Search is not available for this dataset
text
string
meta
dict
open import Agda.Builtin.Nat using (Nat; suc; zero; _+_) module test where data _even : Nat → Set where ZERO : zero even STEP : ∀ x → x even → suc (suc x) even proof₁ : suc (suc (suc (suc zero))) even proof₁ = ?
{ "alphanum_fraction": 0.6380090498, "avg_line_length": 17, "ext": "agda", "hexsha": "010d1280b8b88c0b8fe2648c55cab5f1975221d0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0e729eab77eb075e175f98e521c18878be87e6a2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ixaxaar/refl", "max_forks_repo_path": "test/test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0e729eab77eb075e175f98e521c18878be87e6a2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ixaxaar/refl", "max_issues_repo_path": "test/test.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "0e729eab77eb075e175f98e521c18878be87e6a2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ixaxaar/refl", "max_stars_repo_path": "test/test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 77, "size": 221 }
module Data.Char.Classifier where open import Data.Char.Classifier.Primitive public
{ "alphanum_fraction": 0.8470588235, "avg_line_length": 21.25, "ext": "agda", "hexsha": "eab6f10b262f4e6c10d86238e584b45dbde468a9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/Data/Char/Classifier.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/Data/Char/Classifier.agda", "max_line_length": 49, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/Data/Char/Classifier.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 17, "size": 85 }
module Data.Option.Equiv.Id where import Lvl open import Data.Option open import Data.Option.Functions open import Data.Option.Equiv open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Function open import Structure.Function.Domain open import Type private variable ℓ : Lvl.Level private variable T A B : Type{ℓ} private variable f : A → B private variable o : Option T instance Some-injectivity : Injective {B = Option(T)} (Some) Injective.proof Some-injectivity [≡]-intro = [≡]-intro instance Id-Option-extensionality : Extensionality{A = T} ([≡]-equiv) Extensionality.cases-inequality Id-Option-extensionality () map-injectivity : ⦃ inj-f : Injective(f) ⦄ → Injective(map f) Injective.proof map-injectivity {None} {None} [≡]-intro = [≡]-intro Injective.proof (map-injectivity {f = f}) {Some x} {Some y} p = congruence₁(Some) (injective f(injective(Some) p)) -- TODO: Generalize and move map-None : (map f o ≡ None) → (o ≡ None) map-None {o = None} p = [≡]-intro
{ "alphanum_fraction": 0.711409396, "avg_line_length": 31.6060606061, "ext": "agda", "hexsha": "5dca841df02d0a87fd2a9e90cce886ef41a7b00a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Option/Equiv/Id.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Option/Equiv/Id.agda", "max_line_length": 122, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Option/Equiv/Id.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 311, "size": 1043 }
{-# OPTIONS --allow-unsolved-metas #-} open import Common.Size -- An abuse of sized types, but as you wish... data D (i : Size) : Set where c : (j : Size< i) (k : Size< j) (l : Size< k) (m : Size< l) → D m → D i c' : (j : Size< i) → D j → D i works : ∀ i → D i → Set works i (c j k l m d) = works j (c' k (c' l (c' m d))) works i (c' j d) = works j d test : ∀ i → D i → Set test i (c j k l m d) = test ? (c' ? (c' ? (c' ? ?))) test i (c' j d) = ? -- Should not give a termination error as there is an instantiation -- of meta variables that gives a terminating function.
{ "alphanum_fraction": 0.5451448041, "avg_line_length": 27.9523809524, "ext": "agda", "hexsha": "ce340f89790dccf13ac470c99a7de76e4a6d9c47", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1317a.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1317a.agda", "max_line_length": 74, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1317a.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 216, "size": 587 }
-- Andreas, 2011-04-07 module IrrelevantTelescope where data Wrap .(A : Set) : Set where wrap : A -> Wrap A -- cannot use A, because it is declared irrelevant
{ "alphanum_fraction": 0.6951219512, "avg_line_length": 20.5, "ext": "agda", "hexsha": "25a92dcab18c9bf253207b63139437886033a410", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/IrrelevantTelescope.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/IrrelevantTelescope.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/IrrelevantTelescope.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 49, "size": 164 }
-- Andreas, 2015-10-28 Issue 1407 -- (Issue 1023 raised its ugly head again!) {-# OPTIONS -v term.with.inline:30 #-} --KEEP! Triggered bug on agda-2.4.2.5. -- {-# OPTIONS -v term.with.inline:70 #-} -- {-# OPTIONS -v tc.with.display:30 #-} record _×_ (A B : Set) : Set where constructor pair field fst : A snd : B open _×_ data Unit : Set where unit : Unit data List (A : Set) : Set where _∷_ : A → List A → List A map : ∀ A B → (A → B) → List A → List B map A B f (x ∷ xs) = f x ∷ map A B f xs record Setoid : Set₁ where field Carrier : Set open Setoid module Assoc (Key : Setoid) (_ : Set) where -- FAILS -- module Assoc (_ : Set) (Key : Setoid) where -- WORKS data _∈_ (x : Carrier Key) : List (Carrier Key) → Set where here : ∀ xs → Unit → x ∈ xs there : ∀ {xs} → x ∈ xs postulate foo : Carrier Key → Carrier Key → Unit lem : (p : Carrier Key × Unit) → (ps : List (Carrier Key × Unit)) → fst p ∈ map (Carrier Key × Unit) (Carrier Key) fst ps → Set lem (pair k v) ((pair k' v') ∷ ps) (here .(k' ∷ map (Carrier Key × Unit) (Carrier Key) fst ps) u) with foo k k' ... | unit = Unit lem p (_ ∷ ps) there = lem p ps there -- to force termination checking -- 7 6 5 4 3 2 1 7 0 -- lem Key _ (pair k v) (pair k' v') ∷ ps) (here .(...Key...) u) -- 8 7 6 5 4 3 2 1 0 -- lem-with Key _ k k' (w = unit) v v' ps u = Unit {- inlinedClauses (raw) QNamed {qname = Issue1407.Assoc.lem, qnamed = Clause { clauseRange = /home/abel/agda/test/bugs/Issue1407.agda:40,3-13 , clauseTel = ExtendTel (Def Issue1407.Setoid []) (Abs "Key" ExtendTel (Sort (Type (Max []))) (Abs "_" ExtendTel (Var 1 [Proj Issue1407.Setoid.Carrier]}) (Abs "k" ExtendTel (Var 2 [Proj Issue1407.Setoid.Carrier]}) (Abs "k'" ExtendTel (Def Issue1407.Unit []}) (Abs "v" ExtendTel (Def Issue1407.Unit []}) (Abs "v'" ExtendTel (Def Issue1407.List [Apply []r(Def Issue1407._×_ [Apply []r(Var 5 [Proj Issue1407.Setoid.Carrier]),Apply []r(Def Issue1407.Unit [])])]}) (Abs "ps" ExtendTel (Def Issue1407.Unit []}) (Abs "u" EmptyTel)))))))) , clausePerm = x0,x1,x2,x3,x4,x5,x6,x7,x8 -> x0,x1,x2,x4,x3,x5,x6,x8 , namedClausePats = [[]r(VarP "Key") ,[]r(VarP "x") ,[]r(ConP Issue1407._×_._,_(inductive)[Issue1407._×_.fst,Issue1407._×_.snd] (ConPatternInfo {conPRecord = Nothing, conPType = Nothing}) [[]r(VarP "k"),[]r(VarP "v")]) ,[]r(ConP Issue1407.List._∷_(inductive)[] (ConPatternInfo {conPRecord = Nothing, conPType = Nothing}) [[]r(ConP Issue1407._×_._,_(inductive)[Issue1407._×_.fst,Issue1407._×_.snd] (ConPatternInfo {conPRecord = Nothing, conPType = Nothing}) [[]r(VarP "k'"),[]r(VarP "v'")]),[]r(VarP "ps")]) ,[]r(ConP Issue1407.Assoc._∈_.here(inductive)[] (ConPatternInfo {conPRecord = Nothing, conPType = Nothing}) [[]r{DotP (Con Issue1407.List._∷_(inductive)[] [[]r(Var 4 []) ,[]r(Def Issue1407.map [Apply []r{Def Issue1407._×_ [Apply []r(Def Issue1407.Assoc._.Carrier [Apply []r(Con Issue1407.Unit.unit(inductive)[] []),Apply []r(Var 3 [])]) ,Apply []r(Def Issue1407.Unit [])]} ,Apply []r{Def Issue1407.Assoc._.Carrier [Apply []r(Con Issue1407.Unit.unit(inductive)[] []) ,Apply []r(Var 3 [])]} ,Apply []r(Lam (ArgInfo {argInfoHiding = NotHidden, argInfoRelevance = Relevant, argInfoColors = []}) (Abs "r" Var 0 [Proj Issue1407._×_.fst])) ,Apply []r(Var 1 []) ]) ])} ,[]r(VarP "u") ]) ,[]r(ConP Issue1407.Unit.unit(inductive)[] (ConPatternInfo {conPRecord = Nothing, conPType = Nothing}) []) ] , clauseBody = Bind (Abs "h8" Bind (Abs "h7" Bind (Abs "h6" Bind (Abs "h5" Bind (Abs "h4" Bind (Abs "h3" Bind (Abs "h2" Bind (Abs "h1" Bind (Abs "h0" Body (Def Issue1407.Unit [])))))))))), clauseType = Nothing}} -}
{ "alphanum_fraction": 0.5746400606, "avg_line_length": 44.9886363636, "ext": "agda", "hexsha": "f654c0026511e28fa0e93ebabad317c1a03a3b4d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1407.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1407.agda", "max_line_length": 291, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1407.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1405, "size": 3959 }
open import Type module Graph.Walk.Properties {ℓ₁ ℓ₂} {V : Type{ℓ₁}} where open import Lang.Instance open import Logic import Lvl open import Graph{ℓ₁}{ℓ₂}(V) open import Graph.Walk{ℓ₁}{ℓ₂}{V} open import Relator.Equals.Proofs.Equiv open import Type.Properties.MereProposition module _ (_⟶_ : Graph) where -- `Passes edge walk` states that the walk `walk` contains the edge `edge`. -- In other words, there is a step in the walk which is `edge`. -- Note: Passes is a generalized containment relation for paths instead of lists. data Passes {v₁ v₂ : V} (edge : v₁ ⟶ v₂) : ∀{a b : V} → Walk(_⟶_) a b → Type{ℓ₁ Lvl.⊔ ℓ₂} where current : ∀{c}{rest : Walk(_⟶_) v₂ c} → Passes edge (Walk.prepend edge rest) skip : ∀{b c}{rest : Walk(_⟶_) b c} → Passes edge rest → ∀{a}{e : (a ⟶ b)} → Passes edge (Walk.prepend e rest) -- `Visits v walk` states that the walk `walk` visits the vertex `v`. -- In other words, one of the steps/edges in the walk mention the vertex v. data Visits (v : V) : ∀{a b : V} → Walk(_⟶_) a b → Type{ℓ₁ Lvl.⊔ ℓ₂} where current : ∀{b}{path : Walk(_⟶_) v b} → Visits v path skip : ∀{a b c}{e : (a ⟶ b)}{rest : Walk(_⟶_) b c} → Visits v rest → Visits v (Walk.prepend e rest) module _ {a b : V} (walk₁ : Walk(_⟶_) a b) {c d : V} (walk₂ : Walk(_⟶_) c d) where record Subwalk : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{v₁ v₂ : V}{edge : v₁ ⟶ v₂} → Passes edge walk₁ → Passes edge walk₂ module _ {_⟶_ : Graph} {a b : V} (walk : Walk(_⟶_) a b) where -- A walk that never visits the same edge twice. -- Note: Equality on edges must respect uniqueness. In other words, one edge must not have multiple constructions. record Trail : Type{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{v₁ v₂ : V}{edge : v₁ ⟶ v₂} → MereProposition(Passes(_⟶_) edge walk) -- A walk that never visits the same vertex twice. -- Also called "Simple path". -- Note: Equality on edges must respect uniqueness. In other words, one edge must not have multiple constructions. record Path : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{v : V} → MereProposition(Visits(_⟶_) v walk) path = inst-fn Path.proof -- A walk that visits every vertex in the graph. record Traceable : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{v : V} → Visits(_⟶_) v walk traceable = inst-fn Traceable.proof
{ "alphanum_fraction": 0.6524793388, "avg_line_length": 46.5384615385, "ext": "agda", "hexsha": "5209e0a166b0ed2d50e16b59a00f569cf1b6608b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Graph/Walk/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Graph/Walk/Properties.agda", "max_line_length": 117, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Graph/Walk/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 839, "size": 2420 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Library.Arithmetic where open import Light.Level using (Setω ; Level) open import Light.Variable.Levels record Arithmetic (Operand : Set ℓ) : Setω where field _+_ _∗_ : Operand → Operand → Operand open Arithmetic ⦃ ... ⦄ public
{ "alphanum_fraction": 0.7242424242, "avg_line_length": 30, "ext": "agda", "hexsha": "3c0ade5268955b543cb84ff4898e93d41284f3c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Library/Arithmetic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Library/Arithmetic.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Library/Arithmetic.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 83, "size": 330 }
open import Formalization.PredicateLogic.Signature module Formalization.PredicateLogic.Classical.NaturalDeduction (𝔏 : Signature) where open Signature(𝔏) open import Data.ListSized import Lvl open import Formalization.PredicateLogic.Syntax(𝔏) open import Formalization.PredicateLogic.Syntax.Substitution(𝔏) open import Functional using (_∘_ ; _∘₂_ ; swap) open import Numeral.Finite open import Numeral.Natural open import Relator.Equals.Proofs.Equiv open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to · ; _≡_ to _≡ₛ_) open import Type private variable ℓ : Lvl.Level private variable args vars : ℕ private variable Γ : PredSet{ℓ}(Formula(vars)) data _⊢_ {ℓ} : PredSet{ℓ}(Formula(vars)) → Formula(vars) → Type{Lvl.𝐒(ℓₚ Lvl.⊔ ℓₒ Lvl.⊔ ℓ)} where direct : (Γ ⊆ (Γ ⊢_)) [⊤]-intro : (Γ ⊢ ⊤) [⊥]-elim : ∀{φ} → ((Γ ∪ ·(¬ φ)) ⊢ ⊥) → (Γ ⊢ φ) [∧]-intro : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ ψ) → (Γ ⊢ (φ ∧ ψ)) [∧]-elimₗ : ∀{φ ψ} → (Γ ⊢ (φ ∧ ψ)) → (Γ ⊢ φ) [∧]-elimᵣ : ∀{φ ψ} → (Γ ⊢ (φ ∧ ψ)) → (Γ ⊢ ψ) [∨]-introₗ : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ∨ ψ)) [∨]-introᵣ : ∀{φ ψ} → (Γ ⊢ ψ) → (Γ ⊢ (φ ∨ ψ)) [∨]-elim : ∀{φ ψ χ} → ((Γ ∪ · φ) ⊢ χ) → ((Γ ∪ · ψ) ⊢ χ) → (Γ ⊢ (φ ∨ ψ)) → (Γ ⊢ χ) [⟶]-intro : ∀{φ ψ} → ((Γ ∪ · φ) ⊢ ψ) → (Γ ⊢ (φ ⟶ ψ)) [⟶]-elim : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ⟶ ψ)) → (Γ ⊢ ψ) [Ɐ]-intro : ∀{φ} → (∀{t} → (Γ ⊢ (substitute0 t φ))) → (Γ ⊢ (Ɐ φ)) [Ɐ]-elim : ∀{φ} → (Γ ⊢ (Ɐ φ)) → ∀{t} → (Γ ⊢ (substitute0 t φ)) [∃]-intro : ∀{φ}{t} → (Γ ⊢ (substitute0 t φ)) → (Γ ⊢ (∃ φ)) [∃]-elim : ∀{φ ψ} → (∀{t} → (Γ ∪ ·(substitute0 t φ)) ⊢ ψ) → (Γ ⊢ (∃ φ)) → (Γ ⊢ ψ) module _ where open import Data.Either as Either import Logic.Propositional as Meta open import Relator.Equals private variable Γ₁ Γ₂ : PredSet{ℓ}(Formula(vars)) private variable φ ψ : Formula(vars) _⊬_ : PredSet{ℓ}(Formula(vars)) → Formula(vars) → Type _⊬_ = Meta.¬_ ∘₂ (_⊢_) [⟵]-intro : ((Γ ∪ · φ) ⊢ ψ) → (Γ ⊢ (ψ ⟵ φ)) [⟵]-intro = [⟶]-intro [⟵]-elim : (Γ ⊢ φ) → (Γ ⊢ (ψ ⟵ φ)) → (Γ ⊢ ψ) [⟵]-elim = [⟶]-elim [¬]-intro : ((Γ ∪ · φ) ⊢ ⊥) → (Γ ⊢ (¬ φ)) [¬]-intro = [⟶]-intro [⟷]-intro : ∀{φ ψ} → ((Γ ∪ · ψ) ⊢ φ) → ((Γ ∪ · φ) ⊢ ψ) → (Γ ⊢ (φ ⟷ ψ)) [⟷]-intro l r = [∧]-intro ([⟶]-intro l) ([⟶]-intro r) [⟷]-elimₗ : ∀{φ ψ} → (Γ ⊢ ψ) → (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ φ) [⟷]-elimₗ Γψ Γφψ = [⟶]-elim Γψ ([∧]-elimₗ Γφψ) [⟷]-elimᵣ : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ ψ) [⟷]-elimᵣ Γφ Γφψ = [⟶]-elim Γφ ([∧]-elimᵣ Γφψ) weaken-union-singleton : (Γ₁ ⊆ Γ₂) → (((Γ₁ ∪ · φ) ⊢_) ⊆ ((Γ₂ ∪ · φ) ⊢_)) weaken : (Γ₁ ⊆ Γ₂) → ((Γ₁ ⊢_) ⊆ (Γ₂ ⊢_)) weaken Γ₁Γ₂ {φ} (direct p) = direct (Γ₁Γ₂ p) weaken Γ₁Γ₂ {.⊤} [⊤]-intro = [⊤]-intro weaken Γ₁Γ₂ {φ} ([⊥]-elim p) = [⊥]-elim (weaken-union-singleton Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(_ ∧ _)} ([∧]-intro p q) = [∧]-intro (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken Γ₁Γ₂ {φ} ([∧]-elimₗ p) = [∧]-elimₗ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([∧]-elimᵣ p) = [∧]-elimᵣ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(_ ∨ _)} ([∨]-introₗ p) = [∨]-introₗ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(_ ∨ _)} ([∨]-introᵣ p) = [∨]-introᵣ (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([∨]-elim p q r) = [∨]-elim (weaken-union-singleton Γ₁Γ₂ p) (weaken-union-singleton Γ₁Γ₂ q) (weaken Γ₁Γ₂ r) weaken Γ₁Γ₂ {.(_ ⟶ _)} ([⟶]-intro p) = [⟶]-intro (weaken-union-singleton Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([⟶]-elim p q) = [⟶]-elim (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken Γ₁Γ₂ {.(Ɐ _)} ([Ɐ]-intro p) = [Ɐ]-intro (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(substitute0 _ _)} ([Ɐ]-elim p) = [Ɐ]-elim (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {.(∃ _)} ([∃]-intro p) = [∃]-intro (weaken Γ₁Γ₂ p) weaken Γ₁Γ₂ {φ} ([∃]-elim p q) = [∃]-elim (weaken-union-singleton Γ₁Γ₂ p) (weaken Γ₁Γ₂ q) weaken-union-singleton Γ₁Γ₂ p = weaken (Either.mapLeft Γ₁Γ₂) p weaken-union : (Γ₁ ⊢_) ⊆ ((Γ₁ ∪ Γ₂) ⊢_) weaken-union = weaken Left [⊥]-elim-constructive : (Γ ⊢ ⊥) → (Γ ⊢ φ) [⊥]-elim-constructive Γ⊥ = [⊥]-elim (weaken-union Γ⊥) [¬¬]-elim : (Γ ⊢ ¬(¬ φ)) → (Γ ⊢ φ) [¬¬]-elim nnφ = ([⊥]-elim ([⟶]-elim (direct(Right [≡]-intro)) (weaken-union nnφ) ) ) [¬¬]-intro : (Γ ⊢ φ) → (Γ ⊢ ¬(¬ φ)) [¬¬]-intro Γφ = ([¬]-intro ([⟶]-elim (weaken-union Γφ) (direct (Right [≡]-intro)) ) )
{ "alphanum_fraction": 0.4725226219, "avg_line_length": 38.7264957265, "ext": "agda", "hexsha": "371d71507bc997130f6f0cb2ca67135d3cdbd41a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/PredicateLogic/Classical/NaturalDeduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/PredicateLogic/Classical/NaturalDeduction.agda", "max_line_length": 151, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/PredicateLogic/Classical/NaturalDeduction.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2334, "size": 4531 }
module Tactic.Reflection where open import Prelude hiding (abs; _>>=_) renaming (_>>=′_ to _>>=_) open import Builtin.Reflection public open import Tactic.Reflection.DeBruijn public open import Tactic.Reflection.Telescope public open import Tactic.Reflection.Substitute public open import Tactic.Reflection.Free public open import Tactic.Reflection.Equality public open import Tactic.Reflection.Meta public set₀ : Type set₀ = agda-sort (lit 0) set! : Type set! = agda-sort unknown pattern var₀ x = var x [] pattern var₁ x a = var x (vArg a ∷ []) pattern var₂ x a b = var x (vArg a ∷ vArg b ∷ []) pattern var₃ x a b c = var x (vArg a ∷ vArg b ∷ vArg c ∷ []) pattern var₄ x a b c d = var x (vArg a ∷ vArg b ∷ vArg c ∷ vArg d ∷ []) pattern con₀ c = con c [] pattern con₁ c x = con c (vArg x ∷ []) pattern con₂ c x y = con c (vArg x ∷ vArg y ∷ []) pattern con₃ c x y z = con c (vArg x ∷ vArg y ∷ vArg z ∷ []) pattern con₄ c x y z u = con c (vArg x ∷ vArg y ∷ vArg z ∷ vArg u ∷ []) pattern def₀ f = def f [] pattern def₁ f x = def f (vArg x ∷ []) pattern def₂ f x y = def f (vArg x ∷ vArg y ∷ []) pattern def₃ f x y z = def f (vArg x ∷ vArg y ∷ vArg z ∷ []) pattern def₄ f x y z u = def f (vArg x ∷ vArg y ∷ vArg z ∷ vArg u ∷ []) infixr 4 _`→_ _`→ʰ_ _`→ⁱ_ _`→_ _`→ʰ_ _`→ⁱ_ : Type → Type → Type _`→_ a b = pi (vArg a) (abs "_" b) _`→ʰ_ a b = pi (hArg a) (abs "_" b) _`→ⁱ_ a b = pi (iArg a) (abs "_" b) `λ : Term → Term `λ b = lam visible (abs "_" b) infixl 9 _`∘_ _`∘_ : Term → Term → Term _`∘_ = def₂ (quote _∘_) infixr -20 _`$_ _`$_ : Term → Term → Term _`$_ = def₂ (quote _$_) _:′_ : Term → Type → TC Term _:′_ = checkType λ′ : ∀ {a} {A : Set a} → Arg Type → TC A → TC A λ′ = extendContext infix 2 _=′_ _=′_ : Term → Term → TC ⊤ _=′_ = unify on-goal : (Type → Tactic) → Tactic on-goal tac hole = inferNormalisedType hole >>= λ goal → tac goal hole forceFun : Type → TC Type forceFun a = do dom ← newMeta set! rng ← newMeta set! unify a (dom `→ weaken 1 rng) normalise a inferFunRange : Term → TC Type inferFunRange hole = unPi =<< forceFun =<< inferType hole where unPi : Type → TC Type unPi (pi _ (abs _ (meta x _))) = blockOnMeta! x unPi (pi _ (abs _ b)) = maybe (typeError ( strErr "Must be applied in a non-dependent function position" ∷ termErr b ∷ [])) pure $ strengthen 1 b unPi x = typeError (strErr "Invalid goal" ∷ termErr x ∷ []) macro runT : Tactic → Tactic runT t = t evalTC : ∀ {a} {A : Set a} → TC A → Tactic evalTC {A = A} c hole = do v ← c `v ← quoteTC v `A ← quoteTC A checkedHole ← checkType hole `A unify checkedHole `v macro evalT : ∀ {a} {A : Set a} → TC A → Tactic evalT = evalTC
{ "alphanum_fraction": 0.5918880115, "avg_line_length": 28.7216494845, "ext": "agda", "hexsha": "06bc6616efb75aaf5db50b92ce6ae770c33fb09d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Reflection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Reflection.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Reflection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1040, "size": 2786 }
------------------------------------------------------------------------------ -- The unary numbers are LTC-PCF total natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat.UnaryNumbers.Totality where open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Type open import LTC-PCF.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ 0-N : N [0] 0-N = nzero 1-N : N [1] 1-N = nsucc 0-N 2-N : N [2] 2-N = nsucc 1-N
{ "alphanum_fraction": 0.40625, "avg_line_length": 27.0769230769, "ext": "agda", "hexsha": "ab43265a5bedc3655bb8373af4c23fb12cd0391a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/UnaryNumbers/Totality.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/UnaryNumbers/Totality.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/UnaryNumbers/Totality.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 143, "size": 704 }
{-# OPTIONS --universe-polymorphism #-} module Issue204.Dependency where postulate Level : Set zero : Level suc : Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} record R (ℓ : Level) : Set (suc ℓ) where data D (ℓ : Level) : Set (suc ℓ) where module M {ℓ : Level} (d : D ℓ) where
{ "alphanum_fraction": 0.6186440678, "avg_line_length": 18.6315789474, "ext": "agda", "hexsha": "630d4ec76b369c80d249d0b46c9ec82ed711eaed", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/Issue204/Dependency.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/Issue204/Dependency.agda", "max_line_length": 40, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue204/Dependency.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 114, "size": 354 }
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <[email protected]> module Algebra.Category where open import Algebra.Category.Category public open import Algebra.Category.Groupoid public open import Algebra.Category.Semigroupoid public
{ "alphanum_fraction": 0.7978723404, "avg_line_length": 28.2, "ext": "agda", "hexsha": "3db7e2a811133b1f4c389a015dd8c88600a135f5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "esoeylemez/agda-simple", "max_forks_repo_path": "Algebra/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "esoeylemez/agda-simple", "max_issues_repo_path": "Algebra/Category.agda", "max_line_length": 48, "max_stars_count": 1, "max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "esoeylemez/agda-simple", "max_stars_repo_path": "Algebra/Category.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z", "num_tokens": 77, "size": 282 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.ExecutedBlock as ExecutedBlock import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.OBM.Prelude open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.ByteString open import Util.Hash import Util.KVMap as Map open import Util.PKCS open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Consensus.BlockStorage.BlockTree where postulate -- TODO-2: implement linkableBlockNew linkableBlockNew : ExecutedBlock → LinkableBlock module addChild (lb : LinkableBlock) (hv : HashValue) where VariantFor : ∀ {ℓ} EL → EL-func {ℓ} EL VariantFor EL = EL ErrLog LinkableBlock postulate -- TODO-2: implement addChild step₀ : VariantFor EitherD -- addChild : LinkableBlock → HashValue → Either ErrLog LinkableBlock -- addChild lb hv = -- if Set.member hv (lb ^∙ lbChildren) -- then Left fakeErr -- else Right (lb & lbChildren %~ Set.insert hv) E : VariantFor Either E = toEither step₀ D : VariantFor EitherD D = fromEither E addChild = addChild.D new : ExecutedBlock → QuorumCert → QuorumCert → Usize → Maybe TimeoutCertificate → Either ErrLog BlockTree new root0 rootQuorumCert rootLedgerInfo maxPruned mHighestTimeoutCert = do lcheck ((root0 ^∙ ebId) == (rootLedgerInfo ^∙ qcCommitInfo ∙ biId)) ("BlockTree" ∷ "newBlockTree" ∷ "inconsistent root and ledger info" ∷ []) let idToBlock = Map.insert (root0 ^∙ ebId) (linkableBlockNew root0) Map.empty idToQuorumCert = Map.insert (rootQuorumCert ^∙ qcCertifiedBlock ∙ biId) rootQuorumCert Map.empty prunedBlockIds = vdNew -- TODO in pure $ mkBlockTree idToBlock (root0 ^∙ ebId) -- _btRootId (root0 ^∙ ebId) -- _btHighestCertifiedBlockId rootQuorumCert -- _btHighestQuorumCert mHighestTimeoutCert rootLedgerInfo -- _btHighestCommitCert idToQuorumCert prunedBlockIds maxPruned replaceTimeoutCertM : TimeoutCertificate → LBFT Unit replaceTimeoutCertM tc = do lBlockStore ∙ bsInner ∙ btHighestTimeoutCert ?= tc logInfo fakeInfo -- lTO (InfoUpdateHighestTimeoutCert (Just tc)) ------------------------------------------------------------------------------ module insertBlockE (block : ExecutedBlock)(bt : BlockTree) where VariantFor : ∀ {ℓ} EL → EL-func {ℓ} EL VariantFor EL = EL ErrLog (BlockTree × ExecutedBlock) -- TODO: break into smaller steps to take advantage of the EitherD-weakestpre machinery to prove -- the contract. step₀ = do let blockId = block ^∙ ebId caseMD btGetBlock blockId bt of λ where (just existingBlock) → pure (bt , existingBlock) nothing → caseMD btGetLinkableBlock (block ^∙ ebParentId) bt of λ where nothing → LeftD fakeErr (just parentBlock) → (do parentBlock' ← addChild parentBlock blockId let bt' = bt & btIdToBlock ∙~ Map.kvm-insert-Haskell (block ^∙ ebParentId) parentBlock' (bt ^∙ btIdToBlock) pure ( (bt' & btIdToBlock ∙~ Map.kvm-insert-Haskell blockId (LinkableBlock∙new block) (bt' ^∙ btIdToBlock)) , block)) E : VariantFor Either E = toEither step₀ D : VariantFor EitherD D = fromEither E -- We make the EitherD variant the default, because the only call in code -- modeled is in EitherD, so it's nice to keep it exactly like the Haskell -- code being modeled. However, insertBlockESpec.Contract and the proof of -- executeAndInsertBlockESpec.contract' (which was written before EitherD -- support was developed) both want an Either variant, so they use -- insertBlockE.E. This demonstrates the flexibility of the VariantOf -- approach, providing variants for any EitherLike, and means to convert -- between them easily. insertBlockE = insertBlockE.D ------------------------------------------------------------------------------ module insertQuorumCertE (qc : QuorumCert) (bt0 : BlockTree) where VariantFor : ∀ {ℓ} EL → EL-func {ℓ} EL VariantFor EL = EL ErrLog (BlockTree × List InfoLog) step₁ : HashValue → VariantFor EitherD step₂ : HashValue → ExecutedBlock → VariantFor EitherD step₃ : HashValue → ExecutedBlock → ExecutedBlock → VariantFor EitherD continue1 : BlockTree → HashValue → ExecutedBlock → List InfoLog → (BlockTree × List InfoLog) continue2 : BlockTree → List InfoLog → (BlockTree × List InfoLog) here' : List String → List String here' t = "BlockTree" ∷ "insertQuorumCert" ∷ t blockId = qc ^∙ qcCertifiedBlock ∙ biId safetyInvariant = forM_ (Map.elems (bt0 ^∙ btIdToQuorumCert)) $ \x → lcheck ( (x ^∙ qcLedgerInfo ∙ liwsLedgerInfo ∙ liConsensusDataHash == qc ^∙ qcLedgerInfo ∙ liwsLedgerInfo ∙ liConsensusDataHash) ∨ (x ^∙ qcCertifiedBlock ∙ biRound /= qc ^∙ qcCertifiedBlock ∙ biRound)) (here' ("failed check" ∷ "existing qc == qc || existing qc.round /= qc.round" ∷ [])) step₀ = case safetyInvariant of λ where (Left e) → LeftD e (Right unit) → step₁ blockId step₁ blockId = maybeSD (btGetBlock blockId bt0) (LeftD fakeErr) $ step₂ blockId step₂ blockId block = maybeSD (bt0 ^∙ btHighestCertifiedBlock) (LeftD fakeErr) $ step₃ blockId block step₃ blockId block hcb = ifD ((block ^∙ ebRound) >? (hcb ^∙ ebRound)) then (let bt = bt0 & btHighestCertifiedBlockId ∙~ block ^∙ ebId & btHighestQuorumCert ∙~ qc info = (fakeInfo ∷ []) in pure (continue1 bt blockId block info)) else pure (continue1 bt0 blockId block []) continue1 bt blockId block info = continue2 ( bt & btIdToQuorumCert ∙~ lookupOrInsert blockId qc (bt ^∙ btIdToQuorumCert)) ( (fakeInfo ∷ info) ++ (if ExecutedBlock.isNilBlock block then fakeInfo ∷ [] else [] )) continue2 bt info = if-dec (bt ^∙ btHighestCommitCert ∙ qcCommitInfo ∙ biRound) <? (qc ^∙ qcCommitInfo ∙ biRound) then ((bt & btHighestCommitCert ∙~ qc) , info) else (bt , info) E : VariantFor Either E = toEither step₀ D : VariantFor EitherD D = fromEither E insertQuorumCertE = insertQuorumCertE.E insertQuorumCertM : QuorumCert → LBFT Unit insertQuorumCertM qc = do bt ← use lBlockTree case insertQuorumCertE qc bt of λ where (Left e) → logErr e (Right (bt' , info)) → do forM_ info logInfo lBlockTree ∙= bt' ------------------------------------------------------------------------------ module pathFromRoot (blockId : HashValue) (blockTree : BlockTree) where -- TODO-1 PROVE IT TERMINATES {-# TERMINATING #-} loop : ExecutedBlock → HashValue → List ExecutedBlock → Maybe (HashValue × List ExecutedBlock) loop btr curBlockId res = case btGetBlock curBlockId blockTree of λ where (just block) → if-dec (block ^∙ ebRound) ≤?ℕ (btr ^∙ ebRound) then just (curBlockId , res) else loop btr (block ^∙ ebParentId) (block ∷ res) nothing → nothing pathFromRoot : HashValue → BlockTree → Either ErrLog (List ExecutedBlock) pathFromRoot blockId blockTree = maybeS (blockTree ^∙ btRoot) (Left fakeErr) $ λ btr → maybeS (loop btr blockId []) (pure []) (pure ∘ continue) where open pathFromRoot blockId blockTree continue : (HashValue × List ExecutedBlock) → List ExecutedBlock continue (curBlockId , res) = if not (curBlockId /= (blockTree ^∙ btRootId)) then [] else res ------------------------------------------------------------------------------ getAllBlockIdM : LBFT (List HashValue) getAllBlockIdM = Map.kvm-keys <$> use (lBlockTree ∙ btIdToBlock)
{ "alphanum_fraction": 0.6524679639, "avg_line_length": 39.5680751174, "ext": "agda", "hexsha": "583c32639b0dcfbf0a42b44c534e4876b4be595b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/BlockTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/BlockTree.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/BlockTree.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2390, "size": 8428 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- This module defines an intermediate (between an implementation and Abstract) notion -- of a system state. The goal is to enable proving for a particular implementation -- the properties required to provide to Abstract.Properties in order to get the high -- level correctness conditions, while moving the obligations for the implementation -- closer to notions more directly provable for an implementation. However, as our -- experience has developed with this, it seems that this was not a very effective -- choice, as it leaves too much burden on the implementation (e.g., proving -- ∈QC⇒HasBeenSent). Therefore, ... -- -- TODO-3: Revisit assumptions of the IntermediateSystemState to enable more proof work -- to be done under Concrete, which can be used by multiple implementations. As it -- currently stands, we have specific notions under LibraBFT.Impl that possibly should -- be provided as module parameters to LibraBFT.Concrete (including IsValidVote and -- α-ValidVote) open import LibraBFT.Prelude open import LibraBFT.Impl.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open WithAbsVote module LibraBFT.Concrete.Intermediate (𝓔 : EpochConfig) (𝓥 : VoteEvidence 𝓔) where open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 𝓥 -- Since the invariants we want to specify (votes-once and preferred-round-rule), -- are predicates over a /System State/, we must factor out the necessary -- functionality. -- -- An /IntermediateSystemState/ supports a few different notions; namely, record IntermediateSystemState (ℓ : Level) : Set (ℓ+1 ℓ) where field -- A notion of membership of records InSys : Record → Set ℓ -- A predicate about whether votes have been transfered -- amongst participants HasBeenSent : Vote → Set ℓ -- Such that, the votes that belong to honest participants inside a -- QC that exists in the system must have been sent ∈QC⇒HasBeenSent : ∀{q α} → InSys (Q q) → Meta-Honest-Member α → (va : α ∈QC q) → HasBeenSent (∈QC-Vote q va)
{ "alphanum_fraction": 0.7317487267, "avg_line_length": 47.12, "ext": "agda", "hexsha": "fecb0865c082977b4673c41295633d581f9ca73a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Concrete/Intermediate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Concrete/Intermediate.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Concrete/Intermediate.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 585, "size": 2356 }
------------------------------------------------------------------------ -- An implementation of tree sort, formally proved to return a -- permutation of the input ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality open import Prelude hiding (id; _∘_; List; module List; []; _∷_) module Container.Tree-sort {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) {A : Type} (_≤_ : A → A → Bool) -- A comparison function. where open Derived-definitions-and-properties eq open import Logical-equivalence using (module _⇔_) open import Bijection eq using (_↔_; module _↔_) open import Container eq open import Container.List eq as List open import Container.Tree eq as Tree open import Function-universe eq ------------------------------------------------------------------------ -- Boring lemmas private -- The following lemma is easy to prove automatically (for -- instance by using a ring solver). lemma₁ : (A B C D : Type) → A ⊎ B ⊎ C ⊎ D ↔ C ⊎ A ⊎ B ⊎ D lemma₁ A B C D = A ⊎ B ⊎ C ⊎ D ↔⟨ id ⊎-cong ⊎-assoc ⟩ A ⊎ (B ⊎ C) ⊎ D ↔⟨ id ⊎-cong ⊎-comm ⊎-cong id ⟩ A ⊎ (C ⊎ B) ⊎ D ↔⟨ ⊎-assoc ⟩ (A ⊎ C ⊎ B) ⊎ D ↔⟨ ⊎-assoc ⊎-cong id ⟩ ((A ⊎ C) ⊎ B) ⊎ D ↔⟨ (⊎-comm ⊎-cong id) ⊎-cong id ⟩ ((C ⊎ A) ⊎ B) ⊎ D ↔⟨ inverse ⊎-assoc ⊎-cong id ⟩ (C ⊎ A ⊎ B) ⊎ D ↔⟨ inverse ⊎-assoc ⟩ C ⊎ (A ⊎ B) ⊎ D ↔⟨ id ⊎-cong inverse ⊎-assoc ⟩ C ⊎ A ⊎ B ⊎ D □ lemma₂ : {A B C D : Type} (b : Bool) → T b × ((A ⊎ B) ⊎ C ⊎ D) ⊎ T (not b) × (B ⊎ C ⊎ A ⊎ D) ↔ A ⊎ B ⊎ C ⊎ D lemma₂ = if-lemma (λ _ → _) (inverse ⊎-assoc) (lemma₁ _ _ _ _) ------------------------------------------------------------------------ -- Insertion into trees -- Inserts an element into the tree. insert : A → ⟦ Tree ⟧ A → ⟦ Tree ⟧ A insert x = Tree.fold (singleton x) (λ l y r x+l x+r → if x ≤ y then node x+l y r else node l y x+r) -- The insert function inserts. Any-insert : ∀ (P : A → Type) x t → Any P (insert x t) ↔ P x ⊎ Any P t Any-insert P x = Tree.fold-lemma (λ t t′ → Any P t′ ↔ P x ⊎ Any P t) (λ t₁ t₂ t₁≈t₂ t hyp → Any P t ↔⟨ hyp ⟩ P x ⊎ Any P t₁ ↔⟨ id ⊎-cong _⇔_.to (∼⇔∼″ t₁ t₂) t₁≈t₂ P ⟩ P x ⊎ Any P t₂ □) (Any P (singleton x) ↔⟨ Any-singleton P ⟩ P x ↔⟨ inverse ⊎-right-identity ⟩ P x ⊎ ⊥ ↔⟨ id ⊎-cong inverse (Any-leaf P) ⟩ P x ⊎ Any P leaf □) (λ l y r l′ r′ ih-l ih-r → Any P (if x ≤ y then node l′ y r else node l y r′) ↔⟨ Any-if P (node l′ y r) (node l y r′) (x ≤ y) ⟩ T (x ≤ y) × Any P (node l′ y r) ⊎ T (not (x ≤ y)) × Any P (node l y r′) ↔⟨ id ×-cong Any-node P ⊎-cong id ×-cong Any-node P ⟩ T (x ≤ y) × (Any P l′ ⊎ P y ⊎ Any P r) ⊎ T (not (x ≤ y)) × (Any P l ⊎ P y ⊎ Any P r′) ↔⟨ id ×-cong (ih-l ⊎-cong id) ⊎-cong id ×-cong (id ⊎-cong id ⊎-cong ih-r) ⟩ T (x ≤ y) × ((P x ⊎ Any P l) ⊎ P y ⊎ Any P r) ⊎ T (not (x ≤ y)) × (Any P l ⊎ P y ⊎ P x ⊎ Any P r) ↔⟨ lemma₂ (x ≤ y) ⟩ P x ⊎ Any P l ⊎ P y ⊎ Any P r ↔⟨ id ⊎-cong inverse (Any-node P) ⟩ P x ⊎ Any P (node l y r) □) ------------------------------------------------------------------------ -- Turning a list into a search tree -- Converts the list to a search tree. to-search-tree : ⟦ List ⟧ A → ⟦ Tree ⟧ A to-search-tree = List.fold leaf (λ x _ t → insert x t) -- No elements are added or removed. to-search-tree≈ : ∀ xs → to-search-tree xs ≈-bag xs to-search-tree≈ = List.fold-lemma (λ xs t → t ≈-bag xs) (λ xs ys xs≈ys t t≈xs z → z ∈ t ↔⟨ t≈xs z ⟩ z ∈ xs ↔⟨ xs≈ys z ⟩ z ∈ ys □) (λ z → z ∈ leaf ↔⟨ Any-leaf (λ x → z ≡ x) ⟩ ⊥ ↔⟨ inverse $ Any-[] (λ x → z ≡ x) ⟩ z ∈ [] □) (λ x xs t t≈xs z → z ∈ insert x t ↔⟨ Any-insert (λ x → z ≡ x) _ _ ⟩ z ≡ x ⊎ z ∈ t ↔⟨ id ⊎-cong t≈xs z ⟩ z ≡ x ⊎ z ∈ xs ↔⟨ inverse $ Any-∷ (λ x → z ≡ x) ⟩ z ∈ x ∷ xs □) ------------------------------------------------------------------------ -- Sorting -- Sorts a list. sort : ⟦ List ⟧ A → ⟦ List ⟧ A sort = flatten ∘ to-search-tree -- The result is a permutation of the input. sort≈ : ∀ xs → sort xs ≈-bag xs sort≈ xs = λ z → z ∈ sort xs ↔⟨⟩ z ∈ flatten (to-search-tree xs) ↔⟨ flatten≈ (to-search-tree xs) _ ⟩ z ∈ to-search-tree xs ↔⟨ to-search-tree≈ xs _ ⟩ z ∈ xs □
{ "alphanum_fraction": 0.426183844, "avg_line_length": 32.4097222222, "ext": "agda", "hexsha": "fa4873e74f1054aa27156c2156262a31494d644d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Container/Tree-sort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Container/Tree-sort.agda", "max_line_length": 107, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Container/Tree-sort.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 1753, "size": 4667 }
module Type.Identity where import Lvl open import Type private variable ℓ : Lvl.Level private variable T : Type{ℓ} -- Identity type. -- Also called: Propositional equality. -- Two terms are identical/equal when their data representation are the same. data Id {T : Type{ℓ}} : T → T → Type{ℓ} where instance intro : ∀{x : T} → Id x x -- Interpretation: -- The only way to construct something of type Id is to use identical objects for both arguments. -- When matching on the constructor, the type checker "unifies" the two terms making them the same. -- This is how the builtin pattern matching by intro works, and therefore many propositions for identity becomes "trivial" syntactically. {-# BUILTIN EQUALITY Id #-} {-# BUILTIN REWRITE Id #-} elim : (P : ∀{x y : T} → (Id x y) → Type{ℓ}) → (∀{x} → P(intro{x = x})) → (∀{x y} → (eq : (Id x y)) → P(eq)) elim _ p intro = p
{ "alphanum_fraction": 0.6700111483, "avg_line_length": 37.375, "ext": "agda", "hexsha": "29e771d39f88ed66a011206d635ca9eac3a88909", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Identity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Identity.agda", "max_line_length": 141, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Identity.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 255, "size": 897 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for "equational reasoning" using a partial order ------------------------------------------------------------------------ -- Example uses: -- -- u≤x : u ≤ x -- u≤x = begin -- u ≈⟨ u≈v ⟩ -- v ≡⟨ v≡w ⟩ -- w <⟨ w≤x ⟩ -- x ∎ -- -- u<x : u < x -- u<x = begin-strict -- u ≈⟨ u≈v ⟩ -- v ≡⟨ v≡w ⟩ -- w <⟨ w≤x ⟩ -- x ∎ -- -- u<e : u < e -- u<e = begin-strict -- u ≈⟨ u≈v ⟩ -- v ≡⟨ v≡w ⟩ -- w <⟨ w<x ⟩ -- x ≤⟨ x≤y ⟩ -- y <⟨ y<z ⟩ -- z ≡˘⟨ d≡z ⟩ -- d ≈˘⟨ e≈d ⟩ -- e ∎ -- -- u≈w : u ≈ w -- u≈w = begin-equality -- u ≈⟨ u≈v ⟩ -- v ≡⟨ v≡w ⟩ -- w ∎ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Reasoning.PartialOrder {p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where open Poset P import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ as Strict ------------------------------------------------------------------------ -- Re-export contents of base module open import Relation.Binary.Reasoning.Base.Triple isPreorder (Strict.trans isPartialOrder) (Strict.<-resp-≈ isEquivalence ≤-resp-≈) Strict.<⇒≤ (Strict.<-≤-trans Eq.sym trans antisym ≤-respʳ-≈) (Strict.≤-<-trans trans antisym ≤-respˡ-≈) public ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 infixr 2 _≈⟨⟩_ _≈⟨⟩_ = _≡⟨⟩_ {-# WARNING_ON_USAGE _≈⟨⟩_ "Warning: _≈⟨⟩_ was deprecated in v1.0. Please use _≡⟨⟩_ instead." #-}
{ "alphanum_fraction": 0.4156059768, "avg_line_length": 22.8734177215, "ext": "agda", "hexsha": "f358038ffea328364ff3cf880544c0ddafca464d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/PartialOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/PartialOrder.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/PartialOrder.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 652, "size": 1807 }
{- Homotopy colimits of graphs -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.Colimit.Base where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Graph -- Cones under a diagram record Cocone ℓ {ℓd ℓv ℓe} {I : Graph ℓv ℓe} (F : Diag ℓd I) (X : Type ℓ) : Type (ℓ-suc (ℓ-max ℓ (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd)))) where field leg : ∀ (j : Obj I) → F $ j → X com : ∀ {j k} (f : Hom I j k) → leg k ∘ F <$> f ≡ leg j postcomp : ∀ {ℓ'} {Y : Type ℓ'} → (X → Y) → Cocone ℓ' F Y leg (postcomp h) j = h ∘ leg j com (postcomp h) f = cong (h ∘_) (com f) open Cocone public -- Σ (Type ℓ) (Cocone ℓ F) forms a category: module _ {ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} where private -- the "lower star" functor _* : ∀ {ℓ ℓ'} {X : Type ℓ} {Y : Type ℓ'} → (X → Y) → Cocone _ F X → Cocone _ F Y (h *) C = postcomp C h CoconeMor : ∀ {ℓ ℓ'} → Σ (Type ℓ) (Cocone ℓ F) → Σ (Type ℓ') (Cocone ℓ' F) → Type _ CoconeMor (X , C) (Y , D) = Σ[ h ∈ (X → Y) ] (h *) C ≡ D idCoconeMor : ∀ {ℓ} (Cp : Σ (Type ℓ) (Cocone ℓ F)) → CoconeMor Cp Cp idCoconeMor Cp = (λ x → x) , refl compCoconeMor : ∀ {ℓ ℓ' ℓ''} {C : Σ (Type ℓ) (Cocone ℓ F)} {D : Σ (Type ℓ') (Cocone ℓ' F)} {E : Σ (Type ℓ'') (Cocone ℓ'' F)} → CoconeMor D E → CoconeMor C D → CoconeMor C E compCoconeMor (g , q) (f , p) = g ∘ f , (cong (g *) p) ∙ q -- Universal cocones are initial objects in the category Σ (Type ℓ) (Cocone ℓ F) module _ {ℓ ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} {X : Type ℓ} where isUniversalAt : ∀ ℓq → Cocone ℓ F X → Type (ℓ-max ℓ (ℓ-suc (ℓ-max ℓq (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd))))) isUniversalAt ℓq C = ∀ (Y : Type ℓq) → isEquiv {A = (X → Y)} {B = Cocone ℓq F Y} (postcomp C) -- (unfolding isEquiv, this ^ is equivalent to what one might expect:) -- ∀ (Y : Type ℓ) (D : Cocone ℓ F Y) → isContr (Σ[ h ∈ (X → Y) ] (h *) C ≡ D) -- (≡ isContr (CoconeMor (X , C) (Y , D))) isPropIsUniversalAt : ∀ ℓq (C : Cocone ℓ F X) → isProp (isUniversalAt ℓq C) isPropIsUniversalAt ℓq C = propPi (λ Y → isPropIsEquiv (postcomp C)) isUniversal : Cocone ℓ F X → Typeω isUniversal C = ∀ ℓq → isUniversalAt ℓq C -- Colimits are universal cocones record isColimit {ℓ ℓd ℓv ℓe} {I : Graph ℓv ℓe} (F : Diag ℓd I) (X : Type ℓ) : Typeω where field cone : Cocone ℓ F X univ : isUniversal cone open isColimit public module _ {ℓ ℓ' ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} {X : Type ℓ} {Y : Type ℓ'} where postcomp⁻¹ : isColimit F X → Cocone ℓ' F Y → (X → Y) postcomp⁻¹ cl = invEq (_ , univ cl _ Y) postcomp⁻¹-inv : (cl : isColimit F X) (D : Cocone ℓ' F Y) → (postcomp (cone cl) (postcomp⁻¹ cl D)) ≡ D postcomp⁻¹-inv cl D = retEq (_ , univ cl _ Y) D postcomp⁻¹-mor : (cl : isColimit F X) (D : Cocone ℓ' F Y) → CoconeMor (X , cone cl) (Y , D) postcomp⁻¹-mor cl D = (postcomp⁻¹ cl D) , (postcomp⁻¹-inv cl D) -- Colimits are unique module _ {ℓ ℓ' ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} {X : Type ℓ} {Y : Type ℓ'} where uniqColimit : isColimit F X → isColimit F Y → X ≃ Y uniqColimit cl cl' = isoToEquiv (iso (fst fwd) (fst bwd) (λ x i → fst (isContr→isProp (equiv-proof (univ cl' ℓ' Y) (cone cl')) (compCoconeMor fwd bwd) (idCoconeMor (Y , cone cl')) i) x) (λ x i → fst (isContr→isProp (equiv-proof (univ cl ℓ X) (cone cl)) (compCoconeMor bwd fwd) (idCoconeMor (X , cone cl)) i) x)) where fwd : CoconeMor (X , cone cl ) (Y , cone cl') bwd : CoconeMor (Y , cone cl') (X , cone cl ) fwd = postcomp⁻¹-mor cl (cone cl') bwd = postcomp⁻¹-mor cl' (cone cl) -- Colimits always exist data colim {ℓd ℓe ℓv} {I : Graph ℓv ℓe} (F : Diag ℓd I) : Type (ℓ-suc (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd))) where colim-leg : ∀ (j : Obj I) → F $ j → colim F colim-com : ∀ {j k} (f : Hom I j k) → colim-leg k ∘ F <$> f ≡ colim-leg j module _ {ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} where colimCone : Cocone _ F (colim F) leg colimCone = colim-leg com colimCone = colim-com colim-rec : ∀ {ℓ} {X : Type ℓ} → Cocone ℓ F X → (colim F → X) colim-rec C (colim-leg j A) = leg C j A colim-rec C (colim-com f i A) = com C f i A colimIsColimit : isColimit F (colim F) cone colimIsColimit = colimCone univ colimIsColimit ℓq Y = isoToIsEquiv record { fun = postcomp colimCone ; inv = colim-rec ; rightInv = λ C → refl ; leftInv = λ h → funExt (eq h) } where eq : ∀ h (x : colim _) → colim-rec (postcomp colimCone h) x ≡ h x eq h (colim-leg j A) = refl eq h (colim-com f i A) = refl
{ "alphanum_fraction": 0.5379563454, "avg_line_length": 38.0661764706, "ext": "agda", "hexsha": "ed14d06b0da670d4fe415a4369e5093c5ee48d69", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/HITs/Colimit/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/HITs/Colimit/Base.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/HITs/Colimit/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2087, "size": 5177 }
module Pos where import Prelude import Equiv import Datoid import Nat open Prelude open Equiv open Datoid abstract Pos : Set Pos = Nat.Nat one : Pos one = Nat.zero suc : Pos -> Pos suc = Nat.suc suc' : Nat.Nat -> Pos suc' n = n _+_ : Pos -> Pos -> Pos m + n = suc (Nat._+_ m n) -- Returns Nothing if input is 1. pred : Pos -> Maybe Pos pred Nat.zero = Nothing pred (Nat.suc n) = Just n toNat : Pos -> Nat.Nat toNat = suc decidableEquiv : DecidableEquiv Pos decidableEquiv = Nat.decidableEquiv posDatoid : Datoid posDatoid = datoid Pos decidableEquiv sucPred : Maybe Pos -> Pos sucPred Nothing = one sucPred (Just p) = suc p data Pred (p : Pos) (mP : Maybe Pos) : Set where ok : datoidRel posDatoid (sucPred mP) p -> Pred p mP abstract -- Returns Nothing if input is 1. predOK : (p : Pos) -> Pred p (pred p) predOK Nat.zero = ok (dRefl posDatoid {one}) predOK (Nat.suc n) = ok (dRefl posDatoid {n})
{ "alphanum_fraction": 0.5957854406, "avg_line_length": 18.3157894737, "ext": "agda", "hexsha": "b4c2069deb5eb561caf6563fcdb9ce2eb6125976", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/AIM4/bag/Pos.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/AIM4/bag/Pos.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/AIM4/bag/Pos.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 355, "size": 1044 }
module Monad where open import Level open import Category import Functor import Nat import Adjoint open Category.Category open Functor.Functor open Nat.Export open Nat.Nat open Adjoint.Export record Monad {c₀ c₁ ℓ} (C : Category c₀ c₁ ℓ) : Set (suc (c₀ ⊔ c₁ ⊔ ℓ)) where field MFunctor : Functor.Functor C C Mjoin : Nat.Nat (Functor.exp MFunctor 2) MFunctor Munit : Nat.Nat (Functor.identity C) MFunctor field join_join : {A : Obj C} → C [ C [ component Mjoin A ∘ component Mjoin (fobj MFunctor A) ] ≈ C [ component Mjoin A ∘ fmap MFunctor (component Mjoin A) ] ] unit_MFunctor : {A : Obj C} → C [ C [ component Mjoin A ∘ component Munit (fobj MFunctor A) ] ≈ id C ] MFunctor_unit : {A : Obj C} → C [ C [ component Mjoin A ∘ fmap MFunctor (component Munit A) ] ≈ id C ] Adjoint-Monad : ∀ {C₀ C₁ ℓ} {C D : Category C₀ C₁ ℓ} {F : Functor.Functor C D} {G : Functor.Functor D C} → F ⊣ G → Monad C Adjoint-Monad {C = C} {D} {F} {G} F⊣G = record { MFunctor = T; Mjoin = record { component = λ X → component (G F∘N ε N∘F F) X ; naturality = λ {a} {b} {f} → begin⟨ C ⟩ C [ component (G F∘N ε N∘F F) b ∘ fmap G (fmap (Functor.compose F T) f) ] ≈⟨ sym-hom C (preserveComp G) ⟩ fmap G (D [ component ε (fobj F b) ∘ fmap (Functor.compose F G) (fmap F f) ]) ≈⟨ Functor.preserveEq G (naturality ε) ⟩ fmap G (D [ fmap F f ∘ component ε (fobj F a) ]) ≈⟨ preserveComp G ⟩ C [ fmap T f ∘ component (G F∘N ε N∘F F) a ] ∎ }; Munit = Adjoint.unit F⊣G; join_join = λ {A} → begin⟨ C ⟩ C [ component (G F∘N ε N∘F F) A ∘ component (G F∘N ε N∘F F) (fobj T A) ] ≈⟨ sym-hom C (preserveComp G) ⟩ fmap G (D [ component ε (fobj F A) ∘ component ε (fobj (Functor.compose F G) (fobj F A)) ]) ≈⟨ Functor.preserveEq G (sym-hom D (naturality ε)) ⟩ fmap G (D [ component ε (fobj F A) ∘ fmap (Functor.compose F G) (component ε (fobj F A)) ]) ≈⟨ preserveComp G ⟩ C [ component (G F∘N ε N∘F F) A ∘ fmap T (component (G F∘N ε N∘F F) A) ] ∎ ; unit_MFunctor = λ {A} → begin⟨ C ⟩ C [ component (G F∘N ε N∘F F) A ∘ component η (fobj T A) ] ≈⟨ refl-hom C ⟩ C [ component (G F∘N ε) (fobj F A) ∘ component (η N∘F G) (fobj F A) ] ≈⟨ sym-hom C (≈-composite C (leftId C) (trans-hom C (leftId C) (rightId C))) ⟩ C [ C [ id C ∘ component (G F∘N ε) (fobj F A) ] ∘ C [ id C ∘ C [ component (η N∘F G) (fobj F A) ∘ id C ] ] ] ≈⟨ refl-hom C ⟩ component (Nat.compose (Nat.compose {H = G} Nat.rightIdNat→ (G F∘N ε)) (Nat.compose (Nat.assocNat→ {F = G} {F} {G}) (Nat.compose (η N∘F G) Nat.leftIdNat←))) (fobj F A) ≈⟨ Adjoint.triangularR F⊣G {fobj F A} ⟩ component (id [ D , C ] {G}) (fobj F A) ≈⟨ refl-hom C ⟩ id C ∎ ; MFunctor_unit = λ {A} → begin⟨ C ⟩ C [ component (G F∘N ε N∘F F) A ∘ fmap T (component η A) ] ≈⟨ refl-hom C ⟩ C [ fmap G (component ε (fobj F A)) ∘ fmap G (fmap F (component η A)) ] ≈⟨ sym-hom C (preserveComp G) ⟩ fmap G (D [ component ε (fobj F A) ∘ fmap F (component η A) ]) ≈⟨ Functor.preserveEq G (≈-composite D (sym-hom D (leftId D)) (sym-hom D (trans-hom D (leftId D) (rightId D)))) ⟩ fmap G (D [ D [ id D ∘ component ε (fobj F A) ] ∘ D [ id D ∘ D [ fmap F (component η A) ∘ id D ] ] ]) ≈⟨ Functor.preserveEq G (refl-hom D) ⟩ fmap G (component (Nat.compose (Nat.compose Nat.leftIdNat→ (Adjoint.counit F⊣G N∘F F)) (Nat.compose {F = F} (Nat.assocNat← {F = F} {G} {F}) (Nat.compose {F = F} (F F∘N Adjoint.unit F⊣G) Nat.rightIdNat←))) A ) ≈⟨ Functor.preserveEq G (Adjoint.triangularL F⊣G {A}) ⟩ fmap G (component (id [ C , D ] {F}) A) ≈⟨ preserveId G ⟩ id C ∎ } where T = Functor.compose G F η = Adjoint.unit F⊣G ε = Adjoint.counit F⊣G
{ "alphanum_fraction": 0.5880272109, "avg_line_length": 54.0441176471, "ext": "agda", "hexsha": "e3ba8cfe30f93225df27dfb6db5251c55766be2b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "myuon/agda-cate", "max_forks_repo_path": "src/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "myuon/agda-cate", "max_issues_repo_path": "src/Monad.agda", "max_line_length": 268, "max_stars_count": 2, "max_stars_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "myuon/agda-cate", "max_stars_repo_path": "src/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-02T07:30:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-28T04:59:31.000Z", "num_tokens": 1566, "size": 3675 }
module char where open import bool open import nat open import eq open import product open import product-thms ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- postulate char : Set {-# BUILTIN CHAR char #-} ---------------------------------------------------------------------- -- primitive operations ---------------------------------------------------------------------- private primitive primCharToNat : char → ℕ primCharEquality : char → char → 𝔹 toNat : char → ℕ toNat = primCharToNat infix 4 _=char_ _=char_ : char → char → 𝔹 _=char_ = primCharEquality postulate ≡char-to-= : (c1 c2 : char) → c1 ≡ c2 → _=char_ c1 c2 ≡ tt =char-to-≡ : (c1 c2 : char) → _=char_ c1 c2 ≡ tt → c1 ≡ c2 =char-sym : (c1 c2 : char) → (c1 =char c2) ≡ (c2 =char c1) =char-sym c1 c2 with keep (c1 =char c2) =char-sym c1 c2 | tt , p rewrite =char-to-≡ c1 c2 p = refl =char-sym c1 c2 | ff , p with keep (c2 =char c1) =char-sym c1 c2 | ff , p | tt , p' rewrite =char-to-≡ c2 c1 p' = refl =char-sym c1 c2 | ff , p | ff , p' rewrite p | p' = refl postulate _<char_ : char → char → 𝔹 {-# COMPILED _<char_ (<) #-} ---------------------------------------------------------------------- -- defined operations ---------------------------------------------------------------------- -- is a decimal digit is-digit : char → 𝔹 is-digit '0' = tt is-digit '1' = tt is-digit '2' = tt is-digit '3' = tt is-digit '4' = tt is-digit '5' = tt is-digit '6' = tt is-digit '7' = tt is-digit '8' = tt is-digit '9' = tt is-digit _ = ff
{ "alphanum_fraction": 0.454601227, "avg_line_length": 23.9705882353, "ext": "agda", "hexsha": "bef728992c592b6b77facb14e4678ce4cafddf5b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "logicshan/IAL", "max_forks_repo_path": "char.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "logicshan/IAL", "max_issues_repo_path": "char.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "logicshan/IAL", "max_stars_repo_path": "char.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 494, "size": 1630 }
{-# OPTIONS --without-K --safe #-} -- https://personal.cis.strath.ac.uk/conor.mcbride/pub/DepRep/DepRep.pdf module Experiment.Outrageous.#03 where open import Experiment.Outrageous.#02 data U : Set El : U → Set data U where :Zero: :𝟏: :𝟐: :ℕ: : U :Π: :Σ: : (S : U) → (El S → U) → U El :Zero: = Zero El :𝟏: = 𝟏 El :𝟐: = 𝟐 El :ℕ: = ℕ El (:Π: S T) = (s : El S) → El (T s) El (:Σ: S T) = Σ (El S) λ s → El (T s) _:→:_ : U → U → U S :→: T = :Π: S λ _ → T _:×:_ : U → U → U S :×: T = :Σ: S λ _ → T :If: : 𝟐 → U → U → U :If: tt T F = T :If: ff T F = F :Vec: : U → ℕ → U :Vec: X ze = :𝟏: :Vec: X (su n) = X :×: :Vec: X n
{ "alphanum_fraction": 0.4710485133, "avg_line_length": 18.2571428571, "ext": "agda", "hexsha": "b61b6818de36c3364af8fa2bfb0235ed0df98f4d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Outrageous/#03.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Outrageous/#03.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Outrageous/#03.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 323, "size": 639 }
------------------------------------------------------------------------------ -- Fairness of the ABP channels ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.ABP.Fair.Type where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List open import FOTC.Program.ABP.Terms ------------------------------------------------------------------------------ -- The Fair co-inductive predicate -- From (Dybjer and Sander 1989): al : F*T if al is a list of zero or -- more 0's followed by a final 1. data F*T : D → Set where f*tnil : F*T (T ∷ []) f*tcons : ∀ {ft} → F*T ft → F*T (F ∷ ft) -- Functor for the Fair type. -- FairF : (D → Set) → D → Set -- FairF A os = ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ A os' -- Fair is the greatest fixed of FairF (by Fair-out and Fair-coind). postulate Fair : D → Set -- Fair a is post-fixed point of FairF, i.e. -- -- Fair ≤ FairF Fair. postulate Fair-out : ∀ {os} → Fair os → ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os' {-# ATP axiom Fair-out #-} -- Fair is the greatest post-fixed point of FairF, i.e. -- -- ∀ A. A ≤ FairF A ⇒ A ≤ Fair. -- -- N.B. This is an axiom schema. Because in the automatic proofs we -- *must* use an instance, we do not add this postulate as an ATP -- axiom. postulate Fair-coind : (A : D → Set) → -- A is post-fixed point of FairF. (∀ {os} → A os → ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ A os') → -- Fair is greater than A. ∀ {os} → A os → Fair os ------------------------------------------------------------------------------ -- References -- -- Dybjer, Peter and Sander, Herbert P. (1989). A Functional -- Programming Approach to the Specification and Verification of -- Concurrent Systems. Formal Aspects of Computing 1, pp. 303–319.
