Search is not available for this dataset
text
string | meta
dict |
---|---|
module All where
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
map : {A B : Set} -> (A -> B) -> List A -> List B
map f [] = []
map f (x :: xs) = f x :: map f xs
_++_ : {A : Set} -> List A -> List A -> List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B
foldr f z [] = z
foldr f z (x :: xs) = f x (foldr f z xs)
data All {A : Set}(P : A -> Set) : List A -> Set where
∅ : All P []
_▹_ : {x : A}{xs : List A} -> P x -> All P xs -> All P (x :: xs)
data Some {A : Set}(P : A -> Set) : List A -> Set where
hd : {x : A}{xs : List A} -> P x -> Some P (x :: xs)
tl : {x : A}{xs : List A} -> Some P xs -> Some P (x :: xs)
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
_∈_ : {A : Set} -> A -> List A -> Set
x ∈ xs = Some (_==_ x) xs
infixr 40 _,_
data _×_ (A : Set)(B : A -> Set) : Set where
_,_ : (x : A) -> B x -> A × B
_∧_ : (A B : Set) -> Set
A ∧ B = A × \_ -> B
_!_ : {A : Set}{P : A -> Set}{Q : A -> Set}{xs : List A} ->
All P xs -> Some Q xs -> A × (\x -> P x ∧ Q x)
ε ! ()
(p ▹ ps) ! hd q = _ , (p , q)
(p ▹ ps) ! tl q = ps ! q
| {
"alphanum_fraction": 0.4074387151,
"avg_line_length": 25.170212766,
"ext": "agda",
"hexsha": "3aa6380cd8a390598a25dc9c5463fd1c760b7438",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/tactics/bool/All.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/tactics/bool/All.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/tactics/bool/All.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 501,
"size": 1183
} |
------------------------------------------------------------------------------
-- Properties related with the totality of the rose tree type
------------------------------------------------------------------------------
{-# OPTIONS --injective-type-constructors #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.Mirror.Tree.TotalityNonTerminationI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.List
open import FOTC.Program.Mirror.Mirror
open import FOTC.Program.Mirror.Type
open import FOTC.Program.Mirror.Forest.TotalityI
open import FOTC.Program.Mirror.Forest.PropertiesI
------------------------------------------------------------------------------
-- Requires --injective-type-constructors
-- Peter: To use injectivity of type constructors means asking for
-- trouble. The logic behind this is very unclear.
node-Forest : ∀ {d ts} → Tree (node d ts) → Forest ts
node-Forest {d} (tree .d Fts) = Fts
postulate reverse-∷' : ∀ x ys → reverse (x ∷ ys) ≡ reverse ys ++ (x ∷ [])
-- The termination checker can not determine that the function mirror-Tree
-- defined by
--
-- mirror-Tree (tree d (fcons {t} {ts} Tt Fts)) =
-- ... mirror-Tree (tree d Fts) ... mirror-Tree Tt ...
--
-- is structurally recursive.
-- Andreas Abel: The function does not terminate because we are using
-- postulates (i.e. D, _∷_, etc). In particular, x is not structurally
-- smaller than x ∷ xs.
{-# TERMINATING #-}
mirror-Tree : ∀ {t} → Tree t → Tree (mirror · t)
mirror-Tree (tree d fnil) =
subst Tree (sym (mirror-eq d [])) (tree d helper₂)
where
helper₁ : rev (map mirror []) [] ≡ []
helper₁ =
rev (map mirror []) []
≡⟨ subst (λ x → rev (map mirror []) [] ≡ rev x [])
(map-[] mirror)
refl
⟩
rev [] []
≡⟨ rev-[] [] ⟩
[] ∎
helper₂ : Forest (rev (map mirror []) [])
helper₂ = subst Forest (sym helper₁) fnil
mirror-Tree (tree d (fcons {t} {ts} Tt Fts)) =
subst Tree (sym (mirror-eq d (t ∷ ts))) (tree d helper)
where
h₁ : Tree (node d (reverse (map mirror ts)))
h₁ = subst Tree (mirror-eq d ts) (mirror-Tree (tree d Fts))
h₂ : Forest (reverse (map mirror ts))
h₂ = node-Forest h₁
h₃ : Forest ((reverse (map mirror ts)) ++ (mirror · t ∷ []))
h₃ = ++-Forest h₂ (fcons (mirror-Tree Tt) fnil)
h₄ : Forest (reverse (mirror · t ∷ map mirror ts))
h₄ = subst Forest (sym (reverse-∷' (mirror · t) (map mirror ts))) h₃
helper : Forest (reverse (map mirror (t ∷ ts)))
helper = subst Forest
(subst (λ x → reverse x ≡ reverse (map mirror (t ∷ ts)))
(map-∷ mirror t ts)
refl)
h₄
| {
"alphanum_fraction": 0.544500846,
"avg_line_length": 34.3604651163,
"ext": "agda",
"hexsha": "0d9c7ff85e13e708ae5e8e13f07ea68c7fc70884",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/Mirror/Tree/TotalityNonTerminationI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/Mirror/Tree/TotalityNonTerminationI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/Mirror/Tree/TotalityNonTerminationI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 793,
"size": 2955
} |
module L.Base.Id where
-- Reexport definitions
open import L.Base.Id.Core public
| {
"alphanum_fraction": 0.7804878049,
"avg_line_length": 16.4,
"ext": "agda",
"hexsha": "fd4edc6d23465068a74363c2e97459f33d3fd630",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base/Id.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base/Id.agda",
"max_line_length": 33,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base/Id.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 19,
"size": 82
} |
{-# OPTIONS --cubical #-}
module Agda.Builtin.Cubical.Sub where
open import Agda.Primitive.Cubical
{-# BUILTIN SUB Sub #-}
postulate
inc : ∀ {ℓ} {A : Set ℓ} {φ} (x : A) → Sub A φ (λ _ → x)
{-# BUILTIN SUBIN inc #-}
primitive
primSubOut : ∀ {ℓ} {A : Set ℓ} {φ : I} {u : Partial φ A} → Sub _ φ u → A
| {
"alphanum_fraction": 0.5514018692,
"avg_line_length": 21.4,
"ext": "agda",
"hexsha": "0efc88077473e2e573a86d9ded19a3b0b02297a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "bennn/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Sub.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "bennn/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Sub.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "bennn/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Sub.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 123,
"size": 321
} |
{-# OPTIONS --safe #-}
module TEST where
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Binary.PropositionalEquality
arith-sum : ℕ → ℕ
arith-sum zero = zero
arith-sum (suc n) = suc n + arith-sum n
arith-formula : ℕ → ℕ
arith-formula n = ⌊ n * (n + 1) /2⌋
silly : ∀ (n m : ℕ) → ⌊ n + n + m * (m + 1) /2⌋ ≡ n + ⌊ m * (m + 1) /2⌋
silly zero m = refl
silly (suc n) m rewrite +-suc n n = cong suc (silly n m)
lemma : ∀ (n : ℕ) → ⌊ suc n * (suc n + 1) /2⌋ ≡ suc n + ⌊ n * (n + 1) /2⌋
lemma n rewrite *-comm n (suc n + 1) | +-assoc n 1 (n + (n + 1) * n) | *-comm (n + 1) n | +-comm n (suc (n + n * (n + 1)))
| +-assoc n (n * (n + 1)) n | +-comm (n * (n + 1)) n | sym (silly n n) | +-assoc n n (n * (n + 1)) = refl
arith-eq : (n : ℕ) -> arith-formula n ≡ arith-sum n
arith-eq zero = refl
arith-eq (suc n) rewrite lemma n = cong (_+_ (suc n)) (arith-eq n)
| {
"alphanum_fraction": 0.5135427952,
"avg_line_length": 35.5,
"ext": "agda",
"hexsha": "401c682e94c65daf36f954dafcf585483ad3bb85",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/TEST.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/TEST.agda",
"max_line_length": 142,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/TEST.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 397,
"size": 923
} |
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Groups.Lemmas
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Rings.Homomorphisms.Definition
module Fields.CauchyCompletion.Ring {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where
open Setoid S
open SetoidTotalOrder (TotallyOrderedRing.total order)
open SetoidPartialOrder pOrder
open Equivalence eq
open PartiallyOrderedRing pRing
open Field F
open Group (Ring.additiveGroup R)
open import Rings.Orders.Total.Lemmas order
open import Rings.Orders.Total.AbsoluteValue order
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Multiplication order F
open import Fields.CauchyCompletion.Addition order F
open import Fields.CauchyCompletion.Setoid order F
open import Fields.CauchyCompletion.Group order F
private
abstract
c*Assoc : {a b c : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (a *C (b *C c)) ((a *C b) *C c)
c*Assoc {a} {b} {c} ε 0<e = 0 , ans
where
ans : {m : ℕ} → 0 <N m → abs (index (CauchyCompletion.elts ((a *C (b *C c)) +C (-C ((a *C b) *C c)))) m) < ε
ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a *C (b *C c))) (CauchyCompletion.elts (-C ((a *C b) *C c))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts c)) _*_ {m} | equalityCommutative (mapAndIndex (apply _*_ (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (CauchyCompletion.elts c)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts c) _*_ {m} | indexAndApply (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (CauchyCompletion.elts c) _*_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _*_ {m} = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (transferToRight'' (Ring.additiveGroup R) (Ring.*Associative R))) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e
c*Ident : {a : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (injection (Ring.1R R) *C a) a
c*Ident {a} ε 0<e = 0 , ans
where
ans : {m : ℕ} → 0 <N m → abs (index (apply _+_ (CauchyCompletion.elts (injection (Ring.1R R) *C a)) (map inverse (CauchyCompletion.elts a))) m) < ε
ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (injection (Ring.1R R) *C a)) (map inverse (CauchyCompletion.elts a)) _+_ {m} | indexAndApply (constSequence (Ring.1R R)) (CauchyCompletion.elts a) _*_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) | indexAndConst (Ring.1R R) m = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (transferToRight'' (Ring.additiveGroup R) (Ring.identIsIdent R))) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) (absZero)))) (Equivalence.reflexive eq) 0<e
*CDistribute : {a b c : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (a *C (b +C c)) ((a *C b) +C (a *C c))
*CDistribute {a} {b} {c} e 0<e = 0 , ans
where
ans : {m : ℕ} → 0 <N m → abs (index (apply _+_ (CauchyCompletion.elts (a *C (b +C c))) (map inverse (CauchyCompletion.elts ((a *C b) +C (a *C c))))) m) < e
ans {m} N<m rewrite indexAndApply (CauchyCompletion.elts (a *C (b +C c))) (map inverse (CauchyCompletion.elts ((a *C b) +C (a *C c)))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (apply _+_ (CauchyCompletion.elts b) (CauchyCompletion.elts c)) _*_ {m} | equalityCommutative (mapAndIndex (apply _+_ (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts c))) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts c) _+_ {m} | indexAndApply (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts c)) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _*_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts c) _*_ {m} = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (transferToRight'' (Ring.additiveGroup R) (Ring.*DistributesOver+ R))) (absZeroIsZero))) (Equivalence.reflexive eq) 0<e
CRing : Ring cauchyCompletionSetoid _+C_ _*C_
Ring.additiveGroup CRing = CGroup
Ring.*WellDefined CRing {a} {b} {c} {d} r=t s=u = multiplicationWellDefined {a} {c} {b} {d} r=t s=u
Ring.1R CRing = injection (Ring.1R R)
Ring.groupIsAbelian CRing {a} {b} = +CCommutative a b
Ring.*Associative CRing {a} {b} {c} = c*Assoc {a} {b} {c}
Ring.*Commutative CRing {a} {b} = *CCommutative {a} {b}
Ring.*DistributesOver+ CRing {a} {b} {c} = *CDistribute {a} {b} {c}
Ring.identIsIdent CRing {a} = c*Ident {a}
private
injectionIsRingHom : (a b : A) → Setoid._∼_ cauchyCompletionSetoid (injection (a * b)) (injection a *C injection b)
injectionIsRingHom a b ε 0<e = 0 , ans
where
ans : {m : ℕ} → 0 <N m → abs (index (apply _+_ (CauchyCompletion.elts (injection (a * b))) (map inverse (CauchyCompletion.elts (injection a *C injection b)))) m) < ε
ans {m} 0<m rewrite indexAndApply (constSequence (a * b)) (map inverse (apply _*_ (constSequence a) (constSequence b))) _+_ {m} | indexAndConst (a * b) m | equalityCommutative (mapAndIndex (apply _*_ (constSequence a) (constSequence b)) inverse m) | indexAndApply (constSequence a) (constSequence b) _*_ {m} | indexAndConst a m | indexAndConst b m = <WellDefined (symmetric (transitive (absWellDefined _ _ invRight) absZeroIsZero)) reflexive 0<e
CInjectionRingHom : RingHom R CRing injection
RingHom.preserves1 CInjectionRingHom = Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {injection (Ring.1R R)}
RingHom.ringHom CInjectionRingHom {a} {b} = injectionIsRingHom a b
RingHom.groupHom CInjectionRingHom = CInjectionGroupHom
| {
"alphanum_fraction": 0.7223069881,
"avg_line_length": 82.9620253165,
"ext": "agda",
"hexsha": "aa6208d5bf4995f3caf57229b1d29ab9db9b24c6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/CauchyCompletion/Ring.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/CauchyCompletion/Ring.agda",
"max_line_length": 1038,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/CauchyCompletion/Ring.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 2204,
"size": 6554
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Rings.Definition
open import Rings.IntegralDomains.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
module Fields.FieldOfFractions.Multiplication {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
open import Fields.FieldOfFractions.Setoid I
fieldOfFractionsTimes : fieldOfFractionsSet → fieldOfFractionsSet → fieldOfFractionsSet
fieldOfFractionsTimes (record { num = a ; denom = b ; denomNonzero = b!=0 }) (record { num = c ; denom = d ; denomNonzero = d!=0 }) = record { num = a * c ; denom = b * d ; denomNonzero = ans }
where
open Setoid S
open Ring R
ans : ((b * d) ∼ Ring.0R R) → False
ans pr with IntegralDomain.intDom I pr
ans pr | f = exFalso (d!=0 (f b!=0))
fieldOfFractionsTimesWellDefined : {a b c d : fieldOfFractionsSet} → (Setoid._∼_ fieldOfFractionsSetoid a c) → (Setoid._∼_ fieldOfFractionsSetoid b d) → (Setoid._∼_ fieldOfFractionsSetoid (fieldOfFractionsTimes a b) (fieldOfFractionsTimes c d))
fieldOfFractionsTimesWellDefined {record { num = a ; denom = b }} {record { num = c ; denom = d }} {record { num = e ; denom = f }} {record { num = g ; denom = h }} af=be ch=dg = need
where
open Setoid S
open Equivalence eq
need : ((a * c) * (f * h)) ∼ ((b * d) * (e * g))
need = transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (symmetric (Ring.*Associative R)) reflexive) (transitive (Ring.*WellDefined R (Ring.*WellDefined R reflexive ch=dg) reflexive) (transitive (Ring.*Commutative R) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (Ring.*Commutative R) reflexive) (transitive (Ring.*WellDefined R af=be reflexive) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (transitive (symmetric (Ring.*Associative R)) (transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (Ring.*Associative R))) reflexive) (symmetric (Ring.*Associative R)))))))))))
| {
"alphanum_fraction": 0.6950420954,
"avg_line_length": 71.2666666667,
"ext": "agda",
"hexsha": "4bf19d54c99babd440f83b3ac712f847c9096ccb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/FieldOfFractions/Multiplication.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/FieldOfFractions/Multiplication.agda",
"max_line_length": 710,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/FieldOfFractions/Multiplication.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 676,
"size": 2138
} |
module Structure.Operator.Monoid.Category where
open import Data
open import Data.Tuple as Tuple using (_,_)
open import Functional
import Lvl
open import Structure.Setoid
open import Structure.Category
open import Structure.Categorical.Properties
open import Structure.Operator.Monoid
open import Structure.Operator.Monoid.Homomorphism
open import Structure.Operator.Properties using (associativity ; identityₗ ; identityᵣ)
open import Structure.Operator
open import Type
private variable ℓ ℓₑ ℓₗ ℓₗₑ : Lvl.Level
private variable T : Type{ℓ}
private variable _▫_ : T → T → T
module _
⦃ equiv : Equiv{ℓₑ}(T) ⦄
⦃ oper : BinaryOperator(_▫_) ⦄
(M : Monoid{T = T}(_▫_))
where
-- A monoid as a special case of a category with a single object and morphisms in and out of this object.
-- Composition and identity in the category is the binary operator and the identity element from the monoid.
monoidCategory : Category{Obj = Unit{Lvl.𝟎}}(const(const(T)))
Category._∘_ monoidCategory = (_▫_)
Category.id monoidCategory = Monoid.id(M)
Category.binaryOperator monoidCategory = oper
Category.associativity monoidCategory = Morphism.intro(associativity(_▫_))
Category.identity monoidCategory = Morphism.intro (identityₗ(_▫_)(Monoid.id(M))) , Morphism.intro ((identityᵣ(_▫_)(Monoid.id(M))))
module _ where
open import Function.Equals
open import Function.Equals.Proofs
open import Function.Proofs
open import Logic.Predicate
open import Logic.Propositional
open import Structure.Function.Multi
open import Structure.Function
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Transitivity
private variable x y z : MonoidObject{ℓₗ}{ℓₗₑ}
instance
[→ᵐᵒⁿᵒⁱᵈ]-equiv : Equiv(x →ᵐᵒⁿᵒⁱᵈ y)
Equiv._≡_ [→ᵐᵒⁿᵒⁱᵈ]-equiv ([∃]-intro F) ([∃]-intro G) = F ⊜ G
Reflexivity.proof (Equivalence.reflexivity (Equiv.equivalence [→ᵐᵒⁿᵒⁱᵈ]-equiv)) = reflexivity(_⊜_)
Symmetry.proof (Equivalence.symmetry (Equiv.equivalence [→ᵐᵒⁿᵒⁱᵈ]-equiv)) = symmetry(_⊜_)
Transitivity.proof (Equivalence.transitivity (Equiv.equivalence [→ᵐᵒⁿᵒⁱᵈ]-equiv)) = transitivity(_⊜_)
-- Identity monoid homomorphism.
idᵐᵒⁿᵒⁱᵈ : x →ᵐᵒⁿᵒⁱᵈ x
∃.witness idᵐᵒⁿᵒⁱᵈ = id
Homomorphism.function (∃.proof idᵐᵒⁿᵒⁱᵈ) = id-function
Preserving.proof (Homomorphism.preserve-op (∃.proof idᵐᵒⁿᵒⁱᵈ)) = reflexivity(_≡_)
Preserving.proof (Homomorphism.preserve-id (∃.proof idᵐᵒⁿᵒⁱᵈ)) = reflexivity(_≡_)
-- Composition of monoid homomorphisms.
_∘ᵐᵒⁿᵒⁱᵈ_ : let _ = x in (y →ᵐᵒⁿᵒⁱᵈ z) → (x →ᵐᵒⁿᵒⁱᵈ y) → (x →ᵐᵒⁿᵒⁱᵈ z)
∃.witness (([∃]-intro F) ∘ᵐᵒⁿᵒⁱᵈ ([∃]-intro G)) = F ∘ G
Homomorphism.function (∃.proof (([∃]-intro F) ∘ᵐᵒⁿᵒⁱᵈ ([∃]-intro G))) = [∘]-function {f = F}{g = G}
Preserving.proof (Homomorphism.preserve-op (∃.proof (_∘ᵐᵒⁿᵒⁱᵈ_ {x = A} {y = B} {z = C} ([∃]-intro F) ([∃]-intro G)))) {x} {y} =
(F ∘ G)(x ⦗ MonoidObject._▫_ A ⦘ y) 🝖[ _≡_ ]-[]
F(G(x ⦗ MonoidObject._▫_ A ⦘ y)) 🝖[ _≡_ ]-[ congruence₁(F) (preserving₂(G) (MonoidObject._▫_ A) (MonoidObject._▫_ B)) ]
F(G(x) ⦗ MonoidObject._▫_ B ⦘ G(y)) 🝖[ _≡_ ]-[ preserving₂(F) (MonoidObject._▫_ B) (MonoidObject._▫_ C) ]
F(G(x)) ⦗ MonoidObject._▫_ C ⦘ F(G(y)) 🝖[ _≡_ ]-[]
(F ∘ G)(x) ⦗ MonoidObject._▫_ C ⦘ (F ∘ G)(y) 🝖-end
Preserving.proof (Homomorphism.preserve-id (∃.proof (_∘ᵐᵒⁿᵒⁱᵈ_ {x = A} {y = B} {z = C} ([∃]-intro F) ([∃]-intro G)))) =
(F ∘ G)(MonoidObject.id A) 🝖[ _≡_ ]-[]
F(G(MonoidObject.id A)) 🝖[ _≡_ ]-[ congruence₁(F) (preserving₀(G) (MonoidObject.id A) (MonoidObject.id B)) ]
F(MonoidObject.id B) 🝖[ _≡_ ]-[ preserving₀(F) (MonoidObject.id B) (MonoidObject.id C) ]
MonoidObject.id C 🝖-end
-- A category where the objects are monoids themselves and the morphisms are homomorphism between them.
instance
monoidObjectCategory : Category{Obj = MonoidObject{ℓₗ}{ℓₗₑ}}(_→ᵐᵒⁿᵒⁱᵈ_)
Category._∘_ monoidObjectCategory = _∘ᵐᵒⁿᵒⁱᵈ_
Category.id monoidObjectCategory = idᵐᵒⁿᵒⁱᵈ
Category.binaryOperator monoidObjectCategory = intro(\p q → [⊜][∘]-binaryOperator-raw p q)
Category.associativity monoidObjectCategory = Morphism.intro (reflexivity(_⊜_))
Category.identity monoidObjectCategory = [∧]-intro (Morphism.intro(reflexivity(_⊜_))) (Morphism.intro(reflexivity(_⊜_)))
monoidObjectCategoryObject : ∀{ℓₗ ℓₑ} → CategoryObject
monoidObjectCategoryObject{ℓₗ}{ℓₑ} = intro(monoidObjectCategory{ℓₗ}{ℓₑ})
| {
"alphanum_fraction": 0.6760992599,
"avg_line_length": 50.4835164835,
"ext": "agda",
"hexsha": "65eed4dea7f018e5d23016a7bc171a128754ce29",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Monoid/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Monoid/Category.agda",
"max_line_length": 138,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Monoid/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1871,
"size": 4594
} |
------------------------------------------------------------------------------
-- Totality properties respect to OrdList (flatten-OrdList-helper)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- The termination checker can not determine that the function
-- flatten-OrdList-helper is defined by structural recursion because
-- we are using postulates.
module FOT.FOTC.Program.SortList.Properties.Totality.OrdList.FlattenI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Bool
open import FOTC.Data.Bool.PropertiesI
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.Type
open import FOTC.Data.List
open import FOTC.Program.SortList.Properties.Totality.BoolI
open import FOTC.Program.SortList.Properties.Totality.ListN-I
open import FOTC.Program.SortList.Properties.Totality.OrdTreeI
open import FOTC.Program.SortList.Properties.MiscellaneousI
open import FOTC.Program.SortList.SortList
------------------------------------------------------------------------------
{-# TERMINATING #-}
flatten-OrdList-helper : ∀ {t₁ i t₂} → Tree t₁ → N i → Tree t₂ →
OrdTree (node t₁ i t₂) →
≤-Lists (flatten t₁) (flatten t₂)
flatten-OrdList-helper {t₂ = t₂} tnil Ni Tt₂ OTt =
subst (λ t → ≤-Lists t (flatten t₂))
(sym (flatten-nil))
(le-Lists-[] (flatten t₂))
flatten-OrdList-helper (ttip {i₁} Ni₁) _ tnil OTt =
le-Lists (flatten (tip i₁)) (flatten nil)
≡⟨ subst₂ (λ x₁ x₂ → le-Lists (flatten (tip i₁)) (flatten nil) ≡
le-Lists x₁ x₂)
(flatten-tip i₁)
flatten-nil
refl
⟩
le-Lists (i₁ ∷ []) []
≡⟨ le-Lists-∷ i₁ [] [] ⟩
le-ItemList i₁ [] && le-Lists [] []
≡⟨ subst₂ (λ x₁ x₂ → le-ItemList i₁ [] && le-Lists [] [] ≡ x₁ && x₂)
(le-ItemList-[] i₁)
(le-Lists-[] [])
refl
⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
flatten-OrdList-helper {i = i} (ttip {i₁} Ni₁) Ni (ttip {i₂} Ni₂) OTt =
le-Lists (flatten (tip i₁)) (flatten (tip i₂))
≡⟨ subst₂ (λ x₁ x₂ → le-Lists (flatten (tip i₁)) (flatten (tip i₂)) ≡
le-Lists x₁ x₂)
(flatten-tip i₁)
(flatten-tip i₂)
refl
⟩
le-Lists (i₁ ∷ []) (i₂ ∷ [])
≡⟨ le-Lists-∷ i₁ [] (i₂ ∷ []) ⟩
le-ItemList i₁ (i₂ ∷ []) && le-Lists [] (i₂ ∷ [])
≡⟨ subst (λ t → le-ItemList i₁ (i₂ ∷ []) && le-Lists [] (i₂ ∷ []) ≡
t && le-Lists [] (i₂ ∷ []))
(le-ItemList-∷ i₁ i₂ [])
refl
⟩
(le i₁ i₂ && le-ItemList i₁ []) && le-Lists [] (i₂ ∷ [])
≡⟨ subst (λ t → (le i₁ i₂ && le-ItemList i₁ []) && le-Lists [] (i₂ ∷ []) ≡
(t && le-ItemList i₁ []) && le-Lists [] (i₂ ∷ []))
lemma
refl
⟩
(true && le-ItemList i₁ []) && le-Lists [] (i₂ ∷ [])
≡⟨ subst₂ (λ x₁ x₂ → (true && le-ItemList i₁ []) && le-Lists [] (i₂ ∷ []) ≡
(true && x₁) && x₂)
(le-ItemList-[] i₁)
(le-Lists-[] (i₂ ∷ []))
refl
⟩
(true && true) && true
≡⟨ &&-assoc btrue btrue btrue ⟩
true && true && true
≡⟨ &&-list₃-all-t btrue btrue btrue (refl , refl , refl) ⟩
true
∎
where
helper₁ : Bool (ordTree (tip i₁))
helper₁ = ordTree-Bool (ttip Ni₁)
helper₂ : Bool (ordTree (tip i₂))
helper₂ = ordTree-Bool (ttip Ni₂)
helper₃ : Bool (le-TreeItem (tip i₁) i)
helper₃ = le-TreeItem-Bool (ttip Ni₁) Ni
helper₄ : Bool (le-ItemTree i (tip i₂))
helper₄ = le-ItemTree-Bool Ni (ttip Ni₂)
helper₅ : ordTree (tip i₁) &&
ordTree (tip i₂) &&
le-TreeItem (tip i₁) i &&
le-ItemTree i (tip i₂) ≡ true
helper₅ = trans (sym (ordTree-node (tip i₁) i (tip i₂))) OTt
lemma : i₁ ≤ i₂
lemma = ≤-trans Ni₁ Ni Ni₂ i₁≤i i≤i₂
where
i₁≤i : i₁ ≤ i
i₁≤i = trans (sym (le-TreeItem-tip i₁ i))
(&&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅)
i≤i₂ : i ≤ i₂
i≤i₂ = trans (sym (le-ItemTree-tip i i₂))
(&&-list₄-t₄ helper₁ helper₂ helper₃ helper₄ helper₅)
flatten-OrdList-helper {i = i} (ttip {i₁} Ni₁) Ni
(tnode {t₂₁} {i₂} {t₂₂} Tt₂₁ Ni₂ Tt₂₂) OTt =
le-Lists (flatten (tip i₁)) (flatten (node t₂₁ i₂ t₂₂))
≡⟨ subst (λ x → le-Lists (flatten (tip i₁)) (flatten (node t₂₁ i₂ t₂₂)) ≡
le-Lists (flatten (tip i₁)) x)
(flatten-node t₂₁ i₂ t₂₂)
refl
⟩
le-Lists (flatten (tip i₁)) (flatten t₂₁ ++ flatten t₂₂)
≡⟨ xs≤ys→xs≤zs→xs≤ys++zs (flatten-ListN (ttip Ni₁))
(flatten-ListN Tt₂₁)
(flatten-ListN Tt₂₂)
lemma₁
lemma₂
⟩
true ∎
where
-- Helper terms to get the conjuncts from OTt.
helper₁ = ordTree-Bool (ttip Ni₁)
helper₂ = ordTree-Bool (tnode Tt₂₁ Ni₂ Tt₂₂)
helper₃ = le-TreeItem-Bool (ttip Ni₁) Ni
helper₄ = le-ItemTree-Bool Ni (tnode Tt₂₁ Ni₂ Tt₂₂)
helper₅ = trans (sym (ordTree-node (tip i₁) i (node t₂₁ i₂ t₂₂))) OTt
-- Helper terms to get the conjuncts from the fourth conjunct of OTt.
helper₆ = le-ItemTree-Bool Ni Tt₂₁
helper₇ = le-ItemTree-Bool Ni Tt₂₂
helper₈ = trans (sym (le-ItemTree-node i t₂₁ i₂ t₂₂))
(&&-list₄-t₄ helper₁ helper₂ helper₃ helper₄ helper₅)
-- Common terms for the lemma₁ and lemma₂.
OrdTree-tip-i₁ : OrdTree (tip i₁)
OrdTree-tip-i₁ = &&-list₄-t₁ helper₁ helper₂ helper₃ helper₄ helper₅
≤-TreeItem-tip-i₁-i : ≤-TreeItem (tip i₁) i
≤-TreeItem-tip-i₁-i = &&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅
lemma₁ : ≤-Lists (flatten (tip i₁)) (flatten t₂₁)
lemma₁ = flatten-OrdList-helper (ttip Ni₁) Ni Tt₂₁ OT
where
OrdTree-t₂₁ : OrdTree t₂₁
OrdTree-t₂₁ =
leftSubTree-OrdTree Tt₂₁ Ni₂ Tt₂₂ (&&-list₄-t₂ helper₁ helper₂ helper₃
helper₄ helper₅)
≤-ItemTree-i-t₂₁ : ≤-ItemTree i t₂₁
≤-ItemTree-i-t₂₁ = &&-list₂-t₁ helper₆ helper₇ helper₈
OT : OrdTree (node (tip i₁) i t₂₁)
OT = ordTree (node (tip i₁) i t₂₁)
≡⟨ ordTree-node (tip i₁) i t₂₁ ⟩
ordTree (tip i₁) &&
ordTree t₂₁ &&
le-TreeItem (tip i₁) i &&
le-ItemTree i t₂₁
≡⟨ subst₄ (λ w x y z → ordTree (tip i₁) &&
ordTree t₂₁ &&
le-TreeItem (tip i₁) i &&
le-ItemTree i t₂₁ ≡
w && x && y && z)
OrdTree-tip-i₁
OrdTree-t₂₁
≤-TreeItem-tip-i₁-i
≤-ItemTree-i-t₂₁
refl
⟩
true && true && true && true
≡⟨ &&-list₄-all-t btrue btrue btrue btrue (refl , refl , refl , refl) ⟩
true ∎
lemma₂ : ≤-Lists (flatten (tip i₁)) (flatten t₂₂)
lemma₂ = flatten-OrdList-helper (ttip Ni₁) Ni Tt₂₂ OT
where
OrdTree-t₂₂ : OrdTree t₂₂
OrdTree-t₂₂ =
rightSubTree-OrdTree Tt₂₁ Ni₂ Tt₂₂ (&&-list₄-t₂ helper₁ helper₂ helper₃
helper₄ helper₅)
≤-ItemTree-i-t₂₂ : ≤-ItemTree i t₂₂
≤-ItemTree-i-t₂₂ = &&-list₂-t₂ helper₆ helper₇ helper₈
OT : OrdTree (node (tip i₁) i t₂₂)
OT = ordTree (node (tip i₁) i t₂₂)
≡⟨ ordTree-node (tip i₁) i t₂₂ ⟩
ordTree (tip i₁) &&
ordTree t₂₂ &&
le-TreeItem (tip i₁) i &&
le-ItemTree i t₂₂
≡⟨ subst₄ (λ w x y z → ordTree (tip i₁) &&
ordTree t₂₂ &&
le-TreeItem (tip i₁) i &&
le-ItemTree i t₂₂ ≡
w && x && y && z)
OrdTree-tip-i₁
OrdTree-t₂₂
≤-TreeItem-tip-i₁-i
≤-ItemTree-i-t₂₂
refl
⟩
true && true && true && true
≡⟨ &&-list₄-all-t btrue btrue btrue btrue (refl , refl , refl , refl) ⟩
true ∎
flatten-OrdList-helper {i = i} (tnode {t₁₁} {i₁} {t₁₂} Tt₁₁ Ni₁ Tt₁₂) Ni tnil OTt =
le-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten nil)
≡⟨ subst (λ x → le-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten nil) ≡
le-Lists x (flatten nil))
(flatten-node t₁₁ i₁ t₁₂)
refl
⟩
le-Lists (flatten t₁₁ ++ flatten t₁₂) (flatten nil)
≡⟨ xs≤zs→ys≤zs→xs++ys≤zs (flatten-ListN Tt₁₁)
(flatten-ListN Tt₁₂)
(flatten-ListN tnil)
lemma₁
lemma₂
⟩
true ∎
where
-- Helper terms to get the conjuncts from OTt.
helper₁ = ordTree-Bool (tnode Tt₁₁ Ni₁ Tt₁₂)
helper₂ = ordTree-Bool tnil
helper₃ = le-TreeItem-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) Ni
helper₄ = le-ItemTree-Bool Ni tnil
helper₅ = trans (sym (ordTree-node (node t₁₁ i₁ t₁₂) i nil)) OTt
-- Helper terms to get the conjuncts from the third conjunct of OTt.
helper₆ = le-TreeItem-Bool Tt₁₁ Ni
helper₇ = le-TreeItem-Bool Tt₁₂ Ni
helper₈ = trans (sym (le-TreeItem-node t₁₁ i₁ t₁₂ i))
(&&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅)
-- Common terms for the lemma₁ and lemma₂.
≤-ItemTree-i-niltree : ≤-ItemTree i nil
≤-ItemTree-i-niltree = &&-list₄-t₄ helper₁ helper₂ helper₃ helper₄ helper₅
lemma₁ : ≤-Lists (flatten t₁₁) (flatten nil)
lemma₁ = flatten-OrdList-helper Tt₁₁ Ni tnil OT
where
OrdTree-t₁₁ : OrdTree t₁₁
OrdTree-t₁₁ =
leftSubTree-OrdTree Tt₁₁ Ni₁ Tt₁₂ (&&-list₄-t₁ helper₁ helper₂ helper₃
helper₄ helper₅)
≤-TreeItem-t₁₁-i : ≤-TreeItem t₁₁ i
≤-TreeItem-t₁₁-i = &&-list₂-t₁ helper₆ helper₇ helper₈
OT : OrdTree (node t₁₁ i nil)
OT = ordTree (node t₁₁ i nil)
≡⟨ ordTree-node t₁₁ i nil ⟩
ordTree t₁₁ &&
ordTree nil &&
le-TreeItem t₁₁ i &&
le-ItemTree i nil
≡⟨ subst₄ (λ w x y z → ordTree t₁₁ &&
ordTree nil &&
le-TreeItem t₁₁ i &&
le-ItemTree i nil ≡
w && x && y && z)
OrdTree-t₁₁
ordTree-nil
≤-TreeItem-t₁₁-i
≤-ItemTree-i-niltree
refl
⟩
true && true && true && true
≡⟨ &&-list₄-all-t btrue btrue btrue btrue (refl , refl , refl , refl) ⟩
true ∎
lemma₂ : ≤-Lists (flatten t₁₂) (flatten nil)
lemma₂ = flatten-OrdList-helper Tt₁₂ Ni tnil OT
where
OrdTree-t₁₂ : OrdTree t₁₂
OrdTree-t₁₂ =
rightSubTree-OrdTree Tt₁₁ Ni₁ Tt₁₂ (&&-list₄-t₁ helper₁ helper₂ helper₃
helper₄ helper₅)
≤-TreeItem-t₁₂-i : ≤-TreeItem t₁₂ i
≤-TreeItem-t₁₂-i = &&-list₂-t₂ helper₆ helper₇ helper₈
OT : OrdTree (node t₁₂ i nil)
OT = ordTree (node t₁₂ i nil)
≡⟨ ordTree-node t₁₂ i nil ⟩
ordTree t₁₂ &&
ordTree nil &&
le-TreeItem t₁₂ i &&
le-ItemTree i nil
≡⟨ subst₄ (λ w x y z → ordTree t₁₂ &&
ordTree nil &&
le-TreeItem t₁₂ i &&
le-ItemTree i nil ≡
w && x && y && z)
OrdTree-t₁₂
ordTree-nil
≤-TreeItem-t₁₂-i
≤-ItemTree-i-niltree
refl
⟩
true && true && true && true
≡⟨ &&-list₄-all-t btrue btrue btrue btrue (refl , refl , refl , refl) ⟩
true ∎
flatten-OrdList-helper {i = i} (tnode {t₁₁} {i₁} {t₁₂} Tt₁₁ Ni₁ Tt₁₂) Ni
(ttip {i₂} Ni₂) OTt =
le-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten (tip i₂))
≡⟨ subst (λ x → le-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten (tip i₂)) ≡
le-Lists x (flatten (tip i₂)))
(flatten-node t₁₁ i₁ t₁₂)
refl
⟩
le-Lists (flatten t₁₁ ++ flatten t₁₂) (flatten (tip i₂))
≡⟨ xs≤zs→ys≤zs→xs++ys≤zs (flatten-ListN Tt₁₁)
(flatten-ListN Tt₁₂)
(flatten-ListN (ttip Ni₂))
lemma₁
lemma₂
⟩
true ∎
where
-- Helper terms to get the conjuncts from OTt.
helper₁ = ordTree-Bool (tnode Tt₁₁ Ni₁ Tt₁₂)
helper₂ = ordTree-Bool (ttip Ni₂)
helper₃ = le-TreeItem-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) Ni
helper₄ = le-ItemTree-Bool Ni (ttip Ni₂)
helper₅ = trans (sym (ordTree-node (node t₁₁ i₁ t₁₂) i (tip i₂))) OTt
-- Helper terms to get the conjuncts from the third conjunct of OTt.
helper₆ = le-TreeItem-Bool Tt₁₁ Ni
helper₇ = le-TreeItem-Bool Tt₁₂ Ni
helper₈ = trans (sym (le-TreeItem-node t₁₁ i₁ t₁₂ i))
(&&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅)
-- Common terms for the lemma₁ and lemma₂.
OrdTree-tip-i₂ : OrdTree (tip i₂)
OrdTree-tip-i₂ = &&-list₄-t₂ helper₁ helper₂ helper₃ helper₄ helper₅
≤-ItemTree-i-tip-i₂ : ≤-ItemTree i (tip i₂)
≤-ItemTree-i-tip-i₂ = &&-list₄-t₄ helper₁ helper₂ helper₃ helper₄ helper₅
lemma₁ : ≤-Lists (flatten t₁₁) (flatten (tip i₂))
lemma₁ = flatten-OrdList-helper Tt₁₁ Ni (ttip Ni₂) OT
where
OrdTree-t₁₁ : OrdTree t₁₁
OrdTree-t₁₁ =
leftSubTree-OrdTree Tt₁₁ Ni₁ Tt₁₂ (&&-list₄-t₁ helper₁ helper₂ helper₃
helper₄ helper₅)
≤-TreeItem-t₁₁-i : ≤-TreeItem t₁₁ i
≤-TreeItem-t₁₁-i = &&-list₂-t₁ helper₆ helper₇ helper₈
OT : OrdTree (node t₁₁ i (tip i₂))
OT = ordTree (node t₁₁ i (tip i₂))
≡⟨ ordTree-node t₁₁ i (tip i₂) ⟩
ordTree t₁₁ &&
ordTree (tip i₂) &&
le-TreeItem t₁₁ i &&
le-ItemTree i (tip i₂)
≡⟨ subst₄ (λ w x y z → ordTree t₁₁ &&
ordTree (tip i₂) &&
le-TreeItem t₁₁ i &&
le-ItemTree i (tip i₂) ≡
w && x && y && z)
OrdTree-t₁₁
OrdTree-tip-i₂
≤-TreeItem-t₁₁-i
≤-ItemTree-i-tip-i₂
refl
⟩
true && true && true && true
≡⟨ &&-list₄-all-t btrue btrue btrue btrue (refl , refl , refl , refl) ⟩
true ∎
lemma₂ : ≤-Lists (flatten t₁₂) (flatten (tip i₂))
lemma₂ = flatten-OrdList-helper Tt₁₂ Ni (ttip Ni₂) OT
where
OrdTree-t₁₂ : OrdTree t₁₂
OrdTree-t₁₂ =
rightSubTree-OrdTree Tt₁₁ Ni₁ Tt₁₂ (&&-list₄-t₁ helper₁ helper₂ helper₃
helper₄ helper₅)
≤-TreeItem-t₁₂-i : ≤-TreeItem t₁₂ i
≤-TreeItem-t₁₂-i = &&-list₂-t₂ helper₆ helper₇ helper₈
OT : OrdTree (node t₁₂ i (tip i₂))
OT = ordTree (node t₁₂ i (tip i₂))
≡⟨ ordTree-node t₁₂ i (tip i₂) ⟩
ordTree t₁₂ &&
ordTree (tip i₂) &&
le-TreeItem t₁₂ i &&
le-ItemTree i (tip i₂)
≡⟨ subst₄ (λ w x y z → ordTree t₁₂ &&
ordTree (tip i₂) &&
le-TreeItem t₁₂ i &&
le-ItemTree i (tip i₂) ≡
w && x && y && z)
OrdTree-t₁₂
OrdTree-tip-i₂
≤-TreeItem-t₁₂-i
≤-ItemTree-i-tip-i₂
refl
⟩
true && true && true && true
≡⟨ &&-list₄-all-t btrue btrue btrue btrue (refl , refl , refl , refl) ⟩
true ∎
flatten-OrdList-helper {i = i} (tnode {t₁₁} {i₁} {t₁₂} Tt₁₁ Ni₁ Tt₁₂) Ni
(tnode {t₂₁} {i₂} {t₂₂} Tt₂₁ Ni₂ Tt₂₂) OTt =
le-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten (node t₂₁ i₂ t₂₂))
≡⟨ subst (λ x → le-Lists (flatten (node t₁₁ i₁ t₁₂))
(flatten (node t₂₁ i₂ t₂₂)) ≡
le-Lists x (flatten (node t₂₁ i₂ t₂₂)))
(flatten-node t₁₁ i₁ t₁₂)
refl
⟩
le-Lists (flatten t₁₁ ++ flatten t₁₂) (flatten (node t₂₁ i₂ t₂₂))
≡⟨ xs≤zs→ys≤zs→xs++ys≤zs (flatten-ListN Tt₁₁)
(flatten-ListN Tt₁₂)
(flatten-ListN (tnode Tt₂₁ Ni₂ Tt₂₂))
lemma₁
lemma₂
⟩
true ∎
where
-- Helper terms to get the conjuncts from OTt.
helper₁ = ordTree-Bool (tnode Tt₁₁ Ni₁ Tt₁₂)
helper₂ = ordTree-Bool (tnode Tt₂₁ Ni₂ Tt₂₂)
helper₃ = le-TreeItem-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) Ni
helper₄ = le-ItemTree-Bool Ni (tnode Tt₂₁ Ni₂ Tt₂₂)
helper₅ = trans (sym (ordTree-node (node t₁₁ i₁ t₁₂) i (node t₂₁ i₂ t₂₂))) OTt
-- Helper terms to get the conjuncts from the third conjunct of OTt.
helper₆ = le-TreeItem-Bool Tt₁₁ Ni
helper₇ = le-TreeItem-Bool Tt₁₂ Ni
helper₈ = trans (sym (le-TreeItem-node t₁₁ i₁ t₁₂ i))
(&&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅)
-- Common terms for the lemma₁ and lemma₂.
OrdTree-node-t₂₁-i₂-t₂₂ : OrdTree (node t₂₁ i₂ t₂₂)
OrdTree-node-t₂₁-i₂-t₂₂ = &&-list₄-t₂ helper₁ helper₂ helper₃ helper₄ helper₅
≤-ItemTree-i-node-t₂₁-i₂-t₂₂ : ≤-ItemTree i (node t₂₁ i₂ t₂₂)
≤-ItemTree-i-node-t₂₁-i₂-t₂₂ = &&-list₄-t₄ helper₁ helper₂ helper₃ helper₄
helper₅
lemma₁ : ≤-Lists (flatten t₁₁) (flatten (node t₂₁ i₂ t₂₂))
lemma₁ = flatten-OrdList-helper Tt₁₁ Ni (tnode Tt₂₁ Ni₂ Tt₂₂) OT
where
OrdTree-t₁₁ : OrdTree t₁₁
OrdTree-t₁₁ =
leftSubTree-OrdTree Tt₁₁ Ni₁ Tt₁₂ (&&-list₄-t₁ helper₁ helper₂ helper₃
helper₄ helper₅)
≤-TreeItem-t₁₁-i : ≤-TreeItem t₁₁ i
≤-TreeItem-t₁₁-i = &&-list₂-t₁ helper₆ helper₇ helper₈
OT : OrdTree (node t₁₁ i (node t₂₁ i₂ t₂₂))
OT = ordTree (node t₁₁ i (node t₂₁ i₂ t₂₂))
≡⟨ ordTree-node t₁₁ i (node t₂₁ i₂ t₂₂) ⟩
ordTree t₁₁ &&
ordTree (node t₂₁ i₂ t₂₂) &&
le-TreeItem t₁₁ i &&
le-ItemTree i (node t₂₁ i₂ t₂₂)
≡⟨ subst₄ (λ w x y z → ordTree t₁₁ &&
ordTree (node t₂₁ i₂ t₂₂) &&
le-TreeItem t₁₁ i &&
le-ItemTree i (node t₂₁ i₂ t₂₂) ≡
w && x && y && z)
OrdTree-t₁₁
OrdTree-node-t₂₁-i₂-t₂₂
≤-TreeItem-t₁₁-i
≤-ItemTree-i-node-t₂₁-i₂-t₂₂
refl
⟩
true && true && true && true
≡⟨ &&-list₄-all-t btrue btrue btrue btrue (refl , refl , refl , refl) ⟩
true ∎
lemma₂ : ≤-Lists (flatten t₁₂) (flatten (node t₂₁ i₂ t₂₂))
lemma₂ = flatten-OrdList-helper Tt₁₂ Ni (tnode Tt₂₁ Ni₂ Tt₂₂) OT
where
OrdTree-t₁₂ : OrdTree t₁₂
OrdTree-t₁₂ =
rightSubTree-OrdTree Tt₁₁ Ni₁ Tt₁₂ (&&-list₄-t₁ helper₁ helper₂ helper₃
helper₄ helper₅)
≤-TreeItem-t₁₂-i : ≤-TreeItem t₁₂ i
≤-TreeItem-t₁₂-i = &&-list₂-t₂ helper₆ helper₇ helper₈
OT : OrdTree (node t₁₂ i (node t₂₁ i₂ t₂₂))
OT = ordTree (node t₁₂ i (node t₂₁ i₂ t₂₂))
≡⟨ ordTree-node t₁₂ i (node t₂₁ i₂ t₂₂) ⟩
ordTree t₁₂ &&
ordTree (node t₂₁ i₂ t₂₂) &&
le-TreeItem t₁₂ i &&
le-ItemTree i (node t₂₁ i₂ t₂₂)
≡⟨ subst₄ (λ w x y z → ordTree t₁₂ &&
ordTree (node t₂₁ i₂ t₂₂) &&
le-TreeItem t₁₂ i &&
le-ItemTree i (node t₂₁ i₂ t₂₂) ≡
w && x && y && z)
OrdTree-t₁₂
OrdTree-node-t₂₁-i₂-t₂₂
≤-TreeItem-t₁₂-i
≤-ItemTree-i-node-t₂₁-i₂-t₂₂
refl
⟩
true && true && true && true
≡⟨ &&-list₄-all-t btrue btrue btrue btrue (refl , refl , refl , refl) ⟩
true
∎
| {
"alphanum_fraction": 0.4770999359,
"avg_line_length": 40.5083487941,
"ext": "agda",
"hexsha": "6bcb783077bad804a3a2ba8e3afe1102156dbf46",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/SortList/Properties/Totality/OrdList/FlattenI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/SortList/Properties/Totality/OrdList/FlattenI.agda",
"max_line_length": 86,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/SortList/Properties/Totality/OrdList/FlattenI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 7005,
"size": 21834
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Conversion from naturals to universe levels
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Level.Literals where
open import Agda.Builtin.Nat renaming (Nat to ℕ)
open import Agda.Builtin.FromNat
open import Agda.Builtin.Unit
open import Level using (Level; 0ℓ)
-- Increase a Level by a number of sucs.
_ℕ+_ : ℕ → Level → Level
zero ℕ+ ℓ = ℓ
suc n ℕ+ ℓ = Level.suc (n ℕ+ ℓ)
-- Nat-computed Level.
infix 10 #_
#_ : ℕ → Level
#_ = _ℕ+ 0ℓ
-- Literal overloading for levels.
Levelℕ : Number Level
Levelℕ .Number.Constraint _ = ⊤
Levelℕ .Number.fromNat n = # n
| {
"alphanum_fraction": 0.5537634409,
"avg_line_length": 21.8823529412,
"ext": "agda",
"hexsha": "663d62e534f55cbac5d4c6eb8d61da9c1a37b4be",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Level/Literals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Level/Literals.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Level/Literals.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 197,
"size": 744
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by posets
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Properties.Poset
{p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where
open Poset P renaming (Carrier to A)
open import Function using (flip)
import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ as ToStrict
import Relation.Binary.Properties.Preorder preorder as PreorderProperties
open import Relation.Nullary using (¬_)
private
_≉_ : Rel A p₂
x ≉ y = ¬ (x ≈ y)
------------------------------------------------------------------------
-- The _≥_ relation is also a poset.
infix 4 _≥_
_≥_ : Rel A p₃
x ≥ y = y ≤ x
open PreorderProperties public
using ()
renaming
( invIsPreorder to ≥-isPreorder
; invPreorder to ≥-preorder
)
≥-isPartialOrder : IsPartialOrder _≈_ _≥_
≥-isPartialOrder = record
{ isPreorder = PreorderProperties.invIsPreorder
; antisym = flip antisym
}
≥-poset : Poset p₁ p₂ p₃
≥-poset = record
{ isPartialOrder = ≥-isPartialOrder
}
open Poset ≥-poset public
using ()
renaming
( refl to ≥-refl
; reflexive to ≥-reflexive
; trans to ≥-trans
; antisym to ≥-antisym
)
------------------------------------------------------------------------
-- Partial orders can be turned into strict partial orders
infix 4 _<_
_<_ : Rel A _
_<_ = ToStrict._<_
<-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_
<-isStrictPartialOrder = ToStrict.<-isStrictPartialOrder isPartialOrder
<-strictPartialOrder : StrictPartialOrder _ _ _
<-strictPartialOrder = record
{ isStrictPartialOrder = <-isStrictPartialOrder
}
open StrictPartialOrder <-strictPartialOrder public
using ( <-resp-≈; <-respʳ-≈; <-respˡ-≈)
renaming
( irrefl to <-irrefl
; asym to <-asym
; trans to <-trans
)
<⇒≉ : ∀ {x y} → x < y → x ≉ y
<⇒≉ = ToStrict.<⇒≉
≤∧≉⇒< : ∀ {x y} → x ≤ y → x ≉ y → x < y
≤∧≉⇒< = ToStrict.≤∧≉⇒<
<⇒≱ : ∀ {x y} → x < y → ¬ (y ≤ x)
<⇒≱ = ToStrict.<⇒≱ antisym
≤⇒≯ : ∀ {x y} → x ≤ y → ¬ (y < x)
≤⇒≯ = ToStrict.≤⇒≯ antisym
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.2
invIsPartialOrder = ≥-isPartialOrder
{-# WARNING_ON_USAGE invIsPartialOrder
"Warning: invIsPartialOrder was deprecated in v1.2.
Please use ≥-isPartialOrder instead."
#-}
invPoset = ≥-poset
{-# WARNING_ON_USAGE invPoset
"Warning: invPoset was deprecated in v1.2.
Please use ≥-poset instead."
#-}
strictPartialOrder = <-strictPartialOrder
{-# WARNING_ON_USAGE strictPartialOrder
"Warning: strictPartialOrder was deprecated in v1.2.
Please use <-strictPartialOrder instead."
#-}
| {
"alphanum_fraction": 0.5766621438,
"avg_line_length": 24.1639344262,
"ext": "agda",
"hexsha": "9383902ed2c0b58b3d68bad820e6c6bbf3aaee77",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Properties/Poset.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Properties/Poset.agda",
"max_line_length": 73,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Properties/Poset.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 896,
"size": 2948
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Structures.Poset where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Logic
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv hiding (_■)
open import Cubical.Foundations.SIP renaming (SNS-≡ to SNS)
open import Cubical.Core.Primitives
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Data.Sigma.Properties
-- We will adopt the convention of denoting the level of the carrier
-- set by ℓ₀ and the level of the relation result by ℓ₁.
private
variable
ℓ₀ ℓ₁ : Level
Order : (ℓ₁ : Level) → Type ℓ₀ → Type (ℓ-max ℓ₀ (ℓ-suc ℓ₁))
Order ℓ₁ A = A → A → hProp ℓ₁
order-iso : (M N : Σ (Type ℓ₀) (Order ℓ₁)) → fst M ≃ fst N → Type (ℓ-max ℓ₀ ℓ₁)
order-iso (A , _⊑₀_) (B , _⊑₁_) (f , _) = (x y : A) → [ x ⊑₀ y ⇔ f x ⊑₁ f y ]
isSetOrder : (ℓ₁ : Level) (A : Type ℓ₀) → isSet (Order ℓ₁ A)
isSetOrder ℓ₁ A = isSetΠ2 λ _ _ → isSetHProp
Order-is-SNS : SNS {ℓ₀} (Order ℓ₁) order-iso
Order-is-SNS {ℓ₁ = ℓ₁} {X = X} _⊑₀_ _⊑₁_ = f , f-equiv
where
f : order-iso (X , _⊑₀_) (X , _⊑₁_) (idEquiv X) → _⊑₀_ ≡ _⊑₁_
f i = funExt λ x → funExt λ y → ⇔toPath (fst (i x y)) (snd (i x y))
⇔-prop : isProp ((x y : X) → [ x ⊑₀ y ⇔ x ⊑₁ y ])
⇔-prop = isPropΠ2 λ x y → snd (x ⊑₀ y ⇔ x ⊑₁ y)
f-equiv : isEquiv f
f-equiv = record { equiv-proof = λ eq → (g eq , sec eq) , h eq }
where
g : (eq : _⊑₀_ ≡ _⊑₁_)
→ (x y : X)
→ ([ x ⊑₀ y ] → [ x ⊑₁ y ]) × ([ x ⊑₁ y ] → [ x ⊑₀ y ])
g eq x y = subst (λ { _⊑⋆_ → [ x ⊑⋆ y ] }) eq
, subst (λ { _⊑⋆_ → [ x ⊑⋆ y ] }) (sym eq)
sec : section f g
sec p = isSetOrder _ X _⊑₀_ _⊑₁_ (f (g p)) p
h : (p : _⊑₀_ ≡ _⊑₁_) → (fib : fiber f p) → (g p , sec p) ≡ fib
h p (i , _) = ΣProp≡ A-prop B-prop
where
A-prop = λ i′ → isOfHLevelSuc 2 (isSetOrder ℓ₁ X) _⊑₀_ _⊑₁_ (f i′) p
B-prop = ⇔-prop (g p) i
-- We now write down the axioms for a partial order.
isReflexive : {A : Type ℓ₀} → Order ℓ₁ A → hProp (ℓ-max ℓ₀ ℓ₁)
isReflexive {A = X} _⊑_ = ((x : X) → [ x ⊑ x ]) , isPropΠ λ x → snd (x ⊑ x)
isTransitive : {A : Type ℓ₀} → Order ℓ₁ A → hProp (ℓ-max ℓ₀ ℓ₁)
isTransitive {ℓ₀ = ℓ₀} {ℓ₁ = ℓ₁} {A = X} _⊑_ = φ , φ-prop
where
φ : Type (ℓ-max ℓ₀ ℓ₁)
φ = ((x y z : X) → [ x ⊑ y ⇒ y ⊑ z ⇒ x ⊑ z ])
φ-prop : isProp φ
φ-prop = isPropΠ3 λ x y z → snd (x ⊑ y ⇒ y ⊑ z ⇒ x ⊑ z)
isAntisym : {A : Type ℓ₀} → isSet A → Order ℓ₁ A → hProp (ℓ-max ℓ₀ ℓ₁)
isAntisym {ℓ₀ = ℓ₀} {ℓ₁ = ℓ₁} {A = X} A-set _⊑_ = φ , φ-prop
where
φ : Type (ℓ-max ℓ₀ ℓ₁)
φ = ((x y : X) → [ x ⊑ y ] → [ y ⊑ x ] → x ≡ y)
φ-prop : isProp φ
φ-prop = isPropΠ3 λ x y z → isPropΠ λ _ → A-set x y
-- The predicate expressing that a given order satisfies the partial order
-- axioms.
satPosetAx : (ℓ₁ : Level) (A : Type ℓ₀) → Order ℓ₁ A → hProp (ℓ-max ℓ₀ ℓ₁)
satPosetAx {ℓ₀ = ℓ₀} ℓ₁ A _⊑_ = φ , φ-prop
where
isPartial : isSet A → hProp (ℓ-max ℓ₀ ℓ₁)
isPartial A-set = isReflexive _⊑_ ⊓ isTransitive _⊑_ ⊓ isAntisym A-set _⊑_
φ = Σ[ A-set ∈ isSet A ] [ isPartial A-set ]
φ-prop = isOfHLevelΣ 1 isPropIsSet (λ x → snd (isPartial x))
-- The poset structure.
