Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by bounded meet semilattices ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Lattice module Relation.Binary.Properties.BoundedMeetSemilattice {c ℓ₁ ℓ₂} (M : BoundedMeetSemilattice c ℓ₁ ℓ₂) where open BoundedMeetSemilattice M import Algebra.FunctionProperties as P; open P _≈_ open import Data.Product open import Function using (_∘_; flip) open import Relation.Binary open import Relation.Binary.Properties.Poset poset import Relation.Binary.Properties.BoundedJoinSemilattice as J -- The dual construction is a bounded join semilattice. dualIsBoundedJoinSemilattice : IsBoundedJoinSemilattice _≈_ (flip _≤_) _∧_ ⊤ dualIsBoundedJoinSemilattice = record { isJoinSemilattice = record { isPartialOrder = invIsPartialOrder ; supremum = infimum } ; minimum = maximum } dualBoundedJoinSemilattice : BoundedJoinSemilattice c ℓ₁ ℓ₂ dualBoundedJoinSemilattice = record { ⊥ = ⊤ ; isBoundedJoinSemilattice = dualIsBoundedJoinSemilattice } open J dualBoundedJoinSemilattice hiding (dualIsBoundedMeetSemilattice; dualBoundedMeetSemilattice) public
{ "alphanum_fraction": 0.6802106847, "avg_line_length": 31.6428571429, "ext": "agda", "hexsha": "13344eb6dc059353d990d4b98628b9b81e013083", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/BoundedMeetSemilattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/BoundedMeetSemilattice.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/BoundedMeetSemilattice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 340, "size": 1329 }
-- Andreas, 2018-04-16, issue #3033, reported by Christian Sattler -- The DotPatternCtx was not used inside dot patterns in ConcreteToAbstract. postulate A : Set B : Set a : A f : A → B data C : B → Set where c : C (f a) foo : (b : B) → C b → Set foo .{!f a!} c = A -- give "f a" here -- WAS: foo .f a c = A -- NOW: foo .(f a) c = A
{ "alphanum_fraction": 0.5730659026, "avg_line_length": 18.3684210526, "ext": "agda", "hexsha": "b3225b3af12d617be18b9b99f3d0b7bb7848c0ce", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3033.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3033.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3033.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 137, "size": 349 }
module Tactic.Monoid where open import Prelude open import Tactic.Reflection open import Tactic.Reflection.Quote open import Tactic.Monoid.Exp open import Tactic.Monoid.Reflect open import Tactic.Monoid.Proofs monoidTactic : ∀ {a} {A : Set a} {{_ : Monoid/Laws A}} → Tactic monoidTactic {A = A} {{laws}} hole = do goal ← inferNormalisedType hole `A ← quoteTC A unify goal (def (quote _≡_) (hArg unknown ∷ hArg `A ∷ vArg unknown ∷ vArg unknown ∷ [])) <|> do typeErrorFmt "Goal is not an equality: %t" goal goal ← normalise goal ensureNoMetas goal match ← monoidMatcher (Monoid/Laws.super laws) `dict ← quoteTC (Monoid/Laws.super laws) `laws ← quoteTC laws ensureNoMetas `dict debugPrintFmt "tactic.monoid" 20 "monoidTactic %t, dict = %t" goal `dict (lhs , rhs) , env ← parseGoal match goal unify hole (def (quote proof) (iArg `dict ∷ iArg `laws ∷ vArg (` lhs) ∷ vArg (` rhs) ∷ vArg (quoteEnv `dict env) ∷ vArg (con (quote refl) []) ∷ [])) <|> do typeErrorFmt "Can't prove %t == %t because %t /= %t" (` lhs) (` rhs) (` (flatten lhs)) (` (flatten rhs)) macro auto-monoid : ∀ {a} {A : Set a} {{Laws : Monoid/Laws A}} → Tactic auto-monoid {{Laws}} = monoidTactic {{Laws}}
{ "alphanum_fraction": 0.6285266458, "avg_line_length": 37.5294117647, "ext": "agda", "hexsha": "49a2e93caf1e52c42d941310ba1be8623a94eb0a", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Monoid.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Monoid.agda", "max_line_length": 94, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 423, "size": 1276 }
module MetaId where data Nat : Set where zero : Nat suc : Nat -> Nat expr = (\ (a : Set) (x : a) -> x) _ zero
{ "alphanum_fraction": 0.512, "avg_line_length": 15.625, "ext": "agda", "hexsha": "def9c7e99cecae7c0a21812857e65297c016aef3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/MetaId.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/MetaId.agda", "max_line_length": 42, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/MetaId.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 45, "size": 125 }
{-# OPTIONS --cubical --no-import-sorts #-} module MoreLogic.Definitions where -- hProp logic open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_) open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ) open import Cubical.Data.Empty renaming (elim to ⊥-elim) renaming (⊥ to ⊥⊥) -- `⊥` and `elim` import Cubical.Data.Empty as Empty open import Cubical.Data.Unit.Base open import MoreLogic.Reasoning open import Utils -- lifted versions of ⊥ and ⊤ hPropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) hPropRel A B ℓ' = A → B → hProp ℓ' isSetIsProp : ∀{ℓ} {A : Type ℓ} → isProp (isSet A) isSetIsProp is-set₀ is-set₁ = funExt (λ x → funExt λ y → isPropIsProp (is-set₀ x y) (is-set₁ x y)) isSetᵖ : ∀{ℓ} (A : Type ℓ) → hProp ℓ isSetᵖ A = isSet A , isSetIsProp -- hProp-syntax for Σ types of hProps to omit propositional truncation -- this should be equivalent to ∃! from the standard library but ∃! is not an hProp -- proof sketch: -- `∃! A B = isContr (Σ A B) = Σ[ x ∈ Σ A B ] ∀( y : Σ A B) → x ≡ y` -- `Σᵖ[]-syntax A B ≈ Σ[ c ∈ Σ A B ] ∀(x y : Σ A B) → x ≡ y` -- NOTE: we also have isProp→Iso in `Cubical.Foundations.Isomorphism` Σᵖ[]-syntax : ∀{ℓ ℓ'} → {A : hProp ℓ'} → ([ A ] → hProp ℓ) → hProp _ Σᵖ[]-syntax {A = A} P = Σ [ A ] ([_] ∘ P) , isPropΣ (isProp[] A) (isProp[] ∘ P) syntax Σᵖ[]-syntax (λ x → P) = Σᵖ[ x ] P infix 2 Σᵖ[]-syntax Σᵖ[∶]-syntax : ∀{ℓ ℓ'} → {A : hProp ℓ'} → ([ A ] → hProp ℓ) → hProp _ Σᵖ[∶]-syntax {A = A} P = Σ [ A ] ([_] ∘ P) , isPropΣ (isProp[] A) (isProp[] ∘ P) syntax Σᵖ[∶]-syntax {A = A} (λ x → P) = Σᵖ[ x ∶ A ] P infix 2 Σᵖ[∶]-syntax isProp⊎ˡ : ∀{ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isProp A → isProp B → (A → ¬ᵗ B) → isProp (A ⊎ B) isProp⊎ˡ pA pB A⇒¬B (inl x) (inl y) = cong inl (pA x y) isProp⊎ˡ pA pB A⇒¬B (inr x) (inr y) = cong inr (pB x y) isProp⊎ˡ pA pB A⇒¬B (inl x) (inr y) = ⊥-elim (A⇒¬B x y) isProp⊎ˡ pA pB A⇒¬B (inr x) (inl y) = ⊥-elim (A⇒¬B y x) -- hProp-syntax for disjoint unions to omit propositional truncation ⊎ᵖ-syntax : ∀{ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → {[ P ] → ¬ᵗ [ Q ]} → hProp _ ⊎ᵖ-syntax P Q {P⇒¬Q} = ([ P ] ⊎ [ Q ]) , isProp⊎ˡ (isProp[] P) (isProp[] Q) P⇒¬Q syntax ⊎ᵖ-syntax P Q {P⇒¬Q} = [ P⇒¬Q ] P ⊎ᵖ Q {-# DISPLAY ⊎ᵖ-syntax a b = a ⊎ b #-} -- hProp-syntax for equality on sets to omit propositional truncation ≡ˢ-syntax : {ℓ : Level} {A : Type ℓ} → A → A → {isset : isSet A} → hProp ℓ ≡ˢ-syntax a b {isset} = (a ≡ b) , isset a b syntax ≡ˢ-syntax a b {isset} = [ isset ] a ≡ˢ b infix 1 ⊎ᵖ-syntax infix 1 ≡ˢ-syntax {-# DISPLAY ≡ˢ-syntax a b = a ≡ b #-} -- pretty print ∀-syntax from cubical standard library {-# DISPLAY ∀[]-syntax {A = A} P = P #-} -- {-# DISPLAY ∀[]-syntax {A = A} P = ∃ P #-} -- {-# DISPLAY ∀[]-syntax (λ a → P) = ∀[ a ] P #-} -- {-# DISPLAY ∃[]-syntax (λ x → P) = ∃[ x ] P #-} -- ∀-syntax to quantify over hProps (without needing to `[_]` them) ∀ᵖ[∶]-syntax : ∀{ℓ ℓ'} {A : hProp ℓ'} → ([ A ] → hProp ℓ) → hProp (ℓ-max ℓ ℓ') ∀ᵖ[∶]-syntax {A = A} P = (∀ x → [ P x ]) , isPropΠ (isProp[] ∘ P) syntax ∀ᵖ[∶]-syntax {A = A} (λ a → P) = ∀ᵖ[ a ∶ A ] P infix 2 ∀ᵖ[∶]-syntax {-# DISPLAY ∀ᵖ[∶]-syntax {A = A} P = P #-} -- isPropΠ for a function with an instance argument isPropΠⁱ : ∀{ℓ ℓ'} {A : Type ℓ} {B : {{p : A}} → Type ℓ'} (h : (x : A) → isProp (B {{x}})) → isProp ({{x : A}} → B {{x}}) isPropΠⁱ h f g i {{x}} = (h x) (f {{x}}) (g {{x}}) i -- ∀-syntax to quantify over hProps (without needing to `[_]` them) which produces an intance argument ∀ᵖ〚∶〛-syntax : ∀{ℓ ℓ'} {A : hProp ℓ'} → ([ A ] → hProp ℓ) → hProp (ℓ-max ℓ ℓ') ∀ᵖ〚∶〛-syntax {A = A} P = (∀ {{x}} → [ P x ]) , isPropΠⁱ (isProp[] ∘ P) syntax ∀ᵖ〚∶〛-syntax {A = A} (λ a → P) = ∀ᵖ〚 a ∶ A 〛 P infix 2 ∀ᵖ〚∶〛-syntax !isProp : ∀{ℓ} {P : Type ℓ} → isProp P → isProp (! P) !isProp is-prop (!! x) (!! y) = subst (λ z → (!! x) ≡ (!! z)) (is-prop x y) refl ∀ᵖ!〚∶〛-syntax : ∀{ℓ ℓ'} {A : hProp ℓ'} → (! [ A ] → hProp ℓ) → hProp (ℓ-max ℓ ℓ') ∀ᵖ!〚∶〛-syntax {A = A} P = (∀ {{x}} → [ P x ]) , isPropΠⁱ (λ p → isProp[] (P (p))) -- isPropΠⁱ (isProp[] ∘ P) -- isPropΠⁱ (!isProp ∘ isProp[] ∘ P) -- -- syntax ∀ᵖ!〚∶〛-syntax {A = A} (λ a → P) = ∀ᵖ!〚 a ∶ A 〛 P infix 2 ∀ᵖ!〚∶〛-syntax {-# DISPLAY ∀ᵖ[∶]-syntax {A = A} P = P #-} -- ∀-syntax which produces an intance argument ∀〚∶〛-syntax : ∀{ℓ ℓ'} {A : Type ℓ'} → (A → hProp ℓ) → hProp _ ∀〚∶〛-syntax {A = A} P = (∀ {{x}} → [ P x ]) , isPropΠⁱ (isProp[] ∘ P) syntax ∀〚∶〛-syntax {A = A} (λ a → P) = ∀〚 a ∶ A 〛 P infix 2 ∀〚∶〛-syntax {-# DISPLAY ∀〚∶〛-syntax {A = A} P = P #-} ⊎⇒⊔ : ∀ {ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → [ P ] ⊎ [ Q ] → [ P ⊔ Q ] ⊎⇒⊔ P Q (inl x) = inlᵖ x ⊎⇒⊔ P Q (inr x) = inrᵖ x -- pretty `⊔-elim` case[⊔]-syntaxᵈ : ∀ {ℓ ℓ' ℓ''} (P : hProp ℓ) (Q : hProp ℓ') → (z : [ P ⊔ Q ]) → (R : [ P ⊔ Q ] → hProp ℓ'') → (S : (x : [ P ] ⊎ [ Q ]) → [ R (⊎⇒⊔ P Q x) ] ) → [ R z ] case[⊔]-syntaxᵈ P Q z R S = ⊔-elim P Q R (λ p → S (inl p)) (λ q → S (inr q)) z syntax case[⊔]-syntaxᵈ P Q z (λ x → R) S = case z as x ∶ P ⊔ Q ⇒ R of S case[⊔]-syntax : ∀ {ℓ ℓ' ℓ''} (P : hProp ℓ) (Q : hProp ℓ') → (z : [ P ⊔ Q ]) → (R : hProp ℓ'') → (S : (x : [ P ] ⊎ [ Q ]) → [ R ] ) → [ R ] case[⊔]-syntax P Q z R S = ⊔-elim P Q (λ _ → R) (λ p → S (inl p)) (λ q → S (inr q)) z syntax case[⊔]-syntax P Q z R S = case z as P ⊔ Q ⇒ R of S -- {-# DISPLAY case[⊔]-syntax P Q z R S = case z of S #-} -- for a function, to be an hProp, it suffices that the result is an hProp -- so in principle we might inject any non-hProps as arguments with `_ᵗ⇒_` _ᵗ⇒_ : ∀{ℓ ℓ'} (A : Type ℓ) → (B : hProp ℓ') → hProp _ A ᵗ⇒ B = (A → [ B ]) , isPropΠ λ _ → isProp[] B infixr 6 _ᵗ⇒_ -- lifting of hProps to create "universe-homogeneous" pathes -- this is not necessary when using _⇔_ which is universe-inhomogeneous -- because `_⇔_` can "cross" universes, where `PathP` needs to stay in the same universe Liftᵖ : ∀{i j : Level} → hProp i → hProp (ℓ-max i j) Liftᵖ {i} {j} P = Lift {i} {j} [ P ] , λ{ (lift p) (lift q) → λ i → lift (isProp[] P p q i) } liftᵖ : ∀{i j : Level} → (P : hProp i) → [ P ] → [ Liftᵖ {i} {j} P ] liftᵖ P p = lift p unliftᵖ : ∀{i j : Level} → (P : hProp i) → [ Liftᵖ {i} {j} P ] → [ P ] unliftᵖ P (lift p) = p ⊥↑ : ∀{ℓ} → hProp ℓ ⊥↑ = Lift Empty.⊥ , λ () ⊤↑ : ∀{ℓ} → hProp ℓ ⊤↑ = Lift Unit , isOfHLevelLift 1 (λ _ _ _ → tt) infix 10 ¬↑_ ¬↑_ : ∀{ℓ} → hProp ℓ → hProp ℓ ¬↑_ {ℓ} A = ([ A ] → Lift {j = ℓ} Empty.⊥) , isPropΠ λ _ → isOfHLevelLift 1 Empty.isProp⊥ -- negation with an instance argument ¬ⁱ_ : ∀{ℓ} → hProp ℓ → hProp ℓ ¬ⁱ A = ({{p : [ A ]}} → ⊥⊥) , isPropΠⁱ {A = [ A ]} λ _ → isProp⊥ ¬'_ : ∀{ℓ} → Type ℓ → hProp ℓ ¬' A = (A → ⊥⊥) , isPropΠ λ _ → isProp⊥ ¬-≡-¬ⁱ : ∀{ℓ} (P : hProp ℓ) → ¬ P ≡ ¬ⁱ P ¬-≡-¬ⁱ P = ⇒∶ (λ f {{p}} → f p ) ⇐∶ (λ f p → f {{p}})
{ "alphanum_fraction": 0.5118301026, "avg_line_length": 38.1304347826, "ext": "agda", "hexsha": "e4697ede60d2ecbf78b7233314ba13d7830130f9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/MoreLogic/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/MoreLogic/Definitions.agda", "max_line_length": 152, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/MoreLogic/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 3456, "size": 7016 }
open import Nat open import Prelude module Hazelnut-core where -- types data τ̇ : Set where num : τ̇ <||> : τ̇ _==>_ : τ̇ → τ̇ → τ̇ -- expressions, prefixed with a · to distinguish name clashes with agda -- built-ins data ė : Set where _·:_ : ė → τ̇ → ė X : Nat → ė ·λ : Nat → ė → ė N : Nat → ė _·+_ : ė → ė → ė <||> : ė <|_|> : ė → ė _∘_ : ė → ė → ė ---- contexts and some operations on them -- variables are named with naturals in ė. therefore we represent -- contexts as functions from names for variables (nats) to possible -- bindings. ·ctx : Set ·ctx = Nat → Maybe τ̇ -- todo: (Σ[ n : Nat ] (y : Nat) → y ∈ Γ → x > y)? -- convenient shorthand for the (unique up to fun. ext.) empty context ∅ : ·ctx ∅ _ = None -- add a new binding to the context, clobbering anything that might have -- been there before. _,,_ : ·ctx → (Nat × τ̇) → ·ctx (Γ ,, (x , t)) y with natEQ x y (Γ ,, (x , t)) .x | Inl refl = Some t (Γ ,, (x , t)) y | Inr neq = Γ y -- membership, or presence, in a context -- todo: not sure if this should take a pair _∈_ : (p : Nat × τ̇) → (Γ : ·ctx) → Set (x , t) ∈ Γ = (Γ x) == Some t -- apartness for contexts, so that we can follow barendregt's convention _#_ : (n : Nat) → (Γ : ·ctx) → Set x # Γ = (Γ x) == None -- without: remove a variable from a context _/_ : ·ctx → Nat → ·ctx (Γ / x) y with natEQ x y (Γ / x) .x | Inl refl = None (Γ / x) y | Inr neq = Γ y -- the type compatability judgement data _~_ : (t1 : τ̇) → (t2 : τ̇) → Set where TCRefl : {t : τ̇} → t ~ t TCHole1 : {t : τ̇} → t ~ <||> TCHole2 : {t : τ̇} → <||> ~ t TCArr : {t1 t2 t1' t2' : τ̇} → t1 ~ t1' → t2 ~ t2' → (t1 ==> t2) ~ (t1' ==> t2') -- type incompatability. rather than enumerate the types which aren't -- compatible, we encode this judgement immediately as the complement of -- compatability. this simplifies a few proofs later. _~̸_ : τ̇ → τ̇ → Set t1 ~̸ t2 = (t1 ~ t2) → ⊥ -- bidirectional type checking judgements for ė mutual -- synthesis data _⊢_=>_ : (Γ : ·ctx) → (e : ė) → (t : τ̇) → Set where SAsc : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ e <= t → Γ ⊢ (e ·: t) => t SVar : {Γ : ·ctx} {t : τ̇} {n : Nat} → (n , t) ∈ Γ → Γ ⊢ X n => t SAp : {Γ : ·ctx} {e1 e2 : ė} {t t2 : τ̇} → Γ ⊢ e1 => (t2 ==> t) → Γ ⊢ e2 <= t2 → Γ ⊢ (e1 ∘ e2) => t SNum : {Γ : ·ctx} {n : Nat} → Γ ⊢ N n => num SPlus : {Γ : ·ctx} {e1 e2 : ė} → Γ ⊢ e1 <= num → Γ ⊢ e2 <= num → Γ ⊢ (e1 ·+ e2) => num SEHole : {Γ : ·ctx} → Γ ⊢ <||> => <||> SFHole : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ e => t → Γ ⊢ <| e |> => <||> SApHole : {Γ : ·ctx} {e1 e2 : ė} → Γ ⊢ e1 => <||> → Γ ⊢ e2 <= <||> → Γ ⊢ (e1 ∘ e2) => <||> -- analysis data _⊢_<=_ : (Γ : ·ctx) → (e : ė) → (t : τ̇) → Set where ASubsume : {Γ : ·ctx} {e : ė} {t t' : τ̇} → Γ ⊢ e => t' → t ~ t' → Γ ⊢ e <= t ALam : {Γ : ·ctx} {e : ė} {t1 t2 : τ̇} {n : Nat} → n # Γ → (Γ ,, (n , t1)) ⊢ e <= t2 → Γ ⊢ (·λ n e) <= (t1 ==> t2) ----- a couple of exmaples to demonstrate how the encoding above works -- the function (λx. x + 0) where x is named "0". add0 : ė add0 = ·λ 0 (X 0 ·+ N 0) -- this is the derivation that fn has type num ==> num ex1 : ∅ ⊢ ·λ 0 (X 0 ·+ N 0) <= (num ==> num) ex1 = ALam refl (ASubsume (SPlus (ASubsume (SVar refl) TCRefl) (ASubsume SNum TCRefl)) TCRefl) -- the derivation that when applied to the numeric argument 10 add0 -- produces a num. ex2 : ∅ ⊢ (add0 ·: (num ==> num)) ∘ (N 10) => num ex2 = SAp (SAsc ex1) (ASubsume SNum TCRefl) -- the slightly longer derivation that argues that add0 applied to a -- variable that's known to be a num produces a num ex2b : (∅ ,, (1 , num)) ⊢ (add0 ·: (num ==> num)) ∘ (X 1) => num ex2b = SAp (SAsc (ALam refl (ASubsume (SPlus (ASubsume (SVar refl) TCRefl) (ASubsume SNum TCRefl)) TCRefl))) (ASubsume (SVar refl) TCRefl) -- eta-expanding addition to curry it gets num → num → num ex3 : ∅ ⊢ ·λ 0 ( (·λ 1 (X 0 ·+ X 1)) ·: (num ==> num) ) <= (num ==> (num ==> num)) ex3 = ALam refl (ASubsume (SAsc (ALam refl (ASubsume (SPlus (ASubsume (SVar refl) TCRefl) (ASubsume (SVar refl) TCRefl)) TCRefl))) TCRefl) ----- some theorems about the rules and judgement presented so far. -- thrm: a variable is apart from any context from which it is removed aar : (Γ : ·ctx) (x : Nat) → x # (Γ / x) aar Γ x with natEQ x x aar Γ x | Inl refl = refl aar Γ x | Inr x≠x = abort (x≠x refl) -- contexts give at most one binding for each variable ctxunicity : {Γ : ·ctx} {n : Nat} {t t' : τ̇} → (n , t) ∈ Γ → (n , t') ∈ Γ → t == t' ctxunicity {n = n} p q with natEQ n n ctxunicity p q | Inl refl = someinj (! p · q) ctxunicity _ _ | Inr x≠x = abort (x≠x refl) -- type compatablity is symmetric ~sym : {t1 t2 : τ̇} → t1 ~ t2 → t2 ~ t1 ~sym TCRefl = TCRefl ~sym TCHole1 = TCHole2 ~sym TCHole2 = TCHole1 ~sym (TCArr p1 p2) = TCArr (~sym p1) (~sym p2) -- if the domain or codomain of a pair of arrows isn't compatable, the -- whole arrow isn't compatible. lemarr1 : {t1 t2 t3 t4 : τ̇} → (t1 ~ t3 → ⊥) → (t1 ==> t2) ~ (t3 ==> t4) → ⊥ lemarr1 v TCRefl = v TCRefl lemarr1 v (TCArr p _) = v p lemarr2 : {t1 t2 t3 t4 : τ̇} → (t2 ~ t4 → ⊥) → (t1 ==> t2) ~ (t3 ==> t4) → ⊥ lemarr2 v TCRefl = v TCRefl lemarr2 v (TCArr _ p) = v p -- every pair of types is either compatable or not compatable ~dec : (t1 t2 : τ̇) → ((t1 ~ t2) + (t1 ~̸ t2)) -- this takes care of all hole cases, so we don't consider them below ~dec _ <||> = Inl TCHole1 ~dec <||> _ = Inl TCHole2 -- num cases ~dec num num = Inl TCRefl ~dec num (t2 ==> t3) = Inr (λ ()) -- arrow cases ~dec (t1 ==> t2) num = Inr (λ ()) ~dec (t1 ==> t2) (t3 ==> t4) with ~dec t1 t3 | ~dec t2 t4 ... | Inl x | Inl y = Inl (TCArr x y) ... | Inl _ | Inr y = Inr (lemarr2 y) ... | Inr x | _ = Inr (lemarr1 x) -- theorem: no pair of types is both compatable and not compatable. this -- is immediate from our encoding of the ~̸ judgement in the formalism -- here; in the exact mathematics presented in the paper, this would -- require induction to relate the two judgements. ~apart : {t1 t2 : τ̇} → (t1 ~̸ t2) → (t1 ~ t2) → ⊥ ~apart v p = v p -- synthesis only produces equal types. note that there is no need for an -- analagous theorem for analytic positions because we think of -- the type as an input synthunicity : {Γ : ·ctx} {e : ė} {t t' : τ̇} → (Γ ⊢ e => t) → (Γ ⊢ e => t') → t == t' synthunicity (SAsc _) (SAsc _) = refl synthunicity {Γ = G} (SVar in1) (SVar in2) = ctxunicity {Γ = G} in1 in2 synthunicity (SAp D1 _) (SAp D2 _) with synthunicity D1 D2 ... | refl = refl synthunicity (SAp D1 _) (SApHole D2 _) with synthunicity D1 D2 ... | () synthunicity SNum SNum = refl synthunicity (SPlus _ _ ) (SPlus _ _ ) = refl synthunicity SEHole SEHole = refl synthunicity (SFHole _) (SFHole _) = refl synthunicity (SApHole D1 _) (SAp D2 _) with synthunicity D1 D2 ... | () synthunicity (SApHole _ _) (SApHole _ _) = refl ----- the zippered form of the forms above and the rules for actions on them -- those types without holes anywhere tcomplete : τ̇ → Set tcomplete num = ⊤ tcomplete <||> = ⊥ tcomplete (t1 ==> t2) = (tcomplete t1) × (tcomplete t2) -- similarly to the complete types, the complete expressions ecomplete : ė → Set ecomplete (e1 ·: t) = ecomplete e1 × tcomplete t ecomplete (X _) = ⊤ ecomplete (·λ _ e1) = ecomplete e1 ecomplete (N x) = ⊤ ecomplete (e1 ·+ e2) = ecomplete e1 × ecomplete e2 ecomplete <||> = ⊥ ecomplete <| e1 |> = ⊥ ecomplete (e1 ∘ e2) = ecomplete e1 × ecomplete e2 -- zippered form of types data τ̂ : Set where ▹_◃ : τ̇ → τ̂ _==>₁_ : τ̂ → τ̇ → τ̂ _==>₂_ : τ̇ → τ̂ → τ̂ -- zippered form of expressions data ê : Set where ▹_◃ : ė → ê _·:₁_ : ê → τ̇ → ê _·:₂_ : ė → τ̂ → ê ·λ : Nat → ê → ê _∘₁_ : ê → ė → ê _∘₂_ : ė → ê → ê _·+₁_ : ê → ė → ê _·+₂_ : ė → ê → ê <|_|> : ê → ê --focus erasure for types _◆t : τ̂ → τ̇ ▹ t ◃ ◆t = t (t1 ==>₁ t2) ◆t = (t1 ◆t) ==> t2 (t1 ==>₂ t2) ◆t = t1 ==> (t2 ◆t) --focus erasure for expressions _◆e : ê → ė ▹ x ◃ ◆e = x (e ·:₁ t) ◆e = (e ◆e) ·: t (e ·:₂ t) ◆e = e ·: (t ◆t) ·λ x e ◆e = ·λ x (e ◆e) (e1 ∘₁ e2) ◆e = (e1 ◆e) ∘ e2 (e1 ∘₂ e2) ◆e = e1 ∘ (e2 ◆e) (e1 ·+₁ e2) ◆e = (e1 ◆e) ·+ e2 (e1 ·+₂ e2) ◆e = e1 ·+ (e2 ◆e) <| e |> ◆e = <| e ◆e |> -- the three grammars that define actions data direction : Set where firstChild : direction parent : direction nextSib : direction prevSib : direction data shape : Set where arrow : shape num : shape asc : shape var : Nat → shape lam : Nat → shape ap : shape arg : shape numlit : Nat → shape plus : shape data action : Set where move : direction → action del : action construct : shape → action finish : action -- type movement data _+_+>_ : (t : τ̂) → (α : action) → (t' : τ̂) → Set where TMFirstChild : {t1 t2 : τ̇} → ▹ t1 ==> t2 ◃ + move firstChild +> (▹ t1 ◃ ==>₁ t2) TMParent1 : {t1 t2 : τ̇} → (▹ t1 ◃ ==>₁ t2) + move parent +> ▹ t1 ==> t2 ◃ TMParent2 : {t1 t2 : τ̇} → (t1 ==>₂ ▹ t2 ◃) + move parent +> ▹ t1 ==> t2 ◃ TMNextSib : {t1 t2 : τ̇} → (▹ t1 ◃ ==>₁ t2) + move nextSib +> (t1 ==>₂ ▹ t2 ◃) TMPrevSib : {t1 t2 : τ̇} → (t1 ==>₂ ▹ t2 ◃) + move prevSib +> (▹ t1 ◃ ==>₁ t2) TMDel : {t : τ̇} → (▹ t ◃) + del +> (▹ <||> ◃) TMConArrow : {t : τ̇} → (▹ t ◃) + construct arrow +> (t ==>₂ ▹ <||> ◃) TMConNum : (▹ <||> ◃) + construct num +> (▹ num ◃) TMZip1 : {t1 t1' : τ̂} {t2 : τ̇} {α : action} → (t1 + α +> t1') → ((t1 ==>₁ t2) + α +> (t1' ==>₁ t2)) TMZip2 : {t2 t2' : τ̂} {t1 : τ̇} {α : action} → (t2 + α +> t2') → ((t1 ==>₂ t2) + α +> (t1 ==>₂ t2')) -- expression movement -- todo: want this action to be direction, since they're all move? data _+_+>e_ : (e : ê) → (α : action) → (e' : ê) → Set where -- rules for ascriptions EMAscFirstChild : {e : ė} {t : τ̇} → (▹ e ·: t ◃) + move firstChild +>e (▹ e ◃ ·:₁ t) EMAscParent1 : {e : ė} {t : τ̇} → (▹ e ◃ ·:₁ t) + move parent +>e (▹ e ·: t ◃) EMAscParent2 : {e : ė} {t : τ̇} → (e ·:₂ ▹ t ◃) + move parent +>e (▹ e ·: t ◃) EMAscNextSib : {e : ė} {t : τ̇} → (▹ e ◃ ·:₁ t) + move nextSib +>e (e ·:₂ ▹ t ◃) EMAscPrevSib : {e : ė} {t : τ̇} → (e ·:₂ ▹ t ◃) + move prevSib +>e (▹ e ◃ ·:₁ t) -- rules for lambdas EMLamFirstChild : {e : ė} {x : Nat} → ▹ (·λ x e) ◃ + move firstChild +>e ·λ x (▹ e ◃) EMLamParent : {e : ė} {x : Nat} → ·λ x (▹ e ◃) + move parent +>e ▹ (·λ x e) ◃ -- rules for 2-ary constructors EMPlusFirstChild : {e1 e2 : ė} → (▹ e1 ·+ e2 ◃) + move firstChild +>e (▹ e1 ◃ ·+₁ e2) EMPlusParent1 : {e1 e2 : ė} → (▹ e1 ◃ ·+₁ e2) + move parent +>e (▹ e1 ·+ e2 ◃) EMPlusParent2 : {e1 e2 : ė} → (e1 ·+₂ ▹ e2 ◃) + move parent +>e (▹ e1 ·+ e2 ◃) EMPlusNextSib : {e1 e2 : ė} → (▹ e1 ◃ ·+₁ e2) + move nextSib +>e (e1 ·+₂ ▹ e2 ◃) EMPlusPrevSib : {e1 e2 : ė} → (e1 ·+₂ ▹ e2 ◃) + move prevSib +>e (▹ e1 ◃ ·+₁ e2) EMApFirstChild : {e1 e2 : ė} → (▹ e1 ∘ e2 ◃) + move firstChild +>e (▹ e1 ◃ ∘₁ e2) EMApParent1 : {e1 e2 : ė} → (▹ e1 ◃ ∘₁ e2) + move parent +>e (▹ e1 ∘ e2 ◃) EMApParent2 : {e1 e2 : ė} → (e1 ∘₂ ▹ e2 ◃) + move parent +>e (▹ e1 ∘ e2 ◃) EMApNextSib : {e1 e2 : ė} → (▹ e1 ◃ ∘₁ e2) + move nextSib +>e (e1 ∘₂ ▹ e2 ◃) EMApPrevSib : {e1 e2 : ė} → (e1 ∘₂ ▹ e2 ◃) + move prevSib +>e (▹ e1 ◃ ∘₁ e2) -- rules for non-empty holes EMFHoleFirstChild : {e : ė} → (▹ <| e |> ◃) + move firstChild +>e <| ▹ e ◃ |> EMFHoleParent : {e : ė} → <| ▹ e ◃ |> + move parent +>e (▹ <| e |> ◃) mutual -- synthetic action expressions data _⊢_=>_~_~>_=>_ : (Γ : ·ctx) → (e1 : ê) → (t1 : τ̇) → (α : action) → (e2 : ê) → (t2 : τ̇) → Set where SAMove : {δ : direction} {e e' : ê} {Γ : ·ctx} {t : τ̇} → (e + move δ +>e e') → Γ ⊢ e => t ~ move δ ~> e' => t SADel : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ ▹ e ◃ => t ~ del ~> ▹ <||> ◃ => <||> SAConAsc : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ ▹ e ◃ => t ~ construct asc ~> (e ·:₂ ▹ t ◃ ) => t SAConVar : {Γ : ·ctx} {x : Nat} {t : τ̇} → (p : (x , t) ∈ Γ) → -- todo: is this right? Γ ⊢ ▹ <||> ◃ => <||> ~ construct (var x) ~> ▹ X x ◃ => t SAConLam : {Γ : ·ctx} {x : Nat} → (x # Γ) → -- todo: i added this; it doesn't appear in the text Γ ⊢ ▹ <||> ◃ => <||> ~ construct (lam x) ~> ((·λ x <||>) ·:₂ (▹ <||> ◃ ==>₁ <||>)) => (<||> ==> <||>) SAConAp1 : {Γ : ·ctx} {t1 t2 : τ̇} {e : ė} → Γ ⊢ ▹ e ◃ => (t1 ==> t2) ~ construct ap ~> e ∘₂ ▹ <||> ◃ => t2 SAConAp2 : {Γ : ·ctx} {e : ė} → Γ ⊢ ▹ e ◃ => <||> ~ construct ap ~> e ∘₂ ▹ <||> ◃ => <||> SAConAp3 : {Γ : ·ctx} {t : τ̇} {e : ė} → (t ~̸ (<||> ==> <||>)) → Γ ⊢ ▹ e ◃ => t ~ construct ap ~> <| e |> ∘₂ ▹ <||> ◃ => <||> SAConArg : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ ▹ e ◃ => t ~ construct arg ~> ▹ <||> ◃ ∘₁ e => <||> SAConNumlit : {Γ : ·ctx} {e : ė} {n : Nat} → Γ ⊢ ▹ <||> ◃ => <||> ~ construct (numlit n) ~> ▹ N n ◃ => num -- todo: these ought to look like ap, no? why are there two here and -- three there? probably because of the induced type -- structure. otherwise i would try to abstract this.. SAConPlus1 : {Γ : ·ctx} {e : ė} {t : τ̇} → (t ~ num) → Γ ⊢ ▹ e ◃ => t ~ construct plus ~> e ·+₂ ▹ <||> ◃ => num SAConPlus2 : {Γ : ·ctx} {e : ė} {t : τ̇} → (t ~̸ num) → Γ ⊢ ▹ e ◃ => t ~ construct plus ~> <| e |> ·+₂ ▹ <||> ◃ => num SAFinish : {Γ : ·ctx} {e : ė} {t : τ̇} → (Γ ⊢ e => t) → Γ ⊢ ▹ <| e |> ◃ => <||> ~ finish ~> ▹ e ◃ => t SAZipAsc1 : {Γ : ·ctx} {e e' : ê} {α : action} {t : τ̇} → (Γ ⊢ e ~ α ~> e' ⇐ t) → Γ ⊢ (e ·:₁ t) => t ~ α ~> (e' ·:₁ t) => t SAZipAsc2 : {Γ : ·ctx} {e : ė} {α : action} {t t' : τ̂} → (t + α +> t') → (Γ ⊢ e <= (t' ◆t)) → -- todo: this rule seems weirdly asymmetrical Γ ⊢ (e ·:₂ t) => (t ◆t) ~ α ~> (e ·:₂ t') => (t' ◆t) SAZipAp1 : {Γ : ·ctx} {t1 t2 t3 t4 : τ̇} {α : action} {eh eh' : ê} {e : ė} → (Γ ⊢ (eh ◆e) => t2) → (Γ ⊢ eh => t2 ~ α ~> eh' => (t3 ==> t4)) → (Γ ⊢ e <= t3) → Γ ⊢ (eh ∘₁ e) => t1 ~ α ~> (eh' ∘₁ e) => t4 SAZipAp2 : {Γ : ·ctx} {t1 t2 : τ̇} {α : action} {eh eh' : ê} {e : ė} → (Γ ⊢ (eh ◆e) => t2) → (Γ ⊢ eh => t2 ~ α ~> eh' => <||>) → (Γ ⊢ e <= <||>) → Γ ⊢ (eh ∘₁ e) => t1 ~ α ~> (eh' ∘₁ e) => <||> SAZipAp3 : {Γ : ·ctx} {t2 t : τ̇} {e : ė} {eh eh' : ê} {α : action} → (Γ ⊢ e => (t2 ==> t)) → (Γ ⊢ eh ~ α ~> eh' ⇐ t2) → Γ ⊢ (e ∘₂ eh) => t ~ α ~> (e ∘₂ eh') => t SAZipAp4 : {Γ : ·ctx} {e : ė} {eh eh' : ê} {α : action} → (Γ ⊢ e => <||>) → (Γ ⊢ eh ~ α ~> eh' ⇐ <||>) → Γ ⊢ (e ∘₂ eh) => <||> ~ α ~> (e ∘₂ eh') => <||> SAZipPlus1 : {Γ : ·ctx} {e : ė} {eh eh' : ê} {α : action} → (Γ ⊢ eh ~ α ~> eh' ⇐ num) → Γ ⊢ (eh ·+₁ e) => num ~ α ~> (eh' ·+₁ e) => num SAZipPlus2 : {Γ : ·ctx} {e : ė} {eh eh' : ê} {α : action} → (Γ ⊢ eh ~ α ~> eh' ⇐ num) → Γ ⊢ (e ·+₂ eh) => num ~ α ~> (e ·+₂ eh') => num SAZipHole1 : {Γ : ·ctx} {e e' : ê} {t t' : τ̇} {α : action} → (Γ ⊢ (e ◆e) => t) → (Γ ⊢ e => t ~ α ~> e' => t') → ((e' == ▹ <||> ◃) → ⊥) → Γ ⊢ <| e |> => <||> ~ α ~> <| e' |> => <||> SAZipHole2 : {Γ : ·ctx} {e : ê} {t : τ̇} {α : action} → (Γ ⊢ (e ◆e) => t) → (Γ ⊢ e => t ~ α ~> ▹ <||> ◃ => <||>) → Γ ⊢ <| e |> => <||> ~ α ~> ▹ <||> ◃ => <||> -- analytic action expressions data _⊢_~_~>_⇐_ : (Γ : ·ctx) → (e : ê) → (α : action) → (e' : ê) → (t : τ̇) → Set where AASubsume : {Γ : ·ctx} {e e' : ê} {t t' t'' : τ̇} {α : action} → -- troublemaker {p : (α == construct asc → ⊥) × -- cyrus's proposed fix for two cases ((x : Nat) → (α == construct (lam x) → ⊥))} → (Γ ⊢ (e ◆e) => t') → (Γ ⊢ e => t' ~ α ~> e' => t'') → (t ~ t'') → Γ ⊢ e ~ α ~> e' ⇐ t AAMove : {e e' : ê} {δ : direction} {Γ : ·ctx} {t : τ̇} → (e + move δ +>e e') → Γ ⊢ e ~ move δ ~> e' ⇐ t AADel : {e : ė} {Γ : ·ctx} {t : τ̇} → Γ ⊢ ▹ e ◃ ~ del ~> ▹ <||> ◃ ⇐ t AAConAsc : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ ▹ e ◃ ~ construct asc ~> (e ·:₂ ▹ t ◃) ⇐ t AAConVar : {Γ : ·ctx} {t t' : τ̇} {x : Nat} → (t ~̸ t') → -- todo: i don't understand this (p : (x , t') ∈ Γ) → -- todo: is this right? Γ ⊢ ▹ <||> ◃ ~ construct (var x) ~> <| ▹ X x ◃ |> ⇐ t AAConLam1 : {Γ : ·ctx} {x : Nat} {t1 t2 : τ̇} → (x # Γ) → -- todo: i added this Γ ⊢ ▹ <||> ◃ ~ construct (lam x) ~> ·λ x (▹ <||> ◃) ⇐ (t1 ==> t2) AAConLam2 : {Γ : ·ctx} {x : Nat} {t : τ̇} → (x # Γ) → -- todo: i added this (t ~̸ (<||> ==> <||>)) → Γ ⊢ ▹ <||> ◃ ~ construct (lam x) ~> <| ·λ x <||> ·:₂ (▹ <||> ◃ ==>₁ <||>) |> ⇐ t AAConNumlit : {Γ : ·ctx} {t : τ̇} {n : Nat} → (t ~̸ num) → Γ ⊢ ▹ <||> ◃ ~ construct (numlit n) ~> <| ▹ (N n) ◃ |> ⇐ t AAFinish : {Γ : ·ctx} {e : ė} {t : τ̇} → (Γ ⊢ e <= t) → Γ ⊢ ▹ <| e |> ◃ ~ finish ~> ▹ e ◃ ⇐ t AAZipLam : {Γ : ·ctx} {x : Nat} {t1 t2 : τ̇} {e e' : ê} {α : action} → (x # Γ) → ((Γ ,, (x , t1)) ⊢ e ~ α ~> e' ⇐ t2) → Γ ⊢ (·λ x e) ~ α ~> (·λ x e') ⇐ (t1 ==> t2)
{ "alphanum_fraction": 0.3959909797, "avg_line_length": 39.7509960159, "ext": "agda", "hexsha": "97a5c44508c1166181748673f44a7762b21549dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ivoysey/agda-tfp16", "max_forks_repo_path": "Hazelnut-core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ivoysey/agda-tfp16", "max_issues_repo_path": "Hazelnut-core.agda", "max_line_length": 87, "max_stars_count": 2, "max_stars_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/agda-tfp16", "max_stars_repo_path": "Hazelnut-core.agda", "max_stars_repo_stars_event_max_datetime": "2016-06-10T04:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-10T04:35:39.000Z", "num_tokens": 8558, "size": 19955 }
module Issue259b where postulate R : Set T : R → Set I : Set I = {x : R} → T x -- The code type checks if this Π is explicit. data P : Set where c : I → P data D : P → Set where c : (i : I) → D (c i) -- When pattern matching we do want to eta contract implicit lambdas. Foo : (i : I) → D (c i) → Set₁ Foo i (c .i) = Set postulate A : Set B : A → Set b : ({x : A} → B x) → A C : A → Set d : {x : A} → B x e : A e = b (λ {x} → d {x}) F : C e → Set₁ F _ with Set F _ | _ = Set
{ "alphanum_fraction": 0.516064257, "avg_line_length": 14.6470588235, "ext": "agda", "hexsha": "eab5261faf0ffc9fe1bb7121bfdb362eca52ab2b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue259b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue259b.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue259b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 207, "size": 498 }
{-# OPTIONS --without-K --rewriting #-} open import PathInduction open import Pushout module JamesContractibility {i} (A : Type i) (⋆A : A) where open import JamesTwoMaps A ⋆A public -- We do not prove the flattening lemma here, we only prove that the following pushout is contractible T : Type i T = Pushout (span JA JA (A × JA) snd (uncurry αJ)) ⋆T : T ⋆T = inl εJ T-contr-inl-ε : inl εJ == ⋆T T-contr-inl-ε = idp T-contr-inl-α : (a : A) (x : JA) → inl x == ⋆T → inl (αJ a x) == ⋆T T-contr-inl-α a x y = push (⋆A , αJ a x) ∙ ! (ap inr (δJ (αJ a x))) ∙ ! (push (a , x)) ∙ y T-contr-inl-δ : (x : JA) (y : inl x == ⋆T) → Square (ap inl (δJ x)) y (T-contr-inl-α ⋆A x y) idp T-contr-inl-δ x y = & coh (ap-square inr (& cη (ηJ x))) (natural-square (λ z → push (⋆A , z)) (δJ x) idp (ap-∘ inr (αJ ⋆A) (δJ x))) where coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q q' : c == b} (q= : Square q q' idp idp) {d : A} {r : d == c} {e : A} {s : d == e} {t : d == a} (sq : Square r t q p) → Square t s (p ∙ ! q' ∙ ! r ∙ s) idp) coh = path-induction cη : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : a == c} {r : b == c} (ηJ : ! p ∙ q == r) → Square p q r idp) cη = path-induction T-contr-inl : (x : JA) → inl x == ⋆T T-contr-inl = JA-elim T-contr-inl-ε T-contr-inl-α (λ x y → ↓-='-from-square idp (ap-cst ⋆T (δJ x)) (square-symmetry (T-contr-inl-δ x y))) T-contr-inr : (x : JA) → inr x == ⋆T T-contr-inr x = ap inr (δJ x) ∙ ! (push (⋆A , x)) ∙ T-contr-inl x T-contr-push : (a : A) (x : JA) → Square (T-contr-inl x) (push (a , x)) idp (T-contr-inr (αJ a x)) T-contr-push a x = & coh where coh : Coh ({A : Type i} {a b : A} {r : a == b} {c : A} {p : c == b} {d : A} {q : d == c} {e : A} {y : d == e} → Square y q idp (p ∙ ! r ∙ (r ∙ ! p ∙ ! q ∙ y))) coh = path-induction T-contr : (x : T) → x == ⋆T T-contr = Pushout-elim T-contr-inl T-contr-inr (λ {(a , x) → ↓-='-from-square (ap-idf (push (a , x))) (ap-cst ⋆T (push (a , x))) (T-contr-push a x)})
{ "alphanum_fraction": 0.5067064083, "avg_line_length": 40.26, "ext": "agda", "hexsha": "d1860b77087e5a7c0887b820d2c05d925633a6ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/JamesConstruction", "max_forks_repo_path": "JamesContractibility.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/JamesConstruction", "max_issues_repo_path": "JamesContractibility.agda", "max_line_length": 149, "max_stars_count": 5, "max_stars_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/JamesConstruction", "max_stars_repo_path": "JamesContractibility.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-16T22:10:16.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-07T04:34:52.000Z", "num_tokens": 940, "size": 2013 }
module FFI.Data.Scientific where open import Agda.Builtin.Float using (Float) open import FFI.Data.String using (String) open import FFI.Data.HaskellString using (HaskellString; pack; unpack) {-# FOREIGN GHC import qualified Data.Scientific #-} {-# FOREIGN GHC import qualified Text.Show #-} postulate Scientific : Set {-# COMPILE GHC Scientific = type Data.Scientific.Scientific #-} postulate showHaskell : Scientific → HaskellString toFloat : Scientific → Float {-# COMPILE GHC showHaskell = \x -> Text.Show.show x #-} {-# COMPILE GHC toFloat = \x -> Data.Scientific.toRealFloat x #-} show : Scientific → String show x = pack (showHaskell x)
{ "alphanum_fraction": 0.7385321101, "avg_line_length": 29.7272727273, "ext": "agda", "hexsha": "772d33677602f9b1684937a0fba66c5c2709a33f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/FFI/Data/Scientific.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/FFI/Data/Scientific.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/FFI/Data/Scientific.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 159, "size": 654 }
{- This file document and export the main primitives of Cubical Agda. It also defines some basic derived operations (composition and filling). -} {-# OPTIONS --cubical --safe #-} module Cubical.Core.Primitives where open import Agda.Builtin.Cubical.Path public open import Agda.Builtin.Cubical.Sub public renaming ( inc to inS ; primSubOut to outS ) open import Agda.Primitive.Cubical public renaming ( primIMin to _∧_ -- I → I → I ; primIMax to _∨_ -- I → I → I ; primINeg to ~_ -- I → I ; isOneEmpty to empty ; primComp to comp ; primHComp to hcomp ; primTransp to transp ; itIsOne to 1=1 ) open import Agda.Primitive public using ( Level ) renaming ( lzero to ℓ-zero ; lsuc to ℓ-suc ; _⊔_ to ℓ-max ; Setω to Typeω ) open import Agda.Builtin.Sigma public Type : (ℓ : Level) → Set (ℓ-suc ℓ) Type ℓ = Set ℓ Type₀ : Type (ℓ-suc ℓ-zero) Type₀ = Type ℓ-zero Type₁ : Type (ℓ-suc (ℓ-suc ℓ-zero)) Type₁ = Type (ℓ-suc ℓ-zero) -- This file document the Cubical Agda primitives. The primitives -- themselves are bound by the Agda files imported above. -- * The Interval -- I : Typeω -- Endpoints, Connections, Reversal -- i0 i1 : I -- _∧_ _∨_ : I → I → I -- ~_ : I → I -- * Dependent path type. (Path over Path) -- Introduced with lambda abstraction and eliminated with application, -- just like function types. -- PathP : ∀ {ℓ} (A : I → Type ℓ) → A i0 → A i1 → Type ℓ infix 4 _[_≡_] _[_≡_] : ∀ {ℓ} (A : I → Type ℓ) → A i0 → A i1 → Type ℓ _[_≡_] = PathP -- Non dependent path types Path : ∀ {ℓ} (A : Type ℓ) → A → A → Type ℓ Path A a b = PathP (λ _ → A) a b -- PathP (λ i → A) x y gets printed as x ≡ y when A does not mention i. -- _≡_ : ∀ {ℓ} {A : Type ℓ} → A → A → Type ℓ -- _≡_ {A = A} = PathP (λ _ → A) -- * @IsOne r@ represents the constraint "r = i1". -- Often we will use "φ" for elements of I, when we intend to use them -- with IsOne (or Partial[P]). -- IsOne : I → Typeω -- i1 is indeed equal to i1. -- 1=1 : IsOne i1 -- * Types of partial elements, and their dependent version. -- "Partial φ A" is a special version of "IsOne φ → A" with a more -- extensional judgmental equality. -- "PartialP φ A" allows "A" to be defined only on "φ". -- Partial : ∀ {ℓ} → I → Type ℓ → Typeω -- PartialP : ∀ {ℓ} → (φ : I) → Partial φ (Type ℓ) → Typeω -- Partial elements are introduced by pattern matching with (r = i0) -- or (r = i1) constraints, like so: private sys : ∀ i → Partial (i ∨ ~ i) Type₁ sys i (i = i0) = Type₀ sys i (i = i1) = Type₀ → Type₀ -- It also works with pattern matching lambdas: -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.PatternMatchingLambdas sys' : ∀ i → Partial (i ∨ ~ i) Type₁ sys' i = λ { (i = i0) → Type₀ ; (i = i1) → Type₀ → Type₀ } -- When the cases overlap they must agree. sys2 : ∀ i j → Partial (i ∨ (i ∧ j)) Type₁ sys2 i j = λ { (i = i1) → Type₀ ; (i = i1) (j = i1) → Type₀ } -- (i0 = i1) is actually absurd. sys3 : Partial i0 Type₁ sys3 = λ { () } -- * There are cubical subtypes as in CCHM. Note that these are not -- fibrant (hence in Typeω): _[_↦_] : ∀ {ℓ} (A : Type ℓ) (φ : I) (u : Partial φ A) → Typeω A [ φ ↦ u ] = Sub A φ u infix 4 _[_↦_] -- Any element u : A can be seen as an element of A [ φ ↦ u ] which -- agrees with u on φ: -- inS : ∀ {ℓ} {A : Type ℓ} {φ} (u : A) → A [ φ ↦ (λ _ → u) ] -- One can also forget that an element agrees with u on φ: -- outS : ∀ {ℓ} {A : Type ℓ} {φ : I} {u : Partial φ A} → A [ φ ↦ u ] → A -- * Composition operation according to [CCHM 18]. -- When calling "comp A φ u a" Agda makes sure that "a" agrees with "u i0" on "φ". -- compCCHM : ∀ {ℓ} (A : (i : I) → Type ℓ) (φ : I) (u : ∀ i → Partial φ (A i)) (a : A i0) → A i1 -- Note: this is not recommended to use, instead use the CHM -- primitives! The reason is that these work with HITs and produce -- fewer empty systems. -- * Generalized transport and homogeneous composition [CHM 18]. -- When calling "transp A φ a" Agda makes sure that "A" is constant on "φ". -- transp : ∀ {ℓ} (A : I → Type ℓ) (φ : I) (a : A i0) → A i1 -- When calling "hcomp A φ u a" Agda makes sure that "a" agrees with "u i0" on "φ". -- hcomp : ∀ {ℓ} {A : Type ℓ} {φ : I} (u : I → Partial φ A) (a : A) → A private variable ℓ : Level ℓ′ : I → Level -- Homogeneous filling hfill : {A : Type ℓ} {φ : I} (u : ∀ i → Partial φ A) (u0 : A [ φ ↦ u i0 ]) ----------------------- (i : I) → A hfill {φ = φ} u u0 i = hcomp (λ j → λ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 }) (outS u0) -- Heterogeneous composition can defined as in CHM, however we use the -- builtin one as it doesn't require u0 to be a cubical subtype. This -- reduces the number of inS's a lot. -- comp : (A : ∀ i → Type (ℓ′ i)) -- {φ : I} -- (u : ∀ i → Partial φ (A i)) -- (u0 : A i0 [ φ ↦ u i0 ]) -- → --------------------------- -- A i1 -- comp A {φ = φ} u u0 = -- hcomp (λ i → λ { (φ = i1) → transp (λ j → A (i ∨ j)) i (u _ 1=1) }) -- (transp A i0 (outS u0)) -- Heterogeneous filling defined using comp fill : (A : ∀ i → Type (ℓ′ i)) {φ : I} (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) --------------------------- (i : I) → A i fill A {φ = φ} u u0 i = comp (λ j → A (i ∧ j)) (λ j → λ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 }) (outS u0) -- Σ-types infix 2 Σ-syntax Σ-syntax : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') Σ-syntax = Σ syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
{ "alphanum_fraction": 0.5338590777, "avg_line_length": 28.3155339806, "ext": "agda", "hexsha": "a07d80f7b3ebcf127574aaa317e86ef9a82f6f63", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Core/Primitives.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Core/Primitives.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Core/Primitives.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2123, "size": 5833 }
module lambda.system-f where open import Data.Nat open import Data.Fin hiding (lift) open import lambda.vec open import lambda.untyped hiding (lift; subst; ↑; subst₁) infixr 22 _⇒_ infix 20 ∀'_ data type (n : ℕ) : Set where var : Fin n → type n ∀'_ : type (suc n) → type n _⇒_ : type n → type n → type n type₀ : Set type₀ = type 0 context : ℕ → ℕ → Set context n = vec (type n) lift : ∀ {n} → type n → type (suc n) lift (var i) = var (suc i) lift (∀' x) = ∀' (lift x) lift (x ⇒ y) = lift x ⇒ lift y ↑ : ∀ {n m} → (Fin n → type m) → Fin (suc n) → type (suc m) ↑ ρ zero = var zero ↑ ρ (suc i) = lift (ρ i) subst : ∀ {n m} → type n → (Fin n → type m) → type m subst (var x) ρ = ρ x subst (∀' x) ρ = ∀' (subst x (↑ ρ)) subst (x ⇒ y) ρ = (subst x ρ) ⇒ (subst y ρ) idˢ : ∀ {n} → Fin n → type n idˢ i = var i _∘ˢ_ : ∀ {n m p} → (Fin m → type p) → (Fin n → type m) → (Fin n → type p) (ρ ∘ˢ μ) i = subst (μ i) ρ 1ˢ : ∀ {n} → type n → Fin (suc n) → type n 1ˢ x zero = x 1ˢ x (suc i) = var i _∷ˢ_ : ∀ {n m} → type m → (Fin n → type m) → Fin (suc n) → type m (e ∷ˢ ρ) zero = e (e ∷ˢ ρ) (suc i) = ρ i subst₁ : ∀ {n} → type (suc n) → type n → type n subst₁ x y = subst x (1ˢ y) lift-c : ∀ {n m} → context n m → context (suc n) m lift-c ε = ε lift-c (Γ ▸ x) = lift-c Γ ▸ lift x infix 10 _⊢_∶_ data _⊢_∶_ {n m : ℕ} (Γ : context n m) : term m → type n → Set where ax : ∀ {i} → Γ ⊢ var i ∶ lookup i Γ lam : ∀ {B x} → (A : type n) → Γ ▸ A ⊢ x ∶ B → Γ ⊢ lam x ∶ A ⇒ B app : ∀ {A B x y} → Γ ⊢ x ∶ A ⇒ B → Γ ⊢ y ∶ A → Γ ⊢ app x y ∶ B gen : ∀ {A x} → lift-c Γ ⊢ x ∶ A → Γ ⊢ x ∶ ∀' A sub : ∀ {A x} → (B : type n) → Γ ⊢ x ∶ ∀' A → Γ ⊢ x ∶ subst₁ A B ⊢_∶_ : ∀ {n} → term 0 → type n → Set ⊢ x ∶ t = ε ⊢ x ∶ t
{ "alphanum_fraction": 0.4976689977, "avg_line_length": 24.8695652174, "ext": "agda", "hexsha": "72d2bb66d97013cf9c572fff18fad79ade4a5951", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "Lapin0t/lambda", "max_forks_repo_path": "lambda/system-f.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "Lapin0t/lambda", "max_issues_repo_path": "lambda/system-f.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "Lapin0t/lambda", "max_stars_repo_path": "lambda/system-f.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 826, "size": 1716 }
open import TypeTheory.Nat.Mono.Structure module TypeTheory.Nat.Mono.Properties (nat : Nat) where open import Level renaming (zero to lzero; suc to lsuc) open import Data.Empty using (⊥) open import Data.Product using (Σ; _×_; _,_) open import Data.Sum open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (¬_) open import Function.Base open Nat nat +-suc : ∀ m n → suc m + n ≡ suc (m + n) +-suc m n = rec-suc _ _ _ +-identityˡ : ∀ n → zero + n ≡ n +-identityˡ n = rec-zero _ _ +-identityʳ : ∀ n → n + zero ≡ n +-identityʳ n = ind (λ k → k + zero ≡ k) (+-identityˡ zero) (λ k k+z≡k → trans (+-suc k zero) (cong suc k+z≡k) ) n 1N+n≡sn : ∀ n → 1N + n ≡ suc n 1N+n≡sn n = begin suc zero + n ≡⟨ +-suc zero n ⟩ suc (zero + n) ≡⟨ cong suc (+-identityˡ n) ⟩ suc n ∎ where open ≡-Reasoning +-suc-comm : ∀ m n → suc m + n ≡ m + suc n +-suc-comm m n = ind (λ o → suc o + n ≡ o + suc n) (begin suc zero + n ≡⟨ 1N+n≡sn n ⟩ suc n ≡⟨ sym $ +-identityˡ (suc n) ⟩ zero + suc n ∎) (λ o so+n≡o+sn → begin suc (suc o) + n ≡⟨ +-suc (suc o) n ⟩ suc (suc o + n) ≡⟨ cong suc so+n≡o+sn ⟩ suc (o + suc n) ≡⟨ sym $ +-suc o (suc n) ⟩ suc o + suc n ∎) m where open ≡-Reasoning z≤n : ∀ n → zero ≤ n z≤n n = n , +-identityˡ n ≤-step : ∀ {m n} → m ≤ n → m ≤ suc n ≤-step {m} {n} (o , m+o≡n) = suc o , (begin m + suc o ≡⟨ sym $ +-suc-comm m o ⟩ suc m + o ≡⟨ +-suc m o ⟩ suc (m + o) ≡⟨ cong suc m+o≡n ⟩ suc n ∎) where open ≡-Reasoning ≤-refl : ∀ {n} → n ≤ n ≤-refl {n} = zero , +-identityʳ n s≤s : ∀ {m n} → m ≤ n → suc m ≤ suc n s≤s {m} {n} (o , m+o≡n) = o , trans (+-suc m o) (cong suc m+o≡n) s<s : ∀ {m n} → m < n → suc m < suc n s<s = s≤s z<s : ∀ n → zero < suc n z<s n = s≤s (z≤n n) n<sn : ∀ n → n < suc n n<sn n = ≤-refl {suc n} ≤⇒<∨≡ : ∀ {m n} → m ≤ n → m < n ⊎ m ≡ n ≤⇒<∨≡ {m} {n} (o , m+o≡n) = ind (λ k → m + k ≡ n → m < n ⊎ m ≡ n) (λ m+z≡n → inj₂ (trans (sym $ +-identityʳ m) m+z≡n)) (λ k _ m+sk≡n → inj₁ (k , (trans (+-suc-comm m k) m+sk≡n))) o m+o≡n data Order (m n : N) : Set where less : (m<n : m < n) → Order m n equal : (m≡n : m ≡ n) → Order m n greater : (m>n : m > n) → Order m n order? : ∀ m n → Order m n order? m₀ n₀ = ind (λ m → Order m n₀) order?-zero order?-suc m₀ where order?-zero : Order zero n₀ order?-zero = ind (Order zero) (equal refl) (λ _ _ → less (z<s _)) n₀ order?-suc : ∀ m → Order m n₀ → Order (suc m) n₀ order?-suc m (less sm≤n) with ≤⇒<∨≡ sm≤n ... | inj₁ sm<n = less sm<n ... | inj₂ sm≡n = equal sm≡n order?-suc m (equal refl) = greater (n<sn _) order?-suc m (greater m>n) = greater (≤-step m>n) -- indΔ : module _ (P : N → N → Set) where indΔ : P zero zero → (∀ n → P zero (suc n)) → (∀ m → P (suc m) zero) → (∀ m n → P m n → P (suc m) (suc n)) → ∀ m n → P m n indΔ Pzz Pzs Psz Pss m n with order? m n ... | less m<n = {! !} ... | equal m≡n = {! !} ... | greater m>n = {! !}
