Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field module Algebra.Linear.Construct.Vector {k ℓ} (K : Field k ℓ) where open import Level using (_⊔_) open import Data.Product using (_×_; _,_) open import Data.Vec public hiding (sum) import Data.Vec.Properties as VP import Data.Vec.Relation.Binary.Pointwise.Inductive as PW open import Data.Nat hiding (_⊔_) renaming (_+_ to _+ℕ_) open import Data.Fin using (Fin) open import Relation.Binary open import Algebra.Linear.Core open import Algebra.FunctionProperties open import Relation.Binary.PropositionalEquality as P using (_≡_; subst; subst-subst-sym) renaming ( refl to ≡-refl ; sym to ≡-sym ; trans to ≡-trans ) open import Algebra.Structures.Field.Utils K import Algebra.Linear.Structures.VectorSpace as VS open VS.VectorSpaceField K open import Data.Nat.Properties using ( ≤-refl ; ≤-reflexive ; ≤-antisym ; n∸n≡0 ; m+[n∸m]≡n ; m≤m+n ; suc-injective ) renaming ( +-identityˡ to +ℕ-identityˡ ; +-identityʳ to +ℕ-identityʳ  ) private V : ℕ -> Set k V = Vec K' splitAt' : ∀ {n} (i : ℕ) (j : ℕ) -> i +ℕ j ≡ n -> V n → V i × V j splitAt' {0} 0 0 r [] = ([] , []) splitAt' {suc n} 0 (suc j) r u = ([] , subst V (≡-sym r) u) splitAt' {suc n} (suc i) j r (x ∷ xs) = let (xs₁ , xs₂) = splitAt' {n} i j (suc-injective r) xs in (x ∷ xs₁ , xs₂) open PW public using () renaming ( _∷_ to ≈-cons ; [] to ≈-null ; head to ≈-head ; tail to ≈-tail ; uncons to ≈-uncons ; lookup to ≈-lookup ; map to ≈-map ) _≈ʰ_ : ∀ {m n} (xs : Vec K' m) (ys : Vec K' n) → Set (k ⊔ ℓ) _≈ʰ_ = PW.Pointwise _≈ᵏ_ _≈_ : ∀ {n} (xs : Vec K' n) (ys : Vec K' n) → Set (k ⊔ ℓ) _≈_ = _≈ʰ_ ≈-isEquiv : ∀ {n} -> IsEquivalence (_≈_ {n}) ≈-isEquiv {n} = PW.isEquivalence ≈ᵏ-isEquiv n setoid : ℕ -> Setoid k (k ⊔ ℓ) setoid n = record { isEquivalence = ≈-isEquiv {n} } module _ {n} where open IsEquivalence (≈-isEquiv {n}) public using () renaming ( refl to ≈-refl ; sym to ≈-sym ; trans to ≈-trans ; reflexive to ≈-reflexive ) 0# : ∀ {n} → V n 0# {0} = [] 0# {suc n} = 0ᵏ ∷ 0# {n} -_ : ∀ {n} → V n → V n -_ = map (-ᵏ_) infixr 25 _+_ _+_ : ∀ {n} → Op₂ (V n) _+_ = zipWith _+ᵏ_ infixr 35 _∙_ _∙_ : ∀ {n} → K' → V n → V n _∙_ k = map (k *ᵏ_) {- module HeterogeneousEquivalence where import Relation.Binary.Indexed.Heterogeneous as IH data _≈ʰ_ : IH.IRel V (k ⊔ ℓ) where ≈ʰ-null : ∀ {n p} {u : V n} {v : V p} -> n ≡ 0 -> p ≡ 0 -> u ≈ʰ v ≈ʰ-cons : ∀ {n p} {x y : K'} {u : V n} {v : V p} -> n ≡ p -> x ≈ᵏ y -> u ≈ʰ v -> (x ∷ u) ≈ʰ (y ∷ v) pattern ≈ʰ-zero = ≈ʰ-null ≡-refl ≡-refl ≈ʰ-refl : IH.Reflexive V _≈ʰ_ ≈ʰ-refl {0} {[]} = ≈ʰ-zero ≈ʰ-refl {suc n} {x ∷ xs} = ≈ʰ-cons (≡-refl) ≈ᵏ-refl (≈ʰ-refl {n} {xs}) ≈ʰ-sym : IH.Symmetric V _≈ʰ_ ≈ʰ-sym {0} ≈ʰ-zero = ≈ʰ-zero ≈ʰ-sym {suc n} (≈ʰ-cons rn r rs) = ≈ʰ-cons (≡-sym rn) (≈ᵏ-sym r) (≈ʰ-sym rs) ≈ʰ-trans : IH.Transitive V _≈ʰ_ ≈ʰ-trans (≈ʰ-null rn rp) (≈ʰ-null rn' rp') = ≈ʰ-null rn rp' ≈ʰ-trans (≈ʰ-cons rn r rs) (≈ʰ-cons rn' r' rs') = ≈ʰ-cons (≡-trans rn rn') (≈ᵏ-trans r r') (≈ʰ-trans rs rs') ≈ʰ-isEquiv : IH.IsIndexedEquivalence V _≈ʰ_ ≈ʰ-isEquiv = record { refl = ≈ʰ-refl ; sym = ≈ʰ-sym ; trans = ≈ʰ-trans } ≈-to-≈ʰ : ∀ {n} {u v : V n} -> u ≈ v -> u ≈ʰ v ≈-to-≈ʰ {0} ≈-null = ≈ʰ-zero ≈-to-≈ʰ {suc n} (≈-cons r rs) = ≈ʰ-cons ≡-refl r (≈-to-≈ʰ rs) ≈ʰ-to-≈ : ∀ {n} {u v : V n} -> u ≈ʰ v -> u ≈ v ≈ʰ-to-≈ {0} {[]} {[]} ≈ʰ-zero = ≈-null ≈ʰ-to-≈ {suc n} (≈ʰ-cons _ r rs) = ≈-cons r (≈ʰ-to-≈ rs) ≈ʰ-tail : ∀ {n p} {x y : K'} {u : V n} {v : V p} -> (x ∷ u) ≈ʰ (x ∷ v) -> u ≈ʰ v ≈ʰ-tail (≈ʰ-cons _ _ r) = r indexedSetoid : IH.IndexedSetoid ℕ k (ℓ ⊔ k) indexedSetoid = record { Carrier = V ; _≈_ = _≈ʰ_ ; isEquivalence = ≈ʰ-isEquiv } setoid : ℕ -> Setoid k (k ⊔ ℓ) setoid n = record { Carrier = V n ; _≈_ = _≈_ ; isEquivalence = ≈-isEquiv } -} ++-identityˡ : ∀ {n} (u : V n) -> ([] ++ u) ≈ u ++-identityˡ _ = ≈-refl ++-cong : ∀ {n p} {u₁ v₁ : V n} {u₂ v₂ : V p} -> u₁ ≈ v₁ -> u₂ ≈ v₂ -> (u₁ ++ u₂) ≈ (v₁ ++ v₂) ++-cong ≈-null r₂ = r₂ ++-cong (≈-cons r₁ rs₁) r₂ = ≈-cons r₁ (++-cong rs₁ r₂) ++-split : ∀ {n p} {u₁ v₁ : V n} {u₂ v₂ : V p} -> (u₁ ++ u₂) ≈ (v₁ ++ v₂) -> (u₁ ≈ v₁ × u₂ ≈ v₂) ++-split {0} {p} {[]} {[]} r = ≈-null , r ++-split {suc n} {p} {x ∷ xs} {y ∷ ys} (≈-cons r rs) = let (r₁ , r₂) = ++-split {n} {p} rs in (≈-cons r r₁) , r₂ 0++0≈0 : ∀ {n p} -> (0# {n} ++ 0# {p}) ≈ 0# {n +ℕ p} 0++0≈0 {zero} = ++-identityˡ 0# 0++0≈0 {suc n} = ≈-cons ≈ᵏ-refl (0++0≈0 {n}) {- open HeterogeneousEquivalence ++-identityʳ-≈ʰ : ∀ {n} (u : V n) -> (u ++ []) ≈ʰ u ++-identityʳ-≈ʰ [] = ≈ʰ-refl ++-identityʳ-≈ʰ {suc n} (x ∷ xs) = ≈ʰ-cons (+ℕ-identityʳ n) ≈ᵏ-refl (++-identityʳ-≈ʰ {n} xs) ++-cong-≈ʰ : ∀ {n p} {u₁ v₁ : V n} {u₂ v₂ : V p} -> u₁ ≈ʰ v₁ -> u₂ ≈ʰ v₂ -> (u₁ ++ u₂) ≈ʰ (v₁ ++ v₂) ++-cong-≈ʰ r₁ r₂ = ≈-to-≈ʰ (++-cong (≈ʰ-to-≈ r₁) (≈ʰ-to-≈ r₂)) splitAt-identityˡ : ∀ {n} (u : V n) -> let (x₁ , x₂) = splitAt 0 z≤n u in (x₁ ≈ʰ []) × (x₂ ≈ʰ u) splitAt-identityˡ {0}_ = ≈ʰ-zero , ≈ʰ-zero splitAt-identityˡ {suc n} _ = ≈ʰ-zero , ≈ʰ-refl splitAt-identityʳ : ∀ {n} (u : V n) -> let (x₁ , x₂) = splitAt n ≤-refl u in (x₁ ≈ʰ u) × (x₂ ≈ʰ []) splitAt-identityʳ {0} [] = ≈ʰ-refl , ≈ʰ-refl splitAt-identityʳ {suc n} (x ∷ xs) = ≈ʰ-cons ≡-refl ≈ᵏ-refl (proj₁ (splitAt-identityʳ xs)) , ≈ʰ-null (n∸n≡0 (suc n)) ≡-refl ++-splitAt : ∀ {n} (k : ℕ) (r : k ≤ n) (u : V n) -> let (x₁ , x₂, _) = splitAt n u in (x₁ ++ x₂) ≡ u ++-splitAt {0} 0 r u = ≈ʰ-null (m+[n∸m]≡n r) ≡-refl ++-splitAt {suc n} 0 r (x ∷ xs) = ≈ʰ-refl ++-splitAt {suc n} (suc k) sk≤sn (x ∷ xs) = let k≤n = ≤-pred sk≤sn in ≈ʰ-cons (m+[n∸m]≡n k≤n) ≈ᵏ-refl (++-splitAt k k≤n xs) splitAt-++ : ∀ {n p} (u : Vec n) (v : Vec p) -> let (u' , v') = splitAt n (m≤m+n n p) (u ++ v) in (u ≈ʰ u') × (v ≈ʰ v') splitAt-++ {0} {0} [] [] = ≈ʰ-zero , ≈ʰ-zero splitAt-++ {0} {suc p} [] (y ∷ ys) = ≈ʰ-zero , ≈ʰ-refl splitAt-++ {suc n} {0} (x ∷ xs) [] = let (rxs , rv) = splitAt-++ xs [] in ≈ʰ-cons ≡-refl ≈ᵏ-refl rxs , rv splitAt-++ {suc n} {suc p} (x ∷ xs) (y ∷ ys) = let (u' , v') = splitAt (suc n) (m≤m+n (suc n) (suc p)) (x ∷ xs ++ y ∷ ys) (ru , rys) = splitAt-++ {suc n} {p} (x ∷ xs) ys (rxs , rv) = splitAt-++ {n} {suc p} xs (y ∷ ys) in ≈ʰ-cons ≡-refl ≈ᵏ-refl rxs , rv ++-splitAt' : ∀ {n p} (u : Vec (n +ℕ p)) -> let (x₁ , x₂) = splitAt' n p ≡-refl u in x₁ ++ x₂ ≈ u ++-splitAt' {0} [] = ≈-null ++-splitAt' {0} (x ∷ xs) = ≈-refl ++-splitAt' {suc n} (x ∷ xs) = ≈-cons ≈ᵏ-refl (++-splitAt' {n} xs) splitAt'-++ : ∀ {n p} (u : Vec n) (v : Vec p) -> let (u' , v') = splitAt' n p ≡-refl (u ++ v) in (u ≈ u') × (v ≈ v') splitAt'-++ {0} {0} [] [] = ≈-null , ≈-null splitAt'-++ {0} {suc p} [] (y ∷ ys) = ≈-null , ≈-refl splitAt'-++ {suc n} {0} (x ∷ xs) [] = let (rxs , rv) = splitAt'-++ xs [] in ≈-cons ≈ᵏ-refl rxs , rv splitAt'-++ {suc n} {suc p} (x ∷ xs) (y ∷ ys) = let (u' , v') = splitAt' (suc n) (suc p) ≡-refl (x ∷ xs ++ y ∷ ys) (ru , rys) = splitAt'-++ {suc n} {p} (x ∷ xs) ys (rxs , rv) = splitAt'-++ {n} {suc p} xs (y ∷ ys) in ≈-cons ≈ᵏ-refl rxs , rv -} +-cong : ∀ {n} → Congruent₂ (_≈_ {n}) _+_ +-cong ≈-null ≈-null = ≈-null +-cong (≈-cons r₁ rs₁) (≈-cons r₂ rs₂) = ≈-cons (+ᵏ-cong r₁ r₂) (+-cong rs₁ rs₂) +-assoc : ∀ {n} → Associative (_≈_ {n}) _+_ +-assoc [] [] [] = ≈-null +-assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) = ≈-cons (+ᵏ-assoc x y z) (+-assoc xs ys zs) +-identityˡ : ∀ {n} → LeftIdentity (_≈_ {n}) 0# _+_ +-identityˡ [] = ≈-null +-identityˡ (x ∷ xs) = ≈-cons (+ᵏ-identityˡ x) (+-identityˡ xs) +-identityʳ : ∀ {n} → RightIdentity (_≈_ {n}) 0# _+_ +-identityʳ [] = ≈-null +-identityʳ (x ∷ xs) = ≈-cons (+ᵏ-identityʳ x) (+-identityʳ xs) +-identity : ∀ {n} → Identity (_≈_ {n}) 0# _+_ +-identity = +-identityˡ , +-identityʳ +-comm : ∀ {n} -> Commutative (_≈_ {n}) _+_ +-comm [] [] = ≈-null +-comm (x ∷ xs) (y ∷ ys) = ≈-cons (+ᵏ-comm x y) (+-comm xs ys) *ᵏ-∙-compat : ∀ {n} (a b : K') (u : V n) -> ((a *ᵏ b) ∙ u) ≈ (a ∙ (b ∙ u)) *ᵏ-∙-compat a b [] = ≈-null *ᵏ-∙-compat a b (x ∷ xs) = ≈-cons (*ᵏ-assoc a b x) (*ᵏ-∙-compat a b xs) ∙-+-distrib : ∀ {n} (a : K') (u v : V n) -> (a ∙ (u + v)) ≈ ((a ∙ u) + (a ∙ v)) ∙-+-distrib a [] [] = ≈-null ∙-+-distrib a (x ∷ xs) (y ∷ ys) = ≈-cons (*ᵏ-+ᵏ-distribˡ a x y) (∙-+-distrib a xs ys) ∙-+ᵏ-distrib : ∀ {n} (a b : K') (u : V n) -> ((a +ᵏ b) ∙ u) ≈ ((a ∙ u) + (b ∙ u)) ∙-+ᵏ-distrib a b [] = ≈-null ∙-+ᵏ-distrib a b (x ∷ u) = ≈-cons (*ᵏ-+ᵏ-distribʳ x a b) (∙-+ᵏ-distrib a b u) ∙-cong : ∀ {n} {a b : K'} {u v : V n} → a ≈ᵏ b -> u ≈ v -> (a ∙ u) ≈ (b ∙ v) ∙-cong rᵏ ≈-null = ≈-null ∙-cong rᵏ (≈-cons r rs) = ≈-cons (*ᵏ-cong rᵏ r) (∙-cong rᵏ rs) ∙-identity : ∀ {n} (x : V n) → (1ᵏ ∙ x) ≈ x ∙-identity [] = ≈-null ∙-identity (x ∷ xs) = ≈-cons (*ᵏ-identityˡ x) (∙-identity xs) ∙-absorbˡ : ∀ {n} (x : V n) → (0ᵏ ∙ x) ≈ 0# ∙-absorbˡ [] = ≈-null ∙-absorbˡ (x ∷ xs) = ≈-cons (*ᵏ-zeroˡ x) (∙-absorbˡ xs) -‿inverseˡ : ∀ {n} → LeftInverse (_≈_ {n}) 0# -_ _+_ -‿inverseˡ [] = ≈-null -‿inverseˡ (x ∷ xs) = ≈-cons (-ᵏ‿inverseˡ x) (-‿inverseˡ xs) -‿inverseʳ : ∀ {n} → RightInverse (_≈_ {n}) 0# -_ _+_ -‿inverseʳ [] = ≈-null -‿inverseʳ (x ∷ xs) = ≈-cons (-ᵏ‿inverseʳ x) (-‿inverseʳ xs) -‿inverse : ∀ {n} → Inverse (_≈_ {n}) 0# -_ _+_ -‿inverse = -‿inverseˡ , -‿inverseʳ -‿cong : ∀ {n} -> Congruent₁ (_≈_ {n}) -_ -‿cong ≈-null = ≈-null -‿cong (≈-cons r rs) = ≈-cons (-ᵏ‿cong r) (-‿cong rs) +-++-distrib : ∀ {n p} (u₁ : V n) (u₂ : V p) (v₁ : V n) (v₂ : V p) -> ((u₁ ++ u₂) + (v₁ ++ v₂)) ≈ ((u₁ + v₁) ++ (u₂ + v₂)) +-++-distrib [] [] [] [] = ≈-null +-++-distrib (x₁ ∷ xs₁) [] (y₁ ∷ ys₁) [] = ++-cong ≈-refl (+-++-distrib xs₁ [] ys₁ []) +-++-distrib {0} {suc p} [] (x₂ ∷ xs₂) [] (y₂ ∷ ys₂) = ++-identityˡ ((x₂ +ᵏ y₂) ∷ (xs₂ + ys₂)) +-++-distrib (x₁ ∷ xs₁) u₂ (y₁ ∷ ys₁) v₂ = ≈-cons ≈ᵏ-refl (++-cong ≈-refl (+-++-distrib xs₁ u₂ ys₁ v₂)) ∙-++-distrib : ∀ {n p} (a : K') (u : V n) (v : V p) -> (a ∙ (u ++ v)) ≈ ((a ∙ u) ++ (a ∙ v)) ∙-++-distrib a [] v = ≈-refl ∙-++-distrib a (x ∷ xs) v = ≈-cons ≈ᵏ-refl (∙-++-distrib a xs v) sum : ∀ {n} -> V n -> K' sum = foldr _ _+ᵏ_ 0ᵏ sum-tab : ∀ {n} -> (Fin n -> K') -> K' sum-tab f = sum (tabulate f) sum-cong : ∀ {n} {u v : V n} -> u ≈ v -> sum u ≈ᵏ sum v sum-cong {0} PW.[] = ≈ᵏ-refl sum-cong {suc n} (r PW.∷ rs) = +ᵏ-cong r (sum-cong {n} rs) tabulate-cong-≡ : ∀ {n} {f g : Fin n -> K'} -> (∀ i -> f i ≡ g i) -> tabulate f ≡ tabulate g tabulate-cong-≡ = VP.tabulate-cong tabulate-cong : ∀ {n} {f g : Fin n -> K'} -> (∀ i -> f i ≈ᵏ g i) -> tabulate f ≈ tabulate g tabulate-cong {0} r = PW.[] tabulate-cong {suc n} r = r Fin.zero PW.∷ tabulate-cong (λ i → r (Fin.suc i)) sum-tab-cong : ∀ {n} {f g : Fin n -> K'} -> (∀ i -> f i ≈ᵏ g i) -> sum-tab f ≈ᵏ sum-tab g sum-tab-cong r = sum-cong (tabulate-cong r) *ᵏ-sum-tab-distribʳ : ∀ {n} (a : K') (f : Fin n -> K') → (sum-tab f *ᵏ a) ≈ᵏ sum-tab (λ k -> f k *ᵏ a) *ᵏ-sum-tab-distribʳ {0} a f = *ᵏ-zeroˡ a *ᵏ-sum-tab-distribʳ {suc n} a f = begin sum-tab f *ᵏ a ≈⟨ *ᵏ-+ᵏ-distribʳ a (f Fin.zero) (sum-tab (λ k -> f (Fin.suc k))) ⟩ (f Fin.zero *ᵏ a) +ᵏ (sum-tab (λ k -> f (Fin.suc k)) *ᵏ a) ≈⟨ +ᵏ-cong ≈ᵏ-refl (*ᵏ-sum-tab-distribʳ a (λ k -> f (Fin.suc k))) ⟩ sum-tab (λ k -> f k *ᵏ a) ∎ where open import Relation.Binary.EqReasoning (Field.setoid K) sum-assoc : ∀ {n} (f g : Fin n -> K') -> (sum-tab f +ᵏ sum-tab g) ≈ᵏ sum-tab (λ k -> f k +ᵏ g k) sum-assoc {0} f g = +ᵏ-identityˡ 0ᵏ sum-assoc {suc n} f g = begin sum-tab f +ᵏ sum-tab g ≡⟨⟩ (f Fin.zero +ᵏ sum-tab {n} (λ k -> f (Fin.suc k))) +ᵏ (g Fin.zero +ᵏ sum-tab {n} (λ k -> g (Fin.suc k))) ≈⟨ +ᵏ-assoc (f Fin.zero) (sum-tab {n} (λ k -> f (Fin.suc k))) (g Fin.zero +ᵏ sum-tab {n} (λ k -> g (Fin.suc k))) ⟩ f Fin.zero +ᵏ (sum-tab (λ k → f (Fin.suc k)) +ᵏ (g Fin.zero +ᵏ sum-tab (λ k → g (Fin.suc k)))) ≈⟨ +ᵏ-cong ≈ᵏ-refl (+ᵏ-comm (sum-tab (λ k -> f (Fin.suc k))) ((g Fin.zero +ᵏ sum-tab (λ k → g (Fin.suc k))))) ⟩ f Fin.zero +ᵏ ((g Fin.zero +ᵏ sum-tab (λ k → g (Fin.suc k))) +ᵏ sum-tab (λ k → f (Fin.suc k))) ≈⟨ +ᵏ-cong ≈ᵏ-refl (+ᵏ-assoc (g Fin.zero) (sum-tab (λ k -> g (Fin.suc k))) (sum-tab (λ k -> f (Fin.suc k)))) ⟩ f Fin.zero +ᵏ (g Fin.zero +ᵏ (sum-tab (λ k → g (Fin.suc k)) +ᵏ sum-tab (λ k → f (Fin.suc k)))) ≈⟨ ≈ᵏ-sym (+ᵏ-assoc (f Fin.zero) (g Fin.zero) (sum-tab (λ k → g (Fin.suc k)) +ᵏ sum-tab (λ k → f (Fin.suc k)))) ⟩ (f Fin.zero +ᵏ g Fin.zero) +ᵏ (sum-tab (λ k → g (Fin.suc k)) +ᵏ sum-tab (λ k → f (Fin.suc k))) ≈⟨ +ᵏ-cong ≈ᵏ-refl (+ᵏ-comm (sum-tab λ k -> g (Fin.suc k)) (sum-tab λ k -> f (Fin.suc k))) ⟩ (f Fin.zero +ᵏ g Fin.zero) +ᵏ (sum-tab (λ k → f (Fin.suc k)) +ᵏ sum-tab (λ k → g (Fin.suc k))) ≈⟨ +ᵏ-cong ≈ᵏ-refl (sum-assoc {n} (λ k -> f (Fin.suc k)) (λ k -> g (Fin.suc k))) ⟩ sum-tab (λ k -> f k +ᵏ g k) ∎ where open import Relation.Binary.EqReasoning (Field.setoid K) sum-tab-0ᵏ : ∀ {n} -> sum-tab {n} (λ k -> 0ᵏ) ≈ᵏ 0ᵏ sum-tab-0ᵏ {0} = ≈ᵏ-refl sum-tab-0ᵏ {suc n} = ≈ᵏ-trans (+ᵏ-identityˡ (sum-tab {n} λ k -> 0ᵏ)) (sum-tab-0ᵏ {n}) sum-tab-swap : ∀ {n p} (f : Fin n -> Fin p -> K') (g : Fin n -> K') -> sum-tab (λ k′ -> sum-tab λ k -> f k k′ *ᵏ g k) ≈ᵏ sum-tab (λ k -> sum-tab λ k′ -> f k k′ *ᵏ g k) sum-tab-swap {n} {0} f g = ≈ᵏ-sym (sum-tab-0ᵏ {n}) sum-tab-swap {n} {suc p} f g = begin sum-tab (λ k′ -> sum-tab λ k -> f k k′ *ᵏ g k) ≡⟨⟩ (sum-tab λ k -> f k Fin.zero *ᵏ g k) +ᵏ (sum-tab λ k′ -> sum-tab λ k -> f k (Fin.suc k′) *ᵏ g k) ≈⟨ +ᵏ-cong ≈ᵏ-refl (sum-tab-swap {n} {p} (λ k k′ -> f k (Fin.suc k′)) g) ⟩ sum-tab (λ k → f k Fin.zero *ᵏ g k) +ᵏ sum-tab (λ k → sum-tab (λ k′ → f k (Fin.suc k′) *ᵏ g k)) ≈⟨ +ᵏ-cong ≈ᵏ-refl (sum-tab-cong λ k -> ≈ᵏ-sym (*ᵏ-sum-tab-distribʳ {p} (g k) λ k′ -> f k (Fin.suc k′))) ⟩ sum-tab (λ k → f k Fin.zero *ᵏ g k) +ᵏ sum-tab (λ k → sum-tab (λ k′ → f k (Fin.suc k′)) *ᵏ g k) ≈⟨ sum-assoc (λ k -> f k Fin.zero *ᵏ g k) (λ k -> sum-tab (λ k′ -> f k (Fin.suc k′)) *ᵏ g k) ⟩ sum-tab (λ k -> (f k Fin.zero *ᵏ g k) +ᵏ (sum-tab (λ k′ -> f k (Fin.suc k′)) *ᵏ g k)) ≈⟨ sum-tab-cong (λ k -> ≈ᵏ-sym (*ᵏ-+ᵏ-distribʳ (g k) (f k Fin.zero) (sum-tab λ k′ -> f k (Fin.suc k′)))) ⟩ sum-tab (λ k -> sum-tab (λ k′ -> f k k′) *ᵏ g k) ≈⟨ sum-tab-cong (λ k -> *ᵏ-sum-tab-distribʳ {suc p} (g k) (λ k′ -> f k k′)) ⟩ sum-tab (λ k -> sum-tab λ k′ -> f k k′ *ᵏ g k) ∎ where open import Relation.Binary.EqReasoning (Field.setoid K) sum-tab-δ : ∀ {n} (f : Fin n -> K') (i : Fin n) -> sum-tab (λ k -> δ i k *ᵏ f k) ≈ᵏ f i sum-tab-δ {suc n} f [email protected] = begin sum-tab (λ k -> δ i k *ᵏ f k) ≡⟨⟩ (δ i i *ᵏ f i) +ᵏ sum-tab (λ k -> δ i (Fin.suc k) *ᵏ f (Fin.suc k)) ≈⟨ +ᵏ-cong (*ᵏ-identityˡ (f i)) (sum-tab-cong (λ k -> ≈ᵏ-trans (*ᵏ-cong (δ-cancelˡ {n} k) ≈ᵏ-refl) (*ᵏ-zeroˡ (f (Fin.suc k))))) ⟩ f i +ᵏ sum-tab {n} (λ k -> 0ᵏ) ≈⟨ ≈ᵏ-trans (+ᵏ-cong ≈ᵏ-refl (sum-tab-0ᵏ {n})) (+ᵏ-identityʳ (f i)) ⟩ f i ∎ where open import Relation.Binary.EqReasoning (Field.setoid K) sum-tab-δ {suc n} f (Fin.suc i) = begin sum-tab (λ k -> δ (Fin.suc i) k *ᵏ f k) ≡⟨⟩ (δ (Fin.suc i) (Fin.zero {suc n}) *ᵏ f Fin.zero) +ᵏ sum-tab (λ k -> δ (Fin.suc i) (Fin.suc k) *ᵏ f (Fin.suc k)) ≈⟨ +ᵏ-cong (≈ᵏ-trans (*ᵏ-cong (δ-cancelʳ {p = suc n} (Fin.suc i)) ≈ᵏ-refl) (*ᵏ-zeroˡ (f Fin.zero))) ≈ᵏ-refl ⟩ 0ᵏ +ᵏ sum-tab (λ k → δ (Fin.suc i) (Fin.suc k) *ᵏ f (Fin.suc k)) ≈⟨ +ᵏ-identityˡ (sum-tab λ k -> δ (Fin.suc i) (Fin.suc k) *ᵏ f (Fin.suc k)) ⟩ sum-tab (λ k → δ (Fin.suc i) (Fin.suc k) *ᵏ f (Fin.suc k)) ≈⟨ sum-tab-δ (λ k -> f (Fin.suc k)) i ⟩ f (Fin.suc i) ∎ where open import Relation.Binary.EqReasoning (Field.setoid K) module _ {n} where open import Algebra.Structures (_≈_ {n}) open import Algebra.Linear.Structures.Bundles isMagma : IsMagma _+_ isMagma = record { isEquivalence = ≈-isEquiv ; ∙-cong = +-cong } isSemigroup : IsSemigroup _+_ isSemigroup = record { isMagma = isMagma ; assoc = +-assoc } isMonoid : IsMonoid _+_ 0# isMonoid = record { isSemigroup = isSemigroup ; identity = +-identity } isGroup : IsGroup _+_ 0# -_ isGroup = record { isMonoid = isMonoid ; inverse = -‿inverse ; ⁻¹-cong = -‿cong } isAbelianGroup : IsAbelianGroup _+_ 0# -_ isAbelianGroup = record { isGroup = isGroup ; comm = +-comm } open VS K isVectorSpace : VS.IsVectorSpace K (_≈_ {n}) _+_ _∙_ -_ 0# isVectorSpace = record { isAbelianGroup = isAbelianGroup ; *ᵏ-∙-compat = *ᵏ-∙-compat ; ∙-+-distrib = ∙-+-distrib ; ∙-+ᵏ-distrib = ∙-+ᵏ-distrib ; ∙-cong = ∙-cong ; ∙-identity = ∙-identity ; ∙-absorbˡ = ∙-absorbˡ } vectorSpace : VectorSpace K k (k ⊔ ℓ) vectorSpace = record { isVectorSpace = isVectorSpace } open import Algebra.Linear.Morphism.VectorSpace K open import Algebra.Linear.Morphism.Bundles K open import Function embed : LinearIsomorphism vectorSpace vectorSpace embed = record { ⟦_⟧ = id ; isLinearIsomorphism = record { isLinearMonomorphism = record { isLinearMap = record { isAbelianGroupMorphism = record { gp-homo = record { mn-homo = record { sm-homo = record { ⟦⟧-cong = id ; ∙-homo = λ x y → ≈-refl } ; ε-homo = ≈-refl } } } ; ∙-homo = λ c u → ≈-refl } ; injective = id } ; surjective = λ y → y , ≈-refl } }
{ "alphanum_fraction": 0.4882087306, "avg_line_length": 35.3786982249, "ext": "agda", "hexsha": "a498026e396e5eadd84c927dd4bd93a6ef85d189", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Construct/Vector.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Construct/Vector.agda", "max_line_length": 116, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Construct/Vector.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 8975, "size": 17937 }
{-# OPTIONS --without-K #-} open import lib.Base module test.succeed.Test1 where module _ where private data #I : Type₀ where #zero : #I #one : #I I : Type₀ I = #I zero : I zero = #zero one : I one = #one postulate seg : zero == one absurd : zero ≠ one absurd ()
{ "alphanum_fraction": 0.5551948052, "avg_line_length": 11, "ext": "agda", "hexsha": "845009ea07ae1f20cb944c3e5151bca8c1670806", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "test/succeed/Test1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "test/succeed/Test1.agda", "max_line_length": 31, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "test/succeed/Test1.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 104, "size": 308 }
module ForallForParameters (F : Set -> Set -> Set) X {Y} (Z : F X Y) where data List A : Set where [] : List A _::_ : A -> List A -> List A module M A {B} (C : F A B) where data D : Set -> Set where d : A -> D A data P A : D A -> Set where data Q {A} X : P A X -> Set where module N I J K = M I {J} K open module O I J K = N I J K record R {I J} (K : F I J) : Set where
{ "alphanum_fraction": 0.515, "avg_line_length": 19.0476190476, "ext": "agda", "hexsha": "06a08ba9862731a9ae77d15a9df058acf412901b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/ForallForParameters.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/ForallForParameters.agda", "max_line_length": 56, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/ForallForParameters.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 154, "size": 400 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of homogeneous binary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary where ------------------------------------------------------------------------ -- Re-export various components of the binary relation hierarchy open import Relation.Binary.Core public open import Relation.Binary.Definitions public open import Relation.Binary.Structures public open import Relation.Binary.Bundles public
{ "alphanum_fraction": 0.5099009901, "avg_line_length": 33.6666666667, "ext": "agda", "hexsha": "cfbad7d56dbb93f2fb317bf054247d2643858089", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 77, "size": 606 }
-- 2012-03-08 Andreas module NoTerminationCheck2 where {-# NON_TERMINATING #-} data D : Set where lam : (D -> D) -> D -- error: works only for function definitions
{ "alphanum_fraction": 0.6845238095, "avg_line_length": 18.6666666667, "ext": "agda", "hexsha": "10931b7314d8dc41b12d1f56b7726357c9e8a332", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/NoTerminationCheck2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/NoTerminationCheck2.agda", "max_line_length": 45, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/NoTerminationCheck2.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 49, "size": 168 }
module ModusPonens where modusPonens : ∀ {P Q : Set} → (P → Q) → P → Q modusPonens x = x
{ "alphanum_fraction": 0.6111111111, "avg_line_length": 18, "ext": "agda", "hexsha": "134173843db3e47e142372e1bf1149abcfdf9fec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "danr/agder", "max_forks_repo_path": "tests/ModusPonens-solution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "danr/agder", "max_issues_repo_path": "tests/ModusPonens-solution.agda", "max_line_length": 45, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "danr/agder", "max_stars_repo_path": "tests/ModusPonens-solution.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z", "num_tokens": 41, "size": 90 }
module Data.Var where open import Data.List using (List; []; _∷_; map) open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Function using (const; _∘_) open import Level using (Level; 0ℓ) open import Relation.Unary using (IUniversal; _⇒_; _⊢_) -- ------------------------------------------------------------------------ -- Vars and Contexts private variable a b : Level _-Scoped[_] : Set a → (b : Level) → Set _ I -Scoped[ b ] = I → List I → Set b private variable I J : Set a i j : I Γ : List I data Var : I -Scoped[ 0ℓ ] where zero : ∀[ (i ∷_) ⊢ Var i ] suc : ∀[ Var i ⇒ (j ∷_) ⊢ Var i ] get : {P : I → Set b} → ∀[ Var i ⇒ All P ⇒ const (P i) ] get zero (p ∷ _) = p get (suc v) (_ ∷ ps) = get v ps _<$>_ : (f : I → J) → ∀[ Var i ⇒ map f ⊢ Var (f i) ] f <$> zero = zero f <$> suc v = suc (f <$> v) tabulate : {P : I → Set b} → (∀ {i} → Var i Γ → P i) → All P Γ tabulate {Γ = []} f = [] tabulate {Γ = i ∷ Γ} f = f zero ∷ tabulate (f ∘ suc)
{ "alphanum_fraction": 0.497995992, "avg_line_length": 23.7619047619, "ext": "agda", "hexsha": "cecd05df33f9f331a6904c38eb1def39734cea18", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "johnyob/agda-desc", "max_forks_repo_path": "src/Data/Var.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "johnyob/agda-desc", "max_issues_repo_path": "src/Data/Var.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "johnyob/agda-desc", "max_stars_repo_path": "src/Data/Var.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 369, "size": 998 }
{-# OPTIONS --cubical --safe #-} module Data.Fin where open import Data.Fin.Base public
{ "alphanum_fraction": 0.7, "avg_line_length": 15, "ext": "agda", "hexsha": "fbf7fbecf565bdab48c2e5cc9cd1ac6e323439c0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Fin.agda", "max_line_length": 32, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 23, "size": 90 }
-- notes-05-friday.agda open import mylib -- Π-types = dependent function types Π : (A : Set)(B : A → Set) → Set Π A B = (x : A) → B x syntax Π A (λ x → P) = Π[ x ∈ A ] P -- Σ-types = dependent pair type record Σ(A : Set)(B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ syntax Σ A (λ x → P) = Σ[ x ∈ A ] P List' : Set → Set List' A = Σ[ n ∈ ℕ ] Vec A n List'' : Set → Set -- ex: show that this is isomorphic to lists List'' A = Σ[ n ∈ ℕ ] Fin n → A {- Container representation of lists. Set of shapes S = ℕ. Family of positions P : ℕ → Set, P = Fin. All strictly positive types can be represented as containers ( ~ polynomial functors) ! -} {- A → B = Π[ _ ∈ A ] B A × B = Σ[ _ ∈ A ] B -} _⊎'_ : Set → Set → Set A ⊎' B = Σ[ b ∈ Bool ] F b where F : Bool → Set F true = A F false = B _×'_ : Set → Set → Set -- exercise: show that this equivalent to ⊎ A ×' B = Π[ b ∈ Bool ] F b where F : Bool → Set F true = A F false = B {- "Propositions as types": for predicate logic P : A → prop = dependent type -} All : (A : Set)(P : A → prop) → prop All A P = Π[ x ∈ A ] P x Ex : (A : Set)(P : A → prop) → prop Ex A P = Σ[ x ∈ A ] P x syntax All A (λ x → P) = ∀[ x ∈ A ] P infix 0 All syntax Ex A (λ x → P) = ∃[ x ∈ A ] P infix 0 Ex variable PP QQ : A → prop taut : (∀[ x ∈ A ] PP x ⇒ Q) ⇔ (∃[ x ∈ A ] PP x) ⇒ Q proj₁ taut f (a , pa) = f a pa proj₂ taut g a pa = g (a , pa) data _≡_ : A → A → prop where refl : {a : A} → a ≡ a infix 4 _≡_ -- inductive definition of equality: _≡_ is an equivalence relation sym : (a b : A) → a ≡ b → b ≡ a sym a .a refl = refl trans : {a b c : A} → a ≡ b → b ≡ c → a ≡ c trans refl q = q cong : {a b : A}(f : A → B) → a ≡ b → f a ≡ f b cong f refl = refl {- Proving that + is associative _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) -} assoc : (i j k : ℕ) → (i + j) + k ≡ i + (j + k) assoc zero j k = refl assoc (suc i) j k = cong suc (assoc i j k) -- proof by induction = pattern matching + recursion ind : (P : ℕ → Set) → P 0 → ((n : ℕ) → P n → P (suc n)) → (n : ℕ) → P n ind P z s zero = z ind P z s (suc n) = s n (ind P z s n) -- eliminator for ℕ = induction/dependent recursion {- data _≡_ : A → A → prop where refl : {a : A} → a ≡ a What is ind for equality? -} ind≡ : (P : (a b : A) → a ≡ b → prop) (r : (a : A) → P a a refl) → (a b : A)(p : a ≡ b) → P a b p ind≡ P r a .a refl = r a -- Ex. derive sym, trans, cong from ind≡ (= J) uip : (a b : A)(p q : a ≡ b) → p ≡ q uip = ind≡ (λ a b p → (q : a ≡ b) → p ≡ q) λ a q → {!!} --uip refl refl = refl {- Is uip derivable from J ? Hofmann & Streicher: groupoid model of type theory. Restricted version of HoTT (infinity groupoid model of TT); observed: version of univalence in this theory. Voevodsky formulated HoTT, which supports full univalence. -}
{ "alphanum_fraction": 0.5176946411, "avg_line_length": 21.1928571429, "ext": "agda", "hexsha": "7b2f10ba22f0263ea55d21b13b7230bb0f77867d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FoxySeta/mgs-2021", "max_forks_repo_path": "Type Theory/notes-05-friday.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_issues_repo_issues_event_max_datetime": "2021-07-14T20:35:48.000Z", "max_issues_repo_issues_event_min_datetime": "2021-07-14T20:34:53.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FoxySeta/mgs-2021", "max_issues_repo_path": "Type Theory/notes-05-friday.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FoxySeta/mgs-2021", "max_stars_repo_path": "Type Theory/notes-05-friday.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1172, "size": 2967 }
module PatternSynonymImports2 where open import PatternSynonyms hiding (test) open import PatternSynonymImports myzero' = z myzero'' = myzero list2 : List _ list2 = 1 ∷ [] test : ℕ → ℕ test myzero = 0 test sz = 1 test (ss x) = x
{ "alphanum_fraction": 0.7004219409, "avg_line_length": 14.8125, "ext": "agda", "hexsha": "bad57bbedaed7a57ac7df67204608ac3696cf86e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/PatternSynonymImports2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/PatternSynonymImports2.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/PatternSynonymImports2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 78, "size": 237 }
------------------------------------------------------------------------------ -- Sort a list ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module define the program which sorts a list by converting it -- into an ordered tree and then back to a list (Burstall 1969, -- pp. 45-46). module FOTC.Program.SortList.SortList where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Bool open import FOTC.Data.List open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ -- Tree terms. postulate nil : D tip : D → D node : D → D → D → D -- The tree type. data Tree : D → Set where tnil : Tree nil ttip : ∀ {i} → N i → Tree (tip i) tnode : ∀ {t₁ i t₂} → Tree t₁ → N i → Tree t₂ → Tree (node t₁ i t₂) {-# ATP axioms tnil ttip tnode #-} ------------------------------------------------------------------------------ -- Inequalites on lists and trees -- Note from Burstall (p. 46): "The relation ≤ between lists is only an -- ordering if nil is excluded, similarly for trees. This is untidy but -- will not cause trouble." postulate le-ItemList : D → D → D le-ItemList-[] : ∀ item → le-ItemList item [] ≡ true le-ItemList-∷ : ∀ item i is → le-ItemList item (i ∷ is) ≡ le item i && le-ItemList item is {-# ATP axioms le-ItemList-[] le-ItemList-∷ #-} ≤-ItemList : D → D → Set ≤-ItemList item is = le-ItemList item is ≡ true {-# ATP definition ≤-ItemList #-} postulate le-Lists : D → D → D le-Lists-[] : ∀ is → le-Lists [] is ≡ true le-Lists-∷ : ∀ i is js → le-Lists (i ∷ is) js ≡ le-ItemList i js && le-Lists is js {-# ATP axioms le-Lists-[] le-Lists-∷ #-} ≤-Lists : D → D → Set ≤-Lists is js = le-Lists is js ≡ true {-# ATP definition ≤-Lists #-} postulate le-ItemTree : D → D → D le-ItemTree-nil : ∀ item → le-ItemTree item nil ≡ true le-ItemTree-tip : ∀ item i → le-ItemTree item (tip i) ≡ le item i le-ItemTree-node : ∀ item t₁ i t₂ → le-ItemTree item (node t₁ i t₂) ≡ le-ItemTree item t₁ && le-ItemTree item t₂ {-# ATP axioms le-ItemTree-nil le-ItemTree-tip le-ItemTree-node #-} ≤-ItemTree : D → D → Set ≤-ItemTree item t = le-ItemTree item t ≡ true {-# ATP definition ≤-ItemTree #-} -- This function is not defined in the paper. postulate le-TreeItem : D → D → D le-TreeItem-nil : ∀ item → le-TreeItem nil item ≡ true le-TreeItem-tip : ∀ i item → le-TreeItem (tip i) item ≡ le i item le-TreeItem-node : ∀ t₁ i t₂ item → le-TreeItem (node t₁ i t₂) item ≡ le-TreeItem t₁ item && le-TreeItem t₂ item {-# ATP axioms le-TreeItem-nil le-TreeItem-tip le-TreeItem-node #-} ≤-TreeItem : D → D → Set ≤-TreeItem t item = le-TreeItem t item ≡ true {-# ATP definition ≤-TreeItem #-} ------------------------------------------------------------------------------ -- Auxiliary functions postulate -- The foldr function with the last two args flipped. lit : D → D → D → D lit-[] : ∀ f n → lit f [] n ≡ n lit-∷ : ∀ f d ds n → lit f (d ∷ ds) n ≡ f · d · (lit f ds n) {-# ATP axioms lit-[] lit-∷ #-} ------------------------------------------------------------------------------ -- Ordering functions and predicates on lists and trees postulate ordList : D → D ordList-[] : ordList [] ≡ true ordList-∷ : ∀ i is → ordList (i ∷ is) ≡ le-ItemList i is && ordList is {-# ATP axioms ordList-[] ordList-∷ #-} OrdList : D → Set OrdList is = ordList is ≡ true {-# ATP definition OrdList #-} postulate ordTree : D → D ordTree-nil : ordTree nil ≡ true ordTree-tip : ∀ i → ordTree (tip i) ≡ true ordTree-node : ∀ t₁ i t₂ → ordTree (node t₁ i t₂) ≡ ordTree t₁ && ordTree t₂ && le-TreeItem t₁ i && le-ItemTree i t₂ {-# ATP axioms ordTree-nil ordTree-tip ordTree-node #-} OrdTree : D → Set OrdTree t = ordTree t ≡ true {-# ATP definition OrdTree #-} ------------------------------------------------------------------------------ -- The program -- The function toTree adds an item to a tree. -- The items have an ordering ≤ defined over them. The item held at a -- node of the tree is chosen so that the left subtree has items not -- greater than it and the right subtree has items not less than it. postulate toTree : D toTree-nil : ∀ item → toTree · item · nil ≡ tip item toTree-tip : ∀ item i → toTree · item · (tip i) ≡ (if (le i item) then (node (tip i) item (tip item)) else (node (tip item) i (tip i))) toTree-node : ∀ item t₁ i t₂ → toTree · item · (node t₁ i t₂) ≡ (if (le i item) then (node t₁ i (toTree · item · t₂)) else (node (toTree · item · t₁) i t₂)) {-# ATP axioms toTree-nil toTree-tip toTree-node #-} -- The function makeTree converts a list to a tree. makeTree : D → D makeTree is = lit toTree is nil {-# ATP definition makeTree #-} -- The function flatten converts a tree to a list. postulate flatten : D → D flatten-nil : flatten nil ≡ [] flatten-tip : ∀ i → flatten (tip i) ≡ i ∷ [] flatten-node : ∀ t₁ i t₂ → flatten (node t₁ i t₂) ≡ flatten t₁ ++ flatten t₂ {-# ATP axioms flatten-nil flatten-tip flatten-node #-} -- The function which sorts the list sort : D → D sort is = flatten (makeTree is) {-# ATP definition sort #-} ------------------------------------------------------------------------------ -- References -- -- Burstall, R. M. (1969). Proving properties of programs by -- structural induction. The Computer Journal 12.1, pp. 41–48.