PosetStr : (ℓ₁ : Level) → Type ℓ₀ → Type (ℓ-max ℓ₀ (ℓ-suc ℓ₁))
PosetStr ℓ₁ = add-to-structure (Order ℓ₁) λ A _⊑_ → [ satPosetAx ℓ₁ A _⊑_ ]
PosetStr-set : (ℓ₁ : Level) (A : Type ℓ₀) → isSet (PosetStr ℓ₁ A)
PosetStr-set ℓ₁ A =
isSetΣ
(isSetΠ2 λ _ _ → isSetHProp) λ _⊑_ →
isProp→isSet (snd (satPosetAx ℓ₁ A _⊑_))
Poset : (ℓ₀ ℓ₁ : Level) → Type (ℓ-max (ℓ-suc ℓ₀) (ℓ-suc ℓ₁))
Poset ℓ₀ ℓ₁ = TypeWithStr ℓ₀ (PosetStr ℓ₁)
-- Some projections for syntactic convenience.
-- Carrier set of a poset.
∣_∣ₚ : Poset ℓ₀ ℓ₁ → Type ℓ₀
∣ X , _ ∣ₚ = X
strₚ : (P : Poset ℓ₀ ℓ₁) → PosetStr ℓ₁ ∣ P ∣ₚ
strₚ (_ , s) = s
rel : (P : Poset ℓ₀ ℓ₁) → ∣ P ∣ₚ → ∣ P ∣ₚ → hProp ℓ₁
rel (_ , _⊑_ , _) = _⊑_
syntax rel P x y = x ⊑[ P ] y
⊑[_]-refl : (P : Poset ℓ₀ ℓ₁) → (x : ∣ P ∣ₚ) → [ x ⊑[ P ] x ]
⊑[_]-refl (_ , _ , _ , ⊑-refl , _) = ⊑-refl
⊑[_]-trans : (P : Poset ℓ₀ ℓ₁) (x y z : ∣ P ∣ₚ)
→ [ x ⊑[ P ] y ] → [ y ⊑[ P ] z ] → [ x ⊑[ P ] z ]
⊑[_]-trans (_ , _ , _ , _ , ⊑-trans , _) = ⊑-trans
⊑[_]-antisym : (P : Poset ℓ₀ ℓ₁) (x y : ∣ P ∣ₚ)
→ [ x ⊑[ P ] y ] → [ y ⊑[ P ] x ] → x ≡ y
⊑[_]-antisym (_ , _ , _ , _ , _ , ⊑-antisym) = ⊑-antisym
carrier-is-set : (P : Poset ℓ₀ ℓ₁) → isSet ∣ P ∣ₚ
carrier-is-set (_ , _ , is-set , _) = is-set
module PosetReasoning (P : Poset ℓ₀ ℓ₁) where
_⊑⟨_⟩_ : (x : ∣ P ∣ₚ) {y z : ∣ P ∣ₚ}
→ [ x ⊑[ P ] y ] → [ y ⊑[ P ] z ] → [ x ⊑[ P ] z ]
_ ⊑⟨ p ⟩ q = ⊑[ P ]-trans _ _ _ p q
_■ : (x : ∣ P ∣ₚ) → [ x ⊑[ P ] x ]
_■ = ⊑[ P ]-refl
infixr 0 _⊑⟨_⟩_
infix 1 _■
-- Poset univalence.
RP-iso-prop : (P Q : Σ (Type ℓ₀) (Order ℓ₁))
→ (eqv : fst P ≃ fst Q) → isProp (order-iso P Q eqv)
RP-iso-prop (A , _⊑₀_) (B , _⊑₁_) (f , _) =
isPropΠ2 λ x y → snd (x ⊑₀ y ⇔ f x ⊑₁ f y)
poset-iso : (P Q : Poset ℓ₀ ℓ₁) → ∣ P ∣ₚ ≃ ∣ Q ∣ₚ → Type (ℓ-max ℓ₀ ℓ₁)
poset-iso {ℓ₁ = ℓ₁} = add-to-iso order-iso (λ A _⊑_ → [ satPosetAx ℓ₁ A _⊑_ ])
-- We collect poset isomorphisms in the following type.
_≃ₚ_ : Poset ℓ₀ ℓ₁ → Poset ℓ₀ ℓ₁ → Type (ℓ-max ℓ₀ ℓ₁)
_≃ₚ_ P Q = Σ[ i ∈ (∣ P ∣ₚ ≃ ∣ Q ∣ₚ) ] poset-iso P Q i
poset-ax-props : (A : Type ℓ₀) (str : Order ℓ₁ A)
→ isProp [ satPosetAx ℓ₁ A str ]
poset-ax-props {ℓ₁ = ℓ₁} A str = snd (satPosetAx ℓ₁ A str)
poset-is-SNS : SNS {ℓ₀} (PosetStr ℓ₁) poset-iso
poset-is-SNS {ℓ₁ = ℓ₁} =
SNS-PathP→SNS-≡ _ poset-iso (add-axioms-SNS _ poset-ax-props isSNS-PathP)
where
isSNS-PathP : SNS-PathP (Order ℓ₁) order-iso
isSNS-PathP = SNS-≡→SNS-PathP order-iso Order-is-SNS
poset-is-SNS-PathP : SNS-PathP {ℓ₀} (PosetStr ℓ₁) poset-iso
poset-is-SNS-PathP = SNS-≡→SNS-PathP poset-iso poset-is-SNS
poset-SIP : (A : Type ℓ₀) (B : Type ℓ₀) (eqv : A ≃ B)
(P : PosetStr ℓ₁ A) (Q : PosetStr ℓ₁ B)
→ poset-iso (A , P) (B , Q) eqv
→ (A , P) ≡ (B , Q)
poset-SIP {ℓ₁ = ℓ₁} A B eqv P Q i = φ (eqv , i)
where
φ : (A , P) ≃[ poset-iso ] (B , Q) → (A , P) ≡ (B , Q)
φ = equivFun (SIP poset-is-SNS-PathP (A , P) (B , Q))
≃ₚ→≡ : (P Q : Poset ℓ₀ ℓ₁) → P ≃ₚ Q → P ≡ Q
≃ₚ→≡ (A , A-pos) (B , B-pos) (eqv , i) = poset-SIP A B eqv A-pos B-pos i
| {
"alphanum_fraction": 0.5311619167,
"avg_line_length": 35.4777777778,
"ext": "agda",
"hexsha": "3229e7680cb80143a844f41cd133840e3494a5a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmester0/cubical",
"max_forks_repo_path": "Cubical/Structures/Poset.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmester0/cubical",
"max_issues_repo_path": "Cubical/Structures/Poset.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmester0/cubical",
"max_stars_repo_path": "Cubical/Structures/Poset.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 3118,
"size": 6386
} |
-- An ATP axiom must be used with postulates or data constructors.
-- This error is detected by TypeChecking.Rules.Decl.
module ATPBadAxiom where
foo : Set → Set
foo A = A
{-# ATP axiom foo #-}
| {
"alphanum_fraction": 0.7157360406,
"avg_line_length": 19.7,
"ext": "agda",
"hexsha": "ea1ba5611e9af1c4a1739a160d455d9f5e252de2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/fail/ATPBadAxiom.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/fail/ATPBadAxiom.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/fail/ATPBadAxiom.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 51,
"size": 197
} |
open import Issue623.A
| {
"alphanum_fraction": 0.8260869565,
"avg_line_length": 11.5,
"ext": "agda",
"hexsha": "24956bb3f7f721833dd0f7d2501d519f244940ee",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue623A.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue623A.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue623A.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 6,
"size": 23
} |
open import FRP.JS.Nat using ( ℕ )
open import FRP.JS.String using ( String )
module FRP.JS.Geolocation.Distance where
postulate
Distance : Set
_m : ℕ → Distance
toString : Distance → String
{-# COMPILED_JS _m function(x) { return x; } #-}
{-# COMPILED_JS toString function(x) { return x.toString(); } #-}
| {
"alphanum_fraction": 0.6857142857,
"avg_line_length": 24.2307692308,
"ext": "agda",
"hexsha": "4f7368a593ab1438340d4a04093ca7ffb5c41ddb",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Geolocation/Distance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Geolocation/Distance.agda",
"max_line_length": 65,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Geolocation/Distance.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 88,
"size": 315
} |
-- Using do-notation to implement a type checker for simply-typed
-- lambda-calculus.
module _ where
open import Agda.Builtin.Nat hiding (_==_)
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.String
-- Preliminaries --
--- Decidable equality ---
data ⊥ : Set where
¬_ : Set → Set
¬ A = A → ⊥
data Dec (P : Set) : Set where
yes : P → Dec P
no : ¬ P → Dec P
record Eq (A : Set) : Set where
field _==_ : (x y : A) → Dec (x ≡ y)
open Eq {{...}}
--- Functors, Applicatives, and Monads ---
record Functor (F : Set → Set) : Set₁ where
field fmap : ∀ {A B} → (A → B) → F A → F B
open Functor {{...}}
record Applicative (F : Set → Set) : Set₁ where
field
pure : ∀ {A} → A → F A
_<*>_ : ∀ {A B} → F (A → B) → F A → F B
overlap {{super}} : Functor F
open Applicative {{...}}
record Monad (M : Set → Set) : Set₁ where
field
_>>=_ : ∀ {A B} → M A → (A → M B) → M B
overlap {{super}} : Applicative M
_>>_ : ∀ {A B} → M A → M B → M B
m >> m' = m >>= λ _ → m'
open Monad {{...}}
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A → Maybe A
instance
FunctorMaybe : Functor Maybe
fmap {{FunctorMaybe}} f nothing = nothing
fmap {{FunctorMaybe}} f (just x) = just (f x)
ApplicativeMaybe : Applicative Maybe
pure {{ApplicativeMaybe}} = just
_<*>_ {{ApplicativeMaybe}} nothing _ = nothing
_<*>_ {{ApplicativeMaybe}} (just _) nothing = nothing
_<*>_ {{ApplicativeMaybe}} (just f) (just x) = just (f x)
MonadMaybe : Monad Maybe
_>>=_ {{MonadMaybe}} nothing f = nothing
_>>=_ {{MonadMaybe}} (just x) f = f x
--- List membership ---
infix 2 _∈_
data _∈_ {A : Set} (x : A) : List A → Set where
zero : ∀ {xs} → x ∈ x ∷ xs
suc : ∀ {y xs} → x ∈ xs → x ∈ y ∷ xs
rawIndex : ∀ {A} {x : A} {xs} → x ∈ xs → Nat
rawIndex zero = zero
rawIndex (suc i) = suc (rawIndex i)
-- Simply typed λ-calculus --
infixr 7 _=>_
data Type : Set where
nat : Type
_=>_ : Type → Type → Type
--- Decidable equality for Type ---
private
=>-inj₁ : ∀ {σ₁ σ₂ τ₁ τ₂} → (σ₁ => τ₁) ≡ (σ₂ => τ₂) → σ₁ ≡ σ₂
=>-inj₁ refl = refl
=>-inj₂ : ∀ {σ₁ σ₂ τ₁ τ₂} → σ₁ => τ₁ ≡ σ₂ => τ₂ → τ₁ ≡ τ₂
=>-inj₂ refl = refl
instance
EqType : Eq Type
_==_ {{EqType}} nat nat = yes refl
_==_ {{EqType}} nat (τ => τ₁) = no λ()
_==_ {{EqType}} (σ => σ₁) nat = no λ()
_==_ {{EqType}} (σ => σ₁) (τ => τ₁) with σ == τ | σ₁ == τ₁
... | yes refl | yes refl = yes refl
... | yes refl | no neq = no λ eq → neq (=>-inj₂ eq)
... | no neq | _ = no λ eq → neq (=>-inj₁ eq)
--- Raw terms ---
data Expr : Set where
var : Nat → Expr
app : Expr → Expr → Expr
lam : Type → Expr → Expr
lit : Nat → Expr
suc : Expr
--- Well-typed terms ---
Context = List Type
data Term (Γ : Context) : Type → Set where
var : ∀ {τ} (x : τ ∈ Γ) → Term Γ τ
app : ∀ {σ τ} (s : Term Γ (σ => τ)) (t : Term Γ σ) → Term Γ τ
lam : ∀ σ {τ} (t : Term (σ ∷ Γ) τ) → Term Γ (σ => τ)
lit : (n : Nat) → Term Γ nat
suc : Term Γ (nat => nat)
--- Erasing types ---
forgetTypes : ∀ {Γ τ} → Term Γ τ → Expr
forgetTypes (var x) = var (rawIndex x)
forgetTypes (app s t) = app (forgetTypes s) (forgetTypes t)
forgetTypes (lam σ t) = lam σ (forgetTypes t)
forgetTypes (lit n) = lit n
forgetTypes suc = suc
--- Type checking ---
TC = Maybe
typeError : ∀ {A} → TC A
typeError = nothing
data WellTyped (Γ : Context) (e : Expr) : Set where
ok : (σ : Type) (t : Term Γ σ) → forgetTypes t ≡ e → WellTyped Γ e
data InScope (Γ : Context) (n : Nat) : Set where
ok : (σ : Type) (i : σ ∈ Γ) → rawIndex i ≡ n → InScope Γ n
infix 2 _∋_
pattern _∋_ σ x = ok σ x refl
lookupVar : ∀ Γ n → TC (InScope Γ n)
lookupVar [] n = typeError
lookupVar (σ ∷ Γ) zero = pure (σ ∋ zero)
lookupVar (σ ∷ Γ) (suc n) = do
τ ∋ i ← lookupVar Γ n
pure (τ ∋ suc i)
-- Correct-by-construction type inference
infer : ∀ Γ e → TC (WellTyped Γ e)
infer Γ (var x) = do
τ ∋ i ← lookupVar Γ x
pure (τ ∋ var i)
infer Γ (app e e₁) = do
σ => τ ∋ s ← infer Γ e where nat ∋ s → typeError
σ′ ∋ t ← infer Γ e₁
yes refl ← pure (σ == σ′) where no _ → typeError
pure (τ ∋ app s t)
infer Γ (lam σ e) = do
τ ∋ t ← infer (σ ∷ Γ) e
pure (σ => τ ∋ lam σ t)
infer Γ (lit x) = pure (nat ∋ lit x)
infer Γ suc = pure (nat => nat ∋ suc)
-- Check that it works
test : infer [] (lam (nat => nat) (lam nat (app (var 1) (var 0)))) ≡
pure ((nat => nat) => nat => nat ∋
lam (nat => nat) (lam nat (app (var (suc zero)) (var zero))))
test = refl
| {
"alphanum_fraction": 0.5485575864,
"avg_line_length": 25.0883977901,
"ext": "agda",
"hexsha": "69def6f4adfb17b30ca61b2ec541dc7084bcfa91",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/DoNotation.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/DoNotation.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/DoNotation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1711,
"size": 4541
} |
{-# OPTIONS --without-K --safe #-}
module Data.String.Printf where
open import Data.List using (List; []; _∷_; foldr)
open import Data.String hiding (show)
open import Data.Nat hiding (_≟_)
open import Data.Char as Char using (Char)
import Level
open import Relation.Nullary
infixr 6 _%_
record FormatUnit : Set (Level.suc Level.zero) where
constructor _%_
field
marker : Char
{type} : Set
conv : type → String
open FormatUnit public
module Internal where
data Formatter : Set (Level.suc Level.zero) where
chr : Char → Formatter
cnv : (t : Set) → (t → String) → Formatter
formatUnitTy : Formatter → Set → Set
formatUnitTy (chr _) xs = xs
formatUnitTy (cnv t _) xs = t → xs
formatTy : List Formatter → Set
formatTy = foldr formatUnitTy String
toFormat : List FormatUnit → List Char → List Formatter
toFormat fs [] = []
toFormat fs ('%' ∷ x ∷ xs) = go fs x xs where
go : List FormatUnit → Char → List Char → List Formatter
go [] x xs = chr x ∷ toFormat fs xs
go (f ∷ fs) x xs with marker f Char.≟ x
go (f ∷ _ ) x xs | yes p = cnv _ (conv f) ∷ toFormat fs xs
go (f ∷ fs) x xs | no ¬p = go fs x xs
toFormat fs (x ∷ xs) = chr x ∷ toFormat fs xs
printf : (fs : List FormatUnit) → (xs : String) → formatTy (toFormat fs (toList xs))
printf fs xs = go "" (toFormat fs (toList xs))
where
go : String → (xs : List Formatter) → formatTy xs
go k [] = k
go k (chr x ∷ xs) = go (k ++ fromList (x ∷ [])) xs
go k (cnv _ c ∷ xs) = λ x → go (k ++ c x) xs
import Data.Nat.Show
open import Function
standard : List FormatUnit
standard = 'i' % Data.Nat.Show.show ∷ 's'% id ∷ []
module Printf (fs : List FormatUnit) where
printf : (xs : String) → Internal.formatTy (Internal.toFormat fs (toList xs))
printf = Internal.printf fs
| {
"alphanum_fraction": 0.6362631288,
"avg_line_length": 30.6610169492,
"ext": "agda",
"hexsha": "90926007e7cfe455668125de58ecdc1f902e34cd",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Data/String/Printf.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Data/String/Printf.agda",
"max_line_length": 86,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Data/String/Printf.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 573,
"size": 1809
} |
-- Andreas, 2014-06-27 test case by Ulf
-- {-# OPTIONS -v tc.lhs:40 #-}
{-# OPTIONS --copatterns #-}
record Coind : Set where
coinductive
field ind : Coind
open Coind
loop : Set -> Coind
ind A loop = ind (loop A)
-- WAS: Internal error.
-- NOW: Proper error.
-- Ill-formed projection pattern ind A
-- when checking that the clause ind A loop = ind (loop A) has type
-- Set → Coind
| {
"alphanum_fraction": 0.6564102564,
"avg_line_length": 19.5,
"ext": "agda",
"hexsha": "72b86abd3fcadb72b1f8b923a8d7facc4a60c23a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1216.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1216.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1216.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 118,
"size": 390
} |
{-# OPTIONS --without-K #-}
module function.isomorphism.properties where
open import level
open import sum
open import sets.nat.core
open import equality.core
open import equality.calculus
open import equality.reasoning
open import function.core
open import function.fibration
open import function.overloading
open import function.extensionality.core
open import function.extensionality.proof
open import function.isomorphism.core
open import function.isomorphism.coherent
open import function.isomorphism.lift
open import function.isomorphism.utils
open import function.isomorphism.two-out-of-six
open import hott.equivalence.core
open import hott.equivalence.alternative
open import hott.level.core
open import hott.loop.core
open import sets.unit
iso-adjunction : ∀ {i j}{X : Set i}{Y : Set j}
→ (isom : X ≅ Y)(x : X)(y : Y)
→ (apply isom x ≡ y) ≅ (x ≡ invert isom y)
iso-adjunction {i}{j}{X}{Y} isom x y
= family-eq-iso total' (λ { (y , x) q → comm' x y q }) (y , x)
where
open _≅_ isom
open ≅-Reasoning
to-we : weak-equiv to
to-we = proj₂ (≅⇒≈ isom)
total' : (Σ (Y × X) λ { (y , x) → to x ≡ y })
≅ (Σ (Y × X) λ { (y , x) → x ≡ from y})
total' = Σ-assoc-iso
·≅ ( Σ-ap-iso refl≅ λ y
→ contr-⊤-iso (to-we y)
·≅ sym≅ (contr-⊤-iso (singl-contr' (from y))) )
·≅ sym≅ Σ-assoc-iso
comm' : (x : X)(y : Y)(p : to x ≡ y)
→ proj₁ (apply total' ((y , x) , p)) ≡ (y , x)
comm' x y q = ap (_,_ y) (sym (ap from q) · iso₁ x)
private
iso≡-lem : ∀ {i j}{X : Set i}{Y : Set j}
→ (isom : X ≅ Y)
→ (x x' : X)
→ weak-equiv (λ (p : x ≡ x') → ap (invert isom) (ap (apply isom) p))
iso≡-lem {X = X} isom x x' = step₃
where
step₁ : ∀ {k}{A : Set k}(a a' : A)
→ weak-equiv {X = a ≡ a'} {Y = a ≡ a'} (ap (λ x → x))
step₁ a a' = subst weak-equiv (sym (funext ap-id)) (proj₂ (≅⇒≈ refl≅))
step₂ : weak-equiv (λ (p : x ≡ x') → ap (invert isom ∘ apply isom) p)
step₂ = subst (λ u → weak-equiv {X = x ≡ x'} (ap u)) (sym (funext (_≅_.iso₁ isom)))
(step₁ x x')
step₃ = subst weak-equiv (sym (funext λ p → ap-hom (apply isom) (invert isom) p)) step₂
iso≡ : ∀ {i j}{X : Set i}{Y : Set j}
→ (isom : X ≅ Y)
→ {x x' : X}
→ (x ≡ x')
≅ (apply isom x ≡ apply isom x')
iso≡ isom {x}{x'} = two-out-of-six.f-iso
(ap (apply isom))
(ap (invert isom))
(ap (apply isom))
(iso≡-lem isom x x')
(iso≡-lem (sym≅ isom) (apply isom x) (apply isom x'))
private
abstract
Ω-iso' : ∀ {i j}{X : Set i}{Y : Set j}(n : ℕ)
→ (φ : X ≅ Y)(x : X)
→ Ω n x ≅ Ω n (apply φ x)
Ω-iso' {X = X}{Y = Y} zero φ x = φ
Ω-iso' (suc n) φ x = Ω-iso' n (iso≡ φ) refl
Ω-iso-β : ∀ {i j}{X : Set i}{Y : Set j}(n : ℕ)
→ (φ : X ≅ Y)(x : X)
→ (p : Ω n x)
→ apply (Ω-iso' n φ x) p ≡ mapΩ n (apply φ) p
Ω-iso-β zero φ x p = refl
Ω-iso-β (suc n) φ x p = Ω-iso-β n (iso≡ φ) refl p
Ω-iso : ∀ {i j}{X : Set i}{Y : Set j}(n : ℕ)
→ (φ : X ≅ Y)(x : X)
→ Ω n x ≅ Ω n (apply φ x)
Ω-iso n φ x = ≈⇒≅ ( (λ p → mapΩ n (apply φ) p)
, subst weak-equiv eq we)
where
abstract
we : weak-equiv (apply (Ω-iso' n φ x))
we = proj₂ (≅⇒≈ (Ω-iso' n φ x))
eq : apply (Ω-iso' n φ x) ≡ mapΩ n (apply φ)
eq = funext (Ω-iso-β n φ x)
abstract
subtype-eq : ∀ {i j k}{A : Set i}{P : A → Set j}
→ ((x : A) → h 1 (P x))
→ {X : Set k}
→ (isom : X ≅ Σ A P)
→ {x y : X}
→ (proj₁ (apply isom x) ≡ proj₁ (apply isom y))
→ x ≡ y
subtype-eq hP isom p = iso⇒inj isom
(unapΣ (p , h1⇒prop (hP _) _ _))
| {
"alphanum_fraction": 0.5062087186,
"avg_line_length": 32.3504273504,
"ext": "agda",
"hexsha": "a384e31bbea5d4bf5af497a87cfceb039ce5e7dd",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/function/isomorphism/properties.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/function/isomorphism/properties.agda",
"max_line_length": 93,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/function/isomorphism/properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 1488,
"size": 3785
} |
------------------------------------------------------------------------------
-- Arithmetic properties (added for the Collatz function example)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Collatz.Data.Nat.PropertiesI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.PropertiesI
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.PropertiesI
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Data.Nat.UnaryNumbers.TotalityI
open import FOTC.Program.Collatz.Data.Nat
------------------------------------------------------------------------------
-- Congruence properties
divLeftCong : ∀ {m n o} → m ≡ n → div m o ≡ div n o
divLeftCong refl = refl
divRightCong : ∀ {m n o} → n ≡ o → div m n ≡ div m o
divRightCong refl = refl
------------------------------------------------------------------------------
^-N : ∀ {m n} → N m → N n → N (m ^ n)
^-N {m} Nm nzero = subst N (sym (^-0 m)) (nsucc nzero)
^-N {m} Nm (nsucc {n} Nn) = subst N (sym (^-S m n)) (*-N Nm (^-N Nm Nn))
div-0-x≡0 : ∀ {n} → N n → n ≢ 0' → div 0' n ≡ 0'
div-0-x≡0 nzero h = ⊥-elim (h refl)
div-0-x≡0 (nsucc {n} Nn) h = div-x<y h (lt-0S n)
div-x-x≡1 : ∀ {n} → N n → n ≢ 0' → div n n ≡ 1'
div-x-x≡1 {n} Nn h =
div n n ≡⟨ div-x≥y h (x≤x Nn) ⟩
succ₁ (div (n ∸ n) n) ≡⟨ succCong (divLeftCong (x∸x≡0 Nn)) ⟩
succ₁ (div 0' n) ≡⟨ succCong (div-0-x≡0 Nn h) ⟩
1' ∎
div-2x-2≡x : ∀ {n} → N n → div (2' * n) 2' ≡ n
div-2x-2≡x nzero = prf
where
-- See the combined proof.
postulate prf : div (2' * zero) 2' ≡ zero
div-2x-2≡x (nsucc nzero) =
div (2' * 1') 2'
≡⟨ divLeftCong (*-rightIdentity 2-N) ⟩
div 2' 2'
≡⟨ div-x≥y S≢0 (x≤x 2-N) ⟩
succ₁ (div (2' ∸ 2') 2')
≡⟨ succCong (divLeftCong (x∸x≡0 2-N)) ⟩
succ₁ (div zero 2')
≡⟨ succCong (div-x<y S≢0 (lt-0S 1')) ⟩
1' ∎
div-2x-2≡x (nsucc (nsucc {n} Nn)) = prf
where
-- See the combined proof.
postulate prf : div (2' * (succ₁ (succ₁ n))) 2' ≡ succ₁ (succ₁ n)
div-2^[x+1]-2≡2^x : ∀ {n} → N n → div (2' ^ succ₁ n) 2' ≡ 2' ^ n
div-2^[x+1]-2≡2^x {n} Nn =
div (2' ^ succ₁ n) 2'
≡⟨ divLeftCong (^-S 2' n) ⟩
div (2' * 2' ^ n) 2'
≡⟨ div-2x-2≡x (^-N 2-N Nn) ⟩
2' ^ n ∎
+∸2 : ∀ {n} → N n → n ≢ zero → n ≢ 1' → n ≡ succ₁ (succ₁ (n ∸ 2'))
+∸2 nzero n≢0 _ = ⊥-elim (n≢0 refl)
+∸2 (nsucc nzero) _ n≢1 = ⊥-elim (n≢1 refl)
+∸2 (nsucc (nsucc {n} Nn)) _ _ = sym prf
where
prf : succ₁ (succ₁ (succ₁ (succ₁ n) ∸ 2')) ≡ succ₁ (succ₁ n)
prf = succ₁ (succ₁ (succ₁ (succ₁ n) ∸ 2'))
≡⟨ succCong (succCong (S∸S (nsucc Nn) (nsucc nzero))) ⟩
succ₁ (succ₁ ((succ₁ n) ∸ 1'))
≡⟨ succCong (succCong (S∸S Nn nzero)) ⟩
succ₁ (succ₁ (n ∸ zero))
≡⟨ succCong (succCong (∸-x0 n)) ⟩
succ₁ (succ₁ n) ∎
x^1≡x : ∀ {n} → N n → n ^ 1' ≡ n
x^1≡x {n} Nn =
n ^ 1' ≡⟨ ^-S n 0' ⟩
n * n ^ 0' ≡⟨ *-rightCong (^-0 n) ⟩
n * 1' ≡⟨ *-rightIdentity Nn ⟩
n ∎
2^x≢0 : ∀ {n} → N n → 2' ^ n ≢ zero
2^x≢0 nzero h = ⊥-elim (0≢S (trans (sym h) (^-0 2')))
2^x≢0 (nsucc {n} Nn) h =
case (λ 2≡0 → ⊥-elim (0≢S (sym 2≡0)))
(λ 2^n≡0 → ⊥-elim (2^x≢0 Nn 2^n≡0))
(xy≡0→x≡0∨y≡0 2-N (^-N 2-N Nn) (trans (sym (^-S 2' n)) h))
2^[x+1]≢1 : ∀ {n} → N n → 2' ^ succ₁ n ≢ 1'
2^[x+1]≢1 {n} Nn h =
Sx≢x 1-N (xy≡1→x≡1 2-N (^-N 2-N Nn) (trans (sym (^-S 2' n)) h))
Sx-Even→x-Odd : ∀ {n} → N n → Even (succ₁ n) → Odd n
Sx-Even→x-Odd nzero h = ⊥-elim (t≢f (trans₂ (sym h) (even-S zero) odd-0))
Sx-Even→x-Odd (nsucc {n} Nn) h = trans (sym (even-S (succ₁ n))) h
Sx-Odd→x-Even : ∀ {n} → N n → Odd (succ₁ n) → Even n
Sx-Odd→x-Even nzero _ = even-0
Sx-Odd→x-Even (nsucc {n} Nn) h = trans (sym (odd-S (succ₁ n))) h
∸-Even : ∀ {m n} → N m → N n → Even m → Even n → Even (m ∸ n)
∸-Odd : ∀ {m n} → N m → N n → Odd m → Odd n → Even (m ∸ n)
∸-Even {m} Nm nzero h₁ _ = subst Even (sym (∸-x0 m)) h₁
∸-Even nzero (nsucc {n} Nn) h₁ _ = subst Even (sym (0∸x (nsucc Nn))) h₁
∸-Even (nsucc {m} Nm) (nsucc {n} Nn) h₁ h₂ =
subst Even (sym (S∸S Nm Nn))
(∸-Odd Nm Nn (Sx-Even→x-Odd Nm h₁) (Sx-Even→x-Odd Nn h₂))
∸-Odd nzero Nn h₁ _ = ⊥-elim (t≢f (trans (sym h₁) odd-0))
∸-Odd (nsucc Nm) nzero _ h₂ = ⊥-elim (t≢f (trans (sym h₂) odd-0))
∸-Odd (nsucc {m} Nm) (nsucc {n} Nn) h₁ h₂ =
subst Even (sym (S∸S Nm Nn))
(∸-Even Nm Nn (Sx-Odd→x-Even Nm h₁) (Sx-Odd→x-Even Nn h₂))
x-Even→SSx-Even : ∀ {n} → N n → Even n → Even (succ₁ (succ₁ n))
x-Even→SSx-Even nzero h =
even 2' ≡⟨ even-S 1' ⟩
odd 1' ≡⟨ odd-S zero ⟩
even zero ≡⟨ even-0 ⟩
true ∎
x-Even→SSx-Even (nsucc {n} Nn) h =
even (succ₁ (succ₁ (succ₁ n)))
≡⟨ even-S (succ₁ (succ₁ n)) ⟩
odd (succ₁ (succ₁ n))
≡⟨ odd-S (succ₁ n) ⟩
even (succ₁ n)
≡⟨ h ⟩
true ∎
2-Even : Even 2'
2-Even = x-Even→SSx-Even nzero even-0
x+x-Even : ∀ {n} → N n → Even (n + n)
x+x-Even nzero = subst Even (sym (+-rightIdentity nzero)) even-0
x+x-Even (nsucc {n} Nn) = subst Even (sym prf)
(x-Even→SSx-Even (+-N Nn Nn) (x+x-Even Nn))
where
prf : succ₁ n + succ₁ n ≡ succ₁ (succ₁ (n + n))
prf = succ₁ n + succ₁ n
≡⟨ +-Sx n (succ₁ n) ⟩
succ₁ (n + succ₁ n)
≡⟨ succCong (+-comm Nn (nsucc Nn)) ⟩
succ₁ (succ₁ n + n)
≡⟨ succCong (+-Sx n n) ⟩
succ₁ (succ₁ (n + n)) ∎
2x-Even : ∀ {n} → N n → Even (2' * n)
2x-Even nzero = subst Even (sym (*-rightZero 2-N)) even-0
2x-Even (nsucc {n} Nn) = subst Even (sym prf)
(x-Even→SSx-Even (+-N Nn Nn) (x+x-Even Nn))
where
prf : 2' * succ₁ n ≡ succ₁ (succ₁ (n + n))
prf =
2' * succ₁ n
≡⟨ *-Sx 1' (succ₁ n) ⟩
succ₁ n + 1' * succ₁ n
≡⟨ +-Sx n (1' * succ₁ n) ⟩
succ₁ (n + 1' * succ₁ n)
≡⟨ succCong (+-rightCong (*-Sx zero (succ₁ n))) ⟩
succ₁ (n + (succ₁ n + zero * succ₁ n))
≡⟨ succCong (+-rightCong (+-rightCong (*-leftZero (succ₁ n)))) ⟩
succ₁ (n + (succ₁ n + zero))
≡⟨ succCong (+-rightCong (+-rightIdentity (nsucc Nn))) ⟩
succ₁ (n + succ₁ n)
≡⟨ succCong (+-comm Nn (nsucc Nn)) ⟩
succ₁ (succ₁ n + n)
≡⟨ succCong (+-Sx n n) ⟩
succ₁ (succ₁ (n + n)) ∎
2^[x+1]-Even : ∀ {n} → N n → Even (2' ^ succ₁ n)
2^[x+1]-Even {n} Nn = subst Even (sym (^-S 2' n)) (2x-Even (^-N 2-N Nn))
| {
"alphanum_fraction": 0.4772592152,
"avg_line_length": 34.8601036269,
"ext": "agda",
"hexsha": "afdf489136c290fbc8b0a53e0624249a9e229e0c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Collatz/Data/Nat/PropertiesI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Collatz/Data/Nat/PropertiesI.agda",
"max_line_length": 84,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Collatz/Data/Nat/PropertiesI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 3082,
"size": 6728
} |
open import Relation.Binary
using (Decidable)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; _≢_ ; refl ; subst ; subst₂)
open import Data.Nat as Nat
using (ℕ ; _≤′_ ; _+_)
open import Relation.Binary.PropositionalEquality using (sym)
import Relation.Unary as U
open import Function
using (_∘_)
open import Relation.Nullary
module Data.FiniteMap
{Key : Set}
(inject : Key → ℕ)
(surject : ℕ → Key)
(inject-injective : ∀ {k1 k2} → inject k1 ≡ inject k2 → k1 ≡ k2)
(surject-inject : ∀ {k} → inject (surject k) ≡ k)
where
open import utility
open import Data.Maybe using (just)
open import Data.Empty
using (⊥-elim)
open import Data.List
using (List ; _++_ ; [_] ; [] ; _∷_)
open import Data.List.Any
using (any ; here ; there ; Any)
open import Data.Nat
using (ℕ ; zero ; suc)
open import Data.Sum
using (inj₁ ; inj₂ ; _⊎_)
open import Data.Product
using (Σ ; Σ-syntax ; ∃ ; proj₁ ; proj₂ ; _×_ ; _,_ ; ∃-syntax ; uncurry ; map)
open import Function
using (id ; _$_)
open import Relation.Nullary
using (yes ; no)
open import Data.OrderedListMap(Key)(inject) as OMap hiding (insert-mono ; U-mono)
open import Data.Bool using (Bool ; true ; false)
private
nbiject : ∀ {k1 k2} → k1 ≢ k2 → inject k1 ≢ inject k2
nbiject = (_∘ inject-injective)
Map : Set → Set
Map = LMap
keys : ∀{Value} → Map Value → List ℕ
keys{Value} l = (Dom' Value l)
keys+∈ : ∀{Value} → (l : Map Value) → List (∃[ n ] (n ∈ (Dom' Value l)))
keys+∈{Value} l = (Dom'+∈ Value l)
inj= : Key → ℕ → Set
inj= = _≡_ ∘ inject
∈Dom : ∀{Value} → Key → Map Value → Set
∈Dom{Value} k m = (inject k) ∈ (Dom' Value m)
in-inject : ∀ {Value}{x : ℕ} → (l : Map Value) → x ∈ Dom' Value l → ∈Dom (surject x) l
in-inject{x = x} l ∈ rewrite surject-inject{x} = ∈
key-map : ∀{Value}{a}{L : Set a} → (l : Map Value) → (f : (k : Key) → (∈Dom k l) → L) → List L
key-map{L = L} l f
= Data.List.map ((uncurry f) ∘ (map surject (in-inject l)))
(keys+∈ l)
∈Check : ∀{Value}
→ (k : Key)
→ (m : Map Value)
→ Relation.Nullary.Dec (∈Dom k m)
∈Check{Value} k m = any (Nat._≟_ (inject k)) (Dom' Value m)
lookup : ∀{Value k} → (l : Map Value) → (∈Dom k l) → Value
lookup{Value}{k = k} m k∈ = deref Value (inject k) m k∈
update : ∀{Value} → (l : Map Value) → Key → Value → Map Value
update{Value} l k v = m-insert Value (just v) (inject k) l
-- Union map. For repeated keys, the values from the second map is preferred.
union : ∀{Value} → Map Value → Map Value → Map Value
union{Value} m1 m2 = (_U_ Value m1 m2)
empty : ∀{Value} → Map Value
empty = []
[_↦_] : ∀{Value} → (k : Key) → (v : Value) → Map Value
[ k ↦ v ] = update empty k v
[_↦_,_↦_] : ∀{Value} →
(k₁ : Key) → (v₁ : Value) →
(k₂ : Key) → (v₂ : Value) →
Map Value
[ k₁ ↦ v₁ , k₂ ↦ v₂ ] = update [ k₁ ↦ v₁ ] k₂ v₂
keys-1map : ∀{Value} → (k : Key) → (v : Value) → keys [ k ↦ v ] ≡ inject k ∷ []
keys-1map {Value} k v = Dom'-1map Value (inject k) v
keys-2map : ∀{Value} → (k₁ : Key) → (v₁ : Value) → (k₂ : Key) → (v₂ : Value) →
(keys [ k₁ ↦ v₁ , k₂ ↦ v₂ ] ≡ inject k₁ ∷ [] × k₁ ≡ k₂) ⊎
(keys [ k₁ ↦ v₁ , k₂ ↦ v₂ ] ≡ inject k₁ ∷ inject k₂ ∷ []) ⊎
(keys [ k₁ ↦ v₁ , k₂ ↦ v₂ ] ≡ inject k₂ ∷ inject k₁ ∷ [])
keys-2map {Value} k₁ v₁ k₂ v₂ =
Data.Sum.map (Data.Product.map id inject-injective) id
(Dom'-2map Value (inject k₁) v₁ (inject k₂) v₂)
keys-1map-distinct : ∀{Value} → (k1 k2 : Key) → (v1 v2 : Value) → ¬ (k1 ≡ k2) → utility.distinct' (keys [ k1 ↦ v1 ]) (keys [ k2 ↦ v2 ])
keys-1map-distinct k1 k2 v1 v2 neg z k1∈ k2∈ rewrite (keys-1map k1 v1) | (keys-1map k2 v2) with k1∈ | k2∈
... | here refl | here px = (nbiject neg) px
... | there () | _
... | here px | there ()
keys-1map∈ : ∀{Value} → (k1 : Key) → (v1 : Value) → (inject k1) ∈ keys [ k1 ↦ v1 ]
keys-1map∈ k v rewrite keys-1map k v = here refl
2map-eq-one : ∀{V} k1 k2 v k1∈ → (lookup{V}{k1} ([ k1 ↦ v , k2 ↦ v ]) k1∈) ≡ v
2map-eq-one {V} k1 k2 = insert-two-eq-one V (inject k1) (inject k2)
2map-eq-two : ∀{V} k1 k2 v k2∈ → (lookup{V}{k2} ([ k1 ↦ v , k2 ↦ v ]) k2∈) ≡ v
2map-eq-two {V} k1 k2 = insert-two-eq-two V (inject k1) (inject k2)
-- theorems
update-in-keys : ∀{V} m k v → ∈Dom k (update{V} m k v)
update-in-keys {V} m k = insert-in-domain V m (inject k)
lookup-∈-irr : ∀{Value k m} → (∈1 : ∈Dom k m) → (∈2 : ∈Dom k m) → lookup{Value}{k} m ∈1 ≡ lookup{Value}{k} m ∈2
lookup-∈-irr{Value} ∈1 ∈2 = deref-∈-irr Value ∈1 ∈2
insert-mono : ∀{Value k m k' v} → ∈Dom k m → ∈Dom k (update{Value} m k' v)
insert-mono{Value}{k}{m}{k'}{v} i = (OMap.insert-mono Value {m}{inject k}{inject k'}{v} i)
U-mono : ∀{Value m m' k} → ∈Dom k m → ∈Dom k (union{Value} m m')
U-mono{V}{m}{m'}{k} i = OMap.U-mono V {m}{m'}{inject k} i
union-comm : ∀ {Value} → (m1 : Map Value) → (m2 : Map Value) → distinct' (keys m1) (keys m2) → union m1 m2 ≡ union m2 m1
union-comm {Value} m1 m2 keys-m1≠keys-m2 = U-comm Value {m1} {m2} keys-m1≠keys-m2
union-assoc : ∀ {Value} → (m1 m2 m3 : Map Value) → union m1 (union m2 m3) ≡ union (union m1 m2) m3
union-assoc {Value} = U-assoc Value
keys-assoc-comm : ∀ {Value} m1 m2 m3 →
keys (union {Value} (union {Value} m1 m2) m3) ≡
keys (union {Value} (union {Value} m1 m3) m2)
keys-assoc-comm {Value} = Dom'-assoc-comm Value
U⁻-m : ∀ {Value m m' n} → ∈Dom n (union {Value} m m') → ∈Dom n m ⊎ ∈Dom n m'
U⁻-m {Value} {m} {m'} {n} = U⁻ Value {m} {m'} {inject n}
U-∉-irr-get-help-m : ∀{Value m m' k} → (k∈m : ∈Dom k m) → ¬ (∈Dom k m') → (k∈' : ∈Dom k (union {Value} m m'))→ lookup {Value} {k} m k∈m ≡ lookup {Value} {k} (union {Value} m m') k∈'
U-∉-irr-get-help-m {Value} = U-∉-irr-get-help Value
U-∉-irr-get-m : ∀{Value m m' k} → (k∈m : ∈Dom k m) → ¬ (∈Dom k m') → ∃ λ k∈' → lookup {Value} {k} m k∈m ≡ lookup {Value} {k} (union {Value} m m') k∈'
U-∉-irr-get-m {Value} = U-∉-irr-get Value
get-U-right-irr-m : ∀ {Value} k m m' →
(k∈mUm' : ∈Dom k (union {Value} m m')) →
(k∈m' : ∈Dom k m') →
lookup {Value} {k} (union {Value} m m') k∈mUm' ≡ lookup {Value} {k} m' k∈m'
get-U-right-irr-m {Value} k = deref-U-right-irr Value (inject k)
∈-get-U-irr-m : ∀ {Value} k m m' m'' k∈mUm'' k∈m'Um'' →
(k∈m'' : ∈Dom k m'') →
lookup {Value} {k} (union {Value} m m'') k∈mUm'' ≡
lookup {Value} {k} (union {Value} m' m'') k∈m'Um''
∈-get-U-irr-m {Value} k = ∈-deref-U-irr Value (inject k)
get-U-both-irr-m : ∀ {Value} k m m' m'' k∈m k∈m' k∈mUm'' k∈m'Um'' →
lookup {Value} {k} m k∈m ≡ lookup {Value} {k} m' k∈m' →
lookup {Value} {k} (union {Value} m m'') k∈mUm'' ≡
lookup {Value} {k} (union {Value} m' m'') k∈m'Um''
get-U-both-irr-m {Value} k = deref-U-both-irr Value (inject k)
putputget : ∀{Value m k k' v v'}
→ ¬ k ≡ k'
→ (∈1 : ∈Dom k m)
→ (∈2 : ∈Dom k (update{Value} m k' v'))
→ lookup{Value}{k} m ∈1 ≡ v
→ lookup{Value}{k} (update{Value} m k' v') ∈2 ≡ v
putputget{V}{m}{k}{k'}{v}{v'} neq kin1 kin2 eq = putputget-neq V {inject k}{inject k'}{m} (nbiject neq) kin1 kin2 eq
putput-overwrite : ∀{Value} m k v v'
→ (update{Value} (update{Value} m k v) k v') ≡ (update m k v')
putput-overwrite {V} m k v v' = putputget-eq V (inject k) m v v'
getput-m : ∀ {Value} k m →
(∈1 : ∈Dom k m) →
m ≡ update {Value} m k (lookup {Value} {k} m ∈1)
getput-m {Value} k = getput Value (inject k)
putget-m : ∀{Value m k v} → (kin : ∈Dom k (update{Value} m k v)) → (lookup{Value}{k} (update{Value} m k v) kin) ≡ v
putget-m {V}{m}{k}{v} kin = putget V kin
update-union-union : ∀ {Value} k v m m' →
(∈1 : ∈Dom k m) →
(∈2 : ∈Dom k m') →
union {Value} m m' ≡
union {Value} (update {Value} m k v) m'
update-union-union {Value} k = put-U-U Value (inject k)
ineq-m : ∀{Value k m} → (k1 : ∈Dom{Value} k m) → (k2 : ∈Dom k m) → k1 ≡ k2
ineq-m {V}{k}{m} k1 k2 = ineq V {inject k}{m} k1 k2
put-comm : ∀{Value m k1 k2 v1 v2}
→ ¬ k1 ≡ k2 → (update (update{Value} m k1 v1) k2 v2) ≡ (update (update m k2 v2) k1 v1)
put-comm{V}{m}{k1}{k2}{v1}{v2} ¬k1≡k2 = insert-comm V {m}{inject k1}{inject k2}{v1}{v2} (nbiject ¬k1≡k2)
put-union-comm : ∀ {Value} k v m m' →
¬ (∈Dom k m') →
union {Value} (update {Value} m k v) m' ≡
update {Value} (union {Value} m m') k v
put-union-comm {Value} k = insert-U-comm Value (inject k)
union-=-irr : ∀ {Value} m m' → (keys{Value} m) ≡ (keys{Value} m') → ∀ k k∈ k∈2 → (lookup{Value}{k} (union m m') k∈) ≡ (lookup{Value}{k} m' k∈2)
union-=-irr {V} m m' eql k = U-=-irr V m m' eql (inject k)
union-single-overwrite : ∀ {V} k v1 v2 → union{V} [ k ↦ v1 ] [ k ↦ v2 ] ≡ [ k ↦ v2 ]
union-single-overwrite {V} k v1 v2 = U-single-overwrite V (inject k) v1 v2
update-single-val : ∀ {V} k v k∈ → lookup{V}{k} [ k ↦ v ] k∈ ≡ v
update-single-val {V} k v k∈ = set-single-val V (inject k) v k∈
single-val-overwrite : ∀ {V} k v m → (∈Dom{V} k m) → union{V} ([ k ↦ v ]) m ≡ m
single-val-overwrite {V} k = overwrite-single-val V (inject k)
union-insert-eq : ∀{V} k v m → (update{V} m k v) ≡ (union{V} m [ k ↦ v ])
union-insert-eq {V} k = U-insert-eq V (inject k)
update-domain-eq : ∀{V} k v m → (inject k) ∈ keys{V} m → (keys m) ≡ (keys (update{V} m k v))
update-domain-eq {V} k = insert-domain-eq V (inject k)
--(OMap.insert-mono Value {m}{inject k}{inject k'}{v} i)
keys-2map∈ : ∀{Value} → (k1 : Key) → (v1 : Value) → (k2 : Key) → (v2 : Value) → (∈Dom k1 [ k1 ↦ v1 , k2 ↦ v2 ]) × (∈Dom k2 [ k1 ↦ v1 , k2 ↦ v2 ])
keys-2map∈ {V} k1 v1 k2 v2 = insert-mono (keys-1map∈ k1 v1) , update-in-keys ([ k1 ↦ v1 ]) k2 v2
count : ∀ {V} -> (V -> Bool) -> Map V -> ℕ
count {V} p m = ocount V p m
change-one-count-goes-down :
∀ {Value} (m : Map Value) ->
(p : Value -> Bool) ->
(k : Key) ->
(k∈ : ∈Dom k m) ->
p (lookup m k∈) ≡ true ->
(v : Value) ->
p v ≡ false ->
count p m ≡ suc (count p (update m k v))
change-one-count-goes-down {V} m p k =
change-one-ocount-goes-down V m p (inject k)
change-nothing-count-stays-same :
∀ {Value} (m : Map Value) ->
(p : Value -> Bool) ->
(k : Key) ->
(k∈ : ∈Dom k m) ->
(v : Value) ->
p (lookup m k∈) ≡ p v ->
count p m ≡ count p (update m k v)
change-nothing-count-stays-same {V} m p k =
change-nothing-ocount-stays-same V m p (inject k)
count-merge≤′sum-count :
∀ {Value}
(m1 m2 : Map Value) ->
(p : Value -> Bool) ->
count p (union m1 m2) ≤′ count p m1 + count p m2
count-merge≤′sum-count {V} m1 m2 p =
ocount-merge≤′sum-ocount V m1 m2 p
| {
"alphanum_fraction": 0.5558114982,
"avg_line_length": 37.75,
"ext": "agda",
"hexsha": "bc7d3259ce5416d03e2cb9e777a2fc2b6e88aca9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Data/FiniteMap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Data/FiniteMap.agda",
"max_line_length": 181,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Data/FiniteMap.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 4446,
"size": 10419
} |
-- {-# OPTIONS --show-implicit --show-irrelevant #-}
module Data.QuadTree.LensProofs.Valid-LensGo where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
open import Data.QuadTree.InternalAgda
open import Agda.Primitive
open import Data.Lens.Proofs.LensLaws
open import Data.Lens.Proofs.LensPostulates
open import Data.Lens.Proofs.LensComposition
open import Data.QuadTree.LensProofs.Valid-LensLeaf
open import Data.QuadTree.LensProofs.Valid-LensA
open import Data.QuadTree.LensProofs.Valid-LensBCD
open import Axiom.Extensionality.Propositional
open import Data.QuadTree.Implementation.QuadrantLenses
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.SafeFunctions
open import Data.QuadTree.Implementation.PublicFunctions
open import Data.QuadTree.Implementation.DataLenses
{-
I spend close to 50 hours on this file, at the time of writing more than the rest of the lens proofs combined.
The file still looks horrible and there is very serious code duplication, but I honestly wish to never look at this file again.
In order to proof this we need some form of Extensionality
Because this is quite a complicated application of Extensionality, I did not proof it from generic Extensionality, but just postulated it seperately.