{ "alphanum_fraction": 0.4912336627, "avg_line_length": 27.7610619469, "ext": "agda", "hexsha": "5289f0cb2dc6365e3cf900f3773c6cf93c6878ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "TypeTheory/Nat/Mono/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "TypeTheory/Nat/Mono/Properties.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "TypeTheory/Nat/Mono/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 1420, "size": 3137 }
module _ where infixr 5 _⇒_ infixl 6 _▻_ infix 3 _⊢_ _∈_ infixr 5 vs_ infixr 4 ƛ_ infixl 6 _·_ data Type : Set where ι : Type _⇒_ : Type → Type → Type data Con : Set where ε : Con _▻_ : Con → Type → Con data _∈_ σ : Con → Set where vz : ∀ {Γ} → σ ∈ Γ ▻ σ vs_ : ∀ {Γ τ} → σ ∈ Γ → σ ∈ Γ ▻ τ data _⊢_ Γ : Type → Set where var : ∀ {σ} → σ ∈ Γ → Γ ⊢ σ ƛ_ : ∀ {σ τ} → Γ ▻ σ ⊢ τ → Γ ⊢ σ ⇒ τ _·_ : ∀ {σ τ} → Γ ⊢ σ ⇒ τ → Γ ⊢ σ → Γ ⊢ τ Term : Type → Set Term σ = ε ⊢ σ postulate _extends_ : Con → Con → Set instance extends-stop : ∀ {Γ} → Γ extends Γ extends-skip : ∀ {Γ Δ σ} {{_ : Δ extends Γ}} → (Δ ▻ σ) extends Γ lam : ∀ {Γ σ τ} → ((∀ {Δ} {{_ : Δ extends (Γ ▻ σ)}} → Δ ⊢ σ) → Γ ▻ σ ⊢ τ) → Γ ⊢ σ ⇒ τ I : Term (ι ⇒ ι) I = lam λ x → x K : Term (ι ⇒ ι ⇒ ι) K = lam λ x → lam λ y → x A : Term ((ι ⇒ ι) ⇒ ι ⇒ ι) A = lam λ f → lam λ x → f {{extends-skip {{extends-stop}}}} · x {{extends-stop}} loop : Term ((ι ⇒ ι) ⇒ ι ⇒ ι) loop = lam λ f → lam λ x → f · x
{ "alphanum_fraction": 0.4490384615, "avg_line_length": 20, "ext": "agda", "hexsha": "6f9f27a91b072d37069108df575e3daa20e81490", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1532.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1532.agda", "max_line_length": 87, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1532.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 497, "size": 1040 }
-- TODO: use StrictTotalOrder for QName representation module Syntax (QName : Set) where open import Data.Nat.Base open import Data.Nat.Properties using (+-suc; +-identityʳ) open import Data.List.Base hiding (_∷ʳ_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; trans) -- Well-scoped de Bruijn indices -- n is the length of the context data Var : ℕ → Set where vzero : ∀{n} → Var (suc n) vsuc : ∀{n} (x : Var n) → Var (suc n) -- Example: in context x,y,z (so n = 3) -- x is vsuc (vsuc vzero) : Var 3 -- y is vsuc vzero : Var 3 -- z is vzero : Var 3 -- Qualified names DRName = QName -- datatype / record name FuncName = QName -- function name ProjName = QName -- projection name (overloaded) ConsName = QName -- datatype / record constructor name (overloaded) -- Data or record constructors data ConHead : Set where dataCon : DRName → ConHead recCon : DRName → (fs : List ProjName) → ConHead -- Sorts are Set₀, Set₁, ... data Sort : Set where uni : (ℓ : ℕ) → Sort -- In the following definition of well-scoped syntax, -- n is always the length of the context. mutual data Term (n : ℕ) : Set where var : (x : Var n) (es : Elims n) → Term n def : (f : FuncName) (es : Elims n) → Term n con : (c : ConHead) (vs : Args n) → Term n -- Fully applied lam : (v : Term (suc n)) → Term n -- Types dat : (d : DRName) (vs : Args n) → Term n -- Fully applied sort : (s : Sort) → Term n pi : (u : Term n) (v : Term (suc n)) → Term n data Elim (n : ℕ) : Set where apply : (u : Term n) → Elim n proj : (π : ProjName) → Elim n Elims : (n : ℕ) → Set Elims n = List (Elim n) Args : (n : ℕ) → Set Args n = List (Term n) -- Example: (A : Set) (x : A) → A -- is represented by exTyId : Term 0 exTyId = pi (sort (uni 0)) (pi (var vzero []) (var (vsuc vzero) [])) -- Looking up a field in a field-value collection -- TODO: Do we want to ensure |fs| = |vs| ? data LookupField {a} {A : Set a} : (fs : List ProjName) (vs : List A) (f : ProjName) (v : A) → Set where here : ∀{f fs v vs} → LookupField (f ∷ fs) (v ∷ vs) f v there : ∀{f f' fs v v' vs} → LookupField fs vs f v → LookupField (f' ∷ fs) (v' ∷ vs) f v -- Renamings represented as functions Renaming : (Γ Δ : ℕ) → Set Renaming Γ Δ = Var Δ → Var Γ weak : ∀{Γ} → Renaming (suc Γ) Γ weak x = vsuc x -- If Γ ⊢ ρ : Δ -- then Γ,x ⊢ liftRen ρ : Δ,x. liftRen : ∀{Γ Δ} → Renaming Γ Δ → Renaming (suc Γ) (suc Δ) liftRen ρ vzero = vzero liftRen ρ (vsuc x) = vsuc (ρ x) -- We need sized types to show termination of rename. {-# TERMINATING #-} mutual rename : ∀{Γ Δ} (ρ : Renaming Γ Δ) (t : Term Δ) → Term Γ rename ρ (var x es) = var (ρ x) (map (renameElim ρ) es) rename ρ (def f es) = def f (map (renameElim ρ) es) rename ρ (con c vs) = con c (map (rename ρ) vs) rename ρ (lam t) = lam (rename (liftRen ρ) t) rename ρ (dat d vs) = dat d (map (rename ρ) vs) rename ρ (sort s) = sort s rename ρ (pi u v) = pi (rename ρ u) (rename (liftRen ρ) v) renameElim : ∀{Γ Δ} (ρ : Renaming Γ Δ) (e : Elim Δ) → Elim Γ renameElim ρ (apply u) = apply (rename ρ u) renameElim ρ (proj π) = proj π -- Substitutions represented as functions -- σ : Subst Γ Δ applies to a term living in context Δ -- and turns it into a term living in context Γ Substitution : (Γ Δ : ℕ) → Set Substitution Γ Δ = Var Δ → Term Γ liftSub : ∀{Γ Δ} (σ : Substitution Γ Δ) → Substitution (suc Γ) (suc Δ) liftSub σ vzero = var vzero [] liftSub σ (vsuc x) = rename weak (σ x) -- Substitute for the last variable (vzero) sg : ∀{Γ} (u : Term Γ) → Substitution Γ (suc Γ) sg {Γ} u vzero = u sg {Γ} u (vsuc x) = var x [] data All₂ {A B : Set} (R : A → B → Set) : List A → List B → Set where nil : All₂ R [] [] cons : ∀{x y xs ys} → R x y → All₂ R xs ys → All₂ R (x ∷ xs) (y ∷ ys) mutual data Apply {Γ} : (t : Term Γ) (es : Elims Γ) (v : Term Γ) → Set where empty : ∀{t} → Apply t [] t var : ∀{x es es'} → Apply (var x es) es' (var x (es ++ es')) def : ∀{f es es'} → Apply (def f es) es' (def f (es ++ es')) proj : ∀{ c πs vs π es u v} → LookupField πs vs π u → Apply u es v → Apply (con (recCon c πs) vs) (proj π ∷ es) v lam : ∀{t t' u v es} → SubstTerm (sg u) t t' → Apply t' es v → Apply (lam t) (apply u ∷ es) v data SubstTerm {Γ Δ} (σ : Substitution Γ Δ) : Term Δ → Term Γ → Set where var : ∀{x : Var Δ} {es : Elims Δ} {v : Term Γ} {es' : Elims Γ} → All₂ (SubstElim σ) es es' → Apply (σ x) es' v → SubstTerm σ (var x es) v def : ∀{f : FuncName} {es : Elims Δ} {es' : Elims Γ} → All₂ (SubstElim σ) es es' → SubstTerm σ (def f es) (def f es') con : ∀{c : ConHead} {vs : Args Δ} {vs' : Args Γ} → All₂ (SubstTerm σ) vs vs' → SubstTerm σ (con c vs) (con c vs') lam : ∀{v : Term (suc Δ)} {v'} → SubstTerm (liftSub σ) v v' → SubstTerm σ (lam v) (lam v') dat : ∀{d : DRName} {vs : Args Δ} {vs' : Args Γ} → All₂ (SubstTerm σ) vs vs' → SubstTerm σ (dat d vs) (dat d vs') pi : ∀{U V U' V'} → SubstTerm σ U U' → SubstTerm (liftSub σ) V V' → SubstTerm σ (pi U V) (pi U' V') sort : ∀{s : Sort} → SubstTerm σ (sort s) (sort s) data SubstElim {Γ Δ} (σ : Substitution Γ Δ) : Elim Δ → Elim Γ → Set where apply : ∀{u u'} → SubstTerm σ u u' → SubstElim σ (apply u) (apply u') proj : ∀{π} → SubstElim σ (proj π) (proj π) data FunctionApply {Γ} : (T : Term Γ) (us : Args Γ) (U : Term Γ) → Set where empty : ∀{T} → FunctionApply T [] T pi : ∀{u us T U V V'} → SubstTerm (sg u) V V' → FunctionApply V' us T → FunctionApply (pi U V) (u ∷ us) T -- n is the length of the context data Context : (n : ℕ) → Set where [] : Context zero _∷ʳ_ : ∀{n} → Context n → Term n → Context (suc n) -- n is the size of the outer context; m is the size of the telescope data Telescope (n : ℕ) : (m : ℕ) → Set where [] : Telescope n zero _∷_ : ∀{m} → Term n → Telescope (suc n) m → Telescope n (suc m) telescopeSize : ∀{n m} → Telescope n m → ℕ telescopeSize {m = m} _ = m suc-move : (m n : ℕ) → m + suc n ≡ suc m + n suc-move zero n = refl suc-move (suc m) n = cong suc (+-suc m n) -- Add a telescope to a compatible outer context. addToContext : ∀{n m} → Context n → Telescope n m → Context (n + m) addToContext {n} Γ [] rewrite +-identityʳ n = Γ addToContext {n} {.(suc m)} Γ (_∷_ {m = m} x t) rewrite suc-move n m = addToContext (Γ ∷ʳ x) t expandTelescope : ∀ {n m} → Telescope n m → Term (n + m) → Term n expandTelescope {n} [] T rewrite +-identityʳ n = T expandTelescope {n} {suc m} (U ∷ Δ) T rewrite suc-move n m = pi U (expandTelescope Δ T) data Pattern (n : ℕ) : Set where pvariable : Var n → Pattern n pconstructor : ConsName → List (Pattern n) → Pattern n pinaccesssible : Term n → Pattern n data Copattern (n : ℕ) : Set where capply : Pattern n → Copattern n cproj : ProjName → Copattern n record ConsDeclaration (n : ℕ) : Set where constructor mkConsDeclaration field consName : ConsName consType : Term n record ProjDeclaration (n : ℕ) : Set where constructor mkProjDeclaration field projName : ProjName projType : Term n record DataSignature : Set where constructor mkDataSignature field name : DRName {numParams} : ℕ {numIndices} : ℕ params : Telescope zero numParams indices : Telescope numParams numIndices dsort : Sort record DataDefinition : Set where field name : DRName {numParams} : ℕ params : Telescope zero numParams constructors : List (ConsDeclaration numParams) record RecordSignature : Set where constructor mkRecordSignature field name : DRName {numParams} : ℕ params : Telescope zero numParams dsort : Sort record RecordDefinition : Set where field name : DRName {numParams} : ℕ params : Telescope zero numParams fconstructor : ConsName fields : List (ProjDeclaration numParams) -- TODO: Update spec record FuncClause : Set where field ctxSize : ℕ ctx : Context ctxSize name : FuncName spine : List (Copattern ctxSize) rhs : Term ctxSize -- TODO: How to represent pattern variables? data Declaration : Set where typeSignature : FuncName → Term zero → Declaration functionClause : FuncClause → Declaration dataSignature : DataSignature → Declaration dataDefinition : DataDefinition → Declaration recordSignature : RecordSignature → Declaration recordDefinition : RecordDefinition → Declaration -- TODO: Update signature declarations data SignatureDeclaration : Set where dataSig : (D : DataSignature) → List (ConsDeclaration (DataSignature.numParams D)) → SignatureDeclaration recordSig : (R : RecordSignature) → ConsDeclaration (RecordSignature.numParams R) → List (ProjDeclaration (RecordSignature.numParams R)) → SignatureDeclaration functionSig : FuncName → Term zero → List FuncClause → SignatureDeclaration Signature : Set Signature = List SignatureDeclaration data LookupSig : Signature → SignatureDeclaration → Set where here : ∀{sd sds} → LookupSig (sd ∷ sds) sd there : ∀{sd sd' sds} → LookupSig sds sd → LookupSig (sd' ∷ sds) sd data LookupCons : ∀{m} → List (ConsDeclaration m) → ConsName → Term m → Set where here : ∀{c m} {T : Term m} {cs : List (ConsDeclaration m)} → LookupCons {m} (mkConsDeclaration c T ∷ cs) c T there : ∀{c c' m} {T : Term m} {T' : Term m} {cs : List (ConsDeclaration m)} → LookupCons cs c T → LookupCons (mkConsDeclaration c' T' ∷ cs) c T data LookupProj : ∀{m} → List (ProjDeclaration m) → ProjName → Term m → Set where here : ∀{π m} {T : Term m} {πs : List (ProjDeclaration m)} → LookupProj (mkProjDeclaration π T ∷ πs) π T there : ∀ {π π' m} {πs : List (ProjDeclaration m)} {T : Term m} {T' : Term m} → LookupProj πs π T → LookupProj (mkProjDeclaration π' T' ∷ πs) π T data SigLookup : ∀{m} → Signature → QName → Term m → Set where func : ∀{Σ f T cls} → LookupSig Σ (functionSig f T cls) → SigLookup Σ f T dat : ∀{Σ D m m' s cs} {Δ : Telescope zero m} {Δ' : Telescope m m'} → LookupSig Σ (dataSig (mkDataSignature D {m} {m'} Δ Δ' s) cs) → SigLookup Σ D (expandTelescope Δ (expandTelescope Δ' (sort s))) con : ∀{Σ D m m' s cs c T} {Δ : Telescope zero m} {Δ' : Telescope m m'} → LookupSig Σ (dataSig (mkDataSignature D {m} {m'} Δ Δ' s) cs) → LookupCons cs c T → SigLookup Σ c (expandTelescope Δ T) rec : ∀{Σ R m s c ps} {Δ : Telescope zero m} → LookupSig Σ (recordSig (mkRecordSignature R Δ s) c ps) → SigLookup Σ R (expandTelescope Δ (sort s)) rcon : ∀{Σ R m s c T πs} {Δ : Telescope zero m} → LookupSig Σ (recordSig (mkRecordSignature R Δ s) (mkConsDeclaration c T) πs) → SigLookup Σ c (expandTelescope Δ T) rproj : ∀{Σ R m s c π T πs} {Δ : Telescope zero m} → LookupSig Σ (recordSig (mkRecordSignature R Δ s) (mkConsDeclaration c T) πs) → LookupProj πs π T → SigLookup Σ π (expandTelescope Δ T)
{ "alphanum_fraction": 0.5933333333, "avg_line_length": 30.8943089431, "ext": "agda", "hexsha": "cb9a12dafe1220a44931aa8fda459e474b29705f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:50.000Z", "max_forks_repo_forks_event_min_datetime": "2017-05-11T10:44:08.000Z", "max_forks_repo_head_hexsha": "7ef5f2fd8057b27fd3bc9d171283ccaeceec9c79", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "agda/agda-spec", "max_forks_repo_path": "agda/Syntax.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "7ef5f2fd8057b27fd3bc9d171283ccaeceec9c79", "max_issues_repo_issues_event_max_datetime": "2019-01-13T13:00:20.000Z", "max_issues_repo_issues_event_min_datetime": "2017-05-12T12:33:48.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "agda/agda-spec", "max_issues_repo_path": "agda/Syntax.agda", "max_line_length": 104, "max_stars_count": 24, "max_stars_repo_head_hexsha": "7ef5f2fd8057b27fd3bc9d171283ccaeceec9c79", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "agda/agda-spec", "max_stars_repo_path": "agda/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-15T09:09:08.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-09T12:25:36.000Z", "num_tokens": 3910, "size": 11400 }
open import Data.Product using ( _×_ ; _,_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; ⊨a-resp-≲ ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; ⌊_⌋ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≃_ ; ≃⌊_⌋ ; ≃-impl-≲ ) open import Web.Semantic.DL.KB using ( KB ; tbox ; abox ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox.Model using ( _⊨t_ ; ⊨t-resp-≃ ) module Web.Semantic.DL.KB.Model {Σ : Signature} {X : Set} where infixr 2 _⊨_ _⊨_ : Interp Σ X → KB Σ X → Set I ⊨ K = (⌊ I ⌋ ⊨t tbox K) × (I ⊨a abox K) Interps : KB Σ X → Interp Σ X → Set Interps K I = I ⊨ K ⊨-resp-≃ : ∀ {I J} → (I ≃ J) → ∀ K → (I ⊨ K) → (J ⊨ K) ⊨-resp-≃ I≃J K (I⊨T , I⊨A) = (⊨t-resp-≃ ≃⌊ I≃J ⌋ (tbox K) I⊨T , ⊨a-resp-≲ (≃-impl-≲ I≃J) (abox K) I⊨A)
{ "alphanum_fraction": 0.5933250927, "avg_line_length": 36.7727272727, "ext": "agda", "hexsha": "7564333435284e1d48032a7952bc8359c698de06", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/KB/Model.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/KB/Model.agda", "max_line_length": 80, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/KB/Model.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 407, "size": 809 }
{-# OPTIONS --without-K #-} {- The type of all types in some universe with a fixed truncation level behaves almost like a universe itself. In this utility module, we develop some notation for efficiently working with this pseudo-universe. It will lead to considerably more briefer and more comprehensible proofs. -} module Universe.Utility.TruncUniverse where open import lib.Basics open import lib.NType2 open import lib.types.Pi open import lib.types.Sigma open import lib.types.TLevel open import lib.types.Unit open import Universe.Utility.General module _ {n : ℕ₋₂} where ⟦_⟧ : ∀ {i} → n -Type i → Type i ⟦ (B , _) ⟧ = B module _ {n : ℕ₋₂} where Lift-≤ : ∀ {i j} → n -Type i → n -Type (i ⊔ j) Lift-≤ {i} {j} (A , h) = (Lift {j = j} A , equiv-preserves-level (lift-equiv ⁻¹) h) raise : ∀ {i} → n -Type i → S n -Type i raise (A , h) = (A , raise-level n h) raise-≤T : ∀ {i} {m n : ℕ₋₂} → m ≤T n → m -Type i → n -Type i raise-≤T p (A , h) = (A , raise-level-≤T p h) ⊤-≤ : n -Type lzero ⊤-≤ = (⊤ , raise-level-≤T (-2≤T n) Unit-is-contr) Π-≤ : ∀ {i j} (A : Type i) → (A → n -Type j) → n -Type (i ⊔ j) Π-≤ A B = (Π A (fst ∘ B) , Π-level (snd ∘ B)) infixr 2 _→-≤_ _→-≤_ : ∀ {i j} → Type i → n -Type j → n -Type (i ⊔ j) A →-≤ B = Π-≤ A (λ _ → B) Σ-≤ : ∀ {i j} (A : n -Type i) → (⟦ A ⟧ → n -Type j) → n -Type (i ⊔ j) Σ-≤ A B = (Σ ⟦ A ⟧ (λ a → ⟦ B a ⟧) , Σ-level (snd A) (snd ∘ B)) infixr 4 _×-≤_ _×-≤_ : ∀ {i j} → n -Type i → n -Type j → n -Type (i ⊔ j) A ×-≤ B = Σ-≤ A (λ _ → B) Path-< : ∀ {i} (A : S n -Type i) (x y : ⟦ A ⟧) → n -Type i Path-< A x y = (x == y , snd A _ _) Path-≤ : ∀ {i} (A : n -Type i) (x y : ⟦ A ⟧) → n -Type i Path-≤ A x y = Path-< (raise A) x y _≃-≤_ : ∀ {i j} (A : n -Type i) (B : n -Type j) → n -Type (i ⊔ j) A ≃-≤ B = (⟦ A ⟧ ≃ ⟦ B ⟧ , ≃-level (snd A) (snd B)) _-Type-≤_ : (n : ℕ₋₂) (i : ULevel) → S n -Type lsucc i n -Type-≤ i = (n -Type i , n -Type-level i)
{ "alphanum_fraction": 0.5175930648, "avg_line_length": 31.126984127, "ext": "agda", "hexsha": "63ea1361cf658eb9d4ab4e685fca8fc7d02f4765", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sattlerc/HoTT-Agda", "max_forks_repo_path": "Universe/Utility/TruncUniverse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sattlerc/HoTT-Agda", "max_issues_repo_path": "Universe/Utility/TruncUniverse.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sattlerc/HoTT-Agda", "max_stars_repo_path": "Universe/Utility/TruncUniverse.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 891, "size": 1961 }
module plfa-code.Induction where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_) open import Function open import plfa-code.Reasoning-legacy _ : (3 + 4) + 5 ≡ 3 + (4 + 5) _ = begin (3 + 4) + 5 ≡⟨⟩ 7 + 5 ≡⟨⟩ 12 ≡⟨⟩ 3 + 9 ≡⟨⟩ 3 + (4 + 5) ∎ +-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc zero n p = begin (zero + n) + p ≡⟨⟩ n + p ≡⟨⟩ zero + (n + p) ∎ +-assoc (suc m) n p = begin (suc m + n) + p ≡⟨⟩ suc (m + n) + p ≡⟨⟩ suc ((m + n) + p) ≡⟨ cong suc (+-assoc m n p) ⟩ suc (m + (n + p)) ≡⟨⟩ suc m + (n + p) ∎ +-identityʳ : ∀ (m : ℕ) → m + zero ≡ m +-identityʳ zero = begin zero + zero ≡⟨⟩ zero ∎ +-identityʳ (suc m) = begin suc m + zero ≡⟨⟩ suc (m + zero) ≡⟨ cong suc (+-identityʳ m)⟩ suc m ∎ +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc zero n = begin zero + suc n ≡⟨⟩ suc n ≡⟨⟩ suc (zero + n) ∎ +-suc (suc m) n = begin suc m + suc n ≡⟨⟩ suc (m + suc n) ≡⟨ cong suc (+-suc m n) ⟩ suc (suc (m + n)) ≡⟨⟩ suc (suc m + n) ∎ +-comm : ∀ (m n : ℕ) → m + n ≡ n + m +-comm zero n = begin zero + n ≡⟨⟩ n ≡⟨ sym (+-identityʳ n) ⟩ n + zero ∎ +-comm (suc m) n = begin suc m + n ≡⟨⟩ suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩ suc (n + m) ≡⟨ sym (+-suc n m) ⟩ n + suc m ∎ +-rearrange : ∀ (m n p q : ℕ) → (m + n) + (p + q) ≡ m + (n + p) + q +-rearrange m n p q = begin (m + n) + (p + q) ≡⟨ +-assoc m n (p + q) ⟩ m + (n + (p + q)) ≡⟨ cong (m +_) (sym (+-assoc n p q)) ⟩ m + ((n + p) + q) ≡⟨ sym (+-assoc m (n + p) q) ⟩ (m + (n + p)) + q ∎ +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ zero n p = refl +-assoc′ (suc m) n p rewrite +-assoc′ m n p = refl -- practice +-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p) +-swap m zero p = refl +-swap m (suc n) p rewrite +-suc m (n + p) | sym (+-assoc m n p) | +-comm m n | +-assoc n m p = refl *-distrib-+ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-distrib-+ zero n p = refl *-distrib-+ (suc m) n p rewrite *-distrib-+ m n p | sym (+-assoc p (m * p) (n * p)) = refl *-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) *-assoc zero n p = refl *-assoc (suc m) n p rewrite *-distrib-+ n (m * n) p | *-assoc m n p = refl *-zeroʳ : ∀ (n : ℕ) → n * zero ≡ zero *-zeroʳ zero = refl *-zeroʳ (suc n) rewrite *-zeroʳ n = refl *-suc : ∀ (m n : ℕ) → m * suc n ≡ m * n + m *-suc zero n = refl *-suc (suc m) n = begin (suc m) * (suc n) ≡⟨⟩ (suc n) + m * (suc n) ≡⟨ cong ((suc n) +_) (*-suc m n) ⟩ suc n + (m * n + m) ≡⟨ +-swap (suc n) (m * n) m ⟩ m * n + (suc n + m) ≡⟨ cong ((m * n) +_) (sym (+-suc n m)) ⟩ m * n + (n + suc m) ≡⟨ sym (+-assoc (m * n) n (suc m)) ⟩ m * n + n + suc m ≡⟨ cong (_+ (suc m)) (+-comm (m * n) n) ⟩ (suc m) * n + (suc m) ∎ *-comm : ∀ (m n : ℕ) → m * n ≡ n * m *-comm zero n rewrite *-zeroʳ n = refl *-comm (suc m) n = begin suc m * n ≡⟨⟩ n + m * n ≡⟨ +-comm n (m * n) ⟩ m * n + n ≡⟨ cong (_+ n) (*-comm m n) ⟩ n * m + n ≡⟨ sym (*-suc n m) ⟩ n * suc m ∎ z∸n≡z : ∀ (n : ℕ) → zero ∸ n ≡ zero z∸n≡z zero = refl z∸n≡z (suc n) = refl ∸-+-assoc : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p) ∸-+-assoc zero n p rewrite z∸n≡z n | z∸n≡z p | z∸n≡z (n + p) = refl ∸-+-assoc (suc m) zero p = refl ∸-+-assoc (suc m) (suc n) p rewrite ∸-+-assoc m n p = refl ---------- Bin ---------- data Bin : Set where nil : Bin x0_ : Bin → Bin x1_ : Bin → Bin inc : Bin → Bin inc nil = x1 nil inc (x0 t) = x1 t inc (x1 t) = x0 (inc t) to : ℕ → Bin to zero = x0 nil to (suc n) = inc (to n) from : Bin → ℕ from nil = 0 from (x0 t) = 2 * (from t) from (x1 t) = suc (2 * (from t)) -------------------------------------- +1≡suc : ∀ {n : ℕ} → n + 1 ≡ suc n +1≡suc {zero} = refl +1≡suc {suc n} = cong suc +1≡suc suc-from-inc : ∀ (x : Bin) → from (inc x) ≡ suc (from x) suc-from-inc nil = refl suc-from-inc (x0 x) rewrite +1≡suc {from x * 2} = refl suc-from-inc (x1 x) rewrite suc-from-inc x | +-suc (from x) (from x + 0) = refl -- t4 is ⊥ , because `to (from nil) ≡ x0 nil ≢ nil` -- t4 : ∀ (x : Bin) → to (from x) ≡ x from-to-const : ∀ (n : ℕ) → from (to n) ≡ n from-to-const zero = refl from-to-const (suc n) rewrite suc-from-inc (to n) | from-to-const n = refl
{ "alphanum_fraction": 0.4209850107, "avg_line_length": 21.036036036, "ext": "agda", "hexsha": "65e24d368b6d4c2688b807a97795e7974621f5e7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Induction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Induction.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Induction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2235, "size": 4670 }
{-# OPTIONS --without-K --safe #-} module Categories.Category where open import Level -- The main definitions are in: open import Categories.Category.Core public -- Convenience functions for working over mupliple categories at once: -- C [ x , y ] (for x y objects of C) - Hom_C(x , y) -- C [ f ≈ g ] (for f g arrows of C) - that f and g are equivalent arrows -- C [ f ∘ g ] (for f g composables arrows of C) - composition in C infix 10 _[_,_] _[_≈_] _[_∘_] _[_,_] : ∀ {o ℓ e} → (C : Category o ℓ e) → (X : Category.Obj C) → (Y : Category.Obj C) → Set ℓ _[_,_] = Category._⇒_ _[_≈_] : ∀ {o ℓ e} → (C : Category o ℓ e) → ∀ {X Y} (f g : C [ X , Y ]) → Set e _[_≈_] = Category._≈_ _[_∘_] : ∀ {o ℓ e} → (C : Category o ℓ e) → ∀ {X Y Z} (f : C [ Y , Z ]) → (g : C [ X , Y ]) → C [ X , Z ] _[_∘_] = Category._∘_
{ "alphanum_fraction": 0.5626535627, "avg_line_length": 35.3913043478, "ext": "agda", "hexsha": "c59c45abdcf0725c2a4916c93210d4d8e8a71c54", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 309, "size": 814 }
module UselessPrivatePrivate where private private postulate A : Set
{ "alphanum_fraction": 0.7195121951, "avg_line_length": 11.7142857143, "ext": "agda", "hexsha": "9c360b9731edbe4e244992c5b7aebffd0e9d5ccc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/UselessPrivatePrivate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/UselessPrivatePrivate.agda", "max_line_length": 34, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/UselessPrivatePrivate.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 21, "size": 82 }
module NoBindingForBuiltin where foo = 42
{ "alphanum_fraction": 0.7954545455, "avg_line_length": 8.8, "ext": "agda", "hexsha": "25321e10503d3d746bb4910d8b77ab8657d64c5b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/NoBindingForBuiltin.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/NoBindingForBuiltin.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/NoBindingForBuiltin.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 13, "size": 44 }
{-# OPTIONS --universe-polymorphism #-} module TrustMe-with-doubly-indexed-equality where open import Common.Level infix 4 _≡_ data _≡_ {a} {A : Set a} : A → A → Set a where refl : ∀ {x} → x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-} sym : ∀ {a} {A : Set a} {x y : A} → x ≡ y → y ≡ x sym refl = refl primitive primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y postulate A : Set x : A eq : x ≡ x eq = primTrustMe evaluates-to-refl : sym (sym eq) ≡ eq evaluates-to-refl = refl
{ "alphanum_fraction": 0.5739299611, "avg_line_length": 17.1333333333, "ext": "agda", "hexsha": "c2c3f9c6be00d8d08bdcc1fd75b90dab3a4eb3b4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/TrustMe-with-doubly-indexed-equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/TrustMe-with-doubly-indexed-equality.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/TrustMe-with-doubly-indexed-equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 202, "size": 514 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Primality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Primality where open import Data.Empty using (⊥) open import Data.Fin using (Fin; toℕ) open import Data.Fin.Properties using (all?) open import Data.Nat using (ℕ; suc; _+_) open import Data.Nat.Divisibility using (_∤_; _∣?_) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (from-yes) open import Relation.Nullary.Negation using (¬?) open import Relation.Unary using (Decidable) -- Definition of primality. Prime : ℕ → Set Prime 0 = ⊥ Prime 1 = ⊥ Prime (suc (suc n)) = (i : Fin n) → 2 + toℕ i ∤ 2 + n -- Decision procedure for primality. prime? : Decidable Prime prime? 0 = no λ() prime? 1 = no λ() prime? (suc (suc n)) = all? (λ _ → ¬? (_ ∣? _)) private -- Example: 2 is prime. 2-is-prime : Prime 2 2-is-prime = from-yes (prime? 2)
{ "alphanum_fraction": 0.55, "avg_line_length": 26.3414634146, "ext": "agda", "hexsha": "613d1950e259aa3f9b28b1a41b643c22ec4a7ee2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Primality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Primality.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Primality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 299, "size": 1080 }
module TestNat where import PreludeNatType import AlonzoPrelude import PreludeNat import PreludeString import PreludeShow import RTP import PreludeList open AlonzoPrelude open PreludeShow open PreludeNatType open PreludeString open PreludeNat open PreludeList hiding(_++_) one = suc zero two = suc one lines : (List String) -> String lines [] = "" lines (l :: []) = l lines (l :: ls) = l ++ "\n" ++ (lines ls) mainS = (id ○ lines) ((showNat 42) :: (showBool (2007 == 2007)) :: [])
{ "alphanum_fraction": 0.7128099174, "avg_line_length": 19.36, "ext": "agda", "hexsha": "a84acdbd02e3e072fa2b003e31eb0f8cd66b4355", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/TestNat.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/TestNat.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/TestNat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 144, "size": 484 }
{-# OPTIONS --without-K --safe #-} -- Multicategories but over an 'index' type, rather than forcing Fin n module Categories.Multi.Category.Indexed where open import Level open import Data.Fin.Base using (Fin) open import Data.Product using (Σ; uncurry; curry; _×_; _,_; proj₁; proj₂) open import Data.Product.Properties open import Data.Unit.Polymorphic using (⊤; tt) open import Data.Vec.Functional open import Function.Base using (const) renaming (_∘_ to _●_; id to id→) open import Function.Equality using (_⟨$⟩_) -- note how this is Function.Inverse instead of the one from Function. open import Function.Inverse as Inv renaming (id to id↔; _∘_ to trans) open import Relation.Binary.Core using (Rel) open import Relation.Binary.PropositionalEquality using (_≡_; refl) -- any point can be lifted to a function from ⊤ pointed : {s t : Level} {S : Set s} (x : S) → ⊤ {t} → S pointed x _ = x -- the standard library doesn't seem to have the 'right' version of these. ⊤×K↔K : {t k : Level} {K : Set k} → (⊤ {t} × K) ↔ K ⊤×K↔K = inverse proj₂ (tt ,_) (λ _ → refl) λ _ → refl K×⊤↔K : {t k : Level} {K : Set k} → (K × ⊤ {t}) ↔ K K×⊤↔K = inverse proj₁ (_, tt) (λ _ → refl) λ _ → refl ⊤×⊤↔⊤ : {t : Level} → (⊤ {t} × ⊤) ↔ ⊤ ⊤×⊤↔⊤ = inverse proj₁ (λ x → x , x) (λ _ → refl) λ _ → refl Σ-assoc : {a b c : Level} {I : Set a} {J : I → Set b} {K : Σ I J → Set c} → Σ (Σ I J) K ↔ Σ I (λ i → Σ (J i) (curry K i)) Σ-assoc {I = I} {J} {K} = inverse g f (λ _ → refl) λ _ → refl where f : Σ I (λ i → Σ (J i) (λ j → K (i , j))) → Σ (Σ I J) K f (i , j , k) = (i , j) , k g : Σ (Σ I J) K → Σ I (λ i → Σ (J i) (λ j → K (i , j))) g ((i , j) , k) = i , j , k -- the ι level is for the 'index' (and to not steal 'i') -- The important part is that in _∘_, there is no flattening of the -- index set. But also _≈[_]_ builds in an explicit equivalence -- that allows one to properly re-index things. The classical view -- of MultiCategory sweeps all of that under the rug, which gives -- Agda conniptions (and rightfully so). The advantage of doing it -- this way makes it clear that the 3 laws are based on the underlying -- 3 laws that hold for (dependent!) product. -- The upshot is that this version of MultiCategory makes no finiteness -- assumption whatsoever. The index sets involved could be huge, -- without any issues. -- Note that this still isn't Symmetric Multicategory. The renaming that -- happens on indices say nothing about the relation to the contents -- of the other Hom set. record MultiCategory {o ℓ e ı : Level} : Set (suc (o ⊔ ℓ ⊔ e ⊔ ı)) where infix 4 _≈[_]_ infixr 9 _∘_ field Obj : Set o Hom : {I : Set ı} → (I → Obj) → Obj → Set ℓ id : (o : Obj) → Hom {⊤} (pointed o) o _∘_ : {I : Set ı} {aₙ : I → Obj} {a : Obj} {J : I → Set ı} {v : (i : I) → J i → Obj} {b : I → Obj} → Hom {I} aₙ a → ((i : I) → Hom (v i) (b i)) → Hom {Σ I J} (uncurry v) a _≈[_]_ : {I J : Set ı} {aₙ : I → Obj} {a : Obj} → Hom {I} aₙ a → (σ : I ↔ J) → Hom {J} (aₙ ● ( Inverse.from σ ⟨$⟩_ )) a → Set e identityˡ : {K : Set ı} {aₖ : K → Obj} {a : Obj} {f : Hom aₖ a} → id a ∘ pointed f ≈[ ⊤×K↔K ] f identityʳ : {K : Set ı} {aₖ : K → Obj} {a : Obj} {f : Hom aₖ a} → f ∘ (id ● aₖ) ≈[ K×⊤↔K ] f identity² : {a : Obj} → id a ∘ pointed (id a) ≈[ ⊤×⊤↔⊤ ] id a assoc : -- the 3 index sets {I : Set ı} {J : I → Set ı} {K : Σ I J → Set ı} -- the 3 sets of (indexed) objects {vh : I → Obj} {bh : Obj} {vg : (i : I) → J i → Obj} {bg : I → Obj} {vf : (h : Σ I J) → K h → Obj} {bf : Σ I J → Obj} -- the 3 Homs {h : Hom vh bh} {g : (i : I) → Hom (vg i) (bg i)} {f : (k : Σ I J) → Hom (vf k) (bf k)} → -- and their relation under composition (h ∘ g) ∘ f ≈[ Σ-assoc ] h ∘ (λ i → g i ∘ curry f i) -- we also need that _≈[_]_ is, in an appropriate sense, an equivalence relation, which in this case -- means that _≈[ id↔ ]_ is. In other words, we don't care when transport is over 'something else'. refl≈ : {I : Set ı} {aₙ : I → Obj} {a : Obj} → {h : Hom {I} aₙ a} → h ≈[ id↔ ] h sym≈ : {I : Set ı} {aₙ : I → Obj} {a : Obj} → {g h : Hom {I} aₙ a} → g ≈[ id↔ ] h → h ≈[ id↔ ] g trans≈ : {I : Set ı} {aₙ : I → Obj} {a : Obj} → {f g h : Hom {I} aₙ a} → f ≈[ id↔ ] g → g ≈[ id↔ ] h → f ≈[ id↔ ] h -- we probably need ∘-resp-≈ too.
{ "alphanum_fraction": 0.5383418537, "avg_line_length": 43.6796116505, "ext": "agda", "hexsha": "a2dca716c45afc99e0e2afd45cf7b9ff69e34c8b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/agda-categories", "max_forks_repo_path": "src/Categories/Multi/Category/Indexed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/agda-categories", "max_issues_repo_path": "src/Categories/Multi/Category/Indexed.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/agda-categories", "max_stars_repo_path": "src/Categories/Multi/Category/Indexed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1784, "size": 4499 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.FunctionOver open import cohomology.FlipPushout module cohomology.CofiberSequence {i} where {- Lemma: pushing flip-susp through susp-fmap -} ⊙flip-susp-fmap : {X Y : Ptd i} (f : fst (X ⊙→ Y)) → ⊙flip-susp Y ⊙∘ ⊙susp-fmap f == ⊙susp-fmap f ⊙∘ ⊙flip-susp X ⊙flip-susp-fmap {X = X} (f , idp) = ⊙λ= lemma-fst lemma-snd where lemma-fst : ∀ σ → flip-susp (susp-fmap f σ) == susp-fmap f (flip-susp σ) lemma-fst = Suspension-elim _ idp idp $ λ y → ↓-='-in $ ap-∘ (susp-fmap f) flip-susp (merid _ y) ∙ ap (ap (susp-fmap f)) (FlipSusp.glue-β y) ∙ ap-! (susp-fmap f) (merid _ y) ∙ ap ! (SuspFmap.glue-β f y) ∙ ! (FlipSusp.glue-β (f y)) ∙ ! (ap (ap flip-susp) (SuspFmap.glue-β f y)) ∙ ∘-ap flip-susp (susp-fmap f) (merid _ y) lemma-snd : ! (merid _ (f (snd X))) == ap (susp-fmap f) (! (merid _ (snd X))) ∙ idp lemma-snd = ap ! (! (SuspFmap.glue-β f (snd X))) ∙ !-ap (susp-fmap f) (merid _ (snd X)) ∙ ! (∙-unit-r _) {- Useful abbreviations -} module _ {X Y : Ptd i} (f : fst (X ⊙→ Y)) where ⊙Cof² = ⊙Cof (⊙cfcod f) ⊙cfcod² = ⊙cfcod (⊙cfcod f) ⊙Cof³ = ⊙Cof ⊙cfcod² ⊙cfcod³ = ⊙cfcod ⊙cfcod² ⊙Cof⁴ = ⊙Cof ⊙cfcod³ ⊙cfcod⁴ = ⊙cfcod ⊙cfcod³ {- For [f : X → Y], the cofiber space [Cof(cfcod f)] is equivalent to - [Suspension X]. This is essentially an application of the two pushouts - lemma: - - f - X ––––> Y ––––––––––––––> ∙ - | | | - | |cfcod f | - v v v - ∙ ––> Cof f ––––––––––> Cof² f - cfcod² f - - The map [cfcod² f : Cof f → Cof² f] becomes [ext-glue : Cof f → ΣX], - and the map [ext-glue : Cof² f → ΣY] becomes [susp-fmap f : ΣX → ΣY]. -} module Cof² {X Y : Ptd i} (f : fst (X ⊙→ Y)) where module Equiv {X Y : Ptd i} (f : fst (X ⊙→ Y)) where module Into = CofiberRec (cfcod (fst f)) {C = fst (⊙Susp X)} (south _) ext-glue (λ _ → idp) into = Into.f module Out = SuspensionRec (fst X) {C = fst (⊙Cof² f)} (cfcod _ (cfbase _)) (cfbase _) (λ x → ap (cfcod _) (cfglue _ x) ∙ ! (cfglue _ (fst f x))) out = Out.f into-out : ∀ σ → into (out σ) == σ into-out = Suspension-elim (fst X) idp idp (λ x → ↓-∘=idf-in into out $ ap (ap into) (Out.glue-β x) ∙ ap-∙ into (ap (cfcod _) (cfglue _ x)) (! (cfglue _ (fst f x))) ∙ ap (λ w → ap into (ap (cfcod _) (cfglue _ x)) ∙ w) (ap-! into (cfglue _ (fst f x)) ∙ ap ! (Into.glue-β (fst f x))) ∙ ∙-unit-r _ ∙ ∘-ap into (cfcod _) (cfglue _ x) ∙ ExtGlue.glue-β x) out-into : ∀ κ → out (into κ) == κ out-into = Cofiber-elim (cfcod (fst f)) idp (Cofiber-elim (fst f) idp (cfglue _) (λ x → ↓-='-from-square $ (ap-∘ out ext-glue (cfglue _ x) ∙ ap (ap out) (ExtGlue.glue-β x) ∙ Out.glue-β x) ∙v⊡ (vid-square {p = ap (cfcod _) (cfglue _ x)} ⊡h rt-square (cfglue _ (fst f x))) ⊡v∙ ∙-unit-r _)) (λ y → ↓-∘=idf-from-square out into $ ap (ap out) (Into.glue-β y) ∙v⊡ connection) eq = equiv into out into-out out-into space-path : ⊙Cof² f == ⊙Susp X space-path = ⊙ua eq (! (merid _ (snd X))) cfcod²-over : ⊙cfcod² f == ⊙ext-glue [ (λ U → fst (⊙Cof f ⊙→ U)) ↓ Equiv.space-path f ] cfcod²-over = ind-lemma f where {- is there a better way to handle this? -} ind-lemma : {X Y : Ptd i} (f : fst (X ⊙→ Y)) → ⊙cfcod² f == ⊙ext-glue [ (λ U → fst (⊙Cof f ⊙→ U)) ↓ Equiv.space-path f ] ind-lemma {X = X} (f , idp) = codomain-over-⊙equiv (⊙cfcod² (f , idp)) _ _ ▹ pair= idp (l snd-lemma) where x₀ = snd X; y₀ = f (snd X); F = (f , idp {a = y₀}) snd-lemma : ap (Equiv.into F) (ap (cfcod (cfcod f)) (! (! (cfglue _ x₀))) ∙ ! (cfglue _ y₀)) == merid _ x₀ snd-lemma = ap (Equiv.into F) (ap (cfcod (cfcod f)) (! (! (cfglue _ x₀))) ∙ ! (cfglue _ y₀)) =⟨ !-! (cfglue _ x₀) |in-ctx (λ w → ap (Equiv.into F) (ap (cfcod (cfcod f)) w ∙ ! (cfglue _ y₀))) ⟩ ap (Equiv.into F) (ap (cfcod (cfcod f)) (cfglue _ x₀) ∙ ! (cfglue _ y₀)) =⟨ ap-∙ (Equiv.into F) (ap (cfcod (cfcod f)) (cfglue _ x₀)) (! (cfglue _ y₀)) ⟩ ap (Equiv.into F) (ap (cfcod (cfcod f)) (cfglue _ x₀)) ∙ ap (Equiv.into F) (! (cfglue _ y₀)) =⟨ ∘-ap (Equiv.into F) (cfcod (cfcod f)) (cfglue _ x₀) |in-ctx (λ w → w ∙ ap (Equiv.into F) (! (cfglue _ y₀))) ⟩ ap ext-glue (cfglue _ x₀) ∙ ap (Equiv.into F) (! (cfglue _ y₀)) =⟨ ExtGlue.glue-β x₀ |in-ctx (λ w → w ∙ ap (Equiv.into F) (! (cfglue _ y₀))) ⟩ merid _ x₀ ∙ ap (Equiv.into F) (! (cfglue _ y₀)) =⟨ ap-! (Equiv.into F) (cfglue _ y₀) |in-ctx (λ w → merid _ x₀ ∙ w) ⟩ merid _ x₀ ∙ ! (ap (Equiv.into F) (cfglue _ y₀)) =⟨ Equiv.Into.glue-β F y₀ |in-ctx (λ w → merid _ x₀ ∙ ! w) ⟩ merid _ x₀ ∙ idp =⟨ ∙-unit-r _ ⟩ merid _ x₀ ∎ l : ∀ {i} {A : Type i} {x y : A} {p q : x == y} → p == q → p ∙ ! q == idp l {p = p} {q = q} α = ap (λ r → r ∙ ! q) α ∙ !-inv-r q cfcod³-over : ⊙ext-glue == ⊙flip-susp Y ⊙∘ ⊙susp-fmap f [ (λ U → fst (U ⊙→ ⊙Susp Y)) ↓ Equiv.space-path f ] cfcod³-over = ⊙λ= fst-lemma (l snd-lemma) ◃ domain-over-⊙equiv (⊙flip-susp Y ⊙∘ ⊙susp-fmap f) _ _ where fst-lemma : (κ : fst (⊙Cof² f)) → ext-glue κ == flip-pushout (susp-fmap (fst f) (Equiv.into f κ)) fst-lemma = Cofiber-elim (cfcod (fst f)) idp (Cofiber-elim (fst f) idp (! ∘ merid (fst Y)) (λ x → ↓-='-from-square $ ap-cst (south _) (cfglue _ x) ∙v⊡ connection ⊡v∙ ! (ap-∘ (flip-pushout ∘ susp-fmap (fst f)) ext-glue (cfglue _ x) ∙ ap (ap (flip-pushout ∘ susp-fmap (fst f))) (ExtGlue.glue-β x) ∙ ap-∘ flip-pushout (susp-fmap (fst f)) (merid _ x) ∙ ap (ap flip-pushout) (SuspFmap.glue-β (fst f) x) ∙ FlipPushout.glue-β (fst f x)))) (λ y → ↓-='-from-square $ ExtGlue.glue-β y ∙v⊡ tr-square (merid _ y) ⊡v∙ ! (ap-∘ (flip-pushout ∘ susp-fmap (fst f)) (Equiv.into f) (cfglue _ y) ∙ ap (ap (flip-pushout ∘ susp-fmap (fst f))) (Equiv.Into.glue-β f y))) snd-lemma : ap (flip-pushout ∘ susp-fmap (fst f)) (! (merid _ (snd X))) == merid _ (snd Y) snd-lemma = ap (flip-pushout ∘ susp-fmap (fst f)) (! (merid _ (snd X))) =⟨ ap-! (flip-pushout ∘ susp-fmap (fst f)) (merid _ (snd X)) ⟩ ! (ap (flip-pushout ∘ susp-fmap (fst f)) (merid _ (snd X))) =⟨ ap ! (ap-∘ flip-pushout (susp-fmap (fst f)) (merid _ (snd X))) ⟩ ! (ap flip-pushout (ap (susp-fmap (fst f)) (merid _ (snd X)))) =⟨ ap (! ∘ ap flip-pushout) (SuspFmap.glue-β (fst f) (snd X)) ⟩ ! (ap flip-pushout (merid _ (fst f (snd X)))) =⟨ ap ! (FlipPushout.glue-β (fst f (snd X))) ⟩ ! (! (merid _ (fst f (snd X)))) =⟨ !-! (merid _ (fst f (snd X))) ⟩ merid _ (fst f (snd X)) =⟨ ap (merid _) (snd f) ⟩ merid _ (snd Y) ∎ l : ∀ {i} {A : Type i} {x y : A} {p q : x == y} → p == q → idp == p ∙ ! q l {p = p} {q = q} α = ! (!-inv-r p) ∙ ap (λ w → p ∙ ! w) α open Equiv f public full-path : Path {A = Σ (Ptd i) (λ U → fst (⊙Cof f ⊙→ U) × fst (U ⊙→ ⊙Susp Y))} (_ , ⊙cfcod² f , ⊙ext-glue) (_ , ⊙ext-glue , ⊙flip-susp Y ⊙∘ ⊙susp-fmap f) full-path = pair= space-path (↓-×-in cfcod²-over cfcod³-over) cofiber-sequence : {X Y : Ptd i} (f : fst (X ⊙→ Y)) → Path {A = Σ (Ptd i × Ptd i × Ptd i) (λ {(U , V , W) → fst (⊙Cof f ⊙→ U) × fst (U ⊙→ V) × fst (V ⊙→ W)})} (_ , ⊙cfcod² f , ⊙cfcod³ f , ⊙cfcod⁴ f) (_ , ⊙ext-glue , ⊙susp-fmap f , ⊙susp-fmap (⊙cfcod f)) cofiber-sequence {Y = Y} f = ap (λ {(_ , g , _) → (_ , ⊙cfcod² f , ⊙cfcod³ f , g)}) (Cof².full-path (⊙cfcod² f)) ∙ ap (λ {(_ , g , h) → (_ , ⊙cfcod² f , g , h)}) (Cof².full-path (⊙cfcod f)) ∙ ap (λ {(_ , g , h) → (_ , g , h , ⊙flip-susp (⊙Cof f) ⊙∘ ⊙susp-fmap (⊙cfcod f))}) (Cof².full-path f) ∙ ap (λ g → (_ , ⊙ext-glue , ⊙flip-susp Y ⊙∘ ⊙susp-fmap f , g)) (⊙flip-susp-fmap (⊙cfcod f)) ∙ ap (λ {(_ , g , h) → (_ , ⊙ext-glue , g , h)}) (pair= (flip-⊙pushout-path (suspension-⊙span Y)) (↓-×-in (codomain-over-⊙equiv (⊙flip-susp Y ⊙∘ ⊙susp-fmap f) _ _ ▹ lemma) (domain-over-⊙equiv (⊙susp-fmap (⊙cfcod f)) _ _))) where lemma : ⊙flip-susp Y ⊙∘ ⊙flip-susp Y ⊙∘ ⊙susp-fmap f == ⊙susp-fmap f lemma = ! (⊙∘-assoc (⊙flip-susp Y) (⊙flip-susp Y) (⊙susp-fmap f)) ∙ ap (λ w → w ⊙∘ ⊙susp-fmap f) (flip-⊙pushout-involutive (suspension-⊙span Y)) ∙ ⊙∘-unit-l (⊙susp-fmap f) suspend-cofiber : {X Y : Ptd i} (f : fst (X ⊙→ Y)) → Path {A = Σ _ (λ {(U , V , W) → fst (U ⊙→ V) × fst (V ⊙→ W)})} (_ , ⊙susp-fmap f , ⊙cfcod (⊙susp-fmap f)) (_ , ⊙susp-fmap f , ⊙susp-fmap (⊙cfcod f)) suspend-cofiber f = ap (λ {((U , V , W) , _ , g , _) → ((U , V , ⊙Cof g) , g , ⊙cfcod g)}) (! (cofiber-sequence f)) ∙ ap (λ {(_ , _ , g , h) → (_ , g , h)}) (cofiber-sequence f) suspend^-cof= : {X Y Z : Ptd i} (m : ℕ) (f : fst (X ⊙→ Y)) (g : fst (Y ⊙→ Z)) (p : Path {A = Σ _ (λ U → fst (Y ⊙→ U))} (⊙Cof f , ⊙cfcod f) (Z , g)) → Path {A = Σ _ (λ {(U , V , W) → fst (U ⊙→ V) × fst (V ⊙→ W)})} (_ , ⊙susp^-fmap m f , ⊙cfcod (⊙susp^-fmap m f)) (_ , ⊙susp^-fmap m f , ⊙susp^-fmap m g) suspend^-cof= O f g p = ap (λ {(_ , h) → (_ , f , h)}) p suspend^-cof= (S m) f g p = suspend-cofiber (⊙susp^-fmap m f) ∙ ap (λ {(_ , h , k) → (_ , ⊙susp-fmap h , ⊙susp-fmap k)}) (suspend^-cof= m f g p)
{ "alphanum_fraction": 0.4693490415, "avg_line_length": 39.5889328063, "ext": "agda", "hexsha": "0844ec012eeb96e54b0678170a6e2607f80005aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "cohomology/CofiberSequence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "cohomology/CofiberSequence.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "cohomology/CofiberSequence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4414, "size": 10016 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Fields.Fields open import Rings.Orders.Total.Definition open import Rings.Orders.Total.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Orders.LeastUpperBounds.Definition open import Fields.Orders.Total.Definition module Numbers.ClassicalReals.RealField where record RealField : Agda.Primitive.Setω where field a b c : _ A : Set a S : Setoid {_} {b} A _+_ : A → A → A _*_ : A → A → A R : Ring S _+_ _*_ F : Field R _<_ : Rel {_} {c} A pOrder : SetoidPartialOrder S _<_ pOrderedRing : PartiallyOrderedRing R pOrder orderedRing : TotallyOrderedRing pOrderedRing lub : {d : _} → {pred : A → Set d} → (sub : subset S pred) → (nonempty : Sg A pred) → (boundedAbove : Sg A (UpperBound pOrder sub)) → Sg A (LeastUpperBound pOrder sub) open Setoid S open Field F charNot2 : (Ring.1R R + Ring.1R R) ∼ Ring.0R R → False charNot2 = orderedImpliesCharNot2 orderedRing nontrivial oField : TotallyOrderedField F pOrderedRing oField = record { oRing = orderedRing }
{ "alphanum_fraction": 0.7214814815, "avg_line_length": 34.6153846154, "ext": "agda", "hexsha": "65656ab67c7acca4e2e9b935defe61c41d4641ed", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/ClassicalReals/RealField.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/ClassicalReals/RealField.agda", "max_line_length": 171, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/ClassicalReals/RealField.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 400, "size": 1350 }
{-# OPTIONS --cubical-compatible --show-implicit #-} -- {-# OPTIONS -v tc.lhs.split.well-formed:100 #-} -- Andreas, adapted from Andres Sicard, 2013-05-29 module WithoutKRestrictive where open import Common.Level open import Common.Equality open import Common.Product data ℕ : Set where zero : ℕ suc : ℕ → ℕ data _≤_ : ℕ → ℕ → Set where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {n m} → n ≤ m → suc n ≤ suc m _<_ : ℕ → ℕ → Set n < m = suc n ≤ m refl≤ : ∀ (n : ℕ) → n ≤ n refl≤ zero = z≤n refl≤ (suc n) = s≤s (refl≤ n) data List {a} (A : Set a) : Set a where [] : List A _∷_ : (x : A) (xs : List A) → List A length : {A : Set} → List A → ℕ length [] = zero length (x ∷ xs) = suc (length xs) P : {A : Set} → List A → List A → Set P xs ys = Σ _ (λ x → ys ≡ (x ∷ xs)) Q : {A : Set} → List A → List A → Set Q xs ys = (length xs) < (length ys) helper : {A : Set}(y : A)(xs : List A) → (length xs) < (length (y ∷ xs)) helper y [] = s≤s z≤n helper y (x ∷ xs) = s≤s (refl≤ _) -- Why the --cubical-compatible option rejects the following proof foo : {A : Set}(xs ys : List A) → P xs ys → Q xs ys foo xs .(x ∷ xs) (x , refl) = helper x xs -- if I can prove foo using only subst foo' : {A : Set}(xs ys : List A) → P xs ys → Q xs ys foo' xs ys (x , h) = subst (λ ys' → length xs < length ys') (sym h) (helper x xs)