{ "alphanum_fraction": 0.5314980578, "avg_line_length": 33.8342857143, "ext": "agda", "hexsha": "7112d82f47d61b28c9ae8d3778f502f225951b87", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/SortList/SortList.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/SortList/SortList.agda", "max_line_length": 81, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/SortList/SortList.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1697, "size": 5921 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Closed module Categories.Category.Monoidal.Closed.IsClosed {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (Cl : Closed M) where open import Data.Product using (Σ; _,_) open import Function using (_$_) renaming (_∘_ to _∙_) open import Function.Equality as Π using (Π) open import Categories.Category.Product open import Categories.Category.Monoidal.Properties M open import Categories.Morphism C open import Categories.Morphism.Properties C open import Categories.Morphism.Reasoning C open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.Functor.Bifunctor.Properties open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Dinatural hiding (_∘ʳ_) open import Categories.NaturalTransformation.NaturalIsomorphism as NI hiding (refl) import Categories.Category.Closed as Cls open Closed Cl private module C = Category C open Category C open Commutation module ℱ = Functor open HomReasoning open Π.Π open adjoint renaming (unit to η; counit to ε) -- and here we use sub-modules in the hopes of making things go faster open import Categories.Category.Monoidal.Closed.IsClosed.Identity Cl open import Categories.Category.Monoidal.Closed.IsClosed.L Cl open import Categories.Category.Monoidal.Closed.IsClosed.Dinatural Cl open import Categories.Category.Monoidal.Closed.IsClosed.Diagonal Cl open import Categories.Category.Monoidal.Closed.IsClosed.Pentagon Cl private id² : {S T : Obj} → [ S , T ]₀ ⇒ [ S , T ]₀ id² = [ id , id ]₁ L-natural-comm : {X Y′ Z′ Y Z : Obj} {f : Y′ ⇒ Y} {g : Z ⇒ Z′} → L X Y′ Z′ ∘ [ f , g ]₁ ≈ [ [ id , f ]₁ , [ id , g ]₁ ]₁ ∘ L X Y Z L-natural-comm {X} {Y′} {Z′} {Y} {Z} {f} {g} = let I = [-,-].identity in begin L X Y′ Z′ ∘ [ f , g ]₁ ≈⟨ refl⟩∘⟨ [ [-,-] ]-decompose₂ ⟩ L X Y′ Z′ ∘ [ id , g ]₁ ∘ [ f , id ]₁ ≈⟨ pullˡ L-g-swap ⟩ ([ id² , [ id , g ]₁ ]₁ ∘ L X Y′ Z) ∘ [ f , id ]₁ ≈⟨ pullʳ L-f-swap ⟩ [ id² , [ id , g ]₁ ]₁ ∘ [ [ id , f ]₁ , id² ]₁ ∘ L X Y Z ≈˘⟨ pushˡ ([-,-].F-resp-≈ (introʳ I , introʳ I) ○ [-,-].homomorphism) ⟩ [ [ id , f ]₁ , [ id , g ]₁ ]₁ ∘ L X Y Z ∎ closed : Cls.Closed C closed = record { [-,-] = [-,-] ; unit = unit ; identity = identity ; diagonal = diagonal ; L = L ; L-natural-comm = L-natural-comm ; L-dinatural-comm = L-dinatural-comm ; Lj≈j = Lj≈j ; jL≈i = jL≈i ; iL≈i = iL≈i ; pentagon = pentagon′ ; γ⁻¹ = λ {X Y} → record { _⟨$⟩_ = λ f → Radjunct f ∘ unitorˡ.to ; cong = λ eq → ∘-resp-≈ˡ (∘-resp-≈ʳ (ℱ.F-resp-≈ (-⊗ X) eq)) } ; γ-inverseOf-γ⁻¹ = λ {X Y} → record { left-inverse-of = λ f → begin [ id , Radjunct f ∘ unitorˡ.to ]₁ ∘ [ id , unitorˡ.from ]₁ ∘ η.η unit ≈⟨ ℱ.homomorphism [ X ,-] ⟩∘⟨ refl ⟩∘⟨ refl ⟩ ([ id , Radjunct f ]₁ ∘ [ id , unitorˡ.to ]₁) ∘ [ id , unitorˡ.from ]₁ ∘ η.η unit ≈⟨ cancelInner (⟺ (ℱ.homomorphism [ X ,-]) ○ ℱ.F-resp-≈ [ X ,-] unitorˡ.isoˡ ○ [-,-].identity) ⟩ Ladjunct (Radjunct f) ≈⟨ LRadjunct≈id ⟩ f ∎ ; right-inverse-of = λ f → begin Radjunct ([ id , f ]₁ ∘ [ id , unitorˡ.from ]₁ ∘ η.η unit) ∘ unitorˡ.to ≈˘⟨ ∘-resp-≈ʳ (ℱ.F-resp-≈ (-⊗ X) (pushˡ (ℱ.homomorphism [ X ,-]))) ⟩∘⟨refl ⟩ Radjunct (Ladjunct (f ∘ unitorˡ.from)) ∘ unitorˡ.to ≈⟨ RLadjunct≈id ⟩∘⟨refl ⟩ (f ∘ unitorˡ.from) ∘ unitorˡ.to ≈⟨ cancelʳ unitorˡ.isoʳ ⟩ f ∎ } }
{ "alphanum_fraction": 0.5835095137, "avg_line_length": 38.612244898, "ext": "agda", "hexsha": "836c4cd2241d6914e1a9de7bb7de825b9a54ebf1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Closed/IsClosed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Closed/IsClosed.agda", "max_line_length": 134, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Closed/IsClosed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1394, "size": 3784 }
module Numeral.Natural.Relation.Proofs where open import Data open import Functional open import Numeral.Natural open import Numeral.Natural.Relation open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Logic.Propositional open import Logic.Propositional.Theorems import Lvl open import Relator.Equals open import Type private variable n : ℕ Positive-non-zero : Positive(n) ↔ (n ≢ 𝟎) Positive-non-zero {𝟎} = [↔]-intro (apply [≡]-intro) \() Positive-non-zero {𝐒 n} = [↔]-intro (const <>) (const \()) Positive-greater-than-zero : Positive(n) ↔ (n > 𝟎) Positive-greater-than-zero = [↔]-transitivity Positive-non-zero ([↔]-intro [>]-to-[≢] [≢]-to-[<]-of-0ᵣ)
{ "alphanum_fraction": 0.7280334728, "avg_line_length": 31.1739130435, "ext": "agda", "hexsha": "86982095a116a7730cdb31eb2c06bbf48f9b48ba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation/Proofs.agda", "max_line_length": 103, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 221, "size": 717 }
-- Isomorphism of indexed families module SOAS.Families.Isomorphism {T} where open import SOAS.Common open import SOAS.Context {T} open import SOAS.Families.Core {T} open import Categories.Morphism 𝔽amilies public using () renaming ( _≅_ to _≅ₘ_ ; module ≅ to ≅ₘ ; ≅-setoid to ≅ₘ-setoid) -- Isomorphism between two families record FamIso (X Y : Family) : Set where -- Prove isomorphism of the families X and Y in the category 𝔽am from -- a proof of isomorphism of the sets X Γ and Y Γ for all contexts Γ. field iso : (Γ : Ctx) → X Γ ≅ₛ Y Γ -- Two directions of the isomorphism. iso⇒ : X ⇾ Y iso⇒ {Γ} = _≅ₛ_.from (iso Γ) iso⇐ : Y ⇾ X iso⇐ {Γ} = _≅ₛ_.to (iso Γ) -- Construct the isomorphism of families ≅ₘ : X ≅ₘ Y ≅ₘ = record { from = iso⇒ ; to = iso⇐ ; iso = record { isoˡ = λ {Γ}{x} → _≅ₛ_.isoˡ (iso Γ) ; isoʳ = λ {Γ}{x} → _≅ₛ_.isoʳ (iso Γ) } } ≅ₘ→FamIso : {X Y : Family} → X ≅ₘ Y → FamIso X Y ≅ₘ→FamIso p = record { iso = λ Γ → record { from = _≅ₘ_.from p ; to = _≅ₘ_.to p ; iso = record { isoˡ = _≅ₘ_.isoˡ p ; isoʳ = _≅ₘ_.isoʳ p } } } -- | Isomorphism of sorted families open import Categories.Morphism 𝔽amiliesₛ public using () renaming ( _≅_ to _≅̣ₘ_ ; module ≅ to ≅̣ₘ) -- Sorted family isomorphism gives a family isomorphism at each sort ≅̣ₘ→≅ₘ : {τ : T}{𝒳 𝒴 : Familyₛ} → 𝒳 ≅̣ₘ 𝒴 → 𝒳 τ ≅ₘ 𝒴 τ ≅̣ₘ→≅ₘ {τ} p = record { from = _≅̣ₘ_.from p ; to = _≅̣ₘ_.to p ; iso = record { isoˡ = _≅̣ₘ_.isoˡ p ; isoʳ = _≅̣ₘ_.isoʳ p } } -- Family isomorphism at each sort gives sorted family isomorphism ≅ₘ→≅̣ₘ : {𝒳 𝒴 : Familyₛ} → ({τ : T} → 𝒳 τ ≅ₘ 𝒴 τ) → 𝒳 ≅̣ₘ 𝒴 ≅ₘ→≅̣ₘ p = record { from = _≅ₘ_.from p ; to = _≅ₘ_.to p ; iso = record { isoˡ = _≅ₘ_.isoˡ p ; isoʳ = _≅ₘ_.isoʳ p } }
{ "alphanum_fraction": 0.5831473214, "avg_line_length": 31.4385964912, "ext": "agda", "hexsha": "8b36c7f8da193d376790466aa9e558b2f97187bb", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Families/Isomorphism.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Families/Isomorphism.agda", "max_line_length": 83, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Families/Isomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 834, "size": 1792 }
module Numeral.Finite.Oper.Comparisons.Proofs where import Lvl open import Data open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Logic.Propositional open import Logic.Predicate open import Numeral.Finite open import Numeral.Finite.Oper.Comparisons open import Numeral.Sign open import Numeral.Sign.Oper0 open import Relator.Equals open import Relator.Equals.Proofs.Equivalence import Structure.Operator.Names as Names open import Structure.Operator.Properties open import Syntax.Number ⋚-of-𝟎-not-+ : ∀{an bn}{b : 𝕟(bn)} → ⦃ _ : 𝟎 {an} ⋚? b ≡ ➕ ⦄ → ⊥ ⋚-of-𝟎-not-+ {b = 𝟎} ⦃ ⦄ ⋚-of-𝟎-not-+ {b = 𝐒(_)} ⦃ ⦄ ⋚-of-𝟎-not-− : ∀{an bn}{a : 𝕟(an)} → ⦃ _ : a ⋚? 𝟎 {bn} ≡ ➖ ⦄ → ⊥ ⋚-of-𝟎-not-− {a = 𝟎} ⦃ ⦄ ⋚-of-𝟎-not-− {a = 𝐒(_)} ⦃ ⦄ ⋚-of-𝐒𝟎-not-𝟎 : ∀{an bn}{a : 𝕟(an)} → ⦃ _ : 𝐒(a) ⋚? 𝟎 {bn} ≡ 𝟎 ⦄ → ⊥ ⋚-of-𝐒𝟎-not-𝟎 {a = 𝟎} ⦃ ⦄ ⋚-of-𝐒𝟎-not-𝟎 {a = 𝐒(_)} ⦃ ⦄ ⋚-of-𝟎𝐒-not-𝟎 : ∀{an bn}{b : 𝕟(bn)} → ⦃ _ : 𝟎 {an} ⋚? 𝐒(b) ≡ 𝟎 ⦄ → ⊥ ⋚-of-𝟎𝐒-not-𝟎 {b = 𝟎} ⦃ ⦄ ⋚-of-𝟎𝐒-not-𝟎 {b = 𝐒(_)} ⦃ ⦄ ⋚-surjective : ∀{an bn}{a : 𝕟(an)}{b : 𝕟(bn)} → ∃{Obj = (−|0|+)} (a ⋚? b ≡_) ⋚-surjective {a = 𝟎} {𝟎} = [∃]-intro 𝟎 ⋚-surjective {a = 𝟎} {𝐒 b} = [∃]-intro ➖ ⋚-surjective {a = 𝐒 a} {𝟎} = [∃]-intro ➕ ⋚-surjective {a = 𝐒 a} {𝐒 b} = ⋚-surjective {a = a} {b} ⋚-to-< : ∀{an bn}{a : 𝕟(an)}{b : 𝕟(bn)} → ⦃ _ : a ⋚? b ≡ ➕ ⦄ → (a >? b ≡ 𝑇) ⋚-to-< {a = 𝐒 a} {𝟎} = [≡]-intro ⋚-to-< {a = 𝐒 a} {𝐒 b} = ⋚-to-< {a = a} {b} ⋚-to-> : ∀{an bn}{a : 𝕟(an)}{b : 𝕟(bn)} → ⦃ _ : a ⋚? b ≡ ➖ ⦄ → (a <? b ≡ 𝑇) ⋚-to-> {a = 𝟎} {𝐒 b} = [≡]-intro ⋚-to-> {a = 𝐒 a} {𝐒 b} = ⋚-to-> {a = a} {b} ⋚-to-≡ : ∀{an bn}{a : 𝕟(an)}{b : 𝕟(bn)} → ⦃ _ : a ⋚? b ≡ 𝟎 ⦄ → (a ≡? b ≡ 𝑇) ⋚-to-≡ {a = 𝟎} {𝟎} = [≡]-intro ⋚-to-≡ {a = 𝐒 a} {𝐒 b} = ⋚-to-≡ {a = a} {b} instance [≡?]-commutativity : ∀{n} → Commutativity{T₁ = 𝕟(n)} ⦃ [≡]-equiv ⦄ (_≡?_) [≡?]-commutativity{n} = intro(\{x y} → p{n}{x}{y}) where p : ∀{n} → Names.Commutativity{T₁ = 𝕟(n)} ⦃ [≡]-equiv ⦄ (_≡?_) p{_}{𝟎} {𝟎} = [≡]-intro p{_}{𝟎} {𝐒 y} = [≡]-intro p{_}{𝐒 x}{𝟎} = [≡]-intro p{_}{𝐒 x}{𝐒 y} = p{_}{x}{y} ⋚-anticommutativity : ∀{xn yn}{x : 𝕟(xn)}{y : 𝕟(yn)} → (−(x ⋚? y) ≡ y ⋚? x) ⋚-anticommutativity {x = 𝟎} {y = 𝟎} = [≡]-intro ⋚-anticommutativity {x = 𝟎} {y = 𝐒 y} = [≡]-intro ⋚-anticommutativity {x = 𝐒 x}{y = 𝟎} = [≡]-intro ⋚-anticommutativity {x = 𝐒 x}{y = 𝐒 y} = ⋚-anticommutativity {x = x}{y = y} ⋚-elim₃-negation-flip : ∀{xn yn}{x : 𝕟(xn)}{y : 𝕟(yn)}{b₁ b₂ b₃} → (elim₃{P = \_ → Bool} b₁ b₂ b₃ (−(x ⋚? y)) ≡ elim₃ b₃ b₂ b₁ (x ⋚? y)) ⋚-elim₃-negation-flip {x = 𝟎} {y = 𝟎} = [≡]-intro ⋚-elim₃-negation-flip {x = 𝟎} {y = 𝐒 y} = [≡]-intro ⋚-elim₃-negation-flip {x = 𝐒 x}{y = 𝟎} = [≡]-intro ⋚-elim₃-negation-flip {x = 𝐒 x}{y = 𝐒 y} = ⋚-elim₃-negation-flip {x = x}{y = y} ⋚-elim₃-negation-distribution : ∀{xn yn}{x : 𝕟(xn)}{y : 𝕟(yn)}{b₁ b₂ b₃ : Bool} → (!(elim₃ b₁ b₂ b₃ (x ⋚? y)) ≡ elim₃ (! b₁) (! b₂) (! b₃) (x ⋚? y)) ⋚-elim₃-negation-distribution {x = 𝟎} {y = 𝟎} = [≡]-intro ⋚-elim₃-negation-distribution {x = 𝟎} {y = 𝐒 y} = [≡]-intro ⋚-elim₃-negation-distribution {x = 𝐒 x}{y = 𝟎} = [≡]-intro ⋚-elim₃-negation-distribution {x = 𝐒 x}{y = 𝐒 y} = ⋚-elim₃-negation-distribution {x = x}{y = y}
{ "alphanum_fraction": 0.4933744222, "avg_line_length": 40.5625, "ext": "agda", "hexsha": "7c41f0bb54350b0e35707f73b2383ef367014faf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Finite/Oper/Comparisons/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Finite/Oper/Comparisons/Proofs.agda", "max_line_length": 148, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Finite/Oper/Comparisons/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2044, "size": 3245 }
module STLC.Term.Reduction where open import STLC.Term as Term open Term.Substitution using () renaming (_[/_] to _[/t_]) open import Data.Nat using (ℕ; _+_) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (Star) infix 4 _—→_ data _—→_ { n : ℕ } : Term n -> Term n -> Set where β-·₁ : ∀ { t₁ t₂ l : Term n } -> t₁ —→ t₂ -- ---------------- -> t₁ · l —→ t₂ · l β-·₂ : ∀ { v t₁ t₂ : Term n } -> Value v -> t₁ —→ t₂ -- ---------------- -> v · t₁ —→ v · t₂ β-ƛ : ∀ { t : Term (1 + n) } {v : Term n } -> Value v -- -------------------- -> (ƛ t) · v —→ (t [/t v ]) infix 2 _—↠_ _—↠_ : { n : ℕ } -> Term n -> Term n -> Set _—↠_ = Star (_—→_)
{ "alphanum_fraction": 0.4519230769, "avg_line_length": 18.6666666667, "ext": "agda", "hexsha": "5f953ccec54b52e2ba182ce88cd41744d6321da7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "johnyob/agda-types", "max_forks_repo_path": "src/STLC/Term/Reduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "johnyob/agda-types", "max_issues_repo_path": "src/STLC/Term/Reduction.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "johnyob/agda-types", "max_stars_repo_path": "src/STLC/Term/Reduction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 278, "size": 728 }
------------------------------------------------------------------------ -- The univalence axiom ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Partly based on Voevodsky's work on so-called univalent -- foundations. open import Equality module Univalence-axiom {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq as Bijection using (_↔_) open import Bool eq open Derived-definitions-and-properties eq open import Equality.Decision-procedures eq open import Equivalence eq as Eq using (_≃_; ⟨_,_⟩; Is-equivalence) renaming (_∘_ to _⊚_) import Equivalence.Contractible-preimages eq as CP import Equivalence.Half-adjoint eq as HA open import Function-universe eq as F hiding (id; _∘_) open import Groupoid eq open import H-level eq as H-level open import H-level.Closure eq open import Injection eq using (Injective) open import Logical-equivalence using (_⇔_) import Nat eq as Nat open import Prelude hiding (swap) open import Surjection eq using (_↠_) ------------------------------------------------------------------------ -- The univalence axiom -- If two sets are equal, then they are equivalent. ≡⇒≃ : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B ≡⇒≃ = ≡⇒↝ equivalence -- The univalence axiom states that ≡⇒≃ is an equivalence. record Univalence′ {ℓ} (A B : Type ℓ) : Type (lsuc ℓ) where no-eta-equality pattern field univalence : Is-equivalence (≡⇒≃ {A = A} {B = B}) Univalence : ∀ ℓ → Type (lsuc ℓ) Univalence ℓ = {A B : Type ℓ} → Univalence′ A B -- An immediate consequence is that equalities are equivalent to -- equivalences. ≡≃≃ : ∀ {ℓ} {A B : Type ℓ} → Univalence′ A B → (A ≡ B) ≃ (A ≃ B) ≡≃≃ univ = ⟨ ≡⇒≃ , Univalence′.univalence univ ⟩ -- In the case of sets equalities are equivalent to bijections (if we -- add the assumption of extensionality). ≡≃↔ : ∀ {ℓ} {A B : Type ℓ} → Univalence′ A B → Extensionality ℓ ℓ → Is-set A → (A ≡ B) ≃ (A ↔ B) ≡≃↔ {A = A} {B} univ ext A-set = (A ≡ B) ↝⟨ ≡≃≃ univ ⟩ (A ≃ B) ↔⟨ inverse $ Eq.↔↔≃ ext A-set ⟩□ (A ↔ B) □ -- Some abbreviations. ≡⇒→ : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A → B ≡⇒→ = _≃_.to ∘ ≡⇒≃ ≡⇒← : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → B → A ≡⇒← = _≃_.from ∘ ≡⇒≃ ≃⇒≡ : ∀ {ℓ} {A B : Type ℓ} → Univalence′ A B → A ≃ B → A ≡ B ≃⇒≡ univ = _≃_.from (≡≃≃ univ) -- Univalence′ can be expressed without the record type. Univalence′≃Is-equivalence-≡⇒≃ : ∀ {ℓ} {A B : Type ℓ} → Univalence′ A B ≃ Is-equivalence (≡⇒≃ {A = A} {B = B}) Univalence′≃Is-equivalence-≡⇒≃ = Eq.↔→≃ Univalence′.univalence (λ eq → record { univalence = eq }) refl (λ { (record { univalence = _ }) → refl _ }) ------------------------------------------------------------------------ -- Propositional extensionality -- Propositional extensionality. -- -- Basically as defined by Chapman, Uustalu and Veltri in "Quotienting -- the Delay Monad by Weak Bisimilarity". Propositional-extensionality : (ℓ : Level) → Type (lsuc ℓ) Propositional-extensionality ℓ = {A B : Type ℓ} → Is-proposition A → Is-proposition B → A ⇔ B → A ≡ B -- Propositional extensionality is equivalent to univalence restricted -- to propositions (assuming extensionality). -- -- I took the statement of this result from Chapman, Uustalu and -- Veltri's "Quotienting the Delay Monad by Weak Bisimilarity", and -- Nicolai Kraus helped me with the proof. Propositional-extensionality-is-univalence-for-propositions : ∀ {ℓ} → Extensionality (lsuc ℓ) (lsuc ℓ) → Propositional-extensionality ℓ ≃ ({A B : Type ℓ} → Is-proposition A → Is-proposition B → Univalence′ A B) Propositional-extensionality-is-univalence-for-propositions {ℓ} ext = Propositional-extensionality ℓ ↝⟨ lemma ⟩ ({A B : Type ℓ} → Is-proposition A → Is-proposition B → Is-equivalence (≡⇒≃ {A = A} {B = B})) ↝⟨ (implicit-∀-cong ext $ implicit-∀-cong ext $ ∀-cong ext′ λ _ → ∀-cong ext′ λ _ → inverse Univalence′≃Is-equivalence-≡⇒≃) ⟩□ ({A B : Type ℓ} → Is-proposition A → Is-proposition B → Univalence′ A B) □ where ext′ : Extensionality ℓ (lsuc ℓ) ext′ = lower-extensionality _ lzero ext ext″ : Extensionality ℓ ℓ ext″ = lower-extensionality _ _ ext ⇔≃≡ : Propositional-extensionality ℓ → {A B : Type ℓ} → Is-proposition A → Is-proposition B → (A ⇔ B) ≃ (A ≡ B) ⇔≃≡ prop-ext {A} {B} A-prop B-prop = A ⇔ B ↝⟨ proj₂ (Eq.propositional-identity≃≡ (λ (A B : Proposition ℓ) → proj₁ A ⇔ proj₁ B) (λ { (A , A-prop) (B , B-prop) → ⇔-closure ext″ 1 A-prop B-prop }) (λ _ → F.id) (λ { (A , A-prop) (B , B-prop) A⇔B → Σ-≡,≡→≡ (prop-ext A-prop B-prop A⇔B) (H-level-propositional ext″ 1 _ _) })) ext ⟩ (A , A-prop) ≡ (B , B-prop) ↔⟨ inverse $ ignore-propositional-component (H-level-propositional ext″ 1) ⟩□ A ≡ B □ ≡-closure : Propositional-extensionality ℓ → {A B : Type ℓ} → Is-proposition A → Is-proposition B → Is-proposition (A ≡ B) ≡-closure prop-ext A-prop B-prop = H-level.respects-surjection (_≃_.surjection (⇔≃≡ prop-ext A-prop B-prop)) 1 (⇔-closure ext″ 1 A-prop B-prop) lemma = Eq.⇔→≃ ([inhabited⇒+]⇒+ 0 λ prop-ext → implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → Π-closure ext′ 1 λ A-prop → Π-closure ext′ 1 λ B-prop → Π-closure ext′ 1 λ _ → ≡-closure (prop-ext {_}) A-prop B-prop) (implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → Π-closure ext′ 1 λ _ → Π-closure ext′ 1 λ _ → Eq.propositional ext _) (λ prop-ext A-prop B-prop → _⇔_.from HA.Is-equivalence⇔Is-equivalence-CP $ λ A≃B → ( prop-ext A-prop B-prop (_≃_.logical-equivalence A≃B) , Eq.left-closure ext″ 0 A-prop _ _ ) , λ _ → Σ-≡,≡→≡ (≡-closure prop-ext A-prop B-prop _ _) (mono₁ 1 (Eq.left-closure ext″ 0 A-prop) _ _)) (λ univ {A B} A-prop B-prop → A ⇔ B ↔⟨ Eq.⇔↔≃ ext″ A-prop B-prop ⟩ A ≃ B ↔⟨ inverse ⟨ _ , univ A-prop B-prop ⟩ ⟩□ A ≡ B □) ------------------------------------------------------------------------ -- An alternative formulation of univalence -- First some supporting lemmas. -- A variant of a part of Theorem 5.8.2 from the HoTT book. flip-subst-is-equivalence↔∃-is-contractible : ∀ {a pℓ} {A : Type a} {P : A → Type pℓ} {x : A} {p : P x} → (∀ y → Is-equivalence (flip (subst {y = y} P) p)) ↝[ a ⊔ pℓ ∣ a ⊔ pℓ ] Contractible (∃ P) flip-subst-is-equivalence↔∃-is-contractible {pℓ = pℓ} {P = P} {x = x} {p = p} = generalise-ext?-prop lemma (λ ext → Π-closure (lower-extensionality pℓ lzero ext) 1 λ _ → Eq.propositional ext _) Contractible-propositional where lemma : (∀ y → Is-equivalence (flip (subst {y = y} P) p)) ⇔ Contractible (∃ P) lemma = record { to = λ eq → $⟨ other-singleton-contractible x ⟩ Contractible (Other-singleton x) ↝⟨ id ⟩ Contractible (∃ (x ≡_)) ↝⟨ H-level.respects-surjection (∃-cong λ y → _≃_.surjection ⟨ _ , eq y ⟩) 0 ⟩□ Contractible (∃ P) □ ; from = λ { ((y , q) , u) z → _≃_.is-equivalence (Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { from = λ r → x ≡⟨ cong proj₁ $ sym $ u (x , p) ⟩ y ≡⟨ cong proj₁ $ u (z , r) ⟩∎ z ∎ } ; right-inverse-of = λ r → subst P (trans (cong proj₁ (sym (u (x , p)))) (cong proj₁ (u (z , r)))) p ≡⟨ sym $ subst-subst _ _ _ _ ⟩ subst P (cong proj₁ (u (z , r))) (subst P (cong proj₁ (sym (u (x , p)))) p) ≡⟨ cong (subst P _) $ cong (λ p → subst P p _) $ sym $ proj₁-Σ-≡,≡←≡ _ ⟩ subst P (cong proj₁ (u (z , r))) (subst P (proj₁ (Σ-≡,≡←≡ (sym (u (x , p))))) p) ≡⟨ cong (subst P _) $ proj₂ $ Σ-≡,≡←≡ (sym (u (x , p))) ⟩ subst P (cong proj₁ (u (z , r))) q ≡⟨ cong (λ p → subst P p _) $ sym $ proj₁-Σ-≡,≡←≡ _ ⟩ subst P (proj₁ (Σ-≡,≡←≡ (u (z , r)))) q ≡⟨ proj₂ $ Σ-≡,≡←≡ (u (z , r)) ⟩∎ r ∎ } ; left-inverse-of = elim¹ (λ {z} x≡z → trans (cong proj₁ (sym (u (x , p)))) (cong proj₁ (u (z , subst P x≡z p))) ≡ x≡z) (trans (cong proj₁ (sym (u (x , p)))) (cong proj₁ (u (x , subst P (refl x) p))) ≡⟨ cong₂ trans (cong-sym _ _) (cong (λ p → cong proj₁ (u (x , p))) $ subst-refl _ _) ⟩ trans (sym (cong proj₁ (u (x , p)))) (cong proj₁ (u (x , p))) ≡⟨ trans-symˡ _ ⟩∎ refl x ∎) })) } } -- If f is an equivalence, then f ∘ sym is also an equivalence. ∘-sym-preserves-equivalences : ∀ {a b} {A : Type a} {B : Type b} {x y : A} {f : x ≡ y → B} → Is-equivalence f ↝[ a ⊔ b ∣ a ⊔ b ] Is-equivalence (f ∘ sym) ∘-sym-preserves-equivalences {A = A} {B} = Is-equivalence≃Is-equivalence-∘ʳ (_≃_.is-equivalence $ Eq.↔⇒≃ ≡-comm) -- An alternative formulation of univalence, due to Martin Escardo -- (see the following post to the Homotopy Type Theory group from -- 2018-04-05: -- https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/Ibb48LvUMeUJ). Other-univalence : ∀ ℓ → Type (lsuc ℓ) Other-univalence ℓ = {B : Type ℓ} → Contractible (∃ λ (A : Type ℓ) → A ≃ B) -- Univalence and Other-univalence are pointwise isomorphic (assuming -- extensionality). Univalence↔Other-univalence : ∀ {ℓ} → Univalence ℓ ↝[ lsuc ℓ ∣ lsuc ℓ ] Other-univalence ℓ Univalence↔Other-univalence {ℓ = ℓ} ext = Univalence ℓ ↝⟨ implicit-∀-cong ext $ implicit-∀-cong ext $ from-equivalence Univalence′≃Is-equivalence-≡⇒≃ ⟩ ({A B : Type ℓ} → Is-equivalence (≡⇒≃ {A = A} {B = B})) ↔⟨ Bijection.implicit-Π↔Π ⟩ ((A {B} : Type ℓ) → Is-equivalence (≡⇒≃ {A = A} {B = B})) ↝⟨ (∀-cong ext λ _ → from-bijection Bijection.implicit-Π↔Π) ⟩ ((A B : Type ℓ) → Is-equivalence (≡⇒≃ {A = A} {B = B})) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∘-sym-preserves-equivalences ext) ⟩ ((A B : Type ℓ) → Is-equivalence (≡⇒≃ {A = A} {B = B} ∘ sym)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ B → Is-equivalence-cong ext (λ B≡A → ≡⇒≃ (sym B≡A) ≡⟨ ≡⇒↝-in-terms-of-subst-sym _ _ ⟩ subst (_≃ B) (sym (sym B≡A)) Eq.id ≡⟨ cong (flip (subst _) _) $ sym-sym _ ⟩∎ subst (_≃ B) B≡A Eq.id ∎)) ⟩ ((A B : Type ℓ) → Is-equivalence (flip (subst {y = A} (_≃ B)) F.id)) ↔⟨ Π-comm ⟩ ((B A : Type ℓ) → Is-equivalence (flip (subst {y = A} (_≃ B)) F.id)) ↝⟨ (∀-cong ext λ _ → flip-subst-is-equivalence↔∃-is-contractible ext) ⟩ ((B : Type ℓ) → Contractible (∃ λ (A : Type ℓ) → A ≃ B)) ↔⟨ inverse Bijection.implicit-Π↔Π ⟩□ ({B : Type ℓ} → Contractible (∃ λ (A : Type ℓ) → A ≃ B)) □ ------------------------------------------------------------------------ -- Some simple lemmas abstract -- "Evaluation rule" for ≡⇒≃. ≡⇒≃-refl : ∀ {a} {A : Type a} → ≡⇒≃ (refl A) ≡ Eq.id ≡⇒≃-refl = ≡⇒↝-refl -- "Evaluation rule" for ≡⇒→. ≡⇒→-refl : ∀ {a} {A : Type a} → ≡⇒→ (refl A) ≡ id ≡⇒→-refl = cong _≃_.to ≡⇒≃-refl -- "Evaluation rule" for ≡⇒←. ≡⇒←-refl : ∀ {a} {A : Type a} → ≡⇒← (refl A) ≡ id ≡⇒←-refl = cong _≃_.from ≡⇒≃-refl -- "Evaluation rule" (?) for ≃⇒≡. ≃⇒≡-id : ∀ {a} {A : Type a} (univ : Univalence′ A A) → ≃⇒≡ univ Eq.id ≡ refl A ≃⇒≡-id univ = ≃⇒≡ univ Eq.id ≡⟨ sym $ cong (≃⇒≡ univ) ≡⇒≃-refl ⟩ ≃⇒≡ univ (≡⇒≃ (refl _)) ≡⟨ _≃_.left-inverse-of (≡≃≃ univ) _ ⟩∎ refl _ ∎ -- A simplification lemma for ≃⇒≡. ≡⇒→-≃⇒≡ : ∀ k {ℓ} {A B : Type ℓ} {eq : A ≃ B} (univ : Univalence′ A B) → to-implication (≡⇒↝ k (≃⇒≡ univ eq)) ≡ _≃_.to eq ≡⇒→-≃⇒≡ k {eq = eq} univ = to-implication (≡⇒↝ k (≃⇒≡ univ eq)) ≡⟨ to-implication-≡⇒↝ k _ ⟩ ≡⇒↝ implication (≃⇒≡ univ eq) ≡⟨ sym $ to-implication-≡⇒↝ equivalence _ ⟩ ≡⇒→ (≃⇒≡ univ eq) ≡⟨ cong _≃_.to (_≃_.right-inverse-of (≡≃≃ univ) _) ⟩∎ _≃_.to eq ∎ ------------------------------------------------------------------------ -- Another alternative formulation of univalence -- Univalence′ A B is pointwise equivalent to CP.Univalence′ A B -- (assuming extensionality). Univalence′≃Univalence′-CP : ∀ {ℓ} {A B : Type ℓ} → Extensionality (lsuc ℓ) (lsuc ℓ) → Univalence′ A B ≃ CP.Univalence′ A B Univalence′≃Univalence′-CP {ℓ = ℓ} {A = A} {B = B} ext = Univalence′ A B ↝⟨ Univalence′≃Is-equivalence-≡⇒≃ ⟩ Is-equivalence ≡⇒≃ ↝⟨ Is-equivalence-cong ext $ elim (λ A≡B → ≡⇒≃ A≡B ≡ _≃_.from ≃≃≃ (CP.≡⇒≃ A≡B)) (λ C → ≡⇒≃ (refl _) ≡⟨ ≡⇒≃-refl ⟩ Eq.id ≡⟨ Eq.lift-equality ext′ (refl _) ⟩ _≃_.from ≃≃≃ CP.id ≡⟨ cong (_≃_.from ≃≃≃) $ sym CP.≡⇒≃-refl ⟩∎ _≃_.from ≃≃≃ (CP.≡⇒≃ (refl _)) ∎) ⟩ Is-equivalence (_≃_.from ≃≃≃ ∘ CP.≡⇒≃) ↝⟨ Eq.⇔→≃ (Eq.propositional ext _) (Eq.propositional ext _) (Eq.Two-out-of-three.g-g∘f (Eq.two-out-of-three _ _) (_≃_.is-equivalence (inverse ≃≃≃))) (flip (Eq.Two-out-of-three.f-g (Eq.two-out-of-three _ _)) (_≃_.is-equivalence (inverse ≃≃≃))) ⟩ Is-equivalence CP.≡⇒≃ ↝⟨ Is-equivalence≃Is-equivalence-CP ext ⟩□ CP.Is-equivalence CP.≡⇒≃ □ where ext′ : Extensionality ℓ ℓ ext′ = lower-extensionality _ _ ext ≃≃≃ : {A B : Type ℓ} → (A ≃ B) ≃ (A CP.≃ B) ≃≃≃ = ≃≃≃-CP ext′ -- Univalence ℓ is pointwise equivalent to CP.Univalence ℓ (assuming -- extensionality). Univalence≃Univalence-CP : ∀ {ℓ} → Extensionality (lsuc ℓ) (lsuc ℓ) → Univalence ℓ ≃ CP.Univalence ℓ Univalence≃Univalence-CP {ℓ = ℓ} ext = implicit-∀-cong ext $ implicit-∀-cong ext $ Univalence′≃Univalence′-CP ext ------------------------------------------------------------------------ -- A consequence: Type is not a set -- The univalence axiom implies that Type is not a set. (This was -- pointed out to me by Thierry Coquand.) module _ (univ : Univalence′ Bool Bool) where -- First note that the univalence axiom implies that there is an -- inhabitant of Bool ≡ Bool that is not equal to refl. swap-as-an-equality : Bool ≡ Bool swap-as-an-equality = ≃⇒≡ univ (Eq.↔⇒≃ swap) abstract swap≢refl : swap-as-an-equality ≢ refl Bool swap≢refl = swap-as-an-equality ≡ refl _ ↝⟨ cong ≡⇒→ ⟩ ≡⇒→ swap-as-an-equality ≡ ≡⇒→ (refl _) ↝⟨ subst (uncurry _≡_) (cong₂ _,_ (≡⇒→-≃⇒≡ equivalence univ) ≡⇒→-refl) ⟩ not ≡ id ↝⟨ cong (_$ false) ⟩ true ≡ false ↝⟨ Bool.true≢false ⟩□ ⊥ □ -- This implies that Type is not a set. ¬-Type-set : ¬ Is-set Type ¬-Type-set = Is-set Type ↝⟨ (λ h → h _ _) ⟩ swap-as-an-equality ≡ refl Bool ↝⟨ swap≢refl ⟩□ ⊥ □ abstract -- The result can be generalised to arbitrary universe levels. ¬-Type-set-↑ : ∀ {ℓ} → Univalence′ (↑ ℓ Bool) (↑ ℓ Bool) → ¬ Is-set (Type ℓ) ¬-Type-set-↑ {ℓ} univ = Is-set (Type ℓ) ↝⟨ (λ h → h _ _) ⟩ swap-as-an-equality-↑ ≡ refl (↑ ℓ Bool) ↝⟨ swap-↑≢refl ⟩□ ⊥ □ where swap-as-an-equality-↑ : ↑ ℓ Bool ≡ ↑ ℓ Bool swap-as-an-equality-↑ = ≃⇒≡ univ $ Eq.↔⇒≃ $ (Bijection.inverse Bijection.↑↔ Bijection.∘ swap Bijection.∘ Bijection.↑↔) swap-↑≢refl : swap-as-an-equality-↑ ≢ refl (↑ ℓ Bool) swap-↑≢refl = swap-as-an-equality-↑ ≡ refl _ ↝⟨ cong ≡⇒→ ⟩ ≡⇒→ swap-as-an-equality-↑ ≡ ≡⇒→ (refl _) ↝⟨ subst (uncurry _≡_) (cong₂ _,_ (≡⇒→-≃⇒≡ equivalence univ) ≡⇒→-refl) ⟩ lift ∘ not ∘ lower ≡ id ↝⟨ cong (lower ∘ (_$ lift false)) ⟩ true ≡ false ↝⟨ Bool.true≢false ⟩□ ⊥ □ ------------------------------------------------------------------------ -- A consequence: some equality types have infinitely many inhabitants abstract -- Some equality types have infinitely many inhabitants (assuming -- univalence). equality-can-have-infinitely-many-inhabitants : Univalence′ ℕ ℕ → ∃ λ (A : Type) → ∃ λ (B : Type) → ∃ λ (p : ℕ → A ≡ B) → Injective p equality-can-have-infinitely-many-inhabitants univ = (ℕ , ℕ , cast ∘ p , cast-preserves-injections p p-injective) where cast : ℕ ≃ ℕ → ℕ ≡ ℕ cast = ≃⇒≡ univ cast-preserves-injections : {A : Type} (f : A → ℕ ≃ ℕ) → Injective f → Injective (cast ∘ f) cast-preserves-injections f inj {x = x} {y = y} cast-f-x≡cast-f-y = inj (f x ≡⟨ sym $ _≃_.right-inverse-of (≡≃≃ univ) (f x) ⟩ ≡⇒≃ (cast (f x)) ≡⟨ cong ≡⇒≃ cast-f-x≡cast-f-y ⟩ ≡⇒≃ (cast (f y)) ≡⟨ _≃_.right-inverse-of (≡≃≃ univ) (f y) ⟩∎ f y ∎) swap_and-0 : ℕ → ℕ → ℕ swap i and-0 zero = i swap i and-0 (suc n) with i Nat.≟ suc n ... | yes i≡1+n = zero ... | no i≢1+n = suc n swap∘swap : ∀ i n → swap i and-0 (swap i and-0 n) ≡ n swap∘swap zero zero = refl zero swap∘swap (suc i) zero with i Nat.≟ i ... | yes _ = refl 0 ... | no i≢i = ⊥-elim $ i≢i (refl i) swap∘swap i (suc n) with i Nat.≟ suc n ... | yes i≡1+n = i≡1+n ... | no i≢1+n with i Nat.≟ suc n ... | yes i≡1+n = ⊥-elim $ i≢1+n i≡1+n ... | no _ = refl (suc n) p : ℕ → ℕ ≃ ℕ p i = Eq.↔⇒≃ record { surjection = record { logical-equivalence = record { to = swap i and-0 ; from = swap i and-0 } ; right-inverse-of = swap∘swap i } ; left-inverse-of = swap∘swap i } p-injective : Injective p p-injective {x = i₁} {y = i₂} p-i₁≡p-i₂ = i₁ ≡⟨ refl i₁ ⟩ swap i₁ and-0 0 ≡⟨ cong (λ f → f 0) swap-i₁≡swap-i₂ ⟩ swap i₂ and-0 0 ≡⟨ refl i₂ ⟩∎ i₂ ∎ where swap-i₁≡swap-i₂ : swap i₁ and-0 ≡ swap i₂ and-0 swap-i₁≡swap-i₂ = cong _≃_.to p-i₁≡p-i₂ ------------------------------------------------------------------------ -- A consequence: extensionality for functions -- The transport theorem. transport-theorem : ∀ {p₁ p₂} (P : Type p₁ → Type p₂) → (resp : ∀ {A B} → A ≃ B → P A → P B) → (∀ {A} (p : P A) → resp Eq.id p ≡ p) → ∀ {A B} (univ : Univalence′ A B) → (A≃B : A ≃ B) (p : P A) → resp A≃B p ≡ subst P (≃⇒≡ univ A≃B) p transport-theorem P resp resp-id univ A≃B p = resp A≃B p ≡⟨ sym $ cong (λ q → resp q p) (right-inverse-of A≃B) ⟩ resp (to (from A≃B)) p ≡⟨ elim (λ {A B} A≡B → ∀ p → resp (≡⇒≃ A≡B) p ≡ subst P A≡B p) (λ A p → resp (≡⇒≃ (refl A)) p ≡⟨ trans (cong (λ q → resp q p) ≡⇒↝-refl) (resp-id p) ⟩ p ≡⟨ sym $ subst-refl P p ⟩∎ subst P (refl A) p ∎) _ _ ⟩∎ subst P (from A≃B) p ∎ where open _≃_ (≡≃≃ univ) abstract -- If the univalence axiom holds, then any "resp" function that -- preserves identity is an equivalence family. resp-is-equivalence : ∀ {p₁ p₂} (P : Type p₁ → Type p₂) → (resp : ∀ {A B} → A ≃ B → P A → P B) → (∀ {A} (p : P A) → resp Eq.id p ≡ p) → ∀ {A B} (univ : Univalence′ A B) → (A≃B : A ≃ B) → Is-equivalence (resp A≃B) resp-is-equivalence P resp resp-id univ A≃B = Eq.respects-extensional-equality (λ p → sym $ transport-theorem P resp resp-id univ A≃B p) (Eq.subst-is-equivalence P (≃⇒≡ univ A≃B)) -- If f is an equivalence, then (non-dependent) precomposition with -- f is also an equivalence (assuming univalence). precomposition-is-equivalence : ∀ {ℓ c} {A B : Type ℓ} {C : Type c} → Univalence′ B A → (A≃B : A ≃ B) → Is-equivalence (λ (g : B → C) → g ∘ _≃_.to A≃B) precomposition-is-equivalence {ℓ} {c} {C = C} univ A≃B = resp-is-equivalence P resp refl univ (Eq.inverse A≃B) where P : Type ℓ → Type (ℓ ⊔ c) P X = X → C resp : ∀ {A B} → A ≃ B → P A → P B resp A≃B p = p ∘ _≃_.from A≃B -- If h is an equivalence, then one can cancel (non-dependent) -- precompositions with h (assuming univalence). precompositions-cancel : ∀ {ℓ c} {A B : Type ℓ} {C : Type c} → Univalence′ B A → (A≃B : A ≃ B) {f g : B → C} → let open _≃_ A≃B in f ∘ to ≡ g ∘ to → f ≡ g precompositions-cancel univ A≃B {f} {g} f∘to≡g∘to = f ≡⟨ sym $ left-inverse-of f ⟩ from (to f) ≡⟨ cong from f∘to≡g∘to ⟩ from (to g) ≡⟨ left-inverse-of g ⟩∎ g ∎ where open _≃_ (⟨ _ , precomposition-is-equivalence univ A≃B ⟩) -- Pairs of equal elements. _²/≡ : ∀ {ℓ} → Type ℓ → Type ℓ A ²/≡ = ∃ λ (x : A) → ∃ λ (y : A) → x ≡ y -- The set of such pairs is isomorphic to the underlying type. -²/≡↔- : ∀ {a} {A : Type a} → (A ²/≡) ↔ A -²/≡↔- {A = A} = (∃ λ (x : A) → ∃ λ (y : A) → x ≡ y) ↝⟨ ∃-cong (λ _ → _⇔_.to contractible⇔↔⊤ (other-singleton-contractible _)) ⟩ A × ⊤ ↝⟨ ×-right-identity ⟩□ A □ abstract -- The univalence axiom implies non-dependent functional -- extensionality. extensionality : ∀ {a b} {A : Type a} {B : Type b} → Univalence′ (B ²/≡) B → {f g : A → B} → (∀ x → f x ≡ g x) → f ≡ g extensionality {A = A} {B} univ {f} {g} f≡g = f ≡⟨ refl f ⟩ f′ ∘ pair ≡⟨ cong (λ (h : B ²/≡ → B) → h ∘ pair) f′≡g′ ⟩ g′ ∘ pair ≡⟨ refl g ⟩∎ g ∎ where f′ : B ²/≡ → B f′ = proj₁ g′ : B ²/≡ → B g′ = proj₁ ∘ proj₂ f′≡g′ : f′ ≡ g′ f′≡g′ = precompositions-cancel univ (Eq.↔⇒≃ $ Bijection.inverse -²/≡↔-) (refl id) pair : A → B ²/≡ pair x = (f x , g x , f≡g x) -- The univalence axiom implies that contractibility is closed under -- Π A. Π-closure-contractible : ∀ {b} → Univalence′ (Type b ²/≡) (Type b) → ∀ {a} {A : Type a} {B : A → Type b} → (∀ x → Univalence′ (↑ b ⊤) (B x)) → (∀ x → Contractible (B x)) → Contractible ((x : A) → B x) Π-closure-contractible {b} univ₁ {A = A} {B} univ₂ contr = subst Contractible A→⊤≡[x:A]→Bx →⊤-contractible where const-⊤≡B : const (↑ b ⊤) ≡ B const-⊤≡B = extensionality univ₁ λ x → _≃_.from (≡≃≃ (univ₂ x)) $ Eq.↔⇒≃ $ Bijection.contractible-isomorphic (↑-closure 0 ⊤-contractible) (contr x) A→⊤≡[x:A]→Bx : (A → ↑ b ⊤) ≡ ((x : A) → B x) A→⊤≡[x:A]→Bx = cong (λ X → (x : A) → X x) const-⊤≡B →⊤-contractible : Contractible (A → ↑ b ⊤) →⊤-contractible = (_ , λ _ → refl _) -- Thus we also get extensionality for dependent functions. dependent-extensionality′ : ∀ {b} → Univalence′ (Type b ²/≡) (Type b) → ∀ {a} {A : Type a} → (∀ {B : A → Type b} x → Univalence′ (↑ b ⊤) (B x)) → {B : A → Type b} → Extensionality′ A B dependent-extensionality′ univ₁ univ₂ = _⇔_.to Π-closure-contractible⇔extensionality (Π-closure-contractible univ₁ univ₂) dependent-extensionality : ∀ {b} → Univalence (lsuc b) → Univalence b → ∀ {a} → Extensionality a b apply-ext (dependent-extensionality univ₁ univ₂) = dependent-extensionality′ univ₁ (λ _ → univ₂) ------------------------------------------------------------------------ -- Pow and Fam -- Slightly different variants of Pow and Fam are described in -- "Specifying interactions with dependent types" by Peter Hancock and -- Anton Setzer (in APPSEM Workshop on Subtyping & Dependent Types in -- Programming, DTP'00). The fact that Pow and Fam are logically -- equivalent is proved in "Programming Interfaces and Basic Topology" -- by Peter Hancock and Pierre Hyvernat (Annals of Pure and Applied -- Logic, 2006). The results may be older than this. -- Pow. Pow : ∀ ℓ {a} → Type a → Type (lsuc (a ⊔ ℓ)) Pow ℓ {a} A = A → Type (a ⊔ ℓ) -- Fam. Fam : ∀ ℓ {a} → Type a → Type (lsuc (a ⊔ ℓ)) Fam ℓ {a} A = ∃ λ (I : Type (a ⊔ ℓ)) → I → A -- Pow and Fam are pointwise logically equivalent. Pow⇔Fam : ∀ ℓ {a} {A : Type a} → Pow ℓ A ⇔ Fam ℓ A Pow⇔Fam _ = record { to = λ P → ∃ P , proj₁ ; from = λ { (I , f) a → ∃ λ i → f i ≡ a } } -- Pow and Fam are pointwise isomorphic (assuming extensionality and -- univalence). Pow↔Fam : ∀ ℓ {a} {A : Type a} → Extensionality a (lsuc (a ⊔ ℓ)) → Univalence (a ⊔ ℓ) → Pow ℓ A ↔ Fam ℓ A Pow↔Fam ℓ {A = A} ext univ = record { surjection = record { logical-equivalence = Pow⇔Fam ℓ ; right-inverse-of = λ { (I , f) → let lemma₁ = (∃ λ a → ∃ λ i → f i ≡ a) ↔⟨ ∃-comm ⟩ (∃ λ i → ∃ λ a → f i ≡ a) ↔⟨ ∃-cong (λ _ → _⇔_.to contractible⇔↔⊤ (other-singleton-contractible _)) ⟩ I × ⊤ ↔⟨ ×-right-identity ⟩□ I □ lemma₂ = subst (λ I → I → A) (≃⇒≡ univ lemma₁) proj₁ ≡⟨ sym $ transport-theorem (λ I → I → A) (λ eq → _∘ _≃_.from eq) refl univ _ _ ⟩ proj₁ ∘ _≃_.from lemma₁ ≡⟨ refl _ ⟩∎ f ∎ in (∃ λ a → ∃ λ i → f i ≡ a) , proj₁ ≡⟨ Σ-≡,≡→≡ (≃⇒≡ univ lemma₁) lemma₂ ⟩∎ I , f ∎ } } ; left-inverse-of = λ P → let lemma = λ a → (∃ λ (i : ∃ P) → proj₁ i ≡ a) ↔⟨ inverse Σ-assoc ⟩ (∃ λ a′ → P a′ × a′ ≡ a) ↔⟨ inverse $ ∃-intro _ _ ⟩□ P a □ in (λ a → ∃ λ (i : ∃ P) → proj₁ i ≡ a) ≡⟨ apply-ext ext (λ a → ≃⇒≡ univ (lemma a)) ⟩∎ P ∎ } -- An isomorphism that follows from Pow↔Fam. -- -- This isomorphism was suggested to me by Paolo Capriotti. →↔Σ≃Σ : ∀ ℓ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b ⊔ ℓ) (lsuc (a ⊔ b ⊔ ℓ)) → Univalence (a ⊔ b ⊔ ℓ) → (A → B) ↔ ∃ λ (P : B → Type (a ⊔ b ⊔ ℓ)) → A ≃ Σ B P →↔Σ≃Σ ℓ {a} {b} {A} {B} ext univ = (A → B) ↝⟨ →-cong₁ (lower-extensionality lzero _ ext) (inverse Bijection.↑↔) ⟩ (↑ (b ⊔ ℓ) A → B) ↝⟨ inverse ×-left-identity ⟩ ⊤ × (↑ _ A → B) ↝⟨ inverse $ _⇔_.to contractible⇔↔⊤ (singleton-contractible _) ×-cong F.id ⟩ (∃ λ (A′ : Type ℓ′) → A′ ≡ ↑ _ A) × (↑ _ A → B) ↝⟨ inverse Σ-assoc ⟩ (∃ λ (A′ : Type ℓ′) → A′ ≡ ↑ _ A × (↑ _ A → B)) ↝⟨ (∃-cong λ _ → ∃-cong λ eq → →-cong₁ (lower-extensionality lzero _ ext) (≡⇒≃ (sym eq))) ⟩ (∃ λ (A′ : Type ℓ′) → A′ ≡ ↑ _ A × (A′ → B)) ↝⟨ (∃-cong λ _ → ×-comm) ⟩ (∃ λ (A′ : Type ℓ′) → (A′ → B) × A′ ≡ ↑ _ A) ↝⟨ Σ-assoc ⟩ (∃ λ (p : ∃ λ (A′ : Type ℓ′) → A′ → B) → proj₁ p ≡ ↑ _ A) ↝⟨ inverse $ Σ-cong (Pow↔Fam (a ⊔ ℓ) (lower-extensionality ℓ′ lzero ext) univ) (λ _ → F.id) ⟩ (∃ λ (P : B → Type ℓ′) → ∃ P ≡ ↑ _ A) ↔⟨ (∃-cong λ _ → ≡≃≃ univ) ⟩ (∃ λ (P : B → Type ℓ′) → ∃ P ≃ ↑ _ A) ↝⟨ (∃-cong λ _ → Groupoid.⁻¹-bijection (Eq.groupoid (lower-extensionality ℓ′ _ ext))) ⟩ (∃ λ (P : B → Type ℓ′) → ↑ _ A ≃ ∃ P) ↔⟨ (∃-cong λ _ → Eq.≃-preserves (lower-extensionality lzero _ ext) (Eq.↔⇒≃ Bijection.↑↔) F.id) ⟩□ (∃ λ (P : B → Type ℓ′) → A ≃ ∃ P) □ where ℓ′ = a ⊔ b ⊔ ℓ ------------------------------------------------------------------------ -- More lemmas abstract -- The univalence axiom is propositional (assuming extensionality). Univalence′-propositional : ∀ {ℓ} → Extensionality (lsuc ℓ) (lsuc ℓ) → {A B : Type ℓ} → Is-proposition (Univalence′ A B) Univalence′-propositional ext {A = A} {B = B} = $⟨ Eq.propositional ext ≡⇒≃ ⟩ Is-proposition (Is-equivalence (≡⇒≃ {A = A} {B = B})) ↝⟨ H-level-cong _ 1 (inverse Univalence′≃Is-equivalence-≡⇒≃) ⦂ (_ → _) ⟩□ Is-proposition (Univalence′ A B) □ Univalence-propositional : ∀ {ℓ} → Extensionality (lsuc ℓ) (lsuc ℓ) → Is-proposition (Univalence ℓ) Univalence-propositional ext = implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → Univalence′-propositional ext -- ≡⇒≃ commutes with sym/Eq.inverse (assuming extensionality). ≡⇒≃-sym : ∀ {ℓ} → Extensionality ℓ ℓ → {A B : Type ℓ} (A≡B : A ≡ B) → ≡⇒≃ (sym A≡B) ≡ Eq.inverse (≡⇒≃ A≡B) ≡⇒≃-sym ext = elim¹ (λ eq → ≡⇒≃ (sym eq) ≡ Eq.inverse (≡⇒≃ eq)) (≡⇒≃ (sym (refl _)) ≡⟨ cong ≡⇒≃ sym-refl ⟩ ≡⇒≃ (refl _) ≡⟨ ≡⇒≃-refl ⟩ Eq.id ≡⟨ sym $ Groupoid.identity (Eq.groupoid ext) ⟩ Eq.inverse Eq.id ≡⟨ cong Eq.inverse $ sym ≡⇒≃-refl ⟩∎ Eq.inverse (≡⇒≃ (refl _)) ∎) -- ≃⇒≡ univ commutes with Eq.inverse/sym (assuming extensionality). ≃⇒≡-inverse : ∀ {ℓ} (univ : Univalence ℓ) → Extensionality ℓ ℓ → {A B : Type ℓ} (A≃B : A ≃ B) → ≃⇒≡ univ (Eq.inverse A≃B) ≡ sym (≃⇒≡ univ A≃B) ≃⇒≡-inverse univ ext A≃B = ≃⇒≡ univ (Eq.inverse A≃B) ≡⟨ sym $ cong (λ p → ≃⇒≡ univ (Eq.inverse p)) (_≃_.right-inverse-of (≡≃≃ univ) _) ⟩ ≃⇒≡ univ (Eq.inverse (≡⇒≃ (≃⇒≡ univ A≃B))) ≡⟨ cong (≃⇒≡ univ) $ sym $ ≡⇒≃-sym ext _ ⟩ ≃⇒≡ univ (≡⇒≃ (sym (≃⇒≡ univ A≃B))) ≡⟨ _≃_.left-inverse-of (≡≃≃ univ) _ ⟩∎ sym (≃⇒≡ univ A≃B) ∎ -- ≡⇒≃ commutes with trans/_⊚_ (assuming extensionality). ≡⇒≃-trans : ∀ {ℓ} → Extensionality ℓ ℓ → {A B C : Type ℓ} (A≡B : A ≡ B) (B≡C : B ≡ C) → ≡⇒≃ (trans A≡B B≡C) ≡ ≡⇒≃ B≡C ⊚ ≡⇒≃ A≡B ≡⇒≃-trans ext A≡B = elim¹ (λ eq → ≡⇒≃ (trans A≡B eq) ≡ ≡⇒≃ eq ⊚ ≡⇒≃ A≡B) (≡⇒≃ (trans A≡B (refl _)) ≡⟨ cong ≡⇒≃ $ trans-reflʳ _ ⟩ ≡⇒≃ A≡B ≡⟨ sym $ Groupoid.left-identity (Eq.groupoid ext) _ ⟩ Eq.id ⊚ ≡⇒≃ A≡B ≡⟨ sym $ cong (λ eq → eq ⊚ ≡⇒≃ A≡B) ≡⇒≃-refl ⟩∎ ≡⇒≃ (refl _) ⊚ ≡⇒≃ A≡B ∎) -- ≃⇒≡ univ commutes with _⊚_/flip trans (assuming extensionality). ≃⇒≡-∘ : ∀ {ℓ} (univ : Univalence ℓ) → Extensionality ℓ ℓ → {A B C : Type ℓ} (A≃B : A ≃ B) (B≃C : B ≃ C) → ≃⇒≡ univ (B≃C ⊚ A≃B) ≡ trans (≃⇒≡ univ A≃B) (≃⇒≡ univ B≃C) ≃⇒≡-∘ univ ext A≃B B≃C = ≃⇒≡ univ (B≃C ⊚ A≃B) ≡⟨ sym $ cong₂ (λ p q → ≃⇒≡ univ (p ⊚ q)) (_≃_.right-inverse-of (≡≃≃ univ) _) (_≃_.right-inverse-of (≡≃≃ univ) _) ⟩ ≃⇒≡ univ (≡⇒≃ (≃⇒≡ univ B≃C) ⊚ ≡⇒≃ (≃⇒≡ univ A≃B)) ≡⟨ cong (≃⇒≡ univ) $ sym $ ≡⇒≃-trans ext _ _ ⟩ ≃⇒≡ univ (≡⇒≃ (trans (≃⇒≡ univ A≃B) (≃⇒≡ univ B≃C))) ≡⟨ _≃_.left-inverse-of (≡≃≃ univ) _ ⟩∎ trans (≃⇒≡ univ A≃B) (≃⇒≡ univ B≃C) ∎ -- A variant of the transport theorem. transport-theorem′ : ∀ {a p r} {A : Type a} (P : A → Type p) (R : A → A → Type r) (≡↠R : ∀ {x y} → (x ≡ y) ↠ R x y) (resp : ∀ {x y} → R x y → P x → P y) → (∀ x p → resp (_↠_.to ≡↠R (refl x)) p ≡ p) → ∀ {x y} (r : R x y) (p : P x) → resp r p ≡ subst P (_↠_.from ≡↠R r) p transport-theorem′ P R ≡↠R resp hyp r p = resp r p ≡⟨ sym $ cong (λ r → resp r p) (right-inverse-of r) ⟩ resp (to (from r)) p ≡⟨ elim (λ {x y} x≡y → ∀ p → resp (_↠_.to ≡↠R x≡y) p ≡ subst P x≡y p) (λ x p → resp (_↠_.to ≡↠R (refl x)) p ≡⟨ hyp x p ⟩ p ≡⟨ sym $ subst-refl P p ⟩∎ subst P (refl x) p ∎) _ _ ⟩∎ subst P (from r) p ∎ where open _↠_ ≡↠R -- Simplification (?) lemma for transport-theorem′. transport-theorem′-refl : ∀ {a p r} {A : Type a} (P : A → Type p) (R : A → A → Type r) (≡≃R : ∀ {x y} → (x ≡ y) ≃ R x y) (resp : ∀ {x y} → R x y → P x → P y) → (resp-refl : ∀ x p → resp (_≃_.to ≡≃R (refl x)) p ≡ p) → ∀ {x} (p : P x) → transport-theorem′ P R (_≃_.surjection ≡≃R) resp resp-refl (_≃_.to ≡≃R (refl x)) p ≡ trans (trans (resp-refl x p) (sym $ subst-refl P p)) (sym $ cong (λ eq → subst P eq p) (_≃_.left-inverse-of ≡≃R (refl x))) transport-theorem′-refl P R ≡≃R resp resp-refl {x} p = let body = λ x p → trans (resp-refl x p) (sym $ subst-refl P p) lemma = trans (sym $ cong (λ r → resp (to r) p) $ refl (refl x)) (elim (λ {x y} x≡y → ∀ p → resp (_≃_.to ≡≃R x≡y) p ≡ subst P x≡y p) (λ x p → trans (resp-refl x p) (sym $ subst-refl P p)) (refl x) p) ≡⟨ cong₂ (λ q r → trans q (r p)) (sym $ cong-sym (λ r → resp (to r) p) _) (elim-refl (λ {x y} x≡y → ∀ p → resp (_≃_.to ≡≃R x≡y) p ≡ subst P x≡y p) _) ⟩ trans (cong (λ r → resp (to r) p) $ sym $ refl (refl x)) (body x p) ≡⟨ cong (λ q → trans (cong (λ r → resp (to r) p) q) (body x p)) sym-refl ⟩ trans (cong (λ r → resp (to r) p) $ refl (refl x)) (body x p) ≡⟨ cong (λ q → trans q (body x p)) $ cong-refl (λ r → resp (to r) p) ⟩ trans (refl (resp (to (refl x)) p)) (body x p) ≡⟨ trans-reflˡ _ ⟩ body x p ≡⟨ sym $ trans-reflʳ _ ⟩ trans (body x p) (refl (subst P (refl x) p)) ≡⟨ cong (trans (body x p)) $ sym $ cong-refl (λ eq → subst P eq p) ⟩ trans (body x p) (cong (λ eq → subst P eq p) (refl (refl x))) ≡⟨ cong (trans (body x p) ∘ cong (λ eq → subst P eq p)) $ sym sym-refl ⟩ trans (body x p) (cong (λ eq → subst P eq p) (sym (refl (refl x)))) ≡⟨ cong (trans (body x p)) $ cong-sym (λ eq → subst P eq p) _ ⟩∎ trans (body x p) (sym $ cong (λ eq → subst P eq p) (refl (refl x))) ∎ in trans (sym $ cong (λ r → resp r p) $ right-inverse-of (to (refl x))) (elim (λ {x y} x≡y → ∀ p → resp (_≃_.to ≡≃R x≡y) p ≡ subst P x≡y p) body (from (to (refl x))) p) ≡⟨ cong (λ eq → trans (sym $ cong (λ r → resp r p) eq) (elim (λ {x y} x≡y → ∀ p → resp (_≃_.to ≡≃R x≡y) p ≡ subst P x≡y p) body (from (to (refl x))) p)) $ sym $ left-right-lemma (refl x) ⟩ trans (sym $ cong (λ r → resp r p) $ cong to $ left-inverse-of (refl x)) (elim (λ {x y} x≡y → ∀ p → resp (_≃_.to ≡≃R x≡y) p ≡ subst P x≡y p) body (from (to (refl x))) p) ≡⟨ cong (λ eq → trans (sym eq) (elim (λ {x y} x≡y → ∀ p → resp (_≃_.to ≡≃R x≡y) p ≡ subst P x≡y p) body (from (to (refl x))) p)) $ cong-∘ (λ r → resp r p) to _ ⟩ trans (sym $ cong (λ r → resp (to r) p) $ left-inverse-of (refl x)) (elim (λ {x y} x≡y → ∀ p → resp (_≃_.to ≡≃R x≡y) p ≡ subst P x≡y p) body (from (to (refl x))) p) ≡⟨ elim₁ (λ {q} eq → trans (sym $ cong (λ r → resp (to r) p) eq) (elim (λ {x y} x≡y → ∀ p → resp (_≃_.to ≡≃R x≡y) p ≡ subst P x≡y p) body q p) ≡ trans (body x p) (sym $ cong (λ eq → subst P eq p) eq)) lemma (left-inverse-of (refl x)) ⟩∎ trans (body x p) (sym $ cong (λ eq → subst P eq p) (left-inverse-of (refl x))) ∎ where open _≃_ ≡≃R -- Simplification (?) lemma for transport-theorem. transport-theorem-≡⇒≃-refl : ∀ {p₁ p₂} (P : Type p₁ → Type p₂) (resp : ∀ {A B} → A ≃ B → P A → P B) (resp-id : ∀ {A} (p : P A) → resp Eq.id p ≡ p) (univ : Univalence p₁) {A} (p : P A) → transport-theorem P resp resp-id univ (≡⇒≃ (refl A)) p ≡ trans (trans (trans (cong (λ eq → resp eq p) ≡⇒≃-refl) (resp-id p)) (sym $ subst-refl P p)) (sym $ cong (λ eq → subst P eq p) (_≃_.left-inverse-of (≡≃≃ univ) (refl A))) transport-theorem-≡⇒≃-refl P resp resp-id univ {A} p = transport-theorem′-refl P _≃_ (≡≃≃ univ) resp (λ _ p → trans (cong (λ eq → resp eq p) ≡⇒≃-refl) (resp-id p)) p -- A variant of resp-is-equivalence. resp-is-equivalence′ : ∀ {a p r} {A : Type a} (P : A → Type p) (R : A → A → Type r) (≡↠R : ∀ {x y} → (x ≡ y) ↠ R x y) (resp : ∀ {x y} → R x y → P x → P y) → (∀ x p → resp (_↠_.to ≡↠R (refl x)) p ≡ p) → ∀ {x y} (r : R x y) → Is-equivalence (resp r) resp-is-equivalence′ P R ≡↠R resp hyp r = Eq.respects-extensional-equality (λ p → sym $ transport-theorem′ P R ≡↠R resp hyp r p) (Eq.subst-is-equivalence P (_↠_.from ≡↠R r)) -- A lemma relating ≃⇒≡, →-cong and cong₂. ≃⇒≡-→-cong : ∀ {ℓ} {A₁ A₂ B₁ B₂ : Type ℓ} (ext : Extensionality ℓ ℓ) → (univ : Univalence ℓ) (A₁≃A₂ : A₁ ≃ A₂) (B₁≃B₂ : B₁ ≃ B₂) → ≃⇒≡ univ (→-cong ext A₁≃A₂ B₁≃B₂) ≡ cong₂ (λ A B → A → B) (≃⇒≡ univ A₁≃A₂) (≃⇒≡ univ B₁≃B₂) ≃⇒≡-→-cong {A₂ = A₂} {B₁} ext univ A₁≃A₂ B₁≃B₂ = ≃⇒≡ univ (→-cong ext A₁≃A₂ B₁≃B₂) ≡⟨ cong (≃⇒≡ univ) (Eq.lift-equality ext lemma) ⟩ ≃⇒≡ univ (≡⇒≃ (cong₂ (λ A B → A → B) (≃⇒≡ univ A₁≃A₂) (≃⇒≡ univ B₁≃B₂))) ≡⟨ left-inverse-of (≡≃≃ univ) _ ⟩∎ cong₂ (λ A B → A → B) (≃⇒≡ univ A₁≃A₂) (≃⇒≡ univ B₁≃B₂) ∎ where open _≃_ lemma : (λ f → to B₁≃B₂ ∘ f ∘ from A₁≃A₂) ≡ to (≡⇒≃ (cong₂ (λ A B → A → B) (≃⇒≡ univ A₁≃A₂) (≃⇒≡ univ B₁≃B₂))) lemma = (λ f → to B₁≃B₂ ∘ f ∘ from A₁≃A₂) ≡⟨ apply-ext ext (λ _ → transport-theorem (λ B → A₂ → B) (λ A≃B g → _≃_.to A≃B ∘ g) refl univ B₁≃B₂ _) ⟩ subst (λ B → A₂ → B) (≃⇒≡ univ B₁≃B₂) ∘ (λ f → f ∘ from A₁≃A₂) ≡⟨ cong (_∘_ (subst (λ B → A₂ → B) (≃⇒≡ univ B₁≃B₂))) (apply-ext ext λ f → transport-theorem (λ A → A → B₁) (λ A≃B g → g ∘ _≃_.from A≃B) refl univ A₁≃A₂ f) ⟩ subst (λ B → A₂ → B) (≃⇒≡ univ B₁≃B₂) ∘ subst (λ A → A → B₁) (≃⇒≡ univ A₁≃A₂) ≡⟨ cong₂ (λ g h f → g (h f)) (apply-ext ext $ subst-in-terms-of-≡⇒↝ equivalence _ (λ B → A₂ → B)) (apply-ext ext $ subst-in-terms-of-≡⇒↝ equivalence _ (λ A → A → B₁)) ⟩ to (≡⇒≃ (cong (λ B → A₂ → B) (≃⇒≡ univ B₁≃B₂))) ∘ to (≡⇒≃ (cong (λ A → A → B₁) (≃⇒≡ univ A₁≃A₂))) ≡⟨⟩ to (≡⇒≃ (cong (λ B → A₂ → B) (≃⇒≡ univ B₁≃B₂)) ⊚ ≡⇒≃ (cong (λ A → A → B₁) (≃⇒≡ univ A₁≃A₂))) ≡⟨ cong to $ sym $ ≡⇒≃-trans ext _ _ ⟩∎ to (≡⇒≃ (cong₂ (λ A B → A → B) (≃⇒≡ univ A₁≃A₂) (≃⇒≡ univ B₁≃B₂))) ∎ -- One can sometimes push cong through ≃⇒≡ (assuming -- extensionality). cong-≃⇒≡ : ∀ {ℓ p} {A B : Type ℓ} {A≃B : A ≃ B} → Extensionality p p → (univ₁ : Univalence ℓ) (univ₂ : Univalence p) (P : Type ℓ → Type p) (P-cong : ∀ {A B} → A ≃ B → P A ≃ P B) → (∀ {A} (p : P A) → _≃_.to (P-cong Eq.id) p ≡ p) → cong P (≃⇒≡ univ₁ A≃B) ≡ ≃⇒≡ univ₂ (P-cong A≃B) cong-≃⇒≡ {A≃B = A≃B} ext univ₁ univ₂ P P-cong P-cong-id = cong P (≃⇒≡ univ₁ A≃B) ≡⟨ sym $ _≃_.left-inverse-of (≡≃≃ univ₂) _ ⟩ ≃⇒≡ univ₂ (≡⇒≃ (cong P (≃⇒≡ univ₁ A≃B))) ≡⟨ cong (≃⇒≡ univ₂) $ Eq.lift-equality ext lemma ⟩∎ ≃⇒≡ univ₂ (P-cong A≃B) ∎ where lemma : ≡⇒→ (cong P (≃⇒≡ univ₁ A≃B)) ≡ _≃_.to (P-cong A≃B) lemma = apply-ext ext λ x → ≡⇒→ (cong P (≃⇒≡ univ₁ A≃B)) x ≡⟨ sym $ subst-in-terms-of-≡⇒↝ equivalence _ P x ⟩ subst P (≃⇒≡ univ₁ A≃B) x ≡⟨ sym $ transport-theorem P (_≃_.to ∘ P-cong) P-cong-id univ₁ A≃B x ⟩∎ _≃_.to (P-cong A≃B) x ∎ -- Any "resp" function that preserves identity also preserves -- compositions (assuming univalence and extensionality). resp-preserves-compositions : ∀ {p₁ p₂} (P : Type p₁ → Type p₂) → (resp : ∀ {A B} → A ≃ B → P A → P B) → (∀ {A} (p : P A) → resp Eq.id p ≡ p) → Univalence p₁ → Extensionality p₁ p₁ → ∀ {A B C} (A≃B : A ≃ B) (B≃C : B ≃ C) p → resp (B≃C ⊚ A≃B) p ≡ (resp B≃C ∘ resp A≃B) p resp-preserves-compositions P resp resp-id univ ext A≃B B≃C p = resp (B≃C ⊚ A≃B) p ≡⟨ transport-theorem P resp resp-id univ _ _ ⟩ subst P (≃⇒≡ univ (B≃C ⊚ A≃B)) p ≡⟨ cong (λ eq → subst P eq p) $ ≃⇒≡-∘ univ ext A≃B B≃C ⟩ subst P (trans (≃⇒≡ univ A≃B) (≃⇒≡ univ B≃C)) p ≡⟨ sym $ subst-subst P _ _ _ ⟩ subst P (≃⇒≡ univ B≃C) (subst P (≃⇒≡ univ A≃B) p) ≡⟨ sym $ transport-theorem P resp resp-id univ _ _ ⟩ resp B≃C (subst P (≃⇒≡ univ A≃B) p) ≡⟨ sym $ cong (resp _) $ transport-theorem P resp resp-id univ _ _ ⟩∎ resp B≃C (resp A≃B p) ∎ -- Any "resp" function that preserves identity also preserves -- inverses (assuming univalence and extensionality). resp-preserves-inverses : ∀ {p₁ p₂} (P : Type p₁ → Type p₂) → (resp : ∀ {A B} → A ≃ B → P A → P B) → (∀ {A} (p : P A) → resp Eq.id p ≡ p) → Univalence p₁ → Extensionality p₁ p₁ → ∀ {A B} (A≃B : A ≃ B) p q → resp A≃B p ≡ q → resp (inverse A≃B) q ≡ p resp-preserves-inverses P resp resp-id univ ext A≃B p q eq = let lemma = q ≡⟨ sym eq ⟩ resp A≃B p ≡⟨ transport-theorem P resp resp-id univ _ _ ⟩ subst P (≃⇒≡ univ A≃B) p ≡⟨ cong (λ eq → subst P eq p) $ sym $ sym-sym _ ⟩∎ subst P (sym (sym (≃⇒≡ univ A≃B))) p ∎ in resp (inverse A≃B) q ≡⟨ transport-theorem P resp resp-id univ _ _ ⟩ subst P (≃⇒≡ univ (inverse A≃B)) q ≡⟨ cong (λ eq → subst P eq q) $ ≃⇒≡-inverse univ ext A≃B ⟩ subst P (sym (≃⇒≡ univ A≃B)) q ≡⟨ cong (subst P (sym (≃⇒≡ univ A≃B))) lemma ⟩ subst P (sym (≃⇒≡ univ A≃B)) (subst P (sym (sym (≃⇒≡ univ A≃B))) p) ≡⟨ subst-subst-sym P _ _ ⟩∎ p ∎ -- Equality preserves equivalences (assuming extensionality and -- univalence). ≡-preserves-≃ : ∀ {ℓ₁ ℓ₂} {A₁ : Type ℓ₁} {A₂ : Type ℓ₂} {B₁ : Type ℓ₁} {B₂ : Type ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → Univalence′ A₁ B₁ → Univalence′ A₂ B₂ → A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ ≡ B₁) ≃ (A₂ ≡ B₂) ≡-preserves-≃ {ℓ₁} {ℓ₂} {A₁} {A₂} {B₁} {B₂} ext univ₁ univ₂ A₁≃A₂ B₁≃B₂ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to }) where to = λ A₁≡B₁ → ≃⇒≡ univ₂ ( A₂ ↝⟨ inverse A₁≃A₂ ⟩ A₁ ↝⟨ ≡⇒≃ A₁≡B₁ ⟩ B₁ ↝⟨ B₁≃B₂ ⟩□ B₂ □) from = λ A₂≡B₂ → ≃⇒≡ univ₁ ( A₁ ↝⟨ A₁≃A₂ ⟩ A₂ ↝⟨ ≡⇒≃ A₂≡B₂ ⟩ B₂ ↝⟨ inverse B₁≃B₂ ⟩□ B₁ □) abstract to∘from : ∀ eq → to (from eq) ≡ eq to∘from A₂≡B₂ = let ext₂ = lower-extensionality ℓ₁ ℓ₁ ext in _≃_.to (Eq.