Search is not available for this dataset
text
string | meta
dict |
---|---|
module plfa-exercises.part1.Decidable where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; cong)
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; pred)
open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using ()
renaming (contradiction to ¬¬-intro)
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥; ⊥-elim)
open import plfa.part1.Relations using (_<_; z<s; s<s)
open import plfa.part1.Isomorphism using (_⇔_)
open import Function.Base using (_∘_)
infix 4 _≤_
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ}
--------
→ zero ≤ n
s≤s : ∀ {m n : ℕ}
→ m ≤ n
-------------
→ suc m ≤ suc n
_ : 2 ≤ 4
_ = s≤s (s≤s z≤n)
¬4≤2 : ¬ (4 ≤ 2)
--¬4≤2 (s≤s (s≤s ())) = ? -- This causes Agda to die! TODO: Report
¬4≤2 (s≤s (s≤s ()))
data Bool : Set where
true : Bool
false : Bool
infix 4 _≤ᵇ_
_≤ᵇ_ : ℕ → ℕ → Bool
zero ≤ᵇ n = true
suc m ≤ᵇ zero = false
suc m ≤ᵇ suc n = m ≤ᵇ n
_ : (2 ≤ᵇ 4) ≡ true
_ = refl
_ : (5 ≤ᵇ 4) ≡ false
_ = refl
T : Bool → Set
T true = ⊤
T false = ⊥
≤→≤ᵇ : ∀ {m n} → (m ≤ n) → T (m ≤ᵇ n)
≤→≤ᵇ z≤n = tt
≤→≤ᵇ (s≤s m≤n) = ≤→≤ᵇ m≤n
≤ᵇ→≤ : ∀ {m n} → T (m ≤ᵇ n) → (m ≤ n)
≤ᵇ→≤ {zero} {_} tt = z≤n
-- What is going on in here? Left `t` has type `T (suc m ≤ᵇ suc n)` and the right `t` has type `T (m ≤ᵇ n)`
-- λ m n → T (suc m ≤ᵇ suc n) => reduces to: λ m n → T (m ≤ᵇ n)
-- Ohh! Ok. It is because the third rule of `≤ᵇ` reduces `suc m ≤ᵇ suc n` to `m ≤ᵇ n`
≤ᵇ→≤ {suc m} {suc n} t = s≤s (≤ᵇ→≤ {m} {n} t)
-- λ m → T (suc m ≤ᵇ zero) => reduces to: λ m → ⊥
-- which means that there are no rules for `fromᵇ {suc m} {zero}`
≤ᵇ→≤ {suc m} {zero} ()
proof≡computation : ∀ {m n} → (m ≤ n) ⇔ T (m ≤ᵇ n)
proof≡computation {m} {n} =
record
{ from = ≤ᵇ→≤
; to = ≤→≤ᵇ
}
T→≡ : ∀ (b : Bool) → T b → b ≡ true
T→≡ true tt = refl
T→≡ false ()
--postulate
-- lie : false ≡ true
≡→T : ∀ {b : Bool} → b ≡ true → T b
--≡→T {false} refl = ? -- This is impossible because of refl's definition. Unification forces `b` to be `true`
--≡→T {false} rewrite lie = λ refl → ? -- Even postulating a lie, it is impossible to create a bottom value
≡→T refl = tt
_ : 2 ≤ 4
_ = ≤ᵇ→≤ tt
¬4≤2₂ : ¬ (4 ≤ 2)
--¬4≤2₂ 4≤2 = ≤→≤ᵇ 4≤2
--¬4≤2₂ = ≤→≤ᵇ {4} {2}
-- The type of `T (4 ≤ᵇ 2)` which reduces to `T false` and then `⊥`
¬4≤2₂ = ≤→≤ᵇ
-- Notice how defining ≤ᵇ lifts from us the demand of computing the correct
-- `evidence` (implementation) for the `proof` (function type)
data Dec (A : Set) : Set where
yes : A → Dec A
no : ¬ A → Dec A
¬s≤z : {m : ℕ} → ¬ (suc m) ≤ zero
--¬s≤z = ≤→≤ᵇ
¬s≤z ()
¬s≤s : {m n : ℕ} → ¬ m ≤ n → ¬ suc m ≤ suc n
¬s≤s ¬m≤n = λ { (s≤s m≤n) → ¬m≤n m≤n }
_≤?_ : (m n : ℕ) → Dec (m ≤ n)
zero ≤? n = yes z≤n
(suc m) ≤? zero = no ¬s≤z
(suc m) ≤? (suc n) with m ≤? n
... | yes m≤n = yes (s≤s m≤n)
... | no ¬m≤n = no (¬s≤s ¬m≤n)
-- `2 ≤? 4` reduces to `yes (s≤s (s≤s z≤n))`
_ : Dec (2 ≤ 4)
_ = 2 ≤? 4
_ = yes (s≤s (s≤s (z≤n {2})))
⌊_⌋ : ∀ {A : Set} → Dec A → Bool
⌊ yes x ⌋ = true
⌊ no ¬x ⌋ = false
_ : Bool
_ = true
_ = ⌊ 3 ≤? 4 ⌋
_ : ⌊ 3 ≤? 4 ⌋ ≡ true
_ = refl
_ : ⌊ 3 ≤? 2 ⌋ ≡ false
_ = refl
toWitness : ∀ {A : Set} {D : Dec A} → T ⌊ D ⌋ → A
toWitness {_} {yes v} tt = v
--toWitness {_} {no _} = ? -- `T ⌊ no x ⌋ → A` reduces to `⊥ → A`
toWitness {_} {no _} () -- Empty because there is no value for `⊥`
fromWitness : ∀ {A : Set} {D : Dec A} → A → T ⌊ D ⌋
fromWitness {_} {yes _} _ = tt
fromWitness {_} {no ¬a} a = ¬a a -- with type ⊥
_ : 2 ≤ 4
--_ = toWitness {D = 2 ≤? 4} tt
_ = toWitness {_} {2 ≤? 4} tt
¬4≤2₃ : ¬ (4 ≤ 2)
--¬4≤2₃ = fromWitness {D = 4 ≤? 2}
¬4≤2₃ = fromWitness {_} {4 ≤? 2}
¬z<z : ¬ (zero < zero)
¬z<z ()
¬s<z : ∀ {m : ℕ} → ¬ (suc m < zero)
¬s<z ()
_<?_ : ∀ (m n : ℕ) → Dec (m < n)
zero <? zero = no ¬z<z
zero <? suc n = yes z<s
suc m <? zero = no ¬s<z
suc m <? suc n with m <? n
... | yes m<n = yes (s<s m<n)
... | no ¬m<n = no λ{(s<s m<n) → ¬m<n m<n}
_ : ⌊ 2 <? 4 ⌋ ≡ true
_ = refl
¬z≡sn : ∀ {n : ℕ} → ¬ zero ≡ suc n
¬z≡sn ()
_≡ℕ?_ : ∀ (m n : ℕ) → Dec (m ≡ n)
zero ≡ℕ? zero = yes refl
zero ≡ℕ? (suc n) = no ¬z≡sn
--(suc m) ≡ℕ? zero = no (λ{sn≡z → ¬z≡sn (sym sn≡z)})
--(suc m) ≡ℕ? zero = no (¬z≡sn ∘ sym)
(suc m) ≡ℕ? zero = no ((λ()) ∘ sym)
--The following doesn't work though
--(suc m) ≡ℕ? zero with zero ≡ℕ? (suc m)
--... | yes z≡sm = yes (sym z≡sm)
--... | no ¬z≡sm = no (¬z≡sm ∘ sym)
(suc m) ≡ℕ? (suc n) with m ≡ℕ? n
... | yes m≡n = yes (cong suc m≡n)
... | no ¬m≡n = no (¬m≡n ∘ (cong pred))
infixr 6 _×-dec_
_×-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A × B)
yes x ×-dec yes y = yes ⟨ x , y ⟩
no ¬x ×-dec _ = no λ{ ⟨ x , y ⟩ → ¬x x }
_ ×-dec no ¬y = no λ{ ⟨ x , y ⟩ → ¬y y }
infixr 6 _⊎-dec_
_⊎-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⊎ B)
yes x ⊎-dec _ = yes (inj₁ x)
_ ⊎-dec yes y = yes (inj₂ y)
no ¬x ⊎-dec no ¬y = no λ{(inj₁ x) → ¬x x; (inj₂ y) → ¬y y}
¬? : ∀ {A : Set} → Dec A → Dec (¬ A)
¬? (yes x) = no (¬¬-intro x)
¬? (no ¬x) = yes ¬x
_→-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A → B)
_ →-dec yes y = yes (λ _ → y)
--no ¬x →-dec _ = yes ((λ()) ∘ ¬x)
no ¬x →-dec _ = yes (⊥-elim ∘ ¬x)
yes x →-dec no ¬y = no (λ{x→y → ¬y (x→y x)})
infixr 6 _∧_
_∧_ : Bool → Bool → Bool
true ∧ true = true
false ∧ _ = false
_ ∧ false = false
∧-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∧ ⌊ y ⌋ ≡ ⌊ x ×-dec y ⌋
∧-× (yes x) (yes y) = refl
∧-× (no ¬x) _ = refl
∧-× (yes x) (no ¬y) = refl
_iff_ : Bool → Bool → Bool
true iff true = true
false iff false = true
_ iff _ = false
_⇔-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⇔ B)
yes x ⇔-dec yes y = yes (record { from = λ{_ → x} ; to = λ{_ → y} })
no ¬x ⇔-dec no ¬y = yes (record { from = (λ()) ∘ ¬y ; to = (λ()) ∘ ¬x })
yes x ⇔-dec no ¬y = no (λ x⇔y → ¬y (_⇔_.to x⇔y x))
no ¬x ⇔-dec yes y = no (λ x⇔y → ¬x (_⇔_.from x⇔y y))
iff-⇔ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ iff ⌊ y ⌋ ≡ ⌊ x ⇔-dec y ⌋
iff-⇔ (yes x) (yes y) = refl
iff-⇔ (no ¬x) (no ¬y) = refl
iff-⇔ (no ¬x) (yes y) = refl
iff-⇔ (yes x) (no ¬y) = refl
| {
"alphanum_fraction": 0.4719722091,
"avg_line_length": 25.743902439,
"ext": "agda",
"hexsha": "59cb9f34e7e10aac67ff77cffd26bbe070da660f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/plfa-exercises/part1/Decidable.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/plfa-exercises/part1/Decidable.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/plfa-exercises/part1/Decidable.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3163,
"size": 6333
} |
-- Andreas, 2014-08-28, reported by Jacques Carette
{-# OPTIONS --cubical-compatible #-}
-- {-# OPTIONS -v term:20 #-}
module _ where
data Bool : Set where true false : Bool
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
module Sort (A : Set) ( _≤_ : A → A → Bool) where
insert : A → List A → List A
insert x [] = []
insert x (y ∷ ys) with x ≤ y
... | true = x ∷ (y ∷ ys)
... | false = y ∷ insert x ys
-- Should termination check.
-- (Did not because while with lhss were not inlined, with-calls still were.)
| {
"alphanum_fraction": 0.5873873874,
"avg_line_length": 22.2,
"ext": "agda",
"hexsha": "be09451c2094cded122ccc24cbb43b65674711f3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue1259.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue1259.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue1259.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 184,
"size": 555
} |
data _≡_ {ℓ}{A : Set ℓ} (x : A) : A → Set ℓ where
refl : x ≡ x
record Box (B : Set) : Set₁ where
constructor box
field
unbox : B
open Box public
=box :{B : Set}{Γ₀ Γ₁ : Box B} → _≡_ {A = B} (unbox Γ₀) (unbox Γ₁) → Γ₀ ≡ Γ₁
=box {b} {box unbox} {box .unbox} refl = ?
-- WAS: internal error at src/full/Agda/TypeChecking/Rules/LHS.hs:294
-- SHOULD: complain about misplaced projection pattern
| {
"alphanum_fraction": 0.6157635468,
"avg_line_length": 25.375,
"ext": "agda",
"hexsha": "f7e7fce12888503a1c7e6e110150dec2cd171f25",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3491.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3491.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3491.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 164,
"size": 406
} |
module _ where
open import Agda.Builtin.Nat hiding (_+_)
import Agda.Builtin.Nat as N
open import Agda.Builtin.TrustMe
open import Agda.Builtin.Equality
open import Agda.Builtin.Sigma
data ⊥ : Set where
module SimplifiedTestCase where
record Fin : Set where
constructor mkFin
field m .p : Nat
module _ (m : Nat) .(k : Nat) where
w : Fin
w = mkFin m k
mutual
X : Fin
X = _
-- Worked if removing this
constr₁ : Fin.m X ≡ m
constr₁ = refl
constr₂ : X ≡ w
constr₂ = refl
module OriginalTestCase where
record Fin (n : Nat) : Set where
constructor mkFin
field
m : Nat
.p : Σ Nat λ k → (Nat.suc k N.+ m) ≡ n
apply2 : {t₁ : Set} {t₂ : Set} {a b : t₁} → (f : t₁ → t₂) → a ≡ b → f a ≡ f b
apply2 f refl = refl
private
lem : ∀ m → .(Σ Nat λ x → (suc (x N.+ m) ≡ 0)) → ⊥
lem _ (_ , ())
S : ∀ {n} → Fin n → Fin (suc n)
S (mkFin a (k , p)) = mkFin (suc a) (suc k , primTrustMe)
to : ∀ {n} → Fin n → Fin n
to record { m = zero ; p = p } = record { m = zero ; p = p }
to {zero} record { m = (suc m) ; p = p } with lem (suc m) p
... | ()
to {suc n} record { m = (suc m) ; p = (k , p) } = S (to record { m = m ; p = k , primTrustMe })
from = to
iso : ∀ {n} → (x : Fin n) → from (to x) ≡ x
iso {zero} record { m = m ; p = p } with lem m p
... | ()
iso {suc n} record { m = zero ; p = p } = refl
iso {suc n} record { m = (suc m) ; p = p@(k , _) } =
let
w : Fin n
w = mkFin m (k , primTrustMe)
v : S (from (to w)) ≡ S w
v = apply2 {b = _} S (iso w)
in v
| {
"alphanum_fraction": 0.5065096094,
"avg_line_length": 22.095890411,
"ext": "agda",
"hexsha": "9bf2f6846f0c4af7730a9ffa2518e0a0fdc84100",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue3031.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue3031.agda",
"max_line_length": 97,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue3031.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 630,
"size": 1613
} |
{-
This second-order term syntax was created from the following second-order syntax description:
syntax UTLC | Λ
type
* : 0-ary
term
app : * * -> * | _$_ l20
lam : *.* -> * | ƛ_ r10
theory
(ƛβ) b : *.* a : * |> app (lam (x.b[x]), a) = b[a]
(ƛη) f : * |> lam (x.app (f, x)) = f
(lβ) b : *.* a : * |> letd (a, x. b) = b[a]
-}
module UTLC.Syntax where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Construction.Structure
open import SOAS.ContextMaps.Inductive
open import SOAS.Metatheory.Syntax
open import UTLC.Signature
private
variable
Γ Δ Π : Ctx
α : *T
𝔛 : Familyₛ
-- Inductive term declaration
module Λ:Terms (𝔛 : Familyₛ) where
data Λ : Familyₛ where
var : ℐ ⇾̣ Λ
mvar : 𝔛 α Π → Sub Λ Π Γ → Λ α Γ
_$_ : Λ * Γ → Λ * Γ → Λ * Γ
ƛ_ : Λ * (* ∙ Γ) → Λ * Γ
infixl 20 _$_
infixr 10 ƛ_
open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛
Λᵃ : MetaAlg Λ
Λᵃ = record
{ 𝑎𝑙𝑔 = λ where
(appₒ ⋮ a , b) → _$_ a b
(lamₒ ⋮ a) → ƛ_ a
; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) }
module Λᵃ = MetaAlg Λᵃ
module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where
open MetaAlg 𝒜ᵃ
𝕤𝕖𝕞 : Λ ⇾̣ 𝒜
𝕊 : Sub Λ Π Γ → Π ~[ 𝒜 ]↝ Γ
𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t
𝕊 (t ◂ σ) (old v) = 𝕊 σ v
𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε)
𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v
𝕤𝕖𝕞 (_$_ a b) = 𝑎𝑙𝑔 (appₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b)
𝕤𝕖𝕞 (ƛ_ a) = 𝑎𝑙𝑔 (lamₒ ⋮ 𝕤𝕖𝕞 a)
𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Λᵃ 𝒜ᵃ 𝕤𝕖𝕞
𝕤𝕖𝕞ᵃ⇒ = record
{ ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t }
; ⟨𝑣𝑎𝑟⟩ = refl
; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } }
where
open ≡-Reasoning
⟨𝑎𝑙𝑔⟩ : (t : ⅀ Λ α Γ) → 𝕤𝕖𝕞 (Λᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t)
⟨𝑎𝑙𝑔⟩ (appₒ ⋮ _) = refl
⟨𝑎𝑙𝑔⟩ (lamₒ ⋮ _) = refl
𝕊-tab : (mε : Π ~[ Λ ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v)
𝕊-tab mε new = refl
𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v
module _ (g : Λ ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ Λᵃ 𝒜ᵃ g) where
open MetaAlg⇒ gᵃ⇒
𝕤𝕖𝕞! : (t : Λ α Γ) → 𝕤𝕖𝕞 t ≡ g t
𝕊-ix : (mε : Sub Λ Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v)
𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x
𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v
𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε))
= trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε))
𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩
𝕤𝕖𝕞! (_$_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩
𝕤𝕖𝕞! (ƛ_ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩
-- Syntax instance for the signature
Λ:Syn : Syntax
Λ:Syn = record
{ ⅀F = ⅀F
; ⅀:CS = ⅀:CompatStr
; mvarᵢ = Λ:Terms.mvar
; 𝕋:Init = λ 𝔛 → let open Λ:Terms 𝔛 in record
{ ⊥ = Λ ⋉ Λᵃ
; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ }
; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } }
-- Instantiation of the syntax and metatheory
open Syntax Λ:Syn public
open Λ:Terms public
open import SOAS.Families.Build public
open import SOAS.Syntax.Shorthands Λᵃ public
open import SOAS.Metatheory Λ:Syn public
-- Derived operations
letd : Λ 𝔛 * Γ → Λ 𝔛 * (* ∙ Γ) → Λ 𝔛 * Γ
letd a b = (ƛ b) $ a
| {
"alphanum_fraction": 0.520846494,
"avg_line_length": 24.5426356589,
"ext": "agda",
"hexsha": "23e4ce3007eb989d68cabd25f5f05653d961174a",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/UTLC/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/UTLC/Syntax.agda",
"max_line_length": 93,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/UTLC/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 2007,
"size": 3166
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Reduction {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Typed
open import Definition.Typed.Properties
import Definition.Typed.Weakening as Wk
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties.Reflexivity
open import Definition.LogicalRelation.Properties.Universe
open import Definition.LogicalRelation.Properties.Escape
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Weak head expansion of reducible types.
redSubst* : ∀ {A B l Γ}
→ Γ ⊢ A ⇒* B
→ Γ ⊩⟨ l ⟩ B
→ ∃ λ ([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ A ≡ B / [A]
redSubst* D (Uᵣ′ l′ l< ⊢Γ) rewrite redU* D =
Uᵣ′ l′ l< ⊢Γ , PE.refl
redSubst* D (ℕᵣ [ ⊢B , ⊢ℕ , D′ ]) =
let ⊢A = redFirst* D
in ℕᵣ ([ ⊢A , ⊢ℕ , D ⇨* D′ ]) , D′
redSubst* D (Emptyᵣ [ ⊢B , ⊢Empty , D′ ]) =
let ⊢A = redFirst* D
in Emptyᵣ ([ ⊢A , ⊢Empty , D ⇨* D′ ]) , D′
redSubst* D (Unitᵣ [ ⊢B , ⊢Unit , D′ ]) =
let ⊢A = redFirst* D
in Unitᵣ ([ ⊢A , ⊢Unit , D ⇨* D′ ]) , D′
redSubst* D (ne′ K [ ⊢B , ⊢K , D′ ] neK K≡K) =
let ⊢A = redFirst* D
in (ne′ K [ ⊢A , ⊢K , D ⇨* D′ ] neK K≡K)
, (ne₌ _ [ ⊢B , ⊢K , D′ ] neK K≡K)
redSubst* D (Bᵣ′ W F G [ ⊢B , ⊢ΠFG , D′ ] ⊢F ⊢G A≡A [F] [G] G-ext) =
let ⊢A = redFirst* D
in (Bᵣ′ W F G [ ⊢A , ⊢ΠFG , D ⇨* D′ ] ⊢F ⊢G A≡A [F] [G] G-ext)
, (B₌ _ _ D′ A≡A (λ ρ ⊢Δ → reflEq ([F] ρ ⊢Δ))
(λ ρ ⊢Δ [a] → reflEq ([G] ρ ⊢Δ [a])))
redSubst* D (emb 0<1 x) with redSubst* D x
redSubst* D (emb 0<1 x) | y , y₁ = emb 0<1 y , y₁
-- Weak head expansion of reducible terms.
redSubst*Term : ∀ {A t u l Γ}
→ Γ ⊢ t ⇒* u ∷ A
→ ([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ u ∷ A / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A / [A]
× Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A]
redSubst*Term t⇒u (Uᵣ′ .⁰ 0<1 ⊢Γ) (Uₜ A [ ⊢t , ⊢u , d ] typeA A≡A [u]) =
let [d] = [ ⊢t , ⊢u , d ]
[d′] = [ redFirst*Term t⇒u , ⊢u , t⇒u ⇨∷* d ]
q = redSubst* (univ* t⇒u) (univEq (Uᵣ′ ⁰ 0<1 ⊢Γ) (Uₜ A [d] typeA A≡A [u]))
in Uₜ A [d′] typeA A≡A (proj₁ q)
, Uₜ₌ A A [d′] [d] typeA typeA A≡A (proj₁ q) [u] (proj₂ q)
redSubst*Term t⇒u (ℕᵣ D) (ℕₜ n [ ⊢u , ⊢n , d ] n≡n prop) =
let A≡ℕ = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡ℕ
t⇒u′ = conv* t⇒u A≡ℕ
in ℕₜ n [ ⊢t , ⊢n , t⇒u′ ⇨∷* d ] n≡n prop
, ℕₜ₌ n n [ ⊢t , ⊢n , t⇒u′ ⇨∷* d ] [ ⊢u , ⊢n , d ]
n≡n (reflNatural-prop prop)
redSubst*Term t⇒u (Emptyᵣ D) (Emptyₜ n [ ⊢u , ⊢n , d ] n≡n prop) =
let A≡Empty = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡Empty
t⇒u′ = conv* t⇒u A≡Empty
in Emptyₜ n [ ⊢t , ⊢n , t⇒u′ ⇨∷* d ] n≡n prop
, Emptyₜ₌ n n [ ⊢t , ⊢n , t⇒u′ ⇨∷* d ] [ ⊢u , ⊢n , d ]
n≡n (reflEmpty-prop prop)
redSubst*Term t⇒u (Unitᵣ D) (Unitₜ n [ ⊢u , ⊢n , d ] prop) =
let A≡Unit = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡Unit
t⇒u′ = conv* t⇒u A≡Unit
in Unitₜ n [ ⊢t , ⊢n , t⇒u′ ⇨∷* d ] prop
, Unitₜ₌ ⊢t ⊢u
redSubst*Term t⇒u (ne′ K D neK K≡K) (neₜ k [ ⊢t , ⊢u , d ] (neNfₜ neK₁ ⊢k k≡k)) =
let A≡K = subset* (red D)
[d] = [ ⊢t , ⊢u , d ]
[d′] = [ conv (redFirst*Term t⇒u) A≡K , ⊢u , conv* t⇒u A≡K ⇨∷* d ]
in neₜ k [d′] (neNfₜ neK₁ ⊢k k≡k) , neₜ₌ k k [d′] [d] (neNfₜ₌ neK₁ neK₁ k≡k)
redSubst*Term {A} {t} {u} {l} {Γ} t⇒u (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
[u]@(Πₜ f [d]@([ ⊢t , ⊢u , d ]) funcF f≡f [f] [f]₁) =
let A≡ΠFG = subset* (red D)
t⇒u′ = conv* t⇒u A≡ΠFG
[d′] = [ conv (redFirst*Term t⇒u) A≡ΠFG , ⊢u , conv* t⇒u A≡ΠFG ⇨∷* d ]
[u′] = Πₜ f [d′] funcF f≡f [f] [f]₁
in [u′]
, Πₜ₌ f f [d′] [d] funcF funcF f≡f [u′] [u]
(λ [ρ] ⊢Δ [a] → reflEqTerm ([G] [ρ] ⊢Δ [a]) ([f]₁ [ρ] ⊢Δ [a]))
redSubst*Term {A} {t} {u} {l} {Γ} t⇒u (Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
[u]@(Σₜ p [d]@([ ⊢t , ⊢u , d ]) pProd p≅p [fst] [snd]) =
let A≡ΣFG = subset* (red D)
t⇒u′ = conv* t⇒u A≡ΣFG
[d′] = [ conv (redFirst*Term t⇒u) A≡ΣFG , ⊢u , conv* t⇒u A≡ΣFG ⇨∷* d ]
[u′] = Σₜ p [d′] pProd p≅p [fst] [snd]
in [u′]
, Σₜ₌ p p [d′] [d] pProd pProd p≅p [u′] [u] [fst] [fst]
(reflEqTerm ([F] Wk.id (wf ⊢F)) [fst])
(reflEqTerm ([G] Wk.id (wf ⊢F) [fst]) [snd])
redSubst*Term t⇒u (emb 0<1 x) [u] = redSubst*Term t⇒u x [u]
-- Weak head expansion of reducible types with single reduction step.
redSubst : ∀ {A B l Γ}
→ Γ ⊢ A ⇒ B
→ Γ ⊩⟨ l ⟩ B
→ ∃ λ ([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ A ≡ B / [A]
redSubst A⇒B [B] = redSubst* (A⇒B ⇨ id (escape [B])) [B]
-- Weak head expansion of reducible terms with single reduction step.
redSubstTerm : ∀ {A t u l Γ}
→ Γ ⊢ t ⇒ u ∷ A
→ ([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ u ∷ A / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A / [A]
× Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A]
redSubstTerm t⇒u [A] [u] = redSubst*Term (t⇒u ⇨ id (escapeTerm [A] [u])) [A] [u]
| {
"alphanum_fraction": 0.4723210755,
"avg_line_length": 40.464,
"ext": "agda",
"hexsha": "fe326f0e62ec9144ad25edb4802540b0a9cb8322",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Reduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Reduction.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2696,
"size": 5058
} |
------------------------------------------------------------------------
-- Call-by-value (CBV) reduction in Fω with interval kinds.
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Reduction.Cbv where
open import Data.Fin.Substitution
open import Data.Fin.Substitution.ExtraLemmas
import Relation.Binary.Construct.Closure.Equivalence as EqClos
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
using (map; gmap)
import Relation.Binary.PropositionalEquality as PropEq
open import Relation.Binary.Reduction
open import FOmegaInt.Syntax
open import FOmegaInt.Reduction.Full
open Syntax
open Substitution using (_[_])
----------------------------------------------------------------------
-- Call-by-value (CBV) reduction and equivalence relations
-- Untyped term values with up to n free variables.
data Val {n} : Term n → Set where
Λ : ∀ k a → Val (Λ k a) -- type abstraction
ƛ : ∀ a b → Val (ƛ a b) -- term abstraction
infixl 9 _·₁_ _·₂_ _⊡_
infix 5 _→v_
-- One-step CBV reduction.
data _→v_ {n} : Term n → Term n → Set where
cont-· : ∀ a b {c} (v : Val c) → (ƛ a b) · c →v b [ c ]
cont-⊡ : ∀ k a b → (Λ k a) ⊡ b →v a [ b ]
_·₁_ : ∀ {a₁ a₂} → a₁ →v a₂ → ∀ b → a₁ · b →v a₂ · b
_·₂_ : ∀ {a b₁ b₂} (v : Val a) → b₁ →v b₂ → a · b₁ →v a · b₂
_⊡_ : ∀ {a₁ a₂} → a₁ →v a₂ → ∀ b → a₁ ⊡ b →v a₂ ⊡ b
reduction : Reduction Term
reduction = record { _→1_ = _→v_ }
-- CBV reduction and equivalence.
open Reduction reduction public renaming (_→*_ to _→v*_; _↔_ to _≡v_)
----------------------------------------------------------------------
-- Simple properties of the CBV reductions/equivalence
-- Inclusions.
→v⇒→v* = →1⇒→* reduction
→v*⇒≡v = →*⇒↔ reduction
→v⇒≡v = →1⇒↔ reduction
-- CBV reduction is a preorder.
→v*-predorder = →*-preorder reduction
-- Preorder reasoning for CBV reduction.
module →v*-Reasoning = →*-Reasoning reduction
-- Terms together with CBV equivalence form a setoid.
≡v-setoid = ↔-setoid reduction
-- Equational reasoning for CBV equivalence.
module ≡v-Reasoning = ↔-Reasoning reduction
----------------------------------------------------------------------
-- Relationships between CBV reduction and full β-reduction
-- One-step CBV reduction implies one-step β-reduction.
→v⇒→β : ∀ {n} {a b : Term n} → a →v b → a →β b
→v⇒→β (cont-· a b c) = ⌈ cont-Tm· a b _ ⌉
→v⇒→β (cont-⊡ k a b) = ⌈ cont-⊡ k a b ⌉
→v⇒→β (a₁→a₂ ·₁ b) = →v⇒→β a₁→a₂ ·₁ b
→v⇒→β (a ·₂ b₁→b₂) = _ ·₂ →v⇒→β b₁→b₂
→v⇒→β (a₁→a₂ ⊡ b) = →v⇒→β a₁→a₂ ⊡₁ b
-- CBV reduction implies β-reduction.
→v*⇒→β* : ∀ {n} {a b : Term n} → a →v* b → a →β* b
→v*⇒→β* = map →v⇒→β
-- CBV equivalence implies β-equivalence.
≡v⇒≡β : ∀ {n} {a b : Term n} → a ≡v b → a ≡β b
≡v⇒≡β = EqClos.map →v⇒→β
| {
"alphanum_fraction": 0.5376044568,
"avg_line_length": 32.6363636364,
"ext": "agda",
"hexsha": "72565aed2b064743068165f82c91e802f325c39f",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z",
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Reduction/Cbv.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Reduction/Cbv.agda",
"max_line_length": 72,
"max_stars_count": 12,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Reduction/Cbv.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z",
"num_tokens": 1021,
"size": 2872
} |
module int-tests where
open import int
open import eq
open import product
three : ℤ
three = , next next unit{pos}
-two : ℤ
-two = , next unit{neg}
one = -two +ℤ three
one-lem : one ≡ ,_ { a = nonzero pos } unit
one-lem = refl
six = three +ℤ three
-four = -two +ℤ -two
| {
"alphanum_fraction": 0.6413043478,
"avg_line_length": 12.5454545455,
"ext": "agda",
"hexsha": "50c327ac52fdef87e03cb1ac027f1b4bea1963bb",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "cruft/int-tests.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "cruft/int-tests.agda",
"max_line_length": 43,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "cruft/int-tests.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 94,
"size": 276
} |
module Luau.Heap where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (Maybe; just)
open import FFI.Data.Vector using (Vector; length; snoc; empty)
open import Luau.Addr using (Addr)
open import Luau.Var using (Var)
open import Luau.Syntax using (Block; Expr; Annotated; FunDec; nil; addr; function_is_end)
data HeapValue (a : Annotated) : Set where
function_is_end : FunDec a → Block a → HeapValue a
Heap : Annotated → Set
Heap a = Vector (HeapValue a)
data _≡_⊕_↦_ {a} : Heap a → Heap a → Addr → HeapValue a → Set where
defn : ∀ {H val} →
-----------------------------------
(snoc H val) ≡ H ⊕ (length H) ↦ val
_[_] : ∀ {a} → Heap a → Addr → Maybe (HeapValue a)
_[_] = FFI.Data.Vector.lookup
∅ : ∀ {a} → Heap a
∅ = empty
data AllocResult a (H : Heap a) (V : HeapValue a) : Set where
ok : ∀ b H′ → (H′ ≡ H ⊕ b ↦ V) → AllocResult a H V
alloc : ∀ {a} H V → AllocResult a H V
alloc H V = ok (length H) (snoc H V) defn
next : ∀ {a} → Heap a → Addr
next = length
allocated : ∀ {a} → Heap a → HeapValue a → Heap a
allocated = snoc
-- next-emp : (length ∅ ≡ 0)
next-emp = FFI.Data.Vector.length-empty
-- lookup-next : ∀ V H → (lookup (allocated H V) (next H) ≡ just V)
lookup-next = FFI.Data.Vector.lookup-snoc
-- lookup-next-emp : ∀ V → (lookup (allocated emp V) 0 ≡ just V)
lookup-next-emp = FFI.Data.Vector.lookup-snoc-empty
| {
"alphanum_fraction": 0.6293352601,
"avg_line_length": 27.68,
"ext": "agda",
"hexsha": "12f8dab07b931fdec0a39426b4b6b3b0b398770f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Luau/Heap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Luau/Heap.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Luau/Heap.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 462,
"size": 1384
} |
open import Functional hiding (Domain)
import Structure.Logic.Classical.NaturalDeduction
import Structure.Logic.Classical.SetTheory.ZFC
module Structure.Logic.Classical.SetTheory.ZFC.BinaryRelatorSet {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic : _ ⦄ (_∈_ : Domain → Domain → Formula) ⦃ signature : _ ⦄ where
open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicLogic)
open Structure.Logic.Classical.SetTheory.ZFC.Signature {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic ⦄ {_∈_} (signature)
open import Structure.Logic.Classical.SetTheory.SetBoundedQuantification ⦃ classicLogic ⦄ (_∈_)
-- Like:
-- (x,f(x)) = (x , y)
-- f = {(x , y)}
-- = {{{x},{x,y}}}
-- ⋃f = {{x},{x,y}}
-- ⋃²f = {x,y}
lefts : Domain → Domain
lefts(s) = filter(⋃(⋃ s)) (x ↦ ∃ₗ(y ↦ (x , y) ∈ s))
rights : Domain → Domain
rights(s) = filter(⋃(⋃ s)) (y ↦ ∃ₗ(x ↦ (x , y) ∈ s))
leftsOfMany : Domain → Domain → Domain
leftsOfMany f(S) = filter(⋃(⋃ f)) (a ↦ ∃ₛ(S)(y ↦ (a , y) ∈ f))
rightsOfMany : Domain → Domain → Domain
rightsOfMany f(S) = filter(⋃(⋃ f)) (a ↦ ∃ₛ(S)(x ↦ (x , a) ∈ f))
leftsOf : Domain → Domain → Domain
leftsOf f(y) = leftsOfMany f(singleton(y))
rightsOf : Domain → Domain → Domain
rightsOf f(x) = rightsOfMany f(singleton(x))
-- swap : Domain → Domain
-- swap(s) = filter(rights(s) ⨯ left(s)) (xy ↦ )
| {
"alphanum_fraction": 0.6342161775,
"avg_line_length": 37.7567567568,
"ext": "agda",
"hexsha": "dd807214f9bfc86abcbe44e4e52c766fa6341bbb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/BinaryRelatorSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/BinaryRelatorSet.agda",
"max_line_length": 185,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/BinaryRelatorSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 551,
"size": 1397
} |
open import Data.Bool using ( Bool ; true ; false ; _∧_ )
open import Data.Product using ( _×_ )
open import Relation.Binary.PropositionalEquality using ( _≡_ )
open import Relation.Unary using ( _∈_ )
open import Web.Semantic.DL.Concept using
( Concept ; ⟨_⟩ ; ¬⟨_⟩ ; ⊤ ; ⊥ ; _⊓_ ; _⊔_ ; ∀[_]_ ; ∃⟨_⟩_ ; ≤1 ; >1 )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using
( TBox ; ε ; _,_ ;_⊑₁_ ; _⊑₂_ ; Dis ; Ref ; Irr ; Tra )
open import Web.Semantic.Util using ( Subset ; □ ; □-proj₁ ; □-proj₂ )
module Web.Semantic.DL.TBox.Minimizable {Σ : Signature} where
data LHS : Subset (Concept Σ) where
⟨_⟩ : ∀ c → ⟨ c ⟩ ∈ LHS
⊤ : ⊤ ∈ LHS
⊥ : ⊥ ∈ LHS
_⊓_ : ∀ {C D} → (C ∈ LHS) → (D ∈ LHS) → ((C ⊓ D) ∈ LHS)
_⊔_ : ∀ {C D} → (C ∈ LHS) → (D ∈ LHS) → ((C ⊔ D) ∈ LHS)
∃⟨_⟩_ : ∀ R {C} → (C ∈ LHS) → ((∃⟨ R ⟩ C) ∈ LHS)
data RHS : Subset (Concept Σ) where
⟨_⟩ : ∀ c → ⟨ c ⟩ ∈ RHS
⊤ : ⊤ ∈ RHS
_⊓_ : ∀ {C D} → (C ∈ RHS) → (D ∈ RHS) → ((C ⊓ D) ∈ RHS)
∀[_]_ : ∀ R {C} → (C ∈ RHS) → ((∀[ R ] C) ∈ RHS)
≤1 : ∀ R → ((≤1 R) ∈ RHS)
data μTBox : Subset (TBox Σ) where
ε : μTBox ε
_,_ : ∀ {T U} → (T ∈ μTBox) → (U ∈ μTBox) → ((T , U) ∈ μTBox)
_⊑₁_ : ∀ {C D} → (C ∈ LHS) → (D ∈ RHS) → ((C ⊑₁ D) ∈ μTBox)
_⊑₂_ : ∀ Q R → ((Q ⊑₂ R) ∈ μTBox)
Ref : ∀ R → (Ref R ∈ μTBox)
Tra : ∀ R → (Tra R ∈ μTBox)
lhs? : Concept Σ → Bool
lhs? ⟨ c ⟩ = true
lhs? ¬⟨ c ⟩ = false
lhs? ⊤ = true
lhs? ⊥ = true
lhs? (C ⊓ D) = lhs? C ∧ lhs? D
lhs? (C ⊔ D) = lhs? C ∧ lhs? D
lhs? (∀[ R ] C) = false
lhs? (∃⟨ R ⟩ C) = lhs? C
lhs? (≤1 R) = false
lhs? (>1 R) = false
lhs : ∀ C {C✓ : □(lhs? C)} → LHS C
lhs ⟨ c ⟩ = ⟨ c ⟩
lhs ⊤ = ⊤
lhs ⊥ = ⊥
lhs (C ⊓ D) {C⊓D✓} = lhs C {□-proj₁ C⊓D✓} ⊓ lhs D {□-proj₂ {lhs? C} C⊓D✓}
lhs (C ⊔ D) {C⊔D✓} = lhs C {□-proj₁ C⊔D✓} ⊔ lhs D {□-proj₂ {lhs? C} C⊔D✓}
lhs (∃⟨ R ⟩ C) {C✓} = ∃⟨ R ⟩ (lhs C {C✓})
lhs ¬⟨ c ⟩ {}
lhs (∀[ R ] C) {}
lhs (≤1 R) {}
lhs (>1 R) {}
rhs? : Concept Σ → Bool
rhs? ⟨ c ⟩ = true
rhs? ¬⟨ c ⟩ = false
rhs? ⊤ = true
rhs? ⊥ = false
rhs? (C ⊓ D) = rhs? C ∧ rhs? D
rhs? (C ⊔ D) = false
rhs? (∀[ R ] C) = rhs? C
rhs? (∃⟨ R ⟩ C) = false
rhs? (≤1 R) = true
rhs? (>1 R) = false
rhs : ∀ C {C✓ : □(rhs? C)} → RHS C
rhs ⟨ c ⟩ = ⟨ c ⟩
rhs ⊤ = ⊤
rhs (C ⊓ D) {C⊓D✓} = rhs C {□-proj₁ C⊓D✓} ⊓ rhs D {□-proj₂ {rhs? C} C⊓D✓}
rhs (∀[ R ] C) {C✓} = ∀[ R ] (rhs C {C✓})
rhs (≤1 R) = ≤1 R
rhs ⊥ {}
rhs ¬⟨ c ⟩ {}
rhs (C ⊔ D) {}
rhs (∃⟨ R ⟩ C) {}
rhs (>1 R) {}
μTBox? : TBox Σ → Bool
μTBox? ε = true
μTBox? (T , U) = μTBox? T ∧ μTBox? U
μTBox? (C ⊑₁ D) = lhs? C ∧ rhs? D
μTBox? (Q ⊑₂ R) = true
μTBox? (Dis Q R) = false
μTBox? (Ref R) = true
μTBox? (Irr R) = false
μTBox? (Tra R) = true
μtBox : ∀ T {T✓ : □(μTBox? T)} → μTBox T
μtBox ε = ε
μtBox (T , U) {TU✓} = (μtBox T {□-proj₁ TU✓} , μtBox U {□-proj₂ {μTBox? T} TU✓})
μtBox (C ⊑₁ D) {C⊑D✓} = lhs C {□-proj₁ C⊑D✓} ⊑₁ rhs D {□-proj₂ {lhs? C} C⊑D✓}
μtBox (Q ⊑₂ R) = Q ⊑₂ R
μtBox (Ref R) = Ref R
μtBox (Tra R) = Tra R
μtBox (Dis Q R) {}
μtBox (Irr R) {}
| {
"alphanum_fraction": 0.431670282,
"avg_line_length": 31.0288461538,
"ext": "agda",
"hexsha": "cbdc0a4377dd63906550e7b914280550364c5520",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/TBox/Minimizable.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/TBox/Minimizable.agda",
"max_line_length": 82,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/TBox/Minimizable.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1645,
"size": 3227
} |
-- Jesper, 2018-05-17: Fixed internal error. Now the second clause is
-- marked as unreachable (which is perhaps reasonable) and the first
-- clause is marked as not satisfying --exact-split (which is perhaps
-- unreasonable). To fix this properly, we would need to keep track of
-- excluded literals for not just pattern variables but also dot
-- patterns (and perhaps in other places as well).
open import Agda.Builtin.Char
open import Agda.Builtin.Equality
test : (c : Char) → c ≡ 'a' → Set
test 'a' _ = Char
test .'a' refl = Char
| {
"alphanum_fraction": 0.729981378,
"avg_line_length": 38.3571428571,
"ext": "agda",
"hexsha": "7bd5cc478867a6e64e29a849f01668b58bada662",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3065.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3065.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3065.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 141,
"size": 537
} |
------------------------------------------------------------------------------
-- We only translate first-order definitions
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
------------------------------------------------------------------------------
postulate
D : Set
_≡_ : D → D → Set
succ : D → D
-- A higher-order definition
twice : (D → D) → D → D
twice f x = f (f x)
{-# ATP definition twice #-}
postulate twice-succ : ∀ n → twice succ n ≡ succ (succ n)
{-# ATP prove twice-succ #-}
| {
"alphanum_fraction": 0.3620933522,
"avg_line_length": 29.4583333333,
"ext": "agda",
"hexsha": "d944f1e3532538d38fb8bfcc1afa00db974b3224",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Fail/Errors/HigherOrderDefinition.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Fail/Errors/HigherOrderDefinition.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Fail/Errors/HigherOrderDefinition.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 135,
"size": 707
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- "Finite" sets indexed on coinductive "natural" numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Cofin where
open import Size
open import Codata.Thunk
open import Codata.Conat as Conat using (Conat; zero; suc; infinity; _ℕ<_; sℕ≤s; _ℕ≤infinity)
open import Codata.Conat.Bisimilarity as Bisim using (_⊢_≲_ ; s≲s)
open import Data.Nat
open import Data.Fin as Fin hiding (fromℕ; fromℕ≤; toℕ)
open import Function
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- The type
-- Note that `Cofin infnity` is /not/ finite. Note also that this is not a
-- coinductive type, but it is indexed on a coinductive type.
data Cofin : Conat ∞ → Set where
zero : ∀ {n} → Cofin (suc n)
suc : ∀ {n} → Cofin (n .force) → Cofin (suc n)
suc-injective : ∀ {n} {p q : Cofin (n .force)} →
(Cofin (suc n) ∋ suc p) ≡ suc q → p ≡ q
suc-injective refl = refl
------------------------------------------------------------------------
-- Some operations
fromℕ< : ∀ {n k} → k ℕ< n → Cofin n
fromℕ< {zero} ()
fromℕ< {suc n} {zero} (sℕ≤s p) = zero
fromℕ< {suc n} {suc k} (sℕ≤s p) = suc (fromℕ< p)
fromℕ : ℕ → Cofin infinity
fromℕ k = fromℕ< (suc k ℕ≤infinity)
toℕ : ∀ {n} → Cofin n → ℕ
toℕ zero = zero
toℕ (suc i) = suc (toℕ i)
fromFin : ∀ {n} → Fin n → Cofin (Conat.fromℕ n)
fromFin zero = zero
fromFin (suc i) = suc (fromFin i)
toFin : ∀ n → Cofin (Conat.fromℕ n) → Fin n
toFin zero ()
toFin (suc n) zero = zero
toFin (suc n) (suc i) = suc (toFin n i)
| {
"alphanum_fraction": 0.5323782235,
"avg_line_length": 30.6140350877,
"ext": "agda",
"hexsha": "3e408fb8bfdbeb29d04376ef0dfd0a1cf3c21dab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Cofin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Cofin.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Cofin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 589,
"size": 1745
} |
-- Andreas, 2016-11-02, issue #2290
postulate
A : Set
a : A
F : Set → Set
mutual
data D : A → _ where
FDa = F (D a)
-- ERROR WAS:
-- The sort of D cannot depend on its indices in the type A → Set _7
-- Should pass.
mutual
data E : (x : A) → _ where
FEa = F (E a)
| {
"alphanum_fraction": 0.5744680851,
"avg_line_length": 14.1,
"ext": "agda",
"hexsha": "dbb38c7a8dfce912a9a5cb8f5d697f78ec331447",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2290.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2290.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2290.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 109,
"size": 282
} |
open import Agda.Primitive using (_⊔_)
-- Set being type of all types (which is infinitely nested as Set₀ Set₁ etc
postulate
String : Set
{-# BUILTIN STRING String #-}
data bool : Set where
tt : bool
ff : bool
ex₀ : bool → String
ex₀ tt = "true"
ex₀ ff = "false"
-- parameterization over all "Sets"
-- otherwise we are limited to types that ∈ Set
if_then_else_ : ∀ { ℓ } { A : Set ℓ } → bool → A → A → A
if tt then x else y = x
if ff then x else y = y
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_plus_ : ℕ → ℕ → ℕ
zero plus n = n
succ m plus n = succ (m plus n)
ex₁ : ℕ
ex₁ = 5
data [_] (A : Set) : Set where
♢ : [ A ]
_,_ : A → [ A ] → [ A ]
infixr 6 _,_
_++_ : ∀{ α } → [ α ] → [ α ] → [ α ]
♢ ++ ys = ys
(x , xs) ++ ys = x , xs ++ ys
ex₂ : [ ℕ ]
ex₂ = 5 , 6 , ♢
-- why is this equivalent to
--data _≡_ { α : Set } (x : α) : α → Set where
-- refl : x ≡ x
-- syntactical identity
data _≡_ { ℓ } { α : Set ℓ} : α → α → Set ℓ where
refl : ∀ { x : α } → x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
data ⊥ : Set where
ex₃ : (2 plus 3) ≡ 5
ex₃ = refl
-- logical negation in intutionistic logic
ex₄ : 0 ≡ 1 → ⊥
ex₄ ()
cong : ∀ { ℓ } { A B : Set ℓ } → { a b : A } { f : A → B } → a ≡ b → f a ≡ f b
cong refl = refl
ex₅ : ∀ { n } → (n plus 0) ≡ n
ex₅ {zero} = refl
ex₅ {succ n1} = cong { f = succ } ex₅
-- rewrites and dot patterns ??
data _+_ (α : Set) (β : Set) : Set where
left : α → α + β
right : β → α + β
ex₆ : String + ℕ
ex₆ = left "foo"
ex₇ : String + ℕ
ex₇ = right 5
record _∨_ (α β : Set) : Set where
constructor _,_
field
fst : bool
snd : if fst then β else α
tosum : ∀ { α β } → α + β → α ∨ β
tosum (left a) = ff , a
tosum (right b) = tt , b
unsum : ∀ { α β } → α ∨ β → α + β
unsum (ff , a) = left a
unsum (tt , b) = right b
tosum∘unsum : ∀ { α β } → (p : α ∨ β) → (tosum (unsum p)) ≡ p
tosum∘unsum (tt , b) = refl
tosum∘unsum (ff , b) = refl
unsum∘tosum : ∀ { α β } → (p : α + β) → (unsum (tosum p)) ≡ p
unsum∘tosum (left a) = refl
unsum∘tosum (right b) = refl
--- Thus α + β is same as dependently typed α ∨ β. Further generalizing
record Σ (I : Set) (V : I -> Set) : Set where
constructor _,_
field
fst : I
snd : V fst
--- now α ∨ β can be written as
-- this is on the types, not on values
or : Set → Set → Set
or x y = Σ bool (λ b → if b then x else y)
-- assume V does not depend on I, we get products
twice : Set → Set
twice x = Σ bool (λ b → x)
| {
"alphanum_fraction": 0.5349022736,
"avg_line_length": 19.5859375,
"ext": "agda",
"hexsha": "6f9920b0deb6eb8e1115350107ba0a3525ee8032",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "117fbb0a28ff1891e0f3e10f7259ead0de4d114a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "curriedbanana/agda-exercises",
"max_forks_repo_path": "intro-to-agda/Begin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "117fbb0a28ff1891e0f3e10f7259ead0de4d114a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "curriedbanana/agda-exercises",
"max_issues_repo_path": "intro-to-agda/Begin.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "117fbb0a28ff1891e0f3e10f7259ead0de4d114a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "curriedbanana/agda-exercises",
"max_stars_repo_path": "intro-to-agda/Begin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1020,
"size": 2507
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import groups.Cokernel
open import groups.Image
import homotopy.ConstantToSetExtendsToProp as ConstExt
-- A collection of useful lemmas about exactness
module groups.Exactness where
module Exact {i j k} {G : Group i} {H : Group j} {K : Group k}
{φ : G →ᴳ H} {ψ : H →ᴳ K} (φ-ψ-is-exact : is-exact φ ψ) where
private
module G = Group G
module H = Group H
module K = Group K
module φ = GroupHom φ
module ψ = GroupHom ψ
module E = is-exact φ-ψ-is-exact
abstract
φ-const-implies-ψ-is-inj : (∀ g → φ.f g == H.ident) → is-injᴳ ψ
φ-const-implies-ψ-is-inj φ-is-const =
has-trivial-ker-is-injᴳ ψ λ h ψh=0 →
Trunc-rec (H.El-is-set _ _)
(λ{(g , φg=h) → ! φg=h ∙ φ-is-const g})
(E.ker-sub-im h ψh=0)
G-trivial-implies-ψ-is-inj : is-trivialᴳ G → is-injᴳ ψ
G-trivial-implies-ψ-is-inj G-is-triv =
φ-const-implies-ψ-is-inj λ g → ap φ.f (G-is-triv g) ∙ φ.pres-ident
G-to-ker : G →ᴳ Ker.grp ψ
G-to-ker = Ker.inject-lift ψ φ (λ g → E.im-sub-ker (φ.f g) [ g , idp ])
abstract
φ-inj-implies-G-to-ker-is-equiv : is-injᴳ φ → is-equiv (GroupHom.f G-to-ker)
φ-inj-implies-G-to-ker-is-equiv φ-is-inj = is-eq _ from to-from from-to
where
to : G.El → Ker.El ψ
to = GroupHom.f G-to-ker
module From (k : Ker.El ψ)
= ConstExt {A = hfiber φ.f (fst k)} {B = G.El}
G.El-is-set (λ hf → fst hf)
(λ hf₁ hf₂ → φ-is-inj _ _ (snd hf₁ ∙ ! (snd hf₂)))
from : Ker.El ψ → G.El
from = λ k → From.ext k (uncurry E.ker-sub-im k)
to-from : ∀ k → to (from k) == k
to-from k = Ker.El=-out ψ $
Trunc-elim
{P = λ hf → φ.f (From.ext k hf) == fst k}
(λ _ → H.El-is-set _ _)
(λ{(g , p) → p})
(uncurry E.ker-sub-im k)
from-to : ∀ g → from (to g) == g
from-to g = From.ext-is-const (to g) (uncurry E.ker-sub-im (to g)) [ g , idp ]
φ-inj-implies-G-iso-ker : is-injᴳ φ → G ≃ᴳ Ker.grp ψ
φ-inj-implies-G-iso-ker φ-is-inj = G-to-ker , φ-inj-implies-G-to-ker-is-equiv φ-is-inj
abstract
K-trivial-implies-φ-is-surj : is-trivialᴳ K → is-surjᴳ φ
K-trivial-implies-φ-is-surj K-is-triv h = E.ker-sub-im h (K-is-triv (ψ.f h))
coker-to-K : (H-is-abelian : is-abelian H) → Coker φ H-is-abelian →ᴳ K
coker-to-K H-is-abelian = record {M} where
module M where
module Cok = Coker φ H-is-abelian
abstract
f-rel : ∀ {h₁ h₂ : H.El} (h₁h₂⁻¹-in-im : SubgroupProp.prop (im-propᴳ φ) (H.diff h₁ h₂))
→ ψ.f h₁ == ψ.f h₂
f-rel {h₁} {h₂} h₁h₂⁻¹-in-im = K.zero-diff-same _ _ $
! (ψ.pres-diff h₁ h₂) ∙ E.im-sub-ker (H.diff h₁ h₂) h₁h₂⁻¹-in-im
f : Cok.El → K.El
f = SetQuot-rec K.El-is-set ψ.f f-rel
abstract
pres-comp : ∀ h₁ h₂ → f (Cok.comp h₁ h₂) == K.comp (f h₁) (f h₂)
pres-comp = SetQuot-elim
(λ _ → Π-is-set λ _ → =-preserves-set K.El-is-set)
(λ h₁ → SetQuot-elim
(λ _ → =-preserves-set K.El-is-set)
(λ h₂ → ψ.pres-comp h₁ h₂)
(λ _ → prop-has-all-paths-↓ (K.El-is-set _ _)))
(λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → K.El-is-set _ _))
abstract
ψ-surj-implies-coker-to-K-is-equiv : (H-is-abelian : is-abelian H)
→ is-surjᴳ ψ → is-equiv (GroupHom.f (coker-to-K H-is-abelian))
ψ-surj-implies-coker-to-K-is-equiv H-is-abelian ψ-is-surj =
is-eq to from to-from from-to
where
module Cok = Coker φ H-is-abelian
to : Cok.El → K.El
to = GroupHom.f (coker-to-K H-is-abelian)
module From (k : K.El)
= ConstExt {A = hfiber ψ.f k} {B = Cok.El}
Cok.El-is-set (λ hf → q[ fst hf ])
(λ{(h₁ , p₁) (h₂ , p₂) → quot-rel $
E.ker-sub-im (H.diff h₁ h₂) $
ψ.pres-diff h₁ h₂ ∙ ap2 K.diff p₁ p₂ ∙ K.inv-r k})
from : K.El → Cok.El
from k = From.ext k (ψ-is-surj k)
to-from : ∀ k → to (from k) == k
to-from k = Trunc-elim
{P = λ hf → to (From.ext k hf) == k}
(λ _ → K.El-is-set _ _)
(λ{(h , p) → p})
(ψ-is-surj k)
from-to : ∀ c → from (to c) == c
from-to = SetQuot-elim
(λ _ → =-preserves-set Cok.El-is-set)
(λ h → From.ext-is-const (ψ.f h) (ψ-is-surj (ψ.f h)) [ h , idp ])
(λ _ → prop-has-all-paths-↓ (Cok.El-is-set _ _))
ψ-surj-implies-coker-iso-K : (H-is-abelian : is-abelian H)
→ is-surjᴳ ψ → Coker φ H-is-abelian ≃ᴳ K
ψ-surj-implies-coker-iso-K H-is-abelian ψ-is-surj =
coker-to-K H-is-abelian , ψ-surj-implies-coker-to-K-is-equiv H-is-abelian ψ-is-surj
-- right split lemma
module _ (H-is-abelian : is-abelian H) (φ-inj : is-injᴳ φ)
(χ : K →ᴳ H) (χ-inv-r : (k : Group.El K) → GroupHom.f (ψ ∘ᴳ χ) k == k) where
{- Splitting Lemma - Right Split
Assume an exact sequence:
φ ψ
0 → G → H → K
where H is abelian. If ψ has a right inverse χ, then H == G × K. Over
this path φ becomes the natural injection and ψ the natural projection.
