Search is not available for this dataset
text
string
meta
dict
module VariableName where open import OscarPrelude record VariableName : Set where constructor ⟨_⟩ field name : Nat open VariableName public instance EqVariableName : Eq VariableName Eq._==_ EqVariableName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _)
{ "alphanum_fraction": 0.7414448669, "avg_line_length": 16.4375, "ext": "agda", "hexsha": "fe47d8bfa746f1057fa6c36180ee4f7dbbe003d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/VariableName.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/VariableName.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/VariableName.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 76, "size": 263 }
------------------------------------------------------------------------ -- A self-interpreter (without correctness proof) ------------------------------------------------------------------------ module Self-interpreter where open import Prelude hiding (const) -- To simplify the development, let's work with actual natural numbers -- as variables and constants (see -- Atom.one-can-restrict-attention-to-χ-ℕ-atoms). open import Atom open import Chi χ-ℕ-atoms open import Constants χ-ℕ-atoms open import Free-variables χ-ℕ-atoms open χ-atoms χ-ℕ-atoms open import Combinators -- Substitution. internal-subst : Exp internal-subst = lambda v-x (lambda v-new body) module Internal-subst where private rec-or-lambda : _ → _ rec-or-lambda = λ c → branch c (v-y ∷ v-e ∷ []) ( case (equal-ℕ (var v-x) (var v-y)) ( branch c-true [] (const c (var v-y ∷ var v-e ∷ [])) ∷ branch c-false [] ( const c (var v-y ∷ apply (var v-subst) (var v-e) ∷ [])) ∷ [])) branches = branch c-apply (v-e₁ ∷ v-e₂ ∷ []) ( const c-apply (apply (var v-subst) (var v-e₁) ∷ apply (var v-subst) (var v-e₂) ∷ [])) ∷ branch c-case (v-e ∷ v-bs ∷ []) ( const c-case ( apply (var v-subst) (var v-e) ∷ apply (var v-subst) (var v-bs) ∷ [])) ∷ rec-or-lambda c-rec ∷ rec-or-lambda c-lambda ∷ branch c-const (v-c ∷ v-es ∷ []) ( const c-const (var v-c ∷ apply (var v-subst) (var v-es) ∷ [])) ∷ branch c-var (v-y ∷ []) ( case (equal-ℕ (var v-x) (var v-y)) ( branch c-true [] (var v-new) ∷ branch c-false [] (const c-var (var v-y ∷ [])) ∷ [])) ∷ branch c-branch (v-c ∷ v-ys ∷ v-e ∷ []) ( const c-branch ( var v-c ∷ var v-ys ∷ case (member (var v-x) (var v-ys)) ( branch c-true [] (var v-e) ∷ branch c-false [] (apply (var v-subst) (var v-e)) ∷ []) ∷ [])) ∷ branch c-nil [] (const c-nil []) ∷ branch c-cons (v-e ∷ v-es ∷ []) ( const c-cons (apply (var v-subst) (var v-e) ∷ apply (var v-subst) (var v-es) ∷ [])) ∷ [] body = rec v-subst (lambda v-e (case (var v-e) branches)) -- Searches for a branch matching a given natural number. internal-lookup : Exp internal-lookup = lambda v-c (rec v-lookup (lambda v-bs (case (var v-bs) ( branch c-cons (v-b ∷ v-bs ∷ []) (case (var v-b) ( branch c-branch (v-c′ ∷ v-underscore ∷ v-underscore ∷ []) ( case (equal-ℕ (var v-c) (var v-c′)) ( branch c-false [] (apply (var v-lookup) (var v-bs)) ∷ branch c-true [] (var v-b) ∷ [])) ∷ [])) ∷ [])))) -- Tries to apply multiple substitutions. internal-substs : Exp internal-substs = rec v-substs (lambda v-xs (lambda v-es (lambda v-e′ ( case (var v-xs) ( branch c-nil [] (case (var v-es) ( branch c-nil [] (var v-e′) ∷ [])) ∷ branch c-cons (v-x ∷ v-xs ∷ []) (case (var v-es) ( branch c-cons (v-e ∷ v-es ∷ []) ( apply (apply (apply internal-subst (var v-x)) (var v-e)) (apply (apply (apply (var v-substs) (var v-xs)) (var v-es)) (var v-e′))) ∷ [])) ∷ []))))) -- A map function. The application of map to the function is done at -- the meta-level in order to simplify proofs. map : Exp → Exp map f = rec v-map (lambda v-xs (case (var v-xs) branches)) module Map where branches = branch c-nil [] (const c-nil []) ∷ branch c-cons (v-x ∷ v-xs ∷ []) ( const c-cons (apply f (var v-x) ∷ apply (var v-map) (var v-xs) ∷ [])) ∷ [] -- The self-interpreter. eval : Exp eval = rec v-eval (lambda v-p (case (var v-p) branches)) module Eval where apply-branch = branch c-lambda (v-x ∷ v-e ∷ []) ( apply (var v-eval) ( apply (apply (apply internal-subst (var v-x)) (apply (var v-eval) (var v-e₂))) (var v-e))) ∷ [] case-body₂ = case (apply (apply internal-lookup (var v-c)) (var v-bs)) ( branch c-branch (v-underscore ∷ v-xs ∷ v-e ∷ []) ( apply (var v-eval) ( apply (apply (apply internal-substs (var v-xs)) (var v-es)) (var v-e))) ∷ []) case-body₁ = case (apply (var v-eval) (var v-e)) ( branch c-const (v-c ∷ v-es ∷ []) case-body₂ ∷ []) branches = branch c-apply (v-e₁ ∷ v-e₂ ∷ []) ( case (apply (var v-eval) (var v-e₁)) apply-branch) ∷ branch c-case (v-e ∷ v-bs ∷ []) case-body₁ ∷ branch c-rec (v-x ∷ v-e ∷ []) ( apply (var v-eval) ( apply (apply (apply internal-subst (var v-x)) (const c-rec (var v-x ∷ var v-e ∷ []))) (var v-e))) ∷ branch c-lambda (v-x ∷ v-e ∷ []) ( const c-lambda (var v-x ∷ var v-e ∷ [])) ∷ branch c-const (v-c ∷ v-es ∷ []) ( const c-const (var v-c ∷ apply (map (var v-eval)) (var v-es) ∷ [])) ∷ [] eval-closed : Closed eval eval-closed = from-⊎ (closed? eval)
{ "alphanum_fraction": 0.4990067541, "avg_line_length": 32.4774193548, "ext": "agda", "hexsha": "d2c928b5dea6309ef5a17fc3ccac71df5393b7af", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Self-interpreter.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Self-interpreter.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Self-interpreter.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 1643, "size": 5034 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Core where open import Level open import Function.Base using (flip) open import Relation.Binary using (Rel; IsEquivalence; Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR -- Basic definition of a |Category| with a Hom setoid. -- Also comes with some reasoning combinators (see HomReasoning) record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where eta-equality infix 4 _≈_ _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : Rel Obj ℓ _≈_ : ∀ {A B} → Rel (A ⇒ B) e id : ∀ {A} → (A ⇒ A) _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) field assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f) -- We add a symmetric proof of associativity so that the opposite category of the -- opposite category is definitionally equal to the original category. See how -- `op` is implemented. sym-assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → h ∘ (g ∘ f) ≈ (h ∘ g) ∘ f identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f -- We add a proof of "neutral" identity proof, in order to ensure the opposite of -- constant functor is definitionally equal to itself. identity² : ∀ {A} → id ∘ id {A} ≈ id {A} equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i module Equiv {A B : Obj} = IsEquivalence (equiv {A} {B}) open Equiv ∘-resp-≈ˡ : ∀ {A B C} {f h : B ⇒ C} {g : A ⇒ B} → f ≈ h → f ∘ g ≈ h ∘ g ∘-resp-≈ˡ pf = ∘-resp-≈ pf refl ∘-resp-≈ʳ : ∀ {A B C} {f h : A ⇒ B} {g : B ⇒ C} → f ≈ h → g ∘ f ≈ g ∘ h ∘-resp-≈ʳ pf = ∘-resp-≈ refl pf hom-setoid : ∀ {A B} → Setoid _ _ hom-setoid {A} {B} = record { Carrier = A ⇒ B ; _≈_ = _≈_ ; isEquivalence = equiv } -- When a category is quatified, it is convenient to refer to the levels from a module, -- so we do not have to explicitly quantify over a category when universe levels do not -- play a big part in a proof (which is the case probably all the time). o-level : Level o-level = o ℓ-level : Level ℓ-level = ℓ e-level : Level e-level = e -- Reasoning combinators. _≈⟨_⟩_ and _≈˘⟨_⟩_ from SetoidR. -- Also some useful combinators for doing reasoning on _∘_ chains module HomReasoning {A B : Obj} where open SetoidR (hom-setoid {A} {B}) public -- open Equiv {A = A} {B = B} public infixr 4 _⟩∘⟨_ refl⟩∘⟨_ infixl 5 _⟩∘⟨refl _⟩∘⟨_ : ∀ {M} {f h : M ⇒ B} {g i : A ⇒ M} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i _⟩∘⟨_ = ∘-resp-≈ refl⟩∘⟨_ : ∀ {M} {f : M ⇒ B} {g i : A ⇒ M} → g ≈ i → f ∘ g ≈ f ∘ i refl⟩∘⟨_ = Equiv.refl ⟩∘⟨_ _⟩∘⟨refl : ∀ {M} {f h : M ⇒ B} {g : A ⇒ M} → f ≈ h → f ∘ g ≈ h ∘ g _⟩∘⟨refl = _⟩∘⟨ Equiv.refl -- convenient inline versions infix 2 ⟺ infixr 3 _○_ ⟺ : {f g : A ⇒ B} → f ≈ g → g ≈ f ⟺ = Equiv.sym _○_ : {f g h : A ⇒ B} → f ≈ g → g ≈ h → f ≈ h _○_ = Equiv.trans op : Category o ℓ e op = record { Obj = Obj ; _⇒_ = flip _⇒_ ; _≈_ = _≈_ ; _∘_ = flip _∘_ ; id = id ; assoc = sym-assoc ; sym-assoc = assoc ; identityˡ = identityʳ ; identityʳ = identityˡ ; identity² = identity² ; equiv = equiv ; ∘-resp-≈ = flip ∘-resp-≈ }
{ "alphanum_fraction": 0.5134739309, "avg_line_length": 31.6111111111, "ext": "agda", "hexsha": "a0b484e32f40554d0d2c3c746fb349809d1eb5b7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bond15/agda-categories", "max_forks_repo_path": "src/Categories/Category/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bond15/agda-categories", "max_issues_repo_path": "src/Categories/Category/Core.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bond15/agda-categories", "max_stars_repo_path": "src/Categories/Category/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1449, "size": 3414 }
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Equivalence where open import Level open import Categories.Adjoint open import Categories.Adjoint.TwoSided open import Categories.Adjoint.TwoSided.Compose open import Categories.Category.Core using (Category) open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.NaturalTransformation.NaturalIsomorphism as ≃ using (_≃_) open import Relation.Binary using (Setoid; IsEquivalence) private variable o ℓ e o′ ℓ′ e′ : Level C D E : Category o ℓ e record ⊣Equivalence (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field L : Functor C D R : Functor D C L⊣⊢R : L ⊣⊢ R module L = Functor L module R = Functor R open _⊣⊢_ L⊣⊢R public refl : ⊣Equivalence C C refl = record { L = idF ; R = idF ; L⊣⊢R = id⊣⊢id } sym : ⊣Equivalence C D → ⊣Equivalence D C sym e = record { L = R ; R = L ; L⊣⊢R = op₂ } where open ⊣Equivalence e trans : ⊣Equivalence C D → ⊣Equivalence D E → ⊣Equivalence C E trans e e′ = record { L = e′.L ∘F e.L ; R = e.R ∘F e′.R ; L⊣⊢R = e.L⊣⊢R ∘⊣⊢ e′.L⊣⊢R } where module e = ⊣Equivalence e using (L; R; L⊣⊢R) module e′ = ⊣Equivalence e′ using (L; R; L⊣⊢R) isEquivalence : ∀ {o ℓ e} → IsEquivalence (⊣Equivalence {o} {ℓ} {e}) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } setoid : ∀ o ℓ e → Setoid _ _ setoid o ℓ e = record { Carrier = Category o ℓ e ; _≈_ = ⊣Equivalence ; isEquivalence = isEquivalence }
{ "alphanum_fraction": 0.6082665022, "avg_line_length": 23.4927536232, "ext": "agda", "hexsha": "dbf491141e73ab70256b1cfe5debee58b88ed0fc", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Equivalence.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Equivalence.agda", "max_line_length": 103, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 655, "size": 1621 }
{-# OPTIONS --without-K #-} module sets.properties where open import sum open import equality.core open import equality.calculus open import function.isomorphism open import function.overloading open import hott.level open import hott.equivalence.core open import hott.equivalence.alternative open import sets.unit mk-prop-iso : ∀ {i j}{A : Set i}{B : Set j} → h 1 A → h 1 B → (A → B) → (B → A) → A ≅ B mk-prop-iso hA hB f g = iso f g (λ x → h1⇒prop hA _ _) (λ y → h1⇒prop hB _ _) iso-coherence-h2 : ∀ {i j}(A : HSet i)(B : HSet j) → (proj₁ A ≅' proj₁ B) ≅ (proj₁ A ≅ proj₁ B) iso-coherence-h2 (A , hA)(B , hB) = begin (A ≅' B) ≅⟨ ( Σ-ap-iso₂ λ isom → contr-⊤-iso (Π-level λ x → hB _ _ _ _) ) ⟩ ((A ≅ B) × ⊤) ≅⟨ ×-right-unit ⟩ (A ≅ B) ∎ where open ≅-Reasoning iso-equiv-h2 : ∀ {i j}{A : Set i}{B : Set j} → h 2 A → h 2 B → (A ≈ B) ≅ (A ≅ B) iso-equiv-h2 hA hB = trans≅ ≈⇔≅' (iso-coherence-h2 (_ , hA) (_ , hB)) iso-eq-h2 : ∀ {i j}{A : Set i}{B : Set j} → h 2 A → h 2 B → {isom isom' : A ≅ B} → (apply isom ≡ apply isom') → isom ≡ isom' iso-eq-h2 hA hB p = subtype-eq (λ f → weak-equiv-h1 f) (sym≅ (iso-equiv-h2 hA hB)) p inj-eq-h2 : ∀ {i j}{A : Set i}{B : Set j} → h 2 A → {f f' : A ↣ B} → (apply f ≡ apply f') → f ≡ f' inj-eq-h2 hA refl = ap (_,_ _) (h1⇒prop (inj-level _ hA) _ _)
{ "alphanum_fraction": 0.4917382683, "avg_line_length": 27.0178571429, "ext": "agda", "hexsha": "649d3374747d695e35aec9a4b1896e97b90805bc", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/properties.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/properties.agda", "max_line_length": 50, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 610, "size": 1513 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Sets.EquivalenceRelations open import Setoids.Setoids open import Setoids.Subset module Setoids.Union.Lemmas {a b : _} {A : Set a} (S : Setoid {a} {b} A) {c d : _} {pred1 : A → Set c} {pred2 : A → Set d} (s1 : subset S pred1) (s2 : subset S pred2) where open import Setoids.Union.Definition S open import Setoids.Equality S unionCommutative : union s1 s2 =S union s2 s1 unionCommutative i = ans1 ,, ans2 where ans1 : unionPredicate s1 s2 i → unionPredicate s2 s1 i ans1 (inl x) = inr x ans1 (inr x) = inl x ans2 : unionPredicate s2 s1 i → unionPredicate s1 s2 i ans2 (inl x) = inr x ans2 (inr x) = inl x unionAssociative : {e : _} {pred3 : A → Set e} (s3 : subset S pred3) → union (union s1 s2) s3 =S union s1 (union s2 s3) unionAssociative s3 x = ans1 ,, ans2 where ans1 : unionPredicate (union s1 s2) s3 x → unionPredicate s1 (union s2 s3) x ans1 (inl (inl x)) = inl x ans1 (inl (inr x)) = inr (inl x) ans1 (inr x) = inr (inr x) ans2 : _ ans2 (inl x) = inl (inl x) ans2 (inr (inl x)) = inl (inr x) ans2 (inr (inr x)) = inr x
{ "alphanum_fraction": 0.6433172303, "avg_line_length": 35.4857142857, "ext": "agda", "hexsha": "e159623870a52e3ca88aa642ea1dbe333da3346e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Setoids/Union/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Setoids/Union/Lemmas.agda", "max_line_length": 172, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Setoids/Union/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 484, "size": 1242 }
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Susp.Base where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Bool open import Cubical.HITs.S1 open import Cubical.HITs.S2 open import Cubical.HITs.S3 data Susp {ℓ} (A : Type ℓ) : Type ℓ where north : Susp A south : Susp A merid : (a : A) → north ≡ south SuspBool : Type₀ SuspBool = Susp Bool SuspBool→S¹ : SuspBool → S¹ SuspBool→S¹ north = base SuspBool→S¹ south = base SuspBool→S¹ (merid false i) = loop i SuspBool→S¹ (merid true i) = base S¹→SuspBool : S¹ → SuspBool S¹→SuspBool base = north S¹→SuspBool (loop i) = (merid false ∙ (sym (merid true))) i SuspBool→S¹→SuspBool : (x : SuspBool) → Path _ (S¹→SuspBool (SuspBool→S¹ x)) x SuspBool→S¹→SuspBool north = refl SuspBool→S¹→SuspBool south = merid true SuspBool→S¹→SuspBool (merid false i) = λ j → hcomp (λ k → (λ { (j = i1) → merid false i ; (i = i0) → north ; (i = i1) → merid true (j ∨ ~ k)})) (merid false i) SuspBool→S¹→SuspBool (merid true i) = λ j → merid true (i ∧ j) S¹→SuspBool→S¹ : (x : S¹) → SuspBool→S¹ (S¹→SuspBool x) ≡ x S¹→SuspBool→S¹ base = refl S¹→SuspBool→S¹ (loop i) = λ j → hfill (λ k → λ { (i = i0) → base ; (i = i1) → base }) (inS (loop i)) (~ j) S¹≃SuspBool : S¹ ≃ SuspBool S¹≃SuspBool = isoToEquiv (iso S¹→SuspBool SuspBool→S¹ SuspBool→S¹→SuspBool S¹→SuspBool→S¹) S¹≡SuspBool : S¹ ≡ SuspBool S¹≡SuspBool = isoToPath (iso S¹→SuspBool SuspBool→S¹ SuspBool→S¹→SuspBool S¹→SuspBool→S¹) -- Now the sphere SuspS¹ : Type₀ SuspS¹ = Susp S¹ SuspS¹→S² : SuspS¹ → S² SuspS¹→S² north = base SuspS¹→S² south = base SuspS¹→S² (merid base i) = base SuspS¹→S² (merid (loop j) i) = surf i j meridian-contraction : I → I → I → SuspS¹ meridian-contraction i j l = hfill (λ k → λ { (i = i0) → north ; (i = i1) → merid base (~ k) ; (j = i0) → merid base (~ k ∧ i) ; (j = i1) → merid base (~ k ∧ i) }) (inS (merid (loop j) i)) l S²→SuspS¹ : S² → SuspS¹ S²→SuspS¹ base = north S²→SuspS¹ (surf i j) = meridian-contraction i j i1 S²→SuspS¹→S² : ∀ x → SuspS¹→S² (S²→SuspS¹ x) ≡ x S²→SuspS¹→S² base k = base S²→SuspS¹→S² (surf i j) k = SuspS¹→S² (meridian-contraction i j (~ k)) SuspS¹→S²→SuspS¹ : ∀ x → S²→SuspS¹ (SuspS¹→S² x) ≡ x SuspS¹→S²→SuspS¹ north k = north SuspS¹→S²→SuspS¹ south k = merid base k SuspS¹→S²→SuspS¹ (merid base j) k = merid base (k ∧ j) SuspS¹→S²→SuspS¹ (merid (loop j) i) k = meridian-contraction i j (~ k) S²≡SuspS¹ : S² ≡ SuspS¹ S²≡SuspS¹ = isoToPath (iso S²→SuspS¹ SuspS¹→S² SuspS¹→S²→SuspS¹ S²→SuspS¹→S²) -- And the 3-sphere SuspS² : Type₀ SuspS² = Susp S² SuspS²→S³ : SuspS² → S³ SuspS²→S³ north = base SuspS²→S³ south = base SuspS²→S³ (merid base i) = base SuspS²→S³ (merid (surf j k) i) = surf i j k meridian-contraction-2 : I → I → I → I → SuspS² meridian-contraction-2 i j k l = hfill (λ m → λ { (i = i0) → north ; (i = i1) → merid base (~ m) ; (j = i0) → merid base (~ m ∧ i) ; (j = i1) → merid base (~ m ∧ i) ; (k = i0) → merid base (~ m ∧ i) ; (k = i1) → merid base (~ m ∧ i) }) (inS (merid (surf j k) i)) l S³→SuspS² : S³ → SuspS² S³→SuspS² base = north S³→SuspS² (surf i j k) = meridian-contraction-2 i j k i1 S³→SuspS²→S³ : ∀ x → SuspS²→S³ (S³→SuspS² x) ≡ x S³→SuspS²→S³ base l = base S³→SuspS²→S³ (surf i j k) l = SuspS²→S³ (meridian-contraction-2 i j k (~ l)) SuspS²→S³→SuspS² : ∀ x → S³→SuspS² (SuspS²→S³ x) ≡ x SuspS²→S³→SuspS² north l = north SuspS²→S³→SuspS² south l = merid base l SuspS²→S³→SuspS² (merid base j) l = merid base (l ∧ j) SuspS²→S³→SuspS² (merid (surf j k) i) l = meridian-contraction-2 i j k (~ l) S³≡SuspS² : S³ ≡ SuspS² S³≡SuspS² = isoToPath (iso S³→SuspS² SuspS²→S³ SuspS²→S³→SuspS² S³→SuspS²→S³)
{ "alphanum_fraction": 0.5608477666, "avg_line_length": 34.5511811024, "ext": "agda", "hexsha": "4de5abd870303d8925534445ff520d312fa0873d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/HITs/Susp/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/HITs/Susp/Base.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/HITs/Susp/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1705, "size": 4388 }
-- # A Reflexive Graph Model of Sized Types -- This is the formalisation of my M.Sc. thesis, available at -- https://limperg.de/paper/msc-thesis/ -- I define λST, a simply typed lambda calculus extended with sized types. I -- then give a reflexive graph model of λST which incorporates a notion of size -- irrelevance. This document lists all modules belonging to the development, -- roughly in dependency order. module index where -- ## Object Language -- The following modules define the syntax and type system of λST. -- Sizes, size contexts, size comparison. import Source.Size -- First formulation of size substitutions. import Source.Size.Substitution.Canonical -- Second formulation of size substitutions. import Source.Size.Substitution.Universe -- An abstraction for things which size substitutions can be applied to. import Source.Size.Substitution.Theory -- Types. import Source.Type -- Terms. import Source.Term -- ## Model -- The following modules define the reflexive graph model of λST. -- Propositional reflexive graphs and their morphisms. import Model.RGraph -- Model of sizes, size contexts, size comparison. import Model.Size -- Families of propositional reflexive graphs (PRGraph families) and their -- morphisms. import Model.Type.Core -- The terminal PRGraph family. import Model.Terminal -- Binary products of PRGraph families. import Model.Product -- Exponentials of PRGraph families (model of the function space). import Model.Exponential -- Model of size quantification. import Model.Quantification -- Model of the natural number type. import Model.Nat -- Model of the stream type. import Model.Stream -- Model of types and type contexts. import Model.Type -- Model of terms. import Model.Term -- ## Utility Library -- The following modules contain utility code. The majority of this is an -- implementation of (parts of) Homotopy Type Theory. import Util.Data.Product import Util.HoTT.Equiv import Util.HoTT.Equiv.Core import Util.HoTT.Equiv.Induction import Util.HoTT.FunctionalExtensionality import Util.HoTT.HLevel import Util.HoTT.HLevel.Core import Util.HoTT.Homotopy import Util.HoTT.Section import Util.HoTT.Singleton import Util.HoTT.Univalence import Util.HoTT.Univalence.Axiom import Util.HoTT.Univalence.Beta import Util.HoTT.Univalence.ContrFormulation import Util.HoTT.Univalence.Statement import Util.Induction.WellFounded import Util.Prelude import Util.Relation.Binary.Closure.SymmetricTransitive import Util.Relation.Binary.LogicalEquivalence import Util.Relation.Binary.PropositionalEquality import Util.Vec -- ## Miscellaneous -- Some terms of λST and their typing derivations. import Source.Examples -- Experiments with a hypothetical Agda without the ∞ < ∞ rule. import irreflexive-lt -- Ordinals as defined in the HoTT book. import Ordinal.HoTT -- Plump ordinals as presented by Shulman. import Ordinal.Shulman
{ "alphanum_fraction": 0.7882758621, "avg_line_length": 24.5762711864, "ext": "agda", "hexsha": "06f71e99950b70a4f45a9fb8ca5b93982607fe9c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/index.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/index.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/index.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 676, "size": 2900 }
module New.Correctness where open import Function hiding (const) open import New.Lang open import New.Changes open import New.Derive open import New.LangChanges open import New.LangOps open import New.FunctionLemmas open import New.Unused ⟦Γ≼ΔΓ⟧ : ∀ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → validΓ ρ dρ → ρ ≡ ⟦ Γ≼ΔΓ ⟧≼ dρ ⟦Γ≼ΔΓ⟧ ∅ ∅ tt = refl ⟦Γ≼ΔΓ⟧ (v • ρ) (dv • .v • dρ) (vdv , refl , ρdρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ ρ dρ ρdρ) fit-sound : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → validΓ ρ dρ → ⟦ t ⟧Term ρ ≡ ⟦ fit t ⟧Term dρ fit-sound t ρ dρ ρdρ = trans (cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ ρ dρ ρdρ)) (sym (weaken-sound t _)) correctDeriveConst : ∀ {τ} (c : Const τ) → ⟦ c ⟧Const ≡ ⟦ c ⟧Const ⊕ (⟦_⟧ΔConst c) correctDeriveConst (lit n) = sym (right-id-int n) correctDeriveConst plus = ext (λ m → ext (lemma m)) where lemma : ∀ m n → m + n ≡ m + n + (m + - m + (n + - n)) lemma m n rewrite right-inv-int m | right-inv-int n | right-id-int (m + n) = refl correctDeriveConst minus = ext (λ m → ext (λ n → lemma m n)) where lemma : ∀ m n → m - n ≡ m - n + (m + - m - (n + - n)) lemma m n rewrite right-inv-int m | right-inv-int n | right-id-int (m - n) = refl correctDeriveConst cons = ext (λ v1 → ext (λ v2 → sym (update-nil (v1 , v2)))) correctDeriveConst fst = ext (λ vp → sym (update-nil (proj₁ vp))) correctDeriveConst snd = ext (λ vp → sym (update-nil (proj₂ vp))) correctDeriveConst linj = ext (λ va → sym (cong inj₁ (update-nil va))) correctDeriveConst rinj = ext (λ vb → sym (cong inj₂ (update-nil vb))) correctDeriveConst (match {t1} {t2} {t3}) = ext³ lemma where lemma : ∀ s f g → ⟦ match {t1} {t2} {t3} ⟧Const s f g ≡ (⟦ match ⟧Const ⊕ ⟦ match ⟧ΔConst) s f g lemma (inj₁ x) f g rewrite update-nil x | update-nil (f x) = refl lemma (inj₂ y) f g rewrite update-nil y | update-nil (g y) = refl validDeriveConst : ∀ {τ} (c : Const τ) → valid ⟦ c ⟧Const (⟦_⟧ΔConst c) validDeriveConst (lit n) = tt validDeriveConst {τ = t1 ⇒ t2 ⇒ pair .t1 .t2} cons = binary-valid (λ a da ada b db bdb → (ada , bdb)) dcons-eq where open BinaryValid ⟦ cons {t1} {t2} ⟧Const (⟦ cons ⟧ΔConst) dcons-eq : binary-valid-eq-hp dcons-eq a da ada b db bdb rewrite update-nil (a ⊕ da) | update-nil (b ⊕ db) = refl validDeriveConst fst (a , b) (da , db) (ada , bdb) = ada , update-nil (a ⊕ da) validDeriveConst snd (a , b) (da , db) (ada , bdb) = bdb , update-nil (b ⊕ db) validDeriveConst plus = binary-valid (λ a da ada b db bdb → tt) dplus-eq where open BinaryValid ⟦ plus ⟧Const (⟦ plus ⟧ΔConst) dplus-eq : binary-valid-eq-hp dplus-eq a da ada b db bdb rewrite right-inv-int (a + da) | right-inv-int (b + db) | right-id-int (a + da + (b + db)) = mn·pq=mp·nq {a} {da} {b} {db} validDeriveConst minus = binary-valid (λ a da ada b db bdb → tt) dminus-eq where open BinaryValid ⟦ minus ⟧Const (⟦ minus ⟧ΔConst) dminus-eq : binary-valid-eq-hp dminus-eq a da ada b db bdb rewrite right-inv-int (a + da) | right-inv-int (b + db) | right-id-int (a + da - (b + db)) | sym (-m·-n=-mn {b} {db}) = mn·pq=mp·nq {a} {da} { - b} { - db} validDeriveConst linj a da ada = sv₁ a da ada , cong inj₁ (update-nil (a ⊕ da)) validDeriveConst rinj b db bdb = sv₂ b db bdb , cong inj₂ (update-nil (b ⊕ db)) validDeriveConst (match {t1} {t2} {t3}) = ternary-valid dmatch-valid dmatch-eq where open TernaryValid {{chAlgt (sum t1 t2)}} {{chAlgt (t1 ⇒ t3)}} {{chAlgt (t2 ⇒ t3)}} {{chAlgt t3}} ⟦ match ⟧Const (⟦ match ⟧ΔConst) dmatch-valid : ternary-valid-preserve-hp dmatch-valid .(inj₁ a) .(inj₁ (inj₁ da)) (sv₁ a da ada) f df fdf g dg gdg = proj₁ (fdf a da ada) dmatch-valid .(inj₂ b) .(inj₁ (inj₂ db)) (sv₂ b db bdb) f df fdf g dg gdg = proj₁ (gdg b db bdb) dmatch-valid .(inj₁ a1) .(inj₂ (inj₂ b2)) (svrp₁ a1 b2) f df fdf g dg gdg rewrite changeMatchSem-lem1 f df g dg a1 b2 = ⊝-valid (f a1) (g b2 ⊕ dg b2 (nil b2)) dmatch-valid .(inj₂ b1) .(inj₂ (inj₁ a2)) (svrp₂ b1 a2) f df fdf g dg gdg rewrite changeMatchSem-lem2 f df g dg b1 a2 = ⊝-valid (g b1) (f a2 ⊕ df a2 (nil a2)) dmatch-eq : ternary-valid-eq-hp dmatch-eq .(inj₁ a) .(inj₁ (inj₁ da)) (sv₁ a da ada) f df fdf g dg gdg rewrite update-nil (a ⊕ da) | update-nil (f (a ⊕ da) ⊕ df (a ⊕ da) (nil (a ⊕ da))) = proj₂ (fdf a da ada) dmatch-eq .(inj₂ b) .(inj₁ (inj₂ db)) (sv₂ b db bdb) f df fdf g dg gdg rewrite update-nil (b ⊕ db) | update-nil (g (b ⊕ db) ⊕ dg (b ⊕ db) (nil (b ⊕ db))) = proj₂ (gdg b db bdb) dmatch-eq .(inj₁ a1) .(inj₂ (inj₂ b2)) (svrp₁ a1 b2) f df fdf g dg gdg rewrite changeMatchSem-lem1 f df g dg a1 b2 | update-nil b2 | update-diff (g b2 ⊕ dg b2 (nil b2)) (f a1) | update-nil (g b2 ⊕ dg b2 (nil b2)) = refl dmatch-eq .(inj₂ b1) .(inj₂ (inj₁ a2)) (svrp₂ b1 a2) f df fdf g dg gdg rewrite changeMatchSem-lem2 f df g dg b1 a2 | update-nil a2 | update-diff (f a2 ⊕ df a2 (nil a2)) (g b1) | update-nil (f a2 ⊕ df a2 (nil a2)) = refl validDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → validΓ ρ dρ → valid (⟦ x ⟧Var ρ) (⟦ x ⟧ΔVar ρ dρ) validDeriveVar this (v • ρ) (dv • .v • dρ) (vdv , refl , ρdρ) = vdv validDeriveVar (that x) (v • ρ) (dv • .v • dρ) (vdv , refl , ρdρ) = validDeriveVar x ρ dρ ρdρ correctDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) → IsDerivative ⟦ x ⟧Var (⟦ x ⟧ΔVar) correctDeriveVar this (v • ρ) (dv • v' • dρ) ρdρ = refl correctDeriveVar (that x) (v • ρ) (dv • .v • dρ) (vdv , refl , ρdρ) = correctDeriveVar x ρ dρ ρdρ validDerive : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → validΓ ρ dρ → valid (⟦ t ⟧Term ρ) (⟦ t ⟧ΔTerm ρ dρ) correctDerive : ∀ {Γ τ} → (t : Term Γ τ) → IsDerivative ⟦ t ⟧Term ⟦ t ⟧ΔTerm correctDerive (const c) ρ dρ ρdρ rewrite ⟦ c ⟧ΔConst-rewrite ρ dρ = correctDeriveConst c correctDerive (var x) ρ dρ ρdρ = correctDeriveVar x ρ dρ ρdρ correctDerive (app s t) ρ dρ ρdρ rewrite sym (fit-sound t ρ dρ ρdρ) = let open ≡-Reasoning a0 = ⟦ t ⟧Term ρ da0 = ⟦ derive t ⟧Term dρ a0da0 = validDerive t ρ dρ ρdρ in begin ⟦ s ⟧Term (ρ ⊕ dρ) (⟦ t ⟧Term (ρ ⊕ dρ)) ≡⟨ correctDerive s ρ dρ ρdρ ⟨$⟩ correctDerive t ρ dρ ρdρ ⟩ (⟦ s ⟧Term ρ ⊕ ⟦ s ⟧ΔTerm ρ dρ) (⟦ t ⟧Term ρ ⊕ ⟦ t ⟧ΔTerm ρ dρ) ≡⟨ proj₂ (validDerive s ρ dρ ρdρ a0 da0 a0da0) ⟩ ⟦ s ⟧Term ρ (⟦ t ⟧Term ρ) ⊕ (⟦ s ⟧ΔTerm ρ dρ) (⟦ t ⟧Term ρ) (⟦ t ⟧ΔTerm ρ dρ) ∎ where open import Theorem.CongApp correctDerive (abs t) ρ dρ ρdρ = ext $ λ a → let open ≡-Reasoning ρ1 = a • ρ dρ1 = nil a • a • dρ ρ1dρ1 = nil-valid a , refl , ρdρ in -- equal-future-expand-derivative ⟦ t ⟧Term ⟦ t ⟧ΔTerm (correctDerive t) -- ρ1 dρ1 ρ1dρ1 -- (a • (ρ ⊕ dρ)) -- (cong (_• ρ ⊕ dρ) (sym (update-nil a))) begin ⟦ t ⟧Term (a • ρ ⊕ dρ) ≡⟨ cong (λ a′ → ⟦ t ⟧Term (a′ • ρ ⊕ dρ)) (sym (update-nil a)) ⟩ ⟦ t ⟧Term (ρ1 ⊕ dρ1) ≡⟨ correctDerive t ρ1 dρ1 ρ1dρ1 ⟩ ⟦ t ⟧Term ρ1 ⊕ ⟦ t ⟧ΔTerm ρ1 dρ1 ∎ validDerive (app s t) ρ dρ ρdρ = let f = ⟦ s ⟧Term ρ df = ⟦ derive s ⟧Term dρ v = ⟦ t ⟧Term ρ dv = ⟦ derive t ⟧Term dρ vdv = validDerive t ρ dρ ρdρ fdf = validDerive s ρ dρ ρdρ fvdfv = proj₁ (fdf v dv vdv) in subst (λ v′ → valid (f v) (df v′ dv)) (fit-sound t ρ dρ ρdρ) fvdfv validDerive (abs t) ρ dρ ρdρ = λ a da ada → let ρ1 = a ⊕ da • ρ dρ1 = nil (a ⊕ da) • (a ⊕ da) • dρ ρ2 = a • ρ dρ2 = da • a • dρ ρ1dρ1 = nil-valid (a ⊕ da) , refl , ρdρ ρ2dρ2 = ada , refl , ρdρ rdr = validDerive t ρ2 dρ2 ρ2dρ2 open ≡-Reasoning in rdr , equal-future-derivative ⟦ t ⟧Term ⟦ t ⟧ΔTerm (correctDerive t) ρ1 dρ1 ρ1dρ1 ρ2 dρ2 ρ2dρ2 (cong (λ a′ → (a′ • ρ ⊕ dρ)) (update-nil (a ⊕ da))) validDerive (var x) ρ dρ ρdρ = validDeriveVar x ρ dρ ρdρ validDerive (const c) ρ dρ ρdρ rewrite ⟦ c ⟧ΔConst-rewrite ρ dρ = validDeriveConst c
{ "alphanum_fraction": 0.579458097, "avg_line_length": 42.2074468085, "ext": "agda", "hexsha": "bd0be2fabc401ffc3c7dd439198ca217d8bedbbc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "New/Correctness.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "New/Correctness.agda", "max_line_length": 187, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "New/Correctness.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 3674, "size": 7935 }
module _ where module M (X : Set₁) where record Raw : Set₁ where field return : Set postulate fmap : Set module Fails = Raw ⦃ … ⦄ module Works ⦃ r : Raw ⦄ = Raw r open M postulate r : Raw Set fail : Set fail = Fails.fmap Set ⦃ r ⦄ -- C-c C-n fail -- M.Raw.fmap Set r good : Set good = Works.fmap Set ⦃ r ⦄ -- C-c C-n good -- M.Raw.fmap r -- Checking using reflection saves us an interaction test. open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.Equality open import Agda.Builtin.List open import Agda.Builtin.Unit macro `_ : Name → Term → TC ⊤ (` x) hole = do v ← normalise (def x []) `v ← quoteTC v unify hole `v pattern vArg x = arg (arg-info visible relevant) x pattern hArg x = arg (arg-info hidden relevant) x pattern `fmap x y = def (quote M.Raw.fmap) (x ∷ y ∷ []) `Set = agda-sort (lit 0) `r = def (quote r) [] check-good : ` good ≡ `fmap (hArg `Set) (vArg `r) check-good = refl check-bad : ` fail ≡ ` good check-bad = refl
{ "alphanum_fraction": 0.6359175662, "avg_line_length": 19.5961538462, "ext": "agda", "hexsha": "510cce497e4af9e3f1dd9577830e39ead4ae6aa0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3079.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3079.agda", "max_line_length": 62, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3079.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 355, "size": 1019 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use Data.List.Relation.Unary.All -- directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.All where open import Data.List.Relation.Unary.All public
{ "alphanum_fraction": 0.4438502674, "avg_line_length": 28.7692307692, "ext": "agda", "hexsha": "2439bc1bfaf03e7ed946a0c648ab2cbf70cf5b0d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/All.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/All.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 57, "size": 374 }
{-# OPTIONS --safe #-} module Cubical.Categories.Limits.Initial where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_) open import Cubical.HITs.PropositionalTruncation.Base open import Cubical.Data.Sigma open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.Adjoint private variable ℓ ℓ' : Level ℓC ℓC' ℓD ℓD' : Level module _ (C : Category ℓ ℓ') where open Category C isInitial : (x : ob) → Type (ℓ-max ℓ ℓ') isInitial x = ∀ (y : ob) → isContr (C [ x , y ]) Initial : Type (ℓ-max ℓ ℓ') Initial = Σ[ x ∈ ob ] isInitial x initialOb : Initial → ob initialOb = fst initialArrow : (T : Initial) (y : ob) → C [ initialOb T , y ] initialArrow T y = T .snd y .fst initialArrowUnique : {T : Initial} {y : ob} (f : C [ initialOb T , y ]) → initialArrow T y ≡ f initialArrowUnique {T} {y} f = T .snd y .snd f initialEndoIsId : (T : Initial) (f : C [ initialOb T , initialOb T ]) → f ≡ id initialEndoIsId T f = isContr→isProp (T .snd (initialOb T)) f id hasInitial : Type (ℓ-max ℓ ℓ') hasInitial = ∥ Initial ∥₁ -- Initiality of an object is a proposition. isPropIsInitial : (x : ob) → isProp (isInitial x) isPropIsInitial _ = isPropΠ λ _ → isPropIsContr open CatIso -- Objects that are initial are isomorphic. initialToIso : (x y : Initial) → CatIso C (initialOb x) (initialOb y) mor (initialToIso x y) = initialArrow x (initialOb y) inv (initialToIso x y) = initialArrow y (initialOb x) sec (initialToIso x y) = initialEndoIsId y _ ret (initialToIso x y) = initialEndoIsId x _ open isUnivalent -- The type of initial objects of a univalent category is a proposition, -- i.e. all initial objects are equal. isPropInitial : (hC : isUnivalent C) → isProp Initial isPropInitial hC x y = Σ≡Prop isPropIsInitial (CatIsoToPath hC (initialToIso x y)) module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Functor C D) where open Category open Functor open NaturalBijection open _⊣_ open _≅_ preservesInitial : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) preservesInitial = ∀ (x : ob C) → isInitial C x → isInitial D (F-ob F x) isLeftAdjoint→preservesInitial : isLeftAdjoint F → preservesInitial fst (isLeftAdjoint→preservesInitial (G , F⊣G) x initX y) = _♯ F⊣G (fst (initX (F-ob G y))) snd (isLeftAdjoint→preservesInitial (G , F⊣G) x initX y) ψ = _♯ F⊣G (fst (initX (F-ob G y))) ≡⟨ cong (F⊣G ♯) (snd (initX (F-ob G y)) (_♭ F⊣G ψ)) ⟩ _♯ F⊣G (_♭ F⊣G ψ) ≡⟨ leftInv (adjIso F⊣G) ψ ⟩ ψ ∎
{ "alphanum_fraction": 0.6577777778, "avg_line_length": 31.7647058824, "ext": "agda", "hexsha": "a5c06b6a42e24235610d503ff8d1bd9fab2691c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Limits/Initial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Limits/Initial.agda", "max_line_length": 92, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Limits/Initial.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 967, "size": 2700 }
{-# OPTIONS --without-K #-} open import lib.Basics hiding (_⊔_) open import lib.types.Sigma open import lib.types.Bool open import lib.types.Empty open import Preliminaries open import Truncation_Level_Criteria open import Anonymous_Existence_CollSplit open import Anonymous_Existence_Populatedness module Anonymous_Existence_Comparison where -- Chapter 4.3: Comparison of Notions of Existence -- Section 4.3.1: Inhabited and Merely Inhabited -- Lemma 4.3.1 coll-family-dec : ∀ {i} {X : Type i} → (x₁ x₂ : X) → ((x : X) → coll (Coprod (x₁ == x) (x₂ == x))) → Coprod (x₁ == x₂) (¬(x₁ == x₂)) coll-family-dec {i} {X} x₁ x₂ coll-fam = solution where f₋ : (x : X) → Coprod (x₁ == x) (x₂ == x) → Coprod (x₁ == x) (x₂ == x) f₋ x = fst (coll-fam x) E₋ : X → Type i E₋ x = fix (f₋ x) E : Type i E = Σ X λ x → (E₋ x) E-fst-determines-eq : (e₁ e₂ : E) → (fst e₁ == fst e₂) → e₁ == e₂ E-fst-determines-eq e₁ e₂ p = second-comp-triv (λ x → fixed-point (f₋ x) (snd (coll-fam x))) _ _ p r : Bool → E r true = x₁ , to-fix (f₋ x₁) (snd (coll-fam x₁)) (inl idp) r false = x₂ , to-fix (f₋ x₂) (snd (coll-fam x₂)) (inr idp) about-r : (r true == r false) ↔ (x₁ == x₂) about-r = (λ p → ap fst p) , (λ p → E-fst-determines-eq _ _ p) s : E → Bool s (_ , inl _ , _) = true s (_ , inr _ , _) = false s-section-of-r : (e : E) → r(s e) == e s-section-of-r (x , inl p , q) = E-fst-determines-eq _ _ p s-section-of-r (x , inr p , q) = E-fst-determines-eq _ _ p about-s : (e₁ e₂ : E) → (s e₁ == s e₂) ↔ (e₁ == e₂) about-s e₁ e₂ = one , two where one : (s e₁ == s e₂) → (e₁ == e₂) one p = e₁ =⟨ ! (s-section-of-r e₁) ⟩ r(s(e₁)) =⟨ ap r p ⟩ r(s(e₂)) =⟨ s-section-of-r e₂ ⟩ e₂ ∎ two : (e₁ == e₂) → (s e₁ == s e₂) two p = ap s p combine : (s (r true) == s (r false)) ↔ (x₁ == x₂) combine = (about-s _ _) ◎ about-r check-bool : Coprod (s (r true) == s (r false)) (¬(s (r true) == s (r false))) check-bool = Bool-has-dec-eq _ _ solution : Coprod (x₁ == x₂) (¬(x₁ == x₂)) solution with check-bool solution | inl p = inl (fst combine p) solution | inr np = inr (λ p → np (snd combine p)) -- definition: "all types have a weakly constant endofunction". -- this assumption is, if we have ∣∣_∣∣, logically equivalent to saying that -- every type has split support. all-coll : ∀ {i} → Type (lsucc i) all-coll {i} = (X : Type i) → coll X -- Proposition 4.3.2 all-coll→dec-eq : ∀ {i} → all-coll {i} → (X : Type i) → has-dec-eq X all-coll→dec-eq all-coll X x₁ x₂ = coll-family-dec x₁ x₂ (λ x → all-coll _) open with-weak-trunc open wtrunc -- Proposition 4.3.3 module functional-subrelation {i : ULevel} (ac : all-coll {i}) (X : Type i) (R : X × X → Type i) where all-sets : (Y : Type i) → is-set Y all-sets Y = pathColl→isSet (λ y₁ y₂ → ac _) R₋ : (x : X) → Type i R₋ x = Σ X λ y → R(x , y) k : (x : X) → (R₋ x) → (R₋ x) k x = fst (ac _) kc : (x : X) → const (k x) kc x = snd (ac _) SS : X × X → Type i SS (x , y) = Σ (R(x , y)) λ a → (y , a) == k x (y , a) -- the relation S SS₋ : (x : X) → Type i SS₋ x = Σ X λ y → SS(x , y) -- fix kₓ is equivalent to Sₓ -- This is just Σ-assoc. We try to make it more readable by adding some (trivial) steps. fixk-SS : (x : X) → (fix (k x)) ≃ SS₋ x fixk-SS x = (fix (k x)) ≃⟨ ide _ ⟩ (Σ (Σ X λ y → R(x , y)) λ a → a == k x a) ≃⟨ Σ-assoc ⟩ (Σ X λ y → Σ (R(x , y)) λ r → (y , r) == k x (y , r)) ≃⟨ ide _ ⟩ (SS₋ x) ≃∎ -- claim (0) subrelation : (x y : X) → SS(x , y) → R(x , y) subrelation x y (r , _) = r -- claim (1) prop-SSx : (x : X) → is-prop (SS₋ x) prop-SSx x = equiv-preserves-level {A = fix (k x)} {B = (SS₋ x)} (fixk-SS x) (fixed-point _ (kc x)) -- claim (2) same-domain : (x : X) → (R₋ x) ↔ (SS₋ x) same-domain x = rs , sr where rs : (R₋ x) → (SS₋ x) rs a = –> (fixk-SS x) (to-fix (k x) (kc x) a) sr : (SS₋ x) → (R₋ x) sr (y , r , _) = y , r -- claim (3) prop-SS : (x y : X) → is-prop (SS (x , y)) prop-SS x y = all-paths-is-prop all-paths where all-paths : (s₁ s₂ : SS(x , y)) → s₁ == s₂ all-paths s₁ s₂ = ss where yss : (y , s₁) == (y , s₂) yss = prop-has-all-paths (prop-SSx x) _ _ ss : s₁ == s₂ ss = set-lemma (all-sets _) y s₁ s₂ yss -- intermediate definition -- see the caveat about the notion 'epimorphism' in the article is-split-epimorphism : ∀ {i j} {U : Type i} {V : Type j} → (U → V) → Type (i ⊔ j) is-split-epimorphism {U = U} {V = V} e = Σ (V → U) λ s → (v : V) → e (s v) == v is-epimorphism : ∀ {i j} {U : Type i} {V : Type j} → (U → V) → Type (lsucc (i ⊔ j)) is-epimorphism {i} {j} {U = U} {V = V} e = (W : Type (i ⊔ j)) → (f g : V → W) → ((u : U) → f (e u) == g (e u)) → (v : V) → f v == g v -- Lemma 4.3.4 path-trunc-epi→set : ∀ {i} {Y : Type i} → ((y₁ y₂ : Y) → is-epimorphism (∣_∣ {X = y₁ == y₂})) → is-set Y path-trunc-epi→set {Y = Y} path-epi = reminder special-case where f : (y₁ y₂ : Y) → ∣∣ y₁ == y₂ ∣∣ → Y f y₁ _ _ = y₁ g : (y₁ y₂ : Y) → ∣∣ y₁ == y₂ ∣∣ → Y g _ y₂ _ = y₂ special-case : (y₁ y₂ : Y) → ∣∣ y₁ == y₂ ∣∣ → y₁ == y₂ special-case y₁ y₂ = path-epi y₁ y₂ Y (f y₁ y₂) (g y₁ y₂) (idf _) -- we know that hSeparated(X) implies that X is a set, -- from the previous Proposition 3.1.9; -- however, we have proved it in such a way which forces -- us to combine three directions: reminder : hSeparated Y → is-set Y reminder = (fst (set-characterisations Y)) ∘ (fst (snd (snd (set-characterisations Y)))) ∘ (snd (snd (snd (snd (set-characterisations Y))))) -- Proposition 4.3.5 (1) all-split→all-deceq : ∀ {i} → ((X : Type i) → is-split-epimorphism (∣_∣ {X = X})) → (X : Type i) → has-dec-eq X all-split→all-deceq {i} all-split = all-coll→dec-eq ac where ac : (X : Type i) → coll X ac X = snd coll↔splitSup (fst (all-split X)) -- Proposition 4.3.5 (2) all-epi→all-set : ∀ {i} → ((X : Type i) → is-epimorphism (∣_∣ {X = X})) → (X : Type i) → is-set X all-epi→all-set all-epi X = path-trunc-epi→set (λ y₁ y₂ → all-epi (y₁ == y₂)) -- Section 4.3.2: Merely Inhabited and Populated -- Lemma 4.3.6, first proof pop-hstable-1 : ∀ {i} {X : Type i} → ⟪ splitSup X ⟫ pop-hstable-1 {X = X} f c = to-fix f c (coll→splitSup (g , gc)) where g : X → X g x = f (λ _ → x) ∣ x ∣ gc : const g gc x₁ x₂ = g x₁ =⟨ idp ⟩ f (λ _ → x₁) ∣ x₁ ∣ =⟨ ap (λ k → k ∣ x₁ ∣) (c (λ _ → x₁) (λ _ → x₂)) ⟩ f (λ _ → x₂) ∣ x₁ ∣ =⟨ ap (f (λ _ → x₂)) (prop-has-all-paths tr-is-prop ∣ x₁ ∣ ∣ x₂ ∣) ⟩ f (λ _ → x₂) ∣ x₂ ∣ =⟨ idp ⟩ g x₂ ∎ -- Lemma 4.3.6, second proof pop-hstable-2 : ∀ {i} {X : Type i} → ⟪ splitSup X ⟫ pop-hstable-2 {i} {X} = snd (pop-alt₂ {X = splitSup X}) get-P where get-P : (P : Type i) → is-prop P → splitSup X ↔ P → P get-P P pp (hstp , phst) = hstp free-hst where xp : X → P xp x = hstp (λ _ → x) zp : ∣∣ X ∣∣ → P zp = tr-rec pp xp free-hst : splitSup X free-hst z = phst (zp z) z -- Lemma 4.3.6, third proof pop-hstable-3 : ∀ {i} {X : Type i} → ⟪ splitSup X ⟫ pop-hstable-3 {X = X} = snd pop-alt translation where translation-aux : splitSup (splitSup X) → splitSup X translation-aux = λ hsthst z → hsthst (trunc-functorial {X = X} {Y = splitSup X} (λ x _ → x) z) z translation : ∣∣ splitSup (splitSup X) ∣∣ → ∣∣ splitSup X ∣∣ translation = trunc-functorial translation-aux -- Lemma 4.3.7 module tlem437 {i : ULevel} where One = (X : Type i) → ⟪ X ⟫ → ∣∣ X ∣∣ Two = (X : Type i) → ∣∣ splitSup X ∣∣ Three = (P : Type i) → is-prop P → (Y : P → Type i) → ((p : P) → ∣∣ Y p ∣∣) → ∣∣ ((p : P) → Y p) ∣∣ Four = (X Y : Type i) → (X → Y) → (⟪ X ⟫ → ⟪ Y ⟫) One→Two : One → Two One→Two poptr X = poptr (splitSup X) pop-hstable-1 Two→One : Two → One Two→One trhst X pop = fst pop-alt pop (trhst X) One→Four : One → Four One→Four poptr X Y f = Trunc→Pop ∘ (trunc-functorial f) ∘ (poptr X) Four→One : Four → One Four→One funct X px = prop-pop tr-is-prop pz where -- (tr-rec _) pz where pz : ⟪ ∣∣ X ∣∣ ⟫ pz = funct X (∣∣ X ∣∣) ∣_∣ px -- only very slightly different to the proof in the article One→Three : One → Three One→Three poptr P pp Y = λ py → poptr _ (snd pop-alt' (λ hst p₀ → hst (contr-trick p₀ py) p₀)) where contr-trick : (p₀ : P) → ((p : P) → ∣∣ Y p ∣∣) → ∣∣ ((p : P) → Y p) ∣∣ contr-trick p₀ py = tr-rec {X = Y p₀} {P = ∣∣ ((p : P) → Y p) ∣∣} tr-is-prop (λ y₀ → ∣ (λ p → transport Y (prop-has-all-paths pp p₀ p) y₀) ∣) (py p₀) Three→Two : Three → Two Three→Two proj X = proj (∣∣ X ∣∣) tr-is-prop (λ _ → X) (idf _) -- Section 4.3.3: Populated and Non-Empty -- We now need function extensionality. We -- start with some very simple auxiliary -- lemmata (not numbered in the thesis). -- If P is a proposition, so is P + ¬ P dec-is-prop : ∀ {i} {P : Type i} → is-prop P → is-prop (Coprod P (¬ P)) dec-is-prop {P = P} pp = all-paths-is-prop (λ { (inl p₁) (inl p₂) → ap inl (prop-has-all-paths pp _ _) ; (inl p₁) (inr np₂) → Empty-elim {P = λ _ → inl p₁ == inr np₂} (np₂ p₁) ; (inr np₁) (inl p₂) → Empty-elim {P = λ _ → inr np₁ == inl p₂} (np₁ p₂) ; (inr np₁) (inr np₂) → ap inr (λ= (λ x → prop-has-all-paths Empty-is-prop _ _ )) }) -- Proposition 4.3.8 nonempty-pop→LEM : ∀ {i} → ((X : Type i) → (¬(¬ X) → ⟪ X ⟫)) → LEM {i} nonempty-pop→LEM {i} nn-pop P pp = from-fix {X = dec} (idf _) (nn-pop dec nndec (idf _) idc) where dec : Type i dec = Coprod P (¬ P) idc : const (idf dec) idc = λ _ _ → prop-has-all-paths (dec-is-prop {P = P} pp) _ _ nndec : ¬(¬ dec) nndec ndec = (λ np → ndec (inr np)) λ p → ndec (inl p) -- Corollary 4.3.9 nonempty-pop↔lem : ∀ {i} → ((X : Type i) → (¬(¬ X) → ⟪ X ⟫)) ↔ LEM {i} nonempty-pop↔lem {i} = nonempty-pop→LEM , other where other : LEM {i} → ((X : Type i) → (¬(¬ X) → ⟪ X ⟫)) other lem X nnX = p where pnp : Coprod ⟪ X ⟫ (¬ ⟪ X ⟫) pnp = lem ⟪ X ⟫ pop-property₂ p : ⟪ X ⟫ p = match pnp withl idf _ withr (λ np → Empty-elim {P = λ _ → ⟪ X ⟫} (nnX (λ x → np (pop-property₁ x))))
{ "alphanum_fraction": 0.5145631068, "avg_line_length": 33.9967320261, "ext": "agda", "hexsha": "acdc7af860fe84e87e5b2cc8f86c91e0d874440f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/thesis/Anonymous_Existence_Comparison.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/thesis/Anonymous_Existence_Comparison.agda", "max_line_length": 142, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/thesis/Anonymous_Existence_Comparison.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 4419, "size": 10403 }
module Luau.RuntimeType where open import Luau.Syntax using (Value; nil; addr; number; bool; string) data RuntimeType : Set where function : RuntimeType number : RuntimeType nil : RuntimeType boolean : RuntimeType string : RuntimeType valueType : Value → RuntimeType valueType nil = nil valueType (addr a) = function valueType (number n) = number valueType (bool b) = boolean valueType (string x) = string
{ "alphanum_fraction": 0.7494033413, "avg_line_length": 23.2777777778, "ext": "agda", "hexsha": "d585b51b92e090a41869ec67fcad16a9422cb829", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Luau/RuntimeType.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Luau/RuntimeType.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Luau/RuntimeType.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 113, "size": 419 }
{-# OPTIONS --allow-unsolved-metas #-} module automaton-ex where open import Data.Nat open import Data.List open import Data.Maybe open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Binary.Definitions open import Relation.Nullary using (¬_; Dec; yes; no) open import logic open import automaton open Automaton data StatesQ : Set where q1 : StatesQ q2 : StatesQ q3 : StatesQ data In2 : Set where i0 : In2 i1 : In2 transitionQ : StatesQ → In2 → StatesQ transitionQ q1 i0 = q1 transitionQ q1 i1 = q2 transitionQ q2 i0 = q3 transitionQ q2 i1 = q2 transitionQ q3 i0 = q2 transitionQ q3 i1 = q2 aendQ : StatesQ → Bool aendQ q2 = true aendQ _ = false a1 : Automaton StatesQ In2 a1 = record { δ = transitionQ ; aend = aendQ } test1 : accept a1 q1 ( i0 ∷ i1 ∷ i0 ∷ [] ) ≡ false test1 = refl test2 = accept a1 q1 ( i0 ∷ i1 ∷ i0 ∷ i1 ∷ [] ) test3 = trace a1 q1 ( i0 ∷ i1 ∷ i0 ∷ i1 ∷ [] ) data States1 : Set where sr : States1 ss : States1 st : States1 transition1 : States1 → In2 → States1 transition1 sr i0 = sr transition1 sr i1 = ss transition1 ss i0 = sr transition1 ss i1 = st transition1 st i0 = sr transition1 st i1 = st fin1 : States1 → Bool fin1 st = true fin1 ss = false fin1 sr = false am1 : Automaton States1 In2 am1 = record { δ = transition1 ; aend = fin1 } example1-1 = accept am1 sr ( i0 ∷ i1 ∷ i0 ∷ [] ) example1-2 = accept am1 sr ( i1 ∷ i1 ∷ i1 ∷ [] ) trace-2 = trace am1 sr ( i1 ∷ i1 ∷ i1 ∷ [] ) example1-3 = reachable am1 sr st ( i1 ∷ i1 ∷ i1 ∷ [] ) -- data Dec' (A : Set) : Set where -- yes' : A → Dec' A -- no' : ¬ A → Dec' A -- -- ieq' : (i i' : In2 ) → Dec' ( i ≡ i' ) -- ieq' i0 i0 = yes' refl -- ieq' i1 i1 = yes' refl -- ieq' i0 i1 = no' ( λ () ) -- ieq' i1 i0 = no' ( λ () ) ieq : (i i' : In2 ) → Dec ( i ≡ i' ) ieq i0 i0 = yes refl ieq i1 i1 = yes refl ieq i0 i1 = no ( λ () ) ieq i1 i0 = no ( λ () ) -- p.83 problem 1.4 -- -- w has at least three i0's and at least two i1's count-chars : List In2 → In2 → ℕ count-chars [] _ = 0 count-chars (h ∷ t) x with ieq h x ... | yes y = suc ( count-chars t x ) ... | no n = count-chars t x test11 : count-chars ( i1 ∷ i1 ∷ i0 ∷ [] ) i0 ≡ 1 test11 = refl ex1_4a : (x : List In2) → Bool ex1_4a x = ( count-chars x i0 ≥b 3 ) /\ ( count-chars x i1 ≥b 2 ) language' : { Σ : Set } → Set language' {Σ} = List Σ → Bool lang14a : language' {In2} lang14a = ex1_4a open _∧_ am14a-tr : ℕ ∧ ℕ → In2 → ℕ ∧ ℕ am14a-tr p i0 = record { proj1 = suc (proj1 p) ; proj2 = proj2 p } am14a-tr p i1 = record { proj1 = proj1 p ; proj2 = suc (proj2 p) } am14a : Automaton (ℕ ∧ ℕ) In2 am14a = record { δ = am14a-tr ; aend = λ x → ( proj1 x ≥b 3 ) /\ ( proj2 x ≥b 2 )} data am14s : Set where a00 : am14s a10 : am14s a20 : am14s a30 : am14s a01 : am14s a11 : am14s a21 : am14s a31 : am14s a02 : am14s a12 : am14s a22 : am14s a32 : am14s am14a-tr' : am14s → In2 → am14s am14a-tr' a00 i0 = a10 am14a-tr' _ _ = a10 am14a' : Automaton am14s In2 am14a' = record { δ = am14a-tr' ; aend = λ x → {!!} }
{ "alphanum_fraction": 0.5863389722, "avg_line_length": 22.0633802817, "ext": "agda", "hexsha": "095fe1021808243ae66d37833159a4cdb5211fad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/automaton-ex.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/automaton-ex.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/automaton-ex.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1352, "size": 3133 }
apply : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) → (x : A) → B x apply f x = f x syntax apply f x = f x
{ "alphanum_fraction": 0.4098360656, "avg_line_length": 17.4285714286, "ext": "agda", "hexsha": "3c6091d5f11d52270917bdad916889cc8696e59e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue5201.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue5201.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue5201.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 59, "size": 122 }
{-# OPTIONS --rewriting --without-K #-} open import Agda.Primitive open import Prelude import GSeTT.Syntax {- Syntax for a globular type theory, with arbitrary term constructors -} module Globular-TT.Syntax {l} (index : Set l) where data Pre-Ty : Set (lsuc l) data Pre-Tm : Set (lsuc l) data Pre-Sub : Set (lsuc l) data Pre-Ctx : Set (lsuc l) data Pre-Ty where ∗ : Pre-Ty ⇒ : Pre-Ty → Pre-Tm → Pre-Tm → Pre-Ty data Pre-Tm where Var : ℕ → Pre-Tm Tm-constructor : ∀ (i : index) → Pre-Sub → Pre-Tm data Pre-Sub where <> : Pre-Sub <_,_↦_> : Pre-Sub → ℕ → Pre-Tm → Pre-Sub data Pre-Ctx where ⊘ : Pre-Ctx _∙_#_ : Pre-Ctx → ℕ → Pre-Ty → Pre-Ctx C-length : Pre-Ctx → ℕ C-length ⊘ = O C-length (Γ ∙ _ # _) = S (C-length Γ) -- Equality elimination ⇒= : ∀ {A B t t' u u'} → A == B → t == t' → u == u' → ⇒ A t u == ⇒ B t' u' ⇒= idp idp idp = idp =⇒ : ∀ {A B t t' u u'} → ⇒ A t u == ⇒ B t' u' → ((A == B) × (t == t')) × (u == u') =⇒ idp = (idp , idp) , idp Var= : ∀ {v w} → v == w → Var v == Var w Var= idp = idp Tm-constructor= : ∀ {i j γ δ} → i == j → γ == δ → (Tm-constructor i γ) == (Tm-constructor j δ) Tm-constructor= idp idp = idp =Tm-constructor : ∀ {i j γ δ} → (Tm-constructor i γ) == (Tm-constructor j δ) → i == j × γ == δ =Tm-constructor idp = idp , idp <,>= : ∀ {γ δ x y t u} → γ == δ → x == y → t == u → < γ , x ↦ t > == < δ , y ↦ u > <,>= idp idp idp = idp =<,> : ∀ {γ δ x y t u} → < γ , x ↦ t > == < δ , y ↦ u > → ((γ == δ) × (x == y)) × (t == u) =<,> idp = (idp , idp) , idp ∙= : ∀ {Γ Δ x y A B} → Γ == Δ → x == y → A == B → (Γ ∙ x # A) == (Δ ∙ y # B) ∙= idp idp idp = idp {- Action of substitutions on types and terms and substitutions on a syntactical level -} _[_]Pre-Ty : Pre-Ty → Pre-Sub → Pre-Ty _[_]Pre-Tm : Pre-Tm → Pre-Sub → Pre-Tm _∘_ : Pre-Sub → Pre-Sub → Pre-Sub ∗ [ σ ]Pre-Ty = ∗ ⇒ A t u [ σ ]Pre-Ty = ⇒ (A [ σ ]Pre-Ty) (t [ σ ]Pre-Tm) (u [ σ ]Pre-Tm) Var x [ <> ]Pre-Tm = Var x Var x [ < σ , v ↦ t > ]Pre-Tm = if x ≡ v then t else ((Var x) [ σ ]Pre-Tm) Tm-constructor i γ [ σ ]Pre-Tm = Tm-constructor i (γ ∘ σ) <> ∘ γ = <> < γ , x ↦ t > ∘ δ = < γ ∘ δ , x ↦ t [ δ ]Pre-Tm > _#_∈_ : ℕ → Pre-Ty → Pre-Ctx → Set (lsuc l) _ # _ ∈ ⊘ = ⊥ x # A ∈ (Γ ∙ y # B) = (x # A ∈ Γ) + ((x == y) × (A == B)) {- dimension of types -} dim : Pre-Ty → ℕ dim ∗ = O dim (⇒ A t u) = S (dim A) dim[] : ∀ (A : Pre-Ty) (γ : Pre-Sub) → dim (A [ γ ]Pre-Ty) == dim A dim[] ∗ γ = idp dim[] (⇒ A x x₁) γ = S= (dim[] A γ) dimC : Pre-Ctx → ℕ dimC ⊘ = O dimC (Γ ∙ x # A) = max (dimC Γ) (dim A) {- Identity and canonical projection -} Pre-id : ∀ (Γ : Pre-Ctx) → Pre-Sub Pre-id ⊘ = <> Pre-id (Γ ∙ x # A) = < Pre-id Γ , x ↦ Var x > Pre-π : ∀ (Γ : Pre-Ctx) (x : ℕ) (A : Pre-Ty) → Pre-Sub Pre-π Γ x A = Pre-id Γ {- Translation of GSeTT to a globular-TT -} GPre-Ctx : GSeTT.Syntax.Pre-Ctx → Pre-Ctx GPre-Ty : GSeTT.Syntax.Pre-Ty → Pre-Ty GPre-Tm : GSeTT.Syntax.Pre-Tm → Pre-Tm GPre-Ctx nil = ⊘ GPre-Ctx (Γ :: (x , A)) = (GPre-Ctx Γ) ∙ x # (GPre-Ty A) GPre-Ty GSeTT.Syntax.∗ = ∗ GPre-Ty (GSeTT.Syntax.⇒ A t u) = ⇒ (GPre-Ty A) (GPre-Tm t) (GPre-Tm u) GPre-Tm (GSeTT.Syntax.Var x) = Var x {- Depth of a term -} depth : Pre-Tm → ℕ depthS : Pre-Sub → ℕ depth (Var x) = O depth (Tm-constructor i γ) = S (depthS γ) depthS <> = O depthS < γ , x ↦ t > = max (depthS γ) (depth t)
{ "alphanum_fraction": 0.4879953717, "avg_line_length": 28.3360655738, "ext": "agda", "hexsha": "cbf9f17568abf9ad62bf139eb32a156a00e43c79", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thibautbenjamin/catt-formalization", "max_forks_repo_path": "Globular-TT/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thibautbenjamin/catt-formalization", "max_issues_repo_path": "Globular-TT/Syntax.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thibautbenjamin/catt-formalization", "max_stars_repo_path": "Globular-TT/Syntax.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1561, "size": 3457 }
{-# OPTIONS --without-K --safe #-} module Cats.Category.Cones where open import Relation.Binary using (Rel ; IsEquivalence ; _Preserves₂_⟶_⟶_) open import Level using (_⊔_) open import Cats.Category.Base open import Cats.Category.Cat using (Cat) open import Cats.Category.Fun as Fun using (Fun ; Trans) open import Cats.Functor using (Functor) renaming (_∘_ to _∘F_) open import Cats.Util.Conv import Relation.Binary.PropositionalEquality as ≡ import Cats.Category.Constructions.Iso as Iso import Cats.Util.Function as Fun open Functor open Trans open Fun._≈_ module Build {lo la l≈ lo′ la′ l≈′} {J : Category lo la l≈} {Z : Category lo′ la′ l≈′} (D : Functor J Z) where infixr 9 _∘_ infixr 4 _≈_ private module Z = Category Z module J = Category J module D = Functor D -- We could define cones in terms of wedges (and limits in terms of ends). record Cone : Set (lo ⊔ la ⊔ la′ ⊔ lo′ ⊔ l≈′) where field Apex : Z.Obj arr : ∀ j → Apex Z.⇒ D.fobj j commute : ∀ {i j} (α : i J.⇒ j) → arr j Z.≈ D.fmap α Z.∘ arr i open Cone public instance HasObj-Cone : HasObj Cone lo′ la′ l≈′ HasObj-Cone = record { Cat = Z ; _ᴼ = Cone.Apex } Obj = Cone record _⇒_ (A B : Obj) : Set (lo ⊔ la′ ⊔ l≈′) where private module A = Cone A ; module B = Cone B field arr : A.Apex Z.⇒ B.Apex commute : ∀ j → B.arr j Z.∘ arr Z.≈ A.arr j open _⇒_ public instance HasArrow-⇒ : ∀ {A B} → HasArrow (A ⇒ B) lo′ la′ l≈′ HasArrow-⇒ = record { Cat = Z ; _⃗ = _⇒_.arr } _≈_ : ∀ {A B} → Rel (A ⇒ B) l≈′ _≈_ = Z._≈_ Fun.on arr equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) equiv = Fun.on-isEquivalence _⇒_.arr Z.equiv id : ∀ {A} → A ⇒ A id = record { arr = Z.id ; commute = λ j → Z.id-r } _∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C _∘_ {A} {B} {C} f g = record { arr = f ⃗ Z.∘ g ⃗ ; commute = λ j → begin arr C j Z.∘ f ⃗ Z.∘ g ⃗ ≈⟨ Z.unassoc ⟩ (arr C j Z.∘ f ⃗) Z.∘ g ⃗ ≈⟨ Z.∘-resp-l (commute f j) ⟩ arr B j Z.∘ g ⃗ ≈⟨ commute g j ⟩ arr A j ∎ } where open Z.≈-Reasoning Cones : Category (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) (lo ⊔ la′ ⊔ l≈′) l≈′ Cones = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = equiv ; ∘-resp = Z.∘-resp ; id-r = Z.id-r ; id-l = Z.id-l ; assoc = Z.assoc } open Iso.Build Cones using (_≅_) open Iso.Build Z using () renaming (_≅_ to _≅Z_) cone-iso→obj-iso : ∀ {c d : Cone} → c ≅ d → c ᴼ ≅Z d ᴼ cone-iso→obj-iso i = record { forth = forth i ⃗ ; back = back i ⃗ ; back-forth = back-forth i ; forth-back = forth-back i } where open _≅_ open Build public hiding (HasObj-Cone ; HasArrow-⇒) private open module Build′ {lo la l≈ lo′ la′ l≈′} {J : Category lo la l≈} {Z : Category lo′ la′ l≈′} {D : Functor J Z} = Build D public using (HasObj-Cone ; HasArrow-⇒) -- TODO better name apFunctor : ∀ {lo la l≈ lo′ la′ l≈′ lo″ la″ l≈″} → {Y : Category lo la l≈} → {Z : Category lo′ la′ l≈′} → (F : Functor Y Z) → {J : Category lo″ la″ l≈″} → {D : Functor J Y} → Cone D → Cone (F ∘F D) apFunctor {Y = Y} {Z} F {J} {D} c = record { Apex = fobj F (c .Apex) ; arr = λ j → fmap F (c .arr j) ; commute = λ {i} {j} α → Z.≈.sym ( begin fmap F (fmap D α) Z.∘ fmap F (c .arr i) ≈⟨ fmap-∘ F ⟩ fmap F (fmap D α Y.∘ c .arr i) ≈⟨ fmap-resp F (Y.≈.sym (c .commute α)) ⟩ fmap F (c .arr j) ∎ ) } where module Y = Category Y module Z = Category Z open Z.≈-Reasoning module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} where module D = Category D trans : {F G : Functor C D} → Trans F G → Cone F → Cone G trans {F} {G} θ c = record { Apex = c .Apex ; arr = λ j → component θ j D.∘ c .arr j ; commute = λ {i} {j} α → let open D.≈-Reasoning in begin component θ j D.∘ c .arr j ≈⟨ D.∘-resp-r (c .commute α) ⟩ component θ j D.∘ fmap F α D.∘ c .arr i ≈⟨ D.unassoc ⟩ (component θ j D.∘ fmap F α) D.∘ c .arr i ≈⟨ D.∘-resp-l (natural θ) ⟩ (fmap G α D.∘ component θ i) D.∘ c .arr i ≈⟨ D.assoc ⟩ fmap G α D.∘ component θ i D.∘ c .arr i ∎ } ConesF : Functor (Fun C D) (Cat (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) (lo ⊔ la′ ⊔ l≈′) l≈′) ConesF = record { fobj = Cones ; fmap = λ {F} {G} ϑ → record { fobj = λ c → trans ϑ c ; fmap = λ f → record { arr = f .arr ; commute = λ j → D.≈.trans D.assoc (D.∘-resp-r (commute f j)) } ; fmap-resp = λ x → x ; fmap-id = D.≈.refl ; fmap-∘ = D.≈.refl } ; fmap-resp = λ ϑ≈ι → record { iso = record { forth = record { arr = D.id ; commute = λ j → D.≈.trans D.id-r (D.∘-resp-l (D.≈.sym (≈-elim ϑ≈ι))) } ; back = record { arr = D.id ; commute = λ j → D.≈.trans D.id-r (D.∘-resp-l (≈-elim ϑ≈ι)) } ; back-forth = D.id-l ; forth-back = D.id-l } ; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r) } ; fmap-id = record { iso = record { forth = record { arr = D.id ; commute = λ j → D.≈.trans D.id-r (D.≈.sym D.id-l) } ; back = record { arr = D.id ; commute = λ j → D.≈.trans D.id-r D.id-l } ; back-forth = D.id-l ; forth-back = D.id-l } ; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r) } ; fmap-∘ = record { iso = record { forth = record { arr = D.id ; commute = λ j → D.≈.trans D.id-r D.assoc } ; back = record { arr = D.id ; commute = λ j → D.≈.trans D.id-r D.unassoc } ; back-forth = D.id-l ; forth-back = D.id-l } ; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r) } }
{ "alphanum_fraction": 0.4751211632, "avg_line_length": 23.536121673, "ext": "agda", "hexsha": "92eac4d2c3817831de99849da3381069cd574cdf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Cones.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Cones.agda", "max_line_length": 83, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Cones.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 2493, "size": 6190 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.QuoInt where open import Cubical.HITs.Ints.QuoInt.Base public open import Cubical.HITs.Ints.QuoInt.Properties public
{ "alphanum_fraction": 0.7743589744, "avg_line_length": 27.8571428571, "ext": "agda", "hexsha": "a4adcafac86b6b3ca0ba6c6c6649d3d06523f57a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Ints/QuoInt.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Ints/QuoInt.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Ints/QuoInt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 57, "size": 195 }
-- Andreas, 2019-09-13, AIM XXX, test for #4050 by gallais record Wrap : Set₂ where field wrapped : Set₁ f : Wrap f = record { M } module M where wrapped : Set₁ wrapped = Set -- Should be accepted.
