Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- Products ------------------------------------------------------------------------ module Data.Product where open import Data.Function open import Relation.Nullary.Core infixr 4 _,_ infix 4 ,_ infixr 2 _×_ _-×-_ _-,-_ ------------------------------------------------------------------------ -- Definition data Σ (A : Set) (B : A → Set) : Set where _,_ : (x : A) (y : B x) → Σ A B ∃ : {A : Set} → (A → Set) → Set ∃ = Σ _ ∄ : {A : Set} → (A → Set) → Set ∄ P = ¬ ∃ P ∃₂ : {A : Set} {B : A → Set} (C : (x : A) → B x → Set) → Set ∃₂ C = ∃ λ a → ∃ λ b → C a b _×_ : (A B : Set) → Set A × B = Σ A (λ _ → B) ------------------------------------------------------------------------ -- Functions -- Sometimes the first component can be inferred. ,_ : ∀ {A} {B : A → Set} {x} → B x → ∃ B , y = _ , y proj₁ : ∀ {A B} → Σ A B → A proj₁ (x , y) = x proj₂ : ∀ {A B} → (p : Σ A B) → B (proj₁ p) proj₂ (x , y) = y <_,_> : ∀ {A} {B : A → Set} {C : ∀ {x} → B x → Set} (f : (x : A) → B x) → ((x : A) → C (f x)) → ((x : A) → Σ (B x) C) < f , g > x = (f x , g x) map : ∀ {A B P Q} → (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q map f g = < f ∘ proj₁ , g ∘ proj₂ > zip : ∀ {A B C P Q R} → (_∙_ : A → B → C) → (∀ {x y} → P x → Q y → R (x ∙ y)) → Σ A P → Σ B Q → Σ C R zip _∙_ _∘_ p₁ p₂ = (proj₁ p₁ ∙ proj₁ p₂ , proj₂ p₁ ∘ proj₂ p₂) swap : ∀ {A B} → A × B → B × A swap = < proj₂ , proj₁ > _-×-_ : ∀ {A B} → (A → B → Set) → (A → B → Set) → (A → B → Set) f -×- g = f -[ _×_ ]₁- g _-,-_ : ∀ {A B C D} → (A → B → C) → (A → B → D) → (A → B → C × D) f -,- g = f -[ _,_ ]- g curry : {A : Set} {B : A → Set} {C : Σ A B → Set} → ((p : Σ A B) → C p) → ((x : A) → (y : B x) → C (x , y)) curry f x y = f (x , y) uncurry : {A : Set} {B : A → Set} {C : Σ A B → Set} → ((x : A) → (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry f (p₁ , p₂) = f p₁ p₂
{ "alphanum_fraction": 0.3250249252, "avg_line_length": 25.075, "ext": "agda", "hexsha": "3e5484bbefd5c0465f9e8081b7690117ecf479bd", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Product.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Product.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Product.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 861, "size": 2006 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Equiv.Base where open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Core.Glue public using ( isEquiv ; equiv-proof ; _≃_ ; equivFun ; equivProof ) fiber : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ') fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y -- The identity equivalence idIsEquiv : ∀ {ℓ} (A : Type ℓ) → isEquiv (idfun A) equiv-proof (idIsEquiv A) y = ((y , refl) , λ z i → z .snd (~ i) , λ j → z .snd (~ i ∨ j)) idEquiv : ∀ {ℓ} (A : Type ℓ) → A ≃ A idEquiv A .fst = idfun A idEquiv A .snd = idIsEquiv A
{ "alphanum_fraction": 0.6122754491, "avg_line_length": 31.8095238095, "ext": "agda", "hexsha": "ba94946869715cbe3a882174e68edf9ae9544758", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Foundations/Equiv/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Foundations/Equiv/Base.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Foundations/Equiv/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 261, "size": 668 }
module Prelude.List.Base where open import Prelude.Nat open import Prelude.Bool open import Prelude.Maybe open import Prelude.Product open import Prelude.Empty open import Prelude.Function open import Prelude.Functor open import Prelude.Applicative open import Prelude.Monad open import Prelude.Decidable open import Prelude.Equality open import Prelude.Ord open import Prelude.Semiring open import Prelude.Strict open import Prelude.Variables open import Agda.Builtin.List public infixr 5 _++_ pattern [_] x = x ∷ [] singleton : A → List A singleton x = x ∷ [] map : (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs _++_ : List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys length : List A → Nat length [] = 0 length (x ∷ xs) = 1 + length xs foldr : (A → B → B) → B → List A → B foldr f z [] = z foldr f z (x ∷ xs) = f x (foldr f z xs) foldl : (B → A → B) → B → List A → B foldl f z [] = z foldl f z (x ∷ xs) = foldl f (f z x) xs foldl! : (B → A → B) → B → List A → B foldl! f z [] = z foldl! f z (x ∷ xs) = force (f z x) λ z′ → foldl! f z′ xs reverse : List A → List A reverse xs = foldl (flip _∷_) [] xs concat : List (List A) → List A concat = foldr _++_ [] concatMap : (A → List B) → List A → List B concatMap f = concat ∘ map f filter : (A → Bool) → List A → List A filter p [] = [] filter p (x ∷ xs) = if p x then x ∷ filter p xs else filter p xs catMaybes : List (Maybe A) → List A catMaybes [] = [] catMaybes (x ∷ xs) = maybe (catMaybes xs) (_∷ catMaybes xs) x all? : (A → Bool) → List A → Bool all? p [] = true all? p (x ∷ xs) = p x && all? p xs any? : (A → Bool) → List A → Bool any? p [] = false any? p (x ∷ xs) = p x || any? p xs take : Nat → List A → List A take zero _ = [] take (suc n) [] = [] take (suc n) (x ∷ xs) = x ∷ take n xs drop : Nat → List A → List A drop zero xs = xs drop (suc n) [] = [] drop (suc n) (x ∷ xs) = drop n xs takeWhile : (A → Bool) → List A → List A takeWhile p [] = [] takeWhile p (x ∷ xs) = if p x then x ∷ takeWhile p xs else [] dropWhile : (A → Bool) → List A → List A dropWhile p [] = [] dropWhile p (x ∷ xs) = if p x then dropWhile p xs else x ∷ xs splitAt : Nat → List A → List A × List A splitAt zero xs = [] , xs splitAt (suc n) [] = [] , [] splitAt (suc n) (x ∷ xs) = first (x ∷_) (splitAt n xs) null : List A → Bool null [] = true null (_ ∷ _) = false elem : ⦃ Eq A ⦄ → A → List A → Bool elem x xs = not (null (filter (isYes ∘ _==_ x) xs)) lookup : ⦃ Eq A ⦄ → List (A × B) → A → Maybe B lookup [] _ = nothing lookup ((x₁ , v) ∷ xs) x = ifYes (x == x₁) then just v else lookup xs x nub : ⦃ Eq A ⦄ → List A → List A nub [] = [] nub (x ∷ xs) = x ∷ filter (isNo ∘ (x ==_)) (nub xs) index : List A → Nat → Maybe A index [] _ = nothing index (x ∷ xs) 0 = just x index (x ∷ xs) (suc i) = index xs i replicate : Nat → A → List A replicate zero x = [] replicate (suc n) x = x ∷ replicate n x zipWith : (A → B → C) → List A → List B → List C zipWith f [] _ = [] zipWith f _ [] = [] zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys zip : List A → List B → List (A × B) zip = zipWith _,_ punctuate : A → List A → List A punctuate z [] = [] punctuate z [ x ] = [ x ] punctuate z (x ∷ xs) = x ∷ z ∷ punctuate z xs replicateA : ⦃ Applicative F ⦄ → Nat → F A → F (List A) replicateA zero _ = pure [] replicateA (suc n) x = pure _∷_ <*> x <*> replicateA n x module _ ⦃ _ : Semiring A ⦄ where sum : List A → A sum = foldl! _+_ zro product : List A → A product = foldl! _*_ one sumR : List A → A sumR = foldr _+_ zro productR : List A → A productR = foldr _*_ one module _ ⦃ _ : Ord A ⦄ where insert : A → List A → List A insert x [] = x ∷ [] insert x (y ∷ xs) = if x <? y then x ∷ y ∷ xs else y ∷ insert x xs sort : List A → List A sort [] = [] sort (x ∷ xs) = insert x (sort xs) infix 10 from_for_ from_to_ from_for_step_ from-to-step from_for_ : Nat → Nat → List Nat from 0 for 0 = [] -- make strict from a for 0 = [] from a for suc d = a ∷ from suc a for d from_for_step_ : Nat → Nat → Nat → List Nat from 0 for 0 step _ = [] -- make strict from a for 0 step _ = [] from a for suc c step d = a ∷ from a + d for c step d from_to_ : Nat → Nat → List Nat from a to b = from a for (suc b - a) syntax from-to-step d a b = from a to b step d from-to-step : (d : Nat) {{_ : NonZero d}} → Nat → Nat → List Nat from-to-step d a b = from a for 1 + (b - a) div d step d --- Equality --- cons-inj-tail : x ∷ xs ≡ y ∷ ys → xs ≡ ys cons-inj-tail refl = refl cons-inj-head : x ∷ xs ≡ y ∷ ys → x ≡ y cons-inj-head refl = refl private dec-∷ : Dec (x ≡ y) → Dec (xs ≡ ys) → Dec (x ∷ xs ≡ y ∷ ys) dec-∷ (yes refl) (yes refl) = yes refl dec-∷ _ (no neq) = no λ eq → neq (cons-inj-tail eq) dec-∷ (no neq) _ = no λ eq → neq (cons-inj-head eq) eqList : ⦃ Eq A ⦄ → (xs ys : List A) → Dec (xs ≡ ys) eqList [] [] = yes refl eqList [] (_ ∷ _) = no (λ ()) eqList (_ ∷ _) [] = no (λ ()) eqList (x ∷ xs) (y ∷ ys) = dec-∷ (x == y) (eqList xs ys) instance EqList : ⦃ Eq A ⦄ → Eq (List A) _==_ {{EqList}} = eqList --- Ord --- data LessList (_<_ : A → A → Set ℓ) : List A → List A → Set ℓ where nil<cons : LessList _<_ [] (x ∷ xs) head< : x < y → LessList _<_ (x ∷ xs) (y ∷ ys) tail< : LessList _<_ xs ys → LessList _<_ (x ∷ xs) (x ∷ ys) compareCons : ∀ {_<_ : A → A → Set ℓ} → Comparison _<_ x y → Comparison (LessList _<_) xs ys → Comparison (LessList _<_) (x ∷ xs) (y ∷ ys) compareCons (less lt) _ = less (head< lt) compareCons (greater gt) _ = greater (head< gt) compareCons (equal refl) (less lt) = less (tail< lt) compareCons (equal refl) (greater gt) = greater (tail< gt) compareCons (equal refl) (equal refl) = equal refl compareList : ∀ {_<_ : A → A → Set ℓ} (cmp : ∀ x y → Comparison _<_ x y) (xs ys : List A) → Comparison (LessList _<_) xs ys compareList cmp [] [] = equal refl compareList cmp [] (x ∷ ys) = less nil<cons compareList cmp (x ∷ xs) [] = greater nil<cons compareList cmp (x ∷ xs) (y ∷ ys) = compareCons (cmp x y) (compareList cmp xs ys) instance OrdList : ⦃ Ord A ⦄ → Ord (List A) OrdList = defaultOrd (compareList compare) OrdListLaws : ⦃ Ord/Laws A ⦄ → Ord/Laws (List A) Ord/Laws.super OrdListLaws = it less-antirefl {{OrdListLaws {A = A}}} (head< hd) = less-antirefl {A = A} hd less-antirefl {{OrdListLaws {A = A}}} (tail< tl) = less-antirefl {A = List A} tl less-trans {{OrdListLaws}} nil<cons (head< hd) = nil<cons less-trans {{OrdListLaws}} nil<cons (tail< tl) = nil<cons less-trans {{OrdListLaws {A = A}}} (head< hd) (head< hd₁) = head< (less-trans {A = A} hd hd₁) less-trans {{OrdListLaws {A = A}}} (head< hd) (tail< tl) = head< hd less-trans {{OrdListLaws {A = A}}} (tail< tl) (head< hd) = head< hd less-trans {{OrdListLaws {A = A}}} (tail< tl) (tail< tl₁) = tail< (less-trans {A = List A} tl tl₁) --- Functor --- instance FunctorList : Functor (List {ℓ}) fmap {{FunctorList}} = map FunctorList′ : Functor′ {ℓ₁} {ℓ₂} List fmap′ {{FunctorList′}} = map ApplicativeList : Applicative (List {ℓ}) pure {{ApplicativeList}} x = x ∷ [] _<*>_ {{ApplicativeList}} = monadAp (flip concatMap) ApplicativeList′ : Applicative′ {ℓ₁} {ℓ₂} List _<*>′_ {{ApplicativeList′}} = monadAp′ (flip concatMap) MonadList : Monad (List {ℓ}) _>>=_ {{MonadList}} xs f = concatMap f xs MonadList′ : Monad′ {ℓ₁} {ℓ₂} List _>>=′_ {{MonadList′}} xs f = concatMap f xs --- More functions --- IsPrefixOf : {A : Set ℓ} → List A → List A → Set ℓ IsPrefixOf xs ys = ∃ zs , ys ≡ xs ++ zs isPrefixOf : ⦃ Eq A ⦄ → (xs ys : List A) → Dec (IsPrefixOf xs ys) isPrefixOf [] ys = yes (ys , refl) isPrefixOf (x ∷ xs) [] = no λ where (zs , ()) isPrefixOf (x ∷ xs) (y ∷ ys) with y == x | isPrefixOf xs ys ... | yes y=x | yes (zs , xs⊑ys) = yes (zs , (_∷_ $≡ y=x *≡ xs⊑ys)) ... | _ | no noprefix = no λ where (zs , eq) → noprefix ((zs , cons-inj-tail eq)) ... | no y≠x | _ = no λ where (zs , eq) → y≠x (cons-inj-head eq) isPrefixOf? : ⦃ Eq A ⦄ → List A → List A → Bool isPrefixOf? xs ys = isYes (isPrefixOf xs ys) dropPrefix : ⦃ Eq A ⦄ → List A → List A → Maybe (List A) dropPrefix xs ys = case isPrefixOf xs ys of λ where (yes (tl , _)) → just tl (no _) → nothing commonPrefix : ⦃ Eq A ⦄ → (xs ys : List A) → ∃ zs , IsPrefixOf zs xs × IsPrefixOf zs ys commonPrefix [] ys = [] , (_ , refl) , (_ , refl) commonPrefix xs [] = [] , (_ , refl) , (_ , refl) commonPrefix (x ∷ xs) (y ∷ ys) with y == x | commonPrefix xs ys ... | yes y=x | zs , (xs₁ , eqx) , (ys₁ , eqy) = (x ∷ zs) , (xs₁ , (x ∷_ $≡ eqx)) , (ys₁ , (_∷_ $≡ y=x *≡ eqy)) ... | no _ | _ = [] , (_ , refl) , (_ , refl) commonPrefix! : ⦃ Eq A ⦄ → (xs ys : List A) → List A commonPrefix! xs ys = fst (commonPrefix xs ys) wordsBy : (A → Bool) → List A → List (List A) wordsBy {A = A} p = go in-word ∘ dropWhile p where data Mode : Set where in-word in-space : Mode cons : A → List (List A) → List (List A) cons x [] = [ x ] ∷ [] cons x (xs ∷ xss) = (x ∷ xs) ∷ xss go : Mode → List A → List (List A) go _ [] = [] go mode (x ∷ xs) with p x go mode (x ∷ xs) | false = cons x (go in-word xs) go in-word (x ∷ xs) | true = [] ∷ go in-space xs go in-space (x ∷ xs) | true = go in-space xs
{ "alphanum_fraction": 0.547545059, "avg_line_length": 30.263322884, "ext": "agda", "hexsha": "85a53252b4745ebedea91d3a27f726e62cd3dcbf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Prelude/List/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Prelude/List/Base.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Prelude/List/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3643, "size": 9654 }
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong; cong-app) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Product using (∃; _,_) +-assoc : ∀ (m n p : ℕ) → m + (n + p) ≡ (m + n) + p +-assoc zero n p = begin zero + (n + p) ≡⟨⟩ n + p ≡⟨⟩ (zero + n) + p ∎ +-assoc (suc m) n p = begin suc m + (n + p) ≡⟨⟩ suc (m + (n + p)) ≡⟨ cong suc (+-assoc m n p) ⟩ suc ((m + n) + p) ≡⟨⟩ (suc m + n) + p ∎ +-identity : ∀ (m : ℕ) → m + zero ≡ m +-identity zero = begin zero + zero ≡⟨⟩ zero ∎ +-identity (suc m) = begin suc m + zero ≡⟨⟩ suc (m + zero) ≡⟨ cong suc (+-identity m) ⟩ suc m ∎ +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc zero n = begin zero + suc n ≡⟨⟩ suc n ≡⟨⟩ suc (zero + n) ∎ +-suc (suc m) n = begin suc m + suc n ≡⟨⟩ suc (m + suc n) ≡⟨ cong suc (+-suc m n) ⟩ suc (suc (m + n)) ≡⟨⟩ suc (suc m + n) ∎ +-comm : ∀ (m n : ℕ) → m + n ≡ n + m +-comm m zero = begin m + zero ≡⟨ +-identity m ⟩ m ≡⟨⟩ zero + m ∎ +-comm m (suc n) = begin m + suc n ≡⟨ +-suc m n ⟩ suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩ suc (n + m) ≡⟨⟩ suc n + m ∎ *-distrib-+ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-distrib-+ zero n p = begin (zero + n) * p ≡⟨⟩ n * p ≡⟨⟩ zero * p + n * p ∎ *-distrib-+ (suc m) n p = begin (suc m + n) * p ≡⟨⟩ p + (m + n) * p ≡⟨ cong (_+_ p) (*-distrib-+ m n p) ⟩ p + (m * p + n * p) ≡⟨ +-assoc p (m * p) (n * p) ⟩ (p + m * p) + n * p ≡⟨⟩ suc m * p + n * p ∎ data even : ℕ → Set where ev0 : even zero ev+2 : ∀ {n : ℕ} → even n → even (suc (suc n)) lemma : ∀ (m : ℕ) → 2 * suc m ≡ suc (suc (2 * m)) lemma m = begin 2 * suc m ≡⟨⟩ suc m + (suc m + zero) ≡⟨⟩ suc (m + (suc (m + zero))) ≡⟨ cong suc (+-suc m (m + zero)) ⟩ suc (suc (m + (m + zero))) ≡⟨⟩ suc (suc (2 * m)) ∎ ev-ex : ∀ {n : ℕ} → even n → ∃(λ (m : ℕ) → 2 * m ≡ n) ev-ex ev0 = (0 , refl) ev-ex (ev+2 ev) with ev-ex ev ... | (m , refl) = (suc m , lemma m) ex-ev : ∀ {n : ℕ} → ∃(λ (m : ℕ) → 2 * m ≡ n) → even n ex-ev (zero , refl) = ev0 ex-ev (suc m , refl) rewrite lemma m = ev+2 (ex-ev (m , refl)) -- I can't see how to avoid using rewrite in the second proof, -- or how to use rewrite in the first proof!
{ "alphanum_fraction": 0.4262227702, "avg_line_length": 17.3785714286, "ext": "agda", "hexsha": "f742d4b0d9706103fd2c005e57a46a0835f389e0", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/Even.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/Even.agda", "max_line_length": 62, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/Even.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 1178, "size": 2433 }
module ExportTestAgda where open import Common.Prelude itWorksText : String itWorksText = "It works!" {-# COMPILED_EXPORT itWorksText itWorksText #-}
{ "alphanum_fraction": 0.7843137255, "avg_line_length": 17, "ext": "agda", "hexsha": "f81f8c69d89a55bbd5933f7d3a499382bc86f290", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/compiler/ExportTestAgda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/compiler/ExportTestAgda.agda", "max_line_length": 47, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Compiler/special/ExportTestAgda.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 39, "size": 153 }
-- There was a bug when unifying things of function type during pattern matching -- (the T argument to P is unified with D below) module Issue199 where data D (A : Set) : Set where data P {A : Set} : {T : Set → Set} → T A → Set where p : ∀ d → P {_} {D} d foo : ∀ {A} {l : D A} → P l → Set₁ foo (p _) = Set
{ "alphanum_fraction": 0.6045016077, "avg_line_length": 25.9166666667, "ext": "agda", "hexsha": "320d0a26336e40c7fa0c5a4ebfbcd1bad7c377f6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue199.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue199.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue199.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 106, "size": 311 }
open import Type module Relator.Converse {ℓ₁ ℓ₂} {T : Type{ℓ₁}} (_▫_ : T → T → Type{ℓ₂}) where import Lvl open import Functional Converse : T → T → Type{ℓ₂} Converse = swap(_▫_)
{ "alphanum_fraction": 0.6451612903, "avg_line_length": 18.6, "ext": "agda", "hexsha": "7194780ef54d1d432045abad71361b20811df930", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Relator/Converse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Relator/Converse.agda", "max_line_length": 77, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Relator/Converse.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 73, "size": 186 }
module Issue4954 where open import Issue4954.M Set
{ "alphanum_fraction": 0.8269230769, "avg_line_length": 13, "ext": "agda", "hexsha": "a89b994cf4da7114a74bea6fb8a49b96a32a7923", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/interaction/Issue4954.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/interaction/Issue4954.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/interaction/Issue4954.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 14, "size": 52 }
module Relator.Ordering.Proofs where open import Data import Lvl open import Functional open import Lang.Instance open import Logic open import Logic.Classical open import Logic.Propositional open import Logic.Propositional.Theorems open import Type import Relator.Ordering open import Structure.Relator.Ordering import Structure.Relator.Names as Names open import Structure.Relator.Proofs open import Structure.Relator.Properties open import Structure.Relator.Properties.Proofs open import Structure.Relator open import Structure.Setoid open import Syntax.Implication open import Syntax.Transitivity private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓₗ ℓₑ ℓₗₑ ℓₗₜ : Lvl.Level private variable T : Type{ℓ} module From-[≤] (_≤_ : T → T → Stmt{ℓₗ}) where open Relator.Ordering.From-[≤] (_≤_) [≤][>]-not : ∀{a b} → (a ≤ b) → (a > b) → ⊥ [≤][>]-not = apply [≥][<]-not : ∀{a b} → (a ≥ b) → (a < b) → ⊥ [≥][<]-not = apply module _ ⦃ _ : Equiv{ℓₑ}(T) ⦄ ⦃ _ : Weak.TotalOrder(_≤_)(_≡_) ⦄ where [<]-to-[≤] : Names.Subrelation(_<_)(_≤_) [<]-to-[≤] {a} {b} nba with converseTotal(_≤_){a}{b} [<]-to-[≤] {a} {b} nba | [∨]-introₗ ab = ab [<]-to-[≤] {a} {b} nba | [∨]-introᵣ ba = [⊥]-elim(nba ba) instance [<][≤]-sub : (_<_) ⊆₂ (_≤_) _⊆₂_.proof [<][≤]-sub = [<]-to-[≤] [>]-to-[≥] : Names.Subrelation(_>_)(_≥_) [>]-to-[≥] = [<]-to-[≤] [>][≥]-sub : (_>_) ⊆₂ (_≥_) _⊆₂_.proof [>][≥]-sub = [>]-to-[≥] instance [<]-irreflexivity : Irreflexivity(_<_) Irreflexivity.proof [<]-irreflexivity = [¬¬]-intro(reflexivity(_≤_)) instance [<]-transitivity : Transitivity(_<_) Transitivity.proof [<]-transitivity {a} {b} {c} nba ncb ca = [≤][>]-not (transitivity(_≤_) ca ([<]-to-[≤] nba)) ncb instance [<]-asymmetry : Asymmetry(_<_) -- TODO: Proof of this property is independent of the model. Actually, many of them here are [<]-asymmetry = [irreflexivity,transitivity]-to-asymmetry [<]-strictOrder : Strict.PartialOrder(_<_) [<]-strictOrder = Strict.intro {- TODO: Maybe one must assume decidability of (_≡_)? instance [<]-total : ConverseTotal(_<_) ConverseTotal.proof [<]-total {x} {y} with converseTotal(_≤_) ... | [∨]-introₗ x₁ = {!!} ... | [∨]-introᵣ x₁ = {!!} -} instance [<][≤]-subtransitivityₗ : Subtransitivityₗ(_<_)(_≤_) Subtransitivityₗ.proof [<][≤]-subtransitivityₗ xy yz zx = yz(transitivity(_≤_) zx xy) instance [<][≤]-subtransitivityᵣ : Subtransitivityᵣ(_<_)(_≤_) Subtransitivityᵣ.proof [<][≤]-subtransitivityᵣ xy yz zx = xy(transitivity(_≤_) yz zx) [≤][≢]-to-[<] : ∀{a b} → (a ≤ b) → (a ≢ b) → (a < b) [≤][≢]-to-[<] le ne ba = ne(antisymmetry(_≤_)(_≡_) le ba) [≥][≢]-to-[>] : ∀{a b} → (a ≥ b) → (a ≢ b) → (a > b) [≥][≢]-to-[>] ge ne = [≤][≢]-to-[<] ge (ne ∘ symmetry(_≡_)) module _ ⦃ _ : (_≡_) ⊆₂ (_≤_) ⦄ where -- TODO: Consider including this in weak orders. Or just assume that (_≤_) is a relation and this will follow instance [≤][≡]-subtransitivityₗ : Subtransitivityₗ(_≤_)(_≡_) [≤][≡]-subtransitivityₗ = subrelation-transitivity-to-subtransitivityₗ instance [≤][≡]-subtransitivityᵣ : Subtransitivityᵣ(_≤_)(_≡_) [≤][≡]-subtransitivityᵣ = subrelation-transitivity-to-subtransitivityᵣ [≡]-to-[≥] : Names.Subrelation(_≡_)(_≥_) [≡]-to-[≥] = sub₂(_≡_)(_≤_) ∘ symmetry(_≡_) instance [≡][≥]-sub : (_≡_) ⊆₂ (_≥_) _⊆₂_.proof [≡][≥]-sub = [≡]-to-[≥] [≡][>]-not : ∀{a b} → (a ≡ b) → (a > b) → ⊥ [≡][>]-not eq gt = [≤][>]-not (sub₂(_≡_)(_≤_) eq) gt instance [≡][≯]-sub : (_≡_) ⊆₂ (_≯_) _⊆₂_.proof [≡][≯]-sub = [≡][>]-not instance [>][≢]-sub : (_>_) ⊆₂ (_≢_) _⊆₂_.proof [>][≢]-sub = swap [≡][>]-not [≡][<]-not : ∀{a b} → (a ≡ b) → (a < b) → ⊥ [≡][<]-not eq lt = [≤][>]-not ([≡]-to-[≥] eq) lt instance [≡][≮]-sub : (_≡_) ⊆₂ (_≮_) _⊆₂_.proof [≡][≮]-sub = [≡][<]-not instance [<][≢]-sub : (_<_) ⊆₂ (_≢_) _⊆₂_.proof [<][≢]-sub = swap [≡][<]-not instance [<][≡]-subtransitivityₗ : Subtransitivityₗ(_<_)(_≡_) Subtransitivityₗ.proof [<][≡]-subtransitivityₗ xy yz zx = [≡][>]-not xy (subtransitivityᵣ(_<_)(_≤_) yz zx) instance [<][≡]-subtransitivityᵣ : Subtransitivityᵣ(_<_)(_≡_) Subtransitivityᵣ.proof [<][≡]-subtransitivityᵣ xy yz zx = [≡][>]-not yz (subtransitivityₗ(_<_)(_≤_) zx xy) module _ ⦃ [≡]-classical : Classical₂(_≡_) ⦄ where [≤]-or-[>] : ∀{a b} → (a ≤ b) ∨ (a > b) [≤]-or-[>] {a} {b} with converseTotal(_≤_){a}{b} [≤]-or-[>] {a} {b} | [∨]-introₗ ab = [∨]-introₗ ab [≤]-or-[>] {a} {b} | [∨]-introᵣ ba with excluded-middle _ ⦃ [≡]-classical {a}{b} ⦄ [≤]-or-[>] {a} {b} | [∨]-introᵣ ba | [∨]-introₗ eqab = [∨]-introₗ (sub₂(_≡_)(_≤_) eqab) [≤]-or-[>] {a} {b} | [∨]-introᵣ ba | [∨]-introᵣ neqab = [∨]-introᵣ (ab ↦ neqab(antisymmetry(_≤_)(_≡_) ab ba)) instance [≤]-classical : Classical₂(_≤_) Classical.excluded-middle [≤]-classical = [≤]-or-[>] [≥]-or-[<] : ∀{a b} → (a ≥ b) ∨ (a < b) [≥]-or-[<] = [≤]-or-[>] [≥]-classical : Classical₂(_≥_) Classical.excluded-middle [≥]-classical = [≥]-or-[<] instance [<]-classical : Classical₂(_<_) Classical.excluded-middle ([<]-classical {a}{b}) with [≤]-or-[>] {b}{a} Classical.excluded-middle ([<]-classical {a}{b}) | [∨]-introₗ x = [∨]-introᵣ ([¬¬]-intro x) Classical.excluded-middle ([<]-classical {a}{b}) | [∨]-introᵣ x = [∨]-introₗ x [>]-classical : Classical₂(_>_) [>]-classical = [<]-classical [≤]-to-[<][≡] : ∀{a b} → (a ≤ b) → ((a < b) ∨ (a ≡ b)) [≤]-to-[<][≡] {a} {b} ab with excluded-middle _ ⦃ [≡]-classical {a}{b} ⦄ [≤]-to-[<][≡] {a} {b} ab | [∨]-introₗ eq = [∨]-introᵣ eq [≤]-to-[<][≡] {a} {b} ab | [∨]-introᵣ ne = [∨]-introₗ (ba ↦ ne(antisymmetry(_≤_)(_≡_) ab ba)) [≥]-to-[>][≡] : ∀{a b} → (a ≥ b) → ((a > b) ∨ (a ≡ b)) [≥]-to-[>][≡] ab = [∨]-elim2 id (symmetry(_≡_)) ([≤]-to-[<][≡] ab) module From-[≤][≢] {ℓ₁ ℓ₂ ℓ₃} {T : Type{ℓ₁}} (_≤_ : T → T → Stmt{ℓ₂}) (_≢_ : T → T → Stmt{ℓ₃}) where open Relator.Ordering.From-[≤][≢] (_≤_)(_≢_) -- postulate instance [<]-totalOrder : Strict.TotalOrder(_<_) instance [<][≤]-sub : (_<_) ⊆₂ (_≤_) _⊆₂_.proof [<][≤]-sub = [∧]-elimₗ instance [>][≥]-sub : (_>_) ⊆₂ (_≥_) _⊆₂_.proof [>][≥]-sub = sub₂(_<_)(_≤_) instance [<][≢]-sub : (_<_) ⊆₂ (_≢_) _⊆₂_.proof [<][≢]-sub = [∧]-elimᵣ [>][≢]-sub : ⦃ sym : Symmetry(_≢_) ⦄ → ((_>_) ⊆₂ (_≢_)) _⊆₂_.proof [>][≢]-sub = symmetry(_≢_) ∘ sub₂(_<_)(_≢_) -- [<]-transitivity : ⦃ [≤]-trans : Transitivity(_≤_) ⦄ → Transitivity(_<_) -- Transitivity.proof [<]-transitivity ([∧]-intro xy neq-xy) ([∧]-intro yz neq-yz) = [∧]-intro (transitivity(_≤_) xy yz) {!!} xy {- instance [<][≤]-subtransitivityₗ : Subtransitivityₗ(_<_)(_≤_) left (Subtransitivityₗ.proof [<][≤]-subtransitivityₗ xy ([∧]-intro yz nyz)) = transitivity(_≤_) xy yz Tuple.right (Subtransitivityₗ.proof [<][≤]-subtransitivityₗ xy yz) xz = {!!} postulate instance [<][≤]-subtransitivityᵣ : Subtransitivityᵣ(_<_)(_≤_) postulate instance [≤][≡]-subtransitivityₗ : Subtransitivityₗ(_≤_)(_≡_) postulate instance [≤][≡]-subtransitivityᵣ : Subtransitivityᵣ(_≤_)(_≡_) -} module From-[≤][<] ⦃ equiv : Equiv{ℓₑ}(T) ⦄ (_≤_ : T → T → Stmt{ℓₗₑ}) ⦃ [≤]-relator : BinaryRelator(_≤_) ⦄ (_<_ : T → T → Stmt{ℓₗₜ}) ⦃ [<]-relator : BinaryRelator(_<_) ⦄ where open Relator.Ordering.From-[≤][<] (_≤_)(_<_) private variable a b : T [≤]-def-[<][≡]ₗ-[<]-def-[≤][≢]ᵣ : ((∀{a b} → (a ≤ b) ← ((a < b) ∨ (a ≡ b))) ∧ Irreflexivity(_<_)) ↔ ((∀{a b} → (a < b) → ((a ≤ b) ∧ (a ≢ b))) ∧ Reflexivity(_≤_)) [≤]-def-[<][≡]ₗ-[<]-def-[≤][≢]ᵣ = [↔]-intro (\([∧]-intro p q) → l p ⦃ q ⦄) (\([∧]-intro p q) → r p ⦃ q ⦄) where l : (∀{a b} → (a < b) → ((a ≤ b) ∧ (a ≢ b))) → ⦃ refl : Reflexivity(_≤_) ⦄ → ((∀{a b} → (a ≤ b) ← ((a < b) ∨ (a ≡ b))) ∧ Irreflexivity(_<_)) l [<]-def-[≤][≢]ᵣ = [∧]-intro ([∨]-elim (lt ↦ [∧]-elimₗ ([<]-def-[≤][≢]ᵣ lt)) (sub₂(_≡_)(_≤_) ⦃ reflexive-binaryRelator-sub ⦄)) (intro(xx ↦ [∧]-elimᵣ ([<]-def-[≤][≢]ᵣ xx) (reflexivity(_≡_)))) r : (∀{a b} → (a ≤ b) ← ((a < b) ∨ (a ≡ b))) → ⦃ irrefl : Irreflexivity(_<_) ⦄ → ((∀{a b} → (a < b) → ((a ≤ b) ∧ (a ≢ b))) ∧ Reflexivity(_≤_)) r [≤]-def-[<][≡]ᵣ = [∧]-intro (lt ↦ [∧]-intro ([≤]-def-[<][≡]ᵣ ([∨]-introₗ lt)) (eq ↦ empty(irreflexivity(_<_) (substitute₂ₗ(_<_) eq lt)))) (intro ([≤]-def-[<][≡]ᵣ ([∨]-introᵣ (reflexivity(_≡_))))) module By-[≤] ([<]-def-[≤][≢] : ∀{a b} → (a < b) ↔ ((a ≤ b) ∧ (a ≢ b))) where instance [<][≤]-sub : (_<_) ⊆₂ (_≤_) _⊆₂_.proof [<][≤]-sub = [∧]-elimₗ ∘ [↔]-to-[→] [<]-def-[≤][≢] instance [<][≢]-sub : (_<_) ⊆₂ (_≢_) _⊆₂_.proof [<][≢]-sub = [∧]-elimᵣ ∘ [↔]-to-[→] [<]-def-[≤][≢] module _ ⦃ [≡]-classical : ∀{a b : T} → Classical(a ≡ b) ⦄ where [≤]-def-[<][≡]ᵣ-by-classical : (a ≤ b) → ((a < b) ∨ (a ≡ b)) [≤]-def-[<][≡]ᵣ-by-classical {a}{b} le with excluded-middle(a ≡ b) ... | [∨]-introₗ eq = [∨]-introᵣ eq ... | [∨]-introᵣ ne = [∨]-introₗ ([↔]-to-[←] [<]-def-[≤][≢] ([∧]-intro le ne)) module _ ⦃ [<]-tri : ConverseTrichotomy(_<_)(_≡_) ⦄ ⦃ [≤]-antisym : Antisymmetry(_≤_)(_≡_) ⦄ where [≤]-def-[<][≡]ᵣ-by-tri-antisym : (a ≤ b) → ((a < b) ∨ (a ≡ b)) [≤]-def-[<][≡]ᵣ-by-tri-antisym {a}{b} le with trichotomy(_<_)(_≡_) {a}{b} ... | [∨]-introₗ ([∨]-introₗ lt) = [∨]-introₗ lt ... | [∨]-introₗ ([∨]-introᵣ eq) = [∨]-introᵣ eq ... | [∨]-introᵣ gt = [∨]-introᵣ (antisymmetry(_≤_)(_≡_) le ([∧]-elimₗ ([↔]-to-[→] [<]-def-[≤][≢] gt))) [<]-asymmetry-by-antisym : ⦃ antisym : Antisymmetry(_≤_)(_≡_) ⦄ → Asymmetry(_<_) Asymmetry.proof [<]-asymmetry-by-antisym xy yx = let [∧]-intro xy-le nxy = [↔]-to-[→] [<]-def-[≤][≢] xy [∧]-intro yx-le nyx = [↔]-to-[→] [<]-def-[≤][≢] yx in nxy(antisymmetry(_≤_)(_≡_) xy-le yx-le) instance [<]-irreflexivity : Irreflexivity(_<_) Irreflexivity.proof [<]-irreflexivity xx = [∧]-elimᵣ ([↔]-to-[→] [<]-def-[≤][≢] xx) (reflexivity(_≡_)) [<]-transitivity-by-asym-trans : ⦃ antisym : Asymmetry(_<_) ⦄ → ⦃ trans : Transitivity(_≤_) ⦄ → Transitivity(_<_) Transitivity.proof [<]-transitivity-by-asym-trans xy yz = let [∧]-intro xy-le nxy = [↔]-to-[→] [<]-def-[≤][≢] xy [∧]-intro yz-le nyz = [↔]-to-[→] [<]-def-[≤][≢] yz in [↔]-to-[←] [<]-def-[≤][≢] ([∧]-intro (transitivity(_≤_) xy-le yz-le) (xz ↦ asymmetry(_<_) (substitute₂ₗ(_<_) xz xy) yz)) module By-[<] ([≤]-def-[<][≡] : ∀{a b} → (a ≤ b) ↔ ((a < b) ∨ (a ≡ b))) where instance [<][≤]-sub : (_<_) ⊆₂ (_≤_) _⊆₂_.proof [<][≤]-sub = [↔]-to-[←] [≤]-def-[<][≡] ∘ [∨]-introₗ instance [≡][≤]-sub : (_≡_) ⊆₂ (_≤_) _⊆₂_.proof [≡][≤]-sub = [↔]-to-[←] [≤]-def-[<][≡] ∘ [∨]-introᵣ instance [≰][≮]-sub : (_≰_) ⊆₂ (_≮_) _⊆₂_.proof [≰][≮]-sub = contrapositiveᵣ(sub₂(_<_)(_≤_)) instance [≰][≢]-sub : (_≰_) ⊆₂ (_≢_) _⊆₂_.proof [≰][≢]-sub = contrapositiveᵣ(sub₂(_≡_)(_≤_)) instance [>][≥]-sub : (_>_) ⊆₂ (_≥_) _⊆₂_.proof [>][≥]-sub = sub₂(_<_)(_≤_) instance [≡][≥]-sub : (_≡_) ⊆₂ (_≥_) _⊆₂_.proof [≡][≥]-sub = sub₂(_≡_)(_≤_) ∘ symmetry(_≡_) instance [≱][≯]-sub : (_≱_) ⊆₂ (_≯_) _⊆₂_.proof [≱][≯]-sub = sub₂(_≰_)(_≮_) instance [≱][≢]-sub : (_≱_) ⊆₂ (_≢_) _⊆₂_.proof [≱][≢]-sub = (_∘ symmetry(_≡_)) ∘ sub₂(_≰_)(_≢_) [<]-def-[≤][≢]ₗ : (a < b) ← ((a ≤ b) ∧ (a ≢ b)) [<]-def-[≤][≢]ₗ([∧]-intro le ne) = [∨]-elim id ([⊥]-elim ∘ ne) ([↔]-to-[→] [≤]-def-[<][≡] le) instance [≤]-reflexivity : Reflexivity(_≤_) Reflexivity.proof [≤]-reflexivity = [↔]-to-[←] [≤]-def-[<][≡] ([∨]-introᵣ (reflexivity(_≡_))) [≤]-transitivity-by-trans : ⦃ [<]-trans : Transitivity(_<_) ⦄ → Transitivity(_≤_) Transitivity.proof [≤]-transitivity-by-trans xy yz with [↔]-to-[→] [≤]-def-[<][≡] xy | [↔]-to-[→] [≤]-def-[<][≡] yz ... | [∨]-introₗ xy-lt | [∨]-introₗ yz-lt = [↔]-to-[←] [≤]-def-[<][≡] ([∨]-introₗ (transitivity(_<_) xy-lt yz-lt)) ... | [∨]-introₗ xy-lt | [∨]-introᵣ yz-eq = [↔]-to-[←] [≤]-def-[<][≡] ([∨]-introₗ (substitute₂ᵣ(_<_) yz-eq xy-lt)) ... | [∨]-introᵣ xy-eq | [∨]-introₗ yz-lt = [↔]-to-[←] [≤]-def-[<][≡] ([∨]-introₗ (substitute₂ₗ(_<_) (symmetry(_≡_) xy-eq) yz-lt)) ... | [∨]-introᵣ xy-eq | [∨]-introᵣ yz-eq = [↔]-to-[←] [≤]-def-[<][≡] ([∨]-introᵣ (transitivity(_≡_) xy-eq yz-eq)) module _ ⦃ asym : Asymmetry(_<_) ⦄ where [≤]-antisymmetry-by-asym : Antisymmetry(_≤_)(_≡_) Antisymmetry.proof [≤]-antisymmetry-by-asym le ge with [↔]-to-[→] [≤]-def-[<][≡] le | [↔]-to-[→] [≤]-def-[<][≡] ge ... | [∨]-introₗ lt | [∨]-introₗ gt with () ← asymmetry(_<_) lt gt ... | [∨]-introₗ lt | [∨]-introᵣ eq = symmetry(_≡_) eq ... | [∨]-introᵣ eq | [∨]-introₗ gt = eq ... | [∨]-introᵣ eq₁ | [∨]-introᵣ eq₂ = eq₁ [<]-transitivity-by-asym-trans : ⦃ trans : Transitivity(_≤_) ⦄ → Transitivity(_<_) Transitivity.proof [<]-transitivity-by-asym-trans {x}{y}{z} xy yz = • ( • (xy ⇒ (x < y) ⇒-[ [↔]-to-[←] [≤]-def-[<][≡] ∘ [∨]-introₗ ] (x ≤ y) ⇒-end ) • (yz ⇒ (y < z) ⇒-[ [↔]-to-[←] [≤]-def-[<][≡] ∘ [∨]-introₗ ] (y ≤ z) ⇒-end ) ⇒₂-[ transitivity(_≤_) ] (x ≤ z) ⇒-[ [↔]-to-[→] [≤]-def-[<][≡] ] (x < z) ∨ (x ≡ z) ⇒-end ) • ( (\xz → • (xz ⇒ (x ≡ z) ⇒-[ apply xy ∘ substitute₂ₗ(_<_) ] (z < y) ⇒-end ) • (yz ⇒ (y < z) ⇒-end ) ⇒₂-[ asymmetry(_<_) ] ⊥ ⇒-end ) ⇒ (x ≢ z) ⇒-end ) ⇒₂-[ [∨]-not-right ] (x < z) ⇒-end [<][≱]-sub-by-asym : ((_<_) ⊆₂ (_≱_)) _⊆₂_.proof [<][≱]-sub-by-asym lt-xy ge-xy = [∨]-elim (lt-yx ↦ asymmetry(_<_) lt-xy lt-yx) (eq-yx ↦ irreflexivity(_<_) ⦃ [asymmetry]-to-irreflexivity ⦄ (substitute₂ᵣ(_<_) eq-yx lt-xy)) ([↔]-to-[→] [≤]-def-[<][≡] ge-xy) [>][≰]-sub-by-asym : ((_>_) ⊆₂ (_≰_)) _⊆₂_.proof [>][≰]-sub-by-asym gt le = [∨]-elim (asymmetry(_<_) gt) (eq ↦ irreflexivity(_<_) ⦃ [asymmetry]-to-irreflexivity ⦄ (substitute₂ᵣ(_<_) eq gt)) ([↔]-to-[→] [≤]-def-[<][≡] le) module _ ⦃ [<]-classical : Classical₂(_<_) ⦄ ⦃ [≡]-classical : Classical₂(_≡_) ⦄ where [≤]-classical-by-classical : Classical₂(_≤_) Classical.excluded-middle ([≤]-classical-by-classical {x}{y}) with excluded-middle(x < y) | excluded-middle(x ≡ y) ... | [∨]-introₗ lt | _ = [∨]-introₗ (sub₂(_<_)(_≤_) lt) ... | [∨]-introᵣ nlt | [∨]-introₗ eq = [∨]-introₗ (sub₂(_≡_)(_≤_) eq) ... | [∨]-introᵣ nlt | [∨]-introᵣ ne = [∨]-introᵣ (le ↦ nlt ([<]-def-[≤][≢]ₗ ([∧]-intro le ne))) module _ ⦃ [<]-asym : Asymmetry(_<_) ⦄ ⦃ [<]-total : ConverseTrichotomy(_<_)(_≡_) ⦄ where [≤]-classical-by-asym-tri : Classical₂(_≤_) Classical.excluded-middle ([≤]-classical-by-asym-tri {x} {y}) with trichotomy(_<_)(_≡_) {x}{y} ... | [∨]-introₗ([∨]-introₗ lt) = [∨]-introₗ (sub₂(_<_)(_≤_) lt) ... | [∨]-introₗ([∨]-introᵣ eq) = [∨]-introₗ (sub₂(_≡_)(_≤_) eq) ... | [∨]-introᵣ gt = let [<]-def-[≤][≢]ᵣ = [∧]-elimₗ ([↔]-to-[→] [≤]-def-[<][≡]ₗ-[<]-def-[≤][≢]ᵣ ([∧]-intro ([↔]-to-[←] [≤]-def-[<][≡]) [asymmetry]-to-irreflexivity)) [∧]-intro ge ne = [<]-def-[≤][≢]ᵣ gt in [∨]-introᵣ (ne ∘ antisymmetry(_≤_)(_≡_) ⦃ [≤]-antisymmetry-by-asym ⦄ ge) -- TODO: Move to Structure.Relator.Properties.Proofs module _ ⦃ [<]-asym : Asymmetry(_<_) ⦄ ⦃ [<]-total : ConverseTrichotomy(_<_)(_≡_) ⦄ where [<]-classical-by-asym-tri : Classical₂(_<_) Classical.excluded-middle ([<]-classical-by-asym-tri {x} {y}) with trichotomy(_<_)(_≡_) {x}{y} ... | [∨]-introₗ([∨]-introₗ lt) = [∨]-introₗ lt ... | [∨]-introₗ([∨]-introᵣ eq) = [∨]-introᵣ (lt ↦ irreflexivity(_<_) ⦃ [asymmetry]-to-irreflexivity ⦄ (substitute₂ₗ(_<_) eq lt)) ... | [∨]-introᵣ gt = [∨]-introᵣ (lt ↦ asymmetry(_<_) lt gt) module ByReflTriSub ⦃ [≤]-refl : Reflexivity(_≤_) ⦄ ⦃ [<]-total : ConverseTrichotomy(_<_)(_≡_) ⦄ ⦃ [<][≤]-sub : (_<_) ⊆₂ (_≤_) ⦄ where [≰][≯]-not : (a ≰ b) → (a ≯ b) → ⊥ [≰][≯]-not {a}{b} nle ngt with trichotomy(_<_)(_≡_) {a}{b} ... | [∨]-introₗ([∨]-introₗ lt) = nle (sub₂(_<_)(_≤_) lt) ... | [∨]-introₗ([∨]-introᵣ eq) = substitute₂ₗ(_≰_) ⦃ [¬]-binaryRelator ⦄ eq nle (reflexivity(_≤_)) ... | [∨]-introᵣ gt = ngt gt [≮][≱]-not : (a ≮ b) → (a ≱ b) → ⊥ [≮][≱]-not = swap [≰][≯]-not module _ ⦃ [<]-classical : Classical₂(_<_) ⦄ where [≰][>]-sub : (_≰_) ⊆₂ (_>_) _⊆₂_.proof [≰][>]-sub = [¬¬]-elim ∘ [≰][≯]-not [≱][<]-sub : (_≱_) ⊆₂ (_<_) _⊆₂_.proof [≱][<]-sub = _⊆₂_.proof [≰][>]-sub module _ ⦃ [≤]-classical : Classical₂(_≤_) ⦄ where [≯][≤]-sub : (_≯_) ⊆₂ (_≤_) _⊆₂_.proof [≯][≤]-sub = [¬¬]-elim ∘ swap [≰][≯]-not [≮][≥]-sub : (_≮_) ⊆₂ (_≥_) _⊆₂_.proof [≮][≥]-sub = _⊆₂_.proof [≯][≤]-sub module _ ⦃ [≤]-classical : Classical₂(_≤_) ⦄ ⦃ [<]-classical : Classical₂(_<_) ⦄ where [≤]-or-[>] : (a ≤ b) ∨ (a > b) [≤]-or-[>] {a}{b} with excluded-middle(a ≤ b) ... | [∨]-introₗ a≤b = [∨]-introₗ a≤b ... | [∨]-introᵣ a≰b = [∨]-introᵣ (sub₂(_≰_)(_>_) ⦃ [≰][>]-sub ⦄ a≰b) [≥]-or-[<] : (a ≥ b) ∨ (a < b) [≥]-or-[<] {a}{b} with excluded-middle(a ≥ b) ... | [∨]-introₗ a≥b = [∨]-introₗ a≥b ... | [∨]-introᵣ a≱b = [∨]-introᵣ (sub₂(_≱_)(_<_) ⦃ [≱][<]-sub ⦄ a≱b) module ByStrictPartialOrder ([≤]-def-[<][≡] : ∀{a b} → (a ≤ b) ↔ ((a < b) ∨ (a ≡ b))) ⦃ ord : Strict.PartialOrder(_<_) ⦄ where open By-[<] [≤]-def-[<][≡] open By-[<] [≤]-def-[<][≡] public using ( [<][≤]-sub ; [≡][≤]-sub ; [≰][≮]-sub ; [≰][≢]-sub ; [>][≥]-sub ; [≡][≥]-sub ; [≱][≯]-sub ; [≱][≢]-sub ; [<]-def-[≤][≢]ₗ ; [≤]-reflexivity ) instance [≤]-transitivity : Transitivity(_≤_) [≤]-transitivity = [≤]-transitivity-by-trans instance [≤]-antisymmetry : Antisymmetry(_≤_)(_≡_) [≤]-antisymmetry = [≤]-antisymmetry-by-asym instance [≤]-weakPartialorder : Weak.PartialOrder(_≤_)(_≡_) [≤]-weakPartialorder = record{} instance [<][≱]-sub : ((_<_) ⊆₂ (_≱_)) [<][≱]-sub = [<][≱]-sub-by-asym instance [>][≰]-sub : ((_>_) ⊆₂ (_≰_)) [>][≰]-sub = [>][≰]-sub-by-asym module ByStrictTotalOrder ([≤]-def-[<][≡] : ∀{a b} → (a ≤ b) ↔ ((a < b) ∨ (a ≡ b))) ⦃ ord : Strict.TotalOrder(_<_)(_≡_) ⦄ where open By-[<] [≤]-def-[<][≡] open ByStrictPartialOrder [≤]-def-[<][≡] public instance [<]-classical : Classical₂(_<_) [<]-classical = [<]-classical-by-asym-tri instance [≤]-classical : Classical₂(_≤_) [≤]-classical = [≤]-classical-by-asym-tri [≰][≯]-not : (a ≰ b) → (a ≯ b) → ⊥ [≰][≯]-not = ByReflTriSub.[≰][≯]-not [≮][≱]-not : (a ≮ b) → (a ≱ b) → ⊥ [≮][≱]-not = ByReflTriSub.[≮][≱]-not instance [≰][>]-sub : (_≰_) ⊆₂ (_>_) [≰][>]-sub = ByReflTriSub.[≰][>]-sub instance [≱][<]-sub : (_≱_) ⊆₂ (_<_) [≱][<]-sub = ByReflTriSub.[≱][<]-sub instance [≯][≤]-sub : (_≯_) ⊆₂ (_≤_) [≯][≤]-sub = ByReflTriSub.[≯][≤]-sub instance [≮][≥]-sub : (_≮_) ⊆₂ (_≥_) [≮][≥]-sub = ByReflTriSub.[≮][≥]-sub [≤]-or-[>] : (a ≤ b) ∨ (a > b) [≤]-or-[>] = ByReflTriSub.[≤]-or-[>] [≥]-or-[<] : (a ≥ b) ∨ (a < b) [≥]-or-[<] = ByReflTriSub.[≥]-or-[<]
{ "alphanum_fraction": 0.4596734044, "avg_line_length": 38.8510638298, "ext": "agda", "hexsha": "6be7421060b16c316f00bf186a47e3f3ba381ef5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Relator/Ordering/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Relator/Ordering/Proofs.agda", "max_line_length": 163, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Relator/Ordering/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 9443, "size": 20086 }
module HasSatisfaction where open import OscarPrelude open import Interpretation record HasSatisfaction (A : Set) : Set₁ where field _⊨_ : Interpretation → A → Set _⊭_ : Interpretation → A → Set _⊭_ I = ¬_ ∘ I ⊨_ open HasSatisfaction ⦃ … ⦄ public {-# DISPLAY HasSatisfaction._⊨_ _ = _⊨_ #-} {-# DISPLAY HasSatisfaction._⊭_ _ = _⊭_ #-} instance HasSatisfactionList : {A : Set} ⦃ _ : HasSatisfaction A ⦄ → HasSatisfaction $ List A HasSatisfaction._⊨_ HasSatisfactionList I [] = ⊤ HasSatisfaction._⊨_ HasSatisfactionList I (x ∷ xs) = I ⊨ x × I ⊨ xs module _ {A} ⦃ _ : HasSatisfaction A ⦄ where ⊨_ : A → Set ⊨ x = (I : Interpretation) → I ⊨ x ⊭_ : A → Set ⊭_ = ¬_ ∘ ⊨_ record HasDecidableValidation (A : Set) ⦃ _ : HasSatisfaction A ⦄ : Set₁ where field ⊨?_ : (x : A) → Dec $ ⊨ x open HasDecidableValidation ⦃ … ⦄ public {-# DISPLAY HasDecidableValidation.⊨?_ _ = ⊨?_ #-} record HasDecidableSatisfaction (A : Set) ⦃ _ : HasSatisfaction A ⦄ : Set₁ where field _⊨?_ : (I : Interpretation) → (x : A) → Dec (I ⊨ x) open HasDecidableSatisfaction ⦃ … ⦄ public {-# DISPLAY HasDecidableSatisfaction._⊨?_ _ = _⊨?_ #-}
{ "alphanum_fraction": 0.6384814495, "avg_line_length": 23.18, "ext": "agda", "hexsha": "db56e39109dcca412739a3ca91b415974621b48c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/HasSatisfaction.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/HasSatisfaction.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/HasSatisfaction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 454, "size": 1159 }
{-# OPTIONS --without-K --safe #-} open import Algebra open import Relation.Unary open import Relation.Binary hiding (Decidable) module Data.FingerTree.Split.Intermediate {r m} (ℳ : Monoid r m) {s} {ℙ : Pred (Monoid.Carrier ℳ) s} (ℙ-resp : ℙ Respects (Monoid._≈_ ℳ)) (ℙ? : Decidable ℙ) where open import Relation.Nullary using (¬_; yes; no; Dec) open import Level using (_⊔_) open import Data.Product open import Function open import Data.List as List using (List; _∷_; []) open import Data.FingerTree.Measures ℳ open import Data.FingerTree.Structures ℳ open import Data.FingerTree.Reasoning ℳ open import Data.FingerTree.View ℳ using (deepₗ; deepᵣ) open import Data.FingerTree.Cons ℳ using (listToTree) open import Relation.Nullary using (Dec; yes; no) open import Relation.Nullary.Decidable using (True; toWitness; False; toWitnessFalse) open σ ⦃ ... ⦄ open Monoid ℳ renaming (Carrier to 𝓡) open import Data.FingerTree.Relation.Binary.Reasoning.FasterInference.Setoid setoid open import Data.FingerTree.Split.Point ℳ ℙ-resp ℙ? open import Data.FingerTree.Split.StoredPredicate ℳ ℙ-resp ℙ? open import Data.Empty.Irrelevant using (⊥-elim) record Split′ (i : 𝓡) {a b} (Σ : Set a) (A : Set b) ⦃ _ : σ Σ ⦄ ⦃ _ : σ A ⦄ : Set (a ⊔ b ⊔ s) where constructor _∷⟨_⟩∷_[_] field left′ : Σ focus′ : A right′ : Σ .proof′ : i ∙ μ left′ ∣ μ focus′ open Split′ public instance σ-Split′ : ∀ {a b} {Σ : Set a} {A : Set b} ⦃ _ : σ Σ ⦄ ⦃ _ : σ A ⦄ {i : 𝓡} → σ (Split′ i Σ A) μ ⦃ σ-Split′ {i = i} ⦄ (l ∷⟨ x ⟩∷ r [ _ ]) = i ∙ (μ l ∙ (μ x ∙ μ r)) infixl 2 _i≈[_] _i≈[_] : ∀ {a b} {Σ : Set a} {A : Set b} ⦃ _ : σ Σ ⦄ ⦃ _ : σ A ⦄ → ∀ {i xs} → μ⟨ Split′ i Σ A ⟩≈ (i ∙ xs) → ∀ {j} → i ≈ j → μ⟨ Split′ j Σ A ⟩≈ (j ∙ xs) xs ∷⟨ x ⟩∷ ys [ p₁ ] ⇑[ p₂ ] i≈[ i≈ ] = xs ∷⟨ x ⟩∷ ys [ p₁ ≈◄⟅ ≪∙ i≈ ⟆ ] ⇑[ ≪∙ sym i≈ ⍮ p₂ ⍮ ≪∙ i≈ ] {-# INLINE _i≈[_] #-}
{ "alphanum_fraction": 0.6016771488, "avg_line_length": 30.7741935484, "ext": "agda", "hexsha": "d60be980ebec736b2f83ef7dbd4b2190868dd20e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-indexed-fingertree", "max_forks_repo_path": "src/Data/FingerTree/Split/Intermediate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-indexed-fingertree", "max_issues_repo_path": "src/Data/FingerTree/Split/Intermediate.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-indexed-fingertree", "max_stars_repo_path": "src/Data/FingerTree/Split/Intermediate.agda", "max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z", "num_tokens": 799, "size": 1908 }
{-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Instances.Unit where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Unit renaming (Unit* to UnitType) open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Group.Instances.Unit using (UnitGroup) open import Cubical.Algebra.Group.Base using (GroupStr) private variable ℓ : Level open AbGroupStr open IsAbGroup UnitAbGroup : AbGroup ℓ fst UnitAbGroup = UnitType 0g (snd UnitAbGroup) = tt* _+_ (snd UnitAbGroup) = λ _ _ → tt* - snd UnitAbGroup = λ _ → tt* isGroup (isAbGroup (snd UnitAbGroup)) = GroupStr.isGroup (snd UnitGroup) +Comm (isAbGroup (snd UnitAbGroup)) = λ _ _ → refl
{ "alphanum_fraction": 0.7637130802, "avg_line_length": 26.3333333333, "ext": "agda", "hexsha": "addd4fb3dbbcd06ab42b4154900c3a6b064e7dad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup/Instances/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup/Instances/Unit.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup/Instances/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 204, "size": 711 }
-- Andreas, 2019-05-30, issue #3824: -- Named where module should be in scope even if defined under a rewrite. open import Agda.Builtin.Equality postulate A : Set a b : A a≡b : a ≡ b P : A → Set cast : P a → P b cast p rewrite a≡b = q module M where q = p test : P b → P b test = M.q -- ERROR WAS: M.q not in scope. module Test = M -- ERROR WAS: M not in scope. -- Should succeed.