It is needed because Agda eagerly applies implicit arguments at the start of a function, which I don't want it to do
This can be used to reverse agda doing that
-}
postulate
FunctorExtensionality :
{t : Set} {{eqT : Eq t}} -> {deps : Nat} ->
{la lb : Lens (VQuadrant t {S deps}) t}
-> ({f : Set -> Set} -> {{ff : Functor f}} -> (la {f} {{ff}} ≡ lb {f} {{ff}}))
-> (λ {f} ⦃ ff ⦄ → la {f} {{ff}}) ≡ (λ {f} ⦃ ff ⦄ → lb {f} {{ff}})
---- Lens laws for go
ValidLens-go-ViewSet :
{t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (dep : Nat)
-> {ins : IsTrue (isInsidePow loc dep)}
-> ViewSet (go {t} loc dep {ins})
ValidLens-go-SetView :
{t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (dep : Nat)
-> {ins : IsTrue (isInsidePow loc dep)}
-> SetView (go {t} loc dep {ins})
ValidLens-go-SetSet :
{t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (dep : Nat)
-> {ins : IsTrue (isInsidePow loc dep)}
-> SetSet (go {t} loc dep {ins})
ValidLens-go : {t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (dep : Nat)
-> {IsTrue (isInsidePow loc dep)}
-> ValidLens (VQuadrant t {dep}) t
ValidLens-go {t} {{eqT}} loc dep {ins} = CValidLens (go loc dep {ins}) (ValidLens-go-ViewSet loc dep {ins}) (ValidLens-go-SetView loc dep {ins}) (ValidLens-go-SetSet loc dep {ins})
ValidLens-go-ViewSet loc Z v cvq@(CVQuadrant (Leaf x) {p}) = refl
ValidLens-go-ViewSet {t} (x , y) dep@(S deps) {ins} v cvq@(CVQuadrant qd {p}) =
ifc y < mid then (λ {{py}} ->
ifc x < mid then (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> view g (set g v cvq))
-- Select only the lensA branch
(FunctorExtensionality (trans (ifTrue (y < mid) py) (ifTrue (x < mid) px))))
-- Then use the property of composition to proof the law
(prop-Composition-ViewSet (ValidLens-LensA) (ValidLens-go (mod x mid , mod y mid) deps {andCombine (modLt x mid {pow_not_zero_cv deps}) (modLt y mid {pow_not_zero_cv deps})}) v cvq)
) else (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> view g (set g v cvq))
-- Select only the lensB branch
(FunctorExtensionality (trans (ifTrue (y < mid) py) (ifFalse (x < mid) px))))
-- Then use the property of composition to proof the law
(prop-Composition-ViewSet (ValidLens-LensB) (ValidLens-go (mod x mid , mod y mid) deps {andCombine (modLt x mid {pow_not_zero_cv deps}) (modLt y mid {pow_not_zero_cv deps})}) v cvq)
)
) else (λ {{py}} ->
ifc x < mid then (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> view g (set g v cvq))
-- Select only the lensC branch
(FunctorExtensionality (trans (ifFalse (y < mid) py) (ifTrue (x < mid) px))))
-- Then use the property of composition to proof the law
(prop-Composition-ViewSet (ValidLens-LensC) (ValidLens-go (mod x mid , mod y mid) deps {andCombine (modLt x mid {pow_not_zero_cv deps}) (modLt y mid {pow_not_zero_cv deps})}) v cvq)
) else (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> view g (set g v cvq))
-- Select only the lensD branch
(FunctorExtensionality (trans (ifFalse (y < mid) py) (ifFalse (x < mid) px))))
-- Then use the property of composition to proof the law
(prop-Composition-ViewSet (ValidLens-LensD) (ValidLens-go (mod x mid , mod y mid) deps {andCombine (modLt x mid {pow_not_zero_cv deps}) (modLt y mid {pow_not_zero_cv deps})}) v cvq)
)
)
where
mid = pow 2 deps
ValidLens-go-SetView loc Z cvq@(CVQuadrant (Leaf x) {p}) = refl
ValidLens-go-SetView {t} (x , y) dep@(S deps) {ins} cvq@(CVQuadrant qd {p}) =
ifc y < mid then (λ {{py}} ->
ifc x < mid then (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> set g (view g cvq) cvq)
-- Select only the lensA branch
(FunctorExtensionality (trans (ifTrue (y < mid) py) (ifTrue (x < mid) px))))
-- Then use the property of composition to proof the law
(prop-Composition-SetView (ValidLens-LensA) (ValidLens-go (mod x mid , mod y mid) deps {andCombine (modLt x mid {pow_not_zero_cv deps}) (modLt y mid {pow_not_zero_cv deps})}) cvq)
) else (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> set g (view g cvq) cvq)
-- Select only the lensB branch
(FunctorExtensionality (trans (ifTrue (y < mid) py) (ifFalse (x < mid) px))))
-- Then use the property of composition to proof the law
(prop-Composition-SetView (ValidLens-LensB) (ValidLens-go (mod x mid , mod y mid) deps {andCombine (modLt x mid {pow_not_zero_cv deps}) (modLt y mid {pow_not_zero_cv deps})}) cvq)
)
) else (λ {{py}} ->
ifc x < mid then (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> set g (view g cvq) cvq)
-- Select only the lensC branch
(FunctorExtensionality (trans (ifFalse (y < mid) py) (ifTrue (x < mid) px))))
-- Then use the property of composition to proof the law
(prop-Composition-SetView (ValidLens-LensC) (ValidLens-go (mod x mid , mod y mid) deps {andCombine (modLt x mid {pow_not_zero_cv deps}) (modLt y mid {pow_not_zero_cv deps})}) cvq)
) else (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> set g (view g cvq) cvq)
-- Select only the lensD branch
(FunctorExtensionality (trans (ifFalse (y < mid) py) (ifFalse (x < mid) px))))
-- Then use the property of composition to proof the law
(prop-Composition-SetView (ValidLens-LensD) (ValidLens-go (mod x mid , mod y mid) deps {andCombine (modLt x mid {pow_not_zero_cv deps}) (modLt y mid {pow_not_zero_cv deps})}) cvq)
)
)
where
mid = pow 2 deps
ValidLens-go-SetSet loc Z v1 v2 cvq@(CVQuadrant (Leaf x) {p}) = refl
ValidLens-go-SetSet {t} (x , y) dep@(S deps) {ins} v1 v2 cvq@(CVQuadrant qd {p}) =
ifc y < mid then (λ {{py}} ->
ifc x < mid then (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> set g v2 (set g v1 cvq))
-- Select only the lensA branch
(FunctorExtensionality (trans (ifTrue (y < mid) py) (ifTrue (x < mid) px))))
(trans
-- Then use the property of composition to proof the law
(prop-Composition-SetSet (ValidLens-LensA) (ValidLens-go (mod x mid , mod y mid) deps {modproof}) v1 v2 cvq)
-- Finally, cong back over the law, applying the transformation to go
(sym $ cong {x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}}}
(λ (g : Lens (VQuadrant t {dep}) t) -> set g v2 cvq)
(FunctorExtensionality (trans (ifTrue (y < mid) py) (ifTrue (x < mid) px)))))
) else (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> set g v2 (set g v1 cvq))
-- Select only the lensB branch
(FunctorExtensionality (trans (ifTrue (y < mid) py) (ifFalse (x < mid) px))))
(trans
-- Then use the property of composition to proof the law
(prop-Composition-SetSet (ValidLens-LensB) (ValidLens-go (mod x mid , mod y mid) deps {modproof}) v1 v2 cvq)
-- Finally, cong back over the law, applying the transformation to go
(sym $ cong {x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}}}
(λ (g : Lens (VQuadrant t {dep}) t) -> set g v2 cvq)
(FunctorExtensionality (trans (ifTrue (y < mid) py) (ifFalse (x < mid) px)))))
)
) else (λ {{py}} ->
ifc x < mid then (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> set g v2 (set g v1 cvq))
-- Select only the lensC branch
(FunctorExtensionality (trans (ifFalse (y < mid) py) (ifTrue (x < mid) px))))
(trans
-- Then use the property of composition to proof the law
(prop-Composition-SetSet (ValidLens-LensC) (ValidLens-go (mod x mid , mod y mid) deps {modproof}) v1 v2 cvq)
-- Finally, cong back over the law, applying the transformation to go
(sym $ cong {x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}}}
(λ (g : Lens (VQuadrant t {dep}) t) -> set g v2 cvq)
(FunctorExtensionality (trans (ifFalse (y < mid) py) (ifTrue (x < mid) px)))))
) else (λ {{px}} ->
trans
(cong
-- We need to explicitly provide the x, otherwise agda gets confused
{x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}} }
-- We cong over the law, applying the transformation to go
(λ (g : Lens (VQuadrant t {dep}) t) -> set g v2 (set g v1 cvq))
-- Select only the lensD branch
(FunctorExtensionality (trans (ifFalse (y < mid) py) (ifFalse (x < mid) px))))
(trans
-- Then use the property of composition to proof the law
(prop-Composition-SetSet (ValidLens-LensD) (ValidLens-go (mod x mid , mod y mid) deps {modproof}) v1 v2 cvq)
-- Finally, cong back over the law, applying the transformation to go
(sym $ cong {x = λ {f} ⦃ ff ⦄ → go (x , y) (S deps) {ins} {f} {{ff}}}
(λ (g : Lens (VQuadrant t {dep}) t) -> set g v2 cvq)
(FunctorExtensionality (trans (ifFalse (y < mid) py) (ifFalse (x < mid) px)))))
)
)
where
mid = pow 2 deps
modproof = andCombine (modLt x mid {pow_not_zero_cv deps}) (modLt y mid {pow_not_zero_cv deps})
| {
"alphanum_fraction": 0.5327763929,
"avg_line_length": 59.372,
"ext": "agda",
"hexsha": "c671be28e88076a420d56e798f9d671b47dcd0c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensGo.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensGo.agda",
"max_line_length": 197,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensGo.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 4238,
"size": 14843
} |
-- open import Data.List
-- open import Data.Fin
open import Agda.Builtin.Nat public
using (Nat; zero; suc)
open import Agda.Builtin.List public
using (List; []; _∷_)
data Fin : Nat → Set where
fzero : {n : Nat} → Fin (suc n)
fsuc : {n : Nat} (i : Fin n) → Fin (suc n)
foldr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → B
foldr c n [] = n
foldr c n (x ∷ xs) = c x (foldr c n xs)
length : ∀ {a} {A : Set a} → List A → Nat
length = foldr (λ _ → suc) 0
lookup : ∀ {a} {A : Set a} (xs : List A) → Fin (length xs) → A
lookup [] ()
lookup (x ∷ xs) fzero = x
lookup (x ∷ xs) (fsuc i) = lookup xs i
data ListD {I : Set} (T : I → Set) : List I → Set where
nilD : ListD T []
consD : ∀ {x xs} → (elem : T x) → (rest : ListD T xs) → ListD T (x ∷ xs)
lookupD : {I : Set} {T : I → Set} {xs : List I} → ListD T xs → (at : Fin (length xs)) → {!lookup ? ?!}
lookupD xs at = {!!}
| {
"alphanum_fraction": 0.5297356828,
"avg_line_length": 28.375,
"ext": "agda",
"hexsha": "b8af4c121b59982710020ea09e081792d92bca9f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue3312.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3312.agda",
"max_line_length": 102,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3312.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 369,
"size": 908
} |
------------------------------------------------------------------------
-- A delay monad with the possibility of crashing
------------------------------------------------------------------------
module Lambda.Delay-crash where
import Equality.Propositional as E
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Prelude.Size
import Conat E.equality-with-J as Conat
open import Function-universe E.equality-with-J hiding (_∘_)
open import Maybe E.equality-with-J as Maybe hiding (raw-monad)
open import Monad E.equality-with-J as M
using (Raw-monad; _>>=_)
open import Delay-monad
open import Delay-monad.Bisimilarity
open import Delay-monad.Bisimilarity.Kind
import Delay-monad.Monad as DM
import Delay-monad.Parallel as DP
import Delay-monad.Sequential as DS
open import Delay-monad.Termination
private
variable
A B C : Type
i : Size
f g k x y : A
------------------------------------------------------------------------
-- Types and operations
-- The monad.
Delay-crash : Type → Size → Type
Delay-crash A i = Delay (Maybe A) i
-- A raw-monad instance. (This definition is turned into an actual
-- instance at the end of this module, to avoid problems with instance
-- resolution.)
private
raw-monad′ : Raw-monad (λ A → Delay-crash A i)
raw-monad′ {i = i} =
_⇔_.to (M.⇔→raw⇔raw {F = MaybeT (λ A → Delay A i)}
(λ _ → record { to = run; from = wrap }))
it
module DC {i} = Raw-monad (raw-monad′ {i = i})
-- A crashing computation.
pattern crash = now nothing
private
-- A computation that terminates now.
pattern return x = now (just x)
-- Sequential composition of computations.
--
-- Note that if the first argument fails to terminate, and the other
-- one crashes, then the computation fails to terminate. However, if
-- the first argument crashes, then the computation always crashes.
infixl 6 _⊛ˢ_
_⊛ˢ_ : Delay-crash (A → B) i → Delay-crash A i → Delay-crash B i
f ⊛ˢ x = f DC.>>= λ f → x DC.>>= λ x → DC.return (f x)
-- Parallel composition of computations.
--
-- Note that if the first argument fails to terminate, and the other
-- one crashes, then the computation fails to terminate. However, if
-- the first argument crashes, then the computation always crashes.
infixl 6 _⊛ᵖ_
_⊛ᵖ_ : Delay-crash (A → B) i → Delay-crash A i → Delay-crash B i
crash ⊛ᵖ _ = crash
return f ⊛ᵖ return x = return (f x)
return f ⊛ᵖ crash = crash
return f ⊛ᵖ later x = later λ { .force → return f ⊛ᵖ x .force }
later f ⊛ᵖ later x = later λ { .force → f .force ⊛ᵖ x .force }
later f ⊛ᵖ x = later λ { .force → f .force ⊛ᵖ x }
------------------------------------------------------------------------
-- Some properties
-- Bind preserves strong and weak bisimilarity and the expansion
-- relation.
infixl 5 _>>=-cong_
_>>=-cong_ :
[ i ] x ⟨ k ⟩ y →
(∀ z → [ i ] f z ⟨ k ⟩ g z) →
[ i ] x DC.>>= f ⟨ k ⟩ y DC.>>= g
p >>=-cong q = p DM.>>=-cong [ (λ _ → run fail ∎) , q ]
-- Sequential composition preserves strong and weak bisimilarity and
-- the expansion relation.
infixl 6 _⊛ˢ-cong_
_⊛ˢ-cong_ :
[ i ] f ⟨ k ⟩ g →
[ i ] x ⟨ k ⟩ y →
[ i ] f ⊛ˢ x ⟨ k ⟩ g ⊛ˢ y
p ⊛ˢ-cong q = p >>=-cong λ _ → q >>=-cong λ _ → now
-- Parallel composition preserves strong and weak bisimilarity and the
-- expansion relation.
infixl 6 _⊛ᵖ-cong_
_⊛ᵖ-cong_ :
[ i ] f ⟨ k ⟩ g →
[ i ] x ⟨ k ⟩ y →
[ i ] f ⊛ᵖ x ⟨ k ⟩ g ⊛ᵖ y
_⊛ᵖ-cong_ = λ p q → ⊛ᵖ-cong-helper _ _ p _ _ q
where
crash-lemma :
[ i ] f ⟨ other k ⟩ crash → ∀ x → [ i ] f ⊛ᵖ x ⟨ other k ⟩ crash
crash-lemma now x = now
crash-lemma (laterˡ p) (now x) = laterˡ (crash-lemma p _)
crash-lemma (laterˡ p) (later x) = laterˡ (crash-lemma p _)
⊛ᵖ-cong-helper :
(f g : Delay-crash (A → B) ∞) → [ i ] f ⟨ k ⟩ g →
(x y : Delay-crash A ∞) → [ i ] x ⟨ k ⟩ y →
[ i ] f ⊛ᵖ x ⟨ k ⟩ g ⊛ᵖ y
⊛ᵖ-cong-helper crash crash now = λ _ _ _ → now
⊛ᵖ-cong-helper (return f) .(return f) now = λ where
(later x) (later y) q → later λ { .force → now ⊛ᵖ-cong later⁻¹ q }
crash crash now → now
(return x) .(return x) now → now
_ _ (laterˡ q) → laterˡ (now ⊛ᵖ-cong q)
_ _ (laterʳ q) → laterʳ (now ⊛ᵖ-cong q)
⊛ᵖ-cong-helper (later f) (later g) p = λ where
crash crash now → later λ { .force → later⁻¹ p ⊛ᵖ-cong now }
(return x) .(return x) now → later λ { .force → later⁻¹ p ⊛ᵖ-cong now }
(later x) (later y) q → later λ { .force → later⁻¹ p ⊛ᵖ-cong later⁻¹ q }
_ crash (laterˡ q) → later λ { .force → later⁻¹ p ⊛ᵖ-cong q }
_ (return y) (laterˡ q) → later λ { .force → later⁻¹ p ⊛ᵖ-cong q }
crash _ (laterʳ q) → later λ { .force → later⁻¹ p ⊛ᵖ-cong q }
(return x) _ (laterʳ q) → later λ { .force → later⁻¹ p ⊛ᵖ-cong q }
⊛ᵖ-cong-helper _ (return g) (laterˡ p) = λ where
crash crash now → laterˡ (p ⊛ᵖ-cong now)
(return x) .(return x) now → laterˡ (p ⊛ᵖ-cong now)
(later x) (later y) q → later λ { .force → p ⊛ᵖ-cong later⁻¹ q }
_ crash (laterˡ q) → laterˡ (p ⊛ᵖ-cong q)
_ (return y) (laterˡ q) → laterˡ (p ⊛ᵖ-cong q)
crash _ (laterʳ q) → later λ { .force → p ⊛ᵖ-cong q }
(return x) _ (laterʳ q) → later λ { .force → p ⊛ᵖ-cong q }
⊛ᵖ-cong-helper (return f) _ (laterʳ p) = λ where
crash crash now → laterʳ (p ⊛ᵖ-cong now)
(return x) .(return x) now → laterʳ (p ⊛ᵖ-cong now)
(later x) (later y) q → later λ { .force → p ⊛ᵖ-cong later⁻¹ q }
_ crash (laterˡ q) → later λ { .force → p ⊛ᵖ-cong q }
_ (return y) (laterˡ q) → later λ { .force → p ⊛ᵖ-cong q }
crash _ (laterʳ q) → laterʳ (p ⊛ᵖ-cong q)
(return x) _ (laterʳ q) → laterʳ (p ⊛ᵖ-cong q)
⊛ᵖ-cong-helper _ crash p@(laterˡ _) = λ _ _ _ → crash-lemma p _
⊛ᵖ-cong-helper crash _ p@(laterʳ _) =
λ _ _ _ → symmetric (crash-lemma (symmetric p) _)
-- The monad laws.
left-identity :
∀ x (f : A → Delay-crash B ∞) →
[ ∞ ] DC.return x DC.>>= f ∼ f x
left-identity x f =
f x ∎
right-identity :
(x : Delay-crash A ∞) →
[ ∞ ] x DC.>>= DC.return ∼ x
right-identity x =
x DC.>>= DC.return ∼⟨⟩
x >>= maybe return crash ∼⟨ (x ∎) DM.>>=-cong [ (λ _ → run fail ∎) , (λ x → run (M.return x) ∎) ] ⟩
x >>= M.return ∼⟨ DM.right-identity′ _ ⟩
x ∎
associativity :
(x : Delay-crash A ∞)
(f : A → Delay-crash B ∞) (g : B → Delay-crash C ∞) →
x DC.>>= (λ x → f x DC.>>= g) ∼ x DC.>>= f DC.>>= g
associativity x f g =
x DC.>>= (λ x → f x DC.>>= g) ∼⟨⟩
x >>= maybe (λ x → f x DC.>>= g) crash ∼⟨ (x ∎) DM.>>=-cong [ (λ _ → run fail ∎) , (λ x → f x DC.>>= g ∎) ] ⟩
x >>= (λ x → maybe f crash x >>= maybe g crash) ∼⟨ DM.associativity′ x _ _ ⟩
x >>= maybe f crash >>= maybe g crash ∼⟨⟩
x DC.>>= f DC.>>= g ∎
-- Use of _⟨$⟩_ does not affect the number of steps in the
-- computation.
steps-⟨$⟩ : Conat.[ i ] steps (f DC.⟨$⟩ x) ∼ steps x
steps-⟨$⟩ {f = f} {x = x} =
steps (f DC.⟨$⟩ x) Conat.≡⟨⟩∼
steps (x DC.>>= DC.return ∘ f) Conat.≡⟨⟩∼
steps (x >>= maybe (return ∘ f) crash) Conat.∼⟨ steps-cong ((x ∎) DM.>>=-cong [ (λ _ → run fail ∎)
, (λ x → return (f x) ∎)
]) ⟩
steps (x >>= M.return ∘ maybe (just ∘ f) nothing) Conat.∼⟨ DM.steps-⟨$⟩ _ ⟩
steps x Conat.∎∼
-- Sequential composition is an expansion of parallel composition.
⊛ˢ≳⊛ᵖ : [ i ] f ⊛ˢ x ≳ f ⊛ᵖ x
⊛ˢ≳⊛ᵖ {f = return f} {x = return x} = now
⊛ˢ≳⊛ᵖ {f = return f} {x = crash} = now
⊛ˢ≳⊛ᵖ {f = return f} {x = later x} = later λ { .force → ⊛ˢ≳⊛ᵖ }
⊛ˢ≳⊛ᵖ {f = crash} = now
⊛ˢ≳⊛ᵖ {f = later f} {x = now x} = later λ { .force → ⊛ˢ≳⊛ᵖ }
⊛ˢ≳⊛ᵖ {f = later f} {x = later x} = later λ { .force →
(f .force DC.>>= λ f → later x DC.>>= λ x → DC.return (f x)) ≳⟨ ((f .force ∎) >>=-cong λ _ → laterˡ (_ ∎)) ⟩
f .force ⊛ˢ x .force ≳⟨ ⊛ˢ≳⊛ᵖ ⟩∼
f .force ⊛ᵖ x .force ∎ }
-- The computation crash is a left zero for _⊛ˢ_ and _⊛ᵖ_.
crash-⊛ˢ : [ i ] crash ⊛ˢ x ∼ (crash ⦂ Delay-crash B ∞)
crash-⊛ˢ = reflexive _
crash-⊛ᵖ : [ i ] crash ⊛ᵖ x ∼ (crash ⦂ Delay-crash B ∞)
crash-⊛ᵖ = reflexive _
-- The computation never is a left zero for _⊛ˢ_ and _⊛ᵖ_.
never-⊛ˢ :
(x : Delay-crash A ∞) →
[ i ] never ⊛ˢ x ∼ (never ⦂ Delay-crash B ∞)
never-⊛ˢ x = later λ { .force → never-⊛ˢ x }
never-⊛ᵖ :
(x : Delay-crash A ∞) →
[ i ] never ⊛ᵖ x ∼ (never ⦂ Delay-crash B ∞)
never-⊛ᵖ (now x) = later λ { .force → never-⊛ᵖ (now x) }
never-⊛ᵖ (later x) = later λ { .force → never-⊛ᵖ _ }
-- The computation never is a right zero for _⊛ˢ_ and _⊛ᵖ_ if the left
-- computation does not crash.
⊛ˢ-never : ¬ f ≈ crash → [ i ] f ⊛ˢ never ∼ never
⊛ˢ-never {f = return _} p = later λ { .force → ⊛ˢ-never p }
⊛ˢ-never {f = later _} p = later λ { .force → ⊛ˢ-never (p ∘ laterˡ) }
⊛ˢ-never {f = crash} p = ⊥-elim (p (_ ∎))
⊛ᵖ-never : ¬ f ≈ crash → [ i ] f ⊛ᵖ never ∼ never
⊛ᵖ-never {f = return _} p = later λ { .force → ⊛ᵖ-never p }
⊛ᵖ-never {f = later _} p = later λ { .force → ⊛ᵖ-never (p ∘ laterˡ) }
⊛ᵖ-never {f = crash} p = ⊥-elim (p (_ ∎))
-- The computation crash is a right zero for _⊛ˢ_ and _⊛ᵖ_ (up to
-- expansion) if the left computation terminates.
⊛ˢ-crash : f ⇓ g → [ i ] f ⊛ˢ crash ≳ crash
⊛ˢ-crash (now {x = nothing}) = now
⊛ˢ-crash (now {x = just _}) = now
⊛ˢ-crash (laterʳ p) = laterˡ (⊛ˢ-crash p)
⊛ᵖ-crash : f ⇓ g → [ i ] f ⊛ᵖ crash ≳ crash
⊛ᵖ-crash (now {x = nothing}) = now
⊛ᵖ-crash (now {x = just _}) = now
⊛ᵖ-crash (laterʳ p) = laterˡ (⊛ᵖ-crash p)
-- The _⊛ᵖ_ and _⊛ˢ_ operators are not (kind of) commutative.
¬-⊛ᵖ-comm :
¬ (∀ {f : Delay-crash (A → B) ∞} {x} →
f ⊛ᵖ x ≈ flip _$_ DC.⟨$⟩ x ⊛ᵖ f)
¬-⊛ᵖ-comm {A = A} {B = B} =
(∀ {f : Delay-crash (A → B) ∞} {x} → f ⊛ᵖ x ≈ flip _$_ DC.⟨$⟩ x ⊛ᵖ f) ↝⟨ (λ hyp → hyp {f = crash} {x = never}) ⟩
crash ≈ flip _$_ DC.⟨$⟩ never ⊛ᵖ crash ↝⟨ flip transitive-∞∼ʳ lemma ⟩
crash ≈ never ↝⟨ now≉never ⟩□
⊥ □
where
lemma : [ i ] flip _$_ DC.⟨$⟩ never ⊛ᵖ crash ∼ never
lemma = later λ { .force → lemma }
¬-⊛ˢ-comm :
¬ (∀ {f : Delay-crash (A → B) ∞} {x} →
f ⊛ˢ x ≈ flip _$_ DC.⟨$⟩ x ⊛ˢ f)
¬-⊛ˢ-comm {A = A} {B = B} =
(∀ {f : Delay-crash (A → B) ∞} {x} → f ⊛ˢ x ≈ flip _$_ DC.⟨$⟩ x ⊛ˢ f) ↝⟨ (λ hyp {f x} →
f ⊛ᵖ x ≈⟨ symmetric (≳→ ⊛ˢ≳⊛ᵖ) ⟩
f ⊛ˢ x ≈⟨ hyp {f = f} {x = x} ⟩
flip _$_ DC.⟨$⟩ x ⊛ˢ f ≳⟨ ⊛ˢ≳⊛ᵖ ⟩
flip _$_ DC.⟨$⟩ x ⊛ᵖ f ∎) ⟩
(∀ {f : Delay-crash (A → B) ∞} {x} → f ⊛ᵖ x ≈ flip _$_ DC.⟨$⟩ x ⊛ᵖ f) ↝⟨ ¬-⊛ᵖ-comm ⟩□
⊥ □
------------------------------------------------------------------------
-- The instance declaration
-- A raw-monad instance.
instance
raw-monad : Raw-monad (λ A → Delay-crash A i)
raw-monad = raw-monad′
| {
"alphanum_fraction": 0.4807935838,
"avg_line_length": 37.3659305994,
"ext": "agda",
"hexsha": "66d7a3efd8c88d63caf57d3d176c5f65c933c6dc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/definitional-interpreters",
"max_forks_repo_path": "src/Lambda/Delay-crash.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/definitional-interpreters",
"max_issues_repo_path": "src/Lambda/Delay-crash.agda",
"max_line_length": 123,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/definitional-interpreters",
"max_stars_repo_path": "src/Lambda/Delay-crash.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4678,
"size": 11845
} |
module test where
open import Data.Sum.Base
postulate
X : Set
a : X
b : X
p : X → X → Set
φ : (x : X) → (p x a ⊎ p x b)
example : (x : X) →
| {
"alphanum_fraction": 0.475308642,
"avg_line_length": 14.7272727273,
"ext": "agda",
"hexsha": "e26eaea3c089983af6f5e72e98bddb36476b8ffe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "92359922bd401a4fe07c3a9ab5e29b4c6338b69e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lexpk/Proofs-as-Programs-in-Classical-Logic",
"max_forks_repo_path": "Experiments/test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "92359922bd401a4fe07c3a9ab5e29b4c6338b69e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lexpk/Proofs-as-Programs-in-Classical-Logic",
"max_issues_repo_path": "Experiments/test.agda",
"max_line_length": 33,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "92359922bd401a4fe07c3a9ab5e29b4c6338b69e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lexpk/Proofs-as-Programs-in-Classical-Logic",
"max_stars_repo_path": "Experiments/test.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 65,
"size": 162
} |
{-# OPTIONS --cubical --safe --guardedness #-}
module Data.PolyP.Currying where
open import Prelude hiding (_⟨_⟩_)
open import Data.Vec.Iterated
open import Data.PolyP.Universe
Curriedⁿ : ℕ → Type₁
Curriedⁿ zero = Type
Curriedⁿ (suc n) = Type → Curriedⁿ n
_~_ : ∀ {n} → (Params n → Type) → Curriedⁿ n
_~_ {n = zero} f = f []
_~_ {n = suc n} f A = _~_ {n = n} (f ∘ (A ∷_))
| {
"alphanum_fraction": 0.624671916,
"avg_line_length": 22.4117647059,
"ext": "agda",
"hexsha": "9427bb7acf9e9ce95f9603cd3e17f5f5e104dbe0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/PolyP/Currying.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/PolyP/Currying.agda",
"max_line_length": 46,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/PolyP/Currying.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 151,
"size": 381
} |
{-# OPTIONS --universe-polymorphism #-}
open import FRP.JS.Bool using ( Bool ; true ; false ; if_then_else_ ; not ; _∧_ )
module FRP.JS.True where
record ⊤ : Set where
constructor tt
data ⊥ : Set where
contradiction : ∀ {α} {A : Set α} → ⊥ → A
contradiction ()
True : Bool → Set
True true = ⊤
True false = ⊥
False : Bool → Set
False b = True b → ⊥
∧-intro : ∀ {a b} → True a → True b → True (a ∧ b)
∧-intro {false} () b
∧-intro {true} {false} tt ()
∧-intro {true} {true} tt tt = tt
∧-elim₁ : ∀ {a b} → True (a ∧ b) → True a
∧-elim₁ {false} ()
∧-elim₁ {true} b = tt
∧-elim₂ : ∀ {a b} → True (a ∧ b) → True b
∧-elim₂ {false} ()
∧-elim₂ {true} b = b
data Dec (b : Bool) : Set where
yes : True b → Dec b
no : False b → Dec b
{-# COMPILED_JS Dec function(x,v) {
if (x) { return v.yes(null); } else { return v.no(null); }
} #-}
{-# COMPILED_JS yes true #-}
{-# COMPILED_JS no false #-}
dec : ∀ b → Dec b
dec true = yes tt
dec false = no contradiction
| {
"alphanum_fraction": 0.5630081301,
"avg_line_length": 20.5,
"ext": "agda",
"hexsha": "50206c3d585f49f311cb8baf6c38a81f1b47c9b3",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/True.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/True.agda",
"max_line_length": 81,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/True.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 375,
"size": 984
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Sizes for Agda's sized types
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Size where
open import Agda.Builtin.Size public
renaming ( SizeU to SizeUniv ) -- sort SizeUniv
using ( Size -- Size : SizeUniv
; Size<_ -- Size<_ : Size → SizeUniv
; ↑_ -- ↑_ : Size → Size
; ∞ ) -- ∞ : Size
| {
"alphanum_fraction": 0.3569023569,
"avg_line_length": 34.9411764706,
"ext": "agda",
"hexsha": "8441a4bed79c83b24636a28cc548fbab7e41cd82",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Size.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Size.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Size.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 123,
"size": 594
} |
{-# OPTIONS --without-K --exact-split --rewriting #-}
open import lib.Basics
open import lib.types.Truncation
open import lib.Function2
open import lib.NType2
open import Graphs.Definition
open import Coequalizers.Definition
open import Util.Misc
module Coequalizers.Misc where
module _ {i j : ULevel} {E : Type i} {V : Type j} ⦃ gph : Graph E V ⦄ where
inh-coeq-to-vertex : ∥ V / E ∥ → ∥ V ∥
inh-coeq-to-vertex = Trunc-rec (Coeq-rec [_] (λ _ → prop-has-all-paths _ _))
quotient-map-is-surj : is-surj (c[_] :> (V → V / E))
quotient-map-is-surj = Coeq-elim (λ v → ∥ hfiber c[_] v ∥) (λ v → [ v , idp ]) λ _ → prop-has-all-paths-↓
| {
"alphanum_fraction": 0.6562986003,
"avg_line_length": 30.619047619,
"ext": "agda",
"hexsha": "a39a563c5574e047d533242934c4f58d7efeaef5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "awswan/nielsenschreier-hott",
"max_forks_repo_path": "main/Coequalizers/Misc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "awswan/nielsenschreier-hott",
"max_issues_repo_path": "main/Coequalizers/Misc.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "awswan/nielsenschreier-hott",
"max_stars_repo_path": "main/Coequalizers/Misc.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 223,
"size": 643
} |
-- Andreas, 2016-10-09, re issue #2223
-- The front matter or module telescope of the top-level module
-- may generate level constraints that live in no module!
{-# OPTIONS -v tc.constr.add:45 #-} -- KEEP!
open import Common.Level
open import Issue2223.Setoids -- import necessary!
module _ (S : Setoid lzero lzero) (a : Setoid.Carrier S) (_ : a ⟨ Setoid._≈_ S ⟩ a) where
-- PROBLEM WAS: internal error in debug printing.
-- Should work now.
| {
"alphanum_fraction": 0.7046979866,
"avg_line_length": 29.8,
"ext": "agda",
"hexsha": "812b4164ca7553b5ff9eb0f44a18d69a7d347190",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2223-constraints-in-frontmatter.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2223-constraints-in-frontmatter.agda",
"max_line_length": 89,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2223-constraints-in-frontmatter.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 126,
"size": 447
} |
module objectsInAgdaUnsized where
open import Data.Product
open import interactiveProgramsAgdaUnsized hiding (main)
open import NativeIO
open import Data.String.Base
record Interface : Set₁ where
field Method : Set
Result : (m : Method) → Set
open Interface public
record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) → Result I m × Object I
open Object public
record IOObject (Iᵢₒ : IOInterface) (I : Interface) : Set where
coinductive
field method : (m : Method I) → IO Iᵢₒ (Result I m × IOObject Iᵢₒ I)
open IOObject public
data CellMethod A : Set where
get : CellMethod A
put : A → CellMethod A
CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put _) = Unit
cellI : (A : Set) → Interface
Method (cellI A) = CellMethod A
Result (cellI A) m = CellResult m
{- A cell as an Object -}
Cell : Set → Set
Cell A = Object (cellI A)
cell : {A : Set} → A → Cell A
objectMethod (cell a) get = a , cell a
objectMethod (cell a) (put a') = unit , cell a'
{- A cell as an IOObject -}
CellC : Set
CellC = IOObject ConsoleInterface (cellI String)
simpleCell : (s : String) → CellC
force (method (simpleCell s) get) =
do' (putStrLn ("getting (" ++ s ++ ")")) λ _ →
delay (return' (s , simpleCell s))
force (method (simpleCell s) (put x)) =
do' (putStrLn ("putting (" ++ x ++ ")")) λ _ →
delay (return' (_ , simpleCell x))
{-# TERMINATING #-}
program : CellC → IOConsole Unit
force (program c₁) =
do' getLine λ s →
method c₁ (put s) >>= λ{ (_ , c₂) →
method c₂ get >>= λ{ (s' , c₃) →
do (putStrLn s') λ _ →
(program c₃)}}
main : NativeIO Unit
main = translateIOConsole (program (simpleCell "Start"))
| {
"alphanum_fraction": 0.6166574738,
"avg_line_length": 24.1733333333,
"ext": "agda",
"hexsha": "a3076d85b9a601faf54c056a819d0138af002233",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectsInAgdaUnsized.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectsInAgdaUnsized.agda",
"max_line_length": 70,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectsInAgdaUnsized.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 587,
"size": 1813
} |
{-
This is a rather literal translation of Martin Hötzel-Escardó's structure identity principle into cubical Agda. See
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns
All the needed preliminary results from the lecture notes are stated and proven in this file.
It would be interesting to compare the proves with the one in Cubical.Foundations.SIP
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Experiments.EscardoSIP where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Cubical.Foundations.HAEquiv
open import Cubical.Data.Sigma.Properties
private
variable
ℓ ℓ' ℓ'' : Level
-- We prove several useful equalities and equivalences between Σ-types all the proofs are taken from
-- Martin Hötzel-Escardó's lecture notes.
-- The next result is just a reformulation of pathSigma≡sigmaPath from Sigma.Properties.
Σ-≡-≃ : {X : Type ℓ} {A : X → Type ℓ'}
→ (σ τ : Σ X A) → ((σ ≡ τ) ≃ (Σ[ p ∈ (σ .fst) ≡ (τ .fst) ] (subst A p (σ .snd) ≡ (τ .snd))))
Σ-≡-≃ {A = A} σ τ = pathToEquiv (pathSigma≡sigmaPath σ τ)
-- This cubical proof is much shorter than in HoTT but requires that A, B live in the same universe.
Σ-cong : {X : Type ℓ} {A B : X → Type ℓ'} →
((x : X) → (A x ≡ B x)) → (Σ X A ≡ Σ X B)
Σ-cong {X = X} p i = Σ[ x ∈ X ] (p x i)
-- Two lemmas for the more general formulation using equivalences
NatΣ : {X : Type ℓ} {A : X → Type ℓ'} {B : X → Type ℓ''}
→ ((x : X) → (A x) → (B x)) → (Σ X A) → (Σ X B)
NatΣ τ (x , a) = (x , τ x a)
Σ-to-PathP : {X : Type ℓ} {A : X → Type ℓ'} {x : X} {a b : A x}
→ (a ≡ b) → PathP (λ i → Σ X A) (x , a) (x , b)
Σ-to-PathP {x = x} p i = (x , p i)
Σ-cong-≃ : {X : Type ℓ} {A : X → Type ℓ'} {B : X → Type ℓ''} →
((x : X) → (A x ≃ B x)) → (Σ X A ≃ Σ X B)
Σ-cong-≃ {X = X} {A = A} {B = B} φ = isoToEquiv (iso (NatΣ f) (NatΣ g) NatΣ-ε NatΣ-η)
where
f : (x : X) → (A x) → (B x)
f x = equivFun (φ x)
g : (x : X) → (B x) → (A x)
g x = equivFun (invEquiv (φ x))
η : (x : X) → (a : A x) → (g x) ((f x) a) ≡ a
η x = retEq (invEquiv (φ x))
ε : (x : X) → (b : B x) → f x (g x b) ≡ b
ε x = secEq (invEquiv (φ x))
NatΣ-η : (w : Σ X A) → NatΣ g (NatΣ f w) ≡ w
NatΣ-η (x , a) = (x , g x (f x a)) ≡⟨ Σ-to-PathP (η x a) ⟩
(x , a) ∎
NatΣ-ε : (u : Σ X B) → NatΣ f (NatΣ g u) ≡ u
NatΣ-ε (x , b) = (x , f x (g x b)) ≡⟨ Σ-to-PathP (ε x b) ⟩
(x , b) ∎
-- The next result is stated a bit awkwardly but is rather straightforward to prove.
Σ-change-of-variable-Iso : {X : Type ℓ} {Y : Type ℓ'} {A : Y → Type ℓ''} (f : X → Y)
→ (isHAEquiv f) → (Iso (Σ X (A ∘ f)) (Σ Y A))
Σ-change-of-variable-Iso {ℓ = ℓ} {ℓ' = ℓ'} {X = X} {Y = Y} {A = A} f isHAEquivf = iso φ ψ φψ ψφ
where
g : Y → X
g = isHAEquiv.g isHAEquivf
ε : (x : X) → (g (f x)) ≡ x
ε = isHAEquiv.sec isHAEquivf
η : (y : Y) → f (g y) ≡ y
η = isHAEquiv.ret isHAEquivf
τ : (x : X) → cong f (ε x) ≡ η (f x)
τ = isHAEquiv.com isHAEquivf
φ : (Σ X (A ∘ f)) → (Σ Y A)
φ (x , a) = (f x , a)
ψ : (Σ Y A) → (Σ X (A ∘ f))
ψ (y , a) = (g y , subst A (sym (η y)) a)
φψ : (z : (Σ Y A)) → φ (ψ z) ≡ z
φψ (y , a) = sigmaPath→pathSigma (φ (ψ (y , a))) (y , a)
(η y , transportTransport⁻ (λ i → A (η y i)) a)
-- last term proves transp (λ i → A (η y i)) i0 (transp (λ i → A (η y (~ i))) i0 a) ≡ a
ψφ : (z : (Σ X (A ∘ f))) → ψ (φ z) ≡ z
ψφ (x , a) = sigmaPath→pathSigma (ψ (φ (x , a))) (x , a) (ε x , q)
where
b : A (f (g (f x)))
b = (transp (λ i → A (η (f x) (~ i))) i0 a)
q : transp (λ i → A (f (ε x i))) i0 (transp (λ i → A (η (f x) (~ i))) i0 a) ≡ a
q = transp (λ i → A (f (ε x i))) i0 b ≡⟨ S ⟩
transp (λ i → A (η (f x) i)) i0 b ≡⟨ transportTransport⁻ (λ i → A (η (f x) i)) a ⟩
a ∎
where
S : (transp (λ i → A (f (ε x i))) i0 b) ≡ (transp (λ i → A (η (f x) i)) i0 b)
S = subst (λ p → (transp (λ i → A (f (ε x i))) i0 b) ≡ (transp (λ i → A (p i)) i0 b))
(τ x) refl
-- Using the result above we can prove the following quite useful result.
Σ-change-of-variable-≃ : {X : Type ℓ} {Y : Type ℓ'} {A : Y → Type ℓ''} (f : X → Y)
→ (isEquiv f) → ((Σ X (A ∘ f)) ≃ (Σ Y A))
Σ-change-of-variable-≃ f isEquivf =
isoToEquiv (Σ-change-of-variable-Iso f (equiv→HAEquiv (f , isEquivf) .snd))
Σ-assoc-Iso : (X : Type ℓ) (A : X → Type ℓ') (P : Σ X A → Type ℓ'')
→ (Iso (Σ (Σ X A) P) (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a))))
Σ-assoc-Iso X A P = iso f g ε η
where
f : (Σ (Σ X A) P) → (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a)))
f ((x , a) , p) = (x , (a , p))
g : (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a))) → (Σ (Σ X A) P)
g (x , (a , p)) = ((x , a) , p)
ε : section f g
ε n = refl
η : retract f g
η m = refl
Σ-assoc-≃ : (X : Type ℓ) (A : X → Type ℓ') (P : Σ X A → Type ℓ'')
→ (Σ (Σ X A) P) ≃ (Σ[ x ∈ X ] (Σ[ a ∈ A x ] P (x , a)))
Σ-assoc-≃ X A P = isoToEquiv (Σ-assoc-Iso X A P)
-- A structure is a type-family S : Type ℓ → Type ℓ', i.e. for X : Type ℓ and s : S X, the pair (X , s)
-- means that X is equipped with a S-structure, which is witnessed by s.
-- An S-structure should have a notion of S-homomorphism, or rather S-isomorphism.
-- This will be implemented by a function ι
-- that gives us for any two types with S-structure (X , s) and (Y , t) a family:
-- ι (X , s) (Y , t) : (X ≃ Y) → Type ℓ''
-- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be
-- a proposition. Indeed this type should correspond to the ways s and t can be identified
-- as S-structures. This we call a standard notion of structure.
SNS : (S : Type ℓ → Type ℓ')
→ ((A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ Type (ℓ-max (ℓ-max(ℓ-suc ℓ) ℓ') ℓ'')
SNS {ℓ = ℓ} S ι = ∀ {X : (Type ℓ)} (s t : S X) → ((s ≡ t) ≃ ι (X , s) (X , t) (idEquiv X))
-- Escardo's ρ can actually be defined from this:
ρ : {S : Type ℓ → Type ℓ'}
→ {ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ''}
→ (SNS S ι)
→ (A : Σ[ X ∈ (Type ℓ) ] (S X)) → (ι A A (idEquiv (A .fst)))
ρ θ A = equivFun (θ (A .snd) (A .snd)) refl
-- We introduce the notation a bit differently:
_≃[_]_ : {S : Type ℓ → Type ℓ'} → (Σ[ X ∈ (Type ℓ) ] (S X))
→ (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ (Σ[ X ∈ (Type ℓ) ] (S X))
→ (Type (ℓ-max ℓ ℓ''))
A ≃[ ι ] B = Σ[ f ∈ ((A .fst) ≃ (B. fst)) ] (ι A B f)
Id→homEq : (S : Type ℓ → Type ℓ')
→ (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ (ρ : (A : Σ[ X ∈ (Type ℓ) ] (S X)) → ι A A (idEquiv (A .fst)))
→ (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → A ≡ B → (A ≃[ ι ] B)
Id→homEq S ι ρ A B p = J (λ y x → A ≃[ ι ] y) (idEquiv (A .fst) , ρ A) p
-- Use a PathP version of Escardó's homomorphism-lemma
hom-lemma-dep : (S : Type ℓ → Type ℓ')
→ (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ (θ : SNS S ι)
→ (A B : Σ[ X ∈ (Type ℓ) ] (S X))
→ (p : (A .fst) ≡ (B. fst))
→ (PathP (λ i → S (p i)) (A .snd) (B .snd)) ≃ (ι A B (pathToEquiv p))
hom-lemma-dep S ι θ A B p = (J P (λ s → γ s) p) (B .snd)
where
P = (λ y x → (s : S y) → PathP (λ i → S (x i)) (A .snd) s ≃ ι A (y , s) (pathToEquiv x))
γ : (s : S (A .fst)) → ((A .snd) ≡ s) ≃ ι A ((A .fst) , s) (pathToEquiv refl)
γ s = subst (λ f → ((A .snd) ≡ s) ≃ ι A ((A .fst) , s) f) (sym pathToEquivRefl) (θ (A. snd) s)
-- Define the inverse of Id→homEq directly.
ua-lemma : (A B : Type ℓ) (e : A ≃ B) → (pathToEquiv (ua e)) ≡ e
ua-lemma A B e = EquivJ (λ b a f → (pathToEquiv (ua f)) ≡ f)
(λ x → subst (λ r → pathToEquiv r ≡ idEquiv x) (sym uaIdEquiv) pathToEquivRefl)
B A e
homEq→Id : (S : Type ℓ → Type ℓ')
→ (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ (θ : SNS S ι)
→ (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → (A ≃[ ι ] B) → A ≡ B
homEq→Id S ι θ A B (f , φ) = ΣPathP (p , q)
where
p = ua f
ψ : ι A B (pathToEquiv p)
ψ = subst (λ g → ι A B g) (sym (ua-lemma (A .fst) (B. fst) f)) φ
q : PathP (λ i → S (p i)) (A .snd) (B .snd)
q = equivFun (invEquiv (hom-lemma-dep S ι θ A B p)) ψ
-- Proof of the SIP:
SIP : (S : Type ℓ → Type ℓ')
→ (ι : (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A .fst) ≃ (B .fst)) → Type ℓ'')
→ (θ : SNS S ι)
→ (A B : Σ[ X ∈ (Type ℓ) ] (S X)) → ((A ≡ B) ≃ (A ≃[ ι ] B))
SIP S ι θ A B =
(A ≡ B) ≃⟨ i ⟩
(Σ[ p ∈ (A .fst) ≡ (B. fst) ] PathP (λ i → S (p i)) (A .snd) (B .snd)) ≃⟨ ii ⟩
(Σ[ p ∈ (A .fst) ≡ (B. fst) ] (ι A B (pathToEquiv p))) ≃⟨ iii ⟩
(A ≃[ ι ] B) ■
where
i = invEquiv Σ≡
ii = Σ-cong-≃ (hom-lemma-dep S ι θ A B)
iii = Σ-change-of-variable-≃ pathToEquiv (equivIsEquiv univalence)
-- A simple example: pointed types
pointed-structure : Type ℓ → Type ℓ
pointed-structure X = X
Pointed-Type : Type (ℓ-suc ℓ)
Pointed-Type {ℓ = ℓ} = Σ (Type ℓ) pointed-structure
pointed-ι : (A B : Pointed-Type) → (A .fst) ≃ (B. fst) → Type ℓ
pointed-ι (X , x) (Y , y) f = (equivFun f) x ≡ y
pointed-is-sns : SNS {ℓ = ℓ} pointed-structure pointed-ι
pointed-is-sns s t = idEquiv (s ≡ t)
pointed-type-sip : (X Y : Type ℓ) (x : X) (y : Y)
→ (Σ[ f ∈ X ≃ Y ] (f .fst) x ≡ y) ≃ ((X , x) ≡ (Y , y))
pointed-type-sip X Y x y = invEquiv (SIP pointed-structure pointed-ι pointed-is-sns (X , x) (Y , y))
| {
"alphanum_fraction": 0.4614465033,
"avg_line_length": 38.6076923077,
"ext": "agda",
"hexsha": "31ffce97f94d24a397def688d6c3007225761a12",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Experiments/EscardoSIP.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Experiments/EscardoSIP.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Experiments/EscardoSIP.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4395,
"size": 10038
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.Base where
open import Cubical.Data.Int.Base
open import Cubical.Data.Nat.Base
open import Cubical.Data.Sigma
open import Cubical.Foundations.Pointed.Base
open import Cubical.HITs.Nullification.Base
open import Cubical.HITs.SetTruncation.Base
open import Cubical.HITs.Sn.Base
open import Cubical.HITs.S1.Base
open import Cubical.HITs.Susp.Base
open import Cubical.HITs.Truncation.Base
private
variable
ℓ : Level
A : Type ℓ
--- Cohomology ---
{- EM-spaces Kₙ from Brunerie 2016 -}
coHomK : (n : ℕ) → Type₀
coHomK zero = Int
coHomK (suc n) = ∥ S₊ (suc n) ∥ (2 + suc n)
{- Cohomology -}
coHom : (n : ℕ) → Type ℓ → Type ℓ
coHom n A = ∥ (A → coHomK n) ∥₂
--- Reduced cohomology ---
coHom-pt : (n : ℕ) → coHomK n
coHom-pt 0 = 0
coHom-pt 1 = ∣ base ∣
coHom-pt (suc (suc n)) = ∣ north ∣
{- Pointed version of Kₙ -}
coHomK-ptd : (n : ℕ) → Pointed (ℓ-zero)
coHomK-ptd n = coHomK n , coHom-pt n
{- Reduced cohomology -}
coHomRed : (n : ℕ) → (A : Pointed ℓ) → Type ℓ
coHomRed n A = ∥ A →∙ coHomK-ptd n ∥₂
| {
"alphanum_fraction": 0.67063129,
"avg_line_length": 23.2553191489,
"ext": "agda",
"hexsha": "8c75c24576ee58850f4d1fbd62455f1e170a1417",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Base.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 417,
"size": 1093
} |
module Unsolved-meta-in-postulate where
postulate P : _
| {
"alphanum_fraction": 0.7894736842,
"avg_line_length": 14.25,
"ext": "agda",
"hexsha": "4db555d4c26d6033f3e007608576d6660cc52f5d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Unsolved-meta-in-postulate.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Unsolved-meta-in-postulate.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Unsolved-meta-in-postulate.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 14,
"size": 57
} |
{-# OPTIONS --without-K --safe #-}
module Data.Bits where
open import Level
infixr 8 0∷_ 1∷_
data Bits : Type where
[] : Bits
0∷_ : Bits → Bits
1∷_ : Bits → Bits
| {
"alphanum_fraction": 0.6140350877,
"avg_line_length": 14.25,
"ext": "agda",
"hexsha": "eafdad8628561f70231662ee24622ec5137f0f23",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Bits.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Bits.agda",
"max_line_length": 34,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Bits.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 66,
"size": 171
} |
module RecordPatternMatching where
-- Sigma type.
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ
_×_ : Set → Set → Set
A × B = Σ A λ _ → B
-- Curry and uncurry with pattern matching.
curry : ∀ {A : Set} {B : A → Set} {C : Σ A B → Set} →
((p : Σ A B) → C p) →
((x : A) → (y : B x) → C (x , y))
curry f x y = f (x , y)
uncurry : ∀ {A : Set} {B : A → Set} {C : Σ A B → Set} →
((x : A) → (y : B x) → C (x , y)) →
((p : Σ A B) → C p)
uncurry f (x , y) = f x y
-- We still have η-equality.
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
curry∘uncurry : ∀ {A : Set} {B : A → Set} {C : Σ A B → Set} →
(f : (x : A) → (y : B x) → C (x , y)) →
(x : A) → (y : B x) →
curry {C = C} (uncurry f) x y ≡ f x y
curry∘uncurry f x y = refl
uncurry∘curry : ∀ {A : Set} {B : A → Set} {C : Σ A B → Set} →
(f : (p : Σ A B) → C p) →
(p : Σ A B) →
uncurry {C = C} (curry f) p ≡ f p
uncurry∘curry f p = refl
-- Nested pattern matching is also possible.
to : {A B C : Set} → A × (B × C) → (A × B) × C
to (x , (y , z)) = ((x , y) , z)
from : {A B C : Set} → (A × B) × C → A × (B × C)
from ((x , y) , z) = (x , (y , z))
from∘to : {A B C : Set} (p : A × (B × C)) → from (to p) ≡ p
from∘to p = refl
data Bool : Set where
true false : Bool
data ⊥ : Set where
F : Bool → Set
F true = Bool
F false = ⊥
foo : Σ Bool F → Bool
foo (true , b) = b
foo (false , ())
bar : ∀ p → F (foo p) → F (foo p)
bar (true , true) = λ b → b
bar (true , false) = λ ()
bar (false , ())
baz : (Σ Bool λ _ → Σ Bool λ _ → Bool) → Bool
baz (true , (b , c)) = b
baz (false , (b , c)) = c
lemma : ∀ p → baz (false , p) ≡ proj₂ p
lemma p = refl
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
add : ℕ × ℕ → ℕ
add (zero , n) = n
add (suc m , n) = suc (add (m , n))
-- The code below used to trigger a bug: in one part of the code B was
-- assumed to be reduced to an application of a record type
-- constructor.
data Unit : Set where
unit : Unit
B : Set
B = Σ Unit λ _ → Unit
C : B → Set₁
C (_ , _) = Set
-- The code below, which involves a clause with a "swapping
-- permutation", also used to trigger a bug.
data P : ⊥ → ⊥ → Set where
p : (x y : ⊥) → P x y
Bar : (x : ⊥) → P x x → P x x → Set₁
Bar .x _ (p x .x) = Set
-- Another example which used to trigger a bug:
G : (Σ ⊥ λ x → Σ ⊥ λ y → x ≡ y) → Set₁
G (x , (.x , refl)) = Set
-- Record patterns containing dot patterns are supported.
Foo : (p₁ p₂ : B) → proj₁ p₁ ≡ proj₁ p₂ → Unit
Foo (x , y) (.x , y′) refl = unit
Foo-eval : (p : B) → Foo p p refl ≡ unit
Foo-eval _ = refl
-- Record patterns containing dot patterns as well as data type
-- patterns are also supported.
D : (p₁ p₂ : B) → proj₁ p₁ ≡ proj₁ p₂ → Set₁
D (x , y) (.x , unit) refl = Set
| {
"alphanum_fraction": 0.4913733609,
"avg_line_length": 22.4651162791,
"ext": "agda",
"hexsha": "49ede4a75986a9e9c28ed57c905ab9562c31403b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/RecordPatternMatching.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/RecordPatternMatching.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/RecordPatternMatching.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 1175,
"size": 2898
} |
module L.Base.Coproduct where
-- Reexport definitions
open import L.Base.Coproduct.Core public
| {
"alphanum_fraction": 0.8125,
"avg_line_length": 19.2,
"ext": "agda",
"hexsha": "bd2c2adccb3d1046832920ff30dc74ad3f4b1452",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base/Coproduct.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base/Coproduct.agda",
"max_line_length": 40,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base/Coproduct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 23,
"size": 96
} |
module #5 where
open import Level
open import Data.Product
open import Data.Bool
open import Relation.Binary.PropositionalEquality
{-
Exercise 1.5. Show that if we define A + B :≡ ∑(x:2) rec2(U, A, B, x), then we can give a definition
of indA+B for which the definitional equalities stated in §1.7 hold.
-}
rec₂ : ∀{c}{C : Set c} → C → C → Bool → C
rec₂ c₀ c₁ true = c₁
rec₂ c₀ c₁ false = c₀
ind₂ : ∀{c}(C : Bool → Set c) → C false → C true → (x : Bool) → C x
ind₂ C c₀ c₁ true = c₁
ind₂ C c₀ c₁ false = c₀
_⊎_ : ∀ {i} → Set i → Set i → Set _
A ⊎ B = Σ Bool λ b → if b then A else B
module SumTwo {a}{A B : Set a} where
inl : A → A ⊎ B
inl x = true , x
inr : B → A ⊎ B
inr y = false , y
rec-sum₂ : ∀{a b c}{A : Set a}{B : A → Set b} → (C : Σ A B -> Set c) → (f : (x : A)(y : B x) → C (x , y)) → (s : Σ A B) → C s
rec-sum₂ C f (x , y) = f x y
ind-sum₂ : ∀{c}(C : A ⊎ B -> Set c) → ((x : A) → C (inl x)) → ((y : B) → C (inr y)) → (u : A ⊎ B) → C u
ind-sum₂ C c₁ c₀ u = rec-sum₂ C (ind₂ (λ b → (z : if b then A else B) → C (b , z)) c₀ c₁) u
ind-sum₂-β₁ : ∀{c}(C : A ⊎ B -> Set c) → (f : (x : A) → C (inl x)) → (g : (y : B) → C (inr y)) → (x : A) → ind-sum₂ C f g (inl x) ≡ f x
ind-sum₂-β₁ C f g x = refl
ind-sum₂-β₂ : ∀{c}(C : A ⊎ B -> Set c) → (f : (x : A) → C (inl x)) → (g : (y : B) → C (inr y)) → (x : B) → ind-sum₂ C f g (inr x) ≡ g x
ind-sum₂-β₂ C f g x = refl
| {
"alphanum_fraction": 0.5046395432,
"avg_line_length": 32.5813953488,
"ext": "agda",
"hexsha": "48f127a289c8e57e6a204896353c298d2daca0d5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CodaFi/HoTT-Exercises",
"max_forks_repo_path": "Chapter1/#5.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CodaFi/HoTT-Exercises",
"max_issues_repo_path": "Chapter1/#5.agda",
"max_line_length": 137,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CodaFi/HoTT-Exercises",
"max_stars_repo_path": "Chapter1/#5.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 651,
"size": 1401
} |
{-# OPTIONS --cubical --safe #-}
module Categories.Exponential where
open import Prelude hiding (_×_)
open import Categories
open import Categories.Product
module _ {ℓ₁ ℓ₂} (C : Category ℓ₁ ℓ₂) (hasProducts : HasProducts C) where
open Category C
open HasProducts hasProducts
module _ (Y Z : Ob) where
record Exponential : Type (ℓ₁ ℓ⊔ ℓ₂) where
field
obj : Ob
eval : C [ obj × Y , Z ]
uniq : ∀ (X : Ob) (f : C [ X × Y , Z ]) →
∃![ f~ ] (C [ eval ∘ (f~ |×| Category.Id C) ] ≡ f)
HasExponentials : Type (ℓ₁ ℓ⊔ ℓ₂)
HasExponentials = ∀ X Y → Exponential X Y
| {
"alphanum_fraction": 0.5925324675,
"avg_line_length": 26.7826086957,
"ext": "agda",
"hexsha": "1ddb9166f697a3dc48df4ada1cc77761a36365d2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Categories/Exponential.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Categories/Exponential.agda",
"max_line_length": 73,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Categories/Exponential.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 210,
"size": 616
} |
------------------------------------------------------------------------
-- Some negative results related to weak bisimilarity and expansion
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
module Delay-monad.Bisimilarity.Negative {a} {A : Type a} where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Function-universe equality-with-J hiding (id; _∘_)
open import Delay-monad
open import Delay-monad.Bisimilarity
open import Delay-monad.Termination
------------------------------------------------------------------------
-- Lemmas stating that functions of certain types can be defined iff A
-- is uninhabited
-- The computation now x is an expansion of
-- later (record { force = now x }) for every x : A iff A is
-- uninhabited.