{ "alphanum_fraction": 0.6478873239, "avg_line_length": 16.3846153846, "ext": "agda", "hexsha": "7216db7c3a46653b0ef24f22a1f0d4916843afad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "strake/agda", "max_forks_repo_path": "test/Succeed/Issue4050.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_issues_repo_issues_event_max_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_issues_event_min_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "strake/agda", "max_issues_repo_path": "test/Succeed/Issue4050.agda", "max_line_length": 58, "max_stars_count": 2, "max_stars_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "strake/agda", "max_stars_repo_path": "test/Succeed/Issue4050.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 68, "size": 213 }
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.Sets where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Isomorphism open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Limits open Category module _ ℓ where SET : Category (ℓ-suc ℓ) ℓ ob SET = hSet ℓ Hom[_,_] SET (A , _) (B , _) = A → B id SET x = x _⋆_ SET f g x = g (f x) ⋆IdL SET f = refl ⋆IdR SET f = refl ⋆Assoc SET f g h = refl isSetHom SET {A} {B} = isSetΠ (λ _ → snd B) private variable ℓ ℓ' : Level open Functor -- Hom functors _[-,_] : (C : Category ℓ ℓ') → (c : C .ob) → Functor (C ^op) (SET ℓ') (C [-, c ]) .F-ob x = (C [ x , c ]) , C .isSetHom (C [-, c ]) .F-hom f k = f ⋆⟨ C ⟩ k (C [-, c ]) .F-id = funExt λ _ → C .⋆IdL _ (C [-, c ]) .F-seq _ _ = funExt λ _ → C .⋆Assoc _ _ _ _[_,-] : (C : Category ℓ ℓ') → (c : C .ob)→ Functor C (SET ℓ') (C [ c ,-]) .F-ob x = (C [ c , x ]) , C .isSetHom (C [ c ,-]) .F-hom f k = k ⋆⟨ C ⟩ f (C [ c ,-]) .F-id = funExt λ _ → C .⋆IdR _ (C [ c ,-]) .F-seq _ _ = funExt λ _ → sym (C .⋆Assoc _ _ _) module _ {C : Category ℓ ℓ'} {F : Functor C (SET ℓ')} where open NatTrans -- natural transformations by pre/post composition preComp : {x y : C .ob} → (f : C [ x , y ]) → C [ x ,-] ⇒ F → C [ y ,-] ⇒ F preComp f α .N-ob c k = (α ⟦ c ⟧) (f ⋆⟨ C ⟩ k) preComp f α .N-hom {x = c} {d} k = (λ l → (α ⟦ d ⟧) (f ⋆⟨ C ⟩ (l ⋆⟨ C ⟩ k))) ≡[ i ]⟨ (λ l → (α ⟦ d ⟧) (⋆Assoc C f l k (~ i))) ⟩ (λ l → (α ⟦ d ⟧) (f ⋆⟨ C ⟩ l ⋆⟨ C ⟩ k)) ≡[ i ]⟨ (λ l → (α .N-hom k) i (f ⋆⟨ C ⟩ l)) ⟩ (λ l → (F ⟪ k ⟫) ((α ⟦ c ⟧) (f ⋆⟨ C ⟩ l))) ∎ -- properties -- TODO: move to own file open CatIso renaming (inv to cInv) open Iso module _ {A B : (SET ℓ) .ob } where Iso→CatIso : Iso (fst A) (fst B) → CatIso (SET ℓ) A B Iso→CatIso is .mor = is .fun Iso→CatIso is .cInv = is .inv Iso→CatIso is .sec = funExt λ b → is .rightInv b -- is .rightInv Iso→CatIso is .ret = funExt λ b → is .leftInv b -- is .rightInv CatIso→Iso : CatIso (SET ℓ) A B → Iso (fst A) (fst B) CatIso→Iso cis .fun = cis .mor CatIso→Iso cis .inv = cis .cInv CatIso→Iso cis .rightInv = funExt⁻ λ b → cis .sec b CatIso→Iso cis .leftInv = funExt⁻ λ b → cis .ret b Iso-Iso-CatIso : Iso (Iso (fst A) (fst B)) (CatIso (SET ℓ) A B) fun Iso-Iso-CatIso = Iso→CatIso inv Iso-Iso-CatIso = CatIso→Iso rightInv Iso-Iso-CatIso b = refl fun (leftInv Iso-Iso-CatIso a i) = fun a inv (leftInv Iso-Iso-CatIso a i) = inv a rightInv (leftInv Iso-Iso-CatIso a i) = rightInv a leftInv (leftInv Iso-Iso-CatIso a i) = leftInv a Iso-CatIso-≡ : Iso (CatIso (SET ℓ) A B) (A ≡ B) Iso-CatIso-≡ = compIso (invIso Iso-Iso-CatIso) (hSet-Iso-Iso-≡ _ _) -- SET is univalent isUnivalentSET : isUnivalent {ℓ' = ℓ} (SET _) isUnivalent.univ isUnivalentSET (A , isSet-A) (B , isSet-B) = precomposesToId→Equiv pathToIso _ (funExt w) (isoToIsEquiv Iso-CatIso-≡) where w : _ w ci = invEq (congEquiv (isoToEquiv (invIso Iso-Iso-CatIso))) (SetsIso≡-ext isSet-A isSet-B (λ x i → transp (λ _ → B) i (ci .mor (transp (λ _ → A) i x))) (λ x i → transp (λ _ → A) i (ci .cInv (transp (λ _ → B) i x)))) -- SET is complete open LimCone open Cone completeSET : ∀ {ℓJ ℓJ'} → Limits {ℓJ} {ℓJ'} (SET (ℓ-max ℓJ ℓJ')) lim (completeSET J D) = Cone D (Unit* , isOfHLevelLift 2 isSetUnit) , isSetCone D _ coneOut (limCone (completeSET J D)) j e = coneOut e j tt* coneOutCommutes (limCone (completeSET J D)) j i e = coneOutCommutes e j i tt* univProp (completeSET J D) c cc = uniqueExists (λ x → cone (λ v _ → coneOut cc v x) (λ e i _ → coneOutCommutes cc e i x)) (λ _ → funExt (λ _ → refl)) (λ x → isPropIsConeMor cc (limCone (completeSET J D)) x) (λ x hx → funExt (λ d → cone≡ λ u → funExt (λ _ → sym (funExt⁻ (hx u) d))))
{ "alphanum_fraction": 0.5729909653, "avg_line_length": 32.106870229, "ext": "agda", "hexsha": "88fca1f33ef59549b6f8e83533dbf503e0837292", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/Sets.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/Sets.agda", "max_line_length": 83, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/Sets.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1740, "size": 4206 }
module Inductive.Examples.Empty where open import Inductive open import Tuple open import Data.Fin open import Data.Product open import Data.List open import Data.Vec ⊥ : Set ⊥ = Inductive [] contradiction : {A : Set} → ⊥ → A contradiction = rec []
{ "alphanum_fraction": 0.7351778656, "avg_line_length": 15.8125, "ext": "agda", "hexsha": "c149c39f545e1b2ab1ecfa199bcef32219937157", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mr-ohman/general-induction", "max_forks_repo_path": "Inductive/Examples/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mr-ohman/general-induction", "max_issues_repo_path": "Inductive/Examples/Empty.agda", "max_line_length": 37, "max_stars_count": null, "max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mr-ohman/general-induction", "max_stars_repo_path": "Inductive/Examples/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 73, "size": 253 }
module CS410-Prelude where open import Agda.Primitive ---------------------------------------------------------------------------- -- Zero -- the empty type (logically, a false proposition) ---------------------------------------------------------------------------- data Zero : Set where magic : forall {l}{A : Set l} -> Zero -> A magic () ---------------------------------------------------------------------------- -- One -- the type with one value (logically, a true proposition) ---------------------------------------------------------------------------- record One : Set where constructor <> open One public {-# COMPILED_DATA One () () #-} ---------------------------------------------------------------------------- -- Two -- the type of Boolean values ---------------------------------------------------------------------------- data Two : Set where tt ff : Two {-# BUILTIN BOOL Two #-} {-# BUILTIN TRUE tt #-} {-# BUILTIN FALSE ff #-} {-# COMPILED_DATA Two Bool True False #-} -- nondependent conditional with traditional syntax if_then_else_ : {l : Level}{X : Set l} -> Two -> X -> X -> X if tt then t else e = t if ff then t else e = e -- dependent conditional cooked for partial application caseTwo : forall {l}{P : Two -> Set l} -> P tt -> P ff -> (b : Two) -> P b caseTwo t f tt = t caseTwo t f ff = f ---------------------------------------------------------------------------- -- "Sigma" -- the type of dependent pairs, giving binary products and sums ---------------------------------------------------------------------------- record Sg {l : Level}(S : Set l)(T : S -> Set l) : Set l where constructor _,_ field fst : S snd : T fst open Sg public _*_ : {l : Level} -> Set l -> Set l -> Set l S * T = Sg S \ _ -> T infixr 4 _,_ _*_ _+_ : Set -> Set -> Set S + T = Sg Two (caseTwo S T) pattern inl s = tt , s pattern inr t = ff , t ---------------------------------------------------------------------------- -- "Equality" -- the type of evidence that things are the same ---------------------------------------------------------------------------- data _==_ {l}{X : Set l}(x : X) : X -> Set l where refl : x == x infix 1 _==_ {-# BUILTIN EQUALITY _==_ #-} {-# BUILTIN REFL refl #-} sym : forall {l}{X : Set l}{x y : X} -> x == y -> y == x sym refl = refl -- this proof principle is useful for proving laws, don't use it for -- fixing type problems in your programs postulate ext : forall {l m}{A : Set l}{B : Set m}{f g : A -> B} -> (forall a -> f a == g a) -> f == g ---------------------------------------------------------------------------- -- functional plumbing ---------------------------------------------------------------------------- id : forall {l}{X : Set l} -> X -> X id x = x -- the type of composition can be generalized further _o_ : forall {l}{X Y Z : Set l} -> (Y -> Z) -> (X -> Y) -> X -> Z (f o g) x = f (g x) _$_ : forall{l}{X Y : Set l} -> (X -> Y) -> X -> Y f $ x = f x ---------------------------------------------------------------------------- -- lists ---------------------------------------------------------------------------- data List (X : Set) : Set where -- X scopes over the whole declaration... [] : List X -- ...so you can use it here... _::_ : X -> List X -> List X -- ...and here. infixr 3 _::_ {-# COMPILED_DATA List [] [] (:) #-} {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} ---------------------------------------------------------------------------- -- chars and strings ---------------------------------------------------------------------------- postulate -- this means that we just suppose the following things exist... Char : Set String : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} -- ...and by the time we reach Haskell... {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} -- ...they *do* exist! primitive -- these are baked in; they even work! primCharEquality : Char -> Char -> Two primStringAppend : String -> String -> String primStringToList : String -> List Char primStringFromList : List Char -> String --------------------------------------------------------------------------- -- COLOURS --------------------------------------------------------------------------- -- We're going to be making displays from coloured text. data Colour : Set where black red green yellow blue magenta cyan white : Colour {-# COMPILED_DATA Colour HaskellSetup.Colour HaskellSetup.Black HaskellSetup.Red HaskellSetup.Green HaskellSetup.Yellow HaskellSetup.Blue HaskellSetup.Magenta HaskellSetup.Cyan HaskellSetup.White #-}
{ "alphanum_fraction": 0.4278712977, "avg_line_length": 32.1438356164, "ext": "agda", "hexsha": "5bcbb52a32d28e4dde3a1e4470b1509c008ae967", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "notes/CS410-Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "notes/CS410-Prelude.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "notes/CS410-Prelude.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1005, "size": 4693 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Graph.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function private variable ℓv ℓv' ℓv'' ℓe ℓe' ℓe'' ℓd ℓd' : Level -- The type of directed multigraphs (with loops) record Graph ℓv ℓe : Type (ℓ-suc (ℓ-max ℓv ℓe)) where field Obj : Type ℓv Hom : Obj → Obj → Type ℓe open Graph public _ᵒᵖ : Graph ℓv ℓe → Graph ℓv ℓe Obj (G ᵒᵖ) = Obj G Hom (G ᵒᵖ) x y = Hom G y x TypeGr : ∀ ℓ → Graph (ℓ-suc ℓ) ℓ Obj (TypeGr ℓ) = Type ℓ Hom (TypeGr ℓ) A B = A → B -- Graph functors/homomorphisms record GraphHom (G : Graph ℓv ℓe ) (G' : Graph ℓv' ℓe') : Type (ℓ-suc (ℓ-max (ℓ-max ℓv ℓe) (ℓ-max ℓv' ℓe'))) where field _$_ : Obj G → Obj G' _<$>_ : ∀ {x y : Obj G} → Hom G x y → Hom G' (_$_ x) (_$_ y) open GraphHom public GraphGr : ∀ ℓv ℓe → Graph _ _ Obj (GraphGr ℓv ℓe) = Graph ℓv ℓe Hom (GraphGr ℓv ℓe) G G' = GraphHom G G' -- Diagrams are (graph) functors with codomain Type Diag : ∀ ℓd (G : Graph ℓv ℓe) → Type (ℓ-suc (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd))) Diag ℓd G = GraphHom G (TypeGr ℓd) record DiagMor {G : Graph ℓv ℓe} (F : Diag ℓd G) (F' : Diag ℓd' G) : Type (ℓ-suc (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc (ℓ-max ℓd ℓd')))) where field nat : ∀ (x : Obj G) → F $ x → F' $ x comSq : ∀ {x y : Obj G} (f : Hom G x y) → nat y ∘ F <$> f ≡ F' <$> f ∘ nat x open DiagMor public DiagGr : ∀ ℓd (G : Graph ℓv ℓe) → Graph _ _ Obj (DiagGr ℓd G) = Diag ℓd G Hom (DiagGr ℓd G) = DiagMor
{ "alphanum_fraction": 0.5893089961, "avg_line_length": 27.3928571429, "ext": "agda", "hexsha": "85a9c84ffeb7ad02ccc5a7c580ed9078aab3baae", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Graph/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Graph/Base.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Graph/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 704, "size": 1534 }
-- Andreas, 2017-12-16, issue #2871 -- If there is nothing to result-split, introduce trailing hidden args. -- {-# OPTIONS -v interaction.case:40 #-} data Fun (A : Set) : Set where mkFun : (A → A) → Fun A test : ∀ {A : Set} → Fun A test = {!!} -- C-c C-x C-h C-c C-c RET -- Works also with C-c C-c RET -- -- Expected: -- test {A} = {!!}
{ "alphanum_fraction": 0.5710144928, "avg_line_length": 20.2941176471, "ext": "agda", "hexsha": "68153c9631245daedee9c359025244450d441733", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2871.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2871.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2871.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 117, "size": 345 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence - base definitions ------------------------------------------------------------------------ module Base.Change.Equivalence.Base where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Function module _ {a} {A : Set a} {{ca : ChangeAlgebra A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record (a Haskell "newtype") -- instead of a "type synonym". record _≙_ (dx dy : Δ x) : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid a a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ≙-syntax : ∀ {a} {A : Set a} {{ca : ChangeAlgebra A}} (x : A) (dx₁ dx₂ : Δ x) → Set a ≙-syntax x dx₁ dx₂ = _≙_ {x = x} dx₁ dx₂ syntax ≙-syntax x dx₁ dx₂ = dx₁ ≙₍ x ₎ dx₂
{ "alphanum_fraction": 0.5420560748, "avg_line_length": 28.873015873, "ext": "agda", "hexsha": "684d6b73d7744fc9211340ce70b39426309b6e9e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Base/Change/Equivalence/Base.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Base/Change/Equivalence/Base.agda", "max_line_length": 85, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Base/Change/Equivalence/Base.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 637, "size": 1819 }
{-# OPTIONS --cubical --safe #-} module Data.List.Kleene.Membership where open import Prelude open import Data.List.Kleene open import Data.List.Kleene.Relation.Unary infixr 5 _∈⋆_ _∈⁺_ _∉⋆_ _∉⁺_ _∈⋆_ _∉⋆_ : A → A ⋆ → Type _ x ∈⋆ xs = ◇⋆ (_≡ x) xs x ∉⋆ xs = ¬ (x ∈⋆ xs) _∈⁺_ _∉⁺_ : A → A ⁺ → Type _ x ∈⁺ xs = ◇⁺ (_≡ x) xs x ∉⁺ xs = ¬ (x ∈⁺ xs)
{ "alphanum_fraction": 0.5558739255, "avg_line_length": 19.3888888889, "ext": "agda", "hexsha": "e9588932180947ca1fa2cdc5625392ad9f45a1dc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/List/Kleene/Membership.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/List/Kleene/Membership.agda", "max_line_length": 43, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/List/Kleene/Membership.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 187, "size": 349 }
open import Data.Product using ( _,_ ) open import FRP.LTL.ISet.Core using ( ISet ; _⇛_ ; mset ; M⟦_⟧ ; ⟦_⟧ ; [_] ; subsumM⟦_⟧ ) open import FRP.LTL.Time.Interval using ( ⊑-refl ) module FRP.LTL.ISet.Stateless where infixr 2 _⇒_ _⇒_ : ISet → ISet → ISet A ⇒ B = mset A ⇛ B -- We could define $ as -- f $ σ = i→m (λ j j⊑i → f j j⊑i [ subsumM⟦ A ⟧ j i j⊑i σ ]) -- but we inline i→m for efficiency _$_ : ∀ {A B i} → M⟦ A ⇒ B ⟧ i → M⟦ A ⟧ i → M⟦ B ⟧ i _$_ {A} {[ B ]} {i} f σ = f i ⊑-refl [ σ ] _$_ {A} {B ⇛ C} {i} f σ = λ j j⊑i → f j j⊑i [ subsumM⟦ A ⟧ j i j⊑i σ ]
{ "alphanum_fraction": 0.5318021201, "avg_line_length": 31.4444444444, "ext": "agda", "hexsha": "3108637958879ff8d6b952f0647bdcb3196b643b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z", "max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-frp-ltl", "max_forks_repo_path": "src/FRP/LTL/ISet/Stateless.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-frp-ltl", "max_issues_repo_path": "src/FRP/LTL/ISet/Stateless.agda", "max_line_length": 89, "max_stars_count": 21, "max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-frp-ltl", "max_stars_repo_path": "src/FRP/LTL/ISet/Stateless.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z", "num_tokens": 287, "size": 566 }
{-# OPTIONS --without-K #-} open import lib.Base open import lib.PathGroupoid open import lib.Relation open import lib.NType open import lib.types.Empty module lib.types.Nat where infixl 80 _+_ _+_ : ℕ → ℕ → ℕ 0 + n = n (S m) + n = S (m + n) {-# BUILTIN NATPLUS _+_ #-} +-unit-r : (m : ℕ) → m + 0 == m +-unit-r 0 = idp +-unit-r (S m) = ap S (+-unit-r m) +-βr : (m n : ℕ) → m + (S n) == S (m + n) +-βr 0 n = idp +-βr (S m) n = ap S (+-βr m n) +-comm : (m n : ℕ) → m + n == n + m +-comm m 0 = +-unit-r m +-comm m (S n) = +-βr m n ∙ ap S (+-comm m n) +-assoc : (k m n : ℕ) → (k + m) + n == k + (m + n) +-assoc 0 m n = idp +-assoc (S k) m n = ap S (+-assoc k m n) infix 120 _*2 _*2 : ℕ → ℕ O *2 = O (S n) *2 = S (S (n *2)) ℕ-pred : ℕ → ℕ ℕ-pred 0 = 0 ℕ-pred (S n) = n ℕ-S-inj : (n m : ℕ) (p : S n == S m) → n == m ℕ-S-inj n m p = ap ℕ-pred p ℕ-S-≠ : ∀ {n m : ℕ} (p : n ≠ m) → S n ≠ S m ℕ-S-≠ p = p ∘ ℕ-S-inj _ _ private ℕ-S≠O-type : ℕ → Type₀ ℕ-S≠O-type O = Empty ℕ-S≠O-type (S n) = Unit abstract ℕ-S≠O : (n : ℕ) → S n ≠ O ℕ-S≠O n p = transport ℕ-S≠O-type p unit ℕ-O≠S : (n : ℕ) → (O ≠ S n) ℕ-O≠S n p = ℕ-S≠O n (! p) ℕ-has-dec-eq : has-dec-eq ℕ ℕ-has-dec-eq O O = inl idp ℕ-has-dec-eq O (S n) = inr (ℕ-O≠S n) ℕ-has-dec-eq (S n) O = inr (ℕ-S≠O n) ℕ-has-dec-eq (S n) (S m) with ℕ-has-dec-eq n m ℕ-has-dec-eq (S n) (S m) | inl p = inl (ap S p) ℕ-has-dec-eq (S n) (S m) | inr p⊥ = inr (λ p → p⊥ (ℕ-S-inj n m p)) ℕ-is-set : is-set ℕ ℕ-is-set = dec-eq-is-set ℕ-has-dec-eq ℕ-level = ℕ-is-set {- Inequalities -} infix 40 _<_ _≤_ data _<_ : ℕ → ℕ → Type₀ where ltS : {m : ℕ} → m < (S m) ltSR : {m n : ℕ} → m < n → m < (S n) _≤_ : ℕ → ℕ → Type₀ m ≤ n = Coprod (m == n) (m < n) -- properties of [<] instance O<S : (m : ℕ) → O < S m O<S O = ltS O<S (S m) = ltSR (O<S m) O≤ : (m : ℕ) → O ≤ m O≤ O = inl idp O≤ (S m) = inr (O<S m) ≮O : ∀ n → ¬ (n < O) ≮O _ () <-trans : {m n k : ℕ} → m < n → n < k → m < k <-trans lt₁ ltS = ltSR lt₁ <-trans lt₁ (ltSR lt₂) = ltSR (<-trans lt₁ lt₂) ≤-refl : {m : ℕ} → m ≤ m ≤-refl = inl idp ≤-trans : {m n k : ℕ} → m ≤ n → n ≤ k → m ≤ k ≤-trans {k = k} (inl p₁) lte₂ = transport (λ t → t ≤ k) (! p₁) lte₂ ≤-trans {m = m} lte₁ (inl p₂) = transport (λ t → m ≤ t) p₂ lte₁ ≤-trans (inr lt₁) (inr lt₂) = inr (<-trans lt₁ lt₂) <-ap-S : {m n : ℕ} → m < n → S m < S n <-ap-S ltS = ltS <-ap-S (ltSR lt) = ltSR (<-ap-S lt) ≤-ap-S : {m n : ℕ} → m ≤ n → S m ≤ S n ≤-ap-S (inl p) = inl (ap S p) ≤-ap-S (inr lt) = inr (<-ap-S lt) <-cancel-S : {m n : ℕ} → S m < S n → m < n <-cancel-S ltS = ltS <-cancel-S (ltSR lt) = <-trans ltS lt ≤-cancel-S : {m n : ℕ} → S m ≤ S n → m ≤ n ≤-cancel-S (inl p) = inl (ap ℕ-pred p) ≤-cancel-S (inr lt) = inr (<-cancel-S lt) <-dec : Decidable _<_ <-dec _ O = inr (≮O _) <-dec O (S m) = inl (O<S m) <-dec (S n) (S m) with <-dec n m <-dec (S n) (S m) | inl p = inl (<-ap-S p) <-dec (S n) (S m) | inr p⊥ = inr (p⊥ ∘ <-cancel-S) ≯-to-≤ : {m n : ℕ} → ¬ (n < m) → m ≤ n ≯-to-≤ {O} {O} _ = inl idp ≯-to-≤ {O} {S n} _ = inr (O<S n) ≯-to-≤ {S m} {O} neggt = ⊥-elim $ neggt (O<S m) ≯-to-≤ {S m} {S n} neggt = ≤-ap-S (≯-to-≤ (neggt ∘ <-ap-S)) <-+-l : {m n : ℕ} (k : ℕ) → m < n → (k + m) < (k + n) <-+-l O lt = lt <-+-l (S k) lt = <-ap-S (<-+-l k lt) ≤-+-l : {m n : ℕ} (k : ℕ) → m ≤ n → (k + m) ≤ (k + n) ≤-+-l k (inl p) = inl (ap (λ t → k + t) p) ≤-+-l k (inr lt) = inr (<-+-l k lt) <-+-r : {m n : ℕ} (k : ℕ) → m < n → (m + k) < (n + k) <-+-r k ltS = ltS <-+-r k (ltSR lt) = ltSR (<-+-r k lt) ≤-+-r : {m n : ℕ} (k : ℕ) → m ≤ n → (m + k) ≤ (n + k) ≤-+-r k (inl p) = inl (ap (λ t → t + k) p) ≤-+-r k (inr lt) = inr (<-+-r k lt) <-witness : {m n : ℕ} → (m < n) → Σ ℕ (λ k → S k + m == n) <-witness ltS = (O , idp) <-witness (ltSR lt) = let w' = <-witness lt in (S (fst w') , ap S (snd w')) ≤-witness : {m n : ℕ} → (m ≤ n) → Σ ℕ (λ k → k + m == n) ≤-witness (inl p) = (O , p) ≤-witness (inr lt) = let w' = <-witness lt in (S (fst w') , snd w') *2-increasing : (m : ℕ) → (m ≤ m *2) *2-increasing O = inl idp *2-increasing (S m) = ≤-trans (≤-ap-S (*2-increasing m)) (inr ltS) *2-monotone-< : {m n : ℕ} → m < n → m *2 < n *2 *2-monotone-< ltS = ltSR ltS *2-monotone-< (ltSR lt) = ltSR (ltSR (*2-monotone-< lt)) *2-monotone-≤ : {m n : ℕ} → m ≤ n → m *2 ≤ n *2 *2-monotone-≤ (inl p) = inl (ap _*2 p) *2-monotone-≤ (inr lt) = inr (*2-monotone-< lt)
{ "alphanum_fraction": 0.4493482735, "avg_line_length": 25.132183908, "ext": "agda", "hexsha": "765f3553f99078cfa7336150c4495cbd8b8b8169", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Nat.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2259, "size": 4373 }
{-# OPTIONS --safe #-} -- --without-K #-} open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; subst; cong; trans) open Relation.Binary.PropositionalEquality.≡-Reasoning open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (fromWitness) import Data.Product as Product import Data.Product.Properties as Productₚ import Data.Unit as Unit import Data.Nat as ℕ import Data.Vec as Vec import Data.Fin as Fin import Data.Vec.Relation.Unary.All as All open Unit using (⊤; tt) open ℕ using (ℕ; zero; suc) open Vec using (Vec; []; _∷_) open All using (All; []; _∷_) open Fin using (Fin ; zero ; suc) open Product using (Σ-syntax; _×_; _,_; proj₁; proj₂) open import PiCalculus.Syntax open Scoped open import PiCalculus.Semantics open import PiCalculus.Semantics.Properties open import PiCalculus.LinearTypeSystem.Algebras module PiCalculus.LinearTypeSystem.SubjectCongruence (Ω : Algebras) where open Algebras Ω open import PiCalculus.LinearTypeSystem Ω open import PiCalculus.LinearTypeSystem.ContextLemmas Ω open import PiCalculus.LinearTypeSystem.Framing Ω open import PiCalculus.LinearTypeSystem.Weakening Ω open import PiCalculus.LinearTypeSystem.Strengthening Ω open import PiCalculus.LinearTypeSystem.Exchange Ω SubjectCongruence : Set SubjectCongruence = {n : ℕ} {γ : PreCtx n} {idxs : Idxs n} {Γ Δ : Ctx idxs} → {r : RecTree} {P Q : Scoped n} → P ≅⟨ r ⟩ Q → γ ; Γ ⊢ P ▹ Δ → γ ; Γ ⊢ Q ▹ Δ private variable n : ℕ P Q : Scoped n comp-comm : {γ : PreCtx n} {idxs : Idxs n} {Γ Ξ : Ctx idxs} → γ ; Γ ⊢ P ∥ Q ▹ Ξ → γ ; Γ ⊢ Q ∥ P ▹ Ξ comp-comm (⊢P ∥ ⊢Q) with ⊢-⊗ ⊢P | ⊢-⊗ ⊢Q comp-comm (⊢P ∥ ⊢Q) | _ , P≔ | _ , Q≔ = let _ , (Q'≔ , P'≔) = ⊗-assoc (⊗-comm P≔) Q≔ in ⊢-frame Q≔ Q'≔ ⊢Q ∥ ⊢-frame P≔ (⊗-comm P'≔) ⊢P subject-cong : SubjectCongruence subject-cong (stop comp-assoc) (⊢P ∥ (⊢Q ∥ ⊢R)) = (⊢P ∥ ⊢Q) ∥ ⊢R subject-cong (stop comp-symm) (⊢P ∥ ⊢Q) = comp-comm (⊢P ∥ ⊢Q) subject-cong (stop comp-end) (⊢P ∥ 𝟘) = ⊢P subject-cong (stop scope-end) (ν t c ._ 𝟘) = 𝟘 subject-cong (stop (scope-ext u)) (ν t c μ (_∥_ {Δ = _ -, _} ⊢P ⊢Q)) rewrite sym (⊢-unused _ u ⊢P) = ⊢-strengthen zero u ⊢P ∥ ν t c μ ⊢Q subject-cong (stop scope-scope-comm) (ν t c μ (ν t₁ c₁ μ₁ ⊢P)) = ν t₁ c₁ μ₁ (ν t c μ (⊢-exchange zero ⊢P)) subject-cong (cong-symm (stop comp-assoc)) ((⊢P ∥ ⊢Q) ∥ ⊢R) = ⊢P ∥ (⊢Q ∥ ⊢R) subject-cong (cong-symm (stop comp-symm)) (⊢P ∥ ⊢Q) = comp-comm (⊢P ∥ ⊢Q) subject-cong (cong-symm (stop comp-end)) ⊢P = ⊢P ∥ 𝟘 subject-cong (cong-symm (stop scope-end)) 𝟘 = ν 𝟙 {∃Idx} (0∙ , 0∙) {∃Idx} 0∙ 𝟘 subject-cong (cong-symm (stop (scope-ext u))) (⊢P ∥ (ν t c μ ⊢Q)) = ν t c μ ((subst (λ ● → _ ; _ ⊢ ● ▹ _) (lift-lower zero _ u) (⊢-weaken zero ⊢P)) ∥ ⊢Q) subject-cong (cong-symm (stop scope-scope-comm)) (ν t c μ (ν t₁ c₁ μ₁ ⊢P)) = ν _ _ _ (ν _ _ _ (subst (λ ● → _ ; _ ⊢ ● ▹ _) (exchange-exchange zero _) (⊢-exchange zero ⊢P))) -- Equivalence and congruence subject-cong cong-refl ⊢P = ⊢P subject-cong (cong-trans P≅Q Q≅R) ⊢P = subject-cong Q≅R (subject-cong P≅Q ⊢P) subject-cong (ν-cong P≅Q) (ν t m μ ⊢P) = ν t m μ (subject-cong P≅Q ⊢P) subject-cong (comp-cong P≅Q) (⊢P ∥ ⊢R) = subject-cong P≅Q ⊢P ∥ ⊢R subject-cong (input-cong P≅Q) (x ⦅⦆ ⊢P) = x ⦅⦆ subject-cong P≅Q ⊢P subject-cong (output-cong P≅Q) (x ⟨ y ⟩ ⊢P) = x ⟨ y ⟩ subject-cong P≅Q ⊢P subject-cong (cong-symm cong-refl) ⊢P = ⊢P subject-cong (cong-symm (cong-symm P≅Q)) ⊢P = subject-cong P≅Q ⊢P subject-cong (cong-symm cong-trans P≅Q P≅R) ⊢P = subject-cong (cong-symm P≅Q) (subject-cong (cong-symm P≅R) ⊢P) subject-cong (cong-symm (ν-cong P≅Q)) (ν t m μ ⊢P) = ν t m μ (subject-cong (cong-symm P≅Q) ⊢P) subject-cong (cong-symm (comp-cong P≅Q)) (⊢P ∥ ⊢R) = subject-cong (cong-symm P≅Q) ⊢P ∥ ⊢R subject-cong (cong-symm (input-cong P≅Q)) (x ⦅⦆ ⊢P) = x ⦅⦆ subject-cong (cong-symm P≅Q) ⊢P subject-cong (cong-symm (output-cong P≅Q)) (x ⟨ y ⟩ ⊢P) = x ⟨ y ⟩ subject-cong (cong-symm P≅Q) ⊢P
{ "alphanum_fraction": 0.626503006, "avg_line_length": 45.8850574713, "ext": "agda", "hexsha": "274fd120855d4882b6fcee0a115478c2a13f5697", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "src/PiCalculus/LinearTypeSystem/SubjectCongruence.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "src/PiCalculus/LinearTypeSystem/SubjectCongruence.agda", "max_line_length": 172, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "src/PiCalculus/LinearTypeSystem/SubjectCongruence.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 1763, "size": 3992 }
-- We can let Agda infer the parameters of the constructor target data List (A : Set) : Set where nil : List _ cons : A → List A → List _ -- 2017-01-12, Andreas: we can even omit the whole target -- (for parameterized data types, but not inductive families) data Bool : Set where true false : _ data Maybe (A : Set) : Set where nothing : _ just : (x : A) → _
{ "alphanum_fraction": 0.6604278075, "avg_line_length": 23.375, "ext": "agda", "hexsha": "cb88ee1f0007354de506a4f1f99c4b6b541afaeb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/UnderscoresAsDataParam.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/UnderscoresAsDataParam.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/UnderscoresAsDataParam.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 110, "size": 374 }
{- This module converts between the path equality and the inductively define equality types. - _≡c_ stands for "c"ubical equality. - _≡p_ stands for "p"ropositional equality. TODO: reconsider naming scheme. -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Equality where open import Cubical.Foundations.Prelude renaming ( _≡_ to _≡c_ ; refl to reflc ) public open import Agda.Builtin.Equality renaming ( _≡_ to _≡p_ ; refl to reflp ) public open import Cubical.Foundations.Isomorphism private variable ℓ : Level A : Type ℓ x y z : A ptoc : x ≡p y → x ≡c y ptoc reflp = reflc ctop : x ≡c y → x ≡p y ctop p = transport (cong (λ u → _ ≡p u) p) reflp ptoc-ctop : (p : x ≡c y) → ptoc (ctop p) ≡c p ptoc-ctop p = J (λ _ h → ptoc (ctop h) ≡c h) (cong ptoc (transportRefl reflp)) p ctop-ptoc : (p : x ≡p y) → ctop (ptoc p) ≡c p ctop-ptoc {x = x} reflp = transportRefl reflp p≅c : {x y : A} → Iso (x ≡c y) (x ≡p y) p≅c = iso ctop ptoc ctop-ptoc ptoc-ctop p-c : {x y : A} → (x ≡c y) ≡c (x ≡p y) p-c = isoToPath p≅c p=c : {x y : A} → (x ≡c y) ≡p (x ≡p y) p=c = ctop p-c
{ "alphanum_fraction": 0.6295964126, "avg_line_length": 21.862745098, "ext": "agda", "hexsha": "783fef24a4942bfb889019b9422718c9474e87e8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Equality.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 472, "size": 1115 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Reasoning.Preorder module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.PreorderReasoning {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open import Relation.Binary.Reasoning.Preorder P public
{ "alphanum_fraction": 0.5182926829, "avg_line_length": 30.75, "ext": "agda", "hexsha": "f253284275c8c23dc5e7f2d79b6ee9cc0bd79e2e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PreorderReasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PreorderReasoning.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PreorderReasoning.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 92, "size": 492 }
{-# OPTIONS --without-K --safe #-} open import Polynomial.Parameters -- Here, we provide proofs of homomorphism between the operations -- defined on polynomials and those on the underlying ring. module Polynomial.Homomorphism {c r₁ r₂ r₃} (homo : Homomorphism c r₁ r₂ r₃) where -- The lemmas are the general-purpose proofs we reuse in each other section open import Polynomial.Homomorphism.Lemmas homo using (pow-cong) public -- Proofs which deal with variables and constants open import Polynomial.Homomorphism.Semantics homo using (κ-hom; ι-hom) public -- Proofs for each operation open import Polynomial.Homomorphism.Addition homo using (⊞-hom) public open import Polynomial.Homomorphism.Multiplication homo using (⊠-hom) public open import Polynomial.Homomorphism.Negation homo using (⊟-hom) public open import Polynomial.Homomorphism.Exponentiation homo using (⊡-hom) public
{ "alphanum_fraction": 0.7655398037, "avg_line_length": 38.2083333333, "ext": "agda", "hexsha": "5595a436536e5a449944e676f242a8e60cc2b891", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z", "max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z", "max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/agda-ring-solver", "max_forks_repo_path": "src/Polynomial/Homomorphism.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/agda-ring-solver", "max_issues_repo_path": "src/Polynomial/Homomorphism.agda", "max_line_length": 83, "max_stars_count": 36, "max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/agda-ring-solver", "max_stars_repo_path": "src/Polynomial/Homomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z", "num_tokens": 240, "size": 917 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.Queue.Finite where open import Cubical.Foundations.Everything open import Cubical.Foundations.SIP open import Cubical.Structures.Queue open import Cubical.Data.Maybe open import Cubical.Data.List open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Queue.1List -- All finite queues are equal to 1List.Finite private variable ℓ : Level module _ (A : Type ℓ) (Aset : isSet A) where open Queues-on A Aset private module One = 1List A Aset open One renaming (Q to Q₁; emp to emp₁; enq to enq₁; deq to deq₁) isContrFiniteQueue : isContr FiniteQueue isContrFiniteQueue .fst = One.Finite isContrFiniteQueue .snd (Q , (S@(emp , enq , deq) , _ , deq-emp , deq-enq , _) , fin) = sip finiteQueueUnivalentStr _ _ ((f , fin) , f∘emp , f∘enq , sym ∘ f∘deq) where deq₁-enq₁ = str One.WithLaws .snd .snd .snd .fst f : Q₁ → Q f = foldr enq emp f∘emp : f emp₁ ≡ emp f∘emp = refl f∘enq : ∀ a xs → f (enq₁ a xs) ≡ enq a (f xs) f∘enq _ _ = refl fA : Q₁ × A → Q × A fA (q , a) = (f q , a) f∘returnOrEnq : (x : A) (xsr : Maybe (List A × A)) → returnOrEnq S x (deqMap f xsr) ≡ fA (returnOrEnq (str One.Raw) x xsr) f∘returnOrEnq _ nothing = refl f∘returnOrEnq _ (just _) = refl f∘deq : ∀ xs → deq (f xs) ≡ deqMap f (deq₁ xs) f∘deq [] = deq-emp f∘deq (x ∷ xs) = deq-enq x (f xs) ∙ cong (just ∘ returnOrEnq S x) (f∘deq xs) ∙ cong just (f∘returnOrEnq x (deq₁ xs)) ∙ cong (deqMap f) (sym (deq₁-enq₁ x xs))
{ "alphanum_fraction": 0.6410098522, "avg_line_length": 27.5254237288, "ext": "agda", "hexsha": "13adbe0d4f9f6eb3628535a033a5b93fbdc4085b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Queue/Finite.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Queue/Finite.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Queue/Finite.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 637, "size": 1624 }
-- Andreas, 2015-05-28 example by Andrea Vezzosi open import Common.Size data Nat (i : Size) : Set where zero : ∀ {j : Size< i} → Nat i suc : ∀ {j : Size< i} → Nat j → Nat i {-# TERMINATING #-} -- This definition is fine, the termination checker is too strict at the moment. fix : ∀ {C : Size → Set} → (∀{i} → (∀ {j : Size< i} → Nat j -> C j) → Nat i → C i) → ∀{i} → Nat i → C i fix t zero = t (fix t) zero fix t (suc n) = t (fix t) (suc n) case : ∀ {i} {C : Set} (n : Nat i) (z : C) (s : ∀ {j : Size< i} → Nat j → C) → C case zero z s = z case (suc n) z s = s n applyfix : ∀ {C : Size → Set} {i} (n : Nat i) → (∀{i} → (∀ {j : Size< i} → Nat j -> C j) → Nat i → C i) → C i applyfix n f = fix f n module M (i0 : Size) (bot : ∀{i} → Nat i) (A : Set) (default : A) where loops : A loops = applyfix (zero {i = ↑ i0}) λ {i} r _ → case {i} bot default λ n → -- Size< i is possibly empty, should be rejected case n default λ _ → r zero -- loops -- --> fix t zero -- --> t (fix t) zero -- --> case bot default λ n → case n default λ _ → fix t zero -- and we have reproduced (modulo sizes) what we started with
{ "alphanum_fraction": 0.5218135158, "avg_line_length": 29.9743589744, "ext": "agda", "hexsha": "771bdff63cc9a2bef1f95eede68517d052b11a57", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1523a.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1523a.agda", "max_line_length": 83, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1523a.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 449, "size": 1169 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Weight biased leftist heap that proves to maintain priority -- -- invariant: priority at the node is not lower than priorities of -- -- its two children. Uses a two-pass merging algorithm. -- ---------------------------------------------------------------------- {-# OPTIONS --sized-types #-} module TwoPassMerge.PriorityProof where open import Basics.Nat renaming (_≥_ to _≥ℕ_) open import Basics open import Sized -- Priority invariant says that: for any node in the tree priority in -- that node is higher than priority stored by its children. This -- means that any path from root to leaf is ordered (highest priority -- at the root, lowest at the leaf). This property allows us to -- construct an efficient merging operation (see paper for more -- details). -- -- To prove this invariant we will index nodes using Priority. Index -- of value n says that "this heap can store elements with priorities -- n or lower" (remember that lower priority means larger Nat). In -- other words Heap indexed with 0 can store any Priority, while Heap -- indexed with 3 can store priorities 3, 4 and lower, but can't store -- 0, 1 and 2. -- -- As previously, Heap has two constructors: -- -- 1) empty returns Heap n, where index n is not constrained in any -- way. This means that empty heap can be given any restriction on -- priorities of stored elements. -- -- 2) node also creates Heap n, but this time n is constrained. If we -- store priority p in a node then: -- a) the resulting heap can only be restricted to store -- priorities at least as high as p. For example, if we -- create a node that stores priority 3 we cannot restrict -- the resulting heap to store priorities 4 and lower, -- because the fact that we store 3 in that node violates the -- restriction. This restriction is expressed by the "p ≥ n" -- parameter: if we can construct a value of type (p ≥ n) -- then existance of such a value becomes a proof that p is -- greater-equal to n. We must supply such proof to every -- node. -- b) children of a node can only be restricted to store -- priorities that are not higher than p. Example: if we -- restrict a node to store priorities 4 and lower we cannot -- restrict its children to store priorities 3 and -- higher. This restriction is expressed by index "p" in the -- subheaps passed to node constructor. data Heap : {i : Size} → Priority → Set where empty : {i : Size} {n : Priority} → Heap {↑ i} n node : {i : Size} {n : Priority} → (p : Priority) → Rank → p ≥ n → Heap {i} p → Heap {i} p → Heap {↑ i} n -- Let's demonstrate that priority invariant cannot be broken. Below -- we construct a heap like this: -- -- ? -- / \ -- / \ -- E 0 -- -- where E means empty node and 0 means node storing Priority 0 (yes, -- this heap violates the rank invariant!). We left out the root -- element. The only value that can be supplied there is zero (try -- giving one and see that typechecker will not accept it). This is -- beacuse the value n with which 0 node can be index must obey the -- restriction 0 ≥ n. This means that 0 node can only be indexed with -- 0. When we try to construct ? node we are thus only allowed to -- insert priority 0. heap-broken : Heap zero heap-broken = node {!!} (suc one) ge0 empty (node zero one ge0 empty empty) -- Here is a correct heap. It stores one at the leaf and 0 at the -- root. It still violates the rank invariant - we deal with that in -- TwoPassMerge.RankProof. heap-correct : Heap zero heap-correct = node zero (suc one) ge0 empty (node one one ge0 empty empty) -- Again, we need a function to extract rank from a node rank : {b : Priority} → Heap b → Rank rank empty = zero rank (node _ r _ _ _) = r -- The first question is how to create a singleton heap, ie. a Heap -- storing one element. The question we need to answer is "what -- Priorities can we later store in a singleton Heap?". "Any" seems to -- be a reasonable answer. This means the resulting Heap will be -- indexed with zero, meaning "Priorities lower or equal to zero can -- be stored in this Heap" (remember that any priority is lower or -- equal to zero). This leads us to following definition: singleton : (p : Priority) → Heap zero singleton p = node p one ge0 empty empty -- We can imagine we would like to limit the range of priorities we -- can insert into a singleton Heap. This means the resulting Heap -- would be index with some b (the bound on allowed Priority -- values). In such case however we are required to supply a proof -- that p ≥ b. This would lead us to a definition like this: -- -- singletonB : {b : Priority} → (p : Priority) → p ≥ b → Heap b -- singletonB p p≥b = node p one p≥b empty empty -- -- We'll return to that idea soon. -- makeT now returns indexed heaps, so it requires one more parameter: -- a proof that priorities stored in resulting heap are not lower than -- in the subheaps. makeT : {b : Nat} → (p : Priority) → p ≥ b → Heap p → Heap p → Heap b makeT p p≥b l r with rank l ≥ℕ rank r makeT p p≥b l r | true = node p (suc (rank l + rank r)) p≥b l r makeT p p≥b l r | false = node p (suc (rank l + rank r)) p≥b r l -- The important change in merge is that now we don't compare node -- priorities using an operator that returns Bool. We compare them -- using "order" function that not only returns result of comparison, -- but also supplies a proof of the result. This proof tells us -- something important about the relationship between p1, p2 and -- priority bound of the merged Heap. Note that we use the new proof -- to reconstruct one of the heaps that is passed in recursive call to -- merge. We must do this because by comparing priorities p1 and p2 we -- learned something new about restriction placed on priorities in one -- of the heaps and we can now be more precise in expressing these -- restrictions. -- -- Note also that despite indexing our data types with Size the -- termination checker complains that merge function does not -- terminate. This is not a problem in our definitions but a bug in -- Agda's implementation. I leave the code in this form in hope that -- this bug will be fixed in a future release of Agda. For mor details -- see http://code.google.com/p/agda/issues/detail?id=59#c23 merge : {i j : Size} {p : Nat} → Heap {i} p → Heap {j} p → Heap p merge empty h2 = h2 merge h1 empty = h1 merge .{↑ i} .{↑ j} (node {i} p1 l-rank p1≥p l1 r1) (node {j} p2 r-rank p2≥p l2 r2) with order p1 p2 merge .{↑ i} .{↑ j} (node {i} p1 l-rank p1≥p l1 r1) (node {j} p2 r-rank p2≥p l2 r2) | le p1≤p2 = makeT p1 p1≥p l1 (merge {i} {↑ j} r1 (node p2 r-rank p1≤p2 l2 r2)) merge .{↑ i} .{↑ j} (node {i} p1 l-rank p1≥p l1 r1) (node {j} p2 r-rank p2≥p l2 r2) | ge p1≥p2 = makeT p2 p2≥p l2 (merge {↑ i} {j} (node p1 l-rank p1≥p2 l1 r1) r2) -- When writing indexed insert function we once again have to answer a -- question of how to index input and output Heap. The easiest -- solution is to be liberal: let us require that the input and output -- Heap have no limitations on Priorities they can store. In other -- words, let they be indexed by zero: insert : Priority → Heap zero → Heap zero insert p h = merge (singleton p) h -- Now we can create an example heap. The only difference between this -- heap and the heap without any proofs is that we need to explicitly -- instantiate implicit Priority parameter of empty constructor. heap : Heap zero heap = insert (suc (suc zero)) (insert (suc zero) (insert zero (insert (suc (suc (suc zero))) (empty {n = zero})))) -- But what if we want to insert into a heap that is not indexed with -- 0? One solution is to be liberal and ``promote'' that heap so that -- after insertion it can store elements with any priorities: toZero : {b : Priority} → Heap b → Heap zero toZero empty = empty toZero (node p rank _ l r) = node p rank ge0 l r insert0 : {b : Priority} → Priority → Heap b → Heap zero insert0 p h = merge (singleton p) (toZero h) -- But what if we actaully want to maintain bounds imposed on the heap -- by its index? To achieve that we need a new singleton function that -- constructs a singleton Heap with a bound equal to priority of a -- single element stored by the heap. To construct a proof required by -- node we use ≥sym, which proves that if p ≡ p then p ≥ p. singletonB : (p : Priority) → Heap p singletonB p = node p one (≥sym refl) empty empty -- We can now write new insert function that uses singletonB function: insertB : (p : Priority) → Heap p → Heap p insertB p h = merge (singletonB p) h -- However, that function is pretty much useless - it can insert -- element with priority p only to a heap that has p as its bound. In -- other words if we have Heap zero - ie. a heap that can store any -- possible priority -- the only thing that we can insert into it -- using insertB function is zero. That's clearly not what we want. We -- need a way to manipulate resulting priority bound. -- Let's try again. This time we will write functions with signatures: -- -- singletonB' : {b : Priority} → (p : Priority) → p ≥ b → Heap b -- insertB' : {b : Priority} → (p : Priority) → p ≥ b → Heap p → Heap b -- -- Singleton allows to construct Heap containing priority p but -- bounded by b. This of course requires proof that p ≥ b, ie. that -- priority p can actually be stored in Heap b. insertB' is similar - -- it can insert element of priority p into Heap bounded by p but the -- resulting Heap can be bounded by b (provided that p ≥ b, for which -- we must supply evidence). Let's implement that. -- Implementing singletonB' is straightforward: singletonB' : {b : Priority} → (p : Priority) → p ≥ b → Heap b singletonB' p p≥b = node p one p≥b empty empty -- To implement insertB' we need two additional functions. Firstly, we -- need a proof of transitivity of ≥. We proceed by induction on -- c. Our base case is: -- -- a ≥ b ∧ b ≥ 0 ⇒ a ≥ 0 -- -- In other words if c is 0 then ge0 proves the property. If c is not -- zero, then b is also not zero (by definitions of data constructors -- of ≥) and hence a is also not zero. This gives us second equation -- that is a recursive proof on ≥trans. ≥trans : {a b c : Nat} → a ≥ b → b ≥ c → a ≥ c ≥trans a≥b ge0 = ge0 ≥trans (geS a≥b) (geS b≥c) = geS (≥trans a≥b b≥c) -- Having proved the transitivity of ≥ we can construct a function -- that loosens the bound we put on a heap. If we have a heap with a -- bound p - meaning that all priorities in a heap are guaranteed to -- be lower than or equal to p - and we also have evidence than n is a -- priority higher than p then we can change the restriction on the -- heap so that it accepts higher priorites. For example if we have -- Heap 5, ie. all elements in the heap are 5 or greater, and we have -- evidence that 5 ≥ 3, then we can convert Heap 5 to Heap 3. Note how -- we are prevented from writing wrong code: if we have Heap 3 we -- cannot convert it to Heap 5. This is not possible from theoretical -- point of view: Heap 3 may contain 4, but Heap 5 is expected to -- contain elements not smaller than 5. It is also not possible -- practically: thanks to our definition of ≥ we can't orivide -- evidence that 3 ≥ 5 because we cannot construct value of that type. liftBound : {p b : Priority} → b ≥ p → Heap b → Heap p liftBound b≥n empty = empty liftBound b≥n (node p rank p≥b l r) = node p rank (≥trans p≥b b≥n) l r -- With singletonB and liftBound we can construct insert function that -- allows to insert element with priority p into a Heap bound by b, -- but only if we can supply evidence that p ≥ b, ie. that p can -- actually be stored in the heap. insertB' : {b : Priority} → (p : Priority) → p ≥ b → Heap p → Heap b insertB' p p≥b h = merge (singletonB' p p≥b) (liftBound p≥b h) -- But if we try to create an example Heap as we did previously we -- quickly discover that this function isn't of much use either: heap' : Heap zero heap' = insertB' (suc (suc zero)) {!!} (insertB' (suc zero) {!!} (insertB' zero {!!} (insertB' (suc (suc (suc zero))) {!!} (empty)))) -- In third hole we are required to supply evidence that 0 ≥ 1 and -- that is not possible. The reason is that our insertB' function -- allows us only to insert elements into a heap in decreasing order: heap'' : Heap zero heap'' = insertB' zero ge0 (insertB' (suc zero) ge0 (insertB' (suc (suc zero)) (geS ge0) (insertB' (suc (suc (suc zero))) (geS (geS ge0)) (empty)))) -- This is a direct consequence of our requirement that priority of -- element being inserted and bound on the Heap we insert into match. -- Again, findMin and deletMin are incomplete findMin : {b : Priority} → Heap b → Priority findMin empty = {!!} findMin (node p _ _ _ _) = p -- deleteMin requires a bit more work than previously. First, notice -- that the bound placed on the input and output heaps is the -- same. This happens because relation between priorities in a node -- and it's children is ≥, not > (ie. equality is allowed). We cannot -- therefore guearantee that bound on priority will increase after -- removing highest-priority element from the Heap. When we merge -- left and right subtrees we need to lift their bounds so they are -- now both b (not p). deleteMin : {b : Priority} → Heap b → Heap b deleteMin empty = {!!} deleteMin (node p rank p≥b l r) = merge (liftBound p≥b l) (liftBound p≥b r)