{ "alphanum_fraction": 0.6117936118, "avg_line_length": 15.0740740741, "ext": "agda", "hexsha": "d220a8775e5531e0da799a53f48b22fcb8b5dc55", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3824.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3824.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3824.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 143, "size": 407 }
module TelescopingLet4 where module Star where ★ : Set₁ ★ = Set ★₁ : Set₂ ★₁ = Set₁ data D5 (open Star using (★₁)) : ★₁ where
{ "alphanum_fraction": 0.6131386861, "avg_line_length": 12.4545454545, "ext": "agda", "hexsha": "d2deec5c635d89d97020c1db375880cd652fe84c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/TelescopingLet4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/TelescopingLet4.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/TelescopingLet4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 53, "size": 137 }
open import Data.Bool.Base using (Bool) ------------------------------------------------------------------------ -- The Agda standard library -- -- IO ------------------------------------------------------------------------ open import Coinduction open import Data.Unit open import Data.String open import Data.Colist open import Function import IO.Primitive as Prim open import Level ------------------------------------------------------------------------ -- The IO monad -- One cannot write "infinitely large" computations with the -- postulated IO monad in IO.Primitive without turning off the -- termination checker (or going via the FFI, or perhaps abusing -- something else). The following coinductive deep embedding is -- introduced to avoid this problem. Possible non-termination is -- isolated to the run function below. infixl 1 _>>=_ _>>_ data IO {a} (A : Set a) : Set (suc a) where lift : (m : Prim.IO A) → IO A return : (x : A) → IO A _>>=_ : {B : Set a} (m : ∞ (IO B)) (f : (x : B) → ∞ (IO A)) → IO A _>>_ : {B : Set a} (m₁ : ∞ (IO B)) (m₂ : ∞ (IO A)) → IO A {-# NON_TERMINATING #-} run : ∀ {a} {A : Set a} → IO A → Prim.IO A run (lift m) = m run (return x) = Prim.return x run (m >>= f) = Prim._>>=_ (run (♭ m )) λ x → run (♭ (f x)) run (m₁ >> m₂) = Prim._>>=_ (run (♭ m₁)) λ _ → run (♭ m₂) putStr∞ : Costring → IO ⊤ putStr∞ s = ♯ lift (Prim.putStr s) >> ♯ return _ putStr : String → IO ⊤ putStr s = putStr∞ (toCostring s) putStrLn∞ : Costring → IO ⊤ putStrLn∞ s = ♯ lift (Prim.putStrLn s) >> ♯ return _ putStrLn : String → IO ⊤ putStrLn s = putStrLn∞ (toCostring s) _∨_ : Bool → Bool → Bool Bool.true ∨ _ = Bool.true Bool.false ∨ b = b _∧_ : Bool → Bool → Bool Bool.false ∧ _ = Bool.false Bool.true ∧ b = b if_then_else_ : {A : Set} → Bool → A → A → A if Bool.true then a else _ = a if Bool.false then _ else b = b ---------------------------------------- _>>>_ : String → String → String _>>>_ = primStringAppend infixl 1 _>>>_ ---------------------------------------- data Principle : Set where # : String → Principle _=p=_ : Principle → Principle → Bool (# a) =p= (# b) = a == b ---------------------------------------- data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A infixr 5 _∷_ [[_]] : {A : Set} → A → List A [[ x ]] = x ∷ [] any : {A : Set} → (A → Bool) → List A → Bool any _ [] = Bool.false any f (x ∷ xs) = (f x) ∨ (any f xs) _∈∈_ : Principle → List Principle → Bool x ∈∈ [] = Bool.false x ∈∈ (y ∷ ys) with x =p= y ... | Bool.true = Bool.true ... | Bool.false = x ∈∈ ys _∋∋_ : List Principle → Principle → Bool xs ∋∋ y = y ∈∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : Principle → Arrow _⇒_ : Principle → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q =p= s (p ⇒ q) ≡≡ (r ⇒ s) = (p =p= r) ∧ (q ≡≡ s) _ ≡≡ _ = Bool.false _∈∈∈∈_ : Arrow → List Arrow → Bool x ∈∈∈∈ [] = Bool.false x ∈∈∈∈ (y ∷ ys) with x ≡≡ y ... | Bool.true = Bool.true ... | Bool.false = x ∈∈∈∈ ys closure : List Arrow → List Principle → List Principle closure [] found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈∈ found) ∨ (n ∈∈ (closure rest found)) ... | Bool.true = closure (q ∷ rest) found ... | Bool.false = closure rest found _,_⊢_ : List Arrow → List Principle → Principle → Bool cs , ps ⊢ q = q ∈∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈∈ (closure cs []) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List Principle → List Principle → Separation modelsupports : Separation → List Arrow → Principle → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → Principle → Bool modeldenies (model _ fails) cs n = any (_∋∋_ (closure cs ([[ n ]]))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) ∧ (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ [] ⟫ arr = Bool.false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) ∨ (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈∈∈ cs) ... | Bool.true = Proved ... | Bool.false with (cs ⊢ arr) ... | Bool.true = Derivable ... | Bool.false with (cs ⟪ ms ⟫ arr) ... | Bool.true = Separated ... | Bool.false = Unknown proofs : List Arrow proofs = ((# "3") ⇒ (⇒ (# "4"))) ∷ -- ((# "5") ⇒ (⇒ (# "4"))) ∷ ((# "6") ⇒ (⇒ (# "4"))) ∷ ((# "3") ⇒ (⇒ (# "3"))) ∷ ((# "3") ⇒ (⇒ (# "3"))) ∷ ((# "9") ⇒ (⇒ (# "3"))) ∷ ((# "9") ⇒ (⇒ (# "3"))) ∷ ((# "5") ⇒ (⇒ (# "7"))) ∷ ((# "9") ⇒ (⇒ (# "7"))) ∷ ((# "6") ⇒ (⇒ (# "8"))) ∷ ((# "10") ⇒ (⇒ (# "8"))) ∷ ((# "10") ⇒ (⇒ (# "7"))) ∷ ((# "5") ⇒ (⇒ (# "10"))) ∷ ((# "10") ⇒ (⇒ (# "4"))) ∷ ((# "5") ⇒ (⇒ (# "11"))) ∷ ((# "6") ⇒ (⇒ (# "11"))) ∷ ((# "11") ⇒ (⇒ (# "4"))) ∷ ((# "10") ⇒ (⇒ (# "7"))) ∷ ((# "8") ⇒ (⇒ (# "4"))) ∷ ((# "9") ⇒ (⇒ (# "7"))) ∷ ((# "9") ⇒ (⇒ (# "8"))) ∷ ((# "3") ⇒ (⇒ (# "8"))) ∷ ((# "5") ⇒ ((# "3") ⇒ (⇒ (# "9")))) ∷ ((# "6") ⇒ ((# "7") ⇒ (⇒ (# "10")))) ∷ ((# "6") ⇒ ((# "3") ⇒ (⇒ (# "3")))) ∷ ((# "7") ⇒ (⇒ (# "7"))) ∷ ((# "7") ⇒ (⇒ (# "7"))) ∷ ((# "7") ⇒ ((# "8") ⇒ (⇒ (# "10")))) ∷ ((# "3") ⇒ ((# "10") ⇒ (⇒ (# "9")))) ∷ ((# "5") ⇒ (⇒ (# "1"))) ∷ ((# "3") ⇒ ((# "1") ⇒ (⇒ (# "9")))) ∷ ((# "1") ⇒ (⇒ (# "2"))) ∷ ((# "10") ⇒ (⇒ (# "2"))) ∷ [] cms : List Separation cms = (model ((# "12") ∷ (# "6") ∷ (# "11") ∷ (# "4") ∷ (# "1") ∷ []) ((# "5") ∷ (# "3") ∷ (# "7") ∷ (# "7") ∷ [])) ∷ (model ((# "6") ∷ (# "3") ∷ (# "11") ∷ (# "4") ∷ (# "7") ∷ (# "8") ∷ (# "3") ∷ (# "9") ∷ (# "10") ∷ (# "1") ∷ []) ((# "5") ∷ [])) ∷ (model ((# "12") ∷ (# "5") ∷ (# "11") ∷ (# "4") ∷ (# "1") ∷ []) ((# "6") ∷ (# "3") ∷ [])) ∷ (model ((# "5") ∷ (# "3") ∷ (# "11") ∷ (# "4") ∷ (# "7") ∷ (# "8") ∷ (# "3") ∷ (# "9") ∷ (# "10") ∷ (# "1") ∷ []) ((# "6") ∷ [])) ∷ (model ((# "12") ∷ (# "4") ∷ (# "11") ∷ []) ((# "5") ∷ (# "6") ∷ (# "3") ∷ (# "8") ∷ (# "9") ∷ (# "1") ∷ [])) ∷ (model ((# "12") ∷ (# "5") ∷ (# "6") ∷ (# "4") ∷ (# "11") ∷ (# "1") ∷ []) ((# "3") ∷ [])) ∷ (model ((# "12") ∷ (# "4") ∷ (# "11") ∷ (# "7") ∷ []) ((# "9") ∷ (# "5") ∷ (# "6") ∷ (# "10") ∷ (# "8") ∷ (# "1") ∷ [])) ∷ (model ((# "10") ∷ (# "9") ∷ []) ((# "1") ∷ [])) ∷ (model ((# "3") ∷ (# "4") ∷ (# "11") ∷ []) ((# "9") ∷ (# "5") ∷ (# "6") ∷ (# "10") ∷ (# "7") ∷ (# "1") ∷ [])) ∷ (model ((# "12") ∷ (# "7") ∷ (# "1") ∷ []) ((# "4") ∷ (# "11") ∷ (# "8") ∷ [])) ∷ (model ((# "9") ∷ (# "3") ∷ (# "10") ∷ (# "8") ∷ (# "1") ∷ []) ((# "11") ∷ [])) ∷ (model ((# "12") ∷ (# "4") ∷ (# "10") ∷ (# "1") ∷ []) ((# "11") ∷ (# "3") ∷ [])) ∷ (model ((# "3") ∷ (# "6") ∷ (# "5") ∷ []) ([])) ∷ (model ((# "1") ∷ (# "2") ∷ (# "3") ∷ (# "4") ∷ (# "5") ∷ (# "6") ∷ (# "7") ∷ (# "8") ∷ (# "9") ∷ (# "10") ∷ (# "11") ∷ []) ((# "12") ∷ [])) ∷ [] testp : Relation testp = consider proofs cms ((# "5") ⇒ (⇒ (# "10"))) testd : Relation testd = consider proofs cms ((# "5") ⇒ (⇒ (# "4"))) tests : Relation tests = consider proofs cms ((# "5") ⇒ (⇒ (# "3"))) testu : Relation testu = consider proofs cms ((# "6") ⇒ (⇒ (# "1"))) testcl : List Principle testcl = closure proofs ((# "5") ∷ []) stringifylp : List Principle → String stringifylp [] = "[]" stringifylp ((# s) ∷ xs) = s >>> " ∷ " >>> (stringifylp xs) main = run (putStrLn (stringifylp testcl))
{ "alphanum_fraction": 0.3802466061, "avg_line_length": 28.371024735, "ext": "agda", "hexsha": "976f481cae719d8758ef4f304ab7a3614a87e739", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e73df65d9a118e35a42d2d00d838aa901f9c3a6f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "louisswarren/hieretikz", "max_forks_repo_path": "arrow.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e73df65d9a118e35a42d2d00d838aa901f9c3a6f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "louisswarren/hieretikz", "max_issues_repo_path": "arrow.agda", "max_line_length": 147, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e73df65d9a118e35a42d2d00d838aa901f9c3a6f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "louisswarren/hieretikz", "max_stars_repo_path": "arrow.agda", "max_stars_repo_stars_event_max_datetime": "2018-03-26T03:34:11.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-18T12:17:36.000Z", "num_tokens": 3241, "size": 8029 }
open import Relation.Binary.PropositionalEquality as P open import Function open import Streams tl' : ∀{A} → Stream A → Stream A tl' s = tl s coind : ∀{A X : Set} → (f g : X → Stream A) → hd ∘ f ≡ hd ∘ g → (u : ?) → ((v : ∀ x → f x ~ g x) → v ∘ u ∀ x → f x ~ g x hd~ (coind f g p x) = cong-app p x tl~ (coind f g p x) = coind (tl' ∘ f) (tl' ∘ g) {!!} {!!}
{ "alphanum_fraction": 0.4808184143, "avg_line_length": 26.0666666667, "ext": "agda", "hexsha": "3ced84f699f1a7dbe4253a29862741cb8e7168cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "Streams/Coind-Test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "Streams/Coind-Test.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "Streams/Coind-Test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 159, "size": 391 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Coinductive vectors ------------------------------------------------------------------------ module Data.Covec where open import Coinduction open import Data.Nat using (ℕ; zero; suc) open import Data.Conat as Coℕ using (Coℕ; zero; suc; _+_) open import Data.Cofin using (Cofin; zero; suc) open import Data.Vec using (Vec; []; _∷_) open import Data.Colist as Colist using (Colist; []; _∷_) open import Data.Product using (_,_) open import Relation.Binary ------------------------------------------------------------------------ -- The type infixr 5 _∷_ data Covec (A : Set) : Coℕ → Set where [] : Covec A zero _∷_ : ∀ {n} (x : A) (xs : ∞ (Covec A (♭ n))) → Covec A (suc n) ------------------------------------------------------------------------ -- Some operations map : ∀ {A B n} → (A → B) → Covec A n → Covec B n map f [] = [] map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) fromVec : ∀ {A n} → Vec A n → Covec A (Coℕ.fromℕ n) fromVec [] = [] fromVec (x ∷ xs) = x ∷ ♯ fromVec xs fromColist : ∀ {A} (xs : Colist A) → Covec A (Colist.length xs) fromColist [] = [] fromColist (x ∷ xs) = x ∷ ♯ fromColist (♭ xs) take : ∀ {A} m {n} → Covec A (m + n) → Covec A m take zero xs = [] take (suc n) (x ∷ xs) = x ∷ ♯ take (♭ n) (♭ xs) drop : ∀ {A} m {n} → Covec A (Coℕ.fromℕ m + n) → Covec A n drop zero xs = xs drop (suc n) (x ∷ xs) = drop n (♭ xs) replicate : ∀ {A} n → A → Covec A n replicate zero x = [] replicate (suc n) x = x ∷ ♯ replicate (♭ n) x lookup : ∀ {A n} → Cofin n → Covec A n → A lookup zero (x ∷ xs) = x lookup (suc n) (x ∷ xs) = lookup n (♭ xs) infixr 5 _++_ _++_ : ∀ {A m n} → Covec A m → Covec A n → Covec A (m + n) [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ ♯ (♭ xs ++ ys) [_] : ∀ {A} → A → Covec A (suc (♯ zero)) [ x ] = x ∷ ♯ [] ------------------------------------------------------------------------ -- Equality and other relations -- xs ≈ ys means that xs and ys are equal. infix 4 _≈_ data _≈_ {A} : ∀ {n} (xs ys : Covec A n) → Set where [] : [] ≈ [] _∷_ : ∀ {n} x {xs ys} (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → _≈_ {n = suc n} (x ∷ xs) (x ∷ ys) -- x ∈ xs means that x is a member of xs. infix 4 _∈_ data _∈_ {A} : ∀ {n} → A → Covec A n → Set where here : ∀ {n x } {xs} → _∈_ {n = suc n} x (x ∷ xs) there : ∀ {n x y} {xs} (x∈xs : x ∈ ♭ xs) → _∈_ {n = suc n} x (y ∷ xs) -- xs ⊑ ys means that xs is a prefix of ys. infix 4 _⊑_ data _⊑_ {A} : ∀ {m n} → Covec A m → Covec A n → Set where [] : ∀ {n} {ys : Covec A n} → [] ⊑ ys _∷_ : ∀ {m n} x {xs ys} (p : ∞ (♭ xs ⊑ ♭ ys)) → _⊑_ {m = suc m} {suc n} (x ∷ xs) (x ∷ ys) ------------------------------------------------------------------------ -- Some proofs setoid : Set → Coℕ → Setoid _ _ setoid A n = record { Carrier = Covec A n ; _≈_ = _≈_ ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } where refl : ∀ {A n} → Reflexive (_≈_ {A} {n}) refl {x = []} = [] refl {x = x ∷ xs} = x ∷ ♯ refl sym : ∀ {A n} → Symmetric (_≈_ {A} {n}) sym [] = [] sym (x ∷ xs≈) = x ∷ ♯ sym (♭ xs≈) trans : ∀ {A n} → Transitive (_≈_ {A} {n}) trans [] [] = [] trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) poset : Set → Coℕ → Poset _ _ _ poset A n = record { Carrier = Covec A n ; _≈_ = _≈_ ; _≤_ = _⊑_ ; isPartialOrder = record { isPreorder = record { isEquivalence = Setoid.isEquivalence (setoid A n) ; reflexive = reflexive ; trans = trans } ; antisym = antisym } } where reflexive : ∀ {A n} → _≈_ {A} {n} ⇒ _⊑_ reflexive [] = [] reflexive (x ∷ xs≈) = x ∷ ♯ reflexive (♭ xs≈) trans : ∀ {A n} → Transitive (_⊑_ {A} {n}) trans [] _ = [] trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) antisym : ∀ {A n} → Antisymmetric (_≈_ {A} {n}) _⊑_ antisym [] [] = [] antisym (x ∷ p₁) (.x ∷ p₂) = x ∷ ♯ antisym (♭ p₁) (♭ p₂) map-cong : ∀ {A B n} (f : A → B) → _≈_ {n = n} =[ map f ]⇒ _≈_ map-cong f [] = [] map-cong f (x ∷ xs≈) = f x ∷ ♯ map-cong f (♭ xs≈) take-⊑ : ∀ {A} m {n} (xs : Covec A (m + n)) → take m xs ⊑ xs take-⊑ zero xs = [] take-⊑ (suc n) (x ∷ xs) = x ∷ ♯ take-⊑ (♭ n) (♭ xs)
{ "alphanum_fraction": 0.4219457014, "avg_line_length": 28.3333333333, "ext": "agda", "hexsha": "aa7e176adf33a1f18ccf2dae354b0c55c032a94f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Covec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Covec.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Covec.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 1789, "size": 4420 }
-- Andreas, 2022-03-28, issue #5856, reported by Szumi Xie. -- Patterns in path-lambdas were simply ignored, but should be illegal. {-# OPTIONS --cubical #-} -- {-# OPTIONS -v tc.term.lambda:30 #-} open import Agda.Builtin.Cubical.Path postulate A E : Set a : A data C : Set where c : E → C p : a ≡ a p = λ (c e) → a -- WAS: accepted. -- Expected error: -- Patterns are not allowed in Path-lambdas -- when checking that the expression λ .patternInTele0 @ (c e) → a has type a ≡ a
{ "alphanum_fraction": 0.6477732794, "avg_line_length": 19.76, "ext": "agda", "hexsha": "1c0519b90a4bd375549d7f6e87634b1ceb4252ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue5856.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue5856.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue5856.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 159, "size": 494 }
{- Reported by Nils Anders Danielsson, 2011-07-06 From the release notes for Agda 2.2.10: "Projections now preserve sizes, both in patterns and expressions." However, the following code is rejected: -} module Issue425 where record _×_ (A B : Set) : Set where constructor _,_ field proj₁ : A proj₂ : B open _×_ id : {A : Set} → A → A id x = x data I : Set where c : I → I → I data D : I → Set where d : (j : I × I) → D (proj₁ j) → D (proj₂ j) → D (c (proj₁ j) (proj₂ j)) f : ∀ i → D i → Set f .(c (proj₁ j) (proj₂ j)) (d j l r) = f (proj₁ j) (id l) {- Is this intentional? I guess the issue here is the subterm relation rather than the sizes. Should we modify the subterm relation? -} -- Andreas, 2011-07-07 this should termination check.
{ "alphanum_fraction": 0.6354166667, "avg_line_length": 21.3333333333, "ext": "agda", "hexsha": "a3d463d4519dafb9bffcf03d7a5508c13a74cf70", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue425.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue425.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue425.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 263, "size": 768 }
module Structure.Category.Functor.Functors where import Functional as Fn open import Function.Proofs open import Logic.Predicate import Lvl open import Structure.Category open import Structure.Category.Functor open import Structure.Categorical.Properties open import Structure.Function open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Transitivity open import Type private variable ℓ ℓₒ ℓₘ ℓₑ ℓₗₑ ℓᵣₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ : Lvl.Level private variable Obj Obj₁ Obj₂ Obj₃ : Type{ℓ} private variable Morphism Morphism₁ Morphism₂ Morphism₃ : Obj → Obj → Type{ℓ} module Raw where constᶠᵘⁿᶜᵗᵒʳ : Obj₂ → (Obj₁ → Obj₂) constᶠᵘⁿᶜᵗᵒʳ = Fn.const idᶠᵘⁿᶜᵗᵒʳ : Obj → Obj idᶠᵘⁿᶜᵗᵒʳ = Fn.id _∘ᶠᵘⁿᶜᵗᵒʳ_ : (Obj₂ → Obj₃) → (Obj₁ → Obj₂) → (Obj₁ → Obj₃) _∘ᶠᵘⁿᶜᵗᵒʳ_ = Fn._∘_ infixl 10000 _∘ᶠᵘⁿᶜᵗᵒʳ_ module _ ⦃ morphism-equivₗ : ∀{x y : Obj₁} → Equiv{ℓₗₑ}(Morphism₁ x y) ⦄ ⦃ morphism-equivᵣ : ∀{x y : Obj₂} → Equiv{ℓᵣₑ}(Morphism₂ x y) ⦄ {Category₁ : Category(Morphism₁)} {Category₂ : Category(Morphism₂)} where module _ where private open module Equivₗ {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equivₗ{x}{y} ⦄) using () private open module Equivᵣ {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equivᵣ{x}{y} ⦄) using () open Category ⦃ … ⦄ open Functor open Raw private instance _ = Category₁ private instance _ = Category₂ -- A constant functor maps every object and morphism in a category to a single specified object and the identity morphism. constant : (objᵣ : Obj₂) → Functor(Category₁)(Category₂)(constᶠᵘⁿᶜᵗᵒʳ(objᵣ)) map (constant(objᵣ)) = Fn.const(id) op-preserving (constant(objᵣ)) = symmetry(_≡_) (Morphism.identityₗ(_∘_)(id)) id-preserving (constant(objᵣ)) = reflexivity(_≡_) module _ ⦃ morphism-equiv : ∀{x y : Obj} → Equiv{ℓₑ}(Morphism x y) ⦄ {Category : Category(Morphism)} where private open module [≡]-Equivalence {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv{x}{y} ⦄) using () open Functor open Raw private instance _ = Category identity : Endofunctor(Category)(idᶠᵘⁿᶜᵗᵒʳ) map (identity) = Fn.id op-preserving (identity) = reflexivity(_≡_) id-preserving (identity) = reflexivity(_≡_) module _ ⦃ morphism-equiv₁ : ∀{x y : Obj₁} → Equiv{ℓₑ₁}(Morphism₁ x y) ⦄ ⦃ morphism-equiv₂ : ∀{x y : Obj₂} → Equiv{ℓₑ₂}(Morphism₂ x y) ⦄ ⦃ morphism-equiv₃ : ∀{x y : Obj₃} → Equiv{ℓₑ₃}(Morphism₃ x y) ⦄ {Category₁ : Category(Morphism₁)} {Category₂ : Category(Morphism₂)} {Category₃ : Category(Morphism₃)} where private open module Equiv₃ {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv₃{x}{y} ⦄) using () open Category ⦃ … ⦄ open Functor open Raw private instance _ = Category₁ private instance _ = Category₂ private instance _ = Category₃ composition : ∀{F₂₃}{F₁₂} → (functor₂₃ : Functor(Category₂)(Category₃)(F₂₃)) → (functor₁₂ : Functor(Category₁)(Category₂)(F₁₂)) → Functor(Category₁)(Category₃)(F₂₃ ∘ᶠᵘⁿᶜᵗᵒʳ F₁₂) map (composition{F₂₃}{F₁₂}(functor₂₃)(functor₁₂)){x}{y} = (map(functor₂₃){F₁₂(x)}{F₁₂(y)}) Fn.∘ (map(functor₁₂){x}{y}) map-function (composition{F₂₃}{F₁₂}(functor₂₃)(functor₁₂)) = [∘]-function ⦃ func-f = map-function(functor₂₃) ⦄ ⦃ func-g = map-function(functor₁₂) ⦄ op-preserving (composition{F₂₃}{F₁₂}(functor₂₃)(functor₁₂)){x}{y}{z} {f}{g} = map(functor₂₃) (map(functor₁₂) (f ∘ g)) 🝖-[ congruence₁(map(functor₂₃)) (op-preserving(functor₁₂)) ] map(functor₂₃) (map(functor₁₂) f ∘ map functor₁₂ g) 🝖-[ op-preserving(functor₂₃)] map(functor₂₃) (map(functor₁₂) f) ∘ map(functor₂₃) (map(functor₁₂) g) 🝖-end id-preserving (composition{F₂₃}{F₁₂}(functor₂₃)(functor₁₂)) {x} = map(functor₂₃) (map(functor₁₂) id) 🝖-[ congruence₁(_) (id-preserving(functor₁₂)) ] map(functor₂₃) id 🝖-[ id-preserving(functor₂₃) ] id 🝖-end module Wrapped where open CategoryObject private variable A B C : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ} constᶠᵘⁿᶜᵗᵒʳ : let _ = A in Object(B) → (A →ᶠᵘⁿᶜᵗᵒʳ B) ∃.witness (constᶠᵘⁿᶜᵗᵒʳ c) = Raw.constᶠᵘⁿᶜᵗᵒʳ c ∃.proof (constᶠᵘⁿᶜᵗᵒʳ c) = constant c idᶠᵘⁿᶜᵗᵒʳ : A →ᶠᵘⁿᶜᵗᵒʳ A ∃.witness idᶠᵘⁿᶜᵗᵒʳ = Raw.idᶠᵘⁿᶜᵗᵒʳ ∃.proof idᶠᵘⁿᶜᵗᵒʳ = identity _∘ᶠᵘⁿᶜᵗᵒʳ_ : let _ = A ; _ = B ; _ = C in (B →ᶠᵘⁿᶜᵗᵒʳ C) → (A →ᶠᵘⁿᶜᵗᵒʳ B) → (A →ᶠᵘⁿᶜᵗᵒʳ C) ∃.witness (_∘ᶠᵘⁿᶜᵗᵒʳ_ ([∃]-intro F) ([∃]-intro G)) = Raw._∘ᶠᵘⁿᶜᵗᵒʳ_ F G ∃.proof (_∘ᶠᵘⁿᶜᵗᵒʳ_ ([∃]-intro _ ⦃ F-functor ⦄) ([∃]-intro _ ⦃ G-functor ⦄)) = composition F-functor G-functor
{ "alphanum_fraction": 0.6603012943, "avg_line_length": 38.3170731707, "ext": "agda", "hexsha": "ac068ad97e88921997c617a8dd2689c65ec76dac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/Functor/Functors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/Functor/Functors.agda", "max_line_length": 153, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/Functor/Functors.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2212, "size": 4713 }
open import Everything module Test.UnifiesSubstitunction {𝔭} (𝔓 : Ø 𝔭) where open Substitunction 𝔓 open Term 𝔓 open Substitist 𝔓 ≡-Unifies₀-Term : ∀ {m} → Term m → Term m → Ṗroperty ∅̂ (Arrow Fin Term m) ≡-Unifies₀-Term = ≡-surjcollation ≡-Unifies₀-Term' : ∀ {m} → Term m → Term m → Ṗroperty ∅̂ (Arrow Fin Term m) ≡-Unifies₀-Term' = ≡-surjcollation[ Term ]⟦ Substitunction ⟧ ≡-Unifies₀-Terms : ∀ {N m} → Terms N m → Terms N m → Ṗroperty ∅̂ (Arrow Fin Term m) ≡-Unifies₀-Terms = λ x → ≡-surjcollation x ≡-ExtensionalUnifies-Term : ∀ {m} → Term m → Term m → ArrowExtensionṖroperty ∅̂ Fin Term _≡_ m ≡-ExtensionalUnifies-Term = Surjextenscollation.method Substitunction _≡̇_ ≡-ExtensionalUnifies-Terms : ∀ {N m} → Terms N m → Terms N m → LeftExtensionṖroperty ∅̂ (Arrow Fin Term) (Pointwise Proposequality) m ≡-ExtensionalUnifies-Terms = surjextenscollation⟦ Pointwise _≡_ ⟧
{ "alphanum_fraction": 0.6750823271, "avg_line_length": 37.9583333333, "ext": "agda", "hexsha": "d0b56f25578c1af6c0970e5f5660198eb27d2a93", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/UnifiesSubstitunction.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/UnifiesSubstitunction.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/UnifiesSubstitunction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 380, "size": 911 }
-- Modified: Andreas, 2011-04-11 freezing Metas module HereditarilySingletonRecord where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x -- * trivial unit type record Singleton : Set where foo : Singleton foo = _ -- * product of unit types record HereditarilySingleton : Set where field singleton : Singleton also-singleton : Singleton bar : HereditarilySingleton bar = _ -- * hiding the unit types behind a type case data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ Unit : ℕ → Set Unit zero = Singleton Unit (suc n) = Unit n mutual -- needed to avoid freezing one : ℕ one = _ record HereditarilySingleton₂ : Set where field singleton : Unit one baz : HereditarilySingleton₂ baz = _ force : one ≡ suc zero force = refl
{ "alphanum_fraction": 0.6611675127, "avg_line_length": 16.4166666667, "ext": "agda", "hexsha": "8b23988cee18fbd687f47e36742a0921ee219ee6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/HereditarilySingletonRecord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/HereditarilySingletonRecord.agda", "max_line_length": 47, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/HereditarilySingletonRecord.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 234, "size": 788 }
-- Andreas, 2018-11-15, issue #3394 and testcase by Guillaume Brunerie -- -- Internal error in termination checking the type of Ploop -- due to uninitialized terSizeDepth. postulate A : Set B : Set P : B → Set mutual loop : A → B → B loop a b = loop a b Ploop : (b : B) → P (loop _ b) -- Unsolved meta caused internal error Ploop b = whatever where postulate whatever : _ -- Should fail termination checking in a controlled fashion.
{ "alphanum_fraction": 0.6783369803, "avg_line_length": 22.85, "ext": "agda", "hexsha": "ae89a1604cf4b5c63991b76049d615a8ac95af62", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3394.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3394.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3394.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 135, "size": 457 }
{- defining Nat as a kind of List -} -- the need for ‼ is unfortunate module Oscar.Data2 where record ⊤ : Set where constructor tt -- List data ⟦_⟧ {a} (A : Set a) : Set a where ∅ : ⟦ A ⟧ _∷_ : A → ⟦ A ⟧ → ⟦ A ⟧ -- Nat ⟦⟧ = ⟦ ⊤ ⟧ pattern ‼ ⟦A⟧ = tt ∷ ⟦A⟧ -- Fin data ⟦⟧[_] : ⟦⟧ → Set where ∅ : ∀ {n} → ⟦⟧[ ‼ n ] ! : ∀ {n} → ⟦⟧[ n ] → ⟦⟧[ ‼ n ] test : ⟦⟧[ ‼ (‼ ∅) ] test = ! ∅
{ "alphanum_fraction": 0.4296675192, "avg_line_length": 16.2916666667, "ext": "agda", "hexsha": "27df37f092627d05e6002c84a6d77095b1ddcba1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data2.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data2.agda", "max_line_length": 38, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 206, "size": 391 }
------------------------------------------------------------------------ -- Lemmas related to strong similarity for CCS ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Similarity.CCS {ℓ} {Name : Type ℓ} where open import Equality.Propositional open import Prelude.Size open import Function-universe equality-with-J hiding (id; _∘_) import Bisimilarity.CCS as BL import Bisimilarity.Equational-reasoning-instances open import Equational-reasoning open import Labelled-transition-system.CCS Name import Similarity.Equational-reasoning-instances open import Bisimilarity CCS as B using (_∼_; _∼′_) open import Similarity CCS ------------------------------------------------------------------------ -- Congruence lemmas private module CL {i} = BL.Cong-lemmas [ i ]_≤′_ challenge mutual -- _∣_ preserves similarity. infix 6 _∣-cong_ _∣-cong′_ _∣-cong_ : ∀ {i P P′ Q Q′} → [ i ] P ≤ P′ → [ i ] Q ≤ Q′ → [ i ] P ∣ Q ≤ P′ ∣ Q′ P≤P′ ∣-cong Q≤Q′ = ⟨ CL.∣-cong _∣-cong′_ P≤P′ Q≤Q′ ⟩ _∣-cong′_ : ∀ {i P P′ Q Q′} → [ i ] P ≤′ P′ → [ i ] Q ≤′ Q′ → [ i ] P ∣ Q ≤′ P′ ∣ Q′ force (P≤P′ ∣-cong′ Q≤Q′) = force P≤P′ ∣-cong force Q≤Q′ -- _⊕_ preserves similarity. infix 8 _⊕-cong_ _⊕-cong′_ _⊕-cong_ : ∀ {i P P′ Q Q′} → [ i ] P ≤ P′ → [ i ] Q ≤ Q′ → [ i ] P ⊕ Q ≤ P′ ⊕ Q′ P≤P′ ⊕-cong Q≤Q′ = ⟨ CL.⊕-cong P≤P′ Q≤Q′ ⟩ _⊕-cong′_ : ∀ {i P P′ Q Q′} → [ i ] P ≤′ P′ → [ i ] Q ≤′ Q′ → [ i ] P ⊕ Q ≤′ P′ ⊕ Q′ force (P≤P′ ⊕-cong′ Q≤Q′) = force P≤P′ ⊕-cong force Q≤Q′ -- _·_ preserves similarity. infix 12 _·-cong_ _·-cong′_ _·-cong_ : ∀ {i μ μ′ P P′} → μ ≡ μ′ → [ i ] force P ≤′ force P′ → [ i ] μ · P ≤ μ′ · P′ _·-cong_ {i} refl P≤P′ = ⟨ CL.·-cong {i = i} P≤P′ ⟩ _·-cong′_ : ∀ {i μ μ′ P P′} → μ ≡ μ′ → [ i ] force P ≤′ force P′ → [ i ] μ · P ≤′ μ′ · P′ force (μ≡μ′ ·-cong′ P≤P′) = μ≡μ′ ·-cong P≤P′ -- _∙_ preserves similarity. infix 12 _∙-cong_ _∙-cong′_ _∙-cong_ : ∀ {i μ μ′ P P′} → μ ≡ μ′ → [ i ] P ≤ P′ → [ i ] μ ∙ P ≤ μ′ ∙ P′ refl ∙-cong P≤P′ = refl ·-cong convert {a = ℓ} P≤P′ _∙-cong′_ : ∀ {i μ μ′ P P′} → μ ≡ μ′ → [ i ] P ≤′ P′ → [ i ] μ ∙ P ≤′ μ′ ∙ P′ force (μ≡μ′ ∙-cong′ P≤P′) = μ≡μ′ ∙-cong force P≤P′ -- _∙ turns equal actions into similar processes. infix 12 _∙-cong _∙-cong′ _∙-cong : ∀ {μ μ′} → μ ≡ μ′ → μ ∙ ≤ μ′ ∙ refl ∙-cong = reflexive _∙-cong′ : ∀ {μ μ′} → μ ≡ μ′ → μ ∙ ≤′ μ′ ∙ refl ∙-cong′ = reflexive mutual -- ⟨ν_⟩ preserves similarity. ⟨ν_⟩-cong : ∀ {i a a′ P P′} → a ≡ a′ → [ i ] P ≤ P′ → [ i ] ⟨ν a ⟩ P ≤ ⟨ν a′ ⟩ P′ ⟨ν refl ⟩-cong P≤P′ = ⟨ CL.⟨ν⟩-cong ⟨ν refl ⟩-cong′ P≤P′ ⟩ ⟨ν_⟩-cong′ : ∀ {i a a′ P P′} → a ≡ a′ → [ i ] P ≤′ P′ → [ i ] ⟨ν a ⟩ P ≤′ ⟨ν a′ ⟩ P′ force (⟨ν a≡a′ ⟩-cong′ P≤P′) = ⟨ν a≡a′ ⟩-cong (force P≤P′) mutual -- !_ preserves similarity. infix 10 !-cong_ !-cong′_ !-cong_ : ∀ {i P P′} → [ i ] P ≤ P′ → [ i ] ! P ≤ ! P′ !-cong P≤P′ = ⟨ CL.!-cong BL.6-1-3-2 _∣-cong′_ !-cong′_ P≤P′ ⟩ !-cong′_ : ∀ {i P P′} → [ i ] P ≤′ P′ → [ i ] ! P ≤′ ! P′ force (!-cong′ P≤P′) = !-cong force P≤P′ -- _[_] preserves similarity. mutual infix 5 _[_]-cong _[_]-cong′ _[_]-cong : ∀ {i n Ps Qs} (C : Context ∞ n) → (∀ x → [ i ] Ps x ≤ Qs x) → [ i ] C [ Ps ] ≤ C [ Qs ] hole x [ Ps≤Qs ]-cong = Ps≤Qs x ∅ [ Ps≤Qs ]-cong = reflexive C₁ ∣ C₂ [ Ps≤Qs ]-cong = (C₁ [ Ps≤Qs ]-cong) ∣-cong (C₂ [ Ps≤Qs ]-cong) C₁ ⊕ C₂ [ Ps≤Qs ]-cong = (C₁ [ Ps≤Qs ]-cong) ⊕-cong (C₂ [ Ps≤Qs ]-cong) μ · C [ Ps≤Qs ]-cong = refl ·-cong λ { .force → force C [ Ps≤Qs ]-cong } ⟨ν a ⟩ C [ Ps≤Qs ]-cong = ⟨ν refl ⟩-cong (C [ Ps≤Qs ]-cong) ! C [ Ps≤Qs ]-cong = !-cong (C [ Ps≤Qs ]-cong) _[_]-cong′ : ∀ {i n Ps Qs} (C : Context ∞ n) → (∀ x → [ i ] Ps x ≤′ Qs x) → [ i ] C [ Ps ] ≤′ C [ Qs ] force (C [ Ps≤Qs ]-cong′) = C [ (λ x → force (Ps≤Qs x)) ]-cong ------------------------------------------------------------------------ -- Other results -- P is similar to P ⊕ Q. ≤-⊕-left : ∀ {i P Q} → [ i ] P ≤ P ⊕ Q ≤-⊕-left = ⟨ (λ P⟶P′ → _ , sum-left P⟶P′ , reflexive) ⟩ -- Q is similar to P ⊕ Q. ≤-⊕-right : ∀ {i P Q} → [ i ] Q ≤ P ⊕ Q ≤-⊕-right = ⟨ (λ Q⟶Q′ → _ , sum-right Q⟶Q′ , reflexive) ⟩ -- If Name is inhabited, then there are two processes that are similar -- in both directions, but not bisimilar. -- -- I took this example from Wikipedia; I suspect that it is due to -- Milner. ≤≥≁ : Name → ∃ λ P → ∃ λ Q → P ≤ Q × Q ≤ P × ¬ P ∼ Q ≤≥≁ x = machine₁ , machine₂ , machine₁≤machine₂ , machine₂≤machine₁ , machine₁≁machine₂ where -- Some names (with kinds), constructed using x. pay coffee tea : Name-with-kind pay = x , true coffee = pay tea = x , false -- Two vending machines. machine₁ machine₂ machine₁′ machine₂′ : Proc ∞ machine₁′ = name pay ∙ (coffee ∙ ⊕ tea ∙) machine₁ = ! machine₁′ machine₂′ = (name pay ∙ (coffee ∙) ⊕ name pay ∙ (tea ∙)) ⊕ machine₁′ machine₂ = ! machine₂′ -- A lemma. machine₁⟶ : ∀ {P μ} → machine₁ [ μ ]⟶ P → μ ≡ name pay × P ∼ machine₁ ∣ (coffee ∙ ⊕ tea ∙) machine₁⟶ tr = case BL.6-1-3-2 tr of λ where (inj₁ (_ , action , P∼)) → refl , P∼ (inj₂ (_ , _ , _ , _ , action , tr , _)) → ⊥-elim (names-are-not-inverted tr) -- The first machine is similar to the second one. machine₁≤machine₂ : ∀ {i} → [ i ] machine₁ ≤ machine₂ machine₁≤machine₂ {i} = StepC.⟨ (λ {P} tr → case machine₁⟶ tr of λ where (refl , P∼) → _ , (machine₂ [ name pay ]⟶⟨ replication (par-right (sum-right action)) ⟩ machine₂ ∣ coffee ∙ ⊕ tea ∙) , (P ∼⟨ ≤: convert {a = ℓ} P∼ ⟩ machine₁ ∣ coffee ∙ ⊕ tea ∙ ∼⟨ machine₁≤′machine₂ ∣-cong′ (_ ■) ⟩■ machine₂ ∣ coffee ∙ ⊕ tea ∙)) ⟩ where machine₁≤′machine₂ : [ i ] machine₁ ≤′ machine₂ force machine₁≤′machine₂ = machine₁≤machine₂ -- The second machine is similar to the first one. machine₂≤machine₁ : ∀ {i} → [ i ] machine₂ ≤ machine₁ machine₂≤machine₁ {i} = StepC.⟨ helper ∘ BL.6-1-3-2 ⟩ where machine₂≤′machine₁ : [ i ] machine₂ ≤′ machine₁ force machine₂≤′machine₁ = machine₂≤machine₁ lemma = machine₁ [ name pay ]⟶⟨ replication (par-right action) ⟩ machine₁ ∣ coffee ∙ ⊕ tea ∙ helper : ∀ {P μ} → (∃ λ P′ → machine₂′ [ μ ]⟶ P′ × P ∼ machine₂ ∣ P′) ⊎ (μ ≡ τ × ∃ λ P′ → ∃ λ P″ → ∃ λ a → machine₂′ [ name a ]⟶ P′ × machine₂′ [ name (co a) ]⟶ P″ × P ∼ (machine₂ ∣ P′) ∣ P″) → ∃ λ Q → machine₁ [ μ ]⟶ Q × [ i ] P ≤′ Q helper {P} (inj₁ (_ , sum-left (sum-left action) , P∼)) = _ , lemma , (P ∼⟨ ≤: convert {a = ℓ} P∼ ⟩ machine₂ ∣ coffee ∙ ∼⟨ machine₂≤′machine₁ ∣-cong′ convert {a = ℓ} ≤-⊕-left ⟩■ machine₁ ∣ coffee ∙ ⊕ tea ∙) helper {P} (inj₁ (_ , sum-left (sum-right action) , P∼)) = _ , lemma , (P ∼⟨ ≤: convert {a = ℓ} P∼ ⟩ machine₂ ∣ tea ∙ ∼⟨ machine₂≤′machine₁ ∣-cong′ convert {a = ℓ} ≤-⊕-right ⟩■ machine₁ ∣ coffee ∙ ⊕ tea ∙) helper {P} (inj₁ (_ , sum-right action , P∼)) = _ , lemma , (P ∼⟨ ≤: convert {a = ℓ} P∼ ⟩ machine₂ ∣ coffee ∙ ⊕ tea ∙ ∼⟨ machine₂≤′machine₁ ∣-cong′ (_ ■) ⟩■ machine₁ ∣ coffee ∙ ⊕ tea ∙) helper (inj₂ (_ , _ , _ , _ , sum-left (sum-left action) , sum-left (sum-left tr) , _)) = ⊥-elim (names-are-not-inverted tr) helper (inj₂ (_ , _ , _ , _ , sum-left (sum-left action) , sum-left (sum-right tr) , _)) = ⊥-elim (names-are-not-inverted tr) helper (inj₂ (_ , _ , _ , _ , sum-left (sum-left action) , sum-right tr , _)) = ⊥-elim (names-are-not-inverted tr) helper (inj₂ (_ , _ , _ , _ , sum-left (sum-right action) , sum-left (sum-left tr) , _)) = ⊥-elim (names-are-not-inverted tr) helper (inj₂ (_ , _ , _ , _ , sum-left (sum-right action) , sum-left (sum-right tr) , _)) = ⊥-elim (names-are-not-inverted tr) helper (inj₂ (_ , _ , _ , _ , sum-left (sum-right action) , sum-right tr , _)) = ⊥-elim (names-are-not-inverted tr) helper (inj₂ (_ , _ , _ , _ , sum-right action , sum-left (sum-left tr) , _)) = ⊥-elim (names-are-not-inverted tr) helper (inj₂ (_ , _ , _ , _ , sum-right action , sum-left (sum-right tr) , _)) = ⊥-elim (names-are-not-inverted tr) helper (inj₂ (_ , _ , _ , _ , sum-right action , sum-right tr , _)) = ⊥-elim (names-are-not-inverted tr) -- The two machines are not bisimilar. machine₁≁machine₂ : ¬ machine₁ ∼ machine₂ machine₁≁machine₂ = machine₁ ∼ machine₂ ↝⟨ (λ hyp → B.right-to-left hyp (replication (par-right (sum-left (sum-left action))))) ⟩ (∃ λ P → machine₁ [ name pay ]⟶ P × P ∼′ machine₂ ∣ coffee ∙) ↝⟨ Σ-map id (Σ-map (proj₂ ∘ machine₁⟶) id) ⟩ (∃ λ P → P ∼ machine₁ ∣ (coffee ∙ ⊕ tea ∙) × P ∼′ machine₂ ∣ coffee ∙) ↝⟨ (λ { (_ , P∼ , P∼′) → transitive {a = ℓ} (symmetric P∼) (convert {a = ℓ} P∼′) }) ⟩ machine₁ ∣ (coffee ∙ ⊕ tea ∙) ∼ machine₂ ∣ coffee ∙ ↝⟨ (λ hyp → Σ-map id proj₁ $ B.left-to-right hyp (par-right (sum-right action))) ⟩ (∃ λ P → machine₂ ∣ coffee ∙ [ name tea ]⟶ P) ↝⟨ helper ∘ proj₂ ⟩ pay ≡ tea ⊎ coffee ≡ tea ↝⟨ [ (λ ()) , (λ ()) ] ⟩□ ⊥ □ where helper : ∀ {P} → machine₂ ∣ coffee ∙ [ name tea ]⟶ P → pay ≡ tea ⊎ coffee ≡ tea helper (par-right tr) = inj₂ $ cancel-name $ ·-only tr helper (par-left tr) = inj₁ $ cancel-name $ !-only (⊕-only (⊕-only ·-only ·-only) ·-only) tr
{ "alphanum_fraction": 0.4567288993, "avg_line_length": 35.0989761092, "ext": "agda", "hexsha": "af175ea58f1622e204c594deca21f08b7feeedf9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Similarity/CCS.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Similarity/CCS.agda", "max_line_length": 152, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Similarity/CCS.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4187, "size": 10284 }
{-# OPTIONS --type-in-type #-} module RevisedHutton where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Sigma and friends --**************** data Sigma (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) -> Sigma A B _*_ : (A : Set)(B : Set) -> Set A * B = Sigma A \_ -> B fst : {A : Set}{B : A -> Set} -> Sigma A B -> A fst (a , _) = a snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero : Set where data Unit : Set where Void : Unit --**************** -- Sum and friends --**************** data _+_ (A : Set)(B : Set) : Set where l : A -> A + B r : B -> A + B --**************** -- Equality --**************** data _==_ {A : Set}(x : A) : A -> Set where refl : x == x subst : forall {x y} -> x == y -> x -> y subst refl x = x cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl cong2 : {A B C : Set}(f : A -> B -> C){x y : A}{z t : B} -> x == y -> z == t -> f x z == f y t cong2 f refl refl = refl postulate reflFun : {A B : Set}(f : A -> B)(g : A -> B)-> ((a : A) -> f a == g a) -> f == g --**************** -- Meta-language --**************** -- Note that we could define Nat, Bool, and the related operations in -- IDesc. But it is awful to code with them, in Agda. data Nat : Set where ze : Nat su : Nat -> Nat data Bool : Set where true : Bool false : Bool plus : Nat -> Nat -> Nat plus ze n' = n' plus (su n) n' = su (plus n n') le : Nat -> Nat -> Bool le ze _ = true le (su _) ze = false le (su n) (su n') = le n n' data Vec (A : Set) : Nat -> Set where vnil : Vec A ze vcons : {n : Nat} -> A -> Vec A n -> Vec A (su n) data Fin : Nat -> Set where fze : {n : Nat} -> Fin (su n) fsu : {n : Nat} -> Fin n -> Fin (su n) --******************************************** -- Desc code --******************************************** data IDesc (I : Set) : Set where var : I -> IDesc I const : Set -> IDesc I prod : IDesc I -> IDesc I -> IDesc I sigma : (S : Set) -> (S -> IDesc I) -> IDesc I pi : (S : Set) -> (S -> IDesc I) -> IDesc I --******************************************** -- Desc interpretation --******************************************** [|_|] : {I : Set} -> IDesc I -> (I -> Set) -> Set [| var i |] P = P i [| const X |] P = X [| prod D D' |] P = [| D |] P * [| D' |] P [| sigma S T |] P = Sigma S (\s -> [| T s |] P) [| pi S T |] P = (s : S) -> [| T s |] P --******************************************** -- Fixpoint construction --******************************************** data IMu {I : Set}(R : I -> IDesc I)(i : I) : Set where con : [| R i |] (\j -> IMu R j) -> IMu R i --******************************************** -- Predicate: All --******************************************** All : {I : Set}(D : IDesc I)(P : I -> Set) -> [| D |] P -> IDesc (Sigma I P) All (var i) P x = var (i , x) All (const X) P x = const Unit All (prod D D') P (d , d') = prod (All D P d) (All D' P d') All (sigma S T) P (a , b) = All (T a) P b All (pi S T) P f = pi S (\s -> All (T s) P (f s)) --******************************************** -- Elimination principle: induction --******************************************** module Elim {I : Set} (R : I -> IDesc I) (P : Sigma I (IMu R) -> Set) (m : (i : I) (xs : [| R i |] (IMu R)) (hs : [| All (R i) (IMu R) xs |] P) -> P ( i , con xs )) where mutual indI : (i : I)(x : IMu R i) -> P (i , x) indI i (con xs) = m i xs (hyps (R i) xs) hyps : (D : IDesc I) -> (xs : [| D |] (IMu R)) -> [| All D (IMu R) xs |] P hyps (var i) x = indI i x hyps (const X) x = Void hyps (prod D D') (d , d') = hyps D d , hyps D' d' hyps (pi S R) f = \ s -> hyps (R s) (f s) hyps (sigma S R) ( a , b ) = hyps (R a) b indI : {I : Set} (R : I -> IDesc I) (P : Sigma I (IMu R) -> Set) (m : (i : I) (xs : [| R i |] (IMu R)) (hs : [| All (R i) (IMu R) xs |] P) -> P ( i , con xs)) -> (i : I)(x : IMu R i) -> P ( i , x ) indI = Elim.indI --******************************************** -- Enumerations (hard-coded) --******************************************** -- Unlike in Desc.agda, we don't carry the levitation of finite sets -- here. We hard-code them and manipulate with standard Agda -- machinery. Both presentation are isomorph but, in Agda, the coded -- one quickly gets unusable. data EnumU : Set where nilE : EnumU consE : EnumU -> EnumU data EnumT : (e : EnumU) -> Set where EZe : {e : EnumU} -> EnumT (consE e) ESu : {e : EnumU} -> EnumT e -> EnumT (consE e) spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi nilE P = Unit spi (consE e) P = P EZe * spi e (\e -> P (ESu e)) switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch nilE P b () switch (consE e) P b EZe = fst b switch (consE e) P b (ESu n) = switch e (\e -> P (ESu e)) (snd b) n _++_ : EnumU -> EnumU -> EnumU nilE ++ e' = e' (consE e) ++ e' = consE (e ++ e') -- A special switch, for tagged descriptions. Switching on a -- concatenation of finite sets: sswitch : (e : EnumU)(e' : EnumU)(P : Set) (b : spi e (\_ -> P))(b' : spi e' (\_ -> P))(x : EnumT (e ++ e')) -> P sswitch nilE nilE P b b' () sswitch nilE (consE e') P b b' EZe = fst b' sswitch nilE (consE e') P b b' (ESu n) = sswitch nilE e' P b (snd b') n sswitch (consE e) e' P b b' EZe = fst b sswitch (consE e) e' P b b' (ESu n) = sswitch e e' P (snd b) b' n --******************************************** -- Tagged indexed description --******************************************** FixMenu : Set -> Set FixMenu I = Sigma EnumU (\e -> (i : I) -> spi e (\_ -> IDesc I)) SensitiveMenu : Set -> Set SensitiveMenu I = Sigma (I -> EnumU) (\F -> (i : I) -> spi (F i) (\_ -> IDesc I)) TagIDesc : Set -> Set TagIDesc I = FixMenu I * SensitiveMenu I toIDesc : (I : Set) -> TagIDesc I -> (I -> IDesc I) toIDesc I ((E , ED) , (F , FD)) i = sigma (EnumT (E ++ F i)) (\x -> sswitch E (F i) (IDesc I) (ED i) (FD i) x) --******************************************** -- Catamorphism --******************************************** cata : (I : Set) (R : I -> IDesc I) (T : I -> Set) -> ((i : I) -> [| R i |] T -> T i) -> (i : I) -> IMu R i -> T i cata I R T phi i x = indI R (\it -> T (fst it)) (\i xs ms -> phi i (replace (R i) T xs ms)) i x where replace : (D : IDesc I)(T : I -> Set) (xs : [| D |] (IMu R)) (ms : [| All D (IMu R) xs |] (\it -> T (fst it))) -> [| D |] T replace (var i) T x y = y replace (const Z) T z z' = z replace (prod D D') T (x , x') (y , y') = replace D T x y , replace D' T x' y' replace (sigma A B) T (a , b) t = a , replace (B a) T b t replace (pi A B) T f t = \s -> replace (B s) T (f s) (t s) --******************************************** -- Hutton's razor --******************************************** --******************************** -- Types code --******************************** data