Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Reflection utilities for Fin
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Reflection where
open import Data.Nat.Base as ℕ hiding (module ℕ)
open import Data.Fin.Base as Fin hiding (module Fin)
open import Data.List.Base
open import Reflection.Term
open import Reflection.Argument
------------------------------------------------------------------------
-- Term
toTerm : ∀ {n} → Fin n → Term
toTerm zero = con (quote Fin.zero) (1 ⋯⟅∷⟆ [])
toTerm (suc i) = con (quote Fin.suc) (1 ⋯⟅∷⟆ toTerm i ⟨∷⟩ [])
| {
"alphanum_fraction": 0.4640804598,
"avg_line_length": 30.2608695652,
"ext": "agda",
"hexsha": "d9c70fe0a6ef70097d686f3610709d739f559bc4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Fin/Reflection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Fin/Reflection.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Fin/Reflection.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 151,
"size": 696
} |
module algebra where
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
-- Goals are written as normalised
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + y = y
suc x + y = suc (x + y)
record Semigroup (a : Set) : Set where
field
_⊛_ : a → a → a
assoc : ∀ a b c → (a ⊛ b) ⊛ c ≡ a ⊛ (b ⊛ c)
record Monoid (a : Set) : Set where
field
semigroup : Semigroup a
open Semigroup semigroup
field
e : a
idl : ∀ a → e ⊛ a ≡ a
idr : ∀ a → a ⊛ e ≡ a
record Group (a : Set) : Set where
field
monoid : Monoid a
open Monoid monoid
open Semigroup semigroup
field
-- TODO [aerben] fix this
invl : ∀ a ∃ b → a ⊛ b ≡ e
invr : ∀ a ∃ b → b ⊛ a ≡ e
record AbelianGroup (a : Set) : Set where
field
group : Group a
open Group group
open Monoid monoid
open Semigroup semigroup
field
commutative : ∀ a b → a ⊛ b ≡ b ⊛ a
record CommutativeSemigroup (a : Set) : Set where
field
_⊛_ : a → a → a
associative : ∀ a b c → (a ⊛ b) ⊛ c ≡ a ⊛ (b ⊛ c)
commutative : ∀ a b → a ⊛ b ≡ b ⊛ a
plusAssociative : ∀ a b c -> (a + b) + c ≡ a + (b + c)
-- Goal: (b + c) ≡ (b + c)
-- Follows from reflexivity
plusAssociative zero b c = refl
-- Goal: suc ((a + b) + c) ≡ suc (a + (b + c))
-- Inductive step
-- Follows from induction assumption and congruence
plusAssociative (suc a) b c =
begin
suc ((a + b) + c)
≡⟨ cong suc (plusAssociative a b c) ⟩
suc (a + (b + c))
∎
plusCommutativeLemma : ∀ a b -> a + suc b ≡ suc (a + b)
-- Goal: suc b ≡ suc b
-- Follows from reflexivity
plusCommutativeLemma zero b = refl
-- Goal: suc (a + suc b) ≡ suc (suc (a + b))
-- Inductive step
-- Follows from induction assumption and congruence
plusCommutativeLemma (suc a) b =
begin
suc (a + suc b)
≡⟨ cong suc (plusCommutativeLemma a b) ⟩
suc (suc (a + b))
∎
plusCommutative : ∀ a b -> a + b ≡ b + a
-- Goal: zero ≡ zero
-- Follows from reflexivity
plusCommutative zero zero = refl
-- Goal: suc (a + zero) ≡ suc a
-- One-sided inductive step
-- Follows from induction assumption and congruence
plusCommutative (suc a) zero =
begin
suc (a + zero)
≡⟨ cong suc (plusCommutative a zero) ⟩
suc a
∎
-- Goal: suc b ≡ suc (b + zero)
-- One-sided inductive step
-- Follows from induction assumption and congruence
plusCommutative zero (suc b) =
begin
suc b
≡⟨ cong suc (plusCommutative zero b) ⟩
suc (b + zero)
∎
-- plusCommutative (suc a) (suc b) rewrite plusCommutativeAux a b | plusCommutativeAux b a = cong suc (cong suc (plusCommutative a b))
-- Goal: suc (a + suc b) ≡ suc (b + suc a)
plusCommutative (suc a) (suc b) =
begin
suc (a + suc b)
≡⟨ cong suc (plusCommutativeLemma a b) ⟩
suc (suc (a + b))
≡⟨ cong suc (cong suc (plusCommutative a b)) ⟩
suc (suc (b + a))
-- Need to invoke symmetry since definitional equivalence does not guarantee it
≡⟨ cong suc (sym (plusCommutativeLemma b a)) ⟩
suc (b + suc a)
∎
plusSemigroup : CommutativeSemigroup ℕ
plusSemigroup = record
{ _⊛_ = _+_
; associative = plusAssociative
; commutative = plusCommutative
}
| {
"alphanum_fraction": 0.6097717776,
"avg_line_length": 24.888,
"ext": "agda",
"hexsha": "9133b1ecb3050de975ed0fa480f450b0e9a63191",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "aronerben/agda-playground",
"max_forks_repo_path": "experiments/algebra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "aronerben/agda-playground",
"max_issues_repo_path": "experiments/algebra.agda",
"max_line_length": 134,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "aronerben/agda-playground",
"max_stars_repo_path": "experiments/algebra.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1164,
"size": 3111
} |
open import Type
open import Structure.Relator
open import Structure.Setoid renaming (_≡_ to _≡ₑ_)
module Structure.Sets.ZFC.Oper {ℓₛ ℓₗ ℓₑ} {S : Type{ℓₛ}} ⦃ equiv : Equiv{ℓₑ}(S) ⦄ (_∈_ : S → S → Type{ℓₗ}) ⦃ [∈]-binaryRelator : BinaryRelator(_∈_) ⦄ where
open import Functional using (id ; _∘₂_)
open import Functional.Dependent using (_∘_)
import Lvl
open import Logic.Predicate
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Properties
open import Structure.Relator.Proofs renaming ([≡]-binaryRelator to [≡ₑ]-binaryRelator)
open import Structure.Sets.ZFC(_∈_) ⦃ [∈]-binaryRelator ⦄
import Structure.Sets.Names
open import Syntax.Function
open import Syntax.Implication
open Structure.Sets.Names.From-[∈] (_∈_)
open Structure.Sets.Names.Relations (_∈_)
open Structure.Sets.Names.One (_∈_)
open Structure.Sets.Names.Two (_∈_)(_∈_)
open Structure.Sets.Names.TwoDifferent (_∈_)(_∈_)
open Structure.Sets.Names.TwoSame (_∈_)(_∈_)
open Structure.Sets.Names.Three (_∈_)(_∈_)(_∈_)
open Structure.Sets.Names.ThreeNestedTwoDifferent (_∈_)
open Structure.Sets.Names.ThreeTwoNested (_∈_)(_∈_)(_∈_)
open import Structure.Sets.Quantifiers(_∈_)
open import Structure.Sets.Quantifiers.Proofs(_∈_) ⦃ [∈]-binaryRelator ⦄
private variable ℓ : Lvl.Level
private variable A B C D E N a b c d e x y z As : S
private variable P : S → Type{ℓ}
module _ ⦃ zfc : ZFC ⦄ where
open ZFC(zfc)
infixl 3001 _∩_
infixl 3002 _⨯_ _∖_
-- Intersection operator.
-- Constructs a set which consists of elements which are in both LHS and RHS.
_∩_ : S → S → S
a ∩ b = filter(_∈ b) ⦃ binary-unaryRelatorᵣ ⦄ a
-- "Without"-operator.
-- Constructs a set which consists of elements which are in LHS, but not RHS.
_∖_ : S → S → S
a ∖ b = filter(_∉ b) ⦃ [¬]-unaryRelator ⦃ rel-P = binary-unaryRelatorᵣ ⦄ ⦄ a
-- Intersection over arbitrary sets.
-- Constructs a set which consists of elements which are in all of the specified sets.
⋂ : S → S
⋂(As) = filter(a ↦ (∀ₛ(As) (a ∈_))) ⦃ [∀]-unaryRelator ⦃ rel-P = [→]-unaryRelator ⦃ rel-Q = binary-unaryRelatorᵣ ⦄ ⦄ ⦄ (⋃(As))
-- Tuple value.
-- An ordered pair of values.
_,_ : S → S → S
(a , b) = pair(singleton a) (pair a b)
-- Set product (Set of tuples) (Cartesian product).
_⨯_ : S → S → S
A ⨯ B = filter(t ↦ ∃ₛ(A)(a ↦ ∃ₛ(B)(b ↦ t ≡ₑ (a , b)))) ⦃ [∃ₛ]-unaryRelator ⦃ rel-P = [∃ₛ]-unaryRelator ⦃ rel-P = binary-unaryRelatorᵣ ⦃ rel-P = [≡ₑ]-binaryRelator ⦄ ⦄ ⦄ ⦄ (℘(℘(A ∪ B)))
identityPair : S → S
identityPair(D) = filter(xy ↦ ∃(a ↦ xy ≡ₑ (a , a))) ⦃ [∃]-unaryRelator ⦃ rel-P = binary-unaryRelatorᵣ ⦃ rel-P = [≡ₑ]-binaryRelator ⦄ ⦄ ⦄ (D ⨯ D)
-- Quotient set.
-- The set of equivalence classes.
_/_ : S → (_▫_ : S → S → Type{ℓ}) ⦃ rel : BinaryRelator(_▫_) ⦄ → S
(a / (_▫_)) ⦃ rel ⦄ = filter(aₛ ↦ ∀ₛ(aₛ)(x ↦ ∀ₛ(aₛ)(x ▫_))) ⦃ binary-unaryRelatorᵣ ⦃ rel-P = [∀ₛ]-binaryRelator {P = \x A _ → ∀ₛ(A) (x ▫_)} ⦃ rel-P = [∀ₛ]-binaryRelator ⦃ rel-P = const-binaryRelator ⦄ ⦄ ⦄ {∅} ⦄ (℘(a))
-- Equivalence class.
-- The set of elements which are equivalent to the specified one.
[_of_,_] : S → S → (_▫_ : S → S → Type{ℓ}) ⦃ rel : BinaryRelator(_▫_) ⦄ → S
[ x of a , (_▫_) ] = filter(x ▫_) ⦃ binary-unaryRelatorₗ ⦄ a
-- The unmap of a set.
-- The set of elements in the domain X when applied to a function gives an element in Y.
-- Or: The inverse image of the function on the set.
-- Or: The pre-image of the function on the set.
-- Note:
-- The domain is neccessary because a class function's domain is not neccesarily a set.
-- For example: `const(x): Domain → Domain` for any (x: Domain) is a class function for which its domain is not a set.
-- This is because const is defined for all objects in `Domain`, so if a set would have to have all objects in `Domain`, it has to be the universal set, but there is no universal set.
unmap : S → (f : S → S) ⦃ func : Function(f) ⦄ → S → S
unmap(X) f(Y) = filter(x ↦ f(x) ∈ Y) ⦃ [∘]-unaryRelator {P = _∈ Y} ⦃ binary-unaryRelatorᵣ ⦄ ⦄ X
[∩]-inclusion : IntersectMembership(_∩_)
[∩]-inclusion {A = A}{B = B}{x = x} =
(x ∈ (A ∩ B)) ⇔-[]
x ∈ filter(_∈ B) ⦃ _ ⦄ A ⇔-[ restricted-comprehension ⦃ _ ⦄ ]
(x ∈ A) ∧ (x ∈ B) ⇔-end
[∖]-inclusion : WithoutMembership(_∖_)
[∖]-inclusion {A = A}{B = B}{x = x} =
(x ∈ (A ∖ B)) ⇔-[]
x ∈ filter(_∉ B) ⦃ _ ⦄ A ⇔-[ restricted-comprehension ⦃ _ ⦄ ]
(x ∈ A) ∧ (x ∉ B) ⇔-end
intersection : BigIntersectionMembershipWithEmpty(⋂)
intersection {A = A}{x = x} =
(x ∈ filter(a ↦ ∀ₛ(A)(a ∈_)) ⦃ _ ⦄ (⋃ A)) ⇔-[ restricted-comprehension ⦃ _ ⦄ ]
(x ∈ ⋃ A) ∧ ∀ₛ(A)(x ∈_) ⇔-[ [∧]-map-[↔] union [↔]-reflexivity ]
∃(a ↦ (a ∈ A) ∧ (x ∈ a)) ∧ ∀ₛ(A)(x ∈_) ⇔-end
[⨯]-inclusion : (x ∈ (A ⨯ B)) ↔ ∃ₛ(A)(a ↦ ∃ₛ(B)(b ↦ x ≡ₑ (a , b)))
[⨯]-inclusion {x = x}{A = A}{B = B} =
(x ∈ (A ⨯ B)) ⇔-[]
x ∈ filter(t ↦ ∃ₛ(A)(a ↦ ∃ₛ(B)(b ↦ t ≡ₑ (a , b)))) ⦃ _ ⦄ (℘(℘(A ∪ B))) ⇔-[ restricted-comprehension ⦃ _ ⦄ ]
(x ∈ ℘(℘(A ∪ B))) ∧ ∃ₛ(A)(a ↦ ∃ₛ(B)(b ↦ (x ≡ₑ (a , b)))) ⇔-[ [↔]-intro (p ↦ [∧]-intro (l p) p) [∧]-elimᵣ ]
∃ₛ(A)(a ↦ ∃ₛ(B)(b ↦ x ≡ₑ (a , b))) ⇔-end
where
tuple-superset : (a ∈ A) → (b ∈ B) → ((a , b) ⊆ ℘(A ∪ B))
tuple-superset pa pb = pair-superset
([↔]-to-[←] power (singleton-superset
([↔]-to-[←] [∪]-inclusion ([∨]-introₗ pa))
))
([↔]-to-[←] power (pair-superset
([↔]-to-[←] union ([∃]-intro A ⦃ [∧]-intro pair-contains-left pa ⦄))
([↔]-to-[←] union ([∃]-intro B ⦃ [∧]-intro pair-contains-right pb ⦄))
))
l =
∃ₛ(A)(a ↦ ∃ₛ(B)(b ↦ x ≡ₑ (a , b))) ⇒-[ [∃]-map-proof ([∧]-map id ([∃]-map-proof ([∧]-map id ([↔]-to-[→] set-extensionality)))) ]
∃ₛ(A)(a ↦ ∃ₛ(B)(b ↦ x ≡ (a , b))) ⇒-[ [∃]-map-proof ([∧]-map id ([∃]-map-proof ([∧]-map id (sub₂(_≡_)(_⊆_))))) ]
∃ₛ(A)(a ↦ ∃ₛ(B)(b ↦ x ⊆ (a , b))) ⇒-[]
∃ₛ(A)(a ↦ ∃ₛ(B)(b ↦ x ⊆ pair(singleton a) (pair a b))) ⇒-[ (\([∃]-intro _ ⦃ [∧]-intro pa ([∃]-intro _ ⦃ [∧]-intro pb sub ⦄) ⦄) {y} → transitivity(_⊆_) sub (tuple-superset pa pb) {y}) ]
x ⊆ ℘(A ∪ B) ⇒-[ [↔]-to-[←] power ]
x ∈ ℘(℘(A ∪ B)) ⇒-end
instance
⋂-function : Function(⋂)
Function.congruence ⋂-function {x = As}{y = Bs} AsBs = filter-function ⦃ _ ⦄ ⦃ _ ⦄ p (congruence₁(⋃) AsBs) where
p : ∀{x} → (∀{A} → (A ∈ As) → (x ∈ A)) ↔ (∀{B} → (B ∈ Bs) → (x ∈ B))
p = [↔]-intro (_∘ (substitute₂ᵣ(_∈_) AsBs)) (_∘ (substitute₂ᵣ(_∈_) (symmetry(_≡ₑ_) AsBs)))
instance
∪-operator : BinaryOperator(_∪_)
BinaryOperator.congruence ∪-operator = congruence₁(⋃) ∘₂ congruence₂(pair)
instance
∩-operator : BinaryOperator(_∩_)
BinaryOperator.congruence ∩-operator xy1 xy2 = filter-function ⦃ _ ⦄ ⦃ _ ⦄ ([↔]-to-[→] set-extensionality xy2) xy1
instance
∖-operator : BinaryOperator(_∖_)
BinaryOperator.congruence ∖-operator xy1 xy2 = filter-function ⦃ _ ⦄ ⦃ _ ⦄ ([¬]-unaryOperator ([↔]-to-[→] set-extensionality xy2)) xy1
instance
[,]-operator : BinaryOperator(_,_)
BinaryOperator.congruence [,]-operator xy1 xy2 = congruence₂(pair) (congruence₁(singleton) xy1) (congruence₂(pair) xy1 xy2)
| {
"alphanum_fraction": 0.5368884287,
"avg_line_length": 48.8987341772,
"ext": "agda",
"hexsha": "84fdff1dcbce19b8c6e51c5ccce104a7538b61cb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Sets/ZFC/Oper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Sets/ZFC/Oper.agda",
"max_line_length": 219,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Sets/ZFC/Oper.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3104,
"size": 7726
} |
module ListMember where
open import Prelude
data Member {A : Set} (x : A) : List A -> Set where
here : {xs : List A} -> Member x (cons x xs)
there : forall {y} -> {xs : List A} -> Member x xs -> Member x (cons y xs)
empty-no-member' : forall {A} -> {x : A} -> Member x nil -> Empty
empty-no-member' p = {!!}
empty-no-member : forall {A} -> {x : A} -> Not (Member x nil)
empty-no-member = is-absurd empty-no-member'
neither-here-nor-there' : forall {A} -> {x y : A} {ys : List A} -> (x == y -> Empty) -> (Member x ys -> Empty) -> Member x (cons y ys) -> Empty
neither-here-nor-there' not-here not-there member = {!!}
neither-here-nor-there : forall {A} -> {x y : A} {ys : List A} -> Not (x == y) -> Not (Member x ys) -> Not (Member x (cons y ys))
neither-here-nor-there (is-absurd not-here) (is-absurd not-there) = is-absurd (neither-here-nor-there' not-here not-there)
member : forall {A} -> ((x y : A) -> Dec (x == y)) -> (v : A) -> (vs : List A) -> Dec (Member v vs)
member eq? x nil = no empty-no-member
member eq? x (cons y ys) with eq? x y
member eq? x (cons y ys) | yes p = {!!}
member eq? x (cons y ys) | no pf with member eq? x ys
member eq? x (cons y ys) | no pf | member = {!!}
| {
"alphanum_fraction": 0.58882402,
"avg_line_length": 44.4074074074,
"ext": "agda",
"hexsha": "4e35fd84d204159bae2f6cc8b924311e27314951",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "carlostome/martin",
"max_forks_repo_path": "data/test-files/ListMember.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "carlostome/martin",
"max_issues_repo_path": "data/test-files/ListMember.agda",
"max_line_length": 143,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "carlostome/martin",
"max_stars_repo_path": "data/test-files/ListMember.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 418,
"size": 1199
} |
-- We ban termination pragmas inside `where` clauses.
module Issue1137 where
postulate
A : Set
a : A
foo : A
foo = bar
where
{-# TERMINATING #-}
bar : A
bar = bar
| {
"alphanum_fraction": 0.6292134831,
"avg_line_length": 11.8666666667,
"ext": "agda",
"hexsha": "8e40c98f5fb26b54a358c18177144972899709b9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1137.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1137.agda",
"max_line_length": 53,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1137.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 58,
"size": 178
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Diagram.Coend.Properties where
open import Categories.Category.Core using (Category)
open import Categories.Category.Product
import Categories.Category.Construction.Cowedges as Cowedges
open import Categories.Category.Construction.Functors
open import Categories.Category.Equivalence
open import Categories.Category.Equivalence.Preserves
open import Categories.Diagram.Coend
open import Categories.Diagram.Colimit
open import Categories.Diagram.Cowedge
open import Categories.Diagram.Cowedge.Properties
open import Categories.Functor using (Functor)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.Functor.Instance.Twisted
import Categories.Morphism as M
open import Categories.NaturalTransformation hiding (id)
open import Categories.NaturalTransformation.Dinatural
open import Categories.Object.Initial as Initial
import Categories.Morphism.Reasoning as MR
open import Level
open import Data.Product using (Σ; _,_)
open import Function using (_$_)
module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′}
(F : Bifunctor (Category.op C) C D) where
open Cowedges F
-- Being a Coend is the same as being an Initial object in the category of Cowedges
Coend⇒Initial : Coend F → Initial Cowedges
Coend⇒Initial c = record
{ ⊥ = cowedge
; ⊥-is-initial = record
{ ! = λ {A} → record { u = factor A ; commute = universal }
; !-unique = λ {A} f → unique {A} (Cowedge-Morphism.commute f)
}
}
where
open Coend c
Initial⇒Coend : Initial Cowedges → Coend F
Initial⇒Coend i = record
{ cowedge = ⊥
; factor = λ W → u {W₂ = W} !
; universal = commute !
; unique = λ {_} {g} x → !-unique (record { u = g ; commute = x })
}
where
open Initial.Initial i
open Cowedge-Morphism
private
variable
o ℓ e : Level
C D E : Category o ℓ e
module _ (F : Functor E (Functors (Product (Category.op C) C) D)) where
private
module C = Category C
module D = Category D
module E = Category E
module NT = NaturalTransformation
open D
open HomReasoning
open MR D
open Functor F
open Coend hiding (E)
open NT using (η)
CoendF : (∀ X → Coend (F₀ X)) → Functor E D
CoendF coend = record
{ F₀ = λ X → Coend.E (coend X)
; F₁ = F₁′
; identity = λ {A} → unique (coend A) (id-comm-sym ○ ∘-resp-≈ʳ (⟺ identity))
; homomorphism = λ {A B C} {f g} → unique (coend A) $ λ {Z} → begin
(F₁′ g ∘ F₁′ f) ∘ dinatural.α (coend A) Z ≈⟨ pullʳ (universal (coend A)) ⟩
(F₁′ g ∘ (dinatural.α (coend B) Z ∘ η (F₁ f) (Z , Z) ) ) ≈⟨ pullˡ (universal (coend B)) ⟩
((dinatural.α (coend C) Z ∘ η (F₁ g) (Z , Z)) ∘ η (F₁ f) (Z , Z)) ≈˘⟨ pushʳ homomorphism ⟩
dinatural.α (coend C) Z ∘ η (F₁ (g E.∘ f)) (Z , Z) ∎
; F-resp-≈ = λ {A B f g} eq → unique (coend A) $ λ {Z} → begin
F₁′ g ∘ dinatural.α (coend A) Z ≈⟨ universal (coend A) ⟩
dinatural.α (coend B) Z ∘ η (F₁ g) (Z , Z) ≈˘⟨ refl⟩∘⟨ F-resp-≈ eq ⟩
dinatural.α (coend B) Z ∘ η (F₁ f) (Z , Z) ∎
}
where F₁′ : ∀ {X Y} → X E.⇒ Y → Coend.E (coend X) ⇒ Coend.E (coend Y)
F₁′ {X} {Y} f = factor (coend X) $ record
{ E = Coend.E (coend Y)
; dinatural = dinatural (coend Y) ∘> F₁ f
}
-- A Natural Transformation between two functors induces an arrow between the
-- (object part of) the respective coends.
module _ {P Q : Functor (Product (Category.op C) C) D} (P⇒Q : NaturalTransformation P Q) where
open Coend renaming (E to coend)
open Category D
coend-η : {cp : Coend P} {cq : Coend Q} → coend cp ⇒ coend cq
coend-η {cp} {cq} = factor cp ((record
{ E = Coend.E cq
; dinatural = dtHelper record
{ α = λ c → dinatural.α cq c ∘ η (c , c)
; commute = λ {C} {C′} f → begin
id ∘ (αq C ∘ η (C , C)) ∘ P.₁ (f , C.id) ≈⟨ pushʳ assoc ⟩
(id ∘ αq C) ∘ (η (C , C) ∘ P.₁ (f , C.id)) ≈⟨ refl⟩∘⟨ nt.commute (f , C.id) ⟩
(id ∘ αq C) ∘ (Q.₁ (f , C.id) ∘ η (C′ , C)) ≈⟨ pullˡ assoc ⟩
(id ∘ αq C ∘ Q.₁ (f , C.id)) ∘ η (C′ , C) ≈⟨ αq-comm f ⟩∘⟨refl ⟩
(id ∘ αq C′ ∘ Q.₁ (C.id , f)) ∘ η (C′ , C) ≈⟨ pushˡ sym-assoc ⟩
(id ∘ αq C′) ∘ Q.₁ (C.id , f) ∘ η (C′ , C) ≈⟨ refl⟩∘⟨ nt.sym-commute (C.id , f) ⟩
(id ∘ αq C′) ∘ η (C′ , C′) ∘ P.₁ (C.id , f) ≈⟨ pullʳ sym-assoc ⟩
id ∘ (αq C′ ∘ η (C′ , C′)) ∘ P.₁ (C.id , f) ∎
}
}))
where
module nt = NaturalTransformation P⇒Q
open nt using (η)
open HomReasoning
module C = Category C
module P = Functor P
module Q = Functor Q
open DinaturalTransformation (dinatural cp) renaming (α to αp; commute to αp-comm)
open DinaturalTransformation (dinatural cq) renaming (α to αq; commute to αq-comm)
open Cowedge
open MR D
module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′}
(F : Bifunctor (Category.op C) C D) where
private
Eq = CoconesTwist≅Cowedges F
module O = M D
open M (Cowedges.Cowedges F)
open Functor
open StrongEquivalence Eq renaming (F to F⇒)
-- Coends and Colimits are equivalent, in the category Cowedge F
Coend-as-Colimit : (coend : Coend F) → (cl : Colimit (Twist′ C D F)) → Coend.cowedge coend ≅ F₀ F⇒ (Colimit.initial.⊥ cl)
Coend-as-Colimit coend cl = Initial.up-to-iso (Cowedges.Cowedges F) (Coend⇒Initial F coend) (pres-Initial Eq initial)
where
open Colimit cl
-- Which then induces that the objects, in D, are also equivalent.
Coend-as-Colimit-on-Obj : (coend : Coend F) → (cl : Colimit (Twist′ C D F)) → Coend.E coend O.≅ Colimit.coapex cl
Coend-as-Colimit-on-Obj coend cl = record
{ from = Cowedge-Morphism.u (M._≅_.from X≅Y)
; to = Cowedge-Morphism.u (M._≅_.to X≅Y)
; iso = record
{ isoˡ = M._≅_.isoˡ X≅Y
; isoʳ = M._≅_.isoʳ X≅Y
}
}
where
X≅Y = Coend-as-Colimit coend cl
open Category D
| {
"alphanum_fraction": 0.592092257,
"avg_line_length": 38.1761006289,
"ext": "agda",
"hexsha": "397ad41ce2041452a91be7be93f037d82355eaac",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Coend/Properties.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Coend/Properties.agda",
"max_line_length": 123,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Coend/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 2237,
"size": 6070
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
-- {-# OPTIONS --without-K #-} -- No accepted!
module K-FOTC where
postulate D : Set
data _≡_ (x : D) : D → Set where
refl : x ≡ x
K : (x : D)(P : x ≡ x → Set) → P refl → (p : x ≡ x) → P p
K x P pr refl = pr
| {
"alphanum_fraction": 0.4791086351,
"avg_line_length": 23.9333333333,
"ext": "agda",
"hexsha": "65b9ae9baf01a9f7d376b6bab1dc9e9e41993616",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/k-axiom/K-FOTC.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/k-axiom/K-FOTC.agda",
"max_line_length": 62,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/k-axiom/K-FOTC.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 117,
"size": 359
} |
{-# OPTIONS --without-K #-}
module Model.Type.Core where
open import Cats.Category
open import Relation.Binary using (IsEquivalence)
open import Model.RGraph as RG using (RGraph)
open import Util.HoTT.Equiv
open import Util.HoTT.FunctionalExtensionality
open import Util.HoTT.HLevel
open import Util.HoTT.Homotopy
open import Util.HoTT.Univalence
open import Util.Prelude hiding (id) renaming (_∘_ to _∘F_)
open import Util.Relation.Binary.LogicalEquivalence using
( _↔_ ; forth ; back ; ↔-reflexive )
open import Util.Relation.Binary.PropositionalEquality using
( Σ-≡⁺ ; Σ-≡⁻ ; cast ; subst-subst ; subst-sym-subst ; subst-subst-sym )
open Category._≅_ public
open RG._⇒_
infixr 0 _⇒_
infix 4 _≈_ _≈⟦Type⟧_
infixr 9 _∘_
private
variable Δ Γ Ψ : RGraph
-- This is an RGraph-indexed family of RGraphs.
record ⟦Type⟧ (Δ : RGraph) : Set₁ where
no-eta-equality
field
ObjHSet : Δ .RG.Obj → HSet 0ℓ
private
module M₀ δ = HLevel (ObjHSet δ)
module M₁ {δ} = HLevel (ObjHSet δ)
open M₀ public using () renaming
( type to Obj )
open M₁ public using () renaming
( level to Obj-IsSet )
field
eqHProp : ∀ {δ δ′} → Δ .RG.eq δ δ′ → Obj δ → Obj δ′ → HProp 0ℓ
private
module M₂ {δ δ′} (δ≈δ′ : Δ .RG.eq δ δ′) x y = HLevel (eqHProp δ≈δ′ x y)
module M₃ {δ δ′} {δ≈δ′ : Δ .RG.eq δ δ′} {x y} = HLevel (eqHProp δ≈δ′ x y)
open M₂ public using () renaming
( type to eq )
open M₃ public using () renaming
( level to eq-IsProp )
field
eq-refl : ∀ {δ} (x : Obj δ) → eq (Δ .RG.eq-refl δ) x x
open ⟦Type⟧ public
private
variable T U V W : ⟦Type⟧ Δ
open RGraph
transportEq : ∀ (T : ⟦Type⟧ Δ) {δ γ} {δ≈γ₀ δ≈γ₁ : Δ .eq δ γ} {x y}
→ T .eq δ≈γ₀ x y → T .eq δ≈γ₁ x y
transportEq {Δ} T = subst (λ p → T .eq p _ _) (Δ .eq-IsProp _ _)
transportObj : ∀ (T : ⟦Type⟧ Δ) {δ γ}
→ δ ≡ γ
→ T .Obj δ
→ T .Obj γ
transportObj T = subst (T .Obj)
abstract
transportObj-resp : ∀ (T : ⟦Type⟧ Δ) {δ γ}
→ (δ≡γ₀ δ≡γ₁ : δ ≡ γ)
→ ∀ {x y}
→ x ≡ y
→ transportObj T δ≡γ₀ x ≡ transportObj T δ≡γ₁ y
transportObj-resp {Δ} T refl δ≡γ₁ x≡y
rewrite Δ .Obj-IsSet δ≡γ₁ refl = x≡y
transportObj-resp-eq : ∀ (T : ⟦Type⟧ Δ) {δ₀ γ₀ δ₁ γ₁}
→ (δ₀≡γ₀ : δ₀ ≡ γ₀) (δ₁≡γ₁ : δ₁ ≡ γ₁)
→ ∀ {x y} {δ₀≈δ₁ : Δ .eq δ₀ δ₁} {γ₀≈γ₁ : Δ .eq γ₀ γ₁}
→ T .eq δ₀≈δ₁ x y
→ T .eq γ₀≈γ₁ (transportObj T δ₀≡γ₀ x) (transportObj T δ₁≡γ₁ y)
transportObj-resp-eq {Δ} T refl refl {δ₀≈δ₁ = δ₀≈δ₁} {γ₀≈γ₁} x≈y
= transportEq T x≈y
abstract
transportObj∘transportObj : ∀ (T : ⟦Type⟧ Δ) {δ δ′ δ″}
→ (p : δ ≡ δ′) (q : δ′ ≡ δ″) {x : T .Obj δ}
→ transportObj T q (transportObj T p x) ≡ transportObj T (trans p q) x
transportObj∘transportObj T p q = subst-subst p
transportObj-refl : ∀ (T : ⟦Type⟧ Δ) {δ}
→ (p : δ ≡ δ) {x : T .Obj δ}
→ transportObj T p x ≡ x
transportObj-refl {Δ} T p rewrite Δ .Obj-IsSet p refl = refl
record _⇒_ (T U : ⟦Type⟧ Δ) : Set where
no-eta-equality
field
fobj : ∀ {δ} → Obj T δ → Obj U δ
feq : ∀ {δ δ′} (δ≈δ′ : Δ .RG.eq δ δ′) {x y}
→ eq T δ≈δ′ x y
→ eq U δ≈δ′ (fobj x) (fobj y)
open _⇒_ public
record _≈_ (f g : T ⇒ U) : Set where
no-eta-equality
constructor ≈⁺
field
≈⁻ : ∀ δ (x : Obj T δ) → f .fobj x ≡ g .fobj x
open _≈_ public
≈-isEquivalence : (T U : ⟦Type⟧ Δ) → IsEquivalence (_≈_ {T = T} {U})
≈-isEquivalence T U = record
{ refl = ≈⁺ λ γ x → refl
; sym = λ f≈g → ≈⁺ λ γ x → sym (f≈g .≈⁻ γ x)
; trans = λ f≈g g≈h → ≈⁺ λ γ x → trans (f≈g .≈⁻ γ x) (g≈h .≈⁻ γ x)
}
⇒Canon : (T U : ⟦Type⟧ Δ) → Set
⇒Canon {Δ} T U
= Σ[ fobj ∈ (∀ {δ} → T .Obj δ → U .Obj δ) ]
(∀ {δ δ′} (δ≈δ′ : Δ .RG.eq δ δ′) {x y}
→ T .eq δ≈δ′ x y → U .eq δ≈δ′ (fobj x) (fobj y))
⇒≅⇒Canon : (T ⇒ U) ≅ ⇒Canon T U
⇒≅⇒Canon = record
{ forth = λ f → f .fobj , f .feq
; isIso = record
{ back = λ f → record { fobj = f .proj₁ ; feq = f .proj₂ }
; back∘forth = λ where
record { fobj = fo ; feq = fe } → refl
; forth∘back = λ x → refl
}
}
⇒Canon-IsSet : (T U : ⟦Type⟧ Δ) → IsSet (⇒Canon T U)
⇒Canon-IsSet T U = Σ-IsSet
(∀∙-IsSet λ δ → →-IsSet (U .Obj-IsSet))
(λ _ → ∀∙-IsSet λ δ → ∀∙-IsSet λ δ′ → ∀-IsSet λ δ≈δ′ → ∀∙-IsSet λ x
→ ∀∙-IsSet λ y → →-IsSet (IsProp→IsSet (U .eq-IsProp)))
⇒-IsSet : IsSet (T ⇒ U)
⇒-IsSet {T = T} {U} = ≅-pres-IsOfHLevel 2 (≅-sym ⇒≅⇒Canon) (⇒Canon-IsSet T U)
≈→≡Canon : {f g : T ⇒ U}
→ f ≈ g → ⇒≅⇒Canon .forth f ≡ ⇒≅⇒Canon .forth g
≈→≡Canon {U = U} f≈g = Σ-≡⁺
( (funext∙ (funext (λ x → f≈g .≈⁻ _ x)))
, funext∙ (funext∙ (funext λ a → funext∙ (funext∙
(funext λ eq → U .eq-IsProp _ _)))) )
≈→≡ : {f g : T ⇒ U} → f ≈ g → f ≡ g
≈→≡ f≈g = ≅-Injective ⇒≅⇒Canon (≈→≡Canon f≈g)
private
open module M₀ {Δ} {T U : ⟦Type⟧ Δ}
= IsEquivalence (≈-isEquivalence T U)
public using () renaming
( refl to ≈-refl
; sym to ≈-sym
; trans to ≈-trans
; reflexive to ≈-reflexive )
id : {T : ⟦Type⟧ Δ} → T ⇒ T
id = record
{ fobj = λ x → x
; feq = λ γ≈γ′ x → x
}
_∘_ : {T U V : ⟦Type⟧ Δ} → U ⇒ V → T ⇒ U → T ⇒ V
_∘_ {Γ} f g = record
{ fobj = f .fobj ∘F g .fobj
; feq = λ γ≈γ′ → f .feq γ≈γ′ ∘F g .feq γ≈γ′
}
⟦Types⟧ : RGraph → Category (lsuc 0ℓ) 0ℓ 0ℓ
⟦Types⟧ Δ = record
{ Obj = ⟦Type⟧ Δ
; _⇒_ = _⇒_
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; equiv = ≈-isEquivalence _ _
; ∘-resp = λ {Δ Γ Ψ f g h i} f≈g h≈i
→ ≈⁺ λ γ x → trans (f≈g .≈⁻ γ (h .fobj x)) (cong (g .fobj) (h≈i .≈⁻ γ x))
; id-r = ≈⁺ λ γ x → refl
; id-l = ≈⁺ λ γ x → refl
; assoc = ≈⁺ λ γ x → refl
}
module ⟦Types⟧ {Γ} = Category (⟦Types⟧ Γ)
_≈⟦Type⟧_ : (T U : ⟦Type⟧ Δ) → Set₁
_≈⟦Type⟧_ = ⟦Types⟧._≅_
private
open module M₁ {Δ} = ⟦Types⟧.≅ {Δ} public using () renaming
( refl to ≈⟦Type⟧-refl
; sym to ≈⟦Type⟧-sym
; trans to ≈⟦Type⟧-trans
; reflexive to ≈⟦Type⟧-reflexive )
module ≅-Reasoning = ⟦Types⟧.≅-Reasoning
module ≈-Reasoning = ⟦Types⟧.≈-Reasoning
⟦Type⟧Canon : RGraph → Set₁
⟦Type⟧Canon Δ
= Σ[ ObjHSet ∈ (Δ .Obj → HSet 0ℓ) ]
Σ[ eq ∈ (∀ {δ δ′} (δ≈δ′ : Δ .eq δ δ′)
→ (x : ObjHSet δ .type) (y : ObjHSet δ′ .type) → HProp 0ℓ) ]
(∀ {δ} (x : ObjHSet δ .type) → eq (Δ .eq-refl δ) x x .type)
⟦Type⟧≅⟦Type⟧Canon : ∀ {Δ} → ⟦Type⟧ Δ ≅ ⟦Type⟧Canon Δ
⟦Type⟧≅⟦Type⟧Canon {Δ} = record
{ forth = λ T → T .ObjHSet , T .eqHProp , T .eq-refl
; isIso = record
{ back = λ T → record
{ ObjHSet = T .proj₁
; eqHProp = T .proj₂ .proj₁
; eq-refl = T .proj₂ .proj₂
}
; back∘forth = λ where
record { ObjHSet = x ; eqHProp = y ; eq-refl = z } → refl
; forth∘back = λ x → refl
}
}
proj₁∘subst : ∀ {α β γ} {A : Set α} (B : A → Set β) (C : ∀ a → B a → Set γ)
→ ∀ {a a′} (p : a ≡ a′) (x : Σ (B a) (C a))
→ proj₁ (subst (λ a → Σ (B a) (C a)) p x) ≡ subst B p (proj₁ x)
proj₁∘subst B C refl x = refl
≈⟦Type⟧→≡Canon
: T ≈⟦Type⟧ U
→ ⟦Type⟧≅⟦Type⟧Canon .forth T ≡ ⟦Type⟧≅⟦Type⟧Canon .forth U
≈⟦Type⟧→≡Canon {Δ} {T} {U} T≈U
= Σ-≡⁺ (T≡U , Σ-≡⁺ (T≈≡U≈ , funext∙ (funext (λ x → U .eq-IsProp _ _))))
where
T≅U : ∀ δ → T .Obj δ ≅ U .Obj δ
T≅U δ = record
{ forth = T≈U .forth .fobj
; isIso = record
{ back = T≈U .back .fobj
; back∘forth = λ x → T≈U .back-forth .≈⁻ _ _
; forth∘back = λ x → T≈U .forth-back .≈⁻ _ _
}
}
T≡U : T .ObjHSet ≡ U .ObjHSet
T≡U = funext λ δ → HLevel-≡⁺ _ _ (≅→≡ (T≅U δ))
-- "HoTT makes everything so much nicer", they said. "It's all automatic",
-- they said.
abstract
subst-type : ∀ {α n} (A B : HLevel n α)
→ (p : A .type ≡ B .type)
→ (x : A .type)
→ subst type (HLevel-≡⁺ A B p) x ≡ cast p x
subst-type A B refl x with IsOfHLevel-IsProp _ (A .level) (B .level)
... | refl = refl
-- I believe this equation would be definitional in Cubical TT.
subst-T≡U : ∀ {δ} x
→ subst (λ T → T δ .type) T≡U x ≡ T≈U .forth .fobj x
subst-T≡U {δ} x
= trans (subst-funext (λ δ T → T .type) _ x)
(trans (subst-type (T .ObjHSet δ) (U .ObjHSet δ) (≅→≡ (T≅U δ)) x)
(cast-≅→≡ (T≅U δ)))
go : (Δ : Set) (T U : Δ → HSet 0ℓ) (eqΔ : Δ → Δ → Set)
→ (eqT : ∀ δ δ′ → eqΔ δ δ′ → T δ .type → T δ′ .type → HProp 0ℓ)
→ (eqU : ∀ δ δ′ → eqΔ δ δ′ → U δ .type → U δ′ .type → HProp 0ℓ)
→ (T≡U : T ≡ U)
→ (∀ δ δ′ (δ≈δ′ : eqΔ δ δ′) (x : T δ .type) (y : T δ′ .type)
→ eqT _ _ δ≈δ′ x y .type
↔ eqU _ _ δ≈δ′
(subst (λ T → T δ .type) T≡U x)
(subst (λ T → T δ′ .type) T≡U y)
.type)
→ _≡_ {A = ∀ {δ δ′} → eqΔ δ δ′ → U δ .type → U δ′ .type → HProp 0ℓ}
(subst (λ T → ∀ {δ δ′} → eqΔ δ δ′ → T δ .type → T δ′ .type → HProp 0ℓ)
T≡U (λ {δ δ′} → eqT δ δ′))
(λ {δ δ′} → eqU δ δ′)
go Δ T U eqΔ eqT eqU refl eq = funext∙ λ {δ} → funext∙ λ {δ′}
→ funext λ δ≈δ′ → funext λ x → funext λ y
→ HProp-≡⁺ _ _ (eq δ δ′ δ≈δ′ x y)
T≈≡U≈ : _
T≈≡U≈
= trans
(proj₁∘subst
(λ T → ∀ {δ δ′} → Δ .eq δ δ′ → T δ .type → T δ′ .type → HProp 0ℓ)
(λ T eq → ∀ {δ} (x : T δ .type) → eq (Δ .eq-refl δ) x x .type)
T≡U
((λ {δ δ′} → T .eqHProp {δ} {δ′}), (λ {δ} x → T .eq-refl {δ} x)))
(go (Δ .Obj) (T .ObjHSet) (U .ObjHSet) (Δ .eq)
(λ δ δ′ → T .eqHProp {δ} {δ′})
(λ δ δ′ → U .eqHProp {δ} {δ′})
T≡U
λ δ δ′ δ≈δ′ x y → record
{ forth = λ x≈y
→ subst₂ (λ x y → U .eq δ≈δ′ x y) (sym (subst-T≡U x))
(sym (subst-T≡U y)) (T≈U .forth .feq δ≈δ′ x≈y)
; back = λ x≈y
→ subst₂ (λ x y → T .eq δ≈δ′ x y)
(trans (cong (T≈U .back .fobj) (subst-T≡U x))
(T≈U .back-forth .≈⁻ δ x))
(trans (cong (T≈U .back .fobj) (subst-T≡U y))
(T≈U .back-forth .≈⁻ δ′ y))
(T≈U .back .feq δ≈δ′ x≈y)
})
≈⟦Type⟧→≡ : T ≈⟦Type⟧ U → T ≡ U
≈⟦Type⟧→≡ T≈U = ≅-Injective ⟦Type⟧≅⟦Type⟧Canon (≈⟦Type⟧→≡Canon T≈U)
subT : ∀ {Δ Ω} → Δ RG.⇒ Ω → ⟦Type⟧ Ω → ⟦Type⟧ Δ
subT {Γ} {Ω} f T = record
{ ObjHSet = T .ObjHSet ∘F f .fobj
; eqHProp = T .eqHProp ∘F f .feq
; eq-refl = λ x
→ subst (λ p → T .eq p x x) (Ω .eq-IsProp _ _) (T .eq-refl x)
}
subt : ∀ {Δ Ω} (f : Δ RG.⇒ Ω) {T U : ⟦Type⟧ Ω}
→ T ⇒ U
→ subT f T ⇒ subT f U
subt f g = record
{ fobj = g .fobj
; feq = λ γ≈γ′ → g .feq (f .feq γ≈γ′)
}
subt-∘ : ∀ {Δ Ω} (f : Δ RG.⇒ Ω) {T U V : ⟦Type⟧ Ω}
→ (g : U ⇒ V) (h : T ⇒ U)
→ subt f (g ∘ h) ≈ subt f g ∘ subt f h
subt-∘ f g h = ≈⁺ λ δ γ → refl
subT∘subT : ∀ {Δ Γ Ψ}
→ {f : Δ RG.⇒ Ψ} {g : Γ RG.⇒ Δ} {T : ⟦Type⟧ Ψ}
→ subT g (subT f T) ≈⟦Type⟧ subT (f RG.∘ g) T
subT∘subT = record
{ forth = record { fobj = λ x → x ; feq = λ _ x → x }
; back = record { fobj = λ x → x ; feq = λ _ x → x }
; back-forth = ≈⁺ λ γ x → refl
; forth-back = ≈⁺ λ γ x → refl
}
castObj : {T U : ⟦Type⟧ Δ} → T ≡ U → ∀ {δ} → Obj T δ → Obj U δ
castObj p {δ} = subst (λ T → Obj T δ) p
≡→≈⟦Type⟧ : {T U : ⟦Type⟧ Δ} → T ≡ U → T ≈⟦Type⟧ U
≡→≈⟦Type⟧ {Δ} {T} {U} T≡U = record
{ forth = record
{ fobj = λ {δ} → castObj T≡U
; feq = λ δ≈δ′ x≈y → go T≡U x≈y
}
; back = record
{ fobj = λ {δ} → castObj (sym T≡U)
; feq = λ δ≈δ′ x≈y → go (sym T≡U) x≈y
}
; back-forth = ≈⁺ λ δ x → subst-sym-subst T≡U
; forth-back = ≈⁺ λ δ x → subst-subst-sym T≡U
}
where
go : {T U : ⟦Type⟧ Δ} (p : T ≡ U) → ∀ {δ δ′} {δ≈δ′ : Δ .eq δ δ′} {x y}
→ eq T δ≈δ′ x y
→ eq U δ≈δ′ (castObj p x) (castObj p y)
go refl x≈y = x≈y
| {
"alphanum_fraction": 0.4819380243,
"avg_line_length": 27.7482185273,
"ext": "agda",
"hexsha": "75a0b364eab749db278d35f67fa8b46a5e5651b7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Model/Type/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Model/Type/Core.agda",
"max_line_length": 82,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Model/Type/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 5657,
"size": 11682
} |
module Structure.Relator.Function.Proofs where
import Lvl
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Functional
open import Structure.Relator.Function
open import Structure.Setoid
open import Structure.Setoid.Uniqueness
open import Structure.Relator.Properties
open import Structure.Relator
open import Type
private variable ℓ₁ ℓ₂ ℓ₃ ℓₗ ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₒ₄ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ : Lvl.Level
module _ {A : Type{ℓₒ₁}}{B : Type{ℓₒ₁ Lvl.⊔ ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ (φ : A → B → Stmt{ℓₗ}) ⦃ totality : Total(φ)⦄ ⦃ func : Function(φ)⦄ ⦃ _ : ∀{x} → UnaryRelator(φ(x)) ⦄ where
-- There is a function for a binary relation that is total and function-like.
relation-function-existence : ∃(f ↦ ∀{x}{y} → (f(x) ≡ y) ↔ φ(x)(y))
relation-function-existence = [∃]-intro(f) ⦃ \{x y} → proof{x}{y} ⦄ where
-- The function
f : A → B
f(x) = [∃]-witness(total(φ){x})
-- Proof that the function returns the value that the binary relation defines the element from Y that an element from X is associated with.
proof : ∀{x}{y} → (f(x) ≡ y) ↔ φ(x)(y)
proof{x}{y} = [↔]-intro l r where
r : (f(x) ≡ y) → φ(x)(y)
r(fxy) = substitute₁(φ(x)) fxy ([∃]-proof(total(φ){x}))
l : (f(x) ≡ y) ← φ(x)(y)
l(φxy) = [∃!]-existence-eq-any(totalFunction(φ)) φxy
-- Constructing a total function from a a binary operation with conditions.
relation-function : A → B
relation-function = [∃]-witness(relation-function-existence)
module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} where
-- A function is total
-- ∀{x} → ∃(y ↦ f(x) ≡ y)
Function-totality : Total(x ↦ y ↦ f(x) ≡ y)
Total.proof(Function-totality) {x} = [∃]-intro(f(x)) ⦃ reflexivity(_≡_) ⦄
module _ {X : Type{ℓₒ₁}} {Y : X → Type{ℓₒ₂}} {φ : (x : X) → Y(x) → Stmt{ℓₗ}} where
-- Every binary predicate that have its first argument defined for all values
-- have at least one choice function that can determine the second argument from the first.
-- Proposition: ∀(X: Type)∀(Y: Type)∀(φ: X → Y → Stmt). (∀(x: X)∃(y: Y). φ(x)(y)) → (∃(choice: X → Y)∀(x: X). φ(x)(choice(x)))
-- ∀(x: X)∃(y: Y). φ(x)(y) means that the predicate φ holds for every x and some y (which may depend on x). In other words: it associates every element in X with a subset of Y, a function (X → ℘(Y)).
-- ∃(choice: X → Y)∀(x: X). φ(x)(choice(x)) means that there is a function that picks out a particular y.
-- Note: This proposition can be recognised as one equivalent variant of "Axiom of Choice" from set theory when formulated in classical logic.
-- Note: This is similar to what one does in the process of "Skolemization" for an existentially quantified formula in logic.
dependent-function-predicate-choice : (∀{x : X} → ∃{Obj = Y(x)}(y ↦ φ(x)(y))) → ∃{Obj = (x : X) → Y(x)}(choice ↦ ∀{x : X} → φ(x)(choice(x)))
dependent-function-predicate-choice(function) = [∃]-intro(x ↦ [∃]-witness(function{x})) ⦃ \{x} → [∃]-proof(function{x}) ⦄
module _ {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} {φ : X → Y → Stmt{ℓₗ}} where
function-predicate-choice : (∀{x} → ∃(y ↦ φ(x)(y))) → ∃{Obj = X → Y}(choice ↦ ∀{x} → φ(x)(choice(x)))
function-predicate-choice = dependent-function-predicate-choice
{-
module _ {ℓₗ₁ ℓₗ₂ ℓₒ} {X : Type{ℓₒ}} {P : (X → Stmt{ℓₗ₁}) → Stmt{ℓₗ₂}} where
standard-choice : (∀{Q : X → Stmt{ℓₗ₁}} → P(Q) → (∃ P)) → ∃{Obj = (X → Stmt{ℓₗ₁}) → X}(f ↦ ∀{Q : X → Stmt{ℓₗ₁}} → P(Q) → Q(f(Q)))
standard-choice ep = [∃]-intro (choice) ⦃ \{x} → proof{x} ⦄ where
choice : (X → Stmt{ℓₗ₁}) → X
choice(R) = [∃]-witness(ep{R} (pr))
proof : ∀{Q : X → Stmt{ℓₗ₁}} → P(Q) → Q(choice(Q))
proof{Q} pq = [∃]-proof(surjective{x})
-}
| {
"alphanum_fraction": 0.6131386861,
"avg_line_length": 53.6086956522,
"ext": "agda",
"hexsha": "bc66e29df500caf3ac4174096195e70d31446d81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Relator/Function/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Relator/Function/Proofs.agda",
"max_line_length": 203,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Relator/Function/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1454,
"size": 3699
} |
module List.Order.Bounded.Properties {A : Set}
(_≤_ : A → A → Set)
(trans≤ : {x y z : A} → x ≤ y → y ≤ z → x ≤ z) where
open import Bound.Total A
open import Bound.Total.Order _≤_
open import Bound.Total.Order.Properties _≤_ trans≤
open import Data.List
open import List.Order.Bounded _≤_
open import List.Sorted _≤_
lemma-sorted++ : {x : A}{xs ys : List A} → xs ≤* (val x) → (val x) *≤ ys → Sorted xs → Sorted ys → Sorted (xs ++ (x ∷ ys))
lemma-sorted++ {x = x} lenx genx _ _ = singls x
lemma-sorted++ lenx (gecx u≤y _) _ sys = conss (lemma-LeB≤ u≤y) sys
lemma-sorted++ (lecx x≤u xs≤*u) u*≤ys (singls x) sys = conss (lemma-LeB≤ x≤u) (lemma-sorted++ xs≤*u u*≤ys nils sys)
lemma-sorted++ (lecx x≤u xs≤*u) u*≤ys (conss x≤z sxs) sys = conss x≤z (lemma-sorted++ xs≤*u u*≤ys sxs sys)
lemma-++≤* : {t : Bound}{x : A}{xs ys : List A} → LeB (val x) t → xs ≤* (val x) → ys ≤* t → (xs ++ (x ∷ ys)) ≤* t
lemma-++≤* u≤t lenx ys≤*t = lecx u≤t ys≤*t
lemma-++≤* u≤t (lecx x≤u xs≤*u) ys≤*u = lecx (transLeB x≤u u≤t) (lemma-++≤* u≤t xs≤*u ys≤*u)
lemma-*≤ : {b : Bound}{x : A}{xs : List A} → LeB b (val x) → (val x) *≤ xs → b *≤ xs
lemma-*≤ _ genx = genx
lemma-*≤ b≤u (gecx u≤x u*≤xs) = gecx (transLeB b≤u u≤x) (lemma-*≤ b≤u u*≤xs)
lemma-++*≤ : {b : Bound}{x : A}{xs ys : List A} → LeB b (val x) → b *≤ xs → (val x) *≤ ys → b *≤ (xs ++ (x ∷ ys))
lemma-++*≤ b≤u genx u*≤ys = gecx b≤u (lemma-*≤ b≤u u*≤ys)
lemma-++*≤ b≤u (gecx b≤x b*≤xs) u*≤ys = gecx b≤x (lemma-++*≤ b≤u b*≤xs u*≤ys)
| {
"alphanum_fraction": 0.540397351,
"avg_line_length": 52.0689655172,
"ext": "agda",
"hexsha": "5aacdd88f68bdd9ae07d1da0a3d3d1944e17c4a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/List/Order/Bounded/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/List/Order/Bounded/Properties.agda",
"max_line_length": 122,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/List/Order/Bounded/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 743,
"size": 1510
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Support.PropositionalEquality where
open import Function using (flip; id)
open import Relation.Binary.PropositionalEquality public using () renaming (_≡_ to _≣_; refl to ≣-refl; trans to ≣-trans; sym to ≣-sym; cong to ≣-cong; cong₂ to ≣-cong₂; subst to ≣-subst; subst₂ to ≣-subst₂; isEquivalence to ≣-isEquivalence; setoid to ≣-setoid)
module ≣-reasoning = Relation.Binary.PropositionalEquality.≡-Reasoning renaming (_≡⟨_⟩_ to _≣⟨_⟩_)
≣-app : ∀ {a} {A : Set a} {b} {B : A → Set b} {f g : (x : A) → B x} → f ≣ g → (x : A) → f x ≣ g x
≣-app {f = f} {g} = flip (λ x → ≣-cong (flip id x))
≣-appʰ : ∀ {a} {A : Set a} {b} {B : A → Set b} {f g : ∀ {x} → B x} → (λ {x} → f) ≣ g → ∀ {x} → f {x} ≣ g {x}
≣-appʰ {f = f} {g} = λ pf {x} → ≣-cong (λ h → h {x}) pf
≣-subst₂-breakdown-lr : ∀ {a} {A : Set a} {b} {B : Set b} {ℓ} (f : A → B → Set ℓ) {a₁ a₂ : A} (a₁≣a₂ : a₁ ≣ a₂) {b₁ b₂ : B} (b₁≣b₂ : b₁ ≣ b₂) (x : f a₁ b₁) → ≣-subst₂ f a₁≣a₂ b₁≣b₂ x ≣ ≣-subst (f a₂) b₁≣b₂ (≣-subst (λ y → f y b₁) a₁≣a₂ x)
≣-subst₂-breakdown-lr f ≣-refl ≣-refl x = ≣-refl
≣-subst₂-breakdown-rl : ∀ {a} {A : Set a} {b} {B : Set b} {ℓ} (f : A → B → Set ℓ) {a₁ a₂ : A} (a₁≣a₂ : a₁ ≣ a₂) {b₁ b₂ : B} (b₁≣b₂ : b₁ ≣ b₂) (x : f a₁ b₁) → ≣-subst₂ f a₁≣a₂ b₁≣b₂ x ≣ ≣-subst (λ y → f y b₂) a₁≣a₂ (≣-subst (f a₁) b₁≣b₂ x)
≣-subst₂-breakdown-rl f ≣-refl ≣-refl x = ≣-refl
≣-subst-trans : ∀ {a} {A : Set a} {ℓ} (f : A → Set ℓ) {a₁ a₂ a₃ : A} (a₁≣a₂ : a₁ ≣ a₂) (a₂≣a₃ : a₂ ≣ a₃) (x : f a₁) → ≣-subst f (≣-trans a₁≣a₂ a₂≣a₃) x ≣ ≣-subst f a₂≣a₃ (≣-subst f a₁≣a₂ x)
≣-subst-trans f ≣-refl ≣-refl x = ≣-refl
≣-cong₂₊ : ∀ {a b c r} {A : Set a} {B : Set b} {C : A → B → Set c} {R : Set r} (f : (x : A) → (u : B) → .(z : C x u) → R) {x y : A} {u v : B} .(z : C x u) → (x≣y : x ≣ y) (u≣v : u ≣ v) → f x u z ≣ f y v (≣-subst₂ C x≣y u≣v z)
≣-cong₂₊ f z ≣-refl ≣-refl = ≣-refl
| {
"alphanum_fraction": 0.5172413793,
"avg_line_length": 72.5,
"ext": "agda",
"hexsha": "9664ec97928788b3428d3197b364db835a8f8e10",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Support/PropositionalEquality.agda",
"max_issues_count": 91,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Support/PropositionalEquality.agda",
"max_line_length": 261,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ajnavarro/language-dataset",
"max_stars_repo_path": "data/github.com/copumpkin/categories/36f4181d751e2ecb54db219911d8c69afe8ba892/Categories/Support/PropositionalEquality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1048,
"size": 1885
} |
module StronglyRigidOccurrence where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
test : let X : Nat; X = _ in X ≡ suc X
test = refl
-- this gives an error in the occurs checker | {
"alphanum_fraction": 0.6234817814,
"avg_line_length": 20.5833333333,
"ext": "agda",
"hexsha": "666a8157a8a1235bab2aa23a2ef242f698f192b3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/fail/StronglyRigidOccurrence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/fail/StronglyRigidOccurrence.agda",
"max_line_length": 44,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/StronglyRigidOccurrence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 86,
"size": 247
} |
module Open2 where
data ⊤
: Set
where
tt
: ⊤
data ⊤'
(x : ⊤)
: Set
where
tt
: ⊤' x
record R
: Set
where
field
x
: ⊤
y
: ⊤
record S
: Set₁
where
field
x
: R
open R x public
renaming (x to y; y to z)
postulate
s
: S
open S s
using (y)
postulate
p
: ⊤' y
| {
"alphanum_fraction": 0.4322033898,
"avg_line_length": 6.4363636364,
"ext": "agda",
"hexsha": "7cb2347f541a78bb17c0a2c5f11421015de94b5b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msuperdock/agda-unused",
"max_forks_repo_path": "data/declaration/Open2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msuperdock/agda-unused",
"max_issues_repo_path": "data/declaration/Open2.agda",
"max_line_length": 29,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msuperdock/agda-unused",
"max_stars_repo_path": "data/declaration/Open2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z",
"num_tokens": 151,
"size": 354
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.Cogroup
open import cohomology.Theory
-- H^n is a group homomorphism when the domain is (Susp X -> Y).
module cohomology.Cogroup {i} (CT : CohomologyTheory i) (n : ℤ)
{X : Ptd i} (cogroup-struct : CogroupStructure X) (Y : Ptd i) where
open CohomologyTheory CT
open import cohomology.Wedge CT
open CogroupStructure cogroup-struct
open import cohomology.CoHSpace CT n co-h-struct
private
module dom = GroupStructure (cogroup⊙→-group-structure cogroup-struct Y)
module codom = Group (hom-group (C n Y) (C-abgroup n X))
C-fmap-preserves-comp : preserves-comp dom.comp codom.comp (C-fmap n)
C-fmap-preserves-comp f g = group-hom= $ λ= λ y →
CEl-fmap n (dom.comp f g) y
=⟨ C-fmap-∘ n (⊙Wedge-rec f g) ⊙coμ y ⟩
CEl-fmap n ⊙coμ (CEl-fmap n (⊙Wedge-rec f g) y)
=⟨ C-fmap-coμ (CEl-fmap n (⊙Wedge-rec f g) y) ⟩
Group.comp (C n X)
(CEl-fmap n ⊙winl (CEl-fmap n (⊙Wedge-rec f g) y))
(CEl-fmap n ⊙winr (CEl-fmap n (⊙Wedge-rec f g) y))
=⟨ ap2 (Group.comp (C n X))
( ∘-CEl-fmap n ⊙winl (⊙Wedge-rec f g) y
∙ ap (λ f → CEl-fmap n f y) (⊙WedgeRec.⊙winl-β f g))
( ∘-CEl-fmap n ⊙winr (⊙Wedge-rec f g) y
∙ ap (λ f → CEl-fmap n f y) (⊙WedgeRec.⊙winr-β f g)) ⟩
Group.comp (C n X) (CEl-fmap n f y) (CEl-fmap n g y)
=∎
| {
"alphanum_fraction": 0.6088825215,
"avg_line_length": 38.7777777778,
"ext": "agda",
"hexsha": "ea5c767da888e8a7d875b0ded3cf164760a8b344",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/Cogroup.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/Cogroup.agda",
"max_line_length": 76,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/Cogroup.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 575,
"size": 1396
} |
------------------------------------------------------------------------------
-- Definition of mutual inductive predicates
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --without-K #-}
{-# OPTIONS --no-universe-polymorphism #-}
module FOTC.MutualInductivePredicates where
open import FOTC.Base
------------------------------------------------------------------------------
-- Using mutual inductive predicates
data Even : D → Set
data Odd : D → Set
data Even where
ezero : Even zero
esucc : ∀ {n} → Odd n → Even (succ₁ n)
data Odd where
osucc : ∀ {n} → Even n → Odd (succ₁ n)
-- Non-mutual induction principles
Even-ind : (A : D → Set) →
A zero →
(∀ {n} → Odd n → A (succ₁ n)) →
∀ {n} → Even n → A n
Even-ind A A0 h ezero = A0
Even-ind A A0 h (esucc On) = h On
Odd-ind : (A : D → Set) →
(∀ {n} → Even n → A (succ₁ n)) →
∀ {n} → Odd n → A n
Odd-ind A h (osucc En) = h En
-- Mutual induction principles (from Coq)
Even-mutual-ind :
(A B : D → Set) →
A zero →
(∀ {n} → Odd n → B n → A (succ₁ n)) →
(∀ {n} → Even n → A n → B (succ₁ n)) →
∀ {n} → Even n → A n
Odd-mutual-ind :
(A B : D → Set) →
A zero →
(∀ {n} → Odd n → B n → A (succ₁ n)) →
(∀ {n} → Even n → A n → B (succ₁ n)) →
∀ {n} → Odd n → B n
Even-mutual-ind A B A0 h₁ h₂ ezero = A0
Even-mutual-ind A B A0 h₁ h₂ (esucc On) = h₁ On (Odd-mutual-ind A B A0 h₁ h₂ On)
Odd-mutual-ind A B A0 h₁ h₂ (osucc En) = h₂ En (Even-mutual-ind A B A0 h₁ h₂ En)
module DisjointSum where
-- Using a single inductive predicate on D × D (see
-- Blanchette (2013)).