-}
private
module χ = GroupHom χ
{- H ≃ᴳ Ker ψ × Im χ -}
ker-part : H →ᴳ Ker ψ
ker-part = Ker.inject-lift ψ
(hom-comp H (H , H-is-abelian) (idhom H) (inv-hom (H , H-is-abelian) ∘ᴳ (χ ∘ᴳ ψ)))
(λ h →
ψ.f (H.comp h (H.inv (χ.f (ψ.f h))))
=⟨ ψ.pres-comp h (H.inv (χ.f (ψ.f h))) ⟩
K.comp (ψ.f h) (ψ.f (H.inv (χ.f (ψ.f h))))
=⟨ ! (χ.pres-inv (ψ.f h))
|in-ctx (λ w → K.comp (ψ.f h) (ψ.f w)) ⟩
K.comp (ψ.f h) (ψ.f (χ.f (K.inv (ψ.f h))))
=⟨ χ-inv-r (K.inv (ψ.f h)) |in-ctx K.comp (ψ.f h) ⟩
K.comp (ψ.f h) (K.inv (ψ.f h))
=⟨ K.inv-r (ψ.f h) ⟩
K.ident ∎)
abstract
ker-part-kerψ : (ker : Ker.El ψ) → GroupHom.f ker-part (fst ker) == ker
ker-part-kerψ (h , p) = Ker.El=-out ψ $
H.comp h (H.inv (χ.f (ψ.f h)))
=⟨ p |in-ctx (λ w → H.comp h (H.inv (χ.f w))) ⟩
H.comp h (H.inv (χ.f K.ident))
=⟨ χ.pres-ident |in-ctx (λ w → H.comp h (H.inv w)) ⟩
H.comp h (H.inv H.ident)
=⟨ H.inv-ident |in-ctx H.comp h ⟩
H.comp h H.ident
=⟨ H.unit-r h ⟩
h =∎
ker-part-imχ : (im : Im.El χ) → GroupHom.f ker-part (fst im) == Ker.ident ψ
ker-part-imχ (h , s) = Trunc-rec (Ker.El-level ψ _ _)
(λ {(k , p) → Ker.El=-out ψ $
H.comp h (H.inv (χ.f (ψ.f h)))
=⟨ ! p |in-ctx (λ w → H.comp w (H.inv (χ.f (ψ.f w)))) ⟩
H.comp (χ.f k) (H.inv (χ.f (ψ.f (χ.f k))))
=⟨ χ-inv-r k |in-ctx (λ w → H.comp (χ.f k) (H.inv (χ.f w))) ⟩
H.comp (χ.f k) (H.inv (χ.f k))
=⟨ H.inv-r (χ.f k) ⟩
H.ident
=∎})
s
im-part : H →ᴳ Im χ
im-part = im-lift χ ∘ᴳ ψ
abstract
im-part-kerψ : (ker : Ker.El ψ) → GroupHom.f im-part (fst ker) == Im.ident χ
im-part-kerψ (h , p) = Im.El=-out χ (ap χ.f p ∙ χ.pres-ident)
im-part-imχ : (im : Im.El χ) → GroupHom.f im-part (fst im) == im
im-part-imχ (h , s) = Trunc-rec (Im.El-level χ _ _)
(λ {(k , p) → Im.El=-out χ $
χ.f (ψ.f h) =⟨ ! p |in-ctx (χ.f ∘ ψ.f) ⟩
χ.f (ψ.f (χ.f k)) =⟨ χ-inv-r k |in-ctx χ.f ⟩
χ.f k =⟨ p ⟩
h =∎})
s
decomp : H →ᴳ Ker ψ ×ᴳ Im χ
decomp = ×ᴳ-fanout ker-part im-part
decomp-is-equiv : is-equiv (GroupHom.f decomp)
decomp-is-equiv = is-eq _ dinv decomp-dinv dinv-decomp
where
dinv : Group.El (Ker ψ ×ᴳ Im χ) → H.El
dinv ((h₁ , _) , (h₂ , _)) = H.comp h₁ h₂
abstract
decomp-dinv : ∀ s → GroupHom.f decomp (dinv s) == s
decomp-dinv ((h₁ , kr) , (h₂ , im)) = pair×=
(GroupHom.f ker-part (H.comp h₁ h₂)
=⟨ GroupHom.pres-comp ker-part h₁ h₂ ⟩
Ker.comp ψ (GroupHom.f ker-part h₁) (GroupHom.f ker-part h₂)
=⟨ ap2 (Ker.comp ψ) (ker-part-kerψ (h₁ , kr)) (ker-part-imχ (h₂ , im)) ⟩
Ker.comp ψ (h₁ , kr) (Ker.ident ψ)
=⟨ Ker.unit-r ψ (h₁ , kr) ⟩
(h₁ , kr)
=∎)
(GroupHom.f im-part (H.comp h₁ h₂)
=⟨ GroupHom.pres-comp im-part h₁ h₂ ⟩
Im.comp χ (GroupHom.f im-part h₁) (GroupHom.f im-part h₂)
=⟨ ap2 (Im.comp χ) (im-part-kerψ (h₁ , kr)) (im-part-imχ (h₂ , im)) ⟩
Im.comp χ (Im.ident χ) (h₂ , im)
=⟨ Im.unit-l χ (h₂ , im) ⟩
(h₂ , im) ∎)
dinv-decomp : ∀ h → dinv (GroupHom.f decomp h) == h
dinv-decomp h =
H.comp (H.comp h (H.inv (χ.f (ψ.f h)))) (χ.f (ψ.f h))
=⟨ H.assoc h (H.inv (χ.f (ψ.f h))) (χ.f (ψ.f h)) ⟩
H.comp h (H.comp (H.inv (χ.f (ψ.f h))) (χ.f (ψ.f h)))
=⟨ H.inv-l (χ.f (ψ.f h)) |in-ctx H.comp h ⟩
H.comp h H.ident
=⟨ H.unit-r h ⟩
h ∎
decomp-equiv : H.El ≃ Group.El (Ker ψ ×ᴳ Im χ)
decomp-equiv = (_ , decomp-is-equiv)
decomp-iso : H ≃ᴳ Ker ψ ×ᴳ Im χ
decomp-iso = decomp , decomp-is-equiv
{- K == Im χ -}
K-iso-Imχ : K ≃ᴳ Im χ
K-iso-Imχ = surjᴳ-and-injᴳ-iso (im-lift χ) (im-lift-is-surj χ) inj where
abstract
inj = has-trivial-ker-is-injᴳ (im-lift χ)
(λ k p → ! (χ-inv-r k) ∙ ap ψ.f (ap fst p) ∙ ψ.pres-ident)
φ-inj-and-ψ-has-rinv-split : H ≃ᴳ G ×ᴳ K
φ-inj-and-ψ-has-rinv-split =
×ᴳ-emap (φ-inj-implies-G-iso-ker φ-inj ⁻¹ᴳ) (K-iso-Imχ ⁻¹ᴳ) ∘eᴳ decomp-iso
abstract
φ-inj-and-ψ-has-rinv-implies-φ-comm-inl : CommSquareᴳ φ ×ᴳ-inl
(idhom _) (–>ᴳ φ-inj-and-ψ-has-rinv-split )
φ-inj-and-ψ-has-rinv-implies-φ-comm-inl = comm-sqrᴳ λ g → pair×=
(ap (GroupIso.g (φ-inj-implies-G-iso-ker φ-inj))
(ker-part-kerψ (GroupHom.f G-to-ker g))
∙ GroupIso.g-f (φ-inj-implies-G-iso-ker φ-inj) g)
(im-sub-ker-out φ ψ E.im-sub-ker g)
φ-inj-and-ψ-has-rinv-implies-ψ-comm-snd : CommSquareᴳ ψ (×ᴳ-snd {G = G})
(–>ᴳ φ-inj-and-ψ-has-rinv-split ) (idhom _)
φ-inj-and-ψ-has-rinv-implies-ψ-comm-snd = comm-sqrᴳ λ h → idp
abstract
pre∘-is-exact : ∀ {i j k l} {G : Group i} {H : Group j} {K : Group k} {L : Group l}
(φ : G →ᴳ H) {ψ : H →ᴳ K} {ξ : K →ᴳ L} → is-surjᴳ φ → is-exact ψ ξ → is-exact (ψ ∘ᴳ φ) ξ
pre∘-is-exact φ {ψ = ψ} φ-is-surj ψ-ξ-is-exact = record {
ker-sub-im = λ k → im-sub-im-∘ ψ φ φ-is-surj k ∘ ker-sub-im ψ-ξ-is-exact k;
im-sub-ker = λ k → im-sub-ker ψ-ξ-is-exact k ∘ im-∘-sub-im ψ φ k}
module Exact2 {i j k l} {G : Group i} {H : Group j} {K : Group k} {L : Group l}
{φ : G →ᴳ H} {ψ : H →ᴳ K} {ξ : K →ᴳ L}
(φ-ψ-is-exact : is-exact φ ψ) (ψ-ξ-is-exact : is-exact ψ ξ) where
private
module G = Group G
module H = Group H
module K = Group K
module L = Group L
module φ = GroupHom φ
module ψ = GroupHom ψ
module ξ = GroupHom ξ
module E1 = is-exact φ-ψ-is-exact
module E2 = is-exact ψ-ξ-is-exact
{- [L] for "lemmas" -}
module EL1 = Exact φ-ψ-is-exact
module EL2 = Exact ψ-ξ-is-exact
abstract
G-trivial-and-L-trivial-implies-H-iso-K :
is-trivialᴳ G → is-trivialᴳ L → H ≃ᴳ K
G-trivial-and-L-trivial-implies-H-iso-K G-is-triv L-is-triv
= surjᴳ-and-injᴳ-iso ψ
(EL2.K-trivial-implies-φ-is-surj L-is-triv)
(EL1.G-trivial-implies-ψ-is-inj G-is-triv)
G-trivial-implies-H-iso-ker :
is-trivialᴳ G → H ≃ᴳ Ker.grp ξ
G-trivial-implies-H-iso-ker G-is-triv
= EL2.φ-inj-implies-G-iso-ker $
EL1.G-trivial-implies-ψ-is-inj G-is-triv
L-trivial-implies-coker-iso-K : (H-is-abelian : is-abelian H)
→ is-trivialᴳ L → Coker φ H-is-abelian ≃ᴳ K
L-trivial-implies-coker-iso-K H-is-abelian L-is-triv
= EL1.ψ-surj-implies-coker-iso-K H-is-abelian $
EL2.K-trivial-implies-φ-is-surj L-is-triv
abstract
equiv-preserves-exact : ∀ {i₀ i₁ j₀ j₁ l₀ l₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} {K₀ : Group l₀} {K₁ : Group l₁}
{φ₀ : G₀ →ᴳ H₀} {ψ₀ : H₀ →ᴳ K₀} {φ₁ : G₁ →ᴳ H₁} {ψ₁ : H₁ →ᴳ K₁}
{ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {ξK : K₀ →ᴳ K₁}
→ CommSquareᴳ φ₀ φ₁ ξG ξH → CommSquareᴳ ψ₀ ψ₁ ξH ξK
→ is-equiv (GroupHom.f ξG) → is-equiv (GroupHom.f ξH) → is-equiv (GroupHom.f ξK)
→ is-exact φ₀ ψ₀ → is-exact φ₁ ψ₁
equiv-preserves-exact {K₀ = K₀} {K₁} {φ₀ = φ₀} {ψ₀} {φ₁} {ψ₁} {ξG} {ξH} {ξK}
(comm-sqrᴳ φ□) (comm-sqrᴳ ψ□) ξG-is-equiv ξH-is-equiv ξK-is-equiv exact₀
= record {
im-sub-ker = λ h₁ → Trunc-rec (SubgroupProp.level (ker-propᴳ ψ₁) h₁)
(λ{(g₁ , φ₁g₁=h₁) →
ψ₁.f h₁
=⟨ ap ψ₁.f $ ! $ ξH.f-g h₁ ⟩
ψ₁.f (ξH.f (ξH.g h₁))
=⟨ ! $ ψ□ (ξH.g h₁) ⟩
ξK.f (ψ₀.f (ξH.g h₁))
=⟨ ap ξK.f $ im-sub-ker exact₀ (ξH.g h₁) [ ξG.g g₁ ,_ $
φ₀.f (ξG.g g₁)
=⟨ ! (ξH.g-f (φ₀.f (ξG.g g₁))) ⟩
ξH.g (ξH.f (φ₀.f (ξG.g g₁)))
=⟨ ap ξH.g $ φ□ (ξG.g g₁) ∙ ap φ₁.f (ξG.f-g g₁) ∙ φ₁g₁=h₁ ⟩
ξH.g h₁
=∎ ] ⟩
ξK.f (Group.ident K₀)
=⟨ ξK.pres-ident ⟩
Group.ident K₁
=∎});
ker-sub-im = λ h₁ ψ₁h₁=0 →
Trunc-rec (SubgroupProp.level (im-propᴳ φ₁) h₁)
(λ{(g₀ , φ₀g₀=ξH⁻¹h₁) → [ ξG.f g₀ ,_ $
φ₁.f (ξG.f g₀)
=⟨ ! $ φ□ g₀ ⟩
ξH.f (φ₀.f g₀)
=⟨ ap ξH.f φ₀g₀=ξH⁻¹h₁ ⟩
ξH.f (ξH.g h₁)
=⟨ ξH.f-g h₁ ⟩
h₁
=∎ ]})
(ker-sub-im exact₀ (ξH.g h₁) $
ψ₀.f (ξH.g h₁)
=⟨ ! $ ξK.g-f (ψ₀.f (ξH.g h₁)) ⟩
ξK.g (ξK.f (ψ₀.f (ξH.g h₁)))
=⟨ ap ξK.g $ ψ□ (ξH.g h₁) ∙ ap ψ₁.f (ξH.f-g h₁) ∙ ψ₁h₁=0 ⟩
ξK.g (Group.ident K₁)
=⟨ GroupHom.pres-ident ξK.g-hom ⟩
Group.ident K₀
=∎)}
where
module φ₀ = GroupHom φ₀
module φ₁ = GroupHom φ₁
module ψ₀ = GroupHom ψ₀
module ψ₁ = GroupHom ψ₁
module ξG = GroupIso (ξG , ξG-is-equiv)
module ξH = GroupIso (ξH , ξH-is-equiv)
module ξK = GroupIso (ξK , ξK-is-equiv)
abstract
equiv-preserves'-exact : ∀ {i₀ i₁ j₀ j₁ l₀ l₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} {K₀ : Group l₀} {K₁ : Group l₁}
{φ₀ : G₀ →ᴳ H₀} {ψ₀ : H₀ →ᴳ K₀} {φ₁ : G₁ →ᴳ H₁} {ψ₁ : H₁ →ᴳ K₁}
{ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {ξK : K₀ →ᴳ K₁}
→ CommSquareᴳ φ₀ φ₁ ξG ξH → CommSquareᴳ ψ₀ ψ₁ ξH ξK
→ is-equiv (GroupHom.f ξG) → is-equiv (GroupHom.f ξH) → is-equiv (GroupHom.f ξK)
→ is-exact φ₁ ψ₁ → is-exact φ₀ ψ₀
equiv-preserves'-exact cs₀ cs₁ ξG-ise ξH-ise ξK-ise ex =
equiv-preserves-exact
(CommSquareᴳ-inverse-v cs₀ ξG-ise ξH-ise)
(CommSquareᴳ-inverse-v cs₁ ξH-ise ξK-ise)
(is-equiv-inverse ξG-ise)
(is-equiv-inverse ξH-ise)
(is-equiv-inverse ξK-ise)
ex
| {
"alphanum_fraction": 0.4979247645,
"avg_line_length": 38.3308080808,
"ext": "agda",
"hexsha": "558abb4ef50786441ec8acdcde8d356ddaecc833",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/groups/Exactness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/groups/Exactness.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/groups/Exactness.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6423,
"size": 15179
} |
module Extensions.VecFirst where
open import Data.Vec
open import Data.Product
open import Level
open import Relation.Nullary
open import Function using (_∘_; _$_)
-- proof that an element is the first in a vector to satisfy the predicate B
data First {a b} {A : Set a} (B : A → Set b) : ∀ {n} (x : A) → Vec A n → Set (a ⊔ b) where
here : ∀ {n} {x : A} → (p : B x) → (v : Vec A n) → First B x (x ∷ v)
there : ∀ {n x} {v : Vec A n} (x' : A) → ¬ (B x') → First B x v → First B x (x' ∷ v)
-- more likable syntax for the above structure
first_∈_⇔_ : ∀ {n} {A : Set} → A → Vec A n → (B : A → Set) → Set
first_∈_⇔_ x v p = First p x v
-- a decision procedure to find the first element in a vector that satisfies a predicate
find : ∀ {n} {A : Set} (P : A → Set) → ((a : A) → Dec (P a)) → (v : Vec A n) →
Dec (∃ λ e → first e ∈ v ⇔ P)
find P dec [] = no (λ{ (e , ()) })
find P dec (x ∷ v) with dec x
find P dec (x ∷ v) | yes px = yes (x , here px v)
find P dec (x ∷ v) | no ¬px with find P dec v
find P dec (x ∷ v) | no ¬px | yes firstv = yes (, there x ¬px (proj₂ firstv))
find P dec (x ∷ v) | no ¬px | no ¬firstv = no $ helper ¬px ¬firstv
where
helper : ¬ (P x) → ¬ (∃ λ e → First P e v) → ¬ (∃ λ e → First P e (x ∷ v))
helper ¬px ¬firstv (.x , here p .v) = ¬px p
helper ¬px ¬firstv (u , there ._ _ firstv) = ¬firstv (u , firstv)
| {
"alphanum_fraction": 0.5530191458,
"avg_line_length": 42.4375,
"ext": "agda",
"hexsha": "36b25545000f38577fb2afaccd7fcb988b4be313",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Extensions/VecFirst.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Extensions/VecFirst.agda",
"max_line_length": 90,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Extensions/VecFirst.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 529,
"size": 1358
} |
{-# OPTIONS --without-K #-}
module function.core where
open import level
-- copied from Agda's standard library
infixr 9 _∘'_
infixr 0 _$_
_∘'_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘' g = λ x → f (g x)
const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A
const x = λ _ → x
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} →
((x : A) → B x) → ((x : A) → B x)
f $ x = f x
flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} →
((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y)
flip f = λ y x → f x y
record Composition u₁ u₂ u₃ u₁₂ u₂₃ u₁₃
: Set (lsuc (u₁ ⊔ u₂ ⊔ u₃ ⊔ u₁₂ ⊔ u₂₃ ⊔ u₁₃)) where
infixl 9 _∘_
field
U₁ : Set u₁
U₂ : Set u₂
U₃ : Set u₃
hom₁₂ : U₁ → U₂ → Set u₁₂
hom₂₃ : U₂ → U₃ → Set u₂₃
hom₁₃ : U₁ → U₃ → Set u₁₃
_∘_ : {X₁ : U₁}{X₂ : U₂}{X₃ : U₃} → hom₂₃ X₂ X₃ → hom₁₂ X₁ X₂ → hom₁₃ X₁ X₃
record Identity u e : Set (lsuc (u ⊔ e)) where
field
U : Set u
endo : U → Set e
id : {X : U} → endo X
id- : (X : U) → endo X
id- X = id {X}
instance
func-comp : ∀ {i j k} → Composition _ _ _ _ _ _
func-comp {i}{j}{k} = record
{ U₁ = Set i
; U₂ = Set j
; U₃ = Set k
; hom₁₂ = λ X Y → X → Y
; hom₂₃ = λ X Y → X → Y
; hom₁₃ = λ X Y → X → Y
; _∘_ = λ f g x → f (g x) }
instance
func-id : ∀ {i} → Identity _ _
func-id {i} = record
{ U = Set i
; endo = λ X → X → X
; id = λ x → x }
module ComposeInterface {u₁ u₂ u₃ u₁₂ u₂₃ u₁₃}
⦃ comp : Composition u₁ u₂ u₃ u₁₂ u₂₃ u₁₃ ⦄ where
open Composition comp public using (_∘_)
open ComposeInterface public
module IdentityInterface {i e}
⦃ identity : Identity i e ⦄ where
open Identity identity public using (id; id-)
open IdentityInterface public
| {
"alphanum_fraction": 0.4815400844,
"avg_line_length": 24.3076923077,
"ext": "agda",
"hexsha": "7c408990c513508b5a2c8e20bfd635852ab2ab0a",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/function/core.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/function/core.agda",
"max_line_length": 79,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "function/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 858,
"size": 1896
} |
module _ where
record Semiring (A : Set) : Set where
infixl 6 _+_
field _+_ : A → A → A
open Semiring {{...}} public
infix 4 _≡_
postulate
Ord : Set → Set
Nat Bool : Set
zero : Nat
_≡_ : Nat → Nat → Set
refl : ∀ {x} → x ≡ x
to : ∀ {x} y → x ≡ y
trans : {x y z : Nat} → x ≡ y → y ≡ z → x ≡ z
instance
ringNat′ : Semiring Nat
_+N_ : Nat → Nat → Nat
instance
ringNat : Semiring Nat
ringNat ._+_ = _+N_
bad : (a b c : Nat) → a +N b ≡ c +N a
bad a b c =
trans (to (a + c)) refl
-- Should list the errors from testing both ringNat and ringNat′
| {
"alphanum_fraction": 0.5442176871,
"avg_line_length": 16.8,
"ext": "agda",
"hexsha": "89e68fa5e4fa025d68967ff8ee3c2ac0dcc6e8a2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/InstanceErrorMessageMultiple.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/InstanceErrorMessageMultiple.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/InstanceErrorMessageMultiple.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 239,
"size": 588
} |
module Itse.Checking where
open import Itse.Grammar
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Bool
open import Data.List hiding (lookup)
open import Data.Product
open import Data.Maybe
{-
# Checking
-}
{-
## Context
-}
data Context : Set
Closure : Set
infixr 6 _⦂_,_ [_],_
data Context where
∅ : Context
_⦂_,_ : ∀ {e} → Name e → Expr (TypeOf e) → Context → Context
[_],_ : Closure → Context → Context
{-
## Closure
-}
Closure = List (∃[ e ] (Name e × Expr e × Expr (TypeOf e)))
lookup-μ : ∀ {e} → Name e → Closure → Maybe (Expr e × Expr (TypeOf e))
lookup-μ {p} ξ [] = nothing
lookup-μ {p} ξ ((p , υ , α , A) ∷ μ) with ξ ≟-Name υ
lookup-μ {p} ξ ((p , υ , α , A) ∷ μ) | yes refl = just (α , A)
lookup-μ {p} ξ ((p , υ , α , A) ∷ μ) | no _ = lookup-μ ξ μ
lookup-μ {p} ξ ((t , _) ∷ μ) = lookup-μ ξ μ
lookup-μ {t} x [] = nothing
lookup-μ {t} x ((p , _) ∷ μ) = lookup-μ x μ
lookup-μ {t} x ((t , y , a , α) ∷ μ) with x ≟-Name y
lookup-μ {t} x ((t , y , a , α) ∷ μ) | yes refl = just (a , α)
lookup-μ {t} x ((t , y , a , α) ∷ μ) | no _ = lookup-μ x μ
lookup : ∀ {e} → Name e → Context → Maybe (Expr e × Expr (TypeOf e))
lookup x ∅ = nothing
lookup x (_ ⦂ _ , Γ) = lookup x Γ
lookup x ([ μ ], Γ) = lookup-μ x μ
{-
## Substitution
-}
infix 6 ⟦_↦_⟧_
⟦_↦_⟧_ : ∀ {e e′} → Name e → Expr e → Expr e′ → Expr e′
⟦_↦_⟧_ = {!!}
{-
## Wellformed-ness
-}
infix 5 _⊢wf _⊢_ok _⊢_⦂_
data _⊢wf : Context → Set
data _⊢_ok : Context → Closure → Set
data _⊢_⦂_ : ∀ {e} → Context → Expr e → Expr (TypeOf e) → Set
data _⊢wf where
∅⊢wf :
∅ ⊢wf
judgeₚ : ∀ {Γ} {X : Kind} {ξ} →
Γ ⊢wf →
Γ ⊢ X ⦂ `□ₛ →
----
ξ ⦂ X , Γ ⊢wf
judgeₜ : ∀ {Γ} {ξ : Type} {x : Nameₜ} →
Γ ⊢wf →
Γ ⊢ ξ ⦂ `●ₖ →
----
x ⦂ ξ , Γ ⊢wf
closure : ∀ {Γ} {μ} →
Γ ⊢wf →
Γ ⊢ μ ok →
[ μ ], Γ ⊢wf
-- Closure = List (∃[ e ] ∃[ e≢k ] (Name e × Expr e × Expr (TypeOf e {e≢k})))
data _⊢_ok where
-- type :
-- Γ ⊢ μ ok →
-- [ μ ], Γ ⊢
data _⊢_⦂_ where
-- sorting (well-formed kinds)
●ₖ : ∀ {Γ} →
Γ ⊢ `●ₖ ⦂ `□ₛ
λₖₚ-intro : ∀ {Γ} {ξ} {X A} →
ξ ⦂ X , Γ ⊢ A ⦂ `□ₛ →
Γ ⊢ X ⦂ `□ₛ →
----
Γ ⊢ `λₖₚ[ ξ ⦂ X ] A ⦂ `□ₛ
λₖₜ-intro : ∀ {Γ} {ξ} {A} {x} →
x ⦂ ξ , Γ ⊢ A ⦂ `□ₛ →
Γ ⊢ ξ ⦂ `●ₖ →
----
Γ ⊢ `λₖₜ[ x ⦂ ξ ] A ⦂ `□ₛ
-- kinding
λₚₚ-intro : ∀ {Γ} {X} {β} {ξ} →
Γ ⊢ X ⦂ `□ₛ →
ξ ⦂ X , Γ ⊢ β ⦂ `●ₖ →
----
Γ ⊢ `λₚₚ[ ξ ⦂ X ] β ⦂ `λₖₚ[ ξ ⦂ X ] `●ₖ
λₚₜ-intro : ∀ {Γ} {ξ} {β} {x} →
Γ ⊢ ξ ⦂ `●ₖ →
x ⦂ ξ , Γ ⊢ β ⦂ `●ₖ →
----
Γ ⊢ `λₚₜ[ x ⦂ ξ ] β ⦂ `λₖₜ[ x ⦂ ξ ] `●ₖ
λₚₚ-elim : ∀ {Γ} {A B} {ξ φ α} →
Γ ⊢ φ ⦂ `λₖₚ[ ξ ⦂ A ] B →
Γ ⊢ α ⦂ A →
----
Γ ⊢ φ `∙ₚₚ α ⦂ B
λₚₜ-elim : ∀ {Γ} {B} {φ α} {a} {x} →
Γ ⊢ φ ⦂ `λₖₜ[ x ⦂ α ] B →
Γ ⊢ a ⦂ α →
----
Γ ⊢ φ `∙ₚₜ a ⦂ B
-- typing
λₜₚ-intro : ∀ {Γ} {X} {α} {a} {ξ} →
Γ ⊢ X ⦂ `□ₛ →
ξ ⦂ X , Γ ⊢ a ⦂ α →
----
Γ ⊢ `λₜₚ[ ξ ⦂ X ] a ⦂ `λₚₚ[ ξ ⦂ X ] α
λₜₜ-intro : ∀ {Γ} {α ξ} {a} {x} →
Γ ⊢ α ⦂ `●ₖ →
x ⦂ ξ , Γ ⊢ a ⦂ α →
----
Γ ⊢ `λₜₜ[ x ⦂ ξ ] a ⦂ `λₚₜ[ x ⦂ ξ ] α
λₜₚ-elim : ∀ {Γ} {A} {α β} {f} {ξ} →
Γ ⊢ f ⦂ `λₚₚ[ ξ ⦂ A ] β →
Γ ⊢ α ⦂ A →
----
Γ ⊢ f `∙ₜₚ α ⦂ β
λₜₜ-elim : ∀ {Γ} {α β} {f a x} →
Γ ⊢ f ⦂ `λₚₜ[ x ⦂ α ] β →
Γ ⊢ a ⦂ α →
----
Γ ⊢ f `∙ₜₜ a ⦂ β
-- "SelfGen"
ι-intro : ∀ {Γ} {α} {a} {x} →
Γ ⊢ a ⦂ ⟦ x ↦ a ⟧ α →
Γ ⊢ `ι[ x ] α ⦂ `●ₖ →
----
Γ ⊢ a ⦂ `ι[ x ] α
-- "SelfInst"
ι-elim : ∀ {Γ} {α} {a} {x} →
Γ ⊢ a ⦂ `ι[ x ] α →
----
Γ ⊢ a ⦂ ⟦ x ↦ a ⟧ α
| {
"alphanum_fraction": 0.4005975014,
"avg_line_length": 19.0777202073,
"ext": "agda",
"hexsha": "d170ddc7711bdb7bae18410019e46be789402e20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4ee714b707b72e4ed8373c49ee739d576aafb70a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Riib11/itse",
"max_forks_repo_path": "agda/Itse/Checking.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4ee714b707b72e4ed8373c49ee739d576aafb70a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "Riib11/itse",
"max_issues_repo_path": "agda/Itse/Checking.agda",
"max_line_length": 77,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4ee714b707b72e4ed8373c49ee739d576aafb70a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "Riib11/itse",
"max_stars_repo_path": "agda/Itse/Checking.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-14T15:09:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-14T15:09:19.000Z",
"num_tokens": 2005,
"size": 3682
} |
-- Andreas, 2016-01-22, issue 1790
-- Projections should be highlighted as such everywhere,
-- even in the parts of a record declaration that
-- make the record constructor type.
record Σ A (B : A → Set) : Set where
field
fst : A
snd : B fst -- fst should be highlighted as projection here
-- Should also work under 'mutual'.
mutual
record IOInterface : Set₁ where
constructor ioInterface
field Command : Set
Response : (m : Command) → Set
| {
"alphanum_fraction": 0.6735966736,
"avg_line_length": 26.7222222222,
"ext": "agda",
"hexsha": "588b6b85031bd33f53ff1cacbc50a275e9f2805a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/interaction/Issue1790.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/interaction/Issue1790.agda",
"max_line_length": 64,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/interaction/Issue1790.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 130,
"size": 481
} |
{-# OPTIONS --cubical --safe #-}
module Data.Tuple.Base where
open import Prelude hiding (⊤; tt)
open import Data.Unit.UniversePolymorphic
open import Data.Fin
Tuple : ∀ n → (Lift a (Fin n) → Type b) → Type b
Tuple zero f = ⊤
Tuple {a = a} {b = b} (suc n) f = f (lift f0) × Tuple {a = a} {b = b} n (f ∘ lift ∘ fs ∘ lower)
private
variable
n : ℕ
u : Level
U : Lift a (Fin n) → Type u
ind : Tuple n U → (i : Lift a (Fin n)) → U i
ind {n = suc n} (x , xs) (lift f0) = x
ind {n = suc n} (x , xs) (lift (fs i)) = ind xs (lift i)
tab : ((i : Lift a (Fin n)) → U i) → Tuple n U
tab {n = zero} f = tt
tab {n = suc n} f = f (lift f0) , tab (f ∘ lift ∘ fs ∘ lower)
Π→Tuple→Π : ∀ {a n u} {U : Lift a (Fin n) → Type u} (xs : (i : Lift a (Fin n)) → U i) i → ind (tab xs) i ≡ xs i
Π→Tuple→Π {n = suc n} f (lift f0) = refl
Π→Tuple→Π {n = suc n} f (lift (fs i)) = Π→Tuple→Π (f ∘ lift ∘ fs ∘ lower) (lift i)
Tuple→Π→Tuple : ∀ {n} {U : Lift a (Fin n) → Type u} (xs : Tuple n U) → tab (ind xs) ≡ xs
Tuple→Π→Tuple {n = zero} tt = refl
Tuple→Π→Tuple {n = suc n} (x , xs) i .fst = x
Tuple→Π→Tuple {n = suc n} (x , xs) i .snd = Tuple→Π→Tuple xs i
Tuple⇔ΠFin : ∀ {a n u} {U : Lift a (Fin n) → Type u} → Tuple n U ⇔ ((i : Lift a (Fin n)) → U i)
Tuple⇔ΠFin .fun = ind
Tuple⇔ΠFin .inv = tab
Tuple⇔ΠFin .leftInv = Tuple→Π→Tuple
Tuple⇔ΠFin .rightInv x = funExt (Π→Tuple→Π x)
| {
"alphanum_fraction": 0.5461147422,
"avg_line_length": 33.5853658537,
"ext": "agda",
"hexsha": "2a0c40c01b5927fe197c91ce7c4b5d8f64e31fff",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/Tuple/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/Tuple/Base.agda",
"max_line_length": 111,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/Tuple/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 617,
"size": 1377
} |
import Issue2217.M
{-# TERMINATING #-}
A : Set
A = ?
a : A
a = ?
| {
"alphanum_fraction": 0.5147058824,
"avg_line_length": 6.8,
"ext": "agda",
"hexsha": "291dd527628222354ea640ca14db31e1e3e84717",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2217.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2217.agda",
"max_line_length": 19,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2217.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 24,
"size": 68
} |
{-# OPTIONS --without-K #-}
open import HoTT
module cohomology.WithCoefficients where
→Ω-group-structure : ∀ {i j} (X : Ptd i) (Y : Ptd j)
→ GroupStructure (fst (X ⊙→ ⊙Ω Y))
→Ω-group-structure X Y = record {
ident = ⊙cst;
inv = λ F → ((! ∘ fst F) , ap ! (snd F));
comp = λ F G → ⊙conc ⊙∘ ⊙×-in F G;
unitl = λ G → pair= idp (unitl-lemma (snd G));
unitr = λ F → ⊙λ= (∙-unit-r ∘ fst F) (unitr-lemma (snd F));
assoc = λ F G H → ⊙λ=
(λ x → ∙-assoc (fst F x) (fst G x) (fst H x))
(assoc-lemma (snd F) (snd G) (snd H));
invl = λ F → ⊙λ= (!-inv-l ∘ fst F) (invl-lemma (snd F));
invr = λ F → ⊙λ= (!-inv-r ∘ fst F) (invr-lemma (snd F))}
where
unitl-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp)
→ ap (uncurry _∙_) (ap2 _,_ idp α) ∙ idp == α
unitl-lemma idp = idp
unitr-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp)
→ ap (uncurry _∙_) (ap2 _,_ α idp) ∙ idp == ∙-unit-r p ∙ α
unitr-lemma idp = idp
assoc-lemma : ∀ {i} {A : Type i} {x : A} {p q r : x == x}
(α : p == idp) (β : q == idp) (γ : r == idp)
→ ap (uncurry _∙_) (ap2 _,_ (ap (uncurry _∙_) (ap2 _,_ α β) ∙ idp) γ) ∙ idp
== ∙-assoc p q r
∙ ap (uncurry _∙_) (ap2 _,_ α (ap (uncurry _∙_) (ap2 _,_ β γ) ∙ idp)) ∙ idp
assoc-lemma idp idp idp = idp
invl-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp)
→ ap (uncurry _∙_) (ap2 _,_ (ap ! α) α) ∙ idp == !-inv-l p ∙ idp
invl-lemma idp = idp
invr-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp)
→ ap (uncurry _∙_) (ap2 _,_ α (ap ! α)) ∙ idp == !-inv-r p ∙ idp
invr-lemma idp = idp
→Ω-group : ∀ {i j} (X : Ptd i) (Y : Ptd j) → Group (lmax i j)
→Ω-group X Y = Trunc-group (→Ω-group-structure X Y)
{- →Ω-group is functorial in the first argument -}
→Ω-group-dom-act : ∀ {i j k} {X : Ptd i} {Y : Ptd j}
(f : fst (X ⊙→ Y)) (Z : Ptd k)
→ (→Ω-group Y Z →ᴳ →Ω-group X Z)
→Ω-group-dom-act {Y = Y} f Z =
Trunc-group-hom (λ g → g ⊙∘ f)
(λ g₁ g₂ → ⊙∘-assoc ⊙conc (⊙×-in g₁ g₂) f
∙ ap (λ w → ⊙conc ⊙∘ w) (⊙×-in-pre∘ g₁ g₂ f))
→Ω-group-dom-idf : ∀ {i j} {X : Ptd i} (Y : Ptd j)
→ →Ω-group-dom-act (⊙idf X) Y == idhom (→Ω-group X Y)
→Ω-group-dom-idf Y = hom= _ _ $ λ= $ Trunc-elim
(λ _ → =-preserves-level _ Trunc-level) (λ _ → idp)
→Ω-group-dom-∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) (W : Ptd l)
→ →Ω-group-dom-act (g ⊙∘ f) W
== →Ω-group-dom-act f W ∘ᴳ →Ω-group-dom-act g W
→Ω-group-dom-∘ g f W = hom= _ _ $ λ= $
Trunc-elim (λ _ → =-preserves-level _ Trunc-level)
(λ h → ap [_] (! (⊙∘-assoc h g f)))
{- Pointed maps out of bool -}
Bool⊙→-out : ∀ {i} {X : Ptd i}
→ fst (⊙Lift {j = i} ⊙Bool ⊙→ X) → fst X
Bool⊙→-out (h , _) = h (lift false)
Bool⊙→-equiv : ∀ {i} (X : Ptd i)
→ fst (⊙Lift {j = i} ⊙Bool ⊙→ X) ≃ fst X
Bool⊙→-equiv {i} X = equiv Bool⊙→-out g f-g g-f
where
g : fst X → fst (⊙Lift {j = i} ⊙Bool ⊙→ X)
g x = ((λ {(lift b) → if b then snd X else x}) , idp)
f-g : ∀ x → Bool⊙→-out (g x) == x
f-g x = idp
g-f : ∀ H → g (Bool⊙→-out H) == H
g-f (h , hpt) = pair=
(λ= lemma)
(↓-app=cst-in $
idp
=⟨ ! (!-inv-l hpt) ⟩
! hpt ∙ hpt
=⟨ ! (app=-β lemma (lift true)) |in-ctx (λ w → w ∙ hpt) ⟩
app= (λ= lemma) (lift true) ∙ hpt ∎)
where lemma : ∀ b → fst (g (h (lift false))) b == h b
lemma (lift true) = ! hpt
lemma (lift false) = idp
abstract
Bool⊙→-path : ∀ {i} (X : Ptd i)
→ fst (⊙Lift {j = i} ⊙Bool ⊙→ X) == fst X
Bool⊙→-path X = ua (Bool⊙→-equiv X)
abstract
Bool⊙→Ω-is-π₁ : ∀ {i} (X : Ptd i)
→ →Ω-group (⊙Lift {j = i} ⊙Bool) X == πS 0 X
Bool⊙→Ω-is-π₁ {i} X = group-ua $
Trunc-group-iso Bool⊙→-out (λ _ _ → idp) (snd (Bool⊙→-equiv (⊙Ω X)))
| {
"alphanum_fraction": 0.4777660138,
"avg_line_length": 34.6605504587,
"ext": "agda",
"hexsha": "34ca481895438ecb71664b4a5356906950fd4882",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/WithCoefficients.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/WithCoefficients.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/WithCoefficients.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1850,
"size": 3778
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Support for reflection
------------------------------------------------------------------------
{-# OPTIONS --with-K #-}
module Reflection where
open import Data.Unit.Base using (⊤)
open import Data.Bool.Base using (Bool; false; true)
open import Data.List.Base using (List); open Data.List.Base.List
open import Data.Nat using (ℕ) renaming (_≟_ to _≟-ℕ_)
open import Data.Nat.Show renaming (show to showNat)
open import Data.Float using (Float) renaming (show to showFloat)
open import Data.Float.Unsafe using () renaming (_≟_ to _≟f_)
open import Data.Char using (Char)
renaming ( show to showChar
; _≟_ to _≟c_
)
open import Data.String using (String)
renaming ( show to showString
; _≟_ to _≟s_
)
open import Data.Word using (Word64) renaming (toℕ to wordToℕ)
open import Data.Word.Unsafe using () renaming (_≟_ to _≟w_)
open import Data.Product
open import Function
open import Level
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.PropositionalEquality.TrustMe
open import Relation.Nullary hiding (module Dec)
open import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product
import Agda.Builtin.Reflection as Builtin
------------------------------------------------------------------------
-- Names
-- Names.
open Builtin public using (Name)
-- Equality of names is decidable.
infix 4 _==_ _≟-Name_
private
_==_ : Name → Name → Bool
_==_ = Builtin.primQNameEquality
_≟-Name_ : Decidable {A = Name} _≡_
s₁ ≟-Name s₂ with s₁ == s₂
... | true = yes trustMe
... | false = no whatever
where postulate whatever : _
-- Names can be shown.
showName : Name → String
showName = Builtin.primShowQName
------------------------------------------------------------------------
-- Metavariables
-- Metavariables.
open Builtin public using (Meta)
-- Equality of metavariables is decidable.
infix 4 _==-Meta_ _≟-Meta_
private
_==-Meta_ : Meta → Meta → Bool
_==-Meta_ = Builtin.primMetaEquality
_≟-Meta_ : Decidable {A = Meta} _≡_
s₁ ≟-Meta s₂ with s₁ ==-Meta s₂
... | true = yes trustMe
... | false = no whatever
where postulate whatever : _
-- Metas can be shown.
showMeta : Meta → String
showMeta = Builtin.primShowMeta
------------------------------------------------------------------------
-- Terms
-- Is the argument visible (explicit), hidden (implicit), or an
-- instance argument?
open Builtin public using (Visibility; visible; hidden; instance′)
-- Arguments can be relevant or irrelevant.
open Builtin public using (Relevance; relevant; irrelevant)
-- Arguments.
open Builtin public
renaming ( ArgInfo to Arg-info )
using ( arg-info )
visibility : Arg-info → Visibility
visibility (arg-info v _) = v
relevance : Arg-info → Relevance
relevance (arg-info _ r) = r
open Builtin public using (Arg; arg)
open Builtin public using (Abs; abs)
-- Literals.
open Builtin public using (Literal; nat; word64; float; char; string; name; meta)
-- Patterns.
open Builtin public using (Pattern; con; dot; var; lit; proj; absurd)
-- Terms.
open Builtin public
using ( Type; Term; var; con; def; lam; pat-lam; pi; lit; meta; unknown
; Sort; set
; Clause; clause; absurd-clause )
renaming ( agda-sort to sort )
Clauses = List Clause
------------------------------------------------------------------------
-- Definitions
open Builtin public
using ( Definition
; function
; data-type
; axiom
)
renaming ( record-type to record′
; data-cons to constructor′
; prim-fun to primitive′ )
showLiteral : Literal → String
showLiteral (nat x) = showNat x
showLiteral (word64 x) = showNat (wordToℕ x)
showLiteral (float x) = showFloat x
showLiteral (char x) = showChar x
showLiteral (string x) = showString x
showLiteral (name x) = showName x
showLiteral (meta x) = showMeta x
------------------------------------------------------------------------
-- Type checking monad
-- Type errors
open Builtin public using (ErrorPart; strErr; termErr; nameErr)
-- The monad
open Builtin public
using ( TC; returnTC; bindTC; unify; typeError; inferType; checkType
; normalise; catchTC; getContext; extendContext; inContext
; freshName; declareDef; defineFun; getType; getDefinition
; blockOnMeta; quoteTC; unquoteTC )
newMeta : Type → TC Term
newMeta = checkType unknown
------------------------------------------------------------------------
-- Term equality is decidable
-- Boring helper functions.
private
cong₂′ : ∀ {a b c : Level} {A : Set a} {B : Set b} {C : Set c}
(f : A → B → C) {x y u v} →
x ≡ y × u ≡ v → f x u ≡ f y v
cong₂′ f = uncurry (cong₂ f)
cong₃′ : ∀ {a b c d : Level} {A : Set a} {B : Set b} {C : Set c}
{D : Set d} (f : A → B → C → D) {x y u v r s} →
x ≡ y × u ≡ v × r ≡ s → f x u r ≡ f y v s
cong₃′ f (refl , refl , refl) = refl
arg₁ : ∀ {A i i′} {x x′ : A} → arg i x ≡ arg i′ x′ → i ≡ i′
arg₁ refl = refl
arg₂ : ∀ {A i i′} {x x′ : A} → arg i x ≡ arg i′ x′ → x ≡ x′
arg₂ refl = refl
abs₁ : ∀ {A i i′} {x x′ : A} → abs i x ≡ abs i′ x′ → i ≡ i′
abs₁ refl = refl
abs₂ : ∀ {A i i′} {x x′ : A} → abs i x ≡ abs i′ x′ → x ≡ x′
abs₂ refl = refl
arg-info₁ : ∀ {v v′ r r′} → arg-info v r ≡ arg-info v′ r′ → v ≡ v′
arg-info₁ refl = refl
arg-info₂ : ∀ {v v′ r r′} → arg-info v r ≡ arg-info v′ r′ → r ≡ r′
arg-info₂ refl = refl
cons₁ : ∀ {a} {A : Set a} {x y} {xs ys : List A} → x ∷ xs ≡ y ∷ ys → x ≡ y
cons₁ refl = refl
cons₂ : ∀ {a} {A : Set a} {x y} {xs ys : List A} → x ∷ xs ≡ y ∷ ys → xs ≡ ys
cons₂ refl = refl
var₁ : ∀ {x x′ args args′} → Term.var x args ≡ var x′ args′ → x ≡ x′
var₁ refl = refl
var₂ : ∀ {x x′ args args′} → Term.var x args ≡ var x′ args′ → args ≡ args′
var₂ refl = refl
con₁ : ∀ {c c′ args args′} → Term.con c args ≡ con c′ args′ → c ≡ c′
con₁ refl = refl
con₂ : ∀ {c c′ args args′} → Term.con c args ≡ con c′ args′ → args ≡ args′
con₂ refl = refl
def₁ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → f ≡ f′
def₁ refl = refl
def₂ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → args ≡ args′
def₂ refl = refl
meta₁ : ∀ {x x′ args args′} → Term.meta x args ≡ meta x′ args′ → x ≡ x′
meta₁ refl = refl
meta₂ : ∀ {x x′ args args′} → Term.meta x args ≡ meta x′ args′ → args ≡ args′
meta₂ refl = refl
lam₁ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → v ≡ v′
lam₁ refl = refl
lam₂ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → t ≡ t′
lam₂ refl = refl
pat-lam₁ : ∀ {cs cs′ args args′} → pat-lam cs args ≡ pat-lam cs′ args′ → cs ≡ cs′
pat-lam₁ refl = refl
pat-lam₂ : ∀ {cs cs′ args args′} → pat-lam cs args ≡ pat-lam cs′ args′ → args ≡ args′
pat-lam₂ refl = refl
pi₁ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₁ ≡ t₁′
pi₁ refl = refl
pi₂ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₂ ≡ t₂′
pi₂ refl = refl
sort₁ : ∀ {x y} → sort x ≡ sort y → x ≡ y
sort₁ refl = refl
lit₁ : ∀ {x y} → Term.lit x ≡ lit y → x ≡ y
lit₁ refl = refl
pcon₁ : ∀ {c c′ args args′} → Pattern.con c args ≡ con c′ args′ → c ≡ c′
pcon₁ refl = refl
pcon₂ : ∀ {c c′ args args′} → Pattern.con c args ≡ con c′ args′ → args ≡ args′
pcon₂ refl = refl
pvar : ∀ {x y} → Pattern.var x ≡ var y → x ≡ y
pvar refl = refl
plit₁ : ∀ {x y} → Pattern.lit x ≡ lit y → x ≡ y
plit₁ refl = refl
pproj₁ : ∀ {x y} → proj x ≡ proj y → x ≡ y
pproj₁ refl = refl
set₁ : ∀ {x y} → set x ≡ set y → x ≡ y
set₁ refl = refl
slit₁ : ∀ {x y} → Sort.lit x ≡ lit y → x ≡ y
slit₁ refl = refl
nat₁ : ∀ {x y} → nat x ≡ nat y → x ≡ y
nat₁ refl = refl
word64₁ : ∀ {x y} → word64 x ≡ word64 y → x ≡ y
word64₁ refl = refl
float₁ : ∀ {x y} → float x ≡ float y → x ≡ y
float₁ refl = refl
char₁ : ∀ {x y} → char x ≡ char y → x ≡ y
char₁ refl = refl
string₁ : ∀ {x y} → string x ≡ string y → x ≡ y
string₁ refl = refl
name₁ : ∀ {x y} → name x ≡ name y → x ≡ y
name₁ refl = refl
lmeta₁ : ∀ {x y} → Literal.meta x ≡ meta y → x ≡ y
lmeta₁ refl = refl
clause₁ : ∀ {ps ps′ b b′} → clause ps b ≡ clause ps′ b′ → ps ≡ ps′
clause₁ refl = refl
clause₂ : ∀ {ps ps′ b b′} → clause ps b ≡ clause ps′ b′ → b ≡ b′
clause₂ refl = refl
absurd-clause₁ : ∀ {ps ps′} → absurd-clause ps ≡ absurd-clause ps′ → ps ≡ ps′
absurd-clause₁ refl = refl
infix 4 _≟-Visibility_ _≟-Relevance_ _≟-Arg-info_ _≟-Lit_ _≟-AbsTerm_
_≟-AbsType_ _≟-ArgTerm_ _≟-ArgType_ _≟-ArgPattern_ _≟-Args_
_≟-Clause_ _≟-Clauses_ _≟-Pattern_ _≟-ArgPatterns_ _≟_
_≟-Sort_
_≟-Visibility_ : Decidable (_≡_ {A = Visibility})
visible ≟-Visibility visible = yes refl
hidden ≟-Visibility hidden = yes refl
instance′ ≟-Visibility instance′ = yes refl
visible ≟-Visibility hidden = no λ()
visible ≟-Visibility instance′ = no λ()
hidden ≟-Visibility visible = no λ()
hidden ≟-Visibility instance′ = no λ()
instance′ ≟-Visibility visible = no λ()
instance′ ≟-Visibility hidden = no λ()
_≟-Relevance_ : Decidable (_≡_ {A = Relevance})
relevant ≟-Relevance relevant = yes refl
irrelevant ≟-Relevance irrelevant = yes refl
relevant ≟-Relevance irrelevant = no λ()
irrelevant ≟-Relevance relevant = no λ()
_≟-Arg-info_ : Decidable (_≡_ {A = Arg-info})
arg-info v r ≟-Arg-info arg-info v′ r′ =
Dec.map′ (cong₂′ arg-info)
< arg-info₁ , arg-info₂ >
(v ≟-Visibility v′ ×-dec r ≟-Relevance r′)
_≟-Lit_ : Decidable (_≡_ {A = Literal})
nat x ≟-Lit nat x₁ = Dec.map′ (cong nat) nat₁ (x ≟-ℕ x₁)
nat x ≟-Lit word64 x₁ = no (λ ())
nat x ≟-Lit float x₁ = no (λ ())
nat x ≟-Lit char x₁ = no (λ ())
nat x ≟-Lit string x₁ = no (λ ())
nat x ≟-Lit name x₁ = no (λ ())
nat x ≟-Lit meta x₁ = no (λ ())
word64 x ≟-Lit word64 x₁ = Dec.map′ (cong word64) word64₁ (x ≟w x₁)
word64 x ≟-Lit nat x₁ = no (λ ())
word64 x ≟-Lit float x₁ = no (λ ())
word64 x ≟-Lit char x₁ = no (λ ())
word64 x ≟-Lit string x₁ = no (λ ())
word64 x ≟-Lit name x₁ = no (λ ())
word64 x ≟-Lit meta x₁ = no (λ ())
float x ≟-Lit nat x₁ = no (λ ())
float x ≟-Lit word64 x₁ = no (λ ())
float x ≟-Lit float x₁ = Dec.map′ (cong float) float₁ (x ≟f x₁)
float x ≟-Lit char x₁ = no (λ ())
float x ≟-Lit string x₁ = no (λ ())
float x ≟-Lit name x₁ = no (λ ())
float x ≟-Lit meta x₁ = no (λ ())
char x ≟-Lit nat x₁ = no (λ ())
char x ≟-Lit word64 x₁ = no (λ ())
char x ≟-Lit float x₁ = no (λ ())
char x ≟-Lit char x₁ = Dec.map′ (cong char) char₁ (x ≟c x₁)
char x ≟-Lit string x₁ = no (λ ())
char x ≟-Lit name x₁ = no (λ ())
char x ≟-Lit meta x₁ = no (λ ())
string x ≟-Lit nat x₁ = no (λ ())
string x ≟-Lit word64 x₁ = no (λ ())
string x ≟-Lit float x₁ = no (λ ())
string x ≟-Lit char x₁ = no (λ ())
string x ≟-Lit string x₁ = Dec.map′ (cong string) string₁ (x ≟s x₁)
string x ≟-Lit name x₁ = no (λ ())
string x ≟-Lit meta x₁ = no (λ ())
name x ≟-Lit nat x₁ = no (λ ())
name x ≟-Lit word64 x₁ = no (λ ())
name x ≟-Lit float x₁ = no (λ ())
name x ≟-Lit char x₁ = no (λ ())
name x ≟-Lit string x₁ = no (λ ())
name x ≟-Lit name x₁ = Dec.map′ (cong name) name₁ (x ≟-Name x₁)
name x ≟-Lit meta x₁ = no (λ ())
meta x ≟-Lit nat x₁ = no (λ ())
meta x ≟-Lit word64 x₁ = no (λ ())
meta x ≟-Lit float x₁ = no (λ ())
meta x ≟-Lit char x₁ = no (λ ())
meta x ≟-Lit string x₁ = no (λ ())
meta x ≟-Lit name x₁ = no (λ ())
meta x ≟-Lit meta x₁ = Dec.map′ (cong meta) lmeta₁ (x ≟-Meta x₁)
mutual
_≟-AbsTerm_ : Decidable (_≡_ {A = Abs Term})
abs s a ≟-AbsTerm abs s′ a′ =
Dec.map′ (cong₂′ abs)
< abs₁ , abs₂ >
(s ≟s s′ ×-dec a ≟ a′)
_≟-AbsType_ : Decidable (_≡_ {A = Abs Type})
abs s a ≟-AbsType abs s′ a′ =
Dec.map′ (cong₂′ abs)
< abs₁ , abs₂ >
(s ≟s s′ ×-dec a ≟ a′)
_≟-ArgTerm_ : Decidable (_≡_ {A = Arg Term})
arg i a ≟-ArgTerm arg i′ a′ =
Dec.map′ (cong₂′ arg)
< arg₁ , arg₂ >
(i ≟-Arg-info i′ ×-dec a ≟ a′)
_≟-ArgType_ : Decidable (_≡_ {A = Arg Type})
arg i a ≟-ArgType arg i′ a′ =
Dec.map′ (cong₂′ arg)
< arg₁ , arg₂ >
(i ≟-Arg-info i′ ×-dec a ≟ a′)
_≟-ArgPattern_ : Decidable (_≡_ {A = Arg Pattern})
arg i a ≟-ArgPattern arg i′ a′ =
Dec.map′ (cong₂′ arg)
< arg₁ , arg₂ >
(i ≟-Arg-info i′ ×-dec a ≟-Pattern a′)
_≟-Args_ : Decidable (_≡_ {A = List (Arg Term)})
[] ≟-Args [] = yes refl
(x ∷ xs) ≟-Args (y ∷ ys) = Dec.map′ (cong₂′ _∷_) < cons₁ , cons₂ > (x ≟-ArgTerm y ×-dec xs ≟-Args ys)
[] ≟-Args (_ ∷ _) = no λ()
(_ ∷ _) ≟-Args [] = no λ()
_≟-Clause_ : Decidable (_≡_ {A = Clause})
clause ps b ≟-Clause clause ps′ b′ = Dec.map′ (cong₂′ clause) < clause₁ , clause₂ > (ps ≟-ArgPatterns ps′ ×-dec b ≟ b′)
absurd-clause ps ≟-Clause absurd-clause ps′ = Dec.map′ (cong absurd-clause) absurd-clause₁ (ps ≟-ArgPatterns ps′)
clause _ _ ≟-Clause absurd-clause _ = no λ()
absurd-clause _ ≟-Clause clause _ _ = no λ()
_≟-Clauses_ : Decidable (_≡_ {A = Clauses})
[] ≟-Clauses [] = yes refl
(x ∷ xs) ≟-Clauses (y ∷ ys) = Dec.map′ (cong₂′ _∷_) < cons₁ , cons₂ > (x ≟-Clause y ×-dec xs ≟-Clauses ys)
[] ≟-Clauses (_ ∷ _) = no λ()
(_ ∷ _) ≟-Clauses [] = no λ()
_≟-Pattern_ : Decidable (_≡_ {A = Pattern})
con c ps ≟-Pattern con c′ ps′ = Dec.map′ (cong₂′ con) < pcon₁ , pcon₂ > (c ≟-Name c′ ×-dec ps ≟-ArgPatterns ps′)
con x x₁ ≟-Pattern dot = no (λ ())
con x x₁ ≟-Pattern var x₂ = no (λ ())
con x x₁ ≟-Pattern lit x₂ = no (λ ())
con x x₁ ≟-Pattern proj x₂ = no (λ ())
con x x₁ ≟-Pattern absurd = no (λ ())
dot ≟-Pattern con x x₁ = no (λ ())
dot ≟-Pattern dot = yes refl
dot ≟-Pattern var x = no (λ ())
dot ≟-Pattern lit x = no (λ ())
dot ≟-Pattern proj x = no (λ ())
dot ≟-Pattern absurd = no (λ ())
var s ≟-Pattern con x x₁ = no (λ ())
var s ≟-Pattern dot = no (λ ())
var s ≟-Pattern var s′ = Dec.map′ (cong var) pvar (s ≟s s′)
var s ≟-Pattern lit x = no (λ ())
var s ≟-Pattern proj x = no (λ ())
var s ≟-Pattern absurd = no (λ ())
lit x ≟-Pattern con x₁ x₂ = no (λ ())
lit x ≟-Pattern dot = no (λ ())
lit x ≟-Pattern var _ = no (λ ())
lit l ≟-Pattern lit l′ = Dec.map′ (cong lit) plit₁ (l ≟-Lit l′)
lit x ≟-Pattern proj x₁ = no (λ ())
lit x ≟-Pattern absurd = no (λ ())
proj x ≟-Pattern con x₁ x₂ = no (λ ())
proj x ≟-Pattern dot = no (λ ())
proj x ≟-Pattern var _ = no (λ ())
proj x ≟-Pattern lit x₁ = no (λ ())
proj x ≟-Pattern proj x₁ = Dec.map′ (cong proj) pproj₁ (x ≟-Name x₁)
proj x ≟-Pattern absurd = no (λ ())
absurd ≟-Pattern con x x₁ = no (λ ())
absurd ≟-Pattern dot = no (λ ())
absurd ≟-Pattern var _ = no (λ ())
absurd ≟-Pattern lit x = no (λ ())
absurd ≟-Pattern proj x = no (λ ())
absurd ≟-Pattern absurd = yes refl
_≟-ArgPatterns_ : Decidable (_≡_ {A = List (Arg Pattern)})
[] ≟-ArgPatterns [] = yes refl
(x ∷ xs) ≟-ArgPatterns (y ∷ ys) = Dec.map′ (cong₂′ _∷_) < cons₁ , cons₂ > (x ≟-ArgPattern y ×-dec xs ≟-ArgPatterns ys)
[] ≟-ArgPatterns (_ ∷ _) = no λ()
(_ ∷ _) ≟-ArgPatterns [] = no λ()
_≟_ : Decidable (_≡_ {A = Term})
var x args ≟ var x′ args′ = Dec.map′ (cong₂′ var) < var₁ , var₂ > (x ≟-ℕ x′ ×-dec args ≟-Args args′)
con c args ≟ con c′ args′ = Dec.map′ (cong₂′ con) < con₁ , con₂ > (c ≟-Name c′ ×-dec args ≟-Args args′)
def f args ≟ def f′ args′ = Dec.map′ (cong₂′ def) < def₁ , def₂ > (f ≟-Name f′ ×-dec args ≟-Args args′)
meta x args ≟ meta x′ args′ = Dec.map′ (cong₂′ meta) < meta₁ , meta₂ > (x ≟-Meta x′ ×-dec args ≟-Args args′)
lam v t ≟ lam v′ t′ = Dec.map′ (cong₂′ lam) < lam₁ , lam₂ > (v ≟-Visibility v′ ×-dec t ≟-AbsTerm t′)
pat-lam cs args ≟ pat-lam cs′ args′ =
Dec.map′ (cong₂′ pat-lam) < pat-lam₁ , pat-lam₂ > (cs ≟-Clauses cs′ ×-dec args ≟-Args args′)
pi t₁ t₂ ≟ pi t₁′ t₂′ = Dec.map′ (cong₂′ pi) < pi₁ , pi₂ > (t₁ ≟-ArgType t₁′ ×-dec t₂ ≟-AbsType t₂′)
sort s ≟ sort s′ = Dec.map′ (cong sort) sort₁ (s ≟-Sort s′)
lit l ≟ lit l′ = Dec.map′ (cong lit) lit₁ (l ≟-Lit l′)
unknown ≟ unknown = yes refl
var x args ≟ con c args′ = no λ()
var x args ≟ def f args′ = no λ()
var x args ≟ lam v t = no λ()
var x args ≟ pi t₁ t₂ = no λ()
var x args ≟ sort _ = no λ()
var x args ≟ lit _ = no λ()
var x args ≟ meta _ _ = no λ()
var x args ≟ unknown = no λ()
con c args ≟ var x args′ = no λ()
con c args ≟ def f args′ = no λ()
con c args ≟ lam v t = no λ()
con c args ≟ pi t₁ t₂ = no λ()
con c args ≟ sort _ = no λ()
con c args ≟ lit _ = no λ()
con c args ≟ meta _ _ = no λ()
con c args ≟ unknown = no λ()
def f args ≟ var x args′ = no λ()
def f args ≟ con c args′ = no λ()
def f args ≟ lam v t = no λ()
def f args ≟ pi t₁ t₂ = no λ()
def f args ≟ sort _ = no λ()
def f args ≟ lit _ = no λ()
def f args ≟ meta _ _ = no λ()
def f args ≟ unknown = no λ()
lam v t ≟ var x args = no λ()
lam v t ≟ con c args = no λ()
lam v t ≟ def f args = no λ()
lam v t ≟ pi t₁ t₂ = no λ()
lam v t ≟ sort _ = no λ()
lam v t ≟ lit _ = no λ()
lam v t ≟ meta _ _ = no λ()
lam v t ≟ unknown = no λ()
pi t₁ t₂ ≟ var x args = no λ()
pi t₁ t₂ ≟ con c args = no λ()
pi t₁ t₂ ≟ def f args = no λ()
pi t₁ t₂ ≟ lam v t = no λ()
pi t₁ t₂ ≟ sort _ = no λ()
pi t₁ t₂ ≟ lit _ = no λ()
pi t₁ t₂ ≟ meta _ _ = no λ()
pi t₁ t₂ ≟ unknown = no λ()
sort _ ≟ var x args = no λ()
sort _ ≟ con c args = no λ()
sort _ ≟ def f args = no λ()
sort _ ≟ lam v t = no λ()
sort _ ≟ pi t₁ t₂ = no λ()
sort _ ≟ lit _ = no λ()
sort _ ≟ meta _ _ = no λ()
sort _ ≟ unknown = no λ()
lit _ ≟ var x args = no λ()
lit _ ≟ con c args = no λ()
lit _ ≟ def f args = no λ()
lit _ ≟ lam v t = no λ()
lit _ ≟ pi t₁ t₂ = no λ()
lit _ ≟ sort _ = no λ()
lit _ ≟ meta _ _ = no λ()
lit _ ≟ unknown = no λ()
meta _ _ ≟ var x args = no λ()
meta _ _ ≟ con c args = no λ()
meta _ _ ≟ def f args = no λ()
meta _ _ ≟ lam v t = no λ()
meta _ _ ≟ pi t₁ t₂ = no λ()
meta _ _ ≟ sort _ = no λ()
meta _ _ ≟ lit _ = no λ()
meta _ _ ≟ unknown = no λ()
unknown ≟ var x args = no λ()
unknown ≟ con c args = no λ()
unknown ≟ def f args = no λ()
unknown ≟ lam v t = no λ()
unknown ≟ pi t₁ t₂ = no λ()
unknown ≟ sort _ = no λ()
unknown ≟ lit _ = no λ()
unknown ≟ meta _ _ = no λ()
pat-lam _ _ ≟ var x args = no λ()
pat-lam _ _ ≟ con c args = no λ()
pat-lam _ _ ≟ def f args = no λ()
pat-lam _ _ ≟ lam v t = no λ()
pat-lam _ _ ≟ pi t₁ t₂ = no λ()
pat-lam _ _ ≟ sort _ = no λ()
pat-lam _ _ ≟ lit _ = no λ()
pat-lam _ _ ≟ meta _ _ = no λ()
pat-lam _ _ ≟ unknown = no λ()
var x args ≟ pat-lam _ _ = no λ()
con c args ≟ pat-lam _ _ = no λ()
def f args ≟ pat-lam _ _ = no λ()
lam v t ≟ pat-lam _ _ = no λ()
pi t₁ t₂ ≟ pat-lam _ _ = no λ()
sort _ ≟ pat-lam _ _ = no λ()
lit _ ≟ pat-lam _ _ = no λ()
meta _ _ ≟ pat-lam _ _ = no λ()
unknown ≟ pat-lam _ _ = no λ()
_≟-Sort_ : Decidable (_≡_ {A = Sort})
set t ≟-Sort set t′ = Dec.map′ (cong set) set₁ (t ≟ t′)
lit n ≟-Sort lit n′ = Dec.map′ (cong lit) slit₁ (n ≟-ℕ n′)
unknown ≟-Sort unknown = yes refl
set _ ≟-Sort lit _ = no λ()
set _ ≟-Sort unknown = no λ()
lit _ ≟-Sort set _ = no λ()
lit _ ≟-Sort unknown = no λ()
unknown ≟-Sort set _ = no λ()
unknown ≟-Sort lit _ = no λ()
| {
"alphanum_fraction": 0.5331630097,
"avg_line_length": 33.27,
"ext": "agda",
"hexsha": "553165f3d250def9893aaf2db30e05a72f7b5494",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Reflection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Reflection.agda",
"max_line_length": 122,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Reflection.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7552,
"size": 19962
} |
{-# OPTIONS --cubical --safe #-}
module Data.Empty.UniversePolymorphic where
open import Prelude hiding (⊥)
import Data.Empty as Monomorphic
data ⊥ {ℓ} : Type ℓ where
Poly⊥⇔Mono⊥ : ∀ {ℓ} → ⊥ {ℓ} ⇔ Monomorphic.⊥
Poly⊥⇔Mono⊥ .fun ()
Poly⊥⇔Mono⊥ .inv ()
Poly⊥⇔Mono⊥ .leftInv ()
Poly⊥⇔Mono⊥ .rightInv ()
| {
"alphanum_fraction": 0.6253968254,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "11861a8b8792987f9d1c031b9f3851f62a772ef7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/Empty/UniversePolymorphic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/Empty/UniversePolymorphic.agda",
"max_line_length": 43,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/Empty/UniversePolymorphic.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 142,
"size": 315
} |
module Cats.Util.Reflection where
open import Reflection public
open import Data.List using ([])
open import Data.Unit using (⊤)
open import Function using (_∘_)
open import Level using (zero ; Lift)
open import Cats.Util.Monad using (RawMonad ; _>>=_ ; _>>_ ; return ; mapM′)
instance
tcMonad : ∀ {l} → RawMonad {l} TC
tcMonad = record
{ return = returnTC
; _>>=_ = bindTC
}
pattern argH x = arg (arg-info hidden relevant) x
pattern argD x = arg (arg-info visible relevant) x
pattern defD x = def x []
fromArg : ∀ {A} → Arg A → A
fromArg (arg _ x) = x
fromAbs : ∀ {A} → Abs A → A
fromAbs (abs _ x) = x
blockOnAnyMeta-clause : Clause → TC (Lift zero ⊤)
-- This may or may not loop if there are metas in the input term that cannot be
-- solved when this tactic is called.