{ "alphanum_fraction": 0.5516467066, "avg_line_length": 25.2075471698, "ext": "agda", "hexsha": "27fb75ee61aef19a8b78ae58941daa49fe8a0b7a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/WithoutKRestrictive.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/WithoutKRestrictive.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/WithoutKRestrictive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 530, "size": 1336 }
-- Run this test case in safe mode -- {-# OPTIONS --safe #-} -- does not parse (2012-03-12 Andreas) module Issue586 where Foo : Set1 Foo = Set
{ "alphanum_fraction": 0.6597222222, "avg_line_length": 20.5714285714, "ext": "agda", "hexsha": "4a5b428a85b4f35b4001459c4ae2c53eb170ddcb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue586.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue586.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue586.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 44, "size": 144 }
{-# OPTIONS --cubical --safe #-} open import Prelude open import Algebra module Data.FingerTree {ℓ} (mon : Monoid ℓ) where open Monoid mon record Measured {a} (A : Type a) : Type (a ℓ⊔ ℓ) where constructor measured field μ : A → 𝑆 open Measured ⦃ ... ⦄ public data Digit {a} (A : Type a) : Type a where D₁ : A → Digit A D₂ : A → A → Digit A D₃ : A → A → A → Digit A data Node {a} (A : Type a) : Type a where N₂ : A → A → Node A N₃ : A → A → A → Node A instance measuredDigit : ⦃ _ : Measured A ⦄ → Measured (Digit A) measuredDigit = measured λ { (D₁ x) → μ x ; (D₂ x x₁) → μ x ∙ μ x₁ ; (D₃ x x₁ x₂) → μ x ∙ μ x₁ ∙ μ x₂ } instance measuredNode : ⦃ _ : Measured A ⦄ → Measured (Node A) measuredNode = measured λ { (N₂ x x₁) → μ x ∙ μ x₁ ; (N₃ x x₁ x₂) → μ x ∙ μ x₁ ∙ μ x₂ } record ⟪_⟫ (A : Type a) ⦃ _ : Measured A ⦄ : Type (a ℓ⊔ ℓ) where constructor recd field val : A mem : 𝑆 prf : μ val ≡ mem open ⟪_⟫ public memo : ⦃ _ : Measured A ⦄ → A → ⟪ A ⟫ memo x = recd x (μ x) refl instance measuredMemo : ⦃ _ : Measured A ⦄ → Measured ⟪ A ⟫ measuredMemo = measured mem mutual record Deep {a} (A : Type a) ⦃ _ : Measured A ⦄ : Type (a ℓ⊔ ℓ) where pattern constructor more inductive field lbuff : Digit A tree : Tree ⟪ Node A ⟫ rbuff : Digit A data Tree {a} (A : Type a) ⦃ _ : Measured A ⦄ : Type (a ℓ⊔ ℓ) where empty : Tree A single : A → Tree A deep : ⟪ Deep A ⟫ → Tree A μ-deep : ∀ {a} {A : Type a} ⦃ _ : Measured A ⦄ → Deep A → 𝑆 μ-deep (more l x r) = μ l ∙ (μ-tree x ∙ μ r) μ-tree : ∀ {a} {A : Type a} ⦃ _ : Measured A ⦄ → Tree A → 𝑆 μ-tree empty = ε μ-tree (single x) = μ x μ-tree (deep xs) = xs .mem instance Measured-Deep : ∀ {a} {A : Type a} → ⦃ _ : Measured A ⦄ → Measured (Deep A) Measured-Deep = measured μ-deep instance Measured-Tree : ∀ {a} {A : Type a} → ⦃ _ : Measured A ⦄ → Measured (Tree A) Measured-Tree = measured μ-tree open Deep
{ "alphanum_fraction": 0.5357487923, "avg_line_length": 24.0697674419, "ext": "agda", "hexsha": "06ded89befcffc8410d94fcecd5820712041111b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/FingerTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/FingerTree.agda", "max_line_length": 79, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/FingerTree.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 855, "size": 2070 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Base.PKCS open import LibraBFT.Abstract.Types -- This module defines the types used to define a SystemModel. module LibraBFT.Yasm.Base where -- Our system is configured through a value of type -- SystemParameters where we specify: record SystemParameters : Set₁ where constructor mkSysParms field PeerState : Set Msg : Set Part : Set -- Types of interest that can be represented in Msgs -- The messages must be able to carry signatures instance Part-sig : WithSig Part -- A relation specifying what Parts are included in a Msg. _⊂Msg_ : Part → Msg → Set -- Finally, messages must carry an epoch id and might have an author part-epoch : Part → EpochId -- Initializes a potentially-empty state with an EpochConfig init : NodeId → EpochConfig → Maybe PeerState → PeerState × List Msg -- Handles a message on a previously initialized peer. handle : NodeId → Msg → PeerState → PeerState × List Msg -- TODO-3?: So far, handlers only produce messages to be sent. -- It would be reasonable to generalize this to something like -- -- data Action = Send Msg | Crash CrashMsg | Log LogMsg | ... -- -- on the system level, and have the handlers return List Action, -- rather than just ListMsg. For example, if an assertion fires, this -- could "kill the process" and make it not send any messages in the future. -- We could also then prove that the handlers do not crash, certain -- messages are logged under certain circumstances, etc. -- -- Alternatively, we could keep this outside the system model by -- defining an application-specific peerState type, for example: -- -- > libraHandle : Msg → Status × Log × LState → Status × LState × List Action -- > libraHandle _ (Crashed , l , s) = Crashed , s , [] -- i.e., crashed peers never send messages -- > -- > handle = filter isSend ∘ libraHandle -- We also require a standard key-value store interface, along with its -- functionality and various properties about it. Most of the properties -- are not currently used, but they are included here based on our -- experience in other work, as we think many of them will be needed when -- reasoning about an actual LibraBFT implementation. -- Although we believe the assumptions here are reasonable, it is always -- possible that we made a mistake in postulating one of the properties, -- making it impossible to implement. Thus, it would a useful contribution -- to: -- -- TODO-1: construct an actual implementation and provide and prove the -- necessary properties to satisfy the requirements of this module -- -- Note that this would require some work, but should be relatively -- straightforward and requires only "local" changes. postulate Map : Set → Set → Set Map-empty : ∀{k v} → Map k v Map-lookup : ∀{k v} → k → Map k v → Maybe v Map-insert : ∀{k v} → k → v → Map k v → Map k v Map-set : ∀{k v} → k → Maybe v → Map k v → Map k v -- It must satisfy the following properties Map-insert-correct : ∀ {K V : Set}{k : K}{v : V}{m : Map K V} → Map-lookup k (Map-insert k v m) ≡ just v Map-insert-target-≢ : ∀ {K V : Set}{k k' : K}{v : V}{m} → k' ≢ k → Map-lookup k' m ≡ Map-lookup k' (Map-insert k v m) Map-set-correct : ∀ {K V : Set}{k : K}{mv : Maybe V}{m : Map K V} → Map-lookup k (Map-set k mv m) ≡ mv Map-set-target-≢ : ∀ {K V : Set}{k k' : K}{mv : Maybe V}{m} → k' ≢ k → Map-lookup k' m ≡ Map-lookup k' (Map-set k mv m) Map-set-≡-correct : ∀ {K V : Set}{k : K}{m : Map K V} → Map-set k (Map-lookup k m) m ≡ m
{ "alphanum_fraction": 0.640556369, "avg_line_length": 41.3939393939, "ext": "agda", "hexsha": "302e6de6e8e181413a00e90c39a77e3667a99774", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_forks_repo_path": "LibraBFT/Yasm/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_issues_repo_path": "LibraBFT/Yasm/Base.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_stars_repo_path": "LibraBFT/Yasm/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1075, "size": 4098 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category module Categories.Object.Products {o ℓ e} (C : Category o ℓ e) where open Category C open import Level import Categories.Object.Terminal as Terminal import Categories.Object.BinaryProducts as BinaryProducts open Terminal C open BinaryProducts C -- this should really be 'FiniteProducts', no? record Products : Set (o ⊔ ℓ ⊔ e) where field terminal : Terminal binary : BinaryProducts
{ "alphanum_fraction": 0.7579617834, "avg_line_length": 21.4090909091, "ext": "agda", "hexsha": "e9706ccef2dac3f01e4a9cf519a6f22d2074fece", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Products.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Products.agda", "max_line_length": 68, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/Products.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 110, "size": 471 }
{-# OPTIONS --without-K #-} module Relation.Path.Operation where open import Basics open import Relation.Equality open import Data.Product infixr 4 _∙_ infix 9 _⁻¹ -- Path inversion _⁻¹ : ∀ {a}{A : Set a}{x y : A} → (x ≡ y) → (y ≡ x) _⁻¹ = ind₌ (λ x y _ → y ≡ x) (λ _ → refl) _ _ -- Composition of paths _∙_ : ∀ {a}{A : Set a}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) _∙_ {z = z} = ind₌ (λ x y _ → y ≡ z → x ≡ z) (λ _ p → p) _ _ -- Unit laws for Composition rup : ∀ {i}{A : Set i}{a b : A} → (p : a ≡ b) → (p ∙ refl) ≡ p rup = ind₌ (λ _ _ p → (p ∙ refl) ≡ p) (λ _ → refl) _ _ lup : ∀ {i}{A : Set i}{a b : A} → (p : a ≡ b) → (refl ∙ p) ≡ p lup _ = refl -- Associativity of path composition assoc : ∀ {i}{A : Set i}{a b c d : A} → (p : a ≡ b) (q : b ≡ c) (r : c ≡ d) → (p ∙ (q ∙ r)) ≡ ((p ∙ q) ∙ r) assoc {c = c} {d = d} = ind₌ (λ _ b p → (q : b ≡ c) (r : c ≡ d) → (p ∙ q ∙ r) ≡ ((p ∙ q) ∙ r)) (λ b → ind₌ (λ _ c q → (r : c ≡ d) → (refl ∙ q ∙ r) ≡ ((refl ∙ q) ∙ r)) (λ _ _ → refl) _ _) _ _ -- It is a familiar fact in topology that when we concatenate a path p with the -- reversed path p ⁻¹, we don’t literally obtain a constant path (which -- corresponds to the equality refl in type theory) — instead we have a -- homotopy, or higher path, from p ∙ p ⁻¹ to the constant path. there-and-back-again : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → (p ∙ p ⁻¹) ≡ refl there-and-back-again {i} {A} {x}{y} {p} = ind₌ D d _ _ p where D : (x y : A) → (x ≡ y) → Set i D x y p = (p ∙ p ⁻¹) ≡ refl d : (x₁ : A) → D x₁ x₁ refl d = λ x → refl back-and-there-again : ∀ {i}{A : Set i}{x y : A}{p : x ≡ y} → (p ⁻¹ ∙ p) ≡ refl back-and-there-again {i} {A} {x}{y} {p} = ind₌ D d _ _ p where D : (x y : A) → (p : x ≡ y) → Set i D x y p = (p ⁻¹ ∙ p) ≡ refl d : (x₁ : A) → D x₁ x₁ refl d = λ x → refl -- Paths are functor looking things. ap : ∀ {i j} {A : Set i}{B : Set j}{x y : A}{f : A → B} → (x ≡ y) → (f x ≡ f y) ap {i}{j} {A}{B} {x}{y}{f} p = ind₌ D d x y p where D : (x y : A) → (p : x ≡ y) → Set j D x y p = f x ≡ f y d : (x : A) → D x x refl d = λ x → refl -- ap₂ : ∀ {i j k} {A : Set i}{B : Set j}{C : Set k}{x x′ : A}{y y′ : B}(f : A → B → C) → (x ≡ x′) → (y ≡ y′) → (f x y ≡ f x′ y′) ap₂ f p q = ap {f = λ _ → f _ _} p ∙ ap {f = f _} q -- The dependently typed version of `ap` takes a type family and relates its instantiations with p transport : ∀ {i j} {A : Set i}{P : A → Set j}{x y : A} → (p : x ≡ y) → P x → P y transport {i}{j} {A}{P} {x}{y} p = ind₌ D d x y p where D : (x y : A) → (p : x ≡ y) → Set j D x y p = P x → P y d : (x : A) → D x x refl d = λ x → id 2-11-2 : ∀ {i} {A : Set i} → (a : A) {x₁ x₂ : A} (p : x₁ ≡ x₂) (q : a ≡ x₁) → (transport p q) ≡ (q ∙ p) 2-11-2 a = ind₌ (λ x _ p → (q : a ≡ x) → (transport {P = (λ x → a ≡ x)} p q) ≡ (q ∙ p)) (λ _ q → rup q ⁻¹) _ _ -- Basically, P respects equality path-lifting : ∀ {a p}{A : Set a}{x y : A}{P : A → Set p} → (u : P x) → (p : x ≡ y) → (x , u) ≡ (y , u) path-lifting u = cong (λ z → z , u) -- Look, transport works in the "upper" space too! apd : ∀ {i} {A : Set i}{P : A → Set i}{f : (x : A) → P x}{x y : A} → (p : x ≡ y) → (transport p (f x) ≡ f y) apd {i} {A}{P} {f}{x}{y} p = ind₌ D d x y p where D : (x y : A) → (p : x ≡ y) → Set i D x y p = transport p (f x) ≡ f y d : (x : A) → D x x refl d = λ x → refl -- We can also fix B and make transport work like fmap with equalities. transportconst : ∀ {i} {A : Set i}{B : Set i}{P : A → B}{x y : A} → (p : x ≡ y) → (b : B) → transport p b ≡ b transportconst {i} {A}{B}{P} {x}{y} p b = ind₌ D d x y p where D : (x y : A) → (x ≡ y) → Set i D x y p = transport p b ≡ b d : (x : A) → D x x refl d = λ x → refl -- Path Structure for Product Types split-path₌ : ∀ {a b}{A : Set a}{B : Set b} → (x y : (A × B)) → (x ≡ y) → (proj₁ x ≡ proj₁ y) × (proj₂ x ≡ proj₂ y) split-path₌ xs ys p = ap {f = proj₁} p , ap {f = proj₂} p {- pair₌ : ∀ {a b}{A : Set a}{B : Set b} → (x y : (A × B)) → (proj₁ x ≡ proj₁ y) × (proj₂ x ≡ proj₂ y) → (x ≡ y) pair₌ (a₁ , b₁) (a₂ , b₂) (p , q) = {!!} -}
{ "alphanum_fraction": 0.4655383861, "avg_line_length": 35.452173913, "ext": "agda", "hexsha": "c6621658be12ad7c70cd62d984720c8444da78b2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Relation/Path/Operation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Relation/Path/Operation.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Relation/Path/Operation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1944, "size": 4077 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A solver for proving that one list is a sublist of the other for types -- which enjoy decidable equalities. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Decidable) open import Agda.Builtin.Equality using (_≡_) module Data.List.Relation.Binary.Sublist.DecPropositional.Solver {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) where import Relation.Binary.PropositionalEquality as P open import Data.List.Relation.Binary.Sublist.DecSetoid.Solver (P.decSetoid _≟_) public
{ "alphanum_fraction": 0.5782608696, "avg_line_length": 34.5, "ext": "agda", "hexsha": "05bb5a6c1f877717cf139337c9f68a3d9bc8a468", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecPropositional/Solver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecPropositional/Solver.agda", "max_line_length": 87, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecPropositional/Solver.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 147, "size": 690 }
open import Agda.Primitive record R (a : Level) : Set (lsuc a) where field A : Set a _ : ∀ a → R {!a!} → Set a _ = λ _ → R.A
{ "alphanum_fraction": 0.5413533835, "avg_line_length": 14.7777777778, "ext": "agda", "hexsha": "a1b3b41ff17c811c4f843efb74a7b79346d70bf1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/interaction/Issue5392.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/interaction/Issue5392.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/interaction/Issue5392.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 54, "size": 133 }
{-# OPTIONS --cubical --no-import-sorts #-} open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) module MoreNatProperties where open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` open import Function.Base using (_$_) open import Cubical.Data.Nat hiding (min) -- open import Cubical.Data.Nat.Properties hiding (min) open import Cubical.Data.Nat.Order renaming (zero-≤ to z≤n; suc-≤-suc to s≤s) min : ℕ → ℕ → ℕ min a b with a ≟ b ... | lt a<b = a ... | eq a≡b = a ... | gt b<a = b max : ℕ → ℕ → ℕ max a b with a ≟ b ... | lt a<b = b ... | eq a≡b = a ... | gt b<a = a -- to make use of `it` to find proofs for `Fin k`: module FinInstances where open import Function.Base using (it) public instance z≤n' : ∀ {n} → zero ≤ n z≤n' {n} = z≤n s≤s' : ∀ {m n} {{m≤n : m ≤ n}} → suc m ≤ suc n s≤s' {m} {n} {{m≤n}} = s≤s m≤n ¬1<0 : ¬(1 < 0) ¬1<0 (k , p) = snotz (sym (+-suc k 1) ∙ p) suc-preserves-< : ∀{x y} → x < y → suc x < suc y suc-preserves-< {x} {y} p = s≤s p suc-reflects-< : ∀{x y} → suc x < suc y → x < y suc-reflects-< {x} {y} (k , p) = k , (injSuc (sym (+-suc k (suc x)) ∙ p)) ¬[k+x<k] : ∀ k x → ¬(k + x < k) ¬[k+x<k] k x (z , p) = snotz $ sym $ inj-m+ {k} {0} (+-zero k ∙ sym p ∙ +-suc z (k + x) ∙ (λ i → suc (+-comm z (k + x) i)) ∙ (λ i → suc (+-assoc k x z (~ i))) ∙ sym (+-suc k (x + z))) -- import MoreLogic open import MoreLogic.Reasoning <-asymʷ : ∀ a b → a < b → ¬(b < a) <-asymʷ a b a<b = ¬m<m ∘ <-trans a<b {- <-asym : ∀ a b → a < b → ¬(b < a) <-asym a b (k , p) (l , q) = snotz $ inj-m+ {a} ((sym γ ∙ transport (λ i → l + suc (p (~ i)) ≡ a) q) ∙ sym (+-zero a)) where γ = ( l + suc (k + suc a) ≡⟨ ( λ i → l + suc (+-suc k a i)) ⟩ l + suc (suc (k + a)) ≡⟨ ( λ i → l + suc (suc (+-comm k a i)) ) ⟩ l + suc (suc (a + k)) ≡⟨ ( λ i → l + suc (+-suc a k (~ i))) ⟩ l + suc (a + suc k) ≡⟨ ( λ i → l + (+-suc a (suc k) (~ i))) ⟩ l + (a + suc (suc k)) ≡⟨ +-assoc l a (suc (suc k)) ⟩ (l + a) + suc (suc k) ≡⟨ (λ i → +-comm l a i + suc (suc k) ) ⟩ (a + l) + suc (suc k) ≡⟨ sym $ +-assoc a l (suc (suc k)) ⟩ a + (l + suc (suc k)) ≡⟨ (λ i → a + +-suc l (suc k) i) ⟩ a + suc (l + suc k) ∎) -} <>-implies-≡ : ∀ a b → a ≤ b → b ≤ a → a ≡ b <>-implies-≡ a b (n , p) (m , q) with m+n≡0→m≡0×n≡0 {m} {n} (m+n≡n→m≡0 γ) where γ = sym (+-assoc m n a) ∙ (λ i → m + p i) ∙ q ... | m≡0 , n≡0 = (λ i → n≡0 (~ i) + a) ∙ p ≟-sym : ∀ a b → Trichotomy a b → Trichotomy b a ≟-sym a b (lt x) = gt x ≟-sym a b (eq x) = eq (sym x) ≟-sym a b (gt x) = lt x -- NOTE: this is an ingedience to disprove -- isComplex ≤ₙₗ isRat -- which normalizes to -- Σ[ k ∈ ℕ ] k + 4 ≡ 2 -- and is the same as -- 4 ≤ 2 -- so more elegantly would be -- ∀ x k → x < x + suc k -- and turn this into -- ∀ x k → ¬ (x + suc k ≤ x) k+x+sy≢x : ∀ k x y → ¬(k + (x + suc y) ≡ x) k+x+sy≢x k x y p = snotz $ sym (+-suc k y) ∙ inj-m+ {x} (+-assoc x k (suc y) ∙ (λ i → (+-comm x k) i + (suc y)) ∙ sym (+-assoc k x (suc y)) ∙ p ∙ sym (+-zero x)) 0≤x : ∀ x → 0 ≤ x 0≤x zero = 0 , refl 0≤x (suc x) = suc x , (λ i → suc (+-zero x i)) ∙ refl {x = suc x}
{ "alphanum_fraction": 0.4762459924, "avg_line_length": 35.0102040816, "ext": "agda", "hexsha": "d3d5be95eda2d6b0a60d4d1abde0f7068610b361", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/MoreNatProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/MoreNatProperties.agda", "max_line_length": 183, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/MoreNatProperties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 1593, "size": 3431 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on the Stream type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Stream.Properties where open import Size open import Codata.Thunk using (Thunk; force) open import Codata.Stream open import Codata.Stream.Bisimilarity open import Data.Nat.Base open import Data.Nat.GeneralisedArithmetic using (fold; fold-pull) import Data.Vec as Vec import Data.Product as Prod open import Function open import Relation.Binary.PropositionalEquality as Eq using (_≡_) ------------------------------------------------------------------------ -- repeat module _ {a} {A : Set a} where lookup-repeat-identity : (n : ℕ) (a : A) → lookup n (repeat a) ≡ a lookup-repeat-identity zero a = Eq.refl lookup-repeat-identity (suc n) a = lookup-repeat-identity n a take-repeat-identity : (n : ℕ) (a : A) → take n (repeat a) ≡ Vec.replicate a take-repeat-identity zero a = Eq.refl take-repeat-identity (suc n) a = Eq.cong (a Vec.∷_) (take-repeat-identity n a) module _ {a b} {A : Set a} {B : Set b} where map-repeat-commute : ∀ (f : A → B) a {i} → i ⊢ map f (repeat a) ≈ repeat (f a) map-repeat-commute f a = Eq.refl ∷ λ where .force → map-repeat-commute f a repeat-ap-identity : ∀ (f : A → B) as {i} → i ⊢ ap (repeat f) as ≈ map f as repeat-ap-identity f (a ∷ as) = Eq.refl ∷ λ where .force → repeat-ap-identity f (as .force) ap-repeat-identity : ∀ (fs : Stream (A → B) ∞) (a : A) {i} → i ⊢ ap fs (repeat a) ≈ map (_$ a) fs ap-repeat-identity (f ∷ fs) a = Eq.refl ∷ λ where .force → ap-repeat-identity (fs .force) a ap-repeat-commute : ∀ (f : A → B) a {i} → i ⊢ ap (repeat f) (repeat a) ≈ repeat (f a) ap-repeat-commute f a = Eq.refl ∷ λ where .force → ap-repeat-commute f a ------------------------------------------------------------------------ -- Functor laws module _ {a} {A : Set a} where map-identity : ∀ (as : Stream A ∞) {i} → i ⊢ map id as ≈ as map-identity (a ∷ as) = Eq.refl ∷ λ where .force → map-identity (as .force) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where map-map-fusion : ∀ (f : A → B) (g : B → C) as {i} → i ⊢ map g (map f as) ≈ map (g ∘ f) as map-map-fusion f g (a ∷ as) = Eq.refl ∷ λ where .force → map-map-fusion f g (as .force) ------------------------------------------------------------------------ -- splitAt module _ {a b} {A : Set a} {B : Set b} where splitAt-map : ∀ n (f : A → B) xs → splitAt n (map f xs) ≡ Prod.map (Vec.map f) (map f) (splitAt n xs) splitAt-map zero f xs = Eq.refl splitAt-map (suc n) f (x ∷ xs) = Eq.cong (Prod.map₁ (f x Vec.∷_)) (splitAt-map n f (xs .force)) ------------------------------------------------------------------------ -- iterate module _ {a} {A : Set a} where lookup-iterate-identity : ∀ n f (a : A) → lookup n (iterate f a) ≡ fold a f n lookup-iterate-identity zero f a = Eq.refl lookup-iterate-identity (suc n) f a = begin lookup (suc n) (iterate f a) ≡⟨⟩ lookup n (iterate f (f a)) ≡⟨ lookup-iterate-identity n f (f a) ⟩ fold (f a) f n ≡⟨ fold-pull (const ∘′ f) (f a) Eq.refl (λ _ → Eq.refl) n ⟩ f (fold a f n) ≡⟨⟩ fold a f (suc n) ∎ where open Eq.≡-Reasoning
{ "alphanum_fraction": 0.5292553191, "avg_line_length": 37.1868131868, "ext": "agda", "hexsha": "f1dd7dc3e2bdd58e765130ca7cc8a91d01c2e130", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Stream/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Stream/Properties.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Stream/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1072, "size": 3384 }
------------------------------------------------------------------------------ -- Conversion rules for the division ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Program.Division.ConversionRules where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Program.Division.Division ------------------------------------------------------------------------------ -- Division properties private -- Before to prove some properties for div it is convenient -- to have a proof for each possible execution step. -- Initially, we define the possible states (div-s₁, div-s₂, -- ...) and after that, we write down the proof for the execution -- step from the state p to the state q, e.g. -- -- proof₂₋₃ : ∀ i j → div-s₂ i j ≡ div-s₃ i j. -- Initially, the conversion rule fix-eq is applied. div-s₁ : D → D → D div-s₁ i j = divh (fix divh) · i · j -- First argument application. div-s₂ : D → D → D div-s₂ i j = fun · j where fun : D fun = lam (λ j → if (lt i j) then zero else succ₁ (fix divh · (i ∸ j) · j)) -- Second argument application. div-s₃ : D → D → D div-s₃ i j = if (lt i j) then zero else succ₁ (fix divh · (i ∸ j) · j) -- lt i j ≡ true. div-s₄ : D → D → D div-s₄ i j = if true then zero else succ₁ (fix divh · (i ∸ j) · j) -- lt i j ≡ false. div-s₅ : D → D → D div-s₅ i j = if false then zero else succ₁ (fix divh · (i ∸ j) · j) -- The conditional is true. div-s₆ : D div-s₆ = zero -- The conditional is false. div-s₇ : D → D → D div-s₇ i j = succ₁ (fix divh · (i ∸ j) · j) {- To prove the execution steps, e.g. proof₃₋₄ : ∀ i j → div-s₃ i j → divh_s₄ i j, we usually need to prove that ... m ... ≡ ... n ... (1) given that m ≡ n, (2) where (2) is a conversion rule usually. We prove (1) using subst : ∀ {x y} (A : D → Set) → x ≡ y → A x → A y where • P is given by \m → ... m ... ≡ ... n ..., • x ≡ y is given n ≡ m (actually, we use ≡-sym (m ≡ n)) and • P x is given by ... n ... ≡ ... n ... (i.e. ≡-refl) -} -- From div · i · j to div-s₁ using the conversion rule fix-eq. proof₀₋₁ : ∀ i j → fix divh · i · j ≡ div-s₁ i j proof₀₋₁ i j = subst (λ t → t · i · j ≡ divh (fix divh) · i · j) (sym (fix-eq divh)) refl -- From div-s₁ to div-s₂ using the conversion rule beta. proof₁₋₂ : ∀ i j → div-s₁ i j ≡ div-s₂ i j proof₁₋₂ i j = subst (λ t → t · j ≡ fun i · j) (sym (beta fun i)) refl where -- The function fun is the same that the fun part of div-s₂, -- except that we need a fresh variable y to avoid the -- clashing of the variable i in the application of the beta -- rule. fun : D → D fun y = lam (λ j → if (lt y j) then zero else succ₁ (fix divh · (y ∸ j) · j)) -- From div-s₂ to div-s₃ using the conversion rule beta. proof₂₋₃ : ∀ i j → div-s₂ i j ≡ div-s₃ i j proof₂₋₃ i j = beta fun j where -- The function fun is the same that div-s₃, except that we -- need a fresh variable y to avoid the clashing of the -- variable j in the application of the beta rule. fun : D → D fun y = if (lt i y) then zero else succ₁ ((fix divh) · (i ∸ y) · y) -- From div-s₃ to div-s₄ using the proof i<j. proof₃_₄ : ∀ i j → i < j → div-s₃ i j ≡ div-s₄ i j proof₃_₄ i j i<j = subst (λ t → (if t then zero else succ₁ ((fix divh) · (i ∸ j) · j)) ≡ (if true then zero else succ₁ ((fix divh) · (i ∸ j) · j))) (sym i<j) refl -- From div-s₃ to div-s₅ using the proof i≮j. proof₃₋₅ : ∀ i j → i ≮ j → div-s₃ i j ≡ div-s₅ i j proof₃₋₅ i j i≮j = subst (λ t → (if t then zero else succ₁ ((fix divh) · (i ∸ j) · j)) ≡ (if false then zero else succ₁ ((fix divh) · (i ∸ j) · j))) (sym i≮j) refl -- From div-s₄ to div-s₆ using the conversion rule if-true. proof₄₋₆ : ∀ i j → div-s₄ i j ≡ div-s₆ proof₄₋₆ i j = if-true zero -- From div-s₅ to div-s₇ using the conversion rule if-false. proof₅₋₇ : ∀ i j → div-s₅ i j ≡ div-s₇ i j proof₅₋₇ i j = if-false (succ₁ (fix divh · (i ∸ j) · j)) ---------------------------------------------------------------------- -- The division result when the dividend is minor than the -- the divisor. div-x<y : ∀ {i j} → i < j → div i j ≡ zero div-x<y {i} {j} i<j = div i j ≡⟨ proof₀₋₁ i j ⟩ div-s₁ i j ≡⟨ proof₁₋₂ i j ⟩ div-s₂ i j ≡⟨ proof₂₋₃ i j ⟩ div-s₃ i j ≡⟨ proof₃_₄ i j i<j ⟩ div-s₄ i j ≡⟨ proof₄₋₆ i j ⟩ div-s₆ ∎ ---------------------------------------------------------------------- -- The division result when the dividend is greater or equal than the -- the divisor. div-x≮y : ∀ {i j} → i ≮ j → div i j ≡ succ₁ (div (i ∸ j) j) div-x≮y {i} {j} i≮j = div i j ≡⟨ proof₀₋₁ i j ⟩ div-s₁ i j ≡⟨ proof₁₋₂ i j ⟩ div-s₂ i j ≡⟨ proof₂₋₃ i j ⟩ div-s₃ i j ≡⟨ proof₃₋₅ i j i≮j ⟩ div-s₅ i j ≡⟨ proof₅₋₇ i j ⟩ div-s₇ i j ∎
{ "alphanum_fraction": 0.4805585012, "avg_line_length": 33.4792899408, "ext": "agda", "hexsha": "162ac637943fa387db29630d5427436591cc490a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Program/Division/ConversionRules.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Program/Division/ConversionRules.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Program/Division/ConversionRules.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1920, "size": 5658 }
module Issue314 where postulate A : Set data _≡_ (x : A) : A → Set where refl : x ≡ x postulate lemma : (x y : A) → x ≡ y Foo : A → Set₁ Foo x with lemma x _ Foo x | refl = Set -- Bug.agda:12,9-13 -- Failed to solve the following constraints: -- x == _23 x : A -- when checking that the pattern refl has type x ≡ _23 x
{ "alphanum_fraction": 0.6200607903, "avg_line_length": 17.3157894737, "ext": "agda", "hexsha": "7ceb9cda8b223740655c664c41bb153b85bc76cc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue314.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue314.agda", "max_line_length": 57, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue314.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 117, "size": 329 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.List.Properties where open import Agda.Builtin.List open import Cubical.Core.Everything open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Data.Empty open import Cubical.Data.Nat open import Cubical.Data.Prod open import Cubical.Data.Unit open import Cubical.Relation.Nullary open import Cubical.Data.List.Base module _ {ℓ} {A : Type ℓ} where ++-unit-r : (xs : List A) → xs ++ [] ≡ xs ++-unit-r [] = refl ++-unit-r (x ∷ xs) = cong (_∷_ x) (++-unit-r xs) ++-assoc : (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ ys ++ zs ++-assoc [] ys zs = refl ++-assoc (x ∷ xs) ys zs = cong (_∷_ x) (++-assoc xs ys zs) rev-++ : (xs ys : List A) → rev (xs ++ ys) ≡ rev ys ++ rev xs rev-++ [] ys = sym (++-unit-r (rev ys)) rev-++ (x ∷ xs) ys = cong (λ zs → zs ++ [ x ]) (rev-++ xs ys) ∙ ++-assoc (rev ys) (rev xs) [ x ] rev-rev : (xs : List A) → rev (rev xs) ≡ xs rev-rev [] = refl rev-rev (x ∷ xs) = rev-++ (rev xs) [ x ] ∙ cong (_∷_ x) (rev-rev xs) -- Path space of list type module ListPath {ℓ} {A : Type ℓ} where Cover : List A → List A → Type ℓ Cover [] [] = Lift Unit Cover [] (_ ∷ _) = Lift ⊥ Cover (_ ∷ _) [] = Lift ⊥ Cover (x ∷ xs) (y ∷ ys) = (x ≡ y) × Cover xs ys reflCode : ∀ xs → Cover xs xs reflCode [] = lift tt reflCode (_ ∷ xs) = refl , reflCode xs encode : ∀ xs ys → (p : xs ≡ ys) → Cover xs ys encode xs _ = J (λ ys _ → Cover xs ys) (reflCode xs) encodeRefl : ∀ xs → encode xs xs refl ≡ reflCode xs encodeRefl xs = JRefl (λ ys _ → Cover xs ys) (reflCode xs) decode : ∀ xs ys → Cover xs ys → xs ≡ ys decode [] [] _ = refl decode [] (_ ∷ _) (lift ()) decode (x ∷ xs) [] (lift ()) decode (x ∷ xs) (y ∷ ys) (p , c) = cong₂ _∷_ p (decode xs ys c) decodeRefl : ∀ xs → decode xs xs (reflCode xs) ≡ refl decodeRefl [] = refl decodeRefl (x ∷ xs) = cong (cong₂ _∷_ refl) (decodeRefl xs) decodeEncode : ∀ xs ys → (p : xs ≡ ys) → decode xs ys (encode xs ys p) ≡ p decodeEncode xs _ = J (λ ys p → decode xs ys (encode xs ys p) ≡ p) (cong (decode xs xs) (encodeRefl xs) ∙ decodeRefl xs) isOfHLevelCover : (n : ℕ) (p : isOfHLevel (suc (suc n)) A) (xs ys : List A) → isOfHLevel (suc n) (Cover xs ys) isOfHLevelCover n p [] [] = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m Unit) (+-comm n 1) (hLevelLift n isPropUnit)) isOfHLevelCover n p [] (y ∷ ys) = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥)) isOfHLevelCover n p (x ∷ xs) [] = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥)) isOfHLevelCover n p (x ∷ xs) (y ∷ ys) = hLevelProd (suc n) (p x y) (isOfHLevelCover n p xs ys) isOfHLevelList : ∀ {ℓ} (n : ℕ) {A : Type ℓ} → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) (List A) isOfHLevelList n ofLevel xs ys = retractIsOfHLevel (suc n) (ListPath.encode xs ys) (ListPath.decode xs ys) (ListPath.decodeEncode xs ys) (ListPath.isOfHLevelCover n ofLevel xs ys) private variable ℓ : Level A : Type ℓ caseList : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (n c : B) → List A → B caseList n _ [] = n caseList _ c (_ ∷ _) = c safe-head : A → List A → A safe-head x [] = x safe-head _ (x ∷ _) = x safe-tail : List A → List A safe-tail [] = [] safe-tail (_ ∷ xs) = xs cons-inj₁ : ∀ {x y : A} {xs ys} → x ∷ xs ≡ y ∷ ys → x ≡ y cons-inj₁ {x = x} p = cong (safe-head x) p cons-inj₂ : ∀ {x y : A} {xs ys} → x ∷ xs ≡ y ∷ ys → xs ≡ ys cons-inj₂ = cong safe-tail ¬cons≡nil : ∀ {x : A} {xs} → ¬ (x ∷ xs ≡ []) ¬cons≡nil {A = A} p = lower (subst (caseList (Lift ⊥) (List A)) p []) ¬nil≡cons : ∀ {x : A} {xs} → ¬ ([] ≡ x ∷ xs) ¬nil≡cons {A = A} p = lower (subst (caseList (List A) (Lift ⊥)) p []) ¬snoc≡nil : ∀ {x : A} {xs} → ¬ (xs ∷ʳ x ≡ []) ¬snoc≡nil {xs = []} contra = ¬cons≡nil contra ¬snoc≡nil {xs = x ∷ xs} contra = ¬cons≡nil contra ¬nil≡snoc : ∀ {x : A} {xs} → ¬ ([] ≡ xs ∷ʳ x) ¬nil≡snoc contra = ¬snoc≡nil (sym contra) cons≡rev-snoc : (x : A) → (xs : List A) → x ∷ rev xs ≡ rev (xs ∷ʳ x) cons≡rev-snoc _ [] = refl cons≡rev-snoc x (y ∷ ys) = λ i → cons≡rev-snoc x ys i ++ y ∷ [] nil≡nil-isContr : isContr (Path (List A) [] []) nil≡nil-isContr = refl , ListPath.decodeEncode [] [] list≡nil-isProp : {xs : List A} → isProp (xs ≡ []) list≡nil-isProp {xs = []} = hLevelSuc 0 _ nil≡nil-isContr list≡nil-isProp {xs = x ∷ xs} = λ p _ → ⊥-elim (¬cons≡nil p) discreteList : Discrete A → Discrete (List A) discreteList eqA [] [] = yes refl discreteList eqA [] (y ∷ ys) = no ¬nil≡cons discreteList eqA (x ∷ xs) [] = no ¬cons≡nil discreteList eqA (x ∷ xs) (y ∷ ys) with eqA x y | discreteList eqA xs ys ... | yes p | yes q = yes (λ i → p i ∷ q i) ... | yes _ | no ¬q = no (λ p → ¬q (cons-inj₂ p)) ... | no ¬p | _ = no (λ q → ¬p (cons-inj₁ q))
{ "alphanum_fraction": 0.5547298654, "avg_line_length": 32.9735099338, "ext": "agda", "hexsha": "07293b01e1354f2a257f622ec2aa8fc895c4593a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/cubical", "max_forks_repo_path": "Cubical/Data/List/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/cubical", "max_issues_repo_path": "Cubical/Data/List/Properties.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/cubical", "max_stars_repo_path": "Cubical/Data/List/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2027, "size": 4979 }
module UnequalHiding where data One : Set where one : One f : ({A : Set} -> A -> A) -> One f = \(id : (A : Set) -> A -> A) -> id One one
{ "alphanum_fraction": 0.5142857143, "avg_line_length": 17.5, "ext": "agda", "hexsha": "188b73cd1a4e0f12d03dc5f85b5b9a9944531f08", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/UnequalHiding.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/UnequalHiding.agda", "max_line_length": 45, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/UnequalHiding.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 52, "size": 140 }
data _≡_ {X : Set} : X → X → Set where refl : {x : X} → x ≡ x ap : {X Y : Set} (f : X → Y) {x x' : X} → x ≡ x' → f x ≡ f x' ap f refl = refl _∙_ : {X : Set} {x y z : X} → x ≡ y → y ≡ z → x ≡ z p ∙ refl = p f : {X : Set} {x : X} {A : X → Set} (η θ : (y : X) → x ≡ y → A y) → η x refl ≡ θ x refl → ∀ y p → η y p ≡ θ y p f η θ q y refl = ap (λ a → a) q succeeds : (X : Set) (z t : X) (r : z ≡ t) → (λ (x y : X) (p : x ≡ y) (q : y ≡ z) → (p ∙ q) ∙ r) ≡ (λ (x y : X) (p : x ≡ y) (q : y ≡ z) → p ∙ (q ∙ r)) succeeds X z = f -- {A = λ - → (x y : X) (p : x ≡ y) (q : y ≡ z) → x ≡ - } (λ z r x y p q → (p ∙ q) ∙ r) (λ z r x y p q → p ∙ (q ∙ r)) refl fails : (X : Set) (z t : X) (r : z ≡ t) → (λ (x y : X) (p : x ≡ y) (q : y ≡ z) → (p ∙ q) ∙ r) ≡ (λ (x y : X) (p : x ≡ y) (q : y ≡ z) → p ∙ (q ∙ r)) fails X z t = f -- {A = λ - → (x y : X) (p : x ≡ y) (q : y ≡ z) → x ≡ - } (λ z r x y p q → (p ∙ q) ∙ r) (λ z r x y p q → p ∙ (q ∙ r)) refl t
{ "alphanum_fraction": 0.2903525046, "avg_line_length": 34.7741935484, "ext": "agda", "hexsha": "c8c380aa3ed3f9829ef819efbb66deff8066557f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3960i.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3960i.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3960i.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 561, "size": 1078 }
module Oscar.Data.Step {𝔣} (FunctionName : Set 𝔣) where open import Data.Nat using (ℕ; suc; zero) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong₂; cong; sym; trans) open import Function using (_∘_; flip) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Product using (∃; _,_; _×_) open import Data.Empty using (⊥-elim) open import Data.Vec using (Vec; []; _∷_) open import Oscar.Data.Fin open import Data.Nat hiding (_≤_) open import Relation.Binary.PropositionalEquality renaming ([_] to [[_]]) open import Function using (_∘_; id; case_of_; _$_; flip) open import Relation.Nullary open import Data.Product renaming (map to _***_) open import Data.Empty open import Data.Maybe open import Category.Functor open import Category.Monad import Level open RawMonad (Data.Maybe.monad {Level.zero}) open import Data.Sum open import Data.Maybe using (maybe; maybe′; nothing; just; monad; Maybe) open import Data.List renaming (_++_ to _++L_) open ≡-Reasoning open import Data.Vec using (Vec; []; _∷_) renaming (_++_ to _++V_; map to mapV) open import Oscar.Data.Term FunctionName data Step (n : ℕ) : Set 𝔣 where left : Term n -> Step n right : Term n -> Step n function : FunctionName → ∀ {L} → Vec (Term n) L → ∀ {R} → Vec (Term n) R → Step n fmapS : ∀ {n m} (f : Term n -> Term m) (s : Step n) -> Step m fmapS f (left x) = left (f x) fmapS f (right x) = right (f x) fmapS f (function fn ls rs) = function fn (mapV f ls) (mapV f rs) _⊹_ : ∀ {n} (ps : List (Step n)) (t : Term n) -> Term n [] ⊹ t = t (left r ∷ ps) ⊹ t = (ps ⊹ t) fork r (right l ∷ ps) ⊹ t = l fork (ps ⊹ t) (function fn ls rs ∷ ps) ⊹ t = function fn (ls ++V (ps ⊹ t) ∷ rs) fork++ : ∀ {m} {s t : Term m} ps -> (ps ⊹ (s fork t) ≡ (ps ++L [ left t ]) ⊹ s) × (ps ⊹ (s fork t) ≡ (ps ++L [ right s ]) ⊹ t) fork++ [] = refl , refl fork++ (left y' ∷ xs') = (cong (λ a -> a fork y') *** cong (λ a -> a fork y')) (fork++ xs') fork++ (right y' ∷ xs') = (cong (λ a -> y' fork a) *** cong (λ a -> y' fork a)) (fork++ xs') fork++ {s = s} {t} (function fn ls rs ∷ xs') = (cong (λ a → function fn (ls ++V a ∷ rs)) *** cong (λ a → function fn (ls ++V a ∷ rs))) (fork++ xs') function++ : ∀ {m} {fn} {t : Term m} {L} {ls : Vec (Term m) L} {R} {rs : Vec (Term m) R} ps → ps ⊹ (function fn (ls ++V t ∷ rs)) ≡ (ps ++L [ function fn ls rs ]) ⊹ t function++ [] = refl function++ (left x ∷ ps) = cong (_fork x) (function++ ps) function++ (right x ∷ ps) = cong (x fork_) (function++ ps) function++ (function fn ls rs ∷ ps) = cong (λ a → function fn (ls ++V a ∷ rs)) (function++ ps) -- _◃S_ : ∀ {n m} (f : n ⊸ m) -> List (Step n) -> List (Step m) -- _◃S_ f = Data.List.map (fmapS (f ◃_)) -- map-[] : ∀ {n m} (f : n ⊸ m) ps -> f ◃S ps ≡ [] -> ps ≡ [] -- map-[] f [] _ = refl -- map-[] f (x ∷ xs) () -- module StepM where -- lemma1 : ∀ {n} (x : Step n) xs t -> [ x ] ⊹ ( xs ⊹ t ) ≡ (x ∷ xs) ⊹ t -- lemma1 (left y) xs t = refl -- lemma1 (right y) xs t = refl -- lemma1 (function fn ls rs) xs t = refl -- lemma2 : ∀ {n} {r} {t} {xs} (x : Step n) -> xs ⊹ t ≡ r -> ((x ∷ xs) ⊹ t ) ≡ [ x ] ⊹ r -- lemma2 (left y) eq = cong (λ t -> t fork y) eq -- lemma2 (right y) eq = cong (λ t -> y fork t) eq -- lemma2 (function fn ls rs) eq = cong (λ t → function fn (ls ++V t ∷ rs)) eq -- fact1 : ∀ {n} ps qs (t : Term n) -> (ps ++L qs) ⊹ t ≡ ps ⊹ (qs ⊹ t) -- fact1 [] qs t = refl -- fact1 (p ∷ ps) qs t = begin (p ∷ (ps ++L qs)) ⊹ t ≡⟨ lemma2 p (fact1 ps qs t) ⟩ -- [ p ] ⊹ (ps ⊹ (qs ⊹ t)) ≡⟨ lemma1 p ps (qs ⊹ t) ⟩ -- (p ∷ ps) ⊹ (qs ⊹ t) ∎ -- ◃-fact1 : ∀ {m n} (f : m ⊸ n) {N} (rs : Vec (Term m) N) → f ◃s rs ≡ mapV (f ◃_) rs -- ◃-fact1 f [] = refl -- ◃-fact1 f (x ∷ rs) rewrite ◃-fact1 f rs = refl -- ◃-fact2 : ∀ {m n} (f : m ⊸ n) {L} (ls : Vec (Term m) L) {R} (rs : Vec (Term m) R) → f ◃s (ls ++V rs) ≡ (f ◃s ls) ++V (f ◃s rs) -- ◃-fact2 f [] rs = refl -- ◃-fact2 f (l ∷ ls) rs = cong ((f ◃ l) ∷_) (◃-fact2 f ls rs) -- fact2 : ∀ {m n} (f : m ⊸ n) t ps -> -- f ◃ (ps ⊹ t) ≡ (f ◃S ps) ⊹ (f ◃ t) -- fact2 f t [] = refl -- fact2 f t (left y ∷ xs) = cong (λ t -> t fork (f ◃ y)) (fact2 f t xs) -- fact2 f t (right y ∷ xs) = cong (λ t -> (f ◃ y) fork t) (fact2 f t xs) -- fact2 f t (function fn ls rs ∷ xs) rewrite sym (◃-fact1 f ls) | sym (◃-fact1 f rs) = cong (function fn) (trans (◃-fact2 f ls ((xs ⊹ t) ∷ rs)) (cong ((f ◃s ls) ++V_) (cong (_∷ (f ◃s rs)) (fact2 f t xs)))) -- mutual -- check-props : ∀ {m} (x : Fin (suc m)) {N} (ts : Vec (Term (suc m)) N) fn -> -- (∃ λ (ts' : Vec (Term m) N) -> ts ≡ ▹ (thin x) ◃s ts' × check x ts ≡ just ts') -- ⊎ (∃ λ ps -> function fn ts ≡ (ps ⊹ i x) × check x ts ≡ nothing) -- check-props x [] fn = inj₁ ([] , refl , refl) -- check-props x (t ∷ ts) fn with check-prop x t -- … | inj₂ (ps , t=ps+ix , checkxt=no) rewrite t=ps+ix | checkxt=no = inj₂ (function fn [] ts ∷ ps , refl , refl) -- … | inj₁ (t' , t=thinxt' , checkxt=t') rewrite checkxt=t' with check-props x ts fn -- … | inj₁ (ts' , ts=thinxts' , checkxts=ts') rewrite t=thinxt' | ts=thinxts' | checkxts=ts' = inj₁ (_ , refl , refl) -- … | inj₂ ([] , () , checkxts=no) -- … | inj₂ (left _ ∷ ps , () , checkxts=no) -- … | inj₂ (right _ ∷ ps , () , checkxts=no) -- … | inj₂ (function fn' ls rs ∷ ps , ts=ps+ix , checkxts=no) with Term-function-inj-VecSize ts=ps+ix -- … | refl with Term-function-inj-Vector ts=ps+ix -- … | refl rewrite checkxts=no = inj₂ (function fn (t ∷ ls) rs ∷ ps , refl , refl) -- check-prop : ∀ {m} (x : Fin (suc m)) t -> -- (∃ λ t' -> t ≡ ▹ (thin x) ◃ t' × check x t ≡ just t') -- ⊎ (∃ λ ps -> t ≡ (ps ⊹ i x) × check x t ≡ nothing) -- check-prop x (i x') with checkfact1 x x' (check x x') refl -- check-prop x (i .x) | inj₁ (refl , e) = inj₂ ([] , refl , cong (_<$>_ i) e) -- ... | inj₂ (y , thinxy≡x' , thickxx'≡justy') -- = inj₁ (i y -- , cong i (sym (thinxy≡x')) -- , cong (_<$>_ i) thickxx'≡justy' ) -- check-prop x leaf = inj₁ (leaf , (refl , refl)) -- check-prop x (s fork t) -- with check-prop x s | check-prop x t -- ... | inj₁ (s' , s≡thinxs' , checkxs≡s') | inj₁ (t' , t≡thinxt' , checkxt≡t') -- = inj₁ (s' fork t' , cong₂ _fork_ s≡thinxs' t≡thinxt' -- , cong₂ (λ a b -> _fork_ <$> a ⊛ b) checkxs≡s' checkxt≡t' ) -- ... | inj₂ (ps , s≡ps+ix , checkxs≡no ) | _ -- = inj₂ (left t ∷ ps , cong (λ s -> s fork t) s≡ps+ix -- , cong (λ a -> _fork_ <$> a ⊛ check x t) checkxs≡no ) -- ... | _ | inj₂ (ps , s≡ps+ix , checkxs≡no ) -- = inj₂ (right s ∷ ps , cong (λ t -> s fork t) s≡ps+ix -- , trans (cong (λ a -> _fork_ <$> check x s ⊛ a) checkxs≡no) (lemma (_fork_ <$> check x s))) -- where -- lemma : ∀ {a b : Set} {y : b} (x : Maybe a) -> maybe (λ _ → y) y x ≡ y -- lemma (just x') = refl -- lemma nothing = refl -- check-prop x (function fn ts) with check-props x ts fn -- … | inj₁ (t' , t=thinxt' , checkxt=t') rewrite checkxt=t' = inj₁ (function fn t' , cong (function fn) t=thinxt' , refl) -- … | inj₂ (ps , t=ps+ix , checkxt=no) rewrite checkxt=no = inj₂ (ps , t=ps+ix , refl) -- -- data SizedTerm (n : ℕ) : ℕ → Set where -- -- i : (x : Fin n) -> SizedTerm n (suc zero) -- -- leaf : SizedTerm n (suc zero) -- -- _fork_ : (s : ∃ (SizedTerm n)) (t : ∃ (SizedTerm n)) -> SizedTerm n (suc (proj₁ s + proj₁ t)) -- -- function : FunctionName → ∀ {f} → (ts : Vec (∃ (SizedTerm n)) f) → SizedTerm n (suc (Data.Vec.sum (Data.Vec.map proj₁ ts))) -- -- data SizedStep (n : ℕ) : Set where -- -- left : ∃ (SizedTerm n) -> SizedStep n -- -- right : ∃ (SizedTerm n) -> SizedStep n -- -- function : FunctionName → ∀ {L} → Vec (∃ (SizedTerm n)) L → ∀ {R} → Vec (∃ (SizedTerm n)) R → SizedStep n -- -- mutual -- -- toSizedTerm : ∀ {n} → Term n → ∃ (SizedTerm n) -- -- toSizedTerm (i x) = suc zero , i x -- -- toSizedTerm leaf = suc zero , leaf -- -- toSizedTerm (l fork r) with toSizedTerm l | toSizedTerm r -- -- … | L , sl | R , sr = (suc (L + R)) , ((L , sl) fork (R , sr)) -- -- toSizedTerm (function fn ts) with toSizedTerms ts -- -- … | sts = suc (Data.Vec.sum (Data.Vec.map proj₁ sts)) , SizedTerm.function fn sts -- -- fromSizedTerm : ∀ {n} → ∃ (SizedTerm n) → Term n -- -- fromSizedTerm (_ , i x) = i x -- -- fromSizedTerm (_ , leaf) = leaf -- -- fromSizedTerm (_ , (_fork_ t₁ t₂)) = (fromSizedTerm t₁ fork fromSizedTerm t₂) -- -- fromSizedTerm (_ , function fn ts) = function fn (fromSizedTerms ts) -- -- toSizedTerms : ∀ {n N} → Vec (Term n) N → Vec (∃ (SizedTerm n)) N -- -- toSizedTerms [] = [] -- -- toSizedTerms (t ∷ ts) = toSizedTerm t ∷ toSizedTerms ts -- -- fromSizedTerms : ∀ {n N} → Vec (∃ (SizedTerm n)) N → Vec (Term n) N -- -- fromSizedTerms [] = [] -- -- fromSizedTerms (t ∷ ts) = fromSizedTerm t ∷ fromSizedTerms ts -- -- mutual -- -- isoSizedTerm : ∀ {n} → (st : ∃ (SizedTerm n)) → st ≡ toSizedTerm (fromSizedTerm st) -- -- isoSizedTerm (._ , i x) = refl -- -- isoSizedTerm (._ , leaf) = refl -- -- isoSizedTerm (.