_+_ : Set → Set → Set
_+_ = _∨_
data EvenOdd : D + D → Set where
eozero : EvenOdd (inj₁ zero)
eoodd : {n : D} → EvenOdd (inj₁ n) → EvenOdd (inj₂ (succ₁ n))
eoeven : {n : D} → EvenOdd (inj₂ n) → EvenOdd (inj₁ (succ₁ n))
-- Induction principle
EvenOdd-ind : (A : D + D → Set) →
A (inj₁ zero) →
({n : D} → A (inj₁ n) → A (inj₂ (succ₁ n))) →
({n : D} → A (inj₂ n) → A (inj₁ (succ₁ n))) →
{n : D + D} → EvenOdd n → A n
EvenOdd-ind A A0 h₁ h₂ eozero = A0
EvenOdd-ind A A0 h₁ h₂ (eoodd EOn) = h₁ (EvenOdd-ind A A0 h₁ h₂ EOn)
EvenOdd-ind A A0 h₁ h₂ (eoeven EOn) = h₂ (EvenOdd-ind A A0 h₁ h₂ EOn)
-------------------------------------------------------------------------
-- From the single inductive predicate to the mutual inductive predicates
-- Even and Odd from EvenOdd.
Even' : D → Set
Even' n = EvenOdd (inj₁ n)
Odd' : D → Set
Odd' n = EvenOdd (inj₂ n)
-- From Even/Odd to Even'/Odd'
Even→Even' : ∀ {n} → Even n → Even' n
Odd→Odd' : ∀ {n} → Odd n → Odd' n
Even→Even' ezero = eozero
Even→Even' (esucc On) = eoeven (Odd→Odd' On)
Odd→Odd' (osucc En) = eoodd (Even→Even' En)
-- From Even'/Odd' to Even/Odd
Even'→Even : ∀ {n} → Even' n → Even n
Odd'→Odd : ∀ {n} → Odd' n → Odd n
-- Requires K.
Even'→Even eozero = ezero
Even'→Even (eoeven h) = esucc (Odd'→Odd h)
Odd'→Odd (eoodd h) = osucc (Even'→Even h)
-- TODO (03 December 2012). From EvenOdd-ind to Even-mutual-ind and
-- Odd-mutual-ind.
module FunctionSpace where
-- Using a single inductive predicate on D → D
data EvenOdd : D → D → Set where
eozero : EvenOdd zero (succ₁ zero)
eoodd : ∀ {m n} → EvenOdd m n → EvenOdd m (succ₁ m)
eoeven : ∀ {m n} → EvenOdd m n → EvenOdd (succ₁ n) n
-- Even and Odd from EvenOdd.
-- Even' : D → Set
-- Even' n = EvenOdd zero (succ₁ zero) ∨ EvenOdd (succ₁ n) n
-- Odd' : D → Set
-- Odd' n = EvenOdd n (succ₁ n)
-- -- From Even/Odd to Even'/Odd'
-- Even→Even' : ∀ {n} → Even n → Even' n
-- Odd→Odd' : ∀ {n} → Odd n → Odd' n
-- Even→Even' ezero = inj₁ eozero
-- Even→Even' (esucc On) = inj₂ (eoeven (Odd→Odd' On))
-- Odd→Odd' (osucc En) = eoodd {!!}
-- -- From Even'/Odd' to Even/Odd
-- Even'→Even : ∀ {n} → Even' n → Even n
-- Odd'→Odd : ∀ {n} → Odd' n → Odd n
-- Even'→Even (inj₁ x) = {!!}
-- Even'→Even (inj₂ x) = {!!}
-- Odd'→Odd h = {!!}
------------------------------------------------------------------------------
-- References
--
-- Blanchette, Jasmin Christian (2013). Relational analysis of
-- (co)inductive predicates, (co)algebraic datatypes, and
-- (co)recursive functions. Software Quality Journal 21.1,
-- pp. 101–126.
| {
"alphanum_fraction": 0.494942832,
"avg_line_length": 29.3419354839,
"ext": "agda",
"hexsha": "7bea8ec45c4a19e13615cfa7c6165256f5573458",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/thesis/report/FOTC/MutualInductivePredicates.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/thesis/report/FOTC/MutualInductivePredicates.agda",
"max_line_length": 80,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/thesis/report/FOTC/MutualInductivePredicates.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1595,
"size": 4548
} |
{-# OPTIONS --rewriting #-}
module RewritingNat where
open import Common.Equality
{-# BUILTIN REWRITE _≡_ #-}
data Nat : Set where
zero : Nat
suc : Nat → Nat
_+_ : Nat → Nat → Nat
zero + n = n
(suc m) + n = suc (m + n)
plus0T : Set
plus0T = ∀{x} → (x + zero) ≡ x
plusSucT : Set
plusSucT = ∀{x y} → (x + (suc y)) ≡ suc (x + y)
postulate
plus0p : plus0T
{-# REWRITE plus0p #-}
plusSucp : plusSucT
{-# REWRITE plusSucp #-}
plus0 : plus0T
plus0 = refl
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
reverseAcc : ∀{A n m} → Vec A n → Vec A m → Vec A (n + m)
reverseAcc [] acc = acc
reverseAcc (x ∷ xs) acc = reverseAcc xs (x ∷ acc)
| {
"alphanum_fraction": 0.5646067416,
"avg_line_length": 17.3658536585,
"ext": "agda",
"hexsha": "69ee32dfbbcaf12c56df267c218099b782a593e9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/RewritingNat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/RewritingNat.agda",
"max_line_length": 57,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/RewritingNat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 281,
"size": 712
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.MaybeEmb {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.LogicalRelation
open import Tools.Nat
private
variable
n : Nat
Γ : Con Term n
-- Any level can be embedded into the highest level.
maybeEmb : ∀ {l A}
→ Γ ⊩⟨ l ⟩ A
→ Γ ⊩⟨ ¹ ⟩ A
maybeEmb {l = ⁰} [A] = emb 0<1 [A]
maybeEmb {l = ¹} [A] = [A]
-- The lowest level can be embedded in any level.
maybeEmb′ : ∀ {l A}
→ Γ ⊩⟨ ⁰ ⟩ A
→ Γ ⊩⟨ l ⟩ A
maybeEmb′ {l = ⁰} [A] = [A]
maybeEmb′ {l = ¹} [A] = emb 0<1 [A]
| {
"alphanum_fraction": 0.6097222222,
"avg_line_length": 22.5,
"ext": "agda",
"hexsha": "d84484aa772cb9954ee31935888ffcc1255d7daa",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z",
"max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "fhlkfy/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/MaybeEmb.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "fhlkfy/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/MaybeEmb.agda",
"max_line_length": 80,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "fhlkfy/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/MaybeEmb.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z",
"num_tokens": 247,
"size": 720
} |
module Prelude.Product where
record _×_ (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
open _×_ public
| {
"alphanum_fraction": 0.6363636364,
"avg_line_length": 13.2,
"ext": "agda",
"hexsha": "f6ecd5978340b191160f8885642ae0eaa840271d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/epic/Prelude/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/epic/Prelude/Product.agda",
"max_line_length": 34,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/epic/Prelude/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 42,
"size": 132
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Sets where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Categories.Category
open Precategory
module _ ℓ where
SET : Precategory (ℓ-suc ℓ) ℓ
SET .ob = Σ (Type ℓ) isSet
SET .Hom[_,_] (A , _) (B , _) = A → B
SET .id _ = λ x → x
SET ._⋆_ f g = λ x → g (f x)
SET .⋆IdL f = refl
SET .⋆IdR f = refl
SET .⋆Assoc f g h = refl
module _ {ℓ} where
isSetExpIdeal : {A B : Type ℓ} → isSet B → isSet (A → B)
isSetExpIdeal B/set = isSetΠ λ _ → B/set
isSetLift : {A : Type ℓ} → isSet A → isSet (Lift {ℓ} {ℓ-suc ℓ} A)
isSetLift = isOfHLevelLift 2
instance
SET-category : isCategory (SET ℓ)
SET-category .isSetHom {_} {B , B/set} = isSetExpIdeal B/set
| {
"alphanum_fraction": 0.6381660471,
"avg_line_length": 26.0322580645,
"ext": "agda",
"hexsha": "8122141882cbb8ee36c9a0007791a18c0662be2b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "apabepa10/cubical",
"max_forks_repo_path": "Cubical/Categories/Sets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "apabepa10/cubical",
"max_issues_repo_path": "Cubical/Categories/Sets.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "apabepa10/cubical",
"max_stars_repo_path": "Cubical/Categories/Sets.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 318,
"size": 807
} |
-- 2014-03-06 Andreas, Reported by Fabien Renaud
-- This is a larger example for the termination checker, to test performance.
-- In 2014-02-X, it exhausted the heap.
-- 2013-03-17
-- The termination checker now rejects this code instead of crashing.
-- I do not know whether it is supposed to terminate.
-- {-# OPTIONS -v term.matrices:40 #-}
module Issue1075 where
open import Common.Prelude renaming (Nat to ℕ) hiding (map; length)
open import Common.Product
open import Common.Sum
open import Common.Equality
[_] : {A : Set} → A → List A
[ x ] = x ∷ []
map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
foldr : ∀ {A B : Set} → (A → B → B) → B → List A → B
foldr c n [] = n
foldr c n (x ∷ xs) = c x (foldr c n xs)
length : ∀ {A} → List A → ℕ
length = foldr (λ _ → suc) 0
postulate
_∈_ : {A : Set} → A → List A → Set
_⊆_ : {A : Set} → List A → List A → Set
data All {A : Set}
(P : A → Set) : List A → Set where
[] : All P []
_∷_ : ∀ {x xs} (px : P x) (pxs : All P xs) → All P (x ∷ xs)
_⋐_ : ∀{A} (P Q : A → Set) → Set
P ⋐ Q = ∀{x} → P x → Q x
map-all : ∀ {A : Set} {P : A → Set} {Q : A → Set} →
P ⋐ Q → All P ⋐ All Q
map-all g [] = []
map-all g (px ∷ pxs) = g px ∷ map-all g pxs
-- Propositions and polarity
data Polarity : Set where
⁺ : Polarity
⁻ : Polarity
data Type : Polarity → Set where
a : (Q : String) (⁼ : Polarity) → Type ⁼
--
↓ : (A : Type ⁻) → Type ⁺
⊥⁺ : Type ⁺
_∨_ : (A B : Type ⁺) → Type ⁺
⊤⁺ : Type ⁺
_∧⁺_ : (A B : Type ⁺) → Type ⁺
--
↑ : (A : Type ⁺) → Type ⁻
_⊃_ : (A : Type ⁺) (B : Type ⁻) → Type ⁻
⊤⁻ : Type ⁻
_∧⁻_ : (A B : Type ⁻) → Type ⁻
-- Judgmental infrastructure
data Conc : Set where
Inv : (A : Type ⁻) → Conc
True : (A : Type ⁺) → Conc
Susp : (A : Type ⁻) → Conc
stable : Conc → Set
stable (Inv A) = ⊥
stable (True A) = ⊤
stable (Susp A) = ⊤
suspnormal : Conc → Set
suspnormal (Inv A) = ⊤
suspnormal (True A) = ⊤
suspnormal (Susp (a Q .⁻)) = ⊤
suspnormal (Susp (↑ A)) = ⊥
suspnormal (Susp (A ⊃ A₁)) = ⊥
suspnormal (Susp ⊤⁻) = ⊥
suspnormal (Susp (A ∧⁻ A₁)) = ⊥
suspstable : Conc -> Set
suspstable U = stable U × suspnormal U
data Hyp : Set where
HSusp : (A : Type ⁺) → Hyp
Pers : (A : Type ⁻) → Hyp
Ctx = List Hyp
hsusp-inj : ∀{x y} → HSusp x ≡ HSusp y → x ≡ y
hsusp-inj refl = refl
{- Suspension normality: all suspended propositions are atomic -}
suspnormalΓ : Ctx → Set
suspnormalΓ Γ = ∀{A} → HSusp A {-Membership-≡.-}∈ Γ → ∃ λ Q → A ≡ (a Q ⁺)
postulate
conssusp : ∀{Γ Q} → suspnormalΓ Γ → suspnormalΓ ((HSusp (a Q ⁺)) ∷ Γ)
conspers : ∀{Γ A} → suspnormalΓ Γ → suspnormalΓ ((Pers A) ∷ Γ)
fromctx : ∀{A B Γ} (Γ' : Ctx) → B ∈ (Γ' ++ A ∷ Γ) → (A ≡ B) ⊎ (B ∈ (Γ' ++ Γ))
fromctxGen : ∀{A} {Γ : Ctx} → (Γ' : Ctx) → (L : Ctx) → A ∈ (Γ' ++ L ++ Γ) → (A ∈ L) ⊎ (A ∈ (Γ' ++ Γ))
-- Sequent calculus
data SeqForm : Set where
Rfoc : (A : Type ⁺) → SeqForm
Left : (L : List (Type ⁺) ⊎ Type ⁻) (U : Conc) → SeqForm
suspnormalF : SeqForm → Set
suspnormalF (Rfoc A) = ⊤
suspnormalF (Left L U) = suspnormal U
data Exp (Γ : Ctx) : SeqForm → Set
Value : (Γ : Ctx) → Type ⁺ → Set
Value Γ A = Exp Γ (Rfoc A)
Term : (Γ : Ctx) → List (Type ⁺) → Conc → Set
Term Γ Ω U = Exp Γ (Left (inj₁ Ω) U)
Spine : (Γ : Ctx) (A : Type ⁻) (U : Conc) → Set
Spine Γ A U = Exp Γ (Left (inj₂ A) U)
data Exp Γ where
-- Values
id⁺ : ∀{A}
(v : HSusp A ∈ Γ)
→ Value Γ A
↓R : ∀{A}
(N : Term Γ [] (Inv A))
→ Value Γ (↓ A)
∨R₁ : ∀{A B}
(V : Value Γ A)
→ Value Γ (A ∨ B)
∨R₂ : ∀{A B}
(V : Value Γ B)
→ Value Γ (A ∨ B)
⊤⁺R : Value Γ ⊤⁺
∧⁺R : ∀{A B}
(V₁ : Value Γ A)
(V₂ : Value Γ B)
→ Value Γ (A ∧⁺ B)
-- Terms
focR : ∀{A}
(V : Value Γ A)
→ Term Γ [] (True A)
focL : ∀{A U}
(pf : stable U)
(x : Pers A ∈ Γ)
(Sp : Spine Γ A U)
→ Term Γ [] U
η⁺ : ∀{Q Ω U}
(N : Term (HSusp (a Q ⁺) ∷ Γ) Ω U)
→ Term Γ (a Q ⁺ ∷ Ω) U
↓L : ∀{A Ω U}
(N : Term (Pers A ∷ Γ) Ω U)
→ Term Γ (↓ A ∷ Ω) U
⊥L : ∀{U Ω}
→ Term Γ (⊥⁺ ∷ Ω) U
∨L : ∀{A B Ω U}
(N₁ : Term Γ (A ∷ Ω) U)
(N₂ : Term Γ (B ∷ Ω) U)
→ Term Γ ((A ∨ B) ∷ Ω) U
⊤⁺L : ∀{U Ω}
(N : Term Γ Ω U)
→ Term Γ (⊤⁺ ∷ Ω) U
∧⁺L : ∀{U Ω A B}
(N : Term Γ (A ∷ B ∷ Ω) U)
→ Term Γ ((A ∧⁺ B) ∷ Ω) U
η⁻ : ∀{Q}
(N : Term Γ [] (Susp (a Q ⁻)))
→ Term Γ [] (Inv (a Q ⁻))
↑R : ∀{A}
(N : Term Γ [] (True A))
→ Term Γ [] (Inv (↑ A))
⊃R : ∀{A B}
(N : Term Γ [ A ] (Inv B))
→ Term Γ [] (Inv (A ⊃ B))
⊤⁻R : Term Γ [] (Inv ⊤⁻)
∧⁻R : ∀{A B}
(N₁ : Term Γ [] (Inv A))
(N₂ : Term Γ [] (Inv B))
→ Term Γ [] (Inv (A ∧⁻ B))
-- Spines
id⁻ : ∀{A}
→ Spine Γ A (Susp A)
↑L : ∀{A U}
(N : Term Γ [ A ] U)
→ Spine Γ (↑ A) U
⊃L : ∀{A B U}
(V : Value Γ A)
(Sp : Spine Γ B U)
→ Spine Γ (A ⊃ B) U
∧⁻L₁ : ∀{A B U}
(Sp : Spine Γ A U)
→ Spine Γ (A ∧⁻ B) U
∧⁻L₂ : ∀{A B U}
(Sp : Spine Γ B U)
→ Spine Γ (A ∧⁻ B) U
-- Weakening
postulate
sub-cons-congr : ∀{A : Set} {x : A} {xs ys : List A}
→ xs ⊆ ys
→ (x ∷ xs) ⊆ (x ∷ ys)
sub-wkex : ∀{A : Set} {x y : A} {xs ys : List A}
→ (x ∷ xs) ⊆ (x ∷ y ∷ xs)
sub-cntr : ∀{A : Set} {x : A}
→ (xs : List A)
→ x ∈ xs
→ (x ∷ xs) ⊆ xs
wk : ∀{Γ Γ' Form} → Γ ⊆ Γ' → Exp Γ Form → Exp Γ' Form
wken : ∀{Γ A Form} → Exp Γ Form → Exp (A ∷ Γ) Form
wken-all-rfoc : ∀{Γ' Γ xs B}
→ All (λ A → Exp (Γ' ++ Γ) (Rfoc A)) xs
→ All (λ A → Exp (B ∷ (Γ' ++ Γ)) (Rfoc A)) xs
wken-all-rfoc [] = []
wken-all-rfoc (px ∷ All) = map-all (\x → wken x) (px ∷ All)
wken-all-inv : ∀{Γ' Γ Ω xs B}
→ All (λ A → Exp (Γ' ++ Γ) (Left (inj₁ Ω) (Inv A))) xs
→ All (λ A → Exp (B ∷ (Γ' ++ Γ)) (Left (inj₁ Ω) (Inv A))) xs
wken-all-inv [] = []
wken-all-inv (px ∷ All) = map-all (\x → wken x) (px ∷ All)
postulate
wkex : ∀{Γ A B Form} → Exp (A ∷ Γ) Form → Exp (A ∷ B ∷ Γ) Form
wkex2 : ∀{Γ A B C Form} → Exp (A ∷ B ∷ Γ) Form → Exp (A ∷ B ∷ C ∷ Γ) Form
cntr : ∀{A Form} → (Γ : Ctx) → A ∈ Γ → Exp (A ∷ Γ) Form → Exp Γ Form
cntr Γ In Exp = wk (sub-cntr Γ In) Exp
postulate
exch-cons : ∀{Γ Γ' LA C x} → Term (x ∷ Γ ++ Γ') LA C → Term (Γ ++ x ∷ Γ') LA C
subst⁺ :
∀{Γ Form}
→ (Γ' : Ctx)
→ (LAi : List (Type ⁺))
→ All (\x → Value (Γ' ++ Γ) x) LAi
→ Exp (Γ' ++ map (\x → HSusp x) (LAi) ++ Γ) Form
→ Exp (Γ' ++ Γ) Form
subst⁻ : ∀{Γ A L U}
→ stable U
→ Exp Γ (Left L (Susp A))
→ Spine Γ A U
→ Exp Γ (Left L U)
cut⁺ : ∀{U Γ Ω}
→ suspnormalΓ Γ
→ suspnormal U
→ (LAi : List (Type ⁺))
→ All (\x → Value Γ x) LAi
→ Term Γ (LAi ++ Ω) U
→ Term Γ Ω U
cut⁻ : ∀{U Γ N}
→ suspnormalΓ Γ
→ suspstable U
→ (LA : List (Type ⁻))
→ (length LA ≡ suc N)
→ All (\x → Term Γ [] (Inv x)) LA
→ All (\x → Spine Γ x U) LA
→ Term Γ [] U
rsubst+ : ∀{Ω Γ Form} (Γ' : Ctx)
→ suspnormalΓ (Γ' ++ Γ)
→ suspnormal Form
→ (LA+ : List (Type ⁺))
→ (LA- : List (Type ⁻))
→ All (\x → Term (Γ' ++ Γ) [] (Inv x)) LA-
→ All (\x → Value Γ x) LA+
→ Term (Γ' ++ (map (\x → Pers x) LA-) ++ Γ) (LA+ ++ Ω) Form
→ Term (Γ' ++ Γ) Ω Form
postulate rsubst-v : ∀{Γ Form} (Γ' : Ctx) → suspnormalΓ (Γ' ++ Γ) → suspnormalF Form → (LA- : List (Type ⁻)) → All (\x → Term (Γ' ++ Γ) [] (Inv x)) LA- → Exp (Γ' ++ (map (\x → Pers x) LA-) ++ Γ) Form → Exp (Γ' ++ Γ) Form
-- {-# NO_TERMINATION_CHECK #-}
--rsubst : ∀{Γ Form A} (Γ' : Ctx)
-- → suspnormalΓ (Γ' ++ Γ)
-- → suspnormalF Form
-- → Term (Γ' ++ Γ) [] (Inv A)
-- → Exp (Γ' ++ (Pers A) ∷ Γ) Form
-- → Exp (Γ' ++ Γ) Form
lsubst : ∀{Γ U L A}
→ suspnormalΓ Γ
→ suspstable U
→ Exp Γ (Left L (True A))
→ Term Γ [ A ] U
→ Exp Γ (Left L U)
-- -- Positive principal substitution
cut⁺ pfΓ pf [] Values T = T
cut⁺ pfΓ pf (z ∷ LA) ((id⁺ v) ∷ Values) N with (pfΓ v)
cut⁺ pfΓ pf (.(a A ⁺) ∷ LA) (id⁺ v ∷ Values) (η⁺ N) | A , refl =
subst⁺ [] (a A ⁺ ∷ []) (id⁺ v ∷ []) (cut⁺ (conssusp pfΓ) pf LA (wken-all-rfoc {[]} Values) N)
cut⁺ {U} {Γ} {Ω} pfΓ pf (.(↓ A) ∷ LA) (↓R N ∷ Values) (↓L {A} N') =
rsubst+ [] pfΓ pf LA (A ∷ []) (N ∷ []) Values N'
-- rsubst+ [] pfΓ pf N (cut⁺ (conspers pfΓ) pf LA (wken-all-rfoc {[]} Values) N₁)
cut⁺ pfΓ pf (.(A ∨ B) ∷ LA) (∨R₁ V ∷ Values) (∨L {A} {B} N₁ N₂) = cut⁺ pfΓ pf (A ∷ LA) (V ∷ Values) N₁
cut⁺ pfΓ pf (.(A ∨ B) ∷ LA) (∨R₂ V ∷ Values) (∨L {A} {B} N₁ N₂) = cut⁺ pfΓ pf (B ∷ LA) (V ∷ Values) N₂
cut⁺ pfΓ pf (.⊤⁺ ∷ LA) (px ∷ Values) (⊤⁺L N) = cut⁺ pfΓ pf LA Values N
cut⁺ pfΓ pf ((A ∧⁺ B) ∷ LA) (∧⁺R V₁ V₂ ∷ Values) (∧⁺L N) = cut⁺ pfΓ pf (B ∷ LA) (V₂ ∷ Values) (cut⁺ pfΓ pf ((A ∷ [])) (V₁ ∷ []) N)
-- -- Negative principle substitution
cut⁻ pfΓ pf [] () LExp LExp'
cut⁻ pfΓ pf (_ ∷ LA) LL (focL () x Sp ∷ LExp) (px₁ ∷ LExp')
cut⁻ pfΓ pf (a Q .⁻ ∷ LA) LL (η⁻ N₁ ∷ LExp) (id⁻ ∷ LExp') = N₁
cut⁻ pfΓ (proj₁ , ()) (⊤⁻ ∷ LA) LL (⊤⁻R ∷ LExp) (id⁻ ∷ LExp')
cut⁻ pfΓ (proj₁ , ()) (↑ x ∷ LA) LL (↑R N₁ ∷ LExp) (id⁻ ∷ LExp')
cut⁻ pfΓ (proj₁ , ()) ((x ⊃ x₁) ∷ LA) LL (⊃R N₁ ∷ LExp) (id⁻ ∷ LExp')
cut⁻ pfΓ (proj₁ , ()) ((x ∧⁻ x₁) ∷ LA) LL (∧⁻R N₁ N₂ ∷ LExp) (id⁻ ∷ LExp')
cut⁻ pfΓ pf (↑ x ∷ LA) LL (↑R N₁ ∷ LExp) (↑L N₂ ∷ LExp') = lsubst pfΓ pf N₁ N₂
cut⁻ pfΓ pf ((x ⊃ x₁) ∷ LA) refl (⊃R N₁ ∷ LExp) (⊃L V Sp ∷ LExp') =
cut⁻ pfΓ pf (x₁ ∷ LA) refl ((cut⁺ pfΓ _ (x ∷ []) (V ∷ []) N₁) ∷ LExp) (Sp ∷ LExp')
cut⁻ pfΓ pf ((x ∧⁻ x₁) ∷ LA) refl (∧⁻R N₁ N₂ ∷ LExp) (∧⁻L₁ Sp ∷ LExp') =
cut⁻ pfΓ pf (x ∷ LA) refl (N₁ ∷ LExp) (Sp ∷ LExp')
cut⁻ pfΓ pf ((x ∧⁻ x₁) ∷ LA) LL (∧⁻R N₁ N₂ ∷ LExp) (∧⁻L₂ Sp ∷ LExp') =
cut⁻ pfΓ pf (x₁ ∷ LA) refl (N₂ ∷ LExp) (Sp ∷ LExp')
-- helper : ∀{Γ LA- A} →
-- All (λ x₂ → Exp (Γ) (Left (inj₁ []) (Inv x₂))) LA-
-- → Any (_≡_ (Pers A)) (map Pers LA-)
-- → All (λ x₂ → Exp (Γ) (Left (inj₁ []) (Inv x₂))) (A ∷ [])
-- helper [] ()
-- helper (px ∷ L) (here refl) = px ∷ []
-- helper (px ∷ L) (there In) = helper L In
rsubst+ Γ' pfΓ pf [] LA- LT [] (focR V) = focR (rsubst-v Γ' pfΓ _ LA- LT V )
rsubst+ Γ' pfΓ pf [] LA- LT [] (focL pf₁ x Sp) with fromctxGen Γ' (map Pers LA-) x
rsubst+ Γ' pfΓ pf [] LA- LT [] (focL {A} pf₁ x Sp) | inj₁ x₁ =
cut⁻ pfΓ (pf₁ , pf) (A ∷ []) refl {!(helper LT x₁)!} ((rsubst-v Γ' pfΓ pf LA- LT Sp) ∷ [])
rsubst+ Γ' pfΓ pf [] LA- LT [] (focL pf₁ x Sp) | inj₂ y =
focL pf₁ y (rsubst-v Γ' pfΓ pf LA- LT Sp )
rsubst+ Γ' pfΓ pf [] LA- LT [] (η⁺ N) =
η⁺ (rsubst-v (_ ∷ Γ' ) (conssusp pfΓ) pf LA- (wken-all-inv {[]} LT) N )
rsubst+ Γ' pfΓ pf [] LA- LT [] (↓L N) =
↓L (rsubst-v (_ ∷ Γ' ) (conspers pfΓ) pf LA- (wken-all-inv {[]} LT) N )
rsubst+ Γ' pfΓ pf [] LA- LT [] ⊥L = ⊥L
rsubst+ Γ' pfΓ pf [] LA- LT [] (∨L N₁ N₂) =
∨L (rsubst+ Γ' pfΓ pf [] LA- LT [] N₁) (rsubst+ Γ' pfΓ pf [] LA- LT [] N₂)
rsubst+ Γ' pfΓ pf [] LA- LT [] (⊤⁺L N) = ⊤⁺L (rsubst+ Γ' pfΓ pf [] LA- LT [] N )
rsubst+ Γ' pfΓ pf [] LA- LT [] (∧⁺L N) = ∧⁺L (rsubst+ Γ' pfΓ pf [] LA- LT [] N)
rsubst+ Γ' pfΓ pf [] LA- LT [] (η⁻ N) = η⁻ (rsubst+ Γ' pfΓ pf [] LA- LT [] N)
rsubst+ Γ' pfΓ pf [] LA- LT [] (↑R N) = ↑R (rsubst+ Γ' pfΓ pf [] LA- LT [] N)
rsubst+ Γ' pfΓ pf [] LA- LT [] (⊃R N) = ⊃R (rsubst+ Γ' pfΓ pf [] LA- LT [] N)
rsubst+ Γ' pfΓ pf [] LA- LT [] ⊤⁻R = ⊤⁻R
rsubst+ Γ' pfΓ pf [] LA- LT [] (∧⁻R N₁ N₂) =
∧⁻R (rsubst+ Γ' pfΓ pf [] LA- LT [] N₁) (rsubst+ Γ' pfΓ pf [] LA- LT [] N₂)
-- rsubst+ Γ' pfΓ pf (↓ x ∷ LA+) LA- LT (id⁺ v ∷ Values) (↓L N) with (pfΓ (++ʳ Γ' v))
-- ... | proj₁ , ()
-- ------------
-- -- Part which requires a list for negative types
-- rsubst+ {Ω} {Γ} Γ' pfΓ pf (a Q .⁺ ∷ LA+) LA- LT (id⁺ v ∷ Values) (η⁺ N) =
-- rsubst+ Γ' pfΓ pf LA+ LA- (LT ) Values
-- (cntr (Γ' ++ map Pers LA- ++ Γ) (++ʳ Γ' (++ʳ (map Pers LA-) v) ) N)
-- rsubst+ {Ω} {Γ} Γ' pfΓ pf (↓ x ∷ LA+) LA- LT (↓R N ∷ Values) (↓L N₁) =
-- rsubst+ Γ' pfΓ pf LA+ (x ∷ LA-) ((wk (λ x₂ → ++ʳ Γ' x₂) N) ∷ LT) Values (exch-cons {Γ'} {map Pers LA- ++ Γ} N₁)
--------------
-- rsubst+ Γ' pfΓ pf (⊥⁺ ∷ LA+) LA- LT (id⁺ v ∷ Values) ⊥L with (pfΓ (++ʳ Γ' v))
-- ... | proj₁ , ()
-- rsubst+ Γ' pfΓ pf (x ∨ x₁ ∷ LA+) LA- LT (id⁺ v ∷ Values) (∨L N₁ N₂) with (pfΓ (++ʳ Γ' v))
-- ... | proj₁ , ()
rsubst+ Γ' pfΓ pf ((x ∨ x₁) ∷ LA+) LA- LT (∨R₁ V ∷ Values) (∨L N₁ N₂) = rsubst+ Γ' pfΓ pf (x ∷ LA+) LA- LT (V ∷ Values) N₁
rsubst+ Γ' pfΓ pf ((x ∨ x₁) ∷ LA+) LA- LT (∨R₂ V ∷ Values) (∨L N₁ N₂) = rsubst+ Γ' pfΓ pf (x₁ ∷ LA+) LA- LT (V ∷ Values) N₂
rsubst+ Γ' pfΓ pf (⊤⁺ ∷ LA+) LA- LT (_ ∷ Values) (⊤⁺L N) = rsubst+ Γ' pfΓ pf LA+ LA- LT Values N
-- rsubst+ Γ' pfΓ pf (x ∧⁺ x₁ ∷ LA+) LA- LT (id⁺ v ∷ Values) (∧⁺L N) with (pfΓ (++ʳ Γ' v))
-- ... | proj₁ , ()
rsubst+ Γ' pfΓ pf ((x ∧⁺ x₁) ∷ LA+) LA- LT (∧⁺R V₁ V₂ ∷ Values) (∧⁺L N) =
rsubst+ Γ' pfΓ pf (x ∷ x₁ ∷ LA+) LA- LT (V₁ ∷ V₂ ∷ Values) N
rsubst+ {_} {_} {_} _ _ _ _ _ _ _ _ = ?
-- -- -- Substitution out of terms
lsubst pfΓ pf (focR {A} V) N = cut⁺ pfΓ (proj₂ pf) (A ∷ []) (V ∷ []) N
lsubst pfΓ pf (focL pf' x Sp) N = focL (proj₁ pf) x (lsubst pfΓ pf Sp N)
lsubst pfΓ pf (η⁺ M) N = η⁺ (lsubst (conssusp pfΓ) pf M (wken N))
lsubst pfΓ pf (↓L M) N = ↓L (lsubst (conspers pfΓ) pf M (wken N))
lsubst pfΓ pf ⊥L M = ⊥L
lsubst pfΓ pf (∨L M₁ M₂) N = ∨L (lsubst pfΓ pf M₁ N) (lsubst pfΓ pf M₂ N)
lsubst pfΓ pf (⊤⁺L M) N = ⊤⁺L (lsubst pfΓ pf M N)
lsubst pfΓ pf (∧⁺L M) N = ∧⁺L (lsubst pfΓ pf M N)
-- Substitution of of spines
lsubst pfΓ pf (↑L M) N = ↑L (lsubst pfΓ pf M N)
lsubst pfΓ pf (⊃L V Sp) N = ⊃L V (lsubst pfΓ pf Sp N)
lsubst pfΓ pf (∧⁻L₁ Sp) N = ∧⁻L₁ (lsubst pfΓ pf Sp N)
lsubst pfΓ pf (∧⁻L₂ Sp) N = ∧⁻L₂ (lsubst pfΓ pf Sp N)
| {
"alphanum_fraction": 0.476130091,
"avg_line_length": 30.2618510158,
"ext": "agda",
"hexsha": "978155c4d2bbc483dbcf77963844e1cb036d5126",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/bugs/Issue1075.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/bugs/Issue1075.agda",
"max_line_length": 228,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/bugs/Issue1075.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 6595,
"size": 13406
} |
module Category.Choice where
open import Data.Sum using (_⊎_)
open import Agda.Primitive using (Level; _⊔_; lsuc)
open import Category.Profunctor
record ChoiceImp {a b : Level} (p : Set a → Set a → Set b) : Set (lsuc (a ⊔ b)) where
field
isProfunctor : ProfunctorImp p
left' : ∀ {x y z : Set a} → p x y → p (x ⊎ z) (y ⊎ z)
right' : ∀ {x y z : Set a} → p x y → p (z ⊎ x) (z ⊎ y)
module Choice {a b : Level} {p : Set a → Set a → Set b} (isChoice : ChoiceImp p) where
left : ∀ {x y z : Set a} → p x y → p (x ⊎ z) (y ⊎ z)
left = ChoiceImp.left' isChoice
right : ∀ {x y z : Set a} → p x y → p (z ⊎ x) (z ⊎ y)
right = ChoiceImp.right' isChoice
open Profunctor (ChoiceImp.isProfunctor isChoice)
| {
"alphanum_fraction": 0.593006993,
"avg_line_length": 37.6315789474,
"ext": "agda",
"hexsha": "caaf1c1bd4254b5e81211138b3701e583db1b3c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crisoagf/agda-optics",
"max_forks_repo_path": "src/Category/Choice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crisoagf/agda-optics",
"max_issues_repo_path": "src/Category/Choice.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crisoagf/agda-optics",
"max_stars_repo_path": "src/Category/Choice.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 277,
"size": 715
} |
open import Common.Prelude
open import Common.Equality
open import Common.Product
test : (p : Bool × Bool) → proj₁ p ≡ true → Set
test _ e = {!e!}
-- WAS:
-- Splitting on e gives
-- test r refl = ?
-- proj₁ r != true of type Bool
-- when checking that the pattern refl has type proj₁ r ≡ true
| {
"alphanum_fraction": 0.6722972973,
"avg_line_length": 21.1428571429,
"ext": "agda",
"hexsha": "4271397365d816a4dfdafcab06336f7d245f21fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/interaction/Issue635c.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/interaction/Issue635c.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/interaction/Issue635c.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 87,
"size": 296
} |
module Category.Strong where
open import Data.Product using (_×_)
open import Agda.Primitive using (Level; _⊔_; lsuc)
open import Category.Profunctor
record StrongImp {a b : Level} (p : Set a → Set a → Set b) : Set (lsuc (a ⊔ b)) where
field
isProfunctor : ProfunctorImp p
first' : ∀ {x y z : Set a} → p x y → p (x × z) (y × z)
second' : ∀ {x y z : Set a} → p x y → p (z × x) (z × y)
module Strong {a b : Level} {p : Set a → Set a → Set b} (isStrong : StrongImp p) where
first : ∀ {x y z : Set a} → p x y → p (x × z) (y × z)
first = StrongImp.first' isStrong
second : ∀ {x y z : Set a} → p x y → p (z × x) (z × y)
second = StrongImp.second' isStrong
open Profunctor (StrongImp.isProfunctor isStrong)
| {
"alphanum_fraction": 0.5997248968,
"avg_line_length": 38.2631578947,
"ext": "agda",
"hexsha": "b7807da286b42fa0d13d8bef97ce0b8af6e067d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crisoagf/agda-optics",
"max_forks_repo_path": "src/Category/Strong.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crisoagf/agda-optics",
"max_issues_repo_path": "src/Category/Strong.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crisoagf/agda-optics",
"max_stars_repo_path": "src/Category/Strong.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 267,
"size": 727
} |
module Bee2.Crypto.Bign where
open import Data.ByteString
open import Data.ByteVec
open import Data.Bool using (Bool)
open import Data.Nat using (ℕ)
open import Data.Product using (_,_)
open import Agda.Builtin.TrustMe using (primTrustMe)
import Bee2.Crypto.Defs
open Bee2.Crypto.Defs
open Bee2.Crypto.Defs using (Hash) public
{-# FOREIGN GHC import qualified Bee2.Crypto.Bign #-}
{-# FOREIGN GHC import qualified Data.ByteString #-}
postulate
-- bignstd128-pri [32] → belt-hash [32] → bign-sig [48]
primBignSign2 : ByteString Strict → ByteString Strict → ByteString Strict
-- bignstd128-pri [32] → bignstd128-pub [64]
primBignCalcPubkey : ByteString Strict → ByteString Strict
-- bignstd128-pub [64] → belt-hash [32] → bign-sig [48] → Bool
primBignVerify : ByteString Strict → ByteString Strict → ByteString Strict → Bool
{-# COMPILE GHC primBignSign2 =
( \pri hash -> Bee2.Crypto.Bign.bignSign2'bs 128 pri Bee2.Crypto.Belt.hbelt_oid hash ) #-}
{-# COMPILE GHC primBignCalcPubkey =
( \pri -> Bee2.Crypto.Bign.bignCalcPubkey'bs 128 pri ) #-}
{-# COMPILE GHC primBignVerify =
( \pub hash sig -> Bee2.Crypto.Bign.bignVerify'bs 128 pub Bee2.Crypto.Belt.hbelt_oid hash sig ) #-}
Pri = ByteVec {Strict} 32
Pub = ByteVec {Strict} 64 -- TODO: add IsValid
Sig = ByteVec {Strict} 48
bignSign2 : Pri → Hash → Sig
bignSign2 (pri , _) (hash , _) = primBignSign2 pri hash , primTrustMe
bignCalcPubkey : Pri → Pub
bignCalcPubkey (pri , _) = primBignCalcPubkey pri , primTrustMe
bignVerify : Pub → Hash → Sig → Bool
bignVerify (pub , _) (hash , _) (sig , _) = primBignVerify pub hash sig
| {
"alphanum_fraction": 0.7177419355,
"avg_line_length": 36.6363636364,
"ext": "agda",
"hexsha": "8146794f93e93b2a817161e253d812b2de7f680b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/bee2-agda",
"max_forks_repo_path": "src/Bee2/Crypto/Bign.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/bee2-agda",
"max_issues_repo_path": "src/Bee2/Crypto/Bign.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/bee2-agda",
"max_stars_repo_path": "src/Bee2/Crypto/Bign.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 495,
"size": 1612
} |
------------------------------------------------------------------------
-- A partial order
------------------------------------------------------------------------
{-# OPTIONS --cubical --sized-types #-}
open import Prelude hiding (⊥; module W)
module Partiality-monad.Coinductive.Partial-order {a} {A : Type a} where
open import Equality.Propositional.Cubical
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Bijection equality-with-J using (_↔_)
open import Equality.Path.Isomorphisms.Univalence equality-with-paths
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional equality-with-paths
as Trunc
open import Quotient equality-with-paths as Quotient
open import Univalence-axiom equality-with-J
open import Delay-monad
open import Delay-monad.Bisimilarity as B using (_≈_)
import Delay-monad.Partial-order as PO
open import Partiality-monad.Coinductive
-- An ordering relation.
LE : A ⊥ → A ⊥ → Proposition a
LE x y = Quotient.rec
(λ where
.[]ʳ x → LE″ x y
.[]-respects-relationʳ → left-lemma″-∥∥ y
.is-setʳ → is-set)
x
where
LE′ : Delay A ∞ → Delay A ∞ → Proposition a
LE′ x y = ∥ x PO.⊑ y ∥ , truncation-is-proposition
abstract
is-set : Is-set (∃ λ (A : Type a) → Is-proposition A)
is-set = Is-set-∃-Is-proposition ext prop-ext
right-lemma : ∀ {x y z} → x ≈ y → LE′ z x ≡ LE′ z y
right-lemma x≈y =
_↔_.to (⇔↔≡″ ext prop-ext)
(record { to = ∥∥-map (flip PO.transitive-⊑≈ x≈y)
; from = ∥∥-map (flip PO.transitive-⊑≈
(B.symmetric x≈y))
})
right-lemma-∥∥ : ∀ {x y z} → ∥ x ≈ y ∥ → LE′ z x ≡ LE′ z y
right-lemma-∥∥ = Trunc.rec is-set right-lemma
LE″ : Delay A ∞ → A ⊥ → Proposition a
LE″ x y = Quotient.rec
(λ where
.[]ʳ → LE′ x
.[]-respects-relationʳ → right-lemma-∥∥
.is-setʳ → is-set)
y
abstract
left-lemma : ∀ {x y z} → x ≈ y → LE′ x z ≡ LE′ y z
left-lemma x≈y =
_↔_.to (⇔↔≡″ ext prop-ext)
(record { to = ∥∥-map (PO.transitive-≈⊑
(B.symmetric x≈y))
; from = ∥∥-map (PO.transitive-≈⊑ x≈y)
})
left-lemma″ : ∀ {x y} z → x ≈ y → LE″ x z ≡ LE″ y z
left-lemma″ {x} {y} z x≈y = Quotient.elim-prop
{P = λ z → LE″ x z ≡ LE″ y z}
(λ where
.[]ʳ _ → left-lemma x≈y
.is-propositionʳ _ →
Is-set-∃-Is-proposition ext prop-ext)
z
left-lemma″-∥∥ : ∀ {x y} z → ∥ x ≈ y ∥ → LE″ x z ≡ LE″ y z
left-lemma″-∥∥ z = Trunc.rec
is-set
(left-lemma″ z)
infix 4 _⊑_
_⊑_ : A ⊥ → A ⊥ → Type a
x ⊑ y = proj₁ (LE x y)
-- _⊑_ is propositional.
⊑-propositional : ∀ x y → Is-proposition (x ⊑ y)
⊑-propositional x y = proj₂ (LE x y)
-- _⊑_ is reflexive.
reflexive : ∀ x → x ⊑ x
reflexive = Quotient.elim-prop λ where
.[]ʳ x → ∣ PO.reflexive x ∣
.is-propositionʳ x → ⊑-propositional [ x ] [ x ]
-- _⊑_ is antisymmetric.
antisymmetric : ∀ x y → x ⊑ y → y ⊑ x → x ≡ y
antisymmetric = Quotient.elim-prop λ where
.[]ʳ x → Quotient.elim-prop (λ where
.[]ʳ y ∥x⊑y∥ ∥y⊑x∥ →
[]-respects-relation $
Trunc.rec truncation-is-proposition
(λ x⊑y → ∥∥-map (PO.antisymmetric x⊑y) ∥y⊑x∥)
∥x⊑y∥
.is-propositionʳ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
⊥-is-set)
.is-propositionʳ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
⊥-is-set
-- _⊑_ is transitive.
transitive : ∀ x y z → x ⊑ y → y ⊑ z → x ⊑ z
transitive = Quotient.elim-prop λ where
.[]ʳ x → Quotient.elim-prop λ where
.[]ʳ y → Quotient.elim-prop λ where
.[]ʳ z ∥x⊑y∥ →
Trunc.rec truncation-is-proposition
(λ y⊑z → ∥∥-map (λ x⊑y → PO.transitive x⊑y y⊑z) ∥x⊑y∥)
.is-propositionʳ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
⊑-propositional [ _ ] [ _ ]
.is-propositionʳ _ →
Π-closure ext 1 λ z →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
⊑-propositional [ _ ] z
.is-propositionʳ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ z →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
⊑-propositional [ _ ] z
| {
"alphanum_fraction": 0.5238741797,
"avg_line_length": 29.0723684211,
"ext": "agda",
"hexsha": "edf5a2bc773e63efa1d5a8e4ceaf942982401982",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Partiality-monad/Coinductive/Partial-order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Partiality-monad/Coinductive/Partial-order.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Partiality-monad/Coinductive/Partial-order.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 1665,
"size": 4419
} |
module SystemF.Substitutions.Lemmas where
open import Prelude hiding (module Fin; id)
open import SystemF.WellTyped
open import SystemF.Substitutions
open import Data.Fin as Fin using ()
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Vec hiding ([_])
open import Extensions.Substitution
open import Extensions.Vec
open import Data.Vec.Properties
import Category.Applicative.Indexed as Applicative
open Applicative.Morphism using (op-<$>)
module TypeLemmas where
open TypeSubst using (module Lifted; module TypeApp)
open import Data.Fin.Substitution.Lemmas
open import Data.Fin.Substitution.Lemmas public using (module VarLemmas)
open import Data.Star using (Star; ε; _◅_)
typeLemmas : TermLemmas Type
typeLemmas = record { termSubst = TypeSubst.typeSubst; app-var = refl ; /✶-↑✶ = Lemma./✶-↑✶ }
where
module Lemma {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} where
open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_)
open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_)
/✶-↑✶ : ∀ {m n} (σs₁ : Subs T₁ m n) (σs₂ : Subs T₂ m n) →
(∀ k x → tvar x /✶₁ σs₁ ↑✶₁ k ≡ tvar x /✶₂ σs₂ ↑✶₂ k) →
∀ k t → t /✶₁ σs₁ ↑✶₁ k ≡ t /✶₂ σs₂ ↑✶₂ k
/✶-↑✶ ρs₁ ρs₂ hyp k (tvar x) = hyp k x
/✶-↑✶ ρs₁ ρs₂ hyp k (tc c) = begin
(tc c) /✶₁ ρs₁ ↑✶₁ k
≡⟨ TypeApp.tc-/✶-↑✶ _ k ρs₁ ⟩
(tc c)
≡⟨ sym $ TypeApp.tc-/✶-↑✶ _ k ρs₂ ⟩
(tc c) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (a ⟶ b) = begin
(a ⟶ b) /✶₁ ρs₁ ↑✶₁ k
≡⟨ TypeApp.⟶-/✶-↑✶ _ k ρs₁ ⟩
(a /✶₁ ρs₁ ↑✶₁ k) ⟶ (b /✶₁ ρs₁ ↑✶₁ k)
≡⟨ cong₂ _⟶_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩
(a /✶₂ ρs₂ ↑✶₂ k) ⟶ (b /✶₂ ρs₂ ↑✶₂ k)
≡⟨ sym (TypeApp.⟶-/✶-↑✶ _ k ρs₂) ⟩
(a ⟶ b) /✶₂ ρs₂ ↑✶₂ k
∎
/✶-↑✶ ρs₁ ρs₂ hyp k (a →' b) = begin
(a →' b) /✶₁ ρs₁ ↑✶₁ k
≡⟨ TypeApp.→'-/✶-↑✶ _ k ρs₁ ⟩
(a /✶₁ ρs₁ ↑✶₁ k) →' (b /✶₁ ρs₁ ↑✶₁ k)
≡⟨ cong₂ _→'_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩
(a /✶₂ ρs₂ ↑✶₂ k) →' (b /✶₂ ρs₂ ↑✶₂ k)
≡⟨ sym (TypeApp.→'-/✶-↑✶ _ k ρs₂) ⟩
(a →' b) /✶₂ ρs₂ ↑✶₂ k
∎
/✶-↑✶ ρs₁ ρs₂ hyp k (∀' a) = begin
(∀' a) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.∀'-/✶-↑✶ _ k ρs₁ ⟩
∀' (a /✶₁ ρs₁ ↑✶₁ (1 + k)) ≡⟨ cong ∀' (/✶-↑✶ ρs₁ ρs₂ hyp (1 + k) a) ⟩
∀' (a /✶₂ ρs₂ ↑✶₂ (1 + k)) ≡⟨ sym (TypeApp.∀'-/✶-↑✶ _ k ρs₂) ⟩
(∀' a) /✶₂ ρs₂ ↑✶₂ k ∎
module tpl = TermLemmas typeLemmas
-- The above lemma /✶-↑✶ specialized to single substitutions
/-↑⋆ : ∀ {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} →
let open Lifted lift₁ using () renaming (_↑⋆_ to _↑⋆₁_; _/_ to _/₁_)
open Lifted lift₂ using () renaming (_↑⋆_ to _↑⋆₂_; _/_ to _/₂_)
in
∀ {n k} (ρ₁ : Sub T₁ n k) (ρ₂ : Sub T₂ n k) →
(∀ i x → tvar x /₁ ρ₁ ↑⋆₁ i ≡ tvar x /₂ ρ₂ ↑⋆₂ i) →
∀ i a → a /₁ ρ₁ ↑⋆₁ i ≡ a /₂ ρ₂ ↑⋆₂ i
/-↑⋆ ρ₁ ρ₂ hyp i a = tpl./✶-↑✶ (ρ₁ ◅ ε) (ρ₂ ◅ ε) hyp i a
open AdditionalLemmas typeLemmas public
open tpl public
/Var-/ : ∀ {ν μ} (t : Type ν) (s : Sub Fin ν μ) → t /Var s ≡ t / (map tvar s)
/Var-/ (tc c) s = refl
/Var-/ (tvar n) s = lookup⋆map s tvar n
/Var-/ (a →' b) s = cong₂ _→'_ (/Var-/ a s) (/Var-/ b s)
/Var-/ (a ⟶ b) s = cong₂ _⟶_ (/Var-/ a s) (/Var-/ b s)
/Var-/ (∀' t) s = begin
∀' (t /Var (s Var.↑))
≡⟨ cong ∀' $ /Var-/ t (s Var.↑) ⟩
∀' (t / (map tvar $ s Var.↑))
≡⟨ cong (λ u → ∀' (t / u)) (map-var-↑ refl) ⟩
∀' t / (map tvar s) ∎
a-/Var-varwk↑-/-sub0≡a : ∀ {n} (a : Type (suc n)) → (a /Var Var.wk Var.↑) / sub (tvar zero) ≡ a
a-/Var-varwk↑-/-sub0≡a a = begin
(a /Var Var.wk Var.↑) / (sub $ tvar zero)
≡⟨ cong (λ u → u / (sub $ tvar zero)) (/Var-/ a $ Var.wk Var.↑) ⟩
(a / (map tvar $ Var.wk Var.↑)) / sub (tvar zero)
≡⟨ cong (λ u → (a / u) / (sub $ tvar zero)) (map-var-↑ map-var-varwk≡wk) ⟩
(a / wk ↑) / (sub $ tvar zero)
≡⟨ a/wk↑/sub0≡a a ⟩
a ∎
-- Lemmas about type substitutions in terms.
module TermTypeLemmas where
open TermTypeSubst public
private module T = TypeLemmas
private module TS = TypeSubst
private module V = VarLemmas
/-↑⋆ :
∀ {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} →
let open TS.Lifted lift₁ using () renaming (_↑⋆_ to _↑⋆₁_; _/_ to _/tp₁_)
open Lifted lift₁ using () renaming (_/_ to _/₁_)
open TS.Lifted lift₂ using () renaming (_↑⋆_ to _↑⋆₂_; _/_ to _/tp₂_)
open Lifted lift₂ using () renaming (_/_ to _/₂_)
in
∀ {n k} (ρ₁ : Sub T₁ n k) (ρ₂ : Sub T₂ n k) →
(∀ i x → tvar x /tp₁ ρ₁ ↑⋆₁ i ≡ tvar x /tp₂ ρ₂ ↑⋆₂ i) →
∀ i {m} (t : Term (i + n) m) → t /₁ ρ₁ ↑⋆₁ i ≡ t /₂ ρ₂ ↑⋆₂ i
/-↑⋆ ρ₁ ρ₂ hyp i (var x) = refl
/-↑⋆ ρ₁ ρ₂ hyp i (Λ t) = cong Λ (/-↑⋆ ρ₁ ρ₂ hyp (1 + i) t)
/-↑⋆ ρ₁ ρ₂ hyp i (λ' a t) =
cong₂ λ' (T./-↑⋆ ρ₁ ρ₂ hyp i a) (/-↑⋆ ρ₁ ρ₂ hyp i t)
/-↑⋆ ρ₁ ρ₂ hyp i (t [ b ]) =
cong₂ _[_] (/-↑⋆ ρ₁ ρ₂ hyp i t) (T./-↑⋆ ρ₁ ρ₂ hyp i b)
/-↑⋆ ρ₁ ρ₂ hyp i (s · t) =
cong₂ _·_ (/-↑⋆ ρ₁ ρ₂ hyp i s) (/-↑⋆ ρ₁ ρ₂ hyp i t)
/-wk : ∀ {m n} (t : Term m n) → t / TypeSubst.wk ≡ weaken t
/-wk t = /-↑⋆ TypeSubst.wk VarSubst.wk (λ k x → begin
tvar x T./ T.wk T.↑⋆ k ≡⟨ T.var-/-wk-↑⋆ k x ⟩
tvar (Fin.lift k suc x) ≡⟨ cong tvar (sym (V.var-/-wk-↑⋆ k x)) ⟩
tvar (lookup x (V.wk V.↑⋆ k)) ≡⟨ refl ⟩
tvar x TS./Var V.wk V.↑⋆ k ∎) 0 t
module CtxLemmas where
open CtxSubst public
private module Tp = TypeLemmas
private module Var = VarSubst
-- Term variable substitution (renaming) commutes with type
-- substitution.
/Var-/ : ∀ {m ν n l} (ρ : Sub Fin m n) (Γ : Ctx ν n) (σ : Sub Type ν l) →
(ρ /Var Γ) / σ ≡ ρ /Var (Γ / σ)
/Var-/ ρ Γ σ = begin
(ρ /Var Γ) / σ
≡⟨ sym (map-∘ _ _ ρ) ⟩
map (λ x → (lookup x Γ) Tp./ σ) ρ
≡⟨ map-cong (λ x → sym (Tp.lookup-⊙ x)) ρ ⟩
map (λ x → lookup x (Γ / σ)) ρ
∎
-- Term variable substitution (renaming) commutes with weakening of
-- typing contexts with an additional type variable.
/Var-weaken : ∀ {m n k} (ρ : Sub Fin m k) (Γ : Ctx n k) →
weaken (ρ /Var Γ) ≡ ρ /Var (weaken Γ)
/Var-weaken ρ Γ = begin
(ρ /Var Γ) / Tp.wk ≡⟨ /Var-/ ρ Γ Tp.wk ⟩
ρ /Var (weaken Γ) ∎
-- Term variable substitution (renaming) commutes with term variable
-- lookup in typing context.
/Var-lookup : ∀ {m n k} (x : Fin m) (ρ : Sub Fin m k) (Γ : Ctx n k) →
lookup x (ρ /Var Γ) ≡ lookup (lookup x ρ) Γ
/Var-lookup x ρ Γ = op-<$> (lookup-morphism x) _ _
-- Term variable substitution (renaming) commutes with weakening of
-- typing contexts with an additional term variable.