{-# TERMINATING #-}
blockOnAnyMeta : Term → TC (Lift zero ⊤)
blockOnAnyMeta (var x args) = mapM′ (blockOnAnyMeta ∘ fromArg) args
blockOnAnyMeta (con c args) = mapM′ (blockOnAnyMeta ∘ fromArg) args
blockOnAnyMeta (def f args) = mapM′ (blockOnAnyMeta ∘ fromArg) args
blockOnAnyMeta (lam v t) = blockOnAnyMeta (fromAbs t)
blockOnAnyMeta (pat-lam cs args) = do
mapM′ blockOnAnyMeta-clause cs
mapM′ (blockOnAnyMeta ∘ fromArg) args
blockOnAnyMeta (pi a b) = do
blockOnAnyMeta (fromArg a)
blockOnAnyMeta (fromAbs b)
blockOnAnyMeta (sort (set t)) = blockOnAnyMeta t
blockOnAnyMeta (sort (lit n)) = return _
blockOnAnyMeta (sort unknown) = return _
blockOnAnyMeta (lit l) = return _
blockOnAnyMeta (meta x _) = blockOnMeta x
blockOnAnyMeta unknown = return _
blockOnAnyMeta-clause (clause ps t) = blockOnAnyMeta t
blockOnAnyMeta-clause (absurd-clause ps) = return _
| {
"alphanum_fraction": 0.7025580012,
"avg_line_length": 28.4915254237,
"ext": "agda",
"hexsha": "506bdc7fcd489f39ad12e65c999ea85e55446ae5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Util/Reflection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Util/Reflection.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Util/Reflection.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 533,
"size": 1681
} |
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Demos.Binary where
open import Data.Nat
open import Testers
open import Prelude
infixl 5 _1𝕓 _2𝕓
data 𝔹 : Type where
0𝕓 : 𝔹
_1𝕓 : 𝔹 → 𝔹
_2𝕓 : 𝔹 → 𝔹
⟦_⇓⟧ : 𝔹 → ℕ
⟦ 0𝕓 ⇓⟧ = 0
⟦ n 1𝕓 ⇓⟧ = 1 + ⟦ n ⇓⟧ * 2
⟦ n 2𝕓 ⇓⟧ = 2 + ⟦ n ⇓⟧ * 2
inc : 𝔹 → 𝔹
inc 0𝕓 = 0𝕓 1𝕓
inc (xs 1𝕓) = xs 2𝕓
inc (xs 2𝕓) = inc xs 1𝕓
⟦_⇑⟧ : ℕ → 𝔹
⟦ zero ⇑⟧ = 0𝕓
⟦ suc n ⇑⟧ = inc ⟦ n ⇑⟧
inc-suc : ∀ x → ⟦ inc x ⇓⟧ ≡ suc ⟦ x ⇓⟧
inc-suc 0𝕓 i = 1
inc-suc (x 1𝕓) i = 2 + ⟦ x ⇓⟧ * 2
inc-suc (x 2𝕓) i = suc (inc-suc x i * 2)
inc-2*-1𝕓 : ∀ n → inc ⟦ n * 2 ⇑⟧ ≡ ⟦ n ⇑⟧ 1𝕓
inc-2*-1𝕓 zero i = 0𝕓 1𝕓
inc-2*-1𝕓 (suc n) i = inc (inc (inc-2*-1𝕓 n i))
𝔹-rightInv : ∀ x → ⟦ ⟦ x ⇑⟧ ⇓⟧ ≡ x
𝔹-rightInv zero = refl
𝔹-rightInv (suc x) = inc-suc ⟦ x ⇑⟧ ; cong suc (𝔹-rightInv x)
𝔹-leftInv : ∀ x → ⟦ ⟦ x ⇓⟧ ⇑⟧ ≡ x
𝔹-leftInv 0𝕓 = refl
𝔹-leftInv (x 1𝕓) = inc-2*-1𝕓 ⟦ x ⇓⟧ ; cong _1𝕓 (𝔹-leftInv x)
𝔹-leftInv (x 2𝕓) = cong inc (inc-2*-1𝕓 ⟦ x ⇓⟧) ; cong _2𝕓 (𝔹-leftInv x)
ℕ⇔𝔹 : 𝔹 ⇔ ℕ
ℕ⇔𝔹 .fun = ⟦_⇓⟧
ℕ⇔𝔹 .inv = ⟦_⇑⟧
ℕ⇔𝔹 .rightInv = 𝔹-rightInv
ℕ⇔𝔹 .leftInv = 𝔹-leftInv
| {
"alphanum_fraction": 0.5031674208,
"avg_line_length": 21.25,
"ext": "agda",
"hexsha": "a4de5bc9bfa4d4df21fdcaafa3e383f456b2ee58",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Demos/Binary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Demos/Binary.agda",
"max_line_length": 71,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Demos/Binary.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 777,
"size": 1105
} |
-- This contains material which used to be in the Sane module, but is no
-- longer used. It is not junk, so it is kept here, as we may need to
-- resurrect it.
module Obsolete where
import Data.Fin as F
--
open import Data.Empty
open import Data.Unit
open import Data.Unit.Core
open import Data.Nat renaming (_⊔_ to _⊔ℕ_)
open import Data.Sum renaming (map to _⊎→_)
open import Data.Product renaming (map to _×→_)
open import Data.Vec
open import Function renaming (_∘_ to _○_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
-- start re-splitting things up, as this is getting out of hand
open import FT -- Finite Types
open import VecHelpers
open import NatSimple
open import Eval
open import Sane
{-
swap≡ind₀ : {n : ℕ} →
((F.suc F.zero) ∷ F.zero ∷ (vmap (λ i → F.suc (F.suc i)) (upTo n)))
≡ (swapInd F.zero (F.suc F.zero))
swap≡ind₀ {n} = ap (λ v → F.suc F.zero ∷ F.zero ∷ v)
((vmap (λ i → F.suc (F.suc i)) (upTo n)) ≡⟨ mapTab _ _ ⟩
(tabulate (id ○ (λ i → F.suc (F.suc i)))) ≡⟨ tabf∼g _ _ swapIndIdAfterOne ⟩
((tabulate (((swapIndFn F.zero (F.suc F.zero)) ○ F.suc) ○ F.suc)) ∎))
-}
{-- For reference
swapmn : {lim : ℕ} → (m : F.Fin lim) → F.Fin′ m → (fromℕ lim) ⇛ (fromℕ lim)
swapmn F.zero ()
swapmn (F.suc m) (F.zero) = swapUpTo m ◎ swapi m ◎ swapDownFrom m
swapmn (F.suc m) (F.suc n) = id⇛ ⊕ swapmn m n
--}
{--
foldrWorks
{fromℕ n ⇛ fromℕ n}
{n}
(λ i → fromℕ n ⇛ fromℕ n)
-- I think we need to rewrite vecToComb using an indexed fold to have all
-- the information here that we need for the correctness proof [Z]
(λ n′ v c → (i : F.Fin n′) → {!!})
-- (evalVec {n′} v i) ≡ (evalComb c (finToVal i)))
_◎_
id⇛
{!!} -- combination lemma
{!!} -- base case lemma
(zipWith makeSingleComb v (upTo n))
--}
-- Maybe we won't end up needing these to plug in to vecToCombWorks,
-- but I'm afraid we will, which means we'll have to fix them eventually.
-- I'm not sure how to do this right now and I've spent too much time on
-- it already when there are other, more tractable problems that need to
-- be solved. If someone else wants to take a shot, be my guest. [Z]
{-
foldri : {A : Set} → (B : ℕ → Set) → {m : ℕ} →
({n : ℕ} → F.Fin m → A → B n → B (suc n)) →
B zero →
Vec A m → B m
foldri {A} b {m} combine base vec =
foldr
b
(uncurry combine)
base
(Data.Vec.zip (upTo _) vec)
postulate foldriWorks : {A : Set} → {m : ℕ} →
(B : ℕ → Set) → (P : (n : ℕ) → Vec A n → B n → Set) →
(combine : {n : ℕ} → F.Fin m → A → B n → B (suc n)) →
(base : B zero) →
({n : ℕ} → (i : F.Fin m) → (a : A) → (v : Vec A n) → (b : B n)
→ P n v b
→ P (suc n) (a ∷ v) (combine i a b)) →
P zero [] base →
(v : Vec A m) →
P m v (foldri B combine base v)
-}
-- following definition doesn't work, or at least not obviously
-- need a more straightforward definition of foldri, but none comes to mind
-- help? [Z]
{--
foldriWorks {A} {m} B P combine base pcombine pbase vec =
foldrWorks {F.Fin m × A}
B
(λ n v b → P n (map proj₂ v) b)
(uncurry combine)
base
? -- (uncurry pcombine)
pbase
(Data.Vec.zip (upTo _) vec)
--}
-- Second argument is an accumulator
-- plf′ max i acc = (i + acc) + 1 mod (max + acc) if (i + acc) <= (max + acc), (max + acc) ow
-- This is the simplest way I could come up with to do this without
-- using F.compare or something similar
{-
plf′ : {m n : ℕ} → F.Fin (suc m) → F.Fin (suc m) → F.Fin n → F.Fin (m + n)
plf′ {n = zero} F.zero F.zero ()
plf′ {m} {suc n} F.zero F.zero acc =
hetType F.zero (ap F.Fin (! (m+1+n≡1+m+n m _))) -- m mod m == 0
plf′ F.zero (F.suc i) acc = (F.suc i) +F acc -- above the threshold, so just id
plf′ (F.suc {zero} ()) _ _
plf′ (F.suc {suc m} max) F.zero acc = -- we're in range, so take succ of acc
hetType (inj+ {n = m} (F.suc acc)) (ap F.Fin (m+1+n≡1+m+n m _))
plf′ (F.suc {suc m} max) (F.suc i) acc = -- we don't know what to do yet, so incr acc & recur
hetType (plf′ max i (F.suc acc))
(ap F.Fin ((m+1+n≡1+m+n m _)))
-}
-- Seems important to prove! (but not used, so commenting it out [JC])
{-
shuffle : {n : ℕ} → (i : F.Fin n) →
(permLeftID (F.inject₁ i)
∘̬ swapInd (F.inject₁ i) (F.suc i)
∘̬ permRightID (F.inject₁ i))
≡ swapInd F.zero (F.suc i)
shuffle {zero} ()
shuffle {suc n} F.zero = {!!}
shuffle {suc n} (F.suc i) = {!!}
-}
-- helper lemmas for vecRepWorks
swapElsewhere : {n : ℕ} → (x : ⟦ fromℕ n ⟧) →
inj₂ (inj₂ x) ≡ (evalComb (swapi F.zero) (inj₂ (inj₂ x)))
swapElsewhere x = refl
-- Lemma for proving things about calls to foldr; possibly not needed.
foldrWorks : {A : Set} → {m : ℕ} →
(B : ℕ → Set) → (P : (n : ℕ) → Vec A n → B n → Set)
→ (_⊕_ : {n : ℕ} → A → B n → B (suc n)) → (base : B zero)
→ ({n : ℕ} → (a : A) → (v : Vec A n) → (b : B n) → P n v b
→ P (suc n) (a ∷ v) (a ⊕ b))
→ P zero [] base
→ (v : Vec A m)
→ P m v (foldr B _⊕_ base v)
foldrWorks B P combine base pcombine pbase [] = pbase
foldrWorks B P combine base pcombine pbase (x ∷ v) =
pcombine x v (foldr B combine base v)
(foldrWorks B P combine base pcombine pbase v)
-- evalComb on foldr becomes a foldl of flipped evalComb
evalComb∘foldr : {n j : ℕ} → (i : ⟦ fromℕ n ⟧ ) → (c-vec : Vec (fromℕ n ⇛ fromℕ n) j) → evalComb (foldr (λ _ → fromℕ n ⇛ fromℕ n) _◎_ id⇛ c-vec) i ≡ foldl (λ _ → ⟦ fromℕ n ⟧) (λ i c → evalComb c i) i c-vec
evalComb∘foldr {zero} () v
evalComb∘foldr {suc _} i [] = refl -- i
evalComb∘foldr {suc n} i (c ∷ cv) = evalComb∘foldr {suc n} (evalComb c i) cv
-- foldl on a map: move the function in; specialize to this case.
foldl∘map : {n m : ℕ} {A C : Set} (f : C → A → C)
(j : C) (g : F.Fin m → F.Fin m → A) → (v : Vec (F.Fin m) m) → (z : Vec (F.Fin m) n) →
foldl (λ _ → C) f j (map (λ i → g (v !! i) i) z) ≡
foldl (λ _ → C) (λ h i → i h) j (map (λ x₂ → λ w → f w (g (v !! x₂) x₂)) z)
foldl∘map {zero} f j g v [] = refl -- j
foldl∘map {suc n} {zero} f j g [] (() ∷ z)
foldl∘map {suc n} {suc m} f j g v (x ∷ z) = foldl∘map f (f j (g (lookup x v) x)) g v z
lemma3 : {n : ℕ} →
(v : Vec (F.Fin n) n) → (i : F.Fin n) →
(evalComb (vecToComb v) (finToVal i)) ≡
foldl
(λ _ → ⟦ fromℕ n ⟧)
(λ h i₁ → i₁ h)
(finToVal i)
(replicate
(λ x₂ → evalComb (makeSingleComb (lookup x₂ v) x₂)) ⊛
tabulate (λ x → x))
lemma3 {n} v i = begin
evalComb (vecToComb v) (finToVal i)
≡⟨ evalComb∘foldr
(finToVal i)
(map (λ i → makeSingleComb (v !! i) i) (upTo n)) ⟩
foldl
(λ _ → ⟦ fromℕ n ⟧)
(λ j c → evalComb c j)
(finToVal i)
(map (λ i → makeSingleComb (v !! i) i) (upTo n))
≡⟨ foldl∘map (λ j c → evalComb c j) (finToVal i) makeSingleComb v (upTo n) ⟩
foldl
(λ _ → ⟦ fromℕ n ⟧)
(λ h i₁ → i₁ h)
(finToVal i)
(replicate
(λ x₂ → evalComb (makeSingleComb (lookup x₂ v) x₂)) ⊛
tabulate id)
∎
| {
"alphanum_fraction": 0.5242444594,
"avg_line_length": 37.7918781726,
"ext": "agda",
"hexsha": "abc1fa9ad4c6b1fb3f374b9d446062292706775c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/Obsolete.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/Obsolete.agda",
"max_line_length": 206,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/Obsolete.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2808,
"size": 7445
} |
{-# OPTIONS --without-K --safe #-}
module Math.NumberTheory.Summation.Nat.Properties.Lemma where
-- agda-stdlib
open import Data.Nat
open import Data.Nat.Properties
open import Data.Nat.Solver
open import Relation.Binary.PropositionalEquality
open import Function.Base
lemma₁ : ∀ n → n * (1 + n) * (1 + 2 * n) + 6 * ((1 + n) ^ 2) ≡
(1 + n) * (2 + n) * (1 + 2 * (1 + n))
lemma₁ = solve 1 (λ n →
(n :* (con 1 :+ n) :* (con 1 :+ con 2 :* n) :+ con 6 :* (con 1 :+ n) :^ 2) :=
(con 1 :+ n) :* (con 2 :+ n) :* (con 1 :+ con 2 :* (con 1 :+ n))
) refl
where open +-*-Solver
| {
"alphanum_fraction": 0.5456081081,
"avg_line_length": 31.1578947368,
"ext": "agda",
"hexsha": "36bb6e1570c33e66e541200c6d617f2a8565de1f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Math/NumberTheory/Summation/Nat/Properties/Lemma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Math/NumberTheory/Summation/Nat/Properties/Lemma.agda",
"max_line_length": 79,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Math/NumberTheory/Summation/Nat/Properties/Lemma.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 236,
"size": 592
} |
open import Nat
open import Prelude
open import dynamics-core
open import contexts
open import htype-decidable
open import lemmas-matching
open import lemmas-consistency
open import disjointness
open import typed-elaboration
module elaborability where
mutual
elaborability-synth : {Γ : tctx} {e : hexp} {τ : htyp} →
holes-unique e →
Γ ⊢ e => τ →
Σ[ d ∈ ihexp ] Σ[ Δ ∈ hctx ]
(Γ ⊢ e ⇒ τ ~> d ⊣ Δ)
elaborability-synth HUNum SNum = _ , _ , ESNum
elaborability-synth (HUPlus hu1 hu2 hd) (SPlus wt1 wt2)
with elaborability-ana hu1 wt1 | elaborability-ana hu2 wt2
... | _ , _ , _ , D1 | _ , _ , _ , D2 =
_ , _ , ESPlus hd (elab-ana-disjoint hd D1 D2) D1 D2
elaborability-synth (HUAsc hu) (SAsc wt)
with elaborability-ana hu wt
... | _ , _ , _ , D = _ , _ , ESAsc D
elaborability-synth HUVar (SVar x) = _ , _ , ESVar x
elaborability-synth (HULam2 hu) (SLam apt wt)
with elaborability-synth hu wt
... | _ , _ , D = _ , _ , ESLam apt D
elaborability-synth (HUAp hu1 hu2 hd) (SAp wt1 m wt2)
with elaborability-ana hu1 (ASubsume wt1 (~sym (▸arr-consist m))) |
elaborability-ana hu2 wt2
... | _ , _ , _ , D1 | _ , _ , _ , D2 =
_ , _ , ESAp hd (elab-ana-disjoint hd D1 D2) wt1 m D1 D2
elaborability-synth (HUPair hu1 hu2 hd) (SPair wt1 wt2)
with elaborability-synth hu1 wt1 | elaborability-synth hu2 wt2
... | _ , _ , D1 | _ , _ , D2 = _ , _ , ESPair hd (elab-synth-disjoint hd D1 D2) D1 D2
elaborability-synth (HUFst hu) (SFst wt m)
with elaborability-ana hu (ASubsume wt (~sym (▸prod-consist m)))
... | _ , _ , _ , D = _ , _ , ESFst wt m D
elaborability-synth (HUSnd hu) (SSnd wt m)
with elaborability-ana hu (ASubsume wt (~sym (▸prod-consist m)))
... | _ , _ , _ , D = _ , _ , ESSnd wt m D
elaborability-synth HUHole SEHole = _ , _ , ESEHole
elaborability-synth (HUNEHole hu hnn) (SNEHole wt)
with elaborability-synth hu wt
... | _ , _ , D = _ , _ , ESNEHole (elab-new-disjoint-synth hnn D) D
elaborability-ana : {Γ : tctx} {e : hexp} {τ : htyp} →
holes-unique e →
Γ ⊢ e <= τ →
Σ[ d ∈ ihexp ] Σ[ Δ ∈ hctx ] Σ[ τ' ∈ htyp ]
(Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ)
elaborability-ana {e = e} hu (ASubsume wt con)
with elaborability-synth hu wt
elaborability-ana {e = N x} hu (ASubsume wt con)
| _ , _ , wt' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) wt' con
elaborability-ana {e = e ·+ e₁} hu (ASubsume wt con)
| _ , _ , wt' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) wt' con
elaborability-ana {e = e ·: x} hu (ASubsume wt con)
| _ , _ , wt' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) wt' con
elaborability-ana {e = X x} hu (ASubsume wt con)
| _ , _ , wt' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) wt' con
elaborability-ana {e = ·λ x ·[ x₁ ] e} hu (ASubsume wt con)
| _ , _ , wt' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) wt' con
elaborability-ana {e = e ∘ e₁} hu (ASubsume wt con)
| _ , _ , wt' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) wt' con
elaborability-ana {e = ⟨ e , e₁ ⟩} hu (ASubsume wt con)
| _ , _ , wt' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) wt' con
elaborability-ana {e = fst e} hu (ASubsume wt con)
| _ , _ , wt' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) wt' con
elaborability-ana {e = snd e} hu (ASubsume wt con)
| _ , _ , wt' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) wt' con
elaborability-ana {e = ⦇-⦈[ u ]} hu (ASubsume wt con)
| _ , _ , wt' = _ , _ , _ , EAEHole
elaborability-ana {e = ⦇⌜ e ⌟⦈[ u ]} (HUNEHole hu hnn) (ASubsume (SNEHole wt) con)
| _ , _ , ESNEHole apt wt' with elaborability-synth hu wt
... | _ , _ , wt'' = _ , _ , _ , EANEHole (elab-new-disjoint-synth hnn wt'') wt''
elaborability-ana (HULam1 hu) (ALam apt m wt)
with elaborability-ana hu wt
... | _ , _ , _ , wt' = _ , _ , _ , EALam apt m wt'
elaborability-ana (HUInl hu) (AInl m wt)
with elaborability-ana hu wt
... | _ , _ , _ , wt' = _ , _ , _ , EAInl m wt'
elaborability-ana (HUInr hu) (AInr m wt)
with elaborability-ana hu wt
... | _ , _ , _ , wt' = _ , _ , _ , EAInr m wt'
elaborability-ana (HUCase hu hu1 hu2 hd1 hd2 hd12) (ACase apt1 apt2 m wt wt1 wt2)
with elaborability-synth hu wt | elaborability-ana hu1 wt1 | elaborability-ana hu2 wt2
... | _ , _ , wt' | _ , _ , _ , wt1' | _ , _ , _ , wt2' =
_ , _ , _ , EACase hd1 hd2 hd12 (elab-synth-ana-disjoint hd1 wt' wt1')
(elab-synth-ana-disjoint hd2 wt' wt2')
(elab-ana-disjoint hd12 wt1' wt2')
apt1 apt2 wt' m wt1' wt2'
| {
"alphanum_fraction": 0.528887087,
"avg_line_length": 51.3854166667,
"ext": "agda",
"hexsha": "4c407a1aa426ab8a6ce42ba88775047a4f4e5776",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "elaborability.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "elaborability.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "elaborability.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1819,
"size": 4933
} |
module DFA where
open import Level
open import Data.Unit
open import Data.List using (List; []; _∷_)
open import Data.Bool using (Bool; true; false; _∧_; _∨_; T; not)
open import Function
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary
open DecSetoid
String : (Σ : Set) → Set
String Σ = List Σ
-- A deterministic finite automaton is a 5-tuple, (Q, Σ, δ, q0, F)
record DFA (Q : DecSetoid zero zero) (Σ : Set): Set₁ where
constructor dfa
field
δ : Carrier Q → Σ → Carrier Q
initial : Carrier Q
accepts : Carrier Q → Bool
open DFA
-- eats a character
step : ∀ {Q Σ} → DFA Q Σ → Σ → DFA Q Σ
step (dfa δ initial accept) char = dfa δ (δ initial char) accept
-- eats a lot of characters
steps : ∀ {Q Σ} → DFA Q Σ → String Σ → DFA Q Σ
steps machine [] = machine
steps machine (x ∷ xs) = steps (step machine x) xs
-- a machine M is acceptable if its initial state is in the accept states
acceptable : ∀ {Q Σ} → DFA Q Σ → Bool
acceptable (dfa δ initial accepts) = accepts initial
--------------------------------------------------------------------------------
-- language and automaton
--------------------------------------------------------------------------------
open import Relation.Unary hiding (Decidable)
Language : (Σ : Set) → Set _
Language Σ = Pred (String Σ) zero
-- machine ⇒ language
⟦_⟧ : ∀ {P Σ} → DFA P Σ → Language Σ
⟦ machine ⟧ = λ string → T (acceptable (steps machine string))
_∈?_ : ∀ {P Σ} → (string : String Σ) → (M : DFA P Σ) → Dec (string ∈ ⟦ M ⟧)
string ∈? machine with acceptable (steps machine string)
string ∈? machine | false = no id
string ∈? machine | true = yes tt
--------------------------------------------------------------------------------
-- product and sum
--------------------------------------------------------------------------------
open import Data.Product
open import Relation.Binary.Product.Pointwise
-- a helper function for constructing a transition function with product states
product-δ : ∀ {P Q Σ} → DFA P Σ → DFA Q Σ → Carrier P × Carrier Q → Σ → Carrier P × Carrier Q
product-δ A B (p , q) c = δ A p c , δ B q c
-- intersection
infixl 30 _∩ᴹ_
_∩ᴹ_ : ∀ {P Q Σ} → DFA P Σ → DFA Q Σ → DFA (P ×-decSetoid Q) Σ
A ∩ᴹ B = dfa
(product-δ A B)
(initial A , initial B)
(uncurry (λ p q → accepts A p ∧ accepts B q))
-- union
infixl 29 _∪ᴹ_
_∪ᴹ_ : ∀ {P Q Σ} → DFA P Σ → DFA Q Σ → DFA (P ×-decSetoid Q) Σ
A ∪ᴹ B = dfa
(product-δ A B)
(initial A , initial B)
(uncurry (λ p q → accepts A p ∨ accepts B q))
-- negation
infixl 31 Cᴹ_
Cᴹ_ : ∀ {P Σ} → DFA P Σ → DFA P Σ
Cᴹ dfa δ initial accepts = dfa δ initial (not ∘ accepts)
--------------------------------------------------------------------------------
-- concatenation
--------------------------------------------------------------------------------
open import Data.Sum
open import Relation.Binary.Sum
open import Data.Empty
module Pointwise where
-- _⊎-decSetoid_ : ∀ {d₁ d₂ d₃ d₄}
-- → DecSetoid d₁ d₂
-- → DecSetoid d₃ d₄
-- → DecSetoid _ _
-- _⊎-decSetoid_ {d₁} {d₂} {d₃} {d₄} s₁ s₂ = record
-- { Carrier = Carrier s₁ ⊎ Carrier s₂
-- ; _≈_ = _⊎-≈_
-- ; isDecEquivalence = record
-- { isEquivalence = ⊎-≈-isEquivalence
-- ; _≟_ = ⊎-≈-decidable
-- }
-- }
-- where
--
-- open DecSetoid
-- _⊎-≈_ : Carrier s₁ ⊎ Carrier s₂
-- → Carrier s₁ ⊎ Carrier s₂
-- → Set (d₂ ⊔ d₄)
-- _⊎-≈_ (inj₁ x) (inj₁ y) = Lift {d₂} {d₄} (_≈_ s₁ x y) -- (_≈_ s₁ x y)
-- _⊎-≈_ (inj₁ x) (inj₂ y) = Lift ⊥
-- _⊎-≈_ (inj₂ x) (inj₁ y) = Lift ⊥
-- _⊎-≈_ (inj₂ x) (inj₂ y) = Lift {d₄} {d₂} (_≈_ s₂ x y)
--
-- open IsEquivalence
-- module S₁ = IsDecEquivalence (isDecEquivalence s₁)
-- module S₂ = IsDecEquivalence (isDecEquivalence s₂)
--
-- ⊎-≈-refl : Reflexive _⊎-≈_
-- ⊎-≈-refl {inj₁ x} = lift (refl S₁.isEquivalence)
-- ⊎-≈-refl {inj₂ y} = lift (refl S₂.isEquivalence)
--
-- ⊎-≈-sym : Symmetric _⊎-≈_
-- ⊎-≈-sym {inj₁ x} {inj₁ y} (lift eq) = lift (sym S₁.isEquivalence eq)
-- ⊎-≈-sym {inj₁ x} {inj₂ y} (lift ())
-- ⊎-≈-sym {inj₂ x} {inj₁ y} (lift ())
-- ⊎-≈-sym {inj₂ x} {inj₂ y} (lift eq) = lift (sym S₂.isEquivalence eq)
--
-- ⊎-≈-trans : Transitive _⊎-≈_
-- ⊎-≈-trans {inj₁ x} {inj₁ y} {inj₁ z} (lift p) (lift q) = lift (trans S₁.isEquivalence p q)
-- ⊎-≈-trans {inj₁ x} {inj₁ y} {inj₂ z} p (lift ())
-- ⊎-≈-trans {inj₁ x} {inj₂ y} {_} (lift ()) q
-- ⊎-≈-trans {inj₂ x} {inj₁ y} {_} (lift ()) q
-- ⊎-≈-trans {inj₂ x} {inj₂ y} {inj₁ z} p (lift ())
-- ⊎-≈-trans {inj₂ x} {inj₂ y} {inj₂ z} (lift p) (lift q) = lift (trans S₂.isEquivalence p q)
--
-- ⊎-≈-isEquivalence : IsEquivalence _⊎-≈_
-- ⊎-≈-isEquivalence = record
-- { refl = λ {x} → ⊎-≈-refl {x}
-- ; sym = λ {x} {y} eq → ⊎-≈-sym {x} {y} eq
-- ; trans = λ {x} {y} {z} p q → ⊎-≈-trans {x} {y} {z} p q
-- }
--
-- lift-dec : ∀ {a} {b} {P : Set a} → Dec P → Dec (Lift {a} {b} P)
-- lift-dec (yes p) = yes (lift p)
-- lift-dec (no ¬p) = no (λ p → contradiction (lower p) ¬p)
--
-- ⊎-≈-decidable : Decidable _⊎-≈_
-- ⊎-≈-decidable (inj₁ x) (inj₁ y) = lift-dec (S₁._≟_ x y)
-- ⊎-≈-decidable (inj₁ x) (inj₂ y) = no lower
-- ⊎-≈-decidable (inj₂ x) (inj₁ y) = no lower
-- ⊎-≈-decidable (inj₂ x) (inj₂ y) = lift-dec (S₂._≟_ x y)
infixl 28 _++_
_++_ : ∀ {P Q Σ} → DFA P Σ → DFA Q Σ → DFA (P ⊎-decSetoid Q) Σ
_++_ {P} {Q} {Σ} A B = dfa
δ'
(inj₁ (initial A))
accepts'
where
δ' : Carrier (P ⊎-decSetoid Q) → Σ → Carrier (P ⊎-decSetoid Q)
δ' (inj₁ state) character with acceptable (step A character)
δ' (inj₁ state) character | false = inj₁ (δ A state character)
δ' (inj₁ state) character | true = inj₂ (initial B)
δ' (inj₂ state) character = inj₂ (δ B state character)
accepts' : Carrier (P ⊎-decSetoid Q) → Bool
accepts' (inj₁ state) = false
accepts' (inj₂ state) = accepts B state
-- -- ++-right-identity : {P Q Σ : Set}
-- -- → (A : DFA P Σ) → (B : DFA Q Σ)
-- -- → Empty B
-- -- → DFA (P ⊎ Q) Σ
--
--------------------------------------------------------------------------------
-- Kleene closure
--------------------------------------------------------------------------------
-- 1. make the initial state the accept state
-- 2. wire all of the transitions that would've gone to the original accept
-- states to the initial state (which is the new accept state)
infixl 32 _*
_* : ∀ {Q Σ} → DFA Q Σ → DFA Q Σ
_* {Q} {Σ} M = dfa δ' (initial M) accepts'
where
δ' : Carrier Q → Σ → Carrier Q
δ' state character with acceptable (step M character)
δ' state character | false = δ M state character
δ' state character | true = initial M
open IsDecEquivalence (isDecEquivalence Q) renaming (_≟_ to _≟s_)
open import Relation.Nullary.Decidable
accepts' : Carrier Q → Bool
accepts' state = ⌊ state ≟s initial M ⌋
--------------------------------------------------------------------------------
-- Properties
--------------------------------------------------------------------------------
module Properties (Σ : Set) where
open import Function.Equality using (Π)
open Π
open import Function.Equivalence using (_⇔_; Equivalence)
open import Data.Bool.Properties as BoolProp
open import Relation.Nullary.Negation
-- extracting one direction of a function equivalence
⟦_⟧→ : {A B : Set} → A ⇔ B → A → B
⟦ A⇔B ⟧→ A = Equivalence.to A⇔B ⟨$⟩ A
←⟦_⟧ : {A B : Set} → A ⇔ B → B → A
←⟦ A⇔B ⟧ B = Equivalence.from A⇔B ⟨$⟩ B
open import Relation.Unary.Membership (String Σ)
open ⊆-Reasoning
∩-homo⇒ : ∀ {P Q} → (A : DFA P Σ) → (B : DFA Q Σ)
→ ⟦ A ∩ᴹ B ⟧ ⊆′ ⟦ A ⟧ ∩ ⟦ B ⟧
∩-homo⇒ A B [] = ⟦ BoolProp.T-∧ ⟧→
∩-homo⇒ A B (x ∷ xs) = ∩-homo⇒ (step A x) (step B x) xs
∩-homo⇐ : ∀ {P Q} → (A : DFA P Σ) → (B : DFA Q Σ)
→ ⟦ A ⟧ ∩ ⟦ B ⟧ ⊆′ ⟦ A ∩ᴹ B ⟧
∩-homo⇐ A B [] = ←⟦ BoolProp.T-∧ ⟧
∩-homo⇐ A B (x ∷ xs) = ∩-homo⇐ (step A x) (step B x) xs
∩-homo : ∀ {P Q} → (A : DFA P Σ) → (B : DFA Q Σ)
→ ⟦ A ∩ᴹ B ⟧ ≋ ⟦ A ⟧ ∩ ⟦ B ⟧
∩-homo A B = (∩-homo⇒ A B) , (∩-homo⇐ A B)
∩-sym⇒ : ∀ {P Q} → (A : DFA P Σ) → (B : DFA Q Σ)
→ ⟦ A ∩ᴹ B ⟧ ⊆′ ⟦ B ∩ᴹ A ⟧
∩-sym⇒ A B xs P =
xs
∈⟨ P ⟩
⟦ A ∩ᴹ B ⟧
⊆⟨ ∩-homo⇒ A B ⟩
⟦ A ⟧ ∩ ⟦ B ⟧
→⟨ swap ⟩
⟦ B ⟧ ∩ ⟦ A ⟧
⊆⟨ ∩-homo⇐ B A ⟩
⟦ B ∩ᴹ A ⟧
∎
∩-sym : ∀ {P Q} → (A : DFA P Σ) → (B : DFA Q Σ)
→ ⟦ A ∩ᴹ B ⟧ ≋ ⟦ B ∩ᴹ A ⟧
∩-sym A B = (∩-sym⇒ A B) , (∩-sym⇒ B A)
∪-homo⇒ : ∀ {P Q} → (A : DFA P Σ) → (B : DFA Q Σ)
→ ⟦ A ∪ᴹ B ⟧ ⊆′ ⟦ A ⟧ ∪ ⟦ B ⟧
∪-homo⇒ A B [] P = ⟦ BoolProp.T-∨ ⟧→ P
∪-homo⇒ A B (x ∷ xs) P = ∪-homo⇒ (step A x) (step B x) xs P
∪-homo⇐ : ∀ {P Q} → (A : DFA P Σ) → (B : DFA Q Σ)
→ ⟦ A ⟧ ∪ ⟦ B ⟧ ⊆′ ⟦ A ∪ᴹ B ⟧
∪-homo⇐ A B [] P = ←⟦ BoolProp.T-∨ ⟧ P
∪-homo⇐ A B (x ∷ xs) P = ∪-homo⇐ (step A x) (step B x) xs P
∪-homo : ∀ {P Q} → (A : DFA P Σ) → (B : DFA Q Σ)
→ ⟦ A ∪ᴹ B ⟧ ≋ ⟦ A ⟧ ∪ ⟦ B ⟧
∪-homo A B = (∪-homo⇒ A B) , (∪-homo⇐ A B)
∪-sym⇒ : ∀ {P Q} → (A : DFA P Σ) → (B : DFA Q Σ)
→ ⟦ A ∪ᴹ B ⟧ ⊆′ ⟦ B ∪ᴹ A ⟧
∪-sym⇒ A B xs P =
xs
∈⟨ P ⟩
⟦ A ∪ᴹ B ⟧
⊆⟨ ∪-homo⇒ A B ⟩
⟦ A ⟧ ∪ ⟦ B ⟧
→⟨ ⊎-swap ⟩
⟦ B ⟧ ∪ ⟦ A ⟧
⊆⟨ ∪-homo⇐ B A ⟩
⟦ B ∪ᴹ A ⟧
∎
where
⊎-swap : ∀ {a b} {A : Set a} {B : Set b} → A ⊎ B → B ⊎ A
⊎-swap (inj₁ x) = inj₂ x
⊎-swap (inj₂ y) = inj₁ y
∪-sym : ∀ {P Q} → (A : DFA P Σ) → (B : DFA Q Σ)
→ ⟦ A ∪ᴹ B ⟧ ≋ ⟦ B ∪ᴹ A ⟧
∪-sym A B = (∪-sym⇒ A B) , (∪-sym⇒ B A)
T-not-¬ : {b : Bool} → T (not b) → ¬ (T b)
T-not-¬ {false} P Q = Q
T-not-¬ {true} P Q = P
T-¬-not : {b : Bool} → ¬ (T b) → T (not b)
T-¬-not {false} P = tt
T-¬-not {true} P = P tt
C⇒ : ∀ {P} → (M : DFA P Σ)
→ ∁ ⟦ M ⟧ ⊆ ⟦ Cᴹ M ⟧
C⇒ M {[]} = T-¬-not
C⇒ M {x ∷ xs} = C⇒ (step M x) {xs}
C⇐ : ∀ {P} → (M : DFA P Σ)
→ ⟦ Cᴹ M ⟧ ⊆ ∁ ⟦ M ⟧
C⇐ M {[]} = T-not-¬
C⇐ M {x ∷ xs} = C⇐ (step M x) {xs}
C-∩-∅⇒ : ∀ {P} → (M : DFA P Σ) → ⟦ M ∩ᴹ Cᴹ M ⟧ ⊆ ∅
C-∩-∅⇒ M {[]} P =
let
Q , ¬Q = ∩-homo⇒ M (Cᴹ M) [] P
in contradiction Q (C⇐ M {[]} ¬Q)
C-∩-∅⇒ M {x ∷ xs} = C-∩-∅⇒ (step M x) {xs}
C-∩-∅⇐ : ∀ {P} → (M : DFA P Σ) → ∅ ⊆ ⟦ M ∩ᴹ Cᴹ M ⟧
C-∩-∅⇐ M {[]} ()
C-∩-∅⇐ M {x ∷ xs} = C-∩-∅⇐ (step M x) {xs}
C-∪-U⇒ : ∀ {P} → (M : DFA P Σ) → ⟦ M ∪ᴹ Cᴹ M ⟧ ⊆ U
C-∪-U⇒ M {[]} P = tt
C-∪-U⇒ M {x ∷ xs} = C-∪-U⇒ (step M x) {xs}
C-∪-U⇐ : ∀ {P} → (M : DFA P Σ) → U ⊆ ⟦ M ∪ᴹ Cᴹ M ⟧
C-∪-U⇐ M {[]} P with [] ∈? M
C-∪-U⇐ M {[]} P | yes p = ←⟦ T-∨ ⟧ (inj₁ p)
C-∪-U⇐ M {[]} P | no ¬p = ←⟦ T-∨
{accepts M (initial M)}
{not (accepts M (initial M))}
⟧ (inj₂ (T-¬-not ¬p))
C-∪-U⇐ M {x ∷ xs} = C-∪-U⇐ (step M x) {xs}
| {
"alphanum_fraction": 0.4291352093,
"avg_line_length": 34.587537092,
"ext": "agda",
"hexsha": "8dc7e4397dc8e292ec2c7d9a5cc427658242a399",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "063ae0ce03955b332c3edebae6b55a42209813d0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/formal-language",
"max_forks_repo_path": "src/DFA.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "063ae0ce03955b332c3edebae6b55a42209813d0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/formal-language",
"max_issues_repo_path": "src/DFA.agda",
"max_line_length": 105,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "063ae0ce03955b332c3edebae6b55a42209813d0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/formal-language",
"max_stars_repo_path": "src/DFA.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-22T12:48:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-01T11:24:15.000Z",
"num_tokens": 4966,
"size": 11656
} |
{-# OPTIONS --safe --no-qualified-instances #-}
module CF.Transform.Compile.Expressions where
open import Function using (_∘_)
open import Level
open import Data.Unit
open import Data.Bool
open import Data.Product as P
open import Data.List as L hiding (null; [_])
open import Data.List.Membership.Propositional
open import Data.List.Membership.Propositional.Properties
open import Data.List.Relation.Unary.All
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Unary hiding (_∈_)
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax
open import Relation.Ternary.Monad
open import Relation.Ternary.Construct.Bag.Properties
private
module Src where
open import CF.Syntax.DeBruijn public
open import CF.Types public
open import CF.Contexts.Lexical using (module DeBruijn) public; open DeBruijn public
module Tgt where
open import JVM.Types public
open import JVM.Model StackTy public
open import JVM.Syntax.Values public
open import JVM.Syntax.Instructions public
open Src
open Tgt
open import JVM.Compiler
open import CF.Transform.Compile.ToJVM
-- Compilation of CF expressions
compileₑₛ : ∀ {as ψ Γ} → Exps as Γ → ε[ Compiler ⟦ Γ ⟧ ψ (⟦ as ⟧ ++ ψ) Emp ]
compileₑ : ∀ {a ψ Γ} → Exp a Γ → ε[ Compiler ⟦ Γ ⟧ ψ (⟦ a ⟧ ∷ ψ) Emp ]
compileₑ (unit) = do
code (push (bool true))
compileₑ (num x) = do
code (push (num x))
compileₑ (bool b) = do
code (push (bool b))
compileₑ (var' x) = do
code (load ⟦ x ⟧)
compileₑ (bop f e₁ e₂) = do
compileₑ e₁
compileₑ e₂
compile-bop f
where
-- a < b compiles to (assume a and b on stack):
--
-- if_icmplt l⁻
-- iconst_1
-- goto e⁻
-- l⁺: iconst_0
-- e⁺: nop
--
-- Other comparisons go similar
compile-comp : ∀ {Γ as} → Comparator as → ε[ Compiler Γ (as ++ ψ) (boolean ∷ ψ) Emp ]
compile-comp cmp = do
↓ lfalse⁻ ∙⟨ σ ⟩ lfalse⁺ ← ✴-swap ⟨$⟩ freshLabel
lfalse⁺ ← ✴-id⁻ˡ ⟨$⟩ (code (if cmp lfalse⁻) ⟨ Up _ # σ ⟩& lfalse⁺)
lfalse⁺ ← ✴-id⁻ˡ ⟨$⟩ (code (push (bool false)) ⟨ Up _ # ∙-idˡ ⟩& lfalse⁺)
↓ lend⁻ ∙⟨ σ ⟩ labels ← (✴-rotateₗ ∘ ✴-assocᵣ) ⟨$⟩ (freshLabel ⟨ Up _ # ∙-idˡ ⟩& lfalse⁺)
lfalse⁺ ∙⟨ σ ⟩ lend⁺ ← ✴-id⁻ˡ ⟨$⟩ (code (goto lend⁻) ⟨ _ ✴ _ # σ ⟩& labels)
lend⁺ ← ✴-id⁻ˡ ⟨$⟩ (attach lfalse⁺ ⟨ Up _ # σ ⟩& lend⁺)
code (push (bool true))
attach lend⁺
-- Compile comparisons and other binary operations
compile-bop : ∀ {Γ a b c} → BinOp a b c → ε[ Compiler Γ (⟦ b ⟧ ∷ ⟦ a ⟧ ∷ ψ) (⟦ c ⟧ ∷ ψ) Emp ]
compile-bop add = code (bop add)
compile-bop sub = code (bop sub)
compile-bop mul = code (bop mul)
compile-bop div = code (bop div)
compile-bop xor = code (bop xor)
compile-bop eq = compile-comp icmpeq
compile-bop ne = compile-comp icmpne
compile-bop lt = compile-comp icmplt
compile-bop ge = compile-comp icmpge
compile-bop gt = compile-comp icmpgt
compile-bop le = compile-comp icmplt
compileₑ (ifthenelse c e₁ e₂) = do
-- condition
compileₑ c
lthen+ ∙⟨ σ ⟩ ↓ lthen- ← freshLabel
lthen+ ← ✴-id⁻ˡ ⟨$⟩ (code (if ne lthen-) ⟨ Up _ # ∙-comm σ ⟩& lthen+)
-- else
compileₑ e₂
↓ lend- ∙⟨ σ ⟩ labels ← (✴-rotateₗ ∘ ✴-assocᵣ) ⟨$⟩ (freshLabel ⟨ Up _ # ∙-idˡ ⟩& lthen+)
-- then
lthen+ ∙⟨ σ ⟩ lend+ ← ✴-id⁻ˡ ⟨$⟩ (code (goto lend-) ⟨ _ ✴ _ # σ ⟩& labels)
lend+ ← ✴-id⁻ˡ ⟨$⟩ (attach lthen+ ⟨ Up _ # σ ⟩& lend+)
compileₑ e₁
-- label the end
attach lend+
compileₑₛ [] = return refl
compileₑₛ (e ∷ es) = do
compileₑₛ es
compileₑ e
| {
"alphanum_fraction": 0.6087540279,
"avg_line_length": 31.2941176471,
"ext": "agda",
"hexsha": "36d25c83154e393c50fcf1806b6a7a132b872fad",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/CF/Transform/Compile/Expressions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/CF/Transform/Compile/Expressions.agda",
"max_line_length": 100,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/CF/Transform/Compile/Expressions.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 1344,
"size": 3724
} |
module _ where
record _×_ (A B : Set) : Set where
field
fst : A
snd : B
open _×_
partial : ∀ {A B} → A → A × B
partial x .fst = x
open import Agda.Builtin.Equality
theorem : ∀ {A} (x : A) → partial x .snd ≡ x
theorem x = refl
| {
"alphanum_fraction": 0.5743801653,
"avg_line_length": 13.4444444444,
"ext": "agda",
"hexsha": "c16744418dde3df7fd367def891797b49f934b18",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3012.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3012.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3012.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 91,
"size": 242
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core using (Category)
open import Categories.Monad using (Monad)
module Categories.Adjoint.Construction.Kleisli {o ℓ e} {C : Category o ℓ e} (M : Monad C) where
open import Categories.Category.Construction.Kleisli using (Kleisli)
open import Categories.Adjoint using (_⊣_)
open import Categories.Functor using (Functor; _∘F_)
open import Categories.Morphism using (Iso)
open import Categories.Functor.Properties using ([_]-resp-square)
open import Categories.NaturalTransformation.Core using (ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_)
open import Categories.Morphism.Reasoning C
private
module C = Category C
module M = Monad M
open M.F
open M using (module μ; module η)
open C using (Obj; _⇒_; _∘_; _≈_; ∘-resp-≈ʳ; ∘-resp-≈ˡ; assoc; sym-assoc; identityˡ)
open C.HomReasoning
open C.Equiv
Forgetful : Functor (Kleisli M) C
Forgetful = record
{ F₀ = λ X → F₀ X
; F₁ = λ f → μ.η _ ∘ F₁ f
; identity = M.identityˡ
; homomorphism = λ {X Y Z} {f g} → begin
μ.η Z ∘ F₁ ((μ.η Z ∘ F₁ g) ∘ f) ≈⟨ refl⟩∘⟨ homomorphism ⟩
μ.η Z ∘ F₁ (μ.η Z ∘ F₁ g) ∘ F₁ f ≈⟨ refl⟩∘⟨ homomorphism ⟩∘⟨refl ⟩
μ.η Z ∘ (F₁ (μ.η Z) ∘ F₁ (F₁ g)) ∘ F₁ f ≈⟨ pull-first M.assoc ⟩
(μ.η Z ∘ μ.η (F₀ Z)) ∘ F₁ (F₁ g) ∘ F₁ f ≈⟨ center (μ.commute g) ⟩
μ.η Z ∘ (F₁ g ∘ μ.η Y) ∘ F₁ f ≈⟨ pull-first refl ⟩
(μ.η Z ∘ F₁ g) ∘ μ.η Y ∘ F₁ f ∎
; F-resp-≈ = λ eq → ∘-resp-≈ʳ (F-resp-≈ eq)
}
Free : Functor C (Kleisli M)
Free = record
{ F₀ = λ X → X
; F₁ = λ f → η.η _ ∘ f
; identity = C.identityʳ
; homomorphism = λ {X Y Z} {f g} → begin
η.η Z ∘ g ∘ f ≈⟨ sym-assoc ○ ⟺ identityˡ ⟩
C.id ∘ (η.η Z ∘ g) ∘ f ≈˘⟨ pull-first M.identityˡ ⟩
μ.η Z ∘ (F₁ (η.η Z) ∘ η.η Z ∘ g) ∘ f ≈⟨ refl⟩∘⟨ pushʳ (η.commute g) ⟩∘⟨refl ⟩
μ.η Z ∘ ((F₁ (η.η Z) ∘ F₁ g) ∘ η.η Y) ∘ f ≈˘⟨ center (∘-resp-≈ˡ homomorphism) ⟩
(μ.η Z ∘ F₁ (η.η Z ∘ g)) ∘ η.η Y ∘ f ∎
; F-resp-≈ = ∘-resp-≈ʳ
}
FF≃F : Forgetful ∘F Free ≃ M.F
FF≃F = record
{ F⇒G = ntHelper record
{ η = λ X → F₁ C.id
; commute = λ {X Y} f → begin
F₁ C.id ∘ μ.η Y ∘ F₁ (η.η Y ∘ f) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ homomorphism ⟩
F₁ C.id ∘ μ.η Y ∘ F₁ (η.η Y) ∘ F₁ f ≈⟨ refl⟩∘⟨ cancelˡ M.identityˡ ⟩
F₁ C.id ∘ F₁ f ≈⟨ [ M.F ]-resp-square id-comm-sym ⟩
F₁ f ∘ F₁ C.id ∎
}
; F⇐G = ntHelper record
{ η = λ X → F₁ C.id
; commute = λ {X Y} f → begin
F₁ C.id ∘ F₁ f ≈⟨ [ M.F ]-resp-square id-comm-sym ⟩
F₁ f ∘ F₁ C.id ≈˘⟨ cancelˡ M.identityˡ ⟩∘⟨refl ⟩
(μ.η Y ∘ F₁ (η.η Y) ∘ F₁ f) ∘ F₁ C.id ≈˘⟨ ∘-resp-≈ʳ homomorphism ⟩∘⟨refl ⟩
(μ.η Y ∘ F₁ (η.η Y ∘ f)) ∘ F₁ C.id ∎
}
; iso = λ X → record
{ isoˡ = elimˡ identity ○ identity
; isoʳ = elimˡ identity ○ identity
}
}
Free⊣Forgetful : Free ⊣ Forgetful
Free⊣Forgetful = record
{ unit = ntHelper record
{ η = η.η
; commute = λ {X Y} f → begin
η.η Y ∘ f ≈⟨ η.commute f ⟩
F₁ f ∘ η.η X ≈˘⟨ cancelˡ M.identityˡ ⟩∘⟨refl ⟩
(μ.η Y ∘ F₁ (η.η Y) ∘ F₁ f) ∘ η.η X ≈˘⟨ ∘-resp-≈ʳ homomorphism ⟩∘⟨refl ⟩
(μ.η Y ∘ F₁ (η.η Y ∘ f)) ∘ η.η X ∎
}
; counit = ntHelper record
{ η = λ X → F₁ C.id
; commute = λ {X Y} f → begin
(μ.η Y ∘ F₁ (F₁ C.id)) ∘ η.η (F₀ Y) ∘ μ.η Y ∘ F₁ f ≈⟨ elimʳ (F-resp-≈ identity ○ identity) ⟩∘⟨refl ⟩
μ.η Y ∘ η.η (F₀ Y) ∘ μ.η Y ∘ F₁ f ≈⟨ cancelˡ M.identityʳ ⟩
μ.η Y ∘ F₁ f ≈⟨ introʳ identity ⟩
(μ.η Y ∘ F₁ f) ∘ F₁ C.id ∎
}
; zig = λ {A} → begin
(μ.η A ∘ F₁ (F₁ C.id)) ∘ η.η (F₀ A) ∘ η.η A ≈⟨ elimʳ (F-resp-≈ identity ○ identity) ⟩∘⟨refl ⟩
μ.η A ∘ η.η (F₀ A) ∘ η.η A ≈⟨ cancelˡ M.identityʳ ⟩
η.η A ∎
; zag = λ {B} → begin
(μ.η B ∘ F₁ (F₁ C.id)) ∘ η.η (F₀ B) ≈⟨ elimʳ (F-resp-≈ identity ○ identity) ⟩∘⟨refl ⟩
μ.η B ∘ η.η (F₀ B) ≈⟨ M.identityʳ ⟩
C.id ∎
}
module KleisliExtension where
κ : {A B : Obj} → (f : A ⇒ F₀ B) → F₀ A ⇒ F₀ B
κ {_} {B} f = μ.η B ∘ F₁ f
f-iso⇒Klf-iso : ∀ {A B : Obj} → (f : A ⇒ F₀ B) → (g : B ⇒ F₀ A) → Iso (Kleisli M) g f → Iso C (κ f) (κ g)
f-iso⇒Klf-iso {A} {B} f g (record { isoˡ = isoˡ ; isoʳ = isoʳ }) = record
{ isoˡ = begin
(μ.η A ∘ F₁ g) ∘ μ.η B ∘ F₁ f ≈⟨ center (sym (μ.commute g)) ⟩
μ.η A ∘ (μ.η (F₀ A) ∘ F₁ (F₁ g)) ∘ F₁ f ≈⟨ assoc²'' ○ pushˡ M.sym-assoc ⟩
μ.η A ∘ F₁ (μ.η A) ∘ F₁ (F₁ g) ∘ F₁ f ≈⟨ refl⟩∘⟨ sym trihom ⟩
μ.η A ∘ F₁ (μ.η A ∘ F₁ g ∘ f) ≈⟨ refl⟩∘⟨ F-resp-≈ sym-assoc ⟩
μ.η A ∘ F₁ ((μ.η A ∘ F₁ g) ∘ f) ≈⟨ refl⟩∘⟨ F-resp-≈ isoʳ ○ M.identityˡ ⟩
C.id ∎
; isoʳ = begin
(μ.η B ∘ F₁ f) ∘ μ.η A ∘ F₁ g ≈⟨ center (sym (μ.commute f)) ⟩
μ.η B ∘ (μ.η (F₀ B) ∘ F₁ (F₁ f)) ∘ F₁ g ≈⟨ assoc²'' ○ pushˡ M.sym-assoc ⟩
μ.η B ∘ F₁ (μ.η B) ∘ F₁ (F₁ f) ∘ F₁ g ≈⟨ refl⟩∘⟨ sym trihom ⟩
μ.η B ∘ F₁ (μ.η B ∘ F₁ f ∘ g) ≈⟨ refl⟩∘⟨ F-resp-≈ sym-assoc ⟩
μ.η B ∘ F₁ ((μ.η B ∘ F₁ f) ∘ g) ≈⟨ refl⟩∘⟨ F-resp-≈ isoˡ ○ M.identityˡ ⟩
C.id ∎
}
where
trihom : {X Y Z W : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} {h : Z ⇒ W} → F₁ (h ∘ g ∘ f) ≈ F₁ h ∘ F₁ g ∘ F₁ f
trihom {X} {Y} {Z} {W} {f} {g} {h} = begin
F₁ (h ∘ g ∘ f) ≈⟨ homomorphism ⟩
F₁ h ∘ F₁ (g ∘ f) ≈⟨ refl⟩∘⟨ homomorphism ⟩
F₁ h ∘ F₁ g ∘ F₁ f ∎
Klf-iso⇒f-iso : ∀ {A B : Obj} → (f : A ⇒ F₀ B) → (g : B ⇒ F₀ A) → Iso C (κ f) (κ g) → Iso (Kleisli M) g f
Klf-iso⇒f-iso {A} {B} f g record { isoˡ = isoˡ ; isoʳ = isoʳ } = record
{ isoˡ = begin
(μ.η B ∘ F₁ f) ∘ g ≈⟨ introʳ M.identityʳ ⟩∘⟨refl ⟩
((μ.η B ∘ F₁ f) ∘ (μ.η A ∘ η.η (F₀ A))) ∘ g ≈⟨ assoc ⟩∘⟨refl ○ assoc ○ refl⟩∘⟨ assoc ○ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩
μ.η B ∘ F₁ f ∘ (μ.η A) ∘ (η.η (F₀ A) ∘ g) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ η.commute g ⟩
μ.η B ∘ F₁ f ∘ μ.η A ∘ (F₁ g ∘ η.η B) ≈˘⟨ assoc ⟩∘⟨refl ○ assoc ○ refl⟩∘⟨ assoc ○ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩
((μ.η B ∘ F₁ f) ∘ μ.η A ∘ F₁ g) ∘ η.η B ≈⟨ elimˡ isoʳ ⟩
η.η B ∎
; isoʳ = begin
(μ.η A ∘ F₁ g) ∘ f ≈⟨ introʳ M.identityʳ ⟩∘⟨refl ⟩
((μ.η A ∘ F₁ g) ∘ (μ.η B ∘ η.η (F₀ B))) ∘ f ≈⟨ assoc ⟩∘⟨refl ○ assoc ○ refl⟩∘⟨ assoc ○ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩
μ.η A ∘ F₁ g ∘ (μ.η B) ∘ (η.η (F₀ B) ∘ f) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ η.commute f ⟩
μ.η A ∘ F₁ g ∘ μ.η B ∘ (F₁ f ∘ η.η A) ≈˘⟨ assoc ⟩∘⟨refl ○ assoc ○ refl⟩∘⟨ assoc ○ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩
((μ.η A ∘ F₁ g) ∘ μ.η B ∘ F₁ f) ∘ η.η A ≈⟨ elimˡ isoˡ ⟩
η.η A ∎
}
kl-ext-compat : ∀ {A B X : Obj} → (f : A ⇒ F₀ B) → (g : B ⇒ F₀ X) → κ ((κ g) ∘ f) ≈ κ g ∘ κ f
kl-ext-compat {A} {B} {X} f g = begin
μ.η X ∘ F₁ ((μ.η X ∘ F₁ g) ∘ f) ≈⟨ refl⟩∘⟨ F-resp-≈ assoc ○ refl⟩∘⟨ trihom ⟩
μ.η X ∘ (F₁ (μ.η X) ∘ F₁ (F₁ g) ∘ F₁ f) ≈⟨ sym-assoc ⟩
(μ.η X ∘ F₁ (μ.η X)) ∘ F₁ (F₁ g) ∘ F₁ f ≈⟨ M.assoc ⟩∘⟨refl ⟩
(μ.η X ∘ μ.η (F₀ X)) ∘ F₁ (F₁ g) ∘ F₁ f ≈⟨ center (μ.commute g) ⟩
μ.η X ∘ (F₁ g ∘ μ.η B) ∘ F₁ f ≈⟨ sym-assoc ○ (sym-assoc ⟩∘⟨refl) ○ assoc ⟩
(μ.η X ∘ F₁ g) ∘ μ.η B ∘ F₁ f ∎
where
trihom : {X Y Z W : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} {h : Z ⇒ W} → F₁ (h ∘ g ∘ f) ≈ F₁ h ∘ F₁ g ∘ F₁ f
trihom {X} {Y} {Z} {W} {f} {g} {h} = begin
F₁ (h ∘ g ∘ f) ≈⟨ homomorphism ⟩
F₁ h ∘ F₁ (g ∘ f) ≈⟨ refl⟩∘⟨ homomorphism ⟩
F₁ h ∘ F₁ g ∘ F₁ f ∎
| {
"alphanum_fraction": 0.4356768886,
"avg_line_length": 47.75,
"ext": "agda",
"hexsha": "d1d6b6e0839ef20fd77a84d9caeadca889881750",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint/Construction/Kleisli.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint/Construction/Kleisli.agda",
"max_line_length": 117,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint/Construction/Kleisli.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 4039,
"size": 8022
} |
module TrailingImplicits where
-- see also https://lists.chalmers.se/pipermail/agda-dev/2015-January/000041.html
open import Common.IO
open import Common.Unit
open import Common.Nat
f : (m : Nat) {l : Nat} -> Nat
f zero {l = l} = l
f (suc y) = y
main : IO Unit
main = printNat (f 0 {1}) ,,
putStr "\n" ,,
printNat (f 30 {1})
| {
"alphanum_fraction": 0.6576576577,
"avg_line_length": 19.5882352941,
"ext": "agda",
"hexsha": "0551b3c34ec3470c56daad60302790c6f5807271",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/TrailingImplicits.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/TrailingImplicits.agda",
"max_line_length": 81,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/TrailingImplicits.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 120,
"size": 333
} |
open import Prelude
open import Level using (Level; _⊔_; Lift) renaming (zero to lz; suc to ls)
open import Data.Maybe using (Maybe; nothing; just)
module RW.Utils.Monads where
---------------------
-- Monad Typeclass --
---------------------
record Monad {a}(M : Set a → Set a) : Set (ls a) where
infixl 1 _>>=_
field
return : {A : Set a} → A → M A
_>>=_ : {A B : Set a} → M A → (A → M B) → M B
open Monad {{...}}
mapM : ∀{a}{M : Set a → Set a}{{ m : Monad M}}{A B : Set a}
→ (A → M B) → List A → M (List B)
mapM f [] = return []
mapM f (x ∷ la) = f x >>= (λ x' → mapM f la >>= return ∘ _∷_ x')
_>>_ : ∀{a}{M : Set a → Set a}{{ m : Monad M }}{A B : Set a}
→ M A → M B → M B
f >> g = f >>= λ _ → g
-- Binds the side-effects of the second computation,
-- returning the value of the first.