{ "alphanum_fraction": 0.4987555998, "avg_line_length": 32.4032258065, "ext": "agda", "hexsha": "239dcf7d73c8cf246072308325a5d39e97027195", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/ABP/Fair/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/ABP/Fair/Type.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/ABP/Fair/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 545, "size": 2009 }
{-# OPTIONS --without-K --safe #-} module Math.NumberTheory.Fibonacci.Nat where -- agda-stdlib open import Data.Nat open import Data.Nat.Properties -- agda-misc open import Math.NumberTheory.Fibonacci.Generic +-0-commutativeMonoid 0 1 renaming ( fibRec≈fib to fibRec≡fib ; fib[2+n]≈fib[1+n]∙fib[n] to fib[2+n]≡fib[1+n]+fib[n] ; fib[1+n]∙fib[n]≈fib[2+n] to fib[1+n]+fib[n]≡fib[2+n] ; fib[n]∙fib[1+n]≈fib[2+n] to fib[n]+fib[1+n]≡fib[2+n] ) public
{ "alphanum_fraction": 0.6652173913, "avg_line_length": 27.0588235294, "ext": "agda", "hexsha": "d4637c1bcd6735d3bca15281f19774a9b397ba59", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Math/NumberTheory/Fibonacci/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Math/NumberTheory/Fibonacci/Nat.agda", "max_line_length": 73, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Math/NumberTheory/Fibonacci/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 191, "size": 460 }
{-# OPTIONS --without-K #-} open import Base open import Homotopy.PushoutDef open import Homotopy.VanKampen.Guide module Homotopy.VanKampen.SplitCode {i} (d : pushout-diag i) (l : legend i (pushout-diag.C d)) (a₁ : pushout-diag.A d) where open pushout-diag d open legend l open import Homotopy.Truncation open import Homotopy.PathTruncation -- Definition. module _ where private data #code-a (a₂ : A) : Set i data #code-b (b₂ : B) : Set i data #code-a a₂ where #a : a₁ ≡₀ a₂ → #code-a a₂ #ba : ∀ n → #code-b (g $ loc n) → f (loc n) ≡₀ a₂ → #code-a a₂ data #code-b b₂ where #ab : ∀ n → #code-a (f $ loc n) → g (loc n) ≡₀ b₂ → #code-b b₂ code-b : B → Set i code-b = #code-b code-a : A → Set i code-a = #code-a postulate -- HIT code-a-is-set : ∀ a → is-set (code-a a) code-b-is-set : ∀ b → is-set (code-b b) a : ∀ {a₂} → a₁ ≡₀ a₂ → code-a a₂ a = #a infixl 6 a syntax a co = ⟧a co ba : ∀ {a₂} n → code-b (g $ loc n) → f (loc n) ≡₀ a₂ → code-a a₂ ba = #ba infixl 6 ba syntax ba n co p = co b⟦ n ⟧a p ab : ∀ {b₂} n → code-a (f $ loc n) → g (loc n) ≡₀ b₂ → code-b b₂ ab = #ab infixl 6 ab syntax ab n co p = co a⟦ n ⟧b p postulate -- HIT code-a-refl-refl : ∀ n (co : code-a (f $ loc n)) → co a⟦ n ⟧b refl₀ b⟦ n ⟧a refl₀ ≡ co code-b-refl-refl : ∀ n (co : code-b (g $ loc n)) → co b⟦ n ⟧a refl₀ a⟦ n ⟧b refl₀ ≡ co -- The other diriction is fine. -- There's no canonical choice between two, I think. code-ab-swap : ∀ n₁ co n₂ (r : loc n₁ ≡₀ loc n₂) → co a⟦ n₁ ⟧b ap₀ g r b⟦ n₂ ⟧a refl₀ ≡ co a⟦ n₁ ⟧b refl₀ b⟦ n₁ ⟧a ap₀ f r -- Dependent recursor. code-rec : ∀ {j} (P-a : ∀ {a₂} → code-a a₂ → Set j) ⦃ _ : ∀ {a₂} co → is-set $ P-a {a₂} co ⦄ (P-b : ∀ {b₂} → code-b b₂ → Set j) ⦃ _ : ∀ {b₂} co → is-set $ P-b {b₂} co ⦄ (h₀-a : ∀ {a₂} (p : _ ≡₀ a₂) → P-a (a p)) (h₀-ba : ∀ {a₂} n {co} (_ : P-b co) (p : _ ≡₀ a₂) → P-a (co b⟦ n ⟧a p)) (h₀-ab : ∀ {b₂} n {co} (_ : P-a co) (p : _ ≡₀ b₂) → P-b (co a⟦ n ⟧b p)) (h₁-a-rr : ∀ n {co} (pco : P-a co) → transport (P-a {f $ loc n}) (code-a-refl-refl n co) (h₀-ba n (h₀-ab n pco $ refl₀) $ refl₀) ≡ pco) (h₁-b-rr : ∀ n {co} (pco : P-b co) → transport (P-b {g $ loc n}) (code-b-refl-refl n co) (h₀-ab n (h₀-ba n pco $ refl₀) $ refl₀) ≡ pco) (h₁-ab-s : ∀ n₁ {co} (pco : P-a co) n₂ r → transport (P-a {f $ loc n₂}) (code-ab-swap n₁ co n₂ r) (h₀-ba n₂ (h₀-ab n₁ pco $ ap₀ g r) $ refl₀) ≡ (h₀-ba n₁ (h₀-ab n₁ pco $ refl₀) $ ap₀ f r)) → (∀ {a₂} (co : code-a a₂) → P-a co) × (∀ {b₂} (co : code-b b₂) → P-b co) code-rec P-a P-b h₀-a h₀-ba h₀-ab _ _ _ = elim-a , elim-b where elim-a : ∀ {a₂} (co : code-a a₂) → P-a co elim-b : ∀ {b₂} (co : code-b b₂) → P-b co elim-a (#a p) = h₀-a p elim-a (#ba n co p) = h₀-ba n (elim-b co) p elim-b (#ab n co p) = h₀-ab n (elim-a co) p -- This is actually "partially dependent". -- P-a and P-b are indexed by the end points. -- This is fine because they are fixed in -- all transports in 1-cells. code-rec-nondep : ∀ {j} (P-a : A → Set j) ⦃ _ : ∀ a → is-set $ P-a a ⦄ (P-b : B → Set j) ⦃ _ : ∀ b → is-set $ P-b b ⦄ (h₀-a : ∀ {a₂} (p : a₁ ≡₀ a₂) → P-a a₂) (h₀-ba : ∀ {a₂} n {co : code-b (g $ loc n)} → P-b (g $ loc n) → f (loc n) ≡₀ a₂ → P-a a₂) (h₀-ab : ∀ {b₂} n {co : code-a (f $ loc n)} → P-a (f $ loc n) → g (loc n) ≡₀ b₂ → P-b b₂) (h₁-a-rr : ∀ n {co} (pco : P-a (f $ loc n)) → h₀-ba n {co a⟦ n ⟧b refl₀} (h₀-ab n {co} pco $ refl₀) refl₀ ≡ pco) (h₁-b-rr : ∀ n {co} (pco : P-b (g $ loc n)) → h₀-ab n {co b⟦ n ⟧a refl₀} (h₀-ba n {co} pco $ refl₀) refl₀ ≡ pco) (h₁-ab-s : ∀ n₁ {co : code-a $ f $ loc n₁} (pco : P-a $ f $ loc n₁) n₂ (r : loc n₁ ≡₀ loc n₂) → h₀-ba n₂ {co a⟦ n₁ ⟧b ap₀ g r} (h₀-ab n₁ {co} pco $ ap₀ g r) refl₀ ≡ h₀-ba n₁ {co a⟦ n₁ ⟧b refl₀} (h₀-ab n₁ {co} pco $ refl₀) (ap₀ f r)) → (∀ {a₂} (co : code-a a₂) → P-a a₂) × (∀ {b₂} (co : code-b b₂) → P-b b₂) code-rec-nondep P-a P-b h₀-a h₀-ba h₀-ab _ _ _ = elim-a , elim-b where elim-a : ∀ {a₂} (co : code-a a₂) → P-a a₂ elim-b : ∀ {b₂} (co : code-b b₂) → P-b b₂ elim-a (#a p) = h₀-a p elim-a (#ba c co p) = h₀-ba c {co} (elim-b co) p elim-b (#ab c co p) = h₀-ab c {co} (elim-a co) p module _ where trans-a : ∀ {y z} (q : y ≡ z) (p : a₁ ≡₀ y) → transport code-a q (⟧a p) ≡ ⟧a (p ∘₀ proj q) trans-a refl p = ap a (! (refl₀-right-unit p)) trans-ba : ∀ {y z} (q : y ≡ z) n co (p : f (loc n) ≡₀ y) → transport code-a q (co b⟦ n ⟧a p) ≡ co b⟦ n ⟧a p ∘₀ proj q trans-ba refl n co p = ap (ba n co) (! (refl₀-right-unit p)) trans-ab : ∀ {y b} (q : y ≡ b) n co (p : g (loc n) ≡₀ y) → transport code-b q (co a⟦ n ⟧b p) ≡ co a⟦ n ⟧b p ∘₀ proj q trans-ab refl n co p = ap (ab n co) (! (refl₀-right-unit p)) module _ where -- all-paths abstract code-has-all-cells₂-a : ∀ {a} {x y : code-a a} (p q : x ≡ y) → p ≡ q code-has-all-cells₂-a = prop-has-all-paths $ code-a-is-set _ _ _ code-has-all-cells₂-b : ∀ {b} {x y : code-b b} (p q : x ≡ y) → p ≡ q code-has-all-cells₂-b = prop-has-all-paths $ code-b-is-set _ _ _ code-a-rec : ∀ {j} (P-a : ∀ {a₂} → code-a a₂ → Set j) ⦃ _ : ∀ {a₂} co → is-set $ P-a {a₂} co ⦄ (h₀-a : ∀ {a₂} (p : _ ≡₀ a₂) → P-a (⟧a p)) (h₀-ba : ∀ {a₂} n co (p : _ ≡₀ a₂) → P-a (co b⟦ n ⟧a p)) (h₁-a-rr : ∀ n {co} (pco : P-a co) → transport (P-a {f $ loc n}) (code-a-refl-refl n co) (h₀-ba n (co a⟦ n ⟧b refl₀) $ refl₀) ≡ pco) → (∀ {a₂} (co : code-a a₂) → P-a co) code-a-rec {j} P-a ⦃ P-a-is-set ⦄ h₀-a h₀-ba h₁-a-rr = π₁ $ code-rec P-a ⦃ P-a-is-set ⦄ (λ _ → unit) ⦃ λ _ → unit-is-set ⦄ h₀-a (λ n {co} _ p → h₀-ba n co p) (λ _ _ _ → tt) h₁-a-rr (λ _ _ → prop-has-all-paths unit-is-prop _ _) -- FIXME This proof is too ugly. (λ n₁ {co} (pco : P-a co) n₂ r → transport (P-a {f $ loc n₂}) (code-ab-swap n₁ co n₂ r) (h₀-ba n₂ (co a⟦ n₁ ⟧b ap₀ g r) $ refl₀) ≡⟨ ! $ h₁-a-rr n₂ _ ⟩ transport (P-a {f $ loc n₂}) (code-a-refl-refl n₂ _) (h₀-ba n₂ (_ a⟦ n₂ ⟧b refl₀) $ refl₀) ≡⟨ ap (λ x → transport (P-a {f $ loc n₂}) (code-a-refl-refl n₂ _) $ h₀-ba n₂ (_ a⟦ n₂ ⟧b refl₀) $ refl₀) $ code-ab-swap n₁ co n₂ r ⟩ transport (P-a {f $ loc n₂}) (code-a-refl-refl n₂ _) (h₀-ba n₂ (_ a⟦ n₂ ⟧b refl₀) $ refl₀) ≡⟨ h₁-a-rr n₂ _ ⟩∎ h₀-ba n₁ (co a⟦ n₁ ⟧b refl₀) (ap₀ f r) ∎) code-b-rec : ∀ {j} (P-b : ∀ {b₂} → code-b b₂ → Set j) ⦃ _ : ∀ {b₂} co → is-set $ P-b {b₂} co ⦄ (h₀-ab : ∀ {b₂} n co (p : _ ≡₀ b₂) → P-b (co a⟦ n ⟧b p)) (h₁-b-rr : ∀ n {co} (pco : P-b co) → transport (P-b {g $ loc n}) (code-b-refl-refl n co) (h₀-ab n (co b⟦ n ⟧a refl₀) $ refl₀) ≡ pco) → (∀ {b₂} (co : code-b b₂) → P-b co) code-b-rec {j} P-b ⦃ P-b-is-set ⦄ h₀-ab h₁-b-rr = π₂ $ code-rec (λ _ → unit) ⦃ λ _ → unit-is-set ⦄ P-b ⦃ P-b-is-set ⦄ (λ _ → tt) (λ _ _ _ → tt) (λ n {co} _ p → h₀-ab n co p) (λ _ _ → prop-has-all-paths unit-is-prop _ _) h₁-b-rr (λ _ _ _ _ → prop-has-all-paths unit-is-prop _ _) -- Derived 1-cells. module _ where abstract code-ba-swap : ∀ n₁ co n₂ (r : loc n₁ ≡₀ loc n₂) → co b⟦ n₁ ⟧a ap₀ f r a⟦ n₂ ⟧b refl₀ ≡ co b⟦ n₁ ⟧a refl₀ a⟦ n₁ ⟧b ap₀ g r code-ba-swap n₁ co n₂ r = co b⟦ n₁ ⟧a ap₀ f r a⟦ n₂ ⟧b refl₀ ≡⟨ ap (λ x → x b⟦ n₁ ⟧a ap₀ f r a⟦ n₂ ⟧b refl₀) $ ! $ code-b-refl-refl n₁ co ⟩ co b⟦ n₁ ⟧a refl₀ a⟦ n₁ ⟧b refl₀ b⟦ n₁ ⟧a ap₀ f r a⟦ n₂ ⟧b refl₀ ≡⟨ ap (λ x → x a⟦ n₂ ⟧b refl₀) $ ! $ code-ab-swap n₁ (co b⟦ n₁ ⟧a refl₀) n₂ r ⟩ co b⟦ n₁ ⟧a refl₀ a⟦ n₁ ⟧b ap₀ g r b⟦ n₂ ⟧a refl₀ a⟦ n₂ ⟧b refl₀ ≡⟨ code-b-refl-refl n₂ $ co b⟦ n₁ ⟧a refl₀ a⟦ n₁ ⟧b ap₀ g r ⟩∎ co b⟦ n₁ ⟧a refl₀ a⟦ n₁ ⟧b ap₀ g r ∎ abstract -- Old (provable) rules. code-a-merge : ∀ {a₂} n p₁ (p₂ : _ ≡₀ a₂) → ⟧a p₁ a⟦ n ⟧b refl₀ b⟦ n ⟧a p₂ ≡ ⟧a p₁ ∘₀ p₂ code-a-merge {a₂} n p₁ = π₀-extend ⦃ λ _ → ≡-is-set $ code-a-is-set a₂ ⦄ ( λ p₂ → ⟧a p₁ a⟦ n ⟧b refl₀ b⟦ n ⟧a proj p₂ ≡⟨ ! $ trans-ba p₂ n (⟧a p₁ a⟦ n ⟧b refl₀) refl₀ ⟩ transport code-a p₂ (⟧a p₁ a⟦ n ⟧b refl₀ b⟦ n ⟧a refl₀) ≡⟨ ap (transport code-a p₂) $ code-a-refl-refl n (⟧a p₁) ⟩ transport code-a p₂ (⟧a p₁) ≡⟨ trans-a p₂ p₁ ⟩∎ ⟧a p₁ ∘₀ proj p₂ ∎) abstract code-ab-merge : ∀ {b₂} n₁ co n₂ p₁ (p₂ : _ ≡₀ b₂) → co a⟦ n₁ ⟧b p₁ b⟦ n₂ ⟧a refl₀ a⟦ n₂ ⟧b p₂ ≡ co a⟦ n₁ ⟧b p₁ ∘₀ p₂ code-ab-merge {b₂} n₁ co n₂ p₁ = π₀-extend ⦃ λ _ → ≡-is-set $ code-b-is-set b₂ ⦄ ( λ p₂ → co a⟦ n₁ ⟧b p₁ b⟦ n₂ ⟧a refl₀ a⟦ n₂ ⟧b proj p₂ ≡⟨ ! $ trans-ab p₂ n₂ (co a⟦ n₁ ⟧b p₁ b⟦ n₂ ⟧a refl₀) refl₀ ⟩ transport code-b p₂ (co a⟦ n₁ ⟧b p₁ b⟦ n₂ ⟧a refl₀ a⟦ n₂ ⟧b refl₀) ≡⟨ ap (transport code-b p₂) $ code-b-refl-refl n₂ (co a⟦ n₁ ⟧b p₁) ⟩ transport code-b p₂ (co a⟦ n₁ ⟧b p₁) ≡⟨ trans-ab p₂ n₁ co p₁ ⟩∎ co a⟦ n₁ ⟧b p₁ ∘₀ proj p₂ ∎) abstract code-ba-merge : ∀ {a₂} n₁ co n₂ p₁ (p₂ : _ ≡₀ a₂) → co b⟦ n₁ ⟧a p₁ a⟦ n₂ ⟧b refl₀ b⟦ n₂ ⟧a p₂ ≡ co b⟦ n₁ ⟧a p₁ ∘₀ p₂ code-ba-merge {a₂} n₁ co n₂ p₁ = π₀-extend ⦃ λ _ → ≡-is-set $ code-a-is-set a₂ ⦄ ( λ p₂ → co b⟦ n₁ ⟧a p₁ a⟦ n₂ ⟧b refl₀ b⟦ n₂ ⟧a proj p₂ ≡⟨ ! $ trans-ba p₂ n₂ (co b⟦ n₁ ⟧a p₁ a⟦ n₂ ⟧b refl₀) refl₀ ⟩ transport code-a p₂ (co b⟦ n₁ ⟧a p₁ a⟦ n₂ ⟧b refl₀ b⟦ n₂ ⟧a refl₀) ≡⟨ ap (transport code-a p₂) $ code-a-refl-refl n₂ (co b⟦ n₁ ⟧a p₁) ⟩ transport code-a p₂ (co b⟦ n₁ ⟧a p₁) ≡⟨ trans-ba p₂ n₁ co p₁ ⟩∎ co b⟦ n₁ ⟧a p₁ ∘₀ proj p₂ ∎) abstract code-a-shift : ∀ {b₂} n₁ p₁ n₂ (r : loc n₁ ≡₀ loc n₂) (p₂ : _ ≡₀ b₂) → ⟧a p₁ ∘₀ ap₀ f r a⟦ n₂ ⟧b p₂ ≡ ⟧a p₁ a⟦ n₁ ⟧b ap₀ g r ∘₀ p₂ code-a-shift n₁ p₁ n₂ r p₂ = ⟧a p₁ ∘₀ ap₀ f r a⟦ n₂ ⟧b p₂ ≡⟨ ap (λ x → x a⟦ n₂ ⟧b p₂) $ ! $ code-a-merge n₁ p₁ (ap₀ f r) ⟩ ⟧a p₁ a⟦ n₁ ⟧b refl₀ b⟦ n₁ ⟧a ap₀ f r a⟦ n₂ ⟧b p₂ ≡⟨ ap (λ x → x a⟦ n₂ ⟧b p₂) $ ! $ code-ab-swap n₁ (⟧a p₁) n₂ r ⟩ ⟧a p₁ a⟦ n₁ ⟧b ap₀ g r b⟦ n₂ ⟧a refl₀ a⟦ n₂ ⟧b p₂ ≡⟨ code-ab-merge n₁ (⟧a p₁) n₂ (ap₀ g r) p₂ ⟩∎ ⟧a p₁ a⟦ n₁ ⟧b ap₀ g r ∘₀ p₂ ∎ abstract code-ba-shift : ∀ {b₂} n₁ co n₂ p₁ n₃ (r : loc n₂ ≡₀ loc n₃) (p₂ : _ ≡₀ b₂) → co b⟦ n₁ ⟧a p₁ ∘₀ ap₀ f r a⟦ n₃ ⟧b p₂ ≡ co b⟦ n₁ ⟧a p₁ a⟦ n₂ ⟧b ap₀ g r ∘₀ p₂ code-ba-shift n₁ co n₂ p₁ n₃ r p₂ = co b⟦ n₁ ⟧a p₁ ∘₀ ap₀ f r a⟦ n₃ ⟧b p₂ ≡⟨ ap (λ x → x a⟦ n₃ ⟧b p₂) $ ! $ code-ba-merge n₁ co n₂ p₁ (ap₀ f r) ⟩ co b⟦ n₁ ⟧a p₁ a⟦ n₂ ⟧b refl₀ b⟦ n₂ ⟧a ap₀ f r a⟦ n₃ ⟧b p₂ ≡⟨ ap (λ x → x a⟦ n₃ ⟧b p₂) $ ! $ code-ab-swap n₂ (co b⟦ n₁ ⟧a p₁) n₃ r ⟩ co b⟦ n₁ ⟧a p₁ a⟦ n₂ ⟧b ap₀ g r b⟦ n₃ ⟧a refl₀ a⟦ n₃ ⟧b p₂ ≡⟨ code-ab-merge n₂ (co b⟦ n₁ ⟧a p₁) n₃ (ap₀ g r) p₂ ⟩∎ co b⟦ n₁ ⟧a p₁ a⟦ n₂ ⟧b ap₀ g r ∘₀ p₂ ∎ abstract code-ab-shift : ∀ {a₂} n₁ co n₂ p₁ n₃ (r : loc n₂ ≡₀ loc n₃) (p₂ : _ ≡₀ a₂) → co a⟦ n₁ ⟧b p₁ ∘₀ ap₀ g r b⟦ n₃ ⟧a p₂ ≡ co a⟦ n₁ ⟧b p₁ b⟦ n₂ ⟧a ap₀ f r ∘₀ p₂ code-ab-shift n₁ co n₂ p₁ n₃ r p₂ = co a⟦ n₁ ⟧b p₁ ∘₀ ap₀ g r b⟦ n₃ ⟧a p₂ ≡⟨ ap (λ x → x b⟦ n₃ ⟧a p₂) $ ! $ code-ab-merge n₁ co n₂ p₁ (ap₀ g r) ⟩ co a⟦ n₁ ⟧b p₁ b⟦ n₂ ⟧a refl₀ a⟦ n₂ ⟧b ap₀ g r b⟦ n₃ ⟧a p₂ ≡⟨ ap (λ x → x b⟦ n₃ ⟧a p₂) $ ! $ code-ba-swap n₂ (co a⟦ n₁ ⟧b p₁) n₃ r ⟩ co a⟦ n₁ ⟧b p₁ b⟦ n₂ ⟧a ap₀ f r a⟦ n₃ ⟧b refl₀ b⟦ n₃ ⟧a p₂ ≡⟨ code-ba-merge n₂ (co a⟦ n₁ ⟧b p₁) n₃ (ap₀ f r) p₂ ⟩∎ co a⟦ n₁ ⟧b p₁ b⟦ n₂ ⟧a ap₀ f r ∘₀ p₂ ∎ -- Definition of code module _ where P : Set i P = pushout d -- Basic conversion a⇒b : ∀ n → code-a (f $ loc n) → code-b (g $ loc n) a⇒b n co = co a⟦ n ⟧b refl₀ b⇒a : ∀ n → code-b (g $ loc n) → code-a (f $ loc n) b⇒a n co = co b⟦ n ⟧a refl₀ private -- The head of the code code-glue-eq-loc : ∀ n → code-a (f $ loc n) ≃ code-b (g $ loc n) code-glue-eq-loc n = a⇒b n , iso-is-eq (a⇒b n) (b⇒a n) (code-b-refl-refl n) (code-a-refl-refl n) abstract trans-code-a-r : ∀ n₁ n₂ (r : loc n₁ ≡ loc n₂) (co : code-a $ f $ loc n₁) → transport (code-a ◯ f) r co ≡ co a⟦ n₁ ⟧b refl₀ b⟦ n₁ ⟧a proj (ap f r) trans-code-a-r n₁ n₂ r co = transport (code-a ◯ f) r co ≡⟨ ! $ trans-ap code-a f r co ⟩ transport code-a (ap f r) co ≡⟨ ap (transport code-a $ ap f r) $ ! $ code-a-refl-refl n₁ co ⟩ transport code-a (ap f r) (co a⟦ n₁ ⟧b refl₀ b⟦ n₁ ⟧a refl₀) ≡⟨ trans-ba (ap f r) n₁ _ refl₀ ⟩∎ co a⟦ n₁ ⟧b refl₀ b⟦ n₁ ⟧a proj (ap f r) ∎ abstract trans-code-b-r : ∀ n₁ n₂ (r : loc n₁ ≡ loc n₂) (co : code-b $ g $ loc n₁) → transport (code-b ◯ g) r co ≡ co b⟦ n₁ ⟧a refl₀ a⟦ n₁ ⟧b proj (ap g r) trans-code-b-r n₁ n₂ r co = transport (code-b ◯ g) r co ≡⟨ ! $ trans-ap code-b g r co ⟩ transport code-b (ap g r) co ≡⟨ ap (transport code-b $ ap g r) $ ! $ code-b-refl-refl n₁ co ⟩ transport code-b (ap g r) (co b⟦ n₁ ⟧a refl₀ a⟦ n₁ ⟧b refl₀) ≡⟨ trans-ab (ap g r) n₁ _ refl₀ ⟩∎ co b⟦ n₁ ⟧a refl₀ a⟦ n₁ ⟧b proj (ap g r) ∎ private abstract code-glue-eq-route : ∀ n₁ n₂ r → transport (λ c → code-a (f c) ≃ code-b (g c)) r (code-glue-eq-loc n₁) ≡ code-glue-eq-loc n₂ code-glue-eq-route n₁ n₂ r = equiv-eq $ funext λ co → π₁ (transport (λ c → code-a (f c) ≃ code-b (g c)) r (code-glue-eq-loc n₁)) co ≡⟨ ap (λ x → x co) $ app-trans (λ c → code-a (f c) ≃ code-b (g c)) (λ c → code-a (f c) → code-b (g c)) (λ _ → π₁) r (code-glue-eq-loc n₁) ⟩ transport (λ c → code-a (f c) → code-b (g c)) r (a⇒b n₁) co ≡⟨ trans-→ (code-a ◯ f) (code-b ◯ g) r (a⇒b n₁) co ⟩ transport (code-b ◯ g) r (a⇒b n₁ $ transport (code-a ◯ f) (! r) co) ≡⟨ ap (transport (code-b ◯ g) r ◯ a⇒b n₁) $ trans-code-a-r _ _ (! r) co ⟩ transport (code-b ◯ g) r (co a⟦ n₂ ⟧b refl₀ b⟦ n₂ ⟧a proj (ap f $ ! r) a⟦ n₁ ⟧b refl₀) ≡⟨ ap (λ x → transport (code-b ◯ g) r $ x a⟦ n₁ ⟧b refl₀) $ ! $ code-ab-swap _ co _ (proj $ ! r) ⟩ transport (code-b ◯ g) r (co a⟦ n₂ ⟧b proj (ap g $ ! r) b⟦ n₁ ⟧a refl₀ a⟦ n₁ ⟧b refl₀) ≡⟨ ap (transport (code-b ◯ g) r) $ code-b-refl-refl n₁ _ ⟩ transport (code-b ◯ g) r (co a⟦ n₂ ⟧b proj (ap g $ ! r)) ≡⟨ trans-code-b-r _ _ r _ ⟩ co a⟦ n₂ ⟧b proj (ap g $ ! r) b⟦ n₁ ⟧a refl₀ a⟦ n₁ ⟧b proj (ap g r) ≡⟨ code-ab-merge n₂ co n₁ _ _ ⟩ co a⟦ n₂ ⟧b proj (ap g (! r) ∘ ap g r) ≡⟨ ap (λ x → co a⟦ n₂ ⟧b proj x) $ concat-ap g (! r) r ⟩ co a⟦ n₂ ⟧b proj (ap g $ ! r ∘ r) ≡⟨ ap (λ x → co a⟦ n₂ ⟧b proj (ap g x)) $ opposite-left-inverse r ⟩∎ a⇒b n₂ co ∎ private code-glue-eq : ∀ c → code-a (f c) ≃ code-b (g c) code-glue-eq = visit-fiber-rec l (λ c → code-a (f c) ≃ code-b (g c)) ⦃ λ _ → ≃-is-set (code-a-is-set _) (code-b-is-set _) ⦄ code-glue-eq-loc code-glue-eq-route -- The data type! code : P → Set i code = pushout-rec-nondep (Set i) code-a code-b (eq-to-path ◯ code-glue-eq) -- Useful lemma abstract trans-code-glue-loc : ∀ n₂ co → transport code (glue $ loc n₂) co ≡ a⇒b n₂ co trans-code-glue-loc n₂ co = transport code (glue $ loc n₂) co ≡⟨ ! $ trans-ap (λ X → X) code (glue $ loc n₂) co ⟩ transport (λ X → X) (ap code $ glue $ loc n₂) co ≡⟨ ap (λ x → transport (λ X → X) x co) $ pushout-β-glue-nondep (Set i) code-a code-b (eq-to-path ◯ code-glue-eq) (loc n₂) ⟩ transport (λ X → X) (eq-to-path $ code-glue-eq $ loc n₂) co ≡⟨ ap (λ x → transport (λ X → X) (eq-to-path x) co) $ visit-fiber-β-loc l (λ c → code-a (f c) ≃ code-b (g c)) ⦃ λ _ → ≃-is-set (code-a-is-set _) (code-b-is-set _) ⦄ code-glue-eq-loc code-glue-eq-route n₂ ⟩ transport (λ X → X) (eq-to-path $ code-glue-eq-loc n₂) co ≡⟨ trans-id-eq-to-path (code-glue-eq-loc n₂) co ⟩∎ a⇒b n₂ co ∎ abstract trans-code-!glue-loc : ∀ n₂ co → transport code (! $ glue $ loc n₂) co ≡ b⇒a n₂ co trans-code-!glue-loc n₂ co = move!-transp-right code (glue $ loc n₂) co (b⇒a n₂ co) $ ! $ transport code (glue $ loc n₂) (b⇒a n₂ co) ≡⟨ trans-code-glue-loc n₂ (b⇒a n₂ co) ⟩ a⇒b n₂ (b⇒a n₂ co) ≡⟨ code-b-refl-refl n₂ co ⟩∎ co ∎ -- Truncation level abstract code-is-set : ∀ p → is-set $ code p code-is-set = pushout-rec (λ p → is-set $ code p) code-a-is-set code-b-is-set (λ _ → prop-has-all-paths is-set-is-prop _ _)
{ "alphanum_fraction": 0.4499697786, "avg_line_length": 41.9331797235, "ext": "agda", "hexsha": "f2dd1ca0c3be7a01e26e905fb6eaf42e31eff17d", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/VanKampen/SplitCode.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/VanKampen/SplitCode.agda", "max_line_length": 112, "max_stars_count": 294, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/VanKampen/SplitCode.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 8272, "size": 18199 }
open import Oscar.Prelude open import Oscar.Class.IsEquivalence module Oscar.Class.Setoid where record Setoid 𝔬 ℓ : Ø ↑̂ (𝔬 ∙̂ ℓ) where constructor ∁ field {Object} : Ø 𝔬 ObjectEquivalence : Object → Object → Ø ℓ ⦃ `IsEquivalence ⦄ : IsEquivalence ObjectEquivalence
{ "alphanum_fraction": 0.7087719298, "avg_line_length": 21.9230769231, "ext": "agda", "hexsha": "64ad08d09ac011f3739e12f7ef7092e50ee66055", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Setoid.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Setoid.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Setoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 98, "size": 285 }
module Issue4267.B where open import Issue4267.A0 postulate X : Set -- Crucial for bug: omitting signature of ra, -- letting Agda infer its type. ra = record {A = X}
{ "alphanum_fraction": 0.7134502924, "avg_line_length": 15.5454545455, "ext": "agda", "hexsha": "c8f0f529a7afc099fd1f246452eda535cf146ee8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4267/B.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4267/B.agda", "max_line_length": 45, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4267/B.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 51, "size": 171 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.elims.SuspSmash open import homotopy.elims.CofPushoutSection -- Σ(X∧Y) ≃ X * Y module homotopy.SuspSmash {i j} (X : Ptd i) (Y : Ptd j) where private {- path lemmas -} private reduce-x : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y) → p ∙ ! q ∙ q ∙ ! p ∙ p == p reduce-x idp idp = idp reduce-y : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : x == z) → p ∙ ! p ∙ q ∙ ! q ∙ p == p reduce-y idp idp = idp module Into = SuspensionRec {A = Smash X Y} {C = fst (X ⊙* Y)} (left (snd X)) (right (snd Y)) (CofPushoutSection.rec (λ _ → tt) (λ _ → idp) (glue (snd X , snd Y)) (λ {(x , y) → glue (snd X , snd Y) ∙ ! (glue (x , snd Y)) ∙ glue (x , y) ∙ ! (glue (snd X , y)) ∙ glue (snd X , snd Y)}) (λ x → ! (reduce-x (glue (snd X , snd Y)) (glue (x , snd Y)))) (λ y → ! (reduce-y (glue (snd X , snd Y)) (glue (snd X , y))))) into = Into.f module Out = PushoutRec {d = ⊙span-out (*-⊙span X Y)} {D = Suspension (Smash X Y)} (λ _ → north) (λ _ → south) (λ {(x , y) → merid (cfcod (x , y))}) out = Out.f into-out : (j : fst (X ⊙* Y)) → into (out j) == j into-out = Pushout-elim (λ x → glue (snd X , snd Y) ∙ ! (glue (x , snd Y))) (λ y → ! (glue (snd X , snd Y)) ∙ glue (snd X , y)) (↓-∘=idf-from-square into out ∘ λ {(x , y) → (ap (ap into) (Out.glue-β (x , y)) ∙ Into.merid-β (cfcod (x , y))) ∙v⊡ lemma (glue (snd X , snd Y)) (glue (x , snd Y)) (glue (snd X , y)) (glue (x , y))}) where lemma : ∀ {i} {A : Type i} {x y z w : A} (p : x == y) (q : z == y) (r : x == w) (s : z == w) → Square (p ∙ ! q) (p ∙ ! q ∙ s ∙ ! r ∙ p) s (! p ∙ r) lemma idp idp idp s = vert-degen-square (∙-unit-r s) out-into : (σ : Suspension (Smash X Y)) → out (into σ) == σ out-into = susp-smash-elim idp idp (↓-∘=idf-in out into ∘ λ {(x , y) → ap (ap out) (Into.merid-β (cfcod (x , y))) ∙ lemma₁ out (Out.glue-β (snd X , snd Y)) (Out.glue-β (x , snd Y)) (Out.glue-β (x , y)) (Out.glue-β (snd X , y)) (Out.glue-β (snd X , snd Y)) ∙ lemma₂ {p = merid (cfcod (snd X , snd Y))} {q = merid (cfcod (x , snd Y))} {r = merid (cfcod (x , y))} {s = merid (cfcod (snd X , y))} {t = merid (cfcod (snd X , snd Y))} (ap merid (! (cfglue (winl (snd X))) ∙ cfglue (winl x))) (ap merid (! (cfglue (winr y)) ∙ cfglue (winr (snd Y))))}) where lemma₁ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y z u v w : A} {p : x == y} {q : z == y} {r : z == u} {s : v == u} {t : v == w} {p' : f x == f y} {q' : f z == f y} {r' : f z == f u} {s' : f v == f u} {t' : f v == f w} (α : ap f p == p') (β : ap f q == q') (γ : ap f r == r') (δ : ap f s == s') (ε : ap f t == t') → ap f (p ∙ ! q ∙ r ∙ ! s ∙ t) == p' ∙ ! q' ∙ r' ∙ ! s' ∙ t' lemma₁ f {p = idp} {q = idp} {r = idp} {s = idp} {t = idp} idp idp idp idp idp = idp lemma₂ : ∀ {i} {A : Type i} {x y z u : A} {p q : x == y} {r : x == z} {s t : u == z} (α : p == q) (β : s == t) → p ∙ ! q ∙ r ∙ ! s ∙ t == r lemma₂ {p = idp} {r = idp} {s = idp} idp idp = idp module SuspSmash where eq : Suspension (Smash X Y) ≃ fst (X ⊙* Y) eq = equiv into out into-out out-into path : Suspension (Smash X Y) == fst (X ⊙* Y) path = ua eq ⊙path : ⊙Susp (⊙Smash X Y) == (X ⊙* Y) ⊙path = ⊙ua (⊙≃-in eq idp)
{ "alphanum_fraction": 0.4173249796, "avg_line_length": 33.3727272727, "ext": "agda", "hexsha": "bc789bba780c38588b77707d5abe8bc061db7805", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/SuspSmash.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/SuspSmash.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/SuspSmash.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1577, "size": 3671 }
open import MJ.Types import MJ.Classtable.Core as Core module MJ.Syntax.Erase {c}(Ct : Core.Classtable c) where open import Prelude hiding (erase) open import Data.Maybe as Maybe using (Maybe; just; nothing) open import Data.Maybe.All as MayAll open import Data.Vec as Vec hiding (_∈_) open import Data.Star as Star open import Data.List.Most as List open import Data.List.Properties.Extra as List+ open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable open import Data.String import Data.Vec.All as Vec∀ open Core c open Classtable Ct open import MJ.Classtable.Membership Ct open import MJ.Classtable.Code Ct open import MJ.LexicalScope Ct open import MJ.Syntax.Typed Ct open import MJ.Syntax.Program Ct import MJ.Syntax.Untyped Ct as AST {-# TERMINATING #-} erase-expr : ∀ {Γ a} → Expr Γ a → AST.Expr (length Γ) erase-expr (new C x) = AST.new C (List.erase erase-expr x) erase-expr unit = AST.unit erase-expr null = AST.null erase-expr (num x) = AST.num x erase-expr (iop x e e₁) = AST.iop x (erase-expr e) (erase-expr e₁) erase-expr (call e m x) = AST.call (erase-expr e) m (List.erase erase-expr x) erase-expr (var x) = AST.var (index x) erase-expr (get e f) = AST.get (erase-expr e) f erase-expr (upcast s e) = erase-expr e mutual erase-stmt : ∀ {I r O} → Stmt I r O → AST.Stmt (length I) (length O) erase-stmt (loc a) = AST.loc a erase-stmt (asgn x e) = AST.asgn (index x) (erase-expr e) erase-stmt (set x f e) = AST.set (erase-expr x) f (erase-expr e) erase-stmt (do x) = AST.do (erase-expr x) erase-stmt (ret x) = AST.ret (erase-expr x) erase-stmt raise = AST.raise erase-stmt (try s catch s₁) = AST.try erase-stmt s catch erase-stmt s₁ erase-stmt (while x do s) = AST.while erase-expr x do erase-stmt s erase-stmt (block x) = AST.block (erase-stmts x) -- this is an instance of Star.gmap, but the higher order version -- fails to pass the termination checker erase-stmts : ∀ {I r O} → Stmts I r O → AST.Stmts (length I) (length O) erase-stmts ε = ε erase-stmts (x ◅ st) = erase-stmt x ◅ erase-stmts st erase-body : ∀ {I a} → Body I a → AST.Body (length I) erase-body (body s* e) = AST.body (erase-stmts s*) (erase-expr e) erase-constructor : ∀ {cid} → Constructor cid → AST.Constructor (length (Class.constr (Σ cid))) erase-constructor (super args then b) = AST.super (List.erase erase-expr args) then (erase-body b) erase-constructor (body x) = AST.body (erase-body x) erase-method : ∀ {cid m as b} → Method cid m (as , b) → AST.Method (length as) erase-method (super _ ⟨ args ⟩then b) = AST.super⟨ List.erase erase-expr args ⟩then (erase-body b) erase-method (body x) = AST.body (erase-body x) erase-implementation : ∀ {cid} → Implementation cid → AST.Implementation cid erase-implementation (implementation construct mbodies) = AST.implementation (erase-constructor construct) (map-all erase-method mbodies) erase-prog : ∀ {a} → Prog a → AST.Prog erase-prog (ℂ , b) = (λ cid → erase-implementation (ℂ cid)) , erase-body b
{ "alphanum_fraction": 0.7059409227, "avg_line_length": 40.1733333333, "ext": "agda", "hexsha": "fef6c4928d99b5c62493a8c759fae6f2426e1a2e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Syntax/Erase.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Syntax/Erase.agda", "max_line_length": 98, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Syntax/Erase.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 930, "size": 3013 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use Data.Vec.Recursive.Categorical -- instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Product.N-ary.Categorical where {-# WARNING_ON_IMPORT "Data.Product.N-ary.Categorical was deprecated in v1.1. Use Data.Vec.Recursive.Categorical instead." #-} open import Data.Vec.Recursive.Categorical public
{ "alphanum_fraction": 0.5440613027, "avg_line_length": 29, "ext": "agda", "hexsha": "8eccfc9ccb0dda594fef41a74a1812c198f1dadd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Product/N-ary/Categorical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Product/N-ary/Categorical.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Product/N-ary/Categorical.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 95, "size": 522 }
{-# OPTIONS --safe #-} {- A typeclass for converting between type disciplines #-} module CF.Transform.Compile.ToJVM where open import Level open import Function open import Data.Product as P open import Data.List as L open import Data.List.Properties as LP open import Data.List.Membership.Propositional open import Data.List.Membership.Propositional.Properties open import Relation.Binary.PropositionalEquality open import Relation.Ternary.Morphisms open import CF.Types as CF open import CF.Contexts.Lexical open import JVM.Types as JVM record To {l r} (L : Set l) (R : Set r) : Set (l ⊔ r) where field ⟦_⟧ : L → R open To {{...}} public instance ⟦⟧-list : ∀ {a} {A B : Set a} {{_ : To A B}} → To (List A) (List B) To.⟦_⟧ ⟦⟧-list = L.map ⟦_⟧ instance ⟦⟧-prod : ∀ {a} {A B C D : Set a} {{_ : To A B}} {{_ : To C D}} → To (A × C) (B × D) To.⟦_⟧ ⟦⟧-prod = P.map ⟦_⟧ ⟦_⟧ instance cfToJvm-ty : To CF.Ty JVM.Ty To.⟦_⟧ cfToJvm-ty = ‵_ where ‵_ : CF.Ty → JVM.Ty ‵ void = boolean ‵ int = int ‵ bool = boolean instance cfToJvm-var : ∀ {ℓ} {A B : Set ℓ} {{_ : To A B}} {a : A} {as} → To (a ∈ as) (⟦ a ⟧ ∈ ⟦ as ⟧) To.⟦_⟧ cfToJvm-var = ∈-map⁺ ⟦_⟧ private module _ {t} {T : Set t} where open import JVM.Model T public instance on-intf : ∀ {ℓ} {A B : Set ℓ} {{_ : To A B}} → To (Intf {T = A}) (Intf {T = B}) To.⟦ on-intf ⟧ (u ⇅ d) = ⟦ u ⟧ ⇅ ⟦ d ⟧
{ "alphanum_fraction": 0.5951532431, "avg_line_length": 28.06, "ext": "agda", "hexsha": "3d4f37abb4010a392a951db94d99f6d572433c24", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/CF/Transform/Compile/ToJVM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/CF/Transform/Compile/ToJVM.agda", "max_line_length": 93, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/CF/Transform/Compile/ToJVM.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 545, "size": 1403 }
------------------------------------------------------------------------------ -- Arithmetic properties used by the McCarthy 91 function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.McCarthy91.ArithmeticATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesATP using ( x≤y+x∸y ; x≤y→x≯y ; x≤y→x+k≤y+k ) open import FOTC.Data.Nat.PropertiesATP using ( +-N ; ∸-N ; +-comm ; [x+Sy]∸y≡Sx ) open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.TotalityATP using ( 10-N ; 11-N ; 89-N ; 100-N ) ------------------------------------------------------------------------------ postulate 91≡100+11∸10∸10 : 91' ≡ 100' + 11' ∸ 10' ∸ 10' {-# ATP prove 91≡100+11∸10∸10 #-} postulate 100≡89+11 : 100' ≡ 89' + 11' 101≡90+11 : 101' ≡ 90' + 11' 102≡91+11 : 102' ≡ 91' + 11' 103≡92+11 : 103' ≡ 92' + 11' 104≡93+11 : 104' ≡ 93' + 11' 105≡94+11 : 105' ≡ 94' + 11' 106≡95+11 : 106' ≡ 95' + 11' 107≡96+11 : 107' ≡ 96' + 11' 108≡97+11 : 108' ≡ 97' + 11' 109≡98+11 : 109' ≡ 98' + 11' 110≡99+11 : 110' ≡ 99' + 11' 111≡100+11 : 111' ≡ 100' + 11' {-# ATP prove 100≡89+11 #-} {-# ATP prove 101≡90+11 #-} {-# ATP prove 102≡91+11 #-} {-# ATP prove 103≡92+11 #-} {-# ATP prove 104≡93+11 #-} {-# ATP prove 105≡94+11 #-} {-# ATP prove 106≡95+11 #-} {-# ATP prove 107≡96+11 #-} {-# ATP prove 108≡97+11 #-} {-# ATP prove 109≡98+11 #-} {-# ATP prove 110≡99+11 #-} {-# ATP prove 111≡100+11 #-} postulate 101≡100+11∸10 : 101' ≡ 100' + 11' ∸ 10' {-# ATP prove 101≡100+11∸10 #-} postulate 100+11∸10>100 : 100' + 11' ∸ 10' > 100' 100+11>100 : 100' + 11' > 100' {-# ATP prove 100+11∸10>100 101≡100+11∸10 #-} {-# ATP prove 100+11>100 111≡100+11 #-} postulate 99+11>100 : 99' + 11' > 100' 98+11>100 : 98' + 11' > 100' 97+11>100 : 97' + 11' > 100' 96+11>100 : 96' + 11' > 100' 95+11>100 : 95' + 11' > 100' 94+11>100 : 94' + 11' > 100' 93+11>100 : 93' + 11' > 100' 92+11>100 : 92' + 11' > 100' 91+11>100 : 91' + 11' > 100' 90+11>100 : 90' + 11' > 100' {-# ATP prove 99+11>100 110≡99+11 #-} {-# ATP prove 98+11>100 109≡98+11 #-} {-# ATP prove 97+11>100 108≡97+11 #-} {-# ATP prove 96+11>100 107≡96+11 #-} {-# ATP prove 95+11>100 106≡95+11 #-} {-# ATP prove 94+11>100 105≡94+11 #-} {-# ATP prove 93+11>100 104≡93+11 #-} {-# ATP prove 92+11>100 103≡92+11 #-} {-# ATP prove 91+11>100 102≡91+11 #-} {-# ATP prove 90+11>100 101≡90+11 #-} x+11-N : ∀ {n} → N n → N (n + 11') x+11-N Nn = +-N Nn 11-N x+11∸10≡Sx : ∀ {n} → N n → n + 11' ∸ 10' ≡ succ₁ n x+11∸10≡Sx Nn = [x+Sy]∸y≡Sx Nn 10-N postulate x+1≤x∸10+11 : ∀ {n} → N n → n + 1' ≤ (n ∸ 10') + 11' {-# ATP prove x+1≤x∸10+11 x≤y+x∸y 10-N 11-N +-N ∸-N +-comm #-} postulate x≤89→x+11≯100 : ∀ {n} → N n → n ≤ 89' → n + 11' ≯ 100' {-# ATP prove x≤89→x+11≯100 x≤y→x≯y x≤y→x+k≤y+k x+11-N 89-N 100-N 100≡89+11 #-}
{ "alphanum_fraction": 0.4889717304, "avg_line_length": 30.0841121495, "ext": "agda", "hexsha": "00dd8bab4c26ba465e87022aca8a275bf6987657", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/McCarthy91/ArithmeticATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/McCarthy91/ArithmeticATP.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/McCarthy91/ArithmeticATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1467, "size": 3219 }
{- This second-order signature was created from the following second-order syntax description: syntax CTLC | ΛC type N : 0-ary _↣_ : 2-ary | r30 ¬_ : 1-ary | r30 term app : α ↣ β α -> β | _$_ l20 lam : α.β -> α ↣ β | ƛ_ r10 throw : α ¬ α -> β callcc : ¬ α.α -> α theory (ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a] (ƛη) f : α ↣ β |> lam (x. app(f, x)) = f -} module CTLC.Signature where open import SOAS.Context -- Type declaration data ΛCT : Set where N : ΛCT _↣_ : ΛCT → ΛCT → ΛCT ¬_ : ΛCT → ΛCT infixr 30 _↣_ infixr 30 ¬_ open import SOAS.Syntax.Signature ΛCT public open import SOAS.Syntax.Build ΛCT public -- Operator symbols data ΛCₒ : Set where appₒ lamₒ throwₒ : {α β : ΛCT} → ΛCₒ callccₒ : {α : ΛCT} → ΛCₒ -- Term signature ΛC:Sig : Signature ΛCₒ ΛC:Sig = sig λ { (appₒ {α}{β}) → (⊢₀ α ↣ β) , (⊢₀ α) ⟼₂ β ; (lamₒ {α}{β}) → (α ⊢₁ β) ⟼₁ α ↣ β ; (throwₒ {α}{β}) → (⊢₀ α) , (⊢₀ ¬ α) ⟼₂ β ; (callccₒ {α}) → (¬ α ⊢₁ α) ⟼₁ α } open Signature ΛC:Sig public
{ "alphanum_fraction": 0.5407969639, "avg_line_length": 19.8867924528, "ext": "agda", "hexsha": "d5e083a5fb66f3048f61e64b90b310f072f5ad64", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/CTLC/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/CTLC/Signature.agda", "max_line_length": 91, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/CTLC/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 516, "size": 1054 }
open import DeBruijn infix 8 _* _* : ∀ {n} → Term n → Term n (# x) * = # x (ƛ M) * = ƛ M * ((ƛ M) · N) * = M * [ N * ] (L · N) * = L * · N *
{ "alphanum_fraction": 0.325, "avg_line_length": 14.5454545455, "ext": "agda", "hexsha": "69cc855453bdea0440411b5bef3835c02cfe06bb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iwilare/church-rosser", "max_forks_repo_path": "Takahashi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iwilare/church-rosser", "max_issues_repo_path": "Takahashi.agda", "max_line_length": 28, "max_stars_count": 5, "max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iwilare/church-rosser", "max_stars_repo_path": "Takahashi.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z", "max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z", "num_tokens": 76, "size": 160 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NType2 open import lib.PathFunctor open import lib.PathGroupoid open import lib.types.Bool open import lib.types.IteratedSuspension open import lib.types.LoopSpace open import lib.types.Nat open import lib.types.Paths open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.Suspension open import lib.types.TLevel open import lib.types.Unit open import nicolai.pseudotruncations.Preliminary-definitions open import nicolai.pseudotruncations.Liblemmas open import nicolai.pseudotruncations.SeqColim open import nicolai.pseudotruncations.wconstSequence module nicolai.pseudotruncations.PseudoTruncs where {- Definition of the Pseudo-truncation -} module _ {i} where private data #Pseudotrunc-aux (n : ℕ) (A : Type i) : Type i where #point : A → #Pseudotrunc-aux n A #hub : (r : Sphere' n → A) → #Pseudotrunc-aux n A data #Pseudotrunc (n : ℕ) (A : Type i) : Type i where #trick-aux : #Pseudotrunc-aux n A → (Unit → Unit) → #Pseudotrunc n A Pseudo_-1-trunc : (n : ℕ) (A : Type i) → Type i Pseudo_-1-trunc = #Pseudotrunc point_-1 : {A : Type i} → (n : ℕ) → A → Pseudo n -1-trunc A point_-1 {A} n a = #trick-aux (#point a) _ hub_-1 : {A : Type i} (n : ℕ) (r : Sphere' n → A) → Pseudo n -1-trunc A hub_-1 {A} n r = #trick-aux (#hub r) _ postulate spoke_-1 : {A : Type i} (n : ℕ) (r : Sphere' n → A) (x : Sphere' n) → point n -1 (r x) == hub n -1 r {- The induction principle -} module PseudotruncInduction {A : Type i} (n : ℕ) {j} {P : Pseudo n -1-trunc A → Type j} (Point-1 : (a : A) → P (point n -1 a)) (Hub-1 : (r : Sphere' n → A) → P (hub n -1 r)) (Spoke-1 : (r : Sphere' n → A) → (x : Sphere' n) → Point-1 (r x) == Hub-1 r [ P ↓ spoke n -1 r x ]) where f : Π (Pseudo n -1-trunc A) P f = f-aux phantom where f-aux : Phantom Spoke-1 → Π (Pseudo n -1-trunc A) P f-aux phantom (#trick-aux (#point x) _) = Point-1 x f-aux phantom (#trick-aux (#hub r) _) = Hub-1 r postulate pathβ : (r : Sphere' {i} n → A) → (x : Sphere' {i} n) → apd f (spoke n -1 r x) == Spoke-1 r x open PseudotruncInduction public renaming (f to Pseudotrunc-ind ; pathβ to Pseudotrunc-ind-pathβ) {- We derive the recursion principle from the induction principle -} module PseudotruncRecursion {i j} {A : Type i} {P : Type j} (n : ℕ) (Point-1 : A → P) (Hub-1 : (r : Sphere' {i} n → A) → P) (Spoke-1 : (r : Sphere' n → A) (x : Sphere' n) → Point-1 (r x) == Hub-1 r) where rec : Pseudo n -1-trunc A → P rec = Pseudotrunc-ind n {P = λ _ → P} Point-1 Hub-1 (λ r x → from-transp (λ _ → P) (spoke n -1 r x) ((transport (λ _ → P) (spoke n -1 r x) (Point-1 (r x))) =⟨ transport-const-fam (spoke n -1 r x) (Point-1 (r x)) ⟩ Point-1 (r x) =⟨ Spoke-1 r x ⟩ Hub-1 r ∎)) open PseudotruncRecursion public renaming (rec to Pseudotrunc-rec) {- A lemma that will be important later: any map from the sphere, composed with the points constructor, is null. -} open import nicolai.pseudotruncations.pointed-O-Sphere open import nicolai.pseudotruncations.LoopsAndSpheres open null module _ {i} {A : Type i} (n : ℕ) where from-sphere-null : (g : Sphere' {i} n → A) → isNull (point n -1 (g (nor' n))) ((point n -1) ∘ g) from-sphere-null g x = point n -1 (g x) =⟨ spoke n -1 g x ⟩ hub n -1 g =⟨ ! (spoke n -1 g (nor' n)) ⟩ point n -1 (g (nor' n)) ∎ module cmp-nll {i} {Â : Ptd i} (n : ℕ) (g : ⊙Sphere' {i} n →̇ Â) where {- Pointed version of first constructor -} -- points∙ : Â →̇ (Pseudo n -1-trunc (fst Â) , point n -1 (snd Â)) -- points∙ = point n -1 , idp from-sphere-null∙ : isNulld ((point n -1 , idp) ⊙∘ g) from-sphere-null∙ = λ x → point n -1 ((fst g) x) =⟨ spoke n -1 (fst g) x ⟩ hub n -1 (fst g) =⟨ ! (spoke n -1 (fst g) (nor' n)) ⟩ point n -1 ((fst g) (nor' n)) =⟨ ap (point n -1) (snd g) ⟩ point n -1 (snd Â) ∎ {- Unfortunately, we will need this lemma not for maps g : Sphere' (S n) → A, but we will need it for maps g : Susp (Sphere' n) → A, and Sphere' (S n) is NOT judgmentally equal to Susp (Sphere' n). We have to give a second proof. -} module cmp-nll' {i} {Â : Ptd i} (n : ℕ) (g : ⊙Susp (⊙Sphere' {i} n) →̇ Â) where {- "translate" equivalence -} tr≃⊙ : ⊙Sphere' {i} (S n) ⊙≃ ⊙Susp (⊙Sphere' {i} n) tr≃⊙ = coe-equiv∙ (susp'-switch n) tr≃ : Sphere' {i} (S n) ≃ fst (⊙Susp (⊙Sphere' {i} n)) tr≃ = fst (fst tr≃⊙) , snd tr≃⊙ tr–̇> : (⊙Sphere' {i} (S n)) →̇ ⊙Susp (⊙Sphere' {i} n) tr–̇> = fst tr≃⊙ -- –> (fst (fst tr-eq) , snd tr-eq) , {!!} from-sphere-null'∙ : isNulld ((point S n -1 , idp) ⊙∘ g) from-sphere-null'∙ = λ x → fst ((point S n -1 , idp) ⊙∘ g) x =⟨ ap (fst ((point S n -1 , idp) ⊙∘ g)) (! (<–-inv-r tr≃ x)) ⟩ fst ((point S n -1 , idp) ⊙∘ g) (–> tr≃ (<– tr≃ x)) =⟨ cmp-nll.from-sphere-null∙ {i} {Â} (S n) (g ⊙∘ tr–̇>) (<– tr≃ x) ⟩ point S n -1 (snd Â) ∎
{ "alphanum_fraction": 0.5198151768, "avg_line_length": 33.1, "ext": "agda", "hexsha": "1a7a8510aedc9237aa5a4907dcac17c749ab89f8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/pseudotruncations/PseudoTruncs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/pseudotruncations/PseudoTruncs.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/pseudotruncations/PseudoTruncs.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 2085, "size": 5627 }
-- Jesper, 2019-05-28: test case for #3812 {-# OPTIONS --rewriting #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite record Box (A : Set) : Set where constructor box field unbox : A open Box postulate A : Set r s : Box A rew₂ : r .unbox ≡ s .unbox {-# REWRITE rew₂ #-} Box-η : {x y : Box A} → x .unbox ≡ y .unbox → x ≡ y Box-η refl = refl -- WAS: `ext` reduces to `refl`, but giving `ext = refl` directly -- leads to a type error. ext : r ≡ s ext = Box-η refl ext' : r ≡ s ext' = refl
{ "alphanum_fraction": 0.6235955056, "avg_line_length": 17.2258064516, "ext": "agda", "hexsha": "07ea9142460890232c71be15f09869cbc3f5c63a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/RewritingEtaContract.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/RewritingEtaContract.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/RewritingEtaContract.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 197, "size": 534 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.HSpace open import homotopy.PushoutComm using (flip; Pushout-comm) module homotopy.HopfConstruction {i} (A : Type i) (c : is-connected 0 A) (hA : HSpaceStructure A) where open HSpaceStructure hA open ConnectedHSpace A c hA {- Using the fact that [μ a] is an equivalence, we define a fibration over the suspension of [A] with fiber [A] and applying [μ a] when you move along [merid a]. -} module H = SuspensionRecType A A μ-e-r-equiv {- The total space of the previous fibration is the pushout of the following span (thanks to the flattening lemma). -} s : Span s = span (⊤ × A) (⊤ × A) (A × A) (λ cc' → (tt , snd cc')) (λ cc' → (tt , uncurry μ cc')) lemma : Σ (Suspension A) H.f == Pushout s lemma = H.flattening {- But that span is equal to the following span, which is almost the same as the span for the join. -} x : s == flip (*-span A A) x = span= (equiv snd (_,_ tt) (λ b → idp) (λ a → idp)) (equiv snd (_,_ tt) (λ b → idp) (λ a → idp)) eq (λ a → idp) (λ a → idp) where eq : (A × A) ≃ (A × A) eq = equiv to from to-from from-to where to : A × A → A × A to (a , a') = (μ a a' , a') from : A × A → A × A from (a , a') = (<– (μ-e-l-equiv a') a , a') to-from : (a : A × A) → to (from a) == a to-from (a , a') = pair×= (<–-inv-r (μ-e-l-equiv a') a) idp from-to : (a : A × A) → from (to a) == a from-to (a , a') = pair×= (<–-inv-l (μ-e-l-equiv a') a) idp lemma2 : (A * A) ≃ (Pushout (flip (*-span A A))) lemma2 = Pushout-comm (*-span A A) theorem : Σ (Suspension A) H.f == (A * A) theorem = lemma ∙ ap Pushout x ∙ ! (ua lemma2) -- record FibSeq {i j k ℓ} (A : Type i) (B : Type j) (C : Type k) (c : C) -- : Type (lmax (lmax i j) (lmax k (lsucc ℓ))) where -- constructor fibSeq -- field -- fibration : C → Type ℓ -- fiber : fibration c ≃ A -- total : Σ C fibration ≃ B
{ "alphanum_fraction": 0.5673027334, "avg_line_length": 27.3098591549, "ext": "agda", "hexsha": "5f9c988a180c714d4eec79ea8e7cdcc86a039d48", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/HopfConstruction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/HopfConstruction.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/HopfConstruction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 718, "size": 1939 }
module WarningOnImport.Impo where B = Set A = B {-# WARNING_ON_USAGE A "Deprecated: Use B instead" #-} {-# WARNING_ON_IMPORT "Deprecated: Use Impossible instead" #-}
{ "alphanum_fraction": 0.7202380952, "avg_line_length": 21, "ext": "agda", "hexsha": "03927ba96a43a877c174398651aff853ca361d67", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/WarningOnImport/Impo.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/WarningOnImport/Impo.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/WarningOnImport/Impo.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 41, "size": 168 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Impl.Consensus.PersistentLivenessStorage open import LibraBFT.Impl.Properties.Util open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Prelude module LibraBFT.Impl.Consensus.PersistentLivenessStorage.Properties where module saveVoteMSpec (vote : Vote) where open OutputProps postulate -- TODO-2: refine and prove contract : ∀ P pre → (∀ outs → NoMsgs outs → NoErrors outs → P (inj₁ fakeErr) pre outs) → (∀ outs → NoMsgs outs → NoErrors outs → P (inj₂ unit) pre outs) → RWS-weakestPre (saveVoteM vote) P unit pre
{ "alphanum_fraction": 0.75, "avg_line_length": 36.5925925926, "ext": "agda", "hexsha": "0ccf38583d06f6e5817cb860485ade502b4d773d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/PersistentLivenessStorage/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/PersistentLivenessStorage/Properties.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/PersistentLivenessStorage/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 272, "size": 988 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.Exactness open import cohomology.Theory module cohomology.Sn {i} (OT : OrdinaryTheory i) where open OrdinaryTheory OT C-Sphere-≠ : (n : ℤ) (m : ℕ) → (n ≠ ℕ-to-ℤ m) → C n (⊙Sphere m) == LiftUnit-Group C-Sphere-≠ n O neq = C-dimension n neq C-Sphere-≠ n (S m) neq = ap (λ k → C k (⊙Sphere (S m))) (! (succ-pred n)) ∙ C-Susp (pred n) (⊙Sphere m) ∙ C-Sphere-≠ (pred n) m (λ p → neq (pred-injective n (pos m) p)) C-Sphere-diag : (m : ℕ) → C (ℕ-to-ℤ m) (⊙Sphere m) == C O (⊙Sphere O) C-Sphere-diag O = idp C-Sphere-diag 1 = C-Susp O (⊙Sphere O) C-Sphere-diag (S (S m)) = C-Susp (pos m) (⊙Sphere (S m)) ∙ C-Sphere-diag (S m)
{ "alphanum_fraction": 0.5977175464, "avg_line_length": 29.2083333333, "ext": "agda", "hexsha": "959fd34d113a96bc9a441570b5d3892f05724609", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "cohomology/Sn.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "cohomology/Sn.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "cohomology/Sn.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 308, "size": 701 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the heterogeneous sublist relation -- This is a generalisation of what is commonly known as Order -- Preserving Embeddings (OPE). ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (REL) module Data.List.Relation.Binary.Sublist.Heterogeneous {a b r} {A : Set a} {B : Set b} {R : REL A B r} where open import Level using (_⊔_) open import Data.List.Base using (List; []; _∷_; [_]) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Function open import Relation.Unary using (Pred) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Re-export core definitions open import Data.List.Relation.Binary.Sublist.Heterogeneous.Core public ------------------------------------------------------------------------ -- Type and basic combinators module _ {s} {S : REL A B s} where map : R ⇒ S → Sublist R ⇒ Sublist S map f [] = [] map f (y ∷ʳ rs) = y ∷ʳ map f rs map f (r ∷ rs) = f r ∷ map f rs minimum : Min (Sublist R) [] minimum [] = [] minimum (x ∷ xs) = x ∷ʳ minimum xs ------------------------------------------------------------------------ -- Conversion to and from Any toAny : ∀ {a bs} → Sublist R [ a ] bs → Any (R a) bs toAny (y ∷ʳ rs) = there (toAny rs) toAny (r ∷ rs) = here r fromAny : ∀ {a bs} → Any (R a) bs → Sublist R [ a ] bs fromAny (here r) = r ∷ minimum _ fromAny (there p) = _ ∷ʳ fromAny p ------------------------------------------------------------------------ -- Generalised lookup based on a proof of Any module _ {p q} {P : Pred A p} {Q : Pred B q} (resp : P ⟶ Q Respects R) where lookup : ∀ {xs ys} → Sublist R xs ys → Any P xs → Any Q ys lookup [] () lookup (y ∷ʳ p) k = there (lookup p k) lookup (rxy ∷ p) (here px) = here (resp rxy px) lookup (rxy ∷ p) (there k) = there (lookup p k)
{ "alphanum_fraction": 0.5086247086, "avg_line_length": 33, "ext": "agda", "hexsha": "ed6b8b7d4924d7efc701a0258da98442d873bfc9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 569, "size": 2145 }
open import Relation.Binary.Core module PLRTree.Drop.Complete {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.Sum open import PLRTree {A} open import PLRTree.Complete {A} open import PLRTree.Compound {A} open import PLRTree.Drop _≤_ tot≤ open import PLRTree.DropLast.Complete _≤_ tot≤ open import PLRTree.Equality {A} open import PLRTree.Order.Properties {A} open import PLRTree.Push.Complete _≤_ tot≤ lemma-setRoot-complete : {t : PLRTree}(x : A) → Complete t → Complete (setRoot x t) lemma-setRoot-complete x leaf = leaf lemma-setRoot-complete x (perfect _ cl cr l≃r) = perfect x cl cr l≃r lemma-setRoot-complete x (left _ cl cr l⋘r) = left x cl cr l⋘r lemma-setRoot-complete x (right _ cl cr l⋙r) = right x cl cr l⋙r lemma-drop-complete : {t : PLRTree} → Complete t → Complete (drop t) lemma-drop-complete leaf = leaf lemma-drop-complete (perfect _ _ _ ≃lf) = leaf lemma-drop-complete (perfect {node perfect x' l' r'} {node perfect x'' l'' r''} x (perfect .x' cl' cr' _) (perfect .x'' cl'' cr'' _) (≃nd .x' .x'' l'≃r' l''≃r'' l'≃l'')) = let z = last (node perfect x (node perfect x' l' r') (node perfect x'' l'' r'')) compound ; t' = dropLast (node perfect x (node perfect x' l' r') (node perfect x'' l'' r'')) ; ct' = right x (perfect x' cl' cr' l'≃r') (lemma-dropLast-complete (perfect x'' cl'' cr'' l''≃r'')) (lemma-dropLast-≃ (≃nd x' x'' l'≃r' l''≃r'' l'≃l'') compound) in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) lemma-drop-complete (left {l} {r} x cl cr l⋘r) with l | r | l⋘r | lemma-dropLast-⋘ l⋘r ... | leaf | _ | () | _ ... | node perfect x' l' r' | _ | () | _ ... | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | inj₁ ld⋘r with dropLast (node left x' l' r') | ld⋘r | lemma-dropLast-complete cl ... | leaf | () | _ ... | node perfect _ _ _ | () | _ ... | node left x''' l''' r''' | ld⋘r' | cld = let z = last (node left x (node left x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node left x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node right x''' l''' r''' | ld⋘r' | cld = let z = last (node left x (node left x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node right x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) lemma-drop-complete (left x cl cr l⋘r) | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | inj₂ ld≃r with dropLast (node left x' l' r') | ld≃r | lemma-dropLast-complete cl ... | leaf | () | _ ... | node perfect x''' l''' r''' | ld≃r' | cld = let z = last (node left x (node left x' l' r') (node perfect x'' l'' r'')) compound ; t' = node perfect x (node perfect x''' l''' r''') (node perfect x'' l'' r'') ; ct' = perfect x cld cr ld≃r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node left _ _ _ | () | _ ... | node right _ _ _ | () | _ lemma-drop-complete (left x cl cr l⋘r) | node right x' l' r' | leaf | () | _ lemma-drop-complete (left x cl cr l⋘r) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | inj₁ () lemma-drop-complete (left x cl cr l⋘r) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | inj₂ x'≃x''' = let z = last (node left x (node right x' (node perfect x'' leaf leaf) leaf) (node perfect x''' leaf leaf)) compound ; t' = dropLast (node left x (node right x' (node perfect x'' leaf leaf) leaf) (node perfect x''' leaf leaf)) ; ct' = perfect x (perfect x' leaf leaf ≃lf) cr x'≃x''' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) lemma-drop-complete (left x cl cr l⋘r) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l⋙r l''≃r'' l'⋗l'' | inj₁ ld⋘r with dropLast (node right x' l' r') | ld⋘r | lemma-dropLast-complete cl ... | leaf | () | _ ... | node perfect _ _ _ | () | _ ... | node left x''' l''' r''' | ld⋘r' | cld = let z = last (node left x (node right x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node left x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node right x''' l''' r''' | ld⋘r' | cld = let z = last (node left x (node right x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node right x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) lemma-drop-complete (left x cl cr l⋘r) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l⋙r l''≃r'' l'⋗l'' | inj₂ ld≃r with dropLast (node right x' l' r') | ld≃r | lemma-dropLast-complete cl ... | leaf | () | _ ... | node perfect x''' l''' r''' | ld≃r' | cld = let z = last (node left x (node right x' l' r') (node perfect x'' l'' r'')) compound ; t' = node perfect x (node perfect x''' l''' r''') (node perfect x'' l'' r'') ; ct' = perfect x cld cr ld≃r' in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node left _ _ _ | () | _ ... | node right _ _ _ | () | _ lemma-drop-complete (left x cl cr l⋘r) | node right x' l' r' | node left x'' l'' r'' | () | _ lemma-drop-complete (left x cl cr l⋘r) | node right x' l' r' | node right x'' l'' r'' | () | _ lemma-drop-complete (right {l} {r} x cl cr l⋙r) with l | r | l⋙r | lemma-dropLast-⋙ l⋙r ... | leaf | leaf | ⋙p () | _ ... | node perfect x' leaf leaf | leaf | ⋙p (⋗lf .x') | _ = cl ... | node perfect _ _ (node _ _ _ _) | leaf | ⋙p () | _ ... | node perfect _ (node _ _ _ _) _ | leaf | ⋙p () | _ ... | node left _ _ _ | leaf | ⋙p () | _ ... | node right _ _ _ | leaf | ⋙p () | _ ... | leaf | node perfect _ _ _ | ⋙p () | _ ... | node perfect x' l' r' | node perfect x'' l'' r'' | ⋙p (⋗nd .x' .x'' l'≃r' l''≃r'' l'⋗l'') | _ = let z = last (node right x (node perfect x' l' r') (node perfect x'' l'' r'')) compound ; t' = dropLast (node right x (node perfect x' l' r') (node perfect x'' l'' r'')) ; ct' = left x (lemma-dropLast-complete cl) cr (lemma-dropLast-⋗ (⋗nd x' x'' l'≃r' l''≃r'' l'⋗l'') compound) in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node left _ _ _ | node perfect _ _ _ | ⋙p () | _ ... | node right _ _ _ | node perfect _ _ _ | ⋙p () | _ ... | leaf | node left _ _ _ | ⋙p () | _ ... | node perfect x' l' r' | node left x'' l'' r'' | _ | inj₁ l⋙rd = let z = last (node right x (node perfect x' l' r') (node left x'' l'' r'')) compound ; t' = dropLast (node right x (node perfect x' l' r') (node left x'' l'' r'')) ; ct' = right x cl (lemma-dropLast-complete cr) l⋙rd in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node perfect _ _ _ | node left _ _ _ | _ | inj₂ () ... | node left _ _ _ | node left _ _ _ | ⋙p () | _ ... | node right _ _ _ | node left _ _ _ | ⋙p () | _ ... | leaf | node right _ _ _ | ⋙p () | _ ... | node perfect x' l' r' | node right x'' l'' r'' | _ | inj₁ l⋙rd = let z = last (node right x (node perfect x' l' r') (node right x'' l'' r'')) compound ; t' = dropLast (node right x (node perfect x' l' r') (node right x'' l'' r'')) ; ct' = right x cl (lemma-dropLast-complete cr) l⋙rd in lemma-push-complete (lemma-setRoot-complete z ct') (≺-wf (setRoot z t')) ... | node perfect _ _ _ | node right _ _ _ | _ | inj₂ () ... | node left _ _ _ | node right _ _ _ | ⋙p () | _ ... | node right _ _ _ | node right _ _ _ | ⋙p () | _