/Var-∷ : ∀ {m n k} (a : Type n) (ρ : Sub Fin m k) (Γ : Ctx n k) →
a ∷ (ρ /Var Γ) ≡ (ρ Var.↑) /Var (a ∷ Γ)
/Var-∷ a [] Γ = refl
/Var-∷ a (x ∷ ρ) Γ = cong (_∷_ a) (cong (_∷_ (lookup x Γ)) (begin
map (λ x → lookup x Γ) ρ ≡⟨ refl ⟩
map (λ x → lookup (suc x) (a ∷ Γ)) ρ ≡⟨ map-∘ _ _ ρ ⟩
map (λ x → lookup x (a ∷ Γ)) (map suc ρ) ∎))
-- Invariants of term variable substitution (renaming)
idVar-/Var : ∀ {m n} (Γ : Ctx n m) → Γ ≡ (Var.id /Var Γ)
wkVar-/Var-∷ : ∀ {m n} (Γ : Ctx n m) (a : Type n) → Γ ≡ (Var.wk /Var (a ∷ Γ))
idVar-/Var [] = refl
idVar-/Var (a ∷ Γ) = cong (_∷_ a) (wkVar-/Var-∷ Γ a)
wkVar-/Var-∷ Γ a = begin
Γ ≡⟨ idVar-/Var Γ ⟩
Var.id /Var Γ ≡⟨ map-∘ _ _ VarSubst.id ⟩
Var.wk /Var (a ∷ Γ) ∎
ctx-weaken-sub-vanishes : ∀ {ν n} {Γ : Ctx ν n} {a} → (ctx-weaken Γ) ctx/ (Tp.sub a) ≡ Γ
ctx-weaken-sub-vanishes {Γ = Γ} {a} = begin
(Γ ctx/ Tp.wk) ctx/ (Tp.sub a)
≡⟨ sym $ map-∘ (λ s → s tp/tp Tp.sub a) (λ s → s tp/tp Tp.wk) Γ ⟩
(map (λ s → s tp/tp Tp.wk tp/tp (Tp.sub a)) Γ)
≡⟨ map-cong (TypeLemmas.wk-sub-vanishes) Γ ⟩
(map (λ s → s) Γ) ≡⟨ map-id Γ ⟩
Γ ∎
private
⊢subst : ∀ {m n} {Γ₁ Γ₂ : Ctx n m} {t₁ t₂ : Term n m} {a₁ a₂ : Type n} →
Γ₁ ≡ Γ₂ → t₁ ≡ t₂ → a₁ ≡ a₂ → Γ₁ ⊢ t₁ ∈ a₁ → Γ₂ ⊢ t₂ ∈ a₂
⊢subst refl refl refl hyp = hyp
⊢substCtx : ∀ {m n} {Γ₁ Γ₂ : Ctx n m} {t : Term n m} {a : Type n} →
Γ₁ ≡ Γ₂ → Γ₁ ⊢ t ∈ a → Γ₂ ⊢ t ∈ a
⊢substCtx refl hyp = hyp
⊢substTp : ∀ {m n} {Γ : Ctx n m} {t : Term n m} {a₁ a₂ : Type n} →
a₁ ≡ a₂ → Γ ⊢ t ∈ a₁ → Γ ⊢ t ∈ a₂
⊢substTp refl hyp = hyp
module WtTypeLemmas where
open TypeLemmas hiding (_/_; var; weaken)
private
module Tp = TypeLemmas
module TmTp = TermTypeLemmas
module C = CtxLemmas
infixl 8 _/_
-- Type substitutions lifted to well-typed terms
_/_ : ∀ {m n k} {Γ : Ctx n m} {t : Term n m} {a : Type n} →
Γ ⊢ t ∈ a → (σ : Sub Type n k) → Γ C./ σ ⊢ t TmTp./ σ ∈ a Tp./ σ
var x / σ = ⊢substTp (lookup-⊙ x) (var x)
_/_ {Γ = Γ} (Λ ⊢t) σ = Λ (⊢substCtx eq (⊢t / σ ↑))
where
eq : (ctx-weaken Γ) C./ (σ Tp.↑) ≡ ctx-weaken (Γ C./ σ)
eq = begin
(map (λ s → s tp/tp Tp.wk) Γ) C./ (σ Tp.↑)
≡⟨ cong (λ a → a C./ (σ Tp.↑)) (map-cong (λ a → Tp./-wk {t = a}) Γ) ⟩
(map Tp.weaken Γ) ⊙ (σ Tp.↑)
≡⟨ sym $ map-weaken-⊙ Γ σ ⟩
map Tp.weaken (Γ ⊙ σ)
≡⟨ (map-cong (λ a → sym $ Tp./-wk {t = a}) (Γ ⊙ σ)) ⟩
ctx-weaken (Γ C./ σ) ∎
λ' a ⊢t / σ = λ' (a Tp./ σ) (⊢t / σ)
_[_] {a = a} ⊢t b / σ = ⊢substTp (sym (sub-commutes a)) ((⊢t / σ) [ b Tp./ σ ])
⊢s · ⊢t / σ = (⊢s / σ) · (⊢t / σ)
-- Weakening of terms with additional type variables lifted to
-- well-typed terms.
weaken : ∀ {m n} {Γ : Ctx n m} {t : Term n m} {a : Type n} →
Γ ⊢ t ∈ a → ctx-weaken Γ ⊢ TmTp.weaken t ∈ Tp.weaken a
weaken {t = t} {a = a} ⊢t = ⊢subst refl (TmTp./-wk t) (/-wk {t = a}) (⊢t / wk)
-- Weakening of terms with additional type variables lifted to
-- collections of well-typed terms.
weakenAll : ∀ {m n k} {Γ : Ctx n m} {ts : Vec (Term n m) k}
{as : Vec (Type n) k} → Γ ⊢ⁿ ts ∈ as →
ctx-weaken Γ ⊢ⁿ map TmTp.weaken ts ∈ map Tp.weaken as
weakenAll {ts = []} {[]} [] = []
weakenAll {ts = _ ∷ _} {_ ∷ _} (⊢t ∷ ⊢ts) = weaken ⊢t ∷ weakenAll ⊢ts
-- Shorthand for single-variable type substitutions in well-typed
-- terms.
_[/_] : ∀ {m n} {Γ : Ctx (1 + n) m} {t a} →
Γ ⊢ t ∈ a → (b : Type n) → Γ C./ sub b ⊢ t TmTp./ sub b ∈ a Tp./ sub b
⊢t [/ b ] = ⊢t / sub b
tm[/tp]-preserves : ∀ {ν n} {Γ : Ctx ν n} {t τ} → Γ ⊢ Λ t ∈ ∀' τ → ∀ a → Γ ⊢ (t tm[/tp a ]) ∈ τ tp[/tp a ]
tm[/tp]-preserves {Γ = Γ} {t} {τ} (Λ p) a = ctx-subst C.ctx-weaken-sub-vanishes (p / (Tp.sub a))
where
ctx-subst = Prelude.subst (λ c → c ⊢ t tm[/tp a ] ∈ τ tp[/tp a ])
module WtTermLemmas where
private
module Tp = TypeLemmas
module TmTp = TermTypeLemmas
module TmTm = TermTermSubst
module Var = VarSubst
module C = CtxLemmas
TmSub = TmTm.TermSub Term
infix 4 _⇒_⊢_
-- Well-typed term substitutions are collections of well-typed terms.
_⇒_⊢_ : ∀ {ν m k} → Ctx ν m → Ctx ν k → TmSub ν m k → Set
Γ ⇒ Δ ⊢ ρ = Δ ⊢ⁿ ρ ∈ Γ
infixl 8 _/_ _/Var_
infix 10 _↑
-- Application of term variable substitutions (renaming) lifted to
-- well-typed terms.
_/Var_ : ∀ {m n k} {Γ : Ctx n k} {t : Term n m} {a : Type n}
(ρ : Sub Fin m k) → ρ C./Var Γ ⊢ t ∈ a → Γ ⊢ t TmTm./Var ρ ∈ a
_/Var_ {Γ = Γ} ρ (var x) =
⊢substTp (sym (C./Var-lookup x ρ Γ)) (var (lookup x ρ))
_/Var_ {Γ = Γ} ρ (Λ ⊢t) =
Λ (ρ /Var ⊢substCtx (C./Var-weaken ρ Γ) ⊢t)
_/Var_ {Γ = Γ} ρ (λ' a ⊢t) =
λ' a (ρ Var.↑ /Var ⊢substCtx (C./Var-∷ a ρ Γ) ⊢t)
ρ /Var (⊢t [ b ]) = (ρ /Var ⊢t) [ b ]
ρ /Var (⊢s · ⊢t) = (ρ /Var ⊢s) · (ρ /Var ⊢t)
-- Weakening of terms with additional term variables lifted to
-- well-typed terms.
weaken : ∀ {m n} {Γ : Ctx n m} {t : Term n m} {a b : Type n} →
Γ ⊢ t ∈ a → b ∷ Γ ⊢ TmTm.weaken t ∈ a
weaken {Γ = Γ} {b = b} ⊢t =
Var.wk /Var ⊢substCtx (C.wkVar-/Var-∷ Γ b) ⊢t
-- Weakening of terms with additional term variables lifted to
-- collections of well-typed terms.
weakenAll : ∀ {m n k} {Γ : Ctx n m} {ts : Vec (Term n m) k}
{as : Vec (Type n) k} {b : Type n} →
Γ ⊢ⁿ ts ∈ as → (b ∷ Γ) ⊢ⁿ map TmTm.weaken ts ∈ as
weakenAll {ts = []} {[]} [] = []
weakenAll {ts = _ ∷ _} {_ ∷ _} (⊢t ∷ ⊢ts) = weaken ⊢t ∷ weakenAll ⊢ts
-- Lifting of well-typed term substitutions.
_↑ : ∀ {m n k} {Γ : Ctx n m} {Δ : Ctx n k} {ρ b} →
Γ ⇒ Δ ⊢ ρ → b ∷ Γ ⇒ b ∷ Δ ⊢ ρ TmTm.↑
⊢ρ ↑ = var zero ∷ weakenAll ⊢ρ
-- The well-typed identity substitution.
id : ∀ {m n} {Γ : Ctx n m} → Γ ⇒ Γ ⊢ TmTm.id
id {zero} {Γ = []} = []
id {suc m} {Γ = a ∷ Γ} = id ↑
-- Well-typed weakening (as a substitution).
wk : ∀ {m n} {Γ : Ctx n m} {a} → Γ ⇒ a ∷ Γ ⊢ TmTm.wk
wk = weakenAll id
-- A well-typed substitution which only replaces the first variable.
sub : ∀ {m n} {Γ : Ctx n m} {t a} → Γ ⊢ t ∈ a → a ∷ Γ ⇒ Γ ⊢ TmTm.sub t
sub ⊢t = ⊢t ∷ id
-- Application of term substitutions lifted to well-typed terms
_/_ : ∀ {m n k} {Γ : Ctx n m} {Δ : Ctx n k} {t a ρ} →
Γ ⊢ t ∈ a → Γ ⇒ Δ ⊢ ρ → Δ ⊢ t TmTm./ ρ ∈ a
var x / ⊢ρ = lookup-⊢ x ⊢ρ
_/_ {Γ = Γ} {Δ = Δ} {ρ = ρ} (Λ ⊢t) ⊢ρ = Λ (⊢t / weaken-⊢p)
where
weaken-⊢p : ctx-weaken Γ ⇒ ctx-weaken Δ ⊢ map TmTp.weaken ρ
weaken-⊢p = (Prelude.subst
(λ G → G ⇒ ctx-weaken Δ ⊢ map TmTp.weaken ρ) Tp.map-weaken (WtTypeLemmas.weakenAll ⊢ρ))
λ' a ⊢t / ⊢ρ = λ' a (⊢t / ⊢ρ ↑)
(⊢t [ a ]) / ⊢ρ = (⊢t / ⊢ρ) [ a ]
(⊢s · ⊢t) / ⊢ρ = (⊢s / ⊢ρ) · (⊢t / ⊢ρ)
-- Shorthand for well-typed single-variable term substitutions.
_[/_] : ∀ {m n} {Γ : Ctx n m} {s t a b} →
b ∷ Γ ⊢ s ∈ a → Γ ⊢ t ∈ b → Γ ⊢ s TmTm./ TmTm.sub t ∈ a
⊢s [/ ⊢t ] = ⊢s / sub ⊢t
tm[/tm]-preserves : ∀ {ν n} {Γ : Ctx ν n} {t u a b} →
b ∷ Γ ⊢ t ∈ a → Γ ⊢ u ∈ b → Γ ⊢ (t tm[/tm u ]) ∈ a
tm[/tm]-preserves ⊢s ⊢t = ⊢s / sub ⊢t
open WtTypeLemmas public using ()
renaming (weaken to ⊢tp-weaken)
open WtTermLemmas public using ()
renaming (_/_ to _⊢/tp_; _[/_] to _⊢[/_]; weaken to ⊢weaken)
| {
"alphanum_fraction": 0.4894447154,
"avg_line_length": 40.0921787709,
"ext": "agda",
"hexsha": "403e16c29e1f52e50bfef8450d4641931b19b22a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/SystemF/Substitutions/Lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/SystemF/Substitutions/Lemmas.agda",
"max_line_length": 108,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/SystemF/Substitutions/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 6753,
"size": 14353
} |
module Issue802b where
data I : Set where
i : I
f : I → I
f i = i
mutual
data P : I → Set where
p : (x : I) → Q x x → P (f x)
Q : I → I → Set
Q i = P
g : (x y : I) → Q x y → P y
g i _ q = q
data R : (x : I) → P x → Set where
r : (x : I) (q : Q x x) → R _ (g x _ q) → R (f x) (p x q)
| {
"alphanum_fraction": 0.4243421053,
"avg_line_length": 13.8181818182,
"ext": "agda",
"hexsha": "82a2b03226f277316fc8a2f96e7905e598c1c5c5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue802b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue802b.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue802b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 146,
"size": 304
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Adjoint where
-- Adjoints
open import Level
open import Data.Product using (_,_; _×_)
open import Function using (_$_) renaming (_∘_ to _∙_)
open import Function.Equality using (Π; _⟶_)
import Function.Inverse as FI
open import Relation.Binary using (Rel; IsEquivalence; Setoid)
-- be explicit in imports to 'see' where the information comes from
open import Categories.Category using (Category)
open import Categories.Category.Product using (Product; _⁂_)
open import Categories.Category.Instance.Setoids
open import Categories.Morphism
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.Functor.Hom using (Hom[_][-,-])
open import Categories.Functor.Construction.LiftSetoids
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper; _∘ₕ_; _∘ᵥ_; _∘ˡ_; _∘ʳ_)
renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism; unitorˡ; unitorʳ; associator; _≃_)
import Categories.Morphism.Reasoning as MR
private
variable
o o′ o″ ℓ ℓ′ ℓ″ e e′ e″ : Level
C D E : Category o ℓ e
record Adjoint (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where
private
module C = Category C
module D = Category D
module L = Functor L
module R = Functor R
field
unit : NaturalTransformation idF (R ∘F L)
counit : NaturalTransformation (L ∘F R) idF
module unit = NaturalTransformation unit
module counit = NaturalTransformation counit
field
zig : ∀ {A : C.Obj} → counit.η (L.F₀ A) D.∘ L.F₁ (unit.η A) D.≈ D.id
zag : ∀ {B : D.Obj} → R.F₁ (counit.η B) C.∘ unit.η (R.F₀ B) C.≈ C.id
private
variable
A : C.Obj
B : D.Obj
Ladjunct : L.F₀ A D.⇒ B → A C.⇒ R.F₀ B
Ladjunct f = R.F₁ f C.∘ unit.η _
Radjunct : A C.⇒ R.F₀ B → L.F₀ A D.⇒ B
Radjunct f = counit.η _ D.∘ L.F₁ f
RLadjunct≈id : ∀ {f : L.F₀ A D.⇒ B} → Radjunct (Ladjunct f) D.≈ f
RLadjunct≈id {f = f} = begin
Radjunct (Ladjunct f) ≈⟨ refl⟩∘⟨ L.homomorphism ⟩
counit.η _ D.∘ L.F₁ (R.F₁ f) D.∘ L.F₁ (unit.η _) ≈⟨ pullˡ (counit.commute f) ⟩
(f D.∘ counit.η _) D.∘ L.F₁ (unit.η _) ≈⟨ pullʳ zig ⟩
f D.∘ D.id ≈⟨ D.identityʳ ⟩
f ∎
where open D.HomReasoning
open MR D
LRadjunct≈id : ∀ {f : A C.⇒ R.F₀ B} → Ladjunct (Radjunct f) C.≈ f
LRadjunct≈id {f = f} = begin
Ladjunct (Radjunct f) ≈⟨ R.homomorphism ⟩∘⟨refl ⟩
(R.F₁ (counit.η _) C.∘ R.F₁ (L.F₁ f)) C.∘ unit.η _ ≈˘⟨ pushʳ (unit.commute f) ⟩
R.F₁ (counit.η _) C.∘ unit.η _ C.∘ f ≈⟨ pullˡ zag ⟩
C.id C.∘ f ≈⟨ C.identityˡ ⟩
f ∎
where open C.HomReasoning
open MR C
Hom[L-,-] : Bifunctor C.op D (Setoids _ _)
Hom[L-,-] = Hom[ D ][-,-] ∘F (L.op ⁂ idF)
Hom[-,R-] : Bifunctor C.op D (Setoids _ _)
Hom[-,R-] = Hom[ C ][-,-] ∘F (idF ⁂ R)
module Hom[L-,-] = Functor Hom[L-,-]
module Hom[-,R-] = Functor Hom[-,R-]
-- Inverse is more 'categorical' than bijection defined via injection/surjection
Hom-inverse : ∀ A B → FI.Inverse (Hom[L-,-].F₀ (A , B)) (Hom[-,R-].F₀ (A , B))
Hom-inverse A B = record
{ to = record
{ _⟨$⟩_ = Ladjunct {A} {B}
; cong = C.∘-resp-≈ˡ ∙ R.F-resp-≈
}
; from = record
{ _⟨$⟩_ = Radjunct {A} {B}
; cong = D.∘-resp-≈ʳ ∙ L.F-resp-≈
}
; inverse-of = record
{ left-inverse-of = λ _ → RLadjunct≈id
; right-inverse-of = λ _ → LRadjunct≈id
}
}
module Hom-inverse {A} {B} = FI.Inverse (Hom-inverse A B)
op : Adjoint R.op L.op
op = record
{ unit = counit.op
; counit = unit.op
; zig = zag
; zag = zig
}
-- naturality condition on the two hom functors.
-- these conditions are separated out because a complication due to the
-- universe level in Agda.
module _ where
open C
open HomReasoning
open MR C
Ladjunct-comm : ∀ {X Y A B} {h i : L.F₀ X D.⇒ Y} {f : A ⇒ X} {g : Y D.⇒ B} →
h D.≈ i →
R.F₁ (g D.∘ h D.∘ L.F₁ f) ∘ unit.η A ≈ R.F₁ g ∘ (R.F₁ i ∘ unit.η X) ∘ f
Ladjunct-comm {X} {Y} {A} {B} {h} {i} {f} {g} eq = begin
R.F₁ (g D.∘ h D.∘ L.F₁ f) ∘ unit.η A ≈⟨ R.homomorphism ⟩∘⟨refl ⟩
(R.F₁ g ∘ R.F₁ (h D.∘ L.F₁ f)) ∘ unit.η A ≈⟨ (refl⟩∘⟨ R.homomorphism) ⟩∘⟨refl ⟩
(R.F₁ g ∘ R.F₁ h ∘ R.F₁ (L.F₁ f)) ∘ unit.η A ≈⟨ pullʳ assoc ⟩
R.F₁ g ∘ R.F₁ h ∘ R.F₁ (L.F₁ f) ∘ unit.η A ≈˘⟨ refl⟩∘⟨ ⟺ (R.F-resp-≈ eq) ⟩∘⟨ unit.commute f ⟩
R.F₁ g ∘ R.F₁ i ∘ unit.η X ∘ f ≈˘⟨ refl⟩∘⟨ assoc ⟩
R.F₁ g ∘ (R.F₁ i ∘ unit.η X) ∘ f ∎
Ladjunct-comm′ : ∀ {X A B} {f : A ⇒ X} {g : L.F₀ X D.⇒ B} →
Ladjunct (g D.∘ L.F₁ f) ≈ Ladjunct g ∘ f
Ladjunct-comm′ = ∘-resp-≈ˡ R.homomorphism ○ (pullʳ (⟺ (unit.commute _))) ○ ⟺ assoc
Ladjunct-resp-≈ : ∀ {A B} {f g : L.F₀ A D.⇒ B} → f D.≈ g → Ladjunct f ≈ Ladjunct g
Ladjunct-resp-≈ eq = ∘-resp-≈ˡ (R.F-resp-≈ eq)
module _ where
open D
open HomReasoning
open MR D
Radjunct-comm : ∀ {X Y A B} {h i : X C.⇒ R.F₀ Y} {f : A C.⇒ X} {g : Y ⇒ B} →
h C.≈ i →
counit.η B ∘ L.F₁ (R.F₁ g C.∘ h C.∘ f) ≈ g ∘ (counit.η Y ∘ L.F₁ i) ∘ L.F₁ f
Radjunct-comm {X} {Y} {A} {B} {h} {i} {f} {g} eq = begin
counit.η B ∘ L.F₁ (R.F₁ g C.∘ h C.∘ f) ≈⟨ refl⟩∘⟨ L.homomorphism ⟩
counit.η B ∘ L.F₁ (R.F₁ g) ∘ L.F₁ (h C.∘ f) ≈⟨ pullˡ (counit.commute g) ⟩
(g ∘ counit.η Y) ∘ L.F₁ (h C.∘ f) ≈⟨ refl⟩∘⟨ L.homomorphism ⟩
(g ∘ counit.η Y) ∘ L.F₁ h ∘ L.F₁ f ≈⟨ refl ⟩∘⟨ L.F-resp-≈ eq ⟩∘⟨ refl ⟩
(g ∘ counit.η Y) ∘ L.F₁ i ∘ L.F₁ f ≈⟨ pullʳ (⟺ assoc) ⟩
g ∘ (counit.η Y ∘ L.F₁ i) ∘ L.F₁ f ∎
Radjunct-comm′ : ∀ {Y A B} {f : A C.⇒ R.F₀ Y} {g : Y ⇒ B} →
Radjunct (R.F₁ g C.∘ f) ≈ g ∘ Radjunct f
Radjunct-comm′ = ∘-resp-≈ʳ L.homomorphism ○ pullˡ (counit.commute _) ○ assoc
Radjunct-resp-≈ : ∀ {A B} {f g : A C.⇒ R.F₀ B} → f C.≈ g → Radjunct f ≈ Radjunct g
Radjunct-resp-≈ eq = ∘-resp-≈ʳ (L.F-resp-≈ eq)
-- a complication: the two hom functors do not live in the same Setoids,
-- so they need to be mapped to the same Setoids first before establishing
-- natural isomorphism!
module _ where
private
levelℓ : Category o ℓ e → Level
levelℓ {ℓ = ℓ} _ = ℓ
levele : Category o ℓ e → Level
levele {e = e} _ = e
Hom[L-,-]′ : Bifunctor C.op D (Setoids _ _)
Hom[L-,-]′ = LiftSetoids (levelℓ C) (levele C) ∘F Hom[ D ][-,-] ∘F (L.op ⁂ idF)
Hom[-,R-]′ : Bifunctor C.op D (Setoids _ _)
Hom[-,R-]′ = LiftSetoids (levelℓ D) (levele D) ∘F Hom[ C ][-,-] ∘F (idF ⁂ R)
Hom-NI : NaturalIsomorphism Hom[L-,-]′ Hom[-,R-]′
Hom-NI = record
{ F⇒G = ntHelper record
{ η = λ _ → record
{ _⟨$⟩_ = λ f → lift (Ladjunct (lower f))
; cong = λ eq → lift (Ladjunct-resp-≈ (lower eq))
}
; commute = λ _ eq → lift $ Ladjunct-comm (lower eq)
}
; F⇐G = ntHelper record
{ η = λ _ → record
{ _⟨$⟩_ = λ f → lift (Radjunct (lower f))
; cong = λ eq → lift (Radjunct-resp-≈ (lower eq))
}
; commute = λ _ eq → lift $ Radjunct-comm (lower eq)
}
; iso = λ X → record
{ isoˡ = λ eq → let open D.HomReasoning in lift (RLadjunct≈id ○ lower eq)
; isoʳ = λ eq → let open C.HomReasoning in lift (LRadjunct≈id ○ lower eq)
}
}
module Hom-NI = NaturalIsomorphism Hom-NI
infix 5 _⊣_
_⊣_ = Adjoint
-- a special case of the natural isomorphism in which homsets in C and D have the same
-- universe level. therefore there is no need to lift Setoids to the saem level.
-- this is helpful when combining with Yoneda lemma.
module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R : Functor D C} where
private
module C = Category C
module D = Category D
module L = Functor L
module R = Functor R
module _ (adjoint : L ⊣ R) where
open Adjoint adjoint
-- in this case, the hom functors are naturally isomorphism directly
Hom-NI′ : NaturalIsomorphism Hom[L-,-] Hom[-,R-]
Hom-NI′ = record
{ F⇒G = ntHelper record
{ η = λ _ → Hom-inverse.to
; commute = λ _ eq → Ladjunct-comm eq
}
; F⇐G = ntHelper record
{ η = λ _ → Hom-inverse.from
; commute = λ _ eq → Radjunct-comm eq
}
; iso = λ _ → record
{ isoˡ = λ eq → let open D.HomReasoning in RLadjunct≈id ○ eq
; isoʳ = λ eq → let open C.HomReasoning in LRadjunct≈id ○ eq
}
}
-- now goes from natural isomorphism back to adjoint.
-- for simplicity, just construct the case in which homsetoids of C and D
-- are compatible.
private
Hom[L-,-] : Bifunctor C.op D (Setoids _ _)
Hom[L-,-] = Hom[ D ][-,-] ∘F (L.op ⁂ idF)
Hom[-,R-] : Bifunctor C.op D (Setoids _ _)
Hom[-,R-] = Hom[ C ][-,-] ∘F (idF ⁂ R)
module _ (Hni : NaturalIsomorphism Hom[L-,-] Hom[-,R-]) where
open NaturalIsomorphism Hni
open NaturalTransformation
open Functor
open Π
private
unitη : ∀ X → F₀ Hom[L-,-] (X , L.F₀ X) ⟶ F₀ Hom[-,R-] (X , L.F₀ X)
unitη X = ⇒.η (X , L.F₀ X)
unit : NaturalTransformation idF (R ∘F L)
unit = ntHelper record
{ η = λ X → unitη X ⟨$⟩ D.id
; commute = λ {X} {Y} f → begin
(unitη Y ⟨$⟩ D.id) ∘ f ≈⟨ introˡ R.identity ⟩
R.F₁ D.id ∘ (unitη Y ⟨$⟩ D.id) ∘ f ≈˘⟨ ⇒.commute (f , D.id) D.Equiv.refl ⟩
⇒.η (X , L.F₀ Y) ⟨$⟩ (D.id D.∘ D.id D.∘ L.F₁ f) ≈⟨ cong (⇒.η (X , L.F₀ Y)) (D.Equiv.trans D.identityˡ D.identityˡ) ⟩
⇒.η (X , L.F₀ Y) ⟨$⟩ L.F₁ f ≈⟨ cong (⇒.η (X , L.F₀ Y)) (MR.introʳ D (MR.elimʳ D L.identity)) ⟩
⇒.η (X , L.F₀ Y) ⟨$⟩ (L.F₁ f D.∘ D.id D.∘ L.F₁ id) ≈⟨ ⇒.commute (C.id , L.F₁ f) D.Equiv.refl ⟩
R.F₁ (L.F₁ f) ∘ (unitη X ⟨$⟩ D.id) ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩
R.F₁ (L.F₁ f) ∘ (unitη X ⟨$⟩ D.id) ∎
}
where open C
open HomReasoning
open MR C
counitη : ∀ X → F₀ Hom[-,R-] (R.F₀ X , X) ⟶ F₀ Hom[L-,-] (R.F₀ X , X)
counitη X = ⇐.η (R.F₀ X , X)
counit : NaturalTransformation (L ∘F R) idF
counit = ntHelper record
{ η = λ X → counitη X ⟨$⟩ C.id
; commute = λ {X} {Y} f → begin
(counitη Y ⟨$⟩ C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ identityˡ ⟩
id ∘ (counitη Y ⟨$⟩ C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ ⇐.commute (R.F₁ f , D.id) C.Equiv.refl ⟩
⇐.η (R.F₀ X , Y) ⟨$⟩ (R.F₁ id C.∘ C.id C.∘ R.F₁ f) ≈⟨ cong (⇐.η (R.F₀ X , Y)) (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ) ⟩
⇐.η (R.F₀ X , Y) ⟨$⟩ R.F₁ f ≈⟨ cong (⇐.η (R.F₀ X , Y)) (MR.introʳ C C.identityˡ) ⟩
⇐.η (R.F₀ X , Y) ⟨$⟩ (R.F₁ f C.∘ C.id C.∘ C.id) ≈⟨ ⇐.commute (C.id , f) C.Equiv.refl ⟩
f ∘ (counitη X ⟨$⟩ C.id) ∘ L.F₁ C.id ≈⟨ refl⟩∘⟨ elimʳ L.identity ⟩
f ∘ (counitη X ⟨$⟩ C.id) ∎
}
where open D
open HomReasoning
open MR D
Hom-NI⇒Adjoint : L ⊣ R
Hom-NI⇒Adjoint = record
{ unit = unit
; counit = counit
; zig = λ {A} →
let open D
open HomReasoning
open MR D
in begin
η counit (L.F₀ A) ∘ L.F₁ (η unit A) ≈˘⟨ identityˡ ⟩
id ∘ η counit (L.F₀ A) ∘ L.F₁ (η unit A) ≈˘⟨ ⇐.commute (η unit A , id) C.Equiv.refl ⟩
⇐.η (A , L.F₀ A) ⟨$⟩ (R.F₁ id C.∘ C.id C.∘ η unit A)
≈⟨ cong (⇐.η (A , L.F₀ A)) (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ) ⟩
⇐.η (A , L.F₀ A) ⟨$⟩ η unit A ≈⟨ isoˡ refl ⟩
id
∎
; zag = λ {B} →
let open C
open HomReasoning
open MR C
in begin
R.F₁ (η counit B) ∘ η unit (R.F₀ B) ≈˘⟨ refl⟩∘⟨ identityʳ ⟩
R.F₁ (η counit B) ∘ η unit (R.F₀ B) ∘ id ≈˘⟨ ⇒.commute (id , η counit B) D.Equiv.refl ⟩
⇒.η (R.F₀ B , B) ⟨$⟩ (η counit B D.∘ D.id D.∘ L.F₁ id)
≈⟨ cong (⇒.η (R.F₀ B , B)) (MR.elimʳ D (MR.elimʳ D L.identity)) ⟩
⇒.η (R.F₀ B , B) ⟨$⟩ η counit B ≈⟨ isoʳ refl ⟩
id ∎
}
where module i {X} = Iso (iso X)
open i
-- the general case from isomorphic Hom setoids to adjoint functors
module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D} {R : Functor D C} where
private
module C = Category C
module D = Category D
module L = Functor L
module R = Functor R
open Functor
open Π
Hom[L-,-] : Bifunctor C.op D (Setoids _ _)
Hom[L-,-] = LiftSetoids ℓ e ∘F Hom[ D ][-,-] ∘F (L.op ⁂ idF)
Hom[-,R-] : Bifunctor C.op D (Setoids _ _)
Hom[-,R-] = LiftSetoids ℓ′ e′ ∘F Hom[ C ][-,-] ∘F (idF ⁂ R)
module _ (Hni : Hom[L-,-] ≃ Hom[-,R-]) where
open NaturalIsomorphism Hni
private
unitη : ∀ X → F₀ Hom[L-,-] (X , L.F₀ X) ⟶ F₀ Hom[-,R-] (X , L.F₀ X)
unitη X = ⇒.η (X , L.F₀ X)
unit : NaturalTransformation idF (R ∘F L)
unit = ntHelper record
{ η = λ X → lower (unitη X ⟨$⟩ lift D.id)
; commute = λ {X Y} f → begin
lower (unitη Y ⟨$⟩ lift D.id) ∘ f
≈⟨ introˡ R.identity ⟩
R.F₁ D.id ∘ lower (unitη Y ⟨$⟩ lift D.id) ∘ f
≈˘⟨ lower (⇒.commute (f , D.id) (lift D.Equiv.refl)) ⟩
lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (D.id D.∘ D.id D.∘ L.F₁ f))
≈⟨ lower (cong (⇒.η (X , L.F₀ Y)) (lift (D.Equiv.trans D.identityˡ D.identityˡ))) ⟩
lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (L.F₁ f))
≈⟨ lower (cong (⇒.η (X , L.F₀ Y)) (lift (MR.introʳ D (MR.elimʳ D L.identity)))) ⟩
lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (L.F₁ f D.∘ D.id D.∘ L.F₁ id))
≈⟨ lower (⇒.commute (C.id , L.F₁ f) (lift D.Equiv.refl)) ⟩
R.F₁ (L.F₁ f) ∘ lower (⇒.η (X , L.F₀ X) ⟨$⟩ lift D.id) ∘ id
≈⟨ refl⟩∘⟨ identityʳ ⟩
F₁ (R ∘F L) f ∘ lower (unitη X ⟨$⟩ lift D.id) ∎
}
where open C
open HomReasoning
open MR C
counitη : ∀ X → F₀ Hom[-,R-] (R.F₀ X , X) ⟶ F₀ Hom[L-,-] (R.F₀ X , X)
counitη X = ⇐.η (R.F₀ X , X)
counit : NaturalTransformation (L ∘F R) idF
counit = ntHelper record
{ η = λ X → lower (counitη X ⟨$⟩ lift C.id)
; commute = λ {X} {Y} f → begin
lower (⇐.η (R.F₀ Y , Y) ⟨$⟩ lift C.id) ∘ L.F₁ (R.F₁ f)
≈˘⟨ identityˡ ⟩
id ∘ lower (⇐.η (R.F₀ Y , Y) ⟨$⟩ lift C.id) ∘ L.F₁ (R.F₁ f)
≈˘⟨ lower (⇐.commute (R.F₁ f , D.id) (lift C.Equiv.refl)) ⟩
lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ id C.∘ C.id C.∘ R.F₁ f))
≈⟨ lower (cong (⇐.η (R.F₀ X , Y)) (lift (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ))) ⟩
lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ f))
≈⟨ lower (cong (⇐.η (R.F₀ X , Y)) (lift (MR.introʳ C C.identityˡ))) ⟩
lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ f C.∘ C.id C.∘ C.id))
≈⟨ lower (⇐.commute (C.id , f) (lift C.Equiv.refl)) ⟩
f ∘ lower (⇐.η (R.F₀ X , X) ⟨$⟩ lift C.id) ∘ L.F₁ C.id
≈⟨ refl⟩∘⟨ elimʳ L.identity ⟩
f ∘ lower (⇐.η (R.F₀ X , X) ⟨$⟩ lift C.id)
∎
}
where open D
open HomReasoning
open MR D
Hom-NI′⇒Adjoint : L ⊣ R
Hom-NI′⇒Adjoint = record
{ unit = unit
; counit = counit
; zig = λ {A} →
let open D
open HomReasoning
open MR D
in begin
lower (counitη (L.F₀ A) ⟨$⟩ lift C.id) ∘ L.F₁ (η unit A)
≈˘⟨ identityˡ ⟩
id ∘ lower (counitη (L.F₀ A) ⟨$⟩ lift C.id) ∘ L.F₁ (η unit A)
≈˘⟨ lower (⇐.commute (η unit A , id) (lift C.Equiv.refl)) ⟩
lower (⇐.η (A , L.F₀ A) ⟨$⟩ lift (R.F₁ id C.∘ C.id C.∘ lower (⇒.η (A , L.F₀ A) ⟨$⟩ lift id)))
≈⟨ lower (cong (⇐.η (A , L.F₀ A)) (lift (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ))) ⟩
lower (⇐.η (A , L.F₀ A) ⟨$⟩ (⇒.η (A , L.F₀ A) ⟨$⟩ lift id))
≈⟨ lower (isoˡ (lift refl)) ⟩
id ∎
; zag = λ {B} →
let open C
open HomReasoning
open MR C
in begin
R.F₁ (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)) ∘ lower (⇒.η (R.F₀ B , L.F₀ (R.F₀ B)) ⟨$⟩ lift D.id)
≈˘⟨ refl⟩∘⟨ identityʳ ⟩
R.F₁ (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)) ∘ lower (⇒.η (R.F₀ B , L.F₀ (R.F₀ B)) ⟨$⟩ lift D.id) ∘ id
≈˘⟨ lower (⇒.commute (id , η counit B) (lift D.Equiv.refl)) ⟩
lower (⇒.η (R.F₀ B , B) ⟨$⟩ lift (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id) D.∘ D.id D.∘ L.F₁ id))
≈⟨ lower (cong (⇒.η (R.F₀ B , B)) (lift (MR.elimʳ D (MR.elimʳ D L.identity)))) ⟩
lower (⇒.η (R.F₀ B , B) ⟨$⟩ lift (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)))
≈⟨ lower (isoʳ (lift refl)) ⟩
id ∎
}
where open NaturalTransformation
module _ {X} where
open Iso (iso X) public
⊣-id : idF {C = C} ⊣ idF {C = C}
⊣-id {C = C} = record
{ unit = F⇐G unitorˡ
; counit = F⇒G unitorʳ
; zig = identityˡ
; zag = identityʳ
}
where open Category C
open NaturalIsomorphism
-- Adjoints compose; we can't be sloppy, so associators and unitors must be inserted.
-- Use single letters in pairs, so L & M on the left, and R & S on the right
_∘⊣_ : {L : Functor C D} {R : Functor D C} {M : Functor D E} {S : Functor E D} →
L ⊣ R → M ⊣ S → (M ∘F L) ⊣ (R ∘F S)
_∘⊣_ {C = C} {D = D} {E = E} {L = L} {R} {M} {S} LR MS = record
{ unit = ((F⇐G (associator _ S R) ∘ᵥ R ∘ˡ (F⇒G (associator L M S))) ∘ᵥ
(R ∘ˡ (MSη′ ∘ʳ L)) ∘ᵥ (R ∘ˡ (F⇐G unitorˡ))) ∘ᵥ LRη′
; counit = MSε′ ∘ᵥ (((F⇒G (unitorʳ {F = M}) ∘ʳ S) ∘ᵥ ((M ∘ˡ LRε′) ∘ʳ S)) ∘ᵥ
(F⇒G (associator R L M) ∘ʳ S) ) ∘ᵥ F⇐G (associator S R (M ∘F L) )
; zig = λ {A} → zig′ {A}
; zag = λ {B} → zag′ {B}
}
where
open Functor
open NaturalTransformation
open NaturalIsomorphism
module LR = Adjoint LR renaming (unit to LRη′; counit to LRε′)
module MS = Adjoint MS renaming (unit to MSη′; counit to MSε′)
module LRη = NaturalTransformation (Adjoint.unit LR) renaming (η to ηLR)
module MSη = NaturalTransformation (Adjoint.unit MS) renaming (η to ηMS)
module LRε = NaturalTransformation (Adjoint.counit LR) renaming (η to εLR)
module MSε = NaturalTransformation (Adjoint.counit MS) renaming (η to εMS)
module C = Category C
module D = Category D
module E = Category E
module L = Functor L renaming (F₀ to L₀; F₁ to L₁)
module M = Functor M renaming (F₀ to M₀; F₁ to M₁)
module R = Functor R renaming (F₀ to R₀; F₁ to R₁)
module S = Functor S renaming (F₀ to S₀; F₁ to S₁)
open LR; open MS; open LRη; open LRε; open MSε; open MSη; open L; open M; open R; open S
zig′ : {A : C.Obj} → (εMS (M₀ (L₀ A)) E.∘
((E.id E.∘ M₁ (εLR (S₀ (M₀ (L₀ A))))) E.∘ E.id) E.∘ E.id)
E.∘ M₁ (L₁ (((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ A)) C.∘ R₁ D.id) C.∘ ηLR A))
E.≈ E.id
-- use "inverted" format here, where rules are out-dented
zig′ {A} = begin
(εMS (M₀ (L₀ A)) E.∘ ((E.id E.∘ M₁ (εLR (S₀ (M₀ (L₀ A))))) E.∘ E.id) E.∘ E.id)
E.∘ M₁ (L₁ (((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ A)) C.∘ R₁ D.id) C.∘ ηLR A))
≈⟨ ( refl⟩∘⟨ (E.identityʳ ○ E.identityʳ ○ E.identityˡ)) ⟩∘⟨refl ⟩ -- get rid of those pesky E.id
(εMS (M₀ (L₀ A)) E.∘ M₁ (εLR (S₀ (M₀ (L₀ A)))))
E.∘ M₁ (L₁ (((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ A)) C.∘ R₁ D.id) C.∘ ηLR A))
≈⟨ E.assoc ○ E.∘-resp-≈ʳ (⟺ M.homomorphism) ⟩
εMS (M₀ (L₀ A)) E.∘
M₁ (εLR (S₀ (M₀ (L₀ A))) D.∘ L₁ (((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ A)) C.∘ R₁ D.id) C.∘ ηLR A))
-- below: get rid of lots of pesky id. Nasty bit of nested equational reasoning, but nothing deep
≈⟨ refl⟩∘⟨ M.F-resp-≈ (D.∘-resp-≈ʳ (L.F-resp-≈
(C.∘-resp-≈ˡ (C.∘-resp-≈ C.identityˡ (C.∘-resp-≈ʳ R.identity) C.HomReasoning.○
let _⊚_ = C.HomReasoning._○_ in C.∘-resp-≈ R.identity C.identityʳ ⊚ C.identityˡ)))) ⟩
εMS (M₀ (L₀ A)) E.∘ M₁ (εLR (S₀ (M₀ (L₀ A))) D.∘ L₁ ((R₁ (ηMS (L₀ A))) C.∘ ηLR A))
≈⟨ refl⟩∘⟨ M.F-resp-≈ (D.∘-resp-≈ʳ L.homomorphism) ⟩
εMS (M₀ (L₀ A)) E.∘ M₁ (εLR (S₀ (M₀ (L₀ A))) D.∘ L₁ (R₁ (ηMS (L₀ A))) D.∘ L₁ (ηLR A))
≈˘⟨ refl⟩∘⟨ M.F-resp-≈ D.assoc ⟩
εMS (M₀ (L₀ A)) E.∘ M₁ ((εLR (S₀ (M₀ (L₀ A))) D.∘ L₁ (R₁ (ηMS (L₀ A)))) D.∘ L₁ (ηLR A))
≈⟨ refl⟩∘⟨ M.F-resp-≈ (D.∘-resp-≈ˡ (LRε.commute _)) ⟩
εMS (M₀ (L₀ A)) E.∘ M₁ ( (_ D.∘ εLR _) D.∘ L₁ (ηLR A))
≈⟨ refl⟩∘⟨ M.homomorphism ⟩
εMS (M₀ (L₀ A)) E.∘ M₁ (_ D.∘ εLR _) E.∘ M₁ (L₁ (ηLR A))
≈⟨ refl⟩∘⟨ ( M.homomorphism ⟩∘⟨refl ) ⟩
εMS (M₀ (L₀ A)) E.∘ (M₁ (ηMS (L₀ A)) E.∘ M₁ (εLR _)) E.∘ M₁ (L₁ (ηLR A))
≈˘⟨ E.assoc ○ E.∘-resp-≈ʳ (⟺ E.assoc) ⟩
(εMS (M₀ (L₀ A)) E.∘ M₁ (ηMS (L₀ A))) E.∘ (M₁ (εLR _) E.∘ M₁ (L₁ (ηLR A)))
≈⟨ MS.zig ⟩∘⟨refl ⟩
E.id E.∘ (M₁ (εLR _) E.∘ M₁ (L₁ (ηLR A)))
≈⟨ E.identityˡ ⟩
M₁ (εLR _) E.∘ M₁ (L₁ (ηLR A))
≈˘⟨ M.homomorphism ⟩
M₁ (εLR _ D.∘ L₁ (ηLR A))
≈⟨ M.F-resp-≈ LR.zig ○ M.identity ⟩
E.id ∎
where open E.HomReasoning
zag′ : {B : E.Obj} → R₁ (S₁ (εMS B E.∘ ((E.id E.∘ M₁ (εLR (S₀ B))) E.∘ E.id) E.∘ E.id))
C.∘ ((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ (R₀ (S₀ B)))) C.∘ R₁ D.id) C.∘
ηLR (R₀ (S₀ B)) C.≈ C.id
zag′ {B} =
let _⊚_ = E.HomReasoning._○_ in
begin
R₁ (S₁ (εMS B E.∘ ((E.id E.∘ M₁ (εLR (S₀ B))) E.∘ E.id) E.∘ E.id))
C.∘ ((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ (R₀ (S₀ B)))) C.∘ R₁ D.id) C.∘
ηLR (R₀ (S₀ B)) -- get rid of all those id
≈⟨ R.F-resp-≈ (S.F-resp-≈ (E.∘-resp-≈ʳ (E.identityʳ ⊚ (E.identityʳ ⊚ E.identityˡ)))) ⟩∘⟨
C.∘-resp-≈ˡ (C.∘-resp-≈ C.identityˡ (C.∘-resp-≈ʳ R.identity) ○
C.∘-resp-≈ R.identity C.identityʳ ○ C.identityˡ) ⟩
R₁ (S₁ (εMS B E.∘ M₁ (εLR (S₀ B)))) C.∘ R₁ (ηMS (L₀ (R₀ (S₀ B)))) C.∘ ηLR (R₀ (S₀ B))
≈˘⟨ C.assoc ⟩
(R₁ (S₁ (εMS B E.∘ M₁ (εLR (S₀ B)))) C.∘ R₁ (ηMS (L₀ (R₀ (S₀ B))))) C.∘ ηLR (R₀ (S₀ B))
≈˘⟨ R.homomorphism ⟩∘⟨refl ⟩
R₁ (S₁ (εMS B E.∘ M₁ (εLR (S₀ B))) D.∘ ηMS (L₀ (R₀ (S₀ B)))) C.∘ ηLR (R₀ (S₀ B))
≈⟨ R.F-resp-≈ (D.∘-resp-≈ˡ S.homomorphism) ⟩∘⟨refl ⟩
R₁ ((S₁ (εMS B) D.∘ (S₁ (M₁ (εLR (S₀ B))))) D.∘ ηMS (L₀ (R₀ (S₀ B)))) C.∘ ηLR (R₀ (S₀ B))
≈⟨ R.F-resp-≈ D.assoc ⟩∘⟨refl ⟩
R₁ (S₁ (εMS B) D.∘ S₁ (M₁ (εLR (S₀ B))) D.∘ ηMS (L₀ (R₀ (S₀ B)))) C.∘ ηLR (R₀ (S₀ B))
≈⟨ R.F-resp-≈ (D.∘-resp-≈ʳ (D.HomReasoning.⟺ (MSη.commute (εLR (S₀ B))))) ⟩∘⟨refl ⟩
R₁ (S₁ (εMS B) D.∘ ηMS (S₀ B) D.∘ εLR (S₀ B)) C.∘ ηLR (R₀ (S₀ B))
≈˘⟨ R.F-resp-≈ D.assoc ⟩∘⟨refl ⟩
R₁ ((S₁ (εMS B) D.∘ ηMS (S₀ B)) D.∘ εLR (S₀ B)) C.∘ ηLR (R₀ (S₀ B))
≈⟨ R.F-resp-≈ (D.∘-resp-≈ˡ MS.zag) ⟩∘⟨refl ⟩
R₁ (D.id D.∘ εLR (S₀ B)) C.∘ ηLR (R₀ (S₀ B))
≈⟨ C.∘-resp-≈ˡ (R.F-resp-≈ D.identityˡ) ⟩
R₁ (εLR (S₀ B)) C.∘ ηLR (R₀ (S₀ B))
≈⟨ LR.zag ⟩
C.id ∎
where open C.HomReasoning
| {
"alphanum_fraction": 0.4841941976,
"avg_line_length": 43.2101449275,
"ext": "agda",
"hexsha": "ebf3758cc2490bdc5eea1af014c8bf95ae653886",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Adjoint.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Adjoint.agda",
"max_line_length": 141,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Adjoint.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 10578,
"size": 23852
} |
module src.Data.Zipper where
open import Agda.Builtin.Equality
open import Data.Nat
open import Data.Nat.Properties
open import Induction.WellFounded
open import Haskell.Prelude
open import Relation.Binary.PropositionalEquality
-- language extensions
{-# FOREIGN AGDA2HS
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE ViewPatterns #-}
#-}
-- imports
{-# FOREIGN AGDA2HS
import Control.Arrow (first)
import Control.Comonad
import Control.Lens hiding ((<.>))
import Control.Monad
import Data.Foldable
import Data.Functor.Apply
import Data.Functor.Extend
import Data.Function
import Data.List (unfoldr)
import Data.List.NonEmpty (NonEmpty ((:|)))
import Data.Semigroup.Foldable
import GHC.Generics
#-}
record Zipper (a : Set) : Set where
constructor MkZipper
field
prefix : List a
focus : a
suffix : List a
{-# COMPILE AGDA2HS Zipper #-}
open Zipper public
{-# FOREIGN AGDA2HS
deriving instance Show a => Show (Zipper a)
deriving instance Eq a => Eq (Zipper a)
deriving instance Generic a => Generic (Zipper a)
deriving instance Functor Zipper
deriving instance Foldable Zipper
deriving instance Traversable Zipper
makeLenses ''Zipper
#-}
{-# TERMINATING #-}
repeat : a → List a
repeat x = x ∷ repeat x
instance
isFunctorZipper : Functor Zipper
isFunctorZipper .fmap k
record { prefix = p ; focus = f ; suffix = s } =
record { prefix = map k p ; focus = k f ; suffix = map k s }
isApplicativeZipper : Applicative Zipper
isApplicativeZipper .pure a =
record { prefix = repeat a ; focus = a ; suffix = repeat a }
isApplicativeZipper ._<*>_
record { prefix = p1 ; focus = f1 ; suffix = s1 }
record { prefix = p2 ; focus = f2 ; suffix = s2 } =
record { prefix = zipWith id p1 p2 ; focus = f1 f2 ; suffix = zipWith id s1 s2 }
{-# COMPILE AGDA2HS isApplicativeZipper #-}
isFoldableZipper : Foldable Zipper
isFoldableZipper .foldMap k
record { prefix = p ; focus = f ; suffix = s } =
foldMap k p <> k f <> foldMap k s
isTraversableZipper : Traversable Zipper
isTraversableZipper .traverse k
record { prefix = p ; focus = f ; suffix = s } =
⦇ MkZipper (traverse k p) (k f) (traverse k s) ⦈
isSemigroupZipper : ∀ {a : Set} → ⦃ Semigroup a ⦄ → Semigroup (Zipper a)
isSemigroupZipper ._<>_
record { prefix = p1 ; focus = f1 ; suffix = s1 }
record { prefix = p2 ; focus = f2 ; suffix = s2 } =
record { prefix = zipWith (_<>_) p1 p2
; focus = f1 <> f2
; suffix = zipWith (_<>_) s1 s2 }
{-# COMPILE AGDA2HS isSemigroupZipper #-}
{-# FOREIGN AGDA2HS
-- | Many of these instances are from Tony Morris's package, list-zipper
instance Apply Zipper where
MkZipper l1 x1 r1 <.> MkZipper l2 x2 r2 =
MkZipper (zipWith id l1 l2) (x1 x2) (zipWith id r1 r2)
instance Foldable1 Zipper where
foldMap1 f (MkZipper [] x []) =
f x
foldMap1 f (MkZipper [] x (rh : rt)) =
f x <> foldMap1 f (rh :| rt)
foldMap1 f (MkZipper (lh : lt) x []) =
foldMap1 f (lh :| lt) <> f x
foldMap1 f (MkZipper (lh : lt) x (rh : rt)) =
foldMap1 f (lh :| lt) <> f x <> foldMap1 f (rh :| rt)
instance Traversable1 Zipper where
traverse1 f (MkZipper [] x []) =
(\x' -> MkZipper [] x' []) <$> f x
traverse1 f (MkZipper (lh : lt) x []) =
(\l' x' -> MkZipper (toList l') x' []) <$> traverse1 f (lh :| lt) <.> f x
traverse1 f (MkZipper [] x (rh : rt)) =
(\x' r' -> MkZipper [] x' (toList r')) <$> f x <.> traverse1 f (rh :| rt)
traverse1 f (MkZipper (lh : lt) x (rh : rt)) =
(\l' x' r' -> MkZipper (toList l') x' (toList r'))
<$> traverse1 f (lh :| lt) <.> f x <.> traverse1 f (rh :| rt)
instance Extend Zipper where
duplicated z =
let dup x = (x, x)
unf f = unfoldr (fmap dup . f) z
in MkZipper (unf left) z (unf right)
instance Comonad Zipper where
duplicate = duplicated
extract (MkZipper _ x _) = x
#-}
left : ∀ {a : Set} → Zipper a → Maybe (Zipper a)
left record { prefix = [] ; focus = f ; suffix = s } = Nothing
left record { prefix = x ∷ p ; focus = f ; suffix = s } =
Just record { prefix = p ; focus = x ; suffix = f ∷ s }
{-# COMPILE AGDA2HS left #-}
right : ∀ {a : Set} → Zipper a → Maybe (Zipper a)
right record { prefix = p ; focus = f ; suffix = [] } = Nothing
right record { prefix = p ; focus = f ; suffix = x ∷ s } =
Just record { prefix = f ∷ p ; focus = x ; suffix = s }
{-# COMPILE AGDA2HS right #-}
left-right : ∀ {a : Set} (z r : Zipper a) → right z ≡ Just r → left r ≡ Just z
left-right record { prefix = p ; focus = f ; suffix = (x ∷ s) }
.(record { prefix = f ∷ p ; focus = x ; suffix = s }) refl = refl
right-left : ∀ {a : Set} (z r : Zipper a) → left z ≡ Just r → right r ≡ Just z
right-left record { prefix = (x ∷ p) ; focus = f ; suffix = s }
.(record { prefix = p ; focus = x ; suffix = f ∷ s }) refl = refl
fromList : List a → Maybe (Zipper a)
fromList [] = Nothing
fromList (x ∷ xs) = Just record { prefix = [] ; focus = x ; suffix = xs }
{-# COMPILE AGDA2HS fromList #-}
unzipper : Zipper a → List a
unzipper record { prefix = p ; focus = f ; suffix = s } = reverse p ++ f ∷ s
{-# COMPILE AGDA2HS unzipper #-}
overlay : Zipper a → List a → Maybe (Zipper a)
overlay record { prefix = p ; focus = _ ; suffix = [] } [] = Nothing
overlay record { prefix = xs ; focus = _ ; suffix = (z ∷ zs) } [] =
Just record { prefix = xs ; focus = z ; suffix = zs }
overlay record { prefix = xs ; focus = _ ; suffix = zs } (w ∷ ws) =
Just record { prefix = xs ; focus = w ; suffix = ws ++ zs }
{-# COMPILE AGDA2HS overlay #-}
record MonadPlus (m : Set → Set) : Set₁ where
field
mzero : m a
mplus : m a → m a → m a
overlap ⦃ super ⦄ : Monad m
open MonadPlus ⦃ ... ⦄ public
{-# COMPILE AGDA2HS MonadPlus existing-class #-}
instance
isListMonadPlus : MonadPlus List
isListMonadPlus = record { mzero = [] ; mplus = _++_ }
zipper : ⦃ MonadPlus f ⦄ → (a → Bool) → List a → f (Zipper a)
zipper f xs = case break f xs of λ where
(ys , z ∷ zs) →
return record { prefix = reverse ys ; focus = z ; suffix = zs }
_ → mzero
{-# COMPILE AGDA2HS zipper #-}
spanM : ⦃ Monad m ⦄ → ⦃ MonadPlus f ⦄ → (a → m Bool) → List a → m (f a × List a)
spanM _ [] = return (mzero , [])
spanM {m} {f} {a} {{M}} p (x ∷ xs) = do
true <- p x
where
false → return (mzero , x ∷ xs)
(ys , zs) <- spanM {m} {f} {a} {{M}} p xs
return (mplus (return x) ys , zs)
{-# COMPILE AGDA2HS spanM #-}
infixr 1 _>=>_
_>=>_ : ⦃ Monad m ⦄ → (a → m b) → (b → m c) → a → m c
f >=> g = λ x → f x >>= g
infixr 1 _<=<_
_<=<_ : ⦃ Monad m ⦄ → (b → m c) → (a → m b) → a → m c
f <=< g = g >=> f
breakM : ⦃ Monad m ⦄ → ⦃ MonadPlus f ⦄ → (a → m Bool) → List a → m (f a × List a)
breakM p = spanM $ return ∘ not <=< p
{-# COMPILE AGDA2HS breakM #-}
zipperM
: {a : Set}
→ {m : Set → Set}
→ {f : Set → Set}
→ ⦃ Monad m ⦄
→ ⦃ MonadPlus f ⦄
→ (a → m Bool)
→ List a
→ m (f (Zipper a))
zipperM {a} {_} {f} {{M}} k xs =
breakM {{M}} {{isListMonadPlus}} k xs <&> λ where
(ys , z ∷ zs) →
return record { prefix = reverse ys ; focus = z ; suffix = zs }
_ → mzero
{-# COMPILE AGDA2HS zipperM #-}
Traversal' : Set → Set → Set₁
Traversal' s a =
∀ {f : Set → Set} → ⦃ Applicative f ⦄ → (a → f a) → (s → f s)
items : Traversal' (Zipper a) a
items k z =
⦇ MkZipper (reverse <$> traverse k (reverse (prefix z)))
(k (focus z))
(traverse k (suffix z)) ⦈
{-# COMPILE AGDA2HS items #-}
scanPreState : {s : Set} → (a → s → (b × s)) → s → List a → List (b × s)
scanPreState f _ [] = []
scanPreState f s (x ∷ xs) =
case f x s of λ where
(b , s') → (b , s) ∷ scanPreState f s' xs
{-# COMPILE AGDA2HS scanPreState #-}
forward : {A : Set} → Zipper A → List A
forward z = focus z ∷ suffix z
measure : {A : Set}(f : A → ℕ) → Zipper A → ℕ
measure f z = sum (map (suc ∘ f) (forward z))
just-inj : {A : Set} {x y : A}
→ Just x ≡ Just y
→ x ≡ y
just-inj refl = refl
suffix-forward : {A : Set} {z z' : Zipper A}
→ right z ≡ Just z'
→ suffix z ≡ forward z'
suffix-forward {z = MkZipper prefix₁ focus₁ (x ∷ suffix₁)} H
rewrite sym (just-inj H) = refl
measure-right-< : {A : Set} (m : A → ℕ) {z z' : Zipper A}
→ right z ≡ Just z'
→ measure m z' Data.Nat.< measure m z
measure-right-< m {z} {z'} H
rewrite suffix-forward H = s≤s (m≤n+m _ _)
record ZipperMono (A : Set)(m : A → ℕ) : Set where
constructor zippermono
field
func : Zipper A → Zipper A
mono : ∀ z → measure m z ≡ measure m (func z)
open import Induction.WellFounded
open import Data.Nat.Induction
-- This version of survey shows that it terminates, but only if the function
-- passed is monotonic with respect to a measure on its input and output.
survey′ : {a : Set} (m : a → ℕ) → ZipperMono a m -> List a -> List a
survey′ {a} m (zippermono f mono) =
maybe [] (λ z → go z (<-wellFounded _)) ∘ fromList
where
go : (z : Zipper a) → Acc Data.Nat._<_ (measure m z) → List a
go z (acc rs) with f z | inspect f z
...| z' | [ eq ] with right z' | inspect right z'
...| Nothing | _ = unzipper z'
...| Just z'' | [ eq' ] =
go z'' (rs (measure m z'')
(≤-trans (measure-right-< m eq')
(≤-reflexive (trans (cong (measure m) (sym eq))
(sym (mono z))))))
{-# TERMINATING #-}
survey : {a : Set} → (Zipper a -> Zipper a) -> List a -> List a
survey {a} f = maybe [] go ∘ fromList
where
go : Zipper a → List a
go z = let z' = f z in maybe (unzipper z') go (right z')
{-# COMPILE AGDA2HS survey #-}
{-# TERMINATING #-}
surveyM
: {a : Set}
→ {m : Set → Set}
→ ⦃ Monad m ⦄
→ (Zipper a → m (Zipper a))
→ List a
→ m (List a)
surveyM {a} {m} f = maybe (return []) go ∘ fromList
where
go : Zipper a → m (List a)
go z = do
z' <- f z
maybe (return (unzipper z')) go (right z')
{-# COMPILE AGDA2HS surveyM #-}
first : (a → b) → (a × c) → (b × c)
first f (a , c) = (f a , c)
mapUntils
: (List a → List a)
→ (a → Maybe (List a × b))
→ List a
→ Maybe (List a × b)
mapUntils rev k [] = Nothing
mapUntils rev k (x ∷ xs) = case k x of λ where
(Just (xs' , b)) → Just (rev xs' ++ xs , b)
Nothing → first (λ xs → x ∷ xs) <$> mapUntils rev k xs
{-# COMPILE AGDA2HS mapUntils #-}
-- | Given a zipper list, attempt to locate an element first in the prefix,
-- then in the suffix, and allow for a transformation of that sub-zipper
-- list within the parent list, plus the generation of some datum.
mapLeftThenRightUntils :
Zipper a → (Bool → a → Maybe (List a × b)) → Maybe (Zipper a × b)
mapLeftThenRightUntils {a} {b} z f =
case mapUntils reverse (f true) (prefix z) of λ where
(Just (p' , b)) → Just (record z { prefix = p' } , b)
Nothing →
case mapUntils id (f false) (suffix z) of λ where
(Just (s' , b)) → Just (record z { suffix = s' } , b)
Nothing → Nothing
{-# COMPILE AGDA2HS mapLeftThenRightUntils #-}
| {
"alphanum_fraction": 0.5864370096,
"avg_line_length": 31.8649425287,
"ext": "agda",
"hexsha": "4a000c29bdf0ed56b5a24e2b2d47cbd0d348fd20",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-08-02T11:08:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-07-30T23:28:25.000Z",
"max_forks_repo_head_hexsha": "a8aa37e779f7c541a02cdb3f323b3a3393339bdf",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "jwiegley/trade-journal",
"max_forks_repo_path": "src/Data/Zipper.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "a8aa37e779f7c541a02cdb3f323b3a3393339bdf",
"max_issues_repo_issues_event_max_datetime": "2021-09-30T11:25:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-07-30T23:29:35.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "jwiegley/trade-journal",
"max_issues_repo_path": "src/Data/Zipper.agda",
"max_line_length": 86,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "a8aa37e779f7c541a02cdb3f323b3a3393339bdf",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "jwiegley/trade-journal",
"max_stars_repo_path": "src/Data/Zipper.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-07T16:50:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-19T19:35:51.000Z",
"num_tokens": 3851,
"size": 11089
} |
module x09-747Decidable-hc where
-- Library
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; cong; refl; sym) -- added sym
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; _≤_; z≤n; s≤s)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using () renaming (contradiction to ¬¬-intro)
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥; ⊥-elim)
-- Copied from 747Isomorphism.
