) ∼⟨ symmetric ⊛-later ⟩ f₂ ⊛ later x₂ ∎ laterʳ {x = f₁} {y = f₂} p ⊛-cong laterˡ {x = x₁} {y = x₂} q = f₁ ⊛ later x₁ ∼⟨ ⊛-later ⟩ later (record { force = drop-later f₁ ⊛ x₁ .force }) ≈⟨ (later λ { .force → drop-laterˡ p ⊛-cong drop-laterʳ q }) ⟩∼ later (record { force = f₂ .force ⊛ drop-later x₂ }) ∼⟨ symmetric later-⊛ ⟩ later f₂ ⊛ x₂ ∎ -- The _⊛_ operator is (kind of) commutative. ⊛-comm : [ i ] f ⊛ x ∼ map′ (flip _$_) x ⊛ f ⊛-comm {f = now f} {x = now x} = reflexive _ ⊛-comm {f = now f} {x = later x} = later λ { .force → ⊛-comm } ⊛-comm {f = later f} {x = now x} = later λ { .force → ⊛-comm } ⊛-comm {f = later f} {x = later x} = later λ { .force → ⊛-comm } -- The function map′ can be expressed using _⊛_. map∼now-⊛ : [ i ] map′ h x ∼ now h ⊛ x map∼now-⊛ {x = now x} = now map∼now-⊛ {x = later x} = later λ { .force → map∼now-⊛ } -- The applicative functor laws hold up to strong bisimilarity. now-id-⊛ : [ i ] now id ⊛ x ∼ x now-id-⊛ {x = now x} = now now-id-⊛ {x = later x} = later λ { .force → now-id-⊛ } now-∘-⊛-⊛-⊛ : [ i ] now (λ f → f ∘_) ⊛ f ⊛ g ⊛ x ∼ f ⊛ (g ⊛ x) now-∘-⊛-⊛-⊛ {f = now _} {g = now _} {x = now _} = now now-∘-⊛-⊛-⊛ {f = now _} {g = now _} {x = later _} = later λ { .force → now-∘-⊛-⊛-⊛ } now-∘-⊛-⊛-⊛ {f = now _} {g = later _} {x = now _} = later λ { .force → now-∘-⊛-⊛-⊛ } now-∘-⊛-⊛-⊛ {f = now _} {g = later _} {x = later _} = later λ { .force → now-∘-⊛-⊛-⊛ } now-∘-⊛-⊛-⊛ {f = later _} {g = now _} {x = now _} = later λ { .force → now-∘-⊛-⊛-⊛ } now-∘-⊛-⊛-⊛ {f = later _} {g = now _} {x = later _} = later λ { .force → now-∘-⊛-⊛-⊛ } now-∘-⊛-⊛-⊛ {f = later _} {g = later _} {x = now _} = later λ { .force → now-∘-⊛-⊛-⊛ } now-∘-⊛-⊛-⊛ {f = later _} {g = later _} {x = later _} = later λ { .force → now-∘-⊛-⊛-⊛ } now-⊛-now : [ i ] now h ⊛ now z ∼ now (h z) now-⊛-now = now ⊛-now : [ i ] f ⊛ now z ∼ now (λ f → f z) ⊛ f ⊛-now {f = now f} = now ⊛-now {f = later f} = later λ { .force → ⊛-now } -- Sequential composition is an expansion of parallel composition. ⊛≳⊛ : [ i ] f S.⊛ x ≳ f ⊛ x ⊛≳⊛ {f = now f} {x = now x} = now (f x) ∎ ⊛≳⊛ {f = now f} {x = later x} = later λ { .force → now f S.⊛ x .force ≳⟨ ⊛≳⊛ ⟩∎ now f ⊛ x .force ∎ } ⊛≳⊛ {f = later f} {x = now x} = later λ { .force → f .force S.⊛ now x ≳⟨ ⊛≳⊛ ⟩∎ f .force ⊛ now x ∎ } ⊛≳⊛ {f = later f} {x = later x} = later λ { .force → f .force S.⊛ later x ≳⟨ ((f .force ∎) >>=-cong λ _ → laterˡ (_ ∎)) ⟩ f .force S.⊛ x .force ≳⟨ ⊛≳⊛ ⟩∎ f .force ⊛ x .force ∎ } ------------------------------------------------------------------------ -- The _∣_ operator -- Parallel composition of computations. infix 10 _∣_ _∣_ : Delay A i → Delay B i → Delay (A × B) i x ∣ y = map′ _,_ x ⊛ y -- The number of later constructors in x ∣ y is bisimilar to the -- maximum of the number of later constructors in x and the number of -- later constructors in y. steps-∣∼max-steps-steps : Conat.[ i ] steps (x ∣ y) ∼ max (steps x) (steps y) steps-∣∼max-steps-steps {x = x} {y = y} = steps (x ∣ y) Conat.∼⟨ Conat.reflexive-∼ _ ⟩ steps (map′ _,_ x ⊛ y) Conat.∼⟨ steps-⊛∼max-steps-steps ⟩ max (steps (map′ _,_ x)) (steps y) Conat.∼⟨ Conat.max-cong (steps-map′ x) (Conat.reflexive-∼ _) ⟩∎ max (steps x) (steps y) ∎∼ -- The _∣_ operator preserves strong and weak bisimilarity and -- expansion. infix 10 _∣-cong_ _∣-cong_ : [ i ] x₁ ⟨ k ⟩ x₂ → [ i ] y₁ ⟨ k ⟩ y₂ → [ i ] x₁ ∣ y₁ ⟨ k ⟩ x₂ ∣ y₂ p ∣-cong q = map-cong _,_ p ⊛-cong q -- The _∣_ operator is commutative (up to swapping of results). ∣-comm : [ i ] x ∣ y ∼ map′ swap (y ∣ x) ∣-comm {x = x} {y = y} = x ∣ y ∼⟨⟩ map′ _,_ x ⊛ y ∼⟨ ⊛-comm ⟩ map′ (flip _$_) y ⊛ map′ _,_ x ∼⟨ map∼now-⊛ ⊛-cong map∼now-⊛ ⟩ now (flip _$_) ⊛ y ⊛ (now _,_ ⊛ x) ∼⟨ symmetric now-∘-⊛-⊛-⊛ ⟩ now (λ f → f ∘_) ⊛ (now (flip _$_) ⊛ y) ⊛ now _,_ ⊛ x ∼⟨ symmetric now-∘-⊛-⊛-⊛ ⊛-cong (_ ∎) ⊛-cong (_ ∎) ⟩ now _∘_ ⊛ now (λ f → f ∘_) ⊛ now (flip _$_) ⊛ y ⊛ now _,_ ⊛ x ∼⟨⟩ now (λ x f y → f y x) ⊛ y ⊛ now _,_ ⊛ x ∼⟨ ⊛-now ⊛-cong (_ ∎) ⟩ now (_$ _,_) ⊛ (now (λ x f y → f y x) ⊛ y) ⊛ x ∼⟨ symmetric now-∘-⊛-⊛-⊛ ⊛-cong (_ ∎) ⟩ now _∘_ ⊛ now (_$ _,_) ⊛ now (λ x f y → f y x) ⊛ y ⊛ x ∼⟨⟩ now (curry swap) ⊛ y ⊛ x ∼⟨⟩ now _∘_ ⊛ now (swap ∘_) ⊛ now _,_ ⊛ y ⊛ x ∼⟨ now-∘-⊛-⊛-⊛ ⊛-cong (_ ∎) ⟩ now (swap ∘_) ⊛ (now _,_ ⊛ y) ⊛ x ∼⟨ (_ ∎) ⊛-cong symmetric map∼now-⊛ ⊛-cong (_ ∎) ⟩ now (swap ∘_) ⊛ map′ _,_ y ⊛ x ∼⟨⟩ now _∘_ ⊛ now swap ⊛ map′ _,_ y ⊛ x ∼⟨ now-∘-⊛-⊛-⊛ ⟩ now swap ⊛ (map′ _,_ y ⊛ x) ∼⟨ symmetric map∼now-⊛ ⟩ map′ swap (map′ _,_ y ⊛ x) ∼⟨⟩ map′ swap (y ∣ x) ∎ -- Sequential composition is an expansion of parallel composition. ∣≳∣ : [ i ] x S.∣ y ≳ x ∣ y ∣≳∣ {x = x} {y = y} = x S.∣ y ∼⟨⟩ map′ _,_ x S.⊛ y ≳⟨ ⊛≳⊛ ⟩ map′ _,_ x ⊛ y ∼⟨⟩ x ∣ y ∎
{ "alphanum_fraction": 0.4540550954, "avg_line_length": 42.3755102041, "ext": "agda", "hexsha": "2d53eaf871bec9e4bddbf7cba151651d82881501", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/delay-monad", "max_forks_repo_path": "src/Delay-monad/Parallel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/delay-monad", "max_issues_repo_path": "src/Delay-monad/Parallel.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/delay-monad", "max_stars_repo_path": "src/Delay-monad/Parallel.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4489, "size": 10382 }
{-# OPTIONS --allow-exec #-} open import Agda.Builtin.FromNat open import Data.Bool.Base using (T; Bool; if_then_else_) open import Data.String using (String; _++_; lines) open import Data.Nat.Base using (ℕ) open import Data.Fin using (Fin) import Data.Fin.Literals as Fin import Data.Nat.Literals as Nat open import Data.Vec.Base using (Vec) open import Data.Float.Base using (Float; _≤ᵇ_) open import Data.List.Base using (List; []; _∷_) open import Data.Unit.Base using (⊤; tt) open import Relation.Nullary using (does) open import Relation.Binary.Core using (Rel) open import Reflection.Argument open import Reflection.Term open import Reflection.External open import Reflection.TypeChecking.Monad open import Reflection.TypeChecking.Monad.Syntax open import Reflection.Show using (showTerm) open import Vehicle.Utils module Vehicle where ------------------------------------------------------------------------ -- Metadata ------------------------------------------------------------------------ VEHICLE_COMMAND : String VEHICLE_COMMAND = "vehicle" ------------------------------------------------------------------------ -- Checking ------------------------------------------------------------------------ record CheckArgs : Set where field proofCache : String checkCmd : CheckArgs → CmdSpec checkCmd checkArgs = cmdSpec VEHICLE_COMMAND ( "check" ∷ ("--proofCache=" ++ proofCache) ∷ []) "" where open CheckArgs checkArgs checkSuccessful : String → Bool checkSuccessful output = "verified" ⊆ output postulate valid : ∀ {a} {A : Set a} → A `valid : Term `valid = def (quote valid) (hArg unknown ∷ []) checkSpecificationMacro : CheckArgs → Term → TC ⊤ checkSpecificationMacro args hole = do goal ← inferType hole -- (showTerm goal) output ← runCmdTC (checkCmd args) if checkSuccessful output then unify hole `valid else typeError (strErr ("Error: " ++ output) ∷ []) macro checkSpecification : CheckArgs → Term → TC ⊤ checkSpecification = checkSpecificationMacro ------------------------------------------------------------------------ -- Other ------------------------------------------------------------------------ instance finNumber : ∀ {n} -> Number (Fin n) finNumber {n} = Fin.number n natNumber : Number ℕ natNumber = Nat.number
{ "alphanum_fraction": 0.5934782609, "avg_line_length": 28.0487804878, "ext": "agda", "hexsha": "1d71d14468762a1049607a8ce6a921da3f961221", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vehicle-lang/vehicle", "max_forks_repo_path": "src/agda/Vehicle.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vehicle-lang/vehicle", "max_issues_repo_path": "src/agda/Vehicle.agda", "max_line_length": 72, "max_stars_count": 9, "max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vehicle-lang/vehicle", "max_stars_repo_path": "src/agda/Vehicle.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z", "num_tokens": 499, "size": 2300 }
module Theory where open import Data.List using (List; []; _∷_; _++_) open import Data.Fin using () renaming (zero to fzero; suc to fsuc) open import Relation.Binary using (Rel) open import Level using (suc; _⊔_) open import Syntax record Theory ℓ₁ ℓ₂ ℓ₃ : Set (suc (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)) where field Sg : Signature ℓ₁ ℓ₂ open Signature Sg open Term Sg field Ax : forall Γ A -> Rel (Γ ⊢ A) ℓ₃ infix 3 _⊢_≡_ infix 3 _⊨_≡_ data _⊢_≡_ : forall Γ {A} -> Γ ⊢ A -> Γ ⊢ A -> Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) data _⊨_≡_ : forall Γ {Γ′} -> Γ ⊨ Γ′ -> Γ ⊨ Γ′ -> Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) -- Theorems data _⊢_≡_ where ax : forall {Γ A e₁ e₂} -> Ax Γ A e₁ e₂ -> Γ ⊢ e₁ ≡ e₂ refl : forall {Γ} {A} {e : Γ ⊢ A} -> Γ ⊢ e ≡ e sym : forall {Γ} {A} {e₁ : Γ ⊢ A} {e₂} -> Γ ⊢ e₁ ≡ e₂ -> Γ ⊢ e₂ ≡ e₁ trans : forall {Γ} {A} {e₁ : Γ ⊢ A} {e₂ e₃} -> Γ ⊢ e₁ ≡ e₂ -> Γ ⊢ e₂ ≡ e₃ -> Γ ⊢ e₁ ≡ e₃ sub/id : forall {Γ} {A} {e : Γ ⊢ A} -> Γ ⊢ e [ id ] ≡ e sub/∙ : forall {Γ} {A} {Γ′ Γ′′} {e : Γ′′ ⊢ A} {γ : Γ′ ⊨ Γ′′} {δ} -> Γ ⊢ e [ γ ∙ δ ] ≡ e [ γ ] [ δ ] eta/Unit : forall {Γ} (e : Γ ⊢ Unit) -> Γ ⊢ unit ≡ e beta/*₁ : forall {Γ} {A B} (e₁ : Γ ⊢ A) (e₂ : Γ ⊢ B) -> Γ ⊢ fst (pair e₁ e₂) ≡ e₁ beta/*₂ : forall {Γ} {A B} (e₁ : Γ ⊢ A) (e₂ : Γ ⊢ B) -> Γ ⊢ snd (pair e₁ e₂) ≡ e₂ eta/* : forall {Γ} {A B} (e : Γ ⊢ A * B) -> Γ ⊢ pair (fst e) (snd e) ≡ e beta/=> : forall {Γ} {A B} (e : A ∷ Γ ⊢ B) (e′ : Γ ⊢ A) -> Γ ⊢ app (abs e) e′ ≡ e [ ext id e′ ] eta/=> : forall {Γ} {A B} (e : Γ ⊢ A => B) -> Γ ⊢ abs (app (e [ weaken ]) var) ≡ e -- cong cong/func : forall {Γ} {f : Func} {e e′ : Γ ⊢ dom f} -> Γ ⊢ e ≡ e′ -> Γ ⊢ func f e ≡ func f e′ cong/sub : forall {Γ Γ′} {γ γ′ : Γ ⊨ Γ′} {A} {e e′ : Γ′ ⊢ A} -> Γ ⊨ γ ≡ γ′ -> Γ′ ⊢ e ≡ e′ -> Γ ⊢ e [ γ ] ≡ e′ [ γ′ ] cong/pair : forall {Γ} {A B} {e₁ e₁′ : Γ ⊢ A} {e₂ e₂′ : Γ ⊢ B} -> Γ ⊢ e₁ ≡ e₁′ -> Γ ⊢ e₂ ≡ e₂′ -> Γ ⊢ pair e₁ e₂ ≡ pair e₁′ e₂′ cong/fst : forall {Γ} {A B} {e e′ : Γ ⊢ A * B} -> Γ ⊢ e ≡ e′ -> Γ ⊢ fst e ≡ fst e′ cong/snd : forall {Γ} {A B} {e e′ : Γ ⊢ A * B} -> Γ ⊢ e ≡ e′ -> Γ ⊢ snd e ≡ snd e′ cong/abs : forall {Γ} {A B} {e e′ : A ∷ Γ ⊢ B} -> A ∷ Γ ⊢ e ≡ e′ -> Γ ⊢ abs e ≡ abs e′ cong/app : forall {Γ} {A B} {e₁ e₁′ : Γ ⊢ A => B} {e₂ e₂′ : Γ ⊢ A} -> Γ ⊢ e₁ ≡ e₁′ -> Γ ⊢ e₂ ≡ e₂′ -> Γ ⊢ app e₁ e₂ ≡ app e₁′ e₂′ -- subst commutes with term formers comm/func : forall Γ Γ′ (γ : Γ ⊨ Γ′) f e -> Γ ⊢ func f e [ γ ] ≡ func f (e [ γ ]) comm/unit : forall Γ Γ′ (γ : Γ ⊨ Γ′) -> Γ ⊢ unit [ γ ] ≡ unit comm/pair : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A B} {e₁ : Γ′ ⊢ A} {e₂ : Γ′ ⊢ B} -> Γ ⊢ pair e₁ e₂ [ γ ] ≡ pair (e₁ [ γ ]) (e₂ [ γ ]) comm/fst : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A B} {e : Γ′ ⊢ A * B} -> Γ ⊢ fst e [ γ ] ≡ fst (e [ γ ]) comm/snd : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A B} {e : Γ′ ⊢ A * B} -> Γ ⊢ snd e [ γ ] ≡ snd (e [ γ ]) comm/abs : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A B} {e : A ∷ Γ′ ⊢ B} -> Γ ⊢ (abs e) [ γ ] ≡ abs (e [ ext (γ ∙ weaken) var ]) comm/app : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A B} {e₁ : Γ′ ⊢ A => B} {e₂} -> Γ ⊢ app e₁ e₂ [ γ ] ≡ app (e₁ [ γ ]) (e₂ [ γ ]) var/ext : forall {Γ Γ′} (γ : Γ ⊨ Γ′) {A} (e : Γ ⊢ A) -> Γ ⊢ var [ ext γ e ] ≡ e data _⊨_≡_ where refl : forall {Γ Γ′} {γ : Γ ⊨ Γ′} -> Γ ⊨ γ ≡ γ sym : forall {Γ Γ′} {γ γ′ : Γ ⊨ Γ′} -> Γ ⊨ γ ≡ γ′ -> Γ ⊨ γ′ ≡ γ trans : forall {Γ Γ′} {γ₁ γ₂ γ₃ : Γ ⊨ Γ′} -> Γ ⊨ γ₁ ≡ γ₂ -> Γ ⊨ γ₂ ≡ γ₃ -> Γ ⊨ γ₁ ≡ γ₃ id∙ˡ : forall {Γ Γ′} {γ : Γ ⊨ Γ′} -> Γ ⊨ id ∙ γ ≡ γ id∙ʳ : forall {Γ Γ′} {γ : Γ ⊨ Γ′} -> Γ ⊨ γ ∙ id ≡ γ assoc∙ : forall {Γ Γ′ Γ′′ Γ′′′} {γ₁ : Γ′′ ⊨ Γ′′′} {γ₂ : Γ′ ⊨ Γ′′} {γ₃ : Γ ⊨ Γ′} -> Γ ⊨ (γ₁ ∙ γ₂) ∙ γ₃ ≡ γ₁ ∙ (γ₂ ∙ γ₃) !-unique : forall {Γ} {γ : Γ ⊨ []} -> Γ ⊨ ! ≡ γ η-pair : forall {Γ : Context} {A : Type} -> A ∷ Γ ⊨ ext weaken var ≡ id ext∙ : forall {Γ Γ′ Γ′′} {γ : Γ′ ⊨ Γ′′} {γ′ : Γ ⊨ Γ′} {A} {e : Γ′ ⊢ A} -> Γ ⊨ ext γ e ∙ γ′ ≡ ext (γ ∙ γ′) (e [ γ′ ]) weaken/ext : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A} {e : Γ ⊢ A} -> Γ ⊨ weaken ∙ ext γ e ≡ γ cong/ext : forall {Γ Γ′} {γ γ′ : Γ ⊨ Γ′} {A} {e e′ : Γ ⊢ A} -> Γ ⊨ γ ≡ γ′ -> Γ ⊢ e ≡ e′ -> Γ ⊨ ext γ e ≡ ext γ′ e′ cong/∙ : forall {Γ Γ′ Γ′′} {γ γ′ : Γ′ ⊨ Γ′′} {δ δ′ : Γ ⊨ Γ′} -> Γ′ ⊨ γ ≡ γ′ -> Γ ⊨ δ ≡ δ′ -> Γ ⊨ γ ∙ δ ≡ γ′ ∙ δ′ ×id′-∙ : forall {Γ Γ′ Γ′′} {γ′ : Γ ⊨ Γ′} {γ : Γ′ ⊨ Γ′′} {A} -> A ∷ Γ ⊨ γ ×id′ ∙ γ′ ×id′ ≡ (γ ∙ γ′) ×id′ ×id′-∙ = trans ext∙ (cong/ext (trans assoc∙ (trans (cong/∙ refl weaken/ext) (sym assoc∙))) (var/ext _ _)) ×id′-ext : forall {Γ Γ′ Γ′′} {γ′ : Γ ⊨ Γ′} {γ : Γ′ ⊨ Γ′′} {A} {e : Γ ⊢ A} -> Γ ⊨ γ ×id′ ∙ ext γ′ e ≡ ext (γ ∙ γ′) e ×id′-ext = trans ext∙ (cong/ext (trans assoc∙ (cong/∙ refl weaken/ext)) (var/ext _ _)) open import Relation.Binary.Bundles TermSetoid : forall {Γ : Context} {A : Type} -> Setoid (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) TermSetoid {Γ} {A} = record { Carrier = Γ ⊢ A ; _≈_ = λ e₁ e₂ → Γ ⊢ e₁ ≡ e₂ ;isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } SubstSetoid : forall {Γ : Context} {Γ′ : Context} -> Setoid (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) SubstSetoid {Γ} {Γ′} = record { Carrier = Γ ⊨ Γ′ ; _≈_ = λ γ₁ γ₂ → Γ ⊨ γ₁ ≡ γ₂ ;isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } open import Categories.Category open import Categories.Category.CartesianClosed module _ {o ℓ e} (𝒞 : Category o ℓ e) (CC : CartesianClosed 𝒞) {ℓ₁ ℓ₂ ℓ₃} (Th : Theory ℓ₁ ℓ₂ ℓ₃) where open Category 𝒞 open import Data.Product using (Σ-syntax) open Theory Th open import Semantics 𝒞 CC Sg Model : Set (o ⊔ ℓ ⊔ e ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) Model = Σ[ M ∈ Structure ] forall {Γ A e₁ e₂} -> Ax Γ A e₁ e₂ -> ⟦ e₁ ⟧ M ≈ ⟦ e₂ ⟧ M
{ "alphanum_fraction": 0.4176381145, "avg_line_length": 36.0914634146, "ext": "agda", "hexsha": "a3a0a788b01dfc85cf58b06c06568c2dc98fc544", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "elpinal/exsub-ccc", "max_forks_repo_path": "Theory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "elpinal/exsub-ccc", "max_issues_repo_path": "Theory.agda", "max_line_length": 107, "max_stars_count": 3, "max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "elpinal/exsub-ccc", "max_stars_repo_path": "Theory.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z", "num_tokens": 2997, "size": 5919 }
module Prelude.Unit where data Unit : Set where unit : Unit
{ "alphanum_fraction": 0.7301587302, "avg_line_length": 12.6, "ext": "agda", "hexsha": "a1faad9bcffd8fb4ac9dd34073bae31d434acbad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/epic/Prelude/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/epic/Prelude/Unit.agda", "max_line_length": 25, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/epic/Prelude/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 16, "size": 63 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Bounded vectors (inefficient implementation) ------------------------------------------------------------------------ -- Vectors of a specified maximum length. module Data.Star.BoundedVec where open import Data.Star open import Data.Star.Nat open import Data.Star.Decoration open import Data.Star.Pointer open import Data.Star.List using (List) open import Data.Unit open import Function import Data.Maybe as Maybe open import Relation.Binary open import Relation.Binary.Consequences ------------------------------------------------------------------------ -- The type -- Finite sets decorated with elements (note the use of suc). BoundedVec : Set → ℕ → Set BoundedVec a n = Any (λ _ → a) (λ _ → ⊤) (suc n) [] : ∀ {a n} → BoundedVec a n [] = this tt infixr 5 _∷_ _∷_ : ∀ {a n} → a → BoundedVec a n → BoundedVec a (suc n) _∷_ = that ------------------------------------------------------------------------ -- Increasing the bound -- Note that this operation is linear in the length of the list. ↑ : ∀ {a n} → BoundedVec a n → BoundedVec a (suc n) ↑ {a} = gmap inc lift where inc = Maybe.map (map-NonEmpty suc) lift : Pointer (λ _ → a) (λ _ → ⊤) =[ inc ]⇒ Pointer (λ _ → a) (λ _ → ⊤) lift (step x) = step x lift (done _) = done _ ------------------------------------------------------------------------ -- Conversions fromList : ∀ {a} → (xs : List a) → BoundedVec a (length xs) fromList ε = [] fromList (x ◅ xs) = x ∷ fromList xs toList : ∀ {a n} → BoundedVec a n → List a toList xs = gmap (const tt) decoration (init xs)
{ "alphanum_fraction": 0.5137724551, "avg_line_length": 26.935483871, "ext": "agda", "hexsha": "7d0cfdb4a44aa0cfb5abffe82130ab69ae752f19", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Star/BoundedVec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Star/BoundedVec.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Star/BoundedVec.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 431, "size": 1670 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.SmashFmapConn where module _ {i} {j} {A : Type i} (B : A → Type j) where custom-assoc : {a₀ a₁ a₂ a₃ : A} {b₀ : B a₀} {b₁ b₁' b₁'' : B a₁} {b₂ : B a₂} {b₃ : B a₃} {p : a₀ == a₁} (p' : b₀ == b₁ [ B ↓ p ]) (q' : b₁ == b₁') (r' : b₁' == b₁'') {s : a₁ == a₂} (s' : b₁'' == b₂ [ B ↓ s ]) {t : a₂ == a₃} (t' : b₂ == b₃ [ B ↓ t ]) → p' ∙ᵈ (((q' ∙ r') ◃ s') ∙ᵈ t') == ((p' ▹ q') ▹ r') ∙ᵈ s' ∙ᵈ t' custom-assoc {p = idp} p'@idp q'@idp r'@idp {s = idp} s'@idp {t = idp} t' = idp transp-over : {a₀ a₁ : A} (p : a₀ == a₁) (b₀ : B a₀) → b₀ == transport B p b₀ [ B ↓ p ] transp-over p b₀ = from-transp B p (idp {a = transport B p b₀}) transp-over-naturality : ∀ {a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₀' : B a₀} (q : b₀ == b₀') → q ◃ transp-over p b₀' == transp-over p b₀ ▹ ap (transport B p) q transp-over-naturality p@idp q@idp = idp to-transp-over : {a₀ a₁ : A} {p : a₀ == a₁} {b₀ : B a₀} {b₁ : B a₁} (q : b₀ == b₁ [ B ↓ p ]) → q ▹ ! (to-transp q) == transp-over p b₀ to-transp-over {p = idp} q@idp = idp module _ {i} {j} {S* : Type i} (P* : S* → Type j) where -- cpa = custom path algebra cpa₁ : {s₁ s₂ t : S*} (p* : P* s₂) (p₁ : s₁ == t) (p₂ : s₂ == t) → transport P* (! (p₁ ∙ ! p₂)) p* == transport P* p₂ p* [ P* ↓ p₁ ] cpa₁ p* p₁@idp p₂@idp = idp -- cpac = custom path algebra coherence cpac₁ : ∀ {k} {C : Type k} (f : C → S*) {c₁ c₂ : C} (q : c₁ == c₂) (d : Π C (P* ∘ f)) {t : S*} (p₁ : f c₁ == t) (p₂ : f c₂ == t) (r : ap f q == p₁ ∙' ! p₂) {u : P* (f c₂)} (v : u == transport P* (! (p₂ ∙ ! p₂)) (d c₂)) {u' : P* (f c₁)} (v' : u' == transport P* (! (p₁ ∙ ! p₂)) (d c₂)) → (v' ∙ ap (λ pp → transport P* pp (d c₂)) (ap ! (! (r ∙ ∙'=∙ p₁ (! p₂))) ∙ !-ap f q) ∙ to-transp {B = P*} {p = ap f (! q)} (↓-ap-in P* f (apd d (! q)))) ◃ apd d q == ↓-ap-out= P* f q (r ∙ ∙'=∙ p₁ (! p₂)) ((v' ◃ cpa₁ (d c₂) p₁ p₂) ∙ᵈ !ᵈ (v ◃ cpa₁ (d c₂) p₂ p₂)) ▹ (v ∙ ap (λ pp → transport P* (! pp) (d c₂)) (!-inv-r p₂)) cpac₁ f q@idp d p₁@.idp p₂@idp r@idp v@idp v'@idp = idp cpa₂ : ∀ {k} {C : Type k} (f : C → S*) {c₁ c₂ : C} (q : c₁ == c₂) (d : Π C (P* ∘ f)) {s t : S*} (p : f c₁ == s) (r : s == t) (u : f c₂ == t) (h : ap f q == p ∙' (r ∙ ! u)) → transport P* p (d c₁) == transport P* u (d c₂) [ P* ↓ r ] cpa₂ f q@idp d [email protected] r@idp u@idp h@idp = idp cpac₂ : ∀ {k} {C : Type k} (f : C → S*) {c₁ c₂ c₃ : C} (q : c₁ == c₂) (q' : c₃ == c₂) (d : Π C (P* ∘ f)) {s t : S*} (p : f c₁ == s) (p' : f c₃ == f c₂) (r : s == t) (u : f c₂ == t) (h : ap f q == p ∙' (r ∙ ! u)) (h' : ap f q' == p' ∙' u ∙ ! u) {x : P* (f c₂)} (x' : x == transport P* p' (d c₃)) {y : P* (f c₁)} (y' : y == d c₁) → ↓-ap-out= P* f q (h ∙ ∙'=∙ p (r ∙ ! u)) ((y' ◃ transp-over P* p (d c₁)) ∙ᵈ cpa₂ f q d p r u h ∙ᵈ !ᵈ (x' ◃ cpa₂ f q' d p' u u h')) ▹ (x' ∙ ap (λ pp → transport P* pp (d c₃)) (! (∙-unit-r p') ∙ ap (p' ∙_) (! (!-inv-r u)) ∙ ! (h' ∙ ∙'=∙ p' (u ∙ ! u))) ∙ to-transp (↓-ap-in P* f (apd d q'))) == y' ◃ apd d q cpac₂ f q@idp q'@idp d [email protected] p'@.idp r@idp u@idp h@idp h'@idp x'@idp y'@idp = idp module _ {i} {j} {k} {A : Ptd i} {A' : Ptd j} (f : A ⊙→ A') (B : Ptd k) {m n : ℕ₋₂} (f-is-m-conn : has-conn-fibers m (fst f)) (B-is-Sn-conn : is-connected (S n) (de⊙ B)) where private a₀ = pt A a₀' = pt A' b₀ = pt B module ConnIn (P : A' ∧ B → (n +2+ m) -Type (lmax i (lmax j k))) (d : ∀ (ab : A ∧ B) → fst (P (∧-fmap f (⊙idf B) ab))) where h : ∀ (b : de⊙ B) → (∀ (a' : de⊙ A') → fst (P (smin a' b))) → (∀ (a : de⊙ A) → fst (P (smin (fst f a) b))) h b s = s ∘ fst f Q : de⊙ B → n -Type (lmax i (lmax j k)) Q b = Q' , Q'-level where Q' : Type (lmax i (lmax j k)) Q' = hfiber (h b) (λ a → d (smin a b)) Q'-level : has-level n Q' Q'-level = conn-extend-general {n = m} {k = n} f-is-m-conn (λ a → P (smin a b)) (λ a → d (smin a b)) s₀ : ∀ (a' : de⊙ A') → fst (P (smin a' b₀)) s₀ a' = transport (fst ∘ P) (! (∧-norm-l a')) (d smbasel) ∧-fmap-smgluel-β-∙' : ∀ (a : de⊙ A) → ap (∧-fmap f (⊙idf B)) (smgluel a) == smgluel (fst f a) ∙' ! (smgluel a₀') ∧-fmap-smgluel-β-∙' a = ∧-fmap-smgluel-β' f (⊙idf B) a ∙ ∙=∙' (smgluel (fst f a)) (! (smgluel a₀')) ∧-fmap-smgluel-β-∙ : ∀ (a : de⊙ A) → ap (∧-fmap f (⊙idf B)) (smgluel a) == smgluel (fst f a) ∙ ! (smgluel a₀') ∧-fmap-smgluel-β-∙ a = ∧-fmap-smgluel-β-∙' a ∙ ∙'=∙ (smgluel (fst f a)) (! (smgluel a₀')) ∧-fmap-smgluer-β-∙' : ∀ (b : de⊙ B) → ap (∧-fmap f (⊙idf B)) (smgluer b) == ap (λ a' → smin a' b) (snd f) ∙' ∧-norm-r b ∧-fmap-smgluer-β-∙' b = ∧-fmap-smgluer-β' f (⊙idf B) b ∙ ∙=∙' (ap (λ a' → smin a' b) (snd f)) (∧-norm-r b) ∧-fmap-smgluer-β-∙ : ∀ (b : de⊙ B) → ap (∧-fmap f (⊙idf B)) (smgluer b) == ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b ∧-fmap-smgluer-β-∙ b = ∧-fmap-smgluer-β-∙' b ∙ ∙'=∙ (ap (λ a' → smin a' b) (snd f)) (∧-norm-r b) s₀-f : ∀ (a : de⊙ A) → s₀ (fst f a) == d (smin a b₀) s₀-f a = ap (λ p → transport (λ a'b → fst (P a'b)) p (d smbasel)) q ∙ to-transp {B = fst ∘ P} {p = ap (∧-fmap f (⊙idf B)) (! (smgluel a))} (↓-ap-in (fst ∘ P) (∧-fmap f (⊙idf B)) (apd d (! (smgluel a)))) where q : ! (∧-norm-l (fst f a)) == ap (∧-fmap f (⊙idf B)) (! (smgluel a)) q = ap ! (! (∧-fmap-smgluel-β-∙ a)) ∙ !-ap (∧-fmap f (⊙idf B)) (smgluel a) q₀ : fst (Q b₀) q₀ = s₀ , s₀-lies-over-pt where s₀-lies-over-pt : h b₀ s₀ == (λ a → d (smin a b₀)) s₀-lies-over-pt = λ= s₀-f q : ∀ (b : de⊙ B) → fst (Q b) q = conn-extend {n = n} {h = cst b₀} (pointed-conn-out (de⊙ B) b₀ {{B-is-Sn-conn}}) Q (λ _ → q₀) q-f : q b₀ == q₀ q-f = conn-extend-β {n = n} {h = cst b₀} (pointed-conn-out (de⊙ B) b₀ {{B-is-Sn-conn}}) Q (λ _ → q₀) unit s : ∀ (a' : de⊙ A') (b : de⊙ B) → fst (P (smin a' b)) s a' b = fst (q b) a' s-b₀ : ∀ (a' : de⊙ A') → s a' b₀ == s₀ a' s-b₀ a' = ap (λ u → fst u a') q-f s-f : ∀ (a : de⊙ A) (b : de⊙ B) → s (fst f a) b == d (smin a b) s-f a b = app= (snd (q b)) a s-f-b₀ : ∀ (a : de⊙ A) → s-f a b₀ == s-b₀ (fst f a) ∙ s₀-f a s-f-b₀ a = app= (snd (q b₀)) a =⟨ ↓-app=cst-out' (apd (λ u → app= (snd u) a) q-f) ⟩ s-b₀ (fst f a) ∙' app= (snd q₀) a =⟨ ap (s-b₀ (fst f a) ∙'_) (app=-β s₀-f a) ⟩ s-b₀ (fst f a) ∙' s₀-f a =⟨ ∙'=∙ (s-b₀ (fst f a)) (s₀-f a) ⟩ s-b₀ (fst f a) ∙ s₀-f a =∎ s-a₀' : ∀ (b : de⊙ B) → s a₀' b == transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b)) s-a₀' b = ↯ $ s a₀' b =⟪ ! (to-transp (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)))) ⟫ transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (s (fst f a₀) b) =⟪ ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b) ⟫ transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b)) ∎∎ section-smbasel : fst (P smbasel) section-smbasel = transport (fst ∘ P) (smgluel a₀') (d smbasel) section-smbaser : fst (P smbaser) section-smbaser = transport (fst ∘ P) (smgluer b₀) (d smbaser) section-smgluel' : ∀ (a' : de⊙ A') → s₀ a' == section-smbasel [ fst ∘ P ↓ smgluel a' ] section-smgluel' a' = cpa₁ (fst ∘ P) (d smbasel) (smgluel a') (smgluel a₀') section-smgluel : ∀ (a' : de⊙ A') → s a' b₀ == section-smbasel [ fst ∘ P ↓ smgluel a' ] section-smgluel a' = s-b₀ a' ◃ section-smgluel' a' section-smgluer' : ∀ (b : de⊙ B) → transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b)) == section-smbaser [ fst ∘ P ↓ smgluer b ] section-smgluer' b = cpa₂ (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluer b) d (ap (λ a' → smin a' b) (snd f)) (smgluer b) (smgluer b₀) (∧-fmap-smgluer-β-∙' b) section-smgluer : ∀ (b : de⊙ B) → s a₀' b == section-smbaser [ fst ∘ P ↓ smgluer b ] section-smgluer b = s-a₀' b ◃ section-smgluer' b module Section = SmashElim {P = fst ∘ P} s section-smbasel section-smbaser section-smgluel section-smgluer section : Π (A' ∧ B) (fst ∘ P) section = Section.f is-section-smbasel : s a₀' b₀ == d smbasel is-section-smbasel = ↯ $ s a₀' b₀ =⟪ s-b₀ a₀' ⟫ s₀ a₀' =⟪idp⟫ transport (fst ∘ P) (! (∧-norm-l a₀')) (d smbasel) =⟪ ap (λ p → transport (fst ∘ P) (! p) (d smbasel)) (!-inv-r (smgluel a₀')) ⟫ d smbasel ∎∎ is-section-smgluel : ∀ (a : de⊙ A) → s-f a b₀ ◃ apd d (smgluel a) == apd (section ∘ ∧-fmap f (⊙idf B)) (smgluel a) ▹ is-section-smbasel is-section-smgluel a = s-f a b₀ ◃ apd d (smgluel a) =⟨ ap (_◃ apd d (smgluel a)) (s-f-b₀ a) ⟩ (s-b₀ (fst f a) ∙ s₀-f a) ◃ apd d (smgluel a) =⟨ cpac₁ (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluel a) d (smgluel (fst f a)) (smgluel a₀') (∧-fmap-smgluel-β-∙' a) (s-b₀ a₀') (s-b₀ (fst f a)) ⟩ ↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluel a) (∧-fmap-smgluel-β-∙ a) (section-smgluel (fst f a) ∙ᵈ !ᵈ (section-smgluel a₀')) ▹ is-section-smbasel =⟨ ! $ ap (_▹ is-section-smbasel) $ ap (↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluel a) (∧-fmap-smgluel-β-∙ a)) $ apd-section-norm-l (fst f a) ⟩ ↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluel a) (∧-fmap-smgluel-β-∙ a) (apd section (∧-norm-l (fst f a))) ▹ is-section-smbasel =⟨ ! $ ap (_▹ is-section-smbasel) $ apd-∘'' section (∧-fmap f (⊙idf B)) (smgluel a) (∧-fmap-smgluel-β-∙ a) ⟩ apd (section ∘ ∧-fmap f (⊙idf B)) (smgluel a) ▹ is-section-smbasel =∎ where apd-section-norm-l : ∀ (a' : de⊙ A') → apd section (∧-norm-l a') == section-smgluel a' ∙ᵈ !ᵈ (section-smgluel a₀') apd-section-norm-l a' = apd section (∧-norm-l a') =⟨ apd-∙ section (smgluel a') (! (smgluel a₀')) ⟩ apd section (smgluel a') ∙ᵈ apd section (! (smgluel a₀')) =⟨ ap2 _∙ᵈ_ (Section.smgluel-β a') (apd-! section (smgluel a₀') ∙ ap !ᵈ (Section.smgluel-β a₀')) ⟩ section-smgluel a' ∙ᵈ !ᵈ (section-smgluel a₀') =∎ is-section-smbaser : s a₀' b₀ == d smbaser is-section-smbaser = ↯ $ s a₀' b₀ =⟪ s-a₀' b₀ ⟫ transport (fst ∘ P) (ap (λ a' → smin a' b₀) (snd f)) (d (smin a₀ b₀)) =⟪ ap (λ p → transport (fst ∘ P) p (d (smin a₀ b₀))) (↯ r) ⟫ transport (fst ∘ P) (ap (∧-fmap f (⊙idf B)) (smgluer b₀)) (d (smin a₀ b₀)) =⟪ to-transp (↓-ap-in (fst ∘ P) (∧-fmap f (⊙idf B)) (apd d (smgluer b₀))) ⟫ d smbaser ∎∎ where r : ap (λ a' → smin a' b₀) (snd f) =-= ap (∧-fmap f (⊙idf B)) (smgluer b₀) r = ap (λ a' → smin a' b₀) (snd f) =⟪ ! (∙-unit-r _) ⟫ ap (λ a' → smin a' b₀) (snd f) ∙ idp =⟪ ap (ap (λ a' → smin a' b₀) (snd f) ∙_) (! (!-inv-r (smgluer b₀))) ⟫ ap (λ a' → smin a' b₀) (snd f) ∙ ∧-norm-r b₀ =⟪ ! (∧-fmap-smgluer-β-∙ b₀) ⟫ ap (∧-fmap f (⊙idf B)) (smgluer b₀) ∎∎ is-section-smgluer : ∀ (b : de⊙ B) → s-f a₀ b ◃ apd d (smgluer b) == apd (section ∘ ∧-fmap f (⊙idf B)) (smgluer b) ▹ is-section-smbaser is-section-smgluer b = ! $ apd (section ∘ ∧-fmap f (⊙idf B)) (smgluer b) ▹ is-section-smbaser =⟨ ap (_▹ is-section-smbaser) $ apd-∘'' section (∧-fmap f (⊙idf B)) (smgluer b) (∧-fmap-smgluer-β-∙ b) ⟩ ↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluer b) (∧-fmap-smgluer-β-∙ b) (apd section (ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b)) ▹ is-section-smbaser =⟨ ap (_▹ is-section-smbaser) $ ap (↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluer b) (∧-fmap-smgluer-β-∙ b)) $ apd-section-helper ⟩ ↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluer b) (∧-fmap-smgluer-β-∙ b) ((s-f a₀ b ◃ transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)) ▹ is-section-smbaser =⟨ cpac₂ (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluer b) (smgluer b₀) d (ap (λ a' → smin a' b) (snd f)) (ap (λ a' → smin a' b₀) (snd f)) (smgluer b) (smgluer b₀) (∧-fmap-smgluer-β-∙' b) (∧-fmap-smgluer-β-∙' b₀) (s-a₀' b₀) (s-f a₀ b) ⟩ s-f a₀ b ◃ apd d (smgluer b) =∎ where apd-section-helper : apd section (ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b) == (s-f a₀ b ◃ transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀) apd-section-helper = apd section (ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b) =⟨ apd-∙ section (ap (λ a' → smin a' b) (snd f)) (∧-norm-r b) ⟩ apd section (ap (λ a' → smin a' b) (snd f)) ∙ᵈ apd section (∧-norm-r b) =⟨ ap2 _∙ᵈ_ (apd-∘''' section (λ a' → smin a' b) (snd f)) (apd-∙ section (smgluer b) (! (smgluer b₀))) ⟩ ↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ∙ᵈ apd section (smgluer b) ∙ᵈ apd section (! (smgluer b₀)) =⟨ ap (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ∙ᵈ_) $ ap2 _∙ᵈ_ (Section.smgluer-β b) (apd-! section (smgluer b₀) ∙ ap !ᵈ (Section.smgluer-β b₀)) ⟩ ↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ∙ᵈ section-smgluer b ∙ᵈ !ᵈ (section-smgluer b₀) =⟨ custom-assoc (fst ∘ P) (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f))) (! (to-transp (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f))))) (ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) (section-smgluer' b) (!ᵈ (section-smgluer b₀)) ⟩ ((↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ▹ ! (to-transp (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f))))) ▹ ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀) =⟨ ap (λ u → (u ▹ ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)) $ to-transp-over (fst ∘ P) $ ↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ⟩ (transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (s (fst f a₀) b) ▹ ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀) =⟨ ! $ ap (_∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)) $ transp-over-naturality (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (s-f a₀ b) ⟩ (s-f a₀ b ◃ transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀) =∎ is-section : section ∘ ∧-fmap f (⊙idf B) ∼ d is-section = Smash-PathOver-elim {P = λ ab → fst (P (∧-fmap f (⊙idf B) ab))} (section ∘ ∧-fmap f (⊙idf B)) d s-f is-section-smbasel is-section-smbaser is-section-smgluel is-section-smgluer {- Proposition 4.3.2 in Guillaume Brunerie's thesis -} ∧-fmap-conn-l : has-conn-fibers (n +2+ m) (∧-fmap f (⊙idf B)) ∧-fmap-conn-l = conn-in (λ P → ConnIn.section P , ConnIn.is-section P) private ∧-swap-conn : ∀ {i} {j} (X : Ptd i) (Y : Ptd j) (n : ℕ₋₂) → has-conn-fibers n (∧-swap X Y) ∧-swap-conn X Y n yx = Trunc-preserves-level {n = -2} n $ equiv-is-contr-map (∧-swap-is-equiv X Y) yx ∧-fmap-conn-r : ∀ {i} {j} {k} (A : Ptd i) {B : Ptd j} {B' : Ptd k} (g : B ⊙→ B') {k l : ℕ₋₂} → is-connected (S k) (de⊙ A) → has-conn-fibers l (fst g) → has-conn-fibers (k +2+ l) (∧-fmap (⊙idf A) g) ∧-fmap-conn-r A {B} {B'} g {k} {l} A-is-Sk-conn g-is-l-conn = transport (has-conn-fibers (k +2+ l)) (λ= (∧-swap-fmap (⊙idf A) g)) $ ∘-conn (∧-swap A B) (∧-swap B' A ∘ ∧-fmap g (⊙idf A)) (∧-swap-conn A B _) $ ∘-conn (∧-fmap g (⊙idf A)) (∧-swap B' A) (∧-fmap-conn-l g A g-is-l-conn A-is-Sk-conn) (∧-swap-conn B' A _) private ∘-conn' : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {n m : ℕ₋₂} (g : B → C) (f : A → B) → has-conn-fibers m g → has-conn-fibers n f → has-conn-fibers (minT n m) (g ∘ f) ∘-conn' {n = n} {m = m} g f g-conn f-conn = ∘-conn f g (λ b → connected-≤T (minT≤l n m) {{f-conn b}}) (λ c → connected-≤T (minT≤r n m) {{g-conn c}}) {- Proposition 4.3.5 in Guillaume Brunerie's thesis -} ∧-fmap-conn : ∀ {i i' j j'} {A : Ptd i} {A' : Ptd i'} (f : A ⊙→ A') {B : Ptd j} {B' : Ptd j'} (g : B ⊙→ B') {m n k l : ℕ₋₂} → is-connected (S k) (de⊙ A') → is-connected (S n) (de⊙ B) → has-conn-fibers m (fst f) → has-conn-fibers l (fst g) → has-conn-fibers (minT (n +2+ m) (k +2+ l)) (∧-fmap f g) ∧-fmap-conn {A = A} {A'} f {B} {B'} g {m} {n} {k} {l} A'-is-Sk-conn B-is-Sn-conn f-is-m-conn g-is-l-conn = transport (has-conn-fibers (minT (n +2+ m) (k +2+ l))) p $ ∘-conn' (∧-fmap (⊙idf A') g) (∧-fmap f (⊙idf B)) (∧-fmap-conn-r A' g A'-is-Sk-conn g-is-l-conn) (∧-fmap-conn-l f B f-is-m-conn B-is-Sn-conn) where p : ∧-fmap (⊙idf A') g ∘ ∧-fmap f (⊙idf B) == ∧-fmap f g p = ∧-fmap (⊙idf A') g ∘ ∧-fmap f (⊙idf B) =⟨ ! (λ= (∧-fmap-comp f (⊙idf A') (⊙idf B) g)) ⟩ ∧-fmap (⊙idf A' ⊙∘ f) (g ⊙∘ ⊙idf B) =⟨ ap (λ h → ∧-fmap h g) (⊙λ= (⊙∘-unit-l f)) ⟩ ∧-fmap f g =∎