Now≳later-now = (x : A) → now x ≳ later (record { force = now x })
now≳later-now⇔uninhabited : Now≳later-now ⇔ ¬ A
now≳later-now⇔uninhabited = record
{ to = Now≳later-now ↝⟨ (λ hyp x → case hyp x of λ ()) ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≳ y) ↝⟨ (λ hyp _ → hyp _ _) ⟩□
Now≳later-now □
}
-- A variant of laterˡ⁻¹ for (fully defined) expansion can be defined
-- iff A is uninhabited.
Laterˡ⁻¹-≳ = ∀ {x} {y : Delay A ∞} → later x ≳ y → force x ≳ y
laterˡ⁻¹-≳⇔uninhabited : Laterˡ⁻¹-≳ ⇔ ¬ A
laterˡ⁻¹-≳⇔uninhabited = record
{ to = Laterˡ⁻¹-≳ ↝⟨ (λ hyp _ → hyp (reflexive _)) ⟩
Now≳later-now ↝⟨ _⇔_.to now≳later-now⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≳ y) ↝⟨ (λ hyp {_ _} _ → hyp _ _) ⟩□
Laterˡ⁻¹-≳ □
}
-- The following variants of transitivity can be proved iff A is
-- uninhabited.
Transitivity-≈≳≳ = {x y z : Delay A ∞} → x ≈ y → y ≳ z → x ≳ z
Transitivity-≳≈≳ = {x y z : Delay A ∞} → x ≳ y → y ≈ z → x ≳ z
transitive-≈≳≳⇔uninhabited : Transitivity-≈≳≳ ⇔ ¬ A
transitive-≈≳≳⇔uninhabited = record
{ to = Transitivity-≈≳≳ ↝⟨ (λ trans → trans (laterʳ (reflexive _))) ⟩
Laterˡ⁻¹-≳ ↝⟨ _⇔_.to laterˡ⁻¹-≳⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≳ y) ↝⟨ (λ hyp {_ _ _} _ _ → hyp _ _) ⟩□
Transitivity-≈≳≳ □
}
transitive-≳≈≳⇔uninhabited : Transitivity-≳≈≳ ⇔ ¬ A
transitive-≳≈≳⇔uninhabited = record
{ to = Transitivity-≳≈≳ ↝⟨ (λ trans {_ y} lx≳y → later⁻¹ {y = record { force = y }}
(trans lx≳y (laterʳ (reflexive _)))) ⟩
Laterˡ⁻¹-≳ ↝⟨ _⇔_.to laterˡ⁻¹-≳⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≳ y) ↝⟨ (λ hyp {_ _ _} _ _ → hyp _ _) ⟩□
Transitivity-≳≈≳ □
}
------------------------------------------------------------------------
-- Lemmas stating that certain size-preserving functions can be
-- defined iff A is uninhabited
-- A variant of laterˡ⁻¹ in which one occurrence of weak bisimilarity
-- is replaced by strong bisimilarity, and both arguments are
-- specialised, can be made size-preserving iff A is uninhabited.
--
-- This lemma is used to prove all other similar results below
-- (directly or indirectly), with the exception that an alternative,
-- more direct proof is also given for one of the results.
Laterˡ⁻¹-∼≈ = ∀ {i} {x : A} →
[ i ] later (λ { .force → now x }) ∼ never →
[ i ] now x ≈ never
size-preserving-laterˡ⁻¹-∼≈⇔uninhabited : Laterˡ⁻¹-∼≈ ⇔ ¬ A
size-preserving-laterˡ⁻¹-∼≈⇔uninhabited = record
{ to = Laterˡ⁻¹-∼≈ ↝⟨ (λ laterˡ⁻¹-∼≈ x → contradiction (laterˡ⁻¹-∼≈ {_}) x ∞) ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _} _ → trivial _ _) ⟩□
Laterˡ⁻¹-∼≈ □
}
where
module _ (laterˡ⁻¹-∼≈ : Laterˡ⁻¹-∼≈) (x : A) where
mutual
now≈never : ∀ {i} → [ i ] now x ≈ never
now≈never = laterˡ⁻¹-∼≈ (later now∼never)
now∼never : ∀ {i} → [ i ] now x ∼′ never
force now∼never {j = j} = ⊥-elim (contradiction j)
contradiction : Size → ⊥
contradiction i = now≉never (now≈never {i = i})
-- A variant of Laterˡ⁻¹-∼≈ which it is sometimes easier to work with.
Laterˡ⁻¹-∼≈′ = ∀ {i} {x : A} →
[ i ] later (record { force = now x }) ∼ never →
[ i ] now x ≈ never
size-preserving-laterˡ⁻¹-∼≈′⇔uninhabited : Laterˡ⁻¹-∼≈′ ⇔ ¬ A
size-preserving-laterˡ⁻¹-∼≈′⇔uninhabited =
Laterˡ⁻¹-∼≈′ ↝⟨ record { to = _∘ transitive-∼ʳ (later λ { .force → now })
; from = _∘ transitive-∼ʳ (later λ { .force → now })
} ⟩
Laterˡ⁻¹-∼≈ ↝⟨ size-preserving-laterˡ⁻¹-∼≈⇔uninhabited ⟩□
¬ A □
-- A variant of laterʳ⁻¹ for weak bisimilarity in which one occurrence
-- of weak bisimilarity is replaced by strong bisimilarity, and both
-- arguments are specialised, can be made size-preserving iff A is
-- uninhabited.
Laterʳ⁻¹-∼≈ = ∀ {i} {x : A} →
[ i ] never ∼ later (record { force = now x }) →
[ i ] never ≈ now x
size-preserving-laterʳ⁻¹-∼≈⇔uninhabited : Laterʳ⁻¹-∼≈ ⇔ ¬ A
size-preserving-laterʳ⁻¹-∼≈⇔uninhabited =
Laterʳ⁻¹-∼≈ ↝⟨ record { to = λ laterʳ⁻¹ → symmetric ∘ laterʳ⁻¹ ∘ symmetric
; from = λ laterˡ⁻¹ → symmetric ∘ laterˡ⁻¹ ∘ symmetric
} ⟩
Laterˡ⁻¹-∼≈′ ↝⟨ size-preserving-laterˡ⁻¹-∼≈′⇔uninhabited ⟩□
¬ A □
-- A variant of laterʳ⁻¹ for expansion in which one occurrence of the
-- expansion relation is replaced by strong bisimilarity, and both
-- arguments are specialised, can be made size-preserving iff A is
-- uninhabited.
Laterʳ⁻¹-∼≳ = ∀ {i} {x : A} →
[ i ] never ∼ later (record { force = now x }) →
[ i ] never ≳ now x
size-preserving-laterʳ⁻¹-∼≳⇔uninhabited : Laterʳ⁻¹-∼≳ ⇔ ¬ A
size-preserving-laterʳ⁻¹-∼≳⇔uninhabited = record
{ to = Laterʳ⁻¹-∼≳ ↝⟨ ≳→ ∘_ ⟩
Laterʳ⁻¹-∼≈ ↝⟨ _⇔_.to size-preserving-laterʳ⁻¹-∼≈⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _} _ → trivial _ _) ⟩□
Laterʳ⁻¹-∼≳ □
}
-- The function laterˡ⁻¹ can be made size-preserving iff A is
-- uninhabited.
Laterˡ⁻¹-≈ = ∀ {i x} {y : Delay A ∞} →
[ i ] later x ≈ y → [ i ] force x ≈ y
size-preserving-laterˡ⁻¹-≈⇔uninhabited : Laterˡ⁻¹-≈ ⇔ ¬ A
size-preserving-laterˡ⁻¹-≈⇔uninhabited = record
{ to = Laterˡ⁻¹-≈ ↝⟨ _∘ ∼→ ⟩
Laterˡ⁻¹-∼≈ ↝⟨ _⇔_.to size-preserving-laterˡ⁻¹-∼≈⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _} _ → trivial _ _) ⟩□
Laterˡ⁻¹-≈ □
}
-- The function laterʳ⁻¹ can be made size-preserving for weak
-- bisimilarity iff A is uninhabited.
Laterʳ⁻¹-≈ = ∀ {i} {x : Delay A ∞} {y} →
[ i ] x ≈ later y → [ i ] x ≈ force y
size-preserving-laterʳ⁻¹-≈⇔uninhabited : Laterʳ⁻¹-≈ ⇔ ¬ A
size-preserving-laterʳ⁻¹-≈⇔uninhabited =
Laterʳ⁻¹-≈ ↝⟨ record { to = λ laterʳ⁻¹ → symmetric ∘ laterʳ⁻¹ ∘ symmetric
; from = λ laterˡ⁻¹ → symmetric ∘ laterˡ⁻¹ ∘ symmetric
} ⟩
Laterˡ⁻¹-≈ ↝⟨ size-preserving-laterˡ⁻¹-≈⇔uninhabited ⟩□
¬ A □
-- The function laterʳ⁻¹ can be made size-preserving for expansion iff
-- A is uninhabited.
Laterʳ⁻¹-≳ = ∀ {i} {x : Delay A ∞} {y} →
[ i ] x ≳ later y → [ i ] x ≳ force y
size-preserving-laterʳ⁻¹-≳⇔uninhabited : Laterʳ⁻¹-≳ ⇔ ¬ A
size-preserving-laterʳ⁻¹-≳⇔uninhabited = record
{ to = Laterʳ⁻¹-≳ ↝⟨ _∘ ∼→ ⟩
Laterʳ⁻¹-∼≳ ↝⟨ _⇔_.to size-preserving-laterʳ⁻¹-∼≳⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _} _ → trivial _ _) ⟩□
Laterʳ⁻¹-≳ □
}
-- A variant of ⇓-respects-≈ in which _≈_ is replaced by _∼_ can be
-- made size-preserving in the second argument iff A is uninhabited.
⇓-Respects-∼ʳ = ∀ {i x y} {z : A} →
x ⇓ z → [ i ] x ∼ y → Terminates i y z
size-preserving-⇓-respects-∼ʳ⇔uninhabited : ⇓-Respects-∼ʳ ⇔ ¬ A
size-preserving-⇓-respects-∼ʳ⇔uninhabited = record
{ to = ⇓-Respects-∼ʳ ↝⟨ (λ resp → resp (laterʳ now)) ⟩
Laterˡ⁻¹-∼≈ ↝⟨ _⇔_.to size-preserving-laterˡ⁻¹-∼≈⇔uninhabited ⟩
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
⇓-Respects-∼ʳ □
}
-- The lemma ⇓-respects-≈ can be made size-preserving in the second
-- argument iff A is uninhabited.
⇓-Respects-≈ʳ = ∀ {i x y} {z : A} →
x ⇓ z → [ i ] x ≈ y → Terminates i y z
size-preserving-⇓-respects-≈ʳ⇔uninhabited : ⇓-Respects-≈ʳ ⇔ ¬ A
size-preserving-⇓-respects-≈ʳ⇔uninhabited = record
{ to = ⇓-Respects-≈ʳ ↝⟨ (λ resp x⇓z → resp x⇓z ∘ ∼→) ⟩
⇓-Respects-∼ʳ ↝⟨ _⇔_.to size-preserving-⇓-respects-∼ʳ⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
⇓-Respects-≈ʳ □
}
-- There is a transitivity-like proof, taking weak bisimilarity and
-- strong bisimilarity to weak bisimilarity, that preserves the size
-- of the second argument iff A is uninhabited.
Transitivity-≈∼ʳ = ∀ {i} {x y z : Delay A ∞} →
x ≈ y → [ i ] y ∼ z → [ i ] x ≈ z
size-preserving-transitivity-≈∼ʳ⇔uninhabited : Transitivity-≈∼ʳ ⇔ ¬ A
size-preserving-transitivity-≈∼ʳ⇔uninhabited = record
{ to = Transitivity-≈∼ʳ ↝⟨ (λ trans → trans) ⟩
⇓-Respects-∼ʳ ↝⟨ _⇔_.to size-preserving-⇓-respects-∼ʳ⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-≈∼ʳ □
}
-- There is a transitivity-like proof, taking strong bisimilarity and
-- weak bisimilarity to weak bisimilarity, that preserves the size of
-- the first argument iff A is uninhabited.
Transitivity-∼≈ˡ = ∀ {i} {x y z : Delay A ∞} →
[ i ] x ∼ y → y ≈ z → [ i ] x ≈ z
size-preserving-transitivity-∼≈ˡ⇔uninhabited : Transitivity-∼≈ˡ ⇔ ¬ A
size-preserving-transitivity-∼≈ˡ⇔uninhabited =
Transitivity-∼≈ˡ ↝⟨ record { to = λ trans {_ _ _ _} p q →
symmetric (trans (symmetric q) (symmetric p))
; from = λ trans {_ _ _ _} p q →
symmetric (trans (symmetric q) (symmetric p))
} ⟩
Transitivity-≈∼ʳ ↝⟨ size-preserving-transitivity-≈∼ʳ⇔uninhabited ⟩□
¬ A □
-- There is a transitivity-like proof, taking strong bisimilarity and
-- expansion to expansion, that preserves the size of the first
-- argument iff A is uninhabited.
Transitivity-∼≳ˡ = ∀ {i} {x y z : Delay A ∞} →
[ i ] x ∼ y → y ≳ z → [ i ] x ≳ z
size-preserving-transitivity-∼≳ˡ⇔uninhabited : Transitivity-∼≳ˡ ⇔ ¬ A
size-preserving-transitivity-∼≳ˡ⇔uninhabited = record
{ to = Transitivity-∼≳ˡ ↝⟨ (λ trans never∼lnx → trans never∼lnx (laterˡ now)) ⟩
Laterʳ⁻¹-∼≳ ↝⟨ _⇔_.to size-preserving-laterʳ⁻¹-∼≳⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-∼≳ˡ □
}
-- There is a transitivity proof for weak bisimilarity that preserves
-- the size of the second argument iff A is uninhabited.
Transitivity-≈ʳ = ∀ {i} {x y z : Delay A ∞} →
x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z
size-preserving-transitivity-≈ʳ⇔uninhabited : Transitivity-≈ʳ ⇔ ¬ A
size-preserving-transitivity-≈ʳ⇔uninhabited = record
{ to = Transitivity-≈ʳ ↝⟨ (λ trans → trans) ⟩
⇓-Respects-≈ʳ ↝⟨ _⇔_.to size-preserving-⇓-respects-≈ʳ⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-≈ʳ □
}
-- There is a transitivity proof for weak bisimilarity that preserves
-- the size of the first argument iff A is uninhabited.
Transitivity-≈ˡ = ∀ {i} {x y z : Delay A ∞} →
[ i ] x ≈ y → y ≈ z → [ i ] x ≈ z
size-preserving-transitivity-≈ˡ⇔uninhabited : Transitivity-≈ˡ ⇔ ¬ A
size-preserving-transitivity-≈ˡ⇔uninhabited =
Transitivity-≈ˡ ↝⟨ record { to = λ trans {_ _ _ _} p q →
symmetric (trans (symmetric q) (symmetric p))
; from = λ trans {_ _ _ _} p q →
symmetric (trans (symmetric q) (symmetric p))
} ⟩
Transitivity-≈ʳ ↝⟨ size-preserving-transitivity-≈ʳ⇔uninhabited ⟩□
¬ A □
-- There is a transitivity proof for expansion that preserves the size
-- of the first argument iff A is uninhabited.
Transitivity-≳ˡ = ∀ {i} {x y z : Delay A ∞} →
[ i ] x ≳ y → y ≳ z → [ i ] x ≳ z
size-preserving-transitivity-≳ˡ⇔uninhabited : Transitivity-≳ˡ ⇔ ¬ A
size-preserving-transitivity-≳ˡ⇔uninhabited = record
{ to = Transitivity-≳ˡ ↝⟨ _∘ ∼→ ⟩
Transitivity-∼≳ˡ ↝⟨ _⇔_.to size-preserving-transitivity-∼≳ˡ⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-≳ˡ □
}
-- There is a fully size-preserving transitivity proof for weak
-- bisimilarity iff A is uninhabited.
Transitivity-≈ = ∀ {i} {x y z : Delay A ∞} →
[ i ] x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z
size-preserving-transitivity-≈⇔uninhabited : Transitivity-≈ ⇔ ¬ A
size-preserving-transitivity-≈⇔uninhabited = record
{ to = Transitivity-≈ ↝⟨ (λ trans → trans) ⟩
Transitivity-≈ˡ ↝⟨ _⇔_.to size-preserving-transitivity-≈ˡ⇔uninhabited ⟩
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-≈ □
}
-- The following two lemmas provide an alternative proof of one
-- direction of the previous lemma (with a small change to one of the
-- types).
-- If there is a transitivity proof for weak bisimilarity that is
-- size-preserving in both arguments, then weak bisimilarity is
-- trivial.
size-preserving-transitivity-≈→trivial :
(∀ {i} x {y z : Delay A ∞} →
[ i ] x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z) →
∀ {i} (x y : Delay A ∞) → [ i ] x ≈ y
size-preserving-transitivity-≈→trivial _≈⟨_⟩ʷ_ x y =
(x ≈⟨ laterʳ (x ∎ʷ) ⟩ʷ
(later (λ { .force → x }) ≈⟨ later (λ { .force → size-preserving-transitivity-≈→trivial _≈⟨_⟩ʷ_ x y }) ⟩ʷ
(later (λ { .force → y }) ≈⟨ laterˡ (y ∎ʷ) ⟩ʷ
(y ∎ʷ))))
where
_∎ʷ = reflexive
-- If there is a transitivity proof for weak bisimilarity that is
-- size-preserving in both arguments, then the carrier type A is not
-- inhabited.
size-preserving-transitivity-≈→uninhabited :
(∀ {i} x {y z : Delay A ∞} →
[ i ] x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z) →
¬ A
size-preserving-transitivity-≈→uninhabited trans x =
now≉never (size-preserving-transitivity-≈→trivial trans (now x) never)
-- There is a fully size-preserving transitivity proof for expansion
-- iff A is uninhabited.
Transitivity-≳ = ∀ {i} {x y z : Delay A ∞} →
[ i ] x ≳ y → [ i ] y ≳ z → [ i ] x ≳ z
size-preserving-transitivity-≳⇔uninhabited : Transitivity-≳ ⇔ ¬ A
size-preserving-transitivity-≳⇔uninhabited = record
{ to = Transitivity-≳ ↝⟨ id ⟩
Transitivity-≳ˡ ↝⟨ _⇔_.to size-preserving-transitivity-≳ˡ⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-≳ □
}
-- There is a transitivity-like proof, taking expansion and weak
-- bisimilarity to weak bisimilarity, that preserves the size of the
-- first argument iff A is uninhabited.
Transitivity-≳≈ˡ = ∀ {i} {x y z : Delay A ∞} →
[ i ] x ≳ y → y ≈ z → [ i ] x ≈ z
size-preserving-transitivity-≳≈ˡ⇔uninhabited : Transitivity-≳≈ˡ ⇔ ¬ A
size-preserving-transitivity-≳≈ˡ⇔uninhabited = record
{ to = Transitivity-≳≈ˡ ↝⟨ _∘ ∼→ ⟩
Transitivity-∼≈ˡ ↝⟨ _⇔_.to size-preserving-transitivity-∼≈ˡ⇔uninhabited ⟩
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-≳≈ˡ □
}
-- There is a transitivity-like proof, taking expansion and weak
-- bisimilarity to weak bisimilarity, that preserves the size of both
-- arguments iff A is uninhabited.
Transitivity-≳≈ = ∀ {i} {x y z : Delay A ∞} →
[ i ] x ≳ y → [ i ] y ≈ z → [ i ] x ≈ z
size-preserving-transitivity-≳≈⇔uninhabited : Transitivity-≳≈ ⇔ ¬ A
size-preserving-transitivity-≳≈⇔uninhabited = record
{ to = Transitivity-≳≈ ↝⟨ id ⟩
Transitivity-≳≈ˡ ↝⟨ _⇔_.to size-preserving-transitivity-≳≈ˡ⇔uninhabited ⟩
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-≳≈ □
}
-- There is a transitivity-like proof, taking weak bisimilarity and
-- the converse of expansion to weak bisimilarity, that preserves the
-- size of the second argument iff A is uninhabited.
Transitivity-≈≲ʳ = ∀ {i} {x y z : Delay A ∞} →
x ≈ y → [ i ] y ≲ z → [ i ] x ≈ z
size-preserving-transitivity-≈≲ʳ⇔uninhabited : Transitivity-≈≲ʳ ⇔ ¬ A
size-preserving-transitivity-≈≲ʳ⇔uninhabited =
Transitivity-≈≲ʳ ↝⟨ record { to = λ trans x≳y y≈z → symmetric (trans (symmetric y≈z) x≳y)
; from = λ trans x≈y y≲z → symmetric (trans y≲z (symmetric x≈y))
} ⟩
Transitivity-≳≈ˡ ↝⟨ size-preserving-transitivity-≳≈ˡ⇔uninhabited ⟩□
¬ A □
-- There is a transitivity-like proof, taking weak bisimilarity and
-- the converse of expansion to weak bisimilarity, that preserves the
-- size of both arguments iff A is uninhabited.
Transitivity-≈≲ = ∀ {i} {x y z : Delay A ∞} →
[ i ] x ≈ y → [ i ] y ≲ z → [ i ] x ≈ z
size-preserving-transitivity-≈≲⇔uninhabited : Transitivity-≈≲ ⇔ ¬ A
size-preserving-transitivity-≈≲⇔uninhabited =
Transitivity-≈≲ ↝⟨ record { to = λ trans x≳y y≈z → symmetric (trans (symmetric y≈z) x≳y)
; from = λ trans x≈y y≲z → symmetric (trans y≲z (symmetric x≈y))
} ⟩
Transitivity-≳≈ ↝⟨ size-preserving-transitivity-≳≈⇔uninhabited ⟩□
¬ A □
-- There is a transitivity-like proof, taking weak bisimilarity and
-- expansion to weak bisimilarity, that preserves the size of the
-- first argument iff A is uninhabited.
Transitivity-≈≳ˡ = ∀ {i} {x y z : Delay A ∞} →
[ i ] x ≈ y → y ≳ z → [ i ] x ≈ z
size-preserving-transitivity-≈≳ˡ⇔uninhabited : Transitivity-≈≳ˡ ⇔ ¬ A
size-preserving-transitivity-≈≳ˡ⇔uninhabited = record
{ to = Transitivity-≈≳ˡ ↝⟨ (λ trans x≈ly → trans x≈ly (laterˡ (reflexive _))) ⟩
Laterʳ⁻¹-≈ ↝⟨ _⇔_.to size-preserving-laterʳ⁻¹-≈⇔uninhabited ⟩
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-≈≳ˡ □
}
| {
"alphanum_fraction": 0.5322620889,
"avg_line_length": 40.5647773279,
"ext": "agda",
"hexsha": "1bb585490c7d4bd038a8e9bfe384fb82617ef4d2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/delay-monad",
"max_forks_repo_path": "src/Delay-monad/Bisimilarity/Negative.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/delay-monad",
"max_issues_repo_path": "src/Delay-monad/Bisimilarity/Negative.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/delay-monad",
"max_stars_repo_path": "src/Delay-monad/Bisimilarity/Negative.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8001,
"size": 20039
} |
module CF.Examples.Ex2 where
open import Function
open import Data.Bool
open import Data.Product
open import Data.List
open import Data.Integer
open import Data.String
open import Relation.Binary.PropositionalEquality using (refl)
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax
open import Relation.Ternary.Monad.Possibly
open import JVM.Contexts
open import JVM.Types
open import JVM.Transform.Assemble
open import JVM.Printer
import JVM.Printer.Jasmin as J
open import CF.Syntax as Src
open import CF.Types
open import CF.Contexts.Lexical
open import CF.Compile
-- int i = 0;
-- while(i < 10) {
-- i = i + 1
-- }
ex₂ : Src.Block void ε
ex₂ =
Src.num (+ 0) ≔⟨ ∙-idˡ ⟩ Possibly.possibly ∼-all (
Src.while (bop gt (var ∙⟨ ∙-idʳ ⟩ num (+ 10)) ∙⟨ overlaps ∙-idˡ ⟩
Src.block (
Src.asgn (refl ∙⟨ overlaps ∙-idˡ ⟩ bop add (var ∙⟨ ∙-idʳ ⟩ num (+ 1))) ⍮⟨ ∙-idʳ ⟩
emp)
)⍮⟨ ∙-idʳ ⟩ emp
)
-- Which should compile to:
--
-- 0: push 0
-- 1: store 0
-- 2: load 0
-- 3: push 10
-- 4: if_icmplt 7
-- 5: push false // 0
-- 6: goto 8
-- 7: push true // 1
-- 8: if eq 14 // 0 = false -> jump to end
-- 9: load 0
-- 10: push 1
-- 11: bop add
-- 12: store 0
-- 13: goto 2
-- 14: nop
open import IO as IO
main = IO.run (putStrLn test)
where
test = Show.showBytecode $ proj₂ $ exec-extractor $ extract (proj₂ $ compile ex₂)
-- Uncomment this instead of the above main to output Jasmin code.
-- You can assemble this using Jasmin so that you can run the output with java.
-- Disclaimer: the jasmin compiler pass is not verified.
-- main = IO.run (putStrLn (J.unlines $ J.Jasmin.out proc))
-- where
-- proc = procedure "ex1" (proj₂ $ compile ex₂)
| {
"alphanum_fraction": 0.6679931779,
"avg_line_length": 24.7746478873,
"ext": "agda",
"hexsha": "56c74b377b9fa00f7d8a345c6b88c1fa05658183",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/CF/Examples/Ex2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/CF/Examples/Ex2.agda",
"max_line_length": 90,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/CF/Examples/Ex2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 609,
"size": 1759
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Lex.Core directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Lex.Core where
open import Data.List.Relation.Binary.Lex.Core public
| {
"alphanum_fraction": 0.47,
"avg_line_length": 30.7692307692,
"ext": "agda",
"hexsha": "b4a8f1611390ed36a2b0729f511cad8c728e1660",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Lex/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Lex/Core.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Lex/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 63,
"size": 400
} |
---------------------------------------------------------------------------------
-- Equality
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
infix 4 _≡_
------------------------------------------------------------------------------
-- Equality is an equivalence relation : reflexive, symmetric, and transitive.
-- Reflexivity is built-in to the definition of equality.
sym : ∀ {A : Set} {x y : A}
→ x ≡ y
-----
→ y ≡ x
sym refl = refl
trans : ∀ {A : Set} {x y z : A}
→ x ≡ y
→ y ≡ z
-----
→ x ≡ z
trans refl refl = refl
-- Equality satisfies congruence.
-- If two terms are equal, they are eual after the same function is applied to both:
cong : ∀ {A B : Set} (f : A → B) {x y : A}
→ x ≡ y
---------
→ f x ≡ f y
cong f refl = refl
-- Congruence of 2 arg functions
cong₂ : ∀ {A B C : Set} (f : A → B → C) {u x : A} {v y : B}
→ u ≡ x
→ v ≡ y
-------------
→ f u v ≡ f x y
cong₂ f refl refl = refl
-- Equality is a congruence in the function position of an application.
-- If two functions are equal, then applying them to the same term yields equal terms:
cong-app : ∀ {A B : Set} {f g : A → B}
→ f ≡ g
---------------------
→ ∀ (x : A) → f x ≡ g x
cong-app refl x = refl
-- Equality satisfies substitution.
-- If two values are equal and a predicate holds of the first then it also holds of the second:
subst : ∀ {A : Set} {x y : A} (P : A → Set)
→ x ≡ y
---------
→ P x → P y
subst P refl px = px
-- Chains of equations : support equational reasoning
module ≡-Reasoning {A : Set} where
infix 1 begin_
infixr 2 _≡⟨⟩_ _≡⟨_⟩_
infix 3 _∎
begin_ : ∀ {x y : A}
→ x ≡ y
-----
→ x ≡ y
begin x≡y = x≡y
_≡⟨⟩_ : ∀ (x : A) {y : A}
→ x ≡ y
-----
→ x ≡ y
x ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : ∀ (x : A) {y z : A}
→ x ≡ y
→ y ≡ z
-----
→ x ≡ z
x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z
_∎ : ∀ (x : A)
-----
→ x ≡ x
x ∎ = refl
open ≡-Reasoning
-- equational proof of transitivity
trans′ : ∀ {A : Set} {x y z : A}
→ x ≡ y
→ y ≡ z
-----
→ x ≡ z
trans′ {A} {x} {y} {z} x≡y y≡z =
begin
x
≡⟨ x≡y ⟩
y
≡⟨ y≡z ⟩
z
∎
{-
Exercise trans and ≡-Reasoning (practice): TODO
Cannot use the definition of trans’ using ≡-Reasoning as the definition for trans.
WHY?
Hint: look at the definition of _≡⟨_⟩_
-}
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc m) + n = suc (m + n)
postulate
+-identity : ∀ (m : ℕ) → m + zero ≡ m
+-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n)
+-comm : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm m zero =
begin
m + zero
≡⟨ +-identity m ⟩
m
≡⟨⟩
zero + m
∎
+-comm m (suc n) =
begin
m + suc n
≡⟨ +-suc m n ⟩
suc (m + n)
≡⟨ cong suc (+-comm m n) ⟩
suc (n + m)
≡⟨⟩
suc n + m
∎
{-
Exercise ≤-Reasoning (stretch) TODO
The proof of monotonicity from Chapter Relations can be written in a more readable form
by using an analogue of our notation for ≡-Reasoning.
Define ≤-Reasoning analogously, and use it to write out an alternative proof
that addition is monotonic with regard to inequality.
Rewrite all of +-monoˡ-≤, +-monoʳ-≤, and +-mono-≤.
-}
------------------------------------------------------------------------------
-- Rewriting
-- keyword rewrite : followed by evidence of an EQUALITY
-- that equality is used to rewrite
-- - the type of the goal
-- - and of any variable in scope
data even : ℕ → Set
data odd : ℕ → Set
data even where
even-zero : even zero
even-suc : ∀ {n : ℕ}
→ odd n
------------
→ even (suc n)
data odd where
odd-suc : ∀ {n : ℕ}
→ even n
-----------
→ odd (suc n)
even-comm : ∀ (m n : ℕ)
→ even (m + n)
------------
→ even (n + m)
even-comm m n ev -- even (n + m)
rewrite +-comm n m -- even (m + n) ; ev : even (m + n)
= ev
--------------------------------------------------
-- Multiple rewrites each separated by a vertical bar.
+-comm′ : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm′ zero n rewrite +-identity n = refl
+-comm′ (suc m) n rewrite +-suc n m | +-comm′ m n = refl
--------------------------------------------------
-- rewrite is shorthand for an use of WITH
even-comm′ : ∀ (m n : ℕ)
→ even (m + n)
------------
→ even (n + m)
even-comm′ m n ev with m + n | +-comm m n
... | .(n + m) | refl = ev
{-
--------------------------------------------------
DOT pattern, .(n + m).
dot followed by an expression.
Used when other info forces value matched to be equal to value of expr in dot pattern.
-}
------------------------------------------------------------------------------
-- subst (instead of rewrite)
even-comm″ : ∀ (m n : ℕ)
→ even (m + n)
------------
→ even (n + m)
even-comm″ m n = subst even (+-comm m n)
{-
------------------------------------------------------------------------------
Leibniz equality
≡ def is due to Martin Löf (1975).
Older form is due to Leibniz (1686).
IDENTITY OF INDISCERNIBLES:
- two objects are equal IFF they satisfy the same properties
Below: define Leibniz equality, and show that two terms satisfy Leibniz equality IFF
they satisfy Martin Löf equality.
x ≐ y holds if every property P that holds of x also holds of y
this def is sufficient to ensure the converse
- that every property P that holds of y also holds of x
Let x and y be objects of type A.
x ≐ y holds if for every predicate P over type A we have that P x implies P y:
_]
-}
_≐_ : ∀ {A : Set} (x y : A) → Set₁
_≐_ {A} x y = ∀ (P : A → Set) → P x → P y
{-
NOTE: write _≐_ {A} x y (instead of x ≐ y) to provide access to implicit parameter.
--------------------------------------------------
FIRST USE OF LEVELS.
Cannot assign Set the type Set (Russell’s Paradox and Girard’s Paradox).
Set is an abbreviation for Set₀
Since _≐_ def mentions Set on right-hand side, the corresponding signature must use Set₁.
Leibniz equality is reflexive (follows by a variant of the identity function)
and transitive (by a variant of function composition)
-}
refl-≐ : ∀ {A : Set} {x : A}
→ x ≐ x
refl-≐ P Px = Px
trans-≐ : ∀ {A : Set} {x y z : A}
→ x ≐ y
→ y ≐ z
-----
→ x ≐ z
trans-≐ x≐y y≐z P Px = y≐z P (x≐y P Px)
-- Symmetry : show that if P x implies P y for all predicates P,
-- then the implication holds the other way round as well:
sym-≐ : ∀ {A : Set} {x y : A}
→ x ≐ y
-----
→ y ≐ x
sym-≐ {A} {x} {y} x≐y P = Qy
where
Q : A → Set
Q z = P z → P x
Qx : Q x
Qx = refl-≐ P
Qy : Q y
Qy = x≐y Q Qx
{-
Given x ≐ y, a specific P, construct a proof that P y implies P x.
Instantiate the equality with a predicate Q such that Q z holds if P z implies P x.
The property Q x is trivial by reflexivity, and hence Q y follows from x ≐ y.
But Q y is exactly a proof of what we require, that P y implies P x.
show Martin Löf equality implies Leibniz equality, and vice versa.
if x ≡ y then need for any P to take evidence of P x to evidence of P y
which can be done since equality of x and y implies that any proof of P x is also a proof of P y:
-}
≡-implies-≐ : ∀ {A : Set} {x y : A}
→ x ≡ y
-----
→ x ≐ y
≡-implies-≐ x≡y P = subst P x≡y
-- given that for any P we can take a proof of P x to a proof of P y then show x ≡ y:
≐-implies-≡ : ∀ {A : Set} {x y : A}
→ x ≐ y
-----
→ x ≡ y
≐-implies-≡ {A} {x} {y} x≐y = Qy
where
Q : A → Set
Q z = x ≡ z
Qx : Q x
Qx = refl
Qy : Q y
Qy = x≐y Q Qx
{-
proof similar to that for symmetry of Leibniz equality.
We take Q to be the predicate that holds of z if x ≡ z.
Then Q x is trivial by reflexivity of Martin Löf equality, and hence Q y follows from x ≐ y.
But Q y is exactly a proof of what we require, that x ≡ y.
(Parts adapted from
≐≃≡: Leibniz Equality is Isomorphic to Martin-Löf Identity, Parametrically,
by Andreas Abel, Jesper Cockx, Dominique Devries, Andreas Nuyts, and Philip Wadler, draft, 2017.)
------------------------------------------------------------------------------
Universe polymorphism
Not every type belongs to Set.
Set₀ : Set₁, Set₁ : Set₂, ...
≡ def at beginning is ok for comparing values of a type that belongs to Set.
How to compare two values of a type that belongs to Set ℓ for some arbitrary level ℓ?
Via universe polymorphism : definition made with respect to arbitrary level ℓ.
To use levels:
-}
open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc)
{-
Levels : isomorphic to natural numbers
lzero : Level
lsuc : Level → Level
Set₀, Set₁, Set₂, and so on, are abbreviations for
Set lzero
Set (lsuc lzero)
Set (lsuc (lsuc lzero))
_⊔_ : Level → Level → Level -- given two levels returns the largest
equality, symetry, generalised to an arbitrary level:
-}
data _≡′_ {ℓ : Level} {A : Set ℓ} (x : A) : A → Set ℓ where
refl′ : x ≡′ x
sym′ : ∀ {ℓ : Level} {A : Set ℓ} {x y : A}
→ x ≡′ y
------
→ y ≡′ x
sym′ refl′ = refl′
{-
most defs in standard library are generalised to arbitrary levels
generalised Leibniz equality:
-}
_≐′_ : ∀ {ℓ : Level} {A : Set ℓ} (x y : A) → Set (lsuc ℓ)
_≐′_ {ℓ} {A} x y = ∀ (P : A → Set ℓ) → P x → P y
-- generalized composition
_∘_ : ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} {C : Set ℓ₃}
→ (B → C) → (A → B) → A → C
(g ∘ f) x = g (f x)
{-
Standard library
defines _≡⟨_⟩_ as step-≡, which reverses the order of the arguments.
defines a syntax macro ((automatically imported with step-≡) i, which recovers original arg order:
-}
| {
"alphanum_fraction": 0.5364474235,
"avg_line_length": 24.2335025381,
"ext": "agda",
"hexsha": "32a89307bbf8abfb7e107ea72eccb21fdbb6b547",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x04equality-hc-2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x04equality-hc-2.agda",
"max_line_length": 98,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x04equality-hc-2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 3285,
"size": 9548
} |
module zfc where
open import Level
open import Relation.Binary
open import Relation.Nullary
open import logic
record IsZFC {n m : Level }
(ZFSet : Set n)
(_∋_ : ( A x : ZFSet ) → Set m)
(_≈_ : Rel ZFSet m)
(∅ : ZFSet)
(Select : (X : ZFSet ) → ( ψ : (x : ZFSet ) → Set m ) → ZFSet )
: Set (suc (n ⊔ suc m)) where
field
-- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ]
choice-func : (X : ZFSet ) → {x : ZFSet } → ¬ ( x ≈ ∅ ) → ( X ∋ x ) → ZFSet
choice : (X : ZFSet ) → {A : ZFSet } → ( X∋A : X ∋ A ) → (not : ¬ ( A ≈ ∅ )) → A ∋ choice-func X not X∋A
infixr 200 _∈_
infixr 230 _∩_
_∈_ : ( A B : ZFSet ) → Set m
A ∈ B = B ∋ A
_∩_ : ( A B : ZFSet ) → ZFSet
A ∩ B = Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) )
record ZFC {n m : Level } : Set (suc (n ⊔ suc m)) where
field
ZFSet : Set n
_∋_ : ( A x : ZFSet ) → Set m
_≈_ : ( A B : ZFSet ) → Set m
∅ : ZFSet
Select : (X : ZFSet ) → ( ψ : (x : ZFSet ) → Set m ) → ZFSet
isZFC : IsZFC ZFSet _∋_ _≈_ ∅ Select
| {
"alphanum_fraction": 0.4455813953,
"avg_line_length": 30.7142857143,
"ext": "agda",
"hexsha": "177382511b696c3b7cf34067639e4111cb5c02cc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/zf-in-agda",
"max_forks_repo_path": "src/zfc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/zf-in-agda",
"max_issues_repo_path": "src/zfc.agda",
"max_line_length": 110,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/zf-in-agda",
"max_stars_repo_path": "src/zfc.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z",
"num_tokens": 504,
"size": 1075
} |
{-# OPTIONS --without-K --safe #-}
{-
Properties regarding Morphisms of a category:
- Regular Monomorphism
- Regular Epimorphism
https://ncatlab.org/nlab/show/regular+epimorphism
These are defined here rather than in Morphism, as this
might cause import cycles (and make the dependency graph
very odd).
-}
open import Categories.Category.Core
module Categories.Morphism.Regular {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Categories.Morphism 𝒞
open import Categories.Diagram.Equalizer 𝒞
open import Categories.Diagram.Coequalizer 𝒞
open Category 𝒞
private
variable
A B : Obj
f : A ⇒ B
record RegularMono (f : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where
field
{ C } : Obj
g : B ⇒ C
h : B ⇒ C
equalizer : IsEqualizer f h g
record RegularEpi (f : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where
field
{ C } : Obj
h : C ⇒ A
g : C ⇒ A
coequalizer : IsCoequalizer h g f
RegularMono⇒Mono : RegularMono f → Mono f
RegularMono⇒Mono regular = IsEqualizer⇒Mono equalizer
where
open RegularMono regular
RegularEpi⇒Epi : RegularEpi f → Epi f
RegularEpi⇒Epi regular = IsCoequalizer⇒Epi coequalizer
where
open RegularEpi regular
| {
"alphanum_fraction": 0.6899159664,
"avg_line_length": 21.6363636364,
"ext": "agda",
"hexsha": "0dca21cf0a8953b9c27be8eba5a3b8b458418c8f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "maxsnew/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Regular.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "maxsnew/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Regular.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "maxsnew/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Regular.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 388,
"size": 1190
} |
module Forcing where
open import Common.IO
open import Common.Unit
open import Lib.Vec
open import Common.Nat
len : {A : Set}{n : Nat} → Vec A n → Nat
len {A} .{zero} [] = zero
len {A} .{suc n} (_∷_ {n} x xs) = suc n
len2 : {A : Set}{n : Nat} → Vec A n → Nat
len2 [] = 0
len2 (_∷_ {n} x xs) = suc (len2 {n = n} xs)
len3 : {A : Set}{n : Nat} → Vec A n → Nat
len3 {n = zero} [] = zero
len3 {n = suc n} (_∷_ .{n} x xs) = suc n
len4 : {A : Set}{n : Nat} → Vec A n → Nat
len4 [] = zero
len4 (_∷_ {zero} x xs) = suc zero
len4 (_∷_ {suc n} x xs) = suc (suc n)
main : IO Unit
main =
printNat (len l1) ,,
printNat (len l2) ,,
printNat (len l3) ,,
printNat (len2 l1) ,,
printNat (len2 l2) ,,
printNat (len2 l3) ,,
printNat (len3 l1) ,,
printNat (len3 l2) ,,
printNat (len3 l3) ,,
printNat (len4 l1) ,,
printNat (len4 l2) ,,
printNat (len4 l3) ,,
return unit
where l1 = "a" ∷ ("b" ∷ ("c" ∷ []))
l2 = 1 ∷ (2 ∷ (3 ∷ (4 ∷ (5 ∷ []))))
l3 : Vec Nat zero
l3 = []
| {
"alphanum_fraction": 0.486586494,
"avg_line_length": 22.5208333333,
"ext": "agda",
"hexsha": "d9b474f03de332ba72451c8655de6e6cb64c3fe2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Forcing.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/Forcing.agda",
"max_line_length": 43,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/Forcing.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 456,
"size": 1081
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lists, basic types and operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Base where
open import Data.Nat.Base as ℕ using (ℕ; zero; suc; _+_; _*_ ; _≤_ ; s≤s)
open import Data.Fin using (Fin; zero; suc)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Data.Bool.Base as Bool
using (Bool; false; true; not; _∧_; _∨_; if_then_else_)
open import Data.Maybe.Base as Maybe using (Maybe; nothing; just)
open import Data.Product as Prod using (_×_; _,_)
open import Data.These as These using (These; this; that; these)
open import Function using (id; _∘_ ; _∘′_; const; flip)
open import Relation.Nullary using (yes; no)
open import Relation.Unary using (Pred; Decidable)
open import Relation.Unary.Properties using (∁?)
------------------------------------------------------------------------
-- Types
open import Agda.Builtin.List public
using (List; []; _∷_)
------------------------------------------------------------------------
-- Operations for transforming lists
map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
mapMaybe : ∀ {a b} {A : Set a} {B : Set b} → (A → Maybe B) → List A → List B
mapMaybe p [] = []
mapMaybe p (x ∷ xs) with p x
... | just y = y ∷ mapMaybe p xs
... | nothing = mapMaybe p xs
module _ {a} {A : Set a} where
infixr 5 _++_
_++_ : List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
intersperse : A → List A → List A
intersperse x [] = []
intersperse x (y ∷ []) = y ∷ []
intersperse x (y ∷ ys) = y ∷ x ∷ intersperse x ys
intercalate : List A → List (List A) → List A
intercalate xs [] = []
intercalate xs (ys ∷ []) = ys
intercalate xs (ys ∷ yss) = ys ++ xs ++ intercalate xs yss
------------------------------------------------------------------------
-- Aligning and zipping
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
alignWith : (These A B → C) → List A → List B → List C
alignWith f [] bs = map (f ∘′ that) bs
alignWith f as [] = map (f ∘′ this) as
alignWith f (a ∷ as) (b ∷ bs) = f (these a b) ∷ alignWith f as bs
zipWith : (A → B → C) → List A → List B → List C
zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys
zipWith f _ _ = []
unalignWith : (A → These B C) → List A → List B × List C
unalignWith f [] = [] , []
unalignWith f (a ∷ as) with f a
... | this b = Prod.map₁ (b ∷_) (unalignWith f as)
... | that c = Prod.map₂ (c ∷_) (unalignWith f as)
... | these b c = Prod.map (b ∷_) (c ∷_) (unalignWith f as)
unzipWith : (A → B × C) → List A → List B × List C
unzipWith f [] = [] , []
unzipWith f (xy ∷ xys) = Prod.zip _∷_ _∷_ (f xy) (unzipWith f xys)
partitionSumsWith : (A → B ⊎ C) → List A → List B × List C
partitionSumsWith f = unalignWith (These.fromSum ∘′ f)
module _ {a b} {A : Set a} {B : Set b} where
align : List A → List B → List (These A B)
align = alignWith id
zip : List A → List B → List (A × B)
zip = zipWith (_,_)
unalign : List (These A B) → List A × List B
unalign = unalignWith id
unzip : List (A × B) → List A × List B
unzip = unzipWith id
partitionSums : List (A ⊎ B) → List A × List B
partitionSums = partitionSumsWith id
------------------------------------------------------------------------
-- Operations for reducing lists
foldr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → B
foldr c n [] = n
foldr c n (x ∷ xs) = c x (foldr c n xs)
foldl : ∀ {a b} {A : Set a} {B : Set b} → (A → B → A) → A → List B → A
foldl c n [] = n
foldl c n (x ∷ xs) = foldl c (c n x) xs
concat : ∀ {a} {A : Set a} → List (List A) → List A
concat = foldr _++_ []
concatMap : ∀ {a b} {A : Set a} {B : Set b} →
(A → List B) → List A → List B
concatMap f = concat ∘ map f
null : ∀ {a} {A : Set a} → List A → Bool
null [] = true
null (x ∷ xs) = false
and : List Bool → Bool
and = foldr _∧_ true
or : List Bool → Bool
or = foldr _∨_ false
any : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool
any p = or ∘ map p
all : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool
all p = and ∘ map p
sum : List ℕ → ℕ
sum = foldr _+_ 0
product : List ℕ → ℕ
product = foldr _*_ 1
length : ∀ {a} {A : Set a} → List A → ℕ
length = foldr (const suc) 0
------------------------------------------------------------------------
-- Operations for constructing lists
[_] : ∀ {a} {A : Set a} → A → List A
[ x ] = x ∷ []
fromMaybe : ∀ {a} {A : Set a} → Maybe A → List A
fromMaybe (just x) = [ x ]
fromMaybe nothing = []
replicate : ∀ {a} {A : Set a} → ℕ → A → List A
replicate zero x = []
replicate (suc n) x = x ∷ replicate n x
inits : ∀ {a} {A : Set a} → List A → List (List A)
inits [] = [] ∷ []
inits (x ∷ xs) = [] ∷ map (x ∷_) (inits xs)
tails : ∀ {a} {A : Set a} → List A → List (List A)
tails [] = [] ∷ []
tails (x ∷ xs) = (x ∷ xs) ∷ tails xs
-- Scans
scanr : ∀ {a b} {A : Set a} {B : Set b} →
(A → B → B) → B → List A → List B
scanr f e [] = e ∷ []
scanr f e (x ∷ xs) with scanr f e xs
... | [] = [] -- dead branch
... | y ∷ ys = f x y ∷ y ∷ ys
scanl : ∀ {a b} {A : Set a} {B : Set b} →
(A → B → A) → A → List B → List A
scanl f e [] = e ∷ []
scanl f e (x ∷ xs) = e ∷ scanl f (f e x) xs
module _ {a} {A : Set a} where
-- Tabulation
applyUpTo : (ℕ → A) → ℕ → List A
applyUpTo f zero = []
applyUpTo f (suc n) = f zero ∷ applyUpTo (f ∘ suc) n
applyDownFrom : (ℕ → A) → ℕ → List A
applyDownFrom f zero = []
applyDownFrom f (suc n) = f n ∷ applyDownFrom f n
tabulate : ∀ {n} (f : Fin n → A) → List A
tabulate {zero} f = []
tabulate {suc n} f = f Fin.zero ∷ tabulate (f ∘ Fin.suc)
lookup : ∀ (xs : List A) → Fin (length xs) → A
lookup [] ()
lookup (x ∷ xs) Fin.zero = x
lookup (x ∷ xs) (Fin.suc i) = lookup xs i
-- Numerical
upTo : ℕ → List ℕ
upTo = applyUpTo id
downFrom : ℕ → List ℕ
downFrom = applyDownFrom id
allFin : ∀ n → List (Fin n)
allFin n = tabulate id
-- Other
unfold : ∀ {a b} {A : Set a} (B : ℕ → Set b)
(f : ∀ {n} → B (suc n) → Maybe (A × B n)) →
∀ {n} → B n → List A
unfold B f {n = zero} s = []
unfold B f {n = suc n} s with f s
... | nothing = []
... | just (x , s') = x ∷ unfold B f s'
------------------------------------------------------------------------
-- Operations for deconstructing lists
-- Note that although these combinators can be useful for programming, when
-- proving it is often a better idea to manually destruct a list argument:
-- each branch of the pattern-matching will have a refined type.
module _ {a} {A : Set a} where
uncons : List A → Maybe (A × List A)
uncons [] = nothing
uncons (x ∷ xs) = just (x , xs)
head : List A → Maybe A
head [] = nothing
head (x ∷ _) = just x
tail : List A → Maybe (List A)
tail [] = nothing
tail (_ ∷ xs) = just xs
take : ∀ {a} {A : Set a} → ℕ → List A → List A
take zero xs = []
take (suc n) [] = []
take (suc n) (x ∷ xs) = x ∷ take n xs
drop : ∀ {a} {A : Set a} → ℕ → List A → List A
drop zero xs = xs
drop (suc n) [] = []
drop (suc n) (x ∷ xs) = drop n xs
splitAt : ∀ {a} {A : Set a} → ℕ → List A → (List A × List A)
splitAt zero xs = ([] , xs)
splitAt (suc n) [] = ([] , [])
splitAt (suc n) (x ∷ xs) with splitAt n xs
... | (ys , zs) = (x ∷ ys , zs)
takeWhile : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → List A
takeWhile P? [] = []
takeWhile P? (x ∷ xs) with P? x
... | yes _ = x ∷ takeWhile P? xs
... | no _ = []
dropWhile : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → List A
dropWhile P? [] = []
dropWhile P? (x ∷ xs) with P? x
... | yes _ = dropWhile P? xs
... | no _ = x ∷ xs
filter : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → List A
filter P? [] = []
filter P? (x ∷ xs) with P? x
... | no _ = filter P? xs
... | yes _ = x ∷ filter P? xs
partition : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → (List A × List A)
partition P? [] = ([] , [])
partition P? (x ∷ xs) with P? x | partition P? xs
... | yes _ | (ys , zs) = (x ∷ ys , zs)
... | no _ | (ys , zs) = (ys , x ∷ zs)
span : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → (List A × List A)
span P? [] = ([] , [])
span P? (x ∷ xs) with P? x
... | yes _ = Prod.map (x ∷_) id (span P? xs)
... | no _ = ([] , x ∷ xs)
break : ∀ {a p} {A : Set a} {P : Pred A p} →
Decidable P → List A → (List A × List A)
break P? = span (∁? P?)
------------------------------------------------------------------------
-- Actions on single elements
module _ {a} {A : Set a} where
infixl 5 _[_]%=_ _[_]∷=_ _─_
_[_]%=_ : (xs : List A) → Fin (length xs) → (A → A) → List A
[] [ () ]%= f
(x ∷ xs) [ zero ]%= f = f x ∷ xs
(x ∷ xs) [ suc k ]%= f = x ∷ (xs [ k ]%= f)
_[_]∷=_ : (xs : List A) → Fin (length xs) → A → List A
xs [ k ]∷= v = xs [ k ]%= const v
_─_ : (xs : List A) → Fin (length xs) → List A
[] ─ ()
(x ∷ xs) ─ zero = xs
(x ∷ xs) ─ suc k = x ∷ (xs ─ k)
------------------------------------------------------------------------
-- Operations for reversing lists
module _ {a} {A : Set a} where
reverseAcc : List A → List A → List A
reverseAcc = foldl (flip _∷_)
reverse : List A → List A
reverse = reverseAcc []
-- Snoc.
infixl 5 _∷ʳ_
_∷ʳ_ : ∀ {a} {A : Set a} → List A → A → List A
xs ∷ʳ x = xs ++ [ x ]
-- Backwards initialisation
infixl 5 _∷ʳ'_
data InitLast {a} {A : Set a} : List A → Set a where
[] : InitLast []
_∷ʳ'_ : (xs : List A) (x : A) → InitLast (xs ∷ʳ x)
initLast : ∀ {a} {A : Set a} → (xs : List A) → InitLast xs
initLast [] = []
initLast (x ∷ xs) with initLast xs
initLast (x ∷ .[]) | [] = [] ∷ʳ' x
initLast (x ∷ .(ys ∷ʳ y)) | ys ∷ʳ' y = (x ∷ ys) ∷ʳ' y
------------------------------------------------------------------------
-- DEPRECATED
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
--
-- Note that the `boolX` functions are not given warnings as they are
-- used by other deprecated proofs throughout the library.
-- Version 0.15
gfilter = mapMaybe
{-# WARNING_ON_USAGE gfilter
"Warning: gfilter was deprecated in v0.15.
Please use mapMaybe instead."
#-}
boolFilter : ∀ {a} {A : Set a} → (A → Bool) → List A → List A
boolFilter p = mapMaybe (λ x → if p x then just x else nothing)
boolPartition : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A)
boolPartition p [] = ([] , [])
boolPartition p (x ∷ xs) with p x | boolPartition p xs
... | true | (ys , zs) = (x ∷ ys , zs)
... | false | (ys , zs) = (ys , x ∷ zs)
-- Version 0.16
boolTakeWhile : ∀ {a} {A : Set a} → (A → Bool) → List A → List A
boolTakeWhile p [] = []
boolTakeWhile p (x ∷ xs) with p x
... | true = x ∷ boolTakeWhile p xs
... | false = []
boolDropWhile : ∀ {a} {A : Set a} → (A → Bool) → List A → List A
boolDropWhile p [] = []
boolDropWhile p (x ∷ xs) with p x
... | true = boolDropWhile p xs
... | false = x ∷ xs
boolSpan : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A)
boolSpan p [] = ([] , [])
boolSpan p (x ∷ xs) with p x
... | true = Prod.map (x ∷_) id (boolSpan p xs)
... | false = ([] , x ∷ xs)
boolBreak : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A)
boolBreak p = boolSpan (not ∘ p)
| {
"alphanum_fraction": 0.4832682181,
"avg_line_length": 29.1435643564,
"ext": "agda",
"hexsha": "ca5a6665bad3060728b5203b09292ff34f13fb96",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Base.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4182,
"size": 11774
} |
--------------------------------------------------------------------------------
-- This is part of Agda Inference Systems
{-# OPTIONS --sized-types #-}
open import Agda.Builtin.Equality
open import Data.Product
open import Size
open import Codata.Thunk
open import Level
open import Relation.Unary using (_⊆_)
module is-lib.InfSys.SCoinduction {𝓁} where
private
variable
U : Set 𝓁
open import is-lib.InfSys.Base {𝓁}
open import is-lib.InfSys.Induction {𝓁}
open MetaRule
open IS
{- Coinductive interpretation -}
data SCoInd⟦_⟧ {𝓁c 𝓁p 𝓁n : Level} (is : IS {𝓁c} {𝓁p} {𝓁n} U) : U → Size → Set (𝓁 ⊔ 𝓁c ⊔ 𝓁p ⊔ 𝓁n) where
sfold : ∀{u i} → ISF[ is ] (λ u → Thunk (SCoInd⟦ is ⟧ u) i) u → SCoInd⟦ is ⟧ u i
{- Coinduction Principle -}
scoind[_] : ∀{𝓁c 𝓁p 𝓁n 𝓁'}
→ (is : IS {𝓁c} {𝓁p} {𝓁n} U)
→ (S : U → Set 𝓁')
→ S ⊆ ISF[ is ] S -- S is consistent
→ S ⊆ λ u → ∀{i} → SCoInd⟦ is ⟧ u i
scoind[ is ] S cn Su with cn Su
... | rn , c , refl , pr = sfold (rn , c , refl , λ i → λ where .force → scoind[ is ] S cn (pr i))
{- Apply Rule -}
apply-scoind : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → (rn : is .Names) → RClosed (is .rules rn) (λ u → ∀{i} → SCoInd⟦ is ⟧ u i)
apply-scoind {is = is} rn =
prefix⇒closed (is .rules rn) {P = λ u → ∀{i} → SCoInd⟦ is ⟧ u i } λ{(c , refl , pr) → sfold (rn , c , refl , λ i → λ where .force → pr i)}
{- Postfix - Prefix -}
scoind-postfix : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → (λ u → ∀{i} → SCoInd⟦ is ⟧ u i) ⊆ ISF[ is ] (λ u → ∀{i} → SCoInd⟦ is ⟧ u i)
scoind-postfix p-scoind with p-scoind
... | sfold (rn , c , refl , pr) = rn , c , refl , λ i → (pr i) .force
scoind-prefix : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → ISF[ is ] (λ u → ∀{i} → SCoInd⟦ is ⟧ u i) ⊆ λ u → ∀{i} → SCoInd⟦ is ⟧ u i
scoind-prefix (rn , c , refl , pr) = apply-scoind rn c pr | {
"alphanum_fraction": 0.5191285866,
"avg_line_length": 36.1923076923,
"ext": "agda",
"hexsha": "2ff8a5d17995a697e9cfc6cdf4b1f0877a4371bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/is-lib/InfSys/SCoinduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/is-lib/InfSys/SCoinduction.agda",
"max_line_length": 142,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/is-lib/InfSys/SCoinduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 849,
"size": 1882
} |
{-# OPTIONS --cubical --no-exact-split --safe #-}
module Cubical.Structures.Queue where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.FunExtEquiv
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS)
open import Cubical.Structures.Pointed
open import Cubical.Data.Unit
open import Cubical.Data.Sum
open import Cubical.Data.Prod.Base hiding (_×_) renaming (_×Σ_ to _×_)
-- Developing Queues as a standard notion of structure, see
-- https://github.com/ecavallo/cubical/blob/queue/Cubical/Experiments/Queue.agda
-- for the original development
variable
ℓ ℓ' : Level
-- We start fixing a set A on which we define what it means for a type Q to have
-- a Queue structure (wrt. A)
module Queues-on (A : Type ℓ) (Aset : isSet A) where
-- A Queue structure has three components, the empty Queue, a push function and a pop function
-- We first deal with push and pop as separate structures
left-action-structure : Type ℓ → Type ℓ
left-action-structure X = A → X → X
Left-Action : Type (ℓ-suc ℓ)
Left-Action = TypeWithStr ℓ left-action-structure
left-action-iso : StrIso left-action-structure ℓ
left-action-iso (X , l) (Y , m) e = ∀ a x → e .fst (l a x) ≡ m a (e .fst x)
Left-Action-is-SNS : SNS {ℓ} left-action-structure left-action-iso
Left-Action-is-SNS = SNS-≡→SNS-PathP left-action-iso ((λ _ _ → funExt₂Equiv))
-- Now for the pop-map as a structure
-- First, a few preliminary results that we will need later
pop-map-forward : {X Y : Type ℓ} → (X → Y)
→ Unit ⊎ (X × A) → Unit ⊎ (Y × A)
pop-map-forward f (inl tt) = inl tt
pop-map-forward f (inr (x , a)) = inr (f x , a)
pop-map-forward-∘ :{B C D : Type ℓ}
(g : C → D) (f : B → C)
→ ∀ r → pop-map-forward {X = C} g (pop-map-forward f r) ≡ pop-map-forward (λ b → g (f b)) r
pop-map-forward-∘ g f (inl tt) = refl
pop-map-forward-∘ g f (inr (b , a)) = refl
pop-map-lemma : {X : Type ℓ} → idfun (Unit ⊎ (X × A)) ≡ pop-map-forward (idfun X)
pop-map-lemma {X = X} = funExt γ
where
γ : ∀ z → z ≡ pop-map-forward (idfun X) z
γ (inl tt) = refl
γ (inr xa) = refl
pop-structure : Type ℓ → Type ℓ
pop-structure X = X → Unit ⊎ (X × A)
Pop : Type (ℓ-suc ℓ)
Pop = TypeWithStr ℓ pop-structure
pop-iso : StrIso pop-structure ℓ
pop-iso (X , p) (Y , q) e = ∀ x → pop-map-forward (e .fst) (p x) ≡ q (e .fst x)
Pop-is-SNS : SNS {ℓ} pop-structure pop-iso
Pop-is-SNS = SNS-≡→SNS-PathP pop-iso (λ p q → (subst (λ f → (∀ x → f (p x) ≡ q x) ≃ (p ≡ q)) pop-map-lemma funExtEquiv))
-- Now we can do Queues:
queue-structure : Type ℓ → Type ℓ
queue-structure Q = Q × (A → Q → Q) × (Q → Unit ⊎ (Q × A))
Queue : Type (ℓ-suc ℓ)
Queue = TypeWithStr ℓ queue-structure
queue-iso : StrIso queue-structure ℓ
queue-iso (Q₁ , emp₁ , push₁ , pop₁) (Q₂ , emp₂ , push₂ , pop₂) e =
(e .fst emp₁ ≡ emp₂)
× (∀ a q → e .fst (push₁ a q) ≡ push₂ a (e .fst q))
× (∀ q → pop-map-forward (e .fst) (pop₁ q) ≡ pop₂ (e .fst q))
Queue-is-SNS : SNS {ℓ₁ = ℓ} queue-structure queue-iso
Queue-is-SNS = join-SNS pointed-structure pointed-iso pointed-is-SNS
(λ X → (left-action-structure X) × (pop-structure X))
(λ B C e → (∀ a q → e .fst (B .snd .fst a q) ≡ C .snd .fst a (e .fst q))
× (∀ q → pop-map-forward (e .fst) (B .snd .snd q) ≡ C .snd .snd (e .fst q)))
(join-SNS left-action-structure left-action-iso Left-Action-is-SNS
pop-structure pop-iso Pop-is-SNS )
-- Should we add further axioms for Queues?
-- Some suggestions:
queue-axioms : (Q : Type ℓ) → queue-structure Q → Type ℓ
queue-axioms Q (emp , push , pop) = (isSet Q)
× (pop emp ≡ inl tt)
× ∀ a → pop (push a emp) ≡ inr (emp , a)
-- etc.
| {
"alphanum_fraction": 0.6006485408,
"avg_line_length": 34.5603448276,
"ext": "agda",
"hexsha": "66dd2cd274127ab713ee9ae1a344ddd916559c70",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/Structures/Queue.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/Structures/Queue.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/Structures/Queue.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1347,
"size": 4009
} |
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.String.Properties where
open import Agda.Builtin.String
open import Agda.Builtin.Equality
primitive
primStringToListInjective : ∀ a b → primStringToList a ≡ primStringToList b → a ≡ b
| {
"alphanum_fraction": 0.7222222222,
"avg_line_length": 25.5,
"ext": "agda",
"hexsha": "b1e33edd5c40899e5887f848d73253d27c1c481c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "57165760eeffdbf2aec92b636cb92075d79ac7a3",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alexarice/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/String/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "57165760eeffdbf2aec92b636cb92075d79ac7a3",
"max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alexarice/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/String/Properties.agda",
"max_line_length": 85,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "57165760eeffdbf2aec92b636cb92075d79ac7a3",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alexarice/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/String/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z",
"num_tokens": 78,
"size": 306
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.SimplicialSet where
open import Level
open import Categories.Category
open import Categories.Category.Instance.Simplex
open import Categories.Category.Construction.Presheaves
SimplicialSet : ∀ o ℓ → Category (suc (o ⊔ ℓ)) (o ⊔ ℓ) (o ⊔ ℓ)
SimplicialSet o ℓ = Presheaves {o′ = o} {ℓ′ = ℓ} Δ
| {
"alphanum_fraction": 0.7335164835,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "36fc217ea3478f5385158d4331c86af8249080ff",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/SimplicialSet.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/SimplicialSet.agda",
"max_line_length": 62,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/SimplicialSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 111,
"size": 364
} |
-- 2010-10-05 Andreas
module TerminationRecordPatternCoerce where
data Empty : Set where
record Unit : Set where
constructor unit
data Bool : Set where
true false : Bool
T : Bool -> Set
T true = Unit
T false = Empty
data _==_ {A : Set}(a : A) : A -> Set where
refl : a == a
subst : forall {A a b} -> a == b -> {P : A -> Set} -> P a -> P b
subst refl x = x
-- Thorsten suggests on the Agda list thread "Coinductive families"
-- to encode lists as records
record List (A : Set) : Set where
constructor list
field
isCons : Bool
head : T isCons -> A
tail : T isCons -> List A
open List public
-- However, we have to be careful to preserve termination
-- in the presence of a lie
postulate
lie : {b : Bool} -> T b
-- if the record constructor list was counted as structural increase
-- this function would not be rejected
f : {A : Set} -> (b : Bool) -> (l : List A) -> b == isCons l -> Unit
f .false (list false h t) refl = unit
f .true (list true h t) refl = f (isCons tl) tl refl
where tl : List _
tl = t unit
{- dot patterns inside of record patterns not supported!
f true (list .true h t) refl = f (isCons tl) tl refl
where tl : List _
tl = t unit
-}
-- however, it is almost like the following
f' : {A : Set} -> (b : Bool) -> (l : List A) -> b == isCons l -> Unit
f' false l p = unit
f' true (list b' h t) p = f' (isCons tl) tl refl
where tl : List _
tl = t (subst p {T} unit)
| {
"alphanum_fraction": 0.6175051688,
"avg_line_length": 24.593220339,
"ext": "agda",
"hexsha": "87be368b1a5aa666f4fef4ce7cbce5ee46c66df2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/fail/TerminationRecordPatternCoerce.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/fail/TerminationRecordPatternCoerce.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/TerminationRecordPatternCoerce.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 456,
"size": 1451
} |
{-# OPTIONS --cubical #-}
module Multidimensional.Data.Dir where
open import Multidimensional.Data.Dir.Base public
open import Multidimensional.Data.Dir.Properties public
| {
"alphanum_fraction": 0.8092485549,
"avg_line_length": 24.7142857143,
"ext": "agda",
"hexsha": "c078d3440b3caba6ab58349e060d305a99f7095e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_forks_repo_path": "Multidimensional/Data/Dir.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_issues_repo_path": "Multidimensional/Data/Dir.agda",
"max_line_length": 55,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_stars_repo_path": "Multidimensional/Data/Dir.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 35,
"size": 173
} |
-- Intuitionistic propositional calculus.
-- Kripke-style semantics with exploding abstract worlds.
module IPC.Semantics.KripkeExploding where
open import IPC.Syntax.Common public
-- Intuitionistic Kripke-CPS models, with exploding worlds.
record Model : Set₁ where
infix 3 _⊪ᵅ_
field
World : Set
-- Intuitionistic accessibility; preorder.
_≤_ : World → World → Set
refl≤ : ∀ {w} → w ≤ w
trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″
-- Strong forcing for atomic propositions; monotonic.
_⊪ᵅ_ : World → Atom → Set
mono⊪ᵅ : ∀ {P w w′} → w ≤ w′ → w ⊪ᵅ P → w′ ⊪ᵅ P
-- Exploding.
_‼_ : World → Ty → Set
open Model {{…}} public
-- Strong forcing and forcing, in a particular world of a particular model.
module _ {{_ : Model}} where
mutual
infix 3 _⊪_
_⊪_ : World → Ty → Set
w ⊪ α P = w ⊪ᵅ P
w ⊪ A ▻ B = ∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B
w ⊪ A ∧ B = w ⊩ A × w ⊩ B
w ⊪ ⊤ = 𝟙
w ⊪ ⊥ = 𝟘
w ⊪ A ∨ B = w ⊩ A ⊎ w ⊩ B
infix 3 _⊩_
_⊩_ : World → Ty → Set
w ⊩ A = ∀ {C w′} → w ≤ w′ → (∀ {w″} → w′ ≤ w″ → w″ ⊪ A → w″ ‼ C) → w′ ‼ C
infix 3 _⊩⋆_
_⊩⋆_ : World → Cx Ty → Set
w ⊩⋆ ∅ = 𝟙
w ⊩⋆ Ξ , A = w ⊩⋆ Ξ × w ⊩ A
-- Monotonicity with respect to intuitionistic accessibility.
module _ {{_ : Model}} where
mutual
mono⊪ : ∀ {A w w′} → w ≤ w′ → w ⊪ A → w′ ⊪ A
mono⊪ {α P} ξ s = mono⊪ᵅ ξ s
mono⊪ {A ▻ B} ξ f = λ ξ′ a → f (trans≤ ξ ξ′) a
mono⊪ {A ∧ B} ξ (a , b) = mono⊩ {A} ξ a , mono⊩ {B} ξ b
mono⊪ {⊤} ξ ∙ = ∙
mono⊪ {⊥} ξ ()
mono⊪ {A ∨ B} ξ (ι₁ a) = ι₁ (mono⊩ {A} ξ a)
mono⊪ {A ∨ B} ξ (ι₂ b) = ι₂ (mono⊩ {B} ξ b)
mono⊩ : ∀ {A w w′} → w ≤ w′ → w ⊩ A → w′ ⊩ A
mono⊩ ξ a = λ ξ′ k′ → a (trans≤ ξ ξ′) k′
mono⊩⋆ : ∀ {Ξ w w′} → w ≤ w′ → w ⊩⋆ Ξ → w′ ⊩⋆ Ξ
mono⊩⋆ {∅} ξ ∙ = ∙
mono⊩⋆ {Ξ , A} ξ (γ , a) = mono⊩⋆ {Ξ} ξ γ , mono⊩ {A} ξ a
-- Additional useful equipment.
module _ {{_ : Model}} where
_⟪$⟫_ : ∀ {A B w} → w ⊪ A ▻ B → w ⊩ A → w ⊩ B
s ⟪$⟫ a = s refl≤ a
return : ∀ {A w} → w ⊪ A → w ⊩ A
return {A} a = λ ξ k → k refl≤ (mono⊪ {A} ξ a)
bind : ∀ {A B w} → w ⊩ A → (∀ {w′} → w ≤ w′ → w′ ⊪ A → w′ ⊩ B) → w ⊩ B
bind a k = λ ξ k′ → a ξ (λ ξ′ a′ → k (trans≤ ξ ξ′) a′ refl≤ (λ ξ″ a″ → k′ (trans≤ ξ′ ξ″) a″))
-- Forcing in a particular world of a particular model, for sequents.
module _ {{_ : Model}} where
infix 3 _⊩_⇒_
_⊩_⇒_ : World → Cx Ty → Ty → Set
w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A
infix 3 _⊩_⇒⋆_
_⊩_⇒⋆_ : World → Cx Ty → Cx Ty → Set
w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ
-- Entailment, or forcing in all worlds of all models, for sequents.
infix 3 _⊨_
_⊨_ : Cx Ty → Ty → Set₁
Γ ⊨ A = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒ A
infix 3 _⊨⋆_
_⊨⋆_ : Cx Ty → Cx Ty → Set₁
Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒⋆ Ξ
-- Additional useful equipment, for sequents.
module _ {{_ : Model}} where
lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A
lookup top (γ , a) = a
lookup (pop i) (γ , b) = lookup i γ
| {
"alphanum_fraction": 0.4690089493,
"avg_line_length": 25.7863247863,
"ext": "agda",
"hexsha": "e7ae3fe3c73474b78405098d589b64b19c143e35",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "IPC/Semantics/KripkeExploding.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "IPC/Semantics/KripkeExploding.agda",
"max_line_length": 95,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "IPC/Semantics/KripkeExploding.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1541,
"size": 3017
} |
module erasure where
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import decidable using (Dec; yes; no; Bool; true; false; ⌊_⌋; _∧_; _×-dec_; _∨_; _⊎-dec_; not; ¬?)
-- erasureを使うことで真偽値の論理積とdecidableの論理積が等しくなることの証明
∧-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∧ ⌊ y ⌋ ≡ ⌊ x ×-dec y ⌋
∧-× (yes a) (yes b) = refl
∧-× (yes a) (no b) = refl
∧-× (no a) (yes b) = refl
∧-× (no a) (no b) = refl
-- erasureを使うことで真偽値の論理和とdecidableの論理和が等しくなることの証明
∨-⊎ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∨ ⌊ y ⌋ ≡ ⌊ x ⊎-dec y ⌋
∨-⊎ (yes a) (yes b) = refl
∨-⊎ (yes a) (no b) = refl
∨-⊎ (no a) (yes b) = refl
∨-⊎ (no a) (no b) = refl
-- erasureを使うことで真偽値の否定とdecidableの否定が等しくなることの証明
not-¬ : ∀ {A : Set} (x : Dec A) → not ⌊ x ⌋ ≡ ⌊ ¬? x ⌋
not-¬ (yes a) = refl
not-¬ (no a) = refl
| {
"alphanum_fraction": 0.5452292441,
"avg_line_length": 33.625,
"ext": "agda",
"hexsha": "450a6a2f1c222f7a512e00fb081d40e6dfb71600",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/decidable/erasure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/decidable/erasure.agda",
"max_line_length": 103,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/decidable/erasure.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 498,
"size": 807
} |
open import Issue2229Reexport1
B = A
| {
"alphanum_fraction": 0.7894736842,
"avg_line_length": 9.5,
"ext": "agda",
"hexsha": "e90b695f5a6944421d5d0335c07dd13e365d5cb2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2229-1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2229-1.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2229-1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 13,
"size": 38
} |
{-# OPTIONS --cubical #-}
open import Agda.Primitive.Cubical
postulate
Id : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ
Path : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ
PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ
{-# BUILTIN PATH Path #-}
{-# BUILTIN PATHP PathP #-}
{-# BUILTIN ID Id #-}
{-# BUILTIN CONID conid #-}
reflPath : ∀ {ℓ} {A : Set ℓ} {x : A} → Path x x
reflPath {x = x} = λ i → x
reflId : ∀ {ℓ} {A : Set ℓ} {x : A} → Id x x
reflId {x = x} = conid i1 reflPath
primitive
primIdJ : ∀ {ℓ ℓ'} {A : Set ℓ} {x : A} (P : ∀ y → Id x y → Set ℓ')
→ P x reflId → {y : A} (p : Id x y) → P y p
Id-comp-Id : ∀ {ℓ ℓ'} {A : Set ℓ} {x : A} (P : ∀ y → Id x y → Set ℓ')
→ (b : P x reflId) → Id (primIdJ P b reflId) b
Id-comp-Id P b = reflId
Id-comp-Path : ∀ {ℓ ℓ'} {A : Set ℓ} {x : A} (P : ∀ y → Id x y → Set ℓ')
→ (b : P x reflId) → Path (primIdJ P b reflId) b
Id-comp-Path P b = λ i → b
| {
"alphanum_fraction": 0.4595162986,
"avg_line_length": 29.71875,
"ext": "agda",
"hexsha": "2a26d0a83e1c1a200f2a71afc9c76c1d6d99ae33",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/Succeed/Issue2846.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/Succeed/Issue2846.agda",
"max_line_length": 71,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/Succeed/Issue2846.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 428,
"size": 951
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Divisibility and coprimality
------------------------------------------------------------------------
module Data.Integer.Divisibility where
open import Function
open import Data.Integer
open import Data.Integer.Properties
import Data.Nat.Divisibility as ℕ
import Data.Nat.Coprimality as ℕ
open import Level
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
-- Divisibility.
infix 4 _∣_
_∣_ : Rel ℤ zero
_∣_ = ℕ._∣_ on ∣_∣
-- Coprimality.
Coprime : Rel ℤ zero
Coprime = ℕ.Coprime on ∣_∣
-- If i divides jk and is coprime to j, then it divides k.
coprime-divisor : ∀ i j k → Coprime i j → i ∣ j * k → i ∣ k
coprime-divisor i j k c eq =
ℕ.coprime-divisor c (subst (ℕ._∣_ ∣ i ∣) (abs-*-commute j k) eq)
| {
"alphanum_fraction": 0.5950413223,
"avg_line_length": 24.2,
"ext": "agda",
"hexsha": "bb3b23cfd08eb292aaae526b9ee332288e557c4b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Integer/Divisibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Integer/Divisibility.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Integer/Divisibility.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 244,
"size": 847
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Closures of a unary relation with respect to a binary one.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Unary.Closure.Base {a b} {A : Set a} (R : Rel A b) where
open import Level
open import Relation.Unary using (Pred)
------------------------------------------------------------------------
-- Definitions
-- We start with the definition of □ ("box") which is named after the box
-- modality in modal logic. `□ T x` states that all the elements one step
-- away from `x` with respect to the relation R satisfy `T`.
□ : ∀ {t} → Pred A t → Pred A (a ⊔ b ⊔ t)
□ T x = ∀ {y} → R x y → T y
-- Use cases of □ include:
-- * The definition of the accessibility predicate corresponding to R:
-- data Acc (x : A) : Set (a ⊔ b) where
-- step : □ Acc x → Acc x
-- * The characterization of stability under weakening: picking R to be
-- `Data.List.Relation.Sublist.Inductive`, `∀ {Γ} → Tm Γ → □ T Γ`
-- corresponds to the fact that we have a notion of weakening for `Tm`.
-- Closed: whenever we have a value in one context, we can get one in any
-- related context.
record Closed {t} (T : Pred A t) : Set (a ⊔ b ⊔ t) where
field next : ∀ {x} → T x → □ T x
------------------------------------------------------------------------
-- Properties
module _ {t} {T : Pred A t} where
reindex : Transitive R → ∀ {x y} → R x y → □ T x → □ T y
reindex trans x∼y □Tx y∼z = □Tx (trans x∼y y∼z)
-- Provided that R is reflexive and Transitive, □ is a comonad
map : ∀ {u} {U : Pred A u} {x} → (∀ {x} → T x → U x) → □ T x → □ U x
map f □Tx x~y = f (□Tx x~y)
extract : Reflexive R → ∀ {x} → □ T x → T x
extract refl □Tx = □Tx refl
duplicate : Transitive R → ∀ {x} → □ T x → □ (□ T) x
duplicate trans □Tx x∼y y∼z = □Tx (trans x∼y y∼z)
-- Provided that R is transitive, □ is the Closure operator
-- i.e. for any `T`, `□ T` is closed.
□-closed : Transitive R → ∀ {t} {T : Pred A t} → Closed (□ T)
□-closed trans = record { next = duplicate trans }
| {
"alphanum_fraction": 0.5256880734,
"avg_line_length": 34.0625,
"ext": "agda",
"hexsha": "c0f61c294d6eadebb80b15e33f356a3ad11c7354",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Closure/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Closure/Base.agda",
"max_line_length": 73,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Closure/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 673,
"size": 2180
} |
module Base.Prelude.List where
open import Size using (Size; ↑_)
open import Base.Free using (Free; pure)
data List (Shape : Set) (Pos : Shape → Set) (A : Set) : {Size} → Set where
cons : ∀ {i : Size} → Free Shape Pos A → Free Shape Pos (List Shape Pos A {i}) → List Shape Pos A {↑ i}
nil : List Shape Pos A
pattern Cons mx mxs = pure (cons mx mxs)
pattern Nil = pure nil
| {
"alphanum_fraction": 0.631043257,
"avg_line_length": 32.75,
"ext": "agda",
"hexsha": "6ace5e4b16fa58a8e8d3a7548efad2bd4b3f1108",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z",
"max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "FreeProving/free-compiler",
"max_forks_repo_path": "base/agda/Base/Prelude/List.agda",
"max_issues_count": 120,
"max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "FreeProving/free-compiler",
"max_issues_repo_path": "base/agda/Base/Prelude/List.agda",
"max_line_length": 105,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "FreeProving/free-compiler",
"max_stars_repo_path": "base/agda/Base/Prelude/List.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z",
"num_tokens": 118,
"size": 393
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The Maybe type and some operations
------------------------------------------------------------------------
-- The definitions in this file are reexported by Data.Maybe.
{-# OPTIONS --without-K --safe #-}
module Data.Maybe.Base where
open import Level
open import Data.Bool.Base using (Bool; true; false; not)
open import Data.Unit.Base using (⊤)
open import Data.These.Base using (These; this; that; these)
open import Data.Product as Prod using (_×_; _,_)
open import Function.Base
open import Relation.Nullary.Reflects
open import Relation.Nullary
private
variable
a b c : Level
A : Set a
B : Set b
C : Set c
------------------------------------------------------------------------
-- Definition
data Maybe (A : Set a) : Set a where
nothing : Maybe A
just : (x : A) → Maybe A
------------------------------------------------------------------------
-- Some operations
boolToMaybe : Bool → Maybe ⊤
boolToMaybe true = just _
boolToMaybe false = nothing
is-just : Maybe A → Bool
is-just (just _) = true
is-just nothing = false
is-nothing : Maybe A → Bool
is-nothing = not ∘ is-just
decToMaybe : Dec A → Maybe A
decToMaybe ( true because [a]) = just (invert [a])
decToMaybe (false because _ ) = nothing
-- A dependent eliminator.
maybe : ∀ {A : Set a} {B : Maybe A → Set b} →
((x : A) → B (just x)) → B nothing → (x : Maybe A) → B x
maybe j n (just x) = j x
maybe j n nothing = n
-- A non-dependent eliminator.
maybe′ : (A → B) → B → Maybe A → B
maybe′ = maybe
-- A defaulting mechanism
fromMaybe : A → Maybe A → A
fromMaybe = maybe′ id
-- A safe variant of "fromJust". If the value is nothing, then the
-- return type is the unit type.
module _ {a} {A : Set a} where
From-just : Maybe A → Set a
From-just (just _) = A
From-just nothing = Lift a ⊤
from-just : (x : Maybe A) → From-just x
from-just (just x) = x
from-just nothing = _
-- Functoriality: map
map : (A → B) → Maybe A → Maybe B
map f = maybe (just ∘ f) nothing
-- Applicative: ap
ap : Maybe (A → B) → Maybe A → Maybe B
ap nothing = const nothing
ap (just f) = map f
-- Monad: bind
infixl 1 _>>=_
_>>=_ : Maybe A → (A → Maybe B) → Maybe B
nothing >>= f = nothing
just a >>= f = f a
-- Alternative: <∣>
_<∣>_ : Maybe A → Maybe A → Maybe A
just x <∣> my = just x
nothing <∣> my = my
------------------------------------------------------------------------
-- Aligning and zipping
alignWith : (These A B → C) → Maybe A → Maybe B → Maybe C
alignWith f (just a) (just b) = just (f (these a b))
alignWith f (just a) nothing = just (f (this a))
alignWith f nothing (just b) = just (f (that b))
alignWith f nothing nothing = nothing
zipWith : (A → B → C) → Maybe A → Maybe B → Maybe C
zipWith f (just a) (just b) = just (f a b)
zipWith _ _ _ = nothing
align : Maybe A → Maybe B → Maybe (These A B)
align = alignWith id
zip : Maybe A → Maybe B → Maybe (A × B)
zip = zipWith _,_
------------------------------------------------------------------------
-- Injections.
thisM : A → Maybe B → These A B
thisM a = maybe′ (these a) (this a)
thatM : Maybe A → B → These A B
thatM = maybe′ these that
| {
"alphanum_fraction": 0.5446182153,
"avg_line_length": 23.9779411765,
"ext": "agda",
"hexsha": "8b16fc86c9b0fb489e90f433feb65372bb660cdb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Maybe/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Maybe/Base.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Maybe/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 929,
"size": 3261
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Pushout where
open import Cubical.HITs.Pushout.Base public
open import Cubical.HITs.Pushout.Properties public
| {
"alphanum_fraction": 0.7865853659,
"avg_line_length": 27.3333333333,
"ext": "agda",
"hexsha": "240af15e80abd8e14c233b48fb180362716868c4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/Pushout.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/Pushout.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/Pushout.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 43,
"size": 164
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Hopf where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Int
open import Cubical.Data.Prod
open import Cubical.HITs.S1
open import Cubical.HITs.S2
open import Cubical.HITs.S3
open import Cubical.HITs.Susp
open import Cubical.HITs.Join
open import Cubical.HITs.Interval
renaming ( zero to I0 ; one to I1 )
Border : (x : S¹) → (j : I) → Partial (j ∨ ~ j) (Σ Type₀ (λ T → T ≃ S¹))
Border x j (j = i0) = S¹ , rot x , rotIsEquiv x
Border x j (j = i1) = S¹ , idEquiv S¹
-- Hopf fibration using SuspS¹
HopfSuspS¹ : SuspS¹ → Type₀
HopfSuspS¹ north = S¹
HopfSuspS¹ south = S¹
HopfSuspS¹ (merid x j) = Glue S¹ (Border x j)
-- Hopf fibration using S²
-- TODO : prove that it is equivalent to HopfSuspS¹
HopfS² : S² → Type₀
HopfS² base = S¹
HopfS² (surf i j) = Glue S¹ (λ { (i = i0) → _ , idEquiv S¹
; (i = i1) → _ , idEquiv S¹
; (j = i0) → _ , idEquiv S¹
; (j = i1) → _ , _ , rotIsEquiv (loop i) } )
-- Hopf fibration using more direct definition of the rot equivalence
-- TODO : prove that it is equivalent to HopfSuspS¹
HopfS²' : S² → Type₀
HopfS²' base = S¹
HopfS²' (surf i j) = Glue S¹ (λ { (i = i0) → _ , rotLoopEquiv i0
; (i = i1) → _ , rotLoopEquiv i0
; (j = i0) → _ , rotLoopEquiv i0
; (j = i1) → _ , rotLoopEquiv i } )
-- Total space of the fibration
TotalHopf : Type₀
TotalHopf = Σ SuspS¹ HopfSuspS¹
-- Forward direction
filler-1 : I → (j : I) → (y : S¹) → Glue S¹ (Border y j) → join S¹ S¹
filler-1 i j y x = hfill (λ t → λ { (j = i0) → inl (rotInv-1 x y t)
; (j = i1) → inr x })
(inS (push ((unglue (j ∨ ~ j) x) * inv y) (unglue (j ∨ ~ j) x) j)) i
TotalHopf→JoinS¹S¹ : TotalHopf → join S¹ S¹
TotalHopf→JoinS¹S¹ (north , x) = inl x
TotalHopf→JoinS¹S¹ (south , x) = inr x
TotalHopf→JoinS¹S¹ (merid y j , x) = filler-1 i1 j y x
-- Backward direction
JoinS¹S¹→TotalHopf : join S¹ S¹ → TotalHopf
JoinS¹S¹→TotalHopf (inl x) = (north , x)
JoinS¹S¹→TotalHopf (inr x) = (south , x)
JoinS¹S¹→TotalHopf (push y x j) =
(merid (inv y * x) j
, glue (λ { (j = i0) → y ; (j = i1) → x }) (rotInv-2 x y j))
-- Now for the homotopies, we will need to fill squares indexed by x y : S¹ with value in S¹
-- Some will be extremeley tough, but happen to be easy when x = y = base
-- therefore, we fill them for x = y = base and then use the connectedness of S¹ × S¹ and
-- the discreteness of ΩS¹ to get general fillers.
-- To proceed with that strategy, we first need a lemma :
-- the sections of the trivial fibration λ (_ : S¹) (_ : S¹) → Int are constant
-- this should be generalized to a constant fibration over a connected space with
-- discrete fiber
fibInt : S¹ → S¹ → Type₀
fibInt _ _ = Int
S¹→HSet : (A : Type₀) (p : isSet A) (F : S¹ → A) (x : S¹) → F base ≡ F x
S¹→HSet A p F base = refl {x = F base}
S¹→HSet A p F (loop i) = f' i
where
f : PathP (λ i → F base ≡ F (loop i)) refl (cong F loop)
f i = λ j → F (loop (i ∧ j))
L : cong F loop ≡ refl
L = p (F base) (F base) (f i1) refl
f' : PathP (λ i → F base ≡ F (loop i)) (refl {x = F base}) (refl {x = F base})
f' = transport (λ i → PathP (λ j → F base ≡ F (loop j)) refl (L i)) f
constant-loop : (F : S¹ → S¹ → Int) → (x y : S¹) → F base base ≡ F x y
constant-loop F x y = L0 ∙ L1
where
p : isSet (S¹ → Int)
p = hLevelPi 2 (λ _ → isSetInt)
L : F base ≡ F x
L = S¹→HSet (S¹ → Int) p F x
L0 : F base base ≡ F x base
L0 i = L i base
L1 : F x base ≡ F x y
L1 = S¹→HSet Int isSetInt (F x) y
discretefib : (F : S¹ → S¹ → Type₀) → Type₀
discretefib F = (a : (x y : S¹) → F x y) →
(b : (x y : S¹) → F x y) →
(a base base ≡ b base base) →
(x y : S¹) → a x y ≡ b x y
discretefib-fibInt : discretefib fibInt
discretefib-fibInt a b h x y i =
hcomp (λ t → λ { (i = i0) → constant-loop a x y t
; (i = i1) → constant-loop b x y t })
(h i)
-- first homotopy
assocFiller-3-aux : I → I → I → I → S¹
assocFiller-3-aux x y j i =
hfill (λ t → λ { (i = i0) → rotInv-1 (loop y) (loop (~ y) * loop x) t
; (i = i1) → rotInv-3 (loop y) (loop x) t
; (x = i0) (y = i0) → base
; (x = i0) (y = i1) → base
; (x = i1) (y = i0) → base
; (x = i1) (y = i1) → base })
(inS ((rotInv-2 (loop x) (loop y) i) * (inv (loop (~ y) * loop x)))) j
-- assocFiller-3-endpoint is used only in the type of the next function, to specify the
-- second endpoint.
-- However, I only need the first endpoint, but I cannot specify only one of them as is.
-- TODO : use cubical extension types when available to remove assocFiller-3-endpoint
assocFiller-3-endpoint : (x : S¹) → (y : S¹) → y ≡ y
assocFiller-3-endpoint base base i = base
assocFiller-3-endpoint (loop x) base i = assocFiller-3-aux x i0 i1 i
assocFiller-3-endpoint base (loop y) i = assocFiller-3-aux i0 y i1 i
assocFiller-3-endpoint (loop x) (loop y) i = assocFiller-3-aux x y i1 i
assocFiller-3 : (x : S¹) → (y : S¹) →
PathP (λ j → rotInv-1 y (inv y * x) j ≡ rotInv-3 y x j)
(λ i → ((rotInv-2 x y i) * (inv (inv y * x))))
(assocFiller-3-endpoint x y)
assocFiller-3 base base j i = base
assocFiller-3 (loop x) base j i = assocFiller-3-aux x i0 j i
assocFiller-3 base (loop y) j i = assocFiller-3-aux i0 y j i
assocFiller-3 (loop x) (loop y) j i = assocFiller-3-aux x y j i
assoc-3 : (_ y : S¹) → basedΩS¹ y
assoc-3 x y i = assocFiller-3 x y i1 i
fibInt≡fibAssoc-3 : fibInt ≡ (λ _ y → basedΩS¹ y)
fibInt≡fibAssoc-3 i = λ x y → basedΩS¹≡Int y (~ i)
discretefib-fibAssoc-3 : discretefib (λ _ y → basedΩS¹ y)
discretefib-fibAssoc-3 =
transp (λ i → discretefib (fibInt≡fibAssoc-3 i)) i0 discretefib-fibInt
assocConst-3 : (x y : S¹) → assoc-3 x y ≡ refl
assocConst-3 x y = discretefib-fibAssoc-3 assoc-3 (λ _ _ → refl) refl x y
assocSquare-3 : I → I → S¹ → S¹ → S¹
assocSquare-3 i j x y = hcomp (λ t → λ { (i = i0) → assocFiller-3 x y j i0
; (i = i1) → assocFiller-3 x y j i1
; (j = i0) → assocFiller-3 x y i0 i
; (j = i1) → assocConst-3 x y t i })
(assocFiller-3 x y j i)
filler-3 : I → I → S¹ → S¹ → join S¹ S¹
filler-3 i j y x =
hcomp (λ t → λ { (i = i0) → filler-1 t j (inv y * x)
(glue (λ { (j = i0) → y ; (j = i1) → x })
(rotInv-2 x y j))
; (i = i1) → push (rotInv-3 y x t) x j
; (j = i0) → inl (assocSquare-3 i t x y)
; (j = i1) → inr x })
(push ((rotInv-2 x y (i ∨ j)) * (inv (inv y * x))) (rotInv-2 x y (i ∨ j)) j)
JoinS¹S¹→TotalHopf→JoinS¹S¹ : ∀ x → TotalHopf→JoinS¹S¹ (JoinS¹S¹→TotalHopf x) ≡ x
JoinS¹S¹→TotalHopf→JoinS¹S¹ (inl x) i = inl x
JoinS¹S¹→TotalHopf→JoinS¹S¹ (inr x) i = inr x
JoinS¹S¹→TotalHopf→JoinS¹S¹ (push y x j) i = filler-3 i j y x
-- Second homotopy
-- This HIT is the total space of the Hopf fibration but the ends of SuspS¹ have not been
-- glued together yet — which makes it into a cylinder.
-- This allows to write compositions that do not properly match at the endpoints. However,
-- I suspect it is unnecessary. TODO : do without PseudoHopf
PseudoHopf : Type₀
PseudoHopf = (S¹ × Interval) × S¹
PseudoHopf-π1 : PseudoHopf → S¹
PseudoHopf-π1 ((y , _) , _) = y
PseudoHopf-π2 : PseudoHopf → S¹
PseudoHopf-π2 (_ , x) = x
assocFiller-4-aux : I → I → I → I → S¹
assocFiller-4-aux x y j i =
hfill (λ t → λ { (i = i0) → ((inv (loop y * loop x * loop (~ y))) * (loop y * loop x))
* (rotInv-1 (loop x) (loop y) t)
; (i = i1) → (rotInv-4 (loop y) (loop y * loop x) (~ t)) * loop x
; (x = i0) (y = i0) → base
; (x = i0) (y = i1) → base
; (x = i1) (y = i0) → base
; (x = i1) (y = i1) → base })
(inS (rotInv-2 (loop y * loop x) (loop y * loop x * loop (~ y)) i)) j
-- See assocFiller-3-endpoint
-- TODO : use cubical extension types when available to remove assocFiller-4-endpoint
assocFiller-4-endpoint : (x y : S¹) → basedΩS¹ (((inv (y * x * inv y)) * (y * x)) * x)
assocFiller-4-endpoint base base i = base
assocFiller-4-endpoint (loop x) base i = assocFiller-4-aux x i0 i1 i
assocFiller-4-endpoint base (loop y) i = assocFiller-4-aux i0 y i1 i
assocFiller-4-endpoint (loop x) (loop y) i = assocFiller-4-aux x y i1 i
assocFiller-4 : (x y : S¹) →
PathP (λ j → ((inv (y * x * inv y)) * (y * x)) * (rotInv-1 x y j) ≡ (rotInv-4 y (y * x) (~ j)) * x)
(λ i → (rotInv-2 (y * x) (y * x * inv y) i))
(assocFiller-4-endpoint x y)
assocFiller-4 base base j i = base
assocFiller-4 (loop x) base j i = assocFiller-4-aux x i0 j i
assocFiller-4 base (loop y) j i = assocFiller-4-aux i0 y j i
assocFiller-4 (loop x) (loop y) j i = assocFiller-4-aux x y j i
assoc-4 : (x y : S¹) → basedΩS¹ (((inv (y * x * inv y)) * (y * x)) * x)
assoc-4 x y i = assocFiller-4 x y i1 i
fibInt≡fibAssoc-4 : fibInt ≡ (λ x y → basedΩS¹ (((inv (y * x * inv y)) * (y * x)) * x))
fibInt≡fibAssoc-4 i = λ x y → basedΩS¹≡Int (((inv (y * x * inv y)) * (y * x)) * x) (~ i)
discretefib-fibAssoc-4 : discretefib (λ x y → basedΩS¹ (((inv (y * x * inv y)) * (y * x)) * x))
discretefib-fibAssoc-4 =
transp (λ i → discretefib (fibInt≡fibAssoc-4 i)) i0 discretefib-fibInt
assocConst-4 : (x y : S¹) → assoc-4 x y ≡ refl
assocConst-4 x y = discretefib-fibAssoc-4 assoc-4 (λ _ _ → refl) refl x y
assocSquare-4 : I → I → S¹ → S¹ → S¹
assocSquare-4 i j x y =
hcomp (λ t → λ { (i = i0) → assocFiller-4 x y j i0
; (i = i1) → assocFiller-4 x y j i1
; (j = i0) → assocFiller-4 x y i0 i
; (j = i1) → assocConst-4 x y t i })
(assocFiller-4 x y j i)
filler-4-0 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf
filler-4-0 i j y x =
let x' = unglue (j ∨ ~ j) x in
hfill (λ t → λ { (j = i0) → ((inv (y * x * inv y) * (y * x) , I0)
, inv (y * x * inv y) * (y * x) * (rotInv-1 x y t))
; (j = i1) → ((inv (x * inv y) * x , I1) , x) })
(inS ((inv (x' * inv y) * x' , seg j) , rotInv-2 x' (x' * inv y) j)) i
filler-4-1 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf
filler-4-1 i j y x =
let x' = unglue (j ∨ ~ j) x in
hfill (λ t → λ { (j = i0) → ((inv (y * x * inv y) * (y * x) , I0)
, (rotInv-4 y (y * x) (~ t)) * x)
; (j = i1) → ((inv (x * inv y) * x , I1) , x) })
(inS ((inv (x' * inv y) * x' , seg j) , unglue (j ∨ ~ j) x)) i
filler-4-2 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → TotalHopf
filler-4-2 i j y x =
let x' = unglue (j ∨ ~ j) x in
hcomp (λ t → λ { (i = i0) → JoinS¹S¹→TotalHopf (filler-1 t j y x)
; (i = i1) → (merid (PseudoHopf-π1 (filler-4-0 t j y x)) j
, glue (λ { (j = i0) → rotInv-1 x y t ; (j = i1) → x })
(PseudoHopf-π2 (filler-4-0 t j y x)))
; (j = i0) → (north , rotInv-1 x y t)
; (j = i1) → (south , x) })
(merid (inv (x' * inv y) * x') j
, glue (λ { (j = i0) → y * x * inv y ; (j = i1) → x }) (rotInv-2 x' (x' * inv y) j))
filler-4-3 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf
filler-4-3 i j y x =
let x' = unglue (j ∨ ~ j) x in
hcomp (λ t → λ { (i = i0) → filler-4-0 t j y x
; (i = i1) → filler-4-1 t j y x
; (j = i0) → ((inv (y * x * inv y) * (y * x) , I0) , assocSquare-4 i t x y)
; (j = i1) → ((inv (x * inv y) * x , I1) , x) })
((inv (x' * inv y) * x' , seg j) , rotInv-2 x' (x' * inv y) (i ∨ j))
filler-4-4 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf
filler-4-4 i j y x =
let x' = unglue (j ∨ ~ j) x in
hcomp (λ t → λ { (i = i0) → filler-4-1 t j y x
; (i = i1) → ((y , seg j) , unglue (j ∨ ~ j) x)
; (j = i0) → ((rotInv-4 y (y * x) i , I0)
, (rotInv-4 y (y * x) (i ∨ ~ t)) * x)
; (j = i1) → ((rotInv-4 y x i , I1) , x) })
((rotInv-4 y x' i , seg j) , x')
filler-4-5 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → TotalHopf
filler-4-5 i j y x =
hcomp (λ t → λ { (i = i0) → filler-4-2 (~ t) j y x
; (i = i1) → (merid (PseudoHopf-π1 (filler-4-4 t j y x)) j
, glue (λ { (j = i0) → x ; (j = i1) → x })
(PseudoHopf-π2 (filler-4-4 t j y x)))
; (j = i0) → (north , x)
; (j = i1) → (south , x) })
(merid (PseudoHopf-π1 (filler-4-3 i j y x)) j
, glue (λ { (j = i0) → x ; (j = i1) → x }) (PseudoHopf-π2 (filler-4-3 i j y x)))
TotalHopf→JoinS¹S¹→TotalHopf : ∀ x → JoinS¹S¹→TotalHopf (TotalHopf→JoinS¹S¹ x) ≡ x
TotalHopf→JoinS¹S¹→TotalHopf (north , x) i = (north , x)
TotalHopf→JoinS¹S¹→TotalHopf (south , x) i = (south , x)
TotalHopf→JoinS¹S¹→TotalHopf (merid y j , x) i = filler-4-5 i j y x
JoinS¹S¹≡TotalHopf : join S¹ S¹ ≡ TotalHopf
JoinS¹S¹≡TotalHopf = isoToPath (iso JoinS¹S¹→TotalHopf
TotalHopf→JoinS¹S¹
TotalHopf→JoinS¹S¹→TotalHopf
JoinS¹S¹→TotalHopf→JoinS¹S¹)
S³≡TotalHopf : S³ ≡ TotalHopf
S³≡TotalHopf = S³≡joinS¹S¹ ∙ JoinS¹S¹≡TotalHopf
| {
"alphanum_fraction": 0.5230315244,
"avg_line_length": 42.8827160494,
"ext": "agda",
"hexsha": "389c5d9288523a6f6e9c8a244ad54f8b6d6ce5be",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/HITs/Hopf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/HITs/Hopf.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/HITs/Hopf.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5557,
"size": 13894
} |
-- Partial Agda bindings for the W3C Geolocation API
-- http://dev.w3.org/geo/api/spec-source.html
-- Not supporting the "read once" API or any of the options yet.
open import FRP.JS.Behaviour using ( Beh ; map )
open import FRP.JS.Geolocation.Coords using ( Coords )
open import FRP.JS.Maybe using ( Maybe )
open import FRP.JS.RSet using ( ⟦_⟧ ; ⟨_⟩ )
module FRP.JS.Geolocation where
postulate
geolocation : ⟦ Beh ⟨ Maybe Coords ⟩ ⟧
{-# COMPILED_JS geolocation require("agda.frp").geolocation #-}
| {
"alphanum_fraction": 0.7202380952,
"avg_line_length": 31.5,
"ext": "agda",
"hexsha": "14d178e916e787e6dadd9cc869074151e54239c1",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Geolocation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Geolocation.agda",
"max_line_length": 64,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Geolocation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 150,
"size": 504
} |
module Numeral.Finite.Functions where
import Lvl
open import Syntax.Number
open import Lang.Instance
open import Logic.Propositional
open import Logic.Predicate
open import Numeral.Finite
open import Numeral.Finite.Bound
open import Numeral.Natural hiding (𝐏)
import Numeral.Natural.Function as ℕ
import Numeral.Natural.Function.Proofs as ℕ
open import Numeral.Natural.Oper
-- Maximum function.
-- Returns the greatest number.
max : ∀{a b} → 𝕟(a) → 𝕟(b) → 𝕟(ℕ.max a b)
max 𝟎 𝟎 = 𝟎
max {a}{b} (𝐒(x)) 𝟎 = bound-[≤] (ℕ.max-orderₗ {a}{b}) (𝐒(x))
max {a}{b} 𝟎 (𝐒(y)) = bound-[≤] (ℕ.max-orderᵣ {a}{b}) (𝐒(y))
max (𝐒(x)) (𝐒(y)) = 𝐒(max x y)
-- Minimum function.
-- Returns the smallest number.
min : ∀{a b} → 𝕟(a) → 𝕟(b) → 𝕟(ℕ.min a b)
min 𝟎 𝟎 = 𝟎
min (𝐒(_)) 𝟎 = 𝟎
min 𝟎 (𝐒(_)) = 𝟎
min (𝐒(x)) (𝐒(y)) = 𝐒(min x y)
| {
"alphanum_fraction": 0.6093928981,
"avg_line_length": 29.1,
"ext": "agda",
"hexsha": "cd4b727778bd627f3651e0c9f13706d461d133ae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Finite/Functions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Finite/Functions.agda",
"max_line_length": 65,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Finite/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 371,
"size": 873
} |
import Lvl
open import Structure.Operator.Vector
open import Structure.Setoid
open import Type
module Structure.Operator.Vector.FiniteDimensional
{ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ}
{V : Type{ℓᵥ}} ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄
{S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
{_+ᵥ_ : V → V → V}
{_⋅ₛᵥ_ : S → V → V}
{_+ₛ_ _⋅ₛ_ : S → S → S}
⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄
where
open VectorSpace(vectorSpace)
open import Data.Tuple using (_⨯_ ; _,_)
open import Functional using (id ; _∘_ ; _∘₂_ ; _$_ ; swap ; _on₂_)
open import Function.Equals
open import Logic
open import Logic.Predicate
open import Numeral.CoordinateVector as Vec using () renaming (Vector to Vec)
open import Numeral.Finite
open import Numeral.Natural
open import Sets.ExtensionalPredicateSet as PredSet using (PredSet ; _∈_ ; [∋]-binaryRelator)
open import Structure.Function.Domain
open import Structure.Operator.Vector.LinearCombination ⦃ vectorSpace = vectorSpace ⦄
open import Syntax.Function
private variable n : ℕ
-- A sequence of vectors is linearly independent when there is no vector that can be represented as a linear combination by the others.
-- Note: Equivalent to: `∀{sf} → (linearCombination(vf)(sf) ≡ 𝟎ᵥ) → (sf ⊜ Vec.fill(𝟎ₛ))`.
LinearlyIndependent : Vec(n)(V) → Stmt
LinearlyIndependent = Injective ∘ linearCombination
-- A sequence of vectors is spanning the vector space when every vector in the vector space can be represented as a linear combination of the set of vectors.
Spanning : Vec(n)(V) → Stmt
Spanning = Surjective ∘ linearCombination
-- A sequence of vectors is a basis when every vector in the vector space can be represented as a unique linear combination of the set of vectors.
-- A sequence of vectors is a basis when they span the vector space and is linearly independent.
Basis : Vec(n)(V) → Stmt
Basis = Bijective ∘ linearCombination
-- A finite dimensional vector space is when there are a finite number of vectors that spans the whole space.
FiniteDimensional : Stmt
FiniteDimensional = ∃(n ↦ ∃(vf ↦ Spanning{n}(vf)))
| {
"alphanum_fraction": 0.7395326193,
"avg_line_length": 41.08,
"ext": "agda",
"hexsha": "3b845264657c65f2e349f54def520fc0cdacab28",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Vector/FiniteDimensional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Vector/FiniteDimensional.agda",
"max_line_length": 157,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Vector/FiniteDimensional.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 645,
"size": 2054
} |
-- Andreas, 2012-04-20
{-# OPTIONS --show-implicit #-}
module SkipParametersInConstructorReification where
data Bool : Set where
true false : Bool
data D (A : Set) : Set where
c : {regArg : A} -> D A
data P : {A : Set} → D A → Set where
p : P (c {regArg = true})
bla : Set
bla with c {regArg = true}
bla | _ = Bool
fail : P (c {regArg = false})
fail = true
-- What counts here is the error message!
--
-- Bool !=< P {Bool} (c {regArg = false}) of type Set
--
-- the parameter argument of c should be skipped, but the
-- regular argument should show up
| {
"alphanum_fraction": 0.6360424028,
"avg_line_length": 20.962962963,
"ext": "agda",
"hexsha": "6fbceeceafb4bd4b4c354b8e06d3448c1ce8f411",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/SkipParametersInConstructorReification.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/SkipParametersInConstructorReification.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/SkipParametersInConstructorReification.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 176,
"size": 566
} |
module BBHeap.Equality {A : Set}(_≤_ : A → A → Set) where
open import BBHeap _≤_
open import Bound.Lower A
open import Bound.Lower.Order _≤_
data _≈_ {b b' : Bound} : BBHeap b → BBHeap b' → Set where
≈leaf : leaf {b} ≈ leaf {b'}
≈left : {x x' : A}{l r : BBHeap (val x)}{l' r' : BBHeap (val x')}
(b≤x : LeB b (val x))
(b'≤x' : LeB b' (val x'))
(l⋘r : l ⋘ r)
(l'⋘r' : l' ⋘ r')
→ l ≈ l'
→ r ≈ r'
→ left b≤x l⋘r ≈ left b'≤x' l'⋘r'
≈right : {x x' : A}{l r : BBHeap (val x)}{l' r' : BBHeap (val x')}
(b≤x : LeB b (val x))
(b'≤x' : LeB b' (val x'))
(l⋙r : l ⋙ r)
(l'⋙r' : l' ⋙ r')
→ l ≈ l'
→ r ≈ r'
→ right b≤x l⋙r ≈ right b'≤x' l'⋙r'
| {
"alphanum_fraction": 0.3455149502,
"avg_line_length": 36.12,
"ext": "agda",
"hexsha": "c8e51970b3b5df3907c447fba933033a9e020641",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Equality.agda",
"max_line_length": 68,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 362,
"size": 903
} |
-- Plump ordinals as presented by Shulman
-- https://homotopytypetheory.org/2014/02/22/surreals-plump-ordinals/
--
-- Implementation based on an implementation of Aczel sets by Andreas Abel.
module Ordinal.Shulman where
open import Data.Sum using ([_,_]′)
open import Induction.WellFounded as WfRec using (Acc ; acc ; WellFounded)
open import Level using (Lift ; lift ; lower)
open import Relation.Binary using (IsEquivalence)
open import Relation.Nullary using (¬_)
open import Ordinal.HoTT using (IsOrdinal ; IsExtensional ; _↔_ ; forth ; back)
open import Util.Prelude
-- Definition of ordinals, equality, orders
------------------------------------------------------------------------
-- Ordinals are infinitely branching well-founded trees.