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
open _⇔_
-- Copied from 747Relations.
infix 4 _<_
data _<_ : ℕ → ℕ → Set where
z<s : ∀ {n : ℕ}
------------
→ zero < suc n
s<s : ∀ {m n : ℕ}
→ m < n
-------------
→ suc m < suc n
-- examples proving inequalities and their negations
2≤4 : 2 ≤ 4
2≤4 = s≤s (s≤s z≤n)
¬4≤2 : ¬ (4 ≤ 2)
¬4≤2 = λ { (s≤s (s≤s ())) }
-- Bool values (computation)
data Bool : Set where
true : Bool
false : Bool
-- Boolean comparison function
infix 4 _≤ᵇ_
_≤ᵇ_ : ℕ → ℕ → Bool
zero ≤ᵇ zero = true
zero ≤ᵇ suc n = true
suc m ≤ᵇ zero = false
suc m ≤ᵇ suc n = m ≤ᵇ n
-- PLFA steps through these computations using equational reasoning.
_ : (2 ≤ᵇ 4) ≡ true
_ = refl
_ : (4 ≤ᵇ 2) ≡ false
_ = refl
-- Relating evidence and computation.
-- Boolean types (evidence)
T : Bool → Set
T true = ⊤
T false = ⊥
T→≡ : ∀ (b : Bool) → T b → b ≡ true
T→≡ true tt = refl
≡→T : ∀ {b : Bool} → b ≡ true → T b
≡→T refl = tt
≤ᵇ→≤ : ∀ (m n : ℕ) → T (m ≤ᵇ n) → m ≤ n
≤ᵇ→≤ zero zero t = z≤n
≤ᵇ→≤ zero (suc n) t = z≤n
≤ᵇ→≤ (suc m) (suc n) t = s≤s (≤ᵇ→≤ m n t)
≤→≤ᵇ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ n)
≤→≤ᵇ {zero} {zero} z≤n = tt
≤→≤ᵇ {zero} {suc n} z≤n = tt
≤→≤ᵇ (s≤s m≤n) = ≤→≤ᵇ m≤n
-- computation and evidence
data Dec (A : Set) : Set where
yes : A → Dec A
no : ¬ A → Dec A
inv-s≤s : ∀ {m n : ℕ}
→ suc m ≤ suc n
-------------
→ m ≤ n
inv-s≤s (s≤s m≤n) = m≤n
-- helpers for defining _≤?_ (use these so examples will normalize)
¬s≤z : ∀ {m : ℕ} → ¬ (suc m ≤ zero)
¬s≤z = λ ()
¬s≤s : ∀ {m n : ℕ} → ¬ (m ≤ n) → ¬ (suc m ≤ suc n)
¬s≤s {zero} {zero} ¬m≤n = λ sucm≤sucn → ¬m≤n z≤n
¬s≤s {zero} {suc n} ¬m≤n = λ sucm≤sucn → ¬m≤n z≤n
¬s≤s {suc m} {zero} ¬m≤n = λ { (s≤s sucm≤sucn) → ¬m≤n sucm≤sucn }
¬s≤s {suc m} {suc n} ¬m≤n = λ { (s≤s sucm≤sucn) → ¬m≤n (s≤s (inv-s≤s sucm≤sucn)) }
-- Decidable ≤.
_≤?_ : ∀ (m n : ℕ) → Dec (m ≤ n)
zero ≤? zero = yes z≤n
zero ≤? suc n = yes z≤n
suc m ≤? zero = no (λ ())
suc m ≤? suc n
with m ≤? n
... | yes m≤n = yes (s≤s m≤n)
... | no ¬m≤n = no (¬s≤s ¬m≤n)
-- can also evaluate the LHS of these tests via C-c C-n
_ : 2 ≤? 4 ≡ yes (s≤s (s≤s z≤n))
_ = refl
_ : 4 ≤? 2 ≡ no (¬s≤s (¬s≤s ¬s≤z))
_ = refl
-- 747/PLFA exercise: DecLT (3 point)
-- Decidable strict equality.
-- You will need these helper functions as we did above.
¬z<z : ¬ (zero < zero)
¬z<z = λ ()
¬s<s : ∀ {m n : ℕ} → ¬ (m < n) → ¬ (suc m < suc n)
¬s<s ¬m<n = λ { (s<s sucm<sucn) → ¬m<n sucm<sucn }
¬s<z : ∀ {n : ℕ} → ¬ (suc n < zero)
¬s<z = λ ()
_<?_ : ∀ (m n : ℕ) → Dec (m < n)
zero <? zero = no (λ ())
zero <? suc n = yes z<s
suc m <? zero = no (λ ())
suc m <? suc n
with m <? n
... | yes m<n = yes (s<s m<n)
... | no ¬m<n = no (¬s<s ¬m<n)
_ : 2 <? 4 ≡ yes (s<s (s<s (z<s)))
_ = refl
_ : 4 <? 2 ≡ no (¬s<s (¬s<s ¬s<z))
_ = refl
_ : 3 <? 3 ≡ no (¬s<s (¬s<s (¬s<s ¬z<z)))
_ = refl
-- 747/PLFA exercise: DecNatEq (3 points)
-- Decidable equality for natural numbers.
_≡ℕ?_ : ∀ (m n : ℕ) → Dec (m ≡ n)
zero ≡ℕ? zero = yes refl
zero ≡ℕ? suc n = no (λ ())
suc m ≡ℕ? zero = no (λ ())
suc m ≡ℕ? suc n
with m ≡ℕ? n
... | yes m≡n = yes (cong suc m≡n)
... | no ¬m≡n = no λ { refl → ¬m≡n refl }
-- reusing ≤ᵇ and proofs of equivalence with ≤ to decide ≤
_≤?′_ : ∀ (m n : ℕ) → Dec (m ≤ n)
m ≤?′ n with m ≤ᵇ n | ≤ᵇ→≤ m n | ≤→≤ᵇ {m} {n}
... | true | ⊤→m≤n | _ = yes (⊤→m≤n tt)
... | false | _ | m≤n→⊥ = no (λ m≤n → m≤n→⊥ m≤n)
-- extract Bool value from Dec (aka "isYes")
⌊_⌋ : ∀ {A : Set} → Dec A → Bool
⌊ yes x ⌋ = true
⌊ no x ⌋ = false
_≤ᵇ′_ : ℕ → ℕ → Bool
m ≤ᵇ′ n = ⌊ m ≤? n ⌋
-- If D is Dec A, then T ⌊ D ⌋ is inhabited exactly when A is inhabited.
toWitness : ∀ {A : Set} {D : Dec A} → T ⌊ D ⌋ → A
toWitness {_} {yes a} t = a
fromWitness : ∀ {A : Set} {D : Dec A} → A → T ⌊ D ⌋
fromWitness {_} {yes _} _ = tt
fromWitness {_} {no ¬A} a = ¬A a
-- handle "no" witnesses
isNo : ∀ {A : Set} → Dec A → Bool
isNo (yes _) = false
isNo (no _) = true
toWitnessFalse : ∀ {A : Set} {D : Dec A} → T (isNo D) → ¬ A
toWitnessFalse {_} {no ¬A} _ = ¬A
fromWitnessFalse : ∀ {A : Set} {D : Dec A} → ¬ A → T (isNo D)
fromWitnessFalse {_} {yes A } ¬A = ¬A A
fromWitnessFalse {A} {no ¬A'} ¬A = tt
-- Agda standard library definitions for use of these.
True : ∀ {A : Set} → (D : Dec A) → Set
True Q = T ⌊ Q ⌋
False : ∀ {A : Set} → (D : Dec A) → Set
False Q = T (isNo Q)
-- concrete examples
≤ᵇ′→≤ : ∀ {m n : ℕ} → T (m ≤ᵇ′ n) → m ≤ n
≤ᵇ′→≤ = toWitness
≤→≤ᵇ′ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ′ n)
≤→≤ᵇ′ = fromWitness
-- BEST PRACTICE : use Decidables instead of Booleans.
-- Logical connectives for Decidables.
infixr 6 _∧_
_∧_ : Bool → Bool → Bool
true ∧ true = true
true ∧ false = false
false ∧ _ = false
infixr 6 _×-dec_
_×-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A × B)
yes A ×-dec yes B = yes ⟨ A , B ⟩
yes _ ×-dec no ¬B = no (λ A×B → ¬B (proj₂ A×B))
no ¬A ×-dec yes B = no (λ A×B → ¬A (proj₁ A×B))
no _ ×-dec no ¬B = no (λ A×B → ¬B (proj₂ A×B))
infixr 5 _∨_
_∨_ : Bool → Bool → Bool
true ∨ _ = true
false ∨ r = r
infixr 5 _⊎-dec_
_⊎-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⊎ B)
yes A ⊎-dec yes _ = yes (inj₁ A)
yes A ⊎-dec no _ = yes (inj₁ A)
no _ ⊎-dec yes B = yes (inj₂ B)
no ¬A ⊎-dec no ¬B = no (λ { (inj₁ A) → ¬A A ; (inj₂ B) → ¬B B } )
not : Bool → Bool
not true = false
not false = true
¬? : ∀ {A : Set} → Dec A → Dec (¬ A)
¬? (yes A) = no (λ ¬A → ¬A A)
¬? (no ¬A) = yes ¬A
-- Boolean version of implication
_⊃_ : Bool → Bool → Bool
true ⊃ true = true
true ⊃ false = false
false ⊃ _ = true
_→-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A → B)
_ →-dec yes B = yes (λ _ → B)
no ¬A →-dec _ = yes (λ A → ⊥-elim (¬A A))
yes A →-dec no ¬B = no (λ A→B → ¬B (A→B A))
-- 747/PLFA exercise: ErasBoolDec (3 points)
-- Erasure relates boolean and decidable operations.
∧-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∧ ⌊ y ⌋ ≡ ⌊ x ×-dec y ⌋
∧-× (no _) (no _) = refl
∧-× (no _) (yes _) = refl
∧-× (yes _) (no _) = refl
∧-× (yes _) (yes _) = refl -- true ≡ true
∨-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∨ ⌊ y ⌋ ≡ ⌊ x ⊎-dec y ⌋
∨-× (no _) (no _) = refl
∨-× (no _) (yes _) = refl
∨-× (yes _) (no _) = refl
∨-× (yes _) (yes _) = refl
not-¬ : ∀ {A : Set} (x : Dec A) → not ⌊ x ⌋ ≡ ⌊ ¬? x ⌋
not-¬ (yes _) = refl
not-¬ (no _) = refl
-- 747/PLFA exercise: iff-erasure.
_iff_ : Bool → Bool → Bool
true iff true = true
false iff false = true
true iff false = false
false iff true = false
_⇔-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⇔ B)
yes A ⇔-dec yes B = yes (record { to = λ _ → B ; from = λ _ → A })
yes A ⇔-dec no ¬B = no (λ A⇔B → ¬B (to A⇔B A))
no ¬A ⇔-dec yes B = no (λ A⇔B → ¬A (from A⇔B B))
no ¬A ⇔-dec no ¬B = yes (record { to = λ A → ⊥-elim (¬A A) ; from = λ B → ⊥-elim (¬B B) })
iff-⇔ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ iff ⌊ y ⌋ ≡ ⌊ x ⇔-dec y ⌋
iff-⇔ (yes _) (yes _) = refl
iff-⇔ (yes _) (no _) = refl
iff-⇔ (no _) (yes _) = refl
iff-⇔ (no ¬A) (no ¬B) = refl
-- proof by reflection (i.g., get Agda to construct proofs at compile time)
-- guarded version of monus
minus : (m n : ℕ) (n≤m : n ≤ m) → ℕ
minus m zero _ = m
minus (suc m) (suc n) (s≤s m≤n) = minus m n m≤n
-- but must provide proofs
_ : minus 5 3 (s≤s (s≤s (s≤s z≤n))) ≡ 2
_ = refl
-- Agda will fill in an implicit record type if it can fill in all fields.
-- Since ⊤ is defined as a record type with no fields...
-- then Agda will compute a value of type True (n ≤? m).
_-_ : (m n : ℕ) {n≤m : True (n ≤? m)} → ℕ
_-_ m n {n≤m} = minus m n (toWitness n≤m)
-- then proofs no longer needed
_ : 5 - 3 ≡ 2
_ = refl
-- Use above to get Agda to compute parts of proofs that would be annoying for us to provide.
| {
"alphanum_fraction": 0.5016474465,
"avg_line_length": 25.2166172107,
"ext": "agda",
"hexsha": "e2b214c39f5495c2cc1cf1fe5fc4e93fa43d802c",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x09-747Decidable-hc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x09-747Decidable-hc.agda",
"max_line_length": 93,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x09-747Decidable-hc.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 3982,
"size": 8498
} |
module Numeral.Natural.Function where
open import Numeral.Natural
open import Numeral.Natural.Oper
-- Maximum function
-- Returns the greatest number
max : ℕ → ℕ → ℕ
max 𝟎 𝟎 = 𝟎
max (𝐒(a)) 𝟎 = 𝐒(a)
max 𝟎 (𝐒(b)) = 𝐒(b)
max (𝐒(a)) (𝐒(b)) = 𝐒(max a b)
-- Minimum function
-- Returns the smallest number
min : ℕ → ℕ → ℕ
min 𝟎 𝟎 = 𝟎
min (𝐒(_)) 𝟎 = 𝟎
min 𝟎 (𝐒(_)) = 𝟎
min (𝐒(a)) (𝐒(b)) = 𝐒(min a b)
-- min a b = (a + b) −₀ max(a)(b)
-- min and max as binary operators
infixl 100 _[max]_ _[min]_
_[max]_ = max
_[min]_ = min
-- Fibonacci numbers
fib : ℕ → ℕ
fib(𝟎) = 𝟎
fib(𝐒(𝟎)) = 𝐒(𝟎)
fib(𝐒(𝐒(n))) = fib(n) + fib(𝐒(n))
arithmetic-sequence : ℕ → ℕ → (ℕ → ℕ)
arithmetic-sequence init diff 𝟎 = init
arithmetic-sequence init diff (𝐒(n)) = diff + arithmetic-sequence init diff n
geometric-sequence : ℕ → ℕ → (ℕ → ℕ)
geometric-sequence init diff 𝟎 = init
geometric-sequence init diff (𝐒(n)) = diff ⋅ arithmetic-sequence init diff n
| {
"alphanum_fraction": 0.5949238579,
"avg_line_length": 24.0243902439,
"ext": "agda",
"hexsha": "ea4ecb15ee24d7d9a619ac46f18eee8e5063139c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Function.agda",
"max_line_length": 77,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 432,
"size": 985
} |
module BuildingBlock where
open import Data.Nat
--------------------------------------------------------------------------------
-- Binomial Tree
-- NodeList C n : list of C indexed from 0 to n
data NodeList (C : ℕ → Set) : ℕ → Set where
Nil : C 0 → NodeList C 0
Cons : ∀ {n} → C (suc n) → NodeList C n → NodeList C (suc n)
data BinomialTree (A : Set) : ℕ → Set where
Leaf : A → BinomialTree A 0
Node : ∀ {n} → A → NodeList (BinomialTree A) n → BinomialTree A (suc n)
-- examples
private
ein : BinomialTree ℕ 0
ein = Leaf 0
zwei : BinomialTree ℕ 1
zwei = Node 1
(Nil (Leaf 0))
fier' : BinomialTree ℕ 2
fier' = Node 0
(Cons (Node 1
(Nil (Leaf 2)))
(Nil (Leaf 3)))
--------------------------------------------------------------------------------
-- Pennants
data CompleteBinaryTree (A : Set) : ℕ → Set where
Leaf : A → CompleteBinaryTree A 0
Node : ∀ {n} → A
→ CompleteBinaryTree A n
→ CompleteBinaryTree A n
→ CompleteBinaryTree A (suc n)
data Pennants (A : Set) : ℕ → Set where
Leaf : A → Pennants A 0
Node : ∀ {n} → A
→ CompleteBinaryTree A n
→ Pennants A n
-- examples
private
zweiP : Pennants ℕ 2
zweiP = Node 0 (Node 1
(Node 2
(Leaf 3)
(Leaf 4))
(Node 5
(Leaf 6) (Leaf 7)))
| {
"alphanum_fraction": 0.4446666667,
"avg_line_length": 25.8620689655,
"ext": "agda",
"hexsha": "85e98cd81175d3d16c3fff3e903877b23a00af5d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/BuildingBlock.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/BuildingBlock.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/BuildingBlock.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 415,
"size": 1500
} |
-- Andreas, 2018-09-12, issue #3167
--
-- If --no-prop, then Set0 is the least sort and sort constraints
-- s <= Set0 should be solved by s = Set0.
{-# OPTIONS --no-prop #-}
-- (A : Set) can be inferred if Set0 is the bottom universe
data Wrap A : Set where
wrap : A → Wrap A
-- Should succeed with --no-prop
| {
"alphanum_fraction": 0.6444444444,
"avg_line_length": 22.5,
"ext": "agda",
"hexsha": "5f70cf21b08184a918146673a9d13784d2a0b15a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3167.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3167.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3167.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 94,
"size": 315
} |
{-# OPTIONS --without-K #-}
module Equivalences where
open import Level
open import Data.Empty
open import Data.Sum renaming (map to _⊎→_)
open import Data.Product renaming (map to _×→_)
open import Function renaming (_∘_ to _○_)
open import SimpleHoTT
infix 4 _∼_ -- homotopy between two functions
infix 4 _≃_ -- type of equivalences
infix 2 _∎≃ -- equational reasoning for equivalences
infixr 2 _≃⟨_⟩_ -- equational reasoning for equivalences
-- Equivalences
_∼_ : ∀ {ℓ ℓ'} → {A : Set ℓ} {P : A → Set ℓ'} →
(f g : (x : A) → P x) → Set (ℓ ⊔ ℓ')
_∼_ {ℓ} {ℓ'} {A} {P} f g = (x : A) → f x ≡ g x
-- Lemma 2.4.2
refl∼ : {A B : Set} {f : A → B} → (f ∼ f)
refl∼ {A} {B} {f} x = refl (f x)
sym∼ : {A B : Set} {f g : A → B} → (f ∼ g) → (g ∼ f)
sym∼ H x = ! (H x)
trans∼ : {A B : Set} {f g h : A → B} → (f ∼ g) → (g ∼ h) → (f ∼ h)
trans∼ H G x = H x ∘ G x
--
record qinv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkqinv
field
g : B → A
α : (f ○ g) ∼ id
β : (g ○ f) ∼ id
idqinv : ∀ {ℓ} → {A : Set ℓ} → qinv {ℓ} {ℓ} {A} {A} id
idqinv = record {
g = id ;
α = λ b → refl b ;
β = λ a → refl a
}
record isequiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkisequiv
field
g : B → A
α : (f ○ g) ∼ id
h : B → A
β : (h ○ f) ∼ id
equiv₁ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → qinv f → isequiv f
equiv₁ (mkqinv qg qα qβ) = mkisequiv qg qα qg qβ
equiv₂ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → isequiv f → qinv f
equiv₂ {f = f} (mkisequiv ig iα ih iβ) =
record {
g = ig ;
α = iα ;
β = λ x → ig (f x)
≡⟨ ! (iβ (ig (f x))) ⟩
ih (f (ig (f x)))
≡⟨ ap ih (iα (f x)) ⟩
ih (f x)
≡⟨ iβ x ⟩
x ∎
}
_≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A ≃ B = Σ (A → B) isequiv
id≃ : ∀ {ℓ} {A : Set ℓ} → A ≃ A
id≃ = (id , equiv₁ idqinv)
sym≃ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (A ≃ B) → B ≃ A
sym≃ (A→B , equiv) with equiv₂ equiv
... | mkqinv g α β = g , equiv₁ (mkqinv A→B β α)
trans≃ : {A B C : Set} → A ≃ B → B ≃ C → A ≃ C
trans≃ (f , feq) (g , geq) with equiv₂ feq | equiv₂ geq
... | mkqinv ff fα fβ | mkqinv gg gα gβ =
(g ○ f , equiv₁ (mkqinv
(ff ○ gg)
(λ c → g (f (ff (gg c)))
≡⟨ ap g (fα (gg c)) ⟩
g (gg c)
≡⟨ gα c ⟩
c ∎)
(λ a → ff (gg (g (f a)))
≡⟨ ap ff (gβ (f a)) ⟩
ff (f a)
≡⟨ fβ a ⟩
a ∎)))
-- equivalences are injective
_⋆_ : {A B : Set} → (A ≃ B) → (x : A) → B
(f , _) ⋆ x = f x
inj≃ : {A B : Set} → (eq : A ≃ B) → (x y : A) → (eq ⋆ x ≡ eq ⋆ y → x ≡ y)
inj≃ (f , mkisequiv g α h β) x y p = ! (β x) ∘ (ap h p ∘ β y)
-- equivalences for coproducts (Sec. 2.12)
codeqinv : {A B : Set} {a₀ : A} {x : A ⊎ B} → qinv (encode a₀ x)
codeqinv {A} {B} {a₀} {x} = record {
g = decode a₀ x ;
α = indCP
(λ x → (c : code a₀ x) → encode a₀ x (decode a₀ x c) ≡ c)
(λ a c → encode a₀ (inj₁ a) (decode a₀ (inj₁ a) c)
≡⟨ bydef ⟩
encode a₀ (inj₁ a) (ap inj₁ c)
≡⟨ bydef ⟩
transport (code a₀) (ap inj₁ c) (refl a₀)
≡⟨ ! (transport-f inj₁ (code a₀) c (refl a₀)) ⟩
transport (λ a → code {A} {B} a₀ (inj₁ a)) c (refl a₀)
≡⟨ bydef ⟩
transport (λ a → a₀ ≡ a) c (refl a₀)
≡⟨ transportIdR c (refl a₀) ⟩
(refl a₀) ∘ c
≡⟨ ! (unitTransL c) ⟩
c ∎)
(λ b ())
x ;
β = λ p → basedPathInd
(inj₁ a₀)
(λ x p → decode a₀ x (encode a₀ x p) ≡ p)
(decode a₀ (inj₁ a₀)
(encode {A} {B} a₀ (inj₁ a₀) (refl (inj₁ a₀)))
≡⟨ bydef ⟩
(decode a₀ (inj₁ a₀)
(transport (code {A} {B} a₀) (refl (inj₁ a₀)) (refl a₀)))
≡⟨ bydef ⟩
(decode a₀ (inj₁ a₀) (refl a₀))
≡⟨ bydef ⟩
(ap inj₁ (refl a₀))
≡⟨ bydef ⟩
refl (inj₁ a₀) ∎)
x p }
thm2-12-5 : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (inj₁ a₀ ≡ x) ≃ code a₀ x
thm2-12-5 {A} {B} a₀ x = (encode a₀ x , equiv₁ codeqinv)
inj₁₁path : {A B : Set} → (a₁ a₂ : A) →
(inj₁ {A = A} {B = B} a₁ ≡ inj₁ a₂) ≃ (a₁ ≡ a₂)
inj₁₁path a₁ a₂ = thm2-12-5 a₁ (inj₁ a₂)
inj₁₂path : {A B : Set} → (a : A) (b : B) → (inj₁ a ≡ inj₂ b) ≃ ⊥
inj₁₂path a b = thm2-12-5 a (inj₂ b)
-- Abbreviations for equivalence compositions
_≃⟨_⟩_ : (A : Set) {B C : Set} → (A ≃ B) → (B ≃ C) → (A ≃ C)
_ ≃⟨ p ⟩ q = trans≃ p q
_∎≃ : {ℓ : Level} {A : Set ℓ} → A ≃ A
_∎≃ {ℓ} {A} = id≃ {ℓ} {A}
| {
"alphanum_fraction": 0.4018580747,
"avg_line_length": 30.2934131737,
"ext": "agda",
"hexsha": "0bc05fafd5bac1a9749467899e1b1683c6cdf6cb",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/Equivalences.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/Equivalences.agda",
"max_line_length": 77,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/Equivalences.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2238,
"size": 5059
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.S1 where
open import Cubical.HITs.S1.Base public
open import Cubical.HITs.S1.Properties public
| {
"alphanum_fraction": 0.7604790419,
"avg_line_length": 27.8333333333,
"ext": "agda",
"hexsha": "cd8faec7538520e1d0f9a5acab3b60151154544f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/S1.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/S1.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/S1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 48,
"size": 167
} |
module Prelude.List.Relations.Any where
open import Agda.Primitive
open import Prelude.Nat
open import Prelude.List.Base
open import Prelude.Equality
open import Prelude.List.Relations.All
data Any {a b} {A : Set a} (P : A → Set b) : List A → Set (a ⊔ b) where
zero : ∀ {x xs} (p : P x) → Any P (x ∷ xs)
suc : ∀ {x xs} (i : Any P xs) → Any P (x ∷ xs)
pattern zero! = zero refl
infix 3 _∈_
_∈_ : ∀ {a} {A : Set a} → A → List A → Set a
x ∈ xs = Any (_≡_ x) xs
module _ {a b} {A : Set a} {P : A → Set b} where
-- Delete
deleteIx : ∀ xs → Any P xs → List A
deleteIx (_ ∷ xs) (zero _) = xs
deleteIx (x ∷ xs) (suc i) = x ∷ deleteIx xs i
deleteAllIx : ∀ {c} {Q : A → Set c} {xs} → All Q xs → (i : Any P xs) → All Q (deleteIx xs i)
deleteAllIx (q ∷ qs) (zero _) = qs
deleteAllIx (q ∷ qs) (suc i) = q ∷ deleteAllIx qs i
forgetAny : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} → Any P xs → Nat
forgetAny (zero _) = zero
forgetAny (suc i) = suc (forgetAny i)
| {
"alphanum_fraction": 0.5753286148,
"avg_line_length": 26.0263157895,
"ext": "agda",
"hexsha": "d1a531840ac57fc693c8a91e5abb3f9f07309db1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Prelude/List/Relations/Any.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Prelude/List/Relations/Any.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Prelude/List/Relations/Any.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 393,
"size": 989
} |
------------------------------------------------------------------------
-- Homotopy groups of pointed types
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
import Equality.Path as P
module Pointed-type.Homotopy-group
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Equality.Groupoid equality-with-J
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq using (_≃_)
open import Function-universe equality-with-J
open import Group equality-with-J as G using (Group; Abelian; _≃ᴳ_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation eq as T
open import Pointed-type equality-with-J as PT
using (Pointed-type; _≃ᴮ_; Ω; Ω[_])
private
variable
a p q : Level
P : Pointed-type p
n : ℕ
-- Homotopy-group-[1+ n ] P is the (1+n)-th homotopy group of the
-- pointed type P.
--
-- This definition is taken from the HoTT book.
Homotopy-group-[1+_] : ℕ → Pointed-type a → Group a
Homotopy-group-[1+ n ] P = λ where
.Group.Carrier → Carrier
.Group.Carrier-is-set → Carrier-is-set
.Group._∘_ → _∘′_
.Group.id → id′
.Group._⁻¹ → _⁻¹
.Group.left-identity → left-identity
.Group.right-identity → right-identity
.Group.assoc → assoc
.Group.left-inverse → left-inverse
.Group.right-inverse → right-inverse
where
Carrier = ∥ proj₁ (Ω[ 1 + n ] P) ∥[1+ 1 ]
_∘′_ = ∥∥-zip trans
id′ = ∣ refl _ ∣
_⁻¹ = ∥∥-map sym
abstract
Carrier-is-set : Is-set Carrier
Carrier-is-set = truncation-has-correct-h-level 1
left-identity : (x : Carrier) → (id′ ∘′ x) ≡ x
left-identity = T.elim λ where
.T.∣∣ʳ _ → cong ∣_∣ $ trans-reflˡ _
.T.h-levelʳ _ → mono₁ 2 $ truncation-has-correct-h-level 1
right-identity : (x : Carrier) → (x ∘′ id′) ≡ x
right-identity = T.elim λ where
.T.∣∣ʳ _ → cong ∣_∣ $ trans-reflʳ _
.T.h-levelʳ _ → mono₁ 2 $ truncation-has-correct-h-level 1
assoc : (x y z : Carrier) → (x ∘′ (y ∘′ z)) ≡ ((x ∘′ y) ∘′ z)
assoc = T.elim λ where
.T.h-levelʳ _ → Π-closure ext 2 λ _ →
Π-closure ext 2 λ _ →
mono₁ 2 $ truncation-has-correct-h-level 1
.T.∣∣ʳ _ → T.elim λ where
.T.h-levelʳ _ → Π-closure ext 2 λ _ →
mono₁ 2 $ truncation-has-correct-h-level 1
.T.∣∣ʳ _ → T.elim λ where
.T.h-levelʳ _ → mono₁ 2 $ truncation-has-correct-h-level 1
.T.∣∣ʳ _ → cong ∣_∣ $ sym $ trans-assoc _ _ _
left-inverse : (x : Carrier) → ((x ⁻¹) ∘′ x) ≡ id′
left-inverse = T.elim λ where
.T.∣∣ʳ _ → cong ∣_∣ $ trans-symˡ _
.T.h-levelʳ _ → mono₁ 2 $ truncation-has-correct-h-level 1
right-inverse : (x : Carrier) → (x ∘′ (x ⁻¹)) ≡ id′
right-inverse = T.elim λ where
.T.∣∣ʳ _ → cong ∣_∣ $ trans-symʳ _
.T.h-levelʳ _ → mono₁ 2 $ truncation-has-correct-h-level 1
-- The fundamental group of a pointed type.
--
-- This definition is taken from the HoTT book.
Fundamental-group : Pointed-type a → Group a
Fundamental-group = Homotopy-group-[1+ 0 ]
-- The n-th homotopy group of a pointed type is abelian when n is at
-- least two.
--
-- (This result is stated in the HoTT book.)
abelian : ∀ n → Abelian (Homotopy-group-[1+ suc n ] P)
abelian n = T.elim λ where
.T.h-levelʳ _ → Π-closure ext 2 λ _ →
mono₁ 2 $ truncation-has-correct-h-level 1
.T.∣∣ʳ p → T.elim λ where
.T.h-levelʳ _ → mono₁ 2 $ truncation-has-correct-h-level 1
.T.∣∣ʳ q → cong ∣_∣ $ Ω[2+n]-commutative n p q
-- If there is a based equivalence between P and Q, then their
-- homotopy groups are isomorphic.
≃ᴮ→≃ᴳ :
∀ (P : Pointed-type p) (Q : Pointed-type q) n →
P ≃ᴮ Q → Homotopy-group-[1+ n ] P ≃ᴳ Homotopy-group-[1+ n ] Q
≃ᴮ→≃ᴳ P Q n P≃Q = λ where
.G.Homomorphic.related →
∥∥-cong (proj₁ (PT.Ω[ suc n ]-cong-≃ᴮ P≃Q))
.G.Homomorphic.homomorphic → T.elim λ where
.T.h-levelʳ _ → Π-closure ext 2 λ _ →
mono₁ 2 $ truncation-has-correct-h-level 1
.T.∣∣ʳ _ → T.elim λ where
.T.h-levelʳ _ → mono₁ 2 $ truncation-has-correct-h-level 1
.T.∣∣ʳ _ → cong ∣_∣ (PT.Ω[1+ n ]-cong-≃ᴮ-trans P≃Q)
-- Homotopy-group-[1+ n ] commutes with PT._×_/G._×_.
Homotopy-group-[1+_]-× :
∀ n (P : Pointed-type p) (Q : Pointed-type q) →
Homotopy-group-[1+ n ] (P PT.× Q) ≃ᴳ
(Homotopy-group-[1+ n ] P G.× Homotopy-group-[1+ n ] Q)
Homotopy-group-[1+ n ]-× P Q = λ where
.G.Homomorphic.related →
∥ proj₁ (Ω[ 1 + n ] (P PT.× Q)) ∥[1+ 1 ] ↝⟨ T.∥∥-cong (proj₁ PT.Ω[ 1 + n ]-×) ⟩
∥ proj₁ (Ω[ 1 + n ] P) × proj₁ (Ω[ 1 + n ] Q) ∥[1+ 1 ] ↝⟨ inverse T.∥∥×∥∥≃∥×∥ ⟩□
∥ proj₁ (Ω[ 1 + n ] P) ∥[1+ 1 ] × ∥ proj₁ (Ω[ 1 + n ] Q) ∥[1+ 1 ] □
.G.Homomorphic.homomorphic → T.elim λ where
.T.h-levelʳ _ → Π-closure ext 2 λ _ → s
.T.∣∣ʳ p → T.elim λ where
.T.h-levelʳ _ → s
.T.∣∣ʳ q →
Σ-map ∣_∣ ∣_∣ (_≃_.to (proj₁ PT.Ω[ 1 + n ]-×) (trans p q)) ≡⟨ cong (Σ-map ∣_∣ ∣_∣) PT.Ω[1+ n ]-×-trans ⟩∎
(Σ-map ∣_∣ ∣_∣ $ Σ-zip trans trans
(_≃_.to (proj₁ PT.Ω[ 1 + n ]-×) p)
(_≃_.to (proj₁ PT.Ω[ 1 + n ]-×) q)) ∎
where
s =
mono₁ 2 $
×-closure 2
(truncation-has-correct-h-level 1)
(truncation-has-correct-h-level 1)
-- Homotopy-group-[1+ n ]′ P s is the (1+n)-th homotopy group of the
-- pointed type P.
--
-- The definition does not use set truncation. Instead a certain loop
-- space is required to be a set.
Homotopy-group-[1+_]′ :
∀ n (P : Pointed-type a) → Is-set (proj₁ (Ω[ 1 + n ] P)) → Group a
Homotopy-group-[1+ n ]′ P s = λ where
.Group.Carrier → Carrier
.Group.Carrier-is-set → Carrier-is-set
.Group._∘_ → _∘′_
.Group.id → id′
.Group._⁻¹ → _⁻¹
.Group.left-identity → left-identity
.Group.right-identity → right-identity
.Group.assoc → assoc
.Group.left-inverse → left-inverse
.Group.right-inverse → right-inverse
where
Carrier = proj₁ (Ω[ 1 + n ] P)
_∘′_ = trans
id′ = refl _
_⁻¹ = sym
abstract
Carrier-is-set : Is-set Carrier
Carrier-is-set = s
left-identity : (x : Carrier) → (id′ ∘′ x) ≡ x
left-identity _ = trans-reflˡ _
right-identity : (x : Carrier) → (x ∘′ id′) ≡ x
right-identity _ = trans-reflʳ _
assoc : (x y z : Carrier) → (x ∘′ (y ∘′ z)) ≡ ((x ∘′ y) ∘′ z)
assoc _ _ _ = sym $ trans-assoc _ _ _
left-inverse : (x : Carrier) → ((x ⁻¹) ∘′ x) ≡ id′
left-inverse _ = trans-symˡ _
right-inverse : (x : Carrier) → (x ∘′ (x ⁻¹)) ≡ id′
right-inverse _ = trans-symʳ _
-- The fundamental group of a pointed type.
--
-- The definition does not use set truncation. Instead a certain loop
-- space is required to be a set.
Fundamental-group′ :
(P : Pointed-type a) → Is-set (proj₁ (Ω P)) → Group a
Fundamental-group′ = Homotopy-group-[1+ 0 ]′
-- Homotopy-group-[1+ n ]′ P s is isomorphic to
-- Homotopy-group-[1+ n ] P.
Homotopy-group-[1+]′≃ᴳHomotopy-group-[1+] :
{s : Is-set (proj₁ (Ω[ 1 + n ] P))} →
Homotopy-group-[1+ n ]′ P s ≃ᴳ Homotopy-group-[1+ n ] P
Homotopy-group-[1+]′≃ᴳHomotopy-group-[1+] {s = s} = λ where
.G.Homomorphic.related →
inverse $ Eq.↔⇒≃ $ _⇔_.to T.+⇔∥∥↔ (λ {_ _} → s)
.G.Homomorphic.homomorphic p q →
∣ trans p q ∣ ≡⟨⟩
∣ trans p q ∣ ∎
| {
"alphanum_fraction": 0.5495717623,
"avg_line_length": 34.4017857143,
"ext": "agda",
"hexsha": "ec19c616e0c3f193d4fd7368662db61bbf541586",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Pointed-type/Homotopy-group.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Pointed-type/Homotopy-group.agda",
"max_line_length": 116,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Pointed-type/Homotopy-group.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2999,
"size": 7706
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Sets.EquivalenceRelations
open import Setoids.Setoids
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Definition where
record Group {lvl1 lvl2} {A : Set lvl1} (S : Setoid {lvl1} {lvl2} A) (_·_ : A → A → A) : Set (lsuc lvl1 ⊔ lvl2) where
open Setoid S
field
+WellDefined : {m n x y : A} → (m ∼ x) → (n ∼ y) → (m · n) ∼ (x · y)
0G : A
inverse : A → A
+Associative : {a b c : A} → (a · (b · c)) ∼ (a · b) · c
identRight : {a : A} → (a · 0G) ∼ a
identLeft : {a : A} → (0G · a) ∼ a
invLeft : {a : A} → (inverse a) · a ∼ 0G
invRight : {a : A} → a · (inverse a) ∼ 0G
+Associative' : {a b c : A} → ((a · b) · c) ∼ (a · (b · c))
+Associative' = Equivalence.symmetric (Setoid.eq S) +Associative
+WellDefinedLeft : {m x n : A} → (m ∼ n) → (m · x) ∼ (n · x)
+WellDefinedLeft m=n = +WellDefined m=n (Equivalence.reflexive (Setoid.eq S))
+WellDefinedRight : {m x y : A} → (x ∼ y) → (m · x) ∼ (m · y)
+WellDefinedRight x=y = +WellDefined (Equivalence.reflexive (Setoid.eq S)) x=y
| {
"alphanum_fraction": 0.5570652174,
"avg_line_length": 42.4615384615,
"ext": "agda",
"hexsha": "a999bcf5d98e8da36e463f835a78d7d9416b796b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/Definition.agda",
"max_line_length": 117,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 456,
"size": 1104
} |
-- Andreas, 2017-01-19, issue #2412, raised by bixuanzju
-- Agda should not insert hidden lambdas of possibly empty size types
open import Agda.Builtin.Size
data Nat i : Set where
zero : Nat i
suc : {j : Size< i} (n : Nat j) → Nat i
recNat : (P : (i : Size) (n : Nat i) → Set)
→ (fz : ∀{i} → P i zero)
→ (fs : ∀{i}{j : Size< i} (n : Nat j) → P j n → P i (suc n))
→ ∀{i} (n : Nat i) → P i n
recNat P fz fs zero = fz
recNat P fz fs (suc n) = fs n (recNat P fz fs n)
-- This should pass.
-- Agda should not insert the λ {j : Size< i} → fs in the recursive call to recNat.
| {
"alphanum_fraction": 0.5863247863,
"avg_line_length": 29.25,
"ext": "agda",
"hexsha": "ec5f5e635a58b9287bb724638f7c0ed35e063805",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2412.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2412.agda",
"max_line_length": 83,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2412.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 226,
"size": 585
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Nullary.Decidable where
open import Cubical.Core.Everything
open import Cubical.Data.Empty using (⊥)
private
variable
ℓ : Level
-- Negation
infix 3 ¬_
¬_ : Type ℓ → Type ℓ
¬ A = A → ⊥
-- Decidable types (inspired by standard library)
data Dec (P : Type ℓ) : Type ℓ where
yes : ( p : P) → Dec P
no : (¬p : ¬ P) → Dec P
data IsYes {P : Type ℓ} : Dec P → Type ℓ where
isYes : ∀ {x} → IsYes (yes x)
Discrete : Type ℓ → Type ℓ
Discrete A = ∀ x y → Dec (Path A x y)
| {
"alphanum_fraction": 0.6211849192,
"avg_line_length": 20.6296296296,
"ext": "agda",
"hexsha": "ea4ae71fae164356fc80821ccae6101ec7489227",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Relation/Nullary/Decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Relation/Nullary/Decidable.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Relation/Nullary/Decidable.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 200,
"size": 557
} |
module Generic.Lib.Data.Pow where
open import Generic.Lib.Intro
open import Generic.Lib.Data.Nat
open import Generic.Lib.Data.Product
infixl 6 _^_
_^_ : ∀ {α} -> Set α -> ℕ -> Set α
A ^ 0 = ⊤
A ^ suc n = A × A ^ n
elimPow : ∀ {n α} {A : Set α} {b : ∀ {n} -> A ^ n -> Level}
-> (B : ∀ {n} -> (xs : A ^ n) -> Set (b xs))
-> (∀ {n} {xs : A ^ n} x -> B xs -> B (x , xs))
-> B tt
-> (xs : A ^ n)
-> B xs
elimPow {0} B f z tt = z
elimPow {suc n} B f z (x , xs) = f x (elimPow B f z xs)
foldPow : ∀ {n α β} {A : Set α}
-> (B : ℕ -> Set β) -> (∀ {n} -> A -> B n -> B (suc n)) -> B 0 -> A ^ n -> B n
foldPow B f z xs = elimPow (λ {n} _ -> B n) (λ x y -> f x y) z xs
foldPow₁ : ∀ {n α} {A : Set α} -> (A -> A -> A) -> A ^ suc n -> A
foldPow₁ {0} f (x , []) = x
foldPow₁ {suc n} f (x , xs) = f x (foldPow₁ f xs)
mapPow : ∀ {n α β} {A : Set α} {B : Set β} -> (A -> B) -> A ^ n -> B ^ n
mapPow f = foldPow (_ ^_) (_,_ ∘ f) tt
replicatePow : ∀ {α} {A : Set α} n -> A -> A ^ n
replicatePow 0 x = tt
replicatePow (suc n) x = x , replicatePow n x
| {
"alphanum_fraction": 0.4459459459,
"avg_line_length": 30.8333333333,
"ext": "agda",
"hexsha": "ada7dd48895f352f0cbbac51a74e9b35eba45820",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Lib/Data/Pow.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Lib/Data/Pow.agda",
"max_line_length": 86,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Lib/Data/Pow.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 468,
"size": 1110
} |
module Holes.Test.General where
open import Holes.Prelude
open PropEq using (_≡_; refl; cong; sym; trans)
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
private
+-zero : ∀ x → x + 0 ≡ x
+-zero zero = refl
+-zero (suc x) = cong suc (+-zero x)
+-suc : ∀ x y → suc (x + y) ≡ x + suc y
+-suc zero y = refl
+-suc (suc x) y = cong suc (+-suc x y)
+-comm : ∀ x y → x + y ≡ y + x
+-comm zero y = sym (+-zero y)
+-comm (suc x) y = trans (cong suc (+-comm x y)) (+-suc y x)
data Fin : ℕ → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} → Fin n → Fin (suc n)
-- Expressions with free variables
test1 : ∀ x y z → ⌞ x + y ⌟ + z ≡ (y + x) + z
test1 x y z = cong! (+-comm x y)
-- NOTE: This works, but if you replace `y` by `_` in the above, there are
-- unsolved metas!
test1′ : ∀ x y z → x + y + z ≡ y + x + z
test1′ x y z = cong (λ h → h + z) (+-comm x _)
-- Multiple holes
test2 : ∀ x y z → x + ⌞ y + z ⌟ * ⌞ y + z ⌟ + y * z ≡ x + (z + y) * (z + y) + y * z
test2 x y z = cong! (+-comm y z)
-- Picking out one instance of a group of identical sub-expressions
test3 : ∀ x y z → x + ⌞ y + z ⌟ * (y + z) + y * z ≡ x + (z + y) * (y + z) + y * z
test3 x y z = cong! (+-comm y z)
-- Automatic symmetry
test4 : ∀ x y z → x + ⌞ y + z ⌟ * (y + z) + y * z ≡ x + (z + y) * (y + z) + y * z
test4 x y z = cong! (+-comm z y)
-- No hole on the LHS ⇒ hole around everything (notice automatic symmetry application)
test5 : ∀ x y → x + y ≡ y + x
test5 x y = cong! (+-comm y x)
-- Works in Π types
test6 : ∀ x y → (Fin ⌞ x + y ⌟ → ℕ) ≡ (Fin ⌞ y + x ⌟ → ℕ)
test6 x y = cong! (+-comm x y)
-- Constructors on the path
test7 : ∀ x y → ℕ.suc ⌞ x + y ⌟ ≡ suc (y + x)
test7 x y = cong! (+-comm x y)
-- -- Fails with a nice error message when holes contain different terms
-- fail1 : ∀ x y z → y ≡ x → ⌞ x ⌟ + ⌞ y ⌟ + z ≡ x + x + z
-- fail1 x y z eq = cong! eq
-- -- This is only provable in the presence of functional extensionality, so the
-- -- macro should obviously fail here. It would be nice if the error message
-- -- were improved though.
-- fail2 : ∀ (x y : ℕ) → (λ (f : ℕ → ℕ) → ⌞ f x + f y ⌟) ≡ (λ f → f y + f x)
-- fail2 x y = cong! (+-comm _ _)
| {
"alphanum_fraction": 0.5312642629,
"avg_line_length": 32.2205882353,
"ext": "agda",
"hexsha": "fd9b082e0f91e02e72240ee7557f367a4a9c3313",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-02-02T18:57:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-01-27T14:57:39.000Z",
"max_forks_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-holes",
"max_forks_repo_path": "src/Holes/Test/General.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_issues_repo_issues_event_max_datetime": "2020-08-31T20:58:33.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-16T10:47:58.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-holes",
"max_issues_repo_path": "src/Holes/Test/General.agda",
"max_line_length": 86,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-holes",
"max_stars_repo_path": "src/Holes/Test/General.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-03T15:02:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-01-28T10:56:46.000Z",
"num_tokens": 898,
"size": 2191
} |
open import Data.Sum using ( _⊎_ )
open import FRP.LTL.RSet.Core using ( RSet )
module FRP.LTL.RSet.Sum where
infixr 2 _∨_
_∨_ : RSet → RSet → RSet
(A ∨ B) t = A t ⊎ B t
| {
"alphanum_fraction": 0.6379310345,
"avg_line_length": 15.8181818182,
"ext": "agda",
"hexsha": "be4dca48f018ab075b5526e807ea18bab06f7293",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/RSet/Sum.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/RSet/Sum.agda",
"max_line_length": 44,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/RSet/Sum.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 73,
"size": 174
} |
module Generics.Mu.Conversion where
| {
"alphanum_fraction": 0.8611111111,
"avg_line_length": 18,
"ext": "agda",
"hexsha": "2ee133b4ac50973972be1f78b4a3a31291d02746",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Mu/Conversion.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Mu/Conversion.agda",
"max_line_length": 35,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Mu/Conversion.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 9,
"size": 36
} |
module ASN1.Untyped where
open import Data.Word8 using (Word8; _and_; _or_; _==_) renaming (primWord8fromNat to to𝕎; primWord8toNat to from𝕎)
open import Data.ByteString using (ByteString; Strict; empty; pack; fromChunks; toStrict)
open import Data.ByteString.Utf8 using (packStrict)
open import Data.Bool using (Bool; true; false)
open import Data.Nat using (ℕ; _+_; _*_)
open import Data.List using (List; []; _∷_; concatMap)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; _,_)
open import Data.String using (String)
open import Relation.Nullary using (Dec; yes; no)
open import ASN1.Util
-- only short (8-bit) tags are supported
Tag = Word8
-- length can be arbitrary big; TODO: restrict to Int64?
Len = ℕ
data Value : Set
data AST : Set
data Value where
prim : (octets : ByteString Strict) → Value
constr : (vs : List AST) → Value
data AST where
tlv : (t : Tag) → (v : Value) → AST
private
constructed-flag : Word8
constructed-flag = to𝕎 0x20
context-specific-flag : Word8
context-specific-flag = to𝕎 0x80
constructed : Tag → Tag
constructed = _or constructed-flag
is-constructed : Tag → Bool
is-constructed t = (t and constructed-flag) == constructed-flag
context-specific : Tag → Tag
context-specific = _or context-specific-flag
is-context-specific : Tag → Bool
is-context-specific t = (t and context-specific-flag) == context-specific-flag
universal : ℕ
universal = 0
tag : ℕ → Tag
tag = to𝕎
OID = List ℕ
-- basic asn.1 types
module _ where
EXPLICIT : Tag → AST → AST
EXPLICIT t v = tlv (context-specific t) (constr (v ∷ []))
IMPLICIT : Tag → AST → AST
IMPLICIT t (tlv _ vs) = tlv t vs
NULL : AST
NULL = tlv (tag 5) (prim empty)
BOOLEAN : Bool → AST
BOOLEAN b = tlv (tag 1) (prim (pack (bv b ∷ []))) where
bv : Bool → Word8
bv b with b
... | true = to𝕎 0xff
... | false = to𝕎 0
INTEGER : ℕ → AST
INTEGER n = tlv (to𝕎 2) (prim (pack (base256 n)))
SEQUENCE : List AST → AST
SEQUENCE vs = tlv (tag 16) (constr vs)
SET : List AST → AST
SET vs = tlv (tag 17) (constr vs)
BIT-STRING : ℕ → ByteString Strict → AST
BIT-STRING unused os = tlv (tag 3) (prim (toStrict (fromChunks ((pack (to𝕎 unused ∷ [])) ∷ os ∷ []))))
OCTET-STRING : ByteString Strict → AST
OCTET-STRING os = tlv (tag 4) (prim os)
OBJECT-IDENTIFIER : OID → AST
OBJECT-IDENTIFIER oid = tlv (to𝕎 6) (prim (pack (packOID oid))) where
packOID : List ℕ → List Word8
packOID [] = [] -- invalid oid
packOID (n ∷ []) = to𝕎 n ∷ [] -- invalid oid
packOID (n ∷ n′ ∷ ns) = concatMap base128 ((40 * n + n′) ∷ ns) where
UTF8String : String → AST
UTF8String s = tlv (to𝕎 12) (prim (packStrict s))
GeneralizedTime : String → AST
GeneralizedTime yyyymmddhhz = tlv (to𝕎 24) (prim (packStrict yyyymmddhhz))
| {
"alphanum_fraction": 0.6642984014,
"avg_line_length": 26.0648148148,
"ext": "agda",
"hexsha": "f4f013c8b7a1a13a772b9f30037fe95c8ac58807",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/asn1-agda",
"max_forks_repo_path": "src/ASN1/Untyped.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/asn1-agda",
"max_issues_repo_path": "src/ASN1/Untyped.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/asn1-agda",
"max_stars_repo_path": "src/ASN1/Untyped.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 931,
"size": 2815
} |
{-
This second-order signature was created from the following second-order syntax description:
$sig_string
-}
module ${syn_name}.Signature where
open import SOAS.Context
$type_decl
$derived_ty_ops
open import SOAS.Syntax.Signature $type public
open import SOAS.Syntax.Build $type public
-- Operator symbols
data ${sig}ₒ : Set where
$operator_decl
-- Term signature
${sig}:Sig : Signature ${sig}ₒ
${sig}:Sig = sig λ
{ $sig_decl
}
open Signature ${sig}:Sig public
| {
"alphanum_fraction": 0.7415966387,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "0b1eb9d01bcab29d59583a06eed7ddb31502a2a0",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "gen/templates/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "gen/templates/Signature.agda",
"max_line_length": 91,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "gen/templates/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 124,
"size": 476
} |
module List.Permutation.Alternative.Correctness (A : Set) where
open import Data.List
open import List.Permutation.Alternative A renaming (_∼_ to _∼′_)
open import List.Permutation.Base A
open import List.Permutation.Base.Equivalence A
lemma-∼′-∼ : {xs ys : List A} → xs ∼′ ys → xs ∼ ys
lemma-∼′-∼ ∼refl = refl∼
lemma-∼′-∼ (∼trans xs∼′ys ys∼′zs) = trans∼ (lemma-∼′-∼ xs∼′ys) (lemma-∼′-∼ ys∼′zs)
lemma-∼′-∼ (∼head x xs∼′ys) = ∼x /head /head (lemma-∼′-∼ xs∼′ys)
lemma-∼′-∼ (∼swap xyxs∼′ys) = trans∼ (∼x /head (/tail /head) refl∼) (lemma-∼′-∼ xyxs∼′ys)
| {
"alphanum_fraction": 0.6292947559,
"avg_line_length": 42.5384615385,
"ext": "agda",
"hexsha": "a70230aa3aac5f670e7f5e883137d66486b0a82e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/List/Permutation/Alternative/Correctness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/List/Permutation/Alternative/Correctness.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/List/Permutation/Alternative/Correctness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 259,
"size": 553
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.PushoutSplit where
-- g h
-- D --> B --> C K = A ⊔^D B / (f,g) d₁ = A <- D -> B
-- f| | | L = K ⊔^B C / (right,h) d₂ = K <- B -> C
-- v v v d = A <- D -> C
-- A --> K --> L
--
module PushoutRSplit {i j k l} {A : Type i} {B : Type j} {C : Type k}
{D : Type l} (f : D → A) (g : D → B) (h : B → C) where
private
d₁ : Span
d₁ = span A B D f g
d₂ : Span
d₂ = span (Pushout d₁) C B right h
d : Span
d = span A C D f (h ∘ g)
split-span-map : SpanMap d d₂
split-span-map = span-map left (idf C) g (comm-sqr λ a → glue a) (comm-sqr λ _ → idp)
module Split = PushoutFmap split-span-map
split : Pushout d → Pushout d₂
split = Split.f
inner-span-map : SpanMap d₁ d
inner-span-map = span-map (idf A) h (idf D) (comm-sqr λ _ → idp) (comm-sqr λ _ → idp)
module Inner = PushoutFmap inner-span-map
inner : Pushout d₁ → Pushout d
inner = Inner.f
module Merge = PushoutRec {d = d₂} {D = Pushout d}
inner right (λ _ → idp)
merge : Pushout d₂ → Pushout d
merge = Merge.f
private
square-extend-tr : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ b : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (q : a₁₀ == b)
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ Square p₀₋ (p₋₀ ∙ q) p₋₁ (! q ∙' p₁₋)
square-extend-tr idp ids = ids
split-inner : (k : Pushout d₁) → split (inner k) == left k
split-inner = Pushout-elim
(λ a → idp)
(λ b → ! (glue b))
(λ d → ↓-='-from-square $
(ap-∘ split inner (glue d)
∙ ap (ap split) (Inner.glue-β d) ∙ Split.glue-β d)
∙v⊡ square-extend-tr (glue (g d)) vid-square)
abstract
split-merge : (l : Pushout d₂) → split (merge l) == l
split-merge = Pushout-elim
split-inner
(λ c → idp)
(λ b → ↓-∘=idf-from-square split merge $
ap (ap split) (Merge.glue-β b) ∙v⊡ bl-square (glue b))
merge-split : (l : Pushout d) → merge (split l) == l
merge-split = Pushout-elim
(λ a → idp)
(λ c → idp)
(λ d → ↓-∘=idf-in' merge split $
ap merge (ap split (glue d))
=⟨ ap (ap merge) (Split.glue-β d) ⟩
ap merge (ap left (glue d) ∙ glue (g d))
=⟨ ap-∙ merge (ap left (glue d)) (glue (g d)) ⟩
ap merge (ap left (glue d)) ∙ ap merge (glue (g d))
=⟨ ap2 _∙_ (∘-ap merge left (glue d)) (Merge.glue-β (g d)) ⟩
ap inner (glue d) ∙ idp
=⟨ ∙-unit-r _ ⟩
ap inner (glue d)
=⟨ Inner.glue-β d ⟩
glue d ∎)
split-equiv : Pushout d ≃ Pushout d₂
split-equiv = equiv split merge split-merge merge-split
{-
two-pushouts-left : lift ∘ left == left ∘ left
[ (λ E → (A → E)) ↓ two-pushouts ]
two-pushouts-left = codomain-over-equiv _ _
two-pushouts-right : lift ∘ right == right [ (λ E → (D → E)) ↓ two-pushouts ]
two-pushouts-right = codomain-over-equiv _ _
two-pushouts-inner : lift ∘ inner == left
[ (λ E → (Pushout d₁ → E)) ↓ two-pushouts ]
two-pushouts-inner = codomain-over-equiv _ _ ▹ λ= split-inner
-}
rsplit-equiv = PushoutRSplit.split-equiv
-- h
-- D --> C K = A ⊔^D C / (f,h) d₁ = A <- D -> C
-- f| | L = B ⊔^A K / (g,left) d₂ = B <- A -> K
-- v v d = B <- D -> C
-- A --> K
-- g| |
-- v v
-- B --> L
module PushoutLSplit {i j k l} {A : Type i} {B : Type j} {C : Type k}
{D : Type l} (f : D → A) (g : A → B) (h : D → C) where
private
d₁ : Span
d₁ = span A C D f h
d₂ : Span
d₂ = span B (Pushout d₁) A g left
d : Span
d = span B C D (g ∘ f) h
split-span-map : SpanMap d d₂
split-span-map = span-map (idf B) right f (comm-sqr λ _ → idp) (comm-sqr λ d → ! (glue d))
module Split = PushoutFmap split-span-map
split : Pushout d → Pushout d₂
split = Split.f
inner-span-map : SpanMap d₁ d
inner-span-map = span-map g (idf C) (idf D) (comm-sqr λ _ → idp) (comm-sqr λ _ → idp)
module Inner = PushoutFmap inner-span-map
inner : Pushout d₁ → Pushout d
inner = Inner.f
module Merge = PushoutRec {d = d₂} {D = Pushout d}
left inner (λ _ → idp)
merge : Pushout d₂ → Pushout d
merge = Merge.f
private
square-extend-tl : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ b : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (q : b == a₀₀)
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ Square (q ∙' p₀₋) (q ∙' p₋₀) p₋₁ p₁₋
square-extend-tl idp ids = ids
split-inner : (k : Pushout d₁) → split (inner k) == right k
split-inner = Pushout-elim
(λ a → glue a)
(λ c → idp)
(λ d → ↓-='-from-square $
(ap-∘ split inner (glue d)
∙ ap (ap split) (Inner.glue-β d) ∙ Split.glue-β d
∙ ap (λ p → glue (f d) ∙' ap right p) (!-! (glue d)))
∙v⊡ square-extend-tl (glue (f d)) vid-square)
abstract
split-merge : (l : Pushout d₂) → split (merge l) == l
split-merge = Pushout-elim
(λ b → idp)
split-inner
(λ a → ↓-∘=idf-from-square split merge $
ap (ap split) (Merge.glue-β a) ∙v⊡ br-square (glue a))
merge-split : (l : Pushout d) → merge (split l) == l
merge-split = Pushout-elim
(λ b → idp)
(λ c → idp)
(λ d → ↓-∘=idf-in' merge split $
ap merge (ap split (glue d))
=⟨ ap (ap merge) (Split.glue-β d) ⟩
ap merge (glue (f d) ∙' ap right (! (! (glue d))))
=⟨ ap-∙' merge (glue (f d)) (ap right (! (! (glue d)))) ⟩
ap merge (glue (f d)) ∙' ap merge (ap right (! (! (glue d))))
=⟨ ap2 _∙'_ (Merge.glue-β (f d)) (∘-ap merge right (! (! (glue d)))) ⟩
idp ∙' ap inner (! (! (glue d)))
=⟨ ∙'-unit-l _ ⟩
ap inner (! (! (glue d)))
=⟨ ap (ap inner) (!-! (glue d)) ⟩
ap inner (glue d)
=⟨ Inner.glue-β d ⟩
glue d ∎)
split-equiv : Pushout d ≃ Pushout d₂
split-equiv = equiv split merge split-merge merge-split
lsplit-equiv = PushoutLSplit.split-equiv
{- TODO Update this part
-- g h
-- Y --> Z --> W K = X ⊔^Y Y / (f,g) ps₁ = X <- Y -> Z
-- f| | | L = Z ⊔^Z W / (left,h) ps₂ = K <- Z -> W
-- v v v ps = X <- Y -> W
-- X --> K --> L
--
module TwoPushoutsPtd {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(f : Y ⊙→ X) (g : Y ⊙→ Z) (h : Z ⊙→ W) where
private
ps₁ = ⊙span X Z Y f g
ps₂ = ⊙span (⊙Pushout ps₁) W Z (⊙right ps₁) h
ps = ⊙span X W Y f (h ⊙∘ g)
open TwoPushoutsEquiv (fst f) (fst g) (fst h)
two-pushouts-ptd :
⊙Lift {j = lmax l (lmax k (lmax j i))} (⊙Pushout ps)
== ⊙Pushout ps₂
two-pushouts-ptd = ⊙ua (two-pushouts-equiv ∘e lift-equiv) idp
two-pushouts-⊙left :
⊙lift ⊙∘ ⊙left ps == ⊙left ps₂ ⊙∘ ⊙left ps₁
[ (λ V → X ⊙→ V) ↓ two-pushouts-ptd ]
two-pushouts-⊙left = codomain-over-⊙equiv _ _ _
two-pushouts-⊙right :
⊙lift ⊙∘ ⊙right ps == ⊙right ps₂
[ (λ V → W ⊙→ V) ↓ two-pushouts-ptd ]
two-pushouts-⊙right =
codomain-over-⊙equiv _ _ _ ▹ pair= idp (lemma f g h)
where
lemma : {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(f : Y ⊙→ X) (g : Y ⊙→ Z) (h : Z ⊙→ W)
→ ap (TwoPushoutsEquiv.split (fst f) (fst g) (fst h)
∘ lower {j = lmax l (lmax k (lmax j i))})
(snd (⊙lift ⊙∘ ⊙right (⊙span X W Y f (h ⊙∘ g))))
∙ idp
== ap right (! (snd h)) ∙ ! (glue (pt Z))
∙' ap left (snd (⊙right (⊙span X Z Y f g)))
lemma {Y = Y} (f , idp) (g , idp) (h , idp) =
ap (2P.split ∘ lower) (ap lift (! (glue (pt Y))) ∙ idp) ∙ idp
=⟨ ∙-unit-r _ ⟩
ap (2P.split ∘ lower) (ap lift (! (glue (pt Y))) ∙ idp)
=⟨ ∙-unit-r _ |in-ctx (ap (2P.split ∘ lower)) ⟩
ap (2P.split ∘ lower) (ap lift (! (glue (pt Y))))
=⟨ ∘-ap (2P.split ∘ lower) lift _ ⟩
ap 2P.split (! (glue (pt Y)))
=⟨ ap-! 2P.split (glue (pt Y)) ⟩
! (ap 2P.split (glue (pt Y)))
=⟨ 2P.Split.glue-β (pt Y) |in-ctx ! ⟩
! (ap left (glue (pt Y)) ∙ glue (g (pt Y)))
=⟨ !-∙ (ap left (glue (pt Y))) (glue (g (pt Y))) ⟩
! (glue (g (pt Y))) ∙ ! (ap left (glue (pt Y)))
=⟨ !-ap left (glue (pt Y)) |in-ctx (λ w → ! (glue (g (pt Y))) ∙ w) ⟩
! (glue (g (pt Y))) ∙ ap left (! (glue (pt Y)))
=⟨ ∙=∙' (! (glue (g (pt Y)))) (ap left (! (glue (pt Y)))) ⟩
! (glue (g (pt Y))) ∙' ap left (! (glue (pt Y))) ∎
where
module 2P = TwoPushoutsEquiv f g h
two-pushouts-⊙inner : ⊙lift ⊙∘ (inner , idp) == ⊙left ps₂
[ (λ V → ⊙Pushout ps₁ ⊙→ V) ↓ two-pushouts-ptd ]
two-pushouts-⊙inner =
codomain-over-⊙equiv _ _ _ ▹ ⊙λ= split-inner idp
-}
{-
open TwoPushoutsEquiv using () renaming (split-equiv to vsplit-pushouts-equiv)
-- two-pushouts; two-pushouts-left; two-pushouts-right; two-pushouts-inner
open TwoPushoutsPtd
using (two-pushouts-ptd; two-pushouts-⊙left; two-pushouts-⊙right;
two-pushouts-⊙inner)
-}
| {
"alphanum_fraction": 0.4919762585,
"avg_line_length": 32.0352112676,
"ext": "agda",
"hexsha": "22328209efeebad14a270a06b810de5cb386d949",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/PushoutSplit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/PushoutSplit.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/PushoutSplit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3693,
"size": 9098
} |
-- Copyright: (c) 2016 Ertugrul Söylemez
-- License: BSD3
-- Maintainer: Ertugrul Söylemez <[email protected]>
module Algebra.Group.Group where
open import Algebra.Category
open import Algebra.Group.Monoid
open import Algebra.Group.Semigroup
open import Core
-- A group is a monoid where every element has an inverse.