{ "alphanum_fraction": 0.4145400288, "avg_line_length": 36.3970037453, "ext": "agda", "hexsha": "1e40acdb1a115bbc26058f50a2804839d534fd36", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/SmashFmapConn.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/SmashFmapConn.agda", "max_line_length": 102, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/SmashFmapConn.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 8872, "size": 19436 }
{-# OPTIONS --allow-unsolved-metas #-} ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- CS410 2017/18 Exercise 1 VECTORS AND FRIENDS (worth 25%) ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- NOTE (19/9/17) This file is currently incomplete: more will arrive on -- GitHub. -- MARK SCHEME (transcribed from paper): the (m) numbers add up to slightly -- more than 25, so should be taken as the maximum number of marks losable on -- the exercise. In fact, I did mark it negatively, but mostly because it was -- done so well (with Agda's help) that it was easier to find the errors. ------------------------------------------------------------------------------ -- Dependencies ------------------------------------------------------------------------------ open import CS410-Prelude ------------------------------------------------------------------------------ -- Vectors ------------------------------------------------------------------------------ data Vec (X : Set) : Nat -> Set where -- like lists, but length-indexed [] : Vec X zero _,-_ : {n : Nat} -> X -> Vec X n -> Vec X (suc n) infixr 4 _,-_ -- the "cons" operator associates to the right -- I like to use the asymmetric ,- to remind myself that the element is to -- the left and the rest of the list is to the right. -- Vectors are useful when there are important length-related safety -- properties. ------------------------------------------------------------------------------ -- Heads and Tails ------------------------------------------------------------------------------ -- We can rule out nasty head and tail errors by insisting on nonemptiness! --??--1.1-(2)----------------------------------------------------------------- vHead : {X : Set}{n : Nat} -> Vec X (suc n) -> X vHead xs = {!!} vTail : {X : Set}{n : Nat} -> Vec X (suc n) -> Vec X n vTail xs = {!!} vHeadTailFact : {X : Set}{n : Nat}(xs : Vec X (suc n)) -> (vHead xs ,- vTail xs) == xs vHeadTailFact xs = {!!} --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Concatenation and its Inverse ------------------------------------------------------------------------------ --??--1.2-(2)----------------------------------------------------------------- _+V_ : {X : Set}{m n : Nat} -> Vec X m -> Vec X n -> Vec X (m +N n) xs +V ys = {!!} infixr 4 _+V_ vChop : {X : Set}(m : Nat){n : Nat} -> Vec X (m +N n) -> Vec X m * Vec X n vChop m xs = {!!} vChopAppendFact : {X : Set}{m n : Nat}(xs : Vec X m)(ys : Vec X n) -> vChop m (xs +V ys) == (xs , ys) vChopAppendFact xs ys = {!!} --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Map, take I ------------------------------------------------------------------------------ -- Implement the higher-order function that takes an operation on -- elements and does it to each element of a vector. Use recursion -- on the vector. -- Note that the type tells you the size remains the same. -- Show that if the elementwise function "does nothing", neither does -- its vMap. "map of identity is identity" -- Show that two vMaps in a row can be collapsed to just one, or -- "composition of maps is map of compositions" --??--1.3-(2)----------------------------------------------------------------- vMap : {X Y : Set} -> (X -> Y) -> {n : Nat} -> Vec X n -> Vec Y n vMap f xs = {!!} vMapIdFact : {X : Set}{f : X -> X}(feq : (x : X) -> f x == x) -> {n : Nat}(xs : Vec X n) -> vMap f xs == xs vMapIdFact feq xs = {!!} vMapCpFact : {X Y Z : Set}{f : Y -> Z}{g : X -> Y}{h : X -> Z} (heq : (x : X) -> f (g x) == h x) -> {n : Nat}(xs : Vec X n) -> vMap f (vMap g xs) == vMap h xs vMapCpFact heq xs = {!!} --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- vMap and +V ------------------------------------------------------------------------------ -- Show that if you've got two vectors of Xs and a function from X to Y, -- and you want to concatenate and map, it doesn't matter which you do -- first. --??--1.4-(1)----------------------------------------------------------------- vMap+VFact : {X Y : Set}(f : X -> Y) -> {m n : Nat}(xs : Vec X m)(xs' : Vec X n) -> vMap f (xs +V xs') == (vMap f xs +V vMap f xs') vMap+VFact f xs xs' = {!!} --??-------------------------------------------------------------------------- -- Think about what you could prove, relating vMap with vHead, vTail, vChop... -- Now google "Philip Wadler" "Theorems for Free" ------------------------------------------------------------------------------ -- Applicative Structure (giving mapping and zipping cheaply) ------------------------------------------------------------------------------ --??--1.5-(2)----------------------------------------------------------------- -- HINT: you will need to override the default invisibility of n to do this. vPure : {X : Set} -> X -> {n : Nat} -> Vec X n vPure x {n} = {!!} _$V_ : {X Y : Set}{n : Nat} -> Vec (X -> Y) n -> Vec X n -> Vec Y n fs $V xs = {!!} infixl 3 _$V_ -- "Application associates to the left, -- rather as we all did in the sixties." (Roger Hindley) -- Pattern matching and recursion are forbidden for the next two tasks. -- implement vMap again, but as a one-liner vec : {X Y : Set} -> (X -> Y) -> {n : Nat} -> Vec X n -> Vec Y n vec f xs = {!!} -- implement the operation which pairs up corresponding elements vZip : {X Y : Set}{n : Nat} -> Vec X n -> Vec Y n -> Vec (X * Y) n vZip xs ys = {!!} --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Applicative Laws ------------------------------------------------------------------------------ -- According to "Applicative programming with effects" by -- Conor McBride and Ross Paterson -- some laws should hold for applicative functors. -- Check that this is the case. --??--1.6-(2)----------------------------------------------------------------- vIdentity : {X : Set}{f : X -> X}(feq : (x : X) -> f x == x) -> {n : Nat}(xs : Vec X n) -> (vPure f $V xs) == xs vIdentity feq xs = {!!} vHomomorphism : {X Y : Set}(f : X -> Y)(x : X) -> {n : Nat} -> (vPure f $V vPure x) == vPure (f x) {n} vHomomorphism f x {n} = {!!} vInterchange : {X Y : Set}{n : Nat}(fs : Vec (X -> Y) n)(x : X) -> (fs $V vPure x) == (vPure (_$ x) $V fs) vInterchange fs x = {!!} vComposition : {X Y Z : Set}{n : Nat} (fs : Vec (Y -> Z) n)(gs : Vec (X -> Y) n)(xs : Vec X n) -> (vPure _<<_ $V fs $V gs $V xs) == (fs $V (gs $V xs)) vComposition fs gs xs = {!!} --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Order-Preserving Embeddings (also known in the business as "thinnings") ------------------------------------------------------------------------------ -- What have these to do with Pascal's Triangle? data _<=_ : Nat -> Nat -> Set where oz : zero <= zero os : {n m : Nat} -> n <= m -> suc n <= suc m o' : {n m : Nat} -> n <= m -> n <= suc m -- Find all the values in each of the following <= types. -- This is a good opportunity to learn to use C-c C-a with the -l option -- (a.k.a. "google the type" without "I feel lucky") -- The -s n option also helps. --??--1.7-(1)----------------------------------------------------------------- all0<=4 : Vec (0 <= 4) {!!} all0<=4 = {!!} all1<=4 : Vec (1 <= 4) {!!} all1<=4 = {!!} all2<=4 : Vec (2 <= 4) {!!} all2<=4 = {!!} all3<=4 : Vec (3 <= 4) {!!} all3<=4 = {!!} all4<=4 : Vec (4 <= 4) {!!} all4<=4 = {!!} -- Prove the following. A massive case analysis "rant" is fine. no5<=4 : 5 <= 4 -> Zero no5<=4 th = {!!} --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Order-Preserving Embeddings Select From Vectors ------------------------------------------------------------------------------ -- Use n <= m to encode the choice of n elements from an m-Vector. -- The os constructor tells you to take the next element of the vector; -- the o' constructor tells you to omit the next element of the vector. --??--1.8-(2)----------------------------------------------------------------- _<?=_ : {X : Set}{n m : Nat} -> n <= m -> Vec X m -> Vec X n th <?= xs = {!!} -- it shouldn't matter whether you map then select or select then map vMap<?=Fact : {X Y : Set}(f : X -> Y) {n m : Nat}(th : n <= m)(xs : Vec X m) -> vMap f (th <?= xs) == (th <?= vMap f xs) vMap<?=Fact f th xs = {!!} --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Our Favourite Thinnings ------------------------------------------------------------------------------ -- Construct the identity thinning and the empty thinning. --??--1.9-(1)----------------------------------------------------------------- oi : {n : Nat} -> n <= n oi {n} = {!!} oe : {n : Nat} -> 0 <= n oe {n} = {!!} --??-------------------------------------------------------------------------- -- Show that all empty thinnings are equal to yours. --??--1.10-(1)---------------------------------------------------------------- oeUnique : {n : Nat}(th : 0 <= n) -> th == oe oeUnique i = {!!} --??-------------------------------------------------------------------------- -- Show that there are no thinnings of form big <= small (TRICKY) -- Then show that all the identity thinnings are equal to yours. -- Note that you can try the second even if you haven't finished the first. -- HINT: you WILL need to expose the invisible numbers. -- HINT: check CS410-Prelude for a reminder of >= --??--1.11-(3)---------------------------------------------------------------- oTooBig : {n m : Nat} -> n >= m -> suc n <= m -> Zero oTooBig {n} {m} n>=m th = {!!} oiUnique : {n : Nat}(th : n <= n) -> th == oi oiUnique th = {!!} --??-------------------------------------------------------------------------- -- Show that the identity thinning selects the whole vector --??--1.12-(1)---------------------------------------------------------------- id-<?= : {X : Set}{n : Nat}(xs : Vec X n) -> (oi <?= xs) == xs id-<?= xs = {!!} --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Composition of Thinnings ------------------------------------------------------------------------------ -- Define the composition of thinnings and show that selecting by a -- composite thinning is like selecting then selecting again. -- A small bonus applies to minimizing the length of the proof. -- To collect the bonus, you will need to think carefully about -- how to make the composition as *lazy* as possible. --??--1.13-(3)---------------------------------------------------------------- _o>>_ : {p n m : Nat} -> p <= n -> n <= m -> p <= m th o>> th' = {!!} cp-<?= : {p n m : Nat}(th : p <= n)(th' : n <= m) -> {X : Set}(xs : Vec X m) -> ((th o>> th') <?= xs) == (th <?= (th' <?= xs)) cp-<?= th th' xs = {!!} --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Thinning Dominoes ------------------------------------------------------------------------------ --??--1.14-(3)---------------------------------------------------------------- idThen-o>> : {n m : Nat}(th : n <= m) -> (oi o>> th) == th idThen-o>> th = {!!} idAfter-o>> : {n m : Nat}(th : n <= m) -> (th o>> oi) == th idAfter-o>> th = {!!} assoc-o>> : {q p n m : Nat}(th0 : q <= p)(th1 : p <= n)(th2 : n <= m) -> ((th0 o>> th1) o>> th2) == (th0 o>> (th1 o>> th2)) assoc-o>> th0 th1 th2 = {!!} --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Vectors as Arrays ------------------------------------------------------------------------------ -- We can use 1 <= n as the type of bounded indices into a vector and do -- a kind of "array projection". First we select a 1-element vector from -- the n-element vector, then we take its head to get the element out. vProject : {n : Nat}{X : Set} -> Vec X n -> 1 <= n -> X vProject xs i = vHead (i <?= xs) -- Your (TRICKY) mission is to reverse the process, tabulating a function -- from indices as a vector. Then show that these operations are inverses. --??--1.15-(3)---------------------------------------------------------------- -- HINT: composition of functions vTabulate : {n : Nat}{X : Set} -> (1 <= n -> X) -> Vec X n vTabulate {n} f = {!!} -- This should be easy if vTabulate is correct. vTabulateProjections : {n : Nat}{X : Set}(xs : Vec X n) -> vTabulate (vProject xs) == xs vTabulateProjections xs = {!!} -- HINT: oeUnique vProjectFromTable : {n : Nat}{X : Set}(f : 1 <= n -> X)(i : 1 <= n) -> vProject (vTabulate f) i == f i vProjectFromTable f i = {!!} --??--------------------------------------------------------------------------
{ "alphanum_fraction": 0.3686579963, "avg_line_length": 36.2538860104, "ext": "agda", "hexsha": "75c052b25e1ac227bc906c3434739d59a9849bd2", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/Ex1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/Ex1.agda", "max_line_length": 78, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/exercises/Ex1.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 3240, "size": 13994 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of Vec ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Categorical {a n} where open import Category.Applicative using (RawApplicative) open import Category.Applicative.Indexed using (Morphism) open import Category.Functor as Fun using (RawFunctor) import Function.Identity.Categorical as Id open import Category.Monad using (RawMonad) open import Data.Fin using (Fin) open import Data.Vec as Vec hiding (_⊛_) open import Data.Vec.Properties open import Function ------------------------------------------------------------------------ -- Functor and applicative functor : RawFunctor (λ (A : Set a) → Vec A n) functor = record { _<$>_ = map } applicative : RawApplicative (λ (A : Set a) → Vec A n) applicative = record { pure = replicate ; _⊛_ = Vec._⊛_ } ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {f F} (App : RawApplicative {f} F) where open RawApplicative App sequenceA : ∀ {A n} → Vec (F A) n → F (Vec A n) sequenceA [] = pure [] sequenceA (x ∷ xs) = _∷_ <$> x ⊛ sequenceA xs mapA : ∀ {a} {A : Set a} {B n} → (A → F B) → Vec A n → F (Vec B n) mapA f = sequenceA ∘ map f forA : ∀ {a} {A : Set a} {B n} → Vec A n → (A → F B) → F (Vec B n) forA = flip mapA module _ {m M} (Mon : RawMonad {m} M) where private App = RawMonad.rawIApplicative Mon sequenceM : ∀ {A n} → Vec (M A) n → M (Vec A n) sequenceM = sequenceA App mapM : ∀ {a} {A : Set a} {B n} → (A → M B) → Vec A n → M (Vec B n) mapM = mapA App forM : ∀ {a} {A : Set a} {B n} → Vec A n → (A → M B) → M (Vec B n) forM = forA App ------------------------------------------------------------------------ -- Other -- lookup is a functor morphism from Vec to Identity. lookup-functor-morphism : (i : Fin n) → Fun.Morphism functor Id.functor lookup-functor-morphism i = record { op = flip lookup i ; op-<$> = lookup-map i } -- lookup is an applicative functor morphism. lookup-morphism : (i : Fin n) → Morphism applicative Id.applicative lookup-morphism i = record { op = flip lookup i ; op-pure = lookup-replicate i ; op-⊛ = lookup-⊛ i }
{ "alphanum_fraction": 0.5333614865, "avg_line_length": 28.1904761905, "ext": "agda", "hexsha": "637551cbc10f9a8b39d0bdbaf122bd1b9224ff1c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Categorical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Categorical.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Categorical.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 692, "size": 2368 }
-- A placeholder module so that we can write a main. Agda compilation -- does not work without a main so batch compilation is bound to give -- errors. For travis builds, we want batch compilation and this is -- module can be imported to serve that purpose. There is nothing -- useful that can be achieved from this module though. module io.placeholder where open import hott.core.universe postulate Unit : Type₀ IO : Type₀ → Type₀ dummyMain : IO Unit {-# COMPILED_TYPE Unit () #-} {-# COMPILED_TYPE IO IO #-} {-# COMPILED dummyMain (return ()) #-} {-# BUILTIN IO IO #-}
{ "alphanum_fraction": 0.6347031963, "avg_line_length": 32.85, "ext": "agda", "hexsha": "0335351996fb313017d0013157f90455a4e20326", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "piyush-kurur/hott", "max_forks_repo_path": "agda/io/placeholder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "piyush-kurur/hott", "max_issues_repo_path": "agda/io/placeholder.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "piyush-kurur/hott", "max_stars_repo_path": "agda/io/placeholder.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 153, "size": 657 }
open import Mockingbird.Forest using (Forest) import Mockingbird.Forest.Birds as Birds -- The Master Forest module Mockingbird.Problems.Chapter18 {b ℓ} (forest : Forest {b} {ℓ}) ⦃ _ : Birds.HasStarling forest ⦄ ⦃ _ : Birds.HasKestrel forest ⦄ where open import Data.Maybe using (Maybe; nothing; just) open import Data.Product using (_×_; _,_; proj₁; ∃-syntax) open import Data.Vec using (Vec; []; _∷_; _++_) open import Data.Vec.Relation.Unary.Any.Properties using (++⁺ʳ) open import Function using (_$_) open import Level using (_⊔_) open import Mockingbird.Forest.Combination.Vec forest using (⟨_⟩; here; there; [_]; _⟨∙⟩_∣_; _⟨∙⟩_; [#_]) open import Mockingbird.Forest.Combination.Vec.Properties forest using (subst′; weaken-++ˡ; weaken-++ʳ; ++-comm) open import Relation.Unary using (_∈_) open Forest forest open import Mockingbird.Forest.Birds forest problem₁ : HasIdentity problem₁ = record { I = S ∙ K ∙ K ; isIdentity = λ x → begin S ∙ K ∙ K ∙ x ≈⟨ isStarling K K x ⟩ K ∙ x ∙ (K ∙ x) ≈⟨ isKestrel x (K ∙ x) ⟩ x ∎ } private instance hasIdentity = problem₁ problem₂ : HasMockingbird problem₂ = record { M = S ∙ I ∙ I ; isMockingbird = λ x → begin S ∙ I ∙ I ∙ x ≈⟨ isStarling I I x ⟩ I ∙ x ∙ (I ∙ x) ≈⟨ congʳ $ isIdentity x ⟩ x ∙ (I ∙ x) ≈⟨ congˡ $ isIdentity x ⟩ x ∙ x ∎ } private instance hasMockingbird = problem₂ problem₃ : HasThrush problem₃ = record { T = S ∙ (K ∙ (S ∙ I)) ∙ K ; isThrush = λ x y → begin S ∙ (K ∙ (S ∙ I)) ∙ K ∙ x ∙ y ≈⟨ congʳ $ isStarling (K ∙ (S ∙ I)) K x ⟩ K ∙ (S ∙ I) ∙ x ∙ (K ∙ x) ∙ y ≈⟨ (congʳ $ congʳ $ isKestrel (S ∙ I) x) ⟩ S ∙ I ∙ (K ∙ x) ∙ y ≈⟨ isStarling I (K ∙ x) y ⟩ I ∙ y ∙ (K ∙ x ∙ y) ≈⟨ congʳ $ isIdentity y ⟩ y ∙ (K ∙ x ∙ y) ≈⟨ congˡ $ isKestrel x y ⟩ y ∙ x ∎ } -- TODO: Problem 4. I∈⟨S,K⟩ : I ∈ ⟨ S ∷ K ∷ [] ⟩ I∈⟨S,K⟩ = subst′ refl $ [# 0 ] ⟨∙⟩ [# 1 ] ⟨∙⟩ [# 1 ] -- Try to strengthen a proof of X ∈ ⟨ y ∷ xs ⟩ to X ∈ ⟨ xs ⟩, which can be done -- if y does not occur in X. strengthen : ∀ {n X y} {xs : Vec Bird n} → X ∈ ⟨ y ∷ xs ⟩ → Maybe (X ∈ ⟨ xs ⟩) -- NOTE: it could be the case that y ∈ xs, but checking that requires decidable -- equality. strengthen [ here X≈y ] = nothing strengthen [ there X∈xs ] = just [ X∈xs ] strengthen (Y∈⟨y,xs⟩ ⟨∙⟩ Z∈⟨y,xs⟩ ∣ YZ≈X) = do Y∈⟨xs⟩ ← strengthen Y∈⟨y,xs⟩ Z∈⟨xs⟩ ← strengthen Z∈⟨y,xs⟩ just $ Y∈⟨xs⟩ ⟨∙⟩ Z∈⟨xs⟩ ∣ YZ≈X where open import Data.Maybe.Categorical using (monad) open import Category.Monad using (RawMonad) open RawMonad (monad {b ⊔ ℓ}) eliminate : ∀ {n X y} {xs : Vec Bird n} → X ∈ ⟨ y ∷ xs ⟩ → ∃[ X′ ] (X′ ∈ ⟨ S ∷ K ∷ xs ⟩ × X′ ∙ y ≈ X) eliminate {X = X} {y} [ here X≈y ] = (I , weaken-++ˡ I∈⟨S,K⟩ , trans (isIdentity y) (sym X≈y)) eliminate {X = X} {y} [ there X∈xs ] = (K ∙ X , [# 1 ] ⟨∙⟩ [ ++⁺ʳ (S ∷ K ∷ []) X∈xs ] , isKestrel X y) eliminate {X = X} {y} (_⟨∙⟩_∣_ {Y} {Z} Y∈⟨y,xs⟩ [ here Z≈y ] YZ≈X) with strengthen Y∈⟨y,xs⟩ ... | just Y∈⟨xs⟩ = (Y , weaken-++ʳ (S ∷ K ∷ []) Y∈⟨xs⟩ , trans (congˡ (sym Z≈y)) YZ≈X) ... | nothing = let (Y′ , Y′∈⟨S,K,xs⟩ , Y′y≈Y) = eliminate Y∈⟨y,xs⟩ SY′Iy≈X : S ∙ Y′ ∙ I ∙ y ≈ X SY′Iy≈X = begin S ∙ Y′ ∙ I ∙ y ≈⟨ isStarling Y′ I y ⟩ Y′ ∙ y ∙ (I ∙ y) ≈⟨ congʳ $ Y′y≈Y ⟩ Y ∙ (I ∙ y) ≈⟨ congˡ $ isIdentity y ⟩ Y ∙ y ≈˘⟨ congˡ Z≈y ⟩ Y ∙ Z ≈⟨ YZ≈X ⟩ X ∎ in (S ∙ Y′ ∙ I , [# 0 ] ⟨∙⟩ Y′∈⟨S,K,xs⟩ ⟨∙⟩ weaken-++ˡ I∈⟨S,K⟩ , SY′Iy≈X) eliminate {X = X} {y} (_⟨∙⟩_∣_ {Y} {Z} Y∈⟨y,xs⟩ Z∈⟨y,xs⟩ YZ≈X) = let (Y′ , Y′∈⟨S,K,xs⟩ , Y′y≈Y) = eliminate Y∈⟨y,xs⟩ (Z′ , Z′∈⟨S,K,xs⟩ , Z′y≈Z) = eliminate Z∈⟨y,xs⟩ SY′Z′y≈X : S ∙ Y′ ∙ Z′ ∙ y ≈ X SY′Z′y≈X = begin S ∙ Y′ ∙ Z′ ∙ y ≈⟨ isStarling Y′ Z′ y ⟩ Y′ ∙ y ∙ (Z′ ∙ y) ≈⟨ congʳ Y′y≈Y ⟩ Y ∙ (Z′ ∙ y) ≈⟨ congˡ Z′y≈Z ⟩ Y ∙ Z ≈⟨ YZ≈X ⟩ X ∎ in (S ∙ Y′ ∙ Z′ , [# 0 ] ⟨∙⟩ Y′∈⟨S,K,xs⟩ ⟨∙⟩ Z′∈⟨S,K,xs⟩ , SY′Z′y≈X) module _ (x y : Bird) where -- Example: y-eliminating the expression y should give I. _ : proj₁ (eliminate {y = y} {xs = x ∷ []} $ [# 0 ]) ≈ I _ = refl -- Example: y-eliminating the expression x should give Kx. _ : proj₁ (eliminate {y = y} {xs = x ∷ []} $ [# 1 ]) ≈ K ∙ x _ = refl -- Example: y-eliminating the expression xy should give x (Principle 3). _ : proj₁ (eliminate {y = y} {xs = x ∷ []} $ [# 1 ] ⟨∙⟩ [# 0 ]) ≈ x _ = refl -- Example: y-eliminating the expression yx should give SI(Kx). _ : proj₁ (eliminate {y = y} {xs = x ∷ []} $ [# 0 ] ⟨∙⟩ [# 1 ]) ≈ S ∙ I ∙ (K ∙ x) _ = refl -- Example: y-eliminating the expression yy should give SII. _ : proj₁ (eliminate {y = y} {xs = x ∷ []} $ [# 0 ] ⟨∙⟩ [# 0 ]) ≈ S ∙ I ∙ I _ = refl strengthen-SK : ∀ {n X y} {xs : Vec Bird n} → X ∈ ⟨ S ∷ K ∷ y ∷ xs ⟩ → Maybe (X ∈ ⟨ S ∷ K ∷ xs ⟩) strengthen-SK {y = y} {xs} X∈⟨S,K,y,xs⟩ = do let X∈⟨y,xs,S,K⟩ = ++-comm (S ∷ K ∷ []) (y ∷ xs) X∈⟨S,K,y,xs⟩ X∈⟨xs,S,K⟩ ← strengthen X∈⟨y,xs,S,K⟩ let X∈⟨S,K,xs⟩ = ++-comm xs (S ∷ K ∷ []) X∈⟨xs,S,K⟩ just X∈⟨S,K,xs⟩ where open import Data.Maybe.Categorical using (monad) open import Category.Monad using (RawMonad) open RawMonad (monad {b ⊔ ℓ}) -- TODO: formulate eliminate or eliminate-SK in terms of the other. eliminate-SK : ∀ {n X y} {xs : Vec Bird n} → X ∈ ⟨ S ∷ K ∷ y ∷ xs ⟩ → ∃[ X′ ] (X′ ∈ ⟨ S ∷ K ∷ xs ⟩ × X′ ∙ y ≈ X) eliminate-SK {X = X} {y} [ here X≈S ] = (K ∙ S , [# 1 ] ⟨∙⟩ [# 0 ] , trans (isKestrel S y) (sym X≈S)) eliminate-SK {X = X} {y} [ there (here X≈K) ] = (K ∙ K , [# 1 ] ⟨∙⟩ [# 1 ] , trans (isKestrel K y) (sym X≈K)) eliminate-SK {X = X} {y} [ there (there (here X≈y)) ] = (I , weaken-++ˡ I∈⟨S,K⟩ , trans (isIdentity y) (sym X≈y)) eliminate-SK {X = X} {y} [ there (there (there X∈xs)) ] = (K ∙ X , ([# 1 ] ⟨∙⟩ [ (++⁺ʳ (S ∷ K ∷ []) X∈xs) ]) , isKestrel X y) eliminate-SK {X = X} {y} (_⟨∙⟩_∣_ {Y} {Z} Y∈⟨S,K,y,xs⟩ [ there (there (here Z≈y)) ] YZ≈X) with strengthen-SK Y∈⟨S,K,y,xs⟩ ... | just Y∈⟨S,K,xs⟩ = (Y , Y∈⟨S,K,xs⟩ , trans (congˡ (sym Z≈y)) YZ≈X) ... | nothing = let (Y′ , Y′∈⟨S,K,xs⟩ , Y′y≈Y) = eliminate-SK Y∈⟨S,K,y,xs⟩ SY′Iy≈X : S ∙ Y′ ∙ I ∙ y ≈ X SY′Iy≈X = begin S ∙ Y′ ∙ I ∙ y ≈⟨ isStarling Y′ I y ⟩ Y′ ∙ y ∙ (I ∙ y) ≈⟨ congʳ $ Y′y≈Y ⟩ Y ∙ (I ∙ y) ≈⟨ congˡ $ isIdentity y ⟩ Y ∙ y ≈˘⟨ congˡ Z≈y ⟩ Y ∙ Z ≈⟨ YZ≈X ⟩ X ∎ in (S ∙ Y′ ∙ I , [# 0 ] ⟨∙⟩ Y′∈⟨S,K,xs⟩ ⟨∙⟩ weaken-++ˡ I∈⟨S,K⟩ , SY′Iy≈X) eliminate-SK {X = X} {y} (_⟨∙⟩_∣_ {Y} {Z} Y∈⟨S,K,y,xs⟩ Z∈⟨S,K,y,xs⟩ YZ≈X) = let (Y′ , Y′∈⟨S,K,xs⟩ , Y′y≈Y) = eliminate-SK Y∈⟨S,K,y,xs⟩ (Z′ , Z′∈⟨S,K,xs⟩ , Z′y≈Z) = eliminate-SK Z∈⟨S,K,y,xs⟩ SY′Z′y≈X : S ∙ Y′ ∙ Z′ ∙ y ≈ X SY′Z′y≈X = begin S ∙ Y′ ∙ Z′ ∙ y ≈⟨ isStarling Y′ Z′ y ⟩ Y′ ∙ y ∙ (Z′ ∙ y) ≈⟨ congʳ Y′y≈Y ⟩ Y ∙ (Z′ ∙ y) ≈⟨ congˡ Z′y≈Z ⟩ Y ∙ Z ≈⟨ YZ≈X ⟩ X ∎ in (S ∙ Y′ ∙ Z′ , [# 0 ] ⟨∙⟩ Y′∈⟨S,K,xs⟩ ⟨∙⟩ Z′∈⟨S,K,xs⟩ , SY′Z′y≈X) module _ (x y : Bird) where -- Example: y-eliminating the expression y should give I. _ : proj₁ (eliminate-SK {y = y} {xs = x ∷ []} $ [# 2 ]) ≈ I _ = refl -- Example: y-eliminating the expression x should give Kx. _ : proj₁ (eliminate-SK {y = y} {xs = x ∷ []} $ [# 3 ]) ≈ K ∙ x _ = refl -- Example: y-eliminating the expression xy should give x (Principle 3). _ : proj₁ (eliminate-SK {y = y} {xs = x ∷ []} $ [# 3 ] ⟨∙⟩ [# 2 ]) ≈ x _ = refl -- Example: y-eliminating the expression yx should give SI(Kx). _ : proj₁ (eliminate-SK {y = y} {xs = x ∷ []} $ [# 2 ] ⟨∙⟩ [# 3 ]) ≈ S ∙ I ∙ (K ∙ x) _ = refl -- Example: y-eliminating the expression yy should give SII. _ : proj₁ (eliminate-SK {y = y} {xs = x ∷ []} $ [# 2 ] ⟨∙⟩ [# 2 ]) ≈ S ∙ I ∙ I _ = refl infixl 6 _∙ⁿ_ _∙ⁿ_ : ∀ {n} → (A : Bird) (xs : Vec Bird n) → Bird A ∙ⁿ [] = A A ∙ⁿ (x ∷ xs) = A ∙ⁿ xs ∙ x eliminateAll′ : ∀ {n X} {xs : Vec Bird n} → X ∈ ⟨ S ∷ K ∷ xs ⟩ → ∃[ X′ ] (X′ ∈ ⟨ S ∷ K ∷ [] ⟩ × X′ ∙ⁿ xs ≈ X) eliminateAll′ {X = X} {[]} X∈⟨S,K⟩ = (X , X∈⟨S,K⟩ , refl) eliminateAll′ {X = X} {x ∷ xs} X∈⟨S,K,x,xs⟩ = let (X′ , X′∈⟨S,K,xs⟩ , X′x≈X) = eliminate-SK X∈⟨S,K,x,xs⟩ (X″ , X″∈⟨S,K⟩ , X″xs≈X′) = eliminateAll′ X′∈⟨S,K,xs⟩ X″∙ⁿxs∙x≈X : X″ ∙ⁿ xs ∙ x ≈ X X″∙ⁿxs∙x≈X = begin X″ ∙ⁿ xs ∙ x ≈⟨ congʳ X″xs≈X′ ⟩ X′ ∙ x ≈⟨ X′x≈X ⟩ X ∎ in (X″ , X″∈⟨S,K⟩ , X″∙ⁿxs∙x≈X) -- TOOD: can we do this in some way without depending on xs : Vec Bird n? eliminateAll : ∀ {n X} {xs : Vec Bird n} → X ∈ ⟨ xs ⟩ → ∃[ X′ ] (X′ ∈ ⟨ S ∷ K ∷ [] ⟩ × X′ ∙ⁿ xs ≈ X) eliminateAll X∈⟨xs⟩ = eliminateAll′ $ weaken-++ʳ (S ∷ K ∷ []) X∈⟨xs⟩