{ "alphanum_fraction": 0.5097262667, "avg_line_length": 68.1349206349, "ext": "agda", "hexsha": "23cd1fa90ad8819501191f3f8e0afa103fefa2c5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Drop/Complete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Drop/Complete.agda", "max_line_length": 183, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Drop/Complete.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 2963, "size": 8585 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Equivalence.Base where open import Cubical.Foundations.Prelude open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open Precategory open Functor private variable ℓC ℓC' ℓD ℓD' : Level -- Definition record isEquivalence {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} (func : Functor C D) : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where field invFunc : Functor D C η : 𝟙⟨ C ⟩ ≅ᶜ invFunc ∘F func ε : func ∘F invFunc ≅ᶜ 𝟙⟨ D ⟩ record _≃ᶜ_ (C : Precategory ℓC ℓC') (D : Precategory ℓD ℓD') : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where field func : Functor C D isEquiv : isEquivalence func
{ "alphanum_fraction": 0.6740467405, "avg_line_length": 25.40625, "ext": "agda", "hexsha": "a5177b6a1272c429e7ecacc78e825832c060e4b4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Categories/Equivalence/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Categories/Equivalence/Base.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Categories/Equivalence/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 300, "size": 813 }
-- Let-definitions cannot pattern match (or be recursive). Use where for that. module NotAValidLetBinding where data N : Set where z : N s : N -> N bad = let pred : N -> N pred z = z pred (s n) = n in pred (s (s z))
{ "alphanum_fraction": 0.5634920635, "avg_line_length": 21, "ext": "agda", "hexsha": "2d6f52f2d7fcf71b661c53fac7f4a902c0ae8436", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/NotAValidLetBinding.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/NotAValidLetBinding.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/NotAValidLetBinding.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 77, "size": 252 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Diagram.Equalizer.Properties {o ℓ e} (C : Category o ℓ e) where open import Categories.Diagram.Equalizer C open import Categories.Morphism C open import Categories.Morphism.Reasoning C private module C = Category C open C variable X Y Z : Obj f g : X ⇒ Y module _ (equalizer : Equalizer f g) where open Equalizer equalizer open HomReasoning equalizer-≈⇒≈ : ∀ {h} → arr ∘ h ≈ id → f ≈ g equalizer-≈⇒≈ {h} eq = begin f ≈⟨ introʳ eq ⟩ f ∘ arr ∘ h ≈⟨ pullˡ equality ⟩ (g ∘ arr) ∘ h ≈⟨ cancelʳ eq ⟩ g ∎ section-equalizer : ∀ {X Y} {f : Y ⇒ X} {g : X ⇒ Y} → f SectionOf g → IsEqualizer f (f ∘ g) id section-equalizer {X = X} {Y = Y} {f = f} {g = g} g∘f≈id = record { equality = equality ; equalize = equalize ; universal = λ {_} {_} {eq} → universal {eq = eq} ; unique = unique } where open HomReasoning equality : (f ∘ g) ∘ f ≈ id ∘ f equality = begin (f ∘ g) ∘ f ≈⟨ pullʳ g∘f≈id ⟩ f ∘ id ≈⟨ id-comm ⟩ id ∘ f ∎ equalize : ∀ {Z} {h : Z ⇒ X} → (f ∘ g) ∘ h ≈ id ∘ h → Z ⇒ Y equalize {h = h} _ = g ∘ h universal : ∀ {Z} {h : Z ⇒ X} {eq : (f ∘ g) ∘ h ≈ id ∘ h} → h ≈ f ∘ g ∘ h universal {h = h} {eq = eq} = begin h ≈˘⟨ identityˡ ⟩ id ∘ h ≈˘⟨ eq ⟩ (f ∘ g) ∘ h ≈⟨ assoc ⟩ f ∘ g ∘ h ∎ unique : ∀ {Z} {h : Z ⇒ X} {i : Z ⇒ Y} → h ≈ f ∘ i → i ≈ g ∘ h unique {h = h} {i = i} h≈g∘i = begin i ≈⟨ introˡ g∘f≈id ⟩ (g ∘ f) ∘ i ≈⟨ pullʳ (⟺ h≈g∘i) ⟩ g ∘ h ∎
{ "alphanum_fraction": 0.4851244687, "avg_line_length": 27, "ext": "agda", "hexsha": "301c2131654ace3b2c9bb83fea497455df3fbb01", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "maxsnew/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Equalizer/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "maxsnew/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Equalizer/Properties.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "maxsnew/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Equalizer/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 722, "size": 1647 }
-- Andreas, 2011-10-02 module IrrelevantLet where postulate A : Set test : (.A → A) → .A → A test = λ f a → let .b : A b = f a in f a
{ "alphanum_fraction": 0.4593023256, "avg_line_length": 14.3333333333, "ext": "agda", "hexsha": "768623e898e07f11bb4882e599543313eb95eee4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/IrrelevantLet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/IrrelevantLet.agda", "max_line_length": 26, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/IrrelevantLet.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 65, "size": 172 }
data Size : Set where ↑ : Size → Size ↑ () data N : Size → Set where suc : ∀{i} (a : N i) → N (↑ i) data Val : ∀{i} (t : N i) → Set where val : ∀{i} (n : N i) → Val (suc n) record R (j : Size) : Set where field num : N j data W {j} (ft : R j) : Set where immed : (v : Val (R.num ft)) → W ft postulate E : ∀{j} (ft : R j) (P : (w : W ft) → Set) → Set test : ∀ {j} (ft : R j) → Set test {j} ft = E {j} ft testw where testw : ∀ {ft : R _} (w : W ft) → Set testw (immed (val a)) = test record{ num = a } -- testw passes without quantification over ft -- or with _ := j {- OLD ERROR Cannot instantiate the metavariable _35 to solution ↑ i since it contains the variable i which is not in scope of the metavariable or irrelevant in the metavariable but relevant in the solution when checking that the pattern val a has type Val (R.num ft₁) -}
{ "alphanum_fraction": 0.594438007, "avg_line_length": 23.3243243243, "ext": "agda", "hexsha": "eb521bb97c885b561f2937a67ce51afd8f32d212", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2056.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2056.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2056.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 308, "size": 863 }
{-# OPTIONS --sized-types #-} open import Relation.Binary.Core module BubbleSort {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.List open import Data.Product open import Data.Sum open import Size open import SList swap* : {ι : Size} → A → SList A {ι} → SList A {ι} × A swap* x snil = (snil , x) swap* x (y ∙ ys) with tot≤ x y ... | inj₁ x≤y with swap* y ys swap* x (y ∙ ys) | inj₁ x≤y | (zs , z) = (x ∙ zs , z) swap* x (y ∙ ys) | inj₂ y≤x with swap* x ys swap* x (y ∙ ys) | inj₂ y≤x | (zs , z) = (y ∙ zs , z) bubbleSort : {ι : Size} → SList A {ι} → SList A bubbleSort snil = snil bubbleSort (x ∙ xs) with swap* x xs ... | (ys , y) = _⊕_ A (bubbleSort ys) (y ∙ snil)
{ "alphanum_fraction": 0.5378486056, "avg_line_length": 25.1, "ext": "agda", "hexsha": "5f8e9230e5be6545495b78a0d8de3ac81ff006a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BubbleSort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BubbleSort.agda", "max_line_length": 54, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BubbleSort.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 300, "size": 753 }
module Issue2649-2 where open import Issue2649-1 open module M (A : Set) (a : A) = MyModule A a public
{ "alphanum_fraction": 0.7047619048, "avg_line_length": 17.5, "ext": "agda", "hexsha": "942bb4115c66220c941f8efc3466b2e2b313acb8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/customised/Issue2649-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/customised/Issue2649-2.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/customised/Issue2649-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 36, "size": 105 }
open import Data.String using (String) open import Data.List using (List; []; _∷_) open import Data.Nat using (ℕ) open import Data.Product open import Data.Bool open import Data.Maybe open import Data.Vec as V using (Vec; []; _∷_) open import Data.Fin as F using (Fin; zero; suc) open import Reflection using (TC) open import Reflection.Name using (Names) import Reflection.TypeChecking.Monad.Categorical as RCat open import Category.Monad.State using (State; StateT; StateMonad; StateTMonad) open import Category.Monad using (RawMonad) --open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary import Relation.Unary as UR open import Relation.Nullary.Negation using (contradiction) open import Function -- This is a `Maybe`-like data type except that nothing -- is extended with a string argument, to carry around the error. data Err {a} (A : Set a) : Set a where error : String → Err A ok : A → Err A -- Our representation for programs: it is either a string containing -- textual representation of the extracted program or an error that -- happened during extraction. Prog = Err String -- Simply for convenience Strings = List String -- We define a custom RawMonoid to add `_++/_` (list join) -- an its overloadings. record RawMonoid {a}(A : Set a) : Set a where field _++_ : A → A → A ε : A _++/_ : (delim : A) → List A → A d ++/ [] = ε d ++/ (x ∷ []) = x d ++/ (x ∷ xs) = x ++ d ++ d ++/ xs infixr 5 _++_ open RawMonoid {{...}} public instance monoidLst : ∀ {a}{A : Set a} → RawMonoid (List A) monoidLst {A = A} = record { _++_ = λ a b → (Data.List._++_ $! a) $! b ; ε = [] } monoidStr : RawMonoid String monoidStr = record { _++_ = λ a b → (Data.String._++_ $! a) $! b; ε = "" } monoidErrStr : RawMonoid (Err String) monoidErrStr = record { _++_ = λ where (error s) _ → error s _ (error s) → error s (ok s₁) (ok s₂) → ok (s₁ ++ s₂) ; ε = ok "" } -- Simplify handling concatenation of `Prog`s and `String`s data Err++Ty : Set → Set → Set where instance s-s : Err++Ty String String e-s : Err++Ty Prog String s-e : Err++Ty String Prog e-e : Err++Ty Prog Prog infixr 5 _⊕_ _⊕_ : ∀ {A B}{{t : Err++Ty A B}} → A → B → Prog _⊕_ {{t = s-s}} a b = ok $! (a ++ b) _⊕_ {{t = e-s}} (error x) b = error $! x _⊕_ {{t = e-s}} (ok x) b = ok $! (x ++ b) _⊕_ {{t = s-e}} a (error x) = error $! x _⊕_ {{t = s-e}} a (ok x) = ok $! (a ++ x) _⊕_ {{t = e-e}} a b = id $! (a ++ b) -- The state used at the top-most and term-level compilation. record KS : Set where constructor ks field funs : Names -- Functions to compile base : Names -- Atomic functions that we do not traverse into. done : Names -- Functions that we have processed. defs : Prog -- Definitions such as lifted functions, function declarations, etc. cnt : ℕ -- Source of fresh variables defaultKS = ks [] [] [] ε 1 SKS = State KS TCS = StateT KS TC instance monadTC = RCat.monad monadTCS : RawMonad TCS monadTCS = StateTMonad KS monadTC monadSKS : ∀ {S : Set} → RawMonad (State S) monadSKS {S} = StateMonad S monadErr : ∀ {f} → RawMonad {f} Err monadErr = record { return = ok ; _>>=_ = λ { (error s) f → error s ; (ok a) f → f a } } lift-state : ∀ {f}{M}{RM : RawMonad {f} M}{A}{S} → M A → StateT S M A lift-state {RM = RM} x = λ s → return (_, s) ⊛ x where open RawMonad RM lift-mstate : ∀ {f}{M}{RM : RawMonad {f} M}{A}{S} → State S A → StateT S M A lift-mstate {RM = RM}{S = S} sa = λ s → return (sa s) where open RawMonad RM -- Modify error message in Prog, in case Prog is error. err-modify : Prog → (String → String) → Prog err-modify (error s) f = error (f s) err-modify p _ = p -- Check if there exists an element in the list that satisfies the predicate P. list-has-el : ∀ {a b}{A : Set a}{P : UR.Pred A b} → UR.Decidable P → List A → Bool list-has-el P? [] = false list-has-el P? (x ∷ xs) with P? x ... | yes _ = true ... | no _ = list-has-el P? xs -- Check if there exists an element in the list that satisfies the predicate P. list-find-el : ∀ {a b}{A : Set a}{P : UR.Pred A b} → UR.Decidable P → List A → Maybe A list-find-el P? [] = nothing list-find-el P? (x ∷ xs) with P? x ... | yes _ = just x ... | no _ = list-find-el P? xs list-update-fst : ∀ {a b}{A : Set a}{P : UR.Pred A b} → UR.Decidable P → List A → (A → A) → List A list-update-fst P? [] f = [] list-update-fst P? (x ∷ xs) f with P? x ... | yes _ = f x ∷ xs ... | no _ = x ∷ list-update-fst P? xs f list-filter : ∀ {a b}{A : Set a}{P : UR.Pred A b} → UR.Decidable P → List A → List A list-filter P? [] = [] list-filter P? (x ∷ xs) with P? x ... | yes _ = x ∷ list-filter P? xs ... | no _ = list-filter P? xs dec-neg : ∀ {a b}{A : Set a}{P : UR.Pred A b} → UR.Decidable P → UR.Decidable (UR._∉ P) dec-neg P? x with P? x ... | yes p = no λ ¬p → contradiction p ¬p ... | no ¬p = yes ¬p vec-find-el-idx : ∀ {a b}{A : Set a}{n}{P : UR.Pred A b} → UR.Decidable P → Vec A n → Maybe (Fin n × A) vec-find-el-idx P? [] = nothing vec-find-el-idx P? (x ∷ xs) with P? x ... | yes _ = just (zero , x) ... | no _ with vec-find-el-idx P? xs ... | just (i , x′) = just (suc i , x′) ... | nothing = nothing
{ "alphanum_fraction": 0.5885212189, "avg_line_length": 29.7166666667, "ext": "agda", "hexsha": "be364f9fc19351dc30e2254aa0beba8879a4f7fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "Structures.agda", "max_line_length": 103, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "Structures.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 1846, "size": 5349 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import stash.modalities.gbm.GbmUtil open import stash.modalities.GbmCodes module stash.modalities.Gbm {ℓ} (M : Modality ℓ) {A : Type ℓ} {B : Type ℓ} (Q : A → B → Type ℓ) (H : BM-Relation M Q) where open Modality M import stash.modalities.gbm.Pushout open import stash.modalities.gbm.PushoutMono open import stash.modalities.gbm.PullbackSplit open import homotopy.PushoutSplit private A' : Type ℓ A' = Σ A (λ a → Trunc (S ⟨-2⟩) (Σ B (λ b → Q a b))) Q' : A' → B → Type ℓ Q' (a , _) b = Q a b Q'-pth-ovr-lemma : {a₀ a₁ : A'} {b : B} (q₀ : Q' a₀ b) (q₁ : Q' a₁ b) (p : a₀ == a₁) → (q₀ == q₁ [ (λ a → Q' a b) ↓ p ]) ≃ (q₀ == q₁ [ (λ a → Q a b) ↓ fst= p ]) Q'-pth-ovr-lemma q₀ q₁ idp = ide (q₀ == q₁) Q'-is-BM-Relation : BM-Relation M Q' Q'-is-BM-Relation {a₀} {b₀} q₀ {a₁} q₁ {b₁} q₂ = equiv-preserves-◯-conn (*-emap eqv (ide _)) (H {fst a₀} {b₀} q₀ {fst a₁} q₁ {b₁} q₂) where eqv = =Σ-econv (a₀ , q₀) (a₁ , q₁) ∘e (Σ-emap-r (Q'-pth-ovr-lemma q₀ q₁)) ⁻¹ ∘e (Σ-emap-l (λ p → q₀ == q₁ [ (λ a → Q a b₀) ↓ p ]) (Subtype=-econv ((λ a → Trunc -1 (Σ B λ b → Q a b)), λ a → Trunc-level) a₀ a₁ ⁻¹)) ⁻¹ ∘e (=Σ-econv (fst a₀ , q₀) (fst a₁ , q₁)) ⁻¹ module W = stash.modalities.gbm.Pushout Q module W' = stash.modalities.gbm.Pushout Q' W = W.BMPushout W' = W'.BMPushout Z = (Σ A λ a → Σ B λ b → Q a b) Z' = (Σ A' λ a → Σ B λ b → Q (fst a) b) Z-to-Z' : Z → Z' Z-to-Z' (a , b , q) = (a , [ b , q ]) , b , q Z'-to-Z : Z' → Z Z'-to-Z ((a , e) , b , q) = a , b , q Z≃Z' : is-equiv Z-to-Z' Z≃Z' = is-eq Z-to-Z' Z'-to-Z to-from from-to where to-from : (z : Z') → Z-to-Z' (Z'-to-Z z) == z to-from ((a , e) , b , q) = pair= (pair= idp (prop-has-all-paths Trunc-level _ e)) (↓-cst2-in idp (prop-has-all-paths Trunc-level _ e) idp) from-to : (z : Z) → Z'-to-Z (Z-to-Z' z) == z from-to (a , b , q) = idp W-span = span A B Z fst (fst ∘ snd) W''-span = span A B Z' (fst ∘ fst) (fst ∘ snd) W'' = Pushout W''-span W≃W'' : W ≃ W'' W≃W'' = Pushout-emap span-eqv where span-eqv : SpanEquiv W-span W''-span span-eqv = (span-map (idf A) (idf B) Z-to-Z' (comm-sqr (λ a → idp)) (comm-sqr (λ b → idp))) , ( idf-is-equiv A , idf-is-equiv B , Z≃Z') -- -- But the PushoutSplit lemma, we find that -- -- Z' ---------> B -- | | -- | | -- v v -- A' ---------> W' -- | | -- | | -- v v -- A ----------> W'' ≃ X -- X = Pushout (span A W' A' fst left) W''≃X : W'' ≃ X W''≃X = PS.split-equiv where module PS = PushoutLSplit {A = A'} {B = A} {C = B} {D = Z'} fst fst (fst ∘ snd) -- -- Now we switch gears and take pullbacks. We -- have the following diagram: -- -- U'' ≃ U' ≃ U ---------> B -- | | -- | | -- v v -- A' ≃ V ---------> W' outer = cospan₀ -- | | -- | cospan₂ | -- v v -- A ---------> X ≃ W'' V = Pullback (cospan A W' X left right) U = Pullback (cospan A B X left (right ∘ W'.bmright)) U' = Pullback (cospan A B W'' left right) U'' = Pullback (cospan V B W' Pullback.b right) U≃U'' : U ≃ U'' U≃U'' = PBSplit.split-equiv where module PBSplit = PullbackLSplit {A = W'} {B = B} {C = A} {D = X} right right left -- -- The map A' --> A is a mono. Hence by -- the PushoutMono lemma we get that it -- is also a pullback and consequently -- equivalent to V -- V≃A' : V ≃ A' V≃A' = (ML.pushout-mono-is-pullback) ⁻¹ ∘e (pullback-decomp-equiv (cospan A W' X left right)) where module ML = MonoLemma (span A W' A' fst left) (λ b → equiv-preserves-level ((hfiber-fst b) ⁻¹) Trunc-level) -- We need this for commutivity below V≃A'-coh : (v : V) → Pullback.b v == left (fst V≃A' v) V≃A'-coh (pullback a b h) = ! (ML.witness-for-coh₀ h) where module ML = MonoLemma (span A W' A' fst left) (λ b → equiv-preserves-level ((hfiber-fst b) ⁻¹) Trunc-level) -- -- Now on to the main theorem -- A×WB = Pullback (cospan A B W left right) A'×W'B = Pullback (cospan A' B W' left right) U''≃A'×W'B : U'' ≃ A'×W'B U''≃A'×W'B = Pullback-emap cospan-eqv where cospan-eqv : CospanEquiv (cospan V B W' Pullback.b right) (cospan A' B W' left right) cospan-eqv = (cospan-map (fst (V≃A')) (idf B) (idf W') (comm-sqr V≃A'-coh) (comm-sqr (λ b → idp))) , snd (V≃A') , idf-is-equiv B , idf-is-equiv W' A×WB≃U : A×WB ≃ U A×WB≃U = Pullback-emap cospan-eqv where cospan-eqv : CospanEquiv (cospan A B W left right) (cospan A B X left (right ∘ W'.bmright)) cospan-eqv = (cospan-map (idf A) (idf B) (fst (W''≃X ∘e W≃W'')) (comm-sqr (λ a → idp)) (comm-sqr (λ b → idp))) , idf-is-equiv A , (idf-is-equiv B) , (snd (W''≃X ∘e W≃W'')) Pb = Σ A (λ a → Σ B (λ b → W.bmleft a == W.bmright b)) Pb' = Σ A' (λ a → Σ B (λ b → W'.bmleft a == W'.bmright b)) Pb≃Pb' = Pb ≃⟨ Σ-assoc ⁻¹ ⟩ Σ (A × B) (λ ab → W.bmleft (fst ab) == W.bmright (snd ab)) ≃⟨ (pullback-decomp-equiv (cospan A B W left right)) ⁻¹ ⟩ A×WB ≃⟨ A×WB≃U ⟩ U ≃⟨ U≃U'' ⟩ U'' ≃⟨ U''≃A'×W'B ⟩ A'×W'B ≃⟨ pullback-decomp-equiv (cospan A' B W' left right) ⟩ Σ (A' × B) (λ ab → W'.bmleft (fst ab) == W'.bmright (snd ab)) ≃⟨ Σ-assoc ⟩ Pb' ≃∎ bm-map : Z → Pb bm-map (a , b , q) = a , b , W.bmglue q bm-map' : Z' → Pb' bm-map' (a' , b , q) = a' , b , W'.bmglue q bm-map'-is-◯-equiv : is-◯-equiv bm-map' bm-map'-is-◯-equiv = total-◯-equiv (λ a' → λ { (b , q) → b , W'.bmglue q}) (λ a' → total-◯-equiv (λ b q → W'.bmglue q) (λ b r → Trunc-rec (prop-has-level-S is-◯-connected-is-prop) (λ{(_ , q₀₀) → code-contr M Q' Q'-is-BM-Relation q₀₀ r}) (snd a'))) -- -- We have a commutative diagram with top and bottom -- maps equivalences. This induces an equivalence on -- homotopy fibers, from which the theorem follows -- ~ -- Z --------> Z' -- | | -- s | | t -- | | -- v v -- Pb -------> Pb' -- ~ -- sq-coh : (z : Z) → (fst Pb≃Pb' (bm-map z)) == bm-map' (Z-to-Z' z) sq-coh (a , b , q) = {!!} where test = fst Pb≃Pb' (a , b , W.bmglue q) =⟨ idp ⟩ (–> Σ-assoc) (–> (pullback-decomp-equiv (cospan A' B W' left right)) {!–> U''≃A'×W'B ?!} ) =⟨ idp ⟩ fst Pb≃Pb' (a , b , W.bmglue q) ∎ -- Pb≃Pb' = Pb ≃⟨ Σ-assoc ⁻¹ ⟩ -- Σ (A × B) (λ ab → W.bmleft (fst ab) == W.bmright (snd ab)) ≃⟨ (pullback-decomp-equiv (cospan A B W left right)) ⁻¹ ⟩ -- A×WB ≃⟨ A×WB≃U ⟩ -- U ≃⟨ U≃U'' ⟩ -- U'' ≃⟨ U''≃A'×W'B ⟩ -- A'×W'B ≃⟨ pullback-decomp-equiv (cospan A' B W' left right) ⟩ -- Σ (A' × B) (λ ab → W'.bmleft (fst ab) == W'.bmright (snd ab)) ≃⟨ Σ-assoc ⟩ -- Pb' ≃∎ -- fst Pb≃Pb' (a , b , W.bmglue q) =⟨ {!!} ⟩ -- (a , [ b , q ]) , (b , W'.bmglue q) ∎ generalized-blakers-massey : is-◯-equiv bm-map generalized-blakers-massey pb = equiv-preserves-◯-conn (lemma ⁻¹) (bm-map'-is-◯-equiv (fst Pb≃Pb' pb)) where lemma : hfiber bm-map pb ≃ hfiber bm-map' (fst Pb≃Pb' pb) lemma = hfiber-sq-eqv bm-map bm-map' Z-to-Z' (fst Pb≃Pb') (comm-sqr sq-coh) Z≃Z' (snd Pb≃Pb') pb
{ "alphanum_fraction": 0.4213162493, "avg_line_length": 34.0674603175, "ext": "agda", "hexsha": "83637e6d363689b57f5f4e1211b5ed42ddd62025", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/modalities/Gbm.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/modalities/Gbm.agda", "max_line_length": 133, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/modalities/Gbm.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 3238, "size": 8585 }
------------------------------------------------------------------------ -- Traditional non-dependent lenses with erased lens laws ------------------------------------------------------------------------ -- At the time of writing there are counterparts in this file of more -- or less everything in Lens.Non-dependent.Traditional, except for -- the section called "A category". {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Lens.Non-dependent.Traditional.Erased {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id; [_,_]) renaming (_∘_ to _⊚_) import Bi-invertibility.Erased open import Bijection equality-with-J as Bij using (_↔_) open import Equality.Path.Isomorphisms eq hiding (univ) open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Equivalence.Erased equality-with-J as EEq using (_≃ᴱ_; Is-equivalenceᴱ; Contractibleᴱ) open import Erased.Cubical eq open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import Surjection equality-with-J as Surjection using (_↠_) open import Univalence-axiom equality-with-J open import Lens.Non-dependent eq as Non-dependent hiding (no-first-projection-lens) import Lens.Non-dependent.Traditional eq as T private variable a b c p : Level A B C D : Set a u v x₁ x₂ y₁ y₂ : A ------------------------------------------------------------------------ -- Traditional lenses -- Lenses with erased lens laws. record Lens (A : Set a) (B : Set b) : Set (a ⊔ b) where field -- Getter and setter. get : A → B set : A → B → A -- Lens laws. @0 get-set : ∀ a b → get (set a b) ≡ b @0 set-get : ∀ a → set a (get a) ≡ a @0 set-set : ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ -- A combination of get and set. modify : (B → B) → A → A modify f x = set x (f (get x)) instance -- Traditional lenses with erased laws have getters and setters. has-getter-and-setter : Has-getter-and-setter (Lens {a = a} {b = b}) has-getter-and-setter = record { get = Lens.get ; set = Lens.set } -- Lens A B is isomorphic to a nested Σ-type. Lens-as-Σ : Lens A B ↔ ∃ λ (get : A → B) → ∃ λ (set : A → B → A) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)) Lens-as-Σ = record { surjection = record { logical-equivalence = record { to = λ l → get l , set l , [ get-set l , set-get l , set-set l ] ; from = λ { (get , set , [ get-set , set-get , set-set ]) → record { get = get ; set = set ; get-set = get-set ; set-get = set-get ; set-set = set-set } } } ; right-inverse-of = refl } ; left-inverse-of = refl } where open Lens -- Lenses without erased proofs can be turned into lenses with erased -- proofs. Traditional-lens→Lens : T.Lens A B → Lens A B Traditional-lens→Lens {A = A} {B = B} = T.Lens A B ↔⟨ T.Lens-as-Σ ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → (∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → [_]→) ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↔⟨ inverse Lens-as-Σ ⟩□ Lens A B □ -- In erased contexts Lens A B is equivalent to T.Lens A B. @0 Lens≃Traditional-lens : Lens A B ≃ T.Lens A B Lens≃Traditional-lens {A = A} {B = B} = Lens A B ↔⟨ Lens-as-Σ ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → erased Erased↔) ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → (∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)) ↔⟨ inverse T.Lens-as-Σ ⟩□ T.Lens A B □ private -- The forward direction of Lens≃Traditional-lens. @0 trad : Lens A B → T.Lens A B trad = _≃_.to Lens≃Traditional-lens private variable l₁ l₂ : Lens A B ------------------------------------------------------------------------ -- Somewhat coherent lenses -- Traditional lenses with erased lens laws that satisfy some extra -- coherence properties (that are also erased). record Coherent-lens (A : Set a) (B : Set b) : Set (a ⊔ b) where field lens : Lens A B open Lens lens public field @0 get-set-get : ∀ a → cong get (set-get a) ≡ get-set a (get a) @0 get-set-set : ∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂)) instance -- Somewhat coherent lenses have getters and setters. coherent-has-getter-and-setter : Has-getter-and-setter (Coherent-lens {a = a} {b = b}) coherent-has-getter-and-setter = record { get = Coherent-lens.get ; set = Coherent-lens.set } -- Coherent-lens A B is equivalent to a nested Σ-type. Coherent-lens-as-Σ : Coherent-lens A B ≃ ∃ λ (l : Lens A B) → let open Lens l in Erased ((∀ a → cong get (set-get a) ≡ get-set a (get a)) × (∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂)))) Coherent-lens-as-Σ = Eq.↔→≃ (λ l → lens l , [ get-set-get l , get-set-set l ]) (λ (l , [ get-set-get , get-set-set ]) → record { lens = l ; get-set-get = get-set-get ; get-set-set = get-set-set }) refl refl where open Coherent-lens -- Somewhat coherent lenses without erased proofs can be turned into -- somewhat coherent lenses with erased proofs. Traditional-coherent-lens→Coherent-lens : T.Coherent-lens A B → Coherent-lens A B Traditional-coherent-lens→Coherent-lens {A = A} {B = B} = T.Coherent-lens A B ↔⟨ T.Coherent-lens-as-Σ ⟩ (∃ λ (l : T.Lens A B) → let open T.Lens l in (∀ a → cong get (set-get a) ≡ get-set a (get a)) × (∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂)))) ↝⟨ Σ-map Traditional-lens→Lens [_]→ ⟩ (∃ λ (l : Lens A B) → let open Lens l in Erased ((∀ a → cong get (set-get a) ≡ get-set a (get a)) × (∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂))))) ↔⟨ inverse Coherent-lens-as-Σ ⟩□ Coherent-lens A B □ -- In erased contexts Coherent-lens A B is equivalent to -- T.Coherent-lens A B. @0 Coherent-lens≃Traditional-coherent-lens : Coherent-lens A B ≃ T.Coherent-lens A B Coherent-lens≃Traditional-coherent-lens {A = A} {B = B} = Coherent-lens A B ↔⟨ Coherent-lens-as-Σ ⟩ (∃ λ (l : Lens A B) → let open Lens l in Erased ((∀ a → cong get (set-get a) ≡ get-set a (get a)) × (∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂))))) ↔⟨ (Σ-cong Lens≃Traditional-lens λ _ → erased Erased↔) ⟩ (∃ λ (l : T.Lens A B) → let open T.Lens l in (∀ a → cong get (set-get a) ≡ get-set a (get a)) × (∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂)))) ↔⟨ inverse T.Coherent-lens-as-Σ ⟩ T.Coherent-lens A B □ ------------------------------------------------------------------------ -- Some lemmas -- If two lenses have equal setters, then they also have equal -- getters (in erased contexts). @0 getters-equal-if-setters-equal : let open Lens in (l₁ l₂ : Lens A B) → set l₁ ≡ set l₂ → get l₁ ≡ get l₂ getters-equal-if-setters-equal l₁ l₂ = Lens.set l₁ ≡ Lens.set l₂ ↔⟨⟩ T.Lens.set (trad l₁) ≡ T.Lens.set (trad l₂) ↝⟨ T.getters-equal-if-setters-equal (trad l₁) (trad l₂) ⟩ T.Lens.get (trad l₁) ≡ T.Lens.get (trad l₂) ↔⟨⟩ Lens.get l₁ ≡ Lens.get l₂ □ -- If the forward direction of an equivalence with erased proofs is -- Lens.get l, then the setter of l can be expressed using the other -- direction of the equivalence (in erased contexts). @0 from≡set : ∀ (l : Lens A B) is-equiv → let open Lens A≃B = EEq.⟨ get l , is-equiv ⟩ in ∀ a b → _≃ᴱ_.from A≃B b ≡ set l a b from≡set l is-equiv = T.from≡set (trad l) (EEq.Is-equivalenceᴱ→Is-equivalence is-equiv) ------------------------------------------------------------------------ -- Some lens isomorphisms -- If B is a proposition, then Lens A B is isomorphic to -- (A → B) × something. lens-to-proposition↔ : Is-proposition B → Lens A B ↔ (A → B) × (∃ λ (f : A → A) → Erased (f ≡ P.id)) × Erased (∀ a → a ≡ a) lens-to-proposition↔ {B = B} {A = A} B-prop = Lens A B ↝⟨ Lens-as-Σ ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↝⟨ (∃-cong λ get → ∃-cong λ set → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ → ≡⇒↝ _ ( (set (set a b₁) b₂ ≡ set a b₂) ≡⟨ cong (λ b → set (set a b) b₂ ≡ _) (B-prop _ _) ⟩ (set (set a (get a)) b₂ ≡ set a b₂) ≡⟨ cong (λ b → set (set a (get a)) b ≡ _) (B-prop _ _) ⟩ (set (set a (get a)) (get (set a (get a))) ≡ set a b₂) ≡⟨ cong (λ b → _ ≡ set a b) (B-prop _ _) ⟩∎ (set (set a (get a)) (get (set a (get a))) ≡ set a (get a)) ∎))) ⟩ (∃ λ (get : A → B) → ∃ λ (set : A → B → A) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a → B → B → set (set a (get a)) (get (set a (get a))) ≡ set a (get a)))) ↝⟨ (∃-cong λ get → Σ-cong (A→B→A↔A→A get) λ set → Erased-cong ( drop-⊤-left-× λ _ → _⇔_.to contractible⇔↔⊤ $ Π-closure ext 0 λ _ → Π-closure ext 0 λ _ → +⇒≡ B-prop)) ⟩ ((A → B) × ∃ λ (f : A → A) → Erased ((∀ a → f a ≡ a) × (∀ a → B → B → f (f a) ≡ f a))) ↝⟨ (∃-cong λ get → ∃-cong λ _ → Erased-cong (∃-cong λ _ → ∀-cong ext λ a → drop-⊤-left-Π ext (B↔⊤ (get a)))) ⟩ ((A → B) × ∃ λ (f : A → A) → Erased ((∀ a → f a ≡ a) × (∀ a → B → f (f a) ≡ f a))) ↝⟨ (∃-cong λ get → ∃-cong λ _ → Erased-cong (∃-cong λ _ → ∀-cong ext λ a → drop-⊤-left-Π ext (B↔⊤ (get a)))) ⟩ ((A → B) × ∃ λ (f : A → A) → Erased ((∀ a → f a ≡ a) × (∀ a → f (f a) ≡ f a))) ↝⟨ (∃-cong λ _ → ∃-cong λ f → Erased-cong ( Σ-cong (Eq.extensionality-isomorphism ext) λ f≡id → ∀-cong ext λ a → ≡⇒↝ _ (cong₂ _≡_ (trans (f≡id (f a)) (f≡id a)) (f≡id a )))) ⟩ ((A → B) × ∃ λ (f : A → A) → Erased (f ≡ P.id × (∀ a → a ≡ a))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-Σ↔Σ) ⟩ ((A → B) × ∃ λ (f : A → A) → Erased (f ≡ P.id) × Erased (∀ a → a ≡ a)) ↝⟨ (∃-cong λ _ → Σ-assoc) ⟩□ (A → B) × (∃ λ (f : A → A) → Erased (f ≡ P.id)) × Erased (∀ a → a ≡ a) □ where B↔⊤ : B → B ↔ ⊤ B↔⊤ b = _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible B-prop b A→B→A↔A→A : (A → B) → (A → B → A) ↔ (A → A) A→B→A↔A→A get = (A → B → A) ↝⟨ ∀-cong ext (λ a → drop-⊤-left-Π ext $ B↔⊤ (get a)) ⟩□ (A → A) □ -- If equality is very stable for A and B is a proposition, then -- Lens A B is isomorphic to (A → B) × Erased ((a : A) → a ≡ a). Very-stable-≡→lens-to-proposition↔ : Very-stable-≡ A → Is-proposition B → Lens A B ↔ (A → B) × Erased ((a : A) → a ≡ a) Very-stable-≡→lens-to-proposition↔ {A = A} {B = B} A-s B-prop = Lens A B ↝⟨ lens-to-proposition↔ B-prop ⟩ (A → B) × (∃ λ (f : A → A) → Erased (f ≡ P.id)) × Erased (∀ a → a ≡ a) ↝⟨ (∃-cong λ _ → drop-⊤-left-× λ _ → _⇔_.to contractible⇔↔⊤ $ erased-singleton-contractible (Very-stable-Πⁿ ext 1 λ _ → A-s)) ⟩□ (A → B) × Erased (∀ a → a ≡ a) □ -- Lens A ⊤ is isomorphic to something × Erased ((a : A) → a ≡ a). lens-to-⊤↔ : Lens A ⊤ ↔ (∃ λ (f : A → A) → Erased (f ≡ P.id)) × Erased ((a : A) → a ≡ a) lens-to-⊤↔ {A = A} = Lens A ⊤ ↝⟨ lens-to-proposition↔ (mono₁ 0 ⊤-contractible) ⟩ (A → ⊤) × (∃ λ (f : A → A) → Erased (f ≡ P.id)) × Erased ((a : A) → a ≡ a) ↝⟨ drop-⊤-left-× (λ _ → →-right-zero) ⟩□ (∃ λ (f : A → A) → Erased (f ≡ P.id)) × Erased ((a : A) → a ≡ a) □ -- If equality is very stable for A, then Lens A ⊤ is isomorphic to -- Erased ((a : A) → a ≡ a). Very-stable-≡→lens-to-⊤↔ : Very-stable-≡ A → Lens A ⊤ ↔ Erased ((a : A) → a ≡ a) Very-stable-≡→lens-to-⊤↔ {A = A} A-s = Lens A ⊤ ↝⟨ Very-stable-≡→lens-to-proposition↔ A-s (mono₁ 0 ⊤-contractible) ⟩ (A → ⊤) × Erased ((a : A) → a ≡ a) ↝⟨ drop-⊤-left-× (λ _ → →-right-zero) ⟩□ Erased ((a : A) → a ≡ a) □ -- Lens A ⊥ is isomorphic to ¬ A. lens-to-⊥↔ : Lens A (⊥ {ℓ = b}) ↔ ¬ A lens-to-⊥↔ {A = A} = Lens A ⊥ ↝⟨ lens-to-proposition↔ ⊥-propositional ⟩ (A → ⊥) × (∃ λ (f : A → A) → Erased (f ≡ P.id)) × Erased ((a : A) → a ≡ a) ↝⟨ (×-cong₁ λ _ → →-cong ext F.id (Bij.⊥↔uninhabited ⊥-elim)) ⟩ ¬ A × (∃ λ (f : A → A) → Erased (f ≡ P.id)) × Erased ((a : A) → a ≡ a) ↝⟨ (∃-cong λ ¬a → drop-⊤-right λ _ → lemma₁ ¬a) ⟩ ¬ A × (∃ λ (f : A → A) → Erased (f ≡ P.id)) ↝⟨ drop-⊤-right lemma₂ ⟩□ ¬ A □ where lemma₁ : ¬ A → Erased ((a : A) → a ≡ a) ↔ ⊤ lemma₁ ¬a = _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (H-level-Erased 1 (Π-closure ext 1 λ a → ⊥-elim (¬a a))) [ refl ] lemma₂ : ¬ A → (∃ λ (f : A → A) → Erased (f ≡ P.id)) ↔ ⊤ lemma₂ ¬a = _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (Σ-closure 1 →-prop λ _ → H-level-Erased 1 (mono₁ 1 →-prop)) (P.id , [ refl _ ]) where →-prop = Π-closure ext 1 λ a → ⊥-elim (¬a a) -- See also lens-from-⊥↔⊤ and -- lens-from-contractible↔codomain-contractible below. ------------------------------------------------------------------------ -- Some lens results related to h-levels -- If the domain of a lens is inhabited and has h-level n, then the -- codomain also has h-level n (in erased contexts). @0 h-level-respects-lens-from-inhabited : ∀ n → Lens A B → A → H-level n A → H-level n B h-level-respects-lens-from-inhabited n l = T.h-level-respects-lens-from-inhabited n (trad l) -- Lenses with contractible domains have contractible codomains (in -- erased contexts). @0 contractible-to-contractible : Lens A B → Contractible A → Contractible B contractible-to-contractible l = T.contractible-to-contractible (trad l) -- A variant for Contractibleᴱ. Contractibleᴱ→Contractibleᴱ : Lens A B → Contractibleᴱ A → Contractibleᴱ B Contractibleᴱ→Contractibleᴱ l c@(a , _) = EEq.Contractibleᴱ-respects-surjection (Lens.get l) (λ b → Lens.set l a b , (Lens.get l (Lens.set l a b) ≡⟨ Lens.get-set l _ _ ⟩∎ b ∎)) c -- If A and B have h-level n given the assumption that A is inhabited, -- then Lens A B also has h-level n. lens-preserves-h-level : ∀ n → (A → H-level n A) → (A → H-level n B) → H-level n (Lens A B) lens-preserves-h-level n hA hB = H-level.respects-surjection (_↔_.surjection (inverse Lens-as-Σ)) n $ Σ-closure n (Π-closure ext n λ a → hB a) λ _ → Σ-closure n (Π-closure ext n λ a → Π-closure ext n λ _ → hA a) λ _ → H-level-Erased n (×-closure n (Π-closure ext n λ a → Π-closure ext n λ _ → +⇒≡ $ mono₁ n (hB a)) $ ×-closure n (Π-closure ext n λ a → +⇒≡ $ mono₁ n (hA a)) (Π-closure ext n λ a → Π-closure ext n λ _ → Π-closure ext n λ _ → +⇒≡ $ mono₁ n (hA a))) -- If A has positive h-level n, then Lens A B also has h-level n (in -- erased contexts). @0 lens-preserves-h-level-of-domain : ∀ n → H-level (1 + n) A → H-level (1 + n) (Lens A B) lens-preserves-h-level-of-domain {A = A} {B = B} n = H-level (1 + n) A ↝⟨ T.lens-preserves-h-level-of-domain n ⟩ H-level (1 + n) (T.Lens A B) ↝⟨ H-level-cong _ (1 + n) (inverse Lens≃Traditional-lens) ⟩□ H-level (1 + n) (Lens A B) □ -- There is a type A such that Lens A ⊤ is not propositional (assuming -- univalence). ¬-lens-to-⊤-propositional : Univalence (# 0) → ∃ λ (A : Set a) → ¬ Is-proposition (Lens A ⊤) ¬-lens-to-⊤-propositional univ = A′ , Stable-¬ _ [ Is-proposition (Lens A′ ⊤) ↝⟨ H-level-cong _ 1 Lens≃Traditional-lens ⟩ Is-proposition (T.Lens A′ ⊤) ↝⟨ proj₂ $ T.¬-lens-to-⊤-propositional univ ⟩□ ⊥₀ □ ] where A′ = _ ------------------------------------------------------------------------ -- A conversion function -- If A is a set, then Lens A B is equivalent to Coherent-lens A B. ≃coherent : @0 Is-set A → Lens A B ≃ Coherent-lens A B ≃coherent {A = A} {B = B} A-set = Eq.↔→≃ to Coherent-lens.lens (λ l → let l′ = Coherent-lens.lens l in $⟨ H-level-Erased 1 (×-closure 1 (Π-closure ext 1 λ a → mono₁ 2 (B-set l′ a)) (Π-closure ext 1 λ a → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → mono₁ 2 (B-set l′ a))) ⟩ Is-proposition _ ↝⟨ (λ p → cong (l′ ,_) (p _ _)) ⦂ (_ → _) ⟩ (l′ , _) ≡ (l′ , _) ↔⟨ Eq.≃-≡ Coherent-lens-as-Σ ⟩□ to l′ ≡ l □) refl where @0 B-set : Lens A B → A → Is-set B B-set l a = h-level-respects-lens-from-inhabited 2 l a A-set to : Lens A B → Coherent-lens A B to l = record { lens = l ; get-set-get = λ a → B-set l a _ _ ; get-set-set = λ a _ _ → B-set l a _ _ } -- The conversion preserves getters and setters. ≃coherent-preserves-getters-and-setters : {A : Set a} (@0 s : Is-set A) → Preserves-getters-and-setters-⇔ A B (_≃_.logical-equivalence (≃coherent s)) ≃coherent-preserves-getters-and-setters _ = (λ _ → refl _ , refl _) , (λ _ → refl _ , refl _) ------------------------------------------------------------------------ -- Some equality characterisation lemmas abstract -- An equality characterisation lemma. equality-characterisation₁ : let open Lens in l₁ ≡ l₂ ↔ ∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡ get-set l₂ a b) × (∀ a → subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂)) equality-characterisation₁ {l₁ = l₁} {l₂ = l₂} = l₁ ≡ l₂ ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ (inverse Lens-as-Σ)) ⟩ l₁′ ≡ l₂′ ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ (inverse Σ-assoc)) ⟩ ((get l₁ , set l₁) , proj₂ (proj₂ l₁′)) ≡ ((get l₂ , set l₂) , proj₂ (proj₂ l₂′)) ↝⟨ inverse Bij.Σ-≡,≡↔≡ ⟩ (∃ λ (gs : (get l₁ , set l₁) ≡ (get l₂ , set l₂)) → subst (λ (get , set) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) gs (proj₂ (proj₂ l₁′)) ≡ proj₂ (proj₂ l₂′)) ↝⟨ Σ-cong (inverse ≡×≡↔≡) (λ gs → ≡⇒↝ _ $ cong (λ (gs : (get l₁ , set l₁) ≡ (get l₂ , set l₂)) → subst (λ (get , set) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) gs (proj₂ (proj₂ l₁′)) ≡ proj₂ (proj₂ l₂′)) (sym $ _↔_.right-inverse-of ≡×≡↔≡ gs)) ⟩ (∃ λ (gs : get l₁ ≡ get l₂ × set l₁ ≡ set l₂) → subst (λ (get , set) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) (_↔_.to ≡×≡↔≡ gs) (proj₂ (proj₂ l₁′)) ≡ proj₂ (proj₂ l₂′)) ↝⟨ inverse Σ-assoc ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → subst (λ (get , set) → Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) (_↔_.to ≡×≡↔≡ (g , s)) (proj₂ (proj₂ l₁′)) ≡ proj₂ (proj₂ l₂′)) ↝⟨ (∃-cong λ g → ∃-cong λ s → ≡⇒↝ _ $ cong (_≡ _) $ push-subst-[] {x≡y = _↔_.to ≡×≡↔≡ (g , s)}) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → [ subst (λ (get , set) → (∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)) (_↔_.to ≡×≡↔≡ (g , s)) (erased (proj₂ (proj₂ l₁′))) ] ≡ [ erased (proj₂ (proj₂ l₂′)) ]) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → inverse Erased-≡↔[]≡[]) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased (subst (λ (get , set) → (∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)) (_↔_.to ≡×≡↔≡ (g , s)) (erased (proj₂ (proj₂ l₁′))) ≡ erased (proj₂ (proj₂ l₂′)))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (≡⇒↝ _ $ cong (λ x → x ≡ erased (proj₂ (proj₂ l₂′))) (push-subst-, {y≡z = _↔_.to ≡×≡↔≡ (g , s)} _ _))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased (( subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) , subst (λ { (get , set) → (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂) }) (_↔_.to ≡×≡↔≡ (g , s)) (proj₂ (erased (proj₂ (proj₂ l₁′)))) ) ≡ erased (proj₂ (proj₂ l₂′)))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-cong (inverse ≡×≡↔≡)) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased (subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) ≡ get-set l₂ × subst (λ { (get , set) → (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂) }) (_↔_.to ≡×≡↔≡ (g , s)) (proj₂ (erased (proj₂ (proj₂ l₁′)))) ≡ proj₂ (erased (proj₂ (proj₂ l₂′))))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (∃-cong λ _ → ≡⇒↝ _ $ cong (λ x → x ≡ proj₂ (erased (proj₂ (proj₂ l₂′)))) (push-subst-, {y≡z = _↔_.to ≡×≡↔≡ (g , s)} _ _))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased (subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) ≡ get-set l₂ × ( subst (λ { (get , set) → ∀ a → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁) , subst (λ { (get , set) → ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁) ) ≡ proj₂ (erased (proj₂ (proj₂ l₂′))))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-cong (∃-cong λ _ → inverse ≡×≡↔≡)) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased (subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) ≡ get-set l₂ × subst (λ { (get , set) → ∀ a → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁) ≡ set-get l₂ × subst (λ { (get , set) → ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁) ≡ set-set l₂)) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong ( lemma₁ (λ { (get , set) a → ∀ b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) ×-cong lemma₁ (λ { (get , set) a → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) ×-cong lemma₁ (λ { (get , set) a → ∀ b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a → subst (λ { (get , set) → ∀ b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁ a) ≡ get-set l₂ a) × (∀ a → subst (λ { (get , set) → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a → subst (λ { (get , set) → ∀ b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁ a) ≡ set-set l₂ a))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong ( (∀-cong ext λ a → lemma₁ (λ { (get , set) b → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s))) ×-cong F.id ×-cong (∀-cong ext λ a → lemma₁ (λ { (get , set) b₁ → ∀ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s))))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ { (get , set) → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → subst (λ { (get , set) → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ → subst (λ { (get , set) → ∀ b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁ a b₁) ≡ set-set l₂ a b₁))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ a → ∀-cong ext λ b₁ → lemma₁ (λ { (get , set) b₂ → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ { (get , set) → get (set a b) ≡ b }) (_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → subst (λ { (get , set) → set a (get a) ≡ a }) (_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ { (get , set) → set (set a b₁) b₂ ≡ set a b₂ }) (_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong ( (∀-cong ext λ a → ∀-cong ext λ b → lemma₂ (λ { (get , set) → get (set a b) ≡ b }) g s) ×-cong (∀-cong ext λ a → lemma₂ (λ { (get , set) → set a (get a) ≡ a }) g s) ×-cong (∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ → lemma₂ (λ { (get , set) → set (set a b₁) b₂ ≡ set a b₂ }) g s))) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡ get-set l₂ a b) × (∀ a → subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ get → set l₂ (set l₂ a b₁) b₂ ≡ set l₂ a b₂) g (subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂)) ≡ set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ _ → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ x → x ≡ _) $ subst-const g)) ⟩□ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡ get-set l₂ a b) × (∀ a → subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂))) □ where open Lens l₁′ = _↔_.to Lens-as-Σ l₁ l₂′ = _↔_.to Lens-as-Σ l₂ abstract lemma₁ : ∀ (C : A → B → Set c) (eq : u ≡ v) {f g} → (subst (λ x → ∀ y → C x y) eq f ≡ g) ↔ (∀ y → subst (λ x → C x y) eq (f y) ≡ g y) lemma₁ C eq {f} {g} = subst (λ x → ∀ y → C x y) eq f ≡ g ↔⟨ inverse $ Eq.extensionality-isomorphism ext ⟩ (∀ y → subst (λ x → ∀ y → C x y) eq f y ≡ g y) ↝⟨ (∀-cong ext λ y → ≡⇒↝ _ $ cong (λ x → x ≡ _) (sym $ push-subst-application eq _)) ⟩□ (∀ y → subst (λ x → C x y) eq (f y) ≡ g y) □ lemma₂ : ∀ (P : A × B → Set p) (x₁≡x₂ : x₁ ≡ x₂) (y₁≡y₂ : y₁ ≡ y₂) {p p′} → (subst P (_↔_.to ≡×≡↔≡ (x₁≡x₂ , y₁≡y₂)) p ≡ p′) ↔ (subst (λ x → P (x , y₂)) x₁≡x₂ (subst (λ y → P (x₁ , y)) y₁≡y₂ p) ≡ p′) lemma₂ P x₁≡x₂ y₁≡y₂ {p = p} = ≡⇒↝ _ $ cong (_≡ _) $ elim¹ (λ y₁≡y₂ → subst P (_↔_.to ≡×≡↔≡ (x₁≡x₂ , y₁≡y₂)) p ≡ subst (λ x → P (x , _)) x₁≡x₂ (subst (λ y → P (_ , y)) y₁≡y₂ p)) (subst P (_↔_.to ≡×≡↔≡ (x₁≡x₂ , refl _)) p ≡⟨⟩ subst P (cong₂ _,_ x₁≡x₂ (refl _)) p ≡⟨⟩ subst P (trans (cong (_, _) x₁≡x₂) (cong (_ ,_) (refl _))) p ≡⟨ cong (λ eq → subst P (trans (cong (_, _) x₁≡x₂) eq) p) $ cong-refl _ ⟩ subst P (trans (cong (_, _) x₁≡x₂) (refl _)) p ≡⟨ cong (λ eq → subst P eq p) $ trans-reflʳ _ ⟩ subst P (cong (_, _) x₁≡x₂) p ≡⟨ sym $ subst-∘ _ _ _ ⟩ subst (λ x → P (x , _)) x₁≡x₂ p ≡⟨ cong (subst (λ x → P (x , _)) x₁≡x₂) $ sym $ subst-refl _ _ ⟩∎ subst (λ x → P (x , _)) x₁≡x₂ (subst (λ y → P (_ , y)) (refl _) p) ∎) _ -- Another equality characterisation lemma. equality-characterisation₂ : let open Lens in l₁ ≡ l₂ ↔ ∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂)) equality-characterisation₂ {l₁ = l₁} {l₂ = l₂} = l₁ ≡ l₂ ↝⟨ equality-characterisation₁ ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡ get-set l₂ a b) × (∀ a → subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong ( (∀-cong ext λ a → ∀-cong ext λ b → ≡⇒↝ _ $ cong (_≡ _) $ lemma₁ g s a b) ×-cong (∀-cong ext λ a → ≡⇒↝ _ $ cong (_≡ _) $ lemma₂ g s a) ×-cong F.id)) ⟩□ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂))) □ where open Lens @0 lemma₁ : ∀ _ _ _ _ → _ lemma₁ g s a b = subst (λ get → get (set l₂ a b) ≡ b) g (subst (λ set → get l₁ (set a b) ≡ b) s (get-set l₁ a b)) ≡⟨ cong (λ eq → subst (λ get → get (set l₂ a b) ≡ b) g eq) $ subst-in-terms-of-trans-and-cong {f = λ set → get l₁ (set a b)} {g = λ _ → b} {x≡y = s} {fx≡gx = (get-set l₁ a b)} ⟩ subst (λ get → get (set l₂ a b) ≡ b) g (trans (sym (cong (λ set → get l₁ (set a b)) s)) (trans (get-set l₁ a b) (cong (const b) s))) ≡⟨ cong (λ eq → subst (λ get → get (set l₂ a b) ≡ b) g (trans (sym (cong (λ set → get l₁ (set a b)) s)) (trans _ eq))) $ cong-const s ⟩ subst (λ get → get (set l₂ a b) ≡ b) g (trans (sym (cong (λ set → get l₁ (set a b)) s)) (trans (get-set l₁ a b) (refl _))) ≡⟨ cong (λ eq → subst (λ get → get (set l₂ a b) ≡ b) g (trans (sym (cong (λ set → get l₁ (set a b)) s)) eq)) $ trans-reflʳ _ ⟩ subst (λ get → get (set l₂ a b) ≡ b) g (trans (sym (cong (λ set → get l₁ (set a b)) s)) (get-set l₁ a b)) ≡⟨ subst-in-terms-of-trans-and-cong {x≡y = g} {fx≡gx = trans _ (get-set l₁ a b)} ⟩ trans (sym (cong (λ get → get (set l₂ a b)) g)) (trans (trans (sym (cong (λ set → get l₁ (set a b)) s)) (get-set l₁ a b)) (cong (const b) g)) ≡⟨ cong (λ eq → trans (sym (cong (λ get → get (set l₂ a b)) g)) (trans (trans (sym (cong (λ set → get l₁ (set a b)) s)) (get-set l₁ a b)) eq)) $ cong-const g ⟩ trans (sym (cong (λ get → get (set l₂ a b)) g)) (trans (trans (sym (cong (λ set → get l₁ (set a b)) s)) (get-set l₁ a b)) (refl _)) ≡⟨ cong (trans _) $ trans-reflʳ _ ⟩ trans (sym (cong (λ get → get (set l₂ a b)) g)) (trans (sym (cong (λ set → get l₁ (set a b)) s)) (get-set l₁ a b)) ≡⟨ sym $ trans-assoc _ _ (get-set l₁ a b) ⟩ trans (trans (sym (cong (λ get → get (set l₂ a b)) g)) (sym (cong (λ set → get l₁ (set a b)) s))) (get-set l₁ a b) ≡⟨ cong (λ eq → trans eq (get-set l₁ a b)) $ sym $ sym-trans _ (cong (λ get → get (set l₂ a b)) g) ⟩ trans (sym (trans (cong (λ set → get l₁ (set a b)) s) (cong (λ get → get (set l₂ a b)) g))) (get-set l₁ a b) ≡⟨⟩ trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ∎ @0 lemma₂ : ∀ _ _ _ → _ lemma₂ g s a = subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡⟨⟩ subst (λ get → set l₂ a (get a) ≡ a) g (subst (λ set → set a (get l₁ a) ≡ a) s (set-get l₁ a)) ≡⟨ cong (subst (λ get → set l₂ a (get a) ≡ a) g) $ subst-in-terms-of-trans-and-cong {x≡y = s} {fx≡gx = set-get l₁ a} ⟩ subst (λ get → set l₂ a (get a) ≡ a) g (trans (sym (cong (λ set → set a (get l₁ a)) s)) (trans (set-get l₁ a) (cong (const a) s))) ≡⟨ cong (λ eq → subst (λ get → set l₂ a (get a) ≡ a) g (trans (sym (cong (λ set → set a (get l₁ a)) s)) (trans _ eq))) $ cong-const s ⟩ subst (λ get → set l₂ a (get a) ≡ a) g (trans (sym (cong (λ set → set a (get l₁ a)) s)) (trans (set-get l₁ a) (refl _))) ≡⟨ cong (λ eq → subst (λ get → set l₂ a (get a) ≡ a) g (trans (sym (cong (λ set → set a (get l₁ a)) s)) eq)) $ trans-reflʳ _ ⟩ subst (λ get → set l₂ a (get a) ≡ a) g (trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)) ≡⟨ subst-in-terms-of-trans-and-cong {x≡y = g} {fx≡gx = trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)} ⟩ trans (sym (cong (λ get → set l₂ a (get a)) g)) (trans (trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)) (cong (const a) g)) ≡⟨ cong (λ eq → trans (sym (cong (λ get → set l₂ a (get a)) g)) (trans (trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)) eq)) $ cong-const g ⟩ trans (sym (cong (λ get → set l₂ a (get a)) g)) (trans (trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)) (refl _)) ≡⟨ cong (trans _) $ trans-reflʳ _ ⟩ trans (sym (cong (λ get → set l₂ a (get a)) g)) (trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)) ≡⟨ sym $ trans-assoc _ _ (set-get l₁ a) ⟩ trans (trans (sym (cong (λ get → set l₂ a (get a)) g)) (sym (cong (λ set → set a (get l₁ a)) s))) (set-get l₁ a) ≡⟨ cong (λ eq → trans eq (set-get l₁ a)) $ sym $ sym-trans _ (cong (λ get → set l₂ a (get a)) g) ⟩ trans (sym (trans (cong (λ set → set a (get l₁ a)) s) (cong (λ get → set l₂ a (get a)) g))) (set-get l₁ a) ≡⟨⟩ trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ∎ -- And another one. equality-characterisation₃ : let open Lens in l₁ ≡ l₂ ↔ ∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (cong (λ set → set (set a b₁) b₂) s) (set-set l₂ a b₁ b₂))) equality-characterisation₃ {l₁ = l₁} {l₂ = l₂} = l₁ ≡ l₂ ↝⟨ equality-characterisation₂ ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ → ≡⇒↝ _ $ lemma g s a b₁ b₂)) ⟩□ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (cong (λ set → set (set a b₁) b₂) s) (set-set l₂ a b₁ b₂)))) □ where open Lens @0 lemma : ∀ _ _ _ _ _ → _ lemma g s a b₁ b₂ = subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s (set-set l₁ a b₁ b₂) ≡ set-set l₂ a b₁ b₂ ≡⟨ cong (_≡ _) $ subst-in-terms-of-trans-and-cong {x≡y = s} {fx≡gx = set-set l₁ a b₁ b₂} ⟩ trans (sym (cong (λ set → set (set a b₁) b₂) s)) (trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s)) ≡ set-set l₂ a b₁ b₂ ≡⟨ [trans≡]≡[≡trans-symˡ] _ _ _ ⟩ trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (sym (sym (cong (λ set → set (set a b₁) b₂) s))) (set-set l₂ a b₁ b₂) ≡⟨ cong (λ eq → trans _ (cong (λ set → set a b₂) s) ≡ trans eq (set-set l₂ a b₁ b₂)) $ sym-sym (cong (λ set → set (set a b₁) b₂) s) ⟩ trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (cong (λ set → set (set a b₁) b₂) s) (set-set l₂ a b₁ b₂) ∎ -- And yet another one. equality-characterisation₄ : let open Lens in l₁ ≡ l₂ ↔ ∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (s : ∀ a b → set l₁ a b ≡ set l₂ a b) → Erased ((∀ a b → trans (sym (trans (cong (get l₁) (s a b)) (g (set l₂ a b)))) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (trans (s a (get l₁ a)) (cong (set l₂ a) (g a)))) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → trans (set-set l₁ a b₁ b₂) (s a b₂) ≡ trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))) (set-set l₂ a b₁ b₂))) equality-characterisation₄ {l₁ = l₁} {l₂ = l₂} = l₁ ≡ l₂ ↝⟨ equality-characterisation₃ ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (s : set l₁ ≡ set l₂) → Erased ((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g)) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g)) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡ trans (cong (λ set → set (set a b₁) b₂) s) (set-set l₂ a b₁ b₂)))) ↝⟨ (Σ-cong (inverse $ Eq.extensionality-isomorphism ext) λ g → Σ-cong (inverse $ Eq.extensionality-isomorphism ext F.