{ "alphanum_fraction": 0.673540745, "avg_line_length": 47.3445945946, "ext": "agda", "hexsha": "5cf928c8679ea6e33a1350c4d73fb3f5a0b99895", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/TwoPassMerge/PriorityProof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/TwoPassMerge/PriorityProof.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/TwoPassMerge/PriorityProof.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 3820, "size": 14014 }
import cedille-options open import general-util module meta-vars (options : cedille-options.options) {mF : Set → Set} ⦃ _ : monad mF ⦄ where open import cedille-types open import constants open import conversion open import ctxt open import free-vars open import rename open import spans options {mF} open import subst open import syntax-util open import to-string options -- misc ---------------------------------------------------------------------- -- Meta-variables, prototypes, decorated types -- ================================================== record meta-var-sol (A : Set) : Set where constructor mk-meta-var-sol field sol : A src : checking-mode data meta-var-sort : Set where meta-var-tp : (k : kind) → (mtp : maybe $ meta-var-sol type) → meta-var-sort meta-var-tm : (tp : type) → (mtm : maybe $ meta-var-sol term) → meta-var-sort record meta-var : Set where constructor meta-var-mk field name : string sort : meta-var-sort loc : span-location open meta-var pattern meta-var-mk-tp x k mtp l = meta-var-mk x (meta-var-tp k mtp) l record meta-vars : Set where constructor meta-vars-mk field order : 𝕃 var varset : trie meta-var open meta-vars data prototype : Set where proto-maybe : maybe type → prototype proto-arrow : erased? → prototype → prototype data decortype : Set where decor-type : type → decortype decor-arrow : erased? → type → decortype → decortype decor-decor : erased? → var → tpkd → meta-var-sort → decortype → decortype decor-stuck : type → prototype → decortype decor-error : type → prototype → decortype -- Simple definitions and accessors -- -------------------------------------------------- meta-var-name : meta-var → var meta-var-name X = meta-var.name X meta-vars-get-varlist : meta-vars → 𝕃 var meta-vars-get-varlist Xs = map (name ∘ snd) (trie-mappings (varset Xs)) meta-var-solved? : meta-var → 𝔹 meta-var-solved? (meta-var-mk n (meta-var-tp k nothing) _) = ff meta-var-solved? (meta-var-mk n (meta-var-tp k (just _)) _) = tt meta-var-solved? (meta-var-mk n (meta-var-tm tp nothing) _) = ff meta-var-solved? (meta-var-mk n (meta-var-tm tp (just _)) _) = tt meta-vars-empty : meta-vars meta-vars-empty = meta-vars-mk [] empty-trie meta-vars-empty? : meta-vars → 𝔹 meta-vars-empty? Xs = ~ (trie-nonempty (varset Xs )) meta-vars-solved? : meta-vars → 𝔹 meta-vars-solved? Xs = trie-all meta-var-solved? (varset Xs) meta-vars-filter : (meta-var → 𝔹) → meta-vars → meta-vars meta-vars-filter f Xs = meta-vars-mk or vs where vs = trie-filter f (varset Xs) or = filter (trie-contains vs) (order Xs) meta-var-sort-eq? : ctxt → (=S =T : meta-var-sort) → 𝔹 meta-var-sort-eq? Γ (meta-var-tp k₁ mtp₁) (meta-var-tp k₂ mtp₂) with conv-kind Γ k₁ k₂ ... | ff = ff ... | tt = maybe-equal? sol-eq mtp₁ mtp₂ where sol-eq : (sol₁ sol₂ : meta-var-sol type) → 𝔹 sol-eq (mk-meta-var-sol sol₁ src) (mk-meta-var-sol sol₂ src₁) = conv-type Γ sol₁ sol₂ meta-var-sort-eq? _ _ _ = ff -- TODO terms not supported -- meta-var-sol-eq? (meta-var-tm tp mtm) (meta-var-tm tp₁ mtm₁) = {!!} meta-var-equal? : ctxt → (X Y : meta-var) → 𝔹 meta-var-equal? Γ (meta-var-mk name₁ sol₁ _) (meta-var-mk name₂ sol₂ _) = name₁ =string name₂ && meta-var-sort-eq? Γ sol₁ sol₂ meta-vars-equal? : ctxt → (Xs Ys : meta-vars) → 𝔹 meta-vars-equal? Γ Xs Ys = trie-equal? (meta-var-equal? Γ) (meta-vars.varset Xs) (meta-vars.varset Ys) meta-vars-lookup : meta-vars → var → maybe meta-var meta-vars-lookup Xs x = trie-lookup (varset Xs) x meta-vars-lookup-with-kind : meta-vars → var → maybe (meta-var × kind) meta-vars-lookup-with-kind Xs x with meta-vars-lookup Xs x ... | nothing = nothing ... | (just X@(meta-var-mk-tp _ k _ _)) = just $ X , k ... | (just X) = nothing meta-var-set-src : meta-var → checking-mode → meta-var meta-var-set-src (meta-var-mk-tp name₁ k (just sol) loc₁) m = meta-var-mk-tp name₁ k (just (record sol { src = m })) loc₁ meta-var-set-src (meta-var-mk-tp name₁ k nothing loc₁) m = meta-var-mk-tp name₁ k nothing loc₁ meta-var-set-src (meta-var-mk name₁ (meta-var-tm tp (just sol)) loc₁) m = meta-var-mk name₁ (meta-var-tm tp (just (record sol { src = m }))) loc₁ meta-var-set-src (meta-var-mk name₁ (meta-var-tm tp nothing) loc₁) m = meta-var-mk name₁ (meta-var-tm tp nothing) loc₁ meta-vars-lookup-kind : meta-vars → var → maybe kind meta-vars-lookup-kind Xs x with meta-vars-lookup Xs x ... | nothing = nothing ... | (just (meta-var-mk-tp _ k _ _)) = just k ... | (just X) = nothing -- conversion to types, terms, tks -- -------------------------------------------------- meta-var-sort-to-tk : meta-var-sort → tpkd meta-var-sort-to-tk (meta-var-tp k mtp) = Tkk k meta-var-sort-to-tk (meta-var-tm tp mtm) = Tkt tp meta-var-to-type : meta-var → maybe type meta-var-to-type (meta-var-mk-tp x k (just tp) _) = just (meta-var-sol.sol tp) meta-var-to-type (meta-var-mk-tp x k nothing _) = just (TpVar x) meta-var-to-type (meta-var-mk x (meta-var-tm tp mtm) _) = nothing meta-var-to-term : meta-var → maybe term meta-var-to-term (meta-var-mk-tp x k mtp _) = nothing meta-var-to-term (meta-var-mk x (meta-var-tm tp (just tm)) _) = just (meta-var-sol.sol tm) meta-var-to-term (meta-var-mk x (meta-var-tm tp nothing) _) = just (Var x) meta-var-to-type-unsafe : meta-var → type meta-var-to-type-unsafe X with meta-var-to-type X ... | just tp = tp ... | nothing = TpVar (meta-var-name X) meta-var-to-term-unsafe : meta-var → term meta-var-to-term-unsafe X with meta-var-to-term X ... | just tm = tm ... | nothing = Var (meta-var-name X) -- if all meta-vars are solved, return their solutions as args meta-vars-to-args : meta-vars → maybe args meta-vars-to-args (meta-vars-mk or vs) = flip 𝕃maybe-map or λ x → trie-lookup vs x ≫=maybe λ where (meta-var-mk name (meta-var-tm tp tm?) loc) → tm? >>= just ∘' ArgEr ∘' meta-var-sol.sol (meta-var-mk name (meta-var-tp kd tp?) loc) → tp? >>= just ∘' ArgTp ∘' meta-var-sol.sol prototype-to-maybe : prototype → maybe type prototype-to-maybe (proto-maybe mtp) = mtp prototype-to-maybe (proto-arrow _ _) = nothing prototype-to-checking : prototype → checking-mode prototype-to-checking = maybe-to-checking ∘ prototype-to-maybe decortype-to-type : decortype → type decortype-to-type (decor-type tp) = tp decortype-to-type (decor-arrow at tp dt) = TpArrow tp at (decortype-to-type dt) decortype-to-type (decor-decor b x tk sol dt) = TpAbs b x tk (decortype-to-type dt) decortype-to-type (decor-stuck tp pt) = tp decortype-to-type (decor-error tp pt) = tp -- hnf for decortype -- -------------------------------------------------- hnf-decortype : ctxt → unfolding → decortype → (is-head : 𝔹) → decortype hnf-decortype Γ uf (decor-type tp) ish = decor-type (hnf Γ (record uf {unfold-defs = ish}) tp) hnf-decortype Γ uf (decor-arrow e? tp dt) ish = decor-arrow e? (hnf Γ (record uf {unfold-defs = ff}) tp) (hnf-decortype Γ uf dt ff) hnf-decortype Γ uf (decor-decor e? x tk sol dt) ish = decor-decor e? x tk sol (hnf-decortype Γ uf dt ff) hnf-decortype Γ uf dt@(decor-stuck _ _) ish = dt hnf-decortype Γ uf (decor-error tp pt) ish = decor-error (hnf Γ (record uf {unfold-defs = ff}) tp) pt -- substitutions -- -------------------------------------------------- substh-meta-var-sort : substh-ret-t meta-var-sort substh-meta-var-sort Γ ρ σ (meta-var-tp k mtp) = meta-var-tp (substh Γ ρ σ k) ((flip maybe-map) mtp λ sol → record sol { sol = substh Γ ρ σ (meta-var-sol.sol sol) }) substh-meta-var-sort Γ ρ σ (meta-var-tm tp mtm) = meta-var-tm (substh Γ ρ σ tp) (flip maybe-map mtm λ sol → record sol { sol = substh Γ ρ σ (meta-var-sol.sol sol) }) subst-meta-var-sort : subst-ret-t meta-var-sort subst-meta-var-sort Γ t x (meta-var-tp k mtp) = meta-var-tp (subst Γ t x k) $ (flip maybe-map) mtp λ sol → record sol { sol = subst Γ t x $ meta-var-sol.sol sol } subst-meta-var-sort Γ t x (meta-var-tm tp mtm) = meta-var-tm (subst Γ t x tp) $ (flip maybe-map) mtm λ where (mk-meta-var-sol sol src) → mk-meta-var-sol (subst Γ t x sol) src meta-vars-get-sub : meta-vars → trie (Σi exprd ⟦_⟧) meta-vars-get-sub Xs = trie-catMaybe (trie-map (maybe-map ,_ ∘ meta-var-to-type) (varset Xs)) meta-vars-subst-type' : (unfold : 𝔹) → ctxt → meta-vars → type → type meta-vars-subst-type' u Γ Xs tp = let tp' = substs Γ (meta-vars-get-sub Xs) tp in if u then hnf Γ unfold-head-elab tp' else tp' meta-vars-subst-type : ctxt → meta-vars → type → type meta-vars-subst-type = meta-vars-subst-type' tt meta-vars-subst-kind : ctxt → meta-vars → kind → kind meta-vars-subst-kind Γ Xs k = hnf Γ unfold-head-elab (substh Γ empty-renamectxt (meta-vars-get-sub Xs) k) -- string and span helpers -- -------------------------------------------------- meta-var-to-string : meta-var → strM meta-var-to-string (meta-var-mk-tp name k nothing sl) = strMetaVar name sl >>str strAdd " : " >>str to-stringe k meta-var-to-string (meta-var-mk-tp name k (just tp) sl) = strMetaVar name sl >>str strAdd " : " >>str to-stringe k >>str strAdd " = " >>str to-stringe (meta-var-sol.sol tp) -- tp meta-var-to-string (meta-var-mk name (meta-var-tm tp nothing) sl) = strMetaVar name sl >>str strAdd " : " >>str to-stringe tp meta-var-to-string (meta-var-mk name (meta-var-tm tp (just tm)) sl) = strMetaVar name sl >>str strAdd " : " >>str to-stringe tp >>str strAdd " = " >>str to-stringe (meta-var-sol.sol tm) -- tm meta-vars-to-stringe : 𝕃 meta-var → strM meta-vars-to-stringe [] = strEmpty meta-vars-to-stringe (v :: []) = meta-var-to-string v meta-vars-to-stringe (v :: vs) = meta-var-to-string v >>str strAdd ", " >>str meta-vars-to-stringe vs meta-vars-to-string : meta-vars → strM meta-vars-to-string Xs = meta-vars-to-stringe ((flip map) (order Xs) λ x → case trie-lookup (varset Xs) x of λ where nothing → meta-var-mk (x ^ "-missing!") (meta-var-tp KdStar nothing) missing-span-location (just X) → X) prototype-to-string : prototype → strM prototype-to-string (proto-maybe nothing) = strAdd "⁇" prototype-to-string (proto-maybe (just tp)) = to-stringe tp prototype-to-string (proto-arrow e? pt) = strAdd "⁇" >>str strAdd (arrowtype-to-string e?) >>str prototype-to-string pt decortype-to-string : decortype → strM decortype-to-string (decor-type tp) = strAdd "[" >>str to-stringe tp >>str strAdd "]" decortype-to-string (decor-arrow e? tp dt) = to-stringe tp >>str strAdd (arrowtype-to-string e?) >>str decortype-to-string dt decortype-to-string (decor-decor e? x tk sol dt) = strAdd (binder e? sol) >>str meta-var-to-string (meta-var-mk x sol missing-span-location) >>str strAdd "<" >>str tpkd-to-stringe tk >>str strAdd ">" >>str strAdd " . " >>str decortype-to-string dt where binder : erased? → meta-var-sort → string binder Erased sol = "∀ " binder Pi (meta-var-tm tp mtm) = "Π " -- vv clause below "shouldn't" happen binder Pi (meta-var-tp k mtp) = "∀ " decortype-to-string (decor-stuck tp pt) = strAdd "(" >>str to-stringe tp >>str strAdd " , " >>str prototype-to-string pt >>str strAdd ")" decortype-to-string (decor-error tp pt) = strAdd "([" >>str (to-stringe tp) >>str strAdd "] ‼ " >>str prototype-to-string pt >>str strAdd ")" meta-vars-data-h : ctxt → string → kind ∨ (meta-var-sol type) → tagged-val meta-vars-data-h Γ X (inj₁ k) = strRunTag "meta-vars-intro" Γ (strAdd (unqual-local X ^ " ") >>str to-stringe k) meta-vars-data-h Γ X (inj₂ sol) = strRunTag "meta-vars-sol" Γ $ strAdd (unqual-local X ^ " ") >>str strAdd (checking-to-string (meta-var-sol.src sol) ^ " ") >>str (to-stringe ∘ meta-var-sol.sol $ sol) meta-vars-data-all : ctxt → meta-vars → 𝕃 tagged-val meta-vars-data-all Γ = foldr (uncurry λ where _ (meta-var-mk X (meta-var-tp kd nothing) loc) xs → meta-vars-data-h Γ X (inj₁ kd) :: xs _ (meta-var-mk X (meta-var-tp kd (just tp)) loc) xs → meta-vars-data-h Γ X (inj₁ kd) :: meta-vars-data-h Γ X (inj₂ tp) :: xs _ _ xs → xs) [] ∘ (trie-mappings ∘ meta-vars.varset) meta-vars-intro-data : ctxt → meta-vars → 𝕃 tagged-val meta-vars-intro-data Γ = map (h ∘ snd) ∘ (trie-mappings ∘ meta-vars.varset) where h : meta-var → tagged-val h (meta-var-mk X (meta-var-tp kd mtp) loc) = meta-vars-data-h Γ X (inj₁ kd) h (meta-var-mk X (meta-var-tm tp mtm) loc) = meta-vars-data-h Γ X (inj₂ (mk-meta-var-sol (TpVar "unimplemented") untyped)) meta-vars-sol-data : ctxt → meta-vars → meta-vars → 𝕃 tagged-val meta-vars-sol-data Γ Xsₒ Xsₙ = foldr (λ X xs → maybe-else xs (_:: xs) (h (snd X))) [] (trie-mappings (meta-vars.varset Xsₙ)) where h : meta-var → maybe tagged-val h (meta-var-mk X (meta-var-tp kd (just tp)) loc) with trie-lookup (meta-vars.varset Xsₒ) X ...| just (meta-var-mk _ (meta-var-tp _ (just _)) _) = nothing ...| _ = just (meta-vars-data-h Γ X (inj₂ tp) ) h (meta-var-mk X (meta-var-tp kd nothing) loc) = nothing h (meta-var-mk X (meta-var-tm tp mtm) loc) = just (meta-vars-data-h Γ X (inj₂ (mk-meta-var-sol (TpVar "unimplemented") untyped))) meta-vars-check-type-mismatch : ctxt → string → type → meta-vars → type → 𝕃 tagged-val × err-m meta-vars-check-type-mismatch Γ s tp Xs tp' = (expected-type Γ tp :: [ type-data Γ tp'' ]) , (if conv-type Γ tp tp'' then nothing else just ("The expected type does not match the " ^ s ^ " type.")) where tp'' = meta-vars-subst-type' ff Γ Xs tp' meta-vars-check-type-mismatch-if : maybe type → ctxt → string → meta-vars → type → 𝕃 tagged-val × err-m meta-vars-check-type-mismatch-if (just tp) Γ s Xs tp' = meta-vars-check-type-mismatch Γ s tp Xs tp' meta-vars-check-type-mismatch-if nothing Γ s Xs tp' = [ type-data Γ tp″ ] , nothing where tp″ = meta-vars-subst-type' ff Γ Xs tp' decortype-data : ctxt → decortype → tagged-val decortype-data Γ dt = strRunTag "head decoration" Γ (decortype-to-string dt) prototype-data : ctxt → prototype → tagged-val prototype-data Γ pt = strRunTag "head prototype" Γ (prototype-to-string pt) -- collecting, merging, matching -- -------------------------------------------------- meta-var-fresh-t : (S : Set) → Set meta-var-fresh-t S = meta-vars → var → span-location → S → meta-var meta-var-fresh : meta-var-fresh-t meta-var-sort meta-var-fresh Xs x sl sol with fresh-h (trie-contains (varset Xs)) (meta-var-pfx-str ^ x) ... | x' = meta-var-mk x' sol sl meta-var-fresh-tp : meta-var-fresh-t (kind × maybe (meta-var-sol type)) meta-var-fresh-tp Xs x sl (k , msol) = meta-var-fresh Xs x sl (meta-var-tp k msol) meta-var-fresh-tm : meta-var-fresh-t (type × maybe (meta-var-sol term)) meta-var-fresh-tm Xs x sl (tp , mtm) = meta-var-fresh Xs x sl (meta-var-tm tp mtm) private meta-vars-set : meta-vars → meta-var → meta-vars meta-vars-set Xs X = record Xs { varset = trie-insert (varset Xs) (name X) X } -- add a meta-var meta-vars-add : meta-vars → meta-var → meta-vars meta-vars-add Xs X = record (meta-vars-set Xs X) { order = (order Xs) ++ [ name X ] } meta-vars-add* : meta-vars → 𝕃 meta-var → meta-vars meta-vars-add* Xs [] = Xs meta-vars-add* Xs (Y :: Ys) = meta-vars-add* (meta-vars-add Xs Y) Ys meta-vars-from-list : 𝕃 meta-var → meta-vars meta-vars-from-list Xs = meta-vars-add* meta-vars-empty Xs meta-vars-remove : meta-vars → meta-var → meta-vars meta-vars-remove (meta-vars-mk or vs) X = let x = meta-var-name X in meta-vars-mk (remove _=string_ x or) (trie-remove vs x) meta-vars-in-type : meta-vars → type → meta-vars meta-vars-in-type Xs tp = let xs = free-vars tp in meta-vars-filter (stringset-contains xs ∘ name) Xs meta-vars-unsolved : meta-vars → meta-vars meta-vars-unsolved = meta-vars-filter λ where (meta-var-mk x (meta-var-tp k mtp) _) → ~ isJust mtp (meta-var-mk x (meta-var-tm tp mtm) _) → ~ isJust mtm meta-vars-are-free-in-type : meta-vars → type → 𝔹 meta-vars-are-free-in-type Xs tp = let xs = free-vars tp in list-any (stringset-contains xs) (order Xs) -- Unfolding a type with meta-vars -- ================================================== -- ... in order to reveal a term or type application -- "View" data structures -- -------------------------------------------------- -- The decorated type is really an arrow record is-tmabsd : Set where constructor mk-tmabsd field is-tmabsd-dt : decortype is-tmabsd-e? : erased? is-tmabsd-var : var is-tmabsd-dom : type is-tmabsd-var-in-body : 𝔹 is-tmabsd-cod : decortype open is-tmabsd public is-tmabsd? = decortype ∨ is-tmabsd pattern yes-tmabsd dt e? x dom occ cod = inj₂ (mk-tmabsd dt e? x dom occ cod) pattern not-tmabsd tp = inj₁ tp record is-tpabsd : Set where constructor mk-tpabsd field is-tpabsd-dt : decortype is-tpabsd-e? : erased? is-tpabsd-var : var is-tpabsd-kind : kind is-tpabsd-sol : maybe type is-tpabsd-body : decortype open is-tpabsd public is-tpabsd? = decortype ∨ is-tpabsd pattern yes-tpabsd dt e? x k mtp dt' = inj₂ (mk-tpabsd dt e? x k mtp dt') pattern not-tpabsd dt = inj₁ dt {-# TERMINATING #-} num-arrows-in-type : ctxt → type → ℕ num-arrows-in-type Γ tp = nait Γ (hnf' Γ tp) 0 tt where hnf' : ctxt → type → type hnf' Γ tp = hnf Γ unfold-head-elab tp nait : ctxt → type → (acc : ℕ) → 𝔹 → ℕ -- definitely another arrow nait Γ (TpAbs _ _ (Tkk _) tp) acc uf = nait Γ tp acc ff nait Γ (TpAbs _ _ (Tkt _) tp) acc uf = nait Γ tp (1 + acc) ff -- definitely not another arrow nait Γ (TpIota _ _ _) acc uf = acc nait Γ (TpEq _ _) acc uf = acc nait Γ (TpHole _) acc uf = acc nait Γ (TpLam _ _ _) acc uf = acc nait Γ (TpVar x) acc tt = acc nait Γ (TpApp tp₁ tp₂) acc tt = acc nait Γ tp acc ff = nait Γ (hnf' Γ tp) acc tt -- Utilities for match-types in classify.agda -- ================================================== -- -- Match a type with meta-variables in it to one without -- errors -- -------------------------------------------------- match-error-data = string × 𝕃 tagged-val match-error-t : ∀ {a} → Set a → Set a match-error-t A = match-error-data ∨ A pattern match-error e = inj₁ e pattern match-ok a = inj₂ a module meta-vars-match-errors where -- boilerplate match-error-msg = "Matching failed" -- tagged values for error messages match-lhs : {ed : exprd} → ctxt → ⟦ ed ⟧ → tagged-val match-lhs = to-string-tag "expected lhs" match-rhs : {ed : exprd} → ctxt → ⟦ ed ⟧ → tagged-val match-rhs = to-string-tag "computed rhs" the-meta-var : var → tagged-val the-meta-var = strRunTag "the meta-var" empty-ctxt ∘ strAdd the-solution : ctxt → type → tagged-val the-solution = to-string-tag "the solution" fst-snd-sol : {ed : exprd} → ctxt → (t₁ t₂ : ⟦ ed ⟧) → 𝕃 tagged-val fst-snd-sol Γ t₁ t₂ = to-string-tag "first solution" Γ t₁ :: [ to-string-tag "second solution" Γ t₂ ] lhs-rhs : {ed : exprd} → ctxt → (t₁ t₂ : ⟦ ed ⟧) → 𝕃 tagged-val lhs-rhs Γ t₁ t₂ = match-lhs Γ t₁ :: [ match-rhs Γ t₂ ] -- error-data e-solution-ineq : ctxt → (tp₁ tp₂ : type) → var → match-error-data e-solution-ineq Γ tp₁ tp₂ X = match-error-msg ^ " because it produced two incovertible solutions for a meta-variable" , the-meta-var X :: fst-snd-sol Γ tp₁ tp₂ e-match-failure : match-error-data e-match-failure = "The expected argument type is not a (first-order) match of the computed type" , [] e-matchk-failure : match-error-data e-matchk-failure = "The expected argument kind is not a (first-order) match of the computed kind" , [] e-meta-scope : ctxt → (X tp : type) → match-error-data -- e-meta-scope : ctxt → (x : var) → (tp₁ tp₂ : type) → match-error-data e-meta-scope Γ X tp = match-error-msg ^ " because the solution contains a bound variable of the computed argument type" , to-string-tag "the meta var" Γ X :: [ to-string-tag "the solution" Γ tp ] e-bad-sol-kind : ctxt → (X : var) → (sol : type) → match-error-data e-bad-sol-kind Γ X sol = "The meta-variable was matched to a type whose kind does not match its own" , the-meta-var X :: [ the-solution Γ sol ] open meta-vars-match-errors -- meta-vars-match auxiliaries -- -------------------------------------------------- local-vars = stringset meta-vars-solve-tp : ctxt → meta-vars → var → type → checking-mode → match-error-t meta-vars meta-vars-solve-tp Γ Xs x tp m with trie-lookup (varset Xs) x ... | nothing = match-error $ x ^ " is not a meta-var!" , [] ... | just (meta-var-mk _ (meta-var-tm tp' mtm) _) = match-error $ x ^ " is a term meta-var!" , [] ... | just (meta-var-mk-tp _ k nothing sl) = match-ok (meta-vars-set Xs (meta-var-mk-tp x k (just (mk-meta-var-sol tp m)) sl)) ... | just (meta-var-mk-tp _ k (just sol) _) = let mk-meta-var-sol tp' src = sol in err⊎-guard (~ conv-type Γ tp tp') (e-solution-ineq Γ tp tp x) >> match-ok Xs -- update the kinds of HO meta-vars with -- solutions meta-vars-update-kinds : ctxt → (Xs Xsₖ : meta-vars) → meta-vars meta-vars-update-kinds Γ Xs Xsₖ = record Xs { varset = (flip trie-map) (varset Xs) λ where (meta-var-mk-tp x k mtp sl) → meta-var-mk-tp x (meta-vars-subst-kind Γ Xsₖ k) mtp sl sol → sol } hnf-elab-if : {ed : exprd} → 𝔹 → ctxt → ⟦ ed ⟧ → 𝔹 → ⟦ ed ⟧ hnf-elab-if b Γ t b' = if b then hnf Γ (record unfold-head-elab {unfold-defs = b'}) t else t meta-vars-add-from-tpabs : ctxt → span-location → meta-vars → erased? → var → kind → type → meta-var × meta-vars meta-vars-add-from-tpabs Γ sl Xs e? x k tp = let Y = meta-var-fresh-tp Xs x sl (k , nothing) Xs' = meta-vars-add Xs Y -- tp' = subst Γ (meta-var-to-type-unsafe Y) x tp in Y , Xs' {- -- Legacy for elaboration.agda -- ================================================== -- TODO: remove dependency and delete code {-# TERMINATING #-} -- subst of a meta-var does not increase distance to arrow meta-vars-peel : ctxt → span-location → meta-vars → type → (𝕃 meta-var) × type meta-vars-peel Γ sl Xs (Abs pi e? pi' x tk@(Tkk k) tp) with meta-vars-add-from-tpabs Γ sl Xs (mk-tpabs e? x k tp) ... | (Y , Xs') with subst Γ (meta-var-to-type-unsafe Y) x tp ... | tp' = let ret = meta-vars-peel Γ sl Xs' tp' ; Ys = fst ret ; rtp = snd ret in (Y :: Ys , rtp) meta-vars-peel Γ sl Xs (NoSpans tp _) = meta-vars-peel Γ sl Xs tp meta-vars-peel Γ sl Xs (TpParens _ tp _) = meta-vars-peel Γ sl Xs tp meta-vars-peel Γ sl Xs tp = [] , tp meta-vars-unfold-tpapp : ctxt → meta-vars → type → is-tpabs? meta-vars-unfold-tpapp Γ Xs tp with meta-vars-subst-type Γ Xs tp ... | Abs _ b _ x (Tkk k) tp' = yes-tpabs b x k tp' ... | tp' = not-tpabs tp' meta-vars-unfold-tmapp : ctxt → span-location → meta-vars → type → 𝕃 meta-var × is-tmabs? meta-vars-unfold-tmapp Γ sl Xs tp with meta-vars-peel Γ sl Xs (meta-vars-subst-type Γ Xs tp) ... | Ys , Abs _ b _ x (Tkt dom) cod = Ys , yes-tmabs b x dom (is-free-in check-erased x cod) cod ... | Ys , TpArrow dom e? cod = Ys , yes-tmabs e? "_" dom ff cod ... | Ys , tp' = Ys , not-tmabs tp' -}
{ "alphanum_fraction": 0.6287075124, "avg_line_length": 35.8618012422, "ext": "agda", "hexsha": "e5cacb49ad597f785bc1d707ed5715b2bfdfa80c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ice1k/cedille", "max_forks_repo_path": "src/meta-vars.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ice1k/cedille", "max_issues_repo_path": "src/meta-vars.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ice1k/cedille", "max_stars_repo_path": "src/meta-vars.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7505, "size": 23095 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Types.EpochState as EpochState import LibraBFT.Impl.Types.Waypoint as Waypoint open import LibraBFT.ImplShared.Consensus.Types open import Util.Encode open import Util.PKCS hiding (verify) open import Util.Prelude module LibraBFT.Impl.Types.Verifier where record Verifier (A : Set) : Set where field verify : A → LedgerInfoWithSignatures → Either ErrLog Unit epochChangeVerificationRequired : A → Epoch → Bool isLedgerInfoStale : A → LedgerInfo → Bool ⦃ encodeA ⦄ : Encoder A open Verifier ⦃ ... ⦄ public instance VerifierEpochState : Verifier EpochState VerifierEpochState = record { verify = EpochState.verify ; epochChangeVerificationRequired = EpochState.epochChangeVerificationRequired ; isLedgerInfoStale = EpochState.isLedgerInfoStale } instance VerifierWaypoint : Verifier Waypoint VerifierWaypoint = record { verify = Waypoint.verifierVerify ; epochChangeVerificationRequired = Waypoint.epochChangeVerificationRequired ; isLedgerInfoStale = Waypoint.isLedgerInfoStale }
{ "alphanum_fraction": 0.665598975, "avg_line_length": 37.1666666667, "ext": "agda", "hexsha": "65814c394a4441fe588057bf35be38d1fc94775e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Types/Verifier.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Types/Verifier.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Types/Verifier.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 375, "size": 1561 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Foundations.HLevels module Cubical.Algebra.Magma.Construct.Left {ℓ} (Aˢ : hSet ℓ) where open import Cubical.Foundations.Prelude open import Cubical.Algebra.Magma private A = ⟨ Aˢ ⟩ isSetA = Aˢ .snd _◂_ : Op₂ A x ◂ y = x ------------------------------------------------------------------------ -- Properties ◂-zeroˡ : ∀ x → LeftZero x _◂_ ◂-zeroˡ _ _ = refl ◂-identityʳ : ∀ x → RightIdentity x _◂_ ◂-identityʳ _ _ = refl ------------------------------------------------------------------------ -- Magma definition Left-isMagma : IsMagma A _◂_ Left-isMagma = record { is-set = isSetA } LeftMagma : Magma ℓ LeftMagma = record { isMagma = Left-isMagma }
{ "alphanum_fraction": 0.5594315245, "avg_line_length": 20.9189189189, "ext": "agda", "hexsha": "4e28b21b72e36df0ae05505361a6a2c20920b1d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Magma/Construct/Left.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Magma/Construct/Left.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Magma/Construct/Left.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 236, "size": 774 }
------------------------------------------------------------------------ -- A type soundness result ------------------------------------------------------------------------ {-# OPTIONS --cubical --sized-types #-} module Lambda.Partiality-monad.Inductive.Type-soundness where open import Equality.Propositional.Cubical open import Prelude hiding (⊥) open import Prelude.Size open import Bijection equality-with-J using (_↔_) open import Equality.Decision-procedures equality-with-J open import Equivalence equality-with-J using (_≃_) open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional equality-with-paths as Trunc open import Maybe equality-with-J open import Monad equality-with-J open import Univalence-axiom equality-with-J open import Vec.Function equality-with-J open import Partiality-monad.Inductive open import Partiality-monad.Inductive.Alternative-order open import Partiality-monad.Inductive.Monad open import Lambda.Partiality-monad.Inductive.Interpreter open import Lambda.Syntax open Closure Tm -- A propositionally truncated variant of WF-MV. ∥WF-MV∥ : Ty ∞ → Maybe Value → Type ∥WF-MV∥ σ x = ∥ WF-MV σ x ∥ -- If we can prove □ (∥WF-MV∥ σ) (run x), then x does not "go wrong". does-not-go-wrong : ∀ {σ} {x : M Value} → □ (∥WF-MV∥ σ) (run x) → ¬ x ≡ fail does-not-go-wrong {σ} {x} always = x ≡ fail ↝⟨ cong MaybeT.run ⟩ run x ≡ now nothing ↝⟨ always _ ⟩ ∥WF-MV∥ σ nothing ↝⟨ id ⟩ ∥ ⊥₀ ∥ ↝⟨ _↔_.to (not-inhabited⇒∥∥↔⊥ id) ⟩□ ⊥₀ □ -- Some "constructors" for □ ∘ ∥WF-MV∥. return-wf : ∀ {σ v} → WF-Value σ v → □ (∥WF-MV∥ σ) (MaybeT.run (return v)) return-wf v-wf = □-now truncation-is-proposition ∣ v-wf ∣ _>>=-wf_ : ∀ {σ τ} {x : M Value} {f : Value → M Value} → □ (∥WF-MV∥ σ) (run x) → (∀ {v} → WF-Value σ v → □ (∥WF-MV∥ τ) (run (f v))) → □ (∥WF-MV∥ τ) (MaybeT.run (x >>= f)) _>>=-wf_ {σ} {τ} {f = f} x-wf f-wf = □->>= (λ _ → truncation-is-proposition) x-wf λ { {nothing} → Trunc.rec prop ⊥-elim ; {just v} → Trunc.rec prop f-wf } where prop : ∀ {x} → Is-proposition (□ (∥WF-MV∥ τ) x) prop = □-closure 1 (λ _ → truncation-is-proposition) -- Type soundness. mutual ⟦⟧′-wf : ∀ {n Γ} (t : Tm n) {σ} → Γ ⊢ t ∈ σ → ∀ {ρ} → WF-Env Γ ρ → ∀ n → □ (∥WF-MV∥ σ) (run (⟦ t ⟧′ ρ n)) ⟦⟧′-wf (con i) con ρ-wf n = return-wf con ⟦⟧′-wf (var x) var ρ-wf n = return-wf (ρ-wf x) ⟦⟧′-wf (ƛ t) (ƛ t∈) ρ-wf n = return-wf (ƛ t∈ ρ-wf) ⟦⟧′-wf (t₁ · t₂) (t₁∈ · t₂∈) {ρ} ρ-wf n = ⟦⟧′-wf t₁ t₁∈ ρ-wf n >>=-wf λ f-wf → ⟦⟧′-wf t₂ t₂∈ ρ-wf n >>=-wf λ v-wf → ∙-wf f-wf v-wf n ∙-wf : ∀ {σ τ f v} → WF-Value (σ ⇾ τ) f → WF-Value (force σ) v → ∀ n → □ (∥WF-MV∥ (force τ)) (run ((f ∙ v) n)) ∙-wf (ƛ t₁∈ ρ₁-wf) v₂-wf (suc n) = ⟦⟧′-wf _ t₁∈ (cons-wf v₂-wf ρ₁-wf) n ∙-wf (ƛ t₁∈ ρ₁-wf) v₂-wf zero = $⟨ □-never ⟩ □ (∥WF-MV∥ _) never ↝⟨ ≡⇒↝ bijection $ cong (□ (∥WF-MV∥ _)) (sym never->>=) ⟩□ □ (∥WF-MV∥ _) (never >>= return ∘ just) □ type-soundness : ∀ {t : Tm 0} {σ} → nil ⊢ t ∈ σ → ¬ ⟦ t ⟧ nil ≡ fail type-soundness {t} {σ} = nil ⊢ t ∈ σ ↝⟨ (λ t∈ → ⟦⟧′-wf _ t∈ nil-wf) ⟩ (∀ n → □ (∥WF-MV∥ σ) (run (⟦ t ⟧′ nil n))) ↝⟨ □-⨆ (λ _ → truncation-is-proposition) ⟩ □ (∥WF-MV∥ σ) (run (⟦ t ⟧ nil)) ↝⟨ does-not-go-wrong ⟩□ ¬ ⟦ t ⟧ nil ≡ fail □
{ "alphanum_fraction": 0.5141990626, "avg_line_length": 35.213592233, "ext": "agda", "hexsha": "68d7a0d72d63f8794f82affba02c4c93662d6660", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Lambda/Partiality-monad/Inductive/Type-soundness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Lambda/Partiality-monad/Inductive/Type-soundness.agda", "max_line_length": 103, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Lambda/Partiality-monad/Inductive/Type-soundness.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 1491, "size": 3627 }
module Issue1760a where -- Skipping a single record definition. {-# NO_POSITIVITY_CHECK #-} record U : Set where field ap : U → U
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 19, "ext": "agda", "hexsha": "f91f4a5946d4ce5e2abfa45eb4872543c834f861", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1760a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1760a.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1760a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 35, "size": 133 }
module StrongRMonads where open import Library open import Categories open import Functors open import MonoidalCat open import RMonads record SRMonad {a b c d}{M : Monoidal {a}{b}}{M' : Monoidal {c}{d}} (J : MonoidalFun M M') : Set (a ⊔ b ⊔ c ⊔ d) where constructor srmonad open MonoidalFun J field RM : RMonad F open RMonad RM open Cat open Monoidal open Fun field st : ∀{X Y} -> Hom (C M') (OMap (⊗ M') (T X , OMap F Y)) (T (OMap (⊗ M) (X , Y))) -- laws later
{ "alphanum_fraction": 0.5931558935, "avg_line_length": 23.9090909091, "ext": "agda", "hexsha": "fe1abb8c226254b90b0790bb6eca85c05205f7c1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "StrongRMonads.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "StrongRMonads.agda", "max_line_length": 67, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "StrongRMonads.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 182, "size": 526 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Sum.Relation.Binary.LeftOrder directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Sum.Relation.LeftOrder where open import Data.Sum.Relation.Binary.LeftOrder public
{ "alphanum_fraction": 0.4775, "avg_line_length": 30.7692307692, "ext": "agda", "hexsha": "ff276ea9107cb6ef3f6ab0388ad11439e9442945", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Relation/LeftOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Relation/LeftOrder.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Relation/LeftOrder.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 60, "size": 400 }
-- Andreas, 2017-02-27, issue #2477 {-# OPTIONS --show-irrelevant #-} open import Agda.Builtin.Size open import Agda.Builtin.Nat using (suc) renaming (Nat to ℕ) _+_ : Size → ℕ → Size s + 0 = s s + suc n = ↑ (s + n) data Nat : Size → Set where zero : ∀ i → Nat (i + 1) suc : ∀ i → Nat i → Nat (i + 1) -- i + 1 should be reduced to ↑ i -- to make Nat monotone in its size argument pred : ∀ i → Nat i → Nat i pred .(i + 1) (zero i) = zero i pred .(i + 1) (suc i x) = x -- Should succeed
{ "alphanum_fraction": 0.5649606299, "avg_line_length": 22.0869565217, "ext": "agda", "hexsha": "9c81b8b136702fb35befcb2950931214c66a768c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2477.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2477.agda", "max_line_length": 60, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2477.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 196, "size": 508 }
module RMonads.SpecialCase where open import Categories open import Functors open import Naturals hiding (Iso) open import Monads open import RMonads leftM : ∀{a}{b}{C : Cat {a}{b}} → Monad C → RMonad (IdF C) leftM M = record { T = T; η = η; bind = bind; law1 = law1; law2 = law2; law3 = law3} where open Monad M rightM : ∀{a b}{C : Cat {a}{b}} → RMonad (IdF C) → Monad C rightM {C = C} M = record { T = T; η = η; bind = bind; law1 = law1; law2 = law2; law3 = law3} where open RMonad M open import Relation.Binary.HeterogeneousEquality open import Isomorphism isoM : ∀{a b}{C : Cat {a}{b}} → Iso (RMonad (IdF C)) (Monad C) isoM = record {fun = rightM; inv = leftM; law1 = λ {(monad _ _ _ _ _ _) → refl}; law2 = λ {(rmonad _ _ _ _ _ _) → refl}} open import Monads.MonadMorphs open import RMonads.RMonadMorphs leftMM : ∀{a b}{C : Cat {a}{b}}{M M' : Monad C} → MonadMorph M M' → RMonadMorph (leftM M) (leftM M') leftMM MM = record { morph = morph; lawη = lawη; lawbind = lawbind} where open MonadMorph MM rightMM : ∀{a b}{C : Cat {a}{b}}{M M' : RMonad (IdF C)} → RMonadMorph M M' → MonadMorph (rightM M) (rightM M') rightMM MM = record { morph = morph; lawη = lawη; lawbind = lawbind} where open RMonadMorph MM isoMM : ∀{a b}{C : Cat {a}{b}}{M M' : Monad C} → Iso (RMonadMorph (leftM M) (leftM M')) (MonadMorph M M') isoMM {M = monad _ _ _ _ _ _}{M' = monad _ _ _ _ _ _} = record { fun = rightMM; inv = leftMM; law1 = λ {(monadmorph _ _ _) → refl}; law2 = λ {(rmonadmorph _ _ _) → refl}} open import Adjunctions open import RAdjunctions leftA : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} → Adj C D → RAdj (IdF C) D leftA {C}{D} A = record{ L = L; R = R; left = left; right = right; lawa = lawa; lawb = lawb; natleft = natleft; natright = natright} where open Adj A rightA : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} → RAdj (IdF C) D → Adj C D rightA {C = C}{D = D} A = record{ L = L; R = R; left = left; right = right; lawa = lawa; lawb = lawb; natleft = natleft; natright = natright} where open RAdj A isoA : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} → Iso (RAdj (IdF C) D) (Adj C D) isoA = record { fun = rightA; inv = leftA; law1 = λ {(adjunction _ _ _ _ _ _ _ _) → refl}; law2 = λ {(radjunction _ _ _ _ _ _ _ _) → refl}}
{ "alphanum_fraction": 0.5603413247, "avg_line_length": 26.1808510638, "ext": "agda", "hexsha": "e7e277499917ee6cc635f955b88cb57694c5325f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RMonads/SpecialCase.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RMonads/SpecialCase.agda", "max_line_length": 120, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RMonads/SpecialCase.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 964, "size": 2461 }
------------------------------------------------------------------------ -- Compiler correctness ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --sized-types #-} module Lambda.Delay-monad.Compiler-correctness where import Equality.Propositional as E open import Prelude open import Prelude.Size open import Maybe E.equality-with-J hiding (_>>=′_) open import Monad E.equality-with-J open import Vec.Function E.equality-with-J open import Delay-monad.Bisimilarity open import Delay-monad.Monad open import Lambda.Compiler open import Lambda.Delay-monad.Interpreter open import Lambda.Delay-monad.Virtual-machine open import Lambda.Syntax hiding ([_]) open import Lambda.Virtual-machine private module C = Closure Code module T = Closure Tm -- Bind preserves strong bisimilarity. infixl 5 _>>=-congM_ _>>=-congM_ : ∀ {i ℓ} {A B : Type ℓ} {x y : M ∞ A} {f g : A → M ∞ B} → [ i ] run x ∼ run y → (∀ z → [ i ] run (f z) ∼ run (g z)) → [ i ] run (x >>= f) ∼ run (y >>= g) p >>=-congM q = p >>=-cong [ (λ _ → run fail ∎) , q ] -- Bind is associative. associativityM : ∀ {ℓ} {A B C : Type ℓ} (x : M ∞ A) (f : A → M ∞ B) (g : B → M ∞ C) → run (x >>= (λ x → f x >>= g)) ∼ run (x >>= f >>= g) associativityM x f g = run (x >>= λ x → f x >>= g) ∼⟨⟩ run x >>=′ maybe (λ x → run (f x >>= g)) (return nothing) ∼⟨ (run x ∎) >>=-cong [ (λ _ → run fail ∎) , (λ x → run (f x >>= g) ∎) ] ⟩ run x >>=′ (λ x → maybe (MaybeT.run ∘ f) (return nothing) x >>=′ maybe (MaybeT.run ∘ g) (return nothing)) ∼⟨ associativity′ (run x) _ _ ⟩ run x >>=′ maybe (MaybeT.run ∘ f) (return nothing) >>=′ maybe (MaybeT.run ∘ g) (return nothing) ∼⟨⟩ run (x >>= f >>= g) ∎ -- Compiler correctness. mutual ⟦⟧-correct : ∀ {i n} t {ρ : T.Env n} {c s} {k : T.Value → M ∞ C.Value} → (∀ v → [ i ] run (exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩) ≈ run (k v)) → [ i ] run (exec ⟨ comp t c , s , comp-env ρ ⟩) ≈ run (⟦ t ⟧ ρ >>= k) ⟦⟧-correct (con i) {ρ} {c} {s} {k} hyp = run (exec ⟨ con i ∷ c , s , comp-env ρ ⟩) ≳⟨⟩ run (exec ⟨ c , val (comp-val (T.con i)) ∷ s , comp-env ρ ⟩) ≈⟨ hyp (T.con i) ⟩∼ run (k (T.con i)) ∼⟨⟩ run (⟦ con i ⟧ ρ >>= k) ∎ ⟦⟧-correct (var x) {ρ} {c} {s} {k} hyp = run (exec ⟨ var x ∷ c , s , comp-env ρ ⟩) ≳⟨⟩ run (exec ⟨ c , val (comp-val (ρ x)) ∷ s , comp-env ρ ⟩) ≈⟨ hyp (ρ x) ⟩∼ run (k (ρ x)) ∼⟨⟩ run (⟦ var x ⟧ ρ >>= k) ∎ ⟦⟧-correct (ƛ t) {ρ} {c} {s} {k} hyp = run (exec ⟨ clo (comp t (ret ∷ [])) ∷ c , s , comp-env ρ ⟩) ≳⟨⟩ run (exec ⟨ c , val (comp-val (T.ƛ t ρ)) ∷ s , comp-env ρ ⟩) ≈⟨ hyp (T.ƛ t ρ) ⟩∼ run (k (T.ƛ t ρ)) ∼⟨⟩ run (⟦ ƛ t ⟧ ρ >>= k) ∎ ⟦⟧-correct (t₁ · t₂) {ρ} {c} {s} {k} hyp = run (exec ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩) ≈⟨ (⟦⟧-correct t₁ λ v₁ → ⟦⟧-correct t₂ λ v₂ → ∙-correct v₁ v₂ hyp) ⟩∼ run (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ∼⟨ (run (⟦ t₁ ⟧ ρ) ∎) >>=-congM (λ _ → associativityM (⟦ t₂ ⟧ ρ) _ _) ⟩ run (⟦ t₁ ⟧ ρ >>= λ v₁ → (⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂) >>= k) ∼⟨ associativityM (⟦ t₁ ⟧ ρ) _ _ ⟩ run (⟦ t₁ · t₂ ⟧ ρ >>= k) ∎ ∙-correct : ∀ {i n} v₁ v₂ {ρ : T.Env n} {c s} {k : T.Value → M ∞ C.Value} → (∀ v → [ i ] run (exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩) ≈ run (k v)) → [ i ] run (exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , comp-env ρ ⟩) ≈ run (v₁ ∙ v₂ >>= k) ∙-correct (T.con i) v₂ {ρ} {c} {s} {k} hyp = run (exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (C.con i) ∷ s , comp-env ρ ⟩) ∼⟨⟩ run fail ∼⟨⟩ run (T.con i ∙ v₂ >>= k) ∎ ∙-correct (T.ƛ t₁ ρ₁) v₂ {ρ} {c} {s} {k} hyp = run (exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (T.ƛ t₁ ρ₁)) ∷ s , comp-env ρ ⟩) ≈⟨ later (λ { .force → run (exec ⟨ comp t₁ (ret ∷ []) , ret c (comp-env ρ) ∷ s , cons (comp-val v₂) (comp-env ρ₁) ⟩) ≡⟨ E.cong (λ ρ′ → run (exec ⟨ comp t₁ (ret ∷ []) , ret c (comp-env ρ) ∷ s , ρ′ ⟩)) (E.sym comp-cons) ⟩ run (exec ⟨ comp t₁ (ret ∷ []) , ret c (comp-env ρ) ∷ s , comp-env (cons v₂ ρ₁) ⟩) ≈⟨ ⟦⟧-correct t₁ (λ v → run (exec ⟨ ret ∷ [] , val (comp-val v) ∷ ret c (comp-env ρ) ∷ s , comp-env (cons v₂ ρ₁) ⟩) ≳⟨⟩ run (exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩) ≈⟨ hyp v ⟩∎ run (k v) ∎) ⟩∼ run (⟦ t₁ ⟧ (cons v₂ ρ₁) >>= k) ∎ }) ⟩∎ run (T.ƛ t₁ ρ₁ ∙ v₂ >>= k) ∎ -- Note that the equality that is used here is syntactic. correct : ∀ t → exec ⟨ comp t [] , [] , nil ⟩ ≈M ⟦ t ⟧ nil >>= λ v → return (comp-val v) correct t = run (exec ⟨ comp t [] , [] , nil ⟩) ≡⟨ E.cong (λ ρ → run (exec ⟨ comp t [] , [] , ρ ⟩)) $ E.sym comp-nil ⟩ run (exec ⟨ comp t [] , [] , comp-env nil ⟩) ≈⟨ ⟦⟧-correct t (λ v → return (just (comp-val v)) ∎) ⟩ run (⟦ t ⟧ nil >>= λ v → return (comp-val v)) ∎
{ "alphanum_fraction": 0.3644162033, "avg_line_length": 40.6129032258, "ext": "agda", "hexsha": "2c4ef6523addfa70a15f83da309f307080174818", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Lambda/Delay-monad/Compiler-correctness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Lambda/Delay-monad/Compiler-correctness.agda", "max_line_length": 142, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Lambda/Delay-monad/Compiler-correctness.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 2218, "size": 6295 }