Type : Set where nat : Type bool : Type pair : Type -> Type -> Type --******************************************** -- Free monad construction --******************************************** _**_ : {I : Set} (R : TagIDesc I)(X : I -> Set) -> TagIDesc I ((E , ED) , FFD) ** X = ((( consE E , \ i -> ( const (X i) , ED i ))) , FFD) --******************************************** -- Substitution --******************************************** apply : {I : Set} (R : TagIDesc I)(X Y : I -> Set) -> ((i : I) -> X i -> IMu (toIDesc I (R ** Y)) i) -> (i : I) -> [| toIDesc I (R ** X) i |] (IMu (toIDesc I (R ** Y))) -> IMu (toIDesc I (R ** Y)) i apply (( E , ED) , (F , FD)) X Y sig i (EZe , x) = sig i x apply (( E , ED) , (F , FD)) X Y sig i (ESu n , t) = con (ESu n , t) substI : {I : Set} (X Y : I -> Set)(R : TagIDesc I) (sigma : (i : I) -> X i -> IMu (toIDesc I (R ** Y)) i) (i : I)(D : IMu (toIDesc I (R ** X)) i) -> IMu (toIDesc I (R ** Y)) i substI {I} X Y R sig i term = cata I (toIDesc I (R ** X)) (IMu (toIDesc I (R ** Y))) (apply R X Y sig) i term --******************************************** -- Hutton's razor is free monad --******************************************** -- Fix menu: exprFreeFixMenu : FixMenu Type exprFreeFixMenu = ( consE nilE , \ty -> (prod (var bool) (prod (var ty) (var ty)), -- if b then t1 else t2 Void)) -- Index-dependent menu: choiceFreeMenu : Type -> EnumU choiceFreeMenu nat = consE nilE choiceFreeMenu bool = consE nilE choiceFreeMenu (pair x y) = nilE choiceFreeDessert : (ty : Type) -> spi (choiceFreeMenu ty) (\ _ -> IDesc Type) choiceFreeDessert nat = (prod (var nat) (var nat) , Void) -- plus x y choiceFreeDessert bool = (prod (var nat) (var nat) , Void ) -- le x y choiceFreeDessert (pair x y) = Void exprFreeSensitiveMenu : SensitiveMenu Type exprFreeSensitiveMenu = ( choiceFreeMenu , choiceFreeDessert ) -- Tagged description of expressions exprFree : TagIDesc Type exprFree = exprFreeFixMenu , exprFreeSensitiveMenu -- Free monadic expressions exprFreeC : (Type -> Set) -> TagIDesc Type exprFreeC X = exprFree ** X --******************************** -- Closed terms --******************************** Val : Type -> Set Val nat = Nat Val bool = Bool Val (pair x y) = (Val x) * (Val y) closeTerm : Type -> IDesc Type closeTerm = toIDesc Type (exprFree ** Val) --******************************** -- Closed term evaluation --******************************** eval : {ty : Type} -> IMu closeTerm ty -> Val ty eval {ty} term = cata Type closeTerm Val evalOneStep ty term where evalOneStep : (ty : Type) -> [| closeTerm ty |] Val -> Val ty evalOneStep _ (EZe , t) = t evalOneStep _ ((ESu EZe) , (true , ( x , _))) = x evalOneStep _ ((ESu EZe) , (false , ( _ , y ))) = y evalOneStep nat ((ESu (ESu EZe)) , (x , y)) = plus x y evalOneStep nat ((ESu (ESu (ESu ()))) , t) evalOneStep bool ((ESu (ESu EZe)) , (x , y) ) = le x y evalOneStep bool ((ESu (ESu (ESu ()))) , _) evalOneStep (pair x y) (ESu (ESu ()) , _) --******************************** -- [Open terms] --******************************** -- A context is a snoc-list of types -- put otherwise, a context is a type telescope data Context : Set where [] : Context _,_ : Context -> Type -> Context -- The environment realizes the context, having a value for each type Env : Context -> Set Env [] = Unit Env (G , S) = Env G * Val S -- A typed-variable indexes into the context, obtaining a proof that -- what we get is what you want (WWGIWYW) Var : Context -> Type -> Set Var [] T = Zero Var (G , S) T = Var G T + (S == T) -- The lookup gets into the context to extract the value lookup : (G : Context) -> Env G -> (T : Type) -> Var G T -> Val T lookup [] _ T () lookup (G , .T) (g , t) T (r refl) = t lookup (G , S) (g , t) T (l x) = lookup G g T x -- Open term: holes are either values or variables in a context openTerm : Context -> Type -> IDesc Type openTerm c = toIDesc Type (exprFree ** (\ty -> Val ty + Var c ty)) --******************************** -- Evaluation of open terms --******************************** -- |discharge| is the local substitution expected by |substI|. It is -- just sugar around context lookup discharge : (context : Context) -> Env context -> (ty : Type) -> (Val ty + Var context ty) -> IMu closeTerm ty discharge ctxt env ty (l value) = con (EZe , value) discharge ctxt env ty (r variable) = con (EZe , lookup ctxt env ty variable ) -- |substExpr| is the specialized |substI| to expressions. We get it -- generically from the free monad construction. substExpr : {ty : Type} (context : Context) (sigma : (ty : Type) -> (Val ty + Var context ty) -> IMu closeTerm ty) -> IMu (openTerm context) ty -> IMu closeTerm ty substExpr {ty} c sig term = substI (\ty -> Val ty + Var c ty) Val exprFree sig ty term -- By first doing substitution to close the term, we can use -- evaluation of closed terms, obtaining evaluation of open terms -- under a valid context. evalOpen : {ty : Type}(context : Context) -> Env context -> IMu (openTerm context) ty -> Val ty evalOpen ctxt env tm = eval (substExpr ctxt (discharge ctxt env) tm) --******************************** -- Tests --******************************** -- Test context: -- V 0 :-> true, V 1 :-> 2, V 2 :-> ( false , 1 ) testContext : Context testContext = (([] , bool) , nat) , pair bool nat testEnv : Env testContext testEnv = ((Void , true ) , su (su ze)) , (false , su ze) -- V 1 test1 : IMu (openTerm testContext) nat test1 = con (EZe , r ( l (r refl) ) ) testSubst1 : IMu closeTerm nat testSubst1 = substExpr testContext (discharge testContext testEnv) test1 -- = 2 testEval1 : Val nat testEval1 = evalOpen testContext testEnv test1 -- add 1 (V 1) test2 : IMu (openTerm testContext) nat test2 = con (ESu (ESu EZe) , (con (EZe , l (su ze)) , con ( EZe , r (l (r refl)) )) ) testSubst2 : IMu closeTerm nat testSubst2 = substExpr testContext (discharge testContext testEnv) test2 -- = 3 testEval2 : Val nat testEval2 = evalOpen testContext testEnv test2 -- if (V 0) then (V 1) else 0 test3 : IMu (openTerm testContext) nat test3 = con (ESu EZe , (con (EZe , r (l (l (r refl)))) , (con (EZe , r (l (r refl))) , con (EZe , l ze)))) testSubst3 : IMu closeTerm nat testSubst3 = substExpr testContext (discharge testContext testEnv) test3 -- = 2 testEval3 : Val nat testEval3 = evalOpen testContext testEnv test3 -- V 2 test4 : IMu (openTerm testContext) (pair bool nat) test4 = con (EZe , r ( r refl ) ) testSubst4 : IMu closeTerm (pair bool nat) testSubst4 = substExpr testContext (discharge testContext testEnv) test4 -- = (false , 1) testEval4 : Val (pair bool nat) testEval4 = evalOpen testContext testEnv test4
{ "alphanum_fraction": 0.4627018189, "avg_line_length": 30.58125, "ext": "agda", "hexsha": "5e61d5837325517d6c0071636379581e50a97fe1", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "models/RevisedHutton.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "models/RevisedHutton.agda", "max_line_length": 110, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "models/RevisedHutton.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 4638, "size": 14679 }
------------------------------------------------------------------------ -- Untyped kind/type/term equality in Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Syntax.WeakEquality where open import Data.Fin using (Fin; zero; suc; raise) open import Data.Fin.Substitution open import Data.Fin.Substitution.ExtraLemmas open import Data.Fin.Substitution.Relation open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.List using ([]; _∷_; _++_) open import Data.Vec as Vec using ([]) open import Relation.Binary using (IsEquivalence; Setoid) import Relation.Binary.Reasoning.Setoid as SetoidReasoning open import Relation.Binary.PropositionalEquality as P open import FOmegaInt.Syntax open import FOmegaInt.Syntax.SingleVariableSubstitution open import FOmegaInt.Syntax.HereditarySubstitution open import FOmegaInt.Syntax.Normalization ------------------------------------------------------------------------ -- Weak untyped kind/type/term equality. -- -- A "weak" equality that identifies syntactically equal terms and -- types in elimination form up to type/kind ascriptions in -- abstractions (lambdas). -- -- Certain commutation lemmas about hereditary substitution, -- η-expansion and normalization of raw types do not hold on the nose -- (i.e. up to α-equivalence) because type-directed η-expansion can -- change domain annotations in type operator abstractions. Since -- untyped normalization involves some degree of η-expansion, the -- order in which these operations are performed can affect the domain -- annotations in the resulting raw type expressions. This is not a -- problem semantically because the two type expressions are -- considered equal as types (by the type equality judgment). But -- proving the relevant commutation lemmas directly w.r.t. to type -- equality is difficult because of the complexity of that judgment. -- Instead, we introduce a separate equivalence relation, called "weak -- equality", that is essentially α-equivalence modulo shape-equal -- domain annotations. The problematic commutation lemmas then all -- hold weakly (i.e. up to weak equality, see the nf-/⟨⟩ lemma in the -- FOmegaInt.Kinding.Simple.Normalization for example). Weak equality -- is much easier to work with and can be embedded into (canonical) -- type equivalence (see the FOmegaInt.Kinding.Canonical.WeakEquality -- module). open Syntax infix 4 _≋_ _≈_ _≈Hd_ _≈Sp_ _≈Asc_ _≈Ctx_ _⟨≈⟩_ _≈?_ mutual data _≋_ {n} : Kind Elim n → Kind Elim n → Set where ≋-Π : ∀ {j₁ j₂ k₁ k₂} → j₁ ≋ j₂ → k₁ ≋ k₂ → Π j₁ k₁ ≋ Π j₂ k₂ ≋-⋯ : ∀ {a₁ a₂ b₁ b₂} → a₁ ≈ a₂ → b₁ ≈ b₂ → a₁ ⋯ b₁ ≋ a₂ ⋯ b₂ data _≈_ {n} : Elim n → Elim n → Set where ≈-∙ : ∀ {a₁ a₂ bs₁ bs₂} → a₁ ≈Hd a₂ → bs₁ ≈Sp bs₂ → a₁ ∙ bs₁ ≈ a₂ ∙ bs₂ data _≈Hd_ {n} : Head n → Head n → Set where ≈-var : ∀ x → var x ≈Hd var x ≈-⊥ : ⊥ ≈Hd ⊥ ≈-⊤ : ⊤ ≈Hd ⊤ ≈-∀ : ∀ {k₁ k₂ a₁ a₂} → k₁ ≋ k₂ → a₁ ≈ a₂ → Π k₁ a₁ ≈Hd Π k₂ a₂ ≈-→ : ∀ {a₁ a₂ b₁ b₂} → a₁ ≈ a₂ → b₁ ≈ b₂ → a₁ ⇒ b₁ ≈Hd a₂ ⇒ b₂ ≈-Λ : ∀ {k₁ k₂ a₁ a₂} → ⌊ k₁ ⌋ ≡ ⌊ k₂ ⌋ → a₁ ≈ a₂ → Λ k₁ a₁ ≈Hd Λ k₂ a₂ ≈-λ : ∀ {a₁ a₂ b₁ b₂} → b₁ ≈ b₂ → ƛ a₁ b₁ ≈Hd ƛ a₂ b₂ ≈-⊡ : ∀ {a₁ a₂ b₁ b₂} → a₁ ≈ a₂ → b₁ ≈ b₂ → a₁ ⊡ b₁ ≈Hd a₂ ⊡ b₂ data _≈Sp_ {n} : Spine n → Spine n → Set where ≈-[] : [] ≈Sp [] ≈-∷ : ∀ {a₁ a₂ bs₁ bs₂} → a₁ ≈ a₂ → bs₁ ≈Sp bs₂ → a₁ ∷ bs₁ ≈Sp a₂ ∷ bs₂ data _≈Asc_ {n} : ElimAsc n → ElimAsc n → Set where ≈-kd : ∀ {k₁ k₂} → k₁ ≋ k₂ → kd k₁ ≈Asc kd k₂ ≈-tp : ∀ {a₁ a₂} → a₁ ≈ a₂ → tp a₁ ≈Asc tp a₂ open ElimCtx hiding (_++_) data _≈Ctx_ : ∀ {n} → Ctx n → Ctx n → Set where ≈-[] : [] ≈Ctx [] ≈-∷ : ∀ {n a₁ a₂} {Γ₁ Γ₂ : Ctx n} → a₁ ≈Asc a₂ → Γ₁ ≈Ctx Γ₂ → a₁ ∷ Γ₁ ≈Ctx a₂ ∷ Γ₂ -- Weak equality of single-variable substations and results. data _⟨≈⟩_ : ∀ {m n} → SVSub m n → SVSub m n → Set where ≈-sub : ∀ {n} {a b : Elim n} → a ≈ b → sub a ⟨≈⟩ sub b ≈-↑ : ∀ {m n} {σ τ : SVSub m n} → σ ⟨≈⟩ τ → σ ↑ ⟨≈⟩ τ ↑ data _≈?_ {n} : SVRes n → SVRes n → Set where ≈-hit : ∀ {a b : Elim n} → a ≈ b → hit a ≈? hit b ≈-miss : ∀ (x : Fin n) → miss x ≈? miss x -- Shorthands. ≈-var∙ : ∀ {n} (x : Fin n) → var∙ x ≈ var∙ x ≈-var∙ x = ≈-∙ (≈-var x) ≈-[] ≈-⊥∙ : ∀ {n} → _≈_ {n = n} ⊥∙ ⊥∙ ≈-⊥∙ = ≈-∙ (≈-⊥) ≈-[] ≈-⊤∙ : ∀ {n} → _≈_ {n = n} ⊤∙ ⊤∙ ≈-⊤∙ = ≈-∙ (≈-⊤) ≈-[] ≈-∀∙ : ∀ {n} {k₁ k₂ : Kind Elim n} {a₁ a₂} → k₁ ≋ k₂ → a₁ ≈ a₂ → ∀∙ k₁ a₁ ≈ ∀∙ k₂ a₂ ≈-∀∙ k₁≋k₂ a₁≈a₂ = ≈-∙ (≈-∀ k₁≋k₂ a₁≈a₂) ≈-[] ≈-⇒∙ : ∀ {n} {a₁ a₂ : Elim n} {b₁ b₂} → a₁ ≈ a₂ → b₁ ≈ b₂ → a₁ ⇒∙ b₁ ≈ a₂ ⇒∙ b₂ ≈-⇒∙ a₁≈a₂ b₁≈b₂ = ≈-∙ (≈-→ a₁≈a₂ b₁≈b₂) ≈-[] ≈-Λ∙ : ∀ {n} {k₁ k₂ : Kind Elim n} {a₁ a₂} → ⌊ k₁ ⌋ ≡ ⌊ k₂ ⌋ → a₁ ≈ a₂ → Λ∙ k₁ a₁ ≈ Λ∙ k₂ a₂ ≈-Λ∙ ⌊k₁⌋≡⌊k₂⌋ a₁≈a₂ = ≈-∙ (≈-Λ ⌊k₁⌋≡⌊k₂⌋ a₁≈a₂) ≈-[] ≈-λ∙ : ∀ {n} {a₁ a₂ : Elim n} {b₁ b₂} → b₁ ≈ b₂ → ƛ∙ a₁ b₁ ≈ ƛ∙ a₂ b₂ ≈-λ∙ a₁≈a₂ = ≈-∙ (≈-λ a₁≈a₂) ≈-[] ≈-⊡∙ : ∀ {n} {a₁ a₂ : Elim n} {b₁ b₂} → a₁ ≈ a₂ → b₁ ≈ b₂ → a₁ ⊡∙ b₁ ≈ a₂ ⊡∙ b₂ ≈-⊡∙ a₁≈a₂ b₁≈b₂ = ≈-∙ (≈-⊡ a₁≈a₂ b₁≈b₂) ≈-[] ------------------------------------------------------------------------ -- Simple properties of weake equality. -- Some simple congruence rules w.r.t. operations on spines and -- eliminations. ≈-++ : ∀ {n} {as₁ as₂ : Spine n} {bs₁ bs₂} → as₁ ≈Sp as₂ → bs₁ ≈Sp bs₂ → as₁ ++ bs₁ ≈Sp as₂ ++ bs₂ ≈-++ ≈-[] bs₁≈bs₂ = bs₁≈bs₂ ≈-++ (≈-∷ a₁≈a₂ as₁≈as₂) bs₁≈bs₂ = ≈-∷ a₁≈a₂ (≈-++ as₁≈as₂ bs₁≈bs₂) ≈-∙∙ : ∀ {n} {a₁ a₂ : Elim n} {bs₁ bs₂} → a₁ ≈ a₂ → bs₁ ≈Sp bs₂ → a₁ ∙∙ bs₁ ≈ a₂ ∙∙ bs₂ ≈-∙∙ (≈-∙ a₁≈a₂ as₁≈as₂) bs₁≈bs₂ = ≈-∙ a₁≈a₂ (≈-++ as₁≈as₂ bs₁≈bs₂) ≈-⌜·⌝ : ∀ {n} {a₁ a₂ : Elim n} {b₁ b₂} → a₁ ≈ a₂ → b₁ ≈ b₂ → a₁ ⌜·⌝ b₁ ≈ a₂ ⌜·⌝ b₂ ≈-⌜·⌝ a₁≈a₂ b₁≈b₂ = ≈-∙∙ a₁≈a₂ (≈-∷ b₁≈b₂ ≈-[]) -- Weakly equal kinds have equal shapes. ≋-⌊⌋ : ∀ {n} {k₁ k₂ : Kind Elim n} → k₁ ≋ k₂ → ⌊ k₁ ⌋ ≡ ⌊ k₂ ⌋ ≋-⌊⌋ (≋-Π j₁≋j₂ k₁≋k₂) = cong₂ _⇒_ (≋-⌊⌋ j₁≋j₂) (≋-⌊⌋ k₁≋k₂) ≋-⌊⌋ (≋-⋯ a₁≈a₂ b₁≈b₂) = refl module _ where open SimpleCtx using (kd; ⌊_⌋Asc) open ContextConversions using (⌊_⌋Ctx) -- Weakly equal ascriptions and contexts have equal shapes. ≈Asc-⌊⌋ : ∀ {n} {a₁ a₂ : ElimAsc n} → a₁ ≈Asc a₂ → ⌊ a₁ ⌋Asc ≡ ⌊ a₂ ⌋Asc ≈Asc-⌊⌋ (≈-kd k₁≋k₂) = cong kd (≋-⌊⌋ k₁≋k₂) ≈Asc-⌊⌋ (≈-tp a₁≈a₂) = refl ≈Ctx-⌊⌋ : ∀ {n} {Γ₁ Γ₂ : Ctx n} → Γ₁ ≈Ctx Γ₂ → ⌊ Γ₁ ⌋Ctx ≡ ⌊ Γ₂ ⌋Ctx ≈Ctx-⌊⌋ ≈-[] = refl ≈Ctx-⌊⌋ (≈-∷ a₁≈a₂ Γ₁≈Γ₂) = cong₂ _∷_ (≈Asc-⌊⌋ a₁≈a₂) (≈Ctx-⌊⌋ Γ₁≈Γ₂) -- Reflexivity of weak equality. mutual ≋-refl : ∀ {n} (k : Kind Elim n) → k ≋ k ≋-refl (a ⋯ b) = ≋-⋯ (≈-refl a) (≈-refl b) ≋-refl (Π j k) = ≋-Π (≋-refl j) (≋-refl k) ≈-refl : ∀ {n} (a : Elim n) → a ≈ a ≈-refl (a ∙ as) = ≈-∙ (≈Hd-refl a) (≈Sp-refl as) ≈Hd-refl : ∀ {n} (a : Head n) → a ≈Hd a ≈Hd-refl (var x) = ≈-var x ≈Hd-refl ⊥ = ≈-⊥ ≈Hd-refl ⊤ = ≈-⊤ ≈Hd-refl (Π k a) = ≈-∀ (≋-refl k) (≈-refl a) ≈Hd-refl (a ⇒ b) = ≈-→ (≈-refl a) (≈-refl b) ≈Hd-refl (Λ k a) = ≈-Λ refl (≈-refl a) ≈Hd-refl (ƛ a b) = ≈-λ (≈-refl b) ≈Hd-refl (a ⊡ b) = ≈-⊡ (≈-refl a) (≈-refl b) ≈Sp-refl : ∀ {n} (as : Spine n) → as ≈Sp as ≈Sp-refl [] = ≈-[] ≈Sp-refl (a ∷ as) = ≈-∷ (≈-refl a) (≈Sp-refl as) ≈Asc-refl : ∀ {n} (a : ElimAsc n) → a ≈Asc a ≈Asc-refl (kd k) = ≈-kd (≋-refl k) ≈Asc-refl (tp a) = ≈-tp (≈-refl a) ≈Ctx-refl : ∀ {n} (Γ : Ctx n) → Γ ≈Ctx Γ ≈Ctx-refl [] = ≈-[] ≈Ctx-refl (a ∷ Γ) = ≈-∷ (≈Asc-refl a) (≈Ctx-refl Γ) -- Transitivity of weak equality. mutual ≋-trans : ∀ {n} {j k l : Kind Elim n} → j ≋ k → k ≋ l → j ≋ l ≋-trans (≋-Π j₁≋j₂ k₁≋k₂) (≋-Π j₂≋j₃ k₂≋k₃) = ≋-Π (≋-trans j₁≋j₂ j₂≋j₃) (≋-trans k₁≋k₂ k₂≋k₃) ≋-trans (≋-⋯ a₁≈a₂ b₁≈b₂) (≋-⋯ a₂≈a₃ b₂≈b₃) = ≋-⋯ (≈-trans a₁≈a₂ a₂≈a₃) (≈-trans b₁≈b₂ b₂≈b₃) ≈-trans : ∀ {n} {a b c : Elim n} → a ≈ b → b ≈ c → a ≈ c ≈-trans (≈-∙ a₁≈a₂ bs₁≈bs₂) (≈-∙ a₂≈a₃ bs₂≈bs₃) = ≈-∙ (≈Hd-trans a₁≈a₂ a₂≈a₃) (≈Sp-trans bs₁≈bs₂ bs₂≈bs₃) ≈Hd-trans : ∀ {n} {a b c : Head n} → a ≈Hd b → b ≈Hd c → a ≈Hd c ≈Hd-trans (≈-var x) (≈-var .x) = ≈-var x ≈Hd-trans ≈-⊥ ≈-⊥ = ≈-⊥ ≈Hd-trans ≈-⊤ ≈-⊤ = ≈-⊤ ≈Hd-trans (≈-∀ k₁≋k₂ a₁≈a₂) (≈-∀ k₂≋k₃ a₂≈a₃) = ≈-∀ (≋-trans k₁≋k₂ k₂≋k₃) (≈-trans a₁≈a₂ a₂≈a₃) ≈Hd-trans (≈-→ a₁≈a₂ b₁≈b₂) (≈-→ a₂≈a₃ b₂≈b₃) = ≈-→ (≈-trans a₁≈a₂ a₂≈a₃) (≈-trans b₁≈b₂ b₂≈b₃) ≈Hd-trans (≈-Λ ⌊k₁⌋≡⌊k₂⌋ a₁≈a₂) (≈-Λ ⌊k₂⌋≡⌊k₃⌋ a₂≈a₃) = ≈-Λ (trans ⌊k₁⌋≡⌊k₂⌋ ⌊k₂⌋≡⌊k₃⌋) (≈-trans a₁≈a₂ a₂≈a₃) ≈Hd-trans (≈-λ a₁≈a₂) (≈-λ a₂≈a₃) = ≈-λ (≈-trans a₁≈a₂ a₂≈a₃) ≈Hd-trans (≈-⊡ a₁≈a₂ b₁≈b₂) (≈-⊡ a₂≈a₃ b₂≈b₃) = ≈-⊡ (≈-trans a₁≈a₂ a₂≈a₃) (≈-trans b₁≈b₂ b₂≈b₃) ≈Sp-trans : ∀ {n} {as bs cs : Spine n} → as ≈Sp bs → bs ≈Sp cs → as ≈Sp cs ≈Sp-trans ≈-[] ≈-[] = ≈-[] ≈Sp-trans (≈-∷ a₁≈a₂ bs₁≈bs₂) (≈-∷ a₂≈a₃ bs₂≈bs₃) = ≈-∷ (≈-trans a₁≈a₂ a₂≈a₃) (≈Sp-trans bs₁≈bs₂ bs₂≈bs₃) ≈Asc-trans : ∀ {n} {a b c : ElimAsc n} → a ≈Asc b → b ≈Asc c → a ≈Asc c ≈Asc-trans (≈-kd k₁≋k₂) (≈-kd k₂≋k₃) = ≈-kd (≋-trans k₁≋k₂ k₂≋k₃) ≈Asc-trans (≈-tp a₁≈a₂) (≈-tp a₂≈a₃) = ≈-tp (≈-trans a₁≈a₂ a₂≈a₃) ≈Ctx-trans : ∀ {n} {Γ Δ E : Ctx n} → Γ ≈Ctx Δ → Δ ≈Ctx E → Γ ≈Ctx E ≈Ctx-trans ≈-[] ≈-[] = ≈-[] ≈Ctx-trans (≈-∷ a₁≈a₂ Γ₁≈Γ₂) (≈-∷ a₂≈a₃ Γ₂≈Γ₃) = ≈-∷ (≈Asc-trans a₁≈a₂ a₂≈a₃) (≈Ctx-trans Γ₁≈Γ₂ Γ₂≈Γ₃) -- Symmetry of weak equality. mutual ≋-sym : ∀ {n} {j k : Kind Elim n} → j ≋ k → k ≋ j ≋-sym (≋-⋯ a₁≈a₂ b₁≈b₂) = ≋-⋯ (≈-sym a₁≈a₂) (≈-sym b₁≈b₂) ≋-sym (≋-Π j₁≋j₂ k₁≋k₂) = ≋-Π (≋-sym j₁≋j₂) (≋-sym k₁≋k₂) ≈-sym : ∀ {n} {a b : Elim n} → a ≈ b → b ≈ a ≈-sym (≈-∙ a≈b as≈bs) = ≈-∙ (≈Hd-sym a≈b) (≈Sp-sym as≈bs) ≈Hd-sym : ∀ {n} {a b : Head n} → a ≈Hd b → b ≈Hd a ≈Hd-sym (≈-var x) = ≈-var x ≈Hd-sym ≈-⊥ = ≈-⊥ ≈Hd-sym ≈-⊤ = ≈-⊤ ≈Hd-sym (≈-∀ k₁≋k₂ a₁≈a₂) = ≈-∀ (≋-sym k₁≋k₂) (≈-sym a₁≈a₂) ≈Hd-sym (≈-→ a₁≈a₂ b₁≈b₂) = ≈-→ (≈-sym a₁≈a₂) (≈-sym b₁≈b₂) ≈Hd-sym (≈-Λ ⌊k₁⌋≡⌊k₂⌋ a₁≈a₂) = ≈-Λ (sym ⌊k₁⌋≡⌊k₂⌋) (≈-sym a₁≈a₂) ≈Hd-sym (≈-λ a₁≈a₂) = ≈-λ (≈-sym a₁≈a₂) ≈Hd-sym (≈-⊡ a₁≈a₂ b₁≈b₂) = ≈-⊡ (≈-sym a₁≈a₂) (≈-sym b₁≈b₂) ≈Sp-sym : ∀ {n} {as bs : Spine n} → as ≈Sp bs → bs ≈Sp as ≈Sp-sym ≈-[] = ≈-[] ≈Sp-sym (≈-∷ a₁≈a₂ as₁≈as₂) = ≈-∷ (≈-sym a₁≈a₂) (≈Sp-sym as₁≈as₂) ≈Asc-sym : ∀ {n} {a b : ElimAsc n} → a ≈Asc b → b ≈Asc a ≈Asc-sym (≈-kd j≋k) = ≈-kd (≋-sym j≋k) ≈Asc-sym (≈-tp a≈b) = ≈-tp (≈-sym a≈b) ≈Ctx-sym : ∀ {n} {Γ Δ : Ctx n} → Γ ≈Ctx Δ → Δ ≈Ctx Γ ≈Ctx-sym ≈-[] = ≈-[] ≈Ctx-sym (≈-∷ a₁≈a₂ Γ₁≈Γ₂) = ≈-∷ (≈Asc-sym a₁≈a₂) (≈Ctx-sym Γ₁≈Γ₂) -- Weak equality is an equivalence relation. ≋-isEquivalence : (n : ℕ) → IsEquivalence (_≋_ {n}) ≋-isEquivalence n = record { refl = λ {k} → ≋-refl k ; sym = ≋-sym ; trans = ≋-trans } ≈-isEquivalence : (n : ℕ) → IsEquivalence (_≈_ {n}) ≈-isEquivalence n = record { refl = λ {k} → ≈-refl k ; sym = ≈-sym ; trans = ≈-trans } ≈Hd-isEquivalence : (n : ℕ) → IsEquivalence (_≈Hd_ {n}) ≈Hd-isEquivalence n = record { refl = λ {k} → ≈Hd-refl k ; sym = ≈Hd-sym ; trans = ≈Hd-trans } ≈Sp-isEquivalence : (n : ℕ) → IsEquivalence (_≈Sp_ {n}) ≈Sp-isEquivalence n = record { refl = λ {k} → ≈Sp-refl k ; sym = ≈Sp-sym ; trans = ≈Sp-trans } ≈Asc-isEquivalence : (n : ℕ) → IsEquivalence (_≈Asc_ {n}) ≈Asc-isEquivalence n = record { refl = λ {k} → ≈Asc-refl k ; sym = ≈Asc-sym ; trans = ≈Asc-trans } ≈Ctx-isEquivalence : (n : ℕ) → IsEquivalence (_≈Ctx_ {n}) ≈Ctx-isEquivalence n = record { refl = λ {k} → ≈Ctx-refl k ; sym = ≈Ctx-sym ; trans = ≈Ctx-trans } -- Kinds together with weak equality form a setoid. ≋-setoid : ℕ → Setoid _ _ ≋-setoid n = record { Carrier = Kind Elim n ; _≈_ = _≋_ ; isEquivalence = ≋-isEquivalence n } -- Types and terms together with weak equality form a setoid. ≈-setoid : ℕ → Setoid _ _ ≈-setoid n = record { Carrier = Elim n ; _≈_ = _≈_ ; isEquivalence = ≈-isEquivalence n } ≈Hd-setoid : ℕ → Setoid _ _ ≈Hd-setoid n = record { Carrier = Head n ; _≈_ = _≈Hd_ ; isEquivalence = ≈Hd-isEquivalence n } ≈Sp-setoid : ℕ → Setoid _ _ ≈Sp-setoid n = record { Carrier = Spine n ; _≈_ = _≈Sp_ ; isEquivalence = ≈Sp-isEquivalence n } ≈Asc-setoid : ℕ → Setoid _ _ ≈Asc-setoid n = record { Carrier = ElimAsc n ; _≈_ = _≈Asc_ ; isEquivalence = ≈Asc-isEquivalence n } ≈Ctx-setoid : ℕ → Setoid _ _ ≈Ctx-setoid n = record { Carrier = Ctx n ; _≈_ = _≈Ctx_ ; isEquivalence = ≈Ctx-isEquivalence n } -- Equational reasoning for weak equality. module ≈-Reasoning {n : ℕ} where open SetoidReasoning (≈-setoid n) public module Kd = SetoidReasoning (≋-setoid n) module Hd = SetoidReasoning (≈Hd-setoid n) module Sp = SetoidReasoning (≈Sp-setoid n) module Asc = SetoidReasoning (≈Asc-setoid n) module Ctx = SetoidReasoning (≈Ctx-setoid n) ------------------------------------------------------------------------ -- Substitution lemmas for weak equality. -- Renamings in weakly equal terms. -- -- The substitution lemmas below establishe that renamings of -- variables in kinds, heads, eliminations and spines preserve weak -- equality: -- -- ≈ -- a ------→ b -- | | -- -/ρ | | -/ρ -- ↓ ≈ ↓ -- a/ρ ····→ b/ρ -- -- where ρ is a renaming. module Renaming where open Substitution module V = VarSubst mutual -- Renamings preserve weak equality. ≋-/Var : ∀ {m n k₁ k₂} → k₁ ≋ k₂ → (ρ : Sub Fin m n) → k₁ Kind′/Var ρ ≋ k₂ Kind′/Var ρ ≋-/Var (≋-Π j₁≋j₂ k₁≋k₂) ρ = ≋-Π (≋-/Var j₁≋j₂ ρ) (≋-/Var k₁≋k₂ (ρ V.↑)) ≋-/Var (≋-⋯ a₁≈a₂ b₁≈b₂) ρ = ≋-⋯ (≈-/Var a₁≈a₂ ρ) (≈-/Var b₁≈b₂ ρ) ≈-/Var : ∀ {m n a₁ a₂} → a₁ ≈ a₂ → (ρ : Sub Fin m n) → a₁ Elim/Var ρ ≈ a₂ Elim/Var ρ ≈-/Var (≈-∙ a₁≈a₂ bs₁≈bs₂) ρ = ≈-∙∙ (≈Hd-/Var a₁≈a₂ ρ) (≈Sp-/Var bs₁≈bs₂ ρ) ≈Hd-/Var : ∀ {m n a₁ a₂} → a₁ ≈Hd a₂ → (ρ : Sub Fin m n) → a₁ Head/Var′ ρ ≈ a₂ Head/Var′ ρ ≈Hd-/Var (≈-var x) ρ = ≈-var∙ (Vec.lookup ρ x) ≈Hd-/Var ≈-⊥ ρ = ≈-⊥∙ ≈Hd-/Var ≈-⊤ ρ = ≈-⊤∙ ≈Hd-/Var (≈-∀ k₁≋k₂ a₁≈a₂) ρ = ≈-∀∙ (≋-/Var k₁≋k₂ ρ) (≈-/Var a₁≈a₂ (ρ V.↑)) ≈Hd-/Var (≈-→ a₁≈a₂ b₁≈b₂) ρ = ≈-⇒∙ (≈-/Var a₁≈a₂ ρ) (≈-/Var b₁≈b₂ ρ) ≈Hd-/Var (≈-Λ {k₁} {k₂} ⌊k₁⌋≡⌊k₂⌋ a₁≈a₂) ρ = ≈-Λ∙ (begin ⌊ k₁ Kind′/Var _ ⌋ ≡⟨ ⌊⌋-Kind′/Var k₁ ⟩ ⌊ k₁ ⌋ ≡⟨ ⌊k₁⌋≡⌊k₂⌋ ⟩ ⌊ k₂ ⌋ ≡⟨ sym (⌊⌋-Kind′/Var k₂) ⟩ ⌊ k₂ Kind′/Var _ ⌋ ∎) (≈-/Var a₁≈a₂ (ρ V.↑)) where open ≡-Reasoning ≈Hd-/Var (≈-λ a₁≈a₂) ρ = ≈-λ∙ (≈-/Var a₁≈a₂ (ρ V.↑)) ≈Hd-/Var (≈-⊡ a₁≈a₂ b₁≈b₂) ρ = ≈-⊡∙ (≈-/Var a₁≈a₂ ρ) (≈-/Var b₁≈b₂ ρ) ≈Sp-/Var : ∀ {m n as₁ as₂} → as₁ ≈Sp as₂ → (ρ : Sub Fin m n) → as₁ //Var ρ ≈Sp as₂ //Var ρ ≈Sp-/Var ≈-[] ρ = ≈-[] ≈Sp-/Var (≈-∷ a₁≈a₂ as₁≈as₂) ρ = ≈-∷ (≈-/Var a₁≈a₂ ρ) (≈Sp-/Var as₁≈as₂ ρ) ≈?-/Var : ∀ {m n r₁ r₂} → r₁ ≈? r₂ → (ρ : Sub Fin m n) → r₁ ?/Var ρ ≈? r₂ ?/Var ρ ≈?-/Var (≈-hit a₁≈a₂) ρ = ≈-hit (≈-/Var a₁≈a₂ ρ) ≈?-/Var (≈-miss x) ρ = ≈-miss (Vec.lookup ρ x) ≈-weakenElim : ∀ {n} {a₁ a₂ : Elim n} → a₁ ≈ a₂ → weakenElim a₁ ≈ weakenElim a₂ ≈-weakenElim a₁≈a₂ = ≈-/Var a₁≈a₂ V.wk ≈-weakenSVRes : ∀ {n} {r₁ r₂ : SVRes n} → r₁ ≈? r₂ → weakenSVRes r₁ ≈? weakenSVRes r₂ ≈-weakenSVRes r₁≈r₂ = ≈?-/Var r₁≈r₂ V.wk open Renaming -- Look up a weak equation in a pair of pointwise weakly equal -- single-variable substitutions. ⟨≈⟩-lookup : ∀ {m n σ₁} {σ₂ : SVSub m n} → σ₁ ⟨≈⟩ σ₂ → (x : Fin m) → lookupSV σ₁ x ≈? lookupSV σ₂ x ⟨≈⟩-lookup (≈-sub a₁≈a₂) zero = ≈-hit a₁≈a₂ ⟨≈⟩-lookup (≈-sub a₁≈a₂) (suc x) = ≈-miss x ⟨≈⟩-lookup (≈-↑ σ₁≈σ₂) zero = ≈-miss zero ⟨≈⟩-lookup (≈-↑ σ₁≈σ₂) (suc x) = ≈-weakenSVRes (⟨≈⟩-lookup σ₁≈σ₂ x) -- Weak equality lifted to hereditary substitutions. -- -- The substitution lemmas below establishe that simoultaneous -- hereditary substitutions of weakly equal types or terms in kinds, -- heads, eliminations and spines preserve weak equality: -- -- ≈ -- a ------- b -- | | -- -/σ₁ | | -/σ₂ -- ↓ ≈ ↓ -- a/σ₁ ···· b/σ₂ -- -- where σ₁ and σ₁ are weakly equal hereditary substitutions. module WeakHereditarySubstitutionEquality where open Substitution hiding (_↑; sub) mutual -- Point-wise weakly equal hereditary substitutions preserve weak -- equality. ≋-/⟨⟩ : ∀ {k m n j₁ j₂} {σ₁ σ₂ : SVSub m n} → j₁ ≋ j₂ → σ₁ ⟨≈⟩ σ₂ → j₁ Kind/⟨ k ⟩ σ₁ ≋ j₂ Kind/⟨ k ⟩ σ₂ ≋-/⟨⟩ (≋-Π j₁≋j₂ k₁≋k₂) σ₁≈σ₂ = ≋-Π (≋-/⟨⟩ j₁≋j₂ σ₁≈σ₂) (≋-/⟨⟩ k₁≋k₂ (≈-↑ σ₁≈σ₂)) ≋-/⟨⟩ (≋-⋯ a₁≈a₂ b₁≈b₂) σ₁≈σ₂ = ≋-⋯ (≈-/⟨⟩ a₁≈a₂ σ₁≈σ₂) (≈-/⟨⟩ b₁≈b₂ σ₁≈σ₂) ≈-/⟨⟩ : ∀ {k m n a₁ a₂} {σ₁ σ₂ : SVSub m n} → a₁ ≈ a₂ → σ₁ ⟨≈⟩ σ₂ → a₁ /⟨ k ⟩ σ₁ ≈ a₂ /⟨ k ⟩ σ₂ ≈-/⟨⟩ (≈-∙ (≈-var x) bs₁≈bs₂) σ₁≈σ₂ = ≈-?∙∙⟨⟩ _ (⟨≈⟩-lookup σ₁≈σ₂ x) (≈Sp-/⟨⟩ bs₁≈bs₂ σ₁≈σ₂) ≈-/⟨⟩ (≈-∙ ≈-⊥ bs₁≈bs₂) σ₁≈σ₂ = ≈-∙ ≈-⊥ (≈Sp-/⟨⟩ bs₁≈bs₂ σ₁≈σ₂) ≈-/⟨⟩ (≈-∙ ≈-⊤ bs₁≈bs₂) σ₁≈σ₂ = ≈-∙ ≈-⊤ (≈Sp-/⟨⟩ bs₁≈bs₂ σ₁≈σ₂) ≈-/⟨⟩ (≈-∙ (≈-∀ k₁≋k₂ a₁≈a₂) bs₁≈bs₂) σ₁≈σ₂ = ≈-∙ (≈-∀ (≋-/⟨⟩ k₁≋k₂ σ₁≈σ₂) (≈-/⟨⟩ a₁≈a₂ (≈-↑ σ₁≈σ₂))) (≈Sp-/⟨⟩ bs₁≈bs₂ σ₁≈σ₂) ≈-/⟨⟩ (≈-∙ (≈-→ a₁≈a₂ b₁≈b₂) cs₁≈cs₂) σ₁≈σ₂ = ≈-∙ (≈-→ (≈-/⟨⟩ a₁≈a₂ σ₁≈σ₂) (≈-/⟨⟩ b₁≈b₂ σ₁≈σ₂)) (≈Sp-/⟨⟩ cs₁≈cs₂ σ₁≈σ₂) ≈-/⟨⟩ (≈-∙ (≈-Λ {k₁} {k₂} ⌊k₁⌋≡⌊k₂⌋ a₁≈a₂) bs₁≈bs₂) σ₁≈σ₂ = ≈-∙ (≈-Λ (begin ⌊ k₁ Kind/⟨ _ ⟩ _ ⌋ ≡⟨ ⌊⌋-Kind/⟨⟩ k₁ ⟩ ⌊ k₁ ⌋ ≡⟨ ⌊k₁⌋≡⌊k₂⌋ ⟩ ⌊ k₂ ⌋ ≡⟨ sym (⌊⌋-Kind/⟨⟩ k₂) ⟩ ⌊ k₂ Kind/⟨ _ ⟩ _ ⌋ ∎) (≈-/⟨⟩ a₁≈a₂ (≈-↑ σ₁≈σ₂))) (≈Sp-/⟨⟩ bs₁≈bs₂ σ₁≈σ₂) where open ≡-Reasoning ≈-/⟨⟩ (≈-∙ (≈-λ a₁≈a₂) bs₁≈bs₂) σ₁≈σ₂ = ≈-∙ (≈-λ (≈-/⟨⟩ a₁≈a₂ (≈-↑ σ₁≈σ₂))) (≈Sp-/⟨⟩ bs₁≈bs₂ σ₁≈σ₂) ≈-/⟨⟩ (≈-∙ (≈-⊡ a₁≈a₂ b₁≈b₂) cs₁≈cs₂) σ₁≈σ₂ = ≈-∙ (≈-⊡ (≈-/⟨⟩ a₁≈a₂ σ₁≈σ₂) (≈-/⟨⟩ b₁≈b₂ σ₁≈σ₂)) (≈Sp-/⟨⟩ cs₁≈cs₂ σ₁≈σ₂) ≈Sp-/⟨⟩ : ∀ {k m n as₁ as₂} {σ₁ σ₂ : SVSub m n} → as₁ ≈Sp as₂ → σ₁ ⟨≈⟩ σ₂ → as₁ //⟨ k ⟩ σ₁ ≈Sp as₂ //⟨ k ⟩ σ₂ ≈Sp-/⟨⟩ ≈-[] σ₁≈σ₂ = ≈-[] ≈Sp-/⟨⟩ (≈-∷ a₁≈a₂ as₁≈as₂) σ₁≈σ₂ = ≈-∷ (≈-/⟨⟩ a₁≈a₂ σ₁≈σ₂) (≈Sp-/⟨⟩ as₁≈as₂ σ₁≈σ₂) -- Weak equality is a congruence w.r.t reducing applications. ≈-?∙∙⟨⟩ : ∀ k {n} {r₁ r₂ : SVRes n} {as₁ as₂} → r₁ ≈? r₂ → as₁ ≈Sp as₂ → r₁ ?∙∙⟨ k ⟩ as₁ ≈ r₂ ?∙∙⟨ k ⟩ as₂ ≈-?∙∙⟨⟩ k (≈-hit a₁≈a₂) as₁≈as₂ = ≈-∙∙⟨⟩ k a₁≈a₂ as₁≈as₂ ≈-?∙∙⟨⟩ k (≈-miss x) as₁≈as₂ = ≈-∙ (≈-var x) as₁≈as₂ ≈-∙∙⟨⟩ : ∀ k {n} {a₁ a₂ : Elim n} {bs₁ bs₂} → a₁ ≈ a₂ → bs₁ ≈Sp bs₂ → a₁ ∙∙⟨ k ⟩ bs₁ ≈ a₂ ∙∙⟨ k ⟩ bs₂ ≈-∙∙⟨⟩ k a₁≈a₂ ≈-[] = a₁≈a₂ ≈-∙∙⟨⟩ ★ a₁≈a₂ (≈-∷ b₁≈b₂ bs₁≈bs₂) = ≈-∙∙ a₁≈a₂ (≈-∷ b₁≈b₂ bs₁≈bs₂) ≈-∙∙⟨⟩ (k₁ ⇒ k₂) a₁≈a₂ (≈-∷ b₁≈b₂ bs₁≈bs₂) = ≈-∙∙⟨⟩ k₂ (≈-⌜·⌝⟨⟩ (k₁ ⇒ k₂) a₁≈a₂ b₁≈b₂) bs₁≈bs₂ ≈-⌜·⌝⟨⟩ : ∀ k {n} {a₁ a₂ : Elim n} {b₁ b₂} → a₁ ≈ a₂ → b₁ ≈ b₂ → a₁ ⌜·⌝⟨ k ⟩ b₁ ≈ a₂ ⌜·⌝⟨ k ⟩ b₂ ≈-⌜·⌝⟨⟩ ★ a₁≈a₂ b₁≈b₂ = ≈-⌜·⌝ a₁≈a₂ b₁≈b₂ ≈-⌜·⌝⟨⟩ (k₁ ⇒ k₂) (≈-∙ a₁≈a₂ (≈-∷ b₁≈b₂ bs₁≈bs₂)) c₁≈c₂ = ≈-⌜·⌝ (≈-∙ a₁≈a₂ (≈-∷ b₁≈b₂ bs₁≈bs₂)) c₁≈c₂ ≈-⌜·⌝⟨⟩ (k₁ ⇒ k₂) (≈-∙ (≈-Λ ⌊k₁⌋≡⌊k₂⌋ a₁≈a₂) ≈-[]) c₁≈c₂ = ≈-/⟨⟩ a₁≈a₂ (≈-sub c₁≈c₂) -- Degenerate cases. ≈-⌜·⌝⟨⟩ (k₁ ⇒ k₂) (≈-∙ ≈-⊥ ≈-[]) c₁≈c₂ = ≈-∙ ≈-⊥ (≈-∷ c₁≈c₂ ≈-[]) ≈-⌜·⌝⟨⟩ (k₁ ⇒ k₂) (≈-∙ ≈-⊤ ≈-[]) c₁≈c₂ = ≈-∙ ≈-⊤ (≈-∷ c₁≈c₂ ≈-[]) ≈-⌜·⌝⟨⟩ (k₁ ⇒ k₂) (≈-∙ (≈-var x) ≈-[]) c₁≈c₂ = ≈-∙ (≈-var x) (≈-∷ c₁≈c₂ ≈-[]) ≈-⌜·⌝⟨⟩ (k₁ ⇒ k₂) (≈-∙ (≈-∀ j₁≋j₂ a₁≈a₂) ≈-[]) c₁≈c₂ = ≈-∙ (≈-∀ j₁≋j₂ a₁≈a₂) (≈-∷ c₁≈c₂ ≈-[]) ≈-⌜·⌝⟨⟩ (k₁ ⇒ k₂) (≈-∙ (≈-→ a₁≈a₂ b₁≈b₂) ≈-[]) c₁≈c₂ = ≈-∙ (≈-→ a₁≈a₂ b₁≈b₂) (≈-∷ c₁≈c₂ ≈-[]) ≈-⌜·⌝⟨⟩ (k₁ ⇒ k₂) (≈-∙ (≈-λ a₁≈a₂) ≈-[]) c₁≈c₂ = ≈-∙ (≈-λ a₁≈a₂) (≈-∷ c₁≈c₂ ≈-[]) ≈-⌜·⌝⟨⟩ (k₁ ⇒ k₂) (≈-∙ (≈-⊡ a₁≈a₂ b₁≈b₂) ≈-[]) c₁≈c₂ = ≈-∙ (≈-⊡ a₁≈a₂ b₁≈b₂) (≈-∷ c₁≈c₂ ≈-[]) -- A corollary. ≈-[∈] : ∀ {k n a₁ a₂} {b₁ b₂ : Elim n} → a₁ ≈ a₂ → b₁ ≈ b₂ → a₁ [ b₁ ∈ k ] ≈ a₂ [ b₂ ∈ k ] ≈-[∈] a₁≈a₂ b₁≈b₂ = ≈-/⟨⟩ a₁≈a₂ (≈-sub b₁≈b₂) -- Weak equality is a congruence w.r.t potentially reducing -- applications. ≈-↓⌜·⌝ : ∀ {n} {a₁ a₂ : Elim n} {b₁ b₂} → a₁ ≈ a₂ → b₁ ≈ b₂ → a₁ ↓⌜·⌝ b₁ ≈ a₂ ↓⌜·⌝ b₂ ≈-↓⌜·⌝ (≈-∙ a₁≈a₂ (≈-∷ b₁≈b₂ bs₁≈bs₂)) c₁≈c₂ = ≈-⌜·⌝ (≈-∙ a₁≈a₂ (≈-∷ b₁≈b₂ bs₁≈bs₂)) c₁≈c₂ ≈-↓⌜·⌝ {_} {_} {_} {b₁} {b₂} (≈-∙ (≈-Λ {k₁} {k₂} {a₁} {a₂} ⌊k₁⌋≡⌊k₂⌋ a₁≈a₂) ≈-[]) c₁≈c₂ = begin a₁ [ b₁ ∈ ⌊ k₁ ⌋ ] ≈⟨ ≈-/⟨⟩ a₁≈a₂ (≈-sub c₁≈c₂) ⟩ a₂ [ b₂ ∈ ⌊ k₁ ⌋ ] ≡⟨ cong (a₂ [ b₂ ∈_]) ⌊k₁⌋≡⌊k₂⌋ ⟩ a₂ [ b₂ ∈ ⌊ k₂ ⌋ ] ∎ where open ≈-Reasoning -- Degenerate cases. ≈-↓⌜·⌝ (≈-∙ ≈-⊥ ≈-[]) c₁≈c₂ = ≈-∙ ≈-⊥ (≈-∷ c₁≈c₂ ≈-[]) ≈-↓⌜·⌝ (≈-∙ ≈-⊤ ≈-[]) c₁≈c₂ = ≈-∙ ≈-⊤ (≈-∷ c₁≈c₂ ≈-[]) ≈-↓⌜·⌝ (≈-∙ (≈-var x) ≈-[]) c₁≈c₂ = ≈-∙ (≈-var x) (≈-∷ c₁≈c₂ ≈-[]) ≈-↓⌜·⌝ (≈-∙ (≈-∀ j₁≋j₂ a₁≈a₂) ≈-[]) c₁≈c₂ = ≈-∙ (≈-∀ j₁≋j₂ a₁≈a₂) (≈-∷ c₁≈c₂ ≈-[]) ≈-↓⌜·⌝ (≈-∙ (≈-→ a₁≈a₂ b₁≈b₂) ≈-[]) c₁≈c₂ = ≈-∙ (≈-→ a₁≈a₂ b₁≈b₂) (≈-∷ c₁≈c₂ ≈-[]) ≈-↓⌜·⌝ (≈-∙ (≈-λ a₁≈a₂) ≈-[]) c₁≈c₂ = ≈-∙ (≈-λ a₁≈a₂) (≈-∷ c₁≈c₂ ≈-[]) ≈-↓⌜·⌝ (≈-∙ (≈-⊡ a₁≈a₂ b₁≈b₂) ≈-[]) c₁≈c₂ = ≈-∙ (≈-⊡ a₁≈a₂ b₁≈b₂) (≈-∷ c₁≈c₂ ≈-[]) open WeakHereditarySubstitutionEquality module WeakEqEtaExpansion where private module TK = TrackSimpleKindsEtaExp open Substitution open SimpHSubstLemmas open ≈-Reasoning -- NOTE. The definition of the function ≈-η-exp′ in this module is -- structurally recursive in the *shape* parameter k, but *not* in -- the kinds (j₁ j₂ : Kind Elim n) because we need to weaken the -- domains j₁₁ and j₂₁ of the dependent kinds (j₁ = Π j₁₁ j₁₂) and -- (j₂ = Π j₂₁ j₂₂) in the arrow case. The additional premises ⌊ j₁ -- ⌋≡ k and ⌊ j₂ ⌋≡ k ensure that k is indeed the shape of the kinds -- j₁ and j₂. -- Weak equality is a congruence w.r.t. untyped η-expansion. -- -- NOTE. We do *not* require the kinds j₁ and j₂ to be (weakly) -- equal, we only require them to have the same shape. ≈-η-exp′ : ∀ {n k j₁ j₂} {a₁ a₂ : Elim n} (hyp₁ : ⌊ j₁ ⌋≡ k) (hyp₂ : ⌊ j₂ ⌋≡ k) → a₁ ≈ a₂ → TK.η-exp j₁ hyp₁ a₁ ≈ TK.η-exp j₂ hyp₂ a₂ ≈-η-exp′ (is-★) (is-★) a₁≈a₂ = a₁≈a₂ ≈-η-exp′ (is-⇒ ⌊j₁⌋≡l₁ ⌊k₁⌋≡l₂) (is-⇒ ⌊j₂⌋≡l₁ ⌊k₂⌋≡l₂) a₁≈a₂ = ≈-Λ∙ ⌊j₁⌋≡⌊j₂⌋ (≈-η-exp′ ⌊k₁⌋≡l₂ ⌊k₂⌋≡l₂ a₁·ηz≈a₂·ηz) where ⌊j₁⌋≡⌊j₂⌋ = trans (⌊⌋≡⇒⌊⌋-≡ ⌊j₁⌋≡l₁) (sym (⌊⌋≡⇒⌊⌋-≡ ⌊j₂⌋≡l₁)) a₁·ηz≈a₂·ηz = ≈-⌜·⌝ (≈-weakenElim a₁≈a₂) (≈-η-exp′ (⌊⌋≡-weaken ⌊j₁⌋≡l₁) (⌊⌋≡-weaken ⌊j₂⌋≡l₁) (≈-var∙ zero)) ≈-η-exp : ∀ {n} {j₁ j₂ : Kind Elim n} {a₁ a₂} → ⌊ j₁ ⌋ ≡ ⌊ j₂ ⌋ → a₁ ≈ a₂ → η-exp j₁ a₁ ≈ η-exp j₂ a₂ ≈-η-exp {_} {j₁} {j₂} {a₁} {a₂} ⌊j₁⌋≡⌊j₂⌋ a₁≈a₂ = begin η-exp j₁ a₁ ≡⟨ TK.η-exp-⌊⌋≡ (⌊⌋-⌊⌋≡ j₁) (⌊⌋≡-trans ⌊j₁⌋≡⌊j₂⌋ (⌊⌋-⌊⌋≡ j₂)) refl ⌊j₁⌋≡⌊j₂⌋ ⟩ TK.η-exp j₁ _ a₁ ≈⟨ ≈-η-exp′ (⌊⌋≡-trans ⌊j₁⌋≡⌊j₂⌋ (⌊⌋-⌊⌋≡ j₂)) (⌊⌋-⌊⌋≡ j₂) a₁≈a₂ ⟩ η-exp j₂ a₂ ∎ open SimpleCtx using (kd; ⌊_⌋Asc; kd-inj′) open ContextConversions using (⌊_⌋Ctx) -- A variant of `nf-var-kd' that is a corollary of the above. nf-var-kd-⌊⌋ : ∀ {n} (Γ : Ctx n) {k} x → ⌊ lookup Γ x ⌋Asc ≡ kd ⌊ k ⌋ → nf Γ (var x) ≈ η-exp k (var∙ x) nf-var-kd-⌊⌋ Γ x hyp with lookup Γ x nf-var-kd-⌊⌋ Γ x hyp | kd j = ≈-η-exp (kd-inj′ hyp) (≈-var∙ x) nf-var-kd-⌊⌋ Γ x () | tp _ open WeakEqEtaExpansion module WeakEqNormalization where open SimpleCtx using (kd; ⌊_⌋Asc; ⌊⌋-ElimAsc/Var; kd-inj′) open ContextConversions -- A helper lemma. ⌊⌋≡⌊⌋-lookup : ∀ {n} (Γ₁ Γ₂ : Ctx n) x → ⌊ Γ₁ ⌋Ctx ≡ ⌊ Γ₂ ⌋Ctx → ⌊ lookup Γ₁ x ⌋Asc ≡ ⌊ lookup Γ₂ x ⌋Asc ⌊⌋≡⌊⌋-lookup Γ₁ Γ₂ x ⌊Γ₁⌋≡⌊Γ₂⌋ = begin ⌊ lookup Γ₁ x ⌋Asc ≡˘⟨ ⌊⌋Asc-lookup Γ₁ x ⟩ SimpleCtx.lookup ⌊ Γ₁ ⌋Ctx x ≡⟨ cong (λ Δ → SimpleCtx.lookup Δ x) ⌊Γ₁⌋≡⌊Γ₂⌋ ⟩ SimpleCtx.lookup ⌊ Γ₂ ⌋Ctx x ≡⟨ ⌊⌋Asc-lookup Γ₂ x ⟩ ⌊ lookup Γ₂ x ⌋Asc ∎ where open ≡-Reasoning -- If two contexts have the same shape, then kinds, types and terms -- normalize weakly equally in these contexts. mutual ≈-nf : ∀ {n} {Γ₁ Γ₂ : Ctx n} → ⌊ Γ₁ ⌋Ctx ≡ ⌊ Γ₂ ⌋Ctx → ∀ a → nf Γ₁ a ≈ nf Γ₂ a ≈-nf {_} {Γ₁} {Γ₂} ⌊Γ₁⌋≡⌊Γ₂⌋ (var x) with lookup Γ₁ x | lookup Γ₂ x | ⌊⌋≡⌊⌋-lookup Γ₁ Γ₂ x ⌊Γ₁⌋≡⌊Γ₂⌋ ≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ (var x) | kd k₁ | kd k₂ | ⌊kd-k₁⌋≡⌊kd-k₂⌋ = ≈-η-exp (kd-inj′ ⌊kd-k₁⌋≡⌊kd-k₂⌋) (≈-var∙ x) ≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ (var x) | kd _ | tp _ | () ≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ (var x) | tp _ | kd _ | () ≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ (var x) | tp a₁ | tp a₂ | refl = ≈-var∙ x ≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ ⊥ = ≈-⊥∙ ≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ ⊤ = ≈-⊤∙ ≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ (Π k a) = let k≋k′ = ≋-nfKind ⌊Γ₁⌋≡⌊Γ₂⌋ k in ≈-∀∙ k≋k′ (≈-nf (cong₂ _∷_ (cong kd (≋-⌊⌋ k≋k′)) ⌊Γ₁⌋≡⌊Γ₂⌋) a) ≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ (a ⇒ b) = ≈-⇒∙ (≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ a) (≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ b) ≈-nf {_} {Γ₁} ⌊Γ₁⌋≡⌊Γ₂⌋ (Λ k a) = let k≋k′ = ≋-nfKind ⌊Γ₁⌋≡⌊Γ₂⌋ k in ≈-Λ∙ (≋-⌊⌋ k≋k′) (≈-nf (cong₂ _∷_ (cong kd (≋-⌊⌋ k≋k′)) ⌊Γ₁⌋≡⌊Γ₂⌋) a) ≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ (ƛ a b) = ≈-λ∙ (≈-refl ⌜ b ⌝) ≈-nf {_} {Γ₁} {Γ₂} ⌊Γ₁⌋≡⌊Γ₂⌋ (a · b) = ≈-↓⌜·⌝ (≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ a) (≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ b) ≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ (a ⊡ b) = ≈-⊡∙ (≈-refl ⌜ a ⌝) (≈-refl ⌜ b ⌝) ≋-nfKind : ∀ {n} {Γ₁ Γ₂ : Ctx n} → ⌊ Γ₁ ⌋Ctx ≡ ⌊ Γ₂ ⌋Ctx → ∀ k → nfKind Γ₁ k ≋ nfKind Γ₂ k ≋-nfKind ⌊Γ₁⌋≡⌊Γ₂⌋ (a ⋯ b) = ≋-⋯ (≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ a) (≈-nf ⌊Γ₁⌋≡⌊Γ₂⌋ b) ≋-nfKind ⌊Γ₁⌋≡⌊Γ₂⌋ (Π j k) = let j≋j′ = ≋-nfKind ⌊Γ₁⌋≡⌊Γ₂⌋ j in ≋-Π j≋j′ (≋-nfKind (cong₂ _∷_ (cong kd (≋-⌊⌋ j≋j′)) ⌊Γ₁⌋≡⌊Γ₂⌋) k)
{ "alphanum_fraction": 0.4495502985, "avg_line_length": 37.3229901269, "ext": "agda", "hexsha": "1699feb038944cd93c586dc792d19f677c54938a", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z", "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Syntax/WeakEquality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z", "max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Syntax/WeakEquality.agda", "max_line_length": 80, "max_stars_count": 12, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Syntax/WeakEquality.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z", "num_tokens": 15873, "size": 26462 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import Level using (0ℓ) -- This module incldes various Agda lemmas that are independent of the project's domain module LibraBFT.Lemmas where cong₃ : ∀{a b c d}{A : Set a}{B : Set b}{C : Set c}{D : Set d} → (f : A → B → C → D) → ∀{x y u v m n} → x ≡ y → u ≡ v → m ≡ n → f x u m ≡ f y v n cong₃ f refl refl refl = refl ≡-pi : ∀{a}{A : Set a}{x y : A}(p q : x ≡ y) → p ≡ q ≡-pi refl refl = refl Unit-pi : {u1 u2 : Unit} → u1 ≡ u2 Unit-pi {unit} {unit} = refl ++-inj : ∀{a}{A : Set a}{m n o p : List A} → length m ≡ length n → m ++ o ≡ n ++ p → m ≡ n × o ≡ p ++-inj {m = []} {x ∷ n} () hip ++-inj {m = x ∷ m} {[]} () hip ++-inj {m = []} {[]} lhip hip = refl , hip ++-inj {m = m ∷ ms} {n ∷ ns} lhip hip with ++-inj {m = ms} {ns} (suc-injective lhip) (proj₂ (∷-injective hip)) ...| (mn , op) rewrite proj₁ (∷-injective hip) = cong (n ∷_) mn , op ++-abs : ∀{a}{A : Set a}{n : List A}(m : List A) → 1 ≤ length m → [] ≡ m ++ n → ⊥ ++-abs [] () ++-abs (x ∷ m) imp () data All-vec {ℓ} {A : Set ℓ} (P : A → Set ℓ) : ∀ {n} → Vec {ℓ} A n → Set (Level.suc ℓ) where [] : All-vec P [] _∷_ : ∀ {x n} {xs : Vec A n} (px : P x) (pxs : All-vec P xs) → All-vec P (x ∷ xs) ≤-unstep : ∀{m n} → suc m ≤ n → m ≤ n ≤-unstep (s≤s ss) = ≤-step ss ≡⇒≤ : ∀{m n} → m ≡ n → m ≤ n ≡⇒≤ refl = ≤-refl ∈-cong : ∀{a b}{A : Set a}{B : Set b}{x : A}{l : List A} → (f : A → B) → x ∈ l → f x ∈ List-map f l ∈-cong f (here px) = here (cong f px) ∈-cong f (there hyp) = there (∈-cong f hyp) All-self : ∀{a}{A : Set a}{xs : List A} → All (_∈ xs) xs All-self = All-tabulate (λ x → x) All-reduce⁺ : ∀{a b}{A : Set a}{B : Set b}{Q : A → Set}{P : B → Set} → { xs : List A } → (f : ∀{x} → Q x → B) → (∀{x} → (prf : Q x) → P (f prf)) → (all : All Q xs) → All P (All-reduce f all) All-reduce⁺ f hyp [] = [] All-reduce⁺ f hyp (ax ∷ axs) = (hyp ax) ∷ All-reduce⁺ f hyp axs All-reduce⁻ : ∀{a b}{A : Set a}{B : Set b} {Q : A → Set} → { xs : List A } → ∀ {vdq} → (f : ∀{x} → Q x → B) → (all : All Q xs) → vdq ∈ All-reduce f all → ∃[ v ] ∃[ v∈xs ] (vdq ≡ f {v} v∈xs) All-reduce⁻ {Q = Q} {(h ∷ _)} {vdq} f (px ∷ pxs) (here refl) = h , px , refl All-reduce⁻ {Q = Q} {(_ ∷ t)} {vdq} f (px ∷ pxs) (there vdq∈) = All-reduce⁻ {xs = t} f pxs vdq∈ List-index : ∀ {A : Set} → (_≟A_ : (a₁ a₂ : A) → Dec (a₁ ≡ a₂)) → A → (l : List A) → Maybe (Fin (length l)) List-index _≟A_ x l with break (_≟A x) l ...| not≡ , _ with length not≡ <? length l ...| no _ = nothing ...| yes found = just ( fromℕ< {length not≡} {length l} found) nats : ℕ → List ℕ nats 0 = [] nats (suc n) = (nats n) ++ (n ∷ []) _ : nats 4 ≡ 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] _ = refl _ : Maybe-map toℕ (List-index _≟_ 2 (nats 4)) ≡ just 2 _ = refl _ : Maybe-map toℕ (List-index _≟_ 4 (nats 4)) ≡ nothing _ = refl allDistinct : ∀ {A : Set} → List A → Set allDistinct l = ∀ (i j : Σ ℕ (_< length l)) → proj₁ i ≡ proj₁ j ⊎ List-lookup l (fromℕ< (proj₂ i)) ≢ List-lookup l (fromℕ< (proj₂ j)) postulate -- TODO-1: currently unused; prove it, if needed allDistinct? : ∀ {A : Set} → {≟A : (a₁ a₂ : A) → Dec (a₁ ≡ a₂)} → (l : List A) → Dec (allDistinct l) -- Extends an arbitrary relation to work on the head of -- the supplied list, if any. data OnHead {A : Set}(P : A → A → Set) (x : A) : List A → Set where [] : OnHead P x [] on-∷ : ∀{y ys} → P x y → OnHead P x (y ∷ ys) -- Establishes that a list is sorted according to the supplied -- relation. data IsSorted {A : Set}(_<_ : A → A → Set) : List A → Set where [] : IsSorted _<_ [] _∷_ : ∀{x xs} → OnHead _<_ x xs → IsSorted _<_ xs → IsSorted _<_ (x ∷ xs) OnHead-prop : ∀{A}(P : A → A → Set)(x : A)(l : List A) → Irrelevant P → isPropositional (OnHead P x l) OnHead-prop P x [] hyp [] [] = refl OnHead-prop P x (x₁ ∷ l) hyp (on-∷ x₂) (on-∷ x₃) = cong on-∷ (hyp x₂ x₃) IsSorted-prop : ∀{A}(_<_ : A → A → Set)(l : List A) → Irrelevant _<_ → isPropositional (IsSorted _<_ l) IsSorted-prop _<_ [] hyp [] [] = refl IsSorted-prop _<_ (x ∷ l) hyp (x₁ ∷ a) (x₂ ∷ b) = cong₂ _∷_ (OnHead-prop _<_ x l hyp x₁ x₂) (IsSorted-prop _<_ l hyp a b) IsSorted-map⁻ : {A : Set}{_≤_ : A → A → Set} → {B : Set}(f : B → A)(l : List B) → IsSorted (λ x y → f x ≤ f y) l → IsSorted _≤_ (List-map f l) IsSorted-map⁻ f .[] [] = [] IsSorted-map⁻ f .(_ ∷ []) (x ∷ []) = [] ∷ [] IsSorted-map⁻ f .(_ ∷ _ ∷ _) (on-∷ x ∷ (x₁ ∷ is)) = (on-∷ x) ∷ IsSorted-map⁻ f _ (x₁ ∷ is) -- TODO-1 : Better name and/or replace with library property Any-sym : ∀ {a b}{A : Set a}{B : Set b}{tgt : B}{l : List A}{f : A → B} → Any (λ x → tgt ≡ f x) l → Any (λ x → f x ≡ tgt) l Any-sym (here x) = here (sym x) Any-sym (there x) = there (Any-sym x) Any-lookup-correct : ∀ {a b}{A : Set a}{B : Set b}{tgt : B}{l : List A}{f : A → B} → (p : Any (λ x → f x ≡ tgt) l) → Any-lookup p ∈ l Any-lookup-correct (here px) = here refl Any-lookup-correct (there p) = there (Any-lookup-correct p) Any-lookup-correctP : ∀ {a}{A : Set a}{l : List A}{P : A → Set} → (p : Any P l) → Any-lookup p ∈ l Any-lookup-correctP (here px) = here refl Any-lookup-correctP (there p) = there (Any-lookup-correctP p) Any-witness : ∀ {a b} {A : Set a} {l : List A} {P : A → Set b} → (p : Any P l) → P (Any-lookup p) Any-witness (here px) = px Any-witness (there x) = Any-witness x -- TODO-1: there is probably a library property for this. ∈⇒Any : ∀ {A : Set}{x : A} → {xs : List A} → x ∈ xs → Any (_≡ x) xs ∈⇒Any {x = x} (here refl) = here refl ∈⇒Any {x = x} {h ∷ t} (there xxxx) = there (∈⇒Any {xs = t} xxxx) false≢true : false ≢ true false≢true () witness : {A : Set}{P : A → Set}{x : A}{xs : List A} → x ∈ xs → All P xs → P x witness x y = All-lookup y x maybe-⊥ : ∀{a}{A : Set a}{x : A}{y : Maybe A} → y ≡ just x → y ≡ nothing → ⊥ maybe-⊥ () refl Maybe-map-cool : ∀ {S S₁ : Set} {f : S → S₁} {x : Maybe S} {z} → Maybe-map f x ≡ just z → x ≢ nothing Maybe-map-cool {x = nothing} () Maybe-map-cool {x = just y} prf = λ x → ⊥-elim (maybe-⊥ (sym x) refl) Maybe-map-cool-1 : ∀ {S S₁ : Set} {f : S → S₁} {x : Maybe S} {z} → Maybe-map f x ≡ just z → Σ S (λ x' → f x' ≡ z) Maybe-map-cool-1 {x = nothing} () Maybe-map-cool-1 {x = just y} {z = z} refl = y , refl Maybe-map-cool-2 : ∀ {S S₁ : Set} {f : S → S₁} {x : S} {z} → f x ≡ z → Maybe-map f (just x) ≡ just z Maybe-map-cool-2 {S}{S₁}{f}{x}{z} prf rewrite prf = refl T⇒true : ∀ {a : Bool} → T a → a ≡ true T⇒true {true} _ = refl isJust : ∀ {A : Set}{aMB : Maybe A}{a : A} → aMB ≡ just a → Is-just aMB isJust refl = just tt to-witness-isJust-≡ : ∀ {A : Set}{aMB : Maybe A}{a prf} → to-witness (isJust {aMB = aMB} {a} prf) ≡ a to-witness-isJust-≡ {aMB = just a'} {a} {prf} with to-witness-lemma (isJust {aMB = just a'} {a} prf) refl ...| xxx = just-injective (trans (sym xxx) prf)
{ "alphanum_fraction": 0.4833311544, "avg_line_length": 34.7681818182, "ext": "agda", "hexsha": "2b1ddddab0e68f53653caa124f77cf00cba671e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_forks_repo_path": "LibraBFT/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_issues_repo_path": "LibraBFT/Lemmas.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_stars_repo_path": "LibraBFT/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3128, "size": 7649 }
-- {-# OPTIONS --verbose tc.records.ifs:15 #-} -- {-# OPTIONS --verbose tc.rec.proj:15 #-} -- {-# OPTIONS --verbose tc.rec:15 #-} -- {-# OPTIONS --verbose tc.constr.findInScope:15 #-} -- {-# OPTIONS --verbose tc.term.args.ifs:15 #-} -- {-# OPTIONS --verbose tc.section.apply:15 #-} -- {-# OPTIONS --verbose tc.mod.apply:15 #-} module 02-classes-indep where data T : Set where tt : T data Bool : Set where true : Bool false : Bool module testMod (a : Bool) where testModEntry : Bool testModEntry = a record Monoid (t : Set) : Set where field zeroT : t plusT : t → t → t test : Bool test = false or : Bool → Bool → Bool or true _ = true or _ true = true or false false = false aT : Monoid T aT = record { zeroT = tt; plusT = λ _ _ → tt } testMonoid : {t : Set} → {{tM : Monoid t}} → t → t testMonoid {{tM}} t = let open Monoid tM in plusT t zeroT aBool : Monoid Bool aBool = record { zeroT = false; plusT = or } test : Bool test = testMonoid false open Monoid {{...}} test2 : {t : Set} → {{tM : Monoid t}} → t test2 = zeroT test3 : T test3 = zeroT test4 : Bool test4 = zeroT ⋯ : {A : Set} → {{v : A}} → A ⋯ {{v}} = v test5 : Bool test5 = Monoid.zeroT ⋯
{ "alphanum_fraction": 0.5954773869, "avg_line_length": 19.2580645161, "ext": "agda", "hexsha": "7ea1527b4b6c9a604f17259fa934c361295178e0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "examples/instance-arguments/02-classes-indep.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "examples/instance-arguments/02-classes-indep.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/instance-arguments/02-classes-indep.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 417, "size": 1194 }
{-# OPTIONS --cubical --safe #-} module Data.Bits.Strict where open import Data.Bits open import Prelude infixr 8 0∷!_ 1∷!_ 0∷!_ : Bits → Bits 0∷!_ = λ! xs →! 0∷ xs {-# INLINE 0∷!_ #-} 1∷!_ : Bits → Bits 1∷!_ = λ! xs →! 1∷ xs {-# INLINE 1∷!_ #-} 0∷!≡0∷ : ∀ xs → 0∷! xs ≡ 0∷ xs 0∷!≡0∷ = $!-≡ 0∷_ 1∷!≡1∷ : ∀ xs → 1∷! xs ≡ 1∷ xs 1∷!≡1∷ = $!-≡ 1∷_