(suc (proj₁ s + proj₁ t)) , (s fork t)) rewrite sym (isoSizedTerm s) | sym (isoSizedTerm t) = refl -- -- isoSizedTerm (._ , function x ts) rewrite sym (isoSizedTerms ts) = refl -- -- isoSizedTerms : ∀ {n N} → (st : Vec (∃ (SizedTerm n)) N) → st ≡ toSizedTerms (fromSizedTerms st) -- -- isoSizedTerms [] = refl -- -- isoSizedTerms (t ∷ ts) rewrite sym (isoSizedTerm t) | sym (isoSizedTerms ts) = refl -- -- mutual -- -- isoTerm : ∀ {n} → (t : Term n) → t ≡ fromSizedTerm (toSizedTerm t) -- -- isoTerm (i x) = refl -- -- isoTerm leaf = refl -- -- isoTerm (s fork t) rewrite sym (isoTerm s) | sym (isoTerm t) = refl -- -- isoTerm (function fn ts) rewrite sym (isoTerms ts) = refl -- -- isoTerms : ∀ {n N} → (t : Vec (Term n) N) → t ≡ fromSizedTerms (toSizedTerms t) -- -- isoTerms [] = refl -- -- isoTerms (t ∷ ts) rewrite sym (isoTerm t) | sym (isoTerms ts) = refl -- -- toSizedStep : ∀ {n} → Step n → SizedStep n -- -- toSizedStep (left r) = left (toSizedTerm r) -- -- toSizedStep (right l) = right (toSizedTerm l) -- -- toSizedStep (function fn ls rs) = function fn (toSizedTerms ls) (toSizedTerms rs) -- -- fromSizedStep : ∀ {n} → SizedStep n → Step n -- -- fromSizedStep (left r) = left (fromSizedTerm r) -- -- fromSizedStep (right l) = right (fromSizedTerm l) -- -- fromSizedStep (function fn ls rs) = function fn (fromSizedTerms ls) (fromSizedTerms rs) -- -- isoSizedStep : ∀ {n} → (ss : SizedStep n) → ss ≡ toSizedStep (fromSizedStep ss) -- -- isoSizedStep (left r) rewrite sym (isoSizedTerm r) = refl -- -- isoSizedStep (right l) rewrite sym (isoSizedTerm l) = refl -- -- isoSizedStep (function fn ls rs) rewrite sym (isoSizedTerms ls) | sym (isoSizedTerms rs) = refl -- -- isoStep : ∀ {n} → (s : Step n) → s ≡ fromSizedStep (toSizedStep s) -- -- isoStep (left r) rewrite sym (isoTerm r) = refl -- -- isoStep (right l) rewrite sym (isoTerm l) = refl -- -- isoStep (function fn ls rs) rewrite sym (isoTerms ls) | sym (isoTerms rs) = refl -- -- toSizedSteps : ∀ {n} → List (Step n) → List (SizedStep n) -- -- toSizedSteps [] = [] -- -- toSizedSteps (s ∷ ss) = toSizedStep s ∷ toSizedSteps ss -- -- fromSizedSteps : ∀ {n} → List (SizedStep n) → List (Step n) -- -- fromSizedSteps [] = [] -- -- fromSizedSteps (s ∷ ss) = fromSizedStep s ∷ fromSizedSteps ss -- -- isoSizedSteps : ∀ {n} → (ss : List (SizedStep n)) → ss ≡ toSizedSteps (fromSizedSteps ss) -- -- isoSizedSteps [] = refl -- -- isoSizedSteps (s ∷ ss) rewrite sym (isoSizedStep s) | sym (isoSizedSteps ss) = refl -- -- isoSteps : ∀ {n} → (s : List (Step n)) → s ≡ fromSizedSteps (toSizedSteps s) -- -- isoSteps [] = refl -- -- isoSteps (s ∷ ss) rewrite sym (isoStep s) | sym (isoSteps ss) = refl -- -- _Sized⊹_ : ∀ {n} (ps : List (SizedStep n)) (t : ∃ (SizedTerm n)) -> ∃ (SizedTerm n) -- -- [] Sized⊹ t = t -- -- (left r ∷ ps) Sized⊹ t = _ , (ps Sized⊹ t) SizedTerm.fork r -- -- (right l ∷ ps) Sized⊹ t = _ , l SizedTerm.fork (ps Sized⊹ t) -- -- (function fn ls rs ∷ ps) Sized⊹ t = _ , function fn (ls ++V (ps Sized⊹ t) ∷ rs) -- -- fromSizedTerms-commute : ∀ {n} {L R} → (ls : Vec (∃ (SizedTerm n)) L) (rs : Vec (∃ (SizedTerm n)) R) → fromSizedTerms (ls ++V rs) ≡ fromSizedTerms ls ++V fromSizedTerms rs -- -- fromSizedTerms-commute [] rs = refl -- -- fromSizedTerms-commute (l ∷ ls) rs rewrite fromSizedTerms-commute ls rs = refl -- -- toSizedTerms-commute : ∀ {n} {L R} → (ls : Vec (Term n) L) (rs : Vec (Term n) R) → toSizedTerms (ls ++V rs) ≡ toSizedTerms ls ++V toSizedTerms rs -- -- toSizedTerms-commute [] rs = refl -- -- toSizedTerms-commute (l ∷ ls) rs rewrite toSizedTerms-commute ls rs = refl -- -- isoSized⊹ : ∀ {n} (ps : List (SizedStep n)) (t : ∃ (SizedTerm n)) → fromSizedTerm (ps Sized⊹ t) ≡ fromSizedSteps ps ⊹ fromSizedTerm t -- -- isoSized⊹ [] t = refl -- -- isoSized⊹ (left r ∷ ps) t rewrite isoSized⊹ ps t = refl -- -- isoSized⊹ (right l ∷ ps) t rewrite isoSized⊹ ps t = refl -- -- isoSized⊹ (function fn ls rs ∷ ps) t rewrite sym (isoSized⊹ ps t) | fromSizedTerms-commute ls ((ps Sized⊹ t) ∷ rs) = refl -- -- iso⊹ : ∀ {n} (ps : List (Step n)) (t : Term n) → toSizedTerm (ps ⊹ t) ≡ toSizedSteps ps Sized⊹ toSizedTerm t -- -- iso⊹ [] t = refl -- -- iso⊹ (left r ∷ ps) t rewrite iso⊹ ps t = refl -- -- iso⊹ (right l ∷ ps) t rewrite iso⊹ ps t = refl -- -- iso⊹ (function fn ls rs ∷ ps) t rewrite sym (iso⊹ ps t) | toSizedTerms-commute ls ((ps ⊹ t) ∷ rs) = refl -- -- import Data.Vec.Properties -- -- import Relation.Binary.PropositionalEquality as PE -- -- open Data.Vec.Properties.UsingVectorEquality (PE.setoid ℕ) -- -- import Data.Vec.Equality -- -- open Data.Vec.Equality.PropositionalEquality using (to-≡) -- -- -- some equivalences needed to adapt Tactic.Nat to the standard library -- -- module EquivalenceOf≤ where -- -- open import Agda.Builtin.Equality -- -- open import Agda.Builtin.Nat -- -- open import Data.Nat using (less-than-or-equal) renaming (_≤_ to _≤s_) -- -- open import Data.Nat.Properties using (≤⇒≤″; ≤″⇒≤) -- -- open import Prelude using (diff; id) renaming (_≤_ to _≤p_) -- -- open import Tactic.Nat.Generic (quote _≤p_) (quote Function.id) (quote Function.id) using (by) -- -- ≤p→≤s : ∀ {a b} → a ≤p b → a ≤s b -- -- ≤p→≤s (diff k b₊₁≡k₊₁+a) = ≤″⇒≤ (less-than-or-equal {k = k} (by b₊₁≡k₊₁+a)) -- -- ≤s→≤p : ∀ {a b} → a ≤s b → a ≤p b -- -- ≤s→≤p a≤sb with ≤⇒≤″ a≤sb -- -- ≤s→≤p _ | less-than-or-equal {k = k} a+k≡b = diff k (by a+k≡b) -- -- module _ where -- -- open EquivalenceOf≤ -- -- open import Data.Nat -- -- open import Tactic.Nat.Generic (quote Data.Nat._≤_) (quote ≤s→≤p) (quote ≤p→≤s) public -- -- growingSize : ∀ {m} (st : ∃ (SizedTerm m)) → (sp : SizedStep m) (sps : List (SizedStep m)) → proj₁ ((sp ∷ sps) Sized⊹ st) > proj₁ st -- -- growingSize st (left r) [] = auto -- -- growingSize st (right l) [] = auto -- -- growingSize {m} st (function fn ls rs) [] rewrite to-≡ (map-++-commute proj₁ ls {ys = st ∷ rs}) | Data.Vec.Properties.sum-++-commute (mapV proj₁ ls) {ys = mapV proj₁ (st ∷ rs)} = auto -- -- growingSize st (left x) (p₂ ∷ ps) = by (growingSize st p₂ ps) -- -- growingSize st (right x) (p₂ ∷ ps) = by (growingSize st p₂ ps) -- -- growingSize st (function fn ls rs) (p₂ ∷ ps) rewrite to-≡ (map-++-commute proj₁ ls {ys = ((p₂ ∷ ps) Sized⊹ st) ∷ rs}) | Data.Vec.Properties.sum-++-commute (mapV proj₁ ls) {ys = mapV proj₁ (((p₂ ∷ ps) Sized⊹ st) ∷ rs)} = by (growingSize st p₂ ps) -- -- No-Cycle : ∀{m} (t : Term m) ps -> (eq : t ≡ ps ⊹ t) → ps ≡ [] -- -- No-Cycle t [] eq = refl -- -- No-Cycle t (p ∷ ps) eq = refute (subst (λ v → v > proj₁ (toSizedTerm t)) (sym (trans same iso)) growth) where -- -- same : proj₁ (toSizedTerm t) ≡ proj₁ (toSizedTerm ((p ∷ ps) ⊹ t)) -- -- growth : proj₁ ((toSizedStep p ∷ toSizedSteps ps) Sized⊹ toSizedTerm t) > proj₁ (toSizedTerm t) -- -- iso : proj₁ (toSizedTerm ((p ∷ ps) ⊹ t)) ≡ proj₁ ((toSizedStep p ∷ toSizedSteps ps) Sized⊹ toSizedTerm t) -- -- growth = growingSize (toSizedTerm t) (toSizedStep p) (toSizedSteps ps) -- -- same = cong (proj₁ ∘ toSizedTerm) eq -- -- iso = cong proj₁ (iso⊹ (p ∷ ps) t) -- -- module Step2 where -- -- fact : ∀{m} (x : Fin m) p ps -> Nothing (Unifies (i x) ((p ∷ ps) ⊹ i x)) -- -- fact x p ps f r with No-Cycle (f x) (f ◃S (p ∷ ps)) (trans r (StepM.fact2 f (i x) (p ∷ ps))) -- -- ... | () -- -- NothingStep : ∀ {l} (x : Fin (suc l)) (t : Term (suc l)) → -- -- i x ≢ t → -- -- (ps : List (Step (suc l))) → -- -- t ≡ (ps ⊹ i x) → -- -- ∀ {n} (f : Fin (suc l) → Term n) → f x ≢ (f ◃ t) -- -- NothingStep {l} x t ix≢t ps r = No-Unifier -- -- where -- -- No-Unifier : {n : ℕ} (f : Fin (suc l) → Term n) → f x ≢ f ◃ t -- -- No-Unifier f fx≡f◃t = ix≢t (sym (trans r (cong (λ ps -> ps ⊹ i x) ps≡[]))) -- -- where -- -- ps≡[] : ps ≡ [] -- -- ps≡[] = map-[] f ps (No-Cycle (f x) (f ◃S ps) -- -- (begin f x ≡⟨ fx≡f◃t ⟩ -- -- f ◃ t ≡⟨ cong (f ◃_) r ⟩ -- -- f ◃ (ps ⊹ i x) ≡⟨ StepM.fact2 f (i x) ps ⟩ -- -- (f ◃S ps) ⊹ f x ∎))
{ "alphanum_fraction": 0.5395538692, "avg_line_length": 51.1588235294, "ext": "agda", "hexsha": "ef4c86ef078ac7a229b69bd9727170fdad835770", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Step.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Step.agda", "max_line_length": 251, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Step.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6839, "size": 17394 }
{-# OPTIONS --cubical #-} module Data.List.Permute where open import Prelude open import Data.Nat open import Data.Nat.Properties using (_≤ᴮ_) infixr 5 _∹_∷_ data Premuted {a} (A : Type a) : Type a where [] : Premuted A _∹_∷_ : ℕ → A → Premuted A → Premuted A mutual merge : Premuted A → Premuted A → Premuted A merge [] = id merge (n ∹ x ∷ xs) = mergeˡ n x (merge xs) mergeˡ : ℕ → A → (Premuted A → Premuted A) → Premuted A → Premuted A mergeˡ i x xs [] = i ∹ x ∷ xs [] mergeˡ i x xs (j ∹ y ∷ ys) = merge⁺ i x xs j y ys (i ≤ᴮ j) merge⁺ : ℕ → A → (Premuted A → Premuted A) → ℕ → A → Premuted A → Bool → Premuted A merge⁺ i x xs j y ys true = i ∹ x ∷ xs ((j ∸ i) ∹ y ∷ ys) merge⁺ i x xs j y ys false = j ∹ y ∷ mergeˡ ((i ∸ j) ∸ 1) x xs ys merge-idʳ : (xs : Premuted A) → merge xs [] ≡ xs merge-idʳ [] = refl merge-idʳ (i ∹ x ∷ xs) = cong (i ∹ x ∷_) (merge-idʳ xs) open import Algebra ≤≡-trans : ∀ x y z → (x ≤ᴮ y) ≡ true → (y ≤ᴮ z) ≡ true → (x ≤ᴮ z) ≡ true ≤≡-trans zero y z p₁ p₂ = refl ≤≡-trans (suc x) zero z p₁ p₂ = ⊥-elim (subst (bool ⊤ ⊥) p₁ tt) ≤≡-trans (suc x) (suc y) zero p₁ p₂ = ⊥-elim (subst (bool ⊤ ⊥) p₂ tt) ≤≡-trans (suc x) (suc y) (suc z) p₁ p₂ = ≤≡-trans x y z p₁ p₂ <≡-trans : ∀ x y z → (x ≤ᴮ y) ≡ false → (y ≤ᴮ z) ≡ false → (x ≤ᴮ z) ≡ false <≡-trans zero y z p₁ p₂ = ⊥-elim (subst (bool ⊥ ⊤) p₁ tt) <≡-trans (suc x) zero z p₁ p₂ = ⊥-elim (subst (bool ⊥ ⊤) p₂ tt) <≡-trans (suc x) (suc y) zero p₁ p₂ = p₂ <≡-trans (suc x) (suc y) (suc z) p₁ p₂ = <≡-trans x y z p₁ p₂ ≤≡-sub : ∀ i j k → (j ≤ᴮ k) ≡ true → (j ∸ i ≤ᴮ k ∸ i) ≡ true ≤≡-sub zero j k p = p ≤≡-sub (suc i) zero k p = refl ≤≡-sub (suc i) (suc j) zero p = ⊥-elim (subst (bool ⊤ ⊥) p tt) ≤≡-sub (suc i) (suc j) (suc k) p = ≤≡-sub i j k p ≥≡-sub : ∀ i j k → (j ≤ᴮ k) ≡ false → (i ≤ᴮ k) ≡ true → (j ∸ i ≤ᴮ k ∸ i) ≡ false ≥≡-sub i zero k p _ = ⊥-elim (subst (bool ⊥ ⊤) p tt) ≥≡-sub zero (suc j) k p _ = p ≥≡-sub (suc i) (suc j) zero p p₂ = ⊥-elim (subst (bool ⊤ ⊥) p₂ tt) ≥≡-sub (suc i) (suc j) (suc k) p p₂ = ≥≡-sub i j k p p₂ <≡-sub : ∀ i j k → (i ≤ᴮ j) ≡ false → (j ≤ᴮ k) ≡ false → (i ∸ k ∸ 1 ≤ᴮ j ∸ k ∸ 1) ≡ false <≡-sub zero j k p _ = ⊥-elim (subst (bool ⊥ ⊤) p tt) <≡-sub (suc i) zero k p p₂ = ⊥-elim (subst (bool ⊥ ⊤) p₂ tt) <≡-sub (suc i) (suc j) zero p p₂ = p <≡-sub (suc i) (suc j) (suc k) p p₂ = <≡-sub i j k p p₂ >≡-sub : ∀ i j k → (i ≤ᴮ j) ≡ true → (j ≤ᴮ k) ≡ false → (i ≤ᴮ k) ≡ false → (i ∸ k ∸ 1 ≤ᴮ j ∸ k ∸ 1) ≡ true >≡-sub i zero k p₁ p₂ p₃ = ⊥-elim (subst (bool ⊥ ⊤) p₂ tt) >≡-sub zero (suc j) k p₁ p₂ p₃ = ⊥-elim (subst (bool ⊥ ⊤) p₃ tt) >≡-sub (suc i) (suc j) zero p₁ p₂ p₃ = p₁ >≡-sub (suc i) (suc j) (suc k) p₁ p₂ p₃ = >≡-sub i j k p₁ p₂ p₃ zero-sub : ∀ n → zero ∸ n ≡ zero zero-sub zero = refl zero-sub (suc n) = refl ≤-sub-id : ∀ i j k → (i ≤ᴮ j) ≡ true → k ∸ i ∸ (j ∸ i) ≡ k ∸ j ≤-sub-id zero j k p = refl ≤-sub-id (suc i) zero k p = ⊥-elim (subst (bool ⊤ ⊥) p tt) ≤-sub-id (suc i) (suc j) zero p = zero-sub (j ∸ i) ≤-sub-id (suc i) (suc j) (suc k) p = ≤-sub-id i j k p lemma₁ : ∀ i j k → (j ≤ᴮ k) ≡ false → i ∸ k ∸ 1 ∸ (j ∸ k ∸ 1) ∸ 1 ≡ i ∸ j ∸ 1 lemma₁ zero j k _ = cong (λ zk → zk ∸ 1 ∸ (j ∸ k ∸ 1) ∸ 1) (zero-sub k) ; cong (_∸ 1) (zero-sub (j ∸ k ∸ 1)) ; sym (cong (_∸ 1) (zero-sub j)) lemma₁ (suc i) zero k p₂ = ⊥-elim (subst (bool ⊥ ⊤) p₂ tt) lemma₁ (suc i) (suc j) zero p₂ = refl lemma₁ (suc i) (suc j) (suc k) p₂ = lemma₁ i j k p₂ lemma₂ : ∀ i j k → (i ≤ᴮ j) ≡ true → (j ≤ᴮ k) ≡ false → (i ≤ᴮ k) ≡ false → j ∸ i ≡ j ∸ k ∸ 1 ∸ (i ∸ k ∸ 1) lemma₂ i zero k p₁ p₂ p₃ = ⊥-elim (subst (bool ⊥ ⊤) p₂ tt) lemma₂ zero (suc j) k p₁ p₂ p₃ = ⊥-elim (subst (bool ⊥ ⊤) p₃ tt) lemma₂ (suc i) (suc j) zero p₁ p₂ p₃ = refl lemma₂ (suc i) (suc j) (suc k) p₁ p₂ p₃ = lemma₂ i j k p₁ p₂ p₃ {-# TERMINATING #-} merge-assoc : Associative (merge {A = A}) merge-assoc [] ys zs = refl merge-assoc (i ∹ x ∷ xs) [] zs = cong (flip merge zs) (merge-idʳ (i ∹ x ∷ xs)) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) [] = merge-idʳ (merge (i ∹ x ∷ xs) (j ∹ y ∷ ys)) ; sym (cong (merge (i ∹ x ∷ xs)) (merge-idʳ (j ∹ y ∷ ys))) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) with merge-assoc xs (j ∸ i ∹ y ∷ ys) (k ∸ i ∹ z ∷ zs) | merge-assoc (i ∸ k ∸ 1 ∹ x ∷ xs) (j ∸ k ∸ 1 ∹ y ∷ ys) zs | (merge-assoc (i ∸ j ∸ 1 ∹ x ∷ xs) ys (k ∸ j ∹ z ∷ zs)) | i ≤ᴮ j | inspect (i ≤ᴮ_) j | j ≤ᴮ k | inspect (j ≤ᴮ_) k merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | r | _ | _ | true | 〖 ij 〗 | true | 〖 jk 〗 = cong (merge⁺ i x (merge (merge xs (j ∸ i ∹ y ∷ ys))) k z zs) (≤≡-trans i j k ij jk) ; cong (i ∹ x ∷_) (r ; cong (merge xs) (cong (merge⁺ (j ∸ i) y (merge ys) (k ∸ i) z zs) (≤≡-sub i j k jk) ; cong (λ kij → j ∸ i ∹ y ∷ merge ys (kij ∹ z ∷ zs)) (≤-sub-id i j k ij))) ; cong (merge⁺ i x (merge xs) j y (merge ys (k ∸ j ∹ z ∷ zs))) (sym ij) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | _ | r | _ | false | 〖 ij 〗 | false | 〖 jk 〗 = cong (merge⁺ j y (merge (mergeˡ (i ∸ j ∸ 1) x (merge xs) ys)) k z zs ) jk ; cong (k ∹ z ∷_) (cong (λ s → mergeˡ (j ∸ k ∸ 1) y (merge (mergeˡ s x (merge xs) ys)) zs) (sym (lemma₁ i j k jk)) ; cong (λ s → merge (merge⁺ (i ∸ k ∸ 1) x (merge xs) (j ∸ k ∸ 1) y ys s) zs) (sym (<≡-sub i j k ij jk)) ; r) ; cong (merge⁺ i x (merge xs) k z (mergeˡ (j ∸ k ∸ 1) y (merge ys) zs)) (sym (<≡-trans i j k ij jk)) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | _ | _ | r | false | 〖 ij 〗 | true | 〖 jk 〗 = cong (merge⁺ j y (merge (mergeˡ (i ∸ j ∸ 1) x (merge xs) ys)) k z zs) jk ; cong (j ∹ y ∷_) r ; cong (merge⁺ i x (merge xs) j y (merge ys (k ∸ j ∹ z ∷ zs))) (sym ij) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | _ | _ | _ | true | ij | false | jk with i ≤ᴮ k | inspect (i ≤ᴮ_) k merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | _ | r | _ | true | 〖 ij 〗 | false | 〖 jk 〗 | false | 〖 ik 〗 = cong (k ∹ z ∷_) ((cong (λ s → mergeˡ (i ∸ k ∸ 1) x (merge (merge xs (s ∹ y ∷ ys))) zs) (lemma₂ i j k ij jk ik) ; cong (λ c → merge (merge⁺ (i ∸ k ∸ 1) x (merge xs) (j ∸ k ∸ 1) y ys c) zs) (sym (>≡-sub i j k ij jk ik ))) ; r ) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | r | _ | _ | true | 〖 ij 〗 | false | 〖 jk 〗 | true | 〖 ik 〗 = cong (i ∹ x ∷_) (r ; cong (merge xs) (cong (merge⁺ (j ∸ i) y (merge ys) (k ∸ i) z zs) (≥≡-sub i j k jk ik) ; cong (λ s → k ∸ i ∹ z ∷ mergeˡ s y (merge ys) zs) (cong (_∸ 1) (≤-sub-id i k j ik)) )) open import Data.List index : List ℕ → List A → List (Premuted A) index _ [] = [] index [] (x ∷ xs) = (0 ∹ x ∷ []) ∷ index [] xs index (i ∷ is) (x ∷ xs) = (i ∹ x ∷ []) ∷ index is xs unindex : Premuted A → List A unindex [] = [] unindex (_ ∹ x ∷ xs) = x ∷ unindex xs open import TreeFold shuffle : List ℕ → List A → List A shuffle is = unindex ∘ treeFold merge [] ∘ index is open import Data.List.Syntax e : List ℕ e = shuffle [ 0 , 1 , 0 ] [ 1 , 2 , 3 ]
{ "alphanum_fraction": 0.4236206681, "avg_line_length": 58.3430656934, "ext": "agda", "hexsha": "436170396f94e19be3baf0d60cec6ee4af88e65e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/List/Permute.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/List/Permute.agda", "max_line_length": 278, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/List/Permute.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 3622, "size": 7993 }
module Categories.Monoidal.Closed where
{ "alphanum_fraction": 0.875, "avg_line_length": 20, "ext": "agda", "hexsha": "91496f885dc86db61d213658f677606a52bdc2f6", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Monoidal/Closed.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Monoidal/Closed.agda", "max_line_length": 39, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Monoidal/Closed.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 7, "size": 40 }
module Issue755 where open import Common.Prelude renaming (Nat to ℕ) open import Common.Equality abstract foo : ℕ → ℕ foo x = zero bar : foo zero ≡ foo (suc zero) → foo zero ≡ foo (suc zero) bar refl = refl -- 0 != 1 of type ℕ -- when checking that the pattern refl has type -- foo zero ≡ foo (suc zero)
{ "alphanum_fraction": 0.6794871795, "avg_line_length": 19.5, "ext": "agda", "hexsha": "d7e29f5663ba36c252516d7f19b7e0b793cb7d92", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue755.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue755.agda", "max_line_length": 59, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/Issue755.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 97, "size": 312 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Empty open import lib.types.Sigma open import lib.types.Pi open import lib.types.Group open import lib.types.Nat open import lib.types.List open import lib.types.Word open import lib.types.SetQuotient open import lib.groups.Homomorphism module lib.groups.FreeGroup {i} where -- [qwr-sym] is not needed, but it seems more principled to -- make [QuotWordRel] an equivalence relation. data QuotWordRel {A : Type i} : Word A → Word A → Type i where qwr-refl : ∀ {l₁ l₂} → l₁ == l₂ → QuotWordRel l₁ l₂ qwr-trans : ∀ {l₁ l₂ l₃} → QuotWordRel l₁ l₂ → QuotWordRel l₂ l₃ → QuotWordRel l₁ l₃ qwr-sym : ∀ {l₁ l₂} → QuotWordRel l₁ l₂ → QuotWordRel l₂ l₁ qwr-cons : ∀ x {l₁ l₂} → QuotWordRel l₁ l₂ → QuotWordRel (x :: l₁) (x :: l₂) qwr-flip : ∀ x₁ l → QuotWordRel (x₁ :: flip x₁ :: l) l -- The quotient QuotWord : Type i → Type i QuotWord A = SetQuot (QuotWordRel {A}) module _ {A : Type i} where qw[_] : Word A → QuotWord A qw[_] = q[_] module QuotWordElim {k} {P : QuotWord A → Type k} {{_ : {x : QuotWord A} → is-set (P x)}} (incl* : (a : Word A) → P qw[ a ]) (rel* : ∀ {a₁ a₂} (r : QuotWordRel a₁ a₂) → incl* a₁ == incl* a₂ [ P ↓ quot-rel r ]) = SetQuotElim incl* rel* open QuotWordElim public renaming (f to QuotWord-elim) hiding (quot-rel-β) module QuotWordRec {k} {B : Type k} {{_ : is-set B}} (incl* : Word A → B) (rel* : ∀ {a₁ a₂} (r : QuotWordRel a₁ a₂) → incl* a₁ == incl* a₂) = SetQuotRec incl* rel* open QuotWordRec public renaming (f to QuotWord-rec) module _ (A : Type i) where private abstract QuotWordRel-cong-++-l : ∀ {l₁ l₁'} → QuotWordRel {A} l₁ l₁' → (l₂ : Word A) → QuotWordRel (l₁ ++ l₂) (l₁' ++ l₂) QuotWordRel-cong-++-l (qwr-refl idp) l₂ = qwr-refl idp QuotWordRel-cong-++-l (qwr-trans qwr₁ qwr₂) l₂ = qwr-trans (QuotWordRel-cong-++-l qwr₁ l₂) (QuotWordRel-cong-++-l qwr₂ l₂) QuotWordRel-cong-++-l (qwr-sym qwr) l₂ = qwr-sym (QuotWordRel-cong-++-l qwr l₂) QuotWordRel-cong-++-l (qwr-cons x qwr₁) l₂ = qwr-cons x (QuotWordRel-cong-++-l qwr₁ l₂) QuotWordRel-cong-++-l (qwr-flip x₁ l₁) l₂ = qwr-flip x₁ (l₁ ++ l₂) QuotWordRel-cong-++-r : ∀ (l₁ : Word A) → ∀ {l₂ l₂'} → QuotWordRel l₂ l₂' → QuotWordRel (l₁ ++ l₂) (l₁ ++ l₂') QuotWordRel-cong-++-r nil qwr₂ = qwr₂ QuotWordRel-cong-++-r (x :: l₁) qwr₂ = qwr-cons x (QuotWordRel-cong-++-r l₁ qwr₂) infixl 80 _⊞_ _⊞_ : QuotWord A → QuotWord A → QuotWord A _⊞_ = QuotWord-rec (λ l₁ → QuotWord-rec (λ l₂ → qw[ l₁ ++ l₂ ]) (λ r → quot-rel $ QuotWordRel-cong-++-r l₁ r)) (λ {l₁} {l₁'} r → λ= $ QuotWord-elim (λ l₂ → quot-rel $ QuotWordRel-cong-++-l r l₂) (λ _ → prop-has-all-paths-↓)) abstract QuotWordRel-cong-flip : ∀ {l₁ l₂} → QuotWordRel {A} l₁ l₂ → QuotWordRel (Word-flip l₁) (Word-flip l₂) QuotWordRel-cong-flip (qwr-refl idp) = qwr-refl idp QuotWordRel-cong-flip (qwr-trans qwr₁ qwr₂) = qwr-trans (QuotWordRel-cong-flip qwr₁) (QuotWordRel-cong-flip qwr₂) QuotWordRel-cong-flip (qwr-sym qwr) = qwr-sym (QuotWordRel-cong-flip qwr) QuotWordRel-cong-flip (qwr-cons x qwr₁) = qwr-cons (flip x) (QuotWordRel-cong-flip qwr₁) QuotWordRel-cong-flip (qwr-flip (inl x) l) = qwr-flip (inr x) (Word-flip l) QuotWordRel-cong-flip (qwr-flip (inr x) l) = qwr-flip (inl x) (Word-flip l) QuotWordRel-cong-reverse : ∀ {l₁ l₂} → QuotWordRel {A} l₁ l₂ → QuotWordRel (reverse l₁) (reverse l₂) QuotWordRel-cong-reverse (qwr-refl x) = qwr-refl (ap reverse x) QuotWordRel-cong-reverse (qwr-trans qwr qwr₁) = qwr-trans (QuotWordRel-cong-reverse qwr) (QuotWordRel-cong-reverse qwr₁) QuotWordRel-cong-reverse (qwr-sym qwr) = qwr-sym (QuotWordRel-cong-reverse qwr) QuotWordRel-cong-reverse (qwr-cons x qwr) = QuotWordRel-cong-++-l (QuotWordRel-cong-reverse qwr) (x :: nil) QuotWordRel-cong-reverse (qwr-flip (inl x) l) = qwr-trans (qwr-refl (++-assoc (reverse l) (inr x :: nil) (inl x :: nil))) $ qwr-trans (QuotWordRel-cong-++-r (reverse l) (qwr-flip (inr x) nil)) $ qwr-refl (++-unit-r (reverse l)) QuotWordRel-cong-reverse (qwr-flip (inr x) l) = qwr-trans (qwr-refl (++-assoc (reverse l) (inl x :: nil) (inr x :: nil))) $ qwr-trans (QuotWordRel-cong-++-r (reverse l) (qwr-flip (inl x) nil)) $ qwr-refl (++-unit-r (reverse l)) ⊟ : QuotWord A → QuotWord A ⊟ = QuotWord-rec (qw[_] ∘ reverse ∘ Word-flip) (λ r → quot-rel $ QuotWordRel-cong-reverse $ QuotWordRel-cong-flip r) ⊞-unit : QuotWord A ⊞-unit = qw[ nil ] abstract ⊞-unit-l : ∀ g → ⊞-unit ⊞ g == g ⊞-unit-l = QuotWord-elim (λ _ → idp) (λ _ → prop-has-all-paths-↓) ⊞-assoc : ∀ g₁ g₂ g₃ → (g₁ ⊞ g₂) ⊞ g₃ == g₁ ⊞ (g₂ ⊞ g₃) ⊞-assoc = QuotWord-elim (λ l₁ → QuotWord-elim (λ l₂ → QuotWord-elim (λ l₃ → ap qw[_] $ ++-assoc l₁ l₂ l₃) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓) Word-inv-l : ∀ l → QuotWordRel {A} (reverse (Word-flip l) ++ l) nil Word-inv-l nil = qwr-refl idp Word-inv-l (inl x :: l) = qwr-trans (qwr-refl (++-assoc (reverse (Word-flip l)) (inr x :: nil) (inl x :: l))) $ qwr-trans (QuotWordRel-cong-++-r (reverse (Word-flip l)) (qwr-flip (inr x) l)) $ Word-inv-l l Word-inv-l (inr x :: l) = qwr-trans (qwr-refl (++-assoc (reverse (Word-flip l)) (inl x :: nil) (inr x :: l))) $ qwr-trans (QuotWordRel-cong-++-r (reverse (Word-flip l)) (qwr-flip (inl x) l)) $ Word-inv-l l ⊟-inv-l : ∀ g → (⊟ g) ⊞ g == ⊞-unit ⊟-inv-l = QuotWord-elim (λ l → quot-rel (Word-inv-l l)) (λ _ → prop-has-all-paths-↓) QuotWord-group-structure : GroupStructure (QuotWord A) QuotWord-group-structure = record { ident = ⊞-unit ; inv = ⊟ ; comp = _⊞_ ; unit-l = ⊞-unit-l ; assoc = ⊞-assoc ; inv-l = ⊟-inv-l } FreeGroup : Group i FreeGroup = group _ QuotWord-group-structure module FreeGroup = Group FreeGroup -- freeness module _ {A : Type i} {j} (G : Group j) where private module G = Group G abstract Word-extendᴳ-emap : ∀ f {l₁ l₂} → QuotWordRel {A} l₁ l₂ → Word-extendᴳ G f l₁ == Word-extendᴳ G f l₂ Word-extendᴳ-emap f (qwr-refl idp) = idp Word-extendᴳ-emap f (qwr-trans qwr qwr₁) = (Word-extendᴳ-emap f qwr) ∙ (Word-extendᴳ-emap f qwr₁) Word-extendᴳ-emap f (qwr-sym qwr) = ! (Word-extendᴳ-emap f qwr) Word-extendᴳ-emap f (qwr-cons x qwr) = ap (G.comp (PlusMinus-extendᴳ G f x)) (Word-extendᴳ-emap f qwr) Word-extendᴳ-emap f (qwr-flip (inl x) l) = ! (G.assoc (f x) (G.inv (f x)) (Word-extendᴳ G f l)) ∙ ap (λ g → G.comp g (Word-extendᴳ G f l)) (G.inv-r (f x)) ∙ G.unit-l _ Word-extendᴳ-emap f (qwr-flip (inr x) l) = ! (G.assoc (G.inv (f x)) (f x) (Word-extendᴳ G f l)) ∙ ap (λ g → G.comp g (Word-extendᴳ G f l)) (G.inv-l (f x)) ∙ G.unit-l _ FreeGroup-extend : (A → G.El) → (FreeGroup A →ᴳ G) FreeGroup-extend f' = record {M} where module M where f : QuotWord A → G.El f = QuotWord-rec (Word-extendᴳ G f') (λ r → Word-extendᴳ-emap f' r) abstract pres-comp : preserves-comp (FreeGroup.comp A) G.comp f pres-comp = QuotWord-elim (λ l₁ → QuotWord-elim (λ l₂ → Word-extendᴳ-++ G f' l₁ l₂) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓) private module Lemma (hom : FreeGroup A →ᴳ G) where open GroupHom hom f* : A → G.El f* a = f qw[ inl a :: nil ] abstract PlusMinus-extendᴳ-hom : ∀ x → PlusMinus-extendᴳ G f* x == f qw[ x :: nil ] PlusMinus-extendᴳ-hom (inl x) = idp PlusMinus-extendᴳ-hom (inr x) = ! $ pres-inv qw[ inl x :: nil ] Word-extendᴳ-hom : ∀ l → Word-extendᴳ G f* l == f qw[ l ] Word-extendᴳ-hom nil = ! pres-ident Word-extendᴳ-hom (x :: l) = ap2 G.comp (PlusMinus-extendᴳ-hom x) (Word-extendᴳ-hom l) ∙ ! (pres-comp _ _) open Lemma FreeGroup-extend-is-equiv : is-equiv FreeGroup-extend FreeGroup-extend-is-equiv = is-eq _ from to-from from-to where to = FreeGroup-extend from = f* abstract to-from : ∀ h → to (from h) == h to-from h = group-hom= $ λ= $ QuotWord-elim (λ l → Word-extendᴳ-hom h l) (λ _ → prop-has-all-paths-↓) from-to : ∀ f → from (to f) == f from-to f = λ= λ a → G.unit-r (f a)
{ "alphanum_fraction": 0.5774293236, "avg_line_length": 40.0779816514, "ext": "agda", "hexsha": "8f1651e640f583849c9261a2e41db852582ffa77", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/FreeGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/FreeGroup.agda", "max_line_length": 128, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/FreeGroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3482, "size": 8737 }
open import Data.Nat using (ℕ; _+_) renaming (_≤?_ to _≤?ₙ_) open import Data.Bool using (Bool; not; _∧_) open import Data.String using (String; _≟_) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) vname = String val = ℕ bool = Bool state = vname → val data aexp : Set where N : ℕ → aexp V : vname → aexp Plus : aexp → aexp → aexp _[_/_] : aexp → aexp → vname → aexp N c [ a′ / X ] = N c V Y [ a′ / X ] with Y ≟ X ... | yes _ = a′ ... | no _ = V Y Plus a b [ a′ / X ] = Plus (a [ a′ / X ]) (b [ a′ / X ]) _[_::=_] : state → vname → val → state (s [ X ::= n ]) Y with Y ≟ X ... | yes _ = n ... | no _ = s Y aval : aexp → state → val aval (N c) s = c aval (V v) s = s v aval (Plus a b) s = aval a s + aval b s substitution : ∀ a {X a′ s} → aval (a [ a′ / X ]) s ≡ aval a (s [ X ::= aval a′ s ]) substitution (N x) = refl substitution (V Y) {X} with Y ≟ X ... | yes _ = refl ... | no _ = refl substitution (Plus a b) {X}{a′}{s} rewrite substitution a {X}{a′}{s} | substitution b {X}{a′}{s} = refl substitution-equiv : ∀{a a₁ a₂ X s} → aval a₁ s ≡ aval a₂ s → aval (a [ a₁ / X ]) s ≡ aval (a [ a₂ / X ]) s substitution-equiv {a}{a₁}{a₂}{X}{s} hyp rewrite substitution a {X}{a₁}{s} | hyp | sym (substitution a {X}{a₂}{s}) = refl data bexp : Set where Bc : Bool → bexp Not : bexp → bexp And : bexp → bexp → bexp Less : aexp → aexp → bexp _≤?_ : ℕ → ℕ → Bool a ≤? b = ⌊ a ≤?ₙ b ⌋ bval : bexp → state → bool bval (Bc x) s = x bval (Not b) s = not (bval b s) bval (And a b) s = bval a s ∧ bval b s bval (Less a b) s = aval a s ≤? aval b s data com : Set where SKIP : com _::=_ : String → aexp → com _::_ : com → com → com IF_THEN_ELSE_ : bexp → com → com → com WHILE_DO_ : bexp → com → com
{ "alphanum_fraction": 0.5412748171, "avg_line_length": 25.8648648649, "ext": "agda", "hexsha": "d2c5d492781a0873f971918927a6f52bd8942a8e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iwilare/imp-semantics", "max_forks_repo_path": "IMP.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iwilare/imp-semantics", "max_issues_repo_path": "IMP.agda", "max_line_length": 72, "max_stars_count": 6, "max_stars_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iwilare/imp-semantics", "max_stars_repo_path": "IMP.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-24T22:29:44.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-08T11:54:07.000Z", "num_tokens": 776, "size": 1914 }
{- There was a bug when partially instantiating a module containing record projections. -} module Issue438 where module M (A : Set) where record R (a : A) : Set₁ where field S : Set postulate X : Set x : X r : M.R X x module MX = M X postulate T : MX.R.S r → Set y : M.R.S X r t : T y
{ "alphanum_fraction": 0.6006289308, "avg_line_length": 13.25, "ext": "agda", "hexsha": "f29b503222d7e418ba6ce29d4353af04adb98a78", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/Issue438.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/Issue438.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue438.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 111, "size": 318 }
{-# OPTIONS --cubical --safe #-} module Ctt where open import Cubical.Core.Everything open import Agda.Primitive.Cubical using ( primComp ) -- Identity function. id : ∀ {ℓ} {A : Set ℓ} (x : A) → A id x = x -- Funciton composition. _∘_ : ∀ {ℓ} {A B C : Type ℓ} (g : B → C) (f : A → B) → A → C g ∘ f = λ a → g (f a) -- Equivalence is the path to `x` itself. refl : ∀ {ℓ} {A : Type ℓ} {x : A} → Path A x x refl {x = x} = λ i → x -- A square in `A` is built out of 4 points and 4 lines. square : ∀ {ℓ} {A : Type ℓ} {x0 x1 y0 y1 : A} → x0 ≡ x1 → y0 ≡ y1 → x0 ≡ y0 → x1 ≡ y1 → Type ℓ square p q r s = PathP (λ i → p i ≡ q i) r s -- Symmetry. sym : ∀ {ℓ} {A : Type ℓ} {x y : A} → x ≡ y → y ≡ x sym p i = p (~ i) -- sym p i = λ i → p (~ i) -- Congruence. cong : ∀ {ℓ} {A : Type ℓ} {x y : A} {B : A → Type ℓ} (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) cong f p i = f (p i) -- Symmetry inverse. symInv : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → sym (sym p) ≡ p symInv p = refl -- Congruence with identity function. congId : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → cong id p ≡ p congId p = refl -- Congruence with composition. congComp : ∀ {ℓ} {A B C : Type ℓ} (f : A → B) (g : B → C) {x y : A} (p : x ≡ y) → cong (g ∘ f) p ≡ cong g (cong f p) congComp f g p = refl -- Function extensionality. funExt : ∀ {ℓ} {A : Type ℓ} {B : A → Type ℓ} {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g funExt p i x = p x i -- `p` matches the 1st parameter, -- `i` matches the dimension of the 1st parameter, -- `x` matches `(x : A)`, -- `funExt p i x = {!!}` the goal matches `B x`, -- `(p x) i` is obvious. -- Transitivity. trans : ∀ {ℓ} {A : Type ℓ} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans {y = y} p q i = primComp {!!} {!!} {!!} -- Transport with composition. transportComp : ∀ {ℓ} {A B C : Type ℓ} → A ≡ B → B ≡ C → A → C transportComp p q a = {!!}
{ "alphanum_fraction": 0.5002630195, "avg_line_length": 26.4027777778, "ext": "agda", "hexsha": "d32a351fc6ad6c3185a872280eb9cd2ef852bbf5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "anqurvanillapy/fpl", "max_forks_repo_path": "agda/Ctt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "anqurvanillapy/fpl", "max_issues_repo_path": "agda/Ctt.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "anqurvanillapy/fpl", "max_stars_repo_path": "agda/Ctt.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-24T22:47:47.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-24T22:47:47.000Z", "num_tokens": 852, "size": 1901 }
module Monads.Identity where open import Class.Functor open import Class.Monad open import Class.MonadTrans open import Level private variable a : Level Id : Set a -> Set a Id A = A IdentityT : (Set a -> Set a) -> Set a -> Set a IdentityT M A = M A instance Id-Monad : Monad (Id {a}) Id-Monad = record { _>>=_ = λ a f -> f a ; return = λ a -> a } module _ (M : Set a -> Set a) {{_ : Monad M}} where IdentityT-Monad : Monad (IdentityT M) IdentityT-Monad = record { _>>=_ = _>>=_ ; return = return }
{ "alphanum_fraction": 0.6274131274, "avg_line_length": 20.72, "ext": "agda", "hexsha": "76bec021812e9f62dbc7782785a44ea31f68b70d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Monads/Identity.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Monads/Identity.agda", "max_line_length": 64, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Monads/Identity.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 169, "size": 518 }
------------------------------------------------------------------------ -- Untyped hereditary substitution in Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --exact-split --without-K #-} module FOmegaInt.Syntax.SingleVariableSubstitution where open import Data.Fin using (Fin; zero; suc; raise; lift) open import Data.Fin.Substitution using (Sub; Subs; Lift; Application) open import Data.Fin.Substitution.Lemmas using (AppLemmas) renaming (module VarLemmas to V) open import Data.Fin.Substitution.ExtraLemmas using (TermLikeLemmas; LiftAppLemmas) open import Data.Nat using (ℕ; zero; suc; _+_) import Data.Vec as Vec open import Data.Vec.Properties using (lookup-map) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε; _◅_) open import Relation.Binary.PropositionalEquality as P hiding ([_]) open import FOmegaInt.Syntax renaming (module Substitution to Sub) ---------------------------------------------------------------------- -- Untyped single-variable substitution. open Syntax open Sub using (weaken; weakenElim; weakenElim⋆; _Elim/Var_) -- Suspended single-variable substitions. -- -- Traditionally, a single-variable substitution [t/x] consists of two -- data: the name x of the variable to be substituted and the -- substitute t for the variable. -- -- The following inductive definition is an alternative representation -- of this data. Instead of specifying the variable name (i.e. the de -- Bruijn index) to be substituted, we use two constructors: one for -- substituting the zero-th variable (sub) and one for lifting the -- substitution over an a new free variable (_↑). The advantage of -- this representation is that it corresponds more closely to the -- explicit substitution calculus and the inductive structure of both -- de Bruijn indices and dependent contexts. Among other things, this -- avoids green slime in the definition. -- -- Since we are working with intrinsically well-scoped syntax, the -- datatype is parametrized by the number of free variables in the -- source and target context: a substitution |σ : SVSub m n|, when -- applied to a term with at most m variables, yields a term with at -- most n variables. data SVSub : ℕ → ℕ → Set where sub : ∀ {n} (a : Elim n) → SVSub (suc n) n _↑ : ∀ {m n} (σ : SVSub m n) → SVSub (suc m) (suc n) -- Repeated lifting. _↑⋆_ : ∀ {m n} (σ : SVSub m n) k → SVSub (k + m) (k + n) σ ↑⋆ zero = σ σ ↑⋆ suc k = (σ ↑⋆ k) ↑ -- Turn a single-variable substitution into a multi-variable -- substitution. toSub : ∀ {m n} → SVSub m n → Sub Term m n toSub (sub a) = Sub.sub ⌞ a ⌟ toSub (σ ↑) = (toSub σ) Sub.↑ -- The result of looking up a single-variable substitution. data SVRes : ℕ → Set where hit : ∀ {n} (a : Elim n) → SVRes n -- hit: looked up t at x in [t/x] miss : ∀ {n} (y : Fin n) → SVRes n -- miss: looked up y ≠ x in [t/x] toElim : ∀ {n} → SVRes n → Elim n toElim (hit a) = a toElim (miss y) = var∙ y -- Renamings in single-variable substitutions and results. infixl 8 _?/Var_ _?/Var_ : ∀ {m n} → SVRes m → Sub Fin m n → SVRes n hit a ?/Var ρ = hit (a Elim/Var ρ) miss y ?/Var ρ = miss (Vec.lookup ρ y) -- Weakening of SV results. weakenSVRes : ∀ {n} → SVRes n → SVRes (suc n) weakenSVRes r = r ?/Var V.wk -- Look up a variable in a single-variable substitution. lookupSV : ∀ {m n} → SVSub m n → Fin m → SVRes n lookupSV (sub a) zero = hit a lookupSV (sub a) (suc x) = miss x lookupSV (σ ↑) zero = miss zero lookupSV (σ ↑) (suc x) = weakenSVRes (lookupSV σ x) ---------------------------------------------------------------------- -- Properties of single-variable substitution and results. open P.≡-Reasoning -- Lifting commutes with conversion of substitutions. ↑⋆-toSub : ∀ {m n} {σ : SVSub m n} k → toSub (σ ↑⋆ k) ≡ (toSub σ) Sub.↑⋆ k ↑⋆-toSub zero = refl ↑⋆-toSub (suc k) = cong Sub._↑ (↑⋆-toSub k) -- Application of renamings commutes with conversion to terms. toElim-/Var : ∀ {m n} r {ρ : Sub Fin m n} → toElim (r ?/Var ρ) ≡ toElim r Elim/Var ρ toElim-/Var (hit a) = refl toElim-/Var (miss y) = refl -- Lookup commutes with conversion of substitutions. lookup-toSub : ∀ {m n} (σ : SVSub m n) (x : Fin m) → Vec.lookup (toSub σ) x ≡ ⌞ toElim (lookupSV σ x) ⌟ lookup-toSub (sub a) zero = refl lookup-toSub (sub a) (suc x) = Sub.lookup-id x lookup-toSub (σ ↑) zero = refl lookup-toSub (σ ↑) (suc x) = begin Vec.lookup ((toSub σ) Sub.↑) (suc x) ≡⟨⟩ Vec.lookup (Vec.map weaken (toSub σ)) x ≡⟨ lookup-map x weaken (toSub σ) ⟩ weaken (Vec.lookup (toSub σ) x) ≡⟨ cong weaken (lookup-toSub σ x) ⟩ weaken ⌞ toElim σ[x] ⌟ ≡˘⟨ Sub.⌞⌟-/Var (toElim σ[x]) ⟩ ⌞ weakenElim (toElim σ[x]) ⌟ ≡˘⟨ cong ⌞_⌟ (toElim-/Var σ[x]) ⟩ ⌞ toElim (weakenSVRes σ[x]) ⌟ ≡⟨⟩ ⌞ toElim (lookupSV (σ ↑) (suc x)) ⌟ ∎ where open P.≡-Reasoning σ[x] = lookupSV σ x -- Lemmas about applications of renamings to SV results open TermLikeLemmas Sub.termLikeLemmasElim using (varLiftAppLemmas) open LiftAppLemmas varLiftAppLemmas using (id-vanishes; /-⊙; wk-commutes) ?/Var-id : ∀ {n} (r : SVRes n) → r ?/Var V.id ≡ r ?/Var-id (hit a) = cong hit (id-vanishes a) ?/Var-id (miss y) = cong miss (V.id-vanishes y) ?/Var-⊙ : ∀ {m n k} {ρ₁ : Sub Fin m n} {ρ₂ : Sub Fin n k} r → r ?/Var ρ₁ V.⊙ ρ₂ ≡ r ?/Var ρ₁ ?/Var ρ₂ ?/Var-⊙ (hit a) = cong hit (/-⊙ a) ?/Var-⊙ {ρ₁ = ρ₁} {ρ₂} (miss y) = cong miss (V./-⊙ {ρ₁ = ρ₁} {ρ₂} y) resAppLemmas : AppLemmas SVRes Fin resAppLemmas = record { application = record { _/_ = _?/Var_ } ; lemmas₄ = V.lemmas₄ ; id-vanishes = ?/Var-id ; /-⊙ = ?/Var-⊙ } module SVResAppLemmas = AppLemmas resAppLemmas -- Lookup in a single-variable substitution commutes with renaming lookup-sub-/Var-↑⋆ : ∀ {m n} a i x {ρ : Sub Fin m n} → lookupSV (sub a ↑⋆ i) x ?/Var ρ V.↑⋆ i ≡ lookupSV (sub (a Elim/Var ρ) ↑⋆ i) (x V./ (ρ V.↑) V.↑⋆ i) lookup-sub-/Var-↑⋆ a zero zero = refl lookup-sub-/Var-↑⋆ a zero (suc x) {ρ} = begin miss (Vec.lookup ρ x) ≡⟨⟩ lookupSV (sub (a Elim/Var ρ)) (suc (Vec.lookup ρ x)) ≡˘⟨ cong (lookupSV (sub (a Elim/Var ρ))) (lookup-map x suc ρ) ⟩ lookupSV (sub (a Elim/Var ρ)) (Vec.lookup (Vec.map suc ρ) x) ≡⟨⟩ lookupSV (sub (a Elim/Var ρ)) (suc x V./ ρ V.↑) ∎ lookup-sub-/Var-↑⋆ a (suc i) zero = refl lookup-sub-/Var-↑⋆ a (suc i) (suc x) {ρ} = begin weakenSVRes (lookupSV (sub a ↑⋆ i) x) ?/Var (ρ V.↑⋆ i) V.↑ ≡⟨⟩ lookupSV (sub a ↑⋆ i) x ?/Var V.wk ?/Var (ρ V.↑⋆ i) V.↑ ≡˘⟨ SVResAppLemmas.wk-commutes (lookupSV (sub a ↑⋆ i) x) ⟩ lookupSV (sub a ↑⋆ i) x ?/Var (ρ V.↑⋆ i) ?/Var V.wk ≡⟨ cong (_?/Var V.wk) (lookup-sub-/Var-↑⋆ a i x) ⟩ lookupSV (sub (a Elim/Var ρ) ↑⋆ i) (x V./ ((ρ V.↑) V.↑⋆ i)) ?/Var V.wk ≡⟨⟩ lookupSV ((sub (a Elim/Var ρ) ↑⋆ i) ↑) (suc (x V./ (ρ V.↑) V.↑⋆ i)) ≡˘⟨ cong (lookupSV ((sub (a Elim/Var ρ) ↑⋆ i) ↑)) (lookup-map x suc ((ρ V.↑) V.↑⋆ i)) ⟩ lookupSV ((sub (a Elim/Var ρ) ↑⋆ i) ↑) (Vec.lookup (Vec.map suc ((ρ V.↑) V.↑⋆ i)) x) ≡⟨⟩ lookupSV ((sub (a Elim/Var ρ) ↑⋆ i) ↑) (suc x V./ ((ρ V.↑) V.↑⋆ i) V.↑) ∎ -- Lookup commutes with weakening lookup-/Var-wk-↑⋆ : ∀ {m n} i x {σ : SVSub m n} → lookupSV (σ ↑⋆ i) x ?/Var V.wk V.↑⋆ i ≡ lookupSV ((σ ↑) ↑⋆ i) (x V./ V.wk V.↑⋆ i) lookup-/Var-wk-↑⋆ zero x {σ} = begin lookupSV σ x ?/Var V.wk ≡⟨⟩ lookupSV (σ ↑) (suc x) ≡˘⟨ cong (lookupSV (σ ↑)) V./-wk ⟩ lookupSV (σ ↑) (x V./ V.wk) ∎ lookup-/Var-wk-↑⋆ (suc i) zero = refl lookup-/Var-wk-↑⋆ (suc i) (suc x) {σ} = begin lookupSV (σ ↑⋆ i) x ?/Var V.wk ?/Var (V.wk V.↑⋆ i) V.↑ ≡˘⟨ SVResAppLemmas.wk-commutes (lookupSV (σ ↑⋆ i) x) ⟩ lookupSV (σ ↑⋆ i) x ?/Var V.wk V.↑⋆ i ?/Var V.wk ≡⟨ cong weakenSVRes (lookup-/Var-wk-↑⋆ i x) ⟩ lookupSV (((σ ↑) ↑⋆ i) ↑) (suc (Vec.lookup (V.wk V.↑⋆ i) x)) ≡˘⟨ cong (lookupSV (((σ ↑) ↑⋆ i) ↑)) (lookup-map x suc (V.wk V.↑⋆ i)) ⟩ lookupSV (((σ ↑) ↑⋆ i) ↑) (Vec.lookup (Vec.map suc (V.wk V.↑⋆ i)) x) ≡⟨⟩ lookupSV (((σ ↑) ↑⋆ i) ↑) (suc x V./ V.wk V.↑⋆ suc i) ∎ ---------------------------------------------------------------------- -- Predicates relating SV substitutions to variables. data Hit : ∀ {m n} → SVSub m n → Fin m → Elim n → Set where here : ∀ {n} {a : Elim n} → Hit (sub a) zero a _↑ : ∀ {m n} {σ : SVSub m n} {x a} → Hit σ x a → Hit (σ ↑) (suc x) (weakenElim a) data Miss : ∀ {m n} → SVSub m n → Fin m → Fin n → Set where over : ∀ {n} {a : Elim n} {y : Fin n} → Miss (sub a) (suc y) y under : ∀ {m n} {σ : SVSub m n} → Miss (σ ↑) zero zero _↑ : ∀ {m n} {σ : SVSub m n} {x y} → Miss σ x y → Miss (σ ↑) (suc x) (suc y) data Hit? {m n} (σ : SVSub m n) (x : Fin m) : Set where hit : ∀ a → Hit σ x a → Hit? σ x miss : ∀ y → Miss σ x y → Hit? σ x toRes : ∀ {m n} {σ : SVSub m n} {x : Fin m} → Hit? σ x → SVRes n toRes (hit a _) = hit a toRes (miss y _) = miss y -- A version of `lookupSV' that produces a more a more informative -- result. hit? : ∀ {m n} (σ : SVSub m n) (x : Fin m) → Hit? σ x hit? (sub a) zero = hit a here hit? (sub a) (suc x) = miss x over hit? (σ ↑) zero = miss zero under hit? (σ ↑) (suc x) with hit? σ x ... | hit a hitP = hit (weakenElim a) (hitP ↑) ... | miss y missP = miss (suc y) (missP ↑) -- The two versions of lookup agree. lookup-Hit : ∀ {m n} {σ : SVSub m n} {x : Fin m} {a : Elim n} → Hit σ x a → lookupSV σ x ≡ hit a lookup-Hit here = refl lookup-Hit (hitP ↑) = cong weakenSVRes (lookup-Hit hitP) lookup-Miss : ∀ {m n} {σ : SVSub m n} {x : Fin m} {y : Fin n} → Miss σ x y → lookupSV σ x ≡ miss y lookup-Miss over = refl lookup-Miss under = refl lookup-Miss {σ = σ ↑} {suc x} {suc y} (missP ↑) = begin weakenSVRes (lookupSV σ x) ≡⟨ cong weakenSVRes (lookup-Miss missP) ⟩ miss (y V./ V.wk) ≡⟨ cong miss V./-wk ⟩ miss (suc y) ∎ hit?-lookup : ∀ {m n} (σ : SVSub m n) (x : Fin m) → lookupSV σ x ≡ toRes (hit? σ x) hit?-lookup σ x with hit? σ x ... | (hit a hitP) = lookup-Hit hitP ... | (miss y missP) = lookup-Miss missP -- The Hit predicate is functional. Hit-functional₁ : ∀ {m n} {σ : SVSub m n} {x y : Fin m} {a b : Elim n} → Hit σ x a → Hit σ y b → x ≡ y Hit-functional₁ here here = refl Hit-functional₁ (hitP₁ ↑) (hitP₂ ↑) = cong suc (Hit-functional₁ hitP₁ hitP₂) Hit-functional₂ : ∀ {m n} {σ : SVSub m n} {x y : Fin m} {a b : Elim n} → Hit σ x a → Hit σ y b → a ≡ b Hit-functional₂ here here = refl Hit-functional₂ (hitP₁ ↑) (hitP₂ ↑) = cong weakenElim (Hit-functional₂ hitP₁ hitP₂) -- For a fixed σ, the Miss predicate is injective. Miss-injective : ∀ {m n} {σ : SVSub m n} {x y : Fin m} {z : Fin n} → Miss σ x z → Miss σ y z → x ≡ y Miss-injective over over = refl Miss-injective under under = refl Miss-injective (hitP₁ ↑) (hitP₂ ↑) = cong suc (Miss-injective hitP₁ hitP₂) -- Lifting preserves the predicates Hit-↑⋆ : ∀ {m n} {σ : SVSub m n} {x : Fin m} {a : Elim n} i → Hit σ x a → Hit (σ ↑⋆ i) (raise i x) (weakenElim⋆ i a) Hit-↑⋆ zero hyp = hyp Hit-↑⋆ (suc i) hyp = (Hit-↑⋆ i hyp) ↑ Miss-↑⋆ : ∀ {m n} {σ : SVSub m n} {x : Fin m} {y : Fin n} i → Miss σ x y → Miss (σ ↑⋆ i) (raise i x) (raise i y) Miss-↑⋆ zero hyp = hyp Miss-↑⋆ (suc i) hyp = (Miss-↑⋆ i hyp) ↑ Hit-↑-↑⋆ : ∀ {m n} {σ : SVSub m n} i {x a} → Hit (σ ↑⋆ i) x a → Hit ((σ ↑) ↑⋆ i) (lift i suc x) (a Elim/Var V.wk V.↑⋆ i) Hit-↑-↑⋆ zero hyp = hyp ↑ Hit-↑-↑⋆ (suc i) (_↑ {a = a} hyp ) = subst (Hit _ _) (wk-commutes a) (Hit-↑-↑⋆ i hyp ↑) Miss-↑-↑⋆ : ∀ {m n} {σ : SVSub m n} i {x y} → Miss (σ ↑⋆ i) x y → Miss ((σ ↑) ↑⋆ i) (lift i suc x) (lift i suc y) Miss-↑-↑⋆ zero hyp = hyp ↑ Miss-↑-↑⋆ (suc i) under = under Miss-↑-↑⋆ (suc i) (hyp ↑) = (Miss-↑-↑⋆ i hyp) ↑ -- Yet another way to characterize hits/misses of single-variable -- substitutions. Hit-sub-↑⋆ : ∀ {n} {a : Elim n} i → Hit (sub a ↑⋆ i) (raise i zero) (weakenElim⋆ i a) Hit-sub-↑⋆ i = Hit-↑⋆ i here Hit-sub-↑⋆₁ : ∀ {n} {a : Elim n} i {x b} → Hit (sub a ↑⋆ i) x b → x ≡ raise i zero Hit-sub-↑⋆₁ i hyp = Hit-functional₁ hyp (Hit-sub-↑⋆ i) Hit-sub-↑⋆₂ : ∀ {n} {a : Elim n} i {x b} → Hit (sub a ↑⋆ i) x b → b ≡ weakenElim⋆ i a Hit-sub-↑⋆₂ i hyp = Hit-functional₂ hyp (Hit-sub-↑⋆ i) Miss-sub-↑⋆ : ∀ {n} {a : Elim n} i x → Miss (sub a ↑⋆ i) (lift i suc x) x Miss-sub-↑⋆ zero x = over Miss-sub-↑⋆ (suc i) zero = under Miss-sub-↑⋆ (suc i) (suc x) = Miss-sub-↑⋆ i x ↑ Miss-sub-↑⋆′ : ∀ {n} {a : Elim n} i {x} y → Miss (sub a ↑⋆ i) x y → x ≡ lift i suc y Miss-sub-↑⋆′ i y hyp = Miss-injective hyp (Miss-sub-↑⋆ i y) -- Looking up a sufficiently weakened variable will always miss. lookup-sub-wk-↑⋆ : ∀ {n} i x {a : Elim n} → lookupSV (sub a ↑⋆ i) (x V./ V.wk V.↑⋆ i) ≡ miss x lookup-sub-wk-↑⋆ i x {a} = begin lookupSV (sub a ↑⋆ i) (x V./ V.wk V.↑⋆ i) ≡⟨ cong (lookupSV (sub a ↑⋆ i)) (V.lookup-wk-↑⋆ i x) ⟩ lookupSV (sub a ↑⋆ i) (lift i suc x) ≡⟨ lookup-Miss (Miss-sub-↑⋆ i x) ⟩ miss x ∎ -- A predicate for comparing variable names to naturals. -- -- Instances of |Eq? n x| are proofs that a natural number |n| is or -- is not "equal" to a variable name |x|. Given two natural numbers -- m, n and a "name" x in the interval { 0, ..., (n + 1 + m) }, "yes" -- instances of the |Eq? n x| prove that "n = x", while "no" instances -- prove that x is any one of the other names in the interval. -- -- The predicate is useful for deciding whether a lookup of |x| in -- some single-variable substitutions will lead to a hit or miss, -- independently of the actual substitution. -- -- NOTE. This predicate is only used in the proof of one lemma, namely -- FOmegaInt.Kinding.Simple.EtaExpansion.Nf∈-[]-η-var. Maybe the -- proof of the lemma could be rewritten so as to avoid the -- introduction of this extra predicate, but this might reduce -- clarity. data Eq? {m : ℕ} (n : ℕ) (x : Fin (n + suc m)) : Set where yes : raise n zero ≡ x → Eq? n x no : ∀ y → lift n suc y ≡ x → Eq? n x -- Eq? is stable w.r.t. increments. suc-Eq? : ∀ {m n} {x : Fin (n + suc m)} → Eq? n x → Eq? (suc n) (suc x) suc-Eq? (yes refl) = yes refl suc-Eq? (no y refl) = no (suc y) refl -- A decision procedure for Eq?. compare : ∀ {m} n (x : Fin (n + suc m)) → Eq? n x compare zero zero = yes refl compare zero (suc x) = no x refl compare (suc n) zero = no zero refl compare (suc n) (suc x) = suc-Eq? (compare n x) -- Turn Eq? instances into Hit? instances for a given substitution. toHit? : ∀ {m n} {a : Elim m} {x} → Eq? n x → Hit? (sub a ↑⋆ n) x toHit? {_} {n} (yes refl) = hit _ (Hit-sub-↑⋆ n) toHit? {_} {n} (no y refl) = miss y (Miss-sub-↑⋆ n y)