_<>=_ : ∀{a}{M : Set a → Set a}{{ m : Monad M }}{A B : Set a}
→ M A → (A → M B) → M A
f <>= x = f >>= λ r → x r >> return r
{-
_<$>_ : ∀{a}{A B : Set a}{M : Set a → Set a}{{ m : Monad M }}
→ (A → B) → M A → M B
f <$> x = ?
-}
-----------------
-- Maybe Monad --
-----------------
_<$>+1_ : ∀{a}{A B : Set a} → (A → B) → Maybe A → Maybe B
f <$>+1 x with x
...| nothing = nothing
...| just x' = just (f x')
instance
MonadMaybe : ∀{a} → Monad {a} Maybe
MonadMaybe = record
{ return = just
; _>>=_ = λ { nothing _ → nothing
; (just x) f → f x
}
}
-----------------
-- State Monad --
-----------------
record ST (s a : Set) : Set where
field run : s → (a × s)
evalST : ∀{a s} → ST s a → s → a
evalST s = p1 ∘ (ST.run s)
get : ∀{s} → ST s s
get = record { run = λ s → (s , s) }
put : ∀{s} → s → ST s Unit
put s = record { run = λ _ → (unit , s) }
instance
MonadState : ∀{s} → Monad (ST s)
MonadState = record
{ return = λ a → record { run = λ s → a , s }
; _>>=_ = λ x f → record { run =
λ s → let y = ST.run x s
in ST.run (f (p1 y)) (p2 y)
}
}
-- Universe Polymorphic version of the state monad.
record STₐ {a b}(s : Set a)(o : Set b) : Set (a ⊔ b) where
field run : s → (o × s)
evalSTₐ : ∀{a b}{s : Set a}{o : Set b} → STₐ s o → s → o
evalSTₐ s = p1 ∘ (STₐ.run s)
getₐ : ∀{a}{s : Set a} → STₐ s s
getₐ = record { run = λ s → (s , s) }
putₐ : ∀{a}{s : Set a} → s → STₐ s Unit
putₐ s = record { run = λ _ → (unit , s) }
instance
MonadStateₐ : ∀{a b}{s : Set a} → Monad {a ⊔ b} (STₐ s)
MonadStateₐ = record
{ return = λ x → record { run = λ s → x , s }
; _>>=_ = λ x f → record { run =
λ s → let y = STₐ.run x s
in STₐ.run (f (p1 y)) (p2 y)
}
}
-------------
-- Fresh ℕ --
-------------
Freshℕ : Set → Set
Freshℕ A = ST ℕ A
runFresh : ∀{A} → Freshℕ A → A
runFresh f = evalST f 0
runFresh-n : ∀{A} → Freshℕ A → ℕ → A
runFresh-n = evalST
inc : Freshℕ Unit
inc = get >>= (put ∘ suc)
----------------
-- List Monad --
----------------
NonDet : ∀{a} → Set a → Set a
NonDet A = List A
NonDetBind : ∀{a}{A B : Set a} → NonDet A → (A → NonDet B) → NonDet B
NonDetBind x f = concat (map f x)
NonDetRet : ∀{a}{A : Set a} → A → NonDet A
NonDetRet x = x ∷ []
instance
MonadNonDet : Monad {lz} NonDet
MonadNonDet = record
{ return = NonDetRet
; _>>=_ = NonDetBind
}
------------------
-- Reader Monad --
------------------
Reader : ∀{a b} → Set a → Set b → Set (a ⊔ b)
Reader R A = R → A
reader-bind : ∀{a b}{R : Set a}{A B : Set b}
→ Reader R A → (A → Reader R B) → Reader R B
reader-bind ra rb = λ r → rb (ra r) r
reader-return : ∀{a b}{R : Set a}{A : Set b}
→ A → Reader R A
reader-return a = λ _ → a
reader-local : ∀{a b}{R : Set a}{A : Set b}
→ (R → R) → Reader R A → Reader R A
reader-local f ra = ra ∘ f
reader-ask : ∀{a}{R : Set a} → Reader R R
reader-ask = id
instance
MonadReader : ∀{a b}{R : Set a} → Monad {b ⊔ a} (Reader {b = b ⊔ a} R)
MonadReader = record
{ return = reader-return
; _>>=_ = reader-bind
}
| {
"alphanum_fraction": 0.4352996036,
"avg_line_length": 25.081871345,
"ext": "agda",
"hexsha": "837ca69cddc03cd9ca8ba07f78f6abfdcef7ed81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "RW/Utils/Monads.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "RW/Utils/Monads.agda",
"max_line_length": 75,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "RW/Utils/Monads.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 1584,
"size": 4289
} |
module FStream.FVec where
------------------------------------------------------------------------
-- Dissecting effectful streams
------------------------------------------------------------------------
open import Library
open import FStream.Core
open import Data.Fin
infixr 5 _▻_
infix 6 ⟨_▻⋯
infix 7 _⟩
data FVec {ℓ₁ ℓ₂} (C : Container ℓ₁) (A : Set ℓ₂) : (n : ℕ) → Set (ℓ₁ ⊔ ℓ₂) where
FNil : FVec C A 0
FCons : ∀ {n} → ⟦ C ⟧ (A × FVec C A n) → FVec C A (suc n)
-- TODO Syntactic sugar for these as well
data FVec' {ℓ₁ ℓ₂} (C : Container ℓ₁) (A : Set ℓ₂) : (n : ℕ) → Set (ℓ₁ ⊔ ℓ₂) where
FNil' : FVec' C A 0
FCons' : ∀ {n} → A → ⟦ C ⟧ (FVec' C A n) → FVec' C A (suc n)
_▻'_ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n} →
A → ⟦ C ⟧ (FVec' C A n) → FVec' C A (suc n)
_▻'_ = FCons'
fVec'ToFVec : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n} →
FVec' C A n → FVec C A n
fVec'ToFVec FNil' = FNil
fVec'ToFVec (FCons' a v) = FCons (fmap (λ x → a , fVec'ToFVec x) v)
nest : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n} →
Vec (⟦ C ⟧ A) n → FVec C A n
nest [] = FNil
nest (a ∷ as) = FCons (fmap (_, nest as) a)
_▻_ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n} →
⟦ C ⟧ A → (FVec C A n) → FVec C A (suc n)
a ▻ v = FCons (fmap (λ x → x , v) a)
_⟩ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → ⟦ C ⟧ A → FVec C A 1
a ⟩ = a ▻ FNil
mutual
vmap : ∀ {ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂} {B : Set ℓ₃} {n} →
(f : A → B) → FVec C A n → FVec C B n
vmap _ FNil = FNil
vmap f (FCons x) = FCons (fmap (vmap' f) x)
vmap' : ∀ {ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂} {B : Set ℓ₃} {n} →
(f : A → B) → A × FVec C A n → B × FVec C B n
vmap' f (a , v) = f a , vmap f v
mutual
take : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} →
(n : ℕ) → FStream C A → FVec C A n
take ℕ.zero as = FNil
take (ℕ.suc n) as = FCons (fmap (take' n) (inF as))
take' : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} →
(n : ℕ) → FStream' C A → A × FVec C A n
proj₁ (take' n as) = head as
proj₂ (take' n as) = take n (tail as)
take'' : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} →
(n : ℕ) → FStream' C A → FVec' C A n
take'' zero as = FNil'
take'' (suc n) as = FCons' (head as) (fmap (take'' n) (inF (tail as)))
_pre⟨_▻⋯' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {m n}
→ FVec' C A m → FVec' C A (suc n) → FStream' {i} C A
head (FNil' pre⟨ FCons' a _ ▻⋯') = a
inF (tail (FNil' pre⟨ FCons' a v ▻⋯')) = fmap (_pre⟨ (FCons' a v) ▻⋯') v
head (FCons' x _ pre⟨ v' ▻⋯') = x
inF (tail (FCons' _ v pre⟨ v' ▻⋯')) = fmap (_pre⟨ v' ▻⋯') v
⟨_▻⋯' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n : ℕ}
→ FVec' C A (suc n) → FStream' {i} C A
⟨ v ▻⋯' = FNil' pre⟨ v ▻⋯'
mutual
_pre⟨_▻⋯ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {m n}
→ FVec C A m → FVec C A (suc n) → FStream {i} C A
inF (FCons x pre⟨ keep ▻⋯) = fmap (_aux keep) x
inF (FNil pre⟨ FCons x ▻⋯) = fmap (_aux (FCons x)) x
_aux_ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n m : ℕ}
→ A × FVec C A m → FVec C A (suc n) → FStream' {i} C A
head ((a , _ ) aux v) = a
tail ((_ , v') aux v) = v' pre⟨ v ▻⋯
⟨_▻⋯ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n : ℕ}
→ FVec C A (suc n) → FStream {i} C A
⟨ as ▻⋯ = FNil pre⟨ as ▻⋯
data _[_]=_ {a} {A : Set a} {ℓ} {C : Container ℓ} : {n : ℕ} → FVec C A n → Fin n → ⟦ C ⟧ A → Set (a ⊔ ℓ) where
here : ∀ {n} {x : ⟦ C ⟧ A} {xs : FVec C A n} → (x ▻ xs) [ zero ]= x
there : ∀ {n} {k} {x y} {xs : FVec C A n} → xs [ k ]= x → (y ▻ xs) [ suc k ]= x
| {
"alphanum_fraction": 0.4762040467,
"avg_line_length": 35.4444444444,
"ext": "agda",
"hexsha": "dcae8076b53e4a0e661b2b045820e1a4c09c0624",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "zimbatm/condatis",
"max_forks_repo_path": "FStream/FVec.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "zimbatm/condatis",
"max_issues_repo_path": "FStream/FVec.agda",
"max_line_length": 110,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Aerate/condatis",
"max_stars_repo_path": "FStream/FVec.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z",
"num_tokens": 1819,
"size": 3509
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Integers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Integer where
import Data.Nat.Show as ℕ
open import Data.Sign as Sign using (Sign)
open import Data.String.Base using (String; _++_)
------------------------------------------------------------------------
-- Integers, basic types and operations
open import Data.Integer.Base public
------------------------------------------------------------------------
-- Re-export queries from the properties modules
open import Data.Integer.Properties public
using (_≟_; _≤?_)
------------------------------------------------------------------------
-- Conversions
show : ℤ → String
show i = showSign (sign i) ++ ℕ.show ∣ i ∣
where
showSign : Sign → String
showSign Sign.- = "-"
showSign Sign.+ = ""
------------------------------------------------------------------------
-- Deprecated
-- Version 0.17
open import Data.Integer.Properties public
using (◃-cong; drop‿+≤+; drop‿-≤-)
renaming (◃-inverse to ◃-left-inverse)
| {
"alphanum_fraction": 0.4291808874,
"avg_line_length": 26.6363636364,
"ext": "agda",
"hexsha": "691db53d568fd83279416bca8621e3e2ec13daaa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 222,
"size": 1172
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Lists.Lists
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Naturals
open import Numbers.Naturals.Order
open import Numbers.BinaryNaturals.Definition
open import Semirings.Definition
open import Orders.Total.Definition
module Numbers.BinaryNaturals.Addition where
-- Define the monoid structure, and show that it's the same as ℕ's
_+Binherit_ : BinNat → BinNat → BinNat
a +Binherit b = NToBinNat (binNatToN a +N binNatToN b)
_+B_ : BinNat → BinNat → BinNat
[] +B b = b
(x :: a) +B [] = x :: a
(zero :: xs) +B (y :: ys) = y :: (xs +B ys)
(one :: xs) +B (zero :: ys) = one :: (xs +B ys)
(one :: xs) +B (one :: ys) = zero :: incr (xs +B ys)
+BCommutative : (a b : BinNat) → a +B b ≡ b +B a
+BCommutative [] [] = refl
+BCommutative [] (x :: b) = refl
+BCommutative (x :: a) [] = refl
+BCommutative (zero :: as) (zero :: bs) rewrite +BCommutative as bs = refl
+BCommutative (zero :: as) (one :: bs) rewrite +BCommutative as bs = refl
+BCommutative (one :: as) (zero :: bs) rewrite +BCommutative as bs = refl
+BCommutative (one :: as) (one :: bs) rewrite +BCommutative as bs = refl
private
+BIsInherited[] : (b : BinNat) (prB : b ≡ canonical b) → [] +Binherit b ≡ [] +B b
+BIsInherited[] [] prB = refl
+BIsInherited[] (zero :: b) prB = t
where
refine : (b : BinNat) → zero :: b ≡ canonical (zero :: b) → b ≡ canonical b
refine b pr with canonical b
refine b pr | x :: bl = ::Inj pr
t : NToBinNat (0 +N binNatToN (zero :: b)) ≡ zero :: b
t with TotalOrder.totality ℕTotalOrder 0 (binNatToN b)
t | inl (inl pos) = transitivity (doubleIsBitShift (binNatToN b) pos) (applyEquality (zero ::_) (transitivity (binToBin b) (equalityCommutative (refine b prB))))
t | inl (inr ())
... | inr eq with binNatToNZero b (equalityCommutative eq)
... | u with canonical b
t | inr eq | u | [] = exFalso (bad b prB)
where
bad : (c : BinNat) → zero :: c ≡ [] → False
bad c ()
t | inr eq | () | x :: bl
+BIsInherited[] (one :: b) prB = ans
where
ans : NToBinNat (binNatToN (one :: b)) ≡ one :: b
ans = transitivity (binToBin (one :: b)) (equalityCommutative prB)
-- Show that the monoid structure of ℕ is the same as that of BinNat
+BIsInherited : (a b : BinNat) (prA : a ≡ canonical a) (prB : b ≡ canonical b) → a +Binherit b ≡ a +B b
+BinheritLemma : (a : BinNat) (b : BinNat) (prA : a ≡ canonical a) (prB : b ≡ canonical b) → incr (NToBinNat ((binNatToN a +N binNatToN b) +N ((binNatToN a +N binNatToN b) +N zero))) ≡ one :: (a +B b)
+BIsInherited' : (a b : BinNat) → a +Binherit b ≡ canonical (a +B b)
+BinheritLemma a b prA prB with TotalOrder.totality ℕTotalOrder 0 (binNatToN a +N binNatToN b)
+BinheritLemma a b prA prB | inl (inl x) rewrite doubleIsBitShift (binNatToN a +N binNatToN b) x = applyEquality (one ::_) (+BIsInherited a b prA prB)
+BinheritLemma a b prA prB | inr x with sumZeroImpliesSummandsZero (equalityCommutative x)
+BinheritLemma a b prA prB | inr x | fst ,, snd = ans2
where
bad : b ≡ []
bad = transitivity prB (binNatToNZero b snd)
bad2 : a ≡ []
bad2 = transitivity prA (binNatToNZero a fst)
ans2 : incr (NToBinNat ((binNatToN a +N binNatToN b) +N ((binNatToN a +N binNatToN b) +N zero))) ≡ one :: (a +B b)
ans2 rewrite bad | bad2 = refl
+BIsInherited [] b _ prB = +BIsInherited[] b prB
+BIsInherited (x :: a) [] prA _ = transitivity (applyEquality NToBinNat (Semiring.commutative ℕSemiring (binNatToN (x :: a)) 0)) (transitivity (binToBin (x :: a)) (equalityCommutative prA))
+BIsInherited (zero :: as) (zero :: b) prA prB with TotalOrder.totality ℕTotalOrder 0 (binNatToN as +N binNatToN b)
... | inl (inl 0<) rewrite Semiring.commutative ℕSemiring (binNatToN as) 0 | Semiring.commutative ℕSemiring (binNatToN b) 0 | Semiring.+Associative ℕSemiring (binNatToN as +N binNatToN as) (binNatToN b) (binNatToN b) | equalityCommutative (Semiring.+Associative ℕSemiring (binNatToN as) (binNatToN as) (binNatToN b)) | Semiring.commutative ℕSemiring (binNatToN as) (binNatToN b) | Semiring.+Associative ℕSemiring (binNatToN as) (binNatToN b) (binNatToN as) | equalityCommutative (Semiring.+Associative ℕSemiring (binNatToN as +N binNatToN b) (binNatToN as) (binNatToN b)) | Semiring.commutative ℕSemiring 0 ((binNatToN as +N binNatToN b) +N (binNatToN as +N binNatToN b)) | equalityCommutative (Semiring.+Associative ℕSemiring (binNatToN as +N binNatToN b) (binNatToN as +N binNatToN b) 0) = transitivity (doubleIsBitShift (binNatToN as +N binNatToN b) (identityOfIndiscernablesRight _<N_ 0< (Semiring.commutative ℕSemiring (binNatToN b) _))) (applyEquality (zero ::_) (+BIsInherited as b (canonicalDescends as prA) (canonicalDescends b prB)))
+BIsInherited (zero :: as) (zero :: b) prA prB | inl (inr ())
... | inr p with sumZeroImpliesSummandsZero {binNatToN as} (equalityCommutative p)
+BIsInherited (zero :: as) (zero :: b) prA prB | inr p | as=0 ,, b=0 rewrite as=0 | b=0 = exFalso ans
where
bad : (b : BinNat) → (pr : b ≡ canonical b) → (pr2 : binNatToN b ≡ 0) → b ≡ []
bad b pr pr2 = transitivity pr (binNatToNZero b pr2)
t : b ≡ canonical b
t with canonical b
t | x :: bl = ::Inj prB
u : b ≡ []
u = bad b t b=0
nono : {A : Set} → {a : A} → {as : List A} → a :: as ≡ [] → False
nono ()
ans : False
ans with inspect (canonical b)
ans | [] with≡ x rewrite x = nono prB
ans | (x₁ :: y) with≡ x = nono (transitivity (equalityCommutative x) (transitivity (equalityCommutative t) u))
+BIsInherited (zero :: as) (one :: b) prA prB rewrite Semiring.commutative ℕSemiring (binNatToN as +N (binNatToN as +N zero)) (succ (binNatToN b +N (binNatToN b +N zero))) | Semiring.commutative ℕSemiring (binNatToN b +N (binNatToN b +N zero)) (binNatToN as +N (binNatToN as +N zero)) | equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN b)) = +BinheritLemma as b (canonicalDescends as prA) (canonicalDescends b prB)
+BIsInherited (one :: as) (zero :: bs) prA prB rewrite equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) = +BinheritLemma as bs (canonicalDescends as prA) (canonicalDescends bs prB)
+BIsInherited (one :: as) (one :: bs) prA prB rewrite Semiring.commutative ℕSemiring (binNatToN as +N (binNatToN as +N zero)) (succ (binNatToN bs +N (binNatToN bs +N zero))) | Semiring.commutative ℕSemiring (binNatToN bs +N (binNatToN bs +N zero)) (2 *N binNatToN as) | equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) | +BinheritLemma as bs (canonicalDescends as prA) (canonicalDescends bs prB) = refl
+BIsInherited'[] : (b : BinNat) → [] +Binherit b ≡ canonical ([] +B b)
+BIsInherited'[] [] = refl
+BIsInherited'[] (zero :: b) with inspect (canonical b)
+BIsInherited'[] (zero :: b) | [] with≡ pr rewrite binNatToNZero' b pr | pr = refl
+BIsInherited'[] (zero :: b) | (x :: bl) with≡ pr rewrite pr = ans
where
contr : {a : _} {A : Set a} {l1 l2 : List A} → {x : A} → l1 ≡ [] → l1 ≡ x :: l2 → False
contr {l1 = []} p1 ()
contr {l1 = x :: l1} () p2
ans : NToBinNat (binNatToN b +N (binNatToN b +N zero)) ≡ zero :: x :: bl
ans with inspect (binNatToN b)
ans | zero with≡ th rewrite th = exFalso (contr (binNatToNZero b th) pr)
ans | succ th with≡ blah rewrite blah | doubleIsBitShift' th = applyEquality (zero ::_) (transitivity (equalityCommutative u) pr)
where
u : canonical b ≡ incr (NToBinNat th)
u = transitivity (equalityCommutative (binToBin b)) (applyEquality NToBinNat blah)
+BIsInherited'[] (one :: b) with inspect (binNatToN b)
... | zero with≡ pr rewrite pr = applyEquality (one ::_) (equalityCommutative (binNatToNZero b pr))
... | (succ bl) with≡ pr = ans
where
u : NToBinNat (2 *N binNatToN b) ≡ zero :: canonical b
u with doubleIsBitShift' bl
... | t = transitivity (identityOfIndiscernablesLeft _≡_ t (applyEquality (λ i → NToBinNat (2 *N i)) (equalityCommutative pr))) (applyEquality (zero ::_) (transitivity (applyEquality NToBinNat (equalityCommutative pr)) (binToBin b)))
ans : incr (NToBinNat (binNatToN b +N (binNatToN b +N zero))) ≡ one :: canonical b
ans = applyEquality incr u
+BIsInherited' [] b = +BIsInherited'[] b
+BIsInherited' (zero :: a) [] with inspect (binNatToN a)
+BIsInherited' (zero :: a) [] | zero with≡ x rewrite x | binNatToNZero a x = refl
+BIsInherited' (zero :: a) [] | succ y with≡ x rewrite x | Semiring.commutative ℕSemiring (y +N succ (y +N 0)) 0 = transitivity (doubleIsBitShift' y) (transitivity (applyEquality (λ i → (zero :: NToBinNat i)) (equalityCommutative x)) (transitivity (applyEquality (λ i → zero :: i) (binToBin a)) (canonicalAscends' {zero} a bad)))
where
bad : canonical a ≡ [] → False
bad pr with transitivity (equalityCommutative x) (transitivity (equalityCommutative (binNatToNIsCanonical a)) (applyEquality binNatToN pr))
bad pr | ()
+BIsInherited' (one :: a) [] with inspect (binNatToN a)
+BIsInherited' (one :: a) [] | 0 with≡ x rewrite x | binNatToNZero a x = refl
+BIsInherited' (one :: a) [] | succ n with≡ x rewrite x | doubleIsBitShift' n = applyEquality incr {_} {zero :: canonical a} (transitivity {x = _} {NToBinNat (2 *N succ n)} bl (transitivity (doubleIsBitShift' n) (applyEquality (zero ::_) (transitivity (applyEquality NToBinNat (equalityCommutative x)) (binToBin a)))))
where
bl : incr (NToBinNat ((n +N succ (n +N 0)) +N 0)) ≡ NToBinNat (succ (n +N succ (n +N 0)))
bl rewrite equalityCommutative x | Semiring.commutative ℕSemiring (n +N succ (n +N 0)) 0 = refl
+BIsInherited' (zero :: as) (zero :: bs) rewrite equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) = ans
where
ans : NToBinNat (2 *N (binNatToN as +N binNatToN bs)) ≡ canonical (zero :: (as +B bs))
ans with inspect (binNatToN as +N binNatToN bs)
ans | zero with≡ x with sumZeroImpliesSummandsZero {binNatToN as} x
... | as=0 ,, bs=0 rewrite as=0 | bs=0 = foo
where
u : canonical (as +Binherit bs) ≡ []
u rewrite as=0 | bs=0 = refl
foo : [] ≡ canonical (zero :: (as +B bs))
foo = transitivity (transitivity b (applyEquality (λ i → canonical (zero :: i)) (+BIsInherited' as bs))) (canonicalAscends'' {zero} (as +B bs))
where
b : [] ≡ canonical (zero :: (as +Binherit bs))
b rewrite u = refl
ans | succ y with≡ x rewrite x | doubleIsBitShift' y = transitivity (applyEquality (λ i → zero :: NToBinNat i) (equalityCommutative x)) ans2
where
u : 0 <N binNatToN (as +B bs)
u rewrite equalityCommutative (binNatToNIsCanonical (as +B bs)) | equalityCommutative (+BIsInherited' as bs) | x | nToN (succ y) = succIsPositive y
ans2 : zero :: NToBinNat (binNatToN as +N binNatToN bs) ≡ canonical (zero :: (as +B bs))
ans2 rewrite +BIsInherited' as bs = canonicalAscends (as +B bs) u
+BIsInherited' (zero :: as) (one :: bs) rewrite Semiring.commutative ℕSemiring (2 *N binNatToN as) (succ (2 *N binNatToN bs)) | Semiring.commutative ℕSemiring (2 *N binNatToN bs) (2 *N binNatToN as) | equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) = ans2
where
ans2 : incr (NToBinNat (2 *N (binNatToN as +N binNatToN bs))) ≡ one :: canonical (as +B bs)
ans2 with inspect (binNatToN as +N binNatToN bs)
ans2 | zero with≡ x with sumZeroImpliesSummandsZero {binNatToN as} x
ans2 | zero with≡ x | as=0 ,, bs=0 rewrite as=0 | bs=0 = applyEquality (one ::_) (transitivity t (+BIsInherited' as bs))
where
t : [] ≡ as +Binherit bs
t rewrite as=0 | bs=0 = refl
ans2 | succ y with≡ x rewrite x | doubleIsBitShift' y = applyEquality (one ::_) (transitivity (applyEquality NToBinNat (equalityCommutative x)) (+BIsInherited' as bs))
+BIsInherited' (one :: as) (zero :: bs) rewrite equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) = ans
where
ans : incr (NToBinNat (2 *N (binNatToN as +N binNatToN bs))) ≡ one :: canonical (as +B bs)
ans with inspect (binNatToN as +N binNatToN bs)
ans | zero with≡ x with sumZeroImpliesSummandsZero {binNatToN as} x
... | as=0 ,, bs=0 rewrite as=0 | bs=0 = applyEquality (one ::_) (transitivity t (+BIsInherited' as bs))
where
t : [] ≡ NToBinNat (binNatToN as +N binNatToN bs)
t rewrite as=0 | bs=0 = refl
ans | succ y with≡ x rewrite x | doubleIsBitShift' y = applyEquality (one ::_) (transitivity (applyEquality NToBinNat (equalityCommutative x)) (+BIsInherited' as bs))
+BIsInherited' (one :: as) (one :: bs) rewrite Semiring.commutative ℕSemiring (2 *N binNatToN as) (succ (2 *N binNatToN bs)) | Semiring.commutative ℕSemiring (2 *N binNatToN bs) (2 *N binNatToN as) | equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) = ans
where
ans : incr (incr (NToBinNat (2 *N (binNatToN as +N binNatToN bs)))) ≡ canonical (zero :: incr (as +B bs))
ans with inspect (binNatToN as +N binNatToN bs)
... | zero with≡ x with sumZeroImpliesSummandsZero {binNatToN as} x
ans | zero with≡ x | as=0 ,, bs=0 rewrite as=0 | bs=0 = bar
where
u' : canonical (as +Binherit bs) ≡ []
u' rewrite as=0 | bs=0 = refl
u : canonical (as +B bs) ≡ []
u rewrite equalityCommutative (+BIsInherited' as bs) = transitivity (NToBinNatIsCanonical (binNatToN as +N binNatToN bs)) u'
t : canonical (incr (as +B bs)) ≡ one :: []
t rewrite incrPreservesCanonical' (as +B bs) | u = refl
bar : zero :: one :: [] ≡ canonical (zero :: incr (as +B bs))
bar rewrite t = refl
ans | succ y with≡ x rewrite x | doubleIsBitShift' y = transitivity (applyEquality (λ i → zero :: incr (NToBinNat i)) (equalityCommutative x)) ans2
where
ans2 : zero :: incr (as +Binherit bs) ≡ canonical (zero :: incr (as +B bs))
ans2 rewrite +BIsInherited' as bs | equalityCommutative (incrPreservesCanonical' (as +B bs)) | canonicalAscends' {zero} (incr (as +B bs)) (incrNonzero (as +B bs)) = refl
+BIsHom : (a b : BinNat) → binNatToN (a +B b) ≡ (binNatToN a) +N (binNatToN b)
+BIsHom a b = transitivity (equalityCommutative (binNatToNIsCanonical (a +B b))) (transitivity (equalityCommutative (applyEquality binNatToN (+BIsInherited' a b))) (nToN _))
sumCanonical : (a b : BinNat) → canonical a ≡ a → canonical b ≡ b → canonical (a +B b) ≡ a +B b
sumCanonical a b a=a b=b = transitivity (equalityCommutative (+BIsInherited' a b)) (+BIsInherited a b (equalityCommutative a=a) (equalityCommutative b=b))
| {
"alphanum_fraction": 0.6600884655,
"avg_line_length": 70.6490384615,
"ext": "agda",
"hexsha": "a0a7c84b653976f1d841c01b66587da2827a2870",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/BinaryNaturals/Addition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/BinaryNaturals/Addition.agda",
"max_line_length": 1043,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/BinaryNaturals/Addition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 5194,
"size": 14695
} |
{-# OPTIONS --without-K --safe #-}
open import Level
open import Data.Quiver using (Quiver)
-- The Category of (free) paths over a Quiver
module Categories.Category.Construction.PathCategory {o ℓ e} (G : Quiver o ℓ e) where
open import Function.Base using (_$_)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties hiding (trans)
open import Data.Quiver.Paths
open import Categories.Category.Core using (Category)
open Quiver G
private module P = Paths G
open P
PathCategory : Category o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)
PathCategory = record
{ Obj = Obj
; _⇒_ = Star _⇒_
; _≈_ = _≈*_
; id = ε
; _∘_ = _▻▻_
; assoc = λ {_ _ _ _} {f g h} → sym $ ≡⇒≈* $ ◅◅-assoc f g h
; sym-assoc = λ {_ _ _ _} {f g h} → ≡⇒≈* $ ◅◅-assoc f g h
; identityˡ = λ {_ _ f} → ◅◅-identityʳ f
; identityʳ = refl
; identity² = refl
; equiv = isEquivalence
; ∘-resp-≈ = resp
}
where
resp : ∀ {A B C} {f h : Star _⇒_ B C} {g i : Star _⇒_ A B} →
f ≈* h → g ≈* i → (f ▻▻ g) ≈* (h ▻▻ i)
resp eq ε = eq
resp eq (eq₁ ◅ eq₂) = eq₁ ◅ (resp eq eq₂)
| {
"alphanum_fraction": 0.5962680237,
"avg_line_length": 29.475,
"ext": "agda",
"hexsha": "ed7dfe903e3b196dc324108bcb0c69181002707f",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/PathCategory.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/PathCategory.agda",
"max_line_length": 91,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/PathCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 451,
"size": 1179
} |
-- Andreas, 2019-02-03, issue #3541:
-- Treat indices like parameters in positivity check.
data Works (A : Set) : Set where
nest : Works (Works A) → Works A
data Foo : Set → Set where
foo : ∀{A} → Foo (Foo A) → Foo A
-- Should pass.
| {
"alphanum_fraction": 0.6333333333,
"avg_line_length": 21.8181818182,
"ext": "agda",
"hexsha": "b086fcc65a57d4670795fb1f3f2520cfa6f95e87",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/Succeed/Issue3541.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Issue3541.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Issue3541.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 77,
"size": 240
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
open import Categories.Object.Terminal hiding (up-to-iso)
module Categories.Object.NaturalNumber {o ℓ e} (𝒞 : Category o ℓ e) (𝒞-Terminal : Terminal 𝒞) where
open import Level
open import Categories.Morphism 𝒞
open import Categories.Morphism.Reasoning 𝒞
open Category 𝒞
open HomReasoning
open Equiv
open Terminal 𝒞-Terminal
private
variable
A B C D X Y Z : Obj
h i j : A ⇒ B
record IsNaturalNumber (N : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
z : ⊤ ⇒ N
s : N ⇒ N
universal : ∀ {A} → ⊤ ⇒ A → A ⇒ A → N ⇒ A
z-commute : ∀ {A} {q : ⊤ ⇒ A} {f : A ⇒ A} → q ≈ universal q f ∘ z
s-commute : ∀ {A} {q : ⊤ ⇒ A} {f : A ⇒ A} → f ∘ universal q f ≈ universal q f ∘ s
unique : ∀ {A} {q : ⊤ ⇒ A} {f : A ⇒ A} {u : N ⇒ A} → q ≈ u ∘ z → f ∘ u ≈ u ∘ s → u ≈ universal q f
η : universal z s ≈ id
η = ⟺ (unique (⟺ identityˡ) id-comm)
universal-cong : ∀ {A} → {f f′ : ⊤ ⇒ A} → {g g′ : A ⇒ A} → f ≈ f′ → g ≈ g′ → universal f g ≈ universal f′ g′
universal-cong f≈f′ g≈g′ = unique (⟺ f≈f′ ○ z-commute) (∘-resp-≈ˡ (⟺ g≈g′) ○ s-commute)
record NaturalNumber : Set (o ⊔ ℓ ⊔ e) where
field
N : Obj
isNaturalNumber : IsNaturalNumber N
open IsNaturalNumber isNaturalNumber public
open NaturalNumber
module _ (N : NaturalNumber) (N′ : NaturalNumber) where
private
module N = NaturalNumber N
module N′ = NaturalNumber N′
up-to-iso : N.N ≅ N′.N
up-to-iso = record
{ from = N.universal N′.z N′.s
; to = N′.universal N.z N.s
; iso = record
{ isoˡ = universal-∘ N N′
; isoʳ = universal-∘ N′ N
}
}
where
universal-∘ : ∀ (N N′ : NaturalNumber) → universal N′ (z N) (s N) ∘ universal N (z N′) (s N′) ≈ id
universal-∘ N N′ = unique N (z-commute N′ ○ pushʳ (z-commute N)) (pullˡ (s-commute N′) ○ assoc ○ ∘-resp-≈ʳ (s-commute N) ○ ⟺ assoc) ○ (η N)
| {
"alphanum_fraction": 0.5659197499,
"avg_line_length": 29.0757575758,
"ext": "agda",
"hexsha": "6362992022cb42a5761147dff881505258d17675",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Object/NaturalNumber.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Object/NaturalNumber.agda",
"max_line_length": 145,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Object/NaturalNumber.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 769,
"size": 1919
} |
-- A Beth model of normal forms
open import Library
module NfModelCaseTreeConv (Base : Set) where
import Formulas ; open module Form = Formulas Base
import Derivations; open module Der = Derivations Base
-- Beth model
data Cover (P : Cxt → Set) (Γ : Cxt) : Set where
returnC : (p : P Γ) → Cover P Γ
falseC : (t : Ne Γ False) → Cover P Γ
orC : ∀{C D} (t : Ne Γ (C ∨ D))
(c : Cover P (Γ ∙ C))
(d : Cover P (Γ ∙ D)) → Cover P Γ
-- Syntactic paste
pasteNf : ∀{A} → Cover (Nf' A) →̇ Nf' A
pasteNf (returnC p) = p
pasteNf (falseC t) = falseE t
pasteNf (orC t c d) = orE t (pasteNf c) (pasteNf d)
-- Weakening covers: A case tree in Γ can be transported to a thinning Δ
-- by weakening all the scrutinees.
monC : ∀{P} → (monP : Mon P) → Mon (Cover P)
monC monP τ (returnC p) = returnC (monP τ p)
monC monP τ (falseC t) = falseC (monNe τ t)
monC monP τ (orC t c d) = orC (monNe τ t) (monC monP (lift τ) c)
(monC monP (lift τ) d)
-- Monad
mapC : ∀{P Q} → (P →̇ Q) → (Cover P →̇ Cover Q)
mapC f (returnC p) = returnC (f p)
mapC f (falseC t) = falseC t
mapC f (orC t c d) = orC t (mapC f c) (mapC f d)
joinC : ∀{P} → Cover (Cover P) →̇ Cover P
joinC (returnC p) = p
joinC (falseC t) = falseC t
joinC (orC t c d) = orC t (joinC c) (joinC d)
-- Version of mapC with f relativized to subcontexts of Γ
mapC' : ∀{P Q Γ} → KFun P Q Γ → Cover P Γ → Cover Q Γ
mapC' f (returnC p) = returnC (f id≤ p)
mapC' f (falseC t) = falseC t
mapC' f (orC t c d) = orC t (mapC' (λ τ → f (τ • weak id≤)) c)
(mapC' (λ τ → f (τ • weak id≤)) d)
Conv : (Δ₀ : Cxt) (P Q : Cxt → Set) → Set
Conv Δ₀ P Q = ∀{Γ Δ} (δ : Δ ≤ Δ₀) (τ : Δ ≤ Γ) → P Γ → Q Δ
convC : ∀{Δ₀} {P Q}
→ Conv Δ₀ P Q
→ Conv Δ₀ (Cover P) (Cover Q)
convC {Δ₀} {P} {Q} f {Γ} {Δ} δ τ (returnC p) = returnC (f δ τ p)
convC {Δ₀} {P} {Q} f {Γ} {Δ} δ τ (falseC t) = falseC (monNe τ t)
convC {Δ₀} {P} {Q} f {Γ} {Δ} δ τ (orC t c d) = orC (monNe τ t)
(convC {Δ₀} f (weak δ) (lift τ) c)
(convC {Δ₀} f (weak δ) (lift τ) d)
-- The syntactic Beth model.
-- We interpret base propositions Atom P by their normal deriviations.
-- ("Normal" is important; "neutral is not sufficient since we need case trees here.)
-- The negative connectives True, ∧, and ⇒ are explained as usual by η-expansion
-- and the meta-level connective.
-- The positive connectives False and ∨ are inhabited by case trees.
-- In case False, the tree has no leaves.
-- In case A ∨ B, each leaf must be in the semantics of either A or B.
T⟦_⟧ : (A : Form) (Γ : Cxt) → Set
T⟦ Atom P ⟧ = Nf' (Atom P)
T⟦ True ⟧ Γ = ⊤
T⟦ False ⟧ = Cover λ Δ → ⊥
T⟦ A ∨ B ⟧ = Cover λ Δ → T⟦ A ⟧ Δ ⊎ T⟦ B ⟧ Δ
T⟦ A ∧ B ⟧ Γ = T⟦ A ⟧ Γ × T⟦ B ⟧ Γ
T⟦ A ⇒ B ⟧ Γ = ∀{Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Δ → T⟦ B ⟧ Δ
-- Monotonicity of the model is proven by induction on the proposition,
-- using monotonicity of covers and the built-in monotonicity at implication.
-- monT : ∀ A {Γ Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Γ → T⟦ A ⟧ Δ
monT : ∀ A → Mon T⟦ A ⟧
monT (Atom P) = monNf
monT True = _
monT False = monC λ τ ()
monT (A ∨ B) = monC λ τ → map-⊎ (monT A τ) (monT B τ)
monT (A ∧ B) τ (a , b) = monT A τ a , monT B τ b
monT (A ⇒ B) τ f σ = f (σ • τ)
-- Reflection / reification, proven simultaneously by induction on the proposition.
-- Reflection is η-expansion (and recursively reflection);
-- at positive connections we build a case tree with a single scrutinee: the neutral
-- we are reflecting.
-- At implication, we need reification, which produces introductions
-- and reifies the stored case trees.
mutual
fresh : ∀ {Γ} A → T⟦ A ⟧ (Γ ∙ A)
fresh A = reflect A (hyp top)
reflect : ∀ A → Ne' A →̇ T⟦ A ⟧
reflect (Atom P) t = ne t
reflect True t = _
reflect False t = falseC t
reflect (A ∨ B) t = orC t (returnC (inj₁ (fresh A)))
(returnC (inj₂ (fresh B)))
reflect (A ∧ B) t = reflect A (andE₁ t) , reflect B (andE₂ t)
reflect (A ⇒ B) t τ a = reflect B (impE (monNe τ t) (reify A a))
reify : ∀ A → T⟦ A ⟧ →̇ Nf' A
reify (Atom P) t = t
reify True _ = trueI
reify False = pasteNf ∘ mapC ⊥-elim
reify (A ∨ B) = pasteNf ∘ mapC [ orI₁ ∘ reify A , orI₂ ∘ reify B ]
reify (A ∧ B) (a , b) = andI (reify A a) (reify B b)
reify (A ⇒ B) ⟦f⟧ = impI (reify B (⟦f⟧ (weak id≤) (fresh A)))
-- Semantic paste.
paste : ∀ A → Cover T⟦ A ⟧ →̇ T⟦ A ⟧
paste (Atom P) = pasteNf
paste True = _
paste False = joinC
paste (A ∨ B) = joinC
paste (A ∧ B) = < paste A ∘ mapC proj₁ , paste B ∘ mapC proj₂ >
paste (A ⇒ B) c τ a = paste B (convC (λ δ τ' f → f τ' (monT A δ a)) id≤ τ c)
-- Fundamental theorem
-- Extension of T⟦_⟧ to contexts
G⟦_⟧ : ∀ (Γ Δ : Cxt) → Set
G⟦ ε ⟧ Δ = ⊤
G⟦ Γ ∙ A ⟧ Δ = G⟦ Γ ⟧ Δ × T⟦ A ⟧ Δ
-- monG : ∀{Γ Δ Φ} (τ : Φ ≤ Δ) → G⟦ Γ ⟧ Δ → G⟦ Γ ⟧ Φ
monG : ∀{Γ} → Mon G⟦ Γ ⟧
monG {ε} τ _ = _
monG {Γ ∙ A} τ (γ , a) = monG τ γ , monT A τ a
-- Variable case.
lookup : ∀{Γ A} (x : Hyp A Γ) → G⟦ Γ ⟧ →̇ T⟦ A ⟧
lookup top = proj₂
lookup (pop x) = lookup x ∘ proj₁
-- A lemma for the orE case.
orElim : ∀ A B C {Γ} → T⟦ A ∨ B ⟧ Γ → T⟦ A ⇒ C ⟧ Γ → T⟦ B ⇒ C ⟧ Γ → T⟦ C ⟧ Γ
orElim A B C c g h = paste C (mapC' (λ τ → [ g τ , h τ ]) c)
-- A lemma for the falseE case.
-- Casts an empty cover into any semantic value (by contradiction).
falseElim : ∀ C → T⟦ False ⟧ →̇ T⟦ C ⟧
falseElim C = paste C ∘ mapC ⊥-elim
-- The fundamental theorem
eval : ∀{A Γ} (t : Γ ⊢ A) → G⟦ Γ ⟧ →̇ T⟦ A ⟧
eval (hyp x) = lookup x
eval (impI t) γ τ a = eval t (monG τ γ , a)
eval (impE t u) γ = eval t γ id≤ (eval u γ)
eval (andI t u) γ = eval t γ , eval u γ
eval (andE₁ t) = proj₁ ∘ eval t
eval (andE₂ t) = proj₂ ∘ eval t
eval (orI₁ t) γ = returnC (inj₁ (eval t γ))
eval (orI₂ t) γ = returnC (inj₂ (eval t γ))
eval (orE {A = A} {B} {C} t u v) γ = orElim A B C (eval t γ)
(λ τ a → eval u (monG τ γ , a))
(λ τ b → eval v (monG τ γ , b))
eval {C} (falseE t) γ = falseElim C (eval t γ)
eval trueI γ = _
-- Identity environment
ide : ∀ Γ → G⟦ Γ ⟧ Γ
ide ε = _
ide (Γ ∙ A) = monG (weak id≤) (ide Γ) , reflect A (hyp top)
-- Normalization
norm : ∀{A} → Tm A →̇ Nf' A
norm t = reify _ (eval t (ide _))
-- Q.E.D. -}
| {
"alphanum_fraction": 0.5485923334,
"avg_line_length": 31.1237623762,
"ext": "agda",
"hexsha": "f7837c29a6787a544f4c16505b57fcdb57b2f463",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z",
"max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "andreasabel/ipl",
"max_forks_repo_path": "src/NfModelCaseTreeConv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "andreasabel/ipl",
"max_issues_repo_path": "src/NfModelCaseTreeConv.agda",
"max_line_length": 85,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "andreasabel/ipl",
"max_stars_repo_path": "src/NfModelCaseTreeConv.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z",
"num_tokens": 2641,
"size": 6287
} |
------------------------------------------------------------------------
-- Compatibility lemmas
------------------------------------------------------------------------
open import Atom
module Compatibility (atoms : χ-atoms) where
open import Bag-equivalence hiding (trans)
open import Equality.Propositional
open import Prelude hiding (const)
open import Tactic.By
open import List equality-with-J using (map)
open import Chi atoms
open import Constants atoms
open import Reasoning atoms
open import Values atoms
open χ-atoms atoms
-- A compatibility lemma that does not hold.
¬-⇓-[←]-right :
¬ (∀ {e′ v′} e x {v} →
e′ ⇓ v′ → e [ x ← v′ ] ⇓ v → e [ x ← e′ ] ⇓ v)
¬-⇓-[←]-right hyp = ¬e[x←e′]⇓v (hyp e x e′⇓v′ e[x←v′]⇓v)
where
x : Var
x = v-x
e′ v′ e v : Exp
e′ = apply (lambda v-x (var v-x)) (const c-true [])
v′ = const c-true []
e = lambda v-y (var v-x)
v = lambda v-y (const c-true [])
e′⇓v′ : e′ ⇓ v′
e′⇓v′ = apply lambda (const [])
(case v-x V.≟ v-x
return (λ b → if b then const c-true []
else var v-x ⇓ v′) of (λ where
(yes _) → const []
(no x≢x) → ⊥-elim (x≢x refl)))
lemma : ∀ v → e [ x ← v ] ≡ lambda v-y v
lemma _ with v-x V.≟ v-y
... | yes x≡y = ⊥-elim (V.distinct-codes→distinct-names (λ ()) x≡y)
... | no _ with v-x V.≟ v-x
... | yes _ = refl
... | no x≢x = ⊥-elim (x≢x refl)
e[x←v′]⇓v : e [ x ← v′ ] ⇓ v
e[x←v′]⇓v =
e [ x ← v′ ] ≡⟨ lemma _ ⟩⟶
lambda v-y v′ ⇓⟨ lambda ⟩■
v
¬e[x←e′]⇓v : ¬ e [ x ← e′ ] ⇓ v
¬e[x←e′]⇓v p with _[_←_] e x e′ | lemma e′
¬e[x←e′]⇓v () | ._ | refl
mutual
-- Contexts.
data Context : Type where
∙ : Context
apply←_ : Context → {e : Exp} → Context
apply→_ : {e : Exp} → Context → Context
const : {c : Const} → Context⋆ → Context
case : Context → {bs : List Br} → Context
data Context⋆ : Type where
here : Context → {es : List Exp} → Context⋆
there : {e : Exp} → Context⋆ → Context⋆
mutual
-- Filling a context's hole (∙) with an expression.
infix 6 _[_] _[_]⋆
_[_] : Context → Exp → Exp
∙ [ e ] = e
apply←_ c {e = e′} [ e ] = apply (c [ e ]) e′
apply→_ {e = e′} c [ e ] = apply e′ (c [ e ])
const {c = c′} c [ e ] = const c′ (c [ e ]⋆)
case c {bs = bs} [ e ] = case (c [ e ]) bs
_[_]⋆ : Context⋆ → Exp → List Exp
here c {es = es} [ e ]⋆ = (c [ e ]) ∷ es
there {e = e′} c [ e ]⋆ = e′ ∷ (c [ e ]⋆)
mutual
-- If e₁ terminates with v₁ and c [ v₁ ] terminates with v₂, then
-- c [ e₁ ] also terminates with v₂.
[]⇓ :
∀ c {e₁ v₁ v₂} →
e₁ ⇓ v₁ → c [ v₁ ] ⇓ v₂ → c [ e₁ ] ⇓ v₂
[]⇓ ∙ {e₁} {v₁} {v₂} p q =
e₁ ⇓⟨ p ⟩
v₁ ⇓⟨ q ⟩■
v₂
[]⇓ (apply← c) p (apply q r s) = apply ([]⇓ c p q) r s
[]⇓ (apply→ c) p (apply q r s) = apply q ([]⇓ c p r) s
[]⇓ (const c) p (const ps) = const ([]⇓⋆ c p ps)
[]⇓ (case c) p (case q r s t) = case ([]⇓ c p q) r s t
[]⇓⋆ :
∀ c {e v vs} →
e ⇓ v → c [ v ]⋆ ⇓⋆ vs → c [ e ]⋆ ⇓⋆ vs
[]⇓⋆ (here c) p (q ∷ qs) = []⇓ c p q ∷ qs
[]⇓⋆ (there c) p (q ∷ qs) = q ∷ []⇓⋆ c p qs
| {
"alphanum_fraction": 0.4447244094,
"avg_line_length": 26.6806722689,
"ext": "agda",
"hexsha": "185f44aa68e55f43c245bf6e23a39de449883e89",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Compatibility.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Compatibility.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Compatibility.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 1370,
"size": 3175
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
{-# OPTIONS --allow-unsolved-metas #-}
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Hash
open import LibraBFT.Lemmas
open import LibraBFT.Base.KVMap
open import LibraBFT.Base.PKCS
open import LibraBFT.Abstract.Types
open import LibraBFT.Impl.NetworkMsg
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.Util.Crypto
open import LibraBFT.Impl.Handle sha256 sha256-cr
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Yasm.Base
open import LibraBFT.Yasm.AvailableEpochs using (AvailableEpochs ; lookup'; lookup'')
open import LibraBFT.Yasm.System ConcSysParms
open import LibraBFT.Yasm.Properties ConcSysParms
-- This module defines an abstract system state given a reachable
-- concrete system state.