{ "alphanum_fraction": 0.4828571429, "avg_line_length": 15.9090909091, "ext": "agda", "hexsha": "7882e0fddeac3986cc75b24e7010b7f5dff40147", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Bits/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Bits/Strict.agda", "max_line_length": 32, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Bits/Strict.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 209, "size": 350 }
{-# OPTIONS --without-K #-} module CauchyProofsT where -- Proofs about permutations defined in module Cauchy (multiplicative) open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; subst₂; cong; cong₂; setoid; proof-irrelevance; module ≡-Reasoning) open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) open import Relation.Nullary using (Dec; yes; no; ¬_) open import Data.Nat.Properties using (m≤m+n; n≤m+n; n≤1+n; cancel-*-right-≤; ≰⇒>; ¬i+1+j≤i) open import Data.Nat.Properties.Simple using (+-right-identity; +-suc; +-assoc; +-comm; *-assoc; *-comm; *-right-zero; distribʳ-*-+; +-*-suc) open import Data.Nat.DivMod using (DivMod; result; _divMod_; _div_; _mod_) open import Relation.Binary using (Rel; Decidable; Setoid) open import Relation.Binary.Core using (Transitive) open import Data.String using (String) renaming (_++_ to _++S_) open import Data.Nat.Show using (show) open import Data.Bool using (Bool; false; true) open import Data.Nat using (ℕ; suc; _+_; _∸_; _*_; _<_; _≮_; _≤_; _≰_; _≥_; z≤n; s≤s; _≟_; _≤?_; ≤-pred; module ≤-Reasoning) open import Data.Fin using (Fin; zero; suc; toℕ; fromℕ; fromℕ≤; _ℕ-_; _≺_; reduce≥; raise; inject+; inject₁; inject≤; _≻toℕ_) renaming (_+_ to _F+_) open import Data.Fin.Properties using (bounded; inject+-lemma; to-from; toℕ-injective; inject≤-lemma; toℕ-fromℕ≤) open import Data.Vec.Properties using (lookup∘tabulate; tabulate∘lookup; lookup-allFin; tabulate-∘; tabulate-allFin; allFin-map; lookup-++-inject+; lookup-++-≥) open import Data.Product using (Σ) open import Data.List using (List; []; _∷_; _∷ʳ_; foldl; replicate; reverse; downFrom; concatMap; gfilter; initLast; InitLast; _∷ʳ'_) renaming (_++_ to _++L_; map to mapL; concat to concatL; zip to zipL) open import Data.List.NonEmpty using (List⁺; [_]; _∷⁺_; head; last; _⁺++_) renaming (toList to nonEmptyListtoList; _∷ʳ_ to _n∷ʳ_; tail to ntail) open import Data.List.Any using (Any; here; there; any; module Membership) open import Data.Maybe using (Maybe; nothing; just; maybe′) open import Data.Vec using (Vec; tabulate; []; _∷_; tail; lookup; zip; zipWith; splitAt; _[_]≔_; allFin; toList) renaming (_++_ to _++V_; map to mapV; concat to concatV) open import Function using (id; _∘_; _$_; _∋_) open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Proofs open import Cauchy open import Perm open import CauchyProofs ------------------------------------------------------------------------------ -- Proofs about multiplicative permutations concat-nil : ∀ {m} → concatV (tabulate {m} (λ b → [])) ≡ subst Cauchy (sym (*-right-zero m)) [] concat-nil {0} = refl concat-nil {suc m} = concat-nil {m} empty-vec : ∀ {m} → (eq : m ≡ 0) → allFin m ≡ subst Cauchy (sym eq) [] empty-vec {0} refl = refl empty-vec {suc m} () inj-lemma' : (m n : ℕ) (d : Fin n) (leq : suc (toℕ d) ≤ n + m) → inject+ m d ≡ inject≤ (fromℕ (toℕ d)) leq inj-lemma' m 0 () _ inj-lemma' m (suc n) zero (s≤s _) = refl inj-lemma' m (suc n) (suc d) (s≤s leq) = cong suc (inj-lemma' m n d leq) inj-lemma : (m n : ℕ) (d : Fin n) (leq : suc (toℕ d) ≤ suc m * n) → inject+ (m * n) d ≡ inject≤ (fromℕ (toℕ d)) leq inj-lemma m 0 () _ inj-lemma m (suc n) zero (s≤s _) = refl inj-lemma m (suc n) (suc d) (s≤s leq) = cong suc (inj-lemma' (m * suc n) n d leq) map-f≡g : {B : Set} (n : ℕ) (f g : Fin n → B) → (∀ i → f i ≡ g i) → mapV f (allFin n) ≡ mapV g (allFin n) map-f≡g n f g eq = begin (mapV f (tabulate id) ≡⟨ sym (tabulate-∘ f id) ⟩ tabulate f ≡⟨ finext eq ⟩ tabulate g ≡⟨ tabulate-∘ g id ⟩ mapV g (tabulate id) ∎) where open ≡-Reasoning map-inj-lemma : (m n : ℕ) → (mapV (inject+ (m * n)) (allFin n)) ≡ (mapV (λ d → inject≤ (fromℕ (toℕ d)) (i*n+k≤m*n {suc m} {n} zero d)) (allFin n)) map-inj-lemma m n = map-f≡g n (inject+ (m * n)) (λ d → inject≤ (fromℕ (toℕ d)) (i*n+k≤m*n {suc m} zero d)) (λ d → inj-lemma m n d (i*n+k≤m*n {suc m} zero d)) map-raise-suc : (m n : ℕ) (j : Fin (suc m)) → mapV (λ d → raise (suc n) (inject≤ (fromℕ (toℕ j * suc n + toℕ d)) (i*n+k≤m*n j d))) (idcauchy (suc n)) ≡ mapV (λ d → inject≤ (fromℕ (toℕ (suc j) * suc n + toℕ d)) (i*n+k≤m*n (suc j) d)) (idcauchy (suc n)) map-raise-suc m n j = map-f≡g (suc n) (λ d → raise (suc n) (inject≤ (fromℕ (toℕ j * suc n + toℕ d)) (i*n+k≤m*n j d))) (λ d → inject≤ (fromℕ (toℕ (suc j) * suc n + toℕ d)) (i*n+k≤m*n (suc j) d)) ( (λ d → raise-suc m n j d (i*n+k≤m*n j d) (i*n+k≤m*n (suc j) d))) -- what should this be named? lemma3 : (n m : ℕ) → (j : Fin m) → mapV (raise (suc n)) (mapV (λ d → inject≤ (fromℕ (toℕ j * suc n + toℕ d)) (i*n+k≤m*n j d)) (idcauchy (suc n))) ≡ mapV (λ d → inject≤ (fromℕ (toℕ (suc j) * suc n + toℕ d)) (i*n+k≤m*n (suc j) d)) (idcauchy (suc n)) lemma3 n 0 () lemma3 n (suc m) j = begin ( _ ≡⟨ sym (map-∘ (raise (suc n)) (λ d → inject≤ (fromℕ (toℕ j * suc n + toℕ d)) (i*n+k≤m*n j d)) (idcauchy (suc n))) ⟩ mapV (λ d → raise (suc n) (inject≤ (fromℕ (toℕ j * suc n + toℕ d)) (i*n+k≤m*n j d))) (idcauchy (suc n)) ≡⟨ map-raise-suc m n j ⟩ _ ∎) where open ≡-Reasoning map-raise-lemma : (m n : ℕ) → mapV (λ b → mapV (raise (suc n)) (mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n)))) (idcauchy m) ≡ mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n))) (tabulate {m} suc) map-raise-lemma 0 n = refl map-raise-lemma (suc m) n = begin ( mapV (λ b → mapV (raise (suc n)) (mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n)))) (idcauchy (suc m)) ≡⟨ sym (tabulate-∘ _ id) ⟩ tabulate {suc m} (λ b → mapV (raise (suc n)) (mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n)))) ≡⟨ finext (lemma3 n (suc m)) ⟩ tabulate {suc m} ((λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n))) ∘ suc) ≡⟨ tabulate-∘ _ suc ⟩ mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n))) (tabulate {suc m} suc) ∎) where open ≡-Reasoning allFin* : (m n : ℕ) → allFin (m * n) ≡ concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy n)) (idcauchy m)) allFin* 0 _ = refl allFin* (suc m) 0 = begin (allFin (suc m * 0) ≡⟨ empty-vec {suc m * 0} (*-right-zero (suc m)) ⟩ subst Cauchy (sym (*-right-zero (suc m))) [] ≡⟨ sym (concat-nil {suc m}) ⟩ concatV (tabulate {suc m} (λ b → [])) ≡⟨ cong concatV (tabulate-allFin {suc m} (λ b → [])) ⟩ concatV (mapV (λ b → []) (idcauchy (suc m))) ∎) where open ≡-Reasoning allFin* (suc m) (suc n) = begin (allFin (suc n + m * suc n) ≡⟨ allFin+ (suc n) (m * suc n) ⟩ mapV (inject+ (m * suc n)) (allFin (suc n)) ++V mapV (raise (suc n)) (allFin (m * suc n)) ≡⟨ cong (λ x → mapV (inject+ (m * suc n)) (allFin (suc n)) ++V mapV (raise (suc n)) x) (allFin* m (suc n)) ⟩ mapV (inject+ (m * suc n)) (allFin (suc n)) ++V mapV (raise (suc n)) (concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n))) (idcauchy m))) ≡⟨ cong (_++V_ (mapV (inject+ (m * suc n)) (allFin (suc n)))) (sym (concat-map (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n))) (idcauchy m)) (raise (suc n)))) ⟩ mapV (inject+ (m * suc n)) (allFin (suc n)) ++V concatV (mapV (mapV (raise (suc n))) (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n))) (idcauchy m))) ≡⟨ refl ⟩ concatV (mapV (inject+ (m * suc n)) (allFin (suc n)) ∷ mapV (mapV (raise (suc n))) (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n))) (idcauchy m))) ≡⟨ cong (λ x → concatV ((mapV (inject+ (m * suc n)) (allFin (suc n))) ∷ x)) (sym (map-∘ (mapV (raise (suc n))) (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n))) (idcauchy m))) ⟩ concatV (mapV (inject+ (m * suc n)) (allFin (suc n)) ∷ mapV (λ b → mapV (raise (suc n)) (mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n)))) (idcauchy m)) ≡⟨ cong (λ x → concatV (x ∷ mapV (λ b → mapV (raise (suc n)) (mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n)))) (idcauchy m))) (map-inj-lemma m (suc n)) ⟩ concatV (mapV (λ d → inject≤ (fromℕ (toℕ d)) (i*n+k≤m*n {suc m} {suc n} zero d)) (idcauchy (suc n)) ∷ (mapV (λ b → mapV (raise (suc n)) (mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n)))) (idcauchy m))) ≡⟨ cong (λ x → concatV (mapV (λ d → inject≤ (fromℕ (toℕ d)) (i*n+k≤m*n {suc m} {suc n} zero d)) (idcauchy (suc n)) ∷ x)) (map-raise-lemma m n) ⟩ concatV (mapV (λ d → inject≤ (fromℕ (toℕ d)) (i*n+k≤m*n {suc m} {suc n} zero d)) (idcauchy (suc n)) ∷ (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n))) (tabulate {m} suc))) ≡⟨ refl ⟩ concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (idcauchy (suc n))) (idcauchy (suc m))) ∎) where open ≡-Reasoning tcomp-id : ∀ {m n} → tcompcauchy (idcauchy m) (idcauchy n) ≡ idcauchy (m * n) tcomp-id {m} {n} = sym (allFin* m n) -- Behaviour of parallel multiplicative composition wrt sequential absurd : (m n q : ℕ) (r : Fin (suc n)) (k : Fin (suc (n + m * suc n))) (k≡r+q*sn : toℕ k ≡ toℕ r + q * suc n) (p : suc m ≤ q) → ⊥ absurd m n q r k k≡r+q*sn p = ¬i+1+j≤i (toℕ k) {toℕ r} k≥k+sr where k≥k+sr : toℕ k ≥ toℕ k + suc (toℕ r) k≥k+sr = begin (toℕ k + suc (toℕ r) ≡⟨ +-suc (toℕ k) (toℕ r) ⟩ suc (toℕ k) + toℕ r ≤⟨ cong+r≤ (bounded k) (toℕ r) ⟩ (suc n + m * suc n) + toℕ r ≡⟨ +-comm (suc n + m * suc n) (toℕ r) ⟩ toℕ r + (suc n + m * suc n) ≡⟨ refl ⟩ toℕ r + suc m * suc n ≤⟨ cong+l≤ (cong*r≤ p (suc n)) (toℕ r) ⟩ toℕ r + q * suc n ≡⟨ sym k≡r+q*sn ⟩ toℕ k ∎) where open ≤-Reasoning concat-tabulate-[] : ∀ {m n} {f : Fin m → Fin n} → concatV (tabulate {m} ((λ x → []) ∘ f)) ≡ subst (λ n → Vec (Fin (m * 0)) n) (sym (*-right-zero m)) [] concat-tabulate-[] {0} = refl concat-tabulate-[] {suc m} {_} {f} = concat-tabulate-[] {m} {_} {f ∘ suc} tabulate-⊥ : ∀ {m n} {g : Fin (m * 0) → Fin n} → tabulate g ≡ subst (Vec (Fin n)) (sym (*-right-zero m)) [] tabulate-⊥ {0} = refl tabulate-⊥ {suc m}{_} {g} = tabulate-⊥ {m} toℕ-inject+ : ∀ {n k} → (i : Fin n) → toℕ (inject+ k i) ≡ toℕ i toℕ-inject+ {0} () toℕ-inject+ {suc n} zero = refl toℕ-inject+ {suc n} (suc i) = cong suc (toℕ-inject+ i) q≡ : (m : ℕ) (q : ℕ) (¬p : ¬ suc m ≤ q) → q ≡ toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) q≡ m q ¬p = sym (toℕ-fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) absurd2 : (n q : ℕ) (i : Fin (suc n)) (r : Fin (suc (suc n))) (eq : suc (toℕ i) ≡ toℕ r + suc (suc (n + q * suc (suc n)))) → ⊥ absurd2 n q i r eq = ¬i+1+j≤i (suc (toℕ i)) {toℕ r} leq where leq' = begin (suc (toℕ i) ≤⟨ bounded i ⟩ suc n ≤⟨ m≤m+n (suc n) (q * suc (suc n)) ⟩ suc (n + q * suc (suc n)) ∎) where open ≤-Reasoning leq = begin (suc (toℕ i) + suc (toℕ r) ≡⟨ +-suc (suc (toℕ i)) (toℕ r) ⟩ suc (suc (toℕ i)) + toℕ r ≡⟨ +-comm (suc (suc (toℕ i))) (toℕ r) ⟩ toℕ r + suc (suc (toℕ i)) ≤⟨ cong+l≤ (s≤s leq') (toℕ r) ⟩ toℕ r + suc (suc (n + q * suc (suc n))) ≡⟨ sym eq ⟩ suc (toℕ i) ∎) where open ≤-Reasoning small-quotient : (n q : ℕ) → (i : Fin n) → (r : Fin (suc n)) → (eq₁ : suc (toℕ i) ≡ toℕ r + q * suc n) → (q ≡ 0) × (toℕ r ≡ suc (toℕ i)) small-quotient 0 _ () _ _ small-quotient (suc n) 0 i r eq = (refl , sym (trans eq (+-right-identity (toℕ r)))) small-quotient (suc n) (suc q) i r eq = ⊥-elim (absurd2 n q i r eq) first-row : (m n : ℕ) → (f : Fin (suc m) × Fin (suc n) → Fin ((suc m) * (suc n))) → tabulate {suc n} (λ x → f (zero , x)) ≡ tabulate {suc n} ((λ k → f (fin-project (suc m) (suc n) k)) ∘ inject+ (m * suc n)) first-row m n f = finext pf where pf : (i : Fin (suc n)) → f (zero , i) ≡ f (fin-project (suc m) (suc n) (inject+ (m * suc n) i)) pf zero = refl pf (suc i) with suc (toℕ (inject+ (m * suc n) i)) divMod suc n pf (suc i) | result q r property with suc m ≤? q pf (suc i) | result q r property | yes p = ⊥-elim (absurd m n q r (suc (inject+ (m * suc n) i)) property p) pf (suc i) | result q r property | no ¬p = cong f (cong₂ _,_ (toℕ-injective (sym a₁)) a₂) where q≡f₁ : q ≡ toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) q≡f₁ = q≡ m q ¬p si≡f₂ : _≡_ {A = ℕ} (suc (toℕ (inject+ (m * suc n) i))) (suc (toℕ i)) si≡f₂ = cong suc (toℕ-inject+ {k = m * suc n} i) sq : (q ≡ 0) × (toℕ r ≡ suc (toℕ i)) sq = small-quotient n q i r (trans (sym si≡f₂) property) a₁ : toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) ≡ toℕ {suc q} zero a₁ = trans (sym q≡f₁) (proj₁ sq) a₂ : (suc i) ≡ r a₂ = toℕ-injective (sym (proj₂ sq)) lookup-2d' : (m n : ℕ) (k : Fin (m * n)) (f : Fin m × Fin n → Fin (m * n)) → lookup k (concatV (tabulate (λ i → tabulate (λ j → f (i , j))))) ≡ f (fin-project m n k) lookup-2d' m n k f = let fin-result b d dec dec' = fin-divMod m n k in begin (lookup k (concatV (tabulate (λ i → tabulate (λ j → f (i , j))))) ≡⟨ cong (λ x → lookup k (concatV x)) (finext (λ i → tabulate-allFin (λ j → f (i , j)))) ⟩ lookup k (concatV (tabulate (λ i → mapV (λ j → f (i , j)) (allFin n)))) ≡⟨ cong (λ x → lookup k (concatV x)) (tabulate-allFin (λ i → mapV (λ j → f (i , j)) (allFin n))) ⟩ lookup k (concatV (mapV (λ i → mapV (λ j → f (i , j)) (allFin n)) (allFin m))) ≡⟨ lookup-2d m n k (allFin m) (allFin n) f ⟩ f (lookup b (allFin m) , lookup d (allFin n)) ≡⟨ cong₂ (λ x y → f (x , y)) (lookup-allFin b) (lookup-allFin d) ⟩ f (b , d) ≡⟨ cong f (sym (inv' (fin-product-iso m n) (b , d))) ⟩ f (split (fin-product-iso m n) (combine (fin-product-iso m n) (b , d))) ≡⟨ refl ⟩ f (fin-project m n (combine (fin-product-iso m n) (b , d))) ≡⟨ cong (λ x → f (fin-project m n x)) (sym dec') ⟩ f (fin-project m n k) ∎) where open ≡-Reasoning open Fin-Product-Iso tabulate-concat : ∀ {m n} → (f : Fin m × Fin n → Fin (m * n)) → concatV (tabulate {m} (λ i → tabulate {n} (λ j → f (i , j)))) ≡ tabulate {m * n} (λ (k : Fin (m * n)) → f (fin-project m n k)) tabulate-concat {m} {n} f = begin (concatV (tabulate {m} (λ i → tabulate {n} (λ j → f (i , j)))) ≡⟨ sym (tabulate∘lookup (concatV (tabulate {m} (λ i → tabulate {n} (λ j → f (i , j)))))) ⟩ tabulate (λ i → lookup i (concatV (tabulate {m} (λ i → tabulate {n} (λ j → f (i , j)))))) ≡⟨ finext (λ i → lookup-2d' m n i f) ⟩ tabulate {m * n} (λ (k : Fin (m * n)) → f (fin-project m n k)) ∎) where open ≡-Reasoning lookup-concat : ∀ {m n} → (k : Fin (m * n)) → (pm qm : Cauchy m) → (pn qn : Cauchy n) → let vs = concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) pn) pm) ws = concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) qn) qm) in lookup (lookup k vs) ws ≡ let (b , d) = fin-project m n k x = lookup (lookup b pm) qm y = lookup (lookup d pn) qn in inject≤ (fromℕ (toℕ x * n + toℕ y)) (i*n+k≤m*n x y) lookup-concat {0} () pm qm pn qn lookup-concat {suc m} {0} k pm qm [] [] = ⊥-elim (Fin0-⊥ (subst Fin (*-right-zero m) k)) lookup-concat {suc m} {suc n} zero (x ∷ pm) (x₁ ∷ qm) (x₂ ∷ pn) (x₃ ∷ qn) = begin (lookup (inject≤ (fromℕ (toℕ x * suc n + toℕ x₂)) (i*n+k≤m*n x x₂)) (concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (x₃ ∷ qn)) (x₁ ∷ qm))) ≡⟨ lookup-concat' (suc m) (suc n) x x₂ (i*n+k≤m*n x x₂) (λ {(b , d) → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)}) (x₁ ∷ qm) (x₃ ∷ qn) ⟩ inject≤ (fromℕ (toℕ (lookup x (x₁ ∷ qm)) * suc n + toℕ (lookup x₂ (x₃ ∷ qn)))) (i*n+k≤m*n (lookup x (x₁ ∷ qm)) (lookup x₂ (x₃ ∷ qn))) ≡⟨ refl ⟩ let (b , d) = fin-project (suc m) (suc n) zero x = lookup (lookup b (x ∷ pm)) (x₁ ∷ qm) y = lookup (lookup d (x₂ ∷ pn)) (x₃ ∷ qn) in inject≤ (fromℕ (toℕ x * suc n + toℕ y)) (i*n+k≤m*n x y) ∎) where open ≡-Reasoning lookup-concat {suc m} {suc n} (suc k) (x ∷ pm) (x₁ ∷ qm) (x₂ ∷ pn) (x₃ ∷ qn) = begin (let vs = concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (x₂ ∷ pn)) (x ∷ pm)) ws = concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (x₃ ∷ qn)) (x₁ ∷ qm)) in lookup (lookup (suc k) vs) ws ≡⟨ cong (λ z → lookup (lookup z (concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (x₂ ∷ pn)) (x ∷ pm)))) (concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (x₃ ∷ qn)) (x₁ ∷ qm)))) (fin-proj-lem (suc m) (suc n) (suc k)) ⟩ let (b' , d') = fin-project (suc m) (suc n) (suc k) vs = concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (x₂ ∷ pn)) (x ∷ pm)) ws = concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (x₃ ∷ qn)) (x₁ ∷ qm)) in lookup (lookup (inject≤ (fromℕ (toℕ b' * (suc n) + toℕ d')) (i*n+k≤m*n b' d')) vs) ws ≡⟨ cong (λ x → lookup x ws) (lookup-concat' (suc m) (suc n) b' d' (i*n+k≤m*n b' d') (λ {(b , d) → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)}) (x ∷ pm) (x₂ ∷ pn)) ⟩ let (b' , d') = fin-project (suc m) (suc n) (suc k) ws = concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)) (x₃ ∷ qn)) (x₁ ∷ qm)) in lookup (inject≤ (fromℕ (toℕ (lookup b' (x ∷ pm)) * suc n + toℕ (lookup d' (x₂ ∷ pn)))) (i*n+k≤m*n (lookup b' (x ∷ pm)) (lookup d' (x₂ ∷ pn)))) ws ≡⟨ lookup-concat' (suc m) (suc n) (lookup b' (x ∷ pm)) (lookup d' (x₂ ∷ pn)) (i*n+k≤m*n (lookup b' (x ∷ pm)) (lookup d' (x₂ ∷ pn))) (λ {(b , d) → inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d)}) (x₁ ∷ qm) (x₃ ∷ qn) ⟩ let (b , d) = fin-project (suc m) (suc n) (suc k) r = lookup (lookup b (x ∷ pm)) (x₁ ∷ qm) s = lookup (lookup d (x₂ ∷ pn)) (x₃ ∷ qn) in inject≤ (fromℕ (toℕ r * suc n + toℕ s)) (i*n+k≤m*n r s) ∎) where open ≡-Reasoning tcomp-dist : ∀ {m n} → (pm qm : Cauchy m) → (pn qn : Cauchy n) → scompcauchy (tcompcauchy pm pn) (tcompcauchy qm qn) ≡ tcompcauchy (scompcauchy pm qm) (scompcauchy pn qn) tcomp-dist {m} {n} pm qm pn qn = begin (scompcauchy (tcompcauchy pm pn) (tcompcauchy qm qn) ≡⟨ refl ⟩ tabulate {m * n} (λ k → lookup (lookup k (concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) pn) pm))) (concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) qn) qm))) ≡⟨ finext (λ k → lookup-concat {m} {n} k pm qm pn qn) ⟩ tabulate {m * n} (λ k → let (i , j) = fin-project m n k b = lookup (lookup i pm) qm d = lookup (lookup j pn) qn in inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) ≡⟨ sym (tabulate-concat (λ {(i , j) → let b = lookup (lookup i pm) qm d = lookup (lookup j pn) qn in inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)})) ⟩ concatV (tabulate {m} (λ i → tabulate {n} (λ j → let b = lookup (lookup i pm) qm d = lookup (lookup j pn) qn in inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)))) ≡⟨ cong concatV (finext (λ i → tabulate-∘ (let b = lookup (lookup i pm) qm in λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) (λ i → lookup (lookup i pn) qn))) ⟩ concatV (tabulate {m} (λ i → let b = lookup (lookup i pm) qm in mapV (λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) (tabulate (λ i → lookup (lookup i pn) qn)))) ≡⟨ cong concatV (tabulate-∘ (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) (tabulate (λ i → lookup (lookup i pn) qn))) (λ i → lookup (lookup i pm) qm)) ⟩ concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) (tabulate (λ i → lookup (lookup i pn) qn))) (tabulate (λ i → lookup (lookup i pm) qm))) ≡⟨ refl ⟩ tcompcauchy (scompcauchy pm qm) (scompcauchy pn qn) ∎) where open ≡-Reasoning ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.3908353895, "avg_line_length": 38.651226158, "ext": "agda", "hexsha": "69165fedb3d80d938a2ee0ab29cdd8892b4f3ce3", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/CauchyProofsT.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/CauchyProofsT.agda", "max_line_length": 87, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/CauchyProofsT.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 10273, "size": 28370 }
-- Andreas, 2016-07-29 issue #707 -- {-# OPTIONS -v tc.ip:20 #-} postulate A B : {!!} -- Should not create two interaction points! -- Also not two sort metas!
{ "alphanum_fraction": 0.6296296296, "avg_line_length": 18, "ext": "agda", "hexsha": "3a73540e832f6e31b2ed4ce8d99ca43889c255e4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue707.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue707.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue707.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 48, "size": 162 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Examples showing how the case expressions can be used with anonymous -- pattern-matching lambda abstractions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module README.Case where open import Data.Fin hiding (pred) open import Data.Maybe hiding (from-just) open import Data.Nat hiding (pred) open import Data.List open import Data.Sum open import Data.Product open import Function open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Different types of pattern-matching lambdas -- absurd pattern empty : ∀ {a} {A : Set a} → Fin 0 → A empty i = case i of λ () -- {}-delimited and ;-separated list of clauses -- Note that they do not need to be on different lines pred : ℕ → ℕ pred n = case n of λ { zero → zero ; (suc n) → n } -- where-introduced and indentation-identified block of list of clauses from-just : ∀ {a} {A : Set a} (x : Maybe A) → From-just x from-just x = case x return From-just of λ where (just x) → x nothing → _ ------------------------------------------------------------------------ -- We can define some recursive functions with case plus : ℕ → ℕ → ℕ plus m n = case m of λ { zero → n ; (suc m) → suc (plus m n) } div2 : ℕ → ℕ div2 zero = zero div2 (suc m) = case m of λ where zero → zero (suc m') → suc (div2 m') -- Note that some natural uses of case are rejected by the termination -- checker: -- module _ {a} {A : Set a} (eq? : Decidable {A = A} _≡_) where -- pairBy : List A → List (A ⊎ (A × A)) -- pairBy [] = [] -- pairBy (x ∷ []) = inj₁ x ∷ [] -- pairBy (x ∷ y ∷ xs) = case eq? x y of λ where -- (yes _) → inj₂ (x , y) ∷ pairBy xs -- (no _) → inj₁ x ∷ pairBy (y ∷ xs)
{ "alphanum_fraction": 0.5388888889, "avg_line_length": 26.7567567568, "ext": "agda", "hexsha": "2dd7595f55881e04415563471f6252ba9cadb4c6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Case.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Case.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Case.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 536, "size": 1980 }
open import Oscar.Prelude open import Oscar.Data.¶ module Oscar.Data.Vec where data ⟨_⟩¶⟨≤_⟩ {𝔭} (𝔓 : ¶ → Ø 𝔭) : ¶ → Ø 𝔭 where ∅ : ⟨ 𝔓 ⟩¶⟨≤ ∅ ⟩ _,_ : ∀ {n} → 𝔓 n → ⟨ 𝔓 ⟩¶⟨≤ n ⟩ → ⟨ 𝔓 ⟩¶⟨≤ ↑ n ⟩ Vec⟨_⟩ = ⟨_⟩¶⟨≤_⟩
{ "alphanum_fraction": 0.4409090909, "avg_line_length": 18.3333333333, "ext": "agda", "hexsha": "8ca213bb823c8f92fe1ebd4640973e702dad0adb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Vec.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Vec.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Vec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 140, "size": 220 }
module Logic.Structure.Applicative where data Applicative (f : Set -> Set) : Set1 where applicative : (pure : {a : Set} -> a -> f a) (_<*>_ : {a b : Set} -> f (a -> b) -> f a -> f b) -> Applicative f module Applicative {f : Set -> Set}(App : Applicative f) where private pure' : Applicative f -> {a : Set} -> a -> f a pure' (applicative p _) = p app' : Applicative f -> {a b : Set} -> f (a -> b) -> f a -> f b app' (applicative _ a) = a pure : {a : Set} -> a -> f a pure = pure' App _<*>_ : {a b : Set} -> f (a -> b) -> f a -> f b _<*>_ = app' App
{ "alphanum_fraction": 0.4892205638, "avg_line_length": 24.12, "ext": "agda", "hexsha": "b3bd68bf95ba1552ce7c95e425b3479c47eecde5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Structure/Applicative.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Structure/Applicative.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Structure/Applicative.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 224, "size": 603 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module groups.ProductRepr {i j} {G : Group (lmax i j)} {H₁ : Group i} {H₂ : Group j} (i₁ : H₁ →ᴳ G) (i₂ : H₂ →ᴳ G) (j₁ : G →ᴳ H₁) (j₂ : G →ᴳ H₂) (p₁ : ∀ h₁ → GroupHom.f j₁ (GroupHom.f i₁ h₁) == h₁) (p₂ : ∀ h₂ → GroupHom.f j₂ (GroupHom.f i₂ h₂) == h₂) (ex₁ : is-exact i₁ j₂) (ex₂ : is-exact i₂ j₁) where {- Given the following commutative diagram of homomorphisms, H₁ i₁ i₂ H₂ ↘ ↙ id ↓ G ↓ id ↙ ↘ H₁ j₁ j₂ H₂ - assuming i₁,j₂ and i₂,j₁ are exact sequences, - there exists an isomorphism G == H₁ × H₂ such that i₁,i₂ correspond - to the natural injections and j₁,j₂ correspond to the natural - projections. -} private module G = Group G module H₁ = Group H₁ module H₂ = Group H₂ module i₁ = GroupHom i₁ module i₂ = GroupHom i₂ module j₁ = GroupHom j₁ module j₂ = GroupHom j₂ fanout-has-trivial-ker : has-trivial-kerᴳ (×ᴳ-fanout j₁ j₂) fanout-has-trivial-ker g q = Trunc-rec (G.El-level _ _) (lemma g (fst×= q)) (ker-sub-im ex₁ g (snd×= q)) where lemma : ∀ g → j₁.f g == H₁.ident → hfiber i₁.f g → g == G.ident lemma ._ r (h , idp) = ap i₁.f (! (p₁ h) ∙ r) ∙ i₁.pres-ident β₁ : (h₁ : H₁.El) (h₂ : H₂.El) → j₁.f (G.comp (i₁.f h₁) (i₂.f h₂)) == h₁ β₁ h₁ h₂ = j₁.pres-comp (i₁.f h₁) (i₂.f h₂) ∙ ap2 H₁.comp (p₁ h₁) (im-sub-ker ex₂ _ [ h₂ , idp ]) ∙ H₁.unit-r h₁ β₂ : (h₁ : H₁.El) (h₂ : H₂.El) → j₂.f (G.comp (i₁.f h₁) (i₂.f h₂)) == h₂ β₂ h₁ h₂ = j₂.pres-comp (i₁.f h₁) (i₂.f h₂) ∙ ap2 H₂.comp (im-sub-ker ex₁ _ [ h₁ , idp ]) (p₂ h₂) ∙ H₂.unit-l h₂ iso : G ≃ᴳ (H₁ ×ᴳ H₂) iso = surjᴳ-and-injᴳ-iso (×ᴳ-fanout j₁ j₂) (λ {(h₁ , h₂) → [ G.comp (i₁.f h₁) (i₂.f h₂) , pair×= (β₁ h₁ h₂) (β₂ h₁ h₂) ]}) (has-trivial-ker-is-injᴳ (×ᴳ-fanout j₁ j₂) fanout-has-trivial-ker) j₁-fst-comm-sqr : CommSquareᴳ j₁ ×ᴳ-fst (–>ᴳ iso) (idhom _) j₁-fst-comm-sqr = comm-sqrᴳ λ _ → idp j₂-snd-comm-sqr : CommSquareᴳ j₂ (×ᴳ-snd {G = H₁}) (–>ᴳ iso) (idhom _) j₂-snd-comm-sqr = comm-sqrᴳ λ _ → idp abstract i₁-inl-comm-sqr : CommSquareᴳ i₁ ×ᴳ-inl (idhom _) (–>ᴳ iso) i₁-inl-comm-sqr = comm-sqrᴳ λ h₁ → pair×= (p₁ h₁) (im-sub-ker ex₁ _ [ h₁ , idp ]) i₂-inr-comm-sqr : CommSquareᴳ i₂ ×ᴳ-inr (idhom _) (–>ᴳ iso) i₂-inr-comm-sqr = comm-sqrᴳ λ h₂ → pair×= (im-sub-ker ex₂ _ [ h₂ , idp ]) (p₂ h₂) {- Given additionally maps i₀ j₀ K –––→ G ––→ L - such that j₀∘i₀ = 0, we have j₀(i₁(j₁(i₀ k)))⁻¹ = j₀(i₂(j₂(i₀ k))). - (This is called the hexagon lemma in Eilenberg & Steenrod's book. - The hexagon is not visible in this presentation.) -} module HexagonLemma {k l} {K : Group k} {L : Group l} (i₀ : K →ᴳ G) (j₀ : G →ᴳ L) (ex₀ : ∀ g → GroupHom.f j₀ (GroupHom.f i₀ g) == Group.ident L) where abstract decomp : ∀ g → G.comp (i₁.f (j₁.f g)) (i₂.f (j₂.f g)) == g decomp g = <– (ap-equiv (GroupIso.f-equiv iso) _ g) $ GroupIso.f iso (G.comp (i₁.f (j₁.f g)) (i₂.f (j₂.f g))) =⟨ GroupIso.pres-comp iso (i₁.f (j₁.f g)) (i₂.f (j₂.f g)) ⟩ Group.comp (H₁ ×ᴳ H₂) (GroupIso.f iso (i₁.f (j₁.f g))) (GroupIso.f iso (i₂.f (j₂.f g))) =⟨ ap2 (Group.comp (H₁ ×ᴳ H₂)) ((i₁-inl-comm-sqr □$ᴳ j₁.f g) ∙ ap (_, H₂.ident) (j₁-fst-comm-sqr □$ᴳ g)) ((i₂-inr-comm-sqr □$ᴳ j₂.f g) ∙ ap (H₁.ident ,_) (j₂-snd-comm-sqr □$ᴳ g)) ⟩ (H₁.comp (fst (GroupIso.f iso g)) H₁.ident , H₂.comp H₂.ident (snd (GroupIso.f iso g))) =⟨ pair×= (H₁.unit-r (fst (GroupIso.f iso g))) (H₂.unit-l (snd (GroupIso.f iso g))) ⟩ (fst (GroupIso.f iso g) , snd (GroupIso.f iso g)) =⟨ idp ⟩ GroupIso.f iso g =∎ cancel : ∀ k → Group.comp L (GroupHom.f (j₀ ∘ᴳ i₁ ∘ᴳ j₁ ∘ᴳ i₀) k) (GroupHom.f (j₀ ∘ᴳ i₂ ∘ᴳ j₂ ∘ᴳ i₀) k) == Group.ident L cancel k = ! (GroupHom.pres-comp j₀ _ _) ∙ ap (GroupHom.f j₀) (decomp (GroupHom.f i₀ k)) ∙ ex₀ k inv₁ : ∀ k → Group.inv L (GroupHom.f (j₀ ∘ᴳ i₁ ∘ᴳ j₁ ∘ᴳ i₀) k) == GroupHom.f (j₀ ∘ᴳ i₂ ∘ᴳ j₂ ∘ᴳ i₀) k inv₁ k = Group.inv-unique-r L _ _ (cancel k) inv₂ : ∀ k → Group.inv L (GroupHom.f (j₀ ∘ᴳ i₂ ∘ᴳ j₂ ∘ᴳ i₀) k) == GroupHom.f (j₀ ∘ᴳ i₁ ∘ᴳ j₁ ∘ᴳ i₀) k inv₂ k = Group.inv-unique-l L _ _ (cancel k)
{ "alphanum_fraction": 0.5227929731, "avg_line_length": 35.6904761905, "ext": "agda", "hexsha": "c783d28c18ad643a710e5b0fc42fdc81970f51d5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/groups/ProductRepr.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/groups/ProductRepr.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/groups/ProductRepr.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2008, "size": 4497 }
-- Intuitionistic propositional logic, de Bruijn approach, final encoding module Bf.Ip where open import Lib using (List; _,_; LMem; lzero; lsuc) -- Types infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth judgement Cx : Set Cx = List Ty isTrue : Ty -> Cx -> Set isTrue a tc = LMem a tc -- Terms TmRepr : Set1 TmRepr = Cx -> Ty -> Set module ArrMp where record Tm (tr : TmRepr) : Set1 where infixl 1 _$_ infixr 0 lam=>_ field var : forall {tc a} -> isTrue a tc -> tr tc a lam=>_ : forall {tc a b} -> tr (tc , a) b -> tr tc (a => b) _$_ : forall {tc a b} -> tr tc (a => b) -> tr tc a -> tr tc b v0 : forall {tc a} -> tr (tc , a) a v0 = var lzero v1 : forall {tc a b} -> tr (tc , a , b) a v1 = var (lsuc lzero) v2 : forall {tc a b c} -> tr (tc , a , b , c) a v2 = var (lsuc (lsuc lzero)) open Tm {{...}} public module Mp where record Tm (tr : TmRepr) : Set1 where field pair' : forall {tc a b} -> tr tc a -> tr tc b -> tr tc (a && b) fst : forall {tc a b} -> tr tc (a && b) -> tr tc a snd : forall {tc a b} -> tr tc (a && b) -> tr tc b left : forall {tc a b} -> tr tc a -> tr tc (a || b) right : forall {tc a b} -> tr tc b -> tr tc (a || b) case' : forall {tc a b c} -> tr tc (a || b) -> tr (tc , a) c -> tr (tc , b) c -> tr tc c isArrMp : ArrMp.Tm tr open ArrMp.Tm isArrMp public syntax pair' x y = [ x , y ] syntax case' xy x y = case xy => x => y open Tm {{...}} public module Ip where record Tm (tr : TmRepr) : Set1 where field abort : forall {tc a} -> tr tc FALSE -> tr tc a isMp : Mp.Tm tr open Mp.Tm isMp public open Tm {{...}} public Thm : Ty -> Set1 Thm a = forall {tr tc} {{_ : Tm tr}} -> tr tc a open Ip public -- Example theorems t1 : forall {a b} -> Thm (a => NOT a => b) t1 = lam=> lam=> abort (v0 $ v1) t2 : forall {a b} -> Thm (NOT a => a => b) t2 = lam=> lam=> abort (v1 $ v0) t3 : forall {a} -> Thm (a => NOT (NOT a)) t3 = lam=> lam=> v0 $ v1 t4 : forall {a} -> Thm (NOT a <=> NOT (NOT (NOT a))) t4 = [ lam=> lam=> v0 $ v1 , lam=> lam=> v1 $ (lam=> v0 $ v1) ]
{ "alphanum_fraction": 0.4742307692, "avg_line_length": 21.8487394958, "ext": "agda", "hexsha": "39ab03b9e8d049b3e7158a5936781b2fb9ee678c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Bf/Ip.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Bf/Ip.agda", "max_line_length": 94, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Bf/Ip.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 987, "size": 2600 }
------------------------------------------------------------------------ -- Experiments related to equality -- -- Nils Anders Danielsson -- -- Some files have been developed in collaboration with others, see -- the individual files. ------------------------------------------------------------------------ {-# OPTIONS --cubical --with-K --guardedness --sized-types --prop #-} module README where -- "Safe" code that uses --without-K. import README.Safe.Without-K -- "Safe" code that uses --erased-cubical. import README.Safe.Cubical.Erased -- "Safe" code that uses --erased-cubical and --guardedness. import README.Safe.Cubical.Erased.Guardedness -- "Safe" code that uses --erased-cubical and --prop. import README.Safe.Cubical.Erased.Prop -- "Safe" code that uses --cubical. import README.Safe.Cubical -- "Safe" code that uses --with-K. import README.Safe.With-K -- Code which might depend on potentially unsafe features (other than -- --sized-types). import README.Unsafe -- Code which is "safe", except for the use of --sized-types. import README.Unsafe.Sized-types -- Code related to the paper "Logical properties of a modality for -- erasure". This code uses both --cubical and --with-K, but not at -- the same time, except in the module README.Erased, which for that -- reason cannot use --safe. import README.Erased
{ "alphanum_fraction": 0.6463142219, "avg_line_length": 25.3396226415, "ext": "agda", "hexsha": "be3362d49db147df745d2993dcb46900c19f006b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "README.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "README.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 315, "size": 1343 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category -- small indexed products of specific shapes module Categories.Object.IndexedProducts {o ℓ e} (C : Category o ℓ e) where open Category C -- open Equiv open import Level open import Categories.Support.Equivalence using (Setoid; module Setoid) import Categories.Object.Indexed as IObj import Categories.Object.IndexedProduct as IProduct import Categories.Morphism.Indexed as IArrow import Categories.Morphisms as Morphisms record IndexedProducts {c q} {Shape : Setoid c q} : Set (o ⊔ ℓ ⊔ e ⊔ c ⊔ q) where open IObj C Shape open IArrow C Shape open IProduct C module Fan-Setoid {V} (xs : Dust) = Setoid (fan-setoid V xs) open Fan-Setoid using () renaming (_≈_ to _[_≜_]) field product : ∀ {As} → IndexedProduct Shape As ∏ : ∀ As → Obj ∏ As = IndexedProduct.∏ (product {As}) -- ×-comm : ∀ {A B} → _≅_ C (A × B) (B × A) -- ×-comm = Commutative product product -- ×-assoc : ∀ {X Y Z} → _≅_ C (X × (Y × Z)) ((X × Y) × Z) -- ×-assoc = Associative product product product product -- Convenience! well, sort of. module Product {As} = IndexedProduct {As = As} (product {As = As}) open Product using (π; π[_]; π-cong; π▹_; uncurry; commute; commute∗; universal; universal∗; g-η; η; uncurry-cong; uncurry-cong∗; uncurry∘) -- assocˡ : ∀ {A B C} → (((A × B) × C) ⇒ (A × (B × C))) -- assocˡ = _≅_.g C ×-assoc -- assocʳ : ∀ {A B C} → ((A × (B × C)) ⇒ ((A × B) × C)) -- assocʳ = _≅_.f C ×-assoc _⋉π : ∀ {As Bs} → (As ∗⇒∗ Bs) → (∏ As ⇒∗ Bs) _⋉π {As} {Bs} fs = _⋉_ {Ys = As} {Bs} fs (π {As}) bundle : ∀ {As Bs} → (As ∗⇒∗ Bs) → (∏ As ⇒ ∏ Bs) bundle {As} {Bs} fs = uncurry {Bs} (_⋉π {As} {Bs} fs) -- TODO: this is probably harder to use than necessary because of this definition. Maybe make a version -- that doesn't have an explicit id in it, too? -- first : ∀ {A B C} → (A ⇒ B) → ((A × C) ⇒ (B × C)) -- first f = f ⁂ id -- second : ∀ {A C D} → (C ⇒ D) → ((A × C) ⇒ (A × D)) -- second g = id ⁂ g -- Just to make this more obvious .π▹bundle : ∀ {As Bs} {fs : As ∗⇒∗ Bs} → Bs [ π▹ bundle {As} {Bs} fs ≜ _⋉π {As} {Bs} fs ] π▹bundle {As} {Bs} {fs = fs} = commute∗ {Bs} (_⋉π {As} {Bs} fs) .π∘bundle : ∀ {As Bs} {fs : As ∗⇒∗ Bs} {x} → π[_] {Bs} x ∘ bundle {As} {Bs} fs ≡ (fs ‼ x) ∘ π[_] {As} x π∘bundle {As} {Bs} {fs = fs} = commute {Bs} (_⋉π {As} {Bs} fs) .bundle∘uncurry : ∀ {A Bs Cs} {fs : Bs ∗⇒∗ Cs} {gs : A ⇒∗ Bs} → bundle {Bs} {Cs} fs ∘ uncurry {Bs} gs ≡ uncurry {Cs} (_⋉_ {Ys = Bs} {Cs} fs gs) bundle∘uncurry {Bs = Bs} {Cs} {fs = fs} {gs} = Equiv.sym (universal {Cs} (_⋉_ {Ys = Bs} {Cs} fs gs) helper) where helper : ∀ {x} → π[_] {Cs} x ∘ (bundle {Bs} {Cs} fs ∘ uncurry {Bs} gs) ≡ (fs ‼ x) ∘ (gs ‼ x) helper {x} = begin π[_] {Cs} x ∘ (bundle {Bs} {Cs} fs ∘ uncurry {Bs} gs) ↑⟨ assoc ⟩ (π[_] {Cs} x ∘ bundle {Bs} {Cs} fs) ∘ uncurry {Bs} gs ↓⟨ ∘-resp-≡ˡ (π∘bundle {Bs} {Cs} {fs = fs}) ⟩ ((fs ‼ x) ∘ π[_] {Bs} x) ∘ uncurry {Bs} gs ↓⟨ assoc ⟩ (fs ‼ x) ∘ (π[_] {Bs} x ∘ uncurry {Bs} gs) ↓⟨ ∘-resp-≡ʳ (commute {Bs} gs) ⟩ (fs ‼ x) ∘ (gs ‼ x) ∎ where open HomReasoning {- .first∘⟨⟩ : ∀ {A B C D} → {f : B ⇒ C} {f′ : A ⇒ B} {g′ : A ⇒ D} → first f ∘ ⟨ f′ , g′ ⟩ ≡ ⟨ f ∘ f′ , g′ ⟩ first∘⟨⟩ {f = f} {f′} {g′} = begin first f ∘ ⟨ f′ , g′ ⟩ ↓⟨ ⁂∘⟨⟩ ⟩ ⟨ f ∘ f′ , id ∘ g′ ⟩ ↓⟨ ⟨⟩-cong₂ refl identityˡ ⟩ ⟨ f ∘ f′ , g′ ⟩ ∎ where open HomReasoning .second∘⟨⟩ : ∀ {A B D E} → {f′ : A ⇒ B} {g : D ⇒ E} {g′ : A ⇒ D} → second g ∘ ⟨ f′ , g′ ⟩ ≡ ⟨ f′ , g ∘ g′ ⟩ second∘⟨⟩ {f′ = f′} {g} {g′} = begin second g ∘ ⟨ f′ , g′ ⟩ ↓⟨ ⁂∘⟨⟩ ⟩ ⟨ id ∘ f′ , g ∘ g′ ⟩ ↓⟨ ⟨⟩-cong₂ identityˡ refl ⟩ ⟨ f′ , g ∘ g′ ⟩ ∎ where open HomReasoning -} .bundle∘bundle : ∀ {As Bs Cs} → {fs : Bs ∗⇒∗ Cs} {gs : As ∗⇒∗ Bs} → (bundle {Bs} {Cs} fs) ∘ (bundle {As} {Bs} gs) ≡ bundle {As} {Cs} (_◽_ {As} {Bs} {Cs} fs gs) bundle∘bundle {As} {Bs} {Cs} {fs = fs} {gs} = begin (bundle {Bs} {Cs} fs) ∘ (bundle {As} {Bs} gs) ↓⟨ bundle∘uncurry {Bs = Bs} {Cs} {fs = fs} ⟩ uncurry {Cs} (_⋉_ {Ys = Bs} {Cs} fs (_⋉_ {Ys = As} {Bs} gs (π {As}))) ↑⟨ uncurry-cong∗ {Cs} {_} {_⋉_ {Ys = As} {Cs} (_◽_ {As} {Bs} {Cs} fs gs) (π {As})} {_⋉_ {Ys = Bs} {Cs} fs (_⋉_ {Ys = As} {Bs} gs (π {As}))} (assoc-◽⋉ {Ys = As} {Bs} {Cs} {fs} {gs} {π {As}}) ⟩ (bundle {As} {Cs} (_◽_ {As} {Bs} {Cs} fs gs)) ∎ where open HomReasoning
{ "alphanum_fraction": 0.4936123348, "avg_line_length": 36.0317460317, "ext": "agda", "hexsha": "94e61428be602f00faabf45bf47897ac18adec43", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/IndexedProducts.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/IndexedProducts.agda", "max_line_length": 195, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/IndexedProducts.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2094, "size": 4540 }
module Issue807b where open import Common.Coinduction data Unit : Set where unit : Unit From-unit : Unit → Set From-unit unit = Unit from-unit : (x : Unit) → From-unit x from-unit unit = unit data D : Set where d₁ : D d₂ : ∞ D → D foo : D → Unit foo d₁ = unit foo (d₂ x) with ♭ x foo (d₂ x) | d₁ = unit foo (d₂ x) | d₂ _ = unit -- x : ∞ D x = ♯ d₁ -- There was an internal error if type-signature was not supplied.
{ "alphanum_fraction": 0.6206896552, "avg_line_length": 15.5357142857, "ext": "agda", "hexsha": "2792a83c83d18dc6ccddc14b0c0acdd436c0c0cf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue807b.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue807b.agda", "max_line_length": 66, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue807b.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 156, "size": 435 }
{-# OPTIONS --cubical --safe --postfix-projections #-} open import Prelude open import Relation.Binary module Relation.Binary.Construct.UpperBound {e} {E : Type e} {r₁ r₂} (totalOrder : TotalOrder E r₁ r₂) where open TotalOrder totalOrder renaming (refl to <-refl) import Data.Unit.UniversePolymorphic as Poly import Data.Empty.UniversePolymorphic as Poly open import Data.Maybe.Base using () renaming (nothing to ⌈⊤⌉; just to ⌈_⌉) public ⌈∙⌉ : Type e ⌈∙⌉ = Maybe E _≤⌈_⌉ : ⌈∙⌉ → E → Type _ ⌈⊤⌉ ≤⌈ y ⌉ = Poly.⊥ ⌈ x ⌉ ≤⌈ y ⌉ = x ≤ y _⌈≤⌉_ : ⌈∙⌉ → ⌈∙⌉ → Type _ x ⌈≤⌉ ⌈⊤⌉ = Poly.⊤ x ⌈≤⌉ ⌈ y ⌉ = x ≤⌈ y ⌉ ⌈_⌉<_ : E → ⌈∙⌉ → Type _ ⌈ x ⌉< ⌈⊤⌉ = Poly.⊤ ⌈ x ⌉< ⌈ y ⌉ = x < y _⌈<⌉_ : ⌈∙⌉ → ⌈∙⌉ → Type _ ⌈⊤⌉ ⌈<⌉ _ = Poly.⊥ ⌈ x ⌉ ⌈<⌉ y = ⌈ x ⌉< y ub-pord : PartialOrder ⌈∙⌉ _ ub-pord .PartialOrder.preorder .Preorder._≤_ = _⌈≤⌉_ ub-pord .PartialOrder.preorder .Preorder.refl {⌈⊤⌉} = Poly.tt ub-pord .PartialOrder.preorder .Preorder.refl {⌈ x ⌉} = <-refl ub-pord .PartialOrder.preorder .Preorder.trans {x} {y} {⌈⊤⌉} x≤y y≤z = Poly.tt ub-pord .PartialOrder.preorder .Preorder.trans {⌈ x ⌉} {⌈ y ⌉} {⌈ z ⌉} x≤y y≤z = ≤-trans x≤y y≤z ub-pord .PartialOrder.antisym {⌈⊤⌉} {⌈⊤⌉} p q = refl ub-pord .PartialOrder.antisym {⌈ x ⌉} {⌈ y ⌉} p q = cong ⌈_⌉ (antisym p q) ub-sord : StrictPartialOrder ⌈∙⌉ _ StrictPreorder._<_ (StrictPartialOrder.strictPreorder ub-sord) = _⌈<⌉_ StrictPreorder.trans (StrictPartialOrder.strictPreorder ub-sord) {⌈ x ⌉} {⌈ y ⌉} {⌈⊤⌉} p q = Poly.tt StrictPreorder.trans (StrictPartialOrder.strictPreorder ub-sord) {⌈ x ⌉} {⌈ y ⌉} {⌈ z ⌉} p q = <-trans p q StrictPreorder.irrefl (StrictPartialOrder.strictPreorder ub-sord) {⌈ x ⌉} = irrefl {x = x} StrictPartialOrder.conn ub-sord {⌈⊤⌉} {⌈⊤⌉} p q = refl StrictPartialOrder.conn ub-sord {⌈⊤⌉} {⌈ x ⌉} p q = ⊥-elim (q Poly.tt) StrictPartialOrder.conn ub-sord {⌈ x ⌉} {⌈⊤⌉} p q = ⊥-elim (p Poly.tt) StrictPartialOrder.conn ub-sord {⌈ x ⌉} {⌈ y ⌉} p q = cong ⌈_⌉ (conn p q) ub-lt : ∀ x y → Dec (x ⌈<⌉ y) ub-lt ⌈⊤⌉ y = no λ () ub-lt ⌈ x ⌉ ⌈⊤⌉ = yes Poly.tt ub-lt ⌈ x ⌉ ⌈ y ⌉ = x <? y ub-ord : TotalOrder ⌈∙⌉ _ _ TotalOrder.strictPartialOrder ub-ord = ub-sord TotalOrder.partialOrder ub-ord = ub-pord TotalOrder._<?_ ub-ord = ub-lt TotalOrder.≰⇒> ub-ord {x} {⌈⊤⌉} p = ⊥-elim (p Poly.tt) TotalOrder.≰⇒> ub-ord {⌈⊤⌉} {⌈ y ⌉} p = Poly.tt TotalOrder.≰⇒> ub-ord {⌈ x ⌉} {⌈ y ⌉} p = ≰⇒> p TotalOrder.≮⇒≥ ub-ord {⌈⊤⌉} {y} p = Poly.tt TotalOrder.≮⇒≥ ub-ord {⌈ x ⌉} {⌈⊤⌉} p = ⊥-elim (p Poly.tt) TotalOrder.≮⇒≥ ub-ord {⌈ x ⌉} {⌈ y ⌉} p = ≮⇒≥ p import Data.Maybe.Sugar module UBSugar = Data.Maybe.Sugar
{ "alphanum_fraction": 0.5928237129, "avg_line_length": 36.6285714286, "ext": "agda", "hexsha": "d04209cc76473c6a9b33ba0cd1d2aebab9e4989f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Relation/Binary/Construct/UpperBound.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Relation/Binary/Construct/UpperBound.agda", "max_line_length": 108, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Relation/Binary/Construct/UpperBound.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1448, "size": 2564 }
variable A : Set f : A f = {!!} -- The goal type should be printed as A, not A₁. -- Introducing the hidden variable with C-c C-c should choose name A.