{-# OPTIONS --without-K #-} open import HoTT -- Associativity of the join (work in progress) module experimental.JoinAssoc2 where import experimental.JoinAssoc as Assoc module Assoc2 {i j k} (A : Type i) (B : Type j) (C : Type k) where open Assoc A B C {- Here are the steps, without the junk around: apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c)) 1 (From.glue-β) apd (λ x → ap to (from-glue (a , x))) (glue (b , c)) 2 (unfuse) ap↓ (λ x → ap to {x = from-left a} {y = from-right x}) (apd (λ x → from-glue (a , x)) (glue (b , c))) 3 (FromGlue.glue-β) ap↓ (λ x → ap to {x = from-left a} {y = from-right x}) (apd (λ x → glue (x , c)) (glue (a , b))) 4 (fuse) apd (λ x → ap to (glue (x , c))) (glue (a , b)) 5 (To.glue-β) apd (λ x → to-glue (x , c)) (glue (a , b)) 6 (ToGlue.glue-β) apd (λ x → glue (a , x)) (glue (b , c)) -} to-from-glue-glue' : (a : A) (b : B) (c : C) → (↯ to-from-glue-left' a b) == (↯ to-from-glue-right' a c) [ (λ x → ap to (ap from (glue (a , x))) ∙' to-from-right x == glue (a , x)) ↓ glue (b , c) ] to-from-glue-glue' a b c = ↓-=-in (!( apd (λ x → ap to (ap from (glue (a , x))) ∙' to-from-right x) (glue (b , c)) ▹ (↯ to-from-glue-right' a c) =⟨ apd∙' (λ x → ap to (ap from (glue (a , x)))) to-from-right (glue (b , c)) |in-ctx (λ u → u ▹ (↯ to-from-glue-right' a c)) ⟩ ((apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c))) ∙'2ᵈ (apd to-from-right (glue (b , c)))) ▹ (↯ to-from-glue-right' a c) =⟨ ToFromRight.glue-β (b , c) |in-ctx (λ u → ((apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c))) ∙'2ᵈ u) ▹ (↯ to-from-glue-right' a c)) ⟩ ((apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c))) ∙'2ᵈ (to-from-right-glue (b , c))) ▹ (↯ to-from-glue-right' a c) =⟨ ▹-∙'2ᵈ (apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c))) (to-from-right-glue (b , c)) (↯ to-from-glue-right' a c) idp ⟩ (apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c)) ▹ (↯ to-from-glue-right' a c)) ∙'2ᵈ (to-from-right-glue (b , c) ▹ idp) =⟨ (▹idp (to-from-right-glue (b , c))) |in-ctx (λ u → (apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c)) ▹ (↯ to-from-glue-right' a c)) ∙'2ᵈ u) ⟩ (apd (λ x → ap to (ap from (glue (a , x)))) (glue (b , c)) ▹ (↯ to-from-glue-right' a c)) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ apd=-red (λ x → ap (ap to) (From.glue-β (a , x))) (glue (b , c)) (1! (to-from-glue-right' a c)) |in-ctx (λ u → u ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ {- 1 -} ((↯ 1# (to-from-glue-left' a b)) ◃ (apd (λ x → ap to (from-glue (a , x))) (glue (b , c)) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ apd-∘' (ap to) (λ x → from-glue (a , x)) (glue (b , c)) |in-ctx (λ u → ((↯ 1# (to-from-glue-left' a b)) ◃ (u ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ {- 2 -} ((↯ 1# (to-from-glue-left' a b)) ◃ (ap↓ (ap to) (apd (λ x → from-glue (a , x)) (glue (b , c))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ FromGlue.glue-β a (b , c) |in-ctx (λ u → ((↯ 1# (to-from-glue-left' a b)) ◃ (ap↓ (ap to) u ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ {- 3 -} ((↯ 1# (to-from-glue-left' a b)) ◃ (ap↓ (ap to) (from-glue-glue a (b , c)) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ idp ⟩ ((↯ 1# (to-from-glue-left' a b)) ◃ (ap↓ (ap to) (↓-swap! left from-right _ idp (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c)))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ Ap↓-swap!.β to left from-right _ idp (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) |in-ctx (λ u → ((↯ 1# (to-from-glue-left' a b)) ◃ (u ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ ((↯ 1# (to-from-glue-left' a b)) ◃ (((ap (λ u → u) (∘-ap to left (glue (a , b)))) ◃ ↓-swap! (to ∘ left) (to ∘ from-right) _ idp (ap↓ (ap to) (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ ap-idf (∘-ap to left (glue (a , b))) |in-ctx (λ v → ((↯ 1# (to-from-glue-left' a b)) ◃ ((v ◃ ↓-swap! (to ∘ left) (to ∘ from-right) _ idp (ap↓ (ap to) (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ ((↯ 1# (to-from-glue-left' a b)) ◃ (((∘-ap to left (glue (a , b))) ◃ ↓-swap! (to ∘ left) (to ∘ from-right) _ idp (ap↓ (ap to) (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ {!!} ⟩ ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp (ap↓ (ap to) (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ ap↓-▹! (ap to) (apd (λ x → glue (x , c)) (glue (a , b))) (FromRight.glue-β (b , c)) |in-ctx (λ v → ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp (v ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp ((ap↓ (ap to) (apd (λ x → glue (x , c)) (glue (a , b))) ▹! ap (ap to) (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ ∘'-apd (ap to) (λ x → glue (x , c)) (glue (a , b)) |in-ctx (λ v → ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp ((v ▹! ap (ap to) (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c))) ⟩ {- 4 -} ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp ((apd (λ x → ap to (glue (x , c))) (glue (a , b)) ▹! ap (ap to) (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) =⟨ {!!} ⟩ {- 5 -} -- ((↯ 2# (to-from-glue-left' a b)) ◃ ((↓-swap! to-left (to ∘ from-right) _ idp ((apd (λ x → to-glue (x , c)) (glue (a , b)) ▹! ap (ap to) (FromRight.glue-β (b , c))) ▹ (ap (λ u → u) (∘-ap to from-right (glue (b , c)))))) -- ▹ (↯ 1! (to-from-glue-right' a c)))) ∙'2ᵈ (to-from-right-glue (b , c)) -- =⟨ {!!} ⟩ -- {- 5 -} -- (↯ 2# (to-from-glue-left' a b)) ◃ (↓-swap! to-left right _ idp (To.glue-β (left a , c) !◃ (apd (λ x → ap to (glue (x , c))) (glue (a , b)) ▹ To.glue-β (right b , c)))) -- =⟨ {!!} ⟩ (↯ 2# (to-from-glue-left' a b)) ◃ (↓-swap! to-left right _ idp (apd (λ x → to-glue (x , c)) (glue (a , b)))) =⟨ ToGlue.glue-β c (a , b) |in-ctx (λ v → (↯ 2# (to-from-glue-left' a b)) ◃ (↓-swap! to-left right _ idp v)) ⟩ {- 6 -} (↯ 2# (to-from-glue-left' a b)) ◃ (↓-swap! to-left right _ idp (to-glue-glue c (a , b))) =⟨ ↓-swap-β to-left right {p = glue (a , b)} (to-glue-left c a) idp (ToLeft.glue-β (a , b) ◃ apd (λ x → glue (a , x)) (glue (b , c))) |in-ctx (λ v → (↯ 2# (to-from-glue-left' a b)) ◃ v) ⟩ (↯ 2# (to-from-glue-left' a b)) ◃ (ToLeft.glue-β (a , b) ◃ apd (λ x → glue (a , x)) (glue (b , c))) =⟨ {!!} ⟩ -- associativity (↯ to-from-glue-left' a b) ◃ apd (λ x → glue (a , x)) (glue (b , c)) ∎)) -- ((↓-apd-out (λ a' _ → to (from (left a)) == to (from (right a'))) (λ x → glue (a , x)) (glue (b , c)) (apdd (ap to ∘ ap from) (glue (b , c)) (apd (λ x → (glue (a , x))) (glue (b , c))))) ∙'2ᵈ (to-from-right-glue (b , c))) ▹ to-from-glue-right' a c =⟨ {!!} ⟩ -- to-from-glue-glue : (a : A) (bc : B × C) -- → to-from-glue-left a (fst bc) == to-from-glue-right a (snd bc) [ (λ x → to-from-left a == to-from-right x [ (λ y → to (from y) == y) ↓ glue (a , x) ]) ↓ glue bc ] -- to-from-glue-glue a (b , c) = {!!} -- Should not be too hard -- to-from-glue : (x : A × (B * C)) → to-from-left (fst x) == to-from-right (snd x) [ (λ x → to (from x) == x) ↓ glue x ] -- to-from-glue (a , bc) = pushout-rec (to-from-glue-left a) (to-from-glue-right a) (to-from-glue-glue a) bc -- to-from : (x : A * (B * C)) → to (from x) == x -- to-from = pushout-rec to-from-left to-from-right to-from-glue -- *-assoc : (A * B) * C ≃ A * (B * C) -- *-assoc = equiv to from to-from from-to
{ "alphanum_fraction": 0.4643330389, "avg_line_length": 74.8429752066, "ext": "agda", "hexsha": "f29fa0789de7b8ddf643d9e9160241cd84d1f3ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/experimental/JoinAssoc2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/experimental/JoinAssoc2.agda", "max_line_length": 294, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/experimental/JoinAssoc2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4139, "size": 9056 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some examples showing how the AVL tree module can be used ------------------------------------------------------------------------ module README.AVL where ------------------------------------------------------------------------ -- Setup -- AVL trees are defined in Data.AVL. import Data.AVL -- This module is parametrised by keys, which have to form a (strict) -- total order, and values, which are indexed by keys. Let us use -- natural numbers as keys and vectors of strings as values. import Data.Nat.Properties as ℕ open import Data.String using (String) open import Data.Vec using (Vec; _∷_; []) open import Relation.Binary using (module StrictTotalOrder) open Data.AVL (Vec String) (StrictTotalOrder.isStrictTotalOrder ℕ.strictTotalOrder) ------------------------------------------------------------------------ -- Construction of trees -- Some values. v₁ = "cepa" ∷ [] v₁′ = "depa" ∷ [] v₂ = "apa" ∷ "bepa" ∷ [] -- Empty and singleton trees. t₀ : Tree t₀ = empty t₁ : Tree t₁ = singleton 2 v₂ -- Insertion of a key-value pair into a tree. t₂ = insert 1 v₁ t₁ -- If you insert a key-value pair and the key already exists in the -- tree, then the old value is thrown away. t₂′ = insert 1 v₁′ t₂ -- Deletion of the mapping for a certain key. t₃ = delete 2 t₂ -- Conversion of a list of key-value mappings to a tree. open import Data.List using (_∷_; []) open import Data.Product as Prod using (_,_; _,′_) t₄ = fromList ((2 , v₂) ∷ (1 , v₁) ∷ []) ------------------------------------------------------------------------ -- Queries -- Let us formulate queries as unit tests. open import Relation.Binary.PropositionalEquality using (_≡_; refl) -- Searching for a key. open import Data.Bool using (true; false) open import Data.Maybe as Maybe using (just; nothing) q₀ : lookup 2 t₂ ≡ just v₂ q₀ = refl q₁ : lookup 2 t₃ ≡ nothing q₁ = refl q₂ : 3 ∈? t₂ ≡ false q₂ = refl q₃ : 1 ∈? t₄ ≡ true q₃ = refl -- Turning a tree into a sorted list of key-value pairs. q₄ : toList t₁ ≡ (2 , v₂) ∷ [] q₄ = refl q₅ : toList t₂ ≡ (1 , v₁) ∷ (2 , v₂) ∷ [] q₅ = refl q₅′ : toList t₂′ ≡ (1 , v₁′) ∷ (2 , v₂) ∷ [] q₅′ = refl ------------------------------------------------------------------------ -- Views -- Partitioning a tree into the smallest element plus the rest, or the -- largest element plus the rest. open import Function using (id) v₆ : headTail t₀ ≡ nothing v₆ = refl v₇ : Maybe.map (Prod.map id toList) (headTail t₂) ≡ just ((1 , v₁) , ((2 , v₂) ∷ [])) v₇ = refl v₈ : initLast t₀ ≡ nothing v₈ = refl v₉ : Maybe.map (Prod.map toList id) (initLast t₄) ≡ just (((1 , v₁) ∷ []) ,′ (2 , v₂)) v₉ = refl ------------------------------------------------------------------------ -- Further reading -- Variations of the AVL tree module are available: -- • Finite maps with indexed keys and values. import Data.AVL.IndexedMap -- • Finite sets. import Data.AVL.Sets
{ "alphanum_fraction": 0.5493236556, "avg_line_length": 22.6194029851, "ext": "agda", "hexsha": "181a8dc0d8cea9bbf79aecac70cd1bbb50ba9499", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/README/AVL.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/README/AVL.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/README/AVL.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 839, "size": 3031 }
{-# OPTIONS --type-in-type --rewriting #-} module _ where postulate _≡_ : {A : Set} → A → A → Set {-# BUILTIN REWRITE _≡_ #-} record ⊤ : Set where constructor [] open ⊤ postulate ID : (Δ : Set) (δ₀ δ₁ : Δ) → Set ID⊤ : (δ₀ δ₁ : ⊤) → ID ⊤ δ₀ δ₁ ≡ ⊤ Id : {Δ : Set} (A : Δ → Set) {δ₀ δ₁ : Δ} (δ₂ : ID Δ δ₀ δ₁) (a₀ : A δ₀) (a₁ : A δ₁) → Set ap : {Δ : Set} {A : Δ → Set} (f : (δ : Δ) → A δ) {δ₀ δ₁ : Δ} (δ₂ : ID Δ δ₀ δ₁) → Id A δ₂ (f δ₀) (f δ₁) AP : {Θ Δ : Set} (f : Θ → Δ) {t₀ t₁ : Θ} (t₂ : ID Θ t₀ t₁) → ID Δ (f t₀) (f t₁) Id-AP : {Θ Δ : Set} (f : Θ → Δ) {t₀ t₁ : Θ} (t₂ : ID Θ t₀ t₁) (A : Δ → Set) (a₀ : A (f t₀)) (a₁ : A (f t₁)) → Id A (AP f t₂) a₀ a₁ ≡ Id (λ w → A (f w)) t₂ a₀ a₁ Copy : Set → Set uncopy : {A : Set} → Copy A → A {-# REWRITE ID⊤ #-} {-# REWRITE Id-AP #-} postulate utr→ : {Δ : Set} (A : Δ → Set) {δ₀ δ₁ : Δ} (δ₂ : ID Δ δ₀ δ₁) (a₁ a₁' : A δ₁) → Id {⊤} (λ _ → A δ₁) [] a₁ a₁' IdU : {Δ : Set} {δ₀ δ₁ : Δ} (δ₂ : ID Δ δ₀ δ₁) (A B : Set) → Id {Δ} (λ _ → Set) δ₂ A B ≡ Copy ((b₀ : B) (b₁ : B) → Id {⊤} (λ _ → B) [] b₀ b₁) {-# REWRITE IdU #-} postulate apU : {Δ : Set} (A : Δ → Set) {δ₀ δ₁ : Δ} (δ₂ : ID Δ δ₀ δ₁) → uncopy (ap A δ₂) ≡ utr→ A δ₂ {-# REWRITE apU #-}
{ "alphanum_fraction": 0.4490131579, "avg_line_length": 31.1794871795, "ext": "agda", "hexsha": "57541db688aab5a75f2ad4bc90a653ca301dc51d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue5923-OP.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue5923-OP.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue5923-OP.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 645, "size": 1216 }
module Data.List.Properties.Pointwise where open import Data.Nat open import Data.List open import Relation.Binary.List.Pointwise hiding (refl; map) open import Relation.Binary.PropositionalEquality pointwise-∷ʳ : ∀ {a b ℓ A B P l m x y} → Rel {a} {b} {ℓ} {A} {B} P l m → P x y → Rel {a} {b} {ℓ} {A} {B} P (l ∷ʳ x) (m ∷ʳ y) pointwise-∷ʳ [] q = q ∷ [] pointwise-∷ʳ (x∼y ∷ p) q = x∼y ∷ (pointwise-∷ʳ p q) {-} pointwise-[]≔ : ∀ {a b ℓ A B P l m i x y} → Rel {a} {b} {ℓ} {A} {B} P l m → (p : l [ i ]= x) → P x y → Rel {a} {b} {ℓ} {A} {B} P l (m [ fromℕ ([]=-length l p) ]≔ y) pointwise-[]≔ r p q z = ? postulate pointwise-[]≔ [] () r pointwise-[]≔ (x∼y ∷ r) here (s≤s z≤n) z = z ∷ r pointwise-[]≔ (x∼y ∷ r) (there p) (s≤s q) z = subst (λ x → Rel _ _ x) {!!} (x∼y ∷ pointwise-[]≔ r p q z) -} pointwise-length : ∀ {a b ℓ A B P l m} → Rel {a} {b} {ℓ} {A} {B} P l m → length l ≡ length m pointwise-length [] = refl pointwise-length (x∼y ∷ p) = cong suc (pointwise-length p)
{ "alphanum_fraction": 0.5240904621, "avg_line_length": 37.6666666667, "ext": "agda", "hexsha": "4e491315c918d5549d338da0e27d0559cfd50e97", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/List/Properties/Pointwise.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/List/Properties/Pointwise.agda", "max_line_length": 105, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/List/Properties/Pointwise.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 468, "size": 1017 }
-- Pattern synonyms are now allowed in parameterised modules. module _ where module L (A : Set) where data List : Set where nil : List cons : A → List → List pattern unit x = cons x nil data Bool : Set where true false : Bool module LB = L Bool open LB init : List → List init nil = nil init (unit _) = nil init (cons x xs) = cons x (init xs) data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x test : init (cons true (unit false)) ≡ unit true test = refl
{ "alphanum_fraction": 0.6361746362, "avg_line_length": 18.5, "ext": "agda", "hexsha": "956f3f02a0ce4113b4c0c19febcf7aa7d7e71f5c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue941.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue941.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue941.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 153, "size": 481 }
{- COMPLEXITY LANGUAGE -} open import Preliminaries open import Preorder-Max module Complexity where data CTp : Set where unit : CTp nat : CTp _->c_ : CTp → CTp → CTp _×c_ : CTp → CTp → CTp list : CTp → CTp bool : CTp C : CTp -- represent a context as a list of types Ctx = List CTp -- de Bruijn indices (for free variables) data _∈_ : CTp → Ctx → Set where i0 : ∀ {Γ τ} → τ ∈ (τ :: Γ) iS : ∀ {Γ τ τ1} → τ ∈ Γ → τ ∈ (τ1 :: Γ) data _|-_ : Ctx → CTp → Set where unit : ∀ {Γ} → Γ |- unit 0C : ∀ {Γ} → Γ |- C 1C : ∀ {Γ} → Γ |- C plusC : ∀ {Γ} → Γ |- C → Γ |- C → Γ |- C var : ∀ {Γ τ} → τ ∈ Γ → Γ |- τ z : ∀ {Γ} → Γ |- nat suc : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat rec : ∀ {Γ τ} → Γ |- nat → Γ |- τ → (nat :: (τ :: Γ)) |- τ → Γ |- τ lam : ∀ {Γ τ ρ} → (ρ :: Γ) |- τ → Γ |- (ρ ->c τ) app : ∀ {Γ τ1 τ2} → Γ |- (τ2 ->c τ1) → Γ |- τ2 → Γ |- τ1 prod : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → Γ |- (τ1 ×c τ2) l-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ1 r-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ2 nil : ∀ {Γ τ} → Γ |- list τ _::c_ : ∀ {Γ τ} → Γ |- τ → Γ |- list τ → Γ |- list τ listrec : ∀ {Γ τ τ'} → Γ |- list τ → Γ |- τ' → (τ :: (list τ :: (τ' :: Γ))) |- τ' → Γ |- τ' true : ∀ {Γ} → Γ |- bool false : ∀ {Γ} → Γ |- bool _+C_ : ∀ {Γ τ} → Γ |- C → Γ |- (C ×c τ)→ Γ |- (C ×c τ) c +C e = prod (plusC c (l-proj e)) (r-proj e) ------weakening and substitution lemmas -- renaming = variable for variable substitution --functional view: --avoids induction, --some associativity/unit properties for free -- read: you can rename Γ' as Γ rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ rename-var : ∀ {Γ Γ' τ} → rctx Γ Γ' → τ ∈ Γ' → τ ∈ Γ rename-var ρ a = ρ a idr : ∀ {Γ} → rctx Γ Γ idr x = x -- weakening with renaming p∙ : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) Γ' p∙ ρ = λ x → iS (ρ x) p : ∀ {Γ τ} → rctx (τ :: Γ) Γ p = p∙ idr _∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C ρ1 ∙rr ρ2 = ρ1 o ρ2 -- free stuff rename-var-ident : ∀ {Γ τ} → (x : τ ∈ Γ) → rename-var idr x == x rename-var-ident _ = Refl rename-var-∙ : ∀ {A B C τ} → (r1 : rctx A B) (r2 : rctx B C) (x : τ ∈ C) → rename-var r1 (rename-var r2 x) == rename-var (r1 ∙rr r2) x rename-var-∙ _ _ _ = Refl ∙rr-assoc : ∀ {A B C D} → (r1 : rctx A B) (r2 : rctx B C) (r3 : rctx C D) → _==_ {_} {rctx A D} (r1 ∙rr (r2 ∙rr r3)) ((r1 ∙rr r2) ∙rr r3) ∙rr-assoc r1 r2 r3 = Refl r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') r-extend ρ i0 = i0 r-extend ρ (iS x) = iS (ρ x) ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ ren unit ρ = unit ren 0C ρ = 0C ren 1C ρ = 1C ren (plusC e e₁) ρ = plusC (ren e ρ) (ren e₁ ρ) ren (var x) ρ = var (ρ x) ren z ρ = z ren (suc e) ρ = suc (ren e ρ) ren (rec e e₁ e₂) ρ = rec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend ρ))) ren (lam e) ρ = lam (ren e (r-extend ρ)) ren (app e e₁) ρ = app (ren e ρ) (ren e₁ ρ) ren (prod e1 e2) ρ = prod (ren e1 ρ) (ren e2 ρ) ren (l-proj e) ρ = l-proj (ren e ρ) ren (r-proj e) ρ = r-proj (ren e ρ) ren nil ρ = nil ren (x ::c xs) ρ = ren x ρ ::c ren xs ρ ren true ρ = true ren false ρ = false ren (listrec e e₁ e₂) ρ = listrec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend (r-extend ρ)))) extend-ren-comp-lemma : ∀ {Γ Γ' Γ'' τ τ'} → (x : τ ∈ τ' :: Γ'') (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') → Id {_} {_} ((r-extend ρ1 ∙rr r-extend ρ2) x) (r-extend (ρ1 ∙rr ρ2) x) extend-ren-comp-lemma i0 ρ1 ρ2 = Refl extend-ren-comp-lemma (iS x) ρ1 ρ2 = Refl extend-ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → Id {_} {rctx (τ :: Γ) (τ :: Γ'')} (r-extend ρ1 ∙rr r-extend ρ2) (r-extend (ρ1 ∙rr ρ2)) extend-ren-comp ρ1 ρ2 = λ=i (λ τ → λ= (λ x → extend-ren-comp-lemma x ρ1 ρ2)) ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (ren e ρ2) ρ1) == (ren e (ρ1 ∙rr ρ2)) ren-comp ρ1 ρ2 unit = Refl ren-comp ρ1 ρ2 0C = Refl ren-comp ρ1 ρ2 1C = Refl ren-comp ρ1 ρ2 (plusC e e₁) = ap2 plusC (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (var x) = ap var (rename-var-∙ ρ1 ρ2 x) ren-comp ρ1 ρ2 z = Refl ren-comp ρ1 ρ2 (suc e) = ap suc (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 (rec e e₁ e₂) = ap3 rec (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) (ap (ren e₂) (ap r-extend (extend-ren-comp ρ1 ρ2) ∘ extend-ren-comp (r-extend ρ1) (r-extend ρ2)) ∘ ren-comp (r-extend (r-extend ρ1)) (r-extend (r-extend ρ2)) e₂) ren-comp ρ1 ρ2 (lam e) = ap lam ((ap (ren e) (extend-ren-comp ρ1 ρ2)) ∘ ren-comp (r-extend ρ1) (r-extend ρ2) e) ren-comp ρ1 ρ2 (app e e₁) = ap2 app (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (prod e e₁) = ap2 prod (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (l-proj e) = ap l-proj (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 (r-proj e) = ap r-proj (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 nil = Refl ren-comp ρ1 ρ2 (e ::c e₁) = ap2 _::c_ (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (listrec e e₁ e₂) = ap3 listrec (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) (ap (ren e₂) (ap r-extend (ap r-extend (extend-ren-comp ρ1 ρ2)) ∘ (ap r-extend (extend-ren-comp (r-extend ρ1) (r-extend ρ2)) ∘ extend-ren-comp (r-extend (r-extend ρ1)) (r-extend (r-extend ρ2)))) ∘ ren-comp (r-extend (r-extend (r-extend ρ1))) (r-extend (r-extend (r-extend ρ2))) e₂) ren-comp ρ1 ρ2 true = Refl ren-comp ρ1 ρ2 false = Refl -- weakening a context wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 wkn e = ren e iS sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ --lem2 (addvar) s-extend : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') s-extend Θ i0 = var i0 s-extend Θ (iS x) = wkn (Θ x) ids : ∀ {Γ} → sctx Γ Γ ids x = var x -- weakening with substitution q∙ : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) Γ' q∙ Θ = λ x → wkn (Θ x) lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ') lem3' Θ e i0 = e lem3' Θ e (iS i) = Θ i --lem3 q : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) q e = lem3' ids e -- subst-var svar : ∀ {Γ1 Γ2 τ} → sctx Γ1 Γ2 → τ ∈ Γ2 → Γ1 |- τ svar Θ i = q (Θ i) i0 lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ')) lem4' Θ a b = lem3' (lem3' Θ b) a lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem4 e1 e2 = lem4' ids e1 e2 lem5' : ∀ {Γ Γ' τ1 τ2 τ3} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ'))) lem5' Θ a b c = lem3' (lem3' (lem3' Θ c) b) a lem5 : ∀ {Γ τ1 τ2 τ3} → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ))) lem5 e1 e2 e3 = lem5' ids e1 e2 e3 subst : ∀ {Γ Γ' τ} → Γ' |- τ → sctx Γ Γ' → Γ |- τ subst unit Θ = unit subst 0C Θ = 0C subst 1C Θ = 1C subst (plusC e e₁) Θ = plusC (subst e Θ) (subst e₁ Θ) subst (var x) Θ = Θ x subst z Θ = z subst (suc e) Θ = suc (subst e Θ) subst (rec e e₁ e₂) Θ = rec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend Θ))) subst (lam e) Θ = lam (subst e (s-extend Θ)) subst (app e e₁) Θ = app (subst e Θ) (subst e₁ Θ) subst (prod e1 e2) Θ = prod (subst e1 Θ) (subst e2 Θ) subst (l-proj e) Θ = l-proj (subst e Θ) subst (r-proj e) Θ = r-proj (subst e Θ) subst nil Θ = nil subst (x ::c xs) Θ = subst x Θ ::c subst xs Θ subst true Θ = true subst false Θ = false subst (listrec e e₁ e₂) Θ = listrec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend (s-extend Θ)))) subst1 : ∀ {Γ τ τ1} → Γ |- τ1 → (τ1 :: Γ) |- τ → Γ |- τ subst1 e e' = subst e' (q e) _rs_ : ∀ {A B C} → rctx A B → sctx B C → sctx A C _rs_ ρ Θ x = ren (subst (var x) Θ) ρ _ss_ : ∀ {A B C} → sctx A B → sctx B C → sctx A C _ss_ Θ1 Θ2 x = subst (subst (var x) Θ2) Θ1 _sr_ : ∀ {A B C} → sctx A B → rctx B C → sctx A C _sr_ Θ ρ x = subst (ren (var x) ρ) Θ --free stuff svar-rs : ∀ {A B C τ} (ρ : rctx A B) (Θ : sctx B C) (x : τ ∈ C) → svar (ρ rs Θ) x == ren (svar Θ x) ρ svar-rs = λ ρ Θ x → Refl svar-ss : ∀ {A B C τ} (Θ1 : sctx A B) (Θ2 : sctx B C) (x : τ ∈ C) → svar (Θ1 ss Θ2) x == subst (svar Θ2 x) Θ1 svar-ss = λ Θ1 Θ2 x → Refl svar-sr : ∀ {A B C τ} (Θ : sctx A B) (ρ : rctx B C) (x : τ ∈ C) → svar Θ (rename-var ρ x) == svar (Θ sr ρ) x svar-sr = λ Θ ρ x → Refl svar-id : ∀ {Γ τ} → (x : τ ∈ Γ) → var x == svar ids x svar-id = λ x → Refl rsr-assoc : ∀ {A B C D} → (ρ1 : rctx A B) (Θ : sctx B C) (ρ2 : rctx C D) → Id {_} {sctx A D} ((ρ1 rs Θ) sr ρ2) (ρ1 rs (Θ sr ρ2)) rsr-assoc = λ ρ1 Θ ρ2 → Refl extend-id-once-lemma : ∀ {Γ τ τ'} → (x : τ ∈ τ' :: Γ) → _==_ {_} {τ' :: Γ |- τ} (ids {τ' :: Γ} {τ} x) (s-extend {Γ} {Γ} {τ'} (ids {Γ}) {τ} x) extend-id-once-lemma i0 = Refl extend-id-once-lemma (iS x) = Refl extend-id-once : ∀ {Γ τ} → Id {_} {sctx (τ :: Γ) (τ :: Γ)} (ids {τ :: Γ}) (s-extend ids) extend-id-once = λ=i (λ τ → λ= (λ x → extend-id-once-lemma x)) extend-id-twice : ∀ {Γ τ1 τ2} → Id {_} {sctx (τ1 :: τ2 :: Γ) (τ1 :: τ2 :: Γ)} (ids {τ1 :: τ2 :: Γ}) (s-extend (s-extend ids)) extend-id-twice = ap s-extend extend-id-once ∘ extend-id-once subst-id : ∀ {Γ τ} (e : Γ |- τ) → e == subst e ids subst-id unit = Refl subst-id 0C = Refl subst-id 1C = Refl subst-id (plusC e e₁) = ap2 plusC (subst-id e) (subst-id e₁) subst-id (var x) = svar-id x subst-id z = Refl subst-id (suc e) = ap suc (subst-id e) subst-id (rec e e₁ e₂) = ap3 rec (subst-id e) (subst-id e₁) (ap (subst e₂) extend-id-twice ∘ subst-id e₂) subst-id (lam e) = ap lam (ap (subst e) extend-id-once ∘ subst-id e) subst-id (app e e₁) = ap2 app (subst-id e) (subst-id e₁) subst-id (prod e e₁) = ap2 prod (subst-id e) (subst-id e₁) subst-id (l-proj e) = ap l-proj (subst-id e) subst-id (r-proj e) = ap r-proj (subst-id e) subst-id nil = Refl subst-id (e ::c e₁) = ap2 _::c_ (subst-id e) (subst-id e₁) subst-id true = Refl subst-id false = Refl subst-id (listrec e e₁ e₂) = ap3 listrec (subst-id e) (subst-id e₁) (ap (subst e₂) (ap s-extend (ap s-extend extend-id-once) ∘ extend-id-twice) ∘ subst-id e₂) extend-rs-once-lemma : ∀ {A B C τ τ'} → (x : τ ∈ τ' :: B) (ρ : rctx C A) (Θ : sctx A B) → _==_ {_} {τ' :: C |- τ} (_rs_ {τ' :: C} {τ' :: A} {τ' :: B} (r-extend {C} {A} {τ'} ρ) (s-extend {A} {B} {τ'} Θ) {τ} x) (s-extend {C} {B} {τ'} (_rs_ {C} {A} {B} ρ Θ) {τ} x) extend-rs-once-lemma i0 ρ Θ = Refl extend-rs-once-lemma (iS x) ρ Θ = ! (ren-comp iS ρ (Θ x)) ∘ ren-comp (r-extend ρ) iS (Θ x) extend-rs-once : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) → Id {_} {sctx (τ :: C) (τ :: B)} (r-extend ρ rs s-extend Θ) (s-extend (ρ rs Θ)) extend-rs-once ρ Θ = λ=i (λ τ → λ= (λ x → extend-rs-once-lemma x ρ Θ)) extend-rs-twice : ∀ {A B C τ τ'} → (ρ : rctx C A) (Θ : sctx A B) → Id {_} {sctx (τ :: τ' :: C) (τ :: τ' :: B)} ((r-extend (r-extend ρ)) rs (s-extend (s-extend Θ))) ((s-extend (s-extend (ρ rs Θ)))) extend-rs-twice ρ Θ = ap s-extend (extend-rs-once ρ Θ) ∘ extend-rs-once (r-extend ρ) (s-extend Θ) subst-rs : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ) → ren (subst e Θ) ρ == subst e (ρ rs Θ) subst-rs ρ Θ unit = Refl subst-rs ρ Θ 0C = Refl subst-rs ρ Θ 1C = Refl subst-rs ρ Θ (plusC e e₁) = ap2 plusC (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (var x) = svar-rs ρ Θ x subst-rs ρ Θ z = Refl subst-rs ρ Θ (suc e) = ap suc (subst-rs ρ Θ e) subst-rs ρ Θ (rec e e₁ e₂) = ap3 rec (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) (ap (subst e₂) (extend-rs-twice ρ Θ) ∘ subst-rs (r-extend (r-extend ρ)) (s-extend (s-extend Θ)) e₂) subst-rs ρ Θ (lam e) = ap lam (ap (subst e) (extend-rs-once ρ Θ) ∘ subst-rs (r-extend ρ) (s-extend Θ) e) subst-rs ρ Θ (app e e₁) = ap2 app (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (prod e e₁) = ap2 prod (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (l-proj e) = ap l-proj (subst-rs ρ Θ e) subst-rs ρ Θ (r-proj e) = ap r-proj (subst-rs ρ Θ e) subst-rs ρ Θ nil = Refl subst-rs ρ Θ (e ::c e₁) = ap2 _::c_ (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ true = Refl subst-rs ρ Θ false = Refl subst-rs ρ Θ (listrec e e₁ e₂) = ap3 listrec (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-rs-once ρ Θ)) ∘ extend-rs-twice (r-extend ρ) (s-extend Θ)) ∘ subst-rs (r-extend (r-extend (r-extend ρ))) (s-extend (s-extend (s-extend Θ))) e₂) rs-comp : ∀ {Γ Γ' Γ'' τ} → (ρ : rctx Γ Γ') → (Θ : sctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (subst e Θ) ρ) == subst e (ρ rs Θ) rs-comp ρ Θ unit = Refl rs-comp ρ Θ 0C = Refl rs-comp ρ Θ 1C = Refl rs-comp ρ Θ (plusC e e₁) = ap2 plusC (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (var x) = svar-rs ρ Θ x rs-comp ρ Θ z = Refl rs-comp ρ Θ (suc e) = ap suc (rs-comp ρ Θ e) rs-comp ρ Θ (rec e e₁ e₂) = ap3 rec (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) (ap (subst e₂) (extend-rs-twice ρ Θ) ∘ rs-comp (r-extend (r-extend ρ)) (s-extend (s-extend Θ)) e₂) rs-comp ρ Θ (lam e) = ap lam (ap (subst e) (extend-rs-once ρ Θ) ∘ rs-comp (r-extend ρ) (s-extend Θ) e) rs-comp ρ Θ (app e e₁) = ap2 app (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (prod e e₁) = ap2 prod (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (l-proj e) = ap l-proj (rs-comp ρ Θ e) rs-comp ρ Θ (r-proj e) = ap r-proj (rs-comp ρ Θ e) rs-comp ρ Θ nil = Refl rs-comp ρ Θ (e ::c e₁) = ap2 _::c_ (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (listrec e e₁ e₂) = ap3 listrec (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-rs-once ρ Θ)) ∘ extend-rs-twice (r-extend ρ) (s-extend Θ)) ∘ rs-comp (r-extend (r-extend (r-extend ρ))) (s-extend (s-extend (s-extend Θ))) e₂) rs-comp ρ Θ true = Refl rs-comp ρ Θ false = Refl extend-sr-once-lemma : ∀ {A B C τ τ'} → (Θ : sctx A B) (ρ : rctx B C) (x : τ ∈ τ' :: C) → _==_ {_} {τ' :: A |- τ} (s-extend (_sr_ Θ ρ) x) (_sr_ (s-extend Θ) (r-extend ρ) x) extend-sr-once-lemma Θ ρ i0 = Refl extend-sr-once-lemma Θ ρ (iS x) = Refl extend-sr-once : ∀ {A B C τ} → (Θ : sctx A B) (ρ : rctx B C) → Id {_} {sctx (τ :: A) (τ :: C)} (s-extend Θ sr r-extend ρ) (s-extend (Θ sr ρ)) extend-sr-once Θ ρ = λ=i (λ τ → λ= (λ x → ! (extend-sr-once-lemma Θ ρ x))) extend-sr-twice : ∀ {A B C τ τ'} → (Θ : sctx A B) (ρ : rctx B C) → Id {_} {sctx (τ' :: τ :: A) (τ' :: τ :: C)} (s-extend (s-extend Θ) sr r-extend (r-extend ρ)) (s-extend (s-extend (Θ sr ρ))) extend-sr-twice Θ ρ = ap s-extend (extend-sr-once Θ ρ) ∘ extend-sr-once (s-extend Θ) (r-extend ρ) sr-comp : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ) → (subst (ren e ρ) Θ) == subst e (Θ sr ρ) sr-comp Θ ρ unit = Refl sr-comp Θ ρ 0C = Refl sr-comp Θ ρ 1C = Refl sr-comp Θ ρ (plusC e e₁) = ap2 plusC (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (var x) = svar-sr Θ ρ x sr-comp Θ ρ z = Refl sr-comp Θ ρ (suc e) = ap suc (sr-comp Θ ρ e) sr-comp Θ ρ (rec e e₁ e₂) = ap3 rec (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) (ap (subst e₂) (ap s-extend (extend-sr-once Θ ρ) ∘ extend-sr-once (s-extend Θ) (r-extend ρ)) ∘ sr-comp (s-extend (s-extend Θ)) (r-extend (r-extend ρ)) e₂) sr-comp Θ ρ (lam e) = ap lam (ap (subst e) (extend-sr-once Θ ρ) ∘ sr-comp (s-extend Θ) (r-extend ρ) e) sr-comp Θ ρ (app e e₁) = ap2 app (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (prod e e₁) = ap2 prod (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (l-proj e) = ap l-proj (sr-comp Θ ρ e) sr-comp Θ ρ (r-proj e) = ap r-proj (sr-comp Θ ρ e) sr-comp Θ ρ nil = Refl sr-comp Θ ρ (e ::c e₁) = ap2 _::c_ (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (listrec e e₁ e₂) = ap3 listrec (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-sr-once Θ ρ)) ∘ extend-sr-twice (s-extend Θ) (r-extend ρ)) ∘ sr-comp (s-extend (s-extend (s-extend Θ))) (r-extend (r-extend (r-extend ρ))) e₂) sr-comp Θ ρ true = Refl sr-comp Θ ρ false = Refl extend-ss-once-lemma : ∀ {A B C τ τ'} → (Θ1 : sctx A B) (Θ2 : sctx B C) (x : τ ∈ τ' :: C) → _==_ {_} {τ' :: A |- τ} (s-extend (_ss_ Θ1 Θ2) x) (_ss_ (s-extend Θ1) (s-extend Θ2) x) extend-ss-once-lemma Θ1 Θ2 i0 = Refl extend-ss-once-lemma Θ1 Θ2 (iS x) = ! (sr-comp (s-extend Θ1) iS (Θ2 x)) ∘ rs-comp iS Θ1 (Θ2 x) extend-ss-once : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) → _==_ {_} {sctx (τ :: A) (τ :: C)} (s-extend (Θ1 ss Θ2)) ((s-extend Θ1) ss (s-extend Θ2)) extend-ss-once Θ1 Θ2 = λ=i (λ τ → λ= (λ x → extend-ss-once-lemma Θ1 Θ2 x)) subst-ss : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ) → subst e (Θ1 ss Θ2) == subst (subst e Θ2) Θ1 subst-ss Θ1 Θ2 unit = Refl subst-ss Θ1 Θ2 0C = Refl subst-ss Θ1 Θ2 1C = Refl subst-ss Θ1 Θ2 (plusC e e₁) = ap2 plusC (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (var x) = svar-ss Θ1 Θ2 x subst-ss Θ1 Θ2 z = Refl subst-ss Θ1 Θ2 (suc e) = ap suc (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 (rec e e₁ e₂) = ap3 rec (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) (subst-ss (s-extend (s-extend Θ1)) (s-extend (s-extend Θ2)) e₂ ∘ ap (subst e₂) (extend-ss-once (s-extend Θ1) (s-extend Θ2) ∘ ap s-extend (extend-ss-once Θ1 Θ2))) subst-ss Θ1 Θ2 (lam e) = ap lam (subst-ss (s-extend Θ1) (s-extend Θ2) e ∘ ap (subst e) (extend-ss-once Θ1 Θ2)) subst-ss Θ1 Θ2 (app e e₁) = ap2 app (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (prod e e₁) = ap2 prod (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (l-proj e) = ap l-proj (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 (r-proj e) = ap r-proj (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 nil = Refl subst-ss Θ1 Θ2 (e ::c e₁) = ap2 _::c_ (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 true = Refl subst-ss Θ1 Θ2 false = Refl subst-ss Θ1 Θ2 (listrec e e₁ e₂) = ap3 listrec (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) (subst-ss (s-extend (s-extend (s-extend Θ1))) (s-extend (s-extend (s-extend Θ2))) e₂ ∘ ap (subst e₂) (extend-ss-once (s-extend (s-extend Θ1)) (s-extend (s-extend Θ2)) ∘ ap s-extend (extend-ss-once (s-extend Θ1) (s-extend Θ2) ∘ ap s-extend (extend-ss-once Θ1 Θ2)))) throw : ∀ {Γ Γ' τ} → sctx Γ (τ :: Γ') → sctx Γ Γ' throw Θ x = Θ (iS x) fuse1 : ∀ {Γ Γ' τ τ'} (v : Γ |- τ') (Θ : sctx Γ Γ') (x : τ ∈ Γ') → (q v ss q∙ Θ) x == Θ x fuse1 v Θ x = subst (ren (Θ x) iS) (q v) =⟨ sr-comp (q v) iS (Θ x) ⟩ subst (Θ x) (q v sr iS) =⟨ Refl ⟩ subst (Θ x) ids =⟨ ! (subst-id (Θ x)) ⟩ (Θ x ∎) subst-compose-lemma-lemma : ∀ {Γ Γ' τ τ'} (v : Γ |- τ') (Θ : sctx Γ Γ') (x : τ ∈ τ' :: Γ') → _==_ {_} {Γ |- τ} (_ss_ (q v) (s-extend Θ) x) (lem3' Θ v x) subst-compose-lemma-lemma v Θ i0 = Refl subst-compose-lemma-lemma v Θ (iS x) = fuse1 v Θ x subst-compose-lemma : ∀ {Γ Γ' τ} (v : Γ |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ :: Γ')} ((q v) ss (s-extend Θ)) (lem3' Θ v) subst-compose-lemma v Θ = λ=i (λ τ → λ= (λ x → subst-compose-lemma-lemma v Θ x)) subst-compose : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst (subst e (s-extend Θ)) (q v) == subst e (lem3' Θ v) subst-compose Θ v e = ap (subst e) (subst-compose-lemma v Θ) ∘ (! (subst-ss (q v) (s-extend Θ) e)) fuse2 : ∀ {Γ Γ' τ τ1 τ2} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (Θ : sctx Γ Γ') (x : τ ∈ τ2 :: Γ') → (lem4 v1 v2 ss throw (s-extend (s-extend Θ))) x == (lem3' Θ v2) x fuse2 v1 v2 Θ x = subst (ren (s-extend Θ x) iS) (lem4 v1 v2) =⟨ sr-comp (lem4 v1 v2) iS (s-extend Θ x) ⟩ subst (s-extend Θ x) (lem4 v1 v2 sr iS) =⟨ Refl ⟩ subst (s-extend Θ x) (lem3' ids v2) =⟨ subst-compose-lemma-lemma v2 Θ x ⟩ (lem3' Θ v2 x ∎) subst-compose2-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ'} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (e1 : τ1 :: τ2 :: Γ' |- τ) (Θ : sctx Γ Γ') (x : τ' ∈ τ1 :: τ2 :: Γ') → _==_ {_} {_} ((lem4 v1 v2 ss s-extend (s-extend Θ)) x) (lem4' Θ v1 v2 x) subst-compose2-lemma-lemma v1 v2 e1 Θ i0 = Refl subst-compose2-lemma-lemma v1 v2 e1 Θ (iS x) = fuse2 v1 v2 Θ x subst-compose2-lemma : ∀ {Γ Γ' τ τ1 τ2} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (e1 : τ1 :: τ2 :: Γ' |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ1 :: τ2 :: Γ')} (lem4 v1 v2 ss s-extend (s-extend Θ)) (lem4' Θ v1 v2) subst-compose2-lemma v1 v2 e1 Θ = λ=i (λ τ → λ= (λ x → subst-compose2-lemma-lemma v1 v2 e1 Θ x)) fuse3 : ∀ {Γ Γ' τ1 τ2 τ'} (Θ : sctx Γ Γ') (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) (x : τ' ∈ τ2 :: Γ') → subst (lem3' ids v2 x) Θ == lem3' Θ (subst v2 Θ) x fuse3 Θ v1 v2 i0 = Refl fuse3 Θ v1 v2 (iS x) = Refl subst-compose3-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ'} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) (x : τ' ∈ τ1 :: τ2 :: Γ') → _==_ {_} {_} ((Θ ss lem4 v1 v2) x) (lem4' Θ (subst v1 Θ) (subst v2 Θ) x) subst-compose3-lemma-lemma Θ e1 v1 v2 i0 = Refl subst-compose3-lemma-lemma Θ e1 v1 v2 (iS x) = fuse3 Θ v1 v2 x subst-compose3-lemma : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → _==_ {_} {sctx Γ (τ1 :: τ2 :: Γ')} (Θ ss lem4 v1 v2) (lem4' Θ (subst v1 Θ) (subst v2 Θ)) subst-compose3-lemma Θ e1 v1 v2 = λ=i (λ τ → λ= (λ x → subst-compose3-lemma-lemma Θ e1 v1 v2 x)) subst-compose2 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) == subst e1 (lem4' Θ v1 v2) subst-compose2 Θ e1 v1 v2 = ap (subst e1) (subst-compose2-lemma v1 v2 e1 Θ) ∘ ! (subst-ss (lem4 v1 v2) (s-extend (s-extend Θ)) e1) subst-compose3 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → subst (subst e1 (lem4 v1 v2)) Θ == subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ)) subst-compose3 Θ e1 v1 v2 = ap (subst e1) (subst-compose3-lemma Θ e1 v1 v2) ∘ ! (subst-ss Θ (lem4 v1 v2) e1) subst-compose4 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ) → subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) == subst e2 (lem4' Θ v' r) subst-compose4 Θ v' r e2 = subst-compose2 Θ e2 v' r fuse4-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (Θ : sctx Γ Γ') (x : τ ∈ Γ') → (lem3' (lem3' ids v3) v2 ss q∙ (q∙ Θ)) x == Θ x fuse4-lemma v1 v2 v3 Θ x = subst (ren (wkn (Θ x)) iS) (lem3' (q v3) v2) =⟨ sr-comp (lem3' (q v3) v2) iS (wkn (Θ x)) ⟩ subst (wkn (Θ x)) (lem3' (q v3) v2 sr iS) =⟨ Refl ⟩ subst (ren (Θ x) iS) (lem3' (q v3) v2 sr iS) =⟨ sr-comp (lem3' (q v3) v2 sr iS) iS (Θ x) ⟩ subst (Θ x) ((lem3' (q v3) v2 sr iS) sr iS) =⟨ Refl ⟩ subst (Θ x) ids =⟨ ! (subst-id (Θ x)) ⟩ (Θ x ∎) fuse4 : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (Θ : sctx Γ Γ') (x : τ ∈ τ2 :: τ3 :: Γ') → subst (s-extend (s-extend Θ) x) (lem3' (lem3' ids v3) v2) == lem3' (lem3' Θ v3) v2 x fuse4 v1 v2 v3 Θ i0 = Refl fuse4 v1 v2 v3 Θ (iS i0) = Refl fuse4 v1 v2 v3 Θ (iS (iS x)) = subst (wkn (wkn (Θ x))) (lem3' (lem3' ids v3) v2) =⟨ subst-ss (lem3' (lem3' ids v3) v2) (q∙ (q∙ Θ)) (var x) ⟩ subst (var x) (lem3' (lem3' ids v3) v2 ss q∙ (q∙ Θ)) =⟨ fuse4-lemma v1 v2 v3 Θ x ⟩ subst (var x) Θ =⟨ Refl ⟩ (Θ x ∎) subst-compose5-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3 τ'} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (e1 : τ1 :: τ2 :: τ3 :: Γ' |- τ) (Θ : sctx Γ Γ') (x : τ' ∈ τ1 :: τ2 :: τ3 :: Γ') → _==_ {_} {_} ((lem5 v1 v2 v3 ss s-extend (s-extend (s-extend Θ))) x) (lem5' Θ v1 v2 v3 x) subst-compose5-lemma-lemma v1 v2 v3 e Θ i0 = Refl subst-compose5-lemma-lemma v1 v2 v3 e Θ (iS x) = (lem5 v1 v2 v3 ss s-extend (s-extend (s-extend Θ))) (iS x) =⟨ sr-comp (lem5 v1 v2 v3) iS (s-extend (s-extend Θ) x) ⟩ subst (s-extend (s-extend Θ) x) (lem3' (lem3' ids v3) v2) =⟨ fuse4 v1 v2 v3 Θ x ⟩ (lem3' (lem3' Θ v3) v2 x ∎) subst-compose5-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (e : τ1 :: τ2 :: τ3 :: Γ' |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ1 :: τ2 :: τ3 :: Γ')} (lem5 v1 v2 v3 ss (s-extend (s-extend (s-extend Θ)))) (lem5' Θ v1 v2 v3) subst-compose5-lemma v1 v2 v3 e Θ = λ=i (λ τ → λ= (λ x → subst-compose5-lemma-lemma v1 v2 v3 e Θ x)) subst-compose5 : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) → subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3) == subst e (lem5' Θ v1 v2 v3) subst-compose5 Θ e v1 v2 v3 = ap (subst e) (subst-compose5-lemma v1 v2 v3 e Θ) ∘ ! (subst-ss (lem5 v1 v2 v3) (s-extend (s-extend (s-extend Θ))) e) ------- -- define 'stepping' as a datatype (fig. 1 of proof) data _≤s_ : ∀ {Γ T} → Γ |- T → Γ |- T → Set where refl-s : ∀ {Γ T} → {e : Γ |- T} → e ≤s e trans-s : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e'' plus-s : ∀ {Γ} → {e1 e2 n1 n2 : Γ |- C} → e1 ≤s n1 → e2 ≤s n2 → (plusC e1 e2) ≤s (plusC n1 n2) cong-refl : ∀ {Γ τ} {e e' : Γ |- τ} → e == e' → e ≤s e' +-unit-l : ∀ {Γ} {e : Γ |- C} → (plusC 0C e) ≤s e +-unit-l' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC 0C e) +-unit-r : ∀ {Γ} {e : Γ |- C} → (plusC e 0C) ≤s e +-unit-r' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC e 0C) +-1-r : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC e 1C) +-assoc : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3) +-assoc' : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3) refl-+ : ∀ {Γ} {e0 e1 : Γ |- C} → (plusC e0 e1) ≤s (plusC e1 e0) cong-+ : ∀ {Γ} {e0 e1 e0' e1' : Γ |- C} → e0 ≤s e0' → e1 ≤s e1' → (plusC e0 e1) ≤s (plusC e0' e1') cong-lproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (l-proj e) ≤s (l-proj e') cong-rproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (r-proj e) ≤s (r-proj e') cong-app : ∀ {Γ τ τ'} {e e' : Γ |- (τ ->c τ')} {e1 : Γ |- τ} → e ≤s e' → (app e e1) ≤s (app e' e1) cong-rec : ∀ {Γ τ} {e e' : Γ |- nat} {e0 : Γ |- τ} {e1 : (nat :: (τ :: Γ)) |- τ} → e ≤s e' → rec e e0 e1 ≤s rec e' e0 e1 cong-listrec : ∀ {Γ τ τ'} {e e' : Γ |- list τ} {e0 : Γ |- τ'} {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → e ≤s e' → listrec e e0 e1 ≤s listrec e' e0 e1 lam-s : ∀ {Γ T T'} → {e : (T :: Γ) |- T'} → {e2 : Γ |- T} → subst e (q e2) ≤s app (lam e) e2 l-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} {e2 : Γ |- T2} → e1 ≤s (l-proj (prod e1 e2)) r-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} → {e2 : Γ |- T2} → e2 ≤s (r-proj (prod e1 e2)) rec-steps-z : ∀ {Γ T} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → e0 ≤s (rec z e0 e1) rec-steps-s : ∀ {Γ T} → {e : Γ |- nat} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → subst e1 (lem4 e (rec e e0 e1)) ≤s (rec (suc e) e0 e1) listrec-steps-nil : ∀ {Γ τ τ'} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → e0 ≤s (listrec nil e0 e1) listrec-steps-cons : ∀ {Γ τ τ'} → {h : Γ |- τ} {t : Γ |- list τ} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → subst e1 (lem5 h t (listrec t e0 e1)) ≤s (listrec (h ::c t) e0 e1) _trans_ : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e'' _trans_ = trans-s infixr 10 _trans_
{ "alphanum_fraction": 0.4611105559, "avg_line_length": 48.3429951691, "ext": "agda", "hexsha": "18669f7511e4e7a85d6021c69a312010bdae1f1a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity/Complexity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity/Complexity.agda", "max_line_length": 179, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity/Complexity.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 13731, "size": 30021 }
-- Andreas, 2017-01-24, issue #2430, reported by nad -- Regression introduced by updating module parameter substitution -- when going underAbstraction (80794767db1aceaa78a72e06ad901cfa53f8346d). record Σ (A : Set) (B : A → Set) : Set where field proj₁ : A proj₂ : B proj₁ open Σ public Σ-map : {A : Set} {B : Set} {P : A → Set} {Q : B → Set} → (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q Σ-map f g p = record { proj₁ = f (proj₁ p); proj₂ = g (proj₂ p) } postulate _≡_ : {A : Set} → A → A → Set refl : {A : Set} (x : A) → x ≡ x cong : {A : Set} {B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong-refl : {A : Set} {B : Set} (f : A → B) {x : A} → refl (f x) ≡ cong f (refl x) subst : {A : Set} (P : A → Set) {x y : A} → x ≡ y → P x → P y subst-refl : ∀ {A : Set} (P : A → Set) {x} (p : P x) → subst P (refl x) p ≡ p trans : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z module _ (_ : Set) where postulate Σ-≡,≡→≡ : {A : Set} {B : A → Set} {p₁ p₂ : Σ A B} → (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂ → p₁ ≡ p₂ Σ-≡,≡→≡-refl-subst-refl : ∀ {A : Set} {B : A → Set} {p} → Σ-≡,≡→≡ (refl (proj₁ p)) (subst-refl B (proj₂ p)) ≡ refl p rejected : {A₁ A₂ : Set} {B₁ : A₁ → Set} {B₂ : A₂ → Set} (f : A₁ → A₂) (g : ∀ x → B₁ x → B₂ (f x)) (x : Σ A₁ B₁) → Σ-≡,≡→≡ (refl _) (subst-refl B₂ _) ≡ cong (Σ-map f (g _)) (refl x) rejected {B₁ = B₁} {B₂} f g x = trans {x = Σ-≡,≡→≡ (refl _) (subst-refl B₂ _)} {z = cong (Σ-map f (g _)) (refl _)} Σ-≡,≡→≡-refl-subst-refl (cong-refl _)
{ "alphanum_fraction": 0.4361763022, "avg_line_length": 32.3518518519, "ext": "agda", "hexsha": "b2c8edce0b88ee9bda877e7b79c82d9d5b59e655", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2430.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2430.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2430.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 799, "size": 1747 }
module Generic.Lib.Intro where open import Level renaming (zero to lzero; suc to lsuc) public open import Function public open import Data.Bool.Base hiding (_<_; _≤_) public infixl 10 _% infixl 2 _>>>_ data ⊥ {α} : Set α where record ⊤ {α} : Set α where instance constructor tt ⊥₀ = ⊥ {lzero} ⊤₀ = ⊤ {lzero} tt₀ : ⊤₀ tt₀ = tt _% = _∘_ _>>>_ : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : ∀ {x} -> B x -> Set γ} -> (f : ∀ x -> B x) -> (∀ {x} -> (y : B x) -> C y) -> ∀ x -> C (f x) (f >>> g) x = g (f x)
{ "alphanum_fraction": 0.5299806576, "avg_line_length": 20.68, "ext": "agda", "hexsha": "7a3e0188ada5c8eb43ba0ce1f313f3534c51e4c8", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Intro.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Intro.agda", "max_line_length": 74, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Intro.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 213, "size": 517 }
{-# OPTIONS --postfix-projections #-} module UnSizedIO.Base where open import Data.Maybe.Base open import Data.Sum renaming (inj₁ to left; inj₂ to right; [_,_]′ to either) open import Function open import NativeIO record IOInterface : Set₁ where field Command : Set Response : (m : Command) → Set open IOInterface public module _ (I : IOInterface) (let C = Command I) (let R = Response I) (A : Set) where mutual record IO : Set where coinductive constructor delay field force : IO' data IO' : Set where exec' : (c : C) (f : R c → IO) → IO' return' : (a : A) → IO' open IO public module _ {I : IOInterface} (let C = Command I) (let R = Response I) where return : ∀{A} (a : A) → IO I A return a .force = return' a exec : ∀{A} (c : C) (f : R c → IO I A) → IO I A exec c f .force = exec' c f exec1 : (c : C) → IO I (R c) exec1 c = exec c return infixl 2 _>>=_ _>>='_ _>>_ mutual _>>='_ : ∀{A B} (m : IO' I A) (k : A → IO I B) → IO' I B exec' c f >>=' k = exec' c λ x → f x >>= k return' a >>=' k = force (k a) _>>=_ : ∀{A B} (m : IO I A) (k : A → IO I B) → IO I B force (m >>= k) = force m >>=' k _>>_ : ∀{B} (m : IO I Unit) (k : IO I B) → IO I B m >> k = m >>= λ _ → k module _ {I : IOInterface} (let C = Command I) (let R = Response I) where {-# NON_TERMINATING #-} translateIO : ∀ {A} → (translateLocal : (c : C) → NativeIO (R c)) → IO I A → NativeIO A translateIO translateLocal m = case (m .force) of λ{ (exec' c f) → (translateLocal c) native>>= λ r → translateIO translateLocal (f r) ; (return' a) → nativeReturn a } -- Recursion -- trampoline provides a generic form of loop (generalizing while/repeat). -- Starting at state s : S, step function f is iterated until it returns -- a result in A. module _ (I : IOInterface)(let C = Command I) (let R = Response I) where data IO+ (A : Set) : Set where exec' : (c : C) (f : R c → IO I A) → IO+ A module _ {I : IOInterface}(let C = Command I) (let R = Response I) where fromIO+' : ∀{A} → IO+ I A → IO' I A fromIO+' (exec' c f) = exec' c f fromIO+ : ∀{A} → IO+ I A → IO I A fromIO+ (exec' c f) .force = exec' c f _>>=+'_ : ∀{A B} (m : IO+ I A) (k : A → IO I B) → IO' I B exec' c f >>=+' k = exec' c λ x → f x >>= k _>>=+_ : ∀{A B} (m : IO+ I A) (k : A → IO I B) → IO I B force (m >>=+ k) = m >>=+' k mutual _>>+_ : ∀{A B} (m : IO I (A ⊎ B)) (k : A → IO I B) → IO I B force (m >>+ k) = force m >>+' k _>>+'_ : ∀{A B} (m : IO' I (A ⊎ B)) (k : A → IO I B) → IO' I B exec' c f >>+' k = exec' c λ x → f x >>+ k return' (left a) >>+' k = force (k a) return' (right b) >>+' k = return' b -- loop {-# TERMINATING #-} trampoline : ∀{A S} (f : S → IO+ I (S ⊎ A)) (s : S) → IO I A force (trampoline f s) = case (f s) of \{ (exec' c k) → exec' c λ r → k r >>+ trampoline f } -- simple infinite loop {-# TERMINATING #-} forever : ∀{A B} → IO+ I A → IO I B force (forever (exec' c f)) = exec' c λ r → f r >>= λ _ → forever (exec' c f) whenJust : {A : Set} → Maybe A → (A → IO I Unit) → IO I Unit whenJust nothing k = return _ whenJust (just a) k = k a module _ (I : IOInterface ) (let C = I .Command) (let R = I .Response) where data IOind (A : Set) : Set where exec'' : (c : C) (f : (r : R c) → IOind A) → IOind A return'' : (a : A) → IOind A main : NativeIO Unit main = nativePutStrLn "Hello, world!"