≃-≡ (≡≃≃ univ₂)) (Eq.lift-equality ext₂ ( ≡⇒→ (≃⇒≡ univ₂ ((B₁≃B₂ ⊚ ≡⇒≃ (≃⇒≡ univ₁ ((inverse B₁≃B₂ ⊚ ≡⇒≃ A₂≡B₂) ⊚ A₁≃A₂))) ⊚ inverse A₁≃A₂)) ≡⟨ cong _≃_.to $ _≃_.right-inverse-of (≡≃≃ univ₂) _ ⟩ (_≃_.to B₁≃B₂ ∘ ≡⇒→ (≃⇒≡ univ₁ ((inverse B₁≃B₂ ⊚ ≡⇒≃ A₂≡B₂) ⊚ A₁≃A₂)) ∘ _≃_.from A₁≃A₂) ≡⟨ cong (λ eq → _≃_.to B₁≃B₂ ∘ _≃_.to eq ∘ _≃_.from A₁≃A₂) $ _≃_.right-inverse-of (≡≃≃ univ₁) _ ⟩ ((_≃_.to B₁≃B₂ ∘ _≃_.from B₁≃B₂) ∘ ≡⇒→ A₂≡B₂ ∘ (_≃_.to A₁≃A₂ ∘ _≃_.from A₁≃A₂)) ≡⟨ cong₂ (λ f g → f ∘ ≡⇒→ A₂≡B₂ ∘ g) (apply-ext ext₂ $ _≃_.right-inverse-of B₁≃B₂) (apply-ext ext₂ $ _≃_.right-inverse-of A₁≃A₂) ⟩∎ ≡⇒→ A₂≡B₂ ∎)) from∘to : ∀ eq → from (to eq) ≡ eq from∘to A₁≡B₁ = let ext₁ = lower-extensionality ℓ₂ ℓ₂ ext in _≃_.to (Eq.≃-≡ (≡≃≃ univ₁)) (Eq.lift-equality ext₁ ( ≡⇒→ (≃⇒≡ univ₁ ((inverse B₁≃B₂ ⊚ ≡⇒≃ (≃⇒≡ univ₂ ((B₁≃B₂ ⊚ ≡⇒≃ A₁≡B₁) ⊚ inverse A₁≃A₂))) ⊚ A₁≃A₂)) ≡⟨ cong _≃_.to $ _≃_.right-inverse-of (≡≃≃ univ₁) _ ⟩ (_≃_.from B₁≃B₂ ∘ ≡⇒→ (≃⇒≡ univ₂ ((B₁≃B₂ ⊚ ≡⇒≃ A₁≡B₁) ⊚ inverse A₁≃A₂)) ∘ _≃_.to A₁≃A₂) ≡⟨ cong (λ eq → _≃_.from B₁≃B₂ ∘ _≃_.to eq ∘ _≃_.to A₁≃A₂) $ _≃_.right-inverse-of (≡≃≃ univ₂) _ ⟩ ((_≃_.from B₁≃B₂ ∘ _≃_.to B₁≃B₂) ∘ ≡⇒→ A₁≡B₁ ∘ (_≃_.from A₁≃A₂ ∘ _≃_.to A₁≃A₂)) ≡⟨ cong₂ (λ f g → f ∘ ≡⇒→ A₁≡B₁ ∘ g) (apply-ext ext₁ $ _≃_.left-inverse-of B₁≃B₂) (apply-ext ext₁ $ _≃_.left-inverse-of A₁≃A₂) ⟩∎ ≡⇒→ A₁≡B₁ ∎)) -- Singletons expressed using equivalences instead of equalities, -- where the types are required to live in the same universe, are -- contractible (assuming univalence). singleton-with-≃-contractible : ∀ {b} {B : Type b} → Univalence b → Contractible (∃ λ (A : Type b) → A ≃ B) singleton-with-≃-contractible univ = H-level.respects-surjection (∃-cong λ _ → _≃_.surjection (≡≃≃ univ)) 0 (singleton-contractible _) other-singleton-with-≃-contractible : ∀ {a} {A : Type a} → Univalence a → Contractible (∃ λ (B : Type a) → A ≃ B) other-singleton-with-≃-contractible univ = H-level.respects-surjection (∃-cong λ _ → _≃_.surjection (≡≃≃ univ)) 0 (other-singleton-contractible _) -- Singletons expressed using equivalences instead of equalities are -- isomorphic to the unit type (assuming extensionality and -- univalence). singleton-with-≃-↔-⊤ : ∀ {a b} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → Univalence (a ⊔ b) → (∃ λ (A : Type (a ⊔ b)) → A ≃ B) ↔ ⊤ singleton-with-≃-↔-⊤ {a} {B = B} ext univ = (∃ λ A → A ≃ B) ↝⟨ inverse (∃-cong λ _ → Eq.≃-preserves-bijections ext F.id Bijection.↑↔) ⟩ (∃ λ A → A ≃ ↑ a B) ↔⟨ inverse (∃-cong λ _ → ≡≃≃ univ) ⟩ (∃ λ A → A ≡ ↑ a B) ↝⟨ _⇔_.to contractible⇔↔⊤ (singleton-contractible _) ⟩□ ⊤ □ other-singleton-with-≃-↔-⊤ : ∀ {a b} {A : Type a} → Extensionality (a ⊔ b) (a ⊔ b) → Univalence (a ⊔ b) → (∃ λ (B : Type (a ⊔ b)) → A ≃ B) ↔ ⊤ other-singleton-with-≃-↔-⊤ {b = b} {A} ext univ = (∃ λ B → A ≃ B) ↝⟨ (∃-cong λ _ → Eq.inverse-isomorphism ext) ⟩ (∃ λ B → B ≃ A) ↝⟨ singleton-with-≃-↔-⊤ {a = b} ext univ ⟩□ ⊤ □ -- Variants of the two lemmas above. singleton-with-Π-≃-≃-⊤ : ∀ {a q} {A : Type a} {Q : A → Type q} → Extensionality a (lsuc q) → Univalence q → (∃ λ (P : A → Type q) → ∀ x → P x ≃ Q x) ≃ ⊤ singleton-with-Π-≃-≃-⊤ {a = a} {q = q} {A = A} {Q = Q} ext univ = (∃ λ (P : A → Type q) → ∀ x → P x ≃ Q x) ↝⟨ (inverse $ ∃-cong λ _ → ∀-cong ext λ _ → ≡≃≃ univ) ⟩ (∃ λ (P : A → Type q) → ∀ x → P x ≡ Q x) ↝⟨ (∃-cong λ _ → Eq.extensionality-isomorphism ext) ⟩ (∃ λ (P : A → Type q) → P ≡ Q) ↔⟨ _⇔_.to contractible⇔↔⊤ (singleton-contractible _) ⟩□ ⊤ □ other-singleton-with-Π-≃-≃-⊤ : ∀ {a p} {A : Type a} {P : A → Type p} → Extensionality a (lsuc p) → Univalence p → (∃ λ (Q : A → Type p) → ∀ x → P x ≃ Q x) ≃ ⊤ other-singleton-with-Π-≃-≃-⊤ {a = a} {p = p} {A = A} {P = P} ext univ = (∃ λ (Q : A → Type p) → ∀ x → P x ≃ Q x) ↝⟨ (inverse $ ∃-cong λ _ → ∀-cong ext λ _ → ≡≃≃ univ) ⟩ (∃ λ (Q : A → Type p) → ∀ x → P x ≡ Q x) ↝⟨ (∃-cong λ _ → Eq.extensionality-isomorphism ext) ⟩ (∃ λ (Q : A → Type p) → P ≡ Q) ↔⟨ _⇔_.to contractible⇔↔⊤ (other-singleton-contractible _) ⟩□ ⊤ □ -- ∃ Contractible is isomorphic to the unit type (assuming -- extensionality and univalence). ∃Contractible↔⊤ : ∀ {a} → Extensionality a a → Univalence a → (∃ λ (A : Type a) → Contractible A) ↔ ⊤ ∃Contractible↔⊤ ext univ = (∃ λ A → Contractible A) ↝⟨ (∃-cong λ _ → contractible↔≃⊤ ext) ⟩ (∃ λ A → A ≃ ⊤) ↝⟨ singleton-with-≃-↔-⊤ ext univ ⟩ ⊤ □ -- If two types have a certain h-level, then the type of equalities -- between these types also has the given h-level (assuming -- extensionality and univalence). H-level-H-level-≡ : ∀ {a} {A₁ A₂ : Type a} → Extensionality a a → Univalence′ A₁ A₂ → ∀ n → H-level n A₁ → H-level n A₂ → H-level n (A₁ ≡ A₂) H-level-H-level-≡ {A₁ = A₁} {A₂} ext univ n = curry ( H-level n A₁ × H-level n A₂ ↝⟨ uncurry (Eq.h-level-closure ext n) ⟩ H-level n (A₁ ≃ A₂) ↝⟨ H-level.respects-surjection (_≃_.surjection $ inverse $ ≡≃≃ univ) n ⟩ H-level n (A₁ ≡ A₂) □) -- If a type has a certain positive h-level, then the types of -- equalities between this type and other types also has the given -- h-level (assuming extensionality and univalence). H-level-H-level-≡ˡ : ∀ {a} {A₁ A₂ : Type a} → Extensionality a a → Univalence′ A₁ A₂ → ∀ n → H-level (1 + n) A₁ → H-level (1 + n) (A₁ ≡ A₂) H-level-H-level-≡ˡ {A₁ = A₁} {A₂} ext univ n = H-level (1 + n) A₁ ↝⟨ Eq.left-closure ext n ⟩ H-level (1 + n) (A₁ ≃ A₂) ↝⟨ H-level.respects-surjection (_≃_.surjection $ inverse $ ≡≃≃ univ) (1 + n) ⟩ H-level (1 + n) (A₁ ≡ A₂) □ H-level-H-level-≡ʳ : ∀ {a} {A₁ A₂ : Type a} → Extensionality a a → Univalence′ A₁ A₂ → ∀ n → H-level (1 + n) A₂ → H-level (1 + n) (A₁ ≡ A₂) H-level-H-level-≡ʳ {A₁ = A₁} {A₂} ext univ n = H-level (1 + n) A₂ ↝⟨ Eq.right-closure ext n ⟩ H-level (1 + n) (A₁ ≃ A₂) ↝⟨ H-level.respects-surjection (_≃_.surjection $ inverse $ ≡≃≃ univ) (1 + n) ⟩ H-level (1 + n) (A₁ ≡ A₂) □ -- ∃ λ A → H-level n A has h-level 1 + n (assuming extensionality and -- univalence). ∃-H-level-H-level-1+ : ∀ {a} → Extensionality a a → Univalence a → ∀ n → H-level (1 + n) (∃ λ (A : Type a) → H-level n A) ∃-H-level-H-level-1+ ext univ n = ≡↔+ _ _ λ { (A₁ , h₁) (A₂ , h₂) → $⟨ h₁ , h₂ ⟩ H-level n A₁ × H-level n A₂ ↝⟨ uncurry (H-level-H-level-≡ ext univ n) ⟩ H-level n (A₁ ≡ A₂) ↝⟨ H-level.respects-surjection (_↔_.surjection $ ignore-propositional-component (H-level-propositional ext _)) n ⟩□ H-level n ((A₁ , h₁) ≡ (A₂ , h₂)) □ } -- ∃ λ A → Is-proposition A is a set (assuming extensionality and -- propositional extensionality). Is-set-∃-Is-proposition : ∀ {a} → Extensionality (lsuc a) (lsuc a) → Propositional-extensionality a → Is-set (∃ λ (A : Type a) → Is-proposition A) Is-set-∃-Is-proposition {a} ext prop-ext {x = A₁ , A₁-prop} {y = A₂ , A₂-prop} = $⟨ _≃_.to (Propositional-extensionality-is-univalence-for-propositions ext) prop-ext A₁-prop A₂-prop ⟩ Univalence′ A₁ A₂ ↝⟨ (λ univ → H-level-H-level-≡ ext′ univ 1 A₁-prop A₂-prop) ⟩ Is-proposition (A₁ ≡ A₂) ↝⟨ H-level.respects-surjection (_↔_.surjection $ ignore-propositional-component (H-level-propositional ext′ 1)) 1 ⟩□ Is-proposition ((A₁ , A₁-prop) ≡ (A₂ , A₂-prop)) □ where ext′ = lower-extensionality _ _ ext -- ∃ λ A → H-level n A does not in general have h-level n. -- -- (Kraus and Sattler show that, for all n, -- ∃ λ (A : Set (# n)) → H-level (2 + n) A does not have h-level -- 2 + n, assuming univalence. See "Higher Homotopies in a Hierarchy -- of Univalent Universes".) ¬-∃-H-level-H-level : ∀ {a} → ∃ λ n → ¬ H-level n (∃ λ (A : Type a) → H-level n A) ¬-∃-H-level-H-level = 1 , ( Is-proposition (∃ λ A → Is-proposition A) ↔⟨⟩ ((p q : ∃ λ A → Is-proposition A) → p ≡ q) ↝⟨ (λ f p q → cong proj₁ (f p q)) ⟩ ((p q : ∃ λ A → Is-proposition A) → proj₁ p ≡ proj₁ q) ↝⟨ (_$ (⊥ , ⊥-propositional)) ∘ (_$ (↑ _ ⊤ , ↑-closure 1 (mono₁ 0 ⊤-contractible))) ⟩ ↑ _ ⊤ ≡ ⊥ ↝⟨ flip (subst id) _ ⟩ ⊥ ↝⟨ ⊥-elim ⟩□ ⊥₀ □) -- A certain type of uninhabited types is isomorphic to the unit type -- (assuming extensionality and univalence). ∃¬↔⊤ : ∀ {a} → Extensionality a a → Univalence a → (∃ λ (A : Type a) → ¬ A) ↔ ⊤ ∃¬↔⊤ ext univ = (∃ λ A → ¬ A) ↔⟨ inverse (∃-cong λ _ → ≃⊥≃¬ ext) ⟩ (∃ λ A → A ≃ ⊥₀) ↔⟨ singleton-with-≃-↔-⊤ ext univ ⟩ ⊤ □ -- The following three proofs are taken from or variants of proofs in -- "Higher Homotopies in a Hierarchy of Univalent Universes" by Kraus -- and Sattler (Section 3). -- There is a function which, despite having the same type, is not -- equal to a certain instance of reflexivity (assuming extensionality -- and univalence). ∃≢refl : Extensionality (# 1) (# 1) → Univalence (# 0) → ∃ λ (A : Type₁) → ∃ λ (f : (x : A) → x ≡ x) → f ≢ refl ∃≢refl ext univ = (∃ λ (A : Type) → A ≡ A) , _↔_.from iso f , (_↔_.from iso f ≡ refl ↝⟨ cong (_↔_.to iso) ⟩ _↔_.to iso (_↔_.from iso f) ≡ _↔_.to iso refl ↝⟨ (λ eq → f ≡⟨ sym (_↔_.right-inverse-of iso f) ⟩ _↔_.to iso (_↔_.from iso f) ≡⟨ eq ⟩∎ _↔_.to iso refl ∎) ⟩ f ≡ _↔_.to iso refl ↝⟨ cong (λ f → proj₁ (f Bool (swap-as-an-equality univ))) ⟩ swap-as-an-equality univ ≡ proj₁ (_↔_.to iso refl Bool _) ↝⟨ (λ eq → swap-as-an-equality univ ≡⟨ eq ⟩ proj₁ (_↔_.to iso refl Bool _) ≡⟨ cong proj₁ Σ-≡,≡←≡-refl ⟩∎ refl Bool ∎) ⟩ swap-as-an-equality univ ≡ refl Bool ↝⟨ swap≢refl univ ⟩□ ⊥ □) where f = λ A p → p , refl (trans p p) iso = ((p : ∃ λ A → A ≡ A) → p ≡ p) ↝⟨ currying ⟩ (∀ A (p : A ≡ A) → (A , p) ≡ (A , p)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → inverse $ Bijection.Σ-≡,≡↔≡ {a = # 1}) ⟩ ((A : Type) (p : A ≡ A) → ∃ λ (q : A ≡ A) → subst (λ A → A ≡ A) q p ≡ p) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∃-cong λ _ → ≡⇒↝ _ [subst≡]≡[trans≡trans]) ⟩□ ((A : Type) (p : A ≡ A) → ∃ λ (q : A ≡ A) → trans p q ≡ trans q p) □ -- The type (a : A) → a ≡ a is not necessarily a proposition (assuming -- extensionality and univalence). ¬-type-of-refl-propositional : Extensionality (# 1) (# 1) → Univalence (# 0) → ∃ λ (A : Type₁) → ¬ Is-proposition ((a : A) → a ≡ a) ¬-type-of-refl-propositional ext univ = let A , f , f≢refl = ∃≢refl ext univ in A , (Is-proposition (∀ x → x ≡ x) ↝⟨ (λ irr → irr _ _) ⟩ f ≡ refl ↝⟨ f≢refl ⟩□ ⊥ □) -- Type₁ does not have h-level 3 (assuming extensionality and -- univalence). ¬-Type₁-groupoid : Extensionality (# 1) (# 1) → Univalence (# 1) → Univalence (# 0) → ¬ H-level 3 Type₁ ¬-Type₁-groupoid ext univ₁ univ₀ = let L = _ in H-level 3 Type₁ ↝⟨ (λ h → h) ⟩ Is-set (L ≡ L) ↝⟨ H-level.respects-surjection (_≃_.surjection $ ≡≃≃ univ₁) 2 ⟩ Is-set (L ≃ L) ↝⟨ (λ h → h) ⟩ Is-proposition (F.id ≡ F.id) ↝⟨ H-level.respects-surjection (_≃_.surjection $ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ Eq.≃-as-Σ) 1 ⟩ Is-proposition ((id , _) ≡ (id , _)) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse $ ignore-propositional-component (Eq.propositional ext id)) 1 ⟩ Is-proposition (id ≡ id) ↝⟨ H-level.respects-surjection (_≃_.surjection $ inverse $ Eq.extensionality-isomorphism ext) 1 ⟩ Is-proposition ((l : L) → l ≡ l) ↝⟨ proj₂ $ ¬-type-of-refl-propositional ext univ₀ ⟩□ ⊥ □ -- For propositional types there is a split surjection from equality -- to logical equivalence (assuming univalence). ≡↠⇔ : ∀ {ℓ} {A B : Type ℓ} → Univalence′ A B → Is-proposition A → Is-proposition B → (A ≡ B) ↠ (A ⇔ B) ≡↠⇔ {A = A} {B} univ A-prop B-prop = A ≡ B ↔⟨ ≡≃≃ univ ⟩ A ≃ B ↝⟨ Eq.≃↠⇔ A-prop B-prop ⟩□ A ⇔ B □ -- For propositional types logical equivalence is isomorphic to -- equality (assuming extensionality and univalence). ⇔↔≡ : ∀ {ℓ} {A B : Type ℓ} → Extensionality ℓ ℓ → Univalence′ A B → Is-proposition A → Is-proposition B → (A ⇔ B) ↔ (A ≡ B) ⇔↔≡ {A = A} {B} ext univ A-prop B-prop = A ⇔ B ↝⟨ Eq.⇔↔≃ ext A-prop B-prop ⟩ A ≃ B ↔⟨ inverse $ ≡≃≃ univ ⟩□ A ≡ B □ -- A variant of the previous statement. ⇔↔≡′ : ∀ {ℓ} {A B : Proposition ℓ} → Extensionality ℓ ℓ → Univalence′ (proj₁ A) (proj₁ B) → (proj₁ A ⇔ proj₁ B) ↔ (A ≡ B) ⇔↔≡′ {A = A} {B} ext univ = proj₁ A ⇔ proj₁ B ↝⟨ ⇔↔≡ ext univ (proj₂ A) (proj₂ B) ⟩ proj₁ A ≡ proj₁ B ↝⟨ ignore-propositional-component (H-level-propositional ext 1) ⟩□ A ≡ B □ -- A variant of the previous statement. ⇔↔≡″ : ∀ {ℓ} {A B : Proposition ℓ} → Extensionality (lsuc ℓ) (lsuc ℓ) → Propositional-extensionality ℓ → (proj₁ A ⇔ proj₁ B) ↔ (A ≡ B) ⇔↔≡″ {ℓ} {A} {B} ext = Propositional-extensionality ℓ ↝⟨ (λ prop-ext → _≃_.to (Propositional-extensionality-is-univalence-for-propositions ext) prop-ext (proj₂ A) (proj₂ B)) ⟩ Univalence′ (proj₁ A) (proj₁ B) ↝⟨ ⇔↔≡′ (lower-extensionality _ _ ext) ⟩□ (proj₁ A ⇔ proj₁ B) ↔ (A ≡ B) □ ------------------------------------------------------------------------ -- Variants of J for equivalences -- Two variants of the J rule for equivalences, along with -- "computation" rules. -- -- The types of the eliminators are similar to the statement of -- Corollary 5.8.5 from the HoTT book (where the motive takes two type -- arguments). The type and code of ≃-elim₁ are based on code from the -- cubical library written by Matthew Yacavone, which was possibly -- based on code written by Anders Mörtberg. ≃-elim₁ : ∀ {ℓ p} {A B : Type ℓ} → Univalence ℓ → (P : {A : Type ℓ} → A ≃ B → Type p) → P (Eq.id {A = B}) → (A≃B : A ≃ B) → P A≃B ≃-elim₁ univ P p A≃B = subst (λ (_ , A≃B) → P A≃B) (mono₁ 0 (singleton-with-≃-contractible univ) _ _) p ≃-elim₁-id : ∀ {ℓ p} {B : Type ℓ} (univ : Univalence ℓ) (P : {A : Type ℓ} → A ≃ B → Type p) (p : P (Eq.id {A = B})) → ≃-elim₁ univ P p Eq.id ≡ p ≃-elim₁-id univ P p = subst (λ (_ , A≃B) → P A≃B) (mono₁ 0 (singleton-with-≃-contractible univ) _ _) p ≡⟨ cong (λ eq → subst (λ (_ , A≃B) → P A≃B) eq _) $ mono₁ 1 (mono₁ 0 (singleton-with-≃-contractible univ)) _ _ ⟩ subst (λ (_ , A≃B) → P A≃B) (refl _) p ≡⟨ subst-refl _ _ ⟩∎ p ∎ ≃-elim¹ : ∀ {ℓ p} {A B : Type ℓ} → Univalence ℓ → (P : {B : Type ℓ} → A ≃ B → Type p) → P (Eq.id {A = A}) → (A≃B : A ≃ B) → P A≃B ≃-elim¹ univ P p A≃B = subst (λ (_ , A≃B) → P A≃B) (mono₁ 0 (other-singleton-with-≃-contractible univ) _ _) p ≃-elim¹-id : ∀ {ℓ p} {A : Type ℓ} (univ : Univalence ℓ) (P : {B : Type ℓ} → A ≃ B → Type p) (p : P (Eq.id {A = A})) → ≃-elim¹ univ P p Eq.id ≡ p ≃-elim¹-id univ P p = subst (λ (_ , A≃B) → P A≃B) (mono₁ 0 (other-singleton-with-≃-contractible univ) _ _) p ≡⟨ cong (λ eq → subst (λ (_ , A≃B) → P A≃B) eq _) $ mono₁ 1 (mono₁ 0 (other-singleton-with-≃-contractible univ)) _ _ ⟩ subst (λ (_ , A≃B) → P A≃B) (refl _) p ≡⟨ subst-refl _ _ ⟩∎ p ∎
{ "alphanum_fraction": 0.4353024976, "avg_line_length": 42.4061696658, "ext": "agda", "hexsha": "4643aa89c889d4665cbd01e8b44c6c1fe8ea1a39", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Univalence-axiom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Univalence-axiom.agda", "max_line_length": 154, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Univalence-axiom.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 25658, "size": 65984 }
{-# OPTIONS --without-K --rewriting #-} module lib.groups.Groups where open import lib.groups.CommutingSquare public open import lib.groups.FreeAbelianGroup public open import lib.groups.FreeGroup public open import lib.groups.GroupProduct public open import lib.groups.Homomorphism public open import lib.groups.HomotopyGroup public open import lib.groups.Int public open import lib.groups.Isomorphism public open import lib.groups.Lift public open import lib.groups.LoopSpace public open import lib.groups.QuotientGroup public open import lib.groups.PullbackGroup public open import lib.groups.Subgroup public open import lib.groups.SubgroupProp public open import lib.groups.TruncationGroup public open import lib.groups.Unit public
{ "alphanum_fraction": 0.8376184032, "avg_line_length": 33.5909090909, "ext": "agda", "hexsha": "cbf6f55823aa454cd4a80e7c727f07197c041911", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/Groups.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/Groups.agda", "max_line_length": 46, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/Groups.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 159, "size": 739 }
A : Set₁ A = Set {-# POLARITY A #-}
{ "alphanum_fraction": 0.4864864865, "avg_line_length": 7.4, "ext": "agda", "hexsha": "23042b00c90f1d74174c53c29e36a99e08a3993c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Fail/Polarity-pragma-for-defined-name.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Fail/Polarity-pragma-for-defined-name.agda", "max_line_length": 18, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Fail/Polarity-pragma-for-defined-name.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 15, "size": 37 }
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.Float where open import Agda.Builtin.Bool open import Agda.Builtin.Int open import Agda.Builtin.Maybe open import Agda.Builtin.Nat open import Agda.Builtin.Sigma open import Agda.Builtin.String open import Agda.Builtin.Word postulate Float : Set {-# BUILTIN FLOAT Float #-} primitive -- Relations primFloatInequality : Float → Float → Bool primFloatEquality : Float → Float → Bool primFloatLess : Float → Float → Bool primFloatIsInfinite : Float → Bool primFloatIsNaN : Float → Bool primFloatIsNegativeZero : Float → Bool primFloatIsSafeInteger : Float → Bool -- Conversions primFloatToWord64 : Float → Word64 primNatToFloat : Nat → Float primIntToFloat : Int → Float primFloatRound : Float → Maybe Int primFloatFloor : Float → Maybe Int primFloatCeiling : Float → Maybe Int primFloatToRatio : Float → (Σ Int λ _ → Int) primRatioToFloat : Int → Int → Float primFloatDecode : Float → Maybe (Σ Int λ _ → Int) primFloatEncode : Int → Int → Maybe Float primShowFloat : Float → String -- Operations primFloatPlus : Float → Float → Float primFloatMinus : Float → Float → Float primFloatTimes : Float → Float → Float primFloatDiv : Float → Float → Float primFloatPow : Float → Float → Float primFloatNegate : Float → Float primFloatSqrt : Float → Float primFloatExp : Float → Float primFloatLog : Float → Float primFloatSin : Float → Float primFloatCos : Float → Float primFloatTan : Float → Float primFloatASin : Float → Float primFloatACos : Float → Float primFloatATan : Float → Float primFloatATan2 : Float → Float → Float primFloatSinh : Float → Float primFloatCosh : Float → Float primFloatTanh : Float → Float primFloatASinh : Float → Float primFloatACosh : Float → Float primFloatATanh : Float → Float {-# COMPILE JS primFloatRound = function(x) { x = agdaRTS._primFloatRound(x); if (x === null) { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["nothing"]; } else { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["just"](x); } }; #-} {-# COMPILE JS primFloatFloor = function(x) { x = agdaRTS._primFloatFloor(x); if (x === null) { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["nothing"]; } else { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["just"](x); } }; #-} {-# COMPILE JS primFloatCeiling = function(x) { x = agdaRTS._primFloatCeiling(x); if (x === null) { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["nothing"]; } else { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["just"](x); } }; #-} {-# COMPILE JS primFloatToRatio = function(x) { x = agdaRTS._primFloatToRatio(x); return z_jAgda_Agda_Builtin_Sigma["_,_"](x.numerator)(x.denominator); }; #-} {-# COMPILE JS primFloatDecode = function(x) { x = agdaRTS._primFloatDecode(x); if (x === null) { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["nothing"]; } else { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["just"]( z_jAgda_Agda_Builtin_Sigma["_,_"](x.mantissa)(x.exponent)); } }; #-} {-# COMPILE JS primFloatEncode = function(x) { return function (y) { x = agdaRTS.uprimFloatEncode(x, y); if (x === null) { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["nothing"]; } else { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["just"](x); } } }; #-} primFloatNumericalEquality = primFloatEquality {-# WARNING_ON_USAGE primFloatNumericalEquality "Warning: primFloatNumericalEquality was deprecated in Agda v2.6.2. Please use primFloatEquality instead." #-} primFloatNumericalLess = primFloatLess {-# WARNING_ON_USAGE primFloatNumericalLess "Warning: primFloatNumericalLess was deprecated in Agda v2.6.2. Please use primFloatLess instead." #-} primRound = primFloatRound {-# WARNING_ON_USAGE primRound "Warning: primRound was deprecated in Agda v2.6.2. Please use primFloatRound instead." #-} primFloor = primFloatFloor {-# WARNING_ON_USAGE primFloor "Warning: primFloor was deprecated in Agda v2.6.2. Please use primFloatFloor instead." #-} primCeiling = primFloatCeiling {-# WARNING_ON_USAGE primCeiling "Warning: primCeiling was deprecated in Agda v2.6.2. Please use primFloatCeiling instead." #-} primExp = primFloatExp {-# WARNING_ON_USAGE primExp "Warning: primExp was deprecated in Agda v2.6.2. Please use primFloatExp instead." #-} primLog = primFloatLog {-# WARNING_ON_USAGE primLog "Warning: primLog was deprecated in Agda v2.6.2. Please use primFloatLog instead." #-} primSin = primFloatSin {-# WARNING_ON_USAGE primSin "Warning: primSin was deprecated in Agda v2.6.2. Please use primFloatSin instead." #-} primCos = primFloatCos {-# WARNING_ON_USAGE primCos "Warning: primCos was deprecated in Agda v2.6.2. Please use primFloatCos instead." #-} primTan = primFloatTan {-# WARNING_ON_USAGE primTan "Warning: primTan was deprecated in Agda v2.6.2. Please use primFloatTan instead." #-} primASin = primFloatASin {-# WARNING_ON_USAGE primASin "Warning: primASin was deprecated in Agda v2.6.2. Please use primFloatASin instead." #-} primACos = primFloatACos {-# WARNING_ON_USAGE primACos "Warning: primACos was deprecated in Agda v2.6.2. Please use primFloatACos instead." #-} primATan = primFloatATan {-# WARNING_ON_USAGE primATan "Warning: primATan was deprecated in Agda v2.6.2. Please use primFloatATan instead." #-} primATan2 = primFloatATan2 {-# WARNING_ON_USAGE primATan2 "Warning: primATan2 was deprecated in Agda v2.6.2. Please use primFloatATan2 instead." #-}
{ "alphanum_fraction": 0.6325272641, "avg_line_length": 29.9857819905, "ext": "agda", "hexsha": "da1e0b2fe00e732205c1e079b3f8a53311e3b690", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Float.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Float.agda", "max_line_length": 77, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Float.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-26T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-26T09:35:17.000Z", "num_tokens": 1729, "size": 6327 }
------------------------------------------------------------------------------ -- Testing the translation of definitions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Issue4 where postulate D : Set _≡_ : D → D → Set refl : ∀ {a} → a ≡ a P : D → Set -- We test the translation of a definition where we need to erase proof terms. foo : ∀ {a} → P a → ∀ {b} → P b → a ≡ a foo {a} Pa {b} Pb = bar where c : D c = a {-# ATP definition c #-} postulate bar : c ≡ a {-# ATP prove bar #-}
{ "alphanum_fraction": 0.40802213, "avg_line_length": 25.8214285714, "ext": "agda", "hexsha": "fb58454c15d9717fb84a3c839a2feea72ac8c9a5", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "issues/Issue4.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "issues/Issue4.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "issues/Issue4.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 179, "size": 723 }
module WarningOnUsage where id : {A : Set} → A → A id x = x -- Deprecated names λx→x = id {-# WARNING_ON_USAGE λx→x "DEPRECATED: Use `id` instead of `λx→x`" #-} open import Agda.Builtin.Equality _ : {A : Set} {x : A} → λx→x x ≡ x _ = refl
{ "alphanum_fraction": 0.6032388664, "avg_line_length": 13.7222222222, "ext": "agda", "hexsha": "cffe6cd45c3a2abb89a03d668ace46188840f676", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/WarningOnUsage.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/WarningOnUsage.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/WarningOnUsage.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 95, "size": 247 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Morphisms between algebraic structures ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.Morphism where import Algebra.Morphism.Definitions as MorphismDefinitions open import Relation.Binary open import Algebra import Algebra.Properties.Group as GroupP open import Function open import Level import Relation.Binary.Reasoning.Setoid as EqR private variable a b ℓ₁ ℓ₂ : Level A : Set a B : Set b ------------------------------------------------------------------------ -- module Definitions {a b ℓ₁} (A : Set a) (B : Set b) (_≈_ : Rel B ℓ₁) where open MorphismDefinitions A B _≈_ public open import Algebra.Morphism.Structures public ------------------------------------------------------------------------ -- Bundle homomorphisms module _ {c₁ ℓ₁ c₂ ℓ₂} (From : Semigroup c₁ ℓ₁) (To : Semigroup c₂ ℓ₂) where private module F = Semigroup From module T = Semigroup To open Definitions F.Carrier T.Carrier T._≈_ record IsSemigroupMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field ⟦⟧-cong : ⟦_⟧ Preserves F._≈_ ⟶ T._≈_ ∙-homo : Homomorphic₂ ⟦_⟧ F._∙_ T._∙_ IsSemigroupMorphism-syntax = IsSemigroupMorphism syntax IsSemigroupMorphism-syntax From To F = F Is From -Semigroup⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : Monoid c₁ ℓ₁) (To : Monoid c₂ ℓ₂) where private module F = Monoid From module T = Monoid To open Definitions F.Carrier T.Carrier T._≈_ record IsMonoidMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field sm-homo : IsSemigroupMorphism F.semigroup T.semigroup ⟦_⟧ ε-homo : Homomorphic₀ ⟦_⟧ F.ε T.ε open IsSemigroupMorphism sm-homo public IsMonoidMorphism-syntax = IsMonoidMorphism syntax IsMonoidMorphism-syntax From To F = F Is From -Monoid⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : CommutativeMonoid c₁ ℓ₁) (To : CommutativeMonoid c₂ ℓ₂) where private module F = CommutativeMonoid From module T = CommutativeMonoid To open Definitions F.Carrier T.Carrier T._≈_ record IsCommutativeMonoidMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field mn-homo : IsMonoidMorphism F.monoid T.monoid ⟦_⟧ open IsMonoidMorphism mn-homo public IsCommutativeMonoidMorphism-syntax = IsCommutativeMonoidMorphism syntax IsCommutativeMonoidMorphism-syntax From To F = F Is From -CommutativeMonoid⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : IdempotentCommutativeMonoid c₁ ℓ₁) (To : IdempotentCommutativeMonoid c₂ ℓ₂) where private module F = IdempotentCommutativeMonoid From module T = IdempotentCommutativeMonoid To open Definitions F.Carrier T.Carrier T._≈_ record IsIdempotentCommutativeMonoidMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field mn-homo : IsMonoidMorphism F.monoid T.monoid ⟦_⟧ open IsMonoidMorphism mn-homo public isCommutativeMonoidMorphism : IsCommutativeMonoidMorphism F.commutativeMonoid T.commutativeMonoid ⟦_⟧ isCommutativeMonoidMorphism = record { mn-homo = mn-homo } IsIdempotentCommutativeMonoidMorphism-syntax = IsIdempotentCommutativeMonoidMorphism syntax IsIdempotentCommutativeMonoidMorphism-syntax From To F = F Is From -IdempotentCommutativeMonoid⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : Group c₁ ℓ₁) (To : Group c₂ ℓ₂) where private module F = Group From module T = Group To open Definitions F.Carrier T.Carrier T._≈_ record IsGroupMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field mn-homo : IsMonoidMorphism F.monoid T.monoid ⟦_⟧ open IsMonoidMorphism mn-homo public ⁻¹-homo : Homomorphic₁ ⟦_⟧ F._⁻¹ T._⁻¹ ⁻¹-homo x = let open EqR T.setoid in T.uniqueˡ-⁻¹ ⟦ x F.⁻¹ ⟧ ⟦ x ⟧ $ begin ⟦ x F.⁻¹ ⟧ T.∙ ⟦ x ⟧ ≈⟨ T.sym (∙-homo (x F.⁻¹) x) ⟩ ⟦ x F.⁻¹ F.∙ x ⟧ ≈⟨ ⟦⟧-cong (F.inverseˡ x) ⟩ ⟦ F.ε ⟧ ≈⟨ ε-homo ⟩ T.ε ∎ IsGroupMorphism-syntax = IsGroupMorphism syntax IsGroupMorphism-syntax From To F = F Is From -Group⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : AbelianGroup c₁ ℓ₁) (To : AbelianGroup c₂ ℓ₂) where private module F = AbelianGroup From module T = AbelianGroup To open Definitions F.Carrier T.Carrier T._≈_ record IsAbelianGroupMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field gp-homo : IsGroupMorphism F.group T.group ⟦_⟧ open IsGroupMorphism gp-homo public IsAbelianGroupMorphism-syntax = IsAbelianGroupMorphism syntax IsAbelianGroupMorphism-syntax From To F = F Is From -AbelianGroup⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : Ring c₁ ℓ₁) (To : Ring c₂ ℓ₂) where private module F = Ring From module T = Ring To open Definitions F.Carrier T.Carrier T._≈_ record IsRingMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field +-abgp-homo : ⟦_⟧ Is F.+-abelianGroup -AbelianGroup⟶ T.+-abelianGroup *-mn-homo : ⟦_⟧ Is F.*-monoid -Monoid⟶ T.*-monoid IsRingMorphism-syntax = IsRingMorphism syntax IsRingMorphism-syntax From To F = F Is From -Ring⟶ To
{ "alphanum_fraction": 0.6309790732, "avg_line_length": 30.0674157303, "ext": "agda", "hexsha": "fa43aed9d05ae29ce2794e6d79a6f3f45c50b6e1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Morphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Morphism.agda", "max_line_length": 108, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Morphism.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1859, "size": 5352 }
module Issue1760b where -- Skipping an old-style mutual block: Somewhere within a `mutual` -- block before a record definition. mutual data D : Set where lam : (D → D) → D {-# NO_POSITIVITY_CHECK #-} record U : Set where field ap : U → U
{ "alphanum_fraction": 0.6614173228, "avg_line_length": 21.1666666667, "ext": "agda", "hexsha": "46ce511742d67003e8342b568daac4b44c88ac14", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1760b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1760b.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1760b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 75, "size": 254 }
module Mutual2 where data Bool : Set where false : Bool true : Bool data ℕ : Set where zero : ℕ suc : ℕ → ℕ is-even : ℕ → Bool is-odd : ℕ → Bool is-even zero = true is-even (suc n) = is-odd n is-odd zero = false is-odd (suc n) = is-even n is-even' : ℕ → Bool is-even' = is-even
{ "alphanum_fraction": 0.5114942529, "avg_line_length": 7.25, "ext": "agda", "hexsha": "e26e2843f2113ab629525f5b121805c4c0b9485e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/declaration/Mutual2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/declaration/Mutual2.agda", "max_line_length": 20, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/declaration/Mutual2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 144, "size": 348 }
{-# OPTIONS --without-K --safe #-} open import Level -- Kan Complexes -- -- These are technically "Algebraic" Kan Complexes, as they come with a choice of fillers -- However, this notion is far easier than the more geometric flavor, -- as we can sidestep questions about choice. module Categories.Category.Construction.KanComplex (o ℓ : Level) where open import Data.Nat using (ℕ) open import Data.Fin using (Fin; inject₁) open import Categories.Category using (Category) open import Categories.Category.Instance.SimplicialSet using (SimplicialSet) open import Categories.Category.Instance.SimplicialSet.Properties o ℓ using (ΔSet; Δ[_]; Λ[_,_]; Λ-inj) open Category (SimplicialSet o ℓ) -- A Kan complex is a simplicial set where every k-horn has a filler. record IsKanComplex (X : ΔSet) : Set (o ⊔ ℓ) where field filler : ∀ {n} {k} → Λ[ n , k ] ⇒ X → Δ[ n ] ⇒ X filler-cong : ∀ {n} {k} → {f g : Λ[ n , k ] ⇒ X} → f ≈ g → filler {n} f ≈ filler g is-filler : ∀ {n} {k} → (f : Λ[ n , k ] ⇒ X) → filler f ∘ Λ-inj k ≈ f -- 'inner k' will embed 'k : Fin n' into the "inner" portion of 'Fin (n + 2)' -- Visually, it looks a little something like: -- -- * * * -- | | | -- v v v -- * * * * * -- -- Note that this is set up in such a way that we can normalize -- as far as possible without pattern matching on 'i' in proofs. inner : ∀ {n} → Fin n → Fin (ℕ.suc (ℕ.suc n)) inner i = Fin.suc (inject₁ i) -- A Weak Kan complex is similar to a Kan Complex, but where only "inner horns" have fillers. -- -- The indexing here is tricky, but it lets us avoid extra proof conditions that the horn is an inner horn. -- The basic idea is that if we want an n-dimensional inner horn, then we only want to allow the faces {1,2,3...n-1} -- to be missing. We could do this by requiring proofs that the missing face is greater than 0 and less than n, but -- this makes working with the definition _extremely_ difficult. -- -- To avoid this, we only allow an missing face index that ranges from 0 to n-2, and then embed that index -- into the full range of face indexes via 'inner'. This does require us to shift our indexes around a bit. -- To make this indexing more obvious, we use the suggestively named variable 'n-2'. record IsWeakKanComplex (X : ΔSet) : Set (o ⊔ ℓ) where field filler : ∀ {n-2} {k : Fin n-2} → Λ[ ℕ.suc (ℕ.suc n-2) , inner k ] ⇒ X → Δ[ ℕ.suc (ℕ.suc n-2) ] ⇒ X filler-cong : ∀ {n-2} {k : Fin n-2} → {f g : Λ[ ℕ.suc (ℕ.suc n-2) , inner k ] ⇒ X} → f ≈ g → filler f ≈ filler g is-filler : ∀ {n-2} {k : Fin n-2} → (f : Λ[ ℕ.suc (ℕ.suc n-2) , inner k ] ⇒ X) → filler f ∘ Λ-inj (inner k) ≈ f KanComplex⇒WeakKanComplex : ∀ {X} → IsKanComplex X → IsWeakKanComplex X KanComplex⇒WeakKanComplex complex = record { IsKanComplex complex }
{ "alphanum_fraction": 0.6557788945, "avg_line_length": 44.935483871, "ext": "agda", "hexsha": "55a5cb5d400c7e2360851dfc04916403479c8ccc", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/KanComplex.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/KanComplex.agda", "max_line_length": 117, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/KanComplex.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 917, "size": 2786 }
import Lvl open import Structure.Setoid open import Type module Automaton.Deterministic.Finite where open import Automaton.Deterministic open import Data.Boolean open import Data.Boolean.Stmt open import Data.List renaming (∅ to ε ; _⊰_ to _·_) open import Data.List.Setoid open import Data.List.Functions using (postpend ; _++_) open import Data.List.Proofs open import Functional open import Logic.Propositional open import Logic open import Sets.ExtensionalPredicateSet using (PredSet ; intro ; _∈_ ; _∋_ ; ⊶ ; [∋]-binaryRelator) import Structure.Function.Names as Names open import Structure.Operator open import Structure.Relator.Properties open import Type.Size.Finite private variable ℓₚ ℓₛ ℓₑ₁ ℓₐ ℓₑ₂ : Lvl.Level module _ {ℓₚ} (State : Type{ℓₛ}) ⦃ equiv-state : Equiv{ℓₑ₁}(State) ⦄ (Alphabet : Type{ℓₐ}) ⦃ equiv-alphabet : Equiv{ℓₑ₂}(Alphabet) ⦄ where record DFA : Type{ℓₛ Lvl.⊔ ℓₑ₁ Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓₐ Lvl.⊔ Lvl.𝐒(ℓₚ)} where field ⦃ State-finite ⦄ : Finite(State) ⦃ Alphabet-finite ⦄ : Finite(Alphabet) automata : Deterministic{ℓₚ = ℓₚ}(State)(Alphabet) open Deterministic(automata) hiding (transitionedAutomaton ; wordTransitionedAutomaton) public transitionedAutomaton : Alphabet → DFA transitionedAutomaton c = record{automata = Deterministic.transitionedAutomaton(automata) c} wordTransitionedAutomaton : Word → DFA wordTransitionedAutomaton w = record{automata = Deterministic.wordTransitionedAutomaton(automata) w} postulate isFinal : State → Bool postulate isFinal-correctness : ∀{s} → IsTrue(isFinal s) ↔ (s ∈ Final) isWordAccepted : Word → Bool isWordAccepted(w) = isFinal(wordTransition(start)(w)) pattern dfa {fin-Q} {fin-Σ} δ {δ-op} q₀ F = record{State-finite = fin-Q ; Alphabet-finite = fin-Σ ; automata = deterministic δ ⦃ δ-op ⦄ q₀ F}
{ "alphanum_fraction": 0.7321428571, "avg_line_length": 36.2352941176, "ext": "agda", "hexsha": "ac426f2af553f6813c636fd6360964004826e517", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Automaton/Deterministic/Finite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Automaton/Deterministic/Finite.agda", "max_line_length": 143, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Automaton/Deterministic/Finite.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 606, "size": 1848 }
-- Andreas, 2017-05-13, issue reported by nad module Issue2579 where open import Common.Bool open import Issue2579.Import import Issue2579.Instance Bool true as I -- without the "as I" the instance is not in scope -- (and you get a parse error) theWrapped : {{w : Wrap Bool}} → Bool theWrapped {{w}} = Wrap.wrapped w test : Bool test = theWrapped
{ "alphanum_fraction": 0.7272727273, "avg_line_length": 20.7058823529, "ext": "agda", "hexsha": "ddc3aa60d9ab5bac8510093eea5187b64ec4d351", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2579.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2579.agda", "max_line_length": 50, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2579.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 99, "size": 352 }
{-# OPTIONS --universe-polymorphism #-} module Issue248 where open import Common.Level data ⊥ : Set where -- This type checks: Foo : ⊥ → (l : Level) → Set Foo x l with x Foo x l | () -- This didn't (but now it does): Bar : ⊥ → (l : Level) → Set l → Set Bar x l A with x Bar x l A | () -- Bug.agda:25,1-15 -- ⊥ !=< Level of type Set -- when checking that the expression w has type Level
{ "alphanum_fraction": 0.614213198, "avg_line_length": 16.4166666667, "ext": "agda", "hexsha": "32b000e7bc7d10ac83c9c63c81f4867ca1e6320f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue248.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue248.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue248.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 126, "size": 394 }
module Structure.Operator.Vector.LinearMaps where open import Functional open import Function.Proofs open import Logic.Predicate import Lvl open import Structure.Function open import Structure.Function.Multi open import Structure.Operator.Properties open import Structure.Operator.Vector.LinearMap open import Structure.Operator.Vector.Proofs open import Structure.Operator.Vector open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Transitivity open import Type private variable ℓ ℓᵥ ℓᵥₗ ℓᵥᵣ ℓᵥ₁ ℓᵥ₂ ℓᵥ₃ ℓₛ ℓᵥₑ ℓᵥₑₗ ℓᵥₑᵣ ℓᵥₑ₁ ℓᵥₑ₂ ℓᵥₑ₃ ℓₛₑ : Lvl.Level private variable V Vₗ Vᵣ V₁ V₂ V₃ S : Type{ℓ} private variable _+ᵥ_ _+ᵥₗ_ _+ᵥᵣ_ _+ᵥ₁_ _+ᵥ₂_ _+ᵥ₃_ : V → V → V private variable _⋅ₛᵥ_ _⋅ₛᵥₗ_ _⋅ₛᵥᵣ_ _⋅ₛᵥ₁_ _⋅ₛᵥ₂_ _⋅ₛᵥ₃_ : S → V → V private variable _+ₛ_ _⋅ₛ_ : S → S → S private variable f g : Vₗ → Vᵣ open VectorSpace ⦃ … ⦄ module _ ⦃ equiv-Vₗ : Equiv{ℓᵥₑₗ}(Vₗ) ⦄ ⦃ equiv-Vᵣ : Equiv{ℓᵥₑᵣ}(Vᵣ) ⦄ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ (vectorSpaceₗ : VectorSpace{V = Vₗ}{S = S}(_+ᵥₗ_)(_⋅ₛᵥₗ_)(_+ₛ_)(_⋅ₛ_)) (vectorSpaceᵣ : VectorSpace{V = Vᵣ}{S = S}(_+ᵥᵣ_)(_⋅ₛᵥᵣ_)(_+ₛ_)(_⋅ₛ_)) where instance _ = vectorSpaceₗ instance _ = vectorSpaceᵣ zero : LinearMap(vectorSpaceₗ)(vectorSpaceᵣ)(const 𝟎ᵥ) Preserving.proof (LinearMap.preserves-[+ᵥ] zero) {x} {y} = const 𝟎ᵥ (x +ᵥₗ y) 🝖[ _≡_ ]-[] 𝟎ᵥ 🝖[ _≡_ ]-[ identityₗ(_+ᵥᵣ_)(𝟎ᵥ) ]-sym 𝟎ᵥ +ᵥᵣ 𝟎ᵥ 🝖[ _≡_ ]-[] (const 𝟎ᵥ x) +ᵥᵣ (const 𝟎ᵥ y) 🝖-end Preserving.proof (LinearMap.preserves-[⋅ₛᵥ] zero {s}) {x} = const 𝟎ᵥ (s ⋅ₛᵥₗ x) 🝖[ _≡_ ]-[] 𝟎ᵥ 🝖[ _≡_ ]-[ [⋅ₛᵥ]-absorberᵣ ]-sym s ⋅ₛᵥᵣ 𝟎ᵥ 🝖[ _≡_ ]-[] s ⋅ₛᵥᵣ (const 𝟎ᵥ x) 🝖-end module _ ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ (vectorSpace : VectorSpace{V = V}{S = S}(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_)) where instance _ = vectorSpace identity : LinearOperator(vectorSpace)(id) Preserving.proof (LinearMap.preserves-[+ᵥ] identity) = reflexivity(_≡_) Preserving.proof (LinearMap.preserves-[⋅ₛᵥ] identity) = reflexivity(_≡_) module _ ⦃ equiv-V₁ : Equiv{ℓᵥₑ₁}(V₁) ⦄ ⦃ equiv-V₂ : Equiv{ℓᵥₑ₂}(V₂) ⦄ ⦃ equiv-V₂ : Equiv{ℓᵥₑ₃}(V₃) ⦄ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ (vectorSpace₁ : VectorSpace{V = V₁}{S = S}(_+ᵥ₁_)(_⋅ₛᵥ₁_)(_+ₛ_)(_⋅ₛ_)) (vectorSpace₂ : VectorSpace{V = V₂}{S = S}(_+ᵥ₂_)(_⋅ₛᵥ₂_)(_+ₛ_)(_⋅ₛ_)) (vectorSpace₃ : VectorSpace{V = V₃}{S = S}(_+ᵥ₃_)(_⋅ₛᵥ₃_)(_+ₛ_)(_⋅ₛ_)) where instance _ = vectorSpace₁ instance _ = vectorSpace₂ instance _ = vectorSpace₃ compose : LinearMap(vectorSpace₂)(vectorSpace₃)(f) → LinearMap(vectorSpace₁)(vectorSpace₂)(g) → LinearMap(vectorSpace₁)(vectorSpace₃)(f ∘ g) LinearMap.function (compose {f} {g} F G) = [∘]-function {f = f}{g = g} Preserving.proof (LinearMap.preserves-[+ᵥ] (compose {f} {g} F G)) {x}{y} = (f ∘ g)(x +ᵥ₁ y) 🝖[ _≡_ ]-[] f(g(x +ᵥ₁ y)) 🝖[ _≡_ ]-[ congruence₁(f) (preserving₂(g) (_+ᵥ₁_)(_+ᵥ₂_)) ] f(g(x) +ᵥ₂ g(y)) 🝖[ _≡_ ]-[ preserving₂(f) (_+ᵥ₂_)(_+ᵥ₃_) ] f(g(x)) +ᵥ₃ f(g(y)) 🝖[ _≡_ ]-[] (f ∘ g)(x) +ᵥ₃ (f ∘ g)(y) 🝖-end Preserving.proof (LinearMap.preserves-[⋅ₛᵥ] (compose {f} {g} F G) {s}) {v} = (f ∘ g) (s ⋅ₛᵥ₁ v) 🝖[ _≡_ ]-[] f(g(s ⋅ₛᵥ₁ v)) 🝖[ _≡_ ]-[ congruence₁(f) (preserving₁(g) (s ⋅ₛᵥ₁_)(s ⋅ₛᵥ₂_)) ] f(s ⋅ₛᵥ₂ g(v)) 🝖[ _≡_ ]-[ preserving₁(f) (s ⋅ₛᵥ₂_)(s ⋅ₛᵥ₃_) ] s ⋅ₛᵥ₃ f(g(v)) 🝖[ _≡_ ]-[] s ⋅ₛᵥ₃ (f ∘ g)(v) 🝖-end module _ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ {_+ₛ_ _⋅ₛ_ : S → S → S} where private variable A B C : VectorSpaceVObject {ℓᵥ}{_}{ℓᵥₑ}{ℓₛₑ} ⦃ equiv-S ⦄ (_+ₛ_)(_⋅ₛ_) open VectorSpaceVObject hiding (𝟎ᵥ) 𝟎ˡⁱⁿᵉᵃʳᵐᵃᵖ : A →ˡⁱⁿᵉᵃʳᵐᵃᵖ B 𝟎ˡⁱⁿᵉᵃʳᵐᵃᵖ {A = A}{B = B} = [∃]-intro (const 𝟎ᵥ) ⦃ zero (vectorSpace A) (vectorSpace B) ⦄ idˡⁱⁿᵉᵃʳᵐᵃᵖ : A →ˡⁱⁿᵉᵃʳᵐᵃᵖ A idˡⁱⁿᵉᵃʳᵐᵃᵖ {A = A} = [∃]-intro id ⦃ identity(vectorSpace A) ⦄ _∘ˡⁱⁿᵉᵃʳᵐᵃᵖ_ : let _ = A in (B →ˡⁱⁿᵉᵃʳᵐᵃᵖ C) → (A →ˡⁱⁿᵉᵃʳᵐᵃᵖ B) → (A →ˡⁱⁿᵉᵃʳᵐᵃᵖ C) _∘ˡⁱⁿᵉᵃʳᵐᵃᵖ_ {A = A}{B = B}{C = C} ([∃]-intro f ⦃ linmap-f ⦄) ([∃]-intro g ⦃ linmap-g ⦄) = [∃]-intro (f ∘ g) ⦃ compose (vectorSpace A) (vectorSpace B) (vectorSpace C) linmap-f linmap-g ⦄