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 19.125, "ext": "agda", "hexsha": "bac10dabf51cd0dd58b59993c1fe0d236c708c39", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/GeneralizeShadowing.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/GeneralizeShadowing.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/GeneralizeShadowing.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 43, "size": 153 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional equality -- -- This file contains some core definitions which are re-exported by -- Relation.Binary.PropositionalEquality. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.PropositionalEquality.Core where open import Data.Product using (_,_) open import Level open import Relation.Binary.Core open import Relation.Nullary using (¬_) ------------------------------------------------------------------------ -- Propositional equality open import Agda.Builtin.Equality public infix 4 _≢_ _≢_ : ∀ {a} {A : Set a} → Rel A a x ≢ y = ¬ x ≡ y ------------------------------------------------------------------------ -- Some properties module _ {a} {A : Set a} where sym : Symmetric {A = A} _≡_ sym refl = refl trans : Transitive {A = A} _≡_ trans refl eq = eq subst : ∀ {p} → Substitutive {A = A} _≡_ p subst P refl p = p cong : ∀ {b} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl respˡ : ∀ {ℓ} (∼ : Rel A ℓ) → ∼ Respectsˡ _≡_ respˡ _∼_ refl x∼y = x∼y respʳ : ∀ {ℓ} (∼ : Rel A ℓ) → ∼ Respectsʳ _≡_ respʳ _∼_ refl x∼y = x∼y resp₂ : ∀ {ℓ} (∼ : Rel A ℓ) → ∼ Respects₂ _≡_ resp₂ _∼_ = respʳ _∼_ , respˡ _∼_ isEquivalence : IsEquivalence {A = A} _≡_ isEquivalence = record { refl = refl ; sym = sym ; trans = trans } ------------------------------------------------------------------------ -- Various equality rearrangement lemmas module _ {a} {A : Set a} {x y : A} where trans-reflʳ : (p : x ≡ y) → trans p refl ≡ p trans-reflʳ refl = refl trans-assoc : ∀ {z u} (p : x ≡ y) {q : y ≡ z} {r : z ≡ u} → trans (trans p q) r ≡ trans p (trans q r) trans-assoc refl = refl trans-symˡ : (p : x ≡ y) → trans (sym p) p ≡ refl trans-symˡ refl = refl trans-symʳ : (p : x ≡ y) → trans p (sym p) ≡ refl trans-symʳ refl = refl ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning -- This is a special instance of `Relation.Binary.Reasoning.Setoid`. -- Rather than instantiating the latter with (setoid A), we reimplement -- equation chains from scratch since then goals are printed much more -- readably. module ≡-Reasoning {a} {A : Set a} where infix 3 _∎ infixr 2 _≡⟨⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ infix 1 begin_ begin_ : ∀{x y : A} → x ≡ y → x ≡ y begin_ x≡y = x≡y _≡⟨⟩_ : ∀ (x {y} : A) → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y _≡⟨_⟩_ : ∀ (x {y z} : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z _≡˘⟨_⟩_ : ∀ (x {y z} : A) → y ≡ x → y ≡ z → x ≡ z _ ≡˘⟨ y≡x ⟩ y≡z = trans (sym y≡x) y≡z _∎ : ∀ (x : A) → x ≡ x _∎ _ = refl
{ "alphanum_fraction": 0.4843304843, "avg_line_length": 26.2429906542, "ext": "agda", "hexsha": "7bfe5c32b033d52d958bc36504c3837a3738d115", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/Core.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1025, "size": 2808 }
module objectOrientedGui where open import Data.Product hiding (map) open import Data.List open import Data.Bool.Base open import SizedIO.Base open import NativeIO open import Relation.Binary.PropositionalEquality hiding ([_]) open import Size open import Function open import StateSizedIO.GUI.BaseStateDependent open import StateSizedIO.GUI.WxBindingsFFI data VarList : Set₁ where []v : VarList addVar : (A : Set) → Var A → VarList → VarList prod : VarList → Set prod []v = Unit prod (addVar A v []v) = A prod (addVar A v l) = A × prod l takeVar : (l : VarList) → NativeIO (prod l) takeVar []v = nativeReturn _ takeVar (addVar A v []v) = nativeTakeVar {A} v takeVar (addVar A v (addVar B v' l)) = nativeTakeVar {A} v native>>= λ a → takeVar (addVar B v' l) native>>= λ rest → nativeReturn ( a , rest ) putVar : (l : VarList) → prod l → NativeIO Unit putVar []v _ = nativeReturn _ putVar (addVar A v []v) a = nativePutVar {A} v a putVar (addVar A v (addVar B v' l)) (a , rest) = nativePutVar {A} v a native>>= λ _ → putVar (addVar B v' l) rest data GuiLev1Command : Set where makeFrame : GuiLev1Command makeButton : Frame → GuiLev1Command addButton : Frame → Button → GuiLev1Command drawBitmap : DC → Bitmap → Point → Bool → GuiLev1Command repaint : Frame → GuiLev1Command GuiLev1Response : GuiLev1Command → Set GuiLev1Response makeFrame = Frame GuiLev1Response (makeButton _) = Button GuiLev1Response _ = Unit GuiLev1Interface : IOInterface Command GuiLev1Interface = GuiLev1Command Response GuiLev1Interface = GuiLev1Response GuiLev2State : Set₁ GuiLev2State = VarList data GuiLev2Command (s : GuiLev2State) : Set₁ where level1C : GuiLev1Command → GuiLev2Command s createVar : {A : Set} → A → GuiLev2Command s setButtonHandler : Button → List (prod s → IO GuiLev1Interface ∞ (prod s)) → GuiLev2Command s setOnPaint : Frame → List (prod s → DC → Rect → IO GuiLev1Interface ∞ (prod s)) → GuiLev2Command s GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s → Set GuiLev2Response _ (level1C c) = GuiLev1Response c GuiLev2Response _ (createVar {A} a) = Var A GuiLev2Response _ _ = Unit GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s) → GuiLev2Response s c → GuiLev2State GuiLev2Next s (createVar {A} a) var = addVar A var s GuiLev2Next s _ _ = s GuiLev2Interface : IOInterfaceˢ Stateˢ GuiLev2Interface = GuiLev2State Commandˢ GuiLev2Interface = GuiLev2Command Responseˢ GuiLev2Interface = GuiLev2Response nextˢ GuiLev2Interface = GuiLev2Next translateLev1Local : (c : GuiLev1Command) → NativeIO (GuiLev1Response c) translateLev1Local makeFrame = nativeMakeFrame translateLev1Local (makeButton fra) = nativeMakeButton fra translateLev1Local (addButton fra bt) = nativeAddButton fra bt translateLev1Local (drawBitmap dc bm p b) = nativeDrawBitmap dc bm p b translateLev1Local (repaint fra) = nativeRepaint fra translateLev1 : {A : Set} → IO GuiLev1Interface ∞ A → NativeIO A translateLev1 = translateIO translateLev1Local translateLev1List : {A : Set} → List (IO GuiLev1Interface ∞ A) → List (NativeIO A) translateLev1List l = map translateLev1 l dispatch : (l : VarList) → (prod l → NativeIO (prod l)) → NativeIO Unit dispatch l f = takeVar l native>>= λ a → f a native>>= λ a₁ → putVar l a₁ dispatchList : (l : VarList) → List (prod l → NativeIO (prod l)) → NativeIO Unit dispatchList l [] = nativeReturn _ dispatchList l (p ∷ rest) = dispatch l p native>>= λ _ → dispatchList l rest translateLev2Local : (s : GuiLev2State) → (c : GuiLev2Command s) → NativeIO (GuiLev2Response s c) translateLev2Local s (level1C c) = translateLev1Local c translateLev2Local s (createVar {A} a) = nativeNewVar {A} a translateLev2Local s (setButtonHandler bt proglist) = nativeSetButtonHandler bt (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglist)) translateLev2Local s (setOnPaint fra proglist) = nativeSetOnPaint fra (λ dc rect → dispatchList s (map (λ prog aa → translateLev1 (prog aa dc rect)) proglist)) translateLev2 : ∀ {A s} → IOˢ GuiLev2Interface ∞ (λ _ → A) s → NativeIO A translateLev2 = translateIOˢ translateLev2Local
{ "alphanum_fraction": 0.6373372533, "avg_line_length": 38.4032258065, "ext": "agda", "hexsha": "14bf2a6d4bc808367dbc00f8a4c12feb06169750", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectOrientedGui.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectOrientedGui.agda", "max_line_length": 83, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectOrientedGui.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 1538, "size": 4762 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Consequences of a monomorphism between magma-like structures ------------------------------------------------------------------------ -- See Data.Nat.Binary.Properties for examples of how this and similar -- modules can be used to easily translate properties between types. {-# OPTIONS --without-K --safe #-} open import Algebra.Core open import Algebra.Bundles open import Algebra.Morphism.Structures open import Relation.Binary.Core module Algebra.Morphism.MagmaMonomorphism {a b ℓ₁ ℓ₂} {M₁ : RawMagma a ℓ₁} {M₂ : RawMagma b ℓ₂} {⟦_⟧} (isMagmaMonomorphism : IsMagmaMonomorphism M₁ M₂ ⟦_⟧) where open IsMagmaMonomorphism isMagmaMonomorphism open RawMagma M₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_) open RawMagma M₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_) open import Algebra.Structures open import Algebra.Definitions open import Data.Product open import Data.Sum.Base using (inj₁; inj₂) import Relation.Binary.Reasoning.Setoid as SetoidReasoning import Relation.Binary.Morphism.RelMonomorphism isRelMonomorphism as RelMorphism ------------------------------------------------------------------------ -- Properties module _ (◦-isMagma : IsMagma _≈₂_ _◦_) where open IsMagma ◦-isMagma renaming (∙-cong to ◦-cong) open SetoidReasoning setoid cong : Congruent₂ _≈₁_ _∙_ cong {x} {y} {u} {v} x≈y u≈v = injective (begin ⟦ x ∙ u ⟧ ≈⟨ homo x u ⟩ ⟦ x ⟧ ◦ ⟦ u ⟧ ≈⟨ ◦-cong (⟦⟧-cong x≈y) (⟦⟧-cong u≈v) ⟩ ⟦ y ⟧ ◦ ⟦ v ⟧ ≈˘⟨ homo y v ⟩ ⟦ y ∙ v ⟧ ∎) assoc : Associative _≈₂_ _◦_ → Associative _≈₁_ _∙_ assoc assoc x y z = injective (begin ⟦ (x ∙ y) ∙ z ⟧ ≈⟨ homo (x ∙ y) z ⟩ ⟦ x ∙ y ⟧ ◦ ⟦ z ⟧ ≈⟨ ◦-cong (homo x y) refl ⟩ (⟦ x ⟧ ◦ ⟦ y ⟧) ◦ ⟦ z ⟧ ≈⟨ assoc ⟦ x ⟧ ⟦ y ⟧ ⟦ z ⟧ ⟩ ⟦ x ⟧ ◦ (⟦ y ⟧ ◦ ⟦ z ⟧) ≈˘⟨ ◦-cong refl (homo y z) ⟩ ⟦ x ⟧ ◦ ⟦ y ∙ z ⟧ ≈˘⟨ homo x (y ∙ z) ⟩ ⟦ x ∙ (y ∙ z) ⟧ ∎) comm : Commutative _≈₂_ _◦_ → Commutative _≈₁_ _∙_ comm comm x y = injective (begin ⟦ x ∙ y ⟧ ≈⟨ homo x y ⟩ ⟦ x ⟧ ◦ ⟦ y ⟧ ≈⟨ comm ⟦ x ⟧ ⟦ y ⟧ ⟩ ⟦ y ⟧ ◦ ⟦ x ⟧ ≈˘⟨ homo y x ⟩ ⟦ y ∙ x ⟧ ∎) idem : Idempotent _≈₂_ _◦_ → Idempotent _≈₁_ _∙_ idem idem x = injective (begin ⟦ x ∙ x ⟧ ≈⟨ homo x x ⟩ ⟦ x ⟧ ◦ ⟦ x ⟧ ≈⟨ idem ⟦ x ⟧ ⟩ ⟦ x ⟧ ∎) sel : Selective _≈₂_ _◦_ → Selective _≈₁_ _∙_ sel sel x y with sel ⟦ x ⟧ ⟦ y ⟧ ... | inj₁ x◦y≈x = inj₁ (injective (begin ⟦ x ∙ y ⟧ ≈⟨ homo x y ⟩ ⟦ x ⟧ ◦ ⟦ y ⟧ ≈⟨ x◦y≈x ⟩ ⟦ x ⟧ ∎)) ... | inj₂ x◦y≈y = inj₂ (injective (begin ⟦ x ∙ y ⟧ ≈⟨ homo x y ⟩ ⟦ x ⟧ ◦ ⟦ y ⟧ ≈⟨ x◦y≈y ⟩ ⟦ y ⟧ ∎)) cancelˡ : LeftCancellative _≈₂_ _◦_ → LeftCancellative _≈₁_ _∙_ cancelˡ cancelˡ x {y} {z} x∙y≈x∙z = injective (cancelˡ ⟦ x ⟧ (begin ⟦ x ⟧ ◦ ⟦ y ⟧ ≈˘⟨ homo x y ⟩ ⟦ x ∙ y ⟧ ≈⟨ ⟦⟧-cong x∙y≈x∙z ⟩ ⟦ x ∙ z ⟧ ≈⟨ homo x z ⟩ ⟦ x ⟧ ◦ ⟦ z ⟧ ∎)) cancelʳ : RightCancellative _≈₂_ _◦_ → RightCancellative _≈₁_ _∙_ cancelʳ cancelʳ {x} y z y∙x≈z∙x = injective (cancelʳ ⟦ y ⟧ ⟦ z ⟧ (begin ⟦ y ⟧ ◦ ⟦ x ⟧ ≈˘⟨ homo y x ⟩ ⟦ y ∙ x ⟧ ≈⟨ ⟦⟧-cong y∙x≈z∙x ⟩ ⟦ z ∙ x ⟧ ≈⟨ homo z x ⟩ ⟦ z ⟧ ◦ ⟦ x ⟧ ∎)) cancel : Cancellative _≈₂_ _◦_ → Cancellative _≈₁_ _∙_ cancel = map cancelˡ cancelʳ ------------------------------------------------------------------------ -- Structures isMagma : IsMagma _≈₂_ _◦_ → IsMagma _≈₁_ _∙_ isMagma isMagma = record { isEquivalence = RelMorphism.isEquivalence M.isEquivalence ; ∙-cong = cong isMagma } where module M = IsMagma isMagma isSemigroup : IsSemigroup _≈₂_ _◦_ → IsSemigroup _≈₁_ _∙_ isSemigroup isSemigroup = record { isMagma = isMagma S.isMagma ; assoc = assoc S.isMagma S.assoc } where module S = IsSemigroup isSemigroup isBand : IsBand _≈₂_ _◦_ → IsBand _≈₁_ _∙_ isBand isBand = record { isSemigroup = isSemigroup B.isSemigroup ; idem = idem B.isMagma B.idem } where module B = IsBand isBand isSemilattice : IsSemilattice _≈₂_ _◦_ → IsSemilattice _≈₁_ _∙_ isSemilattice isSemilattice = record { isBand = isBand S.isBand ; comm = comm S.isMagma S.comm } where module S = IsSemilattice isSemilattice isSelectiveMagma : IsSelectiveMagma _≈₂_ _◦_ → IsSelectiveMagma _≈₁_ _∙_ isSelectiveMagma isSelMagma = record { isMagma = isMagma S.isMagma ; sel = sel S.isMagma S.sel } where module S = IsSelectiveMagma isSelMagma
{ "alphanum_fraction": 0.5435070671, "avg_line_length": 34.8307692308, "ext": "agda", "hexsha": "e085efd6a1ab8c2090a51c900a5f0c44d97f0f59", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Morphism/MagmaMonomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Morphism/MagmaMonomorphism.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Morphism/MagmaMonomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2000, "size": 4528 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Algebra where open import Cubical.Algebra.Algebra.Base public open import Cubical.Algebra.Algebra.Properties public
{ "alphanum_fraction": 0.8036809816, "avg_line_length": 27.1666666667, "ext": "agda", "hexsha": "acdb869da55f7818020d7e5cca4f8dbf0602c0d2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/Algebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/Algebra.agda", "max_line_length": 53, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/Algebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 36, "size": 163 }
{- Type classes and instances for categories. -} module CategoryTheory.Categories where open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; trans ; subst ; cong) public open import Relation.Binary using (IsEquivalence) open import Agda.Primitive using (Level ; _⊔_ ; lzero ; lsuc) public open import Relation.Binary.PropositionalEquality -- Function extensionality postulate ext : ∀{a b} -> Extensionality a b -- Type class for categories. -- Based on https://github.com/UlfNorell/category-theory-experiments record Category (n : Level) : Set (lsuc (lsuc n)) where infixr 10 _~>_ infixl 40 _≈_ infixr 60 _∘_ field -- || Data -- Objects obj : Set (lsuc n) -- Arrows _~>_ : obj -> obj -> Set n -- || Operations -- Identity arrow id : {A : obj} -> A ~> A -- Composition of arrows _∘_ : {A B C : obj} -> (B ~> C) -> (A ~> B) -> (A ~> C) -- Equality of arrows (as we don't have function extensionality) _≈_ : {A B : obj} -> (A ~> B) -> (A ~> B) -> Set n -- || Laws -- Left identity id-left : {A B : obj} {f : A ~> B} -> id ∘ f ≈ f -- Right identity id-right : {A B : obj} {f : A ~> B} -> f ∘ id ≈ f -- Associativity of composition ∘-assoc : {A B C D : obj} {f : C ~> D} {g : B ~> C} {h : A ~> B} -> (f ∘ g) ∘ h ≈ f ∘ (g ∘ h) -- Arrow equality is an equivalence relation ≈-equiv : ∀{A B : obj} -> IsEquivalence (_≈_ {A} {B}) -- Congruence of equality and composition ≈-cong : ∀{A B C : obj} {f f′ : A ~> B} {g g′ : B ~> C} -> f ≈ f′ -> g ≈ g′ -> g ∘ f ≈ g′ ∘ f′ -- Equational reasoning for ≈ (based on the standard library definitions) infix 3 _∎ infixr 2 _≈⟨⟩_ _≈⟨_⟩_ infix 1 begin_ infixl 20 _[sym] infixr 15 _≈>_ begin_ : ∀{A B : obj} {x y : A ~> B} → x ≈ y → x ≈ y begin_ x≈y = x≈y _≈⟨⟩_ : ∀{A B : obj} (x {y} : A ~> B) → x ≈ y → x ≈ y _ ≈⟨⟩ x≈y = x≈y _≈⟨_⟩_ : ∀{A B : obj} (x {y z} : A ~> B) → x ≈ y → y ≈ z → x ≈ z _ ≈⟨ x≈y ⟩ y≈z = IsEquivalence.trans ≈-equiv x≈y y≈z _∎ : ∀{A B : obj} (x : A ~> B) → x ≈ x _∎ _ = IsEquivalence.refl ≈-equiv r≈ : ∀{A B : obj} {x : A ~> B} → x ≈ x r≈ = IsEquivalence.refl ≈-equiv _[sym] : ∀{A B : obj} {x y : A ~> B} → x ≈ y → y ≈ x p [sym] = IsEquivalence.sym ≈-equiv p _≈>_ : ∀{A B : obj} {x y z : A ~> B} → x ≈ y → y ≈ z → x ≈ z p1 ≈> p2 = IsEquivalence.trans ≈-equiv p1 p2 id-comm : {A B : obj} {f : A ~> B} -> f ∘ id ≈ id ∘ f id-comm = id-right ≈> id-left [sym] -- Derived congruence properties ≈-cong-left : ∀{A B C : obj} {f : A ~> B} {g g′ : B ~> C} -> g ≈ g′ -> g ∘ f ≈ g′ ∘ f ≈-cong-left e = ≈-cong r≈ e ≈-cong-right : ∀{A B C : obj} {g : B ~> C} {f f′ : A ~> B} -> f ≈ f′ -> g ∘ f ≈ g ∘ f′ ≈-cong-right e = ≈-cong e r≈ -- Isomorphism of two objects record _<~>_ (A B : obj) : Set (lsuc n) where field -- | Data -- Arrow in one direction iso~> : A ~> B -- Arrow in other direction iso<~ : B ~> A -- | Laws iso-id₁ : iso<~ ∘ iso~> ≈ id {A} iso-id₂ : iso~> ∘ iso<~ ≈ id {B}
{ "alphanum_fraction": 0.4663890541, "avg_line_length": 32.9607843137, "ext": "agda", "hexsha": "efcfea1f50c7a17770f3427054afa1f282193ac6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/CategoryTheory/Categories.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/CategoryTheory/Categories.agda", "max_line_length": 77, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/CategoryTheory/Categories.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 1308, "size": 3362 }
module GGT.Group.Structures {a b ℓ} where open import Relation.Unary using (Pred) open import Relation.Binary open import Algebra.Bundles using (Group) open import Level open import GGT.Group.Definitions record IsSubGroup (G : Group a ℓ) (P : Pred (Group.Carrier G) b) : Set (a ⊔ b ⊔ ℓ) where open Group G field ε∈ : (P ε) ∙-⁻¹-closed : IsOpInvClosed G P r : P Respects _≈_ -- coset relation _∼_ : Rel Carrier b x ∼ y = P (x - y) syntax IsSubGroup G P = P ≤ G
{ "alphanum_fraction": 0.6591836735, "avg_line_length": 21.3043478261, "ext": "agda", "hexsha": "da9dd97a7026e400d19ce1f9f4e7e4064f16a202", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zampino/ggt", "max_forks_repo_path": "src/ggt/group/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zampino/ggt", "max_issues_repo_path": "src/ggt/group/Structures.agda", "max_line_length": 88, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zampino/ggt", "max_stars_repo_path": "src/ggt/group/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z", "num_tokens": 174, "size": 490 }
{-# OPTIONS --type-in-type #-} module Structure where open import Data.Nat open import Prelude record Struct (A : Set) : Set where field ℜ : {n : ℕ} → A ^ n → Set 𝔉 : {n : ℕ} → A ^ n → A
{ "alphanum_fraction": 0.57, "avg_line_length": 16.6666666667, "ext": "agda", "hexsha": "eb3f62b80a468c51e64ac0655062001cb661e09d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6cd093011923758a21663bc32b5a63ce7893e049", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "vikraman/agda-structures", "max_forks_repo_path": "Structure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6cd093011923758a21663bc32b5a63ce7893e049", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "vikraman/agda-structures", "max_issues_repo_path": "Structure.agda", "max_line_length": 35, "max_stars_count": null, "max_stars_repo_head_hexsha": "6cd093011923758a21663bc32b5a63ce7893e049", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "vikraman/agda-structures", "max_stars_repo_path": "Structure.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 68, "size": 200 }
module ctxt-types where open import lib open import cedille-types open import general-util open import syntax-util location : Set location = string × posinfo -- file path and starting position in the file -- file path and starting / ending position in file span-location = string × posinfo × posinfo -- missing locations missing-location : location missing-location = ("missing" , "missing") missing-span-location : span-location missing-span-location = ("missing" , "missing" , "missing") {- we will generally keep classifiers of variables in hnf in the ctxt, although we will not necessarily unfold recursive type definitions. -} defScope : Set defScope = 𝔹 localScope : defScope localScope = tt globalScope : defScope globalScope = ff defParams : Set defParams = maybe params data ctxt-info : Set where -- for defining a datatype datatype-def : params → kind → ctxt-info -- for defining a datatype constructor const-def : type → ctxt-info -- for declaring a variable to have a given type (with no definition) term-decl : type → ctxt-info -- for defining a variable to equal a term with a given type term-def : defParams → opacity → term → type → ctxt-info -- for untyped term definitions term-udef : defParams → opacity → term → ctxt-info -- for declaring a variable to have a given kind (with no definition) type-decl : kind → ctxt-info -- for defining a variable to equal a type with a given kind type-def : defParams → opacity → type → kind → ctxt-info -- for defining a variable to equal a kind kind-def : params → kind → ctxt-info -- to rename a variable at any level to another rename-def : var → ctxt-info -- representing a declaration of a variable with no other information about it var-decl : ctxt-info sym-info : Set sym-info = ctxt-info × location -- module filename, name, parameters, and qualifying substitution mod-info : Set mod-info = string × string × params × qualif -- datatypes info datatype-info : Set datatype-info = defDatatype is-term-level : ctxt-info → 𝔹 is-term-level (term-decl _) = tt is-term-level (term-def _ _ _ _) = tt is-term-level (term-udef _ _ _) = tt is-term-level (const-def _ ) = tt is-term-level _ = ff data ctxt : Set where mk-ctxt : (mod : mod-info) → -- current module (syms : trie (string × 𝕃 string) × trie string × trie params × trie ℕ × Σ ℕ (𝕍 string)) → -- map each filename to its module name and the symbols declared in that file, map each module name to its filename and params, and file ID's for use in to-string.agda (i : trie sym-info) → -- map symbols (from Cedille files) to their ctxt-info and location (sym-occurrences : trie (𝕃 (var × posinfo × string))) → -- map symbols to a list of definitions they occur in (and relevant file info) (datatypes-info : trie datatype-info) → ctxt ctxt-binds-var : ctxt → var → 𝔹 ctxt-binds-var (mk-ctxt (_ , _ , _ , q) _ i _ _) x = trie-contains q x || trie-contains i x ctxt-var-decl : var → ctxt → ctxt ctxt-var-decl v (mk-ctxt (fn , mn , ps , q) syms i symb-occs d) = mk-ctxt (fn , mn , ps , (trie-insert q v (v , ArgsNil))) syms (trie-insert i v (var-decl , "missing" , "missing")) symb-occs d ctxt-var-decl-loc : posinfo → var → ctxt → ctxt ctxt-var-decl-loc pi v (mk-ctxt (fn , mn , ps , q) syms i symb-occs d) = mk-ctxt (fn , mn , ps , (trie-insert q v (v , ArgsNil))) syms (trie-insert i v (var-decl , fn , pi)) symb-occs d qualif-var : ctxt → var → var qualif-var (mk-ctxt (_ , _ , _ , q) _ _ _ _) v with trie-lookup q v ...| just (v' , _) = v' ...| nothing = v start-modname : start → string start-modname (File _ _ _ _ mn _ _ _) = mn ctxt-get-current-filename : ctxt → string ctxt-get-current-filename (mk-ctxt (fn , _) _ _ _ _) = fn ctxt-get-current-mod : ctxt → mod-info ctxt-get-current-mod (mk-ctxt m _ _ _ _) = m ctxt-get-current-modname : ctxt → string ctxt-get-current-modname (mk-ctxt (_ , mn , _ , _) _ _ _ _) = mn ctxt-get-current-params : ctxt → params ctxt-get-current-params (mk-ctxt (_ , _ , ps , _) _ _ _ _) = ps ctxt-get-symbol-occurrences : ctxt → trie (𝕃 (var × posinfo × string)) ctxt-get-symbol-occurrences (mk-ctxt _ _ _ symb-occs _) = symb-occs ctxt-set-symbol-occurrences : ctxt → trie (𝕃 (var × posinfo × string)) → ctxt ctxt-set-symbol-occurrences (mk-ctxt fn syms i symb-occs d) new-symb-occs = mk-ctxt fn syms i new-symb-occs d
{ "alphanum_fraction": 0.6720538721, "avg_line_length": 34.0076335878, "ext": "agda", "hexsha": "0f303e5e3e51ee2dc068d5fefee2331b014f370e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/ctxt-types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/ctxt-types.agda", "max_line_length": 272, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/ctxt-types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1266, "size": 4455 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- This module contains definitions allowing RWS programs to be written using -- Agda's do-notation, as well as convenient short names for operations -- (including lens operations). module Dijkstra.RWS.Syntax where open import Dijkstra.RWS open import Dijkstra.Syntax open import Haskell.Modules.RWS public open import Haskell.Modules.RWS.Lens public open import Haskell.Modules.RWS.RustAnyHow public open import Haskell.Prelude open import Level renaming (suc to ℓ+1; zero to ℓ0; _⊔_ to _ℓ⊔_) public private variable Ev Wr St : Set A B C : Set -- These instance declarations give us variant conditional operations that we -- can define to play nice with `RWS-weakestPre` instance RWS-MonadIfD : MonadIfD{ℓ₃ = ℓ0} (RWS Ev Wr St) MonadIfD.monad RWS-MonadIfD = RWS-Monad MonadIfD.ifD‖ RWS-MonadIfD = RWS-if RWS-MonadMaybeD : MonadMaybeD (RWS Ev Wr St) MonadMaybeD.monad RWS-MonadMaybeD = RWS-Monad MonadMaybeD.maybeD RWS-MonadMaybeD = RWS-maybe RWS-MonadEitherD : MonadEitherD (RWS Ev Wr St) MonadEitherD.monad RWS-MonadEitherD = RWS-Monad MonadEitherD.eitherD RWS-MonadEitherD = RWS-either maybeM : RWS Ev Wr St B → (A → RWS Ev Wr St B) → RWS Ev Wr St (Maybe A) → RWS Ev Wr St B maybeM mb f mma = do x ← mma caseMD x of λ where nothing → mb (just j) → f j maybeMP-RWS : B → (A → RWS Ev Wr St B) → RWS Ev Wr St (Maybe A) → RWS Ev Wr St B maybeMP-RWS b f ma = do x ← ma caseMD x of λ where nothing → pure b (just j) → f j RWS-weakestPre-∙^∙Post : (ev : Ev) (e : C → C) → RWS-Post Wr St (Either C A) → RWS-Post Wr St (Either C A) RWS-weakestPre-∙^∙Post ev e Post = RWS-weakestPre-bindPost ev (either (bail ∘ e) ok) Post
{ "alphanum_fraction": 0.7002544529, "avg_line_length": 30.703125, "ext": "agda", "hexsha": "f97ddee71054662391c418ccf0616e1f8f7db864", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Dijkstra/RWS/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Dijkstra/RWS/Syntax.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Dijkstra/RWS/Syntax.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 670, "size": 1965 }
{-# OPTIONS --rewriting --prop #-} open import common open import common using (_===_) open import syntx open import derivability open import structuralrules open import typingrules {- Type theories -} Σ₀ : Signature Symbols Σ₀ ar = Empty E₀ : DerivabilityStructure Σ₀ E₀ = StructuralRules Σ₀ data TypeTheory : Set TTSig : TypeTheory → Signature TTDer : (t : TypeTheory) → DerivabilityStructure (TTSig t) data TypeTheory where ◇ : TypeTheory _,_ : (t : TypeTheory) {ar : SyntaxArity} (r : TypingRule (TTDer t) (args ar) (sort ar)) → TypeTheory _,=_ : (t : TypeTheory) {ar : SyntaxArityArgs} {k : SyntaxSort} (r : EqualityRule (TTDer t) ar k) → TypeTheory TTSig ◇ = Σ₀ TTSig (_,_ t {ar} r) = ExtSig (TTSig t) ar TTSig (t ,= _) = TTSig t TTDer ◇ = E₀ TTDer (t , r) = extend (TTDer t) (TRules r) TTDer (t ,= r) = extendE (TTDer t) (ERule r) {- Instances to make it possible to use numeric literals to refer to symbols and typing rules -} instance NumΣ₀ : Number Empty Number.Constraint NumΣ₀ n = Empty NumExtSig : {A : SyntaxArity → Set} {ar ar' : SyntaxArity} {{_ : Number (A ar')}} → Number (ExtSigSymbols A ar ar') Number.Constraint (NumExtSig {ar = ar} {ar'}) zero = ar === ar' Number.Constraint (NumExtSig {{r}}) (suc n) = Number.Constraint r n Number.fromNat NumExtSig zero {{refl}} = new Number.fromNat (NumExtSig {{r}}) (suc n) = prev (Number.fromNat r n) instance NumExtT : {A : JudgmentArity → Set} {ar : SyntaxArity} {ar' : JudgmentArity} {{_ : Number (A ar')}} → Number (ExtT A ar ar') Number.Constraint (NumExtT {ar = ar} {ar'}) zero = TArity ar === ar' Number.Constraint (NumExtT {{r}}) (suc n) = Number.Constraint r n Number.fromNat NumExtT zero {{refl}} = typingrule Number.fromNat (NumExtT {{r}}) (suc n) = prev (Number.fromNat r n) NumExtC : {A : JudgmentArity → Set} {ar : SyntaxArity} {ar' : JudgmentArity} {{_ : Number (A ar')}} → Number (ExtC A ar ar') Number.Constraint (NumExtC {ar = ar} {ar'}) zero = CArity ar === ar' Number.Constraint (NumExtC {{r}}) (suc n) = Number.Constraint r n Number.fromNat NumExtC zero {{refl}} = congruencerule Number.fromNat (NumExtC {{r}}) (suc n) = prev (Number.fromNat r n) NumExtE : {A : JudgmentArity → Set} {nar ar' : JudgmentArity} {{_ : Number (A ar')}} → Number (ExtE A nar ar') Number.Constraint (NumExtE {nar = nar} {ar'}) zero = nar === ar' Number.Constraint (NumExtE {{r}}) (suc n) = Number.Constraint r n Number.fromNat NumExtE zero {{refl}} = equalityrule Number.fromNat (NumExtE {{r}}) (suc n) = prev (Number.fromNat r n)
{ "alphanum_fraction": 0.6618395303, "avg_line_length": 38.1343283582, "ext": "agda", "hexsha": "72deec14a20f02f50570ef94787b406b56fe7ac7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/general-type-theories", "max_forks_repo_path": "typetheories.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/general-type-theories", "max_issues_repo_path": "typetheories.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/general-type-theories", "max_stars_repo_path": "typetheories.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 863, "size": 2555 }
open import Agda.Builtin.Nat data Bal : Nat → Nat → Nat → Set where leanR : ∀ {n} → Bal n (suc n) (suc n) leanL : ∀ {n} → Bal (suc n) n (suc n) data Tree : Nat → Set where leaf : Tree 0 node : ∀ {hˡ hʳ h} (t : Tree hʳ) (b : Bal hˡ hʳ h) → Tree (suc h) join : ∀ {hˡ hʳ} h → Bal hˡ hʳ h → Tree (suc hˡ) → Nat join _ leanL (node (node t b) leanR) = 0 join (suc _) leanL (node t leanL) = 1 join _ leanR t₁ = 2
{ "alphanum_fraction": 0.5152173913, "avg_line_length": 28.75, "ext": "agda", "hexsha": "0ad9adbbce306f2919b53003eac33bcb3e47e5a8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4179.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4179.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4179.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 201, "size": 460 }
------------------------------------------------------------------------ -- Lemmas related to weak bisimilarity and CCS ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude hiding (step-→) module Bisimilarity.Weak.CCS {ℓ} {Name : Type ℓ} where open import Equality.Propositional open import Prelude.Size open import Function-universe equality-with-J hiding (id; _∘_) import Bisimilarity.CCS as SE import Bisimilarity.Equational-reasoning-instances import Bisimilarity.Weak.Equational-reasoning-instances open import Equational-reasoning import Expansion.CCS as E import Expansion.Equational-reasoning-instances open import Labelled-transition-system.CCS Name import Bisimilarity CCS as S open import Bisimilarity.Weak CCS open import Expansion CCS using (_≳_; ≳:_) import Labelled-transition-system.Equational-reasoning-instances CCS as Dummy -- An instantiation of a module with helper lemmas. private module CL {i} = E.Cong-lemmas [ i ]_≈′_ right-to-left (⇒̂→[]⇒ (λ ())) ⇒→⇒̂ map-⇒̂ map-⇒̂′ zip-⇒̂ (λ hyp {P Q} → λ where (silent s done) → _ , (! P →⟨ silent s done ⟩■) , (! P ∼⟨ symmetric SE.6-1-2 ⟩ ! P ∣ P ∼≡⟨ refl ⟩■ ! P ∣ Q) (silent s (step {q = R} s′ P⟶R R⇒Q)) → _ , (! P →⟨ ⟶→⇒ s′ (replication (par-right P⟶R)) ⟩ ! P ∣ R →⟨ silent s (map-⇒ par-right R⇒Q) ⟩■) , (! P ∣ Q ■) (non-silent ¬s P⇒Q) → _ , (! P →⟨ non-silent ¬s (hyp P⇒Q) ⟩■) , (! P ∣ Q ■)) mutual -- _∣_ preserves weak bisimilarity. infix 6 _∣-cong_ _∣-cong′_ _∣-cong_ : ∀ {i P P′ Q Q′} → [ i ] P ≈ P′ → [ i ] Q ≈ Q′ → [ i ] P ∣ Q ≈ P′ ∣ Q′ P≈P′ ∣-cong Q≈Q′ = ⟨ Σ-map id (Σ-map id symmetric) ∘ rl (symmetric P≈P′) (symmetric Q≈Q′) , rl P≈P′ Q≈Q′ ⟩ where rl = CL.∣-cong _∣-cong′_ _∣-cong′_ : ∀ {i P P′ Q Q′} → [ i ] P ≈′ P′ → [ i ] Q ≈′ Q′ → [ i ] P ∣ Q ≈′ P′ ∣ Q′ force (P≈P′ ∣-cong′ Q≈Q′) = force P≈P′ ∣-cong force Q≈Q′ -- _·_ preserves weak bisimilarity. infix 12 _·-cong_ _·-cong′_ _·-cong_ : ∀ {i μ μ′ P P′} → μ ≡ μ′ → [ i ] force P ≈′ force P′ → [ i ] μ · P ≈ μ′ · P′ _·-cong_ {i} refl P≈P′ = ⟨ Σ-map id (Σ-map id symmetric) ∘ rl (symmetric P≈P′) , rl P≈P′ ⟩ where rl = CL.·-cong {i = i} _·-cong′_ : ∀ {i μ μ′ P P′} → μ ≡ μ′ → [ i ] force P ≈′ force P′ → [ i ] μ · P ≈′ μ′ · P′ force (μ≡μ′ ·-cong′ P≈P′) = μ≡μ′ ·-cong P≈P′ -- _∙_ preserves weak bisimilarity. infix 12 _∙-cong_ _∙-cong′_ _∙-cong_ : ∀ {i μ μ′ P P′} → μ ≡ μ′ → [ i ] P ≈ P′ → [ i ] μ ∙ P ≈ μ′ ∙ P′ refl ∙-cong P≈P′ = refl ·-cong convert {a = ℓ} P≈P′ _∙-cong′_ : ∀ {i μ μ′ P P′} → μ ≡ μ′ → [ i ] P ≈′ P′ → [ i ] μ ∙ P ≈′ μ′ ∙ P′ force (μ≡μ′ ∙-cong′ P≈P′) = μ≡μ′ ∙-cong force P≈P′ -- _∙ turns equal actions into weakly bisimilar processes. infix 12 _∙-cong _∙-cong′ _∙-cong : ∀ {μ μ′} → μ ≡ μ′ → μ ∙ ≈ μ′ ∙ refl ∙-cong = reflexive _∙-cong′ : ∀ {μ μ′} → μ ≡ μ′ → μ ∙ ≈′ μ′ ∙ refl ∙-cong′ = reflexive mutual -- ⟨ν_⟩ preserves weak bisimilarity. ⟨ν_⟩-cong : ∀ {i a a′ P P′} → a ≡ a′ → [ i ] P ≈ P′ → [ i ] ⟨ν a ⟩ P ≈ ⟨ν a′ ⟩ P′ ⟨ν_⟩-cong {i} {a} {P = P} {P′} refl P≈P′ = ⟨ Σ-map id (Σ-map id symmetric) ∘ CL.⟨ν⟩-cong ⟨ν refl ⟩-cong′ (symmetric P≈P′) , CL.⟨ν⟩-cong ⟨ν refl ⟩-cong′ P≈P′ ⟩ ⟨ν_⟩-cong′ : ∀ {i a a′ P P′} → a ≡ a′ → [ i ] P ≈′ P′ → [ i ] ⟨ν a ⟩ P ≈′ ⟨ν a′ ⟩ P′ force (⟨ν a≡a′ ⟩-cong′ P≈P′) = ⟨ν a≡a′ ⟩-cong (force P≈P′) mutual -- !_ preserves weak bisimilarity. infix 10 !-cong_ !-cong′_ !-cong_ : ∀ {i P P′} → [ i ] P ≈ P′ → [ i ] ! P ≈ ! P′ !-cong_ {i} {P} {P′} P≈P′ = ⟨ Σ-map id (Σ-map id symmetric) ∘ CL.!-cong _∣-cong′_ !-cong′_ (symmetric P≈P′) , CL.!-cong _∣-cong′_ !-cong′_ P≈P′ ⟩ !-cong′_ : ∀ {i P P′} → [ i ] P ≈′ P′ → [ i ] ! P ≈′ ! P′ force (!-cong′ P≈P′) = !-cong (force P≈P′) -- _⊕_ does not, in general, preserve weak bisimilarity in its first -- argument (assuming that Name is inhabited). ¬⊕-congˡ : Name → ¬ (∀ {P P′ Q} → P ≈ P′ → P ⊕ Q ≈ P′ ⊕ Q) ¬⊕-congˡ x = (∀ {P P′ Q} → P ≈ P′ → P ⊕ Q ≈ P′ ⊕ Q) ↝⟨ _∘ ≳⇒≈ ⟩ (∀ {P P′ Q} → P ≳ P′ → P ⊕ Q ≈ P′ ⊕ Q) ↝⟨ E.¬⊕-congˡ-≳≈ x ⟩□ ⊥ □ -- _⊕_ does not, in general, preserve weak bisimilarity in its second -- argument (assuming that Name is inhabited). ¬⊕-congʳ : Name → ¬ (∀ {P Q Q′} → Q ≈ Q′ → P ⊕ Q ≈ P ⊕ Q′) ¬⊕-congʳ x = (∀ {P Q Q′} → Q ≈ Q′ → P ⊕ Q ≈ P ⊕ Q′) ↝⟨ _∘ ≳⇒≈ ⟩ (∀ {P Q Q′} → Q ≳ Q′ → P ⊕ Q ≈ P ⊕ Q′) ↝⟨ E.¬⊕-congʳ-≳≈ x ⟩□ ⊥ □ -- Some congruence lemmas for combinations of _⊕_ and _·_. ⊕·-cong : ∀ {i P μ Q Q′} → [ i ] force Q ≈′ force Q′ → [ i ] P ⊕ μ · Q ≈ P ⊕ μ · Q′ ⊕·-cong {i} Q≈Q′ = ⟨ Σ-map id (Σ-map id symmetric) ∘ CL.⊕·-cong (symmetric Q≈Q′) , CL.⊕·-cong {i = i} Q≈Q′ ⟩ ⊕·-cong′ : ∀ {i P μ Q Q′} → [ i ] force Q ≈′ force Q′ → [ i ] P ⊕ μ · Q ≈′ P ⊕ μ · Q′ force (⊕·-cong′ Q≈Q′) = ⊕·-cong Q≈Q′ ·⊕-cong : ∀ {i P P′ μ Q} → [ i ] force P ≈′ force P′ → [ i ] μ · P ⊕ Q ≈ μ · P′ ⊕ Q ·⊕-cong {P = P} {P′} {μ} {Q} P≈P′ = μ · P ⊕ Q ∼⟨ SE.⊕-comm ⟩ Q ⊕ μ · P ∼′⟨ ⊕·-cong P≈P′ ⟩ S.∼: Q ⊕ μ · P′ ∼⟨ SE.⊕-comm ⟩■ μ · P′ ⊕ Q ·⊕-cong′ : ∀ {i P P′ μ Q} → [ i ] force P ≈′ force P′ → [ i ] μ · P ⊕ Q ≈′ μ · P′ ⊕ Q force (·⊕-cong′ P≈P′) = ·⊕-cong P≈P′ infix 8 _·⊕·-cong_ _·⊕·-cong′_ _·⊕·-cong_ : ∀ {i μ₁ μ₂ P₁ P₁′ P₂ P₂′} → [ i ] force P₁ ≈′ force P₁′ → [ i ] force P₂ ≈′ force P₂′ → [ i ] μ₁ · P₁ ⊕ μ₂ · P₂ ≈ μ₁ · P₁′ ⊕ μ₂ · P₂′ _·⊕·-cong_ {i} P₁≈P₁′ P₂≈P₂′ = ⟨ Σ-map id (Σ-map id symmetric) ∘ CL.·⊕·-cong (symmetric P₁≈P₁′) (symmetric P₂≈P₂′) , CL.·⊕·-cong {i = i} P₁≈P₁′ P₂≈P₂′ ⟩ _·⊕·-cong′_ : ∀ {i μ₁ μ₂ P₁ P₁′ P₂ P₂′} → [ i ] force P₁ ≈′ force P₁′ → [ i ] force P₂ ≈′ force P₂′ → [ i ] μ₁ · P₁ ⊕ μ₂ · P₂ ≈′ μ₁ · P₁′ ⊕ μ₂ · P₂′ force (P₁≈′P₁′ ·⊕·-cong′ P₂≈′P₂′) = P₁≈′P₁′ ·⊕·-cong P₂≈′P₂′ -- _[_] preserves weak bisimilarity for non-degenerate contexts. (This -- result is similar to Theorem 6.5.25 in "Enhancements of the -- bisimulation proof method" by Pous and Sangiorgi.) -- -- TODO: This definition is very similar to E._[_]-cong. Find some way -- to reduce the code duplication. (There was much less code -- duplication before contexts were made coinductive.) infix 5 _[_]-cong _[_]-cong′ _[_]-cong : ∀ {i n Ps Qs} {C : Context ∞ n} → Non-degenerate ∞ C → (∀ x → [ i ] Ps x ≈ Qs x) → [ i ] C [ Ps ] ≈ C [ Qs ] hole [ Ps≈Qs ]-cong = Ps≈Qs _ ∅ [ Ps≈Qs ]-cong = reflexive D₁ ∣ D₂ [ Ps≈Qs ]-cong = (D₁ [ Ps≈Qs ]-cong) ∣-cong (D₂ [ Ps≈Qs ]-cong) action D [ Ps≈Qs ]-cong = refl ·-cong λ { .force → force D [ Ps≈Qs ]-cong } ⟨ν⟩ D [ Ps≈Qs ]-cong = ⟨ν refl ⟩-cong (D [ Ps≈Qs ]-cong) ! D [ Ps≈Qs ]-cong = !-cong (D [ Ps≈Qs ]-cong) D₁ ⊕ D₂ [ Ps≈Qs ]-cong = ⊕-cong Ps≈Qs D₁ D₂ where _[_]-cong′ : ∀ {i n Ps Qs} {C : Context ∞ n} → Non-degenerate′ ∞ C → (∀ x → [ i ] Ps x ≈ Qs x) → [ i ] C [ Ps ] ≈′ C [ Qs ] force (D [ Ps≈Qs ]-cong′) = force D [ Ps≈Qs ]-cong ⊕-cong : ∀ {i n Ps Qs} {C₁ C₂ : Context ∞ n} → (∀ x → [ i ] Ps x ≈ Qs x) → Non-degenerate-summand ∞ C₁ → Non-degenerate-summand ∞ C₂ → [ i ] (C₁ [ Ps ]) ⊕ (C₂ [ Ps ]) ≈ (C₁ [ Qs ]) ⊕ (C₂ [ Qs ]) ⊕-cong {Ps = Ps} {Qs} Ps≈Qs = λ where (process P₁) (process P₂) → (context P₁ [ Ps ]) ⊕ (context P₂ [ Ps ]) ∼⟨ symmetric (SE.≡→∼ (context-[] P₁) SE.⊕-cong SE.≡→∼ (context-[] P₂)) ⟩ P₁ ⊕ P₂ ∼⟨ SE.≡→∼ (context-[] P₁) SE.⊕-cong SE.≡→∼ (context-[] P₂) ⟩■ (context P₁ [ Qs ]) ⊕ (context P₂ [ Qs ]) (process P₁) (action {μ = μ₂} {C = C₂} D₂) → (context P₁ [ Ps ]) ⊕ μ₂ · (C₂ [ Ps ]′) ∼⟨ symmetric (SE.≡→∼ (context-[] P₁)) SE.⊕-cong (_ ■) ⟩ P₁ ⊕ μ₂ · (C₂ [ Ps ]′) ∼′⟨ ⊕·-cong (D₂ [ Ps≈Qs ]-cong′) ⟩ S.∼: P₁ ⊕ μ₂ · (C₂ [ Qs ]′) ∼⟨ SE.≡→∼ (context-[] P₁) SE.⊕-cong (_ ■) ⟩■ (context P₁ [ Qs ]) ⊕ μ₂ · (C₂ [ Qs ]′) (action {μ = μ₁} {C = C₁} D₁) (process P₂) → μ₁ · (C₁ [ Ps ]′) ⊕ (context P₂ [ Ps ]) ∼⟨ (_ ■) SE.⊕-cong symmetric (SE.≡→∼ (context-[] P₂)) ⟩ μ₁ · (C₁ [ Ps ]′) ⊕ P₂ ∼′⟨ ·⊕-cong (D₁ [ Ps≈Qs ]-cong′) ⟩ S.∼: μ₁ · (C₁ [ Qs ]′) ⊕ P₂ ∼⟨ (_ ■) SE.⊕-cong SE.≡→∼ (context-[] P₂) ⟩■ μ₁ · (C₁ [ Qs ]′) ⊕ (context P₂ [ Qs ]) (action {μ = μ₁} {C = C₁} D₁) (action {μ = μ₂} {C = C₂} D₂) → μ₁ · (C₁ [ Ps ]′) ⊕ μ₂ · (C₂ [ Ps ]′) ∼⟨ (D₁ [ Ps≈Qs ]-cong′) ·⊕·-cong (D₂ [ Ps≈Qs ]-cong′) ⟩■ μ₁ · (C₁ [ Qs ]′) ⊕ μ₂ · (C₂ [ Qs ]′) _[_]-cong′ : ∀ {i n Ps Qs} {C : Context ∞ n} → Non-degenerate ∞ C → (∀ x → [ i ] Ps x ≈′ Qs x) → [ i ] C [ Ps ] ≈′ C [ Qs ] force (C [ Ps≈Qs ]-cong′) = C [ (λ x → force (Ps≈Qs x)) ]-cong -- A variant of _[_]-cong for weakly guarded contexts. -- -- Note that the input uses the primed variant of weak bisimilarity. -- -- I got the idea for this lemma from Lemma 23 in Schäfer and Smolka's -- "Tower Induction and Up-to Techniques for CCS with Fixed Points". []-cong-w : ∀ {i n Ps Qs} {C : Context ∞ n} → Weakly-guarded C → Non-degenerate ∞ C → (∀ x → [ i ] Ps x ≈′ Qs x) → [ i ] C [ Ps ] ≈ C [ Qs ] []-cong-w () hole []-cong-w _ ∅ Ps≈Qs = reflexive []-cong-w (W₁ ∣ W₂) (D₁ ∣ D₂) Ps≈Qs = []-cong-w W₁ D₁ Ps≈Qs ∣-cong []-cong-w W₂ D₂ Ps≈Qs []-cong-w action (action D) Ps≈Qs = refl ·-cong (force D [ Ps≈Qs ]-cong′) []-cong-w (⟨ν⟩ W) (⟨ν⟩ D) Ps≈Qs = ⟨ν refl ⟩-cong ([]-cong-w W D Ps≈Qs) []-cong-w (! W) (! D) Ps≈Qs = !-cong []-cong-w W D Ps≈Qs []-cong-w {Ps = Ps} {Qs} (W₁ ⊕ W₂) (D₁ ⊕ D₂) Ps≈Qs = case D₁ ,′ D₂ of λ where (process P₁ , process P₂) → (context P₁ [ Ps ]) ⊕ (context P₂ [ Ps ]) ∼⟨ symmetric (SE.≡→∼ (context-[] P₁) SE.⊕-cong SE.≡→∼ (context-[] P₂)) ⟩ P₁ ⊕ P₂ ∼⟨ SE.≡→∼ (context-[] P₁) SE.⊕-cong SE.≡→∼ (context-[] P₂) ⟩■ (context P₁ [ Qs ]) ⊕ (context P₂ [ Qs ]) (process P₁ , action {μ = μ₂} {C = C₂} D₂) → (context P₁ [ Ps ]) ⊕ μ₂ · (C₂ [ Ps ]′) ∼⟨ symmetric (SE.≡→∼ (context-[] P₁)) SE.⊕-cong (_ ■) ⟩ P₁ ⊕ μ₂ · (C₂ [ Ps ]′) ∼′⟨ ⊕·-cong (force D₂ [ Ps≈Qs ]-cong′) ⟩ S.∼: P₁ ⊕ μ₂ · (C₂ [ Qs ]′) ∼⟨ SE.≡→∼ (context-[] P₁) SE.⊕-cong (_ ■) ⟩■ (context P₁ [ Qs ]) ⊕ μ₂ · (C₂ [ Qs ]′) (action {μ = μ₁} {C = C₁} D₁ , process P₂) → μ₁ · (C₁ [ Ps ]′) ⊕ (context P₂ [ Ps ]) ∼⟨ (_ ■) SE.⊕-cong symmetric (SE.≡→∼ (context-[] P₂)) ⟩ μ₁ · (C₁ [ Ps ]′) ⊕ P₂ ∼′⟨ ·⊕-cong (force D₁ [ Ps≈Qs ]-cong′) ⟩ S.∼: μ₁ · (C₁ [ Qs ]′) ⊕ P₂ ∼⟨ (_ ■) SE.⊕-cong SE.≡→∼ (context-[] P₂) ⟩■ μ₁ · (C₁ [ Qs ]′) ⊕ (context P₂ [ Qs ]) (action {μ = μ₁} {C = C₁} D₁ , action {μ = μ₂} {C = C₂} D₂) → μ₁ · (C₁ [ Ps ]′) ⊕ μ₂ · (C₂ [ Ps ]′) ∼⟨ (force D₁ [ Ps≈Qs ]-cong′) ·⊕·-cong (force D₂ [ Ps≈Qs ]-cong′) ⟩■ μ₁ · (C₁ [ Qs ]′) ⊕ μ₂ · (C₂ [ Qs ]′) -- A generalisation to systems of inequations of the following -- property: If two processes satisfy the same equation X ≳ C [ X ], -- for a weakly guarded, non-degenerate context C, then the two -- processes are weakly bisimilar (assuming extensionality). -- -- This result is a variant of Bisimilarity.CCS.unique-solutions. -- Proposition 4.4.4 in Milner's "Operational and Algebraic Semantics -- of Concurrent Processes" is perhaps more useful in practice, as -- well as some of the results in Sangiorgi's "Equations, -- Contractions, and Unique Solutions". module _ (ext : Proc-extensionality) where mutual unique-solutions : ∀ {i n} {Ps Qs : Fin n → Proc ∞} {C : Fin n → Context ∞ n} → (∀ x → Weakly-guarded (C x)) → (∀ x → Non-degenerate ∞ (C x)) → (∀ x → Ps x ≳ C x [ Ps ]) → (∀ x → Qs x ≳ C x [ Qs ]) → ∀ x → [ i ] Ps x ≈ Qs x unique-solutions {i} {Ps = Ps} {Qs} {C} w nd ≳C[Ps] ≳C[Qs] x = Ps x ∼⟨ ≳C[Ps] x ⟩ C x [ Ps ] ∼′⟨ ≈: ⟨ lr ≳C[Ps] ≳C[Qs] , Σ-map id (Σ-map id symmetric) ∘ lr ≳C[Qs] ≳C[Ps] ⟩ ⟩ ≳: C x [ Qs ] ∽⟨ ≳C[Qs] x ⟩■ Qs x where lr : ∀ {Ps Qs μ P} → (∀ x → Ps x ≳ C x [ Ps ]) → (∀ x → Qs x ≳ C x [ Qs ]) → C x [ Ps ] [ μ ]⟶ P → ∃ λ Q → C x [ Qs ] [ μ ]⇒̂ Q × [ i ] P ≈′ Q lr {Ps} {Qs} {μ} ≳C[Ps] ≳C[Qs] ⟶P = case 6-2-15-nd ext (C x) (w x) (nd x) ⟶P of λ where (C′ , nd′ , refl , trs) → _ , (C x [ Qs ] →⟨ trs Qs ⟩■ C′ [ Qs ]) , (C′ [ Ps ] ∼⟨ nd′ [ unique-solutions′ w nd ≳C[Ps] ≳C[Qs] ]-cong′ ⟩■ C′ [ Qs ]) unique-solutions′ : ∀ {i n} {Ps Qs : Fin n → Proc ∞} {C : Fin n → Context ∞ n} → (∀ x → Weakly-guarded (C x)) → (∀ x → Non-degenerate ∞ (C x)) → (∀ x → Ps x ≳ C x [ Ps ]) → (∀ x → Qs x ≳ C x [ Qs ]) → ∀ x → [ i ] Ps x ≈′ Qs x force (unique-solutions′ w nd ≳C[Ps] ≳C[Qs] x) = unique-solutions w nd ≳C[Ps] ≳C[Qs] x
{ "alphanum_fraction": 0.4494823547, "avg_line_length": 35.5725806452, "ext": "agda", "hexsha": "885572bf0680841ca2ab353f95785e670b48f563", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/Weak/CCS.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/Weak/CCS.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/Weak/CCS.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6484, "size": 13233 }
{-# OPTIONS --without-K #-} module sets.empty where open import level data ⊥ {i} : Set i where ⊥-elim : ∀ {i j}{A : Set j} → ⊥ {i} → A ⊥-elim () ¬_ : ∀ {i} → Set i → Set i ¬ X = X → ⊥ {lzero} infix 3 ¬_
{ "alphanum_fraction": 0.5023923445, "avg_line_length": 13.9333333333, "ext": "agda", "hexsha": "97e6985cf2fe56d1dec2d6641c05993119414a9b", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/empty.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/empty.agda", "max_line_length": 39, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/empty.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 89, "size": 209 }
{-# OPTIONS --type-in-type #-} module chu.lens where open import prelude open import functors open import chu open import poly.core →∫ : Chu → ∫ →∫ (A⁺ , A⁻ ! Ω) = A⁺ , λ a⁺ → ∃ (Ω a⁺) →Lens : {A B : Chu} → Chu[ A , B ] → ∫[ →∫ A , →∫ B ] →Lens (f ↔ fᵗ ! †) a⁺ = f a⁺ , λ (b⁻ , fa⁺Ωb⁻) → fᵗ b⁻ , subst id († a⁺ b⁻) fa⁺Ωb⁻ module _ {A B C : Chu} (F@(f ↔ fᵗ ! _†₁_) : Chu[ A , B ]) (G@(g ↔ gᵗ ! _†₂_) : Chu[ B , C ]) where comp₂ : ∀ a⁺ → π₂ (→Lens (F ▸ G) a⁺) ≡ π₂ ((→Lens F ▸ →Lens G) a⁺) comp₂ a⁺ = extensionality λ ( c⁻ , gfaΩc ) → (λ x → (fᵗ ∘ gᵗ) c⁻ , x) ⟨$⟩ subst⋯ id (f a⁺ †₂ c⁻) (a⁺ †₁ gᵗ c⁻) gfaΩc comp∀ : ∀ a⁺ → →Lens (F ▸ G) a⁺ ≡ (→Lens F ▸ →Lens G) a⁺ comp∀ a⁺ rewrite comp₂ a⁺ = refl instance open Chu[_,_] chu-lens-functor : Functor →∫ chu-lens-functor = φ: →Lens 𝒾: refl ▸: λ F G → extensionality (comp∀ F G)
{ "alphanum_fraction": 0.430196484, "avg_line_length": 30.21875, "ext": "agda", "hexsha": "fc92d74ef479febe9a9b7b0c3b5d4a2a435eafe8", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-30T11:45:57.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-10T17:19:37.000Z", "max_forks_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dspivak/poly", "max_forks_repo_path": "code-examples/agda/chu/lens.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_issues_repo_issues_event_max_datetime": "2022-01-12T10:06:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-02T02:29:39.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dspivak/poly", "max_issues_repo_path": "code-examples/agda/chu/lens.agda", "max_line_length": 83, "max_stars_count": 53, "max_stars_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mstone/poly", "max_stars_repo_path": "code-examples/agda/chu/lens.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:08:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-18T16:31:04.000Z", "num_tokens": 473, "size": 967 }
open import Agda.Builtin.Equality open import Agda.Builtin.Nat data AB : Set where A B : AB foo : Nat → AB → AB foo 0 t = A foo (suc n) t = foo n A -- NB tail-recursive test : foo 100000 A ≡ A test = refl -- memory blows up here data N : Set where z : N s : N → N produce : Nat → AB → N produce 0 t = z produce (suc n) t = s (produce n A) consume : N → AB → AB consume z t = t consume (s n) t = consume n A test₁ : consume (produce 100000 B) A ≡ A test₁ = refl
{ "alphanum_fraction": 0.6028513238, "avg_line_length": 16.9310344828, "ext": "agda", "hexsha": "a9a8751bdeb47e36e3f527abe7e26923a79f93ab", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2159.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2159.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2159.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 179, "size": 491 }