{ "alphanum_fraction": 0.4658810325, "avg_line_length": 41.4418604651, "ext": "agda", "hexsha": "0375b2e0eb5d382a3d8f5598afd8da468a1f4bad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Problems/Chapter18.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Problems/Chapter18.agda", "max_line_length": 125, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Problems/Chapter18.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 4411, "size": 8910 }
-- Andreas, 2017-01-12, re #2386 -- Correct error message for wrong BUILTIN UNIT data Bool : Set where true false : Bool {-# BUILTIN UNIT Bool #-} -- Error WAS: -- The builtin UNIT must be a datatype with 1 constructors -- when checking the pragma BUILTIN UNIT Bool -- Expected error: -- Builtin UNIT must be a singleton record type -- when checking the pragma BUILTIN UNIT Bool
{ "alphanum_fraction": 0.7246753247, "avg_line_length": 24.0625, "ext": "agda", "hexsha": "e8bc0d8e985723332ad62465af9f30895b1ac850", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/WrongBuiltinUnit.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/WrongBuiltinUnit.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/WrongBuiltinUnit.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 96, "size": 385 }
open import FRP.JS.Bool using ( not ) open import FRP.JS.Nat using ( ) renaming ( _≟_ to _≟n_ ) open import FRP.JS.String using ( _≟_ ; _≤_ ; _<_ ; length ) open import FRP.JS.QUnit using ( TestSuite ; ok ; test ; _,_ ) module FRP.JS.Test.String where tests : TestSuite tests = ( test "≟" ( ok "abc ≟ abc" ("abc" ≟ "abc") , ok "ε ≟ abc" (not ("" ≟ "abc")) , ok "a ≟ abc" (not ("a" ≟ "abc")) , ok "abc ≟ ABC" (not ("abc" ≟ "ABC")) ) , test "length" ( ok "length ε" (length "" ≟n 0) , ok "length a" (length "a" ≟n 1) , ok "length ab" (length "ab" ≟n 2) , ok "length abc" (length "abc" ≟n 3) , ok "length \"\\\"" (length "\"\\\"" ≟n 3) , ok "length åäö⊢ξ∀" (length "åäö⊢ξ∀" ≟n 6) , ok "length ⟨line-terminators⟩" (length "\r\n\x2028\x2029" ≟n 4) ) , test "≤" ( ok "abc ≤ abc" ("abc" ≤ "abc") , ok "abc ≤ ε" (not ("abc" ≤ "")) , ok "abc ≤ a" (not ("abc" ≤ "a")) , ok "abc ≤ ab" (not ("abc" ≤ "a")) , ok "abc ≤ ABC" (not ("abc" ≤ "ABC")) , ok "ε ≤ abc" ("" ≤ "abc") , ok "a ≤ abc" ("a" ≤ "abc") , ok "ab ≤ abc" ("a" ≤ "abc") , ok "ABC ≤ abc" ("ABC" ≤ "abc") ) , test "<" ( ok "abc < abc" (not ("abc" < "abc")) , ok "abc < ε" (not ("abc" < "")) , ok "abc < a" (not ("abc" < "a")) , ok "abc < ab" (not ("abc" < "a")) , ok "abc < ABC" (not ("abc" < "ABC")) , ok "ε < abc" ("" < "abc") , ok "a < abc" ("a" < "abc") , ok "ab < abc" ("a" < "abc") , ok "ABC < abc" ("ABC" < "abc") ) )
{ "alphanum_fraction": 0.4384564205, "avg_line_length": 35.7857142857, "ext": "agda", "hexsha": "a60c3833e092bd5dc47411887b9684eb8c06ae7b", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "test/agda/FRP/JS/Test/String.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "test/agda/FRP/JS/Test/String.agda", "max_line_length": 71, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "test/agda/FRP/JS/Test/String.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 640, "size": 1503 }
-- Andreas, 2017-11-06, issue #2840 reported by wenkokke Id : (F : Set → Set) → Set → Set Id F = F data D (A : Set) : Set where c : Id _ A -- WAS: internal error in positivity checker -- EXPECTED: success, or -- The target of a constructor must be the datatype applied to its -- parameters, _F_2 A isn't -- when checking the constructor c in the declaration of D
{ "alphanum_fraction": 0.6829268293, "avg_line_length": 24.6, "ext": "agda", "hexsha": "3d73782800f4489c62dc7019dfd6980ed6171630", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2840.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2840.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2840.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 112, "size": 369 }
------------------------------------------------------------------------ -- This module proves that the context-sensitive language aⁿbⁿcⁿ can -- be recognised ------------------------------------------------------------------------ -- This is obvious given the proof in -- TotalRecognisers.LeftRecursion.ExpressiveStrength but the code -- below provides a non-trivial example of the use of the parser -- combinators. module TotalRecognisers.LeftRecursion.NotOnlyContextFree where open import Algebra open import Codata.Musical.Notation open import Data.Bool using (Bool; true; false; _∨_) open import Function open import Data.List as List using (List; []; _∷_; _++_; [_]) import Data.List.Properties private module ListMonoid {A : Set} = Monoid (Data.List.Properties.++-monoid A) open import Data.Nat as Nat using (ℕ; zero; suc; _+_) import Data.Nat.Properties as NatProp private module NatCS = CommutativeSemiring NatProp.+-*-commutativeSemiring import Data.Nat.Solver open Data.Nat.Solver.+-*-Solver open import Data.Product open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open ≡-Reasoning import TotalRecognisers.LeftRecursion import TotalRecognisers.LeftRecursion.Lib as Lib ------------------------------------------------------------------------ -- The alphabet data Tok : Set where a b c : Tok _≟_ : Decidable (_≡_ {A = Tok}) a ≟ a = yes refl a ≟ b = no λ() a ≟ c = no λ() b ≟ a = no λ() b ≟ b = yes refl b ≟ c = no λ() c ≟ a = no λ() c ≟ b = no λ() c ≟ c = yes refl open TotalRecognisers.LeftRecursion Tok open Lib Tok private open module TokTok = Lib.Tok Tok _≟_ using (tok) ------------------------------------------------------------------------ -- An auxiliary definition and a boring lemma infixr 8 _^^_ _^^_ : Tok → ℕ → List Tok _^^_ = flip List.replicate private shallow-comm : ∀ i n → i + suc n ≡ suc (i + n) shallow-comm i n = solve 2 (λ i n → i :+ (con 1 :+ n) := con 1 :+ i :+ n) refl i n ------------------------------------------------------------------------ -- Some lemmas relating _^^_, _^_ and tok tok-^-complete : ∀ t i → t ^^ i ∈ tok t ^ i tok-^-complete t zero = empty tok-^-complete t (suc i) = add-♭♯ ⟨ false ^ i ⟩-nullable TokTok.complete · tok-^-complete t i tok-^-sound : ∀ t i {s} → s ∈ tok t ^ i → s ≡ t ^^ i tok-^-sound t zero empty = refl tok-^-sound t (suc i) (t∈ · s∈) with TokTok.sound (drop-♭♯ ⟨ false ^ i ⟩-nullable t∈) ... | refl = cong (_∷_ t) (tok-^-sound t i s∈) ------------------------------------------------------------------------ -- aⁿbⁿcⁿ -- The context-sensitive language { aⁿbⁿcⁿ | n ∈ ℕ } can be recognised -- using the parser combinators defined in this development. private -- The two functions below are not actually mutually recursive, but -- are placed in a mutual block to ensure that the constraints -- generated by the second function can be used to instantiate the -- underscore in the body of the first. mutual aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index : ℕ → Bool aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index _ = _ aⁿbⁱ⁺ⁿcⁱ⁺ⁿ : (i : ℕ) → P (aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index i) aⁿbⁱ⁺ⁿcⁱ⁺ⁿ i = cast lem (♯? (tok a) · ♯ aⁿbⁱ⁺ⁿcⁱ⁺ⁿ (suc i)) ∣ tok b ^ i ⊙ tok c ^ i where lem = left-zero (aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index (suc i)) aⁿbⁿcⁿ : P true aⁿbⁿcⁿ = aⁿbⁱ⁺ⁿcⁱ⁺ⁿ 0 -- Let us prove that aⁿbⁿcⁿ is correctly defined. aⁿbⁿcⁿ-string : ℕ → List Tok aⁿbⁿcⁿ-string n = a ^^ n ++ b ^^ n ++ c ^^ n private aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-string : ℕ → ℕ → List Tok aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-string n i = a ^^ n ++ b ^^ (i + n) ++ c ^^ (i + n) aⁿbⁿcⁿ-complete : ∀ n → aⁿbⁿcⁿ-string n ∈ aⁿbⁿcⁿ aⁿbⁿcⁿ-complete n = aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-complete n 0 where aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-complete : ∀ n i → aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-string n i ∈ aⁿbⁱ⁺ⁿcⁱ⁺ⁿ i aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-complete zero i with i + 0 | proj₂ NatCS.+-identity i ... | .i | refl = ∣-right {n₁ = false} (helper b · helper c) where helper = λ (t : Tok) → add-♭♯ ⟨ false ^ i ⟩-nullable (tok-^-complete t i) aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-complete (suc n) i with i + suc n | shallow-comm i n ... | .(suc i + n) | refl = ∣-left $ cast {eq = lem} ( add-♭♯ (aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index (suc i)) TokTok.complete · aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-complete n (suc i)) where lem = left-zero (aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index (suc i)) aⁿbⁿcⁿ-sound : ∀ {s} → s ∈ aⁿbⁿcⁿ → ∃ λ n → s ≡ aⁿbⁿcⁿ-string n aⁿbⁿcⁿ-sound = aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-sound 0 where aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-sound : ∀ {s} i → s ∈ aⁿbⁱ⁺ⁿcⁱ⁺ⁿ i → ∃ λ n → s ≡ aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-string n i aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-sound i (∣-left (cast (t∈ · s∈))) with TokTok.sound (drop-♭♯ (aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index (suc i)) t∈) ... | refl with aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-sound (suc i) s∈ ... | (n , refl) = suc n , (begin a ^^ suc n ++ b ^^ (suc i + n) ++ c ^^ (suc i + n) ≡⟨ cong (λ i → a ^^ suc n ++ b ^^ i ++ c ^^ i) (sym (shallow-comm i n)) ⟩ a ^^ suc n ++ b ^^ (i + suc n) ++ c ^^ (i + suc n) ∎) aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-sound i (∣-right (_·_ {s₁} {s₂} s₁∈ s₂∈)) = 0 , (begin s₁ ++ s₂ ≡⟨ cong₂ _++_ (tok-^-sound b i (drop-♭♯ ⟨ false ^ i ⟩-nullable s₁∈)) (tok-^-sound c i (drop-♭♯ ⟨ false ^ i ⟩-nullable s₂∈)) ⟩ b ^^ i ++ c ^^ i ≡⟨ cong (λ i → b ^^ i ++ c ^^ i) (sym (proj₂ NatCS.+-identity i)) ⟩ b ^^ (i + 0) ++ c ^^ (i + 0) ∎)
{ "alphanum_fraction": 0.5442461071, "avg_line_length": 32.1097560976, "ext": "agda", "hexsha": "0c294ae34d91922b576ed6b760b7ba4ea705319d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalRecognisers/LeftRecursion/NotOnlyContextFree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalRecognisers/LeftRecursion/NotOnlyContextFree.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalRecognisers/LeftRecursion/NotOnlyContextFree.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 2153, "size": 5266 }
postulate Nat : Set Fin : Nat → Set Finnat : Nat → Set fortytwo : Nat finnatic : Finnat fortytwo _==_ : Finnat fortytwo → Finnat fortytwo → Set record Fixer : Set where field fix : ∀ {x} → Finnat x → Finnat fortytwo open Fixer {{...}} postulate Fixidentity : {{_ : Fixer}} → Set instance fixidentity : {{fx : Fixer}} {{fxi : Fixidentity}} {f : Finnat fortytwo} → fix f == f InstanceWrapper : Set iwrap : InstanceWrapper instance IrrFixerInstance : .InstanceWrapper → Fixer instance FixerInstance : Fixer FixerInstance = IrrFixerInstance iwrap instance postulate FixidentityInstance : Fixidentity it : ∀ {a} {A : Set a} {{x : A}} → A it {{x}} = x fails : Fixer.fix FixerInstance finnatic == finnatic fails = fixidentity works : Fixer.fix FixerInstance finnatic == finnatic works = fixidentity {{fx = it}} works₂ : Fixer.fix FixerInstance finnatic == finnatic works₂ = fixidentity {{fxi = it}}
{ "alphanum_fraction": 0.6787234043, "avg_line_length": 22.380952381, "ext": "agda", "hexsha": "6b43b6eb3065584a6d82bcab5c360136597d3ed8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2607b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2607b.agda", "max_line_length": 89, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2607b.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 302, "size": 940 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Automatic solvers for equations over lists ------------------------------------------------------------------------ -- See README.Nat for examples of how to use similar solvers {-# OPTIONS --without-K --safe #-} module Data.List.Solver where import Algebra.Solver.Monoid as Solver open import Data.List.Properties using (++-monoid) ------------------------------------------------------------------------ -- A module for automatically solving propositional equivalences -- containing _++_ module ++-Solver {a} {A : Set a} = Solver (++-monoid A) renaming (id to nil)
{ "alphanum_fraction": 0.491202346, "avg_line_length": 31, "ext": "agda", "hexsha": "5fee0b16e94449e37ec3554d94580b9d63812f4b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Solver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Solver.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Solver.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 117, "size": 682 }
{-# OPTIONS --allow-unsolved-metas #-} module Cat.Categories.Cube where open import Cat.Prelude open import Level open import Data.Bool hiding (T) open import Data.Sum hiding ([_,_]) open import Data.Unit open import Data.Empty open import Relation.Nullary open import Relation.Nullary.Decidable open import Cat.Category open import Cat.Category.Functor -- See chapter 1 for a discussion on how presheaf categories are CwF's. -- See section 6.8 in Huber's thesis for details on how to implement the -- categorical version of CTT open Category hiding (_<<<_) open Functor module _ {ℓ ℓ' : Level} (Ns : Set ℓ) where private -- Ns is the "namespace" ℓo = (suc zero ⊔ ℓ) FiniteDecidableSubset : Set ℓ FiniteDecidableSubset = Ns → Dec ⊤ isTrue : Bool → Set isTrue false = ⊥ isTrue true = ⊤ elmsof : FiniteDecidableSubset → Set ℓ elmsof P = Σ Ns (λ σ → True (P σ)) -- (σ : Ns) → isTrue (P σ) 𝟚 : Set 𝟚 = Bool module _ (I J : FiniteDecidableSubset) where Hom' : Set ℓ Hom' = elmsof I → elmsof J ⊎ 𝟚 isInl : {ℓa ℓb : Level} {A : Set ℓa} {B : Set ℓb} → A ⊎ B → Set isInl (inj₁ _) = ⊤ isInl (inj₂ _) = ⊥ Def : Set ℓ Def = (f : Hom') → Σ (elmsof I) (λ i → isInl (f i)) rules : Hom' → Set ℓ rules f = (i j : elmsof I) → case (f i) of λ { (inj₁ (fi , _)) → case (f j) of λ { (inj₁ (fj , _)) → fi ≡ fj → i ≡ j ; (inj₂ _) → Lift _ ⊤ } ; (inj₂ _) → Lift _ ⊤ } Hom = Σ Hom' rules module Raw = RawCategory -- The category of names and substitutions Rawℂ : RawCategory ℓ ℓ -- ℓo (lsuc lzero ⊔ ℓo) Raw.Object Rawℂ = FiniteDecidableSubset Raw.Arrow Rawℂ = Hom Raw.identity Rawℂ {o} = inj₁ , λ { (i , ii) (j , jj) eq → Σ≡ eq {!refl!} } Raw._<<<_ Rawℂ = {!!} postulate IsCategoryℂ : IsCategory Rawℂ ℂ : Category ℓ ℓ raw ℂ = Rawℂ isCategory ℂ = IsCategoryℂ
{ "alphanum_fraction": 0.58190091, "avg_line_length": 25.6883116883, "ext": "agda", "hexsha": "f21e55190e4c3b3204bb485ece6d982c17045211", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z", "max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ajnavarro/language-dataset", "max_forks_repo_path": "data/github.com/fredefox/cat/e7f56486076cc561ceb0529b05725c01d7d1b154/src/Cat/Categories/Cube.agda", "max_issues_count": 91, "max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z", "max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ajnavarro/language-dataset", "max_issues_repo_path": "data/github.com/fredefox/cat/e7f56486076cc561ceb0529b05725c01d7d1b154/src/Cat/Categories/Cube.agda", "max_line_length": 78, "max_stars_count": 9, "max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ajnavarro/language-dataset", "max_stars_repo_path": "data/github.com/fredefox/cat/e7f56486076cc561ceb0529b05725c01d7d1b154/src/Cat/Categories/Cube.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z", "num_tokens": 703, "size": 1978 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Algebra.Magma module Cubical.Algebra.Magma.Construct.Opposite {ℓ} (M : Magma ℓ) where open import Cubical.Foundations.Prelude open Magma M _•ᵒᵖ_ : Op₂ Carrier y •ᵒᵖ x = x • y Op-isMagma : IsMagma Carrier _•ᵒᵖ_ Op-isMagma = record { is-set = is-set } Mᵒᵖ : Magma ℓ Mᵒᵖ = record { isMagma = Op-isMagma }
{ "alphanum_fraction": 0.7122302158, "avg_line_length": 19.8571428571, "ext": "agda", "hexsha": "75d317fe5b751e2c765b986c467593241a236b35", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Magma/Construct/Opposite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Magma/Construct/Opposite.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Magma/Construct/Opposite.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 164, "size": 417 }
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Algebra.Signature module Fragment.Algebra.Homomorphism.Setoid (Σ : Signature) where open import Fragment.Algebra.Algebra Σ open import Fragment.Algebra.Homomorphism.Base Σ open import Level using (Level; _⊔_) open import Relation.Binary using (Rel; Setoid; IsEquivalence) private variable a b ℓ₁ ℓ₂ : Level module _ {A : Algebra {a} {ℓ₁}} {B : Algebra {b} {ℓ₂}} where open Setoid ∥ B ∥/≈ infix 4 _≗_ _≗_ : Rel (A ⟿ B) (a ⊔ ℓ₂) f ≗ g = ∣ f ∣⃗ ~ ∣ g ∣⃗ where open import Fragment.Setoid.Morphism renaming (_≗_ to _~_) ≗-refl : ∀ {f} → f ≗ f ≗-refl = refl ≗-sym : ∀ {f g} → f ≗ g → g ≗ f ≗-sym f≗g {x} = sym (f≗g {x}) ≗-trans : ∀ {f g h} → f ≗ g → g ≗ h → f ≗ h ≗-trans f≗g g≗h {x} = trans (f≗g {x}) (g≗h {x}) ≗-isEquivalence : IsEquivalence _≗_ ≗-isEquivalence = record { refl = λ {f} → ≗-refl {f} ; sym = λ {f g} → ≗-sym {f} {g} ; trans = λ {f g h} → ≗-trans {f} {g} {h} } _⟿_/≗ : Algebra {a} {ℓ₁} → Algebra {b} {ℓ₂} → Setoid _ _ A ⟿ B /≗ = record { Carrier = A ⟿ B ; _≈_ = _≗_ ; isEquivalence = ≗-isEquivalence }
{ "alphanum_fraction": 0.5007727975, "avg_line_length": 25.88, "ext": "agda", "hexsha": "b1afebc6caea8d328c433760841d6aed8e743fdb", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Algebra/Homomorphism/Setoid.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Algebra/Homomorphism/Setoid.agda", "max_line_length": 68, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Algebra/Homomorphism/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 516, "size": 1294 }
{-# OPTIONS --guardedness #-} module Prelude where open import Class.Equality public open import Class.Functor public open import Class.Monad public open import Class.Monoid public open import Class.Show public open import Class.Traversable public open import Data.Bool hiding (_≟_; _<_; _<?_; _≤_; _≤?_) public open import Data.Bool.Instance public open import Data.Char using (Char) public open import Data.Char.Instance public open import Data.Empty public open import Data.Empty.Instance public open import Data.Fin using (Fin) public open import Data.List using (List; []; [_]; _∷_; drop; boolFilter; filter; head; reverse; _++_; zipWith; foldl; intersperse; map; null; span; break; allFin; length; mapMaybe; or; and) public open import Data.List.Exts public open import Data.List.Instance public open import Data.Maybe using (Maybe; just; nothing; maybe; from-just; is-just; is-nothing; _<∣>_) public open import Data.Maybe.Instance public open import Data.Nat hiding (_+_; _≟_) public open import Data.Nat.Instance public open import Data.Product using (_×_; _,_; proj₁; proj₂; ∃-syntax; -,_; Σ; swap; Σ-syntax; map₁; map₂) public open import Data.Product.Instance public open import Data.String using (String; unwords; unlines; padRight; _<+>_) public open import Data.String.Exts public open import Data.String.Instance public open import Data.Sum using (_⊎_; inj₁; inj₂; from-inj₁; from-inj₂) public open import Data.Sum.Instance public open import Data.Unit.Instance public open import Data.Unit.Polymorphic using (⊤; tt) public open import IO using (IO; putStr) public open import IO.Finite using (getLine) public open import IO.Exts public open import IO.Instance public open import System.Environment public open import System.Exit public open import Function public open import Relation.Nullary using (Dec; yes; no) public open import Relation.Nullary.Decidable using (⌊_⌋) public open import Relation.Nullary.Negation public open import Relation.Unary using (Decidable) public open import Relation.Binary.PropositionalEquality using (_≡_; refl) public
{ "alphanum_fraction": 0.7809937289, "avg_line_length": 42.306122449, "ext": "agda", "hexsha": "f4fbb5383a9229a03b0caef12033371fc13b2111", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Prelude.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Prelude.agda", "max_line_length": 190, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 538, "size": 2073 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Bundles for types of functions ------------------------------------------------------------------------ -- The contents of this file should usually be accessed from `Function`. -- Note that these bundles differ from those found elsewhere in other -- library hierarchies as they take Setoids as parameters. This is -- because a function is of no use without knowing what its domain and -- codomain is, as well which equalities are being considered over them. -- One consequence of this is that they are not built from the -- definitions found in `Function.Structures` as is usually the case in -- other library hierarchies, as this would duplicate the equality -- axioms. {-# OPTIONS --without-K --safe #-} module Function.Bundles where import Function.Definitions as FunctionDefinitions import Function.Structures as FunctionStructures open import Level using (Level; _⊔_; suc) open import Data.Product using (proj₁; proj₂) open import Relation.Binary open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open Setoid using (isEquivalence) private variable a b ℓ₁ ℓ₂ : Level ------------------------------------------------------------------------ -- Setoid bundles module _ (From : Setoid a ℓ₁) (To : Setoid b ℓ₂) where open Setoid From using () renaming (Carrier to A; _≈_ to _≈₁_) open Setoid To using () renaming (Carrier to B; _≈_ to _≈₂_) open FunctionDefinitions _≈₁_ _≈₂_ open FunctionStructures _≈₁_ _≈₂_ record Injection : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B cong : f Preserves _≈₁_ ⟶ _≈₂_ injective : Injective f isCongruent : IsCongruent f isCongruent = record { cong = cong ; isEquivalence₁ = isEquivalence From ; isEquivalence₂ = isEquivalence To } open IsCongruent isCongruent public using (module Eq₁; module Eq₂) isInjection : IsInjection f isInjection = record { isCongruent = isCongruent ; injective = injective } record Surjection : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B cong : f Preserves _≈₁_ ⟶ _≈₂_ surjective : Surjective f isCongruent : IsCongruent f isCongruent = record { cong = cong ; isEquivalence₁ = isEquivalence From ; isEquivalence₂ = isEquivalence To } open IsCongruent isCongruent public using (module Eq₁; module Eq₂) isSurjection : IsSurjection f isSurjection = record { isCongruent = isCongruent ; surjective = surjective } record Bijection : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B cong : f Preserves _≈₁_ ⟶ _≈₂_ bijective : Bijective f injective : Injective f injective = proj₁ bijective surjective : Surjective f surjective = proj₂ bijective injection : Injection injection = record { cong = cong ; injective = injective } surjection : Surjection surjection = record { cong = cong ; surjective = surjective } open Injection injection public using (isInjection) open Surjection surjection public using (isSurjection) isBijection : IsBijection f isBijection = record { isInjection = isInjection ; surjective = surjective } open IsBijection isBijection public using (module Eq₁; module Eq₂) record Equivalence : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B g : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : g Preserves _≈₂_ ⟶ _≈₁_ record LeftInverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B g : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : g Preserves _≈₂_ ⟶ _≈₁_ inverseˡ : Inverseˡ f g isCongruent : IsCongruent f isCongruent = record { cong = cong₁ ; isEquivalence₁ = isEquivalence From ; isEquivalence₂ = isEquivalence To } open IsCongruent isCongruent public using (module Eq₁; module Eq₂) isLeftInverse : IsLeftInverse f g isLeftInverse = record { isCongruent = isCongruent ; cong₂ = cong₂ ; inverseˡ = inverseˡ } equivalence : Equivalence equivalence = record { cong₁ = cong₁ ; cong₂ = cong₂ } record RightInverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B g : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : g Preserves _≈₂_ ⟶ _≈₁_ inverseʳ : Inverseʳ f g isCongruent : IsCongruent f isCongruent = record { cong = cong₁ ; isEquivalence₁ = isEquivalence From ; isEquivalence₂ = isEquivalence To } isRightInverse : IsRightInverse f g isRightInverse = record { isCongruent = isCongruent ; cong₂ = cong₂ ; inverseʳ = inverseʳ } equivalence : Equivalence equivalence = record { cong₁ = cong₁ ; cong₂ = cong₂ } record BiEquivalence : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B g₁ : B → A g₂ : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : g₁ Preserves _≈₂_ ⟶ _≈₁_ cong₃ : g₂ Preserves _≈₂_ ⟶ _≈₁_ record BiInverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B g₁ : B → A g₂ : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : g₁ Preserves _≈₂_ ⟶ _≈₁_ cong₃ : g₂ Preserves _≈₂_ ⟶ _≈₁_ inverseˡ : Inverseˡ f g₁ inverseʳ : Inverseʳ f g₂ f-isCongruent : IsCongruent f f-isCongruent = record { cong = cong₁ ; isEquivalence₁ = isEquivalence From ; isEquivalence₂ = isEquivalence To } isBiInverse : IsBiInverse f g₁ g₂ isBiInverse = record { f-isCongruent = f-isCongruent ; cong₂ = cong₂ ; inverseˡ = inverseˡ ; cong₃ = cong₃ ; inverseʳ = inverseʳ } biEquivalence : BiEquivalence biEquivalence = record { cong₁ = cong₁ ; cong₂ = cong₂ ; cong₃ = cong₃ } record Inverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B f⁻¹ : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : f⁻¹ Preserves _≈₂_ ⟶ _≈₁_ inverse : Inverseᵇ f f⁻¹ inverseˡ : Inverseˡ f f⁻¹ inverseˡ = proj₁ inverse inverseʳ : Inverseʳ f f⁻¹ inverseʳ = proj₂ inverse leftInverse : LeftInverse leftInverse = record { cong₁ = cong₁ ; cong₂ = cong₂ ; inverseˡ = inverseˡ } rightInverse : RightInverse rightInverse = record { cong₁ = cong₁ ; cong₂ = cong₂ ; inverseʳ = inverseʳ } open LeftInverse leftInverse public using (isLeftInverse) open RightInverse rightInverse public using (isRightInverse) isInverse : IsInverse f f⁻¹ isInverse = record { isLeftInverse = isLeftInverse ; inverseʳ = inverseʳ } open IsInverse isInverse public using (module Eq₁; module Eq₂) ------------------------------------------------------------------------ -- Bundles specialised for propositional equality infix 3 _↣_ _↠_ _⤖_ _⇔_ _↩_ _↪_ _↩↪_ _↔_ _↣_ : Set a → Set b → Set _ A ↣ B = Injection (≡.setoid A) (≡.setoid B) _↠_ : Set a → Set b → Set _ A ↠ B = Surjection (≡.setoid A) (≡.setoid B) _⤖_ : Set a → Set b → Set _ A ⤖ B = Bijection (≡.setoid A) (≡.setoid B) _⇔_ : Set a → Set b → Set _ A ⇔ B = Equivalence (≡.setoid A) (≡.setoid B) _↩_ : Set a → Set b → Set _ A ↩ B = LeftInverse (≡.setoid A) (≡.setoid B) _↪_ : Set a → Set b → Set _ A ↪ B = RightInverse (≡.setoid A) (≡.setoid B) _↩↪_ : Set a → Set b → Set _ A ↩↪ B = BiInverse (≡.setoid A) (≡.setoid B) _↔_ : Set a → Set b → Set _ A ↔ B = Inverse (≡.setoid A) (≡.setoid B) -- We now define some constructors for the above that -- automatically provide the required congruency proofs. module _ {A : Set a} {B : Set b} where open FunctionDefinitions {A = A} {B} _≡_ _≡_ mk↣ : ∀ {f : A → B} → Injective f → A ↣ B mk↣ {f} inj = record { f = f ; cong = ≡.cong f ; injective = inj } mk↠ : ∀ {f : A → B} → Surjective f → A ↠ B mk↠ {f} surj = record { f = f ; cong = ≡.cong f ; surjective = surj } mk⤖ : ∀ {f : A → B} → Bijective f → A ⤖ B mk⤖ {f} bij = record { f = f ; cong = ≡.cong f ; bijective = bij } mk⇔ : ∀ (f : A → B) (g : B → A) → A ⇔ B mk⇔ f g = record { f = f ; g = g ; cong₁ = ≡.cong f ; cong₂ = ≡.cong g } mk↩ : ∀ {f : A → B} {g : B → A} → Inverseˡ f g → A ↩ B mk↩ {f} {g} invˡ = record { f = f ; g = g ; cong₁ = ≡.cong f ; cong₂ = ≡.cong g ; inverseˡ = invˡ } mk↪ : ∀ {f : A → B} {g : B → A} → Inverseʳ f g → A ↪ B mk↪ {f} {g} invʳ = record { f = f ; g = g ; cong₁ = ≡.cong f ; cong₂ = ≡.cong g ; inverseʳ = invʳ } mk↩↪ : ∀ {f : A → B} {g₁ : B → A} {g₂ : B → A} → Inverseˡ f g₁ → Inverseʳ f g₂ → A ↩↪ B mk↩↪ {f} {g₁} {g₂} invˡ invʳ = record { f = f ; g₁ = g₁ ; g₂ = g₂ ; cong₁ = ≡.cong f ; cong₂ = ≡.cong g₁ ; cong₃ = ≡.cong g₂ ; inverseˡ = invˡ ; inverseʳ = invʳ } mk↔ : ∀ {f : A → B} {f⁻¹ : B → A} → Inverseᵇ f f⁻¹ → A ↔ B mk↔ {f} {f⁻¹} inv = record { f = f ; f⁻¹ = f⁻¹ ; cong₁ = ≡.cong f ; cong₂ = ≡.cong f⁻¹ ; inverse = inv }