-- An implementation must prove that, if one of its handlers sends a
-- message that contains a vote and is signed by a public key pk, then
-- either the vote's author is the peer executing the handler, the
-- epochId is in range, the peer is a member of the epoch, and its key
-- in that epoch is pk; or, a message with the same signature has been
-- sent before. This is represented by StepPeerState-AllValidParts.
module LibraBFT.Concrete.System (sps-corr : StepPeerState-AllValidParts) where
-- Bring in 'unwind', 'ext-unforgeability' and friends
open Structural sps-corr
-- TODO-1: refactor this somewhere else? Maybe something like
-- LibraBFT.Impl.Consensus.Types.Properties?
sameHonestSig⇒sameVoteData : ∀ {v1 v2 : Vote} {pk}
→ Meta-Honest-PK pk
→ WithVerSig pk v1
→ WithVerSig pk v2
→ v1 ^∙ vSignature ≡ v2 ^∙ vSignature
→ NonInjective-≡ sha256 ⊎ v2 ^∙ vVoteData ≡ v1 ^∙ vVoteData
sameHonestSig⇒sameVoteData {v1} {v2} hpk wvs1 wvs2 refl
with verify-bs-inj (verified wvs1) (verified wvs2)
-- The signable fields of the votes must be the same (we do not model signature collisions)
...| bs≡
-- Therefore the LedgerInfo is the same for the new vote as for the previous vote
= sym <⊎$> (hashVote-inj1 {v1} {v2} (sameBS⇒sameHash bs≡))
honestVoteProps : ∀ {e st} → ReachableSystemState {e} st → ∀ {pk nm v sender}
→ Meta-Honest-PK pk
→ v ⊂Msg nm
→ (sender , nm) ∈ msgPool st
→ WithVerSig pk v
→ NonInjective-≡ sha256 ⊎ v ^∙ vEpoch < e
honestVoteProps r hpk v⊂m m∈pool ver
with honestPartValid r hpk v⊂m m∈pool ver
...| msg , valid
= ⊎-map id (λ { refl → vp-epoch valid })
(sameHonestSig⇒sameVoteData hpk ver (msgSigned msg)
(sym (msgSameSig msg)))
-- We are now ready to define an 'AbsSystemState' view for a concrete
-- reachable state. We will do so by fixing an epoch that exists in
-- the system, which will enable us to define the abstract
-- properties. The culminaton of this 'PerEpoch' module is seen in
-- the 'ConcSysState' "function" at the bottom, which probably the
-- best place to start uynderstanding this. Longer term, we will
-- also need higher-level, cross-epoch properties.
module PerState {e}(st : SystemState e)(r : ReachableSystemState st) where
-- TODO-3: Remove this postulate when we are satisfied with the
-- "hash-collision-tracking" solution. For example, when proving voo
-- (in LibraBFT.LibraBFT.Concrete.Properties.VotesOnce), we
-- currently use this postulate to eliminate the possibility of two
-- votes that have the same signature but different VoteData
-- whenever we use sameHonestSig⇒sameVoteData. To eliminate the
-- postulate, we need to refine the properties we prove to enable
-- the possibility of a hash collision, in which case the required
-- property might not hold. However, it is not sufficient to simply
-- prove that a hash collision *exists* (which is obvious,
-- regardless of the LibraBFT implementation). Rather, we
-- ultimately need to produce a specific hash collision and relate
-- it to the data in the system, so that we can prove that the
-- desired properties hold *unless* an actual hash collision is
-- found by the implementation given the data in the system. In
-- the meantime, we simply require that the collision identifies a
-- reachable state; later "collision tracking" will require proof
-- that the colliding values actually exist in that state.
postulate -- temporary
meta-sha256-cr : ¬ (NonInjective-≡ sha256)
module PerEpoch (eid : Fin e) where
open import LibraBFT.Yasm.AvailableEpochs
𝓔 : EpochConfig
𝓔 = lookup' (availEpochs st) eid
open EpochConfig
open import LibraBFT.Abstract.System 𝓔 Hash _≟Hash_ (ConcreteVoteEvidence 𝓔)
open import LibraBFT.Concrete.Records 𝓔
import LibraBFT.Abstract.Records 𝓔 Hash _≟Hash_ (ConcreteVoteEvidence 𝓔) as Abs
-- * Auxiliary definitions;
-- TODO-1: simplify and cleanup
record QcPair (q : Abs.QC) : Set where
constructor mkQcPair
field
cqc : QuorumCert
isv : IsValidQC 𝓔 cqc
q≡αcqc : q ≡ α-QC (cqc , isv)
open QcPair
qc-α-Sent⇒ : ∀ {st q} → (Abs.Q q) α-Sent st
→ QcPair q
qc-α-Sent⇒ (ws _ _ (qc∈NM {cqc} isv _ q≡)) = mkQcPair cqc isv q≡
record ConcBits {q α} (va∈q : α Abs.∈QC q) (qcp : QcPair q) : Set where
constructor mkConcBits
field
as : Author × Signature
as∈cqc : as ∈ qcVotes (cqc qcp)
αVote≡ : Any-lookup va∈q ≡ α-Vote (cqc qcp) (isv qcp) as∈cqc
open ConcBits
qcp⇒concBits : ∀ {q α}
→ (qcp : QcPair q)
→ (va∈q : α Abs.∈QC q)
→ ConcBits va∈q qcp
qcp⇒concBits qcp va∈q
with All-reduce⁻ {vdq = Any-lookup va∈q} (α-Vote (cqc qcp) (isv qcp)) All-self
(subst (Any-lookup va∈q ∈_) (cong Abs.qVotes (q≡αcqc qcp)) (Any-lookup-correctP va∈q))
...| as , as∈cqc , α≡ = mkConcBits as as∈cqc α≡
-- This record is highly duplicated; but it does provide a simple way to access
-- all the properties from an /honest vote/
record Vote∈QcProps {q} (qcp : QcPair q) {α} (α∈q : α Abs.∈QC q) : Set₁ where
constructor mkV∈QcP
field
ev : ConcreteVoteEvidence 𝓔 (Abs.∈QC-Vote q α∈q)
as : Author × Signature
as∈qc : as ∈ qcVotes (cqc qcp)
rbld : ₋cveVote ev ≈Vote rebuildVote (cqc qcp) as
vote∈QcProps : ∀ {q α st} → (αSent : Abs.Q q α-Sent st) → (α∈q : α Abs.∈QC q)
→ Vote∈QcProps {q} (qc-α-Sent⇒ αSent) α∈q
vote∈QcProps {q} {α} αSent va∈q
with All-lookup (Abs.qVotes-C5 q) (Abs.∈QC-Vote-correct q va∈q)
...| ev
with qc-α-Sent⇒ αSent
...| qcp
with qcp⇒concBits qcp va∈q
...| mkConcBits as' as∈cqc αVote≡'
= mkV∈QcP ev as' as∈cqc
(voteInEvidence≈rebuiltVote {valid = isv qcp} as∈cqc ev αVote≡')
-- Here we capture the idea that there exists a vote message that
-- witnesses the existence of a given Abs.Vote
record ∃VoteMsgFor (v : Abs.Vote) : Set where
constructor mk∃VoteMsgFor
field
-- A message that was actually sent
nm : NetworkMsg
cv : Vote
cv∈nm : cv ⊂Msg nm
-- And contained a valid vote that, once abstracted, yeilds v.
vmsgMember : Member 𝓔
vmsgSigned : WithVerSig (getPubKey 𝓔 vmsgMember) cv
vmsg≈v : α-ValidVote 𝓔 cv vmsgMember ≡ v
vmsgEpoch : cv ^∙ vEpoch ≡ epochId 𝓔
open ∃VoteMsgFor public
record ∃VoteMsgSentFor (sm : SentMessages)(v : Abs.Vote) : Set where
constructor mk∃VoteMsgSentFor
field
vmFor : ∃VoteMsgFor v
vmSender : NodeId
nmSentByAuth : (vmSender , (nm vmFor)) ∈ sm
open ∃VoteMsgSentFor public
∃VoteMsgSentFor-stable : ∀ {e e'} {pre : SystemState e} {post : SystemState e'} {v}
→ Step pre post
→ ∃VoteMsgSentFor (msgPool pre) v
→ ∃VoteMsgSentFor (msgPool post) v
∃VoteMsgSentFor-stable theStep (mk∃VoteMsgSentFor sndr vmFor sba) =
mk∃VoteMsgSentFor sndr vmFor (msgs-stable theStep sba)
record ∃VoteMsgInFor (outs : List NetworkMsg)(v : Abs.Vote) : Set where
constructor mk∃VoteMsgInFor
field
vmFor : ∃VoteMsgFor v
nmInOuts : nm vmFor ∈ outs
open ∃VoteMsgInFor public
∈QC⇒sent : ∀{e} {st : SystemState e} {q α}
→ Abs.Q q α-Sent (msgPool st)
→ Meta-Honest-Member 𝓔 α
→ (vα : α Abs.∈QC q)
→ ∃VoteMsgSentFor (msgPool st) (Abs.∈QC-Vote q vα)
∈QC⇒sent {e} {st} {α = α} vsent@(ws {sender} {nm} e≡ nm∈st (qc∈NM {cqc} {q} .{nm} valid cqc∈nm cqc≡)) ha va
with vote∈QcProps vsent va
...| mkV∈QcP ev _ as∈qc rbld
with vote∈qc as∈qc rbld cqc∈nm
...| v∈nm = mk∃VoteMsgSentFor
(mk∃VoteMsgFor nm (₋cveVote ev) v∈nm
(₋ivvMember (₋cveIsValidVote ev))
(₋ivvSigned (₋cveIsValidVote ev)) (₋cveIsAbs ev)
(₋ivvEpoch (₋cveIsValidVote ev)))
sender
nm∈st
-- Finally, we can define the abstract system state corresponding to the concrete state st
ConcSystemState : AbsSystemState ℓ0
ConcSystemState = record
{ InSys = λ { r → r α-Sent (msgPool st) }
; HasBeenSent = λ { v → ∃VoteMsgSentFor (msgPool st) v }
; ∈QC⇒HasBeenSent = ∈QC⇒sent {st = st}
}
| {
"alphanum_fraction": 0.6321464903,
"avg_line_length": 43.1140350877,
"ext": "agda",
"hexsha": "bbf96f177f9b8ecd26d7b058d21a66be66794f42",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_forks_repo_path": "LibraBFT/Concrete/System.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_issues_repo_path": "LibraBFT/Concrete/System.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_stars_repo_path": "LibraBFT/Concrete/System.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3132,
"size": 9830
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Morphism.Properties {o ℓ e} (𝒞 : Category o ℓ e) where
open import Data.Product using (_,_; _×_)
open Category 𝒞
open HomReasoning
import Categories.Morphism as M
open M 𝒞
open import Categories.Morphism.Reasoning 𝒞
private
variable
A B C D : Obj
f g h i : A ⇒ B
module _ (iso : Iso f g) where
open Iso iso
Iso-resp-≈ : f ≈ h → g ≈ i → Iso h i
Iso-resp-≈ {h = h} {i = i} eq₁ eq₂ = record
{ isoˡ = begin
i ∘ h ≈˘⟨ eq₂ ⟩∘⟨ eq₁ ⟩
g ∘ f ≈⟨ isoˡ ⟩
id ∎
; isoʳ = begin
h ∘ i ≈˘⟨ eq₁ ⟩∘⟨ eq₂ ⟩
f ∘ g ≈⟨ isoʳ ⟩
id ∎
}
Iso-swap : Iso g f
Iso-swap = record
{ isoˡ = isoʳ
; isoʳ = isoˡ
}
Iso⇒Mono : Mono f
Iso⇒Mono h i eq = begin
h ≈⟨ introˡ isoˡ ⟩
(g ∘ f) ∘ h ≈⟨ pullʳ eq ⟩
g ∘ f ∘ i ≈⟨ cancelˡ isoˡ ⟩
i ∎
Iso⇒Epi : Epi f
Iso⇒Epi h i eq = begin
h ≈⟨ introʳ isoʳ ⟩
h ∘ f ∘ g ≈⟨ pullˡ eq ⟩
(i ∘ f) ∘ g ≈⟨ cancelʳ isoʳ ⟩
i ∎
Iso-∘ : Iso f g → Iso h i → Iso (h ∘ f) (g ∘ i)
Iso-∘ {f = f} {g = g} {h = h} {i = i} iso iso′ = record
{ isoˡ = begin
(g ∘ i) ∘ h ∘ f ≈⟨ cancelInner (isoˡ iso′) ⟩
g ∘ f ≈⟨ isoˡ iso ⟩
id ∎
; isoʳ = begin
(h ∘ f) ∘ g ∘ i ≈⟨ cancelInner (isoʳ iso) ⟩
h ∘ i ≈⟨ isoʳ iso′ ⟩
id ∎
}
where open Iso
Iso-≈ : f ≈ h → Iso f g → Iso h i → g ≈ i
Iso-≈ {f = f} {h = h} {g = g} {i = i} eq iso iso′ = begin
g ≈⟨ introˡ (isoˡ iso′) ⟩
(i ∘ h) ∘ g ≈˘⟨ (refl ⟩∘⟨ eq) ⟩∘⟨refl ⟩
(i ∘ f) ∘ g ≈⟨ cancelʳ (isoʳ iso) ⟩
i ∎
where open Iso
module _ where
open _≅_
isos×≈⇒≈ : ∀ {f g : A ⇒ B} → h ≈ i → (iso₁ : A ≅ C) → (iso₂ : B ≅ D) →
CommutativeSquare f (from iso₁) (from iso₂) h →
CommutativeSquare g (from iso₁) (from iso₂) i →
f ≈ g
isos×≈⇒≈ {h = h} {i = i} {f = f} {g = g} eq iso₁ iso₂ sq₁ sq₂ = begin
f ≈⟨ switch-fromtoˡ iso₂ sq₁ ⟩
to iso₂ ∘ h ∘ from iso₁ ≈⟨ refl⟩∘⟨ (eq ⟩∘⟨refl ) ⟩
to iso₂ ∘ i ∘ from iso₁ ≈˘⟨ switch-fromtoˡ iso₂ sq₂ ⟩
g ∎
| {
"alphanum_fraction": 0.4632352941,
"avg_line_length": 24.4494382022,
"ext": "agda",
"hexsha": "0b5986de697c1d0508f8b24d4ded49cc3d7faac9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Properties.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1059,
"size": 2176
} |
-- Andreas, 2016-07-26, issue 2215, reported by effectfully
data Term : Set where
abs : Term → Term
Type = Term
f : Type → Term
f (abs b@(abs _)) = b
-- WAS: Panic: Pattern match failure in AsPatterns.conPattern
-- due to a missing reduce
-- Should work.
| {
"alphanum_fraction": 0.6755725191,
"avg_line_length": 17.4666666667,
"ext": "agda",
"hexsha": "5cf76332728e3f849d276f9da37b82d7124563c1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2115.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2115.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2115.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 80,
"size": 262
} |
-- Andreas, 2016-10-01, issue #2231
-- The termination checker should not always see through abstract definitions.
abstract
data Nat : Set where
zero' : Nat
suc' : Nat → Nat
-- abstract hides constructor nature of zero and suc.
zero = zero'
suc = suc'
data D : Nat → Set where
c1 : ∀ n → D n → D (suc n)
c2 : ∀ n → D n → D n
-- To see that this is terminating the termination checker has to look at the
-- natural number index, which is in a dot pattern.
f : ∀ n → D n → Nat
f .(suc n) (c1 n d) = f n (c2 n (c2 n d))
f n (c2 .n d) = f n d
-- Termination checking based on dot patterns should fail,
-- since suc is abstract.
| {
"alphanum_fraction": 0.6297420334,
"avg_line_length": 26.36,
"ext": "agda",
"hexsha": "43853de0cae4f6ac6d710571383ecb4dbac973a5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2231.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2231.agda",
"max_line_length": 78,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2231.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 208,
"size": 659
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.Bouquet
open import homotopy.FinWedge
open import cohomology.Theory
module cohomology.SubFinBouquet (OT : OrdinaryTheory lzero) where
open OrdinaryTheory OT
open import cohomology.Sphere OT
open import cohomology.SubFinWedge cohomology-theory
open import cohomology.Bouquet OT
C-SubFinBouquet-diag : ∀ n {A B : Type₀} (B-ac : has-choice 0 B lzero) {I} (p : Fin I → Coprod A B)
→ C (ℕ-to-ℤ n) (⊙Bouquet B n) ≃ᴳ Πᴳ B (λ _ → C2 0)
C-SubFinBouquet-diag n {B = B} B-ac p = C-Bouquet-diag n B B-ac
C-FinBouquet-diag : ∀ n I → C (ℕ-to-ℤ n) (⊙FinBouquet I n) ≃ᴳ Πᴳ (Fin I) (λ _ → C2 0)
C-FinBouquet-diag n I = C-SubFinBouquet-diag n {A = Empty} {B = Fin I} (Fin-has-choice 0 lzero) inr
abstract
C-SubFinBouquet-diag-β : ∀ n {A B : Type₀} (B-ac : has-choice 0 B lzero) {I} (p : Fin I → Coprod A B) g b
→ GroupIso.f (C-FinBouquet-diag n I) g b
== GroupIso.f (C-Sphere-diag n)
(CEl-fmap (ℕ-to-ℤ n) ⊙lower
(CEl-fmap (ℕ-to-ℤ n) (⊙bwin b) g))
C-SubFinBouquet-diag-β n B-ac p g b =
GroupIso.f (C-Sphere-diag n)
(CEl-fmap (ℕ-to-ℤ n) (⊙bwin b)
(CEl-fmap (ℕ-to-ℤ n) (⊙–> (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv))) g))
=⟨ ap (GroupIso.f (C-Sphere-diag n)) $
∘-CEl-fmap (ℕ-to-ℤ n) (⊙bwin b) (⊙–> (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv))) g
∙ CEl-fmap-base-indep (ℕ-to-ℤ n) (λ _ → idp) g
∙ CEl-fmap-∘ (ℕ-to-ℤ n) (⊙bwin b) ⊙lower g ⟩
GroupIso.f (C-Sphere-diag n) (CEl-fmap (ℕ-to-ℤ n) ⊙lower (CEl-fmap (ℕ-to-ℤ n) (⊙bwin b) g))
=∎
C-FinBouquet-diag-β : ∀ n I g <I
→ GroupIso.f (C-FinBouquet-diag n I) g <I
== GroupIso.f (C-Sphere-diag n)
(CEl-fmap (ℕ-to-ℤ n) ⊙lower
(CEl-fmap (ℕ-to-ℤ n) (⊙bwin <I) g))
C-FinBouquet-diag-β n I =
C-SubFinBouquet-diag-β n {A = Empty} {B = Fin I}
(Fin-has-choice 0 lzero) inr
inverse-C-SubFinBouquet-diag-β : ∀ n
{A B : Type₀} (B-ac : has-choice 0 B lzero) (B-dec : has-dec-eq B) {I} (p : Fin I ≃ Coprod A B) g
→ GroupIso.g (C-SubFinBouquet-diag n B-ac (–> p)) g
== Group.subsum-r (C (ℕ-to-ℤ n) (⊙Bouquet B n)) (–> p)
(λ b → CEl-fmap (ℕ-to-ℤ n) (⊙bwproj B-dec b)
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b))))
inverse-C-SubFinBouquet-diag-β n {B = B} B-ac B-dec p g =
CEl-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)))
(GroupIso.g (C-subfinite-additive-iso (ℕ-to-ℤ n) (–> p) (⊙Lift (⊙Sphere n)) B-ac)
(GroupIso.g (C-Sphere-diag n) ∘ g))
=⟨ ap (CEl-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)))) $
inverse-C-subfinite-additive-β (ℕ-to-ℤ n) B-ac B-dec p (GroupIso.g (C-Sphere-diag n) ∘ g) ⟩
CEl-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)))
(Group.subsum-r (C (ℕ-to-ℤ n) (⊙BouquetLift B n)) (–> p)
(λ b → CEl-fmap (ℕ-to-ℤ n) (⊙bwproj B-dec b) (GroupIso.g (C-Sphere-diag n) (g b))))
=⟨ GroupHom.pres-subsum-r (C-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)))) (–> p) $
(λ b → CEl-fmap (ℕ-to-ℤ n) (⊙bwproj B-dec b) (GroupIso.g (C-Sphere-diag n) (g b))) ⟩
Group.subsum-r (C (ℕ-to-ℤ n) (⊙Bouquet B n)) (–> p)
(λ b →
CEl-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)))
(CEl-fmap (ℕ-to-ℤ n) (⊙bwproj B-dec b) (GroupIso.g (C-Sphere-diag n) (g b))))
=⟨ ap (Group.subsum-r (C (ℕ-to-ℤ n) (⊙Bouquet B n)) (–> p))
(λ= λ b →
∘-CEl-fmap (ℕ-to-ℤ n)
(⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv))) (⊙bwproj B-dec b)
(GroupIso.g (C-Sphere-diag n) (g b))
∙ CEl-fmap-base-indep (ℕ-to-ℤ n)
(bwproj-BigWedge-emap-r-lift B-dec b)
(GroupIso.g (C-Sphere-diag n) (g b))
∙ CEl-fmap-∘ (ℕ-to-ℤ n) ⊙lift (⊙bwproj B-dec b)
(GroupIso.g (C-Sphere-diag n) (g b))) ⟩
Group.subsum-r (C (ℕ-to-ℤ n) (⊙Bouquet B n)) (–> p)
(λ b →
CEl-fmap (ℕ-to-ℤ n) (⊙bwproj B-dec b)
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b))))
=∎
inverse-C-FinBouquet-diag-β : ∀ n I g
→ GroupIso.g (C-FinBouquet-diag n I) g
== Group.sum (C (ℕ-to-ℤ n) (⊙FinBouquet I n))
(λ <I → CEl-fmap (ℕ-to-ℤ n) (⊙fwproj <I)
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g <I))))
inverse-C-FinBouquet-diag-β n I =
inverse-C-SubFinBouquet-diag-β n {A = Empty} {B = Fin I}
(Fin-has-choice 0 lzero) Fin-has-dec-eq (⊔₁-Empty (Fin I) ⁻¹)
| {
"alphanum_fraction": 0.5416848538,
"avg_line_length": 47.7291666667,
"ext": "agda",
"hexsha": "136e4d5579338a02ba102ba10c73d63476fce0d1",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/SubFinBouquet.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/SubFinBouquet.agda",
"max_line_length": 107,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/SubFinBouquet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2151,
"size": 4582
} |
open import FRP.LTL.RSet.Core using ( RSet )
open import FRP.LTL.Time using ( _+_ )
module FRP.LTL.RSet.Next where
○ : RSet → RSet
○ A t = A (t + 1)
| {
"alphanum_fraction": 0.6447368421,
"avg_line_length": 16.8888888889,
"ext": "agda",
"hexsha": "8d19cf322a8f15d3e0edd5568232d5688fd73a6d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/RSet/Next.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/RSet/Next.agda",
"max_line_length": 44,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/RSet/Next.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 57,
"size": 152
} |
module Issue1436-2 where
module A where
infixl 19 _↑_
infixl 1 _↓_
data D : Set where
● : D
_↓_ _↑_ : D → D → D
module B where
infix -1000000 _↓_
data D : Set where
_↓_ : D → D → D
open A
open B
rejected = ● ↑ ● ↓ ● ↑ ● ↓ ● ↑ ●
| {
"alphanum_fraction": 0.5094339623,
"avg_line_length": 11.5217391304,
"ext": "agda",
"hexsha": "2ed544dcf72466a7c443b923bd2456b9cbc20065",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1436-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1436-2.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1436-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 107,
"size": 265
} |
-- Andreas, 2017-05-17, issue #2574 reported by G. Allais
-- This file is intentionally without module header.
private
postulate A : Set
| {
"alphanum_fraction": 0.7304964539,
"avg_line_length": 20.1428571429,
"ext": "agda",
"hexsha": "aaa6cd2ffc731562bd1f6596459650eb1870c369",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2574ImportBlank.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2574ImportBlank.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2574ImportBlank.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 40,
"size": 141
} |
open import Prelude
open import Nat
open import Agda.Primitive using (Level; lzero; lsuc) renaming (_⊔_ to lmax)
module List where
-- definitions
data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A
_++_ : {A : Set} → List A → List A → List A
[] ++ l₂ = l₂
(h :: l₁) ++ l₂ = h :: (l₁ ++ l₂)
infixl 50 _++_
∥_∥ : {A : Set} → List A → Nat
∥ [] ∥ = Z
∥ a :: as ∥ = 1+ ∥ as ∥
_⟦_⟧ : {A : Set} → List A → Nat → Maybe A
[] ⟦ i ⟧ = None
(a :: as) ⟦ Z ⟧ = Some a
(a :: as) ⟦ 1+ i ⟧ = as ⟦ i ⟧
map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (a :: as) = f a :: map f as
foldl : {A B : Set} → (B → A → B) → B → List A → B
foldl f b [] = b
foldl f b (a :: as) = foldl f (f b a) as
concat : {A : Set} → List (List A) → List A
concat [] = []
concat (l1 :: rest) = l1 ++ (concat rest)
-- if the lists aren't the same length,
-- the extra elements of the longer list are ignored
zip : {A B : Set} → List A → List B → List (A ∧ B)
zip [] _ = []
zip (a :: as) [] = []
zip (a :: as) (b :: bs) = (a , b) :: zip as bs
unzip : {A B : Set} → List (A ∧ B) → (List A ∧ List B)
unzip [] = ([] , [])
unzip ((a , b) :: rest)
with unzip rest
... | (as , bs) = (a :: as , b :: bs)
reverse : {A : Set} → List A → List A
reverse [] = []
reverse (a :: as) = reverse as ++ (a :: [])
-- theorems
list-==-dec : {A : Set} →
(l1 l2 : List A) →
((a1 a2 : A) → a1 == a2 ∨ a1 ≠ a2) →
l1 == l2 ∨ l1 ≠ l2
list-==-dec [] [] A-==-dec = Inl refl
list-==-dec [] (_ :: _) A-==-dec = Inr (λ ())
list-==-dec (_ :: _) [] A-==-dec = Inr (λ ())
list-==-dec (h1 :: t1) (h2 :: t2) A-==-dec
with A-==-dec h1 h2
... | Inr ne = Inr (λ where refl → ne refl)
... | Inl refl
with list-==-dec t1 t2 A-==-dec
... | Inr ne = Inr (λ where refl → ne refl)
... | Inl refl = Inl refl
-- if the items of two lists are equal, then the lists are equal
==-per-elem : {A : Set} → {l1 l2 : List A} →
((i : Nat) → l1 ⟦ i ⟧ == l2 ⟦ i ⟧) →
l1 == l2
==-per-elem {l1 = []} {[]} items== = refl
==-per-elem {l1 = []} {h2 :: t2} items== = abort (somenotnone (! (items== Z)))
==-per-elem {l1 = h1 :: t1} {[]} items== = abort (somenotnone (items== Z))
==-per-elem {l1 = h1 :: t1} {h2 :: t2} items==
rewrite someinj (items== Z) | ==-per-elem {l1 = t1} {t2} (λ i → items== (1+ i))
= refl
-- _++_ theorems
++assc : ∀{A a1 a2 a3} → (_++_ {A} a1 a2) ++ a3 == a1 ++ (a2 ++ a3)
++assc {A} {[]} {a2} {a3} = refl
++assc {A} {x :: a1} {a2} {a3} with a1 ++ a2 ++ a3 | ++assc {A} {a1} {a2} {a3}
++assc {A} {x :: a1} {a2} {a3} | _ | refl = refl
l++[]==l : {A : Set} (l : List A) →
l ++ [] == l
l++[]==l [] = refl
l++[]==l (a :: as)
rewrite l++[]==l as
= refl
-- ∥_∥ theorem
∥-++-comm : ∀{A a1 a2} → ∥ a1 ∥ + (∥_∥ {A} a2) == ∥ a1 ++ a2 ∥
∥-++-comm {A} {[]} {a2} = refl
∥-++-comm {A} {a :: a1} {a2} = 1+ap (∥-++-comm {A} {a1})
-- _⟦_⟧ and ++ theorem
⦇l1++[a]++l2⦈⟦∥l1∥⟧==a : {A : Set} {l1 l2 : List A} {a : A} →
(h : ∥ l1 ∥ < ∥ l1 ++ (a :: []) ++ l2 ∥) →
((l1 ++ (a :: []) ++ l2) ⟦ ∥ l1 ∥ ⟧ == Some a)
⦇l1++[a]++l2⦈⟦∥l1∥⟧==a {l1 = []} h = refl
⦇l1++[a]++l2⦈⟦∥l1∥⟧==a {l1 = a1 :: l1rest} {l2} {a} h = ⦇l1++[a]++l2⦈⟦∥l1∥⟧==a {l1 = l1rest} {l2} {a} (1+n<1+m→n<m h)
-- packaging of list indexing results
list-index-dec : {A : Set} (l : List A) (i : Nat) →
l ⟦ i ⟧ == None ∨ Σ[ a ∈ A ] (l ⟦ i ⟧ == Some a)
list-index-dec l i
with l ⟦ i ⟧
... | None = Inl refl
... | Some a = Inr (a , refl)
-- theorems characterizing the partiality of list indexing
list-index-some : {A : Set} {l : List A} {i : Nat} →
i < ∥ l ∥ →
Σ[ a ∈ A ] (l ⟦ i ⟧ == Some a)
list-index-some {l = []} {Z} i<∥l∥ = abort (n≮0 i<∥l∥)
list-index-some {l = a :: as} {Z} i<∥l∥ = _ , refl
list-index-some {l = a :: as} {1+ i} i<∥l∥ = list-index-some (1+n<1+m→n<m i<∥l∥)
list-index-none : {A : Set} {l : List A} {i : Nat} →
∥ l ∥ ≤ i →
l ⟦ i ⟧ == None
list-index-none {l = []} i≥∥l∥ = refl
list-index-none {l = a :: as} {1+ i} i≥∥l∥ = list-index-none (1+n≤1+m→n≤m i≥∥l∥)
list-index-some-conv : {A : Set} {l : List A} {i : Nat} {a : A} →
l ⟦ i ⟧ == Some a →
i < ∥ l ∥
list-index-some-conv {l = l} {i} i≥∥l∥
with <dec ∥ l ∥ i
... | Inr (Inr i<∥l∥) = i<∥l∥
... | Inr (Inl refl)
rewrite list-index-none {l = l} {∥ l ∥} ≤refl
= abort (somenotnone (! i≥∥l∥))
... | Inl ∥l∥<i
rewrite list-index-none (n<m→n≤m ∥l∥<i)
= abort (somenotnone (! i≥∥l∥))
list-index-none-conv : {A : Set} {l : List A} {i : Nat} →
l ⟦ i ⟧ == None →
∥ l ∥ ≤ i
list-index-none-conv {l = l} {i} i≥∥l∥
with <dec ∥ l ∥ i
... | Inl ∥l∥<i = n<m→n≤m ∥l∥<i
... | Inr (Inl refl) = ≤refl
... | Inr (Inr i<∥l∥)
with list-index-some i<∥l∥
... | _ , i≱∥l∥ rewrite i≥∥l∥ = abort (somenotnone (! i≱∥l∥))
∥l1∥==∥l2∥→l1[i]→l2[i] : {A B : Set} {la : List A} {lb : List B} {i : Nat} {a : A} →
∥ la ∥ == ∥ lb ∥ →
la ⟦ i ⟧ == Some a →
Σ[ b ∈ B ] (lb ⟦ i ⟧ == Some b)
∥l1∥==∥l2∥→l1[i]→l2[i] {i = i} ∥la∥==∥lb∥ la[i]==a
= list-index-some (tr (λ y → i < y) ∥la∥==∥lb∥ (list-index-some-conv la[i]==a))
∥l1∥==∥l2∥→¬l1[i]→¬l2[i] : {A B : Set} {la : List A} {lb : List B} {i : Nat} →
∥ la ∥ == ∥ lb ∥ →
la ⟦ i ⟧ == None →
lb ⟦ i ⟧ == None
∥l1∥==∥l2∥→¬l1[i]→¬l2[i] {i = i} ∥la∥==∥lb∥ la[i]==None
= list-index-none (tr (λ y → y ≤ i) ∥la∥==∥lb∥ (list-index-none-conv la[i]==None))
-- map theorem
map-++-comm : ∀{A B f a b} → map f a ++ map f b == map {A} {B} f (a ++ b)
map-++-comm {a = []} = refl
map-++-comm {A} {B} {f} {h :: t} {b} with map f (t ++ b) | map-++-comm {A} {B} {f} {t} {b}
map-++-comm {A} {B} {f} {h :: t} {b} | _ | refl = refl
-- foldl theorem
foldl-++ : {A B : Set} {l1 l2 : List A} {f : B → A → B} {b0 : B} →
foldl f b0 (l1 ++ l2) == foldl f (foldl f b0 l1) l2
foldl-++ {l1 = []} = refl
foldl-++ {l1 = a1 :: l1rest} = foldl-++ {l1 = l1rest}
-- zip/unzip theorems
unzip-inv : {A B : Set} {l : List (A ∧ B)} {la : List A} {lb : List B} →
unzip l == (la , lb) →
l == zip la lb
unzip-inv {l = []} form
with form
... | refl = refl
unzip-inv {l = (a' , b') :: rest} {a :: as} {b :: bs} form
with unzip rest | unzip-inv {l = rest} refl | form
... | (as' , bs') | refl | refl = refl
zip-inv : {A B : Set} {la : List A} {lb : List B} →
∥ la ∥ == ∥ lb ∥ →
unzip (zip la lb) == (la , lb)
zip-inv {la = []} {[]} len-eq = refl
zip-inv {la = a :: as} {b :: bs} len-eq
with unzip (zip as bs) | zip-inv (1+inj len-eq)
... | (as' , bs') | refl = refl
-- reverse theorems
reverse-single : {A : Set} {a : A} → reverse (a :: []) == a :: []
reverse-single = refl
reverse-++ : {A : Set} {l1 l2 : List A} →
reverse (l1 ++ l2) == reverse l2 ++ reverse l1
reverse-++ {l1 = []} {l2}
rewrite l++[]==l (reverse l2)
= refl
reverse-++ {l1 = a1 :: as1} {l2}
rewrite reverse-++ {l1 = as1} {l2}
= ++assc {a1 = reverse l2}
reverse-inv : {A : Set} {l : List A} → reverse (reverse l) == l
reverse-inv {l = []} = refl
reverse-inv {l = a :: as}
rewrite reverse-++ {l1 = reverse as} {a :: []} | reverse-inv {l = as}
= refl
| {
"alphanum_fraction": 0.4070460018,
"avg_line_length": 36.0319634703,
"ext": "agda",
"hexsha": "36060671b9ce14d3b35c88f1c4a091964ade9563",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnat-myth-",
"max_forks_repo_path": "List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnat-myth-",
"max_issues_repo_path": "List.agda",
"max_line_length": 119,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnat-myth-",
"max_stars_repo_path": "List.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z",
"num_tokens": 3498,
"size": 7891
} |
{-# OPTIONS --without-K #-}
open import HoTT
module homotopy.3x3.PushoutPushout where
-- Numbering is in row/column form
-- A span^2 is a 5 × 5 table (numbered from 0 to 4) where
-- * the even/even cells are types
-- * the odd/even and even/odd cells are functions
-- * the odd/odd cells are equalities between functions
record Span^2 {i} : Type (lsucc i) where
constructor span^2
field
A₀₀ A₀₂ A₀₄ A₂₀ A₂₂ A₂₄ A₄₀ A₄₂ A₄₄ : Type i
f₀₁ : A₀₂ → A₀₀
f₀₃ : A₀₂ → A₀₄
f₂₁ : A₂₂ → A₂₀
f₂₃ : A₂₂ → A₂₄
f₄₁ : A₄₂ → A₄₀
f₄₃ : A₄₂ → A₄₄
f₁₀ : A₂₀ → A₀₀
f₃₀ : A₂₀ → A₄₀
f₁₂ : A₂₂ → A₀₂
f₃₂ : A₂₂ → A₄₂
f₁₄ : A₂₄ → A₀₄
f₃₄ : A₂₄ → A₄₄
H₁₁ : (x : A₂₂) → f₁₀ (f₂₁ x) == f₀₁ (f₁₂ x)
H₁₃ : (x : A₂₂) → f₀₃ (f₁₂ x) == f₁₄ (f₂₃ x)
H₃₁ : (x : A₂₂) → f₃₀ (f₂₁ x) == f₄₁ (f₃₂ x)
H₃₃ : (x : A₂₂) → f₄₃ (f₃₂ x) == f₃₄ (f₂₃ x)
record SquareFunc {i} : Type (lsucc i) where
constructor square
field
{A B₁ B₂ C} : Type i
f₁ : A → B₁
f₂ : A → B₂
g₁ : B₁ → C
g₂ : B₂ → C
module _ {i} where
square=-raw :
{A A' : Type i} (eq-A : A == A')
{B₁ B₁' : Type i} (eq-B₁ : B₁ == B₁')
{B₂ B₂' : Type i} (eq-B₂ : B₂ == B₂')
{C C' : Type i} (eq-C : C == C')
{f₁ : A → B₁} {f₁' : A' → B₁'} (eq-f₁ : f₁ == f₁' [ (λ u → fst u → snd u) ↓ pair×= eq-A eq-B₁ ])
{f₂ : A → B₂} {f₂' : A' → B₂'} (eq-f₂ : f₂ == f₂' [ (λ u → fst u → snd u) ↓ pair×= eq-A eq-B₂ ])
{g₁ : B₁ → C} {g₁' : B₁' → C'} (eq-g₁ : g₁ == g₁' [ (λ u → fst u → snd u) ↓ pair×= eq-B₁ eq-C ])
{g₂ : B₂ → C} {g₂' : B₂' → C'} (eq-g₂ : g₂ == g₂' [ (λ u → fst u → snd u) ↓ pair×= eq-B₂ eq-C ])
→ square f₁ f₂ g₁ g₂ == square f₁' f₂' g₁' g₂'
square=-raw idp idp idp idp idp idp idp idp = idp
square-thing :
{A A' : Type i} (eq-A : A == A')
{B₁ B₁' : Type i} (eq-B₁ : B₁ == B₁')
{B₂ B₂' : Type i} (eq-B₂ : B₂ == B₂')
{C C' : Type i} (eq-C : C == C')
{f₁ : A → B₁} {f₁' : A' → B₁'} (eq-f₁ : f₁ == f₁' [ (λ u → fst u → snd u) ↓ pair×= eq-A eq-B₁ ])
{f₂ : A → B₂} {f₂' : A' → B₂'} (eq-f₂ : f₂ == f₂' [ (λ u → fst u → snd u) ↓ pair×= eq-A eq-B₂ ])
{g₁ : B₁ → C} {g₁' : B₁' → C'} (eq-g₁ : g₁ == g₁' [ (λ u → fst u → snd u) ↓ pair×= eq-B₁ eq-C ])
{g₂ : B₂ → C} {g₂' : B₂' → C'} (eq-g₂ : g₂ == g₂' [ (λ u → fst u → snd u) ↓ pair×= eq-B₂ eq-C ])
{a : _} {b : _}
→ a == b [ (λ u → ((x : SquareFunc.A u) → SquareFunc.g₂ u (SquareFunc.f₂ u x) == SquareFunc.g₁ u (SquareFunc.f₁ u x))) ↓ (square=-raw eq-A eq-B₂ eq-B₁ eq-C eq-f₂ eq-f₁ eq-g₂ eq-g₁) ]
→ a == b [ (λ u → ((x : SquareFunc.A u) → SquareFunc.g₁ u (SquareFunc.f₁ u x) == SquareFunc.g₂ u (SquareFunc.f₂ u x))) ↓ (square=-raw eq-A eq-B₁ eq-B₂ eq-C eq-f₁ eq-f₂ eq-g₁ eq-g₂) ]
square-thing idp idp idp idp idp idp idp idp α = α
span^2=-raw :
{A₀₀ A₀₀' : Type i} (eq-A₀₀ : A₀₀ == A₀₀')
{A₀₂ A₀₂' : Type i} (eq-A₀₂ : A₀₂ == A₀₂')
{A₀₄ A₀₄' : Type i} (eq-A₀₄ : A₀₄ == A₀₄')
{A₂₀ A₂₀' : Type i} (eq-A₂₀ : A₂₀ == A₂₀')
{A₂₂ A₂₂' : Type i} (eq-A₂₂ : A₂₂ == A₂₂')
{A₂₄ A₂₄' : Type i} (eq-A₂₄ : A₂₄ == A₂₄')
{A₄₀ A₄₀' : Type i} (eq-A₄₀ : A₄₀ == A₄₀')
{A₄₂ A₄₂' : Type i} (eq-A₄₂ : A₄₂ == A₄₂')
{A₄₄ A₄₄' : Type i} (eq-A₄₄ : A₄₄ == A₄₄')
{f₀₁ : A₀₂ → A₀₀} {f₀₁' : A₀₂' → A₀₀'} (eq-f₀₁ : f₀₁ == f₀₁' [ (λ u → fst u → snd u) ↓ pair×= eq-A₀₂ eq-A₀₀ ])
{f₀₃ : A₀₂ → A₀₄} {f₀₃' : A₀₂' → A₀₄'} (eq-f₀₃ : f₀₃ == f₀₃' [ (λ u → fst u → snd u) ↓ pair×= eq-A₀₂ eq-A₀₄ ])
{f₂₁ : A₂₂ → A₂₀} {f₂₁' : A₂₂' → A₂₀'} (eq-f₂₁ : f₂₁ == f₂₁' [ (λ u → fst u → snd u) ↓ pair×= eq-A₂₂ eq-A₂₀ ])
{f₂₃ : A₂₂ → A₂₄} {f₂₃' : A₂₂' → A₂₄'} (eq-f₂₃ : f₂₃ == f₂₃' [ (λ u → fst u → snd u) ↓ pair×= eq-A₂₂ eq-A₂₄ ])
{f₄₁ : A₄₂ → A₄₀} {f₄₁' : A₄₂' → A₄₀'} (eq-f₄₁ : f₄₁ == f₄₁' [ (λ u → fst u → snd u) ↓ pair×= eq-A₄₂ eq-A₄₀ ])
{f₄₃ : A₄₂ → A₄₄} {f₄₃' : A₄₂' → A₄₄'} (eq-f₄₃ : f₄₃ == f₄₃' [ (λ u → fst u → snd u) ↓ pair×= eq-A₄₂ eq-A₄₄ ])
{f₁₀ : A₂₀ → A₀₀} {f₁₀' : A₂₀' → A₀₀'} (eq-f₁₀ : f₁₀ == f₁₀' [ (λ u → fst u → snd u) ↓ pair×= eq-A₂₀ eq-A₀₀ ])
{f₃₀ : A₂₀ → A₄₀} {f₃₀' : A₂₀' → A₄₀'} (eq-f₃₀ : f₃₀ == f₃₀' [ (λ u → fst u → snd u) ↓ pair×= eq-A₂₀ eq-A₄₀ ])
{f₁₂ : A₂₂ → A₀₂} {f₁₂' : A₂₂' → A₀₂'} (eq-f₁₂ : f₁₂ == f₁₂' [ (λ u → fst u → snd u) ↓ pair×= eq-A₂₂ eq-A₀₂ ])
{f₃₂ : A₂₂ → A₄₂} {f₃₂' : A₂₂' → A₄₂'} (eq-f₃₂ : f₃₂ == f₃₂' [ (λ u → fst u → snd u) ↓ pair×= eq-A₂₂ eq-A₄₂ ])
{f₁₄ : A₂₄ → A₀₄} {f₁₄' : A₂₄' → A₀₄'} (eq-f₁₄ : f₁₄ == f₁₄' [ (λ u → fst u → snd u) ↓ pair×= eq-A₂₄ eq-A₀₄ ])
{f₃₄ : A₂₄ → A₄₄} {f₃₄' : A₂₄' → A₄₄'} (eq-f₃₄ : f₃₄ == f₃₄' [ (λ u → fst u → snd u) ↓ pair×= eq-A₂₄ eq-A₄₄ ])
{H₁₁ : (x : A₂₂) → f₁₀ (f₂₁ x) == f₀₁ (f₁₂ x)} {H₁₁' : (x : A₂₂') → f₁₀' (f₂₁' x) == f₀₁' (f₁₂' x)}
(eq-H₁₁ : H₁₁ == H₁₁' [ (λ u → ((x : SquareFunc.A u) → SquareFunc.g₁ u (SquareFunc.f₁ u x) == SquareFunc.g₂ u (SquareFunc.f₂ u x)))
↓ square=-raw eq-A₂₂ eq-A₂₀ eq-A₀₂ eq-A₀₀ eq-f₂₁ eq-f₁₂ eq-f₁₀ eq-f₀₁ ])
{H₁₃ : (x : A₂₂) → f₀₃ (f₁₂ x) == f₁₄ (f₂₃ x)} {H₁₃' : (x : A₂₂') → f₀₃' (f₁₂' x) == f₁₄' (f₂₃' x)}
(eq-H₁₃ : H₁₃ == H₁₃' [ (λ u → ((x : SquareFunc.A u) → SquareFunc.g₁ u (SquareFunc.f₁ u x) == SquareFunc.g₂ u (SquareFunc.f₂ u x)))
↓ square=-raw eq-A₂₂ eq-A₀₂ eq-A₂₄ eq-A₀₄ eq-f₁₂ eq-f₂₃ eq-f₀₃ eq-f₁₄ ])
{H₃₁ : (x : A₂₂) → f₃₀ (f₂₁ x) == f₄₁ (f₃₂ x)} {H₃₁' : (x : A₂₂') → f₃₀' (f₂₁' x) == f₄₁' (f₃₂' x)}
(eq-H₃₁ : H₃₁ == H₃₁' [ (λ u → ((x : SquareFunc.A u) → SquareFunc.g₁ u (SquareFunc.f₁ u x) == SquareFunc.g₂ u (SquareFunc.f₂ u x)))
↓ square=-raw eq-A₂₂ eq-A₂₀ eq-A₄₂ eq-A₄₀ eq-f₂₁ eq-f₃₂ eq-f₃₀ eq-f₄₁ ])
{H₃₃ : (x : A₂₂) → f₄₃ (f₃₂ x) == f₃₄ (f₂₃ x)} {H₃₃' : (x : A₂₂') → f₄₃' (f₃₂' x) == f₃₄' (f₂₃' x)}
(eq-H₃₃ : H₃₃ == H₃₃' [ (λ u → ((x : SquareFunc.A u) → SquareFunc.g₁ u (SquareFunc.f₁ u x) == SquareFunc.g₂ u (SquareFunc.f₂ u x)))
↓ square=-raw eq-A₂₂ eq-A₄₂ eq-A₂₄ eq-A₄₄ eq-f₃₂ eq-f₂₃ eq-f₄₃ eq-f₃₄ ])
→ span^2 A₀₀ A₀₂ A₀₄ A₂₀ A₂₂ A₂₄ A₄₀ A₄₂ A₄₄ f₀₁ f₀₃ f₂₁ f₂₃ f₄₁ f₄₃ f₁₀ f₃₀ f₁₂ f₃₂ f₁₄ f₃₄ H₁₁ H₁₃ H₃₁ H₃₃
== span^2 A₀₀' A₀₂' A₀₄' A₂₀' A₂₂' A₂₄' A₄₀' A₄₂' A₄₄' f₀₁' f₀₃' f₂₁' f₂₃' f₄₁' f₄₃' f₁₀' f₃₀' f₁₂' f₃₂' f₁₄' f₃₄' H₁₁' H₁₃' H₃₁' H₃₃'
span^2=-raw idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp idp = idp
module M {i} (d : Span^2 {i}) where
open Span^2 d
A₀∙ : Type i
A₀∙ = Pushout (span A₀₀ A₀₄ A₀₂ f₀₁ f₀₃)
A₂∙ : Type i
A₂∙ = Pushout (span A₂₀ A₂₄ A₂₂ f₂₁ f₂₃)
A₄∙ : Type i
A₄∙ = Pushout (span A₄₀ A₄₄ A₄₂ f₄₁ f₄₃)
module F₁∙ = PushoutRec {D = A₀∙}
(left ∘ f₁₀) (right ∘ f₁₄)
(λ c → ap left (H₁₁ c)
∙ glue (f₁₂ c)
∙ ap right (H₁₃ c))
f₁∙ : A₂∙ → A₀∙
f₁∙ = F₁∙.f
module F₃∙ = PushoutRec {D = A₄∙}
(left ∘ f₃₀) (right ∘ f₃₄)
(λ c → ap left (H₃₁ c)
∙ glue (f₃₂ c)
∙ ap right (H₃₃ c))
f₃∙ : A₂∙ → A₄∙
f₃∙ = F₃∙.f
-- Span obtained after taking horizontal pushouts
v-h-span : Span
v-h-span = span A₀∙ A₄∙ A₂∙ f₁∙ f₃∙
Pushout^2 : Type i
Pushout^2 = Pushout v-h-span
{-
Definition of [f₁∙] and [f₃∙] in ∞TT:
f₁∙ : A₂∙ → A₀∙
f₁∙ (left a) = left (f₁₀ a)
f₁∙ (right c) = right (f₁₄ c)
ap f₁∙ (glue b) = ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c)
f₃∙ : A₂∙ → A₄∙
f₃∙ (left a) = left (f₃₀ a)
f₃∙ (right c) = right (f₃₄ c)
ap f₃∙ (glue b) = ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c)
-}
| {
"alphanum_fraction": 0.4867129205,
"avg_line_length": 48.0440251572,
"ext": "agda",
"hexsha": "7f2a630c8bd65a7ab3cb1c50e11c18605215e80e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "homotopy/3x3/PushoutPushout.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "homotopy/3x3/PushoutPushout.agda",
"max_line_length": 186,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "homotopy/3x3/PushoutPushout.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 4232,
"size": 7639
} |
{-# OPTIONS --without-K --safe #-}
-- This module packages up all the stuff that's passed to the other
-- modules in a convenient form.
module Polynomial.Parameters where
open import Function
open import Algebra
open import Relation.Unary
open import Level
open import Algebra.Solver.Ring.AlmostCommutativeRing
open import Data.Bool using (Bool; T)
-- This record stores all the stuff we need for the coefficients:
--
-- * A raw ring
-- * A (decidable) predicate on "zeroeness"
--
-- It's used for defining the operations on the horner normal form.
record RawCoeff c ℓ : Set (suc (c ⊔ ℓ)) where
field
coeffs : RawRing c ℓ
Zero-C : RawRing.Carrier coeffs → Bool
open RawRing coeffs public
-- This record stores the full information we need for converting
-- to the final ring.
record Homomorphism c ℓ₁ ℓ₂ ℓ₃ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)) where
field
coeffs : RawCoeff c ℓ₁
module Raw = RawCoeff coeffs
field
ring : AlmostCommutativeRing ℓ₂ ℓ₃
morphism : Raw.coeffs -Raw-AlmostCommutative⟶ ring
open _-Raw-AlmostCommutative⟶_ morphism renaming (⟦_⟧ to ⟦_⟧ᵣ) public
open AlmostCommutativeRing ring public
field
Zero-C⟶Zero-R : ∀ x → T (Raw.Zero-C x) → 0# ≈ ⟦ x ⟧ᵣ
| {
"alphanum_fraction": 0.7105263158,
"avg_line_length": 30.4,
"ext": "agda",
"hexsha": "5dad8fc42b473443ef7e6782c526cdef3d0e9717",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Polynomial/Parameters.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Polynomial/Parameters.agda",
"max_line_length": 71,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Polynomial/Parameters.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 380,
"size": 1216
} |
module Prelude.Erased where
data [erased]-is-only-for-printing : Set where
[erased] : [erased]-is-only-for-printing
| {
"alphanum_fraction": 0.7333333333,
"avg_line_length": 20,
"ext": "agda",
"hexsha": "f5eac45173bd814475894d16d781c9e48477b6dd",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Prelude/Erased.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Prelude/Erased.agda",
"max_line_length": 46,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Prelude/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 38,
"size": 120
} |
module Common.ContextPair where
open import Common.Context public
-- Context pairs.
infix 4 _⁏_
record Cx² (U V : Set) : Set where
constructor _⁏_
field
int : Cx U
mod : Cx V
open Cx² public
∅² : ∀ {U V} → Cx² U V
∅² = ∅ ⁏ ∅
-- Context inclusion.
module _ {U V : Set} where
infix 3 _⊆²_
_⊆²_ : Cx² U V → Cx² U V → Set
Γ ⁏ Δ ⊆² Γ′ ⁏ Δ′ = Γ ⊆ Γ′ × Δ ⊆ Δ′
refl⊆² : ∀ {Π} → Π ⊆² Π
refl⊆² = refl⊆ , refl⊆
trans⊆² : ∀ {Π Π′ Π″} → Π ⊆² Π′ → Π′ ⊆² Π″ → Π ⊆² Π″
trans⊆² (η , θ) (η′ , θ′) = trans⊆ η η′ , trans⊆ θ θ′
weak⊆²₁ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊆² Γ , A ⁏ Δ
weak⊆²₁ = weak⊆ , refl⊆
weak⊆²₂ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊆² Γ ⁏ Δ , A
weak⊆²₂ = refl⊆ , weak⊆
bot⊆² : ∀ {Π} → ∅² ⊆² Π
bot⊆² = bot⊆ , bot⊆
-- Context concatenation.
module _ {U V : Set} where
_⧺²_ : Cx² U V → Cx² U V → Cx² U V
(Γ ⁏ Δ) ⧺² (Γ′ ⁏ Δ′) = Γ ⧺ Γ′ ⁏ Δ ⧺ Δ′
weak⊆²⧺₁ : ∀ {Π} Π′ → Π ⊆² Π ⧺² Π′
weak⊆²⧺₁ (Γ′ ⁏ Δ′) = weak⊆⧺₁ Γ′ , weak⊆⧺₁ Δ′
weak⊆²⧺₂ : ∀ {Π Π′} → Π′ ⊆² Π ⧺² Π′
weak⊆²⧺₂ = weak⊆⧺₂ , weak⊆⧺₂
| {
"alphanum_fraction": 0.4735812133,
"avg_line_length": 18.5818181818,
"ext": "agda",
"hexsha": "c5644280fc3efdfb808b740e50126e163a61a726",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "Common/ContextPair.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "Common/ContextPair.agda",
"max_line_length": 55,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "Common/ContextPair.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 646,
"size": 1022
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.ZCohomology.S1.S1 where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.HITs.S1
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.SetTruncation
open import Cubical.HITs.Nullification
open import Cubical.Data.Int
open import Cubical.Data.Nat
open import Cubical.HITs.Truncation
---- H⁰(S¹) = ℤ ----
coHom0-S1 : coHom zero S¹ ≡ Int
coHom0-S1 = (λ i → ∥ helpLemma i ∥₀ ) ∙ setId isSetInt
where
helpLemma : (S¹ → Int) ≡ Int
helpLemma = isoToPath (iso fun funinv (λ _ → refl) (λ f → funExt (rinvLemma f)))
where
fun : (S¹ → Int) → Int
fun f = f base
funinv : Int → (S¹ → Int)
funinv a base = a
funinv a (loop i) = a
rinvLemma : (f : S¹ → Int) → (x : S¹) → funinv (fun f) x ≡ f x
rinvLemma f base = refl
rinvLemma f (loop i) j = isSetInt (f base) (f base) (λ k → f (loop k)) refl (~ j) i
-------------------------
{- TODO : give Hᵏ(S¹) for all k -}
| {
"alphanum_fraction": 0.6464454976,
"avg_line_length": 28.5135135135,
"ext": "agda",
"hexsha": "029a6eeed7dd0791c55247a5800c924afdec52e3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/S1/S1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/S1/S1.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/S1/S1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 378,
"size": 1055
} |
-- Generic term traversals
module Syntax.Substitution.Lemmas where
open import Syntax.Types
open import Syntax.Context
open import Syntax.Terms
open import Syntax.Substitution.Kits
open import Syntax.Substitution.Instances
open import Data.Sum
open import Relation.Binary.PropositionalEquality as ≡
using (_≡_ ; refl ; sym ; cong ; subst)
open import Function using (id ; flip ; _∘_)
open ≡.≡-Reasoning
-- | Lemmas from substitutions
-- | Concrete instances of structural and substitution lemmas
-- | can be expressed as substituting traversals on terms
-- Weakening lemma
weakening : ∀{Γ Δ A} -> Γ ⊆ Δ -> Γ ⊢ A
--------------------
-> Δ ⊢ A
weakening s = substitute (weakₛ 𝒯ermₛ s)
-- Weakening lemma for computations
weakening′ : ∀{Γ Δ A} -> Γ ⊆ Δ -> Γ ⊨ A
--------------------
-> Δ ⊨ A
weakening′ s = substitute′ (weakₛ 𝒯ermₛ s)
-- Exchange lemma
exchange : ∀ Γ Γ′ Γ″ {A B C}
-> Γ ⌊ A ⌋ Γ′ ⌊ B ⌋ Γ″ ⊢ C
----------------------
-> Γ ⌊ B ⌋ Γ′ ⌊ A ⌋ Γ″ ⊢ C
exchange Γ Γ′ Γ″ = substitute (exₛ 𝒯ermₛ Γ Γ′ Γ″)
-- Contraction lemma
contraction : ∀ Γ Γ′ Γ″ {A B}
-> Γ ⌊ A ⌋ Γ′ ⌊ A ⌋ Γ″ ⊢ B
----------------------
-> Γ ⌊ A ⌋ Γ′ ⌊⌋ Γ″ ⊢ B
contraction Γ Γ′ Γ″ = substitute (contr-lₛ 𝒯ermₛ Γ Γ′ Γ″)
-- Substitution lemma
substitution : ∀ Γ Γ′ {A B}
-> Γ ⌊⌋ Γ′ ⊢ A -> Γ ⌊ A ⌋ Γ′ ⊢ B
--------------------------------
-> Γ ⌊⌋ Γ′ ⊢ B
substitution Γ Γ′ M = substitute (sub-midₛ 𝒯ermₛ Γ Γ′ M)
-- Substitution lemma for computational terms
substitution′ : ∀ Γ Γ′ {A B}
-> Γ ⌊⌋ Γ′ ⊢ A -> Γ ⌊ A ⌋ Γ′ ⊨ B
--------------------------------
-> Γ ⌊⌋ Γ′ ⊨ B
substitution′ Γ Γ′ M = substitute′ (sub-midₛ 𝒯ermₛ Γ Γ′ M)
-- Top substitution lemma
[_/] : ∀ {Γ A B}
-> Γ ⊢ A -> Γ , A ⊢ B
--------------------------
-> Γ ⊢ B
[_/] M = substitute (sub-topₛ 𝒯ermₛ M)
-- Top substitution lemma for computational terms
[_/′] : ∀ {Γ A B}
-> Γ ⊢ A -> Γ , A ⊨ B
--------------------------
-> Γ ⊨ B
[_/′] M = substitute′ (sub-topₛ 𝒯ermₛ M)
-- Top substitution of computation into a computation
⟨_/⟩ : ∀ {Γ A B} -> Γ ⊨ A now -> Γ ˢ , A now ⊨ B now
------------------------------------
-> Γ ⊨ B now
⟨ pure M /⟩ D = substitute′ (sub-topˢₛ 𝒯ermₛ M) D
⟨ letSig S InC C /⟩ D = letSig S InC ⟨ C /⟩ (substitute′ ((idₛ 𝒯erm) ⁺ 𝒯erm ↑ 𝒯erm) D)
⟨ (letEvt_In_ {Γ} E C) /⟩ D = letEvt E In ⟨ C /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D)
⟨ select_↦_||_↦_||both↦_ {Γ} E₁ C₁ E₂ C₂ C₃ /⟩ D
= select E₁ ↦ ⟨ C₁ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D)
|| E₂ ↦ ⟨ C₂ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D)
||both↦ ⟨ C₃ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D)
| {
"alphanum_fraction": 0.4138349515,
"avg_line_length": 37.8850574713,
"ext": "agda",
"hexsha": "0508bd221cb4ddfb933f263cdbcc79d1abf4406e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/Syntax/Substitution/Lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/Syntax/Substitution/Lemmas.agda",
"max_line_length": 92,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/Syntax/Substitution/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 1108,
"size": 3296
} |
-- Record modules for no-eta records should not be irrelevant in
-- record even if all fields are irrelevant (cc #392).
open import Agda.Builtin.Equality
postulate A : Set
record Unit : Set where
no-eta-equality
postulate a : A
record Irr : Set where
no-eta-equality
field .unit : Unit
postulate a : A
record Coind : Set where
coinductive
postulate a : A
typeOf : {A : Set} → A → Set
typeOf {A} _ = A
checkUnit : typeOf Unit.a ≡ (Unit → A)
checkUnit = refl
checkIrr : typeOf Irr.a ≡ (Irr → A)
checkIrr = refl
checkCoind : typeOf Coind.a ≡ (Coind → A)
checkCoind = refl
| {
"alphanum_fraction": 0.6846543002,
"avg_line_length": 17.9696969697,
"ext": "agda",
"hexsha": "c6a9f613f47facb8f1188d1a0c05d3153e53f433",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2607.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2607.agda",
"max_line_length": 64,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2607.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 195,
"size": 593
} |
open import Data.Bool using (Bool; true; false)
open import Data.Float using (Float)
open import Avionics.Maybe using (Maybe; just; nothing; _>>=_; map)
--open import Data.Maybe using (Maybe; just; nothing; _>>=_; map)
open import Data.Nat using (ℕ)
open import Function using (_∘_)
open import Level using (0ℓ; _⊔_) renaming (suc to lsuc)
open import Relation.Binary using (Decidable)
open import Relation.Binary.Definitions using (Transitive; Trans)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (False; ⌊_⌋; True)
open import Relation.Unary using (Pred; _∈_)
-- stack exec -- agda -c --ghc-dont-call-ghc --no-main code.agda
infix 4 _≤_ _≤ᵇ_ _≤?_
postulate
ℝ : Set
fromFloat : Float → Maybe ℝ
toFloat : ℝ → Float
0ℝ : ℝ
_≤_ : ℝ → ℝ → Set
_≤?_ : (m n : ℝ) → Dec (m ≤ n)
_≤ᵇ_ : ℝ → ℝ → Bool
p ≤ᵇ q = ⌊ p ≤? q ⌋
postulate
√_ : (x : ℝ) → .{0≤x : True (0ℝ ≤? x)} → ℝ
--Subset : Set → Set _
--Subset A = Pred A 0ℓ
--
--postulate
-- [0,∞⟩ : Subset ℝ
--
-- √_ : (x : ℝ) → .{0≤x : x ∈ [0,∞⟩} → ℝ
{-# COMPILE GHC ℝ = type Double #-}
-- `fromFloat` should check whether it is a valid floating point
-- number
{-# COMPILE GHC fromFloat = \x -> Just x #-}
{-# COMPILE GHC toFloat = \x -> x #-}
{-# COMPILE GHC 0ℝ = 0 #-}
{-# FOREIGN GHC type UnitErase a b = () #-}
{-# COMPILE GHC _≤_ = type UnitErase #-}
--{-# COMPILE GHC _≤_ = \ _ _ -> () #-}
{-# COMPILE GHC _≤ᵇ_ = (<=) #-}
--{-# FOREIGN GHC type UnitErase erase = () #-}
--{-# COMPILE GHC [0,∞⟩ = type UnitErase #-}
-- TODO: Find out how to perform the `sqrt` of a value!!