{ "alphanum_fraction": 0.6017805582, "avg_line_length": 40.3495145631, "ext": "agda", "hexsha": "a2c722fdc14c6d3e057ec17469120e41544d0299", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Vector/LinearMaps.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Vector/LinearMaps.agda", "max_line_length": 188, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Vector/LinearMaps.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2540, "size": 4156 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Rings.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Modules.Definition open import Vectors open import Sets.EquivalenceRelations open import Sets.FinSet.Definition open import Modules.Span open import Groups.Definition module Modules.VectorModule {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open import Rings.Definition open import Rings.Lemmas R open import Groups.Vector (Ring.additiveGroup R) open Ring R open Group additiveGroup open Setoid S open Equivalence eq ringModule : {n : ℕ} → Module R (abelianVectorGroup {n = n} abelianUnderlyingGroup) λ a v → vecMap (_* a) v Module.dotWellDefined (ringModule) {r} {s} {[]} {[]} r=s t=u = record {} Module.dotWellDefined (ringModule) {r} {s} {t ,- ts} {u ,- us} r=s (t=u ,, ts=us) = Ring.*WellDefined R t=u r=s ,, Module.dotWellDefined (ringModule) {r} {s} {ts} {us} r=s ts=us Module.dotDistributesLeft (ringModule) {a} {[]} {[]} = record {} Module.dotDistributesLeft (ringModule) {a} {y ,- ys} {z ,- zs} = Ring.*DistributesOver+' R ,, Module.dotDistributesLeft (ringModule) {a} {ys} {zs} Module.dotDistributesRight (ringModule) {a} {b} {[]} = record {} Module.dotDistributesRight (ringModule) {a} {b} {z ,- zs} = Ring.*DistributesOver+ R ,, Module.dotDistributesRight (ringModule) {a} {b} {zs} Module.dotAssociative (ringModule) {r} {s} {[]} = record {} Module.dotAssociative (ringModule) {r} {s} {x ,- xs} = transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (Ring.*Associative R) ,, Module.dotAssociative (ringModule) {r} {s} {xs} Module.dotIdentity (ringModule) {[]} = record {} Module.dotIdentity (ringModule) {x ,- xs} = transitive (Ring.*Commutative R) (Ring.identIsIdent R) ,, Module.dotIdentity ringModule {xs} vecModuleBasis : {n : ℕ} → FinSet n → Vec A n vecModuleBasis {succ n} fzero = (Ring.1R R) ,- vecPure (Ring.0R R) vecModuleBasis {succ n} (fsucc i) = (Ring.0R R) ,- vecModuleBasis i vecTimesZero : {n : ℕ} (a : A) → vecEquiv {n} (vecMap (_* a) (vecPure 0G)) (vecPure 0G) vecTimesZero {zero} a = record {} vecTimesZero {succ n} a = transitive *Commutative timesZero ,, vecTimesZero a --private -- lemma2 : {n : ℕ} → (f : _ → _) → (j : _) → vecEquiv (dot ringModule (vecMap (λ i → 0G ,- f i)) j) ? -- lemma2 = ? allEntries : (n : ℕ) → Vec (FinSet n) n allEntries zero = [] allEntries (succ n) = fzero ,- vecMap fsucc (allEntries n) extractZero : {n m : ℕ} → (y : Vec A m) (xs : Vec (FinSet n) m) (f : FinSet n → Vec A n) → vecEquiv (dot ringModule (vecMap (λ i → 0G ,- f i) xs) y) (0G ,- dot ringModule (vecMap f xs) y) extractZero {zero} {zero} [] [] f = Equivalence.reflexive (Setoid.eq (vectorSetoid _)) extractZero {zero} {succ m} (y ,- ys) (() ,- xs) f extractZero {succ n} {zero} [] [] f = reflexive ,, (reflexive ,, Equivalence.reflexive (Setoid.eq (vectorSetoid _))) extractZero {succ n} {succ m} (y ,- ys) (x ,- xs) f = Equivalence.transitive (Setoid.eq (vectorSetoid _)) (Group.+WellDefined vectorGroup (transitive *Commutative timesZero ,, Equivalence.reflexive (Setoid.eq (vectorSetoid _))) (extractZero ys xs f)) (identLeft ,, Equivalence.reflexive (Setoid.eq (vectorSetoid _))) identityMatrixProduct : {n : ℕ} → (b : Vec A n) → vecEquiv (dot ringModule (vecMap vecModuleBasis (allEntries n)) b) b identityMatrixProduct [] = record {} identityMatrixProduct {succ n} (x ,- b) rewrite vecMapCompose fsucc vecModuleBasis (allEntries n) = Equivalence.transitive (Setoid.eq (vectorSetoid _)) (Group.+WellDefined vectorGroup (identIsIdent ,, vecTimesZero x) (extractZero b (allEntries n) vecModuleBasis)) (identRight ,, Equivalence.transitive (Setoid.eq (vectorSetoid _)) (Group.identLeft vectorGroup) (identityMatrixProduct b)) rearrangeBasis : {n : ℕ} → (coeffs : Vec A n) → (r : Vec (FinSet (succ n)) n) → (eq : vecEquiv (dot ringModule (vecMap vecModuleBasis r) coeffs) (vecPure 0G)) → (uniq : {a : ℕ} {b : ℕ} (a<n : a <N n) (b<n : b <N n) → vecIndex r a a<n ≡ vecIndex r b b<n → a ≡ b) → {!!} rearrangeBasis coeffs r eq uniq = {!!} vecModuleBasisSpans : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) {n : ℕ} → Spans (ringModule {n}) (vecModuleBasis {n}) vecModuleBasisSpans R {n} m = n , ((allEntries n ,, m) , identityMatrixProduct m) vecModuleBasisIndependent : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) {n : ℕ} → Independent (ringModule {n}) (vecModuleBasis {n}) vecModuleBasisIndependent R {zero} [] _ [] x = record {} vecModuleBasisIndependent R {succ n} r _ [] x = record {} vecModuleBasisIndependent R {succ n} r uniq coeffs x = {!!}
{ "alphanum_fraction": 0.6742376446, "avg_line_length": 64.2567567568, "ext": "agda", "hexsha": "eb0171c5fed968d752b3adacccf0e48ae1746611", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Modules/VectorModule.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Modules/VectorModule.agda", "max_line_length": 387, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Modules/VectorModule.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1607, "size": 4755 }
{-# OPTIONS --rewriting #-} module Properties.TypeCheck where open import Agda.Builtin.Equality using (_≡_; refl) open import Agda.Builtin.Bool using (Bool; true; false) open import FFI.Data.Maybe using (Maybe; just; nothing) open import FFI.Data.Either using (Either) open import Luau.TypeCheck using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; bool; string; app; function; block; binexp; done; return; local; nothing; orUnknown; tgtBinOp) open import Luau.Syntax using (Block; Expr; Value; BinaryOperator; yes; nil; addr; number; bool; string; val; var; binexp; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg; +; -; *; /; <; >; ==; ~=; <=; >=) open import Luau.Type using (Type; nil; unknown; never; number; boolean; string; _⇒_; src; tgt) open import Luau.RuntimeType using (RuntimeType; nil; number; function; string; valueType) open import Luau.VarCtxt using (VarCtxt; ∅; _↦_; _⊕_↦_; _⋒_; _⊝_) renaming (_[_] to _[_]ⱽ) open import Luau.Addr using (Addr) open import Luau.Var using (Var; _≡ⱽ_) open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ) open import Properties.Contradiction using (CONTRADICTION) open import Properties.Dec using (yes; no) open import Properties.Equality using (_≢_; sym; trans; cong) open import Properties.Product using (_×_; _,_) open import Properties.Remember using (Remember; remember; _,_) typeOfᴼ : Object yes → Type typeOfᴼ (function f ⟨ var x ∈ S ⟩∈ T is B end) = (S ⇒ T) typeOfᴹᴼ : Maybe(Object yes) → Maybe Type typeOfᴹᴼ nothing = nothing typeOfᴹᴼ (just O) = just (typeOfᴼ O) typeOfⱽ : Heap yes → Value → Maybe Type typeOfⱽ H nil = just nil typeOfⱽ H (bool b) = just boolean typeOfⱽ H (addr a) = typeOfᴹᴼ (H [ a ]ᴴ) typeOfⱽ H (number n) = just number typeOfⱽ H (string x) = just string typeOfᴱ : Heap yes → VarCtxt → (Expr yes) → Type typeOfᴮ : Heap yes → VarCtxt → (Block yes) → Type typeOfᴱ H Γ (var x) = orUnknown(Γ [ x ]ⱽ) typeOfᴱ H Γ (val v) = orUnknown(typeOfⱽ H v) typeOfᴱ H Γ (M $ N) = tgt(typeOfᴱ H Γ M) typeOfᴱ H Γ (function f ⟨ var x ∈ S ⟩∈ T is B end) = S ⇒ T typeOfᴱ H Γ (block var b ∈ T is B end) = T typeOfᴱ H Γ (binexp M op N) = tgtBinOp op typeOfᴮ H Γ (function f ⟨ var x ∈ S ⟩∈ T is C end ∙ B) = typeOfᴮ H (Γ ⊕ f ↦ (S ⇒ T)) B typeOfᴮ H Γ (local var x ∈ T ← M ∙ B) = typeOfᴮ H (Γ ⊕ x ↦ T) B typeOfᴮ H Γ (return M ∙ B) = typeOfᴱ H Γ M typeOfᴮ H Γ done = nil mustBeFunction : ∀ H Γ v → (never ≢ src (typeOfᴱ H Γ (val v))) → (function ≡ valueType(v)) mustBeFunction H Γ nil p = CONTRADICTION (p refl) mustBeFunction H Γ (addr a) p = refl mustBeFunction H Γ (number n) p = CONTRADICTION (p refl) mustBeFunction H Γ (bool true) p = CONTRADICTION (p refl) mustBeFunction H Γ (bool false) p = CONTRADICTION (p refl) mustBeFunction H Γ (string x) p = CONTRADICTION (p refl) mustBeNumber : ∀ H Γ v → (typeOfᴱ H Γ (val v) ≡ number) → (valueType(v) ≡ number) mustBeNumber H Γ (addr a) p with remember (H [ a ]ᴴ) mustBeNumber H Γ (addr a) p | (just O , q) with trans (cong orUnknown (cong typeOfᴹᴼ (sym q))) p mustBeNumber H Γ (addr a) p | (just function f ⟨ var x ∈ T ⟩∈ U is B end , q) | () mustBeNumber H Γ (addr a) p | (nothing , q) with trans (cong orUnknown (cong typeOfᴹᴼ (sym q))) p mustBeNumber H Γ (addr a) p | nothing , q | () mustBeNumber H Γ (number n) p = refl mustBeString : ∀ H Γ v → (typeOfᴱ H Γ (val v) ≡ string) → (valueType(v) ≡ string) mustBeString H Γ (addr a) p with remember (H [ a ]ᴴ) mustBeString H Γ (addr a) p | (just O , q) with trans (cong orUnknown (cong typeOfᴹᴼ (sym q))) p mustBeString H Γ (addr a) p | (just function f ⟨ var x ∈ T ⟩∈ U is B end , q) | () mustBeString H Γ (addr a) p | (nothing , q) with trans (cong orUnknown (cong typeOfᴹᴼ (sym q))) p mustBeString H Γ (addr a) p | (nothing , q) | () mustBeString H Γ (string x) p = refl typeCheckᴱ : ∀ H Γ M → (Γ ⊢ᴱ M ∈ (typeOfᴱ H Γ M)) typeCheckᴮ : ∀ H Γ B → (Γ ⊢ᴮ B ∈ (typeOfᴮ H Γ B)) typeCheckᴱ H Γ (var x) = var refl typeCheckᴱ H Γ (val nil) = nil typeCheckᴱ H Γ (val (addr a)) = addr (orUnknown (typeOfᴹᴼ (H [ a ]ᴴ))) typeCheckᴱ H Γ (val (number n)) = number typeCheckᴱ H Γ (val (bool b)) = bool typeCheckᴱ H Γ (val (string x)) = string typeCheckᴱ H Γ (M $ N) = app (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N) typeCheckᴱ H Γ (function f ⟨ var x ∈ T ⟩∈ U is B end) = function (typeCheckᴮ H (Γ ⊕ x ↦ T) B) typeCheckᴱ H Γ (block var b ∈ T is B end) = block (typeCheckᴮ H Γ B) typeCheckᴱ H Γ (binexp M op N) = binexp (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N) typeCheckᴮ H Γ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) = function (typeCheckᴮ H (Γ ⊕ x ↦ T) C) (typeCheckᴮ H (Γ ⊕ f ↦ (T ⇒ U)) B) typeCheckᴮ H Γ (local var x ∈ T ← M ∙ B) = local (typeCheckᴱ H Γ M) (typeCheckᴮ H (Γ ⊕ x ↦ T) B) typeCheckᴮ H Γ (return M ∙ B) = return (typeCheckᴱ H Γ M) (typeCheckᴮ H Γ B) typeCheckᴮ H Γ done = done typeCheckᴼ : ∀ H O → (⊢ᴼ O) typeCheckᴼ H nothing = nothing typeCheckᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) = function (typeCheckᴮ H (x ↦ T) B) typeCheckᴴ : ∀ H → (⊢ᴴ H) typeCheckᴴ H a {O} p = typeCheckᴼ H (O) typeCheckᴴᴱ : ∀ H Γ M → (Γ ⊢ᴴᴱ H ▷ M ∈ typeOfᴱ H Γ M) typeCheckᴴᴱ H Γ M = (typeCheckᴴ H , typeCheckᴱ H Γ M) typeCheckᴴᴮ : ∀ H Γ M → (Γ ⊢ᴴᴮ H ▷ M ∈ typeOfᴮ H Γ M) typeCheckᴴᴮ H Γ M = (typeCheckᴴ H , typeCheckᴮ H Γ M)
{ "alphanum_fraction": 0.6579046899, "avg_line_length": 48.962962963, "ext": "agda", "hexsha": "0726a4be8f755e884e96b5c90f7746335db992a4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MeltzDev/luau", "max_forks_repo_path": "prototyping/Properties/TypeCheck.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MeltzDev/luau", "max_issues_repo_path": "prototyping/Properties/TypeCheck.agda", "max_line_length": 259, "max_stars_count": null, "max_stars_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MeltzDev/luau", "max_stars_repo_path": "prototyping/Properties/TypeCheck.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2250, "size": 5288 }
open import Oscar.Prelude open import Oscar.Data.¶ open import Oscar.Data.Descender open import Oscar.Data.Fin open import Oscar.Data.Term module Oscar.Data.Substitist where module Substitist {𝔭} (𝔓 : Ø 𝔭) where open Term 𝔓 Substitist = flip Descender⟨ (λ n-o → Fin (↑ n-o) × Term n-o) ⟩
{ "alphanum_fraction": 0.7239057239, "avg_line_length": 19.8, "ext": "agda", "hexsha": "4590aa586a4779c6c3349515dd5ee52c0a7af7da", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Substitist.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Substitist.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Substitist.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 99, "size": 297 }
module Type where open import Type.Core public open import Type.NbE public open import Type.Lemmas public
{ "alphanum_fraction": 0.7857142857, "avg_line_length": 18.6666666667, "ext": "agda", "hexsha": "d0b74f91299c53bfac300cabd6fc521a21172e82", "lang": "Agda", "max_forks_count": 399, "max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z", "max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z", "max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "AriFordsham/plutus", "max_forks_repo_path": "papers/unraveling-recursion/code/src/Type.agda", "max_issues_count": 2493, "max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z", "max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "AriFordsham/plutus", "max_issues_repo_path": "papers/unraveling-recursion/code/src/Type.agda", "max_line_length": 30, "max_stars_count": 1299, "max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "AriFordsham/plutus", "max_stars_repo_path": "papers/unraveling-recursion/code/src/Type.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z", "num_tokens": 28, "size": 112 }
{-# OPTIONS --cubical --safe #-} module Data.Sigma where open import Data.Sigma.Base public
{ "alphanum_fraction": 0.7127659574, "avg_line_length": 15.6666666667, "ext": "agda", "hexsha": "a5d879e98b0562370892002794a279062d8568a5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Sigma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Sigma.agda", "max_line_length": 34, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Sigma.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 23, "size": 94 }
{-# OPTIONS --sized-types #-} module SOList.Lower {A : Set}(_≤_ : A → A → Set) where open import Data.List open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Size data SOList : {ι : Size} → Bound → Set where onil : {ι : Size}{b : Bound} → SOList {↑ ι} b :< : {ι : Size}{b : Bound}{x : A} → LeB b (val x) → SOList {ι} (val x) → SOList {↑ ι} b forget : {b : Bound} → SOList b → List A forget onil = [] forget (:< {x = x} _ xs) = x ∷ forget xs
{ "alphanum_fraction": 0.4963898917, "avg_line_length": 24.0869565217, "ext": "agda", "hexsha": "96ace83966b2cd91e5bb521178689ce1b64a8827", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SOList/Lower.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SOList/Lower.agda", "max_line_length": 55, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SOList/Lower.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 187, "size": 554 }
{-# OPTIONS --cubical #-} module Cubical.Categories.Type where open import Cubical.Foundations.Prelude open import Cubical.Categories.Category module _ ℓ where TYPE : Precategory (ℓ-suc ℓ) ℓ TYPE .ob = Type ℓ TYPE .hom A B = A → B TYPE .idn A = λ x → x TYPE .seq f g = λ x → g (f x) TYPE .seq-λ f = refl TYPE .seq-ρ f = refl TYPE .seq-α f g h = refl
{ "alphanum_fraction": 0.6432432432, "avg_line_length": 21.7647058824, "ext": "agda", "hexsha": "6014f34db649d8fbf5a3ceefcdab9a18681761fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Categories/Type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Categories/Type.agda", "max_line_length": 39, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Categories/Type.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 133, "size": 370 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.WedgeExtension {i j} {A : Type i} {a₀ : A} {B : Type j} {b₀ : B} where -- easier to keep track of than a long list of arguments record args : Type (lmax (lsucc i) (lsucc j)) where field n m : ℕ₋₂ {{cA}} : is-connected (S n) A {{cB}} : is-connected (S m) B P : A → B → (n +2+ m) -Type (lmax i j) f : (a : A) → fst (P a b₀) g : (b : B) → fst (P a₀ b) p : f a₀ == g b₀ private module _ (r : args) where open args r Q : A → n -Type (lmax i j) Q a = ((Σ (∀ b → fst (P a b)) (λ k → (k ∘ cst b₀) == cst (f a)) , conn-extend-general (pointed-conn-out B b₀) (P a) (cst (f a)))) l : Π A (fst ∘ Q) l = conn-extend (pointed-conn-out A a₀) Q (λ (_ : Unit) → (g , ap cst (! p))) module _ (r : args) where open args r ext : ∀ a → ∀ b → fst (P a b) ext a = fst (l r a) module _ {r : args} where open args r abstract β-l : ∀ a → ext r a b₀ == f a β-l a = ap (λ t → t unit) (snd (l r a)) private abstract β-r-aux : fst (l r a₀) == g β-r-aux = fst= (conn-extend-β (pointed-conn-out A a₀) (Q r) (λ (_ : Unit) → (g , ap cst (! p))) unit) abstract β-r : ∀ b → ext r a₀ b == g b β-r = app= β-r-aux abstract coh : ! (β-l a₀) ∙ β-r b₀ == p coh = ! (β-l a₀) ∙ β-r b₀ =⟨ ! lemma₂ |in-ctx (λ w → ! w ∙ β-r b₀) ⟩ ! (β-r b₀ ∙ ! p) ∙ β-r b₀ =⟨ !-∙ (β-r b₀) (! p) |in-ctx (λ w → w ∙ β-r b₀) ⟩ (! (! p) ∙ ! (β-r b₀)) ∙ β-r b₀ =⟨ ∙-assoc (! (! p)) (! (β-r b₀)) (β-r b₀) ⟩ ! (! p) ∙ (! (β-r b₀) ∙ β-r b₀) =⟨ ap2 _∙_ (!-! p) (!-inv-l (β-r b₀)) ⟩ p ∙ idp =⟨ ∙-unit-r p ⟩ p =∎ where lemma₁ : β-l a₀ == ap (λ s → s unit) (ap cst (! p)) [ (λ k → k b₀ == f a₀) ↓ β-r-aux ] lemma₁ = ap↓ (ap (λ s → s unit)) $ snd= (conn-extend-β (pointed-conn-out A a₀) (Q r) (λ (_ : Unit) → (g , ap cst (! p))) unit) lemma₂ : β-r b₀ ∙ ! p == β-l a₀ lemma₂ = ap (λ w → β-r b₀ ∙ w) (! (ap-idf (! p)) ∙ ap-∘ (λ s → s unit) cst (! p)) ∙ (! (↓-app=cst-out lemma₁))
{ "alphanum_fraction": 0.3911960133, "avg_line_length": 29.0120481928, "ext": "agda", "hexsha": "54d72360f429fcddd92b55dc92096671032360cb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/WedgeExtension.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/WedgeExtension.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/WedgeExtension.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 950, "size": 2408 }
{- This file contains a proof of the following fact: for a commutative ring R with elements f and g s.t. ⟨f,g⟩ = R, we get a get a pullback square _/1 R ----> R[1/f] ⌟ _/1 | | χ₁ v v R[1/g] -> R[1/fg] χ₂ where the morphisms χ are induced by the universal property of localization. -} {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Localisation.PullbackSquare where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset renaming (_∈_ to _∈ₚ_) open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Nat.Order open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.Algebra.CommRing.Localisation.InvertingElements open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.RadicalIdeal open import Cubical.Algebra.RingSolver.Reflection open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.Categories.Category.Base open import Cubical.Categories.Instances.CommRings open import Cubical.Categories.Limits.Pullback open Iso private variable ℓ ℓ' : Level A : Type ℓ module _ (R' : CommRing ℓ) (f g : (fst R')) where open IsRingHom open isMultClosedSubset open CommRingTheory R' open RingTheory (CommRing→Ring R') open CommIdeal R' open RadicalIdeal R' open Exponentiation R' open InvertingElementsBase R' open CommRingStr ⦃...⦄ private R = R' .fst ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] fgVec : FinVec R 2 fgVec zero = f fgVec (suc zero) = g ⟨f,g⟩ = ⟨ fgVec ⟩ fⁿgⁿVec : (n : ℕ) → FinVec R 2 fⁿgⁿVec n zero = f ^ n fⁿgⁿVec n (suc zero) = g ^ n ⟨fⁿ,gⁿ⟩ : (n : ℕ) → CommIdeal ⟨fⁿ,gⁿ⟩ n = ⟨ (fⁿgⁿVec n) ⟩ instance _ = R' .snd _ = R[1/ f ]AsCommRing .snd _ = R[1/ g ]AsCommRing .snd _ = R[1/ (R' .snd .CommRingStr._·_ f g) ]AsCommRing .snd open Loc R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) renaming (_≈_ to _≈ᶠ_ ; locIsEquivRel to locIsEquivRelᶠ ; S to Sᶠ) open S⁻¹RUniversalProp R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) renaming ( _/1 to _/1ᶠ ; /1AsCommRingHom to /1ᶠAsCommRingHom ; S⁻¹RHasUniversalProp to R[1/f]HasUniversalProp) open Loc R' [ g ⁿ|n≥0] (powersFormMultClosedSubset g) renaming (_≈_ to _≈ᵍ_ ; locIsEquivRel to locIsEquivRelᵍ ; S to Sᵍ) open S⁻¹RUniversalProp R' [ g ⁿ|n≥0] (powersFormMultClosedSubset g) renaming ( _/1 to _/1ᵍ ; /1AsCommRingHom to /1ᵍAsCommRingHom ; S⁻¹RHasUniversalProp to R[1/g]HasUniversalProp) open Loc R' [ (f · g) ⁿ|n≥0] (powersFormMultClosedSubset (f · g)) renaming (_≈_ to _≈ᶠᵍ_ ; locIsEquivRel to locIsEquivRelᶠᵍ ; S to Sᶠᵍ) open S⁻¹RUniversalProp R' [ (f · g) ⁿ|n≥0] (powersFormMultClosedSubset (f · g)) renaming ( _/1 to _/1ᶠᵍ ; /1AsCommRingHom to /1ᶠᵍAsCommRingHom) -- the pullback legs private -- using RadicalLemma doesn't compute... χ₁ : CommRingHom R[1/ f ]AsCommRing R[1/ (f · g) ]AsCommRing χ₁ = R[1/f]HasUniversalProp _ /1ᶠᵍAsCommRingHom unitHelper .fst .fst where unitHelper : ∀ s → s ∈ₚ [ f ⁿ|n≥0] → s /1ᶠᵍ ∈ₚ (R[1/ (f · g) ]AsCommRing) ˣ unitHelper = powersPropElim (λ s → Units.inverseUniqueness _ (s /1ᶠᵍ)) λ n → [ g ^ n , (f · g) ^ n , ∣ n , refl ∣ ] , eq/ _ _ ((1r , powersFormMultClosedSubset (f · g) .containsOne) , path n) where useSolver1 : ∀ a b → 1r · (a · b) · 1r ≡ a · b useSolver1 = solve R' useSolver2 : ∀ a → a ≡ (1r · 1r) · (1r · a) useSolver2 = solve R' path : (n : ℕ) → 1r · (f ^ n · g ^ n) · 1r ≡ (1r · 1r) · (1r · ((f · g) ^ n)) path n = useSolver1 _ _ ∙ sym (^-ldist-· f g n) ∙ useSolver2 _ χ₂ : CommRingHom R[1/ g ]AsCommRing R[1/ (f · g) ]AsCommRing χ₂ = R[1/g]HasUniversalProp _ /1ᶠᵍAsCommRingHom unitHelper .fst .fst where unitHelper : ∀ s → s ∈ₚ [ g ⁿ|n≥0] → s /1ᶠᵍ ∈ₚ (R[1/ (f · g) ]AsCommRing) ˣ unitHelper = powersPropElim (λ s → Units.inverseUniqueness _ (s /1ᶠᵍ)) λ n → [ f ^ n , (f · g) ^ n , ∣ n , refl ∣ ] , eq/ _ _ ((1r , powersFormMultClosedSubset (f · g) .containsOne) , path n) where useSolver1 : ∀ a b → 1r · (a · b) · 1r ≡ b · a useSolver1 = solve R' useSolver2 : ∀ a → a ≡ (1r · 1r) · (1r · a) useSolver2 = solve R' path : (n : ℕ) → 1r · (g ^ n · f ^ n) · 1r ≡ (1r · 1r) · (1r · ((f · g) ^ n)) path n = useSolver1 _ _ ∙ sym (^-ldist-· f g n) ∙ useSolver2 _ injectivityLemma : 1r ∈ ⟨f,g⟩ → ∀ (x : R) → x /1ᶠ ≡ 0r → x /1ᵍ ≡ 0r → x ≡ 0r injectivityLemma 1∈⟨f,g⟩ x x≡0overF x≡0overG = PT.rec2 (is-set _ _) annihilatorHelper exAnnihilatorF exAnnihilatorG where exAnnihilatorF : ∃[ s ∈ Sᶠ ] (fst s · x · 1r ≡ fst s · 0r · 1r) exAnnihilatorF = isEquivRel→TruncIso locIsEquivRelᶠ _ _ .fun x≡0overF exAnnihilatorG : ∃[ s ∈ Sᵍ ] (fst s · x · 1r ≡ fst s · 0r · 1r) exAnnihilatorG = isEquivRel→TruncIso locIsEquivRelᵍ _ _ .fun x≡0overG annihilatorHelper : Σ[ s ∈ Sᶠ ] (fst s · x · 1r ≡ fst s · 0r · 1r) → Σ[ s ∈ Sᵍ ] (fst s · x · 1r ≡ fst s · 0r · 1r) → x ≡ 0r annihilatorHelper ((u , u∈[fⁿ]) , p) ((v , v∈[gⁿ]) , q) = PT.rec2 (is-set _ _) exponentHelper u∈[fⁿ] v∈[gⁿ] where ux≡0 : u · x ≡ 0r ux≡0 = sym (·Rid _) ∙ p ∙ cong (_· 1r) (0RightAnnihilates _) ∙ (·Rid _) vx≡0 : v · x ≡ 0r vx≡0 = sym (·Rid _) ∙ q ∙ cong (_· 1r) (0RightAnnihilates _) ∙ (·Rid _) exponentHelper : Σ[ n ∈ ℕ ] u ≡ f ^ n → Σ[ n ∈ ℕ ] v ≡ g ^ n → x ≡ 0r exponentHelper (n , u≡fⁿ) (m , v≡gᵐ) = PT.rec (is-set _ _) Σhelper (GeneratingPowers.thm R' l _ fgVec 1∈⟨f,g⟩) where l = max n m fˡx≡0 : f ^ l · x ≡ 0r fˡx≡0 = f ^ l · x ≡⟨ cong (λ k → f ^ k · x) (sym (≤-∸-+-cancel left-≤-max)) ⟩ f ^ ((l ∸ n) +ℕ n) · x ≡⟨ cong (_· x) (sym (·-of-^-is-^-of-+ _ _ _)) ⟩ f ^ (l ∸ n) · f ^ n · x ≡⟨ cong (λ y → f ^ (l ∸ n) · y · x) (sym u≡fⁿ) ⟩ f ^ (l ∸ n) · u · x ≡⟨ sym (·Assoc _ _ _) ⟩ f ^ (l ∸ n) · (u · x) ≡⟨ cong (f ^ (l ∸ n) ·_) ux≡0 ⟩ f ^ (l ∸ n) · 0r ≡⟨ 0RightAnnihilates _ ⟩ 0r ∎ gˡx≡0 : g ^ l · x ≡ 0r gˡx≡0 = g ^ l · x ≡⟨ cong (λ k → g ^ k · x) (sym (≤-∸-+-cancel right-≤-max)) ⟩ g ^ ((l ∸ m) +ℕ m) · x ≡⟨ cong (_· x) (sym (·-of-^-is-^-of-+ _ _ _)) ⟩ g ^ (l ∸ m) · g ^ m · x ≡⟨ cong (λ y → g ^ (l ∸ m) · y · x) (sym v≡gᵐ) ⟩ g ^ (l ∸ m) · v · x ≡⟨ sym (·Assoc _ _ _) ⟩ g ^ (l ∸ m) · (v · x) ≡⟨ cong (g ^ (l ∸ m) ·_) vx≡0 ⟩ g ^ (l ∸ m) · 0r ≡⟨ 0RightAnnihilates _ ⟩ 0r ∎ Σhelper : Σ[ α ∈ FinVec R 2 ] 1r ≡ α zero · f ^ l + (α (suc zero) · g ^ l + 0r) → x ≡ 0r Σhelper (α , 1≡α₀fˡ+α₁gˡ+0) = path where α₀ = α zero α₁ = α (suc zero) 1≡α₀fˡ+α₁gˡ : 1r ≡ α₀ · f ^ l + α₁ · g ^ l 1≡α₀fˡ+α₁gˡ = 1≡α₀fˡ+α₁gˡ+0 ∙ cong (α₀ · f ^ l +_) (+Rid _) path : x ≡ 0r path = x ≡⟨ sym (·Lid _) ⟩ 1r · x ≡⟨ cong (_· x) 1≡α₀fˡ+α₁gˡ ⟩ (α₀ · f ^ l + α₁ · g ^ l) · x ≡⟨ ·Ldist+ _ _ _ ⟩ α₀ · f ^ l · x + α₁ · g ^ l · x ≡⟨ cong₂ _+_ (sym (·Assoc _ _ _)) (sym (·Assoc _ _ _)) ⟩ α₀ · (f ^ l · x) + α₁ · (g ^ l · x) ≡⟨ cong₂ (λ y z → α₀ · y + α₁ · z) fˡx≡0 gˡx≡0 ⟩ α₀ · 0r + α₁ · 0r ≡⟨ cong₂ _+_ (0RightAnnihilates _) (0RightAnnihilates _) ∙ +Rid _ ⟩ 0r ∎ equalizerLemma : 1r ∈ ⟨f,g⟩ → ∀ (x : R[1/ f ]) (y : R[1/ g ]) → χ₁ .fst x ≡ χ₂ .fst y → ∃![ z ∈ R ] (z /1ᶠ ≡ x) × (z /1ᵍ ≡ y) equalizerLemma 1∈⟨f,g⟩ = invElPropElim2 (λ _ _ → isPropΠ (λ _ → isProp∃!)) baseCase where baseCase : ∀ (x y : R) (n : ℕ) → fst χ₁ ([ x , f ^ n , ∣ n , refl ∣ ]) ≡ fst χ₂ ([ y , g ^ n , ∣ n , refl ∣ ]) → ∃![ z ∈ R ] ((z /1ᶠ ≡ [ x , f ^ n , ∣ n , refl ∣ ]) × (z /1ᵍ ≡ [ y , g ^ n , ∣ n , refl ∣ ])) baseCase x y n χ₁[x/fⁿ]≡χ₂[y/gⁿ] = PT.rec isProp∃! annihilatorHelper exAnnihilator where -- doesn't compute that well but at least it computes... exAnnihilator : ∃[ s ∈ Sᶠᵍ ] -- s.t. (fst s · (x · transport refl (g ^ n)) · (1r · transport refl ((f · g) ^ n)) ≡ fst s · (y · transport refl (f ^ n)) · (1r · transport refl ((f · g) ^ n))) exAnnihilator = isEquivRel→TruncIso locIsEquivRelᶠᵍ _ _ .fun χ₁[x/fⁿ]≡χ₂[y/gⁿ] annihilatorHelper : Σ[ s ∈ Sᶠᵍ ] (fst s · (x · transport refl (g ^ n)) · (1r · transport refl ((f · g) ^ n)) ≡ fst s · (y · transport refl (f ^ n)) · (1r · transport refl ((f · g) ^ n))) → ∃![ z ∈ R ] ((z /1ᶠ ≡ [ x , f ^ n , ∣ n , refl ∣ ]) × (z /1ᵍ ≡ [ y , g ^ n , ∣ n , refl ∣ ])) annihilatorHelper ((s , s∈[fgⁿ]) , p) = PT.rec isProp∃! exponentHelper s∈[fgⁿ] where sxgⁿ[fg]ⁿ≡syfⁿ[fg]ⁿ : s · x · g ^ n · (f · g) ^ n ≡ s · y · f ^ n · (f · g) ^ n sxgⁿ[fg]ⁿ≡syfⁿ[fg]ⁿ = s · x · g ^ n · (f · g) ^ n ≡⟨ transpHelper _ _ _ _ ⟩ s · x · transport refl (g ^ n) · transport refl ((f · g) ^ n) ≡⟨ useSolver _ _ _ _ ⟩ s · (x · transport refl (g ^ n)) · (1r · transport refl ((f · g) ^ n)) ≡⟨ p ⟩ s · (y · transport refl (f ^ n)) · (1r · transport refl ((f · g) ^ n)) ≡⟨ sym (useSolver _ _ _ _) ⟩ s · y · transport refl (f ^ n) · transport refl ((f · g) ^ n) ≡⟨ sym (transpHelper _ _ _ _) ⟩ s · y · f ^ n · (f · g) ^ n ∎ where transpHelper : ∀ a b c d → a · b · c · d ≡ a · b · transport refl c · transport refl d transpHelper a b c d i = a · b · transportRefl c (~ i) · transportRefl d (~ i) useSolver : ∀ a b c d → a · b · c · d ≡ a · (b · c) · (1r · d) useSolver = solve R' exponentHelper : Σ[ m ∈ ℕ ] s ≡ (f · g) ^ m → ∃![ z ∈ R ] ((z /1ᶠ ≡ [ x , f ^ n , ∣ n , refl ∣ ]) × (z /1ᵍ ≡ [ y , g ^ n , ∣ n , refl ∣ ])) exponentHelper (m , s≡[fg]ᵐ) = PT.rec isProp∃! Σhelper (GeneratingPowers.thm R' 2n+m _ fgVec 1∈⟨f,g⟩) where -- the path we'll actually work with xgⁿ[fg]ⁿ⁺ᵐ≡yfⁿ[fg]ⁿ⁺ᵐ : x · g ^ n · (f · g) ^ (n +ℕ m) ≡ y · f ^ n · (f · g) ^ (n +ℕ m) xgⁿ[fg]ⁿ⁺ᵐ≡yfⁿ[fg]ⁿ⁺ᵐ = x · g ^ n · (f · g) ^ (n +ℕ m) ≡⟨ cong (x · (g ^ n) ·_) (sym (·-of-^-is-^-of-+ _ _ _)) ⟩ x · g ^ n · ((f · g) ^ n · (f · g) ^ m) ≡⟨ useSolver _ _ _ _ ⟩ (f · g) ^ m · x · g ^ n · (f · g) ^ n ≡⟨ cong (λ a → a · x · g ^ n · (f · g) ^ n) (sym s≡[fg]ᵐ) ⟩ s · x · g ^ n · (f · g) ^ n ≡⟨ sxgⁿ[fg]ⁿ≡syfⁿ[fg]ⁿ ⟩ s · y · f ^ n · (f · g) ^ n ≡⟨ cong (λ a → a · y · f ^ n · (f · g) ^ n) s≡[fg]ᵐ ⟩ (f · g) ^ m · y · f ^ n · (f · g) ^ n ≡⟨ sym (useSolver _ _ _ _) ⟩ y · f ^ n · ((f · g) ^ n · (f · g) ^ m) ≡⟨ cong (y · (f ^ n) ·_) (·-of-^-is-^-of-+ _ _ _) ⟩ y · f ^ n · (f · g) ^ (n +ℕ m) ∎ where useSolver : ∀ a b c d → a · b · (c · d) ≡ d · a · b · c useSolver = solve R' -- critical exponent 2n+m = n +ℕ (n +ℕ m) -- extracting information from the fact that R=⟨f,g⟩ Σhelper : Σ[ α ∈ FinVec R 2 ] 1r ≡ linearCombination R' α (fⁿgⁿVec 2n+m) → ∃![ z ∈ R ] ((z /1ᶠ ≡ [ x , f ^ n , ∣ n , refl ∣ ]) × (z /1ᵍ ≡ [ y , g ^ n , ∣ n , refl ∣ ])) Σhelper (α , linCombi) = uniqueExists z (z/1≡x/fⁿ , z/1≡y/gⁿ) (λ _ → isProp× (is-set _ _) (is-set _ _)) uniqueness where α₀ = α zero α₁ = α (suc zero) 1≡α₀f²ⁿ⁺ᵐ+α₁g²ⁿ⁺ᵐ : 1r ≡ α₀ · f ^ 2n+m + α₁ · g ^ 2n+m 1≡α₀f²ⁿ⁺ᵐ+α₁g²ⁿ⁺ᵐ = linCombi ∙ cong (α₀ · f ^ 2n+m +_) (+Rid _) -- definition of the element z = α₀ · x · f ^ (n +ℕ m) + α₁ · y · g ^ (n +ℕ m) z/1≡x/fⁿ : (z /1ᶠ) ≡ [ x , f ^ n , ∣ n , refl ∣ ] z/1≡x/fⁿ = eq/ _ _ ((f ^ (n +ℕ m) , ∣ n +ℕ m , refl ∣) , path) where useSolver1 : ∀ x y α₀ α₁ fⁿ⁺ᵐ gⁿ⁺ᵐ fⁿ → fⁿ⁺ᵐ · (α₀ · x · fⁿ⁺ᵐ + α₁ · y · gⁿ⁺ᵐ) · fⁿ ≡ fⁿ⁺ᵐ · (α₀ · x · (fⁿ · fⁿ⁺ᵐ)) + α₁ · (y · fⁿ · (fⁿ⁺ᵐ · gⁿ⁺ᵐ)) useSolver1 = solve R' useSolver2 : ∀ x α₀ α₁ fⁿ⁺ᵐ g²ⁿ⁺ᵐ f²ⁿ⁺ᵐ → fⁿ⁺ᵐ · (α₀ · x · f²ⁿ⁺ᵐ) + α₁ · (x · fⁿ⁺ᵐ · g²ⁿ⁺ᵐ) ≡ fⁿ⁺ᵐ · x · (α₀ · f²ⁿ⁺ᵐ + α₁ · g²ⁿ⁺ᵐ) useSolver2 = solve R' path : f ^ (n +ℕ m) · z · f ^ n ≡ f ^ (n +ℕ m) · x · 1r path = f ^ (n +ℕ m) · z · f ^ n ≡⟨ useSolver1 _ _ _ _ _ _ _ ⟩ f ^ (n +ℕ m) · (α₀ · x · (f ^ n · f ^ (n +ℕ m))) + α₁ · (y · f ^ n · (f ^ (n +ℕ m) · g ^ (n +ℕ m))) ≡⟨ cong₂ (λ a b → f ^ (n +ℕ m) · (α₀ · x · a) + α₁ · ((y · f ^ n) · b)) (·-of-^-is-^-of-+ _ _ _) (sym (^-ldist-· _ _ _)) ⟩ f ^ (n +ℕ m) · (α₀ · x · (f ^ 2n+m)) + α₁ · (y · f ^ n · (f · g) ^ (n +ℕ m)) ≡⟨ cong (λ a → f ^ (n +ℕ m) · (α₀ · x · f ^ 2n+m) + α₁ · a) (sym xgⁿ[fg]ⁿ⁺ᵐ≡yfⁿ[fg]ⁿ⁺ᵐ) ⟩ f ^ (n +ℕ m) · (α₀ · x · (f ^ 2n+m)) + α₁ · (x · g ^ n · (f · g) ^ (n +ℕ m)) ≡⟨ cong (λ a → f ^ (n +ℕ m) · (α₀ · x · (f ^ 2n+m)) + α₁ · (x · g ^ n · a)) (^-ldist-· _ _ _) ⟩ f ^ (n +ℕ m) · (α₀ · x · (f ^ 2n+m)) + α₁ · (x · g ^ n · (f ^ (n +ℕ m) · g ^ (n +ℕ m))) ≡⟨ cong (λ a → f ^ (n +ℕ m) · (α₀ · x · (f ^ 2n+m)) + α₁ · a) (·CommAssocSwap _ _ _ _) ⟩ f ^ (n +ℕ m) · (α₀ · x · (f ^ 2n+m)) + α₁ · (x · f ^ (n +ℕ m) · (g ^ n · g ^ (n +ℕ m))) ≡⟨ cong (λ a → f ^ (n +ℕ m) · (α₀ · x · (f ^ 2n+m)) + α₁ · (x · f ^ (n +ℕ m) · a)) (·-of-^-is-^-of-+ _ _ _) ⟩ f ^ (n +ℕ m) · (α₀ · x · (f ^ 2n+m)) + α₁ · (x · f ^ (n +ℕ m) · g ^ 2n+m) ≡⟨ useSolver2 _ _ _ _ _ _ ⟩ f ^ (n +ℕ m) · x · (α₀ · f ^ 2n+m + α₁ · g ^ 2n+m) ≡⟨ cong (f ^ (n +ℕ m) · x ·_) (sym 1≡α₀f²ⁿ⁺ᵐ+α₁g²ⁿ⁺ᵐ) ⟩ f ^ (n +ℕ m) · x · 1r ∎ z/1≡y/gⁿ : (z /1ᵍ) ≡ [ y , g ^ n , ∣ n , refl ∣ ] z/1≡y/gⁿ = eq/ _ _ ((g ^ (n +ℕ m) , ∣ n +ℕ m , refl ∣) , path) where useSolver1 : ∀ x y α₀ α₁ fⁿ⁺ᵐ gⁿ⁺ᵐ gⁿ → gⁿ⁺ᵐ · (α₀ · x · fⁿ⁺ᵐ + α₁ · y · gⁿ⁺ᵐ) · gⁿ ≡ α₀ · (x · gⁿ · (fⁿ⁺ᵐ · gⁿ⁺ᵐ)) + gⁿ⁺ᵐ · (α₁ · y · (gⁿ · gⁿ⁺ᵐ)) useSolver1 = solve R' useSolver2 : ∀ y α₀ α₁ gⁿ⁺ᵐ g²ⁿ⁺ᵐ f²ⁿ⁺ᵐ → α₀ · (y · f²ⁿ⁺ᵐ · gⁿ⁺ᵐ) + gⁿ⁺ᵐ · (α₁ · y · g²ⁿ⁺ᵐ) ≡ gⁿ⁺ᵐ · y · (α₀ · f²ⁿ⁺ᵐ + α₁ · g²ⁿ⁺ᵐ) useSolver2 = solve R' path : g ^ (n +ℕ m) · z · g ^ n ≡ g ^ (n +ℕ m) · y · 1r path = g ^ (n +ℕ m) · z · g ^ n ≡⟨ useSolver1 _ _ _ _ _ _ _ ⟩ α₀ · (x · g ^ n · (f ^ (n +ℕ m) · g ^ (n +ℕ m))) + g ^ (n +ℕ m) · (α₁ · y · (g ^ n · g ^ (n +ℕ m))) ≡⟨ cong₂ (λ a b → α₀ · (x · g ^ n · a) + g ^ (n +ℕ m) · (α₁ · y · b)) (sym (^-ldist-· _ _ _)) (·-of-^-is-^-of-+ _ _ _) ⟩ α₀ · (x · g ^ n · (f · g) ^ (n +ℕ m)) + g ^ (n +ℕ m) · (α₁ · y · g ^ 2n+m) ≡⟨ cong (λ a → α₀ · a + g ^ (n +ℕ m) · (α₁ · y · g ^ 2n+m)) xgⁿ[fg]ⁿ⁺ᵐ≡yfⁿ[fg]ⁿ⁺ᵐ ⟩ α₀ · (y · f ^ n · (f · g) ^ (n +ℕ m)) + g ^ (n +ℕ m) · (α₁ · y · g ^ 2n+m) ≡⟨ cong (λ a → α₀ · (y · f ^ n · a) + g ^ (n +ℕ m) · (α₁ · y · g ^ 2n+m)) (^-ldist-· _ _ _) ⟩ α₀ · (y · f ^ n · (f ^ (n +ℕ m) · g ^ (n +ℕ m))) + g ^ (n +ℕ m) · (α₁ · y · g ^ 2n+m) ≡⟨ cong (λ a → α₀ · a + g ^ (n +ℕ m) · (α₁ · y · g ^ 2n+m)) (·-assoc2 _ _ _ _) ⟩ α₀ · (y · (f ^ n · f ^ (n +ℕ m)) · g ^ (n +ℕ m)) + g ^ (n +ℕ m) · (α₁ · y · g ^ 2n+m) ≡⟨ cong (λ a → α₀ · (y · a · g ^ (n +ℕ m)) + g ^ (n +ℕ m) · (α₁ · y · g ^ 2n+m)) (·-of-^-is-^-of-+ _ _ _) ⟩ α₀ · (y · f ^ 2n+m · g ^ (n +ℕ m)) + g ^ (n +ℕ m) · (α₁ · y · g ^ 2n+m) ≡⟨ useSolver2 _ _ _ _ _ _ ⟩ g ^ (n +ℕ m) · y · (α₀ · f ^ 2n+m + α₁ · g ^ 2n+m) ≡⟨ cong (g ^ (n +ℕ m) · y ·_) (sym 1≡α₀f²ⁿ⁺ᵐ+α₁g²ⁿ⁺ᵐ) ⟩ g ^ (n +ℕ m) · y · 1r ∎ uniqueness : ∀ a → ((a /1ᶠ) ≡ [ x , f ^ n , ∣ n , refl ∣ ]) × ((a /1ᵍ) ≡ [ y , g ^ n , ∣ n , refl ∣ ]) → z ≡ a uniqueness a (a/1≡x/fⁿ , a/1≡y/gⁿ) = equalByDifference _ _ (injectivityLemma 1∈⟨f,g⟩ (z - a) [z-a]/1≡0overF [z-a]/1≡0overG) where [z-a]/1≡0overF : (z - a) /1ᶠ ≡ 0r [z-a]/1≡0overF = (z - a) /1ᶠ ≡⟨ /1ᶠAsCommRingHom .snd .pres+ _ _ ⟩ -- (-a)/1=-(a/1) by refl! (z /1ᶠ) - (a /1ᶠ) ≡⟨ cong₂ _-_ z/1≡x/fⁿ a/1≡x/fⁿ ⟩ [ x , f ^ n , ∣ n , refl ∣ ] - [ x , f ^ n , ∣ n , refl ∣ ] ≡⟨ +Rinv ([ x , f ^ n , ∣ n , refl ∣ ]) ⟩ 0r ∎ [z-a]/1≡0overG : (z - a) /1ᵍ ≡ 0r [z-a]/1≡0overG = (z - a) /1ᵍ ≡⟨ /1ᵍAsCommRingHom .snd .pres+ _ _ ⟩ -- (-a)/1=-(a/1) by refl! (z /1ᵍ) - (a /1ᵍ) ≡⟨ cong₂ _-_ z/1≡y/gⁿ a/1≡y/gⁿ ⟩ [ y , g ^ n , ∣ n , refl ∣ ] - [ y , g ^ n , ∣ n , refl ∣ ] ≡⟨ +Rinv ([ y , g ^ n , ∣ n , refl ∣ ]) ⟩ 0r ∎ {- putting everything together with the pullback machinery: If ⟨f,g⟩ = R then we get a square _/1ᶠ R ----> R[1/f] ⌟ _/1ᵍ | | χ₁ v v R[1/g] -> R[1/fg] χ₂ -} open Category (CommRingsCategory {ℓ}) open Cospan fgCospan : Cospan CommRingsCategory l fgCospan = R[1/ g ]AsCommRing m fgCospan = R[1/ (f · g) ]AsCommRing r fgCospan = R[1/ f ]AsCommRing s₁ fgCospan = χ₂ s₂ fgCospan = χ₁ -- the commutative square private /1χComm : ∀ (x : R) → χ₂ .fst (x /1ᵍ) ≡ χ₁ .fst (x /1ᶠ) /1χComm x = eq/ _ _ ((1r , powersFormMultClosedSubset (f · g) .containsOne) , refl) /1χHomComm : /1ᵍAsCommRingHom ⋆ χ₂ ≡ /1ᶠAsCommRingHom ⋆ χ₁ /1χHomComm = RingHom≡ (funExt /1χComm) fgSquare : 1r ∈ ⟨f,g⟩ → isPullback _ fgCospan /1ᵍAsCommRingHom /1ᶠAsCommRingHom /1χHomComm fgSquare 1∈⟨f,g⟩ {d = A} ψ φ ψχ₂≡φχ₁ = (χ , χCoh) , χUniqueness where instance _ = snd A applyEqualizerLemma : ∀ a → ∃![ χa ∈ R ] (χa /1ᶠ ≡ fst φ a) × (χa /1ᵍ ≡ fst ψ a) applyEqualizerLemma a = equalizerLemma 1∈⟨f,g⟩ (fst φ a) (fst ψ a) (cong (_$ a) (sym ψχ₂≡φχ₁)) χ : CommRingHom A R' fst χ a = applyEqualizerLemma a .fst .fst snd χ = makeIsRingHom (cong fst (applyEqualizerLemma 1r .snd (1r , 1Coh))) (λ x y → cong fst (applyEqualizerLemma (x + y) .snd (_ , +Coh x y))) (λ x y → cong fst (applyEqualizerLemma (x · y) .snd (_ , ·Coh x y))) where open IsRingHom 1Coh : (1r /1ᶠ ≡ fst φ 1r) × (1r /1ᵍ ≡ fst ψ 1r) 1Coh = (sym (φ .snd .pres1)) , sym (ψ .snd .pres1) +Coh : ∀ x y → ((fst χ x + fst χ y) /1ᶠ ≡ fst φ (x + y)) × ((fst χ x + fst χ y) /1ᵍ ≡ fst ψ (x + y)) fst (+Coh x y) = /1ᶠAsCommRingHom .snd .pres+ _ _ ∙∙ cong₂ _+_ (applyEqualizerLemma x .fst .snd .fst) (applyEqualizerLemma y .fst .snd .fst) ∙∙ sym (φ .snd .pres+ x y) snd (+Coh x y) = /1ᵍAsCommRingHom .snd .pres+ _ _ ∙∙ cong₂ _+_ (applyEqualizerLemma x .fst .snd .snd) (applyEqualizerLemma y .fst .snd .snd) ∙∙ sym (ψ .snd .pres+ x y) ·Coh : ∀ x y → ((fst χ x · fst χ y) /1ᶠ ≡ fst φ (x · y)) × ((fst χ x · fst χ y) /1ᵍ ≡ fst ψ (x · y)) fst (·Coh x y) = /1ᶠAsCommRingHom .snd .pres· _ _ ∙∙ cong₂ _·_ (applyEqualizerLemma x .fst .snd .fst) (applyEqualizerLemma y .fst .snd .fst) ∙∙ sym (φ .snd .pres· x y) snd (·Coh x y) = /1ᵍAsCommRingHom .snd .pres· _ _ ∙∙ cong₂ _·_ (applyEqualizerLemma x .fst .snd .snd) (applyEqualizerLemma y .fst .snd .snd) ∙∙ sym (ψ .snd .pres· x y) χCoh : (ψ ≡ χ ⋆ /1ᵍAsCommRingHom) × (φ ≡ χ ⋆ /1ᶠAsCommRingHom) fst χCoh = RingHom≡ (funExt (λ a → sym (applyEqualizerLemma a .fst .snd .snd))) snd χCoh = RingHom≡ (funExt (λ a → sym (applyEqualizerLemma a .fst .snd .fst))) χUniqueness : (y : Σ[ θ ∈ CommRingHom A R' ] (ψ ≡ θ ⋆ /1ᵍAsCommRingHom) × (φ ≡ θ ⋆ /1ᶠAsCommRingHom)) → (χ , χCoh) ≡ y χUniqueness (θ , θCoh) = Σ≡Prop (λ _ → isProp× (isSetRingHom _ _ _ _) (isSetRingHom _ _ _ _)) (RingHom≡ (funExt (λ a → cong fst (applyEqualizerLemma a .snd (θtriple a))))) where θtriple : ∀ a → Σ[ x ∈ R ] (x /1ᶠ ≡ fst φ a) × (x /1ᵍ ≡ fst ψ a) θtriple a = fst θ a , sym (cong (_$ a) (θCoh .snd)) , sym (cong (_$ a) (θCoh .fst)) -- packaging it all up open Pullback fgPullback : 1r ∈ ⟨f,g⟩ → Pullback _ fgCospan pbOb (fgPullback 1r∈⟨f,g⟩) = _ pbPr₁ (fgPullback 1r∈⟨f,g⟩) = _ pbPr₂ (fgPullback 1r∈⟨f,g⟩) = _ pbCommutes (fgPullback 1r∈⟨f,g⟩) = /1χHomComm univProp (fgPullback 1r∈⟨f,g⟩) = fgSquare 1r∈⟨f,g⟩
{ "alphanum_fraction": 0.4507289654, "avg_line_length": 38.1440536013, "ext": "agda", "hexsha": "6dae945fcecc247ac17aaa6ae8140d394aecd1fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Localisation/PullbackSquare.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Localisation/PullbackSquare.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Localisation/PullbackSquare.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10334, "size": 22772 }
module IndexInference where data Nat : Set where zero : Nat suc : Nat -> Nat data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n) infixr 40 _::_ -- The length of the vector can be inferred from the pattern. foo : Vec Nat _ -> Nat foo (a :: b :: c :: []) = c
{ "alphanum_fraction": 0.5630769231, "avg_line_length": 19.1176470588, "ext": "agda", "hexsha": "a0a9173e15cbac47451a37938f53011897d99e13", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/succeed/IndexInference.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/succeed/IndexInference.agda", "max_line_length": 61, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/IndexInference.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 111, "size": 325 }
module ImplArg2 where data Nat : Set where zero : Nat suc : Nat -> Nat data Vec (A : Set) : Nat -> Set where vnil : Vec A zero vcons : {n : Nat} -> A -> Vec A n -> Vec A (suc n) cons : {A : Set} (a : A) {n : Nat} -> Vec A n -> Vec A (suc n) cons a = vcons a
{ "alphanum_fraction": 0.5350553506, "avg_line_length": 20.8461538462, "ext": "agda", "hexsha": "5b3b7669eeeb3da3206ad7aabc6230d41f3ade7a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/ImplArg2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/ImplArg2.agda", "max_line_length": 62, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/ImplArg2.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 106, "size": 271 }
------------------------------------------------------------------------------ -- First-order logic with equality ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module exported all the logical constants and the -- propositional equality. This module is re-exported by the "base" -- modules whose theories are defined on first-order logic + equality. module Common.FOL.FOL-Eq where -- First-order logic (without equality). open import Common.FOL.FOL public -- Propositional equality. open import Common.FOL.Relation.Binary.PropositionalEquality public
{ "alphanum_fraction": 0.5520833333, "avg_line_length": 36.5714285714, "ext": "agda", "hexsha": "5e30bc20cf17ed2db0399c26a9291d5dc1445cf6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/Common/FOL/FOL-Eq.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/Common/FOL/FOL-Eq.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/Common/FOL/FOL-Eq.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 129, "size": 768 }
open import Categories open import Functors open import RMonads module RMonads.CatofRAdj.TermRAdjObj {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} {J : Fun C D}(M : RMonad J) where open import Library open import Naturals open import RAdjunctions open import RMonads.CatofRAdj M open import Categories.Terminal open import RMonads.REM M open import RMonads.REM.Adjunction M open import RAdjunctions.RAdj2RMon open Cat open Fun open NatT open RAdj lemX : R REMAdj ○ L REMAdj ≅ TFun M lemX = FunctorEq _ _ refl refl EMObj : Obj CatofAdj EMObj = record { E = EM; adj = REMAdj; law = lemX; ηlaw = idl D; bindlaw = λ{X}{Y}{f} → cong bind (stripsubst (Hom D (OMap J X)) f (fcong Y (cong OMap (sym lemX))))} where open RMonad M
{ "alphanum_fraction": 0.6198347107, "avg_line_length": 23.5277777778, "ext": "agda", "hexsha": "99b95f4a49ffb503695b51b33616c3bbeee84b6e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RMonads/CatofRAdj/TermRAdjObj.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RMonads/CatofRAdj/TermRAdjObj.agda", "max_line_length": 78, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RMonads/CatofRAdj/TermRAdjObj.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 279, "size": 847 }
{-# OPTIONS --without-K #-} open import function.extensionality.core module hott.equivalence.alternative where open import sum open import equality.core open import equality.calculus open import function.core open import function.extensionality.proof open import function.isomorphism.core open import function.isomorphism.coherent open import function.isomorphism.utils open import hott.level.core open import hott.equivalence.core open import hott.univalence module _ {i j}{X : Set i}{Y : Set j} where open ≅-Reasoning private we-split-iso : (f : X → Y) → _ we-split-iso f = begin weak-equiv f ≅⟨ ΠΣ-swap-iso ⟩ ( Σ ((y : Y) → f ⁻¹ y) λ gβ → (y : Y)(u : f ⁻¹ y) → gβ y ≡ u ) ≅⟨ Σ-ap-iso₁ ΠΣ-swap-iso ⟩ ( Σ (Σ (Y → X) λ g → (y : Y) → f (g y) ≡ y) λ { (g , β) → (y : Y)(u : f ⁻¹ y) → (g y , β y) ≡ u } ) ≅⟨ Σ-assoc-iso ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (y : Y)(u : f ⁻¹ y) → (g y , β y) ≡ u ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Π-ap-iso refl≅ λ y → curry-iso (λ x p → (g y , β y) ≡ (x , p)) ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (y : Y)(x : X)(p : f x ≡ y) → (g y , β y) ≡ (x , p) ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Π-ap-iso refl≅ λ y → Π-ap-iso refl≅ λ x → Π-ap-iso refl≅ λ p → sym≅ Σ-split-iso ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (y : Y)(x : X)(p : f x ≡ y) → Σ (g y ≡ x) λ q → subst (λ x' → f x' ≡ y) q (β y) ≡ p ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Π-ap-iso refl≅ λ y → Π-ap-iso refl≅ λ x → Π-ap-iso refl≅ λ p → Σ-ap-iso₂ λ q → sym≅ ( trans≡-iso ( subst-naturality (λ x' → x' ≡ y) f q (β y) · subst-eq (ap f q) (β y)) )) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (y : Y)(x : X)(p : f x ≡ y) → Σ (g y ≡ x) λ q → sym (ap f q) · β y ≡ p ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Π-comm-iso ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (x : X)(y : Y)(p : f x ≡ y) → Σ (g y ≡ x) λ q → sym (ap f q) · β y ≡ p ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Π-ap-iso refl≅ λ x → sym≅ J-iso ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → (x : X) → Σ (g (f x) ≡ x) λ q → sym (ap f q) · β (f x) ≡ refl ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → ΠΣ-swap-iso ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → Σ ((x : X) → g (f x) ≡ x) λ α → (x : X) → sym (ap f (α x)) · β (f x) ≡ refl ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₂ λ β → Σ-ap-iso₂ λ α → Π-ap-iso refl≅ λ x → sym≅ (trans≅ (trans≡-iso (left-unit (ap f (α x)))) (move-≡-iso (ap f (α x)) refl (β (f x)))) ) ⟩ ( Σ (Y → X) λ g → Σ ((y : Y) → f (g y) ≡ y) λ β → Σ ((x : X) → g (f x) ≡ x) λ α → (x : X) → ap f (α x) ≡ β (f x) ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-comm-iso ) ⟩ ( Σ (Y → X) λ g → Σ ((x : X) → g (f x) ≡ x) λ α → Σ ((y : Y) → f (g y) ≡ y) λ β → ((x : X) → ap f (α x) ≡ β (f x)) ) ∎ ≈⇔≅' : (X ≈ Y) ≅ (X ≅' Y) ≈⇔≅' = begin (X ≈ Y) ≅⟨ Σ-ap-iso₂ we-split-iso ⟩ ( Σ (X → Y) λ f → Σ (Y → X) λ g → Σ ((x : X) → g (f x) ≡ x) λ α → Σ ((y : Y) → f (g y) ≡ y) λ β → ((x : X) → ap f (α x) ≡ β (f x)) ) ≅⟨ record { to = λ {(f , g , α , β , γ) → iso f g α β , γ } ; from = λ { (iso f g α β , γ) → f , g , α , β , γ } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } ⟩ (X ≅' Y) ∎ open _≅_ ≈⇔≅' public using () renaming ( to to ≈⇒≅' ; from to ≅'⇒≈ ) ≅⇒≈ : (X ≅ Y) → (X ≈ Y) ≅⇒≈ = ≅'⇒≈ ∘ ≅⇒≅'
{ "alphanum_fraction": 0.359196827, "avg_line_length": 30.5606060606, "ext": "agda", "hexsha": "cba93fdf19702f0a18ee0a488c516849ea2bf7e3", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/hott/equivalence/alternative.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/equivalence/alternative.agda", "max_line_length": 70, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "hott/equivalence/alternative.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1880, "size": 4034 }
{-# OPTIONS --prop --safe #-} open import Agda.Builtin.Equality open import Agda.Builtin.Nat hiding (_<_) data _<_ : Nat → Nat → Set where zero-< : ∀ {n} → zero < suc n suc-< : ∀ {m n} → m < n → suc m < suc n record Acc (a : Nat) : Prop where inductive pattern constructor acc field acc< : (∀ b → b < a → Acc b) open Acc AccRect : ∀ {P : Nat → Set} → (∀ a → (∀ b → b < a → Acc b) → (∀ b → b < a → P b) → P a) → ∀ a → Acc a → P a AccRect f a (acc p) = f a p (λ b b<a → AccRect f b (p b b<a)) AccRectProp : ∀ {P : Nat → Prop} → (∀ a → (∀ b → b < a → Acc b) → (∀ b → b < a → P b) → P a) → ∀ a → Acc a → P a AccRectProp f a (acc p) = f a p (λ b b<a → AccRectProp f b (p b b<a)) AccInv : ∀ a → Acc a → ∀ b → b < a → Acc b AccInv = AccRectProp (λ _ p _ → p) example : ∀ {P : Nat → Set} → (f : ∀ a → (∀ b → b < a → P b) → P a) → ∀ a → (access : Acc a) → AccRect {P} (λ a _ r → f a r) a access ≡ f a (λ b b<a → AccRect {P} (λ a _ r → f a r) b (AccInv a access b b<a)) example f a access = ?