{ "alphanum_fraction": 0.5409142503, "avg_line_length": 25.5026315789, "ext": "agda", "hexsha": "a16fc2cb11b1b30403cb97d9e1b8b326a63cd0f0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Function/Bundles.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Function/Bundles.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Function/Bundles.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 3425, "size": 9691 }
module NF.Product where open import NF open import Data.Product open import Relation.Binary.PropositionalEquality instance nf, : {A : Set}{B : A -> Set}{a : A}{b : B a}{{nfa : NF a}}{{nfb : NF b}} -> NF {Σ A B} (a , b) Sing.unpack (NF.!! (nf, {B = B} {a = a} {b = b} {{nfa}})) = nf a , subst B (sym nf≡) (nf b) Sing.eq (NF.!! (nf, {{nfa}} {{nfb}})) rewrite nf≡ {{nfa}} | nf≡ {{nfb}} = refl {-# INLINE nf, #-}
{ "alphanum_fraction": 0.5393794749, "avg_line_length": 34.9166666667, "ext": "agda", "hexsha": "9ca60645427a6c2ee4ed9fa114d5093ed42f09df", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yanok/normalize-via-instances", "max_forks_repo_path": "src/NF/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yanok/normalize-via-instances", "max_issues_repo_path": "src/NF/Product.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yanok/normalize-via-instances", "max_stars_repo_path": "src/NF/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 167, "size": 419 }
module Tactic.Nat.Coprime.Decide where open import Prelude open import Prelude.Equality.Unsafe open import Prelude.List.Relations.Any open import Prelude.List.Relations.All open import Prelude.List.Relations.Properties open import Numeric.Nat open import Tactic.Nat.Coprime.Problem private infix 4 _isIn_ _isIn_ : Nat → Exp → Bool x isIn atom y = isYes (x == y) x isIn a ⊗ b = x isIn a || x isIn b proves : Nat → Nat → Formula → Bool proves x y (a ⋈ b) = x isIn a && y isIn b || x isIn b && y isIn a hypothesis : Nat → Nat → List Formula → Bool hypothesis x y Γ = any? (proves x y) Γ canProve' : List Formula → Exp → Exp → Bool canProve' Γ (atom x) (atom y) = hypothesis x y Γ canProve' Γ a (b ⊗ c) = canProve' Γ a b && canProve' Γ a c canProve' Γ (a ⊗ b) c = canProve' Γ a c && canProve' Γ b c canProve : Problem → Bool canProve (Γ ⊨ a ⋈ b) = canProve' Γ a b -- Soundness proof -- private invert-&&₁ : ∀ {a b} → (a && b) ≡ true → a ≡ true invert-&&₁ {false} () invert-&&₁ {true} prf = refl invert-&&₂ : ∀ {a b} → (a && b) ≡ true → b ≡ true invert-&&₂ {false} () invert-&&₂ {true} prf = prf invert-|| : ∀ a {b} → (a || b) ≡ true → Either (a ≡ true) (b ≡ true) invert-|| false prf = right prf invert-|| true prf = left prf sound-eq : (a b : Nat) → isYes (a == b) ≡ true → a ≡ b sound-eq a b ok with a == b sound-eq a b ok | yes a=b = a=b sound-eq a b () | no _ sound-any : ∀ {A : Set} (p : A → Bool) xs → any? p xs ≡ true → Any (λ x → p x ≡ true) xs sound-any p [] () sound-any p (x ∷ xs) ok with p x | graphAt p x ... | false | _ = suc (sound-any p xs ok) ... | true | ingraph eq = zero eq private syntax WithHyps Γ (λ ρ → A) = ρ ∈ Γ ⇒ A WithHyps : List Formula → (Env → Set) → Set WithHyps Γ F = ∀ ρ → All (⟦_⟧f ρ) Γ → F ρ sound-isIn' : ∀ x y a b → (x isIn a) ≡ true → (y isIn b) ≡ true → ∀ ρ → ⟦ a ⋈ b ⟧f ρ → Coprime (ρ x) (ρ y) sound-isIn-⊗-l : ∀ x y a b c → (x isIn a) ≡ true → (y isIn b ⊗ c) ≡ true → ∀ ρ → ⟦ a ⋈ b ⊗ c ⟧f ρ → Coprime (ρ x) (ρ y) sound-isIn-⊗-l x y a b c oka okbc ρ H = case invert-|| (y isIn b) okbc of λ where (left okb) → sound-isIn' x y a b oka okb ρ (mul-coprime-l (⟦ a ⟧e ρ) (⟦ b ⟧e ρ) (⟦ c ⟧e ρ) H) (right okc) → sound-isIn' x y a c oka okc ρ (mul-coprime-r (⟦ a ⟧e ρ) (⟦ b ⟧e ρ) (⟦ c ⟧e ρ) H) sound-isIn' x y (atom x') (atom y') oka okb ρ H = case₂ sound-eq x x' oka , sound-eq y y' okb of λ where refl refl → H sound-isIn' x y a@(atom _) (b ⊗ c) oka okbc ρ H = sound-isIn-⊗-l x y a b c oka okbc ρ H sound-isIn' x y a@(_ ⊗ _) (b ⊗ c) oka okbc ρ H = sound-isIn-⊗-l x y a b c oka okbc ρ H sound-isIn' x y (a ⊗ b) c@(atom _) okab okc ρ H = let nf = λ e → ⟦ e ⟧e ρ H' = coprime-sym _ (nf c) H in case invert-|| (x isIn a) okab of λ where (left oka) → sound-isIn' x y a c oka okc ρ (coprime-sym (nf c) _ (mul-coprime-l (nf c) (nf a) (nf b) H')) (right okb) → sound-isIn' x y b c okb okc ρ (coprime-sym (nf c) _ (mul-coprime-r (nf c) (nf a) _ H')) sound-isIn : ∀ x y a b → (x isIn a && y isIn b) ≡ true → ∀ ρ → ⟦ a ⋈ b ⟧f ρ → Coprime (ρ x) (ρ y) sound-isIn x y a b ok = sound-isIn' x y a b (invert-&&₁ ok) (invert-&&₂ ok) sound-proves : ∀ x y φ → proves x y φ ≡ true → ∀ ρ → ⟦ φ ⟧f ρ → Coprime (ρ x) (ρ y) sound-proves x y (a ⋈ b) ok ρ H = case invert-|| (x isIn a && y isIn b) ok of λ where (left ok) → sound-isIn x y a b ok ρ H (right ok) → sound-isIn x y b a ok ρ (coprime-sym (⟦ a ⟧e ρ) _ H) sound-hyp : ∀ x y Γ → hypothesis x y Γ ≡ true → ρ ∈ Γ ⇒ Coprime (ρ x) (ρ y) sound-hyp x y Γ ok ρ Ξ = case lookupAny Ξ (sound-any (proves x y) Γ ok) of λ where (φ , H , okφ) → sound-proves x y φ okφ ρ H sound' : ∀ Γ a b → canProve' Γ a b ≡ true → ρ ∈ Γ ⇒ ⟦ a ⋈ b ⟧f ρ sound-⊗-r : ∀ Γ a b c → (canProve' Γ a b && canProve' Γ a c) ≡ true → ρ ∈ Γ ⇒ ⟦ a ⋈ b ⊗ c ⟧f ρ sound-⊗-r Γ a b c ok ρ Ξ = let a⋈b : ⟦ a ⋈ b ⟧f ρ a⋈b = sound' Γ a b (invert-&&₁ ok) ρ Ξ a⋈c : ⟦ a ⋈ c ⟧f ρ a⋈c = sound' Γ a c (invert-&&₂ ok) ρ Ξ in coprime-mul-r (⟦ a ⟧e ρ) _ _ a⋈b a⋈c sound' Γ (atom x) (atom y) ok ρ Ξ = sound-hyp x y Γ ok ρ Ξ sound' Γ a@(atom _) (b ⊗ c) ok ρ Ξ = sound-⊗-r Γ a b c ok ρ Ξ sound' Γ a@(_ ⊗ _) (b ⊗ c) ok ρ Ξ = sound-⊗-r Γ a b c ok ρ Ξ sound' Γ (a ⊗ b) c@(atom _) ok ρ Ξ = let a⋈c : ⟦ a ⋈ c ⟧f ρ a⋈c = sound' Γ a c (invert-&&₁ ok) ρ Ξ b⋈c : ⟦ b ⋈ c ⟧f ρ b⋈c = sound' Γ b c (invert-&&₂ ok) ρ Ξ in coprime-mul-l (⟦ a ⟧e ρ) _ _ a⋈c b⋈c sound : ∀ Q → canProve Q ≡ true → ∀ ρ → ⟦ Q ⟧p ρ sound Q@(Γ ⊨ a ⋈ b) ok ρ = curryProblem Q ρ (sound' Γ a b ok ρ)
{ "alphanum_fraction": 0.5177898702, "avg_line_length": 38.224, "ext": "agda", "hexsha": "768ab8d0cdb4ec2db10f3c4fc2025665e5b53e6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Coprime/Decide.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Coprime/Decide.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Coprime/Decide.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2166, "size": 4778 }
module Network.Primitive where open import Data.Nat open import Data.String open import Data.Unit open import Foreign.Haskell open import IO.Primitive postulate withSocketsDo : ∀ {a} {A : Set a} → IO A → IO A connectTo : String → Integer → IO Handle {-# IMPORT Network #-} {-# IMPORT Text.Read #-} {-# COMPILED withSocketsDo (\_ _ -> Network.withSocketsDo) #-} {-# COMPILED connectTo (\s i -> Network.connectTo s $ Network.PortNumber (fromIntegral i)) #-}
{ "alphanum_fraction": 0.7002141328, "avg_line_length": 27.4705882353, "ext": "agda", "hexsha": "5472bc68bbc46436bf770b2d598770d7825568ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "06defd709b073f951723d7e717fcf96ee30567eb", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ilya-fiveisky/agda-network", "max_forks_repo_path": "src/Network/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "06defd709b073f951723d7e717fcf96ee30567eb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ilya-fiveisky/agda-network", "max_issues_repo_path": "src/Network/Primitive.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "06defd709b073f951723d7e717fcf96ee30567eb", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ilya-fiveisky/agda-network", "max_stars_repo_path": "src/Network/Primitive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 124, "size": 467 }
open import Nat open import Prelude open import List open import contexts open import core module results-checks where Coerce-preservation : ∀{Δ Σ' r v τ} → Δ , Σ' ⊢ r ·: τ → Coerce r := v → Σ' ⊢ v ::ⱽ τ Coerce-preservation (TAFix x x₁) () Coerce-preservation (TAApp ta-r ta-r₁) () Coerce-preservation TAUnit CoerceUnit = TSVUnit Coerce-preservation (TAPair ta-r1 ta-r2) (CoercePair c-r1 c-r2) = TSVPair (Coerce-preservation ta-r1 c-r1) (Coerce-preservation ta-r2 c-r2) Coerce-preservation (TAFst ta-r) () Coerce-preservation (TASnd ta-r) () Coerce-preservation (TACtor h1 h2 ta-r) (CoerceCtor c-r) = TSVCtor h1 h2 (Coerce-preservation ta-r c-r) Coerce-preservation (TACase x x₁ ta-r x₂ x₃) () Coerce-preservation (TAHole x x₁) () {- TODO : We should revive this - it's a good sanity check. Of course, we have to decide what version of "complete" we want to use for results -- all complete finals (that type-check) are values mutual complete-finals-values : ∀{Δ Σ' r τ} → Δ , Σ' ⊢ r ·: τ → r rcomplete → r final → r value complete-finals-values (TALam Γ⊢E _) (RCLam E-cmp e-cmp) (FLam E-fin) = VLam (env-complete-final-values Γ⊢E E-cmp E-fin) e-cmp complete-finals-values (TAFix Γ⊢E _) (RCFix E-cmp e-cmp) (FFix E-fin) = VFix (env-complete-final-values Γ⊢E E-cmp E-fin) e-cmp complete-finals-values (TAApp ta1 ta2) (RCAp cmp1 cmp2) (FAp fin1 fin2 h1 h2) with complete-finals-values ta1 cmp1 fin1 complete-finals-values (TAApp ta1 ta2) (RCAp cmp1 cmp2) (FAp fin1 fin2 h1 h2) | VLam _ _ = abort (h1 refl) complete-finals-values (TAApp ta1 ta2) (RCAp cmp1 cmp2) (FAp fin1 fin2 h1 h2) | VFix _ _ = abort (h2 refl) complete-finals-values (TAApp () ta2) (RCAp cmp1 cmp2) (FAp fin1 fin2 h1 h2) | VTpl _ complete-finals-values (TAApp () ta2) (RCAp cmp1 cmp2) (FAp fin1 fin2 h1 h2) | VCon _ complete-finals-values (TAApp ta1 ta2) (RCAp cmp1 cmp2) (FAp fin1 fin2 h1 h2) | VPF _ = {!!} complete-finals-values (TATpl ∥rs⊫=∥τs∥ ta) (RCTpl h1) (FTpl h2) = VTpl λ {i} i<∥rs∥ → complete-finals-values (ta i<∥rs∥ (tr (λ y → i < y) ∥rs⊫=∥τs∥ i<∥rs∥)) (h1 i<∥rs∥) (h2 i<∥rs∥) complete-finals-values (TAGet i<∥τs∥ ta) (RCGet cmp) (FGet fin x) = {!!} complete-finals-values (TACtor _ _ ta) (RCCtor cmp) (FCon fin) = VCon (complete-finals-values ta cmp fin) complete-finals-values (TACase x x₁ ta x₂ x₃) (RCCase x₄ cmp x₅) (FCase fin x₆ x₇) = {!!} complete-finals-values (TAHole _ _) () fin complete-finals-values (TAPF x) (RCPF x₁) (FPF x₂) = {!!} env-complete-final-values : ∀{Δ Σ' Γ E} → Δ , Σ' , Γ ⊢ E → E env-complete → E env-final → E env-values env-complete-final-values ta (ENVC E-cmp) (EF E-fin) = EF (λ rx∈E → complete-finals-values (π2 (π2 (env-all-E ta rx∈E))) (E-cmp rx∈E) (E-fin rx∈E)) -}
{ "alphanum_fraction": 0.5772969583, "avg_line_length": 50.619047619, "ext": "agda", "hexsha": "67d27ca86841f9ec697f44b4586a608b40a6e638", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnat-myth-", "max_forks_repo_path": "results-checks.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnat-myth-", "max_issues_repo_path": "results-checks.agda", "max_line_length": 120, "max_stars_count": 1, "max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnat-myth-", "max_stars_repo_path": "results-checks.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z", "num_tokens": 1122, "size": 3189 }
module Nats.Add.Invert where open import Equality open import Nats open import Nats.Add.Comm open import Function ------------------------------------------------------------------------ -- internal stuffs private lemma′ : ∀ a b → (suc a ≡ suc b) → (a ≡ b) lemma′ _ _ refl = refl lemma : ∀ a b → (suc (a + suc a) ≡ suc (b + suc b)) → (a + a ≡ b + b) lemma a b rewrite nat-add-comm a $ suc a | nat-add-comm b $ suc b = lemma′ (a + a) (b + b) ∘ lemma′ (suc $ a + a) (suc $ b + b) +-invert : ∀ a b → (a + a ≡ b + b) → a ≡ b +-invert zero zero ev = refl +-invert zero (suc b) () +-invert (suc a) zero () +-invert (suc a) (suc b) = cong suc ∘ +-invert a b ∘ lemma a b ------------------------------------------------------------------------ -- public aliases nat-add-invert : ∀ a b → (a + a ≡ b + b) → a ≡ b nat-add-invert = +-invert nat-add-invert-1 : ∀ a b → (suc a ≡ suc b) → (a ≡ b) nat-add-invert-1 = lemma′
{ "alphanum_fraction": 0.452653486, "avg_line_length": 26.6944444444, "ext": "agda", "hexsha": "8a0cfb7f342fcd1675a8f825847c77e3ad1ace32", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Nats/Add/Invert.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Nats/Add/Invert.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Nats/Add/Invert.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 322, "size": 961 }
-- Minimal propositional logic, vector-based de Bruijn approach, initial encoding module Vi.Mp where open import Lib using (Nat; suc; _+_; Fin; fin; Vec; _,_; proj; VMem; mem) -- Types infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth judgement Cx : Nat -> Set Cx n = Vec Ty n isTrue : forall {tn} -> Ty -> Fin tn -> Cx tn -> Set isTrue a i tc = VMem a i tc -- Terms module Mp where infixl 1 _$_ infixr 0 lam=>_ data Tm {tn} (tc : Cx tn) : Ty -> Set where var : forall {a i} -> isTrue a i tc -> Tm tc a lam=>_ : forall {a b} -> Tm (tc , a) b -> Tm tc (a => b) _$_ : forall {a b} -> Tm tc (a => b) -> Tm tc a -> Tm tc b pair' : forall {a b} -> Tm tc a -> Tm tc b -> Tm tc (a && b) fst : forall {a b} -> Tm tc (a && b) -> Tm tc a snd : forall {a b} -> Tm tc (a && b) -> Tm tc b left : forall {a b} -> Tm tc a -> Tm tc (a || b) right : forall {a b} -> Tm tc b -> Tm tc (a || b) case' : forall {a b c} -> Tm tc (a || b) -> Tm (tc , a) c -> Tm (tc , b) c -> Tm tc c syntax pair' x y = [ x , y ] syntax case' xy x y = case xy => x => y v : forall {tn} (k : Nat) {tc : Cx (suc (k + tn))} -> Tm tc (proj tc (fin k)) v i = var (mem i) Thm : Ty -> Set Thm a = forall {tn} {tc : Cx tn} -> Tm tc a open Mp public -- Example theorems c1 : forall {a b} -> Thm (a && b <=> b && a) c1 = [ lam=> [ snd (v 0) , fst (v 0) ] , lam=> [ snd (v 0) , fst (v 0) ] ] c2 : forall {a b} -> Thm (a || b <=> b || a) c2 = [ lam=> (case v 0 => right (v 0) => left (v 0)) , lam=> (case v 0 => right (v 0) => left (v 0)) ] i1 : forall {a} -> Thm (a && a <=> a) i1 = [ lam=> fst (v 0) , lam=> [ v 0 , v 0 ] ] i2 : forall {a} -> Thm (a || a <=> a) i2 = [ lam=> (case v 0 => v 0 => v 0) , lam=> left (v 0) ] l3 : forall {a} -> Thm ((a => a) <=> TRUE) l3 = [ lam=> lam=> v 0 , lam=> lam=> v 0 ] l1 : forall {a b c} -> Thm (a && (b && c) <=> (a && b) && c) l1 = [ lam=> [ [ fst (v 0) , fst (snd (v 0)) ] , snd (snd (v 0)) ] , lam=> [ fst (fst (v 0)) , [ snd (fst (v 0)) , snd (v 0) ] ] ] l2 : forall {a} -> Thm (a && TRUE <=> a) l2 = [ lam=> fst (v 0) , lam=> [ v 0 , lam=> v 0 ] ] l4 : forall {a b c} -> Thm (a && (b || c) <=> (a && b) || (a && c)) l4 = [ lam=> (case snd (v 0) => left [ fst (v 1) , v 0 ] => right [ fst (v 1) , v 0 ]) , lam=> (case v 0 => [ fst (v 0) , left (snd (v 0)) ] => [ fst (v 0) , right (snd (v 0)) ]) ] l6 : forall {a b c} -> Thm (a || (b && c) <=> (a || b) && (a || c)) l6 = [ lam=> (case v 0 => [ left (v 0) , left (v 0) ] => [ right (fst (v 0)) , right (snd (v 0)) ]) , lam=> (case fst (v 0) => left (v 0) => case snd (v 1) => left (v 0) => right [ v 1 , v 0 ]) ] l7 : forall {a} -> Thm (a || TRUE <=> TRUE) l7 = [ lam=> lam=> v 0 , lam=> right (v 0) ] l9 : forall {a b c} -> Thm (a || (b || c) <=> (a || b) || c) l9 = [ lam=> (case v 0 => left (left (v 0)) => case v 0 => left (right (v 0)) => right (v 0)) , lam=> (case v 0 => case v 0 => left (v 0) => right (left (v 0)) => right (right (v 0))) ] l11 : forall {a b c} -> Thm ((a => (b && c)) <=> (a => b) && (a => c)) l11 = [ lam=> [ lam=> fst (v 1 $ v 0) , lam=> snd (v 1 $ v 0) ] , lam=> lam=> [ fst (v 1) $ v 0 , snd (v 1) $ v 0 ] ] l12 : forall {a} -> Thm ((a => TRUE) <=> TRUE) l12 = [ lam=> lam=> v 0 , lam=> lam=> v 1 ] l13 : forall {a b c} -> Thm ((a => (b => c)) <=> ((a && b) => c)) l13 = [ lam=> lam=> v 1 $ fst (v 0) $ snd (v 0) , lam=> lam=> lam=> v 2 $ [ v 1 , v 0 ] ] l16 : forall {a b c} -> Thm (((a && b) => c) <=> (a => (b => c))) l16 = [ lam=> lam=> lam=> v 2 $ [ v 1 , v 0 ] , lam=> lam=> v 1 $ fst (v 0) $ snd (v 0) ] l17 : forall {a} -> Thm ((TRUE => a) <=> a) l17 = [ lam=> v 0 $ (lam=> v 0) , lam=> lam=> v 1 ] l19 : forall {a b c} -> Thm (((a || b) => c) <=> (a => c) && (b => c)) l19 = [ lam=> [ lam=> v 1 $ left (v 0) , lam=> v 1 $ right (v 0) ] , lam=> lam=> (case v 0 => fst (v 2) $ (v 0) => snd (v 2) $ (v 0)) ]
{ "alphanum_fraction": 0.3715577476, "avg_line_length": 21.2489082969, "ext": "agda", "hexsha": "08fbda97d4013fb034c90dd5ddea0c768526e8d2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Vi/Mp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Vi/Mp.agda", "max_line_length": 90, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Vi/Mp.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 2029, "size": 4866 }
module Auto-EqualityReasoning where -- equality reasoning, computation and induction open import Auto.Prelude module AdditionCommutative where lemma : ∀ n m → (n + succ m) ≡ succ (n + m) lemma n m = {!-c!} -- h0 {- lemma zero m = refl lemma (succ x) m = cong succ (lemma x m) -} lemma' : ∀ n m → (n + succ m) ≡ succ (n + m) lemma' zero m = refl lemma' (succ n) m = cong succ (lemma' n m) addcommut : ∀ n m → (n + m) ≡ (m + n) addcommut n m = {!-c lemma'!} -- h1 {- addcommut zero zero = refl addcommut zero (succ x) = sym (cong succ (addcommut x zero)) -- solution does not pass termination check addcommut (succ x) m = begin (succ (x + m) ≡⟨ cong succ (addcommut x m) ⟩ (succ (m + x) ≡⟨ sym (lemma' m x) ⟩ ((m + succ x) ∎))) -}
{ "alphanum_fraction": 0.5997340426, "avg_line_length": 25.9310344828, "ext": "agda", "hexsha": "dc0f12b07f4201a08753371c60465b549eb80696", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Auto-EqualityReasoning.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Auto-EqualityReasoning.agda", "max_line_length": 129, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Auto-EqualityReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 272, "size": 752 }
open import Category module Iso (ℂ : Cat) where private open module C = Cat (η-Cat ℂ) data _≅_ (A B : Obj) : Set where iso : (i : A ─→ B)(j : B ─→ A) -> i ∘ j == id -> j ∘ i == id -> A ≅ B
{ "alphanum_fraction": 0.5050505051, "avg_line_length": 15.2307692308, "ext": "agda", "hexsha": "a26ef3e41c623d4b9b49f6a3037a08bea2ac6a3f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/cat/Iso.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/cat/Iso.agda", "max_line_length": 37, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/cat/Iso.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 83, "size": 198 }
module Tactic.Nat.Refute where open import Prelude open import Builtin.Reflection open import Tactic.Reflection.Quote open import Tactic.Reflection open import Tactic.Nat.Reflect open import Tactic.Nat.NF open import Tactic.Nat.Exp open import Tactic.Nat.Auto open import Tactic.Nat.Auto.Lemmas open import Tactic.Nat.Simpl.Lemmas open import Tactic.Nat.Simpl data Impossible : Set where invalidEquation : ⊤ invalidEquation = _ refutation : ∀ {a} {A : Set a} {Atom : Set} {{_ : Eq Atom}} {{_ : Ord Atom}} eq (ρ : Env Atom) → ¬ CancelEq eq ρ → ExpEq eq ρ → A refutation exp ρ !eq eq = ⊥-elim (!eq (complicateEq exp ρ eq)) refute-tactic : Term → TC Term refute-tactic prf = inferType prf >>= λ a → caseM termToEq a of λ { nothing → pure $ failedProof (quote invalidEquation) a ; (just (eqn , Γ)) → pure $ def (quote refutation) $ vArg (` eqn) ∷ vArg (quotedEnv Γ) ∷ vArg absurd-lam ∷ vArg prf ∷ [] } macro refute : Term → Tactic refute prf hole = unify hole =<< refute-tactic prf
{ "alphanum_fraction": 0.6707897241, "avg_line_length": 25.0238095238, "ext": "agda", "hexsha": "26616ce0cd3a3205b3be0efde8c5f3d922e85798", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Refute.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Refute.agda", "max_line_length": 96, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Refute.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 335, "size": 1051 }
------------------------------------------------------------------------ -- Up-to techniques for CCS ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Bisimilarity.Up-to.CCS {ℓ} {Name : Type ℓ} where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude.Size open import Bijection equality-with-J using (_↔_) open import Function-universe equality-with-J hiding (id; _∘_) open import Bisimilarity.CCS import Bisimilarity.Equational-reasoning-instances open import Equational-reasoning open import Indexed-container open import Labelled-transition-system.CCS Name open import Relation open import Bisimilarity CCS open import Bisimilarity.Step CCS _[_]⟶_ using (Step; Step↔StepC) open import Bisimilarity.Up-to CCS -- Up to context for a very simple kind of context. Up-to-! : Trans₂ ℓ (Proc ∞) Up-to-! R (P , Q) = ∃ λ P′ → ∃ λ Q′ → P ≡ ! P′ × R (P′ , Q′) × ! Q′ ≡ Q -- This transformer is size-preserving. up-to-!-size-preserving : Size-preserving Up-to-! up-to-!-size-preserving R⊆∼i (P′ , Q′ , refl , P′RQ′ , refl) = !-cong (R⊆∼i P′RQ′) -- Up to context for CCS (for polyadic contexts). Up-to-context : Trans₂ ℓ (Proc ∞) Up-to-context R (P , Q) = ∃ λ n → ∃ λ (C : Context ∞ n) → ∃ λ Ps → ∃ λ Qs → Equal ∞ P (C [ Ps ]) × Equal ∞ Q (C [ Qs ]) × ∀ x → R (Ps x , Qs x) -- Up to context is monotone. up-to-context-monotone : Monotone Up-to-context up-to-context-monotone R⊆S = Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id (R⊆S ∘_) -- Up to context is size-preserving. up-to-context-size-preserving : Size-preserving Up-to-context up-to-context-size-preserving R⊆∼i {P , Q} (_ , C , Ps , Qs , eq₁ , eq₂ , Ps∼Qs) = P ∼⟨ ≡→∼ eq₁ ⟩ C [ Ps ] ∼⟨ C [ R⊆∼i ∘ Ps∼Qs ]-cong ⟩ C [ Qs ] ∼⟨ symmetric (≡→∼ eq₂) ⟩■ Q -- Note that up to context is not compatible (assuming that Name is -- inhabited). -- -- This counterexample is a minor variant of one due to Pous and -- Sangiorgi, who state that up to context would have been compatible -- if the Step function had been defined in a slightly different way -- (see Remark 6.4.2 in "Enhancements of the bisimulation proof -- method"). ¬-up-to-context-compatible : Name → ¬ Compatible Up-to-context ¬-up-to-context-compatible x comp = contradiction where a = x , true b = x , false c = a d = a a≢b : ¬ a ≡ b a≢b () data R : Rel₂ ℓ (Proc ∞) where base : R (! name a ∙ (b ∙) , ! name a ∙ (c ∙)) data S₀ : Rel₂ ℓ (Proc ∞) where base : S₀ (! name a ∙ (b ∙) ∣ b ∙ , ! name a ∙ (c ∙) ∣ c ∙) S : Rel₂ ℓ (Proc ∞) S = Up-to-bisimilarity S₀ d!ab[R]d!ac : Up-to-context R ( name d ∙ (! name a ∙ (b ∙)) , name d ∙ (! name a ∙ (c ∙)) ) d!ab[R]d!ac = 1 , name d · (λ { .force → hole fzero }) , (λ _ → ! name a ∙ (b ∙)) , (λ _ → ! name a ∙ (c ∙)) , refl · (λ { .force → Proc-refl _ }) , refl · (λ { .force → Proc-refl _ }) , (λ _ → base) ¬!ab[S]!ac : ¬ Up-to-context S (! name a ∙ (b ∙) , ! name a ∙ (c ∙)) ¬!ab[S]!ac (n , C , Ps , Qs , !ab≡C[Ps] , !ac≡C[Qs] , PsSQs) = $⟨ Matches-[] C ⟩ Matches ∞ (C [ Ps ]) C ↝⟨ Matches-cong (Proc-sym !ab≡C[Ps]) ⟩ Matches ∞ (! name a ∙ (b ∙)) C ↝⟨ helper !ab≡C[Ps] !ac≡C[Qs] ⟩□ ⊥ □ where helper : Equal ∞ (! name a ∙ (b ∙)) (C [ Ps ]) → Equal ∞ (! name a ∙ (c ∙)) (C [ Qs ]) → ¬ Matches ∞ (! name a ∙ (b ∙)) C helper !ab≡ _ (hole x) = case PsSQs x of λ where (_ , Ps[x]∼!ab∣b , _ , base , _) → $⟨ Ps[x]∼!ab∣b ⟩ Ps x ∼ ! name a ∙ (b ∙) ∣ b ∙ ↝⟨ transitive {a = ℓ} (≡→∼ !ab≡) ⟩ ! name a ∙ (b ∙) ∼ ! name a ∙ (b ∙) ∣ b ∙ ↝⟨ (λ !ab∼!ab∣b → Σ-map id proj₁ $ StepC.right-to-left !ab∼!ab∣b (par-right action)) ⟩ (∃ λ P′ → ! name a ∙ (b ∙) [ name b ]⟶ P′) ↝⟨ cancel-name ∘ !-only ·-only ∘ proj₂ ⟩ a ≡ b ↝⟨ a≢b ⟩□ ⊥ □ helper (! ab≡) (! ac≡) (! hole x) = case PsSQs x of λ where (_ , Ps[x]∼!ab∣b , _ , base , _) → $⟨ Ps[x]∼!ab∣b ⟩ Ps x ∼ ! name a ∙ (b ∙) ∣ b ∙ ↝⟨ transitive {a = ℓ} (≡→∼ ab≡) ⟩ name a ∙ (b ∙) ∼ ! name a ∙ (b ∙) ∣ b ∙ ↝⟨ (λ ab∼!ab∣b → Σ-map id proj₁ $ StepC.right-to-left ab∼!ab∣b (par-right action)) ⟩ (∃ λ P′ → name a ∙ (b ∙) [ name b ]⟶ P′) ↝⟨ cancel-name ∘ ·-only ∘ proj₂ ⟩ a ≡ b ↝⟨ a≢b ⟩□ ⊥ □ helper (! (_ · b≡′)) (! (_ · c≡′)) (! action {C = C} M) = case force C , force b≡′ , force c≡′ , force M {j = ∞} ⦂ (∃ λ C → Equal ∞ _ (C [ Ps ]) × Equal ∞ _ (C [ Qs ]) × Matches ∞ _ C) of λ where (._ , b≡ , _ , hole x) → case PsSQs x of λ where (_ , Ps[x]∼!ab∣b , _ , base , _) → $⟨ Ps[x]∼!ab∣b ⟩ Ps x ∼ ! name a ∙ (b ∙) ∣ b ∙ ↝⟨ transitive {a = ℓ} (≡→∼ b≡) ⟩ b ∙ ∼ ! name a ∙ (b ∙) ∣ b ∙ ↝⟨ (λ b∼!ab∣b → Σ-map id proj₁ $ StepC.right-to-left b∼!ab∣b (par-left (replication (par-right action)))) ⟩ (∃ λ P′ → b ∙ [ name a ]⟶ P′) ↝⟨ cancel-name ∘ ·-only ∘ proj₂ ⟩ b ≡ a ↝⟨ a≢b ∘ sym ⟩□ ⊥ □ (._ , _ , c≡b · _ , action _) → $⟨ c≡b ⟩ name c ≡ name b ↝⟨ cancel-name ⟩ c ≡ b ↝⟨ a≢b ⟩□ ⊥ □ R⊆StepS : R ⊆ ⟦ StepC ⟧ S R⊆StepS base = StepC.⟨ lr , rl ⟩ where lr : ∀ {P′ μ} → ! name a ∙ (b ∙) [ μ ]⟶ P′ → ∃ λ Q′ → ! name a ∙ (c ∙) [ μ ]⟶ Q′ × S (P′ , Q′) lr {P′} {μ} !ab[μ]⟶P′ = case 6-1-3-2 !ab[μ]⟶P′ of λ where (inj₁ (.(b ∙) , action , P′∼!ab∣b)) → ! name a ∙ (c ∙) ∣ c ∙ , replication (par-right action) , _ , (P′ ∼⟨ P′∼!ab∣b ⟩■ ! name a ∙ (b ∙) ∣ b ∙) , _ , base , (! name a ∙ (c ∙) ∣ c ∙ ■) (inj₂ (μ≡τ , _)) → ⊥-elim $ name≢τ ( name a ≡⟨ !-only ·-only !ab[μ]⟶P′ ⟩ μ ≡⟨ μ≡τ ⟩∎ τ ∎) rl : ∀ {Q′ μ} → ! name a ∙ (c ∙) [ μ ]⟶ Q′ → ∃ λ P′ → ! name a ∙ (b ∙) [ μ ]⟶ P′ × S (P′ , Q′) rl {Q′} {μ} !ac[μ]⟶Q′ = case 6-1-3-2 !ac[μ]⟶Q′ of λ where (inj₁ (.(c ∙) , action , Q′∼!ac∣c)) → ! name a ∙ (b ∙) ∣ b ∙ , replication (par-right action) , _ , (! name a ∙ (b ∙) ∣ b ∙ ■) , _ , base , (! name a ∙ (c ∙) ∣ c ∙ ∼⟨ symmetric Q′∼!ac∣c ⟩■ Q′) (inj₂ (μ≡τ , _)) → ⊥-elim $ name≢τ ( name a ≡⟨ !-only ·-only !ac[μ]⟶Q′ ⟩ μ ≡⟨ μ≡τ ⟩∎ τ ∎) -- Note the use of compatibility in [R]⊆Step[S]. [R]⊆Step[S] : Up-to-context R ⊆ ⟦ StepC ⟧ (Up-to-context S) [R]⊆Step[S] = Up-to-context R ⊆⟨ up-to-context-monotone (λ {x} → R⊆StepS {x}) ⟩ Up-to-context (⟦ StepC ⟧ S) ⊆⟨ comp ⟩∎ ⟦ StepC ⟧ (Up-to-context S) ∎ contradiction : ⊥ contradiction = $⟨ d!ab[R]d!ac ⟩ Up-to-context R ( name d ∙ (! name a ∙ (b ∙)) , name d ∙ (! name a ∙ (c ∙)) ) ↝⟨ [R]⊆Step[S] ⟩ ⟦ StepC ⟧ (Up-to-context S) ( name d ∙ (! name a ∙ (b ∙)) , name d ∙ (! name a ∙ (c ∙)) ) ↝⟨ (λ s → StepC.left-to-right s action) ⟩ (∃ λ P → name d ∙ (! name a ∙ (c ∙)) [ name d ]⟶ P × Up-to-context S (! name a ∙ (b ∙) , P)) ↝⟨ (λ { (P , d!ac[d]⟶P , !ab[S]P) → subst (Up-to-context S ∘ (_ ,_)) (·-only⟶ d!ac[d]⟶P) !ab[S]P }) ⟩ Up-to-context S (! name a ∙ (b ∙) , ! name a ∙ (c ∙)) ↝⟨ ¬!ab[S]!ac ⟩□ ⊥ □
{ "alphanum_fraction": 0.3994768755, "avg_line_length": 36.0987124464, "ext": "agda", "hexsha": "01a44862711aaebda43ee01ee380a71cf8af4dfb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/Up-to/CCS.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/Up-to/CCS.agda", "max_line_length": 138, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/Up-to/CCS.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3315, "size": 8411 }
-- Minimal propositional logic, de Bruijn approach, initial encoding module Bi.Mp where open import Lib using (List; _,_; LMem; lzero; lsuc) -- Types infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth judgement Cx : Set Cx = List Ty isTrue : Ty -> Cx -> Set isTrue a tc = LMem a tc -- Terms module Mp where infixl 1 _$_ infixr 0 lam=>_ data Tm (tc : Cx) : Ty -> Set where var : forall {a} -> isTrue a tc -> Tm tc a lam=>_ : forall {a b} -> Tm (tc , a) b -> Tm tc (a => b) _$_ : forall {a b} -> Tm tc (a => b) -> Tm tc a -> Tm tc b pair' : forall {a b} -> Tm tc a -> Tm tc b -> Tm tc (a && b) fst : forall {a b} -> Tm tc (a && b) -> Tm tc a snd : forall {a b} -> Tm tc (a && b) -> Tm tc b left : forall {a b} -> Tm tc a -> Tm tc (a || b) right : forall {a b} -> Tm tc b -> Tm tc (a || b) case' : forall {a b c} -> Tm tc (a || b) -> Tm (tc , a) c -> Tm (tc , b) c -> Tm tc c syntax pair' x y = [ x , y ] syntax case' xy x y = case xy => x => y v0 : forall {tc a} -> Tm (tc , a) a v0 = var lzero v1 : forall {tc a b} -> Tm (tc , a , b) a v1 = var (lsuc lzero) v2 : forall {tc a b c} -> Tm (tc , a , b , c) a v2 = var (lsuc (lsuc lzero)) Thm : Ty -> Set Thm a = forall {tc} -> Tm tc a open Mp public -- Example theorems c1 : forall {a b} -> Thm (a && b <=> b && a) c1 = [ lam=> [ snd v0 , fst v0 ] , lam=> [ snd v0 , fst v0 ] ] c2 : forall {a b} -> Thm (a || b <=> b || a) c2 = [ lam=> (case v0 => right v0 => left v0) , lam=> (case v0 => right v0 => left v0) ] i1 : forall {a} -> Thm (a && a <=> a) i1 = [ lam=> fst v0 , lam=> [ v0 , v0 ] ] i2 : forall {a} -> Thm (a || a <=> a) i2 = [ lam=> (case v0 => v0 => v0) , lam=> left v0 ] l3 : forall {a} -> Thm ((a => a) <=> TRUE) l3 = [ lam=> lam=> v0 , lam=> lam=> v0 ] l1 : forall {a b c} -> Thm (a && (b && c) <=> (a && b) && c) l1 = [ lam=> [ [ fst v0 , fst (snd v0) ] , snd (snd v0) ] , lam=> [ fst (fst v0) , [ snd (fst v0) , snd v0 ] ] ] l2 : forall {a} -> Thm (a && TRUE <=> a) l2 = [ lam=> fst v0 , lam=> [ v0 , lam=> v0 ] ] l4 : forall {a b c} -> Thm (a && (b || c) <=> (a && b) || (a && c)) l4 = [ lam=> (case snd v0 => left [ fst v1 , v0 ] => right [ fst v1 , v0 ]) , lam=> (case v0 => [ fst v0 , left (snd v0) ] => [ fst v0 , right (snd v0) ]) ] l6 : forall {a b c} -> Thm (a || (b && c) <=> (a || b) && (a || c)) l6 = [ lam=> (case v0 => [ left v0 , left v0 ] => [ right (fst v0) , right (snd v0) ]) , lam=> (case fst v0 => left v0 => case snd v1 => left v0 => right [ v1 , v0 ]) ] l7 : forall {a} -> Thm (a || TRUE <=> TRUE) l7 = [ lam=> lam=> v0 , lam=> right v0 ] l9 : forall {a b c} -> Thm (a || (b || c) <=> (a || b) || c) l9 = [ lam=> (case v0 => left (left v0) => case v0 => left (right v0) => right v0) , lam=> (case v0 => case v0 => left v0 => right (left v0) => right (right v0)) ] l11 : forall {a b c} -> Thm ((a => (b && c)) <=> (a => b) && (a => c)) l11 = [ lam=> [ lam=> fst (v1 $ v0) , lam=> snd (v1 $ v0) ] , lam=> lam=> [ fst v1 $ v0 , snd v1 $ v0 ] ] l12 : forall {a} -> Thm ((a => TRUE) <=> TRUE) l12 = [ lam=> lam=> v0 , lam=> lam=> v1 ] l13 : forall {a b c} -> Thm ((a => (b => c)) <=> ((a && b) => c)) l13 = [ lam=> lam=> v1 $ fst v0 $ snd v0 , lam=> lam=> lam=> v2 $ [ v1 , v0 ] ] l16 : forall {a b c} -> Thm (((a && b) => c) <=> (a => (b => c))) l16 = [ lam=> lam=> lam=> v2 $ [ v1 , v0 ] , lam=> lam=> v1 $ fst v0 $ snd v0 ] l17 : forall {a} -> Thm ((TRUE => a) <=> a) l17 = [ lam=> v0 $ (lam=> v0) , lam=> lam=> v1 ] l19 : forall {a b c} -> Thm (((a || b) => c) <=> (a => c) && (b => c)) l19 = [ lam=> [ lam=> v1 $ left v0 , lam=> v1 $ right v0 ] , lam=> lam=> (case v0 => fst v2 $ v0 => snd v2 $ v0) ]