-- Here lies the main problem of compilation failure!
{-# COMPILE GHC √_ = \x _ -> sqrt x #-}
-- Agda is actually doing the right thing not accepting dubious
-- translations of code into Haskell
export√ : Float → Maybe Float
export√ x = fromFloat x >>= sqrt >>= just ∘ toFloat
where
sqrt : ℝ → Maybe ℝ
sqrt y with 0ℝ ≤ᵇ y
... | false = nothing
... | true = just ((√ y) {y≥0})
where postulate y≥0 : True (0ℝ ≤? y)
--where postulate y≥0 : y ∈ [0,∞⟩
{-# COMPILE GHC export√ as exportSqrt #-}
| {
"alphanum_fraction": 0.6112380082,
"avg_line_length": 27.7088607595,
"ext": "agda",
"hexsha": "4c6e1e109b2ba6fa5e57a0d31749fd74dab7a917",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/reals-with-restrictions/code.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/reals-with-restrictions/code.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/reals-with-restrictions/code.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 763,
"size": 2189
} |
-- Andreas, 2018-05-27, issue #3090, reported by anka-213
-- Parser should not raise internal error for invalid symbol in name
{-# BUILTIN NATURAL ( #-}
-- Should fail with a parse error, not internal error
| {
"alphanum_fraction": 0.7224880383,
"avg_line_length": 29.8571428571,
"ext": "agda",
"hexsha": "ed2372efa54be6e63149cf2839d58b4a871df762",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3090-lparen.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3090-lparen.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3090-lparen.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 55,
"size": 209
} |
--------------------------------------------------------------------------------
-- This file contains functions to convert between agda terms and meta-cedille
-- terms
--------------------------------------------------------------------------------
module Conversion where
open import Class.Monad.Except
open import Data.String using (fromList; toList)
open import Data.Tree
open import Data.Tree.Instance
open import Data.Word using (toℕ)
open import Data.List using (uncons)
open import CoreTheory
open import Parse.TreeConvert
open import Prelude
open import Prelude.Strings
module _ {M : Set → Set} {{_ : Monad M}} {{_ : MonadExcept M String}} where
private
{-# TERMINATING #-} -- findOutermostConstructor returns a list of smaller terms
buildConstructorTree : Context → PureTerm → Tree PureTerm
buildConstructorTree Γ t with findOutermostConstructor t
... | t' , ts = Node t' $ map (buildConstructorTree Γ) $ reverse ts
extractConstrId : PureTerm → M (ℕ ⊎ Char)
extractConstrId (Var-P (Bound x)) = return $ inj₁ $ toℕ x
extractConstrId (Var-P (Free x)) = throwError ("Not a constructor:" <+> x)
extractConstrId (Char-P c) = return $ inj₂ c
{-# CATCHALL #-}
extractConstrId t = throwError ("Not a variable" <+> show t)
{-# TERMINATING #-}
extractConstrIdTree : Tree PureTerm → M (Tree (ℕ ⊎ Char))
extractConstrIdTree (Node x y) = do
x' ← extractConstrId x
y' ← sequence (map extractConstrIdTree y)
return $ Node x' y'
record Unquote (A : Set) : Set where
field
conversionFunction : Tree (ℕ ⊎ Char) → Maybe A
nameOfA : String
unquoteConstrs : Context → PureTerm → M A
unquoteConstrs Γ t = do
t' ← appendIfError (extractConstrIdTree $ buildConstructorTree Γ t)
("Error while converting term" <+> show t
<+> "to a tree of constructors of a" <+> nameOfA <+> "!")
maybeToError (conversionFunction t') ("Error while converting to" <+> nameOfA + ". Term:"
<+> show t + "\nTree:\n" + show {{Tree-Show}} t')
open Unquote {{...}} public
instance
Unquote-Stmt : Unquote Stmt
Unquote-Stmt = record { conversionFunction = toStmt ; nameOfA = "statement" }
Unquote-Term : Unquote AnnTerm
Unquote-Term = record { conversionFunction = toTerm ; nameOfA = "term" }
Unquote-String : Unquote String
Unquote-String = record { conversionFunction = toName ; nameOfA = "string" }
Unquote-StringList : Unquote (List String)
Unquote-StringList = record { conversionFunction = toNameList ; nameOfA = "string list" }
record Quotable (A : Set) : Set₁ where
field
quoteToAnnTerm : A → AnnTerm
quoteToPureTerm : A → PureTerm
quoteToPureTerm = Erase ∘ quoteToAnnTerm
open Quotable {{...}} public
instance
Quotable-ListChar : Quotable (List Char)
Quotable-ListChar .quoteToAnnTerm [] = FreeVar "init$string$nil"
Quotable-ListChar .quoteToAnnTerm (c ∷ cs) = FreeVar "init$string$cons" ⟪$⟫ Char-A c ⟪$⟫ quoteToAnnTerm cs
Quotable-String : Quotable String
Quotable-String .quoteToAnnTerm = quoteToAnnTerm ∘ toList
Quotable-ListString : Quotable (List String)
Quotable-ListString .quoteToAnnTerm [] = FreeVar "init$stringList$nil"
Quotable-ListString .quoteToAnnTerm (x ∷ l) =
FreeVar "init$stringList$cons" ⟪$⟫ quoteToAnnTerm x ⟪$⟫ quoteToAnnTerm l
private
Quotable-Index : Quotable 𝕀
Quotable-Index .quoteToAnnTerm i with uncons (toList (show i))
... | nothing = Sort-A □ -- impossible
... | just (x , i) = FreeVar ("init$index$" + fromList [ x ] + "_index'_") ⟪$⟫ quoteIndex' i
where
quoteIndex' : List Char → AnnTerm
quoteIndex' [] = FreeVar "init$index'$"
quoteIndex' (x ∷ xs) = FreeVar ("init$index'$" + fromList [ x ] + "_index'_") ⟪$⟫ quoteIndex' xs
Quotable-AnnTerm : Quotable AnnTerm
Quotable-AnnTerm .quoteToAnnTerm (Var-A (Bound x)) = FreeVar "init$term$_var_"
⟪$⟫ (FreeVar "init$var$_index_" ⟪$⟫ quoteToAnnTerm x)
Quotable-AnnTerm .quoteToAnnTerm (Var-A (Free x)) = FreeVar "init$term$_var_"
⟪$⟫ (FreeVar "init$var$_string_" ⟪$⟫ quoteToAnnTerm x)
Quotable-AnnTerm .quoteToAnnTerm (Sort-A ⋆) = FreeVar "init$term$_sort_" ⟪$⟫ FreeVar "init$sort$=ast="
Quotable-AnnTerm .quoteToAnnTerm (Sort-A □) = FreeVar "init$term$_sort_" ⟪$⟫ FreeVar "init$sort$=sq="
Quotable-AnnTerm .quoteToAnnTerm (Const-A CharT) =
FreeVar "init$term$=Kappa=_const_" ⟪$⟫ FreeVar "init$const$Char"
Quotable-AnnTerm .quoteToAnnTerm (Pr1-A t) = FreeVar "init$term$=pi=^space^_term_" ⟪$⟫ quoteToAnnTerm t
Quotable-AnnTerm .quoteToAnnTerm (Pr2-A t) = FreeVar "init$term$=psi=^space^_term_" ⟪$⟫ quoteToAnnTerm t
Quotable-AnnTerm .quoteToAnnTerm (Beta-A t t₁) =
FreeVar "init$term$=beta=^space^_term_^space^_term_" ⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (Delta-A t t₁) =
FreeVar "init$term$=delta=^space^_term_^space^_term_" ⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (Sigma-A t) = FreeVar "init$term$=sigma=^space^_term_" ⟪$⟫ quoteToAnnTerm t
Quotable-AnnTerm .quoteToAnnTerm (App-A t t₁) =
FreeVar "init$term$=lsquare=^space'^_term_^space^_term_^space'^=rsquare="
⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (AppE-A t t₁) =
FreeVar "init$term$=langle=^space'^_term_^space^_term_^space'^=rangle="
⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (Rho-A t t₁ t₂) =
FreeVar "init$term$=rho=^space^_term_^space^_string_^space'^=dot=^space'^_term_^space^_term_"
⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm (List Char ∋ "_") -- TODO: add a name to rho?
⟪$⟫ quoteToAnnTerm t₁ ⟪$⟫ quoteToAnnTerm t₂
Quotable-AnnTerm .quoteToAnnTerm (All-A x t t₁) =
FreeVar "init$term$=forall=^space^_string_^space'^=colon=^space'^_term_^space^_term_"
⟪$⟫ quoteToAnnTerm x ⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (Pi-A x t t₁) =
FreeVar "init$term$=Pi=^space^_string_^space'^=colon=^space'^_term_^space^_term_"
⟪$⟫ quoteToAnnTerm x ⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (Iota-A x t t₁) =
FreeVar "init$term$=iota=^space^_string_^space'^=colon=^space'^_term_^space^_term_"
⟪$⟫ quoteToAnnTerm x ⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (Lam-A x t t₁) =
FreeVar "init$term$=lambda=^space^_string_^space'^=colon=^space'^_term_^space^_term_"
⟪$⟫ quoteToAnnTerm x ⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (LamE-A x t t₁) =
FreeVar "init$term$=Lambda=^space^_string_^space'^=colon=^space'^_term_^space^_term_"
⟪$⟫ quoteToAnnTerm x ⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (Pair-A t t₁ t₂) =
FreeVar "init$term$=lbrace=^space'^_term_^space'^=comma=^space'^_term_^space^_string_^space'^=dot=^space'^_term_^space'^=rbrace=" ⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
⟪$⟫ quoteToAnnTerm (List Char ∋ "_") ⟪$⟫ quoteToAnnTerm t₂ -- TODO: add a name to pair?
Quotable-AnnTerm .quoteToAnnTerm (Phi-A t t₁ t₂) =
FreeVar "init$term$=phi=^space^_term_^space^_term_^space^_term_"
⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁ ⟪$⟫ quoteToAnnTerm t₂
Quotable-AnnTerm .quoteToAnnTerm (Eq-A t t₁) =
FreeVar "init$term$=equal=^space^_term_^space^_term_"
⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (M-A t) = FreeVar "init$term$=omega=^space^_term_" ⟪$⟫ quoteToAnnTerm t
Quotable-AnnTerm .quoteToAnnTerm (Mu-A t t₁) =
FreeVar "init$term$=mu=^space^_term_^space^_term_"
⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (Epsilon-A t) =
FreeVar "init$term$=epsilon=^space^_term_" ⟪$⟫ quoteToAnnTerm t
Quotable-AnnTerm .quoteToAnnTerm (Gamma-A t t₁) =
FreeVar "init$term$=zeta=CatchErr^space^_term_^space^_term_" ⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-AnnTerm .quoteToAnnTerm (Ev-A x x₁) = Sort-A □ -- TODO
Quotable-AnnTerm .quoteToAnnTerm (Char-A x) = FreeVar "init$term$=kappa=_char_" ⟪$⟫ Char-A x
Quotable-AnnTerm .quoteToAnnTerm (CharEq-A t t₁) =
FreeVar "init$term$=gamma=^space^_term_^space^_term_" ⟪$⟫ quoteToAnnTerm t ⟪$⟫ quoteToAnnTerm t₁
Quotable-PureTerm : Quotable PureTerm
Quotable-PureTerm .quoteToAnnTerm t = Sort-A □ -- TODO
Quotable-ListTerm : Quotable (List AnnTerm)
Quotable-ListTerm .quoteToAnnTerm [] = FreeVar "init$termList$nil"
Quotable-ListTerm .quoteToAnnTerm (x ∷ l) = FreeVar "init$termList$cons" ⟪$⟫ quoteToAnnTerm x ⟪$⟫ quoteToAnnTerm l
Quotable-NoQuoteAnnTerm : Quotable AnnTerm
Quotable-NoQuoteAnnTerm .quoteToAnnTerm t = t
record ProductData (L R : Set) : Set where
field
lType rType : AnnTerm
l : L
r : R
-- The type of results of executing a statement in the interpreter. This can be
-- returned back to the code via embedExecutionResult
MetaResult = List String × List AnnTerm
instance
Quotable-MetaResult : Quotable MetaResult
Quotable-MetaResult .quoteToAnnTerm (fst , snd) =
FreeVar "init$metaResult$pair" ⟪$⟫ quoteToAnnTerm fst ⟪$⟫ quoteToAnnTerm snd
Quotable-ProductData : ∀ {L R} ⦃ _ : Quotable L ⦄ ⦃ _ : Quotable R ⦄ → Quotable (ProductData L R)
Quotable-ProductData .quoteToAnnTerm pDat = let open ProductData pDat in
FreeVar "init$pair" ⟪$⟫ lType ⟪$⟫ rType ⟪$⟫ quoteToAnnTerm l ⟪$⟫ quoteToAnnTerm r
| {
"alphanum_fraction": 0.6760785137,
"avg_line_length": 49.3626943005,
"ext": "agda",
"hexsha": "7184544c3b5962c9741139e57b144d88de3cf50d",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "src/Conversion.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "src/Conversion.agda",
"max_line_length": 176,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "src/Conversion.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 3390,
"size": 9527
} |
{-# OPTIONS --cubical --safe #-}
module Algebra.Construct.Free.Semilattice.Homomorphism where
open import Prelude
open import Algebra
open import Path.Reasoning
open import Algebra.Construct.Free.Semilattice.Definition
open import Algebra.Construct.Free.Semilattice.Eliminators
open import Algebra.Construct.Free.Semilattice.Union
module _ {b} (semilattice : Semilattice b) where
open Semilattice semilattice
module _ (sIsSet : isSet 𝑆) (h : A → 𝑆) where
μ′ : A ↘ 𝑆
[ μ′ ]-set = sIsSet
[ μ′ ] x ∷ xs = h x ∙ xs
[ μ′ ][] = ε
[ μ′ ]-dup x xs =
h x ∙ (h x ∙ xs) ≡˘⟨ assoc (h x) (h x) xs ⟩
(h x ∙ h x) ∙ xs ≡⟨ cong (_∙ xs) (idem (h x)) ⟩
h x ∙ xs ∎
[ μ′ ]-com x y xs =
h x ∙ (h y ∙ xs) ≡˘⟨ assoc (h x) (h y) xs ⟩
(h x ∙ h y) ∙ xs ≡⟨ cong (_∙ xs) (comm (h x) (h y)) ⟩
(h y ∙ h x) ∙ xs ≡⟨ assoc (h y) (h x) xs ⟩
h y ∙ (h x ∙ xs) ∎
μ : 𝒦 A → 𝑆
μ = [ μ′ ]↓
∙-hom′ : ∀ ys → xs ∈𝒦 A ⇒∥ μ xs ∙ μ ys ≡ μ (xs ∪ ys) ∥
∥ ∙-hom′ ys ∥-prop = sIsSet _ _
∥ ∙-hom′ ys ∥[] = ε∙ _
∥ ∙-hom′ ys ∥ x ∷ xs ⟨ Pxs ⟩ =
μ (x ∷ xs) ∙ μ ys ≡⟨⟩
(h x ∙ μ xs) ∙ μ ys ≡⟨ assoc (h x) (μ xs) (μ ys) ⟩
h x ∙ (μ xs ∙ μ ys) ≡⟨ cong (h x ∙_) Pxs ⟩
h x ∙ μ (xs ∪ ys) ≡⟨⟩
μ ((x ∷ xs) ∪ ys) ∎
∙-hom : ∀ xs ys → μ xs ∙ μ ys ≡ μ (xs ∪ ys)
∙-hom xs ys = ∥ ∙-hom′ ys ∥⇓ xs
| {
"alphanum_fraction": 0.4827586207,
"avg_line_length": 30.2888888889,
"ext": "agda",
"hexsha": "e91d6906322d886c7c5e279fbc457cf56b58fc0b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Homomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Homomorphism.agda",
"max_line_length": 60,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Homomorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 658,
"size": 1363
} |
module BTA5 where
open import Data.Nat hiding (_<_)
open import Data.Bool
open import Data.List
open import Data.Nat.Properties
open import Relation.Nullary
-----------------
-- CLEANUP (∈) : this is surely in the standard library
-----------------
-- More general purpose definitions (should also be in standard library)
-- list membership
infix 4 _∈_
data _∈_ {A : Set} : A → List A → Set where
hd : ∀ {x xs} → x ∈ (x ∷ xs)
tl : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs)
data Type : Set where
Int : Type
Fun : Type → Type → Type
data AType : Set where
AInt : AType
AFun : AType → AType → AType
D : Type → AType
-- typed annotated expressions
ACtx = List AType
Ctx = List Type
-----------------------
-- CLEANUP (≤) : these properties are surely in the standard library
-----------------------
≤-refl : ∀ {n} → n ≤ n
≤-refl {zero} = z≤n
≤-refl {suc n} = s≤s ≤-refl
-----------------------
-- CLEANUP (≤) : these properties are surely in the standard library
-----------------------
≤-trans : ∀ {a b c} → a ≤ b → b ≤ c → a ≤ c
≤-trans z≤n q = z≤n
≤-trans (s≤s p) (s≤s q) = s≤s (≤-trans p q)
-----------------------
-- CLEANUP (≤) : these properties are surely in the standard library
-----------------------
≤-suc-right : ∀ {m n} → m ≤ n → m ≤ suc n
≤-suc-right z≤n = z≤n
≤-suc-right (s≤s p) = s≤s (≤-suc-right p)
-----------------------
-- CLEANUP (≤) : these properties are surely in the standard library
-----------------------
≤-suc-left : ∀ {m n} → suc m ≤ n → m ≤ n
≤-suc-left (s≤s p) = ≤-suc-right p
data _↝_ : Ctx → Ctx → Set where
↝-refl : ∀ {Γ} → Γ ↝ Γ
↝-extend : ∀ {Γ Γ' τ} → Γ ↝ Γ' → Γ ↝ (τ ∷ Γ')
↝-≤ : ∀ Γ Γ' → Γ ↝ Γ' → length Γ ≤ length Γ'
↝-≤ .Γ' Γ' ↝-refl = ≤-refl
↝-≤ Γ .(τ ∷ Γ') (↝-extend {.Γ} {Γ'} {τ} Γ↝Γ') = ≤-suc-right (↝-≤ Γ Γ' Γ↝Γ')
↝-no-left : ∀ Γ τ → ¬ (τ ∷ Γ) ↝ Γ
↝-no-left Γ τ p = 1+n≰n (↝-≤ (τ ∷ Γ) Γ p)
↝-trans : ∀ {Γ Γ' Γ''} → Γ ↝ Γ' → Γ' ↝ Γ'' → Γ ↝ Γ''
↝-trans Γ↝Γ' ↝-refl = Γ↝Γ'
↝-trans Γ↝Γ' (↝-extend Γ'↝Γ'') = ↝-extend (↝-trans Γ↝Γ' Γ'↝Γ'')
lem : ∀ x y xs xs' → (x ∷ xs) ↝ xs' → xs ↝ (y ∷ xs')
lem x y xs .(x ∷ xs) ↝-refl = ↝-extend (↝-extend ↝-refl)
lem x y xs .(x' ∷ xs') (↝-extend {.(x ∷ xs)} {xs'} {x'} p) = ↝-extend (lem x x' xs xs' p)
data _↝_↝_ : Ctx → Ctx → Ctx → Set where
↝↝-base : ∀ {Γ Γ''} → Γ ↝ Γ'' → Γ ↝ [] ↝ Γ''
↝↝-extend : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → (τ ∷ Γ) ↝ (τ ∷ Γ') ↝ (τ ∷ Γ'')
-- Typed residula expressions
data Exp'' (Γ : Ctx) : Type → Set where
EVar : ∀ {τ} → τ ∈ Γ → Exp'' Γ τ
EInt : ℕ → Exp'' Γ Int
EAdd : Exp'' Γ Int → Exp'' Γ Int -> Exp'' Γ Int
ELam : ∀ {τ τ'} → Exp'' (τ ∷ Γ) τ' → Exp'' Γ (Fun τ τ')
EApp : ∀ {τ τ'} → Exp'' Γ (Fun τ τ') → Exp'' Γ τ → Exp'' Γ τ'
data AExp (Δ : ACtx) : AType → Set where
AVar : ∀ {α} → α ∈ Δ → AExp Δ α
AInt : ℕ → AExp Δ AInt
AAdd : AExp Δ AInt → AExp Δ AInt → AExp Δ AInt
ALam : ∀ {α₁ α₂} → AExp (α₂ ∷ Δ) α₁ → AExp Δ (AFun α₂ α₁)
AApp : ∀ {α₁ α₂} → AExp Δ (AFun α₂ α₁) → AExp Δ α₂ → AExp Δ α₁
DInt : ℕ → AExp Δ (D Int)
DAdd : AExp Δ (D Int) → AExp Δ (D Int) → AExp Δ (D Int)
DLam : ∀ {α₁ α₂} → AExp ((D α₂) ∷ Δ) (D α₁) → AExp Δ (D (Fun α₂ α₁))
DApp : ∀ {α₁ α₂} → AExp Δ (D (Fun α₂ α₁)) → AExp Δ (D α₂) → AExp Δ (D α₁)
-- -- index Γ = nesting level of dynamic definitions / dynamic environment
Imp'' : Ctx → AType → Set
Imp'' Γ (AInt) = ℕ
Imp'' Γ (AFun α₁ α₂) = ∀ {Γ'} → Γ ↝ Γ' → (Imp'' Γ' α₁ → Imp'' Γ' α₂)
Imp'' Γ (D σ) = Exp'' Γ σ
-- -- index = nesting level of dynamic definitions
data AEnv2 : Ctx → ACtx → Set where
[] : AEnv2 [] []
consS : ∀ {Γ Δ Γ'} → Γ ↝ Γ' → (α : AType) → Imp'' Γ' α → AEnv2 Γ Δ → AEnv2 Γ' (α ∷ Δ)
consD : ∀ {Γ Δ} → (σ : Type) → Exp'' (σ ∷ Γ) σ → AEnv2 Γ Δ → AEnv2 (σ ∷ Γ) (D σ ∷ Δ)
elevate-var : ∀ {Γ Γ' τ} → Γ ↝ Γ' → τ ∈ Γ → τ ∈ Γ'
elevate-var ↝-refl x = x
elevate-var (↝-extend Γ↝Γ') x = tl (elevate-var Γ↝Γ' x)
elevate-var2 : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → τ ∈ Γ → τ ∈ Γ''
elevate-var2 (↝↝-base x) x₁ = elevate-var x x₁
elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') hd = hd
elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') (tl x) = tl (elevate-var2 Γ↝Γ'↝Γ'' x)
elevate : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → Exp'' Γ τ → Exp'' Γ'' τ
elevate Γ↝Γ'↝Γ'' (EVar x) = EVar (elevate-var2 Γ↝Γ'↝Γ'' x)
elevate Γ↝Γ'↝Γ'' (EInt x) = EInt x
elevate Γ↝Γ'↝Γ'' (EAdd e e₁) = EAdd (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁)
elevate Γ↝Γ'↝Γ'' (ELam e) = ELam (elevate (↝↝-extend Γ↝Γ'↝Γ'') e)
elevate Γ↝Γ'↝Γ'' (EApp e e₁) = EApp (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁)
lift2 : ∀ {Γ Γ'} α → Γ ↝ Γ' → Imp'' Γ α → Imp'' Γ' α
lift2 AInt p v = v
lift2 (AFun x x₁) Γ↝Γ' v = λ Γ'↝Γ'' → v (↝-trans Γ↝Γ' Γ'↝Γ'')
lift2 (D x₁) Γ↝Γ' v = elevate (↝↝-base Γ↝Γ') v
lookup2 : ∀ {α Δ Γ Γ'} → Γ ↝ Γ' → AEnv2 Γ Δ → α ∈ Δ → Imp'' Γ' α
lookup2 Γ↝Γ' (consS p α v env) hd = lift2 α Γ↝Γ' v
lookup2 Γ↝Γ' (consS p α₁ v env) (tl x) = lookup2 (↝-trans p Γ↝Γ') env x
lookup2 Γ↝Γ' (consD α v env) hd = lift2 (D α) Γ↝Γ' v
lookup2 ↝-refl (consD α₁ v env) (tl x) = lookup2 (↝-extend ↝-refl) env x
lookup2 (↝-extend Γ↝Γ') (consD α₁ v env) (tl x) = lookup2 (lem α₁ _ _ _ Γ↝Γ') env x
pe2 : ∀ {α Δ Γ} → AExp Δ α → AEnv2 Γ Δ → Imp'' Γ α
pe2 (AVar x) env = lookup2 ↝-refl env x
pe2 (AInt x) env = x
pe2 (AAdd e₁ e₂) env = pe2 e₁ env + pe2 e₂ env
pe2 {AFun α₂ α₁} (ALam e) env = λ Γ↝Γ' → λ y → pe2 e (consS Γ↝Γ' α₂ y env)
pe2 (AApp e₁ e₂) env = ((pe2 e₁ env) ↝-refl) (pe2 e₂ env)
pe2 (DInt x) env = EInt x
pe2 (DAdd e e₁) env = EAdd (pe2 e env) (pe2 e₁ env)
pe2 {D (Fun σ₁ σ₂)} (DLam e) env = ELam (pe2 e (consD σ₁ (EVar hd) env))
-- ELam (pe2 (consS (↝-extend {τ = σ₁} ↝-refl) (D σ₁) (EVar hd) env)) works too;
-- it is probably a canonical solution, but I (Lu) do not see why...
pe2 (DApp e e₁) env = EApp (pe2 e env) (pe2 e₁ env)
module Examples where
open import Relation.Binary.PropositionalEquality
x : ∀ {α Δ} → AExp (α ∷ Δ) α
x = AVar hd
y : ∀ {α₁ α Δ} → AExp (α₁ ∷ α ∷ Δ) α
y = AVar (tl hd)
z : ∀ {α₁ α₂ α Δ} → AExp (α₁ ∷ α₂ ∷ α ∷ Δ) α
z = AVar (tl (tl hd))
-- Dλ y → let f = λ x → x D+ y in Dλ z → f z
term1 : AExp [] (D (Fun Int (Fun Int Int)))
term1 = DLam (AApp (ALam (DLam (AApp (ALam y) x)))
((ALam (DAdd x y))))
-- Dλ y → let f = λ x → (Dλ w → x D+ y) in Dλ z → f z
-- Dλ y → (λ f → Dλ z → f z) (λ x → (Dλ w → x D+ y))
term2 : AExp [] (D (Fun Int (Fun Int Int)))
term2 = DLam (AApp (ALam (DLam (AApp (ALam y) x)))
((ALam (DLam {α₂ = Int} (DAdd y z)))))
ex-pe-term1 : pe2 term1 [] ≡ ELam (ELam (EVar hd))
ex-pe-term1 = refl
ex-pe-term2 : pe2 term2 [] ≡ ELam (ELam (EVar hd))
ex-pe-term2 = refl
-- end of file | {
"alphanum_fraction": 0.4943685238,
"avg_line_length": 34.5025906736,
"ext": "agda",
"hexsha": "863f44a7e0a797753bf4c4a20a6c47f5040c1f4d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-10-15T09:01:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-10-15T09:01:37.000Z",
"max_forks_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "luminousfennell/polybta",
"max_forks_repo_path": "BTA5.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "luminousfennell/polybta",
"max_issues_repo_path": "BTA5.agda",
"max_line_length": 129,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "luminousfennell/polybta",
"max_stars_repo_path": "BTA5.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-15T04:35:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-15T04:35:29.000Z",
"num_tokens": 3167,
"size": 6659
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Argument relevance used in the reflection machinery
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Reflection.Argument.Relevance where
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Re-exporting the builtins publically
open import Agda.Builtin.Reflection public using (Relevance)
open Relevance public
------------------------------------------------------------------------
-- Decidable equality
_≟_ : DecidableEquality Relevance
relevant ≟ relevant = yes refl
irrelevant ≟ irrelevant = yes refl
relevant ≟ irrelevant = no λ()
irrelevant ≟ relevant = no λ()
| {
"alphanum_fraction": 0.5158013544,
"avg_line_length": 30.5517241379,
"ext": "agda",
"hexsha": "1897007afa4a5a47d39c68060cca5fc1a12249e6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Reflection/Argument/Relevance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Reflection/Argument/Relevance.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Reflection/Argument/Relevance.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 142,
"size": 886
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.Function
open import lib.Equivalence
open import lib.Univalence
open import lib.NType
open import lib.PathGroupoid
{-
A proof of function extensionality from the univalence axiom.
-}
module lib.Funext {i} {A : Type i} where
-- Naive non dependent function extensionality
module FunextNonDep {j} {B : Type j} {f g : A → B} (h : f ∼ g)
where
private
equiv-comp : {B C : Type j} (e : B ≃ C)
→ is-equiv (λ (g : A → B) → (λ x → –> e (g x)))
equiv-comp {B} e =
equiv-induction (λ {B} e → is-equiv (λ (g : A → B) → (λ x → –> e (g x))))
(λ A' → snd (ide (A → A'))) e
free-path-space-B : Type j
free-path-space-B = Σ B (λ x → Σ B (λ y → x == y))
d : A → free-path-space-B
d x = (f x , (f x , idp))
e : A → free-path-space-B
e x = (f x , (g x , h x))
abstract
fst-is-equiv : is-equiv (λ (y : free-path-space-B) → fst y)
fst-is-equiv =
is-eq fst (λ z → (z , (z , idp))) (λ _ → idp)
(λ x' → ap (λ x → (_ , x))
(contr-has-all-paths _ _))
comp-fst-is-equiv : is-equiv (λ (f : A → free-path-space-B)
→ (λ x → fst (f x)))
comp-fst-is-equiv = equiv-comp ((λ (y : free-path-space-B) → fst y),
fst-is-equiv)
d==e : d == e
d==e = equiv-is-inj comp-fst-is-equiv _ _ idp
λ=-nondep : f == g
λ=-nondep = ap (λ f' x → fst (snd (f' x))) d==e
open FunextNonDep using (λ=-nondep)
-- Weak function extensionality (a product of contractible types is
-- contractible)
module WeakFunext {j} {P : A → Type j} (e : (x : A) → is-contr (P x)) where
P-is-Unit : P == (λ x → Lift Unit)
P-is-Unit = λ=-nondep (λ x → ua (contr-equiv-LiftUnit (e x)))
abstract
weak-λ= : is-contr (Π A P)
weak-λ= = transport (λ Q → is-contr (Π A Q)) (! P-is-Unit)
(has-level-in ((λ x → lift unit) , (λ y → λ=-nondep (λ x → idp))))
-- Naive dependent function extensionality
module FunextDep {j} {P : A → Type j} {f g : Π A P} (h : f ∼ g)
where
open WeakFunext
Q : A → Type j
Q x = Σ (P x) (λ y → f x == y)
abstract
Q-is-contr : (x : A) → is-contr (Q x)
Q-is-contr x = pathfrom-is-contr (f x)
instance
ΠAQ-is-contr : is-contr (Π A Q)
ΠAQ-is-contr = weak-λ= Q-is-contr
Q-f : Π A Q
Q-f x = (f x , idp)
Q-g : Π A Q
Q-g x = (g x , h x)
abstract
Q-f==Q-g : Q-f == Q-g
Q-f==Q-g = contr-has-all-paths Q-f Q-g
λ= : f == g
λ= = ap (λ u x → fst (u x)) Q-f==Q-g
-- Strong function extensionality
module StrongFunextDep {j} {P : A → Type j} where
open FunextDep
app= : ∀ {f g : Π A P} (p : f == g) → f ∼ g
app= p x = ap (λ u → u x) p
λ=-idp : (f : Π A P)
→ idp == λ= (λ x → idp {a = f x})
λ=-idp f = ap (ap (λ u x → fst (u x)))
(contr-has-all-paths {{=-preserves-level
(ΠAQ-is-contr (λ x → idp))}}
idp (Q-f==Q-g (λ x → idp)))
λ=-η : {f g : Π A P} (p : f == g)
→ p == λ= (app= p)
λ=-η {f} idp = λ=-idp f
app=-β : {f g : Π A P} (h : f ∼ g) (x : A)
→ app= (λ= h) x == h x
app=-β h = app=-path (Q-f==Q-g h) where
app=-path : {f : Π A P} {u v : (x : A) → Q (λ x → idp {a = f x}) x}
(p : u == v) (x : A)
→ app= (ap (λ u x → fst (u x)) p) x == ! (snd (u x)) ∙ snd (v x)
app=-path {u = u} idp x = ! (!-inv-l (snd (u x)))
app=-is-equiv : {f g : Π A P} → is-equiv (app= {f = f} {g = g})
app=-is-equiv = is-eq _ λ= (λ h → λ= (app=-β h)) (! ∘ λ=-η)
λ=-is-equiv : {f g : Π A P}
→ is-equiv (λ= {f = f} {g = g})
λ=-is-equiv = is-eq _ app= (! ∘ λ=-η) (λ h → λ= (app=-β h))
-- We only export the following
module _ {j} {P : A → Type j} {f g : Π A P} where
app= : f == g → f ∼ g
app= p x = ap (λ u → u x) p
abstract
λ= : f ∼ g → f == g
λ= = FunextDep.λ=
app=-β : (p : f ∼ g) (x : A) → app= (λ= p) x == p x
app=-β = StrongFunextDep.app=-β
λ=-η : (p : f == g) → p == λ= (app= p)
λ=-η = StrongFunextDep.λ=-η
λ=-equiv : (f ∼ g) ≃ (f == g)
λ=-equiv = (λ= , λ=-is-equiv) where
abstract
λ=-is-equiv : is-equiv λ=
λ=-is-equiv = StrongFunextDep.λ=-is-equiv
app=-equiv : (f == g) ≃ (f ∼ g)
app=-equiv = (app= , app=-is-equiv) where
abstract
app=-is-equiv : is-equiv app=
app=-is-equiv = StrongFunextDep.app=-is-equiv
| {
"alphanum_fraction": 0.4775583483,
"avg_line_length": 27.1707317073,
"ext": "agda",
"hexsha": "e7616563fffeb25dbc5719b7b19a84737fe2f29a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/Funext.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/Funext.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/Funext.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1744,
"size": 4456
} |
module Lec6Done where
open import Lec1Done
data List (X : Set) : Set where
[] : List X
_,-_ : X -> List X -> List X
infixr 4 _,-_
-- ListF : Set -> Set -> Set
-- ListF X T = One + (X * T)
mkList : {X : Set} -> One + (X * List X) -> List X
mkList (inl <>) = []
mkList (inr (x , xs)) = x ,- xs
foldr : {X T : Set} -> ((One + (X * T)) -> T) -> List X -> T
foldr alg [] = alg (inl <>)
foldr alg (x ,- xs) = alg (inr (x , foldr alg xs))
ex1 = foldr mkList (1 ,- 2 ,- 3 ,- [])
length : {X : Set} -> List X -> Nat
length = foldr \ { (inl <>) -> zero ; (inr (x , n)) -> suc n }
record CoList (X : Set) : Set where
coinductive
field
force : One + (X * CoList X)
open CoList
[]~ : {X : Set} -> CoList X
force []~ = inl <>
_,~_ : {X : Set} -> X -> CoList X -> CoList X
force (x ,~ xs) = inr (x , xs)
infixr 4 _,~_
unfoldr : {X S : Set} -> (S -> (One + (X * S))) -> S -> CoList X
force (unfoldr coalg s) with coalg s
force (unfoldr coalg s) | inl <> = inl <>
force (unfoldr coalg s) | inr (x , s') = inr (x , unfoldr coalg s')
ex2 = unfoldr force (1 ,~ 2 ,~ 3 ,~ []~)
repeat : {X : Set} -> X -> CoList X
repeat = unfoldr \ x -> inr (x , x)
prefix : {X : Set} -> Nat -> CoList X -> List X
prefix zero xs = []
prefix (suc n) xs with force xs
prefix (suc n) xs | inl <> = []
prefix (suc n) xs | inr (x , xs') = x ,- prefix n xs'
ex2' = prefix 3 ex2
record Stream (X : Set) : Set where
coinductive
field
hdTl : X * Stream X
open Stream
forever : {X : Set} -> X -> Stream X
fst (hdTl (forever x)) = x
snd (hdTl (forever x)) = forever x
unfold : {X S : Set} -> (S -> X * S) -> S -> Stream X
fst (hdTl (unfold coalg s)) = fst (coalg s)
snd (hdTl (unfold coalg s)) = unfold coalg (snd (coalg s))
| {
"alphanum_fraction": 0.5238642898,
"avg_line_length": 24.8428571429,
"ext": "agda",
"hexsha": "a81e60c33379366fb66e4dd5a4e41c979c4e889a",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ajnavarro/language-dataset",
"max_forks_repo_path": "data/github.com/pigworker/CS410-17/ecf7c3bbe9b468eb72578d05c7dd4dfa913dce44/lectures/Lec6Done.agda",
"max_issues_count": 91,
"max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ajnavarro/language-dataset",
"max_issues_repo_path": "data/github.com/pigworker/CS410-17/ecf7c3bbe9b468eb72578d05c7dd4dfa913dce44/lectures/Lec6Done.agda",
"max_line_length": 67,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ajnavarro/language-dataset",
"max_stars_repo_path": "data/github.com/pigworker/CS410-17/ecf7c3bbe9b468eb72578d05c7dd4dfa913dce44/lectures/Lec6Done.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 688,
"size": 1739
} |
{-
This file contains:
- Properties of 2-groupoid truncations
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.2GroupoidTruncation.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.HITs.2GroupoidTruncation.Base
private
variable
ℓ : Level
A : Type ℓ
rec : ∀ {B : Type ℓ} → is2Groupoid B → (A → B) → ∥ A ∥₄ → B
rec gB f ∣ x ∣₄ = f x
rec gB f (squash₄ _ _ _ _ _ _ t u i j k l) =
gB _ _ _ _ _ _ (λ m n o → rec gB f (t m n o)) (λ m n o → rec gB f (u m n o))
i j k l
elim : {B : ∥ A ∥₄ → Type ℓ}
(bG : (x : ∥ A ∥₄) → is2Groupoid (B x))
(f : (x : A) → B ∣ x ∣₄) (x : ∥ A ∥₄) → B x
elim bG f ∣ x ∣₄ = f x
elim bG f (squash₄ x y p q r s u v i j k l) =
isOfHLevel→isOfHLevelDep 4 bG _ _ _ _ _ _
(λ j k l → elim bG f (u j k l)) (λ j k l → elim bG f (v j k l))
(squash₄ x y p q r s u v)
i j k l
elim2 : {B : ∥ A ∥₄ → ∥ A ∥₄ → Type ℓ}
(gB : ((x y : ∥ A ∥₄) → is2Groupoid (B x y)))
(g : (a b : A) → B ∣ a ∣₄ ∣ b ∣₄)
(x y : ∥ A ∥₄) → B x y
elim2 gB g = elim (λ _ → is2GroupoidΠ (λ _ → gB _ _))
(λ a → elim (λ _ → gB _ _) (g a))
elim3 : {B : (x y z : ∥ A ∥₄) → Type ℓ}
(gB : ((x y z : ∥ A ∥₄) → is2Groupoid (B x y z)))
(g : (a b c : A) → B ∣ a ∣₄ ∣ b ∣₄ ∣ c ∣₄)
(x y z : ∥ A ∥₄) → B x y z
elim3 gB g = elim2 (λ _ _ → is2GroupoidΠ (λ _ → gB _ _ _))
(λ a b → elim (λ _ → gB _ _ _) (g a b))
2GroupoidTruncIs2Groupoid : is2Groupoid ∥ A ∥₄
2GroupoidTruncIs2Groupoid a b p q r s = squash₄ a b p q r s
2GroupoidTruncIdempotent≃ : is2Groupoid A → ∥ A ∥₄ ≃ A
2GroupoidTruncIdempotent≃ {A = A} hA = isoToEquiv f
where
f : Iso ∥ A ∥₄ A
Iso.fun f = rec hA (idfun A)
Iso.inv f x = ∣ x ∣₄
Iso.rightInv f _ = refl
Iso.leftInv f = elim (λ _ → isOfHLevelSuc 4 2GroupoidTruncIs2Groupoid _ _) (λ _ → refl)
2GroupoidTruncIdempotent : is2Groupoid A → ∥ A ∥₄ ≡ A
2GroupoidTruncIdempotent hA = ua (2GroupoidTruncIdempotent≃ hA)
| {
"alphanum_fraction": 0.5717529519,
"avg_line_length": 31.9130434783,
"ext": "agda",
"hexsha": "edd391dcb605281fbbb5bb68e2acf8dc0ed50fce",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/2GroupoidTruncation/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/2GroupoidTruncation/Properties.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/2GroupoidTruncation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 989,
"size": 2202
} |
-- This module introduces parameterised datatypes.
module DataParameterised where
-- First some of our old friends.
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Bool : Set where
false : Bool
true : Bool
-- A datatype can be parameterised over a telescope, (A : Set) in the case of
-- lists. The parameters are bound in the types of the constructors.
data List (A : Set) : Set where
nil : List A
cons : A -> List A -> List A
-- When using the constructors the parameters to the datatype becomes implicit
-- arguments. In this case, the types of the constructors are :
-- nil : {A : Set} -> List A
-- cons : {A : Set} -> A -> List A -> List A
-- So, we can write
--nilNat = nil {Nat} -- the type of this will be List Nat
-- When pattern matching on elements of a parameterised datatype you cannot
-- refer to the parameters--it wouldn't make sense to pattern match on the
-- element type of the list. So you can say
null : {A : Set} -> List A -> Bool
null nil = true
null (cons _ _) = false
-- but not
-- null (nil {A}) = true
-- null (cons {A} _ _) = false
| {
"alphanum_fraction": 0.6564748201,
"avg_line_length": 24.1739130435,
"ext": "agda",
"hexsha": "2a1775d909d718deb571c84eb55e72f4eedd5956",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/covered/DataParameterised.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/covered/DataParameterised.agda",
"max_line_length": 78,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/covered/DataParameterised.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 308,
"size": 1112
} |
------------------------------------------------------------------------------
-- Testing the translation of scheme's instances
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Instance where
-- A schema
-- Current translation: ∀ p q x. app(p,x) → app(q,x).
postulate
D : Set
schema : (A B : D → Set) → ∀ {x} → A x → B x
-- Using the current translation, the ATPs can prove an instance of
-- the schema.
postulate
d : D
A B : D → Set
instanceC : A d → B d
{-# ATP prove instanceC schema #-}
| {
"alphanum_fraction": 0.4379263302,
"avg_line_length": 29.32,
"ext": "agda",
"hexsha": "dbf281fd49a17b670d24e6aee3a68cafdd24bc3b",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/non-fol-theorems/Instance.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/non-fol-theorems/Instance.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/non-fol-theorems/Instance.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 157,
"size": 733
} |
{-# OPTIONS --without-K --rewriting #-}
module hSet where
open import lib.Basics
open import lib.Funext
open import lib.NType2
open import lib.types.Truncation
open import lib.types.Bool
open import PropT
_is-a-set : {i : ULevel} (A : Type i) → Type i
A is-a-set = is-set A
-- To get an element a of the set A is to give a : ∈ A.
∈ : {i : ULevel} (A : hSet i) → Type i
∈ = fst
set-is-a-set : {i : ULevel} (A : hSet i) → (∈ A) is-a-set
set-is-a-set A = snd A
-- Equality for sets, landing in Prop
_==ₚ_ : {i : ULevel} {A : hSet i}
→ (x y : ∈ A) → PropT i
_==ₚ_ {_} {A} x y = (x == y) , has-level-apply (set-is-a-set A) x y
_=bool=_ : {i : ULevel} {A : Type i} {p : has-dec-eq A}
→ (x y : A) → Bool
_=bool=_ {p = p} x y = case (p x y)
where case : Dec (x == y) → Bool
case (inl _) = true
case (inr _) = false
∥_∥₀ : ∀ {i} (A : Type i) → Type i
∥_∥₀ = Trunc 0
| {
"alphanum_fraction": 0.5256544503,
"avg_line_length": 26.5277777778,
"ext": "agda",
"hexsha": "93445ee1d498c839d1c6edd25f2ddd4de79a84bd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "glangmead/formalization",
"max_forks_repo_path": "cohesion/david_jaz_261/hSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "glangmead/formalization",
"max_issues_repo_path": "cohesion/david_jaz_261/hSet.agda",
"max_line_length": 69,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "glangmead/formalization",
"max_stars_repo_path": "cohesion/david_jaz_261/hSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z",
"num_tokens": 376,
"size": 955
} |
{-# OPTIONS --cubical --no-import-sorts #-}
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)-- ¬ᵗ_
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim`
open import Function.Base using (_∋_; _$_; it)
open import Cubical.Foundations.Logic renaming
( inl to inlᵖ
; inr to inrᵖ
; _⇒_ to infixr 0 _⇒_ -- shifting by -6
; _⇔_ to infixr -2 _⇔_ --
; ∃[]-syntax to infix -4 ∃[]-syntax --
; ∃[∶]-syntax to infix -4 ∃[∶]-syntax --
; ∀[∶]-syntax to infix -4 ∀[∶]-syntax --
; ∀[]-syntax to infix -4 ∀[]-syntax --
)
open import Cubical.Data.Unit.Base using (Unit)
import Data.Sum
import Cubical.Data.Sigma
import Cubical.Algebra.CommRing
import Cubical.Core.Primitives
import Agda.Builtin.Cubical.Glue
import Cubical.Foundations.Id
open import MoreLogic.Reasoning
open import MoreLogic.Definitions renaming (_ᵗ⇒_ to infixr 0 _ᵗ⇒_)
open import MoreLogic.Properties
open import Utils
open import MorePropAlgebra.Bundles
open import MorePropAlgebra.Definitions as Defs hiding (_≤''_)
open import MorePropAlgebra.Consequences
module MorePropAlgebra.Bridges1999 {ℓ ℓ'} (assumptions : PartiallyOrderedField {ℓ} {ℓ'}) where
import MorePropAlgebra.Properties.AlmostPartiallyOrderedField
-- module AlmostPartiallyOrderedField'Properties = MorePropAlgebra.Properties.AlmostPartiallyOrderedField record { PartiallyOrderedField assumptions }
-- module AlmostPartiallyOrderedField' = AlmostPartiallyOrderedField record { PartiallyOrderedField assumptions }
-- ( AlmostPartiallyOrderedField') = AlmostPartiallyOrderedField ∋ record { PartiallyOrderedField assumptions }
-- module This = PartiallyOrderedField assumptions renaming (Carrier to F; _-_ to _-_)
-- import MorePropAlgebra.Booij2020
-- -- open MorePropAlgebra.Booij2020.Chapter4 AlmostPartiallyOrderedField' public
-- open MorePropAlgebra.Booij2020.Chapter4 (record { PartiallyOrderedField assumptions }) public
-- open +-<-ext+·-preserves-<⇒ (PartiallyOrderedField.+-<-ext assumptions) (PartiallyOrderedField.·-preserves-< assumptions) public
-- -- open AlmostPartiallyOrderedField'Properties -- using (_⁻¹; _≤''_)
-- -- open MorePropAlgebra.Properties.AlmostPartiallyOrderedField (record { PartiallyOrderedField assumptions }) public
-- remember opening this as the last one to omit prefixes
-- open import MorePropAlgebra.Properties.PartiallyOrderedField assumptions
-- open PartiallyOrderedField assumptions renaming (Carrier to F; _-_ to _-_)
import MorePropAlgebra.Booij2020
open MorePropAlgebra.Booij2020.Chapter4 (record { PartiallyOrderedField assumptions })
open +-<-ext+·-preserves-<⇒ (PartiallyOrderedField.+-<-ext assumptions) (PartiallyOrderedField.·-preserves-< assumptions)
-- open MorePropAlgebra.Properties.AlmostPartiallyOrderedField (record { PartiallyOrderedField assumptions }) hiding (_⁻¹)
open import MorePropAlgebra.Properties.PartiallyOrderedField assumptions
open PartiallyOrderedField assumptions renaming (Carrier to F; _-_ to _-_) hiding (_#_; _≤_)
open AlmostPartiallyOrderedField' using (_#_; _≤_)
open AlmostPartiallyOrderedField'Properties -- using (_⁻¹)
-- NOTE: we are proving Bridges' properties with Booij's definition of _≤_
-- which is some form of cheating
-- because we are interested in the properties, mostly
-- or rather to check our definitions for "completeness" against these properties
-- therefore our proofs differ from Brigdes' proofs
-- and this approach does not show that from R1-* and R2-* follows Prop-* as in the paper
private
≤⇒≤'' : ∀ x y → [ x ≤ y ] → [ x ≤'' y ]
≤⇒≤'' x y = ≤-⇔-≤'' x y .fst
≤''⇒≤ : ∀ x y → [ x ≤'' y ] → [ x ≤ y ]
≤''⇒≤ x y = ≤-⇔-≤'' x y .snd
≤-≡-≤'' : ∀ x y → (Liftᵖ {ℓ'} {ℓ} (x ≤ y)) ≡ (x ≤'' y)
≤-≡-≤'' x y = ⇔toPath ((≤⇒≤'' x y) ∘ (unliftᵖ (x ≤ y))) ((liftᵖ (x ≤ y)) ∘ (≤''⇒≤ x y))
is-0≡-0 : 0f ≡ - 0f
is-0≡-0 = sym (+-inv 0f .snd) ∙ (+-identity (- 0f) .fst)
-swaps-<ˡ : ∀ x y → [ (- x) < (- y) ⇒ y < x ]
-swaps-<ˡ x y =
[ - x < - y ] ⇒⟨ +-preserves-< _ _ _ ⟩
[ - x + x < - y + x ] ⇒⟨ subst (λ p → [ p < - y + x ]) (+-linv x) ⟩
[ 0f < - y + x ] ⇒⟨ subst (λ p → [ 0f < p ]) (+-comm (- y) x) ⟩
[ 0f < x - y ] ⇒⟨ +-preserves-< _ _ _ ⟩
[ 0f + y < (x - y) + y ] ⇒⟨ subst (λ p → [ p < (x - y) + y ]) (+-identity y .snd) ⟩
[ y < (x - y) + y ] ⇒⟨ subst (λ p → [ y < p ]) (sym $ +-assoc x (- y) y) ⟩
[ y < x + (- y + y) ] ⇒⟨ subst (λ p → [ y < x + p ]) (+-linv y) ⟩
[ y < x + 0f ] ⇒⟨ subst (λ p → [ y < p ]) (+-identity x .fst) ⟩
[ y < x ] ◼
-- invInvo
-swaps-<ʳ : ∀ x y → [ x < y ⇒ (- y) < (- x) ]
-swaps-<ʳ x y =
[ x < y ] ⇒⟨ subst (λ p → [ p < y ]) (sym $ GroupLemmas'.invInvo x) ⟩
[ - - x < y ] ⇒⟨ subst (λ p → [ - - x < p ]) (sym $ GroupLemmas'.invInvo y) ⟩
[ - - x < - - y ] ⇒⟨ -swaps-<ˡ (- x) (- y) ⟩
[ - y < - x ] ◼
-swaps-< : ∀ x y → [ x < y ⇔ (- y) < (- x) ]
-swaps-< x y .fst = -swaps-<ʳ x y
-swaps-< x y .snd = -swaps-<ˡ y x
·-reflects-<0 : ∀ x y → [ 0f < y ] → [ x · y < 0f ] → [ x < 0f ]
·-reflects-<0 x y 0<y x·y<0 = ·-reflects-< x 0f y 0<y (subst (λ p → [ x · y < p ]) (sym $ RingTheory'.0-leftNullifies y) x·y<0)
-- NOTE: Brigdes writes `x ≠ y` where we write `x # y`
-- and `¬(x = y)` where we write `¬(x ≡ y)`
-- Heyting field axioms
R1-1 = ∀[ x ] ∀[ y ] [ is-set ] x + y ≡ˢ y + x
R1-2 = ∀[ x ] ∀[ y ] ∀[ z ] [ is-set ] (x + y) + z ≡ˢ x + (y + z)
R1-3 = ∀[ x ] [ is-set ] 0f + x ≡ˢ x
R1-4 = ∀[ x ] [ is-set ] x + (- x) ≡ˢ 0f
R1-5 = ∀[ x ] ∀[ y ] [ is-set ] x · y ≡ˢ y · x
R1-6 = ∀[ x ] ∀[ y ] ∀[ z ] [ is-set ] (x · y) · z ≡ˢ x · (y · z)
R1-7 = ∀[ x ] [ is-set ] 1f · x ≡ˢ x
R1-8 = ∀[ x ] ∀[ p ∶ [ x # 0f ] ] [ is-set ] x · (x ⁻¹) {{p}} ≡ˢ 1f
R1-9 = ∀[ x ] ∀[ y ] ∀[ z ] [ is-set ] x · (y + z) ≡ˢ x · y + x · z
-- _<_ axioms
R2-1 = ∀[ x ] ∀[ y ] ¬((x < y) ⊓ (y < x)) -- <-asym
R2-2 = ∀[ x ] ∀[ y ] ( x < y) ⇒ (∀[ z ] (z < y) ⊔ (x < z)) -- <-cotrans
R2-3 = ∀[ x ] ∀[ y ] ¬( x # y) ⇒ [ is-set ] x ≡ˢ y -- #-tight
R2-4 = ∀[ x ] ∀[ y ] ( x < y) ⇒ (∀[ z ] (x + z) < (y + z)) -- +-preserves-<
R2-5 = ∀[ x ] ∀[ y ] (0f < x) ⇒ (0f < y) ⇒ 0f < x · y -- ·-preserves-0<
-- Special properties of _<_
-- R3-1 Axiom of Archimedes: `∀(x ∈ ℝ) → ∃[ n ∈ ℤ ] x < n`
-- R3-2 The least-upper-bound principle:
-- Let S be a nonempty subset of R that is bounded
-- above relative to the relation ≥, such that for all real numbers α, β with α < β
-- either β is an upper bound of S or else there exists s ∈ S with s > α; then S has a
-- least upper bound.