∘ ∀-cong ext λ _ → Eq.extensionality-isomorphism ext) λ s → Erased-cong ( (∀-cong ext λ a → ∀-cong ext λ b → ≡⇒↝ _ $ cong (λ eq → trans (sym eq) (get-set l₁ a b) ≡ _) ( cong₂ (λ set get → get (set a b)) s g ≡⟨⟩ trans (cong (λ set → get l₁ (set a b)) s) (cong (λ get → get (set l₂ a b)) g) ≡⟨ cong (λ eq → trans eq (ext⁻¹ g (set l₂ a b))) $ sym $ cong-∘ _ _ s ⟩ trans (cong (get l₁ ⊚ (_$ b)) (ext⁻¹ s a)) (ext⁻¹ g (set l₂ a b)) ≡⟨ cong (λ eq → trans eq (ext⁻¹ g (set l₂ a b))) $ sym $ cong-∘ _ _ (ext⁻¹ s a) ⟩∎ trans (cong (get l₁) (ext⁻¹ (ext⁻¹ s a) b)) (ext⁻¹ g (set l₂ a b)) ∎)) ×-cong (∀-cong ext λ a → ≡⇒↝ _ $ cong (λ eq → trans (sym eq) (set-get l₁ a) ≡ _) ( cong₂ (λ set get → set a (get a)) s g ≡⟨⟩ trans (cong (λ set → set a (get l₁ a)) s) (cong (λ get → set l₂ a (get a)) g) ≡⟨ sym $ cong₂ trans (cong-∘ _ _ s) (cong-∘ _ _ g) ⟩ trans (ext⁻¹ (ext⁻¹ s a) (get l₁ a)) (cong (set l₂ a) (ext⁻¹ g a)) ∎)) ×-cong ∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ → ≡⇒↝ _ $ cong₂ (λ p q → trans _ p ≡ trans (cong (λ set → set (set a b₁) b₂) q) (set-set l₂ a b₁ b₂)) ( cong (λ set → set a b₂) s ≡⟨ sym $ cong-∘ _ _ s ⟩∎ ext⁻¹ (ext⁻¹ s a) b₂ ∎) ( s ≡⟨ sym $ _≃_.right-inverse-of (Eq.extensionality-isomorphism bad-ext) _ ⟩ ⟨ext⟩ (ext⁻¹ s) ≡⟨ (cong ⟨ext⟩ $ ⟨ext⟩ λ _ → sym $ _≃_.right-inverse-of (Eq.extensionality-isomorphism bad-ext) _) ⟩∎ ⟨ext⟩ (⟨ext⟩ ⊚ ext⁻¹ ⊚ ext⁻¹ s) ∎))) ⟩□ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (s : ∀ a b → set l₁ a b ≡ set l₂ a b) → Erased ((∀ a b → trans (sym (trans (cong (get l₁) (s a b)) (g (set l₂ a b)))) (get-set l₁ a b) ≡ get-set l₂ a b) × (∀ a → trans (sym (trans (s a (get l₁ a)) (cong (set l₂ a) (g a)))) (set-get l₁ a) ≡ set-get l₂ a) × (∀ a b₁ b₂ → trans (set-set l₁ a b₁ b₂) (s a b₂) ≡ trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))) (set-set l₂ a b₁ b₂)))) □ where open Lens -- A lemma that can be used to prove that two lenses with -- definitionally equal getters and setters are equal. equal-laws→≡ : {get : A → B} {set : A → B → A} {l₁′ l₂′ : Erased ((∀ a b → get (set a b) ≡ b) × (∀ a → set a (get a) ≡ a) × (∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))} → let l₁ = _↔_.from Lens-as-Σ (get , set , l₁′) l₂ = _↔_.from Lens-as-Σ (get , set , l₂′) open Lens in @0 (∀ a b → get-set l₁ a b ≡ get-set l₂ a b) → @0 (∀ a → set-get l₁ a ≡ set-get l₂ a) → @0 (∀ a b₁ b₂ → set-set l₁ a b₁ b₂ ≡ set-set l₂ a b₁ b₂) → l₁ ≡ l₂ equal-laws→≡ {l₁′ = l₁′} {l₂′ = l₂′} hyp₁ hyp₂ hyp₃ = _↔_.from equality-characterisation₂ ( refl _ , refl _ , [ (λ a b → trans (sym (cong₂ (λ set get → get (set a b)) (refl _) (refl _))) (get-set l₁″ a b) ≡⟨ cong (λ eq → trans (sym eq) _) $ cong₂-refl _ ⟩ trans (sym (refl _)) (get-set l₁″ a b) ≡⟨ cong (flip trans _) sym-refl ⟩ trans (refl _) (get-set l₁″ a b) ≡⟨ trans-reflˡ _ ⟩ get-set l₁″ a b ≡⟨ hyp₁ _ _ ⟩∎ get-set l₂″ a b ∎) , (λ a → trans (sym (cong₂ (λ set get → set a (get a)) (refl _) (refl _))) (set-get l₁″ a) ≡⟨ cong (λ eq → trans (sym eq) _) $ cong₂-refl _ ⟩ trans (sym (refl _)) (set-get l₁″ a) ≡⟨ cong (flip trans _) sym-refl ⟩ trans (refl _) (set-get l₁″ a) ≡⟨ trans-reflˡ _ ⟩ set-get l₁″ a ≡⟨ hyp₂ _ ⟩∎ set-get l₂″ a ∎) , (λ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) (refl _) (set-set l₁″ a b₁ b₂) ≡⟨ subst-refl _ _ ⟩ set-set l₁″ a b₁ b₂ ≡⟨ hyp₃ _ _ _ ⟩∎ set-set l₂″ a b₁ b₂ ∎) ] ) where open Lens l₁″ = _↔_.from Lens-as-Σ (_ , _ , l₁′) l₂″ = _↔_.from Lens-as-Σ (_ , _ , l₂′) -- An equality characterisation lemma for lenses from sets. @0 equality-characterisation-for-sets : let open Lens in {l₁ l₂ : Lens A B} → Is-set A → l₁ ≡ l₂ ↔ set l₁ ≡ set l₂ equality-characterisation-for-sets {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} A-set = l₁ ≡ l₂ ↔⟨ inverse $ Eq.≃-≡ Lens≃Traditional-lens ⟩ trad l₁ ≡ trad l₂ ↝⟨ T.equality-characterisation-for-sets A-set ⟩□ set l₁ ≡ set l₂ □ where open Lens ------------------------------------------------------------------------ -- More lens isomorphisms -- Lens ⊥ B is isomorphic to the unit type. lens-from-⊥↔⊤ : Lens (⊥ {ℓ = a}) B ↔ ⊤ lens-from-⊥↔⊤ = _⇔_.to contractible⇔↔⊤ $ record { get = ⊥-elim ; set = ⊥-elim ; get-set = λ a → ⊥-elim a ; set-get = λ a → ⊥-elim a ; set-set = λ a → ⊥-elim a } , λ l → _↔_.from equality-characterisation₁ ( ⟨ext⟩ (λ a → ⊥-elim a) , ⟨ext⟩ (λ a → ⊥-elim a) , [ (λ a → ⊥-elim a) , (λ a → ⊥-elim a) , (λ a → ⊥-elim a) ] ) -- If A is contractible with erased proofs, then there is an -- equivalence with erased proofs between Lens A B and -- Contractibleᴱ B. Lens-Contractibleᴱ↔Contractibleᴱ : Contractibleᴱ A → Lens A B ≃ᴱ Contractibleᴱ B Lens-Contractibleᴱ↔Contractibleᴱ cA@(a , [ irrA ]) = EEq.⇔→≃ᴱ (lens-preserves-h-level-of-domain 0 (mono₁ 0 (EEq.Contractibleᴱ→Contractible cA))) (EEq.Contractibleᴱ-propositional ext) (flip Contractibleᴱ→Contractibleᴱ cA) (λ (b , [ irrB ]) → record { get = λ _ → b ; set = λ _ _ → a ; get-set = λ _ → irrB ; set-get = irrA ; set-set = λ _ _ _ → irrA a }) ------------------------------------------------------------------------ -- Lens combinators private module TLC = T.Lens-combinators module Lens-combinators where -- If two types are isomorphic, then there is a lens between them. ↔→lens : A ↔ B → Lens A B ↔→lens A↔B = record { get = to ; set = const from ; get-set = const right-inverse-of ; set-get = left-inverse-of ; set-set = λ _ _ _ → refl _ } where open _↔_ A↔B -- If there is an equivalence with erased proofs between two types, -- then there is a lens between them. ≃ᴱ→lens : A ≃ᴱ B → Lens A B ≃ᴱ→lens A≃B = record { get = to ; set = const from ; get-set = const right-inverse-of ; set-get = left-inverse-of ; set-set = λ _ _ _ → refl _ } where open _≃ᴱ_ A≃B -- Identity lens. id : Lens A A id = Traditional-lens→Lens TLC.id -- The identity lens is equal to the one obtained from the -- traditional identity lens without erased proofs. Traditional-lens-id≡id : Traditional-lens→Lens TLC.id ≡ id {A = A} Traditional-lens-id≡id = refl _ -- Composition of lenses. infixr 9 _∘_ _∘_ : Lens B C → Lens A B → Lens A C l₁ ∘ l₂ = record { get = λ a → get l₁ (get l₂ a) ; set = λ a c → let b = set l₁ (get l₂ a) c in set l₂ a b ; get-set = T.Lens.get-set l₁∘l₂ ; set-get = T.Lens.set-get l₁∘l₂ ; set-set = T.Lens.set-set l₁∘l₂ } where open Lens @0 l₁∘l₂ : _ l₁∘l₂ = trad l₁ TLC.∘ trad l₂ -- Traditional-lens→Lens commutes with composition. Traditional-lens-∘≡∘ : {l₁ : T.Lens B C} {l₂ : T.Lens A B} → Traditional-lens→Lens (l₁ TLC.∘ l₂) ≡ Traditional-lens→Lens l₁ ∘ Traditional-lens→Lens l₂ Traditional-lens-∘≡∘ = refl _ -- Note that composition can be defined in several different ways. -- Here is one alternative implementation. infixr 9 _∘′_ _∘′_ : Lens B C → Lens A B → Lens A C l₁ ∘′ l₂ = record (l₁ ∘ l₂) { set-set = T.Lens.set-set l₁∘′l₂ } where @0 l₁∘′l₂ : _ l₁∘′l₂ = trad l₁ TLC.∘′ trad l₂ -- This implementation is pointwise equal to the other one. However, -- I don't know if there is some other definition that is distinct -- from these two (if we require that the definitions are -- polymorphic, that get and set are implemented in the same way as -- for _∘_, and that the three composition laws below hold). ∘≡∘′ : l₁ ∘ l₂ ≡ l₁ ∘′ l₂ ∘≡∘′ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡ (λ _ _ → refl _) (λ _ → refl _) (λ a c₁ c₂ → let b₁ = set l₁ (get l₂ a) c₁ b₂ = set l₁ (get l₂ a) c₂ a′ = set l₂ a b₁ b′ = set l₁ (get l₂ a′) c₂ eq : b′ ≡ b₂ eq = trans (cong (λ x → set l₁ x c₂) (get-set l₂ a b₁)) (set-set l₁ (get l₂ a) c₁ c₂) in set-set (l₁ ∘ l₂) a c₁ c₂ ≡⟨⟩ trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) ≡⟨ elim¹ (λ {b₂} eq → trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) ≡ trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂)) ( trans (set-set l₂ a b₁ b′) (cong (set l₂ a) (refl _)) ≡⟨ cong (trans _) $ cong-refl _ ⟩ trans (set-set l₂ a b₁ b′) (refl _) ≡⟨ trans-reflʳ _ ⟩ set-set l₂ a b₁ b′ ≡⟨ sym $ trans-reflˡ _ ⟩ trans (refl _) (set-set l₂ a b₁ b′) ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩∎ trans (cong (set l₂ a′) (refl _)) (set-set l₂ a b₁ b′) ∎) eq ⟩ trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂) ≡⟨⟩ set-set (l₁ ∘′ l₂) a c₁ c₂ ∎) where open Lens -- id is a left identity of _∘_. left-identity : (l : Lens A B) → id ∘ l ≡ l left-identity l = equal-laws→≡ (λ a b → trans (cong P.id (get-set a b)) (refl _) ≡⟨ trans-reflʳ _ ⟩ cong P.id (get-set a b) ≡⟨ sym $ cong-id _ ⟩∎ get-set a b ∎) (λ a → trans (cong (set a) (refl _)) (set-get a) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩ trans (refl _) (set-get a) ≡⟨ trans-reflˡ _ ⟩∎ set-get a ∎) (λ a b₁ b₂ → trans (set-set a b₁ b₂) (cong (set a) (trans (cong (λ _ → b₂) (get-set a b₁)) (refl _))) ≡⟨ cong (λ eq → trans _ (cong (set a) eq)) $ trans-reflʳ _ ⟩ trans (set-set a b₁ b₂) (cong (set a) (cong (λ _ → b₂) (get-set a b₁))) ≡⟨ cong (λ eq → trans _ (cong (set a) eq)) $ cong-const _ ⟩ trans (set-set a b₁ b₂) (cong (set a) (refl _)) ≡⟨ cong (trans _) $ cong-refl _ ⟩ trans (set-set a b₁ b₂) (refl _) ≡⟨ trans-reflʳ _ ⟩∎ set-set a b₁ b₂ ∎) where open Lens l -- id is a right identity of _∘_. right-identity : (l : Lens A B) → l ∘ id ≡ l right-identity l = equal-laws→≡ (λ a b → trans (cong get (refl _)) (get-set a b) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩ trans (refl _) (get-set a b) ≡⟨ trans-reflˡ _ ⟩∎ get-set a b ∎) (λ a → trans (cong P.id (set-get a)) (refl _) ≡⟨ trans-reflʳ _ ⟩ cong P.id (set-get a) ≡⟨ sym $ cong-id _ ⟩∎ set-get a ∎) (λ a b₁ b₂ → trans (refl _) (cong P.id (trans (cong (λ a → set a b₂) (refl _)) (set-set a b₁ b₂))) ≡⟨ trans-reflˡ _ ⟩ cong P.id (trans (cong (λ a → set a b₂) (refl _)) (set-set a b₁ b₂)) ≡⟨ sym $ cong-id _ ⟩ trans (cong (λ a → set a b₂) (refl _)) (set-set a b₁ b₂) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩ trans (refl _) (set-set a b₁ b₂) ≡⟨ trans-reflˡ _ ⟩∎ set-set a b₁ b₂ ∎) where open Lens l -- _∘_ is associative. associativity : (l₁ : Lens C D) (l₂ : Lens B C) (l₃ : Lens A B) → l₁ ∘ (l₂ ∘ l₃) ≡ (l₁ ∘ l₂) ∘ l₃ associativity l₁ l₂ l₃ = equal-laws→≡ lemma₁ lemma₂ lemma₃ where open Lens @0 lemma₁ : _ lemma₁ = λ a d → let f = get l₁ g = get l₂ b = get l₃ a c = g b c′ = set l₁ c d x = get-set l₃ a (set l₂ b c′) y = get-set l₂ b c′ z = get-set l₁ c d in trans (cong f $ trans (cong g x) y) z ≡⟨ cong (λ x → trans x z) (cong-trans f _ y) ⟩ trans (trans (cong f $ cong g x) (cong f y)) z ≡⟨ trans-assoc _ _ z ⟩ trans (cong f $ cong g x) (trans (cong f y) z) ≡⟨ cong (λ x → trans x (trans (cong f y) z)) (cong-∘ f g x) ⟩∎ trans (cong (f ⊚ g) x) (trans (cong f y) z) ∎ @0 lemma₂ : _ lemma₂ = λ a → let b = get l₃ a f = set l₃ a g = set l₂ b x = set-get l₁ (get l₂ b) y = set-get l₂ b z = set-get l₃ a in trans (cong (f ⊚ g) x) (trans (cong f y) z) ≡⟨ sym $ trans-assoc _ _ z ⟩ trans (trans (cong (f ⊚ g) x) (cong f y)) z ≡⟨ cong (λ x → trans (trans x (cong f y)) z) (sym $ cong-∘ f g x) ⟩ trans (trans (cong f (cong g x)) (cong f y)) z ≡⟨ cong (λ x → trans x z) (sym $ cong-trans f _ y) ⟩∎ trans (cong f $ trans (cong g x) y) z ∎ @0 lemma₃ : _ lemma₃ = λ a d₁ d₂ → let f = set l₃ a g = set l₂ (get l₃ a) h = λ x → set l₁ x d₂ i = get l₂ c₁ = set l₁ (get (l₂ ∘ l₃) a) d₁ c₂ = h (i (get l₃ a)) c₂′ = h (i (get l₃ (set (l₂ ∘ l₃) a c₁))) c₂″ = h (i (set l₂ (get l₃ a) c₁)) b₁ = set l₂ (get l₃ a) c₁ b₁′ = get l₃ (set l₃ a b₁) x = set-set l₃ a b₁ (set l₂ b₁′ c₂′) y = get-set l₃ a b₁ z = set-set l₂ (get l₃ a) c₁ u = get-set l₂ (get l₃ a) c₁ v = set-set l₁ (get (l₂ ∘ l₃) a) d₁ d₂ c₂′≡c₂″ = c₂′ ≡⟨ cong (h ⊚ i) y ⟩∎ c₂″ ∎ lemma₁₀ = trans (sym (cong (h ⊚ i) y)) (cong h (cong i y)) ≡⟨ cong (trans _) (cong-∘ h i y) ⟩ trans (sym (cong (h ⊚ i) y)) (cong (h ⊚ i) y) ≡⟨ trans-symˡ (cong (h ⊚ i) y) ⟩∎ refl _ ∎ lemma₉ = trans (cong (λ x → set l₂ x c₂′) y) (cong (set l₂ b₁) c₂′≡c₂″) ≡⟨ cong (trans (cong (λ x → set l₂ x c₂′) y)) (cong-∘ (set l₂ b₁) (h ⊚ i) y) ⟩ trans (cong (λ x → set l₂ x (h (i b₁′))) y) (cong (λ x → set l₂ b₁ (h (i x ))) y) ≡⟨ trans-cong-cong (λ x y → set l₂ x (h (i y))) y ⟩∎ cong (λ x → set l₂ x (h (i x))) y ∎ lemma₈ = sym (cong (set l₂ b₁) (sym c₂′≡c₂″)) ≡⟨ sym $ cong-sym (set l₂ b₁) (sym c₂′≡c₂″) ⟩ cong (set l₂ b₁) (sym (sym c₂′≡c₂″)) ≡⟨ cong (cong (set l₂ b₁)) (sym-sym c₂′≡c₂″) ⟩∎ cong (set l₂ b₁) c₂′≡c₂″ ∎ lemma₇ = trans (cong g (sym c₂′≡c₂″)) (cong g (cong h (cong i y))) ≡⟨ sym $ cong-trans g _ (cong h (cong i y)) ⟩ cong g (trans (sym c₂′≡c₂″) (cong h (cong i y))) ≡⟨ cong (cong g) lemma₁₀ ⟩ cong g (refl _) ≡⟨ cong-refl _ ⟩∎ refl _ ∎ lemma₆ = trans (cong (λ x → set l₂ x c₂′) y) (trans (cong (set l₂ b₁) c₂′≡c₂″) (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) ≡⟨ sym $ trans-assoc _ _ (trans _ (cong g (sym c₂′≡c₂″))) ⟩ trans (trans (cong (λ x → set l₂ x c₂′) y) (cong (set l₂ b₁) c₂′≡c₂″)) (trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ cong (λ e → trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₉ ⟩ trans (cong (λ x → set l₂ x (h (i x))) y) (trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ sym $ trans-assoc _ _ (cong g (sym c₂′≡c₂″)) ⟩∎ trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″)) (cong g (sym c₂′≡c₂″)) ∎ lemma₅ = z c₂′ ≡⟨ sym $ dcong z (sym c₂′≡c₂″) ⟩ subst (λ x → set l₂ b₁ x ≡ g x) (sym c₂′≡c₂″) (z c₂″) ≡⟨ subst-in-terms-of-trans-and-cong {f = set l₂ b₁} {g = g} {x≡y = sym c₂′≡c₂″} ⟩ trans (sym (cong (set l₂ b₁) (sym c₂′≡c₂″))) (trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ cong (λ e → trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₈ ⟩∎ trans (cong (set l₂ b₁) c₂′≡c₂″) (trans (z c₂″) (cong g (sym c₂′≡c₂″))) ∎ lemma₄ = trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)) (cong g (cong h (cong i y))) ≡⟨ cong (λ e → trans (trans (cong (λ x → set l₂ x c₂′) y) e) (cong g (cong h (cong i y)))) lemma₅ ⟩ trans (trans (cong (λ x → set l₂ x c₂′) y) (trans (cong (set l₂ b₁) c₂′≡c₂″) (trans (z c₂″) (cong g (sym c₂′≡c₂″))))) (cong g (cong h (cong i y))) ≡⟨ cong (λ e → trans e (cong g (cong h (cong i y)))) lemma₆ ⟩ trans (trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″)) (cong g (sym c₂′≡c₂″))) (cong g (cong h (cong i y))) ≡⟨ trans-assoc _ _ (cong g (cong h (cong i y))) ⟩ trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″)) (trans (cong g (sym c₂′≡c₂″)) (cong g (cong h (cong i y)))) ≡⟨ cong (trans (trans _ (z c₂″))) lemma₇ ⟩ trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″)) (refl _) ≡⟨ trans-reflʳ _ ⟩∎ trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″) ∎ lemma₃ = cong g (trans (cong h (trans (cong i y) u)) v) ≡⟨ cong (λ e → cong g (trans e v)) (cong-trans h _ u) ⟩ cong g (trans (trans (cong h (cong i y)) (cong h u)) v) ≡⟨ cong (cong g) (trans-assoc _ _ v) ⟩ cong g (trans (cong h (cong i y)) (trans (cong h u) v)) ≡⟨ cong-trans g _ (trans _ v) ⟩∎ trans (cong g (cong h (cong i y))) (cong g (trans (cong h u) v)) ∎ lemma₂ = trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)) (cong g (trans (cong h (trans (cong i y) u)) v)) ≡⟨ cong (trans (trans _ (z c₂′))) lemma₃ ⟩ trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)) (trans (cong g (cong h (cong i y))) (cong g (trans (cong h u) v))) ≡⟨ sym $ trans-assoc _ _ (cong g (trans _ v)) ⟩ trans (trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)) (cong g (cong h (cong i y)))) (cong g (trans (cong h u) v)) ≡⟨ cong (λ e → trans e (cong g (trans (cong h u) v))) lemma₄ ⟩ trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″)) (cong g (trans (cong h u) v)) ≡⟨ trans-assoc _ _ (cong g (trans _ v)) ⟩∎ trans (cong (λ x → set l₂ x (h (i x))) y) (trans (z c₂″) (cong g (trans (cong h u) v))) ∎ lemma₁ = trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) (cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v)) ≡⟨ cong (λ e → trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) e) (sym $ cong-∘ f g (trans _ v)) ⟩ trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) (cong f (cong g (trans (cong h (trans (cong i y) u)) v))) ≡⟨ sym $ cong-trans f (trans _ (z c₂′)) (cong g (trans _ v)) ⟩ cong f (trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)) (cong g (trans (cong h (trans (cong i y) u)) v))) ≡⟨ cong (cong f) lemma₂ ⟩∎ cong f (trans (cong (λ x → set l₂ x (h (i x))) y) (trans (z c₂″) (cong g (trans (cong h u) v)))) ∎ in trans (trans x (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)))) (cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v)) ≡⟨ trans-assoc _ _ (cong (f ⊚ g) (trans _ v)) ⟩ trans x (trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) (cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v))) ≡⟨ cong (trans x) lemma₁ ⟩∎ trans x (cong f (trans (cong (λ x → set l₂ x (h (i x))) y) (trans (z c₂″) (cong g (trans (cong h u) v))))) ∎ -- Every lens of type Lens A A that satisfies a certain right -- identity law is equal to the identity lens. id-unique : (id′ : Lens A A) → ((l : Lens A A) → l ∘ id′ ≡ l) → id′ ≡ id id-unique id′ right-identity = id′ ≡⟨ sym $ left-identity _ ⟩ id ∘ id′ ≡⟨ right-identity _ ⟩∎ id ∎ -- An equality characterisation lemma that can be used when one of -- the lenses is the identity. equality-characterisation-id : {l : Lens A A} → let open Lens l in l ≡ id ↔ ∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a b → set a b ≡ b) → Erased ((∀ a b → get-set a b ≡ trans (cong get (s a b)) (g b)) × (∀ a → set-get a ≡ trans (s a (get a)) (g a)) × (∀ a b₁ b₂ → trans (set-set a b₁ b₂) (s a b₂) ≡ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))) equality-characterisation-id {l = l} = l ≡ id ↝⟨ equality-characterisation₄ ⟩ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a b → set a b ≡ b) → Erased ((∀ a b → trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) ≡ refl _) × (∀ a → trans (sym (trans (s a (get a)) (cong P.id (g a)))) (set-get a) ≡ refl _) × (∀ a b₁ b₂ → trans (set-set a b₁ b₂) (s a b₂) ≡ trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))) (refl _)))) ↝⟨ (∃-cong λ g → ∃-cong λ _ → Erased-cong (∃-cong λ _ → (∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ eq → trans (sym (trans _ eq)) (set-get _) ≡ _) $ sym $ cong-id (g _)) ×-cong ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (_ ≡_) $ trans-reflʳ _)) ⟩ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a b → set a b ≡ b) → Erased ((∀ a b → trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) ≡ refl _) × (∀ a → trans (sym (trans (s a (get a)) (g a))) (set-get a) ≡ refl _) × (∀ a b₁ b₂ → trans (set-set a b₁ b₂) (s a b₂) ≡ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong ( (∀-cong ext λ _ → ∀-cong ext λ _ → ≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘ ≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm) ×-cong (∀-cong ext λ _ → ≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘ ≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm) ×-cong F.id)) ⟩□ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a b → set a b ≡ b) → Erased ((∀ a b → get-set a b ≡ trans (cong get (s a b)) (g b)) × (∀ a → set-get a ≡ trans (s a (get a)) (g a)) × (∀ a b₁ b₂ → trans (set-set a b₁ b₂) (s a b₂) ≡ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))))) □ where open Lens l -- A lemma that can be used to show that a lens with a constant -- setter (such as the ones produced by getter-equivalence→lens -- below) is equal to the identity lens. constant-setter→≡id : {l′ : ∃ λ (get : A → A) → ∃ λ (set : A → A) → Erased ((A → ∀ a → get (set a) ≡ a) × (∀ a → set (get a) ≡ a) × (A → A → ∀ a → set a ≡ set a))} → let l = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′) set = proj₁ (proj₂ l′) open Lens l hiding (set) in (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a → set a ≡ a) → Erased ((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) × (∀ a → set-get a ≡ trans (s (get a)) (g a)) × (∀ a a₁ a₂ → set-set a a₁ a₂ ≡ refl _))) → l ≡ id constant-setter→≡id {A = A} {l′ = l′} = (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a → set a ≡ a) → Erased ((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) × (∀ a → set-get a ≡ trans (s (get a)) (g a)) × (∀ a a₁ a₂ → set-set a a₁ a₂ ≡ refl _))) ↝⟨ (Σ-map P.id $ Σ-map P.id λ {s} → Erased-cong ( Σ-map P.id $ Σ-map P.id λ hyp a a₁ a₂ → trans (set-set a a₁ a₂) (s a₂) ≡⟨ cong (λ eq → trans eq (s a₂)) $ hyp _ _ _ ⟩ trans (refl _) (s a₂) ≡⟨ trans-reflˡ (s _) ⟩∎ s a₂ ∎)) ⟩ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a → set a ≡ a) → Erased ((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) × (∀ a → set-get a ≡ trans (s (get a)) (g a)) × (∀ a a₁ a₂ → trans (set-set a a₁ a₂) (s a₂) ≡ s a₂))) ↔⟨ (∃-cong λ _ → ∃-cong λ s → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ a → ∀-cong ext λ a₁ → ∀-cong ext λ a₂ → ≡⇒↝ F.equivalence $ cong (trans _ (s _) ≡_) ( s a₂ ≡⟨ sym $ cong-ext s ⟩ cong (λ set → set a₂) (⟨ext⟩ s) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ s) ⟩ cong (λ set → set (set a a₁) a₂) (cong const (⟨ext⟩ s)) ≡⟨ cong (cong (λ set → set (set a a₁) a₂)) $ sym $ ext-const (⟨ext⟩ s) ⟩∎ cong (λ set → set (set a a₁) a₂) (⟨ext⟩ λ _ → ⟨ext⟩ s) ∎))) ⟩ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : ∀ a → set a ≡ a) → Erased ((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) × (∀ a → set-get a ≡ trans (s (get a)) (g a)) × (∀ a a₁ a₂ → trans (set-set a a₁ a₂) (s a₂) ≡ cong (λ set → set (set a a₁) a₂) (⟨ext⟩ λ _ → ⟨ext⟩ s)))) ↝⟨ Σ-map P.id (Σ-map const P.id) ⟩ (∃ λ (g : ∀ a → get a ≡ a) → ∃ λ (s : A → ∀ a → set a ≡ a) → Erased ((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₁ a₂)) (g a₂)) × (∀ a → set-get a ≡ trans (s a (get a)) (g a)) × (∀ a a₁ a₂ → trans (set-set a a₁ a₂) (s a a₂) ≡ cong (λ set → set (set a a₁) a₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))))) ↔⟨ inverse equality-characterisation-id ⟩□ l″ ≡ id □ where l″ = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′) set = proj₁ (proj₂ l′) open Lens l″ hiding (set) -- An identity function for lenses for which the forward direction -- is an equivalence (with erased proofs). -- -- Note that the setter of the resulting lens is definitionally -- equal to a constant function returning the right-to-left -- direction of the equivalence. -- -- Note also that two proofs, set-get and set-set, have been -- "obfuscated". They could have been shorter, but then it might not -- have been possible to prove getter-equivalence→lens≡. getter-equivalence→lens : (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) → Lens A B getter-equivalence→lens l is-equiv = record { get = to ; set = const from ; get-set = const right-inverse-of ; set-get = λ a → from (to a) ≡⟨ cong from (sym (get-set a (to a))) ⟩ from (get (set a (to a))) ≡⟨⟩ from (to (set a (get a))) ≡⟨ cong (from ⊚ to) (set-get a) ⟩ from (to a) ≡⟨ left-inverse-of _ ⟩∎ a ∎ ; set-set = λ a b₁ b₂ → let s = from≡set l is-equiv in from b₂ ≡⟨ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)) ⟩ set (set a b₁) b₂ ≡⟨ set-set a b₁ b₂ ⟩ set a b₂ ≡⟨ sym (s a b₂) ⟩∎ from b₂ ∎ } where A≃B = EEq.⟨ _ , is-equiv ⟩ open _≃ᴱ_ A≃B open Lens l -- In erased contexts it can be proved that the function -- getter-equivalence→lens returns its input. @0 getter-equivalence→lens≡ : ∀ (l : Lens A B) is-equiv → getter-equivalence→lens l is-equiv ≡ l getter-equivalence→lens≡ l is-equiv = $⟨ TLC.getter-equivalence→lens≡ (trad l) is-equiv′ ⟩ TLC.getter-equivalence→lens (trad l) is-equiv′ ≡ trad l ↝⟨ cong Traditional-lens→Lens ⟩□ getter-equivalence→lens l is-equiv ≡ l □ where is-equiv′ = EEq.Is-equivalenceᴱ→Is-equivalence is-equiv ------------------------------------------------------------------------ -- Some existence results -- There is, in general, no lens for the first projection from a -- Σ-type. no-first-projection-lens : ∃ λ (A : Set a) → ∃ λ (B : A → Set b) → ¬ Lens (Σ A B) A no-first-projection-lens = Non-dependent.no-first-projection-lens Lens contractible-to-contractible -- There are two lenses with equal setters that are not equal -- (assuming univalence). equal-setters-but-not-equal : Univalence lzero → ∃ λ (A : Set) → ∃ λ (B : Set) → ∃ λ (l₁ : Lens A B) → ∃ λ (l₂ : Lens A B) → Lens.set l₁ ≡ Lens.set l₂ × l₁ ≢ l₂ equal-setters-but-not-equal univ = let A , B , l₁ , l₂ , set≡set , l₁≢l₂ = T.equal-setters-but-not-equal univ in A , B , Traditional-lens→Lens l₁ , Traditional-lens→Lens l₂ , set≡set , Stable-¬ _ [ Traditional-lens→Lens l₁ ≡ Traditional-lens→Lens l₂ ↔⟨ inverse $ Eq.≃-≡ Lens≃Traditional-lens ⟩ l₁ ≡ l₂ ↝⟨ l₁≢l₂ ⟩□ ⊥ □ ] -- There is a lens, for which the getter is an equivalence, that does -- not satisfy either of the coherence laws that Coherent-lens lenses -- must satisfy (assuming univalence). getter-equivalence-but-not-coherent : Univalence lzero → ∃ λ (A : Set) → ∃ λ (l : Lens A A) → let open Lens l in Is-equivalence get × ¬ (∀ a → cong get (set-get a) ≡ get-set a (get a)) × ¬ (∀ a₁ a₂ a₃ → cong get (set-set a₁ a₂ a₃) ≡ trans (get-set (set a₁ a₂) a₃) (sym (get-set a₁ a₃))) getter-equivalence-but-not-coherent univ = let A , l , rest = T.getter-equivalence-but-not-coherent univ in A , Traditional-lens→Lens l , rest -- There are two distinct lenses with equal setters that have -- equivalences as getters (assuming univalence). equal-setters-and-equivalences-as-getters-but-not-equal : Univalence lzero → ∃ λ (A : Set) → ∃ λ (l₁ : Lens A A) → ∃ λ (l₂ : Lens A A) → Is-equivalence (Lens.get l₁) × Is-equivalence (Lens.get l₂) × Lens.set l₁ ≡ Lens.set l₂ × l₁ ≢ l₂ equal-setters-and-equivalences-as-getters-but-not-equal univ = let A , l₁ , l₂ , is-equiv₁ , is-equiv₂ , set≡set , l₁≢l₂ = T.equal-setters-and-equivalences-as-getters-but-not-equal univ in A , Traditional-lens→Lens l₁ , Traditional-lens→Lens l₂ , is-equiv₁ , is-equiv₂ , set≡set , Stable-¬ _ [ Traditional-lens→Lens l₁ ≡ Traditional-lens→Lens l₂ ↔⟨ inverse $ Eq.≃-≡ Lens≃Traditional-lens ⟩ l₁ ≡ l₂ ↝⟨ l₁≢l₂ ⟩□ ⊥ □ ] -- There is in general no split surjection from equivalences with -- erased proofs to lenses with getters that are equivalences with -- erased proofs, if the right-to-left direction of the split -- surjection is required to return the lens's getter plus some proof -- (assuming univalence). ¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get : Univalence lzero → ∃ λ (A : Set) → ¬ ∃ λ (f : (A ≃ᴱ A) ↠ (∃ λ (l : Lens A A) → Is-equivalenceᴱ (Lens.get l))) → ∀ p → _≃ᴱ_.to (_↠_.from f p) ≡ Lens.get (proj₁ p) ¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get univ = let A , l₁ , l₂ , is-equiv₁′ , is-equiv₂′ , setters-equal , l₁≢l₂ = equal-setters-and-equivalences-as-getters-but-not-equal univ is-equiv₁ = EEq.Is-equivalence→Is-equivalenceᴱ is-equiv₁′ is-equiv₂ = EEq.Is-equivalence→Is-equivalenceᴱ is-equiv₂′ in A , Stable-¬ _ [ (λ (f , hyp) → $⟨ setters-equal ⟩ Lens.set l₁ ≡ Lens.set l₂ ↝⟨ getters-equal-if-setters-equal l₁ l₂ ⟩ Lens.get l₁ ≡ Lens.get l₂ ↝⟨ (λ eq → trans (hyp _) (trans eq (sym (hyp _)))) ⟩ _≃ᴱ_.to (_↠_.from f (l₁ , is-equiv₁)) ≡ _≃ᴱ_.to (_↠_.from f (l₂ , is-equiv₂)) ↝⟨ EEq.to≡to→≡ ext ⟩ _↠_.from f (l₁ , is-equiv₁) ≡ _↠_.from f (l₂ , is-equiv₂) ↝⟨ _↠_.to (Surjection.↠-≡ f) ⟩ (l₁ , is-equiv₁) ≡ (l₂ , is-equiv₂) ↝⟨ cong proj₁ ⟩ l₁ ≡ l₂ ↝⟨ l₁≢l₂ ⟩□ ⊥ □) ] -- There is in general no equivalence with erased proofs from -- equivalences with erased proofs to lenses with getters that are -- equivalences with erased proofs, if the right-to-left direction of -- the equivalence is required to return the lens's getter plus some -- proof (assuming univalence). ¬-≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalence-get : Univalence lzero → ∃ λ (A : Set) → ¬ ∃ λ (f : (A ≃ᴱ A) ≃ᴱ (∃ λ (l : Lens A A) → Is-equivalenceᴱ (Lens.get l))) → ∀ p → _≃ᴱ_.to (_≃ᴱ_.from f p) ≡ Lens.get (proj₁ p) ¬-≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalence-get univ = let A , ∄ = ¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get univ in A , Stable-¬ _ [ (∃ λ (f : (A ≃ᴱ A) ≃ᴱ (∃ λ (l : Lens A A) → Is-equivalenceᴱ (Lens.get l))) → ∀ p → _≃ᴱ_.to (_≃ᴱ_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ Σ-map (_≃_.surjection ⊚ EEq.≃ᴱ→≃) P.id ⟩ (∃ λ (f : (A ≃ᴱ A) ↠ (∃ λ (l : Lens A A) → Is-equivalenceᴱ (Lens.get l))) → ∀ p → _≃ᴱ_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ ∄ ⟩□ ⊥ □ ] ------------------------------------------------------------------------ -- Isomorphisms expressed using lens quasi-inverses private module B {a} = Bi-invertibility.Erased equality-with-J (Set a) Lens Lens-combinators.id Lens-combinators._∘_ module BM {a} = B.More {a = a} Lens-combinators.left-identity Lens-combinators.right-identity Lens-combinators.associativity -- A form of isomorphism between types, expressed using lenses. open B public using (_≅ᴱ_; Has-quasi-inverseᴱ) -- T.Has-quasi-inverse l implies -- Has-quasi-inverseᴱ (Traditional-lens→Lens l). Has-quasi-inverse→Has-quasi-inverseᴱ : (l : T.Lens A B) → T.Has-quasi-inverse l → Has-quasi-inverseᴱ (Traditional-lens→Lens l) Has-quasi-inverse→Has-quasi-inverseᴱ l = (∃ λ l⁻¹ → l TLC.∘ l⁻¹ ≡ TLC.id × l⁻¹ TLC.∘ l ≡ TLC.id ) ↝⟨ Σ-map Traditional-lens→Lens (Σ-map (cong Traditional-lens→Lens) (cong Traditional-lens→Lens)) ⟩ (∃ λ l⁻¹ → l′ LC.∘ l⁻¹ ≡ LC.id × l⁻¹ LC.∘ l′ ≡ LC.id ) ↝⟨ Σ-map P.id [_]→ ⟩□ (∃ λ l⁻¹ → Erased (l′ LC.∘ l⁻¹ ≡ LC.id × l⁻¹ LC.∘ l′ ≡ LC.id)) □ where module LC = Lens-combinators l′ = Traditional-lens→Lens l -- In erased contexts Has-quasi-inverseᴱ (Traditional-lens→Lens l) is -- equivalent to T.Has-quasi-inverse l. @0 Has-quasi-inverseᴱ≃Has-quasi-inverse : (l : T.Lens A B) → Has-quasi-inverseᴱ (Traditional-lens→Lens l) ≃ T.Has-quasi-inverse l Has-quasi-inverseᴱ≃Has-quasi-inverse l = (∃ λ l⁻¹ → Erased (l′ LC.∘ l⁻¹ ≡ LC.id × l⁻¹ LC.∘ l′ ≡ LC.id)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩ (∃ λ l⁻¹ → l′ LC.∘ l⁻¹ ≡ LC.id × l⁻¹ LC.∘ l′ ≡ LC.id ) ↝⟨ (Σ-cong Lens≃Traditional-lens λ _ → inverse (Eq.≃-≡ Lens≃Traditional-lens) ×-cong inverse (Eq.≃-≡ Lens≃Traditional-lens)) ⟩□ (∃ λ l⁻¹ → l TLC.∘ l⁻¹ ≡ TLC.id × l⁻¹ TLC.∘ l ≡ TLC.id ) □ where module LC = Lens-combinators l′ = Traditional-lens→Lens l -- A T.≅ B implies A ≅ᴱ B. ≅→≅ᴱ : A T.≅ B → A ≅ᴱ B ≅→≅ᴱ {A = A} {B = B} = (∃ λ (l : T.Lens A B) → T.Has-quasi-inverse l) ↝⟨ Σ-map Traditional-lens→Lens (λ {l} → Has-quasi-inverse→Has-quasi-inverseᴱ l) ⟩□ (∃ λ (l : Lens A B) → Has-quasi-inverseᴱ l) □ -- In erased contexts A ≅ᴱ B is equivalent to A T.≅ B. @0 ≅ᴱ≃≅ : (A ≅ᴱ B) ≃ (A T.≅ B) ≅ᴱ≃≅ {A = A} {B = B} = (∃ λ (l : Lens A B) → Has-quasi-inverseᴱ l) ↝⟨ Σ-cong-contra (inverse Lens≃Traditional-lens) Has-quasi-inverseᴱ≃Has-quasi-inverse ⟩□ (∃ λ (l : T.Lens A B) → T.Has-quasi-inverse l) □ -- An equality characterisation lemma for A ≅ B that applies when A is -- a set. @0 equality-characterisation-for-sets-≅ᴱ : let open Lens in {f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A ≅ᴱ B} → Is-set A → f₁ ≡ f₂ ↔ set l₁₁ ≡ set l₁₂ equality-characterisation-for-sets-≅ᴱ {f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set = f₁ ≡ f₂ ↔⟨ inverse $ Eq.≃-≡ ≅ᴱ≃≅ ⟩ _≃_.to ≅ᴱ≃≅ f₁ ≡ _≃_.to ≅ᴱ≃≅ f₂ ↝⟨ T.equality-characterisation-for-sets-≅ A-set ⟩□ set l₁₁ ≡ set l₁₂ □ where open Lens -- There is a logical equivalence between A ≃ᴱ B and A ≅ᴱ B. ≃ᴱ⇔≅ᴱ : (A ≃ᴱ B) ⇔ (A ≅ᴱ B) ≃ᴱ⇔≅ᴱ {A = A} {B = B} = record { to = λ A≃B → ≃ᴱ→lens A≃B , ≃ᴱ→lens (inverse A≃B) , [ lemma A≃B , (≃ᴱ→lens (inverse A≃B) ∘ ≃ᴱ→lens A≃B ≡⟨ cong {x = A≃B} {y = inverse $ inverse A≃B} (λ A≃B′ → ≃ᴱ→lens (inverse A≃B) ∘ ≃ᴱ→lens A≃B′) $ sym $ EEq.to≡to→≡ ext (refl _) ⟩ ≃ᴱ→lens (inverse A≃B) ∘ ≃ᴱ→lens (inverse $ inverse A≃B) ≡⟨ lemma (inverse A≃B) ⟩∎ id ∎) ] ; from = λ (l₁ , l₂ , [ eq₁ , eq₂ ]) → EEq.↔→≃ᴱ (get l₁) (get l₂) (ext⁻¹ $ getters-equal-if-setters-equal (l₁ ∘ l₂) id (cong set eq₁)) (ext⁻¹ $ getters-equal-if-setters-equal (l₂ ∘ l₁) id (cong set eq₂)) } where open Lens open Lens-combinators @0 lemma : (C≃D : C ≃ᴱ D) → ≃ᴱ→lens C≃D ∘ ≃ᴱ→lens (inverse C≃D) ≡ id lemma C≃D = _↔_.from equality-characterisation₂ ( ⟨ext⟩ (_≃ᴱ_.right-inverse-of C≃D) , (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) , [ lemma₁ , lemma₂ , lemma₃ ] ) where @0 lemma₁ : _ lemma₁ = λ d₁ d₂ → let lemma = cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂))) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong (cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂)))) $ ext-const (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂))) (cong const $ ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₂))) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ cong (_≃ᴱ_.to C≃D ⊚ _≃ᴱ_.from C≃D) (cong (λ set → set d₂) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)) ≡⟨ cong (cong (_≃ᴱ_.to C≃D ⊚ _≃ᴱ_.from C≃D)) $ cong-ext _ ⟩ cong (_≃ᴱ_.to C≃D ⊚ _≃ᴱ_.from C≃D) (_≃ᴱ_.right-inverse-of C≃D _) ≡⟨ sym $ cong-∘ _ _ (_≃ᴱ_.right-inverse-of C≃D _) ⟩ cong (_≃ᴱ_.to C≃D) (cong (_≃ᴱ_.from C≃D) (_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ cong (cong (_≃ᴱ_.to C≃D)) $ _≃ᴱ_.right-left-lemma C≃D _ ⟩∎ cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _) ∎ in trans (sym (trans (cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂))) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)) (cong (λ get → get d₂) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)))) (trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _)) (_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ cong₂ (λ p q → trans (sym (trans p q)) (trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _)) (_≃ᴱ_.right-inverse-of C≃D _))) lemma (cong-ext _) ⟩ trans (sym (trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _)) (_≃ᴱ_.right-inverse-of C≃D _))) (trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _)) (_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ trans-symˡ (trans _ (_≃ᴱ_.right-inverse-of C≃D _)) ⟩∎ refl _ ∎ @0 lemma₂ : _ lemma₂ = λ d → let lemma = cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d))) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong (cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d)))) $ ext-const (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d))) (cong const $ ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ cong (λ set → set (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d))) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong-ext _ ⟩∎ _≃ᴱ_.right-inverse-of C≃D _ ∎ in trans (sym (trans (cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d))) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)) (cong (λ get → get d) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)))) (trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _)) (_≃ᴱ_.left-inverse-of (inverse C≃D) _)) ≡⟨ cong₂ (λ p q → trans (sym p) q) (cong₂ trans lemma (cong-ext _)) (cong₂ trans (_≃ᴱ_.left-right-lemma C≃D _) (EEq.left-inverse-of∘inverse C≃D)) ⟩ trans (sym (trans (_≃ᴱ_.right-inverse-of C≃D _) (_≃ᴱ_.right-inverse-of C≃D _))) (trans (_≃ᴱ_.right-inverse-of C≃D _) (_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ trans-symˡ (trans _ (_≃ᴱ_.right-inverse-of C≃D _)) ⟩∎ refl _ ∎ @0 lemma₃ : _ lemma₃ = λ d d₁ d₂ → subst (λ set → set (set d d₁) d₂ ≡ set d d₂) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) (trans (refl _) (cong (_≃ᴱ_.to C≃D) (trans (cong (λ _ → _≃ᴱ_.from C≃D d₂) (_≃ᴱ_.right-inverse-of (inverse C≃D) (_≃ᴱ_.from C≃D d₁))) (refl _)))) ≡⟨ cong (λ eq → subst (λ set → set (set d d₁) d₂ ≡ set d d₂) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) (trans (refl _) (cong (_≃ᴱ_.to C≃D) eq))) $ trans-reflʳ _ ⟩ subst (λ set → set (set d d₁) d₂ ≡ set d d₂) (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) (trans (refl _) (cong (_≃ᴱ_.to C≃D) (cong (λ _ → _≃ᴱ_.from C≃D d₂) (_≃ᴱ_.right-inverse-of (inverse C≃D) (_≃ᴱ_.from C≃D d₁))))) ≡⟨ cong₂ (λ p q → subst (λ set → set (set d d₁) d₂ ≡ set d d₂) p q) (ext-const (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)) (trans-reflˡ _) ⟩ subst (λ set → set (set d d₁) d₂ ≡ set d d₂) (cong const $ ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) (cong (_≃ᴱ_.to C≃D) (cong (λ _ → _≃ᴱ_.from C≃D d₂) (_≃ᴱ_.right-inverse-of (inverse C≃D) (_≃ᴱ_.from C≃D d₁)))) ≡⟨ sym $ subst-∘ _ _ (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩ subst (λ set → set d₂ ≡ set d₂) (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) (cong (_≃ᴱ_.to C≃D) (cong (λ _ → _≃ᴱ_.from C≃D d₂) (_≃ᴱ_.right-inverse-of (inverse C≃D) (_≃ᴱ_.from C≃D d₁)))) ≡⟨ subst-ext _ _ ⟩ subst (λ set → set ≡ set) (_≃ᴱ_.right-inverse-of C≃D d₂) (cong (_≃ᴱ_.to C≃D) (cong (λ _ → _≃ᴱ_.from C≃D d₂) (_≃ᴱ_.right-inverse-of (inverse C≃D) (_≃ᴱ_.from C≃D d₁)))) ≡⟨ ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) ( trans (cong (_≃ᴱ_.to C≃D) (cong (λ _ → _≃ᴱ_.from C≃D d₂) (_≃ᴱ_.right-inverse-of (inverse C≃D) (_≃ᴱ_.from C≃D d₁)))) (_≃ᴱ_.right-inverse-of C≃D d₂) ≡⟨ cong (λ eq → trans (cong (_≃ᴱ_.to C≃D) eq) (_≃ᴱ_.right-inverse-of C≃D d₂)) $ cong-const (_≃ᴱ_.right-inverse-of (inverse C≃D) _) ⟩ trans (cong (_≃ᴱ_.to C≃D) (refl _)) (_≃ᴱ_.right-inverse-of C≃D d₂) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩ trans (refl _) (_≃ᴱ_.right-inverse-of C≃D d₂) ≡⟨ trans-reflˡ _ ⟩ _≃ᴱ_.right-inverse-of C≃D d₂ ≡⟨ sym $ trans-reflʳ _ ⟩ trans (_≃ᴱ_.right-inverse-of C≃D d₂) (refl _) ∎) ⟩ refl _ ∎ -- In erased contexts the left-to-right direction of ≃ᴱ⇔≅ᴱ is a right -- inverse of the right-to-left direction. @0 ≃ᴱ⇔≅ᴱ∘≃ᴱ⇔≅ᴱ : (A≃B : A ≃ᴱ B) → _⇔_.from ≃ᴱ⇔≅ᴱ (_⇔_.to ≃ᴱ⇔≅ᴱ A≃B) ≡ A≃B ≃ᴱ⇔≅ᴱ∘≃ᴱ⇔≅ᴱ _ = EEq.to≡to→≡ ext (refl _) -- The forward direction of ≃ᴱ⇔≅ᴱ maps identity to an isomorphism for -- which the first projection is the identity. ≃ᴱ⇔≅ᴱ-id≡id : let open Lens-combinators in proj₁ (_⇔_.to ≃ᴱ⇔≅ᴱ F.id) ≡ id {A = A} ≃ᴱ⇔≅ᴱ-id≡id = equal-laws→≡ (λ _ _ → refl _) (λ a → _≃ᴱ_.left-inverse-of F.id a ≡⟨ sym $ _≃ᴱ_.right-left-lemma F.id _ ⟩ cong P.id (_≃ᴱ_.right-inverse-of F.id a) ≡⟨⟩ cong P.id (refl _) ≡⟨ sym $ cong-id _ ⟩∎ refl _ ∎) (λ _ _ _ → refl _) where open Lens-combinators -- If A is a set, then there is an equivalence with erased proofs -- between A ≃ᴱ B and A ≅ᴱ B. ≃ᴱ≃ᴱ≅ᴱ : @0 Is-set A → (A ≃ᴱ B) ≃ᴱ (A ≅ᴱ B) ≃ᴱ≃ᴱ≅ᴱ A-set = EEq.↔→≃ᴱ (_⇔_.to ≃ᴱ⇔≅ᴱ) (_⇔_.from ≃ᴱ⇔≅ᴱ) (λ (l₁ , l₂ , [ eq₁ , eq₂ ]) → _↔_.from (equality-characterisation-for-sets-≅ᴱ A-set) $ ⟨ext⟩ λ a → ⟨ext⟩ λ b → get l₂ b ≡⟨ sym $ ext⁻¹ (ext⁻¹ (cong set eq₂) _) _ ⟩ set l₁ (set l₁ a b) (set l₂ (get l₁ (set l₁ a b)) (get l₂ b)) ≡⟨ set-set l₁ _ _ _ ⟩ set l₁ a (set l₂ (get l₁ (set l₁ a b)) (get l₂ b)) ≡⟨ cong (λ b′ → set l₁ a (set l₂ b′ (get l₂ b))) $ get-set l₁ _ _ ⟩ set l₁ a (set l₂ b (get l₂ b)) ≡⟨ cong (set l₁ a) $ set-get l₂ _ ⟩∎ set l₁ a b ∎) ≃ᴱ⇔≅ᴱ∘≃ᴱ⇔≅ᴱ where open Lens open Lens-combinators -- The equivalence maps identity to an isomorphism for which the first -- projection is the identity. ≃ᴱ≃ᴱ≅ᴱ-id≡id : let open Lens-combinators in (@0 A-set : Is-set A) → proj₁ (_≃ᴱ_.to (≃ᴱ≃ᴱ≅ᴱ A-set) F.id) ≡ id ≃ᴱ≃ᴱ≅ᴱ-id≡id _ = ≃ᴱ⇔≅ᴱ-id≡id -- There is not necessarily a split surjection from -- Is-equivalenceᴱ (Lens.get l) to Has-quasi-inverseᴱ l, if l is a -- lens between types in the same universe (assuming univalence). ¬Is-equivalenceᴱ↠Has-quasi-inverseᴱ : Univalence a → ¬ ({A B : Set a} (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ l) ¬Is-equivalenceᴱ↠Has-quasi-inverseᴱ {a = a} univ = Stable-¬ _ [ ({A B : Set a} (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ l) ↝⟨ (λ hyp l → from-equivalence (Has-quasi-inverseᴱ≃Has-quasi-inverse l) F.∘ hyp (Traditional-lens→Lens l) F.∘ EEq.Is-equivalence≃Is-equivalenceᴱ ext) ⟩ ({A B : Set a} (l : T.Lens A B) → Is-equivalence (T.Lens.get l) ↠ T.Has-quasi-inverse l) ↝⟨ T.¬Is-equivalence↠Has-quasi-inverse univ ⟩□ ⊥ □ ] -- There is not necessarily an equivalence with erased proofs from -- Is-equivalenceᴱ (Lens.get l) to Has-quasi-inverseᴱ l, if l is a -- lens between types in the same universe (assuming univalence). ¬Is-equivalenceᴱ≃Has-quasi-inverseᴱ : Univalence a → ¬ ({A B : Set a} (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) ≃ᴱ Has-quasi-inverseᴱ l) ¬Is-equivalenceᴱ≃Has-quasi-inverseᴱ {a = a} univ = Stable-¬ _ [ ({A B : Set a} (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) ≃ᴱ Has-quasi-inverseᴱ l) ↝⟨ (λ hyp → _≃_.surjection ⊚ EEq.≃ᴱ→≃ ⊚ hyp) ⟩ ({A B : Set a} (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ l) ↝⟨ ¬Is-equivalenceᴱ↠Has-quasi-inverseᴱ univ ⟩□ ⊥ □ ] ------------------------------------------------------------------------ -- Isomorphisms expressed using bi-invertibility for lenses -- A form of isomorphism between types, expressed using lenses. open B public using (_≊ᴱ_; Has-left-inverseᴱ; Has-right-inverseᴱ; Is-bi-invertibleᴱ) -- T.Has-left-inverse l implies -- Has-left-inverseᴱ (Traditional-lens→Lens l). Has-left-inverse→Has-left-inverseᴱ : (l : T.Lens A B) → T.Has-left-inverse l → Has-left-inverseᴱ (Traditional-lens→Lens l) Has-left-inverse→Has-left-inverseᴱ l = (∃ λ l⁻¹ → l⁻¹ TLC.∘ l ≡ TLC.id ) ↝⟨ Σ-map Traditional-lens→Lens (cong Traditional-lens→Lens) ⟩ (∃ λ l⁻¹ → l⁻¹ LC.∘ l′ ≡ LC.id ) ↝⟨ Σ-map P.id [_]→ ⟩□ (∃ λ l⁻¹ → Erased (l⁻¹ LC.∘ l′ ≡ LC.id)) □ where module LC = Lens-combinators l′ = Traditional-lens→Lens l -- In erased contexts Has-left-inverseᴱ (Traditional-lens→Lens l) is -- equivalent to T.Has-left-inverse l. @0 Has-left-inverseᴱ≃Has-left-inverse : (l : T.Lens A B) → Has-left-inverseᴱ (Traditional-lens→Lens l) ≃ T.Has-left-inverse l Has-left-inverseᴱ≃Has-left-inverse l = (∃ λ l⁻¹ → Erased (l⁻¹ LC.∘ l′ ≡ LC.id)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩ (∃ λ l⁻¹ → l⁻¹ LC.∘ l′ ≡ LC.id ) ↝⟨ (Σ-cong Lens≃Traditional-lens λ _ → inverse $ Eq.≃-≡ Lens≃Traditional-lens) ⟩□ (∃ λ l⁻¹ → l⁻¹ TLC.∘ l ≡ TLC.id ) □ where module LC = Lens-combinators l′ = Traditional-lens→Lens l -- T.Has-right-inverse l implies -- Has-right-inverseᴱ (Traditional-lens→Lens l). Has-right-inverse→Has-right-inverseᴱ : (l : T.Lens A B) → T.Has-right-inverse l → Has-right-inverseᴱ (Traditional-lens→Lens l) Has-right-inverse→Has-right-inverseᴱ l = (∃ λ l⁻¹ → l TLC.∘ l⁻¹ ≡ TLC.id ) ↝⟨ Σ-map Traditional-lens→Lens (cong Traditional-lens→Lens) ⟩ (∃ λ l⁻¹ → l′ LC.∘ l⁻¹ ≡ LC.id ) ↝⟨ Σ-map P.id [_]→ ⟩□ (∃ λ l⁻¹ → Erased (l′ LC.∘ l⁻¹ ≡ LC.id)) □ where module LC = Lens-combinators l′ = Traditional-lens→Lens l -- In erased contexts Has-right-inverseᴱ (Traditional-lens→Lens l) is -- equivalent to T.Has-right-inverse l. @0 Has-right-inverseᴱ≃Has-right-inverse : (l : T.Lens A B) → Has-right-inverseᴱ (Traditional-lens→Lens l) ≃ T.Has-right-inverse l Has-right-inverseᴱ≃Has-right-inverse l = (∃ λ l⁻¹ → Erased (l′ LC.∘ l⁻¹ ≡ LC.id)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩ (∃ λ l⁻¹ → l′ LC.∘ l⁻¹ ≡ LC.id ) ↝⟨ (Σ-cong Lens≃Traditional-lens λ _ → inverse $ Eq.≃-≡ Lens≃Traditional-lens) ⟩□ (∃ λ l⁻¹ → l TLC.∘ l⁻¹ ≡ TLC.id ) □ where module LC = Lens-combinators l′ = Traditional-lens→Lens l -- T.Is-bi-invertible l implies -- Is-bi-invertibleᴱ (Traditional-lens→Lens l). Is-bi-invertible→Is-bi-invertibleᴱ : (l : T.Lens A B) → T.Is-bi-invertible l → Is-bi-invertibleᴱ (Traditional-lens→Lens l) Is-bi-invertible→Is-bi-invertibleᴱ l = T.Is-bi-invertible l ↔⟨⟩ T.Has-left-inverse l × T.Has-right-inverse l ↝⟨ Σ-map (Has-left-inverse→Has-left-inverseᴱ l) (Has-right-inverse→Has-right-inverseᴱ l) ⟩ Has-left-inverseᴱ l′ × Has-right-inverseᴱ l′ ↔⟨⟩ Is-bi-invertibleᴱ l′ □ where l′ = Traditional-lens→Lens l -- In erased contexts Is-bi-invertibleᴱ (Traditional-lens→Lens l) is -- equivalent to T.Is-bi-invertible l. @0 Is-bi-invertibleᴱ≃Is-bi-invertible : (l : T.Lens A B) → Is-bi-invertibleᴱ (Traditional-lens→Lens l) ≃ T.Is-bi-invertible l Is-bi-invertibleᴱ≃Is-bi-invertible l = Is-bi-invertibleᴱ l′ ↔⟨⟩ Has-left-inverseᴱ l′ × Has-right-inverseᴱ l′ ↝⟨ Has-left-inverseᴱ≃Has-left-inverse l ×-cong Has-right-inverseᴱ≃Has-right-inverse l ⟩ T.Has-left-inverse l × T.Has-right-inverse l ↔⟨⟩ T.Is-bi-invertible l □ where l′ = Traditional-lens→Lens l -- A T.≊ B implies A ≊ᴱ B. ≊→≊ᴱ : A T.≊ B → A ≊ᴱ B ≊→≊ᴱ {A = A} {B = B} = (∃ λ (l : T.Lens A B) → T.Is-bi-invertible l) ↝⟨ Σ-map Traditional-lens→Lens (λ {l} → Is-bi-invertible→Is-bi-invertibleᴱ l) ⟩□ (∃ λ (l : Lens A B) → Is-bi-invertibleᴱ l) □ -- In erased contexts A ≊ᴱ B is equivalent to A T.≊ B. @0 ≊ᴱ≃≊ : (A ≊ᴱ B) ≃ (A T.≊ B) ≊ᴱ≃≊ {A = A} {B = B} = (∃ λ (l : Lens A B) → Is-bi-invertibleᴱ l) ↝⟨ (inverse $ Σ-cong (inverse Lens≃Traditional-lens) λ l → inverse $ Is-bi-invertibleᴱ≃Is-bi-invertible l) ⟩□ (∃ λ (l : T.Lens A B) → T.Is-bi-invertible l) □ -- An equality characterisation lemma for A ≊ᴱ B that applies when A -- is a set. @0 equality-characterisation-for-sets-≊ᴱ : let open Lens in {f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A ≊ᴱ B} → Is-set A → f₁ ≡ f₂ ↔ set l₁₁ ≡ set l₁₂ equality-characterisation-for-sets-≊ᴱ {f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set = f₁ ≡ f₂ ↔⟨ inverse $ Eq.≃-≡ ≊ᴱ≃≊ ⟩ _≃_.to ≊ᴱ≃≊ f₁ ≡ _≃_.to ≊ᴱ≃≊ f₂ ↝⟨ T.equality-characterisation-for-sets-≊ A-set ⟩□ set l₁₁ ≡ set l₁₂ □ where open Lens -- There is a logical equivalence between A ≃ᴱ B and A ≊ᴱ B. ≃ᴱ⇔≊ᴱ : (A ≃ᴱ B) ⇔ (A ≊ᴱ B) ≃ᴱ⇔≊ᴱ = record { to = _⇔_.to BM.≅ᴱ⇔≊ᴱ ⊚ _⇔_.to ≃ᴱ⇔≅ᴱ ; from = _⇔_.from ≃ᴱ⇔≅ᴱ ⊚ _⇔_.from BM.≅ᴱ⇔≊ᴱ } -- In erased contexts the left-to-right direction of ≃ᴱ⇔≊ᴱ is a right -- inverse of the right-to-left direction. @0 ≃ᴱ⇔≊ᴱ∘≃ᴱ⇔≊ᴱ : (A≃B : A ≃ᴱ B) → _⇔_.from ≃ᴱ⇔≊ᴱ (_⇔_.to ≃ᴱ⇔≊ᴱ A≃B) ≡ A≃B ≃ᴱ⇔≊ᴱ∘≃ᴱ⇔≊ᴱ _ = EEq.to≡to→≡ ext (refl _) -- The forward direction of ≃ᴱ⇔≊ᴱ maps identity to an isomorphism for -- which the first projection is the identity. ≃ᴱ⇔≊ᴱ-id≡id : let open Lens-combinators in proj₁ (_⇔_.to ≃ᴱ⇔≊ᴱ F.id) ≡ id {A = A} ≃ᴱ⇔≊ᴱ-id≡id = equal-laws→≡ (λ _ _ → refl _) (λ a → _≃ᴱ_.left-inverse-of F.id a ≡⟨ sym $ _≃ᴱ_.right-left-lemma F.id _ ⟩ cong P.id (_≃ᴱ_.right-inverse-of F.id a) ≡⟨⟩ cong P.id (refl _) ≡⟨ sym $ cong-id _ ⟩∎ refl _ ∎) (λ _ _ _ → refl _) where open Lens-combinators -- If A is a set, then there is an equivalence between A ≃ᴱ B and -- A ≊ᴱ B. ≃ᴱ≃ᴱ≊ᴱ : @0 Is-set A → (A ≃ᴱ B) ≃ᴱ (A ≊ᴱ B) ≃ᴱ≃ᴱ≊ᴱ {A = A} {B = B} A-set = A ≃ᴱ B ↝⟨ ≃ᴱ≃ᴱ≅ᴱ A-set ⟩ A ≅ᴱ B ↝⟨ inverse $ BM.≊ᴱ≃ᴱ≅ᴱ-domain (lens-preserves-h-level-of-domain 1 A-set) ⟩□ A ≊ᴱ B □ -- The equivalence ≃ᴱ≃ᴱ≊ᴱ maps identity to an isomorphism for which the -- first projection is the identity. ≃ᴱ≃ᴱ≊ᴱ-id≡id : let open Lens-combinators in (@0 A-set : Is-set A) → proj₁ (_≃ᴱ_.to (≃ᴱ≃ᴱ≊ᴱ A-set) F.id) ≡ id ≃ᴱ≃ᴱ≊ᴱ-id≡id _ = ≃ᴱ⇔≊ᴱ-id≡id where open Lens-combinators -- The right-to-left direction of ≃ᴱ≃ᴱ≊ᴱ maps bi-invertible lenses to -- their getter functions. to-from-≃ᴱ≃ᴱ≊ᴱ≡get : (@0 A-set : Is-set A) (A≊B@(l , _) : A ≊ᴱ B) → _≃ᴱ_.to (_≃ᴱ_.from (≃ᴱ≃ᴱ≊ᴱ A-set) A≊B) ≡ Lens.get l to-from-≃ᴱ≃ᴱ≊ᴱ≡get _ _ = refl _ -- The getter function of a bi-invertible lens is an equivalence (with -- erased proofs). Is-bi-invertibleᴱ→Is-equivalenceᴱ-get : (l : Lens A B) → Is-bi-invertibleᴱ l → Is-equivalenceᴱ (Lens.get l) Is-bi-invertibleᴱ→Is-equivalenceᴱ-get l is-bi-inv = _≃ᴱ_.is-equivalence (_⇔_.from ≃ᴱ⇔≊ᴱ (l , is-bi-inv)) -- If the getter function is an equivalence (with erased proofs), then -- the lens is bi-invertible (with erased proofs). Is-equivalenceᴱ-get→Is-bi-invertibleᴱ : (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) → Is-bi-invertibleᴱ l Is-equivalenceᴱ-get→Is-bi-invertibleᴱ {A = A} {B = B} l′ is-equiv = block λ b → $⟨ l⁻¹′ b , [ l∘l⁻¹≡id b , l⁻¹∘l≡id b ] ⟩ Has-quasi-inverseᴱ l ↝⟨ B.Has-quasi-inverseᴱ→Is-bi-invertibleᴱ l ⟩ Is-bi-invertibleᴱ l ↝⟨ subst (λ l → Is-bi-invertibleᴱ (erased l)) ([]-cong [ getter-equivalence→lens≡ l′ is-equiv ]) ⟩□ Is-bi-invertibleᴱ l′ □ where open Lens open Lens-combinators -- A lens that is equal to l′. l : Lens A B l = getter-equivalence→lens l′ is-equiv A≃B = EEq.