{ "alphanum_fraction": 0.5083426029, "avg_line_length": 26.2481751825, "ext": "agda", "hexsha": "456a07ff9bf41caca8631312e4aed951becf70d4", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/UnSizedIO/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/UnSizedIO/Base.agda", "max_line_length": 79, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/UnSizedIO/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 1348, "size": 3596 }
{-# OPTIONS --safe #-} module Definition.Typed.Consequences.Reduction where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Fundamental.Reducibility import Tools.PropositionalEquality as PE open import Tools.Product -- Helper function where all reducible types can be reduced to WHNF. whNorm′ : ∀ {A rA Γ l} ([A] : Γ ⊩⟨ l ⟩ A ^ rA) → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B ^ rA whNorm′ (Uᵣ′ _ _ r l _ e d) = Univ r l , Uₙ , PE.subst (λ ll → _ ⊢ _ :⇒*: Univ r l ^ [ ! , ll ]) e d whNorm′ (ℕᵣ D) = ℕ , ℕₙ , D whNorm′ (Emptyᵣ {l = l} D) = Empty l , Emptyₙ , D whNorm′ (ne′ K D neK K≡K) = K , ne neK , D whNorm′ (Πᵣ {l = l} (Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) = Π F ^ rF ° lF ▹ G ° lG ° l , Πₙ , D whNorm′ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = ∃ F ▹ G , ∃ₙ , D whNorm′ (emb emb< [A]) = whNorm′ [A] whNorm′ (emb ∞< [A]) = whNorm′ [A] -- Well-formed types can all be reduced to WHNF. whNorm : ∀ {A rA Γ} → Γ ⊢ A ^ rA → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B ^ rA whNorm A = whNorm′ (reducible A) -- whNorm-conv : ∀ {A rA Γ} → Γ ⊢ A ≡ B ^ rA → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B ^ rA -- whNorm-conv A = whNorm′ (reducible A) -- Helper function where reducible all terms can be reduced to WHNF. whNormTerm′ : ∀ {a A Γ l lA} ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , lA ]) → Γ ⊩⟨ l ⟩ a ∷ A ^ [ ! , lA ] / [A] → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A ^ lA whNormTerm′ (Uᵣ′ _ _ r l _ e dU) (Uₜ A d typeA A≡A [t]) = A , typeWhnf typeA , conv:⇒*: (PE.subst (λ ll → _ ⊢ _ :⇒*: _ ∷ _ ^ ll) e d) (sym (subset* (red (PE.subst (λ ll → _ ⊢ _ :⇒*: Univ r l ^ [ ! , ll ]) e dU)))) whNormTerm′ (ℕᵣ x) (ℕₜ n d n≡n prop) = let natN = natural prop in n , naturalWhnf natN , convRed:*: d (sym (subset* (red x))) whNormTerm′ (ne (ne K D neK K≡K)) (neₜ k d (neNfₜ neK₁ ⊢k k≡k)) = k , ne neK₁ , convRed:*: d (sym (subset* (red D))) whNormTerm′ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) = f , functionWhnf funcF , convRed:*: d (sym (subset* (red D))) whNormTerm′ (emb emb< [A]) [a] = whNormTerm′ [A] [a] whNormTerm′ (emb ∞< [A]) [a] = whNormTerm′ [A] [a] -- Well-formed terms can all be reduced to WHNF. whNormTerm : ∀ {a A Γ lA} → Γ ⊢ a ∷ A ^ [ ! , lA ] → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A ^ lA whNormTerm {a} {A} ⊢a = let [A] , [a] = reducibleTerm ⊢a in whNormTerm′ [A] [a]
{ "alphanum_fraction": 0.5596078431, "avg_line_length": 42.5, "ext": "agda", "hexsha": "8b644cd0c5275b3e95239ab5d6c99f0bde3af3d0", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/Reduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/Reduction.agda", "max_line_length": 110, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/Reduction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 1162, "size": 2550 }
-- Andreas, 2015-05-28 example by Andrea Vezzosi open import Common.Size data Nat (i : Size) : Set where zero : ∀ (j : Size< i) → Nat i suc : ∀ (j : Size< i) → Nat j → Nat i {-# TERMINATING #-} -- This definition is fine, the termination checker is too strict at the moment. fix : ∀ {C : Size → Set} → (∀ i → (∀ (j : Size< i) → Nat j -> C j) → Nat i → C i) → ∀ i → Nat i → C i fix t i (zero j) = t i (λ (j : Size< i) → fix t j) (zero j) fix t i (suc j n) = t i (λ (j : Size< i) → fix t j) (suc j n) case : ∀ i {C : Set} (n : Nat i) (z : C) (s : ∀ (j : Size< i) → Nat j → C) → C case i (zero j) z s = z case i (suc j n) z s = s j n applyfix : ∀ {C : Size → Set} i (n : Nat i) → (∀ i → (∀ (j : Size< i) → Nat j -> C j) → Nat i → C i) → C i applyfix i n f = fix f i n module M (i0 : Size) (bot : ∀{i} → Nat i) (A : Set) (default : A) where loops : A loops = applyfix (↑ i0) (zero i0) λ i r (_ : Nat i) → case i bot default λ (j : Size< i) (n : Nat j) → -- Size< i is possibly empty, should be rejected case j n default λ (h : Size< j) (_ : Nat h) → r (↑ h) (zero h) -- loops -- --> fix t (↑ i0) (zero i0) -- --> t (↑ i0) (fix t) (zero i0) -- --> case i0 bot default λ j n → case j n default λ h _ → fix t (↑ h) (zero h) -- and we have reproduced (modulo [h/i0]) what we started with -- The above needs this inference to typecheck -- h < j, j < i -- --------------------- -- ↑ h < i
{ "alphanum_fraction": 0.5017301038, "avg_line_length": 34.4047619048, "ext": "agda", "hexsha": "2e1de514bd6366dbdf632352472476debefae43c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1523.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1523.agda", "max_line_length": 105, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1523.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 570, "size": 1445 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by decidable total orders ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Properties.DecTotalOrder {d₁ d₂ d₃} (DT : DecTotalOrder d₁ d₂ d₃) where open Relation.Binary.DecTotalOrder DT hiding (trans) open import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ strictTotalOrder : StrictTotalOrder _ _ _ strictTotalOrder = record { isStrictTotalOrder = <-isStrictTotalOrder₂ isDecTotalOrder } open StrictTotalOrder strictTotalOrder public
{ "alphanum_fraction": 0.6151645207, "avg_line_length": 30.3913043478, "ext": "agda", "hexsha": "693ca8a791e9cfa04c873acbd77b49d863de94ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/DecTotalOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/DecTotalOrder.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/DecTotalOrder.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 142, "size": 699 }
{-# OPTIONS --without-K --safe #-} module Data.List.Kleene where open import Data.List.Kleene.Base public
{ "alphanum_fraction": 0.7222222222, "avg_line_length": 18, "ext": "agda", "hexsha": "27e786260f340044609c18bdc349b2f826cef7d8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-kleene-lists", "max_forks_repo_path": "Data/List/Kleene.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-kleene-lists", "max_issues_repo_path": "Data/List/Kleene.agda", "max_line_length": 40, "max_stars_count": null, "max_stars_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-kleene-lists", "max_stars_repo_path": "Data/List/Kleene.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 26, "size": 108 }
module Dave.Algebra.Naturals.Multiplication where open import Dave.Algebra.Naturals.Addition public _*_ : ℕ → ℕ → ℕ zero * b = zero suc a * b = (a * b) + b infixl 7 _*_ *-zero : ∀ (m : ℕ) → m * zero ≡ zero *-zero zero = refl *-zero (suc m) = begin suc m * zero ≡⟨⟩ m * zero + zero ≡⟨ +-right-identity (m * zero) ⟩ m * zero ≡⟨ *-zero m ⟩ zero ∎ {- Identity -} ℕ-*-right-identity : ∀ (m : ℕ) → m * 1 ≡ m ℕ-*-right-identity zero = refl ℕ-*-right-identity (suc m) = begin suc m * 1 ≡⟨⟩ m * 1 + 1 ≡⟨ cong (λ a → a + 1) (ℕ-*-right-identity m) ⟩ m + 1 ≡⟨ +-add1ᵣ m ⟩ suc m ∎ ℕ-*-left-identity : ∀ (m : ℕ) → 1 * m ≡ m ℕ-*-left-identity m = refl ℕ-*-HasIdentity : Identity _*_ 1 Identity.left ℕ-*-HasIdentity = ℕ-*-left-identity Identity.right ℕ-*-HasIdentity = ℕ-*-right-identity {- Distributivity -} *-distrib-+ᵣ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-distrib-+ᵣ zero n p = refl *-distrib-+ᵣ (suc m) n p = begin (suc m + n) * p ≡⟨⟩ suc (m + n) * p ≡⟨⟩ (m + n) * p + p ≡⟨ cong (λ a → a + p) (*-distrib-+ᵣ m n p) ⟩ m * p + n * p + p ≡⟨ IsCommutativeMonoid.swap021 ℕ-+-IsCommutativeMonoid (m * p) (n * p) p ⟩ m * p + p + n * p ≡⟨ cong (λ a → m * p + a + n * p) (ℕ-*-left-identity p) ⟩ m * p + 1 * p + n * p ≡⟨ cong (λ a → a + n * p) (sym (*-distrib-+ᵣ m 1 p)) ⟩ (m + 1) * p + n * p ≡⟨ cong (λ a → a * p + n * p) (+-add1ᵣ m) ⟩ suc m * p + n * p ∎ *-distrib1ᵣ-+ᵣ : ∀ (m p : ℕ) → (m + 1) * p ≡ m * p + p *-distrib1ᵣ-+ᵣ m p = begin (m + 1) * p ≡⟨ *-distrib-+ᵣ m 1 p ⟩ m * p + 1 * p ≡⟨⟩ m * p + p ∎ *-distrib1ₗ-+ᵣ : ∀ (m p : ℕ) → (1 + m) * p ≡ p + m * p *-distrib1ₗ-+ᵣ m p = begin (1 + m) * p ≡⟨ *-distrib-+ᵣ 1 m p ⟩ 1 * p + m * p ≡⟨⟩ p + m * p ∎ *-distrib-+ₗ : ∀ (m n p : ℕ) → m * (n + p) ≡ m * n + m * p *-distrib-+ₗ zero n p = refl *-distrib-+ₗ (suc m) n p = begin suc m * (n + p) ≡⟨⟩ m * (n + p) + (n + p) ≡⟨ cong (λ a → a + (n + p)) (*-distrib-+ₗ m n p) ⟩ m * n + m * p + (n + p) ≡⟨ IsCommutativeMonoid.swap021 ℕ-+-IsCommutativeMonoid (m * n) (m * p) (n + p) ⟩ m * n + (n + p) + m * p ≡⟨ cong (λ a → a + m * p) (sym (IsSemigroup.assoc ℕ-+-IsSemigroup (m * n) n p)) ⟩ m * n + n + p + m * p ≡⟨ IsCommutativeMonoid.swap021 ℕ-+-IsCommutativeMonoid (m * n + n) p (m * p) ⟩ m * n + n + m * p + p ≡⟨⟩ m * n + 1 * n + m * p + 1 * p ≡⟨ cong (λ a → a + m * p + 1 * p) (sym (*-distrib-+ᵣ m 1 n)) ⟩ (m + 1) * n + m * p + 1 * p ≡⟨ IsSemigroup.assoc ℕ-+-IsSemigroup ((m + 1) * n) (m * p) (1 * p) ⟩ (m + 1) * n + (m * p + 1 * p) ≡⟨ cong (λ a → (m + 1) * n + a) (sym (*-distrib-+ᵣ m 1 p)) ⟩ (m + 1) * n + (m + 1) * p ≡⟨ cong (λ a → a * n + (m + 1) * p) (+-add1ᵣ m) ⟩ suc m * n + (m + 1) * p ≡⟨ cong (λ a → suc m * n + a * p) (+-add1ᵣ m) ⟩ suc m * n + suc m * p ∎ {- Semigroup -} *-assoc : associative _*_ *-assoc zero n p = refl *-assoc (suc m) n p = begin (suc m * n) * p ≡⟨⟩ (m * n + n) * p ≡⟨ *-distrib-+ᵣ (m * n) n p ⟩ m * n * p + n * p ≡⟨⟩ m * n * p + 1 * (n * p) ≡⟨ cong (λ a → a + 1 * (n * p)) (*-assoc m n p) ⟩ m * (n * p) + 1 * (n * p) ≡⟨ sym (*-distrib-+ᵣ m 1 (n * p)) ⟩ (m + 1) * (n * p) ≡⟨ cong (λ a → a * (n * p)) (+-add1ᵣ m) ⟩ suc m * (n * p) ∎ ℕ-*-IsSemigroup : IsSemigroup _*_ IsSemigroup.assoc ℕ-*-IsSemigroup = *-assoc ℕ-*-Semigroup : Semigroup Semigroup.Carrier ℕ-*-Semigroup = ℕ Semigroup._·_ ℕ-*-Semigroup = _*_ Semigroup.isSemigroup ℕ-*-Semigroup = ℕ-*-IsSemigroup {- Monoid -} ℕ-*-IsMonoid : IsMonoid _*_ 1 IsMonoid.semigroup ℕ-*-IsMonoid = ℕ-*-IsSemigroup IsMonoid.identity ℕ-*-IsMonoid = ℕ-*-HasIdentity ℕ-*-Monoid : Monoid Monoid.Carrier ℕ-*-Monoid = ℕ Monoid._·_ ℕ-*-Monoid = _*_ Monoid.e ℕ-*-Monoid = 1 Monoid.isMonoid ℕ-*-Monoid = ℕ-*-IsMonoid {- Commutative Monoid -} ℕ-*-comm : commutative _*_ ℕ-*-comm zero n = begin zero * n ≡⟨⟩ zero ≡⟨ sym (*-zero n) ⟩ n * zero ∎ ℕ-*-comm (suc m) n = begin suc m * n ≡⟨⟩ m * n + n ≡⟨ +-comm (m * n) n ⟩ n + m * n ≡⟨ sym (cong (λ a → a + m * n) (ℕ-*-right-identity n)) ⟩ n * 1 + m * n ≡⟨ cong (λ a → n * 1 + a) (ℕ-*-comm m n) ⟩ n * 1 + n * m ≡⟨ sym (*-distrib-+ₗ n 1 m) ⟩ n * (1 + m) ≡⟨⟩ n * suc m ∎ ℕ-*-IsCommutativeMonoid : IsCommutativeMonoid _*_ 1 IsCommutativeMonoid.isSemigroup ℕ-*-IsCommutativeMonoid = ℕ-*-IsSemigroup IsCommutativeMonoid.leftIdentity ℕ-*-IsCommutativeMonoid = ℕ-*-left-identity IsCommutativeMonoid.comm ℕ-*-IsCommutativeMonoid = ℕ-*-comm ℕ-*-CommutativeMonoid : CommutativeMonoid CommutativeMonoid.Carrier ℕ-*-CommutativeMonoid = ℕ CommutativeMonoid._·_ ℕ-*-CommutativeMonoid = _*_ CommutativeMonoid.e ℕ-*-CommutativeMonoid = 1 CommutativeMonoid.isCommutativeMonoid ℕ-*-CommutativeMonoid = ℕ-*-IsCommutativeMonoid *-distrib1ᵣ-+ₗ : ∀ (m p : ℕ) → m * (p + 1) ≡ m * p + m *-distrib1ᵣ-+ₗ m p = begin m * (p + 1) ≡⟨ ℕ-*-comm m (p + 1) ⟩ (p + 1) * m ≡⟨ *-distrib1ᵣ-+ᵣ p m ⟩ p * m + m ≡⟨ cong (λ a → a + m) (ℕ-*-comm p m) ⟩ m * p + m ∎ *-distrib1ₗ-+ₗ : ∀ (m p : ℕ) → m * (1 + p) ≡ m + m * p *-distrib1ₗ-+ₗ m p = begin m * (1 + p) ≡⟨ ℕ-*-comm m (1 + p) ⟩ (1 + p) * m ≡⟨ *-distrib1ₗ-+ᵣ p m ⟩ m + p * m ≡⟨ cong (λ a → m + a) (ℕ-*-comm p m) ⟩ m + m * p ∎
{ "alphanum_fraction": 0.4809721176, "avg_line_length": 36.6068965517, "ext": "agda", "hexsha": "13a0e5f26f96ebc422c4ee7c37c2b8a6e5982760", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DavidStahl97/formal-proofs", "max_forks_repo_path": "Dave/Algebra/Naturals/Multiplication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DavidStahl97/formal-proofs", "max_issues_repo_path": "Dave/Algebra/Naturals/Multiplication.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DavidStahl97/formal-proofs", "max_stars_repo_path": "Dave/Algebra/Naturals/Multiplication.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2650, "size": 5308 }
open import Structures --using (KS; SKS; ks; TCS; Prog; monadTC; _⊕_; Err; ok; error; list-has-el; lift-state; lift-mstate) open import Reflection as RE hiding (return; _>>=_; _>>_) open import Reflection.Show module Extract (kompile-fun : Type → Term → Name → SKS Prog) where open import Reflection.Term import Reflection.Name as RN open import Agda.Builtin.Reflection using (withReconstructed; dontReduceDefs; onlyReduceDefs) open import Data.List as L hiding (_++_) open import Data.Unit using (⊤) open import Data.Product open import Data.Bool open import Data.String as S hiding (_++_) open import Data.Maybe as M hiding (_>>=_) open import Function --using (_$_; case_of_) open import ReflHelper open import Category.Monad using (RawMonad) open import Category.Monad.State using (StateTMonadState; RawMonadState) open RawMonad {{...}} public {-# TERMINATING #-} kompile-fold : TCS Prog macro -- Main entry point of the extractor. -- `n` is a starting function of the extraction -- `base` is the set of base functions that we never traverse into. -- `skip` is the list of functions that we have traversed already. -- The difference between the two is that `base` would be passed to -- `dontReduceDefs`, hence never inlined; whereas `skip` mainly avoids -- potential recursive extraction. kompile : Name → Names → Names → Term → TC ⊤ kompile n base skip hole = do (p , st) ← kompile-fold $ ks [ n ] base skip ε 1 --let p = KS.defs st ⊕ p q ← quoteTC p unify hole q -- Traverse through the list of the functions we need to extract -- and collect all the definitions. kompile-fold = do s@(ks fs ba done _ c) ← R.get case fs of λ where [] → return ε (f ∷ fs) → case list-has-el (f RN.≟_) done of λ where true → do R.modify λ k → record k{ funs = fs } kompile-fold false → do (ty , te) ← lift-state {RM = monadTC} $ do ty ← getType f ty ← withReconstructed $ dontReduceDefs ba $ normalise ty te ← withReconstructed $ getDefinition f >>= λ where (function cs) → return $ pat-lam cs [] -- FIXME: currently we do not extract data types, which -- we should fix by parametrising this module by -- kompile-type argument, and calling it in the -- same way as we call kompile-fun now. --(data-cons d) → return $ con d [] _ → return unknown te ← pat-lam-norm te ba return $ ty , te case te of λ where unknown → return $ error $ "kompile: attempting to compile `" ++ showName f ++ "` as function" _ → do R.put (ks fs ba (f ∷ done) ε c) -- Compile the function and make an error more specific in -- case compilation fails. (ok q) ← lift-mstate {RM = monadTC} $ kompile-fun ty te f where (error x) → return $ error $ "in function " ++ showName f ++ ": " ++ x defs ← KS.defs <$> R.get let q = defs ⊕ q --R.modify $! λ k → record k{ defs = ε } kst ← R.get --let q = KS.defs kst ⊕ q R.put $! record kst{ defs = ε } -- Do the rest of the functions p ← kompile-fold return $! p ⊕ "\n\n" ⊕ q where module R = RawMonadState (StateTMonadState KS monadTC)
{ "alphanum_fraction": 0.5755033557, "avg_line_length": 39.2967032967, "ext": "agda", "hexsha": "28db661c192e57e0cf4467e6c381d0ab48951da9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "Extract.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "Extract.agda", "max_line_length": 123, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "Extract.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 919, "size": 3576 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? {-# OPTIONS --allow-exec #-} open import Vehicle open import Data.Unit open import Data.Integer as ℤ using (ℤ) open import Data.List open import Data.List.Relation.Unary.All as List open import Relation.Binary.PropositionalEquality module simple-quantifierIn-temp-output where emptyList : List ℤ emptyList = [] abstract empty : List.All (λ (x : ℤ) → ⊤) emptyList empty = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } abstract double : List.All (λ (x : ℤ) → List.All (λ (y : ℤ) → x ≡ y) emptyList) emptyList double = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } abstract forallForallIn : ∀ (x : ℤ) → List.All (λ (y : ℤ) → x ≡ y) emptyList forallForallIn = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } abstract forallInForall : List.All (λ (x : ℤ) → ∀ (y : ℤ) → x ≡ y) emptyList forallInForall = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" }
{ "alphanum_fraction": 0.6901626646, "avg_line_length": 29.3409090909, "ext": "agda", "hexsha": "e405bdb77574ae5dfecf07f04640de433b595a0c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vehicle-lang/vehicle", "max_forks_repo_path": "test/Test/Compile/Golden/simple-quantifierIn/simple-quantifierIn-output.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vehicle-lang/vehicle", "max_issues_repo_path": "test/Test/Compile/Golden/simple-quantifierIn/simple-quantifierIn-output.agda", "max_line_length": 82, "max_stars_count": 9, "max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vehicle-lang/vehicle", "max_stars_repo_path": "test/Test/Compile/Golden/simple-quantifierIn/simple-quantifierIn-output.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z", "num_tokens": 403, "size": 1291 }
-- Issue reported by Sergei Meshvelliani -- Simplified example by Guillaume Allais -- When adding missing absurd clauses, dot patterns were accidentally -- turned into variable patterns. {-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.List open import Agda.Builtin.Equality data Var (T : Set₂) (σ : T) : List T → Set₂ where z : ∀ Γ → Var T σ (σ ∷ Γ) s : ∀ τ Γ → Var T σ Γ → Var T σ (τ ∷ Γ) eq : ∀ Γ (b c : Var _ Set Γ) → b ≡ c → Set eq .(Set ∷ Γ) (z Γ) (z .Γ) _ = {!!} eq .(τ ∷ Γ) (s τ Γ m) (s .τ .Γ n) _ = {!!} -- WAS: Internal error in CompiledClause.Compile -- SHOULD: Succeed
{ "alphanum_fraction": 0.6194398682, "avg_line_length": 26.3913043478, "ext": "agda", "hexsha": "d3424e3dbb0e74d548809c15f0fa683a4a009779", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3443.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3443.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3443.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 207, "size": 607 }
-- Forced constructor arguments don't count towards the size of the datatype -- (only if not --withoutK). data _≡_ {a} {A : Set a} : A → A → Set where refl : ∀ x → x ≡ x data Singleton {a} {A : Set a} : A → Set where [_] : ∀ x → Singleton x
{ "alphanum_fraction": 0.5967741935, "avg_line_length": 24.8, "ext": "agda", "hexsha": "c93cb7234ea09dd012a710b75c6f30bbb5a8683e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/LargeIndices.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/LargeIndices.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/LargeIndices.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 84, "size": 248 }
{-# OPTIONS --without-K --safe #-} module Dodo.Unary.Disjoint where -- Stdlib imports open import Level using (Level; _⊔_) open import Data.Empty using (⊥) open import Relation.Unary using (Pred) -- Local imports open import Dodo.Unary.Empty open import Dodo.Unary.Intersection -- # Definitions Disjoint₁ : ∀ {a ℓ₁ ℓ₂ : Level} {A : Set a} → Pred A ℓ₁ → Pred A ℓ₂ → Set _ Disjoint₁ P Q = Empty₁ (P ∩₁ Q)
{ "alphanum_fraction": 0.6902439024, "avg_line_length": 21.5789473684, "ext": "agda", "hexsha": "49950021b5b43ef67c57f64ba6fb75eb716c2265", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Unary/Disjoint.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Unary/Disjoint.agda", "max_line_length": 43, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Unary/Disjoint.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 131, "size": 410 }
------------------------------------------------------------------------------ -- A looping (error) combinator ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Loop where open import LTC-PCF.Base ------------------------------------------------------------------------------ error : D error = fix (λ f → f)
{ "alphanum_fraction": 0.3043478261, "avg_line_length": 29.3888888889, "ext": "agda", "hexsha": "00aea1591c1ea28282bb0300afcd60b42f97f37d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Loop.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Loop.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Loop.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 77, "size": 529 }
{-# OPTIONS --without-K #-} open import Level.NP open import Type hiding (★) open import Type.Identities open import Function.NP open import Function.Extensionality open import Data.Product open import Data.Sum open import Relation.Binary.Logical open import Relation.Binary.PropositionalEquality.NP open import Relation.Binary.NP open import HoTT open Equivalences open import Explore.Core open import Explore.Properties open import Explore.Explorable import Explore.Monad -- NOTE: it would be nice to have another module to change the definition of an exploration -- function by an extensionally equivalent one. Combined with this module one could both -- pick the reduction behavior we want and save some proof effort. module Explore.Isomorphism {-a-} {A B : ★₀ {-a-}} (e : A ≃ B) where a = ₀ private module M {ℓ} = Explore.Monad {a} ℓ e⁻ = ≃-sym e module E = Equiv e e→ = E.·→ module _ {ℓ} (Aᵉ : Explore ℓ A) where explore-iso : Explore ℓ B explore-iso = M.map e→ Aᵉ private Bᵉ = explore-iso module _ {ℓ p} {Aᵉ : Explore ℓ A} (Aⁱ : ExploreInd p Aᵉ) where explore-iso-ind : ExploreInd p (Bᵉ Aᵉ) explore-iso-ind = M.map-ind e→ Aⁱ private Bⁱ = explore-iso-ind module _ {ℓ} {Aᵉ : Explore (ₛ ℓ) A} (Aˡ : Lookup {ℓ} Aᵉ) where lookup-iso : Lookup {ℓ} (Bᵉ Aᵉ) lookup-iso {C} d b = tr C (E.·←-inv-r b) (Aˡ d (E.·← b)) module _ {ℓ} {Aᵉ : Explore (ₛ ℓ) A} (Aᶠ : Focus {ℓ} Aᵉ) where focus-iso : Focus {ℓ} (Bᵉ Aᵉ) focus-iso {C} (b , c) = Aᶠ (E.·← b , c') where c' = tr C (! (E.·←-inv-r b)) c module _ (Aˢ : Sum A) where sum-iso : Sum B sum-iso h = Aˢ (h ∘ e→) module _ (Aᵖ : Product A) where product-iso : Product B product-iso h = Aᵖ (h ∘ e→) module FromExplore-iso (Aᵉ : ∀ {ℓ} → Explore ℓ A) = FromExplore (Bᵉ Aᵉ) module FromExploreInd-iso {Aᵉ : ∀ {ℓ} → Explore ℓ A} (Aⁱ : ∀ {ℓ p} → ExploreInd {ℓ} p Aᵉ) = FromExploreInd (Bⁱ Aⁱ) module _ {ℓ} {Aᵉ : Explore (ₛ ℓ) A} (ΣAᵉ-ok : Adequate-Σ (Σᵉ Aᵉ)) {{_ : UA}} {{_ : FunExt}} where Σ-iso-ok : Adequate-Σ (Σᵉ (Bᵉ Aᵉ)) Σ-iso-ok F = ΣAᵉ-ok (F ∘ e→) ∙ Σ-fst≃ e _ module _ {ℓ} {Aᵉ : Explore (ₛ ℓ) A} (ΠAᵉ-ok : Adequate-Π (Πᵉ Aᵉ)) {{_ : UA}} {{_ : FunExt}} where Π-iso-ok : Adequate-Π (Πᵉ (Bᵉ Aᵉ)) Π-iso-ok F = ΠAᵉ-ok (F ∘ e→) ∙ Π-dom≃ e _ open Adequacy _≡_ module _ {Aˢ : Sum A} (Aˢ-ok : Adequate-sum Aˢ) {{_ : UA}} {{_ : FunExt}} where sum-iso-ok : Adequate-sum (sum-iso Aˢ) sum-iso-ok h = Aˢ-ok (h ∘ e→) ∙ Σ-fst≃ e _ module _ {Aᵖ : Product A} (Aᵖ-ok : Adequate-product Aᵖ) {{_ : UA}} {{_ : FunExt}} where product-iso-ok : Adequate-product (product-iso Aᵖ) product-iso-ok g = Aᵖ-ok (g ∘ e→) ∙ Π-dom≃ e _ module _ {ℓ₀ ℓ₁ ℓᵣ} {aᵣ} {Aᵣ : ⟦★⟧ aᵣ A A} {bᵣ} {Bᵣ : ⟦★⟧ bᵣ B B} (e→ᵣ : (Aᵣ ⟦→⟧ Bᵣ) e→ e→) {expᴬ₀ : Explore ℓ₀ A} {expᴬ₁ : Explore ℓ₁ A}(expᴬᵣ : ⟦Explore⟧ ℓᵣ Aᵣ expᴬ₀ expᴬ₁) where ⟦explore-iso⟧ : ⟦Explore⟧ ℓᵣ Bᵣ (explore-iso expᴬ₀) (explore-iso expᴬ₁) ⟦explore-iso⟧ P Pε P⊕ Pf = expᴬᵣ P Pε P⊕ (Pf ∘ e→ᵣ) -- -} -- -} -- -}
{ "alphanum_fraction": 0.6120546121, "avg_line_length": 29.4411764706, "ext": "agda", "hexsha": "bfd188ee52e1a4eba78a91e42726e54354c9f766", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Isomorphism.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Isomorphism.agda", "max_line_length": 97, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Isomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 1405, "size": 3003 }
module Issue204.Dependency where open import Common.Level public renaming (lsuc to suc) record R (ℓ : Level) : Set (suc ℓ) where data D (ℓ : Level) : Set (suc ℓ) where module M {ℓ : Level} (d : D ℓ) where
{ "alphanum_fraction": 0.6794258373, "avg_line_length": 20.9, "ext": "agda", "hexsha": "9eed70b2b1f6d70ee792429b4877bdbd065e7c5a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue204/Dependency.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue204/Dependency.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue204/Dependency.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 71, "size": 209 }
------------------------------------------------------------------------ -- Coherently constant functions ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Coherently-constant {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Prelude hiding (_+_) import Bijection equality-with-J as B open import Eilenberg-MacLane-space eq as K using (K[_]1; base; loop) open import Embedding equality-with-J as Emb using (Embedding) open import Equality.Decidable-UIP equality-with-J using (Constant) open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J hiding (id; _∘_) open import Group equality-with-J open import Group.Cyclic eq as C using (ℤ/[1+_]ℤ; _≡_mod_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as T using (∥_∥; ∣_∣) open import Injection equality-with-J using (Injective) open import Integer equality-with-J open import Pointed-type.Homotopy-group eq open import Preimage equality-with-J using (_⁻¹_) import Quotient eq as Q open import Univalence-axiom equality-with-J private variable a b : Level A B C D : Type a f : A → B p : A -- Coherently constant functions. -- -- Shulman uses the term "conditionally constant" in "Not every weakly -- constant function is conditionally constant" -- (https://homotopytypetheory.org/2015/06/11/not-every-weakly-constant-function-is-conditionally-constant/). -- I do not know who first came up with this definition. Coherently-constant : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Coherently-constant {A = A} {B = B} f = ∃ λ (g : ∥ A ∥ → B) → f ≡ g ∘ ∣_∣ -- Every coherently constant function is weakly constant. -- -- This result is mentioned by Shulman. Coherently-constant→Constant : Coherently-constant f → Constant f Coherently-constant→Constant {f = f} (g , eq) x y = f x ≡⟨ cong (_$ x) eq ⟩ g ∣ x ∣ ≡⟨ cong g (T.truncation-is-proposition _ _) ⟩ g ∣ y ∣ ≡⟨ sym $ cong (_$ y) eq ⟩∎ f y ∎ -- Every weakly constant function with a stable domain is coherently -- constant. -- -- This result was proved by Kraus, Escardó, Coquand and Altenkirch in -- "Notions of Anonymous Existence in Martin-Löf Type Theory". Stable-domain→Constant→Coherently-constant : {f : A → B} → (∥ A ∥ → A) → Constant f → Coherently-constant f Stable-domain→Constant→Coherently-constant {f = f} s c = f ∘ s , ⟨ext⟩ λ x → f x ≡⟨ c _ _ ⟩∎ f (s ∣ x ∣) ∎ private -- Definitions used in the proof of ¬-Constant→Coherently-constant. module ¬-Constant→Coherently-constant (ℓ : Level) (univ : Univalence lzero) where -- CCC B is the statement that every constant function from a -- merely inhabited type in Type ℓ to B is coherently constant. CCC : Type ℓ → Type (lsuc ℓ) CCC B = (A : Type ℓ) → ∥ A ∥ → (f : A → B) → Constant f → Coherently-constant f Has-retraction : {A B : Type a} → (B → A) → Type a Has-retraction f = ∃ λ g → g ∘ f ≡ id -- IR A is the statement that every injective, (-1)-connected -- function from A to a type in Type ℓ has a retraction. IR : Type ℓ → Type (lsuc ℓ) IR A = (B : Type ℓ) (f : A → B) → (∀ x → ∥ f ⁻¹ x ∥) → Injective f → Has-retraction f -- CCC C implies IR C. CCC→IR : CCC C → IR C CCC→IR {C = C} ccc A f conn inj = (λ a → proj₁ (cc a) (conn a)) , ⟨ext⟩ λ c → proj₁ (cc (f c)) (conn (f c)) ≡⟨ cong (proj₁ (cc (f c))) $ T.truncation-is-proposition _ _ ⟩ proj₁ (cc (f c)) ∣ c , refl _ ∣ ≡⟨ sym $ cong (_$ c , refl _) $ proj₂ (cc (f c)) ⟩∎ c ∎ where cc : (a : A) → Coherently-constant {A = f ⁻¹ a} proj₁ cc a = ccc (f ⁻¹ a) (conn a) proj₁ λ (c₁ , p₁) (c₂ , p₂) → inj (f c₁ ≡⟨ p₁ ⟩ a ≡⟨ sym p₂ ⟩∎ f c₂ ∎) -- If there is an embedding from C to D, then CCC D implies CCC C. CCC→CCC : Embedding C D → CCC D → CCC C CCC→CCC emb ccc B ∥B∥ g c = proj₁ ∘ h , refl _ where e = Embedding.to emb cc : Coherently-constant (e ∘ g) cc = ccc B ∥B∥ (e ∘ g) λ x y → e (g x) ≡⟨ cong e (c x y) ⟩∎ e (g y) ∎ h : (b : ∥ B ∥) → ∃ λ c → e c ≡ proj₁ cc b h = T.elim _ (λ _ → Emb.embedding→⁻¹-propositional (Embedding.is-embedding emb) _) λ b → g b , cong (_$ b) (proj₂ cc) -- If CCC (A ≃ A) holds for every type A, then CCC (↑ ℓ K[ G ]1) -- holds for every abelian group G of type Group lzero. CCC-≃→CCC-K : ((B : Type ℓ) → CCC (B ≃ B)) → (G : Group lzero) → Abelian G → CCC (↑ ℓ K[ G ]1) CCC-≃→CCC-K ccc G abelian = $⟨ ccc (↑ ℓ K[ G ]1) ⟩ CCC (↑ ℓ K[ G ]1 ≃ ↑ ℓ K[ G ]1) ↝⟨ CCC→CCC emb ⟩□ CCC (↑ ℓ K[ G ]1) □ where Aut[K[G]] = (K[ G ]1 ≃ K[ G ]1) , Eq.id Aut[K[G]]-groupoid : H-level 3 (K[ G ]1 ≃ K[ G ]1) Aut[K[G]]-groupoid = Eq.left-closure ext 2 K.is-groupoid Ω[Aut[K[G]]] = Fundamental-group′ Aut[K[G]] Aut[K[G]]-groupoid emb : Embedding (↑ ℓ K[ G ]1) (↑ ℓ K[ G ]1 ≃ ↑ ℓ K[ G ]1) emb = ↑ ℓ K[ G ]1 ↔⟨ B.↑↔ ⟩ K[ G ]1 ↔⟨ inverse $ K.cong-≃ $ K.Fundamental-group′[K1≃K1]≃ᴳ univ abelian ⟩ K[ Ω[Aut[K[G]]] ]1 ↝⟨ proj₁ $ K.K[Fundamental-group′]1↣ᴮ univ Aut[K[G]]-groupoid ⟩ K[ G ]1 ≃ K[ G ]1 ↔⟨ inverse $ Eq.≃-preserves-bijections ext B.↑↔ B.↑↔ ⟩□ ↑ ℓ K[ G ]1 ≃ ↑ ℓ K[ G ]1 □ -- The group of integers. module ℤG = Group ℤ-group -- The groups ℤ/2ℤ and ℤ/4ℤ. ℤ/2ℤ = ℤ/[1+ 1 ]ℤ ℤ/4ℤ = ℤ/[1+ 3 ]ℤ module ℤ/2ℤ where open Group ℤ/2ℤ public renaming (_∘_ to infixl 6 _+_; _⁻¹ to infix 8 -_) module ℤ/4ℤ where open Group ℤ/4ℤ public renaming (_∘_ to infixl 6 _+_; _⁻¹ to infix 8 -_) -- Multiplication by two, as a function from ℤ/2ℤ to ℤ/4ℤ. mul2 : ℤ/2ℤ.Carrier → ℤ/4ℤ.Carrier mul2 = Q.rec λ where .Q.[]ʳ i → Q.[ i *+ 2 ] .Q.is-setʳ → Q./-is-set .Q.[]-respects-relationʳ {x = i} {y = j} → i ≡ j mod 2 ↝⟨ C.*+-cong {j = j} {n = 2} 2 ⟩ i *+ 2 ≡ j *+ 2 mod 4 ↝⟨ Q.[]-respects-relation ⟩□ Q.[ i *+ 2 ] ≡ Q.[ j *+ 2 ] □ -- The function mul2, expressed as a group homomorphism. mul2ʰ : ℤ/2ℤ →ᴳ ℤ/4ℤ mul2ʰ = λ where .related → mul2 .homomorphic → Q.elim-prop λ where .Q.is-propositionʳ _ → Π-closure ext 1 λ _ → Group.Carrier-is-set ℤ/[1+ 3 ]ℤ .Q.[]ʳ i → Q.elim-prop λ where .Q.is-propositionʳ _ → Group.Carrier-is-set ℤ/[1+ 3 ]ℤ .Q.[]ʳ j → cong Q.[_] ((i + j) *+ 2 ≡⟨ *+-distrib-+ {i = i} 2 ⟩∎ i *+ 2 + j *+ 2 ∎) -- Integer division by 2, as a function from ℤ/4ℤ to ℤ/2ℤ. div2 : ℤ/4ℤ.Carrier → ℤ/2ℤ.Carrier div2 = Q.rec λ where .Q.[]ʳ i → Q.[ ⌊ i /2⌋ ] .Q.is-setʳ → Q./-is-set .Q.[]-respects-relationʳ {x = i} {y = j} → i ≡ j mod 4 ↝⟨ C.⌊/2⌋-cong j 2 ⟩ ⌊ i /2⌋ ≡ ⌊ j /2⌋ mod 2 ↝⟨ Q.[]-respects-relation ⟩□ Q.[ ⌊ i /2⌋ ] ≡ Q.[ ⌊ j /2⌋ ] □ -- Some lemmas relating mul2 and div2. mul2-div2-lemma₁ : ∀ i j → div2 (j ℤ/4ℤ.+ ℤ/4ℤ.- mul2 i) ≡ div2 j ℤ/2ℤ.+ ℤ/2ℤ.- i mul2-div2-lemma₁ = Q.elim-prop λ where .Q.is-propositionʳ _ → Π-closure ext 1 λ _ → Q./-is-set .Q.[]ʳ i → Q.elim-prop λ where .Q.is-propositionʳ _ → Q./-is-set .Q.[]ʳ j → cong Q.[_] (⌊ j - i *+ 2 /2⌋ ≡⟨ cong (⌊_/2⌋ ∘ _+_ j) $ ℤG.^+⁻¹ {p = i} 2 ⟩ ⌊ j + - i *+ 2 /2⌋ ≡⟨ ⌊+*+2/2⌋≡ j ⟩∎ ⌊ j /2⌋ + - i ∎) mul2-div2-lemma₂ : ∀ i j → ℤ/2ℤ.- i ℤ/2ℤ.+ div2 (mul2 i ℤ/4ℤ.+ j) ≡ div2 j mul2-div2-lemma₂ = Q.elim-prop λ where .Q.is-propositionʳ _ → Π-closure ext 1 λ _ → Q./-is-set .Q.[]ʳ i → Q.elim-prop λ where .Q.is-propositionʳ _ → Q./-is-set .Q.[]ʳ j → cong Q.[_] (- i + ⌊ i *+ 2 + j /2⌋ ≡⟨ cong (_+_ (- i) ∘ ⌊_/2⌋) $ +-comm (i *+ 2) ⟩ - i + ⌊ j + i *+ 2 /2⌋ ≡⟨ cong (_+_ (- i)) $ ⌊+*+2/2⌋≡ j ⟩ - i + (⌊ j /2⌋ + i) ≡⟨ cong (_+_ (- i)) $ +-comm ⌊ j /2⌋ ⟩ - i + (i + ⌊ j /2⌋) ≡⟨ +-assoc (- i) ⟩ - i + i + ⌊ j /2⌋ ≡⟨ cong (_+ ⌊ j /2⌋) $ +-left-inverse i ⟩ + 0 + ⌊ j /2⌋ ≡⟨ +-left-identity ⟩∎ ⌊ j /2⌋ ∎) -- The type K[ ℤ/4ℤ ]1 is (-1)-connected. K[ℤ/4ℤ]-connected : (x : K[ ℤ/4ℤ ]1) → ∥ K.map mul2ʰ ⁻¹ x ∥ K[ℤ/4ℤ]-connected = K.elim-set λ where .K.baseʳ → ∣ base , refl _ ∣ .K.loopʳ _ → T.truncation-is-proposition _ _ .K.is-setʳ _ → mono₁ 1 T.truncation-is-proposition -- Two equivalences. Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ : _≡_ {A = K[ ℤ/4ℤ ]1} base base ≃ ℤ/4ℤ.Carrier Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ = K.Fundamental-group′[K1]≃ᴳ univ K.is-groupoid .related Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ : _≡_ {A = K[ ℤ/2ℤ ]1} base base ≃ ℤ/2ℤ.Carrier Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ = K.Fundamental-group′[K1]≃ᴳ univ K.is-groupoid .related -- The function K.map mul2ʰ is injective. map-mul2ʰ-injective : Injective (K.map mul2ʰ) map-mul2ʰ-injective {x = x} {y = y} = K.elim-set e x y where lemma = K.elim-set λ where .K.is-setʳ _ → Π-closure ext 2 λ _ → K.is-groupoid .K.baseʳ → base ≡ base ↔⟨ Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ ⟩ ℤ/4ℤ.Carrier ↝⟨ div2 ⟩ ℤ/2ℤ.Carrier ↔⟨ inverse Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ ⟩□ base ≡ base □ .K.loopʳ i → ⟨ext⟩ λ eq → let j = _≃_.to Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ eq in subst (λ y → base ≡ K.map mul2ʰ y → base ≡ y) (loop i) (loop ∘ div2 ∘ _≃_.to Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ) eq ≡⟨ subst-→ ⟩ subst (base ≡_) (loop i) (loop $ div2 $ _≃_.to Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ $ subst ((base ≡_) ∘ K.map mul2ʰ) (sym (loop i)) eq) ≡⟨ trans (sym trans-subst) $ cong (flip trans _) $ cong (loop ∘ div2 ∘ _≃_.to Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ) $ trans (subst-∘ _ _ _) $ trans (sym trans-subst) $ cong (trans _) $ trans (cong-sym _ _) $ cong sym $ K.rec-loop ⟩ trans (loop $ div2 $ _≃_.to Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ $ trans eq (sym (loop (mul2 i)))) (loop i) ≡⟨ cong (flip trans _) $ cong (loop ∘ div2) $ K.Fundamental-group′[K1]≃ᴳ univ K.is-groupoid .homomorphic eq (sym (loop (mul2 i))) ⟩ trans (loop $ div2 $ j ℤ/4ℤ.+ _≃_.to Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ (sym (loop (mul2 i)))) (loop i) ≡⟨ cong (flip trans _) $ cong (loop ∘ div2 ∘ (j ℤ/4ℤ.+_)) $ →ᴳ-⁻¹ (K.Fundamental-group′[K1]≃ᴳ univ K.is-groupoid) _ ⟩ trans (loop $ div2 $ j ℤ/4ℤ.+ ℤ/4ℤ.- _≃_.to Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ (loop (mul2 i))) (loop i) ≡⟨ cong (flip trans _ ∘ loop ∘ div2 ∘ (j ℤ/4ℤ.+_) ∘ ℤ/4ℤ.-_) $ _≃_.right-inverse-of Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ _ ⟩ trans (loop (div2 (j ℤ/4ℤ.+ ℤ/4ℤ.- mul2 i))) (loop i) ≡⟨ cong (flip trans _) $ cong loop $ mul2-div2-lemma₁ i j ⟩ trans (loop (div2 j ℤ/2ℤ.+ ℤ/2ℤ.- i)) (loop i) ≡⟨ cong (flip trans _) $ ≃ᴳ-sym {G₂ = ℤ/2ℤ} (K.Fundamental-group′[K1]≃ᴳ univ K.is-groupoid) .homomorphic _ _ ⟩ trans (trans (loop (div2 j)) (loop (ℤ/2ℤ.- i))) (loop i) ≡⟨ cong (flip trans _) $ cong (trans _) $ →ᴳ-⁻¹ (≃ᴳ-sym $ K.Fundamental-group′[K1]≃ᴳ univ K.is-groupoid) _ ⟩ trans (trans (loop (div2 j)) (sym (loop i))) (loop i) ≡⟨ trans (trans-assoc _ _ _) $ trans (cong (trans _) $ trans-symˡ _) $ trans-reflʳ _ ⟩∎ loop (div2 j) ∎ e = λ where .K.is-setʳ _ → Π-closure ext 2 λ _ → Π-closure ext 2 λ _ → K.is-groupoid .K.baseʳ → lemma .K.loopʳ i → ⟨ext⟩ $ K.elim-prop λ where .K.is-propositionʳ _ → Π-closure ext 2 λ _ → K.is-groupoid .K.baseʳ → ⟨ext⟩ λ eq → let j = _≃_.to Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ eq in subst (λ x → ∀ y → K.map mul2ʰ x ≡ K.map mul2ʰ y → x ≡ y) (loop i) lemma base eq ≡⟨ trans (cong (_$ eq) $ sym $ push-subst-application _ _) subst-→ ⟩ subst (_≡ base) (loop i) (lemma base $ subst (λ x → K.map mul2ʰ x ≡ K.map mul2ʰ base) (sym (loop i)) eq) ≡⟨ trans subst-trans-sym $ cong (trans _) $ cong (lemma base) $ trans (subst-∘ _ _ _) $ subst-trans-sym ⟩ trans (sym $ loop i) (lemma base $ trans (sym (cong (K.map mul2ʰ) (sym (loop i)))) eq) ≡⟨ cong (trans _) $ cong (lemma base) $ cong (flip trans _) $ trans (sym $ cong-sym _ _) $ cong (cong _) $ sym-sym _ ⟩ trans (sym $ loop i) (lemma base (trans (cong (K.map mul2ʰ) (loop i)) eq)) ≡⟨ cong (trans _) $ cong (lemma base) $ cong (flip trans _) K.rec-loop ⟩ trans (sym $ loop i) (lemma base (trans (loop (mul2 i)) eq)) ≡⟨⟩ trans (sym $ loop i) (loop $ div2 $ _≃_.to Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ $ trans (loop (mul2 i)) eq) ≡⟨ cong₂ (λ p q → trans p (loop (div2 q))) (sym $ →ᴳ-⁻¹ (≃ᴳ-sym $ K.Fundamental-group′[K1]≃ᴳ univ K.is-groupoid) _) (K.Fundamental-group′[K1]≃ᴳ univ K.is-groupoid .homomorphic (loop (mul2 i)) eq) ⟩ trans (loop (ℤ/2ℤ.- i)) (loop $ div2 $ _≃_.to Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ (loop (mul2 i)) ℤ/4ℤ.+ j) ≡⟨ cong (trans (loop (ℤ/2ℤ.- i)) ∘ loop ∘ div2 ∘ (ℤ/4ℤ._+ j)) $ _≃_.right-inverse-of Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ _ ⟩ trans (loop (ℤ/2ℤ.- i)) (loop (div2 (mul2 i ℤ/4ℤ.+ j))) ≡⟨ sym $ ≃ᴳ-sym (K.Fundamental-group′[K1]≃ᴳ univ K.is-groupoid) .homomorphic _ _ ⟩ loop (ℤ/2ℤ.- i ℤ/2ℤ.+ div2 (mul2 i ℤ/4ℤ.+ j)) ≡⟨ cong loop $ mul2-div2-lemma₂ i j ⟩ loop (div2 j) ≡⟨⟩ lemma base eq ∎ -- It is not the case that IR holds for ↑ ℓ K[ ℤ/2ℤ ]1. ¬IR : ¬ IR (↑ ℓ K[ ℤ/2ℤ ]1) ¬IR ir = contradiction where -- The function K.map mul2ʰ has a retraction. map-mul2ʰ-has-retraction : Has-retraction (K.map mul2ʰ) map-mul2ʰ-has-retraction = let r , is-r = ir (↑ ℓ K[ ℤ/4ℤ ]1) mul2′ conn inj in lower ∘ r ∘ lift , (⟨ext⟩ λ x → lower (r (lift (K.map mul2ʰ x))) ≡⟨ cong lower $ cong (_$ lift x) is-r ⟩∎ x ∎) where mul2′ : ↑ ℓ K[ ℤ/2ℤ ]1 → ↑ ℓ K[ ℤ/4ℤ ]1 mul2′ = lift ∘ K.map mul2ʰ ∘ lower conn : (x : ↑ ℓ K[ ℤ/4ℤ ]1) → ∥ mul2′ ⁻¹ x ∥ conn = T.∥∥-map (Σ-map lift (cong lift)) ∘ K[ℤ/4ℤ]-connected ∘ lower inj : Injective mul2′ inj = cong lift ∘ map-mul2ʰ-injective ∘ cong lower -- The retraction, and the proof showing that it is a -- retraction. r₁ : K[ ℤ/4ℤ ]1 → K[ ℤ/2ℤ ]1 r₁ = proj₁ map-mul2ʰ-has-retraction r₁-retraction : r₁ ∘ K.map mul2ʰ ≡ id r₁-retraction = proj₂ map-mul2ʰ-has-retraction -- A lemma related to r₁. r₁-lemma : trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (cong (K.map mul2ʰ) p)) (cong (_$ base) r₁-retraction)) ≡ p r₁-lemma {p = p} = trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (cong (K.map mul2ʰ) p)) (cong (_$ base) r₁-retraction)) ≡⟨ cong (trans _) $ cong (flip trans _) $ cong-∘ _ _ _ ⟩ trans (sym $ cong (_$ base) r₁-retraction) (trans (cong (r₁ ∘ K.map mul2ʰ) p) (cong (_$ base) r₁-retraction)) ≡⟨ cong (trans _) $ naturality (λ x → cong (_$ x) r₁-retraction) ⟩ trans (sym $ cong (_$ base) r₁-retraction) (trans (cong (_$ base) r₁-retraction) (cong id p)) ≡⟨ trans-sym-[trans] _ _ ⟩ cong id p ≡⟨ sym $ cong-id _ ⟩∎ p ∎ -- A variant of r₁ that is definitionally equal to base for -- base. r₂ : K[ ℤ/4ℤ ]1 → K[ ℤ/2ℤ ]1 r₂ = K.rec λ where .K.baseʳ → base .K.loopʳ i → base ≡⟨ sym $ cong (_$ base) r₁-retraction ⟩ r₁ base ≡⟨ cong r₁ (loop i) ⟩ r₁ base ≡⟨ cong (_$ base) r₁-retraction ⟩∎ base ∎ .K.loop-idʳ → trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (loop ℤ/4ℤ.id)) (cong (_$ base) r₁-retraction)) ≡⟨ cong (trans _) $ cong (flip trans _) $ cong (cong r₁) $ sym K.rec-loop ⟩ trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (cong (K.map mul2ʰ) (loop ℤ/2ℤ.id))) (cong (_$ base) r₁-retraction)) ≡⟨ r₁-lemma ⟩ loop ℤ/2ℤ.id ≡⟨ K.loop-id ⟩∎ refl _ ∎ .K.loop-∘ʳ {x = x} {y = y} → trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (loop (x ℤ/4ℤ.+ y))) (cong (_$ base) r₁-retraction)) ≡⟨ cong (trans _) $ cong (flip trans _) $ cong (cong r₁) $ K.loop-∘ ⟩ trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (trans (loop x) (loop y))) (cong (_$ base) r₁-retraction)) ≡⟨ trans (cong (trans _) $ trans (cong (flip trans _) $ cong-trans _ _ _) $ trans-assoc _ _ _) $ sym $ trans-assoc _ _ _ ⟩ trans (trans (sym $ cong (_$ base) r₁-retraction) (cong r₁ (loop x))) (trans (cong r₁ (loop y)) (cong (_$ base) r₁-retraction)) ≡⟨ trans (cong (trans _) $ sym $ trans--[trans-sym] _ _) $ trans (sym $ trans-assoc _ _ _) $ cong (flip trans _) $ trans-assoc _ _ _ ⟩∎ trans (trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (loop x)) (cong (_$ base) r₁-retraction))) (trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (loop y)) (cong (_$ base) r₁-retraction))) ∎ .K.is-groupoidʳ → K.is-groupoid -- The functions r₁ and r₂ are pointwise equal. r₁≡r₂ : ∀ x → r₁ x ≡ r₂ x r₁≡r₂ = K.elim-set λ where .K.is-setʳ _ → K.is-groupoid .K.baseʳ → r₁ base ≡⟨ cong (_$ base) r₁-retraction ⟩∎ r₂ base ∎ .K.loopʳ i → subst (λ x → r₁ x ≡ r₂ x) (loop i) (cong (_$ base) r₁-retraction) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong r₁ (loop i))) (trans (cong (_$ base) r₁-retraction) (cong r₂ (loop i))) ≡⟨ cong (trans _) $ cong (trans _) K.rec-loop ⟩ trans (sym (cong r₁ (loop i))) (trans (cong (_$ base) r₁-retraction) (trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (loop i)) (cong (_$ base) r₁-retraction)))) ≡⟨ cong (trans _) $ trans--[trans-sym] _ _ ⟩ trans (sym (cong r₁ (loop i))) (trans (cong r₁ (loop i)) (cong (_$ base) r₁-retraction)) ≡⟨ trans-sym-[trans] _ _ ⟩∎ cong (_$ base) r₁-retraction ∎ -- Thus r₂ is also a retraction of K.map mul2ʰ. r₂-retraction : r₂ ∘ K.map mul2ʰ ≡ id r₂-retraction = r₂ ∘ K.map mul2ʰ ≡⟨ cong (_∘ K.map mul2ʰ) $ sym $ ⟨ext⟩ r₁≡r₂ ⟩ r₁ ∘ K.map mul2ʰ ≡⟨ r₁-retraction ⟩∎ id ∎ -- A group homomorphism from ℤ/4ℤ to ℤ/2ℤ. r₃ : ℤ/4ℤ →ᴳ ℤ/2ℤ r₃ .related = ℤ/4ℤ.Carrier ↔⟨ inverse Ω[K[ℤ/4ℤ]]≃ℤ/4ℤ ⟩ base ≡ base ↝⟨ cong r₂ ⟩ base ≡ base ↔⟨ Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ ⟩□ ℤ/2ℤ.Carrier □ r₃ .homomorphic i j = _≃_.to Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ (cong r₂ (loop (i ℤ/4ℤ.+ j))) ≡⟨ cong (_≃_.to Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ ∘ cong r₂) K.loop-∘ ⟩ _≃_.to Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ (cong r₂ (trans (loop i) (loop j))) ≡⟨ cong (_≃_.to Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ) $ cong-trans _ _ _ ⟩ _≃_.to Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ (trans (cong r₂ (loop i)) (cong r₂ (loop j))) ≡⟨ K.Fundamental-group′[K1]≃ᴳ univ K.is-groupoid .homomorphic _ _ ⟩∎ _≃_.to Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ (cong r₂ (loop i)) ℤ/2ℤ.+ _≃_.to Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ (cong r₂ (loop j)) ∎ -- The homomorphism r₃ is a retraction of mul2. r₃-retraction : ∀ i → Homomorphic.to r₃ (mul2 i) ≡ i r₃-retraction i = _≃_.to Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ (cong r₂ (loop (mul2 i))) ≡⟨ cong (_≃_.to Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ) lemma ⟩ _≃_.to Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ (loop i) ≡⟨ _≃_.right-inverse-of Ω[K[ℤ/2ℤ]]≃ℤ/2ℤ _ ⟩∎ i ∎ where lemma = cong r₂ (loop (mul2 i)) ≡⟨ K.rec-loop ⟩ trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (loop (mul2 i))) (cong (_$ base) r₁-retraction)) ≡⟨ cong (trans _) $ cong (flip trans _) $ cong (cong r₁) $ sym K.rec-loop ⟩ trans (sym $ cong (_$ base) r₁-retraction) (trans (cong r₁ (cong (K.map mul2ʰ) (loop i))) (cong (_$ base) r₁-retraction)) ≡⟨ r₁-lemma ⟩∎ loop i ∎ -- 0 and 1 are equal when viewed as elements of ℤ/2ℤ. 0≡1 : _≡_ {A = ℤ/2ℤ.Carrier} Q.[ + 0 ] Q.[ + 1 ] 0≡1 = Q.[ + 0 ] ≡⟨ sym $ C.ℤ/2ℤ-+≡0 (Homomorphic.to r₃ Q.[ + 1 ]) ⟩ Homomorphic.to r₃ Q.[ + 1 ] ℤ/2ℤ.+ Homomorphic.to r₃ Q.[ + 1 ] ≡⟨ sym $ r₃ .homomorphic Q.[ + 1 ] Q.[ + 1 ] ⟩ Homomorphic.to r₃ Q.[ + 2 ] ≡⟨⟩ Homomorphic.to r₃ (mul2 Q.[ + 1 ]) ≡⟨ r₃-retraction Q.[ + 1 ] ⟩∎ Q.[ + 1 ] ∎ -- However, this is contradictory. contradiction : ⊥ contradiction = C.ℤ/ℤ-0≢1 0 0≡1 -- It is not the case that, for every type A : Type a and merely -- inhabited type B : Type a, every weakly constant function from B to -- A ≃ A is coherently constant (assuming univalence). -- -- This result is due to Sattler (personal communication), building on -- work by Shulman (see "Not every weakly constant function is -- conditionally constant"). ¬-Constant→Coherently-constant : Univalence lzero → ¬ ((A B : Type a) → ∥ A ∥ → (f : A → B ≃ B) → Constant f → Coherently-constant f) ¬-Constant→Coherently-constant {a = a} univ = ((A B : Type a) → ∥ A ∥ → (f : A → B ≃ B) → Constant f → Coherently-constant f) ↝⟨ flip ⟩ ((B : Type a) → CCC (B ≃ B)) ↝⟨ CCC-≃→CCC-K ⟩ ((G : Group lzero) → Abelian G → CCC (↑ a K[ G ]1)) ↝⟨ (λ hyp G abelian → CCC→IR (hyp G abelian)) ⟩ ((G : Group lzero) → Abelian G → IR (↑ a K[ G ]1)) ↝⟨ (λ hyp → hyp ℤ/2ℤ C.ℤ/ℤ-abelian) ⟩ IR (↑ a K[ ℤ/2ℤ ]1) ↝⟨ ¬IR ⟩□ ⊥ □ where open ¬-Constant→Coherently-constant a univ
{ "alphanum_fraction": 0.4139959803, "avg_line_length": 43.5748407643, "ext": "agda", "hexsha": "6d03952c2e02359743581537b0b0f06c6b5a2e50", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Coherently-constant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Coherently-constant.agda", "max_line_length": 142, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Coherently-constant.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 9543, "size": 27365 }
{- https://serokell.io/blog/playing-with-negation Constructive and Non-Constructive Proofs in Agda (Part 3): Playing with Negation Danya Rogozin Friday, November 30th, 2018 Present an empty type to work with constructive negation. Discuss Markov’s principle and apply this principle for one use case. Declare the double negation elimination as a postulate. Some examples of non-constructive proofs in Agda. ------------------------------------------------------------------------------ Empty type -} -- Type with no constructors (so-called bottom). -- Type that corresponds to an absurd statement or contradiction. data ⊥ : Set where -- ¬ defines negation. ¬A denotes that any proof of A yields a proof of a contradiction: ¬_ : Set → Set ¬ A = A → ⊥ -- elimination of ⊥ : derives an arbitrary statement from bottom exFalso : {A : Set} → ⊥ → A exFalso () -- examples of propositions with negation that are provable constructively. -- Derives an arbitrary formula from a contradiction. -- The first argument f has a type ¬ A (or A → ⊥). -- The second argument x has a type A. -- Thus f x is an object of type ⊥. -- Hence exContr (f x) has a type B. exContr : {A B : Set} → ¬ A → A → B exContr f x = exFalso (f x) exContr2 : {A B : Set} → (A → ⊥) → A → B exContr2 f x = exFalso (f x) -- g proves B → ⊥ -- f proves A → B -- g ∘ f proves A → ⊥, i.e. ¬ A. contraposition : {A B : Set} → (A → B) → (¬ B → ¬ A) contraposition f g = g ∘ f -- negation on formula A. -- If possible to derive contradictionary consequences B and ¬ B from the statement A, -- then any proof of A yields ⊥. ¬-intro : {A B : Set} → (A → B) → (A → ¬ B) → ¬ A ¬-intro f g x = g x (f x) {- disjImpl establishes a connection between disjunction and implication. If prove ¬ A ∨ B and have a proof of A. If have a proof of ¬ A, then we have proved B by ex-falso. If have a proof of B, then we have already proved B trivially. So, we have obtained a proof of B by case analysis (i.e., pattern-matching). -} disjImpl : {A B : Set} → ¬ A ⊎ B → A → B disjImpl (inj₁ x) a = exContr x a disjImpl (inj₂ y) a = y