open import Type module Structure.Container.IndexedIterable {ℓᵢ} {Index : Type{ℓᵢ}} where import Lvl open import Data open import Data.Boolean open import Data.Boolean.Stmt open import Data.Option import Data.Option.Functions as Option open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Logic.Propositional open import Logic.Predicate open import Numeral.Natural open import Numeral.Natural.Relation.Order open import Relator.Equals private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level private variable T : Type{ℓ} private variable Elem : Type{ℓₑ} private variable i : Index module _ (Iter : Index → Type{ℓ}) where IsEmptyTypeFn = ∀{i} → Iter(i) → Bool IndexStepFn : IsEmptyTypeFn → Type IndexStepFn isEmpty = ∀{i} → (iter : Iter(i)) → (if isEmpty(iter) then Unit else Index) CurrentFn : Type{ℓₑ} → IsEmptyTypeFn → Type CurrentFn Element isEmpty = ∀{i} → (iter : Iter(i)) → (if isEmpty(iter) then Unit else Element) StepFn : Type{ℓₑ} → (isEmpty : IsEmptyTypeFn) → IndexStepFn isEmpty → Type StepFn Element isEmpty indexStep = ∀{i} → (iter : Iter(i)) → Out iter where Out : Iter(i) → Type Out iter with isEmpty iter | indexStep iter ... | 𝑇 | <> = Unit ... | 𝐹 | is = Iter(is) -- An iterator type `Iter` is iterable when there may be elements that the iterator can yield in sequence. -- It should be possible to decide whether the iterator is empty, and when it is not, get the element it points to and advancing to its next state containing the next element in order. record Iterable (Iter : Index → Type{ℓ}) {ℓₑ} : Type{ℓ Lvl.⊔ ℓᵢ Lvl.⊔ Lvl.𝐒(ℓₑ)} where field -- The type of the elements in the iterator. {Element} : Type{ℓₑ} -- Whether there are no elements left in the iterator. isEmpty : IsEmptyTypeFn(Iter) -- The current/frontmost element in the iterator if it is non-empty. current : CurrentFn(Iter) Element isEmpty -- The next iterator index. Advances the index if the iterator is non-empty. {indexStep} : IndexStepFn(Iter) isEmpty -- The next iterator state. Advancing the iterator if it is non-empty. step : StepFn(Iter) Element isEmpty indexStep -- Whether there are at most the given number of elements in the iterator. atMost : ℕ → Iter(i) → Bool atMost(𝟎) iter = isEmpty(iter) atMost(𝐒(n)) iter with isEmpty(iter) | indexStep iter | step iter ... | 𝑇 | <> | <> = 𝑇 ... | 𝐹 | _ | is = atMost(n) is -- Skipping the given number of iterator indices. Advances as many steps as possible. indexWalk : (n : ℕ) → (iter : Iter(i)) → (if(atMost n iter) then Unit else Index) indexWalk {i} 𝟎 iter with isEmpty(iter) ... | 𝑇 = <> ... | 𝐹 = i indexWalk {i} (𝐒(n)) iter with isEmpty(iter) | indexStep iter | step iter ... | 𝑇 | <> | <> = <> ... | 𝐹 | _ | iters = indexWalk n iters WalkFn : Type WalkFn = ∀{i} → (n : ℕ) → (iter : Iter(i)) → Out n iter where Out : ℕ → Iter(i) → Type Out n iter with atMost n iter | indexWalk n iter ... | 𝑇 | <> = Unit ... | 𝐹 | is = Iter(is) {- walk : WalkFn walk(𝟎) iter with isEmpty(iter) ... | 𝑇 = <> ... | 𝐹 = iter walk(𝐒(n)) iter with isEmpty(iter) | indexStep iter | step iter | walk n iter ... | 𝑇 | <> | <> | _ = <> ... | 𝐹 | _ | iters | iters2 = ? -- walk n iters -} Foldᵣ : ∀{ℓ} → Type{ℓ} → Type Foldᵣ(T) = ∀{i} → (Element → T → T) → T → Iter(i) → T FoldᵣCriteria : Foldᵣ(T) → (∀{i} → (Element → T → T) → T → Iter(i) → Type) FoldᵣCriteria foldᵣ(_▫_) id iter with isEmpty iter | indexStep iter | current iter | step iter ... | 𝑇 | <> | <> | <> = (foldᵣ(_▫_) id iter ≡ id) ... | 𝐹 | _ | x | iters = (foldᵣ(_▫_) id iter ≡ x ▫ foldᵣ(_▫_) id iters) -- An iterator is finite when it is possible to fold it (when a fold function exists). -- This works because a fold for an infinite iterator cannot terminate, and only terminating functions exist. -- TODO: But it seems to be impossible to define a "foldUntil" function (though it is up to function extensionality). Finite = ∀{ℓ}{T : Type{ℓ}} → ∃{Obj = Foldᵣ(T)}(foldᵣ ↦ ∀{i}{_▫_}{id : T}{iter : Iter(i)} → FoldᵣCriteria (\{i}(_▫_) id → foldᵣ{i}(_▫_) id) (_▫_) id iter) module _ ⦃ fin : Finite ⦄ where foldᵣ : ∀{i} → (Element → T → T) → T → Iter(i) → T foldᵣ = [∃]-witness fin length : ∀{i} → Iter(i) → ℕ length = foldᵣ(const 𝐒) 𝟎 count : ∀{i} → (Element → Bool) → Iter(i) → ℕ count(P) = foldᵣ(x ↦ if P(x) then 𝐒 else id) 𝟎 foldₗ : (T → Element → T) → T → Iter(i) → T foldₗ(_▫_) = swap(foldᵣ(y ↦ f ↦ x ↦ f(x ▫ y)) id) last : ∀{i} → Iter(i) → Option(Element) last = foldₗ(const Some) None -- Note: Below are possibly inefficient implementations of functions because if they were guaranteed to exit early, the number of computations would be reduced. first : ∀{i} → Iter(i) → Option(Element) first = foldᵣ(const ∘ Some) None -- TODO: Complete = Surjective(step) record Initialed (i : Index) : Type{ℓᵢ Lvl.⊔ ℓ} where constructor initialed eta-equality field iter : Iter(i) left : ℕ Initialed-iterable : Iterable(Initialed) Element Initialed-iterable = Element isEmpty Initialed-iterable (initialed iter 𝟎) = 𝑇 current Initialed-iterable (initialed iter 𝟎) = <> indexStep Initialed-iterable (initialed iter 𝟎) = <> step Initialed-iterable (initialed iter 𝟎) = <> isEmpty Initialed-iterable (initialed iter (𝐒(_))) = isEmpty iter current Initialed-iterable (initialed iter (𝐒(_))) = current iter indexStep Initialed-iterable (initialed iter (𝐒(_))) = indexStep iter step Initialed-iterable (initialed iter (𝐒(n))) with isEmpty iter | indexStep iter | step iter ... | 𝑇 | _ | _ = <> ... | 𝐹 | _ | sIter = initialed sIter n {- record Skipped (i : Index) : Type{ℓᵢ Lvl.⊔ ℓ} where constructor skipped eta-equality field iter : Iter(i) still : ℕ Skipped-iterable : Iterable(Skipped) Element Skipped-iterable = Element isEmpty Skipped-iterable (skipped iter 𝟎) = 𝑇 current Skipped-iterable (skipped iter 𝟎) = <> indexStep Skipped-iterable (skipped iter 𝟎) = <> step Skipped-iterable (skipped iter 𝟎) = <> isEmpty Skipped-iterable (skipped iter (𝐒(_))) = isEmpty (walk (𝐒(n)) iter) current Skipped-iterable (skipped iter (𝐒(_))) = current (walk (𝐒(n)) iter) indexStep Skipped-iterable (skipped iter (𝐒(_))) = indexStep (walk (𝐒(n)) iter) step Skipped-iterable (skipped iter (𝐒(n))) with isEmpty iter | indexStep iter | step iter -} mapped : (Element → Elem) → Iterable(Iter) Element (mapped {Elem = Elem} f) = Elem isEmpty (mapped f) = isEmpty current (mapped f) iter with isEmpty iter | current iter ... | 𝑇 | <> = <> ... | 𝐹 | x = f(x) indexStep (mapped f) iter = indexStep iter step (mapped f) iter = step iter {-record Stored (n : ℕ) {Iter : Index → Type{ℓ₁}} (iterable : Iterable(Iter)) : Type where field Queue(Iterator.Element(iterable)) -} {- TODO: Also needs to store data, so it cannot be the same Iter skipped : ℕ → Iterator{ℓₑ} → Iterator Iterator.Element (skipped _ iterator) = Iterator.Element iterator Iterator.isEmpty (skipped n iterator) = Iterator.atMost n iterator Iterator.current (skipped _ iterator) = Iterator.indexStep (skipped iterator) = Iterator.step (skipped iterator) = -} {- skipped : ℕ → ∀{iter} → Iterable{ℓₑ}(iter) → Iterable(iter) skipped 𝟎 iterable = iterable skipped (𝐒 n) iterable = {!!} -} -- An empty iterator of the iterable. EmptyConstruction : ∀{i} → Iter(i) → Type EmptyConstruction(empty) = IsTrue(isEmpty empty) -- A function prepending an element to an iterator of the iterable. PrependConstruction : ∀{indexPrepend : ∀{i} → Element → Iter(i) → Index} → (∀{i} → (x : Element) → (iter : Iter(i)) → Iter(indexPrepend x iter)) → Type PrependConstruction{indexPrepend} (prepend) = ∀{i}{x}{iter : Iter(i)} → ∃{Obj = IndexStep x iter}(Out x iter) where IndexStep : Element → Iter(i) → Type IndexStep{i} x iter with isEmpty(prepend x iter) | indexStep(prepend x iter) ... | 𝑇 | _ = Empty ... | 𝐹 | p = (p ≡ i) Out : (x : Element) → (iter : Iter(i)) → IndexStep x iter → Type Out x iter stepProof with isEmpty(prepend x iter) | indexStep(prepend x iter) | current(prepend x iter) | step(prepend x iter) ... | 𝐹 | _ | cur | st with [≡]-intro ← stepProof = (x ≡ cur) ∧ (st ≡ iter) module _ {indexEmpty}{empty} ⦃ empty-construciton : EmptyConstruction{indexEmpty}(empty) ⦄ {indexPrepend : ∀{i} → Element → Iter(i) → Index} {prepend : ∀{i} → (x : Element) → (iter : Iter(i)) → Iter(indexPrepend x iter)} ⦃ prepend-construction : PrependConstruction{indexPrepend}(prepend) ⦄ where singleton : (x : Element) → Iter(indexPrepend x empty) singleton x = prepend x empty
{ "alphanum_fraction": 0.6348119034, "avg_line_length": 40.2941176471, "ext": "agda", "hexsha": "2272611732b70098d781dee57ee57c18dacef652", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Container/IndexedIterable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Container/IndexedIterable.agda", "max_line_length": 184, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Container/IndexedIterable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2982, "size": 8905 }
------------------------------------------------------------------------------ -- The division result is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Division.ResultATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.PropertiesATP open import FOTC.Program.Division.Division open import FOTC.Program.Division.Specification ------------------------------------------------------------------------------ -- The division result is correct when the dividend is less than -- the divisor. postulate div-x<y-helper : ∀ {i j} → N i → N j → i < j → i ≡ j * div i j + i {-# ATP prove div-x<y-helper *-rightZero #-} div-x<y-resultCorrect : ∀ {i j} → N i → N j → i < j → ∃[ r ] N r ∧ r < j ∧ i ≡ j * div i j + r div-x<y-resultCorrect Ni Nj i<j = _ , Ni , i<j , div-x<y-helper Ni Nj i<j -- The division result is correct when the dividend is greater or equal -- than the divisor. -- Using the inductive hypothesis ih we know that -- -- i ∸ j = j * (div (i ∸ j) j) + r. -- From that we get -- -- i = j * (succ (div (i ∸ j) j)) + r and we know -- -- div i j = succ (div (i ∸ j) j) therefore we get -- -- i = j * div i j + r. postulate helper : ∀ {i j r} → N i → N j → N r → i ∸ j ≡ j * div (i ∸ j) j + r → i ≡ j * succ₁ (div (i ∸ j) j) + r postulate div-x≮y-helper : ∀ {i j r} → N i → N j → N r → i ≮ j → i ∸ j ≡ j * div (i ∸ j) j + r → i ≡ j * div i j + r {-# ATP prove div-x≮y-helper helper #-} postulate div-x≮y-resultCorrect : ∀ {i j} → N i → N j → (ih : divSpec (i ∸ j) j (div (i ∸ j) j)) → i ≮ j → ∃[ r ] N r ∧ r < j ∧ i ≡ j * div i j + r {-# ATP prove div-x≮y-resultCorrect div-x≮y-helper #-}
{ "alphanum_fraction": 0.4463619403, "avg_line_length": 36.9655172414, "ext": "agda", "hexsha": "b44a80927c9beb99e4c3c082f62921d34f2b3916", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Division/ResultATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Division/ResultATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Division/ResultATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 608, "size": 2144 }
{-# OPTIONS --without-K #-} module Cham.Agent where open import Cham.Context open import Cham.Label open import Cham.Name open import Data.Nat open import Data.Product data Agent : Context → Set where Nil : Agent ∅ _∙_ : ∀ {Γ} → (Valence : Label) → Agent Γ → Agent (Γ ⊢ Valence) _∣_ : ∀ {Γ₁ Γ₂} → Agent Γ₁ → Agent Γ₂ → Agent (Γ₁ , Γ₂) _/_ : ∀ {Γ} → (Ion : Name) → Agent Γ → Agent (Γ ⊢ Ion ⁻) _[]_ : ∀ {Γ₁ Γ₂} → Agent Γ₁ → Agent Γ₂ → Agent (Γ₁ , Γ₂) Reaction : ∀ {Γ₁ Γ₂ Ion} → Agent (Γ₁ ⊢ Ion ⁺) → Agent (Γ₂ ⊢ Ion ⁻) → Agent Γ₁ × Agent Γ₂ Reaction (.(_ ⁺) ∙ a₁) (.(_ ⁻) ∙ a₂) = a₁ , a₂ Reaction (.(Ion ⁺) ∙ a₁) (Ion / a₂) = a₁ , a₂
{ "alphanum_fraction": 0.4798439532, "avg_line_length": 19.225, "ext": "agda", "hexsha": "79bd6d6d06b5177e734ec24cc61c0dc575301a6a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "riz0id/chemical-abstract-machine", "max_forks_repo_path": "agda/Cham/Agent.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "riz0id/chemical-abstract-machine", "max_issues_repo_path": "agda/Cham/Agent.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "riz0id/chemical-abstract-machine", "max_stars_repo_path": "agda/Cham/Agent.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 299, "size": 769 }
module GUIgeneric.GUIExampleBankAccount where open import GUIgeneric.Prelude renaming (inj₁ to firstBtn; inj₂ to secondBtn; WxColor to Color;_∸_ to _-_) hiding (addButton; _>>_ ; show) open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add) open import GUIgeneric.GUI open import GUIgeneric.GUIExampleLib renaming (addButton to addButton') open import GUIgeneric.GUIExample hiding (main; changeGUI) open import Data.Nat.Show open import heap.libraryNat renaming (_≧ℕb_ to _≧_) guifullToReturnType : ∀ {i} {g} → GUI {i} → returnType g guifullToReturnType f = changedGUI (f .defFrame) (f .property) guifullToReturnType' : ∀ {i} {g} → GUI {i} → Σ[ r ∈ returnType g ] (IOObjectˢ GuiLev1Interface handlerInterface i (nextStateFrame g r)) guifullToReturnType' {i} {g} f = guifullToReturnType f , f .obj changeGUI : ∀ {i} {g} → GUI {i} → IO GuiLev1Interface ∞ (Σ[ r ∈ returnType g ] (IOObjectˢ GuiLev1Interface handlerInterface i (nextStateFrame g r))) changeGUI f = return (guifullToReturnType' f) threeBtnFrame : (s s' s'' : String) → Frame threeBtnFrame s s' s'' = addButton s (addButton s' (addButton s'' create-frame)) propThreeBtn : ∀{s s' s''} → properties (threeBtnFrame s s' s'') propThreeBtn = black , black , black , oneColumnLayout mutual atm : ∀{i} → ℕ → GUI {i} atm n .defFrame = addButton "Withdraw 10" (addButton "Withdraw 1" (addTxtBox (show n) create-frame)) atm n .property = black , black , black , oneColumnLayout atm n .obj .method (firstBtn x) = if n ≧ 10 then changeGUI (atm (n - 10)) else changeGUI (invalid n) atm n .obj .method (secondBtn b) = if n ≧ 1 then changeGUI (atm (n - 1)) else changeGUI (invalid n) invalid : ∀{i} → ℕ → GUI {i} invalid n .defFrame = addButton "Not enough money" create-frame invalid n .property = black , oneColumnLayout invalid n .obj .method m = changeGUI (atm n) main : NativeIO Unit main = compileGUI (atm 55)
{ "alphanum_fraction": 0.6217450891, "avg_line_length": 29.9863013699, "ext": "agda", "hexsha": "e4aedd51b6fc6a7630db701c0044ef2683e9b9f0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "examples/GUIgeneric/GUIExampleBankAccount.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "examples/GUIgeneric/GUIExampleBankAccount.agda", "max_line_length": 138, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "examples/GUIgeneric/GUIExampleBankAccount.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 649, "size": 2189 }
-- {-# OPTIONS -v 100 -v tc.meta.name:100 -v interactive.meta:10 #-} module Issue526 where -- Don't just write _49, -- include the corresponding implicit variable name as well (if any) postulate f : {A : Set} → {a : A} → Set1 → {B : Set} → Set test : Set test = f Set test₁ : Set test₁ = f {A = _} Set postulate g : (B : Set) → Set test₂ : Set test₂ = g _ test₃ : _ → Set test₃ ()
{ "alphanum_fraction": 0.6081424936, "avg_line_length": 15.72, "ext": "agda", "hexsha": "df6277ea7e10158eaac8f5682675f007f660f09d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue526.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue526.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue526.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 138, "size": 393 }
module MLib.Prelude.RelProps where open import MLib.Prelude.FromStdlib import Relation.Binary.Indexed as I open FE using (cong) import Data.Product.Relation.SigmaPropositional as OverΣ Σ-bij : ∀ {a b c} {A : Set a} {B : A → Set b} {C : A → Set c} → (∀ x → B x ↔ C x) → Σ A B ↔ Σ A C Σ-bij pw = record { to = ≡.→-to-⟶ (uncurry λ x y → x , Inverse.to (pw x) ⟨$⟩ y) ; from = ≡.→-to-⟶ (uncurry λ x y → x , Inverse.from (pw x) ⟨$⟩ y) ; inverse-of = record { left-inverse-of = uncurry λ x y → OverΣ.to-≡ (≡.refl , Inverse.left-inverse-of (pw x) y) ; right-inverse-of = uncurry λ x y → OverΣ.to-≡ (≡.refl , Inverse.right-inverse-of (pw x) y) } } Σ-↞ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : A → Set c} → (∀ x → B x ↞ C x) → Σ A B ↞ Σ A C Σ-↞ f = record { to = ≡.→-to-⟶ (uncurry λ x y → x , LeftInverse.to (f x) ⟨$⟩ y) ; from = ≡.→-to-⟶ (uncurry λ x y → x , LeftInverse.from (f x) ⟨$⟩ y) ; left-inverse-of = uncurry λ x y → OverΣ.to-≡ (≡.refl , LeftInverse.left-inverse-of (f x) y) } Σ-↞′ : ∀ {a a′ b β} {A : Set a} {A′ : Set a′} {B-setoid : A → Setoid b β} (f : A ↞ A′) → LeftInverse (OverΣ.setoid B-setoid) (OverΣ.setoid (B-setoid ∘ (LeftInverse.from f ⟨$⟩_))) Σ-↞′ {A = A} {A′} {B-setoid} f = record { to = record { _⟨$⟩_ = uncurry λ x y → LeftInverse.to f ⟨$⟩ x , ≡.subst B (≡.sym (LeftInverse.left-inverse-of f _)) y ; cong = uncurry λ {≡.refl y → ≡.refl , subst≈ _ _ (≡.sym (LeftInverse.left-inverse-of f _)) y} } ; from = record { _⟨$⟩_ = uncurry λ x y → LeftInverse.from f ⟨$⟩ x , y ; cong = λ { (≡.refl , q) → ≡.refl , q } } ; left-inverse-of = uncurry λ x y → OverΣ.symmetric sym (OverΣ.subst (≡.sym (LeftInverse.left-inverse-of f _)) refl) } where module B x = Setoid (B-setoid x) module B′ {x} = Setoid (B-setoid x) open B using () renaming (Carrier to B) open B′ subst≈ : ∀ {i j} (x y : B i) (p : i ≡ j) → x ≈ y → ≡.subst B p x ≈ ≡.subst B p y subst≈ x y ≡.refl q = q
{ "alphanum_fraction": 0.5432911392, "avg_line_length": 39.5, "ext": "agda", "hexsha": "6209fecb1c83bcdc3ebcf0eeac237ade0ae7417b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Prelude/RelProps.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Prelude/RelProps.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Prelude/RelProps.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 862, "size": 1975 }
module Imports.A where postulate A : Set
{ "alphanum_fraction": 0.7272727273, "avg_line_length": 7.3333333333, "ext": "agda", "hexsha": "20ac5003c7b2da29153235a8dd73c7d08b6f39ca", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Imports/A.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Imports/A.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Imports/A.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 12, "size": 44 }
module _ where import Issue1168 ; module I = Issue1168 import PrettyInterface ; module P = PrettyInterface id : {A : Set} → A → A id {A = A} a = a
{ "alphanum_fraction": 0.6369426752, "avg_line_length": 19.625, "ext": "agda", "hexsha": "80bc72c10ecf5e8a97ca3735e032bd6101ab21f9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/api/ScopeFromInterface.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/api/ScopeFromInterface.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/api/ScopeFromInterface.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 51, "size": 157 }
module Dot where postulate h : Set f : Set -> Set -> Set f .n n = h
{ "alphanum_fraction": 0.5857142857, "avg_line_length": 10, "ext": "agda", "hexsha": "0b761bec74b265ace8e7d65ea2bb3e5790f9163a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/Dot.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/Dot.agda", "max_line_length": 21, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/Dot.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 25, "size": 70 }
{-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Data.Nat.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Data.Nat.Base open import Cubical.Data.Empty open import Cubical.Data.Prod.Base open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq open import Cubical.Data.Nat.Algebra public +-zero : ∀ m → m + 0 ≡ m +-zero zero = refl +-zero (suc m) = cong suc (+-zero m) +-suc : ∀ m n → m + suc n ≡ suc (m + n) +-suc zero n = refl +-suc (suc m) n = cong suc (+-suc m n) +-comm : ∀ m n → m + n ≡ n + m +-comm m zero = +-zero m +-comm m (suc n) = (+-suc m n) ∙ (cong suc (+-comm m n)) -- Addition is associative +-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o +-assoc zero _ _ = refl +-assoc (suc m) n o = cong suc (+-assoc m n o) private variable l m n : ℕ znots : ¬ (0 ≡ suc n) znots eq = subst (caseNat ℕ ⊥) eq 0 snotz : ¬ (suc n ≡ 0) snotz eq = subst (caseNat ⊥ ℕ) eq 0 injSuc : suc m ≡ suc n → m ≡ n injSuc p = cong predℕ p inj-m+ : m + l ≡ m + n → l ≡ n inj-m+ {zero} p = p inj-m+ {suc m} p = inj-m+ (injSuc p) inj-+m : l + m ≡ n + m → l ≡ n inj-+m {l} {m} {n} p = inj-m+ ((+-comm m l) ∙ (p ∙ (+-comm n m))) m+n≡n→m≡0 : m + n ≡ n → m ≡ 0 m+n≡n→m≡0 {n = zero} = λ p → (sym (+-zero _)) ∙ p m+n≡n→m≡0 {n = suc n} p = m+n≡n→m≡0 (injSuc ((sym (+-suc _ n)) ∙ p)) m+n≡0→m≡0×n≡0 : m + n ≡ 0 → (m ≡ 0) × (n ≡ 0) m+n≡0→m≡0×n≡0 {zero} = refl ,_ m+n≡0→m≡0×n≡0 {suc m} p = ⊥-elim (snotz p) discreteℕ : Discrete ℕ discreteℕ zero zero = yes refl discreteℕ zero (suc n) = no znots discreteℕ (suc m) zero = no snotz discreteℕ (suc m) (suc n) with discreteℕ m n ... | yes p = yes (cong suc p) ... | no p = no (λ x → p (injSuc x)) isSetℕ : isSet ℕ isSetℕ = Discrete→isSet discreteℕ 0≡m*0 : ∀ m → 0 ≡ m * 0 0≡m*0 zero = refl 0≡m*0 (suc m) = 0≡m*0 m *-suc : ∀ m n → m * suc n ≡ m + m * n *-suc zero n = refl *-suc (suc m) n = cong suc ( n + m * suc n ≡⟨ cong (n +_) (*-suc m n) ⟩ n + (m + m * n) ≡⟨ +-assoc n m (m * n) ⟩ (n + m) + m * n ≡⟨ cong (_+ m * n) (+-comm n m) ⟩ (m + n) + m * n ≡⟨ sym (+-assoc m n (m * n)) ⟩ m + (n + m * n) ∎ ) *-comm : ∀ m n → m * n ≡ n * m *-comm zero n = 0≡m*0 n *-comm (suc m) n = cong (n +_) (*-comm m n) ∙ sym (*-suc n m) 0≡n*sm→0≡n : 0 ≡ n * suc m → 0 ≡ n 0≡n*sm→0≡n {n = zero} p = refl 0≡n*sm→0≡n {n = suc n} p = ⊥-elim (znots p) inj-*sm : l * suc m ≡ n * suc m → l ≡ n inj-*sm {zero} {m} {n} p = 0≡n*sm→0≡n p inj-*sm {l} {m} {zero} p = sym (0≡n*sm→0≡n (sym p)) inj-*sm {suc l} {m} {suc n} p = cong suc (inj-*sm (inj-m+ {m = suc m} p)) inj-sm* : suc m * l ≡ suc m * n → l ≡ n inj-sm* {m} {l} {n} p = inj-*sm (*-comm l (suc m) ∙ p ∙ *-comm (suc m) n)
{ "alphanum_fraction": 0.5223279649, "avg_line_length": 26.5242718447, "ext": "agda", "hexsha": "1f9c43baf02a3b674f6f0180942c7b923774d7ed", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/cubical", "max_forks_repo_path": "Cubical/Data/Nat/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/cubical", "max_issues_repo_path": "Cubical/Data/Nat/Properties.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/cubical", "max_stars_repo_path": "Cubical/Data/Nat/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1354, "size": 2732 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Haskell.Modules.RWS.RustAnyHow import LibraBFT.Impl.Consensus.ConsensusTypes.BlockRetrieval as BlockRetrieval import LibraBFT.Impl.IO.OBM.ObmNeedFetch as ObmNeedFetch open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All import Util.KVMap as Map open import Util.Prelude ------------------------------------------------------------------------------ import Data.String as String module LibraBFT.Impl.Consensus.BlockStorage.BlockRetriever where pickPeer : ℕ → List Author → Either ErrLog (Author × List Author) -- LBFT-OBM-DIFF : this lives in sync_manager.rs (in this file to isolate IO) -- TODO-1 PROVE IT TERMINATES {-# TERMINATING #-} retrieveBlockForQCM : BlockRetriever → QuorumCert → U64 → LBFT (Either ErrLog (List Block)) retrieveBlockForQCM _retriever qc numBlocks = loop (qc ^∙ qcCertifiedBlock ∙ biId) 0 (Map.kvm-keys (qc ^∙ qcLedgerInfo ∙ liwsSignatures)) where doLoop : HashValue → ℕ → List Author → LBFT (Either ErrLog (List Block)) logIt : InfoLog → LBFT Unit here' : List String.String → List String.String loop : HashValue → ℕ → List Author → LBFT (Either ErrLog (List Block)) loop blockId attempt = λ where [] → bail fakeErr -- [ "failed to fetch block, no more peers available" -- , lsHV blockId, show attempt ] peers0@(_ ∷ _) → do mme ← use (lRoundManager ∙ rmObmMe) maybeSD mme (bail fakeErr) $ λ me → do nf ← use lObmNeedFetch eitherS (pickPeer attempt peers0) bail $ λ (peer , peers) → do let request = BlockRetrievalRequest∙new me blockId numBlocks logIt fakeInfo -- ["to", lsA peer, lsBRQ request] let response = ObmNeedFetch.writeRequestReadResponseUNSAFE nf me peer request -- TODO : sign response and check sig on response case response ^∙ brpStatus of λ where BRSSucceeded → do logIt fakeInfo -- (here [lsBRP response]) vv ← use (lRoundManager ∙ rmEpochState ∙ esVerifier) -- LBFT-OBM-DIFF/TODO : this should live in a "network" module case BlockRetrieval.verify response (request ^∙ brqBlockId) (request ^∙ brqNumBlocks) vv of λ where (Left e) → bail (withErrCtx (here' []) e) (Right _) → ok (response ^∙ brpBlocks) BRSIdNotFound → doLoop blockId attempt peers BRSNotEnoughBlocks → doLoop blockId attempt peers doLoop blockId attempt peers = do logIt fakeInfo -- (here' ["trying another peer", lsBRP response]) loop blockId (attempt + 1) peers here' t = "BlockRetriever" ∷ "retrieveBlockForQCM" ∷ "NeedFetch" ∷ t logIt l = -- do logInfo l -- let x = Unsafe.unsafePerformIO (putStrLn @Text (show l)) -- x `seq` pure x pickPeer _ = λ where [] → Left fakeErr -- ["no more peers"] (p ∷ ps) → pure (p , ps)
{ "alphanum_fraction": 0.6374133949, "avg_line_length": 46.8108108108, "ext": "agda", "hexsha": "ad7dcd21bac55434c9d49c30d108aa35b3f04790", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/BlockRetriever.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/BlockRetriever.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/BlockRetriever.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 946, "size": 3464 }
module Data.BitVector.ContainmentOrder where open import Data.Empty open import Data.Sum open import Data.Vec open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Data.Nat hiding (_≟_; _≤_; _≤?_) renaming (zero to Nzero; suc to Nsuc) open import Data.BitVector infix 4 _⊂_ data _⊂_ : ∀ {n} → BitVector n → BitVector n → Set where []⊂[] : [] ⊂ [] 0#⊂0# : ∀ {n} {x y : BitVector n} → (x⊂y : x ⊂ y) → (0# ∷ x) ⊂ (0# ∷ y) b⊂1# : ∀ {n} {x y : BitVector n} {b} → (x⊂y : x ⊂ y) → (b ∷ x) ⊂ (1# ∷ y) ⊂-refl : ∀ {n} → _≡_ ⇒ (_⊂_ {n}) ⊂-refl {0} {[]} refl = []⊂[] ⊂-refl {Nsuc n} {0# ∷ xs} refl = 0#⊂0# (⊂-refl refl) ⊂-refl {Nsuc n} {1# ∷ xs} refl = b⊂1# (⊂-refl refl) ⊂-antisym : ∀ {n} → Antisymmetric _≡_ (_⊂_ {n}) ⊂-antisym []⊂[] []⊂[] = refl ⊂-antisym (0#⊂0# x⊂y) (0#⊂0# y⊂x) rewrite ⊂-antisym x⊂y y⊂x = refl ⊂-antisym (b⊂1# x⊂y) (b⊂1# y⊂x) rewrite ⊂-antisym x⊂y y⊂x = refl ⊂-trans : ∀ {n} → Transitive (_⊂_ {n}) ⊂-trans []⊂[] []⊂[] = []⊂[] ⊂-trans (0#⊂0# x⊂y) (0#⊂0# y⊂z) = 0#⊂0# (⊂-trans x⊂y y⊂z) ⊂-trans (0#⊂0# x⊂y) (b⊂1# y⊂z) = b⊂1# (⊂-trans x⊂y y⊂z) ⊂-trans (b⊂1# x⊂y) (b⊂1# y⊂z) = b⊂1# (⊂-trans x⊂y y⊂z) _⊂?_ : ∀ {n} → Decidable (_⊂_ {n}) [] ⊂? [] = yes []⊂[] (x ∷ xs) ⊂? (y ∷ ys) with xs ⊂? ys (0# ∷ xs) ⊂? (0# ∷ ys) | no xs≢ys = no helper where helper : ¬ 0# ∷ xs ⊂ 0# ∷ ys helper (0#⊂0# pf) = xs≢ys pf (x ∷ xs) ⊂? (1# ∷ ys) | no xs≢ys = no helper where helper : ¬ x ∷ xs ⊂ 1# ∷ ys helper (b⊂1# pf) = xs≢ys pf (1# ∷ xs) ⊂? (0# ∷ ys) | no xs≢ys = no (λ ()) (0# ∷ xs) ⊂? (0# ∷ ys) | yes xs≡ys = yes (0#⊂0# xs≡ys) (0# ∷ xs) ⊂? (1# ∷ ys) | yes xs≡ys = yes (b⊂1# xs≡ys) (1# ∷ xs) ⊂? (0# ∷ ys) | yes xs≡ys = no (λ ()) (1# ∷ xs) ⊂? (1# ∷ ys) | yes xs≡ys = yes (b⊂1# xs≡ys) decPoset : ∀ {n} → DecPoset _ _ _ decPoset {n} = record { Carrier = BitVector n ; _≈_ = _≡_ ; _≤_ = _⊂_ ; isDecPartialOrder = record { isPartialOrder = record { isPreorder = record { isEquivalence = isEquivalence ; reflexive = ⊂-refl ; trans = ⊂-trans } ; antisym = ⊂-antisym } ; _≟_ = _≟_ ; _≤?_ = _⊂?_ } }
{ "alphanum_fraction": 0.4757630162, "avg_line_length": 31.8285714286, "ext": "agda", "hexsha": "627d2d9896413a2f0b30dc99c217027af2ea847a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-11-12T01:40:57.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-25T00:15:43.000Z", "max_forks_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "copumpkin/bitvector", "max_forks_repo_path": "Data/BitVector/ContainmentOrder.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_issues_repo_issues_event_max_datetime": "2016-05-25T02:00:59.000Z", "max_issues_repo_issues_event_min_datetime": "2016-05-25T02:00:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "copumpkin/bitvector", "max_issues_repo_path": "Data/BitVector/ContainmentOrder.agda", "max_line_length": 82, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/bitvector", "max_stars_repo_path": "Data/BitVector/ContainmentOrder.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-12T01:41:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T07:19:55.000Z", "num_tokens": 1235, "size": 2228 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of sums (disjoint unions) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Sum.Properties where open import Level open import Data.Sum.Base open import Function open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (map′) private variable a b c d e f : Level A : Set a B : Set b C : Set c D : Set d E : Set e F : Set f inj₁-injective : ∀ {x y} → (A ⊎ B ∋ inj₁ x) ≡ inj₁ y → x ≡ y inj₁-injective refl = refl inj₂-injective : ∀ {x y} → (A ⊎ B ∋ inj₂ x) ≡ inj₂ y → x ≡ y inj₂-injective refl = refl module _ (dec₁ : Decidable {A = A} {B = A} _≡_) (dec₂ : Decidable {A = B} {B = B} _≡_) where ≡-dec : Decidable {A = A ⊎ B} _≡_ ≡-dec (inj₁ x) (inj₁ y) = map′ (cong inj₁) inj₁-injective (dec₁ x y) ≡-dec (inj₁ x) (inj₂ y) = no λ() ≡-dec (inj₂ x) (inj₁ y) = no λ() ≡-dec (inj₂ x) (inj₂ y) = map′ (cong inj₂) inj₂-injective (dec₂ x y) swap-involutive : swap {A = A} {B = B} ∘ swap ≗ id swap-involutive = [ (λ _ → refl) , (λ _ → refl) ] [,]-∘-distr : {f : A → B} {g : C → A} {h : D → A} → f ∘ [ g , h ] ≗ [ f ∘ g , f ∘ h ] [,]-∘-distr (inj₁ _) = refl [,]-∘-distr (inj₂ _) = refl [,]-map-commute : {f : A → B} {g : C → D} {f′ : B → E} {g′ : D → E} → [ f′ , g′ ] ∘ (map f g) ≗ [ f′ ∘ f , g′ ∘ g ] [,]-map-commute (inj₁ _) = refl [,]-map-commute (inj₂ _) = refl map-commute : {f : A → B} {g : C → D} {f′ : B → E} {g′ : D → F} → ((map f′ g′) ∘ (map f g)) ≗ map (f′ ∘ f) (g′ ∘ g) map-commute (inj₁ _) = refl map-commute (inj₂ _) = refl
{ "alphanum_fraction": 0.4768177028, "avg_line_length": 29.65625, "ext": "agda", "hexsha": "b0c66a8a310dd364661a8b557f0016b1565f1e0c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Sum/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Sum/Properties.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Sum/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 721, "size": 1898 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Displayed.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence using (pathToEquiv) open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Unit open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Relation.Binary open BinaryRelation open import Cubical.Displayed.Base private variable ℓ ℓA ℓA' ℓP ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓ≅B' ℓC ℓ≅C : Level -- UARel on Σ-type module _ {A : Type ℓA} {ℓ≅A : Level} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {ℓ≅B : Level} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) where open UARel 𝒮-A open DUARel 𝒮ᴰ-B ∫ : UARel (Σ A B) (ℓ-max ℓ≅A ℓ≅B) UARel._≅_ ∫ (a , b) (a' , b') = Σ[ p ∈ a ≅ a' ] (b ≅ᴰ⟨ p ⟩ b') UARel.ua ∫ (a , b) (a' , b') = compEquiv (Σ-cong-equiv (ua a a') (λ p → uaᴰ b p b')) ΣPath≃PathΣ -- UARel on Π-type module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) where open UARel 𝒮-A open DUARel 𝒮ᴰ-B 𝒮ᴰ→𝒮-Π : UARel ((a : A) → B a) (ℓ-max ℓA ℓ≅B) UARel._≅_ 𝒮ᴰ→𝒮-Π f f' = ∀ a → f a ≅ᴰ⟨ ρ a ⟩ f' a UARel.ua 𝒮ᴰ→𝒮-Π f f' = compEquiv (equivΠCod λ a → uaᴰρ (f a) (f' a)) funExtEquiv -- induction principles module _ {A : Type ℓA} {ℓ≅A : Level} (𝒮-A : UARel A ℓ≅A) where open UARel 𝒮-A 𝒮-J : {a : A} (P : (a' : A) → (p : a ≡ a') → Type ℓ) (d : P a refl) {a' : A} (p : a ≅ a') → P a' (≅→≡ p) 𝒮-J {a} P d {a'} p = J (λ y q → P y q) d (≅→≡ p) 𝒮-J-2 : {a : A} (P : (a' : A) → (p : a ≅ a') → Type ℓ) (d : P a (ρ a)) {a' : A} (p : a ≅ a') → P a' p 𝒮-J-2 {a = a} P d {a'} p = subst (λ r → P a' r) (Iso.leftInv (uaIso a a') p) g where g : P a' (≡→≅ (≅→≡ p)) g = J (λ y q → P y (≡→≅ q)) d (≅→≡ p) -- constructors module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} (_≅ᴰ⟨_⟩_ : {a a' : A} → B a → UARel._≅_ 𝒮-A a a' → B a' → Type ℓ≅B) where open UARel 𝒮-A -- constructor that reduces ua to the case where p = ρ a by induction on p private 𝒮ᴰ-make-aux : (uni : {a : A} (b b' : B a) → b ≅ᴰ⟨ ρ a ⟩ b' ≃ (b ≡ b')) → ({a a' : A} (b : B a) (p : a ≅ a') (b' : B a') → (b ≅ᴰ⟨ p ⟩ b') ≃ PathP (λ i → B (≅→≡ p i)) b b') 𝒮ᴰ-make-aux uni {a} {a'} b p = 𝒮-J-2 𝒮-A (λ y q → (b' : B y) → (b ≅ᴰ⟨ q ⟩ b') ≃ PathP (λ i → B (≅→≡ q i)) b b') (λ b' → uni' b') p where g : (b' : B a) → (b ≡ b') ≡ PathP (λ i → B (≅→≡ (ρ a) i)) b b' g b' = subst (λ r → (b ≡ b') ≡ PathP (λ i → B (r i)) b b') (sym (Iso.rightInv (uaIso a a) refl)) refl uni' : (b' : B a) → b ≅ᴰ⟨ ρ a ⟩ b' ≃ PathP (λ i → B (≅→≡ (ρ a) i)) b b' uni' b' = compEquiv (uni b b') (pathToEquiv (g b')) 𝒮ᴰ-make-1 : (uni : {a : A} (b b' : B a) → b ≅ᴰ⟨ ρ a ⟩ b' ≃ (b ≡ b')) → DUARel 𝒮-A B ℓ≅B DUARel._≅ᴰ⟨_⟩_ (𝒮ᴰ-make-1 uni) = _≅ᴰ⟨_⟩_ DUARel.uaᴰ (𝒮ᴰ-make-1 uni) = 𝒮ᴰ-make-aux uni -- constructor that reduces univalence further to contractibility of relational singletons 𝒮ᴰ-make-2 : (ρᴰ : {a : A} → isRefl _≅ᴰ⟨ ρ a ⟩_) (contrTotal : (a : A) → contrRelSingl _≅ᴰ⟨ UARel.ρ 𝒮-A a ⟩_) → DUARel 𝒮-A B ℓ≅B DUARel._≅ᴰ⟨_⟩_ (𝒮ᴰ-make-2 ρᴰ contrTotal) = _≅ᴰ⟨_⟩_ DUARel.uaᴰ (𝒮ᴰ-make-2 ρᴰ contrTotal) = 𝒮ᴰ-make-aux (contrRelSingl→isUnivalent _ ρᴰ (contrTotal _)) -- lifts module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : A → Type ℓB} {ℓ≅B : Level} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) {C : A → Type ℓC} (𝒮ᴰ-C : DUARel 𝒮-A C ℓ≅C) where open DUARel 𝒮ᴰ-B Lift-𝒮ᴰ : DUARel (∫ 𝒮ᴰ-C) (λ (a , _) → B a) ℓ≅B DUARel._≅ᴰ⟨_⟩_ Lift-𝒮ᴰ b p b' = b ≅ᴰ⟨ p .fst ⟩ b' DUARel.uaᴰ Lift-𝒮ᴰ b p b' = uaᴰ b (p .fst) b' -- associativity module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : A → Type ℓB} {ℓ≅B : Level} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) {C : Σ A B → Type ℓC} {ℓ≅C : Level} (𝒮ᴰ-C : DUARel (∫ 𝒮ᴰ-B) C ℓ≅C) where open UARel 𝒮-A open DUARel 𝒮ᴰ-B renaming (_≅ᴰ⟨_⟩_ to _≅B⟨_⟩_ ; uaᴰ to uaB) open DUARel 𝒮ᴰ-C renaming (_≅ᴰ⟨_⟩_ to _≅C⟨_⟩_ ; uaᴰ to uaC) splitTotal-𝒮ᴰ : DUARel 𝒮-A (λ a → Σ[ b ∈ B a ] C (a , b)) (ℓ-max ℓ≅B ℓ≅C) DUARel._≅ᴰ⟨_⟩_ splitTotal-𝒮ᴰ (b , c) p (b' , c') = Σ[ q ∈ b ≅B⟨ p ⟩ b' ] (c ≅C⟨ p , q ⟩ c') DUARel.uaᴰ splitTotal-𝒮ᴰ (b , c) p (b' , c') = compEquiv (Σ-cong-equiv (uaB b p b') (λ q → uaC c (p , q) c')) ΣPath≃PathΣ -- combination module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {ℓ≅B : Level} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) {C : A → Type ℓC} {ℓ≅C : Level} (𝒮ᴰ-C : DUARel 𝒮-A C ℓ≅C) where _×𝒮ᴰ_ : DUARel 𝒮-A (λ a → B a × C a) (ℓ-max ℓ≅B ℓ≅C) _×𝒮ᴰ_ = splitTotal-𝒮ᴰ 𝒮-A 𝒮ᴰ-B (Lift-𝒮ᴰ 𝒮-A 𝒮ᴰ-C 𝒮ᴰ-B) -- constant displayed structure module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : Type ℓB} (𝒮-B : UARel B ℓ≅B) where open UARel 𝒮-B open DUARel 𝒮ᴰ-const : DUARel 𝒮-A (λ _ → B) ℓ≅B 𝒮ᴰ-const ._≅ᴰ⟨_⟩_ b _ b' = b ≅ b' 𝒮ᴰ-const .uaᴰ b p b' = ua b b' -- UARel product _×𝒮_ : UARel (A × B) (ℓ-max ℓ≅A ℓ≅B) _×𝒮_ = ∫ 𝒮ᴰ-const -- relational isomorphisms 𝒮-iso→iso : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : Type ℓB} (𝒮-B : UARel B ℓ≅B) (F : RelIso (UARel._≅_ 𝒮-A) (UARel._≅_ 𝒮-B)) → Iso A B 𝒮-iso→iso 𝒮-A 𝒮-B F = RelIso→Iso (UARel._≅_ 𝒮-A) (UARel._≅_ 𝒮-B) (UARel.≅→≡ 𝒮-A) (UARel.≅→≡ 𝒮-B) F -- fiberwise relational isomorphisms module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {A' : Type ℓA'} {𝒮-A' : UARel A' ℓ≅A'} (F : Iso A A') {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) {B' : A' → Type ℓB'} (𝒮ᴰ-B' : DUARel 𝒮-A' B' ℓ≅B') where open UARel 𝒮-A open DUARel 𝒮ᴰ-B renaming (_≅ᴰ⟨_⟩_ to _≅B⟨_⟩_ ; uaᴰ to uaB ; fiberRel to fiberRelB ; uaᴰρ to uaᴰρB) open DUARel 𝒮ᴰ-B' renaming (_≅ᴰ⟨_⟩_ to _≅B'⟨_⟩_ ; uaᴰ to uaB' ; fiberRel to fiberRelB' ; uaᴰρ to uaᴰρB') private f = Iso.fun F -- the following can of course be done slightly more generally -- for fiberwise binary relations F*fiberRelB' : (a : A) → Rel (B' (f a)) (B' (f a)) ℓ≅B' F*fiberRelB' a = fiberRelB' (f a) module _ (G : (a : A) → RelIso (fiberRelB a) (F*fiberRelB' a)) where private fiberIsoOver : (a : A) → Iso (B a) (B' (f a)) fiberIsoOver a = RelIso→Iso (fiberRelB a) (F*fiberRelB' a) (equivFun (uaᴰρB _ _)) (equivFun (uaᴰρB' _ _)) (G a) -- DUARelFiberIsoOver→TotalIso produces an isomorphism of total spaces -- from a relational isomorphism between B a and (F * B) a 𝒮ᴰ-fiberIsoOver→totalIso : Iso (Σ A B) (Σ A' B') 𝒮ᴰ-fiberIsoOver→totalIso = Σ-cong-iso F fiberIsoOver -- Special cases: -- Subtypes 𝒮-type : (A : Type ℓ) → UARel A ℓ UARel._≅_ (𝒮-type A) = _≡_ UARel.ua (𝒮-type A) a a' = idEquiv (a ≡ a') module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) where 𝒮ᴰ-subtype : (P : A → hProp ℓP) → DUARel 𝒮-A (λ a → P a .fst) ℓ-zero 𝒮ᴰ-subtype P = 𝒮ᴰ-make-2 (λ _ _ _ → Unit) (λ _ → tt) λ a p → isOfHLevelRespectEquiv 0 (invEquiv (Σ-contractSnd (λ _ → isContrUnit))) (inhProp→isContr p (P a .snd))
{ "alphanum_fraction": 0.4870573084, "avg_line_length": 29.9806949807, "ext": "agda", "hexsha": "ca8e03d1e2eaba1a3435cf76c86d362723f7cbb3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Displayed/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Displayed/Properties.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Displayed/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3956, "size": 7765 }
{- This file contains: - the abelianization of groups as a coequalizer of sets as performed in https://1lab.dev/Algebra.Group.Ab.Free.html - the proof that this way of defining the abelianization of groups is equivalent to defining it as a HIT, more precisely that there is a unique isomorphism between the resulting abelian groups -} {-# OPTIONS --safe #-} module Cubical.Algebra.Group.Abelianization.AbelianizationAsCoeq where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Data.Sigma open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties using (isPropIsGroupHom; compGroupHom; idGroupHom; compGroupHomAssoc; invGroupIso; compGroupHomId; GroupIso≡; GroupIso→GroupHom) open import Cubical.Algebra.AbGroup.Base open import Cubical.HITs.SetCoequalizer open import Cubical.Algebra.Group.Abelianization.Base renaming (Abelianization to HITAbelianization; η to HITη; comm to HITcomm; isset to HITisset) open import Cubical.Algebra.Group.Abelianization.Properties hiding (elimProp; elimProp2; elimProp3; elimContr; elimContr2; rec; rec2) renaming (AbelianizationAbGroup to HITasAbelianGroup; AbelianizationHom to HITηAsGroupHom) open Cubical.Algebra.Group.Abelianization.Properties.UniversalProperty renaming (inducedHom to HITinducedHom; commutativity to HITcommutativity; uniqueness to HITuniqueness) private variable ℓ : Level G : Group ℓ module AbelianizationAsCoeq (G : Group ℓ) where open GroupStr {{...}} open GroupTheory G private instance _ = snd G G' = fst G {- The definition of the abelianization of a group as a coequalizer of sets. The generality of the coequalized functions will be needed to define the group structure on the abelianization. -} Abelianization : Type ℓ Abelianization = SetCoequalizer {A = G' × G' × G'} {B = G'} (λ (x , y , z) → x · y · z) (λ (x , y , z) → x · z · y) -- some convenient relabellings, so it looks more similar to the abelianization as a HIT. incAb : G' → Abelianization incAb = inc comm : (x y z : G') → incAb (x · (y · z)) ≡ incAb (x · (z · y)) comm = λ x y z → coeq (x , y , z) {- Definition of the group structure on the abelianization. Here the generality of the coequalized functions is used. -} _·Ab_ : Abelianization → Abelianization → Abelianization _·Ab_ = rec2 squash (λ x y → incAb (x · y)) (λ (a , b , c) d → incAb ((a · (b · c)) · d) ≡⟨ cong (λ x → incAb (x · d)) (assoc _ _ _) ⟩ incAb (((a · b) · c) · d) ≡⟨ cong incAb (sym (assoc (a · b) c d)) ⟩ incAb ((a · b) · (c · d)) ≡⟨ comm (a · b) c d ⟩ incAb ((a · b) · (d · c)) ≡⟨ cong incAb (sym (assoc _ _ _)) ⟩ incAb (a · (b · (d · c))) ≡⟨ cong (λ x → incAb (a · x)) (assoc _ _ _) ⟩ incAb (a · ((b · d) · c)) ≡⟨ comm a (b · d) c ⟩ incAb (a · (c · (b · d))) ≡⟨ cong (λ x → incAb (a · x)) (assoc _ _ _) ⟩ incAb (a · ((c · b) · d)) ≡⟨ cong incAb (assoc a (c · b) d) ⟩ incAb ((a · (c · b)) · d) ∎) (λ (b , c , d) a → incAb (a · (b · (c · d))) ≡⟨ cong incAb (assoc _ _ _) ⟩ incAb ((a · b) · (c · d)) ≡⟨ comm (a · b) c d ⟩ incAb ((a · b) · (d · c)) ≡⟨ cong incAb (sym (assoc _ _ _)) ⟩ incAb (a · (b · (d · c))) ∎) 1Ab : Abelianization 1Ab = incAb 1g invAb : Abelianization → Abelianization invAb = rec squash (λ x → incAb (inv x)) (λ (a , b , c) → incAb (inv (a · (b · c))) ≡⟨ cong incAb (invDistr a (b · c)) ⟩ incAb (inv (b · c) · inv a) ≡⟨ cong (λ x → incAb (x · inv a)) (invDistr b c) ⟩ incAb ((inv c · inv b) · inv a) ≡⟨ cong incAb (sym (lid ((inv c · inv b) · inv a))) ⟩ incAb (1g · ((inv c · inv b) · inv a)) ≡⟨ comm 1g (inv c · inv b) (inv a) ⟩ incAb (1g · (inv a · (inv c · inv b))) ≡⟨ cong incAb (lid (inv a · (inv c · inv b))) ⟩ incAb (inv a · (inv c · inv b)) ≡⟨ comm (inv a) (inv c) (inv b) ⟩ incAb (inv a · (inv b · inv c)) ≡⟨ cong incAb (sym (lid (inv a · (inv b · inv c)))) ⟩ incAb (1g · (inv a · (inv b · inv c))) ≡⟨ comm 1g (inv a) (inv b · inv c) ⟩ incAb (1g · ((inv b · inv c) · inv a)) ≡⟨ cong incAb (lid ((inv b · inv c) · inv a)) ⟩ incAb ((inv b · inv c) · inv a) ≡⟨ cong (λ x → incAb (x · inv a)) (sym (invDistr c b)) ⟩ incAb (inv (c · b) · inv a) ≡⟨ cong incAb (sym (invDistr a (c · b))) ⟩ incAb (inv (a · (c · b))) ∎) assocAb : (x y z : Abelianization) → x ·Ab (y ·Ab z) ≡ (x ·Ab y) ·Ab z assocAb = elimProp3 (λ x y z → squash (x ·Ab (y ·Ab z)) ((x ·Ab y) ·Ab z)) (λ x y z → cong incAb (assoc x y z)) ridAb : (x : Abelianization) → x ·Ab 1Ab ≡ x ridAb = elimProp (λ x → squash (x ·Ab 1Ab) x) (λ x → cong incAb (rid x)) rinvAb : (x : Abelianization) → x ·Ab (invAb x) ≡ 1Ab rinvAb = elimProp (λ x → squash (x ·Ab (invAb x)) 1Ab) (λ x → (incAb x) ·Ab (invAb (incAb x)) ≡⟨ refl ⟩ (incAb x) ·Ab (incAb (inv x)) ≡⟨ refl ⟩ incAb (x · (inv x)) ≡⟨ cong incAb (fst (inverse x)) ⟩ incAb 1g ≡⟨ refl ⟩ 1Ab ∎) commAb : (x y : Abelianization) → x ·Ab y ≡ y ·Ab x commAb = elimProp2 (λ x y → squash (x ·Ab y) (y ·Ab x)) (λ x y → (incAb x) ·Ab (incAb y) ≡⟨ refl ⟩ incAb (x · y) ≡⟨ cong incAb (sym (lid (x · y))) ⟩ incAb (1g · (x · y)) ≡⟨ comm 1g x y ⟩ incAb (1g · (y · x)) ≡⟨ cong incAb (lid (y · x)) ⟩ incAb (y · x) ≡⟨ refl ⟩ (incAb y) ·Ab (incAb x) ∎) -- The proof that the abelianization is in fact an abelian group. asAbelianGroup : AbGroup ℓ asAbelianGroup = makeAbGroup 1Ab _·Ab_ invAb squash assocAb ridAb rinvAb commAb -- The proof that incAb can be seen as a group homomorphism incAbAsGroupHom : GroupHom G (AbGroup→Group asAbelianGroup) incAbAsGroupHom = f , fIsHom where f = λ x → incAb x fIsHom : IsGroupHom (snd G) f (snd (AbGroup→Group asAbelianGroup)) IsGroupHom.pres· fIsHom = λ x y → refl IsGroupHom.pres1 fIsHom = refl IsGroupHom.presinv fIsHom = λ x → refl AbelianizationAbGroup : (G : Group ℓ) → AbGroup ℓ AbelianizationAbGroup G = AbelianizationAsCoeq.asAbelianGroup G AbelianizationHom : (G : Group ℓ) → GroupHom G (AbGroup→Group (AbelianizationAbGroup G)) AbelianizationHom G = AbelianizationAsCoeq.incAbAsGroupHom G module UniversalPropertyCoeq (G : Group ℓ) where open GroupStr {{...}} open GroupTheory G open AbelianizationAsCoeq G private instance _ = snd G G' = fst G abstract {- The proof of the universal property of the abelianization. G -incAb-> Abelianization \ . \ . f ∃! inducedHom \ . \ . H commuting diagram -} inducedHom : (H : AbGroup ℓ) → (f : GroupHom G (AbGroup→Group H)) → AbGroupHom asAbelianGroup H inducedHom H f = g , gIsHom where open IsGroupHom instance _ : GroupStr (fst H) _ = snd (AbGroup→Group H) f' : fst G → fst H f' = fst f g : Abelianization → fst H g = rec (isSetAbGroup H) (λ x → (f') x) (λ (a , b , c) → f' (a · b · c) ≡⟨ (snd f).pres· a (b · c) ⟩ (f' a) · (f' (b · c)) ≡⟨ cong (λ x → (f' a) · x) ((snd f).pres· b c) ⟩ (f' a) · (f' b) · (f' c) ≡⟨ cong (λ x → (f' a) · x) ((snd H).AbGroupStr.comm (f' b) (f' c)) ⟩ (f' a) · (f' c) · (f' b) ≡⟨ cong (λ x → (f' a) · x) (sym ((snd f).pres· c b)) ⟩ (f' a) · (f' (c · b)) ≡⟨ sym ((snd f).pres· a (c · b)) ⟩ f' (a · c · b) ∎) gIsHom : IsGroupHom (snd (AbGroup→Group asAbelianGroup)) g (snd (AbGroup→Group H)) pres· gIsHom = elimProp2 (λ x y → isSetAbGroup H _ _) ((snd f).pres·) pres1 gIsHom = (snd f).pres1 presinv gIsHom = elimProp (λ x → isSetAbGroup H _ _) ((snd f).presinv) commutativity : (H : AbGroup ℓ) → (f : GroupHom G (AbGroup→Group H)) → (compGroupHom incAbAsGroupHom (inducedHom H f) ≡ f) commutativity H f = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (λ i x → q x i) where q : (x : fst G) → fst (compGroupHom incAbAsGroupHom (inducedHom H f)) x ≡ fst f x q = (λ x → refl) uniqueness : (H : AbGroup ℓ) → (f : GroupHom G (AbGroup→Group H)) → (g : AbGroupHom asAbelianGroup H) → (p : compGroupHom incAbAsGroupHom g ≡ f) → (g ≡ inducedHom H f) uniqueness H f g p = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (λ i x → q x i) where q : (x : Abelianization) → fst g x ≡ fst (inducedHom H f) x q = elimProp (λ _ → isSetAbGroup H _ _) (λ x → fst g (incAb x) ≡⟨ cong (λ f → f x) (cong fst p) ⟩ (fst f) x ≡⟨ refl ⟩ fst (inducedHom H f) (incAb x)∎) module IsoCoeqHIT (G : Group ℓ) where open GroupStr {{...}} open GroupTheory G open AbelianizationAsCoeq G open UniversalPropertyCoeq G private instance _ = snd G G' = fst G {- The proof that defining the abelianization of groups as a coequalizer of sets is equivalent to defining it as a HIT, more precisely that there is an isomorphism between the resulting abelian groups unique with respect to commuting with the constructors η and inc. G -incAb-> abelianization as coequalizer \ . \ . η ∃! isomorphism \ . \ . abelianization as HIT commuting diagram -} isomorphism : AbGroupIso asAbelianGroup (HITasAbelianGroup G) isomorphism = h , hIsHomo where f = inducedHom (HITasAbelianGroup G) (HITηAsGroupHom G) g = HITinducedHom G asAbelianGroup incAbAsGroupHom HITgfcomm : compGroupHom (HITηAsGroupHom G) (compGroupHom g f) ≡ (HITηAsGroupHom G) HITgfcomm = compGroupHom (HITηAsGroupHom G) (compGroupHom g f) ≡⟨ sym (compGroupHomAssoc (HITηAsGroupHom G) g f) ⟩ compGroupHom (compGroupHom (HITηAsGroupHom G) g) f ≡⟨ cong (λ x → compGroupHom x f) (HITcommutativity G asAbelianGroup incAbAsGroupHom) ⟩ compGroupHom incAbAsGroupHom f ≡⟨ commutativity (HITasAbelianGroup G) (HITηAsGroupHom G) ⟩ (HITηAsGroupHom G) ∎ HITidcomm : compGroupHom (HITηAsGroupHom G) idGroupHom ≡ HITηAsGroupHom G HITidcomm = compGroupHomId (HITηAsGroupHom G) HITidIsInduced : HITinducedHom G (HITasAbelianGroup G) (HITηAsGroupHom G) ≡ idGroupHom HITidIsInduced = sym (HITuniqueness G (HITasAbelianGroup G) (HITηAsGroupHom G) idGroupHom HITidcomm) HITgfIsInduced : HITinducedHom G (HITasAbelianGroup G) (HITηAsGroupHom G) ≡ compGroupHom g f HITgfIsInduced = sym (HITuniqueness G (HITasAbelianGroup G) (HITηAsGroupHom G) (compGroupHom g f) HITgfcomm) i : idGroupHom ≡ compGroupHom g f i = idGroupHom ≡⟨ sym HITidIsInduced ⟩ HITinducedHom G (HITasAbelianGroup G) (HITηAsGroupHom G) ≡⟨ HITgfIsInduced ⟩ compGroupHom g f ∎ fgcomm : compGroupHom incAbAsGroupHom (compGroupHom f g) ≡ incAbAsGroupHom fgcomm = compGroupHom incAbAsGroupHom (compGroupHom f g) ≡⟨ sym (compGroupHomAssoc incAbAsGroupHom f g) ⟩ compGroupHom (compGroupHom incAbAsGroupHom f) g ≡⟨ cong (λ x → compGroupHom x g) (commutativity (HITasAbelianGroup G) (HITηAsGroupHom G)) ⟩ compGroupHom (HITηAsGroupHom G) g ≡⟨ (HITcommutativity G) asAbelianGroup incAbAsGroupHom ⟩ incAbAsGroupHom ∎ idcomm : compGroupHom incAbAsGroupHom idGroupHom ≡ incAbAsGroupHom idcomm = compGroupHomId incAbAsGroupHom idIsInduced : inducedHom asAbelianGroup incAbAsGroupHom ≡ idGroupHom idIsInduced = sym (uniqueness asAbelianGroup incAbAsGroupHom idGroupHom idcomm) fgIsInduced : inducedHom asAbelianGroup incAbAsGroupHom ≡ compGroupHom f g fgIsInduced = sym (uniqueness asAbelianGroup incAbAsGroupHom (compGroupHom f g) fgcomm) j : idGroupHom ≡ compGroupHom f g j = idGroupHom ≡⟨ sym idIsInduced ⟩ inducedHom asAbelianGroup incAbAsGroupHom ≡⟨ fgIsInduced ⟩ compGroupHom f g ∎ h = iso (fst f) (fst g) (λ b → cong (λ e → e b) (cong fst (sym i))) (λ a → cong (λ e → e a) (cong fst (sym j))) hIsHomo = snd f isomorphismCommutativity : compGroupHom incAbAsGroupHom (GroupIso→GroupHom isomorphism) ≡ (HITηAsGroupHom G) isomorphismCommutativity = commutativity (HITasAbelianGroup G) (HITηAsGroupHom G) isomorphismUniqueness : (h : AbGroupIso asAbelianGroup (HITasAbelianGroup G)) → (hcomm : compGroupHom incAbAsGroupHom (GroupIso→GroupHom h) ≡ (HITηAsGroupHom G)) → h ≡ isomorphism isomorphismUniqueness h hcomm = GroupIso≡ p where r : (x : fst asAbelianGroup) → fst (compGroupHom (GroupIso→GroupHom h) (GroupIso→GroupHom (invGroupIso h))) x ≡ x r = λ x → (h .fst .Iso.leftInv) x leftInvGroupHom : (compGroupHom (GroupIso→GroupHom h) (GroupIso→GroupHom (invGroupIso h))) ≡ idGroupHom leftInvGroupHom = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (λ i x → r x i) q : (g : fst G) → fst (compGroupHom (HITηAsGroupHom G) (GroupIso→GroupHom (invGroupIso h))) g ≡ fst incAbAsGroupHom g q = λ g → fst (compGroupHom (HITηAsGroupHom G) (GroupIso→GroupHom (invGroupIso h))) g ≡⟨ cong (λ f → f g) (cong fst (cong (λ f → compGroupHom f (GroupIso→GroupHom (invGroupIso h))) (sym hcomm))) ⟩ fst (compGroupHom (compGroupHom incAbAsGroupHom (GroupIso→GroupHom h)) (GroupIso→GroupHom (invGroupIso h))) g ≡⟨ cong (λ f → f g) (cong fst (compGroupHomAssoc incAbAsGroupHom (GroupIso→GroupHom h) (GroupIso→GroupHom (invGroupIso h)))) ⟩ fst (compGroupHom incAbAsGroupHom (compGroupHom (GroupIso→GroupHom h) (GroupIso→GroupHom (invGroupIso h)))) g ≡⟨ cong (λ f → f g) (cong fst (cong (λ f → (compGroupHom incAbAsGroupHom f)) leftInvGroupHom)) ⟩ fst incAbAsGroupHom g ∎ isocomm : compGroupHom (HITηAsGroupHom G) (GroupIso→GroupHom (invGroupIso h)) ≡ incAbAsGroupHom isocomm = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (λ i x → q x i) p : h .fst ≡ isomorphism .fst p = Iso≡Set (isSetAbGroup asAbelianGroup) (isSetAbGroup (HITasAbelianGroup G)) (h .fst) (isomorphism .fst) (λ x → cong (λ f → f x) (cong fst (uniqueness (HITasAbelianGroup G) (HITηAsGroupHom G) (GroupIso→GroupHom h) hcomm))) (λ x → cong (λ f → f x) (cong fst (HITuniqueness G asAbelianGroup incAbAsGroupHom (GroupIso→GroupHom (invGroupIso h)) isocomm))) AbelianizationComparisonIsomorphism : (G : Group ℓ) → AbGroupIso (AbelianizationAbGroup G) (HITasAbelianGroup G) AbelianizationComparisonIsomorphism G = IsoCoeqHIT.isomorphism G