⟨ get l , is-equiv ⟩ open _≃ᴱ_ A≃B -- An inverse of l. -- -- Note that the set-get and set-set proofs have been "obfuscated". -- They could have been shorter, but then it might not have been -- possible to prove l∘l⁻¹≡id and l⁻¹∘l≡id. l⁻¹ : Lens B A l⁻¹ = record { get = from ; set = λ _ → get l ; get-set = λ _ a → from (get l a) ≡⟨ left-inverse-of a ⟩∎ a ∎ ; set-get = λ b → get l (from b) ≡⟨ sym $ cong (get l) $ set-get l (from b) ⟩ get l (from (get l (from b))) ≡⟨ right-inverse-of (get l (from b)) ⟩ get l (from b) ≡⟨ right-inverse-of b ⟩∎ b ∎ ; set-set = λ b a₁ a₂ → get l a₂ ≡⟨ sym $ right-inverse-of _ ⟩ get l (from (get l a₂)) ≡⟨ sym $ cong (get l) (set-set l (from b) (get l a₁) (get l a₂)) ⟩ get l (from (get l a₂)) ≡⟨ right-inverse-of _ ⟩∎ get l a₂ ∎ } -- A blocked variant of l⁻¹. l⁻¹′ : Block "l⁻¹" → Lens B A l⁻¹′ ⊠ = l⁻¹ -- The lens l⁻¹ is a right inverse of l. @0 l∘l⁻¹≡id : ∀ b → l ∘ l⁻¹′ b ≡ id l∘l⁻¹≡id ⊠ = constant-setter→≡id ( right-inverse-of , right-inverse-of , [ (λ b₁ b₂ → get-set (l ∘ l⁻¹) b₁ b₂ ≡⟨⟩ trans (cong (get l) (get-set l⁻¹ b₁ (from b₂))) (get-set l (from b₁) b₂) ≡⟨⟩ trans (cong (get l) (left-inverse-of (from b₂))) (right-inverse-of b₂) ≡⟨ cong (λ eq → trans (cong (get l) eq) (right-inverse-of b₂)) $ sym $ right-left-lemma _ ⟩ trans (cong (get l) (cong from (right-inverse-of b₂))) (right-inverse-of b₂) ≡⟨ cong (λ eq → trans eq (right-inverse-of b₂)) $ cong-∘ _ _ (right-inverse-of b₂) ⟩ trans (cong (get l ⊚ from) (right-inverse-of b₂)) (right-inverse-of b₂) ≡⟨⟩ trans (cong (get (l ∘ l⁻¹)) (right-inverse-of b₂)) (right-inverse-of b₂) ∎) , (λ b → set-get (l ∘ l⁻¹) b ≡⟨⟩ trans (cong (get l) (set-get l (from b))) (set-get l⁻¹ b) ≡⟨⟩ trans (cong (get l) (set-get l (from b))) (trans (sym (cong (get l) (set-get l (from b)))) (trans (right-inverse-of (get l (from b))) (right-inverse-of b))) ≡⟨ trans--[trans-sym] _ _ ⟩ trans (right-inverse-of (get l (from b))) (right-inverse-of b) ≡⟨⟩ trans (right-inverse-of (get (l ∘ l⁻¹) b)) (right-inverse-of b) ∎) , (λ b b₁ b₂ → set-set (l ∘ l⁻¹) b b₁ b₂ ≡⟨⟩ trans (set-set l⁻¹ b (from b₁) (from b₂)) (cong (get l) (trans (cong (λ _ → from b₂) (get-set l⁻¹ b (from b₁))) (set-set l (from b) b₁ b₂))) ≡⟨⟩ trans (set-set l⁻¹ b (from b₁) (from b₂)) (cong (get l) (trans (cong (λ _ → from b₂) (left-inverse-of (from b₁))) (set-set l (from b) b₁ b₂))) ≡⟨ cong (λ eq → trans (set-set l⁻¹ b (from b₁) (from b₂)) (cong (get l) (trans eq (set-set l (from b) b₁ b₂)))) $ cong-const (left-inverse-of (from b₁)) ⟩ trans (set-set l⁻¹ b (from b₁) (from b₂)) (cong (get l) (trans (refl _) (set-set l (from b) b₁ b₂))) ≡⟨ cong (λ eq → trans (set-set l⁻¹ b (from b₁) (from b₂)) (cong (get l) eq)) $ trans-reflˡ (set-set l (from b) b₁ b₂) ⟩ trans (set-set l⁻¹ b (from b₁) (from b₂)) (cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨⟩ trans (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) (set-set l (from b) (get l (from b₁)) (get l (from b₂))))) (right-inverse-of _))) (cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ cong (λ b′ → trans (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) (set-set l (from b) b′ (get l (from b₂))))) (right-inverse-of _))) (cong (get l) (set-set l (from b) b₁ b₂))) $ right-inverse-of _ ⟩ trans (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) (set-set l (from b) b₁ (get l (from b₂))))) (right-inverse-of _))) (cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ cong (λ f → trans (trans (sym (f _)) (trans (sym (cong (get l) (set-set l (from b) b₁ (get l (from b₂))))) (f _))) (cong (get l) (set-set l (from b) b₁ b₂))) $ sym $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) right-inverse-of ⟩ trans (trans (sym (ext⁻¹ (⟨ext⟩ right-inverse-of) _)) (trans (sym (cong (get l) (set-set l (from b) b₁ (get l (from b₂))))) (ext⁻¹ (⟨ext⟩ right-inverse-of) _))) (cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ elim₁ (λ {f} (p : f ≡ P.id) → (q : ∀ b → f b ≡ f b) → trans (trans (sym (ext⁻¹ p (f b₂))) (trans (sym (q (f b₂))) (ext⁻¹ p (f b₂)))) (q b₂) ≡ refl _) (λ q → trans (trans (sym (ext⁻¹ (refl P.id) _)) (trans (sym (q _)) (ext⁻¹ (refl P.id) _))) (q _) ≡⟨ cong (λ eq → trans (trans (sym eq) (trans (sym (q _)) eq)) (q _)) $ ext⁻¹-refl _ ⟩ trans (trans (sym (refl _)) (trans (sym (q _)) (refl _))) (q _) ≡⟨ cong₂ (λ p r → trans (trans p r) (q _)) sym-refl (trans-reflʳ _) ⟩ trans (trans (refl _) (sym (q _))) (q _) ≡⟨ cong (λ eq → trans eq (q _)) $ trans-reflˡ (sym (q _)) ⟩ trans (sym (q _)) (q _) ≡⟨ trans-symˡ (q _) ⟩∎ refl _ ∎) (⟨ext⟩ right-inverse-of) (cong (get l) ⊚ set-set l (from b) b₁) ⟩ refl _ ∎) ] ) -- The lens l⁻¹ is a left inverse of l. @0 l⁻¹∘l≡id : ∀ b → l⁻¹′ b ∘ l ≡ id l⁻¹∘l≡id ⊠ = constant-setter→≡id ( left-inverse-of , left-inverse-of , [ (λ a₁ a₂ → get-set (l⁻¹ ∘ l) a₁ a₂ ≡⟨⟩ trans (cong from (get-set l a₁ (to a₂))) (get-set l⁻¹ (get l a₁) a₂) ≡⟨⟩ trans (cong from (right-inverse-of (to a₂))) (left-inverse-of a₂) ≡⟨ cong (λ eq → trans (cong from eq) (left-inverse-of _)) $ sym $ left-right-lemma _ ⟩ trans (cong from (cong (get l) (left-inverse-of a₂))) (left-inverse-of a₂) ≡⟨ cong (λ eq → trans eq (left-inverse-of _)) $ cong-∘ _ _ (left-inverse-of _) ⟩ trans (cong (from ⊚ get l) (left-inverse-of a₂)) (left-inverse-of a₂) ≡⟨⟩ trans (cong (get (l⁻¹ ∘ l)) (left-inverse-of a₂)) (left-inverse-of a₂) ∎) , (λ a → let lemma₁ = cong from (trans (sym (cong (get l) (set-get l (from (get l a))))) (trans (right-inverse-of _) (right-inverse-of _))) ≡⟨ cong-trans _ _ (trans _ (right-inverse-of _)) ⟩ trans (cong from (sym (cong (get l) (set-get l (from (get l a)))))) (cong from (trans (right-inverse-of _) (right-inverse-of _))) ≡⟨ cong (λ eq → trans (cong from eq) (cong from (trans (right-inverse-of _) (right-inverse-of _)))) $ sym $ cong-sym _ (set-get l (from (get l a))) ⟩ trans (cong from (cong (get l) (sym (set-get l (from (get l a)))))) (cong from (trans (right-inverse-of _) (right-inverse-of _))) ≡⟨ cong₂ trans (cong-∘ _ _ (sym (set-get l (from (get l a))))) (cong-trans _ _ (right-inverse-of _)) ⟩ trans (cong (from ⊚ get l) (sym (set-get l (from (get l a))))) (trans (cong from (right-inverse-of _)) (cong from (right-inverse-of _))) ≡⟨ cong₂ (λ p q → trans (cong (from ⊚ get l) (sym (set-get l (from (get l a))))) (trans p q)) (right-left-lemma _) (right-left-lemma _) ⟩∎ trans (cong (from ⊚ get l) (sym (set-get l (from (get l a))))) (trans (left-inverse-of _) (left-inverse-of _)) ∎ f = from ⊚ get l lemma₂ : ∀ _ → _ lemma₂ = λ a → trans (left-inverse-of (f a)) (left-inverse-of a) ≡⟨ cong (λ g → trans (g (f a)) (g a)) $ sym $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) left-inverse-of ⟩∎ trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a)) (ext⁻¹ (⟨ext⟩ left-inverse-of) a) ∎ lemma₃ = trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a) ≡⟨ cong₂ trans (ext⁻¹-refl _) (ext⁻¹-refl _) ⟩ trans (refl _) (refl _) ≡⟨ trans-refl-refl ⟩∎ refl _ ∎ in trans (cong from (set-get l⁻¹ (get l a))) (set-get l a) ≡⟨⟩ trans (cong from (trans (sym (cong (get l) (set-get l (from (get l a))))) (trans (right-inverse-of _) (right-inverse-of _)))) (set-get l a) ≡⟨ cong (λ eq → trans eq (set-get l a)) lemma₁ ⟩ trans (trans (cong f (sym (set-get l (f a)))) (trans (left-inverse-of (f (f a))) (left-inverse-of (f a)))) (set-get l a) ≡⟨ cong (λ eq → trans (trans (cong f (sym (set-get l (f a)))) eq) (set-get l a)) $ lemma₂ _ ⟩ trans (trans (cong f (sym (set-get l (f a)))) (trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f (f a))) (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a)))) (set-get l a) ≡⟨ elim₁ (λ {f} (p : f ≡ P.id) → (q : ∀ a → f a ≡ a) → trans (trans (cong f (sym (q (f a)))) (trans (ext⁻¹ p (f (f a))) (ext⁻¹ p (f a)))) (q a) ≡ trans (ext⁻¹ p (f a)) (ext⁻¹ p a)) (λ q → trans (trans (cong P.id (sym (q a))) (trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a))) (q a) ≡⟨ cong₂ (λ p r → trans (trans p r) (q a)) (sym $ cong-id _) lemma₃ ⟩ trans (trans (sym (q a)) (refl _)) (q a) ≡⟨ cong (flip trans _) $ trans-reflʳ _ ⟩ trans (sym (q a)) (q a) ≡⟨ trans-symˡ (q a) ⟩ refl _ ≡⟨ sym lemma₃ ⟩∎ trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a) ∎) (⟨ext⟩ left-inverse-of) (set-get l) ⟩ trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a)) (ext⁻¹ (⟨ext⟩ left-inverse-of) a) ≡⟨ sym $ lemma₂ _ ⟩ trans (left-inverse-of (f a)) (left-inverse-of a) ≡⟨⟩ trans (left-inverse-of (get (l⁻¹ ∘ l) a)) (left-inverse-of a) ∎) , (λ a a₁ a₂ → let q = set-set l a (get l a₁) (get l a₂) lemma = cong from (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) q)) (right-inverse-of _))) ≡⟨ cong-trans _ _ (trans (sym (cong (get l) q)) (right-inverse-of _)) ⟩ trans (cong from (sym (right-inverse-of _))) (cong from (trans (sym (cong (get l) q)) (right-inverse-of _))) ≡⟨ cong₂ trans (cong-sym _ (right-inverse-of _)) (cong-trans _ _ (right-inverse-of _)) ⟩ trans (sym (cong from (right-inverse-of _))) (trans (cong from (sym (cong (get l) q))) (cong from (right-inverse-of _))) ≡⟨ cong₂ (λ p r → trans (sym p) (trans (cong from (sym (cong (get l) q))) r)) (right-left-lemma _) (right-left-lemma _) ⟩ trans (sym (left-inverse-of _)) (trans (cong from (sym (cong (get l) q))) (left-inverse-of _)) ≡⟨ cong (λ eq → trans (sym (left-inverse-of _)) (trans eq (left-inverse-of _))) $ cong-sym _ (cong (get l) q) ⟩ trans (sym (left-inverse-of _)) (trans (sym (cong from (cong (get l) q))) (left-inverse-of _)) ≡⟨ cong (λ eq → trans (sym (left-inverse-of _)) (trans (sym eq) (left-inverse-of _))) $ cong-∘ _ _ q ⟩ trans (sym (left-inverse-of _)) (trans (sym (cong (from ⊚ get l) q)) (left-inverse-of _)) ≡⟨ cong (λ g → trans (sym (g _)) (trans (sym (cong (from ⊚ get l) q)) (g _))) $ sym $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) left-inverse-of ⟩∎ trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) _)) (trans (sym (cong (from ⊚ get l) q)) (ext⁻¹ (⟨ext⟩ left-inverse-of) _)) ∎ f = from ⊚ get l in set-set (l⁻¹ ∘ l) a a₁ a₂ ≡⟨⟩ trans (set-set l a (get l a₁) (get l a₂)) (cong from (trans (cong (λ _ → get l a₂) (right-inverse-of (get l a₁))) (set-set l⁻¹ (get l a) a₁ a₂))) ≡⟨ cong (λ eq → trans (set-set l a (get l a₁) _) (cong from (trans eq (set-set l⁻¹ (get l a) a₁ _)))) $ cong-const (right-inverse-of (get l a₁)) ⟩ trans (set-set l a (get l a₁) (get l a₂)) (cong from (trans (refl _) (set-set l⁻¹ (get l a) a₁ a₂))) ≡⟨ cong (λ eq → trans (set-set l a (get l a₁) _) (cong from eq)) $ trans-reflˡ (set-set l⁻¹ (get l a) a₁ _) ⟩ trans (set-set l a (get l a₁) (get l a₂)) (cong from (set-set l⁻¹ (get l a) a₁ a₂)) ≡⟨⟩ trans (set-set l a (get l a₁) (get l a₂)) (cong from (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) (set-set l (from (get l a)) (get l a₁) (get l a₂)))) (right-inverse-of _)))) ≡⟨ cong (λ a′ → trans q (cong from (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) (set-set l a′ (get l a₁) (get l a₂)))) (right-inverse-of _))))) $ left-inverse-of _ ⟩ trans q (cong from (trans (sym (right-inverse-of _)) (trans (sym (cong (get l) q)) (right-inverse-of _)))) ≡⟨ cong (trans q) lemma ⟩ trans q (trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂))) (trans (sym (cong f q)) (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂)))) ≡⟨ elim₁ (λ {f} (p : f ≡ P.id) → (q : f a₂ ≡ f a₂) → trans q (trans (sym (ext⁻¹ p (f a₂))) (trans (sym (cong f q)) (ext⁻¹ p (f a₂)))) ≡ refl _) (λ q → trans q (trans (sym (ext⁻¹ (refl P.id) a₂)) (trans (sym (cong P.id q)) (ext⁻¹ (refl P.id) a₂))) ≡⟨ cong (λ eq → trans q (trans (sym eq) (trans (sym (cong P.id q)) eq))) $ ext⁻¹-refl _ ⟩ trans q (trans (sym (refl _)) (trans (sym (cong P.id q)) (refl _))) ≡⟨ cong₂ (λ p r → trans q (trans p r)) sym-refl (trans-reflʳ _) ⟩ trans q (trans (refl _) (sym (cong P.id q))) ≡⟨ cong (trans q) $ trans-reflˡ (sym (cong P.id q)) ⟩ trans q (sym (cong P.id q)) ≡⟨ cong (λ eq → trans q (sym eq)) $ sym $ cong-id q ⟩ trans q (sym q) ≡⟨ trans-symʳ q ⟩∎ refl _ ∎) (⟨ext⟩ left-inverse-of) q ⟩ refl _ ∎) ] ) -- There is an equivalence with erased proofs between "l is -- bi-invertible (with erased proofs) " and "the getter of l is an -- equivalence (with erased proofs)". Is-bi-invertibleᴱ≃ᴱIs-equivalenceᴱ-get : (l : Lens A B) → Is-bi-invertibleᴱ l ≃ᴱ Is-equivalenceᴱ (Lens.get l) Is-bi-invertibleᴱ≃ᴱIs-equivalenceᴱ-get l = EEq.⇔→≃ᴱ (BM.Is-bi-invertibleᴱ-propositional l) (EEq.Is-equivalenceᴱ-propositional ext _) (Is-bi-invertibleᴱ→Is-equivalenceᴱ-get l) (Is-equivalenceᴱ-get→Is-bi-invertibleᴱ l) -- There is in general no split surjection from equivalences (with -- erased proofs) to lenses that are bi-invertible (with erased -- proofs), if the right-to-left direction of the split surjection is -- required to map bi-invertible lenses to their getter functions -- (assuming univalence). ¬≃ᴱ↠≊ᴱ : Univalence lzero → ∃ λ (A : Set) → ¬ ∃ λ (≃ᴱ↠≊ᴱ : (A ≃ᴱ A) ↠ (A ≊ᴱ A)) → (A≊ᴱA@(l , _) : A ≊ᴱ A) → _≃ᴱ_.to (_↠_.from ≃ᴱ↠≊ᴱ A≊ᴱA) ≡ Lens.get l ¬≃ᴱ↠≊ᴱ univ = let A , ¬≃ᴱ↠ = ¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get univ in A , Stable-¬ _ [ (∃ λ (≃ᴱ↠≊ᴱ : (A ≃ᴱ A) ↠ (A ≊ᴱ A)) → (A≊ᴱA@(l , _) : A ≊ᴱ A) → _≃ᴱ_.to (_↠_.from ≃ᴱ↠≊ᴱ A≊ᴱA) ≡ Lens.get l) ↝⟨ Σ-map ((∃-cong λ l → _≃_.surjection $ EEq.≃ᴱ→≃ $ Is-bi-invertibleᴱ≃ᴱIs-equivalenceᴱ-get l) F.∘_) (λ hyp _ → hyp _) ⟩ (∃ λ (f : (A ≃ᴱ A) ↠ (∃ λ (l : Lens A A) → Is-equivalenceᴱ (Lens.get l))) → ∀ p → _≃ᴱ_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ ¬≃ᴱ↠ ⟩□ ⊥ □ ] -- There is in general no equivalence with erased proofs between -- equivalences (with erased proofs) and lenses that are bi-invertible -- (with erased proofs), if the right-to-left direction of the -- equivalence is required to map bi-invertible lenses to their getter -- functions (assuming univalence). ¬≃ᴱ≃ᴱ≊ᴱ : Univalence lzero → ∃ λ (A : Set) → ¬ ∃ λ (≃ᴱ≃ᴱ≊ᴱ : (A ≃ᴱ A) ≃ᴱ (A ≊ᴱ A)) → (A≊ᴱA@(l , _) : A ≊ᴱ A) → _≃ᴱ_.to (_≃ᴱ_.from ≃ᴱ≃ᴱ≊ᴱ A≊ᴱA) ≡ Lens.get l ¬≃ᴱ≃ᴱ≊ᴱ univ = let A , ¬≃ᴱ↠ = ¬≃ᴱ↠≊ᴱ univ in A , Stable-¬ _ [ (∃ λ (≃ᴱ≃ᴱ≊ᴱ : (A ≃ᴱ A) ≃ᴱ (A ≊ᴱ A)) → (A≊ᴱA@(l , _) : A ≊ᴱ A) → _≃ᴱ_.to (_≃ᴱ_.from ≃ᴱ≃ᴱ≊ᴱ A≊ᴱA) ≡ Lens.get l) ↝⟨ Σ-map (_≃_.surjection ⊚ EEq.≃ᴱ→≃) P.id ⟩ (∃ λ (≃ᴱ↠≊ᴱ : (A ≃ᴱ A) ↠ (A ≊ᴱ A)) → (A≊ᴱA@(l , _) : A ≊ᴱ A) → _≃ᴱ_.to (_↠_.from ≃ᴱ↠≊ᴱ A≊ᴱA) ≡ Lens.get l) ↝⟨ ¬≃ᴱ↠ ⟩□ ⊥ □ ]
{ "alphanum_fraction": 0.374027919, "avg_line_length": 45.8180673591, "ext": "agda", "hexsha": "a2e2f54a7ca6551f9518511ad6b32ec84834ee07", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Saizan/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent/Traditional/Erased.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Saizan/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent/Traditional/Erased.agda", "max_line_length": 168, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Saizan/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent/Traditional/Erased.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 48260, "size": 145564 }
------------------------------------------------------------------------------ -- LTC-PCF terms properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Base.Properties where open import LTC-PCF.Base ------------------------------------------------------------------------------ -- Congruence properties ·-leftCong : ∀ {m n o} → m ≡ n → m · o ≡ n · o ·-leftCong refl = refl ·-rightCong : ∀ {m n o} → n ≡ o → m · n ≡ m · o ·-rightCong refl = refl succCong : ∀ {m n} → m ≡ n → succ₁ m ≡ succ₁ n succCong refl = refl predCong : ∀ {m n} → m ≡ n → pred₁ m ≡ pred₁ n predCong refl = refl ------------------------------------------------------------------------------ S≢0 : ∀ {n} → succ₁ n ≢ zero S≢0 S≡0 = 0≢S (sym S≡0) -- We added Common.Relation.Binary.PropositionalEquality.cong, so this -- theorem is not necessary. -- x≡y→Sx≡Sy : ∀ {m n} → m ≡ n → succ₁ m ≡ -- succ₁ n x≡y→Sx≡Sy refl = refl
{ "alphanum_fraction": 0.409455843, "avg_line_length": 29.5, "ext": "agda", "hexsha": "cb42725ccb89e4e1ee0f6e590e1610bcc6f8d9bb", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Base/Properties.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Base/Properties.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Base/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 305, "size": 1121 }
{-# OPTIONS --safe #-} module README where -- Formalization for "Decidability of Conversion for Setoid Type Theory" -- Git repository: https://github.com/CoqHott/logrel-mltt/ ------------------ -- INTRODUCTION -- ------------------ -- A minimal library necessary for formalization: -- The empty type and its elimination rule. import Tools.Empty -- The unit type. import Tools.Unit -- Sum type. import Tools.Sum -- Product type. import Tools.Product -- Identity function and composition. import Tools.Function -- Negation and decidability type. import Tools.Nullary -- Propositional equality and its properties. import Tools.PropositionalEquality -- Natural numbers and decidability of equality. import Tools.Nat -- Lists definition import Tools.List --------------------------- -- LANGUAGE INTRODUCTION -- --------------------------- -- Syntax and semantics of weakening and substitution. import Definition.Untyped -- Propositional equality properties: Equalities between expressions, -- weakenings, substitutions and their combined composition. -- (These lemmas are not in the paper.) import Definition.Untyped.Properties -- Judgements: Typing rules, conversion, reduction rules -- and well-formed substitutions and respective equality. import Definition.Typed -- Well-formed context extraction and reduction properties. import Definition.Typed.Properties -- Well-formed weakening and its properties. import Definition.Typed.Weakening ------------------------------ -- KRIPKE LOGICAL RELATIONS -- ------------------------------ -- Generic equality relation definition. import Definition.Typed.EqualityRelation -- The judgemental instance of the generic equality. import Definition.Typed.EqRelInstance -- Logical relations definitions. import Definition.LogicalRelation -- Properties of logical relation: -- Reflexivity of the logical relation. import Definition.LogicalRelation.Properties.Reflexivity -- Escape lemma for the logical relation. import Definition.LogicalRelation.Properties.Escape -- Shape view of two or more types. import Definition.LogicalRelation.ShapeView -- Proof irrelevance for the logical relation. import Definition.LogicalRelation.Irrelevance -- Weakening of logical relation judgements. import Definition.LogicalRelation.Weakening -- Conversion of the logical relation. import Definition.LogicalRelation.Properties.Conversion -- Symmetry of the logical relation. import Definition.LogicalRelation.Properties.Symmetry -- Transitvity of the logical relation. import Definition.LogicalRelation.Properties.Transitivity -- Neutral introduction in the logical relation. import Definition.LogicalRelation.Properties.Neutral -- Weak head expansion of the logical relation. import Definition.LogicalRelation.Properties.Reduction -- Application in the logical relation. import Definition.LogicalRelation.Application -- Validity judgements definitions import Definition.LogicalRelation.Substitution -- Properties of validity judgements: -- Proof irrelevance for the validity judgements. import Definition.LogicalRelation.Substitution.Irrelevance -- Properties about valid substitutions: -- * Substitution well-formedness. -- * Substitution weakening. -- * Substitution lifting. -- * Identity substitution. -- * Reflexivity, symmetry and transitivity of substitution equality. import Definition.LogicalRelation.Substitution.Properties -- Single term substitution of validity judgements. import Definition.LogicalRelation.Substitution.Introductions.SingleSubst -- The fundamental theorem. import Definition.LogicalRelation.Fundamental -- Certain cases of the fundamental theorem -- Validity of the universes import Definition.LogicalRelation.Substitution.Introductions.Universe -- Validity of the empty type and its eliminator import Definition.LogicalRelation.Substitution.Introductions.Empty import Definition.LogicalRelation.Substitution.Introductions.Emptyrec -- Validity of natural numbers and its eliminator import Definition.LogicalRelation.Substitution.Introductions.Nat import Definition.LogicalRelation.Substitution.Introductions.Natrec -- Validity of Π-types, abstractions and applications import Definition.LogicalRelation.Substitution.Introductions.Pi import Definition.LogicalRelation.Substitution.Introductions.Application import Definition.LogicalRelation.Substitution.Introductions.Lambda -- Validity of ∃-types, pairs and projections import Definition.LogicalRelation.Substitution.Introductions.Sigma import Definition.LogicalRelation.Substitution.Introductions.Pair import Definition.LogicalRelation.Substitution.Introductions.Fst import Definition.LogicalRelation.Substitution.Introductions.Snd -- Validity of type casting and proof-irrelevant transport import Definition.LogicalRelation.Substitution.Introductions.Castlemmas import Definition.LogicalRelation.Substitution.Introductions.Cast import Definition.LogicalRelation.Substitution.Introductions.CastPi import Definition.LogicalRelation.Substitution.Introductions.Transp -- Validity of identity types, and reflexivity import Definition.LogicalRelation.Substitution.Introductions.Idlemmas import Definition.LogicalRelation.Substitution.Introductions.IdUniv import Definition.LogicalRelation.Substitution.Introductions.IdNat import Definition.LogicalRelation.Substitution.Introductions.IdPi import Definition.LogicalRelation.Substitution.Introductions.IdUPiPi import Definition.LogicalRelation.Substitution.Introductions.IdRefl -- Reducibility of well-formedness. import Definition.LogicalRelation.Fundamental.Reducibility -- Consequences of the fundamental theorem: -- Consistency (no proof of False in the empty context) implies -- canonicity of the system. import Definition.Typed.Consequences.Canonicity -- Injectivity of Π-types. import Definition.Typed.Consequences.Injectivity -- Syntactic validitiy of the system. import Definition.Typed.Consequences.Syntactic -- All types and terms fully reduce to WHNF. import Definition.Typed.Consequences.Reduction -- Strong equality of types. import Definition.Typed.Consequences.Equality -- Syntactic inequality of types. import Definition.Typed.Consequences.Inequality -- Substitution in judgements and substitution composition. import Definition.Typed.Consequences.Substitution -- Uniqueness of the types of neutral terms. import Definition.Typed.Consequences.NeTypeEq -- Consistency (0 is not judgementally equal to 1) of the type theory. import Definition.Typed.Consequences.Consistency -- Types can only belong to one universe (because of annotations) -- also various inequalities for conversion import Definition.Typed.Consequences.PiNorm import Definition.Typed.Consequences.RelevanceUnicity -- Terms can only admit one type import Definition.Typed.Consequences.TypeUnicity -- Various inversion results import Definition.Typed.Consequences.TypeUnicity ------------------ -- DECIDABILITY -- ------------------ -- Conversion algorithm definition. import Definition.Conversion -- Properties of conversion algorithm: -- Context equality and its properties: -- * Context conversion of typing judgements. -- * Context conversion of reductions and algorithmic equality. -- * Reflexivity and symmetry of context equality. import Definition.Conversion.Stability -- Soundness of the conversion algorithm. import Definition.Conversion.Soundness -- Results around normalisation of reflexive terms import Definition.Conversion.FullReduction -- Conversion property of algorithmic equality. import Definition.Conversion.Conversion -- Decidability of the conversion algorithm. import Definition.Conversion.Decidable -- Symmetry of the conversion algorithm. import Definition.Conversion.Symmetry -- Transitivity of the conversion algorithm. import Definition.Conversion.Transitivity -- Weakening of the conversion algorithm. import Definition.Conversion.Weakening -- WHNF and neutral lifting of the conversion algorithm. import Definition.Conversion.Lift -- Generic equality relation instance for the conversion algorithm. import Definition.Conversion.EqRelInstance -- Completeness of conversion algorithm. import Definition.Conversion.Consequences.Completeness -- Decidability of judgemental conversion. import Definition.Conversion.HelperDecidable import Definition.Typed.Decidable
{ "alphanum_fraction": 0.8130502955, "avg_line_length": 31.2867924528, "ext": "agda", "hexsha": "abc12859b4a0ff21ac2d004ace82d6f5f3033bb9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "README.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "README.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 1577, "size": 8291 }
open import Data.Nat using (suc) open import Substitution using (rename-subst-commute; subst-commute) open import DeBruijn infix 3 _—→_ data _—→_ : ∀ {n} → Term n → Term n → Set where —→-ξₗ : ∀ {n} {M M′ N : Term n} → M —→ M′ --------------- → M · N —→ M′ · N —→-ξᵣ : ∀ {n} {M N N′ : Term n} → N —→ N′ --------------- → M · N —→ M · N′ —→-ƛ : ∀ {n} {M M′ : Term (suc n)} → M —→ M′ ----------- → ƛ M —→ ƛ M′ —→-β : ∀ {n} {M : Term (suc n)} {N : Term n} -------------------- → (ƛ M) · N —→ M [ N ] infix 3 _—↠_ infixr 3 _—→⟨_⟩_ infix 4 _∎ data _—↠_ : ∀ {n} → Term n → Term n → Set where _∎ : ∀ {n} (M : Term n) ------ → M —↠ M _—→⟨_⟩_ : ∀ {n} {L N : Term n} (M : Term n) → M —→ L → L —↠ N ------ → M —↠ N —↠-trans : ∀ {n} {M L N : Term n} → M —↠ L → L —↠ N ------ → M —↠ N —↠-trans (M ∎) M—↠M = M—↠M —↠-trans (M —→⟨ M—→L′ ⟩ L′—↠L) L—↠N = M —→⟨ M—→L′ ⟩ (—↠-trans L′—↠L L—↠N ) —↠-congₗ : ∀ {n} {M M′ R : Term n} → M —↠ M′ --------------- → M · R —↠ M′ · R —↠-congₗ {M = M}{R = R} (M ∎) = M · R ∎ —↠-congₗ {M = M}{R = R} (M —→⟨ M—→L ⟩ L—↠M′) = M · R —→⟨ —→-ξₗ M—→L ⟩ —↠-congₗ L—↠M′ —↠-congᵣ : ∀ {n} {M M′ L : Term n} → M —↠ M′ --------------- → L · M —↠ L · M′ —↠-congᵣ {M = M}{L = L} (M ∎) = L · M ∎ —↠-congᵣ {M = M}{L = L} (M —→⟨ M—→L ⟩ L—↠M′) = L · M —→⟨ —→-ξᵣ M—→L ⟩ —↠-congᵣ L—↠M′ —↠-cong-ƛ : ∀ {n} {M M′ : Term (suc n)} → M —↠ M′ ----------- → ƛ M —↠ ƛ M′ —↠-cong-ƛ (M ∎) = ƛ M ∎ —↠-cong-ƛ (M —→⟨ M—→L ⟩ L—↠N′) = ƛ M —→⟨ —→-ƛ M—→L ⟩ —↠-cong-ƛ L—↠N′ —↠-cong : ∀ {n} {M M′ N N′ : Term n} → M —↠ M′ → N —↠ N′ ---------------- → M · N —↠ M′ · N′ —↠-cong M—↠M′ N—↠N′ = —↠-trans (—↠-congₗ M—↠M′) (—↠-congᵣ N—↠N′)
{ "alphanum_fraction": 0.3076502732, "avg_line_length": 21.0344827586, "ext": "agda", "hexsha": "ff41060106ec9473ece7d8ffc241235a73bdf59c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iwilare/church-rosser", "max_forks_repo_path": "Beta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iwilare/church-rosser", "max_issues_repo_path": "Beta.agda", "max_line_length": 84, "max_stars_count": 5, "max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iwilare/church-rosser", "max_stars_repo_path": "Beta.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z", "max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z", "num_tokens": 1059, "size": 1830 }
------------------------------------------------------------------------ -- Instantiates the ring solver with two copies of the same ring ------------------------------------------------------------------------ open import Algebra.RingSolver.AlmostCommutativeRing module Algebra.RingSolver.Simple (r : AlmostCommutativeRing) where open AlmostCommutativeRing r import Algebra.RingSolver as R open R rawRing r (-raw-almostCommutative⟶ r) public
{ "alphanum_fraction": 0.5538116592, "avg_line_length": 37.1666666667, "ext": "agda", "hexsha": "faa5ed3d88c6bfb8f43693ed5fa072de8ebe2447", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Algebra/RingSolver/Simple.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Algebra/RingSolver/Simple.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Algebra/RingSolver/Simple.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 82, "size": 446 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Literals where module Definition where module Natural where open import Light.Literals.Definition.Natural public module Negative where open import Light.Literals.Definition.Negative public module Natural where open import Light.Literals.Natural public module Level where open import Light.Literals.Level public module Integer where open import Light.Literals.Integer public
{ "alphanum_fraction": 0.8091286307, "avg_line_length": 40.1666666667, "ext": "agda", "hexsha": "058c0effaeecb12834432f9b9fc1c10a4a58873f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Literals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Literals.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Literals.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 92, "size": 482 }
module Eq.LogicalTheory where open import Prelude open import T open import DynTheory open import SubstTheory open import Contexts open import Eq.Defs open import Eq.KleeneTheoryEarly -- Closed equivalence is contained in open closed-logical-imp-open : ∀{A} → LogicalEq A ⊆ OLogicalEq [] A closed-logical-imp-open {A} {e} {e'} leq {γ} {γ'} η = ID.coe2 (LogicalEq A) (symm (closed-subst γ e)) (symm (closed-subst γ' e')) leq -- Theory about logical equivalence logical-sym : ∀{A} → Symmetric (LogicalEq A) logical-sym {nat} eq = kleene-sym eq logical-sym {A ⇒ B} equiv = λ e₁ e₁' x → logical-sym {B} (equiv e₁' e₁ (logical-sym {A} x)) logical-trans : ∀{A} → Transitive (LogicalEq A) logical-trans {nat} eq1 eq2 = kleene-trans eq1 eq2 logical-trans {A ⇒ B} {e} {e'} {e''} eq1 eq2 = λ e₁ e₁' x → logical-trans (eq1 e₁ e₁ (logical-trans x (logical-sym x))) (eq2 e₁ e₁' x) logicalγ-sym : ∀{Γ} → Symmetric (LogicalEqΓ Γ) logicalγ-sym η n = logical-sym (η n) logicalγ-trans : ∀{Γ} → Transitive (LogicalEqΓ Γ) logicalγ-trans η η' n = logical-trans (η n) (η' n) -- Open logical theory ological-sym : ∀{Γ} {A} → Symmetric (OLogicalEq Γ A) ological-sym eq η = logical-sym (eq (logicalγ-sym η)) -- This uses the trick where, despite not having reflexivity yet, -- we show that some element x is reflexive by using symmetry and -- transitivity on a proof of x ~ y that we have. -- I find this trick hilarious. ological-trans : ∀{Γ} {A} → Transitive (OLogicalEq Γ A) ological-trans eq eq' η = logical-trans (eq η) (eq' (logicalγ-trans (logicalγ-sym η) η)) logical-converse-evaluation-1 : ∀{A} {e e' d : TCExp A} → e ~ e' :: A → d ~>* e → d ~ e' :: A logical-converse-evaluation-1 {nat} eq eval = kleene-converse-evaluation eq eval logical-converse-evaluation-1 {A ⇒ B} eq eval = λ e₁ e₁' x → logical-converse-evaluation-1 (eq e₁ e₁' x) (eval-compat step-app-l eval) logical-converse-evaluation : ∀{A} {e e' d d' : TCExp A} → e ~ e' :: A → d ~>* e → d' ~>* e' → d ~ d' :: A logical-converse-evaluation eq eval1 eval2 with logical-converse-evaluation-1 eq eval1 ... | eq1 with logical-converse-evaluation-1 (logical-sym eq1) eval2 ... | eq2 = logical-sym eq2 -- This is the hard one. ological-refl : ∀{Γ} {A} → (e : TExp Γ A) → Γ ⊢ e ~ e :: A ological-refl (var x) η = η x ological-refl {Γ} {A ⇒ B} (Λ e) {γ = γ} {γ' = γ'} η = lam-case where lam-case : (e₁ e₁' : TExp [] A) → LogicalEq A e₁ e₁' → LogicalEq B (Λ (ssubst (liftγ γ) e) $ e₁) (Λ (ssubst (liftγ γ') e) $ e₁') lam-case e₁ e₁' arg-eq with ological-refl e (extendLogicalEQΓ η arg-eq) ... | equiv with combine-subst-noob γ e e₁ | combine-subst-noob γ' e e₁' ... | eq1 | eq2 with ID.coe2 (LogicalEq B) eq1 eq2 equiv ... | equiv' = logical-converse-evaluation equiv' (eval-step step-beta) (eval-step step-beta) ological-refl (e $ e') η with ological-refl e η | ological-refl e' η ... | eq-e | eq-e' = eq-e _ _ eq-e' ological-refl zero η = kleeneq zero val-zero eval-refl eval-refl ological-refl (suc e) η with ological-refl e η ... | kleeneq n val S1 S2 = kleeneq (suc n) (val-suc val) (eval-compat step-suc S1) (eval-compat step-suc S2) ological-refl {Γ} {A} (rec e e0 es) {γ = γ} {γ' = γ'} η with ological-refl e η ... | kleeneq n val E1 E2 = logical-converse-evaluation (inner val) (eval-compat step-rec E1) (eval-compat step-rec E2) where inner : {n : TNat} (val : TVal n) → ((rec n (ssubst γ e0) (ssubst (liftγ γ) es)) ~ (rec n (ssubst γ' e0) (ssubst (liftγ γ') es)) :: A) inner val-zero = logical-converse-evaluation (ological-refl e0 η) (eval-step step-rec-z) (eval-step step-rec-z) inner (val-suc val) with ological-refl es (extendLogicalEQΓ η (inner val)) ... | equiv with combine-subst-noob γ es _ | combine-subst-noob γ' es _ ... | eq1 | eq2 with ID.coe2 (LogicalEq A) eq1 eq2 equiv ... | equiv' = logical-converse-evaluation equiv' (eval-step (step-rec-s val)) (eval-step (step-rec-s val)) ological-refl' : ∀{Γ} {A} → Reflexive (OLogicalEq Γ A) ological-refl' {x = x} = ological-refl x -- Extend it back to closed terms and to substitutions logical-refl : ∀{A} → Reflexive (LogicalEq A) logical-refl {x = e} with ological-refl e (emptyLogicalEqΓ {γ = emptyγ} {γ' = emptyγ}) ... | leq = ID.coe2 (LogicalEq _) (subid e) (subid e) leq logicalγ-refl : ∀{Γ} → Reflexive (LogicalEqΓ Γ) logicalγ-refl n = logical-refl logical-is-equivalence : ∀{A : TTp} → IsEquivalence (LogicalEq A) logical-is-equivalence = record { refl_ = logical-refl ; sym_ = logical-sym ; trans_ = logical-trans } logicalγ-is-equivalence : ∀{Γ : Ctx} → IsEquivalence (LogicalEqΓ Γ) logicalγ-is-equivalence = record { refl_ = λ {γ} → logicalγ-refl {_} {γ} ; sym_ = logicalγ-sym ; trans_ = logicalγ-trans } -- I do not understand why these need to be eta expanded ological-is-equivalence : ∀{Γ : Ctx} {A : TTp} → IsEquivalence (OLogicalEq Γ A) ological-is-equivalence = record { refl_ = λ {e} → ological-refl' {_} {_} {e} ; sym_ = λ {e e'} → ological-sym {_} {_} {e} {e'} ; trans_ = λ {e e' e''} → ological-trans {_} {_} {e} {e'} {e''}} -- This is basically the same proof as reflexivity...? -- That's weird. ological-is-congruence : Congruence OLogicalEq ological-is-congruence leq ∘ η = leq η ological-is-congruence leq (e₁ e$ C) η with ological-is-congruence leq C η | ological-refl e₁ η ... | equiv-rhs | equiv-lhs = equiv-lhs _ _ equiv-rhs ological-is-congruence leq (C $e e₂) η with ological-is-congruence leq C η | ological-refl e₂ η ... | equiv-lhs | equiv-rhs = equiv-lhs _ _ equiv-rhs ological-is-congruence {e = e} {e' = e'} leq (Λ C) {γ = γ} {γ' = γ'} η = body where -- I feel like I shouldn't have to give so much type information here. body : (e₁ e₁' : TExp [] _) → LogicalEq _ e₁ e₁' → LogicalEq _ (Λ (ssubst (liftγ _) (C < e >)) $ e₁) (Λ (ssubst (liftγ _) (C < e' >)) $ e₁') body e₁ e₁' arg-eq with ological-is-congruence {e = e} {e' = e'} leq C (extendLogicalEQΓ η arg-eq) ... | equiv with combine-subst-noob γ (C < e >) e₁ | combine-subst-noob γ' (C < e' >) e₁' ... | eq1 | eq2 with ID.coe2 (LogicalEq _) eq1 eq2 equiv ... | equiv' = logical-converse-evaluation equiv' (eval-step step-beta) (eval-step step-beta) ological-is-congruence leq (suc C) η with ological-is-congruence leq C η ... | kleeneq n val S1 S2 = kleeneq (suc n) (val-suc val) (eval-compat step-suc S1) (eval-compat step-suc S2) -- Is there a way to abstract out all the shit in these three bits? ological-is-congruence {e = e} {e' = e'} leq {A' = A'} (rec1 C e0 es) {γ = γ} {γ' = γ'} η with ological-is-congruence leq C η ... | kleeneq n val E1 E2 = logical-converse-evaluation (inner val) (eval-compat step-rec E1) (eval-compat step-rec E2) where inner : {n : TNat} (val : TVal n) → ((rec n (ssubst γ e0) (ssubst (liftγ γ) es)) ~ (rec n (ssubst γ' e0) (ssubst (liftγ γ') es)) :: A') inner val-zero = logical-converse-evaluation (ological-refl e0 η) (eval-step step-rec-z) (eval-step step-rec-z) inner (val-suc val) with ological-refl es (extendLogicalEQΓ η (inner val)) ... | equiv with combine-subst-noob γ es _ | combine-subst-noob γ' es _ ... | eq1 | eq2 with ID.coe2 (LogicalEq A') eq1 eq2 equiv ... | equiv' = logical-converse-evaluation equiv' (eval-step (step-rec-s val)) (eval-step (step-rec-s val)) ological-is-congruence {e = e} {e' = e'} leq {A' = A'} (rec2 en C es) {γ = γ} {γ' = γ'} η with ological-refl en η ... | kleeneq n val E1 E2 = logical-converse-evaluation (inner val) (eval-compat step-rec E1) (eval-compat step-rec E2) where inner : {n : TNat} (val : TVal n) → ((rec n (ssubst γ (C < e >)) (ssubst (liftγ γ) es)) ~ (rec n (ssubst γ' (C < e' >)) (ssubst (liftγ γ') es)) :: A') inner val-zero = logical-converse-evaluation (ological-is-congruence leq C η) (eval-step step-rec-z) (eval-step step-rec-z) inner (val-suc val) with ological-refl es (extendLogicalEQΓ η (inner val)) ... | equiv with combine-subst-noob γ es _ | combine-subst-noob γ' es _ ... | eq1 | eq2 with ID.coe2 (LogicalEq A') eq1 eq2 equiv ... | equiv' = logical-converse-evaluation equiv' (eval-step (step-rec-s val)) (eval-step (step-rec-s val)) ological-is-congruence {e = e} {e' = e'} leq {A' = A'} (rec3 en e0 C) {γ = γ} {γ' = γ'} η with ological-refl en η ... | kleeneq n val E1 E2 = logical-converse-evaluation (inner val) (eval-compat step-rec E1) (eval-compat step-rec E2) where inner : {n : TNat} (val : TVal n) → ((rec n (ssubst γ e0) (ssubst (liftγ γ) (C < e >))) ~ (rec n (ssubst γ' e0) (ssubst (liftγ γ') (C < e' >))) :: A') inner val-zero = logical-converse-evaluation (ological-refl e0 η) (eval-step step-rec-z) (eval-step step-rec-z) inner (val-suc val) with ological-is-congruence leq C (extendLogicalEQΓ η (inner val)) ... | equiv with combine-subst-noob γ (C < e >) _ | combine-subst-noob γ' (C < e' >) _ ... | eq1 | eq2 with ID.coe2 (LogicalEq A') eq1 eq2 equiv ... | equiv' = logical-converse-evaluation equiv' (eval-step (step-rec-s val)) (eval-step (step-rec-s val)) ological-consistent : Consistent OLogicalEq ological-consistent leq with leq (emptyLogicalEqΓ {γ = emptyγ} {γ' = emptyγ}) ... | keq = ID.coe2 KleeneEq (subid _) (subid _) keq ological-equiv-nat-val : (e : TNat) → Σ[ n :: TNat ] (TVal n × ([] ⊢ e ~ n :: nat)) ological-equiv-nat-val e with ological-consistent {e = e} {e' = e} (ological-refl e) ... | kleeneq n val E1 E2 = n , (val , (closed-logical-imp-open (kleeneq n val E1 eval-refl))) log-is-con-congruence : IsConsistentCongruence OLogicalEq log-is-con-congruence = record { equiv = ological-is-equivalence ; cong = ological-is-congruence ; consistent = ological-consistent }
{ "alphanum_fraction": 0.5736185056, "avg_line_length": 51.8761904762, "ext": "agda", "hexsha": "7bed748c6f1b5e70aecb36cc4a6062eba0b723bf", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z", "max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msullivan/godels-t", "max_forks_repo_path": "Eq/LogicalTheory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msullivan/godels-t", "max_issues_repo_path": "Eq/LogicalTheory.agda", "max_line_length": 106, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msullivan/godels-t", "max_stars_repo_path": "Eq/LogicalTheory.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z", "num_tokens": 3549, "size": 10894 }
-- Pattern matching on a datatype in Prop is disallowed {-# OPTIONS --enable-prop #-} open import Agda.Builtin.Bool data TestProp : Prop where p₁ p₂ : TestProp toBool : TestProp → Bool toBool p₁ = true toBool p₂ = false
{ "alphanum_fraction": 0.7168141593, "avg_line_length": 17.3846153846, "ext": "agda", "hexsha": "abc91d589482672bf7d083f35bf70ddbdf7f0525", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/Fail/Prop-NoMatch.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/Fail/Prop-NoMatch.agda", "max_line_length": 55, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/Fail/Prop-NoMatch.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 64, "size": 226 }
{-# OPTIONS --safe #-} module Cubical.Algebra.DirectSum.DirectSumFun.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Nat renaming (_+_ to _+n_ ; _·_ to _·n_) open import Cubical.Data.Nat.Order open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.DirectSum.DirectSumFun.Base private variable ℓ : Level open GroupTheory open AbGroupStr ----------------------------------------------------------------------------- -- AbGroup Properties module DSF-properties (G : ℕ → Type ℓ) (Gstr : (n : ℕ) → AbGroupStr (G n)) where private GG : ℕ → Group ℓ GG n = AbGroup→Group ((G n) , (Gstr n)) isSet⊕Fun : isSet (⊕Fun G Gstr) isSet⊕Fun = isSetΣSndProp (isSetΠ (λ n → is-set (Gstr n))) (λ _ → squash₁) -- Object 0⊕Fun : ⊕Fun G Gstr 0⊕Fun = (λ n → 0g (Gstr n)) , ∣ (0 , λ n p → refl) ∣₁ _+⊕Fun_ : ⊕Fun G Gstr → ⊕Fun G Gstr → ⊕Fun G Gstr _+⊕Fun_ (f , Anf) (g , Ang) = f+g , Anf+g Anf Ang where f+g = λ n → Gstr n ._+_ (f n) (g n) Anf+g : AlmostNullP G Gstr f → AlmostNullP G Gstr g → AlmostNullP G Gstr f+g Anf+g = PT.rec2 squash₁ (λ { (k , nf) → λ { (l , ng) → ∣ ((k +n l) , (λ n p → cong₂ ((Gstr n)._+_) (nf n (<-+k-trans p)) (ng n (<-k+-trans p)) ∙ +IdR (Gstr n) (0g (Gstr n)))) ∣₁ } }) Inv⊕Fun : ⊕Fun G Gstr → ⊕Fun G Gstr Inv⊕Fun (f , Anf) = f- , Anf- Anf where f- = λ n → (Gstr n).-_ (f n) Anf- : AlmostNullP G Gstr f → AlmostNullP G Gstr f- Anf- = PT.rec squash₁ (λ { (k , nf) → ∣ (k , λ n p → cong ((Gstr n).-_) (nf n p) ∙ inv1g (GG n)) ∣₁}) -- AbGroup Properties +⊕FunAssoc : (x y z : ⊕Fun G Gstr) → x +⊕Fun (y +⊕Fun z) ≡ (x +⊕Fun y) +⊕Fun z +⊕FunAssoc (f , Anf) (g , Ang) (h , Anh) = ΣPathTransport→PathΣ _ _ (funExt (λ n → Gstr n .+Assoc _ _ _) , (squash₁ _ _)) +⊕FunRid : (x : ⊕Fun G Gstr) → x +⊕Fun 0⊕Fun ≡ x +⊕FunRid (f , Anf) = ΣPathTransport→PathΣ _ _ ((funExt (λ n → +IdR (Gstr n) _)) , squash₁ _ _) +⊕FunInvR : (x : ⊕Fun G Gstr) → x +⊕Fun Inv⊕Fun x ≡ 0⊕Fun +⊕FunInvR (f , Anf) = ΣPathTransport→PathΣ _ _ ((funExt (λ n → +InvR (Gstr n) _)) , (squash₁ _ _)) +⊕FunComm : (x y : ⊕Fun G Gstr) → x +⊕Fun y ≡ y +⊕Fun x +⊕FunComm (f , Anf) (g , Ang) = ΣPathTransport→PathΣ _ _ ((funExt (λ n → Gstr n .+Comm _ _)) , (squash₁ _ _))
{ "alphanum_fraction": 0.5278725825, "avg_line_length": 32.1585365854, "ext": "agda", "hexsha": "91e8792d78781273fa9348ed0bfc04e17e3cf59c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/DirectSum/DirectSumFun/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/DirectSum/DirectSumFun/Properties.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/DirectSum/DirectSumFun/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1077, "size": 2637 }
{-# OPTIONS --safe #-} module Issue2487-2 where import Issue2487.A
{ "alphanum_fraction": 0.7058823529, "avg_line_length": 13.6, "ext": "agda", "hexsha": "d4cef607b47b622f56a61f159942e18e61a7e017", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2487-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2487-2.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2487-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 19, "size": 68 }
{-# OPTIONS --erased-cubical --safe #-} module MakeTracks where open import Data.Fin using (Fin; #_; toℕ) open import Data.List using (List; _∷_; []; map; concat; _++_; replicate; zip; length; take; drop) open import Data.Nat using (_*_; ℕ; suc; _+_) open import Data.Nat.Show using (show) open import Data.Product using (_,_; uncurry) open import Data.Vec using (fromList; toList; Vec; _∷_; []; lookup) renaming (replicate to rep; zip to vzip; map to vmap; concat to vconcat; _++_ to _+v_) open import Instruments open import Interval open import Note open import Pitch open import MidiEvent open import Util using (fins') open import Transformation velocity : Velocity velocity = # 60 makeTrack : InstrumentNumber-1 → ℕ → Channel-1 → List Note → MidiTrack makeTrack inst tempo n notes = track (show (suc (toℕ n))) inst n tempo (notes→events velocity notes) makeTracks : {k : Fin maxChannels} → Vec InstrumentNumber-1 maxChannels → ℕ → Vec (List Note) (toℕ k) → Vec MidiTrack (toℕ k) makeTracks {k} insts tempo lines = vmap (λ (i , ns) → makeTrack (lookup insts i) tempo i ns) (vzip (fins' maxChannels k) lines) makeTrackList : {k : Fin maxChannels} → Vec InstrumentNumber-1 maxChannels → ℕ → Vec (List Note) (toℕ k) → List MidiTrack makeTrackList insts tempo lines = toList (makeTracks insts tempo lines)
{ "alphanum_fraction": 0.6976573939, "avg_line_length": 41.3939393939, "ext": "agda", "hexsha": "a784e465919cd683e135f2bfb7b6de751fa744ce", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/MakeTracks.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/MakeTracks.agda", "max_line_length": 161, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/MakeTracks.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 396, "size": 1366 }
{-# OPTIONS --allow-unsolved-metas #-} module Oscar.Data.Term.ThickAndThin {𝔣} (FunctionName : Set 𝔣) where open import Oscar.Class.ThickAndThin open import Oscar.Data.Term FunctionName import Oscar.Data.Term.ThickAndThin.internal FunctionName as ⋆ instance ThickAndThinTerm : ThickAndThin Term ThickAndThin.thin ThickAndThinTerm = ⋆.thin ThickAndThin.thin-injective ThickAndThinTerm = ⋆.thin-injective ThickAndThin.thick ThickAndThinTerm = ⋆.thick ThickAndThin.thick∘thin=id ThickAndThinTerm = {!!} ThickAndThin.check ThickAndThinTerm = {!!} ThickAndThin.thin-check-id ThickAndThinTerm = {!!} instance ThickAndThinTerms : ∀ {N} → ThickAndThin (Terms N) ThickAndThin.thin ThickAndThinTerms x = ⋆.thins x ThickAndThin.thin-injective ThickAndThinTerms y = ⋆.thins-injective y ThickAndThin.thick ThickAndThinTerms = ⋆.thicks ThickAndThin.thick∘thin=id ThickAndThinTerms = {!!} ThickAndThin.check ThickAndThinTerms = {!!} ThickAndThin.thin-check-id ThickAndThinTerms = {!!} open import Oscar.Data.Fin open import Oscar.Data.Fin.ThickAndThin open import Oscar.Data.Maybe.properties open import Oscar.Data.Nat _for_ : ∀ {n} → Term n → Fin (suc n) → suc n ⊸ n (t' for x) y = maybe i t' ((check x y))
{ "alphanum_fraction": 0.774624374, "avg_line_length": 38.6451612903, "ext": "agda", "hexsha": "c07acf64b752530a4e6f5a82d374a12c2075644d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Term/ThickAndThin.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Term/ThickAndThin.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Term/ThickAndThin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 374, "size": 1198 }
open import dynamics-core module focus-formation where -- every ε is an evaluation context -- trivially, here, since we don't -- include any of the premises in red brackets about finality focus-formation : ∀{d d' ε} → d == ε ⟦ d' ⟧ → ε evalctx focus-formation (FHPlus1 sub) = ECPlus1 (focus-formation sub) focus-formation (FHPlus2 sub) = ECPlus2 (focus-formation sub) focus-formation FHOuter = ECDot focus-formation (FHAp1 sub) = ECAp1 (focus-formation sub) focus-formation (FHAp2 sub) = ECAp2 (focus-formation sub) focus-formation (FHInl sub) = ECInl (focus-formation sub) focus-formation (FHInr sub) = ECInr (focus-formation sub) focus-formation (FHCase sub) = ECCase (focus-formation sub) focus-formation (FHFst sub) = ECFst focus-formation (FHSnd sub) = ECSnd focus-formation (FHPair1 sub) = ECPair1 (focus-formation sub) focus-formation (FHPair2 sub) = ECPair2 (focus-formation sub) focus-formation (FHNEHole sub) = ECNEHole (focus-formation sub) focus-formation (FHCast sub) = ECCast (focus-formation sub) focus-formation (FHFailedCast x) = ECFailedCast (focus-formation x)
{ "alphanum_fraction": 0.733213966, "avg_line_length": 50.7727272727, "ext": "agda", "hexsha": "086263b71a49012699652154d457073d8d205964", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "focus-formation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "focus-formation.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "focus-formation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 355, "size": 1117 }
{- This file describes properties of computable relations. -} open import bool open import level open import eq open import product open import product-thms module bool-relations {ℓ : level}{A : Set ℓ} (_≤A_ : A → A → 𝔹) where reflexive : Set (ℓ) reflexive = ∀ {a : A} → a ≤A a ≡ tt transitive : Set (ℓ) transitive = ∀ {a b c : A} → a ≤A b ≡ tt → b ≤A c ≡ tt → a ≤A c ≡ tt total : Set ℓ total = ∀ {a b : A} → a ≤A b ≡ ff → b ≤A a ≡ tt total-reflexive : total → reflexive total-reflexive tot {a} with keep (a ≤A a) total-reflexive tot {a} | tt , p = p total-reflexive tot {a} | ff , p = tot p _iso𝔹_ : A → A → 𝔹 d iso𝔹 d' = d ≤A d' && d' ≤A d iso𝔹-intro : ∀{x y : A} → x ≤A y ≡ tt → y ≤A x ≡ tt → x iso𝔹 y ≡ tt iso𝔹-intro p1 p2 rewrite p1 | p2 = refl
{ "alphanum_fraction": 0.5913272011, "avg_line_length": 23.78125, "ext": "agda", "hexsha": "809e02d6d7c82ba45c34726dc99bc872feae2f7e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "bool-relations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "bool-relations.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "bool-relations.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 321, "size": 761 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Truncation open import lib.types.Groupoid open import lib.types.PathSet module lib.types.FundamentalGroupoid {i} (A : Type i) where fundamental-groupoid : Groupoid fundamental-groupoid = record { El = A ; Arr = _=₀_ {A = A} ; Arr-level = λ _ _ → Trunc-level ; groupoid-struct = record { id = idp₀ ; inv = !₀ ; comp = _∙₀_ ; unit-l = ∙₀-unit-l ; unit-r = ∙₀-unit-r ; assoc = ∙₀-assoc ; inv-l = !₀-inv-l ; inv-r = !₀-inv-r } }
{ "alphanum_fraction": 0.5699481865, "avg_line_length": 22.2692307692, "ext": "agda", "hexsha": "105f8c2c9617253bab2eb82db3d3e97aa504b00b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/FundamentalGroupoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/FundamentalGroupoid.agda", "max_line_length": 59, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/FundamentalGroupoid.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 189, "size": 579 }
module _ where open import Agda.Builtin.Equality open import Agda.Builtin.Nat module Vars (A : Set) where variable x : A -- Was -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Reduce/Fast.hs:148 -- Should be -- Cannot use generalized variable from let-opened module record R : Set₁ where field A : Set open Vars A field f : x ≡ x
{ "alphanum_fraction": 0.6946386946, "avg_line_length": 19.5, "ext": "agda", "hexsha": "749b082e5c6b66299b47493a748c142ec396e355", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3292b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3292b.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3292b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 130, "size": 429 }