{ "alphanum_fraction": 0.6467209191, "avg_line_length": 28.6164383562, "ext": "agda", "hexsha": "aebce9b9798bcec41bf26eae3703be86cc9ea018", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/paper/2018-11-danya-rogozin-serokell-constructive-and-non-cons-proofs-in-agda/src/Part3_Playing_with_Negation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/paper/2018-11-danya-rogozin-serokell-constructive-and-non-cons-proofs-in-agda/src/Part3_Playing_with_Negation.agda", "max_line_length": 88, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/paper/2018-11-danya-rogozin-serokell-constructive-and-non-cons-proofs-in-agda/src/Part3_Playing_with_Negation.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 620, "size": 2089 }
{-# OPTIONS --without-K #-} module semisimplicial where open import Agda.Primitive open import Data.Nat open import big-endian -- N-truncated, augmented semisimplicial types. -- Universe polymorphism has not been added yet -- (should be very easy, at the cost of even more bloat of type signatures). -- There is a canonical bijection between natural numbers (thought of in big-endian encoding) and -- simplices of Δ^∞. An *ideal* is a downward-closed set of simplices in this ordering. -- Each nontrivial ideal is principal, so the ideals are well-ordered by inclusion, -- or equivalently by looking at their last face (the generator of the ideal) and ordering as a natural number. -- Not every simplicial subset of a simplex is an ideal, but among the ideals are the simplices themselves -- (in binary, a simplex is 11...11), as well as the boundaries of simplices (11...10). -- The definition here defines an N-truncated, augmented semismplicial type X by starting with -- an N-1 -truncated, augmented semisimplicial type XUnd, and then inductively defining the set of maps -- into X from each ideal in turn, until we reach the boundary of the N-simplex. -- Then we supply a set of fillers for these boundaries, i.e. the set of N-simplices. -- Along the way we keep track of face relationships to know how to glue to get from one ideal to the next. -- A truncated augmented simplicial set which has simplices of augmented dimension =< N data sSet : ∀ (N : ℕ) → Set₁ -- Filling data for spheres of augmented dimension N required to promote from sSet N to sSet (suc N) record FillData {N : ℕ} (XUnd : sSet N) : Set₁ -- Build by induction on dimension. data sSet where Aug : Set → sSet 0 reedy : ∀ {N : ℕ} → ∀ (XUnd : sSet N) → ∀ (XFill : FillData XUnd) → sSet (suc N) -- Given X and F, tells you the set of ideals in X of the shape "weakly preceeding F" -- Note that "a face with N+1 digits" is a sneaky equivalent to "a simplex with at most N+1 digits" IdealIn : ∀ {N : ℕ} → ∀ (X : sSet N) → ∀ {d : ℕ} → ∀ (F : Face N d) → Set -- Given X G, x, x', tells you whether x' is the G-shaped face of x. -- F' will be the pullback of F by G, but padded out with zeros to have N bits. -- (It is not explicitly enforced that F' is the pullback, but the constructors will be such -- that no "isFaceOf" relation ever gets built when that is not the case) isFaceOf : ∀ {N : ℕ} → ∀ (X : sSet N) → ∀ {d : ℕ} → {F : Face N d} → ∀ (x : IdealIn X F ) → ∀ {d' : ℕ} → ∀ {F' : Face N d'} → ∀ (x' : IdealIn X F') → ∀ {n' : ℕ} → ∀ (G : Face N n') → Set -- The filling data just needs to tell you how to fill spheres. record FillData {N} XUnd where constructor fillData field FillX : IdealIn XUnd (PreDelta+ N) → Set -- The following type deals with wrapping issues. -- When building an N-truncated semisimplicial type X, we will need to know -- when one ideal x in X was constructed from another ideal y in X -- via particular constructors. But this constructor could have been applied at *any* -- earlier stage k, and so x and y will be wrapped N-k times in the passage from a -- k-truncated semisimplicial set to an N-truncated one. Thus we won't be able to -- directly look at the constructors used to form y from x. -- The type isBuildOf keeps track of this information for us as we wrap things to increasing depth. -- -- Let sx be of shape one bigger than x, let y be the last face of x, -- and let sy be of shape one bigger than y. -- Then isBuildOf x sx y sy will tell you if sx was built from x by attaching sy at y. isBuildOf : ∀ {N : ℕ} → ∀ (X : sSet N) → ∀ {d : ℕ} → ∀ {F : Face N d} → ∀ (x : IdealIn X F) → ∀ {sd : ℕ} → ∀ {sF : Face N sd} → -- ∀ (fsf : isSucF F sF) → ∀ (sx : IdealIn X sF) → ∀ {e : ℕ} → ∀ {G : Face N e} → ∀ (y : IdealIn X G) → ∀ {se : ℕ} → ∀ {sG : Face N se} → -- ∀ (gsg : isSucF G sG) → ∀ (sy : IdealIn X sG) → Set --These things will be defined inductively, with special cases for N = 0. data IdealIn0 (X0 : Set) : ∀ {d : ℕ} → ∀ (F : Face zero d) → Set where taut0 : ∀ (x : X0) → IdealIn0 X0 (inc emp) data isFaceOf0 (X0 : Set) : ∀ {d : ℕ} → ∀ {F : Face zero d} → IdealIn0 X0 F → ∀ {d' : ℕ} → ∀ {F' : Face zero d'} → IdealIn0 X0 F' → ∀ {n' : ℕ} → ∀ (G : Face zero n') → Set where refl0 : ∀ (x : X0) → isFaceOf0 X0 (taut0 x) (taut0 x) (inc emp) data isBuildOf0 (X0 : Set) : ∀ {d : ℕ} → ∀ {F : Face 0 d} → ∀ (x : IdealIn0 X0 F) → ∀ {sd : ℕ} → ∀ {sF : Face 0 sd} → -- ∀ (fsf : isSucF F sF) → ∀ (sx : IdealIn0 X0 sF) → ∀ {e : ℕ} → ∀ {G : Face 0 e} → ∀ (y : IdealIn0 X0 G) → ∀ {se : ℕ} → ∀ {sG : Face 0 se} → -- ∀ (gsg : isSucF G sG) → ∀ (sy : IdealIn0 X0 sG) → Set where -- In dimension N+1, the definitions will be more complicated. data IdealInN {N : ℕ} (XUnd : sSet N) (XFill : FillData XUnd) : ∀ {d : ℕ} → ∀ (F : Face (suc N) d) → Set data isFaceOfN {N : ℕ} (XUnd : sSet N) (XFill : FillData XUnd) : ∀ {d : ℕ} → ∀ {F : Face (suc N) d} → IdealInN XUnd XFill F → ∀ {d' : ℕ} → ∀ {F' : Face (suc N) d'} → IdealInN XUnd XFill F' → ∀ {n' : ℕ} → ∀ (G : Face (suc N) n') → Set data isBuildOfN {N : ℕ} (XUnd : sSet N) (XFill : FillData XUnd) : ∀ {d : ℕ} → ∀ {F : Face (suc N) d} → ∀ (x : IdealInN XUnd XFill F) → ∀ {sd : ℕ} → ∀ {sF : Face (suc N) sd} → -- ∀ (fsf : isSucF F sF) → ∀ (sx : IdealInN XUnd XFill sF) → ∀ {e : ℕ} → ∀ {G : Face (suc N) e} → ∀ (y : IdealInN XUnd XFill G) → ∀ {se : ℕ} → ∀ {sG : Face (suc N) se} → -- ∀ (gsg : isSucF G sG) → ∀ (sy : IdealInN XUnd XFill sG) → Set --Inductive definitions of all of this data. IdealIn (Aug X0) = IdealIn0 X0 IdealIn (reedy XUnd XFill) = IdealInN XUnd XFill isFaceOf (Aug X0) = isFaceOf0 X0 isFaceOf (reedy XUnd XFill) = isFaceOfN XUnd XFill -- isBuildOf (reedy XUnd XFill) = isBuildOfN XUnd XFill isBuildOf (Aug X0) = isBuildOf0 X0 isBuildOf (reedy XUnd XFill) = isBuildOfN XUnd XFill data IdealInN {N} XUnd XFill where --Inherit ideals from the previous dimension. Need to tack on a leading zero. oldN : ∀ {d : ℕ} → ∀ {F : Face N d} → ∀ (x : IdealIn XUnd F) → IdealInN XUnd XFill (0x F) -- Promote the ideal given by filling a sphere from the previous dimension. fillN : ∀ {x : IdealIn XUnd (PreDelta+ N)} → ∀ (z : FillData.FillX XFill x) → IdealInN XUnd XFill (0x (inc (Delta+ N))) --Build a new closed ideal from an open ideal and some previously-constructed filling data. -- sF is required to be a simplex, so that it is a *new* thing to build and not already previously constructed. -- x is of shape "strictly below sF". -- y is the sF-face of x, i.e. the boundary of the next simplex to be added to complete to "weakly below sF". -- so y ought to be of shape "boundary of a simplex", but this is not enforced explicitly. -- sy is an ideal (so should be in fact a simplex) filling y. -- We obtain buildN z xy of shape "weakly below S" by gluing z onto x along y. buildN : ∀ {d : ℕ} → ∀ {F : Face (suc N) d} → ∀ (x : IdealInN XUnd XFill F) → ∀ {sd : ℕ} → ∀ {sF : Simp (suc N) (suc sd)} → ∀ (fsf : isSucF F (inc sF)) → ∀ {e : ℕ} → ∀ {G : Face (suc N) e} → ∀ {y : IdealInN XUnd XFill G} → ∀ (xy : isFaceOfN XUnd XFill x y (inc sF)) → ∀ {se : ℕ} → ∀ {sG : Face (suc N) (suc se)} → ∀ (gsg : isSucF G sG) → ∀ (sy : IdealInN XUnd XFill sG) → ∀ (ysy : isBuildOfN XUnd XFill y sy y sy) → IdealInN XUnd XFill (inc sF) data isFaceOfN {N} XUnd XFill where --Inherit face relations from the previous dimension. Need to tack on a leading zero. -- If x' is a G - face of x in the previous dimension, -- then oldN x' is a 0x G - face of oldN x, and also a 1x G -face of oldN x. oldOld0N : ∀ {d : ℕ} → ∀ {F : Face N d} → ∀ {d' : ℕ} → ∀ {F' : Face N d'} → ∀ {n' : ℕ} → ∀ {G : Face N n'} → ∀ {x : IdealIn XUnd F} → ∀ {x' : IdealIn XUnd F'} → ∀ (xx' : isFaceOf XUnd x x' G) → isFaceOfN XUnd XFill (oldN x) (oldN x') (0x G) oldOld1N : ∀ {d : ℕ} → ∀ {F : Face N d} → ∀ {d' : ℕ} → ∀ {F' : Face N d'} → ∀ {n' : ℕ} → ∀ {G : Face N n'} → ∀ {x : IdealIn XUnd F} → ∀ {x' : IdealIn XUnd F'} → ∀ (xx' : isFaceOf XUnd x x' G) → isFaceOfN XUnd XFill (oldN x) (oldN x') (inc (1x G)) -- When filling a top-dimensional sphere from the previous dimension, need to inherit faces from the boundary being filled. -- If x is an N-sphere filled by z, and x' is an old G-face of x, -- then oldN x' is a 0x G - face of fillN z, and also a 1x G - face of fillN z. oldFill0N : ∀ {x : IdealIn XUnd (PreDelta+ N)} → ∀ (z : FillData.FillX XFill x) → ∀ {d : ℕ} → ∀ {F : Face N d} → ∀ {x' : IdealIn XUnd F} → ∀ {n' : ℕ} → ∀ {G : Face N n'} → ∀ (xx' : isFaceOf XUnd x x' G) → isFaceOfN XUnd XFill (fillN z) (oldN x') (0x G) oldFill1N : ∀ {x : IdealIn XUnd (PreDelta+ N)} → ∀ (z : FillData.FillX XFill x) → ∀ {d : ℕ} → ∀ {F : Face N d} → ∀ {x' : IdealIn XUnd F} → ∀ {n' : ℕ} → ∀ {G : Face N n'} → ∀ (xx' : isFaceOf XUnd x x' G) → isFaceOfN XUnd XFill (fillN z) (oldN x') (inc (1x G)) -- When filling a top-dimensional sphere from the previous dimension, need to put in a reflexivity face relation. -- There are actually two -- one for the face 111111 and one for the face 011111 reflFill0N : ∀ {x : IdealIn XUnd (PreDelta+ N)} → ∀ (z : FillData.FillX XFill x) → isFaceOfN XUnd XFill (fillN z) (fillN z) (0x (inc (Delta+ N))) reflFill1N : ∀ {x : IdealIn XUnd (PreDelta+ N)} → ∀ (z : FillData.FillX XFill x) → isFaceOfN XUnd XFill (fillN z) (fillN z) (inc (1x (inc (Delta+ N)))) -- When building a new ideal, need to inherit faces from the open ideal being filled. -- This function takes 21 arguments, 7 of them explicit. I believe it is the second-longest type signature in the file. -- sF is required to be a simplex, so that it is a *new* thing to build and not already previously constructed. -- x is of shape "strictly below sF". -- y is the sF-face of x, i.e. the boundary of the next simplex to be added to complete to "weakly below sF". -- so y ought to be of shape "boundary of a simplex", but this is not enforced explicitly. -- sy is an ideal (so should be in fact a simplex) filling y. -- x' is a face of x. -- conclude that, when you glue sy to x along y, you have x' as a face. oldBuildN : ∀ {d : ℕ} → ∀ {F : Face (suc N) d} → ∀ (x : IdealInN XUnd XFill F) → ∀ {sd : ℕ} → ∀ {sF : Simp (suc N) (suc sd)} → ∀ (fsf : isSucF F (inc sF)) → ∀ {e : ℕ} → ∀ {G : Face (suc N) e} → ∀ {y : IdealInN XUnd XFill G} → ∀ (xy : isFaceOfN XUnd XFill x y (inc sF)) → ∀ {se : ℕ} → ∀ {sG : Face (suc N) (suc se)} → ∀ (gsg : isSucF G sG) → ∀ (sy : IdealInN XUnd XFill sG) → ∀ (ysy : isBuildOfN XUnd XFill y sy y sy) → ∀ {d' : ℕ} → ∀ {F' : Face (suc N) d'} → ∀ {x' : IdealInN XUnd XFill F'} → ∀ {n' : ℕ} → ∀ {H : Face (suc N) n'} → ∀ (xx' : isFaceOfN XUnd XFill x x' H) → isFaceOfN XUnd XFill (buildN x fsf xy gsg sy ysy) x' H -- When building a new ideal, need to put in "mixed" faces, built from faces of the open ideal being filled and the filling data. -- This constructor takes 32 arguments, 13 of them explicit. I believe that's the longest in the file. -- sF is required to be a simplex, so that it is a *new* thing to build and not already previously constructed. -- x is of shape "strictly below sF". -- y is the sF-face of x, i.e. the boundary of the next simplex to be added to complete to "weakly below sF". -- so y ought to be of shape "boundary of a simplex", but this is not enforced explicitly. -- sy is an ideal (so should be in fact a simplex) filling y. -- x' is a face of x. -- conclude that when you glue sy to x along y, then sx' is a face. mixBuildN : ∀ {d : ℕ} → ∀ {F : Face (suc N) d} → ∀ (x : IdealInN XUnd XFill F) → ∀ {sd : ℕ} → ∀ {sF : Simp (suc N) (suc sd)} → ∀ (fsf : isSucF F (inc sF)) → ∀ {e : ℕ} → ∀ {G : Face (suc N) e} → ∀ {y : IdealInN XUnd XFill G} → ∀ (xy : isFaceOfN XUnd XFill x y (inc sF)) → ∀ {se : ℕ} → ∀ {sG : Face (suc N) (suc se)} → ∀ (gsg : isSucF G sG) → ∀ (sy : IdealInN XUnd XFill sG) → ∀ (ysy : isBuildOfN XUnd XFill y sy y sy) → ∀ {d' : ℕ} → ∀ {F' : Face (suc N) d'} → ∀ {x' : IdealInN XUnd XFill F'} → ∀ {n' : ℕ} → ∀ {H : Face (suc N) n'} → ∀ (xx' : isFaceOfN XUnd XFill x x' H) → ∀ {sd' : ℕ} → ∀ {sF' : Simp (suc N) (suc sd)} → ∀ (f'sf' : isSucF F' (inc sF')) → ∀ (x'y : isFaceOfN XUnd XFill x' y (inc sF')) → ∀ {sx' : IdealInN XUnd XFill (inc sF')} → ∀ (x'sx'ysy : isBuildOfN XUnd XFill x' sx' y sy) → ∀ {n'' : ℕ} → ∀ {F'' : Face n' n''} → ∀ (shf'' : isPB (inc sF) H F'') → ∀ {00F'' : Face (suc N) n''} → ∀ (00f'' : isPadOf F'' 00F'') → isFaceOfN XUnd XFill (buildN x fsf xy gsg sy ysy) sx' 00F'' data isBuildOfN {N} XUnd XFill where -- Carry forward the old build relations from XUnd. oldIsBuildN : ∀ {d : ℕ} → ∀ {F : Face N d} → ∀ (x : IdealIn XUnd F) → ∀ {sd : ℕ} → ∀ {sF : Face N (suc sd)} → ∀ (fsf : isSucF F sF) → ∀ (sx : IdealIn XUnd sF) → ∀ {e : ℕ} → ∀ {G : Face N e} → ∀ (y : IdealIn XUnd G) → ∀ {se : ℕ} → ∀ {sG : Face N (suc se)} → ∀ (gsg : isSucF G sG) → ∀ (sy : IdealIn XUnd sG) → isBuildOf XUnd x sx y sy → isBuildOfN XUnd XFill (oldN x) (oldN sx) (oldN y) (oldN sy) -- When filling an N-boundary, we have a reflexive build relationship. fillIsBuildN : ∀ {x : IdealIn XUnd (PreDelta+ N)} → ∀ (z : FillData.FillX XFill x) → isBuildOfN XUnd XFill (oldN x) (fillN z) (oldN x) (fillN z) -- When we build a new ideal, record it here. buildIsBuildN : ∀ {d : ℕ} → ∀ {F : Face (suc N) d} → ∀ (x : IdealInN XUnd XFill F) → ∀ {sd : ℕ} → ∀ {sF : Simp (suc N) (suc sd)} → ∀ (fsf : isSucF F (inc sF)) → ∀ {e : ℕ} → ∀ {G : Face (suc N) e} → ∀ {y : IdealInN XUnd XFill G} → ∀ (xy : isFaceOfN XUnd XFill x y (inc sF)) → ∀ {se : ℕ} → ∀ {sG : Face (suc N) (suc se)} → ∀ (gsg : isSucF G sG) → ∀ (sy : IdealInN XUnd XFill sG) → ∀ (ysy : isBuildOfN XUnd XFill y sy y sy) → isBuildOfN XUnd XFill x (buildN x fsf xy gsg sy ysy) y sy
{ "alphanum_fraction": 0.5391550747, "avg_line_length": 61.8645418327, "ext": "agda", "hexsha": "7d84f524232cc34bad2077329e13439a528ed9c6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "32e4befba7b51aa663bad4b1fd89777499f51ca1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tcampion/Semisimplicial", "max_forks_repo_path": "semisimplicial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "32e4befba7b51aa663bad4b1fd89777499f51ca1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tcampion/Semisimplicial", "max_issues_repo_path": "semisimplicial.agda", "max_line_length": 137, "max_stars_count": 4, "max_stars_repo_head_hexsha": "32e4befba7b51aa663bad4b1fd89777499f51ca1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tcampion/Semisimplicial", "max_stars_repo_path": "semisimplicial.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-22T18:40:34.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-16T18:34:08.000Z", "num_tokens": 5346, "size": 15528 }
-- Andreas, 2020-04-15, issue #4586 -- Better error for invalid let pattern. test : Set₁ test = let () = Set in Set -- WAS: -- Set₁ should be empty, but that's not obvious to me -- when checking that the pattern () has type Set₁ -- EXPECTED: -- Not a valid let pattern -- when scope checking let () = Set in Set
{ "alphanum_fraction": 0.6563467492, "avg_line_length": 21.5333333333, "ext": "agda", "hexsha": "14f2dc07d69c2735f88f25c992d2fe9491527fba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4586LetPatternAbsurd.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4586LetPatternAbsurd.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4586LetPatternAbsurd.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 93, "size": 323 }
{-# OPTIONS --without-K #-} module Preliminaries where open import lib.Basics hiding (_⊔_) open import lib.NType2 open import lib.types.Nat hiding (_+_) open import lib.types.Pi open import lib.types.Sigma hiding (×-comm) open import lib.types.Unit open import lib.types.TLevel open import lib.types.Paths -- Most of the contents of Chapter 2.1 are in the library, e.g. -- natural numbers. We only do the following two adaptions here: -- A readable notation for the join of universe levels. infixr 8 _⊔_ _⊔_ : ULevel → ULevel → ULevel _⊔_ = lmax -- Addition operator adjustment. _+_ : ℕ → ℕ → ℕ a + b = b lib.types.Nat.+ a -- n + 1 should mean S n (author preference)! -- Chapter 2.2: We list the lemmata and other statements here. -- Lemma 2.2.1 transport-is-comp : ∀ {i j} {X : Type i} {Y : Type j} → {x₁ x₂ : X} → (h k : X → Y) → (t : x₁ == x₂) → (p : h x₁ == k x₁) → (transport _ t p) == ! (ap h t) ∙ p ∙ ap k t transport-is-comp h k idp p = ! (∙-unit-r _) -- Lemma 2.2.2 is in the library: -- lib.NType2.raise-level-<T -- Lemma 2.2.3 is in the library as well: -- lib.types.Sigma.Σ-level -- ... and so is Definition 2.2.4: -- lib.NType2._-Type_ -- Lemma 2.2.6 as well: -- lib.types.Pi.Π-level -- Lemma 2.2.7: -- lib.NType2.has-level-is-prop module _ {i j} {A : Type i} {B : A → Type j} where module _ (h : (a : A) → is-contr (B a)) where -- Lemma 2.2.8 (i) Σ₂-contr : Σ A B ≃ A Σ₂-contr = Σ₂-Unit ∘e equiv-Σ-snd (λ _ → contr-equiv-Unit (h _)) -- Lemma 2.2.8 (ii) Π₂-contr : Π A B ≃ ⊤ Π₂-contr = Π₂-Unit ∘e equiv-Π-r (λ _ → contr-equiv-Unit (h _)) module _ (h : is-contr A) where -- Lemma 2.2.9 (i) Σ₁-contr : Σ A B ≃ B (fst h) Σ₁-contr = Σ₁-Unit ∘e equiv-Σ-fst _ (snd (contr-equiv-Unit h ⁻¹)) ⁻¹ -- Lemma 2.2.9 (ii) Π₁-contr : Π A B ≃ B (fst h) Π₁-contr = Π₁-Unit ∘e equiv-Π-l _ (snd (contr-equiv-Unit h ⁻¹)) ⁻¹ -- Lemma 2.2.10 - we refer to the library again -- lib.types.Sigma.Σ-level -- and -- lib.types.Sigma.×-level -- Lemma 2.2.11 -- lib.Equivalences.equiv-ap -- Lemma 2.2.12 and Remark 2.2.13 module TT-AC {i j k : ULevel} {A : Type i} {B : A → Type j} {C : (Σ A B) → Type k} where -- the two types: ONE = (a : A) → Σ (B a) λ b → C (a , b) TWO = Σ ((a : A) -> B a) λ g → (a : A) → C (a , g a) -- the two canonical functions: f : ONE → TWO f one = fst ∘ one , snd ∘ one g : TWO → ONE g two = λ a → (fst two) a , (snd two) a -- the compositions are indeed pointwise judgmentally -- the identity! f∘g : (two : TWO) → f (g two) == two f∘g two = idp g∘f : (one : ONE) → g (f one) == one g∘f one = idp -- Lemma 2.2.14 is in the library: -- lib.NType.pathto-is-contr -- lib.NType.pathfrom-is-contr -- This formalisation has a separated file for Pointed -- types, called 'Pointed.agda', which contains -- (among other things) Definition 2.2.15 -- and Lemma 2.2.17 -- Definition 2.2.19 LEM : ∀ {i} → Type (lsucc i) LEM {i} = (X : Type i) → is-prop X → Coprod X (¬ X) LEM∞ : ∀ {i} → Type (lsucc i) LEM∞ {i} = (X : Type i) → Coprod X (¬ X) -- The following are some auxiliary lemmata/definitions -- (not numbered in the thesis) {- The (function) exponentiation operator. For convenience, we choose to define it via postcomposition in the recursion step. -} infix 10 _^_ _^_ : ∀ {i} {A : Set i} → (A → A) → ℕ → A → A f ^ 0 = idf _ f ^ S n = (f ^ n) ∘ f -- Logical equivalence: maps in both directions _↔_ : ∀ {i j} → Type i → Type j → Type (i ⊔ j) X ↔ Y = (X → Y) × (Y → X) -- Composition of ↔ _◎_ : ∀ {i j k} {X : Type i} {Y : Type j} {Z : Type k} → (X ↔ Y) → (Y ↔ Z) → (X ↔ Z) e₁ ◎ e₂ = fst e₂ ∘ fst e₁ , snd e₁ ∘ snd e₂ -- Subsection 2.3.3 module wtrunc where postulate -- Definition 2.3.2 ∣∣_∣∣ : ∀ {i} → (X : Type i) → Type i tr-is-prop : ∀ {i} {X : Type i} → is-prop (∣∣ X ∣∣) ∣_∣ : ∀ {i} {X : Type i} → X → ∣∣ X ∣∣ tr-rec : ∀ {i j} {X : Type i} {P : Type j} → (is-prop P) → (X → P) → ∣∣ X ∣∣ → P -- Lemma 2.3.4 -- the induction principle is derivable: module _ {i j : _} {X : Type i} {P : ∣∣ X ∣∣ → Type j} (h : (z : ∣∣ X ∣∣) → is-prop (P z)) (k : (x : X) → P ∣ x ∣) where total : Type (i ⊔ j) total = Σ ∣∣ X ∣∣ P jj : X → total jj x = ∣ x ∣ , k x total-prop : is-prop total total-prop = Σ-level tr-is-prop h total-map : ∣∣ X ∣∣ → total total-map = tr-rec total-prop jj tr-ind : (z : ∣∣ X ∣∣) → P z tr-ind z = transport P (prop-has-all-paths tr-is-prop _ _) (snd (total-map z)) -- Remark 2.3.5 -- further, the propositional β-rule is derivable: trunc-β : ∀ {i j} {X : Type i} {P : Type j} → (pp : is-prop P) → (f : X → P) → (x : X) → tr-rec pp f ∣ x ∣ == f x trunc-β pp f x = prop-has-all-paths pp _ _ -- comment: Trunc is functorial trunc-functorial : ∀ {i} {j} {X : Type i} {Y : Type j} → (X → Y) → ∣∣ X ∣∣ → ∣∣ Y ∣∣ trunc-functorial f = tr-rec tr-is-prop (∣_∣ ∘ f) -- Proposition 2.3.6 impred : ∀ {i} {X : Type i} → ∣∣ X ∣∣ ↔ ((P : Type i) → is-prop P → (X → P) → P) impred {X = X} = (λ z P pp f → tr-rec pp f z) , λ h → h ∣∣ X ∣∣ tr-is-prop ∣_∣ -- Proposition 2.3.6 (second part) - note that we use funext (in the form: Π preserves truncation level) impr-equiv : ∀ {i} {X : Type i} → is-equiv (fst (impred {X = X})) impr-equiv {i} {X} = is-eq (fst (impred {X = X})) (snd (impred {X = X})) (λ top → prop-has-all-paths (Π-level (λ P → Π-level (λ pp → (Π-level (λ _ → pp))))) _ _) (λ z → prop-has-all-paths tr-is-prop _ _) -- The rest of the file contains various useful lemmata -- and definitions that are NOT in the thesis (at least -- not as numbered statements). {- Since natural numbers and universe levels use different types, we require a translation operation. We will only make use of this in chapter 7: Higher Homotopies in a Hierarchy of Univalent Universes. -} 「_」 : ℕ → ULevel 「 0 」 = lzero 「 S n 」 = lsucc 「 n 」 -- A trivial, but useful lemma. The only thing we do is hiding the arguments. prop-eq-triv : ∀ {i} {P : Type i} → {p₁ p₂ : P} → is-prop P → p₁ == p₂ prop-eq-triv h = prop-has-all-paths h _ _ -- A second such useful lemma second-comp-triv : ∀ {i} {X : Type i} → {P : X → Type i} → ((x : X) → is-prop (P x)) → (a b : Σ X P) → (fst a == fst b) → a == b second-comp-triv {P = P} h a b q = pair= q (from-transp P q (prop-eq-triv (h (fst b)))) -- the following is the function which the univalence -- axiom postulates to be an equivalence -- (we define it ourselves as we do not want to -- implicitly import the whole univalence library) path-to-equiv : ∀ {i} {X : Type i} {Y : Type i} → X == Y → X ≃ Y path-to-equiv {X = X} idp = ide X -- some rather silly lemmata delete-idp : ∀ {i} {X : Type i} → {x₁ x₂ : X} → (p q : x₁ == x₂) → (p ∙ idp == q) ≃ (p == q) delete-idp idp q = ide _ add-path : ∀ {i} {X : Type i} → {x₁ x₂ x₃ : X} → (p q : x₁ == x₂) → (r : x₂ == x₃) → (p == q) == (p ∙ r == q ∙ r) add-path idp q idp = transport (λ q₁ → (idp == q₁) == (idp == q ∙ idp)) {x = q ∙ idp} {y = q} (∙-unit-r _) idp reverse-paths : ∀ {i} {X : Type i} → {x₁ x₂ : X} → (p : x₂ == x₁) → (q : x₁ == x₂) → (! p == q) ≃ (p == ! q) reverse-paths p idp = ! p == idp ≃⟨ path-to-equiv (add-path _ _ _) ⟩ ! p ∙ p == p ≃⟨ path-to-equiv (transport (λ p₁ → (! p ∙ p == p) == (p₁ == p)) (!-inv-l p) idp) ⟩ idp == p ≃⟨ !-equiv ⟩ p == idp ≃∎ switch-args : ∀ {i j k} {X : Type i} {Y : Type j} {Z : X → Y → Type k} → ((x : X) → (y : Y) → Z x y) ≃ ((y : Y) → (x : X) → Z x y) switch-args = equiv f g h₁ h₂ where f = λ k y x → k x y g = λ i x y → i y x h₁ = λ _ → idp h₂ = λ _ → idp -- another useful (but simple) lemma: if we have a proof of (x , y₁) == (x , y₂) and the type of x is a set, we get a proof of y₁ == y₂. set-lemma : ∀ {i j} {X : Type i} → (is-set X) → {Y : X → Type j} → (x₀ : X) → (y₁ y₂ : Y x₀) → _==_ {A = Σ X Y} (x₀ , y₁) (x₀ , y₂) → y₁ == y₂ set-lemma {X = X} h {Y = Y} x₀ y₁ y₂ p = y₁ =⟨ idp ⟩ transport Y idp y₁ =⟨ transport {A = x₀ == x₀} (λ q → y₁ == transport Y q y₁) {x = idp} {y = ap fst p} (prop-has-all-paths (h x₀ x₀) _ _) idp ⟩ transport Y (ap fst p) y₁ =⟨ snd-of-p ⟩ y₂ ∎ where pairs : =Σ {B = Y} (x₀ , y₁) (x₀ , y₂) pairs = <– (=Σ-eqv _ _) p paov : y₁ == y₂ [ Y ↓ fst (pairs) ] paov = snd pairs snd-of-p : transport Y (ap fst p) y₁ == y₂ snd-of-p = to-transp paov ×-comm : ∀ {i j} {A : Type i} {B : Type j} → (A × B) ≃ (B × A) ×-comm = equiv (λ {(a , b) → (b , a)}) (λ {(b , a) → (a , b)}) (λ _ → idp) (λ _ → idp) Σ-comm-snd : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} → Σ (Σ A B) (λ ab → C (fst ab)) ≃ Σ (Σ A C) (λ ac → B (fst ac)) Σ-comm-snd {A = A} {B} {C} = Σ (Σ A B) (λ ab → C (fst ab)) ≃⟨ Σ-assoc ⟩ Σ A (λ a → B a × C a) ≃⟨ equiv-Σ-snd (λ _ → ×-comm) ⟩ Σ A (λ a → C a × B a) ≃⟨ Σ-assoc ⁻¹ ⟩ Σ (Σ A C) (λ ac → B (fst ac)) ≃∎ flip : ∀ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} → ((a : A) (b : B) → C a b) → ((b : B) (a : A) → C a b) flip = –> (curry-equiv ∘e equiv-Π-l _ (snd ×-comm) ∘e curry-equiv ⁻¹) module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where ↓-cst→app-equiv : {x x' : A} {p : x == x'} {u : (b : B) → C x b} {u' : (b : B) → C x' b} → ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ]) ≃ (u == u' [ (λ x → (b : B) → C x b) ↓ p ]) ↓-cst→app-equiv {p = idp} = equiv λ= app= (! ∘ λ=-η) (λ= ∘ app=-β) module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where ↓-cst2-equiv : {x y : A} (p : x == y) {b : C x} {c : C y} (q : b == c [ C ↓ p ]) {u : B x} {v : B y} → (u == v [ B ↓ p ]) ≃ (u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ]) ↓-cst2-equiv idp idp = ide _ module _ {i} {A B : Type i} (e : A ≃ B) {u : A} {v : B} where ↓-idf-ua-equiv : (–> e u == v) ≃ (u == v [ (λ x → x) ↓ (ua e) ]) ↓-idf-ua-equiv = to-transp-equiv _ _ ⁻¹ ∘e (_ , pre∙-is-equiv (ap (λ z → z u) (ap coe (ap-idf (ua e)) ∙ ap –> (coe-equiv-β e)))) -- On propositions, equivalence coincides with logical equivalence. module _ {i j} {A : Type i} {B : Type j} where prop-equiv' : (B → is-prop A) → (A → is-prop B) → (A → B) → (B → A) → A ≃ B prop-equiv' h k f g = equiv f g (λ b → prop-has-all-paths (k (g b)) _ _) (λ a → prop-has-all-paths (h (f a)) _ _) prop-equiv : is-prop A → is-prop B → (A → B) → (B → A) → A ≃ B prop-equiv h k f g = prop-equiv' (cst h) (cst k) f g -- Equivalent types have equivalent truncatedness propositions. equiv-level : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} → A ≃ B → has-level n A ≃ has-level n B equiv-level u = prop-equiv has-level-is-prop has-level-is-prop (equiv-preserves-level u) (equiv-preserves-level (u ⁻¹)) prop-equiv-inhab-to-contr : ∀ {i} {A : Type i} → is-prop A ≃ (A → is-contr A) prop-equiv-inhab-to-contr = prop-equiv is-prop-is-prop (Π-level (λ _ → is-contr-is-prop)) (flip inhab-prop-is-contr) inhab-to-contr-is-prop
{ "alphanum_fraction": 0.5084790673, "avg_line_length": 35.8291139241, "ext": "agda", "hexsha": "85f0a7af9d1e1e1d41110ddb9b6f0154fc37f0f9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/thesis/Preliminaries.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/thesis/Preliminaries.agda", "max_line_length": 142, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/thesis/Preliminaries.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 4649, "size": 11322 }
{-# OPTIONS --type-in-type #-} -- NOT SOUND! open import Data.Empty using (⊥) open import Data.Nat renaming (ℕ to Nat) open import Data.Nat.DivMod open import Data.Product hiding (map) open import Data.Unit using (⊤) module x where {- https://webspace.science.uu.nl/~swier004/publications/2019-icfp-submission-a.pdf A predicate transformer semantics for effects WOUTER SWIERSTRA and TIM BAANEN, Universiteit Utrecht abstract reasoning about effectful code harder than pure code predicate transformer (PT) semantics gives a refinement relation that can be used to - relate a program to its specification, or - calculate effectful programs that are correct by construction INTRODUCTION key techniques - syntax of effectful computations represented as free monads - assigning meaning to these monads gives meaning to the syntactic ops each effect provides - paper shows how to assign PT semantics to computations arising from Kleisli arrows on free monads - enables computing the weakest precondition associated with a given postcondition - using weakest precondition semantics - define refinement on computations - show how to - use this refinement relation to show a program satisfies its specification, or - calculate a program from its specification. - show how programs and specifications may be mixed, enabling verified programs to be calculated from their specification one step at a time 2 BACKGROUND Free monads -} -- C : type of commands -- Free C R : returns an 'a' or issues command c : C -- For each c : C, there is a set of responses R c -- 2nd arg of Step is continuation : how to proceed after receiving response R c data Free (C : Set) (R : C → Set) (a : Set) : Set where Pure : a → Free C R a Step : (c : C) → (R c → Free C R a) → Free C R a -- show that 'Free' is a monad: map : ∀ {a b C : Set} {R : C → Set} → (a → b) → Free C R a → Free C R b map f (Pure x) = Pure (f x) map f (Step c k) = Step c (λ r → map f (k r)) return : ∀ {a C : Set} {R : C → Set} → a → Free C R a return = Pure _>>=_ : ∀ {a b C : Set} {R : C → Set} → Free C R a → (a → Free C R b) → Free C R b Pure x >>= f = f x Step c x >>= f = Step c (λ r → x r >>= f) {- different effects choose C and R differently, depending on their ops Weakest precondition semantics idea of associating weakest precondition semantics with imperative programs dates to Dijkstra’s Guarded Command Language [1975] ways to specify behaviour of function f : a → b - reference implementation - define a relation R : a → b → Set - write contracts and test cases - PT semantics call values of type a → Set : predicate on type a PTs are functions between predicates e.g., weakest precondition: -} -- "maps" -- function f : a → b and -- desired postcondition on the function’s output, b → Set -- to weakest precondition a → Set on function’s input that ensures postcondition satisfied -- -- note: definition is just reverse function composition -- wp0 : ∀ {a b : Set} → (f : a → b) → (b → Set) → (a → Set) wp0 : ∀ {a : Set} {b : Set} (f : a → b) → (b → Set) → (a → Set) wp0 f P = λ x → P (f x) {- above wp semantics is sometimes too restrictive - no way to specify that output is related to input - fix via making f dependent: -} wp : ∀ {a : Set} {b : a → Set} (f : (x : a) → b x) → ((x : a) → b x → Set) → (a → Set) wp f P = λ x → P x (f x) -- shorthand for working with predicates and predicates transformers _⊆_ : ∀ {a : Set} → (a → Set) → (a → Set) → Set P ⊆ Q = ∀ x → P x → Q x -- refinement relation defined between PTs _⊑_ : ∀ {a : Set} {b : a → Set} → (pt1 pt2 : ((x : a) → b x → Set) → (a → Set)) → Set₁ pt1 ⊑ pt2 = ∀ P → pt1 P ⊆ pt2 P {- use refinement relation - to relate PT semantics between programs and specifications - to show a program satisfies its specification; or - to show that one program is somehow ‘better’ than another, where ‘better’ is defined by choice of PT semantics in pure setting, this refinement relation is not interesting: the refinement relation corresponds to extensional equality between functions: lemma follows from the ‘Leibniz rule’ for equality in intensional type theory: refinement : ∀ (f g : a → b) → (wp f ⊑ wp g) ↔ (∀ x → f x ≡ g x) this paper defines PT semantics for Kleisli arrows of form a → Free C R b could use 'wp' to assign semantics to these computations directly, but typically not interested in syntactic equality between free monads rather want to study semantics of effectful programs they represent to define a PT semantics for effects define a function with form: -- how to lift a predicate on 'a' over effectful computation returning 'a' pt : (a → Set) → Free C R a → Set 'pt' def depends on semantics desired for a particulr free monad Crucially, choice of pt and weakest precondition semantics, wp, together give a way to assign weakest precondition semantics to Kleisli arrows representing effectful computations 3 PARTIALITY Partial computations : i.e., 'Maybe' make choices for commands C and responses R -} data C : Set where Abort : C -- no continuation R : C → Set R Abort = ⊥ -- since C has no continuation, valid responses is empty Partial : Set → Set Partial = Free C R -- smart constructor for failure: abort : ∀ {a : Set} → Partial a abort = Step Abort (λ ()) {- computation of type Partial a will either - return a value of type a or - fail, issuing abort command Note that responses to Abort command are empty; abort smart constructor abort uses this to discharge the continuation in the second argument of the Step constructor Example: division expression language, closed under division and natural numbers: -} data Expr : Set where Val : Nat → Expr Div : Expr → Expr → Expr -- semantics specified using inductively defined RELATION: -- def rules out erroneous results by requiring the divisor evaluates to non-zero data _⇓_ : Expr → Nat → Set where Base : ∀ {x : Nat} → Val x ⇓ x Step : ∀ {l r : Expr} {v1 v2 : Nat} → l ⇓ v1 → r ⇓ (suc v2) → Div l r ⇓ (v1 div (suc v2)) -- Alternatively -- evaluate Expr via monadic INTERPRETER, using Partial to handle division-by-zero -- op used by ⟦_⟧ interpreter _÷_ : Nat → Nat → Partial Nat n ÷ zero = abort n ÷ (suc k) = return (n div (suc k)) ⟦_⟧ : Expr → Partial Nat ⟦ Val x ⟧ = return x ⟦ Div e1 e2 ⟧ = ⟦ e1 ⟧ >>= λ v1 → ⟦ e2 ⟧ >>= λ v2 → v1 ÷ v2 {- std lib 'div' requires implicit proof that divisor is non-zero when divisor is zero, interpreter fail explicitly with abort How to relate these two definitions? Assign a weakest precondition semantics to Kleisli arrows of the form a → Partial b -} wpPartial : ∀ {a : Set} {b : a → Set} → (f : (x : a) → Partial (b x)) → (P : (x : a) → b x → Set) → (a → Set) wpPartial f P = wp f (mustPT P) where mustPT : ∀ {a : Set} {b : a → Set} → (P : (x : a) → b x → Set) → (x : a) → Partial (b x) → Set mustPT P _ (Pure y) = P _ y mustPT P _ (Step Abort _) = ⊥ {- To call 'wp', must show how to transform - predicate P : b → Set - to a predicate on partial results : Partial b → Set Done via proposition 'mustPT P c' - holds when computation c of type Partial b successfully returns a 'b' that satisfies P particular PT semantics of partial computations determined by def mustPT here: rule out failure entirely - so case Abort returns empty type Given this PT semantics for Kleisli arrows in general, can now study semantics of above monadic interpreter via passing - interpreter: ⟦_⟧ - desired postcondition : _⇓_ as arguments to wpPartial: wpPartial ⟦_⟧ _⇓_ : Expr → Set resulting in a predicate on expressions for all expressions satisfying this predicate, the monadic interpreter and the relational specification, _⇓_, must agree on the result of evaluation What does this say about correctness of interpreter? To understand the predicate better, consider defining this predicate on expressions: -} SafeDiv : Expr → Set SafeDiv (Val x) = ⊤ SafeDiv (Div e1 e2) = (e2 ⇓ zero → ⊥) {-∧-} × SafeDiv e1 {-∧-} × SafeDiv e2 {- Expect : any expr e for which SafeDiv e holds can be evaluated without division-by-zero can prove SafeDiv is sufficient condition for two notions of evaluation to coincide: -- lemma relates the two semantics -- expressed as a relation and an evaluator -- for those expressions that satisfy the SafeDiv property correct : SafeDiv ⊆ wpPartial ⟦_⟧ _⇓_ Instead of manually defining SafeDiv, define more general predicate characterising the domain of a partial function: -} dom : ∀ {a : Set} {b : a → Set} → ((x : a) → Partial (b x)) → (a → Set) dom f = wpPartial f (λ _ _ → ⊤) {- can show that the two semantics agree precisely on the domain of the interpreter: sound : dom ⟦_⟧ ⊆ wpPartial ⟦_⟧ _⇓_ complete : wpPartial ⟦_⟧ _⇓_ ⊆ dom ⟦_⟧ both proofs proceed by induction on the argument expression Refinement weakest precondition semantics on partial computations give rise to a refinement relation on Kleisli arrows of the form a → Partial b can characterise this relation by proving: refinement : (f g : a → Maybe b) → (wpPartial f ⊑ wpPartial g) ↔ (∀ x → (f x ≡ g x) ∨ (f x ≡ Nothing)) use refinement to relate Kleisli morphisms, and to relate a program to a specification given by a pre- and postcondition Example: Add (interpreter for stack machine) add top two elements; can fail fail if stack has too few elements below shows how to prove the definition meets its specification Define specification in terms of a pre/post condition. The specification of a function of type (x : a) → b x consists of -} record Spec (a : Set) (b : a → Set) : Set where constructor [_,_] field pre : a → Set -- a precondition on a, and post : (x : a) → b x → Set -- a postcondition relating inputs that satisfy this precondition -- and the corresponding outputs
{ "alphanum_fraction": 0.6772434308, "avg_line_length": 31.1265432099, "ext": "agda", "hexsha": "43c965cb38852ebf903ccc463b33c324a5e6d5bf", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/paper/Dijkstra-monad/2019-03-Wouter-Swierstra_A_Predicate_Transformer_for_Effects/x.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/paper/Dijkstra-monad/2019-03-Wouter-Swierstra_A_Predicate_Transformer_for_Effects/x.agda", "max_line_length": 96, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/paper/Dijkstra-monad/2019-03-Wouter-Swierstra_A_Predicate_Transformer_for_Effects/x.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 2777, "size": 10085 }
module Issue228 where open import Common.Level postulate ∞ : Level data _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where _,_ : A → B → A × B data Large : Set ∞ where large : Large data Small : Set₁ where small : Set → Small P : Set P = Large × Small [_] : Set → P [ A ] = (large , small A) potentially-bad : P potentially-bad = [ P ]
{ "alphanum_fraction": 0.5842696629, "avg_line_length": 13.6923076923, "ext": "agda", "hexsha": "abb71f4bdb4417c77e8f33529b366b6aa94f13d6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue228.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue228.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue228.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 131, "size": 356 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Papers.HigherGroupsViaDURG where -- Johannes Schipp von Branitz, -- "Higher Groups via Displayed Univalent Reflexive Graphs in Cubical Type Theory". import Cubical.Algebra.Group as Group import Cubical.Core.Glue as Glue import Cubical.Data.Sigma.Properties as Sigma import Cubical.Data.Unit as Unit import Cubical.DStructures.Base as DSBase import Cubical.DStructures.Meta.Properties as DSProperties import Cubical.DStructures.Meta.Isomorphism as DSIsomorphism import Cubical.DStructures.Structures.Action as DSAction import Cubical.DStructures.Structures.Category as DSCategory import Cubical.DStructures.Structures.Constant as DSConstant import Cubical.DStructures.Structures.Group as DSGroup import Cubical.DStructures.Structures.Higher as DSHigher import Cubical.DStructures.Structures.Nat as DSNat import Cubical.DStructures.Structures.PeifferGraph as DSPeifferGraph import Cubical.DStructures.Structures.ReflGraph as DSReflGraph import Cubical.DStructures.Structures.SplitEpi as DSSplitEpi import Cubical.DStructures.Structures.Strict2Group as DSStrict2Group import Cubical.DStructures.Structures.Type as DSType import Cubical.DStructures.Structures.Universe as DSUniverse import Cubical.DStructures.Structures.VertComp as DSVertComp import Cubical.DStructures.Structures.XModule as DSXModule import Cubical.DStructures.Equivalences.GroupSplitEpiAction as DSGroupSplitEpiAction import Cubical.DStructures.Equivalences.PreXModReflGraph as DSPreXModReflGraph import Cubical.DStructures.Equivalences.XModPeifferGraph as DSXModPeifferGraph import Cubical.DStructures.Equivalences.PeifferGraphS2G as DSPeifferGraphS2G import Cubical.Foundations.GroupoidLaws as GroupoidLaws import Cubical.Foundations.Equiv as Equiv import Cubical.Foundations.Equiv.Fiberwise as Fiberwise import Cubical.Foundations.Filler as Filler import Cubical.Foundations.HLevels as HLevels import Cubical.Foundations.HLevels' as HLevels' import Cubical.Foundations.Isomorphism as Isomorphism import Cubical.Foundations.Prelude as Prelude import Cubical.Foundations.Path as FPath import Cubical.Foundations.Pointed as Pointed import Cubical.Foundations.Univalence as Univalence import Cubical.Foundations.Transport as Transport import Cubical.Functions.FunExtEquiv as FunExtEquiv import Cubical.Functions.Fibration as Fibration import Cubical.Relation.Binary as Binary import Cubical.HITs.EilenbergMacLane1 as EM1 import Cubical.Homotopy.Base as HomotopyBase import Cubical.Homotopy.Connected as Connected import Cubical.Homotopy.PointedFibration as PointedFibration import Cubical.Homotopy.Loopspace as Loopspace import Cubical.Structures.Subtype as Subtype import Cubical.HITs.Truncation as Truncation ---------------------------------------------------------------------------- -- 2. Cubical Type Theory -- 2.1 Dependent Type Theory -- 2.2 Path Types -- 2.3 Cubical Groupoid Laws -- 2.4 Functions, Equivalences and Univalence -- 2.5 Truncated and Connected Types -- 2.6 Groups ---------------------------------------------------------------------------- -- 2.2 Path Types -- Example 2.1 open Sigma using (ΣPath≡PathΣ) public open Prelude using (transport) public -- Proposition 2.2 open FPath using (PathP≡Path) public -- 2.3 Cubical Groupoid Laws open Prelude using (refl; transportRefl; subst; J) public renaming (cong to ap) public open Prelude using (_∙∙_∙∙_; doubleCompPath-filler; compPath-unique) public open Prelude using (_∙_) public -- Lemma 2.5 open FPath using (PathP≡doubleCompPathˡ) public -- Lemma 2.5 open GroupoidLaws using (doubleCompPath-elim) public -- Lemma 2.6 open Filler using (cube-cong) public -- 2.4 Functions, Equivalences and Univalence open Unit renaming (Unit to 𝟙) public open Prelude using (isContr) public open Unit using (isContrUnit) public -- Proposition 2.7 open Prelude using (singl; isContrSingl) public -- Definition 2.8 open Equiv renaming (fiber to fib) public open Glue using (isEquiv; _≃_; equivFun) public open Isomorphism using (Iso) public -- Proposition 2.9 open Transport using (isEquivTransport) public -- Proposition 2.10 open Fiberwise using (fiberEquiv; totalEquiv) public -- Proposition 2.11 open Sigma using (Σ-cong-equiv) public -- Definition 2.12 open HomotopyBase using (_∼_) public -- Theorem 2.13 open FunExtEquiv using (funExtEquiv) public -- Theorem 2.14 open Univalence using (univalence) public renaming (ua to idToEquiv⁻¹; uaβ to idToEquiv-β; uaη to idToEquiv-η) public -- Lemma 2.15 open Univalence using (ua→) public -- 2.5 Truncated and Connected Types open Prelude using (isProp; isSet) public open HLevels using (isOfHLevel; TypeOfHLevel) public -- Lemma 2.16 open Sigma using (Σ-contractFst; Σ-contractSnd) public -- Lemma 2.17 open Prelude using (isProp→PathP) public -- Lemma 2.18 open Subtype using (subtypeWitnessIrrelevance) public open Sigma using (Σ≡Prop) public -- Definition 2.19 open HLevels using (isOfHLevelDep) public -- Proposition 2.20 open HLevels' using (truncSelfId→truncId) public -- Proposition 2.21 open HLevels using (isOfHLevelΣ) public -- Proposition 2.22 open HLevels using (isPropIsOfHLevel) public -- Proposition 2.23 open HLevels using (isOfHLevelΠ) public -- Theorem 2.24 open Truncation using (∥_∥_; rec; elim) public -- Definition 2.25 open Connected using (isConnected; isConnectedFun) public -- Lemma 2.26 open Connected using (isConnectedPoint) public -- 2.6 Groups -- Proposition 2.28 open Group using (isPropIsGroupHom; isSetGroupHom) public -- Proposition 2.29 open Group.Kernel using (ker) public -- Proposition 2.30 open Group using (GroupMorphismExt) public -- Theorem 2.31 open Group using (GroupPath) public -- Definition 2.32 open Group using (isGroupSplitEpi) public -- Definition 2.33 open Group using (GroupAction; IsGroupAction) public -- Proposition 2.34 open Group using (semidirectProd) public ----------------------------------------------------------------------------- -- 3. Displayed Structures -- 3.1 Motivation -- 3.2 Displayed Categories -- 3.3 Univalent Reflexive Graphs -- 3.4 Displayed Univalent Reflexive Graphs -- 3.5 Operations on Displayed Univalent Reflexive Graphs -- 3.6 Constructing Equivalences Using Displayed Univalent Reflexive Graphs ----------------------------------------------------------------------------- -- 3.1 Motivation -- Proposition 3.1 open Fibration using (dispTypeIso) public -- 3.2 Displayed Categories -- Definition 3.2 -- not implemented -- Theorem 3.3 -- not implemented -- 3.3 Univalent Reflexive Graphs -- Definition 3.4, 3.5 open DSBase using (URGStr) public -- Example 3.6 open DSGroup using (𝒮-group) public -- Example 3.7 open DSCategory using (Cat→𝒮) public -- Proposition 3.8 -- not implemented -- Example 3.9 open DSNat using (𝒮-Nat) public -- Theorem 3.10 open Binary using (contrRelSingl→isUnivalent; isUnivalent→contrRelSingl) public -- Example 3.11 open DSType using (𝒮-type) public open DSUniverse using (𝒮-universe) public -- Proposition 3.12 open DSType using (𝒮-uniqueness) public -- 3.4 Displayed Univalent Reflexive Graphs -- Proposition 3.13 open DSBase using (URGStrᴰ) public open DSBase using (make-𝒮ᴰ) public -- Proposition 3.14 open DSType using (Subtype→Sub-𝒮ᴰ) public -- Example 3.15 open DSHigher using (𝒮ᴰ-connected; 𝒮ᴰ-truncated) public -- 3.5 Operations on Displayed Univalent Reflexive Graphs -- Theorem 3.16 open DSProperties using (∫⟨_⟩_) public -- Corollary 3.17 open DSConstant using (𝒮ᴰ-const) public -- Definition 3.18 open DSConstant using (_×𝒮_) public -- Theorem 3.19 open DSProperties using (splitTotal-𝒮ᴰ) public -- Proposition 3.20 open DSProperties using (VerticalLift-𝒮ᴰ) public -- Corollary 3.21 open DSProperties using (combine-𝒮ᴰ) public -- 3.6 Constructing Equivalences Using Displayed Univalent Reflexive Graphs -- Definition 3.22 open Binary using (RelIso) public -- Proposition 3.23 open DSIsomorphism using (𝒮-PIso; 𝒮-PIso→Iso) public -- Definition 3.24, Theorem 3.25 open Binary using (RelFiberIsoOver→Iso) public open DSIsomorphism using (𝒮ᴰ-♭PIso-Over→TotalIso) public ----------------------------------------------------------------------------- -- 4. Equivalence of Strict 2-Groups and Crossed Modules -- 4.1 Strict 2-Groups -- 4.2 Crossed Modules -- 4.3 Group Actions and Split Monomorphisms -- 4.4 Precrossed Modules and Internal Reflexive Graphs -- 4.5 Crossed Modules and Peiffer Graphs -- 4.6 Peiffer Graphs and Strict 2-Groups ---------------------------------------------------------------------------- -- 4.1 Strict 2-Groups -- Example 4.1 -- not implemented -- 4.2 Crossed Modules -- Definition 4.2, Example 4.3 -- not implemented -- 4.3 Group Actions and Split Monomorphisms -- Proposition 4.4 open DSGroup using (𝒮ᴰ-G²\F; 𝒮ᴰ-G²\B; 𝒮ᴰ-G²\FB) public -- Lemma 4.5 open DSSplitEpi using (𝒮ᴰ-SplitEpi) public -- Lemma 4.6 open DSAction using (𝒮ᴰ-G²\Las) public -- Lemma 4.7 open DSAction using (𝒮ᴰ-G²Las\Action) public -- Proposition 4.8, Proposition 4.9, Lemma 4.10, Theorem 4.11 open DSGroupSplitEpiAction using (𝒮ᴰ-Iso-GroupAct-SplitEpi-*; IsoActionSplitEpi) public -- 4.4 Precrossed Modules and Internal Reflexive Graphs -- Lemma 4.12 open DSXModule using (𝒮ᴰ-Action\PreXModuleStr) public -- Definition 4.13 open DSXModule using (isEquivariant; isPropIsEquivariant; PreXModule) public -- Lemma 4.14 open DSSplitEpi using (𝒮ᴰ-G²FBSplit\B) public -- Lemma 4.15 open DSReflGraph using (𝒮ᴰ-ReflGraph; ReflGraph) public -- Lemma 4.16, Lemma 4.17, Lemma 4.18, Theorem 4.19 open DSPreXModReflGraph using (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph'; Iso-PreXModule-ReflGraph) public -- 4.5 Crossed Modules and Peiffer Graphs -- Definition 4.20 open DSXModule using (XModule; isPeiffer; isPropIsPeiffer) public -- Definition 4.21 open DSPeifferGraph using (isPeifferGraph; isPropIsPeifferGraph) public -- Lemma 4.22, Lemma 4.2.3, Theorem 4.24 open DSXModPeifferGraph public -- 4.6 Peiffer Graphs and Strict 2-Groups -- Definition 4.25 open DSVertComp using (VertComp) public -- Proposition 4.26 open DSVertComp using (VertComp→+₁) public -- Proposition 4.27 open DSVertComp using (isPropVertComp) public -- Proposition 4.28, Proposition 4.29, Theorem 4.30 open DSPeifferGraphS2G public -------------------------------------------------------- -- 5. Higher Groups in Cubical Type Theory -- 5.1 Pointed Types -- 5.2 Homotopy Groups -- 5.3 Higher Groups -- 5.4 Eilenberg-MacLane-Spaces -- 5.5 Delooping Groups ------------------------------------------------------- -- 5.1 Pointed Types -- Proposition 5.1 open DSUniverse using (𝒮ᴰ-pointed) public -- Definition 5.2 open Pointed using (Π∙) public -- Definition 5.3 open Pointed using (_∙∼_; _∙∼P_) public -- Proposition 5.4 open Pointed using (∙∼≃∙∼P) public -- Theorem 5.5 open Pointed using (funExt∙≃) public -- Theorem 5.6 open PointedFibration using (sec∙Trunc') public -- 5.2 Homotopy Groups -- Definition 5.7 open Loopspace using (Ω) public -- Definition 5.8 open Group using (π₁-1BGroup) public -- 5.3 Higher Groups -- Lemma 5.9 open DSHigher using (𝒮-BGroup) public -- Definition 5.10 open Group using (BGroup) public -- Proposition 5.11 open DSHigher using (𝒮ᴰ-BGroupHom) public -- Corollary 5.12 -- not implemented -- 5.4 Eilenberg-MacLane-Spaces -- Definition 5.13 open EM1 using (EM₁) public -- Lemma 5.14 open EM1 using (emloop-comp) public -- Lemma 5.15 open EM1 using (elimEq) public -- Theorem 5.16 open EM1 renaming (elim to EM₁-elim; rec to EM₁-rec) public -- Lemma 5.17 open Group using (emloop-id; emloop-inv) public -- Theorem 5.18 open Group using (π₁EM₁≃) public -- 5.5 Delooping Groups -- Proposition 5.19, Theorem 5.20 open DSHigher using (𝒮-Iso-BGroup-Group) public