{ "alphanum_fraction": 0.4950298211, "avg_line_length": 33.5333333333, "ext": "agda", "hexsha": "4f9b6089162cccaf8661bd67eb48acf055c4c44b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue5481.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue5481.agda", "max_line_length": 114, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue5481.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 418, "size": 1006 }
{- This second-order equational theory was created from the following second-order syntax description: syntax GroupAction | GA type * : 0-ary X : 0-ary term unit : * | ε add : * * -> * | _⊕_ l20 neg : * -> * | ⊖_ r40 act : * X -> X | _⊙_ r30 theory (εU⊕ᴸ) a |> add (unit, a) = a (εU⊕ᴿ) a |> add (a, unit) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) (⊖N⊕ᴸ) a |> add (neg (a), a) = unit (⊖N⊕ᴿ) a |> add (a, neg (a)) = unit (εU⊙) x : X |> act (unit, x) = x (⊕A⊙) g h x : X |> act (add(g, h), x) = act (g, act(h, x)) -} module GroupAction.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import GroupAction.Signature open import GroupAction.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution GA:Syn open import SOAS.Metatheory.SecondOrder.Equality GA:Syn private variable α β γ τ : GAT Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ GA) α Γ → (𝔐 ▷ GA) α Γ → Set where εU⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ε ⊕ 𝔞 ≋ₐ 𝔞 εU⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ ε ≋ₐ 𝔞 ⊕A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ⊕ 𝔟) ⊕ 𝔠 ≋ₐ 𝔞 ⊕ (𝔟 ⊕ 𝔠) ⊖N⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ (⊖ 𝔞) ⊕ 𝔞 ≋ₐ ε ⊖N⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ (⊖ 𝔞) ≋ₐ ε εU⊙ : ⁅ X ⁆̣ ▹ ∅ ⊢ ε ⊙ 𝔞 ≋ₐ 𝔞 ⊕A⊙ : ⁅ * ⁆ ⁅ * ⁆ ⁅ X ⁆̣ ▹ ∅ ⊢ (𝔞 ⊕ 𝔟) ⊙ 𝔠 ≋ₐ 𝔞 ⊙ (𝔟 ⊙ 𝔠) open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
{ "alphanum_fraction": 0.4967989757, "avg_line_length": 26.0333333333, "ext": "agda", "hexsha": "7b7f18189796e68119f61d1b7b1cc1146d8f943f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/GroupAction/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/GroupAction/Equality.agda", "max_line_length": 99, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/GroupAction/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 847, "size": 1562 }
-- A variant of code reported by Andreas Abel, due to Andreas Abel and -- Nicolas Pouillard. -- npouillard, 2011-10-04 {-# OPTIONS --guardedness --sized-types #-} open import Common.Coinduction renaming (∞ to co) open import Common.Size data ⊥ : Set where data Mu-co : Size → Set where inn : ∀ {i} → co (Mu-co i) → Mu-co (↑ i) iter : ∀ {i} → Mu-co i → ⊥ iter (inn t) = iter (♭ t) bla : Mu-co ∞ bla = inn (♯ bla) false : ⊥ false = iter bla
{ "alphanum_fraction": 0.6213808463, "avg_line_length": 18.7083333333, "ext": "agda", "hexsha": "de83f278065cb1df5419dc37bbb208a286cd15f1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1209-3.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1209-3.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1209-3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 149, "size": 449 }
------------------------------------------------------------------------ -- Properties of functions, such as associativity and commutativity ------------------------------------------------------------------------ -- This file contains some core definitions which are reexported by -- Algebra.FunctionProperties. They are placed here because -- Algebra.FunctionProperties is a parameterised module, and the -- parameters are irrelevant for these definitions. module Algebra.FunctionProperties.Core where ------------------------------------------------------------------------ -- Unary and binary operations Op₁ : Set → Set Op₁ A = A → A Op₂ : Set → Set Op₂ A = A → A → A
{ "alphanum_fraction": 0.5169867061, "avg_line_length": 33.85, "ext": "agda", "hexsha": "a9facc431815593651ae6282d4284ce92961efc7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Algebra/FunctionProperties/Core.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Algebra/FunctionProperties/Core.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Algebra/FunctionProperties/Core.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 111, "size": 677 }
module sn-calculus-confluence.helper where open import Data.List.All open import Function using (_∘_) open import Data.List.Any using (Any ; here ; there) open import Data.Nat using (_+_) open import utility open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Environment as Env open import Esterel.Context open import Data.Product open import Data.Sum open import Data.Bool open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Empty open import sn-calculus open import context-properties open import Esterel.Lang.Binding open import Data.List.Any.Properties renaming ( ++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ ) open import Data.FiniteMap import Data.OrderedListMap as OMap open import Data.Nat as Nat using (ℕ) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar set-dist' : ∀{key value inject surject} → ∀{inject-injective : ∀{k1 : key} → ∀{k2 : key} → (inject k1) ≡ (inject k2) → k1 ≡ k2} → ∀{surject-inject : ∀{k} → inject (surject k) ≡ k} → ∀{A : Map {key} inject surject inject-injective surject-inject value} → ∀{B : Map {key} inject surject inject-injective surject-inject value} → distinct' (keys {key} inject surject inject-injective surject-inject {value} A) (keys {key} inject surject inject-injective surject-inject {value} B) → (union {key} inject surject inject-injective surject-inject {value} A B) ≡ (union {key} inject surject inject-injective surject-inject {value} B A) set-dist'{key}{value}{inject}{surject}{inject-injective}{surject-inject}{A}{B} d = OMap.U-comm key inject value {A} {B} d set-dist : ∀{θ θ'} → distinct (Dom θ) (Dom θ') → (θ ← θ') ≡ (θ' ← θ) set-dist {Θ sig₁ shr₁ var₁} {Θ sig₂ shr₂ var₂} (a , b , c) rewrite set-dist'{inject = _}{Signal.wrap}{inject-injective = Signal.unwrap-injective}{Signal.bijective}{sig₁}{sig₂} a | set-dist'{inject = _}{SharedVar.wrap}{inject-injective = SharedVar.unwrap-injective}{SharedVar.bijective}{shr₁}{shr₂} b | set-dist'{inject = _}{SeqVar.wrap}{inject-injective = SeqVar.unwrap-injective}{SeqVar.bijective}{var₁}{var₂} c = refl done≠rho : ∀{p E θ q A} → done p → (p ≐ E ⟦ (ρ⟨ θ , A ⟩· q) ⟧e) → ⊥ done≠rho (dhalted hnothin) () done≠rho (dhalted (hexit n)) () done≠rho (dpaused p/paused) p≐E⟦ρθq⟧ with paused-⟦⟧e p/paused p≐E⟦ρθq⟧ ... | () plug≡ : ∀{r q E w} → r ≐ E ⟦ w ⟧e → q ≐ E ⟦ w ⟧e → r ≡ q plug≡ r≐E⟦w⟧ q≐E⟦w⟧ = trans (sym (unplug r≐E⟦w⟧)) (unplug q≐E⟦w⟧) RE-split : ∀{p θ p' E E' q A} → p ≐ E ⟦ ρ⟨ θ , A ⟩· p' ⟧e → p ≐ E' ⟦ q ⟧e → E a~ E' → ∃ (λ d → ∃ (λ Eout → d ≐ E ⟦ p' ⟧e × d ≐ Eout ⟦ q ⟧e × E' ~ Eout × Eout a~ E )) RE-split {.(ρ⟨ _ , _ ⟩· _)} dehole dehole () RE-split {.(_ ∥ _)} (depar₁ eq1) dehole () RE-split {.(_ >> _)} (deseq eq1) dehole () RE-split {.(trap _)} (detrap eq1) dehole () RE-split {.(_ ∥ _)} (depar₂ eq1) dehole () RE-split {.(suspend _ _)} (desuspend eq1) dehole () RE-split {(pin ∥ qin)}{θ}{p'}{((epar₁ _) ∷ E)}{(epar₂ _) ∷ E'} (depar₁ eq1) (depar₂ eq2) par2 = (t ∥ qin) , (epar₂ t) ∷ E' , (depar₁ (plug refl) , depar₂ eq2 , parl (~ref E') , par) where t = (E ⟦ p' ⟧e) RE-split {(pin ∥ qin)}{θ}{p'}{((epar₂ _) ∷ E)}{(epar₁ _) ∷ E'} (depar₂ eq1) (depar₁ eq2) par = (pin ∥ t) , ((epar₁ t) ∷ E' , (depar₂ (plug refl) , depar₁ eq2 , parr (~ref E') , par2)) where t = (E ⟦ p' ⟧e) RE-split {(pin ∥ qin)} (depar₁ eq1) (depar₁ eq2) (parr neg) with RE-split eq1 eq2 neg ... | (d , Eout , (eqd , eqo , ~ , a~)) = d ∥ qin , (epar₁ qin) ∷ Eout , (depar₁ eqd , depar₁ eqo , parr ~ , parr a~) RE-split {(pin ∥ qin)} (depar₂ eq1) (depar₂ eq2) (parl neg) with RE-split eq1 eq2 neg ... | (d , Eout , (eqd , eqo , ~ , a~)) = pin ∥ d , (epar₂ pin) ∷ Eout , (depar₂ eqd , depar₂ eqo , parl ~ , parl a~) RE-split {(loopˢ _ q)} (deloopˢ eq1) (deloopˢ eq2) (loopˢ neg) with RE-split eq1 eq2 neg ... | (d , Eout , (eqd , eqo , ~ , a~)) = (loopˢ d q) , (eloopˢ q) ∷ Eout , (deloopˢ eqd , deloopˢ eqo , loopˢ ~ , loopˢ a~) RE-split {(._ >> q)} (deseq eq1) (deseq eq2) (seq neg) with RE-split eq1 eq2 neg ... | (d , Eout , (eqd , eqo , ~ , a~)) = (d >> q) , (eseq q) ∷ Eout , (deseq eqd , deseq eqo , seq ~ , seq a~) RE-split {(suspend ._ S)} (desuspend eq1) (desuspend eq2) (susp neg) with RE-split eq1 eq2 neg ... | (d , Eout , (eqd , eqo , ~ , a~)) = (suspend d S) , ((esuspend S) ∷ Eout) , (desuspend eqd , desuspend eqo , susp ~ , susp a~) RE-split {.(trap _)} (detrap eq1) (detrap eq2) (trp neg) with RE-split eq1 eq2 neg ... | (d , Eout , (eqd , eqo , ~ , a~)) = (trap d) , (etrap ∷ Eout) , (detrap eqd , detrap eqo , trp ~ , trp a~) ready-maint : ∀{θ e} → (S : Signal) → (S∈ : (Env.isSig∈ S θ)) → (stat : Signal.Status) → all-ready e θ → all-ready e (Env.set-sig{S} θ S∈ stat) ready-maint {θ} {.(plus [])} S S∈ stat (aplus []) = aplus [] ready-maint {θ} {.(plus (num _ ∷ _))} S S∈ stat (aplus (brnum ∷ x₁)) with ready-maint S S∈ stat (aplus x₁) ... | (aplus r) = aplus (brnum ∷ r) ready-maint {θ} {.(plus (seq-ref _ ∷ _))} S S∈ stat (aplus (brseq x₁ ∷ x₂)) with ready-maint S S∈ stat (aplus x₂) ... | (aplus r) = aplus (brseq x₁ ∷ r) ready-maint {θ} {.(plus (shr-ref _ ∷ _))} S S∈ stat (aplus (brshr s∈ x ∷ x₁)) with ready-maint S S∈ stat (aplus x₁) ... | (aplus r) = aplus (brshr s∈ x ∷ r) ready-irr : ∀{θ e} → (S : Signal) → (S∈ : (Env.isSig∈ S θ)) → (stat : Signal.Status) → (e' : all-ready e θ) → (e'' : all-ready e (Env.set-sig{S} θ S∈ stat)) → δ e' ≡ δ e'' ready-irr {θ} {.(plus [])} S S∈ stat (aplus []) (aplus []) = refl ready-irr {θ} {.(plus (num _ ∷ _))} S S∈ stat (aplus (brnum ∷ x₁)) (aplus (brnum ∷ x₂)) rewrite ready-irr S S∈ stat (aplus x₁) (aplus x₂) = refl ready-irr {θ@(Θ Ss ss xs)} {.(plus (seq-ref _ ∷ _))} S S∈ stat (aplus (brseq{_}{x} x₁ ∷ x₂)) (aplus (brseq x₃ ∷ x₄)) rewrite ready-irr S S∈ stat (aplus x₂) (aplus x₄) | seq∈-eq'{x}{xs} x₁ x₃ = refl ready-irr {θ@(Θ Ss ss xs)} {.(plus (shr-ref _ ∷ _))} S S∈ stat (aplus (brshr{_}{s} s∈ x ∷ x₁)) (aplus (brshr s∈₁ x₂ ∷ x₃)) rewrite ready-irr S S∈ stat (aplus x₁) (aplus x₃) | shr∈-eq'{s}{ss} s∈ s∈₁ = refl ready-maint/irr : ∀{θ e} → (S : Signal) → (S∈ : (Env.isSig∈ S θ)) → (stat : Signal.Status) → (e' : all-ready e θ) → Σ[ e'' ∈ all-ready e (Env.set-sig{S} θ S∈ stat) ] δ e' ≡ δ e'' ready-maint/irr {θ}{e} S S∈ stat e' with ready-maint{θ}{e} S S∈ stat e' ... | e'' = e'' , (ready-irr{θ}{e} S S∈ stat e' e'') ready-maint/x : ∀{θ e} → (x : SeqVar) → (x∈ : (Env.isVar∈ x θ)) → (n : ℕ) → all-ready e θ → all-ready e (Env.set-var{x} θ x∈ n) ready-maint/x {θ} {.(plus [])} x x∈ n (aplus []) = aplus [] ready-maint/x {θ} {.(plus (num _ ∷ _))} x₁ x∈ n (aplus (brnum ∷ x₂)) with ready-maint/x x₁ x∈ n (aplus x₂) ... | (aplus r) = aplus (brnum ∷ r) ready-maint/x {θ} {.(plus (seq-ref _ ∷ _))} x₁ x∈ n (aplus (brseq{x = x2} x₂ ∷ x₃)) with ready-maint/x x₁ x∈ n (aplus x₃) ... | (aplus r) = aplus ((brseq (seq-set-mono'{x2}{x₁}{θ}{n}{x∈} x₂)) ∷ r) ready-maint/x {θ} {.(plus (shr-ref _ ∷ _))} x₁ x∈ n (aplus (brshr s∈ x ∷ x₂)) with ready-maint/x x₁ x∈ n (aplus x₂) ... | (aplus r) = aplus (brshr s∈ x ∷ r) ready-maint-s : ∀{θ e} → (s : SharedVar) → (n : ℕ) → (s∈ : Env.isShr∈ s θ) → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) → (e' : all-ready e θ) → all-ready e (Env.set-shr{s = s} θ s∈ SharedVar.new n) ready-maint-s {e = .(plus [])} s n s∈ ¬≡ (aplus []) = aplus [] ready-maint-s {e = .(plus (num _ ∷ _))} s n₁ s∈ ¬≡ (aplus (brnum ∷ x₁)) with ready-maint-s s n₁ s∈ ¬≡ (aplus x₁) ... | aplus rec = aplus (brnum ∷ rec) ready-maint-s {e = .(plus (seq-ref _ ∷ _))} s n s∈ ¬≡ (aplus (brseq x₁ ∷ x₂)) with ready-maint-s s n s∈ ¬≡ (aplus x₂) ... | aplus rec = aplus (brseq x₁ ∷ rec) ready-maint-s{θ} {e = (plus (shr-ref s ∷ ._))} s₁ n s∈ ¬≡ (aplus (brshr s∈₁ x ∷ x₁)) with ready-maint-s s₁ n s∈ ¬≡ (aplus x₁) | s SharedVar.≟ s₁ ... | aplus rec | yes refl with shr-stats-∈-irr{s}{θ} s∈ s∈₁ ... | eq rewrite eq = ⊥-elim (¬≡ x) ready-maint-s{θ = θ} {e = (plus (shr-ref s ∷ ._))} s₁ n s∈ ¬≡ (aplus (brshr s∈₁ x ∷ x₁)) | aplus rec | no ¬s≡s₁ with shr-putputget{θ = θ}{v2l = SharedVar.new}{n} ¬s≡s₁ s∈₁ s∈ (shr-set-mono'{s}{s₁}{θ}{n = n}{s∈} s∈₁) x refl ... | (eq1 , eq2) = aplus (brshr ((shr-set-mono'{s}{s₁}{θ}{n = n}{s∈} s∈₁)) eq1 ∷ rec) ready-irr-on-irr-s-helper : ∀{θ e} → (s : SharedVar) → (n : ℕ) → (s∈ : Env.isShr∈ s θ) → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) → (e' : all-ready e θ) → (e'' : all-ready e (Env.set-shr{s = s} θ s∈ SharedVar.new n)) → δ e' ≡ δ e'' ready-irr-on-irr-s-helper {θ} {.(plus [])} s n s∈ ¬≡ (aplus []) (aplus []) = refl ready-irr-on-irr-s-helper {θ} {.(plus (num _ ∷ _))} s n s∈ ¬≡ (aplus (brnum ∷ x₁)) (aplus (brnum ∷ x')) rewrite ready-irr-on-irr-s-helper s n s∈ ¬≡ (aplus x₁) (aplus x') = refl ready-irr-on-irr-s-helper {θ@(Θ Ss ss xs)} {(plus (seq-ref x ∷ _))} s n s∈ ¬≡ (aplus (brseq x₁ ∷ x₂)) (aplus (brseq x₃ ∷ x')) rewrite ready-irr-on-irr-s-helper s n s∈ ¬≡ (aplus x₂) (aplus x') | seq∈-eq'{x}{xs} x₁ x₃ = refl ready-irr-on-irr-s-helper {θ@(Θ Ss ss xs)} {(plus (shr-ref sₑ ∷ _))} s n s∈ ¬≡ (aplus (brshr s∈₁ x ∷ x₁)) (aplus (brshr s∈₂ x₂ ∷ x')) with sₑ SharedVar.≟ s ... | yes sₑ≡s rewrite sₑ≡s | shr∈-eq'{s}{ss} s∈ s∈₁ = ⊥-elim (¬≡ x) ... | no ¬sₑ≡s with shr-putputget{θ = θ}{v2l = SharedVar.new}{n} ¬sₑ≡s s∈₁ s∈ s∈₂ x refl ... | (eq1 , eq2) rewrite ready-irr-on-irr-s-helper s n s∈ ¬≡ (aplus x₁) (aplus x') | eq2 = refl ready-irr-on-irr-s : ∀{θ e} → (s : SharedVar) → (n : ℕ) → (s∈ : Env.isShr∈ s θ) → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) → (e' : all-ready e θ) → Σ[ e'' ∈ all-ready e (Env.set-shr{s = s} θ s∈ SharedVar.new n) ] δ e' ≡ δ e'' ready-irr-on-irr-s s n s∈ ¬≡ e' = e'' , (ready-irr-on-irr-s-helper s n s∈ ¬≡ e' e'') where e'' = ready-maint-s s n s∈ ¬≡ e' -- copied and pasted form above -- TODO: maybe someday abstract over SharedVar.new/SharedVar.ready to sharedvar-status ready-maint-s/ready : ∀{θ e} → (s : SharedVar) → (n : ℕ) → (s∈ : Env.isShr∈ s θ) → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) → (e' : all-ready e θ) → all-ready e (Env.set-shr{s = s} θ s∈ SharedVar.ready n) ready-maint-s/ready {e = .(plus [])} s n s∈ ¬≡ (aplus []) = aplus [] ready-maint-s/ready {e = .(plus (num _ ∷ _))} s n₁ s∈ ¬≡ (aplus (brnum ∷ x₁)) with ready-maint-s/ready s n₁ s∈ ¬≡ (aplus x₁) ... | aplus rec = aplus (brnum ∷ rec) ready-maint-s/ready {e = .(plus (seq-ref _ ∷ _))} s n s∈ ¬≡ (aplus (brseq x₁ ∷ x₂)) with ready-maint-s/ready s n s∈ ¬≡ (aplus x₂) ... | aplus rec = aplus (brseq x₁ ∷ rec) ready-maint-s/ready{θ} {e = (plus (shr-ref s ∷ ._))} s₁ n s∈ ¬≡ (aplus (brshr s∈₁ x ∷ x₁)) with ready-maint-s/ready s₁ n s∈ ¬≡ (aplus x₁) | s SharedVar.≟ s₁ ... | aplus rec | yes refl with shr-stats-∈-irr{s}{θ} s∈ s∈₁ ... | eq rewrite eq = ⊥-elim (¬≡ x) ready-maint-s/ready{θ = θ} {e = (plus (shr-ref s ∷ ._))} s₁ n s∈ ¬≡ (aplus (brshr s∈₁ x ∷ x₁)) | aplus rec | no ¬s≡s₁ with shr-putputget{θ = θ}{v2l = SharedVar.ready}{n} ¬s≡s₁ s∈₁ s∈ (shr-set-mono'{s}{s₁}{θ}{n = n}{s∈} s∈₁) x refl ... | (eq1 , eq2) = aplus (brshr ((shr-set-mono'{s}{s₁}{θ}{n = n}{s∈} s∈₁)) eq1 ∷ rec) ready-irr-on-irr-s-helper/ready : ∀{θ e} → (s : SharedVar) → (n : ℕ) → (s∈ : Env.isShr∈ s θ) → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) → (e' : all-ready e θ) → (e'' : all-ready e (Env.set-shr{s = s} θ s∈ SharedVar.ready n)) → δ e' ≡ δ e'' ready-irr-on-irr-s-helper/ready {θ} {.(plus [])} s n s∈ ¬≡ (aplus []) (aplus []) = refl ready-irr-on-irr-s-helper/ready {θ} {.(plus (num _ ∷ _))} s n s∈ ¬≡ (aplus (brnum ∷ x₁)) (aplus (brnum ∷ x')) rewrite ready-irr-on-irr-s-helper/ready s n s∈ ¬≡ (aplus x₁) (aplus x') = refl ready-irr-on-irr-s-helper/ready {θ@(Θ Ss ss xs)} {(plus (seq-ref x ∷ _))} s n s∈ ¬≡ (aplus (brseq x₁ ∷ x₂)) (aplus (brseq x₃ ∷ x')) rewrite ready-irr-on-irr-s-helper/ready s n s∈ ¬≡ (aplus x₂) (aplus x') | seq∈-eq'{x}{xs} x₁ x₃ = refl ready-irr-on-irr-s-helper/ready {θ@(Θ Ss ss xs)} {(plus (shr-ref sₑ ∷ _))} s n s∈ ¬≡ (aplus (brshr s∈₁ x ∷ x₁)) (aplus (brshr s∈₂ x₂ ∷ x')) with sₑ SharedVar.≟ s ... | yes sₑ≡s rewrite sₑ≡s | shr∈-eq'{s}{ss} s∈ s∈₁ = ⊥-elim (¬≡ x) ... | no ¬sₑ≡s with shr-putputget{θ = θ}{v2l = SharedVar.ready}{n} ¬sₑ≡s s∈₁ s∈ s∈₂ x refl ... | (eq1 , eq2) rewrite ready-irr-on-irr-s-helper/ready s n s∈ ¬≡ (aplus x₁) (aplus x') | eq2 = refl ready-irr-on-irr-s/ready : ∀{θ e} → (s : SharedVar) → (n : ℕ) → (s∈ : Env.isShr∈ s θ) → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) → (e' : all-ready e θ) → Σ[ e'' ∈ all-ready e (Env.set-shr{s = s} θ s∈ SharedVar.ready n) ] δ e' ≡ δ e'' ready-irr-on-irr-s/ready s n s∈ ¬≡ e' = e'' , (ready-irr-on-irr-s-helper/ready s n s∈ ¬≡ e' e'') where e'' = ready-maint-s/ready s n s∈ ¬≡ e' ready-irr-on-irr-x-help : ∀{θ e} x n → (x∈ : Env.isVar∈ x θ) → (e' : all-ready e θ) → (SeqVar.unwrap x) ∉ (Xs (FVₑ e)) → (e'' : all-ready e (Env.set-var{x = x} θ x∈ n)) → δ e' ≡ δ e'' ready-irr-on-irr-x-help x n x∈ (aplus []) x∉FV (aplus []) = refl ready-irr-on-irr-x-help x₁ n x∈ (aplus (brnum ∷ a)) x∉FV (aplus (brnum ∷ b)) rewrite ready-irr-on-irr-x-help x₁ n x∈ (aplus a) x∉FV (aplus b) = refl ready-irr-on-irr-x-help{θ}{e} x₁ n x∈ (aplus (brseq{x = x} x₂ ∷ a)) x∉FV (aplus (brseq x₃ ∷ b)) with x SeqVar.≟ x₁ ... | yes refl = ⊥-elim (x∉FV (here refl)) ... | no ¬x≡x₁ rewrite seq-putputget{θ = θ} ¬x≡x₁ x₂ x∈ x₃ refl | ready-irr-on-irr-x-help x₁ n x∈ (aplus a) (λ x → x∉FV (there x)) (aplus b) = refl ready-irr-on-irr-x-help{θ} x₁ n x∈ (aplus (brshr{s = s} s∈ x ∷ a)) x∉FV (aplus (brshr s∈₁ x₂ ∷ b)) rewrite ready-irr-on-irr-x-help x₁ n x∈ (aplus a) x∉FV (aplus b) | shr∈-eq'{s = s}{θ = (shr θ)} s∈ s∈₁ = refl ready-maint-x : ∀{θ e} x n → (x∈ : Env.isVar∈ x θ) → (e' : all-ready e θ) → (SeqVar.unwrap x) ∉ (Xs (FVₑ e)) → all-ready e (Env.set-var{x = x} θ x∈ n) ready-maint-x x n x∈ (aplus []) x∉FV = aplus [] ready-maint-x x₁ n₁ x∈ (aplus (brnum ∷ a)) x∉FV with ready-maint-x x₁ n₁ x∈ (aplus a) x∉FV ... | (aplus r) = aplus (brnum ∷ r) ready-maint-x{θ} x₁ n x∈ (aplus (brseq{x = x} x₂ ∷ a)) x∉FV with ready-maint-x x₁ n x∈ (aplus a) (λ x₃ → x∉FV (there x₃)) ... | (aplus r) = aplus ((brseq ((seq-set-mono'{x}{x₁}{θ}{n}{x∈} x₂))) ∷ r) ready-maint-x x₁ n x∈ (aplus (brshr s∈ x ∷ a)) x∉FV with ready-maint-x x₁ n x∈ (aplus a) x∉FV ... | (aplus r) = aplus ((brshr s∈ x) ∷ r) ready-irr-on-irr-x : ∀{θ e} x n → (x∈ : Env.isVar∈ x θ) → (e' : all-ready e θ) → (SeqVar.unwrap x) ∉ (Xs (FVₑ e)) → Σ[ e'' ∈ all-ready e (Env.set-var{x = x} θ x∈ n) ] δ e' ≡ δ e'' ready-irr-on-irr-x x n x∈ e' x∉FV = _ , ready-irr-on-irr-x-help x n x∈ e' x∉FV (ready-maint-x x n x∈ e' x∉FV) ready-maint-θˡ : ∀{θ e} θ' → (e' : all-ready e θ) → (distinct (Dom θ') (FVₑ e)) → (all-ready e (θ ← θ')) ready-maint-θˡ θ' (aplus []) Domθ'≠FVe = aplus [] ready-maint-θˡ θ' (aplus (brnum ∷ x₁)) Domθ'≠FVe with ready-maint-θˡ θ' (aplus x₁) Domθ'≠FVe ... | (aplus f) = (aplus (brnum ∷ f)) ready-maint-θˡ{θ} θ' (aplus (brseq{x = x} x₁ ∷ x₂)) Domθ'≠FVe with ready-maint-θˡ θ' (aplus x₂) ((proj₁ Domθ'≠FVe) , (proj₁ (proj₂ Domθ'≠FVe)) , dist':: (proj₂ (proj₂ Domθ'≠FVe))) ... | (aplus f) = aplus (brseq (Env.seq-←-monoˡ x θ θ' x₁) ∷ f) ready-maint-θˡ{θ} θ' (aplus (brshr{s = s} s∈ s≡ ∷ x₁)) Domθ'≠FVe with ready-maint-θˡ θ' (aplus x₁) (((proj₁ Domθ'≠FVe) , dist':: (proj₁ (proj₂ Domθ'≠FVe)) , (proj₂ (proj₂ Domθ'≠FVe)))) | shr-←-irr-get{θ}{θ'}{s} s∈ (λ x → (proj₁ (proj₂ Domθ'≠FVe)) _ x (here refl)) ... | (aplus f) | (s∈2 , eq) rewrite eq = aplus ((brshr s∈2 s≡) ∷ f) ready-irr-on-irr-θˡ-help : ∀{θ e} θ' → (e' : all-ready e θ) → (distinct (Dom θ') (FVₑ e)) → (e'' : (all-ready e (θ ← θ'))) → δ e' ≡ δ e'' ready-irr-on-irr-θˡ-help θ' (aplus []) Domθ'≠FVe (aplus []) = refl ready-irr-on-irr-θˡ-help θ' (aplus (brnum ∷ x₁)) Domθ'≠FVe (aplus (brnum ∷ x₂)) rewrite ready-irr-on-irr-θˡ-help θ' (aplus x₁) Domθ'≠FVe (aplus x₂) = refl ready-irr-on-irr-θˡ-help{θ} θ' (aplus (brseq{x = x} x₁ ∷ x₂)) Domθ'≠FVe (aplus (brseq x₃ ∷ x₄)) rewrite ready-irr-on-irr-θˡ-help θ' (aplus x₂) ((proj₁ Domθ'≠FVe) , (proj₁ (proj₂ Domθ'≠FVe)) , dist':: (proj₂ (proj₂ Domθ'≠FVe))) (aplus x₄) | seq-←-irr-get'{θ}{θ'}{x} x₁ (λ x → (proj₂ (proj₂ Domθ'≠FVe)) _ x (here refl)) x₃ = refl ready-irr-on-irr-θˡ-help{θ} θ' (aplus (brshr{s = s} s∈ x ∷ x₁)) Domθ'≠FVe (aplus (brshr s∈₁ x₂ ∷ x₃)) rewrite ready-irr-on-irr-θˡ-help θ' (aplus x₁) ((proj₁ Domθ'≠FVe) , dist':: (proj₁ (proj₂ Domθ'≠FVe)) , (proj₂ (proj₂ Domθ'≠FVe))) (aplus x₃) | shr-←-irr-get/vals'{θ}{θ'}{s} s∈ (λ x → (proj₁ (proj₂ Domθ'≠FVe)) _ x (here refl)) s∈₁ = refl ready-irr-on-irr-θˡ : ∀{θ e} θ' → (e' : all-ready e θ) → (distinct (Dom θ') (FVₑ e)) → Σ[ e'' ∈ (all-ready e (θ ← θ')) ] δ e' ≡ δ e'' ready-irr-on-irr-θˡ θ' e' Domθ'≠FVe = _ , ready-irr-on-irr-θˡ-help θ' e' Domθ'≠FVe (ready-maint-θˡ θ' e' Domθ'≠FVe) ready-maint-θʳ : ∀ {θ' e} θ → (e' : all-ready e θ') → all-ready e (θ ← θ') ready-maint-θʳ θ (aplus []) = aplus [] ready-maint-θʳ θ (aplus (brnum ∷ bound-readys)) with ready-maint-θʳ θ (aplus bound-readys) ... | aplus bound-readys' = aplus (brnum ∷ bound-readys') ready-maint-θʳ {θ'} θ (aplus (brseq {x = x} x∈Domθ' ∷ bound-readys)) with ready-maint-θʳ θ (aplus bound-readys) ... | aplus bound-readys' = aplus (brseq (seq-←-monoʳ x θ' θ x∈Domθ') ∷ bound-readys') ready-maint-θʳ {θ'} θ (aplus (brshr {s = s} s∈Domθ' θ's≡ready ∷ bound-readys)) with ready-maint-θʳ θ (aplus bound-readys) ... | aplus bound-readys' = aplus (brshr (shr-←-monoʳ s θ' θ s∈Domθ') (trans (shr-stats-←-right-irr' s θ θ' s∈Domθ' (shr-←-monoʳ s θ' θ s∈Domθ')) θ's≡ready) ∷ bound-readys') ready-irr-on-irr-θʳ-help : ∀ {θ' e} θ → (e' : all-ready e θ') → (e'' : all-ready e (θ ← θ')) → δ e' ≡ δ e'' ready-irr-on-irr-θʳ-help {θ'} θ (aplus []) (aplus []) = refl ready-irr-on-irr-θʳ-help {θ'} θ (aplus (brnum ∷ bound-readys')) (aplus (brnum ∷ bound-readys'')) with ready-irr-on-irr-θʳ-help θ (aplus bound-readys') (aplus bound-readys'') ... | δe'≡δe'' rewrite δe'≡δe'' = refl ready-irr-on-irr-θʳ-help {θ'} θ (aplus (brseq {x = x} x∈Domθ' ∷ bound-readys')) (aplus (brseq {x = .x} x∈Domθ←θ' ∷ bound-readys'')) with ready-irr-on-irr-θʳ-help θ (aplus bound-readys') (aplus bound-readys'') ... | δe'≡δe'' rewrite δe'≡δe'' | var-vals-←-right-irr' x θ θ' x∈Domθ' x∈Domθ←θ' = refl ready-irr-on-irr-θʳ-help {θ'} θ (aplus (brshr {s = s} s∈Domθ' θ's≡ready ∷ bound-readys')) (aplus (brshr {s = .s} s∈Domθ←θ' ⟨θ←θ'⟩s≡ready ∷ bound-readys'')) with ready-irr-on-irr-θʳ-help θ (aplus bound-readys') (aplus bound-readys'') ... | δe'≡δe'' rewrite δe'≡δe'' | shr-vals-←-right-irr' s θ θ' s∈Domθ' s∈Domθ←θ' = refl ready-irr-on-irr-θʳ : ∀ {θ' e} θ → (e' : all-ready e θ') → Σ[ e'' ∈ all-ready e (θ ← θ') ] δ e' ≡ δ e'' ready-irr-on-irr-θʳ θ e' = _ , ready-irr-on-irr-θʳ-help θ e' (ready-maint-θʳ θ e') CBE⟦p⟧=>CBp : ∀{BV FV E p} → CorrectBinding (E ⟦ p ⟧e) BV FV → ∃ (λ BV → ∃ (λ FV → (CorrectBinding p BV FV))) CBE⟦p⟧=>CBp{BV}{FV} {E = []} CB = BV , FV , CB CBE⟦p⟧=>CBp {E = epar₁ q ∷ E} (CBpar CB CB₁ x x₁ x₂ x₃) = CBE⟦p⟧=>CBp{E = E} CB CBE⟦p⟧=>CBp {E = epar₂ p ∷ E} (CBpar CB CB₁ x x₁ x₂ x₃) = CBE⟦p⟧=>CBp{E = E} CB₁ CBE⟦p⟧=>CBp {E = eloopˢ q ∷ E} (CBloopˢ CB CB₁ x _) = CBE⟦p⟧=>CBp{E = E} CB CBE⟦p⟧=>CBp {E = eseq q ∷ E} (CBseq CB CB₁ x) = CBE⟦p⟧=>CBp{E = E} CB CBE⟦p⟧=>CBp {E = esuspend S ∷ E} (CBsusp CB x) = CBE⟦p⟧=>CBp{E = E} CB CBE⟦p⟧=>CBp {E = etrap ∷ E} (CBtrap CB) = CBE⟦p⟧=>CBp{E = E} CB CBE⟦p⟧=>CBp' : ∀{BV FV E p p'} → p ≐ E ⟦ p' ⟧e → CorrectBinding (p) BV FV → ∃ (λ BV → ∃ (λ FV → (CorrectBinding p' BV FV))) CBE⟦p⟧=>CBp'{E = E}{p' = p'} peq cb = CBE⟦p⟧=>CBp{E = E}{p = p'} (subst (λ x → CorrectBinding x _ _) (sym (unplug peq)) cb) -- , (BV⊆S , BV⊆s , BV⊆x) CBp⊆CBE⟦p⟧ : ∀{BVp FVp BVE FVE} → (E : EvaluationContext ) → (p : Term) → CorrectBinding p BVp FVp → CorrectBinding (E ⟦ p ⟧e) BVE FVE → (FVp ⊆ FVE × BVp ⊆ BVE) CBp⊆CBE⟦p⟧ [] p CBp CBE with binding-is-function CBp CBE ... | (e1 , e2) rewrite e1 | e2 = (((λ x z → z) , (λ x z → z) , (λ x z → z))) , (((λ x z → z) , (λ x z → z) , (λ x z → z))) CBp⊆CBE⟦p⟧ (epar₁ q ∷ E) p CBp (CBpar CBE CBE₁ x x₁ x₂ x₃) with CBp⊆CBE⟦p⟧ E p CBp CBE ... | (FV⊆S , FV⊆s , FV⊆x) , (BV⊆S , BV⊆s , BV⊆x) = ((λ x y → ++ˡ (FV⊆S x y)) , ((λ x y → ++ˡ (FV⊆s x y))) , ((λ x y → ++ˡ (FV⊆x x y)))) , (((λ x y → ++ˡ (BV⊆S x y))) , ((λ x y → ++ˡ (BV⊆s x y))) , ((λ x y → ++ˡ (BV⊆x x y)))) CBp⊆CBE⟦p⟧ (epar₂ p ∷ E) p₁ CBp (CBpar{BVp = BVp}{FVp = FVp} CBE CBE₁ x x₁ x₂ x₃) with CBp⊆CBE⟦p⟧ E p₁ CBp CBE₁ ... | (FV⊆S , FV⊆s , FV⊆x) , (BV⊆S , BV⊆s , BV⊆x) = ((λ x z → ++ʳ (proj₁ FVp) (FV⊆S x z)) , (λ x → (++ʳ (proj₁ (proj₂ FVp))) ∘ (FV⊆s x)) , ((λ x → (++ʳ (proj₂ (proj₂ FVp))) ∘ (FV⊆x x)))) , ((λ x z → ++ʳ (proj₁ BVp) (BV⊆S x z)) , (λ x → (++ʳ (proj₁ (proj₂ BVp))) ∘ (BV⊆s x)) , ((λ x → (++ʳ (proj₂ (proj₂ BVp))) ∘ (BV⊆x x)))) CBp⊆CBE⟦p⟧ (eloopˢ q ∷ E) p CBp (CBloopˢ CBE CBE₁ x _) with CBp⊆CBE⟦p⟧ E p CBp CBE ... | (FV⊆S , FV⊆s , FV⊆x) , (BV⊆S , BV⊆s , BV⊆x) = ((λ x y → ++ˡ (FV⊆S x y)) , ((λ x → ++ˡ ∘ (FV⊆s x)) ) , get FV⊆x) , (get BV⊆S , get BV⊆s , get BV⊆x) where get : ∀{a b c} → a ⊆¹ b → a ⊆¹ (b ++ c) get f = λ x y → ++ˡ (f x y) CBp⊆CBE⟦p⟧ (eseq q ∷ E) p CBp (CBseq CBE CBE₁ x) with CBp⊆CBE⟦p⟧ E p CBp CBE ... | (FV⊆S , FV⊆s , FV⊆x) , (BV⊆S , BV⊆s , BV⊆x) = ((λ x y → ++ˡ (FV⊆S x y)) , ((λ x → ++ˡ ∘ (FV⊆s x)) ) , get FV⊆x) , (get BV⊆S , get BV⊆s , get BV⊆x) where get : ∀{a b c} → a ⊆¹ b → a ⊆¹ (b ++ c) get f = λ x y → ++ˡ (f x y) --(λ x₁ x₂ → {!there x₂!}) CBp⊆CBE⟦p⟧ (esuspend S ∷ E) p CBp (CBsusp CBE x) with CBp⊆CBE⟦p⟧ E p CBp CBE ... | (FV⊆S , FV⊆s , FV⊆x) , BV⊆ = (((λ x y → there (FV⊆S x y)) , FV⊆s , FV⊆x)) , BV⊆ CBp⊆CBE⟦p⟧ (etrap ∷ E) p CBp (CBtrap CBE) = CBp⊆CBE⟦p⟧ E p CBp CBE CBp⊆CBE⟦p⟧' : ∀{BVp FVp BVE FVE} E p p' → p ≐ E ⟦ p' ⟧e → CorrectBinding p' BVp FVp → CorrectBinding p BVE FVE → (FVp ⊆ FVE × BVp ⊆ BVE) CBp⊆CBE⟦p⟧' E p p' peq cbp' cbp = CBp⊆CBE⟦p⟧ E p' cbp' (subst (λ x → CorrectBinding x _ _) (sym (unplug peq)) cbp) inspecting-cb-distinct-double-unplug : ∀{p q Ep Eq p' q' BV FV} → CorrectBinding (p ∥ q) BV FV → p ≐ Ep ⟦ p' ⟧e → q ≐ Eq ⟦ q' ⟧e → Σ (Term × VarList × VarList) λ {(o , BVo , FVo) → CorrectBinding o BVo FVo × o ≡ (p' ∥ q')} inspecting-cb-distinct-double-unplug{p' = p'}{q'} (CBpar CBp CBq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) p=Ep⟦p'⟧ q=Eq⟦q'⟧ with CBE⟦p⟧=>CBp' p=Ep⟦p'⟧ CBp | CBE⟦p⟧=>CBp' q=Eq⟦q'⟧ CBq ... | (BVp' , FVp' , CBp') | (BVq' , FVq' , CBq') with CBp⊆CBE⟦p⟧' _ _ _ p=Ep⟦p'⟧ CBp' CBp | CBp⊆CBE⟦p⟧' _ _ _ q=Eq⟦q'⟧ CBq' CBq ... | (FVp'⊆FVp , BVp'⊆BVp) | (FVq'⊆FVq , BVq'⊆BVq) = (_ , _ , _) , CBpar CBp' CBq' (⊆-rep-dist-both BVp'⊆BVp BVq'⊆BVq BVp≠BVq) (⊆-rep-dist-both FVp'⊆FVp BVq'⊆BVq FVp≠BVq) (⊆-rep-dist-both BVp'⊆BVp FVq'⊆FVq BVp≠FVq) (⊆¹-rep-dist-both (proj₂ (proj₂ FVp'⊆FVp)) (proj₂ (proj₂ FVq'⊆FVq)) Xp≠Xq) , refl where ⊆¹-rep-dist-both : ∀{a b c d} → a ⊆¹ b → c ⊆¹ d → distinct' b d → distinct' a c ⊆¹-rep-dist-both sub1 sub2 dist = λ z z₁ z₂ → dist z (sub1 z z₁) (sub2 z z₂) ⊆-rep-dist-both : ∀{a b c d} → a ⊆ b → c ⊆ d → distinct b d → distinct a c ⊆-rep-dist-both a b c = (⊆¹-rep-dist-both , ⊆¹-rep-dist-both , ⊆¹-rep-dist-both) # a # b # c
{ "alphanum_fraction": 0.5440786984, "avg_line_length": 67.3852691218, "ext": "agda", "hexsha": "b849eb6bfa42f10d960860bf5a445b8c8771cf52", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus-confluence/helper.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus-confluence/helper.agda", "max_line_length": 247, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus-confluence/helper.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 11629, "size": 23787 }
module Fail.TupleType where open import Haskell.Prelude idT : ∀ {as} → Tuple as → Tuple as idT x = x {-# COMPILE AGDA2HS idT #-}
{ "alphanum_fraction": 0.6691729323, "avg_line_length": 13.3, "ext": "agda", "hexsha": "2a304b5c71fe08d2fc585db25227a8d490846dc4", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "test/Fail/TupleType.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "test/Fail/TupleType.agda", "max_line_length": 34, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "test/Fail/TupleType.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 44, "size": 133 }
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Equivalents where -- Theorems about equivalent formulations to Adjoint -- (though some have caveats) open import Level open import Data.Product using (_,_; _×_) open import Function using (_$_) renaming (_∘_ to _∙_) open import Function.Equality using (Π; _⟶_) import Function.Inverse as FI open import Relation.Binary using (Rel; IsEquivalence; Setoid) -- be explicit in imports to 'see' where the information comes from open import Categories.Adjoint using (Adjoint; _⊣_) open import Categories.Category.Core using (Category) open import Categories.Category.Product using (Product; _⁂_) open import Categories.Category.Instance.Setoids open import Categories.Morphism open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.Functor.Bifunctor using (Bifunctor) open import Categories.Functor.Hom using (Hom[_][-,-]) open import Categories.Functor.Construction.LiftSetoids open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper; _∘ₕ_; _∘ᵥ_; _∘ˡ_; _∘ʳ_) renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; unitorˡ; unitorʳ; associator; _≃_) import Categories.Morphism.Reasoning as MR private variable o o′ o″ ℓ ℓ′ ℓ″ e e′ e″ : Level C D E : Category o ℓ e -- a special case of the natural isomorphism in which homsets in C and D have the same -- universe level. therefore there is no need to lift Setoids to the same level. -- this is helpful when combining with Yoneda lemma. module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R : Functor D C} where private module C = Category C module D = Category D module L = Functor L module R = Functor R module _ (adjoint : L ⊣ R) where open Adjoint adjoint -- in this case, the hom functors are naturally isomorphism directly Hom-NI′ : NaturalIsomorphism Hom[L-,-] Hom[-,R-] Hom-NI′ = record { F⇒G = ntHelper record { η = λ _ → Hom-inverse.to ; commute = λ _ eq → Ladjunct-comm eq } ; F⇐G = ntHelper record { η = λ _ → Hom-inverse.from ; commute = λ _ eq → Radjunct-comm eq } ; iso = λ _ → record { isoˡ = λ eq → let open D.HomReasoning in RLadjunct≈id ○ eq ; isoʳ = λ eq → let open C.HomReasoning in LRadjunct≈id ○ eq } } -- now goes from natural isomorphism back to adjoint. -- for simplicity, just construct the case in which homsetoids of C and D -- are compatible. private Hom[L-,-] : Bifunctor C.op D (Setoids _ _) Hom[L-,-] = Hom[ D ][-,-] ∘F (L.op ⁂ idF) Hom[-,R-] : Bifunctor C.op D (Setoids _ _) Hom[-,R-] = Hom[ C ][-,-] ∘F (idF ⁂ R) module _ (Hni : NaturalIsomorphism Hom[L-,-] Hom[-,R-]) where open NaturalIsomorphism Hni open NaturalTransformation open Functor open Π private unitη : ∀ X → F₀ Hom[L-,-] (X , L.F₀ X) ⟶ F₀ Hom[-,R-] (X , L.F₀ X) unitη X = ⇒.η (X , L.F₀ X) unit : NaturalTransformation idF (R ∘F L) unit = ntHelper record { η = λ X → unitη X ⟨$⟩ D.id ; commute = λ {X} {Y} f → begin (unitη Y ⟨$⟩ D.id) ∘ f ≈⟨ introˡ R.identity ⟩ R.F₁ D.id ∘ (unitη Y ⟨$⟩ D.id) ∘ f ≈˘⟨ ⇒.commute (f , D.id) D.Equiv.refl ⟩ ⇒.η (X , L.F₀ Y) ⟨$⟩ (D.id D.∘ D.id D.∘ L.F₁ f) ≈⟨ cong (⇒.η (X , L.F₀ Y)) (D.Equiv.trans D.identityˡ D.identityˡ) ⟩ ⇒.η (X , L.F₀ Y) ⟨$⟩ L.F₁ f ≈⟨ cong (⇒.η (X , L.F₀ Y)) (MR.introʳ D (MR.elimʳ D L.identity)) ⟩ ⇒.η (X , L.F₀ Y) ⟨$⟩ (L.F₁ f D.∘ D.id D.∘ L.F₁ id) ≈⟨ ⇒.commute (C.id , L.F₁ f) D.Equiv.refl ⟩ R.F₁ (L.F₁ f) ∘ (unitη X ⟨$⟩ D.id) ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩ R.F₁ (L.F₁ f) ∘ (unitη X ⟨$⟩ D.id) ∎ } where open C open HomReasoning open MR C counitη : ∀ X → F₀ Hom[-,R-] (R.F₀ X , X) ⟶ F₀ Hom[L-,-] (R.F₀ X , X) counitη X = ⇐.η (R.F₀ X , X) counit : NaturalTransformation (L ∘F R) idF counit = ntHelper record { η = λ X → counitη X ⟨$⟩ C.id ; commute = λ {X} {Y} f → begin (counitη Y ⟨$⟩ C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ identityˡ ⟩ id ∘ (counitη Y ⟨$⟩ C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ ⇐.commute (R.F₁ f , D.id) C.Equiv.refl ⟩ ⇐.η (R.F₀ X , Y) ⟨$⟩ (R.F₁ id C.∘ C.id C.∘ R.F₁ f) ≈⟨ cong (⇐.η (R.F₀ X , Y)) (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ) ⟩ ⇐.η (R.F₀ X , Y) ⟨$⟩ R.F₁ f ≈⟨ cong (⇐.η (R.F₀ X , Y)) (MR.introʳ C C.identityˡ) ⟩ ⇐.η (R.F₀ X , Y) ⟨$⟩ (R.F₁ f C.∘ C.id C.∘ C.id) ≈⟨ ⇐.commute (C.id , f) C.Equiv.refl ⟩ f ∘ (counitη X ⟨$⟩ C.id) ∘ L.F₁ C.id ≈⟨ refl⟩∘⟨ elimʳ L.identity ⟩ f ∘ (counitη X ⟨$⟩ C.id) ∎ } where open D open HomReasoning open MR D Hom-NI⇒Adjoint : L ⊣ R Hom-NI⇒Adjoint = record { unit = unit ; counit = counit ; zig = λ {A} → let open D open HomReasoning open Equiv open MR D in begin η counit (L.F₀ A) ∘ L.F₁ (η unit A) ≈˘⟨ identityˡ ⟩ id ∘ η counit (L.F₀ A) ∘ L.F₁ (η unit A) ≈˘⟨ ⇐.commute (η unit A , id) C.Equiv.refl ⟩ ⇐.η (A , L.F₀ A) ⟨$⟩ (R.F₁ id C.∘ C.id C.∘ η unit A) ≈⟨ cong (⇐.η (A , L.F₀ A)) (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ) ⟩ ⇐.η (A , L.F₀ A) ⟨$⟩ η unit A ≈⟨ isoˡ refl ⟩ id ∎ ; zag = λ {B} → let open C open HomReasoning open Equiv open MR C in begin R.F₁ (η counit B) ∘ η unit (R.F₀ B) ≈˘⟨ refl⟩∘⟨ identityʳ ⟩ R.F₁ (η counit B) ∘ η unit (R.F₀ B) ∘ id ≈˘⟨ ⇒.commute (id , η counit B) D.Equiv.refl ⟩ ⇒.η (R.F₀ B , B) ⟨$⟩ (η counit B D.∘ D.id D.∘ L.F₁ id) ≈⟨ cong (⇒.η (R.F₀ B , B)) (MR.elimʳ D (MR.elimʳ D L.identity)) ⟩ ⇒.η (R.F₀ B , B) ⟨$⟩ η counit B ≈⟨ isoʳ refl ⟩ id ∎ } where module i {X} = Iso (iso X) open i -- the general case from isomorphic Hom setoids to adjoint functors module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D} {R : Functor D C} where private module C = Category C module D = Category D module L = Functor L module R = Functor R open Functor open Π Hom[L-,-] : Bifunctor C.op D (Setoids _ _) Hom[L-,-] = LiftSetoids ℓ e ∘F Hom[ D ][-,-] ∘F (L.op ⁂ idF) Hom[-,R-] : Bifunctor C.op D (Setoids _ _) Hom[-,R-] = LiftSetoids ℓ′ e′ ∘F Hom[ C ][-,-] ∘F (idF ⁂ R) module _ (Hni : Hom[L-,-] ≃ Hom[-,R-]) where open NaturalIsomorphism Hni using (module ⇒; module ⇐; iso) private unitη : ∀ X → F₀ Hom[L-,-] (X , L.F₀ X) ⟶ F₀ Hom[-,R-] (X , L.F₀ X) unitη X = ⇒.η (X , L.F₀ X) unit : NaturalTransformation idF (R ∘F L) unit = ntHelper record { η = λ X → lower (unitη X ⟨$⟩ lift D.id) ; commute = λ {X Y} f → begin lower (unitη Y ⟨$⟩ lift D.id) ∘ f ≈⟨ introˡ R.identity ⟩ R.F₁ D.id ∘ lower (unitη Y ⟨$⟩ lift D.id) ∘ f ≈˘⟨ lower (⇒.commute (f , D.id) (lift D.Equiv.refl)) ⟩ lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (D.id D.∘ D.id D.∘ L.F₁ f)) ≈⟨ lower (cong (⇒.η (X , L.F₀ Y)) (lift (D.Equiv.trans D.identityˡ D.identityˡ))) ⟩ lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (L.F₁ f)) ≈⟨ lower (cong (⇒.η (X , L.F₀ Y)) (lift (MR.introʳ D (MR.elimʳ D L.identity)))) ⟩ lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (L.F₁ f D.∘ D.id D.∘ L.F₁ id)) ≈⟨ lower (⇒.commute (C.id , L.F₁ f) (lift D.Equiv.refl)) ⟩ R.F₁ (L.F₁ f) ∘ lower (⇒.η (X , L.F₀ X) ⟨$⟩ lift D.id) ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩ F₁ (R ∘F L) f ∘ lower (unitη X ⟨$⟩ lift D.id) ∎ } where open C open HomReasoning open MR C counitη : ∀ X → F₀ Hom[-,R-] (R.F₀ X , X) ⟶ F₀ Hom[L-,-] (R.F₀ X , X) counitη X = ⇐.η (R.F₀ X , X) counit : NaturalTransformation (L ∘F R) idF counit = ntHelper record { η = λ X → lower (counitη X ⟨$⟩ lift C.id) ; commute = λ {X} {Y} f → begin lower (⇐.η (R.F₀ Y , Y) ⟨$⟩ lift C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ identityˡ ⟩ id ∘ lower (⇐.η (R.F₀ Y , Y) ⟨$⟩ lift C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ lower (⇐.commute (R.F₁ f , D.id) (lift C.Equiv.refl)) ⟩ lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ id C.∘ C.id C.∘ R.F₁ f)) ≈⟨ lower (cong (⇐.η (R.F₀ X , Y)) (lift (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ))) ⟩ lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ f)) ≈⟨ lower (cong (⇐.η (R.F₀ X , Y)) (lift (MR.introʳ C C.identityˡ))) ⟩ lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ f C.∘ C.id C.∘ C.id)) ≈⟨ lower (⇐.commute (C.id , f) (lift C.Equiv.refl)) ⟩ f ∘ lower (⇐.η (R.F₀ X , X) ⟨$⟩ lift C.id) ∘ L.F₁ C.id ≈⟨ refl⟩∘⟨ elimʳ L.identity ⟩ f ∘ lower (⇐.η (R.F₀ X , X) ⟨$⟩ lift C.id) ∎ } where open D open HomReasoning open MR D Hom-NI′⇒Adjoint : L ⊣ R Hom-NI′⇒Adjoint = record { unit = unit ; counit = counit ; zig = λ {A} → let open D open HomReasoning open Equiv open MR D in begin lower (counitη (L.F₀ A) ⟨$⟩ lift C.id) ∘ L.F₁ (η unit A) ≈˘⟨ identityˡ ⟩ id ∘ lower (counitη (L.F₀ A) ⟨$⟩ lift C.id) ∘ L.F₁ (η unit A) ≈˘⟨ lower (⇐.commute (η unit A , id) (lift C.Equiv.refl)) ⟩ lower (⇐.η (A , L.F₀ A) ⟨$⟩ lift (R.F₁ id C.∘ C.id C.∘ lower (⇒.η (A , L.F₀ A) ⟨$⟩ lift id))) ≈⟨ lower (cong (⇐.η (A , L.F₀ A)) (lift (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ))) ⟩ lower (⇐.η (A , L.F₀ A) ⟨$⟩ (⇒.η (A , L.F₀ A) ⟨$⟩ lift id)) ≈⟨ lower (isoˡ (lift refl)) ⟩ id ∎ ; zag = λ {B} → let open C open HomReasoning open Equiv open MR C in begin R.F₁ (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)) ∘ lower (⇒.η (R.F₀ B , L.F₀ (R.F₀ B)) ⟨$⟩ lift D.id) ≈˘⟨ refl⟩∘⟨ identityʳ ⟩ R.F₁ (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)) ∘ lower (⇒.η (R.F₀ B , L.F₀ (R.F₀ B)) ⟨$⟩ lift D.id) ∘ id ≈˘⟨ lower (⇒.commute (id , η counit B) (lift D.Equiv.refl)) ⟩ lower (⇒.η (R.F₀ B , B) ⟨$⟩ lift (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id) D.∘ D.id D.∘ L.F₁ id)) ≈⟨ lower (cong (⇒.η (R.F₀ B , B)) (lift (MR.elimʳ D (MR.elimʳ D L.identity)))) ⟩ lower (⇒.η (R.F₀ B , B) ⟨$⟩ lift (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id))) ≈⟨ lower (isoʳ (lift refl)) ⟩ id ∎ } where open NaturalTransformation module _ {X} where open Iso (iso X) public
{ "alphanum_fraction": 0.48819733, "avg_line_length": 43.0076045627, "ext": "agda", "hexsha": "7577ee37659e5c9040218bf50c349198287ea273", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Equivalents.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Equivalents.agda", "max_line_length": 141, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Equivalents.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 4453, "size": 11311 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.DirectSum.Definition open import Setoids.Setoids open import Rings.Definition module Rings.DirectSum {a b c d : _} {A : Set a} {S : Setoid {a} {b} A} {_+1_ : A → A → A} {_*1_ : A → A → A} {C : Set c} {T : Setoid {c} {d} C} {_+2_ : C → C → C} {_*2_ : C → C → C} (R1 : Ring S _+1_ _*1_) (R2 : Ring T _+2_ _*2_) where open import Setoids.Product S T pairPlus : A && C → A && C → A && C pairPlus (a ,, b) (c ,, d) = (a +1 c) ,, (b +2 d) pairTimes : A && C → A && C → A && C pairTimes (a ,, b) (c ,, d) = (a *1 c) ,, (b *2 d) directSumRing : Ring productSetoid pairPlus pairTimes Ring.additiveGroup directSumRing = directSumGroup (Ring.additiveGroup R1) (Ring.additiveGroup R2) Ring.*WellDefined directSumRing r=t s=u = productLift (Ring.*WellDefined R1 (_&&_.fst r=t) (_&&_.fst s=u)) (Ring.*WellDefined R2 (_&&_.snd r=t) (_&&_.snd s=u)) Ring.1R directSumRing = Ring.1R R1 ,, Ring.1R R2 Ring.groupIsAbelian directSumRing = productLift (Ring.groupIsAbelian R1) (Ring.groupIsAbelian R2) Ring.*Associative directSumRing = productLift (Ring.*Associative R1) (Ring.*Associative R2) Ring.*Commutative directSumRing = productLift (Ring.*Commutative R1) (Ring.*Commutative R2) Ring.*DistributesOver+ directSumRing = productLift (Ring.*DistributesOver+ R1) (Ring.*DistributesOver+ R2) Ring.identIsIdent directSumRing = productLift (Ring.identIsIdent R1) (Ring.identIsIdent R2)
{ "alphanum_fraction": 0.6811989101, "avg_line_length": 52.4285714286, "ext": "agda", "hexsha": "edcc63954904aa07fed01286450fa5446055269b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/DirectSum.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/DirectSum.agda", "max_line_length": 236, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/DirectSum.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 522, "size": 1468 }
{-# OPTIONS --without-K #-} open import Prelude import GSeTT.Typed-Syntax import Globular-TT.Syntax import Globular-TT.Rules module Globular-TT.Globular-TT {l} (index : Set l) (rule : index → GSeTT.Typed-Syntax.Ctx × (Globular-TT.Syntax.Pre-Ty index)) (assumption : Globular-TT.Rules.well-founded index rule) (eqdec-index : eqdec index) where open import Globular-TT.Syntax index open import Globular-TT.Eqdec-syntax index eqdec-index open import Globular-TT.Rules index rule open import Globular-TT.CwF-Structure index rule open import Globular-TT.Uniqueness-Derivations index rule eqdec-index open import Globular-TT.Disks index rule eqdec-index open import Globular-TT.Typed-Syntax index rule eqdec-index open import Globular-TT.Dec-Type-Checking index rule assumption eqdec-index
{ "alphanum_fraction": 0.6558577406, "avg_line_length": 45.5238095238, "ext": "agda", "hexsha": "871126fef253e24d8d90e990dda998f5f9b92782", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed45935b38d6a86fa662f561866140122ee3dcef", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ThiBen/catt-formalization", "max_forks_repo_path": "Globular-TT/Globular-TT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed45935b38d6a86fa662f561866140122ee3dcef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ThiBen/catt-formalization", "max_issues_repo_path": "Globular-TT/Globular-TT.agda", "max_line_length": 126, "max_stars_count": 2, "max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thibautbenjamin/catt-formalization", "max_stars_repo_path": "Globular-TT/Globular-TT.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-20T00:41:09.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-01T08:26:53.000Z", "num_tokens": 230, "size": 956 }
-- {-# OPTIONS -v interaction:50 #-} x : Set → Set x = {!λ x → x!} -- "refine" (C-c C-r) should behave the same as "give" here -- Old, bad result: -- x = λ x₁ → x₁ -- New, expected result: -- x = λ x → x -- Expected interaction test case behavior: -- -- (agda2-give-action 0 'no-paren)
{ "alphanum_fraction": 0.5773195876, "avg_line_length": 19.4, "ext": "agda", "hexsha": "f82906722517a86578b6151591f3580cb09e6660", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue994.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue994.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue994.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 100, "size": 291 }
module Luau.Type where data Type : Set where nil : Type _⇒_ : Type → Type → Type none : Type any : Type _∪_ : Type → Type → Type _∩_ : Type → Type → Type
{ "alphanum_fraction": 0.5892857143, "avg_line_length": 15.2727272727, "ext": "agda", "hexsha": "8da3a985f93f5e07086c03afa6a6f0b6a6186324", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FreakingBarbarians/luau", "max_forks_repo_path": "prototyping/Luau/Type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FreakingBarbarians/luau", "max_issues_repo_path": "prototyping/Luau/Type.agda", "max_line_length": 26, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FreakingBarbarians/luau", "max_stars_repo_path": "prototyping/Luau/Type.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 64, "size": 168 }
------------------------------------------------------------------------------ -- FOCT list terms properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Base.List.PropertiesATP where open import FOTC.Base open import FOTC.Base.List ------------------------------------------------------------------------------ -- Congruence properties postulate ∷-leftCong : ∀ {x y xs} → x ≡ y → x ∷ xs ≡ y ∷ xs {-# ATP prove ∷-leftCong #-} postulate ∷-rightCong : ∀ {x xs ys} → xs ≡ ys → x ∷ xs ≡ x ∷ ys {-# ATP prove ∷-rightCong #-} postulate ∷-Cong : ∀ {x y xs ys} → x ≡ y → xs ≡ ys → x ∷ xs ≡ y ∷ ys {-# ATP prove ∷-Cong #-} postulate headCong : ∀ {xs ys} → xs ≡ ys → head₁ xs ≡ head₁ ys {-# ATP prove headCong #-} postulate tailCong : ∀ {xs ys} → xs ≡ ys → tail₁ xs ≡ tail₁ ys {-# ATP prove tailCong #-} ------------------------------------------------------------------------------ -- Injective properties postulate ∷-injective : ∀ {x y xs ys} → x ∷ xs ≡ y ∷ ys → x ≡ y ∧ xs ≡ ys {-# ATP prove ∷-injective #-}