module Data.Logic where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Relation.Nullary.Decidable open import Data.Nat.DivMod open import Data.Nat.Properties open import Agda.Primitive {-# FOREIGN AGDA2HS import Data.Nat #-} ---- Equational reasoning useEq : {x y : Bool} -> x ≡ y -> .(IsTrue x) -> IsTrue y useEq {true} {true} eq is = IsTrue.itsTrue useEqFalse : {x y : Bool} -> x ≡ y -> .(IsFalse x) -> IsFalse y useEqFalse {false} {false} eq is = IsFalse.itsFalse isTrueToEquiv : {c : Bool} -> IsTrue c -> c ≡ true isTrueToEquiv {true} p = refl isFalseToEquiv : {c : Bool} -> IsFalse c -> c ≡ false isFalseToEquiv {false} p = refl -- symmetry of equality sym : {u : Level} {A : Set u} {x y : A} → x ≡ y → y ≡ x sym refl = refl -- transitivity of equality trans : {u : Level} {A : Set u} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl -- congruence of equality cong : {u v : Level} {A : Set u} {B : Set v} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl cong2 : {A B T : Set} {a1 a2 : A} {b1 b2 : B} → (f : A → B -> T) → a1 ≡ a2 -> b1 ≡ b2 → f a1 b1 ≡ f a2 b2 cong2 f refl refl = refl cong3 : {A B C T : Set} {a1 a2 : A} {b1 b2 : B} {c1 c2 : C} → (f : A → B -> C -> T) → a1 ≡ a2 -> b1 ≡ b2 -> c1 ≡ c2 → f a1 b1 c1 ≡ f a2 b2 c2 cong3 f refl refl refl = refl cong4 : {A B C D T : Set} {a1 a2 : A} {b1 b2 : B} {c1 c2 : C} {d1 d2 : D} → (f : A → B -> C -> D -> T) → a1 ≡ a2 -> b1 ≡ b2 → c1 ≡ c2 -> d1 ≡ d2 -> f a1 b1 c1 d1 ≡ f a2 b2 c2 d2 cong4 f refl refl refl refl = refl begin_ : {u : Level} {A : Set u} → {x y : A} → x ≡ y → x ≡ y begin p = p _end : {u : Level} {A : Set u} → (x : A) → x ≡ x x end = refl _=⟨_⟩_ : {u : Level} {A : Set u} → (x : A) → {y z : A} → x ≡ y → y ≡ z → x ≡ z x =⟨ p ⟩ q = trans p q _=⟨⟩_ : {u : Level} {A : Set u} → (x : A) → {y : A} → x ≡ y → x ≡ y x =⟨⟩ q = x =⟨ refl ⟩ q infix 1 begin_ infix 3 _end infixr 2 _=⟨_⟩_ infixr 2 _=⟨⟩_ ---- General purpose proofs propZeroImpliesLtOne : (x : Nat) -> IsFalse (x == 0) -> IsFalse (x < 1) propZeroImpliesLtOne Z notZ = notZ propZeroImpliesLtOne (S x) notZ = IsFalse.itsFalse propFnIf : {a b : Set} -> {c : Bool} {x y : a} (f : a -> b) -> (if c then f x else f y) ≡ f (if c then x else y) propFnIf {c = false} f = refl propFnIf {c = true} f = refl propMaxSuc : (x y : Nat) -> max (S x) (S y) ≡ S (max x y) propMaxSuc Z Z = refl propMaxSuc Z (S y) = refl propMaxSuc (S x) Z = refl propMaxSuc (S x) (S y) = begin max (S $ S x) (S $ S y) =⟨⟩ (if x < y then (S $ S y) else (S $ S x)) =⟨ propFnIf S ⟩ (S $ (if x < y then (S y) else (S x))) =⟨⟩ S (max (S x) (S y)) end propMaxRefl : (x y : Nat) -> max x y ≡ max y x propMaxRefl Z Z = refl propMaxRefl Z (S y) = refl propMaxRefl (S x) Z = refl propMaxRefl (S x) (S y) = begin max (S x) (S y) =⟨ propMaxSuc x y ⟩ S (max x y) =⟨ cong S (propMaxRefl x y) ⟩ S (max y x) =⟨ sym $ propMaxSuc y x ⟩ max (S y) (S x) end propIsTrueCombine2 : {a b : Bool} -> IsTrue a -> IsTrue b -> IsTrue (a && b) propIsTrueCombine2 {true} {true} ta tb = IsTrue.itsTrue propIsTrueCombine4 : {a b c d : Bool} -> IsTrue a -> IsTrue b -> IsTrue c -> IsTrue d -> IsTrue ((a && b) && (c && d)) propIsTrueCombine4 {true} {true} {true} {true} ta tb tc td = IsTrue.itsTrue propIsTrueCombine4Alt : {a b c d : Bool} -> IsTrue a -> IsTrue b -> IsTrue c -> IsTrue d -> IsTrue (a && b && c && d) propIsTrueCombine4Alt {true} {true} {true} {true} ta tb tc td = IsTrue.itsTrue andRefl : (a b : Bool) -> (a && b) ≡ (b && a) andRefl false false = refl andRefl false true = refl andRefl true false = refl andRefl true true = refl orFst : {a b : Bool} -> IsTrue a -> IsTrue (a || b) orFst {true} {b} ap = IsTrue.itsTrue andFst : {a b : Bool} -> IsTrue (a && b) -> IsTrue a andFst {true} {true} ab = IsTrue.itsTrue andSnd : {a b : Bool} -> IsTrue (a && b) -> IsTrue b andSnd {true} {true} ab = IsTrue.itsTrue andSndI : {a b : Bool} -> .(IsTrue (a && b)) -> IsTrue b andSndI {true} {true} ab = IsTrue.itsTrue and1 : {a b c d : Bool} -> IsTrue (a && b && c && d) -> IsTrue a and1 {true} {true} {true} {true} abcd = IsTrue.itsTrue and2 : {a b c d : Bool} -> IsTrue (a && b && c && d) -> IsTrue b and2 {true} {true} {true} {true} abcd = IsTrue.itsTrue and3 : {a b c d : Bool} -> IsTrue (a && b && c && d) -> IsTrue c and3 {true} {true} {true} {true} abcd = IsTrue.itsTrue and4 : {a b c d : Bool} -> IsTrue (a && b && c && d) -> IsTrue d and4 {true} {true} {true} {true} abcd = IsTrue.itsTrue andCombine : {a b : Bool} -> IsTrue a -> IsTrue b -> IsTrue (a && b) andCombine {true} {true} ta tb = IsTrue.itsTrue boolAndTrue : (a : Bool) -> (a && true) ≡ a boolAndTrue false = refl boolAndTrue true = refl ifTrue : {u : Level} {t : Set u} {a b : t} (c : Bool) -> IsTrue c -> (if c then a else b) ≡ a ifTrue true tc = refl ifFalse : {t : Set} {a b : t} (c : Bool) -> IsFalse c -> (if c then a else b) ≡ b ifFalse false fc = refl infix -2 ifc_then_else_ ifc_then_else_ : {u : Level} {a : Set u} → (c : Bool) → ({{IsTrue c}} → a) → ({{IsFalse c}} → a) → a ifc false then x else y = y {{IsFalse.itsFalse}} ifc true then x else y = x {{IsTrue.itsTrue}} {-# COMPILE AGDA2HS ifc_then_else_ #-} ifcTrue : {u : Level} {t : Set u} -> (c : Bool) {a : {{.(IsTrue c)}} -> t} {b : {{.(IsFalse c)}} -> t} -> .(ct : IsTrue c) -> (ifc c then (λ {{p}} -> a) else (λ {{p}} -> b)) ≡ (a {{ct}}) ifcTrue true {a} {b} ct = refl ifcFalse : {u : Level} {t : Set u} -> (c : Bool) {a : {{.(IsTrue c)}} -> t} {b : {{.(IsFalse c)}} -> t} -> .(ct : IsFalse c) -> (ifc c then (λ {{p}} -> a) else (λ {{p}} -> b)) ≡ (b {{ct}}) ifcFalse false {a} {b} ct = refl propFnIfc : {a b : Set} -> (c : Bool) {x : {{IsTrue c}} -> a} {y : {{IsFalse c}} -> a} (f : a -> b) -> (ifc c then f x else f y) ≡ f (ifc c then x else y) propFnIfc false f = refl propFnIfc true f = refl propFnDistributeIfc2 : {a b : Set} -> (c1 c2 : Bool) {w x y z : a} (f : a -> b) -> f (ifc c1 then (ifc c2 then w else x) else (ifc c2 then y else z)) ≡ (ifc c1 then (ifc c2 then f w else f x) else (ifc c2 then f y else f z)) propFnDistributeIfc2 false false f = refl propFnDistributeIfc2 false true f = refl propFnDistributeIfc2 true false f = refl propFnDistributeIfc2 true true f = refl propIfcBranchesSame : {t : Set} -> {c : Bool} (v : t) -> (ifc c then v else v) ≡ v propIfcBranchesSame {c = false} v = refl propIfcBranchesSame {c = true} v = refl propIfBranchesSame : {t : Set} -> {c : Bool} (v : t) -> (if c then v else v) ≡ v propIfBranchesSame {c = false} v = refl propIfBranchesSame {c = true} v = refl ifToIfc : {t : Set} {c : Bool} {a b : t} -> (if c then a else b) ≡ (ifc c then a else b) ifToIfc {c = false} = refl ifToIfc {c = true} = refl ifTrueMap : {t : Set} -> {c : Bool} {a a2 b : t} -> (IsTrue c -> a ≡ a2) -> (if c then a else b) ≡ (if c then a2 else b) ifTrueMap {c = false} aa2 = refl ifTrueMap {c = true} {a} {a2} aa2 = begin a =⟨ aa2 IsTrue.itsTrue ⟩ a2 end ifcTrueMap : {t : Set} -> {c : Bool} {a a2 b : t} -> (IsTrue c -> a ≡ a2) -> (ifc c then a else b) ≡ (ifc c then a2 else b) ifcTrueMap {c = false} aa2 = refl ifcTrueMap {c = true} {a} {a2} aa2 = begin a =⟨ aa2 IsTrue.itsTrue ⟩ a2 end ifTrueNested : {t : Set} -> {c1 c2 : Bool} {a b c : t} -> (c1 ≡ c2) -> (if c1 then (if c2 then a else b) else c) ≡ (if c1 then a else c) ifTrueNested {t} {false} {false} {a} {b} {c} c1eqc2 = refl ifTrueNested {t} {true} {true} {a} {b} {c} c1eqc2 = refl ifFalseNested : {t : Set} -> {c1 c2 : Bool} {a b c : t} -> (c1 ≡ c2) -> (if c1 then a else (if c2 then b else c)) ≡ (if c1 then a else c) ifFalseNested {t} {false} {false} {a} {b} {c} c1eqc2 = refl ifFalseNested {t} {true} {true} {a} {b} {c} c1eqc2 = refl ---- Useful functions div : Nat -> (divisor : Nat) -> {≢0 : False (divisor ≟ 0)} -> Nat div a b {p} = _/_ a b {p} -- Does not need compile, since it is already defined in haskell mod : Nat -> (divisor : Nat) -> {≢0 : False (divisor ≟ 0)} -> Nat mod a b {p} = _%_ a b {p} -- Does not need compile, since it is already defined in haskell addLte : (a b c : Nat) -> IsTrue (c == a + b) -> IsTrue (a <= c) addLte Z Z Z abc = IsTrue.itsTrue addLte Z (S b) (S c) abc = IsTrue.itsTrue addLte (S a) Z (S c) abc = addLte a Z c abc addLte (S a) (S b) (S c) abc = addLte a (S b) c abc 0+n : (n : Nat) -> IsTrue (n == 0 + n) 0+n Z = IsTrue.itsTrue 0+n (S n) = 0+n n addSuc : (a b c : Nat) -> IsTrue (c == a + S b) -> IsTrue (c == S a + b) addSuc Z Z (S c) abc = abc addSuc Z (S b) (S c) abc = abc addSuc (S a) Z (S c) abc = addSuc a Z c abc addSuc (S a) (S b) (S c) abc = addSuc a (S b) c abc -- m = k + j ==> mod-helper k m n j = (n + k) mod (1 + m). modHelperLt : (k m n j : Nat) -> IsTrue (m == k + j) -> IsTrue (mod-helper k m n j <= m) modHelperLt k m Z j i1 = addLte k j m i1 modHelperLt k m (S n) Z i1 = modHelperLt 0 m n m (0+n m) modHelperLt k m (S n) (S j) i1 = modHelperLt (S k) m n j (addSuc k j m i1) lteToLt : (a b : Nat) -> (a <= b) ≡ (a < S b) lteToLt Z Z = refl lteToLt Z (S b) = refl lteToLt (S a) Z = refl lteToLt (S a) (S b) = lteToLt a b modLt : (a b : Nat) {≢0 : False (b ≟ 0)} -> IsTrue ((mod a b {≢0}) < b) modLt a b@(S bs) = let pgoal : IsTrue (mod a b <= bs) pgoal = modHelperLt 0 bs a bs (0+n bs) in useEq (lteToLt (mod a b) bs) pgoal pow : Nat -> Nat -> Nat pow b Z = 1 pow b (S e) = b * pow b e {-# COMPILE AGDA2HS pow #-} mul_not_zero : {a b : Nat} -> IsFalse (a == 0) -> IsFalse (b == 0) -> IsFalse (a * b == 0) mul_not_zero {S a} {S b} az bz = IsFalse.itsFalse pow_not_zero : (n : Nat) -> IsFalse (pow 2 n == 0) pow_not_zero Z = IsFalse.itsFalse pow_not_zero (S sn) = mul_not_zero {2} {pow 2 sn} IsFalse.itsFalse (pow_not_zero sn) false_convert : (n : Nat) -> IsFalse (n == 0) -> False (n ≟ 0) false_convert (S n) if = tt pow_not_zero_cv : (n : Nat) -> False (pow 2 n ≟ 0) pow_not_zero_cv n = false_convert (pow 2 n) $ pow_not_zero n zeroLteAny : (a : Nat) -> IsTrue (0 <= a) zeroLteAny Z = IsTrue.itsTrue zeroLteAny (S a) = IsTrue.itsTrue lteSum : (a b s : Nat) -> (a <= b) ≡ (s + a <= s + b) lteSum a b Z = refl lteSum a b (S s) = lteSum a b s lteSumOne : (a b s : Nat) -> IsTrue (a <= b) -> IsTrue (a <= s + b) lteSumOne a b Z ab = ab lteSumOne Z b (S n) ab = IsTrue.itsTrue lteSumOne (S Z) Z (S Z) ab = IsTrue.itsTrue lteSumOne (S (S n)) Z (S Z) ab = ab lteSumOne (S n₁) (S n) (S Z) ab = lteSumOne n₁ n 1 ab lteSumOne (S n₁) b (S (S n)) ab = lteSumOne n₁ (n + b) 1 (lteSumOne (S n₁) b (S n) ab) anyGteZero : (a : Nat) -> IsTrue (a >= 0) anyGteZero Z = IsTrue.itsTrue anyGteZero (S a) = IsTrue.itsTrue {-# TERMINATING #-} log2up : Nat -> Nat -- UNSAFE: This terminates since x/2 always decreases if x > 1 log2up 0 = 0 log2up 1 = 0 log2up (S (S x)) = S (log2up (div (S (S (S x))) 2)) {-# COMPILE AGDA2HS log2up #-} divHelperReduce : (x a b c : Nat) -> div-helper (S x) a b c ≡ S (div-helper x a b c) divHelperReduce x a Z c = refl divHelperReduce x a (S b) Z = begin div-helper (S (S x)) a b a =⟨ divHelperReduce (S x) a b a ⟩ S (div-helper (S x) a b a) end divHelperReduce x a (S b) (S c) = divHelperReduce x a b c div2Reduce : (x : Nat) -> div (2 + x) 2 ≡ S (div x 2) div2Reduce Z = refl div2Reduce x@(S sx) = begin div (2 + x) 2 =⟨⟩ div-helper 1 1 sx 0 =⟨ divHelperReduce 0 1 sx 0 ⟩ S (div-helper 0 1 sx 0) =⟨⟩ S (div x 2) end isTrueEquiv : {b : Bool} -> IsTrue b -> true ≡ b isTrueEquiv {true} t = refl plusGteOne : (a b : Nat) -> IsTrue (a >= 1) -> IsTrue (a + b >= 1) plusGteOne (S a) b p = anyGteZero (a + b) multGteOne : (a b : Nat) -> IsTrue (a >= 1) -> IsTrue (b >= 1) -> IsTrue (a * b >= 1) multGteOne (S a) (S b) pa pb = plusGteOne (S b) (a * (S b)) pb powGteOne : (n : Nat) -> IsTrue (pow 2 n >= 1) powGteOne Z = IsTrue.itsTrue powGteOne (S n) = multGteOne 2 (pow 2 n) IsTrue.itsTrue (powGteOne n) add-assoc : (a b c : Nat) → (a + b) + c ≡ a + (b + c) add-assoc Z b c = refl add-assoc (S a) b c = cong S (add-assoc a b c) add-n-zero : (n : Nat) → n + Z ≡ n add-n-zero Z = refl add-n-zero (S n) = cong S (add-n-zero n) add-n-suc : (m n : Nat) → m + (S n) ≡ S (m + n) add-n-suc Z n = refl add-n-suc (S m) n = cong S (add-n-suc m n) add-comm : (m n : Nat) → m + n ≡ n + m add-comm m Z = add-n-zero m add-comm m (S n) = begin m + (S n) =⟨ add-n-suc m n ⟩ S (m + n) =⟨ cong S (add-comm m n) ⟩ (S n) + m end mul-n-zero : (a : Nat) -> a * Z ≡ Z mul-n-zero Z = refl mul-n-zero (S a) = mul-n-zero a mul-n-suc : (a b : Nat) -> a * (S b) ≡ a + a * b mul-n-suc Z b = refl mul-n-suc (S a) b = begin (S a) * (S b) =⟨⟩ (S b) + a * (S b) =⟨ cong (λ q -> (S b) + q) (mul-n-suc a b) ⟩ S (b + (a + a * b)) =⟨ cong S (sym $ add-assoc b a (a * b)) ⟩ S ((b + a) + a * b) =⟨ cong (λ q -> S (q + a * b)) (add-comm b a) ⟩ S ((a + b) + a * b) =⟨ cong S (add-assoc a b (a * b)) ⟩ S (a + (b + a * b) ) =⟨⟩ (S a) + (S a) * b end mul-comm : (a b : Nat) -> a * b ≡ b * a mul-comm a Z = mul-n-zero a mul-comm a (S b) = begin a * (S b) =⟨ mul-n-suc a b ⟩ a + a * b =⟨ cong (λ q -> a + q) (mul-comm a b) ⟩ (S b) * a end gteDouble : (a b : Nat) -> (a >= b) ≡ (a + a >= b + b) gteDouble Z Z = refl gteDouble Z (S b) = refl gteDouble (S a) Z = refl gteDouble (S a) (S b) = begin a >= b =⟨ gteDouble a b ⟩ (S a) + a >= (S b) + b =⟨ cong (λ q -> q >= (S b) + b) (add-comm (S a) a) ⟩ a + S a >= S b + b =⟨ cong (λ q -> a + S a >= q) (add-comm (S b) b) ⟩ a + S a >= b + S b end gteMultBoth : (a b : Nat) -> (a >= b) ≡ (2 * a >= 2 * b) gteMultBoth a b = begin a >= b =⟨ gteDouble a b ⟩ a + a >= b + b =⟨ cong (λ q -> a + q >= b + b) (sym $ add-comm a 0) ⟩ a + (a + 0) >= b + b =⟨ cong (λ q -> a + (a + 0) >= b + q) (sym $ add-comm b 0) ⟩ a + (a + 0) >= b + (b + 0) end gteTransitive : (a b c : Nat) -> IsTrue (a >= b) -> IsTrue (b >= c) -> IsTrue (a >= c) gteTransitive Z Z Z ab bc = IsTrue.itsTrue gteTransitive (S a) Z Z ab bc = IsTrue.itsTrue gteTransitive (S a) (S b) Z ab bc = IsTrue.itsTrue gteTransitive (S a) (S b) (S c) ab bc = gteTransitive a b c ab bc mul-div : (x : Nat) -> IsTrue (2 * (div (1 + x) 2) >= x) mul-div Z = IsTrue.itsTrue mul-div (S Z) = IsTrue.itsTrue mul-div (S (S x)) = let p1 : IsTrue (2 + 2 * (div (1 + x) 2) >= 2 + x) p1 = mul-div x p2 : IsTrue (S (div (1 + x) 2) * 2 >= 2 + x) p2 = useEq (cong (λ q -> 2 + q >= 2 + x) (mul-comm 2 (div (1 + x) 2))) p1 p3 : IsTrue (2 * S (div (1 + x) 2) >= 2 + x) p3 = useEq (cong (λ q -> q >= 2 + x) (mul-comm (S (div (1 + x) 2)) 2)) p2 goal : IsTrue (2 * (div (3 + x) 2) >= 2 + x) goal = useEq (cong (λ q -> 2 * q >= 2 + x) (sym $ div2Reduce (1 + x))) p3 in goal log2upPow : (a b : Nat) -> .(IsTrue (a >= log2up b)) -> IsTrue (pow 2 a >= b) log2upPow Z Z p = IsTrue.itsTrue log2upPow Z (S Z) p = IsTrue.itsTrue log2upPow (S a) Z p = anyGteZero (pow 2 (S a)) log2upPow (S a) (S Z) p = useEq (begin (S a) >= 0 =⟨ isTrueEquiv $ anyGteZero (S a) ⟩ true =⟨ isTrueEquiv $ powGteOne (S a) ⟩ pow 2 (S a) >= 1 end) p log2upPow (S a) (S (S b)) p = let p1 : IsTrue ( pow 2 a >= div (3 + b) 2 ) p1 = log2upPow a (div (3 + b) 2) p p2 : IsTrue ( pow 2 (S a) >= 2 * (div (3 + b) 2) ) p2 = useEq (gteMultBoth (pow 2 a) (div (3 + b) 2)) p1 in gteTransitive (pow 2 (S a)) (2 * (div (3 + b) 2)) (2 + b) p2 ((mul-div (2 + b))) eqToGte : (a b : Nat) -> IsTrue (a == b) -> IsTrue (a >= b) eqToGte Z b ab = ab eqToGte (S a) (S b) ab = eqToGte a b ab gteInvert : (a b : Nat) -> IsTrue (a >= b) -> IsTrue (b <= a) gteInvert Z Z ab = IsTrue.itsTrue gteInvert (S a) Z ab = IsTrue.itsTrue gteInvert (S a) (S b) ab = gteInvert a b ab ltLteTransitive : (a b c : Nat) -> IsTrue (a < b) -> IsTrue (b <= c) -> IsTrue (a < c) ltLteTransitive Z (S b) (S c) ab bc = IsTrue.itsTrue ltLteTransitive (S a) (S b) (S c) ab bc = ltLteTransitive a b c ab bc lteTransitive : (a b c : Nat) -> IsTrue (a <= b) -> IsTrue (b <= c) -> IsTrue (a <= c) lteTransitive Z Z c ab bc = bc lteTransitive Z (S b) (S c) ab bc = IsTrue.itsTrue lteTransitive (S a) (S b) (S c) ab bc = lteTransitive a b c ab bc incrLte : (a b : Nat) -> IsTrue (a <= b) -> IsTrue (a <= S b) incrLte Z Z altb = IsTrue.itsTrue incrLte Z (S b) altb = IsTrue.itsTrue incrLte (S a) (S b) altb = incrLte a b altb natPlusMinNat : (x : Nat) -> {{p : IsFalse (x < 1)}} -> x ≡ (S (x - 1)) natPlusMinNat (S x) = refl transformLteRight : {a b c : Nat} -> b ≡ c -> IsTrue (a <= b) -> IsTrue (a <= c) transformLteRight {a} {b} {.b} refl ab = ab lteSelf : (v : Nat) -> IsTrue (v <= v) lteSelf Z = IsTrue.itsTrue lteSelf (S v) = lteSelf v falseToNotTrue : {b : Bool} -> IsFalse (b) -> IsTrue (not b) falseToNotTrue {false} if = IsTrue.itsTrue notFalseToTrue : {b : Bool} -> IsFalse (not b) -> IsTrue b notFalseToTrue {true} if = IsTrue.itsTrue trueToNotFalse : {b : Bool} -> IsTrue (b) -> IsFalse (not b) trueToNotFalse {true} if = IsFalse.itsFalse notTrueToFalse : {b : Bool} -> IsTrue (not b) -> IsFalse (b) notTrueToFalse {false} if = IsFalse.itsFalse -- Law of reflexivity for equality postulate eqReflexivity : {t : Set} {{eqT : Eq t}} (v : t) -> IsTrue (v == v) eqToEquiv : {t : Set} {{eqT : Eq t}} (a b : t) -> IsTrue (a == b) -> a ≡ b botToAny : {t : Set} -> ⊥ -> t botToAny () max4 : (a b c d : Nat) -> Nat max4 a b c d = max (max a b) (max c d) {-# COMPILE AGDA2HS max4 #-} sub : (a b : Nat) -> {{ .( IsTrue (b <= a) ) }} -> Nat sub a Z {{ab}} = a sub (S a) (S b) {{ab}} = sub a b {-# COMPILE AGDA2HS sub #-} diff : (a b : Nat) -> Nat diff a Z = a diff Z b = b diff (S a) (S b) = diff a b {-# COMPILE AGDA2HS diff #-}
{ "alphanum_fraction": 0.5446782038, "avg_line_length": 32.3846153846, "ext": "agda", "hexsha": "5ae40e07a4745d6a99fb7d9839ced46611106718", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "JonathanBrouwer/research-project", "max_forks_repo_path": "src/Data/Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "JonathanBrouwer/research-project", "max_issues_repo_path": "src/Data/Logic.agda", "max_line_length": 188, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "JonathanBrouwer/research-project", "max_stars_repo_path": "src/Data/Logic.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z", "num_tokens": 7806, "size": 17682 }
module Languages.ILL.Intermediate where open import Utils.HaskellTypes open import Utils.HaskellFunctions open import Languages.ILL.TypeSyntax {-# IMPORT Languages.ILL.Intermediate #-} data IPattern : Set where PTriv : IPattern PVar : String → IPattern PTensor : IPattern → IPattern → IPattern {-# COMPILED_DATA IPattern Languages.ILL.Intermediate.IPattern Languages.ILL.Intermediate.PTriv Languages.ILL.Intermediate.PVar Languages.ILL.Intermediate.PTensor #-} data ITerm : Set where Var : String → ITerm Triv : ITerm TTensor : ITerm → ITerm → ITerm Lam : String → Type → ITerm → ITerm Let : ITerm → Type → IPattern → ITerm → ITerm App : ITerm → ITerm → ITerm Promote : List (Triple ITerm String Type) → ITerm → ITerm Discard : ITerm → ITerm → ITerm Copy : ITerm → String → String → ITerm → ITerm Derelict : ITerm → ITerm {-# COMPILED_DATA ITerm Languages.ILL.Intermediate.ITerm Languages.ILL.Intermediate.Var Languages.ILL.Intermediate.Triv Languages.ILL.Intermediate.TTensor Languages.ILL.Intermediate.Lam Languages.ILL.Intermediate.Let Languages.ILL.Intermediate.App Languages.ILL.Intermediate.Promote Languages.ILL.Intermediate.Discard Languages.ILL.Intermediate.Copy Languages.ILL.Intermediate.Derelict #-}
{ "alphanum_fraction": 0.6106870229, "avg_line_length": 39.3, "ext": "agda", "hexsha": "7dc737bf7e9f0b9def5bdae1cf5abd0eaa78e81b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "heades/Agda-LLS", "max_forks_repo_path": "Source/ALL/Languages/ILL/Intermediate.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_issues_repo_issues_event_max_datetime": "2017-04-05T17:30:16.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-27T14:52:46.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "heades/Agda-LLS", "max_issues_repo_path": "Source/ALL/Languages/ILL/Intermediate.agda", "max_line_length": 65, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "heades/Agda-LLS", "max_stars_repo_path": "Source/ALL/Languages/ILL/Intermediate.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-02T23:41:23.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-09T20:53:53.000Z", "num_tokens": 359, "size": 1572 }
open import Level using (0ℓ) open import Function using (_$_; _∘_) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (False; True) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary using (Reflexive; Transitive; Trans; Antisymmetric; Asymmetric; Irreflexive; Decidable; Total; IsPreorder; IsPartialOrder; IsTotalOrder; TotalOrder; _Preserves₂_⟶_⟶_; Trichotomous; Tri; Irrelevant; Connex) open Tri open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; trans; cong; resp₂; module ≡-Reasoning) renaming (isEquivalence to ≡-isEquivalence) open import Relation.Binary.PropositionalEquality.WithK using (≡-erase) open import Data.Bool using (T) open import Data.Bool.Properties using (T?) open import Data.Unit using (tt) open import Data.List using (List) open List open import Data.Sum using (_⊎_) open _⊎_ module AKS.Nat.Properties where open import Data.Nat.Properties using (+-assoc; +-suc; +-comm; *-identityʳ; +-identityʳ; m+n≡0⇒m≡0; +-cancelʳ-≡; +-cancelˡ-≡; 1+n≢0; suc-injective) public open import Data.Nat.Properties using (n∸n≡0; ∸-+-assoc) public open import Data.Nat.Properties using (*-comm; *-1-commutativeMonoid) public open import Polynomial.Simple.AlmostCommutativeRing using (AlmostCommutativeRing) open import Polynomial.Simple.AlmostCommutativeRing.Instances using (module Nat) open import Polynomial.Simple.Reflection using (solveOver) open Nat.Reflection using (∀⟨_⟩) open import AKS.Nat.Base using (ℕ; _+_; _*_; _∸_; lte; _≤_; _≥_; _≰_; _≱_; _<_; _≮_; _>_; _≯_; _<ᵇ_; _≟_; ℕ⁺; ℕ+; ⟅_⇓⟆; ⟅_⇑⟆; pred) open ℕ open import Algebra.Definitions {A = ℕ} _≡_ using (_DistributesOverˡ_) ≢⇒¬≟ : ∀ {n m} → n ≢ m → False (n ≟ m) ≢⇒¬≟ {n} {m} n≢m with n ≟ m ... | yes n≡m = contradiction n≡m n≢m ... | no _ = tt ¬≟⇒≢ : ∀ {n m} → False (n ≟ m) → n ≢ m ¬≟⇒≢ {n} {m} ¬n≟m n≡m with n ≟ m ... | no n≢m = contradiction n≡m n≢m ℕ→ℕ⁺→ℕ : ∀ n {n≢0} → ⟅ ⟅ n ⇑⟆ {n≢0} ⇓⟆ ≡ n ℕ→ℕ⁺→ℕ (suc n) {n≢0} = refl ⟅⇓⟆-injective : ∀ {n m} → pred ⟅ n ⇓⟆ ≡ pred ⟅ m ⇓⟆ → n ≡ m ⟅⇓⟆-injective {ℕ+ n} {ℕ+ m} refl = refl n≢0∧m≢0⇒n*m≢0 : ∀ {n m} → n ≢ 0 → m ≢ 0 → n * m ≢ 0 n≢0∧m≢0⇒n*m≢0 {zero} {m} n≢0 m≢0 = contradiction refl n≢0 n≢0∧m≢0⇒n*m≢0 {suc n} {zero} n≢0 m≢0 = contradiction refl m≢0 n≢0∧m≢0⇒n*m≢0 {suc n} {suc m} n≢0 m≢0 () suc-injective-≡ : ∀ {n m} → suc n ≡ suc m → n ≡ m suc-injective-≡ refl = refl ------------ _≤_ -------------- 0≤n : ∀ {n} → 0 ≤ n 0≤n {n} = lte n refl ≤-refl : Reflexive _≤_ ≤-refl {x} = lte 0 (≡-erase ∀⟨ x ∷ [] ⟩) ≤-reflexive : ∀ {n m} → n ≡ m → n ≤ m ≤-reflexive refl = ≤-refl ≤-trans : Transitive _≤_ ≤-trans {x} (lte k₁ refl) (lte k₂ refl) = lte (k₁ + k₂) (≡-erase ∀⟨ x ∷ k₁ ∷ k₂ ∷ [] ⟩) n+m≡n⇒m≡0 : ∀ {n m} → n + m ≡ n → m ≡ 0 n+m≡n⇒m≡0 {n} {m} n+m≡n = m≡0 where open ≡-Reasoning m≡0 : m ≡ 0 m≡0 = +-cancelˡ-≡ n $ begin n + m ≡⟨ n+m≡n ⟩ n ≡⟨ sym (+-identityʳ n) ⟩ n + 0 ∎ ≤-antisym : Antisymmetric _≡_ _≤_ ≤-antisym {x} {y} (lte k₁ x+k₁≡y) (lte k₂ y+k₂≡x) = ≡-erase (+-cancelʳ-≡ x y x+k₁≡y+k₁) where open ≡-Reasoning k₁+k₂≡0 : k₁ + k₂ ≡ 0 k₁+k₂≡0 = n+m≡n⇒m≡0 $ begin x + (k₁ + k₂) ≡⟨ sym (+-assoc x k₁ k₂) ⟩ (x + k₁) + k₂ ≡⟨ cong (λ t → t + k₂) x+k₁≡y ⟩ y + k₂ ≡⟨ y+k₂≡x ⟩ x ∎ x+k₁≡y+k₁ : x + k₁ ≡ y + k₁ x+k₁≡y+k₁ = begin x + k₁ ≡⟨ x+k₁≡y ⟩ y ≡⟨ sym (+-identityʳ y) ⟩ y + 0 ≡⟨ cong (λ t → y + t) (sym (m+n≡0⇒m≡0 k₁ k₁+k₂≡0)) ⟩ y + k₁ ∎ suc-mono-≤ : ∀ {n m} → n ≤ m → suc n ≤ suc m suc-mono-≤ (lte k₁ refl) = lte k₁ refl suc-injective-≤ : ∀ {n m} → suc n ≤ suc m → n ≤ m suc-injective-≤ (lte k refl) = lte k refl m≤m+n : ∀ {m n} → m ≤ m + n m≤m+n {m} {n} = lte n refl m≤n+m : ∀ {m n} → m ≤ n + m m≤n+m {m} {n} = lte n (+-comm m n) ≤-erase : ∀ {n m} → n ≤ m → n ≤ m ≤-erase (lte k ≤-proof) = lte k (≡-erase ≤-proof) ≤-isPreorder : IsPreorder _≡_ _≤_ ≤-isPreorder = record { isEquivalence = ≡-isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-isPartialOrder : IsPartialOrder _≡_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ------------ _<_ -------------- <-trans : Transitive _<_ <-trans {x} (lte k₁ refl) (lte k₂ refl) = lte (suc (k₁ + k₂)) (≡-erase ∀⟨ x ∷ k₁ ∷ k₂ ∷ [] ⟩) <-≤-trans : Trans _<_ _≤_ _<_ <-≤-trans x<y y≤z = ≤-trans x<y y≤z ≤-<-trans : Trans _≤_ _<_ _<_ ≤-<-trans {x} (lte k₁ refl) (lte k₂ refl) = lte (k₁ + k₂) (≡-erase ∀⟨ x ∷ k₁ ∷ k₂ ∷ [] ⟩) n≮n : ∀ {n} → n ≮ n n≮n {n} (lte k n+1+k≡n) rewrite sym (+-suc n k) = 1+n≢0 (n+m≡n⇒m≡0 n+1+k≡n) <-irrefl : Irreflexive _≡_ _<_ <-irrefl refl x<x = n≮n x<x <-asym : Asymmetric _<_ <-asym x<y y<x = n≮n (<-trans x<y y<x) <⇒≯ : ∀ {n m} → n < m → n ≯ m <⇒≯ n<m n>m = <-asym n<m n>m n<1+n : ∀ {n} → n < 1 + n n<1+n = ≤-refl 0<1+n : ∀ {n} → 0 < 1 + n 0<1+n {n} = lte n refl n≮0 : ∀ {n} → n ≮ 0 n≮0 () suc-mono-< : ∀ {n m} → n < m → suc n < suc m suc-mono-< (lte k₁ refl) = lte k₁ refl +-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ +-mono-≤ {x} {_} {u} (lte k refl) (lte m refl) = lte (k + m) (≡-erase (solveOver (x ∷ u ∷ k ∷ m ∷ []) Nat.ring)) +-mono-< : _+_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ +-mono-< {x} {_} {u} (lte k refl) (lte m refl) = lte (suc (k + m)) (≡-erase (solveOver (x ∷ u ∷ k ∷ m ∷ []) Nat.ring)) private a+b∸a≡b+[a∸a] : ∀ a b → a + b ∸ a ≡ b + (a ∸ a) a+b∸a≡b+[a∸a] zero b = sym (+-identityʳ b) a+b∸a≡b+[a∸a] (suc a) b = a+b∸a≡b+[a∸a] a b m+[n∸m]≡n : ∀ {m n} → m ≤ n → m + (n ∸ m) ≡ n m+[n∸m]≡n {m} {n} (lte k refl) = begin m + (m + k ∸ m) ≡⟨ cong (λ x → m + x) (a+b∸a≡b+[a∸a] m k) ⟩ m + (k + (m ∸ m)) ≡⟨ cong (λ x → m + (k + x)) (n∸n≡0 m) ⟩ m + (k + 0) ≡⟨ cong (λ x → m + x) (+-identityʳ k) ⟩ m + k ∎ where open ≡-Reasoning [n∸m]+m≡n : ∀ {m n} → m ≤ n → (n ∸ m) + m ≡ n [n∸m]+m≡n {m} {n} rewrite +-comm (n ∸ m) m = m+[n∸m]≡n m<n⇒n∸m≢0 : ∀ {m n} → m < n → n ∸ m ≢ 0 m<n⇒n∸m≢0 {zero} {n} m<n n∸m≡0 = <-irrefl (sym n∸m≡0) m<n m<n⇒n∸m≢0 {suc m} {suc n} m<n n∸m≡0 = m<n⇒n∸m≢0 (suc-injective-≤ m<n) n∸m≡0 ∸-mono-<ˡ : ∀ {x b t} → x ≤ b → b < t → b ∸ x < t ∸ x ∸-mono-<ˡ {x} (lte k₁ refl) (lte k₂ refl) = lte k₂ (≡-erase ≤-proof) where open ≡-Reasoning lemma₁ : ∀ a → 1 + (k₁ + a) + k₂ ≡ 1 + k₁ + k₂ + a lemma₁ a = ∀⟨ a ∷ k₁ ∷ k₂ ∷ [] ⟩ lemma₂ : x + (1 + k₁ + k₂) ≡ 1 + (x + k₁ + k₂) lemma₂ = ∀⟨ x ∷ k₁ ∷ k₂ ∷ [] ⟩ ≤-proof : suc (x + k₁ ∸ x) + k₂ ≡ suc (x + k₁) + k₂ ∸ x ≤-proof = begin suc (x + k₁ ∸ x) + k₂ ≡⟨ cong (λ t → suc t + k₂) (a+b∸a≡b+[a∸a] x k₁) ⟩ suc (k₁ + (x ∸ x)) + k₂ ≡⟨ lemma₁ (x ∸ x) ⟩ suc k₁ + k₂ + (x ∸ x) ≡⟨ sym (a+b∸a≡b+[a∸a] x (suc k₁ + k₂)) ⟩ x + (suc k₁ + k₂) ∸ x ≡⟨ cong (λ t → t ∸ x) lemma₂ ⟩ suc (x + k₁) + k₂ ∸ x ∎ ∸-mono-<ʳ : ∀ {x b t} → t ≤ x → b < t → x ∸ t < x ∸ b ∸-mono-<ʳ {b = b} (lte k₁ refl) (lte k₂ refl) = lte k₂ (≡-erase ≤-proof) where open ≡-Reasoning LHS : suc (suc b + k₂ + k₁ ∸ (suc b + k₂) + k₂) ≡ suc (k₂ + k₁) LHS = cong suc $ begin suc b + k₂ + k₁ ∸ (suc b + k₂) + k₂ ≡⟨ cong (λ t → t + k₂) (sym (∸-+-assoc (b + k₂ + k₁) b k₂)) ⟩ suc b + k₂ + k₁ ∸ suc b ∸ k₂ + k₂ ≡⟨ cong (λ t → t ∸ suc b ∸ k₂ + k₂) (+-assoc (suc b) k₂ k₁) ⟩ suc b + (k₂ + k₁) ∸ suc b ∸ k₂ + k₂ ≡⟨ cong (λ t → t ∸ k₂ + k₂) (a+b∸a≡b+[a∸a] (suc b) (k₂ + k₁)) ⟩ k₂ + k₁ + (suc b ∸ suc b) ∸ k₂ + k₂ ≡⟨ cong (λ t → k₂ + k₁ + t ∸ k₂ + k₂) (n∸n≡0 (suc b)) ⟩ k₂ + k₁ + 0 ∸ k₂ + k₂ ≡⟨ cong (λ t → t ∸ k₂ + k₂) (+-identityʳ (k₂ + k₁)) ⟩ k₂ + k₁ ∸ k₂ + k₂ ≡⟨ cong (λ t → t + k₂) (a+b∸a≡b+[a∸a] k₂ k₁) ⟩ k₁ + (k₂ ∸ k₂) + k₂ ≡⟨ cong (λ t → k₁ + t + k₂) (n∸n≡0 k₂) ⟩ k₁ + 0 + k₂ ≡⟨ cong (λ t → t + k₂) (+-identityʳ k₁) ⟩ k₁ + k₂ ≡⟨ +-comm k₁ k₂ ⟩ k₂ + k₁ ∎ lemma₁ : 1 + (b + k₂ + k₁) ≡ b + (1 + (k₂ + k₁)) lemma₁ = ∀⟨ b ∷ k₂ ∷ k₁ ∷ [] ⟩ RHS : suc (b + k₂ + k₁) ∸ b ≡ suc (k₂ + k₁) RHS = begin suc (b + k₂ + k₁) ∸ b ≡⟨ cong (λ t → t ∸ b) lemma₁ ⟩ b + suc (k₂ + k₁) ∸ b ≡⟨ a+b∸a≡b+[a∸a] b (suc (k₂ + k₁)) ⟩ suc (k₂ + k₁) + (b ∸ b) ≡⟨ cong (λ t → suc (k₂ + k₁) + t) (n∸n≡0 b) ⟩ suc (k₂ + k₁) + 0 ≡⟨ +-identityʳ (suc (k₂ + k₁)) ⟩ suc (k₂ + k₁) ∎ ≤-proof : suc (suc b + k₂ + k₁ ∸ (suc b + k₂) + k₂) ≡ suc (b + k₂ + k₁) ∸ b ≤-proof = trans LHS (sym RHS) ∸-mono-≤ˡ : ∀ {x b t} → x ≤ b → b ≤ t → b ∸ x ≤ t ∸ x ∸-mono-≤ˡ {x} {b} {t} (lte k₁ refl) (lte k₂ refl) = lte k₂ ≤-proof where open ≡-Reasoning lemma₁ : ∀ a → k₁ + a + k₂ ≡ k₁ + k₂ + a lemma₁ a = ∀⟨ a ∷ k₁ ∷ k₂ ∷ [] ⟩ ≤-proof : x + k₁ ∸ x + k₂ ≡ x + k₁ + k₂ ∸ x ≤-proof = begin x + k₁ ∸ x + k₂ ≡⟨ cong (λ t → t + k₂) (a+b∸a≡b+[a∸a] x k₁) ⟩ k₁ + (x ∸ x) + k₂ ≡⟨ lemma₁ (x ∸ x) ⟩ k₁ + k₂ + (x ∸ x) ≡⟨ sym (a+b∸a≡b+[a∸a] x (k₁ + k₂)) ⟩ x + (k₁ + k₂) ∸ x ≡⟨ cong (λ t → t ∸ x) (sym (+-assoc x k₁ k₂)) ⟩ x + k₁ + k₂ ∸ x ∎ *-mono-< : _*_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ *-mono-< {x} {_} {u} (lte k refl) (lte m refl) = lte (k * m + k * u + k + m * x + m + u + x) (≡-erase ∀⟨ x ∷ u ∷ k ∷ m ∷ [] ⟩) *-mono-≤ : _*_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ *-mono-≤ {x} {_} {u} (lte k refl) (lte m refl) = lte (k * m + k * u + m * x) (≡-erase ∀⟨ x ∷ u ∷ k ∷ m ∷ [] ⟩) +-lower-≤ : ∀ x {n m} → n + x ≤ m → n ≤ m +-lower-≤ x {n} {m} (lte q refl) = lte (x + q) (sym (+-assoc n x q)) <⇒≤ : ∀ {n m} → n < m → n ≤ m <⇒≤ {n} (lte k refl) = lte (suc k) (≡-erase (+-suc n k)) module ≤-Reasoning where open import Relation.Binary.Reasoning.Base.Triple ≤-isPreorder <-trans (resp₂ _<_) <⇒≤ <-≤-trans ≤-<-trans public n≤m⇒n<m⊎n≡m : ∀ {n m} → n ≤ m → n < m ⊎ n ≡ m n≤m⇒n<m⊎n≡m {n} (lte zero ≤-proof) rewrite ≡-erase (+-identityʳ n) = inj₂ ≤-proof n≤m⇒n<m⊎n≡m {n} (lte (suc k) ≤-proof) rewrite ≡-erase (+-suc n k) = inj₁ (lte k ≤-proof) ≤∧≢⇒< : ∀ {m n} → m ≤ n → m ≢ n → m < n ≤∧≢⇒< m≤n m≢n with n≤m⇒n<m⊎n≡m m≤n ... | inj₁ m<n = m<n ... | inj₂ m≡n = contradiction m≡n m≢n ≮⇒≥ : ∀ {m n} → m ≮ n → m ≥ n ≮⇒≥ {_} {zero} m≮n = 0≤n ≮⇒≥ {zero} {suc n} m≮n = contradiction 0<1+n m≮n ≮⇒≥ {suc m} {suc n} m≮n = suc-mono-≤ (≮⇒≥ (m≮n ∘ suc-mono-<)) <⇒≱ : ∀ {m n} → m < n → m ≱ n <⇒≱ {m} {n} m<n m≥n with n≤m⇒n<m⊎n≡m m≥n ... | inj₁ m>n = <-asym m<n m>n ... | inj₂ m≡n = <-irrefl (sym m≡n) m<n <ᵇ⇒< : ∀ m n → T (m <ᵇ n) → m < n <ᵇ⇒< zero (suc n) m<n = 0<1+n <ᵇ⇒< (suc m) (suc n) m<n = suc-mono-< (<ᵇ⇒< m n m<n) <⇒<ᵇ : ∀ m n → m < n → T (m <ᵇ n) <⇒<ᵇ zero (suc n) m<n = tt <⇒<ᵇ (suc m) (suc n) m<n = <⇒<ᵇ m n (suc-injective-≤ m<n) 0≢⇒0< : ∀ {n} → 0 ≢ n → 0 < n 0≢⇒0< {zero} 0≢n = contradiction refl 0≢n 0≢⇒0< {suc n} 0≢n = 0<1+n -- TODO change to does/proof <-cmp : Trichotomous _≡_ _<_ <-cmp m n with m ≟ n | T? (m <ᵇ n) ... | yes m≡n | _ = tri≈ (<-irrefl m≡n) m≡n (<-irrefl (sym m≡n)) ... | no m≢n | yes m<n = tri< (<ᵇ⇒< m n m<n) m≢n (<⇒≯ (<ᵇ⇒< m n m<n)) ... | no m≢n | no m≮n = tri> (m≮n ∘ <⇒<ᵇ m n) m≢n (≤∧≢⇒< (≮⇒≥ (m≮n ∘ <⇒<ᵇ m n)) (m≢n ∘ sym)) _<?_ : Decidable _<_ a <? b with <-cmp a b ... | tri< a<b _ _ = yes a<b ... | tri≈ _ refl _ = no λ a<b → n≮n a<b ... | tri> _ _ a>b = no λ a<b → <-asym a>b a<b <-≤-connex : Connex _<_ _≤_ <-≤-connex m n with <-cmp m n ... | tri< n<m _ _ = inj₁ n<m ... | tri≈ _ refl _ = inj₂ ≤-refl ... | tri> _ _ n>m = inj₂ (<⇒≤ n>m) <-irrelevant : Irrelevant _<_ <-irrelevant {x} (lte k₁ 1+x+k₁≡y) (lte k₂ 1+x+k₂≡y) with +-cancelˡ-≡ (1 + x) (trans 1+x+k₁≡y (sym 1+x+k₂≡y)) <-irrelevant {x} (lte k₁ refl) (lte .k₁ refl) | refl = refl ≤-total : Total _≤_ ≤-total n m with <-cmp n m ... | tri< n<m _ _ = inj₁ (<⇒≤ n<m) ... | tri≈ _ refl _ = inj₁ ≤-refl ... | tri> _ _ n>m = inj₂ (<⇒≤ n>m) ≤-isTotalOrder : IsTotalOrder _≡_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ ≤-totalOrder = record { isTotalOrder = ≤-isTotalOrder } open import Algebra.Construct.NaturalChoice.Max ≤-totalOrder public +-distribˡ-⊔ : _+_ DistributesOverˡ _⊔_ +-distribˡ-⊔ x y z with ≤-total z y +-distribˡ-⊔ x y z | inj₁ z≤y with ≤-total (x + z) (x + y) +-distribˡ-⊔ x y z | inj₁ z≤y | inj₁ x+z≤x+y = refl +-distribˡ-⊔ x y z | inj₁ z≤y | inj₂ x+y≤x+z = ≤-antisym x+y≤x+z (+-mono-≤ ≤-refl z≤y) +-distribˡ-⊔ x y z | inj₂ y≤z with ≤-total (x + z) (x + y) +-distribˡ-⊔ x y z | inj₂ y≤z | inj₁ x+z≤x+y = ≤-antisym x+z≤x+y (+-mono-≤ ≤-refl y≤z) +-distribˡ-⊔ x y z | inj₂ y≤z | inj₂ x+y≤x+z = refl ⊔-least-≤ : ∀ n m o → n ≤ o → m ≤ o → n ⊔ m ≤ o ⊔-least-≤ n m o n≤o m≤o with ≤-total m n ... | inj₁ _ = n≤o ... | inj₂ _ = m≤o ⊔-least-< : ∀ n m o → n < o → m < o → n ⊔ m < o ⊔-least-< n m o n<o m<o with ≤-total m n ... | inj₁ _ = n<o ... | inj₂ _ = m<o m≤n⇒m⊔n≡n : ∀ {m n} → m ≤ n → m ⊔ n ≡ n m≤n⇒m⊔n≡n {m} {n} m≤n with ≤-total n m ... | inj₁ n≤m = ≤-antisym m≤n n≤m ... | inj₂ _ = refl auto-≤ : ∀ {n m} {{ pf : True (n + (m ∸ n) ≟ m) }} → n ≤ m auto-≤ {n} {m} with n + (m ∸ n) ≟ m ... | yes pf = lte (m ∸ n) pf
{ "alphanum_fraction": 0.4911284599, "avg_line_length": 34.3658536585, "ext": "agda", "hexsha": "f02bbd5b21f95b45c4ffddff9ec5a8428e99c40f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Nat/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Nat/Properties.agda", "max_line_length": 207, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Nat/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 7105, "size": 12681 }
module localInstances where open import Agda.Builtin.Nat renaming (Nat to ℕ) open import Agda.Builtin.Bool open import Common.String open import Common.List record Eq (A : Set) : Set where field eq : A → A → Bool strlen : String → ℕ strlen s = length (stringToList s) if_then_else_ : {A : Set} → Bool → A → A → A if true then x else y = x if false then x else y = y open Eq {{...}} instance eqℕ : Eq ℕ eqℕ = record { eq = λ x x' → x == x' } eqString₁ : String → String → Bool eqString₁ s₁ s₂ = strEq s₁ s₂ eqString₂ : String → String → Bool eqString₂ s₁ s₂ = eq (strlen s₁) (strlen s₂) testWhere : Bool → Bool testWhere lengthEq = if eq "abcd" "dcba" then false else true where instance eqLocal : Eq String eqLocal = record { eq = if lengthEq then eqString₂ else eqString₁ } testLet : Bool → Bool testLet lengthEq = let instance eqLocal : Eq String eqLocal = record { eq = if lengthEq then eqString₂ else eqString₁ } in if eq "abcd" "dcba" then false else true test1 : Bool test1 = testWhere true test2 : Bool test2 = testLet true
{ "alphanum_fraction": 0.6727941176, "avg_line_length": 22.2040816327, "ext": "agda", "hexsha": "5e30dffe3d22c976fbfe64a3774035b0d76a95b2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/localInstances.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/localInstances.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/localInstances.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 341, "size": 1088 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.PathGroupoid module lib.PathFunctor where {- Nondependent stuff -} module _ {i j} {A : Type i} {B : Type j} (f : A → B) where !-ap : {x y : A} (p : x == y) → ! (ap f p) == ap f (! p) !-ap idp = idp ap-! : {x y : A} (p : x == y) → ap f (! p) == ! (ap f p) ap-! idp = idp ∙-ap : {x y z : A} (p : x == y) (q : y == z) → ap f p ∙ ap f q == ap f (p ∙ q) ∙-ap idp q = idp ap-∙ : {x y z : A} (p : x == y) (q : y == z) → ap f (p ∙ q) == ap f p ∙ ap f q ap-∙ idp q = idp ∙∙-ap : {x y z w : A} (p : x == y) (q : y == z) (r : z == w) → ap f p ∙ ap f q ∙ ap f r == ap f (p ∙ q ∙ r) ∙∙-ap idp idp r = idp ap-∙∙ : {x y z w : A} (p : x == y) (q : y == z) (r : z == w) → ap f (p ∙ q ∙ r) == ap f p ∙ ap f q ∙ ap f r ap-∙∙ idp idp r = idp ap-∙∙∙ : {x y z w t : A} (p : x == y) (q : y == z) (r : z == w) (s : w == t) → ap f (p ∙ q ∙ r ∙ s) == ap f p ∙ ap f q ∙ ap f r ∙ ap f s ap-∙∙∙ idp idp idp s = idp ∙'-ap : {x y z : A} (p : x == y) (q : y == z) → ap f p ∙' ap f q == ap f (p ∙' q) ∙'-ap p idp = idp ap-∙' : {x y z : A} (p : x == y) (q : y == z) → ap f (p ∙' q) == ap f p ∙' ap f q ap-∙' p idp = idp {- Dependent stuff -} module _ {i j} {A : Type i} {B : A → Type j} (f : Π A B) where apd-∙ : {x y z : A} (p : x == y) (q : y == z) → apd f (p ∙ q) == apd f p ∙ᵈ apd f q apd-∙ idp idp = idp apd-∙' : {x y z : A} (p : x == y) (q : y == z) → apd f (p ∙' q) == apd f p ∙'ᵈ apd f q apd-∙' idp idp = idp apd-! : {x y : A} (p : x == y) → apd f (! p) == !ᵈ (apd f p) apd-! idp = idp {- Over stuff -} module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} (f : {a : A} → B a → C a) where ap↓-◃ : {x y z : A} {u : B x} {v : B y} {w : B z} {p : x == y} {p' : y == z} (q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ]) → ap↓ f (q ◃ r) == ap↓ f q ◃ ap↓ f r ap↓-◃ {p = idp} {p' = idp} idp idp = idp ap↓-▹! : {x y z : A} {u : B x} {v : B y} {w : B z} {p : x == y} {p' : z == y} (q : u == v [ B ↓ p ]) (r : w == v [ B ↓ p' ]) → ap↓ f (q ▹! r) == ap↓ f q ▹! ap↓ f r ap↓-▹! {p = idp} {p' = idp} idp idp = idp {- Fuse and unfuse -} ∘-ap : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) {x y : A} (p : x == y) → ap g (ap f p) == ap (g ∘ f) p ∘-ap f g idp = idp ap-∘ : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) {x y : A} (p : x == y) → ap (g ∘ f) p == ap g (ap f p) ap-∘ f g idp = idp ap-cst : ∀ {i j} {A : Type i} {B : Type j} (b : B) {x y : A} (p : x == y) → ap (cst b) p == idp ap-cst b idp = idp ap-idf : ∀ {i} {A : Type i} {u v : A} (p : u == v) → ap (idf A) p == p ap-idf idp = idp {- Functoriality of [coe] -} coe-∙ : ∀ {i} {A B C : Type i} (p : A == B) (q : B == C) (a : A) → coe (p ∙ q) a == coe q (coe p a) coe-∙ idp q a = idp coe-! : ∀ {i} {A B : Type i} (p : A == B) (b : B) → coe (! p) b == coe! p b coe-! idp b = idp coe!-inv-r : ∀ {i} {A B : Type i} (p : A == B) (b : B) → coe p (coe! p b) == b coe!-inv-r idp b = idp coe!-inv-l : ∀ {i} {A B : Type i} (p : A == B) (a : A) → coe! p (coe p a) == a coe!-inv-l idp a = idp coe-inv-adj : ∀ {i} {A B : Type i} (p : A == B) (a : A) → ap (coe p) (coe!-inv-l p a) == coe!-inv-r p (coe p a) coe-inv-adj idp a = idp coe!-inv-adj : ∀ {i} {A B : Type i} (p : A == B) (b : B) → ap (coe! p) (coe!-inv-r p b) == coe!-inv-l p (coe! p b) coe!-inv-adj idp b = idp coe-ap-! : ∀ {i j} {A : Type i} (P : A → Type j) {a b : A} (p : a == b) (x : P b) → coe (ap P (! p)) x == coe! (ap P p) x coe-ap-! P idp x = idp {- Functoriality of transport -} transp-∙ : ∀ {i j} {A : Type i} {B : A → Type j} {x y z : A} (p : x == y) (q : y == z) (b : B x) → transport B (p ∙ q) b == transport B q (transport B p b) transp-∙ idp _ _ = idp transp-∙' : ∀ {i j} {A : Type i} {B : A → Type j} {x y z : A} (p : x == y) (q : y == z) (b : B x) → transport B (p ∙' q) b == transport B q (transport B p b) transp-∙' _ idp _ = idp {- Naturality of homotopies -} -- One should use [↓-='-out] and [apd] together, or even lib.cubical, -- for homotopy naturality. {- for functions with two arguments -} module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → B → C) where ap2 : {x y : A} {w z : B} → (x == y) → (w == z) → f x w == f y z ap2 idp idp = idp ap2-out : {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 p q == ap (λ u → f u w) p ∙ ap (λ v → f y v) q ap2-out idp idp = idp ap2-idp-l : {x : A} {w z : B} (q : w == z) → ap2 (idp {a = x}) q == ap (f x) q ap2-idp-l idp = idp ap2-idp-r : {x y : A} {w : B} (p : x == y) → ap2 p (idp {a = w}) == ap (λ z → f z w) p ap2-idp-r idp = idp {- ap2 lemmas -} module _ {i j} {A : Type i} {B : Type j} where ap2-fst : {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 (curry fst) p q == p ap2-fst idp idp = idp ap2-snd : {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 (curry snd) p q == q ap2-snd idp idp = idp ap-ap2 : ∀ {k l} {C : Type k} {D : Type l} (g : C → D) (f : A → B → C) {x y : A} {w z : B} (p : x == y) (q : w == z) → ap g (ap2 f p q) == ap2 (λ a b → g (f a b)) p q ap-ap2 g f idp idp = idp ap2-ap-l : ∀ {k l} {C : Type k} {D : Type l} (g : B → C → D) (f : A → B) {x y : A} {w z : C} (p : x == y) (q : w == z) → ap2 g (ap f p) q == ap2 (λ a c → g (f a) c) p q ap2-ap-l g f idp idp = idp ap2-ap-r : ∀ {k l} {C : Type k} {D : Type l} (g : A → C → D) (f : B → C) {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 g p (ap f q) == ap2 (λ a b → g a (f b)) p q ap2-ap-r g f idp idp = idp ap2-diag : (f : A → A → B) {x y : A} (p : x == y) → ap2 f p p == ap (λ x → f x x) p ap2-diag f idp = idp -- unsure where this belongs transp-cst=idf : ∀ {i} {A : Type i} {a x y : A} (p : x == y) (q : a == x) → transport (λ x → a == x) p q == q ∙ p transp-cst=idf idp q = ! (∙-unit-r q) {- for functions with more arguments -} module _ {i₀ i₁ i₂ j} {A₀ : Type i₀} {A₁ : Type i₁} {A₂ : Type i₂} {B : Type j} (f : A₀ → A₁ → A₂ → B) where ap3 : {x₀ y₀ : A₀} {x₁ y₁ : A₁} {x₂ y₂ : A₂} → (x₀ == y₀) → (x₁ == y₁) → (x₂ == y₂) → f x₀ x₁ x₂ == f y₀ y₁ y₂ ap3 idp idp idp = idp module _ {i₀ i₁ i₂ i₃ j} {A₀ : Type i₀} {A₁ : Type i₁} {A₂ : Type i₂} {A₃ : Type i₃} {B : Type j} (f : A₀ → A₁ → A₂ → A₃ → B) where ap4 : {x₀ y₀ : A₀} {x₁ y₁ : A₁} {x₂ y₂ : A₂} {x₃ y₃ : A₃} → (x₀ == y₀) → (x₁ == y₁) → (x₂ == y₂) → (x₃ == y₃) → f x₀ x₁ x₂ x₃ == f y₀ y₁ y₂ y₃ ap4 idp idp idp idp = idp module _ {i₀ i₁ i₂ i₃ i₄ j} {A₀ : Type i₀} {A₁ : Type i₁} {A₂ : Type i₂} {A₃ : Type i₃} {A₄ : Type i₄} {B : Type j} (f : A₀ → A₁ → A₂ → A₃ → A₄ → B) where ap5 : {x₀ y₀ : A₀} {x₁ y₁ : A₁} {x₂ y₂ : A₂} {x₃ y₃ : A₃} {x₄ y₄ : A₄} → (x₀ == y₀) → (x₁ == y₁) → (x₂ == y₂) → (x₃ == y₃) → (x₄ == y₄) → f x₀ x₁ x₂ x₃ x₄ == f y₀ y₁ y₂ y₃ y₄ ap5 idp idp idp idp idp = idp module _ {i₀ i₁ i₂ i₃ i₄ i₅ j} {A₀ : Type i₀} {A₁ : Type i₁} {A₂ : Type i₂} {A₃ : Type i₃} {A₄ : Type i₄} {A₅ : Type i₅} {B : Type j} (f : A₀ → A₁ → A₂ → A₃ → A₄ → A₅ → B) where ap6 : {x₀ y₀ : A₀} {x₁ y₁ : A₁} {x₂ y₂ : A₂} {x₃ y₃ : A₃} {x₄ y₄ : A₄} {x₅ y₅ : A₅} → (x₀ == y₀) → (x₁ == y₁) → (x₂ == y₂) → (x₃ == y₃) → (x₄ == y₄) → (x₅ == y₅) → f x₀ x₁ x₂ x₃ x₄ x₅ == f y₀ y₁ y₂ y₃ y₄ y₅ ap6 idp idp idp idp idp idp = idp
{ "alphanum_fraction": 0.4177043855, "avg_line_length": 32.8355555556, "ext": "agda", "hexsha": "706aed2a78bb78c3862f1b323478546f5708b44c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/PathFunctor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/PathFunctor.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/PathFunctor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3916, "size": 7388 }
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite record R : Set where constructor mkR field f : Nat data Box : Set → Set₁ where box : (A : Set) → Box A data D (A : Set) : Set₁ where c : Box A → R → D A postulate r : R dr : ∀ {A} → D A rew : ∀ {A} {x} → c {A} (box A) (mkR x) ≡ dr {-# REWRITE rew #-} test : c {Bool} (box Bool) r ≡ dr test = refl
{ "alphanum_fraction": 0.6036960986, "avg_line_length": 18.037037037, "ext": "agda", "hexsha": "2a7cc5863ea29042821e153da13f3e5ddd97a278", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4755a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4755a.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4755a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 180, "size": 487 }
{-# OPTIONS -v tc.unquote:30 #-} open import Common.Prelude open import Common.Reflection open import Agda.Builtin.Sigma data Box : Bool → Set where box : (b : Bool) → Box b works : (b : Bool) → Box b → Bool works b (box .b) = unquote (give (var 0 [])) works₂ : (b : Bool) → Box b → Bool unquoteDef works₂ = defineFun works₂ (clause ( ("b" , arg (argInfo visible relevant) unknown) ∷ []) ( arg (argInfo visible relevant) (var 0) ∷ arg (argInfo visible relevant) (con (quote box) (arg (argInfo visible relevant) (dot unknown) ∷ [])) ∷ []) (var 0 []) ∷ []) works₃ : (b : Bool) → Box b → (x y : Bool) → Bool unquoteDef works₃ = defineFun works₃ (clause ( ("y" , arg (argInfo visible relevant) unknown) ∷ ("x" , arg (argInfo visible relevant) unknown) ∷ ("b" , arg (argInfo visible relevant) unknown) ∷ []) ( arg (argInfo visible relevant) (var 2) ∷ arg (argInfo visible relevant) (con (quote box) (arg (argInfo visible relevant) (dot unknown) ∷ [])) ∷ arg (argInfo visible relevant) (var 1) ∷ arg (argInfo visible relevant) (var 0) ∷ []) (var 2 []) ∷ [])
{ "alphanum_fraction": 0.6195652174, "avg_line_length": 32.4705882353, "ext": "agda", "hexsha": "4edf2deeace410c7209de474d29bc0e248b886bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue1344.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1344.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1344.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 364, "size": 1104 }
open import Level open import Ordinals module Topology {n : Level } (O : Ordinals {n}) where open import zf open import logic open _∧_ open _∨_ open Bool import OD open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality import BAlgbra open BAlgbra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O import ODC open ODC O open import filter record Toplogy ( L : HOD ) : Set (suc n) where field OS : HOD OS⊆PL : OS ⊆ Power L o∪ : { P : HOD } → P ⊆ OS → OS ∋ Union P o∩ : { p q : HOD } → OS ∋ p → OS ∋ q → OS ∋ (p ∩ q) open Toplogy record _covers_ ( P q : HOD ) : Set (suc n) where field cover : {x : HOD} → q ∋ x → HOD P∋cover : {x : HOD} → {lt : q ∋ x} → P ∋ cover lt isCover : {x : HOD} → {lt : q ∋ x} → cover lt ∋ x -- Base -- The elements of B cover X ; For any U , V ∈ B and any point x ∈ U ∩ V there is a W ∈ B such that -- W ⊆ U ∩ V and x ∈ W . data genTop (P : HOD) : HOD → Set (suc n) where gi : {x : HOD} → P ∋ x → genTop P x g∩ : {x y : HOD} → genTop P x → genTop P y → genTop P (x ∩ y) g∪ : {Q x : HOD} → Q ⊆ P → genTop P (Union Q) -- Limit point record LP ( L S x : HOD ) (top : Toplogy L) (S⊆PL : S ⊆ Power L ) ( S∋x : S ∋ x ) : Set (suc n) where field neip : {y : HOD} → OS top ∋ y → y ∋ x → HOD isNeip : {y : HOD} → (o∋y : OS top ∋ y ) → (y∋x : y ∋ x ) → ¬ ( x ≡ neip o∋y y∋x) ∧ ( y ∋ neip o∋y y∋x ) -- Finite Intersection Property data Finite-∩ (S : HOD) : HOD → Set (suc n) where fin-∩e : {x : HOD} → S ∋ x → Finite-∩ S x fin-∩ : {x y : HOD} → Finite-∩ S x → Finite-∩ S y → Finite-∩ S (x ∩ y) record FIP ( L P : HOD ) : Set (suc n) where field fipS⊆PL : P ⊆ Power L fip≠φ : { x : HOD } → Finite-∩ P x → ¬ ( x ≡ od∅ ) -- Compact data Finite-∪ (S : HOD) : HOD → Set (suc n) where fin-∪e : {x : HOD} → S ∋ x → Finite-∪ S x fin-∪ : {x y : HOD} → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (x ∪ y) record Compact ( L P : HOD ) : Set (suc n) where field finCover : {X y : HOD} → X covers P → P ∋ y → HOD isFinCover : {X y : HOD} → (xp : X covers P ) → (P∋y : P ∋ y ) → finCover xp P∋y ∋ y isFininiteCover : {X y : HOD} → (xp : X covers P ) → (P∋y : P ∋ y ) → Finite-∪ X (finCover xp P∋y ) -- FIP is Compact FIP→Compact : {L P : HOD} → Tolopogy L → FIP L P → Compact L P FIP→Compact = ? Compact→FIP : {L P : HOD} → Tolopogy L → Compact L P → FIP L P Compact→FIP = ? -- Product Topology _Top⊗_ : {P Q : HOD} → Topology P → Tolopogy Q → Topology ( P ⊗ Q ) _Top⊗_ = ? -- existence of Ultra Filter -- Ultra Filter has limit point -- FIP is UFL -- Product of UFL has limit point (Tychonoff)
{ "alphanum_fraction": 0.5475143727, "avg_line_length": 26.8818181818, "ext": "agda", "hexsha": "d6ac8fa25ba7d5552dd799121fa8a9a9f6252a64", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/zf-in-agda", "max_forks_repo_path": "src/Topology.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/zf-in-agda", "max_issues_repo_path": "src/Topology.agda", "max_line_length": 110, "max_stars_count": 5, "max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/zf-in-agda", "max_stars_repo_path": "src/Topology.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z", "num_tokens": 1224, "size": 2957 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where all elements satisfy a given property ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.All where open import Category.Applicative open import Category.Monad open import Data.Empty using (⊥) open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.List.Membership.Propositional using (_∈_) open import Data.Product as Prod using (∃; -,_; _×_; _,_; proj₁; proj₂; uncurry) open import Function open import Level open import Relation.Nullary hiding (Irrelevant) import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product using (_×-dec_) open import Relation.Unary hiding (_∈_) open import Relation.Binary.PropositionalEquality as P private variable a b p q r : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Definitions -- Given a predicate P, then All P xs means that every element in xs -- satisfies P. See `Relation.Unary` for an explanation of predicates. infixr 5 _∷_ data All {A : Set a} (P : Pred A p) : Pred (List A) (a ⊔ p) where [] : All P [] _∷_ : ∀ {x xs} (px : P x) (pxs : All P xs) → All P (x ∷ xs) -- All P xs is a finite map from indices x ∈ xs to content P x. -- Relation pxs [ i ]= px states that, in map pxs, key i : x ∈ xs points to value px. infix 4 _[_]=_ data _[_]=_ {A : Set a} {P : Pred A p} : ∀ {x xs} → All P xs → x ∈ xs → P x → Set (a ⊔ p) where here : ∀ {x xs} {px : P x} {pxs : All P xs} → px ∷ pxs [ here refl ]= px there : ∀ {x xs y} {px : P x} {pxs : All P xs} {py : P y} {i : x ∈ xs} → pxs [ i ]= px → py ∷ pxs [ there i ]= px -- A list is empty if having an element is impossible. Null : Pred (List A) _ Null = All (λ _ → ⊥) ------------------------------------------------------------------------ -- Operations on All module _ {P : Pred A p} where uncons : ∀ {x xs} → All P (x ∷ xs) → P x × All P xs uncons (px ∷ pxs) = px , pxs head : ∀ {x xs} → All P (x ∷ xs) → P x head = proj₁ ∘ uncons tail : ∀ {x xs} → All P (x ∷ xs) → All P xs tail = proj₂ ∘ uncons tabulate : ∀ {xs} → (∀ {x} → x ∈ xs → P x) → All P xs tabulate {xs = []} hyp = [] tabulate {xs = x ∷ xs} hyp = hyp (here refl) ∷ tabulate (hyp ∘ there) reduce : (f : ∀ {x} → P x → B) → ∀ {xs} → All P xs → List B reduce f [] = [] reduce f (px ∷ pxs) = f px ∷ reduce f pxs construct : (f : B → ∃ P) (xs : List B) → ∃ (All P) construct f [] = [] , [] construct f (x ∷ xs) = Prod.zip _∷_ _∷_ (f x) (construct f xs) fromList : (xs : List (∃ P)) → All P (List.map proj₁ xs) fromList [] = [] fromList ((x , p) ∷ xps) = p ∷ fromList xps toList : ∀ {xs} → All P xs → List (∃ P) toList pxs = reduce (λ {x} px → x , px) pxs module _ {P : Pred A p} {Q : Pred A q} where map : P ⊆ Q → All P ⊆ All Q map g [] = [] map g (px ∷ pxs) = g px ∷ map g pxs module _ {P : Pred A p} {Q : Pred A q} {R : Pred A r} where zipWith : P ∩ Q ⊆ R → All P ∩ All Q ⊆ All R zipWith f ([] , []) = [] zipWith f (px ∷ pxs , qx ∷ qxs) = f (px , qx) ∷ zipWith f (pxs , qxs) unzipWith : R ⊆ P ∩ Q → All R ⊆ All P ∩ All Q unzipWith f [] = [] , [] unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (f rx) (unzipWith f rxs) module _ {P : Pred A p} {Q : Pred A q} where zip : All P ∩ All Q ⊆ All (P ∩ Q) zip = zipWith id unzip : All (P ∩ Q) ⊆ All P ∩ All Q unzip = unzipWith id self : ∀ {xs : List A} → All (const A) xs self = tabulate (λ {x} _ → x) ------------------------------------------------------------------------ -- (weak) updateAt module _ {P : Pred A p} where infixl 6 _[_]%=_ _[_]≔_ updateAt : ∀ {x xs} → x ∈ xs → (P x → P x) → All P xs → All P xs updateAt () f [] updateAt (here refl) f (px ∷ pxs) = f px ∷ pxs updateAt (there i) f (px ∷ pxs) = px ∷ updateAt i f pxs _[_]%=_ : ∀ {x xs} → All P xs → x ∈ xs → (P x → P x) → All P xs pxs [ i ]%= f = updateAt i f pxs _[_]≔_ : ∀ {x xs} → All P xs → x ∈ xs → P x → All P xs pxs [ i ]≔ px = pxs [ i ]%= const px ------------------------------------------------------------------------ -- Traversable-like functions module _ (p : Level) {A : Set a} {P : Pred A (a ⊔ p)} {F : Set (a ⊔ p) → Set (a ⊔ p)} (App : RawApplicative F) where open RawApplicative App sequenceA : All (F ∘′ P) ⊆ F ∘′ All P sequenceA [] = pure [] sequenceA (x ∷ xs) = _∷_ <$> x ⊛ sequenceA xs mapA : ∀ {Q : Pred A q} → (Q ⊆ F ∘′ P) → All Q ⊆ (F ∘′ All P) mapA f = sequenceA ∘′ map f forA : ∀ {Q : Pred A q} {xs} → All Q xs → (Q ⊆ F ∘′ P) → F (All P xs) forA qxs f = mapA f qxs module _ (p : Level) {A : Set a} {P : Pred A (a ⊔ p)} {M : Set (a ⊔ p) → Set (a ⊔ p)} (Mon : RawMonad M) where private App = RawMonad.rawIApplicative Mon sequenceM : All (M ∘′ P) ⊆ M ∘′ All P sequenceM = sequenceA p App mapM : ∀ {Q : Pred A q} → (Q ⊆ M ∘′ P) → All Q ⊆ (M ∘′ All P) mapM = mapA p App forM : ∀ {Q : Pred A q} {xs} → All Q xs → (Q ⊆ M ∘′ P) → M (All P xs) forM = forA p App ------------------------------------------------------------------------ -- Generalised lookup based on a proof of Any module _ {P : Pred A p} {Q : Pred A q} where lookupAny : ∀ {xs} → All P xs → (i : Any Q xs) → (P ∩ Q) (Any.lookup i) lookupAny (px ∷ pxs) (here qx) = px , qx lookupAny (px ∷ pxs) (there i) = lookupAny pxs i module _ {P : Pred A p} {Q : Pred A q} {R : Pred A r} where lookupWith : ∀[ P ⇒ Q ⇒ R ] → ∀ {xs} → All P xs → (i : Any Q xs) → R (Any.lookup i) lookupWith f pxs i = Prod.uncurry f (lookupAny pxs i) module _ {P : Pred A p} where lookup : ∀ {xs} → All P xs → (∀ {x} → x ∈ xs → P x) lookup pxs = lookupWith (λ { px refl → px }) pxs ------------------------------------------------------------------------ -- Properties of predicates preserved by All module _ {P : Pred A p} where all : Decidable P → Decidable (All P) all p [] = yes [] all p (x ∷ xs) = Dec.map′ (uncurry _∷_) uncons (p x ×-dec all p xs) universal : Universal P → Universal (All P) universal u [] = [] universal u (x ∷ xs) = u x ∷ universal u xs irrelevant : Irrelevant P → Irrelevant (All P) irrelevant irr [] [] = P.refl irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) = P.cong₂ _∷_ (irr px₁ px₂) (irrelevant irr pxs₁ pxs₂) satisfiable : Satisfiable (All P) satisfiable = [] , []
{ "alphanum_fraction": 0.495687091, "avg_line_length": 30.703196347, "ext": "agda", "hexsha": "36d1f59755b4ed900f3566d67748c0a799c0a4ac", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/All.agda", "max_line_length": 85, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/All.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2359, "size": 6724 }