-- derivable properties
Prop-1 = ∀[ x ] ¬(x < x) -- <-irrefl
Prop-2 = ∀[ x ] x ≤ x -- ≤-refl
Prop-3 = ∀[ x ] ∀[ y ] ∀[ z ] ( x < y ) ⇒ (y < z ) ⇒ x < z -- <-trans
Prop-4 = ∀[ x ] ∀[ y ] ¬((x < y) ⊓ (y ≤ x))
Prop-5 = ∀[ x ] ∀[ y ] ∀[ z ] ( x ≤ y ) ⇒ (y < z ) ⇒ x < z -- ≤-<-trans
Prop-6 = ∀[ x ] ∀[ y ] ∀[ z ] ( x < y ) ⇒ (y ≤ z ) ⇒ x < z -- <-≤-trans
Prop-7 = ∀[ x ] ∀[ y ] (¬(x < y) ⇔ (y ≤ x)) -- definition of ≤
Prop-8 = ∀[ x ] ∀[ y ] (¬(x ≤ y) ⇔ ¬ ¬(y < x)) -- ≤ weaker than <
Prop-9 = ∀[ x ] ∀[ y ] ∀[ z ] ( y ≤ z ) ⇒ (x ≤ y ) ⇒ (x ≤ z) -- ≤-trans
Prop-10 = ∀[ x ] ∀[ y ] ( x ≤ y ) ⇒ (y ≤ x ) ⇒ [ is-set ] x ≡ˢ y -- ≤-antisym
Prop-11 = ∀[ x ] ∀[ y ] ¬((x < y) ⊓ ([ is-set ] x ≡ˢ y))
Prop-12 = ∀[ x ] ( 0f ≤ x ) ⇒ ([ is-set ] x ≡ˢ 0f ⇔ (∀[ ε ] (0f < ε) ⇒ (x < ε)))
Prop-13 = ∀[ x ] ∀[ y ] ( 0f < x + y) ⇒ (0f < x) ⊔ (0f < y)
Prop-14 = ∀[ x ] ( 0f < x ) ⇒ - x < 0f -- -flips-<0
Prop-15 = ∀[ x ] ∀[ y ] ∀[ z ] ( x < y ) ⇒ (z < 0f) ⇒ y · z < x · z -- ·-preserves-<
Prop-16 = ∀[ x ] ( x # 0f ) ⇒ 0f < x · x -- sqr-positive
Prop-17 = 0f < 1f
Prop-18 = ∀[ x ] 0f ≤ x · x -- sqr-nonnegative
Prop-19 = ∀[ x ] ( 0f < x ) ⇒ (x < 1f) ⇒ x · x < x
Prop-20 = ∀[ x ] ( - 1f < x ) ⇒ (x < 1f) ⇒ ¬((x < x · x) ⊓ (- x < x · x))
Prop-21 = ∀[ x ] ( 0f < x · x) ⇒ x # 0f
Prop-22 = ∀[ x ] ( 0f < x ) ⇒ Σᵖ[ p ∶ x # 0f ] (0f ≤ (x ⁻¹) {{p}})
-- Prop-23 `∀ m m' n n' → 0 < n → 0 < n' → (m / n > m' / n') ⇔ (m · n' > m' · n)`
-- Prop-24 `∀(n ∈ ℕ⁺) → (n ⁻¹ > 0)`
-- Prop-25 `x > 0 → y ≥ 0 → ∃[ n ∈ ℤ ] n · x > y`
-- Prop-26 `(x > 0) ⇒ (x ⁻¹ > 0)`
-- Prop-27 `(x · y > 0) ⇒ (x ≠ 0) ⊓ (y ≠ 0)`
-- Prop-28 `∀(x > 0) → ∃[ n ∈ ℕ⁺ ] x < n < x + 2`
-- Prop-29 `∀ a b → a < b → ∃[ q ∈ ℚ ] a < r < b`
r1-1 : ∀ x y → x + y ≡ y + x ; _ : [ R1-1 ]; _ = r1-1
r1-2 : ∀ x y z → (x + y) + z ≡ x + (y + z) ; _ : [ R1-2 ]; _ = r1-2
r1-3 : ∀ x → 0f + x ≡ x ; _ : [ R1-3 ]; _ = r1-3
r1-4 : ∀ x → x + (- x) ≡ 0f ; _ : [ R1-4 ]; _ = r1-4
r1-5 : ∀ x y → x · y ≡ y · x ; _ : [ R1-5 ]; _ = r1-5
r1-6 : ∀ x y z → (x · y) · z ≡ x · (y · z) ; _ : [ R1-6 ]; _ = r1-6
r1-7 : ∀ x → 1f · x ≡ x ; _ : [ R1-7 ]; _ = r1-7
r1-8 : ∀ x → (p : [ x # 0f ]) → x · (x ⁻¹) {{p}} ≡ 1f ; _ : [ R1-8 ]; _ = r1-8
r1-9 : ∀ x y z → x · (y + z) ≡ x · y + x · z; _ : [ R1-9 ]; _ = r1-9
r1-1 = +-comm
r1-2 x y z = sym $ +-assoc x y z
r1-3 x = +-identity x .snd
r1-4 x = +-inv x .fst
r1-5 = ·-comm
r1-6 x y z = sym $ ·-assoc x y z
r1-7 x = ·-identity x .snd
r1-8 = ·-rinv
r1-9 x y z = is-dist x y z .fst
r2-1 : ∀ x y → [ ¬((x < y) ⊓ (y < x)) ]; _ : [ R2-1 ]; _ = r2-1
r2-2 : ∀ x y → [ x < y ] → ∀ z → [ (z < y) ⊔ (x < z) ]; _ : [ R2-2 ]; _ = r2-2
r2-3 : ∀ x y → [ ¬( x # y) ] → x ≡ y ; _ : [ R2-3 ]; _ = r2-3
r2-4 : ∀ x y → [ x < y ] → ∀ z → [ (x + z) < (y + z) ]; _ : [ R2-4 ]; _ = r2-4
r2-5 : ∀ x y → [ 0f < x ] → [ 0f < y ] → [ 0f < x · y ]; _ : [ R2-5 ]; _ = r2-5
r2-1 x y (x<y , y<x) = <-asym x y x<y y<x
r2-2 x y x<y z = pathTo⇒ (⊔-comm (x < z) (z < y)) (<-cotrans x y x<y z)
r2-3 = #-tight
r2-4 x y x<y z = +-preserves-< x y z x<y
r2-5 x y 0<x 0<y = subst (λ p → [ p < x · y ]) (RingTheory'.0-leftNullifies y) (·-preserves-< 0f x y 0<y 0<x)
prop-1 : ∀ x → [ ¬(x < x) ]; _ : [ Prop-1 ]; _ = prop-1
prop-2 : ∀ x → [ x ≤ x ]; _ : [ Prop-2 ]; _ = prop-2
prop-3 : ∀ x y z → [ x < y ] → [ y < z ] → [ x < z ]; _ : [ Prop-3 ]; _ = prop-3
prop-4 : ∀ x y → [ ¬((x < y) ⊓ (y ≤ x)) ]; _ : [ Prop-4 ]; _ = prop-4
prop-5 : ∀ x y z → [ x ≤ y ] → [ y < z ] → [ x < z ]; _ : [ Prop-5 ]; _ = prop-5
prop-6 : ∀ x y z → [ x < y ] → [ y ≤ z ] → [ x < z ]; _ : [ Prop-6 ]; _ = prop-6
prop-7 : ∀ x y → [ (¬(x < y) ⇔ (y ≤ x))]; _ : [ Prop-7 ]; _ = prop-7
prop-8 : ∀ x y → [ ¬(x ≤ y) ⇔ ¬ ¬(y < x) ]; _ : [ Prop-8 ]; _ = prop-8
prop-9 : ∀ x y z → [ y ≤ z ] → [ x ≤ y ] → [ x ≤ z ]; _ : [ Prop-9 ]; _ = prop-9
prop-10 : ∀ x y → [ x ≤ y ] → [ y ≤ x ] → x ≡ y ; _ : [ Prop-10 ]; _ = prop-10
prop-11 : ∀ x y → ¬ᵗ ([ x < y ] × (x ≡ y)) ; _ : [ Prop-11 ]; _ = prop-11
prop-12 : ∀ x → [ 0f ≤ x ] → [ [ is-set ] x ≡ˢ 0f ⇔ (∀[ ε ] (0f < ε) ⇒ (x < ε)) ]; _ : [ Prop-12 ]; _ = prop-12
prop-13 : ∀ x y → [ 0f < x + y ] → [ (0f < x) ⊔ (0f < y) ]; _ : [ Prop-13 ]; _ = prop-13
prop-14 : ∀ x → [ 0f < x ] → [ - x < 0f ]; _ : [ Prop-14 ]; _ = prop-14
prop-14' : ∀ x → [ x < 0f ] → [ 0f < - x ]
prop-15 : ∀ x y z → [ x < y ] → [ z < 0f ] → [ y · z < x · z ]; _ : [ Prop-15 ]; _ = prop-15
prop-16 : ∀ x → [ x # 0f ] → [ 0f < x · x ]; _ : [ Prop-16 ]; _ = prop-16
prop-17 : [ 0f < 1f ]; _ : [ Prop-17 ]; _ = prop-17
prop-18 : ∀ x → [ 0f ≤ x · x ]; _ : [ Prop-18 ]; _ = prop-18
prop-19 : ∀ x → [ 0f < x ] → [ x < 1f ] → [ x · x < x ]; _ : [ Prop-19 ]; _ = prop-19
prop-20 : ∀ x → [ - 1f < x ] → [ x < 1f ] → [ ¬((x < x · x) ⊓ (- x < x · x)) ]; _ : [ Prop-20 ]; _ = prop-20
prop-21 : ∀ x → [ 0f < x · x ] → [ x # 0f ]; _ : [ Prop-21 ]; _ = prop-21
prop-22 : ∀ x → [ 0f < x ] → Σ[ p ∈ [ x # 0f ] ] [ 0f ≤ (x ⁻¹) {{p}} ]; _ : [ Prop-22 ]; _ = prop-22
prop-22' : ∀ x → [ 0f < x ] → Σ[ p ∈ [ x # 0f ] ] [ 0f < (x ⁻¹) {{p}} ]
prop-1 = <-irrefl
prop-2 = ≤-refl
prop-3 = <-trans
prop-4 x y (x<y , y≤x) = y≤x x<y
prop-5 = ≤-<-trans
prop-6 = <-≤-trans
prop-7 x y .fst = λ x → x -- holds definitionally for Booij's _≤_
prop-7 x y .snd = λ x → x
prop-8 x y .fst = λ x → x -- holds definitionally for Booij's _≤_
prop-8 x y .snd = λ x → x -- holds definitionally for Booij's _≤_
prop-9 x y z y≤z x≤y = ≤-trans x y z x≤y y≤z
prop-10 = ≤-antisym
prop-11 x y (x<y , x≡y) = <-irrefl _ (pathTo⇒ (λ i → x≡y i < y) x<y)
fst (prop-12 x 0≤x) x≡0 y 0<y = transport (λ i → [ x≡0 (~ i) < y ]) 0<y
-- suppose that x < ε for all ε > 0. If x > 0, then x < x, a contradiction; so 0 ≥ x. Thus x ≥ 0 and 0 ≥ x, and therefore x = 0.
-- this is just antisymmetry for different ≤s : ∀ x y → [ x ≤ y ] → [ y ≤'' x ] → x ≡ y
snd (prop-12 x 0≤x) [∀ε>0∶x<ε] = let x≤0 : [ x ≤ 0f ]
x≤0 0<x = <-irrefl x ([∀ε>0∶x<ε] x 0<x)
in ≤-antisym x 0f x≤0 0≤x
prop-13 x y 0<x+y = +-<-ext 0f 0f x y (subst (λ p → [ p < x + y ]) (sym (+-identity 0f .snd)) 0<x+y)
-- -x = 0 + (-x) < x + (-x) = 0
prop-14 x =
[ 0f < x ] ⇒⟨ +-preserves-< 0f x (- x) ⟩
[ 0f + (- x) < x + (- x) ] ⇒⟨ subst (λ p → [ 0f - x < p ]) (+-rinv x) ⟩
[ 0f + (- x) < 0f ] ⇒⟨ subst (λ p → [ p < 0f ]) (+-identity (- x) .snd) ⟩
[ - x < 0f ] ◼
-- -x = 0 + (-x) < x + (-x) = 0
prop-14' x =
[ x < 0f ] ⇒⟨ +-preserves-< x 0f (- x) ⟩
[ x + (- x) < 0f + (- x) ] ⇒⟨ subst (λ p → [ x - x < p ]) (+-identity (- x) .snd) ⟩
[ x + (- x) < (- x) ] ⇒⟨ subst (λ p → [ p < - x ]) (+-rinv x) ⟩
[ 0f < (- x) ] ◼
-- since -z > 0 we have
-- -xz = x(-z) > y(-z) = -yz
-- so -xz + yz + xz > -yz + yz + xz
prop-15 x y z x<y z<0 = (
[ x < y ] ⇒⟨ ·-preserves-< x y (- z) (prop-14' z z<0) ⟩
[ x · (- z) < y · (- z) ] ⇒⟨ subst (λ p → [ p < y · (- z) ]) (RingTheory'.-commutesWithRight-· x z) ⟩
[ - (x · z) < y · (- z) ] ⇒⟨ subst (λ p → [ -(x · z) < p ]) (RingTheory'.-commutesWithRight-· y z) ⟩
[ - (x · z) < - (y · z) ] ⇒⟨ -swaps-< (y · z) (x · z) .snd ⟩
[ y · z < x · z ] ◼) x<y
prop-16 x (inl x<0) = (
[ x < 0f ] ⇒⟨ prop-14' x ⟩
[ 0f < - x ] ⇒⟨ ·-preserves-< 0f (- x) (- x) (prop-14' x x<0) ⟩
[ 0f · (- x) < (- x) · (- x) ] ⇒⟨ subst (λ p → [ p < (- x) · (- x) ]) (RingTheory'.0-leftNullifies (- x)) ⟩
[ 0f < (- x) · (- x) ] ⇒⟨ subst (λ p → [ 0f < p ]) (RingTheory'.-commutesWithRight-· (- x) x) ⟩
[ 0f < - ((- x) · x) ] ⇒⟨ subst (λ p → [ 0f < - p ]) (RingTheory'.-commutesWithLeft-· x x) ⟩
[ 0f < - - (x · x) ] ⇒⟨ subst (λ p → [ 0f < p ]) (GroupLemmas'.invInvo (x · x)) ⟩
[ 0f < x · x ] ◼) x<0
prop-16 x (inr 0<x) = (
[ 0f < x ] ⇒⟨ ·-preserves-< 0f x x 0<x ⟩
[ 0f · x < x · x ] ⇒⟨ subst (λ p → [ p < x · x ]) (RingTheory'.0-leftNullifies x) ⟩
[ 0f < x · x ] ◼) 0<x
prop-17 = is-0<1
-- suppose x² < 0. Then ¬(x ≠ 0) by 16; so x = 0 and therefore x² = 0, a contradiction. Hence ¬(x² < 0) and therefore x² ≥ 0.
prop-18 x x²<0 = let ¬x#0 = contraposition (x # 0f) (0f < x · x) (prop-16 x) (<-asym (x · x) 0f x²<0)
x≡0 = r2-3 _ _ ¬x#0
x²≡0 = (λ i → x≡0 i · x≡0 i) ∙ RingTheory'.0-leftNullifies 0f
in transport (λ i → [ ¬ (x²≡0 (~ i) < 0f) ] ) (<-irrefl 0f) x²<0
prop-19 x 0<x x<1 = subst (λ p → [ x · x < p ]) (·-lid x) (·-preserves-< x 1f x 0<x x<1)
prop-20 x -1<x x<1 (x<x² , -x<x²) =
-- Suppose that - 1 < x < 1 and that (x² > x ∧ x² > -x).
let -- If x > 0, then x = x (-1) < x² < x(1) = x which contradicts our second assumption. Hence ¬(x > 0) and therefore x ≤ 0.
argument1 : [ 0f < x ⇒ x · x < x ]
argument1 0<x = subst (λ p → [ x · x < p ]) (·-identity x .snd) (·-preserves-< x 1f x 0<x x<1)
x≤0 : [ x ≤ 0f ]
x≤0 = contraposition (0f < x) (x · x < x) argument1 (<-asym _ _ x<x²)
-- A similar argument shows that x ≥ 0.
argument2 : [ x < 0f ⇒ x · x < - x ]
argument2 x<0 = let 0<-x = subst (λ p → [ p < - x ]) (sym is-0≡-0) (-swaps-< x 0f .fst x<0)
in (
[ (- 1f) · (- x) < x · (- x) ] ⇒⟨ subst (λ p → [ p < x · (- x) ]) (RingTheory'.-commutesWithLeft-· 1f (- x)) ⟩
[ -( 1f · (- x)) < x · (- x) ] ⇒⟨ subst (λ p → [ - p < x · (- x) ]) (·-identity (- x) .snd) ⟩
[ -( - x) < x · (- x) ] ⇒⟨ subst (λ p → [ - - x < p ]) (RingTheory'.-commutesWithRight-· x x) ⟩
[ -( - x) < -(x · x) ] ⇒⟨ -swaps-< (x · x) (- x) .snd ⟩
[ x · x < - x ] ◼) (·-preserves-< (- 1f) x (- x) 0<-x -1<x)
0≤x : [ 0f ≤ x ]
0≤x = contraposition (x < 0f) (x · x < - x) argument2 (<-asym _ _ -x<x²)
-- whence x = 0.
x≡0 = ≤-antisym x 0f x≤0 0≤x
-- But in that case we have -x = x² = x, again a contradiction.
x<0 = subst (λ p → [ x < p ]) (RingTheory'.0-leftNullifies 0f) (subst (λ p → [ x < p · p ]) x≡0 x<x²)
-x<0 = subst (λ p → [ - x < p ]) (RingTheory'.0-leftNullifies 0f) (subst (λ p → [ - x < p · p ]) x≡0 -x<x²)
0<x = -swaps-< 0f x .snd (subst (λ p → [ - x < p ]) is-0≡-0 -x<0)
in <-asym _ _ 0<x x<0
-- Either x > 0 or x² > x.
prop-21 x 0<x² = case <-cotrans 0f (x · x) 0<x² x as (0f < x) ⊔ (x < x · x) ⇒ x # 0f of λ
{ (inl 0<x ) → inr 0<x
-- In the latter case, either x² > -x or -x > x.
; (inr x<x²) → case <-cotrans x (x · x) x<x² (- x) as (x < - x) ⊔ (- x < x · x) ⇒ x # 0f of λ
-- Suppose -x > x. Then x - x > x + x = 2x, so 0 > x.
{ (inl x<-x) → let x<0 : [ x < 0f ]
x<0 = (
[ x < - x ] ⇒⟨ +-preserves-< x (- x) x ⟩
[ x + x < - x + x ] ⇒⟨ subst (λ p → [ x + x < p ]) (+-inv x .snd) ⟩
[ x + x < 0f ] ⇒⟨ subst (λ p → [ p + p < 0f ]) (sym $ ·-identity x .fst) ⟩
[ x · 1f + x · 1f < 0f ] ⇒⟨ subst (λ p → [ p < 0f ]) (sym $ is-dist x 1f 1f .fst) ⟩
[ x · (1f + 1f) < 0f ] ⇒⟨ ·-reflects-<0 x (1f + 1f) (<-trans 0f 1f (1f + 1f) is-0<1 (subst (λ p → [ p < 1f + 1f ]) (+-identity 1f .snd) (+-preserves-< 0f 1f 1f is-0<1))) ⟩
[ x < 0f ] ◼) x<-x
in inl x<0
-- Thus we may assume that x² > x and x² < -x.
; (inr -x<x²) → case <-cotrans 0f 1f is-0<1 x as (0f < x) ⊔ (x < 1f) ⇒ x # 0f of λ
-- then either x > 0 or 1 > x.
{ (inl 0<x) → inr 0<x
-- In the latter case, if x > -1, then we cotradict 20; so 0 > -1 ≥ x
; (inr x<1) → let x≤-1 : [ x ≤ - 1f ]
x≤-1 -1<x = prop-20 x -1<x x<1 (x<x² , -x<x²)
-1<0 : [ - 1f < 0f ]
-1<0 = subst (λ p → [ - 1f < p ]) (sym is-0≡-0) (-swaps-< 0f 1f .fst is-0<1)
-- and therefore 0 > x.
in inl $ ≤-<-trans _ _ _ x≤-1 -1<0
}
}
}
prop-22 x 0<x = let instance _ = inr 0<x in it , <-asym _ _ (⁻¹-preserves-sign _ _ 0<x (·-rinv x it))
prop-22' x 0<x = let instance _ = inr 0<x in it , ⁻¹-preserves-sign _ _ 0<x (·-rinv x it)
| {
"alphanum_fraction": 0.3946349558,
"avg_line_length": 59.9337016575,
"ext": "agda",
"hexsha": "324ead55588d84d5cf04f10a630236d697aa9994",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MorePropAlgebra/Bridges1999.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MorePropAlgebra/Bridges1999.agda",
"max_line_length": 199,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MorePropAlgebra/Bridges1999.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 8977,
"size": 21696
} |
------------------------------------------------------------------------
-- Convenient syntax for equational reasoning
------------------------------------------------------------------------
-- Example use:
-- n*0≡0 : ∀ n → n * 0 ≡ 0
-- n*0≡0 zero = refl
-- n*0≡0 (suc n) =
-- begin
-- suc n * 0
-- ≈⟨ byDef ⟩
-- n * 0 + 0
-- ≈⟨ n+0≡n _ ⟩
-- n * 0
-- ≈⟨ n*0≡0 n ⟩
-- 0
-- ∎
open import Relation.Binary
module Relation.Binary.EqReasoning (s : Setoid) where
open Setoid s
import Relation.Binary.PreorderReasoning as PreR
open PreR preorder public
renaming ( _∼⟨_⟩_ to _≈⟨_⟩_
; _≈⟨_⟩_ to _≡⟨_⟩_
)
| {
"alphanum_fraction": 0.4014925373,
"avg_line_length": 22.3333333333,
"ext": "agda",
"hexsha": "a121546e099b4d0ad86d20fc5de2c6eb2788274f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/EqReasoning.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/EqReasoning.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/EqReasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 228,
"size": 670
} |
-- In this document we'll show that having `ifix :: ((k -> *) -> k -> *) -> k -> *` is enough to
-- get `fix :: (k -> k) -> k` for any particular `k`.
module IFixIsEnough where
open import Agda.Primitive
-- First, the definition of `IFix`:
{-# NO_POSITIVITY_CHECK #-}
data IFix {α φ} {A : Set α} (F : (A -> Set φ) -> A -> Set φ) (x : A) : Set φ where
wrap : F (IFix F) x -> IFix F x
-- We'll be calling `F` a pattern functor and `x` an index.
open import Function
-- The simplest non-trivial case of an n-ary higher-kinded `fix` is
-- fix2 :: ((j -> k -> *) -> j -> k -> *) -> j -> k -> *
-- So we'll start from encoding this fixed-point combinator.
module FixProduct where
-- In Agda it has the following signature:
Fix₂ : {A B : Set} -> ((A -> B -> Set) -> A -> B -> Set) -> A -> B -> Set
-- One way of getting this type is by going through type-level tuples.
open import Data.Product
-- Having (defined for clarity)
Fixₓ : {A B : Set} -> ((A × B -> Set) -> A × B -> Set) -> A × B -> Set
Fixₓ = IFix
-- we can just sprinkle `curry` and `uncurry` in appropriate places and get the desired definition:
ConciseFix₂ₓ : {A B : Set} -> ((A -> B -> Set) -> A -> B -> Set) -> A -> B -> Set
ConciseFix₂ₓ F = curry (Fixₓ (uncurry ∘ F ∘ curry))
-- which after some expansion becomes
Fix₂ {A} {B} F = λ x y ->
Fixₓ (λ Rec -> uncurry (F (λ x′ y′ -> Rec (x′ , y′)))) (x , y)
-- The main idea here is that since `IFix` receives onle one index, we need to somehow package the
-- two indices we have (`x` and `y`) together to get a single index. And the simplest solution is
-- just to make a two-element tuple out of `x` and `y`.
-- However, this simple solution does not apply to vanilla System F-omega, because we do not have
-- type-level tuples there. Hence some another way of packaging things together is required.
module FixEncodedProduct where
-- The fact that we only use tuples at the type level suggests the following encoding of them:
_×̲_ : Set -> Set -> Set₁ -- Type \x\_-- to get ×̲.
A ×̲ B = (A -> B -> Set) -> Set
-- Which is just the usual Church encoding (okay-okay, Boehm-Berarducci encoding)
_Church×_ : ∀ {ρ} -> Set -> Set -> Set (lsuc ρ)
_Church×_ {ρ} A B = {R : Set ρ} -> (A -> B -> R) -> R
-- with `R` (not the type of `R`, but `R` itself) instantiated to `Set`.
-- Here is a combinator that allows to recurse over `A ×̲ B` just like `Fixₓ` from the above
-- allowed to recurse over `A × B`:
abstract -- We'll be marking some things as `abstract` just to get nice output from Agda when
-- we ask it to normalize things.
Fixₓ̲ : {A B : Set} -> ((A ×̲ B -> Set) -> A ×̲ B -> Set) -> A ×̲ B -> Set -- Type \_x\_-- to get ₓ̲.
Fixₓ̲ = IFix
-- Now we have `A ×̲ B -> Set` appearing thrice in a type signature. We can simplify this expression:
-- A ×̲ B -> Set ~ (by definition)
-- ((A -> B -> Set) -> Set) -> Set ~ (see below)
-- A -> B -> Set
-- The fact that we can go from `((A -> B -> Set) -> Set) -> Set` to `A -> B -> Set` is related to
-- the fact that triple negation is equivalent to single negation in a type theory. In fact, we can
-- go from any `((A -> R) -> R) -> R` to `A -> R` and vice versa as witnessed by
module TripleNegation where
tripleToSingle : ∀ {α ρ} {A : Set α} {R : Set ρ}
-> (((A -> R) -> R) -> R) -> A -> R
tripleToSingle h x = h λ f -> f x
singleToTriple : ∀ {α ρ} {A : Set α} {R : Set ρ}
-> (A -> R) -> ((A -> R) -> R) -> R
singleToTriple f h = h f
-- Here are the `curry` and `uncurry` combinators then:
curryₓ̲ : ∀ {α β ρ} {A : Set α} {B : Set β} {R : Set ρ}
-> (((A -> B -> R) -> R) -> R) -> A -> B -> R
curryₓ̲ h x y = h λ f -> f x y
abstract
uncurryₓ̲ : ∀ {α β ρ} {A : Set α} {B : Set β} {R : Set ρ}
-> (A -> B -> R) -> ((A -> B -> R) -> R) -> R
uncurryₓ̲ f h = h f
-- And the definition of `ConciseFix₂` following the same pattern as the one from the previous section:
ConciseFix₂ : {A B : Set} -> ((A -> B -> Set) -> A -> B -> Set) -> A -> B -> Set
ConciseFix₂ F = curryₓ̲ (Fixₓ̲ (uncurryₓ̲ ∘ F ∘ curryₓ̲))
-- Compare to the previous one:
-- ConciseFix₂ₓ : {A B : Set} -> ((A -> B -> Set) -> A -> B -> Set) -> A -> B -> Set
-- ConciseFix₂ₓ F = curry (Fixₓ (uncurry ∘ F ∘ curry))
-- We can now ask Agda to normalize `ConciseFix₂`. After some alpha-renaming we get
NormedConciseFix₂ : {A B : Set} -> ((A -> B -> Set) -> A -> B -> Set) -> A -> B -> Set
NormedConciseFix₂ {A} {B} F = λ x y ->
Fixₓ̲ (λ Rec -> uncurryₓ̲ (F (λ x′ y′ -> Rec (λ On -> On x′ y′)))) (λ On -> On x y)
-- which is very similar to what we had previously
-- Fix₂ₓ : {A B : Set} -> ((A -> B -> Set) -> A -> B -> Set) -> A -> B -> Set
-- Fix₂ₓ {A} {B} F = λ x y ->
-- Fixₓ (λ Rec -> uncurry (F (λ x′ y′ -> Rec (x′ , y′)))) (x , y)
-- except we now have `λ On -> On x y` instead of `(x , y)`. What is this new thing? Well:
_,̲_ : {A B : Set} -> A -> B -> A ×̲ B -- Type ,\_-- to get ,̲.
_,̲_ {A} {B} x y = λ (On : A -> B -> Set) -> On x y
-- it's just a new way to package `x` and `y` together without ever touching tuples-as-data. Here
-- we use a function in order to turn two indices into a single one.
-- `λ On -> On x y` is the Church-encoded version of `(x , y)` (where `_,_` constructs data).
-- Using `_,̲_` for clarity we arrive at the following:
Fix₂ : {A B : Set} -> ((A -> B -> Set) -> A -> B -> Set) -> A -> B -> Set
Fix₂ {A} {B} F = λ x y ->
Fixₓ̲ (λ Rec -> uncurryₓ̲ (F (λ x′ y′ -> Rec (x′ ,̲ y′)))) (x ,̲ y)
-- Compare again to the definition from the previous section:
-- Fix₂ₓ : {A B : Set} -> ((A -> B -> Set) -> A -> B -> Set) -> A -> B -> Set
-- Fix₂ₓ {A} {B} F = λ x y ->
-- Fixₓ (λ Rec -> uncurry (F (λ x′ y′ -> Rec (x′ , y′)))) (x , y)
-- The pattern is clearly the same. But now we do not use any type-level data, only lambda abstractions
-- and function applications which we do have at the type level in System F-omega, so it all is legal
-- there.
module Direct where
-- In this section we'll encode other higher-kinded `Fix`es in addition to `Fix₂` from
-- the previous section.
-- `Fix₂` with everything inlined and computed down to normal form looks like this:
Fix₂ : {A B : Set} -> ((A -> B -> Set) -> A -> B -> Set) -> A -> B -> Set
Fix₂ {A} {B} F = λ x y ->
IFix (λ Rec Spine -> Spine (F λ x′ y′ -> Rec (λ On -> On x′ y′))) (λ On -> On x y)
-- `Fix₃` is the same, just an additional argument `z` (and `z′`) is added here and there:
Fix₃ : {A B C : Set} -> ((A -> B -> C -> Set) -> A -> B -> C -> Set) -> A -> B -> C -> Set
Fix₃ F = λ x y z ->
IFix (λ Rec Spine -> Spine (F λ x′ y′ z′ -> Rec (λ On -> On x′ y′ z′))) (λ On -> On x y z)
-- Correspondingly, `Fix₁` is `Fix₂` minus `y` (and `y′`):
Fix₁ : {A : Set} -> ((A -> Set) -> A -> Set) -> A -> Set
Fix₁ F = λ x ->
IFix (λ Rec Spine -> Spine (F λ x′ -> Rec (λ On -> On x′))) (λ On -> On x)
-- But `Fix₁` has the same signature as `IFix`, so we can just define it as
Fix₁′ : {A : Set} -> ((A -> Set) -> A -> Set) -> A -> Set
Fix₁′ = IFix
-- `Fix₀` can be defined in the same manner as `Fix₂`, except we strip off all indices and encode
-- the empty tuple as `λ On -> On`.
Fix₀ : (Set -> Set) -> Set
Fix₀ F =
IFix (λ Rec spine -> spine (F (Rec (λ On -> On)))) (λ On -> On)
-- There is another way to define `Fix₀`, we can just pass a dummy argument as an index:
Fix₀′′ : (Set -> Set) -> Set
Fix₀′′ F = IFix (λ Rec ⊥ -> F (Rec ⊥)) ((A : Set) -> A)
-- The argument is never used and is only needed, because we have to provide *some* index.
-- Another way is to pass `F` itself as an index rather than some dummy argument:
Fix₀′ : (Set -> Set) -> Set
Fix₀′ = IFix λ Rec F -> F (Rec F)
-- This is perhaps the nicest way.
module Generic where
-- In this section we'll define `FixBy` which generalizes all of `Fix₀`, `Fix₁`, `Fix₂`, etc.
-- In
-- Fix₂ : {A B : Set} -> ((A -> B -> Set) -> A -> B -> Set) -> A -> B -> Set
-- Fix₂ {A} {B} F = λ x y ->
-- IFix (λ Rec Spine -> Spine (F λ x′ y′ -> Rec (λ On -> On x′ y′))) (λ On -> On x y)
-- we see that wherever `x` and `y` are bound, they're also packaged by `λ On -> On ...` and the
-- entire thing is passed to something else. This holds for the inner
-- λ x′ y′ -> Rec (λ On -> On x′ y′)
-- as well as for the outer
-- λ x y -> ... (λ On -> On x y)
-- This pattern can be easily abstracted:
FixBy : ∀ {κ φ} {K : Set κ} -> (((K -> Set φ) -> Set φ) -> K) -> (K -> K) -> K
FixBy WithSpine F = WithSpine (IFix λ Rec Spine -> Spine (F (WithSpine Rec)))
-- `WithSpine` encapsulates spine construction and feeds constructed spines to a continuation.
-- Being equipped like that we can easily define an n-ary higher-kinded `fix` for any `n`:
Fix₀ : ∀ {φ} -> (Set φ -> Set φ) -> Set φ
Fix₀ = FixBy λ Cont -> Cont λ On -> On
Fix₁ : ∀ {α φ} {A : Set α} -> ((A -> Set φ) -> A -> Set φ) -> A -> Set φ
Fix₁ = FixBy λ Cont x -> Cont λ On -> On x
Fix₂ : ∀ {α β φ} {A : Set α} {B : Set β}
-> ((A -> B -> Set φ) -> A -> B -> Set φ) -> A -> B -> Set φ
Fix₂ = FixBy λ Cont x y -> Cont λ On -> On x y
Fix₃ : ∀ {α β γ φ} {A : Set α} {B : Set β} {C : Set γ}
-> ((A -> B -> C -> Set φ) -> A -> B -> C -> Set φ) -> A -> B -> C -> Set φ
Fix₃ = FixBy λ Cont x y z -> Cont λ On -> On x y z
module DirectGenericSame where
open import Relation.Binary.PropositionalEquality
-- The 'direct' and 'generic' encodings result in literally the same code. Here are a few examples:
directIsGeneric₀ : ∀ {F} -> Direct.Fix₀ F ≡ Generic.Fix₀ F
directIsGeneric₀ = refl
directIsGeneric₁ : ∀ {A F} {x : A} -> Direct.Fix₁ F x ≡ Generic.Fix₁ F x
directIsGeneric₁ = refl
directIsGeneric₂ : ∀ {A B F} {x : A} {y : B} -> Direct.Fix₂ F x y ≡ Generic.Fix₂ F x y
directIsGeneric₂ = refl
directIsGeneric₃ : ∀ {A B C F} {x : A} {y : B} {z : C} -> Direct.Fix₃ F x y z ≡ Generic.Fix₃ F x y z
directIsGeneric₃ = refl
-- Tests:
module Test where
open import Data.Maybe.Base
open Generic
module Nat where
Nat : Set
Nat = Fix₀ Maybe
pattern zero = wrap nothing
pattern suc n = wrap (just n)
elimNat
: {P : Nat -> Set}
-> P zero
-> (∀ n -> P n -> P (suc n))
-> ∀ n
-> P n
elimNat z f zero = z
elimNat z f (suc n) = f n (elimNat z f n)
module List where
data ListF (R : Set -> Set) A : Set where
nilF : ListF R A
consF : A -> R A -> ListF R A
List : Set -> Set
List = Fix₁ ListF
pattern [] = wrap nilF
pattern _∷_ x xs = wrap (consF x xs)
elimList
: ∀ {A} {P : List A -> Set}
-> P []
-> (∀ x xs -> P xs -> P (x ∷ xs))
-> ∀ xs
-> P xs
elimList z f [] = z
elimList z f (x ∷ xs) = f x xs (elimList z f xs)
module InterleavedList where
open import Data.Unit.Base
open import Data.Bool.Base
open import Data.Nat.Base
open import Data.Sum.Base
open import Data.Product
InterleavedList : Set -> Set -> Set
InterleavedList = Fix₂ λ Rec A B -> ⊤ ⊎ A × B × Rec B A
pattern [] = wrap (inj₁ tt)
pattern cons x y ps = wrap (inj₂ (x , y , ps))
example_interleavedList : InterleavedList ℕ Bool
example_interleavedList = cons 0 false ∘′ cons true 1 ∘′ cons 2 false $ []
elimInterleavedList
: ∀ {A B} {P : ∀ {A B} -> InterleavedList A B -> Set}
-> (∀ {A B} -> P {A} {B} [])
-> (∀ {A B} x y ps -> P {A} {B} ps -> P (cons x y ps))
-> ∀ ps
-> P {A} {B} ps
elimInterleavedList z f [] = z
elimInterleavedList z f (cons x y ps) = f x y ps (elimInterleavedList z f ps)
module Unicode where
-- This file uses the following unicode:
-- ×̲ 0xD7 \x\_--
| {
"alphanum_fraction": 0.5431467828,
"avg_line_length": 36.2796352584,
"ext": "agda",
"hexsha": "d8fc43d8a6d0432ed72dab5c9114b08e83c91596",
"lang": "Agda",
"max_forks_count": 399,
"max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z",
"max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "AriFordsham/plutus",
"max_forks_repo_path": "notes/fomega/mutual-type-level-recursion/IFixIsEnough.agda",
"max_issues_count": 2493,
"max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "AriFordsham/plutus",
"max_issues_repo_path": "notes/fomega/mutual-type-level-recursion/IFixIsEnough.agda",
"max_line_length": 106,
"max_stars_count": 1299,
"max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "AriFordsham/plutus",
"max_stars_repo_path": "notes/fomega/mutual-type-level-recursion/IFixIsEnough.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z",
"num_tokens": 4199,
"size": 11936
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Presheaf.Properties where
open import Cubical.Categories.Category
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Functor
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Equivalence
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv using (fiber)
open import Cubical.Data.Sigma
import Cubical.Categories.Morphism as Morphism
import Cubical.Categories.Constructions.Slice as Slice
import Cubical.Categories.Constructions.Elements as Elements
import Cubical.Functions.Fibration as Fibration
private
variable
ℓ ℓ' : Level
e e' : Level
-- (PreShv C) / F ≃ᶜ PreShv (∫ᴾ F)
module _ {ℓS : Level} (C : Precategory ℓ ℓ') (F : Functor (C ^op) (SET ℓS)) where
open Precategory
open Functor
open _≃ᶜ_
open isEquivalence
open NatTrans
open NatIso
open Slice (PreShv C ℓS) F ⦃ isCatPreShv {C = C} ⦄
open Elements {C = C}
open Fibration.ForSets
-- specific case of fiber under natural transformation
fibersEqIfRepsEqNatTrans : ∀ {A} (ϕ : A ⇒ F) {c x x'} {px : x ≡ x'} {a' : fiber (ϕ ⟦ c ⟧) x} {b' : fiber (ϕ ⟦ c ⟧) x'}
→ fst a' ≡ fst b'
→ PathP (λ i → fiber (ϕ ⟦ c ⟧) (px i)) a' b'
fibersEqIfRepsEqNatTrans ϕ {c} {x} {x'} {px} {a , fiba} {b , fibb} p
= fibersEqIfRepsEq {isSetB = snd (F ⟅ c ⟆)} (ϕ ⟦ c ⟧) p
-- ========================================
-- K : Slice → PreShv
-- ========================================
-- action on (slice) objects
K-ob : (s : SliceCat .ob) → (PreShv (∫ᴾ F) ℓS .ob)
-- we take (c , x) to the fiber in A of ϕ over x
K-ob (sliceob {A} ϕ) .F-ob (c , x)
= (fiber (ϕ ⟦ c ⟧) x)
, isOfHLevelΣ 2 (snd (A ⟅ c ⟆)) λ _ → isSet→isGroupoid (snd (F ⟅ c ⟆)) _ _
-- for morphisms, we just apply A ⟪ h ⟫ (plus equality proof)
K-ob (sliceob {A} ϕ) .F-hom {d , y} {c , x} (h , com) (b , eq)
= ((A ⟪ h ⟫) b)
, ((ϕ ⟦ c ⟧) ((A ⟪ h ⟫) b)
≡[ i ]⟨ (ϕ .N-hom h) i b ⟩
(F ⟪ h ⟫) ((ϕ ⟦ d ⟧) b)
≡[ i ]⟨ (F ⟪ h ⟫) (eq i) ⟩
(F ⟪ h ⟫) y
≡⟨ sym com ⟩
x
∎)
-- functoriality follows from functoriality of A
K-ob (sliceob {A} ϕ) .F-id {x = (c , x)}
= funExt λ { (a , fibp)
→ fibersEqIfRepsEqNatTrans ϕ (λ i → A .F-id i a) }
K-ob (sliceob {A} ϕ) .F-seq {x = (c , x)} {(d , y)} {(e , z)} (f' , eq1) (g' , eq2)
= funExt λ { ( a , fibp )
→ fibersEqIfRepsEqNatTrans ϕ (λ i → (A .F-seq f' g') i a) }
-- action on morphisms (in this case, natural transformation)
K-hom : {sA sB : SliceCat .ob}
→ (ε : SliceCat [ sA , sB ])
→ (K-ob sA) ⇒ (K-ob sB)
K-hom {sA = s1@(sliceob {A} ϕ)} {s2@(sliceob {B} ψ)} (slicehom ε com) = natTrans η-ob (λ h → funExt (η-hom h))
where
P = K-ob s1
Q = K-ob s2
-- just apply the natural transformation (ε) we're given
-- this ensures that we stay in the fiber over x due to the commutativity given by slicenesss
η-ob : (el : (∫ᴾ F) .ob) → (fst (P ⟅ el ⟆) → fst (Q ⟅ el ⟆) )
η-ob (c , x) (a , ϕa≡x) = ((ε ⟦ c ⟧) a) , εψ≡ϕ ∙ ϕa≡x
where
εψ≡ϕ : (ψ ⟦ c ⟧) ((ε ⟦ c ⟧) a) ≡ (ϕ ⟦ c ⟧) a
εψ≡ϕ i = ((com i) ⟦ c ⟧) a
η-hom : ∀ {el1 el2} (h : (∫ᴾ F) [ el1 , el2 ]) (ae : fst (P ⟅ el2 ⟆)) → η-ob el1 ((P ⟪ h ⟫) ae) ≡ (Q ⟪ h ⟫) (η-ob el2 ae)
η-hom {el1 = (c , x)} {d , y} (h , eqh) (a , eqa)
= fibersEqIfRepsEqNatTrans ψ (λ i → ε .N-hom h i a)
K : Functor SliceCat (PreShv (∫ᴾ F) ℓS)
K .F-ob = K-ob
K .F-hom = K-hom
K .F-id = makeNatTransPath
(funExt λ cx@(c , x)
→ funExt λ aeq@(a , eq)
→ fibersEqIfRepsEq {isSetB = snd (F ⟅ c ⟆)} _ refl)
K .F-seq (slicehom α eqa) (slicehom β eqb)
= makeNatTransPath
(funExt λ cx@(c , x)
→ funExt λ aeq@(a , eq)
→ fibersEqIfRepsEq {isSetB = snd (F ⟅ c ⟆)} _ refl)
-- ========================================
-- L : PreShv → Slice
-- ========================================
-- action on objects (presheaves)
L-ob : (P : PreShv (∫ᴾ F) ℓS .ob)
→ SliceCat .ob
L-ob P = sliceob {S-ob = L-ob-ob} L-ob-hom
where
-- sends c to the disjoint union of all the images under P
LF-ob : (c : C .ob) → (SET _) .ob
LF-ob c = (Σ[ x ∈ fst (F ⟅ c ⟆) ] fst (P ⟅ c , x ⟆)) , isSetΣ (snd (F ⟅ c ⟆)) (λ x → snd (P ⟅ c , x ⟆))
-- defines a function piecewise over the fibers by applying P
LF-hom : ∀ {x y}
→ (f : C [ y , x ])
→ (SET _) [ LF-ob x , LF-ob y ]
LF-hom {x = c} {d} f (x , a) = ((F ⟪ f ⟫) x) , (P ⟪ f , refl ⟫) a
L-ob-ob : Functor (C ^op) (SET _)
L-ob-ob .F-ob = LF-ob
L-ob-ob .F-hom = LF-hom
L-ob-ob .F-id {x = c}
= funExt idFunExt
where
idFunExt : ∀ (un : fst (LF-ob c))
→ (LF-hom (C .id c) un) ≡ un
idFunExt (x , X) = ΣPathP (leftEq , rightEq)
where
leftEq : (F ⟪ C .id c ⟫) x ≡ x
leftEq i = F .F-id i x
rightEq : PathP (λ i → fst (P ⟅ c , leftEq i ⟆))
((P ⟪ C .id c , refl ⟫) X) X
rightEq = left ▷ right
where
-- the id morphism in (∫ᴾ F)
∫id = C .id c , sym (funExt⁻ (F .F-id) x ∙ refl)
-- functoriality of P gives us close to what we want
right : (P ⟪ ∫id ⟫) X ≡ X
right i = P .F-id i X
-- but need to do more work to show that (C .id c , refl) ≡ ∫id
left : PathP (λ i → fst (P ⟅ c , leftEq i ⟆))
((P ⟪ C .id c , refl ⟫) X)
((P ⟪ ∫id ⟫) X)
left i = (P ⟪ ∫ᴾhomEq {F = F} (C .id c , refl) ∫id (λ i → (c , leftEq i)) refl refl i ⟫) X
L-ob-ob .F-seq {x = c} {d} {e} f g
= funExt seqFunEq
where
seqFunEq : ∀ (un : fst (LF-ob c))
→ (LF-hom (g ⋆⟨ C ⟩ f) un) ≡ (LF-hom g) (LF-hom f un)
seqFunEq un@(x , X) = ΣPathP (leftEq , rightEq)
where
-- the left component is comparing the action of F on x
-- equality follows from functoriality of F
-- leftEq : fst (LF-hom (g ⋆⟨ C ⟩ f) un) ≡ fst ((LF-hom g) (LF-hom f un))
leftEq : (F ⟪ g ⋆⟨ C ⟩ f ⟫) x ≡ (F ⟪ g ⟫) ((F ⟪ f ⟫) x)
leftEq i = F .F-seq f g i x
-- on the right, equality also follows from functoriality of P
-- but it's more complicated because of heterogeneity
-- since leftEq is not a definitional equality
rightEq : PathP (λ i → fst (P ⟅ e , leftEq i ⟆))
((P ⟪ g ⋆⟨ C ⟩ f , refl ⟫) X)
((P ⟪ g , refl ⟫) ((P ⟪ f , refl ⟫) X))
rightEq = left ▷ right
where
-- functoriality of P only gets us to this weird composition on the left
right : (P ⟪ (g , refl) ⋆⟨ (∫ᴾ F) ⟩ (f , refl) ⟫) X ≡ (P ⟪ g , refl ⟫) ((P ⟪ f , refl ⟫) X)
right i = P .F-seq (f , refl) (g , refl) i X
-- so we need to show that this composition is actually equal to the one we want
left : PathP (λ i → fst (P ⟅ e , leftEq i ⟆))
((P ⟪ g ⋆⟨ C ⟩ f , refl ⟫) X)
((P ⟪ (g , refl) ⋆⟨ (∫ᴾ F) ⟩ (f , refl) ⟫) X)
left i = (P ⟪ ∫ᴾhomEq {F = F} (g ⋆⟨ C ⟩ f , refl) ((g , refl) ⋆⟨ (∫ᴾ F) ⟩ (f , refl)) (λ i → (e , leftEq i)) refl refl i ⟫) X
L-ob-hom : L-ob-ob ⇒ F
L-ob-hom .N-ob c (x , _) = x
L-ob-hom .N-hom f = funExt λ (x , _) → refl
-- action on morphisms (aka natural transformations between presheaves)
-- is essentially the identity (plus equality proofs for naturality and slice commutativity)
L-hom : ∀ {P Q} → PreShv (∫ᴾ F) ℓS [ P , Q ] →
SliceCat [ L-ob P , L-ob Q ]
L-hom {P} {Q} η = slicehom arr com
where
A = S-ob (L-ob P)
ϕ = S-arr (L-ob P)
B = S-ob (L-ob Q)
ψ = S-arr (L-ob Q)
arr : A ⇒ B
arr .N-ob c (x , X) = x , ((η ⟦ c , x ⟧) X)
arr .N-hom {c} {d} f = funExt natu
where
natuType : fst (A ⟅ c ⟆) → Type _
natuType xX@(x , X) = ((F ⟪ f ⟫) x , (η ⟦ d , (F ⟪ f ⟫) x ⟧) ((P ⟪ f , refl ⟫) X)) ≡ ((F ⟪ f ⟫) x , (Q ⟪ f , refl ⟫) ((η ⟦ c , x ⟧) X))
natu : ∀ (xX : fst (A ⟅ c ⟆)) → natuType xX
natu (x , X) = ΣPathP (refl , λ i → (η .N-hom (f , refl) i) X)
com : arr ⋆⟨ PreShv C ℓS ⟩ ψ ≡ ϕ
com = makeNatTransPath (funExt comFunExt)
where
comFunExt : ∀ (c : C .ob)
→ (arr ●ᵛ ψ) ⟦ c ⟧ ≡ ϕ ⟦ c ⟧
comFunExt c = funExt λ x → refl
L : Functor (PreShv (∫ᴾ F) ℓS) SliceCat
L .F-ob = L-ob
L .F-hom = L-hom
L .F-id {cx} = SliceHom-≡-intro' (makeNatTransPath (funExt λ c → refl))
L .F-seq {cx} {dy} P Q = SliceHom-≡-intro' (makeNatTransPath (funExt λ c → refl))
-- ========================================
-- η : 𝟙 ≅ LK
-- ========================================
module _ where
open Iso
open Morphism renaming (isIso to isIsoC)
-- the iso we need
-- a type is isomorphic to the disjoint union of all its fibers
typeSectionIso : ∀ {A B : Type ℓS} {isSetB : isSet B} → (ϕ : A → B)
→ Iso A (Σ[ b ∈ B ] fiber ϕ b)
typeSectionIso ϕ .fun a = (ϕ a) , (a , refl)
typeSectionIso ϕ .inv (b , (a , eq)) = a
typeSectionIso {isSetB = isSetB} ϕ .rightInv (b , (a , eq))
= ΣPathP (eq
, ΣPathP (refl
, isOfHLevel→isOfHLevelDep 1 (λ b' → isSetB _ _) refl eq eq))
typeSectionIso ϕ .leftInv a = refl
-- the natural transformation
-- just applies typeSectionIso
ηTrans : 𝟙⟨ SliceCat ⟩ ⇒ (L ∘F K)
ηTrans .N-ob sob@(sliceob {A} ϕ) = slicehom A⇒LK comm
where
LKA = S-ob (L ⟅ K ⟅ sob ⟆ ⟆)
ψ = S-arr (L ⟅ K ⟅ sob ⟆ ⟆)
A⇒LK : A ⇒ LKA
A⇒LK .N-ob c = typeSectionIso {isSetB = snd (F ⟅ c ⟆)} (ϕ ⟦ c ⟧) .fun
A⇒LK .N-hom {c} {d} f = funExt homFunExt
where
homFunExt : (x : fst (A ⟅ c ⟆))
→ (((ϕ ⟦ d ⟧) ((A ⟪ f ⟫) x)) , ((A ⟪ f ⟫) x , refl)) ≡ ((F ⟪ f ⟫) ((ϕ ⟦ c ⟧) x) , (A ⟪ f ⟫) x , _)
homFunExt x = ΣPathP ((λ i → (ϕ .N-hom f i) x) , fibersEqIfRepsEqNatTrans ϕ refl)
comm : (A⇒LK) ●ᵛ ψ ≡ ϕ
comm = makeNatTransPath (funExt λ x → refl)
ηTrans .N-hom {sliceob {A} α} {sliceob {B} β} (slicehom ϕ eq)
= SliceHom-≡-intro' (makeNatTransPath (funExt (λ c → funExt λ a → natFunExt c a)))
where
natFunExt : ∀ (c : C .ob) (a : fst (A ⟅ c ⟆))
→ ((β ⟦ c ⟧) ((ϕ ⟦ c ⟧) a) , (ϕ ⟦ c ⟧) a , _) ≡ ((α ⟦ c ⟧) a , (ϕ ⟦ c ⟧) a , _)
natFunExt c a = ΣPathP ((λ i → ((eq i) ⟦ c ⟧) a) , fibersEqIfRepsEqNatTrans β refl)
-- isomorphism follows from typeSectionIso
ηIso : ∀ (sob : SliceCat .ob)
→ isIsoC {C = SliceCat} (ηTrans ⟦ sob ⟧)
ηIso sob@(sliceob ϕ) = sliceIso _ _ (FUNCTORIso _ _ _ isIsoCf)
where
isIsoCf : ∀ (c : C .ob)
→ isIsoC (ηTrans .N-ob sob .S-hom ⟦ c ⟧)
isIsoCf c = CatIso→isIso (Iso→CatIso (typeSectionIso {isSetB = snd (F ⟅ c ⟆)} (ϕ ⟦ c ⟧)))
-- ========================================
-- ε : KL ≅ 𝟙
-- ========================================
module _ where
open Iso
open Morphism renaming (isIso to isIsoC)
-- the iso we deserve
-- says that a type family at x is isomorphic to the fiber over x of that type family packaged up
typeFiberIso : ∀ {ℓ ℓ'} {A : Type ℓ} {isSetA : isSet A} {x} (B : A → Type ℓ')
→ Iso (B x) (fiber {A = Σ[ a ∈ A ] B a} (λ (x , _) → x) x)
typeFiberIso {x = x} _ .fun b = (x , b) , refl
typeFiberIso _ .inv ((a , b) , eq) = subst _ eq b
typeFiberIso {isSetA = isSetA} {x = x} B .rightInv ((a , b) , eq)
= fibersEqIfRepsEq {isSetB = isSetA} (λ (x , _) → x) (ΣPathP (sym eq , symP (transport-filler (λ i → B (eq i)) b)))
typeFiberIso {x = x} _ .leftInv b = sym (transport-filler refl b)
-- the natural isomorphism
-- applies typeFiberIso (inv)
εTrans : (K ∘F L) ⇒ 𝟙⟨ PreShv (∫ᴾ F) ℓS ⟩
εTrans .N-ob P = natTrans γ-ob (λ f → funExt (λ a → γ-homFunExt f a))
where
KLP = K ⟅ L ⟅ P ⟆ ⟆
γ-ob : (el : (∫ᴾ F) .ob)
→ (fst (KLP ⟅ el ⟆) → fst (P ⟅ el ⟆) )
γ-ob el@(c , _) = typeFiberIso {isSetA = snd (F ⟅ c ⟆)} (λ x → fst (P ⟅ c , x ⟆)) .inv
-- naturality
-- the annoying part is all the substs
γ-homFunExt : ∀ {el2 el1} → (f' : (∫ᴾ F) [ el2 , el1 ])
→ (∀ (a : fst (KLP ⟅ el1 ⟆)) → γ-ob el2 ((KLP ⟪ f' ⟫) a) ≡ (P ⟪ f' ⟫) (γ-ob el1 a))
γ-homFunExt {d , y} {c , x} f'@(f , comm) a@((x' , X') , eq) i
= comp (λ j → fst (P ⟅ d , eq' j ⟆)) (λ j → λ { (i = i0) → left j
; (i = i1) → right j }) ((P ⟪ f , refl ⟫) X')
where
-- fiber equality proof that we get from an application of KLP
eq' = snd ((KLP ⟪ f' ⟫) a)
-- top right of the commuting diagram
-- "remove" the subst from the inside
right : PathP (λ i → fst (P ⟅ d , eq' i ⟆)) ((P ⟪ f , refl ⟫) X') ((P ⟪ f , comm ⟫) (subst _ eq X'))
right i = (P ⟪ f , refl≡comm i ⟫) (X'≡subst i)
where
refl≡comm : PathP (λ i → (eq' i) ≡ (F ⟪ f ⟫) (eq i)) refl comm
refl≡comm = isOfHLevel→isOfHLevelDep 1 (λ (v , w) → snd (F ⟅ d ⟆) v ((F ⟪ f ⟫) w)) refl comm λ i → (eq' i , eq i)
X'≡subst : PathP (λ i → fst (P ⟅ c , eq i ⟆)) X' (subst _ eq X')
X'≡subst = transport-filler (λ i → fst (P ⟅ c , eq i ⟆)) X'
-- bottom left of the commuting diagram
-- "remove" the subst from the outside
left : PathP (λ i → fst (P ⟅ d , eq' i ⟆)) ((P ⟪ f , refl ⟫) X') (subst (λ v → fst (P ⟅ d , v ⟆)) eq' ((P ⟪ f , refl ⟫) X'))
left = transport-filler (λ i → fst (P ⟅ d , eq' i ⟆)) ((P ⟪ f , refl ⟫) X')
εTrans .N-hom {P} {Q} α = makeNatTransPath (funExt λ cx → funExt λ xX' → ε-homFunExt cx xX')
where
KLP = K ⟅ L ⟅ P ⟆ ⟆
-- naturality of the above construction applies a similar argument as in `γ-homFunExt`
ε-homFunExt : ∀ (cx@(c , x) : (∫ᴾ F) .ob) (xX'@((x' , X') , eq) : fst (KLP ⟅ cx ⟆))
→ subst (λ v → fst (Q ⟅ c , v ⟆)) (snd ((K ⟪ L ⟪ α ⟫ ⟫ ⟦ cx ⟧) xX')) ((α ⟦ c , x' ⟧) X')
≡ (α ⟦ c , x ⟧) (subst _ eq X')
ε-homFunExt cx@(c , x) xX'@((x' , X') , eq) i
= comp (λ j → fst (Q ⟅ c , eq j ⟆)) (λ j → λ { (i = i0) → left j
; (i = i1) → right j }) ((α ⟦ c , x' ⟧) X')
where
eq' : x' ≡ x
eq' = snd ((K ⟪ L ⟪ α ⟫ ⟫ ⟦ cx ⟧) xX')
right : PathP (λ i → fst (Q ⟅ c , eq i ⟆)) ((α ⟦ c , x' ⟧) X') ((α ⟦ c , x ⟧) (subst _ eq X'))
right i = (α ⟦ c , eq i ⟧) (X'≡subst i)
where
-- this is exactly the same as the one from before, can refactor?