{ "alphanum_fraction": 0.3861449647, "avg_line_length": 19.9021276596, "ext": "agda", "hexsha": "81cab47c5ded61c711cdb20d2f04a0b1affdb8cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Bi/Mp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Bi/Mp.agda", "max_line_length": 90, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Bi/Mp.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 1879, "size": 4677 }
{- Function types A , B : Set -- Set = Type A → B : Set Products and sums A × B : Set A ⊎ B : Set -- disjoint union Don't have A ∪ B : Set! And neither A ∩ B : Set. These are evil operations, because they depend on elements. -} record _×_ (A B : Set) : Set where constructor _,_ field proj₁ : A proj₂ : B open _×_ variable A B C : Set {- _,_ : A → B → A × B proj₁ (a , b) = a -- copattern matching proj₂ (a , b) = b -} curry : (A × B → C) → (A → B → C) curry f a b = f (a , b) uncurry : (A → B → C) → (A × B → C) uncurry g x = g (proj₁ x) (proj₂ x) {- These two functions are inverses. How is this isomorphism called? Adjunction. Explains the relation between functions and product. Functions are "right adjoint" to product. -} data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B case : (A → C) → (B → C) → (A ⊎ B → C) case f g (inj₁ a) = f a -- x C-c C-c case f g (inj₂ b) = g b -- uncurry case uncase : (A ⊎ B → C) → (A → C) × (B → C) proj₁ (uncase f) a = f (inj₁ a) proj₂ (uncase f) b = f (inj₂ b) {- These functions are inverse to each other they witness that ⊎ is a left adjoint (of the diagonal). If functions are the right adjoint of products what is the left adjoint of sums (⊎)? -} -- data is defined by constructors _⊎_ , _×_ -- codata (record) is defined by destructors _×_ , _→_ {- data _×'_ (A B : Set) : Set where _,_ : A → B → A ×' B proj₁' : A × B → A proj₁' (a , b) = a -- pattern matching -} -- What about nullary, empty product, empty sum? record ⊤ : Set where -- the unit type, it has exactly one element tt. constructor tt {- tt : ⊤ tt = record {} -} data ⊥ : Set where -- this is the empty type, no elements. case⊥ : ⊥ → C case⊥ () -- impossible pattern -- In classical propositional logic: prop = Bool prop = Set -- the type of evidence: propositions as type explanations -- in HoTT prop = hprop = types with at most inhabitant variable P Q R : prop infixl 5 _∧_ _∧_ : prop → prop → prop P ∧ Q = P × Q infixl 3 _∨_ _∨_ : prop → prop → prop P ∨ Q = P ⊎ Q infixr 2 _⇒_ _⇒_ : prop → prop → prop P ⇒ Q = P → Q True : prop True = ⊤ False : prop False = ⊥ ¬ : prop → prop ¬ P = P ⇒ False infix 1 _⇔_ _⇔_ : prop → prop → prop P ⇔ Q = (P ⇒ Q) ∧ (Q ⇒ P) deMorgan : ¬ (P ∨ Q) ⇔ ¬ P ∧ ¬ Q proj₁ deMorgan x = (λ p → x (inj₁ p)) , λ q → x (inj₂ q) proj₂ deMorgan y (inj₁ p) = proj₁ y p proj₂ deMorgan y (inj₂ q) = proj₂ y q -- the other direction is no logical truth in intuitionistic logic deMorgan' : (¬ P ∨ ¬ Q) ⇒ ¬ (P ∧ Q) deMorgan' (inj₁ x) z = x (proj₁ z) deMorgan' (inj₂ x) z = x (proj₂ z)
{ "alphanum_fraction": 0.5810862134, "avg_line_length": 20.7322834646, "ext": "agda", "hexsha": "4e8a9111ea1e86ec26d8392a9759878f1f76a9a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FoxySeta/mgs-2021", "max_forks_repo_path": "Type Theory/notes-02-tuesday.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_issues_repo_issues_event_max_datetime": "2021-07-14T20:35:48.000Z", "max_issues_repo_issues_event_min_datetime": "2021-07-14T20:34:53.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FoxySeta/mgs-2021", "max_issues_repo_path": "Type Theory/notes-02-tuesday.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FoxySeta/mgs-2021", "max_stars_repo_path": "Type Theory/notes-02-tuesday.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1023, "size": 2633 }
module Structure.Function.Domain.Proofs where open import Data.Tuple as Tuple using (_⨯_ ; _,_) import Lvl open import Functional open import Function.Domains open import Function.Equals import Function.Names as Names open import Lang.Instance open import Logic open import Logic.Classical open import Logic.Propositional open import Logic.Propositional.Theorems open import Logic.Predicate open import Structure.Setoid open import Structure.Setoid.Uniqueness open import Structure.Function.Domain open import Structure.Function open import Structure.Relator.Properties open import Structure.Relator open import Syntax.Transitivity open import Type open import Type.Dependent private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₒ₁ ℓₒ₂ : Lvl.Level private variable T A B C : Type{ℓ} module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ (f : A → B) where injective-to-unique : Injective(f) → ∀{y} → Unique(x ↦ f(x) ≡ y) injective-to-unique (intro(inj)) {y} {x₁}{x₂} fx₁y fx₂y = inj{x₁}{x₂} (fx₁y 🝖 symmetry(_≡_) fx₂y) instance bijective-to-injective : ⦃ bij : Bijective(f) ⦄ → Injective(f) Injective.proof(bijective-to-injective ⦃ intro(bij) ⦄) {x₁}{x₂} (fx₁fx₂) = ([∃!]-existence-eq (bij {f(x₂)}) {x₁} (fx₁fx₂)) 🝖 symmetry(_≡_) ([∃!]-existence-eq (bij {f(x₂)}) {x₂} (reflexivity(_≡_))) -- ∀{y : B} → ∃!(x ↦ f(x) ≡ y) -- ∃!(x ↦ f(x) ≡ f(x₂)) -- ∀{x} → (f(x) ≡ f(x₂)) → (x ≡ [∃!]-witness e) -- (f(x₁) ≡ f(x₂)) → (x₁ ≡ [∃!]-witness e) -- -- ∀{y : B} → ∃!(x ↦ f(x) ≡ y) -- ∃!(x ↦ f(x) ≡ f(x₂)) -- ∀{x} → (f(x) ≡ f(x₂)) → (x ≡ [∃!]-witness e) -- (f(x₂) ≡ f(x₂)) → (x₂ ≡ [∃!]-witness e) instance bijective-to-surjective : ⦃ bij : Bijective(f) ⦄ → Surjective(f) Surjective.proof(bijective-to-surjective ⦃ intro(bij) ⦄) {y} = [∃!]-existence (bij {y}) instance injective-surjective-to-bijective : ⦃ inj : Injective(f) ⦄ → ⦃ surj : Surjective(f) ⦄ → Bijective(f) Bijective.proof(injective-surjective-to-bijective ⦃ inj ⦄ ⦃ intro(surj) ⦄) {y} = [∃!]-intro surj (injective-to-unique inj) injective-surjective-bijective-equivalence : (Injective(f) ∧ Surjective(f)) ↔ Bijective(f) injective-surjective-bijective-equivalence = [↔]-intro (\bij → [∧]-intro (bijective-to-injective ⦃ bij = bij ⦄) (bijective-to-surjective ⦃ bij = bij ⦄)) (\{([∧]-intro inj surj) → injective-surjective-to-bijective ⦃ inj = inj ⦄ ⦃ surj = surj ⦄}) module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where instance injective-relator : UnaryRelator(Injective{A = A}{B = B}) Injective.proof (UnaryRelator.substitution injective-relator {f₁}{f₂} (intro f₁f₂) (intro inj-f₁)) f₂xf₂y = inj-f₁ (f₁f₂ 🝖 f₂xf₂y 🝖 symmetry(_≡_) f₁f₂) module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where instance surjective-relator : UnaryRelator(Surjective{A = A}{B = B}) Surjective.proof (UnaryRelator.substitution surjective-relator {f₁}{f₂} (intro f₁f₂) (intro surj-f₁)) {y} = [∃]-map-proof (\{x} f₁xf₁y → symmetry(_≡_) (f₁f₂{x}) 🝖 f₁xf₁y) (surj-f₁{y}) module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where instance bijective-relator : UnaryRelator(Bijective{A = A}{B = B}) UnaryRelator.substitution bijective-relator {f₁}{f₂} f₁f₂ bij-f₁ = injective-surjective-to-bijective(f₂) ⦃ substitute₁(Injective) f₁f₂ (bijective-to-injective(f₁)) ⦄ ⦃ substitute₁(Surjective) f₁f₂ (bijective-to-surjective(f₁)) ⦄ where instance _ = bij-f₁ module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where invᵣ-surjective : (f : A → B) ⦃ surj : Surjective(f) ⦄ → (B → A) invᵣ-surjective _ ⦃ surj ⦄ (y) = [∃]-witness(Surjective.proof surj{y}) module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} where surjective-to-inverseᵣ : ⦃ surj : Surjective(f) ⦄ → Inverseᵣ(f)(invᵣ-surjective f) surjective-to-inverseᵣ ⦃ intro surj ⦄ = intro([∃]-proof surj) module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} {f⁻¹ : B → A} where inverseᵣ-to-surjective : ⦃ inverᵣ : Inverseᵣ(f)(f⁻¹) ⦄ → Surjective(f) Surjective.proof inverseᵣ-to-surjective {y} = [∃]-intro (f⁻¹(y)) ⦃ inverseᵣ(f)(f⁻¹) ⦄ Inverse-symmetry : Inverse(f)(f⁻¹) → Inverse(f⁻¹)(f) Inverse-symmetry ([∧]-intro (intro inverₗ) (intro inverᵣ)) = [∧]-intro (intro inverᵣ) (intro inverₗ) module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} where invertibleᵣ-to-surjective : ⦃ inverᵣ : Invertibleᵣ(f) ⦄ → Surjective(f) ∃.witness (Surjective.proof(invertibleᵣ-to-surjective ⦃ inverᵣ ⦄) {y}) = [∃]-witness inverᵣ(y) ∃.proof (Surjective.proof(invertibleᵣ-to-surjective ⦃ inverᵣ ⦄) {y}) = inverseᵣ _ _ ⦃ [∧]-elimᵣ([∃]-proof inverᵣ) ⦄ -- Every surjective function has a right inverse with respect to function composition. -- One of the right inverse functions of a surjective function f. -- Specifically the one that is used in the constructive proof of surjectivity for f. -- Without assuming that the value used in the proof of surjectivity constructs a function, this would be unprovable because it is not guaranteed in arbitrary setoids. -- Note: The usual formulation of this proposition (without assuming `inv-func`) is equivalent to the axiom of choice from set theory in classical logic. surjective-to-invertibleᵣ : ⦃ surj : Surjective(f) ⦄ ⦃ inv-func : Function(invᵣ-surjective f) ⦄ → Invertibleᵣ(f) ∃.witness (surjective-to-invertibleᵣ) = invᵣ-surjective f ∃.proof (surjective-to-invertibleᵣ ⦃ surj = intro surj ⦄ ⦃ inv-func = inv-func ⦄) = [∧]-intro inv-func (intro([∃]-proof surj)) invertibleᵣ-when-surjective : Invertibleᵣ(f) ↔ Σ(Surjective(f)) (surj ↦ Function(invᵣ-surjective f ⦃ surj ⦄)) invertibleᵣ-when-surjective = [↔]-intro (surj ↦ surjective-to-invertibleᵣ ⦃ Σ.left surj ⦄ ⦃ Σ.right surj ⦄) (inverᵣ ↦ intro (invertibleᵣ-to-surjective ⦃ inverᵣ ⦄) ([∧]-elimₗ([∃]-proof inverᵣ))) module _ {A : Type{ℓ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} {f⁻¹ : B → A} ⦃ inverᵣ : Inverseᵣ(f)(f⁻¹) ⦄ where -- Note: This states that a function which is injective and surjective (bijective) is a function, but another way of satisfying this proposition is from a variant of axiom of choice which directly state that the right inverse of a surjective function always exist. inverseᵣ-function : ⦃ inj : Injective(f) ⦄ → Function(f⁻¹) Function.congruence (inverseᵣ-function) {y₁}{y₂} y₁y₂ = injective(f) ( f(f⁻¹(y₁)) 🝖-[ inverseᵣ(f)(f⁻¹) ] y₁ 🝖-[ y₁y₂ ] y₂ 🝖-[ inverseᵣ(f)(f⁻¹) ]-sym f(f⁻¹(y₂)) 🝖-end ) -- The right inverse is injective when f is a surjective function. inverseᵣ-injective : ⦃ func : Function(f) ⦄ → Injective(f⁻¹) Injective.proof(inverseᵣ-injective) {x₁}{x₂} (invᵣfx₁≡invᵣfx₂) = x₁ 🝖-[ inverseᵣ(f)(f⁻¹) ]-sym f(f⁻¹(x₁)) 🝖-[ congruence₁(f) {f⁻¹(x₁)} {f⁻¹(x₂)} (invᵣfx₁≡invᵣfx₂) ] f(f⁻¹(x₂)) 🝖-[ inverseᵣ(f)(f⁻¹) ] x₂ 🝖-end -- The right inverse is surjective when the surjective f is injective. inverseᵣ-surjective : ⦃ inj : Injective(f) ⦄ → Surjective(f⁻¹) ∃.witness (Surjective.proof inverseᵣ-surjective {x}) = f(x) ∃.proof (Surjective.proof inverseᵣ-surjective {x}) = injective(f) ( f(f⁻¹(f(x))) 🝖-[ inverseᵣ(f)(f⁻¹) ] f(x) 🝖-end ) -- The right inverse is a left inverse when the surjective f is injective. inverseᵣ-inverseₗ : ⦃ inj : Injective(f) ⦄ → Inverseₗ(f)(f⁻¹) inverseᵣ-inverseₗ = intro([∃]-proof(surjective(f⁻¹) ⦃ inverseᵣ-surjective ⦄)) -- The right inverse is bijective when the surjective f is injective. inverseᵣ-bijective : ⦃ func : Function(f) ⦄ ⦃ inj : Injective(f) ⦄ → Bijective(f⁻¹) inverseᵣ-bijective = injective-surjective-to-bijective(f⁻¹) ⦃ inverseᵣ-injective ⦄ ⦃ inverseᵣ-surjective ⦄ inverseᵣ-inverse : ⦃ inj : Injective(f) ⦄ → Inverse(f)(f⁻¹) inverseᵣ-inverse = [∧]-intro inverseᵣ-inverseₗ inverᵣ -- The right inverse is an unique right inverse when f is injective. inverseᵣ-unique-inverseᵣ : ⦃ inj : Injective(f) ⦄ → ∀{g} → (f ∘ g ⊜ id) → (g ⊜ f⁻¹) inverseᵣ-unique-inverseᵣ {g = g} (intro p) = intro $ \{x} → g(x) 🝖-[ inverseₗ(f)(f⁻¹) ⦃ inverseᵣ-inverseₗ ⦄ ]-sym f⁻¹(f(g(x))) 🝖-[ congruence₁(f⁻¹) ⦃ inverseᵣ-function ⦄ p ] f⁻¹(x) 🝖-end -- The right inverse is an unique left inverse function. inverseᵣ-unique-inverseₗ : ∀{g} ⦃ _ : Function(g) ⦄ → (g ∘ f ⊜ id) → (g ⊜ f⁻¹) inverseᵣ-unique-inverseₗ {g = g} (intro p) = intro $ \{x} → g(x) 🝖-[ congruence₁(g) (inverseᵣ(f)(f⁻¹)) ]-sym g(f(f⁻¹(x))) 🝖-[ p{f⁻¹(x)} ] f⁻¹(x) 🝖-end -- The right inverse is invertible. inverseᵣ-invertibleᵣ : ⦃ func : Function(f) ⦄ ⦃ inj : Injective(f) ⦄ → Invertibleᵣ(f⁻¹) ∃.witness inverseᵣ-invertibleᵣ = f ∃.proof (inverseᵣ-invertibleᵣ ⦃ func = func ⦄) = [∧]-intro func inverseᵣ-inverseₗ -- TODO: invᵣ-unique-function : ∀{g} → (invᵣ(f) ∘ g ⊜ id) → (g ⊜ f) module _ {A : Type{ℓ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} {f⁻¹ : B → A} ⦃ inverₗ : Inverseₗ(f)(f⁻¹) ⦄ where inverseₗ-surjective : Surjective(f⁻¹) inverseₗ-surjective = inverseᵣ-to-surjective inverseₗ-to-injective : ⦃ invₗ-func : Function(f⁻¹) ⦄ → Injective(f) inverseₗ-to-injective = inverseᵣ-injective module _ {A : Type{ℓ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} ⦃ func : Function(f) ⦄ {f⁻¹ : B → A} ⦃ inv-func : Function(f⁻¹) ⦄ where inverseₗ-to-inverseᵣ : ⦃ surj : Surjective(f) ⦄ ⦃ inverₗ : Inverseₗ(f)(f⁻¹) ⦄ → Inverseᵣ(f)(f⁻¹) Inverseᵣ.proof inverseₗ-to-inverseᵣ {x} with [∃]-intro y ⦃ p ⦄ ← surjective f{x} = f(f⁻¹(x)) 🝖-[ congruence₁(f) (congruence₁(f⁻¹) p) ]-sym f(f⁻¹(f(y))) 🝖-[ congruence₁(f) (inverseₗ(f)(f⁻¹)) ] f(y) 🝖-[ p ] x 🝖-end module _ ⦃ surj : Surjective(f) ⦄ ⦃ inverₗ : Inverseₗ(f)(f⁻¹) ⦄ where inverseₗ-injective : Injective(f⁻¹) Injective.proof inverseₗ-injective {x}{y} p = x 🝖-[ inverseᵣ(f)(f⁻¹) ⦃ inverseₗ-to-inverseᵣ ⦄ ]-sym f(f⁻¹(x)) 🝖-[ congruence₁(f) p ] f(f⁻¹(y)) 🝖-[ inverseᵣ(f)(f⁻¹) ⦃ inverseₗ-to-inverseᵣ ⦄ ] y 🝖-end inverseₗ-bijective : Bijective(f⁻¹) inverseₗ-bijective = injective-surjective-to-bijective(f⁻¹) ⦃ inverseₗ-injective ⦄ ⦃ inverseₗ-surjective ⦄ inverseₗ-to-surjective : Surjective(f) inverseₗ-to-surjective = inverseᵣ-surjective ⦃ inj = inverseₗ-injective ⦄ inverseₗ-to-bijective : Bijective(f) inverseₗ-to-bijective = injective-surjective-to-bijective(f) ⦃ inverseₗ-to-injective ⦄ ⦃ inverseₗ-to-surjective ⦄ module _ {A : Type{ℓ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} {f⁻¹ : B → A} ⦃ inver : Inverse(f)(f⁻¹) ⦄ where inverse-to-surjective : Surjective(f) inverse-to-surjective = inverseᵣ-to-surjective ⦃ inverᵣ = [∧]-elimᵣ inver ⦄ module _ ⦃ inv-func : Function(f⁻¹) ⦄ where inverse-to-injective : Injective(f) inverse-to-injective = inverseₗ-to-injective ⦃ inverₗ = [∧]-elimₗ inver ⦄ inverse-to-bijective : Bijective(f) inverse-to-bijective = injective-surjective-to-bijective(f) ⦃ inj = inverse-to-injective ⦄ ⦃ surj = inverse-to-surjective ⦄ inverse-surjective : Surjective(f⁻¹) inverse-surjective = inverseₗ-surjective ⦃ inverₗ = [∧]-elimₗ inver ⦄ module _ ⦃ func : Function(f) ⦄ where inverse-injective : Injective(f⁻¹) inverse-injective = inverseᵣ-injective ⦃ inverᵣ = [∧]-elimᵣ inver ⦄ ⦃ func = func ⦄ inverse-bijective : Bijective(f⁻¹) inverse-bijective = injective-surjective-to-bijective(f⁻¹) ⦃ inj = inverse-injective ⦄ ⦃ surj = inverse-surjective ⦄ inverse-function-when-injective : Function(f⁻¹) ↔ Injective(f) inverse-function-when-injective = [↔]-intro (inj ↦ inverseᵣ-function ⦃ inverᵣ = [∧]-elimᵣ inver ⦄ ⦃ inj = inj ⦄) (inv-func ↦ inverse-to-injective ⦃ inv-func = inv-func ⦄) function-when-inverse-injective : Function(f) ↔ Injective(f⁻¹) function-when-inverse-injective = [↔]-intro (inv-inj ↦ intro(\{x y} → xy ↦ injective(f⁻¹) ⦃ inv-inj ⦄ ( f⁻¹(f(x)) 🝖-[ inverseₗ(f)(f⁻¹) ⦃ [∧]-elimₗ inver ⦄ ] x 🝖-[ xy ] y 🝖-[ inverseₗ(f)(f⁻¹) ⦃ [∧]-elimₗ inver ⦄ ]-sym f⁻¹(f(y)) 🝖-end ))) (func ↦ inverse-injective ⦃ func = func ⦄) -- TODO: inverse-function-when-bijective : Function(f⁻¹) ↔ Bijective(f) -- Surjective(f) ↔ Injective(f⁻¹) -- Injective(f) ↔ Surjective(f⁻¹) module _ {A : Type{ℓ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} ⦃ inver : Invertible(f) ⦄ where invertible-elimₗ : Invertibleₗ(f) invertible-elimₗ = [∃]-map-proof (Tuple.mapRight [∧]-elimₗ) inver invertible-elimᵣ : Invertibleᵣ(f) invertible-elimᵣ = [∃]-map-proof (Tuple.mapRight [∧]-elimᵣ) inver module _ {A : Type{ℓ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where private variable f : A → B -- invertible-intro : ⦃ inverₗ : Invertibleₗ(f) ⦄ ⦃ inverᵣ : Invertibleᵣ(f) ⦄ → Invertible(f) -- invertible-intro = {!!} bijective-to-invertible : ⦃ bij : Bijective(f) ⦄ → Invertible(f) bijective-to-invertible {f = f} ⦃ bij = bij ⦄ = [∃]-intro f⁻¹ ⦃ [∧]-intro f⁻¹-function ([∧]-intro f⁻¹-inverseₗ f⁻¹-inverseᵣ) ⦄ where f⁻¹ : B → A f⁻¹ = invᵣ-surjective f ⦃ bijective-to-surjective(f) ⦄ f⁻¹-inverseᵣ : Inverseᵣ(f)(f⁻¹) f⁻¹-inverseᵣ = surjective-to-inverseᵣ ⦃ surj = bijective-to-surjective(f) ⦄ f⁻¹-inverseₗ : Inverseₗ(f)(f⁻¹) f⁻¹-inverseₗ = inverseᵣ-inverseₗ ⦃ inverᵣ = f⁻¹-inverseᵣ ⦄ ⦃ inj = bijective-to-injective(f) ⦄ f⁻¹-function : Function(f⁻¹) f⁻¹-function = inverseᵣ-function ⦃ inverᵣ = f⁻¹-inverseᵣ ⦄ ⦃ inj = bijective-to-injective(f) ⦄ invertible-to-bijective : ⦃ inver : Invertible(f) ⦄ → Bijective(f) invertible-to-bijective {f} ⦃ ([∃]-intro f⁻¹ ⦃ [∧]-intro func inver ⦄) ⦄ = injective-surjective-to-bijective(f) ⦃ inj = inverse-to-injective ⦃ inver = inver ⦄ ⦃ inv-func = func ⦄ ⦄ ⦃ surj = inverse-to-surjective ⦃ inver = inver ⦄ ⦄ invertible-when-bijective : Invertible(f) ↔ Bijective(f) invertible-when-bijective = [↔]-intro (bij ↦ bijective-to-invertible ⦃ bij ⦄) (inver ↦ invertible-to-bijective ⦃ inver ⦄)
{ "alphanum_fraction": 0.6223709369, "avg_line_length": 43.975975976, "ext": "agda", "hexsha": "941c8714875d4226adf031897a0fb979924d8dbd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Function/Domain/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Function/Domain/Proofs.agda", "max_line_length": 266, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Function/Domain/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 6403, "size": 14644 }
module Eval where open import Coinduction open import Data.Bool open import Data.Fin using (Fin) import Data.Fin as F open import Data.Product using (Σ; _,_) import Data.Product as P open import Data.Stream using (Stream; _∷_) import Data.Stream as S open import Data.Vec using (Vec; []; _∷_) import Data.Vec as V open import Relation.Binary.PropositionalEquality open import Types ⟦_⟧ᵗ : Type → Set ⟦ 𝔹 ⟧ᵗ = Bool ⟦ 𝔹⁺ n ⟧ᵗ = Vec Bool n ⟦ ℂ τ ⟧ᵗ = Stream ⟦ τ ⟧ᵗ ⟦ σ ⇒ τ ⟧ᵗ = ⟦ σ ⟧ᵗ → ⟦ τ ⟧ᵗ ⟦ σ × τ ⟧ᵗ = P._×_ ⟦ σ ⟧ᵗ ⟦ τ ⟧ᵗ data Env : ∀ {n} → Ctx n → Set where [] : Env [] _∷_ : ∀ {n} {Γ : Ctx n} {τ} → ⟦ τ ⟧ᵗ → Env Γ → Env (τ ∷ Γ) lookupEnv : ∀ {n} {Γ : Ctx n} (i : Fin n) → Env Γ → ⟦ V.lookup i Γ ⟧ᵗ lookupEnv F.zero (x ∷ env) = x lookupEnv (F.suc i) (x ∷ env) = lookupEnv i env private runReg : ∀ {σ τ} → (⟦ τ ⟧ᵗ → ⟦ τ ⟧ᵗ P.× ⟦ σ ⟧ᵗ) → ⟦ τ ⟧ᵗ → Stream ⟦ σ ⟧ᵗ runReg f s with f s runReg f s | s′ , x = x ∷ ♯ (runReg f s′) _⟦_⟧ : ∀ {n} {Γ : Ctx n} {τ} → Env Γ → Term Γ τ → ⟦ τ ⟧ᵗ env ⟦ bitI ⟧ = true env ⟦ bitO ⟧ = false env ⟦ [] ⟧ = [] env ⟦ x ∷ xs ⟧ = env ⟦ x ⟧ ∷ env ⟦ xs ⟧ env ⟦ x nand y ⟧ with env ⟦ x ⟧ | env ⟦ y ⟧ env ⟦ x nand y ⟧ | true | true = false env ⟦ x nand y ⟧ | _ | _ = true env ⟦ reg xt ft ⟧ = runReg (env ⟦ ft ⟧) (env ⟦ xt ⟧) env ⟦ pair xt yt ⟧ = (env ⟦ xt ⟧) , (env ⟦ yt ⟧) env ⟦ latest t ⟧ = S.head (env ⟦ t ⟧) env ⟦ head t ⟧ = V.head (env ⟦ t ⟧) env ⟦ tail t ⟧ = V.tail (env ⟦ t ⟧) env ⟦ var i refl ⟧ = lookupEnv i env env ⟦ f ∙ x ⟧ = (env ⟦ f ⟧) (env ⟦ x ⟧) env ⟦ lam t ⟧ = λ x → (x ∷ env) ⟦ t ⟧
{ "alphanum_fraction": 0.5122410546, "avg_line_length": 30.0566037736, "ext": "agda", "hexsha": "f7e5cbcb04e01469f3762f501dfc519735edd5d7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bens/hwlc", "max_forks_repo_path": "Eval.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bens/hwlc", "max_issues_repo_path": "Eval.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bens/hwlc", "max_stars_repo_path": "Eval.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 787, "size": 1593 }
open import MLib.Algebra.PropertyCode open import MLib.Algebra.PropertyCode.Structures module MLib.Matrix.Mul {c ℓ} (struct : Struct bimonoidCode c ℓ) where open import MLib.Prelude open import MLib.Matrix.Core open import MLib.Matrix.Equality struct open import MLib.Matrix.Plus struct open import MLib.Algebra.Operations struct open FunctionProperties open Table using (head; tail; rearrange; fromList; toList; _≗_) 1● : ∀ {n} → Matrix S n n 1● i j with i Fin.≟ j 1● i j | yes _ = 1′ 1● i j | no _ = 0′ infixl 7 _⊗_ _⊗_ : ∀ {m n o} → Matrix S m n → Matrix S n o → Matrix S m o _⊗_ {n = n} A B i k = ∑[ j < n ] (A i j *′ B j k) ⊗-cong : ∀ {m n o} {A A′ : Matrix S m n} {B B′ : Matrix S n o} → A ≈ A′ → B ≈ B′ → (A ⊗ B) ≈ (A′ ⊗ B′) ⊗-cong A≈A′ B≈B′ i k = sumₜ-cong (λ j → cong * (A≈A′ i j) (B≈B′ j k)) open _≃_ 1●-cong-≃ : ∀ {m n} → m ≡ n → 1● {m} ≃ 1● {n} 1●-cong-≃ ≡.refl = ≃-refl ⊗-cong-≃ : ∀ {m n o m′ n′ o′} (A : Matrix S m n) (B : Matrix S n o) (A′ : Matrix S m′ n′) (B′ : Matrix S n′ o′) → A ≃ A′ → B ≃ B′ → (A ⊗ B) ≃ (A′ ⊗ B′) ⊗-cong-≃ A B A′ B′ p q .m≡p = p .m≡p ⊗-cong-≃ A B A′ B′ p q .n≡q = q .n≡q ⊗-cong-≃ {n = n} {n′ = n′} A B A′ B′ p q .equal {i} {i′} {k} {k′} i≅i′ k≅k′ = begin (A ⊗ B ) i k ≡⟨⟩ ∑[ j < n ] (A i j *′ B j k) ≈⟨ sumₜ-cong′ {n} {n′} (p .n≡q , λ _ _ j≅j′ → cong * (p .equal i≅i′ j≅j′) (q .equal j≅j′ k≅k′)) ⟩ ∑[ j′ < n′ ] (A′ i′ j′ *′ B′ j′ k′) ≡⟨⟩ (A′ ⊗ B′) i′ k′ ∎ where open EqReasoning S.setoid ⊗-assoc : ⦃ props : Has ( * ⟨ distributesOverˡ ⟩ₚ + ∷ * ⟨ distributesOverʳ ⟩ₚ + ∷ associative on * ∷ 0# is leftZero for * ∷ 0# is rightZero for * ∷ 0# is leftIdentity for + ∷ associative on + ∷ commutative on + ∷ []) ⦄ → ∀ {m n p q} (A : Matrix S m n) (B : Matrix S n p) (C : Matrix S p q) → ((A ⊗ B) ⊗ C) ≈ (A ⊗ (B ⊗ C)) ⊗-assoc ⦃ props ⦄ {m} {n} {p} {q} A B C i l = begin ((A ⊗ B) ⊗ C) i l ≡⟨⟩ ∑[ k < p ] (∑[ j < n ] (A i j *′ B j k) *′ C k l) ≈⟨ sumₜ-cong {p} (λ k → sumDistribʳ ⦃ weaken props ⦄ {n} _ _) ⟩ ∑[ k < p ] (∑[ j < n ] ((A i j *′ B j k) *′ C k l)) ≈⟨ sumₜ-cong {p} (λ k → sumₜ-cong {n} (λ j → from props (associative on *) _ _ _)) ⟩ ∑[ k < p ] (∑[ j < n ] (A i j *′ (B j k *′ C k l))) ≈⟨ ∑-comm ⦃ weaken props ⦄ p n _ ⟩ ∑[ j < n ] (∑[ k < p ] (A i j *′ (B j k *′ C k l))) ≈⟨ sumₜ-cong {n} (λ j → S.sym (sumDistribˡ ⦃ weaken props ⦄ {p} _ _)) ⟩ ∑[ j < n ] (A i j *′ ∑[ k < p ] (B j k *′ C k l)) ≡⟨⟩ (A ⊗ (B ⊗ C)) i l ∎ where open EqReasoning S.setoid 1-*-comm : ⦃ props : Has (1# is leftIdentity for * ∷ 1# is rightIdentity for * ∷ 0# is leftZero for * ∷ 0# is rightZero for * ∷ []) ⦄ → ∀ {n} (i j : Fin n) x → 1● i j *′ x ≈′ x *′ 1● i j 1-*-comm i j x with i Fin.≟ j 1-*-comm ⦃ props ⦄ i j x | yes p = S.trans (from props (1# is leftIdentity for *) _) (S.sym (from props (1# is rightIdentity for *) _)) 1-*-comm ⦃ props ⦄ i j x | no ¬p = S.trans (from props (0# is leftZero for *) _) (S.sym (from props (0# is rightZero for *) _)) 1-selectˡ : ⦃ props : Has (1# is leftIdentity for * ∷ 0# is leftZero for * ∷ []) ⦄ → ∀ {n} (i : Fin n) t j → (1● i j *′ lookup t j) ≈′ lookup (Table.select 0′ i t) j 1-selectˡ i t j with i Fin.≟ j | j Fin.≟ i 1-selectˡ ⦃ props ⦄ i t .i | yes ≡.refl | yes q = from props (1# is leftIdentity for *) _ 1-selectˡ .j t j | yes ≡.refl | no ¬q = ⊥-elim (¬q ≡.refl) 1-selectˡ i t .i | no ¬p | yes ≡.refl = ⊥-elim (¬p ≡.refl) 1-selectˡ ⦃ props ⦄ i t j | no _ | no ¬p = from props (0# is leftZero for *) _ 1-selectʳ : ⦃ props : Has (1# is rightIdentity for * ∷ 0# is rightZero for * ∷ []) ⦄ → ∀ {n} (i : Fin n) t j → (lookup t j *′ 1● j i) ≈′ lookup (Table.select 0′ i t) j 1-selectʳ i t j with i Fin.≟ j | j Fin.≟ i 1-selectʳ ⦃ props ⦄ i t .i | yes ≡.refl | yes q = from props (1# is rightIdentity for *) _ 1-selectʳ .j t j | yes ≡.refl | no ¬q = ⊥-elim (¬q ≡.refl) 1-selectʳ i t .i | no ¬p | yes ≡.refl = ⊥-elim (¬p ≡.refl) 1-selectʳ ⦃ props ⦄ i t j | no _ | no ¬p = from props (0# is rightZero for *) _ 1-sym : ∀ {n} (i j : Fin n) → 1● i j ≈′ 1● j i 1-sym i j with i Fin.≟ j | j Fin.≟ i 1-sym i j | yes _ | yes _ = S.refl 1-sym i j | no _ | no _ = S.refl 1-sym i .i | yes ≡.refl | no ¬q = ⊥-elim (¬q ≡.refl) 1-sym i .i | no ¬p | yes ≡.refl = ⊥-elim (¬p ≡.refl) ⊗-identityˡ : ⦃ props : Has ( 1# is leftIdentity for * ∷ 0# is leftZero for * ∷ 0# is leftIdentity for + ∷ 0# is rightIdentity for + ∷ associative on + ∷ commutative on + ∷ []) ⦄ → ∀ {m n} → ∀ (A : Matrix S m n) → (1● ⊗ A) ≈ A ⊗-identityˡ ⦃ props ⦄ {m} A i k = begin ∑[ j < m ] (1● i j *′ A j k) ≈⟨ sumₜ-cong (1-selectˡ ⦃ weaken props ⦄ i _) ⟩ sumₜ (Table.select 0′ i (tabulate (λ x → A x k))) ≈⟨ select-sum ⦃ weaken props ⦄ {m} _ ⟩ A i k ∎ where open EqReasoning S.setoid ⊗-identityʳ : ⦃ props : Has ( 1# is rightIdentity for * ∷ 0# is rightZero for * ∷ 0# is leftIdentity for + ∷ 0# is rightIdentity for + ∷ associative on + ∷ commutative on + ∷ []) ⦄ → ∀ {m n} → ∀ (A : Matrix S m n) → (A ⊗ 1●) ≈ A ⊗-identityʳ ⦃ props ⦄ {n = n} A i k = begin ∑[ j < n ] (A i j *′ 1● j k) ≈⟨ sumₜ-cong (1-selectʳ ⦃ weaken props ⦄ k _) ⟩ sumₜ (Table.select 0′ k (tabulate (A i))) ≈⟨ select-sum ⦃ weaken props ⦄ {n} _ ⟩ A i k ∎ where open EqReasoning S.setoid ⊗-distributesOverˡ-⊕ : ⦃ props : Has (* ⟨ distributesOverˡ ⟩ₚ + ∷ 0# is leftIdentity for + ∷ associative on + ∷ commutative on + ∷ []) ⦄ → ∀ {m n o} (M : Matrix S m n) (A B : Matrix S n o) → M ⊗ (A ⊕ B) ≈ (M ⊗ A) ⊕ (M ⊗ B) ⊗-distributesOverˡ-⊕ ⦃ props ⦄ {n = n} M A B i k = begin ∑[ j < n ] (M i j *′ (A j k +′ B j k)) ≈⟨ sumₜ-cong (λ j → from props (* ⟨ distributesOverˡ ⟩ₚ +) (M i j) (A j k) (B j k)) ⟩ ∑[ j < n ] (M i j *′ A j k +′ M i j *′ B j k) ≈⟨ S.sym (∑-+′-hom ⦃ weaken props ⦄ n (λ j → M i j *′ A j k) (λ j → M i j *′ B j k)) ⟩ ∑[ j < n ] (M i j *′ A j k) +′ ∑[ j < n ] (M i j *′ B j k) ∎ where open EqReasoning S.setoid
{ "alphanum_fraction": 0.4592215014, "avg_line_length": 45.2727272727, "ext": "agda", "hexsha": "b3ee13ac05c3cd55f8d89f089c2aacdb3e1da46c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Matrix/Mul.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Matrix/Mul.agda", "max_line_length": 151, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Matrix/Mul.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2980, "size": 6474 }