{ "alphanum_fraction": 0.4219512195, "avg_line_length": 32.3684210526, "ext": "agda", "hexsha": "348efacd28c3e80214bd09d418ee339fdd6a87ef", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Base/List/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Base/List/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Base/List/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 316, "size": 1230 }
module 030-semigroup where -- We need equivalence. open import 020-equivalence -- Semigroups are basically a set with equality and some binary -- operator which is associative and respects equality. record SemiGroup {M : Set} (_==_ : M -> M -> Set) (_*_ : M -> M -> M) : Set1 where field equiv : Equivalence _==_ assoc : ∀ {r s t} -> ((r * s) * t) == (r * (s * t)) cong : ∀ {r s u v} -> (r == s) -> (u == v) -> (r * u) == (s * v) -- The next line brings all fields and declarations of Equivalence -- into this record's namespace so we can refer to them in an -- unqualified way in proofs (for example, we can write "refl" for -- "Equivalence.symm equiv" and so on). open Equivalence equiv public -- No theorems here yet.
{ "alphanum_fraction": 0.6186107471, "avg_line_length": 26.3103448276, "ext": "agda", "hexsha": "38e65ddf8b5cfa869a5dc916239b944440ec16ac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mcmtroffaes/agda-proofs", "max_forks_repo_path": "030-semigroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mcmtroffaes/agda-proofs", "max_issues_repo_path": "030-semigroup.agda", "max_line_length": 68, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mcmtroffaes/agda-proofs", "max_stars_repo_path": "030-semigroup.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z", "num_tokens": 230, "size": 763 }
{-# OPTIONS --sized-types #-} open import Relation.Binary.Core module SOList.Total.Properties {A : Set} (_≤_ : A → A → Set) (trans≤ : Transitive _≤_) where open import Bound.Total A open import Bound.Total.Order _≤_ open import Bound.Total.Order.Properties _≤_ trans≤ open import List.Order.Bounded _≤_ open import List.Order.Bounded.Properties _≤_ trans≤ open import List.Sorted _≤_ open import Size open import SOList.Total _≤_ lemma-solist≤ : {ι : Size}{b t : Bound} → SOList {ι} b t → LeB b t lemma-solist≤ (onil b≤t) = b≤t lemma-solist≤ (ocons x xs ys) = transLeB (lemma-solist≤ xs) (lemma-solist≤ ys) lemma-solist≤* : {ι : Size}{b : Bound}{x : A} → (xs : SOList {ι} b (val x)) → forget xs ≤* (val x) lemma-solist≤* (onil _) = lenx lemma-solist≤* (ocons x xs ys) = lemma-++≤* (lemma-solist≤ ys) (lemma-solist≤* xs) (lemma-solist≤* ys) lemma-solist*≤ : {ι : Size}{b t : Bound} → (xs : SOList {ι} b t) → b *≤ forget xs lemma-solist*≤ (onil _) = genx lemma-solist*≤ (ocons x xs ys) = lemma-++*≤ (lemma-solist≤ xs) (lemma-solist*≤ xs) (lemma-solist*≤ ys) lemma-solist-sorted : {ι : Size}{b t : Bound}(xs : SOList {ι} b t) → Sorted (forget xs) lemma-solist-sorted (onil _) = nils lemma-solist-sorted (ocons x xs ys) = lemma-sorted++ (lemma-solist≤* xs) (lemma-solist*≤ ys) (lemma-solist-sorted xs) (lemma-solist-sorted ys)
{ "alphanum_fraction": 0.6444769568, "avg_line_length": 37.9722222222, "ext": "agda", "hexsha": "f94618406025c1ea958cfa475757dc26d354579f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SOList/Total/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SOList/Total/Properties.agda", "max_line_length": 142, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SOList/Total/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 506, "size": 1367 }
module test.AddInteger where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ open import Agda.Builtin.Sigma -- zerepoch/zerepoch-core/test/data/addInteger.plc addI : ∀{Γ} → Γ ⊢ con integer (size⋆ 8) ⇒ con integer (size⋆ 8) ⇒ con integer (size⋆ 8) addI = ƛ (ƛ (builtin addInteger (λ { Z → size⋆ 8 ; (S ())}) (` (S Z) Σ., ` Z Σ., _)))
{ "alphanum_fraction": 0.68, "avg_line_length": 28.125, "ext": "agda", "hexsha": "7cbf8000ab8ca91c9e2fbe658074d9b8a1489536", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-21T16:38:59.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-13T21:25:19.000Z", "max_forks_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "Quantum-One-DLT/zerepoch", "max_forks_repo_path": "zerepoch-metatheory/test/AddInteger.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "Quantum-One-DLT/zerepoch", "max_issues_repo_path": "zerepoch-metatheory/test/AddInteger.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "Quantum-One-DLT/zerepoch", "max_stars_repo_path": "zerepoch-metatheory/test/AddInteger.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 173, "size": 450 }
-- {-# OPTIONS -v tc.proj.like:10 #-} {-# OPTIONS -v tc.conv:10 #-} import Common.Level module ProjectionLikeAndModules1 (A : Set) (a : A) where record ⊤ : Set where constructor tt data Wrap (W : Set) : Set where wrap : W → Wrap W data Bool : Set where true false : Bool -- `or' should be projection like in the module parameters if : Bool → {B : Set} → B → B → B if true a b = a if false a b = b postulate u v : ⊤ P : Wrap ⊤ -> Set test : (y : Bool) -> P (if y (wrap u) (wrap tt)) -> P (if y (wrap tt) (wrap v)) test y h = h -- Error: -- u != tt of type Set -- when checking that the expression h has type -- P (if y (wrap tt) (wrap v))
{ "alphanum_fraction": 0.5930408472, "avg_line_length": 20.0303030303, "ext": "agda", "hexsha": "524e8ec8405264df078464f0aacc05c6b2fbf527", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ProjectionLikeAndModules1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ProjectionLikeAndModules1.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ProjectionLikeAndModules1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 225, "size": 661 }
open import Everything module Test.SurjidentityP where module _ {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} (_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (_∼₂2_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) {𝔯₂'} (_∼₂'_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂') {ℓ₂} (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) (_∼̇₂'_ : ∀ {x y} → x ∼₂' y → x ∼₂' y → Ø ℓ₂) (_∼̇₂2_ : ∀ {x y} → x ∼₂2 y → x ∼₂2 y → Ø ℓ₂) ⦃ _ : Surjection.class 𝔒₁ 𝔒₂ ⦄ ⦃ _ : Smap!.class _∼₁_ _∼₂_ ⦄ ⦃ _ : Smap!.class _∼₁_ _∼₂'_ ⦄ ⦃ _ : Smap!.class _∼₁_ _∼₂2_ ⦄ ⦃ _ : Reflexivity.class _∼₁_ ⦄ ⦃ _ : Reflexivity.class _∼₂_ ⦄ ⦃ _ : Reflexivity.class _∼₂'_ ⦄ ⦃ _ : Reflexivity.class _∼₂2_ ⦄ ⦃ _ : Surjidentity!.class _∼₁_ _∼₂_ _∼̇₂_ ⦄ ⦃ _ : Surjidentity!.class _∼₁_ _∼₂'_ _∼̇₂'_ ⦄ ⦃ _ : Surjidentity!.class _∼₁_ _∼₂2_ _∼̇₂2_ ⦄ where test-surj : Surjidentity!.type _∼₁_ _∼₂_ _∼̇₂_ test-surj = surjidentity test-surj[] : Surjidentity!.type _∼₁_ _∼₂_ _∼̇₂_ test-surj[] = surjidentity[ _∼₁_ , _∼̇₂_ ]
{ "alphanum_fraction": 0.4023529412, "avg_line_length": 37.5, "ext": "agda", "hexsha": "418d5c59e9d71912c141b7f7720e4a8dd31d0b99", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/SurjidentityP.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/SurjidentityP.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/SurjidentityP.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 637, "size": 1275 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Definitions where open import Cubical.Core.Everything open import Cubical.Relation.Binary open import Cubical.Data.Sigma using (_×_) open import Cubical.Data.Sum using (_⊎_) open import Cubical.HITs.PropositionalTruncation using (∥_∥) open import Cubical.Algebra.Base private variable a b c ℓ : Level A : Type a B : Type b C : Type c ------------------------------------------------------------------------ -- Properties of operations Congruent₁ : Rel A ℓ → Op₁ A → Type _ Congruent₁ R f = f Preserves R ⟶ R Congruent₂ : Rel A ℓ → Op₂ A → Type _ Congruent₂ R • = • Preserves₂ R ⟶ R ⟶ R LeftCongruent : Rel A ℓ → Op₂ A → Type _ LeftCongruent R _•_ = ∀ {x} → (x •_) Preserves R ⟶ R RightCongruent : Rel A ℓ → Op₂ A → Type _ RightCongruent R _•_ = ∀ {x} → (_• x) Preserves R ⟶ R Homomorphic₀ : (A → B) → A → B → Type _ Homomorphic₀ ⟦_⟧ x y = ⟦ x ⟧ ≡ y Homomorphic₁ : (A → B) → Op₁ A → Op₁ B → Type _ Homomorphic₁ ⟦_⟧ f g = ∀ x → ⟦ f x ⟧ ≡ g ⟦ x ⟧ Homomorphic₂ : (A → B) → Op₂ A → Op₂ B → Type _ Homomorphic₂ ⟦_⟧ _•_ _◦_ = ∀ x y → ⟦ x • y ⟧ ≡ ⟦ x ⟧ ◦ ⟦ y ⟧ Contramorphic₂ : (A → B) → Op₂ A → Op₂ B → Type _ Contramorphic₂ ⟦_⟧ _•_ _◦_ = ∀ x y → ⟦ x • y ⟧ ≡ ⟦ y ⟧ ◦ ⟦ x ⟧ Associative : Op₂ A → Type _ Associative _•_ = ∀ x y z → (x • y) • z ≡ x • (y • z) Commutative : Op₂ A → Type _ Commutative _•_ = ∀ x y → x • y ≡ y • x LeftIdentity : A → Opₗ A B → Type _ LeftIdentity e _•_ = ∀ x → e • x ≡ x RightIdentity : A → Opᵣ A B → Type _ RightIdentity e _•_ = ∀ x → x • e ≡ x Identity : A → Op₂ A → Type _ Identity e • = (LeftIdentity e •) × (RightIdentity e •) LeftZero : A → Opᵣ B A → Type _ LeftZero z _•_ = ∀ x → z • x ≡ z RightZero : A → Opₗ B A → Type _ RightZero z _•_ = ∀ x → x • z ≡ z Zero : A → Op₂ A → Type _ Zero z • = (LeftZero z •) × (RightZero z •) LeftInverse : C → (A → B) → (B → A → C) → Type _ LeftInverse e _⁻¹ _•_ = ∀ x → (x ⁻¹) • x ≡ e RightInverse : C → (A → B) → (A → B → C) → Type _ RightInverse e _⁻¹ _•_ = ∀ x → x • (x ⁻¹) ≡ e Inverse : A → Op₁ A → Op₂ A → Type _ Inverse e ⁻¹ • = (LeftInverse e ⁻¹ •) × (RightInverse e ⁻¹ •) LeftConical : B → Opᵣ A B → Type _ LeftConical e _•_ = ∀ x y → x • y ≡ e → x ≡ e RightConical : B → Opₗ A B → Type _ RightConical e _•_ = ∀ x y → x • y ≡ e → y ≡ e Conical : A → Op₂ A → Type _ Conical e • = (LeftConical e •) × (RightConical e •) _DistributesOverˡ_ : Opₗ A B → Op₂ B → Type _ _*_ DistributesOverˡ _+_ = ∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z)) _DistributesOverʳ_ : Opᵣ A B → Op₂ B → Type _ _*_ DistributesOverʳ _+_ = ∀ x y z → ((y + z) * x) ≡ ((y * x) + (z * x)) _DistributesOver_ : Op₂ A → Op₂ A → Type _ * DistributesOver + = (* DistributesOverˡ +) × (* DistributesOverʳ +) _IdempotentOn_ : Op₂ A → A → Type _ _•_ IdempotentOn x = (x • x) ≡ x Idempotent : Op₂ A → Type _ Idempotent • = ∀ x → • IdempotentOn x IdempotentFun : Op₁ A → Type _ IdempotentFun f = ∀ x → f (f x) ≡ f x Selective : Op₂ A → Type _ Selective _•_ = ∀ x y → ∥ (x • y ≡ x) ⊎ (x • y ≡ y) ∥ _Absorbs_ : Op₂ A → Op₂ A → Type _ _∧_ Absorbs _∨_ = ∀ x y → (x ∧ (x ∨ y)) ≡ x Absorptive : Op₂ A → Op₂ A → Type _ Absorptive ∧ ∨ = (∧ Absorbs ∨) × (∨ Absorbs ∧) Involutive : Op₁ A → Type _ Involutive f = ∀ x → f (f x) ≡ x LeftCancellative : (A → B → C) → Type _ LeftCancellative _•_ = ∀ x {y z} → (x • y) ≡ (x • z) → y ≡ z RightCancellative : (A → B → C) → Type _ RightCancellative _•_ = ∀ {x y} z → (x • z) ≡ (y • z) → x ≡ y Cancellative : (A → A → B) → Type _ Cancellative • = (LeftCancellative •) × (RightCancellative •) Interchangeable : Op₂ A → Op₂ A → Type _ Interchangeable _•_ _◦_ = ∀ w x y z → ((w • x) ◦ (y • z)) ≡ ((w ◦ y) • (x ◦ z))
{ "alphanum_fraction": 0.556244942, "avg_line_length": 28.2977099237, "ext": "agda", "hexsha": "e8db90c242593ea31627fbe0c3f24d67f1afc18b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Definitions.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Definitions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1553, "size": 3707 }
{-# OPTIONS --rewriting #-} module Luau.Heap where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Maybe using (Maybe; just; nothing) open import FFI.Data.Vector using (Vector; length; snoc; empty; lookup-snoc-not) open import Luau.Addr using (Addr; _≡ᴬ_) open import Luau.Var using (Var) open import Luau.Syntax using (Block; Expr; Annotated; FunDec; nil; function_is_end) open import Properties.Equality using (_≢_; trans) open import Properties.Remember using (remember; _,_) open import Properties.Dec using (yes; no) -- Heap-allocated objects data Object (a : Annotated) : Set where function_is_end : FunDec a → Block a → Object a Heap : Annotated → Set Heap a = Vector (Object a) data _≡_⊕_↦_ {a} : Heap a → Heap a → Addr → Object a → Set where defn : ∀ {H val} → ----------------------------------- (snoc H val) ≡ H ⊕ (length H) ↦ val _[_] : ∀ {a} → Heap a → Addr → Maybe (Object a) _[_] = FFI.Data.Vector.lookup ∅ : ∀ {a} → Heap a ∅ = empty data AllocResult a (H : Heap a) (V : Object a) : Set where ok : ∀ b H′ → (H′ ≡ H ⊕ b ↦ V) → AllocResult a H V alloc : ∀ {a} H V → AllocResult a H V alloc H V = ok (length H) (snoc H V) defn next : ∀ {a} → Heap a → Addr next = length allocated : ∀ {a} → Heap a → Object a → Heap a allocated = snoc lookup-not-allocated : ∀ {a} {H H′ : Heap a} {b c O} → (H′ ≡ H ⊕ b ↦ O) → (c ≢ b) → (H [ c ] ≡ H′ [ c ]) lookup-not-allocated {H = H} {O = O} defn p = lookup-snoc-not O H p
{ "alphanum_fraction": 0.6177868296, "avg_line_length": 29.46, "ext": "agda", "hexsha": "713b0a1aea19f35a8121f5ab0dec50fd337fa8c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Luau/Heap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Luau/Heap.agda", "max_line_length": 104, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Luau/Heap.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 499, "size": 1473 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Paths open import lib.types.Pi open import lib.types.Unit open import lib.types.Nat open import lib.types.TLevel open import lib.types.Pointed open import lib.types.Sigma open import lib.NType2 open import lib.types.PathSeq open import nicolai.pseudotruncations.Liblemmas open import nicolai.pseudotruncations.SeqColim {- The main work is done in two separate files. The first defines some general lemmas and constructs what is overline(i) in the paper. The second is the 'heptagon-argument', a very tedious calculation with paths, which constructs what is overline(g) in the paper -- the coherence laws for overline (i). -} open import nicolai.pseudotruncations.wconst-preparation open import nicolai.pseudotruncations.heptagon module nicolai.pseudotruncations.wconstSequence where {- As a first step, assume we are given a weakly constant sequence with an inhabitant of the first type. -} module _ {i} {C : Sequence {i}} (wc : wconst-chain C) (a₀ : fst C O) where {- We want to show that the colimit of this sequence is contractible. The heart of the argument are the definitions of the data that is needed in order to apply the induction principle of the sequential colimit. We call these î and ĝ. They are not constructed here, but in two separate files; the construction of ĝ is very tedious. Here, we just load them from the files where they are defined. -} {- First, some preliminary lemmas and the definition of î, defined in the following module: -} open wconst-init {i} {C} wc a₀ î : (n : ℕ) → (a : A n) → (ins {C = C} n a) =-= (ins O a₀) î = î-def {- from î, we get the 'real' overline(i) just by applying ↯, i.e. by getting the path out of the sequence î -} ins-n-O : (n : ℕ) → (a : A n) → ins {C = C} n a == ins O a₀ ins-n-O n a = ↯ (î-def n a) {- The difficult part is ĝ, in the paper called 'overline(g)'. It is defined in heptagon.agda and just loaded here. -} ĝ : (n : ℕ) → (a : A n) → (↯ ((î (S n) (f n a)) ⋯ (‼ (î n a) ⋯ toSeq (glue n a)))) == idp ĝ n a = ĝ-def wc a₀ n a -- from ĝ, we should be able to get this postulate: postulate ins-glue-coh : (n : ℕ) (a : A n) → ins-n-O (S n) (f n a) ∙ ! (ins-n-O n a) ∙ glue n a == idp -- ins-glue-coh n a = {!ins-n-O n a !} -- {!ĝ n a!} {- Now, we define the 'real' overline(g) from the text; this is just the 'unwrapped' version of ĝ, and not much happens here! All we are doing is showing that commutativity of the 'triangle' is really enough. The hard part is the commutativity of the 'triangle' which, is shown via commutativity of the 'heptagon', which we have already done! -} glue-n-O : (n : ℕ) (a : A n) → (ins-n-O n a) == (ins-n-O (S n) (f n a)) [ (λ w → w == ins O a₀) ↓ glue n a ] glue-n-O n a = from-transp _ (glue n a) -- now, let use calculate... (transport (λ w → w == ins O a₀) (glue n a) (ins-n-O n a) -- we use the version of trans-ap where the second function is constant =⟨ trans-ap₁ (idf _) (ins O a₀) (glue n a) (ins-n-O n a) ⟩ ! (ap (idf _) (glue n a)) ∙ (ins-n-O n a) =⟨ ap (λ p → (! p) ∙ (ins-n-O n a)) (ap-idf (glue n a)) ⟩ ! (glue n a) ∙ (ins-n-O n a) -- we use the adhoc lemma to 're-order' paths =⟨ ! (adhoc-lemma (ins-n-O (S n) (f n a)) (ins-n-O n a) (glue n a) (ins-glue-coh n a)) ⟩ ins-n-O (S n) (f n a) ∎) -- We combine 'overline(i)' and 'overline(g)' to conclude: equal-n-O : (w : SC) → w == ins O a₀ equal-n-O = SeqCo-ind ins-n-O glue-n-O -- Thus, the sequential colimit is contractible: SC-contr : is-contr SC SC-contr = ins O a₀ , (λ w → ! (equal-n-O w)) {- This completes the proof that the sequential colimit of a weakly constant sequence with *inhabited first type* is contractible. Let us now work with general weakly constant sequences again. First, let us now show that removing the first map from a weakly constant sequence gives a weakly constant sequence. Then, we show that we can remove any finite initial sequence. Of course, this is trivial; the conclusion of the statement asks for weak constancy of nearly all of the maps, while the assumption gives weak constancy of all maps. -} removeFst-preserves-wconst : ∀ {i} → (C : Sequence {i}) → wconst-chain C → wconst-chain (removeFst C) removeFst-preserves-wconst C wc n = wc (S n) removeInit-preserves-wconst : ∀ {i} → (C : Sequence {i}) → (n : ℕ) → wconst-chain C → wconst-chain (removeInit C n) removeInit-preserves-wconst C O wc = wc removeInit-preserves-wconst C (S n) wc = removeInit-preserves-wconst (removeFst C) n (removeFst-preserves-wconst C wc) {- THE FIRST MAIN RESULT: the colimit of a weakly constant sequence is propositional. -} wconst-prop : ∀ {i} → (C : Sequence {i}) → wconst-chain C → is-prop (SeqCo C) wconst-prop C wc = inhab-to-contr-is-prop (SeqCo-rec wc-prp-ins automatic) where A = fst C f = snd C wc-prp-ins : (n : ℕ) → A n → is-contr (SeqCo C) wc-prp-ins n a = equiv-preserves-level {n = ⟨-2⟩} (ignore-init C n ⁻¹) C'-contr where C' = removeInit C n A' = fst C' f' = snd C' a₀' : A' O a₀' = new-initial C n a wc' : wconst-chain C' wc' = removeInit-preserves-wconst C n wc C'-contr : is-contr (SeqCo C') C'-contr = SC-contr wc' a₀' automatic : (n : ℕ) (a : fst C n) → wc-prp-ins n a == wc-prp-ins (S n) (snd C n a) automatic n a = prop-has-all-paths (has-level-is-prop {n = ⟨-2⟩} {A = SeqCo C}) _ _
{ "alphanum_fraction": 0.61263266, "avg_line_length": 35.6219512195, "ext": "agda", "hexsha": "fc181a3889af458d693526258738656760b7f00d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/pseudotruncations/wconstSequence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/pseudotruncations/wconstSequence.agda", "max_line_length": 115, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/pseudotruncations/wconstSequence.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1876, "size": 5842 }
module _ where module M where record S : Set₁ where open M field F1 : Set F2 : {!!}
{ "alphanum_fraction": 0.5757575758, "avg_line_length": 9, "ext": "agda", "hexsha": "128600e3f8e0d5ef252223b50f42d97f7ae9b4d0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2420.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2420.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2420.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 35, "size": 99 }
{-# OPTIONS --without-K --no-pattern-matching #-} module Ch2-9 where open import Level hiding (lift) open import Ch2-1 open import Ch2-2 open import Ch2-3 open import Ch2-4 open import Ch2-5 open import Ch2-6 open import Ch2-7 open import Ch2-8 open import Data.Product open import Function using (id; _∘_) -- happly (Definition 2.9.2) happly : ∀ {a} {b} {A : Set a} {B : A → Set b} → {f g : (x : A) → B x} → (f ≡ g) → (f ~ g) happly {_} {_} {A} {B} {f} {g} p = J ((x : A) → B x) D d f g p where D : (f g : (x : A) → B x) (p : f ≡ g) → Set _ D f g p = f ~ g d : (x : (x : A) → B x) → D x x refl d f x = refl postulate funext : ∀ {a} {b} {A : Set a} {B : A → Set b} → {f g : (x : A) → B x} → (f ~ g) → (f ≡ g) Theorem-2-9-1 : ∀ {a} {b} {A : Set a} {B : A → Set b} → (f g : (x : A) → B x) → (f ≡ g) ≅ (f ~ g) Theorem-2-9-1 {_} {_} {A} {B} f g = happly , (funext , α) , (funext , {! !}) where α : happly ∘ funext ~ id α p = J {! !} D {! !} f g (funext p) -- J ((x : A) → B x) D d f g (funext p) -- where D : (f g : (x : A) → B x) (p : {! !}) → Set _ D f g p = {! !} -- ((λ {x} → happly) ∘ funext) p ≡ id p -- ((λ {x} → happly) ∘ funext) p ≡ id p -- happly ∘ funext ~ id -- d : (x : (x : A) → B x) → D x x refl -- d x = refl -- happly-isequiv : isequiv (happly f g) -- happly-isequiv = -- where -- f : x ≡ y → ⊤ -- f p = tt -- -- f' : ⊤ → x ≡ y -- f' x = refl -- -- α : (λ _ → f refl) ~ id -- α w = refl -- -- β : (λ _ → refl) ~ id -- β w = J ⊤ D d x y w -- where -- D : (x y : ⊤) (p : x ≡ y) → Set _ -- D x y p = refl ≡ id p -- -- d : (x : ⊤) → D x x refl -- d x = refl -- -- f-isequiv : isequiv f -- f-isequiv = (f' , α) , f' , β
{ "alphanum_fraction": 0.4037333333, "avg_line_length": 23.1481481481, "ext": "agda", "hexsha": "e394e437d1650a478d27e3946469284ff1737840", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/hott", "max_forks_repo_path": "src/Ch2-9.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/hott", "max_issues_repo_path": "src/Ch2-9.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/hott", "max_stars_repo_path": "src/Ch2-9.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 839, "size": 1875 }
module Unique where open import Category module Uniq (ℂ : Cat) where private open module C = Cat ℂ -- We say that f ∈! P iff f is the unique arrow satisfying P. data _∈!_ {A B : Obj}(f : A ─→ B)(P : A ─→ B -> Set) : Set where unique : (forall g -> P g -> f == g) -> f ∈! P itsUnique : {A B : Obj}{f : A ─→ B}{P : A ─→ B -> Set} -> f ∈! P -> (g : A ─→ B) -> P g -> f == g itsUnique (unique h) = h data ∃! {A B : Obj}(P : A ─→ B -> Set) : Set where witness : (f : A ─→ B) -> f ∈! P -> ∃! P getWitness : {A B : Obj}{P : A ─→ B -> Set} -> ∃! P -> A ─→ B getWitness (witness w _) = w uniqueWitness : {A B : Obj}{P : A ─→ B -> Set}(u : ∃! P) -> getWitness u ∈! P uniqueWitness (witness _ u) = u witnessEqual : {A B : Obj}{P : A ─→ B -> Set} -> ∃! P -> {f g : A ─→ B} -> P f -> P g -> f == g witnessEqual u {f} {g} pf pg = trans (sym hf) hg where h = getWitness u hf : h == f hf = itsUnique (uniqueWitness u) f pf hg : h == g hg = itsUnique (uniqueWitness u) g pg
{ "alphanum_fraction": 0.4775977121, "avg_line_length": 26.8974358974, "ext": "agda", "hexsha": "eadeb8244134885ab00e0f2545506b009d97431a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/cat/Unique.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/cat/Unique.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/cat/Unique.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 422, "size": 1049 }
module MLib.Fin.Parts.Nat.Simple.Properties where open import MLib.Prelude open import MLib.Fin.Parts.Nat import MLib.Fin.Parts.Nat.Simple as S module P a b = Partsℕ (S.repl a b) open Nat using (_*_; _+_; _<_) open Fin using (toℕ; fromℕ≤) open List fromAny : ∀ a b → Any Fin (S.repl a b) → ℕ × ℕ fromAny zero b () fromAny (suc a) b (here j) = 0 , Fin.toℕ j fromAny (suc a) b (there js) = let i , j = fromAny a b js in suc i , j intoPart-prop : ∀ a b {ps : Any Fin (S.repl a b)} → P.intoPart a b ps ≡ S.intoPart a b (fromAny a b ps) intoPart-prop zero b {()} intoPart-prop (suc a) b {here px} = ≡.sym (Nat.+-identityʳ _) intoPart-prop (suc a) b {there ps} = let ind = intoPart-prop a b {ps} i , j = fromAny a b ps open ≡.Reasoning open Nat.SemiringSolver in begin b + Impl.intoPart ps ≡⟨ ≡.cong₂ _+_ ≡.refl ind ⟩ b + (j + i * b) ≡⟨ solve 3 (λ b j ib → b :+ (j :+ ib) := j :+ (b :+ ib)) ≡.refl b j (i * b) ⟩ j + (b + i * b) ∎ lem : ∀ a b {k} → k < a * b → k < sum (S.repl a b) lem a b p = Nat.≤-trans p (Nat.≤-reflexive (≡.sym (S.sum-replicate-* a b))) fromPart-prop : ∀ a b {k} → k < a * b → Maybe.map (fromAny a b) (Impl.fromPart (S.repl a b) k) ≡ just (S.fromPart a b k) fromPart-prop zero b () fromPart-prop (suc a) b {k} p with Impl.compare′ k b fromPart-prop (suc a) .(suc (m + k)) {.m} p | Impl.less m k = ≡.cong just (Σ.≡×≡⇒≡ (≡.refl , Fin.toℕ-fromℕ≤ _)) fromPart-prop (suc a) b {.(b + k)} p | Impl.gte .b k with Impl.fromPart (S.repl a b) k | fromPart-prop a b {k} (Nat.+-cancelˡ-< b p) fromPart-prop (suc a) b {.(b + k)} p | Impl.gte .b k | just x | ind = let e1 , e2 = Σ.≡⇒≡×≡ (Maybe.just-injective ind) in ≡.cong just (Σ.≡×≡⇒≡ (≡.cong suc e1 , e2)) fromPart-prop (suc a) b {.(b + k)} p | Impl.gte .b k | nothing | () fromPart′-prop : ∀ a b {k} (p : k < a * b) → fromAny a b (P.fromPart a b {k} (lem a b p)) ≡ S.fromPart a b k fromPart′-prop a b {k} p with Impl.fromPart (S.repl a b) k | Impl.fromPart-prop (S.repl a b) (lem a b p) | fromPart-prop a b p fromPart′-prop a b {k} p | just x | y | z = Maybe.just-injective z fromPart′-prop a b {k} p | nothing | () | z
{ "alphanum_fraction": 0.5759700795, "avg_line_length": 41.9411764706, "ext": "agda", "hexsha": "50fc40fbd27301798899163254b37bff654c6097", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Fin/Parts/Nat/Simple/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Fin/Parts/Nat/Simple/Properties.agda", "max_line_length": 132, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Fin/Parts/Nat/Simple/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 917, "size": 2139 }
module Luau.Substitution where open import Luau.Syntax using (Expr; Stat; Block; nil; addr; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; _⟨_⟩ ; name; fun; arg; number; binexp) open import Luau.Value using (Value; val) open import Luau.Var using (Var; _≡ⱽ_) open import Properties.Dec using (Dec; yes; no) _[_/_]ᴱ : ∀ {a} → Expr a → Value → Var → Expr a _[_/_]ᴮ : ∀ {a} → Block a → Value → Var → Block a var_[_/_]ᴱwhenever_ : ∀ {a P} → Var → Value → Var → (Dec P) → Expr a _[_/_]ᴮunless_ : ∀ {a P} → Block a → Value → Var → (Dec P) → Block a nil [ v / x ]ᴱ = nil var y [ v / x ]ᴱ = var y [ v / x ]ᴱwhenever (x ≡ⱽ y) addr a [ v / x ]ᴱ = addr a (number y) [ v / x ]ᴱ = number y (M $ N) [ v / x ]ᴱ = (M [ v / x ]ᴱ) $ (N [ v / x ]ᴱ) function F is C end [ v / x ]ᴱ = function F is C [ v / x ]ᴮunless (x ≡ⱽ name(arg F)) end block b is C end [ v / x ]ᴱ = block b is C [ v / x ]ᴮ end (binexp e₁ op e₂) [ v / x ]ᴱ = binexp (e₁ [ v / x ]ᴱ) op (e₂ [ v / x ]ᴱ) (function F is C end ∙ B) [ v / x ]ᴮ = function F is (C [ v / x ]ᴮunless (x ≡ⱽ name(arg F))) end ∙ (B [ v / x ]ᴮunless (x ≡ⱽ fun F)) (local y ← M ∙ B) [ v / x ]ᴮ = local y ← (M [ v / x ]ᴱ) ∙ (B [ v / x ]ᴮunless (x ≡ⱽ name y)) (return M ∙ B) [ v / x ]ᴮ = return (M [ v / x ]ᴱ) ∙ (B [ v / x ]ᴮ) done [ v / x ]ᴮ = done var y [ v / x ]ᴱwhenever yes p = val v var y [ v / x ]ᴱwhenever no p = var y B [ v / x ]ᴮunless yes p = B B [ v / x ]ᴮunless no p = B [ v / x ]ᴮ
{ "alphanum_fraction": 0.5402777778, "avg_line_length": 45, "ext": "agda", "hexsha": "61287d36c4ed35655474484ad654b934ba3e9b9c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Tr4shh/Roblox-Luau", "max_forks_repo_path": "prototyping/Luau/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Tr4shh/Roblox-Luau", "max_issues_repo_path": "prototyping/Luau/Substitution.agda", "max_line_length": 169, "max_stars_count": null, "max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Tr4shh/Roblox-Luau", "max_stars_repo_path": "prototyping/Luau/Substitution.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 682, "size": 1440 }
{-# OPTIONS --without-K #-} open import M-types.Base.Core open import M-types.Base.Sum open import M-types.Base.Prod open import M-types.Base.Eq module M-types.Base.Contr where IsContr : ∏[ X ∈ Ty ℓ ] Ty ℓ IsContr X = ∑[ x ∈ X ] ∏[ x′ ∈ X ] x′ ≡ x Contr : Ty (ℓ-suc ℓ) Contr {ℓ} = ∑[ X ∈ Ty ℓ ] IsContr X
{ "alphanum_fraction": 0.5907692308, "avg_line_length": 21.6666666667, "ext": "agda", "hexsha": "bc080a2d3999845099e5c8209e80e9268e8b37ba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DDOtten/M-types", "max_forks_repo_path": "Base/Contr.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DDOtten/M-types", "max_issues_repo_path": "Base/Contr.agda", "max_line_length": 45, "max_stars_count": null, "max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DDOtten/M-types", "max_stars_repo_path": "Base/Contr.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 119, "size": 325 }
{-# OPTIONS --without-K #-} module Model.Product where open import Cats.Category open import Data.Product using (<_,_>) open import Model.Type.Core open import Util.HoTT.HLevel open import Util.Prelude hiding (_×_) infixr 5 _×_ _×_ : ∀ {Γ} (T U : ⟦Type⟧ Γ) → ⟦Type⟧ Γ T × U = record { ObjHSet = λ δ → T .ObjHSet δ ×-HSet U .ObjHSet δ ; eqHProp = λ where γ≈γ′ (x , x′) (y , y′) → T .eqHProp γ≈γ′ x y ×-HProp U .eqHProp γ≈γ′ x′ y′ ; eq-refl = λ where (x , y) → T .eq-refl x , U .eq-refl y } π₁ : ∀ {Γ} {T} (U : ⟦Type⟧ Γ) → T × U ⇒ T π₁ U = record { fobj = proj₁ ; feq = λ p → proj₁ } π₂ : ∀ {Γ} T {U : ⟦Type⟧ Γ} → T × U ⇒ U π₂ T = record { fobj = proj₂ ; feq = λ p → proj₂ } ⟨_,_⟩ : ∀ {Γ} {X T U : ⟦Type⟧ Γ} → X ⇒ T → X ⇒ U → X ⇒ T × U ⟨ f , g ⟩ = record { fobj = < f .fobj , g .fobj > ; feq = λ γ≈γ′ → < f .feq γ≈γ′ , g .feq γ≈γ′ > } instance hasBinaryProducts : ∀ {Γ} → HasBinaryProducts (⟦Types⟧ Γ) hasBinaryProducts .HasBinaryProducts._×′_ T U = record { prod = T × U ; proj = λ where true → π₁ U false → π₂ T ; isProduct = λ π′ → record { arr = ⟨ π′ true , π′ false ⟩ ; prop = λ where true → ≈⁺ λ γ x → refl false → ≈⁺ λ γ x → refl ; unique = λ {f} f-prop → ≈⁺ λ γ x → cong₂ _,_ (f-prop true .≈⁻ γ x) (f-prop false .≈⁻ γ x) } } open module ⟦Types⟧× {Γ} = HasBinaryProducts (hasBinaryProducts {Γ}) public using ( ⟨_×_⟩ ) renaming ( ×-resp-≅ to ×-resp-≈⟦Type⟧ )
{ "alphanum_fraction": 0.5042847726, "avg_line_length": 21.6714285714, "ext": "agda", "hexsha": "2d71d90f49dedc595a77c4d4a8868f066228c552", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Model/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Model/Product.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Model/Product.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 660, "size": 1517 }
{- This file contains: Properties of the FreeGroup: - FreeGroup A is Set, SemiGroup, Monoid, Group - Recursion principle for the FreeGroup - Induction principle for the FreeGroup on hProps - Condition for the equality of Group Homomorphisms from FreeGroup - Equivalence of the types (A → Group .fst) (GroupHom (freeGroupGroup A) Group) -} {-# OPTIONS --safe #-} module Cubical.HITs.FreeGroup.Properties where open import Cubical.HITs.FreeGroup.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Path open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.BiInvertible open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Monoid.Base open import Cubical.Algebra.Semigroup.Base private variable ℓ ℓ' : Level A : Type ℓ freeGroupIsSet : isSet (FreeGroup A) freeGroupIsSet = trunc freeGroupIsSemiGroup : IsSemigroup {A = FreeGroup A} _·_ freeGroupIsSemiGroup = issemigroup freeGroupIsSet assoc freeGroupIsMonoid : IsMonoid {A = FreeGroup A} ε _·_ freeGroupIsMonoid = ismonoid freeGroupIsSemiGroup (λ x → sym (idr x)) (λ x → sym (idl x)) freeGroupIsGroup : IsGroup {G = FreeGroup A} ε _·_ inv freeGroupIsGroup = isgroup freeGroupIsMonoid invr invl freeGroupGroupStr : GroupStr (FreeGroup A) freeGroupGroupStr = groupstr ε _·_ inv freeGroupIsGroup -- FreeGroup is indeed a group freeGroupGroup : Type ℓ → Group ℓ freeGroupGroup A = FreeGroup A , freeGroupGroupStr -- The recursion principle for the FreeGroup rec : {Group : Group ℓ'} → (A → Group .fst) → GroupHom (freeGroupGroup A) Group rec {Group = G , groupstr 1g _·g_ invg (isgroup (ismonoid isSemigroupg ·gIdR ·gIdL) ·gInvR ·gInvL)} f = f' , isHom where f' : FreeGroup _ → G f' (η a) = f a f' (g1 · g2) = (f' g1) ·g (f' g2) f' ε = 1g f' (inv g) = invg (f' g) f' (assoc g1 g2 g3 i) = IsSemigroup.·Assoc isSemigroupg (f' g1) (f' g2) (f' g3) i f' (idr g i) = sym (·gIdR (f' g)) i f' (idl g i) = sym (·gIdL (f' g)) i f' (invr g i) = ·gInvR (f' g) i f' (invl g i) = ·gInvL (f' g) i f' (trunc g1 g2 p q i i₁) = IsSemigroup.is-set isSemigroupg (f' g1) (f' g2) (cong f' p) (cong f' q) i i₁ isHom : IsGroupHom freeGroupGroupStr f' _ IsGroupHom.pres· isHom = λ g1 g2 → refl IsGroupHom.pres1 isHom = refl IsGroupHom.presinv isHom = λ g → refl -- The induction principle for the FreeGroup for hProps elimProp : {B : FreeGroup A → Type ℓ'} → ((x : FreeGroup A) → isProp (B x)) → ((a : A) → B (η a)) → ((g1 g2 : FreeGroup A) → B g1 → B g2 → B (g1 · g2)) → (B ε) → ((g : FreeGroup A) → B g → B (inv g)) → (x : FreeGroup A) → B x elimProp {B = B} Bprop η-ind ·-ind ε-ind inv-ind = induction where induction : ∀ g → B g induction (η a) = η-ind a induction (g1 · g2) = ·-ind g1 g2 (induction g1) (induction g2) induction ε = ε-ind induction (inv g) = inv-ind g (induction g) induction (assoc g1 g2 g3 i) = path i where p1 : B g1 p1 = induction g1 p2 : B g2 p2 = induction g2 p3 : B g3 p3 = induction g3 path : PathP (λ i → B (assoc g1 g2 g3 i)) (·-ind g1 (g2 · g3) p1 (·-ind g2 g3 p2 p3)) (·-ind (g1 · g2) g3 (·-ind g1 g2 p1 p2) p3) path = isProp→PathP (λ i → Bprop (assoc g1 g2 g3 i)) (·-ind g1 (g2 · g3) p1 (·-ind g2 g3 p2 p3)) (·-ind (g1 · g2) g3 (·-ind g1 g2 p1 p2) p3) induction (idr g i) = path i where p : B g p = induction g pε : B ε pε = induction ε path : PathP (λ i → B (idr g i)) p (·-ind g ε p pε) path = isProp→PathP (λ i → Bprop (idr g i)) p (·-ind g ε p pε) induction (idl g i) = path i where p : B g p = induction g pε : B ε pε = induction ε path : PathP (λ i → B (idl g i)) p (·-ind ε g pε p) path = isProp→PathP (λ i → Bprop (idl g i)) p (·-ind ε g pε p) induction (invr g i) = path i where p : B g p = induction g pinv : B (inv g) pinv = inv-ind g p pε : B ε pε = induction ε path : PathP (λ i → B (invr g i)) (·-ind g (inv g) p pinv) pε path = isProp→PathP (λ i → Bprop (invr g i)) (·-ind g (inv g) p pinv) pε induction (invl g i) = path i where p : B g p = induction g pinv : B (inv g) pinv = inv-ind g p pε : B ε pε = induction ε path : PathP (λ i → B (invl g i)) (·-ind (inv g) g pinv p) pε path = isProp→PathP (λ i → Bprop (invl g i)) (·-ind (inv g) g pinv p) pε induction (trunc g1 g2 q1 q2 i i₁) = square i i₁ where p1 : B g1 p1 = induction g1 p2 : B g2 p2 = induction g2 dq1 : PathP (λ i → B (q1 i)) p1 p2 dq1 = cong induction q1 dq2 : PathP (λ i → B (q2 i)) p1 p2 dq2 = cong induction q2 square : SquareP (λ i i₁ → B (trunc g1 g2 q1 q2 i i₁)) {a₀₀ = p1} {a₀₁ = p2} dq1 {a₁₀ = p1} {a₁₁ = p2} dq2 (cong induction (refl {x = g1})) (cong induction (refl {x = g2})) square = isProp→SquareP (λ i i₁ → Bprop (trunc g1 g2 q1 q2 i i₁)) (cong induction (refl {x = g1})) (cong induction (refl {x = g2})) dq1 dq2 -- Two group homomorphisms from FreeGroup to G are the same if they agree on every a : A freeGroupHom≡ : {Group : Group ℓ'}{f g : GroupHom (freeGroupGroup A) Group} → (∀ a → (fst f) (η a) ≡ (fst g) (η a)) → f ≡ g freeGroupHom≡ {Group = G , (groupstr 1g _·g_ invg isGrp)} {f} {g} eqOnA = GroupHom≡ (funExt pointwise) where B : ∀ x → Type _ B x = (fst f) x ≡ (fst g) x Bprop : ∀ x → isProp (B x) Bprop x = (isSetGroup (G , groupstr 1g _·g_ invg isGrp)) ((fst f) x) ((fst g) x) η-ind : ∀ a → B (η a) η-ind = eqOnA ·-ind : ∀ g1 g2 → B g1 → B g2 → B (g1 · g2) ·-ind g1 g2 ind1 ind2 = (fst f) (g1 · g2) ≡⟨ IsGroupHom.pres· (f .snd) g1 g2 ⟩ ((fst f) g1) ·g ((fst f) g2) ≡⟨ cong (λ x → x ·g ((fst f) g2)) ind1 ⟩ ((fst g) g1) ·g ((fst f) g2) ≡⟨ cong (λ x → ((fst g) g1) ·g x) ind2 ⟩ ((fst g) g1) ·g ((fst g) g2) ≡⟨ sym (IsGroupHom.pres· (g .snd) g1 g2) ⟩ (fst g) (g1 · g2) ∎ ε-ind : B ε ε-ind = (fst f) ε ≡⟨ IsGroupHom.pres1 (f .snd) ⟩ 1g ≡⟨ sym (IsGroupHom.pres1 (g .snd)) ⟩ (fst g) ε ∎ inv-ind : ∀ x → B x → B (inv x) inv-ind x ind = (fst f) (inv x) ≡⟨ IsGroupHom.presinv (f .snd) x ⟩ invg ((fst f) x) ≡⟨ cong invg ind ⟩ invg ((fst g) x) ≡⟨ sym (IsGroupHom.presinv (g .snd) x) ⟩ (fst g) (inv x) ∎ pointwise : ∀ x → (fst f) x ≡ (fst g) x pointwise = elimProp Bprop η-ind ·-ind ε-ind inv-ind -- The type of Group Homomorphisms from the FreeGroup A into G -- is equivalent to the type of functions from A into G .fst A→Group≃GroupHom : {Group : Group ℓ'} → (A → Group .fst) ≃ GroupHom (freeGroupGroup A) Group A→Group≃GroupHom {Group = Group} = biInvEquiv→Equiv-right biInv where biInv : BiInvEquiv (A → Group .fst) (GroupHom (freeGroupGroup A) Group) BiInvEquiv.fun biInv = rec BiInvEquiv.invr biInv (hom , _) a = hom (η a) BiInvEquiv.invr-rightInv biInv hom = freeGroupHom≡ (λ a → refl) BiInvEquiv.invl biInv (hom , _) a = hom (η a) BiInvEquiv.invl-leftInv biInv f = funExt (λ a → refl)
{ "alphanum_fraction": 0.5809536638, "avg_line_length": 36.9353233831, "ext": "agda", "hexsha": "d3bdc748c8327b91f74285393fe8798fd4d4bbea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/FreeGroup/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/FreeGroup/Properties.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/FreeGroup/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2910, "size": 7424 }
-- Andreas, 2013-11-11 Better error for wrongly named implicit arg. module Issue949 where postulate S : Set F : {A : Set} → Set ok : F {A = S} err : F {B = S} -- Old error: -- -- Set should be a function type, but it isn't -- when checking that {B = S} are valid arguments to a function of -- type Set -- New error (after fixing also issue 951): -- -- Function does not accept argument {B = _} -- when checking that {B = S} are valid arguments to a function of -- type {A : Set} → Set
{ "alphanum_fraction": 0.6387225549, "avg_line_length": 23.8571428571, "ext": "agda", "hexsha": "0db25d3a3a7b826e6650189c8a2b5212a7870e6d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue949.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue949.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue949.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 152, "size": 501 }
open import Common.Prelude open import Common.Reflect module TermSplicingLooping where mutual f : Set -> Set f = unquote (def (quote f) [])
{ "alphanum_fraction": 0.7260273973, "avg_line_length": 16.2222222222, "ext": "agda", "hexsha": "bc75450a996b1739f799ec25ca35dadfe5c84869", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/TermSplicingLooping.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/TermSplicingLooping.agda", "max_line_length": 32, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/TermSplicingLooping.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 42, "size": 146 }
module Lec1Start where -- the -- mark introduces a "comment to end of line" ------------------------------------------------------------------------------ -- some basic "logical" types ------------------------------------------------------------------------------ data Zero : Set where -- to give a value in a data, choose one constructor -- there are no constructors -- so that's impossible record One : Set where -- to give a value in a record type, fill all its fields -- there are no fields -- so that's trivial -- (can we have a constructor, for convenience?) data _+_ (S : Set)(T : Set) : Set where -- "where" wants an indented block -- to offer a choice of constructors, list them with their types inl : S -> S + T -- constructors can pack up stuff inr : T -> S + T -- in Haskell, this was called "Either S T" record _*_ (S : Set)(T : Set) : Set where field -- introduces a bunch of fields, listed with their types fst : S snd : T -- in Haskell, this was called "(S, T)" ------------------------------------------------------------------------------ -- some simple proofs ------------------------------------------------------------------------------ {-+} comm-* : {A : Set}{B : Set} -> A * B -> B * A comm-* x = ? {+-} {-+} assocLR-+ : {A B C : Set} -> (A + B) + C -> A + (B + C) assocLR-+ x = ? {+-} {-+} _$*_ : {A A' B B' : Set} -> (A -> A') -> (B -> B') -> A * B -> A' * B' (f $* g) x = r? {+-} -- record syntax is rather ugly for small stuff; can we have constructors? {-+} _$+_ : {A A' B B' : Set} -> (A -> A') -> (B -> B') -> A + B -> A' + B' (f $+ g) x = ? {+-} {-+} combinatorK : {A E : Set} -> A -> E -> A combinatorK = ? combinatorS : {S T E : Set} -> (E -> S -> T) -> (E -> S) -> E -> T combinatorS = ? {+-} {-+} id : {X : Set} -> X -> X -- id x = x -- is the easy way; let's do it a funny way to make a point id = ? {+-} {-+} naughtE : {X : Set} -> Zero -> X naughtE x = ? {+-} ------------------------------------------------------------------------------ -- from logic to data ------------------------------------------------------------------------------ data Nat : Set where zero : Nat suc : Nat -> Nat -- recursive data type {-# BUILTIN NATURAL Nat #-} -- ^^^^^^^^^^^^^^^^^^^ this pragma lets us use decimal notation {-+} _+N_ : Nat -> Nat -> Nat x +N y = ? four : Nat four = 2 +N 2 {+-} ------------------------------------------------------------------------------ -- and back to logic ------------------------------------------------------------------------------ {-+} data _==_ {X : Set} : X -> X -> Set where refl : (x : X) -> x == x -- the relation that's "only reflexive" {-# BUILTIN EQUALITY _==_ #-} -- we'll see what that's for, later _=$=_ : {X Y : Set}{f f' : X -> Y}{x x' : X} -> f == f' -> x == x' -> f x == f' x' fq =$= xq = ? {+-} {-+} zero-+N : (n : Nat) -> (zero +N n) == n zero-+N n = ? +N-zero : (n : Nat) -> (n +N zero) == n +N-zero n = ? assocLR-+N : (x y z : Nat) -> ((x +N y) +N z) == (x +N (y +N z)) assocLR-+N x y z = ? {+-} ------------------------------------------------------------------------------ -- computing types ------------------------------------------------------------------------------ {-+} _>=_ : Nat -> Nat -> Set x >= zero = One zero >= suc y = Zero suc x >= suc y = x >= y refl->= : (n : Nat) -> n >= n refl->= n = {!!} trans->= : (x y z : Nat) -> x >= y -> y >= z -> x >= z trans->= x y z x>=y y>=z = {!!} {+-} ------------------------------------------------------------------------------ -- construction by proof ------------------------------------------------------------------------------ {-+} record Sg (S : Set)(T : S -> Set) : Set where -- Sg is short for "Sigma" constructor _,_ field -- introduces a bunch of fields, listed with their types fst : S snd : T fst -- make _*_ from Sg ? difference : (m n : Nat) -> m >= n -> Sg Nat \ d -> m == (n +N d) -- ( ) difference m zero m>=n = m , refl m difference zero (suc n) () difference (suc m) (suc n) m>=n with difference m n m>=n difference (suc m) (suc n) m>=n | d , q = d , (refl suc =$= q) tryMe = difference 42 37 _ don'tTryMe = difference 37 42 {!!} {+-} ------------------------------------------------------------------------------ -- things to remember to say ------------------------------------------------------------------------------ -- why the single colon? -- what's with all the spaces? -- what's with identifiers mixing letters and symbols? -- what's with all the braces? -- what is Set? -- are there any lowercase/uppercase conventions? -- what's with all the underscores? -- (i) placeholders in mixfix operators -- (ii) don't care (on the left) -- (iii) go figure (on the right) -- why use arithmetic operators for types? -- what's the difference between = and == ? -- can't we leave out cases? -- can't we loop? -- the function type is both implication and universal quantification, -- but why is it called Pi? -- why is Sigma called Sigma? -- B or nor B?