-- The branching type is given at each node.
data Ord ℓ : Set (lsuc ℓ) where
limSuc : (I : Set ℓ) (els : I → Ord ℓ) → Ord ℓ
-- Branching type
Br : ∀ {ℓ} (a : Ord ℓ) → Set ℓ
Br (limSuc I _) = I
-- Elements
els : ∀ {ℓ} (a : Ord ℓ) (i : Br a) → Ord ℓ
els (limSuc _ f) = f
syntax els a i = a ` i
lift-Ord : ∀ {a ℓ} → Ord ℓ → Ord (a ⊔ℓ ℓ)
lift-Ord {a} (limSuc I f) = limSuc (Lift a I) λ i → lift-Ord {a} (f (lower i))
-- Equality and orders
mutual
_<_ : ∀ {ℓ} (a b : Ord ℓ) → Set ℓ
a < limSuc _ f = ∃[ i ] (a ≤ f i)
_≤_ : ∀ {ℓ} (a b : Ord ℓ) → Set ℓ
limSuc _ f ≤ b = ∀ i → f i < b
_≅_ : ∀ {ℓ} (a b : Ord ℓ) → Set ℓ
a ≅ b = (a ≤ b) × (b ≤ a)
_≮_ : ∀ {ℓ} (a b : Ord ℓ) → Set ℓ
a ≮ b = ¬ (a < b)
_≇_ : ∀ {ℓ} (a b : Ord ℓ) → Set ℓ
a ≇ b = ¬ (a ≅ b)
-- Intro/Elim rules for </≤ (for nicer proofs below)
<-intro : ∀ {ℓ} {a b : Ord ℓ} → ∃[ i ] (a ≤ (b ` i)) → a < b
<-intro {b = limSuc I f} p = p
<-elim : ∀ {ℓ} {a b : Ord ℓ} → a < b → ∃[ i ] (a ≤ (b ` i))
<-elim {b = limSuc I f} p = p
≤-intro : ∀ {ℓ} {a b : Ord ℓ} → (∀ i → (a ` i) < b) → a ≤ b
≤-intro {a = limSuc I f} p = p
≤-elim : ∀ {ℓ} {a b : Ord ℓ} → a ≤ b → (∀ i → (a ` i) < b)
≤-elim {a = limSuc I f} p = p
-- Reflexivity
≤-refl : ∀ {ℓ} {a : Ord ℓ} → a ≤ a
≤-refl {a = limSuc _ f} i = i , ≤-refl
≅-refl : ∀ {ℓ} {a : Ord ℓ} → a ≅ a
≅-refl = ≤-refl , ≤-refl
-- < implies ≤
<→≤ : ∀ {ℓ} {a b : Ord ℓ} → a < b → a ≤ b
<→≤ {ℓ} {limSuc A fa} {limSuc B fb} (i , fa<fb) j = i , <→≤ (fa<fb j)
-- Transitivity
mutual
<-trans-≤ : ∀ {ℓ} {a b c : Ord ℓ} → a < b → b ≤ c → a < c
<-trans-≤ {b = limSuc _ f} (i , p) h = ≤-trans-< p (h i)
≤-trans-< : ∀ {ℓ} {a b c : Ord ℓ} → a ≤ b → b < c → a < c
≤-trans-< {c = limSuc _ f} p (i , q) = i , ≤-trans p q
≤-trans : ∀ {ℓ} {a b c : Ord ℓ} → a ≤ b → b ≤ c → a ≤ c
≤-trans {a = limSuc _ f} h q i = <-trans-≤ (h i) q
<-trans : ∀ {ℓ} {a b c : Ord ℓ} → a < b → b < c → a < c
<-trans {ℓ} {a} {b} {limSuc C fc} a<b (i , b≤fci) = i , <→≤ (<-trans-≤ a<b b≤fci)
≅-trans : ∀ {ℓ} {a b c : Ord ℓ} (d : a ≅ b) (e : b ≅ c) → a ≅ c
≅-trans (p , p′) (q , q′) = ≤-trans p q , ≤-trans q′ p′
-- Symmetry
≅-sym : ∀ {ℓ} {a b : Ord ℓ} (p : a ≅ b) → b ≅ a
≅-sym (p , p′) = p′ , p
-- ≅ is an equivalence relation.
≅-equiv : ∀ {ℓ} → IsEquivalence (_≅_ {ℓ})
≅-equiv = record
{ refl = ≅-refl
; sym = ≅-sym
; trans = ≅-trans
}
-- < is 'extensional'.
<-ext-≤ : ∀ {ℓ} {a b : Ord ℓ} → (∀ c → c < a → c < b) → a ≤ b
<-ext-≤ {a = limSuc I els} p i = p (els i) (i , ≤-refl)
<-ext : ∀ {ℓ} → IsExtensional {ℓ} _≅_ _<_
<-ext p = <-ext-≤ (λ c → forth (p c)) , <-ext-≤ (λ c → back (p c))
-- Alternative interpretation of ≤ in terms of <
≤-intro′ : ∀ {ℓ} {b c : Ord ℓ} → (∀ {a} → a < b → a < c) → b ≤ c
≤-intro′ {b = limSuc _ f} cast i = cast (i , ≤-refl)
≤-elim′ : ∀ {ℓ} {b c : Ord ℓ} → b ≤ c → ∀ {a} → a < b → a < c
≤-elim′ b≤c a<b = <-trans-≤ a<b b≤c
-- Compatibility of ≤ with ≅
≤-congˡ : ∀ {ℓ} {a b c : Ord ℓ} → a ≅ b → a ≤ c → b ≤ c
≤-congˡ {ℓ} (a≤b , b≤a) a≤c = ≤-trans b≤a a≤c
≤-congʳ : ∀ {ℓ} {a b c : Ord ℓ} → b ≅ c → a ≤ b → a ≤ c
≤-congʳ (b≤c , c≤b) a≤b = ≤-trans a≤b b≤c
-- Compatibility of < with ≅
<-congʳ : ∀ {ℓ} {a b c : Ord ℓ} → b ≅ c → a < b → a < c
<-congʳ (b≤c , c≤b) a<b = <-trans-≤ a<b b≤c
<-congˡ : ∀ {ℓ} {a b c : Ord ℓ} → a ≅ b → a < c → b < c
<-congˡ (a≤b , b≤a) a<c = ≤-trans-< b≤a a<c
-- Foundation: a ≤ b implies b ≮ a
≤-found : ∀ {ℓ} {a b : Ord ℓ} → a ≤ b → b ≮ a
≤-found {ℓ} {limSuc A fa} {b} a≤b (i , b≤fai) = ≤-found b≤fai (a≤b i)
-- Thus, a ≮ a.
<-irr : ∀ {ℓ} {a : Ord ℓ} → a ≮ a
<-irr = ≤-found ≤-refl
-- Predicates over ordinals (need to respect equality)
IsPred : ∀ {ℓ} (P : Ord ℓ → Set ℓ) → Set (lsuc ℓ)
IsPred {ℓ} P = {a b : Ord ℓ} → a ≅ b → P a → P b
record Pred ℓ : Set (lsuc ℓ) where
constructor pred
field
_!_ : Ord ℓ → Set ℓ
resp : IsPred _!_
open Pred
-- <-induction.
<-acc-≤ : ∀ {ℓ} {a b : Ord ℓ} → a ≤ b → Acc _<_ b → Acc _<_ a
<-acc-≤ {ℓ} {limSuc A fa} {b} fai<b (acc rs) = acc λ where
x (i , x≤fai) → rs x (≤-trans-< x≤fai (fai<b i))
<-wf : ∀ {ℓ} → WellFounded (_<_ {ℓ})
<-wf (limSuc I f) = acc λ { x (i , x≤fi) → <-acc-≤ x≤fi (<-wf (f i)) }
<-ind : ∀ {ℓ ℓ′} (P : Ord ℓ → Set ℓ′)
→ (∀ a → (∀ b → b < a → P b) → P a)
→ ∀ a → P a
<-ind = WfRec.All.wfRec <-wf _
-- Ordinals are ordinals (in the sense of the HoTT book).
isOrdinal : ∀ {ℓ} → IsOrdinal (Ord ℓ) ℓ ℓ
isOrdinal = record
{ _≈_ = _≅_
; ≈-equiv = ≅-equiv
; _<_ = _<_
; <-wf = <-wf
; <-ext = <-ext
; <-trans = <-trans
}
-- Constructions on ordinals
------------------------------------------------------------------------
-- Zero
ozero : ∀ {ℓ} → Ord ℓ
ozero {ℓ} = limSuc (Lift ℓ ⊥) λ()
-- Successor?
osuc : ∀ {ℓ} → Ord ℓ → Ord ℓ
osuc {ℓ} a = limSuc (Lift ℓ ⊤) λ _ → a
-- Lo and behold!
osuc-mon-< : ∀ {ℓ} {a b : Ord ℓ} → a < b → osuc a < osuc b
osuc-mon-< a<b = _ , λ _ → a<b
osuc-mon-≤ : ∀ {ℓ} {a b : Ord ℓ} → a ≤ b → osuc a ≤ osuc b
osuc-mon-≤ a≤b _ = _ , a≤b
osuc-cong : ∀ {ℓ} {a b : Ord ℓ} → a ≅ b → osuc a ≅ osuc b
osuc-cong (a≤b , b≤a) = osuc-mon-≤ a≤b , osuc-mon-≤ b≤a
-- Maximum/Supremum
_⊔_ : ∀ {ℓ} (a b : Ord ℓ) → Ord ℓ
a ⊔ b = limSuc (_ ⊎ _) λ where
(inj₁ i) → a ` i
(inj₂ j) → b ` j
⊔-introˡ : ∀ {ℓ} a {b c : Ord ℓ} → a < b → a < (b ⊔ c)
⊔-introˡ a {limSuc _ f} (i , e) = inj₁ i , e
⊔-introʳ : ∀ {ℓ} a {b c : Ord ℓ} → a < c → a < (b ⊔ c)
⊔-introʳ a {c = limSuc _ g} (i , e) = inj₂ i , e
⊔-≤-introˡ : ∀ {ℓ} a {b c : Ord ℓ} → a ≤ b → a ≤ (b ⊔ c)
⊔-≤-introˡ a a≤b = ≤-intro λ i → ⊔-introˡ _ (≤-elim a≤b i)
⊔-≤-introˡ′ : ∀ {ℓ} {a : Ord ℓ} b → a ≤ (a ⊔ b)
⊔-≤-introˡ′ b = ⊔-≤-introˡ _ ≤-refl
⊔-≤-introʳ : ∀ {ℓ} a {b c : Ord ℓ} → a ≤ c → a ≤ (b ⊔ c)
⊔-≤-introʳ a a≤c = ≤-intro λ i → ⊔-introʳ _ (≤-elim a≤c i)
⊔-≤-introʳ′ : ∀ {ℓ} a {b : Ord ℓ} → b ≤ (a ⊔ b)
⊔-≤-introʳ′ a = ⊔-≤-introʳ _ ≤-refl
⊔-elim : ∀ {ℓ} {a b c : Ord ℓ} → c < (a ⊔ b) → (c < a) ⊎ (c < b)
⊔-elim {a = limSuc _ f} (inj₁ i , e) = inj₁ (i , e)
⊔-elim {a = limSuc _ _} {b = limSuc _ g} (inj₂ i , e) = inj₂ (i , e)
⊔-case : ∀ {ℓ} {a b c : Ord ℓ}
→ c < (a ⊔ b)
→ ∀ {q} {Q : Set q}
→ (c < a → Q)
→ (c < b → Q) → Q
⊔-case p left right = [ left , right ]′ (⊔-elim p)
⊔-split : ∀ {ℓ q} {Q : Set q} {a b c : Ord ℓ}
→ (c < a → Q)
→ (c < b → Q)
→ c < (a ⊔ b) → Q
⊔-split left right p = ⊔-case p left right
⊔-mon : ∀ {ℓ} {a a′ b b′ : Ord ℓ} → a ≤ a′ → b ≤ b′ → (a ⊔ b) ≤ (a′ ⊔ b′)
⊔-mon a≤a′ b≤b′ = ≤-intro′
(⊔-split
(λ c<a → ⊔-introˡ _ (≤-elim′ a≤a′ c<a))
(λ c<b → ⊔-introʳ _ (≤-elim′ b≤b′ c<b)))
⊔-cong : ∀ {ℓ} {a a′ b b′ : Ord ℓ} → a ≅ a′ → b ≅ b′ → (a ⊔ b) ≅ (a′ ⊔ b′)
⊔-cong (a≤a′ , a′≤a) (b≤b′ , b′≤b) = ⊔-mon a≤a′ b≤b′ , ⊔-mon a′≤a b′≤b
⊔-<→LEM : ∀ {ℓ}
→ ({α α′ β : Ord ℓ} → α < β → α′ < β → (α ⊔ α′) < β)
→ (A : Set ℓ) → A ⊎ ¬ A
⊔-<→LEM {ℓ} p A
= let α<β : α < β
α<β = lift true , ≤-refl
α′<β : α′ < β
α′<β = lift false , ≤-refl in
go (p α<β α′<β)
where
oone = osuc ozero
α = limSuc A λ _ → oone
α′ = oone
β = limSuc (Lift ℓ Bool) λ { (lift true) → α ; (lift false) → α′ }
go : (α ⊔ α′) < β → A ⊎ ¬ A
go (lift true , α⊔α′≤α) = inj₁ (proj₁ (α⊔α′≤α (inj₂ _)))
go (lift false , α⊔α′≤α′) = inj₂ λ a → lower (proj₁ (proj₂ (α⊔α′≤α′ (inj₁ a)) _))
-- Supremum of a family of ordinals
⨆ᶠ : ∀ {ℓ} {I : Set ℓ} (f : I → Ord ℓ) → Ord ℓ
⨆ᶠ {ℓ} {I} f = limSuc (∃[ i ] Br (f i)) λ { (i , j) → f i ` j }
⨆ᶠ-intro : ∀ {ℓ} {I : Set ℓ} (f : I → Ord ℓ) {c : Ord ℓ} {i : I}
→ c < f i → c < ⨆ᶠ f
⨆ᶠ-intro f {c} {i} c<fi
= let j , c≤ = <-elim c<fi in
(i , j) , c≤
⨆ᶠ-elim : ∀ {ℓ} {I : Set ℓ} (f : I → Ord ℓ) {c : Ord ℓ}
→ c < ⨆ᶠ f → ∃[ i ] (c < f i)
⨆ᶠ-elim _ ((i , j) , e) = i , <-intro (j , e)
⨆ᶠ-mon : ∀ {ℓ} {I : Set ℓ} {f f′ : I → Ord ℓ}
→ (∀ i → f i ≤ f′ i) → ⨆ᶠ f ≤ ⨆ᶠ f′
⨆ᶠ-mon {f = f} {f′} p = ≤-intro′ λ c<⨆ᶠf →
let i , q = ⨆ᶠ-elim f c<⨆ᶠf in
⨆ᶠ-intro f′ (≤-elim′ (p i) q)
⨆ᶠ-cong : ∀ {ℓ} {I : Set ℓ} {f f′ : I → Ord ℓ}
→ (∀ i → f i ≅ f′ i) → ⨆ᶠ f ≅ ⨆ᶠ f′
⨆ᶠ-cong p = ⨆ᶠ-mon (λ i → proj₁ (p i))
, ⨆ᶠ-mon (λ i → proj₂ (p i))
-- Supremum of all ordinals smaller than some given ordinal
⨆ : ∀ {ℓ} (a : Ord ℓ) → Ord ℓ
⨆ (limSuc _ f) = ⨆ᶠ f
⨆-intro : ∀ {ℓ} {a b : Ord ℓ} → b < a → b ≤ ⨆ a
⨆-intro {a = limSuc A fa} {b = limSuc B fb} (i , b≤fi) = ≤-intro λ j →
let k , p = <-elim (b≤fi j) in _ , p
⨆-elim : ∀ {ℓ} {a c : Ord ℓ} → c < ⨆ a → ∃[ b ] ((b < a) × (c < b))
⨆-elim {a = limSuc _ f} ((i , j) , c≤) = f i , (i , ≤-refl) , <-intro (_ , c≤)
| {
"alphanum_fraction": 0.4451830863,
"avg_line_length": 27.8905775076,
"ext": "agda",
"hexsha": "cae23b03ece192d1611ec2bd93492d38997998b7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Ordinal/Shulman.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Ordinal/Shulman.agda",
"max_line_length": 85,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Ordinal/Shulman.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 4843,
"size": 9176
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Monoid where
open import Cubical.Algebra.Monoid.Base public
| {
"alphanum_fraction": 0.7663551402,
"avg_line_length": 21.4,
"ext": "agda",
"hexsha": "856fd42901140e5a58636a83bf5a7d99d71bd51b",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Algebra/Monoid.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Algebra/Monoid.agda",
"max_line_length": 46,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Algebra/Monoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 25,
"size": 107
} |
open import Oscar.Prelude
module Oscar.Class.Injectivity where
module _ where
module _ -- Arity=1
{𝔬₁} {𝔒₁ : Ø 𝔬₁}
{𝔬₂} (𝔒₂ : 𝔒₁ → Ø 𝔬₂)
where
𝓲njection₁ = (x : 𝔒₁) → 𝔒₂ x
record 𝓘njection₁ : Ø 𝔬₁ ∙̂ 𝔬₂ where field injection₁ : 𝓲njection₁
open 𝓘njection₁ ⦃ … ⦄ public
module _
{ℓ₂} (_∼₂_ : ∀ {x₁ x₂} → 𝔒₂ x₁ → 𝔒₂ x₂ → Ø ℓ₂)
{ℓ₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø ℓ₁)
where
record [𝓘njectivity₁] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓘njection₁ ⦄
where
𝓲njectivity₁ = ∀ {x₁ x₂} → injection₁ x₁ ∼₂ injection₁ x₂ → x₁ ∼₁ x₂
record 𝓘njectivity₁ ⦃ _ : [𝓘njectivity₁] ⦄ : Ø 𝔬₁ ∙̂ 𝔬₂ ∙̂ ℓ₁ ∙̂ ℓ₂ where field injectivity₁ : 𝓲njectivity₁
open 𝓘njectivity₁ ⦃ … ⦄ public
injectivity₁[_] : ∀
{𝔬₁} {𝔒₁ : Ø 𝔬₁}
{𝔬₂} {𝔒₂ : 𝔒₁ → Ø 𝔬₂}
{ℓ₂} {_∼₂_ : ∀ {x₁ x₂} → 𝔒₂ x₁ → 𝔒₂ x₂ → Ø ℓ₂}
{ℓ₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø ℓ₁)
⦃ _ : 𝓘njection₁ (λ (x : 𝔒₁) → 𝔒₂ x) ⦄
⦃ _ : [𝓘njectivity₁] (λ (x : 𝔒₁) → 𝔒₂ x) _∼₂_ _∼₁_ ⦄
⦃ _ : 𝓘njectivity₁ (λ (x : 𝔒₁) → 𝔒₂ x) _∼₂_ _∼₁_ ⦄
→ 𝓲njectivity₁ (λ (x : 𝔒₁) → 𝔒₂ x) _∼₂_ _∼₁_
injectivity₁[ _ ] = injectivity₁
module _ -- Arity=2
{𝔬₁} {𝔒₁ : Ø 𝔬₁}
{𝔬₂} {𝔒₂ : 𝔒₁ → Ø 𝔬₂}
{𝔬₃} (𝔒₃ : ∀ x₁ → 𝔒₂ x₁ → Ø 𝔬₃)
where
𝓲njection₂ = ∀ x₁ → (x₂ : 𝔒₂ x₁) → 𝔒₃ _ x₂
record 𝓘njection₂ : Ø 𝔬₁ ∙̂ 𝔬₂ ∙̂ 𝔬₃ where
constructor ∁
field injection₂ : 𝓲njection₂
open 𝓘njection₂ ⦃ … ⦄ public
module _ -- Fixed=0
{ℓ₃} (_∼₃_ : ∀ {x₁ x₂} {y₁ : 𝔒₂ x₁} {y₂ : 𝔒₂ x₂} → 𝔒₃ _ y₁ → 𝔒₃ _ y₂ → Ø ℓ₃)
where
module _ -- Var=1
{ℓ₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø ℓ₁)
where
record [𝓘njectivity₂,₀,₁] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓘njection₂ ⦄
where
𝓲njectivity₂,₀,₁ = ∀ {x₁ x₂} {y₁ : 𝔒₂ x₁} {y₂ : 𝔒₂ x₂} → injection₂ _ y₁ ∼₃ injection₂ _ y₂ → x₁ ∼₁ x₂
record 𝓘njectivity₂,₀,₁ ⦃ _ : [𝓘njectivity₂,₀,₁] ⦄ : Ø 𝔬₁ ∙̂ 𝔬₂ ∙̂ 𝔬₃ ∙̂ ℓ₁ ∙̂ ℓ₃ where field injectivity₂,₀,₁ : 𝓲njectivity₂,₀,₁
open 𝓘njectivity₂,₀,₁ ⦃ … ⦄ public
module _ -- Var=2
{ℓ₂} (_∼₂_ : ∀ {x₁ x₂} → 𝔒₂ x₁ → 𝔒₂ x₂ → Ø ℓ₂)
where
record [𝓘njectivity₂,₀,₂] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓘njection₂ ⦄
where
𝓲njectivity₂,₀,₂ = ∀ {x₁ x₂ : 𝔒₁} {y₁ : 𝔒₂ x₁} {y₂ : 𝔒₂ x₂} → injection₂ _ y₁ ∼₃ injection₂ _ y₂ → y₁ ∼₂ y₂
record 𝓘njectivity₂,₀,₂ ⦃ _ : [𝓘njectivity₂,₀,₂] ⦄ : Ø 𝔬₁ ∙̂ 𝔬₂ ∙̂ 𝔬₃ ∙̂ ℓ₂ ∙̂ ℓ₃ where field injectivity₂,₀,₂ : 𝓲njectivity₂,₀,₂
open 𝓘njectivity₂,₀,₂ ⦃ … ⦄ public
module _ -- Fixed=1
{ℓ₃} (_∼₃_ : ∀ {x} {y₁ y₂ : 𝔒₂ x} → 𝔒₃ _ y₁ → 𝔒₃ _ y₂ → Ø ℓ₃)
{ℓ₂} (_∼₂_ : ∀ {x} → 𝔒₂ x → 𝔒₂ x → Ø ℓ₂)
where
record [𝓘njectivity₂,₁] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓘njection₂ ⦄
where
𝓲njectivity₂,₁ = ∀ (x : 𝔒₁) {y₁ y₂ : 𝔒₂ x} → injection₂ _ y₁ ∼₃ injection₂ _ y₂ → y₁ ∼₂ y₂
record 𝓘njectivity₂,₁ ⦃ _ : [𝓘njectivity₂,₁] ⦄ : Ø 𝔬₁ ∙̂ 𝔬₂ ∙̂ 𝔬₃ ∙̂ ℓ₂ ∙̂ ℓ₃ where field injectivity₂,₁ : 𝓲njectivity₂,₁
open 𝓘njectivity₂,₁ ⦃ … ⦄ public
injectivity₂,₀,₁[_] : ∀
{𝔬₁} {𝔒₁ : Ø 𝔬₁}
{𝔬₂} {𝔒₂ : 𝔒₁ → Ø 𝔬₂}
{𝔬₃} {𝔒₃ : ∀ x₁ → 𝔒₂ x₁ → Ø 𝔬₃}
{ℓ₃} {_∼₃_ : ∀ {x₁ x₂} {y₁ : 𝔒₂ x₁} {y₂ : 𝔒₂ x₂} → 𝔒₃ _ y₁ → 𝔒₃ _ y₂ → Ø ℓ₃}
{ℓ₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø ℓ₁)
⦃ _ : 𝓘njection₂ 𝔒₃ ⦄
⦃ _ : [𝓘njectivity₂,₀,₁] 𝔒₃ _∼₃_ _∼₁_ ⦄
⦃ _ : 𝓘njectivity₂,₀,₁ 𝔒₃ _∼₃_ _∼₁_ ⦄
→ 𝓲njectivity₂,₀,₁ 𝔒₃ _∼₃_ _∼₁_
injectivity₂,₀,₁[ _ ] = injectivity₂,₀,₁
injectivity₂,₀,₂[_] : ∀
{𝔬₁} {𝔒₁ : Ø 𝔬₁}
{𝔬₂} {𝔒₂ : 𝔒₁ → Ø 𝔬₂}
{𝔬₃} {𝔒₃ : ∀ x₁ → 𝔒₂ x₁ → Ø 𝔬₃}
{ℓ₃} {_∼₃_ : ∀ {x₁ x₂} {y₁ : 𝔒₂ x₁} {y₂ : 𝔒₂ x₂} → 𝔒₃ _ y₁ → 𝔒₃ _ y₂ → Ø ℓ₃}
{ℓ₂} (_∼₂_ : ∀ {x₁ x₂} → 𝔒₂ x₁ → 𝔒₂ x₂ → Ø ℓ₂)
⦃ _ : 𝓘njection₂ 𝔒₃ ⦄
⦃ _ : [𝓘njectivity₂,₀,₂] 𝔒₃ _∼₃_ _∼₂_ ⦄
⦃ _ : 𝓘njectivity₂,₀,₂ 𝔒₃ _∼₃_ _∼₂_ ⦄
→ 𝓲njectivity₂,₀,₂ 𝔒₃ _∼₃_ _∼₂_
injectivity₂,₀,₂[ _ ] = injectivity₂,₀,₂
injectivity₂,₁[_] : ∀
{𝔬₁} {𝔒₁ : Ø 𝔬₁}
{𝔬₂} {𝔒₂ : 𝔒₁ → Ø 𝔬₂}
{𝔬₃} {𝔒₃ : ∀ x₁ → 𝔒₂ x₁ → Ø 𝔬₃}
{ℓ₃} {_∼₃_ : ∀ {x} {y₁ y₂ : 𝔒₂ x} → 𝔒₃ _ y₁ → 𝔒₃ _ y₂ → Ø ℓ₃}
{ℓ₂} (_∼₂_ : ∀ {x} → 𝔒₂ x → 𝔒₂ x → Ø ℓ₂)
⦃ _ : [𝓘njectivity₂,₁] 𝔒₃ _∼₃_ _∼₂_ ⦄
⦃ _ : 𝓘njection₂ 𝔒₃ ⦄
⦃ _ : 𝓘njectivity₂,₁ 𝔒₃ _∼₃_ _∼₂_ ⦄
→ 𝓲njectivity₂,₁ 𝔒₃ _∼₃_ _∼₂_
injectivity₂,₁[ _ ] = injectivity₂,₁
module _ -- Arity=3
{𝔬₁} {𝔒₁ : Ø 𝔬₁}
{𝔬₂} {𝔒₂ : 𝔒₁ → Ø 𝔬₂}
{𝔬₃} {𝔒₃ : ∀ x₁ → 𝔒₂ x₁ → Ø 𝔬₃}
{𝔬₄} (𝔒₄ : ∀ x₁ → (x₂ : 𝔒₂ x₁) → 𝔒₃ _ x₂ → Ø 𝔬₄)
where
𝓲njection₃ = ∀ x₁ → (x₂ : 𝔒₂ x₁) → (x₃ : 𝔒₃ _ x₂) → 𝔒₄ _ _ x₃
record 𝓘njection₃ : Ø 𝔬₁ ∙̂ 𝔬₂ ∙̂ 𝔬₃ ∙̂ 𝔬₄ where
constructor ∁
field injection₃ : 𝓲njection₃
open 𝓘njection₃ ⦃ … ⦄ public
module _ -- Fixed=0
{ℓ₄} (_∼₄_ : ∀ {x₁ x₂} {y₁ : 𝔒₂ x₁} {y₂ : 𝔒₂ x₂} {z₁ : 𝔒₃ _ y₁} {z₂ : 𝔒₃ _ y₂} → 𝔒₄ _ _ z₁ → 𝔒₄ _ _ z₂ → Ø ℓ₄)
where
module _ -- Var=1
{ℓ₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø ℓ₁)
where
record [𝓘njectivity₃,₀,₁] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓘njection₃ ⦄
where
𝓲njectivity₃,₀,₁ = ∀ {x₁ x₂} {y₁ : 𝔒₂ x₁} {y₂ : 𝔒₂ x₂} {z₁ : 𝔒₃ _ y₁} {z₂ : 𝔒₃ _ y₂} → injection₃ _ _ z₁ ∼₄ injection₃ _ _ z₂ → x₁ ∼₁ x₂
record 𝓘njectivity₃,₀,₁ ⦃ _ : [𝓘njectivity₃,₀,₁] ⦄ : Ø 𝔬₁ ∙̂ 𝔬₂ ∙̂ 𝔬₃ ∙̂ 𝔬₄ ∙̂ ℓ₁ ∙̂ ℓ₄ where field injectivity₃,₀,₁ : 𝓲njectivity₃,₀,₁
open 𝓘njectivity₃,₀,₁ ⦃ … ⦄ public
module _ -- Var=2
{ℓ₂} (_∼₂_ : ∀ {x₁ x₂} → 𝔒₂ x₁ → 𝔒₂ x₂ → Ø ℓ₂)
where
record [𝓘njectivity₃,₀,₂] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓘njection₃ ⦄
where
𝓲njectivity₃,₀,₂ = ∀ {x₁ x₂ : 𝔒₁} {y₁ : 𝔒₂ x₁} {y₂ : 𝔒₂ x₂} {z₁ : 𝔒₃ _ y₁} {z₂ : 𝔒₃ _ y₂} → injection₃ _ _ z₁ ∼₄ injection₃ _ _ z₂ → y₁ ∼₂ y₂
record 𝓘njectivity₃,₀,₂ ⦃ _ : [𝓘njectivity₃,₀,₂] ⦄ : Ø 𝔬₁ ∙̂ 𝔬₂ ∙̂ 𝔬₃ ∙̂ ℓ₂ ∙̂ ℓ₄ where field injectivity₃,₀,₂ : 𝓲njectivity₃,₀,₂
open 𝓘njectivity₃,₀,₂ ⦃ … ⦄ public
injectivity₃,₀,₁[_] : ∀
{𝔬₁} {𝔒₁ : Ø 𝔬₁}
{𝔬₂} {𝔒₂ : 𝔒₁ → Ø 𝔬₂}
{𝔬₃} {𝔒₃ : ∀ x₁ → 𝔒₂ x₁ → Ø 𝔬₃}
{𝔬₄} {𝔒₄ : ∀ x₁ → (x₂ : 𝔒₂ x₁) → 𝔒₃ _ x₂ → Ø 𝔬₄}
{ℓ₄} {_∼₄_ : ∀ {x₁ x₂} {y₁ : 𝔒₂ x₁} {y₂ : 𝔒₂ x₂} {z₁ : 𝔒₃ _ y₁} {z₂ : 𝔒₃ _ y₂} → 𝔒₄ _ _ z₁ → 𝔒₄ _ _ z₂ → Ø ℓ₄}
{ℓ₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø ℓ₁)
⦃ _ : [𝓘njectivity₃,₀,₁] 𝔒₄ _∼₄_ _∼₁_ ⦄
⦃ _ : 𝓘njection₃ 𝔒₄ ⦄
⦃ _ : 𝓘njectivity₃,₀,₁ 𝔒₄ _∼₄_ _∼₁_ ⦄
→ 𝓲njectivity₃,₀,₁ 𝔒₄ _∼₄_ _∼₁_
injectivity₃,₀,₁[ _ ] = injectivity₃,₀,₁
injectivity₃,₀,₂[_] : ∀
{𝔬₁} {𝔒₁ : Ø 𝔬₁}
{𝔬₂} {𝔒₂ : 𝔒₁ → Ø 𝔬₂}
{𝔬₃} {𝔒₃ : ∀ x₁ → 𝔒₂ x₁ → Ø 𝔬₃}
{𝔬₄} {𝔒₄ : ∀ x₁ → (x₂ : 𝔒₂ x₁) → 𝔒₃ _ x₂ → Ø 𝔬₄}
{ℓ₄} {_∼₄_ : ∀ {x₁ x₂} {y₁ : 𝔒₂ x₁} {y₂ : 𝔒₂ x₂} {z₁ : 𝔒₃ _ y₁} {z₂ : 𝔒₃ _ y₂} → 𝔒₄ _ _ z₁ → 𝔒₄ _ _ z₂ → Ø ℓ₄}
{ℓ₂} (_∼₂_ : ∀ {x₁ x₂} → 𝔒₂ x₁ → 𝔒₂ x₂ → Ø ℓ₂)
⦃ _ : [𝓘njectivity₃,₀,₂] 𝔒₄ _∼₄_ _∼₂_ ⦄
⦃ _ : 𝓘njection₃ 𝔒₄ ⦄
⦃ _ : 𝓘njectivity₃,₀,₂ 𝔒₄ _∼₄_ _∼₂_ ⦄
→ 𝓲njectivity₃,₀,₂ 𝔒₄ _∼₄_ _∼₂_
injectivity₃,₀,₂[ _ ] = injectivity₃,₀,₂
| {
"alphanum_fraction": 0.4990970968,
"avg_line_length": 37.6910994764,
"ext": "agda",
"hexsha": "3ba98474e9572de513f3c65adf91bcaee4a36b54",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Injectivity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Injectivity.agda",
"max_line_length": 151,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Injectivity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4616,
"size": 7199
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Example of a Quotient: ℤ as (ℕ × ℕ / ∼)
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module Relation.Binary.HeterogeneousEquality.Quotients.Examples where
open import Relation.Binary.HeterogeneousEquality.Quotients
open import Level using (0ℓ)
open import Relation.Binary
open import Relation.Binary.HeterogeneousEquality hiding (isEquivalence)
import Relation.Binary.PropositionalEquality as ≡
open import Data.Nat
open import Data.Nat.Properties
open import Data.Product
open import Function
open ≅-Reasoning
ℕ² = ℕ × ℕ
_∼_ : ℕ² → ℕ² → Set
(x , y) ∼ (x' , y') = x + y' ≅ x' + y
infix 10 _∼_
∼-trans : ∀ {i j k} → i ∼ j → j ∼ k → i ∼ k
∼-trans {x₁ , y₁} {x₂ , y₂} {x₃ , y₃} p q =
≡-to-≅ $ +-cancelˡ-≡ y₂ $ ≅-to-≡ $ begin
y₂ + (x₁ + y₃) ≡⟨ ≡.sym (+-assoc y₂ x₁ y₃) ⟩
y₂ + x₁ + y₃ ≡⟨ ≡.cong (_+ y₃) (+-comm y₂ x₁) ⟩
x₁ + y₂ + y₃ ≅⟨ cong (_+ y₃) p ⟩
x₂ + y₁ + y₃ ≡⟨ ≡.cong (_+ y₃) (+-comm x₂ y₁) ⟩
y₁ + x₂ + y₃ ≡⟨ +-assoc y₁ x₂ y₃ ⟩
y₁ + (x₂ + y₃) ≅⟨ cong (y₁ +_) q ⟩
y₁ + (x₃ + y₂) ≡⟨ +-comm y₁ (x₃ + y₂) ⟩
x₃ + y₂ + y₁ ≡⟨ ≡.cong (_+ y₁) (+-comm x₃ y₂) ⟩
y₂ + x₃ + y₁ ≡⟨ +-assoc y₂ x₃ y₁ ⟩
y₂ + (x₃ + y₁) ∎
∼-isEquivalence : IsEquivalence _∼_
∼-isEquivalence = record
{ refl = refl
; sym = sym
; trans = λ {i} {j} {k} → ∼-trans {i} {j} {k}
}
ℕ²-∼-setoid : Setoid 0ℓ 0ℓ
ℕ²-∼-setoid = record { isEquivalence = ∼-isEquivalence }
module Integers (quot : Quotients 0ℓ 0ℓ) where
Int : Quotient ℕ²-∼-setoid
Int = quot _
open Quotient Int renaming (Q to ℤ)
_+²_ : ℕ² → ℕ² → ℕ²
(x₁ , y₁) +² (x₂ , y₂) = x₁ + x₂ , y₁ + y₂
+²-cong : ∀{a b a' b'} → a ∼ a' → b ∼ b' → a +² b ∼ a' +² b'
+²-cong {a₁ , b₁} {c₁ , d₁} {a₂ , b₂} {c₂ , d₂} ab∼cd₁ ab∼cd₂ = begin
(a₁ + c₁) + (b₂ + d₂) ≡⟨ ≡.cong (_+ (b₂ + d₂)) (+-comm a₁ c₁) ⟩
(c₁ + a₁) + (b₂ + d₂) ≡⟨ +-assoc c₁ a₁ (b₂ + d₂) ⟩
c₁ + (a₁ + (b₂ + d₂)) ≡⟨ ≡.cong (c₁ +_) (≡.sym (+-assoc a₁ b₂ d₂)) ⟩
c₁ + (a₁ + b₂ + d₂) ≅⟨ cong (λ n → c₁ + (n + d₂)) ab∼cd₁ ⟩
c₁ + (a₂ + b₁ + d₂) ≡⟨ ≡.cong (c₁ +_) (+-assoc a₂ b₁ d₂) ⟩
c₁ + (a₂ + (b₁ + d₂)) ≡⟨ ≡.cong (λ n → c₁ + (a₂ + n)) (+-comm b₁ d₂) ⟩
c₁ + (a₂ + (d₂ + b₁)) ≡⟨ ≡.sym (+-assoc c₁ a₂ (d₂ + b₁)) ⟩
(c₁ + a₂) + (d₂ + b₁) ≡⟨ ≡.cong (_+ (d₂ + b₁)) (+-comm c₁ a₂) ⟩
(a₂ + c₁) + (d₂ + b₁) ≡⟨ +-assoc a₂ c₁ (d₂ + b₁) ⟩
a₂ + (c₁ + (d₂ + b₁)) ≡⟨ ≡.cong (a₂ +_) (≡.sym (+-assoc c₁ d₂ b₁)) ⟩
a₂ + (c₁ + d₂ + b₁) ≅⟨ cong (λ n → a₂ + (n + b₁)) ab∼cd₂ ⟩
a₂ + (c₂ + d₁ + b₁) ≡⟨ ≡.cong (a₂ +_) (+-assoc c₂ d₁ b₁) ⟩
a₂ + (c₂ + (d₁ + b₁)) ≡⟨ ≡.cong (λ n → a₂ + (c₂ + n)) (+-comm d₁ b₁) ⟩
a₂ + (c₂ + (b₁ + d₁)) ≡⟨ ≡.sym (+-assoc a₂ c₂ (b₁ + d₁)) ⟩
(a₂ + c₂) + (b₁ + d₁) ∎
module _ (ext : ∀ {a b} {A : Set a} {B₁ B₂ : A → Set b} {f₁ : ∀ a → B₁ a}
{f₂ : ∀ a → B₂ a} → (∀ a → f₁ a ≅ f₂ a) → f₁ ≅ f₂) where
_+ℤ_ : ℤ → ℤ → ℤ
_+ℤ_ = Properties₂.lift₂ ext Int Int (λ i j → abs (i +² j))
$ λ {a} {b} {c} p p' → compat-abs (+²-cong {a} {b} {c} p p')
zero² : ℕ²
zero² = 0 , 0
zeroℤ : ℤ
zeroℤ = abs zero²
+²-identityʳ : (i : ℕ²) → (i +² zero²) ∼ i
+²-identityʳ (x , y) = begin
(x + 0) + y ≡⟨ ≡.cong (_+ y) (+-identityʳ x) ⟩
x + y ≡⟨ ≡.cong (x +_) (≡.sym (+-identityʳ y)) ⟩
x + (y + 0) ∎
+ℤ-on-abs≅abs-+₂ : ∀ a b → abs a +ℤ abs b ≅ abs (a +² b)
+ℤ-on-abs≅abs-+₂ = Properties₂.lift₂-conv ext Int Int _
$ λ {a} {b} {c} p p′ → compat-abs (+²-cong {a} {b} {c} p p′)
+ℤ-identityʳ : ∀ i → i +ℤ zeroℤ ≅ i
+ℤ-identityʳ = lift _ eq (≅-heterogeneous-irrelevantʳ _ _ ∘ compat-abs) where
eq : ∀ a → abs a +ℤ zeroℤ ≅ abs a
eq a = begin
abs a +ℤ zeroℤ ≡⟨⟩
abs a +ℤ abs zero² ≅⟨ +ℤ-on-abs≅abs-+₂ a zero² ⟩
abs (a +² zero²) ≅⟨ compat-abs (+²-identityʳ a) ⟩
abs a ∎
+²-identityˡ : (i : ℕ²) → (zero² +² i) ∼ i
+²-identityˡ i = refl
+ℤ-identityˡ : (i : ℤ) → zeroℤ +ℤ i ≅ i
+ℤ-identityˡ = lift _ eq (≅-heterogeneous-irrelevantʳ _ _ ∘ compat-abs) where
eq : ∀ a → zeroℤ +ℤ abs a ≅ abs a
eq a = begin
zeroℤ +ℤ abs a ≡⟨⟩
abs zero² +ℤ abs a ≅⟨ +ℤ-on-abs≅abs-+₂ zero² a ⟩
abs (zero² +² a) ≅⟨ compat-abs (+²-identityˡ a) ⟩
abs a ∎
+²-assoc : (i j k : ℕ²) → (i +² j) +² k ∼ i +² (j +² k)
+²-assoc (a , b) (c , d) (e , f) = begin
((a + c) + e) + (b + (d + f)) ≡⟨ ≡.cong (_+ (b + (d + f))) (+-assoc a c e) ⟩
(a + (c + e)) + (b + (d + f)) ≡⟨ ≡.cong ((a + (c + e)) +_) (≡.sym (+-assoc b d f)) ⟩
(a + (c + e)) + ((b + d) + f) ∎
+ℤ-assoc : ∀ i j k → (i +ℤ j) +ℤ k ≅ i +ℤ (j +ℤ k)
+ℤ-assoc = Properties₃.lift₃ ext Int Int Int eq compat₃ where
eq : ∀ i j k → (abs i +ℤ abs j) +ℤ abs k ≅ abs i +ℤ (abs j +ℤ abs k)
eq i j k = begin
(abs i +ℤ abs j) +ℤ abs k ≅⟨ cong (_+ℤ abs k) (+ℤ-on-abs≅abs-+₂ i j) ⟩
(abs (i +² j) +ℤ abs k) ≅⟨ +ℤ-on-abs≅abs-+₂ (i +² j) k ⟩
abs ((i +² j) +² k) ≅⟨ compat-abs (+²-assoc i j k) ⟩
abs (i +² (j +² k)) ≅⟨ sym (+ℤ-on-abs≅abs-+₂ i (j +² k)) ⟩
(abs i +ℤ abs (j +² k)) ≅⟨ cong (abs i +ℤ_) (sym (+ℤ-on-abs≅abs-+₂ j k)) ⟩
abs i +ℤ (abs j +ℤ abs k) ∎
compat₃ : ∀ {a a′ b b′ c c′} → a ∼ a′ → b ∼ b′ → c ∼ c′ → eq a b c ≅ eq a′ b′ c′
compat₃ p q r = ≅-heterogeneous-irrelevantˡ _ _
$ cong₂ _+ℤ_ (cong₂ _+ℤ_ (compat-abs p) (compat-abs q))
$ compat-abs r
| {
"alphanum_fraction": 0.4484837737,
"avg_line_length": 37.8456375839,
"ext": "agda",
"hexsha": "cc9e7421dcc80f35ed1c46942560c321dabba195",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality/Quotients/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality/Quotients/Examples.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality/Quotients/Examples.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2846,
"size": 5639
} |
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Data.Fin.Properties where
open import Prelude
open import Data.Fin.Base
import Data.Nat.Properties as ℕ
open import Data.Nat.Properties using (+-comm)
open import Data.Nat
open import Function.Injective
open import Agda.Builtin.Nat renaming (_<_ to _<ᵇ_)
private
variable
n m : ℕ
suc-natfin : Σ[ m ⦂ ℕ ] × (m ℕ.< n) → Σ[ m ⦂ ℕ ] × (m ℕ.< suc n)
suc-natfin (m , p) = suc m , p
Fin-to-Nat-lt : Fin n → Σ[ m ⦂ ℕ ] × (m ℕ.< n)
Fin-to-Nat-lt {n = suc n} f0 = zero , tt
Fin-to-Nat-lt {n = suc n} (fs x) = suc-natfin (Fin-to-Nat-lt x)
Fin-from-Nat-lt : ∀ m → m ℕ.< n → Fin n
Fin-from-Nat-lt {n = suc n} zero p = f0
Fin-from-Nat-lt {n = suc n} (suc m) p = fs (Fin-from-Nat-lt m p)
Fin-Nat-lt-rightInv : ∀ m → (p : m ℕ.< n) → Fin-to-Nat-lt {n = n} (Fin-from-Nat-lt m p) ≡ (m , p)
Fin-Nat-lt-rightInv {n = suc n} zero p = refl
Fin-Nat-lt-rightInv {n = suc n} (suc m) p = cong (suc-natfin {n = n}) (Fin-Nat-lt-rightInv {n = n} m p)
Fin-Nat-lt-leftInv : (x : Fin n) → uncurry Fin-from-Nat-lt (Fin-to-Nat-lt x) ≡ x
Fin-Nat-lt-leftInv {n = suc n} f0 = refl
Fin-Nat-lt-leftInv {n = suc n} (fs x) = cong fs (Fin-Nat-lt-leftInv x)
Fin-Nat-lt : Fin n ⇔ Σ[ m ⦂ ℕ ] × (m ℕ.< n)
Fin-Nat-lt .fun = Fin-to-Nat-lt
Fin-Nat-lt .inv = uncurry Fin-from-Nat-lt
Fin-Nat-lt .rightInv = uncurry Fin-Nat-lt-rightInv
Fin-Nat-lt .leftInv = Fin-Nat-lt-leftInv
FinToℕ : Fin n → ℕ
FinToℕ {n = suc n} f0 = zero
FinToℕ {n = suc n} (fs x) = suc (FinToℕ x)
FinToℕ-injective : ∀ {k} {m n : Fin k} → FinToℕ m ≡ FinToℕ n → m ≡ n
FinToℕ-injective {suc k} {f0} {f0} _ = refl
FinToℕ-injective {suc k} {f0} {fs x} p = ⊥-elim (ℕ.znots p)
FinToℕ-injective {suc k} {fs m} {f0} p = ⊥-elim (ℕ.snotz p)
FinToℕ-injective {suc k} {fs m} {fs x} p = cong fs (FinToℕ-injective (ℕ.injSuc p))
pred : Fin (suc n) → Fin (suc (ℕ.pred n))
pred f0 = f0
pred {n = suc n} (fs m) = m
discreteFin : ∀ {k} → Discrete (Fin k)
discreteFin {k = suc _} f0 f0 = yes refl
discreteFin {k = suc _} f0 (fs fk) = no (ℕ.znots ∘ cong FinToℕ)
discreteFin {k = suc _} (fs fj) f0 = no (ℕ.snotz ∘ cong FinToℕ)
discreteFin {k = suc _} (fs fj) (fs fk) =
iff-dec (cong fs iff cong (λ { f0 → fk ; (fs x) → x})) (discreteFin fj fk)
isSetFin : isSet (Fin n)
isSetFin = Discrete→isSet discreteFin
FinFromℕ : (n m : ℕ) → T (n <ᵇ m) → Fin m
FinFromℕ zero (suc m) p = f0
FinFromℕ (suc n) (suc m) p = fs (FinFromℕ n m p)
| {
"alphanum_fraction": 0.6092715232,
"avg_line_length": 35.0144927536,
"ext": "agda",
"hexsha": "14aff16bba66fe3f1cd237ce89cfdedac4fa4e36",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Fin/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Fin/Properties.agda",
"max_line_length": 103,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Fin/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 1071,
"size": 2416
} |
open import Level
open import Relation.Binary.PropositionalEquality
import Categories.Category
open import Syntax
module Renaming where
open Equality
-- the set of renamings
infix 5 _→ʳ_
_→ʳ_ : VShape → VShape → Set
γ →ʳ δ = var γ → var δ
-- equality of renamings
infix 5 _≡ʳ_
_≡ʳ_ : ∀ {γ δ} → (ρ : γ →ʳ δ) → (t : γ →ʳ δ) → Set
ρ ≡ʳ σ = ∀ x → ρ x ≡ σ x
-- equality is an equivalence relation
≡ʳ-refl : ∀ {γ δ} → {ρ : γ →ʳ δ} → ρ ≡ʳ ρ
≡ʳ-refl x = refl
≡ʳ-sym : ∀ {γ δ} → {ρ τ : γ →ʳ δ} → ρ ≡ʳ τ → τ ≡ʳ ρ
≡ʳ-sym ξ x = sym (ξ x)
≡ʳ-trans : ∀ {γ δ} → {ρ τ χ : γ →ʳ δ} → ρ ≡ʳ τ → τ ≡ʳ χ → ρ ≡ʳ χ
≡ʳ-trans ζ ξ x = trans (ζ x) (ξ x)
-- 𝟘 is the weakly initial shape
𝟘-initial : ∀ {γ} → 𝟘 →ʳ γ
𝟘-initial ()
-- identity renaming
𝟙ʳ : ∀ {γ} → γ →ʳ γ
𝟙ʳ x = x
-- composition of renamings
infixl 7 _∘ʳ_
_∘ʳ_ : ∀ {γ δ η} → (δ →ʳ η) → (γ →ʳ δ) → (γ →ʳ η)
(ρ ∘ʳ τ) x = ρ (τ x)
-- join of renamings
infix 6 [_,_]ʳ
[_,_]ʳ : ∀ {γ δ η} → (γ →ʳ η) → (δ →ʳ η) → (γ ⊕ δ →ʳ η)
[ ρ , τ ]ʳ (var-left x) = ρ x
[ ρ , τ ]ʳ (var-right y) = τ y
-- renaming extension
⇑ʳ : ∀ {γ δ η} → (γ →ʳ δ) → (γ ⊕ η →ʳ δ ⊕ η)
⇑ʳ ρ (var-left x) = var-left (ρ x)
⇑ʳ ρ (var-right y) = var-right y
-- extension preserves equality
⇑ʳ-resp-≡ʳ : ∀ {γ δ η} {ρ τ : γ →ʳ δ} → ρ ≡ʳ τ → ⇑ʳ {η = η} ρ ≡ʳ ⇑ʳ τ
⇑ʳ-resp-≡ʳ ξ (var-left x) = cong var-left (ξ x)
⇑ʳ-resp-≡ʳ ξ (var-right y) = refl
-- extension respects identity
⇑ʳ-resp-𝟙ʳ : ∀ {γ δ} → ⇑ʳ {η = δ} (𝟙ʳ {γ = γ}) ≡ʳ 𝟙ʳ
⇑ʳ-resp-𝟙ʳ (var-left x) = refl
⇑ʳ-resp-𝟙ʳ (var-right x) = refl
-- extension commutes with composition
⇑ʳ-resp-∘ʳ : ∀ {β γ δ η} {ρ : β →ʳ γ} {τ : γ →ʳ δ} → ⇑ʳ {η = η} (τ ∘ʳ ρ) ≡ʳ ⇑ʳ τ ∘ʳ ⇑ʳ ρ
⇑ʳ-resp-∘ʳ (var-left x) = refl
⇑ʳ-resp-∘ʳ (var-right y) = refl
module _ {𝕊 : Signature} where
open Expression 𝕊
-- the action of a renaming on an expression
infixr 6 [_]ʳ_
[_]ʳ_ : ∀ {𝕄} {cl} {γ} {δ} (ρ : γ →ʳ δ) → Expr 𝕄 cl γ → Expr 𝕄 cl δ
[ ρ ]ʳ (expr-var x) = expr-var (ρ x)
[ ρ ]ʳ (expr-symb S es) = expr-symb S (λ i → [ ⇑ʳ ρ ]ʳ (es i))
[ ρ ]ʳ (expr-meta M ts) = expr-meta M (λ i → [ ρ ]ʳ (ts i))
[ ρ ]ʳ expr-eqty = expr-eqty
[ ρ ]ʳ expr-eqtm = expr-eqtm
-- the action respects equality of renamings and equality of terms
[]ʳ-resp-≈ : ∀ {𝕄} {cl} {γ} {δ} (ρ : γ →ʳ δ) {t u : Expr 𝕄 cl γ} → t ≈ u → [ ρ ]ʳ t ≈ [ ρ ]ʳ u
[]ʳ-resp-≈ ρ (≈-≡ ξ) = ≈-≡ (cong [ ρ ]ʳ_ ξ)
[]ʳ-resp-≈ ρ (≈-symb ξ) = ≈-symb (λ i → []ʳ-resp-≈ (⇑ʳ ρ) (ξ i))
[]ʳ-resp-≈ ρ (≈-meta ξ) = ≈-meta (λ i → []ʳ-resp-≈ ρ (ξ i))
[]ʳ-resp-≡ʳ : ∀ {𝕄} {cl} {γ} {δ} {ρ τ : γ →ʳ δ} (t : Expr cl 𝕄 γ) → ρ ≡ʳ τ → [ ρ ]ʳ t ≈ [ τ ]ʳ t
[]ʳ-resp-≡ʳ (expr-var x) ξ = ≈-≡ (cong expr-var (ξ x))
[]ʳ-resp-≡ʳ (expr-symb S es) ξ = ≈-symb (λ i → []ʳ-resp-≡ʳ (es i) (⇑ʳ-resp-≡ʳ ξ))
[]ʳ-resp-≡ʳ (expr-meta M ts) ξ = ≈-meta (λ i → []ʳ-resp-≡ʳ (ts i) ξ)
[]ʳ-resp-≡ʳ expr-eqty ξ = ≈-eqty
[]ʳ-resp-≡ʳ expr-eqtm ξ = ≈-eqtm
-- the action is functorial
[𝟙ʳ] : ∀ {cl 𝕄 γ} {t : Expr cl 𝕄 γ} → [ 𝟙ʳ ]ʳ t ≈ t
[𝟙ʳ] {t = expr-var x} = ≈-refl
[𝟙ʳ] {t = expr-symb S es} = ≈-symb (λ i → ≈-trans ([]ʳ-resp-≡ʳ (es i) ⇑ʳ-resp-𝟙ʳ) [𝟙ʳ])
[𝟙ʳ] {t = expr-meta M ts} = ≈-meta (λ i → [𝟙ʳ])
[𝟙ʳ] {t = expr-eqty} = ≈-eqty
[𝟙ʳ] {t = expr-eqtm} = ≈-eqtm
[∘ʳ] : ∀ {cl 𝕄} {γ δ η} {ρ : γ →ʳ δ} {τ : δ →ʳ η} (t : Expr cl 𝕄 γ) → [ τ ∘ʳ ρ ]ʳ t ≈ [ τ ]ʳ [ ρ ]ʳ t
[∘ʳ] (expr-var x) = ≈-refl
[∘ʳ] (expr-symb S es) = ≈-symb (λ i → ≈-trans ([]ʳ-resp-≡ʳ (es i) ⇑ʳ-resp-∘ʳ) ([∘ʳ] (es i)))
[∘ʳ] (expr-meta M ts) = ≈-meta (λ i → [∘ʳ] (ts i))
[∘ʳ] expr-eqty = ≈-eqty
[∘ʳ] expr-eqtm = ≈-eqtm
[]ʳ-id : ∀ {cl 𝕄 γ} {ρ : γ →ʳ γ} {t : Expr cl 𝕄 γ} → ρ ≡ʳ 𝟙ʳ → [ ρ ]ʳ t ≈ t
[]ʳ-id ξ = ≈-trans ([]ʳ-resp-≡ʳ _ ξ) [𝟙ʳ]
-- the categorical structure
module _ where
open Categories.Category
Renamings : Category zero zero zero
Renamings =
record
{ Obj = VShape
; _⇒_ = _→ʳ_
; _≈_ = _≡ʳ_
; id = 𝟙ʳ
; _∘_ = _∘ʳ_
; assoc = λ _ → refl
; sym-assoc = λ _ → refl
; identityˡ = λ _ → refl
; identityʳ = λ _ → refl
; identity² = λ _ → refl
; equiv = record { refl = ≡ʳ-refl ; sym = ≡ʳ-sym ; trans = ≡ʳ-trans }
; ∘-resp-≈ = λ {_} {_} {_} {ρ} {_} {_} {τ} ζ ξ x → trans (cong ρ (ξ x)) (ζ (τ x))
}
| {
"alphanum_fraction": 0.4678522572,
"avg_line_length": 28.6666666667,
"ext": "agda",
"hexsha": "71c6a3569edcc8f5582ff204367f125721ef96d2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_forks_repo_path": "src/Renaming.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_issues_repo_path": "src/Renaming.agda",
"max_line_length": 105,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_stars_repo_path": "src/Renaming.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-14T01:48:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T11:14:42.000Z",
"num_tokens": 2452,
"size": 4386
} |
{-
Equalizer of functions f g : S X ⇉ T X such that f and g act on relation structures
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Relational.Equalizer where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.RelationalStructure
open import Cubical.Data.Sigma
open import Cubical.HITs.SetQuotients
open import Cubical.HITs.PropositionalTruncation as Trunc
open import Cubical.Relation.Binary.Base
private
variable
ℓ ℓ₁ ℓ₁' ℓ₂ ℓ₂' : Level
EqualizerStructure : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂}
(f g : ∀ X → S X → T X)
→ Type ℓ → Type (ℓ-max ℓ₁ ℓ₂)
EqualizerStructure {S = S} f g X = Σ[ s ∈ S X ] f X s ≡ g X s
EqualizerRelStr : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂}
{f g : ∀ X → S X → T X}
→ StrRel S ℓ₁' → StrRel T ℓ₂' → StrRel (EqualizerStructure f g) ℓ₁'
EqualizerRelStr ρ₁ ρ₂ R (s , _) (s' , _) = ρ₁ R s s'
equalizerSuitableRel : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂}
{f g : ∀ X → S X → T X}
{ρ₁ : StrRel S ℓ₁'} {ρ₂ : StrRel T ℓ₂'}
(αf : ∀ {X Y} {R : X → Y → Type ℓ} {s s'} → ρ₁ R s s' → ρ₂ R (f X s) (f Y s'))
(αg : ∀ {X Y} {R : X → Y → Type ℓ} {s s'} → ρ₁ R s s' → ρ₂ R (g X s) (g Y s'))
→ SuitableStrRel S ρ₁
→ SuitableStrRel T ρ₂
→ SuitableStrRel (EqualizerStructure f g) (EqualizerRelStr ρ₁ ρ₂)
equalizerSuitableRel {f = f} {g} {ρ₁} {ρ₂} αf αg θ₁ θ₂ .quo (X , s , p) (R , qer) r =
( ((quo₁ .fst .fst , sym step₀ ∙ step₁) , quo₁ .fst .snd)
, λ {((s' , _) , r') →
Σ≡Prop (λ _ → θ₁ .prop (λ _ _ → squash/ _ _) _ _)
(Σ≡Prop (λ _ → θ₂ .set squash/ _ _)
(cong fst (quo₁ .snd (s' , r'))))}
)
where
quo₁ = θ₁ .quo (X , s) (R , qer) r
quo₂ = θ₂ .quo (X , f X s) (R , qer) (αf r)
step₀ : quo₂ .fst .fst ≡ f (X / R .fst) (quo₁ .fst .fst)
step₀ =
cong fst
(quo₂ .snd
(f _ (quo₁ .fst .fst) , αf (quo₁ .fst .snd)))
step₁ : quo₂ .fst .fst ≡ g (X / R .fst) (quo₁ .fst .fst)
step₁ =
cong fst
(quo₂ .snd
( g _ (quo₁ .fst .fst)
, subst (λ t → ρ₂ (graphRel [_]) t (g _ (quo₁ .fst .fst))) (sym p) (αg (quo₁ .fst .snd))
))
equalizerSuitableRel _ _ θ₁ _ .symmetric R = θ₁ .symmetric R
equalizerSuitableRel _ _ θ₁ _ .transitive R R' = θ₁ .transitive R R'
equalizerSuitableRel _ _ θ₁ θ₂ .set setX =
isSetΣ (θ₁ .set setX) λ _ → isOfHLevelPath 2 (θ₂ .set setX) _ _
equalizerSuitableRel _ _ θ₁ _ .prop propR _ _ = θ₁ .prop propR _ _
| {
"alphanum_fraction": 0.5914065667,
"avg_line_length": 36.2794117647,
"ext": "agda",
"hexsha": "d5a14511941c452fd6773d84cba0db08c9578557",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Structures/Relational/Equalizer.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Structures/Relational/Equalizer.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Structures/Relational/Equalizer.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1053,
"size": 2467
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions.Definition
open import Setoids.Setoids
open import Setoids.Subset
open import Graphs.Definition
open import Sets.EquivalenceRelations
module Graphs.Complement {a b c : _} {V' : Set a} {V : Setoid {a} {b} V'} (G : Graph c V) where
open Graph G
open Setoid V
open Equivalence eq
complement : Graph (b ⊔ c) V
Graph._<->_ complement x y = ((x <-> y) → False) && ((x ∼ y) → False)
Graph.noSelfRelation complement x (pr1 ,, pr2) = pr2 reflexive
Graph.symmetric complement (x!-y ,, x!=y) = (λ pr → x!-y (Graph.symmetric G pr)) ,, λ pr → x!=y (Equivalence.symmetric eq pr)
Graph.wellDefined complement x=y r=s (x!-r ,, x!=r) = (λ y-s → x!-r (wellDefined (Equivalence.symmetric eq x=y) (Equivalence.symmetric eq r=s) y-s)) ,, λ y=s → x!=r (transitive x=y (transitive y=s (Equivalence.symmetric eq r=s)))
| {
"alphanum_fraction": 0.6871741397,
"avg_line_length": 43.5909090909,
"ext": "agda",
"hexsha": "30a1da5a26c251cb00dffa5d8bcbfbd70472354b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Graphs/Complement.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Graphs/Complement.agda",
"max_line_length": 229,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Graphs/Complement.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 305,
"size": 959
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Instances.Bool where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Relation.Nullary
open import Cubical.Data.Bool
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Sum hiding (map ; rec)
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Semigroup
open GroupStr
open IsGroup
open IsMonoid
open IsSemigroup
BoolGroup : Group₀
fst BoolGroup = Bool
1g (snd BoolGroup) = true
(snd BoolGroup · false) false = true
(snd BoolGroup · false) true = false
(snd BoolGroup · true) y = y
inv (snd BoolGroup) x = x
is-set (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) = isSetBool
·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) false false false = refl
·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) false false true = refl
·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) false true false = refl
·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) false true true = refl
·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) true false false = refl
·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) true false true = refl
·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) true true false = refl
·Assoc (isSemigroup (isMonoid (isGroup (snd BoolGroup)))) true true true = refl
·IdR (isMonoid (isGroup (snd BoolGroup))) false = refl
·IdR (isMonoid (isGroup (snd BoolGroup))) true = refl
·IdL (isMonoid (isGroup (snd BoolGroup))) false = refl
·IdL (isMonoid (isGroup (snd BoolGroup))) true = refl
·InvR (isGroup (snd BoolGroup)) false = refl
·InvR (isGroup (snd BoolGroup)) true = refl
·InvL (isGroup (snd BoolGroup)) false = refl
·InvL (isGroup (snd BoolGroup)) true = refl
-- Proof that any Group equivalent to Bool as types is also isomorphic to Bool as groups.