{ "alphanum_fraction": 0.6939934416, "avg_line_length": 23.9063097514, "ext": "agda", "hexsha": "96441e8809db775de1dcbf659bd54d1d3986fd06", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Papers/HigherGroupsViaDURG.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Papers/HigherGroupsViaDURG.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Papers/HigherGroupsViaDURG.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3758, "size": 12503 }
open import Mockingbird.Forest using (Forest) -- Aristocratic Birds module Mockingbird.Problems.Chapter19 {ℓb ℓ} (forest : Forest {ℓb} {ℓ}) where open import Data.Product using (_×_; _,_; ∃-syntax) open import Function using (_$_) open import Level using (_⊔_) open import Data.Vec using ([]; _∷_) open import Relation.Unary using (Pred; _∈_; _⊆_; _⊇_) open Forest forest open import Mockingbird.Forest.Birds forest open import Mockingbird.Forest.Combination.Vec forest open import Mockingbird.Forest.Combination.Vec.Properties forest open import Mockingbird.Forest.Extensionality forest import Mockingbird.Problems.Chapter11 forest as Chapter₁₁ import Mockingbird.Problems.Chapter12 forest as Chapter₁₂ problem₁″ : ⦃ _ : HasEagle ⦄ ⦃ _ : HasCardinalOnceRemoved ⦄ ⦃ _ : HasCardinalTwiceRemoved ⦄ ⦃ _ : HasWarbler ⦄ → HasJaybird problem₁″ = record { J = C** ∙ (W ∙ (C* ∙ E)) ; isJaybird = λ x y z w → begin C** ∙ (W ∙ (C* ∙ E)) ∙ x ∙ y ∙ z ∙ w ≈⟨ isCardinalTwiceRemoved (W ∙ (C* ∙ E)) x y z w ⟩ W ∙ (C* ∙ E) ∙ x ∙ y ∙ w ∙ z ≈⟨ congʳ $ congʳ $ congʳ $ isWarbler (C* ∙ E) x ⟩ C* ∙ E ∙ x ∙ x ∙ y ∙ w ∙ z ≈⟨ congʳ $ congʳ $ isCardinalOnceRemoved E x x y ⟩ E ∙ x ∙ y ∙ x ∙ w ∙ z ≈⟨ isEagle x y x w z ⟩ x ∙ y ∙ (x ∙ w ∙ z) ∎ } problem₁′ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasCardinal ⦄ ⦃ _ : HasWarbler ⦄ → HasJaybird problem₁′ = record { J = B ∙ (B ∙ C) ∙ (W ∙ (B ∙ C ∙ (B ∙ (B ∙ B ∙ B)))) ; isJaybird = isJaybird ⦃ problem₁″ ⦄ } where instance hasEagle = Chapter₁₁.problem₇ hasCardinalOnceRemoved = Chapter₁₁.problem₃₁ hasCardinalTwiceRemoved = Chapter₁₁.problem₃₅-C** problem₁ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasMockingbird ⦄ → HasJaybird problem₁ = problem₁′ where instance hasCardinal = Chapter₁₁.problem₂₁′ hasWarbler = Chapter₁₂.problem₇ problem₂ : ⦃ _ : HasJaybird ⦄ ⦃ _ : HasIdentity ⦄ → HasQuixoticBird problem₂ = record { Q₁ = J ∙ I ; isQuixoticBird = λ x y z → begin J ∙ I ∙ x ∙ y ∙ z ≈⟨ isJaybird I x y z ⟩ I ∙ x ∙ (I ∙ z ∙ y) ≈⟨ congʳ $ isIdentity x ⟩ x ∙ (I ∙ z ∙ y) ≈⟨ congˡ $ congʳ $ isIdentity z ⟩ x ∙ (z ∙ y) ∎ } problem₃ : ⦃ _ : HasQuixoticBird ⦄ ⦃ _ : HasIdentity ⦄ → HasThrush problem₃ = record { T = Q₁ ∙ I ; isThrush = λ x y → begin Q₁ ∙ I ∙ x ∙ y ≈⟨ isQuixoticBird I x y ⟩ I ∙ (y ∙ x) ≈⟨ isIdentity $ y ∙ x ⟩ y ∙ x ∎ } problem₄ : ⦃ _ : HasJaybird ⦄ ⦃ _ : HasThrush ⦄ → HasRobin problem₄ = record { R = J ∙ T ; isRobin = λ x y z → begin J ∙ T ∙ x ∙ y ∙ z ≈⟨ isJaybird T x y z ⟩ T ∙ x ∙ (T ∙ z ∙ y) ≈⟨ isThrush x $ T ∙ z ∙ y ⟩ T ∙ z ∙ y ∙ x ≈⟨ congʳ $ isThrush z y ⟩ y ∙ z ∙ x ∎ } problem₅-C* : ⦃ _ : HasCardinal ⦄ ⦃ _ : HasQuixoticBird ⦄ → HasCardinalOnceRemoved problem₅-C* = record { C* = C ∙ (Q₁ ∙ C) ; isCardinalOnceRemoved = λ x y z w → begin C ∙ (Q₁ ∙ C) ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ congʳ $ isCardinal (Q₁ ∙ C) x y ⟩ Q₁ ∙ C ∙ y ∙ x ∙ z ∙ w ≈⟨ congʳ $ congʳ $ isQuixoticBird C y x ⟩ C ∙ (x ∙ y) ∙ z ∙ w ≈⟨ isCardinal (x ∙ y) z w ⟩ x ∙ y ∙ w ∙ z ∎ } problem₅ : ⦃ _ : HasRobin ⦄ ⦃ _ : HasQuixoticBird ⦄ → HasBluebird problem₅ = record { B = C* ∙ Q₁ ; isBluebird = λ x y z → begin C* ∙ Q₁ ∙ x ∙ y ∙ z ≈⟨ isCardinalOnceRemoved Q₁ x y z ⟩ Q₁ ∙ x ∙ z ∙ y ≈⟨ isQuixoticBird x z y ⟩ x ∙ (y ∙ z) ∎ } where instance hasCardinal = Chapter₁₁.problem₂₁ hasCardinalOnceRemoved = problem₅-C* problem₆ : ⦃ _ : HasJaybird ⦄ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ → ∃[ J₁ ] (∀ x y z w → J₁ ∙ x ∙ y ∙ z ∙ w ≈ y ∙ x ∙ (w ∙ x ∙ z)) problem₆ = ( B ∙ J ∙ T , λ x y z w → begin B ∙ J ∙ T ∙ x ∙ y ∙ z ∙ w ≈⟨ (congʳ $ congʳ $ congʳ $ isBluebird J T x) ⟩ J ∙ (T ∙ x) ∙ y ∙ z ∙ w ≈⟨ isJaybird (T ∙ x) y z w ⟩ T ∙ x ∙ y ∙ (T ∙ x ∙ w ∙ z) ≈⟨ congʳ $ isThrush x y ⟩ y ∙ x ∙ (T ∙ x ∙ w ∙ z) ≈⟨ congˡ $ congʳ $ isThrush x w ⟩ y ∙ x ∙ (w ∙ x ∙ z) ∎ ) problem₇ : ⦃ _ : HasCardinal ⦄ ⦃ _ : HasThrush ⦄ → ∃[ J₁ ] (∀ x y z w → J₁ ∙ x ∙ y ∙ z ∙ w ≈ y ∙ x ∙ (w ∙ x ∙ z)) → HasMockingbird problem₇ (J₁ , isJ₁) = record { M = C ∙ (C ∙ (C ∙ J₁ ∙ T) ∙ T) ∙ T ; isMockingbird = λ x → begin C ∙ (C ∙ (C ∙ J₁ ∙ T) ∙ T) ∙ T ∙ x ≈⟨ isCardinal _ T x ⟩ C ∙ (C ∙ J₁ ∙ T) ∙ T ∙ x ∙ T ≈⟨ congʳ $ isCardinal _ T x ⟩ C ∙ J₁ ∙ T ∙ x ∙ T ∙ T ≈⟨ congʳ $ congʳ $ isCardinal J₁ T x ⟩ J₁ ∙ x ∙ T ∙ T ∙ T ≈⟨ isJ₁ x T T T ⟩ T ∙ x ∙ (T ∙ x ∙ T) ≈⟨ isThrush x (T ∙ x ∙ T) ⟩ T ∙ x ∙ T ∙ x ≈⟨ congʳ $ isThrush x T ⟩ T ∙ x ∙ x ≈⟨ isThrush x x ⟩ x ∙ x ∎ } module _ ⦃ _ : HasJaybird ⦄ ⦃ hasIdentity′ : HasIdentity ⦄ where private instance hasQuixoticBird = problem₂ hasThrush : HasThrush hasThrush = problem₃ private instance _ = hasThrush hasRobin = problem₄ hasBluebird : HasBluebird hasBluebird = problem₅ private instance _ = hasBluebird hasCardinal = Chapter₁₁.problem₂₁′ hasMockingbird : HasMockingbird hasMockingbird = problem₇ problem₆ hasIdentity : HasIdentity hasIdentity = hasIdentity′ -- Equality of predicates. infix 4 _≐_ _≐_ : ∀ {a ℓ} {A : Set a} (P Q : Pred A ℓ) → Set (a ⊔ ℓ) P ≐ Q = P ⊆ Q × Q ⊆ P module _ ⦃ _ : Extensional ⦄ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasIdentity ⦄ ⦃ _ : HasJaybird ⦄ where private ⟨B,M,T,I⟩ = ⟨ B ∷ M ∷ T ∷ I ∷ [] ⟩ ⟨J,I⟩ = ⟨ J ∷ I ∷ [] ⟩ module _ where private instance hasCardinal = Chapter₁₁.problem₂₁′ hasWarbler = Chapter₁₂.problem₇ b : B ∈ ⟨B,M,T,I⟩ b = [ here refl ] m : M ∈ ⟨B,M,T,I⟩ m = [ there (here refl) ] t : T ∈ ⟨B,M,T,I⟩ t = [ there (there (here refl)) ] c : C ∈ ⟨B,M,T,I⟩ c = b ⟨∙⟩ b ⟨∙⟩ t ⟨∙⟩ (b ⟨∙⟩ b ⟨∙⟩ t) ⟨∙⟩ (b ⟨∙⟩ b ⟨∙⟩ t) w : W ∈ ⟨B,M,T,I⟩ w = b ⟨∙⟩ (t ⟨∙⟩ (b ⟨∙⟩ m ⟨∙⟩ (b ⟨∙⟩ b ⟨∙⟩ t))) ⟨∙⟩ (b ⟨∙⟩ b ⟨∙⟩ t) ⟨J,I⟩⊆⟨B,M,T,I⟩ : ⟨J,I⟩ ⊆ ⟨B,M,T,I⟩ ⟨J,I⟩⊆⟨B,M,T,I⟩ [ here x≈J ] = subst′ (trans x≈J $ ext′ $ ext′ $ ext′ $ ext′ $ trans (isJaybird _ _ _ _) (sym $ isJaybird ⦃ problem₁′ ⦄ _ _ _ _)) (b ⟨∙⟩ (b ⟨∙⟩ c) ⟨∙⟩ (w ⟨∙⟩ (b ⟨∙⟩ c ⟨∙⟩ (b ⟨∙⟩ (b ⟨∙⟩ b ⟨∙⟩ b))))) ⟨J,I⟩⊆⟨B,M,T,I⟩ [ there (here x≈I) ] = [ there (there (there (here x≈I))) ] ⟨J,I⟩⊆⟨B,M,T,I⟩ (x∈⟨J,I⟩ ⟨∙⟩ y∈⟨J,I⟩ ∣ xy≈z) = ⟨J,I⟩⊆⟨B,M,T,I⟩ x∈⟨J,I⟩ ⟨∙⟩ ⟨J,I⟩⊆⟨B,M,T,I⟩ y∈⟨J,I⟩ ∣ xy≈z module _ where private instance hasQuixoticBird = problem₂ hasRobin = problem₄ hasCardinal = Chapter₁₁.problem₂₁ hasCardinalOnceRemoved = problem₅-C* j : J ∈ ⟨J,I⟩ j = [ here refl ] i : I ∈ ⟨J,I⟩ i = [ there (here refl) ] q₁ : Q₁ ∈ ⟨J,I⟩ q₁ = j ⟨∙⟩ i t : T ∈ ⟨J,I⟩ t = subst′ (ext′ (ext′ (trans (isThrush _ _) (sym (isThrush ⦃ problem₃ ⦄ _ _))))) $ j ⟨∙⟩ i ⟨∙⟩ i r : R ∈ ⟨J,I⟩ r = j ⟨∙⟩ t c : C ∈ ⟨J,I⟩ c = r ⟨∙⟩ r ⟨∙⟩ r c* : C* ∈ ⟨J,I⟩ c* = c ⟨∙⟩ (q₁ ⟨∙⟩ c) b : B ∈ ⟨J,I⟩ b = subst′ (ext′ (ext′ (ext′ (trans (isBluebird _ _ _) (sym (isBluebird ⦃ problem₅ ⦄ _ _ _)))))) $ c* ⟨∙⟩ q₁ m : M ∈ ⟨J,I⟩ m = subst′ (ext′ (trans (isMockingbird _) (sym (isMockingbird ⦃ problem₇ problem₆ ⦄ _)))) $ c ⟨∙⟩ (c ⟨∙⟩ (c ⟨∙⟩ (b ⟨∙⟩ j ⟨∙⟩ t) ⟨∙⟩ t) ⟨∙⟩ t) ⟨∙⟩ t ⟨J,I⟩⊇⟨B,M,T,I⟩ : ⟨J,I⟩ ⊇ ⟨B,M,T,I⟩ ⟨J,I⟩⊇⟨B,M,T,I⟩ [ here x≈B ] = subst′ x≈B b ⟨J,I⟩⊇⟨B,M,T,I⟩ [ there (here x≈M) ] = subst′ x≈M m ⟨J,I⟩⊇⟨B,M,T,I⟩ [ there (there (here x≈T)) ] = subst′ x≈T t ⟨J,I⟩⊇⟨B,M,T,I⟩ [ there (there (there (here x≈I))) ] = [ there (here x≈I) ] ⟨J,I⟩⊇⟨B,M,T,I⟩ (x∈⟨B,M,T,I⟩ ⟨∙⟩ y∈⟨B,M,T,I⟩ ∣ xy≈z) = ⟨J,I⟩⊇⟨B,M,T,I⟩ x∈⟨B,M,T,I⟩ ⟨∙⟩ ⟨J,I⟩⊇⟨B,M,T,I⟩ y∈⟨B,M,T,I⟩ ∣ xy≈z ⟨J,I⟩≐⟨B,M,T,I⟩ : ⟨ J ∷ I ∷ [] ⟩ ≐ ⟨ B ∷ M ∷ T ∷ I ∷ [] ⟩ ⟨J,I⟩≐⟨B,M,T,I⟩ = (⟨J,I⟩⊆⟨B,M,T,I⟩ , ⟨J,I⟩⊇⟨B,M,T,I⟩)
{ "alphanum_fraction": 0.4772894672, "avg_line_length": 33.5226337449, "ext": "agda", "hexsha": "cc4013bfc2885663eb664d40624408c4680d66ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Problems/Chapter19.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Problems/Chapter19.agda", "max_line_length": 125, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Problems/Chapter19.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 3933, "size": 8146 }
{- Define finitely generated ideals of commutative rings and show that they are an ideal. Parts of this should be reusable for explicit constructions of free modules over a finite set. -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.FGIdeal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Powerset open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.Vec open import Cubical.Data.Nat using (ℕ) open import Cubical.HITs.PropositionalTruncation hiding (map) open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.Ring.QuotientRing open import Cubical.Algebra.Ring.Properties open import Cubical.Algebra.RingSolver.ReflectionSolving private variable ℓ : Level module _ (Ring@(R , str) : CommRing ℓ) (r : R) where infixr 5 _holds _holds : hProp ℓ → Type ℓ P holds = fst P open CommRingStr str open RingTheory (CommRing→Ring Ring) linearCombination : {n : ℕ} → Vec R n → Vec R n → R linearCombination [] [] = 0r linearCombination (c ∷ coefficients) (x ∷ l) = c · x + linearCombination coefficients l coefficientSum : {n : ℕ} → Vec R n → Vec R n → Vec R n coefficientSum [] [] = [] coefficientSum (x ∷ c) (y ∷ c′) = x + y ∷ coefficientSum c c′ sumDist+ : (n : ℕ) (c c′ l : Vec R n) → linearCombination (coefficientSum c c′) l ≡ linearCombination c l + linearCombination c′ l sumDist+ ℕ.zero [] [] [] = solve Ring sumDist+ (ℕ.suc n) (x ∷ c) (y ∷ c′) (a ∷ l) = linearCombination (coefficientSum (x ∷ c) (y ∷ c′)) (a ∷ l) ≡⟨ refl ⟩ (x + y) · a + linearCombination (coefficientSum c c′) l ≡⟨ step1 ⟩ (x + y) · a + (linearCombination c l + linearCombination c′ l) ≡⟨ step2 ⟩ (x · a + linearCombination c l) + (y · a + linearCombination c′ l) ≡⟨ refl ⟩ linearCombination (x ∷ c) (a ∷ l) + linearCombination (y ∷ c′) (a ∷ l) ∎ where step1 = cong (λ z → (x + y) · a + z) (sumDist+ n c c′ l) autoSolve : (x y a t1 t2 : R) → (x + y) · a + (t1 + t2) ≡ (x · a + t1) + (y · a + t2) autoSolve = solve Ring step2 = autoSolve x y a _ _ dist- : (n : ℕ) (c l : Vec R n) → linearCombination (map -_ c) l ≡ - linearCombination c l dist- ℕ.zero [] [] = solve Ring dist- (ℕ.suc n) (x ∷ c) (a ∷ l) = - x · a + linearCombination (map -_ c) l ≡[ i ]⟨ - x · a + dist- n c l i ⟩ - x · a - linearCombination c l ≡⟨ step1 x a _ ⟩ - (x · a + linearCombination c l) ∎ where step1 : (x a t1 : R) → - x · a - t1 ≡ - (x · a + t1) step1 = solve Ring dist0 : (n : ℕ) (l : Vec R n) → linearCombination (replicate 0r) l ≡ 0r dist0 ℕ.zero [] = refl dist0 (ℕ.suc n) (a ∷ l) = 0r · a + linearCombination (replicate 0r) l ≡[ i ]⟨ 0r · a + dist0 n l i ⟩ 0r · a + 0r ≡⟨ step1 a ⟩ 0r ∎ where step1 : (a : R) → 0r · a + 0r ≡ 0r step1 = solve Ring isLinearCombination : {n : ℕ} → Vec R n → R → Type ℓ isLinearCombination l x = ∥ Σ[ coefficients ∈ Vec R _ ] x ≡ linearCombination coefficients l ∥ {- If x and y are linear combinations of l, then (x + y) is a linear combination. -} isLinearCombination+ : {n : ℕ} {x y : R} → (l : Vec R n) → isLinearCombination l x → isLinearCombination l y → isLinearCombination l (x + y) isLinearCombination+ l = elim (λ _ → isOfHLevelΠ 1 (λ _ → isPropPropTrunc)) (λ {(cx , px) → elim (λ _ → isPropPropTrunc) λ {(cy , py) → ∣ coefficientSum cx cy , (_ + _ ≡[ i ]⟨ px i + py i ⟩ linearCombination cx l + linearCombination cy l ≡⟨ sym (sumDist+ _ cx cy l) ⟩ linearCombination (coefficientSum cx cy) l ∎) ∣}}) {- If x is a linear combinations of l, then -x is a linear combination. -} isLinearCombination- : {n : ℕ} {x y : R} (l : Vec R n) → isLinearCombination l x → isLinearCombination l (- x) isLinearCombination- l = elim (λ _ → isPropPropTrunc) λ {(cx , px) → ∣ map -_ cx , ( - _ ≡⟨ cong -_ px ⟩ - linearCombination cx l ≡⟨ sym (dist- _ cx l) ⟩ linearCombination (map -_ cx) l ∎) ∣} {- 0r is the trivial linear Combination -} isLinearCombination0 : {n : ℕ} (l : Vec R n) → isLinearCombination l 0r isLinearCombination0 l = ∣ replicate 0r , sym (dist0 _ l) ∣ {- Linear combinations are stable under left multiplication -} isLinearCombinationL· : {n : ℕ} (l : Vec R n) → (r x : R) → isLinearCombination l x → isLinearCombination l (r · x) isLinearCombinationL· l r x = elim (λ _ → isPropPropTrunc) λ {(cx , px) → ∣ map (r ·_) cx , (r · _ ≡[ i ]⟨ r · px i ⟩ r · linearCombination cx l ≡⟨ step1 _ cx l r ⟩ linearCombination (map (r ·_) cx) l ∎) ∣} where step2 : (r c a t1 : R) → r · (c · a + t1) ≡ r · (c · a) + r · t1 step2 = solve Ring step3 : (r c a t1 : R) → r · (c · a) + t1 ≡ r · c · a + t1 step3 = solve Ring step1 : (k : ℕ) (cx l : Vec R k) → (r : R) → r · linearCombination cx l ≡ linearCombination (map (r ·_) cx) l step1 ℕ.zero [] [] r = 0RightAnnihilates _ step1 (ℕ.suc k) (c ∷ cx) (a ∷ l) r = r · (c · a + linearCombination cx l) ≡⟨ step2 r c a _ ⟩ r · (c · a) + r · linearCombination cx l ≡[ i ]⟨ r · (c · a) + step1 _ cx l r i ⟩ r · (c · a) + linearCombination (map (_·_ r) cx) l ≡⟨ step3 r c a _ ⟩ r · c · a + linearCombination (map (_·_ r) cx) l ∎ generatedIdeal : {n : ℕ} → Vec R n → IdealsIn Ring generatedIdeal l = makeIdeal Ring (λ x → isLinearCombination l x , isPropPropTrunc) (isLinearCombination+ l) (isLinearCombination0 l) λ r → isLinearCombinationL· l r _
{ "alphanum_fraction": 0.5184954927, "avg_line_length": 42.3289473684, "ext": "agda", "hexsha": "9e3467d1226f3b7bbfd652e7cd6bac5a1fb54537", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kl-i/cubical-0.3", "max_forks_repo_path": "Cubical/Algebra/CommRing/FGIdeal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kl-i/cubical-0.3", "max_issues_repo_path": "Cubical/Algebra/CommRing/FGIdeal.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kl-i/cubical-0.3", "max_stars_repo_path": "Cubical/Algebra/CommRing/FGIdeal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2160, "size": 6434 }
module Luau.Var where open import Agda.Builtin.Bool using (true; false) open import Agda.Builtin.Equality using (_≡_) open import Agda.Builtin.String using (String; primStringEquality) open import Agda.Builtin.TrustMe using (primTrustMe) open import Properties.Dec using (Dec; yes; no) open import Properties.Equality using (_≢_) Var : Set Var = String _≡ⱽ_ : (a b : Var) → Dec (a ≡ b) a ≡ⱽ b with primStringEquality a b a ≡ⱽ b | false = no p where postulate p : (a ≢ b) a ≡ⱽ b | true = yes primTrustMe
{ "alphanum_fraction": 0.7272727273, "avg_line_length": 29.7647058824, "ext": "agda", "hexsha": "23d8b56e3ca7c3dfcf0f2e9ce668e2386f54d46b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Luau/Var.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Luau/Var.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Luau/Var.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 167, "size": 506 }
------------------------------------------------------------------------------ -- Testing the translation of the propositional functions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PropositionalFunction1 where ------------------------------------------------------------------------------ postulate D : Set A : D → Set a : D -- In this case, the propositional function does not use logical -- constants. postulate foo : A a → A a {-# ATP prove foo #-}
{ "alphanum_fraction": 0.3941176471, "avg_line_length": 29.5652173913, "ext": "agda", "hexsha": "b402e4e063ee85bb68dacd6d2bc8211cc6692d33", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/PropositionalFunction1.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/PropositionalFunction1.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/PropositionalFunction1.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 110, "size": 680 }
open import Prelude module Implicits.Semantics.Term where open import Implicits.Syntax open import Implicits.WellTyped open import Implicits.Semantics.Type open import Implicits.Semantics.Context open import Implicits.Semantics.Lemmas open import Implicits.Semantics.RewriteContext open import SystemF.Everything as F using () module TermSemantics (_⊢ᵣ_ : ∀ {ν} → ICtx ν → Type ν → Set) (⟦_,_⟧r : ∀ {ν n} {K : Ktx ν n} {a} → (proj₂ K) ⊢ᵣ a → K# K → ∃ λ t → ⟦ proj₁ K ⟧ctx→ F.⊢ t ∈ ⟦ a ⟧tp→) where open TypingRules _⊢ᵣ_ -- denotational semantics of well-typed terms ⟦_,_⟧ : ∀ {ν n} {K : Ktx ν n} {t} {a : Type ν} → K ⊢ t ∈ a → K# K → F.Term ν n ⟦_,_⟧ (var x) m = F.var x ⟦_,_⟧ (Λ t) m = F.Λ ⟦ t , #tvar m ⟧ ⟦_,_⟧ (λ' a x) m = F.λ' ⟦ a ⟧tp→ ⟦ x , #var a m ⟧ ⟦_,_⟧ (f [ b ]) m = F._[_] ⟦ f , m ⟧ ⟦ b ⟧tp→ ⟦_,_⟧ (f · e) m = ⟦ f , m ⟧ F.· ⟦ e , m ⟧ ⟦_,_⟧ (ρ {a = a} _ x) m = F.λ' ⟦ a ⟧tp→ ⟦ x , #ivar a m ⟧ ⟦_,_⟧ (f ⟨ e∈Δ ⟩) m = ⟦ f , m ⟧ F.· (proj₁ ⟦ e∈Δ , m ⟧r) ⟦_,_⟧ (_with'_ r e) m = ⟦ r , m ⟧ F.· ⟦ e , m ⟧
{ "alphanum_fraction": 0.5361904762, "avg_line_length": 35, "ext": "agda", "hexsha": "e766865fa6f23ca3661bfcfec5115e2ded9ae306", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Semantics/Term.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Semantics/Term.agda", "max_line_length": 80, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Semantics/Term.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 531, "size": 1050 }
open import Agda.Builtin.String open import Agda.Builtin.Equality _ : primShowChar 'c' ≡ "'c'" _ = refl _ : primShowString "ccc" ≡ "\"ccc\"" _ = refl
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 15.3, "ext": "agda", "hexsha": "ae4684df40e508e8b9a11b4f85c5fb546fd24f07", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3830.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3830.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3830.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 52, "size": 153 }
module GGT.Bundles where open import Level open import Relation.Unary open import Relation.Binary -- using (Rel) open import Algebra.Core open import Algebra.Bundles open import GGT.Structures open import Data.Product -- do we need a left action definition? -- parametrize over Op r/l? record Action a b ℓ₁ ℓ₂ : Set (suc (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)) where infixl 6 _·_ infix 3 _≋_ open Group hiding (setoid) field G : Group a ℓ₁ Ω : Set b _≋_ : Rel Ω ℓ₂ _·_ : Opᵣ (Carrier G) Ω isAction : IsAction (_≈_ G) _≋_ _·_ (_∙_ G) (ε G) (_⁻¹ G) open IsAction isAction public -- the (raw) pointwise stabilizer stab : Ω → Pred (Carrier G) ℓ₂ stab o = λ (g : Carrier G) → o · g ≋ o -- Orbital relation _ω_ : Rel Ω (a ⊔ ℓ₂) o ω o' = ∃[ g ] (o · g ≋ o') _·G : Ω → Pred Ω (a ⊔ ℓ₂) o ·G = o ω_ -- Orbits open import GGT.Setoid setoid (a ⊔ ℓ₂) Orbit : Ω → Setoid (b ⊔ (a ⊔ ℓ₂)) ℓ₂ Orbit o = subSetoid (o ·G)
{ "alphanum_fraction": 0.6122881356, "avg_line_length": 23.0243902439, "ext": "agda", "hexsha": "eefc85226d1c645c106702f105e59817a795a19e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zampino/ggt", "max_forks_repo_path": "src/ggt/Bundles.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zampino/ggt", "max_issues_repo_path": "src/ggt/Bundles.agda", "max_line_length": 61, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zampino/ggt", "max_stars_repo_path": "src/ggt/Bundles.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z", "num_tokens": 389, "size": 944 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Support for reflection ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Reflection where import Agda.Builtin.Reflection as Builtin ------------------------------------------------------------------------ -- Names, Metas, and Literals re-exported publicly open import Reflection.Abstraction as Abstraction public using (Abs; abs) open import Reflection.Argument as Argument public using (Arg; arg; Args; vArg; hArg; iArg) open import Reflection.Definition as Definition public using (Definition) open import Reflection.Meta as Meta public using (Meta) open import Reflection.Name as Name public using (Name; Names) open import Reflection.Literal as Literal public using (Literal) open import Reflection.Pattern as Pattern public using (Pattern) open import Reflection.Term as Term public using (Term; Type; Clause; Clauses; Sort) import Reflection.Argument.Relevance as Relevance import Reflection.Argument.Visibility as Visibility import Reflection.Argument.Information as Information open Definition.Definition public open Information.ArgInfo public open Literal.Literal public open Relevance.Relevance public open Term.Term public open Visibility.Visibility public ------------------------------------------------------------------------ -- Fixity open Builtin public using (non-assoc; related; unrelated; fixity) renaming ( left-assoc to assocˡ ; right-assoc to assocʳ ; primQNameFixity to getFixity ) ------------------------------------------------------------------------ -- Type checking monad -- Type errors open Builtin public using (ErrorPart; strErr; termErr; nameErr) -- The monad open Builtin public using ( TC; bindTC; unify; typeError; inferType; checkType ; normalise; reduce ; catchTC; quoteTC; unquoteTC ; getContext; extendContext; inContext; freshName ; declareDef; declarePostulate; defineFun; getType; getDefinition ; blockOnMeta; commitTC; isMacro; withNormalisation ; debugPrint; noConstraints; runSpeculative) renaming (returnTC to return) -- Standard monad operators open import Reflection.TypeChecking.MonadSyntax public using (_>>=_; _>>_) newMeta : Type → TC Term newMeta = checkType unknown ------------------------------------------------------------------------ -- Show open import Reflection.Show public ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 returnTC = return {-# WARNING_ON_USAGE returnTC "Warning: returnTC was deprecated in v1.1. Please use return instead." #-} -- Version 1.3 Arg-info = Information.ArgInfo {-# WARNING_ON_USAGE Arg-info "Warning: Arg-info was deprecated in v1.3. Please use Reflection.Argument.Information's ArgInfo instead." #-} infix 4 _≟-Lit_ _≟-Name_ _≟-Meta_ _≟-Visibility_ _≟-Relevance_ _≟-Arg-info_ _≟-Pattern_ _≟-ArgPatterns_ _≟-Lit_ = Literal._≟_ {-# WARNING_ON_USAGE _≟-Lit_ "Warning: _≟-Lit_ was deprecated in v1.3. Please use Reflection.Literal's _≟_ instead." #-} _≟-Name_ = Name._≟_ {-# WARNING_ON_USAGE _≟-Name_ "Warning: _≟-Name_ was deprecated in v1.3. Please use Reflection.Name's _≟_ instead." #-} _≟-Meta_ = Meta._≟_ {-# WARNING_ON_USAGE _≟-Meta_ "Warning: _≟-Meta_ was deprecated in v1.3. Please use Reflection.Meta's _≟_ instead." #-} _≟-Visibility_ = Visibility._≟_ {-# WARNING_ON_USAGE _≟-Visibility_ "Warning: _≟-Visibility_ was deprecated in v1.3. Please use Reflection.Argument.Visibility's _≟_ instead." #-} _≟-Relevance_ = Relevance._≟_ {-# WARNING_ON_USAGE _≟-Relevance_ "Warning: _≟-Relevance_ was deprecated in v1.3. Please use Reflection.Argument.Relevance's _≟_ instead." #-} _≟-Arg-info_ = Information._≟_ {-# WARNING_ON_USAGE _≟-Arg-info_ "Warning: _≟-Arg-info_ was deprecated in v1.3. Please use Reflection.Argument.Information's _≟_ instead." #-} _≟-Pattern_ = Pattern._≟_ {-# WARNING_ON_USAGE _≟-Pattern_ "Warning: _≟-Pattern_ was deprecated in v1.3. Please use Reflection.Pattern's _≟_ instead." #-} _≟-ArgPatterns_ = Pattern._≟s_ {-# WARNING_ON_USAGE _≟-ArgPatterns_ "Warning: _≟-ArgPatterns_ was deprecated in v1.3. Please use Reflection.Pattern's _≟s_ instead." #-} map-Abs = Abstraction.map {-# WARNING_ON_USAGE map-Abs "Warning: map-Abs was deprecated in v1.3. Please use Reflection.Abstraction's map instead." #-} map-Arg = Argument.map {-# WARNING_ON_USAGE map-Arg "Warning: map-Arg was deprecated in v1.3. Please use Reflection.Argument's map instead." #-} map-Args = Argument.map-Args {-# WARNING_ON_USAGE map-Args "Warning: map-Args was deprecated in v1.3. Please use Reflection.Argument's map-Args instead." #-} visibility = Information.visibility {-# WARNING_ON_USAGE visibility "Warning: visibility was deprecated in v1.3. Please use Reflection.Argument.Information's visibility instead." #-} relevance = Information.relevance {-# WARNING_ON_USAGE relevance "Warning: relevance was deprecated in v1.3. Please use Reflection.Argument.Information's relevance instead." #-} infix 4 _≟-AbsTerm_ _≟-AbsType_ _≟-ArgTerm_ _≟-ArgType_ _≟-Args_ _≟-Clause_ _≟-Clauses_ _≟_ _≟-Sort_ _≟-AbsTerm_ = Term._≟-AbsTerm_ {-# WARNING_ON_USAGE _≟-AbsTerm_ "Warning: _≟-AbsTerm_ was deprecated in v1.3. Please use Reflection.Term's _≟-AbsTerm_ instead." #-} _≟-AbsType_ = Term._≟-AbsType_ {-# WARNING_ON_USAGE _≟-AbsType_ "Warning: _≟-AbsType_ was deprecated in v1.3. Please use Reflection.Term's _≟-AbsType_ instead." #-} _≟-ArgTerm_ = Term._≟-ArgTerm_ {-# WARNING_ON_USAGE _≟-ArgTerm_ "Warning: _≟-ArgTerm_ was deprecated in v1.3. Please use Reflection.Term's _≟-ArgTerm_ instead." #-} _≟-ArgType_ = Term._≟-ArgType_ {-# WARNING_ON_USAGE _≟-ArgType_ "Warning: _≟-ArgType_ was deprecated in v1.3. Please use Reflection.Term's _≟-ArgType_ instead." #-} _≟-Args_ = Term._≟-Args_ {-# WARNING_ON_USAGE _≟-Args_ "Warning: _≟-Args_ was deprecated in v1.3. Please use Reflection.Term's _≟-Args_ instead." #-} _≟-Clause_ = Term._≟-Clause_ {-# WARNING_ON_USAGE _≟-Clause_ "Warning: _≟-Clause_ was deprecated in v1.3. Please use Reflection.Term's _≟-Clause_ instead." #-} _≟-Clauses_ = Term._≟-Clauses_ {-# WARNING_ON_USAGE _≟-Clauses_ "Warning: _≟-Clauses_ was deprecated in v1.3. Please use Reflection.Term's _≟-Clauses_ instead." #-} _≟_ = Term._≟_ {-# WARNING_ON_USAGE _≟_ "Warning: _≟_ was deprecated in v1.3. Please use Reflection.Term's _≟_ instead." #-} _≟-Sort_ = Term._≟-Sort_ {-# WARNING_ON_USAGE _≟-Sort_ "Warning: _≟-Sort_ was deprecated in v1.3. Please use Reflection.Term's _≟-Sort_ instead." #-}
{ "alphanum_fraction": 0.6756363636, "avg_line_length": 27.8340080972, "ext": "agda", "hexsha": "12edc19b9a3b4ebdf84606d66810806116989f5d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Reflection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Reflection.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Reflection.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1912, "size": 6875 }
{-# OPTIONS --without-K --safe #-} open import Algebra module Data.FingerTree.Structures {r m} (ℳ : Monoid r m) where open import Level using (_⊔_) open import Data.Product open import Relation.Unary open import Data.FingerTree.Measures ℳ open import Data.FingerTree.Reasoning ℳ open Monoid ℳ renaming (Carrier to 𝓡) open σ ⦃ ... ⦄ {-# DISPLAY σ.μ _ = μ #-} data Digit {a} (Σ : Set a) : Set a where D₁ : Σ → Digit Σ D₂ : Σ → Σ → Digit Σ D₃ : Σ → Σ → Σ → Digit Σ D₄ : Σ → Σ → Σ → Σ → Digit Σ instance σ-Digit : ∀ {a} {Σ : Set a} → ⦃ _ : σ Σ ⦄ → σ (Digit Σ) μ ⦃ σ-Digit ⦄ (D₁ x₁) = μ x₁ μ ⦃ σ-Digit ⦄ (D₂ x₁ x₂) = μ x₁ ∙ μ x₂ μ ⦃ σ-Digit ⦄ (D₃ x₁ x₂ x₃) = μ x₁ ∙ (μ x₂ ∙ μ x₃) μ ⦃ σ-Digit ⦄ (D₄ x₁ x₂ x₃ x₄) = μ x₁ ∙ (μ x₂ ∙ (μ x₃ ∙ μ x₄)) data Node {a} (Σ : Set a) : Set a where N₂ : Σ → Σ → Node Σ N₃ : Σ → Σ → Σ → Node Σ instance σ-Node : ∀ {a} {Σ : Set a} → ⦃ _ : σ Σ ⦄ → σ (Node Σ) μ ⦃ σ-Node ⦄ (N₂ x₁ x₂) = μ x₁ ∙ μ x₂ μ ⦃ σ-Node ⦄ (N₃ x₁ x₂ x₃) = μ x₁ ∙ (μ x₂ ∙ μ x₃) mutual infixr 5 _&_&_ record Deep {a} (Σ : Set a) ⦃ _ : σ Σ ⦄ : Set (r ⊔ a ⊔ m) where constructor _&_&_ inductive field lbuff : Digit Σ tree : Tree ⟪ Node Σ ⟫ rbuff : Digit Σ data Tree {a} (Σ : Set a) ⦃ _ : σ Σ ⦄ : Set (r ⊔ a ⊔ m) where empty : Tree Σ single : Σ → Tree Σ deep : ⟪ Deep Σ ⟫ → Tree Σ μ-deep : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → Deep Σ → 𝓡 μ-deep (l & x & r) = μ l ∙ (μ-tree x ∙ μ r) μ-tree : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → Tree Σ → 𝓡 μ-tree empty = ε μ-tree (single x) = μ x μ-tree (deep xs) = xs .𝔐 instance σ-Deep : ∀ {a} {Σ : Set a} → ⦃ _ : σ Σ ⦄ → σ (Deep Σ) μ ⦃ σ-Deep ⦄ = μ-deep instance σ-Tree : ∀ {a} {Σ : Set a} → ⦃ _ : σ Σ ⦄ → σ (Tree Σ) μ ⦃ σ-Tree ⦄ = μ-tree open Deep {-# DISPLAY μ-tree _ x = μ x #-} {-# DISPLAY μ-deep _ x = μ x #-} nodeToDigit : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (xs : Node Σ) → μ⟨ Digit Σ ⟩≈ μ xs nodeToDigit (N₂ x₁ x₂) = D₂ x₁ x₂ ⇑[ refl ] nodeToDigit (N₃ x₁ x₂ x₃) = D₃ x₁ x₂ x₃ ⇑[ refl ] digitToTree : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (xs : Digit Σ) → μ⟨ Tree Σ ⟩≈ μ xs digitToTree (D₁ x₁) = single x₁ ⇑[ refl ] digitToTree (D₂ x₁ x₂) = deep ⟪ D₁ x₁ & empty & D₁ x₂ ⇓⟫ ⇑[ μ x₁ ∙ (ε ∙ μ x₂) ↢ ℳ ↯ ] digitToTree (D₃ x₁ x₂ x₃) = deep ⟪ D₂ x₁ x₂ & empty & D₁ x₃ ⇓⟫ ⇑[ μ (D₂ x₁ x₂) ∙ (ε ∙ μ x₃) ↢ ℳ ↯ ] digitToTree (D₄ x₁ x₂ x₃ x₄) = deep ⟪ D₂ x₁ x₂ & empty & D₂ x₃ x₄ ⇓⟫ ⇑[ μ (D₂ x₁ x₂) ∙ (ε ∙ μ (D₂ x₃ x₄)) ↢ ℳ ↯ ] open import Data.List using (List; _∷_; []) nodeToList : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (xs : Node Σ) → μ⟨ List Σ ⟩≈ (μ xs) nodeToList (N₂ x₁ x₂) = x₁ ∷ x₂ ∷ [] ⇑[ ℳ ↯ ] nodeToList (N₃ x₁ x₂ x₃) = x₁ ∷ x₂ ∷ x₃ ∷ [] ⇑[ ℳ ↯ ] digitToList : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (xs : Digit Σ) → μ⟨ List Σ ⟩≈ (μ xs) digitToList (D₁ x₁) = x₁ ∷ [] ⇑[ ℳ ↯ ] digitToList (D₂ x₁ x₂) = x₁ ∷ x₂ ∷ [] ⇑[ ℳ ↯ ] digitToList (D₃ x₁ x₂ x₃) = x₁ ∷ x₂ ∷ x₃ ∷ [] ⇑[ ℳ ↯ ] digitToList (D₄ x₁ x₂ x₃ x₄) = x₁ ∷ x₂ ∷ x₃ ∷ x₄ ∷ [] ⇑[ ℳ ↯ ]
{ "alphanum_fraction": 0.5010067114, "avg_line_length": 30.101010101, "ext": "agda", "hexsha": "5dac794248357f41bec92861fffe49e7edc01665", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-indexed-fingertree", "max_forks_repo_path": "src/Data/FingerTree/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-indexed-fingertree", "max_issues_repo_path": "src/Data/FingerTree/Structures.agda", "max_line_length": 113, "max_stars_count": 1, "max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-indexed-fingertree", "max_stars_repo_path": "src/Data/FingerTree/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z", "num_tokens": 1621, "size": 2980 }
postulate foo = Foo -- Error message is: -- A postulate block can only contain type signatures or instance blocks
{ "alphanum_fraction": 0.7521367521, "avg_line_length": 19.5, "ext": "agda", "hexsha": "fb17361c4890910cba9fd316a6f2069da1e05c08", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1698-postulate.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1698-postulate.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1698-postulate.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 27, "size": 117 }
module Haskell.Prim.Monoid where open import Agda.Builtin.Unit open import Haskell.Prim open import Haskell.Prim.Bool open import Haskell.Prim.List open import Haskell.Prim.Maybe open import Haskell.Prim.Either open import Haskell.Prim.Tuple -------------------------------------------------- -- Semigroup record Semigroup (a : Set) : Set where infixr 6 _<>_ field _<>_ : a → a → a open Semigroup ⦃ ... ⦄ public instance iSemigroupList : Semigroup (List a) iSemigroupList ._<>_ = _++_ iSemigroupMaybe : ⦃ Semigroup a ⦄ → Semigroup (Maybe a) iSemigroupMaybe ._<>_ Nothing m = m iSemigroupMaybe ._<>_ m Nothing = m iSemigroupMaybe ._<>_ (Just x) (Just y) = Just (x <> y) iSemigroupEither : Semigroup (Either a b) iSemigroupEither ._<>_ (Left _) e = e iSemigroupEither ._<>_ e _ = e iSemigroupFun : ⦃ Semigroup b ⦄ → Semigroup (a → b) iSemigroupFun ._<>_ f g x = f x <> g x iSemigroupUnit : Semigroup ⊤ iSemigroupUnit ._<>_ _ _ = tt iSemigroupTuple₀ : Semigroup (Tuple []) iSemigroupTuple₀ ._<>_ _ _ = [] iSemigroupTuple : ∀ {as} → ⦃ Semigroup a ⦄ → ⦃ Semigroup (Tuple as) ⦄ → Semigroup (Tuple (a ∷ as)) iSemigroupTuple ._<>_ (x ∷ xs) (y ∷ ys) = x <> y ∷ xs <> ys -------------------------------------------------- -- Monoid record Monoid (a : Set) : Set where field mempty : a overlap ⦃ super ⦄ : Semigroup a mappend : a → a → a mappend = _<>_ mconcat : List a → a mconcat [] = mempty mconcat (x ∷ xs) = x <> mconcat xs open Monoid ⦃ ... ⦄ public instance iMonoidList : Monoid (List a) iMonoidList .mempty = [] iMonoidMaybe : ⦃ Semigroup a ⦄ → Monoid (Maybe a) iMonoidMaybe .mempty = Nothing iMonoidFun : ⦃ Monoid b ⦄ → Monoid (a → b) iMonoidFun .mempty _ = mempty iMonoidUnit : Monoid ⊤ iMonoidUnit .mempty = tt iMonoidTuple₀ : Monoid (Tuple []) iMonoidTuple₀ .mempty = [] iMonoidTuple : ∀ {as} → ⦃ Monoid a ⦄ → ⦃ Monoid (Tuple as) ⦄ → Monoid (Tuple (a ∷ as)) iMonoidTuple .mempty = mempty ∷ mempty MonoidEndo : Monoid (a → a) MonoidEndo .mempty = id MonoidEndo .super ._<>_ = _∘_ MonoidEndoᵒᵖ : Monoid (a → a) MonoidEndoᵒᵖ .mempty = id MonoidEndoᵒᵖ .super ._<>_ = flip _∘_ MonoidConj : Monoid Bool MonoidConj .mempty = true MonoidConj .super ._<>_ = _&&_ MonoidDisj : Monoid Bool MonoidDisj .mempty = false MonoidDisj .super ._<>_ = _||_
{ "alphanum_fraction": 0.6103950104, "avg_line_length": 24.05, "ext": "agda", "hexsha": "f29f527d256ff21296e033e95a3d427ced476f88", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Monoid.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Monoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 880, "size": 2405 }
module RewriteAndUniversePolymorphism where open import Common.Equality data ℕ : Set where zero : ℕ suc : ℕ → ℕ test : (a b : ℕ) → a ≡ b → b ≡ a test a b eq rewrite eq = refl
{ "alphanum_fraction": 0.652173913, "avg_line_length": 15.3333333333, "ext": "agda", "hexsha": "2e8d4394528fe2f8b444bcada87190c56c2c8b16", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/RewriteAndUniversePolymorphism.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/RewriteAndUniversePolymorphism.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/RewriteAndUniversePolymorphism.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 64, "size": 184 }
-- Basic intuitionistic logic of proofs, without ∨, ⊥, or +. -- Gentzen-style formalisation of syntax with context pairs. -- Simple terms. module BasicILP.Syntax.DyadicGentzen where open import BasicILP.Syntax.Common public -- Types, or propositions. -- [ Ψ ⁏ Ω ⊢ t ] A means t is a proof of the fact that the type A is inhabited given assumptions in the context Ψ and the modal context Ω. mutual syntax □ Π A t = [ Π ⊢ t ] A infixr 10 □ infixl 9 _∧_ infixr 7 _▻_ data Ty : Set where α_ : Atom → Ty _▻_ : Ty → Ty → Ty □ : (Π : Cx² Ty Box) → (A : Ty) → Π ⊢ A → Ty _∧_ : Ty → Ty → Ty ⊤ : Ty -- Context/modal context/type/term quadruples. record Box : Set where inductive constructor □ field Π : Cx² Ty Box A : Ty x : Π ⊢ A -- Derivations. -- NOTE: Only var is an instance constructor, which allows the instance argument for mvar to be automatically inferred, in many cases. infix 3 _⊢_ data _⊢_ : Cx² Ty Box → Ty → Set where instance var : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ A lam : ∀ {A B Γ Δ} → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ▻ B app : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B mvar : ∀ {Ψ Ω A x Γ Δ} → [ Ψ ⁏ Ω ⊢ x ] A ∈ Δ → {{_ : Γ ⁏ Δ ⊢⋆ Ψ}} → {{_ : Γ ⁏ Δ ⊢⍟ Ω}} → Γ ⁏ Δ ⊢ A box : ∀ {Ψ Ω A Γ Δ} → (x : Ψ ⁏ Ω ⊢ A) → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A unbox : ∀ {Ψ Ω A C x Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ C → Γ ⁏ Δ ⊢ C pair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ∧ B fst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ A snd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ B unit : ∀ {Γ Δ} → Γ ⁏ Δ ⊢ ⊤ infix 3 _⊢⋆_ data _⊢⋆_ : Cx² Ty Box → Cx Ty → Set where instance ∙ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⋆ ∅ _,_ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ , A infix 3 _⊢⍟_ data _⊢⍟_ : Cx² Ty Box → Cx Box → Set where instance ∙ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⍟ ∅ _,_ : ∀ {Ξ Ψ Ω A x Γ Δ} → Γ ⁏ Δ ⊢⍟ Ξ → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A → Γ ⁏ Δ ⊢⍟ Ξ , [ Ψ ⁏ Ω ⊢ x ] A -- Monotonicity with respect to context inclusion. mutual mono⊢ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ A → Γ′ ⁏ Δ ⊢ A mono⊢ η (var i) = var (mono∈ η i) mono⊢ η (lam t) = lam (mono⊢ (keep η) t) mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u) mono⊢ η (mvar i {{ts}} {{us}}) = mvar i {{mono⊢⋆ η ts}} {{mono⊢⍟ η us}} mono⊢ η (box t) = box t mono⊢ η (unbox t u) = unbox (mono⊢ η t) (mono⊢ η u) mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u) mono⊢ η (fst t) = fst (mono⊢ η t) mono⊢ η (snd t) = snd (mono⊢ η t) mono⊢ η unit = unit mono⊢⋆ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ′ ⁏ Δ ⊢⋆ Ξ mono⊢⋆ η ∙ = ∙ mono⊢⋆ η (ts , t) = mono⊢⋆ η ts , mono⊢ η t mono⊢⍟ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⍟ Ξ → Γ′ ⁏ Δ ⊢⍟ Ξ mono⊢⍟ η ∙ = ∙ mono⊢⍟ η (ts , t) = mono⊢⍟ η ts , mono⊢ η t -- Monotonicity with respect to modal context inclusion. mutual mmono⊢ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ′ ⊢ A mmono⊢ θ (var i) = var i mmono⊢ θ (lam t) = lam (mmono⊢ θ t) mmono⊢ θ (app t u) = app (mmono⊢ θ t) (mmono⊢ θ u) mmono⊢ θ (mvar i {{ts}} {{us}}) = mvar (mono∈ θ i) {{mmono⊢⋆ θ ts}} {{mmono⊢⍟ θ us}} mmono⊢ θ (box t) = box t mmono⊢ θ (unbox t u) = unbox (mmono⊢ θ t) (mmono⊢ (keep θ) u) mmono⊢ θ (pair t u) = pair (mmono⊢ θ t) (mmono⊢ θ u) mmono⊢ θ (fst t) = fst (mmono⊢ θ t) mmono⊢ θ (snd t) = snd (mmono⊢ θ t) mmono⊢ θ unit = unit mmono⊢⋆ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ′ ⊢⋆ Ξ mmono⊢⋆ θ ∙ = ∙ mmono⊢⋆ θ (ts , t) = mmono⊢⋆ θ ts , mmono⊢ θ t mmono⊢⍟ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⍟ Ξ → Γ ⁏ Δ′ ⊢⍟ Ξ mmono⊢⍟ θ ∙ = ∙ mmono⊢⍟ θ (ts , t) = mmono⊢⍟ θ ts , mmono⊢ θ t -- Monotonicity using context pairs. mono²⊢ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ A → Π′ ⊢ A mono²⊢ (η , θ) = mono⊢ η ∘ mmono⊢ θ -- Shorthand for variables. v₀ : ∀ {A Γ Δ} → Γ , A ⁏ Δ ⊢ A v₀ = var i₀ v₁ : ∀ {A B Γ Δ} → Γ , A , B ⁏ Δ ⊢ A v₁ = var i₁ v₂ : ∀ {A B C Γ Δ} → Γ , A , B , C ⁏ Δ ⊢ A v₂ = var i₂ mv₀ : ∀ {Ψ Ω A x Γ Δ} → {{_ : Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢⋆ Ψ}} → {{_ : Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢⍟ Ω}} → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ A mv₀ = mvar i₀ mv₁ : ∀ {Ψ Ψ′ Ω Ω′ A B x y Γ Δ} → {{_ : Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B ⊢⋆ Ψ}} → {{_ : Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B ⊢⍟ Ω}} → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B ⊢ A mv₁ = mvar i₁ mv₂ : ∀ {Ψ Ψ′ Ψ″ Ω Ω′ Ω″ A B C x y z Γ Δ} → {{_ : Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B , [ Ψ″ ⁏ Ω″ ⊢ z ] C ⊢⋆ Ψ}} → {{_ : Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B , [ Ψ″ ⁏ Ω″ ⊢ z ] C ⊢⍟ Ω}} → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B , [ Ψ″ ⁏ Ω″ ⊢ z ] C ⊢ A mv₂ = mvar i₂ -- Generalised reflexivity. instance refl⊢⋆ : ∀ {Γ Ψ Δ} → {{_ : Ψ ⊆ Γ}} → Γ ⁏ Δ ⊢⋆ Ψ refl⊢⋆ {∅} {{done}} = ∙ refl⊢⋆ {Γ , A} {{skip η}} = mono⊢⋆ weak⊆ (refl⊢⋆ {{η}}) refl⊢⋆ {Γ , A} {{keep η}} = mono⊢⋆ weak⊆ (refl⊢⋆ {{η}}) , v₀ mrefl⊢⍟ : ∀ {Δ Ω Γ} → {{_ : Ω ⊆ Δ}} → Γ ⁏ Δ ⊢⍟ Ω mrefl⊢⍟ {∅} {{done}} = ∙ mrefl⊢⍟ {Δ , [ Ψ ⁏ Ω ⊢ x ] A } {{skip θ}} = mmono⊢⍟ weak⊆ (mrefl⊢⍟ {{θ}}) mrefl⊢⍟ {Δ , [ Ψ ⁏ Ω ⊢ x ] A } {{keep θ}} = mmono⊢⍟ weak⊆ (mrefl⊢⍟ {{θ}}) , box x -- Deduction theorem is built-in. -- Modal deduction theorem. mlam : ∀ {Ψ Ω A B x Γ Δ} → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ B → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A ▻ B mlam t = lam (unbox v₀ (mono⊢ weak⊆ t)) -- Detachment theorems. det : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ , A ⁏ Δ ⊢ B det t = app (mono⊢ weak⊆ t) v₀ -- FIXME: Is this correct? mdet : ∀ {Ψ Ω A B x Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A ▻ B → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ B mdet {x = x} t = app (mmono⊢ weak⊆ t) (box x) -- Cut and multicut. cut : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ B cut t u = app (lam u) t mcut : ∀ {Ψ Ω A B x Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ B → Γ ⁏ Δ ⊢ B mcut t u = app (mlam u) t multicut : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Ξ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A multicut ∙ u = mono⊢ bot⊆ u multicut (ts , t) u = app (multicut ts (lam u)) t -- Contraction. ccont : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ A ▻ B) ▻ A ▻ B ccont = lam (lam (app (app v₁ v₀) v₀)) cont : ∀ {A B Γ Δ} → Γ , A , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ B cont t = det (app ccont (lam (lam t))) mcont : ∀ {Ψ Ω A B x Γ Δ} → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ ⁏ Ω ⊢ x ] A ⊢ B → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ B mcont t = mdet (app ccont (mlam (mlam t))) -- Exchange, or Schönfinkel’s C combinator. cexch : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C cexch = lam (lam (lam (app (app v₂ v₀) v₁))) exch : ∀ {A B C Γ Δ} → Γ , A , B ⁏ Δ ⊢ C → Γ , B , A ⁏ Δ ⊢ C exch t = det (det (app cexch (lam (lam t)))) mexch : ∀ {Ψ Ψ′ Ω Ω′ A B C x y Γ Δ} → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B ⊢ C → Γ ⁏ Δ , [ Ψ′ ⁏ Ω′ ⊢ y ] B , [ Ψ ⁏ Ω ⊢ x ] A ⊢ C mexch t = mdet (mdet (app cexch (mlam (mlam t)))) -- Composition, or Schönfinkel’s B combinator. ccomp : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ccomp = lam (lam (lam (app v₂ (app v₁ v₀)))) comp : ∀ {A B C Γ Δ} → Γ , B ⁏ Δ ⊢ C → Γ , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ C comp t u = det (app (app ccomp (lam t)) (lam u)) mcomp : ∀ {Ψ Ψ′ Ψ″ Ω Ω′ Ω″ A B C x y z Γ Δ} → Γ ⁏ Δ , [ Ψ′ ⁏ Ω′ ⊢ y ] B ⊢ [ Ψ″ ⁏ Ω″ ⊢ z ] C → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ [ Ψ′ ⁏ Ω′ ⊢ y ] B → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ [ Ψ″ ⁏ Ω″ ⊢ z ] C mcomp t u = mdet (app (app ccomp (mlam t)) (mlam u)) -- Useful theorems in functional form. dist : ∀ {Ψ Ω A B x y Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] (A ▻ B) → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ y ] A → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω , [ Ψ ⁏ Ω ⊢ x ] (A ▻ B) , [ Ψ ⁏ Ω ⊢ y ] A ⊢ app mv₁ mv₀ ] B dist t u = unbox t (unbox (mmono⊢ weak⊆ u) (box (app mv₁ mv₀))) up : ∀ {Ψ Ω A x Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ box mv₀ ] [ Ψ ⁏ Ω , [ Ψ ⁏ Ω ⊢ x ] A ⊢ mv₀ ] A up t = unbox t (box (box mv₀)) down : ∀ {Ψ Ω A x Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A → {{_ : Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢⋆ Ψ}} → {{_ : Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢⍟ Ω}} → Γ ⁏ Δ ⊢ A down t = unbox t mv₀ -- Useful theorems in combinatory form. ci : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A ▻ A ci = lam v₀ ck : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A ck = lam (lam v₁) cs : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀)))) cdist : ∀ {Ψ Ω A B t u Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ t ] (A ▻ B) ▻ [ Ψ ⁏ Ω ⊢ u ] A ▻ [ Ψ ⁏ Ω , [ Ψ ⁏ Ω ⊢ t ] (A ▻ B) , [ Ψ ⁏ Ω ⊢ u ] A ⊢ app mv₁ mv₀ ] B cdist = lam (lam (dist v₁ v₀)) cup : ∀ {Ψ Ω A t Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ t ] A ▻ [ Ψ ⁏ Ω ⊢ box mv₀ ] [ Ψ ⁏ Ω , [ Ψ ⁏ Ω ⊢ t ] A ⊢ mv₀ ] A cup = lam (up v₀) cunbox : ∀ {Ψ Ω A C t Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ t ] A ▻ ([ Ψ ⁏ Ω ⊢ t ] A ▻ C) ▻ C cunbox = lam (lam (app v₀ v₁)) cpair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A ∧ B cpair = lam (lam (pair v₁ v₀)) cfst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ A cfst = lam (fst v₀) csnd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ B csnd = lam (snd v₀) -- Closure under context concatenation. concat : ∀ {A B Γ} Γ′ {Δ} → Γ , A ⁏ Δ ⊢ B → Γ′ ⁏ Δ ⊢ A → Γ ⧺ Γ′ ⁏ Δ ⊢ B concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u) mconcat : ∀ {Ψ Ω A B t Γ Δ} Δ′ → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ t ] A ⊢ B → Γ ⁏ Δ′ ⊢ [ Ψ ⁏ Ω ⊢ t ] A → Γ ⁏ Δ ⧺ Δ′ ⊢ B mconcat Δ′ t u = app (mmono⊢ (weak⊆⧺₁ Δ′) (mlam t)) (mmono⊢ weak⊆⧺₂ u) -- Substitution. mutual [_≔_]_ : ∀ {A C Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ C → Γ ∖ i ⁏ Δ ⊢ C [ i ≔ s ] var j with i ≟∈ j [ i ≔ s ] var .i | same = s [ i ≔ s ] var ._ | diff j = var j [ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t) [ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u) [ i ≔ s ] mvar j {{ts}} {{us}} = mvar j {{[ i ≔ s ]⋆ ts}} {{[ i ≔ s ]⍟ us}} [ i ≔ s ] box t = box t [ i ≔ s ] unbox t u = unbox ([ i ≔ s ] t) ([ i ≔ mmono⊢ weak⊆ s ] u) [ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u) [ i ≔ s ] fst t = fst ([ i ≔ s ] t) [ i ≔ s ] snd t = snd ([ i ≔ s ] t) [ i ≔ s ] unit = unit [_≔_]⋆_ : ∀ {Ξ A Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ → Γ ∖ i ⁏ Δ ⊢⋆ Ξ [_≔_]⋆_ i s ∙ = ∙ [_≔_]⋆_ i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t [_≔_]⍟_ : ∀ {Ξ A Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢⍟ Ξ → Γ ∖ i ⁏ Δ ⊢⍟ Ξ [_≔_]⍟_ i s ∙ = ∙ [_≔_]⍟_ i s (ts , t) = [ i ≔ s ]⍟ ts , [ i ≔ s ] t -- Modal substitution. mutual m[_≔_]_ : ∀ {Ψ Ω A C t Γ Δ} → (i : [ Ψ ⁏ Ω ⊢ t ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢ C → Γ ⁏ Δ ∖ i ⊢ C m[ i ≔ s ] var j = var j m[ i ≔ s ] lam t = lam (m[ i ≔ s ] t) m[ i ≔ s ] app t u = app (m[ i ≔ s ] t) (m[ i ≔ s ] u) m[ i ≔ s ] mvar j {{ts}} {{us}} with i ≟∈ j m[ i ≔ s ] mvar .i {{ts}} {{us}} | same = multicut (m[ i ≔ s ]⋆ ts) s m[ i ≔ s ] mvar ._ {{ts}} {{us}} | diff j = mvar j {{m[ i ≔ s ]⋆ ts}} {{m[ i ≔ s ]⍟ us}} m[ i ≔ s ] box t = box t m[ i ≔ s ] unbox t u = unbox (m[ i ≔ s ] t) (m[ pop i ≔ mmono⊢ weak⊆ s ] u) m[ i ≔ s ] pair t u = pair (m[ i ≔ s ] t) (m[ i ≔ s ] u) m[ i ≔ s ] fst t = fst (m[ i ≔ s ] t) m[ i ≔ s ] snd t = snd (m[ i ≔ s ] t) m[ i ≔ s ] unit = unit m[_≔_]⋆_ : ∀ {Ξ Ψ Ω A t Γ Δ} → (i : [ Ψ ⁏ Ω ⊢ t ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ∖ i ⊢⋆ Ξ m[_≔_]⋆_ i s ∙ = ∙ m[_≔_]⋆_ i s (ts , t) = m[ i ≔ s ]⋆ ts , m[ i ≔ s ] t m[_≔_]⍟_ : ∀ {Ξ Ψ Ω A t Γ Δ} → (i : [ Ψ ⁏ Ω ⊢ t ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢⍟ Ξ → Γ ⁏ Δ ∖ i ⊢⍟ Ξ m[_≔_]⍟_ i s ∙ = ∙ m[_≔_]⍟_ i s (ts , t) = m[ i ≔ s ]⍟ ts , m[ i ≔ s ] t -- TODO: Convertibility. -- Examples from the Nanevski-Pfenning-Pientka paper. -- NOTE: In many cases, the instance argument for mvar can be automatically inferred, but not always. module Examples₁ where e₁ : ∀ {A C D Γ Δ t} → Γ ⁏ Δ ⊢ [ ∅ , C ⁏ Δ ⊢ t ] A ▻ [ ∅ , C , D ⁏ Δ , [ ∅ , C ⁏ Δ ⊢ t ] A ⊢ mv₀ ] A e₁ = lam (unbox v₀ (box mv₀)) e₂ : ∀ {A C Γ Δ t} → Γ ⁏ Δ ⊢ [ ∅ , C , C ⁏ Δ ⊢ t ] A ▻ [ ∅ , C ⁏ Δ , [ ∅ , C , C ⁏ Δ ⊢ t ] A ⊢ mv₀ ] A e₂ = lam (unbox v₀ (box mv₀)) e₃ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ [ ∅ , A ⁏ Δ ⊢ v₀ ] A e₃ = box v₀ e₄ : ∀ {A B C Γ Δ t u v} → Γ ⁏ Δ ⊢ [ ∅ , A ⁏ Δ ⊢ t ] B ▻ [ ∅ , A ⁏ Δ ⊢ v ] [ ∅ , B ⁏ Δ ⊢ u ] C ▻ [ ∅ , A ⁏ Δ , [ ∅ , A ⁏ Δ ⊢ t ] B , [ ∅ , A ⁏ Δ ⊢ v ] [ ∅ , B ⁏ Δ ⊢ u ] C ⊢ unbox mv₀ (mv₀ {{∙ , mv₂}}) ] C e₄ = lam (lam (unbox v₁ (unbox v₀ (box (unbox mv₀ (mv₀ {{∙ , mv₂}})))))) e₅ : ∀ {A Γ Δ t} → Γ ⁏ Δ ⊢ [ ∅ ⁏ Δ ⊢ t ] A ▻ A e₅ = lam (unbox v₀ mv₀) e₆ : ∀ {A C D Γ Δ t} → Γ ⁏ Δ ⊢ [ ∅ , C ⁏ Δ ⊢ t ] A ▻ [ ∅ , D ⁏ Δ ⊢ box mv₀ ] [ ∅ , C ⁏ Δ , [ ∅ , C ⁏ Δ ⊢ t ] A ⊢ mv₀ ] A e₆ = lam (unbox v₀ (box (box mv₀))) e₇ : ∀ {A B C D Γ Δ t u} → Γ ⁏ Δ ⊢ [ ∅ , C ⁏ Δ ⊢ t ] (A ▻ B) ▻ [ ∅ , D ⁏ Δ ⊢ u ] A ▻ [ ∅ , C , D ⁏ Δ , [ ∅ , C ⁏ Δ ⊢ t ] (A ▻ B) , [ ∅ , D ⁏ Δ ⊢ u ] A ⊢ app mv₁ mv₀ ] B e₇ = lam (lam (unbox v₁ (unbox v₀ (box (app mv₁ mv₀))))) e₈ : ∀ {A B C Γ Δ t u} → Γ ⁏ Δ ⊢ [ ∅ , A ⁏ Δ ⊢ t ] (A ▻ B) ▻ [ ∅ , B ⁏ Δ ⊢ u ] C ▻ [ ∅ , A ⁏ Δ , [ ∅ , A ⁏ Δ ⊢ t ] (A ▻ B) , [ ∅ , B ⁏ Δ ⊢ u ] C ⊢ mv₀ {{∙ , app mv₁ v₀}} ] C e₈ = lam (lam (unbox v₁ (unbox v₀ (box (mv₀ {{∙ , app mv₁ v₀}}))))) -- Examples from the Alt-Artemov paper. module Examples₂ where e₁ : ∀ {A Γ Δ t} → Γ ⁏ Δ ⊢ [ ∅ ⁏ Δ ⊢ lam (down v₀) ] ([ ∅ ⁏ Δ ⊢ t ] A ▻ A) e₁ = box (lam (down v₀)) e₂ : ∀ {A Γ Δ t} → Γ ⁏ Δ ⊢ [ ∅ ⁏ Δ ⊢ lam (up v₀) ] ([ ∅ ⁏ Δ ⊢ t ] A ▻ [ ∅ ⁏ Δ ⊢ box mv₀ ] [ ∅ ⁏ Δ , [ ∅ ⁏ Δ ⊢ t ] A ⊢ mv₀ ] A) e₂ = box (lam (up v₀)) e₃ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ [ ∅ ⁏ Δ ⊢ box (lam (lam (pair v₁ v₀))) ] [ ∅ ⁏ Δ ⊢ lam (lam (pair v₁ v₀)) ] (A ▻ B ▻ A ∧ B) e₃ = box (box (lam (lam (pair v₁ v₀)))) e₄ : ∀ {A B Γ Δ t u} → Γ ⁏ Δ ⊢ [ ∅ ⁏ Δ ⊢ lam (lam (unbox v₁ (unbox v₀ (box (box (pair mv₁ mv₀)))))) ] ([ ∅ ⁏ Δ ⊢ t ] A ▻ [ ∅ ⁏ Δ ⊢ u ] B ▻ [ ∅ ⁏ Δ ⊢ box (pair mv₁ mv₀) ] [ ∅ ⁏ Δ , [ ∅ ⁏ Δ ⊢ t ] A , [ ∅ ⁏ Δ ⊢ u ] B ⊢ pair mv₁ mv₀ ] (A ∧ B)) e₄ = box (lam (lam (unbox v₁ (unbox v₀ (box (box (pair mv₁ mv₀)))))))