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType module Parametric.Syntax.MTerm {Base : Type.Structure} (Const : Term.Structure Base) where open Type.Structure Base open MType.Structure Base open Term.Structure Base Const -- Our extension points are sets of primitives, indexed by the -- types of their arguments and their return type. -- We want different types of constants; some produce values, some produce -- computations. In all cases, arguments are assumed to be values (though -- individual primitives might require thunks). ValConstStructure : Set₁ ValConstStructure = ValType → Set CompConstStructure : Set₁ CompConstStructure = CompType → Set CbnToCompConstStructure : CompConstStructure → Set CbnToCompConstStructure CompConst = ∀ {τ} → Const τ → CompConst (cbnToCompType τ) CbvToCompConstStructure : CompConstStructure → Set CbvToCompConstStructure CompConst = ∀ {τ} → Const τ → CompConst (cbvToCompType τ) module Structure (ValConst : ValConstStructure) (CompConst : CompConstStructure) (cbnToCompConst : CbnToCompConstStructure CompConst) (cbvToCompConst : CbvToCompConstStructure CompConst) where mutual -- Analogues of Terms Vals : ValContext → ValContext → Set Vals Γ = DependentList (Val Γ) Comps : ValContext → List CompType → Set Comps Γ = DependentList (Comp Γ) data Val Γ : (τ : ValType) → Set where vVar : ∀ {τ} (x : ValVar Γ τ) → Val Γ τ -- XXX Do we need thunks? The draft in the paper doesn't have them. -- However, they will start being useful if we deal with CBN source -- languages. vThunk : ∀ {τ} → Comp Γ τ → Val Γ (U τ) vConst : ∀ {τ} → (c : ValConst τ) → Val Γ τ data Comp Γ : (τ : CompType) → Set where cConst : ∀ {τ} → (c : CompConst τ) → Comp Γ τ cForce : ∀ {τ} → Val Γ (U τ) → Comp Γ τ cReturn : ∀ {τ} (v : Val Γ τ) → Comp Γ (F τ) {- -- Originally, M to x in N. But here we have no names! _into_ : ∀ {σ τ} → (e₁ : Comp Γ (F σ)) → (e₂ : Comp (σ •• Γ) τ) → Comp Γ τ -} -- The following constructor is the main difference between CBPV and this -- monadic calculus. This is better for the caching transformation. _into_ : ∀ {σ τ} → (e₁ : Comp Γ (F σ)) → (e₂ : Comp (σ •• Γ) (F τ)) → Comp Γ (F τ) cAbs : ∀ {σ τ} → (t : Comp (σ •• Γ) τ) → Comp Γ (σ ⇛ τ) cApp : ∀ {σ τ} → (s : Comp Γ (σ ⇛ τ)) → (t : Val Γ σ) → Comp Γ τ weaken-val : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Val Γ₁ τ → Val Γ₂ τ weaken-comp : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Comp Γ₁ τ → Comp Γ₂ τ weaken-val Γ₁≼Γ₂ (vVar x) = vVar (weaken-val-var Γ₁≼Γ₂ x) weaken-val Γ₁≼Γ₂ (vThunk x) = vThunk (weaken-comp Γ₁≼Γ₂ x) weaken-val Γ₁≼Γ₂ (vConst c) = vConst c weaken-comp Γ₁≼Γ₂ (cConst c) = cConst c weaken-comp Γ₁≼Γ₂ (cForce x) = cForce (weaken-val Γ₁≼Γ₂ x) weaken-comp Γ₁≼Γ₂ (cReturn v) = cReturn (weaken-val Γ₁≼Γ₂ v) weaken-comp Γ₁≼Γ₂ (_into_ {σ} c c₁) = (weaken-comp Γ₁≼Γ₂ c) into (weaken-comp (keep σ •• Γ₁≼Γ₂) c₁) weaken-comp Γ₁≼Γ₂ (cAbs {σ} c) = cAbs (weaken-comp (keep σ •• Γ₁≼Γ₂) c) weaken-comp Γ₁≼Γ₂ (cApp s t) = cApp (weaken-comp Γ₁≼Γ₂ s) (weaken-val Γ₁≼Γ₂ t) fromCBN : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBNCtx Γ) (cbnToCompType τ) fromCBN (const c) = cConst (cbnToCompConst c) fromCBN (var x) = cForce (vVar (fromVar cbnToValType x)) fromCBN (app s t) = cApp (fromCBN s) (vThunk (fromCBN t)) fromCBN (abs t) = cAbs (fromCBN t) -- To satisfy termination checking, we'd need to inline fromCBV and weaken: fromCBV needs to produce a term in a bigger context. -- But let's ignore that. {-# TERMINATING #-} fromCBV : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBVCtx Γ) (cbvToCompType τ) fromCBV (const c) = cConst (cbvToCompConst c) fromCBV (app s t) = (fromCBV s) into (fromCBV (weaken (drop _ • ≼-refl) t) into cApp (cForce (vVar (vThat vThis))) (vVar vThis)) -- Values fromCBV (var x) = cReturn (vVar (fromVar cbvToValType x)) fromCBV (abs t) = cReturn (vThunk (cAbs (fromCBV t))) -- This reflects the CBV conversion of values in TLCA '99, but we can't write -- this because it's partial on the Term type. Instead, we duplicate thunking -- at the call site. {- fromCBVToVal : ∀ {Γ τ} (t : Term Γ τ) → Val (fromCBVCtx Γ) (cbvToValType τ) fromCBVToVal (var x) = vVar (fromVar cbvToValType x) fromCBVToVal (abs t) = vThunk (cAbs (fromCBV t)) fromCBVToVal (const c args) = {!!} fromCBVToVal (app t t₁) = {!!} -- Not a value -}
{ "alphanum_fraction": 0.625772098, "avg_line_length": 34.7777777778, "ext": "agda", "hexsha": "9f25c83dad67c732b6c00019e8cdb5ad0a835eb3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Parametric/Syntax/MTerm.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Parametric/Syntax/MTerm.agda", "max_line_length": 130, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Parametric/Syntax/MTerm.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 1698, "size": 4695 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra.Bundles module Algebra.Properties.Lattice {l₁ l₂} (L : Lattice l₁ l₂) where open Lattice L open import Algebra.Structures _≈_ open import Algebra.Definitions _≈_ import Algebra.Properties.Semilattice as SemilatticeProperties open import Relation.Binary import Relation.Binary.Lattice as R open import Relation.Binary.Reasoning.Setoid setoid open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; module Equivalence) open import Data.Product using (_,_; swap) ------------------------------------------------------------------------ -- _∧_ is a semilattice ∧-idem : Idempotent _∧_ ∧-idem x = begin x ∧ x ≈⟨ ∧-congˡ (sym (∨-absorbs-∧ _ _)) ⟩ x ∧ (x ∨ x ∧ x) ≈⟨ ∧-absorbs-∨ _ _ ⟩ x ∎ ∧-isMagma : IsMagma _∧_ ∧-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ∧-cong } ∧-isSemigroup : IsSemigroup _∧_ ∧-isSemigroup = record { isMagma = ∧-isMagma ; assoc = ∧-assoc } ∧-isBand : IsBand _∧_ ∧-isBand = record { isSemigroup = ∧-isSemigroup ; idem = ∧-idem } ∧-isSemilattice : IsSemilattice _∧_ ∧-isSemilattice = record { isBand = ∧-isBand ; comm = ∧-comm } ∧-semilattice : Semilattice l₁ l₂ ∧-semilattice = record { isSemilattice = ∧-isSemilattice } open SemilatticeProperties ∧-semilattice public using ( ∧-isOrderTheoreticMeetSemilattice ; ∧-isOrderTheoreticJoinSemilattice ; ∧-orderTheoreticMeetSemilattice ; ∧-orderTheoreticJoinSemilattice ) ------------------------------------------------------------------------ -- _∨_ is a semilattice ∨-idem : Idempotent _∨_ ∨-idem x = begin x ∨ x ≈⟨ ∨-congˡ (sym (∧-idem _)) ⟩ x ∨ x ∧ x ≈⟨ ∨-absorbs-∧ _ _ ⟩ x ∎ ∨-isMagma : IsMagma _∨_ ∨-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ∨-cong } ∨-isSemigroup : IsSemigroup _∨_ ∨-isSemigroup = record { isMagma = ∨-isMagma ; assoc = ∨-assoc } ∨-isBand : IsBand _∨_ ∨-isBand = record { isSemigroup = ∨-isSemigroup ; idem = ∨-idem } ∨-isSemilattice : IsSemilattice _∨_ ∨-isSemilattice = record { isBand = ∨-isBand ; comm = ∨-comm } ∨-semilattice : Semilattice l₁ l₂ ∨-semilattice = record { isSemilattice = ∨-isSemilattice } open SemilatticeProperties ∨-semilattice public using () renaming ( ∧-isOrderTheoreticMeetSemilattice to ∨-isOrderTheoreticMeetSemilattice ; ∧-isOrderTheoreticJoinSemilattice to ∨-isOrderTheoreticJoinSemilattice ; ∧-orderTheoreticMeetSemilattice to ∨-orderTheoreticMeetSemilattice ; ∧-orderTheoreticJoinSemilattice to ∨-orderTheoreticJoinSemilattice ) ------------------------------------------------------------------------ -- The dual construction is also a lattice. ∧-∨-isLattice : IsLattice _∧_ _∨_ ∧-∨-isLattice = record { isEquivalence = isEquivalence ; ∨-comm = ∧-comm ; ∨-assoc = ∧-assoc ; ∨-cong = ∧-cong ; ∧-comm = ∨-comm ; ∧-assoc = ∨-assoc ; ∧-cong = ∨-cong ; absorptive = swap absorptive } ∧-∨-lattice : Lattice _ _ ∧-∨-lattice = record { isLattice = ∧-∨-isLattice } ------------------------------------------------------------------------ -- Every algebraic lattice can be turned into an order-theoretic one. open SemilatticeProperties ∧-semilattice public using (poset) open Poset poset using (_≤_; isPartialOrder) ∨-∧-isOrderTheoreticLattice : R.IsLattice _≈_ _≤_ _∨_ _∧_ ∨-∧-isOrderTheoreticLattice = record { isPartialOrder = isPartialOrder ; supremum = supremum ; infimum = infimum } where open R.MeetSemilattice ∧-orderTheoreticMeetSemilattice using (infimum) open R.JoinSemilattice ∨-orderTheoreticJoinSemilattice using (x≤x∨y; y≤x∨y; ∨-least) renaming (_≤_ to _≤′_) -- An alternative but equivalent interpretation of the order _≤_. sound : ∀ {x y} → x ≤′ y → x ≤ y sound {x} {y} y≈y∨x = sym $ begin x ∧ y ≈⟨ ∧-congˡ y≈y∨x ⟩ x ∧ (y ∨ x) ≈⟨ ∧-congˡ (∨-comm y x) ⟩ x ∧ (x ∨ y) ≈⟨ ∧-absorbs-∨ x y ⟩ x ∎ complete : ∀ {x y} → x ≤ y → x ≤′ y complete {x} {y} x≈x∧y = sym $ begin y ∨ x ≈⟨ ∨-congˡ x≈x∧y ⟩ y ∨ (x ∧ y) ≈⟨ ∨-congˡ (∧-comm x y) ⟩ y ∨ (y ∧ x) ≈⟨ ∨-absorbs-∧ y x ⟩ y ∎ supremum : R.Supremum _≤_ _∨_ supremum x y = sound (x≤x∨y x y) , sound (y≤x∨y x y) , λ z x≤z y≤z → sound (∨-least (complete x≤z) (complete y≤z)) ∨-∧-orderTheoreticLattice : R.Lattice _ _ _ ∨-∧-orderTheoreticLattice = record { isLattice = ∨-∧-isOrderTheoreticLattice } ------------------------------------------------------------------------ -- One can replace the underlying equality with an equivalent one. replace-equality : {_≈′_ : Rel Carrier l₂} → (∀ {x y} → x ≈ y ⇔ (x ≈′ y)) → Lattice _ _ replace-equality {_≈′_} ≈⇔≈′ = record { _≈_ = _≈′_ ; _∧_ = _∧_ ; _∨_ = _∨_ ; isLattice = record { isEquivalence = record { refl = to ⟨$⟩ refl ; sym = λ x≈y → to ⟨$⟩ sym (from ⟨$⟩ x≈y) ; trans = λ x≈y y≈z → to ⟨$⟩ trans (from ⟨$⟩ x≈y) (from ⟨$⟩ y≈z) } ; ∨-comm = λ x y → to ⟨$⟩ ∨-comm x y ; ∨-assoc = λ x y z → to ⟨$⟩ ∨-assoc x y z ; ∨-cong = λ x≈y u≈v → to ⟨$⟩ ∨-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v) ; ∧-comm = λ x y → to ⟨$⟩ ∧-comm x y ; ∧-assoc = λ x y z → to ⟨$⟩ ∧-assoc x y z ; ∧-cong = λ x≈y u≈v → to ⟨$⟩ ∧-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v) ; absorptive = (λ x y → to ⟨$⟩ ∨-absorbs-∧ x y) , (λ x y → to ⟨$⟩ ∧-absorbs-∨ x y) } } where open module E {x y} = Equivalence (≈⇔≈′ {x} {y}) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 ∧-idempotent = ∧-idem {-# WARNING_ON_USAGE ∧-idempotent "Warning: ∧-idempotent was deprecated in v1.1. Please use ∧-idem instead." #-} ∨-idempotent = ∨-idem {-# WARNING_ON_USAGE ∨-idempotent "Warning: ∨-idempotent was deprecated in v1.1. Please use ∨-idem instead." #-} isOrderTheoreticLattice = ∨-∧-isOrderTheoreticLattice {-# WARNING_ON_USAGE isOrderTheoreticLattice "Warning: isOrderTheoreticLattice was deprecated in v1.1. Please use ∨-∧-isOrderTheoreticLattice instead." #-} orderTheoreticLattice = ∨-∧-orderTheoreticLattice {-# WARNING_ON_USAGE orderTheoreticLattice "Warning: orderTheoreticLattice was deprecated in v1.1. Please use ∨-∧-orderTheoreticLattice instead." #-}
{ "alphanum_fraction": 0.5540619521, "avg_line_length": 28.8776371308, "ext": "agda", "hexsha": "f29a552778e18411c64cfe3514e15d48a86f142c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Properties/Lattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Properties/Lattice.agda", "max_line_length": 86, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Properties/Lattice.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2566, "size": 6844 }
postulate A : Set works : Set works = let B : {X : Set} → Set B = let _ = Set in A in A fails : Set fails = let B : {X : Set} → Set B = A -- Set !=< {X : Set} → Set in A
{ "alphanum_fraction": 0.4147465438, "avg_line_length": 15.5, "ext": "agda", "hexsha": "bc2e081bca9d14c6ee67095a8484c60b64a5d52c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue4131.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue4131.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue4131.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 78, "size": 217 }
{-# OPTIONS --safe #-} module Cubical.Data.Int.MoreInts.DiffInt where open import Cubical.Data.Int.MoreInts.DiffInt.Base public open import Cubical.Data.Int.MoreInts.DiffInt.Properties public
{ "alphanum_fraction": 0.8031088083, "avg_line_length": 32.1666666667, "ext": "agda", "hexsha": "66354a320c048b78ad338f90f81aedf9c9d8bc5f", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Data/Int/MoreInts/DiffInt.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Data/Int/MoreInts/DiffInt.agda", "max_line_length": 63, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Data/Int/MoreInts/DiffInt.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 45, "size": 193 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Weight biased leftist tree that proves both priority and rank -- -- invariants and uses single-pass merging algorithm. -- ---------------------------------------------------------------------- {-# OPTIONS --sized-types #-} module SinglePassMerge.CombinedProofs where open import Basics open import TwoPassMerge.RankProof using ( makeT-lemma ) renaming ( proof-1 to proof-1a; proof-2 to proof-2a ) open import SinglePassMerge.RankProof using ( proof-1b; proof-2b ) open import Sized data Heap : {i : Size} → Priority → Rank → Set where empty : {i : Size} {b : Priority} → Heap {↑ i} b zero node : {i : Size} {b : Priority} → (p : Priority) → p ≥ b → {l r : Rank} → l ≥ r → Heap {i} p l → Heap {i} p r → Heap {↑ i} b (suc (l + r)) -- Here we combined previously conducted proofs of rank and priority -- invariants in the same way we did it for two-pass merging algorithm -- in TwoPassMerge.CombinedProofs. The most important thing here is -- that we use order function both when comparing priorities and ranks -- of new subtrees. This gives us evidence that required invariants -- hold. merge : {i j : Size} {b : Priority} {l r : Rank} → Heap {i} b l → Heap {j} b r → Heap {∞} b (l + r) merge empty h2 = h2 merge {_} .{_} {b} {suc l} {zero} h1 empty = subst (Heap b) (sym (+0 (suc l))) h1 merge .{_} .{_} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {_} .{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {_} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) with order p1 p2 | order l1-rank (r1-rank + suc (l2-rank + r2-rank)) | order l2-rank (r2-rank + suc (l1-rank + r1-rank)) merge .{↑ i} .{↑ j} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {i}.{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {j} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) | le p1≤p2 | ge l1≥r1+h2 | _ = subst (Heap b) (proof-1a l1-rank r1-rank l2-rank r2-rank) (node p1 p1≥b l1≥r1+h2 l1 (merge r1 (node p2 p1≤p2 l2≥r2 l2 r2))) merge .{↑ i} .{↑ j} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {i} .{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {j} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) | le p1≤p2 | le l1≤r1+h2 | _ = subst (Heap b) (proof-1b l1-rank r1-rank l2-rank r2-rank) (node p1 p1≥b l1≤r1+h2 (merge r1 (node p2 p1≤p2 l2≥r2 l2 r2)) l1) merge .{↑ i} .{↑ j} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {i} .{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {j} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) | ge p1≥p2 | _ | ge l2≥r2+h1 = subst (Heap b) (proof-2a l1-rank r1-rank l2-rank r2-rank) (node p2 p2≥b l2≥r2+h1 l2 (merge r2 (node p1 p1≥p2 l1≥r1 l1 r1))) merge .{↑ i} .{↑ j} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {i} .{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {j} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) | ge p1≥p2 | _ | le l2≤r2+h1 = subst (Heap b) (proof-2b l1-rank r1-rank l2-rank r2-rank) (node p2 p2≥b l2≤r2+h1 (merge r2 (node p1 p1≥p2 l1≥r1 l1 r1)) l2)
{ "alphanum_fraction": 0.52597226, "avg_line_length": 44.8414634146, "ext": "agda", "hexsha": "755fdb68572a5172e0ff215de410938aa9cb79a4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/SinglePassMerge/CombinedProofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/SinglePassMerge/CombinedProofs.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/SinglePassMerge/CombinedProofs.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 1533, "size": 3677 }
module PiQ.Examples where open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Data.Maybe open import Data.Nat open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality open import PiQ.Syntax open import PiQ.Opsem open import PiQ.Eval open import PiQ.Interp ----------------------------------------------------------------------------- -- Patterns and data definitions pattern 𝔹 = 𝟙 +ᵤ 𝟙 pattern 𝔽 = inj₁ tt pattern 𝕋 = inj₂ tt 𝔹+ : ℕ → 𝕌 𝔹+ 0 = 𝟘 𝔹+ 1 = 𝔹 𝔹+ (suc (suc n)) = 𝔹 +ᵤ (𝔹+ (suc n)) 𝔹^ : ℕ → 𝕌 𝔹^ 0 = 𝟙 𝔹^ 1 = 𝔹 𝔹^ (suc (suc n)) = 𝔹 ×ᵤ 𝔹^ (suc n) 𝔹* : ℕ → 𝕌 𝔹* n = 𝔹^ (1 + n) 𝔽^ : (n : ℕ) → ⟦ 𝔹^ n ⟧ 𝔽^ 0 = tt 𝔽^ 1 = 𝔽 𝔽^ (suc (suc n)) = 𝔽 , 𝔽^ (suc n) ----------------------------------------------------------------------------- -- Adaptors [A+B]+C=[C+B]+A : ∀ {A B C} → (A +ᵤ B) +ᵤ C ↔ (C +ᵤ B) +ᵤ A [A+B]+C=[C+B]+A = assocr₊ ⨾ (id↔ ⊕ swap₊) ⨾ swap₊ [A+B]+C=[A+C]+B : ∀ {A B C} → (A +ᵤ B) +ᵤ C ↔ (A +ᵤ C) +ᵤ B [A+B]+C=[A+C]+B = assocr₊ ⨾ (id↔ ⊕ swap₊) ⨾ assocl₊ [A+B]+[C+D]=[A+C]+[B+D] : {A B C D : 𝕌} → (A +ᵤ B) +ᵤ (C +ᵤ D) ↔ (A +ᵤ C) +ᵤ (B +ᵤ D) [A+B]+[C+D]=[A+C]+[B+D] = assocl₊ ⨾ (assocr₊ ⊕ id↔) ⨾ ((id↔ ⊕ swap₊) ⊕ id↔) ⨾ (assocl₊ ⊕ id↔) ⨾ assocr₊ Ax[BxC]=Bx[AxC] : {A B C : 𝕌} → A ×ᵤ (B ×ᵤ C) ↔ B ×ᵤ (A ×ᵤ C) Ax[BxC]=Bx[AxC] = assocl⋆ ⨾ (swap⋆ ⊗ id↔) ⨾ assocr⋆ [AxB]×C=[A×C]xB : ∀ {A B C} → (A ×ᵤ B) ×ᵤ C ↔ (A ×ᵤ C) ×ᵤ B [AxB]×C=[A×C]xB = assocr⋆ ⨾ (id↔ ⊗ swap⋆) ⨾ assocl⋆ [A×B]×[C×D]=[A×C]×[B×D] : {A B C D : 𝕌} → (A ×ᵤ B) ×ᵤ (C ×ᵤ D) ↔ (A ×ᵤ C) ×ᵤ (B ×ᵤ D) [A×B]×[C×D]=[A×C]×[B×D] = assocl⋆ ⨾ (assocr⋆ ⊗ id↔) ⨾ ((id↔ ⊗ swap⋆) ⊗ id↔) ⨾ (assocl⋆ ⊗ id↔) ⨾ assocr⋆ -- FST2LAST(b₁,b₂,…,bₙ) = (b₂,…,bₙ,b₁) FST2LAST : ∀ {n} → 𝔹^ n ↔ 𝔹^ n FST2LAST {0} = id↔ FST2LAST {1} = id↔ FST2LAST {2} = swap⋆ FST2LAST {suc (suc (suc n))} = Ax[BxC]=Bx[AxC] ⨾ (id↔ ⊗ FST2LAST) FST2LAST⁻¹ : ∀ {n} → 𝔹^ n ↔ 𝔹^ n FST2LAST⁻¹ = ! FST2LAST ----------------------------------------------------------------------------- -- Reversible Conditionals -- not(b) = ¬b NOT : 𝔹 ↔ 𝔹 NOT = swap₊ -- cnot(b₁,b₂) = (b₁,b₁ xor b₂) CNOT : 𝔹 ×ᵤ 𝔹 ↔ 𝔹 ×ᵤ 𝔹 CNOT = dist ⨾ (id↔ ⊕ (id↔ ⊗ swap₊)) ⨾ factor -- CIF(c₁,c₂)(𝔽,a) = (𝔽,c₁ a) -- CIF(c₁,c₂)(𝕋,a) = (𝕋,c₂ a) CIF : {A : 𝕌} → (c₁ c₂ : A ↔ A) → 𝔹 ×ᵤ A ↔ 𝔹 ×ᵤ A CIF c₁ c₂ = dist ⨾ ((id↔ ⊗ c₁) ⊕ (id↔ ⊗ c₂)) ⨾ factor CIF₁ CIF₂ : {A : 𝕌} → (c : A ↔ A) → 𝔹 ×ᵤ A ↔ 𝔹 ×ᵤ A CIF₁ c = CIF c id↔ CIF₂ c = CIF id↔ c -- toffoli(b₁,…,bₙ,b) = (b₁,…,bₙ,b xor (b₁ ∧ … ∧ bₙ)) TOFFOLI : {n : ℕ} → 𝔹^ n ↔ 𝔹^ n TOFFOLI {0} = id↔ TOFFOLI {1} = swap₊ TOFFOLI {suc (suc n)} = CIF₂ TOFFOLI -- TOFFOLI(b₁,…,bₙ,b) = (b₁,…,bₙ,b xor (¬b₁ ∧ … ∧ ¬bₙ)) TOFFOLI' : ∀ {n} → 𝔹^ n ↔ 𝔹^ n TOFFOLI' {0} = id↔ TOFFOLI' {1} = swap₊ TOFFOLI' {suc (suc n)} = CIF₁ TOFFOLI' -- reset(b₁,b₂,…,bₙ) = (b₁ xor (b₂ ∨ … ∨ bₙ),b₂,…,bₙ) RESET : ∀ {n} → 𝔹 ×ᵤ 𝔹^ n ↔ 𝔹 ×ᵤ 𝔹^ n RESET {0} = id↔ RESET {1} = swap⋆ ⨾ CNOT ⨾ swap⋆ RESET {suc (suc n)} = Ax[BxC]=Bx[AxC] ⨾ CIF RESET (swap₊ ⊗ id↔) ⨾ Ax[BxC]=Bx[AxC] ----------------------------------------------------------------------------- -- Reversible Copy -- copy(𝔽,b₁,…,bₙ) = (b₁,b₁,…,bₙ) COPY : ∀ {n} → 𝔹 ×ᵤ 𝔹^ n ↔ 𝔹 ×ᵤ 𝔹^ n COPY {0} = id↔ COPY {1} = swap⋆ ⨾ CNOT ⨾ swap⋆ COPY {suc (suc n)} = assocl⋆ ⨾ (COPY {1} ⊗ id↔) ⨾ assocr⋆ ----------------------------------------------------------------------------- -- Arithmetic -- incr(b̅) = incr(b̅ + 1) INCR : ∀ {n} → 𝔹^ n ↔ 𝔹^ n INCR {0} = id↔ INCR {1} = swap₊ INCR {suc (suc n)} = (id↔ ⊗ INCR) ⨾ FST2LAST ⨾ TOFFOLI' ⨾ FST2LAST⁻¹ ----------------------------------------------------------------------------- -- Control flow zigzag : 𝔹 ↔ 𝔹 zigzag = uniti₊l ⨾ (η₊ ⊕ id↔) ⨾ [A+B]+C=[C+B]+A ⨾ (ε₊ ⊕ id↔) ⨾ unite₊l zigzagₜᵣ = evalₜᵣ zigzag 𝔽 ----------------------------------------------------------------------------- -- Iteration trace₊ : ∀ {A B C} → A +ᵤ C ↔ B +ᵤ C → A ↔ B trace₊ f = uniti₊r ⨾ (id↔ ⊕ η₊) ⨾ assocl₊ ⨾ (f ⊕ id↔) ⨾ assocr₊ ⨾ (id↔ ⊕ ε₊) ⨾ unite₊r ----------------------------------------------------------------------------- -- Ancilla Management trace⋆ : ∀ {A B C} → (c : ⟦ C ⟧) → A ×ᵤ C ↔ B ×ᵤ C → A ↔ B trace⋆ c f = uniti⋆r ⨾ (id↔ ⊗ ηₓ c) ⨾ assocl⋆ ⨾ (f ⊗ id↔) ⨾ assocr⋆ ⨾ (id↔ ⊗ εₓ _) ⨾ unite⋆r ----------------------------------------------------------------------------- -- Higher-Order Combinators hof- : {A B : 𝕌} → (A ↔ B) → (𝟘 ↔ - A +ᵤ B) hof- c = η₊ ⨾ (c ⊕ id↔) ⨾ swap₊ comp- : {A B C : 𝕌} → (- A +ᵤ B) +ᵤ (- B +ᵤ C) ↔ (- A +ᵤ C) comp- = assocl₊ ⨾ (assocr₊ ⊕ id↔) ⨾ ((id↔ ⊕ ε₊) ⊕ id↔) ⨾ (unite₊r ⊕ id↔) app- : {A B : 𝕌} → (- A +ᵤ B) +ᵤ A ↔ B app- = swap₊ ⨾ assocl₊ ⨾ (ε₊ ⊕ id↔) ⨾ unite₊l curry- : {A B C : 𝕌} → (A +ᵤ B ↔ C) → (A ↔ - B +ᵤ C) curry- c = uniti₊l ⨾ (η₊ ⊕ id↔) ⨾ swap₊ ⨾ assocl₊ ⨾ (c ⊕ id↔) ⨾ swap₊ hof/ : {A B : 𝕌} → (A ↔ B) → (v : ⟦ A ⟧) → (𝟙 ↔ 𝟙/ v ×ᵤ B) hof/ c v = ηₓ v ⨾ (c ⊗ id↔) ⨾ swap⋆ comp/ : {A B C : 𝕌} {v : ⟦ A ⟧} → (w : ⟦ B ⟧) → (𝟙/ v ×ᵤ B) ×ᵤ (𝟙/ w ×ᵤ C) ↔ (𝟙/ v ×ᵤ C) comp/ w = assocl⋆ ⨾ (assocr⋆ ⊗ id↔) ⨾ ((id↔ ⊗ εₓ w) ⊗ id↔) ⨾ (unite⋆r ⊗ id↔) app/ : {A B : 𝕌} → (v : ⟦ A ⟧) → (𝟙/ v ×ᵤ B) ×ᵤ A ↔ B app/ v = swap⋆ ⨾ assocl⋆ ⨾ (εₓ _ ⊗ id↔) ⨾ unite⋆l curry/ : {A B C : 𝕌} → (A ×ᵤ B ↔ C) → (v : ⟦ B ⟧) → (A ↔ 𝟙/ v ×ᵤ C) curry/ c v = uniti⋆l ⨾ (ηₓ v ⊗ id↔) ⨾ swap⋆ ⨾ assocl⋆ ⨾ (c ⊗ id↔) ⨾ swap⋆ ----------------------------------------------------------------------------- -- Algebraic Identities inv- : {A : 𝕌} → A ↔ - (- A) inv- = uniti₊r ⨾ (id↔ ⊕ η₊) ⨾ assocl₊ ⨾ (ε₊ ⊕ id↔) ⨾ unite₊l dist- : {A B : 𝕌} → - (A +ᵤ B) ↔ - A +ᵤ - B dist- = uniti₊l ⨾ (η₊ ⊕ id↔) ⨾ uniti₊l ⨾ (η₊ ⊕ id↔) ⨾ assocl₊ ⨾ ([A+B]+[C+D]=[A+C]+[B+D] ⊕ id↔) ⨾ (swap₊ ⊕ id↔) ⨾ assocr₊ ⨾ (id↔ ⊕ ε₊) ⨾ unite₊r neg- : {A B : 𝕌} → (A ↔ B) → (- A ↔ - B) neg- c = uniti₊r ⨾ (id↔ ⊕ η₊) ⨾ (id↔ ⊕ ! c ⊕ id↔) ⨾ assocl₊ ⨾ ((swap₊ ⨾ ε₊) ⊕ id↔) ⨾ unite₊l inv/ : {A : 𝕌} {v : ⟦ A ⟧} → A ↔ (𝟙/_ {𝟙/ v} ↻) inv/ = uniti⋆r ⨾ (id↔ ⊗ ηₓ _) ⨾ assocl⋆ ⨾ (εₓ _ ⊗ id↔) ⨾ unite⋆l dist/ : {A B : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} → 𝟙/ (a , b) ↔ 𝟙/ a ×ᵤ 𝟙/ b dist/ {A} {B} {a} {b} = uniti⋆l ⨾ (ηₓ b ⊗ id↔) ⨾ uniti⋆l ⨾ (ηₓ a ⊗ id↔) ⨾ assocl⋆ ⨾ ([A×B]×[C×D]=[A×C]×[B×D] ⊗ id↔) ⨾ (swap⋆ ⊗ id↔) ⨾ assocr⋆ ⨾ (id↔ ⊗ εₓ (a , b)) ⨾ unite⋆r neg/ : {A B : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} → (A ↔ B) → (𝟙/ a ↔ 𝟙/ b) neg/ {A} {B} {a} {b} c = uniti⋆r ⨾ (id↔ ⊗ ηₓ _) ⨾ (id↔ ⊗ ! c ⊗ id↔) ⨾ assocl⋆ ⨾ ((swap⋆ ⨾ εₓ _) ⊗ id↔) ⨾ unite⋆l dist×- : {A B : 𝕌} → (- A) ×ᵤ B ↔ - (A ×ᵤ B) dist×- = uniti₊r ⨾ (id↔ ⊕ η₊) ⨾ assocl₊ ⨾ ((factor ⨾ ((swap₊ ⨾ ε₊) ⊗ id↔) ⨾ absorbr) ⊕ id↔) ⨾ unite₊l neg× : {A B : 𝕌} → A ×ᵤ B ↔ (- A) ×ᵤ (- B) neg× = inv- ⨾ neg- (! dist×- ⨾ swap⋆) ⨾ ! dist×- ⨾ swap⋆ fracDist : ∀ {A B} {a : ⟦ A ⟧} {b : ⟦ B ⟧} → 𝟙/ a ×ᵤ 𝟙/ b ↔ 𝟙/ (a , b) fracDist = uniti⋆l ⨾ ((ηₓ _ ⨾ swap⋆) ⊗ id↔) ⨾ assocr⋆ ⨾ (id↔ ⊗ ([A×B]×[C×D]=[A×C]×[B×D] ⨾ (εₓ _ ⊗ εₓ _) ⨾ unite⋆l)) ⨾ unite⋆r mulFrac : ∀ {A B C D} {b : ⟦ B ⟧} {d : ⟦ D ⟧} → (A ×ᵤ 𝟙/ b) ×ᵤ (C ×ᵤ 𝟙/ d) ↔ (A ×ᵤ C) ×ᵤ (𝟙/ (b , d)) mulFrac = [A×B]×[C×D]=[A×C]×[B×D] ⨾ (id↔ ⊗ fracDist) addFracCom : ∀ {A B C} {v : ⟦ C ⟧} → (A ×ᵤ 𝟙/ v) +ᵤ (B ×ᵤ 𝟙/ v) ↔ (A +ᵤ B) ×ᵤ (𝟙/ v) addFracCom = factor addFrac : ∀ {A B C D} → (v : ⟦ C ⟧) → (w : ⟦ D ⟧) → (A ×ᵤ 𝟙/_ {C} v) +ᵤ (B ×ᵤ 𝟙/_ {D} w) ↔ ((A ×ᵤ D) +ᵤ (C ×ᵤ B)) ×ᵤ (𝟙/_ {C ×ᵤ D} (v , w)) addFrac v w = ((uniti⋆r ⨾ (id↔ ⊗ ηₓ w)) ⊕ (uniti⋆l ⨾ (ηₓ v ⊗ id↔))) ⨾ [A×B]×[C×D]=[A×C]×[B×D] ⊕ [A×B]×[C×D]=[A×C]×[B×D] ⨾ ((id↔ ⊗ fracDist) ⊕ (id↔ ⊗ fracDist)) ⨾ factor ----------------------------------------------------------------------------- -----------------------------------------------------------------------------
{ "alphanum_fraction": 0.379590766, "avg_line_length": 32.1687763713, "ext": "agda", "hexsha": "dde3057f6866d5d19e73f5f5e66251b3a796928f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiQ/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiQ/Examples.agda", "max_line_length": 103, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiQ/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 4617, "size": 7624 }
{-# OPTIONS -v treeless.opt:20 -v treeless.opt.unused:30 #-} module _ where open import Common.Prelude -- First four arguments are unused. maybe : ∀ {a b} {A : Set a} {B : Set b} → B → (A → B) → Maybe A → B maybe z f nothing = z maybe z f (just x) = f x mapMaybe : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Maybe A → Maybe B mapMaybe f x = maybe nothing (λ y → just (f y)) x maybeToNat : Maybe Nat → Nat maybeToNat m = maybe 0 (λ x → x) m foldr : {A B : Set} → (A → B → B) → B → List A → B foldr f z [] = z foldr f z (x ∷ xs) = f x (foldr f z xs) main : IO Unit main = printNat (maybeToNat (just 42)) ,, printNat (maybeToNat (mapMaybe (10 +_) (just 42))) ,, printNat (foldr _+_ 0 (1 ∷ 2 ∷ 3 ∷ 4 ∷ []))
{ "alphanum_fraction": 0.5674547983, "avg_line_length": 27.6538461538, "ext": "agda", "hexsha": "5bddf3f5f48c134a09c25de1909b4f2a4e002c87", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/UnusedArguments.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/UnusedArguments.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/UnusedArguments.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 283, "size": 719 }
open import Agda.Builtin.Nat data D : Nat → Set where c : (n : Nat) → D n foo : (m : Nat) → D (suc m) → Nat foo m (c (suc n)) = m + n
{ "alphanum_fraction": 0.5289855072, "avg_line_length": 17.25, "ext": "agda", "hexsha": "847b9d231c20943d05d01c298bedda93aa0603e9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2896.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2896.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2896.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 60, "size": 138 }
open import Agda.Builtin.Char open import Agda.Builtin.List open import Agda.Builtin.Equality data ⊥ : Set where infix 4 _≢_ _≢_ : {A : Set} → A → A → Set x ≢ y = x ≡ y → ⊥ <?> = '\xFFFD' infix 0 _∋_ _∋_ : (A : Set) → A → A A ∋ x = x _ = primNatToChar 0xD7FF ≢ <?> ∋ λ () _ = primNatToChar 0xD800 ≡ <?> ∋ refl _ = primNatToChar 0xDFFF ≡ <?> ∋ refl _ = primNatToChar 0xE000 ≢ <?> ∋ λ ()
{ "alphanum_fraction": 0.5816326531, "avg_line_length": 17.8181818182, "ext": "agda", "hexsha": "5b2d3bf93c4cf9762554e09866ce043bfc98e91d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4999.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4999.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4999.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 180, "size": 392 }
open import Agda.Builtin.Bool open import Agda.Builtin.Equality data Irr (A : Set) : Set where irr : .(x : A) → Irr A data D {A : Set} : Irr A → Set where -- x is mistakenly marked as forced here! d : (x : A) → D (irr x) unD : ∀ {A i} → D i → A unD (d x) = x dtrue=dfalse : d true ≡ d false dtrue=dfalse = refl _$≡_ : ∀ {A B : Set} (f : A → B) {x y} → x ≡ y → f x ≡ f y f $≡ refl = refl true=false : true ≡ false true=false = unD $≡ dtrue=dfalse data ⊥ : Set where loop : ⊥ loop with true=false ... | ()
{ "alphanum_fraction": 0.5664739884, "avg_line_length": 17.8965517241, "ext": "agda", "hexsha": "a3398c2e89acb26418ba7d04f606356ed2b4b2f2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2819.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue2819.agda", "max_line_length": 58, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue2819.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 208, "size": 519 }
open import Numeral.Natural open import Relator.Equals open import Type.Properties.Decidable open import Type module Formalization.ClassicalPredicateLogic.Syntax.Substitution {ℓₚ ℓᵥ ℓₒ} (Prop : ℕ → Type{ℓₚ}) (Var : Type{ℓᵥ}) ⦃ var-eq-dec : Decidable(2)(_≡_ {T = Var}) ⦄ (Obj : ℕ → Type{ℓₒ}) where open import Data.Boolean open import Data.ListSized import Data.ListSized.Functions as List open import Formalization.ClassicalPredicateLogic.Syntax(Prop)(Var)(Obj) private variable n : ℕ substituteTerm : Var → Term → Term → Term substituteTerm₊ : Var → Term → List(Term)(n) → List(Term)(n) substituteTerm v t (var x) = if(decide(2)(_≡_) v x) then t else (var x) substituteTerm v t (func f x) = func f (substituteTerm₊ v t x) substituteTerm₊ {0} v t ∅ = ∅ substituteTerm₊ {𝐒(n)} v t (x ⊰ xs) = (substituteTerm v t x ⊰ substituteTerm₊ {n} v t xs) substitute : Var → Term → Formula → Formula substitute v t (f $ x) = f $ List.map (substituteTerm v t) x substitute v t ⊤ = ⊤ substitute v t ⊥ = ⊥ substitute v t (φ ∧ ψ) = (substitute v t φ) ∧ (substitute v t ψ) substitute v t (φ ∨ ψ) = (substitute v t φ) ∨ (substitute v t ψ) substitute v t (φ ⟶ ψ) = (substitute v t φ) ⟶ (substitute v t ψ) substitute v t (Ɐ(x) φ) = Ɐ(x) (if(decide(2)(_≡_) v x) then φ else (substitute v t φ)) substitute v t (∃(x) φ) = ∃(x) (if(decide(2)(_≡_) v x) then φ else (substitute v t φ))
{ "alphanum_fraction": 0.654854713, "avg_line_length": 39.1944444444, "ext": "agda", "hexsha": "7a2eba2db5c6ce1e6e4e83af40239c6f839c3e3a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ClassicalPredicateLogic/Syntax/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ClassicalPredicateLogic/Syntax/Substitution.agda", "max_line_length": 89, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ClassicalPredicateLogic/Syntax/Substitution.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 535, "size": 1411 }
-- The (pre)category of (small) categories {-# OPTIONS --safe #-} module Cubical.Categories.Instances.Categories where open import Cubical.Categories.Category.Base open import Cubical.Categories.Category.Precategory open import Cubical.Categories.Functor.Base open import Cubical.Categories.Functor.Properties open import Cubical.Foundations.Prelude module _ (ℓ ℓ' : Level) where open Precategory CatPrecategory : Precategory (ℓ-suc (ℓ-max ℓ ℓ')) (ℓ-max ℓ ℓ') CatPrecategory .ob = Category ℓ ℓ' CatPrecategory .Hom[_,_] = Functor CatPrecategory .id = 𝟙⟨ _ ⟩ CatPrecategory ._⋆_ G H = H ∘F G CatPrecategory .⋆IdL _ = F-lUnit CatPrecategory .⋆IdR _ = F-rUnit CatPrecategory .⋆Assoc _ _ _ = F-assoc -- TODO: what is required for Functor C D to be a set?