open GroupStr renaming (·Assoc to ·AssocG)
module _ {ℓ : Level} {A : Group ℓ} (e : Iso (fst A) Bool) where
private
discreteA : Discrete (typ A)
discreteA = isoPresDiscrete (invIso e) _≟_
_·A_ = GroupStr._·_ (snd A)
-A_ = GroupStr.inv (snd A)
IsoABool : Iso Bool (typ A)
IsoABool with (Iso.fun e (1g (snd A))) ≟ true
... | yes p = invIso e
... | no p = compIso notIso (invIso e)
true→1 : Iso.fun IsoABool true ≡ 1g (snd A)
true→1 with (Iso.fun e (1g (snd A))) ≟ true
... | yes p = sym (cong (Iso.inv e) p) ∙ Iso.leftInv e _
... | no p = sym (cong (Iso.inv e) (¬true→false (Iso.fun e (1g (snd A))) p))
∙ Iso.leftInv e (1g (snd A))
decA : (x : typ A) → (x ≡ 1g (snd A)) ⊎ (x ≡ Iso.fun IsoABool false)
decA x with (Iso.inv IsoABool x) ≟ false | discreteA x (1g (snd A))
... | yes p | yes q = inl q
... | yes p | no q = inr (sym (Iso.rightInv IsoABool x) ∙ cong (Iso.fun (IsoABool)) p)
... | no p | no q = inr (⊥.rec (q (sym (Iso.rightInv IsoABool x)
∙∙ cong (Iso.fun IsoABool) (¬false→true _ p)
∙∙ true→1)))
... | no p | yes q = inl q
≅Bool : GroupIso BoolGroup A
≅Bool .fst = IsoABool
≅Bool .snd = makeIsGroupHom homHelp
where
homHelp : _
homHelp false false with discreteA (Iso.fun IsoABool false) (1g (snd A))
| (decA ((Iso.fun IsoABool false) ·A Iso.fun IsoABool false))
... | yes p | _ = true→1 ∙∙ sym (GroupStr.·IdR (snd A) (1g (snd A))) ∙∙ cong₂ (_·A_) (sym p) (sym p)
... | no p | inl x = true→1 ∙ sym x
... | no p | inr x = true→1 ∙∙ sym (helper _ x) ∙∙ sym x
where
helper : (x : typ A) → x ·A x ≡ x → x ≡ (1g (snd A))
helper x p = sym (GroupStr.·IdR (snd A) x)
∙∙ cong (x ·A_) (sym ((snd A) .·InvR x))
∙∙ ·AssocG (snd A) x x (-A x) ∙∙ cong (_·A (-A x)) p
∙∙ (snd A) .·InvR x
homHelp false true = sym (GroupStr.·IdR (snd A) _) ∙ cong (Iso.fun IsoABool false ·A_) (sym true→1)
homHelp true y = sym (GroupStr.·IdL (snd A) _) ∙ cong (_·A (Iso.fun IsoABool y)) (sym true→1)
| {
"alphanum_fraction": 0.6311163895,
"avg_line_length": 41.6831683168,
"ext": "agda",
"hexsha": "57c5847ec68766c394f3d59972450e6dadca26a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Instances/Bool.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Instances/Bool.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Instances/Bool.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1427,
"size": 4210
} |
-- Andreas, 2012-10-30 Sections
-- Reported by guillaume.brunerie, Oct 24 2012
module Issue735 where
import Common.Level
open import Common.Prelude using (Nat; zero; suc)
module _ {a} (A : Set a) where
data List : Set a where
[] : List
_∷_ : (x : A) (xs : List) → List
module _ {a} {A : Set a} where
_++_ : List → List → List
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
-- should not work, we cannot cut a section in two
-- correct is: List A
test : List Nat
test = (5 ∷ []) ++ (3 ∷ [])
| {
"alphanum_fraction": 0.5714285714,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "3290eb4305bd878931d63010f7763f1c1c979173",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue735.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue735.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue735.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 184,
"size": 525
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Sigma
open import lib.types.Pi
open import lib.types.Paths
open import lib.types.Unit
open import lib.types.Empty
module lib.Equivalences2 where
{- Pre- and post- composition with equivalences are equivalences -}
module _ {i j k} {A : Type i} {B : Type j} {C : Type k}
{h : A → B} (e : is-equiv h) where
pre∘-is-equiv : is-equiv (λ (k : B → C) → k ∘ h)
pre∘-is-equiv = is-eq f g f-g g-f
where f = λ k → k ∘ h
g = λ k → k ∘ is-equiv.g e
f-g = λ k → ap (λ q → λ x → k (q x)) (λ= $ is-equiv.g-f e)
g-f = λ k → ap (λ q → λ x → k (q x)) (λ= $ is-equiv.f-g e)
post∘-is-equiv : is-equiv (λ (k : C → A) → h ∘ k)
post∘-is-equiv = is-eq f g f-g g-f
where f = λ k → h ∘ k
g = λ k → is-equiv.g e ∘ k
f-g = λ k → ap (λ q → q ∘ k) (λ= $ is-equiv.f-g e)
g-f = λ k → ap (λ q → q ∘ k) (λ= $ is-equiv.g-f e)
{- The same thing on the abstraction level of equivalences -}
module _ {i j k} {A : Type i} {B : Type j} {C : Type k}
(e : A ≃ B) where
pre∘-equiv : (B → C) ≃ (A → C)
pre∘-equiv = (_ , pre∘-is-equiv (snd e))
post∘-equiv : (C → A) ≃ (C → B)
post∘-equiv = (_ , post∘-is-equiv (snd e))
is-contr-map : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
→ Type (lmax i j)
is-contr-map {A = A} {B = B} f = (y : B) → is-contr (Σ A (λ x → f x == y))
equiv-is-contr-map : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
→ (is-equiv f → is-contr-map f)
equiv-is-contr-map e y =
equiv-preserves-level ((equiv-Σ-fst (λ z → z == y) e) ⁻¹) (pathto-is-contr y)
contr-map-is-equiv : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
→ (is-contr-map f → is-equiv f)
contr-map-is-equiv {f = f} cm = is-eq _
(λ b → fst (fst (cm b)))
(λ b → snd (fst (cm b)))
(λ a → ap fst (snd (cm (f a)) (a , idp)))
fiber=-eqv : ∀ {i j} {A : Type i} {B : Type j} {h : A → B} {y : B}
(r s : Σ A (λ x → h x == y))
→ (r == s) ≃ Σ (fst r == fst s) (λ γ → ap h γ ∙ snd s == snd r)
fiber=-eqv r s = equiv-Σ-snd (λ γ → !-equiv ∘e (↓-app=cst-eqv ⁻¹)) ∘e ((=Σ-eqv r s)⁻¹)
module _ {i j} {A : Type i} {B : Type j} where
linv : (A → B) → Type (lmax i j)
linv f = Σ (B → A) (λ g → (∀ x → g (f x) == x))
rinv : (A → B) → Type (lmax i j)
rinv f = Σ (B → A) (λ g → (∀ y → f (g y) == y))
lcoh : (f : A → B) → linv f → Type (lmax i j)
lcoh f (g , g-f) = Σ (∀ y → f (g y) == y)
(λ f-g → ∀ y → ap g (f-g y) == g-f (g y))
rcoh : (f : A → B) → rinv f → Type (lmax i j)
rcoh f (g , f-g) = Σ (∀ x → g (f x) == x)
(λ g-f → ∀ x → ap f (g-f x) == f-g (f x))
module _ {i j} {A : Type i} {B : Type j} {f : A → B} (e : is-equiv f) where
equiv-linv-is-contr : is-contr (linv f)
equiv-linv-is-contr = equiv-preserves-level (equiv-Σ-snd (λ _ → λ=-equiv ⁻¹))
(equiv-is-contr-map (pre∘-is-equiv e) (idf A))
equiv-rinv-is-contr : is-contr (rinv f)
equiv-rinv-is-contr = equiv-preserves-level (equiv-Σ-snd (λ _ → λ=-equiv ⁻¹))
(equiv-is-contr-map (post∘-is-equiv e) (idf B))
module _ {i j} {A : Type i} {B : Type j} {f : A → B} where
rcoh-eqv : (v : rinv f)
→ rcoh f v ≃ Π A (λ x → (fst v (f x) , snd v (f x)) == (x , idp {a = f x}))
rcoh-eqv v = equiv-Π-r (λ x → ((fiber=-eqv {h = f} _ _)⁻¹) ∘e apply-unit-r x) ∘e choice ⁻¹
where
apply-unit-r : ∀ x → Σ _ (λ γ → ap f γ == _) ≃ Σ _ (λ γ → ap f γ ∙ idp == _)
apply-unit-r x = equiv-Σ-snd $
λ γ → coe-equiv (ap (λ q → q == snd v (f x)) (! (∙-unit-r _)))
lcoh-eqv : (v : linv f)
→ lcoh f v ≃ Π B (λ y → (f (fst v y) , snd v (fst v y)) == (y , idp))
lcoh-eqv v = equiv-Π-r (λ y → ((fiber=-eqv {h = fst v} _ _)⁻¹) ∘e apply-unit-r y) ∘e choice ⁻¹
where
apply-unit-r : ∀ y → Σ _ (λ γ → ap (fst v) γ == _) ≃ Σ _ (λ γ → ap (fst v) γ ∙ idp == _)
apply-unit-r y = equiv-Σ-snd $
λ γ → coe-equiv (ap (λ q → q == snd v (fst v y)) (! (∙-unit-r _)))
equiv-rcoh-is-contr : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
(e : is-equiv f) → (v : rinv f) → is-contr (rcoh f v)
equiv-rcoh-is-contr {f = f} e v = equiv-preserves-level ((rcoh-eqv v)⁻¹)
(Π-level (λ x → =-preserves-level -2 (equiv-is-contr-map e (f x))))
rinv-and-rcoh-eqv-is-equiv : ∀ {i j} {A : Type i} {B : Type j} {h : A → B}
→ Σ (rinv h) (rcoh h) ≃ is-equiv h
rinv-and-rcoh-eqv-is-equiv {h = h} = equiv f g (λ _ → idp) (λ _ → idp)
where f : Σ (rinv h) (rcoh h) → is-equiv h
f s = record {g = fst (fst s); f-g = snd (fst s);
g-f = fst (snd s); adj = snd (snd s)}
g : is-equiv h → Σ (rinv h) (rcoh h)
g t = ((is-equiv.g t , is-equiv.f-g t) , (is-equiv.g-f t , is-equiv.adj t))
is-equiv-is-prop : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
→ is-prop (is-equiv f)
is-equiv-is-prop _ = inhab-to-contr-is-prop $ λ e →
equiv-preserves-level rinv-and-rcoh-eqv-is-equiv
(Σ-level (equiv-rinv-is-contr e) (equiv-rcoh-is-contr e))
∘e-unit-r : ∀ {i} {A B : Type i} (e : A ≃ B) → (e ∘e ide A) == e
∘e-unit-r e =
pair= idp (prop-has-all-paths (is-equiv-is-prop (fst e)) _ _)
ua-∘e : ∀ {i} {A B : Type i}
(e₁ : A ≃ B) {C : Type i} (e₂ : B ≃ C) → ua (e₂ ∘e e₁) == ua e₁ ∙ ua e₂
ua-∘e =
equiv-induction
(λ {A} {B} e₁ → ∀ {C} → ∀ (e₂ : B ≃ C) → ua (e₂ ∘e e₁) == ua e₁ ∙ ua e₂)
(λ A → λ e₂ → ap ua (∘e-unit-r e₂) ∙ ap (λ w → (w ∙ ua e₂)) (! (ua-η idp)))
{- Type former equivalences involving Empty may require λ=. -}
module _ {j} {B : Empty → Type j} where
Σ₁-Empty : Σ Empty B ≃ Empty
Σ₁-Empty = equiv (⊥-rec ∘ fst) ⊥-rec ⊥-elim (⊥-rec ∘ fst)
Π₁-Empty : Π Empty B ≃ Unit
Π₁-Empty = equiv (cst tt) (cst ⊥-elim) (λ _ → contr-has-all-paths Unit-is-contr _ _) (λ _ → λ= ⊥-elim)
Σ₂-Empty : ∀ {i} {A : Type i} → Σ A (λ _ → Empty) ≃ Empty
Σ₂-Empty = equiv (⊥-rec ∘ snd) ⊥-rec ⊥-elim (⊥-rec ∘ snd)
| {
"alphanum_fraction": 0.4878793016,
"avg_line_length": 39.0662251656,
"ext": "agda",
"hexsha": "dadb217628eafc0d749d1a76b4a7eaa4459e3827",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/Equivalences2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/Equivalences2.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/Equivalences2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2543,
"size": 5899
} |
open import Agda.Builtin.Coinduction
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Equality
data Colist (A : Set) : Set where
[] : Colist A
_∷_ : A → ∞ (Colist A) → Colist A
from : Nat → Colist Nat
from n = let sn = suc n in n ∷ ♯ (from sn)
take : {A : Set} → Nat → Colist A → List A
take zero xs = []
take (suc n) [] = []
take (suc n) (x ∷ xs) = x ∷ take n (♭ xs)
check : take 3 (from 5) ≡ 5 ∷ 6 ∷ 7 ∷ []
check = refl
| {
"alphanum_fraction": 0.6012793177,
"avg_line_length": 22.3333333333,
"ext": "agda",
"hexsha": "99935dd0d5c1232fb3df9b32c58cf9c0f4e555a5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue140.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue140.agda",
"max_line_length": 42,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue140.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 186,
"size": 469
} |
module Issue308a where
data D : Set where
d : D → D
syntax d x = d d x
f : D → D
f x = d d x
| {
"alphanum_fraction": 0.5612244898,
"avg_line_length": 9.8,
"ext": "agda",
"hexsha": "a63e5840e921e644f0224d22efb69402d12a6a82",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue308a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue308a.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue308a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 40,
"size": 98
} |
{-
A counterexample from Section 5.1 of Andreas Abel's dissertation [1],
showing that the types of recursive functions must be (semi-)continuous,
i.e. `loop` below should be disallowed.
In the example, `loop` is not used as-is, but rather the size involved
is instantiated to the infinite size in order to pass in `plus2`.
The conditions on ω-instantiating from John Hughes' paper [2] is
essentially a stricter condition than Abel's semi-continuity on where
size variables may appear in the type.
[1] A Polymorphic Lambda-Calculus with Sized Higher-Order Types
[2] Proving the Correctness of Reactive Systems using Sized Types
-}
data Size : Set where
∘ : Size
↑_ : Size → Size
data Nat : Size → Set where
zero : ∀ {s} → Nat (↑ s)
succ : ∀ {s} → Nat s → Nat (↑ s)
data NatInf : Set where
⟦_⟧ : ∀ {s} → Nat s → NatInf
zero∘ : Nat (↑ ∘)
zero∘ = zero {∘}
shift : ∀ {s} → (NatInf → Nat (↑ (↑ s))) → NatInf → Nat (↑ s)
shift f ⟦ n ⟧ with f ⟦ succ n ⟧
... | zero = zero
... | succ m = m
plus2 : NatInf → NatInf
plus2 ⟦ n ⟧ = ⟦ succ (succ n) ⟧
loop : ∀ {s} → Nat s → (NatInf → Nat (↑ s)) → NatInf
loop _ f with f ⟦ zero∘ ⟧
... | zero = ⟦ zero∘ ⟧
... | succ zero = ⟦ zero∘ ⟧
... | succ (succ k) = loop k (shift f)
{-
Interpreting Nat^∞ as a size-paired natural, we need to somehow
derive an infinity-instantiated version (`loopInf`) using `loop`,
but we cannot produce a `NatInf → Nat (↑ s)` out of `NatInf → NatInf`:
doing so amounts to proving `∃s. Nat s → ∀s. Nat s`.
-}
-- loop cannot be instantiated with an infinite size
postulate loopInf : NatInf → (NatInf → NatInf) → NatInf
uhoh : NatInf
uhoh = loopInf ⟦ zero∘ ⟧ plus2
| {
"alphanum_fraction": 0.635391924,
"avg_line_length": 30.0714285714,
"ext": "agda",
"hexsha": "101f2d65360cc65c0e445e87bb5b037c4510928a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "ionathanch/msc-thesis",
"max_forks_repo_path": "code/SizeLoop.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "ionathanch/msc-thesis",
"max_issues_repo_path": "code/SizeLoop.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "ionathanch/msc-thesis",
"max_stars_repo_path": "code/SizeLoop.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 559,
"size": 1684
} |
module Esterel.Lang.CanFunction.Properties where
{-
Basic properties of the Can function and utilities used in the reasoning,
such as Can does not look at shared variables and sequential variables; Can can
only output free variables; Can will capture free emit S and s ⇐ e (and more).
-}
open import Esterel.Lang.CanFunction.Base hiding ([_↦_]) public
{-
The equivalent "goodness" of can w.r.t. the rmerge reduction. Specifically, here
are the main lemmas:
can-irr : ∀ {BV} {FV} θ₁ θ₂ q →
CorrectBinding q BV FV →
(distinct' (proj₁ FV) (proj₁ (Dom θ₂))) →
Can q θ₁ ≡ Can q (θ₁ ← θ₂)
can-irr θ₁ θ₂ q cbq FV≠Domθ₂
canθₛ-mergeˡ : ∀ {E θ' r p BV FV} sigs θ →
CorrectBinding p BV FV →
p ≐ E ⟦ ρ θ' · r ⟧e →
∀ S' →
Signal.unwrap S' ∉ SigMap.keys (Env.sig θ') →
Signal.unwrap S' ∈ Canθₛ (SigMap.union sigs (Env.sig θ')) 0 (E ⟦ r ⟧e) θ →
Signal.unwrap S' ∈ Canθₛ sigs 0 p θ
canθₛ-mergeʳ : ∀ sigs θ' r θ →
distinct' (proj₁ (Dom θ)) (SigMap.keys sigs) →
∀ S' →
Signal.unwrap S' ∈ Canθₛ (SigMap.union sigs (Env.sig θ')) 0 r θ →
Signal.unwrap S' ∈ Canθₛ (Env.sig θ') 0 r θ
These lemma says that when updating or extending the environent,
if the program does not refer to the updated variables, then
the Can function will not change and the Canθ function will
have some sort of monotonicity.
-}
open import Esterel.Lang.CanFunction.MergePotentialRuleCan public
open import Esterel.Lang.CanFunction.MergePotentialRuleTheta public
{-
The subset "goodness" of can w.r.t. other ρθ-reductions. For each of the 7 non-merge
ρθ-reductions, there are two corresponding Can subset lemmas.
-}
open import Esterel.Lang.CanFunction.NonMergePotentialRules public
{-
The compatible closure context C⟦_⟧c respects the monotonicity of the potential
function. For example, Can is monotonic w.r.t. to _sn⟶₁_, hence also _sn⟶_ by the
lemmas in this file.
-}
open import Esterel.Lang.CanFunction.Plug public
open import utility
open import Esterel.Lang
using (Term ; emit ; _⇐_)
open import Esterel.Context
using (_≐_⟦_⟧e)
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.Lang.CanFunction
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar)
open import Function
using (_∘_)
open import Relation.Nullary
using (¬_)
| {
"alphanum_fraction": 0.7154213037,
"avg_line_length": 33.1052631579,
"ext": "agda",
"hexsha": "4cf9d102c91c14df4634eed17b6b34ad9a898ea2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Esterel/Lang/CanFunction/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Esterel/Lang/CanFunction/Properties.agda",
"max_line_length": 84,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Esterel/Lang/CanFunction/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 814,
"size": 2516
} |
module io-test2 where
open import io
open import list
open import string
open import unit
main : IO ⊤
main = getArgs >>= cont
where cont : 𝕃 string → IO ⊤
cont [] = return triv
cont (x :: xs) = (readFiniteFile x) >>= putStr
| {
"alphanum_fraction": 0.5740740741,
"avg_line_length": 19.2857142857,
"ext": "agda",
"hexsha": "d91124839405b0797ae1fac4d37a8287b36e2304",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "io-test2.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "io-test2.agda",
"max_line_length": 62,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "io-test2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 74,
"size": 270
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Semirings.Definition
module Semirings.Solver {a : _} {A : Set a} {Zero One : A} {_+_ : A → A → A} {_*_ : A → A → A} (S : Semiring Zero One _+_ _*_) (comm : (a b : A) → a * b ≡ b * a) where
open Semiring S
-- You can see how to use the solver in LectureNotes/NumbersAndSets/Lecture1.agda.
data Expr : Set a where
const : A → Expr
zero : Expr
succ : Expr → Expr
plus : Expr → Expr → Expr
times : Expr → Expr → Expr
-- TODO: do this in distinct phases. (Work out what those phases are.)
-- Expose those phases to the user so that they can choose which tactics to use.
-- Phases:
-- * In any expression which is all sums, extract all consts out to the front
-- * In any expression which is all sums, extract all the succs to the front
eval : Expr → A
eval (const k) = k
eval zero = Zero
eval (succ e) = One + (eval e)
eval (plus x y) = (eval x) + (eval y)
eval (times x y) = (eval x) * (eval y)
simplePlus : Expr → Expr → Expr
simplePlus (const x) (const y) = plus (const x) (const y)
simplePlus (const x) zero = const x
simplePlus (const x) (succ b) = succ (plus (const x) b)
simplePlus (const x) (plus a b) = plus (const x) (plus a b)
simplePlus (const x) (times a b) = plus (const x) (times a b)
simplePlus zero b = b
simplePlus (succ a) (const x) = succ (plus (const x) a)
simplePlus (succ a) zero = succ a
simplePlus (succ a) (succ b) = succ (succ (plus a b))
simplePlus (succ a) (plus b c) = succ (plus a (plus b c))
simplePlus (succ a) (times b c) = succ (plus a (times b c))
simplePlus (plus a b) (const x) = plus (const x) (plus a b)
simplePlus (plus a b) zero = plus a b
simplePlus (plus a b) (succ c) = succ (plus a (plus b c))
simplePlus (plus a b) (plus c d) = plus a (plus b (plus c d))
simplePlus (plus a b) (times c d) = plus a (plus b (times c d))
simplePlus (times a b) (const x) = plus (const x) (times a b)
simplePlus (times a b) zero = times a b
simplePlus (times a b) (succ c) = succ (plus (times a b) c)
simplePlus (times a b) (plus c d) = plus (times a b) (plus c d)
simplePlus (times a b) (times c d) = plus (times a b) (times c d)
private
lemma : (a b c : A) → a + (b + c) ≡ b + (a + c)
lemma a b c rewrite commutative a (b + c) | equalityCommutative (+Associative b c a) = applyEquality (b +_) (commutative _ _)
simplePlusIsPlus : (a b : Expr) → eval (simplePlus a b) ≡ eval (plus a b)
simplePlusIsPlus (const x) (const x₁) = refl
simplePlusIsPlus (const x) zero rewrite Semiring.sumZeroRight S x = refl
simplePlusIsPlus (const x) (succ b) = lemma One x (eval b)
simplePlusIsPlus (const x) (plus b c) = refl
simplePlusIsPlus (const x) (times b c) = refl
simplePlusIsPlus zero b = equalityCommutative (sumZeroLeft (eval b))
simplePlusIsPlus (succ a) (const x) rewrite lemma One x (eval a) = commutative x _
simplePlusIsPlus (succ a) zero = equalityCommutative (sumZeroRight _)
simplePlusIsPlus (succ a) (succ b) rewrite lemma (One + eval a) One (eval b) = applyEquality (One +_) (+Associative One _ _)
simplePlusIsPlus (succ a) (plus b c) = +Associative _ _ _
simplePlusIsPlus (succ a) (times b c) = +Associative _ _ _
simplePlusIsPlus (plus a b) (const x) = commutative x _
simplePlusIsPlus (plus a b) zero = equalityCommutative (sumZeroRight _)
simplePlusIsPlus (plus a b) (succ c) rewrite lemma (eval a + eval b) One (eval c) = applyEquality (One +_) (+Associative _ _ _)
simplePlusIsPlus (plus a b) (plus c d) = +Associative (eval a) _ _
simplePlusIsPlus (plus a b) (times c d) = +Associative _ _ _
simplePlusIsPlus (times a b) (const x) = commutative x _
simplePlusIsPlus (times a b) zero = equalityCommutative (sumZeroRight _)
simplePlusIsPlus (times a b) (succ c) rewrite lemma One (eval a * eval b) (eval c) = refl
simplePlusIsPlus (times a b) (plus c d) = refl
simplePlusIsPlus (times a b) (times c d) = refl
simplify : Expr → Expr
simplify (const k) = const k
simplify zero = zero
simplify (succ e) = succ (simplify e)
simplify (plus (const k) (const x)) = simplePlus (const k) (const x)
simplify (plus (const k) zero) = simplify (const k)
simplify (plus (const k) (succ expr)) = succ (simplify (plus (const k) expr))
simplify (plus (const k) (plus x y)) = simplePlus (const k) (simplify (plus x y))
simplify (plus (const k) (times x y)) = simplePlus (const k) (simplify (times x y))
simplify (plus zero expr2) = simplify expr2
simplify (plus (succ expr1) expr2) = succ (simplify (plus expr1 expr2))
simplify (plus (plus expr1 expr3) zero) = simplify (plus expr1 expr3)
simplify (plus (plus expr1 expr3) (const k)) = simplePlus (const k) (simplify (plus expr1 expr3))
simplify (plus (plus expr1 expr3) (succ expr2)) = succ (simplePlus (simplify (plus expr1 expr3)) (simplify expr2))
simplify (plus (plus expr1 expr3) (plus expr2 expr4)) = simplePlus (simplify (plus expr1 expr3)) (simplify (plus expr2 expr4))
simplify (plus (plus expr1 expr3) (times expr2 expr4)) = simplePlus (simplify (plus expr1 expr3)) (simplify (times expr2 expr4))
simplify (plus (times expr1 expr3) (const k)) = simplePlus (const k) (simplify (times expr1 expr3))
simplify (plus (times expr1 expr3) zero) = times (simplify expr1) (simplify expr3)
simplify (plus (times expr1 expr3) (succ expr2)) = succ (simplePlus (simplify (times expr1 expr3)) (simplify expr2))
simplify (plus (times expr1 expr3) (plus expr2 expr4)) = simplePlus (simplify (times expr1 expr3)) (simplify (plus expr2 expr4))
simplify (plus (times expr1 expr3) (times expr2 expr4)) = simplePlus (simplify (times expr1 expr3)) (simplify (times expr2 expr4))
simplify (times (const k) (const x)) = times (const k) (const x)
simplify (times (const k) zero) = zero
simplify (times (const k) (succ zero)) = const k
simplify (times (const k) (succ (const y))) = simplePlus (const k) (times (const k) (const y))
simplify (times (const k) (succ (plus a b))) = simplePlus (const k) (simplify (times (const k) (plus a b)))
simplify (times (const k) (succ (times a b))) = simplePlus (const k) (simplify (times (const k) (times a b)))
simplify (times (const k) (succ (succ x))) = simplePlus (const k) (simplify (times (const k) (succ x)))
simplify (times (const k) (plus expr2 expr3)) = simplePlus (simplify (times (const k) (expr2))) (simplify (times (const k) expr3))
simplify (times (const k) (times expr2 expr3)) = times (const k) (simplify (times expr2 expr3))
simplify (times zero expr2) = zero
simplify (times (succ zero) expr2) = simplify expr2
simplify (times (succ (succ expr1)) expr2) = simplePlus (simplify expr2) (simplify (times (succ expr1) expr2))
simplify (times (succ (plus expr1 expr3)) (const k)) = times (const k) (simplify (succ (plus expr1 expr3)))
simplify (times (succ (plus expr1 expr3)) zero) = zero
simplify (times (succ (plus expr1 expr3)) (succ expr2)) = succ (simplePlus (simplify (times expr1 expr2)) (simplePlus (simplify (times expr3 expr2)) (simplePlus expr2 (simplify (plus expr1 expr3)))))
simplify (times (succ (plus expr1 expr3)) (plus expr2 expr4)) = times (simplify (succ (plus expr1 expr3))) (simplify (plus expr2 expr4))
simplify (times (succ (plus expr1 expr3)) (times expr2 expr4)) = times (simplify (succ (plus expr1 expr3))) (simplify (times expr2 expr4))
simplify (times (succ (const k)) (const x)) = simplePlus (const x) (times (const k) (const x))
simplify (times (succ (const k)) zero) = zero
simplify (times (succ (const k)) (succ (const x))) = succ (simplePlus (const k) (simplePlus (const x) (simplify (times (const k) (const x)))))
simplify (times (succ (const k)) (succ zero)) = succ (const k)
simplify (times (succ (const k)) (succ (succ expr2))) = succ (simplePlus (const k) (simplePlus (simplify (succ expr2)) (simplify (times (const k) (succ (expr2))))))
simplify (times (succ (const k)) (succ (plus expr2 expr3))) = succ (simplePlus (const k) (simplePlus (simplify (plus expr2 expr3)) (simplify (times (const k) (plus expr2 expr3)))))
simplify (times (succ (const k)) (succ (times expr2 expr3))) = succ (simplePlus (const k) (simplePlus (simplify (times expr2 expr3)) (simplify (times (const k) (times expr2 expr3)))))
simplify (times (succ (const k)) (plus expr2 expr3)) = simplePlus (simplify (plus expr2 expr3)) (simplify (times (const k) (plus expr2 expr3)))
simplify (times (succ (const k)) (times expr2 expr3)) = simplePlus (simplify (times expr2 expr3)) (simplify (times (const k) (times expr2 expr3)))
simplify (times (succ (times expr1 expr3)) (const x)) = times (const x) (simplify (succ (times expr1 expr3)))
simplify (times (succ (times expr1 expr3)) zero) = zero
simplify (times (succ (times expr1 expr3)) (succ expr2)) = succ (simplePlus (simplify expr2) (plus (simplify (times expr1 expr3)) (simplify (times (times expr1 expr3) expr2))))
simplify (times (succ (times expr1 expr3)) (plus expr2 expr4)) = simplePlus (simplify (plus expr2 expr4)) (simplify (times (times expr1 expr3) (plus expr2 expr4)))
simplify (times (succ (times expr1 expr3)) (times expr2 expr4)) = simplePlus (simplify (times expr2 expr4)) (simplify (times (times expr1 expr3) (times expr2 expr4)))
simplify (times (plus expr1 expr3) zero) = zero
simplify (times (plus expr1 expr3) (succ expr2)) = simplePlus (simplify (plus expr1 expr3)) (simplify (times (plus expr1 expr3) expr2))
simplify (times (plus expr1 expr3) (const x)) = times (const x) (simplify (plus expr1 expr3))
simplify (times (plus expr1 expr3) (plus expr2 expr4)) = simplePlus (simplify (times expr1 expr2)) (simplePlus (simplify (times expr3 expr2)) (simplePlus (simplify (times expr1 expr4)) (simplify (times expr3 expr4))))
simplify (times (plus expr1 expr3) (times expr2 expr4)) = simplePlus (simplify (times expr1 (times expr2 expr4))) (simplify (times expr3 (times expr2 expr4)))
simplify (times (times expr1 expr3) zero) = zero
simplify (times (times expr1 expr3) (succ expr2)) = simplePlus (simplify (times expr1 expr3)) (simplify (times (times expr1 expr3) expr2))
simplify (times (times expr1 expr3) (plus expr2 expr4)) = simplePlus (simplify (times (times expr1 expr3) expr2)) (simplify (times (times expr1 expr3) expr4))
simplify (times (times expr1 expr3) (times expr2 expr4)) = times (simplify expr1) (simplify (times expr3 (times expr2 expr4)))
simplify (times (times expr1 expr3) (const x)) = times (simplify (times expr1 expr3)) (const x)
equalPlus : {a b c d : A} → (a ≡ c) → (b ≡ d) → (a + b) ≡ (c + d)
equalPlus refl refl = refl
equalTimes : {a b c d : A} → (a ≡ c) → (b ≡ d) → (a * b) ≡ (c * d)
equalTimes refl refl = refl
otherDist : {a b c : A} → (a * b) + (c * b) ≡ (a + c) * b
otherDist = transitivity (equalPlus (comm _ _) (comm _ _)) (transitivity (equalityCommutative (+DistributesOver* _ _ _)) (comm _ _))
simplifyPreserves : (a : Expr) → eval (simplify a) ≡ eval a
simplifyPreserves (const x) = refl
simplifyPreserves zero = refl
simplifyPreserves (succ a) = applyEquality (One +_) (simplifyPreserves a)
simplifyPreserves (plus (const x) (const y)) = refl
simplifyPreserves (plus (const x) zero) = equalityCommutative (sumZeroRight x)
simplifyPreserves (plus (const x) (succ b)) = transitivity (transitivity (applyEquality (One +_) (transitivity (simplifyPreserves (plus (const x) b)) (commutative x (eval b)))) (+Associative One (eval b) x)) (commutative (One + eval b) x)
simplifyPreserves (plus (const x) (plus b c)) = transitivity (simplePlusIsPlus (const x) (simplify (plus b c))) (applyEquality (x +_) (simplifyPreserves (plus b c)))
simplifyPreserves (plus (const x) (times b c)) = transitivity (simplePlusIsPlus (const x) (simplify (times b c))) (applyEquality (x +_) (simplifyPreserves (times b c)))
simplifyPreserves (plus zero a) = transitivity (simplifyPreserves a) (equalityCommutative (sumZeroLeft (eval a)))
simplifyPreserves (plus (succ a) b) = transitivity (applyEquality (One +_) (simplifyPreserves (plus a b))) (+Associative One (eval a) (eval b))
simplifyPreserves (plus (plus a b) (const x)) = transitivity (simplePlusIsPlus (const x) (simplify (plus a b))) (transitivity (commutative x (eval (simplify (plus a b)))) (applyEquality (_+ x) (simplifyPreserves (plus a b))))
simplifyPreserves (plus (plus a b) zero) = transitivity (simplifyPreserves (plus a b)) (equalityCommutative (sumZeroRight _))
simplifyPreserves (plus (plus a b) (succ c)) = transitivity (applyEquality (One +_) (simplePlusIsPlus (simplify (plus a b)) (simplify c))) (transitivity (+Associative One _ _) (transitivity (applyEquality (_+ eval (simplify c)) (commutative One _)) (transitivity (equalityCommutative (+Associative _ _ _)) (transitivity (applyEquality (_+ (One + eval (simplify c))) (simplifyPreserves (plus a b))) (applyEquality (λ i → (eval a + eval b) + (One + i)) (simplifyPreserves c))))))
simplifyPreserves (plus (plus a b) (plus c d)) = transitivity (simplePlusIsPlus (simplify (plus a b)) (simplify (plus c d))) (transitivity (applyEquality (_+ eval (simplify (plus c d))) (simplifyPreserves (plus a b))) (applyEquality ((eval a + eval b) +_) (simplifyPreserves (plus c d))))
simplifyPreserves (plus (plus a b) (times c d)) = transitivity (simplePlusIsPlus (simplify (plus a b)) (simplify (times c d))) (transitivity (applyEquality (_+ eval (simplify (times c d))) (simplifyPreserves (plus a b))) (applyEquality ((eval a + eval b) +_) (simplifyPreserves (times c d))))
simplifyPreserves (plus (times a b) (const x)) = transitivity (simplePlusIsPlus (const x) (simplify (times a b))) (transitivity (commutative x _) (applyEquality (_+ x) (simplifyPreserves (times a b))))
simplifyPreserves (plus (times a b) zero) = transitivity (transitivity (applyEquality (_* eval (simplify b)) (simplifyPreserves a)) (applyEquality ((eval a) *_) (simplifyPreserves b))) (equalityCommutative (sumZeroRight _))
simplifyPreserves (plus (times a b) (succ c)) = transitivity (transitivity (applyEquality (One +_) (transitivity (simplePlusIsPlus (simplify (times a b)) (simplify c)) (transitivity (transitivity (applyEquality (eval (simplify (times a b)) +_) (simplifyPreserves c)) (applyEquality (_+ eval c) (simplifyPreserves (times a b)))) (commutative _ (eval c))))) (+Associative One (eval c) _)) (commutative _ (eval a * eval b))
simplifyPreserves (plus (times a b) (plus c d)) = transitivity (simplePlusIsPlus (simplify (times a b)) (simplify (plus c d))) (transitivity (applyEquality (_+ eval (simplify (plus c d))) (simplifyPreserves (times a b))) (applyEquality ((eval a * eval b) +_) (simplifyPreserves (plus c d))))
simplifyPreserves (plus (times a b) (times c d)) = transitivity (simplePlusIsPlus (simplify (times a b)) (simplify (times c d))) (transitivity (applyEquality (_+ eval (simplify (times c d))) (simplifyPreserves (times a b))) (applyEquality ((eval a * eval b) +_) (simplifyPreserves (times c d))))
simplifyPreserves (times (const x) (const y)) = refl
simplifyPreserves (times (const x) zero) = equalityCommutative (productZeroRight x)
simplifyPreserves (times (const x) (succ (const y))) = transitivity (applyEquality (_+ (x * y)) (equalityCommutative (productOneRight _))) (equalityCommutative (+DistributesOver* x One y))
simplifyPreserves (times (const x) (succ zero)) = equalityCommutative (transitivity (applyEquality (x *_) (sumZeroRight One)) (productOneRight x))
simplifyPreserves (times (const x) (succ (succ b))) = transitivity (simplePlusIsPlus (const x) (simplify (times (const x) (succ b)))) (transitivity (equalPlus (equalityCommutative (productOneRight _)) (simplifyPreserves (times (const x) (succ b)))) (equalityCommutative (+DistributesOver* x One _)))
simplifyPreserves (times (const x) (succ (plus b c))) = transitivity (simplePlusIsPlus (const x) (simplePlus (simplify (times (const x) b)) (simplify (times (const x) c)))) (transitivity (equalPlus (equalityCommutative (productOneRight _)) (transitivity (simplePlusIsPlus (simplify (times (const x) b)) (simplify (times (const x) c))) (transitivity (equalPlus (simplifyPreserves (times (const x) b)) (simplifyPreserves (times (const x) c))) (equalityCommutative (+DistributesOver* x (eval b) (eval c)))))) (equalityCommutative (+DistributesOver* x One _)))
simplifyPreserves (times (const x) (succ (times b c))) = transitivity (equalPlus (equalityCommutative (productOneRight x)) (applyEquality (x *_) (simplifyPreserves (times b c)))) (equalityCommutative (+DistributesOver* x One _))
simplifyPreserves (times (const x) (plus b c)) = transitivity (simplePlusIsPlus (simplify (times (const x) b)) (simplify (times (const x) c))) (transitivity (transitivity (applyEquality (eval (simplify (times (const x) b)) +_) (simplifyPreserves (times (const x) c))) (applyEquality (_+ (x * eval c)) (simplifyPreserves (times (const x) b)))) (equalityCommutative (+DistributesOver* x (eval b) (eval c))))
simplifyPreserves (times (const x) (times b c)) = applyEquality (x *_) (simplifyPreserves (times b c))
simplifyPreserves (times zero b) = equalityCommutative (productZeroLeft (eval b))
simplifyPreserves (times (succ (const x)) (const y)) = transitivity (transitivity (equalPlus (equalityCommutative (productOneRight y)) (comm x y)) (equalityCommutative (+DistributesOver* y One x))) (comm y _)
simplifyPreserves (times (succ (const x)) zero) = equalityCommutative (productZeroRight _)
simplifyPreserves (times (succ (const x)) (succ (const y))) = transitivity (transitivity (transitivity (+Associative One x _) (applyEquality ((One + x) +_) (transitivity (equalPlus (equalityCommutative (productOneRight y)) (comm x y)) (equalityCommutative (+DistributesOver* y One x))))) (equalPlus (equalityCommutative (productOneRight (One + x))) (comm _ _))) (equalityCommutative (+DistributesOver* _ _ _))
simplifyPreserves (times (succ (const x)) (succ zero)) = equalityCommutative (transitivity (applyEquality ((One + x) *_) (sumZeroRight One)) (productOneRight _))
simplifyPreserves (times (succ (const x)) (succ (succ b))) = transitivity (applyEquality (One +_) (simplePlusIsPlus (const x) (simplePlus (succ (simplify b)) (simplify (times (const x) (succ b)))))) (transitivity (applyEquality (λ i → One + (x + i)) (simplePlusIsPlus (succ (simplify b)) (simplify (times (const x) (succ b))))) (transitivity (applyEquality (λ i → One + (x + ((One + i) + eval (simplify (times (const x) (succ b)))))) (simplifyPreserves b)) (transitivity (applyEquality (λ i → One + (x + ((One + eval b) + i))) (simplifyPreserves (times (const x) (succ b)))) (transitivity (transitivity (+Associative One x _) (equalPlus (equalityCommutative (productOneRight _)) (transitivity (transitivity (transitivity (applyEquality ((One + eval b) +_) (+DistributesOver* x One (eval b))) (transitivity (transitivity (equalityCommutative (+Associative One (eval b) _)) (transitivity (applyEquality (One +_) (transitivity (+Associative (eval b) _ _) (transitivity (equalPlus (transitivity (commutative _ _) (equalPlus (productOneRight x) (equalityCommutative (productOneRight _)))) (comm x _)) (equalityCommutative (+Associative x _ _))))) (+Associative One x _))) (applyEquality ((One + x) +_) (equalityCommutative (+DistributesOver* (eval b) One x))))) (equalPlus (equalityCommutative (productOneRight _)) (comm (eval b) _))) (equalityCommutative (+DistributesOver* (One + x) One _))))) (equalityCommutative (+DistributesOver* (One + x) One _))))))
simplifyPreserves (times (succ (const x)) (succ (plus b c))) = transitivity (transitivity (transitivity (applyEquality (One +_) (simplePlusIsPlus (const x) (simplePlus (simplify (plus b c)) (simplePlus (simplify (times (const x) b)) (simplify (times (const x) c)))))) (transitivity (+Associative One x _) (applyEquality ((One + x) +_) (transitivity (simplePlusIsPlus (simplify (plus b c)) (simplePlus (simplify (times (const x) b)) (simplify (times (const x) c)))) (transitivity (equalPlus (simplifyPreserves (plus b c)) (simplePlusIsPlus (simplify (times (const x) b)) (simplify (times (const x) c)))) (transitivity (transitivity (transitivity (transitivity (equalityCommutative (+Associative _ _ _ )) (transitivity (applyEquality (eval b +_) (transitivity (applyEquality (eval c +_) (equalPlus (simplifyPreserves (times (const x) b)) (simplifyPreserves (times (const x) c)))) (transitivity (+Associative (eval c) _ _) (transitivity (applyEquality (_+ (x * eval c)) (commutative _ _)) (equalityCommutative (+Associative _ _ _)))))) (+Associative _ _ _))) (equalPlus (equalPlus (equalityCommutative (productOneRight (eval b))) (comm _ _)) (equalPlus (equalityCommutative (productOneRight (eval c))) (comm x _)))) (equalPlus (equalityCommutative (+DistributesOver* (eval b) One x)) (equalityCommutative (+DistributesOver* (eval c) One x)))) (equalPlus (comm _ _) (comm _ _)))))))) (equalPlus (equalityCommutative (productOneRight _)) (equalityCommutative (+DistributesOver* (One + x) _ _)))) (equalityCommutative (+DistributesOver* (One + x) _ _))
simplifyPreserves (times (succ (const x)) (succ (times b c))) = transitivity (transitivity (applyEquality (One +_) (simplePlusIsPlus (const x) (simplePlus (simplify (times b c)) (times (const x) (simplify (times b c)))))) (transitivity (+Associative One x _) (equalPlus (equalityCommutative (productOneRight _)) (transitivity (simplePlusIsPlus (simplify (times b c)) (times (const x) (simplify (times b c)))) (transitivity (transitivity (equalPlus (transitivity (simplifyPreserves (times b c)) (equalityCommutative (productOneRight _))) (transitivity (comm _ _) (applyEquality (_* x) (simplifyPreserves (times b c))))) (equalityCommutative (+DistributesOver* _ One x))) (comm _ _)))))) (equalityCommutative (+DistributesOver* _ _ _))
simplifyPreserves (times (succ (const x)) (plus b c)) = transitivity (simplePlusIsPlus (simplify (plus b c)) (simplePlus (simplify (times (const x) b)) (simplify (times (const x) c)))) (transitivity (transitivity (equalPlus (transitivity (simplifyPreserves (plus b c)) (equalityCommutative (productOneRight _))) (transitivity (simplePlusIsPlus (simplify (times (const x) b)) (simplify (times (const x) c))) (transitivity (transitivity (equalPlus (simplifyPreserves (times (const x) b)) (simplifyPreserves (times (const x) c))) (equalityCommutative (+DistributesOver* x _ _))) (comm x _)))) (equalityCommutative (+DistributesOver* _ One x))) (comm _ _))
simplifyPreserves (times (succ (const x)) (times b c)) = transitivity (simplePlusIsPlus (simplify (times b c)) (times (const x) (simplify (times b c)))) (transitivity (transitivity (equalPlus (transitivity (simplifyPreserves (times b c)) (equalityCommutative (productOneRight _))) (transitivity (comm x _) (applyEquality (_* x) (simplifyPreserves (times b c))))) (equalityCommutative (+DistributesOver* _ One x))) (comm _ _))
simplifyPreserves (times (succ zero) b) = transitivity (simplifyPreserves b) (transitivity (equalityCommutative (productOneLeft (eval b))) (applyEquality (_* eval b) (equalityCommutative (sumZeroRight One))))
simplifyPreserves (times (succ (succ a)) b) = transitivity (simplePlusIsPlus (simplify b) (simplify (times (succ a) b))) (transitivity (equalPlus (simplifyPreserves b) (simplifyPreserves (times (succ a) b))) (transitivity (transitivity (equalPlus (equalityCommutative (productOneRight _)) (comm _ _)) (equalityCommutative (+DistributesOver* (eval b) One _))) (comm (eval b) _)))
simplifyPreserves (times (succ (plus a b)) (const x)) = transitivity (comm x _) (applyEquality (λ i → (One + i) * x) (simplifyPreserves (plus a b)))
simplifyPreserves (times (succ (plus a b)) zero) = equalityCommutative (productZeroRight _)
simplifyPreserves (times (succ (plus a b)) (succ c)) = transitivity (transitivity (transitivity (applyEquality (One +_) (transitivity (simplePlusIsPlus (simplify (times a c)) (simplePlus (simplify (times b c)) (simplePlus c (simplify (plus a b))))) (transitivity (transitivity (equalPlus (simplifyPreserves (times a c)) (simplePlusIsPlus (simplify (times b c)) (simplePlus c (simplify (plus a b))))) (transitivity (+Associative _ _ _) (transitivity (transitivity (equalPlus (transitivity (equalPlus (comm _ _) (transitivity (simplifyPreserves (times b c)) (comm _ _))) (equalityCommutative (+DistributesOver* _ _ _))) (transitivity (simplePlusIsPlus c (simplify (plus a b))) (transitivity (commutative _ _) (equalPlus (simplifyPreserves (plus a b)) (equalityCommutative (productOneRight _)))))) (commutative _ _)) (equalityCommutative (+Associative _ _ _))))) (applyEquality ((eval a + eval b) +_) (equalityCommutative (+DistributesOver* _ One _)))))) (+Associative One _ _)) (equalPlus (equalityCommutative (productOneRight _)) (comm _ _))) (equalityCommutative (+DistributesOver* _ _ _))
simplifyPreserves (times (succ (plus a b)) (plus c d)) = equalTimes (applyEquality (One +_) (simplifyPreserves (plus a b))) (simplifyPreserves (plus c d))
simplifyPreserves (times (succ (plus a b)) (times c d)) = equalTimes (applyEquality (One +_) (simplifyPreserves (plus a b))) (simplifyPreserves (times c d))
simplifyPreserves (times (succ (times a b)) (const x)) = transitivity (comm x _) (applyEquality (λ i → (One + i) * x) (simplifyPreserves (times a b)))
simplifyPreserves (times (succ (times a b)) zero) = equalityCommutative (productZeroRight _)
simplifyPreserves (times (succ (times a b)) (succ c)) = transitivity (transitivity (transitivity (applyEquality (One +_) (transitivity (simplePlusIsPlus (simplify c) (plus (simplify (times a b)) (simplify (times (times a b) c)))) (transitivity (transitivity (transitivity (equalPlus (transitivity (simplifyPreserves c) (equalityCommutative (productOneRight _))) (transitivity (commutative _ _) (equalPlus (transitivity (simplifyPreserves (times (times a b) c)) (comm _ _)) (simplifyPreserves (times a b))))) (+Associative _ _ _)) (applyEquality (_+ (eval a * eval b)) (equalityCommutative (+DistributesOver* _ One _)))) (commutative _ _)))) (+Associative One _ _)) (equalPlus (equalityCommutative (productOneRight _)) (comm _ _))) (equalityCommutative (+DistributesOver* _ One _))
simplifyPreserves (times (succ (times a b)) (plus c d)) = transitivity (simplePlusIsPlus (simplify (plus c d)) (simplePlus (simplify (times (times a b) c)) (simplify (times (times a b) d)))) (transitivity (equalPlus (simplifyPreserves (plus c d)) (simplePlusIsPlus (simplify (times (times a b) c)) (simplify (times (times a b) d)))) (transitivity (transitivity (equalPlus (equalityCommutative (productOneRight _)) (transitivity (transitivity (equalPlus (simplifyPreserves (times (times a b) c)) (simplifyPreserves (times (times a b) d))) (equalityCommutative (+DistributesOver* _ _ _))) (comm _ _))) (equalityCommutative (+DistributesOver* _ One _))) (comm _ _)))
simplifyPreserves (times (succ (times a b)) (times c d)) = transitivity (simplePlusIsPlus (simplify (times c d)) (times (simplify a) (simplify (times b (times c d))))) (transitivity (equalPlus (simplifyPreserves (times c d)) (equalTimes (simplifyPreserves a) (simplifyPreserves (times b (times c d))))) (transitivity (transitivity (equalPlus (equalityCommutative (productOneRight _)) (transitivity (*Associative (eval a) _ _) (comm _ _))) (equalityCommutative (+DistributesOver* _ One _))) (comm _ _)))
simplifyPreserves (times (plus a b) (const x)) = transitivity (comm x _) (applyEquality (_* x) (simplifyPreserves (plus a b)))
simplifyPreserves (times (plus a b) zero) = equalityCommutative (productZeroRight _)
simplifyPreserves (times (plus a b) (succ c)) = transitivity (simplePlusIsPlus (simplify (plus a b)) (simplify (times (plus a b) c))) (transitivity (applyEquality ((eval (simplify (plus a b))) +_) (simplifyPreserves (times (plus a b) c))) (transitivity (applyEquality (_+ ((eval a + eval b) * eval c)) (simplifyPreserves (plus a b))) (transitivity (equalPlus (equalityCommutative (productOneRight _)) refl) (equalityCommutative (+DistributesOver* _ One (eval c))))))
simplifyPreserves (times (plus a b) (plus c d)) = transitivity (simplePlusIsPlus (simplify (times a c)) (simplePlus (simplify (times b c)) (simplePlus (simplify (times a d)) (simplify (times b d))))) (transitivity (transitivity (transitivity (transitivity (equalPlus (transitivity (simplifyPreserves (times a c)) (comm _ _)) (transitivity (simplePlusIsPlus (simplify (times b c)) (simplePlus (simplify (times a d)) (simplify (times b d)))) (equalPlus (transitivity (simplifyPreserves (times b c)) (comm _ _)) (transitivity (simplePlusIsPlus (simplify (times a d)) (simplify (times b d))) (equalPlus (transitivity (simplifyPreserves (times a d)) (comm _ _)) (transitivity (simplifyPreserves (times b d)) (comm _ _))))))) (+Associative _ _ _)) (equalPlus (equalityCommutative (+DistributesOver* (eval c) (eval a) _)) (equalityCommutative (+DistributesOver* (eval d) (eval a) _)))) (equalPlus (comm (eval c) _) (comm (eval d) _))) (equalityCommutative (+DistributesOver* _ (eval c) (eval d))))
simplifyPreserves (times (plus a b) (times c d)) = transitivity (simplePlusIsPlus (simplify (times a (times c d))) (simplify (times b (times c d)))) (transitivity (equalPlus (simplifyPreserves (times a (times c d))) (simplifyPreserves (times b (times c d)))) (transitivity (equalPlus (comm (eval a) _) (comm (eval b) _)) (transitivity (equalityCommutative (+DistributesOver* _ (eval a) (eval b))) (comm _ _))))
simplifyPreserves (times (times a b) (const x)) = applyEquality (_* x) (simplifyPreserves (times a b))
simplifyPreserves (times (times a b) zero) = equalityCommutative (productZeroRight _)
simplifyPreserves (times (times a b) (succ c)) = transitivity (simplePlusIsPlus (simplify (times a b)) (simplify (times (times a b) c))) (transitivity (equalPlus (simplifyPreserves (times a b)) (simplifyPreserves (times (times a b) c))) (transitivity (applyEquality (_+ ((eval a * eval b) * eval c)) (equalityCommutative (productOneRight _))) (equalityCommutative (+DistributesOver* _ One (eval c)))))
simplifyPreserves (times (times a b) (plus c d)) = transitivity (simplePlusIsPlus (simplify (times (times a b) c)) (simplify (times (times a b) d))) (transitivity (equalPlus (simplifyPreserves (times (times a b) c)) (simplifyPreserves (times (times a b) d))) (equalityCommutative (+DistributesOver* _ _ _)))
simplifyPreserves (times (times a b) (times c d)) = transitivity (equalTimes (simplifyPreserves a) (simplifyPreserves (times b (times c d)))) (*Associative (eval a) (eval b) _)
from_to_by_ : (x y : Expr) (pr : eval (simplify x) ≡ eval (simplify y)) → eval x ≡ eval y
from a to b by pr = transitivity (equalityCommutative (simplifyPreserves a)) (transitivity pr (simplifyPreserves b))
| {
"alphanum_fraction": 0.7157773005,
"avg_line_length": 138.196347032,
"ext": "agda",
"hexsha": "f244c3a4c8e40f78a12ff55ba9105479c0d28b5f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Semirings/Solver.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Semirings/Solver.agda",
"max_line_length": 1546,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Semirings/Solver.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 9376,
"size": 30265
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Homogeneously-indexed binary relations
------------------------------------------------------------------------
-- This file contains some core definitions which are reexported by
-- Relation.Binary.Indexed.Homogeneous
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Indexed.Homogeneous.Core where
open import Level using (Level; _⊔_)
open import Data.Product using (_×_)
open import Relation.Binary as B using (REL; Rel)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl)
import Relation.Binary.Indexed.Heterogeneous as I
open import Relation.Unary.Indexed using (IPred)
------------------------------------------------------------------------
-- Homegeneously indexed binary relations
-- Heterogeneous types
IREL : ∀ {i a b} {I : Set i} → (I → Set a) → (I → Set b) → (ℓ : Level) → Set _
IREL A B ℓ = ∀ {i} → REL (A i) (B i) ℓ
-- Homogeneous types
IRel : ∀ {i a} {I : Set i} → (I → Set a) → (ℓ : Level) → Set _
IRel A = IREL A A
------------------------------------------------------------------------
-- Simple properties
module _ {i a} {I : Set i} (A : I → Set a) where
syntax Implies A _∼₁_ _∼₂_ = _∼₁_ ⇒[ A ] _∼₂_
Implies : ∀ {ℓ₁ ℓ₂} → IRel A ℓ₁ → IRel A ℓ₂ → Set _
Implies _∼₁_ _∼₂_ = ∀ {i} → _∼₁_ B.⇒ (_∼₂_ {i})
Reflexive : ∀ {ℓ} → IRel A ℓ → Set _
Reflexive _∼_ = ∀ {i} → B.Reflexive (_∼_ {i})
Symmetric : ∀ {ℓ} → IRel A ℓ → Set _
Symmetric _∼_ = ∀ {i} → B.Symmetric (_∼_ {i})
Transitive : ∀ {ℓ} → IRel A ℓ → Set _
Transitive _∼_ = ∀ {i} → B.Transitive (_∼_ {i})
Antisymmetric : ∀ {ℓ₁ ℓ₂} → IRel A ℓ₁ → IRel A ℓ₂ → Set _
Antisymmetric _≈_ _∼_ = ∀ {i} → B.Antisymmetric _≈_ (_∼_ {i})
Decidable : ∀ {ℓ} → IRel A ℓ → Set _
Decidable _∼_ = ∀ {i} → B.Decidable (_∼_ {i})
Respects : ∀ {ℓ₁ ℓ₂} → IPred A ℓ₁ → IRel A ℓ₂ → Set _
Respects P _∼_ = ∀ {i} {x y : A i} → x ∼ y → P x → P y
Respectsˡ : ∀ {ℓ₁ ℓ₂} → IRel A ℓ₁ → IRel A ℓ₂ → Set _
Respectsˡ P _∼_ = ∀ {i} {x y z : A i} → x ∼ y → P x z → P y z
Respectsʳ : ∀ {ℓ₁ ℓ₂} → IRel A ℓ₁ → IRel A ℓ₂ → Set _
Respectsʳ P _∼_ = ∀ {i} {x y z : A i} → x ∼ y → P z x → P z y
Respects₂ : ∀ {ℓ₁ ℓ₂} → IRel A ℓ₁ → IRel A ℓ₂ → Set _
Respects₂ P _∼_ = (Respectsʳ P _∼_) × (Respectsˡ P _∼_)
------------------------------------------------------------------------
-- Conversion between homogeneous and heterogeneously indexed relations
module _ {i a b} {I : Set i} {A : I → Set a} {B : I → Set b} where
OverPath : ∀ {ℓ} → IREL A B ℓ → ∀ {i j} → i ≡ j → REL (A i) (B j) ℓ
OverPath _∼_ refl = _∼_
toHetIndexed : ∀ {ℓ} → IREL A B ℓ → I.IREL A B (i ⊔ ℓ)
toHetIndexed _∼_ {i} {j} x y = (p : i ≡ j) → OverPath _∼_ p x y
fromHetIndexed : ∀ {ℓ} → I.IREL A B ℓ → IREL A B ℓ
fromHetIndexed _∼_ = _∼_
------------------------------------------------------------------------
-- Lifting to non-indexed binary relations
module _ {i a} {I : Set i} (A : I → Set a) where
Lift : ∀ {ℓ} → IRel A ℓ → Rel (∀ i → A i) _
Lift _∼_ x y = ∀ i → x i ∼ y i
| {
"alphanum_fraction": 0.5001616554,
"avg_line_length": 33.6195652174,
"ext": "agda",
"hexsha": "7a2f91e1f09eca553985bc545a6e58dae953de6a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Homogeneous/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Homogeneous/Core.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Homogeneous/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1156,
"size": 3093
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Oscar.Class
open import Oscar.Class.Hmap
open import Oscar.Class.Leftunit
open import Oscar.Class.Reflexivity
open import Oscar.Class.Smap
open import Oscar.Class.Symmetry
open import Oscar.Class.Transextensionality
open import Oscar.Class.Transitivity
open import Oscar.Class.Transleftidentity
open import Oscar.Data.Substitunction
open import Oscar.Data.Term
open import Oscar.Prelude
module Test.ProblemWithDerivation-4 where
postulate
A : Set
B : Set
_~A~_ : A → A → Set
_~B~_ : B → B → Set
s1 : A → B
f1 : ∀ {x y} → x ~A~ y → s1 x ~B~ s1 y
instance
𝓢urjectivity1 : Smap.class _~A~_ _~B~_ s1 s1
𝓢urjectivity1 .⋆ _ _ = f1
-- Oscar.Class.Hmap.Transleftidentity
instance
-HmapFromTransleftidentitySymmetry : ∀
{𝔵} {𝔛 : Ø 𝔵}
{𝔞} {𝔄 : 𝔛 → Ø 𝔞}
{𝔟} {𝔅 : 𝔛 → Ø 𝔟}
(let _∼_ = Arrow 𝔄 𝔅)
{ℓ̇} {_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ̇}
{transitivity : Transitivity.type _∼_}
{reflexivity : Reflexivity.type _∼_}
{ℓ}
⦃ _ : Transleftidentity.class _∼_ _∼̇_ reflexivity transitivity ⦄
⦃ _ : ∀ {x y} → Symmetry.class (_∼̇_ {x} {y}) ⦄
→ ∀ {m n}
→ Hmap.class (λ (f : m ∼ n) (P : LeftExtensionṖroperty ℓ _∼_ _∼̇_ m) → π₀ (π₀ P) f)
(λ f P → π₀ (π₀ P) (transitivity f reflexivity))
-HmapFromTransleftidentitySymmetry .⋆ _ (_ , P₁) = P₁ $ symmetry transleftidentity
test-before : ∀ {x y} → x ~A~ y → s1 x ~B~ s1 y
test-before = smap
postulate
XX : Set
BB : XX → Set
CC : XX → Set
EQ : ∀ {x y} → Arrow BB BB x y → Arrow BB BB x y → Set
instance
postulate
-transleftidentity : Transleftidentity.class (Arrow BB BB) EQ magic magic
-symmetry : ∀ {x y} → Symmetry.class (EQ {x} {y})
test-after : ∀ {x y} → x ~A~ y → s1 x ~B~ s1 y
test-after = smap -- FIXME this was yellow when we used Symmetry instead of Sym. why?