{ "alphanum_fraction": 0.4112621359, "avg_line_length": 25.6218905473, "ext": "agda", "hexsha": "65ac624aabaac0e8e680a44d78a805d6b190eab7", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/nowyoutry/Lec1Start.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/nowyoutry/Lec1Start.agda", "max_line_length": 78, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec1Start.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 1395, "size": 5150 }
{-# OPTIONS --without-K --safe #-} module Categories.Comonad.Relative where open import Level open import Categories.Category using (Category) open import Categories.Functor using (Functor; Endofunctor; _∘F_) renaming (id to idF) import Categories.Morphism.Reasoning as MR open import Categories.NaturalTransformation renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism hiding (_≃_) open import Categories.NaturalTransformation.Equivalence open NaturalIsomorphism private variable o ℓ e o′ ℓ′ e′ : Level C : Category o ℓ e D : Category o′ ℓ′ e′ record Comonad {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (J : Functor C D) : Set (o ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module C = Category C module D = Category D module J = Functor J open D using (_⇒_; _∘_; _≈_) field F₀ : C.Obj → D.Obj counit : {c : C.Obj} → F₀ c ⇒ J.₀ c cobind : {x y : C.Obj} → (F₀ x ⇒ J.₀ y) → F₀ x ⇒ F₀ y identityʳ : {x y : C.Obj} { k : F₀ x ⇒ J.₀ y} → counit ∘ cobind k ≈ k identityˡ : {x : C.Obj} → cobind {x} counit ≈ D.id assoc : {x y z : C.Obj} {k : F₀ x ⇒ J.₀ y} {l : F₀ y ⇒ J.₀ z} → cobind (l ∘ cobind k) ≈ cobind l ∘ cobind k cobind-≈ : {x y : C.Obj} {k h : F₀ x ⇒ J.₀ y} → k ≈ h → cobind k ≈ cobind h -- From a Relative Comonad, we can extract a functor RComonad⇒Functor : {J : Functor C D} → Comonad J → Functor C D RComonad⇒Functor {C = C} {D = D} {J = J} r = record { F₀ = F₀ ; F₁ = λ f → cobind (J.₁ f ∘ counit) ; identity = identity′ ; homomorphism = hom′ ; F-resp-≈ = λ f≈g → cobind-≈ (∘-resp-≈ˡ (J.F-resp-≈ f≈g)) } where open Comonad r module C = Category C module D = Category D module J = Functor J open Category D hiding (identityˡ; identityʳ; assoc) open HomReasoning open MR D identity′ : {c : C.Obj} → cobind {c} (J.₁ C.id ∘ counit) ≈ id identity′ = begin cobind (J.₁ C.id ∘ counit) ≈⟨ cobind-≈ (elimˡ J.identity) ⟩ cobind counit ≈⟨ identityˡ ⟩ id ∎ hom′ : {X Y Z : C.Obj} {f : X C.⇒ Y} {g : Y C.⇒ Z} → cobind (J.₁ (g C.∘ f) ∘ counit) ≈ cobind (J.₁ g ∘ counit) ∘ cobind (J.₁ f ∘ counit) hom′ {f = f} {g} = begin cobind (J.₁ (g C.∘ f) ∘ counit) ≈⟨ cobind-≈ (pushˡ J.homomorphism) ⟩ cobind (J.₁ g ∘ J.₁ f ∘ counit) ≈⟨ cobind-≈ (pushʳ (⟺ identityʳ)) ⟩ cobind ((J.₁ g ∘ counit) ∘ (cobind (J.F₁ f ∘ counit))) ≈⟨ assoc ⟩ cobind (J.₁ g ∘ counit) ∘ cobind (J.F₁ f ∘ counit) ∎
{ "alphanum_fraction": 0.5748218527, "avg_line_length": 38.8615384615, "ext": "agda", "hexsha": "6a3de7f851509dd5b8d894711ef5df5180c91b43", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Comonad/Relative.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Comonad/Relative.agda", "max_line_length": 108, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Comonad/Relative.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1029, "size": 2526 }
-- This is an implementation of the equality type for Sets. Agda's -- standard equality is more powerful. The main idea here is to -- illustrate the equality type. module Equality where open import Level -- The equality of two elements of type A. The type a ≡ b is a family -- of types which captures the statement of equality in A. Not all of -- the types are inhabited as in general not all elements are equal -- here. The only type that are inhabited are a ≡ a by the element -- that we call definition. This is called refl (for reflection in -- agda). data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where refl : {x : A} → x ≡ x -- ≡ is a symmetric relation. sym : ∀{ℓ} {A : Set ℓ} {a b : A} → a ≡ b → b ≡ a sym refl = refl -- ≡ is a transitive relation. trans : ∀ {ℓ} {A : Set ℓ} {a b c : A} → a ≡ b → b ≡ c → a ≡ c trans pAB refl = pAB -- trans refl pBC = pBC -- alternate proof of transitivity. -- Congruence. If we apply f to equals the result are also equal. cong : ∀{ℓ₀ ℓ₁} {A : Set ℓ₀} {B : Set ℓ₁} {a₀ a₁ : A} → (f : A → B) → a₀ ≡ a₁ → f a₀ ≡ f a₁ cong f refl = refl -- Pretty way of doing equational reasoning. If we want to prove a₀ ≡ -- b through an intermediate set of equations use this. The general -- form will look like. -- -- begin a ≈ a₀ by p₀ -- ≈ a₁ by p₁ -- ... -- ≈ b by p -- ∎ begin : ∀{ℓ} {A : Set ℓ} (a : A) → a ≡ a _≈_by_ : ∀{ℓ} {A : Set ℓ} {a b : A} → a ≡ b → (c : A) → b ≡ c → a ≡ c _∎ : ∀{ℓ} {A : Set ℓ} (a : A) → A begin a = refl aEb ≈ c by bEc = trans aEb bEc x ∎ = x infixl 1 _≈_by_ infixl 1 _≡_
{ "alphanum_fraction": 0.5946801773, "avg_line_length": 31.58, "ext": "agda", "hexsha": "b2abf91ccddbac58a0b6ed8b5c3b5d66df0c9109", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "piyush-kurur/sample-code", "max_forks_repo_path": "agda/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_issues_repo_issues_event_max_datetime": "2017-11-01T05:48:28.000Z", "max_issues_repo_issues_event_min_datetime": "2017-11-01T05:48:28.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "piyush-kurur/sample-code", "max_issues_repo_path": "agda/Equality.agda", "max_line_length": 70, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "piyush-kurur/sample-code", "max_stars_repo_path": "agda/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-20T02:19:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-19T12:34:08.000Z", "num_tokens": 597, "size": 1579 }
{-# OPTIONS --copatterns --sized-types #-} open import Level open import Algebra.Structures open import Relation.Binary open import Algebra.FunctionProperties module Comb (K : Set) (_≈_ : Rel K zero) (_+_ _⋆_ : Op₂ K) (-_ : Op₁ K) (0# 1# : K) (isRing : IsRing _≈_ _+_ _⋆_ -_ 0# 1#) where open import Size open import Function hiding (const) open import Relation.Nullary open import Stream open import Data.Nat renaming (_+_ to _+ℕ_) open import Data.Fin hiding (_+_) open import Data.Product hiding (_×_) open import Data.Empty open import Relation.Binary.PropositionalEquality as P using (_≡_) --; refl; sym; trans; cong; module ≡-Reasoning) K-setoid : Setoid _ _ K-setoid = record { Carrier = K ; _≈_ = _≈_ ; isEquivalence = IsRing.isEquivalence isRing } open Bisim K-setoid import Relation.Binary.EqReasoning as EqR open EqR (K-setoid) public hiding (_≡⟨_⟩_) --open IsEquivalence (IsRing.isEquivalence isRing) open ∼-Reasoning renaming (begin_ to begin∼_; _∎ to _∎∼) open IsRing isRing -- using (+-cong ; +-identity) +-identityˡ = proj₁ +-identity +-identityʳ = proj₂ +-identity -- zeroʳ : RightZero 0# _⋆_ -- zeroʳ = ? ---------------------- --- Basic operators -- ---------------------- const : ∀ {A} → A → Str A hd (const x) = x tl (const x) = const x -- | Point-wise unary operations pw₁ : ∀ {A i} → Op₁ A → Op₁ (Str {i} A) hd (pw₁ f σ) = f (hd σ) tl (pw₁ f σ) = pw₁ f (tl σ) -- | Point-wise binary operations pw₂ : ∀ {A i} → Op₂ A → Op₂ (Str {i} A) hd (pw₂ f σ τ) = f (hd σ) (hd τ) tl (pw₂ f σ τ) = pw₂ f (tl σ) (tl τ) [_] : K → Str K hd [ r ] = r tl [ r ] = [ 0# ] -- | Can, in conjunction with _×_, delay stream. X : Str K hd X = 0# tl X = [ 1# ] _⊕_ : ∀{i} → Str {i} K → Str {i} K → Str {i} K _⊕_ = pw₂ _+_ ⊝_ : ∀{i} → Str {i} K → Str {i} K ⊝_ = pw₁ (-_) _×_ : ∀ {i} → Str {i} K → Str {i} K → Str {i} K hd (σ × τ) = hd σ ⋆ hd τ tl (σ × τ) = (tl σ × τ) ⊕ ([ hd σ ] × tl τ) -- | We restrict attention to the case where the head is 1, -- which is trivially invertible in any ring. hasInv : ∀ {i} → Str {i} K → Set hasInv σ = hd σ ≈ 1# -- | Construct convolution inverse, if it exists. inv : ∀ {i} → (σ : Str {i} K) → hasInv σ → Str {i} K hd (inv σ p) = hd σ tl (inv σ p) = ⊝ (tl σ × inv σ p) -- | Powers of delay stream X^_ : ℕ → Str K X^ 0 = [ 1# ] X^ (suc k) = X × (X^ k) {- record Summable (σ : Str (Str K)) : Set where coinductive field hd-smble : ∃ λ n → δ n (hd σ) ∼ [ 0# ] tl-smble : Summable (tl σ) open Summable -} SummableDiag : {A : Set} (f : A → K) → Set SummableDiag {A} f = ∃ λ n → Σ (Fin n → A) (λ g → (a : A) → ¬ ((f a) ≈ 0#) → ∃ λ i → a ≡ g i) record Summable {A : Set} (f : A → Str K) : Set where coinductive field hd-smble : SummableDiag (hd ∘ f) tl-smble : Summable (tl' ∘ f) open Summable -- | Sum a finitely indexed family of elements of K. -- This relies on commutativity etc. of addition in K. sum : {n : ℕ} → (Fin n → K) → K sum {ℕ.zero} f = 0# sum {ℕ.suc n} f = f Fin.zero + sum (f ∘ Fin.suc) -- | Sum a family of streams. ∑ : ∀ {A} → (f : A → Str K) → Summable f → Str K hd (∑ f p) = let (_ , g , _) = hd-smble p in sum (hd ∘ f ∘ g) tl (∑ f p) = ∑ (tl' ∘ f) (tl-smble p) -- | Constant family of zero streams is summable zero-summable : Summable {ℕ} (λ n → [ 0# ]) hd-smble zero-summable = (0 , f , q) where f : Fin 0 → ℕ f () q : (n : ℕ) → ¬ (hd [ 0# ] ≈ 0#) → ∃ λ i → n ≡ f i q n p = ⊥-elim (p (IsRing.refl isRing)) tl-smble zero-summable = zero-summable polySeq : ∀{i} → Str {i} (Str K) → Str {i} (Str K) hd (polySeq σ) = hd σ × (X^ 0) tl (polySeq σ) = pw₂ _×_ (polySeq (tl σ)) (const X) polySeq₁ : Str (Str K) → (ℕ → Str K) polySeq₁ σ = _at_ (polySeq σ) polySeq₂ : (ℕ → Str K) → (ℕ → Str K) polySeq₂ f = polySeq₁ (toStr f) polySeq-summable : (σ : Str (Str K)) → Summable (polySeq₁ σ) hd-smble (polySeq-summable σ) = q where q : SummableDiag (hd ∘ polySeq₁ σ) q = {!!} tl-smble (polySeq-summable σ) = {!!} {- polySeq-expl : (σ : Str (Str K)) → (i : ℕ) → (polySeq σ at i) ≡ (σ at i) × (X^ i) polySeq-expl σ zero = refl polySeq-expl σ (suc i) = polySeq σ at (ℕ.suc i) ≡⟨ ? ⟩ (σ at (ℕ.suc i)) × (X × (X^ i)) ∎ -} -- lem : {f : ℕ → Str K} {k n : ℕ} → ¬ (polySeq f k at n) ≈ 0# → k ≡ n -- lem = {!!} {- polySeq-summable-aux : {f : ℕ → Str K} → (n : ℕ) → (g : ℕ → Str K) → Summable (polySeq f) hd-smble (polySeq-summable-aux f n) = (1 , supp , {!!}) where p = polySeq f supp : Fin 1 → ℕ supp Fin.zero = n supp (Fin.suc ()) is-supp : (k : ℕ) → ¬ (hd (p k) ≈ 0#) → ∃ λ i → k ≡ supp i is-supp k q = (Fin.zero , {!!}) tl-smble (polySeq-summable-aux f n) = {!!} -} hd-delay-zero : (σ : Str K) → hd (X × σ) ≈ 0# hd-delay-zero σ = zeroˡ (hd σ) where open IsNearSemiring (IsRing.isNearSemiring isRing) ⊕-cong : ∀ {i s t u v} → s ∼[ i ] t → u ∼[ i ] v → (s ⊕ u) ∼[ i ] (t ⊕ v) hd≈ (⊕-cong s~t u~v) = +-cong (hd≈ s~t) (hd≈ u~v) tl∼ (⊕-cong s~t u~v) = ⊕-cong (tl∼ s~t) (tl∼ u~v) ⊕-unitˡ : ∀ {i} → LeftIdentity (_∼_ {i}) [ 0# ] _⊕_ hd≈ (⊕-unitˡ s) = proj₁ +-identity (hd s) tl∼ (⊕-unitˡ s) = ⊕-unitˡ (tl s) ⊕-comm : ∀ {i} → Commutative (_∼_ {i}) _⊕_ hd≈ (⊕-comm s t) = +-comm (hd s) (hd t) tl∼ (⊕-comm s t) = ⊕-comm (tl s) (tl t) ⊕-unitʳ : ∀ {i} → RightIdentity (_∼_ {i}) [ 0# ] _⊕_ ⊕-unitʳ s = s-bisim-trans (⊕-comm s [ 0# ]) (⊕-unitˡ s) ×-zeroˡ : ∀ {i} → LeftZero (_∼_ {i}) [ 0# ] _×_ hd≈ (×-zeroˡ s) = zeroˡ (hd s) where open IsNearSemiring (IsRing.isNearSemiring isRing) tl∼ (×-zeroˡ s) {j} = s-bisim-trans (⊕-cong {j} (×-zeroˡ s) (×-zeroˡ (tl s))) (⊕-unitˡ [ 0# ]) ×-unitˡ : ∀ {i} → LeftIdentity (_∼_ {i}) [ 1# ] _×_ hd≈ (×-unitˡ s) = proj₁ *-identity (hd s) tl∼ (×-unitˡ s) {j} = s-bisim-trans (⊕-cong {j} (×-zeroˡ s) (×-unitˡ (tl s))) (⊕-unitˡ (tl s)) tl-delay-id : (σ : Str K) → tl (X × σ) ∼ σ tl-delay-id σ = begin∼ tl (X × σ) ∼⟨ S.refl ⟩ (tl X × σ) ⊕ ([ hd X ] × tl σ) ∼⟨ S.refl ⟩ ([ 1# ] × σ) ⊕ ([ 0# ] × tl σ) ∼⟨ ⊕-cong (×-unitˡ σ) (×-zeroˡ (tl σ)) ⟩ σ ⊕ [ 0# ] ∼⟨ ⊕-unitʳ σ ⟩ σ ∎∼ where module S = Setoid stream-setoid -- | The analogue of the fundamental theorem decomp-str : (σ : Str K) → σ ∼ ([ hd σ ] ⊕ (X × tl σ)) hd≈ (decomp-str σ) = begin hd σ ≈⟨ sym (+-identityʳ (hd σ)) ⟩ hd σ + 0# ≈⟨ sym (+-cong refl (hd-delay-zero (tl σ))) ⟩ hd [ hd σ ] + hd (X × tl σ) ≈⟨ refl ⟩ hd ([ hd σ ] ⊕ (X × tl σ)) ∎ tl∼ (decomp-str σ) = begin∼ tl σ ∼⟨ S.sym (tl-delay-id (tl σ)) ⟩ tl (X × tl σ) ∼⟨ S.sym (⊕-unitˡ (tl (X × tl σ))) ⟩ [ 0# ] ⊕ tl (X × tl σ) ∼⟨ S.refl ⟩ tl ([ hd σ ] ⊕ (X × tl σ)) ∎∼ where module S = Setoid stream-setoid
{ "alphanum_fraction": 0.5208519511, "avg_line_length": 25.2406015038, "ext": "agda", "hexsha": "9e8f7a9eade634175e4afd56f87022ed48c235a7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "Languages/Comb.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "Languages/Comb.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "Languages/Comb.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3012, "size": 6714 }
-- We apply the theory of quasi equivalence relations (QERs) to finite multisets and association lists. {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.ZigZag.Applications.MultiSet where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.RelationalStructure open import Cubical.Foundations.Structure open import Cubical.Foundations.SIP open import Cubical.Foundations.Univalence open import Cubical.Data.Unit open import Cubical.Data.Empty open import Cubical.Data.Nat open import Cubical.Data.List hiding ([_]) open import Cubical.Data.Sigma open import Cubical.HITs.SetQuotients open import Cubical.HITs.FiniteMultiset as FMS hiding ([_]) open import Cubical.HITs.FiniteMultiset.CountExtensionality open import Cubical.Relation.Nullary open import Cubical.Relation.ZigZag.Base open import Cubical.Structures.MultiSet open import Cubical.Structures.Relational.Macro -- we define simple association lists without any higher constructors data AList {ℓ} (A : Type ℓ) : Type ℓ where ⟨⟩ : AList A ⟨_,_⟩∷_ : A → ℕ → AList A → AList A infixr 5 ⟨_,_⟩∷_ private variable ℓ : Level A : Type ℓ -- We have a CountStructure on List and AList and use these to get a QER between the two module Lists&ALists {A : Type ℓ} (discA : Discrete A) where module S = RelMacro ℓ (param A (recvar (constant (ℕ , isSetℕ)))) ι = CountEquivStr A (Discrete→isSet discA) -- the CountStructures aux : (a x : A) → Dec (a ≡ x) → ℕ → ℕ aux a x (yes a≡x) n = suc n aux a x (no a≢x) n = n Lcount : S.structure (List A) Lcount a [] = zero Lcount a (x ∷ xs) = aux a x (discA a x) (Lcount a xs) ALcount : S.structure (AList A) ALcount a ⟨⟩ = zero ALcount a (⟨ x , zero ⟩∷ xs) = ALcount a xs ALcount a (⟨ x , suc n ⟩∷ xs) = aux a x (discA a x) (ALcount a (⟨ x , n ⟩∷ xs)) -- now for the QER between List and Alist R : List A → AList A → Type ℓ R xs ys = ∀ a → Lcount a xs ≡ ALcount a ys φ : List A → AList A φ [] = ⟨⟩ φ (x ∷ xs) = ⟨ x , 1 ⟩∷ φ xs ψ : AList A → List A ψ ⟨⟩ = [] ψ (⟨ x , zero ⟩∷ xs) = ψ xs ψ (⟨ x , suc n ⟩∷ xs) = x ∷ ψ (⟨ x , n ⟩∷ xs) η : ∀ x → R x (φ x) η [] a = refl η (x ∷ xs) a with (discA a x) ... | yes a≡x = cong suc (η xs a) ... | no a≢x = η xs a -- for the other direction we need a little helper function ε : ∀ y → R (ψ y) y ε' : (x : A) (n : ℕ) (xs : AList A) (a : A) → Lcount a (ψ (⟨ x , n ⟩∷ xs)) ≡ ALcount a (⟨ x , n ⟩∷ xs) ε ⟨⟩ a = refl ε (⟨ x , n ⟩∷ xs) a = ε' x n xs a ε' x zero xs a = ε xs a ε' x (suc n) xs a with discA a x ... | yes a≡x = cong suc (ε' x n xs a) ... | no a≢x = ε' x n xs a -- Induced quotients and equivalence open isQuasiEquivRel -- R is a QER QuasiR : QuasiEquivRel _ _ ℓ QuasiR .fst .fst = R QuasiR .fst .snd _ _ = isPropΠ λ _ → isSetℕ _ _ QuasiR .snd .zigzag r r' r'' a = (r a) ∙∙ sym (r' a) ∙∙ (r'' a) QuasiR .snd .fwd = φ QuasiR .snd .fwdRel = η QuasiR .snd .bwd = ψ QuasiR .snd .bwdRel = ε module E = QER→Equiv QuasiR open E renaming (Rᴸ to Rᴸ; Rᴿ to Rᴬᴸ) List/Rᴸ = (List A) / Rᴸ AList/Rᴬᴸ = (AList A) / Rᴬᴸ List/Rᴸ≃AList/Rᴬᴸ : List/Rᴸ ≃ AList/Rᴬᴸ List/Rᴸ≃AList/Rᴬᴸ = E.Thm main : QERDescends _ S.relation (List A , Lcount) (AList A , ALcount) QuasiR main = structuredQER→structuredEquiv _ S.suitable _ _ QuasiR (λ a r → r a) open QERDescends LQcount : S.structure List/Rᴸ LQcount = main .quoᴸ .fst ALQcount : S.structure AList/Rᴬᴸ ALQcount = main .quoᴿ .fst -- We get a path between CountStructures over the equivalence directly from the fact that the QER -- is structured List/Rᴸ≡AList/Rᴬᴸ : Path (TypeWithStr ℓ S.structure) (List/Rᴸ , LQcount) (AList/Rᴬᴸ , ALQcount) List/Rᴸ≡AList/Rᴬᴸ = sip S.univalent _ _ (E.Thm , (S.matches _ _ E.Thm .fst (main .rel))) -- We now show that List/Rᴸ≃FMSet _∷/_ : A → List/Rᴸ → List/Rᴸ a ∷/ [ xs ] = [ a ∷ xs ] a ∷/ eq/ xs xs' r i = eq/ (a ∷ xs) (a ∷ xs') r' i where r' : Rᴸ (a ∷ xs) (a ∷ xs') r' a' = cong (aux a' a (discA a' a)) (r a') a ∷/ squash/ xs xs₁ p q i j = squash/ (a ∷/ xs) (a ∷/ xs₁) (cong (a ∷/_) p) (cong (a ∷/_) q) i j infixr 5 _∷/_ μ : FMSet A → List/Rᴸ μ = FMS.Rec.f squash/ [ [] ] _∷/_ β where β : ∀ a b [xs] → a ∷/ b ∷/ [xs] ≡ b ∷/ a ∷/ [xs] β a b = elimProp (λ _ → squash/ _ _) (λ xs → eq/ _ _ (γ xs)) where γ : ∀ xs → Rᴸ (a ∷ b ∷ xs) (b ∷ a ∷ xs) γ xs c = δ c ∙ η (b ∷ a ∷ xs) c where δ : ∀ c → Lcount c (a ∷ b ∷ xs) ≡ Lcount c (b ∷ a ∷ xs) δ c with discA c a | discA c b δ c | yes _ | yes _ = refl δ c | yes _ | no _ = refl δ c | no _ | yes _ = refl δ c | no _ | no _ = refl -- The inverse is induced by the standard projection of lists into finite multisets, -- which is a morphism of CountStructures -- Moreover, we need 'count-extensionality' for finite multisets List→FMSet : List A → FMSet A List→FMSet [] = [] List→FMSet (x ∷ xs) = x ∷ List→FMSet xs List→FMSet-count : ∀ a xs → Lcount a xs ≡ FMScount discA a (List→FMSet xs) List→FMSet-count a [] = refl List→FMSet-count a (x ∷ xs) with discA a x ... | yes _ = cong suc (List→FMSet-count a xs) ... | no _ = List→FMSet-count a xs ν : List/Rᴸ → FMSet A ν [ xs ] = List→FMSet xs ν (eq/ xs ys r i) = path i where countsAgree : ∀ a → Lcount a xs ≡ Lcount a ys countsAgree a = r a ∙ sym (η ys a) θ : ∀ a → FMScount discA a (List→FMSet xs) ≡ FMScount discA a (List→FMSet ys) θ a = sym (List→FMSet-count a xs) ∙∙ countsAgree a ∙∙ List→FMSet-count a ys path : List→FMSet xs ≡ List→FMSet ys path = FMScountExt.Thm discA _ _ θ ν (squash/ xs/ xs/' p q i j) = trunc (ν xs/) (ν xs/') (cong ν p) (cong ν q) i j σ : section μ ν σ = elimProp (λ _ → squash/ _ _) θ where θ : (xs : List A) → μ (ν [ xs ]) ≡ [ xs ] θ [] = refl θ (x ∷ xs) = cong (x ∷/_) (θ xs) ν-∷/-commute : (x : A) (ys : List/Rᴸ) → ν (x ∷/ ys) ≡ x ∷ ν ys ν-∷/-commute x = elimProp (λ _ → FMS.trunc _ _) λ xs → refl τ : retract μ ν τ = FMS.ElimProp.f (FMS.trunc _ _) refl θ where θ : ∀ x {xs} → ν (μ xs) ≡ xs → ν (μ (x ∷ xs)) ≡ x ∷ xs θ x {xs} p = ν-∷/-commute x (μ xs) ∙ cong (x ∷_) p List/Rᴸ≃FMSet : List/Rᴸ ≃ FMSet A List/Rᴸ≃FMSet = isoToEquiv (iso ν μ τ σ) List/Rᴸ≃FMSet-is-CountEquivStr : ι (List/Rᴸ , LQcount) (FMSet A , FMScount discA) List/Rᴸ≃FMSet List/Rᴸ≃FMSet-is-CountEquivStr a = elimProp (λ _ → isSetℕ _ _) (List→FMSet-count a) {- Putting everything together we get: ≃ List/Rᴸ ------------> AList/Rᴬᴸ | |≃ | ∨ ≃ FMSet A ------------> AssocList A We thus get that AList/Rᴬᴸ≃AssocList. Constructing such an equivalence directly requires count extensionality for association lists, which should be even harder to prove than for finite multisets. This strategy should work for all implementations of multisets with HITs. We just have to show that: ∙ The HIT is equivalent to FMSet (like AssocList) ∙ There is a QER between lists and the basic data type of the HIT with the higher constructors removed (like AList) Then we get that this HIT is equivalent to the corresponding set quotient that identifies elements that give the same count on each a : A. TODO: Show that all the equivalences are indeed isomorphisms of multisets not only of CountStructures! -}
{ "alphanum_fraction": 0.6120712576, "avg_line_length": 31.4728033473, "ext": "agda", "hexsha": "5be3ff3433835fdf0787d791f8a98e9c1a1e9ef2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Relation/ZigZag/Applications/MultiSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Relation/ZigZag/Applications/MultiSet.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Relation/ZigZag/Applications/MultiSet.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2944, "size": 7522 }
{-# OPTIONS --warning=error #-} {-# POLARITY F #-} {-# POLARITY G #-}
{ "alphanum_fraction": 0.5211267606, "avg_line_length": 14.2, "ext": "agda", "hexsha": "a89705ac7fdae94e804993f5fc612d246161f18a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Unknown-names-in-polarity-pragmas.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Unknown-names-in-polarity-pragmas.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Unknown-names-in-polarity-pragmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 19, "size": 71 }
------------------------------------------------------------------------ -- An alternative definition of equality ------------------------------------------------------------------------ module TotalParserCombinators.CoinductiveEquality where open import Codata.Musical.Notation open import Data.List open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Relation.Binary.BagAndSetEquality using () renaming (_∼[_]_ to _List-∼[_]_) open import Function.Equivalence as Eq using (_⇔_) import Function.Related as Related open Related using (SK-sym) open Related.EquationalReasoning open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics import TotalParserCombinators.InitialBag as I open import TotalParserCombinators.Derivative as D using (D) infix 5 _∷_ infix 4 _∼[_]c_ -- Two recognisers/languages are equal if their nullability indices -- are equal (according to _List-∼[_]_) and all their derivatives are -- equal (coinductively). Note that the inhabitants of this type are -- bisimulations (if the Kind stands for a symmetric relation). data _∼[_]c_ {Tok R xs₁ xs₂} (p₁ : Parser Tok R xs₁) (k : Kind) (p₂ : Parser Tok R xs₂) : Set where _∷_ : (init : xs₁ List-∼[ k ] xs₂) (rest : ∀ t → ∞ (D t p₁ ∼[ k ]c D t p₂)) → p₁ ∼[ k ]c p₂ -- The two definitions of parser/language equivalence are equivalent. sound : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]c p₂ → p₁ ∼[ k ] p₂ sound {xs₁ = xs₁} {xs₂} {p₁} {p₂} (xs₁≈xs₂ ∷ rest) {x} {[]} = x ∈ p₁ · [] ↔⟨ I.correct ⟩ (x ∈ xs₁) ∼⟨ xs₁≈xs₂ ⟩ (x ∈ xs₂) ↔⟨ SK-sym I.correct ⟩ x ∈ p₂ · [] ∎ sound {xs₁ = xs₁} {xs₂} {p₁} {p₂} (xs₁≈xs₂ ∷ rest) {x} {t ∷ s} = x ∈ p₁ · t ∷ s ↔⟨ SK-sym D.correct ⟩ x ∈ D t p₁ · s ∼⟨ sound (♭ (rest t)) ⟩ x ∈ D t p₂ · s ↔⟨ D.correct ⟩ x ∈ p₂ · t ∷ s ∎ complete : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ] p₂ → p₁ ∼[ k ]c p₂ complete p₁≈p₂ = (λ {_} → I.cong p₁≈p₂) ∷ λ t → ♯ complete (D.cong p₁≈p₂) correct : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]c p₂ ⇔ p₁ ∼[ k ] p₂ correct = Eq.equivalence sound complete
{ "alphanum_fraction": 0.5776048422, "avg_line_length": 36.140625, "ext": "agda", "hexsha": "d7b6f2577cb07e4ee7e09387d4436b2e34dacf2a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/CoinductiveEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/CoinductiveEquality.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/CoinductiveEquality.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 823, "size": 2313 }
{-# OPTIONS --type-in-type --guardedness #-} module IO.Instance where open import Class.Monad using (Monad) open import Class.Monad.IO open import Class.Monoid open import Data.Product open import Data.Sum open import IO open import Monads.ExceptT open import Monads.StateT open import Monads.WriterT open import Level instance IO-Monad : Monad IO IO-Monad = record { _>>=_ = _>>=_ ; return = return } IO-MonadIO : MonadIO IO IO-MonadIO = record { liftIO = λ x -> x } module _ {a} {M : Set a -> Set a} {{_ : Monad M}} {{_ : MonadIO M}} where ExceptT-MonadIO : ∀ {E} -> MonadIO (ExceptT M E) {{ExceptT-Monad}} ExceptT-MonadIO = record { liftIO = λ x -> liftIO (x >>= λ a -> return (inj₂ a)) } StateT-MonadIO : ∀ {S} -> MonadIO (StateT M S) StateT-MonadIO = record { liftIO = λ x -> λ s -> liftIO (x >>= (λ a -> return (a , s))) } WriterT-MonadIO : ∀ {W} {{_ : Monoid W}} -> MonadIO (WriterT M W) {{WriterT-Monad}} WriterT-MonadIO = record { liftIO = λ x -> liftIO (x >>= λ a -> return (a , mzero)) }
{ "alphanum_fraction": 0.6293436293, "avg_line_length": 30.4705882353, "ext": "agda", "hexsha": "eb27a2e69170c71f7fc171b767682ef57f655570", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/IO/Instance.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/IO/Instance.agda", "max_line_length": 91, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/IO/Instance.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 349, "size": 1036 }
------------------------------------------------------------------------------ -- The FOTC lists type ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- N.B. This module is re-exported by FOTC.Data.List. module FOTC.Data.List.Type where open import FOTC.Base open import FOTC.Base.List ------------------------------------------------------------------------------ -- The FOTC lists type (inductive predicate for total lists). data List : D → Set where lnil : List [] lcons : ∀ x {xs} → List xs → List (x ∷ xs) {-# ATP axioms lnil lcons #-} -- Induction principle. List-ind : (A : D → Set) → A [] → (∀ x {xs} → A xs → A (x ∷ xs)) → ∀ {xs} → List xs → A xs List-ind A A[] h lnil = A[] List-ind A A[] h (lcons x Lxs) = h x (List-ind A A[] h Lxs)
{ "alphanum_fraction": 0.413, "avg_line_length": 32.2580645161, "ext": "agda", "hexsha": "d2fff1174b47869ad5b40cd71b7e96e39a1d4dc8", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/List/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/List/Type.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/List/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 238, "size": 1000 }
-- Andreas, 2012-10-18 module Issue481 where as = Set open import Common.Issue481ParametrizedModule as as -- as clause open import Common.Issue481ParametrizedModule as as as -- as clause, duplicate def.