{ "alphanum_fraction": 0.7367741935, "avg_line_length": 29.8076923077, "ext": "agda", "hexsha": "7ce6b89a2f4696ebfd9a672c98a2e20608ad9c18", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/Categories.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/Categories.agda", "max_line_length": 64, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/Categories.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 246, "size": 775 }
{-# OPTIONS --without-K #-} module Pi0Semiring where import Level open import PiU open import PiLevel0 open import Algebra using (CommutativeSemiring) open import Algebra.Structures using (IsSemigroup; IsCommutativeMonoid; IsCommutativeSemiring) ------------------------------------------------------------------------------ -- Commutative semiring structure of U typesPlusIsSG : IsSemigroup _⟷_ PLUS typesPlusIsSG = record { isEquivalence = record { refl = id⟷ ; sym = ! ; trans = _◎_ } ; assoc = λ t₁ t₂ t₃ → assocr₊ {t₁} {t₂} {t₃} ; ∙-cong = _⊕_ } typesTimesIsSG : IsSemigroup _⟷_ TIMES typesTimesIsSG = record { isEquivalence = record { refl = id⟷ ; sym = ! ; trans = _◎_ } ; assoc = λ t₁ t₂ t₃ → assocr⋆ {t₁} {t₂} {t₃} ; ∙-cong = _⊗_ } typesPlusIsCM : IsCommutativeMonoid _⟷_ PLUS ZERO typesPlusIsCM = record { isSemigroup = typesPlusIsSG ; identityˡ = λ t → unite₊l {t} ; comm = λ t₁ t₂ → swap₊ {t₁} {t₂} } typesTimesIsCM : IsCommutativeMonoid _⟷_ TIMES ONE typesTimesIsCM = record { isSemigroup = typesTimesIsSG ; identityˡ = λ t → unite⋆l {t} ; comm = λ t₁ t₂ → swap⋆ {t₁} {t₂} } typesIsCSR : IsCommutativeSemiring _⟷_ PLUS TIMES ZERO ONE typesIsCSR = record { +-isCommutativeMonoid = typesPlusIsCM ; *-isCommutativeMonoid = typesTimesIsCM ; distribʳ = λ t₁ t₂ t₃ → dist {t₂} {t₃} {t₁} ; zeroˡ = λ t → absorbr {t} } typesCSR : CommutativeSemiring Level.zero Level.zero typesCSR = record { Carrier = U ; _≈_ = _⟷_ ; _+_ = PLUS ; _*_ = TIMES ; 0# = ZERO ; 1# = ONE ; isCommutativeSemiring = typesIsCSR } ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.6021634615, "avg_line_length": 25.6, "ext": "agda", "hexsha": "291624ab2602e7a17b001193f29b65afdfe8bf44", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Pi0Semiring.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Pi0Semiring.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Pi0Semiring.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 582, "size": 1664 }
module NF.List {A : Set} where open import NF open import Data.List open import Relation.Binary.PropositionalEquality instance nf[] : NF {List A} [] Sing.unpack (NF.!! nf[]) = [] Sing.eq (NF.!! nf[]) = refl {-# INLINE nf[] #-} nf∷ : {x : A}{{nfx : NF x}}{t : List A}{{nft : NF t}} -> NF (x ∷ t) Sing.unpack (NF.!! (nf∷ {x} {t})) = nf x ∷ nf t Sing.eq (NF.!! (nf∷ {{nfx}} {{nft}})) rewrite nf≡ {{nfx}} | nf≡ {{nft}} = refl {-# INLINE nf∷ #-}
{ "alphanum_fraction": 0.5249457701, "avg_line_length": 25.6111111111, "ext": "agda", "hexsha": "2ba1bd1af6e2d6adc4c621918f9d85e183c9df6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yanok/normalize-via-instances", "max_forks_repo_path": "src/NF/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yanok/normalize-via-instances", "max_issues_repo_path": "src/NF/List.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yanok/normalize-via-instances", "max_stars_repo_path": "src/NF/List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 181, "size": 461 }
module Sessions.Semantics.Process where open import Level open import Size open import Data.Nat open import Data.Sum open import Data.Product open import Data.Unit open import Data.Bool open import Debug.Trace open import Function open import Relation.Unary hiding (Empty) open import Relation.Unary.PredicateTransformer using (PT) open import Relation.Binary.PropositionalEquality hiding ([_]) open import Sessions.Syntax.Types open import Sessions.Syntax.Values open import Sessions.Syntax.Expr open import Sessions.Semantics.Commands open import Relation.Ternary.Separation open import Relation.Ternary.Separation.Allstar open import Relation.Ternary.Separation.Construct.Market open import Relation.Ternary.Separation.Construct.Product open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Bigstar open import Relation.Ternary.Separation.Monad.Free Cmd δ as Free hiding (step) open import Relation.Ternary.Separation.Monad.State open import Relation.Ternary.Separation.Monad.Error open Monads using (Monad; str; typed-str) open Monad {{...}} data Exc : Set where outOfFuel : Exc delay : Exc open import Sessions.Semantics.Runtime delay open import Sessions.Semantics.Communication delay data Thread : Pred RCtx 0ℓ where forked : ∀[ Comp unit ⇒ Thread ] main : ∀ {a} → ∀[ Comp a ⇒ Thread ] Pool : Pred RCtx 0ℓ Pool = Bigstar Thread St = Π₂ Pool ✴ Channels open ExceptMonad {A = RCtx} Exc open StateWithErr {C = RCtx} Exc onPool : ∀ {P} → ∀[ (Pool ─✴ Except Exc (P ✴ Pool)) ⇒ State? St P ] app (onPool f) (lift (snd pool ×⟨ σ , σ₁ ⟩ chs) k) (offerᵣ σ₂) with resplit σ₂ σ₁ k ... | _ , _ , τ₁ , τ₂ , τ₃ = case app f pool τ₁ of λ where (error e) → partial (inj₁ e) (✓ (p ×⟨ σ₃ ⟩ p')) → let _ , _ , τ₄ , τ₅ , τ₆ = resplit σ₃ τ₂ τ₃ in return (inj p ×⟨ offerᵣ τ₄ ⟩ lift (snd p' ×⟨ σ , τ₅ ⟩ chs) τ₆) onChannels : ∀ {P} → ∀[ State? Channels P ⇒ State? St P ] app (onChannels f) μ (offerᵣ σ₃) with ○≺●ᵣ μ ... | inj pool ×⟨ offerᵣ σ₄ ⟩ chs with ⊎-assoc σ₃ (⊎-comm σ₄) ... | _ , τ₁ , τ₂ = do px ×⟨ σ₄ ⟩ ●chs ×⟨ σ₅ ⟩ inj pool ← mapM (app f chs (offerᵣ τ₁) &⟨ J Pool ∥ offerₗ τ₂ ⟩ inj pool) ✴-assocᵣ return (px ×⟨ σ₄ ⟩ app (○≺●ₗ pool) ●chs (⊎-comm σ₅)) enqueue : ∀[ Thread ⇒ State? St Emp ] enqueue thr = onPool (wand λ pool σ → return (empty ×⟨ ⊎-idˡ ⟩ (app (append thr) pool σ))) -- Smart reschedule of a thread: -- Escalates out-of-fuel erros in threads, and discards terminated workers. reschedule : ∀[ Thread ⇒ State? St Emp ] reschedule (forked (partial (pure (inj₁ _)))) = raise outOfFuel reschedule (forked (partial (pure (inj₂ tt)))) = return empty reschedule thr@(forked (partial (impure _))) = enqueue thr reschedule (main (partial (pure (inj₁ _)))) = raise outOfFuel reschedule thr@(main (partial (pure (inj₂ _)))) = enqueue thr reschedule thr@(main (partial (impure _))) = enqueue thr {- Select the next thread that is not done -} dequeue : ε[ State? St (Emp ∪ Thread) ] dequeue = onPool (wandit (λ pool → case (find isImpure pool) of λ where (error e) → return (inj₁ empty ×⟨ ⊎-idˡ ⟩ pool) (✓ (thr ×⟨ σ ⟩ pool')) → return (inj₂ thr ×⟨ σ ⟩ pool'))) where isImpure : ∀ {Φ} → Thread Φ → Bool isImpure (main (partial (pure _))) = false isImpure (main (partial (impure _))) = true isImpure (forked (partial (pure _))) = false isImpure (forked (partial (impure _))) = true module _ where handle : ∀ {Φ} → (c : Cmd Φ) → State? St (δ c) Φ handle (fork thr) = trace "handle:fork" $ enqueue (forked thr) handle (mkchan α) = trace "handle:mkchan" $ onChannels newChan handle (send (ch ×⟨ σ ⟩ v)) = trace "handle:send" $ onChannels (app (send! ch) v σ) handle (receive ch) = trace "handle:recv" $ onChannels (receive? ch) handle (close ch) = trace "handle:close" $ onChannels (closeChan ch) step : ∀[ Thread ⇒ State? St Thread ] step thr@(main (partial c)) = do c' ← Free.step handle c return (main (partial c')) step (forked (partial c)) = do c' ← Free.step handle c return (forked (partial c')) -- try the first computation; if it fails with a 'delay' exception, -- then queue t _orDelay_ : ∀[ State? St Emp ⇒ Thread ⇒ State? St Emp ] c orDelay t = do c orElse λ where delay → enqueue t outOfFuel → raise outOfFuel -- Run a pool of threads in round-robing fashion -- until all have terminated, or fuel runs out run : ℕ → ε[ State? St Emp ] run zero = raise outOfFuel run (suc n) = do inj₂ thr ← dequeue -- if we cannot dequeue a thunked thread, we're done where (inj₁ e) → return e -- otherwise we take a step empty ← trace "run:step" (do thr' ← step thr; enqueue thr') orDelay thr -- rinse and repeat run n start : ℕ → Thread ε → ∃ λ Φ → Except Exc (● St) Φ start n thr = -, do let μ = lift (snd [ thr ] ×⟨ ⊎-idʳ ⟩ nil) ⊎-idʳ inj empty ×⟨ σ ⟩ μ ← app (run n) μ (offerᵣ ⊎-idˡ) case ⊎-id⁻ˡ σ of λ where refl → return μ where open ExceptMonad {A = Market RCtx} Exc
{ "alphanum_fraction": 0.6486382075, "avg_line_length": 34.2847682119, "ext": "agda", "hexsha": "ef2fadc1fe2fb343cd904db23825f83412f2a1f0", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Sessions/Semantics/Process.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Sessions/Semantics/Process.agda", "max_line_length": 87, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Sessions/Semantics/Process.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 1738, "size": 5177 }
module nat-log where open import bool open import eq open import nat open import nat-thms open import nat-division open import product data log-result (x : ℕ)(b : ℕ) : Set where pos-power : (e : ℕ) → (s : ℕ) → b pow e + s ≡ x → log-result x b no-power : x < b ≡ tt → log-result x b -- as a first version, we do not try to prove termination of this function {-# NON_TERMINATING #-} log : (x : ℕ) → (b : ℕ) → x =ℕ 0 ≡ ff → b =ℕ 0 ≡ ff → log-result x b log x b p1 p2 with x ÷ b ! p2 log x b p1 p2 | 0 , r , u1 , u2 rewrite u1 = no-power u2 log x b p1 p2 | (suc q) , r , u1 , u2 with log (suc q) b refl p2 log x b p1 p2 | (suc q) , r , u1 , u2 | no-power u rewrite sym u1 = pos-power 1 (b * q + r) lem where lem : b * 1 + (b * q + r) ≡ b + q * b + r lem rewrite *1{b} | *comm b q = +assoc b (q * b) r log x b p1 p2 | (suc q) , r , u1 , u2 | pos-power e s u rewrite sym u1 = pos-power (suc e) (b * s + r) lem where lem : b * b pow e + (b * s + r) ≡ b + q * b + r lem rewrite +assoc (b * b pow e) (b * s) r | sym (*distribl b (b pow e) s) | *comm b (b pow e + s) = sym (cong (λ i → i * b + r) (sym u))
{ "alphanum_fraction": 0.542432196, "avg_line_length": 38.1, "ext": "agda", "hexsha": "0485f8716af69901ed9a257f3b996e0f40ca51a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "nat-log.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "nat-log.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "nat-log.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 468, "size": 1143 }
module Data.Vec where open import Prelude open import Data.Nat open import Data.Fin hiding (_==_; _<_) open import Logic.Structure.Applicative open import Logic.Identity open import Logic.Base infixl 90 _#_ infixr 50 _::_ infixl 45 _!_ _[!]_ data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n) -- Indexing _!_ : {n : Nat}{A : Set} -> Vec A n -> Fin n -> A x :: xs ! fzero = x x :: xs ! fsuc i = xs ! i -- Insertion insert : {n : Nat}{A : Set} -> Fin (suc n) -> A -> Vec A n -> Vec A (suc n) insert fzero y xs = y :: xs insert (fsuc i) y (x :: xs) = x :: insert i y xs -- Index view data IndexView {A : Set} : {n : Nat}(i : Fin n) -> Vec A n -> Set where ixV : {n : Nat}{i : Fin (suc n)}(x : A)(xs : Vec A n) -> IndexView i (insert i x xs) _[!]_ : {A : Set}{n : Nat}(xs : Vec A n)(i : Fin n) -> IndexView i xs x :: xs [!] fzero = ixV x xs x :: xs [!] fsuc i = aux xs i (xs [!] i) where aux : {n : Nat}(xs : Vec _ n)(i : Fin n) -> IndexView i xs -> IndexView (fsuc i) (x :: xs) aux .(insert i y xs) i (ixV y xs) = ixV y (x :: xs) -- Build a vector from an indexing function (inverse of _!_) build : {n : Nat}{A : Set} -> (Fin n -> A) -> Vec A n build {zero } f = [] build {suc _} f = f fzero :: build (f ∘ fsuc) -- Constant vectors vec : {n : Nat}{A : Set} -> A -> Vec A n vec {zero } _ = [] vec {suc m} x = x :: vec x -- Vector application _#_ : {n : Nat}{A B : Set} -> Vec (A -> B) n -> Vec A n -> Vec B n [] # [] = [] (f :: fs) # (x :: xs) = f x :: fs # xs -- Vectors of length n form an applicative structure ApplicativeVec : {n : Nat} -> Applicative (\A -> Vec A n) ApplicativeVec {n} = applicative (vec {n}) (_#_ {n}) -- Map map : {n : Nat}{A B : Set} -> (A -> B) -> Vec A n -> Vec B n map f xs = vec f # xs -- Zip zip : {n : Nat}{A B C : Set} -> (A -> B -> C) -> Vec A n -> Vec B n -> Vec C n zip f xs ys = vec f # xs # ys module Elem where infix 40 _∈_ _∉_ data _∈_ {A : Set}(x : A) : {n : Nat}(xs : Vec A n) -> Set where hd : {n : Nat} {xs : Vec A n} -> x ∈ x :: xs tl : {n : Nat}{y : A}{xs : Vec A n} -> x ∈ xs -> x ∈ y :: xs data _∉_ {A : Set}(x : A) : {n : Nat}(xs : Vec A n) -> Set where nl : x ∉ [] cns : {n : Nat}{y : A}{xs : Vec A n} -> x ≢ y -> x ∉ xs -> x ∉ y :: xs ∉=¬∈ : {A : Set}{x : A}{n : Nat}{xs : Vec A n} -> x ∉ xs -> ¬ (x ∈ xs) ∉=¬∈ nl () ∉=¬∈ {A} (cns x≠x _) hd = elim-False (x≠x refl) ∉=¬∈ {A} (cns _ ne) (tl e) = ∉=¬∈ ne e ∈=¬∉ : {A : Set}{x : A}{n : Nat}{xs : Vec A n} -> x ∈ xs -> ¬ (x ∉ xs) ∈=¬∉ e ne = ∉=¬∈ ne e find : {A : Set}{n : Nat} -> ((x y : A) -> x ≡ y \/ x ≢ y) -> (x : A)(xs : Vec A n) -> x ∈ xs \/ x ∉ xs find _ _ [] = \/-IR nl find eq y (x :: xs) = aux x y (eq y x) (find eq y xs) where aux : forall x y -> y ≡ x \/ y ≢ x -> y ∈ xs \/ y ∉ xs -> y ∈ x :: xs \/ y ∉ x :: xs aux x .x (\/-IL refl) _ = \/-IL hd aux x y (\/-IR y≠x) (\/-IR y∉xs) = \/-IR (cns y≠x y∉xs) aux x y (\/-IR _) (\/-IL y∈xs) = \/-IL (tl y∈xs) delete : {A : Set}{n : Nat}(x : A)(xs : Vec A (suc n)) -> x ∈ xs -> Vec A n delete .x (x :: xs) hd = xs delete {A}{zero } _ ._ (tl ()) delete {A}{suc _} y (x :: xs) (tl p) = x :: delete y xs p
{ "alphanum_fraction": 0.4665239988, "avg_line_length": 31.7572815534, "ext": "agda", "hexsha": "22a89f05142f5e36c4eabccf0a771db34960c2cc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Vec.agda", "max_line_length": 88, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1395, "size": 3271 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of products ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Product.Properties where open import Data.Product open import Function using (_∘_) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (yes; no) ------------------------------------------------------------------------ -- Equality module _ {a b} {A : Set a} {B : A → Set b} where ,-injectiveˡ : ∀ {a c} {b : B a} {d : B c} → (a , b) ≡ (c , d) → a ≡ c ,-injectiveˡ refl = refl -- See also Data.Product.Properties.WithK.,-injectiveʳ.
{ "alphanum_fraction": 0.484496124, "avg_line_length": 29.7692307692, "ext": "agda", "hexsha": "30b954ce2c5ebbf9bec299e6002632cf1b79c11a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Properties.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 169, "size": 774 }
{-# OPTIONS --rewriting --cubical #-} open import Common.Prelude open import Common.Path {-# BUILTIN REWRITE _≡_ #-} postulate is-refl : ∀ {A : Set} {x : A} → (x ≡ x) → Bool postulate is-refl-true : ∀ {A}{x} → is-refl {A} {x} refl ≡ true {-# REWRITE is-refl-true #-} test₁ : ∀ {x} → is-refl {Nat} {x} refl ≡ true test₁ = refl test₂ : is-refl {Nat} (λ _ → 42) ≡ true test₂ = refl postulate Cl : Set module M (A B C : Set)(f : C -> A)(g : C -> B) where data PO : Set where inl : A → PO inr : B → PO push : (c : C) → inl (f c) ≡ inr (g c) -- elimination under clocks module E (D : (Cl → PO) → Set) (l : (x : Cl → A) → D (\ k → inl (x k))) (r : (x : Cl → B) → D (\ k → inr (x k))) (p : (x : Cl → C) → PathP (\ i → D (\ k → push (x k) i)) (l \ k → (f (x k))) (r \ k → (g (x k)))) where postulate elim : (h : Cl → PO) → D h beta1 : (x : Cl → A) → elim (\ k → inl (x k)) ≡ l x beta2 : (x : Cl → B) → elim (\ k → inr (x k)) ≡ r x {-# REWRITE beta1 beta2 #-} _ : {x : Cl → A} → elim (\ k → inl (x k)) ≡ l x _ = refl _ : {x : Cl → B} → elim (\ k → inr (x k)) ≡ r x _ = refl postulate beta3 : (x : Cl → C)(i : I) → elim (\ k → push (x k) i) ≡ p x i {-# REWRITE beta3 #-} _ : {x : Cl → C}{i : I} → elim (\ k → push (x k) i) ≡ p x i _ = refl -- Testing outside the module too open M open E variable A B C : Set f : C → A g : C → B _ : {x : Cl → A} → elim A B C f g (\ h → (k : Cl) → h k ≡ h k) (\ x k → refl) (\ _ _ → refl) (\ c i k → refl) (\ k → inl (x k)) ≡ \ k → refl _ = refl _ : {c : Cl → C}{i : I} → elim A B C f g (\ h → (k : Cl) → h k ≡ h k) (\ x k → refl) (\ _ _ → refl) (\ c i k → refl) (\ k → push (c k) i) ≡ \ k → refl _ = refl
{ "alphanum_fraction": 0.4297612438, "avg_line_length": 23.3896103896, "ext": "agda", "hexsha": "26185a98214adf1184cc698208e6f692dc613a05", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/HigherOrderPathRewriting.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/HigherOrderPathRewriting.agda", "max_line_length": 108, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/HigherOrderPathRewriting.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 757, "size": 1801 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Rings.Definition open import Rings.IntegralDomains.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations module Fields.FieldOfFractions.Addition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where open import Fields.FieldOfFractions.Setoid I fieldOfFractionsPlus : fieldOfFractionsSet → fieldOfFractionsSet → fieldOfFractionsSet fieldOfFractionsSet.num (fieldOfFractionsPlus (record { num = a ; denom = b ; denomNonzero = b!=0 }) (record { num = c ; denom = d ; denomNonzero = d!=0 })) = (a * d) + (b * c) fieldOfFractionsSet.denom (fieldOfFractionsPlus (record { num = a ; denom = b ; denomNonzero = b!=0 }) (record { num = c ; denom = d ; denomNonzero = d!=0 })) = b * d fieldOfFractionsSet.denomNonzero (fieldOfFractionsPlus (record { num = a ; denom = b ; denomNonzero = b!=0 }) (record { num = c ; denom = d ; denomNonzero = d!=0 })) = λ pr → exFalso (d!=0 (IntegralDomain.intDom I pr b!=0)) --record { num = ((a * d) + (b * c)) ; denom = b * d ; denomNonzero = λ pr → exFalso (d!=0 (IntegralDomain.intDom I pr b!=0)) } plusWellDefined : {a b c d : fieldOfFractionsSet} → (Setoid._∼_ fieldOfFractionsSetoid a c) → (Setoid._∼_ fieldOfFractionsSetoid b d) → Setoid._∼_ fieldOfFractionsSetoid (fieldOfFractionsPlus a b) (fieldOfFractionsPlus c d) plusWellDefined {record { num = a ; denom = b ; denomNonzero = b!=0 }} {record { num = c ; denom = d ; denomNonzero = d!=0 }} {record { num = e ; denom = f ; denomNonzero = f!=0 }} {record { num = g ; denom = h ; denomNonzero = h!=0 }} af=be ch=dg = need where open Setoid S open Ring R open Equivalence eq have1 : (c * h) ∼ (d * g) have1 = ch=dg have2 : (a * f) ∼ (b * e) have2 = af=be need : (((a * d) + (b * c)) * (f * h)) ∼ ((b * d) * (((e * h) + (f * g)))) need = transitive (transitive (Ring.*Commutative R) (transitive (Ring.*DistributesOver+ R) (Group.+WellDefined (Ring.additiveGroup R) (transitive *Associative (transitive (*WellDefined (*Commutative) reflexive) (transitive (*WellDefined *Associative reflexive) (transitive (*WellDefined (*WellDefined have2 reflexive) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined (transitive (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)) *Associative) reflexive) (symmetric *Associative))))))))) (transitive *Commutative (transitive (transitive (symmetric *Associative) (*WellDefined reflexive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined have1 reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))))))) *Associative))))) (symmetric (Ring.*DistributesOver+ R))
{ "alphanum_fraction": 0.6880515954, "avg_line_length": 86.6470588235, "ext": "agda", "hexsha": "50b9d3de1d020995ceaf5e4f297b309dbb7be4f6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/FieldOfFractions/Addition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/FieldOfFractions/Addition.agda", "max_line_length": 970, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/FieldOfFractions/Addition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 936, "size": 2946 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Groups.Definition module Groups.Actions.Definition where record GroupAction {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·_ : A → A → A} {B : Set n} (G : Group S _·_) (X : Setoid {n} {p} B) : Set (m ⊔ n ⊔ o ⊔ p) where open Group G open Setoid S renaming (_∼_ to _∼G_) open Setoid X renaming (_∼_ to _∼X_) field action : A → B → B actionWellDefined1 : {g h : A} → {x : B} → (g ∼G h) → action g x ∼X action h x actionWellDefined2 : {g : A} → {x y : B} → (x ∼X y) → action g x ∼X action g y identityAction : {x : B} → action 0G x ∼X x associativeAction : {x : B} → {g h : A} → action (g · h) x ∼X action g (action h x)
{ "alphanum_fraction": 0.5890410959, "avg_line_length": 42.2631578947, "ext": "agda", "hexsha": "c7dbb810b893f1c03fa888c485c388bb8421bf8c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Actions/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Actions/Definition.agda", "max_line_length": 166, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Actions/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 313, "size": 803 }
-- A minor variant of code reported by Andreas Abel. -- Andreas, 2011-10-04 -- -- Agda's coinduction is incompatible with initial algebras -- -- Sized types are needed to formulate initial algebras in general: -- {-# OPTIONS --sized-types #-} -- -- We need to skip the positivity check since we cannot communicate -- to Agda that we only want strictly positive F's in the definition of Mu -- {-# OPTIONS --no-positivity-check #-} -- module _ where open import Agda.Builtin.Coinduction renaming (∞ to co) open import Agda.Builtin.Size -- initial algebras data Mu (F : Set → Set) : Size → Set where inn : ∀ {i} → F (Mu F i) → Mu F (↑ i) iter : ∀ {F : Set → Set} (map : ∀ {A B} → (A → B) → F A → F B) {A} → (F A → A) → ∀ {i} → Mu F i → A iter map s (inn t) = s (map (iter map s) t) -- the co functor (aka Lift functor) F : Set → Set F A = co A map : ∀ {A B : Set} → (A → B) → co A → co B map f a = ♯ f (♭ a) -- the least fixed-point of co is inhabited bla : Mu F ∞ bla = inn (♯ bla) -- and goal! data ⊥ : Set where false : ⊥ false = iter map ♭ bla -- note that co is indeed strictly positive, as the following -- direct definition of Mu F ∞ is accepted data Bla : Set where c : co Bla → Bla {- -- if we inline ♭ map into iter, the termination checker detects the cheat iter' : Bla → ⊥ iter' (c t) = ♭ (♯ iter' (♭ t)) -- iter' (c t) = ♭ (map iter' t) -} -- Again, I want to emphasize that the problem is not with sized types. -- I have only used sized types to communicate to Agda that initial algebras -- (F, iter) are ok. Once we have initial algebras, we can form the -- initial algebra of the co functor and abuse the guardedness checker -- to construct an inhabitant in this empty initial algebra. -- -- Agda's coinduction mechanism confuses constructor and coconstructors. -- Convenient, but, as you have seen...
{ "alphanum_fraction": 0.6442048518, "avg_line_length": 26.1267605634, "ext": "agda", "hexsha": "10ba03a5545ee26c676b3ee95a49fada4c6e021f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "caryoscelus/agda", "max_forks_repo_path": "test/Fail/Issue1946-4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "caryoscelus/agda", "max_issues_repo_path": "test/Fail/Issue1946-4.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "caryoscelus/agda", "max_stars_repo_path": "test/Fail/Issue1946-4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 565, "size": 1855 }
module Prelude where id : {a : Set} -> a -> a id x = x infixr 0 _$_ _$_ : {a b : Set} -> (a -> b) -> a -> b f $ x = f x data Bool : Set where True : Bool False : Bool _&&_ : Bool -> Bool -> Bool True && b = b False && _ = False data Pair (a b : Set) : Set where pair : a -> b -> Pair a b fst : {a b : Set} -> Pair a b -> a fst (pair x y) = x snd : {a b : Set} -> Pair a b -> b snd (pair x y) = y data Either (a b : Set) : Set where left : a -> Either a b right : b -> Either a b data Maybe (a : Set) : Set where Nothing : Maybe a Just : a -> Maybe a data Unit : Set where unit : Unit data Absurd : Set where absurdElim : {whatever : Set} -> Absurd -> whatever absurdElim () -- data Pi {a : Set} (f : a -> Set) : Set where -- pi : ((x : a) -> f x) -> Pi f -- -- apply : {a : Set} -> {f : a -> Set} -> Pi f -> (x : a) -> f x -- apply (pi f) x = f x T : Bool -> Set T True = Unit T False = Absurd andT : {x y : Bool} -> T x -> T y -> T (x && y) andT {True} {True} _ _ = unit andT {True} {False} _ () andT {False} {_} () _ T' : {a : Set} -> (a -> a -> Bool) -> (a -> a -> Set) T' f x y = T (f x y) data Not (a : Set) : Set where not : (a -> Absurd) -> Not a -- Not : Set -> Set -- Not a = a -> Absurd contrapositive : {a b : Set} -> (a -> b) -> Not b -> Not a contrapositive p (not nb) = not (\a -> nb (p a)) private notDistribOut' : {a b : Set} -> Not a -> Not b -> Either a b -> Absurd notDistribOut' (not na) _ (left a) = na a notDistribOut' _ (not nb) (right b) = nb b notDistribOut : {a b : Set} -> Not a -> Not b -> Not (Either a b) notDistribOut na nb = not (notDistribOut' na nb) notDistribIn : {a b : Set} -> Not (Either a b) -> Pair (Not a) (Not b) notDistribIn (not nab) = pair (not (\a -> nab (left a))) (not (\b -> nab (right b))) data _<->_ (a b : Set) : Set where iff : (a -> b) -> (b -> a) -> a <-> b iffLeft : {a b : Set} -> (a <-> b) -> (a -> b) iffLeft (iff l _) = l iffRight : {a b : Set} -> (a <-> b) -> (b -> a) iffRight (iff _ r) = r Dec : (A : Set) -> Set Dec A = Either A (Not A)
{ "alphanum_fraction": 0.4653024911, "avg_line_length": 23.6631578947, "ext": "agda", "hexsha": "2b8658986bd497c6aa7ace23ee959160d482b898", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/AIM4/bag/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/AIM4/bag/Prelude.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/AIM4/bag/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 865, "size": 2248 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Construction.PathsOf where -- "Free Category on a Quiver" Construction, i.e. the category of paths of the quiver. -- Note the use of Categories.Morphism.HeterogeneousIdentity as well as -- Relation.Binary.PropositionalEquality.Subst.Properties which are needed -- for F-resp-≈. open import Level open import Function using (_$_) open import Relation.Binary.PropositionalEquality using (refl; sym) open import Relation.Binary.PropositionalEquality.Subst.Properties using (module TransportStar) open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties open import Data.Quiver open import Data.Quiver.Morphism open import Data.Quiver.Paths using (module Paths) open import Categories.Category import Categories.Category.Construction.PathCategory as PC open import Categories.Category.Instance.Quivers open import Categories.Category.Instance.StrictCats open import Categories.Functor using (Functor) open import Categories.Functor.Equivalence using (_≡F_) import Categories.Morphism.HeterogeneousIdentity as HId import Categories.Morphism.Reasoning as MR private variable o o′ ℓ ℓ′ e e′ : Level G₁ G₂ : Quiver o ℓ e ⇒toPathF : {G₁ G₂ : Quiver o ℓ e} → Morphism G₁ G₂ → Functor (PC.PathCategory G₁) (PC.PathCategory G₂) ⇒toPathF {G₁ = G₁} {G₂} G⇒ = record { F₀ = F₀ G⇒ ; F₁ = qmap G⇒ ; identity = Paths.refl G₂ ; homomorphism = λ {_} {_} {_} {f} {g} → Paths.≡⇒≈* G₂ $ gmap-◅◅ (F₀ G⇒) (F₁ G⇒) f g ; F-resp-≈ = λ { {f = f} → map-resp G⇒ f} } where open Morphism ⇒toPathF-resp-≃ : {f g : Morphism G₁ G₂} → f ≃ g → ⇒toPathF f ≡F ⇒toPathF g ⇒toPathF-resp-≃ {G₂ = G} {f} {g} f≈g = record { eq₀ = λ _ → F₀≡ ; eq₁ = λ h → let open Category.HomReasoning (PC.PathCategory G) open HId (PC.PathCategory G) open TransportStar (Quiver._⇒_ G) in begin qmap f h ◅◅ (hid F₀≡) ≈˘⟨ hid-subst-cod (qmap f h) F₀≡ ⟩ qmap f h ▸* F₀≡ ≈⟨ map-F₁≡ f≈g h ⟩ F₀≡ ◂* qmap g h ≈⟨ hid-subst-dom F₀≡ (qmap g h) ⟩ hid F₀≡ ◅◅ qmap g h ∎ } where open _≃_ f≈g PathsOf : Functor (Quivers o ℓ e) (StrictCats o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)) PathsOf = record { F₀ = PC.PathCategory ; F₁ = ⇒toPathF ; identity = λ {G} → record { eq₀ = λ _ → refl ; eq₁ = λ f → toSquare (PC.PathCategory G) (Paths.≡⇒≈* G $ gmap-id f) } ; homomorphism = λ {_} {_} {G} {f} {g} → record { eq₀ = λ _ → refl ; eq₁ = λ h → toSquare (PC.PathCategory G) (Paths.≡⇒≈* G (sym $ gmap-∘ (F₀ g) (F₁ g) (F₀ f) (F₁ f) h) ) } ; F-resp-≈ = ⇒toPathF-resp-≃ } where open Morphism using (F₀; F₁) open MR using (toSquare)
{ "alphanum_fraction": 0.6562043796, "avg_line_length": 35.5844155844, "ext": "agda", "hexsha": "1be27f2b9269c6b6ed1d8033aa7208d2bd609093", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Construction/PathsOf.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Construction/PathsOf.agda", "max_line_length": 107, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Construction/PathsOf.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1014, "size": 2740 }
{-# OPTIONS --cubical --safe #-} module Data.Binary.Conversion.Strict where open import Data.Binary.Definition open import Data.Binary.Increment.Strict import Data.Nat as ℕ import Data.Nat.Properties as ℕ open import Data.Nat using (ℕ; suc; zero) open import Data.Nat.Fold open import Strict open import Data.Nat.DivMod open import Data.Bool ⟦_⇑⟧′ : ℕ → 𝔹 ⟦_⇑⟧′ = foldl-ℕ inc′ 0ᵇ ⟦_⇓⟧′ : 𝔹 → ℕ ⟦ 0ᵇ ⇓⟧′ = zero ⟦ 1ᵇ xs ⇓⟧′ = let! xs′ =! ⟦ xs ⇓⟧′ in! 1 ℕ.+ xs′ ℕ.* 2 ⟦ 2ᵇ xs ⇓⟧′ = let! xs′ =! ⟦ xs ⇓⟧′ in! 2 ℕ.+ xs′ ℕ.* 2
{ "alphanum_fraction": 0.6335877863, "avg_line_length": 23.8181818182, "ext": "agda", "hexsha": "5ff80a310bead861081031c24f61b9fd0799271a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/Conversion/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/Conversion/Strict.agda", "max_line_length": 54, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/Conversion/Strict.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 238, "size": 524 }
-- Module for BCCs, CCCs and BCCCs module CategoryTheory.BCCCs where open import CategoryTheory.Categories open import CategoryTheory.BCCCs.Cartesian public open import CategoryTheory.BCCCs.Cocartesian public open import CategoryTheory.BCCCs.Closed public -- Bicartesian categories record Bicartesian {n} (ℂ : Category n) : Set (lsuc n) where field cart : Cartesian ℂ cocart : Cocartesian ℂ -- Cartesian closed categories record CartesianClosed {n} (ℂ : Category n) : Set (lsuc n) where field cart : Cartesian ℂ closed : Closed cart -- Bicartesian closed categories record BicartesianClosed {n} (ℂ : Category n) : Set (lsuc n) where field cart : Cartesian ℂ cocart : Cocartesian ℂ closed : Closed cart open Cartesian cart public open Cocartesian cocart public open Closed closed public
{ "alphanum_fraction": 0.7103762828, "avg_line_length": 28.2903225806, "ext": "agda", "hexsha": "348f81f7d54ac78d44738797cee4768415b9644c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/CategoryTheory/BCCCs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/CategoryTheory/BCCCs.agda", "max_line_length": 66, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/CategoryTheory/BCCCs.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 240, "size": 877 }