{ "alphanum_fraction": 0.532746253, "avg_line_length": 38.9704545455, "ext": "agda", "hexsha": "cafd9679a9e1348c9ad7008a9b87d0d7812d103e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "gmagaf/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Abelianization/AbelianizationAsCoeq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "gmagaf/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Abelianization/AbelianizationAsCoeq.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "gmagaf/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Abelianization/AbelianizationAsCoeq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5584, "size": 17147 }
module list-to-string where open import list open import string 𝕃-to-string : ∀ {ℓ} {A : Set ℓ} → (f : A → string) → (separator : string) → 𝕃 A → string 𝕃-to-string f sep [] = "" 𝕃-to-string f sep (x1 :: (x2 :: xs)) = (f x1) ^ sep ^ (𝕃-to-string f sep (x2 :: xs)) 𝕃-to-string f sep (x1 :: []) = (f x1)
{ "alphanum_fraction": 0.5639344262, "avg_line_length": 30.5, "ext": "agda", "hexsha": "42726adc690c5bcd374c28bcc9d432eb8e17e8ad", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "list-to-string.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "list-to-string.agda", "max_line_length": 88, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "list-to-string.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 123, "size": 305 }
module AbstractRationals where open import Algebra open import Data.Integer.Base using (+0) open import Data.Maybe.Base using (just; nothing; decToMaybe) open import Data.Rational.Base as ℚ public hiding (_+_; _*_; _-_) open import Data.Rational.Properties as ℚ public using (module ≤-Reasoning; <⇒≤) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Function.Base open import Data.Product using (_×_; _,_) open import Tactic.RingSolver.Core.AlmostCommutativeRing open import Tactic.RingSolver.NonReflective (fromCommutativeRing ℚ.+-*-commutativeRing (λ x → decToMaybe (0ℚ ℚ.≟ x))) open import RationalUtils as ℚ public using (2ℚ; 3ℚ) infixl 7 _*_ infixl 6 _+_ _-_ abstract _+_ : ℚ → ℚ → ℚ _+_ = ℚ._+_ _*_ : ℚ → ℚ → ℚ _*_ = ℚ._*_ _-_ : ℚ → ℚ → ℚ _-_ = ℚ._-_ +-eq : _+_ ≡ ℚ._+_ +-eq = refl *-eq : _*_ ≡ ℚ._*_ *-eq = refl neg-eq : _-_ ≡ ℚ._-_ neg-eq = refl p+q-p≡q : ∀ p q → p + q - p ≡ q p+q-p≡q = ℚ.p+q-p≡q p+q-q≡p : ∀ p q → p + q - q ≡ p p+q-q≡p = ℚ.p+q-q≡p p-q+q≡p : ∀ p q → p - q + q ≡ p p-q+q≡p = ℚ.p-q+q≡p p-[p+q]≡q : ∀ p q → p - (p + q) ≡ q p-[p+q]≡q = ℚ.p-[p+q]≡q ∣p-q∣≤∣p∣+∣q∣ : ∀ p q → ∣ p - q ∣ ≤ ∣ p ∣ + ∣ q ∣ ∣p-q∣≤∣p∣+∣q∣ = ℚ.∣p-q∣≤∣p∣+∣q∣ ∣p∣≤q⇒-q≤p≤q : ∀ p {q} → ∣ p ∣ ≤ q → - q ≤ p × p ≤ q ∣p∣≤q⇒-q≤p≤q p = ℚ.∣p∣≤q⇒-q≤p≤q p -p<q<p⇒∣q∣<p : ∀ {p q} → - p < q → q < p → ∣ q ∣ < p -p<q<p⇒∣q∣<p = ℚ.-p<q<p⇒∣q∣<p 2*p≡p+p : ∀ p → 2ℚ * p ≡ p + p 2*p≡p+p = ℚ.2*p≡p+p +-assoc : Associative _≡_ _+_ +-assoc = ℚ.+-assoc +-monoˡ-≤ : ∀ r → (_+ r) Preserves _≤_ ⟶ _≤_ +-monoˡ-≤ = ℚ.+-monoˡ-≤ +-monoʳ-≤ : ∀ r → (_+_ r) Preserves _≤_ ⟶ _≤_ +-monoʳ-≤ = ℚ.+-monoʳ-≤ +-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ +-mono-≤ = ℚ.+-mono-≤ *-monoʳ-≤ : ∀ r → Positive r → (r *_) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤ = ℚ.*-monoʳ-≤ ∣p+q∣≤∣p∣+∣q∣ : ∀ p q → ∣ p + q ∣ ≤ ∣ p ∣ + ∣ q ∣ ∣p+q∣≤∣p∣+∣q∣ = ℚ.∣p+q∣≤∣p∣+∣q∣ ∣p*q∣≡∣p∣*∣q∣ : ∀ p q → ∣ p * q ∣ ≡ ∣ p ∣ * ∣ q ∣ ∣p*q∣≡∣p∣*∣q∣ = ℚ.∣p*q∣≡∣p∣*∣q∣ p<r-q⇒p+q<r : ∀ p q r → p < r - q → p + q < r p<r-q⇒p+q<r = ℚ.p<r-q⇒p+q<r 2p+p≡3p : ∀ p → 2ℚ * p + p ≡ 3ℚ * p 2p+p≡3p p = begin-equality 2ℚ * p + p ≡⟨ cong (2ℚ * p +_) (sym (ℚ.*-identityˡ p)) ⟩ 2ℚ * p + 1ℚ * p ≡⟨ sym (ℚ.*-distribʳ-+ p 2ℚ 1ℚ) ⟩ (2ℚ + 1ℚ) * p ∎ where open ≤-Reasoning lem1 : ∀ a b c d e f g → a + (b + c) + d + (e + f + f - g) - (e + f + f - g) ≡ c + (a + f + (e + b + d + f)) - g - (f + f + (e - g)) lem1 = solve 7 (λ a b c d e f g → (a ⊕ (b ⊕ c) ⊕ d ⊕ (e ⊕ f ⊕ f ⊕ (⊝ g)) ⊕ (⊝ (e ⊕ f ⊕ f ⊕ (⊝ g))) , c ⊕ (a ⊕ f ⊕ (e ⊕ b ⊕ d ⊕ f)) ⊕ (⊝ g) ⊕ (⊝ (f ⊕ f ⊕ (e ⊕ (⊝ g)))))) refl
{ "alphanum_fraction": 0.4472913616, "avg_line_length": 26.5242718447, "ext": "agda", "hexsha": "d965c776aab206135f9e0506c6ef7523dc7d85dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vehicle-lang/vehicle", "max_forks_repo_path": "examples/windController/agdaProof/AbstractRationals.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vehicle-lang/vehicle", "max_issues_repo_path": "examples/windController/agdaProof/AbstractRationals.agda", "max_line_length": 117, "max_stars_count": 9, "max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vehicle-lang/vehicle", "max_stars_repo_path": "examples/windController/agdaProof/AbstractRationals.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z", "num_tokens": 1614, "size": 2732 }
module Issue461 where data D : Set where data D : Set where
{ "alphanum_fraction": 0.7258064516, "avg_line_length": 10.3333333333, "ext": "agda", "hexsha": "edc80b7a7e7da673c8dc71d61935e62221d9ec8d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue461.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue461.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue461.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 18, "size": 62 }
{-# OPTIONS --no-auto-inline #-} module Where where open import Haskell.Prelude hiding (_+_; _*_; _-_) open import Agda.Builtin.Nat postulate bool2nat : Bool → Nat -- no outer arguments ex1 : Nat ex1 = mult num + bool2nat true where num : Nat num = 42 mult : Nat → Nat mult = _* 100 -- nested where ex2 : Nat ex2 = mult num + bool2nat true where num : Nat num = 42 mult : Nat → Nat mult = _⊗ 100 where _⊗_ = _*_ -- with outer arguments ex3 : Nat → Bool → Nat ex3 n b = mult num + bool2nat b where num = 42 + bool2nat b mult : Nat → Nat mult = _* n -- nested where with outer arguments ex4 : Bool → Nat ex4 b = mult 42 where mult : Nat → Nat mult n = bump n (bool2nat b) where bump : Nat → Nat → Nat bump x y = x * y + (n - bool2nat b) ex4' : Bool → Nat ex4' b = mult (bool2nat b) where mult : Nat → Nat mult n = bump n (bool2nat b) where bump : Nat → Nat → Nat bump x y = go (x * y) (n - bool2nat b) where go : Nat → Nat → Nat go z w = z + x + w + y + n + bool2nat b -- with pattern matching and multiple clauses ex5 : List Nat → Nat ex5 [] = zro where zro : Nat zro = 0 ex5 (n ∷ ns) = mult num + 1 where num = 42 + ex5 ns mult : Nat → Nat mult = _* n -- mix of patterns + inner multiple clauses + nested where ex6 : List Nat → Bool → Nat ex6 [] b = zro where zro : Nat zro = 0 ex6 (n ∷ ns) b = mult (num ∷ 1 ∷ []) where mult : List Nat → Nat mult [] = bump 5 (bool2nat b) where bump : Nat → Nat → Nat bump x y = x * y + n mult (m ∷ ms) = bump n m where bump : Nat → Nat → Nat bump x y = x * y + (m - n) num = 42 + ex6 ns true ex7 : Nat → Nat ex7 n₀ = go₁ n₀ where go₁ : Nat → Nat go₁ n₁ = go₂ (n₀ + n₁) where go₂ : Nat → Nat go₂ n₂ = n₀ + n₁ + n₂ ex7' : Nat → Nat ex7' n₀ = go₁ n₀ where go₁ : Nat → Nat go₁ n₁ = go₂ (n₀ + n₁) where go₂ : Nat → Nat go₂ n₂ = go₃ (n₀ + n₁ + n₂) where go₃ : Nat → Nat go₃ n₃ = n₀ + n₁ + n₂ + n₃ ex8 : Nat ex8 = n₂ where n₁ : Nat n₁ = 1 n₂ = n₁ + 1 {-# COMPILE AGDA2HS bool2nat #-} {-# COMPILE AGDA2HS ex1 #-} {-# COMPILE AGDA2HS ex2 #-} {-# COMPILE AGDA2HS ex3 #-} {-# COMPILE AGDA2HS ex4 #-} {-# COMPILE AGDA2HS ex4' #-} {-# COMPILE AGDA2HS ex5 #-} {-# COMPILE AGDA2HS ex6 #-} {-# COMPILE AGDA2HS ex7 #-} {-# COMPILE AGDA2HS ex7' #-} {-# COMPILE AGDA2HS ex8 #-}
{ "alphanum_fraction": 0.5193498452, "avg_line_length": 19.1407407407, "ext": "agda", "hexsha": "9003207b99756d6c531173a78db65ca53286e794", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "test/Where.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "test/Where.agda", "max_line_length": 58, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "test/Where.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 965, "size": 2584 }
-- Andreas, 2015-10-05, issue reported by mechvel, test case by Jesper Cockx -- {-# OPTIONS -v tc.term.exlam:20 #-} abstract foo : Set₁ foo = Set where AbstractSet₁ : Set₂ AbstractSet₁ = Set₁ f : Set → AbstractSet₁ f = λ { _ → Set } {-# NON_TERMINATING #-} loop : Set → Set loop = λ { A → loop A }
{ "alphanum_fraction": 0.5855855856, "avg_line_length": 19.5882352941, "ext": "agda", "hexsha": "f2ad0a64be9a5ce5b72b77311a0dfc818d8878aa", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1677.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1677.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1677.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 108, "size": 333 }
module Issue65 where open import Haskell.Prelude yeet : (c : Bool) → ({{c ≡ true}} → a) → ({{c ≡ false}} → a) → a yeet false x y = y {{refl}} yeet true x y = x {{refl}} {-# COMPILE AGDA2HS yeet #-} -- The branches start with instance lambdas that should be dropped. xx : Int xx = yeet true 1 2 {-# COMPILE AGDA2HS xx #-}
{ "alphanum_fraction": 0.6165644172, "avg_line_length": 21.7333333333, "ext": "agda", "hexsha": "0824a4a8d0de5585bafb2ed026efe38b91495983", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "test/Issue65.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "test/Issue65.agda", "max_line_length": 67, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "test/Issue65.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 114, "size": 326 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Polynomials.Multivariate.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Nat renaming (_+_ to _+n_) open import Cubical.Data.Vec open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing private variable ℓ ℓ' : Level module _ (A' : CommRing ℓ) where private A = fst A' open CommRingStr (snd A') ----------------------------------------------------------------------------- -- Definition data Poly (n : ℕ) : Type ℓ where -- elements 0P : Poly n base : (v : Vec ℕ n) → (a : A) → Poly n _Poly+_ : (P : Poly n) → (Q : Poly n) → Poly n -- AbGroup eq Poly+-assoc : (P Q R : Poly n) → P Poly+ (Q Poly+ R) ≡ (P Poly+ Q) Poly+ R Poly+-Rid : (P : Poly n) → P Poly+ 0P ≡ P Poly+-comm : (P Q : Poly n) → P Poly+ Q ≡ Q Poly+ P -- Base eq base-0P : (v : Vec ℕ n) → base v 0r ≡ 0P base-Poly+ : (v : Vec ℕ n) → (a b : A) → (base v a) Poly+ (base v b) ≡ base v (a + b) -- Set Trunc trunc : isSet(Poly n) ----------------------------------------------------------------------------- -- Induction and Recursion module _ (A' : CommRing ℓ) where private A = fst A' open CommRingStr (snd A') module Poly-Ind-Set -- types (n : ℕ) (F : (P : Poly A' n) → Type ℓ') (issd : (P : Poly A' n) → isSet (F P)) -- elements (0P* : F 0P) (base* : (v : Vec ℕ n) → (a : A) → F (base v a)) (_Poly+*_ : {P Q : Poly A' n} → (PS : F P) → (QS : F Q) → F (P Poly+ Q)) -- AbGroup eq (Poly+-assoc* : {P Q R : Poly A' n} → (PS : F P) → (QS : F Q) → (RS : F R) → PathP (λ i → F (Poly+-assoc P Q R i)) (PS Poly+* (QS Poly+* RS)) ((PS Poly+* QS) Poly+* RS)) (Poly+-Rid* : {P : Poly A' n} → (PS : F P) → PathP (λ i → F (Poly+-Rid P i)) (PS Poly+* 0P*) PS) (Poly+-comm* : {P Q : Poly A' n} → (PS : F P) → (QS : F Q) → PathP (λ i → F (Poly+-comm P Q i)) (PS Poly+* QS) (QS Poly+* PS)) -- Base eq (base-0P* : (v : Vec ℕ n) → PathP (λ i → F (base-0P v i)) (base* v 0r) 0P*) (base-Poly+* : (v : Vec ℕ n) → (a b : A) → PathP (λ i → F (base-Poly+ v a b i)) ((base* v a) Poly+* (base* v b)) (base* v (a + b))) where f : (P : Poly A' n) → F P f 0P = 0P* f (base v a) = base* v a f (P Poly+ Q) = (f P) Poly+* (f Q) f (Poly+-assoc P Q R i) = Poly+-assoc* (f P) (f Q) (f R) i f (Poly+-Rid P i) = Poly+-Rid* (f P) i f (Poly+-comm P Q i) = Poly+-comm* (f P) (f Q) i f (base-0P v i) = base-0P* v i f (base-Poly+ v a b i) = base-Poly+* v a b i f (trunc P Q p q i j) = isOfHLevel→isOfHLevelDep 2 issd (f P) (f Q) (cong f p) (cong f q) (trunc P Q p q) i j module Poly-Rec-Set -- types (n : ℕ) (B : Type ℓ') (iss : isSet B) -- elements (0P* : B) (base* : (v : Vec ℕ n) → (a : A) → B) (_Poly+*_ : B → B → B) -- AbGroup eq (Poly+-assoc* : (PS QS RS : B) → (PS Poly+* (QS Poly+* RS)) ≡ ((PS Poly+* QS) Poly+* RS)) (Poly+-Rid* : (PS : B) → (PS Poly+* 0P*) ≡ PS) (Poly+-comm* : (PS QS : B) → (PS Poly+* QS) ≡ (QS Poly+* PS)) -- Base eq (base-0P* : (v : Vec ℕ n) → (base* v 0r) ≡ 0P*) (base-Poly+* : (v : Vec ℕ n) → (a b : A) → ((base* v a) Poly+* (base* v b)) ≡ (base* v (a + b))) where f : Poly A' n → B f = Poly-Ind-Set.f n (λ _ → B) (λ _ → iss) 0P* base* _Poly+*_ Poly+-assoc* Poly+-Rid* Poly+-comm* base-0P* base-Poly+* module Poly-Ind-Prop -- types (n : ℕ) (F : (P : Poly A' n) → Type ℓ') (ispd : (P : Poly A' n) → isProp (F P)) -- elements (0P* : F 0P) (base* : (v : Vec ℕ n) → (a : A) → F (base v a)) (_Poly+*_ : {P Q : Poly A' n} → (PS : F P) → (QS : F Q) → F (P Poly+ Q)) where f : (P : Poly A' n) → F P f = Poly-Ind-Set.f n F (λ P → isProp→isSet (ispd P)) 0P* base* _Poly+*_ (λ {P Q R} PS QS RQ → toPathP (ispd _ (transport (λ i → F (Poly+-assoc P Q R i)) _) _)) (λ {P} PS → toPathP (ispd _ (transport (λ i → F (Poly+-Rid P i)) _) _)) (λ {P Q} PS QS → toPathP (ispd _ (transport (λ i → F (Poly+-comm P Q i)) _) _)) (λ v → toPathP (ispd _ (transport (λ i → F (base-0P v i)) _) _)) (λ v a b → toPathP (ispd _ (transport (λ i → F (base-Poly+ v a b i)) _) _)) module Poly-Rec-Prop -- types (n : ℕ) (B : Type ℓ') (isp : isProp B) -- elements (0P* : B) (base* : (v : Vec ℕ n) → (a : A) → B) (_Poly+*_ : B → B → B) where f : Poly A' n → B f = Poly-Ind-Prop.f n (λ _ → B) (λ _ → isp) 0P* base* _Poly+*_
{ "alphanum_fraction": 0.4509762755, "avg_line_length": 35.0220588235, "ext": "agda", "hexsha": "d94f9f5239392152cddb3524d4afc9ad64ee4f84", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Base.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1939, "size": 4763 }
open import Agda.Builtin.Sigma renaming (fst to proj₁; snd to proj₂) open import Agda.Builtin.Nat renaming (Nat to ℕ) NEX : Set₁ NEX = Σ Set λ A → (ℕ → A) variable A : NEX B : A .proj₁ → NEX [Σ] : (A : NEX) → (B : A .proj₁ → NEX) → NEX [Σ] A B .proj₁ = Σ (A .proj₁) λ x → B x .proj₁ [Σ] A B .proj₂ n = A .proj₂ n , B _ .proj₂ n _[→]_ : (A B : NEX) → NEX (A [→] B) .proj₁ = A .proj₁ → B .proj₁ (A [→] B) .proj₂ n x = B .proj₂ n -- B.A is underdetermined and solved with (A .proj₁ , _snd) for a fresh meta -- _snd : ℕ → A .proj₁, which is then generalized over. The bug was that _snd -- turned into an explicit rather than implicit argument. [π₁] : ([Σ] A B [→] A) .proj₁ [π₁] {A = A} {B = B} {snd = snd} x = x .proj₁
{ "alphanum_fraction": 0.5895316804, "avg_line_length": 29.04, "ext": "agda", "hexsha": "9457f6888f5478f31d39f2326abb5e7e7bf7ceac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4970.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4970.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4970.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 311, "size": 726 }
module Haskell.Prim.Tuple where open import Agda.Builtin.List open import Haskell.Prim private variable as : List Set -------------------------------------------------- -- Tuples infixr 5 _∷_ data Tuple : List Set → Set where [] : Tuple [] _∷_ : a → Tuple as → Tuple (a ∷ as) infix 3 _×_ _×_×_ _×_ : (a b : Set) → Set a × b = Tuple (a ∷ b ∷ []) _×_×_ : (a b c : Set) → Set a × b × c = Tuple (a ∷ b ∷ c ∷ []) infix -1 _,_ _,_,_ pattern _,_ x y = x Tuple.∷ y Tuple.∷ [] pattern _,_,_ x y z = x Tuple.∷ y Tuple.∷ z Tuple.∷ [] uncurry : (a → b → c) → a × b → c uncurry f (x , y) = f x y curry : (a × b → c) → a → b → c curry f x y = f (x , y) fst : a × b → a fst (x , _) = x snd : a × b → b snd (_ , y) = y first : (a → b) → a × c → b × c first f (x , y) = f x , y second : (a → b) → c × a → c × b second f (x , y) = x , f y _***_ : (a → b) → (c → d) → a × c → b × d (f *** g) (x , y) = f x , g y
{ "alphanum_fraction": 0.4421841542, "avg_line_length": 17.6226415094, "ext": "agda", "hexsha": "e20333953639cd19be7f8312059d51b1b17a1b7d", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Tuple.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Tuple.agda", "max_line_length": 58, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Tuple.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 397, "size": 934 }
module Prelude.Vec where open import Prelude.Nat open import Prelude.Fin open import Prelude.Function open import Prelude.Functor open import Prelude.Applicative open import Prelude.List open import Prelude.Equality open import Prelude.Decidable open import Prelude.Ord open import Prelude.Semiring infixr 5 _∷_ data Vec {a} (A : Set a) : Nat → Set a where [] : Vec A zero _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) private -- These are private. Use pure and _<*>_ instead. vec : ∀ {a} {A : Set a} {n} → A → Vec A n vec {n = zero } x = [] vec {n = suc n} x = x ∷ vec x vapp : ∀ {a b} {A : Set a} {B : Set b} {n} → Vec (A → B) n → Vec A n → Vec B n vapp [] _ = [] vapp (f ∷ fs) (x ∷ xs) = f x ∷ vapp fs xs vmap : ∀ {a b} {A : Set a} {B : Set b} {n} → (A → B) → Vec A n → Vec B n vmap f [] = [] vmap f (x ∷ xs) = f x ∷ vmap f xs vecToList : ∀ {a} {A : Set a} {@erased n} → Vec A n → List A vecToList [] = [] vecToList (x ∷ xs) = x ∷ vecToList xs listToVec : ∀ {a} {A : Set a} (xs : List A) → Vec A (length xs) listToVec [] = [] listToVec (x ∷ xs) = x ∷ listToVec xs --- Lookup --- indexVec : ∀ {a} {A : Set a} {n} → Vec A n → Fin n → A indexVec (x ∷ xs) zero = x indexVec (x ∷ xs) (suc i) = indexVec xs i tabulate : ∀ {a} {A : Set a} {n} → (Fin n → A) → Vec A n tabulate {n = zero } f = [] tabulate {n = suc n} f = f zero ∷ tabulate (f ∘ suc) --- Folding --- vfoldr : ∀ {a b} {A : Set a} {B : Nat → Set b} → (∀ {@erased n} → A → B n → B (suc n)) → B 0 → ∀ {@erased n} → Vec A n → B n vfoldr f z [] = z vfoldr f z (x ∷ xs) = f x (vfoldr (λ {n} → f {n}) z xs) vfoldl : ∀ {a b} {A : Set a} {B : Nat → Set b} → (∀ {n} → B n → A → B (suc n)) → B 0 → ∀ {@erased n} → Vec A n → B n vfoldl f z [] = z vfoldl {B = B} f z (x ∷ xs) = vfoldl {B = B ∘ suc} f (f z x) xs --- Other list functions --- module _ {a} {A : Set a} where infixr 5 _v++_ _v++_ : ∀ {m n} → Vec A m → Vec A n → Vec A (m + n) [] v++ ys = ys (x ∷ xs) v++ ys = x ∷ xs v++ ys vreverse : ∀ {@erased n} → Vec A n → Vec A n vreverse xs = vfoldl {B = Vec A} (flip _∷_) [] xs --- Equality --- vcons-inj-head : ∀ {a} {A : Set a} {x y : A} {n} {xs ys : Vec A n} → x Vec.∷ xs ≡ y ∷ ys → x ≡ y vcons-inj-head refl = refl vcons-inj-tail : ∀ {a} {A : Set a} {x y : A} {n} {xs ys : Vec A n} → x Vec.∷ xs ≡ y ∷ ys → xs ≡ ys vcons-inj-tail refl = refl instance EqVec : ∀ {a} {A : Set a} {{EqA : Eq A}} {n} → Eq (Vec A n) _==_ {{EqVec}} [] [] = yes refl _==_ {{EqVec}} (x ∷ xs) (y ∷ ys) with x == y ... | no neq = no λ eq → neq (vcons-inj-head eq) ... | yes eq with xs == ys ... | no neq = no λ eq₁ → neq (vcons-inj-tail eq₁) ... | yes eq₁ = yes (_∷_ $≡ eq *≡ eq₁) --- Ord --- data LessVec {a} {A : Set a} {{OrdA : Ord A}} : ∀ {n} → Vec A n → Vec A n → Set a where head< : ∀ {@erased x y n} {@erased xs ys : Vec A n} → x < y → LessVec (x ∷ xs) (y ∷ ys) tail< : ∀ {@erased x n} {@erased xs ys : Vec A n} → LessVec xs ys → LessVec (x ∷ xs) (x ∷ ys) private compareVec : ∀ {a} {A : Set a} {{OrdA : Ord A}} {@erased n} (xs ys : Vec A n) → Comparison LessVec xs ys compareVec [] [] = equal refl compareVec (x ∷ xs) (y ∷ ys) with compare x y compareVec (x ∷ xs) (y ∷ ys) | less x<y = less (head< x<y) compareVec (x ∷ xs) (y ∷ ys) | greater y<x = greater (head< y<x) compareVec (x ∷ xs) (.x ∷ ys) | equal refl with compareVec xs ys compareVec (x ∷ xs) (.x ∷ ys) | equal refl | less xs<ys = less (tail< xs<ys) compareVec (x ∷ xs) (.x ∷ ys) | equal refl | greater ys<xs = greater (tail< ys<xs) compareVec (x ∷ xs) (.x ∷ .xs) | equal refl | equal refl = equal refl private len : ∀ {a} {A : Set a} {n} → Vec A n → Nat len {n = n} _ = n instance OrdVec : ∀ {a} {A : Set a} {{OrdA : Ord A}} {n} → Ord (Vec A n) OrdVec = defaultOrd compareVec OrdLawsVec : ∀ {a} {A : Set a} {{OrdA : Ord/Laws A}} {n} → Ord/Laws (Vec A n) Ord/Laws.super OrdLawsVec = it less-antirefl {{OrdLawsVec}} {[]} () less-antirefl {{OrdLawsVec {A = A}}} {x ∷ xs} (head< lt) = less-antirefl {A = A} lt less-antirefl {{OrdLawsVec {A = A}}} {x ∷ xs} (tail< lt) = less-antirefl {A = Vec A (len xs)} {xs} lt less-trans {{OrdLawsVec {A = A}}} {[]} {[]} () _ less-trans {{OrdLawsVec {A = A}}} {x ∷ xs} {y ∷ ys} {z ∷ zs} (head< lt) (head< lt₁) = head< (less-trans {A = A} lt lt₁) less-trans {{OrdLawsVec {A = A}}} {x ∷ xs} {y ∷ ys} {y ∷ zs} (head< lt) (tail< lt₁) = head< lt less-trans {{OrdLawsVec {A = A}}} {x ∷ xs} {x ∷ ys} {z ∷ zs} (tail< lt) (head< lt₁) = head< lt₁ less-trans {{OrdLawsVec {A = A}}} {x ∷ xs} {x ∷ ys} {x ∷ zs} (tail< lt) (tail< lt₁) = tail< (less-trans {A = Vec A (len xs)} lt lt₁) --- Functor instances --- instance FunctorVec : ∀ {a n} → Functor {a} (flip Vec n) fmap {{FunctorVec}} = vmap FunctorVec′ : ∀ {a b n} → Functor′ {a} {b} (flip Vec n) fmap′ {{FunctorVec′}} = vmap ApplicativeVec : ∀ {a n} → Applicative {a} (flip Vec n) pure {{ApplicativeVec}} = vec _<*>_ {{ApplicativeVec}} = vapp ApplicativeVec′ : ∀ {a b n} → Applicative′ {a} {b} (flip Vec n) _<*>′_ {{ApplicativeVec′}} = vapp
{ "alphanum_fraction": 0.5173010381, "avg_line_length": 36.125, "ext": "agda", "hexsha": "4f991f7511df22e7f859676098633f350e06e8b4", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Vec.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Vec.agda", "max_line_length": 134, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 2193, "size": 5202 }
-- 2010-10-04 -- termination checker no longer counts stripping off a record constructor -- as decrease -- 2019-10-18 -- It does if it's an inductive non-eta record. module Issue334b where data Unit : Set where unit : Unit record E : Set where inductive constructor mkE field fromE : E spam : Unit f : E -> Set f (mkE e unit) = f e f' : E -> Set f' (mkE e u) = f e
{ "alphanum_fraction": 0.6528497409, "avg_line_length": 16.7826086957, "ext": "agda", "hexsha": "cd9745170cd1e2b9857227c979e22c8cf1f5fa99", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue334b.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "strake/agda", "max_issues_repo_path": "test/Succeed/Issue334b.agda", "max_line_length": 74, "max_stars_count": 2, "max_stars_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "strake/agda", "max_stars_repo_path": "test/Succeed/Issue334b.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 131, "size": 386 }
module Structure.Setoid.Size where import Lvl open import Logic open import Logic.Propositional open import Logic.Predicate open import Structure.Setoid open import Structure.Function.Domain open import Structure.Function open import Syntax.Function open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂ : Lvl.Level _≍_ : (A : Setoid{ℓₑ₁}{ℓ₁}) → (B : Setoid{ℓₑ₂}{ℓ₂}) → Stmt _≍_ A B = ∃{Obj = Setoid.Type(A) → Setoid.Type(B)} (f ↦ Function(f) ∧ Bijective(f)) _≼_ : (A : Setoid{ℓₑ₁}{ℓ₁}) → (B : Setoid{ℓₑ₂}{ℓ₂}) → Stmt _≼_ A B = ∃{Obj = Setoid.Type(A) → Setoid.Type(B)} (f ↦ Function(f) ∧ Injective(f)) _≽_ : (A : Setoid{ℓₑ₁}{ℓ₁}) → (B : Setoid{ℓₑ₂}{ℓ₂}) → Stmt _≽_ A B = ∃{Obj = Setoid.Type(A) → Setoid.Type(B)} (f ↦ Function(f) ∧ Surjective(f)) _≭_ : (A : Setoid{ℓₑ₁}{ℓ₁}) → (B : Setoid{ℓₑ₂}{ℓ₂}) → Stmt _≭_ A B = ¬(A ≍ B) _≺_ : (A : Setoid{ℓₑ₁}{ℓ₁}) → (B : Setoid{ℓₑ₂}{ℓ₂}) → Stmt _≺_ A B = (A ≼ B) ∧ (A ≭ B) _≻_ : (A : Setoid{ℓₑ₁}{ℓ₁}) → (B : Setoid{ℓₑ₂}{ℓ₂}) → Stmt _≻_ A B = (A ≽ B) ∧ (A ≭ B)
{ "alphanum_fraction": 0.6087388282, "avg_line_length": 31.46875, "ext": "agda", "hexsha": "8e1f549f415a62f5bf006343d17eaa480838a090", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Setoid/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Setoid/Size.agda", "max_line_length": 84, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Setoid/Size.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 484, "size": 1007 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Containers, based on the work of Abbott and others ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Data.Container where open import Level using (_⊔_) open import Codata.M hiding (map) open import Data.W open import Size ------------------------------------------------------------------------ -- Re-exporting content to maintain backwards compatibility open import Data.Container.Core public open import Data.Container.Relation.Unary.Any using (◇) renaming (map to ◇-map) public open import Data.Container.Relation.Unary.All using (□) renaming (map to □-map) public open import Data.Container.Membership using (_∈_) public open import Data.Container.Relation.Binary.Pointwise using () renaming (Pointwise to Eq) public open import Data.Container.Relation.Binary.Pointwise.Properties using (refl; sym; trans) public open import Data.Container.Relation.Binary.Equality.Setoid using (isEquivalence; setoid) public open import Data.Container.Properties using () renaming (map-identity to identity; map-compose to composition) public open import Data.Container.Related public module Morphism where open import Data.Container.Morphism.Properties using (Natural; NT; natural; complete; id-correct; ∘-correct) public open import Data.Container.Morphism using (id; _∘_) public -- The least and greatest fixpoints of a container. μ : ∀ {s p} → Container s p → Set (s ⊔ p) μ = W ν : ∀ {s p} → Container s p → Set (s ⊔ p) ν C = M C ∞
{ "alphanum_fraction": 0.6462378641, "avg_line_length": 32.3137254902, "ext": "agda", "hexsha": "4173bdc37c29eda3fe4c67d4f57dc868b8120592", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container.agda", "max_line_length": 81, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 373, "size": 1648 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Logic where import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sum as ⊎ using (_⊎_) open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.Foundations.Prelude as FP open import Cubical.Functions.Embedding open import Cubical.Functions.Fibration as Fib open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.Foundations.HLevels using (hProp; isPropΠ; isPropΠ2; isSetΠ; isSetHProp; isOfHLevelΣ; isPropΣ) public open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.Univalence using (ua) open import Cubical.Relation.Nullary hiding (¬_) infix 10 ¬_ infixr 8 _⊔_ infixr 8 _⊔′_ infixr 8 _⊓_ infixr 8 _⊓′_ infixr 6 _⇒_ infixr 4 _⇔_ infix 30 _≡ₚ_ infix 30 _≢ₚ_ infix 2 ∃[]-syntax infix 2 ∃[∶]-syntax infix 2 ∀[∶]-syntax infix 2 ∀[]-syntax infix 2 ⇒∶_⇐∶_ infix 2 ⇐∶_⇒∶_ -------------------------------------------------------------------------------- -- The type hProp of mere propositions -- the definition hProp is given in Foundations.HLevels -- hProp ℓ = Σ (Type ℓ) isProp private variable ℓ ℓ' ℓ'' : Level P Q R : hProp ℓ A B C : Type ℓ [_] : hProp ℓ → Type ℓ [_] = fst isProp[] : (A : hProp ℓ) → isProp [ A ] isProp[] = snd ∥_∥ₚ : Type ℓ → hProp ℓ ∥ A ∥ₚ = ∥ A ∥ , propTruncIsProp _≡ₚ_ : (x y : A) → hProp _ x ≡ₚ y = ∥ x ≡ y ∥ₚ hProp≡ : [ P ] ≡ [ Q ] → P ≡ Q hProp≡ p = Σ≡Prop (\ _ → isPropIsProp) p -------------------------------------------------------------------------------- -- Logical implication of mere propositions _⇒_ : (A : hProp ℓ) → (B : hProp ℓ') → hProp _ A ⇒ B = ([ A ] → [ B ]) , isPropΠ λ _ → isProp[] B ⇔toPath : [ P ⇒ Q ] → [ Q ⇒ P ] → P ≡ Q ⇔toPath {P = P} {Q = Q} P⇒Q Q⇒P = hProp≡ (isoToPath (iso P⇒Q Q⇒P (λ b → isProp[] Q (P⇒Q (Q⇒P b)) b) λ a → isProp[] P (Q⇒P (P⇒Q a)) a)) pathTo⇒ : P ≡ Q → [ P ⇒ Q ] pathTo⇒ p x = subst fst p x pathTo⇐ : P ≡ Q → [ Q ⇒ P ] pathTo⇐ p x = subst fst (sym p) x substₚ : {x y : A} (B : A → hProp ℓ) → [ x ≡ₚ y ⇒ B x ⇒ B y ] substₚ {x = x} {y = y} B = PropTrunc.elim (λ _ → isPropΠ λ _ → isProp[] (B y)) (subst (fst ∘ B)) -------------------------------------------------------------------------------- -- Mixfix notations for ⇔-toPath -- see ⊔-identityˡ and ⊔-identityʳ for the difference ⇒∶_⇐∶_ : [ P ⇒ Q ] → [ Q ⇒ P ] → P ≡ Q ⇒∶_⇐∶_ = ⇔toPath ⇐∶_⇒∶_ : [ Q ⇒ P ] → [ P ⇒ Q ] → P ≡ Q ⇐∶ g ⇒∶ f = ⇔toPath f g -------------------------------------------------------------------------------- -- False and True ⊥ : hProp _ ⊥ = ⊥.⊥ , λ () ⊤ : hProp _ ⊤ = Unit , (λ _ _ _ → tt) -------------------------------------------------------------------------------- -- Pseudo-complement of mere propositions ¬_ : hProp ℓ → hProp _ ¬ A = ([ A ] → ⊥.⊥) , isPropΠ λ _ → ⊥.isProp⊥ _≢ₚ_ : (x y : A) → hProp _ x ≢ₚ y = ¬ x ≡ₚ y -------------------------------------------------------------------------------- -- Disjunction of mere propositions _⊔′_ : Type ℓ → Type ℓ' → Type _ A ⊔′ B = ∥ A ⊎ B ∥ _⊔_ : hProp ℓ → hProp ℓ' → hProp _ P ⊔ Q = ∥ [ P ] ⊎ [ Q ] ∥ₚ inl : A → A ⊔′ B inl x = ∣ ⊎.inl x ∣ inr : B → A ⊔′ B inr x = ∣ ⊎.inr x ∣ ⊔-elim : (P : hProp ℓ) (Q : hProp ℓ') (R : [ P ⊔ Q ] → hProp ℓ'') → (∀ x → [ R (inl x) ]) → (∀ y → [ R (inr y) ]) → (∀ z → [ R z ]) ⊔-elim _ _ R P⇒R Q⇒R = PropTrunc.elim (snd ∘ R) (⊎.elim P⇒R Q⇒R) -------------------------------------------------------------------------------- -- Conjunction of mere propositions _⊓′_ : Type ℓ → Type ℓ' → Type _ A ⊓′ B = A × B _⊓_ : hProp ℓ → hProp ℓ' → hProp _ A ⊓ B = [ A ] ⊓′ [ B ] , isOfHLevelΣ 1 (isProp[] A) (\ _ → isProp[] B) ⊓-intro : (P : hProp ℓ) (Q : [ P ] → hProp ℓ') (R : [ P ] → hProp ℓ'') → (∀ a → [ Q a ]) → (∀ a → [ R a ]) → (∀ (a : [ P ]) → [ Q a ⊓ R a ] ) ⊓-intro _ _ _ = \ f g a → f a , g a -------------------------------------------------------------------------------- -- Logical bi-implication of mere propositions _⇔_ : hProp ℓ → hProp ℓ' → hProp _ A ⇔ B = (A ⇒ B) ⊓ (B ⇒ A) -------------------------------------------------------------------------------- -- Universal Quantifier ∀[∶]-syntax : (A → hProp ℓ) → hProp _ ∀[∶]-syntax {A = A} P = (∀ x → [ P x ]) , isPropΠ (isProp[] ∘ P) ∀[]-syntax : (A → hProp ℓ) → hProp _ ∀[]-syntax {A = A} P = (∀ x → [ P x ]) , isPropΠ (isProp[] ∘ P) syntax ∀[∶]-syntax {A = A} (λ a → P) = ∀[ a ∶ A ] P syntax ∀[]-syntax (λ a → P) = ∀[ a ] P -------------------------------------------------------------------------------- -- Existential Quantifier ∃[]-syntax : (A → hProp ℓ) → hProp _ ∃[]-syntax {A = A} P = ∥ Σ A ([_] ∘ P) ∥ₚ ∃[∶]-syntax : (A → hProp ℓ) → hProp _ ∃[∶]-syntax {A = A} P = ∥ Σ A ([_] ∘ P) ∥ₚ syntax ∃[∶]-syntax {A = A} (λ x → P) = ∃[ x ∶ A ] P syntax ∃[]-syntax (λ x → P) = ∃[ x ] P -------------------------------------------------------------------------------- -- Decidable mere proposition Decₚ : (P : hProp ℓ) → hProp ℓ Decₚ P = Dec [ P ] , isPropDec (isProp[] P) -------------------------------------------------------------------------------- -- Negation commutes with truncation ∥¬A∥≡¬∥A∥ : (A : Type ℓ) → ∥ (A → ⊥.⊥) ∥ₚ ≡ (¬ ∥ A ∥ₚ) ∥¬A∥≡¬∥A∥ _ = ⇒∶ (λ ¬A A → PropTrunc.elim (λ _ → ⊥.isProp⊥) (PropTrunc.elim (λ _ → isPropΠ λ _ → ⊥.isProp⊥) (λ ¬p p → ¬p p) ¬A) A) ⇐∶ λ ¬p → ∣ (λ p → ¬p ∣ p ∣) ∣ -------------------------------------------------------------------------------- -- (hProp, ⊔, ⊥) is a bounded ⊔-semilattice ⊔-assoc : (P : hProp ℓ) (Q : hProp ℓ') (R : hProp ℓ'') → P ⊔ (Q ⊔ R) ≡ (P ⊔ Q) ⊔ R ⊔-assoc P Q R = ⇒∶ ⊔-elim P (Q ⊔ R) (λ _ → (P ⊔ Q) ⊔ R) (inl ∘ inl) (⊔-elim Q R (λ _ → (P ⊔ Q) ⊔ R) (inl ∘ inr) inr) ⇐∶ assoc2 where assoc2 : (A ⊔′ B) ⊔′ C → A ⊔′ (B ⊔′ C) assoc2 ∣ ⊎.inr a ∣ = ∣ ⊎.inr ∣ ⊎.inr a ∣ ∣ assoc2 ∣ ⊎.inl ∣ ⊎.inr b ∣ ∣ = ∣ ⊎.inr ∣ ⊎.inl b ∣ ∣ assoc2 ∣ ⊎.inl ∣ ⊎.inl c ∣ ∣ = ∣ ⊎.inl c ∣ assoc2 ∣ ⊎.inl (squash x y i) ∣ = propTruncIsProp (assoc2 ∣ ⊎.inl x ∣) (assoc2 ∣ ⊎.inl y ∣) i assoc2 (squash x y i) = propTruncIsProp (assoc2 x) (assoc2 y) i ⊔-idem : (P : hProp ℓ) → P ⊔ P ≡ P ⊔-idem P = ⇒∶ (⊔-elim P P (\ _ → P) (\ x → x) (\ x → x)) ⇐∶ inl ⊔-comm : (P : hProp ℓ) (Q : hProp ℓ') → P ⊔ Q ≡ Q ⊔ P ⊔-comm P Q = ⇒∶ (⊔-elim P Q (\ _ → (Q ⊔ P)) inr inl) ⇐∶ (⊔-elim Q P (\ _ → (P ⊔ Q)) inr inl) ⊔-identityˡ : (P : hProp ℓ) → ⊥ ⊔ P ≡ P ⊔-identityˡ P = ⇒∶ (⊔-elim ⊥ P (λ _ → P) (λ ()) (λ x → x)) ⇐∶ inr ⊔-identityʳ : (P : hProp ℓ) → P ⊔ ⊥ ≡ P ⊔-identityʳ P = ⇔toPath (⊔-elim P ⊥ (λ _ → P) (λ x → x) λ ()) inl -------------------------------------------------------------------------------- -- (hProp, ⊓, ⊤) is a bounded ⊓-lattice ⊓-assoc : (P : hProp ℓ) (Q : hProp ℓ') (R : hProp ℓ'') → P ⊓ Q ⊓ R ≡ (P ⊓ Q) ⊓ R ⊓-assoc _ _ _ = ⇒∶ (λ {(x , (y , z)) → (x , y) , z}) ⇐∶ (λ {((x , y) , z) → x , (y , z) }) ⊓-comm : (P : hProp ℓ) (Q : hProp ℓ') → P ⊓ Q ≡ Q ⊓ P ⊓-comm _ _ = ⇔toPath (\ p → p .snd , p .fst) (\ p → p .snd , p .fst) ⊓-idem : (P : hProp ℓ) → P ⊓ P ≡ P ⊓-idem _ = ⇔toPath fst (λ x → x , x) ⊓-identityˡ : (P : hProp ℓ) → ⊤ ⊓ P ≡ P ⊓-identityˡ _ = ⇔toPath snd λ x → tt , x ⊓-identityʳ : (P : hProp ℓ) → P ⊓ ⊤ ≡ P ⊓-identityʳ _ = ⇔toPath fst λ x → x , tt -------------------------------------------------------------------------------- -- Distributive laws ⇒-⊓-distrib : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⇒ (Q ⊓ R) ≡ (P ⇒ Q) ⊓ (P ⇒ R) ⇒-⊓-distrib _ _ _ = ⇒∶ (λ f → (fst ∘ f) , (snd ∘ f)) ⇐∶ (λ { (f , g) x → f x , g x}) ⊓-⊔-distribˡ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⊓ (Q ⊔ R) ≡ (P ⊓ Q) ⊔ (P ⊓ R) ⊓-⊔-distribˡ P Q R = ⇒∶ (λ { (x , a) → ⊔-elim Q R (λ _ → (P ⊓ Q) ⊔ (P ⊓ R)) (λ y → ∣ ⊎.inl (x , y) ∣ ) (λ z → ∣ ⊎.inr (x , z) ∣ ) a }) ⇐∶ ⊔-elim (P ⊓ Q) (P ⊓ R) (λ _ → P ⊓ Q ⊔ R) (λ y → fst y , inl (snd y)) (λ z → fst z , inr (snd z)) ⊔-⊓-distribˡ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⊔ (Q ⊓ R) ≡ (P ⊔ Q) ⊓ (P ⊔ R) ⊔-⊓-distribˡ P Q R = ⇒∶ ⊔-elim P (Q ⊓ R) (λ _ → (P ⊔ Q) ⊓ (P ⊔ R) ) (\ x → inl x , inl x) (\ p → inr (p .fst) , inr (p .snd)) ⇐∶ (λ { (x , y) → ⊔-elim P R (λ _ → P ⊔ Q ⊓ R) inl (λ z → ⊔-elim P Q (λ _ → P ⊔ Q ⊓ R) inl (λ y → inr (y , z)) x) y }) ⊓-∀-distrib : (P : A → hProp ℓ) (Q : A → hProp ℓ') → (∀[ a ∶ A ] P a) ⊓ (∀[ a ∶ A ] Q a) ≡ (∀[ a ∶ A ] (P a ⊓ Q a)) ⊓-∀-distrib P Q = ⇒∶ (λ {(p , q) a → p a , q a}) ⇐∶ λ pq → (fst ∘ pq ) , (snd ∘ pq) -------------------------------------------------------------------------------- -- Introduce the "powerset" of a type in the style of Escardó's lecture notes: -- https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#propositionalextensionality ℙ : ∀ {ℓ} → Type ℓ → Type (ℓ-suc ℓ) ℙ {ℓ} X = X → hProp ℓ infix 5 _∈_ _∈_ : {X : Type ℓ} → X → ℙ X → Type ℓ x ∈ A = [ A x ] _⊆_ : {X : Type ℓ} → ℙ X → ℙ X → Type ℓ A ⊆ B = ∀ x → x ∈ A → x ∈ B ∈-isProp : {X : Type ℓ} (A : ℙ X) (x : X) → isProp (x ∈ A) ∈-isProp A = isProp[] ∘ A ⊆-isProp : {X : Type ℓ} (A B : ℙ X) → isProp (A ⊆ B) ⊆-isProp A B = isPropΠ2 (λ x _ → ∈-isProp B x) ⊆-refl : {X : Type ℓ} (A : ℙ X) → A ⊆ A ⊆-refl A x = idfun (x ∈ A) ⊆-refl-consequence : {X : Type ℓ} (A B : ℙ X) → A ≡ B → (A ⊆ B) × (B ⊆ A) ⊆-refl-consequence {X} A B p = subst (λ B → (A ⊆ B)) p (⊆-refl A) , subst (λ A → (B ⊆ A)) (sym p) (⊆-refl B) ⊆-extensionality : {X : Type ℓ} (A B : ℙ X) → (A ⊆ B) × (B ⊆ A) → A ≡ B ⊆-extensionality A B (φ , ψ) i x = ⇔toPath {P = (A x)} {Q = (B x)} (φ x) (ψ x) i powersets-are-sets : {X : Type ℓ} → isSet (ℙ X) powersets-are-sets {X = X} = isSetΠ (λ _ → isSetHProp) ⊆-extensionalityEquiv : {X : Type ℓ} (A B : ℙ X) → (A ⊆ B) × (B ⊆ A) ≃ (A ≡ B) ⊆-extensionalityEquiv A B = isoToEquiv (iso (⊆-extensionality A B) (⊆-refl-consequence A B) (λ _ → powersets-are-sets A B _ _) (λ _ → isPropΣ (⊆-isProp A B) (λ _ → ⊆-isProp B A) _ _)) -- We show that the powerset is the subtype classifier -- i.e. ℙ X ≃ Σ[A ∈ Type ℓ] (A ↪ X) Embedding→Subset : {X : Type ℓ} → Σ[ A ∈ Type ℓ ] (A ↪ X) → ℙ X Embedding→Subset (_ , f , isPropFiber) x = fiber f x , isPropFiber x Subset→Embedding : {X : Type ℓ} → ℙ X → Σ[ A ∈ Type ℓ ] (A ↪ X) Subset→Embedding {X = X} A = D , f , ψ where D = Σ[ x ∈ X ] x ∈ A f : D → X f d = d .fst ψ : hasPropFibers f ψ x ((y , y∈A) , y≡x) ((z , z∈A) , z≡x) = ΣPathP (r , q) where p : y ≡ z p = y≡x ∙ sym z≡x r : (y , y∈A) ≡ (z , z∈A) r = Σ≡Prop (∈-isProp A) p q : PathP (λ i → p i ≡ x) y≡x z≡x q i j = hcomp (λ k → λ { (j = i1) → x ; (i = i0) → y≡x j ; (i = i1) → z≡x (~ k ∨ j) }) (y≡x (i ∨ j)) Subset→Embedding→Subset : {X : Type ℓ} → section (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X}) Subset→Embedding→Subset _ = funExt λ x → Σ≡Prop (λ _ → FP.isPropIsProp) (ua (Fib.FiberIso.fiberEquiv _ x)) Embedding→Subset→Embedding : {X : Type ℓ} → retract (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X}) Embedding→Subset→Embedding {ℓ = ℓ} {X = X} (A , f , ψ) = cong (Σ-assoc-≃ .fst) p where χ = Subset→Embedding (Embedding→Subset (A , f , ψ)) .snd .snd p : (((Σ[ x ∈ X ] fiber f x) , fst) , χ) ≡ ((A , f) , ψ) p = Σ≡Prop (λ _ → hasPropFibersIsProp) ((equivToIso (Fib.fibrationEquiv X ℓ)) .Iso.leftInv (A , f)) Subset≃Embedding : {X : Type ℓ} → ℙ X ≃ (Σ[ A ∈ Type ℓ ] (A ↪ X)) Subset≃Embedding = isoToEquiv (iso Subset→Embedding Embedding→Subset Embedding→Subset→Embedding Subset→Embedding→Subset) Subset≡Embedding : {X : Type ℓ} → ℙ X ≡ (Σ[ A ∈ Type ℓ ] (A ↪ X)) Subset≡Embedding = ua Subset≃Embedding
{ "alphanum_fraction": 0.4317165753, "avg_line_length": 31.4456233422, "ext": "agda", "hexsha": "316e4ebe8e0851c869709208307c12bed232a1ea", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/Foundations/Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/Foundations/Logic.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/Foundations/Logic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5414, "size": 11855 }
module Nat where import Prelude import Equiv import Datoid open Prelude open Equiv open Datoid data Nat : Set where zero : Nat suc : Nat -> Nat one : Nat one = suc zero _+_ : Nat -> Nat -> Nat zero + n = n suc m + n = suc (m + n) private eqNat : Nat -> Nat -> Bool eqNat zero zero = True eqNat (suc m) (suc n) = eqNat m n eqNat _ _ = False refl' : (x : Nat) -> T (eqNat x x) refl' zero = unit refl' (suc n) = refl' n sym' : (x y : Nat) -> T (eqNat x y) -> T (eqNat y x) sym' zero zero _ = unit sym' (suc n1) (suc n2) eq = sym' n1 n2 eq sym' (suc _) zero wrong = wrong sym' zero (suc _) wrong = wrong trans' : (x y z : Nat) -> T (eqNat x y) -> T (eqNat y z) -> T (eqNat x z) trans' zero _ zero _ _ = unit trans' (suc n1) (suc n2) (suc n3) eq12 eq23 = trans' n1 n2 n3 eq12 eq23 trans' zero (suc _) _ wrong _ = absurdElim wrong trans' _ zero (suc _) _ wrong = absurdElim wrong trans' (suc _) zero _ wrong _ = absurdElim wrong trans' _ (suc _) zero _ wrong = absurdElim wrong decidableEquiv : DecidableEquiv Nat decidableEquiv = decEquiv (equiv (T' eqNat) refl' sym' trans') (boolFunctionsDecidable eqNat) natDatoid : Datoid natDatoid = datoid Nat decidableEquiv
{ "alphanum_fraction": 0.5250859107, "avg_line_length": 26.9444444444, "ext": "agda", "hexsha": "0b71bbc555dbdbaced03ec091a50334d8a585edf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/AIM4/bag/Nat.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/AIM4/bag/Nat.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/AIM4/bag/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 513, "size": 1455 }
------------------------------------------------------------------------ -- Incorrect coinductive axiomatisation of subtyping ------------------------------------------------------------------------ -- This module shows that if we remove transitivity from -- RecursiveTypes.Subtyping.Axiomatic.Coinductive._≤_, and take the -- transitive closure of the resulting relation, then we get a weaker -- (less defined) relation than the one we started with. module RecursiveTypes.Subtyping.Axiomatic.Incorrect where open import Codata.Musical.Notation open import Data.Fin using (Fin; zero; suc) open import Function using (id; _$_) open import Data.Nat using (ℕ; zero; suc; z≤n; s≤s; ≤′-refl) renaming (_≤_ to _≤ℕ_) open import Data.Nat.Induction open import Data.Nat.Properties using (≤-step; ≤⇒≤′) open import Data.Product as Prod open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import RecursiveTypes.Syntax hiding (_≲_) open import RecursiveTypes.Substitution using (_[0≔_]; unfold[μ_⟶_]) open import RecursiveTypes.Subtyping.Semantic.Coinductive as Sem using (_≤Coind_; ⊥; ⊤; _⟶_) ------------------------------------------------------------------------ -- The alternative "subtyping" relation infixr 10 _⟶_ infix 4 _≤_ _≤′_ infixr 2 _≤⟨_⟩_ infix 2 _∎ -- A definition which does not include a transitivity constructor. data _≤′_ {n} : Ty n → Ty n → Set where ⊥ : ∀ {τ} → ⊥ ≤′ τ ⊤ : ∀ {σ} → σ ≤′ ⊤ _⟶_ : ∀ {σ₁ σ₂ τ₁ τ₂} (τ₁≤′σ₁ : ∞ (τ₁ ≤′ σ₁)) (σ₂≤′τ₂ : ∞ (σ₂ ≤′ τ₂)) → σ₁ ⟶ σ₂ ≤′ τ₁ ⟶ τ₂ unfold : ∀ {τ₁ τ₂} → μ τ₁ ⟶ τ₂ ≤′ unfold[μ τ₁ ⟶ τ₂ ] fold : ∀ {τ₁ τ₂} → unfold[μ τ₁ ⟶ τ₂ ] ≤′ μ τ₁ ⟶ τ₂ _∎ : ∀ τ → τ ≤′ τ -- The transitive closure of this relation. data _≤_ {n} : Ty n → Ty n → Set where include : ∀ {σ τ} (σ≤τ : σ ≤′ τ) → σ ≤ τ _≤⟨_⟩_ : ∀ τ₁ {τ₂ τ₃} (τ₁≤τ₂ : τ₁ ≤ τ₂) (τ₂≤τ₃ : τ₂ ≤ τ₃) → τ₁ ≤ τ₃ ------------------------------------------------------------------------ -- Some types used in counterexamples below σ : Ty zero σ = μ ⊤ ⟶ var zero τ : Ty zero τ = μ ⊥ ⟶ var zero σ≤τ : σ ≤Coind τ σ≤τ = ♯ ⊥ ⟶ ♯ σ≤τ ------------------------------------------------------------------------ -- Soundness and incompleteness of _≤′_ sound′ : ∀ {n} {σ τ : Ty n} → σ ≤′ τ → σ ≤Coind τ sound′ ⊥ = ⊥ sound′ ⊤ = ⊤ sound′ (τ₁≤σ₁ ⟶ σ₂≤τ₂) = ♯ sound′ (♭ τ₁≤σ₁) ⟶ ♯ sound′ (♭ σ₂≤τ₂) sound′ unfold = Sem.unfold sound′ fold = Sem.fold sound′ (τ ∎) = Sem.refl∞ _ incomplete′ : ¬ (∀ {n} {σ τ : Ty n} → σ ≤Coind τ → σ ≤′ τ) incomplete′ hyp with hyp {σ = σ} {τ = τ} σ≤τ ... | () ------------------------------------------------------------------------ -- Soundness of _≤_ sound : ∀ {n} {σ τ : Ty n} → σ ≤ τ → σ ≤Coind τ sound (τ₁ ≤⟨ τ₁≤τ₂ ⟩ τ₂≤τ₃) = Sem.trans (sound τ₁≤τ₂) (sound τ₂≤τ₃) sound (include σ≤τ) = sound′ σ≤τ ------------------------------------------------------------------------ -- An alternative definition of the transitive closure of _≤′_ infixr 5 _∷_ infix 4 _≲_ data _≲_ {n} : Ty n → Ty n → Set where [_] : ∀ {σ τ} (σ≤τ : σ ≤′ τ) → σ ≲ τ _∷_ : ∀ {τ₁ τ₂ τ₃} (τ₁≤τ₂ : τ₁ ≤′ τ₂) (τ₂≲τ₃ : τ₂ ≲ τ₃) → τ₁ ≲ τ₃ -- This definition is transitive. _++_ : ∀ {n} {τ₁ τ₂ τ₃ : Ty n} → τ₁ ≲ τ₂ → τ₂ ≲ τ₃ → τ₁ ≲ τ₃ [ τ₁≤τ₂ ] ++ τ₂≤τ₃ = τ₁≤τ₂ ∷ τ₂≤τ₃ (τ₁≤τ₂ ∷ τ₂≤τ₃) ++ τ₃≤τ₄ = τ₁≤τ₂ ∷ (τ₂≤τ₃ ++ τ₃≤τ₄) -- Hence it is complete with respect to the one above. ≲-complete : ∀ {n} {σ τ : Ty n} → σ ≤ τ → σ ≲ τ ≲-complete (include σ≤τ) = [ σ≤τ ] ≲-complete (τ₁ ≤⟨ τ₁≤τ₂ ⟩ τ₂≤τ₃) = ≲-complete τ₁≤τ₂ ++ ≲-complete τ₂≤τ₃ -- It is also sound. ≲-sound : ∀ {n} {σ τ : Ty n} → σ ≲ τ → σ ≤ τ ≲-sound [ σ≤τ ] = include σ≤τ ≲-sound (τ₁≤τ₂ ∷ τ₂≲τ₃) = _ ≤⟨ include τ₁≤τ₂ ⟩ ≲-sound τ₂≲τ₃ -- The number of uses of transitivity in the proof. length : ∀ {n} {σ τ : Ty n} → σ ≲ τ → ℕ length [ σ≤τ ] = 0 length (τ₁≤τ₂ ∷ τ₂≲τ₃) = suc (length τ₂≲τ₃) ------------------------------------------------------------------------ -- Given proofs of certain statements one can extract shorter or -- equally long proofs for related statements mutual codomain-⟶μ : ∀ {n} {σ₁ σ₂ : Ty n} {τ₁ τ₂} → (σ₁⟶σ₂≲μτ₁⟶τ₂ : σ₁ ⟶ σ₂ ≲ μ τ₁ ⟶ τ₂) → ∃ λ (σ₂≲τ₂′ : σ₂ ≲ τ₂ [0≔ μ τ₁ ⟶ τ₂ ]) → length σ₂≲τ₂′ ≤ℕ length σ₁⟶σ₂≲μτ₁⟶τ₂ codomain-⟶μ [ fold ] = ([ _ ∎ ] , z≤n) codomain-⟶μ (τ₁≤′σ₁ ⟶ σ₂≤′τ₂ ∷ τ₂≲τ₃) = Prod.map (_∷_ (♭ σ₂≤′τ₂)) s≤s (codomain-⟶μ τ₂≲τ₃) codomain-⟶μ (fold ∷ τ₂≲τ₃) = Prod.map id ≤-step (codomain-μμ τ₂≲τ₃) codomain-⟶μ ((._ ∎) ∷ τ₂≲τ₃) = Prod.map id ≤-step (codomain-⟶μ τ₂≲τ₃) codomain-⟶μ (⊤ ∷ τ₂≲τ₃) with sound (≲-sound τ₂≲τ₃) ... | () codomain-μμ : ∀ {n} {σ₁ σ₂ τ₁ τ₂ : Ty (suc n)} → (μσ₁⟶σ₂≲μτ₁⟶τ₂ : μ σ₁ ⟶ σ₂ ≲ μ τ₁ ⟶ τ₂) → ∃ λ (σ₂′≲τ₂′ : σ₂ [0≔ μ σ₁ ⟶ σ₂ ] ≲ τ₂ [0≔ μ τ₁ ⟶ τ₂ ]) → length σ₂′≲τ₂′ ≤ℕ length μσ₁⟶σ₂≲μτ₁⟶τ₂ codomain-μμ [ ._ ∎ ] = ([ _ ∎ ] , z≤n) codomain-μμ (unfold ∷ τ₂≲τ₃) = Prod.map id ≤-step (codomain-⟶μ τ₂≲τ₃) codomain-μμ ((._ ∎) ∷ τ₂≲τ₃) = Prod.map id ≤-step (codomain-μμ τ₂≲τ₃) codomain-μμ (⊤ ∷ τ₂≲τ₃) with sound (≲-sound τ₂≲τ₃) ... | () ------------------------------------------------------------------------ -- Incompleteness of _≤_ incomplete : ¬ (∀ {n} {σ τ : Ty n} → σ ≤Coind τ → σ ≤ τ) incomplete hyp = σ≴τ $ ≲-complete $ hyp σ≤τ where σ≴τ : ¬ σ ≲ τ σ≴τ σ≲τ = <′-rec Pred ≴ _ σ≲τ refl where Pred : ℕ → Set Pred n = (σ≲τ : σ ≲ τ) → length σ≲τ ≢ n ≴ : ∀ n → <′-Rec Pred n → Pred n ≴ n rec [ () ] _ ≴ ._ rec ((._ ∎) ∷ τ₂≲τ₃) refl = rec _ ≤′-refl τ₂≲τ₃ refl ≴ ._ rec (unfold ∷ τ₂≲τ₃) refl with codomain-⟶μ τ₂≲τ₃ ... | (τ₂≲τ₃′ , not-longer) = rec _ (≤⇒≤′ $ s≤s not-longer) τ₂≲τ₃′ refl ≴ n rec (⊤ ∷ τ₂≲τ₃) _ with sound (≲-sound τ₂≲τ₃) ... | ()
{ "alphanum_fraction": 0.4772226926, "avg_line_length": 34.7352941176, "ext": "agda", "hexsha": "f85e36591ab63550149d9a4ab0f0478ede894e18", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "RecursiveTypes/Subtyping/Axiomatic/Incorrect.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "RecursiveTypes/Subtyping/Axiomatic/Incorrect.agda", "max_line_length": 91, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "RecursiveTypes/Subtyping/Axiomatic/Incorrect.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 2559, "size": 5905 }
open import Mockingbird.Forest using (Forest) module Mockingbird.Forest.Combination.Vec.Properties {b ℓ} (forest : Forest {b} {ℓ}) where open import Data.Vec as Vec using (Vec; []; _∷_; _++_) import Data.Vec.Relation.Unary.Any as Any open import Data.Vec.Relation.Unary.Any.Properties as Anyₚ using (++⁺ˡ; ++⁺ʳ) open import Function using (_$_; flip) open import Relation.Unary using (Pred; _∈_; _⊆_; ∅) open Forest forest open import Mockingbird.Forest.Combination.Vec.Base forest import Mockingbird.Forest.Combination.Properties forest as Combinationₚ subst : ∀ {n x y} {bs : Vec Bird n} → x ≈ y → x ∈ ⟨ bs ⟩ → y ∈ ⟨ bs ⟩ subst = Combinationₚ.subst λ x≈y → Any.map (trans (sym x≈y)) subst′ : ∀ {n x y} {bs : Vec Bird n} → y ≈ x → x ∈ ⟨ bs ⟩ → y ∈ ⟨ bs ⟩ subst′ y≈x = subst (sym y≈x) ⟨[]⟩ : ⟨ [] ⟩ ⊆ ∅ ⟨[]⟩ (X ⟨∙⟩ Y ∣ xy≈z) = ⟨[]⟩ X weaken-∷ : ∀ {n x y} {bs : Vec Bird n} → x ∈ ⟨ bs ⟩ → x ∈ ⟨ y ∷ bs ⟩ weaken-∷ = Combinationₚ.weaken there -- TODO: maybe call this ++⁺ˡ. weaken-++ˡ : ∀ {m n x} {bs : Vec Bird m} {bs′ : Vec Bird n} → x ∈ ⟨ bs ⟩ → x ∈ ⟨ bs ++ bs′ ⟩ weaken-++ˡ {bs = bs} {bs′} [ x∈bs ] = [ ++⁺ˡ x∈bs ] weaken-++ˡ {bs = bs} {bs′} (x∈⟨bs⟩ ⟨∙⟩ y∈⟨bs⟩ ∣ xy≈z) = weaken-++ˡ x∈⟨bs⟩ ⟨∙⟩ weaken-++ˡ y∈⟨bs⟩ ∣ xy≈z -- TODO: maybe call this ++⁺ʳ. weaken-++ʳ : ∀ {m n x} (bs : Vec Bird m) {bs′ : Vec Bird n} → x ∈ ⟨ bs′ ⟩ → x ∈ ⟨ bs ++ bs′ ⟩ weaken-++ʳ bs {bs′} [ x∈bs′ ] = [ ++⁺ʳ bs x∈bs′ ] weaken-++ʳ bs {bs′} (x∈⟨bs′⟩ ⟨∙⟩ y∈⟨bs′⟩ ∣ xy≈z) = weaken-++ʳ bs x∈⟨bs′⟩ ⟨∙⟩ weaken-++ʳ bs y∈⟨bs′⟩ ∣ xy≈z ++-comm : ∀ {m n x} (bs : Vec Bird m) (bs′ : Vec Bird n) → x ∈ ⟨ bs ++ bs′ ⟩ → x ∈ ⟨ bs′ ++ bs ⟩ ++-comm bs bs′ [ x∈bs++bs′ ] = [ Anyₚ.++-comm bs bs′ x∈bs++bs′ ] ++-comm bs bs′ (x∈⟨bs++bs′⟩ ⟨∙⟩ y∈⟨bs++bs′⟩ ∣ xy≈z) = ++-comm bs bs′ x∈⟨bs++bs′⟩ ⟨∙⟩ ++-comm bs bs′ y∈⟨bs++bs′⟩ ∣ xy≈z open import Mockingbird.Forest.Birds forest open import Mockingbird.Forest.Extensionality forest module _ ⦃ _ : Extensional ⦄ ⦃ _ : HasCardinal ⦄ ⦃ _ : HasIdentity ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasKestrel ⦄ ⦃ _ : HasStarling ⦄ where private CI≈T : C ∙ I ≈ T CI≈T = ext $ λ x → ext $ λ y → begin C ∙ I ∙ x ∙ y ≈⟨ isCardinal I x y ⟩ I ∙ y ∙ x ≈⟨ congʳ $ isIdentity y ⟩ y ∙ x ≈˘⟨ isThrush x y ⟩ T ∙ x ∙ y ∎ _ : T ∈ ⟨ C ∷ I ∷ [] ⟩ _ = subst CI≈T $ [# 0 ] ⟨∙⟩ [# 1 ] _ : I ∈ ⟨ S ∷ K ∷ [] ⟩ _ = flip subst ([# 0 ] ⟨∙⟩ [# 1 ] ⟨∙⟩ [# 1 ]) $ ext $ λ x → begin S ∙ K ∙ K ∙ x ≈⟨ isStarling K K x ⟩ K ∙ x ∙ (K ∙ x) ≈⟨ isKestrel x (K ∙ x) ⟩ x ≈˘⟨ isIdentity x ⟩ I ∙ x ∎
{ "alphanum_fraction": 0.5042834891, "avg_line_length": 40.7619047619, "ext": "agda", "hexsha": "ae7701710a455aedcca623bcb54728e5ec14a7fa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Forest/Combination/Vec/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Forest/Combination/Vec/Properties.agda", "max_line_length": 118, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Forest/Combination/Vec/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 1243, "size": 2568 }
{-# OPTIONS --postfix-projections #-} open import Agda.Builtin.Nat record R : Set where field x : Nat → Nat open R {{...}} f : R f .x = {!!} -- WAS: Case splitting on result produces the following nonsense: -- f ⦃ .x ⦄ x₁ = ? -- SHOULD: produce -- f .x x₁ = ?