{-# OPTIONS --without-K #-} {-- Make a version of this file with plain PI and ℕ as a model Make another version with PI+NEG+FRAC (meadow style) and ℚ as a model Keep extending; add imaginary numbers and try ℂ as a model then add square roots and try algebraic numbers as a model An orthogonal direction is to try other models that are not numbers: in particular groupoid-based models like we started in F2.agda and F2a.agda --} module HP where -- Pi as a higher-order inductive type open import Agda.Prim open import Data.Empty open import Data.Unit open import Data.Unit.Core open import Data.Maybe hiding (map) open import Data.Nat renaming (_⊔_ to _⊔ℕ_) open import Data.Integer hiding (_⊔_) open import Data.Sum renaming (map to _⊎→_) open import Data.Product renaming (map to _×→_) open import Data.List open import Data.Rational hiding (_≃_) open import Function renaming (_∘_ to _○_) infixr 8 _∘_ -- path composition infix 4 _≡_ -- propositional equality infix 4 _∼_ -- homotopy between two functions infix 4 _≃_ -- type of equivalences infix 2 _∎ -- equational reasoning infixr 2 _≡⟨_⟩_ -- equational reasoning infix 2 _∎≃ -- equational reasoning for equivalences infixr 2 _≃⟨_⟩_ -- equational reasoning for equivalences ------------------------------------------------------------------------------ -- Identity types and path induction principles -- Our own version of refl that makes 'a' explicit data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where refl : (a : A) → (a ≡ a) pathInd : ∀ {u ℓ} → {A : Set u} → (C : {x y : A} → x ≡ y → Set ℓ) → (c : (x : A) → C (refl x)) → ({x y : A} (p : x ≡ y) → C p) pathInd C c (refl x) = c x basedPathInd : {A : Set} → (a : A) → (C : (x : A) → (a ≡ x) → Set) → C a (refl a) → ((x : A) (p : a ≡ x) → C x p) basedPathInd a C c .a (refl .a) = c ------------------------------------------------------------------------------ -- Ch. 2 -- Lemma 2.1.1 ! : ∀ {u} → {A : Set u} {x y : A} → (x ≡ y) → (y ≡ x) ! = pathInd (λ {x} {y} _ → y ≡ x) refl -- Lemma 2.1.2 _∘_ : ∀ {u} → {A : Set u} → {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) _∘_ {u} {A} {x} {y} {z} p q = pathInd (λ {x} {y} p → ((z : A) → (q : y ≡ z) → (x ≡ z))) (λ x z q → pathInd (λ {x} {z} _ → x ≡ z) refl {x} {z} q) {x} {y} p z q -- Lemma 2.1.4 -- p ≡ p ∘ refl unitTransR : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ p ∘ refl y) unitTransR {A} {x} {y} p = pathInd (λ {x} {y} p → p ≡ p ∘ (refl y)) (λ x → refl (refl x)) {x} {y} p -- p ≡ refl ∘ p unitTransL : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ refl x ∘ p) unitTransL {A} {x} {y} p = pathInd (λ {x} {y} p → p ≡ (refl x) ∘ p) (λ x → refl (refl x)) {x} {y} p -- ! p ∘ p ≡ refl invTransL : {A : Set} {x y : A} → (p : x ≡ y) → (! p ∘ p ≡ refl y) invTransL {A} {x} {y} p = pathInd (λ {x} {y} p → ! p ∘ p ≡ refl y) (λ x → refl (refl x)) {x} {y} p -- p ∘ ! p ≡ refl invTransR : ∀ {ℓ} {A : Set ℓ} {x y : A} → (p : x ≡ y) → (p ∘ ! p ≡ refl x) invTransR {ℓ} {A} {x} {y} p = pathInd (λ {x} {y} p → p ∘ ! p ≡ refl x) (λ x → refl (refl x)) {x} {y} p -- ! (! p) ≡ p invId : {A : Set} {x y : A} → (p : x ≡ y) → (! (! p) ≡ p) invId {A} {x} {y} p = pathInd (λ {x} {y} p → ! (! p) ≡ p) (λ x → refl (refl x)) {x} {y} p -- p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r assocP : {A : Set} {x y z w : A} → (p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) → (p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r) assocP {A} {x} {y} {z} {w} p q r = pathInd (λ {x} {y} p → (z : A) → (w : A) → (q : y ≡ z) → (r : z ≡ w) → p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r) (λ x z w q r → pathInd (λ {x} {z} q → (w : A) → (r : z ≡ w) → (refl x) ∘ (q ∘ r) ≡ ((refl x) ∘ q) ∘ r) (λ x w r → pathInd (λ {x} {w} r → (refl x) ∘ ((refl x) ∘ r) ≡ ((refl x) ∘ (refl x)) ∘ r) (λ x → (refl (refl x))) {x} {w} r) {x} {z} q w r) {x} {y} p z w q r -- ! (p ∘ q) ≡ ! q ∘ ! p invComp : {A : Set} {x y z : A} → (p : x ≡ y) → (q : y ≡ z) → ! (p ∘ q) ≡ ! q ∘ ! p invComp {A} {x} {y} {z} p q = pathInd (λ {x} {y} p → (z : A) → (q : y ≡ z) → ! (p ∘ q) ≡ ! q ∘ ! p) (λ x z q → pathInd (λ {x} {z} q → ! (refl x ∘ q) ≡ ! q ∘ ! (refl x)) (λ x → refl (refl x)) {x} {z} q) {x} {y} p z q -- Introduce equational reasoning syntax to simplify proofs _≡⟨_⟩_ : ∀ {u} → {A : Set u} (x : A) {y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) _ ≡⟨ p ⟩ q = p ∘ q bydef : ∀ {u} → {A : Set u} {x : A} → (x ≡ x) bydef {u} {A} {x} = refl x _∎ : ∀ {u} → {A : Set u} (x : A) → x ≡ x _∎ x = refl x ------------------------------------------------------------------------------ -- Functions are functors -- Lemma 2.2.1 -- computation rule: ap f (refl x) = refl (f x) ap : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {x y : A} → (f : A → B) → (x ≡ y) → (f x ≡ f y) ap f p = pathInd (λ {x} {y} _ → f x ≡ f y) (λ x → refl (f x)) p ap₂ : ∀ {ℓ ℓ' ℓ''} → {A : Set ℓ} {B : Set ℓ'} {C : Set ℓ''} {x₁ y₁ : A} {x₂ y₂ : B} → (f : A → B → C) → (x₁ ≡ y₁) → (x₂ ≡ y₂) → (f x₁ x₂ ≡ f y₁ y₂) ap₂ {ℓ} {ℓ'} {ℓ''} {A} {B} {C} {x₁} {y₁} {x₂} {y₂} f p₁ p₂ = pathInd -- on p₁ (λ {x₁} {y₁} p₁ → f x₁ x₂ ≡ f y₁ y₂) (λ x → pathInd -- on p₂ (λ {x₂} {y₂} p₂ → f x x₂ ≡ f x y₂) (λ y → refl (f x y)) {x₂} {y₂} p₂) {x₁} {y₁} p₁ -- Lemma 2.2.2 -- f (p ∘ q) ≡ f p ∘ f q apfTrans : ∀ {u} → {A B : Set u} {x y z : A} → (f : A → B) → (p : x ≡ y) → (q : y ≡ z) → ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q) apfTrans {u} {A} {B} {x} {y} {z} f p q = pathInd {u} (λ {x} {y} p → (z : A) → (q : y ≡ z) → ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q)) (λ x z q → pathInd {u} (λ {x} {z} q → ap f (refl x ∘ q) ≡ (ap f (refl x)) ∘ (ap f q)) (λ x → refl (refl (f x))) {x} {z} q) {x} {y} p z q -- f (! p) ≡ ! (f p) apfInv : ∀ {u} → {A B : Set u} {x y : A} → (f : A → B) → (p : x ≡ y) → ap f (! p) ≡ ! (ap f p) apfInv f p = pathInd (λ p → ap f (! p) ≡ ! (ap f p)) (λ x → refl (ap f (refl x))) p -- g (f p) ≡ (g ○ f) p apfComp : {A B C : Set} {x y : A} → (f : A → B) → (g : B → C) → (p : x ≡ y) → ap g (ap f p) ≡ ap (g ○ f) p apfComp {A} {B} {C} {x} {y} f g p = pathInd (λ {x} {y} p → ap g (ap f p) ≡ ap (g ○ f) p) (λ x → refl (ap g (ap f (refl x)))) {x} {y} p -- id p ≡ p apfId : {A : Set} {x y : A} → (p : x ≡ y) → ap id p ≡ p apfId {A} {x} {y} p = pathInd (λ {x} {y} p → ap id p ≡ p) (λ x → refl (refl x)) {x} {y} p -- Transport -- Lemma 2.3.1 transport : ∀ {ℓ ℓ'} → {A : Set ℓ} {x y : A} → (P : A → Set ℓ') → (p : x ≡ y) → P x → P y transport {x = x} {y} P p = pathInd (λ {x'} {y'} _ → (P x' → P y')) (λ _ → id) {x} {y} p -- Lemma 2.3.10 transport-f : ∀ {ℓ ℓ' ℓ''} → {A : Set ℓ} {B : Set ℓ'} {x y : A} → (f : A → B) → (P : B → Set ℓ'') → (p : x ≡ y) → (u : P (f x)) → transport (P ○ f) p u ≡ transport P (ap f p) u transport-f {ℓ} {ℓ'} {ℓ''} {A} {B} {x} {y} f P p u = pathInd -- on p (λ {x} {y} p → (u : P (f x)) → transport (P ○ f) p u ≡ transport P (ap f p) u) (λ x u → refl u) {x} {y} p u -- Lemma 2.11.2 transportIdR : {A : Set} {a y z : A} → (p : y ≡ z) → (q : a ≡ y) → transport (λ x → a ≡ x) p q ≡ q ∘ p transportIdR {A} {a} {y} {z} p q = pathInd (λ {y} {z} p → (q : a ≡ y) → transport (λ x → a ≡ x) p q ≡ q ∘ p) (λ y q → transport (λ x → a ≡ x) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransR q ⟩ q ∘ refl y ∎) {y} {z} p q transportIdL : {A : Set} {a y z : A} → (p : y ≡ z) → (q : y ≡ a) → transport (λ x → x ≡ a) p q ≡ ! p ∘ q transportIdL {A} {a} {y} {z} p q = pathInd (λ {y} {z} p → (q : y ≡ a) → transport (λ x → x ≡ a) p q ≡ ! p ∘ q) (λ y q → transport (λ x → x ≡ a) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransL q ⟩ ! (refl y) ∘ q ∎) {y} {z} p q transportIdRefl : {A : Set} {y z : A} → (p : y ≡ z) → (q : y ≡ y) → transport (λ x → x ≡ x) p q ≡ ! p ∘ q ∘ p transportIdRefl {A} {y} {z} p q = pathInd (λ {y} {z} p → (q : y ≡ y) → transport (λ x → x ≡ x) p q ≡ ! p ∘ q ∘ p) (λ y q → transport (λ x → x ≡ x) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransR q ⟩ q ∘ refl y ≡⟨ unitTransL (q ∘ refl y) ⟩ ! (refl y) ∘ q ∘ refl y ∎) {y} {z} p q -- Thm 2.11.3 transportId : {A B : Set} {y z : A} → (f g : A → B) → (p : y ≡ z) → (q : f y ≡ g y) → transport (λ x → f x ≡ g x) p q ≡ ! (ap f p) ∘ q ∘ (ap g p) transportId {A} {B} {y} {z} f g p q = pathInd (λ {y} {z} p → (q : f y ≡ g y) → transport (λ x → f x ≡ g x) p q ≡ ! (ap f p) ∘ q ∘ (ap g p)) (λ y q → q ≡⟨ unitTransR q ⟩ q ∘ refl (g y) ≡⟨ unitTransL (q ∘ refl (g y)) ⟩ refl (f y) ∘ q ∘ refl (g y) ∎) {y} {z} p q ------------------------------------------------------------------------------- -- Homotopies and equivalences _∼_ : ∀ {ℓ ℓ'} → {A : Set ℓ} {P : A → Set ℓ'} → (f g : (x : A) → P x) → Set (_⊔_ ℓ ℓ') _∼_ {ℓ} {ℓ'} {A} {P} f g = (x : A) → f x ≡ g x -- Quasi-inverses record qinv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (_⊔_ ℓ ℓ') where constructor mkqinv field g : B → A α : (f ○ g) ∼ id β : (g ○ f) ∼ id -- Example 2.4.7 idqinv : ∀ {ℓ} → {A : Set ℓ} → qinv {ℓ} {ℓ} {A} {A} id idqinv = record { g = id ; α = λ b → refl b ; β = λ a → refl a } -- Equivalences record isequiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (_⊔_ ℓ ℓ') where constructor mkisequiv field g : B → A α : (f ○ g) ∼ id h : B → A β : (h ○ f) ∼ id equiv₁ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → qinv f → isequiv f equiv₁ (mkqinv qg qα qβ) = mkisequiv qg qα qg qβ equiv₂ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → isequiv f → qinv f equiv₂ {f = f} (mkisequiv ig iα ih iβ) = record { g = ig ; α = iα ; β = λ x → ig (f x) ≡⟨ ! (iβ (ig (f x))) ⟩ ih (f (ig (f x))) ≡⟨ ap ih (iα (f x)) ⟩ ih (f x) ≡⟨ iβ x ⟩ x ∎ } _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (_⊔_ ℓ ℓ') A ≃ B = Σ (A → B) isequiv id≃ : ∀ {ℓ} {A : Set ℓ} → A ≃ A id≃ = (id , equiv₁ idqinv) sym≃ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (A ≃ B) → B ≃ A sym≃ (A→B , equiv) with equiv₂ equiv ... | mkqinv g α β = g , equiv₁ (mkqinv A→B β α) trans≃ : {A B C : Set} → A ≃ B → B ≃ C → A ≃ C trans≃ (f , feq) (g , geq) with equiv₂ feq | equiv₂ geq ... | mkqinv ff fα fβ | mkqinv gg gα gβ = (g ○ f , equiv₁ (mkqinv (ff ○ gg) (λ c → g (f (ff (gg c))) ≡⟨ ap g (fα (gg c)) ⟩ g (gg c) ≡⟨ gα c ⟩ c ∎) (λ a → ff (gg (g (f a))) ≡⟨ ap ff (gβ (f a)) ⟩ ff (f a) ≡⟨ fβ a ⟩ a ∎))) -- identities are equivalences idtoeqv : {A B : Set} → (A ≡ B) → (A ≃ B) idtoeqv {A} {B} p = pathInd (λ {A'} {B'} _ → A' ≃ B') (λ _ → id≃) {A} {B} p -- equivalences are injective _⋆_ : {A B : Set} → (A ≃ B) → (x : A) → B (f , _) ⋆ x = f x inj≃ : {A B : Set} → (eq : A ≃ B) → (x y : A) → (eq ⋆ x ≡ eq ⋆ y → x ≡ y) inj≃ (f , mkisequiv g α h β) x y p = ! (β x) ∘ (ap h p ∘ β y) -- equivalences for coproducts (Sec. 2.12) indCP : {A B : Set} → (C : A ⊎ B → Set) → ((a : A) → C (inj₁ a)) → ((b : B) → C (inj₂ b)) → ((x : A ⊎ B) → C x) indCP C f g (inj₁ a) = f a indCP C f g (inj₂ b) = g b code : {A B : Set} → (a₀ : A) → A ⊎ B → Set code a₀ (inj₁ a) = a₀ ≡ a code a₀ (inj₂ b) = ⊥ encode : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (p : inj₁ a₀ ≡ x) → code a₀ x encode {A} {B} a₀ x p = transport (code a₀) p (refl a₀) decode : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (c : code a₀ x) → inj₁ a₀ ≡ x decode a₀ (inj₁ a) c = ap inj₁ c decode a₀ (inj₂ b) () codeqinv : {A B : Set} {a₀ : A} {x : A ⊎ B} → qinv (encode a₀ x) codeqinv {A} {B} {a₀} {x} = record { g = decode a₀ x ; α = indCP (λ x → (c : code a₀ x) → encode a₀ x (decode a₀ x c) ≡ c) (λ a c → encode a₀ (inj₁ a) (decode a₀ (inj₁ a) c) ≡⟨ bydef ⟩ encode a₀ (inj₁ a) (ap inj₁ c) ≡⟨ bydef ⟩ transport (code a₀) (ap inj₁ c) (refl a₀) ≡⟨ ! (transport-f inj₁ (code a₀) c (refl a₀)) ⟩ transport (λ a → code {A} {B} a₀ (inj₁ a)) c (refl a₀) ≡⟨ bydef ⟩ transport (λ a → a₀ ≡ a) c (refl a₀) ≡⟨ transportIdR c (refl a₀) ⟩ (refl a₀) ∘ c ≡⟨ ! (unitTransL c) ⟩ c ∎) (λ b ()) x ; β = λ p → basedPathInd (inj₁ a₀) (λ x p → decode a₀ x (encode a₀ x p) ≡ p) (decode a₀ (inj₁ a₀) (encode {A} {B} a₀ (inj₁ a₀) (refl (inj₁ a₀))) ≡⟨ bydef ⟩ (decode a₀ (inj₁ a₀) (transport (code {A} {B} a₀) (refl (inj₁ a₀)) (refl a₀))) ≡⟨ bydef ⟩ (decode a₀ (inj₁ a₀) (refl a₀)) ≡⟨ bydef ⟩ (ap inj₁ (refl a₀)) ≡⟨ bydef ⟩ refl (inj₁ a₀) ∎) x p } thm2-12-5 : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (inj₁ a₀ ≡ x) ≃ code a₀ x thm2-12-5 {A} {B} a₀ x = (encode a₀ x , equiv₁ codeqinv) inj₁₁path : {A B : Set} → (a₁ a₂ : A) → (inj₁ {A = A} {B = B} a₁ ≡ inj₁ a₂) ≃ (a₁ ≡ a₂) inj₁₁path a₁ a₂ = thm2-12-5 a₁ (inj₁ a₂) inj₁₂path : {A B : Set} → (a : A) (b : B) → (inj₁ a ≡ inj₂ b) ≃ ⊥ inj₁₂path a b = thm2-12-5 a (inj₂ b) -- Abbreviations for equivalence compositions _≃⟨_⟩_ : (A : Set) {B C : Set} → (A ≃ B) → (B ≃ C) → (A ≃ C) _ ≃⟨ p ⟩ q = trans≃ p q _∎≃ : {ℓ : Level} {A : Set ℓ} → A ≃ A _∎≃ {ℓ} {A} = id≃ {ℓ} {A} ------------------------------------------------------------------------------ -- Type equivalences -- unite₊ and uniti₊ unite₊ : {A : Set} → ⊥ ⊎ A → A unite₊ (inj₁ ()) unite₊ (inj₂ y) = y uniti₊ : {A : Set} → A → ⊥ ⊎ A uniti₊ a = inj₂ a uniti₊∘unite₊ : {A : Set} → uniti₊ ○ unite₊ ∼ id {A = ⊥ ⊎ A} uniti₊∘unite₊ (inj₁ ()) uniti₊∘unite₊ (inj₂ y) = refl (inj₂ y) unite₊∙uniti₊ : {A : Set} → unite₊ ○ uniti₊ ∼ id {A = A} unite₊∙uniti₊ = refl unite₊≃ : {A : Set} → (⊥ ⊎ A) ≃ A unite₊≃ = (unite₊ , mkisequiv uniti₊ refl uniti₊ uniti₊∘unite₊) uniti₊≃ : {A : Set} → A ≃ (⊥ ⊎ A) uniti₊≃ = uniti₊ , mkisequiv unite₊ uniti₊∘unite₊ unite₊ unite₊∙uniti₊ -- swap₊ swap₊ : {A B : Set} → A ⊎ B → B ⊎ A swap₊ (inj₁ a) = inj₂ a swap₊ (inj₂ b) = inj₁ b swapswap₊ : {A B : Set} → swap₊ ○ swap₊ {A} {B} ∼ id swapswap₊ (inj₁ a) = refl (inj₁ a) swapswap₊ (inj₂ b) = refl (inj₂ b) swap₊≃ : {A B : Set} → (A ⊎ B) ≃ (B ⊎ A) swap₊≃ = (swap₊ , equiv₁ (mkqinv swap₊ swapswap₊ swapswap₊)) -- assocl₊ and assocr₊ assocl₊ : {A B C : Set} → (A ⊎ (B ⊎ C)) → ((A ⊎ B) ⊎ C) assocl₊ (inj₁ a) = inj₁ (inj₁ a) assocl₊ (inj₂ (inj₁ b)) = inj₁ (inj₂ b) assocl₊ (inj₂ (inj₂ c)) = inj₂ c assocr₊ : {A B C : Set} → ((A ⊎ B) ⊎ C) → (A ⊎ (B ⊎ C)) assocr₊ (inj₁ (inj₁ a)) = inj₁ a assocr₊ (inj₁ (inj₂ b)) = inj₂ (inj₁ b) assocr₊ (inj₂ c) = inj₂ (inj₂ c) assocl₊∘assocr₊ : {A B C : Set} → assocl₊ ○ assocr₊ ∼ id {A = ((A ⊎ B) ⊎ C)} assocl₊∘assocr₊ (inj₁ (inj₁ a)) = refl (inj₁ (inj₁ a)) assocl₊∘assocr₊ (inj₁ (inj₂ b)) = refl (inj₁ (inj₂ b)) assocl₊∘assocr₊ (inj₂ c) = refl (inj₂ c) assocr₊∘assocl₊ : {A B C : Set} → assocr₊ ○ assocl₊ ∼ id {A = (A ⊎ (B ⊎ C))} assocr₊∘assocl₊ (inj₁ a) = refl (inj₁ a) assocr₊∘assocl₊ (inj₂ (inj₁ b)) = refl (inj₂ (inj₁ b)) assocr₊∘assocl₊ (inj₂ (inj₂ c)) = refl (inj₂ (inj₂ c)) assocl₊≃ : {A B C : Set} → (A ⊎ (B ⊎ C)) ≃ ((A ⊎ B) ⊎ C) assocl₊≃ = assocl₊ , mkisequiv assocr₊ assocl₊∘assocr₊ assocr₊ assocr₊∘assocl₊ assocr₊≃ : {A B C : Set} → ((A ⊎ B) ⊎ C) ≃ (A ⊎ (B ⊎ C)) assocr₊≃ = assocr₊ , mkisequiv assocl₊ assocr₊∘assocl₊ assocl₊ assocl₊∘assocr₊ -- unite⋆ and uniti⋆ unite⋆ : {A : Set} → ⊤ × A → A unite⋆ (tt , x) = x uniti⋆ : {A : Set} → A → ⊤ × A uniti⋆ x = tt , x uniti⋆∘unite⋆ : {A : Set} → uniti⋆ ○ unite⋆ ∼ id {A = ⊤ × A} uniti⋆∘unite⋆ (tt , x) = refl (tt , x) unite⋆≃ : {A : Set} → (⊤ × A) ≃ A unite⋆≃ = unite⋆ , mkisequiv uniti⋆ refl uniti⋆ uniti⋆∘unite⋆ uniti⋆≃ : {A : Set} → A ≃ (⊤ × A) uniti⋆≃ = uniti⋆ , mkisequiv unite⋆ uniti⋆∘unite⋆ unite⋆ refl -- swap⋆ swap⋆ : {A B : Set} → A × B → B × A swap⋆ (a , b) = (b , a) swapswap⋆ : {A B : Set} → swap⋆ ○ swap⋆ ∼ id {A = A × B} swapswap⋆ (a , b) = refl (a , b) swap⋆≃ : {A B : Set} → (A × B) ≃ (B × A) swap⋆≃ = swap⋆ , mkisequiv swap⋆ swapswap⋆ swap⋆ swapswap⋆ -- assocl⋆ and assocr⋆ assocl⋆ : {A B C : Set} → (A × (B × C)) → ((A × B) × C) assocl⋆ (a , (b , c)) = ((a , b) , c) assocr⋆ : {A B C : Set} → ((A × B) × C) → (A × (B × C)) assocr⋆ ((a , b) , c) = (a , (b , c)) assocl⋆∘assocr⋆ : {A B C : Set} → assocl⋆ ○ assocr⋆ ∼ id {A = ((A × B) × C)} assocl⋆∘assocr⋆ x = refl x assocr⋆∘assocl⋆ : {A B C : Set} → assocr⋆ ○ assocl⋆ ∼ id {A = (A × (B × C))} assocr⋆∘assocl⋆ x = refl x assocl⋆≃ : {A B C : Set} → (A × (B × C)) ≃ ((A × B) × C) assocl⋆≃ = assocl⋆ , mkisequiv assocr⋆ assocl⋆∘assocr⋆ assocr⋆ assocr⋆∘assocl⋆ assocr⋆≃ : {A B C : Set} → ((A × B) × C) ≃ (A × (B × C)) assocr⋆≃ = assocr⋆ , mkisequiv assocl⋆ assocr⋆∘assocl⋆ assocl⋆ assocl⋆∘assocr⋆ -- distz and factorz distz : { A : Set} → (⊥ × A) → ⊥ distz (() , _) factorz : {A : Set} → ⊥ → (⊥ × A) factorz () distz∘factorz : {A : Set} → distz ○ factorz {A} ∼ id distz∘factorz () factorz∘distz : {A : Set} → factorz {A} ○ distz ∼ id factorz∘distz (() , proj₂) distz≃ : {A : Set} → (⊥ × A) ≃ ⊥ distz≃ {A} = distz , mkisequiv factorz (distz∘factorz {A}) factorz factorz∘distz factorz≃ : {A : Set} → ⊥ ≃ (⊥ × A) factorz≃ {A} = factorz , mkisequiv distz factorz∘distz distz (distz∘factorz {A}) -- dist and factor dist : {A B C : Set} → ((A ⊎ B) × C) → (A × C) ⊎ (B × C) dist (inj₁ x , c) = inj₁ (x , c) dist (inj₂ y , c) = inj₂ (y , c) factor : {A B C : Set} → (A × C) ⊎ (B × C) → ((A ⊎ B) × C) factor (inj₁ (a , c)) = inj₁ a , c factor (inj₂ (b , c)) = inj₂ b , c dist∘factor : {A B C : Set} → dist {A} {B} {C} ○ factor ∼ id dist∘factor (inj₁ x) = refl (inj₁ x) dist∘factor (inj₂ y) = refl (inj₂ y) factor∘dist : {A B C : Set} → factor {A} {B} {C} ○ dist ∼ id factor∘dist (inj₁ x , c) = refl (inj₁ x , c) factor∘dist (inj₂ y , c) = refl (inj₂ y , c) dist≃ : {A B C : Set} → ((A ⊎ B) × C) ≃ ((A × C) ⊎ (B × C)) dist≃ = dist , mkisequiv factor dist∘factor factor factor∘dist factor≃ : {A B C : Set} → ((A × C) ⊎ (B × C)) ≃ ((A ⊎ B) × C) factor≃ = factor , (mkisequiv dist factor∘dist dist dist∘factor) -- congruence -- ⊕ _⊎∼_ : {A B C D : Set} {f : A → C} {finv : C → A} {g : B → D} {ginv : D → B} → (α : f ○ finv ∼ id) → (β : g ○ ginv ∼ id) → (f ⊎→ g) ○ (finv ⊎→ ginv) ∼ id {A = C ⊎ D} _⊎∼_ α β (inj₁ x) = ap inj₁ (α x) _⊎∼_ α β (inj₂ y) = ap inj₂ (β y) path⊎ : {A B C D : Set} → A ≃ C → B ≃ D → (A ⊎ B) ≃ (C ⊎ D) path⊎ (fp , eqp) (fq , eqq) = Data.Sum.map fp fq , mkisequiv (P.g ⊎→ Q.g) (P.α ⊎∼ Q.α) (P.h ⊎→ Q.h) (P.β ⊎∼ Q.β) where module P = isequiv eqp module Q = isequiv eqq -- ⊗ _×∼_ : {A B C D : Set} {f : A → C} {finv : C → A} {g : B → D} {ginv : D → B} → (α : f ○ finv ∼ id) → (β : g ○ ginv ∼ id) → (f ×→ g) ○ (finv ×→ ginv) ∼ id {A = C × D} _×∼_ α β (x , y) = ap₂ _,_ (α x) (β y) path× : {A B C D : Set} → A ≃ C → B ≃ D → (A × B) ≃ (C × D) path× {A} {B} {C} {D} (fp , eqp) (fq , eqq) = Data.Product.map fp fq , mkisequiv (P.g ×→ Q.g) (_×∼_ {A} {B} {C} {D} {fp} {P.g} {fq} {Q.g} P.α Q.α) (P.h ×→ Q.h) (_×∼_ {C} {D} {A} {B} {P.h} {fp} {Q.h} {fq} P.β Q.β) where module P = isequiv eqp module Q = isequiv eqq ------------------------------------------------------------------------------ -- Pi as a higher-order inductive type module PI where -- hidden private data FT* : Set where ZERO* : FT* ONE* : FT* PLUS* : FT* → FT* → FT* TIMES* : FT* → FT* → FT* NEG* : FT* → FT* RECIP* : FT* → FT* -- exported FT : Set FT = FT* ZERO : FT ZERO = ZERO* ONE : FT ONE = ONE* PLUS : FT → FT → FT PLUS = PLUS* TIMES : FT → FT → FT TIMES = TIMES* NEG : FT → FT NEG = NEG* RECIP : FT → FT RECIP = RECIP* postulate -- additive structure unite₊≡ : { b : FT } → PLUS ZERO b ≡ b uniti₊≡ : { b : FT } → b ≡ PLUS ZERO b swap₊≡ : { b₁ b₂ : FT } → PLUS b₁ b₂ ≡ PLUS b₂ b₁ assocl₊≡ : { b₁ b₂ b₃ : FT } → PLUS b₁ (PLUS b₂ b₃) ≡ PLUS (PLUS b₁ b₂) b₃ assocr₊≡ : { b₁ b₂ b₃ : FT } → PLUS (PLUS b₁ b₂) b₃ ≡ PLUS b₁ (PLUS b₂ b₃) -- multiplicative structure unite⋆≡ : { b : FT } → TIMES ONE b ≡ b uniti⋆≡ : { b : FT } → b ≡ TIMES ONE b swap⋆≡ : { b₁ b₂ : FT } → TIMES b₁ b₂ ≡ TIMES b₂ b₁ assocl⋆≡ : { b₁ b₂ b₃ : FT } → TIMES b₁ (TIMES b₂ b₃) ≡ TIMES (TIMES b₁ b₂) b₃ assocr⋆≡ : { b₁ b₂ b₃ : FT } → TIMES (TIMES b₁ b₂) b₃ ≡ TIMES b₁ (TIMES b₂ b₃) -- distributivity distz≡ : { b : FT } → TIMES ZERO b ≡ ZERO factorz≡ : { b : FT } → ZERO ≡ TIMES ZERO b dist≡ : { b₁ b₂ b₃ : FT } → TIMES (PLUS b₁ b₂) b₃ ≡ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) factor≡ : { b₁ b₂ b₃ : FT } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ≡ TIMES (PLUS b₁ b₂) b₃ -- negatives and fractionals η₊ : { b : FT } → ZERO ≡ PLUS (NEG b) b ε₊ : { b : FT } → PLUS (NEG b) b ≡ ZERO refe⋆ : { b : FT } → RECIP (RECIP b) ≡ b refi⋆ : { b : FT } → b ≡ RECIP (RECIP b) rile⋆ : { b : FT } → TIMES b (TIMES b (RECIP b)) ≡ b rili⋆ : { b : FT } → b ≡ TIMES b (TIMES b (RECIP b)) -- no need to postulate congruence; it will be provable -- Any function mapping PI to a type C must produce one of the following -- records that shows how both points and paths are mapped record PIR {ℓ : Level} (C : Set ℓ) : Set (lsuc ℓ) where field czero : C cone : C cplus : C → C → C ctimes : C → C → C cneg : C → C crecip : C → C cunite₊≡ : { c : C } → cplus czero c ≡ c cuniti₊≡ : { c : C } → c ≡ cplus czero c cswap₊≡ : { c₁ c₂ : C } → cplus c₁ c₂ ≡ cplus c₂ c₁ cassocl₊≡ : { c₁ c₂ c₃ : C } → cplus c₁ (cplus c₂ c₃) ≡ cplus (cplus c₁ c₂) c₃ cassocr₊≡ : { c₁ c₂ c₃ : C } → cplus (cplus c₁ c₂) c₃ ≡ cplus c₁ (cplus c₂ c₃) cunite⋆≡ : { c : C } → ctimes cone c ≡ c cuniti⋆≡ : { c : C } → c ≡ ctimes cone c cswap⋆≡ : { c₁ c₂ : C } → ctimes c₁ c₂ ≡ ctimes c₂ c₁ cassocl⋆≡ : { c₁ c₂ c₃ : C } → ctimes c₁ (ctimes c₂ c₃) ≡ ctimes (ctimes c₁ c₂) c₃ cassocr⋆≡ : { c₁ c₂ c₃ : C } → ctimes (ctimes c₁ c₂) c₃ ≡ ctimes c₁ (ctimes c₂ c₃) cdistz≡ : { c : C } → ctimes czero c ≡ czero cfactorz≡ : { c : C } → czero ≡ ctimes czero c cdist≡ : { c₁ c₂ c₃ : C } → ctimes (cplus c₁ c₂) c₃ ≡ cplus (ctimes c₁ c₃) (ctimes c₂ c₃) cfactor≡ : { c₁ c₂ c₃ : C } → cplus (ctimes c₁ c₃) (ctimes c₂ c₃) ≡ ctimes (cplus c₁ c₂) c₃ cη₊ : { c : C } → czero ≡ cplus (cneg c) c cε₊ : { c : C } → cplus (cneg c) c ≡ czero crefe⋆ : { c : C } → crecip (crecip c) ≡ c crefi⋆ : { c : C } → c ≡ crecip (crecip c) crile⋆ : { c : C } → ctimes c (ctimes c (crecip c)) ≡ c crili⋆ : { c : C } → c ≡ ctimes c (ctimes c (crecip c)) open PIR -- recursion principle for PI: given a target type C and a target record as -- above that has appropriate points and paths, recPI shows how points are -- mapped to points; the postulates assert that paths are transported as -- expected recPI : {ℓ : Level} {C : Set ℓ} → (PIR C) → FT → C recPI pir ZERO* = czero pir recPI pir ONE* = cone pir recPI pir (PLUS* B₁ B₂) = cplus pir (recPI pir B₁) (recPI pir B₂) recPI pir (TIMES* B₁ B₂) = ctimes pir (recPI pir B₁) (recPI pir B₂) recPI pir (NEG* B) = cneg pir (recPI pir B) recPI pir (RECIP* B) = crecip pir (recPI pir B) postulate βreccunite₊≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (unite₊≡ {b}) ≡ cunite₊≡ pir βreccuniti₊≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (uniti₊≡ {b}) ≡ cuniti₊≡ pir βreccswap₊≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ : FT} → ap (recPI pir) (swap₊≡ {b₁} {b₂}) ≡ cswap₊≡ pir βreccassocl₊≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (assocl₊≡ {b₁} {b₂} {b₃}) ≡ cassocl₊≡ pir βreccassocr₊≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (assocr₊≡ {b₁} {b₂} {b₃}) ≡ cassocr₊≡ pir βreccunite⋆≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (unite⋆≡ {b}) ≡ cunite⋆≡ pir βreccuniti⋆≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (uniti⋆≡ {b}) ≡ cuniti⋆≡ pir βreccswap⋆≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ : FT} → ap (recPI pir) (swap⋆≡ {b₁} {b₂}) ≡ cswap⋆≡ pir βreccassocl⋆≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (assocl⋆≡ {b₁} {b₂} {b₃}) ≡ cassocl⋆≡ pir βreccassocr⋆≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (assocr⋆≡ {b₁} {b₂} {b₃}) ≡ cassocr⋆≡ pir βreccdistz≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (distz≡ {b}) ≡ cdistz≡ pir βreccfactorz≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (factorz≡ {b}) ≡ cfactorz≡ pir βreccdist≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (dist≡ {b₁} {b₂} {b₃}) ≡ cdist≡ pir βreccfactor≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (factor≡ {b₁} {b₂} {b₃}) ≡ cfactor≡ pir βreccη₊ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (η₊ {b}) ≡ cη₊ pir βreccε₊ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (ε₊ {b}) ≡ cε₊ pir βreccrefe⋆ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (refe⋆ {b}) ≡ crefe⋆ pir βreccrefi⋆ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (refi⋆ {b}) ≡ crefi⋆ pir βreccrile⋆ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (rile⋆ {b}) ≡ crile⋆ pir βreccrili⋆ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (rili⋆ {b}) ≡ crili⋆ pir open PI public ------------------------------------------------------------------------------ -- Semantics I -- The rationals are a model of PI {-- unitPlus : (n : ℕ) -> (n + 0) ≡ n unitPlus 0 = refl 0 unitPlus (suc m) = ap suc (unitPlus m) sPlus : (n m : ℕ) -> suc (n + m) ≡ (n + suc m) sPlus 0 m = refl (suc m) sPlus (suc n) m = ap suc (sPlus n m) commPlus : (m n : ℕ) -> (m + n) ≡ (n + m) commPlus 0 n = ! (unitPlus n) commPlus (suc m) n = (ap suc (commPlus m n)) ∘ (sPlus n m) assocPlus : (m n o : ℕ) ->((m + n) + o) ≡ (m + (n + o)) assocPlus 0 n o = refl (n + o) assocPlus (suc m) n o = ap suc (assocPlus m n o) -- unitMult : (i : ℕ) → 1 * i ≡ i unitMult 0 = refl 0 unitMult (suc i) = ap suc (unitMult i) mulSuc : (m n : ℕ) → m * suc n ≡ m + m * n mulSuc 0 n = refl 0 mulSuc (suc m) n = ap (λ x → suc n + x) (mulSuc m n) ∘ ap suc (! (assocPlus n m (m * n))) ∘ ap (λ x → suc (x + m * n)) (commPlus n m) ∘ ap suc (assocPlus m n (m * n)) annMult : (i : ℕ) → i * 0 ≡ 0 annMult 0 = refl 0 annMult (suc i) = annMult i commMult : (i j : ℕ) → i * j ≡ j * i commMult 0 j = ! (annMult j) commMult (suc i) j = ap (λ x → j + x) (commMult i j) ∘ (! (mulSuc j i)) distrib : (i j k : ℕ) → (j + k) * i ≡ j * i + k * i distrib i 0 k = refl (k * i) distrib i (suc j) k = ap (_+_ i) (distrib i j k) ∘ (! (assocPlus i (j * i) (k * i))) assocMult : (i j k : ℕ) → (i * j) * k ≡ i * (j * k) assocMult 0 j k = refl 0 assocMult (suc i) j k = distrib k j (i * j) ∘ ap (λ x → j * k + x) (assocMult i j k) --} -- toℚ : FT → ℚ toℚ b = recPI (record { czero = + 0 ÷ 1 ; cone = + 1 ÷ 1 ; cplus = {!!} ; --_+_ ; ctimes = {!!} ; --_*_ ; cneg = {!!} ; crecip = {!!} ; cunite₊≡ = {!!} ; --λ {c} → refl c ; cuniti₊≡ = {!!} ; --λ {c} → refl c ; cswap₊≡ = {!!} ; --λ {a b} → commPlus a b ; cassocl₊≡ = {!!} ; --λ {a b c} → ! (assocPlus a b c) ; cassocr₊≡ = {!!} ; --λ {a b c} → assocPlus a b c ; cunite⋆≡ = {!!} ; --λ {a} → unitMult a ; cuniti⋆≡ = {!!} ; --λ {a} → ! (unitMult a) ; cswap⋆≡ = {!!} ; --λ {a b} → commMult a b ; cassocl⋆≡ = {!!} ; --λ {a b c} → ! (assocMult a b c) ; cassocr⋆≡ = {!!} ; --λ {a b c} → assocMult a b c ; cdistz≡ = {!!} ; --refl 0 ; cfactorz≡ = {!!} ; --refl 0 ; cdist≡ = {!!} ; --λ {a b c} → distrib c a b ; cfactor≡ = {!!} ; --λ {a b c} → ! (distrib c a b) ; cη₊ = {!!} ; cε₊ = {!!} ; crefe⋆ = {!!} ; crefi⋆ = {!!} ; crile⋆ = {!!} ; crili⋆ = {!!} }) b ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4243626624, "avg_line_length": 31.5688935282, "ext": "agda", "hexsha": "d0074e91f192fa2aa94f767c685f34c49a4b8b0d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "HP.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "HP.agda", "max_line_length": 79, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "HP.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 14386, "size": 30243 }
module is-free where open import lib open import cedille-types open import ctxt-types open import syntax-util open import general-util are-free-e = 𝔹 check-erased = tt skip-erased = ff are-free-in-t : Set → Set₁ are-free-in-t T = ∀{A} → are-free-e → trie A → T → 𝔹 are-free-in-term : are-free-in-t term are-free-in-type : are-free-in-t type are-free-in-kind : are-free-in-t kind are-free-in-optClass : are-free-in-t optClass -- are-free-in-optType : are-free-in-t optType are-free-in-optTerm : are-free-in-t optTerm are-free-in-optGuide : are-free-in-t optGuide are-free-in-tk : are-free-in-t tk are-free-in-liftingType : are-free-in-t liftingType are-free-in-optType : are-free-in-t optType are-free-in-args : are-free-in-t args are-free-in-cases : are-free-in-t cases are-free-in-varargs : are-free-in-t varargs are-free-in-term ce x (App t Erased t') = are-free-in-term ce x t || (ce && are-free-in-term ce x t') are-free-in-term ce x (App t NotErased t') = are-free-in-term ce x t || are-free-in-term ce x t' are-free-in-term ce x (AppTp t tp) = are-free-in-term ce x t || (ce && are-free-in-type ce x tp) are-free-in-term ce x (Hole x₁) = ff are-free-in-term ce x (Lam _ b _ x' oc t) = (ce && are-free-in-optClass ce x oc) || are-free-in-term ce (trie-remove x x') t are-free-in-term ce x (Let _ (DefTerm _ x' m t) t') = (ce && are-free-in-optType ce x m) || (are-free-in-term ce x t) || are-free-in-term ce (trie-remove x x') t' are-free-in-term ce x (Let _ (DefType _ x' k t) t') = (ce && (are-free-in-kind ce x k || are-free-in-type ce x t)) || are-free-in-term ce (trie-remove x x') t' are-free-in-term ce x (Open _ _ t) = are-free-in-term ce x t -- return the same answer as the erasure of (Open ...) are-free-in-term ce x (Parens x₁ t x₂) = are-free-in-term ce x t are-free-in-term ce x (Var _ "_") = ff are-free-in-term ce x (Var _ x') = trie-contains x x' are-free-in-term ce x (Beta _ ot ot') = are-free-in-optTerm ce x ot' || (ce && are-free-in-optTerm ce x ot) are-free-in-term ce x (IotaPair _ t1 t2 ot _) = are-free-in-term ce x t1 || (ce && (are-free-in-term ce x t2 || are-free-in-optGuide ce x ot)) are-free-in-term ce x (IotaProj t n _) = are-free-in-term ce x t are-free-in-term ce x (Epsilon _ _ _ t) = are-free-in-term ce x t are-free-in-term ce x (Sigma _ t) = are-free-in-term ce x t are-free-in-term ce x (Phi _ t t₁ t₂ _) = (ce && are-free-in-term ce x t) || (ce && are-free-in-term ce x t₁) || are-free-in-term ce x t₂ are-free-in-term ce x (Rho _ _ _ t ot t') = (ce && (are-free-in-term ce x t || are-free-in-optGuide ce x ot)) || are-free-in-term ce x t' are-free-in-term ce x (Chi _ T t') = (ce && are-free-in-optType ce x T) || are-free-in-term ce x t' are-free-in-term ce x (Delta _ T t') = ce && (are-free-in-optType ce x T || are-free-in-term ce x t') are-free-in-term ce x (Theta _ _ t ls) = are-free-in-term ce x t || are-free-in-lterms ce x ls where are-free-in-lterms : ∀{A} → are-free-e → trie A → lterms → 𝔹 are-free-in-lterms ce x (LtermsNil _) = ff are-free-in-lterms ce x (LtermsCons Erased t ls) = (ce && are-free-in-term ce x t) || are-free-in-lterms ce x ls are-free-in-lterms ce x (LtermsCons NotErased t ls) = are-free-in-term ce x t || are-free-in-lterms ce x ls are-free-in-term ce x (Mu _ x' t ot _ cs _) = (ce && are-free-in-optType ce x ot) || are-free-in-term ce (trie-remove x x') t || are-free-in-cases ce x cs are-free-in-term ce x (Mu' _ t ot _ cs _) = (ce && are-free-in-optType ce x ot) || are-free-in-term ce x t || are-free-in-cases ce x cs are-free-in-cases _ _ NoCase = ff are-free-in-cases ce x (SomeCase _ c varargs t cs) = are-free-in-varargs ce x varargs || are-free-in-term ce x t || are-free-in-cases ce x cs are-free-in-varargs ce x NoVarargs = ff are-free-in-varargs ce x (NormalVararg x' args) = trie-contains x x' || are-free-in-varargs ce x args are-free-in-varargs ce x (ErasedVararg x' args) = (ce && trie-contains x x') || are-free-in-varargs ce x args are-free-in-varargs ce x (TypeVararg x' args) = (ce && trie-contains x x') || are-free-in-varargs ce x args {-# TERMINATING #-} are-free-in-type ce x (Abs _ _ _ x' atk t) = are-free-in-tk ce x atk || are-free-in-type ce (trie-remove x x') t are-free-in-type ce x (TpLambda _ _ x' atk t) = are-free-in-tk ce x atk || are-free-in-type ce (trie-remove x x') t are-free-in-type ce x (Iota _ _ x' m t) = are-free-in-type ce x m || are-free-in-type ce (trie-remove x x') t are-free-in-type ce x (Lft _ _ X t l) = are-free-in-liftingType ce x l || are-free-in-term ce (trie-remove x X) t are-free-in-type ce x (TpApp t t') = are-free-in-type ce x t || are-free-in-type ce x t' are-free-in-type ce x (TpAppt t t') = are-free-in-type ce x t || are-free-in-term ce x t' are-free-in-type ce x (TpArrow t _ t') = are-free-in-type ce x t || are-free-in-type ce x t' are-free-in-type ce x (TpEq _ t t' _) = are-free-in-term ce x t || are-free-in-term ce x t' are-free-in-type ce x (TpParens x₁ t x₂) = are-free-in-type ce x t are-free-in-type ce x (TpVar _ "_") = ff are-free-in-type ce x (TpVar _ x') = trie-contains x x' are-free-in-type ce x (NoSpans t _) = are-free-in-type ce x t are-free-in-type ce x (TpHole _) = ff are-free-in-type ce x (TpLet _ (DefTerm _ x' m t) T) = (ce && are-free-in-optType ce x m) || (are-free-in-term ce x t) || are-free-in-type ce (trie-remove x x') T are-free-in-type ce x (TpLet _ (DefType _ x' k T) T') = (ce && (are-free-in-kind ce x k || are-free-in-type ce x T)) || are-free-in-type ce (trie-remove x x') T' are-free-in-kind ce x (KndArrow k k') = are-free-in-kind ce x k || are-free-in-kind ce x k' are-free-in-kind ce x (KndParens x₁ k x₂) = are-free-in-kind ce x k are-free-in-kind ce x (KndPi _ _ x' atk k) = are-free-in-tk ce x atk || are-free-in-kind ce (trie-remove x x') k are-free-in-kind ce x (KndTpArrow t k) = are-free-in-type ce x t || are-free-in-kind ce x k are-free-in-kind ce x (KndVar _ x' ys) = trie-contains x x' || are-free-in-args ce x ys are-free-in-kind ce x (Star x₁) = ff are-free-in-args ce x (ArgsCons (TermArg _ y) ys) = are-free-in-term ce x y || are-free-in-args ce x ys are-free-in-args ce x (ArgsCons (TypeArg y) ys) = are-free-in-type ce x y || are-free-in-args ce x ys are-free-in-args ce x ArgsNil = ff are-free-in-optClass ce x NoClass = ff are-free-in-optClass ce x (SomeClass atk) = are-free-in-tk ce x atk are-free-in-optType ce x NoType = ff are-free-in-optType ce x (SomeType t) = are-free-in-type ce x t are-free-in-optTerm ce x NoTerm = ff are-free-in-optTerm ce x (SomeTerm t _) = are-free-in-term ce x t are-free-in-optGuide ce x NoGuide = ff are-free-in-optGuide ce x (Guide _ v tp) = are-free-in-type ce (trie-remove x v) tp are-free-in-tk ce x (Tkt t) = are-free-in-type ce x t are-free-in-tk ce x (Tkk k) = are-free-in-kind ce x k are-free-in-liftingType ce x (LiftArrow l l') = are-free-in-liftingType ce x l || are-free-in-liftingType ce x l' are-free-in-liftingType ce x (LiftParens x₁ l x₂) = are-free-in-liftingType ce x l are-free-in-liftingType ce x (LiftPi _ x' t l) = are-free-in-type ce x t || are-free-in-liftingType ce (trie-remove x x') l are-free-in-liftingType ce x (LiftStar x₁) = ff are-free-in-liftingType ce x (LiftTpArrow t l) = are-free-in-type ce x t || are-free-in-liftingType ce x l are-free-in : {ed : exprd} → are-free-e → stringset → ⟦ ed ⟧ → 𝔹 are-free-in{TERM} e x t = are-free-in-term e x t are-free-in{ARG} e x (TermArg _ t) = are-free-in-term e x t are-free-in{TYPE} e x t = are-free-in-type e x t are-free-in{ARG} e x (TypeArg t) = are-free-in-type e x t are-free-in{KIND} e x t = are-free-in-kind e x t are-free-in{TK} e x t = are-free-in-tk e x t are-free-in{LIFTINGTYPE} e x t = are-free-in-liftingType e x t are-free-in{QUALIF} e x (x' , as) = trie-contains x x' || are-free-in-args e x as is-free-in : {ed : exprd} → are-free-e → var → ⟦ ed ⟧ → 𝔹 is-free-in{TERM} e x t = are-free-in-term e (stringset-singleton x) t is-free-in{ARG} e x (TermArg _ t) = are-free-in-term e (stringset-singleton x) t is-free-in{TYPE} e x t = are-free-in-type e (stringset-singleton x) t is-free-in{ARG} e x (TypeArg t) = are-free-in-type e (stringset-singleton x) t is-free-in{KIND} e x t = are-free-in-kind e (stringset-singleton x) t is-free-in{LIFTINGTYPE} e x t = are-free-in-liftingType e (stringset-singleton x) t is-free-in{QUALIF} e x (x' , as) = x =string x' || are-free-in-args e (stringset-singleton x) as is-free-in{TK} e x t = are-free-in-tk e (stringset-singleton x) t abs-tk : maybeErased → var → tk → type → type abs-tk me x (Tkk k) tp = Abs posinfo-gen Erased posinfo-gen x (Tkk k) tp abs-tk me x (Tkt tp') tp with are-free-in check-erased (stringset-singleton x) tp abs-tk me x (Tkt tp') tp | tt = Abs posinfo-gen me posinfo-gen x (Tkt tp') tp abs-tk me x (Tkt tp') tp | ff = TpArrow tp' me tp absk-tk : var → tk → kind → kind absk-tk x atk k with are-free-in check-erased (stringset-singleton x) k absk-tk x atk k | tt = KndPi posinfo-gen posinfo-gen x atk k absk-tk x (Tkt tp) k | ff = KndTpArrow tp k absk-tk x (Tkk k') k | ff = KndArrow k' k data abs : Set where mk-abs : maybeErased → var → tk → (var-free-in-body : 𝔹) → type → abs to-abs : type → maybe abs to-abs (Abs _ me _ x atk tp) = just (mk-abs me x atk (are-free-in check-erased (stringset-singleton x) tp) tp) to-abs (TpArrow tp1 me tp2) = just (mk-abs me dummy-var (Tkt tp1) ff tp2) to-abs _ = nothing record is-tpabs : Set where constructor mk-tpabs field is-tpabs-e? : maybeErased is-tpabs-var : var is-tpabs-kind : kind is-tpabs-body : type open is-tpabs public is-tpabs? = type ∨ is-tpabs pattern yes-tpabs e? x k tp = inj₂ (mk-tpabs e? x k tp) pattern not-tpabs tp = inj₁ tp to-is-tpabs : type → is-tpabs? to-is-tpabs tp with to-abs tp ... | nothing = not-tpabs tp ... | just (mk-abs _ _ (Tkt _) _ _) = not-tpabs tp ... | just (mk-abs e? x (Tkk k) var-free-in-body tp') = yes-tpabs e? x k tp' data absk : Set where mk-absk : var → tk → (var-free-in-body : 𝔹) → kind → absk to-absk : kind → maybe absk to-absk (KndPi _ _ x atk k) = just (mk-absk x atk (are-free-in check-erased (stringset-singleton x) k) k) to-absk (KndArrow k1 k2) = just (mk-absk dummy-var (Tkk k1) ff k2) to-absk (KndTpArrow tp k) = just (mk-absk dummy-var (Tkt tp) ff k) to-absk _ = nothing record is-tmabs : Set where constructor mk-tmabs field is-tmabs-binder : maybeErased is-tmabs-var : var is-tmabs-dom : type is-tmabs-var-in-body : 𝔹 is-tmabs-cod : type open is-tmabs public is-tmabs? = type ∨ is-tmabs pattern yes-tmabs e? x dom occurs cod = inj₂ (mk-tmabs e? x dom occurs cod) pattern not-tmabs tp = inj₁ tp to-is-tmabs : type → is-tmabs? to-is-tmabs (Abs _ e? _ x (Tkt dom) cod) = yes-tmabs e? x dom (is-free-in check-erased x cod) cod to-is-tmabs (TpArrow dom e? cod) = yes-tmabs e? "_" dom ff cod to-is-tmabs tp = not-tmabs tp from-is-tmabs : is-tmabs → type from-is-tmabs (mk-tmabs b x dom occ cod) = Abs posinfo-gen b posinfo-gen x (Tkt dom) cod
{ "alphanum_fraction": 0.6541903987, "avg_line_length": 48.7268722467, "ext": "agda", "hexsha": "b573ec5d16a289b8cebc2ccc2e12130c2a0f721d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/is-free.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/is-free.agda", "max_line_length": 154, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/is-free.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3855, "size": 11061 }
open import AEff open import EffectAnnotations open import Types hiding (``) open import Relation.Binary.PropositionalEquality hiding ([_] ; Extensionality) --open ≡-Reasoning module Renamings where -- SET OF RENAMINGS BETWEEN CONTEXTS Ren : Ctx → Ctx → Set Ren Γ Γ' = {X : VType} → X ∈ Γ → X ∈ Γ' -- IDENTITY, COMPOSITION, AND EXCHANGE RENAMINGS id-ren : {Γ : Ctx} → Ren Γ Γ id-ren {X} x = x comp-ren : {Γ Γ' Γ'' : Ctx} → Ren Γ' Γ'' → Ren Γ Γ' → Ren Γ Γ'' comp-ren f g x = f (g x) exchange : {Γ : Ctx} {X Y : VType} → Ren (Γ ∷ X ∷ Y) (Γ ∷ Y ∷ X) exchange Hd = Tl Hd exchange (Tl Hd) = Hd exchange (Tl (Tl x)) = Tl (Tl x) -- WEAKENING OF RENAMINGS wk₁ : {Γ : Ctx} {X : VType} → Ren Γ (Γ ∷ X) wk₁ = Tl wk₂ : {Γ Γ' : Ctx} {X : VType} → Ren Γ Γ' → Ren (Γ ∷ X) (Γ' ∷ X) wk₂ f Hd = Hd wk₂ f (Tl v) = Tl (f v) wk₃ : {Γ : Ctx} {X Y Z : VType} → Ren (Γ ∷ Y ∷ Z) (Γ ∷ X ∷ Y ∷ Z) wk₃ Hd = Hd wk₃ (Tl Hd) = Tl Hd wk₃ (Tl (Tl x)) = Tl (Tl (Tl x)) -- ACTION OF RENAMING ON WELL-TYPED VALUES AND COMPUTATIONS mutual V-rename : {X : VType} {Γ Γ' : Ctx} → Ren Γ Γ' → Γ ⊢V⦂ X → Γ' ⊢V⦂ X V-rename f (` x) = ` f x V-rename f (`` c) = `` c V-rename f (ƛ M) = ƛ (M-rename (wk₂ f) M) V-rename f ⟨ V ⟩ = ⟨ V-rename f V ⟩ M-rename : {C : CType} {Γ Γ' : Ctx} → Ren Γ Γ' → Γ ⊢M⦂ C → Γ' ⊢M⦂ C M-rename f (return V) = return (V-rename f V) M-rename f (let= M `in N) = let= M-rename f M `in M-rename (wk₂ f) N M-rename f (letrec M `in N) = letrec M-rename (wk₂ (wk₂ f)) M `in M-rename (wk₂ f) N M-rename f (V · W) = V-rename f V · V-rename f W M-rename f (↑ op p V M) = ↑ op p (V-rename f V) (M-rename f M) M-rename f (↓ op V M) = ↓ op (V-rename f V) (M-rename f M) M-rename f (promise op ∣ p ↦ M `in N) = promise op ∣ p ↦ M-rename (wk₂ f) M `in M-rename (wk₂ f) N M-rename f (await V until M) = await (V-rename f V) until (M-rename (wk₂ f) M) M-rename f (coerce p q M) = coerce p q (M-rename f M) -- ACTION OF RENAMING ON WELL-TYPED PROCESSES P-rename : {o : O} {PP : PType o} {Γ Γ' : Ctx} → Ren Γ Γ' → Γ ⊢P⦂ PP → Γ' ⊢P⦂ PP P-rename f (run M) = run (M-rename f M) P-rename f (P ∥ Q) = P-rename f P ∥ P-rename f Q P-rename f (↑ op p V P) = ↑ op p (V-rename f V) (P-rename f P) P-rename f (↓ op V P) = ↓ op (V-rename f V) (P-rename f P)
{ "alphanum_fraction": 0.5474231269, "avg_line_length": 25.3736263736, "ext": "agda", "hexsha": "9f3a5fc28393c8eb2a7c91fbef4c1c0402e4fc83", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danelahman/aeff-agda", "max_forks_repo_path": "Renamings.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danelahman/aeff-agda", "max_issues_repo_path": "Renamings.agda", "max_line_length": 80, "max_stars_count": 4, "max_stars_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danelahman/aeff-agda", "max_stars_repo_path": "Renamings.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T22:48:48.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-17T00:15:00.000Z", "num_tokens": 1053, "size": 2309 }
module Numeral.Natural.Oper.Proofs.Multiplication where open import Logic.Propositional open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Oper.Proofs.Order open import Numeral.Natural.Relation open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Classical open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Operator import Structure.Operator.Names as Names open import Structure.Operator.Properties open import Structure.Relator.Properties open import Syntax.Transitivity instance [⋅][−₀]-distributivityᵣ : Distributivityᵣ(_⋅_)(_−₀_) Distributivityᵣ.proof([⋅][−₀]-distributivityᵣ) {x}{y}{z} = p{x}{y}{z} where p : ∀{x y z : ℕ} → ((x −₀ y) ⋅ z) ≡ (x ⋅ z) −₀ (y ⋅ z) p {x} {y} {𝟎} = [≡]-intro p {x} {y} {𝐒 z} with [≥]-or-[<] {x}{y} ... | [∨]-introₗ gt = (x −₀ y) ⋅ 𝐒(z) 🝖[ _≡_ ]-[] (x −₀ y) + ((x −₀ y) ⋅ z) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x −₀ y) (p {x}{y}{z}) ] (x −₀ y) + ((x ⋅ z) −₀ (y ⋅ z)) 🝖[ _≡_ ]-[ [+][−₀]-almost-associativity {x −₀ y} ([≤]-with-[⋅]ᵣ {c = z} gt) ]-sym ((x −₀ y) + (x ⋅ z)) −₀ (y ⋅ z) 🝖[ _≡_ ]-[ congruence₂ₗ(_−₀_)(y ⋅ z) (commutativity(_+_) {x −₀ y}{x ⋅ z}) ] ((x ⋅ z) + (x −₀ y)) −₀ (y ⋅ z) 🝖[ _≡_ ]-[ congruence₂ₗ(_−₀_)(y ⋅ z) ([+][−₀]-almost-associativity {x ⋅ z} gt) ]-sym (((x ⋅ z) + x) −₀ y) −₀ (y ⋅ z) 🝖[ _≡_ ]-[ congruence₂ₗ(_−₀_)(y ⋅ z) (congruence₂ₗ(_−₀_)(y) (commutativity(_+_) {x ⋅ z}{x})) ] ((x + (x ⋅ z)) −₀ y) −₀ (y ⋅ z) 🝖[ _≡_ ]-[ [−₀][−₀]-to-[−₀][+] {x + (x ⋅ z)}{y}{y ⋅ z} ] (x + (x ⋅ z)) −₀ (y + (y ⋅ z)) 🝖[ _≡_ ]-[] (x ⋅ 𝐒(z)) −₀ (y ⋅ 𝐒(z)) 🝖-end ... | [∨]-introᵣ lt = (x −₀ y) ⋅ 𝐒(z) 🝖[ _≡_ ]-[ congruence₂ₗ(_⋅_)(𝐒(z)) ([↔]-to-[→] [−₀]-when-0 (sub₂(_<_)(_≤_) lt)) ] 𝟎 ⋅ 𝐒(z) 🝖[ _≡_ ]-[ absorberₗ(_⋅_)(𝟎) {𝐒(z)} ] 𝟎 🝖[ _≡_ ]-[ [↔]-to-[→] [−₀]-when-0 ([≤]-with-[+] ⦃ sub₂(_<_)(_≤_) lt ⦄ ⦃ [≤]-with-[⋅]ᵣ {c = z} (sub₂(_<_)(_≤_) lt) ⦄) ]-sym (x + (x ⋅ z)) −₀ (y + (y ⋅ z)) 🝖-end -- TODO: This is a specialized distributivity-equivalence-by-commutativity instance [⋅][−₀]-distributivityₗ : Distributivityₗ(_⋅_)(_−₀_) Distributivityₗ.proof([⋅][−₀]-distributivityₗ) {x}{y}{z} = p{x}{y}{z} where p : ∀{x y z : ℕ} → (x ⋅ (y −₀ z)) ≡ (x ⋅ y) −₀ (x ⋅ z) p{x}{y}{z} = x ⋅ (y −₀ z) 🝖[ _≡_ ]-[ commutativity(_⋅_) {x}{y −₀ z} ] (y −₀ z) ⋅ x 🝖[ _≡_ ]-[ distributivityᵣ(_⋅_)(_−₀_) {y}{z}{x} ] (y ⋅ x) −₀ (z ⋅ x) 🝖[ _≡_ ]-[ congruence₂(_−₀_) (commutativity(_⋅_) {y}{x}) (commutativity(_⋅_) {z}{x}) ] (x ⋅ y) −₀ (x ⋅ z) 🝖-end [⋅]-cancellationₗ : ∀{x} → ⦃ pos : Positive(x) ⦄ → (Names.CancellationOnₗ(_⋅_)(x)) [⋅]-cancellationₗ {𝐒 a}{b}{c} p with [<]-trichotomy {b}{c} ... | [∨]-introₗ ([∨]-introₗ lt) with () ← [<]-to-[≢] ([<]-with-[⋅]ₗ {a = a} lt) p ... | [∨]-introₗ ([∨]-introᵣ eq) = eq ... | [∨]-introᵣ gt with () ← [>]-to-[≢] ([<]-with-[⋅]ₗ {a = a} gt) p [⋅]-cancellationᵣ : ∀{x} → ⦃ pos : Positive(x) ⦄ → (Names.CancellationOnᵣ(_⋅_)(x)) [⋅]-cancellationᵣ {𝐒 c}{a}{b} p with [<]-trichotomy {a}{b} ... | [∨]-introₗ ([∨]-introₗ lt) with () ← [<]-to-[≢] ([<]-with-[⋅]ᵣ {c = c} lt) p ... | [∨]-introₗ ([∨]-introᵣ eq) = eq ... | [∨]-introᵣ gt with () ← [>]-to-[≢] ([<]-with-[⋅]ᵣ {c = c} gt) p
{ "alphanum_fraction": 0.4906903466, "avg_line_length": 54.546875, "ext": "agda", "hexsha": "106bbf45d16dfafa4673b19f5eb8aefff1ec2dbd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/Proofs/Multiplication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/Proofs/Multiplication.agda", "max_line_length": 159, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/Proofs/Multiplication.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1778, "size": 3491 }
{-# OPTIONS --safe --warning=error #-} open import Sets.EquivalenceRelations open import Setoids.Setoids open import Groups.FreeGroup.Definition open import Groups.Homomorphisms.Definition open import Groups.Definition open import Decidable.Sets open import Numbers.Naturals.Order open import LogicalFormulae open import Semirings.Definition open import Functions.Definition open import Groups.Isomorphisms.Definition open import Boolean.Definition open import Boolean.Lemmas module Groups.FreeGroup.Parity {a : _} {A : Set a} (decA : DecidableSet A) where open import Groups.FreeGroup.Word decA open import Groups.FreeGroup.Group decA C2 : Group (reflSetoid Bool) xor Group.+WellDefined C2 refl refl = refl Group.0G C2 = BoolFalse Group.inverse C2 = id Group.+Associative C2 {BoolTrue} {BoolTrue} {BoolTrue} = refl Group.+Associative C2 {BoolTrue} {BoolTrue} {BoolFalse} = refl Group.+Associative C2 {BoolTrue} {BoolFalse} {z} = refl Group.+Associative C2 {BoolFalse} {y} {z} = refl Group.identRight C2 {BoolTrue} = refl Group.identRight C2 {BoolFalse} = refl Group.identLeft C2 {x} = refl Group.invLeft C2 {BoolTrue} = refl Group.invLeft C2 {BoolFalse} = refl Group.invRight C2 {BoolTrue} = refl Group.invRight C2 {BoolFalse} = refl parity : (x : A) → ReducedWord → Bool parity x empty = BoolFalse parity x (prependLetter (ofLetter y) w _) with decA x y parity x (prependLetter (ofLetter y) w _) | inl _ = not (parity x w) parity x (prependLetter (ofLetter y) w _) | inr _ = parity x w parity x (prependLetter (ofInv y) w _) with decA x y parity x (prependLetter (ofInv y) w _) | inl _ = not (parity x w) parity x (prependLetter (ofInv y) w _) | inr _ = parity x w private parityPrepend : (a : A) (w : ReducedWord) (l : A) → ((a ≡ l) → False) → parity a (prepend w (ofLetter l)) ≡ parity a w parityPrepend a empty l notEq with decA a l parityPrepend a empty l notEq | inl x = exFalso (notEq x) parityPrepend a empty l notEq | inr x = refl parityPrepend a (prependLetter (ofLetter r) w x) l notEq with decA a l parityPrepend a (prependLetter (ofLetter r) w x) l notEq | inl m = exFalso (notEq m) parityPrepend a (prependLetter (ofLetter r) w x) l notEq | inr _ = refl parityPrepend a (prependLetter (ofInv r) w x) l notEq with decA a r parityPrepend a (prependLetter (ofInv r) w x) l notEq | inl a=r with decA l r parityPrepend a (prependLetter (ofInv r) w x) l notEq | inl a=r | inl l=r = exFalso (notEq (transitivity a=r (equalityCommutative l=r))) parityPrepend a (prependLetter (ofInv r) w x) l notEq | inl a=r | inr l!=r with decA a l parityPrepend a (prependLetter (ofInv r) w x) l notEq | inl a=r | inr l!=r | inl a=l = exFalso (notEq a=l) parityPrepend a (prependLetter (ofInv r) w x) l notEq | inl a=r | inr l!=r | inr a!=l with decA a r parityPrepend a (prependLetter (ofInv r) w x) l notEq | inl a=r | inr l!=r | inr a!=l | inl x₁ = refl parityPrepend a (prependLetter (ofInv r) w x) l notEq | inl a=r | inr l!=r | inr a!=l | inr bad = exFalso (bad a=r) parityPrepend a (prependLetter (ofInv r) w x) l notEq | inr a!=r with decA l r parityPrepend a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inl x₁ = refl parityPrepend a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inr l!=r with decA a l parityPrepend a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inr l!=r | inl a=l = exFalso (notEq a=l) parityPrepend a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inr l!=r | inr a!=l with decA a r parityPrepend a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inr l!=r | inr a!=l | inl a=r = exFalso (a!=r a=r) parityPrepend a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inr l!=r | inr a!=l | inr x₁ = refl parityPrepend' : (a : A) (w : ReducedWord) (l : A) → ((a ≡ l) → False) → parity a (prepend w (ofInv l)) ≡ parity a w parityPrepend' a empty l notEq with decA a l parityPrepend' a empty l notEq | inl x = exFalso (notEq x) parityPrepend' a empty l notEq | inr x = refl parityPrepend' a (prependLetter (ofLetter r) w x) l notEq with decA l r parityPrepend' a (prependLetter (ofLetter r) w x) l notEq | inl m with decA a r ... | inl a=r = exFalso (notEq (transitivity a=r (equalityCommutative m))) ... | inr a!=r = refl parityPrepend' a (prependLetter (ofLetter r) w x) l notEq | inr l!=r with decA a l ... | inl a=l = exFalso (notEq a=l) ... | inr a!=l = refl parityPrepend' a (prependLetter (ofInv r) w x) l notEq with decA a r parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inl a=r with decA l r parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inl a=r | inl l=r = exFalso (notEq (transitivity a=r (equalityCommutative l=r))) parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inl a=r | inr l!=r with decA a l parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inl a=r | inr l!=r | inl a=l = exFalso (notEq a=l) parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inl a=r | inr l!=r | inr a!=l with decA a r parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inl a=r | inr l!=r | inr a!=l | inl x₁ = refl parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inl a=r | inr l!=r | inr a!=l | inr bad = exFalso (bad a=r) parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inr a!=r with decA l r parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inl l=r with decA a l parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inl l=r | inl a=l = exFalso (notEq a=l) parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inl l=r | inr a!=l with decA a r ... | inl a=r = exFalso (a!=r a=r) ... | inr _ = refl parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inr l!=r with decA a l parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inr l!=r | inl a=l = exFalso (notEq a=l) parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inr l!=r | inr a!=l with decA a r parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inr l!=r | inr a!=l | inl a=r = exFalso (a!=r a=r) parityPrepend' a (prependLetter (ofInv r) w x) l notEq | inr a!=r | inr l!=r | inr a!=l | inr x₁ = refl parityPrepend'' : (a : A) (w : ReducedWord) → parity a (prepend w (ofLetter a)) ≡ not (parity a w) parityPrepend'' a empty with decA a a ... | inl _ = refl ... | inr bad = exFalso (bad refl) parityPrepend'' a (prependLetter (ofLetter l) w x) with decA a a parityPrepend'' a (prependLetter (ofLetter l) w x) | inl _ with decA a l parityPrepend'' a (prependLetter (ofLetter l) w x) | inl _ | inl a=l = refl parityPrepend'' a (prependLetter (ofLetter l) w x) | inl _ | inr a!=l = refl parityPrepend'' a (prependLetter (ofLetter l) w x) | inr bad = exFalso (bad refl) parityPrepend'' a (prependLetter (ofInv l) w x) with decA a l ... | inl a=l = equalityCommutative (notNot (parity a w)) parityPrepend'' a (prependLetter (ofInv l) w x) | inr a!=l with decA a a parityPrepend'' a (prependLetter (ofInv l) w x) | inr a!=l | inl _ with decA a l ... | inl a=l = exFalso (a!=l a=l) ... | inr _ = refl parityPrepend'' a (prependLetter (ofInv l) w x) | inr a!=l | inr bad = exFalso (bad refl) parityPrepend''' : (a : A) (w : ReducedWord) → parity a (prepend w (ofInv a)) ≡ not (parity a w) parityPrepend''' a empty with decA a a ... | inl _ = refl ... | inr bad = exFalso (bad refl) parityPrepend''' a (prependLetter (ofLetter l) w x) with decA a l ... | inl a=l = equalityCommutative (notNot _) parityPrepend''' a (prependLetter (ofLetter l) w x) | inr a!=l with decA a a ... | inl _ with decA a l parityPrepend''' a (prependLetter (ofLetter l) w x) | inr a!=l | inl _ | inl a=l = exFalso (a!=l a=l) parityPrepend''' a (prependLetter (ofLetter l) w x) | inr a!=l | inl _ | inr _ = refl parityPrepend''' a (prependLetter (ofLetter l) w x) | inr a!=l | inr bad = exFalso (bad refl) parityPrepend''' a (prependLetter (ofInv l) w x) with decA a a parityPrepend''' a (prependLetter (ofInv l) w x) | inl _ with decA a l ... | inl a=l = refl ... | inr a!=l = refl parityPrepend''' a (prependLetter (ofInv l) w x) | inr bad = exFalso (bad refl) parityHomIsHom : (a : A) → (x y : ReducedWord) → parity a (_+W_ x y) ≡ xor (parity a x) (parity a y) parityHomIsHom a empty y = refl parityHomIsHom a (prependLetter (ofLetter l) x _) y with decA a l parityHomIsHom a (prependLetter (ofLetter .a) x _) y | inl refl = transitivity (parityPrepend'' a (x +W y)) (transitivity (applyEquality not (parityHomIsHom a x y)) (notXor (parity a x) (parity a y))) parityHomIsHom a (prependLetter (ofLetter l) x _) y | inr a!=l = transitivity (parityPrepend a (_+W_ x y) l a!=l) (parityHomIsHom a x y) parityHomIsHom a (prependLetter (ofInv l) x _) y with decA a l parityHomIsHom a (prependLetter (ofInv .a) x _) y | inl refl = transitivity (parityPrepend''' a (x +W y)) (transitivity (applyEquality not (parityHomIsHom a x y)) (notXor (parity a x) (parity a y))) parityHomIsHom a (prependLetter (ofInv l) x _) y | inr a!=l = transitivity (parityPrepend' a (x +W y) l a!=l) (parityHomIsHom a x y) parityHom : (x : A) → GroupHom (freeGroup) C2 (parity x) GroupHom.groupHom (parityHom x) {y} {z} = parityHomIsHom x y z GroupHom.wellDefined (parityHom x) refl = refl