record IsGroup {a r} (S : Semigroup {a} {r}) : Set (a ⊔ r) where
open Semigroup S
field isMonoid : IsMonoid S
open IsMonoid isMonoid
field iso : ∀ x → Iso x
inv : A → A
inv x = Iso.inv (iso x)
field inv-cong : ∀ {x y} → x ≈ y → inv x ≈ inv y
groupoid : Groupoid
groupoid =
record {
category = category;
iso = iso;
inv-cong = inv-cong
}
open Groupoid groupoid public
using (inv-invol)
record Group {a r} : Set (lsuc (a ⊔ r)) where
field semigroup : Semigroup {a} {r}
open Semigroup semigroup public
field isGroup : IsGroup semigroup
open IsGroup isGroup public
monoid : Monoid
monoid =
record {
semigroup = semigroup;
isMonoid = isMonoid
}
-- A group morphism is a function that maps the elements of one group to
-- another while preserving the compositional structure, the identity
-- and all inverses.
record GroupMorphism
{ga gr ha hr}
(G : Group {ga} {gr})
(H : Group {ha} {hr})
: Set (ga ⊔ gr ⊔ ha ⊔ hr)
where
private
module G = Group G
module H = Group H
field monoidMorphism : MonoidMorphism G.monoid H.monoid
open MonoidMorphism monoidMorphism public
field inv-preserving : ∀ x → map (G.inv x) H.≈ H.inv (map x)
| {
"alphanum_fraction": 0.6453018046,
"avg_line_length": 21.7162162162,
"ext": "agda",
"hexsha": "a1f090286614174154855fa705bab23fc19b63c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "esoeylemez/agda-simple",
"max_forks_repo_path": "Algebra/Group/Group.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "esoeylemez/agda-simple",
"max_issues_repo_path": "Algebra/Group/Group.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "esoeylemez/agda-simple",
"max_stars_repo_path": "Algebra/Group/Group.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z",
"num_tokens": 495,
"size": 1607
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.GradedRing.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Ring
open import Cubical.Algebra.GradedRing.DirectSumHIT
private variable
ℓ ℓ' : Level
open AbGroupStr
open GradedRing-⊕HIT-index
open GradedRing-⊕HIT-⋆
-----------------------------------------------------------------------------
-- Definition
record IsGradedRing (R : Ring (ℓ-max ℓ ℓ'))
(IdM : Monoid ℓ)
(G : (k : (fst IdM)) → Type ℓ')
(Gstr : (k : fst IdM) → AbGroupStr (G k))
(1⋆ : G (MonoidStr.ε (snd IdM)))
(_⋆_ : {k l : fst IdM} → G k → G l → G (MonoidStr._·_ (snd IdM) k l))
: Type (ℓ-max ℓ ℓ')
where
constructor isgradedring
private
Idx = fst IdM
open MonoidStr (snd IdM)
field
0-⋆ : {k l : Idx} → (b : G l) → (0g (Gstr k)) ⋆ b ≡ 0g (Gstr (k · l))
⋆-0 : {k l : Idx} → (a : G k) → a ⋆ (0g (Gstr l)) ≡ 0g (Gstr (k · l))
⋆Assoc : {k l m : Idx} → (a : G k) → (b : G l) → (c : G m) →
((k · (l · m)) , (a ⋆ (b ⋆ c))) ≡ (((k · l) · m) , ((a ⋆ b) ⋆ c))
⋆IdR : {k : Idx} → (a : G k) → ( k · ε , a ⋆ 1⋆ ) ≡ (k , a)
⋆IdL : {l : Idx} → (b : G l) → ( ε · l , 1⋆ ⋆ b ) ≡ (l , b)
⋆DistR+ : {k l : Idx} → (a : G k) → (b c : G l) →
a ⋆ ((Gstr l) ._+_ b c) ≡ Gstr (k · l) ._+_ (a ⋆ b) (a ⋆ c)
⋆DistL+ : {k l : Idx} → (a b : G k) → (c : G l) →
((Gstr k) ._+_ a b) ⋆ c ≡ Gstr (k · l) ._+_ (a ⋆ c) (b ⋆ c)
equivRing : RingEquiv R (⊕HITgradedRing-Ring IdM G Gstr 1⋆ _⋆_
0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+)
record GradedRingStr (R : Ring (ℓ-max ℓ ℓ')) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor gradedringstr
field
IdM : Monoid ℓ
G : (k : (fst IdM)) → Type ℓ'
Gstr : (k : fst IdM) → AbGroupStr (G k)
1⋆ : G (MonoidStr.ε (snd IdM))
_⋆_ : {k l : fst IdM} → G k → G l → G (MonoidStr._·_ (snd IdM) k l)
isGradedRing : IsGradedRing R IdM G Gstr 1⋆ _⋆_
open IsGradedRing isGradedRing public
GradedRing : ∀ ℓ ℓ' → Type (ℓ-suc (ℓ-max ℓ ℓ'))
GradedRing ℓ ℓ' = Σ[ R ∈ Ring (ℓ-max ℓ ℓ') ] GradedRingStr R
-----------------------------------------------------------------------------
-- make
open MonoidStr
makeIsGradedRing : {R : Ring (ℓ-max ℓ ℓ')} {IdM : Monoid ℓ}
{G : (k : (fst IdM)) → Type ℓ'}
{Gstr : (k : fst IdM) → AbGroupStr (G k)}
{1⋆ : G (ε (snd IdM))}
{_⋆_ : {k l : fst IdM} → G k → G l → G (_·_ (snd IdM) k l)}
(0-⋆ : {k l : fst IdM} (b : G l) → (0g (Gstr k) ⋆ b) ≡ 0g (Gstr ((snd IdM MonoidStr.· k) l)))
(⋆-0 : {k l : fst IdM} (a : G k) → (a ⋆ 0g (Gstr l)) ≡ 0g (Gstr ((snd IdM MonoidStr.· k) l)))
(⋆Assoc : {k l m : fst IdM} (a : G k) (b : G l) (c : G m) →
(((snd IdM ._·_ k) ((snd IdM ._·_ l) m) , (a ⋆ (b ⋆ c))))
≡ ((snd IdM ._·_ ((snd IdM ._·_ k) l) m) , ((a ⋆ b) ⋆ c)))
(⋆IdR : {k : fst IdM} → (a : G k) → ( snd IdM ._·_ k (snd IdM .ε) , a ⋆ 1⋆ ) ≡ (k , a))
(⋆IdL : {l : fst IdM} → (b : G l) → ( snd IdM ._·_ (snd IdM .ε) l , 1⋆ ⋆ b ) ≡ (l , b))
(⋆DistR+ : {k l : fst IdM} → (a : G k) → (b c : G l) →
a ⋆ ((Gstr l) ._+_ b c) ≡ Gstr (snd IdM ._·_ k l) ._+_ (a ⋆ b) (a ⋆ c))
(⋆DistL+ : {k l : fst IdM} → (a b : G k) → (c : G l) →
((Gstr k) ._+_ a b) ⋆ c ≡ Gstr (snd IdM ._·_ k l) ._+_ (a ⋆ c) (b ⋆ c))
(equivRing : RingEquiv R (⊕HITgradedRing-Ring IdM G Gstr 1⋆ _⋆_
0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+))
→ IsGradedRing R IdM G Gstr 1⋆ _⋆_
makeIsGradedRing 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ equivRing =
isgradedring 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ equivRing
makeGradedRing : (R : Ring (ℓ-max ℓ ℓ')) (IdM : Monoid ℓ)
(G : (k : (fst IdM)) → Type ℓ')
(Gstr : (k : fst IdM) → AbGroupStr (G k))
(1⋆ : G (ε (snd IdM)))
(_⋆_ : {k l : fst IdM} → G k → G l → G (_·_ (snd IdM) k l))
(0-⋆ : {k l : fst IdM} (b : G l) → (0g (Gstr k) ⋆ b) ≡ 0g (Gstr ((snd IdM MonoidStr.· k) l)))
(⋆-0 : {k l : fst IdM} (a : G k) → (a ⋆ 0g (Gstr l)) ≡ 0g (Gstr ((snd IdM MonoidStr.· k) l)))
(⋆Assoc : {k l m : fst IdM} (a : G k) (b : G l) (c : G m) →
(((snd IdM ._·_ k) ((snd IdM ._·_ l) m) , (a ⋆ (b ⋆ c))))
≡ ((snd IdM ._·_ ((snd IdM ._·_ k) l) m) , ((a ⋆ b) ⋆ c)))
(⋆IdR : {k : fst IdM} → (a : G k) → (snd IdM ._·_ k (snd IdM .ε) , a ⋆ 1⋆ ) ≡ (k , a))
(⋆IdL : {l : fst IdM} → (b : G l) → (snd IdM ._·_ (snd IdM .ε) l , 1⋆ ⋆ b ) ≡ (l , b))
(⋆DistR+ : {k l : fst IdM} → (a : G k) → (b c : G l) →
a ⋆ ((Gstr l) ._+_ b c) ≡ Gstr (snd IdM ._·_ k l) ._+_ (a ⋆ b) (a ⋆ c))
(⋆DistL+ : {k l : fst IdM} → (a b : G k) → (c : G l) →
((Gstr k) ._+_ a b) ⋆ c ≡ Gstr (snd IdM ._·_ k l) ._+_ (a ⋆ c) (b ⋆ c))
(equivRing : RingEquiv R (⊕HITgradedRing-Ring IdM G Gstr 1⋆ _⋆_
0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+))
→ GradedRing ℓ ℓ'
fst (makeGradedRing R IdM G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ equivRing) = R
GradedRingStr.IdM (snd (makeGradedRing R IdM G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ equivRing)) = IdM
GradedRingStr.G (snd (makeGradedRing R IdM G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ equivRing)) = G
GradedRingStr.Gstr (snd (makeGradedRing R IdM G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ equivRing)) = Gstr
GradedRingStr.1⋆ (snd (makeGradedRing R IdM G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ equivRing)) = 1⋆
GradedRingStr._⋆_ (snd (makeGradedRing R IdM G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ equivRing)) = _⋆_
GradedRingStr.isGradedRing (snd (makeGradedRing R IdM G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ equivRing)) =
makeIsGradedRing 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ equivRing
makeGradedRingSelf : (IdM : Monoid ℓ)
(G : (k : (fst IdM)) → Type ℓ')
(Gstr : (k : fst IdM) → AbGroupStr (G k))
(1⋆ : G (ε (snd IdM)))
(_⋆_ : {k l : fst IdM} → G k → G l → G (_·_ (snd IdM) k l))
(0-⋆ : {k l : fst IdM} (b : G l) → (0g (Gstr k) ⋆ b) ≡ 0g (Gstr ((snd IdM MonoidStr.· k) l)))
(⋆-0 : {k l : fst IdM} (a : G k) → (a ⋆ 0g (Gstr l)) ≡ 0g (Gstr ((snd IdM MonoidStr.· k) l)))
(⋆Assoc : {k l m : fst IdM} (a : G k) (b : G l) (c : G m) →
_≡_ {A = Σ[ k ∈ fst IdM ] G k} (((snd IdM ._·_ k) ((snd IdM ._·_ l) m) , (a ⋆ (b ⋆ c))))
((snd IdM ._·_ ((snd IdM ._·_ k) l) m) , ((a ⋆ b) ⋆ c)))
(⋆IdR : {k : fst IdM} → (a : G k) →
_≡_ {A = Σ[ k ∈ fst IdM ] G k} ( snd IdM ._·_ k (snd IdM .ε) , a ⋆ 1⋆ ) (k , a))
(⋆IdL : {l : fst IdM} → (b : G l) →
_≡_ {A = Σ[ k ∈ fst IdM ] G k} ( snd IdM ._·_ (snd IdM .ε) l , 1⋆ ⋆ b ) (l , b))
(⋆DistR+ : {k l : fst IdM} → (a : G k) → (b c : G l) →
a ⋆ ((Gstr l) ._+_ b c) ≡ Gstr (snd IdM ._·_ k l) ._+_ (a ⋆ b) (a ⋆ c))
(⋆DistL+ : {k l : fst IdM} → (a b : G k) → (c : G l) →
((Gstr k) ._+_ a b) ⋆ c ≡ Gstr (snd IdM ._·_ k l) ._+_ (a ⋆ c) (b ⋆ c))
→ GradedRing ℓ ℓ'
makeGradedRingSelf IdM G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ =
makeGradedRing (⊕HITgradedRing-Ring IdM G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+)
IdM G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+
((idEquiv _) , (makeIsRingHom refl (λ _ _ → refl) (λ _ _ → refl)))
| {
"alphanum_fraction": 0.4123365351,
"avg_line_length": 55.391025641,
"ext": "agda",
"hexsha": "9385d9b109cb36d7c7734950464808fd88a85190",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/GradedRing/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/GradedRing/Base.agda",
"max_line_length": 122,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/GradedRing/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3974,
"size": 8641
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Unbundled.Properties where
-- The Obj-unbundled Category is equivalent (as a type) to the
-- usual kind. Quite straightforward and because of η, the proofs are just refl.
open import Data.Product using (Σ; _,_)
open import Level
open import Function using (_↔_; mk↔′)
open import Relation.Binary.PropositionalEquality using (refl)
open import Categories.Category.Core using (Category)
open import Categories.Category.Unbundled renaming (Category to Unb-Cat)
private
variable
o ℓ e : Level
unpack : Category o ℓ e → Σ (Set o) (λ Obj → Unb-Cat Obj ℓ e)
unpack C = C.Obj , record { C }
where module C = Category C
unpack′ : (C : Category o ℓ e) → Unb-Cat (Category.Obj C) ℓ e
unpack′ C = record { C }
where module C = Category C
pack : Σ (Set o) (λ Obj → Unb-Cat Obj ℓ e) → Category o ℓ e
pack (o , uc) = record { Obj = o; UC }
where module UC = Unb-Cat uc
pack′ : {Obj : Set o} → Unb-Cat Obj ℓ e → Category o ℓ e
pack′ {Obj = o} uc = record { Obj = o; UC }
where module UC = Unb-Cat uc
equiv : (Category o ℓ e) ↔ (Σ (Set o) (λ Obj → Unb-Cat Obj ℓ e))
equiv = mk↔′ unpack pack (λ _ → refl) λ _ → refl
| {
"alphanum_fraction": 0.6703204047,
"avg_line_length": 32.0540540541,
"ext": "agda",
"hexsha": "563f8cf512632c2f769a449d697ae848573523cd",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Unbundled/Properties.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Unbundled/Properties.agda",
"max_line_length": 80,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Unbundled/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 380,
"size": 1186
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.PartialFunctions where
-- Category of (Agda) Sets, and partial functions (modelled using Maybe).
-- Note that unlike for basic categories, this is named after the morphisms instead of the objects.
open import Data.Maybe using (Maybe; nothing; just; _>>=_; maybe)
open import Level
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality as ≡
using (_≗_; refl)
open import Categories.Category
private
variable
o : Level
A B C D : Set o
f g h : A → Maybe B
_∘′_ : (B → Maybe C) → (A → Maybe B) → A → Maybe C
f ∘′ g = λ a → g a >>= f
∘′-assoc : {h : C → Maybe D} {g : B → Maybe C} {f : A → Maybe B} → (h ∘′ g) ∘′ f ≗ h ∘′ (g ∘′ f)
∘′-assoc {h = h} {g} {f} a with f a
... | nothing = refl
... | just b = refl
idˡ : {A B : Set o} {f : A → Maybe B} → just ∘′ f ≗ f
idˡ {f = f} a = maybe {B = λ b → (b >>= just) ≡.≡ b} (λ x → refl) refl (f a)
resp : {A B C : Set o} {f h : B → Maybe C} {g i : A → Maybe B} →
f ≗ h → g ≗ i → (f ∘′ g) ≗ (h ∘′ i)
resp {f = f} {h} {g} {i} f≡h g≡i a with g a | i a | g≡i a
... | just x | just .x | refl = f≡h x
... | just x | nothing | ()
... | nothing | just x | ()
... | nothing | nothing | _ = refl
PartialFunctions : ∀ o → Category (suc o) o o
PartialFunctions o = record
{ Obj = Set o
; _⇒_ = λ a b → a → Maybe b
; _≈_ = _≗_
; id = just
; _∘_ = _∘′_
; assoc = λ {_} {_} {_} {_} {f} {g} {h} → ∘′-assoc {h = h} {g} {f}
; sym-assoc = λ {_} {_} {_} {_} {f} {g} {h} a → ≡.sym (∘′-assoc {h = h} {g} {f} a)
; identityˡ = idˡ
; identityʳ = λ _ → refl
; identity² = idˡ
; equiv = λ {A} {B} → Setoid.isEquivalence (≡._→-setoid_ A (Maybe B))
; ∘-resp-≈ = resp
}
| {
"alphanum_fraction": 0.5279819107,
"avg_line_length": 32.1636363636,
"ext": "agda",
"hexsha": "6820b2bec5e46e947f5b15ff94fd23ef8254f470",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/PartialFunctions.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/PartialFunctions.agda",
"max_line_length": 99,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/PartialFunctions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 725,
"size": 1769
} |
-- Andreas, 2013-02-27
module Issue385 where
import Common.Level
open import Common.Equality
loop : ∀ {A}{x : A} → x ≡ x
loop = loop
bad : Set
bad rewrite loop = ?
-- this used to loop, but should no longer, instead:
-- Cannot rewrite by equation of type {A : Set _3} {x : A} → x ≡ x
-- when checking that the clause bad rewrite loop = ? has type Set
| {
"alphanum_fraction": 0.6704225352,
"avg_line_length": 22.1875,
"ext": "agda",
"hexsha": "8939fa043a5436a87d1ead383319d75c7222f412",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue385.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue385.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/Issue385.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 108,
"size": 355
} |
module Data.List.Functions.Positional where
import Lvl
open import Data.List
open import Data.Option
open import Type
private variable ℓ : Lvl.Level
private variable T : Type{ℓ}
-- A singleton list. A list with only a single element.
-- Example:
-- singleton(a) = [a]
singleton : T → List(T)
singleton elem = elem ⊰ ∅
-- The list without its first element (if there is one).
-- Example:
-- tail [] = []
-- tail [a] = []
-- tail [a,b] = [b]
-- tail [a,b,c] = [b,c]
tail : List(T) → List(T)
tail ∅ = ∅
tail (_ ⊰ l) = l
-- The first element of the list (head)
first : List(T) → Option(T)
first ∅ = Option.None
first (x ⊰ _) = Option.Some(x)
-- The last element of the list
last : List(T) → Option(T)
last ∅ = Option.None
last (x ⊰ ∅) = Option.Some(x)
last (_ ⊰ y ⊰ l) = last (y ⊰ l)
-- TODO: Function equivalent to (foldₗ (const Option.Some) Option.None)? Prove if correct
| {
"alphanum_fraction": 0.6084598698,
"avg_line_length": 24.2631578947,
"ext": "agda",
"hexsha": "308d193c8e388e6ad4344b7c435e89173a983188",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Functions/Positional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Functions/Positional.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Functions/Positional.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 286,
"size": 922
} |
{-# OPTIONS --without-K #-}
module hott.level.sets where
open import level
open import decidable
open import sum
open import equality.core
open import equality.calculus
open import equality.reasoning
open import function.core
open import function.extensionality.proof
open import sets.empty
open import sets.unit
open import hott.level.core
-- ⊤ is contractible
⊤-contr : contr ⊤
⊤-contr = tt , λ { tt → refl }
-- ⊥ is propositional
⊥-prop : h 1 ⊥
⊥-prop x _ = ⊥-elim x
⊥-initial : ∀ {i} {A : Set i} → contr (⊥ → A)
⊥-initial = (λ ()) , (λ f → funext λ ())
-- Hedberg's theorem
hedberg : ∀ {i} {A : Set i}
→ ((x y : A) → Dec (x ≡ y))
→ h 2 A
hedberg {A = A} dec x y = prop⇒h1 ≡-prop
where
open ≡-Reasoning
canonical : {x y : A} → x ≡ y → x ≡ y
canonical {x} {y} p with dec x y
... | yes q = q
... | no _ = p
canonical-const : {x y : A}
→ (p q : x ≡ y)
→ canonical p ≡ canonical q
canonical-const {x} {y} p q with dec x y
... | yes _ = refl
... | no f = ⊥-elim (f p)
canonical-inv : {x y : A}(p : x ≡ y)
→ canonical p · sym (canonical refl) ≡ p
canonical-inv refl = left-inverse (canonical refl)
≡-prop : {x y : A}(p q : x ≡ y) → p ≡ q
≡-prop p q = begin
p
≡⟨ sym (canonical-inv p) ⟩
canonical p · sym (canonical refl)
≡⟨ ap (λ z → z · sym (canonical refl))
(canonical-const p q) ⟩
canonical q · sym (canonical refl)
≡⟨ canonical-inv q ⟩
q
∎
-- Bool is a set
private
module BoolSet where
open import sets.bool
bool-set : h 2 Bool
bool-set = hedberg _≟_
open BoolSet public
-- Nat is a set
private
module NatSet where
open import sets.nat.core
nat-set : h 2 ℕ
nat-set = hedberg _≟_
open NatSet public
-- Fin is a set
private
module FinSet where
open import sets.fin.core
fin-set : ∀ n → h 2 (Fin n)
fin-set n = hedberg _≟_
open FinSet public
| {
"alphanum_fraction": 0.5611835507,
"avg_line_length": 23.1860465116,
"ext": "agda",
"hexsha": "aac92346c3084147aa0f3530e838bd14ef1215e8",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "hott/level/sets.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "hott/level/sets.agda",
"max_line_length": 58,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "hott/level/sets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 676,
"size": 1994
} |
import Lvl
open import Type
module Data.List.Relation.Sublist.Proofs {ℓ} {T : Type{ℓ}} where
open import Data.Boolean
import Data.Either as Either
open import Data.List as List
open import Data.List.Functions as List hiding (skip)
open import Data.List.Proofs
open import Data.List.Relation.Sublist
open import Data.Tuple as Tuple using (_,_)
open import Functional
open import Logic.Propositional
open import Logic.Predicate
open import Numeral.Natural
open import Numeral.Natural.Inductions
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Relator.Ordering
open import Structure.Relator.Ordering.Proofs
open import Structure.Relator.Properties
private variable ℓ₂ : Lvl.Level
private variable T₂ : Type{ℓ₂}
private variable a x y : T
private variable l l₁ l₂ l₃ : List(T)
private variable n : ℕ
[⊑]-reflexivity : (l ⊑ l)
[⊑]-reflexivity {∅} = empty
[⊑]-reflexivity {a ⊰ l} = use([⊑]-reflexivity{l})
[⊑]-prepend : (l ⊑ x ⊰ l)
[⊑]-prepend {∅} = skip empty
[⊑]-prepend {x ⊰ l} = skip [⊑]-reflexivity
[⊑]-without-[⊰] : ((x ⊰ l₁) ⊑ (y ⊰ l₂)) → (l₁ ⊑ l₂)
[⊑]-without-[⊰] (use p) = p
[⊑]-without-[⊰] (skip(use p)) = skip p
[⊑]-without-[⊰] {x = x}{y = y} (skip(skip p)) = skip([⊑]-without-[⊰] {x = x}{y = y} (skip p))
[⊑]-transitivity : (l₁ ⊑ l₂) → (l₂ ⊑ l₃) → (l₁ ⊑ l₃)
[⊑]-transitivity empty empty = empty
[⊑]-transitivity empty (skip l₂l₃) = skip l₂l₃
[⊑]-transitivity (use l₁l₂) (use l₂l₃) = use([⊑]-transitivity l₁l₂ l₂l₃)
[⊑]-transitivity (use l₁l₂) (skip l₂l₃) = skip([⊑]-transitivity (use l₁l₂) l₂l₃)
[⊑]-transitivity (skip l₁l₂) (use l₂l₃) = skip([⊑]-transitivity l₁l₂ l₂l₃)
[⊑]-transitivity (skip l₁l₂) (skip l₂l₃) = skip([⊑]-transitivity (skip l₁l₂) l₂l₃)
[⊑]-not-prepend : ¬((x ⊰ l) ⊑ l)
[⊑]-not-prepend {x} {x ⊰ l₂} (use p) = [⊑]-not-prepend {x}{l₂} p
[⊑]-not-prepend {x} {y ⊰ _} (skip p) = [⊑]-not-prepend([⊑]-without-[⊰] {y = y} (skip p))
[⊑]-antisymmetry : (l₂ ⊑ l₁) → (l₁ ⊑ l₂) → (l₁ ≡ l₂)
[⊑]-antisymmetry {∅} {∅} l r = [≡]-intro
[⊑]-antisymmetry {y ⊰ l₂} {.y ⊰ l₁} (use l) r = [≡]-with(y ⊰_) ([⊑]-antisymmetry l ([⊑]-without-[⊰] r))
[⊑]-antisymmetry {y ⊰ l₂} {.y ⊰ l₁} (skip l) (use r) = [≡]-with(y ⊰_) ([⊑]-antisymmetry ([⊑]-without-[⊰] {y = y} (skip l)) r)
[⊑]-antisymmetry {y ⊰ l₂} {x ⊰ l₁} (skip l) (skip r) = [⊥]-elim ([⊑]-not-prepend ([⊑]-transitivity (skip r) l))
[⊑]-minimum : (∅ ⊑ l)
[⊑]-minimum {∅} = empty
[⊑]-minimum {a ⊰ l} = skip([⊑]-minimum{l})
[⊑]ᵣ-of-[++]ₗ : (l₁ ⊑ (l₂ ++ l₁))
[⊑]ᵣ-of-[++]ₗ {l₁}{∅} = [⊑]-reflexivity
[⊑]ᵣ-of-[++]ₗ {l₁}{a ⊰ l₂} = skip{x = a}([⊑]ᵣ-of-[++]ₗ {l₁}{l₂})
[⊑]ᵣ-of-[++]ᵣ : (l₁ ⊑ (l₁ ++ l₂))
[⊑]ᵣ-of-[++]ᵣ {∅} {l₂} = [⊑]-minimum
[⊑]ᵣ-of-[++]ᵣ {a ⊰ l₁}{l₂} = use([⊑]ᵣ-of-[++]ᵣ{l₁}{l₂})
[⊑]-tail : (tail l ⊑ l)
[⊑]-tail {∅} = empty
[⊑]-tail {a ⊰ l} = skip [⊑]-reflexivity
[⊑]-map : ∀{f : T → T₂} → (l₁ ⊑ l₂) → (map f(l₁) ⊑ map f(l₂))
[⊑]-map empty = empty
[⊑]-map (use p) = use ([⊑]-map p)
[⊑]-map (skip p) = skip ([⊑]-map p)
[⊑]-filter : ∀{f} → (filter f(l) ⊑ l)
[⊑]-filter {∅} = empty
[⊑]-filter {x ⊰ l} {f} with f(x)
... | 𝑇 = use ([⊑]-filter {l})
... | 𝐹 = skip ([⊑]-filter {l})
[⊑]-separate₂ : let (l₁ , l₂) = separate₂(l) in (l₁ ⊑ l) ∧ (l₂ ⊑ l)
Tuple.left ([⊑]-separate₂ {∅}) = empty
Tuple.left ([⊑]-separate₂ {x ⊰ ∅}) = [⊑]-reflexivity
Tuple.left ([⊑]-separate₂ {x ⊰ y ⊰ l}) = use (skip (Tuple.left [⊑]-separate₂))
Tuple.right ([⊑]-separate₂ {∅}) = empty
Tuple.right ([⊑]-separate₂ {x ⊰ ∅}) = skip [⊑]-reflexivity
Tuple.right ([⊑]-separate₂ {x ⊰ y ⊰ l}) = skip (use (Tuple.right [⊑]-separate₂))
[⊑]-postpend : (l ⊑ postpend a l)
[⊑]-postpend {∅} = skip empty
[⊑]-postpend {x ⊰ l} = use [⊑]-postpend
[⊑]-withoutIndex : (withoutIndex n l ⊑ l)
[⊑]-withoutIndex {𝟎} {∅} = empty
[⊑]-withoutIndex {𝐒 n} {∅} = empty
[⊑]-withoutIndex {𝟎} {x ⊰ l} = skip [⊑]-reflexivity
[⊑]-withoutIndex {𝐒 n} {x ⊰ l} = use [⊑]-withoutIndex
[⊑]-initial : (initial n l ⊑ l)
[⊑]-initial {𝟎} {∅} = empty
[⊑]-initial {𝐒 n} {∅} = empty
[⊑]-initial {𝟎} {x ⊰ l} = [⊑]-minimum
[⊑]-initial {𝐒 n} {x ⊰ l} = use [⊑]-initial
[⊑]-skip : (List.skip n l ⊑ l)
[⊑]-skip {𝟎} {∅} = empty
[⊑]-skip {𝐒 n} {∅} = empty
[⊑]-skip {𝟎} {x ⊰ l} = [⊑]-reflexivity
[⊑]-skip {𝐒 n} {x ⊰ l} = skip [⊑]-skip
[⊑]-empty : (l ⊑ ∅) → (l ≡ ∅)
[⊑]-empty {∅} _ = [≡]-intro
[⊑]-empty {_ ⊰ _} ()
[⊑]-length : (l₁ ⊑ l₂) → (length(l₁) ≤ length(l₂))
[⊑]-length empty = [≤]-minimum
[⊑]-length (use p) = [≤]-with-[𝐒] ⦃ [⊑]-length p ⦄
[⊑]-length (skip p) = [≤]-predecessor ([≤]-with-[𝐒] ⦃ [⊑]-length p ⦄)
[⊏]-without-[⊰] : ((x ⊰ l₁) ⊏ (y ⊰ l₂)) → (l₁ ⊏ l₂)
[⊏]-without-[⊰] (use p) = p
[⊏]-without-[⊰] (skip (use p)) = skip p
[⊏]-without-[⊰] {x = x}{y = y} (skip (skip p)) = skip ([⊑]-without-[⊰] {x = x}{y = y} (skip p))
[⊏]-irreflexivity : ¬(l ⊏ l)
[⊏]-irreflexivity {∅} ()
[⊏]-irreflexivity {x ⊰ l} p = [⊏]-irreflexivity {l} ([⊏]-without-[⊰] p)
[⊏]-to-[⊑] : (l₁ ⊏ l₂) → (l₁ ⊑ l₂)
[⊏]-to-[⊑] (use p) = use ([⊏]-to-[⊑] p)
[⊏]-to-[⊑] (skip p) = skip p
[⊏]-skip-[⊰] : (l₁ ⊏ l₂) → (l₁ ⊏ (x ⊰ l₂))
[⊏]-skip-[⊰] (use p) = skip ([⊏]-to-[⊑] (use p))
[⊏]-skip-[⊰] (skip x) = skip (skip x)
[⊏]-transitivity : (l₁ ⊏ l₂) → (l₂ ⊏ l₃) → (l₁ ⊏ l₃)
[⊏]-transitivity p (skip (skip q)) = skip(skip([⊑]-transitivity ([⊏]-to-[⊑] p) q))
[⊏]-transitivity (use p) (use q) = use ([⊏]-transitivity p q)
[⊏]-transitivity (use p) (skip (use q)) = skip (use ([⊑]-transitivity ([⊏]-to-[⊑] p) q))
[⊏]-transitivity (skip p) (use q) = skip([⊑]-transitivity p ([⊏]-to-[⊑] q))
[⊏]-transitivity (skip p) (skip (use q)) = skip(skip([⊑]-transitivity p q))
[⊏]-asymmetry : (l₂ ⊏ l₁) → (l₁ ⊏ l₂) → ⊥
[⊏]-asymmetry p q = [⊏]-irreflexivity([⊏]-transitivity p q)
[⊏]-minimum : (l ≡ ∅) ∨ (∅ ⊏ l)
[⊏]-minimum {∅} = [∨]-introₗ [≡]-intro
[⊏]-minimum {x ⊰ l} = [∨]-introᵣ (skip [⊑]-minimum)
[⊏]-emptyₗ : (∅ ⊏ (x ⊰ l))
[⊏]-emptyₗ {l = ∅} = skip empty
[⊏]-emptyₗ {l = x ⊰ l} = skip ([⊏]-to-[⊑] ([⊏]-emptyₗ {l = l}))
[⊏]-emptyᵣ : ¬(l ⊏ ∅)
[⊏]-emptyᵣ ()
[⊏]-length : (l₁ ⊏ l₂) → (length(l₁) < length(l₂))
[⊏]-length (use p) = [≤]-with-[𝐒] ⦃ [⊏]-length p ⦄
[⊏]-length (skip p) = [≤]-with-[𝐒] ⦃ [⊑]-length p ⦄
[⊏]-prepend : (l ⊏ x ⊰ l)
[⊏]-prepend = skip [⊑]-reflexivity
[⊏]-postpend : (l ⊏ postpend x l)
[⊏]-postpend {∅} = skip empty
[⊏]-postpend {a ⊰ l} = use ([⊏]-postpend {l})
[⊏]-map : ∀{f : T → T₂} → (l₁ ⊏ l₂) → (map f(l₁) ⊏ map f(l₂))
[⊏]-map (use p) = use ([⊏]-map p)
[⊏]-map (skip p) = skip ([⊑]-map p)
[⊏]-tail : (∅ ⊏ l) → (tail l ⊏ l)
[⊏]-tail (skip _) = skip [⊑]-reflexivity
[⊏]-initial : (n < length(l)) → (initial n l ⊏ l)
[⊏]-initial {𝟎} {x ⊰ l} p = [⊏]-emptyₗ
[⊏]-initial {𝐒 n} {x ⊰ l} p = use ([⊏]-initial {n} ([≤]-without-[𝐒] p))
[⊏]-skip : (𝟎 < n) → (n < length(l)) → (List.skip n l ⊏ l)
[⊏]-skip {𝐒 n} {x ⊰ l} p q = skip [⊑]-skip
[⊏]-withoutIndex : (n < length(l)) → (withoutIndex n l ⊏ l)
[⊏]-withoutIndex {𝟎} {x ⊰ l} p = [⊏]-prepend
[⊏]-withoutIndex {𝐒 n} {x ⊰ l} p = use ([⊏]-withoutIndex ([≤]-without-[𝐒] p))
[⊏]-separate₂ : let (l₁ , l₂) = separate₂(l) in (2 ≤ length(l)) → ((l₁ ⊏ l) ∧ (l₂ ⊏ l))
[⊏]-separate₂ {x ⊰ ∅} (succ())
Tuple.left ([⊏]-separate₂ {x ⊰ y ⊰ l} (succ (succ min))) = use (skip (Tuple.left [⊑]-separate₂))
Tuple.right ([⊏]-separate₂ {x ⊰ y ⊰ l} (succ (succ min))) = skip (use (Tuple.right [⊑]-separate₂))
[⊏]ᵣ-of-[++]ₗ : (∅ ⊏ l₂) → (l₁ ⊏ (l₂ ++ l₁))
[⊏]ᵣ-of-[++]ₗ {a ⊰ l₂} {l₁} (skip p) = skip([⊑]ᵣ-of-[++]ₗ {l₁}{l₂})
[⊏]ᵣ-of-[++]ᵣ : (∅ ⊏ l₂) → (l₁ ⊏ (l₁ ++ l₂))
[⊏]ᵣ-of-[++]ᵣ {a ⊰ l₂} {∅} (skip p) = skip p
[⊏]ᵣ-of-[++]ᵣ {a ⊰ l₂} {b ⊰ l₁} (skip p) = use ([⊏]ᵣ-of-[++]ᵣ {a ⊰ l₂} {l₁} (skip p))
[⊑][⊏]-transitivity-like : (l₁ ⊑ l₂) → (l₂ ⊏ l₃) → (l₁ ⊏ l₃)
[⊑][⊏]-transitivity-like p (skip q) = skip([⊑]-transitivity p q)
[⊑][⊏]-transitivity-like (use p) (use q) = use ([⊑][⊏]-transitivity-like p q)
[⊑][⊏]-transitivity-like (skip p) (use q) = [⊏]-skip-[⊰] ([⊑][⊏]-transitivity-like p q)
instance
[⊏][<]-on-length-sub : (_⊏_ {T = T}) ⊆₂ ((_<_) on₂ length)
[⊏][<]-on-length-sub = intro [⊏]-length
module _ where
open Structure.Relator.Ordering.Strict.Properties
instance
[<]-on-length-well-founded : WellFounded((_<_) on₂ (length {T = T}))
[<]-on-length-well-founded = wellfounded-image-by-trans
instance
[⊏]-well-founded : WellFounded(_⊏_ {T = T})
[⊏]-well-founded = accessibleₗ-sub₂ ⦃ [⊏][<]-on-length-sub ⦄
[⊑]-to-[⊏] : (l₁ ⊑ l₂) → ((l₁ ⊏ l₂) ∨ (length(l₁) ≡ length(l₂)))
[⊑]-to-[⊏] empty = [∨]-introᵣ [≡]-intro
[⊑]-to-[⊏] (use p) = Either.map use ([≡]-with(𝐒)) ([⊑]-to-[⊏] p)
[⊑]-to-[⊏] (skip p) = [∨]-introₗ (skip p)
| {
"alphanum_fraction": 0.5049269453,
"avg_line_length": 37.7307692308,
"ext": "agda",
"hexsha": "0c58bb83436282c0ce213dcba92177d94235a8e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Relation/Sublist/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Relation/Sublist/Proofs.agda",
"max_line_length": 126,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Relation/Sublist/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4559,
"size": 8829
} |
------------------------------------------------------------------------
-- Pointed types and loop spaces
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- Partly following the HoTT book.
open import Equality
module Pointed-type
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude as P hiding (_×_)
open import Bijection eq as B using (_↔_)
open import Equivalence eq as E using (_≃_)
open import Function-universe eq as F hiding (id; _∘_)
open import H-level eq
open import Surjection eq using (_↠_)
open import Univalence-axiom eq
private
variable
a b ℓ : Level
A B : Type a
x y : A
p q : x ≡ y
k : Kind
------------------------------------------------------------------------
-- The definition of pointed types
-- Pointed types.
Pointed-type : ∀ ℓ → Type (lsuc ℓ)
Pointed-type a = ∃ λ (A : Type a) → A
------------------------------------------------------------------------
-- Based maps
-- Based maps (generalised to several kinds of underlying
-- "functions").
infix 4 _↝[_]ᴮ_ _→ᴮ_ _≃ᴮ_
_↝[_]ᴮ_ : Pointed-type a → Kind → Pointed-type b → Type (a ⊔ b)
(A , x) ↝[ k ]ᴮ (B , y) =
∃ λ (f : A ↝[ k ] B) → to-implication f x ≡ y
-- Based maps.
_→ᴮ_ : Pointed-type a → Pointed-type b → Type (a ⊔ b)
_→ᴮ_ = _↝[ implication ]ᴮ_
-- Based equivalences.
_≃ᴮ_ : Pointed-type a → Pointed-type b → Type (a ⊔ b)
_≃ᴮ_ = _↝[ equivalence ]ᴮ_
private
variable
P P₁ P₂ Q Q₁ Q₂ R : Pointed-type a
P→Q : P →ᴮ Q
P≃Q : P ≃ᴮ Q
-- Based equivalences can be converted to based maps.
≃ᴮ→→ᴮ : P ≃ᴮ Q → P →ᴮ Q
≃ᴮ→→ᴮ = Σ-map _≃_.to id
-- Based equivalences are equivalent to equalities (assuming
-- univalence).
≃ᴮ≃≡ : {P Q : Pointed-type a} → Univalence a → (P ≃ᴮ Q) ≃ (P ≡ Q)
≃ᴮ≃≡ {P = A , x} {Q = B , y} univ =
(∃ λ (A≃B : A ≃ B) → _≃_.to A≃B x ≡ y) ↝⟨ (inverse $
Σ-cong (≡≃≃ univ) λ A≃B →
≡⇒≃ $ cong (_≡ _) $
subst-id-in-terms-of-≡⇒↝ equivalence) ⟩
(∃ λ (A≡B : A ≡ B) → subst id A≡B x ≡ y) ↔⟨ B.Σ-≡,≡↔≡ ⟩□
(A , x) ≡ (B , y) □
-- _↝[ k ]ᴮ_ is reflexive.
↝ᴮ-refl : P ↝[ k ]ᴮ P
↝ᴮ-refl {k = k} = F.id , cong (_$ _) (to-implication-id k)
-- _↝[ k ]ᴮ_ is transitive.
↝ᴮ-trans : P ↝[ k ]ᴮ Q → Q ↝[ k ]ᴮ R → P ↝[ k ]ᴮ R
↝ᴮ-trans {P = _ , x} {k = k} {Q = _ , y} {R = _ , z}
(A↝B , p) (B↝C , q) =
B↝C F.∘ A↝B
, (to-implication (B↝C F.∘ A↝B) x ≡⟨ cong (_$ _) $ to-implication-∘ k ⟩
to-implication B↝C (to-implication A↝B x) ≡⟨ cong (to-implication B↝C) p ⟩
to-implication B↝C y ≡⟨ q ⟩∎
z ∎)
-- _≃ᴮ_ is symmetric.
≃ᴮ-sym : P ≃ᴮ Q → Q ≃ᴮ P
≃ᴮ-sym (A≃B , p) = inverse A≃B , _≃_.to-from A≃B p
-- "Equational" reasoning combinators.
infix -1 _□ᴮ finallyᴮ
infixr -2 stepᴮ
-- For an explanation of why stepᴮ is defined in this way, see
-- Equality.step-≡.
stepᴮ : (P : Pointed-type a) {Q : Pointed-type b} →
Q ↝[ k ]ᴮ R → P ↝[ k ]ᴮ Q → P ↝[ k ]ᴮ R
stepᴮ _ = flip ↝ᴮ-trans
syntax stepᴮ P Q↝R P↝Q = P ↝ᴮ⟨ P↝Q ⟩ Q↝R
finallyᴮ :
(P : Pointed-type a) (Q : Pointed-type b) →
P ↝[ k ]ᴮ Q → P ↝[ k ]ᴮ Q
finallyᴮ _ _ P↝Q = P↝Q
syntax finallyᴮ P Q P↝Q = P ↝ᴮ⟨ P↝Q ⟩□ Q □
_□ᴮ : (P : Pointed-type a) → P ↝[ k ]ᴮ P
_ □ᴮ = ↝ᴮ-refl
-- There is a split surjection from based maps from
-- (Maybe A , nothing) to functions.
Maybe→ᴮ↠→ : (Maybe A , nothing) →ᴮ (B , x) ↠ (A → B)
Maybe→ᴮ↠→ {A = A} {B = B} {x = x} = record
{ logical-equivalence = record
{ to = (Maybe A , nothing) →ᴮ (B , x) ↝⟨ proj₁ ⟩
(Maybe A → B) ↝⟨ _∘ inj₂ ⟩□
(A → B) □
; from = λ f → [ (λ _ → x) , f ] , refl x
}
; right-inverse-of = refl
}
-- Based maps from (Maybe A , nothing) are isomorphic to functions
-- (assuming extensionality).
Maybe→ᴮ↔→ :
∀ {A : Type a} {B : Type b} {x} →
(Maybe A , nothing) →ᴮ (B , x) ↝[ a ∣ b ] (A → B)
Maybe→ᴮ↔→ {A = A} {B} {x} = generalise-ext?
(_↠_.logical-equivalence Maybe→ᴮ↠→)
(λ ext →
refl
, (λ (f , eq) → Σ-≡,≡→≡
(apply-ext (E.good-ext ext)
[ (λ _ →
x ≡⟨ sym eq ⟩∎
f nothing ∎)
, (λ _ → refl _)
])
(subst (λ f → f nothing ≡ x)
(apply-ext (E.good-ext ext)
[ (λ _ → sym eq) , (λ _ → refl _) ])
(refl x) ≡⟨ E.subst-good-ext ext _ _ ⟩
subst (_≡ x) (sym eq) (refl x) ≡⟨ subst-trans _ ⟩
trans eq (refl x) ≡⟨ trans-reflʳ _ ⟩∎
eq ∎)))
-- A corollary.
Bool→ᴮ↔ :
∀ {A : Type a} {x} →
(Bool , true) →ᴮ (A , x) ↝[ lzero ∣ a ] A
Bool→ᴮ↔ {A = A} {x = x} ext =
(Bool , true) →ᴮ (A , x) ↝⟨ Maybe→ᴮ↔→ ext ⟩
(⊤ → A) ↔⟨ Π-left-identity ⟩□
A □
------------------------------------------------------------------------
-- Loop spaces
-- The loop space of a pointed type.
Ω : Pointed-type ℓ → Pointed-type ℓ
Ω (A , x) = (x ≡ x) , refl x
-- Iterated loop spaces.
--
-- The HoTT book uses Ω[ n ] ∘ Ω rather than Ω ∘ Ω[ n ]. I prefer
-- the following definition, because with the other definition the
-- type of Equality.Groupoid.Ω[2+n]-commutative would not be
-- well-formed. (See also Ω∘Ω[]≡Ω[]∘Ω.)
Ω[_] : ℕ → Pointed-type ℓ → Pointed-type ℓ
Ω[ zero ] = id
Ω[ suc n ] = Ω ∘ Ω[ n ]
-- A rearrangement lemma for Ω and Ω[_].
Ω∘Ω[]≡Ω[]∘Ω : ∀ n → Ω (Ω[ n ] P) ≡ Ω[ n ] (Ω P)
Ω∘Ω[]≡Ω[]∘Ω {P = P} zero =
Ω P ∎
Ω∘Ω[]≡Ω[]∘Ω {P = P} (suc n) =
Ω (Ω[ suc n ] P) ≡⟨⟩
Ω (Ω (Ω[ n ] P)) ≡⟨ cong Ω $ Ω∘Ω[]≡Ω[]∘Ω n ⟩
Ω (Ω[ n ] (Ω P)) ≡⟨⟩
Ω[ suc n ] (Ω P) ∎
-- Ω preserves based maps.
Ω-cong-→ᴮ : P →ᴮ Q → Ω P →ᴮ Ω Q
Ω-cong-→ᴮ {P = A , x} {Q = B , y} (to , to≡) =
(x ≡ x ↝⟨ cong to ⟩
to x ≡ to x ↔⟨ ≡⇒≃ $ cong₂ _≡_ to≡ to≡ ⟩□
y ≡ y □)
, (≡⇒→ (cong₂ _≡_ to≡ to≡) (cong to (refl x)) ≡⟨ cong (≡⇒→ (cong₂ _≡_ to≡ to≡)) $ cong-refl _ ⟩
≡⇒→ (cong₂ _≡_ to≡ to≡) (refl (to x)) ≡⟨ elim¹
(λ to≡ → ≡⇒→ (cong₂ _≡_ to≡ to≡) (refl (to x)) ≡
refl _)
(
≡⇒→ (cong₂ _≡_ (refl _) (refl _)) (refl _) ≡⟨ cong (λ eq → ≡⇒→ eq (refl _)) $ cong₂-refl _≡_ ⟩
≡⇒→ (refl _) (refl _) ≡⟨ cong (λ eq → _≃_.to eq (refl _)) ≡⇒↝-refl ⟩∎
refl _ ∎)
_ ⟩∎
refl y ∎)
-- Ω preserves based equivalences.
Ω-cong-≃ᴮ : P ≃ᴮ Q → Ω P ≃ᴮ Ω Q
Ω-cong-≃ᴮ {P = A , x} {Q = B , y} (A≃B , to≡) =
(x ≡ x ↝⟨ inverse $ E.≃-≡ A≃B ⟩
_≃_.to A≃B x ≡ _≃_.to A≃B x ↝⟨ ≡⇒↝ _ $ cong₂ _≡_ to≡ to≡ ⟩□
y ≡ y □)
, proj₂ (Ω-cong-→ᴮ (_≃_.to A≃B , to≡))
-- Ω[ n ] preserves based maps.
Ω[_]-cong-→ᴮ : ∀ n → P →ᴮ Q → Ω[ n ] P →ᴮ Ω[ n ] Q
Ω[ zero ]-cong-→ᴮ A→B = A→B
Ω[ suc n ]-cong-→ᴮ A→B = Ω-cong-→ᴮ (Ω[ n ]-cong-→ᴮ A→B)
-- Ω[ n ] preserves based equivalences.
Ω[_]-cong-≃ᴮ : ∀ n → P ≃ᴮ Q → Ω[ n ] P ≃ᴮ Ω[ n ] Q
Ω[ zero ]-cong-≃ᴮ A≃B = A≃B
Ω[ suc n ]-cong-≃ᴮ A≃B = Ω-cong-≃ᴮ (Ω[ n ]-cong-≃ᴮ A≃B)
-- ≃ᴮ→→ᴮ commutes with Ω-cong-≃ᴮ/Ω-cong-→ᴮ.
≃ᴮ→→ᴮ-Ω-cong-≃ᴮ :
(P≃Q : P ≃ᴮ Q) →
≃ᴮ→→ᴮ (Ω-cong-≃ᴮ P≃Q) ≡ Ω-cong-→ᴮ (≃ᴮ→→ᴮ P≃Q)
≃ᴮ→→ᴮ-Ω-cong-≃ᴮ _ = refl _
-- ≃ᴮ→→ᴮ commutes with Ω[ n ]-cong-≃ᴮ/Ω[ n ]-cong-→ᴮ.
≃ᴮ→→ᴮ-Ω[_]-cong-≃ᴮ :
∀ n →
≃ᴮ→→ᴮ (Ω[ n ]-cong-≃ᴮ P≃Q) ≡
Ω[ n ]-cong-→ᴮ (≃ᴮ→→ᴮ P≃Q)
≃ᴮ→→ᴮ-Ω[_]-cong-≃ᴮ {P≃Q = P≃Q} = λ where
zero → refl _
(suc n) →
≃ᴮ→→ᴮ (Ω-cong-≃ᴮ (Ω[ n ]-cong-≃ᴮ P≃Q)) ≡⟨⟩
Ω-cong-→ᴮ (≃ᴮ→→ᴮ (Ω[ n ]-cong-≃ᴮ P≃Q)) ≡⟨ cong Ω-cong-→ᴮ ≃ᴮ→→ᴮ-Ω[ n ]-cong-≃ᴮ ⟩
Ω-cong-→ᴮ (Ω[ n ]-cong-→ᴮ (≃ᴮ→→ᴮ P≃Q)) ∎
-- A lemma relating Ω-cong-→ᴮ and ↝ᴮ-refl.
proj₁-Ω-cong-→ᴮ-↝ᴮ-refl :
proj₁ (Ω-cong-→ᴮ ↝ᴮ-refl) p ≡ p
proj₁-Ω-cong-→ᴮ-↝ᴮ-refl {p = p} =
≡⇒→
(cong₂ _≡_
(cong (_$ _) (refl _))
(cong (_$ _) (refl _)))
(cong id p) ≡⟨ cong₂ ≡⇒→
(trans (cong₂ (cong₂ _≡_)
(cong-refl _)
(cong-refl _)) $
cong₂-refl _≡_)
(sym $ cong-id _) ⟩
≡⇒→ (refl _) p ≡⟨ cong (_$ _) ≡⇒→-refl ⟩∎
p ∎
-- A lemma relating Ω-cong-≃ᴮ and ↝ᴮ-refl.
proj₁-Ω-cong-≃ᴮ-↝ᴮ-refl :
_≃_.to (proj₁ (Ω-cong-≃ᴮ ↝ᴮ-refl)) p ≡ p
proj₁-Ω-cong-≃ᴮ-↝ᴮ-refl = proj₁-Ω-cong-→ᴮ-↝ᴮ-refl
-- A lemma relating Ω-cong-→ᴮ and trans.
Ω-cong-→ᴮ-trans :
proj₁ (Ω-cong-→ᴮ P→Q) (trans p q) ≡
trans (proj₁ (Ω-cong-→ᴮ P→Q) p)
(proj₁ (Ω-cong-→ᴮ P→Q) q)
Ω-cong-→ᴮ-trans {P→Q = to , to≡} {p = p} {q = q} =
≡⇒→ (cong₂ _≡_ to≡ to≡) (cong to (trans p q)) ≡⟨ cong (≡⇒→ (cong₂ _≡_ to≡ to≡)) $
cong-trans _ _ _ ⟩
≡⇒→ (cong₂ _≡_ to≡ to≡)
(trans (cong to p) (cong to q)) ≡⟨ lemma _ ⟩
trans
(trans (sym to≡)
(trans (cong to p) (cong to q)))
to≡ ≡⟨ trans (cong (flip trans _) $ sym $ trans-assoc _ _ _) $
trans-assoc _ _ _ ⟩
trans
(trans (sym to≡) (cong to p))
(trans (cong to q) to≡) ≡⟨ cong (trans _) $ sym $
trans--[trans-sym] _ _ ⟩
trans (trans (sym to≡) (cong to p))
(trans to≡ (trans (sym to≡) (trans (cong to q) to≡))) ≡⟨ trans (cong (trans _) $ cong (trans _) $ sym $ trans-assoc _ _ _) $
sym $ trans-assoc _ _ _ ⟩
trans
(trans (trans (sym to≡) (cong to p)) to≡)
(trans (trans (sym to≡) (cong to q)) to≡) ≡⟨ sym $ cong₂ trans (lemma _) (lemma _) ⟩∎
trans
(≡⇒→ (cong₂ _≡_ to≡ to≡) (cong to p))
(≡⇒→ (cong₂ _≡_ to≡ to≡) (cong to q)) ∎
where
lemma = λ p →
≡⇒→ (cong₂ _≡_ to≡ to≡) p ≡⟨⟩
≡⇒→ (trans (cong (_≡ _) to≡) (cong (_ ≡_) to≡)) p ≡⟨ cong (_$ p) $ ≡⇒↝-trans equivalence ⟩
≡⇒→ (cong (_ ≡_) to≡) (≡⇒→ (cong (_≡ _) to≡) p) ≡⟨ sym $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩
subst (_ ≡_) to≡ (≡⇒→ (cong (_≡ _) to≡) p) ≡⟨ sym trans-subst ⟩
trans (≡⇒→ (cong (_≡ _) to≡) p) to≡ ≡⟨ cong (flip trans _) $ sym $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩
trans (subst (_≡ _) to≡ p) to≡ ≡⟨ cong (flip trans _) subst-trans-sym ⟩∎
trans (trans (sym to≡) p) to≡ ∎
-- A lemma relating Ω-cong-≃ᴮ and trans.