{ "alphanum_fraction": 0.5808823529, "avg_line_length": 14.3157894737, "ext": "agda", "hexsha": "52ec9edab979c3196f0cba35fada6ea4cf4a950e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3289.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3289.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3289.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 87, "size": 272 }
module Thesis.DeriveCorrect where open import Thesis.Lang open import Thesis.Changes open import Thesis.LangChanges open import Thesis.Derive open import Relation.Binary.PropositionalEquality open import Theorem.Groups-Nehemiah fromtoDeriveConst : ∀ {τ : Type} (c : Const τ) → ch ⟦ c ⟧ΔConst from ⟦ c ⟧Const to ⟦ c ⟧Const fromtoDeriveConst unit = tt fromtoDeriveConst (lit n) = right-id-int n fromtoDeriveConst plus da a1 a2 daa db b1 b2 dbb rewrite sym daa | sym dbb = sym (mn·pq=mp·nq {a1} {da} {b1} {db}) fromtoDeriveConst minus da a1 a2 daa db b1 b2 dbb rewrite sym daa | sym dbb | sym (-m·-n=-mn {b1} {db}) = sym (mn·pq=mp·nq {a1} {da} { - b1} { - db}) fromtoDeriveConst cons da a1 a2 daa db b1 b2 dbb = daa , dbb fromtoDeriveConst fst (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = daa fromtoDeriveConst snd (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = dbb fromtoDeriveConst linj da a1 a2 daa = sft₁ daa fromtoDeriveConst rinj db b1 b2 dbb = sft₂ dbb fromtoDeriveConst match .(inj₁ (inj₁ _)) .(inj₁ _) .(inj₁ _) (sft₁ daa) df f1 f2 dff dg g1 g2 dgg = dff _ _ _ daa fromtoDeriveConst match .(inj₁ (inj₂ _)) .(inj₂ _) .(inj₂ _) (sft₂ dbb) df f1 f2 dff dg g1 g2 dgg = dgg _ _ _ dbb fromtoDeriveConst match .(inj₂ (inj₂ b2)) .(inj₁ a1) .(inj₂ b2) (sftrp (inj₁ a1) (inj₂ b2)) df f1 f2 dff dg g1 g2 dgg rewrite changeMatchSem-lem1 f1 df g1 dg a1 b2 | sym (fromto→⊕ dg g1 g2 dgg) = ⊝-fromto (f1 a1) ((g1 ⊕ dg) b2) fromtoDeriveConst match .(inj₂ (inj₁ a2)) .(inj₂ b1) .(inj₁ a2) (sftrp (inj₂ b1) (inj₁ a2)) df f1 f2 dff dg g1 g2 dgg rewrite changeMatchSem-lem2 f1 df g1 dg b1 a2 | sym (fromto→⊕ df f1 f2 dff) = ⊝-fromto (g1 b1) ((f1 ⊕ df) a2) fromtoDeriveConst match .(inj₂ (inj₁ a2)) .(inj₁ a1) .(inj₁ a2) (sftrp (inj₁ a1) (inj₁ a2)) df f1 f2 dff dg g1 g2 dgg rewrite changeMatchSem-lem3 f1 df g1 dg a1 a2 | sym (fromto→⊕ df f1 f2 dff) = ⊝-fromto (f1 a1) ((f1 ⊕ df) a2) fromtoDeriveConst match .(inj₂ (inj₂ b2)) .(inj₂ b1) .(inj₂ b2) (sftrp (inj₂ b1) (inj₂ b2)) df f1 f2 dff dg g1 g2 dgg rewrite changeMatchSem-lem4 f1 df g1 dg b1 b2 | sym (fromto→⊕ dg g1 g2 dgg) = ⊝-fromto (g1 b1) ((g1 ⊕ dg) b2) fromtoDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) → ∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 → [ τ ]τ (⟦ x ⟧ΔVar ρ1 dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2) fromtoDeriveVar this (dvv v• dρρ) = dvv fromtoDeriveVar (that x) (dvv v• dρρ) = fromtoDeriveVar x dρρ fromtoDeriveBase : ∀ {Γ} τ → (t : Term Γ τ) → ch ⟦ t ⟧ΔTerm from ⟦ t ⟧Term to ⟦ t ⟧Term fromtoDeriveBase τ (const c) dρ ρ1 ρ2 dρρ rewrite ⟦ c ⟧ΔConst-rewrite ρ1 dρ = fromtoDeriveConst c fromtoDeriveBase τ (var x) dρ ρ1 ρ2 dρρ = fromtoDeriveVar x dρρ fromtoDeriveBase τ (app {σ} s t) dρ ρ1 ρ2 dρρ rewrite sym (fit-sound t dρρ) = let fromToF = fromtoDeriveBase (σ ⇒ τ) s _ _ _ dρρ in let fromToB = fromtoDeriveBase σ t _ _ _ dρρ in fromToF _ _ _ fromToB fromtoDeriveBase (σ ⇒ τ) (abs t) dρ ρ1 ρ2 dρρ = λ dv v1 v2 dvv → fromtoDeriveBase τ t _ _ _ (dvv v• dρρ) fromtoDerive : ∀ {Γ} τ → (t : Term Γ τ) → {dρ : ChΓ Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 → [ τ ]τ (⟦ t ⟧ΔTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2) fromtoDerive τ t dρρ = fromtoDeriveBase τ t _ _ _ dρρ -- Getting to the original equation 1 from PLDI'14. correctDeriveOplus : ∀ {Γ} τ → (t : Term Γ τ) → {dρ : ChΓ Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 → (⟦ t ⟧Term ρ1) ⊕ (⟦ t ⟧ΔTerm ρ1 dρ) ≡ (⟦ t ⟧Term ρ2) correctDeriveOplus τ t dρρ = fromto→⊕ _ _ _ (fromtoDerive τ t dρρ) open import Thesis.LangOps correctDeriveOplusτ : ∀ {Γ} τ → (t : Term Γ τ) {dρ : ChΓ Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 → (⟦ app₂ (oplusτo τ) (fit t) (derive t) ⟧Term dρ) ≡ (⟦ t ⟧Term ρ2) correctDeriveOplusτ τ t {dρ = dρ} {ρ1 = ρ1} dρρ rewrite oplusτ-equiv _ dρ _ (⟦ fit t ⟧Term dρ) (⟦ derive t ⟧Term dρ) | sym (fit-sound t dρρ) = correctDeriveOplus τ t dρρ deriveGivesDerivative : ∀ {Γ} σ τ → (f : Term Γ (σ ⇒ τ)) (a : Term Γ σ)→ {dρ : ChΓ Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 → (⟦ app f a ⟧Term ρ1) ⊕ (⟦ app f a ⟧ΔTerm ρ1 dρ) ≡ (⟦ app f a ⟧Term ρ2) deriveGivesDerivative σ τ f a dρρ = correctDeriveOplus τ (app f a) dρρ deriveGivesDerivative₂ : ∀ {Γ} σ τ → (f : Term Γ (σ ⇒ τ)) (a : Term Γ σ) → {dρ : ChΓ Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 → (⟦ app₂ (oplusτo τ) (fit (app f a)) (app₂ (derive f) (fit a) (derive a)) ⟧Term dρ) ≡ (⟦ app f a ⟧Term ρ2) deriveGivesDerivative₂ σ τ f a dρρ = correctDeriveOplusτ τ (app f a) dρρ -- Proof of the original equation 1 from PLDI'14. The original was restricted to -- closed terms. This is a generalization, because it holds also for open terms, -- *as long as* the environment change is a nil change. eq1 : ∀ {Γ} σ τ → {nilρ : ChΓ Γ} {ρ : ⟦ Γ ⟧Context} → [ Γ ]Γ nilρ from ρ to ρ → ∀ (f : Term Γ (σ ⇒ τ)) (a : Term Γ σ) (da : Term (ΔΓ Γ) (Δt σ)) → (daa : [ σ ]τ (⟦ da ⟧Term nilρ) from (⟦ a ⟧Term ρ) to (⟦ a ⟧Term ρ ⊕ ⟦ da ⟧Term nilρ)) → ⟦ app₂ (oplusτo τ) (fit (app f a)) (app₂ (derive f) (fit a) da) ⟧Term nilρ ≡ ⟦ app (fit f) (app₂ (oplusτo σ) (fit a) da) ⟧Term nilρ eq1 σ τ {nilρ} {ρ} dρρ f a da daa rewrite oplusτ-equiv _ nilρ _ (⟦ fit (app f a) ⟧Term nilρ) (⟦ (app₂ (derive f) (fit a) da) ⟧Term nilρ) | sym (fit-sound f dρρ) | oplusτ-equiv _ nilρ _ (⟦ fit a ⟧Term nilρ) (⟦ da ⟧Term nilρ) | sym (fit-sound a dρρ) = fromto→⊕ (⟦ f ⟧ΔTerm ρ nilρ (⟦ a ⟧Term ρ) (⟦ da ⟧Term nilρ)) _ _ (fromtoDerive _ f dρρ (⟦ da ⟧Term nilρ) (⟦ a ⟧Term ρ) (⟦ a ⟧Term ρ ⊕ ⟦ da ⟧Term nilρ) daa)
{ "alphanum_fraction": 0.6247268755, "avg_line_length": 51.8113207547, "ext": "agda", "hexsha": "661109a8d5ac9ca221b15e3a838a4c431238ea4f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/DeriveCorrect.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/DeriveCorrect.agda", "max_line_length": 149, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/DeriveCorrect.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 2689, "size": 5492 }
module Logic.Convenience {ℓ} where import Lvl open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Logic.Propositional{ℓ} open import Type record [⇒]-proof (Proof : Stmt → Stmt → Type{ℓ}) : Type{Lvl.𝐒(ℓ)} where infixl 10 _⇒_ infixr 10 _⇐_ field _⇒_ : ∀{X Y : Stmt} → X → Proof(X)(Y) → Y _⇐_ : ∀{X Y : Stmt} → Proof(X)(Y) → X → Y _⇐_ = swap(_⇒_) open [⇒]-proof ⦃...⦄ public instance [⇒]-proof-[→] : [⇒]-proof (X ↦ Y ↦ (X → Y)) _⇒_ ⦃ [⇒]-proof-[→] ⦄ = apply instance [⇒]-proof-[↔] : [⇒]-proof (X ↦ Y ↦ (X ↔ Y)) _⇒_ ⦃ [⇒]-proof-[↔] ⦄ = swap(Tuple.right) instance [⇒]-proof-unrelated : [⇒]-proof (X ↦ Y ↦ Y) _⇒_ ⦃ [⇒]-proof-unrelated ⦄ = swap(const) -- TODO: ⇔ probably means using transitivity
{ "alphanum_fraction": 0.5590551181, "avg_line_length": 23.0909090909, "ext": "agda", "hexsha": "0c84c291ca7d436c5d5aafe8245dac722459ba03", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Logic/Convenience.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Logic/Convenience.agda", "max_line_length": 71, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Logic/Convenience.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 362, "size": 762 }
-- Andreas, 2016-05-04, discussion with Ulf -- Projections should be treated in the same way asonstructors, -- what parameters concerns -- {-# OPTIONS -v tc.mod.apply:15 #-} -- {-# OPTIONS -v tc.term.con:50 -v tc.term.def:10 #-} module _ where module M (A : Set) where data D : Set where c : A → D record R : Set where field f : A g = f open R public open module N A = M A -- After module copy, constructor parameter is still hidden check : ∀ A → A → D A check A x = c {A = A} x pat : ∀ A → D A → Set pat A (c x) = A -- Field parameter should be hidden infer : ∀ A → R A → A infer A r = f r -- and skipped on the lhs. copat : ∀ A (a : A) → R A f (copat A a) = a
{ "alphanum_fraction": 0.5994236311, "avg_line_length": 17.7948717949, "ext": "agda", "hexsha": "e9359125e84af48fda640ea0d1bd2534e35c76f8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1954.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1954.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1954.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 232, "size": 694 }
module Control.Monad.Except where open import Prelude open import Control.Monad.Zero open import Control.Monad.Identity open import Control.Monad.Transformer record ExceptT {a} (E : Set a) (M : Set a → Set a) (A : Set a) : Set a where no-eta-equality constructor maybeT field runExceptT : M (Either E A) open ExceptT public module _ {a} {E : Set a} {M : Set a → Set a} where instance FunctorExceptT : {{_ : Functor M}} → Functor {a = a} (ExceptT E M) runExceptT (fmap {{FunctorExceptT}} f m) = fmap f <$> runExceptT m FunctorZeroExceptT : {{_ : Monad M}} {{_ : Monoid E}} → FunctorZero {a = a} (ExceptT E M) runExceptT (empty {{FunctorZeroExceptT}}) = return (left mempty) AlternativeExceptT : {{_ : Monad M}} {{_ : Monoid E}} → Alternative {a = a} (ExceptT E M) runExceptT (_<|>_ {{AlternativeExceptT {{monadM}}}} mx my) = do right x ← runExceptT mx where left e₁ → do right y ← runExceptT my where left e₂ → return (left (e₁ <> e₂)) return (right y) return (right x) module _ {{_ : Monad M}} where private bindExceptT : ∀ {A B} → ExceptT E M A → (A → ExceptT E M B) → ExceptT E M B runExceptT (bindExceptT m f) = do right x ← runExceptT m where left e → return (left e) runExceptT (f x) instance ApplicativeExceptT : Applicative {a = a} (ExceptT E M) runExceptT (pure {{ApplicativeExceptT}} x) = pure (right x) _<*>_ {{ApplicativeExceptT}} = monadAp bindExceptT MonadExceptT : Monad {a = a} (ExceptT E M) _>>=_ {{MonadExceptT}} = bindExceptT liftExceptT : {A : Set a} → M A → ExceptT E M A runExceptT (liftExceptT m) = right <$> m instance TransformerExceptT : ∀ {a} {E : Set a} → Transformer {a} (ExceptT E) lift {{TransformerExceptT}} = liftExceptT Except : ∀ {a} (E : Set a) (A : Set a) → Set a Except R = ExceptT R Identity runExcept : ∀ {a} {E : Set a} {A : Set a} → Except E A → Either E A runExcept m = runIdentity (runExceptT m)
{ "alphanum_fraction": 0.610459433, "avg_line_length": 31.96875, "ext": "agda", "hexsha": "84ffea0aa9ea7e88bbdffa7cc7df1247aceb6ff5", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Control/Monad/Except.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Control/Monad/Except.agda", "max_line_length": 93, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Control/Monad/Except.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 657, "size": 2046 }
module type-level where open import bool open import level open import nat {- multiApply{n} applies a sequence f1, f2, ..., f_n of functions to a starting point a: multiApply{n} a f1 f2 ... f_n = f_n (... (f2 (f1 a))) -} multiApplyTh : ℕ → Set → Set lone multiApplyTh 0 A = Lift A multiApplyTh (suc n) A = ∀{B : Set} → (A → B) → multiApplyTh n B multiApplyT : ℕ → Set lone multiApplyT n = ∀{A : Set} → A → multiApplyTh n A multiApply-testT = multiApplyT 2 multiApplyh : {A : Set}{n : ℕ} → A → multiApplyTh n A multiApplyh {n = zero} a = lift a multiApplyh {n = suc n} a f = multiApplyh{n = n} (f a) multiApply : {n : ℕ} → multiApplyT n multiApply{n} = λ{A : Set}(a : A) → multiApplyh{A}{n} a multiApply-test1 : Lift 𝔹 multiApply-test1 = multiApply{3} 3 (_+_ 3) is-even ~_
{ "alphanum_fraction": 0.6434010152, "avg_line_length": 26.2666666667, "ext": "agda", "hexsha": "b80fe50f1a2ab8c4aaf2c4487190157b9a45426a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "type-level.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "type-level.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "type-level.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 291, "size": 788 }
module Oscar.Category.Monoid where open import Oscar.Level record Monoid 𝔬 𝔪 𝔮 : Set (lsuc (𝔬 ⊔ 𝔪 ⊔ 𝔮)) where
{ "alphanum_fraction": 0.7079646018, "avg_line_length": 16.1428571429, "ext": "agda", "hexsha": "9b7e5b3221fee82d182cff9a64956aa26465dd32", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Category/Monoid.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Category/Monoid.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Category/Monoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 47, "size": 113 }
module Numeral.Integer.Oper where open import Numeral.Natural as ℕ using (ℕ) import Numeral.Natural.Oper as ℕ open import Numeral.Integer open import Numeral.Integer.Sign import Numeral.Sign as Sign import Numeral.Sign.Oper0 as Sign -- Unclosed total subtraction from natural numbers to integers _−ₙ_ : ℕ → ℕ → ℤ x −ₙ ℕ.𝟎 = ℤ.+ₙ x ℕ.𝟎 −ₙ ℕ.𝐒(x) = ℤ.−𝐒ₙ(x) ℕ.𝐒(x) −ₙ ℕ.𝐒(y) = x −ₙ y -- Construction of an integer with the sign and numeral components signed : (Sign.+|−) → ℕ → ℤ signed (Sign.➕) (n) = +ₙ n signed (Sign.➖) (n) = −ₙ n signed0 : (Sign.+|0|−) → ℕ → ℤ signed0(Sign.➕) (ℕ.𝐒(n)) = +𝐒ₙ(n) signed0(Sign.➖) (ℕ.𝐒(n)) = −𝐒ₙ(n) {-# CATCHALL #-} signed0(_) (_) = 𝟎 ------------------------------------------ -- Unary operations -- Predecessor 𝐏 : ℤ → ℤ 𝐏(+𝐒ₙ(n)) = +ₙ n 𝐏(𝟎) = −𝐒ₙ(ℕ.𝟎) 𝐏(−𝐒ₙ(n)) = −𝐒ₙ(ℕ.𝐒(n)) -- Successor 𝐒 : ℤ → ℤ 𝐒(+ₙ n) = +ₙ ℕ.𝐒(n) 𝐒(−𝐒ₙ(ℕ.𝟎)) = +ₙ ℕ.𝟎 𝐒(−𝐒ₙ(ℕ.𝐒(n))) = −𝐒ₙ(n) -- Identity +_ : ℤ → ℤ + n = n -- Negation −_ : ℤ → ℤ − 𝟎 = 𝟎 − (+𝐒ₙ(n)) = −𝐒ₙ(n) − (−𝐒ₙ(n)) = +𝐒ₙ(n) -- Absolute value abs : ℤ → ℤ abs(+ₙ x) = +ₙ x abs(−𝐒ₙ x) = +𝐒ₙ x ------------------------------------------ -- Binary operations infixl 10010 _+_ infixl 10020 _⋅_ -- Addition _+_ : ℤ → ℤ → ℤ (+ₙ x) + (+ₙ y) = +ₙ (x ℕ.+ y) (−𝐒ₙ x) + (−𝐒ₙ y) = −𝐒ₙ(ℕ.𝐒(x ℕ.+ y)) (+ₙ x) + (−𝐒ₙ y) = x −ₙ ℕ.𝐒(y) (−𝐒ₙ x) + (+ₙ y) = (+ₙ y) + (−𝐒ₙ x) -- Subtraction _−_ : ℤ → ℤ → ℤ x − y = x + (− y) -- Multiplication _⋅_ : ℤ → ℤ → ℤ x ⋅ y = signed0 ((sign0 x) Sign.⨯ (sign0 y)) ((absₙ x) ℕ.⋅ (absₙ y)) -- Distance _𝄩_ : ℤ → ℤ → ℕ (+ₙ x) 𝄩 (+ₙ y) = x ℕ.𝄩 y (−𝐒ₙ x) 𝄩 (−𝐒ₙ y) = x ℕ.𝄩 y (+ₙ(ℕ.𝟎)) 𝄩 (−𝐒ₙ y) = ℕ.𝐒(y) (+ₙ(ℕ.𝐒 x)) 𝄩 (−𝐒ₙ y) = ℕ.𝐒((+ₙ x) 𝄩 (−𝐒ₙ y)) (−𝐒ₙ x) 𝄩 (+ₙ(ℕ.𝟎)) = ℕ.𝐒(x) (−𝐒ₙ x) 𝄩 (+ₙ(ℕ.𝐒 y)) = ℕ.𝐒((−𝐒ₙ x) 𝄩 (+ₙ y))
{ "alphanum_fraction": 0.4574700109, "avg_line_length": 21.3255813953, "ext": "agda", "hexsha": "4373c719edc7bb6c4879305ad5bc06260045f169", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Integer/Oper.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Integer/Oper.agda", "max_line_length": 68, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Integer/Oper.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1095, "size": 1834 }
------------------------------------------------------------------------ -- A formalisation of some definitions and laws from Section 2.4 of -- Ralf Hinze's paper "Streams and Unique Fixed Points" ------------------------------------------------------------------------ -- Note: Using the approach of Stream.Programs and Stream.Equality the -- proofs look just like Hinze's, but they are based on guarded -- coinduction rather than relying (directly) on universality. -- Also note that the formalisation can be simplified by defining the -- streams differently. See Hinze.Simplified. module Hinze.Section2-4 where open import Stream.Programs open import Stream.Equality open import Stream.Pointwise hiding (⟦_⟧) open import Hinze.Lemmas open import Codata.Musical.Notation hiding (∞) open import Data.Nat open import Relation.Binary.PropositionalEquality renaming (module ≡-Reasoning to ER) open import Algebra.Structures import Data.Nat.Properties as Nat private module CS = IsCommutativeSemiring Nat.+-*-isCommutativeSemiring open import Data.Product ------------------------------------------------------------------------ -- Definitions nat : Prog ℕ nat = 0 ≺ ♯ (nat ⟨ _+_ ⟩ 1 ∞) 2*nat : Prog ℕ 2*nat = 2 ∞ ⟨ _*_ ⟩ nat 2*nat+1 : Prog ℕ 2*nat+1 = 2*nat ⟨ _+_ ⟩ 1 ∞ fac : Prog ℕ fac = 1 ≺ ♯ ((nat ⟨ _+_ ⟩ 1 ∞) ⟨ _*_ ⟩ fac) fib : Prog ℕ fib = 0 ≺ ♯ (fib ⟨ _+_ ⟩ (1 ≺ ♯ fib)) bin : Prog ℕ bin = 0 ≺ ♯ ((2 ∞ ⟨ _*_ ⟩ bin) ⟨ _+_ ⟩ 1 ∞ ⋎ (2 ∞ ⟨ _*_ ⟩ bin) ⟨ _+_ ⟩ 2 ∞) ------------------------------------------------------------------------ -- Laws and properties const-is-∞ : ∀ {A} {x : A} {xs} → xs ≊ x ≺♯ xs → xs ≊ x ∞ const-is-∞ {x = x} {xs} eq = xs ≊⟨ eq ⟩ x ≺♯ xs ≊⟨ refl ≺ ♯ const-is-∞ eq ⟩ x ≺♯ x ∞ ≡⟨ refl ⟩ x ∞ ∎ nat-lemma₁ : 0 ≺♯ 2*nat+1 ⋎ 2*nat ⟨ _+_ ⟩ 2 ∞ ≊ 2*nat ⋎ 2*nat+1 nat-lemma₁ = 0 ≺♯ 2*nat+1 ⋎ 2*nat ⟨ _+_ ⟩ 2 ∞ ≊⟨ refl ≺ ♯ ⋎-cong 2*nat+1 2*nat+1 (2*nat+1 ∎) (2*nat ⟨ _+_ ⟩ 2 ∞) (2 ∞ ⟨ _*_ ⟩ (nat ⟨ _+_ ⟩ 1 ∞)) (lemma (2 ∞) nat) ⟩ 0 ≺♯ 2*nat+1 ⋎ 2 ∞ ⟨ _*_ ⟩ (nat ⟨ _+_ ⟩ 1 ∞) ≡⟨ refl ⟩ 2*nat ⋎ 2*nat+1 ∎ where lemma : ∀ s t → (s ⟨ _*_ ⟩ t) ⟨ _+_ ⟩ s ≊ s ⟨ _*_ ⟩ (t ⟨ _+_ ⟩ 1 ∞) lemma = pointwise 2 (λ s t → (s ⟨ _*_ ⟩ t) ⟨ _+_ ⟩ s) (λ s t → s ⟨ _*_ ⟩ (t ⟨ _+_ ⟩ 1 ∞)) (λ m n → sym (ER.begin m * (n + 1) ER.≡⟨ proj₁ CS.distrib m n 1 ⟩ m * n + m * 1 ER.≡⟨ cong (_+_ (m * n)) (proj₂ CS.*-identity m) ⟩ m * n + m ER.∎)) nat-lemma₂ : nat ≊ 2*nat ⋎ 2*nat+1 nat-lemma₂ = nat ≡⟨ refl ⟩ 0 ≺♯ nat ⟨ _+_ ⟩ 1 ∞ ≊⟨ refl ≺ ♯ ⟨ _+_ ⟩-cong nat (2*nat ⋎ 2*nat+1) nat-lemma₂ (1 ∞) (1 ∞) (1 ∞ ∎) ⟩ 0 ≺♯ (2*nat ⋎ 2*nat+1) ⟨ _+_ ⟩ 1 ∞ ≊⟨ refl ≺ ♯ zip-⋎-const _+_ 2*nat 2*nat+1 1 ⟩ 0 ≺♯ 2*nat+1 ⋎ 2*nat+1 ⟨ _+_ ⟩ 1 ∞ ≊⟨ refl ≺ ♯ ⋎-cong 2*nat+1 2*nat+1 (2*nat+1 ∎) (2*nat+1 ⟨ _+_ ⟩ 1 ∞) (2*nat ⟨ _+_ ⟩ 2 ∞) (lemma 2*nat) ⟩ 0 ≺♯ 2*nat+1 ⋎ 2*nat ⟨ _+_ ⟩ 2 ∞ ≊⟨ nat-lemma₁ ⟩ 2*nat ⋎ 2*nat+1 ∎ where lemma : ∀ s → (s ⟨ _+_ ⟩ 1 ∞) ⟨ _+_ ⟩ 1 ∞ ≊ s ⟨ _+_ ⟩ 2 ∞ lemma = pointwise 1 (λ s → (s ⟨ _+_ ⟩ 1 ∞) ⟨ _+_ ⟩ 1 ∞) (λ s → s ⟨ _+_ ⟩ 2 ∞) (λ n → CS.+-assoc n 1 1) nat≊bin : nat ≊ bin nat≊bin = nat ≊⟨ nat-lemma₂ ⟩ 2*nat ⋎ 2*nat+1 ≊⟨ ≅-sym nat-lemma₁ ⟩ 0 ≺♯ 2*nat+1 ⋎ 2*nat ⟨ _+_ ⟩ 2 ∞ ≊⟨ refl ≺ coih ⟩ 0 ≺♯ (2 ∞ ⟨ _*_ ⟩ bin) ⟨ _+_ ⟩ 1 ∞ ⋎ (2 ∞ ⟨ _*_ ⟩ bin) ⟨ _+_ ⟩ 2 ∞ ≡⟨ refl ⟩ bin ∎ where coih = ♯ ⋎-cong 2*nat+1 ((2 ∞ ⟨ _*_ ⟩ bin) ⟨ _+_ ⟩ 1 ∞) (⟨ _+_ ⟩-cong 2*nat (2 ∞ ⟨ _*_ ⟩ bin) (⟨ _*_ ⟩-cong (2 ∞) (2 ∞) (2 ∞ ∎) nat bin nat≊bin) (1 ∞) (1 ∞) (1 ∞ ∎)) (2*nat ⟨ _+_ ⟩ 2 ∞) ((2 ∞ ⟨ _*_ ⟩ bin) ⟨ _+_ ⟩ 2 ∞) (⟨ _+_ ⟩-cong 2*nat (2 ∞ ⟨ _*_ ⟩ bin) (⟨ _*_ ⟩-cong (2 ∞) (2 ∞) (2 ∞ ∎) nat bin nat≊bin) (2 ∞) (2 ∞) (2 ∞ ∎)) iterate-fusion : ∀ {A B} (h : A → B) (f₁ : A → A) (f₂ : B → B) → (∀ x → h (f₁ x) ≡ f₂ (h x)) → ∀ x → h · iterate f₁ x ≊ iterate f₂ (h x) iterate-fusion h f₁ f₂ hyp x = h · iterate f₁ x ≡⟨ refl ⟩ h x ≺♯ h · iterate f₁ (f₁ x) ≊⟨ refl ≺ ♯ iterate-fusion h f₁ f₂ hyp (f₁ x) ⟩ h x ≺♯ iterate f₂ (h (f₁ x)) ≡⟨ cong (λ y → ⟦ h x ≺♯ iterate f₂ y ⟧) (hyp x) ⟩ h x ≺♯ iterate f₂ (f₂ (h x)) ≡⟨ refl ⟩ iterate f₂ (h x) ∎ nat-iterate : nat ≊ iterate suc 0 nat-iterate = nat ≡⟨ refl ⟩ 0 ≺♯ nat ⟨ _+_ ⟩ 1 ∞ ≊⟨ refl ≺ ♯ pointwise 1 (λ s → s ⟨ _+_ ⟩ 1 ∞) (_·_ suc) (λ x → CS.+-comm x 1) nat ⟩ 0 ≺♯ suc · nat ≊⟨ refl ≺ ♯ ·-cong suc nat (iterate suc 0) nat-iterate ⟩ 0 ≺♯ suc · iterate suc 0 ≊⟨ refl ≺ ♯ iterate-fusion suc suc suc (λ _ → refl) 0 ⟩ 0 ≺♯ iterate suc 1 ≡⟨ refl ⟩ iterate suc 0 ∎
{ "alphanum_fraction": 0.3305137845, "avg_line_length": 37.3333333333, "ext": "agda", "hexsha": "d1c635a81cdfd35b780fd3008d0fe49a39e6061a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Hinze/Section2-4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Hinze/Section2-4.agda", "max_line_length": 98, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Hinze/Section2-4.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 2302, "size": 6384 }
{- This second-order equational theory was created from the following second-order syntax description: syntax Monad | M type T : 1-ary term ret : α -> T α bind : T α α.(T β) -> T β | _>>=_ r10 theory (LU) a : α b : α.(T β) |> bind (ret(a), x. b[x]) = b[a] (RU) t : T α |> bind (t, x. ret(x)) = t (AS) t : T α b : α.(T β) c : β.(T γ) |> bind (bind (t, x.b[x]), y.c[y]) = bind (t, x. bind (b[x], y.c[y])) -} module Monad.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import Monad.Signature open import Monad.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution M:Syn open import SOAS.Metatheory.SecondOrder.Equality M:Syn private variable α β γ τ : MT Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ M) α Γ → (𝔐 ▷ M) α Γ → Set where LU : ⁅ α ⁆ ⁅ α ⊩ T β ⁆̣ ▹ ∅ ⊢ (ret 𝔞) >>= 𝔟⟨ x₀ ⟩ ≋ₐ 𝔟⟨ 𝔞 ⟩ RU : ⁅ T α ⁆̣ ▹ ∅ ⊢ 𝔞 >>= (ret x₀) ≋ₐ 𝔞 AS : ⁅ T α ⁆ ⁅ α ⊩ T β ⁆ ⁅ β ⊩ T γ ⁆̣ ▹ ∅ ⊢ (𝔞 >>= 𝔟⟨ x₀ ⟩) >>= 𝔠⟨ x₀ ⟩ ≋ₐ 𝔞 >>= (𝔟⟨ x₀ ⟩ >>= 𝔠⟨ x₀ ⟩) open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
{ "alphanum_fraction": 0.5487900078, "avg_line_length": 26.1428571429, "ext": "agda", "hexsha": "6f235c61e2b8b83ab31b34eb6c06a82c0328aebf", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Monad/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Monad/Equality.agda", "max_line_length": 110, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Monad/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 576, "size": 1281 }
module PiQ.Opsem where open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Data.Maybe open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function using (_∘_) open import Base open import PiQ.Syntax infix 1 _↦_ -- Base combinators base : ∀ {A B} (c : A ↔ B) → Set base unite₊l = ⊤ base uniti₊l = ⊤ base swap₊ = ⊤ base assocl₊ = ⊤ base assocr₊ = ⊤ base unite⋆l = ⊤ base uniti⋆l = ⊤ base swap⋆ = ⊤ base assocl⋆ = ⊤ base assocr⋆ = ⊤ base absorbr = ⊤ base factorzl = ⊤ base dist = ⊤ base factor = ⊤ base _ = ⊥ -- Dual combinators dual : ∀ {A B} (c : A ↔ B) → Set dual (ηₓ _) = ⊤ dual (εₓ _) = ⊤ dual η₊ = ⊤ dual ε₊ = ⊤ dual _ = ⊥ base-is-prop : ∀ {A B} (c : A ↔ B) → is-prop (base c) base-is-prop unite₊l tt tt = refl base-is-prop uniti₊l tt tt = refl base-is-prop swap₊ tt tt = refl base-is-prop assocl₊ tt tt = refl base-is-prop assocr₊ tt tt = refl base-is-prop unite⋆l tt tt = refl base-is-prop uniti⋆l tt tt = refl base-is-prop swap⋆ tt tt = refl base-is-prop assocl⋆ tt tt = refl base-is-prop assocr⋆ tt tt = refl base-is-prop absorbr tt tt = refl base-is-prop factorzl tt tt = refl base-is-prop dist tt tt = refl base-is-prop factor tt tt = refl -- Evaluator for base combinators δ : ∀ {A B} (c : A ↔ B) {_ : base c} → ⟦ A ⟧ → ⟦ B ⟧ δ unite₊l (inj₂ v) = v δ uniti₊l v = inj₂ v δ swap₊ (inj₁ x) = inj₂ x δ swap₊ (inj₂ y) = inj₁ y δ assocl₊ (inj₁ v) = inj₁ (inj₁ v) δ assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) δ assocl₊ (inj₂ (inj₂ v)) = inj₂ v δ assocr₊ (inj₁ (inj₁ v)) = inj₁ v δ assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) δ assocr₊ (inj₂ v) = inj₂ (inj₂ v) δ unite⋆l (tt , v) = v δ uniti⋆l v = (tt , v) δ swap⋆ (x , y) = (y , x) δ assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) δ assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) δ absorbr () δ factorzl () δ dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) δ dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) δ factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃) δ factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) -- Decidable equality of PiQ values _≟_ : {t : 𝕌} → Decidable (_≡_ {A = ⟦ t ⟧}) _≟_ {𝟙} tt tt = yes refl _≟_ {t₁ +ᵤ t₂} (inj₁ x) (inj₁ y) with x ≟ y ... | yes refl = yes refl ... | no x≠y = no (x≠y ∘ λ {refl → refl}) _≟_ {t₁ +ᵤ t₂} (inj₁ x) (inj₂ y) = no (λ ()) _≟_ {t₁ +ᵤ t₂} (inj₂ x) (inj₁ y) = no (λ ()) _≟_ {t₁ +ᵤ t₂} (inj₂ x) (inj₂ y) with x ≟ y ... | yes refl = yes refl ... | no x≠y = no (x≠y ∘ λ {refl → refl}) _≟_ {t₁ ×ᵤ t₂} (x₁ , x₂) (y₁ , y₂) with x₁ ≟ y₁ | x₂ ≟ y₂ ... | yes refl | yes refl = yes refl ... | yes refl | no x₂≠y₂ = no (x₂≠y₂ ∘ cong proj₂) ... | no x₁≠y₁ | yes refl = no (x₁≠y₁ ∘ cong proj₁) ... | no x₁≠y₁ | no x₂≠y₂ = no (x₁≠y₁ ∘ cong proj₁) _≟_ {𝟙/ t} ↻ ↻ = yes refl _≟_ { - t} (- v₁) (- v₂) with v₁ ≟ v₂ ... | yes refl = yes refl ... | no neq = no (λ {refl → neq refl}) -- Context data Context : {A B : 𝕌} → Set where ☐ : ∀ {A B} → Context {A} {B} ☐⨾_•_ : ∀ {A B C} → (c₂ : B ↔ C) → Context {A} {C} → Context {A} {B} _⨾☐•_ : ∀ {A B C} → (c₁ : A ↔ B) → Context {A} {C} → Context {B} {C} ☐⊕_•_ : ∀ {A B C D} → (c₂ : C ↔ D) → Context {A +ᵤ C} {B +ᵤ D} → Context {A} {B} _⊕☐•_ : ∀ {A B C D} → (c₁ : A ↔ B) → Context {A +ᵤ C} {B +ᵤ D} → Context {C} {D} ☐⊗[_,_]•_ : ∀ {A B C D} → (c₂ : C ↔ D) → ⟦ C ⟧ → Context {A ×ᵤ C} {B ×ᵤ D} → Context {A} {B} [_,_]⊗☐•_ : ∀ {A B C D} → (c₁ : A ↔ B) → ⟦ B ⟧ → Context {A ×ᵤ C} {B ×ᵤ D} → Context {C} {D} -- Machine state data State : Set where ⟨_∣_∣_⟩▷ : ∀ {A B} → (c : A ↔ B) → ⟦ A ⟧ → Context {A} {B} → State [_∣_∣_]▷ : ∀ {A B} → (c : A ↔ B) → ⟦ B ⟧ → Context {A} {B} → State ⟨_∣_∣_⟩◁ : ∀ {A B} → (c : A ↔ B) → ⟦ A ⟧ → Context {A} {B} → State [_∣_∣_]◁ : ∀ {A B} → (c : A ↔ B) → ⟦ B ⟧ → Context {A} {B} → State ⊠ : State -- Reduction relation data _↦_ : State → State → Set where ↦⃗₁ : ∀ {A B} {c : A ↔ B} {b : base c} {v : ⟦ A ⟧} {κ : Context} → ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c ∣ δ c {b} v ∣ κ ]▷ ↦⃗₂ : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → ⟨ id↔ ∣ v ∣ κ ⟩▷ ↦ [ id↔ ∣ v ∣ κ ]▷ ↦⃗₃ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ A ⟧} {κ : Context} → ⟨ c₁ ⨾ c₂ ∣ v ∣ κ ⟩▷ ↦ ⟨ c₁ ∣ v ∣ ☐⨾ c₂ • κ ⟩▷ ↦⃗₄ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ A ⟧} {κ : Context} → ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ⟩▷ ↦ ⟨ c₁ ∣ x ∣ ☐⊕ c₂ • κ ⟩▷ ↦⃗₅ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {y : ⟦ C ⟧} {κ : Context} → ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ⟩▷ ↦ ⟨ c₂ ∣ y ∣ c₁ ⊕☐• κ ⟩▷ ↦⃗₆ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ A ⟧} {y : ⟦ C ⟧} {κ : Context} → ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩▷ ↦ ⟨ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ⟩▷ ↦⃗₇ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ B ⟧} {κ : Context} → [ c₁ ∣ v ∣ ☐⨾ c₂ • κ ]▷ ↦ ⟨ c₂ ∣ v ∣ (c₁ ⨾☐• κ) ⟩▷ ↦⃗₈ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {y : ⟦ C ⟧} {κ : Context} → [ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ]▷ ↦ ⟨ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ⟩▷ ↦⃗₉ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {y : ⟦ D ⟧} {κ : Context} → [ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ]▷ ↦ [ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ]▷ ↦⃗₁₀ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ C ⟧} {κ : Context} → [ c₂ ∣ v ∣ (c₁ ⨾☐• κ) ]▷ ↦ [ c₁ ⨾ c₂ ∣ v ∣ κ ]▷ ↦⃗₁₁ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {κ : Context} → [ c₁ ∣ x ∣ ☐⊕ c₂ • κ ]▷ ↦ [ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ]▷ ↦⃗₁₂ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {y : ⟦ D ⟧} {κ : Context} → [ c₂ ∣ y ∣ c₁ ⊕☐• κ ]▷ ↦ [ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ]▷ ↦⃖₁ : ∀ {A B} {c : A ↔ B} {b : base c} {v : ⟦ A ⟧} {κ : Context} → [ c ∣ δ c {b} v ∣ κ ]◁ ↦ ⟨ c ∣ v ∣ κ ⟩◁ ↦⃖₂ : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → [ id↔ ∣ v ∣ κ ]◁ ↦ ⟨ id↔ ∣ v ∣ κ ⟩◁ ↦⃖₃ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ A ⟧} {κ : Context} → ⟨ c₁ ∣ v ∣ ☐⨾ c₂ • κ ⟩◁ ↦ ⟨ c₁ ⨾ c₂ ∣ v ∣ κ ⟩◁ ↦⃖₄ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ A ⟧} {κ : Context} → ⟨ c₁ ∣ x ∣ ☐⊕ c₂ • κ ⟩◁ ↦ ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ⟩◁ ↦⃖₅ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {y : ⟦ C ⟧} {κ : Context} → ⟨ c₂ ∣ y ∣ c₁ ⊕☐• κ ⟩◁ ↦ ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ⟩◁ ↦⃖₆ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ A ⟧} {y : ⟦ C ⟧} {κ : Context} → ⟨ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ⟩◁ ↦ ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩◁ ↦⃖₇ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ B ⟧} {κ : Context} → ⟨ c₂ ∣ v ∣ (c₁ ⨾☐• κ) ⟩◁ ↦ [ c₁ ∣ v ∣ ☐⨾ c₂ • κ ]◁ ↦⃖₈ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {y : ⟦ C ⟧} {κ : Context} → ⟨ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ⟩◁ ↦ [ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ]◁ ↦⃖₉ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {y : ⟦ D ⟧} {κ : Context} → [ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ]◁ ↦ [ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ]◁ ↦⃖₁₀ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ C ⟧} {κ : Context} → [ c₁ ⨾ c₂ ∣ v ∣ κ ]◁ ↦ [ c₂ ∣ v ∣ (c₁ ⨾☐• κ) ]◁ ↦⃖₁₁ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {κ : Context} → [ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ]◁ ↦ [ c₁ ∣ x ∣ ☐⊕ c₂ • κ ]◁ ↦⃖₁₂ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {y : ⟦ D ⟧} {κ : Context} → [ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ]◁ ↦ [ c₂ ∣ y ∣ c₁ ⊕☐• κ ]◁ ↦η₊₁ : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → [ η₊ ∣ inj₁ v ∣ κ ]◁ ↦ [ η₊ ∣ inj₂ (- v) ∣ κ ]▷ ↦η₊₂ : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → [ η₊ ∣ inj₂ (- v) ∣ κ ]◁ ↦ [ η₊ ∣ inj₁ v ∣ κ ]▷ ↦ε₊₁ : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → ⟨ ε₊ ∣ inj₁ v ∣ κ ⟩▷ ↦ ⟨ ε₊ ∣ inj₂ (- v) ∣ κ ⟩◁ ↦ε₊₂ : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → ⟨ ε₊ ∣ inj₂ (- v) ∣ κ ⟩▷ ↦ ⟨ ε₊ ∣ inj₁ v ∣ κ ⟩◁ ↦⃗ηₓ : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → ⟨ ηₓ v ∣ tt ∣ κ ⟩▷ ↦ [ ηₓ v ∣ (v , ↻) ∣ κ ]▷ ↦⃖ηₓ₁ : ∀ {A} {v v' : ⟦ A ⟧} {κ : Context} {eq : v ≡ v'} → [ ηₓ v ∣ (v' , ↻) ∣ κ ]◁ ↦ ⟨ ηₓ v ∣ tt ∣ κ ⟩◁ ↦⃖ηₓ₂ : ∀ {A} {v v' : ⟦ A ⟧} {κ : Context} {neq : v ≢ v'} → [ ηₓ v ∣ (v' , ↻) ∣ κ ]◁ ↦ ⊠ ↦⃗εₓ₁ : ∀ {A} {v v' : ⟦ A ⟧} {κ : Context} {eq : v ≡ v'} → ⟨ εₓ v ∣ (v' , ↻) ∣ κ ⟩▷ ↦ [ εₓ v ∣ tt ∣ κ ]▷ ↦⃗εₓ₂ : ∀ {A} {v v' : ⟦ A ⟧} {κ : Context} {neq : v ≢ v'} → ⟨ εₓ v ∣ (v' , ↻) ∣ κ ⟩▷ ↦ ⊠ ↦⃖εₓ : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → [ εₓ v ∣ tt ∣ κ ]◁ ↦ ⟨ εₓ v ∣ (v , ↻) ∣ κ ⟩◁
{ "alphanum_fraction": 0.4041776771, "avg_line_length": 44.15, "ext": "agda", "hexsha": "5d6a5bcfa2c408449c6abe305e2d9eb4dd51aaf1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiQ/Opsem.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiQ/Opsem.agda", "max_line_length": 107, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiQ/Opsem.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 4867, "size": 7947 }