| {
"alphanum_fraction": 0.6325981711,
"avg_line_length": 28.1666666667,
"ext": "agda",
"hexsha": "e0a538aef859383dc0f8ba8ba8ff27641c2ec2b7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation-4.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation-4.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation-4.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 721,
"size": 1859
} |
open import FRP.JS.Nat using ( ℕ ; suc ; _+_ ; _≟_ )
open import FRP.JS.RSet
open import FRP.JS.Time using ( Time ; epoch )
open import FRP.JS.Delay using ( _ms )
open import FRP.JS.Behaviour
open import FRP.JS.Event using ( ∅ )
open import FRP.JS.Bool using ( Bool ; not ; true )
open import FRP.JS.QUnit using ( TestSuite ; ok◇ ; test ; _,_ ; ε )
module FRP.JS.Test.Behaviour where
infixr 2 _≟*_
_≟*_ : ⟦ Beh ⟨ ℕ ⟩ ⇒ Beh ⟨ ℕ ⟩ ⇒ Beh ⟨ Bool ⟩ ⟧
_≟*_ = map2 _≟_
tests : TestSuite
tests =
( test "≟*"
( ok◇ "[ 1 ] ≟* [ 1 ]" ([ 1 ] ≟* [ 1 ])
, ok◇ "[ 1 ] ≟* [ 0 ]" (not* ([ 1 ] ≟* [ 0 ]))
, ok◇ "[ 0 ] ≟* [ 1 ]" (not* ([ 0 ] ≟* [ 1 ])) )
, test "map"
( ok◇ "map suc [ 0 ] ≟* [ 1 ]" (map suc [ 0 ] ≟* [ 1 ])
, ok◇ "map suc [ 1 ] ≟* [ 1 ]" (not* (map suc [ 1 ] ≟* [ 1 ])) )
, test "join"
( ok◇ "join (map [ suc ] [ 0 ] ) ≟* [ 1 ]" (join (map (λ n → [ suc n ]) [ 0 ]) ≟* [ 1 ])
, ok◇ "join (map [ suc ] [ 1 ]) ≟* [ 1 ]" (not* (join (map (λ n → [ suc n ]) [ 1 ]) ≟* [ 1 ])) )
, test "hold"
( ok◇ "hold 1 ∅ ≟* [ 1 ]" (hold 1 ∅ ≟* [ 1 ])
, ok◇ "hold 0 ∅ ≟* [ 1 ]" (not* (hold 0 ∅ ≟* [ 1 ])) ) )
| {
"alphanum_fraction": 0.4422907489,
"avg_line_length": 35.46875,
"ext": "agda",
"hexsha": "01c56fd06d27ece1492f1862e68c58b11c8d76cc",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "test/agda/FRP/JS/Test/Behaviour.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "test/agda/FRP/JS/Test/Behaviour.agda",
"max_line_length": 100,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "test/agda/FRP/JS/Test/Behaviour.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 545,
"size": 1135
} |
-- Andreas, 2016-07-17 issue 2101
-- It should be possible to place a single function with a where block
-- inside `abstract`.
-- This will work if type signatures inside a where-block
-- are considered private, since in private type signatures,
-- abstract definitions are transparent.
-- (Unlike in public type signatures.)
record Wrap (A : Set) : Set where
field unwrap : A
postulate
P : ∀{A : Set} → A → Set
module AbstractPrivate (A : Set) where
abstract
B : Set
B = Wrap A
postulate
b : B
private -- this makes abstract defs transparent in type signatures
postulate
test : P (Wrap.unwrap b) -- should succeed
abstract
unnamedWhere : (A : Set) → Set
unnamedWhere A = A
where -- the following definitions are private!
B : Set
B = Wrap A
postulate
b : B
test : P (Wrap.unwrap b) -- should succeed
namedWherePrivate : (A : Set) → Set
namedWherePrivate A = A
module MP where
B : Set
B = Wrap A
private
postulate
b : B
test : P (Wrap.unwrap b) -- should succeed
namedWhere : (A : Set) → Set
namedWhere A = A
module M where -- the definitions in this module are not private!
B : Set
B = Wrap A
postulate
b : B
test : P (Wrap.unwrap b) -- should fail!
access = M.b -- should be in scope
outside : ∀ {A} → M.B A → A
outside = Wrap.unwrap -- should fail and does so
--
| {
"alphanum_fraction": 0.6209059233,
"avg_line_length": 20.7971014493,
"ext": "agda",
"hexsha": "1cb0bbbb20fa027665048e9436f70e0c00f77c4a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2101.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2101.agda",
"max_line_length": 70,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2101.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 398,
"size": 1435
} |
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Data.Unit
open import Data.Empty
open import Data.Product
open import Data.Nat as ℕ using (ℕ)
open import Data.Fin as Fin using (Fin; #_)
open import Data.List
open import Data.List.Relation.Unary.All as List
open import Relation.Binary.PropositionalEquality
module simple-let-temp-output where
abstract
e1 : let x = ⊤ in let y = ⊥ in x × y
e1 = checkSpecification record
{ proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp"
}
abstract
e2 : let y = # 1 in y Fin.≥ # 2
e2 = checkSpecification record
{ proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp"
}
e3 : ℕ
e3 = let y = 1 ℕ.+ 1 in y
lamLet : ℕ → ℕ
lamLet x = let y = x in y
abstract
forallLet : ∀ (x : Fin 2) → let y = x in y ≡ # 1
forallLet = checkSpecification record
{ proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp"
}
abstract
letForall : let y = # 1 in ∀ (x : Fin 2) → y ≡ x
letForall = checkSpecification record
{ proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp"
}
abstract
forallInLet : List.All (λ (x : Fin 2) → let y = x in y ≡ # 1) (# 1 ∷ [])
forallInLet = checkSpecification record
{ proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp"
}
abstract
letForallIn : let y = # 1 in List.All (λ (x : Fin 2) → y ≡ x) (# 1 ∷ [])
letForallIn = checkSpecification record
{ proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp"
} | {
"alphanum_fraction": 0.6633547633,
"avg_line_length": 27.5967741935,
"ext": "agda",
"hexsha": "b125ce091413355ffd5471f19f2db3ff5ad0e5c2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vehicle-lang/vehicle",
"max_forks_repo_path": "test/Test/Compile/Golden/simple-let/simple-let-output.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vehicle-lang/vehicle",
"max_issues_repo_path": "test/Test/Compile/Golden/simple-let/simple-let-output.agda",
"max_line_length": 74,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vehicle-lang/vehicle",
"max_stars_repo_path": "test/Test/Compile/Golden/simple-let/simple-let-output.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z",
"num_tokens": 565,
"size": 1711
} |
module Test where
open import Data.List
open import Data.List.Instance
open import Data.Nat
open import Category.FAM
f : List ℕ → List ℕ
f = fmap suc
| {
"alphanum_fraction": 0.7631578947,
"avg_line_length": 15.2,
"ext": "agda",
"hexsha": "2567388fa8fdedff1db6210c5ac623601c01d251",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/FAM",
"max_forks_repo_path": "test/Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/FAM",
"max_issues_repo_path": "test/Test.agda",
"max_line_length": 30,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/FAM",
"max_stars_repo_path": "test/Test.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 40,
"size": 152
} |
------------------------------------------------------------------------
-- Simple queues, implemented in the usual way using two lists
-- (following Hood and Melville)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Queue.Simple {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq
open import Prelude
open import Bijection eq using (_↔_)
open import Equality.Decision-procedures eq
open import List eq as L hiding (map)
open import Surjection eq using (_↠_)
private
variable
a : Level
A B : Type a
x : A
f : A → B
xs ys : List A
------------------------------------------------------------------------
-- Invariant
-- The queue invariant: if the first list is empty, then the second
-- list is empty.
Invariant : {A : Type a} → List A → List A → Type a
Invariant (_ ∷ _) _ = ↑ _ ⊤
Invariant [] [] = ↑ _ ⊤
Invariant [] (_ ∷ _) = ⊥
-- The invariant is propositional.
Invariant-propositional : Is-proposition (Invariant xs ys)
Invariant-propositional {xs = []} {ys = []} _ _ = refl _
Invariant-propositional {xs = _ ∷ _} _ _ = refl _
-- Some lemmas related to the invariant.
-[] : Invariant xs []
-[] {xs = []} = _
-[] {xs = _ ∷ _} = _
map-map : Invariant xs ys → Invariant (L.map f xs) (L.map f ys)
map-map {xs = _ ∷ _} _ = _
map-map {xs = []} {ys = []} _ = _
------------------------------------------------------------------------
-- Queues
-- Queues.
--
-- Note that the invariant is erased.
record Queue (A : Type a) : Type a where
constructor ⟨_,_⟩
field
front rear : List A
@0 {invariant} : Invariant front rear
open Queue public
-- A variant of ⟨_,_⟩ with three explicit arguments.
pattern ⟨_,_⟩[_] f r i =
record { front = f
; rear = r
; invariant = i
}
------------------------------------------------------------------------
-- Conversion functions
-- Converts queues to lists.
to-List : Queue A → List A
to-List q = front q ++ reverse (rear q)
-- Converts lists to queues.
from-List : List A → Queue A
from-List xs = ⟨ xs , [] ⟩[ -[] ]
-- The function from-List is a right inverse of to-List.
to-List-from-List : to-List (from-List xs) ≡ xs
to-List-from-List {xs = xs} =
xs ++ [] ≡⟨ ++-right-identity _ ⟩∎
xs ∎
-- If the carrier type is inhabited, then the function from-List is
-- not, in general, a left inverse of to-List.
¬-from-List-to-List :
A → ¬ ((q : Queue A) → from-List (to-List q) ≡ q)
¬-from-List-to-List {A = A} x hyp = not-equal equal
where
counter-example : Queue A
counter-example = ⟨ x ∷ [] , x ∷ [] ⟩
not-equal : from-List (to-List counter-example) ≢ counter-example
not-equal eq = List.[]≢∷ (cong rear eq)
equal : from-List (to-List counter-example) ≡ counter-example
equal = hyp counter-example
------------------------------------------------------------------------
-- The representation is not unique
-- If the carrier type is inhabited, then two queues representing the
-- same list are not necessarily equal.
representation-not-unique :
A → ¬ ({q₁ q₂ : Queue A} → to-List q₁ ≡ to-List q₂ → q₁ ≡ q₂)
representation-not-unique x hyp =
¬-from-List-to-List x λ q → hyp (
to-List (from-List (to-List q)) ≡⟨ to-List-from-List ⟩∎
to-List q ∎)
-- If the carrier type is inhabited, then the type
-- ∃ λ (q : Queue A) → to-List q ≡ xs is not, in general, a
-- proposition.
¬-Σ-Queue-propositional :
A →
¬ ({xs : List A} →
Is-proposition (∃ λ (q : Queue A) → to-List q ≡ xs))
¬-Σ-Queue-propositional x hyp =
representation-not-unique x λ {q₁ q₂} eq →
cong proj₁ (
q₁ , eq ≡⟨ hyp _ _ ⟩∎
q₂ , refl _ ∎)
------------------------------------------------------------------------
-- Queue operations
-- Enqueues an element.
enqueue : A → Queue A → Queue A
enqueue x ⟨ [] , rear ⟩ = ⟨ x ∷ [] , rear ⟩
enqueue x ⟨ front@(_ ∷ _) , rear ⟩ = ⟨ front , x ∷ rear ⟩
to-List-enqueue : ∀ q → to-List (enqueue x q) ≡ to-List q ++ x ∷ []
to-List-enqueue ⟨ [] , [] ⟩ = refl _
to-List-enqueue {x = x} ⟨ front@(_ ∷ _) , rear ⟩ =
front ++ reverse (x ∷ rear) ≡⟨ cong (front ++_) $ reverse-∷ rear ⟩
front ++ reverse rear ++ x ∷ [] ≡⟨ ++-associative front _ _ ⟩∎
(front ++ reverse rear) ++ x ∷ [] ∎
-- Dequeues an element, if possible.
dequeue : Queue A → Maybe (A × Queue A)
dequeue ⟨ [] , [] ⟩ = nothing
dequeue ⟨ x ∷ [] , rear ⟩ =
just (x , ⟨ reverse rear , [] ⟩[ -[] ])
dequeue ⟨ x ∷ front@(_ ∷ _) , rear ⟩ =
just (x , ⟨ front , rear ⟩)
to-List-dequeue :
{A : Type a} (q : Queue A) →
⊎-map id (Σ-map id to-List) (dequeue q) ≡
_↔_.to List↔Maybe[×List] (to-List q)
to-List-dequeue ⟨ [] , [] ⟩ = refl _
to-List-dequeue ⟨ x ∷ [] , rear ⟩ = cong (just ∘ (x ,_)) (
reverse rear ++ [] ≡⟨ ++-right-identity _ ⟩∎
reverse rear ∎)
to-List-dequeue ⟨ _ ∷ _ ∷ _ , _ ⟩ = refl _
-- The "inverse" of the dequeue operation.
dequeue⁻¹ : Maybe (A × Queue A) → Queue A
dequeue⁻¹ nothing = ⟨ [] , [] ⟩
dequeue⁻¹ (just (x , ⟨ front , rear ⟩)) = ⟨ x ∷ front , rear ⟩
to-List-dequeue⁻¹ :
(x : Maybe (A × Queue A)) →
to-List (dequeue⁻¹ x) ≡
_↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id to-List) x)
to-List-dequeue⁻¹ nothing = refl _
to-List-dequeue⁻¹ (just _) = refl _
-- A map function.
map : (A → B) → Queue A → Queue B
map f ⟨ front , rear ⟩[ inv ] =
⟨ L.map f front , L.map f rear ⟩[ map-map inv ]
to-List-map : ∀ q → to-List (map f q) ≡ L.map f (to-List q)
to-List-map {f = f} ⟨ front , rear ⟩ =
L.map f front ++ reverse (L.map f rear) ≡⟨ cong (L.map f front ++_) $ sym $ map-reverse rear ⟩
L.map f front ++ L.map f (reverse rear) ≡⟨ sym $ map-++ _ front _ ⟩∎
L.map f (front ++ reverse rear) ∎
| {
"alphanum_fraction": 0.5224738087,
"avg_line_length": 28.8682926829,
"ext": "agda",
"hexsha": "8f188a903e658617fcb5290dfdd81b6c266d2ca3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Queue/Simple.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Queue/Simple.agda",
"max_line_length": 97,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Queue/Simple.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1889,
"size": 5918
} |
{-# OPTIONS --cubical --safe #-}
module Algebra.Construct.Free.Semilattice.Relation.Unary.All.Map where
open import Prelude hiding (⊥; ⊤)
open import Algebra.Construct.Free.Semilattice.Eliminators
open import Algebra.Construct.Free.Semilattice.Definition
open import Cubical.Foundations.HLevels
open import Data.Empty.UniversePolymorphic
open import HITs.PropositionalTruncation.Sugar
open import HITs.PropositionalTruncation.Properties
open import HITs.PropositionalTruncation
open import Data.Unit.UniversePolymorphic
open import Algebra.Construct.Free.Semilattice.Relation.Unary.All.Def
private
variable p : Level
map-◻ : ∀ {p} {P : A → Type p} → (∀ x → P x) → ∀ xs → ◻ P xs
map-◻ {A = A} {P = P} = λ f → ∥ map-◻′ f ∥⇓
where
map-◻′ : (∀ x → P x) → xs ∈𝒦 A ⇒∥ ◻ P xs ∥
∥ map-◻′ f ∥-prop {xs} = isProp-◻ {P = P} {xs = xs}
∥ map-◻′ f ∥[] = tt
∥ map-◻′ f ∥ x ∷ xs ⟨ Pxs ⟩ = ∣ f x ∣ , Pxs
| {
"alphanum_fraction": 0.6810631229,
"avg_line_length": 34.7307692308,
"ext": "agda",
"hexsha": "a61d783d09c8f052ad62640e267ab6f1d4657dda",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Map.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Map.agda",
"max_line_length": 70,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Map.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 335,
"size": 903
} |
module LC.Reasoning where
open import LC.Base
open import LC.Reduction
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties using (preorder)
open import Relation.Binary.Reasoning.Preorder (preorder _β→_)
open import Relation.Binary.Reasoning.Preorder (preorder _β→_) using (begin_; step-≡; _∎; _≡⟨⟩_) public
infixr 2 _→*⟨_⟩_
_→*⟨_⟩_ : ∀ (x : Term) {y z} → x β→* y → y IsRelatedTo z → x IsRelatedTo z
x →*⟨ P ⟩ y = x ∼⟨ P ⟩ y
infixr 2 _→⟨_⟩_
_→⟨_⟩_ : ∀ (x : Term) {y z} → x β→ y → y IsRelatedTo z → x IsRelatedTo z
x →⟨ P ⟩ y = x ∼⟨ return P ⟩ y
infixr 2 _→⟨⟩_
_→⟨⟩_ : ∀ (x : Term) {y} → x IsRelatedTo y → x IsRelatedTo y
x →⟨⟩ y = x ∼⟨ ε ⟩ y | {
"alphanum_fraction": 0.6657645467,
"avg_line_length": 33.5909090909,
"ext": "agda",
"hexsha": "b9a8c0b077a06750dabaac850cde34d4a99059a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/bidirectional",
"max_forks_repo_path": "LC/Reasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/bidirectional",
"max_issues_repo_path": "LC/Reasoning.agda",
"max_line_length": 103,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/bidirectional",
"max_stars_repo_path": "LC/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z",
"num_tokens": 300,
"size": 739
} |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Machine-checked formalization of the theoretical results presented
-- in the paper:
--
-- Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann.
-- A Theory of Changes for Higher-Order Languages:
-- Incrementalizing λ-Calculi by Static Differentiation.
-- To appear at PLDI, ACM 2014.
--
-- We claim that this formalization
--
-- (1) proves every lemma and theorem in Sec. 2 and 3 of the paper,
-- (2) formally specifies the interface between our incrementalization
-- framework and potential plugins, and
-- (3) shows that the plugin interface can be instantiated.
--
-- The first claim is the main reason for a machine-checked
-- proof: We want to be sure that we got the proofs right.
--
-- The second claim is about reusability and applicability: Only
-- a clearly defined interface allows other researchers to
-- provide plugins for our framework.
--
-- The third claim is to show that the plugin interface is
-- consistent: An inconsistent plugin interface would allow to
-- prove arbitrary results in the framework.
------------------------------------------------------------------------
module README where
-- We know two good ways to read this code base. You can either
-- use Emacs with agda2-mode to interact with the source files,
-- or you can use a web browser to view the pretty-printed and
-- hyperlinked source files. For Agda power users, we also
-- include basic setup information for your own machine.
-- IF YOU WANT TO USE A BROWSER
-- ============================
--
-- Start with *HTML* version of this readme. On the AEC
-- submission website (online or inside the VM), follow the link
-- "view the Agda code in their browser" to the file
-- agda/README.html.
--
-- The source code is syntax highlighted and hyperlinked. You can
-- click on module names to open the corresponding files, or you
-- can click on identifiers to jump to their definition. In
-- general, a Agda file with name `Foo/Bar/Baz.agda` contains a
-- module `Foo.Bar.Baz` and is shown in an HTML file
-- `Foo.Bar.Baz.html`.
--
-- Note that we also include the HTML files generated for our
-- transitive dependencies from the Agda standard library. This
-- allows you to follow hyperlinks to the Agda standard
-- library. It is the default behavior of `agda --html` which we
-- used to generate the HTML.
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE EMACS
-- ========================
--
-- Open this file in Emacs with agda2-mode installed. See below
-- for which Agda version you need to install. On the VM image,
-- everything is setup for you and you can just open this file in
-- Emacs.
--
-- C-c C-l Load code. Type checks and syntax highlights. Use
-- this if the code is not syntax highlighted, or
-- after you changed something that you want to type
-- check.
--
-- M-. Jump to definition of identifier at the point.
-- M-* Jump back.
--
-- Note that README.agda imports Everything.agda which imports
-- every Agda file in our formalization. So if README.agda type
-- checks successfully, everything does. If you want to type
-- check everything from scratch, delete the *.agdai files to
-- disable separate compilation. You can use "find . -name
-- '*.agdai' | xargs rm" to do that.
--
-- More information on the Agda mode is available on the Agda wiki:
--
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Docs.EmacsModeKeyCombinations
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE YOUR OWN SETUP
-- =================================
--
-- To typecheck this formalization, you need to install the appropriate version
-- of Agda (2.4.0.*), the Agda standard library (version 0.8), generate
-- Everything.agda with the attached Haskell helper, and finally run Agda on
-- this file.
--
-- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh
-- script and following instructions given on output will eventually generate
-- Everything.agda and proceed to type check everything on command line.
--
-- If you're not an Agda power user, it is probably easier to use
-- the VM image or look at the pretty-printed and hyperlinked
-- HTML files, see above.
-- WHERE TO START READING?
-- =======================
--
-- modules.pdf
-- The graph of dependencies between Agda modules.
-- Good if you want to get a broad overview.
--
-- README.agda
-- This file. A coarse-grained introduction to the Agda
-- formalization. Good if you want to begin at the beginning
-- and understand the structure of our code.
--
-- PLDI14-List-of-Theorems.agda
-- Pointers to the Agda formalizations of all theorems, lemmas
-- or definitions in the PLDI paper. Good if you want to read
-- the paper and the Agda code side by side.
--
-- Here is an import of this file, so you can jump to it
-- directly (use M-. in Emacs or click the module name in the
-- Browser):
import PLDI14-List-of-Theorems
-- Everything.agda
-- Imports every Agda module in our formalization. Good if you
-- want to make sure you don't miss anything.
--
-- Again, here's is an import of this file so you can navigate
-- there:
import Everything
-- (This import is also important to ensure that if we typecheck
-- README.agda, we also typecheck every other file of our
-- formalization).
-- THE AGDA CODE
-- =============
--
-- The formalization has four parts:
--
-- 1. A formalization of change structures. This lives in
-- Base.Change.Algebra. (What we call "change structure" in the
-- paper, we call "change algebra" in the Agda code. We changed
-- the name when writing the paper, and never got around to
-- updating the name in the Agda code).
--
-- 2. Incrementalization framework for first-class functions,
-- with extension points for plugging in data types and their
-- incrementalization. This lives in the Parametric.*
-- hierarchy.
--
-- 3. An example plugin that provides integers and bags
-- with negative multiplicity. This lives in the Nehemiah.*
-- hierarchy. (For some reason, we choose to call this
-- particular incarnation of the plugin Nehemiah).
--
-- 4. Other material that is unrelated to the framework/plugin
-- distinction. This is all other files.
-- FORMALIZATION OF CHANGE STRUCTURES
-- ==================================
--
-- Section 2 of the paper, and Base.Change.Algebra in Agda.
import Base.Change.Algebra
-- INCREMENTALIZATION FRAMEWORK
-- ============================
--
-- Section 3 of the paper, and Parametric.* hierarchy in Agda.
--
-- The extension points are implemented as module parameters. See
-- detailed explanation in Parametric.Syntax.Type and
-- Parametric.Syntax.Term. Some extension points are for types,
-- some for values, and some for proof fragments. In Agda, these
-- three kinds of entities are unified anyway, so we can encode
-- all of them as module parameters.
--
-- Every module in the Parametric.* hierarchy adds at least one
-- extension point, so the module hierarchy of a plugin will
-- typically mirror the Parametric.* hierarchy, defining the
-- values for these extension points.
--
-- Firstly, we have the syntax of types and terms, the erased
-- change structure for function types and incrementalization as
-- a term-to-term transformation. The contents of these modules
-- formalizes Sec. 3.1 and 3.2 of the paper, except for the
-- second and third line of Figure 3, which is formalized further
-- below.
import Parametric.Syntax.Type -- syntax of types
import Parametric.Syntax.Term -- syntax of terms
import Parametric.Change.Type -- simply-typed changes
import Parametric.Change.Derive -- incrementalization
-- Secondly, we define the usual denotational semantics of the
-- simply-typed lambda calculus in terms of total functions, and
-- the change semantics in terms of a change structure on total
-- functions. The contents of these modules formalize Sec. 3.3,
-- 3.4 and 3.5 of the paper.
import Parametric.Denotation.Value -- standard values
import Parametric.Denotation.Evaluation -- standard evaluation
import Parametric.Change.Validity -- dependently-typed changes
import Parametric.Change.Specification -- change evaluation
-- Thirdly, we define terms that operate on simply-typed changes,
-- and connect them to their values. The concents of these
-- modules formalize the second and third line of Figure 3, as
-- well as the semantics of these lines.
import Parametric.Change.Term -- terms that operate on simply-typed changes
import Parametric.Change.Value -- the values of these terms
import Parametric.Change.Evaluation -- connecting the terms and their values
-- Finally, we prove correctness by connecting the (syntactic)
-- incrementalization to the (semantic) change evaluation by a
-- logical relation, and a proof that the values of terms
-- produced by the incrementalization transformation are related
-- to the change values of the original terms. The contents of
-- these modules formalize Sec. 3.6.
import Parametric.Change.Implementation -- logical relation
import Parametric.Change.Correctness -- main correctness proof
-- EXAMPLE PLUGIN
-- ==============
--
-- Sec. 3.7 in the paper, and the Nehemiah.* hierarchy in Agda.
--
-- The module structure of the plugin follows the structure of
-- the Parametric.* hierarchy. For example, the extension point
-- defined in Parametric.Syntax.Term is instantiated in
-- Nehemiah.Syntax.Term.
--
-- As discussed in Sec. 3.7 of the paper, the point of this
-- plugin is not to speed up any real programs, but to show "that
-- the interface for proof plugins can be implemented". As a
-- first step towards proving correctness of the more complicated
-- plugin with integers, bags and finite maps we implement in
-- Scala, we choose to define plugin with integers and bags in
-- Agda. Instead of implementing bags (with negative
-- multiplicities, like in the paper) in Agda, though, we
-- postulate that a group of such bags exist. Note that integer
-- bags with integer multiplicities are actually the free group
-- given a singleton operation `Integer -> Bag`, so this should
-- be easy to formalize in principle.
-- Before we start with the plugin, we postulate an abstract data
-- type for integer bags.
import Postulate.Bag-Nehemiah
-- Firstly, we extend the syntax of types and terms, the erased
-- change structure for function types, and incrementalization as
-- a term-to-term transformation to account for the data types of
-- the Nehemiah language. The contents of these modules
-- instantiate the extension points in Sec. 3.1 and 3.2 of the
-- paper, except for the second and third line of Figure 3, which
-- is instantiated further below.
import Nehemiah.Syntax.Type
import Nehemiah.Syntax.Term
import Nehemiah.Change.Type
import Nehemiah.Change.Derive
-- Secondly, we extend the usual denotational semantics and the
-- change semantics to account for the data types of the Nehemiah
-- language. The contents of these modules instantiate the
-- extension points in Sec. 3.3, 3.4 and 3.5 of the paper.
import Nehemiah.Denotation.Value
import Nehemiah.Denotation.Evaluation
import Nehemiah.Change.Validity
-- Thirdly, we extend the terms that operate on simply-typed
-- changes, and the connection to their values to account for the
-- data types of the Nehemiah language. The concents of these
-- modules instantiate the extension points in the second and
-- third line of Figure 3.
import Nehemiah.Change.Term
import Nehemiah.Change.Value
import Nehemiah.Change.Evaluation
-- Finally, we extend the logical relation and the main
-- correctness proof to account for the data types in the
-- Nehemiah language. The contents of these modules instantiate
-- the extension points defined in Sec. 3.6.
import Nehemiah.Change.Implementation
import Nehemiah.Change.Correctness
-- OTHER MATERIAL
-- ==============
--
-- We postulate extensionality of Agda functions. This postulate
-- is well known to be compatible with Agda's type theory.
import Postulate.Extensionality
-- For historical reasons, we reexport Data.List.All from the
-- standard library under the name DependentList.
import Base.Data.DependentList
-- This module supports overloading the ⟦_⟧ notation based on
-- Agda's instance arguments.
import Base.Denotation.Notation
-- These modules implement contexts including typed de Bruijn
-- indices to represent bound variables, sets of bound variables,
-- and environments. These modules are parametric in the set of
-- types (that are stored in contexts) and the set of values
-- (that are stored in environments). So these modules are even
-- more parametric than the Parametric.* hierarchy.
import Base.Syntax.Context
import Base.Syntax.Vars
import Base.Denotation.Environment
-- This module contains some helper definitions to merge a
-- context of values and a context of changes.
import Base.Change.Context
| {
"alphanum_fraction": 0.7258810155,
"avg_line_length": 37.7,
"ext": "agda",
"hexsha": "c3936a923ef68be32a4a82752614ad597298d192",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "README.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "README.agda",
"max_line_length": 108,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "README.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 3050,
"size": 13195
} |
data Nat : Set where
zero : Nat
suc : Nat → Nat
data Id (A : Set) : Set where
mkId : A → Id A
data Monad (M : Set → Set) : Set where
postulate
return : ∀ {M} {{Mon : Monad M}} {A} → A → M A
_>>=_ : ∀ {M} {{Mon : Monad M}} {A B} → M A → (A → M B) → M B
State : (S A : Set) → Set
instance
MonadState : ∀ {S} → Monad (State S)
MonadId : Monad Id
-- Yields
-- _M Nat == State Nat Nat,
-- which inert improvement solves by
-- _M x := State (_S x) (_A x)
-- with _S Nat == Nat
-- _A Nat == Nat
-- This allows instance search to pick the right instance.
rz : State Nat Nat
rz = return zero
postulate
StateT : (S : Set) (M : Set → Set) (A : Set) → Set
instance
MonadStateT : ∀ {S M} → Monad M → Monad (StateT S M)
stateT₁ : ∀ {M} {{Mon : Monad M}} → StateT Nat M Nat
stateT₁ = return zero
stateT₂ : ∀ {M} {{Mon : Monad M}} → StateT Nat M Nat
stateT₂ = return zero >>= λ n → return (suc n)
postulate
_<$_ : ∀ {A B M} {{Mon : Monad M}} → A → M B → M A
record ⊤ : Set where
constructor tt
foo : Id ⊤
foo = _ <$ return zero
| {
"alphanum_fraction": 0.5538033395,
"avg_line_length": 21.56,
"ext": "agda",
"hexsha": "789cea76f4ee8fac84c71e047113de72a4e03f93",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/ImproveInertRHS.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/ImproveInertRHS.agda",
"max_line_length": 64,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/ImproveInertRHS.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 392,
"size": 1078
} |
------------------------------------------------------------------------
-- Simple recognisers
------------------------------------------------------------------------
open import Relation.Binary
open import Relation.Binary.PropositionalEquality hiding ([_])
-- The recognisers are parametrised on the alphabet.
module TotalRecognisers.Simple
(Tok : Set)
(_≟_ : Decidable (_≡_ {A = Tok}))
-- The tokens must come with decidable equality.
where
open import Algebra
open import Codata.Musical.Notation
open import Data.Bool hiding (_≟_)
import Data.Bool.Properties as Bool
private
module BoolCS = CommutativeSemiring Bool.∧-∨-commutativeSemiring
open import Function
open import Data.List
open import Data.Product
open import Relation.Nullary
------------------------------------------------------------------------
-- Recogniser combinators
infixl 10 _·_
infixl 5 _∣_
mutual
-- The index is true if the corresponding language contains the
-- empty string (is nullable).
data P : Bool → Set where
fail : P false
empty : P true
tok : Tok → P false
_∣_ : ∀ {n₁ n₂} → P n₁ → P n₂ → P (n₁ ∨ n₂)
_·_ : ∀ {n₁ n₂} → P n₁ → ∞⟨ not n₁ ⟩P n₂ → P (n₁ ∧ n₂)
-- Coinductive if the index is true.
∞⟨_⟩P : Bool → Bool → Set
∞⟨ true ⟩P n = ∞ (P n)
∞⟨ false ⟩P n = P n
------------------------------------------------------------------------
-- Conditional coinduction helpers
delayed? : ∀ {b n} → ∞⟨ b ⟩P n → Bool
delayed? {b = b} _ = b
♭? : ∀ {b n} → ∞⟨ b ⟩P n → P n
♭? {true} x = ♭ x
♭? {false} x = x
♯? : ∀ {b n} → P n → ∞⟨ b ⟩P n
♯? {true} x = ♯ x
♯? {false} x = x
-- A lemma.
♭?♯? : ∀ b {n} {p : P n} → ♭? {b} (♯? p) ≡ p
♭?♯? true = refl
♭?♯? false = refl
------------------------------------------------------------------------
-- Semantics
-- The semantics is defined inductively: s ∈ p iff the string s is
-- contained in the language defined by p.
infix 4 _∈_
data _∈_ : ∀ {n} → List Tok → P n → Set where
empty : [] ∈ empty
tok : ∀ {t} → [ t ] ∈ tok t
∣-left : ∀ {s n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
s ∈ p₁ → s ∈ p₁ ∣ p₂
∣-right : ∀ {s n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
s ∈ p₂ → s ∈ p₁ ∣ p₂
_·_ : ∀ {s₁ s₂ n₁ n₂} {p₁ : P n₁} {p₂ : ∞⟨ not n₁ ⟩P n₂} →
s₁ ∈ p₁ → s₂ ∈ ♭? p₂ → s₁ ++ s₂ ∈ p₁ · p₂
-- A lemma.
cast : ∀ {n} {p p′ : P n} {s} → p ≡ p′ → s ∈ p → s ∈ p′
cast refl s∈ = s∈
------------------------------------------------------------------------
-- Nullability
-- The nullability index is correct.
⇒ : ∀ {n} {p : P n} → [] ∈ p → n ≡ true
⇒ pr = ⇒′ pr refl
where
⇒′ : ∀ {n s} {p : P n} → s ∈ p → s ≡ [] → n ≡ true
⇒′ empty refl = refl
⇒′ tok ()
⇒′ (∣-left pr₁) refl with ⇒ pr₁
⇒′ (∣-left pr₁) refl | refl = refl
⇒′ (∣-right pr₂) refl with ⇒ pr₂
⇒′ (∣-right {n₁ = n₁} pr₂) refl | refl = proj₂ BoolCS.zero n₁
⇒′ (_·_ {[]} pr₁ pr₂) refl = cong₂ _∧_ (⇒ pr₁) (⇒ pr₂)
⇒′ (_·_ {_ ∷ _} pr₁ pr₂) ()
⇐ : ∀ {n} (p : P n) → n ≡ true → [] ∈ p
⇐ fail ()
⇐ empty refl = empty
⇐ (tok t) ()
⇐ (_∣_ {true} p₁ p₂) refl = ∣-left (⇐ p₁ refl)
⇐ (_∣_ {false} {true} p₁ p₂) refl = ∣-right {p₁ = p₁} (⇐ p₂ refl)
⇐ (_∣_ {false} {false} p₁ p₂) ()
⇐ (_·_ {true} p₁ p₂) refl = ⇐ p₁ refl · ⇐ p₂ refl
⇐ (_·_ {false} p₁ p₂) ()
-- We can decide if the empty string belongs to a given language.
nullable? : ∀ {n} (p : P n) → Dec ([] ∈ p)
nullable? {true} p = yes (⇐ p refl)
nullable? {false} p = no helper
where
helper : ¬ [] ∈ p
helper []∈p with ⇒ []∈p
... | ()
------------------------------------------------------------------------
-- Derivative
-- D-nullable and D are placed in a mutual block to ensure that the
-- underscores in the definition of D-nullable can be solved by
-- constraints introduced in the body of D. The functions are not
-- actually mutually recursive.
mutual
-- The index of the derivative. The right-hand sides (excluding
-- t′ ≟ t and delayed? p₂) are inferable, but included here so that
-- they can easily be inspected.
D-nullable : ∀ {n} → Tok → P n → Bool
D-nullable t fail = false
D-nullable t empty = false
D-nullable t (tok t′) with t′ ≟ t
D-nullable t (tok t′) | yes t′≡t = true
D-nullable t (tok t′) | no t′≢t = false
D-nullable t (p₁ ∣ p₂) = D-nullable t p₁ ∨ D-nullable t p₂
D-nullable t (p₁ · p₂) with delayed? p₂
D-nullable t (p₁ · p₂) | true = D-nullable t p₁ ∧ _
D-nullable t (p₁ · p₂) | false = D-nullable t p₁ ∧ _ ∨ D-nullable t p₂
-- D t p is the "derivative" of p with respect to t. It is specified
-- by the equivalence s ∈ D t p ⇔ t ∷ s ∈ p (proved below).
D : ∀ {n} (t : Tok) (p : P n) → P (D-nullable t p)
D t fail = fail
D t empty = fail
D t (tok t′) with t′ ≟ t
D t (tok t′) | yes t′≡t = empty
D t (tok t′) | no t′≢t = fail
D t (p₁ ∣ p₂) = D t p₁ ∣ D t p₂
D t (p₁ · p₂) with delayed? p₂
D t (p₁ · p₂) | true = D t p₁ · ♯? (♭ p₂)
D t (p₁ · p₂) | false = D t p₁ · ♯? p₂ ∣ D t p₂
-- D is correct.
D-sound : ∀ {s n} {t} {p : P n} → s ∈ D t p → t ∷ s ∈ p
D-sound s∈ = D-sound′ _ _ s∈
where
D-sound′ : ∀ {s n} t (p : P n) → s ∈ D t p → t ∷ s ∈ p
D-sound′ t fail ()
D-sound′ t empty ()
D-sound′ t (tok t′) _ with t′ ≟ t
D-sound′ t (tok .t) empty | yes refl = tok
D-sound′ t (tok t′) () | no t′≢t
D-sound′ t (p₁ ∣ p₂) (∣-left ∈₁) = ∣-left (D-sound′ t p₁ ∈₁)
D-sound′ t (p₁ ∣ p₂) (∣-right ∈₂) = ∣-right {p₁ = p₁} (D-sound′ t p₂ ∈₂)
D-sound′ t (_·_ {true} p₁ p₂) (∣-left (∈₁ · ∈₂)) = D-sound′ t p₁ ∈₁ · cast (♭?♯? (not (D-nullable t p₁))) ∈₂
D-sound′ t (_·_ {true} p₁ p₂) (∣-right ∈₂) = ⇐ p₁ refl · D-sound′ t p₂ ∈₂
D-sound′ t (_·_ {false} p₁ p₂) (∈₁ · ∈₂) = D-sound′ t p₁ ∈₁ · cast (♭?♯? (not (D-nullable t p₁))) ∈₂
D-complete : ∀ {s n} {t} {p : P n} → t ∷ s ∈ p → s ∈ D t p
D-complete {t = t} t∷s∈ = D-complete′ _ t∷s∈ refl
where
D-complete′ : ∀ {s s′ n} (p : P n) → s′ ∈ p → s′ ≡ t ∷ s → s ∈ D t p
D-complete′ fail () refl
D-complete′ empty () refl
D-complete′ (tok t′) _ refl with t′ ≟ t
D-complete′ (tok .t) tok refl | yes refl = empty
D-complete′ {[]} (tok .t) tok refl | no t′≢t with t′≢t refl
D-complete′ {[]} (tok .t) tok refl | no t′≢t | ()
D-complete′ (p₁ ∣ p₂) (∣-left ∈₁) refl = ∣-left (D-complete ∈₁)
D-complete′ (p₁ ∣ p₂) (∣-right ∈₂) refl = ∣-right {p₁ = D t p₁} (D-complete ∈₂)
D-complete′ (_·_ {true} p₁ p₂) (_·_ {[]} ∈₁ ∈₂) refl = ∣-right {p₁ = D t p₁ · _} (D-complete ∈₂)
D-complete′ (_·_ {true} p₁ p₂) (_·_ {._ ∷ _} ∈₁ ∈₂) refl = ∣-left (D-complete ∈₁ · cast (sym (♭?♯? (not (D-nullable t p₁)))) ∈₂)
D-complete′ (_·_ {false} p₁ p₂) (_·_ {[]} ∈₁ ∈₂) refl with ⇒ ∈₁
D-complete′ (_·_ {false} p₁ p₂) (_·_ {[]} ∈₁ ∈₂) refl | ()
D-complete′ (_·_ {false} p₁ p₂) (_·_ {._ ∷ _} ∈₁ ∈₂) refl = D-complete ∈₁ · cast (sym (♭?♯? (not (D-nullable t p₁)))) ∈₂
------------------------------------------------------------------------
-- _∈_ is decidable
-- _∈?_ runs a recogniser. Note that the result is yes or no plus a
-- /proof/ verifying that the answer is correct.
infix 4 _∈?_
_∈?_ : ∀ {n} (s : List Tok) (p : P n) → Dec (s ∈ p)
[] ∈? p = nullable? p
t ∷ s ∈? p with s ∈? D t p
t ∷ s ∈? p | yes s∈Dtp = yes (D-sound s∈Dtp)
t ∷ s ∈? p | no s∉Dtp = no (s∉Dtp ∘ D-complete)
| {
"alphanum_fraction": 0.4570912376,
"avg_line_length": 35.3835616438,
"ext": "agda",
"hexsha": "4702e310fa5cb8c39c0677f9903496c507859b49",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalRecognisers/Simple.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalRecognisers/Simple.agda",
"max_line_length": 131,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalRecognisers/Simple.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 3040,
"size": 7749
} |
-- Andreas, 2011-09-11
module Issue392 where
import Common.Irrelevance
-- Create an non-irrelevant record R1 (at least one field relevant).
record R1 : Set1 where
field
.f1 : Set
f1' : Set
{- This creates a module with an relevant record parameter
module R1 (r : R1) where
.f1 : Set -- = R1.f1 r
f1' : Set
-}
-- Create an irrelevant instance f2 of R1.
record R2 : Set2 where
field
.f2 : R1
f3 : Set
-- This should not succeed.
open R1 f2 public
{-
identifier f2 is declared irrelevant, so it cannot be used here
when checking that the expression f2 has type R1
-}
| {
"alphanum_fraction": 0.6732673267,
"avg_line_length": 19.5483870968,
"ext": "agda",
"hexsha": "84302e873482ddd0467d7ebae35d8dcaf2c72478",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Fail/Issue392.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Fail/Issue392.agda",
"max_line_length": 68,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue392.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 192,
"size": 606
} |
module Generic.Lib.Equality.Heteroindexed where
open import Data.Product
open import Generic.Lib.Equality.Propositional
data [_]_≅_ {ι α} {I : Set ι} {i} (A : I -> Set α) (x : A i) : ∀ {j} -> A j -> Set where
irefl : [ A ] x ≅ x
inds : ∀ {ι α} {I : Set ι} {A : I -> Set α} {i j} {x : A i} {y : A j}
-> [ A ] x ≅ y -> i ≡ j
inds irefl = refl
homo : ∀ {ι α} {I : Set ι} {A : I -> Set α} {i} {x y : A i}
-> [ A ] x ≅ y -> x ≡ y
homo irefl = refl
inds-homo : ∀ {ι α} {I : Set ι} {A : Set α} {i j : I} {x y : A}
-> [_]_≅_ {i = i} (λ _ -> A) x {j} y -> i ≡ j × x ≡ y
inds-homo irefl = refl , refl
| {
"alphanum_fraction": 0.4717285945,
"avg_line_length": 29.4761904762,
"ext": "agda",
"hexsha": "4cb3ac0e3b9477d9daceb65a2bf3c2f637649977",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Lib/Equality/Heteroindexed.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Lib/Equality/Heteroindexed.agda",
"max_line_length": 88,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Lib/Equality/Heteroindexed.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 278,
"size": 619
} |
module IndentedCheckingMessages where
import A.M
Foo : Set
Foo = Foo
| {
"alphanum_fraction": 0.7746478873,
"avg_line_length": 10.1428571429,
"ext": "agda",
"hexsha": "dcb6e3331b852ada164f61679cbde3736594f220",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/IndentedCheckingMessages.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/IndentedCheckingMessages.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/IndentedCheckingMessages.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 19,
"size": 71
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.