Ω-cong-≃ᴮ-trans :
(P≃Q : P ≃ᴮ Q) →
_≃_.to (proj₁ (Ω-cong-≃ᴮ P≃Q)) (trans p q) ≡
trans (_≃_.to (proj₁ (Ω-cong-≃ᴮ P≃Q)) p)
(_≃_.to (proj₁ (Ω-cong-≃ᴮ P≃Q)) q)
Ω-cong-≃ᴮ-trans _ = Ω-cong-→ᴮ-trans
-- A lemma relating Ω[_]-cong-→ᴮ and trans.
Ω[1+_]-cong-→ᴮ-trans :
∀ n {p q} →
proj₁ (Ω[ 1 + n ]-cong-→ᴮ P→Q) (trans p q) ≡
trans (proj₁ (Ω[ 1 + n ]-cong-→ᴮ P→Q) p)
(proj₁ (Ω[ 1 + n ]-cong-→ᴮ P→Q) q)
Ω[1+ _ ]-cong-→ᴮ-trans = Ω-cong-→ᴮ-trans
-- A lemma relating Ω[_]-cong-≃ᴮ and trans.
Ω[1+_]-cong-≃ᴮ-trans :
∀ n {p q} (P≃Q : P ≃ᴮ Q) →
_≃_.to (proj₁ (Ω[ 1 + n ]-cong-≃ᴮ P≃Q)) (trans p q) ≡
trans (_≃_.to (proj₁ (Ω[ 1 + n ]-cong-≃ᴮ P≃Q)) p)
(_≃_.to (proj₁ (Ω[ 1 + n ]-cong-≃ᴮ P≃Q)) q)
Ω[1+ n ]-cong-≃ᴮ-trans P≃Q = Ω-cong-≃ᴮ-trans (Ω[ n ]-cong-≃ᴮ P≃Q)
-- A has h-level 1 + n iff the iterated loop space Ω[ n ] (A , x) is
-- contractible for every x : A.
+⇔∀contractible-Ω[] :
∀ n →
H-level (1 + n) A
⇔
((x : A) → Contractible (proj₁ $ Ω[ n ] (A , x)))
+⇔∀contractible-Ω[] {A = A} zero =
Is-proposition A ↝⟨ record { to = propositional⇒inhabited⇒contractible
; from = [inhabited⇒contractible]⇒propositional
} ⟩□
(A → Contractible A) □
+⇔∀contractible-Ω[] {A = A} (suc zero) =
Is-set A ↝⟨ 2+⇔∀1+≡ 0 ⟩
((x : A) → Is-proposition (x ≡ x)) ↝⟨ (∀-cong _ λ x → record { to = flip propositional⇒inhabited⇒contractible (refl x)
; from = mono₁ 0
}) ⟩□
((x : A) → Contractible (x ≡ x)) □
+⇔∀contractible-Ω[] {A = A} (suc (suc n)) =
H-level (3 + n) A ↝⟨ 2+⇔∀1+≡ (1 + n) ⟩
((x : A) → H-level (2 + n) (x ≡ x)) ↝⟨ (∀-cong _ λ _ → +⇔∀contractible-Ω[] (suc n)) ⟩
((x : A) (p : x ≡ x) →
Contractible (proj₁ $ Ω[ 1 + n ] ((x ≡ x) , p))) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → H-level-cong _ _ $ proj₁ $
Ω[ 1 + n ]-cong-≃ᴮ $ lemma _) ⟩
((x : A) → x ≡ x → Contractible (proj₁ $ Ω[ 1 + n ] (Ω (A , x)))) ↝⟨ (∀-cong _ λ x → _↠_.logical-equivalence $ inhabited→↠ (refl x)) ⟩
((x : A) → Contractible (proj₁ $ Ω[ 1 + n ] (Ω (A , x)))) ↝⟨ (∀-cong _ λ _ → ≡⇒↝ _ $ cong (Contractible ∘ proj₁) $ sym $
Ω∘Ω[]≡Ω[]∘Ω (1 + n)) ⟩□
((x : A) → Contractible (proj₁ $ Ω[ 2 + n ] (A , x))) □
where
lemma : (p : x ≡ x) → ((x ≡ x) , p) ≃ᴮ Ω (A , x)
lemma p = E.↔⇒≃ (inverse $ flip-trans-isomorphism p)
, (trans p (sym p) ≡⟨ trans-symʳ _ ⟩∎
refl _ ∎)
------------------------------------------------------------------------
-- Products
-- The product of two pointed types.
infixr 2 _×_
_×_ : Pointed-type a → Pointed-type b → Pointed-type (a ⊔ b)
(A , x) × (B , y) = (A P.× B) , (x , y)
-- The first projection.
proj₁ᴾ : (P × Q) →ᴮ P
proj₁ᴾ = proj₁ , refl _
-- The second projection.
proj₂ᴾ : (P × Q) →ᴮ Q
proj₂ᴾ = proj₂ , refl _
-- The operator _×_ preserves based maps and equivalences.
infixr 2 _×-cong-→ᴮ_ _×-cong-≃ᴮ_
_×-cong-→ᴮ_ : P₁ →ᴮ P₂ → Q₁ →ᴮ Q₂ → (P₁ × Q₁) →ᴮ (P₂ × Q₂)
(f₁ , eq₁) ×-cong-→ᴮ (f₂ , eq₂) =
(f₁ ×-cong f₂)
, cong₂ _,_ eq₁ eq₂
_×-cong-≃ᴮ_ : P₁ ≃ᴮ P₂ → Q₁ ≃ᴮ Q₂ → (P₁ × Q₁) ≃ᴮ (P₂ × Q₂)
(f₁ , eq₁) ×-cong-≃ᴮ (f₂ , eq₂) =
(f₁ ×-cong f₂)
, cong₂ _,_ eq₁ eq₂
-- Ω commutes with _×_.
Ω-× : Ω (P × Q) ≃ᴮ (Ω P × Ω Q)
Ω-× {P = A , x} {Q = B , y} =
((x , y) ≡ (x , y) ↝⟨ E.↔⇒≃ (inverse ≡×≡↔≡) ⟩□
x ≡ x P.× y ≡ y □)
, ((cong proj₁ (refl (x , y)) , cong proj₂ (refl (x , y))) ≡⟨ cong₂ _,_ (cong-refl _) (cong-refl _) ⟩∎
(refl x , refl y) ∎)
-- Ω[ n ] commutes with _×_.
Ω[_]-× : ∀ n → Ω[ n ] (P × Q) ≃ᴮ (Ω[ n ] P × Ω[ n ] Q)
Ω[_]-× {P = P} {Q = Q} = λ where
zero → P × Q □ᴮ
(suc n) →
Ω (Ω[ n ] (P × Q)) ↝ᴮ⟨ Ω-cong-≃ᴮ Ω[ n ]-× ⟩
Ω (Ω[ n ] P × Ω[ n ] Q) ↝ᴮ⟨ Ω-× ⟩□
Ω (Ω[ n ] P) × Ω (Ω[ n ] Q) □
-- A lemma relating Ω[ 1 ]-× and Ω-×.
Ω[1]-× : _≃_.to (proj₁ Ω[ 1 ]-×) p ≡ _≃_.to (proj₁ Ω-×) p
Ω[1]-× {p = p} =
_≃_.to (proj₁ Ω[ 1 ]-×) p ≡⟨⟩
_≃_.to (proj₁ Ω-×) (_≃_.to (proj₁ (Ω-cong-≃ᴮ ↝ᴮ-refl)) p) ≡⟨ cong (_≃_.to (proj₁ Ω-×)) proj₁-Ω-cong-≃ᴮ-↝ᴮ-refl ⟩∎
_≃_.to (proj₁ Ω-×) p ∎
-- A lemma relating Ω-× and trans.
Ω-×-trans :
_≃_.to (proj₁ Ω-×) (trans p q) ≡
Σ-zip trans trans
(_≃_.to (proj₁ Ω-×) p)
(_≃_.to (proj₁ Ω-×) q)
Ω-×-trans {p = p} {q = q} =
_≃_.to (proj₁ Ω-×) (trans p q) ≡⟨⟩
( cong proj₁ (trans p q)
, cong proj₂ (trans p q)
) ≡⟨ cong₂ _,_
(cong-trans _ _ _)
(cong-trans _ _ _) ⟩
( trans (cong proj₁ p) (cong proj₁ q)
, trans (cong proj₂ p) (cong proj₂ q)
) ≡⟨⟩
Σ-zip trans trans
(_≃_.to (proj₁ Ω-×) p)
(_≃_.to (proj₁ Ω-×) q) ∎
-- A lemma relating Ω[_]-× and trans.
Ω[1+_]-×-trans :
∀ n {p q : proj₁ (Ω[ suc n ] (P × Q))} →
_≃_.to (proj₁ Ω[ suc n ]-×) (trans p q) ≡
Σ-zip trans trans
(_≃_.to (proj₁ Ω[ suc n ]-×) p)
(_≃_.to (proj₁ Ω[ suc n ]-×) q)
Ω[1+ n ]-×-trans {p = p} {q = q} =
_≃_.to (proj₁ Ω-×)
(_≃_.to (proj₁ (Ω-cong-≃ᴮ Ω[ n ]-×)) (trans p q)) ≡⟨ cong (_≃_.to (proj₁ Ω-×)) $ Ω-cong-≃ᴮ-trans Ω[ n ]-× ⟩
_≃_.to (proj₁ Ω-×)
(trans (_≃_.to (proj₁ (Ω-cong-≃ᴮ Ω[ n ]-×)) p)
(_≃_.to (proj₁ (Ω-cong-≃ᴮ Ω[ n ]-×)) q)) ≡⟨ Ω-×-trans ⟩∎
Σ-zip trans trans
(_≃_.to (proj₁ Ω-×)
(_≃_.to (proj₁ (Ω-cong-≃ᴮ Ω[ n ]-×)) p))
(_≃_.to (proj₁ Ω-×)
(_≃_.to (proj₁ (Ω-cong-≃ᴮ Ω[ n ]-×)) q)) ∎
| {
"alphanum_fraction": 0.4085598612,
"avg_line_length": 33.7037037037,
"ext": "agda",
"hexsha": "b60c9ec329a75956d725274afc3d3a00360a85fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Pointed-type.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Pointed-type.agda",
"max_line_length": 137,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Pointed-type.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 8134,
"size": 17290
} |
------------------------------------------------------------------------
-- Parser indices
------------------------------------------------------------------------
module RecursiveDescent.Index where
open import Data.Bool
open import Data.Product.Record
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Data.Function
------------------------------------------------------------------------
-- Indices to the parser type
-- Does the parser accept empty strings?
Empty : Set
Empty = Bool
-- The proper left corners of the parser, represented as a tree. See
-- the definition of RecursiveDescent.(Coi|I)nductive.Internal.Parser.
data Corners : Set where
leaf : Corners
step : Corners -> Corners
node : Corners -> Corners -> Corners
Index : Set
Index = Empty × Corners
-- The parser type signature. The second argument is the result type.
ParserType : Set1
ParserType = Index -> Set -> Set
ParserType₁ : Set2
ParserType₁ = Index -> Set -> Set1
------------------------------------------------------------------------
-- Operations on indices
infixr 50 _·I_
infixr 40 _∣I_
0I : Index
0I = (false , leaf)
1I : Index
1I = (true , leaf)
_∣I_ : Index -> Index -> Index
i₁ ∣I i₂ = (proj₁ i₁ ∨ proj₁ i₂ , node (proj₂ i₁) (proj₂ i₂))
_·I_ : Index -> Index -> Index
i₁ ·I i₂ = ( proj₁ i₁ ∧ proj₁ i₂
, (if proj₁ i₁ then node (proj₂ i₁) (proj₂ i₂)
else step (proj₂ i₁))
)
------------------------------------------------------------------------
-- Testing indices for equality
infix 15 _Index-≟_ _Corners-≟_
private
drop-step : forall {c₁ c₂} -> step c₁ ≡ step c₂ -> c₁ ≡ c₂
drop-step refl = refl
drop-node₁ : forall {c₁ c₂ c₃ c₄} ->
node c₁ c₂ ≡ node c₃ c₄ -> c₁ ≡ c₃
drop-node₁ refl = refl
drop-node₂ : forall {c₁ c₂ c₃ c₄} ->
node c₁ c₂ ≡ node c₃ c₄ -> c₂ ≡ c₄
drop-node₂ refl = refl
_Corners-≟_ : Decidable {Corners} _≡_
leaf Corners-≟ leaf = yes refl
step c₁ Corners-≟ step c₂ with c₁ Corners-≟ c₂
step c₁ Corners-≟ step .c₁ | yes refl = yes refl
step c₁ Corners-≟ step c₂ | no ¬c₁≡c₂ = no (¬c₁≡c₂ ∘ drop-step)
node c₁ c₂ Corners-≟ node c₃ c₄ with c₁ Corners-≟ c₃ | c₂ Corners-≟ c₄
node c₁ c₂ Corners-≟ node .c₁ .c₂ | yes refl | yes refl = yes refl
node c₁ c₂ Corners-≟ node c₃ c₄ | no ¬c₁≡c₂ | _ = no (¬c₁≡c₂ ∘ drop-node₁)
node c₁ c₂ Corners-≟ node c₃ c₄ | _ | no ¬c₁≡c₂ = no (¬c₁≡c₂ ∘ drop-node₂)
leaf Corners-≟ step _ = no \()
leaf Corners-≟ node _ _ = no \()
step _ Corners-≟ leaf = no \()
step _ Corners-≟ node _ _ = no \()
node _ _ Corners-≟ leaf = no \()
node _ _ Corners-≟ step _ = no \()
_Index-≟_ : Decidable {Index} _≡_
i₁ Index-≟ i₂ with proj₁ i₁ ≟ proj₁ i₂
| proj₂ i₁ Corners-≟ proj₂ i₂
... | yes e₁≡e₂ | yes c₁≡c₂ = yes (cong₂ (_,_) e₁≡e₂ c₁≡c₂)
... | no ¬e₁≡e₂ | _ = no (¬e₁≡e₂ ∘ cong proj₁)
... | _ | no ¬c₁≡c₂ = no (¬c₁≡c₂ ∘ cong proj₂)
| {
"alphanum_fraction": 0.5322997416,
"avg_line_length": 30.3529411765,
"ext": "agda",
"hexsha": "2c5988d58da2151ec60fe433779ee8852f59a8f3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/Index.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/Index.agda",
"max_line_length": 86,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/Index.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 1044,
"size": 3096
} |
{-# OPTIONS --rewriting --without-K #-}
open import Agda.Primitive
open import Prelude
open import GSeTT.Syntax
open import GSeTT.Rules
{- Decidability of type cheking for the type theory for globular sets -}
module GSeTT.Dec-Type-Checking where
dec-⊢C : ∀ Γ → dec (Γ ⊢C)
dec-⊢T : ∀ Γ A → dec (Γ ⊢T A)
dec-⊢t : ∀ Γ A t → dec (Γ ⊢t t # A)
dec-⊢S : ∀ Δ Γ γ → dec (Δ ⊢S γ > Γ)
private
Γ+⊢→Γ⊢ : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → Γ ⊢C
Γ+⊢→Γ⊢ (cc Γ⊢ _ idp) = Γ⊢
Γ+⊢→x=l : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → x == length Γ
Γ+⊢→x=l (cc _ _ idp) = idp
Γ+⊢→Γ⊢A : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → Γ ⊢T A
Γ+⊢→Γ⊢A (cc _ Γ⊢A _) = Γ⊢A
Γ⊢t⇒u→Γ⊢A : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢T A
Γ⊢t⇒u→Γ⊢A (ar Γ⊢t:A Γ⊢u:A) = Γ⊢t:A→Γ⊢A Γ⊢t:A
Γ⊢t⇒u→Γ⊢t : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢t t # A
Γ⊢t⇒u→Γ⊢t (ar Γ⊢t:A Γ⊢u:A) = Γ⊢t:A
Γ⊢t⇒u→Γ⊢u : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢t u # A
Γ⊢t⇒u→Γ⊢u (ar Γ⊢t:A Γ⊢u:A) = Γ⊢u:A
Γ⊢x:A→x∈Γ : ∀ {Γ x A} → Γ ⊢t Var x # A → x # A ∈ Γ
Γ⊢x:A→x∈Γ (var _ x∈Γ) = x∈Γ
Δ⊢<>:Γ→Γ=nil : ∀ {Δ Γ} → Δ ⊢S nil > Γ → Γ == nil
Δ⊢<>:Γ→Γ=nil (es _) = idp
Δ⊢γ:⊘→γ=nil : ∀ {Δ γ} → Δ ⊢S γ > nil → γ == nil
Δ⊢γ:⊘→γ=nil (es _) = idp
Δ⊢γ+:Γ+→x=y : ∀ {Δ Γ x A γ y t} → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A)) → x == y
Δ⊢γ+:Γ+→x=y (sc _ _ _ idp) = idp
Δ⊢γ+:Γ+→Δ⊢t : ∀ {Δ Γ x A γ y t} → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A)) → Δ ⊢t t # (A [ γ ]Pre-Ty)
Δ⊢γ+:Γ+→Δ⊢t (sc _ _ Δ⊢t idp) = Δ⊢t
Δ⊢γ+:Γ+→Δ⊢γ : ∀ {Δ Γ x A γ y t} → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A)) → Δ ⊢S γ > Γ
Δ⊢γ+:Γ+→Δ⊢γ (sc Δ⊢γ:Γ _ _ idp) = Δ⊢γ:Γ
eqdec-Ty : eqdec Pre-Ty
eqdec-Tm : eqdec Pre-Tm
eqdec-Ty ∗ ∗ = inl idp
eqdec-Ty ∗ (⇒ _ _ _) = inr λ{()}
eqdec-Ty (⇒ _ _ _) ∗ = inr λ{()}
eqdec-Ty (⇒ A t u) (⇒ B t' u') with eqdec-Ty A B | eqdec-Tm t t' | eqdec-Tm u u'
... | inl idp | inl idp | inl idp = inl idp
... | inl idp | inl idp | inr u≠u' = inr λ p → u≠u' (snd (=⇒ p))
... | inl idp | inr t≠t' | _ = inr λ p → t≠t' (snd (fst (=⇒ p)))
... | inr A≠B | _ | _ = inr λ p → A≠B (fst (fst (=⇒ p)))
eqdec-Tm (Var x) (Var y) with eqdecℕ x y
... | inl idp = inl idp
... | inr x≠y = inr λ p → x≠y (=Var p)
dec-∈ : ∀ Γ x A → dec (x # A ∈ Γ)
dec-∈ nil x A = inr λ x → x
dec-∈ (Γ :: (y , B)) x A with (eqdecℕ y x) | (eqdec-Ty B A)
... | inl idp | inl idp = inl (inr (idp , idp))
... | inl idp | inr B≠A with dec-∈ Γ x A
... | inl x∈Γ = inl (inl x∈Γ)
... | inr x∉Γ = inr λ {(inl x∈Γ) → x∉Γ x∈Γ ; (inr (_ , A=B)) → B≠A (A=B ^)}
dec-∈ (Γ :: (y , B)) x A | inr y≠x | _ with dec-∈ Γ x A
... | inl x∈Γ = inl (inl x∈Γ)
... | inr x∉Γ = inr λ{ (inl x∈Γ) → x∉Γ x∈Γ ; (inr (x=y , _)) → y≠x (x=y ^)}
dec-⊢C nil = inl ec
dec-⊢C (Γ :: (x , A)) with dec-⊢C Γ | eqdecℕ x (length Γ) | dec-⊢T Γ A
... | inl Γ⊢ | inl idp | inl Γ⊢A = inl (cc Γ⊢ Γ⊢A idp)
... | inl _ | inl idp | inr Γ⊬A = inr λ Γ+⊢ → Γ⊬A (Γ+⊢→Γ⊢A Γ+⊢)
... | inl Γ⊢ | inr n≠l | _ = inr λ Γ+⊢ → n≠l (Γ+⊢→x=l Γ+⊢)
... | inr Γ⊬ | _ | _ = inr λ Γ+⊢ → Γ⊬ (Γ+⊢→Γ⊢ Γ+⊢)
dec-⊢T Γ ∗ with dec-⊢C Γ
... | inl Γ⊢ = inl (ob Γ⊢)
... | inr Γ⊬ = inr λ Γ⊢* → Γ⊬ (Γ⊢A→Γ⊢ Γ⊢*)
dec-⊢T Γ (⇒ A t u) with dec-⊢t Γ A t | dec-⊢t Γ A u
... | inl Γ⊢t:A | inl Γ⊢u:A = inl (ar Γ⊢t:A Γ⊢u:A)
... | inl _ | inr Γ⊬u:A = inr λ Γ⊢t⇒u → Γ⊬u:A (Γ⊢t⇒u→Γ⊢u Γ⊢t⇒u)
... | inr Γ⊬t:A | _ = inr λ Γ⊢t⇒u → Γ⊬t:A (Γ⊢t⇒u→Γ⊢t Γ⊢t⇒u)
dec-⊢t Γ A (Var x) with dec-⊢C Γ | dec-∈ Γ x A
... | inl Γ⊢ | inl x∈Γ = inl (var Γ⊢ x∈Γ)
... | inl _ | inr x∉Γ = inr λ Γ⊢x:A → x∉Γ (Γ⊢x:A→x∈Γ Γ⊢x:A)
... | inr Γ⊬ | _ = inr λ Γ⊢x:A → Γ⊬ (Γ⊢t:A→Γ⊢ Γ⊢x:A)
dec-⊢S Δ nil nil with dec-⊢C Δ
... | inl Δ⊢ = inl (es Δ⊢)
... | inr Δ⊬ = inr λ Δ⊢<>:⊘ → Δ⊬ (Δ⊢γ:Γ→Δ⊢ Δ⊢<>:⊘)
dec-⊢S Δ (Γ :: _) nil = inr λ Δ⊢<>:Γ → cons≠nil (Δ⊢<>:Γ→Γ=nil Δ⊢<>:Γ)
dec-⊢S Δ nil (γ :: a) = inr λ Δ⊢γ:⊘ → cons≠nil (Δ⊢γ:⊘→γ=nil Δ⊢γ:⊘)
dec-⊢S Δ (Γ :: (x , A)) (γ :: (y , t)) with dec-⊢S Δ Γ γ | dec-⊢C (Γ :: (x , A)) | dec-⊢t Δ (A [ γ ]Pre-Ty) t | eqdecℕ x y
... | inl Δ⊢γ:Γ | inl Γ+⊢ | inl Δ⊢t | inl idp = inl (sc Δ⊢γ:Γ Γ+⊢ Δ⊢t idp)
... | inl _ | inl _ | inl _ | inr x≠y = inr λ Δ⊢γ+:Γ+ → x≠y (Δ⊢γ+:Γ+→x=y Δ⊢γ+:Γ+)
... | inl _ | inl _ | inr Δ⊬t | _ = inr λ Δ⊢γ+:Γ+ → Δ⊬t (Δ⊢γ+:Γ+→Δ⊢t Δ⊢γ+:Γ+)
... | inl _ | inr Γ+⊬ | _ | _ = inr λ Δ⊢γ+:Γ+ → Γ+⊬ (Δ⊢γ:Γ→Γ⊢ Δ⊢γ+:Γ+)
... | inr Δ⊬γ | _ | _ | _ = inr λ Δ⊢γ+:Γ+ → Δ⊬γ (Δ⊢γ+:Γ+→Δ⊢γ Δ⊢γ+:Γ+)
| {
"alphanum_fraction": 0.3117850953,
"avg_line_length": 51.981981982,
"ext": "agda",
"hexsha": "522047ed567b63da5df3fa8f97311b93b30ee859",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "GSeTT/Dec-Type-Checking.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "GSeTT/Dec-Type-Checking.agda",
"max_line_length": 168,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "GSeTT/Dec-Type-Checking.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3048,
"size": 5770
} |
{-# OPTIONS --without-K --safe #-}
-- here we define the structure version of a cartesian category
module Categories.Category.Cartesian.Structure where
open import Level
open import Categories.Category
open import Categories.Category.Cartesian
open import Categories.Category.Monoidal
record CartesianCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
field
U : Category o ℓ e -- U for underlying
cartesian : Cartesian U
module U = Category U
module cartesian = Cartesian cartesian
open U public
open cartesian public
monoidalCategory : MonoidalCategory o ℓ e
monoidalCategory = record
{ U = U
; monoidal = monoidal
}
| {
"alphanum_fraction": 0.7130044843,
"avg_line_length": 23.8928571429,
"ext": "agda",
"hexsha": "acf4eb1f902106c8d6c027f237e9606a65e16ffc",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Cartesian/Structure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Cartesian/Structure.agda",
"max_line_length": 63,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Cartesian/Structure.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 161,
"size": 669
} |
module ClashingModuleImport where
X = TODO--I-haven't-fully-understood-this-one
| {
"alphanum_fraction": 0.8024691358,
"avg_line_length": 20.25,
"ext": "agda",
"hexsha": "52abbf0a3954df8b86bbb3346ce596121de683bd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/ClashingModuleImport.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/ClashingModuleImport.agda",
"max_line_length": 45,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/ClashingModuleImport.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 22,
"size": 81
} |
------------------------------------------------------------------------
-- Full β-reduction in Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Reduction.Full where
open import Data.Fin using (suc; zero)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.ExtraLemmas
open import Data.List using ([]; _∷_)
open import Data.Sum using ([_,_])
open import Data.Product using (_,_; ∃; _×_)
open import Function using (flip; _∘_)
open import Relation.Binary using (Setoid; Preorder)
import Relation.Binary.Construct.Closure.Equivalence as EqClos
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
using (ε; _◅_; gmap)
import Relation.Binary.Construct.Closure.Symmetric as SymClos
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)
open import Relation.Binary.Reduction
import Function.Equivalence as Equiv
open import FOmegaInt.Syntax
open Syntax
open Substitution using (_[_]; weaken)
----------------------------------------------------------------------
-- Full β-reduction and equality relations
infixl 9 _·₁_ _·₂_ _⊡₁_ _⊡₂_
infixr 7 _⇒₁_ _⇒₂_
infix 6 _⋯₁_ _⋯₂_
infix 5 _→β_ _Kd→β_
mutual
-- The compatible closure of a binary term relation.
data Compat (_∼_ : TRel Term) {n} : Term n → Term n → Set where
⌈_⌉ : ∀ {a₁ a₂} → a₁ ∼ a₂ → Compat _∼_ a₁ a₂
Π₁ : ∀ {k₁ k₂} → KdCompat _∼_ k₁ k₂ → ∀ a → Compat _∼_ (Π k₁ a) (Π k₂ a)
Π₂ : ∀ {a₁ a₂} k → Compat _∼_ a₁ a₂ → Compat _∼_ (Π k a₁) (Π k a₂)
_⇒₁_ : ∀ {a₁ a₂} → Compat _∼_ a₁ a₂ → ∀ b → Compat _∼_ (a₁ ⇒ b) (a₂ ⇒ b)
_⇒₂_ : ∀ {b₁ b₂} a → Compat _∼_ b₁ b₂ → Compat _∼_ (a ⇒ b₁) (a ⇒ b₂)
Λ₁ : ∀ {k₁ k₂} → KdCompat _∼_ k₁ k₂ → ∀ a → Compat _∼_ (Λ k₁ a) (Λ k₂ a)
Λ₂ : ∀ {a₁ a₂} k → Compat _∼_ a₁ a₂ → Compat _∼_ (Λ k a₁) (Λ k a₂)
ƛ₁ : ∀ {a₁ a₂} → Compat _∼_ a₁ a₂ → ∀ b → Compat _∼_ (ƛ a₁ b) (ƛ a₂ b)
ƛ₂ : ∀ {b₁ b₂} a → Compat _∼_ b₁ b₂ → Compat _∼_ (ƛ a b₁) (ƛ a b₂)
_·₁_ : ∀ {a₁ a₂} → Compat _∼_ a₁ a₂ → ∀ b → Compat _∼_ (a₁ · b) (a₂ · b)
_·₂_ : ∀ {b₁ b₂} a → Compat _∼_ b₁ b₂ → Compat _∼_ (a · b₁) (a · b₂)
_⊡₁_ : ∀ {a₁ a₂} → Compat _∼_ a₁ a₂ → ∀ b → Compat _∼_ (a₁ ⊡ b) (a₂ ⊡ b)
_⊡₂_ : ∀ {b₁ b₂} a → Compat _∼_ b₁ b₂ → Compat _∼_ (a ⊡ b₁) (a ⊡ b₂)
data KdCompat (_∼_ : TRel Term) {n} : Kind Term n → Kind Term n → Set where
_⋯₁_ : ∀ {a₁ a₂} → Compat _∼_ a₁ a₂ → ∀ b → KdCompat _∼_ (a₁ ⋯ b) (a₂ ⋯ b)
_⋯₂_ : ∀ {b₁ b₂} a → Compat _∼_ b₁ b₂ → KdCompat _∼_ (a ⋯ b₁) (a ⋯ b₂)
Π₁ : ∀ {j₁ j₂} → KdCompat _∼_ j₁ j₂ → ∀ b → KdCompat _∼_ (Π j₁ b) (Π j₂ b)
Π₂ : ∀ {k₁ k₂} k → KdCompat _∼_ k₁ k₂ → KdCompat _∼_ (Π k k₁) (Π k k₂)
-- β-contraction.
data BetaCont {n} : Term n → Term n → Set where
cont-Tp· : ∀ k a b → BetaCont ((Λ k a) · b) (a [ b ])
cont-Tm· : ∀ a b c → BetaCont ((ƛ a b) · c) (b [ c ])
cont-⊡ : ∀ k a b → BetaCont ((Λ k a) ⊡ b) (a [ b ])
-- One-step β-reduction.
_→β_ : TRel Term
_→β_ = Compat BetaCont
_Kd→β_ : TRel (Kind Term)
_Kd→β_ = KdCompat BetaCont
-- Full β-reduction and equality.
β-reduction : Reduction Term
β-reduction = record { _→1_ = _→β_ }
β-reductionKind : Reduction (Kind Term)
β-reductionKind = record { _→1_ = _Kd→β_ }
open Reduction β-reduction public hiding (_→1_)
renaming (_→*_ to _→β*_; _↔_ to _≡β_)
open Reduction β-reductionKind public hiding (_→1_)
renaming (_→*_ to _Kd→β*_; _↔_ to _Kd≡β_)
----------------------------------------------------------------------
-- Simple properties of the β-reductions/equalities
-- Inclusions.
→β⇒→β* = →1⇒→* β-reduction
→β*⇒≡β = →*⇒↔ β-reduction
→β⇒≡β = →1⇒↔ β-reduction
-- Reduction is a preorders.
→β*-preorder = →*-preorder β-reduction
Kd→β*-preorder = →*-preorder β-reductionKind
-- Preorder reasoning for reduction.
module →β*-Reasoning = →*-Reasoning β-reduction
module Kd→β*-Reasoning = →*-Reasoning β-reductionKind
-- Raw terms and kinds together with β-equality form setoids.
≡β-setoid = ↔-setoid β-reduction
Kd≡β-setoid = ↔-setoid β-reductionKind
-- Equational reasoning for the equality.
module ≡β-Reasoning = ↔-Reasoning β-reduction
module Kd≡β-Reasoning = ↔-Reasoning β-reductionKind
-- Multistep and equality congruence lemmas.
module CongLemmas (_∼_ : TRel Term) where
private
reduction : Reduction Term
reduction = record { _→1_ = Compat _∼_ }
reductionKd : Reduction (Kind Term)
reductionKd = record { _→1_ = KdCompat _∼_ }
module O {n} = Preorder (→*-preorder reduction n)
module S {n} = Setoid (↔-setoid reduction n)
module OK {n} = Preorder (→*-preorder reductionKd n)
module SK {n} = Setoid (↔-setoid reductionKd n)
open Reduction reduction
open Reduction reductionKd using () renaming (_→*_ to _Kd→*_; _↔_ to _Kd↔_)
-- A Congruence lemma for _⌞∙⌟_.
→1-⌞∙⌟₁ : ∀ {n} {a₁ a₂ : Term n} → a₁ →1 a₂ → ∀ bs → a₁ ⌞∙⌟ bs →1 a₂ ⌞∙⌟ bs
→1-⌞∙⌟₁ a₁∼a₂ [] = a₁∼a₂
→1-⌞∙⌟₁ a₁∼a₂ (b ∷ bs) = →1-⌞∙⌟₁ (a₁∼a₂ ·₁ b) bs
-- Multistep congruence lemmas for transitive closures.
→*-Π : ∀ {n} {k₁ k₂ : Kind Term n} {a₁ a₂} →
k₁ Kd→* k₂ → a₁ →* a₂ → Π k₁ a₁ →* Π k₂ a₂
→*-Π {a₁ = a₁} k₁→*k₂ a₁→*a₂ =
O.trans (gmap (flip Π a₁) (λ j→k → Π₁ j→k a₁) k₁→*k₂)
(gmap (Π _) (Π₂ _) a₁→*a₂)
→*-⇒ : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} →
a₁ →* a₂ → b₁ →* b₂ → a₁ ⇒ b₁ →* a₂ ⇒ b₂
→*-⇒ {b₁ = b₁} a₁→*a₂ b₁→*b₂ =
O.trans (gmap (_⇒ b₁) (_⇒₁ b₁) a₁→*a₂) (gmap (_ ⇒_) (_ ⇒₂_) b₁→*b₂)
→*-Λ : ∀ {n} {k₁ k₂ : Kind Term n} {a₁ a₂} →
k₁ Kd→* k₂ → a₁ →* a₂ → Λ k₁ a₁ →* Λ k₂ a₂
→*-Λ {a₁ = a₁} k₁→*k₂ a₁→*a₂ =
O.trans (gmap (flip Λ a₁) (λ j→k → Λ₁ j→k a₁) k₁→*k₂)
(gmap (Λ _) (Λ₂ _) a₁→*a₂)
→*-ƛ : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} →
a₁ →* a₂ → b₁ →* b₂ → ƛ a₁ b₁ →* ƛ a₂ b₂
→*-ƛ {b₁ = b₁} a₁→*a₂ b₁→*b₂ =
O.trans (gmap (flip ƛ b₁) (flip ƛ₁ b₁) a₁→*a₂) (gmap (ƛ _) (ƛ₂ _) b₁→*b₂)
→*-· : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} →
a₁ →* a₂ → b₁ →* b₂ → a₁ · b₁ →* a₂ · b₂
→*-· {b₁ = b₁} a₁→*a₂ b₁→*b₂ =
O.trans (gmap (_· b₁) (_·₁ b₁) a₁→*a₂) (gmap (_ ·_) (_ ·₂_) b₁→*b₂)
→*-⊡ : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} →
a₁ →* a₂ → b₁ →* b₂ → a₁ ⊡ b₁ →* a₂ ⊡ b₂
→*-⊡ {b₁ = b₁} a₁→*a₂ b₁→*b₂ =
O.trans (gmap (_⊡ b₁) (_⊡₁ b₁) a₁→*a₂) (gmap (_ ⊡_) (_ ⊡₂_) b₁→*b₂)
Kd→*-⋯ : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} →
a₁ →* a₂ → b₁ →* b₂ → a₁ ⋯ b₁ Kd→* a₂ ⋯ b₂
Kd→*-⋯ {b₁ = b₁} a₁→*a₂ b₁→*b₂ =
OK.trans (gmap (_⋯ b₁) (_⋯₁ b₁) a₁→*a₂) (gmap (_ ⋯_) (_ ⋯₂_) b₁→*b₂)
Kd→*-Π : ∀ {n} {j₁ j₂ : Kind Term n} {k₁ k₂} →
j₁ Kd→* j₂ → k₁ Kd→* k₂ → Π j₁ k₁ Kd→* Π j₂ k₂
Kd→*-Π {k₁ = k₁} j₁→*j₂ k₁→*k₂ =
OK.trans (gmap (flip Π k₁) (λ j→k → Π₁ j→k k₁) j₁→*j₂)
(gmap (Π _) (Π₂ _) k₁→*k₂)
→*-⌞∙⌟₁ : ∀ {n} {a₁ a₂ : Term n} → a₁ →* a₂ → ∀ bs → a₁ ⌞∙⌟ bs →* a₂ ⌞∙⌟ bs
→*-⌞∙⌟₁ a₁→*a₂ bs = gmap (_⌞∙⌟ bs) (flip →1-⌞∙⌟₁ bs) a₁→*a₂
-- Congruence lemmas for equivalences closures.
↔-Π : ∀ {n} {k₁ k₂ : Kind Term n} {a₁ a₂} →
k₁ Kd↔ k₂ → a₁ ↔ a₂ → Π k₁ a₁ ↔ Π k₂ a₂
↔-Π {a₁ = a₁} k₁↔k₂ a₁↔a₂ =
S.trans (EqClos.gmap (flip Π a₁) (λ j→k → Π₁ j→k a₁) k₁↔k₂)
(EqClos.gmap (Π _) (Π₂ _) a₁↔a₂)
↔-⇒ : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} →
a₁ ↔ a₂ → b₁ ↔ b₂ → a₁ ⇒ b₁ ↔ a₂ ⇒ b₂
↔-⇒ {b₁ = b₁} a₁↔a₂ b₁↔b₂ =
S.trans (EqClos.gmap (_⇒ b₁) (_⇒₁ b₁) a₁↔a₂)
(EqClos.gmap (_ ⇒_) (_ ⇒₂_) b₁↔b₂)
↔-Λ : ∀ {n} {k₁ k₂ : Kind Term n} {a₁ a₂} →
k₁ Kd↔ k₂ → a₁ ↔ a₂ → Λ k₁ a₁ ↔ Λ k₂ a₂
↔-Λ {a₁ = a₁} k₁↔k₂ a₁↔a₂ =
S.trans (EqClos.gmap (flip Λ a₁) (λ j→k → Λ₁ j→k a₁) k₁↔k₂)
(EqClos.gmap (Λ _) (Λ₂ _) a₁↔a₂)
↔-ƛ : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} →
a₁ ↔ a₂ → b₁ ↔ b₂ → ƛ a₁ b₁ ↔ ƛ a₂ b₂
↔-ƛ {b₁ = b₁} a₁↔a₂ b₁↔b₂ =
S.trans (EqClos.gmap (flip ƛ b₁) (flip ƛ₁ b₁) a₁↔a₂)
(EqClos.gmap (ƛ _) (ƛ₂ _) b₁↔b₂)
↔-· : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} →
a₁ ↔ a₂ → b₁ ↔ b₂ → a₁ · b₁ ↔ a₂ · b₂
↔-· {b₁ = b₁} a₁↔a₂ b₁↔b₂ =
S.trans (EqClos.gmap (_· b₁) (_·₁ b₁) a₁↔a₂)
(EqClos.gmap (_ ·_) (_ ·₂_) b₁↔b₂)
↔-⊡ : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} →
a₁ ↔ a₂ → b₁ ↔ b₂ → a₁ ⊡ b₁ ↔ a₂ ⊡ b₂
↔-⊡ {b₁ = b₁} a₁↔a₂ b₁↔b₂ =
S.trans (EqClos.gmap (_⊡ b₁) (_⊡₁ b₁) a₁↔a₂)
(EqClos.gmap (_ ⊡_) (_ ⊡₂_) b₁↔b₂)
Kd↔-⋯ : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} →
a₁ ↔ a₂ → b₁ ↔ b₂ → a₁ ⋯ b₁ Kd↔ a₂ ⋯ b₂
Kd↔-⋯ {b₁ = b₁} a₁↔a₂ b₁↔b₂ =
SK.trans (EqClos.gmap (_⋯ b₁) (_⋯₁ b₁) a₁↔a₂)
(EqClos.gmap (_ ⋯_) (_ ⋯₂_) b₁↔b₂)
Kd↔-Π : ∀ {n} {j₁ j₂ : Kind Term n} {k₁ k₂} →
j₁ Kd↔ j₂ → k₁ Kd↔ k₂ → Π j₁ k₁ Kd↔ Π j₂ k₂
Kd↔-Π {k₁ = k₁} j₁↔j₂ k₁↔k₂ =
SK.trans (EqClos.gmap (flip Π k₁) (λ j→k → Π₁ j→k k₁) j₁↔j₂)
(EqClos.gmap (Π _) (Π₂ _) k₁↔k₂)
↔-⌞∙⌟₁ : ∀ {n} {a₁ a₂ : Term n} → a₁ ↔ a₂ → ∀ bs → a₁ ⌞∙⌟ bs ↔ a₂ ⌞∙⌟ bs
↔-⌞∙⌟₁ a₁↔a₂ bs = EqClos.gmap (_⌞∙⌟ bs) (flip →1-⌞∙⌟₁ bs) a₁↔a₂
open CongLemmas BetaCont public renaming
( →1-⌞∙⌟₁ to →β-⌞∙⌟₁
; →*-Π to →β*-Π
; →*-⇒ to →β*-⇒
; →*-Λ to →β*-Λ
; →*-ƛ to →β*-ƛ
; →*-· to →β*-·
; →*-⊡ to →β*-⊡
; Kd→*-⋯ to Kd→β*-⋯
; Kd→*-Π to Kd→β*-Π
; →*-⌞∙⌟₁ to →β*-⌞∙⌟₁
; ↔-Π to ≡β-Π
; ↔-⇒ to ≡β-⇒
; ↔-Λ to ≡β-Λ
; ↔-ƛ to ≡β-ƛ
; ↔-· to ≡β-·
; ↔-⊡ to ≡β-⊡
; Kd↔-⋯ to Kd≡β-⋯
; Kd↔-Π to Kd≡β-Π
; ↔-⌞∙⌟₁ to ≡β-⌞∙⌟₁
)
| {
"alphanum_fraction": 0.4968480773,
"avg_line_length": 35.5149253731,
"ext": "agda",
"hexsha": "c925abaa1c16ef9d5e19b16a1e19826ddbdb9fc2",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z",
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Reduction/Full.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Reduction/Full.agda",
"max_line_length": 80,
"max_stars_count": 12,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Reduction/Full.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z",
"num_tokens": 4941,
"size": 9518
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Prod.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
-- If × is defined using Σ then transp/hcomp will be compute
-- "negatively", that is, they won't reduce unless we project out the
-- first of second component. This is not always what we want so the
-- default implementation is done using a datatype which computes
-- positively.
private
variable
ℓ ℓ' : Level
data _×_ (A : Type ℓ) (B : Type ℓ') : Type (ℓ-max ℓ ℓ') where
_,_ : A → B → A × B
infixr 5 _×_
proj₁ : {A : Type ℓ} {B : Type ℓ'} → A × B → A
proj₁ (x , _) = x
proj₂ : {A : Type ℓ} {B : Type ℓ'} → A × B → B
proj₂ (_ , x) = x
-- We still export the version using Σ
_×Σ_ : (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ')
A ×Σ B = Σ A (λ _ → B)
infixr 5 _×Σ_
private
variable
A : Type ℓ
B C : A → Type ℓ
intro-× : (∀ a → B a) → (∀ a → C a) → ∀ a → B a × C a
intro-× f g a = f a , g a
map-× : {B : Type ℓ} {D : B → Type ℓ'}
→ (∀ a → C a) → (∀ b → D b) → (x : A × B) → C (proj₁ x) × D (proj₂ x)
map-× f g = intro-× (f ∘ proj₁) (g ∘ proj₂)
| {
"alphanum_fraction": 0.5799828914,
"avg_line_length": 24.3541666667,
"ext": "agda",
"hexsha": "be96b0072e931b42e33bf6086cff753679e8ce85",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/Prod/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/Prod/Base.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/Prod/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 456,
"size": 1169
} |
{-# OPTIONS --safe --no-qualified-instances #-}
-- Bytecode; i.e., instruction sequences;
-- agnostic about the exact instructions, but opiniated about labels
open import Data.List hiding (concat)
module JVM.Syntax.Bytecode {ℓ} (T : Set ℓ) (I : T → T → List T → Set ℓ) where
open import Level
open import Function using (_∘_)
open import Data.Unit
open import Relation.Unary hiding (_∈_; Empty)
open import Relation.Binary.PropositionalEquality
open import Relation.Ternary.Data.ReflexiveTransitive as Star
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax
open import Relation.Ternary.Data.Bigplus
open import Relation.Ternary.Data.IndexedMonoid
open import Data.Sum
open import Data.Product
open import JVM.Model T
open import JVM.Syntax.Labeling T
data Code : T → T → Pred Intf ℓ where
labeled : ∀ {τ₁ τ₂} → ∀[ Up (Labeling τ₁) ✴ Down (I τ₁ τ₂) ⇒ Code τ₁ τ₂ ]
instr : ∀ {τ₁ τ₂} → ∀[ Down (I τ₁ τ₂) ⇒ Code τ₁ τ₂ ]
getInstr : ∀ {τ₁ τ₂} → ∀[ Code τ₁ τ₂ ⇒ Down (I τ₁ τ₂) ✴ Code τ₁ τ₂ ]
getInstr c@(labeled (l ∙⟨ σ ⟩ i@(↓ _))) =
let (i ∙⟨ σ ⟩ l∙i) = ✴-swap (✴-assocₗ (l ∙⟨ σ ⟩ copy i))
in i ∙⟨ σ ⟩ labeled l∙i
getInstr (instr i@(↓ _)) = i ∙⟨ ∙-copy i ⟩ (instr i)
module _ where
open Disjoint using (bags; bags-isMonoid; bags-isSemigroup; bags-isCommutative; empty-unique)
label : ∀ {τ₁ τ₂} → ∀[ Up (Labeling τ₁) ⇒ Code τ₁ τ₂ ─✴ Code τ₁ τ₂ ]
label l ⟨ σ ⟩ instr i = labeled (l ∙⟨ σ ⟩ i)
label l ⟨ σ ⟩ labeled (l₂∙i) with ✴-assocₗ (l ∙⟨ σ ⟩ l₂∙i)
... | l₁∙l₂ ∙⟨ σ′ ⟩ i with upMap (↑ (✴-curry (arrow concat))) ⟨ ∙-idˡ ⟩ zipUp l₁∙l₂
... | ls = labeled (ls ∙⟨ σ′ ⟩ i)
⟪_↝_⟫ : T → T → Pred Intf ℓ
⟪ τ₁ ↝ τ₂ ⟫ = Star Code τ₁ τ₂
⟪_↝_⟫+ : T → T → Pred Intf ℓ
⟪ τ₁ ↝ τ₂ ⟫+ = Plus Code τ₁ τ₂
⟪_↜_⟫ : T → T → Pred Intf ℓ
⟪ τ₂ ↜ τ₁ ⟫ = Star (flip Code) τ₁ τ₂
where open import Function using (flip)
module _ (nop : ∀ {τ} → I τ τ []) where
label-start : ∀ {τ₁ τ₂} → ∀[ Up (Labeling τ₁) ⇒ ⟪ τ₁ ↝ τ₂ ⟫ ─✴ ⟪ τ₁ ↝ τ₂ ⟫ ]
label-start l ⟨ σ ⟩ nil = labeled (l ∙⟨ σ ⟩ ↓ nop) ▹⟨ ∙-idʳ ⟩ nil
label-start l ⟨ σ ⟩ (i ▹⟨ σ₂ ⟩ is) =
let _ , σ₃ , σ₄ = ∙-assocₗ σ σ₂ in
(label l ⟨ σ₃ ⟩ i) ▹⟨ σ₄ ⟩ is
| {
"alphanum_fraction": 0.6154891304,
"avg_line_length": 35.0476190476,
"ext": "agda",
"hexsha": "7016b24ea32f20845ebebba870a222e8507cd5a1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/JVM/Syntax/Bytecode.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/JVM/Syntax/Bytecode.agda",
"max_line_length": 95,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/JVM/Syntax/Bytecode.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 911,
"size": 2208
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Colimit where
open import Cubical.HITs.Colimit.Base public
open import Cubical.HITs.Colimit.Examples public
| {
"alphanum_fraction": 0.7777777778,
"avg_line_length": 30,
"ext": "agda",
"hexsha": "65d71f2060e0671cefcc9fb7f12fb6502634e095",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Colimit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Colimit.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Colimit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 49,
"size": 180
} |
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Presheaves.Facts.Exponential where
open import Data.Product using (_,_)
open import Relation.Binary using (Setoid)
open import Cats.Category
open import Cats.Category.Fun using (Fun ; ≈-intro ; ≈-elim)
open import Cats.Category.Presheaves using (Presheaves)
open import Cats.Category.Setoids as Setoids using (≈-intro ; ≈-elim)
open import Cats.Functor using (Functor)
open import Cats.Trans using (Trans ; component ; natural)
import Cats.Category.Fun.Facts.Product as Product
import Cats.Category.Setoids.Facts
open Functor
open HasBinaryProducts {{...}}
open Setoids._⇒_
module _ {l} {ℂ : Category l l l} where
private
module ℂ = Category ℂ
open Category (Presheaves ℂ l l)
module $ (F : Obj) {x : Category.Obj ℂ} = Setoid (fobj F x)
-- Could replace this with transposeBifunctor₂ HomF, but that would introduce
-- even more redundant compositions with the identity.
y : ℂ.Obj → Obj
y d = record
{ fobj = λ c → ℂ.Hom c d
; fmap = λ f → record
{ arr = (ℂ._∘ f)
; resp = ℂ.∘-resp-l
}
; fmap-resp = λ eq₁ → ≈-intro λ eq₂ → ℂ.∘-resp eq₂ eq₁
; fmap-id = ≈-intro λ eq → ℂ.≈.trans ℂ.id-r eq
; fmap-∘ = ≈-intro λ eq → ℂ.≈.trans ℂ.assoc (ℂ.∘-resp-l eq)
}
_↝_ : (F G : Obj) → Obj
F ↝ G = record
{ fobj = λ d → Hom (y d × F) G
; fmap = λ {d} {d′} f → record
{ arr = λ α → record
{ component = λ d → record
{ arr = λ where
(g , c) → arr (component α d) (f ℂ.∘ g , c)
; resp = λ where
(eq₁ , eq₂) → resp (component α d) (ℂ.∘-resp-r eq₁ , eq₂)
}
; natural = λ {e} {e′} {g} → ≈-intro λ where
{h , c} {h′ , c′} (h≈h′ , c≈c′) →
$.trans G (resp (component α e′) (ℂ.unassoc , $.refl F))
(≈-elim (natural α) (ℂ.∘-resp-r h≈h′ , c≈c′))
}
; resp = λ α≈β → ≈-intro (≈-intro λ where
(f≈g , h≈i) → ≈-elim (≈-elim α≈β) (ℂ.∘-resp-r f≈g , h≈i))
}
; fmap-resp = λ f≈g → ≈-intro λ α≈β → ≈-intro (≈-intro λ where
(c≈d , h≈i) → ≈-elim (≈-elim α≈β) ((ℂ.∘-resp f≈g c≈d) , h≈i))
; fmap-id = ≈-intro λ α≈β → ≈-intro (≈-intro λ where
(c≈d , h≈i) → ≈-elim (≈-elim α≈β) ((ℂ.≈.trans ℂ.id-l c≈d) , h≈i))
; fmap-∘ = ≈-intro λ α≈β → ≈-intro (≈-intro λ where
(c≈d , h≈i) → ≈-elim (≈-elim α≈β) ((ℂ.≈.trans ℂ.unassoc (ℂ.∘-resp-r c≈d)) , h≈i))
}
Eval : ∀ F G → F ↝ G × F ⇒ G
Eval F G = record
{ component = λ c → record
{ arr = λ where
(α , x) → arr (component α c) (ℂ.id , x)
; resp = λ where
(α≈β , f≈g) → ≈-elim (≈-elim α≈β) (ℂ.≈.refl , f≈g)
}
; natural = λ {c} {d} → ≈-intro λ where
{α , f} {β , g} (α≈β , f≈g) →
$.trans G
(≈-elim (≈-elim α≈β)
(ℂ.≈.trans ℂ.id-r (ℂ.≈.sym ℂ.id-l) , resp (fmap F _) f≈g))
(≈-elim (natural β) (ℂ.≈.refl , $.refl F))
}
Curry : ∀ E F G → E × F ⇒ G → E ⇒ F ↝ G
Curry E F G α = record
{ component = λ d → record
{ arr = λ x → record
{ component = λ c → record
{ arr = λ where
(f , y) → arr (component α c) (arr (fmap E f) x , y)
; resp = λ where
(c≈d , x≈y) → resp (component α c)
(≈-elim (fmap-resp E c≈d) ($.refl E) , x≈y)
}
; natural = ≈-intro λ where
(f≈g , x≈y) → $.trans G
(resp (component α _)
(($.sym E (≈-elim (fmap-∘ E) ($.refl E))) , ($.refl F)))
(≈-elim (natural α) (≈-elim (fmap-resp E f≈g) ($.refl E) , x≈y))
}
; resp = λ x≈y → ≈-intro (≈-intro λ where
(f≈g , c≈d) → resp (component α _) ((≈-elim (fmap-resp E f≈g) x≈y) , c≈d))
}
; natural = ≈-intro λ x≈y → ≈-intro (≈-intro λ where
(f≈g , c≈d) → resp (component α _)
( $.trans E (≈-elim (fmap-∘ E) x≈y)
(≈-elim (fmap-resp E (ℂ.∘-resp-r f≈g)) ($.refl E))
, c≈d ))
}
instance
hasExponentials : HasExponentials (Presheaves ℂ l l)
hasExponentials = record
{ hasBinaryProducts = Product.hasBinaryProducts
; _↝′_ = λ F G → record
{ Cᴮ = F ↝ G
; eval = Eval F G
; curry′ = λ {E} α → record
{ arr = Curry E F G α
; prop = ≈-intro (≈-intro λ where
(x≈y , u≈v) → resp (component α _) (≈-elim (fmap-id E) x≈y , u≈v))
; unique = λ {α} α≈ → ≈-intro (≈-intro (λ x≈y → ≈-intro (≈-intro (λ where
(f≈g , u≈v) → $.trans G
(≈-elim (≈-elim (≈.sym α≈)) (≈-elim (fmap-resp E f≈g) ($.refl E) , u≈v))
($.trans G
(≈-elim (≈-elim (≈-elim (natural α) x≈y)) (ℂ.≈.refl , ($.refl F)))
(resp (component (arr (component α _) _) _) (ℂ.id-r , ($.refl F))))))))
}
}
}
| {
"alphanum_fraction": 0.4726899384,
"avg_line_length": 35.2898550725,
"ext": "agda",
"hexsha": "3d4b4dfc4a4de3253c756cdef2b4deaee7f96ee1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Category/Presheaves/Facts/Exponential.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Category/Presheaves/Facts/Exponential.agda",
"max_line_length": 89,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Category/Presheaves/Facts/Exponential.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 1984,
"size": 4870
} |
{-# OPTIONS --copatterns --sized-types #-}
module SDE where
open import Size
open import Function
open import Data.Product as Prod renaming (Σ to ⨿)
open import Data.Sum as Sum
open import Streams
-- | Signatures
record Sig : Set₁ where
field
∥_∥ : Set
ar : ∥_∥ → Set
open Sig public
-- | Extension of signature Σ, on objects
⟪_⟫ : Sig → Set → Set
⟪ Σ ⟫ X = ⨿ ∥ Σ ∥ λ f → (ar Σ f → X)
-- | Extension of signature Σ, on morphisms
⟪_⟫₁ : (Σ : Sig) {A B : Set} → (A → B) → ⟪ Σ ⟫ A → ⟪ Σ ⟫ B
⟪_⟫₁ Σ f (s , α) = (s , f ∘ α)
-- | Terms over a given signature together with some basic operations.
module Terms (Σ : Sig) where
-- | Terms built from the signature Σ with variables in V.
data T (V : Set) : Set where
sup : ⟪ Σ ⟫ (T V) ⊎ V → T V
-- | Recursion on terms.
rec : ∀{V X} → (f : ⟪ Σ ⟫ X ⊎ V → X) → T V → X
rec f (sup (inj₁ (s , α))) = f (inj₁ (s , λ i → rec f (α i)))
rec f (sup (inj₂ y)) = f (inj₂ y)
-- | Functor T, on morphisms
T₁ : ∀ {V W} → (V → W) → T V → T W
T₁ f = rec (sup ∘ Sum.map id f)
-- | Injection of variables into terms.
η : ∀{V} → V → T V
η = sup ∘ inj₂
-- | Interpretation of SDEs that use the given signature and set of variables.
module SDE-Impl (Σ : Sig) (X : Set) where
open Terms Σ
-- | Variables for streams and their derivatives.
V : Set
V = X ⊎ X
-- | An SDE consists of an assignment of outputs and terms for
-- each symbol in the signature. Note that both output and the
-- terms may depend on the outputs of the arguments of the corresponding
-- symbol.
SDE : Set → Set
SDE A = (f : ∥ Σ ∥) → ((ar Σ f → A) → A) × ((ar Σ f → A) → T V)
-- | Interpretation of terms over the symbols defined by the given SDE
-- as streams.
⟦_⟧₁ : ∀ {A} → SDE A → ((f : ∥ Σ ∥) → ar Σ f → X) → T V →
∀{i} → (X → Stream {i} A) → ∀ {j : Size< i} → Stream {j} A
-- | Interpretation of symbols defined by the given SDE as streams.
⟦_⟧ : ∀ {A} → SDE A → ((f : ∥ Σ ∥) → ar Σ f → X) → (f : ∥ Σ ∥) →
∀{i} → (X → Stream {i} A) → Stream {i} A
hd (⟦ E ⟧ vars f vals) = f-out (hd ∘ vals ∘ vars f)
where f-out = proj₁ (E f)
tl (⟦ E ⟧ vars f vals) = ⟦ E ⟧₁ vars (f-step (hd ∘ vals ∘ vars f)) vals
where f-step = proj₂ (E f)
-- Interpret terms by induction. This map is assumed to be called from the
-- tail case of ⟦_⟧.
-- For a symbol, we just use its interpretation but on the tails of the
-- argument streams
⟦ E ⟧₁ vars (sup (inj₁ (f , α))) vals = ⟦ E ⟧ vars f (λ x → tl (vals x))
-- A variable is just interpreted by its valuation.
⟦ E ⟧₁ vars (sup (inj₂ (inj₁ x))) vals = vals x
-- A variable denoting a derivative is interpreted by the derivative of
-- the corresponding stream.
⟦ E ⟧₁ vars (sup (inj₂ (inj₂ x))) vals = tl (vals x)
| {
"alphanum_fraction": 0.5707598127,
"avg_line_length": 31.9195402299,
"ext": "agda",
"hexsha": "f9b1022720721fdc1e7f7effa8d16bb9236de6af",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "Streams/SDE.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "Streams/SDE.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "Streams/SDE.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1054,
"size": 2777
} |
-- Andreas, 2021-12-31, issue #5712, reported by Trebor-Huang
-- {-# OPTIONS -v tc.cover.cover:10 #-}
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
nothing : Term → TC ⊤
nothing hole = returnTC _
record Foo : Set1 where
field
A : Set
@(tactic nothing) foo : A → A
open Foo
F : Foo
F .A = ⊤
F .foo n = _
-- Should succeed.
-- There was an internal error, because the coverage checker did
-- not expand the last clause due to the presence of a tactic (#5358).