{ "alphanum_fraction": 0.3501698609, "avg_line_length": 32.9135021097, "ext": "agda", "hexsha": "bd11b216b9322a3bdc47686de20e79ffaf417114", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicILP/Syntax/DyadicGentzen.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicILP/Syntax/DyadicGentzen.agda", "max_line_length": 138, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicILP/Syntax/DyadicGentzen.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 8034, "size": 15601 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import LibraBFT.ImplShared.Util.Crypto open import Optics.All open import Util.PKCS open import Util.Prelude open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open EpochConfig open import Yasm.Base ℓ-RoundManager -- In this module, we instantiate the system model with parameters to -- model a system using the simple implementation model we have so -- far, which aims to obey the VotesOnceRule, but not PreferredRoundRule -- yet. This will evolve as we build out a model of a real -- implementation. module LibraBFT.Concrete.System.Parameters where ConcSysParms : SystemTypeParameters ConcSysParms = mkSysTypeParms NodeId _≟NodeId_ BootstrapInfo ∈BootstrapInfo-impl RoundManager NetworkMsg Vote -- TODO-3: This should be a type that also allows Block, because -- NetworkMsgs can include signed Blocks, raising the possibility of -- the "masquerading" issue mentioned in -- LibraBFT.ImplShared.Util.Crypto, which we will need to address by -- using HashTags, as also discussed in the module. sig-Vote _⊂Msg_ open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms module ParamsWithInitAndHandlers (iiah : SystemInitAndHandlers ConcSysParms) where open SystemInitAndHandlers iiah open WithInitAndHandlers iiah -- What EpochConfigs are known in the system? For now, only the -- initial one. Later, we will add knowledge of subsequent -- EpochConfigs known via EpochChangeProofs. In fact, the -- implementation creates and stores and EpochChangeProof even for the -- initial epoch, so longer term just the inECP constructor may suffice. data EpochConfig∈Sys (st : SystemState) (𝓔 : EpochConfig) : Set ℓ-EC where inBootstrapInfo : init-EC bootstrapInfo ≡ 𝓔 → EpochConfig∈Sys st 𝓔 -- inECP : ∀ {ecp} → ecp ECP∈Sys st → verify-ECP ecp 𝓔 → EpochConfig∈Sys -- This is trivial for now, but will be nontrivial when we support epoch change 𝓔-∈sys-injective : ∀ {st 𝓔₁ 𝓔₂} → EpochConfig∈Sys st 𝓔₁ → EpochConfig∈Sys st 𝓔₂ → epoch 𝓔₁ ≡ epoch 𝓔₂ → 𝓔₁ ≡ 𝓔₂ 𝓔-∈sys-injective (inBootstrapInfo refl) (inBootstrapInfo refl) refl = refl -- A peer pid can sign a new message for a given PK if pid is the owner of a PK in a known -- EpochConfig. record PeerCanSignForPKinEpoch (st : SystemState) (v : Vote) (pid : NodeId) (pk : PK) (𝓔 : EpochConfig) (𝓔inSys : EpochConfig∈Sys st 𝓔) : Set ℓ-VSFP where constructor mkPCS4PKin𝓔 field 𝓔id≡ : epoch 𝓔 ≡ v ^∙ vEpoch mbr : Member 𝓔 nid≡ : toNodeId 𝓔 mbr ≡ pid pk≡ : getPubKey 𝓔 mbr ≡ pk open PeerCanSignForPKinEpoch record PeerCanSignForPK (st : SystemState) (v : Vote) (pid : NodeId) (pk : PK) : Set ℓ-VSFP where constructor mkPCS4PK field pcs4𝓔 : EpochConfig pcs4𝓔∈Sys : EpochConfig∈Sys st pcs4𝓔 pcs4in𝓔 : PeerCanSignForPKinEpoch st v pid pk pcs4𝓔 pcs4𝓔∈Sys open PeerCanSignForPK PCS4PK⇒NodeId-PK-OK : ∀ {st v pid pk 𝓔 𝓔∈Sys} → (pcs : PeerCanSignForPKinEpoch st v pid pk 𝓔 𝓔∈Sys) → NodeId-PK-OK 𝓔 pk pid PCS4PK⇒NodeId-PK-OK (mkPCS4PKin𝓔 _ mbr n≡ pk≡) = mbr , n≡ , pk≡ -- This is super simple for now because the only known EpochConfig is dervied from bootstrapInfo, which is not state-dependent PeerCanSignForPK-stable : ValidSenderForPK-stable-type PeerCanSignForPK PeerCanSignForPK-stable _ _ (mkPCS4PK 𝓔₁ (inBootstrapInfo refl) (mkPCS4PKin𝓔 𝓔id≡₁ mbr₁ nid≡₁ pk≡₁)) = (mkPCS4PK 𝓔₁ (inBootstrapInfo refl) (mkPCS4PKin𝓔 𝓔id≡₁ mbr₁ nid≡₁ pk≡₁)) peerCanSignEp≡ : ∀ {pid v v' pk s'} → PeerCanSignForPK s' v pid pk → v ^∙ vEpoch ≡ v' ^∙ vEpoch → PeerCanSignForPK s' v' pid pk peerCanSignEp≡ (mkPCS4PK 𝓔₁ 𝓔inSys₁ (mkPCS4PKin𝓔 𝓔id≡₁ mbr₁ nid≡₁ pk≡₁)) refl = (mkPCS4PK 𝓔₁ 𝓔inSys₁ (mkPCS4PKin𝓔 𝓔id≡₁ mbr₁ nid≡₁ pk≡₁))
{ "alphanum_fraction": 0.6492281304, "avg_line_length": 46.64, "ext": "agda", "hexsha": "95f045a9d9ae4f3240993a3e18ac5c290d5d6ed3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Concrete/System/Parameters.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Concrete/System/Parameters.agda", "max_line_length": 129, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Concrete/System/Parameters.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1467, "size": 4664 }
open import and-example public open import ex-andreas-abel public
{ "alphanum_fraction": 0.8333333333, "avg_line_length": 22, "ext": "agda", "hexsha": "eb1b577733ce6377d11f0322a2340a24151b2193", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z", "max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z", "max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jonaprieto/agda-prop", "max_forks_repo_path": "test/test.agda", "max_issues_count": 18, "max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jonaprieto/agda-prop", "max_issues_repo_path": "test/test.agda", "max_line_length": 34, "max_stars_count": 13, "max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jonaprieto/agda-prop", "max_stars_repo_path": "test/test.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z", "num_tokens": 15, "size": 66 }
{-# OPTIONS --show-irrelevant #-} postulate A : Set f : .A → A data _≡_ (x : A) : A → Set where refl : x ≡ x mutual X : .A → A X = _ Y : A → A Y = {!λ x → x!} Z : A → A Z = {!λ x → x!} test : ∀ x → X (Y x) ≡ f (Z x) test x = refl
{ "alphanum_fraction": 0.4069767442, "avg_line_length": 11.7272727273, "ext": "agda", "hexsha": "e01c770b1b7e99df8d9291772052177af4813d94", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue4136.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue4136.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue4136.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 121, "size": 258 }
module Adjoint where open import Level open import Data.Product open import Basic open import Category import Functor import Nat open Category.Category open Functor.Functor open Nat.Nat open Nat.Export record Adjoint {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} (F : Functor.Functor C D) (G : Functor.Functor D C) : Set (suc ℓ ⊔ suc C₁ ⊔ C₀ ⊔ suc ℓ′ ⊔ suc D₁ ⊔ D₀) where field adjunction : {x : Obj C} {a : Obj D} → Setoids [ LiftSetoid {b = C₁ ⊔ D₁} {ℓ′ = ℓ ⊔ ℓ′} (Homsetoid D (fobj F x) a) ≅ LiftSetoid {b = C₁ ⊔ D₁} {ℓ′ = ℓ ⊔ ℓ′} (Homsetoid C x (fobj G a)) ] adjunct-→-Map : {x : Obj C} {a : Obj D} → Map.Map (Homsetoid D (fobj F x) a) (Homsetoid C x (fobj G a)) adjunct-→-Map {x} {a} = lowerMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (_[_≅_].map-→ (adjunction {x} {a})) adjunct-←-Map : {x : Obj C} {a : Obj D} → Map.Map (Homsetoid C x (fobj G a)) (Homsetoid D (fobj F x) a) adjunct-←-Map {x} {a} = lowerMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (_[_≅_].map-← (adjunction {x} {a})) adjunct-→ : {x : Obj C} {a : Obj D} → Hom D (fobj F x) a → Hom C x (fobj G a) adjunct-→ f = Map.mapping (lowerMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (_[_≅_].map-→ adjunction)) f adjunct-← : {x : Obj C} {a : Obj D} → Hom C x (fobj G a) → Hom D (fobj F x) a adjunct-← f = Map.mapping (lowerMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (_[_≅_].map-← adjunction)) f adjunct-→←≈id : {x : Obj C} {a : Obj D} {f : Hom C x (fobj G a)} → C [ adjunct-→ (adjunct-← f) ≈ f ] adjunct-→←≈id {x} {a} {f} = lower (proj₁ (_[_≅_].proof adjunction) (lift f)) adjunct-←→≈id : {x : Obj C} {a : Obj D} {f : Hom D (fobj F x) a} → D [ adjunct-← (adjunct-→ f) ≈ f ] adjunct-←→≈id {x} {a} {f} = lower (proj₂ (_[_≅_].proof adjunction) (lift f)) field natural-in-→-C : {x y : Obj C} {a : Obj D} {f : Hom C y x} → Setoids [ Setoids [ liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ C ][ f ,-] (fobj G a)) ∘ _[_≅_].map-→ adjunction ] ≈ Setoids [ _[_≅_].map-→ adjunction ∘ liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ D ][ fmap F f ,-] a) ] ] natural-in-→-D : {x : Obj C} {a b : Obj D} {f : Hom D a b} → Setoids [ Setoids [ liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ C ][-, fmap G f ] x) ∘ _[_≅_].map-→ adjunction ] ≈ Setoids [ _[_≅_].map-→ adjunction ∘ liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ D ][-, f ] (fobj F x)) ] ] natural-in-←-C : {x y : Obj C} {a : Obj D} {f : Hom C y x} → Setoids [ Setoids [ liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ D ][ fmap F f ,-] a) ∘ _[_≅_].map-← adjunction ] ≈ Setoids [ _[_≅_].map-← adjunction ∘ liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ C ][ f ,-] (fobj G a)) ] ] natural-in-←-C {x} {y} {a} {f} = begin⟨ Setoids ⟩ Setoids [ Ffa ∘ _[_≅_].map-← adjunction ] ≈⟨ ≈-composite Setoids {f = Ffa} {g = Setoids [ Setoids [ adj← ∘ fGa ] ∘ _[_≅_].map-→ adjunction ]} {h = adj→₂} {i = adj→₂} lem-1 (refl-hom Setoids {f = _[_≅_].map-← adjunction}) ⟩ Setoids [ Setoids [ adj← ∘ fGa ] ∘ Setoids [ _[_≅_].map-→ adjunction ∘ _[_≅_].map-← adjunction ] ] ≈⟨ ≈-composite Setoids {f = Setoids [ adj← ∘ fGa ]} {g = Setoids [ adj← ∘ fGa ]} {h = Setoids [ _[_≅_].map-→ adjunction ∘ _[_≅_].map-← adjunction ]} {i = id Setoids} (refl-hom Setoids {f = Setoids [ adj← ∘ fGa ]}) (proj₁ (_[_≅_].proof adjunction)) ⟩ Setoids [ adj← ∘ fGa ] ∎ where Ffa = liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ D ][ fmap F f ,-] a) fGa = liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ C ][ f ,-] (fobj G a)) adj← = _[_≅_].map-← adjunction adj→₂ = _[_≅_].map-← adjunction adj→ = _[_≅_].map-→ adjunction lem-1 : Setoids [ Ffa ≈ Setoids [ Setoids [ adj← ∘ fGa ] ∘ _[_≅_].map-→ adjunction ] ] lem-1 = begin⟨ Setoids ⟩ Ffa ≈⟨ leftId Setoids {f = Ffa} ⟩ Setoids [ id Setoids ∘ Ffa ] ≈⟨ ≈-composite Setoids {f = id Setoids} {g = Setoids [ adj← ∘ adj→ ]} {h = Ffa} {i = Ffa} (sym-hom Setoids {f = Setoids [ adj← ∘ adj→ ]} {g = id Setoids} (proj₂ (_[_≅_].proof adjunction))) (refl-hom Setoids {f = Ffa}) ⟩ Setoids [ adj← ∘ Setoids [ adj→ ∘ Ffa ] ] ≈⟨ ≈-composite Setoids {f = adj←} {g = adj←} {h = Setoids [ adj→ ∘ Ffa ]} {i = Setoids [ fGa ∘ _[_≅_].map-→ adjunction ]} (refl-hom Setoids {f = adj←}) (sym-hom Setoids {f = Setoids [ fGa ∘ _[_≅_].map-→ adjunction ]} {g = Setoids [ adj→ ∘ Ffa ]} natural-in-→-C) ⟩ Setoids [ Setoids [ _[_≅_].map-← adjunction ∘ liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ C ][ f ,-] (fobj G a)) ] ∘ _[_≅_].map-→ adjunction ] ∎ natural-in-←-D : {x : Obj C} {a b : Obj D} {f : Hom D a b} → Setoids [ Setoids [ liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ D ][-, f ] (fobj F x)) ∘ _[_≅_].map-← adjunction ] ≈ Setoids [ _[_≅_].map-← adjunction ∘ liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ C ][-, fmap G f ] x) ] ] natural-in-←-D {x} {a} {b} {f} = begin⟨ Setoids ⟩ Setoids [ fFx ∘ adj←a ] ≈⟨ ≈-composite Setoids {f = fFx} {g = Setoids [ Setoids [ adj←b ∘ Gfx ] ∘ adj→a ]} {h = adj←a} {i = adj←a} lem-1 (refl-hom Setoids {f = adj←a}) ⟩ Setoids [ Setoids [ adj←b ∘ Gfx ] ∘ Setoids [ adj→a ∘ adj←a ] ] ≈⟨ ≈-composite Setoids {f = Setoids [ adj←b ∘ Gfx ]} {g = Setoids [ adj←b ∘ Gfx ]} {h = Setoids [ adj→a ∘ adj←a ]} {i = id Setoids} (refl-hom Setoids {f = Setoids [ adj←b ∘ Gfx ]}) (proj₁ (_[_≅_].proof adjunction)) ⟩ Setoids [ adj←b ∘ Gfx ] ∎ where fFx = liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ D ][-, f ] (fobj F x)) Gfx = liftMap {d = C₁ ⊔ D₁} {ℓ″ = ℓ ⊔ ℓ′} (component HomNat[ C ][-, fmap G f ] x) adj←a = _[_≅_].map-← adjunction adj←b = _[_≅_].map-← adjunction adj→a = _[_≅_].map-→ adjunction adj→b = _[_≅_].map-→ adjunction lem-1 : Setoids [ fFx ≈ Setoids [ Setoids [ adj←b ∘ Gfx ] ∘ adj→a ] ] lem-1 = begin⟨ Setoids ⟩ fFx ≈⟨ ≈-composite Setoids {f = id Setoids} {g = Setoids [ adj←b ∘ adj→b ]} {h = fFx} {i = fFx} (sym-hom Setoids {f = Setoids [ adj←b ∘ adj→b ]} {g = id Setoids} (proj₂ (_[_≅_].proof adjunction))) (refl-hom Setoids {f = fFx}) ⟩ Setoids [ adj←b ∘ Setoids [ adj→b ∘ fFx ] ] ≈⟨ ≈-composite Setoids {f = adj←b} {g = adj←b} {h = Setoids [ adj→b ∘ fFx ]} {i = Setoids [ Gfx ∘ adj→a ]} (refl-hom Setoids {f = adj←b}) (sym-hom Setoids {f = Setoids [ Gfx ∘ adj→a ]} {g = Setoids [ adj→b ∘ fFx ]} natural-in-→-D) ⟩ Setoids [ Setoids [ adj←b ∘ Gfx ] ∘ adj→a ] ∎ naturality-point-←-C : {x y : Obj C} {a : Obj D} {f : Hom C y x} {k : Hom C x (fobj G a)} → D [ D [ adjunct-← k ∘ fmap F f ] ≈ adjunct-← (C [ k ∘ f ]) ] naturality-point-←-C = λ {x} {y} {a} {f} {k} → lower (natural-in-←-C (lift k)) naturality-point-→-C : {x y : Obj C} {a : Obj D} {f : Hom C y x} {k : Hom D (fobj F x) a} → C [ C [ adjunct-→ k ∘ f ] ≈ adjunct-→ (D [ k ∘ fmap F f ]) ] naturality-point-→-C = λ {x} {y} {a} {f} {k} → lower (natural-in-→-C (lift k)) naturality-point-←-D : {x : Obj C} {a b : Obj D} {f : Hom D a b} {k : Hom C x (fobj G a)} → D [ D [ f ∘ adjunct-← k ] ≈ adjunct-← (C [ fmap G f ∘ k ]) ] naturality-point-←-D = λ {x} {y} {a} {f} {k} → lower (natural-in-←-D (lift k)) naturality-point-→-D : {x : Obj C} {a b : Obj D} {f : Hom D a b} {k : Hom D (fobj F x) a} → C [ C [ fmap G f ∘ adjunct-→ k ] ≈ adjunct-→ (D [ f ∘ k ]) ] naturality-point-→-D = λ {x} {y} {a} {f} {k} → lower (natural-in-→-D (lift k)) open Adjoint unit : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → Adjoint F G → Nat.Nat (Functor.identity C) (Functor.compose G F) unit {C₀} {C₁} {ℓ} {D₀} {D₁} {ℓ′} {C} {D} {F} {G} F⊣G = record { component = λ X → adjunct-→ F⊣G (id D) ; naturality = λ {a} {b} {f} → begin⟨ C ⟩ C [ adjunct-→ F⊣G (id D) ∘ fmap (Functor.identity C) f ] ≈⟨ naturality-point-→-C F⊣G ⟩ adjunct-→ F⊣G (D [ id D ∘ fmap F (fmap (Functor.identity C) f) ]) ≈⟨ Map.preserveEq (adjunct-→-Map F⊣G) (leftId D) ⟩ adjunct-→ F⊣G (fmap F f) ≈⟨ Map.preserveEq (adjunct-→-Map F⊣G) (sym-hom D (rightId D)) ⟩ adjunct-→ F⊣G (D [ fmap F f ∘ id D ]) ≈⟨ sym-hom C (naturality-point-→-D F⊣G) ⟩ C [ fmap (Functor.compose G F) f ∘ adjunct-→ F⊣G (id D) ] ∎ } counit : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → Adjoint F G → Nat.Nat (Functor.compose F G) (Functor.identity D) counit {C₀} {C₁} {ℓ} {D₀} {D₁} {ℓ′} {C} {D} {F} {G} F⊣G = record { component = λ X → adjunct-← F⊣G (id C) ; naturality = λ {a} {b} {f} → begin⟨ D ⟩ D [ adjunct-← F⊣G (id C) ∘ fmap (Functor.compose F G) f ] ≈⟨ naturality-point-←-C F⊣G ⟩ adjunct-← F⊣G (C [ id C ∘ fmap G f ]) ≈⟨ Map.preserveEq (adjunct-←-Map F⊣G) (leftId C) ⟩ adjunct-← F⊣G (fmap G f) ≈⟨ Map.preserveEq (adjunct-←-Map F⊣G) (sym-hom C (rightId C)) ⟩ adjunct-← F⊣G (C [ fmap G f ∘ id C ]) ≈⟨ sym-hom D (naturality-point-←-D F⊣G) ⟩ D [ fmap (Functor.identity D) f ∘ adjunct-← F⊣G (id C) ] ∎} Unit-universal : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → Adjoint F G → Set _ Unit-universal {C = C} {D} {F} {G} adj = ∀ {X : Obj C} {A : Obj D} (f : Hom C X (fobj G A)) → ∃! (λ x y → D [ x ≈ y ]) (λ (h : Hom D (fobj F X) A) → C [ C [ fmap G h ∘ component (unit adj) X ] ≈ f ]) unit-universality : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → (adj : Adjoint F G) → Unit-universal adj unit-universality {C = C} {D} {F} {G} F⊣G {X} {A} f = adjunct-← F⊣G f , lem-1 , lem-2 where lem-1 = begin⟨ C ⟩ C [ fmap G (adjunct-← F⊣G f) ∘ component (unit F⊣G) X ] ≈⟨ naturality-point-→-D F⊣G ⟩ adjunct-→ F⊣G (D [ adjunct-← F⊣G f ∘ id D ]) ≈⟨ Map.preserveEq (adjunct-→-Map F⊣G) (≈-composite D (refl-hom D) (sym-hom D (preserveId F))) ⟩ adjunct-→ F⊣G (D [ adjunct-← F⊣G f ∘ fmap F (id C) ]) ≈⟨ sym-hom C (naturality-point-→-C F⊣G) ⟩ C [ adjunct-→ F⊣G (adjunct-← F⊣G f) ∘ id C ] ≈⟨ rightId C ⟩ adjunct-→ F⊣G (adjunct-← F⊣G f) ≈⟨ adjunct-→←≈id F⊣G ⟩ f ∎ lem-2 = λ {y} eq → begin⟨ D ⟩ adjunct-← F⊣G f ≈⟨ Map.preserveEq (adjunct-←-Map F⊣G) (sym-hom C eq) ⟩ adjunct-← F⊣G (C [ fmap G y ∘ component (unit F⊣G) X ]) ≈⟨ sym-hom D (naturality-point-←-D (F⊣G)) ⟩ D [ y ∘ adjunct-← F⊣G (adjunct-→ F⊣G (id D)) ] ≈⟨ ≈-composite D (refl-hom D) (adjunct-←→≈id F⊣G) ⟩ D [ y ∘ id D ] ≈⟨ rightId D ⟩ y ∎ Counit-universal : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → Adjoint F G → Set _ Counit-universal {C = C} {D} {F} {G} adj = ∀ {X : Obj C} {A : Obj D} (h : Hom D (fobj F X) A) → ∃! (λ x y → C [ x ≈ y ]) (λ (f : Hom C X (fobj G A)) → D [ D [ component (counit adj) A ∘ fmap F f ] ≈ h ]) counit-universality : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → (adj : Adjoint F G) → Counit-universal adj counit-universality {C = C} {D} {F} {G} F⊣G = λ {X} {A} h → adjunct-→ F⊣G h , lem-1 , lem-2 where lem-1 = λ {A} {h} → begin⟨ D ⟩ D [ component (counit F⊣G) A ∘ fmap F (adjunct-→ F⊣G h) ] ≈⟨ naturality-point-←-C F⊣G ⟩ adjunct-← F⊣G (C [ id C ∘ adjunct-→ F⊣G h ]) ≈⟨ Map.preserveEq (adjunct-←-Map F⊣G) (leftId C) ⟩ adjunct-← F⊣G (adjunct-→ F⊣G h) ≈⟨ adjunct-←→≈id F⊣G ⟩ h ∎ lem-2 = λ {A} {h} {y} eq → begin⟨ C ⟩ adjunct-→ F⊣G h ≈⟨ Map.preserveEq (adjunct-→-Map F⊣G) (sym-hom D eq) ⟩ adjunct-→ F⊣G (D [ component (counit F⊣G) A ∘ fmap F y ]) ≈⟨ sym-hom C (naturality-point-→-C F⊣G) ⟩ C [ adjunct-→ F⊣G (component (counit F⊣G) A) ∘ y ] ≈⟨ ≈-composite C (adjunct-→←≈id F⊣G) (refl-hom C) ⟩ C [ id C ∘ y ] ≈⟨ leftId C ⟩ y ∎ TriangularL : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → Nat.Nat (Functor.identity C) (Functor.compose G F) → Nat.Nat (Functor.compose F G) (Functor.identity D) → Set _ TriangularL {C = C} {D} {F} {G} η ε = [ C , D ] [ Nat.compose (Nat.compose Nat.leftIdNat→ (ε N∘F F)) (Nat.compose (Nat.assocNat← {F = F} {G} {F}) (Nat.compose (F F∘N η) Nat.rightIdNat←)) ≈ id [ C , D ] ] triangularL-point : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → (η : Nat.Nat (Functor.identity C) (Functor.compose G F)) → (ε : Nat.Nat (Functor.compose F G) (Functor.identity D)) → {a : Obj C} → (triL : TriangularL {F = F} {G} η ε) → D [ D [ component (ε N∘F F) a ∘ component (F F∘N η) a ] ≈ id D {fobj F a} ] triangularL-point {C = C} {D} {F} {G} η ε {a} triL = begin⟨ D ⟩ D [ component (ε N∘F F) a ∘ component (F F∘N η) a ] ≈⟨ sym-hom D (≈-composite D (leftId D) (trans-hom D (leftId D) (rightId D))) ⟩ D [ D [ id D ∘ component (ε N∘F F) a ] ∘ D [ id D ∘ D [ component (F F∘N η) a ∘ id D ] ] ] ≈⟨ triL {a} ⟩ id D ∎ triangularL : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → (adj : Adjoint F G) → TriangularL {F = F} {G} (unit adj) (counit adj) triangularL {C = C} {D} {F} {G} adj = λ {a} → begin⟨ D ⟩ component (Nat.compose εF (Nat.compose (Nat.assocNat← {F = F} {G} {F}) Fη)) a ≈⟨ ≈-composite D (leftId D) (trans-hom D (leftId D) (rightId D)) ⟩ D [ component ε (fobj F a) ∘ fmap F (component η a) ] ≈⟨ proj₁ (proj₂ (counit-universality adj (id D))) ⟩ id D ≈⟨ refl-hom D ⟩ component (id [ C , D ] {F}) a ∎ where ε = counit adj η = unit adj εF = Nat.compose Nat.leftIdNat→ (counit adj N∘F F) Fη = Nat.compose {F = F} (F F∘N unit adj) Nat.rightIdNat← TriangularR : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → Nat.Nat (Functor.identity C) (Functor.compose G F) → Nat.Nat (Functor.compose F G) (Functor.identity D) → Set _ TriangularR {C = C} {D} {F} {G} η ε = [ D , C ] [ Nat.compose (Nat.compose Nat.rightIdNat→ (G F∘N ε)) (Nat.compose (Nat.assocNat→ {F = G} {F} {G}) (Nat.compose (η N∘F G) Nat.leftIdNat←)) ≈ id [ D , C ] ] triangularR : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → (adj : Adjoint F G) → TriangularR {F = F} (unit adj) (counit adj) triangularR {C = C} {D} {F} {G} adj = λ {a} → begin⟨ C ⟩ component (Nat.compose Gε (Nat.compose (Nat.assocNat→ {F = G} {F} {G}) ηG)) a ≈⟨ ≈-composite C (leftId C) (trans-hom C (leftId C) (rightId C)) ⟩ C [ fmap G (component ε a) ∘ component η (fobj G a) ] ≈⟨ proj₁ (proj₂ (unit-universality adj (id C))) ⟩ id C ≈⟨ refl-hom C ⟩ component (id [ D , C ] {G}) a ∎ where ε = counit adj η = unit adj Gε = Nat.compose {H = G} Nat.rightIdNat→ (G F∘N counit adj) ηG = Nat.compose (unit adj N∘F G) Nat.leftIdNat← triangularR-point : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → (η : Nat.Nat (Functor.identity C) (Functor.compose G F)) → (ε : Nat.Nat (Functor.compose F G) (Functor.identity D)) → {a : Obj D} → (triR : TriangularR {F = F} {G} η ε) → C [ C [ component (G F∘N ε) a ∘ component (η N∘F G) a ] ≈ id C {fobj G a} ] triangularR-point {C = C} {D} {F} {G} η ε {a} triR = begin⟨ C ⟩ C [ component (G F∘N ε) a ∘ component (η N∘F G) a ] ≈⟨ sym-hom C (≈-composite C (leftId C) (trans-hom C (leftId C) (rightId C))) ⟩ C [ C [ id C ∘ component (G F∘N ε) a ] ∘ C [ id C ∘ C [ component (η N∘F G) a ∘ id C ] ] ] ≈⟨ triR {a = a} ⟩ id C ∎ unit-triangular-holds-adjoint : ∀ {C₀ C₁ ℓ D₀ D₁ ℓ′} {C : Category C₀ C₁ ℓ} {D : Category D₀ D₁ ℓ′} {F : Functor.Functor C D} {G : Functor.Functor D C} → (η : Nat.Nat (Functor.identity C) (Functor.compose G F)) → (ε : Nat.Nat (Functor.compose F G) (Functor.identity D)) → TriangularL {F = F} η ε → TriangularR {F = F} η ε → Adjoint F G unit-triangular-holds-adjoint {C = C} {D} {F} {G} η ε triL triR = record { adjunction = λ {x} {a} → record { map-→ = record { mapping = λ Fx→a → lift (C [ fmap G (lower Fx→a) ∘ component η x ]) ; preserveEq = λ {x′} {y} x₂ → lift (≈-composite C (Functor.preserveEq G (lower x₂)) (refl-hom C)) } ; map-← = record { mapping = λ x→Ga → lift (D [ component ε a ∘ fmap F (lower x→Ga) ]) ; preserveEq = λ {x′} {y} x₂ → lift (≈-composite D (refl-hom D) (Functor.preserveEq F (lower x₂))) } ; proof = p1 , p2 } ; natural-in-→-C = λ {x} {y} {a} {f} Fx→a → lift (begin⟨ C ⟩ C [ C [ fmap G (lower Fx→a) ∘ component η x ] ∘ f ] ≈⟨ assoc C ⟩ C [ fmap G (lower Fx→a) ∘ C [ component η x ∘ f ] ] ≈⟨ ≈-composite C (refl-hom C) (naturality η) ⟩ C [ fmap G (lower Fx→a) ∘ C [ fmap G (fmap F f) ∘ component η y ] ] ≈⟨ sym-hom C (assoc C) ⟩ C [ C [ fmap G (lower Fx→a) ∘ fmap G (fmap F f) ] ∘ component η y ] ≈⟨ ≈-composite C (sym-hom C (preserveComp G)) (refl-hom C) ⟩ C [ fmap G (D [ lower Fx→a ∘ fmap F f ]) ∘ component η y ] ∎) ; natural-in-→-D = λ {x} {a} {b} {f} Fx→a → lift (begin⟨ C ⟩ C [ fmap G f ∘ C [ fmap G (lower Fx→a) ∘ component η x ] ] ≈⟨ sym-hom C (assoc C) ⟩ C [ C [ fmap G f ∘ fmap G (lower Fx→a) ] ∘ component η x ] ≈⟨ ≈-composite C (sym-hom C (preserveComp G)) (refl-hom C) ⟩ C [ fmap G (D [ f ∘ lower Fx→a ]) ∘ component η x ] ∎) } where p1 = λ {x} {a} x→Ga → lift (begin⟨ C ⟩ C [ fmap G (D [ component ε a ∘ fmap F (lower x→Ga) ]) ∘ component η x ] ≈⟨ ≈-composite C (preserveComp G) (refl-hom C) ⟩ C [ C [ fmap G (component ε a) ∘ fmap G (fmap F (lower x→Ga)) ] ∘ component η x ] ≈⟨ assoc C ⟩ C [ fmap G (component ε a) ∘ C [ fmap G (fmap F (lower x→Ga)) ∘ component η x ] ] ≈⟨ ≈-composite C (refl-hom C) (sym-hom C (naturality η)) ⟩ C [ fmap G (component ε a) ∘ C [ component η (fobj G a) ∘ (lower x→Ga) ] ] ≈⟨ sym-hom C (assoc C) ⟩ C [ C [ fmap G (component ε a) ∘ component η (fobj G a) ] ∘ (lower x→Ga) ] ≈⟨ ≈-composite C (triangularR-point {F = F} η ε {a = a} triR) (refl-hom C) ⟩ C [ id C ∘ (lower x→Ga) ] ≈⟨ leftId C ⟩ lower x→Ga ∎) p2 = λ {x} {a} Fx→a → lift (begin⟨ D ⟩ D [ component ε a ∘ fmap F (C [ fmap G (lower Fx→a) ∘ component η x ]) ] ≈⟨ ≈-composite D (refl-hom D) (preserveComp F) ⟩ D [ component ε a ∘ D [ fmap F (fmap G (lower Fx→a)) ∘ fmap F (component η x) ] ] ≈⟨ sym-hom D (assoc D) ⟩ D [ D [ component ε a ∘ fmap F (fmap G (lower Fx→a)) ] ∘ fmap F (component η x) ] ≈⟨ ≈-composite D (naturality ε) (refl-hom D) ⟩ D [ D [ lower Fx→a ∘ component ε (fobj F x) ] ∘ fmap F (component η x) ] ≈⟨ assoc D ⟩ D [ lower Fx→a ∘ D [ component ε (fobj F x) ∘ fmap F (component η x) ] ] ≈⟨ ≈-composite D (refl-hom D) (triangularL-point {F = F} η ε {a = x} triL) ⟩ D [ lower Fx→a ∘ id D ] ≈⟨ rightId D ⟩ lower Fx→a ∎) module Export where _⊣_ = Adjoint
{ "alphanum_fraction": 0.5390777339, "avg_line_length": 70.802238806, "ext": "agda", "hexsha": "e398670196188d4433782086eacae070e2693e5c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "myuon/agda-cate", "max_forks_repo_path": "src/Adjoint.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "myuon/agda-cate", "max_issues_repo_path": "src/Adjoint.agda", "max_line_length": 388, "max_stars_count": 2, "max_stars_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "myuon/agda-cate", "max_stars_repo_path": "src/Adjoint.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-02T07:30:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-28T04:59:31.000Z", "num_tokens": 8910, "size": 18975 }
------------------------------------------------------------------------------ -- Properties for the equality on streams ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Stream.Equality.PropertiesATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Stream.Type open import FOTC.Relation.Binary.Bisimilarity.PropertiesATP open import FOTC.Relation.Binary.Bisimilarity.Type ------------------------------------------------------------------------------ postulate stream-≡→≈ : ∀ {xs ys} → Stream xs → Stream ys → xs ≡ ys → xs ≈ ys {-# ATP prove stream-≡→≈ ≈-refl #-} -- See Issue https://github.com/asr/apia/issues/81 . ≈→Stream₁A : D → Set ≈→Stream₁A ws = ∃[ zs ] ws ≈ zs {-# ATP definition ≈→Stream₁A #-} ≈→Stream₁ : ∀ {xs ys} → xs ≈ ys → Stream xs ≈→Stream₁ {xs} {ys} h = Stream-coind ≈→Stream₁A h' (ys , h) where postulate h' : ∀ {xs} → ≈→Stream₁A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ ≈→Stream₁A xs' {-# ATP prove h' #-} -- See Issue https://github.com/asr/apia/issues/81 . ≈→Stream₂A : D → Set ≈→Stream₂A zs = ∃[ ws ] ws ≈ zs {-# ATP definition ≈→Stream₂A #-} ≈→Stream₂ : ∀ {xs ys} → xs ≈ ys → Stream ys ≈→Stream₂ {xs} {ys} h = Stream-coind ≈→Stream₂A h' (xs , h) where postulate h' : ∀ {ys} → ≈→Stream₂A ys → ∃[ y' ] ∃[ ys' ] ys ≡ y' ∷ ys' ∧ ≈→Stream₂A ys' {-# ATP prove h' #-} ≈→Stream : ∀ {xs ys} → xs ≈ ys → Stream xs ∧ Stream ys ≈→Stream {xs} {ys} h = ≈→Stream₁ h , ≈→Stream₂ h
{ "alphanum_fraction": 0.496151569, "avg_line_length": 34.4693877551, "ext": "agda", "hexsha": "c6376793fd4a1193ee17b62fd11c105e19d59bf0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Stream/Equality/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Stream/Equality/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Stream/Equality/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 539, "size": 1689 }
{-# OPTIONS --safe #-} module Cubical.Categories.Limits.Terminal where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Foundations.HLevels open import Cubical.Categories.Category open import Cubical.Categories.Functor private variable ℓ ℓ' : Level module _ (C : Precategory ℓ ℓ') where open Precategory C isInitial : (x : ob) → Type (ℓ-max ℓ ℓ') isInitial x = ∀ (y : ob) → isContr (C [ x , y ]) isFinal : (x : ob) → Type (ℓ-max ℓ ℓ') isFinal x = ∀ (y : ob) → isContr (C [ y , x ]) hasInitialOb : Type (ℓ-max ℓ ℓ') hasInitialOb = Σ[ x ∈ ob ] isInitial x hasFinalOb : Type (ℓ-max ℓ ℓ') hasFinalOb = Σ[ x ∈ ob ] isFinal x -- Initiality of an object is a proposition. isPropIsInitial : (x : ob) → isProp (isInitial x) isPropIsInitial x = isPropΠ λ y → isPropIsContr -- Objects that are initial are isomorphic. isInitialToIso : {x y : ob} (hx : isInitial x) (hy : isInitial y) → CatIso {C = C} x y isInitialToIso {x = x} {y = y} hx hy = let x→y : C [ x , y ] x→y = fst (hx y) -- morphism forwards y→x : C [ y , x ] y→x = fst (hy x) -- morphism backwards x→y→x : x→y ⋆⟨ C ⟩ y→x ≡ id x x→y→x = isContr→isProp (hx x) _ _ -- compose to id by uniqueness y→x→y : y→x ⋆⟨ C ⟩ x→y ≡ id y y→x→y = isContr→isProp (hy y) _ _ -- similar. in catiso x→y y→x y→x→y x→y→x open isUnivalent -- The type of initial objects of a univalent precategory is a proposition, -- i.e. all initial objects are equal. isPropInitial : (hC : isUnivalent C) → isProp (hasInitialOb) isPropInitial hC x y = -- Being initial is a prop ∴ Suffices equal as objects in C. Σ≡Prop (isPropIsInitial) -- C is univalent ∴ Suffices isomorphic as objects in C. (CatIsoToPath hC (isInitialToIso (snd x) (snd y))) -- Now the dual argument for final objects. -- Finality of an object is a proposition. isPropIsFinal : (x : ob) → isProp (isFinal x) isPropIsFinal x = isPropΠ λ y → isPropIsContr -- Objects that are initial are isomorphic. isFinalToIso : {x y : ob} (hx : isFinal x) (hy : isFinal y) → CatIso {C = C} x y isFinalToIso {x = x} {y = y} hx hy = let x→y : C [ x , y ] x→y = fst (hy x) -- morphism forwards y→x : C [ y , x ] y→x = fst (hx y) -- morphism backwards x→y→x : x→y ⋆⟨ C ⟩ y→x ≡ id x x→y→x = isContr→isProp (hx x) _ _ -- compose to id by uniqueness y→x→y : y→x ⋆⟨ C ⟩ x→y ≡ id y y→x→y = isContr→isProp (hy y) _ _ -- similar. in catiso x→y y→x y→x→y x→y→x -- The type of final objects of a univalent precategory is a proposition, -- i.e. all final objects are equal. isPropFinal : (hC : isUnivalent C) → isProp (hasFinalOb) isPropFinal hC x y = -- Being final is a prop ∴ Suffices equal as objects in C. Σ≡Prop (isPropIsFinal) -- C is univalent ∴ Suffices isomorphic as objects in C. (CatIsoToPath hC (isFinalToIso (snd x) (snd y)))
{ "alphanum_fraction": 0.6125041792, "avg_line_length": 34.3793103448, "ext": "agda", "hexsha": "26a933671c1565948872793c4b56f8a4c07f4431", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0f4d9b6abc83e5c5bd0dbf21f9de1e8644acf282", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kl-i/cubical-0.4", "max_forks_repo_path": "Cubical/Categories/Limits/Terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0f4d9b6abc83e5c5bd0dbf21f9de1e8644acf282", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kl-i/cubical-0.4", "max_issues_repo_path": "Cubical/Categories/Limits/Terminal.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "0f4d9b6abc83e5c5bd0dbf21f9de1e8644acf282", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kl-i/cubical-0.4", "max_stars_repo_path": "Cubical/Categories/Limits/Terminal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1083, "size": 2991 }
-- Andreas, 2017-01-13, issue #2403 open import Common.Nat postulate P : Nat → Set f : ∀{n} → P n → P (pred n) test : ∀ n → P n → Set test zero p = Nat test (suc n) p = test _ (f p) -- WAS: -- The meta-variable is solved to (pred (suc n)) -- Termination checking fails. -- NOW: If the termination checker normalizes the argument and it passes.
{ "alphanum_fraction": 0.6320224719, "avg_line_length": 19.7777777778, "ext": "agda", "hexsha": "38258479c8eeaa4f974c80d2e97ba56803c99fa6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2403.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2403.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2403.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 117, "size": 356 }
module VecSN where open import Data.Bool infixr 20 _◎_ ------------------------------------------------------------------------------ -- fix a field F_3 = {0, 1, -1} -- types B (ZERO,ONE,PLUS,TIMES) determine the DIMENSION of a vector space over F_3 -- values of type B are INDICES for B-dimensional vectors -- we do not allow superpositions (we have AT MOST one entry in the -- vector that is non-zero), so we can identify the INDICES with the vectors -- -- in particular: -- - ZERO is not the empty type! it is like the 0-dimensional vector space -- (i.e, the type containing one "annihilating value") -- - ONE is like a 1-dimensional vector space; it is isomorphic to -- the scalars (0,+1,-1) -- - PLUS gives the direct sum of vector spaces (dimension is the sum) -- - TIMES gives the tensor product of vector spaces (dimension is the product) -- - DUAL gives the dual space (functionals that map vectors to scalars; i.e. -- that maps values to scalars) data B : Set where ZERO : B ONE : B PLUS : B → B → B TIMES : B → B → B DUAL : B → B -- now we describe the vectors for each B-dimensional vector space -- the zero vector is everywhere data BVAL : B → Set where zero : {b : B} → BVAL b unit : BVAL ONE left : {b₁ b₂ : B} → BVAL b₁ → BVAL (PLUS b₁ b₂) right : {b₁ b₂ : B} → BVAL b₂ → BVAL (PLUS b₁ b₂) pair : {b₁ b₂ : B} → BVAL b₁ → BVAL b₂ → BVAL (TIMES b₁ b₂) dual : {b : B} → BVAL b → BVAL (DUAL b) -- syntactic equality on vectors b= : { b : B } → BVAL b → BVAL b → Bool b= zero zero = true b= unit unit = true b= (left v₁) (left v₂) = b= v₁ v₂ b= (right v₁) (right v₂) = b= v₁ v₂ b= (pair v₁ v₂) (pair v₁' v₂') = b= v₁ v₁' ∧ b= v₂ v₂' b= (dual v₁) (dual v₂) = b= v₁ v₂ b= _ _ = false data Iso : B → B → Set where -- (+,0) commutative monoid unite₊ : { b : B } → Iso (PLUS ZERO b) b uniti₊ : { b : B } → Iso b (PLUS ZERO b) swap₊ : { b₁ b₂ : B } → Iso (PLUS b₁ b₂) (PLUS b₂ b₁) assocl₊ : { b₁ b₂ b₃ : B } → Iso (PLUS b₁ (PLUS b₂ b₃)) (PLUS (PLUS b₁ b₂) b₃) assocr₊ : { b₁ b₂ b₃ : B } → Iso (PLUS (PLUS b₁ b₂) b₃) (PLUS b₁ (PLUS b₂ b₃)) -- (*,1) commutative monoid unite⋆ : { b : B } → Iso (TIMES ONE b) b uniti⋆ : { b : B } → Iso b (TIMES ONE b) swap⋆ : { b₁ b₂ : B } → Iso (TIMES b₁ b₂) (TIMES b₂ b₁) assocl⋆ : { b₁ b₂ b₃ : B } → Iso (TIMES b₁ (TIMES b₂ b₃)) (TIMES (TIMES b₁ b₂) b₃) assocr⋆ : { b₁ b₂ b₃ : B } → Iso (TIMES (TIMES b₁ b₂) b₃) (TIMES b₁ (TIMES b₂ b₃)) -- * distributes over + dist : { b₁ b₂ b₃ : B } → Iso (TIMES (PLUS b₁ b₂) b₃) (PLUS (TIMES b₁ b₃) (TIMES b₂ b₃)) factor : { b₁ b₂ b₃ : B } → Iso (PLUS (TIMES b₁ b₃) (TIMES b₂ b₃)) (TIMES (PLUS b₁ b₂) b₃) -- closure id⟷ : { b : B } → Iso b b sym : { b₁ b₂ : B } → Iso b₁ b₂ → Iso b₂ b₁ _◎_ : { b₁ b₂ b₃ : B } → Iso b₁ b₂ → Iso b₂ b₃ → Iso b₁ b₃ _⊕_ : { b₁ b₂ b₃ b₄ : B } → Iso b₁ b₃ → Iso b₂ b₄ → Iso (PLUS b₁ b₂) (PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → Iso b₁ b₃ → Iso b₂ b₄ → Iso (TIMES b₁ b₂) (TIMES b₃ b₄) -- multiplicative duality refe⋆ : { b : B } → Iso (DUAL (DUAL b)) b refi⋆ : { b : B } → Iso b (DUAL (DUAL b)) rile⋆ : { b : B } → Iso (TIMES b (TIMES b (DUAL b))) b rili⋆ : { b : B } → Iso b (TIMES b (TIMES b (DUAL b))) -- negatives: we have a circuit that requires the value to choose -- the incoming value : b₁ can go left or right choose : { b₁ b₂ : B } → Iso b₁ b₂ → Iso b₁ b₂ → Iso b₁ b₂ mutual eval : {b₁ b₂ : B} → Iso b₁ b₂ → BVAL b₁ → BVAL b₂ eval unite₊ (left _) = zero eval unite₊ (right v) = v eval uniti₊ v = right v eval swap₊ (left v) = right v eval swap₊ (right v) = left v eval assocl₊ (left v) = left (left v) eval assocl₊ (right (left v)) = left (right v) eval assocl₊ (right (right v)) = right v eval assocr₊ (left (left v)) = left v eval assocr₊ (left (right v)) = right (left v) eval assocr₊ (right v) = right (right v) eval unite⋆ (pair unit v) = v eval uniti⋆ v = pair unit v eval swap⋆ (pair v1 v2) = pair v2 v1 eval assocl⋆ (pair v1 (pair v2 v3)) = pair (pair v1 v2) v3 eval assocr⋆ (pair (pair v1 v2) v3) = pair v1 (pair v2 v3) eval dist (pair (left v1) v3) = left (pair v1 v3) eval dist (pair (right v2) v3) = right (pair v2 v3) eval factor (left (pair v1 v3)) = pair (left v1) v3 eval factor (right (pair v2 v3)) = pair (right v2) v3 eval id⟷ v = v eval (sym c) v = evalB c v eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (left v) = left (eval c₁ v) eval (c₁ ⊕ c₂) (right v) = right (eval c₂ v) eval (c₁ ⊗ c₂) (pair v₁ v₂) = pair (eval c₁ v₁) (eval c₂ v₂) eval refe⋆ (dual (dual v)) = v eval refi⋆ v = dual (dual v) eval rile⋆ (pair v (pair v₁ (dual v₂))) with b= v₁ v₂ eval rile⋆ (pair v (pair v₁ (dual v₂))) | true = v eval rile⋆ (pair v (pair v₁ (dual v₂))) | false = zero eval rili⋆ v = pair v (pair v (dual v)) -- choose : { b₁ b₂ : B } → Iso b₁ b₂ → Iso b₁ b₂ → Iso b₁ b₂ eval (choose c₁ c₂) v = {!!} eval _ _ = zero evalB : {b₁ b₂ : B} → Iso b₁ b₂ → BVAL b₂ → BVAL b₁ evalB unite₊ v = right v evalB uniti₊ (left _) = zero evalB uniti₊ (right v) = v evalB swap₊ (left v) = right v evalB swap₊ (right v) = left v evalB assocl₊ (left (left v)) = left v evalB assocl₊ (left (right v)) = right (left v) evalB assocl₊ (right v) = right (right v) evalB assocr₊ (left v) = left (left v) evalB assocr₊ (right (left v)) = left (right v) evalB assocr₊ (right (right v)) = right v evalB unite⋆ v = pair unit v evalB uniti⋆ (pair unit v) = v evalB swap⋆ (pair v1 v2) = pair v2 v1 evalB assocl⋆ (pair (pair v1 v2) v3) = pair v1 (pair v2 v3) evalB assocr⋆ (pair v1 (pair v2 v3)) = pair (pair v1 v2) v3 evalB dist (left (pair v1 v3)) = pair (left v1) v3 evalB dist (right (pair v2 v3)) = pair (right v2) v3 evalB factor (pair (left v1) v3) = left (pair v1 v3) evalB factor (pair (right v2) v3) = right (pair v2 v3) evalB id⟷ v = v evalB (sym c) v = eval c v evalB (c₁ ◎ c₂) v = evalB c₁ (evalB c₂ v) evalB (c₁ ⊕ c₂) (left v) = left (evalB c₁ v) evalB (c₁ ⊕ c₂) (right v) = right (evalB c₂ v) evalB (c₁ ⊗ c₂) (pair v₁ v₂) = pair (evalB c₁ v₁) (evalB c₂ v₂) evalB refe⋆ v = dual (dual v) evalB refi⋆ (dual (dual v)) = v evalB rile⋆ v = pair v (pair v (dual v)) evalB rili⋆ (pair v (pair v₁ (dual v₂))) with b= v₁ v₂ evalB rili⋆ (pair v (pair v₁ (dual v₂))) | true = v evalB rili⋆ (pair v (pair v₁ (dual v₂))) | false = zero evalB _ _ = zero ------------------------------------------------------------------------------ -- example with duals pibool : B pibool = PLUS ONE ONE pitrue : BVAL pibool pitrue = left unit pifalse : BVAL pibool pifalse = right unit -- swap clause 1 = (T => F) clause1 : BVAL (TIMES (DUAL pibool) pibool) clause1 = pair (dual pitrue) pifalse -- swap clause 2 = (F => T) clause2 : BVAL (TIMES (DUAL pibool) pibool) clause2 = pair (dual pifalse) pitrue -- swap clause 1 applied to true ex1 : BVAL (TIMES pibool (TIMES (DUAL pibool) pibool)) ex1 = pair pitrue clause1 -- swap clause 1 applied to false ex2 : BVAL (TIMES pibool (TIMES (DUAL pibool) pibool)) ex2 = pair pifalse clause1 -- swap clause 1 applied to true ex3 : BVAL (TIMES pibool (TIMES (DUAL pibool) pibool)) ex3 = pair pitrue clause2 -- swap clause 1 applied to false ex4 : BVAL (TIMES pibool (TIMES (DUAL pibool) pibool)) ex4 = pair pifalse clause2 -- applies one of the clauses to a value c : Iso (TIMES pibool (TIMES (DUAL pibool) pibool)) pibool c = -- (v,(1/t,f)) assocl⋆ ◎ -- ((v,1/t),f) swap⋆ ◎ -- (f,(v,1/t)) rile⋆ -- f or zero -- v1 = eval c ex1 v2 = eval c ex2 v3 = eval c ex3 v4 = eval c ex4 -- generalize -- applies one of the clauses of a function : b -> b to a value : b apply : {b : B} → Iso (TIMES b (TIMES (DUAL b) b)) b apply = assocl⋆ ◎ swap⋆ ◎ rile⋆ {-- want: value is True in parallel apply clause1 to value and apply clause2 to value one of these will return False and the other will return zero merge the results to get False better: value is True we create a new logic variable ALPHA which can be unified with either clause1 or clause2 we create a value (ALPHA - ALPHA) which we apply to evaluate --} ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5682004449, "avg_line_length": 36.0379746835, "ext": "agda", "hexsha": "7fa1bf113127a7b2c5ae5617b730614ab48613ff", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "agda/VecSN.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "agda/VecSN.agda", "max_line_length": 89, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "agda/VecSN.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 3418, "size": 8541 }
{-# OPTIONS --without-K --safe #-} module Polynomial.Simple.AlmostCommutativeRing.Instances where open import Polynomial.Simple.AlmostCommutativeRing open import Level using (0ℓ) open import Agda.Builtin.Reflection module Nat where open import Data.Nat using (zero; suc) open import Relation.Binary.PropositionalEquality using (refl) open import Data.Nat.Properties using (*-+-commutativeSemiring) open import Data.Maybe using (just; nothing) ring : AlmostCommutativeRing 0ℓ 0ℓ ring = fromCommutativeSemiring *-+-commutativeSemiring λ { zero → just refl; _ → nothing } module Reflection where open import Polynomial.Simple.Reflection using (solveOver-macro) open import Data.Unit using (⊤) macro ∀⟨_⟩ : Term → Term → TC ⊤ ∀⟨ n ⟩ = solveOver-macro n (quote ring) module Int where open import Data.Nat using (zero) open import Data.Integer using (+_) open import Data.Integer.Properties using(+-*-commutativeRing) open import Data.Maybe using (just; nothing) open import Relation.Binary.PropositionalEquality using (refl) ring : AlmostCommutativeRing 0ℓ 0ℓ ring = fromCommutativeRing +-*-commutativeRing λ { (+ zero) → just refl; _ → nothing } module Reflection where open import Polynomial.Simple.Reflection using (solveOver-macro) open import Data.Unit using (⊤) macro ∀⟨_⟩ : Term → Term → TC ⊤ ∀⟨ n ⟩ = solveOver-macro n (quote ring)
{ "alphanum_fraction": 0.7079037801, "avg_line_length": 29.693877551, "ext": "agda", "hexsha": "ee1ee97f7b8d18842da8b3b6968138fb53ac177e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z", "max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z", "max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/agda-ring-solver", "max_forks_repo_path": "src/Polynomial/Simple/AlmostCommutativeRing/Instances.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/agda-ring-solver", "max_issues_repo_path": "src/Polynomial/Simple/AlmostCommutativeRing/Instances.agda", "max_line_length": 68, "max_stars_count": 36, "max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/agda-ring-solver", "max_stars_repo_path": "src/Polynomial/Simple/AlmostCommutativeRing/Instances.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z", "num_tokens": 396, "size": 1455 }
{-# OPTIONS --safe #-} module Issue2487.b where -- trying to import a cubical, non-safe module open import Issue2487.c
{ "alphanum_fraction": 0.725, "avg_line_length": 20, "ext": "agda", "hexsha": "6ab8aaf100c288676b10724913c7a4de6cdc2140", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2487/b.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue2487/b.agda", "max_line_length": 46, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue2487/b.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 31, "size": 120 }