{ "alphanum_fraction": 0.5529053203, "avg_line_length": 37.8270676692, "ext": "agda", "hexsha": "7f617833e90e271d27fc2055f88de96e4aa5bdcd", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z", "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Syntax/SingleVariableSubstitution.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z", "max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Syntax/SingleVariableSubstitution.agda", "max_line_length": 80, "max_stars_count": 12, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Syntax/SingleVariableSubstitution.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z", "num_tokens": 5947, "size": 15093 }
open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Pos as ℕ⁺ using (ℕ⁺; suc; _+_) open import Data.List as L using (List; []; _∷_; _++_) open import Data.List.Any as LA using (Any; here; there) open import Data.Product using (_,_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Data.Environment open import nodcap.Base module nodcap.Typing where -- Typing Rules. infix 1 ⊢_ data ⊢_ : Environment → Set where ax : {A : Type} → -------------- ⊢ A ∷ A ^ ∷ [] cut : {Γ Δ : Environment} {A : Type} → ⊢ A ∷ Γ → ⊢ A ^ ∷ Δ → --------------------- ⊢ Γ ++ Δ send : {Γ Δ : Environment} {A B : Type} → ⊢ A ∷ Γ → ⊢ B ∷ Δ → ------------------- ⊢ A ⊗ B ∷ Γ ++ Δ recv : {Γ : Environment} {A B : Type} → ⊢ A ∷ B ∷ Γ → ------------- ⊢ A ⅋ B ∷ Γ sel₁ : {Γ : Environment} {A B : Type} → ⊢ A ∷ Γ → ----------- ⊢ A ⊕ B ∷ Γ sel₂ : {Γ : Environment} {A B : Type} → ⊢ B ∷ Γ → ----------- ⊢ A ⊕ B ∷ Γ case : {Γ : Environment} {A B : Type} → ⊢ A ∷ Γ → ⊢ B ∷ Γ → ------------------- ⊢ A & B ∷ Γ halt : -------- ⊢ 𝟏 ∷ [] wait : {Γ : Environment} → ⊢ Γ → ------- ⊢ ⊥ ∷ Γ loop : {Γ : Environment} → ------- ⊢ ⊤ ∷ Γ mk?₁ : {Γ : Environment} {A : Type} → ⊢ A ∷ Γ → -------------- ⊢ ?[ 1 ] A ∷ Γ mk!₁ : {Γ : Environment} {A : Type} → ⊢ A ∷ Γ → -------------- ⊢ ![ 1 ] A ∷ Γ cont : {Γ : Environment} {A : Type} {m n : ℕ⁺} → ⊢ ?[ m ] A ∷ ?[ n ] A ∷ Γ → ------------------------------ ⊢ ?[ m + n ] A ∷ Γ pool : {Γ Δ : Environment} {A : Type} {m n : ℕ⁺} → ⊢ ![ m ] A ∷ Γ → ⊢ ![ n ] A ∷ Δ → ------------------------------------- ⊢ ![ m + n ] A ∷ Γ ++ Δ exch : {Γ Δ : Environment} → Γ ∼[ bag ] Δ → ⊢ Γ → -------------------- ⊢ Δ cutIn : {Γ Δ : Environment} {A : Type} (i : A ∈ Γ) (j : A ^ ∈ Δ) → ⊢ Γ → ⊢ Δ → ---------------- ⊢ Γ - i ++ Δ - j cutIn {Γ} {Δ} {A} i j P Q with ∈→++ i | ∈→++ j ... | (Γ₁ , Γ₂ , P.refl , p) | (Δ₁ , Δ₂ , P.refl , q) rewrite p | q = cut (exch (fwd [] Γ₁) P) (exch (fwd [] Δ₁) Q) -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.3518204911, "avg_line_length": 19.2032520325, "ext": "agda", "hexsha": "16afd41dce11bf1b5d1f1cdfba95839841bba73c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "pepijnkokke/nodcap", "max_forks_repo_path": "src/cpnd1/nodcap/Typing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "pepijnkokke/nodcap", "max_issues_repo_path": "src/cpnd1/nodcap/Typing.agda", "max_line_length": 67, "max_stars_count": 4, "max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/nodcap", "max_stars_repo_path": "src/cpnd1/nodcap/Typing.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z", "num_tokens": 900, "size": 2362 }
{-# OPTIONS --cubical --safe #-} module Cardinality.Finite.ManifestBishop.Inductive where open import Data.List public open import Data.List.Membership public open import Prelude ℬ : Type a → Type a ℬ A = Σ[ xs ⦂ List A ] Π[ x ⦂ A ] x ∈! xs
{ "alphanum_fraction": 0.7008196721, "avg_line_length": 22.1818181818, "ext": "agda", "hexsha": "6e573603d1baef6de7f2f2af1cee1d3ac9ddedb4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Cardinality/Finite/ManifestBishop/Inductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Cardinality/Finite/ManifestBishop/Inductive.agda", "max_line_length": 56, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Cardinality/Finite/ManifestBishop/Inductive.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 75, "size": 244 }
-- Families with compatible monoid and coal module SOAS.Coalgebraic.Monoid {T : Set} where open import SOAS.Common open import SOAS.Context {T} open import SOAS.Variable open import SOAS.Families.Core {T} import SOAS.Families.Delta {T} as δ; open δ.Sorted open import SOAS.Abstract.Hom {T} import SOAS.Abstract.Box {T} as □ ; open □.Sorted open import SOAS.Abstract.Monoid {T} import SOAS.Abstract.Coalgebra {T} as →□ ; open →□.Sorted open import SOAS.Coalgebraic.Map open import SOAS.Coalgebraic.Strength open import SOAS.Coalgebraic.Lift private variable Γ Δ : Ctx α β : T -- Coalgebraic monoid: family with compatible coalgebra and monoid structure record CoalgMon (𝒳 : Familyₛ) : Set where field ᴮ : Coalgₚ 𝒳 ᵐ : Mon 𝒳 open Coalgₚ ᴮ public renaming (η to ηᴮ) open Mon ᵐ public hiding (ᵇ ; ᴮ ; r ; r∘η ; μᶜ) renaming (η to ηᵐ) field η-compat : {v : ℐ α Γ} → ηᴮ v ≡ ηᵐ v μ-compat : {ρ : Γ ↝ Δ}{t : 𝒳 α Γ} → r t ρ ≡ μ t (ηᵐ ∘ ρ) open Coalgₚ ᴮ using (r∘η) public -- Multiplication of coalgebraic monoids is a pointed coalgebraic map μᶜ : Coalgebraic ᴮ ᴮ ᴮ μ μᶜ = record { r∘f = λ{ {σ = σ}{ϱ}{t} → begin r (μ t σ) ϱ ≡⟨ μ-compat ⟩ μ (μ t σ) (ηᵐ ∘ ϱ) ≡⟨ assoc ⟩ μ t (λ v → μ (σ v) (ηᵐ ∘ ϱ)) ≡˘⟨ cong (μ t) (dext (λ _ → μ-compat)) ⟩ μ t (λ v → r (σ v) ϱ) ∎ } ; f∘r = λ{ {ρ = ρ}{ς}{t} → begin μ (r t ρ) ς ≡⟨ cong (λ - → μ - ς) μ-compat ⟩ μ (μ t (ηᵐ ∘ ρ)) ς ≡⟨ assoc ⟩ μ t (λ v → μ (ηᵐ (ρ v)) ς) ≡⟨ cong (μ t) (dext (λ _ → lunit)) ⟩ μ t (ς ∘ ρ) ∎ } ; f∘η = trans (μ≈₂ η-compat) runit } where open ≡-Reasoning str-eq : (𝒴 : Familyₛ){F : Functor 𝔽amiliesₛ 𝔽amiliesₛ}(F:Str : Strength F) (open Functor F)(open Strength F:Str) (h : F₀ 〖 𝒳 , 𝒴 〗 α Γ)(σ : Γ ~[ 𝒳 ]↝ Δ) → str ᴮ 𝒴 h σ ≡ str (Mon.ᴮ ᵐ) 𝒴 h σ str-eq 𝒴 {F} F:Str h σ = begin str ᴮ 𝒴 h σ ≡⟨ str-nat₁ {f = id} (record { ᵇ⇒ = record { ⟨r⟩ = sym μ-compat } ; ⟨η⟩ = sym η-compat }) h σ ⟩ str (Mon.ᴮ ᵐ) 𝒴 (F₁ id h) σ ≡⟨ congr identity (λ - → str (Mon.ᴮ ᵐ) 𝒴 - σ) ⟩ str (Mon.ᴮ ᵐ) 𝒴 h σ ∎ where open Functor F open Strength F:Str open ≡-Reasoning lift-eq : {Ξ : Ctx}(t : 𝒳 β (Ξ ∔ Γ))(σ : Γ ~[ 𝒳 ]↝ Δ) → μ t (lift ᴮ Ξ σ) ≡ μ t (lift (Mon.ᴮ ᵐ) Ξ σ) lift-eq {Ξ = Ξ} t σ = str-eq 𝒳 (δ:Strength Ξ) (μ t) σ
{ "alphanum_fraction": 0.5147579693, "avg_line_length": 33.88, "ext": "agda", "hexsha": "22ff8b65e7ab6ded3292749b3da385eec416a077", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Coalgebraic/Monoid.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Coalgebraic/Monoid.agda", "max_line_length": 83, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Coalgebraic/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 1141, "size": 2541 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.Bouquet open import homotopy.SphereEndomorphism open import groups.SphereEndomorphism open import groups.CoefficientExtensionality open import cw.CW open import cw.WedgeOfCells module cw.DegreeByProjection {i} where module DegreeAboveOne {n : ℕ} (skel : Skeleton {i} (S (S n))) (dec : has-cells-with-dec-eq skel) -- the cells at the upper and lower dimensions (upper : cells-last skel) (lower : cells-last (cw-init skel)) where private lower-skel = cw-init skel lower-cells = cells-nth lteS skel lower-dec = cells-nth-has-dec-eq lteS skel dec degree-map : Sphere (S n) → Sphere (S n) degree-map = bwproj lower-dec lower ∘ <– (Bouquet-equiv-Xₙ/Xₙ₋₁ lower-skel) ∘ cfcod ∘ attaching-last skel upper degree : ℤ degree = Trunc-⊙SphereS-endo-degree n (Trunc-⊙SphereS-endo-in n [ degree-map ]) module DegreeAtOne (skel : Skeleton {i} 1) (dec : has-cells-with-dec-eq skel) -- the cells at the upper and lower dimensions (line : cells-last skel) (point : cells-last (cw-init skel)) where private points-dec-eq = cells-nth-has-dec-eq (inr ltS) skel dec endpoint = attaching-last skel -- When [true] matches, [true] will be sent to [false], -- which is bad. degree-true : ℤ degree-true with points-dec-eq point (endpoint line true) degree-true | inl _ = -1 degree-true | inr _ = 0 -- When [false] matches, [false] will be sent to [false], -- which is good. degree-false : ℤ degree-false with points-dec-eq point (endpoint line false) degree-false | inl _ = 1 degree-false | inr _ = 0 degree : ℤ degree = degree-true ℤ+ degree-false degree-last : ∀ {n} (skel : Skeleton {i} (S n)) → has-cells-with-dec-eq skel → cells-last skel → cells-last (cw-init skel) → ℤ degree-last {n = O} = DegreeAtOne.degree degree-last {n = S _} = DegreeAboveOne.degree degree-nth : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) → has-cells-with-dec-eq skel → cells-nth Sm≤n skel → cells-last (cw-init (cw-take Sm≤n skel)) → ℤ degree-nth Sm≤n skel dec = degree-last (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec) has-degrees-with-finite-support : ∀ {n} (skel : Skeleton {i} n) → has-cells-with-dec-eq skel → Type i has-degrees-with-finite-support {n = O} _ _ = Lift ⊤ has-degrees-with-finite-support {n = S n} skel dec = has-degrees-with-finite-support (cw-init skel) (init-has-cells-with-dec-eq skel dec) × ∀ upper → has-finite-support (cells-nth-has-dec-eq (inr ltS) skel dec) (degree-last skel dec upper) init-has-degrees-with-finite-support : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → has-degrees-with-finite-support (cw-init skel) (init-has-cells-with-dec-eq skel dec) init-has-degrees-with-finite-support skel dec fin-sup = fst fin-sup take-has-degrees-with-finite-support : ∀ {m n} (m≤n : m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → has-degrees-with-finite-support (cw-take m≤n skel) (take-has-cells-with-dec-eq m≤n skel dec) take-has-degrees-with-finite-support (inl idp) skel dec fin-sup = fin-sup take-has-degrees-with-finite-support (inr ltS) skel dec fin-sup = init-has-degrees-with-finite-support skel dec fin-sup take-has-degrees-with-finite-support (inr (ltSR lt)) skel dec fin-sup = take-has-degrees-with-finite-support (inr lt) (cw-init skel) (init-has-cells-with-dec-eq skel dec) (init-has-degrees-with-finite-support skel dec fin-sup) degree-last-has-finite-support : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → ∀ upper → has-finite-support (cells-last-has-dec-eq (cw-init skel) (init-has-cells-with-dec-eq skel dec)) (degree-last skel dec upper) degree-last-has-finite-support skel dec fin-sup = snd fin-sup degree-nth-has-finite-support : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → ∀ upper → has-finite-support (cells-last-has-dec-eq (cw-init (cw-take Sm≤n skel)) (init-has-cells-with-dec-eq (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec))) (degree-nth Sm≤n skel dec upper) degree-nth-has-finite-support Sm≤n skel dec fin-sup = degree-last-has-finite-support (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec) (take-has-degrees-with-finite-support Sm≤n skel dec fin-sup) -- the following are named [boundary'] because it is not extended to the free groups boundary'-last : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → cells-last skel → FreeAbGroup.El (cells-last (cw-init skel)) boundary'-last skel dec fin-sup upper = fst ((snd fin-sup) upper) boundary-last : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → FreeAbGroup.grp (cells-last skel) →ᴳ FreeAbGroup.grp (cells-last (cw-init skel)) boundary-last skel dec fin-sup = FreeAbGroup-extend (FreeAbGroup (cells-last (cw-init skel))) (boundary'-last skel dec fin-sup) boundary'-nth : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → cells-nth Sm≤n skel → FreeAbGroup.El (cells-last (cw-init (cw-take Sm≤n skel))) boundary'-nth Sm≤n skel dec fin-sup = boundary'-last (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec) (take-has-degrees-with-finite-support Sm≤n skel dec fin-sup) boundary-nth : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → FreeAbGroup.grp (cells-nth Sm≤n skel) →ᴳ FreeAbGroup.grp (cells-last (cw-init (cw-take Sm≤n skel))) boundary-nth Sm≤n skel dec fin-sup = FreeAbGroup-extend (FreeAbGroup (cells-last (cw-init (cw-take Sm≤n skel)))) (boundary'-nth Sm≤n skel dec fin-sup)
{ "alphanum_fraction": 0.6553024094, "avg_line_length": 42.6643356643, "ext": "agda", "hexsha": "3fe4b4160617a829882086902167c3fa13377ff9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/DegreeByProjection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/DegreeByProjection.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/DegreeByProjection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2052, "size": 6101 }
module tests.Forcing where open import Prelude.IO open import Prelude.Unit open import Prelude.Vec open import Prelude.Nat len : {A : Set}{n : Nat} -> Vec A n -> Nat len {A} .{Z} [] = Z len {A} .{S n} (_::_ {n} x xs) = S n len2 : {A : Set}{n : Nat} -> Vec A n -> Nat len2 [] = 0 len2 (_::_ {n} x xs) = S (len2 {n = n} xs) len3 : {A : Set}{n : Nat} -> Vec A n -> Nat len3 {n = Z} [] = Z len3 {n = S n} (_::_ .{n} x xs) = S n len4 : {A : Set}{n : Nat} -> Vec A n -> Nat len4 [] = Z len4 (_::_ {Z} x xs) = S Z len4 (_::_ {S n} x xs) = S (S n) main : IO Unit main = printNat (len l1) ,, printNat (len l2) ,, printNat (len l3) ,, printNat (len2 l1) ,, printNat (len2 l2) ,, printNat (len2 l3) ,, printNat (len3 l1) ,, printNat (len3 l2) ,, printNat (len3 l3) ,, printNat (len4 l1) ,, printNat (len4 l2) ,, printNat (len4 l3) ,, return unit where l1 = "a" :: "b" :: "c" :: [] l2 = 1 :: 2 :: 3 :: 4 :: 5 :: [] l3 : Vec Nat Z l3 = []
{ "alphanum_fraction": 0.4622553588, "avg_line_length": 20.2452830189, "ext": "agda", "hexsha": "5c043b4e66fe6a8fca78061562e5f7e10c7b4249", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/epic/tests/Forcing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/epic/tests/Forcing.agda", "max_line_length": 46, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/epic/tests/Forcing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 436, "size": 1073 }
{-# COMPILE GHC myNat = 0 #-}
{ "alphanum_fraction": 0.5333333333, "avg_line_length": 15, "ext": "agda", "hexsha": "888a864fc79cd9700e2fa40e264204ab8c28a6d2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4026.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4026.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4026.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 10, "size": 30 }
-- Free category over a directed graph/quiver {-# OPTIONS --safe #-} module Cubical.Categories.Constructions.Free where open import Cubical.Categories.Category.Base open import Cubical.Data.Graph.Base open import Cubical.Data.Graph.Path open import Cubical.Foundations.Prelude hiding (Path) module _ {ℓv ℓe : Level} where module _ (G : Graph ℓv ℓe) (isSetNode : isSet (Node G)) (isSetEdge : ∀ v w → isSet (Edge G v w)) where open Category FreeCategory : Category ℓv (ℓ-max ℓv ℓe) FreeCategory .ob = Node G FreeCategory .Hom[_,_] = Path G FreeCategory .id = pnil FreeCategory ._⋆_ = ccat G FreeCategory .⋆IdL = pnil++ G FreeCategory .⋆IdR P = refl FreeCategory .⋆Assoc = ++assoc G FreeCategory .isSetHom = isSetPath G isSetNode isSetEdge _ _
{ "alphanum_fraction": 0.6856435644, "avg_line_length": 29.9259259259, "ext": "agda", "hexsha": "5bab3d91402430195e63c79d0a6b019c33fd9643", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Constructions/Free.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Constructions/Free.agda", "max_line_length": 64, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Constructions/Free.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 248, "size": 808 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An All predicate for the partiality monad ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --guardedness #-} module Category.Monad.Partiality.All where open import Category.Monad open import Category.Monad.Partiality as Partiality using (_⊥; ⇒≈) open import Codata.Musical.Notation open import Function open import Level open import Relation.Binary using (_Respects_; IsEquivalence) open import Relation.Binary.PropositionalEquality as P using (_≡_) open Partiality._⊥ open Partiality.Equality using (Rel) open Partiality.Equality.Rel private open module E {a} {A : Set a} = Partiality.Equality (_≡_ {A = A}) using (_≅_; _≳_) open module M {f} = RawMonad (Partiality.monad {f = f}) using (_>>=_) ------------------------------------------------------------------------ -- All, along with some lemmas -- All P x means that if x terminates with the value v, then P v -- holds. data All {a p} {A : Set a} (P : A → Set p) : A ⊥ → Set (a ⊔ p) where now : ∀ {v} (p : P v) → All P (now v) later : ∀ {x} (p : ∞ (All P (♭ x))) → All P (later x) -- Bind preserves All in the following way: _>>=-cong_ : ∀ {ℓ p q} {A B : Set ℓ} {P : A → Set p} {Q : B → Set q} {x : A ⊥} {f : A → B ⊥} → All P x → (∀ {x} → P x → All Q (f x)) → All Q (x >>= f) now p >>=-cong f = f p later p >>=-cong f = later (♯ (♭ p >>=-cong f)) -- All respects all the relations, given that the predicate respects -- the underlying relation. respects : ∀ {k a p ℓ} {A : Set a} {P : A → Set p} {_∼_ : A → A → Set ℓ} → P Respects _∼_ → All P Respects Rel _∼_ k respects resp (now x∼y) (now p) = now (resp x∼y p) respects resp (later x∼y) (later p) = later (♯ respects resp (♭ x∼y) (♭ p)) respects resp (laterˡ x∼y) (later p) = respects resp x∼y (♭ p) respects resp (laterʳ x≈y) p = later (♯ respects resp x≈y p) respects-flip : ∀ {k a p ℓ} {A : Set a} {P : A → Set p} {_∼_ : A → A → Set ℓ} → P Respects flip _∼_ → All P Respects flip (Rel _∼_ k) respects-flip resp (now x∼y) (now p) = now (resp x∼y p) respects-flip resp (later x∼y) (later p) = later (♯ respects-flip resp (♭ x∼y) (♭ p)) respects-flip resp (laterˡ x∼y) p = later (♯ respects-flip resp x∼y p) respects-flip resp (laterʳ x≈y) (later p) = respects-flip resp x≈y (♭ p) -- "Equational" reasoning. module Reasoning {a p ℓ} {A : Set a} {P : A → Set p} {_∼_ : A → A → Set ℓ} (resp : P Respects flip _∼_) where infix 3 finally infixr 2 _≡⟨_⟩_ _∼⟨_⟩_ _≡⟨_⟩_ : ∀ x {y} → x ≡ y → All P y → All P x _ ≡⟨ P.refl ⟩ p = p _∼⟨_⟩_ : ∀ {k} x {y} → Rel _∼_ k x y → All P y → All P x _ ∼⟨ x∼y ⟩ p = respects-flip resp (⇒≈ x∼y) p -- A cosmetic combinator. finally : (x : A ⊥) → All P x → All P x finally _ p = p syntax finally x p = x ⟨ p ⟩ -- "Equational" reasoning with _∼_ instantiated to propositional -- equality. module Reasoning-≡ {a p} {A : Set a} {P : A → Set p} = Reasoning {P = P} {_∼_ = _≡_} (P.subst P ∘ P.sym) ------------------------------------------------------------------------ -- An alternative, but equivalent, formulation of All module Alternative {a p : Level} where infix 3 _⟨_⟩P infixr 2 _≅⟨_⟩P_ _≳⟨_⟩P_ -- All "programs". data AllP {A : Set a} (P : A → Set p) : A ⊥ → Set (suc (a ⊔ p)) where now : ∀ {x} (p : P x) → AllP P (now x) later : ∀ {x} (p : ∞ (AllP P (♭ x))) → AllP P (later x) _>>=-congP_ : ∀ {B : Set a} {Q : B → Set p} {x f} (p-x : AllP Q x) (p-f : ∀ {v} → Q v → AllP P (f v)) → AllP P (x >>= f) _≅⟨_⟩P_ : ∀ x {y} (x≅y : x ≅ y) (p : AllP P y) → AllP P x _≳⟨_⟩P_ : ∀ x {y} (x≳y : x ≳ y) (p : AllP P y) → AllP P x _⟨_⟩P : ∀ x (p : AllP P x) → AllP P x private -- WHNFs. data AllW {A} (P : A → Set p) : A ⊥ → Set (suc (a ⊔ p)) where now : ∀ {x} (p : P x) → AllW P (now x) later : ∀ {x} (p : AllP P (♭ x)) → AllW P (later x) -- A function which turns WHNFs into programs. program : ∀ {A} {P : A → Set p} {x} → AllW P x → AllP P x program (now p) = now p program (later p) = later (♯ p) -- Functions which turn programs into WHNFs. trans-≅ : ∀ {A} {P : A → Set p} {x y : A ⊥} → x ≅ y → AllW P y → AllW P x trans-≅ (now P.refl) (now p) = now p trans-≅ (later x≅y) (later p) = later (_ ≅⟨ ♭ x≅y ⟩P p) trans-≳ : ∀ {A} {P : A → Set p} {x y : A ⊥} → x ≳ y → AllW P y → AllW P x trans-≳ (now P.refl) (now p) = now p trans-≳ (later x≳y) (later p) = later (_ ≳⟨ ♭ x≳y ⟩P p) trans-≳ (laterˡ x≳y) p = later (_ ≳⟨ x≳y ⟩P program p) mutual _>>=-congW_ : ∀ {A B} {P : A → Set p} {Q : B → Set p} {x f} → AllW P x → (∀ {v} → P v → AllP Q (f v)) → AllW Q (x >>= f) now p >>=-congW p-f = whnf (p-f p) later p >>=-congW p-f = later (p >>=-congP p-f) whnf : ∀ {A} {P : A → Set p} {x} → AllP P x → AllW P x whnf (now p) = now p whnf (later p) = later (♭ p) whnf (p-x >>=-congP p-f) = whnf p-x >>=-congW p-f whnf (_ ≅⟨ x≅y ⟩P p) = trans-≅ x≅y (whnf p) whnf (_ ≳⟨ x≳y ⟩P p) = trans-≳ x≳y (whnf p) whnf (_ ⟨ p ⟩P) = whnf p -- AllP P is sound and complete with respect to All P. sound : ∀ {A} {P : A → Set p} {x} → AllP P x → All P x sound = λ p → soundW (whnf p) where soundW : ∀ {A} {P : A → Set p} {x} → AllW P x → All P x soundW (now p) = now p soundW (later p) = later (♯ sound p) complete : ∀ {A} {P : A → Set p} {x} → All P x → AllP P x complete (now p) = now p complete (later p) = later (♯ complete (♭ p))
{ "alphanum_fraction": 0.4779757902, "avg_line_length": 34.9882352941, "ext": "agda", "hexsha": "8fa559bf60aeb9b3704a8b5c61e39d10294d0889", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Partiality/All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Partiality/All.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Partiality/All.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2346, "size": 5948 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.FiniteMultiset where open import Cubical.HITs.FiniteMultiset.Base public open import Cubical.HITs.FiniteMultiset.Properties public
{ "alphanum_fraction": 0.7990196078, "avg_line_length": 29.1428571429, "ext": "agda", "hexsha": "d63529f90228bc3ebe0d3a37e506e1e721a77b46", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/FiniteMultiset.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/FiniteMultiset.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/FiniteMultiset.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 54, "size": 204 }
open import Data.Nat using ( zero ; suc ) renaming ( ℕ to ♭ℕ ; _+_ to add ) open import Function using () renaming ( _∘′_ to _∘_ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; trans ; cong ; cong₂ ) open import AssocFree.Util using ( ≡-relevant ) module AssocFree.DNat where open Relation.Binary.PropositionalEquality.≡-Reasoning using ( begin_ ; _≡⟨_⟩_ ; _∎ ) infixr 5 _,_ infixr 5 _+_ _+♭_ = add add-unit : ∀ n → (add n 0) ≡ n add-unit zero = refl add-unit (suc n) = cong suc (add-unit n) add-assoc : ∀ m n → (add (add m n) ≡ ((add m) ∘ (add n))) add-assoc zero n = refl add-assoc (suc m) n = cong (_∘_ suc) (add-assoc m n) -- "Difference nats" are isomorphic to ℕ but have _+_ associative up -- to beta-reduction, not just up to _≡_. record ℕ : Set where constructor _,_ field fun : ♭ℕ → ♭ℕ .fun✓ : fun ≡ add (fun 0) open ℕ public -- Convert ℕ to ♭ℕ and back ♯ : ♭ℕ → ℕ ♯ n = (add n , cong add (sym (add-unit n))) ♭ : ℕ → ♭ℕ ♭ (f , f✓) = f 0 -- Constants ♯0 = ♯ 0 ♯1 = ♯ 1 -- Addition _+_ : ℕ → ℕ → ℕ (f , f✓) + (g , g✓) = ((f ∘ g) , f∘g✓) where .f∘g✓ : (f ∘ g) ≡ add (f (g 0)) f∘g✓ = begin f ∘ g ≡⟨ cong₂ _∘_ f✓ g✓ ⟩ add (f 0) ∘ add (g 0) ≡⟨ sym (add-assoc (f 0) (g 0)) ⟩ add (add (f 0) (g 0)) ≡⟨ cong (λ X → add (X (g 0))) (sym f✓) ⟩ add (f (g 0)) ∎ --Isomorphism which respects + inject : ∀ m n → (fun m ≡ fun n) → (m ≡ n) inject (f , f✓) (.f , g✓) refl = refl iso : ∀ n → ♯ (♭ n) ≡ n iso n = inject (♯ (♭ n)) n (sym (≡-relevant (fun✓ n))) iso⁻¹ : ∀ n → ♭ (♯ n) ≡ n iso⁻¹ = add-unit iso-resp-+ : ∀ m n → ♭ (m + n) ≡ (♭ m +♭ ♭ n) iso-resp-+ (f , f✓) (g , g✓) = cong (λ X → X (g 0)) (≡-relevant f✓) -- Addition forms a monoid on the nose +-assoc : ∀ l m n → (((l + m) + n) ≡ (l + (m + n))) +-assoc l m n = refl +-unit₁ : ∀ n → ((♯0 + n) ≡ n) +-unit₁ n = refl +-unit₂ : ∀ n → ((n + ♯0) ≡ n) +-unit₂ n = refl
{ "alphanum_fraction": 0.5147439214, "avg_line_length": 22.2183908046, "ext": "agda", "hexsha": "b2a78796370def4318d18002b22f278ee9f8b95f", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:38:44.000Z", "max_forks_repo_forks_event_min_datetime": "2018-03-03T04:39:31.000Z", "max_forks_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-assoc-free", "max_forks_repo_path": "src/AssocFree/DNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-assoc-free", "max_issues_repo_path": "src/AssocFree/DNat.agda", "max_line_length": 99, "max_stars_count": 3, "max_stars_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-assoc-free", "max_stars_repo_path": "src/AssocFree/DNat.agda", "max_stars_repo_stars_event_max_datetime": "2020-08-27T20:56:20.000Z", "max_stars_repo_stars_event_min_datetime": "2016-11-22T11:48:31.000Z", "num_tokens": 878, "size": 1933 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- a zero object is both terminal and initial. module Categories.Object.Zero {o ℓ e} (C : Category o ℓ e) where open import Level open import Categories.Object.Terminal C open import Categories.Object.Initial C open import Categories.Morphism C open import Categories.Morphism.Reasoning C open Category C open HomReasoning record IsZero (Z : Obj) : Set (o ⊔ ℓ ⊔ e) where field isInitial : IsInitial Z isTerminal : IsTerminal Z open IsInitial isInitial public renaming ( ! to ¡ ; !-unique to ¡-unique ; !-unique₂ to ¡-unique₂ ) open IsTerminal isTerminal public zero⇒ : ∀ {A B : Obj} → A ⇒ B zero⇒ = ¡ ∘ ! zero-∘ˡ : ∀ {X Y Z} → (f : Y ⇒ Z) → f ∘ zero⇒ {X} ≈ zero⇒ zero-∘ˡ f = pullˡ (⟺ (¡-unique (f ∘ ¡))) zero-∘ʳ : ∀ {X Y Z} → (f : X ⇒ Y) → zero⇒ {Y} {Z} ∘ f ≈ zero⇒ zero-∘ʳ f = pullʳ (⟺ (!-unique (! ∘ f))) record Zero : Set (o ⊔ ℓ ⊔ e) where field 𝟘 : Obj isZero : IsZero 𝟘 open IsZero isZero public terminal : Terminal terminal = record { ⊤-is-terminal = isTerminal } initial : Initial initial = record { ⊥-is-initial = isInitial } open Zero ¡-Mono : ∀ {A} {z : Zero} → Mono (¡ z {A}) ¡-Mono {z = z} = from-⊤-is-Mono {t = terminal z} (¡ z) !-Epi : ∀ {A} {z : Zero} → Epi (! z {A}) !-Epi {z = z} = to-⊥-is-Epi {i = initial z} (! z)
{ "alphanum_fraction": 0.5917630058, "avg_line_length": 22.6885245902, "ext": "agda", "hexsha": "5574f1d39cba797d5a74406e94aeb10ef25ecbe5", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Object/Zero.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Object/Zero.agda", "max_line_length": 64, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Object/Zero.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 524, "size": 1384 }
module Issue279-2 where data ⊥ : Set where data ⊤ : Set where tt : ⊤ module M (A : Set) where data P : ⊤ → Set where tt : A → P tt module X = M ⊥ using (tt) open X good : ⊥ → M.P ⊥ tt good = tt bad : M.P ⊤ tt bad = tt tt
{ "alphanum_fraction": 0.5466101695, "avg_line_length": 11.2380952381, "ext": "agda", "hexsha": "6061b54f3e4f6d2a9640cae353a595f38fc8a0a1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue279-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue279-2.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue279-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 95, "size": 236 }
abstract data D : Set where d : D data P : D → Set where p : P d d′ : D d′ = d d₂ : D d₂ = d private abstract p′ : P d p′ = p A : P d′ A = p′ -- A : Set₁ -- P d′ -- A = Set -- p′ -- where -- abstract -- p′ : P d -- p′ = p
{ "alphanum_fraction": 0.3832116788, "avg_line_length": 8.5625, "ext": "agda", "hexsha": "dacbff17c68f4bf4536e3b947ad7458aa765d8a8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue3744.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue3744.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue3744.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 124, "size": 274 }
{-# OPTIONS --rewriting #-} open import Library -- Focusing proofs -- parametrized by positive and negative atoms -- module Formulas (PosAt NegAt : Set) where -- module Formulas (Atoms : Set) where postulate Atoms : Set -- Polarity + (positive formulas) are those whose introduction requires data Pol : Set where + - : Pol -- -- Opposite polarities -- data Op : (p q : Pol) → Set where -- +- : Op + - -- -+ : Op - + -- Atoms : Pol → Set -- Atoms + = PosAt -- Atoms - = NegAt data Form : Pol → Set where -- Atom : ∀{p} → Atoms p → Form p True : ∀{p} → Form p _∧_ : ∀{p} (A B : Form p) → Form p -- +: tensor (strict tuple), -: record types (lazy tuple) -- only positive Atom : (P : Atoms) → Form + False : Form + _∨_ : (A B : Form +) → Form + -- only negative _⇒_ : (A : Form +) (B : Form -) → Form - -- embedding (switching) Comp : (A : Form +) → Form - -- The F of CBPV. Thunk : (A : Form -) → Form + -- The U of CBPV. -- Sw : ∀{p q} (op : Op p q) (A : Form p) → Form q infixl 8 _∧_ infixl 7 _∨_ infixr 6 _⇒_ -- Generic hypotheses, taken from a set S. module _ (S : Set) where data Cxt' : Set where ε : Cxt' _∙_ : (Γ : Cxt') (A : S) → Cxt' data Hyp' (A : S) : (Γ : Cxt') → Set where top : ∀{Γ} → Hyp' A (Γ ∙ A) pop : ∀{B Γ} (x : Hyp' A Γ) → Hyp' A (Γ ∙ B) infixl 4 _∙_ -- Contexts only contain negative formulas. -- This is because we eagerly split positive ones. -- In CBPV, hypotheses are positive (values). Cxt = Cxt' (Form -) Hyp = Hyp' (Form -) -- Positive atoms in hypotheses via switching. Atom- = λ P → Comp (Atom P) HypAtom = λ P → Hyp (Atom- P) -- Non-invertible left rules: module _ (Nf : (A : Form +) (Γ : Cxt) → Set) where data Ne' (C : Form -) (Γ : Cxt) : Set where hyp : ∀ (x : Hyp C Γ) → Ne' C Γ impE : ∀{A} (t : Ne' (A ⇒ C) Γ) (u : Nf A Γ) → Ne' C Γ andE₁ : ∀{D} (t : Ne' (C ∧ D) Γ) → Ne' C Γ andE₂ : ∀{D} (t : Ne' (D ∧ C) Γ) → Ne' C Γ -- Invertible left rules: -- Break up a positive formula and add the bits as hypotheses -- "case tree" / "cover" -- Produces a cover of Γ.A by splitting A mutual AddHyp = λ A J Γ → AddHyp' Γ J A data AddHyp' (Γ : Cxt) (J : Cxt → Set) : (A : Form +) → Set where addAtom : ∀{P} (t : J (Γ ∙ Atom- P)) → AddHyp (Atom P) J Γ addNeg : ∀{A} (t : J (Γ ∙ A)) → AddHyp (Thunk A) J Γ trueE : (t : J Γ) → AddHyp True J Γ andE : ∀{A B} (t : AddHyp A (AddHyp B J) Γ) → AddHyp (A ∧ B) J Γ falseE : AddHyp False J Γ orE : ∀{A B} (t : AddHyp A J Γ) (u : AddHyp B J Γ) → AddHyp (A ∨ B) J Γ module UNUSED where addHyp : ∀ (A : Form +) {Γ} {J : Cxt → Set} (j : ∀{Δ} → J Δ) → AddHyp A J Γ addHyp (Atom P) j = addAtom j addHyp (Thunk A) j = addNeg j addHyp True j = trueE j addHyp False _ = falseE addHyp (A ∧ B) j = andE (addHyp A (addHyp B j)) addHyp (A ∨ B) j = orE (addHyp A j) (addHyp B j) module _ (Ne : (A : Form +) (Γ : Cxt) → Set) where data Cover' (i : Size) (J : Cxt → Set) (Γ : Cxt) : Set where returnC : (t : J Γ) → Cover' i J Γ matchC : ∀{j : Size< i} {A} (t : Ne A Γ) (c : AddHyp A (Cover' j J) Γ) → Cover' i J Γ -- Left focusing (break a negative hypothesis A down into something positive) -- "spine" mutual -- Neutrals, containing values (RFoc) as arguments to functions. Ne : (i : Size) (C : Form -) (Γ : Cxt) → Set Ne i = Ne' (RFoc i) -- Cover monad, containing neutrals of type (Comp A) as scrutinees. Cover : (i j : Size) (J : Cxt → Set) (Γ : Cxt) → Set Cover i j = Cover' (λ A → Ne j (Comp A)) i -- Non-invertible right rules: -- Right focusing (proof of a positive goal by decisions) -- "normal" / values. data RFoc : (i : Size) (A : Form +) (Γ : Cxt) → Set where -- Right focusing stops at a negative formulas thunk : ∀{i Γ A} (t : RInv i A Γ) → RFoc (↑ i) (Thunk A) Γ -- Success: hyp : ∀{i Γ P} (x : HypAtom P Γ) → RFoc (↑ i) (Atom P) Γ trueI : ∀{i Γ} → RFoc (↑ i) True Γ -- Choices: andI : ∀{i Γ A B} (t : RFoc i A Γ) (u : RFoc i B Γ) → RFoc (↑ i) (A ∧ B) Γ orI₁ : ∀{i Γ B A} (t : RFoc i A Γ) → RFoc (↑ i) (A ∨ B) Γ orI₂ : ∀{i Γ A B} (u : RFoc i B Γ) → RFoc (↑ i) (A ∨ B) Γ -- Invertible right rules: -- Right inversion: break a goal into subgoals -- "eta" / definitions by copattern matching. data RInv : (i : Size) (A : Form -) (Γ : Cxt) → Set where -- Right inversion ends at a positive formula ret : ∀{i Γ A} (t : Cover ∞ i (RFoc i A) Γ) → RInv (↑ i) (Comp A) Γ -- Goal splitting trueI : ∀{i Γ} → RInv (↑ i) True Γ andI : ∀{i Γ A B} (t : RInv i A Γ) (u : RInv i B Γ) → RInv (↑ i) (A ∧ B) Γ impI : ∀{i Γ A B} (t : AddHyp A (RInv i B) Γ) → RInv (↑ i) (A ⇒ B) Γ -- Pointwise mapping _→̇_ : (P Q : Cxt → Set) → Set P →̇ Q = ∀{Γ} → P Γ → Q Γ mapAddHyp : ∀{P Q} (f : P →̇ Q) → ∀{A} → AddHyp A P →̇ AddHyp A Q mapAddHyp f (addAtom t) = addAtom (f t) mapAddHyp f (addNeg t) = addNeg (f t) mapAddHyp f (trueE t) = trueE (f t) mapAddHyp f falseE = falseE mapAddHyp f (andE t) = andE (mapAddHyp (mapAddHyp f) t) -- By induction on types! mapAddHyp f (orE t u) = orE (mapAddHyp f t) (mapAddHyp f u) mapCover : ∀{P Q} (f : P →̇ Q) {i j} → Cover i j P →̇ Cover i j Q mapCover f (returnC t) = returnC (f t) mapCover f (matchC t c) = matchC t (mapAddHyp (mapCover f) c) -- Cover should be sized! -- Cover monad joinCover : ∀{i j P} → Cover i j (Cover ∞ j P) →̇ Cover ∞ j P joinCover (returnC t) = t joinCover (matchC t c) = matchC t (mapAddHyp joinCover c) -- Context extension (thinning) infix 3 _≤_ data _≤_ : (Γ Δ : Cxt) → Set where id≤ : ∀{Γ} → Γ ≤ Γ weak : ∀{A Γ Δ} (τ : Γ ≤ Δ) → Γ ∙ A ≤ Δ lift : ∀{A Γ Δ} (τ : Γ ≤ Δ) → Γ ∙ A ≤ Δ ∙ A postulate lift-id≤ : ∀{Γ A} → lift id≤ ≡ id≤ {Γ ∙ A} {-# REWRITE lift-id≤ #-} -- Category of thinnings _•_ : ∀{Γ Δ Φ} (τ : Γ ≤ Δ) (σ : Δ ≤ Φ) → Γ ≤ Φ id≤ • σ = σ weak τ • σ = weak (τ • σ) lift τ • id≤ = lift τ lift τ • weak σ = weak (τ • σ) lift τ • lift σ = lift (τ • σ) •-id : ∀{Γ Δ} (τ : Γ ≤ Δ) → τ • id≤ ≡ τ •-id id≤ = refl •-id (weak τ) = cong weak (•-id τ) •-id (lift τ) = refl {-# REWRITE •-id #-} -- Monotonicity Mon : (P : Cxt → Set) → Set Mon P = ∀{Γ Δ} (τ : Γ ≤ Δ) → P Δ → P Γ -- Monotonicity of hypotheses monH : ∀{A} → Mon (Hyp A) monH id≤ x = x monH (weak τ) x = pop (monH τ x) monH (lift τ) top = top monH (lift τ) (pop x) = pop (monH τ x) monH• : ∀{Γ Δ Φ A} (τ : Γ ≤ Δ) (σ : Δ ≤ Φ) (x : Hyp A Φ) → monH (τ • σ) x ≡ monH τ (monH σ x) monH• id≤ σ x = refl monH• (weak τ) σ x = cong pop (monH• τ σ x) monH• (lift τ) id≤ x = refl monH• (lift τ) (weak σ) x = cong pop (monH• τ σ x) monH• (lift τ) (lift σ) top = refl monH• (lift τ) (lift σ) (pop x) = cong pop (monH• τ σ x) {-# REWRITE monH• #-} -- Monotonicity of neutrals monNe' : ∀{P : Form + → Cxt → Set} (monP : ∀{A} → Mon (P A)) → ∀{A} → Mon (Ne' P A) monNe' monP τ (hyp x) = hyp (monH τ x) monNe' monP τ (impE t u) = impE (monNe' monP τ t) (monP τ u) monNe' monP τ (andE₁ t) = andE₁ (monNe' monP τ t) monNe' monP τ (andE₂ t) = andE₂ (monNe' monP τ t) -- Monotonicity of covers monAddHyp : ∀{P} (monP : Mon P) → ∀{A} → Mon (AddHyp A P) monAddHyp monP τ (addAtom t) = addAtom (monP (lift τ) t) monAddHyp monP τ (addNeg t) = addNeg (monP (lift τ) t) monAddHyp monP τ (trueE t) = trueE (monP τ t) monAddHyp monP τ falseE = falseE monAddHyp monP τ (andE t) = andE (monAddHyp (monAddHyp monP) τ t) monAddHyp monP τ (orE t u) = orE (monAddHyp monP τ t) (monAddHyp monP τ u) -- Monotonicity of derivations mutual monNe : ∀{i A} → Mon (Ne i A) monNe {i} τ t = monNe' (monRFoc {i}) τ t monCover : ∀{i j P} (monP : Mon P) → Mon (Cover i j P) monCover monP τ (returnC t) = returnC (monP τ t) monCover {i} {j} monP τ (matchC {i'} t c) = matchC (monNe τ t) (monAddHyp (monCover {i'} {j} monP) τ c) monRFoc : ∀{i A} → Mon (RFoc i A) monRFoc τ (thunk t) = thunk (monRInv τ t) monRFoc τ (hyp x) = hyp (monH τ x) monRFoc τ trueI = trueI monRFoc τ (andI t t₁) = andI (monRFoc τ t) (monRFoc τ t₁) monRFoc τ (orI₁ t) = orI₁ (monRFoc τ t) monRFoc τ (orI₂ t) = orI₂ (monRFoc τ t) monRInv : ∀{i A} → Mon (RInv i A) monRInv τ (ret {i} t) = ret (monCover (monRFoc {i}) τ t) monRInv τ trueI = trueI monRInv τ (andI t t₁) = andI (monRInv τ t) (monRInv τ t₁) monRInv τ (impI {i} t) = impI (monAddHyp (monRInv {i}) τ t) KFun : (P Q : Cxt → Set) (Γ : Cxt) → Set KFun P Q Γ = ∀{Δ} (τ : Δ ≤ Γ) → P Δ → Q Δ _⇒̂_ : (P Q : Cxt → Set) (Γ : Cxt) → Set _⇒̂_ P Q Γ = ∀{Δ} (τ : Δ ≤ Γ) → P Δ → Q Δ mapAddHyp' : ∀{P Q Γ} (f : (P ⇒̂ Q) Γ) → ∀{A} → AddHyp A P Γ → AddHyp A Q Γ mapAddHyp' f (addAtom t) = addAtom (f (weak id≤) t) mapAddHyp' f (addNeg t) = addNeg (f (weak id≤) t) mapAddHyp' f (trueE t) = trueE (f id≤ t) mapAddHyp' f falseE = falseE mapAddHyp' f (andE t) = andE (mapAddHyp' (λ τ → mapAddHyp' λ τ' → f (τ' • τ)) t) -- By induction on types! mapAddHyp' f (orE t u) = orE (mapAddHyp' f t) (mapAddHyp' f u) mapCover' : ∀{P Q Γ} (f : (P ⇒̂ Q) Γ) {i j} (c : Cover i j P Γ) → Cover i j Q Γ mapCover' f (returnC t) = returnC (f id≤ t) mapCover' f (matchC t c) = matchC t (mapAddHyp' (λ τ → mapCover' λ τ' → f (τ' • τ)) c) -- Cover is sized! -- Remark: Graded monad (andE) bindAddHyp : ∀{A B J K} (monJ : Mon J) → AddHyp A J →̇ ((J ⇒̂ AddHyp B K) ⇒̂ AddHyp (A ∧ B) K) bindAddHyp monJ t τ k = andE (mapAddHyp' k (monAddHyp monJ τ t)) -- Semantics ⟦_⟧ : ∀{p} (A : Form p) (Γ : Cxt) → Set ⟦ Atom P ⟧ Γ = HypAtom P Γ ⟦ False ⟧ Γ = ⊥ ⟦ A ∨ B ⟧ Γ = ⟦ A ⟧ Γ ⊎ ⟦ B ⟧ Γ ⟦ True ⟧ Γ = ⊤ ⟦ A ∧ B ⟧ Γ = ⟦ A ⟧ Γ × ⟦ B ⟧ Γ ⟦ A ⇒ B ⟧ Γ = ∀ {Δ} (τ : Δ ≤ Γ) (a : ⟦ A ⟧ Δ) → ⟦ B ⟧ Δ ⟦ Comp A ⟧ = Cover ∞ ∞ ⟦ A ⟧ -- values to computations ⟦ Thunk A ⟧ = ⟦ A ⟧ -- Monotonicity of semantics mon⟦_⟧ : ∀{p} (A : Form p) → Mon ⟦ A ⟧ mon⟦ True ⟧ τ _ = _ mon⟦ A ∧ B ⟧ τ (a , b) = mon⟦ A ⟧ τ a , mon⟦ B ⟧ τ b mon⟦ Atom P ⟧ = monH mon⟦ False ⟧ τ () mon⟦ A ∨ B ⟧ τ = map-⊎ (mon⟦ A ⟧ τ) (mon⟦ B ⟧ τ) mon⟦ A ⇒ B ⟧ τ f δ = f (δ • τ) mon⟦ Comp A ⟧ = monCover mon⟦ A ⟧ mon⟦ Thunk A ⟧ = mon⟦ A ⟧ -- Reflection and reification. mutual reify- : ∀ (A : Form -) → ⟦ A ⟧ →̇ RInv ∞ A reify- True _ = trueI reify- (A ∧ B) (a , b) = andI (reify- A a) (reify- B b) reify- (A ⇒ B) f = impI (reflectHyp A λ τ a → reify- B (f τ a)) reify- (Comp A) c = ret (mapCover (reify+ A) c) reify+ : ∀ (A : Form +) → ⟦ A ⟧ →̇ RFoc ∞ A reify+ True _ = trueI reify+ (A ∧ B) (a , b) = andI (reify+ A a) (reify+ B b) reify+ (Atom P) x = hyp x reify+ False () reify+ (A ∨ B) (inj₁ a) = orI₁ (reify+ A a) reify+ (A ∨ B) (inj₂ b) = orI₂ (reify+ B b) reify+ (Thunk A) a = thunk (reify- A a) reflectHyp : ∀ A {Γ} {J} (k : ∀ {Δ} (τ : Δ ≤ Γ) → ⟦ A ⟧ Δ → J Δ) → AddHyp A J Γ reflectHyp True k = trueE (k id≤ _) reflectHyp (A ∧ B) k = andE (reflectHyp A λ τ a → reflectHyp B λ τ' b → k (τ' • τ) (mon⟦ A ⟧ τ' a , b)) -- need monT reflectHyp (Atom P) k = addAtom (k (weak id≤) top) reflectHyp False k = falseE reflectHyp (A ∨ B) k = orE (reflectHyp A (λ τ a → k τ (inj₁ a))) (reflectHyp B (λ τ b → k τ (inj₂ b))) reflectHyp (Thunk A) k = addNeg (k (weak id≤) (reflect A (hyp top))) -- Since we only have negative hypotheses, we only need to reflect these reflect : ∀ (A : Form -) → Ne ∞ A →̇ ⟦ A ⟧ reflect True t = _ reflect (A ∧ B) t = reflect A (andE₁ t) , reflect B (andE₂ t) reflect (A ⇒ B) t τ a = reflect B (impE (monNe τ t) (reify+ A a)) -- need monNe reflect (Comp A) t = matchC t (reflectHyp A λ τ a → returnC a) -- Negative propositions are comonadic paste : ∀ (A : Form -) → Cover ∞ ∞ ⟦ A ⟧ →̇ ⟦ A ⟧ paste True _ = _ paste (A ∧ B) c = paste A (mapCover proj₁ c) , paste B (mapCover proj₂ c) paste (A ⇒ B) c τ a = paste B (mapCover' (λ τ' f → f id≤ (mon⟦ A ⟧ τ' a)) (monCover mon⟦ A ⇒ B ⟧ τ c)) paste (Comp A) = joinCover -- Snippets to define evaluation in polarized lambda calculus module Evaluation where -- Environments G⟦_⟧ : (Γ : Cxt) → Cxt → Set G⟦ ε ⟧ Δ = ⊤ G⟦ Γ ∙ P ⟧ Δ = G⟦ Γ ⟧ Δ × ⟦ P ⟧ Δ monG⟦_⟧ : (Γ : Cxt) → Mon (G⟦ Γ ⟧) monG⟦ ε ⟧ = _ monG⟦ Γ ∙ P ⟧ τ (γ , a) = monG⟦ Γ ⟧ τ γ , mon⟦ P ⟧ τ a Ev : (R : Set) (Δ Γ : Cxt) → Set Ev R Δ Γ = G⟦ Γ ⟧ Δ → R cut : ∀{R P Δ} → ⟦ P ⟧ Δ → AddHyp P (Ev R Δ) →̇ Ev R Δ cut x (addAtom t) γ = t (γ , returnC x) cut a (addNeg t) γ = t (γ , a) cut _ (trueE t) = t cut (a , b) (andE t) = cut a (mapAddHyp (cut b) t) cut () falseE cut (inj₁ a) (orE t u) = cut a t cut (inj₂ b) (orE t u) = cut b u -- Intuitionistic propositional logic data IPL : Set where Atom : (P : Atoms) → IPL True False : IPL _∨_ _∧_ _⇒_ : (A B : IPL) → IPL module CallByName where _⁻ : IPL → Form - Atom P ⁻ = Atom- P True ⁻ = True False ⁻ = Comp False (A ∨ B) ⁻ = Comp (Thunk (A ⁻) ∨ Thunk (B ⁻)) (A ∧ B) ⁻ = A ⁻ ∧ B ⁻ (A ⇒ B) ⁻ = Thunk (A ⁻) ⇒ B ⁻ module CallByValue where _⁺ : IPL → Form + Atom P ⁺ = Atom P True ⁺ = True False ⁺ = False (A ∨ B) ⁺ = A ⁺ ∨ B ⁺ (A ∧ B) ⁺ = A ⁺ ∧ B ⁺ (A ⇒ B) ⁺ = Thunk (A ⁺ ⇒ Comp (B ⁺)) mutual _⁺ : IPL → Form + Atom P ⁺ = Atom P True ⁺ = True False ⁺ = False (A ∨ B) ⁺ = A ⁺ ∨ B ⁺ (A ∧ B) ⁺ = A ⁺ ∧ B ⁺ (A ⇒ B) ⁺ = Thunk (A ⁺ ⇒ B ⁻) _⁻ : IPL → Form - Atom P ⁻ = Atom- P True ⁻ = True False ⁻ = Comp False (A ∨ B) ⁻ = Comp (A ⁺ ∨ B ⁺) (A ∧ B) ⁻ = A ⁻ ∧ B ⁻ (A ⇒ B) ⁻ = A ⁺ ⇒ B ⁻ -- Derivations infix 2 _⊢_ data _⊢_ (Γ : Cxt' IPL) : (A : IPL) → Set where hyp : ∀{A} (x : Hyp' IPL A Γ) → Γ ⊢ A impI : ∀{A B} (t : Γ ∙ A ⊢ B) → Γ ⊢ A ⇒ B impE : ∀{A B} (t : Γ ⊢ A ⇒ B) (u : Γ ⊢ A) → Γ ⊢ B andI : ∀{A B} (t : Γ ⊢ A) (u : Γ ⊢ B) → Γ ⊢ A ∧ B andE₁ : ∀{A B} (t : Γ ⊢ A ∧ B) → Γ ⊢ A andE₂ : ∀{A B} (t : Γ ⊢ A ∧ B) → Γ ⊢ B orI₁ : ∀{A B} (t : Γ ⊢ A) → Γ ⊢ A ∨ B orI₂ : ∀{A B} (t : Γ ⊢ B) → Γ ⊢ A ∨ B orE : ∀{A B C} (t : Γ ⊢ A ∨ B) (u : Γ ∙ A ⊢ C) (v : Γ ∙ B ⊢ C) → Γ ⊢ C falseE : ∀{C} (t : Γ ⊢ False) → Γ ⊢ C trueI : Γ ⊢ True Tm = λ A Γ → Γ ⊢ A -- Call-by value evaluation module CBV where V⟦_⟧ = λ A → ⟦ A ⁺ ⟧ C⟦_⟧ = λ A → ⟦ A ⁻ ⟧ return : ∀ A → V⟦ A ⟧ →̇ C⟦ A ⟧ return (Atom P) v = returnC v return True v = v return False v = returnC v return (A ∨ B) v = returnC v return (A ∧ B) (a , b) = return A a , return B b return (A ⇒ B) v = v run : ∀ A → C⟦ A ⟧ →̇ Cover ∞ ∞ V⟦ A ⟧ run (Atom P) c = c run True c = returnC c run False c = c run (A ∨ B) c = c run (A ∧ B) c = joinCover (mapCover' (λ τ a → mapCover' (λ τ' b → (mon⟦ A ⁺ ⟧ τ' a , b)) (run B (mon⟦ B ⁻ ⟧ τ (proj₂ c)))) (run A (proj₁ c))) run (A ⇒ B) c = returnC c -- Fundamental theorem -- Extension of ⟦_⟧ to contexts G⟦_⟧ : ∀ (Γ : Cxt' IPL) (Δ : Cxt) → Set G⟦ ε ⟧ Δ = ⊤ G⟦ Γ ∙ A ⟧ Δ = G⟦ Γ ⟧ Δ × V⟦ A ⟧ Δ -- monG : ∀{Γ Δ Φ} (τ : Φ ≤ Δ) → G⟦ Γ ⟧ Δ → G⟦ Γ ⟧ Φ monG : ∀{Γ} → Mon G⟦ Γ ⟧ monG {ε} τ _ = _ monG {Γ ∙ A} τ (γ , a) = monG τ γ , mon⟦ A ⁺ ⟧ τ a -- Variable case. lookup : ∀{Γ A} (x : Hyp' IPL A Γ) → G⟦ Γ ⟧ →̇ V⟦ A ⟧ lookup top = proj₂ lookup (pop x) = lookup x ∘ proj₁ impIntro : ∀ {A B Γ} (f : KFun (Cover ∞ ∞ ⟦ A ⟧) ⟦ B ⟧ Γ) → ⟦ A ⇒ B ⟧ Γ impIntro f τ a = f τ (returnC a) -- impElim : ∀ A B {Γ} → (f : C⟦ A ⇒ B ⟧ Γ) (a : C⟦ A ⟧ Γ) → C⟦ B ⟧ Γ -- impElim (Atom P) B f = paste (B ⁻) ∘ mapCover' f -- impElim False B f = paste (B ⁻) ∘ mapCover' f -- impElim True B f = f id≤ -- impElim (A ∨ A₁) B f = paste (B ⁻) ∘ mapCover' f -- impElim (A ∧ A₁) B f = {!paste (B ⁻) ∘ mapCover' f!} -- impElim (A ⇒ A₁) B f = f id≤ impElim : ∀ A B {Γ} → (f : C⟦ A ⇒ B ⟧ Γ) (a : C⟦ A ⟧ Γ) → C⟦ B ⟧ Γ impElim A B f a = paste (B ⁻) (mapCover' f (run A a)) -- A lemma for the orE case. orElim : ∀ A B C {Γ} → C⟦ A ∨ B ⟧ Γ → C⟦ A ⇒ C ⟧ Γ → C⟦ B ⇒ C ⟧ Γ → C⟦ C ⟧ Γ orElim A B C c g h = paste (C ⁻) (mapCover' (λ τ → [ g τ , h τ ]) c) -- A lemma for the falseE case. -- Casts an empty cover into any semantic value (by contradiction). falseElim : ∀ C → C⟦ False ⟧ →̇ C⟦ C ⟧ falseElim C = paste (C ⁻) ∘ mapCover ⊥-elim -- The fundamental theorem eval : ∀{A Γ} (t : Γ ⊢ A) → G⟦ Γ ⟧ →̇ C⟦ A ⟧ eval {A} (hyp x) = return A ∘ lookup x eval (impI t) γ τ a = eval t (monG τ γ , a) eval (impE {A} {B} t u) γ = impElim A B (eval t γ) (eval u γ) eval (andI t u) γ = eval t γ , eval u γ eval (andE₁ t) = proj₁ ∘ eval t eval (andE₂ t) = proj₂ ∘ eval t eval (orI₁ {A} {B} t) γ = mapCover inj₁ (run A (eval t γ)) eval (orI₂ {A} {B} t) γ = mapCover inj₂ (run B (eval t γ)) eval (orE {A} {B} {C} t u v) γ = orElim A B C (eval t γ) (λ τ a → eval u (monG τ γ , a)) (λ τ b → eval v (monG τ γ , b)) eval {C} (falseE t) γ = falseElim C (eval t γ) eval trueI γ = _ _⁺⁺ : (Γ : Cxt' IPL) → Cxt ε ⁺⁺ = ε (Γ ∙ A) ⁺⁺ = Γ ⁺⁺ ∙ A ⁻ -- Identity environment ide : ∀ Γ → Cover ∞ ∞ G⟦ Γ ⟧ (Γ ⁺⁺) ide ε = returnC _ ide (Γ ∙ A) = {!!} -- monG (weak id≤) (ide Γ) , {! reflectHyp (A ⁺) (λ τ a → a) !} {- -- Normalization norm : ∀{A : IPL} {Γ : Cxt' IPL} → Tm A Γ → RInv (Γ ⁺⁺) (A ⁻) norm t = reify- _ (eval t (ide _)) -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.4949489217, "avg_line_length": 30.3270223752, "ext": "agda", "hexsha": "5fe125110255485f9b7ca13e04609d7a6ef48814", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src-focusing/Formulas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src-focusing/Formulas.agda", "max_line_length": 143, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src-focusing/Formulas.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 8069, "size": 17620 }