{ "alphanum_fraction": 0.7740384615, "avg_line_length": 18.9090909091, "ext": "agda", "hexsha": "9a98c291144800cf917ec0a337e0def54c0b5350", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue481.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue481.agda", "max_line_length": 83, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/fail/Issue481.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 56, "size": 208 }
open import MLib.Algebra.PropertyCode open import MLib.Algebra.PropertyCode.Structures module MLib.Matrix.SemiTensor.Associativity {c ℓ} (struct : Struct bimonoidCode c ℓ) where open import MLib.Prelude open import MLib.Matrix.Core open import MLib.Matrix.Equality struct open import MLib.Matrix.Mul struct open import MLib.Matrix.Tensor struct open import MLib.Matrix.SemiTensor.Core struct open import MLib.Algebra.Operations struct open Nat using () renaming (_+_ to _+ℕ_; _*_ to _*ℕ_) open import MLib.Fin.Parts.Simple open import Data.Nat.LCM open import Data.Nat.Divisibility module _ ⦃ props : Has (1# is rightIdentity for * ∷ associative on * ∷ []) ⦄ where open _≃_ {- m *ℕ (lcm n (p * (lcm q r) / q))/n ≡ m *ℕ (lcm n p)/n *ℕ (lcm (q *ℕ (lcm n p)/p) r) / r m * lcm(n, p * lcm(q, r) / q) / n = m * (lcm(n, p) / n) * lcm (q * lcm(n, p) / p, r) / r lcm(n, p * lcm(q, r) / q) = lcm (q * lcm(n, p) / p, r) * p / q f(a, b) = lcm(a, b) / a lcm(n, p * f(q, r)) = lcm(r, q * f(p, n)) * p / q -} module _ {m n p q r s} (A : Matrix S m n) (B : Matrix S p q) (C : Matrix S r s) where t₁ = lcm n p .proj₁ lcm-n-p=t₁ = lcm n p .proj₂ open Defn lcm-n-p=t₁ using () renaming (t/n to t₁/n; t/p to t₁/p) t₂ = lcm q r .proj₁ lcm-q-r=t₂ = lcm q r .proj₂ open Defn lcm-q-r=t₂ using () renaming (t/n to t₂/q; t/p to t₂/r) t₃ = lcm n (p *ℕ t₂/q) .proj₁ lcm-n-pt₂/q=t₃ = lcm n (p *ℕ t₂/q) .proj₂ open Defn lcm-n-pt₂/q=t₃ using () renaming (t/n to t₃/n; t/p to t₃/[p*t₂/q]) t₄ = lcm (q *ℕ t₁/p) r .proj₁ lcm-qt₁/p-r=t₄ = lcm (q *ℕ t₁/p) r .proj₂ open Defn lcm-qt₁/p-r=t₄ using () renaming (t/n to t₄/[q*t₁/p]; t/p to t₄/r) -- module D₁ = Defn {n} {p} {q} -- module D₂ = Defn {q} {r} {s} ⋉-associative : A ⋉ (B ⋉ C) ≃ (A ⋉ B) ⋉ C ⋉-associative .m≡p = {!!} ⋉-associative .n≡q = {!!} ⋉-associative .equal = {!!}
{ "alphanum_fraction": 0.5813221406, "avg_line_length": 29.78125, "ext": "agda", "hexsha": "76f110ef3d8cd665e9d090f57e185fe08a684f9e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Matrix/SemiTensor/Associativity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Matrix/SemiTensor/Associativity.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Matrix/SemiTensor/Associativity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 801, "size": 1906 }
{-# OPTIONS -v interaction.case:65 #-} data Bool : Set where true false : Bool test : Bool → Bool test x = {!x!}
{ "alphanum_fraction": 0.6153846154, "avg_line_length": 14.625, "ext": "agda", "hexsha": "046db4e252b79bfed7551ff4edf5f3eb01ce9186", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/interaction/Issue1842.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/interaction/Issue1842.agda", "max_line_length": 38, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/interaction/Issue1842.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 34, "size": 117 }
module CTL.Modalities where open import CTL.Modalities.AF public open import CTL.Modalities.AG public open import CTL.Modalities.AN public -- open import CTL.Modalities.AU public -- TODO Unfinished open import CTL.Modalities.EF public open import CTL.Modalities.EG public open import CTL.Modalities.EN public -- open import CTL.Modalities.EU public -- TODO Unfinished
{ "alphanum_fraction": 0.8130081301, "avg_line_length": 33.5454545455, "ext": "agda", "hexsha": "e9aee848a0d6eeefad0c981a9ea8758808ae834a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "zimbatm/condatis", "max_forks_repo_path": "CTL/Modalities.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "zimbatm/condatis", "max_issues_repo_path": "CTL/Modalities.agda", "max_line_length": 58, "max_stars_count": 1, "max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Aerate/condatis", "max_stars_repo_path": "CTL/Modalities.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z", "num_tokens": 95, "size": 369 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive module Basic where data False : Set where record True : Set where data _||_ {a b : _} (A : Set a) (B : Set b) : Set (a ⊔ b) where inl : A → A || B inr : B → A || B infix 1 _||_
{ "alphanum_fraction": 0.5833333333, "avg_line_length": 17.6, "ext": "agda", "hexsha": "c08a95f2521f1c4f21fe02995126202479f51389", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3d56e649152d2cd906281943860ca19da1d1f344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/CubicalTutorial", "max_forks_repo_path": "Basic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3d56e649152d2cd906281943860ca19da1d1f344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/CubicalTutorial", "max_issues_repo_path": "Basic.agda", "max_line_length": 63, "max_stars_count": 3, "max_stars_repo_head_hexsha": "3d56e649152d2cd906281943860ca19da1d1f344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/CubicalTutorial", "max_stars_repo_path": "Basic.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-16T23:14:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-26T17:02:42.000Z", "num_tokens": 94, "size": 264 }
------------------------------------------------------------------------ -- A formalisation of some definitions and laws from Section 3 of Ralf -- Hinze's paper "Streams and Unique Fixed Points" ------------------------------------------------------------------------ module Hinze.Section3 where open import Stream.Programs open import Stream.Equality open import Stream.Pointwise open import Hinze.Section2-4 open import Hinze.Lemmas open import Codata.Musical.Notation hiding (∞) open import Data.Product open import Data.Bool open import Data.Vec hiding (_⋎_) open import Data.Nat import Data.Nat.Properties as Nat import Relation.Binary.PropositionalEquality as P open import Algebra.Structures private module CS = IsCommutativeSemiring Nat.+-*-isCommutativeSemiring ------------------------------------------------------------------------ -- Definitions pot : Prog Bool pot = true ≺ ♯ (pot ⋎ false ∞) msb : Prog ℕ msb = 1 ≺ ♯ (2 ∞ ⟨ _*_ ⟩ msb ⋎ 2 ∞ ⟨ _*_ ⟩ msb) ones′ : Prog ℕ ones′ = 1 ≺ ♯ (ones′ ⋎ ones′ ⟨ _+_ ⟩ 1 ∞) ones : Prog ℕ ones = 0 ≺♯ ones′ carry : Prog ℕ carry = 0 ≺ ♯ (carry ⟨ _+_ ⟩ 1 ∞ ⋎ 0 ∞) carry-folded : carry ≊ 0 ∞ ⋎ carry ⟨ _+_ ⟩ 1 ∞ carry-folded = carry ∎ 2^carry : Prog ℕ 2^carry = 2 ∞ ⟨ _^_ ⟩ carry turn-length : ℕ → ℕ turn-length zero = zero turn-length (suc n) = ℓ + suc ℓ where ℓ = turn-length n turn : (n : ℕ) → Vec ℕ (turn-length n) turn zero = [] turn (suc n) = turn n ++ [ n ] ++ turn n tree : ℕ → Prog ℕ tree n = n ≺ ♯ (turn n ≺≺ tree (suc n)) frac : Prog ℕ frac = 0 ≺ ♯ (frac ⋎ nat ⟨ _+_ ⟩ 1 ∞) frac-folded : frac ≊ nat ⋎ frac frac-folded = frac ∎ god : Prog ℕ god = (2 ∞ ⟨ _*_ ⟩ frac) ⟨ _+_ ⟩ 1 ∞ ------------------------------------------------------------------------ -- Laws and properties god-lemma : god ≊ 2*nat+1 ⋎ god god-lemma = god ≡⟨ P.refl ⟩ (2 ∞ ⟨ _*_ ⟩ (nat ⋎ frac)) ⟨ _+_ ⟩ 1 ∞ ≊⟨ ⟨ _+_ ⟩-cong (2 ∞ ⟨ _*_ ⟩ (nat ⋎ frac)) (2*nat ⋎ 2 ∞ ⟨ _*_ ⟩ frac) (zip-const-⋎ _*_ 2 nat frac) (1 ∞) (1 ∞) (1 ∞ ∎) ⟩ (2*nat ⋎ 2 ∞ ⟨ _*_ ⟩ frac) ⟨ _+_ ⟩ 1 ∞ ≊⟨ zip-⋎-const _+_ 2*nat (2 ∞ ⟨ _*_ ⟩ frac) 1 ⟩ 2*nat+1 ⋎ god ∎ carry-god-nat : 2^carry ⟨ _*_ ⟩ god ≊ tailP nat carry-god-nat = 2^carry ⟨ _*_ ⟩ god ≡⟨ P.refl ⟩ (2 ∞ ⟨ _^_ ⟩ (0 ∞ ⋎ carry ⟨ _+_ ⟩ 1 ∞)) ⟨ _*_ ⟩ god ≊⟨ ⟨ _*_ ⟩-cong (2 ∞ ⟨ _^_ ⟩ (0 ∞ ⋎ carry ⟨ _+_ ⟩ 1 ∞)) (1 ∞ ⋎ 2 ∞ ⟨ _*_ ⟩ 2^carry) lemma god (2*nat+1 ⋎ god) god-lemma ⟩ (1 ∞ ⋎ 2 ∞ ⟨ _*_ ⟩ 2^carry) ⟨ _*_ ⟩ (2*nat+1 ⋎ god) ≊⟨ ≅-sym (abide-law _*_ (1 ∞) 2*nat+1 (2 ∞ ⟨ _*_ ⟩ 2^carry) god) ⟩ 1 ∞ ⟨ _*_ ⟩ 2*nat+1 ⋎ (2 ∞ ⟨ _*_ ⟩ 2^carry) ⟨ _*_ ⟩ god ≊⟨ ⋎-cong (1 ∞ ⟨ _*_ ⟩ 2*nat+1) 2*nat+1 (pointwise 1 (λ s → 1 ∞ ⟨ _*_ ⟩ s) (λ s → s) (proj₁ CS.*-identity) 2*nat+1) ((2 ∞ ⟨ _*_ ⟩ 2^carry) ⟨ _*_ ⟩ god) (2 ∞ ⟨ _*_ ⟩ (2^carry ⟨ _*_ ⟩ god)) (pointwise 3 (λ s t u → (s ⟨ _*_ ⟩ t) ⟨ _*_ ⟩ u) (λ s t u → s ⟨ _*_ ⟩ (t ⟨ _*_ ⟩ u)) CS.*-assoc (2 ∞) 2^carry god) ⟩ 2*nat+1 ⋎ 2 ∞ ⟨ _*_ ⟩ (2^carry ⟨ _*_ ⟩ god) ≊⟨ P.refl ≺ coih ⟩ 2*nat+1 ⋎ 2 ∞ ⟨ _*_ ⟩ tailP nat ≊⟨ ≅-sym (tailP-cong nat (2*nat ⋎ 2*nat+1) nat-lemma₂) ⟩ tailP nat ∎ where coih = ♯ ⋎-cong (2 ∞ ⟨ _*_ ⟩ (2^carry ⟨ _*_ ⟩ god)) (2 ∞ ⟨ _*_ ⟩ (tailP nat)) (⟨ _*_ ⟩-cong (2 ∞) (2 ∞) (2 ∞ ∎) (2^carry ⟨ _*_ ⟩ god) (tailP nat) carry-god-nat) (tailP 2*nat+1) (tailP 2*nat+1) (tailP 2*nat+1 ∎) lemma = 2^carry ≡⟨ P.refl ⟩ 2 ∞ ⟨ _^_ ⟩ (0 ∞ ⋎ carry ⟨ _+_ ⟩ 1 ∞) ≊⟨ zip-const-⋎ _^_ 2 (0 ∞) (carry ⟨ _+_ ⟩ 1 ∞) ⟩ 2 ∞ ⟨ _^_ ⟩ 0 ∞ ⋎ 2 ∞ ⟨ _^_ ⟩ (carry ⟨ _+_ ⟩ 1 ∞) ≊⟨ ⋎-cong (2 ∞ ⟨ _^_ ⟩ 0 ∞) (1 ∞) (pointwise 0 (2 ∞ ⟨ _^_ ⟩ 0 ∞) (1 ∞) P.refl) (2 ∞ ⟨ _^_ ⟩ (carry ⟨ _+_ ⟩ 1 ∞)) (2 ∞ ⟨ _*_ ⟩ 2^carry) (pointwise 1 (λ s → 2 ∞ ⟨ _^_ ⟩ (s ⟨ _+_ ⟩ 1 ∞)) (λ s → 2 ∞ ⟨ _*_ ⟩ (2 ∞ ⟨ _^_ ⟩ s)) (λ x → P.cong (_^_ 2) (CS.+-comm x 1)) carry) ⟩ 1 ∞ ⋎ 2 ∞ ⟨ _*_ ⟩ 2^carry ∎
{ "alphanum_fraction": 0.2944087086, "avg_line_length": 44.2554744526, "ext": "agda", "hexsha": "f1220b355128a90dc3c6f126e10ecfbc7dd41e9d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Hinze/Section3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Hinze/Section3.agda", "max_line_length": 117, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Hinze/Section3.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1864, "size": 6063 }
------------------------------------------------------------------------ -- The one-sided Step function, used to define similarity and the -- two-sided Step function ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude open import Labelled-transition-system module Similarity.Step {ℓ} (lts : LTS ℓ) (open LTS lts) (_[_]↝_ : Proc → Label → Proc → Type ℓ) where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Bijection equality-with-J as Bijection using (_↔_) import Equivalence equality-with-J as Eq open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Indexed-container hiding (⟨_⟩) open import Relation private module Temporarily-private where -- If _[_]↝_ is instantiated with _[_]⟶_, then this is basically the -- function s from Section 6.3.4.2 in Pous and Sangiorgi's -- "Enhancements of the bisimulation proof method", except that -- clause (3) is omitted. -- -- Similarly, if _[_]↝_ is instantiated with _[_]⇒̂_, then this is -- basically the function w from Section 6.5.2.4, except that -- "P R Q" is omitted. record Step {r} (R : Rel₂ r Proc) (pq : Proc × Proc) : Type (ℓ ⊔ r) where constructor ⟨_⟩ private p = proj₁ pq q = proj₂ pq field challenge : ∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝ q′ × R (p′ , q′) open Temporarily-private using (Step) -- Used to aid unification. Note that this type is parametrised (see -- the module telescope above). The inclusion of a value of this type -- in the definition of StepC below makes it easier for Agda to infer -- the LTS parameter from the types ν StepC i (p , q) and -- ν′ StepC i (p , q). record Magic : Type where -- The Magic type is isomorphic to the unit type. Magic↔⊤ : Magic ↔ ⊤ Magic↔⊤ = record { surjection = record { right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } -- The Step function, expressed as an indexed container. StepC : Container (Proc × Proc) (Proc × Proc) StepC = (λ { (p , q) → Magic -- Included in order to aid type inference. × (∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝ q′) }) ◁ (λ { {o = p , q} (_ , lr) (p′ , q′) → ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ p′) → proj₁ (lr p⟶p′) ≡ q′ }) -- The definition of Step in terms of a container is pointwise -- logically equivalent to the direct definition, and in the presence -- of extensionality it is pointwise isomorphic to the direct -- definition. Step↔StepC : ∀ {k r} {R : Rel₂ r Proc} {pq} → Extensionality? k ℓ (ℓ ⊔ r) → Step R pq ↝[ k ] ⟦ StepC ⟧ R pq Step↔StepC {r = r} {R} {pq} = generalise-ext? Step⇔StepC (λ ext → (λ (_ , f) → Σ-≡,≡→≡ refl $ implicit-extensionality ext λ _ → apply-ext (lower-extensionality lzero ℓ ext) $ to₂∘from f) , (λ _ → refl)) where to₁ : Step R pq → Container.Shape StepC pq to₁ Temporarily-private.⟨ lr ⟩ = _ , (λ p⟶p′ → Σ-map id proj₁ (lr p⟶p′)) to₂ : (s : Step R pq) → Container.Position StepC (to₁ s) ⊆ R to₂ Temporarily-private.⟨ lr ⟩ (_ , p⟶p′ , refl) = proj₂ (proj₂ (lr p⟶p′)) from : ⟦ StepC ⟧ R pq → Step R pq from ((_ , lr) , f) = Temporarily-private.⟨ (λ p⟶p′ → let q′ , q⟶q′ = lr p⟶p′ in q′ , q⟶q′ , f (_ , p⟶p′ , refl)) ⟩ Step⇔StepC : Step R pq ⇔ ⟦ StepC ⟧ R pq Step⇔StepC = record { to = λ s → to₁ s , to₂ s ; from = from } to₂∘from : ∀ {p′q′} {s : Container.Shape StepC pq} (f : Container.Position StepC s ⊆ R) → (pos : Container.Position StepC s p′q′) → proj₂ (_⇔_.to Step⇔StepC (_⇔_.from Step⇔StepC (s , f))) pos ≡ f pos to₂∘from f (_ , _ , refl) = refl module StepC {r} {R : Rel₂ r Proc} {p q} where -- A "constructor". ⟨_⟩ : (∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝ q′ × R (p′ , q′)) → ⟦ StepC ⟧ R (p , q) ⟨ lr ⟩ = _⇔_.to (Step↔StepC _) Temporarily-private.⟨ lr ⟩ -- A "projection". challenge : ⟦ StepC ⟧ R (p , q) → ∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝ q′ × R (p′ , q′) challenge = Step.challenge ∘ _⇔_.from (Step↔StepC _) open Temporarily-private public -- An unfolding lemma for ⟦ StepC ⟧₂. ⟦StepC⟧₂↔ : ∀ {x} {X : Rel₂ x Proc} → Extensionality ℓ ℓ → (R : ∀ {o} → Rel₂ ℓ (X o)) → ∀ {p q} (p∼q₁ p∼q₂ : ⟦ StepC ⟧ X (p , q)) → ⟦ StepC ⟧₂ R (p∼q₁ , p∼q₂) ↔ (∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → let q′₁ , q⟶q′₁ , p′≤q′₁ = StepC.challenge p∼q₁ p⟶p′ q′₂ , q⟶q′₂ , p′≤q′₂ = StepC.challenge p∼q₂ p⟶p′ in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) → subst (q [ μ ]↝_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂ × R (subst (X ∘ (p′ ,_)) q′₁≡q′₂ p′≤q′₁ , p′≤q′₂)) ⟦StepC⟧₂↔ {X = X} ext R {p} {q} (s₁@(_ , ch₁) , f₁) (s₂@(_ , ch₂) , f₂) = (∃ λ (eq : s₁ ≡ s₂) → ∀ {o} (p : Container.Position StepC s₁ o) → R (f₁ p , f₂ (subst (λ s → Container.Position StepC s o) eq p))) ↝⟨ inverse $ Σ-cong ≡×≡↔≡ (λ _ → F.id) ⟩ (∃ λ (eq : proj₁ s₁ ≡ proj₁ s₂ × (λ {_ _} → ch₁) ≡ ch₂) → ∀ {o} (p : Container.Position StepC s₁ o) → R (f₁ p , f₂ (subst (λ s → Container.Position StepC s o) (cong₂ _,_ (proj₁ eq) (proj₂ eq)) p))) ↝⟨ inverse Σ-assoc ⟩ (∃ λ (eq₁ : proj₁ s₁ ≡ proj₁ s₂) → ∃ λ (eq₂ : (λ {_ _} → ch₁) ≡ ch₂) → ∀ {o} (p : Container.Position StepC s₁ o) → R (f₁ p , f₂ (subst (λ s → Container.Position StepC s o) (cong₂ _,_ eq₁ eq₂) p))) ↝⟨ drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $ +⇒≡ $ mono₁ 0 (_⇔_.from contractible⇔↔⊤ Magic↔⊤) ⟩ (∃ λ (eq : (λ {_ _} → ch₁) ≡ ch₂) → ∀ {o} (p : Container.Position StepC s₁ o) → R (f₁ p , f₂ (subst (λ s → Container.Position StepC s o) (cong₂ _,_ refl eq) p))) ↝⟨ (∃-cong λ eq → implicit-∀-cong ext $ ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ (eq : s₁ ≡ s₂) → R (f₁ _ , f₂ (subst (λ s → Container.Position StepC s _) eq _))) $ trans-reflˡ (cong (_ ,_) eq)) ⟩ (∃ λ (eq : (λ {_ _} → ch₁) ≡ ch₂) → ∀ {o} (p : Container.Position StepC s₁ o) → R (f₁ p , f₂ (subst (λ (s : _ × _) → Container.Position StepC s o) (cong (_ ,_) eq) p))) ↝⟨ (∃-cong λ eq → implicit-∀-cong ext λ {o} → ∀-cong ext λ p → ≡⇒↝ _ $ cong (λ p → R {o = o} (f₁ _ , f₂ p)) $ sym $ subst-∘ (λ (s : Container.Shape StepC _) → Container.Position StepC s o) _ eq) ⟩ (∃ λ (eq : (λ {_ _} → ch₁) ≡ ch₂) → ∀ {o} (p : Container.Position StepC s₁ o) → R (f₁ p , f₂ (subst (λ (ch : ∀ {_ _} → _) → Container.Position StepC (_ , ch) o) eq p))) ↔⟨⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ {p′q′} → (pos : ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ proj₁ p′q′) → proj₁ (ch₁ p⟶p′) ≡ proj₂ p′q′) → R (f₁ pos , f₂ (subst (λ ch → ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ proj₁ p′q′) → proj₁ (ch p⟶p′) ≡ proj₂ p′q′) eq pos))) ↝⟨ (∃-cong λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ p′q′ → (pos : ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ proj₁ p′q′) → proj₁ (ch₁ p⟶p′) ≡ proj₂ p′q′) → R (f₁ pos , f₂ (subst (λ ch → ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ proj₁ p′q′) → proj₁ (ch p⟶p′) ≡ proj₂ p′q′) eq pos))) ↝⟨ (∃-cong λ _ → currying) ⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ p′ q′ → (pos : ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ p′) → proj₁ (ch₁ p⟶p′) ≡ q′) → R (f₁ pos , f₂ (subst (λ ch → ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′) ≡ q′) eq pos))) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → currying) ⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ p′ q′ μ → (pos : ∃ λ (p⟶p′ : p [ μ ]⟶ p′) → proj₁ (ch₁ p⟶p′) ≡ q′) → R (f₁ (μ , pos) , f₂ (subst (λ ch → ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′) ≡ q′) eq (μ , pos)))) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → currying) ⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ p′ q′ μ (p⟶p′ : p [ μ ]⟶ p′) (≡q′ : proj₁ (ch₁ p⟶p′) ≡ q′) → R (f₁ (μ , p⟶p′ , ≡q′) , f₂ (subst (λ ch → ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′) ≡ q′) eq (μ , p⟶p′ , ≡q′)))) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → Π-comm) ⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ p′ μ q′ (p⟶p′ : p [ μ ]⟶ p′) (≡q′ : proj₁ (ch₁ p⟶p′) ≡ q′) → R (f₁ (μ , p⟶p′ , ≡q′) , f₂ (subst (λ ch → ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′) ≡ q′) eq (μ , p⟶p′ , ≡q′)))) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → Π-comm) ⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ p′ μ (p⟶p′ : p [ μ ]⟶ p′) q′ (≡q′ : proj₁ (ch₁ p⟶p′) ≡ q′) → R (f₁ (μ , p⟶p′ , ≡q′) , f₂ (subst (λ ch → ∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′) ≡ q′) eq (μ , p⟶p′ , ≡q′)))) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → inverse $ ∀-intro _ ext) ⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ p′ μ (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (subst (λ ch → ∃ λ μ → ∃ λ (p⟶p′′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′′) ≡ proj₁ (ch₁ p⟶p′)) eq (μ , p⟶p′ , refl)))) ↝⟨ (∃-cong λ eq → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (R ∘ (f₁ _ ,_) ∘ f₂) $ lemma₁ eq) ⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ p′ μ (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p⟶p′)) eq)))) ↝⟨ (∃-cong λ eq → ∀-cong ext λ _ → inverse Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ p′ {μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p⟶p′)) eq)))) ↝⟨ (∃-cong λ eq → inverse Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : _≡_ {A = ∀ {p′ μ} → _} ch₁ ch₂) → ∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p⟶p′)) eq)))) ↝⟨ (Σ-cong (inverse $ implicit-extensionality-isomorphism {k = bijection} ext) λ eq → implicit-∀-cong ext $ implicit-∀-cong ext $ ∀-cong ext λ p⟶p′ → ≡⇒↝ _ $ sym $ cong (λ eq → R (f₁ _ , f₂ (_ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p⟶p′)) eq)))) $ _↔_.right-inverse-of (implicit-extensionality-isomorphism ext) eq) ⟩ (∃ λ (eq : ∀ p′ → (λ {μ} → ch₁ {p′ = p′} {μ = μ}) ≡ ch₂) → let eq′ = _↔_.to (implicit-extensionality-isomorphism ext) eq in ∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p⟶p′)) eq′)))) ↝⟨ (∃-cong λ eq → implicit-∀-cong ext $ implicit-∀-cong ext $ ∀-cong ext λ p⟶p′ → ≡⇒↝ _ $ cong (λ eq → R (f₁ _ , f₂ (_ , p⟶p′ , sym eq))) $ lemma₂ eq) ⟩ (∃ λ (eq : ∀ p′ → (λ {μ} → ch₁ {p′ = p′} {μ = μ}) ≡ ch₂) → ∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p′ p⟶p′)) (apply-ext (Eq.good-ext ext) eq))))) ↝⟨ (Σ-cong (inverse $ ∀-cong ext λ _ → implicit-extensionality-isomorphism {k = bijection} ext) λ eq → implicit-∀-cong ext $ implicit-∀-cong ext $ ∀-cong ext λ p⟶p′ → ≡⇒↝ _ $ sym $ cong (λ eq → R (f₁ _ , f₂ (_ , p⟶p′ , sym (cong (λ ch → proj₁ (ch _ p⟶p′)) (apply-ext (Eq.good-ext ext) eq))))) $ apply-ext ext $ _↔_.right-inverse-of (implicit-extensionality-isomorphism ext) ∘ eq) ⟩ (∃ λ (eq : ∀ p′ μ → ch₁ {p′ = p′} {μ = μ} ≡ ch₂) → let eq′ = implicit-extensionality (Eq.good-ext ext) ∘ eq in ∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p′ p⟶p′)) (apply-ext (Eq.good-ext ext) eq′))))) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ implicit-∀-cong ext $ ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ eq → R (f₁ _ , f₂ (_ , _ , sym eq))) $ lemma₃ _) ⟩ (∃ λ (eq : ∀ p′ μ → ch₁ {p′ = p′} {μ = μ} ≡ ch₂) → ∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p⟶p′)) (eq p′ μ))))) ↝⟨ Σ-cong (inverse Bijection.implicit-Π↔Π) (λ _ → F.id) ⟩ (∃ λ (eq : ∀ {p′} μ → ch₁ {p′ = p′} {μ = μ} ≡ ch₂) → ∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p⟶p′)) (eq μ))))) ↝⟨ Σ-cong (implicit-∀-cong ext $ inverse Bijection.implicit-Π↔Π) (λ _ → F.id) ⟩ (∃ λ (eq : ∀ {p′ μ} → ch₁ {p′ = p′} {μ = μ} ≡ ch₂) → ∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p⟶p′)) eq)))) ↝⟨ (∃-cong λ eq → implicit-∀-cong ext $ implicit-∀-cong ext $ ∀-cong ext λ p⟶p′ → ≡⇒↝ _ $ cong (λ eq → R (f₁ _ , f₂ (_ , _ , sym eq))) $ sym $ cong-∘ proj₁ (_$ p⟶p′) (eq {μ = _})) ⟩ (∃ λ (eq : ∀ {p′ μ} → ch₁ {p′ = p′} {μ = μ} ≡ ch₂) → ∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong proj₁ $ cong (_$ p⟶p′) eq)))) ↝⟨ Σ-cong (implicit-∀-cong ext $ implicit-∀-cong ext $ inverse $ Eq.extensionality-isomorphism ext) (λ _ → F.id) ⟩ (∃ λ (eq : ∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → ch₁ p⟶p′ ≡ ch₂ p⟶p′) → ∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong proj₁ (eq p⟶p′))))) ↝⟨ inverse implicit-ΠΣ-comm ⟩ (∀ {p′} → ∃ λ (eq : ∀ {μ} (p⟶p′ : p [ μ ]⟶ p′) → ch₁ p⟶p′ ≡ ch₂ p⟶p′) → ∀ {μ} (p⟶p′ : p [ μ ]⟶ p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong proj₁ (eq p⟶p′))))) ↝⟨ implicit-∀-cong ext $ inverse implicit-ΠΣ-comm ⟩ (∀ {p′ μ} → ∃ λ (eq : (p⟶p′ : p [ μ ]⟶ p′) → ch₁ p⟶p′ ≡ ch₂ p⟶p′) → ∀ p⟶p′ → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong proj₁ (eq p⟶p′))))) ↝⟨ implicit-∀-cong ext $ implicit-∀-cong ext $ inverse ΠΣ-comm ⟩ (∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → ∃ λ (eq : ch₁ p⟶p′ ≡ ch₂ p⟶p′) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong proj₁ eq)))) ↝⟨ (inverse $ implicit-∀-cong ext $ implicit-∀-cong ext $ ∀-cong ext λ _ → Σ-cong Bijection.Σ-≡,≡↔≡ λ _ → F.id) ⟩ (∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → let q′₁ , q⟶q′₁ = ch₁ p⟶p′ q′₂ , q⟶q′₂ = ch₂ p⟶p′ in ∃ λ (eq : ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) → subst (q [ μ ]↝_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (cong proj₁ (uncurry Σ-≡,≡→≡ eq))))) ↝⟨ (implicit-∀-cong ext $ implicit-∀-cong ext $ ∀-cong ext λ _ → ∃-cong λ eq → ≡⇒↝ _ $ cong (λ eq → R (f₁ _ , f₂ (_ , _ , sym eq))) $ proj₁-Σ-≡,≡→≡ (proj₁ eq) (proj₂ eq)) ⟩ (∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → let q′₁ , q⟶q′₁ = ch₁ p⟶p′ q′₂ , q⟶q′₂ = ch₂ p⟶p′ in ∃ λ (eq : ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) → subst (q [ μ ]↝_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym (proj₁ eq)))) ↝⟨ (implicit-∀-cong ext $ implicit-∀-cong ext $ ∀-cong ext λ _ → inverse Σ-assoc) ⟩ (∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → let q′₁ , q⟶q′₁ = ch₁ p⟶p′ q′₂ , q⟶q′₂ = ch₂ p⟶p′ in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) → subst (q [ μ ]↝_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂ × R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym q′₁≡q′₂))) ↝⟨ (implicit-∀-cong ext $ implicit-∀-cong ext $ ∀-cong ext λ p⟶p′ → ∃-cong λ q′₁≡q′₂ → ∃-cong λ _ → ≡⇒↝ _ $ lemma₄ q′₁≡q′₂) ⟩ (∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → let q′₁ , q⟶q′₁ = ch₁ p⟶p′ q′₂ , q⟶q′₂ = ch₂ p⟶p′ in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) → subst (q [ μ ]↝_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂ × R (subst (X ∘ (p′ ,_)) q′₁≡q′₂ (f₁ (_ , p⟶p′ , refl)) , f₂ (_ , p⟶p′ , refl))) ↔⟨⟩ (∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) → let q′₁ , q⟶q′₁ , p′≤q′₁ = StepC.challenge (s₁ , f₁) p⟶p′ q′₂ , q⟶q′₂ , p′≤q′₂ = StepC.challenge (s₂ , f₂) p⟶p′ in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) → subst (q [ μ ]↝_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂ × R (subst (X ∘ (p′ ,_)) q′₁≡q′₂ p′≤q′₁ , p′≤q′₂)) □ where lemma₁ : ∀ {p q} {f g : ∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ (q [ μ ]↝_)} (eq : (λ {p′ μ} → f {p′ = p′} {μ = μ}) ≡ g) {p′ μ} {p⟶p′ : p [ μ ]⟶ p′} → _ lemma₁ {p} {q} {f} {g} eq {p′} {μ} {p⟶p′} = subst (λ ch → ∃ λ μ → ∃ λ (p⟶p′′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′′) ≡ proj₁ (f p⟶p′)) eq (μ , p⟶p′ , refl) ≡⟨ push-subst-pair′ {y≡z = eq} _ _ _ ⟩ ( μ , subst₂ (λ { (ch , μ) → ∃ λ (p⟶p′′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′′) ≡ proj₁ (f p⟶p′) }) eq (subst-const eq) (p⟶p′ , refl) ) ≡⟨ cong (μ ,_) $ cong (λ eq → subst (λ { (ch , μ) → ∃ λ (p⟶p′′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′′) ≡ proj₁ (f p⟶p′) }) eq (p⟶p′ , refl)) $ Σ-≡,≡→≡-subst-const eq refl ⟩ ( μ , subst (λ { (ch , μ) → ∃ λ (p⟶p′′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′′) ≡ proj₁ (f p⟶p′) }) (cong₂ _,_ eq refl) (p⟶p′ , refl) ) ≡⟨⟩ ( μ , subst (λ { (ch , μ) → ∃ λ (p⟶p′′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′′) ≡ proj₁ (f p⟶p′) }) (cong (_, _) eq) (p⟶p′ , refl) ) ≡⟨ cong (μ ,_) $ sym $ subst-∘ _ _ eq ⟩ ( μ , subst (λ ch → ∃ λ (p⟶p′′ : p [ μ ]⟶ p′) → proj₁ (ch p⟶p′′) ≡ proj₁ (f p⟶p′)) eq (p⟶p′ , refl) ) ≡⟨ cong (μ ,_) $ push-subst-pair′ {y≡z = eq} _ _ _ ⟩ ( μ , p⟶p′ , subst₂ (λ { (ch , p⟶p′′) → proj₁ (ch p⟶p′′) ≡ proj₁ (f p⟶p′) }) eq (subst-const eq) refl ) ≡⟨ cong (λ eq → (_ , p⟶p′ , subst (λ { (ch , p⟶p′′) → proj₁ (ch p⟶p′′) ≡ proj₁ (f p⟶p′) }) eq refl)) $ Σ-≡,≡→≡-subst-const eq refl ⟩ ( μ , p⟶p′ , subst (λ { (ch , p⟶p′′) → proj₁ (ch p⟶p′′) ≡ proj₁ (f p⟶p′) }) (cong (_, _) eq) refl ) ≡⟨ cong (λ eq → (_ , p⟶p′ , eq)) $ sym $ subst-∘ _ _ eq ⟩ ( μ , p⟶p′ , subst (λ ch → proj₁ (ch p⟶p′) ≡ proj₁ (f p⟶p′)) eq refl ) ≡⟨ cong (λ eq → (_ , p⟶p′ , eq)) $ subst-∘ _ _ eq ⟩ ( μ , p⟶p′ , subst (_≡ proj₁ (f p⟶p′)) (cong (λ ch → proj₁ (ch p⟶p′)) eq) refl ) ≡⟨ cong (λ eq → (_ , p⟶p′ , subst (_≡ _) eq refl)) $ sym $ sym-sym (cong (λ ch → proj₁ (ch p⟶p′)) eq) ⟩ ( μ , p⟶p′ , subst (_≡ proj₁ (f p⟶p′)) (sym $ sym $ cong (λ ch → proj₁ (ch p⟶p′)) eq) refl ) ≡⟨ cong (λ eq → (_ , p⟶p′ , eq)) $ subst-trans (sym $ cong (λ ch → proj₁ (ch p⟶p′)) eq) ⟩∎ ( μ , p⟶p′ , sym (cong (λ ch → proj₁ (ch p⟶p′)) eq) ) ∎ lemma₂ : ∀ {p q} {f g : ∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ (q [ μ ]↝_)} (eq : ∀ p′ → (λ {μ} → f {p′ = p′} {μ = μ}) ≡ g) {p′ μ} {p⟶p′ : p [ μ ]⟶ p′} → _ lemma₂ {p} {q} {f} {g} eq {p′} {μ} {p⟶p′} = cong (λ ch → proj₁ (ch p⟶p′)) (_↔_.to (implicit-extensionality-isomorphism ext) eq) ≡⟨⟩ cong (λ ch → proj₁ (ch p⟶p′)) (implicit-extensionality (Eq.good-ext ext) eq) ≡⟨ cong-∘ _ _ (apply-ext (Eq.good-ext ext) eq) ⟩∎ cong (λ ch → proj₁ (ch p′ p⟶p′)) (apply-ext (Eq.good-ext ext) eq) ∎ lemma₃ : ∀ {p q} {f g : ∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ (q [ μ ]↝_)} (eq : ∀ p′ μ → f {p′ = p′} {μ = μ} ≡ g) {p′ μ p⟶p′} → _ lemma₃ {p} {q} {f} {g} eq {p′} {μ} {p⟶p′} = cong (λ (ch : ∀ _ {μ} → _) → proj₁ (ch p′ {μ = μ} p⟶p′)) (apply-ext (Eq.good-ext ext) (implicit-extensionality (Eq.good-ext ext) ∘ eq)) ≡⟨⟩ cong (λ ch → proj₁ (ch p′ p⟶p′)) (apply-ext (Eq.good-ext ext) (cong (λ f {x} → f x) ∘ (apply-ext (Eq.good-ext ext) ∘ eq))) ≡⟨ cong (cong (λ ch → proj₁ (ch p′ p⟶p′))) $ sym $ Eq.cong-post-∘-good-ext {h = λ f {x} → f x} ext ext (apply-ext (Eq.good-ext ext) ∘ eq) ⟩ cong (λ ch → proj₁ (ch p′ p⟶p′)) (cong (λ f x {y} → f x y) (apply-ext (Eq.good-ext ext) (apply-ext (Eq.good-ext ext) ∘ eq))) ≡⟨ cong-∘ _ _ (apply-ext (Eq.good-ext ext) (apply-ext (Eq.good-ext ext) ∘ eq)) ⟩ cong (λ ch → proj₁ (ch p′ μ p⟶p′)) (apply-ext (Eq.good-ext ext) (apply-ext (Eq.good-ext ext) ∘ eq)) ≡⟨ sym $ cong-∘ _ _ (apply-ext (Eq.good-ext ext) (apply-ext (Eq.good-ext ext) ∘ eq)) ⟩ cong (λ ch → proj₁ (ch μ p⟶p′)) (cong (_$ p′) (apply-ext (Eq.good-ext ext) (apply-ext (Eq.good-ext ext) ∘ eq))) ≡⟨ cong (cong (λ ch → proj₁ (ch μ p⟶p′))) $ Eq.cong-good-ext ext _ ⟩ cong (λ ch → proj₁ (ch μ p⟶p′)) (apply-ext (Eq.good-ext ext) (eq p′)) ≡⟨ sym $ cong-∘ _ _ (apply-ext (Eq.good-ext ext) (eq p′)) ⟩ cong (λ ch → proj₁ (ch p⟶p′)) (cong (_$ μ) (apply-ext (Eq.good-ext ext) (eq p′))) ≡⟨ cong (cong (λ ch → proj₁ (ch p⟶p′))) $ Eq.cong-good-ext ext _ ⟩∎ cong (λ ch → proj₁ (ch p⟶p′)) (eq p′ μ) ∎ lemma₄ : ∀ {p′ μ} {p⟶p′ : p [ μ ]⟶ p′} (q′₁≡q′₂ : proj₁ (ch₁ p⟶p′) ≡ proj₁ (ch₂ p⟶p′)) → R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym q′₁≡q′₂)) ≡ R (subst (X ∘ (p′ ,_)) q′₁≡q′₂ (f₁ (_ , p⟶p′ , refl)) , f₂ (_ , p⟶p′ , refl)) lemma₄ {p′} {μ} {p⟶p′} q′₁≡q′₂ = R (f₁ (μ , p⟶p′ , refl) , f₂ (μ , p⟶p′ , sym q′₁≡q′₂)) ≡⟨ cong (R ∘ (f₁ _ ,_)) $ lemma′ q′₁≡q′₂ ⟩ R (f₁ (μ , p⟶p′ , refl) , subst (X ∘ (p′ ,_)) (sym q′₁≡q′₂) (f₂ (_ , p⟶p′ , refl))) ≡⟨ lemma″ q′₁≡q′₂ ⟩∎ R (subst (X ∘ (p′ ,_)) q′₁≡q′₂ (f₁ (_ , p⟶p′ , refl)) , f₂ (_ , p⟶p′ , refl)) ∎ where lemma′ : ∀ {q′₁} (q′₁≡q′₂ : q′₁ ≡ proj₁ (ch₂ p⟶p′)) → f₂ (μ , p⟶p′ , sym q′₁≡q′₂) ≡ subst (X ∘ (p′ ,_)) (sym q′₁≡q′₂) (f₂ (_ , p⟶p′ , refl)) lemma′ refl = refl lemma″ : ∀ {q′₂ x} (q′₁≡q′₂ : proj₁ (ch₁ p⟶p′) ≡ q′₂) → R (f₁ (μ , p⟶p′ , refl) , subst (X ∘ (p′ ,_)) (sym q′₁≡q′₂) x) ≡ R (subst (X ∘ (p′ ,_)) q′₁≡q′₂ (f₁ (_ , p⟶p′ , refl)) , x) lemma″ refl = refl
{ "alphanum_fraction": 0.3368020669, "avg_line_length": 48.0482758621, "ext": "agda", "hexsha": "4ea91df4d393f12d0971ab2be47d05d4bd04403d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Similarity/Step.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Similarity/Step.agda", "max_line_length": 147, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Similarity/Step.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10858, "size": 27868 }
module Holes.Util where open import Holes.Prelude private Rel : ∀ {a} → Set a → ∀ ℓ → Set (a ⊔ lsuc ℓ) Rel A ℓ = A → A → Set ℓ module CongSplit {ℓ x} {X : Set x} (_≈_ : Rel X ℓ) (reflexive : ∀ {x} → x ≈ x) where two→one₁ : {_+_ : X → X → X} → (∀ {x x′ y y′} → x ≈ x′ → y ≈ y′ → (x + y) ≈ (x′ + y′)) → (∀ x y {x′} → x ≈ x′ → (x + y) ≈ (x′ + y)) two→one₁ cong² _ _ eq = cong² eq reflexive two→one₂ : {_+_ : X → X → X} → (∀ {x x′ y y′} → x ≈ x′ → y ≈ y′ → (x + y) ≈ (x′ + y′)) → (∀ x y {y′} → y ≈ y′ → (x + y) ≈ (x + y′)) two→one₂ cong² _ _ eq = cong² reflexive eq
{ "alphanum_fraction": 0.4064, "avg_line_length": 31.25, "ext": "agda", "hexsha": "6a5c38021efe605e86987f7f3e0ac2d75d69baef", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-02T18:57:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-01-27T14:57:39.000Z", "max_forks_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-holes", "max_forks_repo_path": "src/Holes/Util.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_issues_repo_issues_event_max_datetime": "2020-08-31T20:58:33.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-16T10:47:58.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-holes", "max_issues_repo_path": "src/Holes/Util.agda", "max_line_length": 84, "max_stars_count": 24, "max_stars_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-holes", "max_stars_repo_path": "src/Holes/Util.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-03T15:02:41.000Z", "max_stars_repo_stars_event_min_datetime": "2017-01-28T10:56:46.000Z", "num_tokens": 297, "size": 625 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.CircleHSpace open import homotopy.LoopSpaceCircle open import homotopy.Pi2HSusp open import homotopy.IterSuspensionStable -- This summerizes all [πₙ Sⁿ] module homotopy.PinSn where private -- another way is to use path induction to prove the other direction, -- but personally I do not feel it is easier. abstract -- proved in LoopSpaceCircle -- loop^succ : ∀ (z : ℤ) → loop^ z ∙ loop == loop^ (succ z) -- mimicking [loop^pred] loop^pred : ∀ (z : ℤ) → loop^ z ∙ ! loop == loop^ (pred z) loop^pred (negsucc n) = idp loop^pred (pos O) = idp loop^pred (pos (S n)) = (loop^ (pos n) ∙ loop) ∙ ! loop =⟨ ∙-assoc (loop^ (pos n)) loop (! loop) ⟩ loop^ (pos n) ∙ (loop ∙ ! loop) =⟨ !-inv-r loop |in-ctx loop^ (pos n) ∙_ ⟩ loop^ (pos n) ∙ idp =⟨ ∙-unit-r $ loop^ (pos n) ⟩ loop^ (pos n) ∎ -- because of how [loop^] is defined, -- it is easier to prove the swapped version loop^-ℤ+' : ∀ (z₁ z₂ : ℤ) → loop^ (z₁ ℤ+ z₂) == loop^ z₂ ∙ loop^ z₁ loop^-ℤ+' (pos O) z₂ = ! $ ∙-unit-r (loop^ z₂) loop^-ℤ+' (pos (S n₁)) z₂ = loop^ (succ (pos n₁ ℤ+ z₂)) =⟨ ! $ loop^succ (pos n₁ ℤ+ z₂) ⟩ loop^ (pos n₁ ℤ+ z₂) ∙ loop =⟨ loop^-ℤ+' (pos n₁) z₂ |in-ctx _∙ loop ⟩ (loop^ z₂ ∙ loop^ (pos n₁)) ∙ loop =⟨ ∙-assoc (loop^ z₂) (loop^ (pos n₁)) loop ⟩ loop^ z₂ ∙ (loop^ (pos n₁) ∙ loop) ∎ loop^-ℤ+' (negsucc O) z₂ = ! $ loop^pred z₂ loop^-ℤ+' (negsucc (S n₁)) z₂ = loop^ (pred (negsucc n₁ ℤ+ z₂)) =⟨ ! $ loop^pred (negsucc n₁ ℤ+ z₂) ⟩ loop^ (negsucc n₁ ℤ+ z₂) ∙ ! loop =⟨ loop^-ℤ+' (negsucc n₁) z₂ |in-ctx _∙ ! loop ⟩ (loop^ z₂ ∙ loop^ (negsucc n₁)) ∙ ! loop =⟨ ∙-assoc (loop^ z₂) (loop^ (negsucc n₁)) (! loop) ⟩ loop^ z₂ ∙ (loop^ (negsucc n₁) ∙ ! loop) ∎ loop^-ℤ+ : ∀ (z₁ z₂ : ℤ) → loop^ (z₁ ℤ+ z₂) == loop^ z₁ ∙ loop^ z₂ loop^-ℤ+ z₁ z₂ = ap loop^ (ℤ+-comm z₁ z₂) ∙ loop^-ℤ+' z₂ z₁ ℤ-to-π₁S¹ : ℤ-group →ᴳ πS 0 ⊙S¹ ℤ-to-π₁S¹ = record { f = [_] ∘ loop^ ; pres-comp = λ z₁ z₂ → ap [_] $ loop^-ℤ+ z₁ z₂ } ℤ-to-π₁S¹-equiv : ℤ-group ≃ᴳ πS 0 ⊙S¹ ℤ-to-π₁S¹-equiv = ℤ-to-π₁S¹ , snd (unTrunc-equiv (Ω^ 1 ⊙S¹) (ΩS¹-is-set base) ⁻¹ ∘e ΩS¹≃ℤ ⁻¹) π₁S¹ : πS 0 ⊙S¹ == ℤ-group π₁S¹ = ! $ group-ua ℤ-to-π₁S¹-equiv π₂S² : πS 1 ⊙S² == ℤ-group π₂S² = πS 1 ⊙S² =⟨ Pi2HSusp.π₂-Suspension S¹ S¹-level S¹-connected S¹-hSpace ⟩ πS 0 ⊙S¹ =⟨ π₁S¹ ⟩ ℤ-group ∎ private πₙ₊₂Sⁿ⁺² : ∀ n → πS (S n) (⊙Susp^ (S n) ⊙S¹) == ℤ-group πₙ₊₂Sⁿ⁺² 0 = π₂S² πₙ₊₂Sⁿ⁺² (S n) = πS (S (S n)) (⊙Susp^ (S (S n)) ⊙S¹) =⟨ Susp^StableSucc.stable ⊙S¹ S¹-connected (S n) (S n) (≤-ap-S $ ≤-ap-S $ *2-increasing n) ⟩ πS (S n) (⊙Susp^ (S n) ⊙S¹) =⟨ πₙ₊₂Sⁿ⁺² n ⟩ ℤ-group ∎ lemma : ∀ n → ⊙Susp^ n ⊙S¹ == ⊙Sphere (S n) lemma n = ⊙Susp^-+ n 1 ∙ ap ⊙Sphere (+-comm n 1) πₙ₊₁Sⁿ⁺¹ : ∀ n → πS n (⊙Sphere (S n)) == ℤ-group πₙ₊₁Sⁿ⁺¹ 0 = π₁S¹ πₙ₊₁Sⁿ⁺¹ (S n) = ap (πS (S n)) (! $ lemma (S n)) ∙ πₙ₊₂Sⁿ⁺² n
{ "alphanum_fraction": 0.4867660481, "avg_line_length": 32.5445544554, "ext": "agda", "hexsha": "9609e37e42d15b2496069dc35accf41d75998828", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/PinSn.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/PinSn.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/PinSn.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1537, "size": 3287 }
open import MLib.Algebra.PropertyCode open import MLib.Algebra.PropertyCode.Structures module MLib.Matrix.Bimonoid {c ℓ} (struct : Struct bimonoidCode c ℓ) where open import MLib.Prelude open import MLib.Matrix.Core open import MLib.Matrix.Equality struct open import MLib.Matrix.Mul struct open import MLib.Matrix.Plus struct open import MLib.Algebra.Operations struct open import MLib.Algebra.PropertyCode.Dependent struct open FunctionProperties matrixRawStruct : ∀ n → RawStruct BimonoidK _ _ matrixRawStruct n = record { appOp = λ { + (A ∷ B ∷ []) → A ⊕ B ; * (A ∷ B ∷ []) → A ⊗ B ; 0# [] → 0● ; 1# [] → 1● } ; isRawStruct = record { isEquivalence = isEquivalence {n} {n} ; congⁿ = λ { + (p ∷ q ∷ []) i j → cong + (p i j) (q i j) ; * (p ∷ q ∷ []) → ⊗-cong p q ; 0# [] _ _ → S.refl ; 1# [] _ _ → S.refl } } } matrixStruct : ∀ n → Struct bimonoidCode _ _ matrixStruct n = dependentStruct (matrixRawStruct n) ( (commutative on + , _ , ⊕-comm) ∷ (associative on + , _ , ⊕-assoc) ∷ (0# is leftIdentity for + , _ , ⊕-identityˡ) ∷ (0# is rightIdentity for + , _ , ⊕-identityʳ) ∷ (associative on * , _ , ⊗-assoc) ∷ (* ⟨ distributesOverˡ ⟩ₚ + , _ , ⊗-distributesOverˡ-⊕) ∷ [])
{ "alphanum_fraction": 0.6087301587, "avg_line_length": 28.6363636364, "ext": "agda", "hexsha": "e97c5728d755f0e7ad3a4d96373df352925916a9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Matrix/Bimonoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Matrix/Bimonoid.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Matrix/Bimonoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 460, "size": 1260 }
open import Common.Prelude record IsNumber (A : Set) : Set where field fromNat : Nat → A open IsNumber {{...}} public {-# BUILTIN FROMNAT fromNat #-} instance IsNumberNat : IsNumber Nat IsNumberNat = record { fromNat = λ n → n } record IsNegative (A : Set) : Set where field fromNeg : Nat → A open IsNegative {{...}} public {-# BUILTIN FROMNEG fromNeg #-} data Int : Set where pos : Nat → Int neg : Nat → Int instance IsNumberInt : IsNumber Int IsNumberInt = record { fromNat = pos } IsNegativeInt : IsNegative Int IsNegativeInt = record { fromNeg = neg } fiveN : Nat fiveN = 5 fiveZ : Int fiveZ = 5 minusFive : Int minusFive = -5 open import Common.Equality thm : pos 5 ≡ 5 thm = refl thm′ : neg 5 ≡ -5 thm′ = refl
{ "alphanum_fraction": 0.6573705179, "avg_line_length": 15.3673469388, "ext": "agda", "hexsha": "4c10782873d7d2bb0ecff4d43fccaf2b95e06e47", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/OverloadedNat.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/OverloadedNat.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/OverloadedNat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 245, "size": 753 }
{-# OPTIONS --cubical #-} module Cubical.Categories.Category where open import Cubical.Foundations.Prelude record Precategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where no-eta-equality field ob : Type ℓ hom : ob → ob → Type ℓ' idn : ∀ x → hom x x seq : ∀ {x y z} (f : hom x y) (g : hom y z) → hom x z seq-λ : ∀ {x y : ob} (f : hom x y) → seq (idn x) f ≡ f seq-ρ : ∀ {x y} (f : hom x y) → seq f (idn y) ≡ f seq-α : ∀ {u v w x} (f : hom u v) (g : hom v w) (h : hom w x) → seq (seq f g) h ≡ seq f (seq g h) open Precategory public record isCategory {ℓ ℓ'} (𝒞 : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where field homIsSet : ∀ {x y} → isSet (𝒞 .hom x y) open isCategory public _^op : ∀ {ℓ ℓ'} → Precategory ℓ ℓ' → Precategory ℓ ℓ' (𝒞 ^op) .ob = 𝒞 .ob (𝒞 ^op) .hom x y = 𝒞 .hom y x (𝒞 ^op) .idn = 𝒞 .idn (𝒞 ^op) .seq f g = 𝒞 .seq g f (𝒞 ^op) .seq-λ = 𝒞 .seq-ρ (𝒞 ^op) .seq-ρ = 𝒞 .seq-λ (𝒞 ^op) .seq-α f g h = sym (𝒞 .seq-α _ _ _)
{ "alphanum_fraction": 0.5352697095, "avg_line_length": 28.3529411765, "ext": "agda", "hexsha": "1aad90e551c04c0fbcf5d12ed8c213ce6e23e597", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Categories/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Categories/Category.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Categories/Category.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 464, "size": 964 }
------------------------------------------------------------------------ -- Acyclic precedence graphs ------------------------------------------------------------------------ module Mixfix.Acyclic.PrecedenceGraph where open import Data.List open import Data.Product open import Mixfix.Fixity open import Mixfix.Operator open import Mixfix.Expr -- Precedence graphs are represented by their unfoldings as forests -- (one tree for every node in the graph). This does not take into -- account the sharing of the precedence graphs, but this code is -- not aimed at efficiency. -- Precedence trees. data Precedence : Set where precedence : (o : (fix : Fixity) → List (∃ (Operator fix))) (s : List Precedence) → Precedence -- Precedence forests. PrecedenceGraph : Set PrecedenceGraph = List Precedence -- The operators of the given precedence. ops : Precedence → (fix : Fixity) → List (∃ (Operator fix)) ops (precedence o s) = o -- The immediate successors of the precedence level. ↑ : Precedence → List Precedence ↑ (precedence o s) = s -- Acyclic precedence graphs. acyclic : PrecedenceGraphInterface acyclic = record { PrecedenceGraph = PrecedenceGraph ; Precedence = λ _ → Precedence ; ops = λ _ → ops ; ↑ = λ _ → ↑ ; anyPrecedence = λ g → g }
{ "alphanum_fraction": 0.6091522881, "avg_line_length": 26.137254902, "ext": "agda", "hexsha": "ff797ccd41a7b62116c8ee2ac5ae20e1594a1ebc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "Mixfix/Acyclic/PrecedenceGraph.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "Mixfix/Acyclic/PrecedenceGraph.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "Mixfix/Acyclic/PrecedenceGraph.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 326, "size": 1333 }
{-# OPTIONS --cubical --no-import-sorts --guardedness --safe #-} module Cubical.Codata.M.AsLimit.helper where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv using (_≃_) open import Cubical.Foundations.Function using (_∘_) open import Cubical.Data.Unit open import Cubical.Data.Prod open import Cubical.Data.Nat as ℕ using (ℕ ; suc ; _+_ ) open import Cubical.Data.Sigma hiding (_×_) open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Path open import Cubical.Functions.Embedding open import Cubical.Functions.FunExtEquiv open Iso -- General iso→fun-Injection : ∀ {ℓ} {A B C : Type ℓ} (isom : Iso A B) → ∀ {f g : C -> A} → (x : C) → (Iso.fun isom (f x) ≡ Iso.fun isom (g x)) ≡ (f x ≡ g x) iso→fun-Injection {A = A} {B} {C} isom {f = f} {g} = isEmbedding→Injection {A = A} {B} {C} (Iso.fun isom) (iso→isEmbedding {A = A} {B} isom) {f = f} {g = g} abstract iso→Pi-fun-Injection : ∀ {ℓ} {A B C : Type ℓ} (isom : Iso A B) → ∀ {f g : C -> A} → Iso (∀ x → (fun isom) (f x) ≡ (fun isom) (g x)) (∀ x → f x ≡ g x) iso→Pi-fun-Injection {A = A} {B} {C} isom {f = f} {g} = pathToIso (cong (λ k → ∀ x → k x) (funExt (iso→fun-Injection isom {f = f} {g = g}))) iso→fun-Injection-Iso : ∀ {ℓ} {A B C : Type ℓ} (isom : Iso A B) → ∀ {f g : C -> A} → Iso (fun isom ∘ f ≡ fun isom ∘ g) (f ≡ g) iso→fun-Injection-Iso {A = A} {B} {C} isom {f = f} {g} = (fun isom) ∘ f ≡ (fun isom) ∘ g Iso⟨ invIso funExtIso ⟩ (∀ x → (fun isom) (f x) ≡ (fun isom) (g x)) Iso⟨ iso→Pi-fun-Injection isom ⟩ (∀ x → f x ≡ g x) Iso⟨ funExtIso ⟩ f ≡ g ∎Iso iso→fun-Injection-Path : ∀ {ℓ} {A B C : Type ℓ} (isom : Iso A B) → ∀ {f g : C -> A} → (fun isom ∘ f ≡ fun isom ∘ g) ≡ (f ≡ g) iso→fun-Injection-Path {A = A} {B} {C} isom {f = f} {g} = isoToPath (iso→fun-Injection-Iso isom) iso→inv-Injection-Path : ∀ {ℓ} {A B C : Type ℓ} (isom : Iso A B) → ∀ {f g : C -> B} → ----------------------- ((inv isom) ∘ f ≡ (inv isom) ∘ g) ≡ (f ≡ g) iso→inv-Injection-Path {A = A} {B} {C} isom {f = f} {g} = iso→fun-Injection-Path (invIso isom) iso→fun-Injection-Iso-x : ∀ {ℓ} {A B : Type ℓ} → (isom : Iso A B) → ∀ {x y : A} → Iso ((fun isom) x ≡ (fun isom) y) (x ≡ y) iso→fun-Injection-Iso-x isom {x} {y} = let tempx = λ {(lift tt) → x} tempy = λ {(lift tt) → y} in fun isom x ≡ fun isom y Iso⟨ iso (λ x₁ t → x₁) (λ x₁ → x₁ (lift tt)) (λ x → refl) (λ x → refl) ⟩ (∀ (t : Lift Unit) -> (((fun isom) ∘ tempx) t ≡ ((fun isom) ∘ tempy) t)) Iso⟨ iso→Pi-fun-Injection isom ⟩ (∀ (t : Lift Unit) -> tempx t ≡ tempy t) Iso⟨ iso (λ x₁ → x₁ (lift tt)) (λ x₁ t → x₁) (λ x → refl) (λ x → refl) ⟩ x ≡ y ∎Iso iso→inv-Injection-Iso-x : ∀ {ℓ} {A B : Type ℓ} → (isom : Iso A B) → ∀ {x y : B} → Iso ((inv isom) x ≡ (inv isom) y) (x ≡ y) iso→inv-Injection-Iso-x {A = A} {B = B} isom = iso→fun-Injection-Iso-x {A = B} {B = A} (invIso isom) iso→fun-Injection-Path-x : ∀ {ℓ} {A B : Type ℓ} → (isom : Iso A B) → ∀ {x y : A} → ((fun isom) x ≡ (fun isom) y) ≡ (x ≡ y) iso→fun-Injection-Path-x isom {x} {y} = isoToPath (iso→fun-Injection-Iso-x isom) iso→inv-Injection-Path-x : ∀ {ℓ} {A B : Type ℓ} → (isom : Iso A B) → ∀ {x y : B} → ((inv isom) x ≡ (inv isom) y) ≡ (x ≡ y) iso→inv-Injection-Path-x isom = isoToPath (iso→inv-Injection-Iso-x isom)
{ "alphanum_fraction": 0.5489027364, "avg_line_length": 31.547008547, "ext": "agda", "hexsha": "a60caf8525926ac5b9adb3d5086e614c8711b5e1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Codata/M/AsLimit/helper.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Codata/M/AsLimit/helper.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Codata/M/AsLimit/helper.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1538, "size": 3691 }
-- Andreas, 2016-07-13, issue reported by Mietek Bak -- {-# OPTIONS -v tc.size:20 #-} -- {-# OPTIONS -v tc.meta.assign:30 #-} open import Agda.Builtin.Size data Cx (U : Set) : Set where ⌀ : Cx U _,_ : Cx U → U → Cx U data _∈_ {U : Set} (A : U) : Cx U → Set where top : ∀ {Γ} → A ∈ (Γ , A) pop : ∀ {C Γ} → A ∈ Γ → A ∈ (Γ , C) infixr 3 _⊃_ data Ty : Set where ι : Ty _⊃_ : Ty → Ty → Ty infix 1 _⊢⟨_⟩_ data _⊢⟨_⟩_ (Γ : Cx Ty) : Size → Ty → Set where var : ∀ {m A} → A ∈ Γ → Γ ⊢⟨ m ⟩ A lam : ∀ {m A B} {m′ : Size< m} → Γ , A ⊢⟨ m′ ⟩ B → Γ ⊢⟨ m ⟩ A ⊃ B app : ∀ {m A B} {m′ m″ : Size< m} → Γ ⊢⟨ m′ ⟩ A ⊃ B → Γ ⊢⟨ m″ ⟩ A → Γ ⊢⟨ m ⟩ B works : ∀ {m A B Γ} → Γ ⊢⟨ ↑ ↑ ↑ ↑ m ⟩ (A ⊃ A ⊃ B) ⊃ A ⊃ B works = lam (lam (app (app (var (pop top)) (var top)) (var top))) test : ∀ {m A B Γ} → Γ ⊢⟨ {!↑ ↑ ↑ ↑ m!} ⟩ (A ⊃ A ⊃ B) ⊃ A ⊃ B test = lam (lam (app (app (var (pop top)) (var top)) (var top))) -- This interaction meta should be solvable with -- ↑ ↑ ↑ ↑ m -- Give should succeed. -- The problem was: premature instantiation to ∞.
{ "alphanum_fraction": 0.4608208955, "avg_line_length": 28.972972973, "ext": "agda", "hexsha": "4a03bce441942d977b4fb675b1b8a4b44115dde1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2095.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2095.agda", "max_line_length": 80, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2095.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 505, "size": 1072 }
{-# OPTIONS --type-in-type #-} module Data where open import Prelude data Sigma (A : Set)(B : A -> Set) : Set data Sigma A B where pair : (x : A) -> B x -> Sigma A B fst : {A : _} {B : _} -> Sigma A B -> A fst (pair x y) = x snd : {A : _} {B : _} (p : Sigma A B) -> B (fst p) snd (pair x y) = y data Unit : Set data Unit where tt : Unit Cat : Set Cat = Sigma Set (\ Obj -> Sigma (Obj -> Obj -> Set) (\ Hom -> Sigma ((X : _) -> Hom X X) (\ id -> Sigma ((X Y Z : _) -> Hom Y Z -> Hom X Y -> Hom X Z) (\ comp -> Sigma ((X Y : _)(f : Hom X Y) -> comp _ _ _ (id Y) f == f) (\ idl -> Sigma ((X Y : _)(f : Hom X Y) -> comp _ _ _ f (id X) == f) (\ idr -> Sigma ((W X Y Z : _) (f : Hom W X)(g : Hom X Y)(h : Hom Y Z) -> comp _ _ _ (comp _ _ _ h g) f == comp _ _ _ h (comp _ _ _ g f)) (\ assoc -> Unit))))))) Obj : (C : Cat) -> Set Obj C = fst C Hom : (C : Cat) -> Obj C -> Obj C -> Set Hom C = fst (snd C) id : (C : Cat) -> (X : _) -> Hom C X X id C = fst (snd (snd C)) comp : (C : Cat) -> (X Y Z : _) -> Hom C Y Z -> Hom C X Y -> Hom C X Z comp C = fst (snd (snd (snd C))) idl : (C : Cat) -> (X Y : _)(f : Hom C X Y) -> comp C _ _ _ (id C Y) f == f idl C = fst (snd (snd (snd (snd C)))) idr : (C : Cat) -> (X Y : _)(f : Hom C X Y) -> comp C _ _ _ f (id C X) == f idr C = fst (snd (snd (snd (snd (snd C))))) assoc : (C : Cat) -> (W X Y Z : _) (f : Hom C W X)(g : Hom C X Y)(h : Hom C Y Z) -> comp C _ _ _ (comp C _ _ _ h g) f == comp C _ _ _ h (comp C _ _ _ g f) assoc C = fst (snd (snd (snd (snd (snd (snd C))))))
{ "alphanum_fraction": 0.4137535817, "avg_line_length": 29.5762711864, "ext": "agda", "hexsha": "a6bb4b62b32a01f2c46803ed02ab2f00fec34467", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "src/prototyping/term/examples/Data.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "src/prototyping/term/examples/Data.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "src/prototyping/term/examples/Data.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 633, "size": 1745 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The lifting of a strict order to incorporate new extrema ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- This module is designed to be used with -- Relation.Nullary.Construct.Add.Extrema open import Relation.Binary module Relation.Binary.Construct.Add.Extrema.Strict {a ℓ} {A : Set a} (_<_ : Rel A ℓ) where open import Level open import Function open import Relation.Nullary import Relation.Nullary.Construct.Add.Infimum as I open import Relation.Nullary.Construct.Add.Extrema import Relation.Binary.Construct.Add.Infimum.Strict as AddInfimum import Relation.Binary.Construct.Add.Supremum.Strict as AddSupremum import Relation.Binary.Construct.Add.Extrema.Equality as Equality import Relation.Binary.Construct.Add.Extrema.NonStrict as NonStrict ------------------------------------------------------------------------ -- Definition private module Inf = AddInfimum _<_ module Sup = AddSupremum Inf._<₋_ open Sup using () renaming (_<⁺_ to _<±_) public ------------------------------------------------------------------------ -- Useful pattern synonyms pattern ⊥±<[_] l = Sup.[ Inf.⊥₋<[ l ] ] pattern [_] p = Sup.[ Inf.[ p ] ] pattern ⊥±<⊤± = Sup.[ I.⊥₋ ]<⊤⁺ pattern [_]<⊤± k = Sup.[ I.[ k ] ]<⊤⁺ ------------------------------------------------------------------------ -- Relational properties [<]-injective : ∀ {k l} → [ k ] <± [ l ] → k < l [<]-injective = Inf.[<]-injective ∘′ Sup.[<]-injective <±-asym : Asymmetric _<_ → Asymmetric _<±_ <±-asym = Sup.<⁺-asym ∘′ Inf.<₋-asym <±-trans : Transitive _<_ → Transitive _<±_ <±-trans = Sup.<⁺-trans ∘′ Inf.<₋-trans <±-dec : Decidable _<_ → Decidable _<±_ <±-dec = Sup.<⁺-dec ∘′ Inf.<₋-dec <±-irrelevant : Irrelevant _<_ → Irrelevant _<±_ <±-irrelevant = Sup.<⁺-irrelevant ∘′ Inf.<₋-irrelevant module _ {e} {_≈_ : Rel A e} where open Equality _≈_ <±-cmp : Trichotomous _≈_ _<_ → Trichotomous _≈±_ _<±_ <±-cmp = Sup.<⁺-cmp ∘′ Inf.<₋-cmp <±-irrefl : Irreflexive _≈_ _<_ → Irreflexive _≈±_ _<±_ <±-irrefl = Sup.<⁺-irrefl ∘′ Inf.<₋-irrefl <±-respˡ-≈± : _<_ Respectsˡ _≈_ → _<±_ Respectsˡ _≈±_ <±-respˡ-≈± = Sup.<⁺-respˡ-≈⁺ ∘′ Inf.<₋-respˡ-≈₋ <±-respʳ-≈± : _<_ Respectsʳ _≈_ → _<±_ Respectsʳ _≈±_ <±-respʳ-≈± = Sup.<⁺-respʳ-≈⁺ ∘′ Inf.<₋-respʳ-≈₋ <±-resp-≈± : _<_ Respects₂ _≈_ → _<±_ Respects₂ _≈±_ <±-resp-≈± = Sup.<⁺-resp-≈⁺ ∘′ Inf.<₋-resp-≈₋ module _ {r} {_≤_ : Rel A r} where open NonStrict _≤_ <±-transʳ : Trans _≤_ _<_ _<_ → Trans _≤±_ _<±_ _<±_ <±-transʳ = Sup.<⁺-transʳ ∘′ Inf.<₋-transʳ <±-transˡ : Trans _<_ _≤_ _<_ → Trans _<±_ _≤±_ _<±_ <±-transˡ = Sup.<⁺-transˡ ∘′ Inf.<₋-transˡ ------------------------------------------------------------------------ -- Structures module _ {e} {_≈_ : Rel A e} where open Equality _≈_ <±-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ → IsStrictPartialOrder _≈±_ _<±_ <±-isStrictPartialOrder = Sup.<⁺-isStrictPartialOrder ∘′ Inf.<₋-isStrictPartialOrder <±-isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ → IsDecStrictPartialOrder _≈±_ _<±_ <±-isDecStrictPartialOrder = Sup.<⁺-isDecStrictPartialOrder ∘′ Inf.<₋-isDecStrictPartialOrder <±-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ → IsStrictTotalOrder _≈±_ _<±_ <±-isStrictTotalOrder = Sup.<⁺-isStrictTotalOrder ∘′ Inf.<₋-isStrictTotalOrder
{ "alphanum_fraction": 0.5492125984, "avg_line_length": 31.4690265487, "ext": "agda", "hexsha": "8c66fbf033df809cd409947b78809bccfbdf1d97", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Extrema/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Extrema/Strict.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Extrema/Strict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1280, "size": 3556 }