-- However, in this case, there is a user argument that forces the
-- expansion. This is now recognized by the coverage checker.
| {
"alphanum_fraction": 0.6894904459,
"avg_line_length": 24.1538461538,
"ext": "agda",
"hexsha": "8a7544a67cbf80efc3970c0cb8841125e9560ed5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Succeed/Issue5712.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Succeed/Issue5712.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue5712.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 176,
"size": 628
} |
{-# OPTIONS --without-K --safe #-}
module Fragment.Examples.CSemigroup.Arith.Base where
open import Fragment.Examples.Semigroup.Arith.Base public
open import Data.Nat.Properties
using (*-isCommutativeSemigroup; +-isCommutativeSemigroup)
+-csemigroup = csemigroup→model +-isCommutativeSemigroup
*-csemigroup = csemigroup→model *-isCommutativeSemigroup
| {
"alphanum_fraction": 0.8005617978,
"avg_line_length": 32.3636363636,
"ext": "agda",
"hexsha": "51a197053d0f8581efd3cf8a7fd63d3e5b680832",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Base.agda",
"max_line_length": 60,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 96,
"size": 356
} |
module Functor where
import Logic.Identity as Id
import Category
import Logic.ChainReasoning
open Category
open Poly-Cat
private
module Fun where
data Functor (ℂ ⅅ : Cat) : Set1 where
functor : (F : Obj ℂ -> Obj ⅅ)
(map : {A B : Obj ℂ} -> A ─→ B -> F A ─→ F B)
(mapId : {A : Obj ℂ} -> map (id {A = A}) == id)
(mapCompose : {A B C : Obj ℂ}{f : B ─→ C}{g : A ─→ B} ->
map (f ∘ g) == map f ∘ map g
) -> Functor ℂ ⅅ
open Fun public
module Projections where
Map : {ℂ ⅅ : Cat} -> Functor ℂ ⅅ -> Obj ℂ -> Obj ⅅ
Map (functor F _ _ _) = F
map : {ℂ ⅅ : Cat}(F : Functor ℂ ⅅ)
{A B : Obj ℂ} -> A ─→ B -> Map F A ─→ Map F B
map (functor _ m _ _) = m
mapId : {ℂ ⅅ : Cat}(F : Functor ℂ ⅅ)
{A : Obj ℂ} -> map F id == id {A = Map F A}
mapId (functor _ _ i _) = i
mapCompose : {ℂ ⅅ : Cat}(F : Functor ℂ ⅅ)
{A B C : Obj ℂ}{f : B ─→ C}{g : A ─→ B} ->
map F (f ∘ g) == map F f ∘ map F g
mapCompose (functor _ _ _ c) = c
module Functor {ℂ ⅅ : Cat}(F : Functor ℂ ⅅ) where
module P = Projections
Map : Obj ℂ -> Obj ⅅ
Map = P.Map F
map : {A B : Obj ℂ} -> A ─→ B -> Map A ─→ Map B
map = P.map F
mapId : {A : Obj ℂ} -> map id == id {A = Map A}
mapId = P.mapId F
mapCompose : {A B C : Obj ℂ}{f : B ─→ C}{g : A ─→ B} ->
map (f ∘ g) == map f ∘ map g
mapCompose = P.mapCompose F
module Functors where
Id : {ℂ : Cat} -> Functor ℂ ℂ
Id = functor (\A -> A) (\f -> f) (\{A} -> refl) (\{A}{B}{C}{f}{g} -> refl)
_○_ : {ℂ ℚ ℝ : Cat} -> Functor ℚ ℝ -> Functor ℂ ℚ -> Functor ℂ ℝ
_○_ {ℂ}{ℚ}{ℝ} F G = functor FG m mid mcomp
where
module F = Functor F
module G = Functor G
FG : Obj ℂ -> Obj ℝ
FG A = F.Map (G.Map A)
m : {A B : Obj ℂ} -> A ─→ B -> FG A ─→ FG B
m f = F.map (G.map f)
mid : {A : Obj ℂ} -> m (id {A = A}) == id
mid = chain> F.map (G.map id)
=== F.map id by ? -- cong F.map G.mapId
=== id by F.mapId
where
open module Chain = Logic.ChainReasoning.Mono.Homogenous _==_
(\f -> refl)
(\f g h -> trans)
mcomp : {A B C : Obj ℂ}{f : B ─→ C}{g : A ─→ B} ->
m (f ∘ g) == m f ∘ m g
mcomp {f = f}{g = g} =
chain> F.map (G.map (f ∘ g))
=== F.map (G.map f ∘ G.map g)
by ? -- cong F.map G.mapCompose
=== F.map (G.map f) ∘ F.map (G.map g)
by F.mapCompose
where
open module Chain = Logic.ChainReasoning.Mono.Homogenous _==_
(\f -> refl)
(\f g h -> trans)
| {
"alphanum_fraction": 0.4809372518,
"avg_line_length": 25.4343434343,
"ext": "agda",
"hexsha": "0abc281c4c34f4981cd5ffae74781648f1d74502",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/cat/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/cat/Functor.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/cat/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1026,
"size": 2518
} |
module Examples where
open import Data.Maybe using (just ; nothing)
open import Data.Nat using (ℕ ; zero ; suc ; _+_ ; ⌈_/2⌉)
open import Data.Nat.Properties using (cancel-+-left)
import Algebra.Structures
open import Data.List using (List ; length) renaming ([] to []L ; _∷_ to _∷L_)
open import Data.Vec using (Vec ; [] ; _∷_ ; reverse ; _++_ ; tail ; take ; drop ; map)
open import Function using (id)
import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong)
open import Structures using (Shaped)
import GetTypes
import FreeTheorems
import BFF
open GetTypes.PartialVecVec using (Get)
open FreeTheorems.PartialVecVec using (assume-get)
open BFF.PartialVecBFF using (bff)
ℕ-decSetoid = Relation.Binary.DecTotalOrder.Eq.decSetoid Data.Nat.decTotalOrder
reverse' : Get
reverse' = assume-get id id reverse
double' : Get
double' = assume-get id g f
where g : ℕ → ℕ
g zero = zero
g (suc n) = suc (suc (g n))
f : {A : Set} {n : ℕ} → Vec A n → Vec A (g n)
f [] = []
f (x ∷ v) = x ∷ x ∷ f v
double'' : Get
double'' = assume-get id _ (λ v → v ++ v)
tail' : Get
tail' = assume-get suc id tail
tail-example : bff ℕ-decSetoid tail' 2 (8 ∷ 5 ∷ []) (3 ∷ 1 ∷ []) ≡ just (just 8 ∷ just 3 ∷ just 1 ∷ [])
tail-example = refl
take' : ℕ → Get
take' n = assume-get (_+_ n) _ (take n)
drop' : ℕ → Get
drop' n = assume-get (_+_ n) _ (drop n)
sieve' : Get
sieve' = assume-get id _ f
where f : {A : Set} {n : ℕ} → Vec A n → Vec A ⌈ n /2⌉
f [] = []
f (x ∷ []) = x ∷ []
f (x ∷ _ ∷ xs) = x ∷ f xs
sieve-example : bff ℕ-decSetoid sieve' 4 (0 ∷ 2 ∷ []) (1 ∷ 3 ∷ []) ≡ just (just 1 ∷ just 2 ∷ just 3 ∷ nothing ∷ [])
sieve-example = refl
intersperse-len : ℕ → ℕ
intersperse-len zero = zero
intersperse-len (suc zero) = suc zero
intersperse-len (suc (suc n)) = suc (suc (intersperse-len (suc n)))
intersperse : {A : Set} {n : ℕ} → A → Vec A n → Vec A (intersperse-len n)
intersperse s [] = []
intersperse s (x ∷ []) = x ∷ []
intersperse s (x ∷ y ∷ v) = x ∷ s ∷ intersperse s (y ∷ v)
intersperse' : Get
intersperse' = assume-get suc intersperse-len f
where f : {A : Set} {n : ℕ} → Vec A (suc n) → Vec A (intersperse-len n)
f (s ∷ v) = intersperse s v
intersperse-neg-example : bff ℕ-decSetoid intersperse' 3 (0 ∷ []) (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ≡ nothing
intersperse-neg-example = refl
intersperse-pos-example : bff ℕ-decSetoid intersperse' 3 (0 ∷ []) (1 ∷ 2 ∷ 3 ∷ 2 ∷ 5 ∷ []) ≡ just (map just (2 ∷ 1 ∷ 3 ∷ 5 ∷ []))
intersperse-pos-example = refl
data PairVec (α : Set) (β : Set) : List α → Set where
[]P : PairVec α β []L
_,_∷P_ : (x : α) → β → {l : List α} → PairVec α β l → PairVec α β (x ∷L l)
PairVecFirstShaped : (α : Set) → Shaped (List α) (PairVec α)
PairVecFirstShaped α = record
{ arity = length
; content = content
; fill = fill
; isShaped = record
{ content-fill = content-fill
; fill-content = fill-content
} }
where content : {β : Set} {s : List α} → PairVec α β s → Vec β (length s)
content []P = []
content (a , b ∷P p) = b ∷ content p
fill : {β : Set} → (s : List α) → Vec β (length s) → PairVec α β s
fill []L v = []P
fill (a ∷L s) (b ∷ v) = a , b ∷P fill s v
content-fill : {β : Set} {s : List α} → (p : PairVec α β s) → fill s (content p) ≡ p
content-fill []P = refl
content-fill (a , b ∷P p) = cong (_,_∷P_ a b) (content-fill p)
fill-content : {β : Set} → (s : List α) → (v : Vec β (length s)) → content (fill s v) ≡ v
fill-content []L [] = refl
fill-content (a ∷L s) (b ∷ v) = cong (_∷_ b) (fill-content s v)
| {
"alphanum_fraction": 0.5640203154,
"avg_line_length": 34.0090909091,
"ext": "agda",
"hexsha": "cfe9432b12ce17d3a36ce03ea8b218921e94fa6a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jvoigtlaender/bidiragda",
"max_forks_repo_path": "Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jvoigtlaender/bidiragda",
"max_issues_repo_path": "Examples.agda",
"max_line_length": 129,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jvoigtlaender/bidiragda",
"max_stars_repo_path": "Examples.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1356,
"size": 3741
} |
module STLC.Coquand.Convertibility where
open import STLC.Coquand.Substitution public
--------------------------------------------------------------------------------
-- Convertibility
infix 3 _∼_
data _∼_ : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A → Set
where
refl∼ : ∀ {Γ A} → {M : Γ ⊢ A}
→ M ∼ M
_⁻¹∼ : ∀ {Γ A} → {M₁ M₂ : Γ ⊢ A}
→ (p : M₁ ∼ M₂)
→ M₂ ∼ M₁
_⦙∼_ : ∀ {Γ A} → {M₁ M₂ M₃ : Γ ⊢ A}
→ (p : M₁ ∼ M₂) (q : M₂ ∼ M₃)
→ M₁ ∼ M₃
ƛ∼ : ∀ {Γ A B} → {M₁ M₂ : Γ , A ⊢ B}
→ (p : M₁ ∼ M₂)
→ ƛ M₁ ∼ ƛ M₂
_∙∼_ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ A ⇒ B} {N₁ N₂ : Γ ⊢ A}
→ (p : M₁ ∼ M₂) (q : N₁ ∼ N₂)
→ M₁ ∙ N₁ ∼ M₂ ∙ N₂
red⇒ : ∀ {Γ Ξ A B} → (σ : Γ ⊢⋆ Ξ) (M : Ξ , A ⊢ B) (N : Γ ⊢ A)
→ sub σ (ƛ M) ∙ N ∼ sub (σ , N) M
exp⇒ : ∀ {Γ A B} → (M : Γ ⊢ A ⇒ B)
→ M ∼ ƛ (wk M ∙ 0)
≡→∼ : ∀ {Γ A} → {M₁ M₂ : Γ ⊢ A}
→ M₁ ≡ M₂
→ M₁ ∼ M₂
≡→∼ refl = refl∼
instance
per∼ : ∀ {Γ A} → PER (Γ ⊢ A) _∼_
per∼ =
record
{ _⁻¹ = _⁻¹∼
; _⦙_ = _⦙∼_
}
--------------------------------------------------------------------------------
renred⇒ : ∀ {Γ Γ′ Ξ A B} → {η : Γ′ ∋⋆ Γ}
→ (σ : Γ ⊢⋆ Ξ) (M : Ξ , A ⊢ B) (N : Γ ⊢ A)
→ ren η (sub σ (ƛ M) ∙ N) ∼ ren η (sub (σ , N) M)
renred⇒ {η = η} σ M N = ƛ∼ (≡→∼ (sublift◑ η σ M ⁻¹)) ∙∼ refl∼
⦙ red⇒ (η ◑ σ) M (ren η N)
⦙ ≡→∼ ( (λ σ′ → sub σ′ M)
& ((⌊ η ⌋ ● σ ,_) & ⌊sub⌋ η N ⁻¹)
⦙ sub◑ η (σ , N) M
)
renexp⇒𝓋 : ∀ {Γ Γ′ A B} → {η : Γ′ ∋⋆ Γ}
→ (i : Γ ∋ A ⇒ B)
→ ren η (𝓋 i) ∼ ren η (ƛ (wk (𝓋 i) ∙ 0))
renexp⇒𝓋 {η = η} i = exp⇒ (𝓋 (getᵣ η i))
⦙ ƛ∼ (≡→∼ (𝓋 & ( get○ (wkᵣ idᵣ) η i ⁻¹
⦙ (λ η′ → getᵣ η′ i)
& ( wklid○ η
⦙ liftwkrid○ η ⁻¹
)
⦙ get○ (liftᵣ η) (wkᵣ idᵣ) i
)) ∙∼ refl∼)
renexp⇒ƛ : ∀ {Γ Γ′ A B} → {η : Γ′ ∋⋆ Γ}
→ (M : Γ , A ⊢ B)
→ ren η (ƛ M) ∼ ren η (ƛ (wk (ƛ M) ∙ 0))
renexp⇒ƛ {η = η} M = exp⇒ (ƛ (ren (liftᵣ η) M))
⦙ ƛ∼ (ƛ∼ (≡→∼ ( renlift○ (wkᵣ idᵣ) η M ⁻¹
⦙ (λ η′ → ren η′ M)
& (liftᵣ & ( wklid○ η
⦙ wkrid○ η ⁻¹
⦙ zap○ (wkᵣ η) idᵣ 0 ⁻¹
))
⦙ renlift○ (liftᵣ η) (wkᵣ idᵣ) M
)) ∙∼ refl∼)
renexp⇒∙ : ∀ {Γ Γ′ A B C} → {η : Γ′ ∋⋆ Γ}
→ (M : Γ ⊢ A ⇒ B ⇒ C) (N : Γ ⊢ A)
→ ren η (M ∙ N) ∼ ren η (ƛ (wk (M ∙ N) ∙ 0))
renexp⇒∙ {η = η} M N = exp⇒ (ren η M ∙ ren η N)
⦙ ƛ∼ ((≡→∼ ( ren○ (wkᵣ idᵣ) η M ⁻¹
⦙ (λ η′ → ren η′ M)
& ( wklid○ η
⦙ wkrid○ η ⁻¹
⦙ wk○ η idᵣ ⁻¹
)
⦙ renliftwk○ η idᵣ M
)
∙∼
≡→∼ ( ren○ (wkᵣ idᵣ) η N ⁻¹
⦙ (λ η′ → ren η′ N)
& ( wklid○ η
⦙ wkrid○ η ⁻¹
⦙ wk○ η idᵣ ⁻¹
)
⦙ renliftwk○ η idᵣ N
)) ∙∼ refl∼)
ren∼ : ∀ {Γ Γ′ A} → {η : Γ′ ∋⋆ Γ} {M₁ M₂ : Γ ⊢ A}
→ M₁ ∼ M₂
→ ren η M₁ ∼ ren η M₂
ren∼ refl∼ = refl∼
ren∼ (p ⁻¹∼) = ren∼ p ⁻¹
ren∼ (p ⦙∼ q) = ren∼ p ⦙ ren∼ q
ren∼ (ƛ∼ p) = ƛ∼ (ren∼ p)
ren∼ (p ∙∼ q) = ren∼ p ∙∼ ren∼ q
ren∼ (red⇒ σ M N) = renred⇒ σ M N
ren∼ (exp⇒ (𝓋 i)) = renexp⇒𝓋 i
ren∼ (exp⇒ (ƛ M)) = renexp⇒ƛ M
ren∼ (exp⇒ (M ∙ N)) = renexp⇒∙ M N
--------------------------------------------------------------------------------
subred⇒ : ∀ {Γ Ξ Φ A B} → {σ₁ : Γ ⊢⋆ Ξ}
→ (σ₂ : Ξ ⊢⋆ Φ) (M : Φ , A ⊢ B) (N : Ξ ⊢ A)
→ sub σ₁ (sub σ₂ (ƛ M) ∙ N) ∼ sub σ₁ (sub (σ₂ , N) M)
subred⇒ {σ₁ = σ₁} σ₂ M N = ƛ∼ (≡→∼ (sublift● σ₁ σ₂ M ⁻¹)) ∙∼ refl∼
⦙ red⇒ (σ₁ ● σ₂) M (sub σ₁ N)
⦙ ≡→∼ (sub● σ₁ (σ₂ , N) M)
subexp⇒𝓋 : ∀ {Γ Ξ A B} → {σ : Γ ⊢⋆ Ξ}
→ (i : Ξ ∋ A ⇒ B)
→ sub σ (𝓋 i) ∼ sub σ (ƛ (wk (𝓋 i) ∙ 0))
subexp⇒𝓋 {σ = σ} i = exp⇒ (getₛ σ i)
⦙ ƛ∼ (≡→∼ ( natgetₛ σ i ⁻¹
⦙ (λ σ′ → getₛ σ′ i) & liftwkrid◐ σ ⁻¹
⦙ get◐ (liftₛ σ) (wkᵣ idᵣ) i
) ∙∼ refl∼)
subexp⇒ƛ : ∀ {Γ Ξ A B} → {σ : Γ ⊢⋆ Ξ}
→ (M : Ξ , A ⊢ B)
→ sub σ (ƛ M) ∼ sub σ (ƛ (wk (ƛ M) ∙ 0))
subexp⇒ƛ {σ = σ} M = ƛ∼ ( ≡→∼ ( (λ σ′ → sub σ′ M)
& ((_, 0)
& ( rid◐ (wkₛ σ) ⁻¹
⦙ zap◐ (wkₛ σ) idᵣ 0 ⁻¹
⦙ zap◐ (liftₛ σ) (wkᵣ idᵣ) 0 ⁻¹
))
⦙ sub◐ (liftₛ σ , 0) (liftᵣ (wkᵣ idᵣ)) M
)
⦙ red⇒ (liftₛ σ) (ren (liftᵣ (wkᵣ idᵣ)) M) 0 ⁻¹
)
subexp⇒∙ : ∀ {Γ Ξ A B C} → {σ : Γ ⊢⋆ Ξ}
→ (M : Ξ ⊢ A ⇒ B ⇒ C) (N : Ξ ⊢ A)
→ sub σ (M ∙ N) ∼ sub σ (ƛ (wk (M ∙ N) ∙ 0))
subexp⇒∙ {σ = σ} M N = exp⇒ (sub σ M ∙ sub σ N)
⦙ ƛ∼ ((≡→∼ ( sub◑ (wkᵣ idᵣ) σ M ⁻¹
⦙ (λ σ′ → sub σ′ M)
& ( wklid◑ σ
⦙ wkrid◐ σ ⁻¹
⦙ wk◐ σ idᵣ ⁻¹
)
⦙ subliftwk◐ σ idᵣ M
)
∙∼
≡→∼ ( sub◑ (wkᵣ idᵣ) σ N ⁻¹
⦙ (λ σ′ → sub σ′ N)
& ( wklid◑ σ
⦙ wkrid◐ σ ⁻¹
⦙ wk◐ σ idᵣ ⁻¹
)
⦙ subliftwk◐ σ idᵣ N
)) ∙∼ refl∼)
sub∼ : ∀ {Γ Ξ A} → {σ : Γ ⊢⋆ Ξ} {M₁ M₂ : Ξ ⊢ A}
→ M₁ ∼ M₂
→ sub σ M₁ ∼ sub σ M₂
sub∼ refl∼ = refl∼
sub∼ (p ⁻¹∼) = sub∼ p ⁻¹
sub∼ (p ⦙∼ q) = sub∼ p ⦙ sub∼ q
sub∼ (ƛ∼ p) = ƛ∼ (sub∼ p)
sub∼ (p ∙∼ q) = sub∼ p ∙∼ sub∼ q
sub∼ (red⇒ σ M N) = subred⇒ σ M N
sub∼ (exp⇒ (𝓋 i)) = subexp⇒𝓋 i
sub∼ (exp⇒ (ƛ M)) = subexp⇒ƛ M
sub∼ (exp⇒ (M ∙ N)) = subexp⇒∙ M N
--------------------------------------------------------------------------------
-- Convertibility of substitutions
infix 3 _∼⋆_
data _∼⋆_ : ∀ {Γ Ξ} → Γ ⊢⋆ Ξ → Γ ⊢⋆ Ξ → Set
where
∅ : ∀ {Γ} → ∅ {Γ} ∼⋆ ∅
_,_ : ∀ {Γ Ξ A} → {σ₁ σ₂ : Γ ⊢⋆ Ξ} {M₁ M₂ : Γ ⊢ A}
→ (χ : σ₁ ∼⋆ σ₂) (p : M₁ ∼ M₂)
→ σ₁ , M₁ ∼⋆ σ₂ , M₂
refl∼⋆ : ∀ {Γ Ξ} → {σ : Γ ⊢⋆ Ξ}
→ σ ∼⋆ σ
refl∼⋆ {σ = ∅} = ∅
refl∼⋆ {σ = σ , M} = refl∼⋆ , refl∼
_⁻¹∼⋆ : ∀ {Γ Ξ} → {σ₁ σ₂ : Γ ⊢⋆ Ξ}
→ σ₁ ∼⋆ σ₂
→ σ₂ ∼⋆ σ₁
∅ ⁻¹∼⋆ = ∅
(χ , p) ⁻¹∼⋆ = χ ⁻¹∼⋆ , p ⁻¹
_⦙∼⋆_ : ∀ {Γ Ξ} → {σ₁ σ₂ σ₃ : Γ ⊢⋆ Ξ}
→ σ₁ ∼⋆ σ₂ → σ₂ ∼⋆ σ₃
→ σ₁ ∼⋆ σ₃
∅ ⦙∼⋆ ∅ = ∅
(χ₁ , p) ⦙∼⋆ (χ₂ , q) = (χ₁ ⦙∼⋆ χ₂) , (p ⦙ q)
≡→∼⋆ : ∀ {Γ Ξ} → {σ₁ σ₂ : Γ ⊢⋆ Ξ}
→ σ₁ ≡ σ₂
→ σ₁ ∼⋆ σ₂
≡→∼⋆ refl = refl∼⋆
instance
per∼⋆ : ∀ {Γ Ξ} → PER (Γ ⊢⋆ Ξ) _∼⋆_
per∼⋆ =
record
{ _⁻¹ = _⁻¹∼⋆
; _⦙_ = _⦙∼⋆_
}
wk∼⋆ : ∀ {A Γ Ξ} → {σ₁ σ₂ : Γ ⊢⋆ Ξ}
→ σ₁ ∼⋆ σ₂
→ wkₛ {A} σ₁ ∼⋆ wkₛ σ₂
wk∼⋆ ∅ = ∅
wk∼⋆ (χ , p) = wk∼⋆ χ , ren∼ p
lift∼⋆ : ∀ {A Γ Ξ} → {σ₁ σ₂ : Γ ⊢⋆ Ξ}
→ σ₁ ∼⋆ σ₂
→ liftₛ {A} σ₁ ∼⋆ liftₛ σ₂
lift∼⋆ ∅ = ∅ , refl∼
lift∼⋆ (χ , p) = wk∼⋆ χ , ren∼ p , refl∼
-- NOTE: Needs getₛ σ₁ i ∼ getₛ σ₂ i
-- ◐∼⋆ : ∀ {Γ Ξ Ξ′} → {σ₁ σ₂ : Γ ⊢⋆ Ξ′} {η : Ξ′ ∋⋆ Ξ}
-- → σ₁ ∼⋆ σ₂ → σ₁ ◐ η ∼⋆ σ₂ ◐ η
-- ◐∼⋆ {η = ∅} χ = ∅
-- ◐∼⋆ {η = [ η , i ]} χ = [ ◐∼⋆ χ , {!!} ]
◑∼⋆ : ∀ {Γ Γ′ Ξ} → {η : Γ′ ∋⋆ Γ} {σ₁ σ₂ : Γ ⊢⋆ Ξ}
→ σ₁ ∼⋆ σ₂
→ η ◑ σ₁ ∼⋆ η ◑ σ₂
◑∼⋆ ∅ = ∅
◑∼⋆ (χ , p) = ◑∼⋆ χ , sub∼ p
-- NOTE: Needs a more general sub∼
-- ●∼⋆ : ∀ {Γ Ξ Φ} → {σ₁ σ₂ : Γ ⊢⋆ Ξ} {τ₁ τ₂ : Ξ ⊢⋆ Φ}
-- → σ₁ ∼⋆ σ₂ → τ₁ ∼⋆ τ₂
-- → σ₁ ● τ₁ ∼⋆ σ₂ ● τ₂
-- ●∼⋆ χ₁ ∅ = ∅
-- ●∼⋆ χ₁ [ χ₂ , p ] = [ ●∼⋆ χ₁ χ₂ , {!!} ]
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.2271073693,
"avg_line_length": 34.4838709677,
"ext": "agda",
"hexsha": "f5f5fe8729b569eec2893fee2bf31c6b93aecbe1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/STLC/Coquand/Convertibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/STLC/Coquand/Convertibility.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/STLC/Coquand/Convertibility.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4435,
"size": 9621
} |
{-# OPTIONS --cubical --safe #-}
module Data.Bag where
open import Prelude
open import Algebra
open import Path.Reasoning
infixr 5 _∷_
data ⟅_⟆ (A : Type a) : Type a where
[] : ⟅ A ⟆
_∷_ : A → ⟅ A ⟆ → ⟅ A ⟆
com : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs
trunc : isSet ⟅ A ⟆
record Elim {a ℓ}
(A : Type a)
(P : ⟅ A ⟆ → Type ℓ)
: Type (a ℓ⊔ ℓ) where
constructor elim
field
⟅_⟆-set : ∀ {xs} → isSet (P xs)
⟅_⟆[] : P []
⟅_⟆_∷_⟨_⟩ : ∀ x xs → P xs → P (x ∷ xs)
private z = ⟅_⟆[]; f = ⟅_⟆_∷_⟨_⟩
field
⟅_⟆-com : (∀ x y xs pxs →
PathP (λ i → P (com x y xs i))
(f x (y ∷ xs) (f y xs pxs))
(f y (x ∷ xs) (f x xs pxs)))
⟅_⟆⇓ : (xs : ⟅ A ⟆) → P xs
⟅ [] ⟆⇓ = z
⟅ x ∷ xs ⟆⇓ = f x xs ⟅ xs ⟆⇓
⟅ com x y xs i ⟆⇓ = ⟅_⟆-com x y xs ⟅ xs ⟆⇓ i
⟅ trunc xs ys x y i j ⟆⇓ =
isOfHLevel→isOfHLevelDep 2
(λ xs → ⟅_⟆-set {xs})
⟅ xs ⟆⇓ ⟅ ys ⟆⇓
(cong ⟅_⟆⇓ x) (cong ⟅_⟆⇓ y)
(trunc xs ys x y)
i j
open Elim
infixr 0 elim-syntax
elim-syntax : ∀ {a ℓ}
→ (A : Type a)
→ (⟅ A ⟆ → Type ℓ)
→ Type (a ℓ⊔ ℓ)
elim-syntax = Elim
syntax elim-syntax A (λ xs → Pxs) = xs ⦂⟅ A ⟆→ Pxs
record ElimProp {a ℓ} (A : Type a) (P : ⟅ A ⟆ → Type ℓ) : Type (a ℓ⊔ ℓ) where
constructor elim-prop
field
⟦_⟧-prop : ∀ {xs} → isProp (P xs)
⟦_⟧[] : P []
⟦_⟧_∷_⟨_⟩ : ∀ x xs → P xs → P (x ∷ xs)
private z = ⟦_⟧[]; f = ⟦_⟧_∷_⟨_⟩
⟦_⟧⇑ = elim
(isProp→isSet ⟦_⟧-prop)
z f
(λ x y xs pxs → toPathP (⟦_⟧-prop (transp (λ i → P (com x y xs i)) i0
(f x (y ∷ xs) (f y xs pxs))) (f y (x ∷ xs) (f x xs pxs))))
⟦_⟧⇓ = ⟅ ⟦_⟧⇑ ⟆⇓
open ElimProp
infixr 0 elim-prop-syntax
elim-prop-syntax : ∀ {a ℓ} → (A : Type a) → (⟅ A ⟆ → Type ℓ) → Type (a ℓ⊔ ℓ)
elim-prop-syntax = ElimProp
syntax elim-prop-syntax A (λ xs → Pxs) = xs ⦂⟅ A ⟆→∥ Pxs ∥
record [⟅_⟆→_] {a b} (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where
constructor rec
field
[_]-set : isSet B
[_]_∷_ : A → B → B
[_][] : B
private f = [_]_∷_; z = [_][]
field
[_]-com : ∀ x y xs → f x (f y xs) ≡ f y (f x xs)
[_]⇑ = elim [_]-set z (λ x _ → f x) (λ x y _ → [_]-com x y)
[_]↓ = ⟅ [_]⇑ ⟆⇓
open [⟅_⟆→_]
infixr 5 _∪_
_∪_ : ⟅ A ⟆ → ⟅ A ⟆ → ⟅ A ⟆
_∪_ = λ xs ys → [ ys ∪′ ]↓ xs
where
_∪′ : ⟅ A ⟆ → [⟅ A ⟆→ ⟅ A ⟆ ]
[ ys ∪′ ]-set = trunc
[ ys ∪′ ] x ∷ xs = x ∷ xs
[ ys ∪′ ][] = ys
[ ys ∪′ ]-com = com
∪-assoc : (xs ys zs : ⟅ A ⟆) →
(xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs)
∪-assoc = λ xs ys zs → ⟦ ∪-assoc′ ys zs ⟧⇓ xs
where
∪-assoc′ : ∀ ys zs →
xs ⦂⟅ A ⟆→∥ (xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs) ∥
⟦ ∪-assoc′ ys zs ⟧-prop = trunc _ _
⟦ ∪-assoc′ ys zs ⟧[] = refl
⟦ ∪-assoc′ ys zs ⟧ x ∷ xs ⟨ P ⟩ = cong (x ∷_) P
∪-cons : ∀ (x : A) xs ys
→ (x ∷ xs) ∪ ys ≡ xs ∪ (x ∷ ys)
∪-cons = λ x xs ys → ⟦ ∪-cons′ x ys ⟧⇓ xs
where
∪-cons′ : ∀ x ys →
xs ⦂⟅ A ⟆→∥ (x ∷ xs) ∪ ys ≡ xs ∪ (x ∷ ys) ∥
⟦ ∪-cons′ x ys ⟧-prop = trunc _ _
⟦ ∪-cons′ x ys ⟧[] = refl
⟦ ∪-cons′ x ys ⟧ y ∷ xs ⟨ P ⟩ = cong (_∪ ys) (com x y xs) ; cong (y ∷_) P
∪-idʳ : (xs : ⟅ A ⟆) → xs ∪ [] ≡ xs
∪-idʳ = ⟦ ∪-idʳ′ ⟧⇓
where
∪-idʳ′ : xs ⦂⟅ A ⟆→∥ xs ∪ [] ≡ xs ∥
⟦ ∪-idʳ′ ⟧-prop = trunc _ _
⟦ ∪-idʳ′ ⟧[] = refl
⟦ ∪-idʳ′ ⟧ x ∷ xs ⟨ P ⟩ = cong (x ∷_) P
∪-comm : (xs ys : ⟅ A ⟆) → xs ∪ ys ≡ ys ∪ xs
∪-comm {A = A} = λ xs ys → ⟦ ∪-comm′ ys ⟧⇓ xs
where
∪-comm′ : (ys : ⟅ A ⟆) →
xs ⦂⟅ A ⟆→∥ xs ∪ ys ≡ ys ∪ xs ∥
⟦ ∪-comm′ ys ⟧-prop = trunc _ _
⟦ ∪-comm′ ys ⟧[] = sym (∪-idʳ ys)
⟦ ∪-comm′ ys ⟧ x ∷ xs ⟨ P ⟩ =
(x ∷ xs) ∪ ys ≡⟨ cong (x ∷_) P ⟩
(x ∷ ys) ∪ xs ≡⟨ ∪-cons x ys xs ⟩
ys ∪ x ∷ xs ∎
⟅⟆-commutative-monoid : ∀ {a} (A : Type a) → CommutativeMonoid _
Monoid.𝑆 (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = ⟅ A ⟆
Monoid._∙_ (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = _∪_
Monoid.ε (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = []
Monoid.assoc (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = ∪-assoc
Monoid.ε∙ (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) _ = refl
Monoid.∙ε (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = ∪-idʳ
CommutativeMonoid.comm (⟅⟆-commutative-monoid A) = ∪-comm
module _ {ℓ} (mon : CommutativeMonoid ℓ) (sIsSet : isSet (CommutativeMonoid.𝑆 mon)) where
open CommutativeMonoid mon
⟦_⟧ : (A → 𝑆) → ⟅ A ⟆ → 𝑆
⟦_⟧ = λ h → [ ⟦ h ⟧′ ]↓
where
⟦_⟧′ : (A → 𝑆) → [⟅ A ⟆→ 𝑆 ]
[ ⟦ h ⟧′ ] x ∷ xs = h x ∙ xs
[ ⟦ h ⟧′ ][] = ε
[ ⟦ h ⟧′ ]-com x y xs =
h x ∙ (h y ∙ xs)
≡˘⟨ assoc _ _ _ ⟩
(h x ∙ h y) ∙ xs
≡⟨ cong (_∙ xs) (comm _ _) ⟩
(h y ∙ h x) ∙ xs
≡⟨ assoc _ _ _ ⟩
h y ∙ (h x ∙ xs) ∎
[ ⟦ h ⟧′ ]-set = sIsSet
record ⟦_≡_⟧ {a b} {A : Type a} {B : Type b}
(h : ⟅ A ⟆ → B)
(xf : [⟅ A ⟆→ B ])
: Type (a ℓ⊔ b) where
constructor elim-univ
field
⟦_≡⟧_∷_ : ∀ x xs → h (x ∷ xs) ≡ [ xf ] x ∷ h xs
⟦_≡⟧[] : h [] ≡ [ xf ][]
⟦_≡⟧⇓ : ∀ xs → h xs ≡ [ xf ]↓ xs
⟦_≡⟧⇓ = ⟦ ≡⇓′ ⟧⇓
where
≡⇓′ : xs ⦂⟅ A ⟆→∥ h xs ≡ [ xf ]↓ xs ∥
⟦ ≡⇓′ ⟧-prop = [ xf ]-set _ _
⟦ ≡⇓′ ⟧[] = ⟦_≡⟧[]
⟦ ≡⇓′ ⟧ x ∷ xs ⟨ P ⟩ = ⟦_≡⟧_∷_ x _ ; cong ([ xf ] x ∷_) P
open ⟦_≡_⟧
record ⟦_⊚_≡_⟧ {a b c} {A : Type a} {B : Type b} {C : Type c}
(h : B → C)
(xf : [⟅ A ⟆→ B ])
(yf : [⟅ A ⟆→ C ])
: Type (a ℓ⊔ b ℓ⊔ c)
where
constructor elim-fuse
field
⟦_∘≡⟧_∷_ : ∀ x xs → h ([ xf ] x ∷ xs) ≡ [ yf ] x ∷ h xs
⟦_∘≡⟧[] : h [ xf ][] ≡ [ yf ][]
⟦_∘≡⟧⇓ : ∀ xs → h ([ xf ]↓ xs) ≡ [ yf ]↓ xs
⟦_∘≡⟧⇓ = ⟦ ≡⇓′ ⟧⇓
where
≡⇓′ : xs ⦂⟅ A ⟆→∥ h ([ xf ]↓ xs) ≡ [ yf ]↓ xs ∥
⟦ ≡⇓′ ⟧-prop = [ yf ]-set _ _
⟦ ≡⇓′ ⟧[] = ⟦_∘≡⟧[]
⟦ ≡⇓′ ⟧ x ∷ xs ⟨ P ⟩ = ⟦_∘≡⟧_∷_ x _ ; cong ([ yf ] x ∷_) P
open ⟦_⊚_≡_⟧
map-alg : (A → B) → [⟅ A ⟆→ ⟅ B ⟆ ]
[ map-alg f ]-set = trunc
[ map-alg f ][] = []
[ map-alg f ] x ∷ xs = f x ∷ xs
[ map-alg f ]-com x y = com (f x) (f y)
map : (A → B) → ⟅ A ⟆ → ⟅ B ⟆
map f = [ map-alg f ]↓
[_]∘_ : [⟅ B ⟆→ C ] → (A → B) → [⟅ A ⟆→ C ]
[ [ g ]∘ f ]-set = [ g ]-set
[ [ g ]∘ f ][] = [ g ][]
[ [ g ]∘ f ] x ∷ xs = [ g ] f x ∷ xs
[ [ g ]∘ f ]-com x y = [ g ]-com (f x) (f y)
map-fuse : ∀ (g : [⟅ B ⟆→ C ]) (f : A → B)
→ [ g ]↓ ∘ map f ≡ [ [ g ]∘ f ]↓
map-fuse g f = funExt ⟦ map-fuse′ g f ∘≡⟧⇓
where
map-fuse′ : (g : [⟅ B ⟆→ C ]) (f : A → B)
→ ⟦ [ g ]↓ ⊚ map-alg f ≡ [ g ]∘ f ⟧
⟦ map-fuse′ g f ∘≡⟧ x ∷ xs = refl
⟦ map-fuse′ g f ∘≡⟧[] = refl
bind : ⟅ A ⟆ → (A → ⟅ B ⟆) → ⟅ B ⟆
bind xs f = ⟦ ⟅⟆-commutative-monoid _ ⟧ trunc f xs
| {
"alphanum_fraction": 0.4050325906,
"avg_line_length": 28.807860262,
"ext": "agda",
"hexsha": "a015af22a24cda271156fbe021a59b96d211d334",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Bag.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Bag.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Bag.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 3657,
"size": 6597
} |
record R (A : Set) : Set₁ where
field
P : A → Set
p : (x : A) → P x
module M (r : (A : Set) → R A) where
open module R′ {A : Set} = R (r A) public
postulate
r : (A : Set) → R A
A : Set
open M r
internal-error : (x : A) → P x
internal-error x = p
| {
"alphanum_fraction": 0.5074626866,
"avg_line_length": 14.1052631579,
"ext": "agda",
"hexsha": "5f4601858c418325356bf4907665f0ea8d242180",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2057.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2057.agda",
"max_line_length": 43,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2057.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 111,
"size": 268
} |
-- Andreas, 2017-08-23, issue #2714
-- Make sure we produce a warning about missing main function
-- even though we import a module with --no-main.
open import Issue2712
| {
"alphanum_fraction": 0.738372093,
"avg_line_length": 24.5714285714,
"ext": "agda",
"hexsha": "afc197d8da5bbd79affe2e75f1ffcfa7b53eae51",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue2714.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue2714.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue2714.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 46,
"size": 172
} |
module _ where
open import Common.Prelude
case_of_ : {A B : Set} → A → (A → B) → B
case x of f = f x
{-# INLINE case_of_ #-}
patlam : Nat → Nat
patlam zero = zero
patlam (suc n) =
case n of λ
{ zero → zero
; (suc m) → m + patlam n
}
static : {A : Set} → A → A
static x = x
{-# STATIC static #-}
-- The static here will make the compiler get to the pattern lambda in the body of patlam
-- before compiling patlam. If we're not careful this might make the pattern lambda not
-- inline in the body of patlam.
foo : Nat → Nat
foo n = static (patlam (suc n))
main : IO Unit
main = printNat (foo 5)
| {
"alphanum_fraction": 0.6366612111,
"avg_line_length": 20.3666666667,
"ext": "agda",
"hexsha": "c6b4c228ede4d2abc6dbe7171700a5bedff8625c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/StaticPatternLambda.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/StaticPatternLambda.agda",
"max_line_length": 89,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/StaticPatternLambda.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 197,
"size": 611
} |
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; cong; cong₂; cong-app)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
open import Function using (_∘_)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Fin hiding (_+_; #_)
open import DeBruijn
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
⟪_⟫ : ∀ {n m} → Subst n m → Term n → Term m
⟪ σ ⟫ = subst σ
ids : ∀ {n} → Subst n n
ids x = # x
↑ : ∀ {n} → Subst n (suc n)
↑ x = # (suc x)
infix 6 _•_
_•_ : ∀ {n m} → Term m → Subst n m → Subst (suc n) m
(M • σ) zero = M
(M • σ) (suc x) = σ x
infixr 5 _⨟_
_⨟_ : ∀ {n k m} → Subst n k → Subst k m → Subst n m
σ ⨟ τ = ⟪ τ ⟫ ∘ σ
ren : ∀ {n m} → Rename n m → Subst n m
ren ρ = ids ∘ ρ
sub-head : ∀ {n m} {M : Term m} {σ : Subst n m}
→ ⟪ M • σ ⟫ (# zero) ≡ M
sub-head = refl
sub-tail : ∀ {n m} {M : Term m} {σ : Subst n m}
→ (↑ ⨟ M • σ) ≡ σ
sub-tail = extensionality λ x → refl
sub-idL : ∀ {n m} {σ : Subst n m}
→ ids ⨟ σ ≡ σ
sub-idL = extensionality λ x → refl
sub-dist : ∀ {n m k} {σ : Subst n m} {τ : Subst m k} {M : Term m}
→ ((M • σ) ⨟ τ) ≡ ((subst τ M) • (σ ⨟ τ))
sub-dist {n}{m}{k}{σ}{τ}{M} = extensionality λ x → lemma {x = x}
where
lemma : ∀ {x : Fin (suc n)} → ((M • σ) ⨟ τ) x ≡ ((subst τ M) • (σ ⨟ τ)) x
lemma {x = zero} = refl
lemma {x = suc x} = refl
cong-ext : ∀ {n m}{ρ ρ′ : Rename n m}
→ (ρ ≡ ρ′)
---------------------------------
→ ext ρ ≡ ext ρ′
cong-ext{n}{m}{ρ}{ρ′} rr = extensionality λ x → lemma {x}
where
lemma : ∀ {x : Fin (suc n)} → ext ρ x ≡ ext ρ′ x
lemma {zero} = refl
lemma {suc y} = cong suc (cong-app rr y)
cong-rename : ∀ {n m}{ρ ρ′ : Rename n m}{M M′ : Term n}
→ ρ ≡ ρ′
→ M ≡ M′
------------------------
→ rename ρ M ≡ rename ρ′ M
cong-rename {M = # x} rr refl = cong #_ (cong-app rr x)
cong-rename {ρ = ρ} {ρ′ = ρ′} {M = ƛ N} rr refl =
cong ƛ_ (cong-rename {ρ = ext ρ}{ρ′ = ext ρ′}{M = N} (cong-ext rr) refl)
cong-rename {M = L · M} rr refl =
cong₂ _·_ (cong-rename rr refl) (cong-rename rr refl)
cong-exts : ∀ {n m}{σ σ′ : Subst n m}
→ σ ≡ σ′
----------------
→ exts σ ≡ exts σ′
cong-exts{n}{m}{σ}{σ′} ss = extensionality λ x → lemma {x}
where
lemma : ∀ {x} → exts σ x ≡ exts σ′ x
lemma {zero} = refl
lemma {suc x} = cong (rename suc) (cong-app (ss) x)
cong-sub : ∀ {n m}{σ σ′ : Subst n m}{M M′ : Term n}
→ σ ≡ σ′
→ M ≡ M′
-----------------------
→ subst σ M ≡ subst σ′ M′
cong-sub {n}{m}{σ}{σ′}{# x} ss refl = cong-app ss x
cong-sub {n}{m}{σ}{σ′}{ƛ M} ss refl =
cong ƛ_ (cong-sub {σ = exts σ}{σ′ = exts σ′} {M = M} (cong-exts ss) refl)
cong-sub {n}{m}{σ}{σ′}{L · M} ss refl =
cong₂ _·_ (cong-sub {M = L} ss refl) (cong-sub {M = M} ss refl)
cong-sub-zero : ∀ {n} {M M′ : Term n}
→ M ≡ M′
----------------------------
→ subst-zero M ≡ subst-zero M′
cong-sub-zero {n}{M}{M′} mm′ =
extensionality λ x → cong (λ z → subst-zero z x) mm′
cong-cons : ∀ {n m}{M N : Term m}{σ τ : Subst n m}
→ M ≡ N
→ σ ≡ τ
-----------------
→ (M • σ) ≡ (N • τ)
cong-cons{n}{m}{M}{N}{σ}{τ} refl st = extensionality lemma
where
lemma : (x : Fin (suc n)) → (M • σ) x ≡ (M • τ) x
lemma zero = refl
lemma (suc x) = cong-app st x
cong-seq : ∀ {n m k}{σ σ′ : Subst n m}{τ τ′ : Subst m k}
→ (σ ≡ σ′) → (τ ≡ τ′)
→ (σ ⨟ τ) ≡ (σ′ ⨟ τ′)
cong-seq {n}{m}{k}{σ}{σ′}{τ}{τ′} ss′ tt′ = extensionality lemma
where
lemma : (x : Fin n) → (σ ⨟ τ) x ≡ (σ′ ⨟ τ′) x
lemma x =
begin
(σ ⨟ τ) x
≡⟨⟩
subst τ (σ x)
≡⟨ cong (subst τ) (cong-app ss′ x) ⟩
subst τ (σ′ x)
≡⟨ cong-sub{M = σ′ x} tt′ refl ⟩
subst τ′ (σ′ x)
≡⟨⟩
(σ′ ⨟ τ′) x
∎
ren-ext : ∀ {n m} {ρ : Rename n m}
→ ren (ext ρ) ≡ exts (ren ρ)
ren-ext {n}{m}{ρ} = extensionality λ x → lemma {x = x}
where
lemma : ∀ {x : Fin (suc n)} → (ren (ext ρ)) x ≡ exts (ren ρ) x
lemma {x = zero} = refl
lemma {x = suc x} = refl
rename-subst-ren : ∀ {n m} {ρ : Rename n m} {M : Term n}
→ rename ρ M ≡ ⟪ ren ρ ⟫ M
rename-subst-ren {M = # x} = refl
rename-subst-ren {n}{ρ = ρ}{M = ƛ N} =
begin
rename ρ (ƛ N)
≡⟨⟩
ƛ rename (ext ρ) N
≡⟨ cong ƛ_ (rename-subst-ren {ρ = ext ρ}{M = N}) ⟩
ƛ ⟪ ren (ext ρ) ⟫ N
≡⟨ cong ƛ_ (cong-sub{M = N} ren-ext refl) ⟩
ƛ ⟪ exts (ren ρ) ⟫ N
≡⟨⟩
⟪ ren ρ ⟫ (ƛ N)
∎
rename-subst-ren {M = L · M} = cong₂ _·_ rename-subst-ren rename-subst-ren
exts-cons-shift : ∀ {n m} {σ : Subst n m}
→ exts σ ≡ (# zero • (σ ⨟ ↑))
exts-cons-shift = extensionality λ x → lemma{x = x}
where
lemma : ∀ {n m} {σ : Subst n m} {x : Fin (suc n)}
→ exts σ x ≡ (# zero • (σ ⨟ ↑)) x
lemma {x = zero} = refl
lemma {x = suc y} = rename-subst-ren
subst-zero-cons-ids : ∀ {n}{M : Term n}
→ subst-zero M ≡ (M • ids)
subst-zero-cons-ids = extensionality λ x → lemma {x = x}
where
lemma : ∀ {n}{M : Term n}{x : Fin (suc n)}
→ subst-zero M x ≡ (M • ids) x
lemma {x = zero} = refl
lemma {x = suc x} = refl
exts-ids : ∀ {n}
→ exts ids ≡ ids {suc n}
exts-ids {n} = extensionality lemma
where lemma : (x : Fin (suc n)) → exts ids x ≡ ids x
lemma zero = refl
lemma (suc x) = refl
sub-id : ∀ {n} {M : Term n}
→ ⟪ ids ⟫ M ≡ M
sub-id {M = # x} = refl
sub-id {M = ƛ N} =
begin
⟪ ids ⟫ (ƛ N)
≡⟨⟩
ƛ ⟪ exts ids ⟫ N
≡⟨ cong ƛ_ (cong-sub{M = N} exts-ids refl) ⟩
ƛ ⟪ ids ⟫ N
≡⟨ cong ƛ_ sub-id ⟩
ƛ N
∎
sub-id {M = L · M} = cong₂ _·_ sub-id sub-id
sub-idR : ∀ {n m} {σ : Subst n m}
→ (σ ⨟ ids) ≡ σ
sub-idR {n}{σ = σ} =
begin
σ ⨟ ids
≡⟨⟩
⟪ ids ⟫ ∘ σ
≡⟨ extensionality (λ x → sub-id) ⟩
σ
∎
compose-ext : ∀ {n m k}{ρ : Rename m k} {ρ′ : Rename n m}
→ ((ext ρ) ∘ (ext ρ′)) ≡ ext (ρ ∘ ρ′)
compose-ext = extensionality λ x → lemma {x = x}
where
lemma : ∀ {n m k}{ρ : Rename m k} {ρ′ : Rename n m} {x : Fin (suc n)}
→ ((ext ρ) ∘ (ext ρ′)) x ≡ ext (ρ ∘ ρ′) x
lemma {x = zero} = refl
lemma {x = suc x} = refl
compose-rename : ∀ {n m k}{M : Term n}{ρ : Rename m k}{ρ′ : Rename n m}
→ rename ρ (rename ρ′ M) ≡ rename (ρ ∘ ρ′) M
compose-rename {M = # x} = refl
compose-rename {n}{m}{k}{ƛ N}{ρ}{ρ′} = cong ƛ_ G
where
G : rename (ext ρ) (rename (ext ρ′) N) ≡ rename (ext (ρ ∘ ρ′)) N
G =
begin
rename (ext ρ) (rename (ext ρ′) N)
≡⟨ compose-rename{ρ = ext ρ}{ρ′ = ext ρ′} ⟩
rename ((ext ρ) ∘ (ext ρ′)) N
≡⟨ cong-rename compose-ext refl ⟩
rename (ext (ρ ∘ ρ′)) N
∎
compose-rename {M = L · M} = cong₂ _·_ compose-rename compose-rename
commute-subst-rename : ∀ {n m}{M : Term n}{σ : Subst n m}
{ρ : ∀ {n} → Rename n (suc n)}
→ (∀ {x : Fin n} → exts σ (ρ x) ≡ rename ρ (σ x))
→ subst (exts σ) (rename ρ M) ≡ rename ρ (subst σ M)
commute-subst-rename {M = # x} r = r
commute-subst-rename{n}{m}{ƛ N}{σ}{ρ} r =
cong ƛ_ (commute-subst-rename{suc n}{suc m}{N}
{exts σ}{ρ = ρ′} (λ {x} → H {x}))
where
ρ′ : ∀ {n} → Rename n (suc n)
ρ′ {zero} = λ ()
ρ′ {suc n} = ext ρ
H : {x : Fin (suc n)} → exts (exts σ) (ext ρ x) ≡ rename (ext ρ) (exts σ x)
H {zero} = refl
H {suc y} =
begin
exts (exts σ) (ext ρ (suc y))
≡⟨⟩
rename suc (exts σ (ρ y))
≡⟨ cong (rename suc) r ⟩
rename suc (rename ρ (σ y))
≡⟨ compose-rename ⟩
rename (suc ∘ ρ) (σ y)
≡⟨ cong-rename refl refl ⟩
rename ((ext ρ) ∘ suc) (σ y)
≡⟨ sym compose-rename ⟩
rename (ext ρ) (rename suc (σ y))
≡⟨⟩
rename (ext ρ) (exts σ (suc y))
∎
commute-subst-rename {M = L · M}{ρ = ρ} r =
cong₂ _·_ (commute-subst-rename{M = L}{ρ = ρ} r)
(commute-subst-rename{M = M}{ρ = ρ} r)
exts-seq : ∀ {n m m′} {σ₁ : Subst n m} {σ₂ : Subst m m′}
→ (exts σ₁ ⨟ exts σ₂) ≡ exts (σ₁ ⨟ σ₂)
exts-seq = extensionality λ x → lemma {x = x}
where
lemma : ∀ {n m m′}{x : Fin (suc n)} {σ₁ : Subst n m}{σ₂ : Subst m m′}
→ (exts σ₁ ⨟ exts σ₂) x ≡ exts (σ₁ ⨟ σ₂) x
lemma {x = zero} = refl
lemma {x = suc x}{σ₁}{σ₂} =
begin
(exts σ₁ ⨟ exts σ₂) (suc x)
≡⟨⟩
⟪ exts σ₂ ⟫ (rename suc (σ₁ x))
≡⟨ commute-subst-rename{M = σ₁ x}{σ = σ₂}{ρ = suc} refl ⟩
rename suc (⟪ σ₂ ⟫ (σ₁ x))
≡⟨⟩
rename suc ((σ₁ ⨟ σ₂) x)
∎
sub-sub : ∀ {n m k}{M : Term n} {σ₁ : Subst n m}{σ₂ : Subst m k}
→ ⟪ σ₂ ⟫ (⟪ σ₁ ⟫ M) ≡ ⟪ σ₁ ⨟ σ₂ ⟫ M
sub-sub {M = # x} = refl
sub-sub {n}{m}{k}{ƛ N}{σ₁}{σ₂} =
begin
⟪ σ₂ ⟫ (⟪ σ₁ ⟫ (ƛ N))
≡⟨⟩
ƛ ⟪ exts σ₂ ⟫ (⟪ exts σ₁ ⟫ N)
≡⟨ cong ƛ_ (sub-sub{M = N}{σ₁ = exts σ₁}{σ₂ = exts σ₂}) ⟩
ƛ ⟪ exts σ₁ ⨟ exts σ₂ ⟫ N
≡⟨ cong ƛ_ (cong-sub{M = N} exts-seq refl) ⟩
ƛ ⟪ exts ( σ₁ ⨟ σ₂) ⟫ N
∎
sub-sub {M = L · M} = cong₂ _·_ (sub-sub{M = L}) (sub-sub{M = M})
rename-subst : ∀ {n m m′}{M : Term n}{ρ : Rename n m}{σ : Subst m m′}
→ ⟪ σ ⟫ (rename ρ M) ≡ ⟪ σ ∘ ρ ⟫ M
rename-subst {n}{m}{m′}{M}{ρ}{σ} =
begin
⟪ σ ⟫ (rename ρ M)
≡⟨ cong ⟪ σ ⟫ (rename-subst-ren{M = M}) ⟩
⟪ σ ⟫ (⟪ ren ρ ⟫ M)
≡⟨ sub-sub{M = M} ⟩
⟪ ren ρ ⨟ σ ⟫ M
≡⟨⟩
⟪ σ ∘ ρ ⟫ M
∎
sub-assoc : ∀ {n m k Ψ} {σ : Subst n m} {τ : Subst m k} {θ : Subst k Ψ}
→ (σ ⨟ τ) ⨟ θ ≡ (σ ⨟ τ ⨟ θ)
sub-assoc {n}{m}{k}{Ψ}{σ}{τ}{θ} = extensionality λ x → lemma{x = x}
where
lemma : ∀ {x : Fin n} → ((σ ⨟ τ) ⨟ θ) x ≡ (σ ⨟ τ ⨟ θ) x
lemma {x} =
begin
((σ ⨟ τ) ⨟ θ) x
≡⟨⟩
⟪ θ ⟫ (⟪ τ ⟫ (σ x))
≡⟨ sub-sub{M = σ x} ⟩
⟪ τ ⨟ θ ⟫ (σ x)
≡⟨⟩
(σ ⨟ τ ⨟ θ) x
∎
subst-zero-exts-cons : ∀ {n m}{σ : Subst n m}{M : Term m}
→ exts σ ⨟ subst-zero M ≡ (M • σ)
subst-zero-exts-cons {n}{m}{σ}{M} =
begin
exts σ ⨟ subst-zero M
≡⟨ cong-seq exts-cons-shift subst-zero-cons-ids ⟩
(# zero • (σ ⨟ ↑)) ⨟ (M • ids)
≡⟨ sub-dist ⟩
(⟪ M • ids ⟫ (# zero)) • ((σ ⨟ ↑) ⨟ (M • ids))
≡⟨ cong-cons (sub-head{σ = ids}) refl ⟩
M • ((σ ⨟ ↑) ⨟ (M • ids))
≡⟨ cong-cons refl (sub-assoc{σ = σ}) ⟩
M • (σ ⨟ (↑ ⨟ (M • ids)))
≡⟨ cong-cons refl (cong-seq{σ = σ} refl (sub-tail{M = M}{σ = ids})) ⟩
M • (σ ⨟ ids)
≡⟨ cong-cons refl (sub-idR{σ = σ}) ⟩
M • σ
∎
subst-commute : ∀ {n m} {N : Term (suc n)} {M : Term n} {σ : Subst n m}
→ ⟪ exts σ ⟫ N [ ⟪ σ ⟫ M ] ≡ ⟪ σ ⟫ (N [ M ])
subst-commute {n}{m}{N}{M}{σ} =
begin
⟪ exts σ ⟫ N [ ⟪ σ ⟫ M ]
≡⟨⟩
⟪ subst-zero (⟪ σ ⟫ M) ⟫ (⟪ exts σ ⟫ N)
≡⟨ cong-sub {M = ⟪ exts σ ⟫ N} subst-zero-cons-ids refl ⟩
⟪ ⟪ σ ⟫ M • ids ⟫ (⟪ exts σ ⟫ N)
≡⟨ sub-sub {M = N} ⟩
⟪ (exts σ) ⨟ ((⟪ σ ⟫ M) • ids) ⟫ N
≡⟨ cong-sub {M = N} (cong-seq exts-cons-shift refl) refl ⟩
⟪ (# zero • (σ ⨟ ↑)) ⨟ (⟪ σ ⟫ M • ids) ⟫ N
≡⟨ cong-sub {M = N} (sub-dist {M = # zero}) refl ⟩
⟪ ⟪ ⟪ σ ⟫ M • ids ⟫ (# zero) • ((σ ⨟ ↑) ⨟ (⟪ σ ⟫ M • ids)) ⟫ N
≡⟨⟩
⟪ ⟪ σ ⟫ M • ((σ ⨟ ↑) ⨟ (⟪ σ ⟫ M • ids)) ⟫ N
≡⟨ cong-sub {M = N} (cong-cons refl (sub-assoc {σ = σ})) refl ⟩
⟪ ⟪ σ ⟫ M • (σ ⨟ ↑ ⨟ ⟪ σ ⟫ M • ids) ⟫ N
≡⟨ cong-sub {M = N} refl refl ⟩
⟪ ⟪ σ ⟫ M • (σ ⨟ ids) ⟫ N
≡⟨ cong-sub {M = N} (cong-cons refl (sub-idR {σ = σ})) refl ⟩
⟪ ⟪ σ ⟫ M • σ ⟫ N
≡⟨ cong-sub {M = N} (cong-cons refl (sub-idL {σ = σ})) refl ⟩
⟪ ⟪ σ ⟫ M • (ids ⨟ σ) ⟫ N
≡⟨ cong-sub {M = N} (sym sub-dist) refl ⟩
⟪ M • ids ⨟ σ ⟫ N
≡⟨ sym (sub-sub {M = N}) ⟩
⟪ σ ⟫ (⟪ M • ids ⟫ N)
≡⟨ cong ⟪ σ ⟫ (sym (cong-sub {M = N} subst-zero-cons-ids refl)) ⟩
⟪ σ ⟫ (N [ M ])
∎
rename-subst-commute : ∀ {n m} {N : Term (suc n)} {M : Term n} {ρ : Rename n m }
→ (rename (ext ρ) N) [ rename ρ M ] ≡ rename ρ (N [ M ])
rename-subst-commute {n}{m}{N}{M}{ρ} =
begin
(rename (ext ρ) N) [ rename ρ M ]
≡⟨ cong-sub (cong-sub-zero (rename-subst-ren {M = M})) (rename-subst-ren {M = N}) ⟩
(⟪ ren (ext ρ) ⟫ N) [ ⟪ ren ρ ⟫ M ]
≡⟨ cong-sub refl (cong-sub {M = N} ren-ext refl) ⟩
(⟪ exts (ren ρ) ⟫ N) [ ⟪ ren ρ ⟫ M ]
≡⟨ subst-commute {N = N} ⟩
subst (ren ρ) (N [ M ])
≡⟨ sym (rename-subst-ren) ⟩
rename ρ (N [ M ])
∎
infix 8 _〔_〕
_〔_〕 : ∀ {n} → Term (suc (suc n)) → Term n → Term (suc n)
_〔_〕 N M = subst (exts (subst-zero M)) N
substitution-lemma : ∀ {n} {M : Term (suc (suc n))} {N : Term (suc n)} {L : Term n}
→ M [ N ] [ L ] ≡ (M 〔 L 〕) [ (N [ L ]) ]
substitution-lemma {M = M}{N = N}{L = L} =
sym (subst-commute {N = M}{M = N}{σ = subst-zero L})
| {
"alphanum_fraction": 0.4497333439,
"avg_line_length": 29.9832935561,
"ext": "agda",
"hexsha": "643072c65c8d38e0dc6d8d14da454c55b6777b25",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/church-rosser",
"max_forks_repo_path": "Substitution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/church-rosser",
"max_issues_repo_path": "Substitution.agda",
"max_line_length": 85,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/church-rosser",
"max_stars_repo_path": "Substitution.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z",
"num_tokens": 5931,
"size": 12563
} |
module Category.Functor.Either where
open import Agda.Primitive using (_⊔_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Category.Functor using (RawFunctor ; module RawFunctor )
open import Category.Applicative using (RawApplicative; module RawApplicative)
open import Function using (_∘_)
Either : ∀ {l₁ l₂} (A : Set l₁) (B : Set l₂) → Set (l₁ ⊔ l₂)
Either = _⊎_
eitherFunctor : ∀ {l₁ l₂} {A : Set l₁} → RawFunctor (Either {l₁} {l₂} A)
eitherFunctor = record
{ _<$>_ = λ f → λ { (inj₁ z) → inj₁ z ; (inj₂ a) → inj₂ (f a) }
}
eitherApplicative : ∀ {l₁} {A : Set l₁} → RawApplicative (Either {l₁} {l₁} A)
eitherApplicative = record
{ pure = inj₂
; _⊛_ = λ { (inj₁ a) → λ _ → inj₁ a ; (inj₂ f) → λ { (inj₁ a) → inj₁ a ; (inj₂ b) → inj₂ (f b) } }
}
| {
"alphanum_fraction": 0.6291560102,
"avg_line_length": 35.5454545455,
"ext": "agda",
"hexsha": "76b1c3ae681c9167786930e133f5f21bd6e1bf5a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crisoagf/agda-optics",
"max_forks_repo_path": "src/Category/Functor/Either.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crisoagf/agda-optics",
"max_issues_repo_path": "src/Category/Functor/Either.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crisoagf/agda-optics",
"max_stars_repo_path": "src/Category/Functor/Either.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 306,
"size": 782
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.FiniteMultiset.Base where
open import Cubical.Foundations.Prelude
open import Cubical.HITs.SetTruncation
open import Cubical.Foundations.HLevels
private
variable
A : Type₀
infixr 5 _∷_
data FMSet (A : Type₀) : Type₀ where
[] : FMSet A
_∷_ : (x : A) → (xs : FMSet A) → FMSet A
comm : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs
trunc : isSet (FMSet A)
pattern [_] x = x ∷ []
module FMSetElim {ℓ} {B : FMSet A → Type ℓ}
([]* : B []) (_∷*_ : (x : A) {xs : FMSet A} → B xs → B (x ∷ xs))
(comm* : (x y : A) {xs : FMSet A} (b : B xs)
→ PathP (λ i → B (comm x y xs i)) (x ∷* (y ∷* b)) (y ∷* (x ∷* b)))
(trunc* : (xs : FMSet A) → isSet (B xs)) where
f : (xs : FMSet A) → B xs
f [] = []*
f (x ∷ xs) = x ∷* f xs
f (comm x y xs i) = comm* x y (f xs) i
f (trunc xs zs p q i j) =
isOfHLevel→isOfHLevelDep {n = 2} trunc* (f xs) (f zs) (cong f p) (cong f q) (trunc xs zs p q) i j
module FMSetElimProp {ℓ} {B : FMSet A → Type ℓ} (BProp : {xs : FMSet A} → isProp (B xs))
([]* : B []) (_∷*_ : (x : A) {xs : FMSet A} → B xs → B (x ∷ xs)) where
f : (xs : FMSet A) → B xs
f = FMSetElim.f []* _∷*_
(λ x y {xs} b →
toPathP (BProp (transp (λ i → B (comm x y xs i)) i0 (x ∷* (y ∷* b))) (y ∷* (x ∷* b))))
(λ xs → isProp→isSet BProp)
module FMSetRec {ℓ} {B : Type ℓ} (BType : isSet B)
([]* : B) (_∷*_ : A → B → B)
(comm* : (x y : A) (b : B) → x ∷* (y ∷* b) ≡ y ∷* (x ∷* b)) where
f : FMSet A → B
f = FMSetElim.f []* (λ x b → x ∷* b) (λ x y b → comm* x y b) (λ _ → BType)
| {
"alphanum_fraction": 0.4921334172,
"avg_line_length": 31.78,
"ext": "agda",
"hexsha": "617fb7a89ddd27c5a54e75a0a2c8d991e6dadd59",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/HITs/FiniteMultiset/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/HITs/FiniteMultiset/Base.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/HITs/FiniteMultiset/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 728,
"size": 1589
} |
-- Σ type (also used as existential) and
-- cartesian product (also used as conjunction).