postulate X : Set T : X → Set H : ∀ x → T x → Set g : ∀ x → T x → Set g x t = ∀ x → H x t
{ "alphanum_fraction": 0.3979591837, "avg_line_length": 10.8888888889, "ext": "agda", "hexsha": "6e5bb207b2558ffa01cbad6b79fe334fcdbd780a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1005.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1005.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1005.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 48, "size": 98 }
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <[email protected]> module Data.Fin where open import Data.Fin.Core public using (Fin; Fin-Number; fsuc; fzero)
{ "alphanum_fraction": 0.7198067633, "avg_line_length": 23, "ext": "agda", "hexsha": "a80e847b1a6ef96cae6842b196c8c220e3e8a697", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "esoeylemez/agda-simple", "max_forks_repo_path": "Data/Fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "esoeylemez/agda-simple", "max_issues_repo_path": "Data/Fin.agda", "max_line_length": 48, "max_stars_count": 1, "max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "esoeylemez/agda-simple", "max_stars_repo_path": "Data/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z", "num_tokens": 76, "size": 207 }
------------------------------------------------------------------------------ -- Conversion rules for the recursive operator rec ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat.Rec.ConversionRules where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Rec ---------------------------------------------------------------------------- private -- We follow the same methodology used in -- LTC-PCF.Program.Division.EquationsI (see it for the -- documentation). ---------------------------------------------------------------------------- -- The steps -- Initially, the conversion rule fix-eq is applied. rec-s₁ : D → D → D → D rec-s₁ n a f = rech (fix rech) · n · a · f -- First argument application. rec-s₂ : D → D rec-s₂ n = lam (λ a → lam (λ f → if (iszero₁ n) then a else f · pred₁ n · (fix rech · pred₁ n · a · f))) -- Second argument application. rec-s₃ : D → D → D rec-s₃ n a = lam (λ f → if (iszero₁ n) then a else f · pred₁ n · (fix rech · pred₁ n · a · f)) -- Third argument application. rec-s₄ : D → D → D → D rec-s₄ n a f = if (iszero₁ n) then a else f · pred₁ n · (fix rech · pred₁ n · a · f) -- Reduction iszero₁ n ≡ b. rec-s₅ : D → D → D → D → D rec-s₅ n a f b = if b then a else f · pred₁ n · (fix rech · pred₁ n · a · f) -- Reduction of iszero₁ n ≡ true -- -- It should be -- rec-s₆ : D → D → D → D -- rec-s₆ n a f = a -- -- but we do not give a name to this step. -- Reduction iszero₁ n ≡ false. rec-s₆ : D → D → D → D rec-s₆ n a f = f · pred₁ n · (fix rech · pred₁ n · a · f) -- Reduction pred₁ (succ n) ≡ n. rec-s₇ : D → D → D → D rec-s₇ n a f = f · n · (fix rech · n · a · f) ---------------------------------------------------------------------------- -- The execution steps -- We follow the same methodology used in -- LTC-PCF.Program.Division.EquationsI (see it for the -- documentation). -- Application of the conversion rule fix-eq. proof₀₋₁ : ∀ n a f → fix rech · n · a · f ≡ rec-s₁ n a f proof₀₋₁ n a f = subst (λ x → x · n · a · f ≡ rech (fix rech) · n · a · f ) (sym (fix-eq rech)) refl -- Application of the first argument. proof₁₋₂ : ∀ n a f → rec-s₁ n a f ≡ rec-s₂ n · a · f proof₁₋₂ n a f = subst (λ x → x · a · f ≡ rec-s₂ n · a · f) (sym (beta rec-s₂ n)) refl -- Application of the second argument. proof₂₋₃ : ∀ n a f → rec-s₂ n · a · f ≡ rec-s₃ n a · f proof₂₋₃ n a f = subst (λ x → x · f ≡ rec-s₃ n a · f) (sym (beta (rec-s₃ n) a)) refl -- Application of the third argument. proof₃₋₄ : ∀ n a f → rec-s₃ n a · f ≡ rec-s₄ n a f proof₃₋₄ n a f = beta (rec-s₄ n a) f -- Cases iszero₁ n ≡ b using that proof. -- 25 April 2014. Failed with Andreas' --without-K. proof₄₋₅ : ∀ n a f b → iszero₁ n ≡ b → rec-s₄ n a f ≡ rec-s₅ n a f b proof₄₋₅ n a f .(iszero₁ n) refl = refl -- Reduction of if true ... using the conversion rule if-true. proof₅₊ : ∀ n a f → rec-s₅ n a f true ≡ a proof₅₊ n a f = if-true a -- Reduction of if false ... using the conversion rule if-false. proof₅₋₆ : ∀ n a f → rec-s₅ n a f false ≡ rec-s₆ n a f proof₅₋₆ n a f = if-false (rec-s₆ n a f) -- Reduction pred₁ (succ n) ≡ n using the conversion rule pred₁-S. proof₆₋₇ : ∀ n a f → rec-s₆ (succ₁ n) a f ≡ rec-s₇ n a f proof₆₋₇ n a f = subst (λ x → rec-s₇ x a f ≡ rec-s₇ n a f) (sym (pred-S n)) refl ------------------------------------------------------------------------------ -- The conversion rules for rec. rec-0 : ∀ a {f} → rec zero a f ≡ a rec-0 a {f} = fix rech · zero · a · f ≡⟨ proof₀₋₁ zero a f ⟩ rec-s₁ zero a f ≡⟨ proof₁₋₂ zero a f ⟩ rec-s₂ zero · a · f ≡⟨ proof₂₋₃ zero a f ⟩ rec-s₃ zero a · f ≡⟨ proof₃₋₄ zero a f ⟩ rec-s₄ zero a f ≡⟨ proof₄₋₅ zero a f true iszero-0 ⟩ rec-s₅ zero a f true ≡⟨ proof₅₊ zero a f ⟩ a ∎ rec-S : ∀ n a f → rec (succ₁ n) a f ≡ f · n · (rec n a f) rec-S n a f = fix rech · (succ₁ n) · a · f ≡⟨ proof₀₋₁ (succ₁ n) a f ⟩ rec-s₁ (succ₁ n) a f ≡⟨ proof₁₋₂ (succ₁ n) a f ⟩ rec-s₂ (succ₁ n) · a · f ≡⟨ proof₂₋₃ (succ₁ n) a f ⟩ rec-s₃ (succ₁ n) a · f ≡⟨ proof₃₋₄ (succ₁ n) a f ⟩ rec-s₄ (succ₁ n) a f ≡⟨ proof₄₋₅ (succ₁ n) a f false (iszero-S n) ⟩ rec-s₅ (succ₁ n) a f false ≡⟨ proof₅₋₆ (succ₁ n) a f ⟩ rec-s₆ (succ₁ n) a f ≡⟨ proof₆₋₇ n a f ⟩ rec-s₇ n a f ∎
{ "alphanum_fraction": 0.4618426255, "avg_line_length": 35.125, "ext": "agda", "hexsha": "0a4415595af6e00f25dd3222b270ace6a3f056b0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/Rec/ConversionRules.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/Rec/ConversionRules.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/Rec/ConversionRules.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1773, "size": 5058 }
------------------------------------------------------------------------ -- Functional semantics for an untyped λ-calculus with constants ------------------------------------------------------------------------ {-# OPTIONS --no-termination-check #-} module Lambda.Closure.Functional.No-workarounds where open import Category.Monad open import Category.Monad.Partiality as Partiality using (_⊥; never; OtherKind; other; steps) open import Codata.Musical.Notation open import Data.Empty using (⊥-elim) open import Data.List hiding (lookup) open import Data.Maybe hiding (_>>=_) import Data.Maybe.Categorical as Maybe open import Data.Nat open import Data.Product open import Data.Sum open import Data.Vec using (Vec; []; _∷_; lookup) open import Function import Level open import Relation.Binary using (module Preorder) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import Relation.Nullary.Negation open Partiality._⊥ private open module E {A : Set} = Partiality.Equality (_≡_ {A = A}) open module R {A : Set} = Partiality.Reasoning (P.isEquivalence {A = A}) open import Lambda.Syntax open Closure Tm open import Lambda.VirtualMachine open Functional private module VM = Closure Code ------------------------------------------------------------------------ -- A monad with partiality and failure PF : RawMonad {f = Level.zero} (_⊥ ∘ Maybe) PF = Maybe.monadT Partiality.monad module PF where open RawMonad PF public fail : {A : Set} → Maybe A ⊥ fail = now nothing _>>=-cong_ : ∀ {k} {A B : Set} {x₁ x₂ : Maybe A ⊥} {f₁ f₂ : A → Maybe B ⊥} → Rel k x₁ x₂ → (∀ x → Rel k (f₁ x) (f₂ x)) → Rel k (x₁ >>= f₁) (x₂ >>= f₂) _>>=-cong_ {k} {f₁ = f₁} {f₂} x₁≈x₂ f₁≈f₂ = Partiality._>>=-cong_ x₁≈x₂ helper where helper : ∀ {x y} → x ≡ y → Rel k (maybe f₁ fail x) (maybe f₂ fail y) helper {x = nothing} P.refl = fail ∎ helper {x = just x} P.refl = f₁≈f₂ x associative : {A B C : Set} (x : Maybe A ⊥) (f : A → Maybe B ⊥) (g : B → Maybe C ⊥) → (x >>= f >>= g) ≅ (x >>= λ y → f y >>= g) associative x f g = (x >>= f >>= g) ≅⟨ Partiality.associative P.refl x _ _ ⟩ (x >>=′ λ y → maybe f fail y >>= g) ≅⟨ Partiality._>>=-cong_ (x ∎) helper ⟩ (x >>= λ y → f y >>= g) ∎ where open RawMonad Partiality.monad renaming (_>>=_ to _>>=′_) helper : ∀ {y₁ y₂} → y₁ ≡ y₂ → (maybe f fail y₁ >>= g) ≅ maybe (λ z → f z >>= g) fail y₂ helper {y₁ = nothing} P.refl = fail ∎ helper {y₁ = just y} P.refl = (f y >>= g) ∎ >>=-inversion-⇓ : ∀ {k} {A B : Set} x {f : A → Maybe B ⊥} {y} → (x>>=f⇓ : (x >>= f) ⇓[ k ] just y) → ∃ λ z → ∃₂ λ (x⇓ : x ⇓[ k ] just z) (fz⇓ : f z ⇓[ k ] just y) → steps x⇓ + steps fz⇓ ≡ steps x>>=f⇓ >>=-inversion-⇓ x {f} x>>=f⇓ with Partiality.>>=-inversion-⇓ {_∼A_ = _≡_} P.refl x x>>=f⇓ ... | (nothing , x↯ , now () , _) ... | (just z , x⇓ , fz⇓ , eq) = (z , x⇓ , fz⇓ , eq) >>=-inversion-⇑ : ∀ {k} {A B : Set} x {f : A → Maybe B ⊥} → (x >>= f) ⇑[ other k ] → ¬ ¬ (x ⇑[ other k ] ⊎ ∃ λ y → x ⇓[ other k ] just y × f y ⇑[ other k ]) >>=-inversion-⇑ {k} x {f} x>>=f⇑ = helper ⟨$⟩ Partiality.>>=-inversion-⇑ P.isEquivalence x x>>=f⇑ where open RawMonad ¬¬-Monad renaming (_<$>_ to _⟨$⟩_) helper : (_ ⊎ ∃ λ (y : Maybe _) → _) → _ helper (inj₁ x⇑ ) = inj₁ x⇑ helper (inj₂ (just y , x⇓,fy⇑) ) = inj₂ (y , x⇓,fy⇑) helper (inj₂ (nothing , x↯,now∼never)) = ⊥-elim (Partiality.now≉never (proj₂ x↯,now∼never)) open PF ------------------------------------------------------------------------ -- Semantics infix 5 _∙_ -- Note that this definition gives us determinism "for free". mutual ⟦_⟧ : ∀ {n} → Tm n → Env n → Maybe Value ⊥ ⟦ con i ⟧ ρ = return (con i) ⟦ var x ⟧ ρ = return (lookup ρ x) ⟦ ƛ t ⟧ ρ = return (ƛ t ρ) ⟦ t₁ · t₂ ⟧ ρ = ⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ _∙_ : Value → Value → Maybe Value ⊥ con i ∙ v₂ = fail ƛ t₁ ρ ∙ v₂ = later (♯ (⟦ t₁ ⟧ (v₂ ∷ ρ))) ------------------------------------------------------------------------ -- Example Ω-loops : ⟦ Ω ⟧ [] ≈ never Ω-loops = later (♯ Ω-loops) ------------------------------------------------------------------------ -- Some lemmas -- An abbreviation. infix 5 _⟦·⟧_ _⟦·⟧_ : Maybe Value ⊥ → Maybe Value ⊥ → Maybe Value ⊥ v₁ ⟦·⟧ v₂ = v₁ >>= λ v₁ → v₂ >>= λ v₂ → v₁ ∙ v₂ -- _⟦·⟧_ preserves equality. _⟦·⟧-cong_ : ∀ {k v₁₁ v₁₂ v₂₁ v₂₂} → Rel k v₁₁ v₂₁ → Rel k v₁₂ v₂₂ → Rel k (v₁₁ ⟦·⟧ v₁₂) (v₂₁ ⟦·⟧ v₂₂) v₁₁≈v₂₁ ⟦·⟧-cong v₁₂≈v₂₂ = v₁₁≈v₂₁ >>=-cong λ v₁ → v₁₂≈v₂₂ >>=-cong λ v₂ → v₁ ∙ v₂ ∎ -- The semantics of application is compositional (with respect to the -- syntactic equality which is used). ·-comp : ∀ {n} (t₁ t₂ : Tm n) {ρ} → ⟦ t₁ · t₂ ⟧ ρ ≅ ⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ·-comp t₁ t₂ = _ ∎ ------------------------------------------------------------------------ -- Compiler correctness module Correctness where -- The relation _≈_ does not admit unrestricted use of transitivity -- in corecursive proofs, so I have formulated the correctness proof -- using a continuation. Note that the proof would perhaps be easier -- if the semantics was also formulated in continuation-passing -- style. mutual correct : ∀ {n} t {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈ k v) → exec ⟨ comp t c , s , comp-env ρ ⟩ ≈ (⟦ t ⟧ ρ >>= k) correct (con i) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (Lambda.Syntax.Closure.con i) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (con i) ⟩ k (con i) ∎) correct (var x) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (lookup (comp-env ρ) x) ∷ s , comp-env ρ ⟩ ≡⟨ P.cong (λ v → exec ⟨ c , val v ∷ s , comp-env ρ ⟩) (lookup-hom x ρ) ⟩ exec ⟨ c , val (comp-val (lookup ρ x)) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (lookup ρ x) ⟩ k (lookup ρ x) ∎) correct (ƛ t) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (comp-val (ƛ t ρ)) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (ƛ t ρ) ⟩ k (ƛ t ρ) ∎) correct (t₁ · t₂) {ρ} {c} {s} {k} hyp = exec ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≈⟨ correct t₁ (λ v₁ → correct t₂ (λ v₂ → ∙-correct v₁ v₂ hyp)) ⟩ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ≅⟨ ((⟦ t₁ ⟧ ρ ∎) >>=-cong λ _ → sym $ associative (⟦ t₂ ⟧ ρ) _ _) ⟩ (⟦ t₁ ⟧ ρ >>= λ v₁ → (⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂) >>= k) ≅⟨ sym $ associative (⟦ t₁ ⟧ ρ) _ _ ⟩ (⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ >>= k) ≅⟨ _ ∎ ⟩ (⟦ t₁ · t₂ ⟧ ρ >>= k) ∎ ∙-correct : ∀ {n} v₁ v₂ {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈ k v) → exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≈ (v₁ ∙ v₂ >>= k) ∙-correct (con i) v₂ _ = fail ∎ ∙-correct (ƛ t₁ ρ₁) v₂ {ρ} {c} {s} {k} hyp = exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (ƛ t₁ ρ₁)) ∷ s , comp-env ρ ⟩ ≈⟨ later (♯ ( exec ⟨ comp t₁ [ ret ] , ret c (comp-env ρ) ∷ s , comp-env (v₂ ∷ ρ₁) ⟩ ≈⟨ correct t₁ (λ v → laterˡ (hyp v)) ⟩ (⟦ t₁ ⟧ (v₂ ∷ ρ₁) >>= k) ∎)) ⟩ (ƛ t₁ ρ₁ ∙ v₂ >>= k) ∎ -- Note that the equality that is used here is syntactic. correct : ∀ t → exec ⟨ comp t [] , [] , [] ⟩ ≈ (⟦ t ⟧ [] >>= λ v → PF.return (comp-val v)) correct t = Correctness.correct t (λ v → return (comp-val v) ∎)
{ "alphanum_fraction": 0.4599974959, "avg_line_length": 36.6376146789, "ext": "agda", "hexsha": "9e4690b678bec1db2ff6c999950f132795362d4d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda/Closure/Functional/No-workarounds.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda/Closure/Functional/No-workarounds.agda", "max_line_length": 137, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda/Closure/Functional/No-workarounds.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 3066, "size": 7987 }
{-# OPTIONS --allow-unsolved-metas #-} postulate A : Set R : A → Set M : (a : A) (s t : R a) → Set variable a : A s : R a t : _ postulate m : M _ s t t = _
{ "alphanum_fraction": 0.4855491329, "avg_line_length": 9.6111111111, "ext": "agda", "hexsha": "d21dcd658cd00593960a492f877bad1685b3f3ad", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4314.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4314.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4314.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 73, "size": 173 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Abelian.Definition open import Groups.Definition open import Groups.Lemmas open import Rings.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations open import Numbers.Naturals.Semiring open import Numbers.Naturals.EuclideanAlgorithm open import Numbers.Primes.PrimeNumbers module Rings.Characteristic {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+_ _*_) where open import Rings.InitialRing R open Ring R open Setoid S open Equivalence eq open Group additiveGroup characteristicWellDefined : (0R ∼ 1R → False) → {n m : ℕ} → Prime n → Prime m → fromN n ∼ 0R → fromN m ∼ 0R → n ≡ m characteristicWellDefined 0!=1 {n} {m} pN pM n=0 m=0 with divisionDecidable m n ... | inl n|m = equalityCommutative (primeDivPrimeImpliesEqual pM pN n|m) ... | inr notDiv with hcfPrimeIsOne {m} {n} pM notDiv ... | bl = exFalso (0!=1 v) where t : (n *N extendedHcf.extended1 (euclid n m) ≡ m *N extendedHcf.extended2 (euclid n m) +N extendedHcf.c (euclid n m)) || (n *N extendedHcf.extended1 (euclid n m) +N extendedHcf.c (euclid n m) ≡ m *N extendedHcf.extended2 (euclid n m)) t = extendedHcf.extendedProof (euclid n m) u : (n *N extendedHcf.extended1 (euclid n m) ≡ m *N extendedHcf.extended2 (euclid n m) +N 1) || (n *N extendedHcf.extended1 (euclid n m) +N 1 ≡ m *N extendedHcf.extended2 (euclid n m)) u with t ... | inl x = inl (transitivity x (applyEquality (λ i → m *N extendedHcf.extended2 (euclid n m) +N i) bl)) ... | inr x = inr (transitivity (applyEquality (n *N extendedHcf.extended1 (euclid n m) +N_) (equalityCommutative bl)) x) v : 0R ∼ 1R v with u ... | inr x = symmetric (transitive (symmetric (transitive (fromNPreserves+ (n *N extendedHcf.extended1 (euclid n m)) 1) (transitive (+WellDefined (transitive (fromNPreserves* n (extendedHcf.extended1 (euclid n m))) (transitive (*WellDefined n=0 reflexive) timesZero')) identRight) identLeft))) (transitive (fromNWellDefined x) (transitive (fromNPreserves* m (extendedHcf.extended2 (euclid n m))) (transitive (*WellDefined m=0 reflexive) timesZero')))) ... | inl x = transitive (transitive (transitive (symmetric timesZero') (transitive (*WellDefined (symmetric n=0) reflexive) (transitive (symmetric (fromNPreserves* n (extendedHcf.extended1 (euclid n m)))) (transitive (fromNWellDefined x) (transitive (fromNPreserves+ (m *N extendedHcf.extended2 (euclid n m)) 1) (+WellDefined (fromNPreserves* m (extendedHcf.extended2 (euclid n m))) reflexive)))))) (+WellDefined (transitive (*WellDefined m=0 reflexive) timesZero') (identRight))) identLeft
{ "alphanum_fraction": 0.7122781065, "avg_line_length": 71.1578947368, "ext": "agda", "hexsha": "118023ac48585dbfff2a3fb3972e7db6bf532d94", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Characteristic.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Characteristic.agda", "max_line_length": 495, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Characteristic.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 913, "size": 2704 }
module TelescopingLet5 where postulate A : Set a : A module B (a : A) where postulate C : Set -- B.C : (a : A) → Set module N = B a module M' (open N) (c : C) where postulate cc : C -- M.cc : (a : B.A a) → B.A a E = let open B a in C module M (open B a) (x : A) where D = C postulate cc : C -- M.cc : (a : B.A a) → B.A a
{ "alphanum_fraction": 0.5260115607, "avg_line_length": 13.84, "ext": "agda", "hexsha": "1cfbb93b620f0232fea3e6c0a1027b498c1cbd41", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/TelescopingLet5.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/TelescopingLet5.agda", "max_line_length": 33, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/succeed/TelescopingLet5.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 145, "size": 346 }
{-# OPTIONS --termination-depth=2 #-} module TerminationWithTwoConstructors where data Nat : Set where zero : Nat suc : Nat -> Nat f : Nat -> Nat f zero = zero f (suc zero) = zero f (suc (suc n)) with zero ... | m = f (suc n) {- internal represenation f : Nat -> Nat f zero = zero f (suc zero) = zero f (suc (suc n)) = faux n zero faux : Nat -> Nat -> Nat faux n m = f (suc n) -} {- this type checks with --termination-depth >= 2 calls: f -> f_with (-2) f_with -> f (+1) -}
{ "alphanum_fraction": 0.5947046843, "avg_line_length": 14.8787878788, "ext": "agda", "hexsha": "d7ea7c39f99633bf86998c2c06166aaff5288c0e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/TerminationWithTwoConstructors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/TerminationWithTwoConstructors.agda", "max_line_length": 49, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/TerminationWithTwoConstructors.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 172, "size": 491 }
------------------------------------------------------------------------------ -- Testing the erasing of proof terms ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module ProofTerm4 where postulate D : Set _≡_ : D → D → Set A : D → D → D → D → Set -- We can erase proof terms of type D → ⋯ → D → Set. foo : ∀ x₁ x₂ x₃ x₄ → A x₁ x₂ x₃ x₄ → x₁ ≡ x₁ foo x₁ x₂ x₃ x₄ h = bar x₁ where -- Since @bar@ is insidere a where clause, we erase the proof -- term @h@. postulate bar : ∀ x → x ≡ x {-# ATP prove bar #-}
{ "alphanum_fraction": 0.4242837653, "avg_line_length": 29.32, "ext": "agda", "hexsha": "a9f2161d9ef1d523be2d54b3e8d132d9813860c4", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/ProofTerm4.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/ProofTerm4.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/ProofTerm4.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 203, "size": 733 }
-- Andreas, 2016-08-04, issue #964 -- Allow open metas and interaction points in imported files -- {-# OPTIONS -v import:100 #-} -- {-# OPTIONS -v meta.postulate:20 #-} -- {-# OPTIONS -v tc.conv.level:50 #-} open import Common.Level open import Common.Equality postulate something : Set₁ open import Common.Issue964.UnsolvedMetas something test1 : Level test1 = meta test2 : (B : Set) → Set test1 test2 B = M.meta2 B test3 = M.N.meta3 -- Should succeed
{ "alphanum_fraction": 0.694143167, "avg_line_length": 19.2083333333, "ext": "agda", "hexsha": "ddcec2704dbf4dee5abbcb9f0145e7ce7b00e5e1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue964.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue964.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue964.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 136, "size": 461 }
module Sets.PredicateSet.Relations{ℓₗ}{ℓₒ} where import Lvl open import Functional open import Logic.Propositional{ℓₗ Lvl.⊔ ℓₒ} open import Logic.Predicate{ℓₗ}{ℓₒ} open import Numeral.Finite open import Numeral.Natural import Relator.Equals open import Sets.PredicateSet open import Structure.Function.Domain Empty : ∀{T} → PredSet{ℓₗ}{ℓₒ}(T) → Stmt Empty(S) = (∀{x} → (x ∉' S)) where _∉'_ = _∉_ {ℓₗ}{ℓₒ} NonEmpty : ∀{T} → PredSet{ℓₗ}{ℓₒ}(T) → Stmt NonEmpty(S) = ∃(x ↦ (x ∈' S)) where _∈'_ = _∈_ {ℓₗ}{ℓₒ}
{ "alphanum_fraction": 0.6724137931, "avg_line_length": 26.1, "ext": "agda", "hexsha": "d5112736693e29ef5a497a6d9bc6f33a5394ad44", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Sets/PredicateSet/Relations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Sets/PredicateSet/Relations.agda", "max_line_length": 48, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Sets/PredicateSet/Relations.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 228, "size": 522 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.IdPi {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening as T hiding (wk; wkTerm; wkEqTerm) open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Weakening open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Introductions.Sigma open import Definition.LogicalRelation.Substitution.Introductions.Fst open import Definition.LogicalRelation.Substitution.Introductions.Snd open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.Lambda open import Definition.LogicalRelation.Substitution.Introductions.Application open import Definition.LogicalRelation.Substitution.Introductions.Cast open import Definition.LogicalRelation.Substitution.Introductions.Id open import Definition.LogicalRelation.Substitution.Introductions.IdUPiPi open import Definition.LogicalRelation.Substitution.Introductions.Transp open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Definition.LogicalRelation.Substitution.MaybeEmbed open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Definition.LogicalRelation.Substitution.Reduction open import Definition.LogicalRelation.Substitution.Weakening open import Definition.LogicalRelation.Substitution.Conversion open import Definition.LogicalRelation.Substitution.ProofIrrelevance open import Definition.LogicalRelation.Fundamental.Variable open import Tools.Product import Tools.PropositionalEquality as PE abstract Id-Πᵗᵛ : ∀ {A B rA lA lB l Γ t u} ([Γ] : ⊩ᵛ Γ) → lA ≤ l → lB ≤ l → let [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ (proj₂ (levelBounded lA)) [Γ]) in ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ [ rA , ι lA ] / [Γ]) ([UB] : Γ ∙ A ^ [ rA , ι lA ] ⊩ᵛ⟨ ∞ ⟩ Univ ! lB ^ [ ! , next lB ] / [Γ] ∙ [A]) ([A]ₜ : Γ ⊩ᵛ⟨ ∞ ⟩ A ∷ Univ rA lA ^ [ ! , next lA ] / [Γ] / [UA]) ([B]ₜ : Γ ∙ A ^ [ rA , ι lA ] ⊩ᵛ⟨ ∞ ⟩ B ∷ Univ ! lB ^ [ ! , next lB ] / [Γ] ∙ [A] / (λ {Δ} {σ} → [UB] {Δ} {σ})) ([ΠAB] : Γ ⊩ᵛ⟨ ∞ ⟩ Π A ^ rA ° lA ▹ B ° lB ° l ^ [ ! , ι l ] / [Γ]) ([t]ₜ : Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ Π A ^ rA ° lA ▹ B ° lB ° l ^ [ ! , ι l ] / [Γ] / [ΠAB]) → ([u]ₜ : Γ ⊩ᵛ⟨ ∞ ⟩ u ∷ Π A ^ rA ° lA ▹ B ° lB ° l ^ [ ! , ι l ] / [Γ] / [ΠAB]) → [ Γ ⊩ᵛ⟨ ∞ ⟩ Id (Π A ^ rA ° lA ▹ B ° lB ° l) t u ≡ Π A ^ rA ° lA ▹ (Id B ((wk1 t) ∘ (var 0) ^ l) ((wk1 u) ∘ (var 0) ^ l)) ° lB ° l ∷ SProp l ^ [ ! , next l ] / [Γ] ] Id-Πᵗᵛ {A} {B} {rA} {lA} {lB} {l} {Γ} {t} {u} [Γ] lA≤ lB≤ [A] [UB] [A]ₜ [B]ₜ [ΠAB] [t]ₜ [u]ₜ = let [SProp] = maybeEmbᵛ {A = Univ _ _} [Γ] (Uᵛ {rU = %} (proj₂ (levelBounded l)) [Γ]) [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ (proj₂ (levelBounded lA)) [Γ]) [ΓA] = _∙_ {A = A} [Γ] [A] ⊢AₜΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A]ₜ ⊢Δ [σ])) [B] = maybeEmbᵛ {A = B} [ΓA] (univᵛ {A = B} [ΓA] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ) ⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ₜ ⊢Δ [σ])) ⊢tΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([ΠAB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([t]ₜ ⊢Δ [σ])) ⊢uΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([ΠAB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([u]ₜ ⊢Δ [σ])) Id-Π-res = λ A B → Π A ^ rA ° lA ▹ (Id B ((wk1 t) ∘ (var 0) ^ l ) ((wk1 u) ∘ (var 0) ^ l)) ° lB ° l [liftσ] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A] [σ] ⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A] {Δ = Δ} {σ = σ} ⊢Δ [σ])) [SPropB] = maybeEmbᵛ {A = SProp lB} [ΓA] (λ {Δ} {σ} → Uᵛ <next [ΓA] {Δ} {σ}) [wA] = wk1ᵛ {A = A} {F = A} [Γ] [A] [A] [wΠ] = wk1ᵛ {A = Π A ^ rA ° lA ▹ B ° lB ° l} {F = A} [Γ] [A] [ΠAB] [wt] = wk1Termᵛ {F = A} {G = Π A ^ rA ° lA ▹ B ° lB ° l} {t = t} [Γ] [A] [ΠAB] [t]ₜ [wu] = wk1Termᵛ {F = A} {G = Π A ^ rA ° lA ▹ B ° lB ° l} {t = u} [Γ] [A] [ΠAB] [u]ₜ [Id-Π] : Γ ⊩ᵛ Id (Π A ^ rA ° lA ▹ B ° lB ° l) t u ⇒ Id-Π-res A B ∷ SProp l ^ next l / [Γ] [Id-Π] = λ {Δ} {σ} ⊢Δ [σ] → PE.subst (λ ret → Δ ⊢ Id (Π (subst σ A) ^ rA ° lA ▹ (subst (liftSubst σ) B) ° lB ° l) (subst σ t) (subst σ u) ⇒ Π subst σ A ^ rA ° lA ▹ ret ° lB ° l ∷ SProp l ^ next l) (PE.cong₂ (λ a b → Id (subst (liftSubst σ) B) (a ∘ (var 0) ^ l) (b ∘ (var 0) ^ l)) (PE.sym (Idsym-subst-lemma σ t)) (PE.sym (Idsym-subst-lemma σ u))) (Id-Π {A = subst σ A} {rA} {lA} {lB} {l} {subst (liftSubst σ) B} {subst σ t} {subst σ u} lA≤ lB≤ (⊢AₜΔ {Δ} {σ} ⊢Δ [σ]) (⊢BΔ (⊢Δ ∙ ⊢AΔ {Δ} {σ} ⊢Δ [σ]) ([liftσ] {Δ} {σ} ⊢Δ [σ])) (⊢tΔ {Δ} {σ} ⊢Δ [σ]) (⊢uΔ {Δ} {σ} ⊢Δ [σ])) [UB'] = maybeEmbᵛ {l = next lB} {A = U _} [ΓA] (λ {Δ} {σ} → Uᵛ <next [ΓA] {Δ} {σ}) [Id-Π-res] : Γ ⊩ᵛ⟨ ∞ ⟩ Id-Π-res A B ∷ SProp l ^ [ ! , next l ] / [Γ] / [SProp] [Id-Π-res] = Πᵗᵛ {F = A} {G = Id B ((wk1 t) ∘ (var 0) ^ l) ((wk1 u) ∘ (var 0) ^ l)} lA≤ lB≤ [Γ] [A] (λ {Δ} {σ} → [SPropB] {Δ} {σ}) [A]ₜ (Idᵗᵛ {A = B} {t = (wk1 t) ∘ (var 0) ^ l} {u = (wk1 u) ∘ (var 0) ^ l} [ΓA] [B] (S.irrelevanceTerm′ {A = (wk1d B) [ var 0 ]} {A′ = B} {t = (wk1 t) ∘ (var 0) ^ l} (wkSingleSubstId B) PE.refl [ΓA] [ΓA] (substSΠ {wk1 A} {wk1d B} {var 0} [ΓA] [wA] [wΠ] (proj₂ (fundamentalVar here [ΓA]))) [B] (appᵛ {F = wk1 A} {G = wk1d B} {t = wk1 t} {u = var 0} [ΓA] [wA] [wΠ] [wt] (proj₂ (fundamentalVar here [ΓA])))) (S.irrelevanceTerm′ {A = (wk1d B) [ var 0 ]} {A′ = B} {t = (wk1 u) ∘ (var 0) ^ l} (wkSingleSubstId B) PE.refl [ΓA] [ΓA] (substSΠ {wk1 A} {wk1d B} {var 0} [ΓA] [wA] [wΠ] (proj₂ (fundamentalVar here [ΓA]))) [B] (appᵛ {F = wk1 A} {G = wk1d B} {t = wk1 u} {u = var 0} [ΓA] [wA] [wΠ] [wu] (proj₂ (fundamentalVar here [ΓA])))) (S.irrelevanceTerm {A = Univ _ _} {t = B} [ΓA] [ΓA] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [B]ₜ)) [id] , [eq] = redSubstTermᵛ {SProp l} {Id (Π A ^ rA ° lA ▹ B ° lB ° l) t u} {Id-Π-res A B} [Γ] (λ {Δ} {σ} ⊢Δ [σ] → [Id-Π] {Δ} {σ} ⊢Δ [σ]) [SProp] [Id-Π-res] in modelsTermEq [SProp] [id] [Id-Π-res] [eq]
{ "alphanum_fraction": 0.5160118407, "avg_line_length": 72.862745098, "ext": "agda", "hexsha": "0c2f1748784eac8508c6f1d709c97d32b5b5da1d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdPi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdPi.agda", "max_line_length": 187, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdPi.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 3233, "size": 7432 }
open import MJ.Types import MJ.Classtable.Core as Core import MJ.Classtable.Code as Code import MJ.Syntax as Syntax import MJ.Semantics.Values as Values module MJ.Semantics {c}(Ct : Core.Classtable c)(ℂ : Code.Code Ct) where -- functional big-step definitional interpreter -- open import MJ.Semantics.Functional Σ ℂ open import MJ.Semantics.Monadic Ct ℂ public
{ "alphanum_fraction": 0.7884615385, "avg_line_length": 28, "ext": "agda", "hexsha": "797e255adeef406c0150c9f1a4de710d30ffb7af", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Semantics.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Semantics.agda", "max_line_length": 71, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 99, "size": 364 }
open import Data.Product using ( _,_ ) open import Relation.Nullary using ( yes ; no ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; _,_ ; ⌊_⌋ ; ind ; ind² ; Surjective ; surj ; ind⁻¹ ; surj✓ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≲_ ; _,_ ; ≲⌊_⌋ ; ≲-resp-ind ; _≋_ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox.Interp using ( interp ; _⊨_≈_ ; ≈-refl ; ≈-sym ; ≈-trans ; con ; rol ; con-≈ ; rol-≈ ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( morph ; ≲-image ; ≲-resp-≈ ; ≲-resp-con ; ≲-resp-rol ) open import Web.Semantic.Util using ( _∘_ ; ExclMiddle₁ ; ExclMiddle ; smaller-excl-middle ; id ; □ ; is ; is! ; is✓ ) -- Note that this construction uses excluded middle -- (for cardinality reasons, to embed a large set in a small set). module Web.Semantic.DL.ABox.Interp.Meet ( excl-middle₁ : ExclMiddle₁ ) { Σ : Signature } { X : Set } where -- This constructs the meet of a set of interpretations, -- which is the greatest lower bound on surjective interpretations meet : (Interp Σ X → Set) → Interp Σ X meet Is = ( interp X (λ x y → □ (is (excl-middle₁ (∀ I → (I ∈ Is) → (⌊ I ⌋ ⊨ ind I x ≈ ind I y))))) (λ {x} → is! (λ I I∈Is → ≈-refl ⌊ I ⌋)) (λ {x} {y} x≈y → is! (λ I I∈Is → ≈-sym ⌊ I ⌋ (is✓ x≈y I I∈Is))) (λ {x} {y} {z} x≈y y≈z → is! (λ I I∈Is → ≈-trans ⌊ I ⌋ (is✓ x≈y I I∈Is) (is✓ y≈z I I∈Is))) (λ c x → □ (is (excl-middle₁ (∀ I → (I ∈ Is) → (ind I x ∈ con ⌊ I ⌋ c))))) (λ r xy → □ (is (excl-middle₁ (∀ I → (I ∈ Is) → ind² I xy ∈ rol ⌊ I ⌋ r)))) (λ {x} {y} c x∈c x≈y → is! (λ I I∈Is → con-≈ ⌊ I ⌋ c (is✓ x∈c I I∈Is) (is✓ x≈y I I∈Is))) (λ {w} {x} {y} {z} r w≈x xy∈r y≈z → is! (λ I I∈Is → rol-≈ ⌊ I ⌋ r (is✓ w≈x I I∈Is) (is✓ xy∈r I I∈Is) (is✓ y≈z I I∈Is))) , id ) -- meets are surjective meet-surj : ∀ Is → (meet Is ∈ Surjective) meet-surj Is = surj (λ x → (x , ≈-refl ⌊ meet Is ⌋)) -- meets are lower bounds meet-lb : ∀ Is I → (I ∈ Is) → (meet Is ≲ I) meet-lb Is I I∈Is = ( morph (ind I) (λ x≈y → is✓ x≈y I I∈Is) (λ x∈⟦c⟧ → is✓ x∈⟦c⟧ I I∈Is) (λ xy∈⟦r⟧ → is✓ xy∈⟦r⟧ I I∈Is) , λ x → ≈-refl ⌊ I ⌋ ) -- meets are greatest lower bounds on surjective interpretations meet-glb : ∀ Is J → (J ∈ Surjective) → (∀ I → (I ∈ Is) → (J ≲ I)) → (J ≲ meet Is) meet-glb Is J J∈Surj J≲Is = ( morph (ind⁻¹ J∈Surj) (λ {x} {y} x≈y → is! (λ I I∈Is → ≈-trans ⌊ I ⌋ (≈-sym ⌊ I ⌋ (lemma I I∈Is x)) (≈-trans ⌊ I ⌋ (≲-resp-≈ ≲⌊ J≲Is I I∈Is ⌋ x≈y) (lemma I I∈Is y)))) (λ {c} {x} x∈⟦c⟧ → is! (λ I I∈Is → con-≈ ⌊ I ⌋ c (≲-resp-con ≲⌊ J≲Is I I∈Is ⌋ x∈⟦c⟧) (lemma I I∈Is x))) (λ {r} {x} {y} xy∈⟦r⟧ → is! (λ I I∈Is → rol-≈ ⌊ I ⌋ r (≈-sym ⌊ I ⌋ (lemma I I∈Is x)) (≲-resp-rol ≲⌊ J≲Is I I∈Is ⌋ xy∈⟦r⟧) (lemma I I∈Is y))) , λ x → is! (λ I I∈Is → ≈-trans ⌊ I ⌋ (≈-sym ⌊ I ⌋ (lemma I I∈Is (ind J x))) (≲-resp-ind (J≲Is I I∈Is) x)) ) where lemma : ∀ I I∈Is x → ⌊ I ⌋ ⊨ ≲-image ≲⌊ J≲Is I I∈Is ⌋ x ≈ ind I (ind⁻¹ J∈Surj x) lemma I I∈Is x = ≈-trans ⌊ I ⌋ (≲-resp-≈ ≲⌊ J≲Is I I∈Is ⌋ (surj✓ J∈Surj x)) (≲-resp-ind (J≲Is I I∈Is) (ind⁻¹ J∈Surj x)) -- Mediating morphisms for meets are unique meet-uniq : ∀ Is (I : Interp Σ X) → (I ∈ Is) → (J≲₁I J≲₂I : meet Is ≲ I) → (J≲₁I ≋ J≲₂I) meet-uniq Is I I∈Is J≲₁I J≲₂I x = ≈-trans ⌊ I ⌋ (≲-resp-ind J≲₁I x) (≈-sym ⌊ I ⌋ (≲-resp-ind J≲₂I x))
{ "alphanum_fraction": 0.5143595635, "avg_line_length": 44.0759493671, "ext": "agda", "hexsha": "af299768d38217f4624059823a438ad93decb5c1", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/ABox/Interp/Meet.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/ABox/Interp/Meet.agda", "max_line_length": 119, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/ABox/Interp/Meet.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 1783, "size": 3482 }
{-# OPTIONS --cubical --no-import-sorts #-} module MorePropAlgebra.Structures where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) private variable ℓ ℓ' ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)-- ¬ᵗ_ open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim` open import Function.Base using (_∋_; _$_) open import Cubical.Foundations.Function -- open import Function.Reasoning using (∋-syntax) open import Cubical.Foundations.Logic renaming ( inl to inlᵖ ; inr to inrᵖ ; _⇒_ to infixr 0 _⇒_ -- shifting by -6 ; _⇔_ to infixr -2 _⇔_ -- ; ∃[]-syntax to infix -4 ∃[]-syntax -- ; ∃[∶]-syntax to infix -4 ∃[∶]-syntax -- ; ∀[∶]-syntax to infix -4 ∀[∶]-syntax -- ; ∀[]-syntax to infix -4 ∀[]-syntax -- ) open import Utils open import MoreLogic.Reasoning open import MoreLogic.Definitions renaming ( _ᵗ⇒_ to infixr 0 _ᵗ⇒_ ; ∀ᵖ[∶]-syntax to infix -4 ∀ᵖ[∶]-syntax ; ∀ᵖ〚∶〛-syntax to infix -4 ∀ᵖ〚∶〛-syntax ; ∀ᵖ!〚∶〛-syntax to infix -4 ∀ᵖ!〚∶〛-syntax ; ∀〚∶〛-syntax to infix -4 ∀〚∶〛-syntax ) open import MoreLogic.Properties open import MorePropAlgebra.Definitions hiding (_≤''_) open import MorePropAlgebra.Consequences -- taken from the cubical standard library and adapted to hProps: -- IsSemigroup -- IsMonoid -- IsGroup -- IsAbGroup -- IsRing -- IsCommRing record IsSemigroup {A : Type ℓ} (_·_ : A → A → A) : Type ℓ where constructor issemigroup field is-set : [ isSetᵖ A ] is-assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z _ : [ isSetᵖ A ]; _ = is-set _ : [ isAssociativeˢ _·_ is-set ]; _ = is-assoc isSemigroup : {A : Type ℓ} (_·_ : A → A → A) → hProp ℓ isSemigroup _·_ .fst = IsSemigroup _·_ isSemigroup _·_ .snd (issemigroup a₀ b₀) (issemigroup a₁ b₁) = φ where abstract φ = λ i → let is-set = isSetIsProp a₀ a₁ i in issemigroup is-set (snd (isAssociativeˢ _·_ is-set) b₀ b₁ i) record IsMonoid {A : Type ℓ} (ε : A) (_·_ : A → A → A) : Type ℓ where constructor ismonoid field is-Semigroup : [ isSemigroup _·_ ] is-identity : ∀ x → (x · ε ≡ x) × (ε · x ≡ x) open IsSemigroup is-Semigroup public _ : [ isSemigroup _·_ ]; _ = is-Semigroup _ : [ isIdentityˢ _·_ is-set ε ]; _ = is-identity is-lid : (x : A) → ε · x ≡ x is-lid x = is-identity x .snd is-rid : (x : A) → x · ε ≡ x is-rid x = is-identity x .fst isMonoid : {A : Type ℓ} (ε : A) (_·_ : A → A → A) → hProp ℓ isMonoid ε _·_ .fst = IsMonoid ε _·_ isMonoid ε _·_ .snd (ismonoid a₀ b₀) (ismonoid a₁ b₁) = φ where abstract φ = λ i → let is-Semigroup = snd (isSemigroup _·_) a₀ a₁ i is-set = IsSemigroup.is-set is-Semigroup in ismonoid is-Semigroup (snd (isIdentityˢ _·_ is-set ε) b₀ b₁ i) record IsGroup {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) : Type ℓ where constructor isgroup field is-Monoid : [ isMonoid 0g _+_ ] is-inverse : ∀ x → (x + (- x) ≡ 0g) × ((- x) + x ≡ 0g) open IsMonoid is-Monoid public _ : [ isMonoid 0g _+_ ]; _ = is-Monoid _ : [ isInverseˢ is-set 0g _+_ -_ ]; _ = is-inverse infixl 6 _-_ _-_ : G → G → G x - y = x + (- y) is-invl : (x : G) → (- x) + x ≡ 0g is-invl x = is-inverse x .snd is-invr : (x : G) → x + (- x) ≡ 0g is-invr x = is-inverse x .fst isGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) → hProp ℓ isGroup 0g _+_ -_ .fst = IsGroup 0g _+_ -_ isGroup 0g _+_ -_ .snd (isgroup a₀ b₀) (isgroup a₁ b₁) = φ where abstract φ = λ i → let is-Monoid = snd (isMonoid 0g _+_) a₀ a₁ i is-set = IsMonoid.is-set is-Monoid in isgroup is-Monoid (snd (isInverseˢ is-set 0g _+_ -_) b₀ b₁ i) record IsAbGroup {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) : Type ℓ where constructor isabgroup field is-Group : [ isGroup 0g _+_ -_ ] is-comm : ∀ x y → x + y ≡ y + x open IsGroup is-Group public _ : [ isGroup 0g _+_ (-_) ]; _ = is-Group _ : [ isCommutativeˢ _+_ is-set ]; _ = is-comm isAbGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) → hProp ℓ isAbGroup 0g _+_ -_ .fst = IsAbGroup 0g _+_ -_ isAbGroup 0g _+_ -_ .snd (isabgroup a₀ b₀) (isabgroup a₁ b₁) = φ where abstract φ = λ i → let is-Group = snd (isGroup 0g _+_ -_) a₀ a₁ i is-set = IsGroup.is-set is-Group in isabgroup is-Group (snd (isCommutativeˢ _+_ is-set) b₀ b₁ i) record IsSemiring {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) : Type ℓ where constructor issemiring field +-Monoid : [ isMonoid 0r _+_ ] ·-Monoid : [ isMonoid 1r _·_ ] +-comm : ∀ x y → x + y ≡ y + x is-dist : ∀ x y z → (x · (y + z) ≡ (x · y) + (x · z)) × ((x + y) · z ≡ (x · z) + (y · z)) open IsMonoid +-Monoid public renaming ( is-assoc to +-assoc ; is-identity to +-identity ; is-lid to +-lid ; is-rid to +-rid ; is-Semigroup to +-Semigroup ) open IsMonoid ·-Monoid hiding (is-set) public renaming ( is-assoc to ·-assoc ; is-identity to ·-identity ; is-lid to ·-lid ; is-rid to ·-rid ; is-Semigroup to ·-Semigroup ) _ : [ isMonoid 0r _+_ ]; _ = +-Monoid _ : [ isMonoid 1r _·_ ]; _ = ·-Monoid _ : [ isCommutativeˢ _+_ is-set ]; _ = +-comm _ : [ isDistributiveˢ is-set _+_ _·_ ]; _ = is-dist isSemiring : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) → hProp ℓ isSemiring 0r 1r _+_ _·_ .fst = IsSemiring 0r 1r _+_ _·_ isSemiring 0r 1r _+_ _·_ .snd (issemiring a₀ b₀ c₀ d₀) (issemiring a₁ b₁ c₁ d₁) = φ where abstract φ = λ i → let +-Monoid = snd (isMonoid 0r _+_) a₀ a₁ i ·-Monoid = snd (isMonoid 1r _·_) b₀ b₁ i is-set = IsMonoid.is-set +-Monoid +-comm = snd (isCommutativeˢ _+_ is-set) c₀ c₁ i is-dist = snd (isDistributiveˢ is-set _+_ _·_) d₀ d₁ i in issemiring +-Monoid ·-Monoid +-comm is-dist record IsCommSemiring {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) : Type ℓ where constructor iscommsemiring field is-Semiring : [ isSemiring 0r 1r _+_ _·_ ] ·-comm : ∀ x y → x · y ≡ y · x open IsSemiring is-Semiring public _ : [ isSemiring 0r 1r _+_ _·_ ]; _ = is-Semiring _ : [ isCommutativeˢ _+_ is-set ]; _ = +-comm isCommSemiring : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) → hProp ℓ isCommSemiring 0r 1r _+_ _·_ .fst = IsCommSemiring 0r 1r _+_ _·_ isCommSemiring 0r 1r _+_ _·_ .snd (iscommsemiring a₀ b₀) (iscommsemiring a₁ b₁) = φ where abstract φ = λ i → let is-Semiring = snd (isSemiring 0r 1r _+_ _·_) a₀ a₁ i is-set = IsSemiring.is-set is-Semiring ·-comm = snd (isCommutativeˢ _·_ is-set) b₀ b₁ i in iscommsemiring is-Semiring ·-comm record IsRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor isring field +-AbGroup : [ isAbGroup 0r _+_ -_ ] ·-Monoid : [ isMonoid 1r _·_ ] is-dist : ∀ x y z → (x · (y + z) ≡ (x · y) + (x · z)) × ((x + y) · z ≡ (x · z) + (y · z)) open IsAbGroup +-AbGroup using (is-set) public _ : [ isAbGroup 0r _+_ -_ ]; _ = +-AbGroup _ : [ isMonoid 1r _·_ ]; _ = ·-Monoid _ : [ isDistributiveˢ is-set _+_ _·_ ]; _ = is-dist open IsAbGroup +-AbGroup hiding (is-set) public renaming ( is-assoc to +-assoc ; is-identity to +-identity ; is-lid to +-lid ; is-rid to +-rid ; is-inverse to +-inv ; is-invl to +-linv ; is-invr to +-rinv ; is-comm to +-comm ; is-Semigroup to +-Semigroup ; is-Monoid to +-Monoid ; is-Group to +-Group ) open IsMonoid ·-Monoid hiding (is-set) public renaming ( is-assoc to ·-assoc ; is-identity to ·-identity ; is-lid to ·-lid ; is-rid to ·-rid ; is-Semigroup to ·-Semigroup ) ·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z) ·-rdist-+ x y z = is-dist x y z .fst ·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z) ·-ldist-+ x y z = is-dist x y z .snd -- TODO: prove these somewhere -- zero-lid : (x : R) → 0r · x ≡ 0r -- zero-lid x = zero x .snd -- zero-rid : (x : R) → x · 0r ≡ 0r -- zero-rid x = zero x .fst isRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → hProp ℓ isRing 0r 1r _+_ _·_ -_ .fst = IsRing 0r 1r _+_ _·_ -_ isRing 0r 1r _+_ _·_ -_ .snd (isring a₀ b₀ c₀) (isring a₁ b₁ c₁) = φ where abstract φ = λ i → let +-AbGroup = snd (isAbGroup 0r _+_ -_) a₀ a₁ i ·-Monoid = snd (isMonoid 1r _·_) b₀ b₁ i is-set = IsAbGroup.is-set +-AbGroup is-dist = snd (isDistributiveˢ is-set _+_ _·_) c₀ c₁ i in isring +-AbGroup ·-Monoid is-dist record IsCommRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor iscommring field is-Ring : [ isRing 0r 1r _+_ _·_ -_ ] ·-comm : ∀ x y → x · y ≡ y · x open IsRing is-Ring public _ : [ isRing 0r 1r _+_ _·_ (-_) ]; _ = is-Ring _ : [ isCommutativeˢ _·_ is-set ]; _ = ·-comm isCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → hProp ℓ isCommRing 0r 1r _+_ _·_ -_ .fst = IsCommRing 0r 1r _+_ _·_ -_ isCommRing 0r 1r _+_ _·_ -_ .snd (iscommring a₀ b₀) (iscommring a₁ b₁) = φ where abstract φ = λ i → let is-Ring = snd (isRing 0r 1r _+_ _·_ -_) a₀ a₁ i is-set = IsRing.is-set is-Ring ·-comm = snd (isCommutativeˢ _·_ is-set) b₀ b₁ i in iscommring is-Ring ·-comm -- Definition 4.1.2. -- A classical field is a set F with points 0, 1 : F, operations +, · : F → F → F, which is a commutative ring with unit, such that -- (∀ x : F) x ≠ 0 ⇒ (∃ y : F) x · y = 1. record IsClassicalField {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_⁻¹ : (x : F) → {{ ! [ ¬'(x ≡ 0f) ] }} → F) : Type ℓ where constructor isclassicalfield field is-set : [ isSetᵖ F ] is-CommRing : [ isCommRing 0f 1f _+_ _·_ -_ ] -- WARNING: this is not directly Booij's definition, since Booij does not talk about an inverse operation `_⁻¹` -- we need to somehow obtain this operation ·-inv : [ isNonzeroInverseˢ' is-set 0f 1f _·_ _⁻¹ ] -- classical version of `isNonzeroInverse` ·-linv : (x : F) {{ p : ! [ ¬' (x ≡ 0f) ] }} → ((x ⁻¹) · x) ≡ 1f -- wow, uses `p` already in `⁻¹` ·-linv x {{p}} = snd (·-inv x) ·-rinv : (x : F) {{ p : ! [ ¬' (x ≡ 0f) ] }} → (x · (x ⁻¹)) ≡ 1f ·-rinv x {{p}} = fst (·-inv x) open IsCommRing is-CommRing hiding (is-set) public isClassicalField : {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_⁻¹ : (x : F) → {{ ! [ ¬'(x ≡ 0f) ] }} → F) → hProp ℓ isClassicalField 0f 1f _+_ _·_ -_ _⁻¹ .fst = IsClassicalField 0f 1f _+_ _·_ -_ _⁻¹ isClassicalField 0f 1f _+_ _·_ -_ _⁻¹ .snd (isclassicalfield a₀ b₀ c₀) (isclassicalfield a₁ b₁ c₁) = φ where abstract φ = λ i → let is-set = isSetIsProp a₀ a₁ i in isclassicalfield is-set (snd (isCommRing 0f 1f _+_ _·_ -_) b₀ b₁ i) (snd (isNonzeroInverseˢ' is-set 0f 1f _·_ _⁻¹) c₀ c₁ i) -- Definition 4.1.5. -- A constructive field is a set F with points 0, 1 : F, binary operations +, · : F → F → F, and a binary relation # such that -- 1. (F, 0, 1, +, ·) is a commutative ring with unit; -- 2. x : F has a multiplicative inverse iff x # 0; -- 3. # is tight, i.e. ¬(x # y) ⇒ x = y; -- 4. + is #-extensional, that is, for all w, x, y, z : F -- w + x # y + z ⇒ w # y ∨ x # z. record IsConstructiveField {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_#_ : hPropRel F F ℓ') {- (_⁻¹ : (x : F) → {{[ x # 0f ]}} → F) -} : Type (ℓ-max ℓ ℓ') where constructor isconstructivefield field is-CommRing : [ isCommRing 0f 1f _+_ _·_ -_ ] open IsCommRing is-CommRing using (is-set) field ·-inv'' : ∀ x → [ (∃[ y ] [ is-set ] x · y ≡ˢ 1f) ⇔ x # 0f ] -- these should follow: -- ·-inv : [ isNonzeroInverseˢ is-set 0f 1f _·_ _#_ _⁻¹ ] -- ·-invnz : [ isInverseNonzeroˢ is-set 0f 1f _·_ _#_ ] -- ·-inv-back : ∀ x y → (x · y ≡ 1f) → [ x # 0f ] × [ y # 0f ] +-#-ext : ∀ w x y z → [ (w + x) # (y + z) ] → [ (w # y) ⊔ (x # z) ] #-tight : ∀ a b → [ ¬(a # b) ] → a ≡ b -- #-ApartnessRel : [ isApartnessRel _#_ ] -- -- ·-linv : (x : F) {{ p : [ x # 0f ] }} → ((x ⁻¹) · x) ≡ 1f -- wow, uses `p` already in `⁻¹` -- ·-linv x {{p}} = snd (·-inv x) -- -- ·-rinv : (x : F) {{ p : [ x # 0f ] }} → (x · (x ⁻¹)) ≡ 1f -- ·-rinv x {{p}} = fst (·-inv x) _ : [ isCommRing 0f 1f _+_ _·_ -_ ]; _ = is-CommRing _ : [ isNonzeroInverseˢ'' is-set 0f 1f _·_ _#_ ]; _ = ·-inv'' _ : [ is-+-#-Extensional _+_ _#_ ]; _ = +-#-ext _ : [ isTightˢ''' _#_ is-set ]; _ = #-tight open IsCommRing is-CommRing hiding (is-set) public -- open IsApartnessRelᵖ isApartnessRel public -- renaming -- ( isIrrefl to #-irrefl -- ; isSym to #-sym -- ; isCotrans to #-cotrans ) isConstructiveField : {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_#_ : hPropRel F F ℓ') {- (_⁻¹ : (x : F) → {{[ x # 0f ]}} → F) -} → hProp (ℓ-max ℓ ℓ') isConstructiveField 0f 1f _+_ _·_ -_ _#_ {- _⁻¹ -} .fst = IsConstructiveField 0f 1f _+_ _·_ -_ _#_ {- _⁻¹ -} isConstructiveField 0f 1f _+_ _·_ -_ _#_ {- _⁻¹ -} .snd (isconstructivefield a₀ b₀ c₀ d₀) (isconstructivefield a₁ b₁ c₁ d₁) = φ where abstract φ = λ i → let is-CommRing = snd (isCommRing 0f 1f _+_ _·_ -_) a₀ a₁ i is-set = IsCommRing.is-set is-CommRing in isconstructivefield is-CommRing (snd (isNonzeroInverseˢ'' is-set 0f 1f _·_ _#_) b₀ b₁ i) (snd (is-+-#-Extensional _+_ _#_) c₀ c₁ i) (snd (isTightˢ''' _#_ is-set) d₀ d₁ i) -- Definition 4.1.8. -- Let (A, ≤) be a partial order, and let min, max : A → A → A be binary operators on A. We say that (A, ≤, min, max) is a lattice if min computes greatest lower bounds in the sense that for every x, y, z : A, we have -- z ≤ min(x,y) ⇔ z ≤ x ∧ z ≤ y, -- and max computes least upper bounds in the sense that for every x, y, z : A, we have -- max(x,y) ≤ z ⇔ x ≤ z ∧ y ≤ z. -- Remark 4.1.9. -- 1. From the fact that (A, ≤, min, max) is a lattice, it does not follow that for every x and y, -- max(x, y) = x ∨ max(x, y) = y, -- which would hold in a linear order. -- However, in Lemma 6.7.1 we characterize max as -- z < max(x, y) ⇔ z < x ∨ z < y, -- and similarly for min. -- 2. In a partial order, for two fixed elements a and b, all joins and meets of a, b are equal, -- so that Lemma 2.6.20 the type of joins and the type of meets are propositions. -- Hence, providing the maps min and max as in the above definition is equivalent to -- the showing the existence of all binary joins and meets. -- NOTE: in the non-cubical standard library, we have -- -- record IsLattice (∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where -- field -- ∨-comm : Commutative ∨ -- ∀ x y → (x ∨ y) ≈ (y ∨ x) -- ∨-assoc : Associative ∨ -- ∀ x y z → ((x ∨ y) ∨ z) ≈ (x ∨ (y ∨ z)) -- ∨-cong : Congruent₂ ∨ -- ∀ x y u v → x ≈ y → u ≈ v → (x ∨ u) ≈ (y ∨ v) -- ∧-comm : Commutative ∧ -- ∀ x y → (x ∧ y) ≈ (y ∧ x) -- ∧-assoc : Associative ∧ -- ∀ x y z → ((x ∧ y) ∧ z) ≈ (x ∧ (y ∧ z)) -- ∧-cong : Congruent₂ ∧ -- ∀ x y u v → x ≈ y → u ≈ v → (x ∧ u) ≈ (y ∧ v) -- absorptive : Absorptive ∨ ∧ -- ∀ x y → ((x ∨ (x ∧ y)) ≈ x) × ((x ∧ (x ∨ y)) ≈ x) -- -- where they derive -- -- ∨-absorbs-∧ : ∨ Absorbs ∧ -- ∨-absorbs-∧ = proj₁ absorptive -- -- ∧-absorbs-∨ : ∧ Absorbs ∨ -- ∧-absorbs-∨ = proj₂ absorptive -- -- ∧-congˡ : LeftCongruent ∧ -- ∧-congˡ y≈z = ∧-cong refl y≈z -- -- ∧-congʳ : RightCongruent ∧ -- ∧-congʳ y≈z = ∧-cong y≈z refl -- -- ∨-congˡ : LeftCongruent ∨ -- ∨-congˡ y≈z = ∨-cong refl y≈z -- -- ∨-congʳ : RightCongruent ∨ -- ∨-congʳ y≈z = ∨-cong y≈z refl -- -- and additionally we might also proof Lemma 6.7.1 and Lemma 2.6.20 (as mentioned in the remark above) -- maybe we can proof from a linearorder that we have MinTrichtotomy and MaxTrichtotomy record IsLattice {A : Type ℓ} (_≤_ : hPropRel A A ℓ') (min max : A → A → A) : Type (ℓ-max ℓ ℓ') where constructor islattice field ≤-PartialOrder : [ isPartialOrder _≤_ ] is-min : ∀ x y z → [ z ≤ (min x y) ⇔ z ≤ x ⊓ z ≤ y ] is-max : ∀ x y z → [ (max x y) ≤ z ⇔ x ≤ z ⊓ y ≤ z ] -- glb : ∀ x y z → z ≤ min x y → z ≤ x × z ≤ y -- glb-back : ∀ x y z → z ≤ x × z ≤ y → z ≤ min x y -- lub : ∀ x y z → max x y ≤ z → x ≤ z × y ≤ z -- lub-back : ∀ x y z → x ≤ z × y ≤ z → max x y ≤ z _ : [ isPartialOrder _≤_ ]; _ = ≤-PartialOrder _ : [ isMin _≤_ min ]; _ = is-min _ : [ isMax _≤_ max ]; _ = is-max open IsPartialOrder ≤-PartialOrder public renaming ( is-refl to ≤-refl ; is-antisym to ≤-antisym ; is-trans to ≤-trans ) isLattice : {A : Type ℓ} (_≤_ : hPropRel A A ℓ') (min max : A → A → A) → hProp (ℓ-max ℓ ℓ') isLattice _≤_ min max .fst = IsLattice _≤_ min max isLattice _≤_ min max .snd (islattice a₀ b₀ c₀) (islattice a₁ b₁ c₁) = φ where abstract φ = λ i → islattice (snd (isPartialOrder _≤_) a₀ a₁ i) (snd (isMin _≤_ min) b₀ b₁ i) (snd (isMax _≤_ max) c₀ c₁ i) -- Definition 4.1.10. -- An ordered field is a set F together with constants 0, 1, operations +, ·, min, max, and a binary relation < such that: -- 1. (F, 0, 1, +, ·) is a commutative ring with unit; -- 2. < is a strict [partial] order; -- 3. x : F has a multiplicative inverse iff x # 0, recalling that # is defined as in Lemma 4.1.7; -- 4. ≤, as in Lemma 4.1.7, is antisymmetric, so that (F, ≤) is a partial order; -- 5. (F, ≤, min, max) is a lattice. -- 6. for all x, y, z, w : F: -- x + y < z + w ⇒ x < z ∨ y < w, (†) -- 0 < z ∧ x < y ⇒ x z < y z. (∗) -- Our notion of ordered fields coincides with The Univalent Foundations Program [89, Definition 11.2.7]. -- NOTE: well, the HOTT book definition organizes things slightly different. Why prefer one approach over the other? record IsAlmostPartiallyOrderedField {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) {- (_⁻¹ᶠ : (x : F) → {{x # 0f}} → F) -} : Type (ℓ-max ℓ ℓ') where constructor isalmostpartiallyorderedfield infixl 4 _#_ infixl 4 _≤_ -- ≤, as in Lemma 4.1.7 _≤_ : hPropRel F F ℓ' x ≤ y = ¬ (y < x) field -- 1. is-CommRing : [ isCommRing 0f 1f _+_ _·_ -_ ] -- 2. <-StrictPartialOrder : [ isStrictPartialOrder _<_ ] open IsCommRing is-CommRing public open IsStrictPartialOrder <-StrictPartialOrder public renaming ( is-irrefl to <-irrefl ; is-trans to <-trans ; is-cotrans to <-cotrans ) <-asym : [ isAsym _<_ ] <-asym = irrefl+trans⇒asym _<_ <-irrefl <-trans -- # is defined as in Lemma 4.1.7 _#_ : hPropRel F F ℓ' x # y = [ <-asym x y ] (x < y) ⊎ᵖ (y < x) field -- 3. ·-inv'' : ∀ x → [ (∃[ y ] [ is-set ] x · y ≡ˢ 1f) ⇔ x # 0f ] -- ·-rinv : (x : F) → (p : x # 0f) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f -- ·-linv : (x : F) → (p : x # 0f) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f -- ·-inv-back : (x y : F) → (x · y ≡ 1f) → x # 0f × y # 0f -- 4. NOTE: we already have ≤-isPartialOrder in ≤-isLattice -- ≤-isPartialOrder : IsPartialOrder _≤_ -- 5. ≤-Lattice : [ isLattice _≤_ min max ] _ : isSet F ; _ = is-set _ : [ isCommRing 0f 1f _+_ _·_ (-_) ]; _ = is-CommRing _ : [ isStrictPartialOrder _<_ ]; _ = <-StrictPartialOrder _ : [ isNonzeroInverseˢ'' is-set 0f 1f _·_ _#_ ]; _ = ·-inv'' _ : [ isLattice _≤_ min max ]; _ = ≤-Lattice open IsLattice ≤-Lattice renaming (≤-antisym to ≤-antisymᵗ) public ≤-antisym : [ isAntisymˢ _≤_ is-set ] ≤-antisym = isAntisymˢ⇔isAntisym _≤_ is-set .snd ≤-antisymᵗ isAlmostPartiallyOrderedField : {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) {- (_⁻¹ᶠ : (x : F) → {{x # 0f}} → F) -} → hProp (ℓ-max ℓ ℓ') isAlmostPartiallyOrderedField {ℓ = ℓ} {ℓ' = ℓ'} {F = F} 0f 1f _+_ _·_ -_ _<_ min max {- _⁻¹ -} .fst = IsAlmostPartiallyOrderedField 0f 1f _+_ _·_ -_ _<_ min max {- _⁻¹ -} isAlmostPartiallyOrderedField {ℓ = ℓ} {ℓ' = ℓ'} {F = F} 0f 1f _+_ _·_ -_ _<_ min max {- _⁻¹ -} .snd (isalmostpartiallyorderedfield a₀ b₀ c₀ d₀) (isalmostpartiallyorderedfield a₁ b₁ c₁ d₁) = φ where abstract φ = λ i → let -- we are doing basically "the same" as in `IsAlmostPartiallyOrderedField` _≤_ : hPropRel F F ℓ' x ≤ y = ¬ (y < x) -- ≤, as in Lemma 4.1.7 is-CommRing = snd (isCommRing 0f 1f _+_ _·_ -_) a₀ a₁ i is-set = IsCommRing.is-set is-CommRing <-StrictPartialOrder = snd (isStrictPartialOrder _<_) b₀ b₁ i open IsStrictPartialOrder <-StrictPartialOrder renaming ( is-irrefl to <-irrefl ; is-trans to <-trans ; is-cotrans to <-cotrans ) <-asym : [ isAsym _<_ ] <-asym = irrefl+trans⇒asym _<_ <-irrefl <-trans _#_ : hPropRel F F ℓ' x # y = [ <-asym x y ] (x < y) ⊎ᵖ (y < x) -- # is defined as in Lemma 4.1.7 ·-inv'' = snd (isNonzeroInverseˢ'' is-set 0f 1f _·_ _#_) c₀ c₁ i ≤-isLattice = snd (isLattice _≤_ min max) d₀ d₁ i in isalmostpartiallyorderedfield is-CommRing <-StrictPartialOrder ·-inv'' ≤-isLattice record IsPartiallyOrderedField {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) {- (_⁻¹ᶠ : (x : F) → {{x # 0f}} → F) -} : Type (ℓ-max ℓ ℓ') where constructor ispartiallyorderedfield field -- 1. 2. 3. 4. 5. is-AlmostPartiallyOrderedField : [ isAlmostPartiallyOrderedField 0f 1f _+_ _·_ -_ _<_ min max {- _⁻¹ᶠ -} ] -- 6. (†) +-<-ext : ∀ w x y z → [ (w + x) < (y + z) ] → [ (w < y) ⊔ (x < z) ] -- 6. (∗) ·-preserves-< : ∀ x y z → [ 0f < z ] → [ x < y ] → [ (x · z) < (y · z) ] _ : [ isAlmostPartiallyOrderedField 0f 1f _+_ _·_ -_ _<_ min max ]; _ = is-AlmostPartiallyOrderedField _ : [ is-+-<-Extensional _+_ _<_ ]; _ = +-<-ext _ : [ operation _·_ preserves _<_ when (λ z → 0f < z) ]; _ = ·-preserves-< open IsAlmostPartiallyOrderedField is-AlmostPartiallyOrderedField public isPartiallyOrderedField : {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) {- (_⁻¹ᶠ : (x : F) → {{x # 0f}} → F) -} → hProp (ℓ-max ℓ ℓ') isPartiallyOrderedField 0f 1f _+_ _·_ -_ _<_ min max {- _⁻¹ -} .fst = IsPartiallyOrderedField 0f 1f _+_ _·_ -_ _<_ min max {- _⁻¹ -} isPartiallyOrderedField 0f 1f _+_ _·_ -_ _<_ min max {- _⁻¹ -} .snd (ispartiallyorderedfield a₀ b₀ c₀) (ispartiallyorderedfield a₁ b₁ c₁) = φ where abstract φ = λ i → ispartiallyorderedfield (snd (isAlmostPartiallyOrderedField 0f 1f _+_ _·_ -_ _<_ min max {- _⁻¹ᶠ -}) a₀ a₁ i) (snd (is-+-<-Extensional _+_ _<_) b₀ b₁ i) (snd (operation _·_ preserves _<_ when (λ z → 0f < z)) c₀ c₁ i)
{ "alphanum_fraction": 0.5265869744, "avg_line_length": 45.3457943925, "ext": "agda", "hexsha": "e8a91d935ad147c40ca085025f5206209c0a581f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/MorePropAlgebra/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/MorePropAlgebra/Structures.agda", "max_line_length": 237, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/MorePropAlgebra/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 9836, "size": 24260 }
-- Occurs there are several ways to parse an operator application. module AmbiguousParseForApplication where postulate X : Set if_then_else_ : X -> X -> X -> X if_then_ : X -> X -> X bad : X -> X bad x = if x then if x then x else x
{ "alphanum_fraction": 0.6254826255, "avg_line_length": 21.5833333333, "ext": "agda", "hexsha": "9ed51f5578e21819d7ff7d5f6c2397eb6b2c82d7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/AmbiguousParseForApplication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/AmbiguousParseForApplication.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/AmbiguousParseForApplication.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 75, "size": 259 }
module SafeFlagPrimTrustMe-2 where open import Agda.Builtin.TrustMe
{ "alphanum_fraction": 0.8550724638, "avg_line_length": 17.25, "ext": "agda", "hexsha": "6e0a8288cd022a25b7fbdc5ce290e5ed804bbd49", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/SafeFlagPrimTrustMe-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/SafeFlagPrimTrustMe-2.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/SafeFlagPrimTrustMe-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 20, "size": 69 }
-- Andreas, 2015-09-09 Issue 1643 -- {-# OPTIONS -v tc.mod.apply:20 #-} -- {-# OPTIONS -v scope:50 -v scope.inverse:100 -v interactive.meta:20 #-} module _ where module M where postulate A : Set module N = M -- This alias used to introduce a display form M.A --> N.A open M postulate a : A test : Set test = a -- Error WAS: N.A !=< Set of type Set -- SHOULD BE: A !=< Set of type Set {- ScopeInfo current = ModuleAlias context = TopCtx modules scope scope ModuleAlias private names A --> [ModuleAlias.M.A] public modules M --> [ModuleAlias.M] N --> [ModuleAlias.N] scope ModuleAlias.M public names A --> [ModuleAlias.M.A] scope ModuleAlias.N public names A --> [ModuleAlias.N.A] -}
{ "alphanum_fraction": 0.5648484848, "avg_line_length": 17.9347826087, "ext": "agda", "hexsha": "271cb50381bc50ec1755ddbea4cf88e1a6a81584", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1643.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1643.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1643.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 238, "size": 825 }
{-# OPTIONS --safe #-} module Cubical.Algebra.OrderedCommMonoid where open import Cubical.Algebra.OrderedCommMonoid.Base public open import Cubical.Algebra.OrderedCommMonoid.Properties public
{ "alphanum_fraction": 0.8341968912, "avg_line_length": 32.1666666667, "ext": "agda", "hexsha": "bef93b5c3144cea8ebb61591b22d4caba7e7f174", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/OrderedCommMonoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/OrderedCommMonoid.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/OrderedCommMonoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 45, "size": 193 }
------------------------------------------------------------------------------ -- Properties for the equality on streams ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Stream.Equality.PropertiesI where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Stream.Type open import FOTC.Relation.Binary.Bisimilarity.PropertiesI open import FOTC.Relation.Binary.Bisimilarity.Type ------------------------------------------------------------------------------ stream-≡→≈ : ∀ {xs ys} → Stream xs → Stream ys → xs ≡ ys → xs ≈ ys stream-≡→≈ Sxs _ refl = ≈-refl Sxs ≈→Stream₁ : ∀ {xs ys} → xs ≈ ys → Stream xs ≈→Stream₁ {xs} {ys} h = Stream-coind A h' (ys , h) where A : D → Set A ws = ∃[ zs ] ws ≈ zs h' : ∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs' h' (_ , Axs) with ≈-out Axs ... | x' , xs' , zs' , prf₁ , prf₂ , prf₃ = x' , xs' , prf₁ , (zs' , prf₃) ≈→Stream₂ : ∀ {xs ys} → xs ≈ ys → Stream ys ≈→Stream₂ {xs} {ys} h = Stream-coind A h' (xs , h) where A : D → Set A zs = ∃[ ws ] ws ≈ zs h' : ∀ {ys} → A ys → ∃[ y' ] ∃[ ys' ] ys ≡ y' ∷ ys' ∧ A ys' h' (_ , Ays) with ≈-out Ays ... | y' , ys' , zs' , prf₁ , prf₂ , prf₃ = y' , zs' , prf₂ , (ys' , prf₃) ≈→Stream : ∀ {xs ys} → xs ≈ ys → Stream xs ∧ Stream ys ≈→Stream {xs} {ys} h = ≈→Stream₁ h , ≈→Stream₂ h
{ "alphanum_fraction": 0.4504854369, "avg_line_length": 34.3333333333, "ext": "agda", "hexsha": "e4bffed96a2ba350d36f3241cbee4404619335cd", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Stream/Equality/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Stream/Equality/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Stream/Equality/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 540, "size": 1545 }
{- Adjunction between suspension and loop space (Rongji Kang, Oct. 2021) Main results: - Ω∙ : ℕ → Pointed ℓ → Pointed ℓ - ΣΩAdjunction : ((X , x₀) : Pointed ℓ) (Y : Pointed ℓ') → (∙Susp X →∙ Y) ≃ ((X , x₀) →∙ Ω∙ 1 Y) -} {-# OPTIONS --safe #-} module Cubical.HITs.Susp.LoopAdjunction where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Pointed.Base open import Cubical.Data.Nat.Base open import Cubical.HITs.Susp.Base private variable ℓ ℓ' : Level Ω∙ : ℕ → Pointed ℓ → Pointed ℓ Ω∙ 0 X = X Ω∙ 1 (X , x) = (x ≡ x) , refl Ω∙ (suc (suc n)) X = Ω∙ 1 (Ω∙ (suc n) X) ΣX→∙YEquiv : ((X , x₀) : Pointed ℓ) ((Y , y₀) : Pointed ℓ') → (Susp∙ X →∙ (Y , y₀)) ≃ (Σ[ y ∈ Y ] (X → (y₀ ≡ y))) ΣX→∙YEquiv (X , x₀) (Y , y₀) = isoToEquiv (iso left→right right→left right→left→right left→right→left) where left→right : (Susp∙ X →∙ (Y , y₀)) → Σ[ y ∈ Y ] (X → (y₀ ≡ y)) left→right (f , b) .fst = f south left→right (f , b) .snd x = sym b ∙ cong f (merid x) right→left : (Σ[ y ∈ Y ] (X → (y₀ ≡ y))) → (Susp∙ X →∙ (Y , y₀)) right→left (y , g) .fst north = y₀ right→left (y , g) .fst south = y right→left (y , g) .fst (merid x i) = g x i right→left (y , g) .snd = refl right→left→right : (g : Σ[ y ∈ Y ] (X → (y₀ ≡ y))) → left→right (right→left g) ≡ g right→left→right (y , g) i .fst = y right→left→right (y , g) i .snd x = lUnit (g x) (~ i) left→right→left : (f : Susp∙ X →∙ (Y , y₀)) → right→left (left→right f) ≡ f left→right→left (f , b) i .fst north = b (~ i) left→right→left (f , b) i .fst south = f south left→right→left (f , b) i .fst (merid x j) = hcomp (λ k → λ { (i = i0) → compPath-filler (sym b) (cong f (merid x)) k j ; (i = i1) → f (merid x (j ∧ k)) ; (j = i0) → b (~ i) ; (j = i1) → f (merid x k) }) (b (~ (i ∨ j))) left→right→left (f , b) i .snd j = b (~ i ∨ j) X→∙ΩYEquiv : ((X , x₀) : Pointed ℓ)((Y , y₀) : Pointed ℓ') → ((X , x₀) →∙ Ω∙ 1 (Y , y₀)) ≃ (Σ[ y ∈ Y ] (X → (y₀ ≡ y))) X→∙ΩYEquiv (X , x₀) (Y , y₀) = isoToEquiv (iso left→right right→left right→left→right left→right→left) where left→right : ((X , x₀) →∙ Ω∙ 1 (Y , y₀)) → Σ[ y ∈ Y ] (X → (y₀ ≡ y)) left→right _ .fst = y₀ left→right (f , b) .snd = f right→left : (Σ[ y ∈ Y ] (X → (y₀ ≡ y))) → ((X , x₀) →∙ Ω∙ 1 (Y , y₀)) right→left (y , g) .fst x = g x ∙ sym (g x₀) right→left (y , g) .snd = rCancel (g x₀) right→left→right : (g : Σ[ y ∈ Y ] (X → (y₀ ≡ y))) → left→right (right→left g) ≡ g right→left→right (y , g) i .fst = g x₀ i right→left→right (y , g) i .snd x j = hcomp (λ k → λ { (i = i0) → compPath-filler (g x) (sym (g x₀)) k j ; (i = i1) → g x j ; (j = i0) → y₀ ; (j = i1) → g x₀ (i ∨ ~ k) }) (g x j) f-filler : ((X , x₀) →∙ Ω∙ 1 (Y , y₀)) → X → (i j k : I) → Y f-filler (f , b) x i j k = hfill (λ k' → λ { (i = i0) → compPath-filler (f x) (sym (f x₀)) k' j ; (i = i1) → f x j ; (j = i0) → y₀ ; (j = i1) → b i (~ k') }) (inS (f x j)) k bottom : ((X , x₀) →∙ Ω∙ 1 (Y , y₀)) → (i j k : I) → Y bottom (f , b) i j k = hcomp (λ l → λ { (i = i0) → b (~ l) (k ∧ ~ j) ; (i = i1) → b (j ∨ ~ l) k ; (j = i0) → b (~ l) k ; (j = i1) → y₀ ; (k = i0) → y₀ ; (k = i1) → b (~ l ∨ i) (~ j) }) y₀ left→right→left : (f : (X , x₀) →∙ Ω∙ 1 (Y , y₀)) → right→left (left→right f) ≡ f left→right→left (f , b) i .fst x j = f-filler (f , b) x i j i1 left→right→left (f , b) i .snd j k = hcomp (λ l → λ { (i = i0) → rCancel-filler (f x₀) l j k ; (i = i1) → b j k ; (j = i0) → f-filler (f , b) x₀ i k l ; (j = i1) → y₀ ; (k = i0) → y₀ ; (k = i1) → b i (~ l ∧ ~ j) }) (bottom (f , b) i j k) {- The Main Theorem -} ΣΩAdjunction : ((X , x₀) : Pointed ℓ) (Y : Pointed ℓ') → (Susp∙ X →∙ Y) ≃ ((X , x₀) →∙ Ω∙ 1 Y) ΣΩAdjunction X Y = compEquiv (ΣX→∙YEquiv X Y) (invEquiv (X→∙ΩYEquiv X Y))
{ "alphanum_fraction": 0.44071991, "avg_line_length": 38.9912280702, "ext": "agda", "hexsha": "91be404b7bca0afb8b176b9957a56f691275266b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/HITs/Susp/LoopAdjunction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/HITs/Susp/LoopAdjunction.agda", "max_line_length": 96, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/HITs/Susp/LoopAdjunction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 1936, "size": 4445 }
module Prelude.Fractional where open import Agda.Primitive record Fractional {a} (A : Set a) : Set (lsuc a) where infixl 7 _/_ field Constraint : A → A → Set a _/_ : (x y : A) {{_ : Constraint x y}} → A NoConstraint : Set a NoConstraint = ∀ {x y} → Constraint x y open Fractional {{...}} using (_/_) public {-# DISPLAY Fractional._/_ _ x y = x / y #-}
{ "alphanum_fraction": 0.6112600536, "avg_line_length": 21.9411764706, "ext": "agda", "hexsha": "6e38b003e95acc35111b9a928f7231aa723d57e8", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Fractional.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Fractional.agda", "max_line_length": 54, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Fractional.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 124, "size": 373 }
{-# OPTIONS --guardedness --without-K #-} module ky where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; _≢_; refl; cong; cong₂; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) open import Data.Rational using (ℚ; _+_; _*_; _-_) open import Data.Bool open import Data.Bool.Properties open import Data.Rational open import Data.Nat as ℕ using (ℕ; zero; suc; ⌊_/2⌋) open import Data.Empty open import Relation.Nullary open import Relation.Nullary.Negation open import Agda.Builtin.Size open import Data.Product open import Data.Unit open import Data.Maybe open import Data.List TyCon = List Set data Env : TyCon → Set₁ where nil : Env [] cons : ∀{t Γ} → t → Env Γ → Env (t ∷ Γ) data Idx : Set → TyCon → Set₁ where fst : ∀{t Γ} → Idx t (t ∷ Γ) nxt : ∀{t t' Γ} → Idx t Γ → Idx t (t' ∷ Γ) get : ∀{t Γ} → Idx t Γ → Env Γ → t get fst (cons v _) = v get (nxt idx) (cons _ vs) = get idx vs upd : ∀{t Γ} → Idx t Γ → t -> Env Γ → Env Γ upd fst v' (cons _ vs) = cons v' vs upd (nxt idx) v' (cons v vs) = cons v (upd idx v' vs) data Exp : TyCon → Set → Set₁ where EVal : ∀{t Γ} → t → Exp Γ t EVar : ∀{t Γ} → Idx t Γ → Exp Γ t EPlus : ∀{Γ} → Exp Γ ℚ → Exp Γ ℚ → Exp Γ ℚ record Cotree (i : Size) (A : Set) (Γ : TyCon) : Set₁ data Pattern : Size → TyCon → Set₁ where mkPattern : ∀{i Γ} → --{j₁ j₂ : Size< i} → (Cotree i Bool Γ → Cotree i Bool Γ → Cotree i Bool Γ) → Pattern i Γ data Com : Size → TyCon → Set → Set₁ where CSkip : ∀{i Γ} → Com i Γ ⊤ CPrim : ∀{i t Γ} → Pattern i Γ → Com i Γ t → Com i Γ t → Com i Γ t --CFlip : ∀{i t Γ} → Com i Γ t → Com i Γ t → Com i Γ t CUpd : ∀{i t Γ} → Idx t Γ → Exp Γ t → Com i Γ ⊤ --CAlloc : ∀{t Γ} → Exp Γ t → Com (t ∷ Γ) ⊤ CIte : ∀{i t Γ} → Exp Γ Bool → Com i Γ t → Com i Γ t → Com i Γ t CSeq : ∀{i t Γ} → Com i Γ ⊤ → Com i Γ t → Com i Γ t CWhile : ∀{i t Γ} → Exp Γ Bool → Com i Γ t → Com i Γ ⊤ eval : ∀{t Γ} → Env Γ → Exp Γ t → t eval ρ (EVal v) = v eval ρ (EVar x) = get x ρ eval ρ (EPlus e₁ e₂) = eval ρ e₁ + eval ρ e₂ -- Cf. Abel 2017 (Equational Reasoning about Formal Languages in Coalgebraic Style) record Cotree i A Γ where coinductive field ν : Env Γ -> Maybe (Env Γ) δ : ∀{j : Size< i} → Env Γ → A → Cotree j A Γ open Cotree ∅ : ∀{i A Γ} → Cotree i A Γ ν ∅ _ = nothing δ ∅ _ _ = ∅ flip : ∀(i Γ) → Cotree i Bool Γ → Cotree i Bool Γ → Cotree i Bool Γ flip i Γ t₁ t₂ = t where t : Cotree i Bool Γ ν t ρ = nothing δ t ρ true = t₁ δ t ρ false = t₂ interp : ∀(i){τ} → ∀(Γ) → Com i Γ τ → Cotree i Bool Γ interp i Γ CSkip = t where t : ∀{j} → Cotree j Bool Γ ν t ρ = just ρ δ t ρ _ = ∅ interp i Γ (CPrim (mkPattern f) c₁ c₂) = t where t : Cotree i Bool Γ ν t ρ = nothing δ t ρ _ = f (interp i Γ c₁) (interp i Γ c₂) {-interp i Γ (CFlip c₁ c₂) = t where t : Cotree i Bool Γ ν t ρ = nothing δ t ρ true = interp i Γ c₁ δ t ρ false = interp i Γ c₂-} interp i Γ (CUpd x e) = t where t : ∀{j} → Cotree j Bool Γ ν t ρ = just (upd x (eval ρ e) ρ) δ t ρ _ = ∅ interp i Γ (CIte e c₁ c₂) = t where t : Cotree i Bool Γ ν t ρ with eval ρ e ... | true = ν (interp i Γ c₁) ρ ... | false = ν (interp i Γ c₂) ρ δ t ρ b with eval ρ e ... | true = δ (interp i Γ c₁) ρ b ... | false = δ (interp i Γ c₂) ρ b interp i Γ (CSeq c₁ c₂) = t where t : Cotree i Bool Γ ν t ρ = nothing δ t ρ b with ν (interp i Γ c₁) ρ ... | nothing = δ (interp i Γ c₁) ρ b ... | just ρ' = δ (interp i Γ c₂) ρ' b interp i Γ (CWhile e c) = t where t : Cotree i Bool Γ ν t ρ with eval ρ e ... | true = ν (interp i Γ c) ρ ... | false = just ρ δ t ρ b with eval ρ e ... | true = δ (interp i Γ c) ρ b ... | false = ∅ -- Flip as a derived command cflip : ∀(i Γ){τ} → Com i Γ τ → Com i Γ τ → Com i Γ τ cflip i Γ = CPrim (mkPattern (flip i Γ))
{ "alphanum_fraction": 0.5292247493, "avg_line_length": 31.213740458, "ext": "agda", "hexsha": "6008bd133596a14131db2d63dccb3c94f5e031ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9243f9d77d0c8af99afa4f536156a3e23b1c40e1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "OUPL/Zar", "max_forks_repo_path": "theory/ky.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "9243f9d77d0c8af99afa4f536156a3e23b1c40e1", "max_issues_repo_issues_event_max_datetime": "2019-10-06T16:32:25.000Z", "max_issues_repo_issues_event_min_datetime": "2019-09-13T15:40:08.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "OUPL/Zar", "max_issues_repo_path": "theory/ky.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "9243f9d77d0c8af99afa4f536156a3e23b1c40e1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "OUPL/Zar", "max_stars_repo_path": "theory/ky.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1630, "size": 4089 }
open import Agda.Builtin.Coinduction open import Agda.Builtin.IO open import Agda.Builtin.Unit data D : Set where c : ∞ D → D d : D d = c (♯ d) postulate seq : {A B : Set} → A → B → B return : {A : Set} → A → IO A {-# COMPILE GHC return = \_ -> return #-} {-# COMPILE GHC seq = \_ _ -> seq #-} main : IO ⊤ main = seq d (return tt)
{ "alphanum_fraction": 0.5609065156, "avg_line_length": 17.65, "ext": "agda", "hexsha": "8c2d8bc2485024cca10b8a0b5b3f70c69ed8a6f2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2909-2.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2909-2.agda", "max_line_length": 43, "max_stars_count": 7, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2909-2.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 127, "size": 353 }
module Common.Char where open import Agda.Builtin.Char public open import Common.Bool charEq : Char -> Char -> Bool charEq = primCharEquality
{ "alphanum_fraction": 0.7724137931, "avg_line_length": 16.1111111111, "ext": "agda", "hexsha": "466653df952558f32e69d4b92d67189f6c85809d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Common/Char.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Common/Char.agda", "max_line_length": 36, "max_stars_count": 7, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Common/Char.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 35, "size": 145 }
module Data.List.Iterable where open import Data open import Data.List import Data.List.Functions as List open import Logic.Propositional open import Logic.Predicate import Lvl open import Relator.Equals open import Structure.Container.Iterable open import Type private variable ℓ : Lvl.Level private variable T : Type{ℓ} instance List-iterable : Iterable(List(T)) Iterable.Element (List-iterable {T = T}) = T Iterable.isEmpty List-iterable = List.isEmpty Iterable.current List-iterable ∅ = <> Iterable.current List-iterable (x ⊰ l) = x Iterable.indexStep List-iterable ∅ = <> Iterable.indexStep List-iterable (_ ⊰ _) = <> Iterable.step List-iterable ∅ = <> Iterable.step List-iterable (x ⊰ l) = l instance List-finite-iterable : Iterable.Finite(List-iterable{T = T}) ∃.witness List-finite-iterable = List.foldᵣ ∃.proof List-finite-iterable {iter = ∅} = [≡]-intro ∃.proof List-finite-iterable {iter = x ⊰ l} = [≡]-intro instance List-empty : Iterable.EmptyConstruction(List-iterable{T = T})(∅) List-empty = <> instance List-prepend : Iterable.PrependConstruction(List-iterable{T = T})(_⊰_) ∃.witness List-prepend = [≡]-intro ∃.proof List-prepend = [∧]-intro [≡]-intro [≡]-intro
{ "alphanum_fraction": 0.6945773525, "avg_line_length": 30.5853658537, "ext": "agda", "hexsha": "207bb976f747a3ff504b6a63b04d66bb7d341625", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Iterable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Iterable.agda", "max_line_length": 72, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Iterable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 379, "size": 1254 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.S2 where open import Cubical.HITs.S2.Base public -- open import Cubical.HITs.S2.Properties public
{ "alphanum_fraction": 0.7426900585, "avg_line_length": 24.4285714286, "ext": "agda", "hexsha": "5fb9ced1647d6c576b21202bdb36ef8724a3b124", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/S2.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/S2.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/S2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 49, "size": 171 }
module FRP.JS.Size where postulate Size : Set ↑_ : Size → Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC ↑_ #-} {-# BUILTIN SIZEINF ∞ #-} {-# COMPILED_JS ↑_ function(x) { return null; } #-} {-# COMPILED_JS ∞ null #-}
{ "alphanum_fraction": 0.5346153846, "avg_line_length": 20, "ext": "agda", "hexsha": "0982c030002f14659c3ff46b8e7564f8adb75840", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Size.agda", "max_line_length": 55, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Size.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 86, "size": 260 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Monad.Kleisli where open import Categories.Category open import Categories.Functor using (Functor; module Functor) open import Categories.NaturalTransformation hiding (_≡_; equiv; id) open import Categories.Monad Kleisli : ∀ {o ℓ e} {C : Category o ℓ e} → Monad C → Category o ℓ e Kleisli {C = C} M = record { Obj = Obj ; _⇒_ = λ A B → (A ⇒ F₀ B) ; _≡_ = _≡_ ; _∘_ = λ f g → (μ.η _ ∘ F₁ f) ∘ g ; id = η.η _ ; assoc = assoc′ ; identityˡ = identityˡ′ ; identityʳ = identityʳ′ ; equiv = equiv ; ∘-resp-≡ = λ f≡h g≡i → ∘-resp-≡ (∘-resp-≡ refl (F-resp-≡ f≡h)) g≡i } where module M = Monad M open M using (μ; η; F) module μ = NaturalTransformation μ module η = NaturalTransformation η open Functor F open Category C open Equiv .assoc′ : ∀ {A B C D} {f : A ⇒ F₀ B} {g : B ⇒ F₀ C} {h : C ⇒ F₀ D} → (μ.η D ∘ (F₁ ((μ.η D ∘ F₁ h) ∘ g))) ∘ f ≡ (μ.η D ∘ F₁ h) ∘ ((μ.η C ∘ F₁ g) ∘ f) assoc′ {A} {B} {C} {D} {f} {g} {h} = begin (μ.η D ∘ F₁ ((μ.η D ∘ F₁ h) ∘ g)) ∘ f ↓⟨ assoc ⟩ μ.η D ∘ (F₁ ((μ.η D ∘ F₁ h) ∘ g) ∘ f) ↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ (F-resp-≡ assoc)) ⟩ μ.η D ∘ (F₁ (μ.η D ∘ (F₁ h ∘ g)) ∘ f) ↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ homomorphism) ⟩ μ.η D ∘ ((F₁ (μ.η D) ∘ F₁ (F₁ h ∘ g)) ∘ f) ↓⟨ ∘-resp-≡ʳ assoc ⟩ μ.η D ∘ (F₁ (μ.η D) ∘ (F₁ (F₁ h ∘ g) ∘ f)) ↑⟨ assoc ⟩ (μ.η D ∘ F₁ (μ.η D)) ∘ (F₁ (F₁ h ∘ g) ∘ f) ↓⟨ ∘-resp-≡ˡ M.assoc ⟩ (μ.η D ∘ μ.η (F₀ D)) ∘ (F₁ (F₁ h ∘ g) ∘ f) ↓⟨ assoc ⟩ μ.η D ∘ (μ.η (F₀ D) ∘ (F₁ (F₁ h ∘ g) ∘ f)) ↑⟨ ∘-resp-≡ʳ assoc ⟩ μ.η D ∘ ((μ.η (F₀ D) ∘ F₁ (F₁ h ∘ g)) ∘ f) ↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ (∘-resp-≡ʳ homomorphism)) ⟩ μ.η D ∘ ((μ.η (F₀ D) ∘ (F₁ (F₁ h) ∘ F₁ g)) ∘ f) ↑⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ assoc) ⟩ μ.η D ∘ (((μ.η (F₀ D) ∘ F₁ (F₁ h)) ∘ F₁ g) ∘ f) ↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ (∘-resp-≡ˡ (μ.commute h))) ⟩ μ.η D ∘ (((F₁ h ∘ μ.η C) ∘ F₁ g) ∘ f) ↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ assoc) ⟩ μ.η D ∘ ((F₁ h ∘ (μ.η C ∘ F₁ g)) ∘ f) ↓⟨ ∘-resp-≡ʳ assoc ⟩ μ.η D ∘ (F₁ h ∘ ((μ.η C ∘ F₁ g) ∘ f)) ↑⟨ assoc ⟩ (μ.η D ∘ F₁ h) ∘ ((μ.η C ∘ F₁ g) ∘ f) ∎ where open HomReasoning .identityˡ′ : ∀ {A B} {f : A ⇒ F₀ B} → (μ.η B ∘ F₁ (η.η B)) ∘ f ≡ f identityˡ′ {A} {B} {f} = begin (μ.η B ∘ F₁ (η.η B)) ∘ f ↓⟨ ∘-resp-≡ˡ M.identityˡ ⟩ id ∘ f ↓⟨ identityˡ ⟩ f ∎ where open HomReasoning .identityʳ′ : ∀ {A B} {f : A ⇒ F₀ B} → (μ.η B ∘ F₁ f) ∘ η.η A ≡ f identityʳ′ {A} {B} {f} = begin (μ.η B ∘ F₁ f) ∘ η.η A ↓⟨ assoc ⟩ μ.η B ∘ (F₁ f ∘ η.η A) ↑⟨ ∘-resp-≡ʳ (η.commute f) ⟩ μ.η B ∘ (η.η (F₀ B) ∘ f) ↑⟨ assoc ⟩ (μ.η B ∘ η.η (F₀ B)) ∘ f ↓⟨ ∘-resp-≡ˡ M.identityʳ ⟩ id ∘ f ↓⟨ identityˡ ⟩ f ∎ where open HomReasoning
{ "alphanum_fraction": 0.4244362168, "avg_line_length": 30.6288659794, "ext": "agda", "hexsha": "b073c1a0ad8ac541f3e2c18f5d49d92a2f6bf54f", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Monad/Kleisli.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Monad/Kleisli.agda", "max_line_length": 91, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Monad/Kleisli.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1598, "size": 2971 }
module Issue533 where data Empty : Set where empty : {A B : Set} → (B → Empty) → B → A empty f x with f x ... | () fail : ∀ {A : Set} → Empty → A fail {A} = empty absurd where absurd : _ → Empty absurd () -- should check (due to postponed emptyness constraint, see issue 479)
{ "alphanum_fraction": 0.6055363322, "avg_line_length": 19.2666666667, "ext": "agda", "hexsha": "0518bbd269a1cf28a863c947296e204f0799d1be", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue533.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue533.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue533.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 90, "size": 289 }
open import Agda.Builtin.Nat data S : Set where c : S module _ (A : Set) where test : S test with c ... | q = {!q!} -- Splitting on q should succeed data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) module _ {A : Set} {n : Nat} (xs : Vec A n) where foo : Vec A n → Nat foo [] = 0 foo (x ∷ ys) with x ∷ xs ... | zs = {!zs!} -- Splitting on zs should succeed here. -- Splitting on xs should fail.
{ "alphanum_fraction": 0.5368421053, "avg_line_length": 19.7916666667, "ext": "agda", "hexsha": "b18f6c4149a0a3d3f04831165d40055cb3c120db", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2181.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2181.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2181.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 181, "size": 475 }
data {-sdaf-} Nat {-sdaf-} : {-sdaf-} Set {-sdaf-} where {-sdaf-} zero {-sdaf-} : {-sdaf-} Nat {-sdaf-} suc {-sdaf-} :{-sdaf-} Nat {-sdaf-} -> {-sdaf-} Nat {-sdaf-} data Impossible : Set where {-Comment which should not be duplicated-}
{ "alphanum_fraction": 0.552, "avg_line_length": 35.7142857143, "ext": "agda", "hexsha": "f567550c792bc6789436a49c658321897c599d71", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/input/DataStructure.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/input/DataStructure.agda", "max_line_length": 70, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/input/DataStructure.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 94, "size": 250 }
------------------------------------------------------------------------ -- Canonical kinding of Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Kinding.Canonical where open import Data.Context.WellFormed open import Data.Fin using (Fin; zero; suc) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Fin.Substitution.ExtraLemmas open import Data.Fin.Substitution.Typed open import Data.List using ([]; _∷_; _∷ʳ_) open import Data.Product using (∃; _,_; _×_) open import Data.Vec as Vec using ([]) open import Level using () renaming (zero to lzero) open import Relation.Binary.PropositionalEquality open import FOmegaInt.Syntax open import FOmegaInt.Syntax.HereditarySubstitution open import FOmegaInt.Syntax.Normalization import FOmegaInt.Kinding.Simple as SimpleKinding ------------------------------------------------------------------------ -- Canonical kinding derivations. -- -- TODO: explain the point of this and how "canonical" kinding differs -- from "algorithmic" kinding. -- -- NOTE. In the rules below, we use (singleton) kind synthesis -- judgments of the form `Γ ⊢Nf a ⇉ a ⋯ a' to ensure that `a' is a -- well-kinded proper type rather than kind checking judgments of the -- form `Γ ⊢Nf a ⇇ *'. While the latter may seem more natural, it -- involves the use of subsumption/subtyping to ensure that `Γ ⊢ a ⋯ a -- <∷ *'. As we will show, this is always true (if `a' is indeed a -- proper type) but the extra use of subsumption complicates the -- proofs of properties that require (partial) inversion of kinding -- derivations. See e.g. the Nf⇉-⋯-* and Nf⇇-⋯-* lemmas. module Kinding where open ElimCtx open Syntax infix 4 _⊢_wf _ctx _⊢_kd infix 4 _⊢Nf_⇉_ _⊢Ne_∈_ _⊢Var_∈_ _⊢_⇉∙_⇉_ _⊢Nf_⇇_ infix 4 _⊢_<∷_ _⊢_<:_ _⊢_<:_⇇_ infix 4 _⊢_≅_ _⊢_≃_⇇_ _⊢_⇉∙_≃_⇉_ mutual -- Well-formed type/kind ascriptions in typing contexts. -- -- A raw kind ascriptions is considered well-formed if it -- corresponds to a well-formed normal kind. Raw type ascriptions -- are are considered well-formed if they correspond to proper -- normal types. data _⊢_wf {n} (Γ : Ctx n) : ElimAsc n → Set where wf-kd : ∀ {a} → Γ ⊢ a kd → Γ ⊢ kd a wf wf-tp : ∀ {a} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢ tp a wf -- Well-formed typing contexts. -- -- Contexts and context extensions are well-formed if all the -- ascriptions they contain are well-formed. _ctx : ∀ {n} → Ctx n → Set Γ ctx = ContextFormation._wf _⊢_wf Γ -- Well-formedness checking for η-long β-normal kinds. data _⊢_kd {n} (Γ : Ctx n) : Kind Elim n → Set where kd-⋯ : ∀ {a b} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢Nf b ⇉ b ⋯ b → Γ ⊢ a ⋯ b kd kd-Π : ∀ {j k} → Γ ⊢ j kd → kd j ∷ Γ ⊢ k kd → Γ ⊢ Π j k kd -- Kind synthesis for η-long β-normal types. data _⊢Nf_⇉_ {n} (Γ : Ctx n) : Elim n → Kind Elim n → Set where ⇉-⊥-f : Γ ctx → Γ ⊢Nf ⊥∙ ⇉ ⊥∙ ⋯ ⊥∙ ⇉-⊤-f : Γ ctx → Γ ⊢Nf ⊤∙ ⇉ ⊤∙ ⋯ ⊤∙ ⇉-∀-f : ∀ {k a} → Γ ⊢ k kd → kd k ∷ Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢Nf ∀∙ k a ⇉ ∀∙ k a ⋯ ∀∙ k a ⇉-→-f : ∀ {a b} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢Nf b ⇉ b ⋯ b → Γ ⊢Nf a ⇒∙ b ⇉ a ⇒∙ b ⋯ a ⇒∙ b ⇉-Π-i : ∀ {j a k} → Γ ⊢ j kd → kd j ∷ Γ ⊢Nf a ⇉ k → Γ ⊢Nf Λ∙ j a ⇉ Π j k ⇉-s-i : ∀ {a b c} → Γ ⊢Ne a ∈ b ⋯ c → Γ ⊢Nf a ⇉ a ⋯ a -- Canonical kinding of neutral types. -- -- NOTE. This is *not* a kind synthesis judgment! See the -- comment on canonical variable kinding for an explanation. data _⊢Ne_∈_ {n} (Γ : Ctx n) : Elim n → Kind Elim n → Set where ∈-∙ : ∀ {x j k} {as : Spine n} → Γ ⊢Var x ∈ j → Γ ⊢ j ⇉∙ as ⇉ k → Γ ⊢Ne var x ∙ as ∈ k -- Canonical kinding of variables. -- -- NOTE. This would be a kind synthesis judgment if it weren't -- for the subsumption rule (⇇-⇑). Thanks to this rule, the proof -- of the "context narrowing" property is easy to establish for -- canonical typing (see the ContextNarrowing module below). -- Without a proof of this property, the various lemmas about -- kinded hereditary substitutions become difficult to establish -- (see Kinding.HereditarySubstitution). Unfortunately, proving -- that context narrowing is admissible *without* (⇇-⇑) would -- require precisely these substitution lemmas, leading to a -- cyclic dependency. Introducing the subsumption rule for -- variables thus allows us to break that cycle. On the other -- hand, the subsumption rule breaks functionality of the -- canonical kinding relations for variables and neutral types, -- i.e. their canonical kinds are no longer unique. This is -- partly remedied by the singleton-introduction rule (⇉-s-i) in -- the kind synthesis judgment for normal types: neutrals have -- unique (singleton) kinds when viewed as normal forms. However, -- neutral kinding is also used in subtyping, in particular by the -- bound projection rules (<:-⟨|) and (<:-|⟩). Because the kinds -- of neutrals are not unique, neither are the bounds projected by -- these subtyping rules, and eliminating adjacent instances of -- (<:-⟨|) and (<:-|⟩) becomes difficult. This, in turn, -- complicates transitivity elimination (i.e. a proof that -- transitivity of subtyping is admissible) in arbitrary contexts. -- However, it does not affect elimination of *top-level* -- occurrences of the transitivity rule (<:-trans), i.e. those in -- the empty contexts, because there are no closed neutral terms, -- and therefore no instances of the bound projection rules in -- top-level subtyping statements. data _⊢Var_∈_ {n} (Γ : Ctx n) : Fin n → Kind Elim n → Set where ⇉-var : ∀ {k} x → Γ ctx → lookup Γ x ≡ kd k → Γ ⊢Var x ∈ k ⇇-⇑ : ∀ {x j k} → Γ ⊢Var x ∈ j → Γ ⊢ j <∷ k → Γ ⊢ k kd → Γ ⊢Var x ∈ k -- Kind synthesis for spines: given the kind of the head and a -- spine, synthesize the overall kind of the elimination. data _⊢_⇉∙_⇉_ {n} (Γ : Ctx n) : Kind Elim n → Spine n → Kind Elim n → Set where ⇉-[] : ∀ {k} → Γ ⊢ k ⇉∙ [] ⇉ k ⇉-∷ : ∀ {a as j k l} → Γ ⊢Nf a ⇇ j → Γ ⊢ j kd → Γ ⊢ k Kind[ a ∈ ⌊ j ⌋ ] ⇉∙ as ⇉ l → Γ ⊢ Π j k ⇉∙ a ∷ as ⇉ l -- Kind checking for η-long β-normal types. data _⊢Nf_⇇_ {n} (Γ : Ctx n) : Elim n → Kind Elim n → Set where ⇇-⇑ : ∀ {a j k} → Γ ⊢Nf a ⇉ j → Γ ⊢ j <∷ k → Γ ⊢Nf a ⇇ k -- Canonical subkinding derivations. data _⊢_<∷_ {n} (Γ : Ctx n) : Kind Elim n → Kind Elim n → Set where <∷-⋯ : ∀ {a₁ a₂ b₁ b₂} → Γ ⊢ a₂ <: a₁ → Γ ⊢ b₁ <: b₂ → Γ ⊢ a₁ ⋯ b₁ <∷ a₂ ⋯ b₂ <∷-Π : ∀ {j₁ j₂ k₁ k₂} → Γ ⊢ j₂ <∷ j₁ → kd j₂ ∷ Γ ⊢ k₁ <∷ k₂ → Γ ⊢ Π j₁ k₁ kd → Γ ⊢ Π j₁ k₁ <∷ Π j₂ k₂ -- Canonical subtyping of proper types. data _⊢_<:_ {n} (Γ : Ctx n) : Elim n → Elim n → Set where <:-trans : ∀ {a b c} → Γ ⊢ a <: b → Γ ⊢ b <: c → Γ ⊢ a <: c <:-⊥ : ∀ {a} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢ ⊥∙ <: a <:-⊤ : ∀ {a} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢ a <: ⊤∙ <:-∀ : ∀ {k₁ k₂ a₁ a₂} → Γ ⊢ k₂ <∷ k₁ → kd k₂ ∷ Γ ⊢ a₁ <: a₂ → Γ ⊢Nf ∀∙ k₁ a₁ ⇉ ∀∙ k₁ a₁ ⋯ ∀∙ k₁ a₁ → Γ ⊢ ∀∙ k₁ a₁ <: ∀∙ k₂ a₂ <:-→ : ∀ {a₁ a₂ b₁ b₂} → Γ ⊢ a₂ <: a₁ → Γ ⊢ b₁ <: b₂ → Γ ⊢ a₁ ⇒∙ b₁ <: a₂ ⇒∙ b₂ <:-∙ : ∀ {x as₁ as₂ k b c} → Γ ⊢Var x ∈ k → Γ ⊢ k ⇉∙ as₁ ≃ as₂ ⇉ b ⋯ c → Γ ⊢ var x ∙ as₁ <: var x ∙ as₂ <:-⟨| : ∀ {a b c} → Γ ⊢Ne a ∈ b ⋯ c → Γ ⊢ b <: a <:-|⟩ : ∀ {a b c} → Γ ⊢Ne a ∈ b ⋯ c → Γ ⊢ a <: c -- Checked/kind-driven subtyping. data _⊢_<:_⇇_ {n} (Γ : Ctx n) : Elim n → Elim n → Kind Elim n → Set where <:-⇇ : ∀ {a b c d} → Γ ⊢Nf a ⇇ c ⋯ d → Γ ⊢Nf b ⇇ c ⋯ d → Γ ⊢ a <: b → Γ ⊢ a <: b ⇇ c ⋯ d <:-λ : ∀ {j₁ j₂ a₁ a₂ j k} → kd j ∷ Γ ⊢ a₁ <: a₂ ⇇ k → Γ ⊢Nf Λ∙ j₁ a₁ ⇇ Π j k → Γ ⊢Nf Λ∙ j₂ a₂ ⇇ Π j k → Γ ⊢ Λ∙ j₁ a₁ <: Λ∙ j₂ a₂ ⇇ Π j k -- Canonical kind equality. data _⊢_≅_ {n} (Γ : Ctx n) : Kind Elim n → Kind Elim n → Set where <∷-antisym : ∀ {j k} → Γ ⊢ j kd → Γ ⊢ k kd → Γ ⊢ j <∷ k → Γ ⊢ k <∷ j → Γ ⊢ j ≅ k -- Canonical type equality derivations with checked kinds. data _⊢_≃_⇇_ {n} (Γ : Ctx n) : Elim n → Elim n → Kind Elim n → Set where <:-antisym : ∀ {a b k} → Γ ⊢ k kd → Γ ⊢ a <: b ⇇ k → Γ ⊢ b <: a ⇇ k → Γ ⊢ a ≃ b ⇇ k -- Canonical equality of spines. data _⊢_⇉∙_≃_⇉_ {n} (Γ : Ctx n) : Kind Elim n → Spine n → Spine n → Kind Elim n → Set where ≃-[] : ∀ {k} → Γ ⊢ k ⇉∙ [] ≃ [] ⇉ k ≃-∷ : ∀ {a as b bs j k l} → Γ ⊢ a ≃ b ⇇ j → Γ ⊢ k Kind[ a ∈ ⌊ j ⌋ ] ⇉∙ as ≃ bs ⇉ l → Γ ⊢ Π j k ⇉∙ a ∷ as ≃ b ∷ bs ⇉ l -- Well-formed context extensions. open ContextFormation _⊢_wf public hiding (_wf) renaming (_⊢_wfExt to _⊢_ext) -- A wrapper for the _⊢Var_∈_ judgment that also provides term -- variable bindings. infix 4 _⊢Var′_∈_ data _⊢Var′_∈_ {n} (Γ : Ctx n) : Fin n → ElimAsc n → Set where ∈-tp : ∀ {x k} → Γ ⊢Var x ∈ k → Γ ⊢Var′ x ∈ kd k ∈-tm : ∀ x {a} → Γ ctx → lookup Γ x ≡ tp a → Γ ⊢Var′ x ∈ tp a -- A derived variable rule. ∈-var′ : ∀ {n} {Γ : Ctx n} x → Γ ctx → Γ ⊢Var′ x ∈ lookup Γ x ∈-var′ {Γ = Γ} x Γ-ctx with lookup Γ x | inspect (lookup Γ) x ∈-var′ x Γ-ctx | kd k | [ Γ[x]≡kd-k ] = ∈-tp (⇉-var x Γ-ctx Γ[x]≡kd-k) ∈-var′ x Γ-ctx | tp a | [ Γ[x]≡tp-a ] = ∈-tm x Γ-ctx Γ[x]≡tp-a ------------------------------------------------------------------------ -- Simple properties of canonical kindings open Syntax open ElimCtx open SimpleCtx using (kd; tp; ⌊_⌋Asc) open Kinding open ContextConversions using (⌊_⌋Ctx; module ⌊⌋Ctx-Lemmas) -- An inversion lemma for _⊢_wf. wf-kd-inv : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ kd k wf → Γ ⊢ k kd wf-kd-inv (wf-kd k-kd) = k-kd -- Subkinds have the same shape. <∷-⌊⌋ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → ⌊ j ⌋ ≡ ⌊ k ⌋ <∷-⌊⌋ (<∷-⋯ _ _) = refl <∷-⌊⌋ (<∷-Π j₂<∷j₁ k₁<∷k₂ _) = cong₂ _⇒_ (sym (<∷-⌊⌋ j₂<∷j₁)) (<∷-⌊⌋ k₁<∷k₂) -- Equal kinds have the same shape. ≅-⌊⌋ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → ⌊ j ⌋ ≡ ⌊ k ⌋ ≅-⌊⌋ (<∷-antisym j-kd k-kd j<∷k k<∷j) = <∷-⌊⌋ j<∷k -- Kind and type equality imply subkinding and subtyping, respectively. ≅⇒<∷ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ⊢ j <∷ k ≅⇒<∷ (<∷-antisym j-kd k-kd j<∷k k<∷j) = j<∷k ≃⇒<: : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ a <: b ⇇ k ≃⇒<: (<:-antisym k-kd a<:b⇇k b<:a⇇k) = a<:b⇇k ≃⇒<:-⋯ : ∀ {n} {Γ : Ctx n} {a b c d} → Γ ⊢ a ≃ b ⇇ c ⋯ d → Γ ⊢ a <: b ≃⇒<:-⋯ (<:-antisym c⋯d-kd (<:-⇇ a⇇c⋯d b⇇c⋯d a<:b) b<:a⇇c⋯d) = a<:b -- Symmetry of kind and type equality. ≅-sym : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ⊢ k ≅ j ≅-sym (<∷-antisym j-kd k-kd j<:k k<∷j) = <∷-antisym k-kd j-kd k<∷j j<:k ≃-sym : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ b ≃ a ⇇ k ≃-sym (<:-antisym k-kd a<:b b<:a) = <:-antisym k-kd b<:a a<:b -- Transitivity of checked subtyping and type equality are admissible. <:⇇-trans : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢ a <: b ⇇ k → Γ ⊢ b <: c ⇇ k → Γ ⊢ a <: c ⇇ k <:⇇-trans (<:-⇇ a₁⇇b⋯c _ a₁<:a₂) (<:-⇇ _ a₃⇇b⋯c a₂<:a₃) = <:-⇇ a₁⇇b⋯c a₃⇇b⋯c (<:-trans a₁<:a₂ a₂<:a₃) <:⇇-trans (<:-λ a₁<:a₂ Λj₁a₁⇇Πjk _) (<:-λ a₂<:a₃ _ Λj₃a₃⇇Πjk) = <:-λ (<:⇇-trans a₁<:a₂ a₂<:a₃) Λj₁a₁⇇Πjk Λj₃a₃⇇Πjk ≃-trans : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ b ≃ c ⇇ k → Γ ⊢ a ≃ c ⇇ k ≃-trans (<:-antisym k-kd a<:b⇇k b<:a⇇k) (<:-antisym _ b<:c⇇k c<:b⇇k) = <:-antisym k-kd (<:⇇-trans a<:b⇇k b<:c⇇k) (<:⇇-trans c<:b⇇k b<:a⇇k) -- The synthesized kind of a normal proper type is exactly the singleton -- containing that type. Nf⇉-≡ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → a ≡ b × a ≡ c Nf⇉-≡ (⇉-⊥-f Γ-ctx) = refl , refl Nf⇉-≡ (⇉-⊤-f Γ-ctx) = refl , refl Nf⇉-≡ (⇉-∀-f k-kd b⇉b⋯b) = refl , refl Nf⇉-≡ (⇉-→-f a⇉a⋯a b⇉b⋯b) = refl , refl Nf⇉-≡ (⇉-s-i a∈b⋯c) = refl , refl -- Derived singleton introduction rules where the premises are -- well-kinded normal forms rather than neutrals. Nf⇉-s-i : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢Nf a ⇉ a ⋯ a Nf⇉-s-i a⇉b⋯c with Nf⇉-≡ a⇉b⋯c Nf⇉-s-i a⇉a⋯a | refl , refl = a⇉a⋯a Nf⇇-s-i : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢Nf a ⇉ a ⋯ a Nf⇇-s-i (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂)) = Nf⇉-s-i a⇉b₁⋯c₁ -- Inhabitants of interval kinds are proper types. Nf⇉-⋯-* : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢Nf a ⇇ ⌜*⌝ Nf⇉-⋯-* a⇉b⋯c with Nf⇉-≡ a⇉b⋯c Nf⇉-⋯-* a⇉a⋯a | refl , refl = ⇇-⇑ a⇉a⋯a (<∷-⋯ (<:-⊥ a⇉a⋯a) (<:-⊤ a⇉a⋯a)) Nf⇇-⋯-* : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢Nf a ⇇ ⌜*⌝ Nf⇇-⋯-* (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂)) = Nf⇉-⋯-* a⇉b₁⋯c₁ -- Validity of synthesized kinds: synthesized kinds are well-formed. Nf⇉-valid : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → Γ ⊢ k kd Nf⇉-valid (⇉-⊥-f Γ-ctx) = kd-⋯ (⇉-⊥-f Γ-ctx) (⇉-⊥-f Γ-ctx) Nf⇉-valid (⇉-⊤-f Γ-ctx) = kd-⋯ (⇉-⊤-f Γ-ctx) (⇉-⊤-f Γ-ctx) Nf⇉-valid (⇉-∀-f k-kd a⇉a⋯a) = kd-⋯ (⇉-∀-f k-kd a⇉a⋯a) (⇉-∀-f k-kd a⇉a⋯a) Nf⇉-valid (⇉-→-f a⇉a⋯a b⇉b⋯b) = kd-⋯ (⇉-→-f a⇉a⋯a b⇉b⋯b) (⇉-→-f a⇉a⋯a b⇉b⋯b) Nf⇉-valid (⇉-Π-i j-kd a⇉k) = kd-Π j-kd (Nf⇉-valid a⇉k) Nf⇉-valid (⇉-s-i a∈b⋯c) = kd-⋯ (⇉-s-i a∈b⋯c) (⇉-s-i a∈b⋯c) -- Validity of checked subtyping: the checked subtyping judgment -- relates well-kinded types. <:⇇-valid : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ⇇ k → Γ ⊢Nf a ⇇ k × Γ ⊢Nf b ⇇ k <:⇇-valid (<:-⇇ a⇇k b⇇k a<:b) = a⇇k , b⇇k <:⇇-valid (<:-λ a₁<:a₂ Λj₁a₁⇇Πjk Λj₂a₂⇇Πjk) = Λj₁a₁⇇Πjk , Λj₂a₂⇇Πjk -- Validity of kind and type equality: the equality judgments relate -- well-formed kinds, resp. well-kinded types. ≅-valid : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ⊢ j kd × Γ ⊢ k kd ≅-valid (<∷-antisym j-kd k-kd j<∷k k<∷j) = j-kd , k-kd ≃-valid : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢Nf a ⇇ k × Γ ⊢Nf b ⇇ k ≃-valid (<:-antisym k-kd a<:b⇇k b<:a⇇k) = <:⇇-valid a<:b⇇k ≃-valid-kd : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ k kd ≃-valid-kd (<:-antisym k-kd a<:b b<:a) = k-kd -- NOTE. In order to prove validity for the remainder of the kinding, -- subkinding and subtyping judgments, we first need to prove that -- hereditary substitutions preserve well-formedness of kinds (see -- Kinding.Canonical.HereditarySubstitution). See the definition of -- `Var∈-valid' below and the module Kinding.Canonical.Validity for -- the remaining (strong) validity lemmas. -- The synthesized kinds of neutrals kind-check. Nf⇇-ne : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Ne a ∈ b ⋯ c → Γ ⊢Nf a ⇇ b ⋯ c Nf⇇-ne (∈-∙ x∈k k⇉as⇉b⋯c) = ⇇-⇑ (⇉-s-i (∈-∙ x∈k k⇉as⇉b⋯c)) (<∷-⋯ (<:-⟨| (∈-∙ x∈k k⇉as⇉b⋯c)) (<:-|⟩ (∈-∙ x∈k k⇉as⇉b⋯c))) -- The contexts of (most of) the above judgments are well-formed. -- -- NOTE. The exceptions are kinding and equality of spines, as the -- ⇉-[] and ≃-[] rules offer no guarantee that the enclosing context -- is well-formed. This is not a problem in practice, since -- well-kinded spines are used in the kinding of neutral types, the -- head of which is guaranteed to be kinded in a well-formed context. mutual kd-ctx : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ctx kd-ctx (kd-⋯ a⇉a⋯a b⇉b⋯b) = Nf⇉-ctx a⇉a⋯a kd-ctx (kd-Π j-kd k-kd) = kd-ctx j-kd Nf⇉-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → Γ ctx Nf⇉-ctx (⇉-⊥-f Γ-ctx) = Γ-ctx Nf⇉-ctx (⇉-⊤-f Γ-ctx) = Γ-ctx Nf⇉-ctx (⇉-∀-f k-kd a⇉a⋯a) = kd-ctx k-kd Nf⇉-ctx (⇉-→-f a⇉a⋯a b⇉b⋯b) = Nf⇉-ctx a⇉a⋯a Nf⇉-ctx (⇉-Π-i j-kd a⇉k) = kd-ctx j-kd Nf⇉-ctx (⇉-s-i a∈b⋯c) = Ne∈-ctx a∈b⋯c Ne∈-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Ne a ∈ k → Γ ctx Ne∈-ctx (∈-∙ x∈j j⇉as⇉k) = Var∈-ctx x∈j Var∈-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Var a ∈ k → Γ ctx Var∈-ctx (⇉-var x Γ-ctx _) = Γ-ctx Var∈-ctx (⇇-⇑ x∈j j<∷k k-kd) = Var∈-ctx x∈j Nf⇇-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇇ k → Γ ctx Nf⇇-ctx (⇇-⇑ a⇉j j<∷k) = Nf⇉-ctx a⇉j mutual <∷-ctx : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → Γ ctx <∷-ctx (<∷-⋯ b₁<:a₁ a₂<:b₂) = <:-ctx b₁<:a₁ <∷-ctx (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) = <∷-ctx j₂<∷j₁ <:-ctx : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a <: b → Γ ctx <:-ctx (<:-trans a<:b b<:c) = <:-ctx a<:b <:-ctx (<:-⊥ a⇉a⋯a) = Nf⇉-ctx a⇉a⋯a <:-ctx (<:-⊤ a⇉a⋯a) = Nf⇉-ctx a⇉a⋯a <:-ctx (<:-∀ k₂<∷k₁ a₁<:a₂ _) = <∷-ctx k₂<∷k₁ <:-ctx (<:-→ a₂<:a₁ b₁<:b₂) = <:-ctx a₂<:a₁ <:-ctx (<:-∙ x∈j as<:bs) = Var∈-ctx x∈j <:-ctx (<:-⟨| a∈b⋯c) = Ne∈-ctx a∈b⋯c <:-ctx (<:-|⟩ a∈b⋯c) = Ne∈-ctx a∈b⋯c ≅-ctx : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ctx ≅-ctx (<∷-antisym j-kd k-kd j<∷k k<∷j) = <∷-ctx j<∷k wf-ctx : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢ a wf → Γ ctx wf-ctx (wf-kd k-kd) = kd-ctx k-kd wf-ctx (wf-tp a⇉a⋯a) = Nf⇉-ctx a⇉a⋯a <:⇇-ctx : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ⇇ k → Γ ctx <:⇇-ctx (<:-⇇ a⇇k b⇇k a<:b) = Nf⇇-ctx a⇇k <:⇇-ctx (<:-λ a₁<:a₂ Λj₁a₁⇇Πjk Λj₂a₂⇇Πjk) = Nf⇇-ctx Λj₁a₁⇇Πjk ≃-ctx : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ⇇ k → Γ ctx ≃-ctx (<:-antisym k-kd a<:b b<:a) = <:⇇-ctx a<:b Var′∈-ctx : ∀ {n} {Γ : Ctx n} {x a} → Γ ⊢Var′ x ∈ a → Γ ctx Var′∈-ctx (∈-tp x∈k) = Var∈-ctx x∈k Var′∈-ctx (∈-tm _ Γ-ctx _) = Γ-ctx -- An admissible formation rule for the kind of proper types. kd-⌜*⌝ : ∀ {n} {Γ : Ctx n} → Γ ctx → Γ ⊢ ⌜*⌝ kd kd-⌜*⌝ Γ-ctx = kd-⋯ (⇉-⊥-f Γ-ctx) (⇉-⊤-f Γ-ctx) -- Admissible formation rules for canonically kinded proper types. Nf⇇-∀-f : ∀ {n} {Γ : Ctx n} {k a} → Γ ⊢ k kd → kd k ∷ Γ ⊢Nf a ⇇ ⌜*⌝ → Γ ⊢Nf ∀∙ k a ⇇ ⌜*⌝ Nf⇇-∀-f k-kd a⇇* = let a⇉a⋯a = Nf⇇-s-i a⇇* in Nf⇉-⋯-* (⇉-∀-f k-kd a⇉a⋯a) Nf⇇-→-f : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢Nf a ⇇ ⌜*⌝ → Γ ⊢Nf b ⇇ ⌜*⌝ → Γ ⊢Nf a ⇒∙ b ⇇ ⌜*⌝ Nf⇇-→-f a⇇* b⇇* = let a⇉a⋯a = Nf⇇-s-i a⇇* b⇉b⋯b = Nf⇇-s-i b⇇* in Nf⇉-⋯-* (⇉-→-f a⇉a⋯a b⇉b⋯b) -- Admissible kinding and equality rules for appending a normal form -- to a spine. ⇉-∷ʳ : ∀ {n} {Γ : Ctx n} {as : Spine n} {a j k l} → Γ ⊢ j ⇉∙ as ⇉ Π k l → Γ ⊢Nf a ⇇ k → Γ ⊢ k kd → Γ ⊢ j ⇉∙ as ∷ʳ a ⇉ l Kind[ a ∈ ⌊ k ⌋ ] ⇉-∷ʳ ⇉-[] a⇇k k-kd = ⇉-∷ a⇇k k-kd ⇉-[] ⇉-∷ʳ (⇉-∷ a⇇j j-kd k[a]⇉as⇉Πlm) b⇇l l-kd = ⇉-∷ a⇇j j-kd (⇉-∷ʳ k[a]⇉as⇉Πlm b⇇l l-kd) ≃-∷ʳ : ∀ {n} {Γ : Ctx n} {as bs : Spine n} {a b j k l} → Γ ⊢ j ⇉∙ as ≃ bs ⇉ Π k l → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ j ⇉∙ as ∷ʳ a ≃ bs ∷ʳ b ⇉ l Kind[ a ∈ ⌊ k ⌋ ] ≃-∷ʳ ≃-[] a≃b = ≃-∷ a≃b ≃-[] ≃-∷ʳ (≃-∷ a≃b as≃bs) c≃d = ≃-∷ a≃b (≃-∷ʳ as≃bs c≃d) ---------------------------------------------------------------------- -- Well-kinded variable substitutions in canonically kinded types -- -- We define two different kinds of well-kinded variable -- substitutions: -- -- 1. well-kinded renamings, which don't change kinds of variables, -- -- 2. variable substitutions that also allow conversion/subsumption. -- -- The first kind are used to prove e.g. that weakening preserve -- (canonical) well-kindedness, while the second kind are used to -- prove context conversion/narrowing preserves well-kindedness. The -- two definitions share a common generic core, which is instantiated -- to obtain the concrete definitions. The two separate definitions -- are necessary because the latter requires the weakening lemma, -- which in turn depends on the former. -- Liftings between variable typings record LiftTo-Var′∈ (_⊢V_∈_ : Typing ElimAsc Fin ElimAsc lzero) : Set₁ where open Substitution using (weakenElimAsc; _ElimAsc/Var_) typedSub : TypedSub ElimAsc Fin lzero typedSub = record { _⊢_wf = _⊢_wf ; _⊢_∈_ = _⊢V_∈_ ; typeExtension = record { weaken = weakenElimAsc } ; typeTermApplication = record { _/_ = _ElimAsc/Var_ } ; termSimple = VarSubst.simple } open TypedSub typedSub public renaming (_⊢/_∈_ to _⊢/Var_∈_) hiding (_⊢_wf; _⊢_∈_; typeExtension) -- Simple typed variable substitutions. field typedSimple : TypedSimple typedSub open TypedSimple typedSimple public renaming (lookup to /∈-lookup) -- Lifts well-typed Term₁-terms to well-typed Term₂-terms. field ∈-lift : ∀ {n} {Γ : Ctx n} {x a} → Γ ⊢V x ∈ a → Γ ⊢Var′ x ∈ a module TypedVarSubstApp (_⊢V_∈_ : Typing ElimAsc Fin ElimAsc lzero) (liftTyped : LiftTo-Var′∈ _⊢V_∈_) where open LiftTo-Var′∈ liftTyped open Substitution hiding (subst; _/Var_) renaming (_Elim/Var_ to _/Var_) open RenamingCommutes using (Kind[∈⌊⌋]-/Var) -- A helper. ∈-↑′ : ∀ {m n} {Δ : Ctx n} {Γ : Ctx m} {k ρ} → Δ ⊢ k Kind′/Var ρ kd → Δ ⊢/Var ρ ∈ Γ → kd (k Kind′/Var ρ) ∷ Δ ⊢/Var ρ VarSubst.↑ ∈ kd k ∷ Γ ∈-↑′ k/ρ-kd ρ∈Γ = ∈-↑ (wf-kd k/ρ-kd) ρ∈Γ -- Convert between well-kindedness judgments for variables. V∈-Var∈ : ∀ {n} {Γ : Ctx n} {x a k} → a ≡ kd k → Γ ⊢V x ∈ a → Γ ⊢Var x ∈ k V∈-Var∈ refl xT∈kd-k with ∈-lift xT∈kd-k V∈-Var∈ refl xT∈kd-k | ∈-tp x∈k = x∈k mutual -- Renamings preserve well-formedness of ascriptions. wf-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a ρ} → Γ ⊢ a wf → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ a ElimAsc/Var ρ wf wf-/Var (wf-kd k-kd) ρ∈Γ = wf-kd (kd-/Var k-kd ρ∈Γ) wf-/Var (wf-tp a⇉a⋯a) ρ∈Γ = wf-tp (Nf⇉-/Var a⇉a⋯a ρ∈Γ) -- Renamings preserve well-formedness of kinds. kd-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {k ρ} → Γ ⊢ k kd → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ k Kind′/Var ρ kd kd-/Var (kd-⋯ a⇉a⋯a b⇉b⋯b) ρ∈Γ = kd-⋯ (Nf⇉-/Var a⇉a⋯a ρ∈Γ) (Nf⇉-/Var b⇉b⋯b ρ∈Γ) kd-/Var (kd-Π j-kd k-kd) ρ∈Γ = let j/ρ-kd = kd-/Var j-kd ρ∈Γ in kd-Π j/ρ-kd (kd-/Var k-kd (∈-↑′ j/ρ-kd ρ∈Γ)) -- Renamings preserve synthesized kinds of normal types. Nf⇉-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k ρ} → Γ ⊢Nf a ⇉ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Nf a /Var ρ ⇉ k Kind′/Var ρ Nf⇉-/Var (⇉-⊥-f Γ-ctx) ρ∈Γ = ⇉-⊥-f (/∈-wf ρ∈Γ) Nf⇉-/Var (⇉-⊤-f Γ-ctx) ρ∈Γ = ⇉-⊤-f (/∈-wf ρ∈Γ) Nf⇉-/Var (⇉-∀-f k-kd a⇉a⋯a) ρ∈Γ = let k/ρ-kd = kd-/Var k-kd ρ∈Γ in ⇉-∀-f k/ρ-kd (Nf⇉-/Var a⇉a⋯a (∈-↑′ k/ρ-kd ρ∈Γ)) Nf⇉-/Var (⇉-→-f a⇉a⋯a b⇉b⋯b) ρ∈Γ = ⇉-→-f (Nf⇉-/Var a⇉a⋯a ρ∈Γ) (Nf⇉-/Var b⇉b⋯b ρ∈Γ) Nf⇉-/Var (⇉-Π-i j-kd a⇉k) ρ∈Γ = let j/ρ-kd = kd-/Var j-kd ρ∈Γ in ⇉-Π-i j/ρ-kd (Nf⇉-/Var a⇉k (∈-↑′ j/ρ-kd ρ∈Γ)) Nf⇉-/Var (⇉-s-i a∈b⋯c) ρ∈Γ = ⇉-s-i (Ne∈-/Var a∈b⋯c ρ∈Γ) -- Renamings preserve the kinds of variables. Var∈-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {x k ρ} → Γ ⊢Var x ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Var (Vec.lookup ρ x) ∈ k Kind′/Var ρ Var∈-/Var {ρ = ρ} (⇉-var x Γ-ctx Γ[x]≡kd-k) ρ∈Γ = V∈-Var∈ (cong (_ElimAsc/Var ρ) Γ[x]≡kd-k) (/∈-lookup ρ∈Γ x) Var∈-/Var (⇇-⇑ x∈j j<∷k k-kd) ρ∈Γ = ⇇-⇑ (Var∈-/Var x∈j ρ∈Γ) (<∷-/Var j<∷k ρ∈Γ) (kd-/Var k-kd ρ∈Γ) -- Renamings preserve synthesized kinds of neutral types. Ne∈-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k ρ} → Γ ⊢Ne a ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Ne a /Var ρ ∈ k Kind′/Var ρ Ne∈-/Var (∈-∙ x∈j k⇉as⇉l) ρ∈Γ = ∈-∙ (Var∈-/Var x∈j ρ∈Γ) (Sp⇉-/Var k⇉as⇉l ρ∈Γ) -- Renamings preserve spine kindings. Sp⇉-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {as j k ρ} → Γ ⊢ j ⇉∙ as ⇉ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ j Kind′/Var ρ ⇉∙ as //Var ρ ⇉ k Kind′/Var ρ Sp⇉-/Var ⇉-[] ρ∈Γ = ⇉-[] Sp⇉-/Var (⇉-∷ {a} {_} {j} {k} a⇇j j-kd k[a]⇉as⇉l) ρ∈Γ = ⇉-∷ (Nf⇇-/Var a⇇j ρ∈Γ) (kd-/Var j-kd ρ∈Γ) (subst (_ ⊢_⇉∙ _ ⇉ _) (Kind[∈⌊⌋]-/Var k a j) (Sp⇉-/Var k[a]⇉as⇉l ρ∈Γ)) -- Renamings preserve checked kinds of neutral types. Nf⇇-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k ρ} → Γ ⊢Nf a ⇇ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Nf a /Var ρ ⇇ k Kind′/Var ρ Nf⇇-/Var (⇇-⇑ a⇉j j<∷k) ρ∈Γ = ⇇-⇑ (Nf⇉-/Var a⇉j ρ∈Γ) (<∷-/Var j<∷k ρ∈Γ) -- Renamings preserve subkinding. <∷-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k ρ} → Γ ⊢ j <∷ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ j Kind′/Var ρ <∷ k Kind′/Var ρ <∷-/Var (<∷-⋯ a₂<:a₁ b₁<:b₂) ρ∈Γ = <∷-⋯ (<:-/Var a₂<:a₁ ρ∈Γ) (<:-/Var b₁<:b₂ ρ∈Γ) <∷-/Var (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) ρ∈Γ = <∷-Π (<∷-/Var j₂<∷j₁ ρ∈Γ) (<∷-/Var k₁<∷k₂ (∈-↑ (<∷-/Var-wf k₁<∷k₂ ρ∈Γ) ρ∈Γ)) (kd-/Var Πj₁k₁-kd ρ∈Γ) -- Renamings preserve subtyping. <:-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b ρ} → Γ ⊢ a <: b → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ a /Var ρ <: b /Var ρ <:-/Var (<:-trans a<:b b<:c) ρ∈Γ = <:-trans (<:-/Var a<:b ρ∈Γ) (<:-/Var b<:c ρ∈Γ) <:-/Var (<:-⊥ a⇉a⋯a) ρ∈Γ = <:-⊥ (Nf⇉-/Var a⇉a⋯a ρ∈Γ) <:-/Var (<:-⊤ a⇉a⋯a) ρ∈Γ = <:-⊤ (Nf⇉-/Var a⇉a⋯a ρ∈Γ) <:-/Var (<:-∀ k₂<∷k₁ a₁<:a₂ Πk₁a₁⇉Πk₁a₁⋯Πk₁a₁) ρ∈Γ = <:-∀ (<∷-/Var k₂<∷k₁ ρ∈Γ) (<:-/Var a₁<:a₂ (∈-↑ (<:-/Var-wf a₁<:a₂ ρ∈Γ) ρ∈Γ)) (Nf⇉-/Var Πk₁a₁⇉Πk₁a₁⋯Πk₁a₁ ρ∈Γ) <:-/Var (<:-→ a₂<:a₁ b₁<:b₂) ρ∈Γ = <:-→ (<:-/Var a₂<:a₁ ρ∈Γ) (<:-/Var b₁<:b₂ ρ∈Γ) <:-/Var (<:-∙ x∈j j⇉as₁<:as₂⇉k) ρ∈Γ = <:-∙ (Var∈-/Var x∈j ρ∈Γ) (Sp≃-/Var j⇉as₁<:as₂⇉k ρ∈Γ) <:-/Var (<:-⟨| a∈b⋯c) ρ∈Γ = <:-⟨| (Ne∈-/Var a∈b⋯c ρ∈Γ) <:-/Var (<:-|⟩ a∈b⋯c) ρ∈Γ = <:-|⟩ (Ne∈-/Var a∈b⋯c ρ∈Γ) <:⇇-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b k ρ} → Γ ⊢ a <: b ⇇ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ a /Var ρ <: b /Var ρ ⇇ k Kind′/Var ρ <:⇇-/Var (<:-⇇ a⇇k b⇇k a<:b) ρ∈Γ = <:-⇇ (Nf⇇-/Var a⇇k ρ∈Γ) (Nf⇇-/Var b⇇k ρ∈Γ) (<:-/Var a<:b ρ∈Γ) <:⇇-/Var (<:-λ a₁<:a₂ Λj₁a₁⇇Πjk Λj₂a₂⇇Πjk) ρ∈Γ = <:-λ (<:⇇-/Var a₁<:a₂ (∈-↑ (<:⇇-/Var-wf a₁<:a₂ ρ∈Γ) ρ∈Γ)) (Nf⇇-/Var Λj₁a₁⇇Πjk ρ∈Γ) (Nf⇇-/Var Λj₂a₂⇇Πjk ρ∈Γ) -- Renamings preserve type equality. ≃-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b k ρ} → Γ ⊢ a ≃ b ⇇ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ a /Var ρ ≃ b /Var ρ ⇇ k Kind′/Var ρ ≃-/Var (<:-antisym k-kd a<:b b<:a) ρ∈Γ = <:-antisym (kd-/Var k-kd ρ∈Γ) (<:⇇-/Var a<:b ρ∈Γ) (<:⇇-/Var b<:a ρ∈Γ) Sp≃-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {as bs j k ρ} → Γ ⊢ j ⇉∙ as ≃ bs ⇉ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ j Kind′/Var ρ ⇉∙ as //Var ρ ≃ bs //Var ρ ⇉ k Kind′/Var ρ Sp≃-/Var ≃-[] ρ∈Γ = ≃-[] Sp≃-/Var (≃-∷ {a} {_} {_} {_} {j} {k} a≃b as≃bs) ρ∈Γ = ≃-∷ (≃-/Var a≃b ρ∈Γ) (subst (_ ⊢_⇉∙ _ ≃ _ ⇉ _) (Kind[∈⌊⌋]-/Var k a j) (Sp≃-/Var as≃bs ρ∈Γ)) -- Helpers (to satisfy the termination checker). -- -- These are simply (manual) expansions of the form -- -- XX-/Var-wf x ρ∈Γ = wf-/Var (wf-∷₁ (XX-ctx x)) ρ∈Γ -- -- to ensure the above definitions remain structurally recursive -- in the various derivations. kd-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k ρ} → kd j ∷ Γ ⊢ k kd → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf kd-/Var-wf (kd-⋯ a∈a⋯a _) ρ∈Γ = Nf⇉-/Var-wf a∈a⋯a ρ∈Γ kd-/Var-wf (kd-Π j-kd _) ρ∈Γ = kd-/Var-wf j-kd ρ∈Γ Nf⇉-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k ρ} → kd j ∷ Γ ⊢Nf a ⇉ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf Nf⇉-/Var-wf (⇉-⊥-f (j-wf ∷ _)) ρ∈Γ = wf-/Var j-wf ρ∈Γ Nf⇉-/Var-wf (⇉-⊤-f (j-wf ∷ _)) ρ∈Γ = wf-/Var j-wf ρ∈Γ Nf⇉-/Var-wf (⇉-∀-f k-kd _) ρ∈Γ = kd-/Var-wf k-kd ρ∈Γ Nf⇉-/Var-wf (⇉-→-f a⇉a⋯a _) ρ∈Γ = Nf⇉-/Var-wf a⇉a⋯a ρ∈Γ Nf⇉-/Var-wf (⇉-Π-i j-kd _) ρ∈Γ = kd-/Var-wf j-kd ρ∈Γ Nf⇉-/Var-wf (⇉-s-i a∈b⋯c) ρ∈Γ = Ne∈-/Var-wf a∈b⋯c ρ∈Γ Ne∈-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k ρ} → kd j ∷ Γ ⊢Ne a ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf Ne∈-/Var-wf (∈-∙ x∈k _) ρ∈Γ = Var∈-/Var-wf x∈k ρ∈Γ Var∈-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k ρ} → kd j ∷ Γ ⊢Var a ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf Var∈-/Var-wf (⇉-var x (j-wf ∷ _) _) ρ∈Γ = wf-/Var j-wf ρ∈Γ Var∈-/Var-wf (⇇-⇑ x∈j _ _) ρ∈Γ = Var∈-/Var-wf x∈j ρ∈Γ Nf⇇-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k ρ} → kd j ∷ Γ ⊢Nf a ⇇ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf Nf⇇-/Var-wf (⇇-⇑ a⇉j _) ρ∈Γ = Nf⇉-/Var-wf a⇉j ρ∈Γ <∷-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k l ρ} → kd j ∷ Γ ⊢ k <∷ l → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf <∷-/Var-wf (<∷-⋯ a₂<:a₁ _) ρ∈Γ = <:-/Var-wf a₂<:a₁ ρ∈Γ <∷-/Var-wf (<∷-Π j₂<∷j₁ _ _) ρ∈Γ = <∷-/Var-wf j₂<∷j₁ ρ∈Γ <:-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b j ρ} → kd j ∷ Γ ⊢ a <: b → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf <:-/Var-wf (<:-trans a<:b _) ρ∈Γ = <:-/Var-wf a<:b ρ∈Γ <:-/Var-wf (<:-⊥ a⇉a⋯a) ρ∈Γ = Nf⇉-/Var-wf a⇉a⋯a ρ∈Γ <:-/Var-wf (<:-⊤ a⇉a⋯a) ρ∈Γ = Nf⇉-/Var-wf a⇉a⋯a ρ∈Γ <:-/Var-wf (<:-∀ k₂<∷k₁ _ _) ρ∈Γ = <∷-/Var-wf k₂<∷k₁ ρ∈Γ <:-/Var-wf (<:-→ a₂<:a₁ _) ρ∈Γ = <:-/Var-wf a₂<:a₁ ρ∈Γ <:-/Var-wf (<:-∙ x∈j _) ρ∈Γ = Var∈-/Var-wf x∈j ρ∈Γ <:-/Var-wf (<:-⟨| a∈b⋯c) ρ∈Γ = Ne∈-/Var-wf a∈b⋯c ρ∈Γ <:-/Var-wf (<:-|⟩ a∈b⋯c) ρ∈Γ = Ne∈-/Var-wf a∈b⋯c ρ∈Γ <:⇇-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b j k ρ} → kd j ∷ Γ ⊢ a <: b ⇇ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf <:⇇-/Var-wf (<:-⇇ a⇇k _ _) ρ∈Γ = Nf⇇-/Var-wf a⇇k ρ∈Γ <:⇇-/Var-wf (<:-λ _ Λj₁a₁⇇Πjk _) ρ∈Γ = Nf⇇-/Var-wf Λj₁a₁⇇Πjk ρ∈Γ ≅-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k l ρ} → kd j ∷ Γ ⊢ k ≅ l → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf ≅-/Var-wf (<∷-antisym _ _ j<∷k _) ρ∈Γ = <∷-/Var-wf j<∷k ρ∈Γ -- Renamings preserve kind equality. ≅-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k ρ} → Γ ⊢ j ≅ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ j Kind′/Var ρ ≅ k Kind′/Var ρ ≅-/Var (<∷-antisym j-kd k-kd j<∷k k<∷j) ρ∈Γ = <∷-antisym (kd-/Var j-kd ρ∈Γ) (kd-/Var k-kd ρ∈Γ) (<∷-/Var j<∷k ρ∈Γ) (<∷-/Var k<∷j ρ∈Γ) -- Renamings preserve wrapped variable typing Var′∈-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {x k ρ} → Γ ⊢Var′ x ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Var′ (Vec.lookup ρ x) ∈ k ElimAsc/Var ρ Var′∈-/Var (∈-tp x∈k) ρ∈Γ = ∈-tp (Var∈-/Var x∈k ρ∈Γ) Var′∈-/Var {ρ = ρ} (∈-tm x Γ-ctx Γ[x]≡tp-t) ρ∈Γ = subst (_ ⊢Var′ _ ∈_) (cong (_ElimAsc/Var ρ) Γ[x]≡tp-t) (∈-lift (/∈-lookup ρ∈Γ x)) -- Well-kinded renamings in canonically kinded types, i.e. lemmas -- showing that renaming preserves kinding. -- -- Note that these are pure renamings that cannot change the kinds of -- variables (i.e. they cannot be used to implement context conversion -- or narrowing). module KindedRenaming where open Substitution using (termLikeLemmasElimAsc) typedVarSubst : TypedVarSubst ElimAsc lzero typedVarSubst = record { _⊢_wf = _⊢_wf ; typeExtension = ElimCtx.weakenOps ; typeVarApplication = AppLemmas.application appLemmas ; wf-wf = wf-ctx ; /-wk = refl ; id-vanishes = id-vanishes ; /-⊙ = /-⊙ } where open TermLikeLemmas termLikeLemmasElimAsc using (varLiftAppLemmas) open LiftAppLemmas varLiftAppLemmas open TypedVarSubst typedVarSubst hiding (_⊢_wf) renaming (_⊢Var_∈_ to _⊢GenVar_∈_) -- Liftings from generic variable typings to variable kindings. liftTyped : LiftTo-Var′∈ _⊢GenVar_∈_ liftTyped = record { typedSimple = typedSimple ; ∈-lift = ∈-lift } where ∈-lift : ∀ {n} {Γ : Ctx n} {x a} → Γ ⊢GenVar x ∈ a → Γ ⊢Var′ x ∈ a ∈-lift (∈-var x Γ-ctx) = ∈-var′ x Γ-ctx open TypedVarSubstApp _⊢GenVar_∈_ liftTyped public open Substitution hiding (subst) -- Weakening preserves well-formedness of kinds. kd-weaken : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢ a wf → Γ ⊢ k kd → a ∷ Γ ⊢ weakenKind′ k kd kd-weaken a-wf k-kd = kd-/Var k-kd (∈-wk a-wf) -- Weakening preserves variable kinding. Var∈-weaken : ∀ {n} {Γ : Ctx n} {a x k} → Γ ⊢ a wf → Γ ⊢Var x ∈ k → a ∷ Γ ⊢Var Vec.lookup VarSubst.wk x ∈ weakenKind′ k Var∈-weaken a-wf x∈k = Var∈-/Var x∈k (∈-wk a-wf) Var′∈-weaken : ∀ {n} {Γ : Ctx n} {a x b} → Γ ⊢ a wf → Γ ⊢Var′ x ∈ b → a ∷ Γ ⊢Var′ suc x ∈ weakenElimAsc b Var′∈-weaken a-wf x∈b = subst (_ ⊢Var′_∈ _) VarLemmas./-wk (Var′∈-/Var x∈b (∈-wk a-wf)) -- Weakening preserves spine kinding. Sp⇉-weaken : ∀ {n} {Γ : Ctx n} {a bs j k} → Γ ⊢ a wf → Γ ⊢ j ⇉∙ bs ⇉ k → a ∷ Γ ⊢ weakenKind′ j ⇉∙ weakenSpine bs ⇉ weakenKind′ k Sp⇉-weaken a-wf j⇉bs⇉k = Sp⇉-/Var j⇉bs⇉k (∈-wk a-wf) -- Weakening preserves checked kinding. Nf⇇-weaken : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a wf → Γ ⊢Nf b ⇇ k → (a ∷ Γ) ⊢Nf weakenElim b ⇇ weakenKind′ k Nf⇇-weaken a-wf b⇇k = Nf⇇-/Var b⇇k (∈-wk a-wf) -- Weakening preserves subkinding. <∷-weaken : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢ a wf → Γ ⊢ j <∷ k → (a ∷ Γ) ⊢ weakenKind′ j <∷ weakenKind′ k <∷-weaken a-wf j<∷k = <∷-/Var j<∷k (∈-wk a-wf) -- Weakening preserves subtyping. <:-weaken : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢ a wf → Γ ⊢ b <: c → a ∷ Γ ⊢ weakenElim b <: weakenElim c <:-weaken a-wf b<:c = <:-/Var b<:c (∈-wk a-wf) <:⇇-weaken : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢ a wf → Γ ⊢ b <: c ⇇ k → a ∷ Γ ⊢ weakenElim b <: weakenElim c ⇇ weakenKind′ k <:⇇-weaken a-wf b<:c = <:⇇-/Var b<:c (∈-wk a-wf) -- Weakening preserves well-formedness of ascriptions. wf-weaken : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a wf → Γ ⊢ b wf → a ∷ Γ ⊢ weakenElimAsc b wf wf-weaken a-wf b-wf = wf-/Var b-wf (∈-wk a-wf) -- Weakening preserves kind and type equality. ≃-weaken : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢ a wf → Γ ⊢ b ≃ c ⇇ k → a ∷ Γ ⊢ weakenElim b ≃ weakenElim c ⇇ weakenKind′ k ≃-weaken a-wf b≃c = ≃-/Var b≃c (∈-wk a-wf) ≅-weaken : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢ a wf → Γ ⊢ j ≅ k → a ∷ Γ ⊢ weakenKind′ j ≅ weakenKind′ k ≅-weaken a-wf j≅k = ≅-/Var j≅k (∈-wk a-wf) Sp≃-weaken : ∀ {n} {Γ : Ctx n} {a bs cs j k} → Γ ⊢ a wf → Γ ⊢ j ⇉∙ bs ≃ cs ⇉ k → a ∷ Γ ⊢ weakenKind′ j ⇉∙ weakenSpine bs ≃ weakenSpine cs ⇉ weakenKind′ k Sp≃-weaken a-wf bs≃cs = Sp≃-/Var bs≃cs (∈-wk a-wf) -- Operations on well-formed contexts that require weakening of -- well-formedness judgments. module WfCtxOps where open KindedRenaming using (wf-weaken) wfWeakenOps : WellFormedWeakenOps weakenOps wfWeakenOps = record { wf-weaken = wf-weaken } open WellFormedWeakenOps wfWeakenOps public hiding (wf-weaken) renaming (lookup to lookup-wf) -- Lookup the kind of a type variable in a well-formed context. lookup-kd : ∀ {m} {Γ : Ctx m} {k} x → Γ ctx → ElimCtx.lookup Γ x ≡ kd k → Γ ⊢ k kd lookup-kd x Γ-ctx Γ[x]≡kd-k = wf-kd-inv (subst (_ ⊢_wf) Γ[x]≡kd-k (lookup-wf Γ-ctx x)) open WfCtxOps -- A corollary (validity of variable kinding): the kinds of variables -- are well-formed. Var∈-valid : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Var a ∈ k → Γ ⊢ k kd Var∈-valid (⇉-var x Γ-ctx Γ[x]≡kd-k) = lookup-kd x Γ-ctx Γ[x]≡kd-k Var∈-valid (⇇-⇑ x∈j j<∷k k-kd) = k-kd ---------------------------------------------------------------------- -- Context narrowing -- -- The various judgments are preserved by narrowing of kind -- ascriptions in their contexts. module ContextNarrowing where open Substitution using (termLikeLemmasElim; termLikeLemmasKind′; termLikeLemmasElimAsc) open TermLikeLemmas termLikeLemmasElimAsc using (varLiftAppLemmas) open LiftAppLemmas varLiftAppLemmas open KindedRenaming using (kd-weaken; <∷-weaken; Var′∈-weaken) private module EL = LiftAppLemmas (TermLikeLemmas.varLiftAppLemmas termLikeLemmasElim) module KL = LiftAppLemmas (TermLikeLemmas.varLiftAppLemmas termLikeLemmasKind′) -- NOTE. Rather than proving context narrowing directly by induction -- on typing derivations, we instead define a more flexible variant -- of well-typed variable substitutions based on the canonical -- variable kinding judgment (_⊢Var_∈_). This judgment features a -- subsumption rule (∈-⇑), which is not available in the generic -- variable judgment from Data.Fin.Substitutions.Typed that we used -- to define basic typed renamings. With support for subsumption in -- typed renamings, we get context narrowing "for free", as it is -- just another variable substitution (one that happens to change -- the kind rather than the name of a variable). This way of -- proving context narrowing is more convenient since we can reuse -- the generic lemmas proven for typed variable substitution and -- avoid some explicit fiddling with context. -- -- Note also that we could not have defined typed renamings -- directly using the _⊢Var_∈_ judgment since that would have -- required a weakening lemma for subkiding, which in turn is -- implemented via typed renamings. -- The trivial lifting from _⊢Var′_∈_ to itself, and simple typed -- variable substitutions. liftTyped : LiftTo-Var′∈ _⊢Var′_∈_ liftTyped = record { typedSimple = record { typedWeakenOps = record { ∈-weaken = Var′∈-weaken ; ∈-wf = Var′∈-ctx ; /-wk = refl ; /-weaken = /-weaken ; weaken-/-∷ = weaken-/-∷ } ; ∈-var = ∈-var′ ; wf-wf = wf-ctx ; id-vanishes = id-vanishes } ; ∈-lift = λ x∈a → x∈a } where weakenLemmas : WeakenLemmas ElimAsc Fin weakenLemmas = record { appLemmas = appLemmas ; /-wk = refl } open WeakenLemmas weakenLemmas open LiftTo-Var′∈ liftTyped open TypedVarSubstApp _⊢Var′_∈_ liftTyped -- A typed renaming that narrows the kind of the first type -- variable. ∈-<∷-sub : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j kd → Γ ⊢ j <∷ k → (kd k ∷ Γ) ctx → kd j ∷ Γ ⊢/Var id ∈ kd k ∷ Γ ∈-<∷-sub j-kd j<∷k k∷Γ-ctx = ∈-tsub (∈-tp (⇇-⇑ x∈k (<∷-weaken j-wf j<∷k) k-kd)) where j-wf = wf-kd j-kd Γ-ctx = kd-ctx j-kd x∈k = ⇉-var zero (j-wf ∷ Γ-ctx) refl k-kd = kd-weaken j-wf (wf-kd-inv (wf-∷₁ k∷Γ-ctx)) -- Narrowing the kind of the first type variable preserves -- well-formedness of kinds. ⇓-kd : ∀ {n} {Γ : Ctx n} {j₁ j₂ k} → Γ ⊢ j₁ kd → Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ k kd → kd j₁ ∷ Γ ⊢ k kd ⇓-kd j₁-kd j₁<∷j₂ k-kd = subst (_ ⊢_kd) (KL.id-vanishes _) (kd-/Var k-kd (∈-<∷-sub j₁-kd j₁<∷j₂ (kd-ctx k-kd))) -- Narrowing the kind of the first type variable preserves -- well-kindedness. ⇓-Nf⇉ : ∀ {n} {Γ : Ctx n} {j₁ j₂ a k} → Γ ⊢ j₁ kd → Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢Nf a ⇉ k → kd j₁ ∷ Γ ⊢Nf a ⇉ k ⇓-Nf⇉ j₁-kd j₁<∷j₂ a⇉k = subst₂ (_ ⊢Nf_⇉_) (EL.id-vanishes _) (KL.id-vanishes _) (Nf⇉-/Var a⇉k (∈-<∷-sub j₁-kd j₁<∷j₂ (Nf⇉-ctx a⇉k))) -- Narrowing the kind of the first type variable preserves -- subkinding and subtyping. ⇓-<∷ : ∀ {n} {Γ : Ctx n} {j₁ j₂ k₁ k₂} → Γ ⊢ j₁ kd → Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ k₁ <∷ k₂ → kd j₁ ∷ Γ ⊢ k₁ <∷ k₂ ⇓-<∷ j₁-kd j₁<∷j₂ k₁<∷k₂ = subst₂ (_ ⊢_<∷_) (KL.id-vanishes _) (KL.id-vanishes _) (<∷-/Var k₁<∷k₂ (∈-<∷-sub j₁-kd j₁<∷j₂ (<∷-ctx k₁<∷k₂))) ⇓-<: : ∀ {n} {Γ : Ctx n} {j₁ j₂ a₁ a₂} → Γ ⊢ j₁ kd → Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ a₁ <: a₂ → kd j₁ ∷ Γ ⊢ a₁ <: a₂ ⇓-<: j₁-kd j₁<∷j₂ a₁<:a₂ = subst₂ (_ ⊢_<:_) (EL.id-vanishes _) (EL.id-vanishes _) (<:-/Var a₁<:a₂ (∈-<∷-sub j₁-kd j₁<∷j₂ (<:-ctx a₁<:a₂))) ⇓-<:⇇ : ∀ {n} {Γ : Ctx n} {j₁ j₂ a₁ a₂ k} → Γ ⊢ j₁ kd → Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ a₁ <: a₂ ⇇ k → kd j₁ ∷ Γ ⊢ a₁ <: a₂ ⇇ k ⇓-<:⇇ j₁-kd j₁<∷j₂ a₁<:a₂∈k = subst (_ ⊢ _ <: _ ⇇_) (KL.id-vanishes _) (subst₂ (_ ⊢_<:_⇇ _) (EL.id-vanishes _) (EL.id-vanishes _) (<:⇇-/Var a₁<:a₂∈k (∈-<∷-sub j₁-kd j₁<∷j₂ (<:⇇-ctx a₁<:a₂∈k)))) open KindedRenaming open ContextNarrowing open Substitution hiding (subst) private module TV = TypedVarSubst typedVarSubst -- Some corollaries of context narrowing: transitivity of subkinding -- and kind equality are admissible. <∷-trans : ∀ {n} {Γ : Ctx n} {j k l} → Γ ⊢ j <∷ k → Γ ⊢ k <∷ l → Γ ⊢ j <∷ l <∷-trans (<∷-⋯ a₂<:a₁ b₁<:b₂) (<∷-⋯ a₃<:a₂ b₂<:b₃) = <∷-⋯ (<:-trans a₃<:a₂ a₂<:a₁) (<:-trans b₁<:b₂ b₂<:b₃) <∷-trans (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) (<∷-Π j₃<∷j₂ k₂<∷k₃ _) = let j₃-kd = wf-kd-inv (wf-∷₁ (<∷-ctx k₂<∷k₃)) in <∷-Π (<∷-trans j₃<∷j₂ j₂<∷j₁) (<∷-trans (⇓-<∷ j₃-kd j₃<∷j₂ k₁<∷k₂) k₂<∷k₃) Πj₁k₁-kd ≅-trans : ∀ {n} {Γ : Ctx n} {j k l} → Γ ⊢ j ≅ k → Γ ⊢ k ≅ l → Γ ⊢ j ≅ l ≅-trans (<∷-antisym j-kd _ j<∷k k<∷j) (<∷-antisym _ l-kd k<∷l l<∷k) = <∷-antisym j-kd l-kd (<∷-trans j<∷k k<∷l) (<∷-trans l<∷k k<∷j) -- Some more corollaries: subsumption is admissible in canonical kind -- checking, checked subtyping and kind equality. -- -- NOTE. The proof of (<:⇇-⇑) is by induction on subkinding -- derivations (the second hypothesis) rather than kinding derivations -- (the first hypothesis). Nf⇇-⇑ : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢Nf a ⇇ j → Γ ⊢ j <∷ k → Γ ⊢Nf a ⇇ k Nf⇇-⇑ (⇇-⇑ a⇇j₁ j₁<∷j₂) j₂<∷j₃ = ⇇-⇑ a⇇j₁ (<∷-trans j₁<∷j₂ j₂<∷j₃) <:⇇-⇑ : ∀ {n} {Γ : Ctx n} {a b j k} → Γ ⊢ a <: b ⇇ j → Γ ⊢ j <∷ k → Γ ⊢ k kd → Γ ⊢ a <: b ⇇ k <:⇇-⇑ (<:-⇇ a⇇c₁⋯d₁ b⇇c₁⋯d₁ a<:b) (<∷-⋯ c₂<:c₁ d₁<:d₂) _ = <:-⇇ (Nf⇇-⇑ a⇇c₁⋯d₁ (<∷-⋯ c₂<:c₁ d₁<:d₂)) (Nf⇇-⇑ b⇇c₁⋯d₁ (<∷-⋯ c₂<:c₁ d₁<:d₂)) a<:b <:⇇-⇑ (<:-λ a₁<:a₂ Λj₁a₁⇇Πk₁l₁ Λj₂a₂⇇Πk₁l₁) (<∷-Π k₂<∷k₁ l₁<∷l₂ Πk₁l₁-kd) (kd-Π k₂-kd l₂-kd) = <:-λ (<:⇇-⇑ (⇓-<:⇇ k₂-kd k₂<∷k₁ a₁<:a₂) l₁<∷l₂ l₂-kd) (Nf⇇-⇑ Λj₁a₁⇇Πk₁l₁ (<∷-Π k₂<∷k₁ l₁<∷l₂ Πk₁l₁-kd)) (Nf⇇-⇑ Λj₂a₂⇇Πk₁l₁ (<∷-Π k₂<∷k₁ l₁<∷l₂ Πk₁l₁-kd)) ≃-⇑ : ∀ {n} {Γ : Ctx n} {a b j k} → Γ ⊢ a ≃ b ⇇ j → Γ ⊢ j <∷ k → Γ ⊢ k kd → Γ ⊢ a ≃ b ⇇ k ≃-⇑ (<:-antisym j-kd a<:b b<:a) j<∷k k-kd = <:-antisym k-kd (<:⇇-⇑ a<:b j<∷k k-kd) (<:⇇-⇑ b<:a j<∷k k-kd) ------------------------------------------------------------------------ -- Reflexivity of the various relations. -- -- NOTE. The proof is by mutual induction in the structure of the -- types and kinds being related to themselves, and then by -- case-analysis on formation/kinding derivations (rather than -- induction on the typing/kinding derivations directly). For -- example, the proof of (<:⇇-reflNf⇉-⇑) is not decreasing in the -- kinding derivation of `a' in the type abstraction (Π-intro) case. -- To avoid clutter, we do not make the corresponding type/kind -- parameters explicit in the implementations below: thanks to the -- structure of canonical formation/kinding, every kind/type -- constructor corresponds to exactly one kinding/typing rule -- (i.e. the rules are syntax directed). mutual -- Reflexivity of canonical subkinding. <∷-refl : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ k <∷ k <∷-refl (kd-⋯ a⇉a⋯a b⇉b⋯b) = <∷-⋯ (<:-reflNf⇉ a⇉a⋯a) (<:-reflNf⇉ b⇉b⋯b) <∷-refl (kd-Π j-kd k-kd) = <∷-Π (<∷-refl j-kd) (<∷-refl k-kd) (kd-Π j-kd k-kd) -- Reflexivity of canonical subtyping. <:-reflNf⇉ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢ a <: a <:-reflNf⇉ (⇉-⊥-f Γ-ctx) = <:-⊥ (⇉-⊥-f Γ-ctx) <:-reflNf⇉ (⇉-⊤-f Γ-ctx) = <:-⊤ (⇉-⊤-f Γ-ctx) <:-reflNf⇉ (⇉-∀-f k-kd a⇉a⋯a) = <:-∀ (<∷-refl k-kd) (<:-reflNf⇉ a⇉a⋯a) (⇉-∀-f k-kd a⇉a⋯a) <:-reflNf⇉ (⇉-→-f a⇉a⋯a b⇉b⋯b) = <:-→ (<:-reflNf⇉ a⇉a⋯a) (<:-reflNf⇉ b⇉b⋯b) <:-reflNf⇉ (⇉-s-i (∈-∙ x∈j j⇉as⇉k)) = <:-∙ x∈j (≃-reflSp⇉ j⇉as⇉k) <:⇇-reflNf⇉-⇑ : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢Nf a ⇉ j → Γ ⊢ j <∷ k → Γ ⊢ k kd → Γ ⊢ a <: a ⇇ k <:⇇-reflNf⇉-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂) _ = let a⇇b₂⋯c₂ = ⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂) in <:-⇇ a⇇b₂⋯c₂ a⇇b₂⋯c₂ (<:-reflNf⇉ a⇉b₁⋯c₁) <:⇇-reflNf⇉-⇑ (⇉-Π-i j₁-kd a⇉k₁) (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) (kd-Π j₂-kd k₂-kd) = let a<:a⇇k₂ = <:⇇-reflNf⇉-⇑ (⇓-Nf⇉ j₂-kd j₂<∷j₁ a⇉k₁) k₁<∷k₂ k₂-kd Λj₁a⇇Πj₂k₂ = ⇇-⇑ (⇉-Π-i j₁-kd a⇉k₁) (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) in <:-λ a<:a⇇k₂ Λj₁a⇇Πj₂k₂ Λj₁a⇇Πj₂k₂ <:⇇-reflNf⇇ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇇ k → Γ ⊢ k kd → Γ ⊢ a <: a ⇇ k <:⇇-reflNf⇇ (⇇-⇑ a⇉k j<∷k) k-kd = <:⇇-reflNf⇉-⇑ a⇉k j<∷k k-kd -- Reflexivity of canonical spine equality. ≃-reflSp⇉ : ∀ {n} {Γ : Ctx n} {as j k} → Γ ⊢ j ⇉∙ as ⇉ k → Γ ⊢ j ⇉∙ as ≃ as ⇉ k ≃-reflSp⇉ ⇉-[] = ≃-[] ≃-reflSp⇉ (⇉-∷ a⇇j j-kd k[a]⇉as⇉l) = ≃-∷ (≃-reflNf⇇ a⇇j j-kd) (≃-reflSp⇉ k[a]⇉as⇉l) -- A checked variant of reflexivity. ≃-reflNf⇇ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇇ k → Γ ⊢ k kd → Γ ⊢ a ≃ a ⇇ k ≃-reflNf⇇ a⇇k k-kd = <:-antisym k-kd (<:⇇-reflNf⇇ a⇇k k-kd) (<:⇇-reflNf⇇ a⇇k k-kd) -- Reflexivity of canonical kind equality. ≅-refl : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ k ≅ k ≅-refl k-kd = <∷-antisym k-kd k-kd (<∷-refl k-kd) (<∷-refl k-kd) -- A shorthand. <:⇇-reflNf⇉ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → Γ ⊢ k kd → Γ ⊢ a <: a ⇇ k <:⇇-reflNf⇉ a⇉k k-kd = <:⇇-reflNf⇉-⇑ a⇉k (<∷-refl k-kd) k-kd -- Some corollaryies of reflexivity. -- The synthesized kinds of normal forms kind-check. Nf⇉⇒Nf⇇ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → Γ ⊢Nf a ⇇ k Nf⇉⇒Nf⇇ a⇉k = ⇇-⇑ a⇉k (<∷-refl (Nf⇉-valid a⇉k)) -- An admissible operator introduction rule accepting a checked body. Nf⇇-Π-i : ∀ {n} {Γ : Ctx n} {j a k} → Γ ⊢ j kd → kd j ∷ Γ ⊢Nf a ⇇ k → Γ ⊢Nf Λ∙ j a ⇇ Π j k Nf⇇-Π-i j-kd (⇇-⇑ a⇉l l<∷k) = ⇇-⇑ (⇉-Π-i j-kd a⇉l) (<∷-Π (<∷-refl j-kd) l<∷k (kd-Π j-kd (Nf⇉-valid a⇉l))) -- Admissible projection rules for canonically kinded proper types. <:-⟨|-Nf⇉ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢ b <: a <:-⟨|-Nf⇉ a⇉b⋯c with Nf⇉-≡ a⇉b⋯c <:-⟨|-Nf⇉ a⇉a⋯a | refl , refl = <:-reflNf⇉ a⇉a⋯a <:-⟨|-Nf⇇ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢ b <: a <:-⟨|-Nf⇇ (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂)) = <:-trans b₂<:b₁ (<:-⟨|-Nf⇉ a⇉b₁⋯c₁) <:-|⟩-Nf⇉ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢ a <: c <:-|⟩-Nf⇉ a⇉b⋯c with Nf⇉-≡ a⇉b⋯c <:-|⟩-Nf⇉ a⇉a⋯a | refl , refl = <:-reflNf⇉ a⇉a⋯a <:-|⟩-Nf⇇ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢ a <: c <:-|⟩-Nf⇇ (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂)) = <:-trans (<:-|⟩-Nf⇉ a⇉b₁⋯c₁) c₁<:c₂ -- An admissible interval rule for checked subtyping. <:⇇-⋯-i : ∀ {n} {Γ : Ctx n} {a b c d} → Γ ⊢ a <: b ⇇ c ⋯ d → Γ ⊢ a <: b ⇇ a ⋯ b <:⇇-⋯-i (<:-⇇ a⇇c⋯d b⇇c⋯d a<:b) = let a⇉a⋯a = Nf⇇-s-i a⇇c⋯d b⇉b⋯b = Nf⇇-s-i b⇇c⋯d in <:-⇇ (⇇-⇑ a⇉a⋯a (<∷-⋯ (<:-reflNf⇉ a⇉a⋯a) a<:b)) (⇇-⇑ b⇉b⋯b (<∷-⋯ a<:b (<:-reflNf⇉ b⇉b⋯b))) a<:b -- An inversion lemma about variable kinding. Var∈-inv : ∀ {n} {Γ : Ctx n} {x k} → Γ ⊢Var x ∈ k → ∃ λ j → lookup Γ x ≡ kd j × Γ ⊢ j <∷ k × Γ ⊢ j kd × Γ ⊢ k kd Var∈-inv (⇉-var x Γ-ctx Γ[x]≡kd-j) = let j-kd = lookup-kd x Γ-ctx Γ[x]≡kd-j in _ , Γ[x]≡kd-j , <∷-refl j-kd , j-kd , j-kd Var∈-inv (⇇-⇑ x∈j j<∷k k-kd) = let l , Γ[x]≡kd-l , l<∷j , l-kd , _ = Var∈-inv x∈j in l , Γ[x]≡kd-l , <∷-trans l<∷j j<∷k , l-kd , k-kd -- A "canonical forms" lemma for operator equality. ≃-Π-can : ∀ {n} {Γ : Ctx n} {a₁ a₂ j k} → Γ ⊢ a₁ ≃ a₂ ⇇ Π j k → ∃ λ j₁ → ∃ λ b₁ → ∃ λ j₂ → ∃ λ b₂ → Γ ⊢Nf Λ∙ j₁ b₁ ⇇ Π j k × Γ ⊢Nf Λ∙ j₂ b₂ ⇇ Π j k × Γ ⊢ Π j k kd × Γ ⊢ j <∷ j₁ × Γ ⊢ j <∷ j₂ × kd j ∷ Γ ⊢ b₁ <: b₂ ⇇ k × kd j ∷ Γ ⊢ b₂ <: b₁ ⇇ k × a₁ ≡ Λ∙ j₁ b₁ × a₂ ≡ Λ∙ j₂ b₂ ≃-Π-can (<:-antisym Πjk-kd (<:-λ a₁<:a₂ (⇇-⇑ (⇉-Π-i j₁-kd a₁⇉k₁) (<∷-Π j<∷j₁ k₁<∷k Πj₁k₁-kd)) (⇇-⇑ (⇉-Π-i j₂-kd a₂⇉k₂) (<∷-Π j<∷j₂ k₂<∷k Πj₂k₂-kd))) (<:-λ a₂<:a₁ _ _)) = _ , _ , _ , _ , (⇇-⇑ (⇉-Π-i j₁-kd a₁⇉k₁) (<∷-Π j<∷j₁ k₁<∷k Πj₁k₁-kd)) , (⇇-⇑ (⇉-Π-i j₂-kd a₂⇉k₂) (<∷-Π j<∷j₂ k₂<∷k Πj₂k₂-kd)) , Πjk-kd , j<∷j₁ , j<∷j₂ , a₁<:a₂ , a₂<:a₁ , refl , refl ------------------------------------------------------------------------ -- Simplification of well-formed kinding. module _ where open SimpleKinding open SimpleKinding.Kinding renaming (_⊢Var_∈_ to _⊢sVar_∈_; _⊢Ne_∈_ to _⊢sNe_∈_) open KindedHereditarySubstitution open ≡-Reasoning -- Simplification of well-formedness and kinding: well-formed kinds -- resp. well-kinded normal forms, neutrals and spines are also -- simply well-formed resp. well-kinded. Var∈-sVar∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Var a ∈ k → ⌊ Γ ⌋Ctx ⊢sVar a ∈ ⌊ k ⌋ Var∈-sVar∈ {_} {Γ} {_} {k} (⇉-var x Γ-ctx Γ[x]≡kd-k) = ∈-var x (begin SimpleCtx.lookup ⌊ Γ ⌋Ctx x ≡⟨ ⌊⌋Asc-lookup Γ x ⟩ ⌊ ElimCtx.lookup Γ x ⌋Asc ≡⟨ cong ⌊_⌋Asc Γ[x]≡kd-k ⟩ kd ⌊ k ⌋ ∎) where open ContextConversions Var∈-sVar∈ (⇇-⇑ x∈j j<∷k k-kd) = subst (_ ⊢sVar _ ∈_) (<∷-⌊⌋ j<∷k) (Var∈-sVar∈ x∈j) mutual kd-kds : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → ⌊ Γ ⌋Ctx ⊢ k kds kd-kds (kd-⋯ a∈a⋯a b∈b⋯b) = kds-⋯ (Nf⇉-Nf∈ a∈a⋯a) (Nf⇉-Nf∈ b∈b⋯b) kd-kds (kd-Π j-kd k-kd) = kds-Π (kd-kds j-kd) (kd-kds k-kd) Nf⇉-Nf∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → ⌊ Γ ⌋Ctx ⊢Nf a ∈ ⌊ k ⌋ Nf⇉-Nf∈ (⇉-⊥-f Γ-ctx) = ∈-⊥-f Nf⇉-Nf∈ (⇉-⊤-f Γ-ctx) = ∈-⊤-f Nf⇉-Nf∈ (⇉-∀-f k-kd a⇉a⋯a) = ∈-∀-f (kd-kds k-kd) (Nf⇉-Nf∈ a⇉a⋯a) Nf⇉-Nf∈ (⇉-→-f a∈a⋯a b∈b⋯b) = ∈-→-f (Nf⇉-Nf∈ a∈a⋯a) (Nf⇉-Nf∈ b∈b⋯b) Nf⇉-Nf∈ (⇉-Π-i j-kd a⇉k) = ∈-Π-i (kd-kds j-kd) (Nf⇉-Nf∈ a⇉k) Nf⇉-Nf∈ (⇉-s-i a∈b⋯c) = ∈-ne (Ne∈-sNe∈ a∈b⋯c) Ne∈-sNe∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Ne a ∈ k → ⌊ Γ ⌋Ctx ⊢sNe a ∈ ⌊ k ⌋ Ne∈-sNe∈ (∈-∙ x∈j j⇉as⇉k) = ∈-∙ (Var∈-sVar∈ x∈j) (Sp⇉-Sp∈ j⇉as⇉k) Sp⇉-Sp∈ : ∀ {n} {Γ : Ctx n} {as j k} → Γ ⊢ j ⇉∙ as ⇉ k → ⌊ Γ ⌋Ctx ⊢ ⌊ j ⌋ ∋∙ as ∈ ⌊ k ⌋ Sp⇉-Sp∈ ⇉-[] = ∈-[] Sp⇉-Sp∈ (⇉-∷ a⇇j j-kd k[a]⇉as⇉l) = ∈-∷ (Nf⇇-Nf∈ a⇇j) (subst (_ ⊢_∋∙ _ ∈ _) (⌊⌋-Kind/⟨⟩ _) (Sp⇉-Sp∈ k[a]⇉as⇉l)) Nf⇇-Nf∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇇ k → ⌊ Γ ⌋Ctx ⊢Nf a ∈ ⌊ k ⌋ Nf⇇-Nf∈ (⇇-⇑ a⇉j j<∷k) = subst (_ ⊢Nf _ ∈_) (<∷-⌊⌋ j<∷k) (Nf⇉-Nf∈ a⇉j)
{ "alphanum_fraction": 0.4874324595, "avg_line_length": 41.0599835661, "ext": "agda", "hexsha": "5e419cacf5de1ec1de80e6e8e373ca309dc0b92f", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z", "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Kinding/Canonical.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z", "max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Kinding/Canonical.agda", "max_line_length": 79, "max_stars_count": 12, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Kinding/Canonical.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z", "num_tokens": 26887, "size": 49970 }
------------------------------------------------------------------------------ -- The the power function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Nat.Pow where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ infixr 11 _^_ postulate _^_ : D → D → D ^-0 : ∀ n → n ^ zero ≡ 1' ^-S : ∀ m n → m ^ succ₁ n ≡ m * m ^ n {-# ATP axioms ^-0 ^-S #-}
{ "alphanum_fraction": 0.3617021277, "avg_line_length": 28.2, "ext": "agda", "hexsha": "855f0ce7049f2499ee792982938aecba99686251", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/Pow.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/Pow.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/Pow.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 156, "size": 705 }
module List.Permutation.Base.Concatenation (A : Set) where open import List.Permutation.Base A open import List.Permutation.Base.Equivalence A open import List.Permutation.Base.Preorder A open import Data.List open import Data.Product open import Relation.Binary.PreorderReasoning ∼-preorder open import Algebra open import Algebra.Structures lemma++/r : {x : A}{xs ys xs' : List A} → (xs / x ⟶ xs') → (xs ++ ys) / x ⟶ (xs' ++ ys) lemma++/r /head = /head lemma++/r (/tail xs/x⟶xs') = /tail (lemma++/r xs/x⟶xs') lemma++/l : {y : A}{xs ys ys' : List A} → (ys / y ⟶ ys') → (xs ++ ys) / y ⟶ (xs ++ ys') lemma++/l {xs = []} ys/y⟶ys' = ys/y⟶ys' lemma++/l {xs = x ∷ xs} ys/y⟶ys' = /tail (lemma++/l {xs = xs} ys/y⟶ys') lemma++/ : {y : A}{xs ys : List A} → (xs ++ y ∷ ys) / y ⟶ (xs ++ ys) lemma++/ {xs = xs} = lemma++/l {xs = xs} /head lemma++∼r : {xs xs' ys : List A} → xs ∼ xs' → (xs ++ ys) ∼ (xs' ++ ys) lemma++∼r {xs} {xs'} {[]} xs∼xs' rewrite ((proj₂ (IsMonoid.identity (Monoid.isMonoid (monoid A)))) xs) | ((proj₂ (IsMonoid.identity (Monoid.isMonoid (monoid A)))) xs') = xs∼xs' lemma++∼r {xs} {xs'} {y ∷ ys} xs∼xs' = ∼x (lemma++/ {y} {xs} {ys}) (lemma++/ {y} {xs'} {ys}) (lemma++∼r xs∼xs') lemma++∼l : {xs ys ys' : List A} → ys ∼ ys' → (xs ++ ys) ∼ (xs ++ ys') lemma++∼l {xs = []} ys∼ys' = ys∼ys' lemma++∼l {xs = x ∷ xs} ys∼ys' = ∼x /head /head (lemma++∼l {xs = xs} ys∼ys') lemma++∼ : {xs ys xs' ys' : List A} → xs ∼ xs' → ys ∼ ys' → (xs ++ ys) ∼ (xs' ++ ys') lemma++∼ {xs} {ys} {xs'} {ys'} xs∼xs' ys∼ys' = begin xs ++ ys ∼⟨ lemma++∼r xs∼xs' ⟩ xs' ++ ys ∼⟨ lemma++∼l {xs = xs'} ys∼ys' ⟩ xs' ++ ys' ∎
{ "alphanum_fraction": 0.5126843658, "avg_line_length": 40.3571428571, "ext": "agda", "hexsha": "6f315efa0e390b75313cfac41a19e56cc51de14f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/List/Permutation/Base/Concatenation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/List/Permutation/Base/Concatenation.agda", "max_line_length": 113, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/List/Permutation/Base/Concatenation.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 728, "size": 1695 }