{ "alphanum_fraction": 0.6697534188, "avg_line_length": 62.75, "ext": "agda", "hexsha": "202e7da9127667a1b6afa1b17c681bbd575da1da", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/FreeGroup/Parity.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/FreeGroup/Parity.agda", "max_line_length": 202, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/FreeGroup/Parity.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 3434, "size": 9287 }
module _ where postulate A : Set _,_ : A → A → A module M where module Mx (x : A) where module M where module My (y : A) where f : A f = x , y postulate a b c : A module M′ = M module Ma = M′.Mx.M a module Mab = Ma.My b g : A g = Mab.f -- Original bug report -- record I (A : Set) : Set where field i : A → A record R (A : Set) : Set where field f : A → A open R public module C (A : Set) where I₀ : I A I₀ = record { i = λ x → x } open I I₀ r : (B : Set) → R B r B = record { f = λ x → x } g1 : (B : Set) → B → B g1 B = f′ where open R (r B) renaming (f to f′)
{ "alphanum_fraction": 0.4885496183, "avg_line_length": 13.6458333333, "ext": "agda", "hexsha": "e9c1e2d314ce6be5d4be390e5e52b6ac23068049", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1396.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1396.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1396.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 265, "size": 655 }
{-# OPTIONS --without-K #-} open import Base module Spaces.LoopSpaceDecidableWedgeCircles {i} (A : Set i) (eq : has-dec-eq A) where open import Spaces.WedgeCircles A renaming (wedge-circles to WA; base to baseWA) open import Algebra.FreeGroup A renaming (freegroup to FA) open import Algebra.FreeGroupProps A open import Algebra.FreeGroupAsReducedWords A eq open import Spaces.FlatteningLoopSpaceWedgeCircles A (dec-eq-is-set eq) -- We can now prove that [tot-cover] is contractible using [CA-rec] -- (because [CA-rec] means that [tot-cover] is the Cayley graph of FA) P-CA-contr : (x : tot-cover) → Set _ P-CA-contr x = x ≡ CA-z e -- We first prove it on points coming from reduced words CA-contr-base-reduced-word : (w : reduced-word) → P-CA-contr (CA-z (reduced-to-freegroup w)) CA-contr-base-reduced-word (ε , red) = refl CA-contr-base-reduced-word ((x ∷ w) , red) = ! (CA-e x _) ∘ CA-contr-base-reduced-word (w , tail-is-reduced x w red) CA-contr-base-reduced-word ((x ′∷ w) , red) = (CA-e x _ ∘ ap CA-z (right-inverse-· x _)) ∘ CA-contr-base-reduced-word (w , tail'-is-reduced x w red) -- Then on every point CA-contr-base : (u : FA) → P-CA-contr (CA-z u) CA-contr-base u = ap CA-z (! (inv₂ u)) ∘ (CA-contr-base-reduced-word (freegroup-to-reduced u)) -- Now we prove that it’s true on paths, coming from reduced words abstract CA-contr-loop-reduced-word : (t : A) (w : reduced-word) → (ap CA-z (reduced-to-freegroup-mul-reduce t w) ∘ ! (CA-e t (reduced-to-freegroup w))) ∘ (CA-contr-base-reduced-word w) ≡ CA-contr-base-reduced-word (mul-reduce t w) CA-contr-loop-reduced-word t (ε , red) = refl CA-contr-loop-reduced-word t ((x ∷ w) , red) = refl CA-contr-loop-reduced-word t ((x ′∷ w) , red) with (eq t x) CA-contr-loop-reduced-word x ((.x ′∷ w) , red) | inl refl = -- With the notations below, what we have to prove -- is [ (ap CA-z (! p) ∘ ! q) ∘ ((q ∘ ap CA-z p) ∘ r) ≡ r ] concat-assoc (ap CA-z (! p)) _ _ ∘ (ap (λ t₁ → t₁ ∘ (! q ∘ ((q ∘ ap CA-z p) ∘ r))) (ap-opposite CA-z p) ∘ move!-right-on-left (ap CA-z p) (! q ∘ ((q ∘ ap CA-z p) ∘ r)) r (move!-right-on-left q ((q ∘ ap CA-z p) ∘ r) (ap CA-z p ∘ r) (concat-assoc q _ _))) where fw : FA fw = reduced-to-freegroup (w , tail'-is-reduced x w red) p : x · (x ⁻¹· fw) ≡ fw p = right-inverse-· x fw q : CA-z (x ⁻¹· fw) ≡ CA-z (x · (x ⁻¹· fw)) q = CA-e x (x ⁻¹· fw) r : CA-z fw ≡ CA-z e r = CA-contr-base-reduced-word (w , tail'-is-reduced x w red) CA-contr-loop-reduced-word t ((x ′∷ w) , red) | inr different = refl -- And finally for every path CA-contr-loop : (t : A) (u : FA) → transport P-CA-contr (CA-e t u) (CA-contr-base u) ≡ (CA-contr-base (t · u)) CA-contr-loop t u = -- Idea: -- -- We need to prove -- [p u ∘ (ap CA-z (q u) ∘ for-red u) -- ≡ ap CA-z (q (t · u)) ∘ for-red (t · u)] -- -- [CA-contr-loop-reduced-word] gives -- that [(ap CA-z comp ∘ p (k u)) ∘ for-red u ≡ for-red (t · u)] trans-id≡cst (CA-e t u) (CA-contr-base u) ∘ (! (concat-assoc (p u) (ap CA-z (q u)) (for-red u)) ∘ (whisker-right (for-red u) {q = p u ∘ ap CA-z (q u)} {r = ap CA-z (q (t · u)) ∘ (ap CA-z comp ∘ p (k u))} (! (homotopy-naturality f g p (q u)) ∘ (whisker-right (p (k u)) {q = ap f (q u)} {r = ap CA-z (q (t · u)) ∘ ap CA-z comp} (ap-compose CA-z (λ u₁ → t · u₁) (q u) ∘ (ap (ap CA-z) (π₁ (freegroup-is-set _ _ _ _)) ∘ ap-concat CA-z (q (t · u)) comp)) ∘ concat-assoc (ap CA-z (q (t · u))) (ap CA-z comp) (p (k u)))) ∘ (concat-assoc (ap CA-z (q (t · u))) (ap CA-z comp ∘ p (k u)) (for-red u) ∘ whisker-left (ap CA-z (q (t · u))) auie))) where f : FA → tot-cover f u = CA-z (t · u) g : FA → tot-cover g u = CA-z u p : (u : FA) → f u ≡ g u p u = ! (CA-e t u) k : FA → FA k u = reduced-to-freegroup (freegroup-to-reduced u) q : (u : FA) → u ≡ k u q u = ! (inv₂ u) for-red : (u : FA) → CA-z (k u) ≡ CA-z e for-red u = CA-contr-base-reduced-word (freegroup-to-reduced u) comp : k (t · u) ≡ t · (k u) comp = reduced-to-freegroup-mul-reduce t (freegroup-to-reduced u) auie : (ap CA-z comp ∘ p (k u)) ∘ for-red u ≡ for-red (t · u) auie = CA-contr-loop-reduced-word t (freegroup-to-reduced u) -- Hence, [CA] is contractible CA-contr : (x : tot-cover) → P-CA-contr x CA-contr = equivCA.CA-rec P-CA-contr CA-contr-base CA-contr-loop abstract tot-cover-is-contr : is-contr tot-cover tot-cover-is-contr = (CA-z e , λ x → CA-contr x) -- We define now a fiberwise map between the two fibrations [path-fib] -- and [universal-cover] fiberwise-map : (x : WA) → (path-fib x → universal-cover x) fiberwise-map x q = transport universal-cover (! q) e -- This induces an equivalence on the total spaces, because both total spaces -- are contractible total-equiv : is-equiv (total-map fiberwise-map) total-equiv = contr-to-contr-is-equiv (total-map fiberwise-map) tot-path-fib-is-contr tot-cover-is-contr -- Hence an equivalence fiberwise fiberwise-map-is-equiv : (x : WA) → is-equiv (fiberwise-map x) fiberwise-map-is-equiv x = fiberwise-is-equiv fiberwise-map total-equiv x -- We can then conclude that the based loop space of the wedge of circles on [A] -- is equivalent to the free group on [A], where [A] is any discrete set (i.e. -- with decidable equality) ΩWA≃FA : (baseWA ≡ baseWA) ≃ FA ΩWA≃FA = (fiberwise-map baseWA , fiberwise-map-is-equiv baseWA)
{ "alphanum_fraction": 0.5916561315, "avg_line_length": 37.4121621622, "ext": "agda", "hexsha": "84ec70c51627ca3046776733d47086aad89c1f1b", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Spaces/LoopSpaceDecidableWedgeCircles.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Spaces/LoopSpaceDecidableWedgeCircles.agda", "max_line_length": 80, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Spaces/LoopSpaceDecidableWedgeCircles.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1992, "size": 5537 }
{-# OPTIONS --without-K --exact-split --safe #-} module Fragment.Equational.Theory.Bundles where open import Fragment.Algebra.Signature open import Fragment.Equational.Theory.Base open import Fragment.Equational.Theory.Combinators open import Data.Nat using (ℕ) module _ where data MagmaOp : ℕ → Set where • : MagmaOp 2 Σ-magma : Signature Σ-magma = record { ops = MagmaOp } import Fragment.Equational.Theory.Laws Σ-magma as L data MagmaEq : ℕ → Set where magma-eqs : ∀ {n} → MagmaEq n → Eq Σ-magma n magma-eqs () data SemigroupEq : ℕ → Set where assoc : SemigroupEq 3 semigroup-eqs : ∀ {n} → SemigroupEq n → Eq Σ-magma n semigroup-eqs assoc = L.assoc • data CSemigroupEq : ℕ → Set where comm : CSemigroupEq 2 assoc : CSemigroupEq 3 csemigroup-eqs : ∀ {n} → CSemigroupEq n → Eq Σ-magma n csemigroup-eqs comm = L.comm • csemigroup-eqs assoc = L.assoc • Θ-magma : Theory Θ-magma = record { Σ = Σ-magma ; eqs = MagmaEq ; _⟦_⟧ₑ = magma-eqs } Θ-semigroup : Theory Θ-semigroup = record { Σ = Σ-magma ; eqs = SemigroupEq ; _⟦_⟧ₑ = semigroup-eqs } Θ-csemigroup : Theory Θ-csemigroup = record { Σ = Σ-magma ; eqs = CSemigroupEq ; _⟦_⟧ₑ = csemigroup-eqs } Θ-monoid : Theory Θ-monoid = AddId Θ-semigroup • Θ-cmonoid : Theory Θ-cmonoid = AddId Θ-csemigroup •
{ "alphanum_fraction": 0.5897945659, "avg_line_length": 23.9523809524, "ext": "agda", "hexsha": "de3694eff24782578045ed3d674031cae5119c5b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Equational/Theory/Bundles.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Equational/Theory/Bundles.agda", "max_line_length": 56, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Equational/Theory/Bundles.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 502, "size": 1509 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Unary where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Classes import Cubical.Foundations.Logic as L open import Cubical.Data.Sigma open import Cubical.Data.Empty using (⊥) open import Cubical.Data.Sum.Base using (_⊎_; rec) open import Cubical.Foundations.Function open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.Decidable using (IsYes) private variable a b c ℓ ℓ₁ ℓ₂ : Level A : Type a B : Type b C : Type c ------------------------------------------------------------------------ -- Definition -- Unary relations are known as predicates and `Pred A ℓ` can be viewed -- as some property that elements of type A might satisfy. -- Consequently `P : Pred A ℓ` can also be seen as a subset of A -- containing all the elements of A that satisfy property P. This view -- informs much of the notation used below. RawPred : Type a → (ℓ : Level) → Type _ RawPred A ℓ = A → Type ℓ Pred : Type a → (ℓ : Level) → Type _ Pred A ℓ = A → hProp ℓ isPropValued : RawPred A ℓ → Type _ isPropValued P = ∀ x → isProp (P x) instance PredCast : Cast (Pred A ℓ) (RawPred A ℓ) PredCast = record { [_] = λ P x → P x .fst } isProp[_] : (P : Pred A ℓ) → isPropValued [ P ] isProp[ P ] x = P x .snd fromRaw : (P : RawPred A ℓ) → isPropValued P → Pred A ℓ fromRaw P isPropP x .fst = P x fromRaw P isPropP x .snd = isPropP x ------------------------------------------------------------------------ -- Special sets -- The empty set. ∅ : Pred A _ ∅ _ = L.⊥ -- The singleton set. {_} : A → Pred A _ { x } = L._≡ₚ x -- The universal set. U : Pred A _ U _ = L.⊤ open import Cubical.Data.Unit public using (tt) ------------------------------------------------------------------------ -- Membership infix 6 _∈_ _∉_ _∈_ : A → Pred A ℓ → Type _ x ∈ P = ⟨ P x ⟩ _∉_ : A → Pred A ℓ → Type _ x ∉ P = ¬ x ∈ P ------------------------------------------------------------------------ -- Subset relations infix 6 _⊆_ _⊇_ _⊈_ _⊉_ _⊂_ _⊃_ _⊄_ _⊅_ _⊆_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q _⊇_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ P ⊇ Q = Q ⊆ P _⊈_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ P ⊈ Q = ¬ (P ⊆ Q) _⊉_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ P ⊉ Q = ¬ (P ⊇ Q) _⊂_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ P ⊂ Q = P ⊆ Q × Q ⊈ P _⊃_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ P ⊃ Q = Q ⊂ P _⊄_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ P ⊄ Q = ¬ (P ⊂ Q) _⊅_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ P ⊅ Q = ¬ (P ⊃ Q) ------------------------------------------------------------------------ -- Properties of sets infix 10 Satisfiable Universal IUniversal -- Emptiness - no element satisfies P. Empty : Pred A ℓ → Type _ Empty P = ∀ x → x ∉ P -- Satisfiable - at least one element satisfies P. Satisfiable : Pred A ℓ → Type _ Satisfiable {A = A} P = ∃[ x ∈ A ] x ∈ P syntax Satisfiable P = ∃⟨ P ⟩ -- Universality - all elements satisfy P. Universal : Pred A ℓ → Type _ Universal P = ∀ x → x ∈ P syntax Universal P = Π[ P ] -- Implicit universality - all elements satisfy P. IUniversal : Pred A ℓ → Type _ IUniversal P = ∀ {x} → x ∈ P syntax IUniversal P = ∀[ P ] -- Decidability - it is possible to determine if an arbitrary element -- satisfies P. Decidable : Pred A ℓ → Type _ Decidable P = ∀ x → Dec (x ∈ P) -- Disjointness - Any element satifsying both P and Q is contradictory. _⊃⊂_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ _⊃⊂_ P Q = ∀ {x} → x ∈ P → x ∈ Q → ⊥ -- Positive version of non-disjointness, dual to inclusion. _≬_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ _≬_ {A = A} P Q = ∃[ x ∈ A ] x ∈ P × x ∈ Q ------------------------------------------------------------------------ -- Operations on sets infix 10 ⋃ ⋂ infixr 9 _⊢_ _⊣_ infixr 8 _⇒_ infixr 7 _∩_ infixr 6 _∪_ infix 5 _≬_ -- Complement. ∁ : Pred A ℓ → Pred A ℓ ∁ P = λ x → L.¬ P x -- Implication. _⇒_ : Pred A ℓ₁ → Pred A ℓ₂ → Pred A _ P ⇒ Q = λ x → P x L.⇒ Q x -- Union. _∪_ : Pred A ℓ₁ → Pred A ℓ₂ → Pred A _ P ∪ Q = λ x → P x L.⊔ Q x -- Intersection. _∩_ : Pred A ℓ₁ → Pred A ℓ₂ → Pred A _ P ∩ Q = λ x → P x L.⊓ Q x -- Infinitary union. ⋃ : ∀ {i} (I : Type i) → (I → Pred A ℓ) → Pred A _ ⋃ I P = λ x → L.∃[ i ∶ I ] P i x syntax ⋃ I (λ i → P) = ⋃[ i ∶ I ] P -- Infinitary intersection. ⋂ : ∀ {i} (I : Type i) → (I → Pred A ℓ) → Pred A _ ⋂ I P = λ x → ((i : I) → x ∈ P i) , isPropΠ λ i → isProp[ P i ] x syntax ⋂ I (λ i → P) = ⋂[ i ∶ I ] P -- Preimage. _⊢_ : (A → B) → Pred B ℓ → Pred A ℓ f ⊢ P = λ x → P (f x) -- Image. _⊣_ : (A → B) → Pred A ℓ → Pred B _ f ⊣ P = λ x → L.∥ Σ[ (y , _) ∈ Σ _ (_∈ P) ] (f y ≡ x) ∥ₚ ------------------------------------------------------------------------ -- Preservation under operations _Preserves_⟶_ : (A → B) → Pred A ℓ₁ → Pred B ℓ₂ → Type _ f Preserves P ⟶ Q = P ⊆ f ⊢ Q _Preserves_ : (A → A) → Pred A ℓ → Type _ f Preserves P = f Preserves P ⟶ P -- A binary variant of _Preserves_⟶_. _Preserves₂_⟶_⟶_ : (A → B → C) → Pred A ℓ₁ → Pred B ℓ₂ → Pred C ℓ → Type _ _∙_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y} → x ∈ P → y ∈ Q → x ∙ y ∈ R _Preserves₂_ : (A → A → A) → Pred A ℓ → Type _ _∙_ Preserves₂ P = _∙_ Preserves₂ P ⟶ P ⟶ P ------------------------------------------------------------------------ -- Logical equivalence infix 8 _⇔_ _⇚⇛_ _⇔_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ P ⇔ Q = P ⊆ Q × P ⊇ Q -- Direct logical equivalence (more useful for proofs) _⇚⇛_ : Pred A ℓ₁ → Pred A ℓ₂ → Type _ P ⇚⇛ Q = ∀ x → x ∈ P ≃ x ∈ Q module _ (P : Pred A ℓ₁) (Q : Pred A ℓ₂) where ⇔-⇚⇛ : P ⇔ Q → P ⇚⇛ Q ⇔-⇚⇛ (P⊆Q , Q⊆P) x = isPropEquiv→Equiv (P x .snd) (Q x .snd) P⊆Q Q⊆P ⇚⇛-⇔ : P ⇚⇛ Q → P ⇔ Q ⇚⇛-⇔ P⇚⇛Q = equivFun (P⇚⇛Q _) , invEq (P⇚⇛Q _) equiv≃ : P ⇔ Q ≃ P ⇚⇛ Q equiv≃ = isPropEquiv→Equiv (isProp× (isPropImplicitΠ λ _ → isPropΠ λ _ → (Q _ .snd)) (isPropImplicitΠ λ _ → isPropΠ λ _ → (P _ .snd))) (isPropΠ λ _ → isPropΣ (isPropΠ λ _ → Q _ .snd) (λ _ → isPropIsEquiv _)) ⇔-⇚⇛ ⇚⇛-⇔ equiv≡ : _⇔_ ≡ _⇚⇛_ {ℓ₁} {A} {ℓ₂} {ℓ} equiv≡ = funExt (λ P → funExt (λ Q → ua (equiv≃ P Q))) module _ (P Q : Pred A ℓ) where ⇚⇛toPath : P ⇚⇛ Q → P ≡ Q ⇚⇛toPath P⇚⇛Q = funExt (λ x → L.hProp≡ (ua (P⇚⇛Q x))) ⇔toPath : P ⇔ Q → P ≡ Q ⇔toPath P⇔Q = ⇚⇛toPath (⇔-⇚⇛ P Q P⇔Q) ------------------------------------------------------------------------ -- Predicate combinators -- These differ from the set operations above, as the carrier set of the -- resulting predicates are not the same as the carrier set of the -- component predicates. infixr 2 _⟨×⟩_ infixr 2 _⟨⊙⟩_ infixr 1 _⟨⊎⟩_ infixr 0 _⟨→⟩_ infixl 9 _⟨·⟩_ infix 10 _~ infixr 9 _⟨∘⟩_ infixr 2 _//_ _\\_ -- Product. _⟨×⟩_ : Pred A ℓ₁ → Pred B ℓ₂ → Pred (A × B) _ (P ⟨×⟩ Q) (x , y) = P x L.⊓ Q y -- Sum over one element. _⟨⊎⟩_ : Pred A ℓ → Pred B ℓ → Pred (A ⊎ B) _ P ⟨⊎⟩ Q = rec P Q -- Sum over two elements. _⟨⊙⟩_ : Pred A ℓ₁ → Pred B ℓ₂ → Pred (A × B) _ (P ⟨⊙⟩ Q) (x , y) = P x L.⊔ Q y -- Implication. _⟨→⟩_ : Pred A ℓ₁ → Pred B ℓ₂ → Pred (A → B) _ (P ⟨→⟩ Q) f = (∀ {x} → x ∈ P → f x ∈ Q) , isPropImplicitΠ λ _ → isPropΠ λ _ → isProp[ Q ] _ -- Product. _⟨·⟩_ : (P : Pred A ℓ₁) (Q : Pred B ℓ₂) → (P ⟨×⟩ (P ⟨→⟩ Q)) ⊆ uncurry (flip _$_) ⊢ Q (P ⟨·⟩ Q) (p , f) = f p -- Converse. _~ : Pred (A × B) ℓ → Pred (B × A) ℓ P ~ = P ∘ λ { (x , y) → y , x } -- Composition. _⟨∘⟩_ : Pred (A × B) ℓ₁ → Pred (B × C) ℓ₂ → Pred (A × C) _ _⟨∘⟩_ {B = B} P Q (x , z) = L.∃[ y ∶ B ] P (x , y) L.⊓ Q (y , z) -- Post-division. _//_ : Pred (A × C) ℓ₁ → Pred (B × C) ℓ₂ → Pred (A × B) _ (P // Q) (x , y) = (∀ {z} → (y , z) ∈ Q → (x , z) ∈ P) , isPropImplicitΠ λ _ → isPropΠ λ _ → isProp[ P ] _ -- Pre-division. _\\_ : Pred (A × C) ℓ₁ → Pred (A × B) ℓ₂ → Pred (B × C) _ P \\ Q = (P ~ // Q ~) ~
{ "alphanum_fraction": 0.5062865679, "avg_line_length": 23.6264705882, "ext": "agda", "hexsha": "ff3e84eb9e5a29161c3fdc1befac247d54c0610a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Unary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Unary.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Unary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3332, "size": 8033 }
{-# OPTIONS --safe --warning=error #-} open import Boolean.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Logic.PropositionalLogic open import Functions.Definition open import Numbers.Naturals.Order open import Vectors module Logic.PropositionalLogicExamples where emptySubset : {a : _} (A : Set a) → IsSubset False A emptySubset A = record { ofElt = λ () } emptyEntailment : {a b : _} {A : Set a} {P : Propositions A} → Entails (emptySubset (Propositions A)) P → Tautology P emptyEntailment {a} {b} {A} {P} entails v = entails {v} λ {s} → exFalso s emptyEntailment' : {a b : _} {A : Set a} {P : Propositions A} → Tautology P → Entails (emptySubset (Propositions A)) P emptyEntailment' isTaut {v} _ = isTaut v data TwoElements : Set where One : TwoElements Two : TwoElements twoElementSubset : {a : _} {A : Set a} → {P Q R : Propositions A} → TwoElements → Propositions A twoElementSubset {P = P} {Q} {R} One = implies P Q twoElementSubset {P = P} {Q} {R} Two = implies Q R twoElementSubsetInj : {a : _} {A : Set a} {P Q R : Propositions A} → (P ≡ Q → False) → Injection (twoElementSubset {P = P} {Q} {R}) twoElementSubsetInj {P = P} {Q} {R} p!=q {One} {One} refl = refl twoElementSubsetInj {P = P} {Q} {R} p!=q {One} {Two} pr with impliesInjective pr twoElementSubsetInj {P = P} {Q} {R} p!=q {One} {Two} pr | fst ,, snd = exFalso (p!=q fst) twoElementSubsetInj {P = P} {Q} {R} p!=q {Two} {One} pr with impliesInjective pr twoElementSubsetInj {P = P} {Q} {R} p!=q {Two} {One} pr | fst ,, snd = exFalso (p!=q (equalityCommutative fst)) twoElementSubsetInj {P = P} {Q} {R} p!=q {Two} {Two} refl = refl badBool : BoolFalse ≡ BoolTrue → False badBool () semanticEntailmentTransitive : {a : _} {A : Set a} {P Q R : Propositions A} → (p!=q : P ≡ Q → False) → Entails record { ofElt = twoElementSubset } (implies P R) semanticEntailmentTransitive {P = P} {Q} {R} p!=q {v} pr with inspect (Valuation.v v P) semanticEntailmentTransitive {P = P} {Q} {R} p!=q {v} pr | BoolTrue with≡ pT with inspect (Valuation.v v Q) semanticEntailmentTransitive {P = P} {Q} {R} p!=q {v} pr | BoolTrue with≡ pT | BoolTrue with≡ qT with inspect (Valuation.v v R) semanticEntailmentTransitive {P = P} {Q} {R} p!=q {v} pr | BoolTrue with≡ pT | BoolTrue with≡ qT | BoolTrue with≡ rT = Valuation.vImplicationT v rT semanticEntailmentTransitive {P = P} {Q} {R} p!=q {v} pr | BoolTrue with≡ pT | BoolTrue with≡ qT | BoolFalse with≡ rF = exFalso (badBool (transitivity (equalityCommutative (Valuation.vImplicationF v qT rF)) (pr {Two}))) semanticEntailmentTransitive {P = P} {Q} {R} p!=q {v} pr | BoolTrue with≡ pT | BoolFalse with≡ qF = exFalso (badBool (transitivity (equalityCommutative (Valuation.vImplicationF v pT qF)) (pr {One}))) semanticEntailmentTransitive {P = P} {Q} {R} p!=q {v} pr | BoolFalse with≡ pF = Valuation.vImplicationVacuous v pF -- Subset {p -> q, q -> r} pQQR : {a : _} {A : Set a} {P Q R : Propositions A} → TwoElements → Propositions A pQQR {P = P} {Q} {R} One = implies P Q pQQR {P = P} {Q} {R} Two = implies Q R pQQRSubsetInj : {a : _} {A : Set a} {P Q R : Propositions A} → (P ≡ Q → False) → Injection (pQQR {P = P} {Q} {R}) pQQRSubsetInj {P = P} {Q} {R} p!=q {One} {One} refl = refl pQQRSubsetInj {P = P} {Q} {R} p!=q {One} {Two} pr with impliesInjective pr pQQRSubsetInj {P = P} {Q} {R} p!=q {One} {Two} pr | p=q ,, _ = exFalso (p!=q p=q) pQQRSubsetInj {P = P} {Q} {R} p!=q {Two} {One} pr with impliesInjective pr pQQRSubsetInj {P = P} {Q} {R} p!=q {Two} {One} pr | q=p ,, _ = exFalso (p!=q (equalityCommutative q=p)) pQQRSubsetInj {P = P} {Q} {R} p!=q {Two} {Two} refl = refl syntacticEntailmentExample : {a : _} {A : Set a} {P Q R : Propositions A} → (p!=q : P ≡ Q → False) → Proof propositionalAxioms (record { ofElt = pQQR {P = P} {Q} {R} }) 7 syntacticEntailmentExample {P = P} {Q} {R} p!=q = nextStep 6 (nextStep 5 (nextStep 4 (nextStep 3 (nextStep 2 (nextStep 1 (nextStep 0 empty (axiom (Two , record { one = P ; two = Q ; three = R }))) (given Two)) (axiom (One , ((implies Q R) ,, P)))) (modusPonens (record { element = implies (implies Q R) (implies P (implies Q R)) ; position = 0 ; pos<N = le 2 refl ; elementIsAt = refl }) (record { element = implies Q R ; position = 1 ; elementIsAt = refl ; pos<N = le 1 refl }) (implies P (implies Q R)) refl)) (modusPonens (record { element = implies (implies P (implies Q R)) (implies (implies P Q) (implies P R)) ; position = 3 ; pos<N = le 0 refl ; elementIsAt = refl }) (record { element = implies P (implies Q R) ; position = 0 ; pos<N = succIsPositive _ ; elementIsAt = refl }) (implies (implies P Q) (implies P R)) refl)) (given One)) (modusPonens (record { element = implies (implies P Q) (implies P R) ; position = 1 ; pos<N = succPreservesInequality (succIsPositive _) ; elementIsAt = refl }) (record { element = implies P Q ; position = 0 ; pos<N = succIsPositive _ ; elementIsAt = refl }) (implies P R) refl) pQQRProof : {a : _} {A : Set a} {P Q R : Propositions A} → (p!=q : P ≡ Q → False) → Proves propositionalAxioms (record { ofElt = pQQR {P = P} {Q} {R} }) (implies P R) pQQRProof p!=q = record { n = 6 ; proof = syntacticEntailmentExample p!=q ; ofStatement = refl } -- Subset {p} pSubset : {a : _} {A : Set a} {P : Propositions A} → True → Propositions A pSubset {P = P} record {} = implies P P pSubsetInj : {a : _} {A : Set a} {P : Propositions A} → Injection (pSubset {P = P}) pSubsetInj {P = P} {record {}} {record {}} refl = refl syntacticEntailmentPP : {a : _} {A : Set a} {P : Propositions A} → Proof propositionalAxioms record { ofElt = pSubset {P = P} } 5 syntacticEntailmentPP {P = P} = nextStep 4 (nextStep 3 (nextStep 2 (nextStep 1 (nextStep 0 empty (axiom (One , (P ,, (implies P P))))) (axiom (Two , record { one = P ; two = implies P P ; three = P }))) (modusPonens (record { element = implies (implies P (implies (implies P P) P)) (implies (implies P (implies P P)) (implies P P)) ; position = 0 ; pos<N = succIsPositive _ ; elementIsAt = refl }) (record { element = implies P (implies (implies P P) P) ; position = 1 ; pos<N = succPreservesInequality (succIsPositive _) ; elementIsAt = refl }) (implies (implies P (implies P P)) (implies P P)) refl)) (axiom (One , (P ,, P)))) (modusPonens (record { element = implies (implies P (implies P P)) (implies P P) ; position = 1 ; pos<N = succPreservesInequality (succIsPositive _) ; elementIsAt = refl }) (record { element = implies P (implies P P) ; position = 0 ; pos<N = succIsPositive _ ; elementIsAt = refl }) (implies P P) refl) pImpliesP : {a : _} {A : Set a} {P : Propositions A} → Proves propositionalAxioms record { ofElt = pSubset {P = P} } (implies P P) Proves.n (pImpliesP {P = P}) = 4 Proves.proof (pImpliesP {P = P}) = syntacticEntailmentPP {P = P} Proves.ofStatement (pImpliesP {P = P}) = refl
{ "alphanum_fraction": 0.6506889475, "avg_line_length": 82.1927710843, "ext": "agda", "hexsha": "323e714f5dc2107b7c1fb468a8e732fe70489241", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Logic/PropositionalLogicExamples.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Logic/PropositionalLogicExamples.agda", "max_line_length": 1122, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Logic/PropositionalLogicExamples.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2546, "size": 6822 }
{-# OPTIONS --type-in-type --guardedness #-} module IO.Exts where import IO.Primitive as Prim open import Class.Monad open import Class.Functor open import Data.List open import Data.Nat using (ℕ) open import Data.String open import Data.Sum open import Data.Unit open import Function open import IO using (IO; run; readFiniteFile; lift) open import IO.Instance open import Level private variable A : Set {-# FOREIGN GHC import Data.Text import System.CPUTime import System.Environment import System.Exit import System.IO import System.IO.Error import System.Process #-} postulate flushStdoutPrim : Prim.IO ⊤ getCPUTimePrim : Prim.IO ℕ putStrErrPrim : String → Prim.IO ⊤ runShellCmdPrim : String → List String → Prim.IO String catchIOErrorPrim : Prim.IO A → (String → Prim.IO A) → Prim.IO A {-# COMPILE GHC flushStdoutPrim = hFlush stdout #-} {-# COMPILE GHC getCPUTimePrim = getCPUTime #-} {-# COMPILE GHC putStrErrPrim = hPutStr stderr . unpack #-} {-# COMPILE GHC runShellCmdPrim = \ s t -> pack <$> (readProcess (unpack s) (fmap unpack t) "") #-} -- use haskell proc {-# COMPILE GHC catchIOErrorPrim = \ _ a f -> catchIOError a (f . pack . show) #-} flushStdout : IO ⊤ flushStdout = lift flushStdoutPrim getCPUTime : IO ℕ getCPUTime = lift getCPUTimePrim putStrErr : String → IO ⊤ putStrErr s = lift (putStrErrPrim s) runShellCmd : String → List String → IO String runShellCmd s args = lift (runShellCmdPrim s args) catchIOError : IO A → (String → IO A) → IO A catchIOError a f = lift $ catchIOErrorPrim (run a) (run ∘ f) readFiniteFileError : String → IO (String ⊎ String) readFiniteFileError name = catchIOError (inj₂ <$> readFiniteFile name) (return ∘ inj₁)
{ "alphanum_fraction": 0.7194623027, "avg_line_length": 26.734375, "ext": "agda", "hexsha": "72116caedcb03a2f85b8d0377b6536fc45798234", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/IO/Exts.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/IO/Exts.agda", "max_line_length": 119, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/IO/Exts.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 495, "size": 1711 }
{-# OPTIONS --no-qualified-instances #-} open import Data.List open import Relation.Unary open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Structures.Syntax import JVM.Printer.Printer as Printer import JVM.Model as Model module JVM.Syntax.Bytecode.Printer {ℓ T} (⟨_⇒_⟩ : T → T → List T → Set ℓ) (let open Model T) (let open Printer T) (print : ∀ {τ₁ τ₂} → ∀[ Down ⟨ τ₁ ⇒ τ₂ ⟩ ⇒ Printer Emp ] ) where open import JVM.Syntax.Bytecode T ⟨_⇒_⟩ open import Relation.Binary.PropositionalEquality open import Relation.Ternary.Data.ReflexiveTransitive open import Relation.Ternary.Monad {-# TERMINATING #-} pretty : ∀ {ψ₁ ψ₂} → ∀[ ⟪ ψ₁ ↝ ψ₂ ⟫ ⇒ Printer Emp ] pretty nil = do return refl pretty (instr i ▹⟨ σ ⟩ is) = do is ← ✴-id⁻ʳ ⟨$⟩ (print i &⟨ ⟪ _ ↝ _ ⟫ # ∙-comm σ ⟩ is) pretty is pretty (labeled l∙i ▹⟨ σ₂ ⟩ is) = do let l ∙⟨ σ ⟩ i∙is = ✴-assocᵣ (l∙i ∙⟨ σ₂ ⟩ is) i ∙⟨ σ ⟩ is ← ✴-id⁻ʳ ⟨$⟩ (print-labels l &⟨ _ ✴ ⟪ _ ↝ _ ⟫ # ∙-comm σ ⟩ i∙is) is ← ✴-id⁻ʳ ⟨$⟩ (print i &⟨ ∙-comm σ ⟩ is) pretty is
{ "alphanum_fraction": 0.6040744021, "avg_line_length": 33.2058823529, "ext": "agda", "hexsha": "27c3d95380e65fc26b7c8a3c0ec13ef12763988e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Syntax/Bytecode/Printer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Syntax/Bytecode/Printer.agda", "max_line_length": 84, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Syntax/Bytecode/Printer.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 438, "size": 1129 }
-- Discrete category over a type A -- A must be an h-groupoid for the homs to be sets {-# OPTIONS --safe #-} module Cubical.Categories.Instances.Discrete where open import Cubical.Categories.Category.Base open import Cubical.Categories.Functor.Base open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Transport private variable ℓ ℓC ℓC' : Level open Category -- Discrete category DiscreteCategory : hGroupoid ℓ → Category ℓ ℓ DiscreteCategory A .ob = A .fst DiscreteCategory A .Hom[_,_] a a' = a ≡ a' DiscreteCategory A .id = refl DiscreteCategory A ._⋆_ = _∙_ DiscreteCategory A .⋆IdL f = sym (lUnit f) DiscreteCategory A .⋆IdR f = sym (rUnit f) DiscreteCategory A .⋆Assoc f g h = sym (assoc f g h) DiscreteCategory A .isSetHom {x} {y} = A .snd x y module _ {A : hGroupoid ℓ} {C : Category ℓC ℓC'} where open Functor -- Functions f: A → ob C give functors F: DiscreteCategory A → C DiscFunc : (fst A → ob C) → Functor (DiscreteCategory A) C DiscFunc f .F-ob = f DiscFunc f .F-hom {x} p = subst (λ z → C [ f x , f z ]) p (id C) DiscFunc f .F-id {x} = substRefl {B = λ z → C [ f x , f z ]} (id C) -- Preserves composition DiscFunc f .F-seq {x} {y} p q = let open Category C using () renaming (_⋆_ to _●_) in let Hom[fx,f—] = (λ (w : A .fst) → C [ f x , f w ]) in let Hom[fy,f—] = (λ (w : A .fst) → C [ f y , f w ]) in let id-fx = id C {f x} in let id-fy = id C {f y} in let Fp = (subst Hom[fx,f—] (p) id-fx) in subst Hom[fx,f—] (p ∙ q) id-fx ≡⟨ substComposite Hom[fx,f—] _ _ _ ⟩ subst Hom[fx,f—] (q) (Fp) ≡⟨ cong (subst _ q) (sym (⋆IdR C _)) ⟩ subst Hom[fx,f—] (q) (Fp ● id-fy) ≡⟨ substCommSlice _ _ (λ _ → Fp ●_) q _ ⟩ Fp ● (subst Hom[fy,f—] (q) id-fy) ∎
{ "alphanum_fraction": 0.6104986877, "avg_line_length": 34.0178571429, "ext": "agda", "hexsha": "8fff2527cb891245511bb02b9b9e9c8fed84c862", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/Discrete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/Discrete.agda", "max_line_length": 89, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/Discrete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 707, "size": 1905 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of Colist ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Colist.Categorical where open import Codata.Conat using (infinity) open import Codata.Colist open import Category.Functor open import Category.Applicative functor : ∀ {ℓ i} → RawFunctor {ℓ} (λ A → Colist A i) functor = record { _<$>_ = map } applicative : ∀ {ℓ i} → RawApplicative {ℓ} (λ A → Colist A i) applicative = record { pure = replicate infinity ; _⊛_ = ap }
{ "alphanum_fraction": 0.5330261137, "avg_line_length": 27.125, "ext": "agda", "hexsha": "d20ae27f768682d339315edaace2b65ffeb3f75d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist/Categorical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist/Categorical.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist/Categorical.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 159, "size": 651 }
-- Fixed on AIM XIV 2011-09-09 AA, UN -- {-# OPTIONS -v tc.lhs.unify:50 #-} module Issue292 where data ⊥ : Set where infix 3 ¬_ ¬_ : Set → Set ¬ P = P → ⊥ infix 4 _≅_ data _≅_ {A : Set} (x : A) : ∀ {B : Set} → B → Set where refl : x ≅ x record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public data Bool : Set where true false : Bool data D : Bool -> Set where tt : D true ff : D false P : Set -> Set P S = Σ S (\s → s ≅ tt) pbool : P (D true) pbool = tt , refl ¬pbool2 : ¬ P (D false) ¬pbool2 ( ff , () ) -- Andreas, 2011-09-13 fix of fix: should work again {- WAS: expected error ff ≅ tt should be empty, but that's not obvious to me when checking that the clause ¬pbool2 (ff , ()) has type ¬ P (D false) -}
{ "alphanum_fraction": 0.582278481, "avg_line_length": 17.5555555556, "ext": "agda", "hexsha": "2ef0cc10a98e74390a5fa8f801b220633c38c2ed", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue292.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue292.agda", "max_line_length": 56, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue292.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 301, "size": 790 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Bicategory.Helpers where -- quite a bit of the code below is taken from Categories.2-Category open import Data.Nat using (_+_) open import Function using (flip) open import Data.Product using (_,_; curry) open import Categories.Category open import Categories.Categories using (Categories) import Categories.Functor open import Categories.Terminal using (OneC; One; unit) open import Categories.Object.Terminal using (module Terminal) open import Categories.Bifunctor hiding (identityˡ; identityʳ; assoc) renaming (id to idF; _≡_ to _≡F_; _∘_ to _∘F_) open import Categories.NaturalIsomorphism open import Categories.NaturalTransformation using (NaturalTransformation) renaming (_≡_ to _≡ⁿ_; id to idⁿ) open import Categories.Product using (Product; assocʳ; πˡ; πʳ) module BicategoryHelperFunctors {o ℓ t e} (Obj : Set o) (_⇒_ : (A B : Obj) → Category ℓ t e) (—⊗— : {A B C : Obj} → Bifunctor (B ⇒ C) (A ⇒ B) (A ⇒ C)) (id : {A : Obj} → Functor {ℓ} {t} {e} OneC (A ⇒ A)) where open Terminal (One {ℓ} {t} {e}) _∘_ : {A B C : Obj} {L R : Category ℓ t e} → Functor L (B ⇒ C) → Functor R (A ⇒ B) → Bifunctor L R (A ⇒ C) _∘_ {A} {B} {C} F G = reduce-× {D₁ = B ⇒ C} {D₂ = A ⇒ B} —⊗— F G -- convenience! module _⇒_ (A B : Obj) = Category (A ⇒ B) open _⇒_ public using () renaming (Obj to _⇒₁_) private module imp⇒ {X Y : Obj} = Category (X ⇒ Y) open imp⇒ public using () renaming (_⇒_ to _⇒₂_; id to id₂; _∘_ to _•_; _≡_ to _≡₂_) id₁ : ∀ {A} → A ⇒₁ A id₁ {A} = Functor.F₀ (id {A}) unit id₁₂ : ∀ {A} → id₁ {A} ⇒₂ id₁ {A} id₁₂ {A} = id₂ {A = id₁ {A}} infixr 9 _∘₁_ _∘₁_ : ∀ {A B C} → B ⇒₁ C → A ⇒₁ B → A ⇒₁ C _∘₁_ = curry (Functor.F₀ —⊗—) -- horizontal composition infixr 9 _∘₂_ _∘₂_ : ∀ {A B C} {g g′ : B ⇒₁ C} {f f′ : A ⇒₁ B} (β : g ⇒₂ g′) (α : f ⇒₂ f′) → (g ∘₁ f) ⇒₂ (g′ ∘₁ f′) _∘₂_ = curry (Functor.F₁ —⊗—) -- left whiskering infixl 9 _◃_ _◃_ : ∀ {A B C} {g g′ : B ⇒₁ C} → g ⇒₂ g′ → (f : A ⇒₁ B) → (g ∘₁ f) ⇒₂ (g′ ∘₁ f) β ◃ f = β ∘₂ id₂ -- right whiskering infixr 9 _▹_ _▹_ : ∀ {A B C} (g : B ⇒₁ C) → {f f′ : A ⇒₁ B} → f ⇒₂ f′ → (g ∘₁ f) ⇒₂ (g ∘₁ f′) g ▹ α = id₂ ∘₂ α module Coherence (identityˡ : {A B : Obj} → NaturalIsomorphism (id ∘ idF {C = A ⇒ B}) (πʳ {C = ⊤} {A ⇒ B})) (identityʳ : {A B : Obj} → NaturalIsomorphism (idF {C = A ⇒ B} ∘ id) (πˡ {C = A ⇒ B})) (assoc : {A B C D : Obj} → NaturalIsomorphism (idF ∘ —⊗—) ((—⊗— ∘ idF) ∘F assocʳ (C ⇒ D) (B ⇒ C) (A ⇒ B)) ) where open Categories.NaturalTransformation.NaturalTransformation -- left/right are inverted between in certain situations! -- private so as to not clash with the ones in Bicategory itself private ρᵤ : {A B : Obj} (f : A ⇒₁ B) → (id₁ ∘₁ f) ⇒₂ f ρᵤ f = η (NaturalIsomorphism.F⇒G identityˡ) (unit , f) λᵤ : {A B : Obj} (f : A ⇒₁ B) → (f ∘₁ id₁) ⇒₂ f λᵤ f = η (NaturalIsomorphism.F⇒G identityʳ) (f , unit) α : {A B C D : Obj} (f : A ⇒₁ B) (g : B ⇒₁ C) (h : C ⇒₁ D) → (h ∘₁ (g ∘₁ f)) ⇒₂ ((h ∘₁ g) ∘₁ f) α f g h = η (NaturalIsomorphism.F⇒G assoc) (h , g , f) -- Triangle identity. Look how closely it matches with the one on -- http://ncatlab.org/nlab/show/bicategory Triangle : {A B C : Obj} (f : A ⇒₁ B) (g : B ⇒₁ C) → Set e Triangle f g = (g ▹ ρᵤ f) ≡₂ ((λᵤ g ◃ f) • (α f id₁ g)) -- Pentagon identity. Ditto. Pentagon : {A B C D E : Obj} (f : A ⇒₁ B) (g : B ⇒₁ C) (h : C ⇒₁ D) (i : D ⇒₁ E) → Set e Pentagon f g h i = ((α g h i ◃ f) • (α f (h ∘₁ g) i)) • (i ▹ α f g h) ≡₂ (α f g (i ∘₁ h) • α (g ∘₁ f) h i)
{ "alphanum_fraction": 0.5578250069, "avg_line_length": 41.1704545455, "ext": "agda", "hexsha": "c595b2b8a2a89196e67ed2a761fba4904b804cb6", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "copumpkin/categories", "max_forks_repo_path": "Categories/Bicategory/Helpers.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "copumpkin/categories", "max_issues_repo_path": "Categories/Bicategory/Helpers.agda", "max_line_length": 120, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Bicategory/Helpers.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1566, "size": 3623 }
-- Andreas, 2015-08-11, issue reported by Martin Stone Davis -- {-# OPTIONS -v impossible:10 -v interaction.give:20 #-} open import Data.AVL using (Tree; empty) open import Data.Vec using (Vec) open import Data.String using (String) open import Relation.Binary using (StrictTotalOrder) open import Data.Nat.Properties using (<-strictTotalOrder) empty' : Tree (StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder) (Vec String) empty' = empty {!!} -- ERROR WAS: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Monad/Trace.hs:56 -- Currently Agsy gives nothing, which is also a weird. -- It does not report "No solutions found". -- Somehow, some parts of the solution are not in scope, which might -- give an internal error that is caught, causing Agsy to discard -- the solution.
{ "alphanum_fraction": 0.7485380117, "avg_line_length": 37.1739130435, "ext": "agda", "hexsha": "0089be73fb0dd9e1eea983090ff17d6e60b33f6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/lib-interaction/Issue1623.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/lib-interaction/Issue1623.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/lib-interaction/Issue1623.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 212, "size": 855 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.Network as Network import LibraBFT.Impl.Consensus.RoundManager as RoundManager open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Prelude -- This module defines the handler for our implementation. For most message types, it does some -- initial validation before passing the message on to the proper handlers. module LibraBFT.Impl.IO.OBM.InputOutputHandlers where epvv : LBFT (Epoch × ValidatorVerifier) epvv = _,_ <$> gets (_^∙ rmSafetyRules ∙ srPersistentStorage ∙ pssSafetyData ∙ sdEpoch) <*> gets (_^∙ rmEpochState ∙ esVerifier) module handleProposal (now : Instant) (pm : ProposalMsg) where step₀ : LBFT Unit step₁ : Epoch → ValidatorVerifier → LBFT Unit step₀ = do (myEpoch , vv) ← epvv step₁ myEpoch vv step₁ myEpoch vv = do case⊎D Network.processProposal {- {!!} -} pm myEpoch vv of λ where (Left (Left e)) → logErr e (Left (Right i)) → logInfo i (Right _) → RoundManager.processProposalMsgM now pm handleProposal : Instant → ProposalMsg → LBFT Unit handleProposal = handleProposal.step₀ module handleVote (now : Instant) (vm : VoteMsg) where step₀ : LBFT Unit step₁ : Epoch → ValidatorVerifier → LBFT Unit step₀ = do (myEpoch , vv) ← epvv step₁ myEpoch vv step₁ myEpoch vv = do case Network.processVote vm myEpoch vv of λ where (Left (Left e)) → logErr e (Left (Right i)) → logInfo i (Right _) → RoundManager.processVoteMsgM now vm abstract handleVote = handleVote.step₀ handleVote≡ : handleVote ≡ handleVote.step₀ handleVote≡ = refl handle : NodeId → NetworkMsg → Instant → LBFT Unit handle _self msg now = case msg of λ where (P pm) → handleProposal now pm (V vm) → handleVote now vm (C cm) → pure unit -- We don't do anything with commit messages, they are just for defining Correctness.
{ "alphanum_fraction": 0.7123585727, "avg_line_length": 33.7941176471, "ext": "agda", "hexsha": "0db681b5d1b4ce0eab43f4b06b10ebf58d9f3dcf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/IO/OBM/InputOutputHandlers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/IO/OBM/InputOutputHandlers.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/IO/OBM/InputOutputHandlers.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 644, "size": 2298 }
module DivMod where -- From examples/simple-lib open import Lib.Vec open import Lib.Nat open import Lib.Id open import Lib.Logic open import Lib.Fin -- Certified implementation of division and modulo module Direct where data DivMod : Nat -> Nat -> Set where dm : forall {b} q (r : Fin b) -> DivMod (toNat r + q * b) b getQ : forall {a b} -> DivMod a b -> Nat getQ (dm q _) = q getR : forall {a b} -> DivMod a b -> Nat getR (dm _ r) = toNat r divModˢ : (a b : Nat) -> DivMod a (suc b) divModˢ zero b = dm 0 zero divModˢ (suc a) b with divModˢ a b divModˢ (suc ._) b | dm q r with maxView r divModˢ (suc ._) b | dm q .(fromNat b) | theMax with toNat (fromNat b) | lem-toNat-fromNat b ... | .b | refl = dm {suc b} (suc q) zero divModˢ (suc ._) b | dm q .(weaken i) | notMax i with toNat (weaken i) | lem-toNat-weaken i ... | .(toNat i) | refl = dm q (suc i) divMod : (a b : Nat){nz : NonZero b} -> DivMod a b divMod a zero {} divMod a (suc b) = divModˢ a b -- Let's try the inductive version. Less obvious that this one is correct. module Inductive where data DivMod : Nat -> Nat -> Set where dmZ : forall {b} (i : Fin b) -> DivMod (toNat i) b dmS : forall {a b} -> DivMod a b -> DivMod (b + a) b getQ : forall {a b} -> DivMod a b -> Nat getQ (dmZ _) = 0 getQ (dmS d) = suc (getQ d) getR : forall {a b} -> DivMod a b -> Nat getR (dmZ r) = toNat r getR (dmS d) = getR d data BoundView (n : Nat) : Nat -> Set where below : (i : Fin n) -> BoundView n (toNat i) above : forall a -> BoundView n (n + a) boundView : (a b : Nat) -> BoundView a b boundView zero b = above b boundView (suc a) zero = below zero boundView (suc a) (suc b) with boundView a b boundView (suc a) (suc .(toNat i)) | below i = below (suc i) boundView (suc a) (suc .(a + k)) | above k = above k data _≤_ : Nat -> Nat -> Set where leqZ : forall {n} -> zero ≤ n leqS : forall {n m} -> n ≤ m -> suc n ≤ suc m ≤-suc : forall {a b} -> a ≤ b -> a ≤ suc b ≤-suc leqZ = leqZ ≤-suc (leqS p) = leqS (≤-suc p) plus-≤ : forall a {b c} -> a + b ≤ c -> b ≤ c plus-≤ zero p = p plus-≤ (suc a) (leqS p) = ≤-suc (plus-≤ a p) ≤-refl : forall {a} -> a ≤ a ≤-refl {zero} = leqZ ≤-refl {suc n} = leqS ≤-refl -- Recursion over a bound on a (needed for termination). divModˢ : forall {size} a b -> a ≤ size -> DivMod a (suc b) divModˢ a b prf with boundView (suc b) a divModˢ .(toNat r) b _ | below r = dmZ r divModˢ .(suc b + k) b (leqS prf) | above k = dmS (divModˢ k b (plus-≤ b prf)) divMod : forall a b {nz : NonZero b} -> DivMod a b divMod a zero {} divMod a (suc b) = divModˢ a b ≤-refl -- We ought to prove that the inductive version behaves the same as the -- direct version... but that's more work than we're willing to spend. open Inductive _div_ : (a b : Nat){nz : NonZero b} -> Nat _div_ a b {nz} = getQ (divMod a b {nz}) _mod_ : (a b : Nat){nz : NonZero b} -> Nat _mod_ a b {nz} = getR (divMod a b {nz})
{ "alphanum_fraction": 0.5758957655, "avg_line_length": 30.396039604, "ext": "agda", "hexsha": "fa60f64646419a5aa865920524f3e50af2872fdf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/arith/DivMod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/arith/DivMod.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/arith/DivMod.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1221, "size": 3070 }
{-# OPTIONS -v 2 #-} module Leftovers.Junk where open import Data.Bool open import Relation.Binary.PropositionalEquality id : ∀ {X : Set} → X → X id x = x the : ∀ X → X → X the X = id {X} badEq : let f = the (Bool -> Bool -> Bool) (λ x → λ {true → false ; false → true}) in f true ≡ f false badEq = {!!} -- refl does not typecheck goodEq : let f = the (Bool -> Bool -> Bool) (λ x → id λ {true → false ; false → true}) in f true ≡ f false goodEq = {!!}
{ "alphanum_fraction": 0.5790598291, "avg_line_length": 18.72, "ext": "agda", "hexsha": "d8c00a0d706b45b52b36e49a21dbfd3922e7ee27", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/AgdaLeftovers", "max_forks_repo_path": "src/Leftovers/Junk.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/AgdaLeftovers", "max_issues_repo_path": "src/Leftovers/Junk.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/AgdaLeftovers", "max_stars_repo_path": "src/Leftovers/Junk.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 156, "size": 468 }
module Integer.Difference.Properties where open import Data.Product as Σ open import Data.Product.Relation.Pointwise.NonDependent open import Data.Unit open import Equality open import Integer.Difference open import Natural as ℕ using (ℕ; zero; suc) open import Quotient as / open import Relation.Binary open import Syntax open Equality.FunctionProperties +-comm : Commutative {A = ℤ} _+_ +-comm = ⟦⟧-≗₂ uip _ _ λ where (a – b) (c – d) → cong ⟦_⟧ (cong₂ _–_ (⟨ ℕ.+-comm a c ⟩) (⟨ ℕ.+-comm d b ⟩)) +-identityˡ : LeftIdentity {A = ℤ} 0 _+_ +-identityˡ = ⟦⟧-≗ uip _ _ λ where (a – b) → cong (λ z → ⟦ a – z ⟧) ⟨ ℕ.+-identityʳ b ⟩ +-identityʳ : RightIdentity {A = ℤ} 0 _+_ +-identityʳ = ⟦⟧-≗ uip _ _ λ where (a – b) → cong (λ z → ⟦ z – b ⟧) ⟨ ℕ.+-identityʳ a ⟩ +-assoc : Associative {A = ℤ} _+_ +-assoc = ⟦⟧-≗₃ uip _ _ λ where (a – b) (c – d) (e – f) → cong ⟦_⟧ (cong₂ _–_ (sym (ℕ.+-assoc a _ _)) (ℕ.+-assoc f _ _))
{ "alphanum_fraction": 0.5899280576, "avg_line_length": 24.9487179487, "ext": "agda", "hexsha": "236350e5e7da8d87a297770766f564b57f3997a9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kcsmnt0/numbers", "max_forks_repo_path": "src/Integer/Difference/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kcsmnt0/numbers", "max_issues_repo_path": "src/Integer/Difference/Properties.agda", "max_line_length": 70, "max_stars_count": 9, "max_stars_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kcsmnt0/numbers", "max_stars_repo_path": "src/Integer/Difference/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-01-16T07:16:26.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-20T01:29:41.000Z", "num_tokens": 393, "size": 973 }
{-# OPTIONS --without-K #-} open import Base open import Homotopy.PullbackDef -- We only consider the universal property internally to a fixed -- universe [Set i]. If we don’t, we would have to consider an universe -- polymorphic [P] and I don’t want to quantify over universe polymorphic things module Homotopy.PullbackUP {i} (d : pullback-diag i) (P : Set i → Set i) ⦃ PA : P (pullback-diag.A d) ⦄ ⦃ PB : P (pullback-diag.B d) ⦄ ⦃ PC : P (pullback-diag.C d) ⦄ where open pullback-diag d record cone (top : Set i) : Set i where constructor _,_,_ field top→A : top → A top→B : top → B h : (t : top) → f (top→A t) ≡ g (top→B t) top→D : (top : Set i) → pullback-diag i top→D top = diag (top → A), (top → B), (top → C), (λ h → f ◯ h), (λ h → g ◯ h) pullback-to-cone : (top : Set i) → (pullback (top→D top) → cone top) pullback-to-cone top (top→A , top→B , h) = (top→A , top→B , happly h) cone-to-pullback : (top : Set i) → (cone top → pullback (top→D top)) cone-to-pullback top (a , b , h) = (a , b , funext h) pullback-to-cone-equiv : (top : Set i) → is-equiv (pullback-to-cone top) pullback-to-cone-equiv top = iso-is-eq _ (cone-to-pullback top) (λ y → ap (λ u → _ , _ , u) (happly-funext _)) (λ x → ap (λ u → _ , _ , u) (funext-happly _)) cone-to-pullback-equiv : (top : Set i) → is-equiv (cone-to-pullback top) cone-to-pullback-equiv top = iso-is-eq _ (pullback-to-cone top) (λ x → ap (λ u → _ , _ , u) (funext-happly _)) (λ y → ap (λ u → _ , _ , u) (happly-funext _)) compose-cone-map : (D E : Set i) (Dcone : cone D) → ((f : E → D) → cone E) compose-cone-map D E (top→A , top→B , h) f = ((top→A ◯ f) , (top→B ◯ f) , λ x → h (f x)) is-pullback : (D : Set i) ⦃ PD : P D ⦄ (Dcone : cone D) → Set _ is-pullback D Dcone = (E : Set i) ⦃ PE : P E ⦄ → is-equiv (compose-cone-map D E Dcone)
{ "alphanum_fraction": 0.5836933045, "avg_line_length": 37.7959183673, "ext": "agda", "hexsha": "e23ccd2152a53abc3f7ab1217f1fd46416a88b25", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/PullbackUP.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/PullbackUP.agda", "max_line_length": 80, "max_stars_count": 294, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/PullbackUP.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 717, "size": 1852 }
{-# OPTIONS --cubical --safe #-} module BCK where open import Prelude hiding (B; C) infixl 4 _$$_ data BCK : Type where _$$_ : BCK → BCK → BCK B C K : BCK open import Data.List stack : BCK → Maybe BCK stack xs = go xs [] where go : BCK → List BCK → Maybe BCK go (f $$ x) xs = go f (x ∷ xs) go B (f ∷ g ∷ x ∷ xs) = just (foldl _$$_ (f $$ (g $$ x)) xs) go C (f ∷ x ∷ y ∷ xs) = just (foldl _$$_ (f $$ y $$ x) xs) go K (x ∷ y ∷ xs) = just (foldl _$$_ x xs) go _ _ = nothing
{ "alphanum_fraction": 0.528340081, "avg_line_length": 20.5833333333, "ext": "agda", "hexsha": "3178f22185ab1c2035e1a7dd129a26bbfe224bfb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "BCK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "BCK.agda", "max_line_length": 62, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "BCK.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 205, "size": 494 }