{- Copyright 2019 Lisandra Silva Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} open import Prelude open import Data.Bool renaming (_≟_ to _B≟_) open import Data.Fin renaming (_≟_ to _F≟_) open import Agda.Builtin.Sigma open import Relation.Nullary.Negation using (contradiction ; contraposition) open import StateMachineModel {- PROCESS 0 || PROCESS 1 repeat || repeat s₀: thinking₀ = false; || r₀: thinking₁ = false; s₁: turn = 1; || r₁: turn = 0; s₂: await thinking₁ ∨ turn ≡ 0; || r₂: await thinking₀ ∨ turn ≡ 1; “critical section”; || “critical section”; s₃: thinking₀ = true; || r₃: thinking₁ = true; forever || forever -} module Examples.Peterson where {- Because of the atomicity assumptions, we can view a concurrent program as a state transition system. Simply associate with each process a control variable that indicates the atomic statement to be executed next by the process. The state of the program is defined by the values of the data variables and control variables. -} record State : Set where field -- Data variables : updated in assignemnt statements thinking₀ thinking₁ : Bool turn : Fin 2 -- Control varibales : updated acording to the control flow of the program control₀ control₁ : Fin 4 open State -- Events : corresponding to the atomic statements data MyEvent : Set where es₀ es₁ es₂₁ es₂₂ es₃ er₀ er₁ er₂₁ er₂₂ er₃ : MyEvent {- Enabled conditions : predicate on the state variables. In any state, an atomic statement can be executed if and only if it is pointed to by a control variable and is enabled. -} MyEnabled : MyEvent → State → Set MyEnabled es₀ st = control₀ st ≡ 0F MyEnabled es₁ st = control₀ st ≡ 1F MyEnabled es₂₁ st = control₀ st ≡ 2F × thinking₁ st ≡ true MyEnabled es₂₂ st = control₀ st ≡ 2F × turn st ≡ 0F MyEnabled es₃ st = control₀ st ≡ 3F MyEnabled er₀ st = control₁ st ≡ 0F MyEnabled er₁ st = control₁ st ≡ 1F MyEnabled er₂₁ st = control₁ st ≡ 2F × thinking₀ st ≡ true MyEnabled er₂₂ st = control₁ st ≡ 2F × turn st ≡ 1F MyEnabled er₃ st = control₁ st ≡ 3F {- Actions : executing the statement results in a new state. Thus each statement execution corresponds to a state transition. -} MyAction : ∀ {preState} {event} → MyEnabled event preState → State -- Process 1 MyAction {ps} {es₀} x = record ps { thinking₀ = false -- want to access CS ; control₀ = 1F } -- next statement MyAction {ps} {es₁} x = record ps { turn = 1F -- gives turn to other proc ; control₀ = 2F } -- next stmt MyAction {ps} {es₂₁} x = record ps { control₀ = 3F } -- next stmt MyAction {ps} {es₂₂} x = record ps { control₀ = 3F } -- next stmt MyAction {ps} {es₃} x = record ps { thinking₀ = true -- releases the CS ; control₀ = 0F } -- loop -- Proccess 2 MyAction {ps} {er₀} x = record ps { thinking₁ = false ; control₁ = 1F } MyAction {ps} {er₁} x = record ps { turn = 0F ; control₁ = 2F } MyAction {ps} {er₂₁} x = record ps { control₁ = 3F } MyAction {ps} {er₂₂} x = record ps { control₁ = 3F } MyAction {ps} {er₃} x = record ps { thinking₁ = true ; control₁ = 0F } initialState : State initialState = record { thinking₀ = true ; thinking₁ = true ; turn = 0F ; control₀ = 0F ; control₁ = 0F } MyStateMachine : StateMachine State MyEvent MyStateMachine = record { initial = _≡ initialState ; enabled = MyEnabled ; action = MyAction } -- Each process has its own EventSet with its statements Proc0-EvSet : EventSet {Event = MyEvent} Proc0-EvSet ev = ev ≡ es₁ ⊎ ev ≡ es₂₁ ⊎ ev ≡ es₂₂ ⊎ ev ≡ es₃ Proc1-EvSet : EventSet {Event = MyEvent} Proc1-EvSet ev = ev ≡ er₁ ⊎ ev ≡ er₂₁ ⊎ ev ≡ er₂₂ ⊎ ev ≡ er₃ -- And both EventSets have weak-fairness data MyWeakFairness : EventSet → Set where wf-p0 : MyWeakFairness Proc0-EvSet wf-p1 : MyWeakFairness Proc1-EvSet MySystem : System State MyEvent MySystem = record { stateMachine = MyStateMachine ; weakFairness = MyWeakFairness } ----------------------------------------------------------------------------- -- PROOFS ----------------------------------------------------------------------------- open LeadsTo State MyEvent MySystem inv-c₁≡[0-4] : Invariant MyStateMachine λ st → ∃[ f ] (control₁ st ≡ f)-- ([∃ f ∶ (_≡ f) ∘ control₁ ]) inv-c₁≡[0-4] (init refl) = 0F , refl inv-c₁≡[0-4] (step {event = es₀} rs enEv) = inv-c₁≡[0-4] rs inv-c₁≡[0-4] (step {event = es₁} rs enEv) = inv-c₁≡[0-4] rs inv-c₁≡[0-4] (step {event = es₂₁} rs enEv) = inv-c₁≡[0-4] rs inv-c₁≡[0-4] (step {event = es₂₂} rs enEv) = inv-c₁≡[0-4] rs inv-c₁≡[0-4] (step {event = es₃} rs enEv) = inv-c₁≡[0-4] rs inv-c₁≡[0-4] (step {event = er₀} rs enEv) = 1F , refl inv-c₁≡[0-4] (step {event = er₁} rs enEv) = 2F , refl inv-c₁≡[0-4] (step {event = er₂₁} rs enEv) = 3F , refl inv-c₁≡[0-4] (step {event = er₂₂} rs enEv) = 3F , refl inv-c₁≡[0-4] (step {event = er₃} rs enEv) = 0F , refl inv-¬think₁ : Invariant MyStateMachine λ st → control₀ st ≡ 1F ⊎ control₀ st ≡ 2F ⊎ control₀ st ≡ 3F → thinking₀ st ≡ false inv-¬think₁ (init refl) (inj₂ (inj₁ ())) inv-¬think₁ (init refl) (inj₂ (inj₂ ())) inv-¬think₁ (step {event = es₀} rs enEv) x = refl inv-¬think₁ (step {event = es₁} rs enEv) x = inv-¬think₁ rs (inj₁ enEv) inv-¬think₁ (step {event = es₂₁} rs enEv) x = inv-¬think₁ rs (inj₂ (inj₁ (fst enEv))) inv-¬think₁ (step {event = es₂₂} rs enEv) x = inv-¬think₁ rs (inj₂ (inj₁ (fst enEv))) inv-¬think₁ (step {event = es₃} rs enEv) (inj₂ (inj₁ ())) inv-¬think₁ (step {event = es₃} rs enEv) (inj₂ (inj₂ ())) inv-¬think₁ (step {event = er₀} rs enEv) x = inv-¬think₁ rs x inv-¬think₁ (step {event = er₁} rs enEv) x = inv-¬think₁ rs x inv-¬think₁ (step {event = er₂₁} rs enEv) x = inv-¬think₁ rs x inv-¬think₁ (step {event = er₂₂} rs enEv) x = inv-¬think₁ rs x inv-¬think₁ (step {event = er₃} rs enEv) x = inv-¬think₁ rs x inv-think₂ : Invariant MyStateMachine λ st → control₁ st ≡ 0F → thinking₁ st ≡ true inv-think₂ (init refl) x = refl inv-think₂ (step {event = es₀} rs enEv) x = inv-think₂ rs x inv-think₂ (step {event = es₁} rs enEv) x = inv-think₂ rs x inv-think₂ (step {event = es₂₁} rs enEv) x = inv-think₂ rs x inv-think₂ (step {event = es₂₂} rs enEv) x = inv-think₂ rs x inv-think₂ (step {event = es₃} rs enEv) x = inv-think₂ rs x inv-think₂ (step {event = er₃} rs enEv) x = refl inv-¬think₂ : Invariant MyStateMachine λ st → control₁ st ≡ 1F ⊎ control₁ st ≡ 2F ⊎ control₁ st ≡ 3F → thinking₁ st ≡ false inv-¬think₂ (init refl) (inj₂ (inj₁ ())) inv-¬think₂ (init refl) (inj₂ (inj₂ ())) inv-¬think₂ (step {event = es₀} rs enEv) x = inv-¬think₂ rs x inv-¬think₂ (step {event = es₁} rs enEv) x = inv-¬think₂ rs x inv-¬think₂ (step {event = es₂₁} rs enEv) x = inv-¬think₂ rs x inv-¬think₂ (step {event = es₂₂} rs enEv) x = inv-¬think₂ rs x inv-¬think₂ (step {event = es₃} rs enEv) x = inv-¬think₂ rs x inv-¬think₂ (step {event = er₀} rs enEv) x = refl inv-¬think₂ (step {event = er₁} rs enEv) x = inv-¬think₂ rs (inj₁ enEv) inv-¬think₂ (step {event = er₂₁} rs enEv) x = inv-¬think₂ rs (inj₂ (inj₁ (fst enEv))) inv-¬think₂ (step {event = er₂₂} rs enEv) x = inv-¬think₂ rs (inj₂ (inj₁ (fst enEv))) inv-¬think₂ (step {event = er₃} rs enEv) (inj₂ (inj₁ ())) inv-¬think₂ (step {event = er₃} rs enEv) (inj₂ (inj₂ ())) proc0-1-l-t-2 : (_≡ 1F) ∘ control₀ l-t (_≡ 2F) ∘ control₀ proc0-1-l-t-2 = viaEvSet Proc0-EvSet wf-p0 (λ { es₁ (inj₁ refl) → hoare λ { _ _ → refl } ; es₂₁ (inj₂ (inj₁ refl)) → hoare λ { refl () } ; es₂₂ (inj₂ (inj₂ (inj₁ refl))) → hoare λ { refl () } ; es₃ (inj₂ (inj₂ (inj₂ refl))) → hoare λ { refl () } }) (λ { es₀ _ → hoare λ { () refl } ; es₁ x → ⊥-elim (x (inj₁ refl)) ; es₂₁ x → ⊥-elim (x (inj₂ (inj₁ refl))) ; es₂₂ x → ⊥-elim (x (inj₂ (inj₂ (inj₁ refl)))) ; es₃ x → ⊥-elim (x (inj₂ (inj₂ (inj₂ refl)))) ; er₀ _ → hoare λ z _ → inj₁ z ; er₁ _ → hoare λ z _ → inj₁ z ; er₂₁ _ → hoare λ z _ → inj₁ z ; er₂₂ _ → hoare λ z _ → inj₁ z ; er₃ _ → hoare λ z _ → inj₁ z }) λ _ x → es₁ , inj₁ refl , x P⊆P₀⊎P₁ : ∀ {ℓ} {A : Set ℓ} (x : Fin 2) → A → A × x ≡ 0F ⊎ A × x ≡ 1F P⊆P₀⊎P₁ 0F a = inj₁ (a , refl) P⊆P₀⊎P₁ 1F a = inj₂ (a , refl) -- y4 turn≡0-l-t-Q : ((_≡ 2F) ∘ control₀ ∩ (_≡ 0F) ∘ turn ) l-t (_≡ 3F) ∘ control₀ turn≡0-l-t-Q = viaEvSet Proc0-EvSet wf-p0 (λ { es₁ (inj₁ refl) → hoare λ { () refl } ; es₂₁ (inj₂ (inj₁ refl)) → hoare λ _ _ → refl ; es₂₂ (inj₂ (inj₂ (inj₁ refl))) → hoare λ _ _ → refl ; es₃ (inj₂ (inj₂ (inj₂ refl))) → hoare λ { () refl } }) ( λ { es₀ _ → hoare λ { () refl } ; es₁ x → ⊥-elim (x (inj₁ refl)) ; es₂₁ x → ⊥-elim (x (inj₂ (inj₁ refl))) ; es₂₂ x → ⊥-elim (x (inj₂ (inj₂ (inj₁ refl)))) ; es₃ x → ⊥-elim (x (inj₂ (inj₂ (inj₂ refl)))) ; er₀ _ → hoare (λ z _ → inj₁ z) ; er₁ _ → hoare (λ z _ → inj₁ ((fst z) , refl) ) ; er₂₁ _ → hoare (λ z _ → inj₁ z) ; er₂₂ _ → hoare (λ z _ → inj₁ z) ; er₃ _ → hoare (λ z _ → inj₁ z) } ) λ { _ (c₀≡2 , tu≡0) → es₂₂ , inj₂ (inj₂ (inj₁ refl)) , c₀≡2 , tu≡0 } -- I think I could prove this with the Proc1EvSet Pl-tQ∨c₁≡1 : (λ preSt → ( control₀ preSt ≡ 2F × turn preSt ≡ 1F ) × control₁ preSt ≡ 0F) l-t λ posSt → control₀ posSt ≡ 3F ⊎ (( control₀ posSt ≡ 2F × turn posSt ≡ 1F ) × control₁ posSt ≡ 1F ) Pl-tQ∨c₁≡1 = viaEvSet Proc0-EvSet wf-p0 (λ { es₁ (inj₁ refl) → hoare λ { () refl } ; es₂₁ (inj₂ (inj₁ refl)) → hoare λ { _ _ → inj₁ refl } ; es₂₂ (inj₂ (inj₂ (inj₁ refl))) → hoare λ { _ _ → inj₁ refl } ; es₃ (inj₂ (inj₂ (inj₂ refl))) → hoare λ { () refl } }) ( λ { es₀ _ → hoare λ { () refl } ; es₁ x → ⊥-elim (x (inj₁ refl)) ; es₂₁ x → ⊥-elim (x (inj₂ (inj₁ refl))) ; es₂₂ x → ⊥-elim (x (inj₂ (inj₂ (inj₁ refl)))) ; es₃ x → ⊥-elim (x (inj₂ (inj₂ (inj₂ refl)))) ; er₀ _ → hoare λ { x₁ enEv → inj₂ (inj₂ (fst x₁ , refl)) } ; er₁ _ → hoare λ { () refl } ; er₂₁ _ → hoare λ { () (refl , _) } ; er₂₂ _ → hoare λ { () (refl , _) } ; er₃ _ → hoare λ { () refl } }) λ { rs ((c₀≡2 , _) , c₁≡0) → es₂₁ , inj₂ (inj₁ refl) , c₀≡2 , inv-think₂ rs c₁≡0 } l-t-turn≡0 : ((_≡ 2F) ∘ control₀ ∩ (_≡ 1F) ∘ turn) ∩ (_≡ 1F) ∘ control₁ l-t (_≡ 2F) ∘ control₀ ∩ (_≡ 0F) ∘ turn l-t-turn≡0 = viaUseInv inv-¬think₂ ( viaEvSet Proc1-EvSet wf-p1 ( λ { er₁ (inj₁ refl) → hoare λ { ((x , _) , _) _ _ → fst x , refl } ; er₂₁ (inj₂ (inj₁ refl)) → hoare λ { () (refl , _) _ } ; er₂₂ (inj₂ (inj₂ (inj₁ refl))) → hoare λ { () (refl , _) _ } ; er₃ (inj₂ (inj₂ (inj₂ refl))) → hoare λ { () refl _ } } ) ( λ { es₀ _ → hoare λ { () refl } ; es₁ _ → hoare λ { () refl } ; es₂₁ _ → hoare λ { ((_ , c₂≡2) , x) (_ , refl) → contradiction (x (inj₁ c₂≡2)) λ () } ; es₂₂ _ → hoare λ { () (_ , refl) } ; es₃ _ → hoare λ { () refl } ; er₀ _ → hoare λ { () refl } ; er₁ x → ⊥-elim (x (inj₁ refl)) ; er₂₁ x → ⊥-elim (x (inj₂ (inj₁ refl))) ; er₂₂ x → ⊥-elim (x (inj₂ (inj₂ (inj₁ refl)))) ; er₃ x → ⊥-elim (x (inj₂ (inj₂ (inj₂ refl)))) } ) λ _ x → er₁ , inj₁ refl , (snd ∘ fst) x ) l-t-c₁≡3 : (λ preSt → ( control₀ preSt ≡ 2F × turn preSt ≡ 1F ) × control₁ preSt ≡ 2F) l-t (λ posSt → ( control₀ posSt ≡ 2F × turn posSt ≡ 1F ) × control₁ posSt ≡ 3F) l-t-c₁≡3 = viaUseInv inv-¬think₂ ( viaEvSet Proc1-EvSet wf-p1 ( λ { er₁ (inj₁ refl) → hoare λ { () refl _ } ; er₂₁ (inj₂ (inj₁ refl)) → hoare λ { ((x , _) , _) _ _ → x , refl } ; er₂₂ (inj₂ (inj₂ (inj₁ refl))) → hoare λ { ((x , _) , _) _ _ → x , refl } ; er₃ (inj₂ (inj₂ (inj₂ refl))) → hoare λ { () refl _ } } ) ( λ { es₀ _ → hoare λ { () refl } ; es₁ _ → hoare λ { () refl } ; es₂₁ _ → hoare λ { ((_ , c₂≡3) , x) (_ , refl) → contradiction (x (inj₂ (inj₁ c₂≡3))) λ () } ; es₂₂ _ → hoare λ { () (_ , refl) } ; es₃ _ → hoare λ { () refl } ; er₀ _ → hoare λ { () refl } ; er₁ x → ⊥-elim (x (inj₁ refl)) ; er₂₁ x → ⊥-elim (x (inj₂ (inj₁ refl))) ; er₂₂ x → ⊥-elim (x (inj₂ (inj₂ (inj₁ refl)))) ; er₃ x → ⊥-elim (x (inj₂ (inj₂ (inj₂ refl)))) } ) λ _ x → er₂₂ , inj₂ (inj₂ (inj₁ refl)) , (snd ∘ fst) x , (snd ∘ fst ∘ fst) x ) l-t-c₁≡0 : (λ preSt → ( control₀ preSt ≡ 2F × turn preSt ≡ 1F ) × control₁ preSt ≡ 3F) l-t (λ posSt → ( control₀ posSt ≡ 2F × turn posSt ≡ 1F ) × control₁ posSt ≡ 0F) l-t-c₁≡0 = viaUseInv inv-¬think₂ ( viaEvSet Proc1-EvSet wf-p1 ( λ { er₁ (inj₁ refl) → hoare λ { () refl _ } ; er₂₁ (inj₂ (inj₁ refl)) → hoare λ { () (refl , _) _ } ; er₂₂ (inj₂ (inj₂ (inj₁ refl))) → hoare λ { () (refl , _) _ } ; er₃ (inj₂ (inj₂ (inj₂ refl))) → hoare λ { x _ _ → (fst ∘ fst) x , refl } } ) ( λ { es₀ _ → hoare λ { () refl } ; es₁ _ → hoare λ { () refl } ; es₂₁ _ → hoare λ { ((_ , c₂≡4) , x) (_ , refl) → contradiction (x (inj₂ (inj₂ c₂≡4))) λ () } ; es₂₂ _ → hoare λ { () (_ , refl) } ; es₃ _ → hoare λ { () refl } ; er₀ _ → hoare λ { () refl } ; er₁ x → ⊥-elim (x (inj₁ refl)) ; er₂₁ x → ⊥-elim (x (inj₂ (inj₁ refl))) ; er₂₂ x → ⊥-elim (x (inj₂ (inj₂ (inj₁ refl)))) ; er₃ x → ⊥-elim (x (inj₂ (inj₂ (inj₂ refl)))) } ) λ _ x → er₃ , inj₂ (inj₂ (inj₂ refl)) , (snd ∘ fst) x ) P∧c₁≡1⇒Q : ((_≡ 2F) ∘ control₀ ∩ (_≡ 1F) ∘ turn) ∩ (_≡ 1F) ∘ control₁ l-t (_≡ 3F) ∘ control₀ P∧c₁≡1⇒Q = viaTrans l-t-turn≡0 turn≡0-l-t-Q P∧c₁≡0⇒Q : ((_≡ 2F) ∘ control₀ ∩ (_≡ 1F) ∘ turn) ∩ (_≡ 0F) ∘ control₁ l-t (_≡ 3F) ∘ control₀ P∧c₁≡0⇒Q = viaTrans2 Pl-tQ∨c₁≡1 P∧c₁≡1⇒Q P∧c₁≡3⇒Q : ((_≡ 2F) ∘ control₀ ∩ (_≡ 1F) ∘ turn) ∩ (_≡ 3F) ∘ control₁ l-t (_≡ 3F) ∘ control₀ P∧c₁≡3⇒Q = viaTrans l-t-c₁≡0 P∧c₁≡0⇒Q P∧c₁≡2⇒Q : ((_≡ 2F) ∘ control₀ ∩ (_≡ 1F) ∘ turn) ∩ (_≡ 2F) ∘ control₁ l-t (_≡ 3F) ∘ control₀ P∧c₁≡2⇒Q = viaTrans l-t-c₁≡3 P∧c₁≡3⇒Q P⊆c₂≡0⊎c₂≢0 : ∀ {ℓ} {A : Set ℓ} (x : Fin 4) → A → A × x ≡ 0F ⊎ A × x ≢ 0F P⊆c₂≡0⊎c₂≢0 0F a = inj₁ (a , refl) P⊆c₂≡0⊎c₂≢0 (suc x) a = inj₂ (a , (λ ())) P⊆c₂≡1⊎c₂≢1 : ∀ {ℓ} {A : Set ℓ} (x : Fin 4) → A × x ≢ 0F → A × x ≡ 1F ⊎ A × x ≢ 0F × x ≢ 1F P⊆c₂≡1⊎c₂≢1 0F (a , x≢0) = ⊥-elim (x≢0 refl) P⊆c₂≡1⊎c₂≢1 1F (a , x≢0) = inj₁ (a , refl) P⊆c₂≡1⊎c₂≢1 (suc (suc x)) (a , x≢0) = inj₂ (a , x≢0 , λ ()) P⊆c₂≡2⊎c₂≡3 : ∀ {ℓ} {A : Set ℓ} (x : Fin 4) → A × x ≢ 0F × x ≢ 1F → A × x ≡ 2F ⊎ A × x ≡ 3F P⊆c₂≡2⊎c₂≡3 0F (a , x≢0 , x≢1) = ⊥-elim (x≢0 refl) P⊆c₂≡2⊎c₂≡3 1F (a , x≢0 , x≢1) = ⊥-elim (x≢1 refl) P⊆c₂≡2⊎c₂≡3 2F (a , x≢0 , x≢1) = inj₁ (a , refl) P⊆c₂≡2⊎c₂≡3 3F (a , x≢0 , x≢1) = inj₂ (a , refl) turn≡1-l-t-Q : ((_≡ 2F) ∘ control₀ ∩ (_≡ 1F) ∘ turn ) l-t (_≡ 3F) ∘ control₀ turn≡1-l-t-Q = viaAllVal inv-c₁≡[0-4] λ { 0F → P∧c₁≡0⇒Q ; 1F → P∧c₁≡1⇒Q ; 2F → P∧c₁≡2⇒Q ; 3F → P∧c₁≡3⇒Q } proc0-2-l-t-3 : (_≡ 2F) ∘ control₀ l-t (_≡ 3F) ∘ control₀ proc0-2-l-t-3 = viaDisj (λ {st} c₀≡2 → P⊆P₀⊎P₁ (turn st) c₀≡2 ) turn≡0-l-t-Q turn≡1-l-t-Q proc1-1-l-t-2 : (λ preSt → control₁ preSt ≡ 1F) l-t λ posSt → control₁ posSt ≡ 2F proc1-1-l-t-2 = viaEvSet Proc1-EvSet wf-p1 ( λ { er₁ (inj₁ refl) → hoare λ { x enEv → refl } ; er₂₁ (inj₂ (inj₁ refl)) → hoare λ { refl () } ; er₂₂ (inj₂ (inj₂ (inj₁ refl))) → hoare λ { refl () } ; er₃ (inj₂ (inj₂ (inj₂ refl))) → hoare λ { refl () } } ) ( λ { es₀ _ → hoare λ z _ → inj₁ z ; es₁ _ → hoare λ z _ → inj₁ z ; es₂₁ _ → hoare λ z _ → inj₁ z ; es₂₂ _ → hoare λ z _ → inj₁ z ; es₃ _ → hoare λ z _ → inj₁ z ; er₀ _ → hoare λ _ _ → inj₁ refl ; er₁ x → ⊥-elim (x (inj₁ refl)) ; er₂₁ x → ⊥-elim (x (inj₂ (inj₁ refl))) ; er₂₂ x → ⊥-elim (x (inj₂ (inj₂ (inj₁ refl)))) ; er₃ x → ⊥-elim (x (inj₂ (inj₂ (inj₂ refl)))) } ) λ _ x → er₁ , inj₁ refl , x -- The proofs are the same as proc0-2-l-t-3 but symmetric. -- We will postulate by now! postulate proc1-2-l-t-3 : ( λ preSt → control₁ preSt ≡ 2F ) l-t λ posSt → control₁ posSt ≡ 3F -- We proved this via transitivity : -- control₀ fstSt ≡ 1F l-t control₀ someSt ≡ 2F l-t control₀ ≡ 3F proc0-live : (λ preSt → control₀ preSt ≡ 1F) l-t (λ posSt → control₀ posSt ≡ 3F) proc0-live = viaTrans proc0-1-l-t-2 proc0-2-l-t-3 proc1-live : (λ preSt → control₁ preSt ≡ 1F) l-t (λ posSt → control₁ posSt ≡ 3F) proc1-live = viaTrans proc1-1-l-t-2 proc1-2-l-t-3 ------------------------------------------------------------------------------ -- Liveness property ------------------------------------------------------------------------------ -- If Process 1 (Process 2) wants to access the critical section, which -- means its control variable is in 1F (it just expressed its will in -- accessing the CS in r₀) then it will eventually access the CS progress : ( (_≡ 1F) ∘ control₀ l-t (_≡ 3F) ∘ control₀ ) × ( (_≡ 1F) ∘ control₁ l-t (_≡ 3F) ∘ control₁ ) progress = proc0-live , proc1-live
{ "alphanum_fraction": 0.4742639891, "avg_line_length": 37.7132352941, "ext": "agda", "hexsha": "ea5cf81eb55f641c30808187b4ecd563ba60f79c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "lisandrasilva/agda-liveness", "max_forks_repo_path": "src/Examples/Peterson.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "lisandrasilva/agda-liveness", "max_issues_repo_path": "src/Examples/Peterson.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "lisandrasilva/agda-liveness", "max_stars_repo_path": "src/Examples/Peterson.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7988, "size": 20516 }
module Interaction-and-input-file where
{ "alphanum_fraction": 0.85, "avg_line_length": 20, "ext": "agda", "hexsha": "cd2eff691d6c84570814a097ba1d439e9d905bd1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Interaction-and-input-file.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Interaction-and-input-file.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Interaction-and-input-file.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 7, "size": 40 }
-- Reported and fixed by Andrea Vezzosi. module Issue898 where id : {A : Set} -> A -> A id = ?
{ "alphanum_fraction": 0.618556701, "avg_line_length": 13.8571428571, "ext": "agda", "hexsha": "b159fbe585bf8f625363b5fdd26fa3ead0b89232", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue898.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue898.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue898.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 31, "size": 97 }
module Data.Word.Primitive where postulate Word : Set Word8 : Set Word16 : Set Word32 : Set Word64 : Set {-# FOREIGN GHC import qualified Data.Word #-} {-# COMPILE GHC Word = type Data.Word.Word #-} {-# COMPILE GHC Word8 = type Data.Word.Word8 #-} {-# COMPILE GHC Word16 = type Data.Word.Word16 #-} {-# COMPILE GHC Word32 = type Data.Word.Word32 #-} {-# COMPILE GHC Word64 = type Data.Word.Word64 #-}
{ "alphanum_fraction": 0.6682808717, "avg_line_length": 25.8125, "ext": "agda", "hexsha": "a0be182aed94143b387cf0bb10e5be2f6659f0f6", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "121d6c66cba34b4c15b437366b80c65dd2b02a8d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-system-io", "max_forks_repo_path": "src/Data/Word/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "121d6c66cba34b4c15b437366b80c65dd2b02a8d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-system-io", "max_issues_repo_path": "src/Data/Word/Primitive.agda", "max_line_length": 50, "max_stars_count": 10, "max_stars_repo_head_hexsha": "121d6c66cba34b4c15b437366b80c65dd2b02a8d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-system-io", "max_stars_repo_path": "src/Data/Word/Primitive.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 110, "size": 413 }
module Numeral.FixedPositional where import Lvl open import Data using (<>) open import Data.List open import Data.Boolean hiding (elim) open import Data.Boolean.Stmt open import Numeral.Finite open import Numeral.Natural open import Functional open import Syntax.Number open import Type private variable ℓ : Lvl.Level private variable z : Bool private variable b n : ℕ -- A formalization of the fixed positional radix numeral system for the notation of numbers. -- Each number is represented by a list of digits. -- Digits are a finite set of ordered objects starting with zero (0), and a finite number of its successors. -- Examples using radix 10 (b = 10): -- ∅ represents 0 -- # 0 represents 0 -- # 0 · 0 represents 0 -- # 2 represents 2 -- # 1 · 3 represents 13 -- # 5 · 0 · 4 · 0 · 0 represents 50400 -- # 0 · 5 · 0 · 4 · 0 · 0 represents 50400 -- # 0 · 0 · 0 · 5 · 0 · 4 · 0 · 0 represents 50400 -- # 5 · 0 · 4 · 0 · 0 · 0 represents 504000 -- Example using radix 2 (b = 2): -- # 1 · 1 represents 3 -- # 0 · 1 · 0 · 1 · 1 represents 11 -- Note: The radix is also called base. -- Note: This representation is in little endian: The deepest digit in the list is the most significant digit (greatest), and the first position of the list is the least significant digit. Note that the (_·_) operator is a reversed list cons operator, so it constructs a list from right to left when written without parenthesis. Positional = List ∘ 𝕟 pattern # n = n ⊰ ∅ pattern _·_ a b = b ⊰ a infixl 100 _·_ private variable x y : Positional(b) private variable d : 𝕟(n) -- Two positionals are equal when the sequence of digits in the lists are the same. -- But also, when there are zeroes at the most significant positions, they should be skipped. -- Examples: -- # 4 · 5 ≡ₚₒₛ # 4 · 5 -- # 0 · 0 · 4 · 5 ≡ₚₒₛ # 4 · 5 -- # 4 · 5 ≡ₚₒₛ # 0 · 0 · 4 · 5 -- # 0 · 0 · 4 · 5 ≡ₚₒₛ # 0 · 4 · 5 data _≡ₚₒₛ_ : Positional b → Positional b → Type{Lvl.𝟎} where empty : (_≡ₚₒₛ_ {b} ∅ ∅) skipₗ : (x ≡ₚₒₛ ∅) → (x · 𝟎 ≡ₚₒₛ ∅) skipᵣ : (∅ ≡ₚₒₛ y) → (∅ ≡ₚₒₛ y · 𝟎) step : (x ≡ₚₒₛ y) → (x · d ≡ₚₒₛ y · d) module _ where open import Numeral.Natural.Oper -- Converts a positional to a number by adding the first digit and multiplying the rest with the radix. -- Examples in radix 10 (b = 10): -- to-ℕ (# 1 · 2 · 3) = 10 ⋅ (10 ⋅ (10 ⋅ 0 + 1) + 2) + 3 = ((0 + 100) + 20) + 3 = 100 + 20 + 3 = 123 -- to-ℕ (# a · b · c) = 10 ⋅ (10 ⋅ (10 ⋅ 0 + a) + b) + c = (10² ⋅ a) + (10¹ ⋅ b) + c = (10² ⋅ a) + (10¹ ⋅ b) + (10⁰ ⋅ c) to-ℕ : Positional b → ℕ to-ℕ ∅ = 𝟎 to-ℕ {b} (l · n) = (b ⋅ (to-ℕ l)) + (𝕟-to-ℕ n) import Data.List.Functions as List open import Logic.Propositional open import Numeral.Finite.Proofs open import Numeral.Natural.Inductions open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.FlooredDivision open import Numeral.Natural.Oper.FlooredDivision.Proofs open import Numeral.Natural.Oper.Modulo open import Numeral.Natural.Oper.Modulo.Proofs open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Decidable open import Numeral.Natural.Relation.Order.Proofs open import Structure.Relator.Ordering import Structure.Relator.Names as Names open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Syntax.Transitivity open import Type.Properties.Decidable open import Type.Properties.Decidable.Proofs -- Converts a number to its positional representation in the specified radix. -- This is done by extracting the next digit using modulo of the radix and then dividing the rest. -- This is the inverse of to-ℕ. from-ℕ-rec : ⦃ b-size : IsTrue(b >? 1) ⦄ → (x : ℕ) → ((prev : ℕ) ⦃ _ : prev < x ⦄ → Positional(b)) → Positional(b) from-ℕ-rec b@{𝐒(𝐒 _)} 𝟎 _ = ∅ from-ℕ-rec b@{𝐒(𝐒 _)} n@(𝐒 _) prev = (prev(n ⌊/⌋ b) ⦃ [⌊/⌋]-ltₗ {n}{b} ⦄) · (ℕ-to-𝕟 (n mod b) ⦃ [↔]-to-[→] decider-true (mod-maxᵣ{n}{b}) ⦄) from-ℕ : ℕ → Positional(b) from-ℕ {0} = const ∅ from-ℕ {1} = List.repeat 𝟎 from-ℕ b@{𝐒(𝐒 _)} = Strict.Properties.wellfounded-recursion(_<_) from-ℕ-rec instance [≡ₚₒₛ]-reflexivity : Reflexivity(_≡ₚₒₛ_ {b}) [≡ₚₒₛ]-reflexivity = intro p where p : Names.Reflexivity(_≡ₚₒₛ_ {b}) p {x = ∅} = empty p {x = _ ⊰ _} = _≡ₚₒₛ_.step p instance [≡ₚₒₛ]-symmetry : Symmetry(_≡ₚₒₛ_ {b}) [≡ₚₒₛ]-symmetry = intro p where p : Names.Symmetry(_≡ₚₒₛ_ {b}) p empty = empty p (skipₗ eq) = skipᵣ (p eq) p (skipᵣ eq) = skipₗ (p eq) p (_≡ₚₒₛ_.step eq) = _≡ₚₒₛ_.step (p eq) instance [≡ₚₒₛ]-transitivity : Transitivity(_≡ₚₒₛ_ {b}) [≡ₚₒₛ]-transitivity = intro p where p : Names.Transitivity(_≡ₚₒₛ_ {b}) p empty empty = empty p empty (skipᵣ b) = skipᵣ b p (skipₗ a) empty = skipₗ a p (skipₗ a) (skipᵣ b) = _≡ₚₒₛ_.step (p a b) p (skipᵣ a) (skipₗ b) = p a b p (skipᵣ a) (_≡ₚₒₛ_.step b) = skipᵣ (p a b) p (_≡ₚₒₛ_.step a) (skipₗ b) = skipₗ (p a b) p (_≡ₚₒₛ_.step a) (_≡ₚₒₛ_.step b) = _≡ₚₒₛ_.step (p a b) instance [≡ₚₒₛ]-equivalence : Equivalence(_≡ₚₒₛ_ {b}) [≡ₚₒₛ]-equivalence = intro open import Structure.Setoid using (Equiv ; intro) Positional-equiv : Equiv(Positional(b)) Positional-equiv {b} = intro _ ⦃ [≡ₚₒₛ]-equivalence {b} ⦄ open import Lang.Instance open import Numeral.Natural.Relation.Proofs open import Structure.Function open import Structure.Operator open import Relator.Equals open import Relator.Equals.Proofs from-ℕ-digit : ⦃ b-size : IsTrue(b >? 1) ⦄ → ⦃ _ : IsTrue(n <? b) ⦄ → (from-ℕ {b} n ≡ₚₒₛ ℕ-to-𝕟 n ⊰ ∅) from-ℕ-digit b@{𝐒(𝐒 bb)} {n} = Strict.Properties.wellfounded-recursion-intro(_<_) {rec = from-ℕ-rec} {φ = \{n} expr → ⦃ _ : IsTrue(n <? b) ⦄ → (expr ≡ₚₒₛ (ℕ-to-𝕟 n ⊰ ∅))} p {n} where p : (y : ℕ) → _ → _ → ⦃ _ : IsTrue(y <? b) ⦄ → (from-ℕ y ≡ₚₒₛ (ℕ-to-𝕟 y ⊰ ∅)) p 𝟎 prev eq = skipᵣ empty p (𝐒 y) prev eq ⦃ ord ⦄ = from-ℕ (𝐒(y)) 🝖[ _≡ₚₒₛ_ ]-[ sub₂(_≡_)(_≡ₚₒₛ_) (eq{y} ⦃ reflexivity(_≤_) ⦄) ] from-ℕ (𝐒(y) ⌊/⌋ b) · ℕ-to-𝕟 (𝐒(y) mod b) ⦃ yb-ord? ⦄ 🝖[ _≡ₚₒₛ_ ]-[ _≡ₚₒₛ_.step (prev ⦃ [⌊/⌋]-ltₗ{𝐒 y}{b} ⦄ ⦃ div-ord ⦄) ] ∅ · ℕ-to-𝕟 (𝐒(y) ⌊/⌋ b) ⦃ div-ord ⦄ · ℕ-to-𝕟 (𝐒(y) mod b) ⦃ yb-ord? ⦄ 🝖[ _≡ₚₒₛ_ ]-[ sub₂(_≡_)(_≡ₚₒₛ_) (congruence₂ᵣ(_·_)(_) (congruence-ℕ-to-𝕟 ⦃ infer ⦄ ⦃ yb-ord? ⦄ (mod-lesser-than-modulus {𝐒 y}{𝐒 bb} ⦃ yb-ord ⦄))) ] ∅ · ℕ-to-𝕟 (𝐒(y) ⌊/⌋ b) ⦃ div-ord ⦄ · ℕ-to-𝕟 (𝐒(y)) 🝖[ _≡ₚₒₛ_ ]-[ _≡ₚₒₛ_.step (sub₂(_≡_)(_≡ₚₒₛ_) (congruence₂ᵣ(_·_)(_) (congruence-ℕ-to-𝕟 ⦃ infer ⦄ ⦃ div-ord ⦄ ([⌊/⌋]-zero {𝐒 y}{b} yb-ord2)))) ] ∅ · 𝟎 · ℕ-to-𝕟 (𝐒(y)) 🝖[ _≡ₚₒₛ_ ]-[ _≡ₚₒₛ_.step (skipₗ empty) ] ∅ · ℕ-to-𝕟 (𝐒(y)) 🝖-end where yb-ord? = [↔]-to-[→] decider-true (mod-maxᵣ {𝐒(y)}{b} ⦃ infer ⦄) yb-ord = [↔]-to-[←] (decider-true ⦃ [<]-decider ⦄) ord yb-ord2 = [↔]-to-[←] (decider-true ⦃ [<]-decider ⦄) ord div-ord = [↔]-to-[→] decider-true ([⌊/⌋]-preserve-[<]ₗ {𝐒 y}{b}{b} yb-ord2) from-ℕ-step : ⦃ b-size : IsTrue(b >? 1) ⦄ → let pos = [↔]-to-[←] Positive-greater-than-zero ([≤]-predecessor ([↔]-to-[←] (decider-true ⦃ [<]-decider {1}{b} ⦄) b-size)) in (from-ℕ {b} n ≡ₚₒₛ (from-ℕ {b} ((n ⌊/⌋ b) ⦃ pos ⦄)) · (ℕ-to-𝕟 ((n mod b) ⦃ pos ⦄) ⦃ [↔]-to-[→] decider-true (mod-maxᵣ{n}{b} ⦃ pos ⦄) ⦄)) from-ℕ-step b@{𝐒(𝐒 bb)} {n} = Strict.Properties.wellfounded-recursion-intro(_<_) {rec = from-ℕ-rec} {φ = \{n} expr → (expr ≡ₚₒₛ from-ℕ {b} (n ⌊/⌋ b) · (ℕ-to-𝕟 (n mod b) ⦃ ord n ⦄))} p {n} where ord = \n → [↔]-to-[→] decider-true (mod-maxᵣ{n}{b}) p : (y : ℕ) → _ → _ → Strict.Properties.accessible-recursion(_<_) from-ℕ-rec y ≡ₚₒₛ from-ℕ (y ⌊/⌋ b) · ℕ-to-𝕟 (y mod b) ⦃ ord y ⦄ p 𝟎 prev eq = skipᵣ empty p (𝐒 y) prev eq = (sub₂(_≡_)(_≡ₚₒₛ_) (eq {y} ⦃ reflexivity(_≤_) ⦄)) open import Numeral.Natural.Oper.FlooredDivision.Proofs.Inverse open import Numeral.Natural.Oper.Proofs open import Structure.Operator.Properties from-ℕ-step-invs : ⦃ b-size : IsTrue(b >? 1) ⦄ → (from-ℕ {b} ((b ⋅ n) + (𝕟-to-ℕ d)) ≡ₚₒₛ (from-ℕ {b} n) · d) from-ℕ-step-invs b@{𝐒(𝐒 bb)} {n}{d} = from-ℕ (b ⋅ n + 𝕟-to-ℕ d) 🝖[ _≡ₚₒₛ_ ]-[ from-ℕ-step {n = b ⋅ n + 𝕟-to-ℕ d} ] from-ℕ ((b ⋅ n + 𝕟-to-ℕ d) ⌊/⌋ b) · (ℕ-to-𝕟 ((b ⋅ n + 𝕟-to-ℕ d) mod b) ⦃ _ ⦄) 🝖[ _≡ₚₒₛ_ ]-[ sub₂(_≡_)(_≡ₚₒₛ_) (congruence₂(_·_) (congruence₁(from-ℕ) r) (congruence-ℕ-to-𝕟 ⦃ infer ⦄ ⦃ ord1 ⦄ ⦃ ord2 ⦄ q 🝖 ℕ-𝕟-inverse)) ] from-ℕ n · d 🝖-end where ord1 = [↔]-to-[→] decider-true (mod-maxᵣ{(b ⋅ n) + (𝕟-to-ℕ d)}{b}) ord2 = [↔]-to-[→] decider-true ([<]-of-𝕟-to-ℕ {b}{d}) q = ((b ⋅ n) + 𝕟-to-ℕ d) mod b 🝖[ _≡_ ]-[ congruence₁(_mod b) (commutativity(_+_) {b ⋅ n}{𝕟-to-ℕ d}) ] (𝕟-to-ℕ d + (b ⋅ n)) mod b 🝖[ _≡_ ]-[ mod-of-modulus-sum-multiple {𝕟-to-ℕ d}{b}{n} ] (𝕟-to-ℕ d) mod b 🝖[ _≡_ ]-[ mod-lesser-than-modulus ⦃ [≤]-without-[𝐒] [<]-of-𝕟-to-ℕ ⦄ ] 𝕟-to-ℕ d 🝖-end r = (b ⋅ n + 𝕟-to-ℕ d) ⌊/⌋ b 🝖[ _≡_ ]-[ [⌊/⌋][+]-distributivityᵣ {b ⋅ n}{𝕟-to-ℕ d}{b} ] ((b ⋅ n) ⌊/⌋ b) + ((𝕟-to-ℕ d) ⌊/⌋ b) 🝖[ _≡_ ]-[ congruence₂(_+_) ([⌊/⌋][swap⋅]-inverseOperatorᵣ {b}{n}) ([⌊/⌋]-zero ([<]-of-𝕟-to-ℕ {b}{d})) ] n + 𝟎 🝖[ _≡_ ]-[] n 🝖-end open import Numeral.Natural.Oper.DivMod.Proofs open import Structure.Function.Domain import Structure.Function.Names as Names instance from-to-inverse : ⦃ b-size : IsTrue(b >? 1) ⦄ → Inverseᵣ ⦃ Positional-equiv{b} ⦄ from-ℕ to-ℕ from-to-inverse b@{𝐒(𝐒 _)} = intro p where p : Names.Inverses ⦃ Positional-equiv{b} ⦄ from-ℕ to-ℕ p{x = ∅} = empty p{x = x · n} = from-ℕ-step-invs{b}{to-ℕ x}{n} 🝖 _≡ₚₒₛ_.step (p{x = x}) instance to-from-inverse : ⦃ b-size : IsTrue(b >? 1) ⦄ → Inverseᵣ(to-ℕ{b}) (from-ℕ{b}) to-from-inverse {b@(𝐒(𝐒 bb))} = intro (\{n} → Strict.Properties.wellfounded-recursion-intro(_<_) {rec = from-ℕ-rec {b}} {φ = \{n} expr → (to-ℕ expr ≡ n)} p {n}) where p : (y : ℕ) → _ → _ → (to-ℕ {b} (from-ℕ {b} y) ≡ y) p 𝟎 _ _ = [≡]-intro p (𝐒 y) prev eq = to-ℕ {b} (from-ℕ (𝐒 y)) 🝖[ _≡_ ]-[ congruence₁(to-ℕ) (eq {𝐒(y) ⌊/⌋ b} ⦃ ord2 ⦄) ] to-ℕ {b} ((from-ℕ (𝐒(y) ⌊/⌋ b)) · (ℕ-to-𝕟 (𝐒(y) mod b) ⦃ _ ⦄)) 🝖[ _≡_ ]-[] (b ⋅ to-ℕ {b} (from-ℕ {b} (𝐒(y) ⌊/⌋ b))) + 𝕟-to-ℕ (ℕ-to-𝕟 (𝐒(y) mod b) ⦃ _ ⦄) 🝖[ _≡_ ]-[ congruence₂(_+_) (congruence₂ᵣ(_⋅_)(b) (prev{𝐒(y) ⌊/⌋ b} ⦃ ord2 ⦄)) (𝕟-ℕ-inverse {b}{𝐒(y) mod b} ⦃ ord1 ⦄) ] (b ⋅ (𝐒(y) ⌊/⌋ b)) + (𝐒(y) mod b) 🝖[ _≡_ ]-[ [⌊/⌋][mod]-is-division-with-remainder-pred-commuted {𝐒 y}{b} ] 𝐒(y) 🝖-end where ord1 = [↔]-to-[→] decider-true (mod-maxᵣ{𝐒(y)}{b}) ord2 = [⌊/⌋]-ltₗ {𝐒 y}{b} instance to-ℕ-function : ⦃ b-size : IsTrue(b >? 1) ⦄ → Function ⦃ Positional-equiv ⦄ ⦃ [≡]-equiv ⦄ (to-ℕ {b}) to-ℕ-function {b} = intro p where p : Names.Congruence₁ ⦃ Positional-equiv ⦄ ⦃ [≡]-equiv ⦄ (to-ℕ {b}) p empty = reflexivity(_≡_) p (skipₗ xy) rewrite p xy = reflexivity(_≡_) p (skipᵣ {y = ∅} xy) = reflexivity(_≡_) p (skipᵣ {y = 𝟎 ⊰ y} (skipᵣ xy)) rewrite symmetry(_≡_) (p xy) = reflexivity(_≡_) p (_≡ₚₒₛ_.step xy) rewrite p xy = reflexivity(_≡_) open import Logic.Predicate open import Structure.Function.Domain.Proofs instance from-ℕ-bijective : ⦃ b-size : IsTrue(b >? 1) ⦄ → Bijective ⦃ [≡]-equiv ⦄ ⦃ Positional-equiv ⦄ (from-ℕ {b}) from-ℕ-bijective = [↔]-to-[→] (invertible-when-bijective ⦃ _ ⦄ ⦃ _ ⦄) ([∃]-intro to-ℕ ⦃ [∧]-intro infer ([∧]-intro infer infer) ⦄) instance to-ℕ-bijective : ⦃ b-size : IsTrue(b >? 1) ⦄ → Bijective ⦃ Positional-equiv ⦄ ⦃ [≡]-equiv ⦄ (to-ℕ {b}) to-ℕ-bijective = [↔]-to-[→] (invertible-when-bijective ⦃ _ ⦄ ⦃ _ ⦄) ([∃]-intro from-ℕ ⦃ [∧]-intro ([≡]-to-function ⦃ Positional-equiv ⦄) ([∧]-intro infer infer) ⦄) import Data.Option.Functions as Option open import Function.Names open import Numeral.Natural.Relation.Order.Proofs -- TODO: Trying to define a bijection, but not really possible because not all functions PositionalSequence : List(𝕟(𝐒 b)) → (ℕ → 𝕟(𝐒 b)) PositionalSequence l n = (List.index₀ n l) Option.or 𝟎 sequencePositional : (f : ℕ → 𝕟(𝐒 b)) → ∃(N ↦ (f ∘ (_+ N) ⊜ const 𝟎)) → List(𝕟(𝐒 b)) sequencePositional f ([∃]-intro 𝟎) = ∅ sequencePositional f ([∃]-intro (𝐒 N) ⦃ p ⦄) = f(𝟎) ⊰ sequencePositional (f ∘ 𝐒) ([∃]-intro N ⦃ \{n} → p{n} ⦄)
{ "alphanum_fraction": 0.5257547521, "avg_line_length": 53.4462151394, "ext": "agda", "hexsha": "02772f709c2b06e4a2c9fc2699357d125d45cbb4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/FixedPositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/FixedPositional.agda", "max_line_length": 328, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/FixedPositional.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 6165, "size": 13415 }