X'≡subst : PathP (λ i → fst (P ⟅ c , eq i ⟆)) X' (subst _ eq X')
X'≡subst = transport-filler _ _
-- extracted out type since need to use in in 'left' body as well
leftTy : (x' ≡ x) → Type _
leftTy eq* = PathP (λ i → fst (Q ⟅ c , eq* i ⟆)) ((α ⟦ c , x' ⟧) X') (subst (λ v → fst (Q ⟅ c , v ⟆)) eq' ((α ⟦ c , x' ⟧) X'))
left : leftTy eq
left = subst
(λ eq* → leftTy eq*)
eq'≡eq
(transport-filler _ _)
where
eq'≡eq : eq' ≡ eq
eq'≡eq = snd (F ⟅ c ⟆) _ _ eq' eq
εIso : ∀ (P : PreShv (∫ᴾ F) ℓS .ob)
→ isIsoC {C = PreShv (∫ᴾ F) ℓS} (εTrans ⟦ P ⟧)
εIso P = FUNCTORIso _ _ _ isIsoC'
where
isIsoC' : ∀ (cx : (∫ᴾ F) .ob)
→ isIsoC {C = SET _} ((εTrans ⟦ P ⟧) ⟦ cx ⟧)
isIsoC' cx@(c , _) = CatIso→isIso (Iso→CatIso (invIso (typeFiberIso {isSetA = snd (F ⟅ c ⟆)} _)))
-- putting it all together
preshvSlice≃preshvElem : SliceCat ≃ᶜ PreShv (∫ᴾ F) ℓS
preshvSlice≃preshvElem .func = K
preshvSlice≃preshvElem .isEquiv .invFunc = L
preshvSlice≃preshvElem .isEquiv .η .trans = ηTrans
preshvSlice≃preshvElem .isEquiv .η .nIso = ηIso
preshvSlice≃preshvElem .isEquiv .ε .trans = εTrans
preshvSlice≃preshvElem .isEquiv .ε .nIso = εIso
| {
"alphanum_fraction": 0.4555971021,
"avg_line_length": 43.8871794872,
"ext": "agda",
"hexsha": "d296b1ced337f5bf9ca3b18f3aecf56090c77fcd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Categories/Presheaf/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Categories/Presheaf/Properties.agda",
"max_line_length": 145,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Categories/Presheaf/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6594,
"size": 17116
} |
import Lvl
open import Type
module Data.IndexedList {ℓ ℓᵢ} (T : Type{ℓ}) {I : Type{ℓᵢ}} where
private variable i : I
record Index : Type{ℓᵢ Lvl.⊔ ℓ} where
constructor intro
field
∅ : I
_⊰_ : T → I → I
module _ ((intro ∅ᵢ _⊰ᵢ_) : Index) where
data IndexedList : I → Type{ℓᵢ Lvl.⊔ ℓ} where
∅ : IndexedList(∅ᵢ)
_⊰_ : (x : T) → IndexedList(i) → IndexedList(x ⊰ᵢ i)
infixr 1000 _⊰_
private variable ℓₚ : Lvl.Level
private variable index : Index
private variable l : IndexedList i
module _ (P : ∀{i} → IndexedList i → Type{ℓₚ}) where
elim : P(∅) → (∀{i}(x)(l : IndexedList i) → P(l) → P(x ⊰ l)) → ((l : IndexedList i) → P(l))
elim base next ∅ = base
elim base next (x ⊰ l) = next x l (elim base next l)
module LongOper where
pattern empty = ∅
pattern prepend elem list = elem ⊰ list
pattern singleton x = x ⊰ ∅
| {
"alphanum_fraction": 0.598173516,
"avg_line_length": 25.7647058824,
"ext": "agda",
"hexsha": "ef6b6c75511a79dfadf21077fc3f3a1b3516408b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/IndexedList.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/IndexedList.agda",
"max_line_length": 95,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/IndexedList.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 357,
"size": 876
} |
module _ where
open import Common.Prelude
open import Common.Reflection
const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A
const x _ = x
id : ∀ {a} {A : Set a} → A → A
id x = x
first : Tactic
first = give (def (quote const) [])
second : Tactic
second = give (def (quote const) (arg (argInfo visible relevant) (def (quote id) []) ∷ []))
number : Nat
number = unquote first 6 false
boolean : Bool
boolean = unquote second 5 true
| {
"alphanum_fraction": 0.630733945,
"avg_line_length": 18.1666666667,
"ext": "agda",
"hexsha": "6ec51600b017c5f743845992cf907a9e13cb8e9d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/UnquoteWithArgs.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/UnquoteWithArgs.agda",
"max_line_length": 91,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/UnquoteWithArgs.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 144,
"size": 436
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Presheaf where
open import Categories.Category
open import Categories.Functor
Presheaf : ∀ {o ℓ e} {o′ ℓ′ e′} (C : Category o ℓ e) (V : Category o′ ℓ′ e′) → Set _
Presheaf C V = Functor C.op V
where module C = Category C | {
"alphanum_fraction": 0.6914893617,
"avg_line_length": 31.3333333333,
"ext": "agda",
"hexsha": "79b91380ee86cca139384093534488a8709ae449",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Presheaf.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Presheaf.agda",
"max_line_length": 84,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Presheaf.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 91,
"size": 282
} |
-- Andreas, 2018-10-13, re issue #3244
--
-- Error should be raised when --no-prop and trying to use Prop
-- (universe-polymorphic or not).
{-# OPTIONS --no-prop #-}
data False {ℓ} : Prop ℓ where
-- Expected: Failure with error message
| {
"alphanum_fraction": 0.6736401674,
"avg_line_length": 21.7272727273,
"ext": "agda",
"hexsha": "d5f6cc2d6e80b2086e2f2b7d00b4f6890f78eb1d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Prop-Disabled.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Prop-Disabled.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Prop-Disabled.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 69,
"size": 239
} |
open import Data.Nat using (ℕ)
open import Data.Vec using (Vec; []; _∷_; map)
open import Dipsy.Polarity renaming (pos to +; neg to -)
module Dipsy.Form
(FOp : {n : ℕ} (as : Vec Polarity n) (b : Polarity) → Set)
where
data Form : Set where
op : {n : ℕ} {as : Vec Polarity n} {b : Polarity}
→ FOp as b → Vec Form n → Form
| {
"alphanum_fraction": 0.6167664671,
"avg_line_length": 27.8333333333,
"ext": "agda",
"hexsha": "78d61a830567c54567d67397ea896aa22122d5af",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wenkokke/dipsy",
"max_forks_repo_path": "src/Dipsy/Form.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wenkokke/dipsy",
"max_issues_repo_path": "src/Dipsy/Form.agda",
"max_line_length": 60,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/Dipsy",
"max_stars_repo_path": "src/Dipsy/Form.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-10T13:43:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-10T13:43:29.000Z",
"num_tokens": 120,
"size": 334
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Monoidal.Structure where
open import Level
open import Categories.Category
open import Categories.Category.Monoidal.Core
open import Categories.Category.Monoidal.Braided
open import Categories.Category.Monoidal.Symmetric
record MonoidalCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
field
U : Category o ℓ e
monoidal : Monoidal U
module U = Category U
module monoidal = Monoidal monoidal
open U public
open monoidal public
record BraidedMonoidalCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
field
U : Category o ℓ e
monoidal : Monoidal U
braided : Braided monoidal
module U = Category U
module monoidal = Monoidal monoidal
module braided = Braided braided
monoidalCategory : MonoidalCategory o ℓ e
monoidalCategory = record { U = U ; monoidal = monoidal }
open U public
open braided public
record SymmetricMonoidalCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
field
U : Category o ℓ e
monoidal : Monoidal U
symmetric : Symmetric monoidal
module U = Category U
module monoidal = Monoidal monoidal
module symmetric = Symmetric symmetric
braidedMonoidalCategory : BraidedMonoidalCategory o ℓ e
braidedMonoidalCategory = record
{ U = U
; monoidal = monoidal
; braided = symmetric.braided
}
open U public
open symmetric public
open BraidedMonoidalCategory braidedMonoidalCategory public
using (monoidalCategory)
| {
"alphanum_fraction": 0.7007822686,
"avg_line_length": 25.5666666667,
"ext": "agda",
"hexsha": "d67e3d9758c8fe3f5a2eec2e8de72ff63e7db1fe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "TOTBWF/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Structure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "TOTBWF/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Structure.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TOTBWF/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Structure.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 426,
"size": 1534
} |
{-# OPTIONS --without-K --safe #-}
open import Level
-- This is really a degenerate version of Categories.Category.Instance.One
-- Here SingletonSet is not given an explicit name, it is an alias for Lift o ⊤
module Categories.Category.Instance.SingletonSet where
open import Data.Unit using (⊤; tt)
open import Relation.Binary.PropositionalEquality using (refl)
open import Categories.Category.Instance.Sets
open import Categories.Category.Instance.Setoids
import Categories.Object.Terminal as Term
module _ {o : Level} where
open Term (Sets o)
SingletonSet-⊤ : Terminal
SingletonSet-⊤ = record { ⊤ = Lift o ⊤ ; !-unique = λ _ → refl }
module _ {c ℓ : Level} where
open Term (Setoids c ℓ)
SingletonSetoid-⊤ : Terminal
SingletonSetoid-⊤ = record { ⊤ = record { Carrier = Lift c ⊤ ; _≈_ = λ _ _ → Lift ℓ ⊤ } }
| {
"alphanum_fraction": 0.7185990338,
"avg_line_length": 30.6666666667,
"ext": "agda",
"hexsha": "25a066421c9c676960104020d9b54d88856b3980",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/SingletonSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/SingletonSet.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/SingletonSet.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 228,
"size": 828
} |
------------------------------------------------------------------------------
-- Well-founded induction on the relation LTC
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.List.WF-Relation.LT-Cons.Induction.Acc.WF-I where
open import FOTC.Base
open import FOTC.Data.List
open import FOTC.Data.List.WF-Relation.LT-Cons
open import FOTC.Data.List.WF-Relation.LT-Cons.PropertiesI
open import FOTC.Data.List.WF-Relation.LT-Length
open import FOTC.Data.List.WF-Relation.LT-Length.Induction.Acc.WF-I
open import FOTC.Induction.WF
-- Parametrized modules
open module S = FOTC.Induction.WF.Subrelation {List} {LTC} LTC→LTL
------------------------------------------------------------------------------
-- The relation LTL is well-founded (using the subrelation combinator).
LTC-wf : WellFounded LTC
LTC-wf Lxs = well-founded LTL-wf Lxs
-- Well-founded induction on the relation LTC.
LTC-wfind : (A : D → Set) →
(∀ {xs} → List xs → (∀ {ys} → List ys → LTC ys xs → A ys) → A xs) →
∀ {xs} → List xs → A xs
LTC-wfind A = WellFoundedInduction LTC-wf
| {
"alphanum_fraction": 0.5520186335,
"avg_line_length": 39.0303030303,
"ext": "agda",
"hexsha": "18bab93b5fde75c87bb04c90c5fafe79e40b25aa",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Cons/Induction/Acc/WF-I.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Cons/Induction/Acc/WF-I.agda",
"max_line_length": 79,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Cons/Induction/Acc/WF-I.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 321,
"size": 1288
} |
------------------------------------------------------------------------
-- Binary trees
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Tree {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq
open import Prelude hiding (id)
open import Bag-equivalence eq
open import Bijection eq using (_↔_)
open import Function-universe eq
open import List eq
------------------------------------------------------------------------
-- Binary trees
data Tree (A : Type) : Type where
leaf : Tree A
node : (l : Tree A) (x : A) (r : Tree A) → Tree A
-- Any.
AnyT : ∀ {A} → (A → Type) → (Tree A → Type)
AnyT P leaf = ⊥
AnyT P (node l x r) = AnyT P l ⊎ P x ⊎ AnyT P r
-- Membership.
infix 4 _∈T_
_∈T_ : ∀ {A} → A → Tree A → Type
x ∈T t = AnyT (_≡_ x) t
-- Bag equivalence.
_≈-bagT_ : ∀ {A} → Tree A → Tree A → Type
t₁ ≈-bagT t₂ = ∀ x → x ∈T t₁ ↔ x ∈T t₂
------------------------------------------------------------------------
-- Singleton
-- Singleton trees.
singleton : {A : Type} → A → Tree A
singleton x = node leaf x leaf
-- Any lemma for singleton.
Any-singleton : ∀ {A : Type} (P : A → Type) {x} →
AnyT P (singleton x) ↔ P x
Any-singleton P {x} =
AnyT P (singleton x) ↔⟨⟩
⊥ ⊎ P x ⊎ ⊥ ↔⟨ ⊎-left-identity ⟩
P x ⊎ ⊥ ↔⟨ ⊎-right-identity ⟩
P x □
------------------------------------------------------------------------
-- Flatten
-- Inorder flattening of a tree.
flatten : {A : Type} → Tree A → List A
flatten leaf = []
flatten (node l x r) = flatten l ++ x ∷ flatten r
-- Flatten does not add or remove any elements.
flatten-lemma : {A : Type} (t : Tree A) → ∀ z → z ∈ flatten t ↔ z ∈T t
flatten-lemma leaf = λ z → ⊥ □
flatten-lemma (node l x r) = λ z →
z ∈ flatten l ++ x ∷ flatten r ↔⟨ Any-++ (_≡_ z) _ _ ⟩
z ∈ flatten l ⊎ z ≡ x ⊎ z ∈ flatten r ↔⟨ flatten-lemma l z ⊎-cong (z ≡ x □) ⊎-cong flatten-lemma r z ⟩
z ∈T l ⊎ z ≡ x ⊎ z ∈T r □
------------------------------------------------------------------------
-- Bags can (perhaps) be defined as binary trees quotiented by bag
-- equivalence
-- Agda doesn't support quotients, so the following type is used to
-- state that two quotients are isomorphic.
--
-- Note that this definition may not actually make sense if the
-- relations _≈A_ and _≈B_ are not /proof-irrelevant/ equivalence
-- relations.
record _/_↔_/_ (A : Type) (_≈A_ : A → A → Type)
(B : Type) (_≈B_ : B → B → Type) : Type where
field
to : A → B
to-resp : ∀ x y → x ≈A y → to x ≈B to y
from : B → A
from-resp : ∀ x y → x ≈B y → from x ≈A from y
to∘from : ∀ x → to (from x) ≈B x
from∘to : ∀ x → from (to x) ≈A x
-- Lists quotiented by bag equivalence are isomorphic to binary trees
-- quotiented by bag equivalence (assuming that one can actually
-- quotient by bag equivalence, and that the definition of _/_↔_/_
-- makes sense in this case).
list-bags↔tree-bags : {A : Type} → List A / _≈-bag_ ↔ Tree A / _≈-bagT_
list-bags↔tree-bags {A} = record
{ to = to-tree
; to-resp = λ xs ys xs≈ys z →
z ∈T to-tree xs ↔⟨ to-tree-lemma xs z ⟩
z ∈ xs ↔⟨ xs≈ys z ⟩
z ∈ ys ↔⟨ inverse $ to-tree-lemma ys z ⟩
z ∈T to-tree ys □
; from = flatten
; from-resp = λ t₁ t₂ t₁≈t₂ z →
z ∈ flatten t₁ ↔⟨ flatten-lemma t₁ z ⟩
z ∈T t₁ ↔⟨ t₁≈t₂ z ⟩
z ∈T t₂ ↔⟨ inverse $ flatten-lemma t₂ z ⟩
z ∈ flatten t₂ □
; to∘from = to∘from
; from∘to = from∘to
}
where
to-tree : List A → Tree A
to-tree = foldr (node leaf) leaf
to-tree-lemma : ∀ xs z → z ∈T to-tree xs ↔ z ∈ xs
to-tree-lemma [] = λ z → ⊥ □
to-tree-lemma (x ∷ xs) = λ z →
⊥ ⊎ z ≡ x ⊎ z ∈T to-tree xs ↔⟨ id ⊎-cong id ⊎-cong to-tree-lemma xs z ⟩
⊥ ⊎ z ≡ x ⊎ z ∈ xs ↔⟨ ⊎-assoc ⟩
(⊥ ⊎ z ≡ x) ⊎ z ∈ xs ↔⟨ ⊎-left-identity ⊎-cong id ⟩
z ≡ x ⊎ z ∈ xs □
to-tree-++ : ∀ {P : A → Type} xs {ys} →
AnyT P (to-tree (xs ++ ys)) ↔
AnyT P (to-tree xs) ⊎ AnyT P (to-tree ys)
to-tree-++ {P} [] {ys} =
AnyT P (to-tree ys) ↔⟨ inverse ⊎-left-identity ⟩
⊥ ⊎ AnyT P (to-tree ys) □
to-tree-++ {P} (x ∷ xs) {ys} =
⊥ ⊎ P x ⊎ AnyT P (to-tree (xs ++ ys)) ↔⟨ id ⊎-cong id ⊎-cong to-tree-++ xs ⟩
⊥ ⊎ P x ⊎ AnyT P (to-tree xs) ⊎ AnyT P (to-tree ys) ↔⟨ lemma _ _ _ _ ⟩
(⊥ ⊎ P x ⊎ AnyT P (to-tree xs)) ⊎ AnyT P (to-tree ys) □
where
lemma : (A B C D : Type) → A ⊎ B ⊎ C ⊎ D ↔ (A ⊎ B ⊎ C) ⊎ D
lemma A B C D =
A ⊎ B ⊎ C ⊎ D ↔⟨ ⊎-assoc ⟩
(A ⊎ B) ⊎ C ⊎ D ↔⟨ ⊎-assoc ⟩
((A ⊎ B) ⊎ C) ⊎ D ↔⟨ inverse ⊎-assoc ⊎-cong id ⟩
(A ⊎ B ⊎ C) ⊎ D □
to∘from : ∀ t → to-tree (flatten t) ≈-bagT t
to∘from leaf = λ z → ⊥ □
to∘from (node l x r) = λ z →
z ∈T to-tree (flatten l ++ x ∷ flatten r) ↔⟨ to-tree-++ (flatten l) ⟩
z ∈T to-tree (flatten l) ⊎ ⊥ ⊎ z ≡ x ⊎ z ∈T to-tree (flatten r) ↔⟨ to∘from l z ⊎-cong id ⊎-cong id ⊎-cong to∘from r z ⟩
z ∈T l ⊎ ⊥ ⊎ z ≡ x ⊎ z ∈T r ↔⟨ id ⊎-cong ⊎-left-identity ⟩
z ∈T l ⊎ z ≡ x ⊎ z ∈T r □
from∘to : ∀ xs → flatten (to-tree xs) ≈-bag xs
from∘to [] = λ z → ⊥ □
from∘to (x ∷ xs) = λ z →
z ≡ x ⊎ z ∈ flatten (to-tree xs) ↔⟨ id ⊎-cong from∘to xs z ⟩
z ≡ x ⊎ z ∈ xs □
| {
"alphanum_fraction": 0.4471288515,
"avg_line_length": 34.2035928144,
"ext": "agda",
"hexsha": "a5c17d263c7a53aedbc5a232feda7eb3962fb421",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Tree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Tree.agda",
"max_line_length": 124,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Tree.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2105,
"size": 5712
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.cubical.Square
open import lib.types.Bool
open import lib.types.Cofiber
open import lib.types.Lift
open import lib.types.Paths
open import lib.types.Pointed
open import lib.types.PushoutFmap
open import lib.types.Sigma
open import lib.types.Span
open import lib.types.Suspension
open import lib.types.Wedge
module lib.types.BigWedge where
module _ {i j} {A : Type i} where
{- the function for cofiber -}
bigwedge-f : (X : A → Ptd j) → A → Σ A (de⊙ ∘ X)
bigwedge-f X a = a , pt (X a)
bigwedge-span : (A → Ptd j) → Span
bigwedge-span X = cofiber-span (bigwedge-f X)
BigWedge : (A → Ptd j) → Type (lmax i j)
BigWedge X = Cofiber (bigwedge-f X)
bwbase : {X : A → Ptd j} → BigWedge X
bwbase = cfbase
bwin : {X : A → Ptd j} → (a : A) → de⊙ (X a) → BigWedge X
bwin = curry cfcod
⊙BigWedge : (A → Ptd j) → Ptd (lmax i j)
⊙BigWedge X = ⊙[ BigWedge X , bwbase ]
bwglue : {X : A → Ptd j} → (a : A) → bwbase {X} == bwin a (pt (X a))
bwglue = cfglue
⊙bwin : {X : A → Ptd j} → (a : A) → X a ⊙→ ⊙BigWedge X
⊙bwin a = (bwin a , ! (bwglue a))
module BigWedgeElim {X : A → Ptd j} {k} {P : BigWedge X → Type k}
(base* : P bwbase) (in* : (a : A) (x : de⊙ (X a)) → P (bwin a x))
(glue* : (a : A) → base* == in* a (pt (X a)) [ P ↓ bwglue a ])
= CofiberElim {f = bigwedge-f X} {P = P} base* (uncurry in*) glue*
BigWedge-elim = BigWedgeElim.f
module BigWedgeRec {X : A → Ptd j} {k} {C : Type k}
(base* : C) (in* : (a : A) → de⊙ (X a) → C)
(glue* : (a : A) → base* == in* a (pt (X a)))
= CofiberRec {f = bigwedge-f X} {C = C} base* (uncurry in*) glue*
module _ {i j₀ j₁} {A : Type i} {X₀ : A → Ptd j₀} {X₁ : A → Ptd j₁}
(Xeq : ∀ a → X₀ a ⊙≃ X₁ a) where
bigwedge-span-emap-r : SpanEquiv (cofiber-span (bigwedge-f X₀)) (cofiber-span (bigwedge-f X₁))
bigwedge-span-emap-r = span-map (idf _) (Σ-fmap-r λ a → fst (⊙–> (Xeq a))) (idf _)
(comm-sqr λ _ → idp) (comm-sqr λ a → pair= idp (⊙–>-pt (Xeq a))) ,
idf-is-equiv _ , Σ-isemap-r (λ a → snd (Xeq a)) , idf-is-equiv _
BigWedge-emap-r : BigWedge X₀ ≃ BigWedge X₁
BigWedge-emap-r = Pushout-emap bigwedge-span-emap-r
⊙BigWedge-emap-r : ⊙BigWedge X₀ ⊙≃ ⊙BigWedge X₁
⊙BigWedge-emap-r = ≃-to-⊙≃ BigWedge-emap-r idp
module _ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁}
(X : A₁ → Ptd j) (Aeq : A₀ ≃ A₁) where
bigwedge-span-emap-l : SpanEquiv (cofiber-span (bigwedge-f (X ∘ –> Aeq))) (cofiber-span (bigwedge-f X))
bigwedge-span-emap-l = span-map (idf _) (Σ-fmap-l (de⊙ ∘ X) (–> Aeq)) (–> Aeq)
(comm-sqr λ _ → idp) (comm-sqr λ _ → idp) ,
idf-is-equiv _ , Σ-isemap-l (de⊙ ∘ X) (snd Aeq) , snd Aeq
BigWedge-emap-l : BigWedge (X ∘ –> Aeq) ≃ BigWedge X
BigWedge-emap-l = Pushout-emap bigwedge-span-emap-l
⊙BigWedge-emap-l : ⊙BigWedge (X ∘ –> Aeq) ⊙≃ ⊙BigWedge X
⊙BigWedge-emap-l = ≃-to-⊙≃ BigWedge-emap-l idp
module _ {i j} {A : Type i} (X : A → Ptd j) where
extract-glue-from-BigWedge-is-const :
∀ bw → extract-glue {s = bigwedge-span X} bw == north
extract-glue-from-BigWedge-is-const = BigWedge-elim
idp
(λ x y → ! (merid x))
(↓-='-from-square ∘ λ x →
ExtractGlue.glue-β x ∙v⊡
tr-square (merid x)
⊡v∙ ! (ap-cst north (cfglue x)))
{- A BigWedge indexed by Bool is just a binary Wedge -}
module _ {i} (Pick : Bool → Ptd i) where
BigWedge-Bool-equiv-Wedge : BigWedge Pick ≃ Wedge (Pick true) (Pick false)
BigWedge-Bool-equiv-Wedge = equiv f g f-g g-f
where
module F = BigWedgeRec {X = Pick}
{C = Wedge (Pick true) (Pick false)}
(winl (pt (Pick true)))
(λ {true → winl; false → winr})
(λ {true → idp; false → wglue})
module G = WedgeRec {X = Pick true} {Y = Pick false}
{C = BigWedge Pick}
(bwin true)
(bwin false)
(! (bwglue true) ∙ bwglue false)
f = F.f
g = G.f
abstract
f-g : ∀ w → f (g w) == w
f-g = Wedge-elim
(λ _ → idp)
(λ _ → idp)
(↓-∘=idf-in' f g $
ap f (ap g wglue)
=⟨ ap (ap f) G.glue-β ⟩
ap f (! (bwglue true) ∙ bwglue false)
=⟨ ap-∙ f (! (bwglue true)) (bwglue false) ⟩
ap f (! (bwglue true)) ∙ ap f (bwglue false)
=⟨ ap-! f (bwglue true)
|in-ctx (λ w → w ∙ ap f (bwglue false)) ⟩
! (ap f (bwglue true)) ∙ ap f (bwglue false)
=⟨ F.glue-β true
|in-ctx (λ w → ! w ∙ ap f (bwglue false)) ⟩
ap f (bwglue false)
=⟨ F.glue-β false ⟩
wglue =∎)
g-f : ∀ bw → g (f bw) == bw
g-f = BigWedge-elim
(! (bwglue true))
(λ {true → λ _ → idp; false → λ _ → idp})
(λ {true → ↓-∘=idf-from-square g f $
ap (ap g) (F.glue-β true) ∙v⊡
bl-square (bwglue true);
false → ↓-∘=idf-from-square g f $
(ap (ap g) (F.glue-β false) ∙ G.glue-β) ∙v⊡
lt-square (! (bwglue true)) ⊡h vid-square})
module _ {i j} {A : Type i} (dec : has-dec-eq A) {X : Ptd j} where
{- The dependent version increases the complexity significantly
and we do not need it. -}
⊙bwproj-in : A → A → X ⊙→ X
⊙bwproj-in a a' with dec a a'
... | inl _ = ⊙idf _
... | inr _ = ⊙cst
module BigWedgeProj (a : A) = BigWedgeRec
{X = λ _ → X}
(pt X)
(λ a' → fst (⊙bwproj-in a a'))
(λ a' → ! (snd (⊙bwproj-in a a')))
bwproj : A → BigWedge (λ _ → X) → de⊙ X
bwproj = BigWedgeProj.f
⊙bwproj : A → ⊙BigWedge (λ _ → X) ⊙→ X
⊙bwproj a = bwproj a , idp
abstract
bwproj-bwin-diag : (a : A) → bwproj a ∘ bwin a ∼ idf (de⊙ X)
bwproj-bwin-diag a x with dec a a
... | inl _ = idp
... | inr a≠a with a≠a idp
... | ()
bwproj-bwin-≠ : {a a' : A} → a ≠ a' → bwproj a ∘ bwin a' ∼ cst (pt X)
bwproj-bwin-≠ {a} {a'} a≠a' x with dec a a'
... | inr _ = idp
... | inl a=a' with a≠a' a=a'
... | ()
module _ {i j k} {A : Type i} (dec : has-dec-eq A) {X : Ptd j} (a : A) where
abstract
private
bwproj-BigWedge-emap-r-lift-in : ∀ a'
→ bwproj dec {X = ⊙Lift {j = k} X} a ∘ bwin a' ∘ lift
∼ lift {j = k} ∘ bwproj dec {X = X} a ∘ bwin a'
bwproj-BigWedge-emap-r-lift-in a' with dec a a'
... | inl _ = λ _ → idp
... | inr _ = λ _ → idp
bwproj-BigWedge-emap-r-lift-glue' : ∀ (a' : A)
→ ap (lift {j = k}) (! (snd (⊙bwproj-in dec {X = X} a a')))
== ! (snd (⊙bwproj-in dec {X = ⊙Lift {j = k} X} a a')) ∙' bwproj-BigWedge-emap-r-lift-in a' (pt X)
bwproj-BigWedge-emap-r-lift-glue' a' with dec a a'
... | inl _ = idp
... | inr _ = idp
bwproj-BigWedge-emap-r-lift-glue : ∀ (a' : A)
→ idp == bwproj-BigWedge-emap-r-lift-in a' (pt X)
[ (λ x → bwproj dec {X = ⊙Lift {j = k} X} a (–> (BigWedge-emap-r (λ _ → ⊙lift-equiv {j = k})) x)
== lift {j = k} (bwproj dec {X = X} a x)) ↓ bwglue a' ]
bwproj-BigWedge-emap-r-lift-glue a' = ↓-='-in' $
ap (lift {j = k} ∘ bwproj dec a) (bwglue a')
=⟨ ap-∘ (lift {j = k}) (bwproj dec a) (bwglue a') ⟩
ap (lift {j = k}) (ap (bwproj dec a) (bwglue a'))
=⟨ ap (ap (lift {j = k})) $ BigWedgeProj.glue-β dec a a' ⟩
ap (lift {j = k}) (! (snd (⊙bwproj-in dec a a')))
=⟨ bwproj-BigWedge-emap-r-lift-glue' a' ⟩
! (snd (⊙bwproj-in dec a a')) ∙' bwproj-BigWedge-emap-r-lift-in a' (pt X)
=⟨ ap (_∙' bwproj-BigWedge-emap-r-lift-in a' (pt X)) $
( ! $ BigWedgeProj.glue-β dec a a') ⟩
ap (bwproj dec a) (bwglue a') ∙' bwproj-BigWedge-emap-r-lift-in a' (pt X)
=⟨ ap (λ p → ap (bwproj dec a) p
∙' bwproj-BigWedge-emap-r-lift-in a' (pt X)) $
(! $ PushoutFmap.glue-β (fst (bigwedge-span-emap-r (λ _ → ⊙lift-equiv {j = k}))) a') ⟩
ap (bwproj dec a) (ap (–> (BigWedge-emap-r (λ _ → ⊙lift-equiv {j = k}))) (bwglue a'))
∙' bwproj-BigWedge-emap-r-lift-in a' (pt X)
=⟨ ap (_∙' bwproj-BigWedge-emap-r-lift-in a' (pt X)) $
(∘-ap (bwproj dec a) (–> (BigWedge-emap-r (λ _ → ⊙lift-equiv {j = k}))) (bwglue a')) ⟩
ap (bwproj dec a ∘ –> (BigWedge-emap-r (λ _ → ⊙lift-equiv {j = k}))) (bwglue a')
∙' bwproj-BigWedge-emap-r-lift-in a' (pt X)
=∎
bwproj-BigWedge-emap-r-lift :
bwproj dec {X = ⊙Lift {j = k} X} a ∘ –> (BigWedge-emap-r (λ _ → ⊙lift-equiv {j = k}))
∼ lift {j = k} ∘ bwproj dec a
bwproj-BigWedge-emap-r-lift =
BigWedge-elim {X = λ _ → X} idp
bwproj-BigWedge-emap-r-lift-in
bwproj-BigWedge-emap-r-lift-glue
| {
"alphanum_fraction": 0.5228384992,
"avg_line_length": 36.5191489362,
"ext": "agda",
"hexsha": "a65149a5ce43f8509fecf9fe5e4be74a8613e1d2",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/BigWedge.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/BigWedge.agda",
"max_line_length": 106,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/BigWedge.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 3623,
"size": 8582
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Functor.Constant where
open import Categories.Category
open import Categories.Functor
Constant : ∀ {o′ ℓ′ e′} {D : Category o′ ℓ′ e′} (x : Category.Obj D) → ∀ {o ℓ e} {C : Category o ℓ e} → Functor C D
Constant {D = D} x = record
{ F₀ = λ _ → x
; F₁ = λ _ → D.id
; identity = D.Equiv.refl
; homomorphism = D.Equiv.sym D.identityˡ
; F-resp-≡ = λ _ → D.Equiv.refl
}
where
module D = Category D
| {
"alphanum_fraction": 0.4741935484,
"avg_line_length": 36.4705882353,
"ext": "agda",
"hexsha": "775e9a26b1ad421b7afbf49c5a8861e13b8ed1ca",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Functor/Constant.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Functor/Constant.agda",
"max_line_length": 115,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Functor/Constant.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 168,
"size": 620
} |
{-# OPTIONS --allow-unsolved-metas #-}
postulate
A : Set
a : A
record Q .(x : A) : Set where
field q : A
record R : Set where
field s : Q _
t : A
t = Q.q s
| {
"alphanum_fraction": 0.5438596491,
"avg_line_length": 12.2142857143,
"ext": "agda",
"hexsha": "28ee3e3647cd45fe81a22047dc0bed0dc0f3bee8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1013.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1013.agda",
"max_line_length": 38,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1013.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 65,
"size": 171
} |
module LinkedList.Properties where
open import LinkedList
open import Data.Nat
open import Data.Nat.Properties.Simple
open import Relation.Nullary.Decidable using (False)
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; cong; cong₂; trans; sym; inspect)
open PropEq.≡-Reasoning
incr-suc : ∀ {A x} → {xs : LinkedList A} → ⟦ incr x xs ⟧ ≡ suc ⟦ xs ⟧
incr-suc {_} {x} {xs} = refl
decr-pred : ∀ {A} → {xs : LinkedList A} → (p : False (null? xs)) → ⟦ decr xs p ⟧ ≡ pred ⟦ xs ⟧
decr-pred {xs = [] } ()
decr-pred {xs = x ∷ xs} p = refl
++-left-indentity : ∀ {A} → {xs : LinkedList A} → [] ++ xs ≡ xs
++-left-indentity {A} {xs} = refl
++-right-indentity : ∀ {A} → {xs : LinkedList A} → [] ++ xs ≡ xs
++-right-indentity {A} {xs} = refl
⟦xs++ys⟧≡⟦xs⟧+⟦ys⟧ : ∀ {A} → (xs : LinkedList A)
→ (ys : LinkedList A)
→ ⟦ xs ++ ys ⟧ ≡ ⟦ xs ⟧ + ⟦ ys ⟧
⟦xs++ys⟧≡⟦xs⟧+⟦ys⟧ [] ys = refl
⟦xs++ys⟧≡⟦xs⟧+⟦ys⟧ (x ∷ xs) ys = cong suc (⟦xs++ys⟧≡⟦xs⟧+⟦ys⟧ xs ys)
| {
"alphanum_fraction": 0.5500963391,
"avg_line_length": 32.4375,
"ext": "agda",
"hexsha": "e5e48ff3fdc0912f34c9bc764f6519eaedc98737",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/LinkedList/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/LinkedList/Properties.agda",
"max_line_length": 94,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/LinkedList/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 418,
"size": 1038
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Nat.Order.Recursive where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Data.Empty
open import Cubical.Data.Unit
open import Cubical.Data.Nat.Base
open import Cubical.Data.Nat.Properties
open import Cubical.Relation.Nullary
infix 4 _≤_ _<_
_≤_ : ℕ → ℕ → Type₀
zero ≤ _ = Unit
suc m ≤ zero = ⊥
suc m ≤ suc n = m ≤ n
_<_ : ℕ → ℕ → Type₀
m < n = suc m ≤ n
data Trichotomy (m n : ℕ) : Type₀ where
lt : m < n → Trichotomy m n
eq : m ≡ n → Trichotomy m n
gt : n < m → Trichotomy m n
private
variable
k l m n : ℕ
m≤n-isProp : isProp (m ≤ n)
m≤n-isProp {zero} = isPropUnit
m≤n-isProp {suc m} {zero} = isProp⊥
m≤n-isProp {suc m} {suc n} = m≤n-isProp {m} {n}
≤-k+ : m ≤ n → k + m ≤ k + n
≤-k+ {k = zero} m≤n = m≤n
≤-k+ {k = suc k} m≤n = ≤-k+ {k = k} m≤n
≤-+k : m ≤ n → m + k ≤ n + k
≤-+k {m} {n} {k} m≤n
= transport (λ i → +-comm k m i ≤ +-comm k n i) (≤-k+ {m} {n} {k} m≤n)
≤-refl : ∀ m → m ≤ m
≤-refl zero = _
≤-refl (suc m) = ≤-refl m
≤-trans : k ≤ m → m ≤ n → k ≤ n
≤-trans {zero} _ _ = _
≤-trans {suc k} {suc m} {suc n} = ≤-trans {k} {m} {n}
≤-antisym : m ≤ n → n ≤ m → m ≡ n
≤-antisym {zero} {zero} _ _ = refl
≤-antisym {suc m} {suc n} m≤n n≤m = cong suc (≤-antisym m≤n n≤m)
≤-k+-cancel : k + m ≤ k + n → m ≤ n
≤-k+-cancel {k = zero} m≤n = m≤n
≤-k+-cancel {k = suc k} m≤n = ≤-k+-cancel {k} m≤n
≤-+k-cancel : m + k ≤ n + k → m ≤ n
≤-+k-cancel {m} {k} {n}
= ≤-k+-cancel {k} {m} {n} ∘ transport λ i → +-comm m k i ≤ +-comm n k i
¬m<m : ¬ m < m
¬m<m {suc m} = ¬m<m {m}
≤0→≡0 : n ≤ 0 → n ≡ 0
≤0→≡0 {zero} _ = refl
¬m+n<m : ¬ m + n < m
¬m+n<m {suc m} = ¬m+n<m {m}
<-weaken : m < n → m ≤ n
<-weaken {zero} _ = _
<-weaken {suc m} {suc n} = <-weaken {m}
Trichotomy-suc : Trichotomy m n → Trichotomy (suc m) (suc n)
Trichotomy-suc (lt m<n) = lt m<n
Trichotomy-suc (eq m≡n) = eq (cong suc m≡n)
Trichotomy-suc (gt n<m) = gt n<m
_≟_ : ∀ m n → Trichotomy m n
zero ≟ zero = eq refl
zero ≟ suc n = lt _
suc m ≟ zero = gt _
suc m ≟ suc n = Trichotomy-suc (m ≟ n)
k≤k+n : ∀ k → k ≤ k + n
k≤k+n zero = _
k≤k+n (suc k) = k≤k+n k
n≤k+n : ∀ n → n ≤ k + n
n≤k+n {k} n = transport (λ i → n ≤ +-comm n k i) (k≤k+n n)
| {
"alphanum_fraction": 0.530711445,
"avg_line_length": 23.3298969072,
"ext": "agda",
"hexsha": "c604f7dcf6dbedae5f623dea0cce98ec3e28e25c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Data/Nat/Order/Recursive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Data/Nat/Order/Recursive.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Data/Nat/Order/Recursive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1112,
"size": 2263
} |
{-# OPTIONS --show-irrelevant #-}
module Control.Category.Product where
open import Level using (suc; _⊔_)
open import Relation.Binary hiding (_⇒_)
open import Control.Category
open Category using () renaming (Obj to obj; _⇒_ to _▹_⇒_)
-- Pre-Product
-- Given a category C and two objects A, B in C we can define a new category
-- whose objects are triples of an object A×B in C that has
-- morphisms fst, snd to A and B.
-- We call such a triple a pre-product of A and B.
-- Alternatively, it could be called a bislice.
record PreProductObj {o h e} (C : Category o h e) (A B : obj C) : Set (o ⊔ h ⊔ e) where
open Category C -- public
field
A×B : Obj
fst : A×B ⇒ A
snd : A×B ⇒ B
-- In the following, we fix a category C and two objects A and B.
module PreProduct {o h e} {C : Category o h e} {A B : obj C} where
-- We use _⇒_ for C's morphisms and _∘_ for their composition.
open module C = Category C using (_⇒_; _⟫_; _∘_; _≈_; ≈-refl; ≈-sym; ≈-trans; ∘-cong)
-- We consider only pre-products of A and B.
Obj = PreProductObj C A B
open PreProductObj using () renaming (A×B to A×B◃_)
-- A morphism in the category of pre-products of A and B
-- from pre-product (X, f, g) to (A×B, fst, snd)
-- is a morphism ⟨f,g⟩ : X ⇒ A×B such that fst ∘ ⟨f,g⟩ ≡ f
-- and snd ∘ ⟨f,g⟩ ≡ g.
record IsPair (P : Obj) {X} (f : X ⇒ A) (g : X ⇒ B) (⟨f,g⟩ : X ⇒ (A×B◃ P))
: Set (o ⊔ h ⊔ e)
where
constructor β-pair
open PreProductObj P using (fst; snd)
field
β-fst : (fst ∘ ⟨f,g⟩) ≈ f
β-snd : (snd ∘ ⟨f,g⟩) ≈ g
record PreProductMorphism (O P : Obj) : Set (o ⊔ h ⊔ e)
where
constructor pair
open PreProductObj O using () renaming (A×B to X; fst to f; snd to g)
open PreProductObj P
field
⟨f,g⟩ : X ⇒ A×B
isPair : IsPair P f g ⟨f,g⟩
open IsPair isPair public
open PreProductMorphism using (isPair)
-- We write O ⇉ P for a morphism from pre-product O to pre-product P.
_⇉_ = PreProductMorphism
-- The identity pre-product morphism is just the identity morphism.
id : ∀ {P} → P ⇉ P
id = record
{ ⟨f,g⟩ = C.id
; isPair = record
{ β-fst = C.id-first
; β-snd = C.id-first
}
}
-- The composition of pre-product morphims is just the composition in C.
comp : ∀ {N O P} → N ⇉ O → O ⇉ P → N ⇉ P
comp (pair o (β-pair o-fst o-snd)) (pair p (β-pair p-fst p-snd)) = record
{ ⟨f,g⟩ = o ⟫ p
; isPair = record
{ β-fst = ≈-trans (C.∘-assoc o) (≈-trans (∘-cong ≈-refl p-fst) o-fst)
; β-snd = ≈-trans (C.∘-assoc o) (≈-trans (∘-cong ≈-refl p-snd) o-snd)
}
}
-- Thus, we have a category of PreProducts, inheriting the laws from C.
PreProductHom : (O P : Obj) → Setoid _ _
PreProductHom O P = record
{ Carrier = PreProductMorphism O P
; _≈_ = λ h i → PreProductMorphism.⟨f,g⟩ h ≈ PreProductMorphism.⟨f,g⟩ i
; isEquivalence = record
{ refl = ≈-refl
; sym = ≈-sym
; trans = ≈-trans
}
}
preProductIsCategory : IsCategory PreProductHom
preProductIsCategory = record
{ ops = record
{ id = id
; _⟫_ = comp
}
; laws = record
{ id-first = C.id-first
; id-last = C.id-last
; ∘-assoc = λ f → C.∘-assoc _
; ∘-cong = C.∘-cong
}
}
open PreProduct public
{-
record Pair {o h} {C : Category o h} {A B} (P : PreProductObj C A B)
{X} (f : C ▹ X ⇒ A) (g : C ▹ X ⇒ B) : Set (h ⊔ o)
where
open PreProductObj P
field
⟨f,g⟩ : C ▹ X ⇒ A×B
isPair : IsPair P f g ⟨f,g⟩
unique : ∀ {h} → IsPair P f g h → h ≈ ⟨f,g⟩
open IsPair isPair public
-- The product of A and B is the terminal object in the PreProductCategory
record IsProduct {o h} {C : Category o h} {A B} (P : PreProductObj C A B) : Set (h ⊔ o) where
open Category C
open PreProductObj P
field
pairing : ∀ {X} (f : X ⇒ A) (g : X ⇒ B) → Pair P f g
record Product {o h} (C : Category o h) (A B : obj C) : Set (h ⊔ o) where
field
preProduct : PreProductObj C A B
isProduct : IsProduct preProduct
open PreProductObj preProduct public
open IsProduct isProduct public
{-
record IsProduct {o h} (C : Category o h) (A B A×B : Obj C) : Set (h ⊔ o) where
open Category C
field
fst : A×B ⇒ A
snd : A×B ⇒ B
pair : ∀ {X} (f : X ⇒ A) (g : X ⇒ B) → X ⇒ A×B
β-fst : ∀ {X} {f : X ⇒ A} {g : X ⇒ B} → fst ∘ pair f g ≡ f
β-snd : ∀ {X} {f : X ⇒ A} {g : X ⇒ B} → fst ∘ pair f g ≡ f
-}
-- Category with Products
HasProducts : ∀ {o h} (C : Category o h) → Set (o ⊔ h)
HasProducts C = ∀ (A B : obj C) → Product C A B
-}
| {
"alphanum_fraction": 0.5686444348,
"avg_line_length": 27.325443787,
"ext": "agda",
"hexsha": "d78ca81af880c65d0c9d1f62d930c74c2c6c042f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Category/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Category/Product.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Category/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1728,
"size": 4618
} |
-- Andreas, 2012-05-04
module PruningNonMillerPatternFail where
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
data Nat : Set where
zero : Nat
suc : Nat -> Nat
-- bad variable y is not in head position under lambda, so do not prune
fail4 : let X : Nat -> Nat -> Nat
X = _ -- λ x y → suc x
Y : Nat → ((Nat → Nat) → Nat) -> Nat
Y = _ -- More than one solution:
-- λ x f → x
-- λ x f → f (λ z → x)
in (C : Set) ->
(({x y : Nat} -> X x x ≡ suc (Y x (λ k → k y))) ->
({x y : Nat} -> Y x (λ k → k x) ≡ x) ->
({x y : Nat} -> X (Y x (λ k → k y)) y ≡ X x x) -> C) -> C
fail4 C k = k refl refl refl
-- this should not solve, since there are more than one solutions for Y
| {
"alphanum_fraction": 0.4526445264,
"avg_line_length": 32.52,
"ext": "agda",
"hexsha": "ec6024bb11a6910bfeb313bd12e1b41958c85f60",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/PruningNonMillerPatternFail.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/PruningNonMillerPatternFail.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/PruningNonMillerPatternFail.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 272,
"size": 813
} |
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Operations.Unary where
open import Data.Binary.Definitions
open import Function
inc⁺⁺ : 𝔹⁺ → 𝔹⁺
inc⁺⁺ 1ᵇ = O ∷ 1ᵇ
inc⁺⁺ (O ∷ xs) = I ∷ xs
inc⁺⁺ (I ∷ xs) = O ∷ inc⁺⁺ xs
inc⁺ : 𝔹 → 𝔹⁺
inc⁺ 0ᵇ = 1ᵇ
inc⁺ (0< x) = inc⁺⁺ x
inc : 𝔹 → 𝔹
inc x = 0< inc⁺ x
dec⁺⁺ : Bit → 𝔹⁺ → 𝔹⁺
dec⁺⁺ I xs = O ∷ xs
dec⁺⁺ O 1ᵇ = 1ᵇ
dec⁺⁺ O (x ∷ xs) = I ∷ dec⁺⁺ x xs
dec⁺ : 𝔹⁺ → 𝔹
dec⁺ 1ᵇ = 0ᵇ
dec⁺ (x ∷ xs) = 0< dec⁺⁺ x xs
dec : 𝔹 → 𝔹
dec 0ᵇ = 0ᵇ
dec (0< x) = dec⁺ x
| {
"alphanum_fraction": 0.5139442231,
"avg_line_length": 15.6875,
"ext": "agda",
"hexsha": "89b65c1f89fd71154d07655ccb5f9989aa2faa4e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-binary",
"max_forks_repo_path": "Data/Binary/Operations/Unary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-binary",
"max_issues_repo_path": "Data/Binary/Operations/Unary.agda",
"max_line_length": 41,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-binary",
"max_stars_repo_path": "Data/Binary/Operations/Unary.agda",
"max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z",
"num_tokens": 332,
"size": 502
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Homotopy.Group.S3 where
{-
This file contains a summary of what remains for π₄S³≅ℤ/2 to be proved.
See the module π₄S³ at the end of this file.
-}
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Data.Nat
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.Int
renaming (_·_ to _·ℤ_ ; _+_ to _+ℤ_)
open import Cubical.Homotopy.Group.Base
open import Cubical.Homotopy.HopfInvariant.Base
open import Cubical.Homotopy.HopfInvariant.Homomorphism
open import Cubical.Homotopy.HopfInvariant.HopfMap
open import Cubical.Homotopy.Whitehead
open import Cubical.Algebra.Group.Instances.IntMod
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.Sn
open import Cubical.HITs.SetTruncation
open import Cubical.Algebra.Group
renaming (ℤ to ℤGroup ; Bool to BoolGroup ; Unit to UnitGroup)
open import Cubical.Algebra.Group.ZAction
[_]× : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ}
→ π' (suc n) X × π' (suc m) X → π' (suc (n + m)) X
[_]× (f , g) = [ f ∣ g ]π'
-- Some type abbreviations (unproved results)
π₃S²-gen : Type
π₃S²-gen = gen₁-by (π'Gr 2 (S₊∙ 2)) ∣ HopfMap ∣₂
π₄S³≅ℤ/something : GroupEquiv ℤGroup (π'Gr 2 (S₊∙ 2))
→ Type
π₄S³≅ℤ/something eq =
GroupIso (π'Gr 3 (S₊∙ 3))
(ℤ/ abs (invEq (fst eq)
[ ∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂ ]×))
miniLem₁ : Type
miniLem₁ = (g : ℤ) → gen₁-by ℤGroup g → (g ≡ 1) ⊎ (g ≡ -1)
miniLem₂ : Type
miniLem₂ = (ϕ : GroupEquiv ℤGroup ℤGroup) (g : ℤ)
→ (abs g ≡ abs (fst (fst ϕ) g))
-- some minor group lemmas
groupLem-help : miniLem₁ → (g : ℤ) →
gen₁-by ℤGroup g →
(ϕ : GroupHom ℤGroup ℤGroup) →
(fst ϕ g ≡ pos 1) ⊎ (fst ϕ g ≡ negsuc 0)
→ isEquiv (fst ϕ)
groupLem-help grlem1 g gen ϕ = main (grlem1 g gen)
where
isEquiv- : isEquiv (-_)
isEquiv- = isoToIsEquiv (iso -_ -_ -Involutive -Involutive)
lem : fst ϕ (pos 1) ≡ pos 1 → fst ϕ ≡ idfun _
lem p = funExt lem2
where
lem₁ : (x₁ : ℕ) → fst ϕ (pos x₁) ≡ idfun ℤ (pos x₁)
lem₁ zero = IsGroupHom.pres1 (snd ϕ)
lem₁ (suc zero) = p
lem₁ (suc (suc n)) =
IsGroupHom.pres· (snd ϕ) (pos (suc n)) 1
∙ cong₂ _+ℤ_ (lem₁ (suc n)) p
lem2 : (x₁ : ℤ) → fst ϕ x₁ ≡ idfun ℤ x₁
lem2 (pos n) = lem₁ n
lem2 (negsuc zero) =
IsGroupHom.presinv (snd ϕ) 1 ∙ cong (λ x → pos 0 - x) p
lem2 (negsuc (suc n)) =
(cong (fst ϕ) (sym (+Comm (pos 0) (negsuc (suc n))))
∙ IsGroupHom.presinv (snd ϕ) (pos (suc (suc n))))
∙∙ +Comm (pos 0) _
∙∙ cong (-_) (lem₁ (suc (suc n)))
lem₂ : fst ϕ (negsuc 0) ≡ pos 1 → fst ϕ ≡ -_
lem₂ p = funExt lem2
where
s = IsGroupHom.presinv (snd ϕ) (negsuc 0)
∙∙ +Comm (pos 0) _
∙∙ cong -_ p
lem2 : (n : ℤ) → fst ϕ n ≡ - n
lem2 (pos zero) = IsGroupHom.pres1 (snd ϕ)
lem2 (pos (suc zero)) = s
lem2 (pos (suc (suc n))) =
IsGroupHom.pres· (snd ϕ) (pos (suc n)) 1
∙ cong₂ _+ℤ_ (lem2 (pos (suc n))) s
lem2 (negsuc zero) = p
lem2 (negsuc (suc n)) =
IsGroupHom.pres· (snd ϕ) (negsuc n) (negsuc 0)
∙ cong₂ _+ℤ_ (lem2 (negsuc n)) p
main : (g ≡ pos 1) ⊎ (g ≡ negsuc 0)
→ (fst ϕ g ≡ pos 1) ⊎ (fst ϕ g ≡ negsuc 0)
→ isEquiv (fst ϕ)
main (inl p) =
J (λ g p → (fst ϕ g ≡ pos 1)
⊎ (fst ϕ g ≡ negsuc 0) → isEquiv (fst ϕ))
(λ { (inl x) → subst isEquiv (sym (lem x)) (snd (idEquiv _))
; (inr x) → subst isEquiv
(sym (lem₂ (IsGroupHom.presinv (snd ϕ) (pos 1)
∙ (cong (λ x → pos 0 - x) x))))
isEquiv- })
(sym p)
main (inr p) =
J (λ g p → (fst ϕ g ≡ pos 1)
⊎ (fst ϕ g ≡ negsuc 0) → isEquiv (fst ϕ))
(λ { (inl x) → subst isEquiv (sym (lem₂ x)) isEquiv-
; (inr x) → subst isEquiv
(sym (lem (
IsGroupHom.presinv (snd ϕ) (negsuc 0)
∙ cong (λ x → pos 0 - x) x)))
(snd (idEquiv _))})
(sym p)
groupLem : {G : Group₀}
→ miniLem₁
→ GroupEquiv ℤGroup G
→ (g : fst G)
→ gen₁-by G g
→ (ϕ : GroupHom G ℤGroup)
→ (fst ϕ g ≡ 1) ⊎ (fst ϕ g ≡ -1)
→ isEquiv (fst ϕ)
groupLem {G = G} s =
GroupEquivJ
(λ G _ → (g : fst G)
→ gen₁-by G g
→ (ϕ : GroupHom G ℤGroup)
→ (fst ϕ g ≡ 1) ⊎ (fst ϕ g ≡ -1)
→ isEquiv (fst ϕ))
(groupLem-help s)
-- summary
module π₄S³
(mini-lem₁ : miniLem₁)
(mini-lem₂ : miniLem₂)
(ℤ≅π₃S² : GroupEquiv ℤGroup (π'Gr 2 (S₊∙ 2)))
(gen-by-HopfMap : π₃S²-gen)
(π₄S³≅ℤ/whitehead : π₄S³≅ℤ/something ℤ≅π₃S²)
(hopfWhitehead :
abs (HopfInvariant-π' 0
([ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]×))
≡ 2)
where
π₄S³ = π'Gr 3 (S₊∙ 3)
hopfInvariantEquiv : GroupEquiv (π'Gr 2 (S₊∙ 2)) ℤGroup
fst (fst hopfInvariantEquiv) = HopfInvariant-π' 0
snd (fst hopfInvariantEquiv) =
groupLem mini-lem₁ ℤ≅π₃S² ∣ HopfMap ∣₂
gen-by-HopfMap
(GroupHom-HopfInvariant-π' 0)
(abs→⊎ _ _ HopfInvariant-HopfMap)
snd hopfInvariantEquiv = snd (GroupHom-HopfInvariant-π' 0)
lem : ∀ {G : Group₀} (ϕ ψ : GroupEquiv ℤGroup G) (g : fst G)
→ abs (invEq (fst ϕ) g) ≡ abs (invEq (fst ψ) g)
lem =
GroupEquivJ
(λ G ϕ → (ψ : GroupEquiv ℤGroup G) (g : fst G)
→ abs (invEq (fst ϕ) g) ≡ abs (invEq (fst ψ) g))
λ ψ → mini-lem₂ (invGroupEquiv ψ)
main : GroupIso π₄S³ (ℤ/ 2)
main = subst (GroupIso π₄S³)
(cong (ℤ/_) (lem ℤ≅π₃S² (invGroupEquiv (hopfInvariantEquiv)) _
∙ hopfWhitehead))
π₄S³≅ℤ/whitehead
| {
"alphanum_fraction": 0.5530612245,
"avg_line_length": 32.131147541,
"ext": "agda",
"hexsha": "41757fc04fbf25d90f09318e92b2f2a35e17c9cb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Group/S3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Group/S3.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Group/S3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2447,
"size": 5880
} |
-- Andreas, 2021-05-06, issue #5365
-- Error message for incomplete binding in do-block.
postulate _>>=_ : Set
test = do
x ←
-- Expected: proper error like
--
-- Incomplete binding x ←
-- <EOF><ERROR>
-- ...
| {
"alphanum_fraction": 0.6338028169,
"avg_line_length": 15.2142857143,
"ext": "agda",
"hexsha": "0b75a9804314a50b3144eae1088be671e753b767",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue5365.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue5365.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue5365.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 65,
"size": 213
} |
-- Andreas, 2017-10-19, issue #2808
-- The fix of #1077 was not general enough.
-- module _ where -- If this is added, we get the error about duplicate module
postulate A : Set -- Accepted if this is deleted
module Issue2808 where
record Issue2808 : Set where
-- Expected error: (at the postulate)
-- Illegal declaration(s) before top-level module
-- We now raise this error if the first module of the file
-- has the same name as the inferred top-level module.
| {
"alphanum_fraction": 0.729787234,
"avg_line_length": 27.6470588235,
"ext": "agda",
"hexsha": "6ecc8417b87031e8cb77fa25d630967aa01fbfcf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2808.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2808.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2808.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 120,
"size": 470
} |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Standard evaluation for MTerm
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Syntax.MType as MType
import Parametric.Syntax.MTerm as MTerm
import Parametric.Denotation.MValue as MValue
module Parametric.Denotation.MEvaluation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(ValConst : MTerm.ValConstStructure Const)
(CompConst : MTerm.CompConstStructure Const)
(cbnToCompConst : MTerm.CbnToCompConstStructure Const CompConst)
(cbvToCompConst : MTerm.CbvToCompConstStructure Const CompConst)
where
open Type.Structure Base
open MType.Structure Base
open MTerm.Structure Const ValConst CompConst cbnToCompConst cbvToCompConst
open MValue.Structure Base ⟦_⟧Base
open import Base.Data.DependentList
open import Base.Denotation.Notation
-- Extension Point: Evaluation of constants.
ValStructure : Set
ValStructure = ∀ {τ} → ValConst τ → ⟦ τ ⟧
CompStructure : Set
CompStructure = ∀ {τ} → CompConst τ → ⟦ τ ⟧
module Structure
(⟦_⟧ValBase : ValStructure)
(⟦_⟧CompBase : CompStructure)
where
-- We provide: Evaluation of arbitrary value/computation terms.
⟦_⟧Comp : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValContext → ⟦ τ ⟧CompType
⟦_⟧Val : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValContext → ⟦ τ ⟧ValType
⟦ vVar x ⟧Val ρ = ⟦ x ⟧ValVar ρ
⟦ vThunk x ⟧Val ρ = ⟦ x ⟧Comp ρ
⟦ vConst c ⟧Val ρ = ⟦ c ⟧ValBase
⟦ cConst c ⟧Comp ρ = ⟦ c ⟧CompBase
⟦ cForce x ⟧Comp ρ = ⟦ x ⟧Val ρ
⟦ cReturn v ⟧Comp ρ = ⟦ v ⟧Val ρ
⟦ cAbs c ⟧Comp ρ = λ x → ⟦ c ⟧Comp (x • ρ)
⟦ cApp s t ⟧Comp ρ = ⟦ s ⟧Comp ρ (⟦ t ⟧Val ρ)
⟦ c₁ into c₂ ⟧Comp ρ = ⟦ c₂ ⟧Comp (⟦ c₁ ⟧Comp ρ • ρ)
meaningOfVal : ∀ {Γ τ} → Meaning (Val Γ τ)
meaningOfVal = meaning ⟦_⟧Val
-- Evaluation.agda also proves weaken-sound.
| {
"alphanum_fraction": 0.6320662768,
"avg_line_length": 31.0909090909,
"ext": "agda",
"hexsha": "ace3956baef2f407fe592f01ed226559f659901b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Parametric/Denotation/MEvaluation.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Parametric/Denotation/MEvaluation.agda",
"max_line_length": 75,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Parametric/Denotation/MEvaluation.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 692,
"size": 2052
} |
{- Denotational semantics of the types in the category of temporal types. -}
module Semantics.Types where
open import Syntax.Types
open import CategoryTheory.Instances.Reactive hiding (_+_)
open import TemporalOps.Box
open import TemporalOps.Diamond
-- Denotation of types
⟦_⟧ₜ : Type -> τ
⟦ Unit ⟧ₜ = ⊤
⟦ A & B ⟧ₜ = ⟦ A ⟧ₜ ⊗ ⟦ B ⟧ₜ
⟦ A + B ⟧ₜ = ⟦ A ⟧ₜ ⊕ ⟦ B ⟧ₜ
⟦ A => B ⟧ₜ = ⟦ A ⟧ₜ ⇒ ⟦ B ⟧ₜ
⟦ Event A ⟧ₜ = ◇ ⟦ A ⟧ₜ
⟦ Signal A ⟧ₜ = □ ⟦ A ⟧ₜ
| {
"alphanum_fraction": 0.601750547,
"avg_line_length": 25.3888888889,
"ext": "agda",
"hexsha": "f845d17294a547f8707f5935221d11e4c329d19f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/Semantics/Types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/Semantics/Types.agda",
"max_line_length": 76,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/Semantics/Types.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 208,
"size": 457
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.