{-# OPTIONS --without-K --safe #-}
module Tools.Product where
open import Agda.Primitive
open import Agda.Builtin.Sigma public using (Σ; _,_)
open import Agda.Builtin.Sigma using (fst; snd)
infixr 2 _×_
-- Dependent pair type (aka dependent sum, Σ type).
private
variable
ℓ₁ ℓ₂ ℓ₃ : Level
proj₁ : ∀ {A : Set ℓ₁} {B : A → Set ℓ₂} → Σ A B → A
proj₁ = fst
proj₂ : ∀ {A : Set ℓ₁} {B : A → Set ℓ₂} → (S : Σ A B) → B (fst S)
proj₂ = snd
-- Existential quantification.
∃ : {A : Set ℓ₁} → (A → Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂)
∃ = Σ _
∃₂ : {A : Set ℓ₁} {B : A → Set ℓ₂}
(C : (x : A) → B x → Set ℓ₃) → Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)
∃₂ C = ∃ λ a → ∃ λ b → C a b
-- Cartesian product.
_×_ : (A : Set ℓ₁) (B : Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂)
A × B = Σ A (λ x → B)
| {
"alphanum_fraction": 0.5678571429,
"avg_line_length": 21.5384615385,
"ext": "agda",
"hexsha": "34de47eb49a40fca6baad10e6640577a5c8f439a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Tools/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Tools/Product.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Tools/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 360,
"size": 840
} |
-- When defining types by recursion it is sometimes difficult to infer implicit
-- arguments. This module illustrates the problem and shows how to get around
-- it for the example of vectors of a given length.
module DataByRecursion where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Nil : Set where
nil' : Nil
data Cons (A As : Set) : Set where
_::'_ : A -> As -> Cons A As
mutual
Vec' : Set -> Nat -> Set
Vec' A zero = Nil
Vec' A (suc n) = Cons A (Vec A n)
data Vec (A : Set)(n : Nat) : Set where
vec : Vec' A n -> Vec A n
nil : {A : Set} -> Vec A zero
nil = vec nil'
_::_ : {A : Set}{n : Nat} -> A -> Vec A n -> Vec A (suc n)
x :: xs = vec (x ::' xs)
map : {n : Nat}{A B : Set} -> (A -> B) -> Vec A n -> Vec B n
map {zero} f (vec nil') = nil
map {suc n} f (vec (x ::' xs)) = f x :: map f xs
| {
"alphanum_fraction": 0.5680473373,
"avg_line_length": 23.4722222222,
"ext": "agda",
"hexsha": "8e210e0b3f214476c644ae7c3774a73d71bb9c35",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/beyond/DataByRecursion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/beyond/DataByRecursion.agda",
"max_line_length": 79,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/beyond/DataByRecursion.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 291,
"size": 845
} |
module FSC where
-- focused sequent calculus
{-
open import Relation.Binary.PropositionalEquality
open import Data.Nat hiding (_>_)
-}
open import StdLibStuff
open import Syntax
data FSC-Ctx (n : ℕ) : Ctx n → Set where
ε : FSC-Ctx n ε
_∷_ : {Γ : Ctx n} → (t : Type n) → FSC-Ctx n Γ → FSC-Ctx n (t ∷ Γ)
_∷h_ : {Γ : Ctx n} → Form Γ $o → FSC-Ctx n Γ → FSC-Ctx n Γ
data HVar {n : ℕ} : {Γ-t : Ctx n} → FSC-Ctx n Γ-t → Set where
zero : {Γ-t : Ctx n} {h : Form Γ-t $o} {Γ : FSC-Ctx n Γ-t} → HVar (h ∷h Γ)
succ : {Γ-t : Ctx n} {h : Form Γ-t $o} {Γ : FSC-Ctx n Γ-t} → HVar Γ → HVar (h ∷h Γ)
skip : {Γ-t : Ctx n} {t : Type n} {Γ : FSC-Ctx n Γ-t} → HVar Γ → HVar (t ∷ Γ)
lookup-hyp : {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) → HVar Γ → Form Γ-t $o
lookup-hyp .(h ∷h Γ) (zero {._} {h} {Γ}) = h
lookup-hyp .(h ∷h Γ) (succ {._} {h} {Γ} x) = lookup-hyp Γ x
lookup-hyp .(t ∷ Γ) (skip {Γ-t} {t} {Γ} x) = weak (lookup-hyp Γ x)
mutual
data _⊢_ {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) : Form Γ-t $o → Set where
||-I-l : {F G : Form Γ-t $o} →
Γ ⊢ F →
Γ ⊢ (F || G)
||-I-r : {F G : Form Γ-t $o} →
Γ ⊢ G →
Γ ⊢ (F || G)
&-I : {F G : Form Γ-t $o} →
Γ ⊢ F → Γ ⊢ G →
Γ ⊢ (F & G)
?-I : {t : Type n} {F : Form (t ∷ Γ-t) $o}
(G : Form Γ-t t) →
Γ ⊢ sub G F →
Γ ⊢ (?[ t ] F)
?'-I : {t : Type n} {F : Form Γ-t (t > $o)}
(G : Form Γ-t t) →
Γ ⊢ (F · G) →
Γ ⊢ (?'[ t ] F)
=>-I : {F G : Form Γ-t $o} →
(F ∷h Γ) ⊢ G →
Γ ⊢ (F => G)
~-I : {F : Form Γ-t $o} →
(F ∷h Γ) ⊢ $false →
Γ ⊢ (~ F)
!-I : {t : Type n} {F : Form (t ∷ Γ-t) $o} →
(t ∷ Γ) ⊢ F →
Γ ⊢ (![ t ] F)
!'-I : {t : Type n} {F : Form Γ-t (t > $o)} →
(t ∷ Γ) ⊢ (weak F · ($ this {refl})) →
Γ ⊢ (!'[ t ] F)
$true-I :
Γ ⊢ $true
==-I : {t : Type n} {F G : Form Γ-t t} →
Γ ⊢ t ∋ F == G →
Γ ⊢ (F == G) -- compute eq
elim : {F : Form Γ-t $o} →
(x : HVar Γ) →
Γ , lookup-hyp Γ x ⊢ F →
Γ ⊢ F
ac : {t : Type n} {F : Form Γ-t $o} →
Γ , (![ t > $o ] ((?[ t ] ($ (next this) {refl} · $ this {refl})) => ($ this {refl} · (ι t ($ (next this) {refl} · $ this {refl}))))) ⊢ F →
Γ ⊢ F
ac' : {t : Type n} {F : Form Γ-t $o} →
Γ , (![ t > $o ] ((?'[ t ] ($ this {refl})) => ($ this {refl} · (ι' t ($ this {refl}))))) ⊢ F →
Γ ⊢ F
raa : {F : Form Γ-t $o} →
Γ ⊢ (~ (~ F)) →
Γ ⊢ F
reduce : {t u : Type n} {F : Form Γ-t u → Form Γ-t $o} {G : Form (t ∷ Γ-t) u} {H : Form Γ-t t} →
Γ ⊢ (F (sub H G)) →
Γ ⊢ (F ((^[ t ] G) · H))
data _,_⊢_ {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) : Form Γ-t $o → Form Γ-t $o → Set where
use : {F G : Form Γ-t $o} →
Γ ⊢ $o ∋ G ↔ F →
Γ , F ⊢ G
$false-E : {H : Form Γ-t $o} →
Γ , $false ⊢ H
~-E : {F H : Form Γ-t $o} →
Γ ⊢ F →
Γ , ~ F ⊢ H
||-E : {F G H : Form Γ-t $o} →
Γ ⊢ (F => H) →
Γ ⊢ (G => H) →
Γ , F || G ⊢ H
&-E-l : {F G H : Form Γ-t $o} →
Γ , F ⊢ H →
Γ , F & G ⊢ H
&-E-r : {F G H : Form Γ-t $o} →
Γ , G ⊢ H →
Γ , F & G ⊢ H
?-E : {t : Type n} {F : Form (t ∷ Γ-t) $o} {H : Form Γ-t $o} →
Γ , sub (ι t F) F ⊢ H →
Γ , ?[ t ] F ⊢ H
?'-E : {t : Type n} {F : Form Γ-t (t > $o)} {H : Form Γ-t $o} →
Γ , (F · ι' t F) ⊢ H →
Γ , ?'[ t ] F ⊢ H
=>-E : {F G H : Form Γ-t $o} →
Γ ⊢ F →
Γ , G ⊢ H →
Γ , F => G ⊢ H
!-E : {t : Type n} {F : Form (t ∷ Γ-t) $o} {H : Form Γ-t $o}
(G : Form Γ-t t) →
Γ , sub G F ⊢ H →
Γ , ![ t ] F ⊢ H
!'-E : {t : Type n} {F : Form Γ-t (t > $o)} {H : Form Γ-t $o}
(G : Form Γ-t t) →
Γ , (F · G) ⊢ H →
Γ , !'[ t ] F ⊢ H
r-bool-ext : {F G H : Form Γ-t $o} →
Γ , ((F => G) & (G => F)) ⊢ H →
Γ , F == G ⊢ H -- compute eq
r-fun-ext : {t u : Type n} {F G : Form Γ-t (t > u)} {H : Form Γ-t $o}
(I : Form Γ-t t) →
Γ , (F · I) == (G · I) ⊢ H →
Γ , F == G ⊢ H -- compute eq
reduce : {t u : Type n} {F : Form Γ-t u → Form Γ-t $o} {G : Form (t ∷ Γ-t) u} {H : Form Γ-t t} {I : Form Γ-t $o} →
Γ , (F (sub H G)) ⊢ I →
Γ , (F ((^[ t ] G) · H)) ⊢ I
data _⊢_∋_==_ {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) : (t : Type n) (F G : Form Γ-t t) → Set where
simp : {t : Type n} {F G : Form Γ-t t} →
Γ ⊢ t ∋ F ↔ G →
Γ ⊢ t ∋ F == G
step : {t : Type n} {F G : Form Γ-t t} (F' G' : Form Γ-t t) →
(x : HVar Γ) →
Γ , lookup-hyp Γ x ⊢ F' == G' →
Γ ⊢ t ∋ F ↔ F' →
Γ ⊢ t ∋ G' == G →
Γ ⊢ t ∋ F == G
bool-ext : {F G : Form Γ-t $o} →
Γ ⊢ ((F => G) & (G => F)) →
Γ ⊢ $o ∋ F == G
fun-ext : {t u : Type n} {F G : Form Γ-t (t > u)} →
(t ∷ Γ) ⊢ u ∋ ((weak F) · $ this {refl}) == ((weak G) · $ this {refl}) →
Γ ⊢ (t > u) ∋ F == G
data _⊢_∋_↔_ {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) : (t : Type n) → Form Γ-t t → Form Γ-t t → Set where
head-var : (t : Type n) (x : Var Γ-t) (p : lookup-Var Γ-t x ≡ t) →
Γ ⊢ t ∋ $ x {p} ↔ $ x {p}
head-const : (t : Type n) (c : Form Γ-t t) →
Γ ⊢ t ∋ c ↔ c
head-app : (t₁ t₂ : Type n) (F₁ F₂ : Form Γ-t (t₁ > t₂)) (G₁ G₂ : Form Γ-t t₁) →
Γ ⊢ (t₁ > t₂) ∋ F₁ == F₂ → Γ ⊢ t₁ ∋ G₁ == G₂ →
Γ ⊢ t₂ ∋ (F₁ · G₁) ↔ (F₂ · G₂)
head-lam : (t₁ t₂ : Type n) (F₁ F₂ : Form (t₁ ∷ Γ-t) t₂) →
(t₁ ∷ Γ) ⊢ t₂ ∋ F₁ == F₂ →
Γ ⊢ (t₁ > t₂) ∋ (lam t₁ F₁) ↔ (lam t₁ F₂)
head-lam-eta-left : (t₁ t₂ : Type n) (F₁ : Form Γ-t (t₁ > t₂)) (F₂ : Form (t₁ ∷ Γ-t) t₂) →
(t₁ ∷ Γ) ⊢ t₂ ∋ (weak F₁ · $ this {refl}) == F₂ →
Γ ⊢ (t₁ > t₂) ∋ F₁ ↔ lam t₁ F₂
head-lam-eta-right : (t₁ t₂ : Type n) (F₁ : Form Γ-t (t₁ > t₂)) (F₂ : Form (t₁ ∷ Γ-t) t₂) →
(t₁ ∷ Γ) ⊢ t₂ ∋ F₂ == (weak F₁ · $ this {refl}) →
Γ ⊢ (t₁ > t₂) ∋ lam t₁ F₂ ↔ F₁
reduce-l : {t u v : Type n} {F₁ : Form Γ-t v → Form Γ-t t} {G : Form (u ∷ Γ-t) v} {H : Form Γ-t u} {F₂ : Form Γ-t t} →
Γ ⊢ t ∋ (F₁ (sub H G)) ↔ F₂ →
Γ ⊢ t ∋ (F₁ ((^[ u ] G) · H)) ↔ F₂
reduce-r : {t u v : Type n} {F₂ : Form Γ-t v → Form Γ-t t} {G : Form (u ∷ Γ-t) v} {H : Form Γ-t u} {F₁ : Form Γ-t t} →
Γ ⊢ t ∋ F₁ ↔ (F₂ (sub H G)) →
Γ ⊢ t ∋ F₁ ↔ (F₂ ((^[ u ] G) · H))
data _,_⊢_==_ {n : ℕ} {Γ-t : Ctx n} {t : Type n} (Γ : FSC-Ctx n Γ-t) : Form Γ-t $o → Form Γ-t t → Form Γ-t t → Set where
use : {F G : Form Γ-t t} →
Γ , F == G ⊢ F == G
use' : {F G : Form Γ-t t} {H : Form Γ-t $o} →
headNorm 2 (F == G) ≡ headNorm 2 H →
Γ , H ⊢ F == G
use-sym : {F G : Form Γ-t t} →
Γ , F == G ⊢ G == F -- compute eq
&-E-l : {F G : Form Γ-t $o} {H₁ H₂ : Form Γ-t t} →
Γ , F ⊢ H₁ == H₂ →
Γ , F & G ⊢ H₁ == H₂
&-E-r : {F G : Form Γ-t $o} {H₁ H₂ : Form Γ-t t} →
Γ , G ⊢ H₁ == H₂ →
Γ , F & G ⊢ H₁ == H₂
?-E : {u : Type n} {F : Form (u ∷ Γ-t) $o} {H₁ H₂ : Form Γ-t t} →
Γ , sub (ι u F) F ⊢ H₁ == H₂ →
Γ , ?[ u ] F ⊢ H₁ == H₂
?'-E : {u : Type n} {F : Form Γ-t (u > $o)} {H₁ H₂ : Form Γ-t t} →
Γ , (F · ι' u F) ⊢ H₁ == H₂ →
Γ , ?'[ u ] F ⊢ H₁ == H₂
=>-E : {F G : Form Γ-t $o} {H₁ H₂ : Form Γ-t t} →
Γ ⊢ F →
Γ , G ⊢ H₁ == H₂ →
Γ , F => G ⊢ H₁ == H₂
!-E : {u : Type n} {F : Form (u ∷ Γ-t) $o} {H₁ H₂ : Form Γ-t t}
(G : Form Γ-t u) →
Γ , sub G F ⊢ H₁ == H₂ →
Γ , ![ u ] F ⊢ H₁ == H₂
!'-E : {u : Type n} {F : Form Γ-t (u > $o)} {H₁ H₂ : Form Γ-t t}
(G : Form Γ-t u) →
Γ , (F · G) ⊢ H₁ == H₂ →
Γ , !'[ u ] F ⊢ H₁ == H₂
r-bool-ext : {F G : Form Γ-t $o} {H I : Form Γ-t t} →
Γ , ((F => G) & (G => F)) ⊢ H == I →
Γ , F == G ⊢ H == I -- compute eq
r-fun-ext : {u v : Type n} {F G : Form Γ-t (u > v)} {H I : Form Γ-t t}
(J : Form Γ-t u) →
Γ , (F · J) == (G · J) ⊢ H == I →
Γ , F == G ⊢ H == I -- compute eq
reduce : {u v : Type n} {F : Form Γ-t v → Form Γ-t $o} {G : Form (u ∷ Γ-t) v} {H : Form Γ-t u} {I₁ I₂ : Form Γ-t t} →
Γ , (F (sub H G)) ⊢ I₁ == I₂ →
Γ , (F ((^[ u ] G) · H)) ⊢ I₁ == I₂
| {
"alphanum_fraction": 0.3841830065,
"avg_line_length": 33.7004405286,
"ext": "agda",
"hexsha": "6e49668de809bb477e7fec8157db6971eaef7c78",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-15T11:51:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-17T20:28:10.000Z",
"max_forks_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "frelindb/agsyHOL",
"max_forks_repo_path": "soundness/FSC.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "frelindb/agsyHOL",
"max_issues_repo_path": "soundness/FSC.agda",
"max_line_length": 142,
"max_stars_count": 17,
"max_stars_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "frelindb/agsyHOL",
"max_stars_repo_path": "soundness/FSC.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-19T20:53:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-04T14:38:28.000Z",
"num_tokens": 3978,
"size": 7650
} |
-- Andreas, 2016-09-20, issue #2197 reported by m0davis
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.pos:20 -v tc.meta.eta:20 #-}
record R : Set where
inductive
field
foo : R
bar : R
bar = {!!}
-- This used to loop due to infinite eta-expansion.
-- Should check now.
| {
"alphanum_fraction": 0.62,
"avg_line_length": 16.6666666667,
"ext": "agda",
"hexsha": "8e950ff45d39c7e4d493308f77ea10ba9acd7b28",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2197.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2197.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2197.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 96,
"size": 300
} |
module Common.Issue481ParametrizedModule (A : Set1) where
id : A → A
id x = x
postulate
Bla : Set
| {
"alphanum_fraction": 0.6960784314,
"avg_line_length": 12.75,
"ext": "agda",
"hexsha": "db77e96ee07f30e7960ffb3bae63fc8a8018331d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Common/Issue481ParametrizedModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Common/Issue481ParametrizedModule.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Common/Issue481ParametrizedModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 37,
"size": 102
} |
test = forall _⦇_ → Set
| {
"alphanum_fraction": 0.625,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "e83c6016fa3d34c4dfd4d320bff5be6cb4a0cc80",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/InvalidNamePartIdiom.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/InvalidNamePartIdiom.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/InvalidNamePartIdiom.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 11,
"size": 24
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
module lib.types.Sigma where
-- pointed [Σ]
⊙Σ : ∀ {i j} (X : Ptd i) → (de⊙ X → Ptd j) → Ptd (lmax i j)
⊙Σ ⊙[ A , a₀ ] Y = ⊙[ Σ A (de⊙ ∘ Y) , (a₀ , pt (Y a₀)) ]
-- Cartesian product
_×_ : ∀ {i j} (A : Type i) (B : Type j) → Type (lmax i j)
A × B = Σ A (λ _ → B)
_⊙×_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
X ⊙× Y = ⊙Σ X (λ _ → Y)
infixr 80 _×_ _⊙×_
-- XXX Do we really need two versions of [⊙fst]?
⊙fstᵈ : ∀ {i j} {X : Ptd i} (Y : de⊙ X → Ptd j) → ⊙Σ X Y ⊙→ X
⊙fstᵈ Y = fst , idp
⊙fst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → X ⊙× Y ⊙→ X
⊙fst = ⊙fstᵈ _
⊙snd : ∀ {i j} {X : Ptd i} {Y : Ptd j} → X ⊙× Y ⊙→ Y
⊙snd = (snd , idp)
fanout : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
→ (A → B) → (A → C) → (A → B × C)
fanout f g x = f x , g x
⊙fanout-pt : ∀ {i j} {A : Type i} {B : Type j}
{a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₁ : B} (q : b₀ == b₁)
→ (a₀ , b₀) == (a₁ , b₁) :> A × B
⊙fanout-pt = pair×=
⊙fanout : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ X ⊙→ Y → X ⊙→ Z → X ⊙→ Y ⊙× Z
⊙fanout (f , fpt) (g , gpt) = fanout f g , ⊙fanout-pt fpt gpt
diag : ∀ {i} {A : Type i} → (A → A × A)
diag a = a , a
⊙diag : ∀ {i} {X : Ptd i} → X ⊙→ X ⊙× X
⊙diag = ((λ x → (x , x)) , idp)
⊙×-inl : ∀ {i j} (X : Ptd i) (Y : Ptd j) → X ⊙→ X ⊙× Y
⊙×-inl X Y = (λ x → x , pt Y) , idp
⊙×-inr : ∀ {i j} (X : Ptd i) (Y : Ptd j) → Y ⊙→ X ⊙× Y
⊙×-inr X Y = (λ y → pt X , y) , idp
⊙fst-fanout : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : X ⊙→ Y) (g : X ⊙→ Z)
→ ⊙fst ⊙∘ ⊙fanout f g == f
⊙fst-fanout (f , idp) (g , idp) = idp
⊙snd-fanout : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : X ⊙→ Y) (g : X ⊙→ Z)
→ ⊙snd ⊙∘ ⊙fanout f g == g
⊙snd-fanout (f , idp) (g , idp) = idp
⊙fanout-pre∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(f : Y ⊙→ Z) (g : Y ⊙→ W) (h : X ⊙→ Y)
→ ⊙fanout f g ⊙∘ h == ⊙fanout (f ⊙∘ h) (g ⊙∘ h)
⊙fanout-pre∘ (f , idp) (g , idp) (h , idp) = idp
module _ {i j} {A : Type i} {B : A → Type j} where
pair : (a : A) (b : B a) → Σ A B
pair a b = (a , b)
-- pair= has already been defined
fst= : {ab a'b' : Σ A B} (p : ab == a'b') → (fst ab == fst a'b')
fst= = ap fst
snd= : {ab a'b' : Σ A B} (p : ab == a'b')
→ (snd ab == snd a'b' [ B ↓ fst= p ])
snd= {._} {_} idp = idp
fst=-β : {a a' : A} (p : a == a')
{b : B a} {b' : B a'} (q : b == b' [ B ↓ p ])
→ fst= (pair= p q) == p
fst=-β idp idp = idp
snd=-β : {a a' : A} (p : a == a')
{b : B a} {b' : B a'} (q : b == b' [ B ↓ p ])
→ snd= (pair= p q) == q [ (λ v → b == b' [ B ↓ v ]) ↓ fst=-β p q ]
snd=-β idp idp = idp
pair=-η : {ab a'b' : Σ A B} (p : ab == a'b')
→ p == pair= (fst= p) (snd= p)
pair=-η {._} {_} idp = idp
pair== : {a a' : A} {p p' : a == a'} (α : p == p')
{b : B a} {b' : B a'} {q : b == b' [ B ↓ p ]} {q' : b == b' [ B ↓ p' ]}
(β : q == q' [ (λ u → b == b' [ B ↓ u ]) ↓ α ])
→ pair= p q == pair= p' q'
pair== idp idp = idp
module _ {i j} {A : Type i} {B : Type j} where
fst×= : {ab a'b' : A × B} (p : ab == a'b') → (fst ab == fst a'b')
fst×= = ap fst
snd×= : {ab a'b' : A × B} (p : ab == a'b')
→ (snd ab == snd a'b')
snd×= = ap snd
fst×=-β : {a a' : A} (p : a == a')
{b b' : B} (q : b == b')
→ fst×= (pair×= p q) == p
fst×=-β idp idp = idp
snd×=-β : {a a' : A} (p : a == a')
{b b' : B} (q : b == b')
→ snd×= (pair×= p q) == q
snd×=-β idp idp = idp
pair×=-η : {ab a'b' : A × B} (p : ab == a'b')
→ p == pair×= (fst×= p) (snd×= p)
pair×=-η {._} {_} idp = idp
module _ {i j} {A : Type i} {B : A → Type j} where
=Σ : (x y : Σ A B) → Type (lmax i j)
=Σ (a , b) (a' , b') = Σ (a == a') (λ p → b == b' [ B ↓ p ])
=Σ-econv : (x y : Σ A B) → (=Σ x y) ≃ (x == y)
=Σ-econv x y =
equiv (λ pq → pair= (fst pq) (snd pq)) (λ p → fst= p , snd= p)
(λ p → ! (pair=-η p))
(λ pq → pair= (fst=-β (fst pq) (snd pq)) (snd=-β (fst pq) (snd pq)))
=Σ-conv : (x y : Σ A B) → (=Σ x y) == (x == y)
=Σ-conv x y = ua (=Σ-econv x y)
Σ= : ∀ {i j} {A A' : Type i} (p : A == A') {B : A → Type j} {B' : A' → Type j}
(q : B == B' [ (λ X → (X → Type j)) ↓ p ]) → Σ A B == Σ A' B'
Σ= idp idp = idp
instance
Σ-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {P : A → Type j}
→ has-level n A → ((x : A) → has-level n (P x))
→ has-level n (Σ A P)
Σ-level {n = ⟨-2⟩} p q = has-level-in ((contr-center p , (contr-center (q (contr-center p)))) , lemma)
where abstract lemma = λ y → pair= (contr-path p _) (from-transp! _ _ (contr-path (q _) _))
Σ-level {n = S n} p q = has-level-in lemma where
abstract
lemma = λ x y → equiv-preserves-level (=Σ-econv x y)
{{Σ-level (has-level-apply p _ _) (λ _ →
equiv-preserves-level ((to-transp-equiv _ _)⁻¹) {{has-level-apply (q _) _ _}})}}
×-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j}
→ (has-level n A → has-level n B → has-level n (A × B))
×-level pA pB = Σ-level pA (λ x → pB)
-- Equivalences in a Σ-type
Σ-fmap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k)
→ (f : A → B) → (Σ A (P ∘ f) → Σ B P)
Σ-fmap-l P f (a , r) = (f a , r)
×-fmap-l : ∀ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁} (B : Type j)
→ (f : A₀ → A₁) → (A₀ × B → A₁ × B)
×-fmap-l B = Σ-fmap-l (λ _ → B)
Σ-isemap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) {h : A → B}
→ is-equiv h → is-equiv (Σ-fmap-l P h)
Σ-isemap-l {A = A} {B = B} P {h} e = is-eq _ g f-g g-f
where f = Σ-fmap-l P h
g : Σ B P → Σ A (P ∘ h)
g (b , s) = (is-equiv.g e b , transport P (! (is-equiv.f-g e b)) s)
f-g : ∀ y → f (g y) == y
f-g (b , s) = pair= (is-equiv.f-g e b) (transp-↓ P (is-equiv.f-g e b) s)
g-f : ∀ x → g (f x) == x
g-f (a , r) =
pair= (is-equiv.g-f e a)
(transport (λ q → transport P (! q) r == r [ P ∘ h ↓ is-equiv.g-f e a ])
(is-equiv.adj e a)
(transp-ap-↓ P h (is-equiv.g-f e a) r))
×-isemap-l : ∀ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁} (B : Type j) {h : A₀ → A₁}
→ is-equiv h → is-equiv (×-fmap-l B h)
×-isemap-l B = Σ-isemap-l (λ _ → B)
Σ-emap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k)
→ (e : A ≃ B) → (Σ A (P ∘ –> e) ≃ Σ B P)
Σ-emap-l P (f , e) = _ , Σ-isemap-l P e
×-emap-l : ∀ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁} (B : Type j)
→ (e : A₀ ≃ A₁) → (A₀ × B ≃ A₁ × B)
×-emap-l B = Σ-emap-l (λ _ → B)
Σ-fmap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (∀ x → B x → C x) → (Σ A B → Σ A C)
Σ-fmap-r h (a , b) = (a , h a b)
×-fmap-r : ∀ {i j₀ j₁} (A : Type i) {B₀ : Type j₀} {B₁ : Type j₁}
→ (h : B₀ → B₁) → (A × B₀ → A × B₁)
×-fmap-r A h = Σ-fmap-r (λ _ → h)
Σ-isemap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
{h : ∀ x → B x → C x} → (∀ x → is-equiv (h x)) → is-equiv (Σ-fmap-r h)
Σ-isemap-r {A = A} {B = B} {C = C} {h} k = is-eq _ g f-g g-f
where f = Σ-fmap-r h
g : Σ A C → Σ A B
g (a , c) = (a , is-equiv.g (k a) c)
f-g : ∀ p → f (g p) == p
f-g (a , c) = pair= idp (is-equiv.f-g (k a) c)
g-f : ∀ p → g (f p) == p
g-f (a , b) = pair= idp (is-equiv.g-f (k a) b)
×-isemap-r : ∀ {i j₀ j₁} (A : Type i) {B₀ : Type j₀} {B₁ : Type j₁}
→ {h : B₀ → B₁} → is-equiv h → is-equiv (×-fmap-r A h)
×-isemap-r A e = Σ-isemap-r (λ _ → e)
Σ-emap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (∀ x → B x ≃ C x) → (Σ A B ≃ Σ A C)
Σ-emap-r k = _ , Σ-isemap-r (λ x → snd (k x))
×-emap-r : ∀ {i j₀ j₁} (A : Type i) {B₀ : Type j₀} {B₁ : Type j₁}
→ (e : B₀ ≃ B₁) → (A × B₀ ≃ A × B₁)
×-emap-r A e = Σ-emap-r (λ _ → e)
hfiber-Σ-fmap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (h : ∀ x → B x → C x) → {a : A} → (c : C a)
→ hfiber (Σ-fmap-r h) (a , c) ≃ hfiber (h a) c
hfiber-Σ-fmap-r h {a} c = equiv to from to-from from-to
where to : hfiber (Σ-fmap-r h) (a , c) → hfiber (h a) c
to ((_ , b) , idp) = b , idp
from : hfiber (h a) c → hfiber (Σ-fmap-r h) (a , c)
from (b , idp) = (a , b) , idp
abstract
to-from : (x : hfiber (h a) c) → to (from x) == x
to-from (b , idp) = idp
from-to : (x : hfiber (Σ-fmap-r h) (a , c)) → from (to x) == x
from-to ((_ , b) , idp) = idp
{-
-- 2016/08/20 favonia: no one is using the following two functions.
-- Two ways of simultaneously applying equivalences in each component.
module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁}
{B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where
Σ-emap : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Σ A₀ B₀ ≃ Σ A₁ B₁
Σ-emap u v = Σ A₀ B₀ ≃⟨ Σ-emap-l _ (u ⁻¹) ⁻¹ ⟩
Σ A₁ (B₀ ∘ <– u) ≃⟨ Σ-emap-r v ⟩
Σ A₁ B₁ ≃∎
Σ-emap' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Σ A₀ B₀ ≃ Σ A₁ B₁
Σ-emap' u v = Σ A₀ B₀ ≃⟨ Σ-emap-r v ⟩
Σ A₀ (B₁ ∘ –> u) ≃⟨ Σ-emap-l _ u ⟩
Σ A₁ B₁ ≃∎
-}
×-fmap : ∀ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁}
→ (h : A₀ → A₁) (k : B₀ → B₁) → (A₀ × B₀ → A₁ × B₁)
×-fmap u v = ×-fmap-r _ v ∘ ×-fmap-l _ u
⊙×-fmap : ∀ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'}
→ X ⊙→ X' → Y ⊙→ Y' → X ⊙× Y ⊙→ X' ⊙× Y'
⊙×-fmap (f , fpt) (g , gpt) = ×-fmap f g , pair×= fpt gpt
×-isemap : ∀ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁}
{h : A₀ → A₁} {k : B₀ → B₁} → is-equiv h → is-equiv k → is-equiv (×-fmap h k)
×-isemap eh ek = ×-isemap-r _ ek ∘ise ×-isemap-l _ eh
×-emap : ∀ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁}
→ (u : A₀ ≃ A₁) (v : B₀ ≃ B₁) → (A₀ × B₀ ≃ A₁ × B₁)
×-emap u v = ×-emap-r _ v ∘e ×-emap-l _ u
⊙×-emap : ∀ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'}
→ X ⊙≃ X' → Y ⊙≃ Y' → X ⊙× Y ⊙≃ X' ⊙× Y'
⊙×-emap (F , F-ise) (G , G-ise) = ⊙×-fmap F G , ×-isemap F-ise G-ise
-- Implementation of [_∙'_] on Σ
Σ-∙' : ∀ {i j} {A : Type i} {B : A → Type j}
{x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}
(q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ])
→ (pair= p q ∙' pair= p' r) == pair= (p ∙' p') (q ∙'ᵈ r)
Σ-∙' {p = idp} {p' = idp} q idp = idp
-- Implementation of [_∙_] on Σ
Σ-∙ : ∀ {i j} {A : Type i} {B : A → Type j}
{x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}
(q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ])
→ (pair= p q ∙ pair= p' r) == pair= (p ∙ p') (q ∙ᵈ r)
Σ-∙ {p = idp} {p' = idp} idp r = idp
-- Implementation of [!] on Σ
Σ-! : ∀ {i j} {A : Type i} {B : A → Type j}
{x y : A} {p : x == y}
{u : B x} {v : B y}
(q : u == v [ B ↓ p ])
→ ! (pair= p q) == pair= (! p) (!ᵈ q)
Σ-! {p = idp} idp = idp
-- Implementation of [_∙'_] on ×
×-∙' : ∀ {i j} {A : Type i} {B : Type j}
{x y z : A} (p : x == y) (p' : y == z)
{u v w : B} (q : u == v) (q' : v == w)
→ (pair×= p q ∙' pair×= p' q') == pair×= (p ∙' p') (q ∙' q')
×-∙' idp idp q idp = idp
-- Implementation of [_∙_] on ×
×-∙ : ∀ {i j} {A : Type i} {B : Type j}
{x y z : A} (p : x == y) (p' : y == z)
{u v w : B} (q : u == v) (q' : v == w)
→ (pair×= p q ∙ pair×= p' q') == pair×= (p ∙ p') (q ∙ q')
×-∙ idp idp idp r = idp
-- Implementation of [!] on ×
×-! : ∀ {i j} {A : Type i} {B : Type j}
{x y : A} (p : x == y) {u v : B} (q : u == v)
→ ! (pair×= p q) == pair×= (! p) (! q)
×-! idp idp = idp
-- Special case of [ap-,]
ap-cst,id : ∀ {i j} {A : Type i} (B : A → Type j)
{a : A} {x y : B a} (p : x == y)
→ ap (λ x → _,_ {B = B} a x) p == pair= idp p
ap-cst,id B idp = idp
-- hfiber fst == B
module _ {i j} {A : Type i} {B : A → Type j} where
private
to : ∀ a → hfiber (fst :> (Σ A B → A)) a → B a
to a ((.a , b) , idp) = b
from : ∀ (a : A) → B a → hfiber (fst :> (Σ A B → A)) a
from a b = (a , b) , idp
to-from : ∀ (a : A) (b : B a) → to a (from a b) == b
to-from a b = idp
from-to : ∀ a b′ → from a (to a b′) == b′
from-to a ((.a , b) , idp) = idp
hfiber-fst : ∀ a → hfiber (fst :> (Σ A B → A)) a ≃ B a
hfiber-fst a = to a , is-eq (to a) (from a) (to-from a) (from-to a)
{- Dependent paths in a Σ-type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
where
↓-Σ-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(q : r == r' [ B ↓ p ])
→ s == s' [ uncurry C ↓ pair= p q ]
→ (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ]
↓-Σ-in {p = idp} idp t = pair= idp t
↓-Σ-fst : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
→ (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ]
→ r == r' [ B ↓ p ]
↓-Σ-fst {p = idp} u = fst= u
↓-Σ-snd : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
→ (u : (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ])
→ s == s' [ uncurry C ↓ pair= p (↓-Σ-fst u) ]
↓-Σ-snd {p = idp} idp = idp
↓-Σ-β-fst : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(q : r == r' [ B ↓ p ])
(t : s == s' [ uncurry C ↓ pair= p q ])
→ ↓-Σ-fst (↓-Σ-in q t) == q
↓-Σ-β-fst {p = idp} idp idp = idp
↓-Σ-β-snd : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(q : r == r' [ B ↓ p ])
(t : s == s' [ uncurry C ↓ pair= p q ])
→ ↓-Σ-snd (↓-Σ-in q t) == t
[ (λ q' → s == s' [ uncurry C ↓ pair= p q' ]) ↓ ↓-Σ-β-fst q t ]
↓-Σ-β-snd {p = idp} idp idp = idp
↓-Σ-η : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(u : (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ])
→ ↓-Σ-in (↓-Σ-fst u) (↓-Σ-snd u) == u
↓-Σ-η {p = idp} idp = idp
{- Dependent paths in a ×-type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
where
↓-×-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x} {s' : C x'}
→ r == r' [ B ↓ p ]
→ s == s' [ C ↓ p ]
→ (r , s) == (r' , s') [ (λ x → B x × C x) ↓ p ]
↓-×-in {p = idp} q t = pair×= q t
{- Dependent paths over a ×-type -}
module _ {i j k} {A : Type i} {B : Type j} (C : A → B → Type k)
where
↓-over-×-in : {x x' : A} {p : x == x'} {y y' : B} {q : y == y'}
{u : C x y} {v : C x' y} {w : C x' y'}
→ u == v [ (λ a → C a y) ↓ p ]
→ v == w [ (λ b → C x' b) ↓ q ]
→ u == w [ uncurry C ↓ pair×= p q ]
↓-over-×-in {p = idp} {q = idp} idp idp = idp
↓-over-×-in' : {x x' : A} {p : x == x'} {y y' : B} {q : y == y'}
{u : C x y} {v : C x y'} {w : C x' y'}
→ u == v [ (λ b → C x b) ↓ q ]
→ v == w [ (λ a → C a y') ↓ p ]
→ u == w [ uncurry C ↓ pair×= p q ]
↓-over-×-in' {p = idp} {q = idp} idp idp = idp
module _ where
-- An orphan lemma.
↓-cst×app-in : ∀ {i j k} {A : Type i}
{B : Type j} {C : A → B → Type k}
{a₁ a₂ : A} (p : a₁ == a₂)
{b₁ b₂ : B} (q : b₁ == b₂)
{c₁ : C a₁ b₁}{c₂ : C a₂ b₂}
→ c₁ == c₂ [ uncurry C ↓ pair×= p q ]
→ (b₁ , c₁) == (b₂ , c₂) [ (λ x → Σ B (C x)) ↓ p ]
↓-cst×app-in idp idp idp = idp
{- pair= and pair×= where one argument is reflexivity -}
pair=-idp-l : ∀ {i j} {A : Type i} {B : A → Type j} (a : A) {b₁ b₂ : B a}
(q : b₁ == b₂) → pair= {B = B} idp q == ap (λ y → (a , y)) q
pair=-idp-l _ idp = idp
pair×=-idp-l : ∀ {i j} {A : Type i} {B : Type j} (a : A) {b₁ b₂ : B}
(q : b₁ == b₂) → pair×= idp q == ap (λ y → (a , y)) q
pair×=-idp-l _ idp = idp
pair×=-idp-r : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂)
(b : B) → pair×= p idp == ap (λ x → (x , b)) p
pair×=-idp-r idp _ = idp
pair×=-split-l : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂)
{b₁ b₂ : B} (q : b₁ == b₂)
→ pair×= p q == ap (λ a → (a , b₁)) p ∙ ap (λ b → (a₂ , b)) q
pair×=-split-l idp idp = idp
pair×=-split-r : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂)
{b₁ b₂ : B} (q : b₁ == b₂)
→ pair×= p q == ap (λ b → (a₁ , b)) q ∙ ap (λ a → (a , b₂)) p
pair×=-split-r idp idp = idp
-- Commutativity of products and derivatives.
module _ {i j} {A : Type i} {B : Type j} where
×-comm : Σ A (λ _ → B) ≃ Σ B (λ _ → A)
×-comm = equiv (λ {(a , b) → (b , a)}) (λ {(b , a) → (a , b)}) (λ _ → idp) (λ _ → idp)
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where
Σ₂-×-comm : Σ (Σ A B) (λ ab → C (fst ab)) ≃ Σ (Σ A C) (λ ac → B (fst ac))
Σ₂-×-comm = Σ-assoc ⁻¹ ∘e Σ-emap-r (λ a → ×-comm) ∘e Σ-assoc
module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where
Σ₁-×-comm : Σ A (λ a → Σ B (λ b → C a b)) ≃ Σ B (λ b → Σ A (λ a → C a b))
Σ₁-×-comm = Σ-assoc ∘e Σ-emap-l _ ×-comm ∘e Σ-assoc ⁻¹
| {
"alphanum_fraction": 0.4013011264,
"avg_line_length": 34.730125523,
"ext": "agda",
"hexsha": "180929a2edc3c6af1d200720aff6ad5b8ff80b54",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Sigma.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8463,
"size": 16601
} |
{-# OPTIONS --prop --without-K --rewriting #-}
-- The basic CBPV metalanguage, extended with parallelism.
open import Calf.CostMonoid
module Calf.ParMetalanguage (parCostMonoid : ParCostMonoid) where
open ParCostMonoid parCostMonoid
open import Calf.Prelude
open import Calf.Metalanguage
open import Calf.Step costMonoid
open import Calf.Types.Eq
open import Calf.Types.Bounded costMonoid
open import Data.Product
open import Relation.Binary.PropositionalEquality
postulate
_&_ : {A₁ A₂ : tp pos} → cmp (F A₁) → cmp (F A₂) → cmp (F (Σ++ A₁ (λ _ → A₂)))
&/join : ∀ {A₁ A₂} {v₁ v₂ p₁ p₂} →
step (F A₁) p₁ (ret v₁) & step (F A₂) p₂ (ret v₂) ≡ step (F (Σ++ A₁ λ _ → A₂)) (p₁ ⊗ p₂) (ret (v₁ , v₂))
{-# REWRITE &/join #-}
&/join/𝟘 : ∀ {A₁ A₂} {v₁ v₂} →
ret v₁ & ret v₂ ≡ step (F (Σ++ A₁ λ _ → A₂)) (𝟘 ⊗ 𝟘) (ret (v₁ , v₂))
&/join/𝟘 = &/join {p₁ = 𝟘} {p₂ = 𝟘}
{-# REWRITE &/join/𝟘 #-}
bind/& : ∀ {A₁ A₂} {X} {v₁ v₂ f} (p₁ p₂ : ℂ) →
bind {Σ++ A₁ λ _ → A₂} X (step (F A₁) p₁ (ret v₁) & step (F A₂) p₂ (ret v₂)) f ≡ step X (p₁ ⊗ p₂) (f (v₁ , v₂))
bind/& _ _ = refl
bound/par : {A₁ A₂ : tp pos} {e₁ : cmp (F A₁)} {e₂ : cmp (F A₂)} {c₁ c₂ : ℂ} →
IsBounded A₁ e₁ c₁ →
IsBounded A₂ e₂ c₂ →
IsBounded (Σ++ A₁ λ _ → A₂) (e₁ & e₂) (c₁ ⊗ c₂)
bound/par (⇓ a₁ withCost p₁' [ h-bounded₁ , h-≡₁ ]) (⇓ a₂ withCost p₂' [ h-bounded₂ , h-≡₂ ]) with eq/ref h-≡₁ | eq/ref h-≡₂
... | refl | refl = ⇓ (a₁ , a₂) withCost (p₁' ⊗ p₂') [ (λ u → ⊗-mono-≤ (h-bounded₁ u) (h-bounded₂ u)) , (ret (eq/intro refl)) ]
| {
"alphanum_fraction": 0.5881962865,
"avg_line_length": 35.0697674419,
"ext": "agda",
"hexsha": "f03ee0ccbc00fdde8462d0c732dfe0f75ac71e55",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z",
"max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "jonsterling/agda-calf",
"max_forks_repo_path": "src/Calf/ParMetalanguage.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "jonsterling/agda-calf",
"max_issues_repo_path": "src/Calf/ParMetalanguage.agda",
"max_line_length": 127,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "jonsterling/agda-calf",
"max_stars_repo_path": "src/Calf/ParMetalanguage.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z",
"num_tokens": 699,
"size": 1508
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Lists.Lists
open import Numbers.BinaryNaturals.Definition
open import Maybe
open import Numbers.BinaryNaturals.SubtractionGo
module Numbers.BinaryNaturals.SubtractionGoPreservesCanonicalRight where
goPreservesCanonicalRightZero : (a b : BinNat) → mapMaybe canonical (go zero a b) ≡ mapMaybe canonical (go zero a (canonical b))
goPreservesCanonicalRightOne : (a b : BinNat) → mapMaybe canonical (go one a b) ≡ mapMaybe canonical (go one a (canonical b))
goPreservesCanonicalRightZero [] [] = refl
goPreservesCanonicalRightZero [] (zero :: b) with inspect (go zero [] b)
goPreservesCanonicalRightZero [] (zero :: b) | no with≡ pr with inspect (canonical b)
goPreservesCanonicalRightZero [] (zero :: b) | no with≡ pr | [] with≡ pr2 rewrite pr | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr)) (transitivity (goPreservesCanonicalRightZero [] b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero [] i)) pr2) refl))))
goPreservesCanonicalRightZero [] (zero :: b) | no with≡ pr | (x :: y) with≡ pr2 with inspect (go zero [] (x :: y))
goPreservesCanonicalRightZero [] (zero :: b) | no with≡ pr | (x :: y) with≡ pr2 | no with≡ pr3 rewrite pr | pr2 | pr3 = refl
goPreservesCanonicalRightZero [] (zero :: b) | no with≡ pr | (x :: y) with≡ pr2 | yes z with≡ pr3 rewrite pr | pr2 | pr3 | equalityCommutative pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr)) (transitivity (goPreservesCanonicalRightZero [] b) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightZero [] (zero :: b) | yes r with≡ pr with inspect (canonical b)
goPreservesCanonicalRightZero [] (zero :: b) | yes r with≡ pr | [] with≡ pr2 rewrite pr | pr2 = applyEquality yes (goZeroEmpty' b pr)
goPreservesCanonicalRightZero [] (zero :: b) | yes r with≡ pr | (x :: xs) with≡ pr2 with inspect (go zero [] (x :: xs))
goPreservesCanonicalRightZero [] (zero :: b) | yes r with≡ pr | (x :: xs) with≡ pr2 | no with≡ pr3 rewrite pr | pr2 | pr3 = exFalso (noNotYes (transitivity (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr3)) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero [] i)) (equalityCommutative pr2)) (equalityCommutative (goPreservesCanonicalRightZero [] b)))) (applyEquality (mapMaybe canonical) pr)))
goPreservesCanonicalRightZero [] (zero :: b) | yes r with≡ pr | (x :: xs) with≡ pr2 | yes x₁ with≡ pr3 rewrite pr | pr2 | pr3 = transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr)) (transitivity (transitivity (goPreservesCanonicalRightZero [] b) (applyEquality (λ i → mapMaybe canonical (go zero [] i)) pr2)) (applyEquality (mapMaybe canonical) pr3))
goPreservesCanonicalRightZero [] (one :: b) = refl
goPreservesCanonicalRightZero (zero :: a) [] = refl
goPreservesCanonicalRightZero (one :: a) [] = refl
goPreservesCanonicalRightZero (zero :: a) (zero :: b) with inspect (canonical b)
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | [] with≡ pr1 with inspect (go zero a b)
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | [] with≡ pr1 | no with≡ pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr1) (applyEquality (mapMaybe canonical) (goEmpty a))))))
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | [] with≡ pr1 | yes y with≡ pr2 rewrite pr1 | pr2 = applyEquality yes v
where
t : canonical y ≡ canonical a
t = yesInjective (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr2)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr1) (applyEquality (mapMaybe canonical) (goEmpty a)))))
v : canonical (zero :: y) ≡ canonical (zero :: a)
v with inspect (canonical y)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 with inspect (go zero a b)
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | no with≡ pr2 with inspect (go zero a (r :: rs))
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | no with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = refl
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | no with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (transitivity (goPreservesCanonicalRightZero a b) (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr1)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | yes y with≡ pr2 with inspect (go zero a (r :: rs))
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | yes y with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr3)) (transitivity (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) (equalityCommutative pr1)) (equalityCommutative (goPreservesCanonicalRightZero a b))) (applyEquality (mapMaybe canonical) pr2))))
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | yes y with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = applyEquality yes v
where
t : canonical y ≡ canonical z
t = yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr1) (applyEquality (mapMaybe canonical) pr3))))
v : canonical (zero :: y) ≡ canonical (zero :: z)
v with inspect (canonical y)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightZero (zero :: a) (one :: b) with inspect (go one a b)
goPreservesCanonicalRightZero (zero :: a) (one :: b) | no with≡ x with inspect (go one a (canonical b))
goPreservesCanonicalRightZero (zero :: a) (one :: b) | no with≡ pr | no with≡ pr2 rewrite pr | pr2 = refl
goPreservesCanonicalRightZero (zero :: a) (one :: b) | no with≡ pr | yes x with≡ pr2 rewrite pr | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr)) (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (mapMaybe canonical) pr2))))
goPreservesCanonicalRightZero (zero :: a) (one :: b) | yes r with≡ pr1 with inspect (go one a (canonical b))
goPreservesCanonicalRightZero (zero :: a) (one :: b) | yes r with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr2)) (transitivity (equalityCommutative (goPreservesCanonicalRightOne a b)) (applyEquality (mapMaybe canonical) pr1))))
goPreservesCanonicalRightZero (zero :: a) (one :: b) | yes r with≡ pr1 | yes s with≡ pr2 rewrite pr1 | pr2 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (mapMaybe canonical) pr2))))
goPreservesCanonicalRightZero (one :: a) (zero :: b) with inspect (go zero a b)
goPreservesCanonicalRightZero (one :: a) (zero :: b) | no with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightZero (one :: a) (zero :: b) | no with≡ pr1 | [] with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) (goEmpty a))))))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 with inspect (go zero a (x :: y))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = refl
goPreservesCanonicalRightZero (one :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) pr3)))))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | yes x with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightZero (one :: a) (zero :: b) | yes x with≡ pr1 | [] with≡ pr2 rewrite pr1 | pr2 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) (goEmpty a))))))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | yes x with≡ pr1 | (r :: rs) with≡ pr2 with inspect (go zero a (r :: rs))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | yes x with≡ pr1 | (r :: rs) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr3)) (transitivity (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) (equalityCommutative pr2)) (equalityCommutative (goPreservesCanonicalRightZero a b))) (applyEquality (mapMaybe canonical) pr1))))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | yes x with≡ pr1 | (r :: rs) with≡ pr2 | yes y with≡ pr3 rewrite pr1 | pr2 | pr3 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (transitivity (goPreservesCanonicalRightZero a b) (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightZero (one :: a) (one :: b) with inspect (go zero a b)
goPreservesCanonicalRightZero (one :: a) (one :: b) | no with≡ pr1 with inspect (go zero a (canonical b))
goPreservesCanonicalRightZero (one :: a) (one :: b) | no with≡ pr1 | no with≡ x rewrite pr1 | x = refl
goPreservesCanonicalRightZero (one :: a) (one :: b) | no with≡ pr1 | yes x₁ with≡ x rewrite pr1 | x = exFalso (noNotYes (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr1)) (transitivity (goPreservesCanonicalRightZero a b) (applyEquality (mapMaybe canonical) x))))
goPreservesCanonicalRightZero (one :: a) (one :: b) | yes x with≡ pr1 with inspect (go zero a (canonical b))
goPreservesCanonicalRightZero (one :: a) (one :: b) | yes x with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr2)) (transitivity (equalityCommutative (goPreservesCanonicalRightZero a b)) (applyEquality (mapMaybe canonical) pr1))))
goPreservesCanonicalRightZero (one :: a) (one :: b) | yes x with≡ pr1 | yes y with≡ pr2 rewrite pr1 | pr2 = applyEquality yes v
where
t : canonical x ≡ canonical y
t = yesInjective (transitivity (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr1)) (goPreservesCanonicalRightZero a b)) (applyEquality (mapMaybe canonical) pr2))
v : canonical (zero :: x) ≡ canonical (zero :: y)
v with inspect (canonical x)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightOne a [] = refl
goPreservesCanonicalRightOne [] (zero :: b) rewrite goOneEmpty' (canonical (zero :: b)) = refl
goPreservesCanonicalRightOne (zero :: a) (zero :: b) with inspect (go one a b)
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | [] with≡ pr2 with inspect (go one a [])
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | [] with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = refl
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | [] with≡ pr2 | yes y with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (transitivity (goPreservesCanonicalRightOne a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go one a i)) pr2) refl)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 with inspect (go one a (x :: y))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = refl
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (λ i → mapMaybe canonical (go one a i)) pr2))) (applyEquality (mapMaybe canonical) pr3)))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | [] with≡ pr2 with inspect (go one a [])
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | [] with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr3)) (transitivity (applyEquality (λ i → mapMaybe canonical (go one a i)) (equalityCommutative pr2)) (equalityCommutative (goPreservesCanonicalRightOne a b)))) (applyEquality (mapMaybe canonical) pr1)))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | [] with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (λ i → mapMaybe canonical (go one a i)) pr2)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 with inspect (go one a (r :: rs))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr3)) (transitivity (applyEquality (λ i → mapMaybe canonical (go one a i)) (equalityCommutative pr2)) (transitivity (equalityCommutative (goPreservesCanonicalRightOne a b)) (applyEquality (mapMaybe canonical) pr1)))))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (λ i → mapMaybe canonical (go one a i)) pr2)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightOne (one :: a) (zero :: b) with inspect (go zero a b)
goPreservesCanonicalRightOne (one :: a) (zero :: b) | no with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightOne (one :: a) (zero :: b) | no with≡ pr1 | [] with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) (goEmpty a))))))
goPreservesCanonicalRightOne (one :: a) (zero :: b) | no with≡ pr1 | (r :: rs) with≡ pr2 with inspect (go zero a (r :: rs))
goPreservesCanonicalRightOne (one :: a) (zero :: b) | no with≡ pr1 | (r :: rs) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = refl
goPreservesCanonicalRightOne (one :: a) (zero :: b) | no with≡ pr1 | (r :: rs) with≡ pr2 | yes y with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (transitivity (goPreservesCanonicalRightZero a b) (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightOne (one :: a) (zero :: b) | yes y with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightOne (one :: a) (zero :: b) | yes y with≡ pr1 | [] with≡ pr2 rewrite pr1 | pr2 = applyEquality yes v
where
t : canonical y ≡ canonical a
t = yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) (goEmpty a)))))
v : canonical (zero :: y) ≡ canonical (zero :: a)
v with inspect (canonical y)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightOne (one :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 with inspect (go zero a (r :: rs))
goPreservesCanonicalRightOne (one :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (transitivity (transitivity (goPreservesCanonicalRightZero a b) (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2)) (applyEquality (mapMaybe canonical) pr3))) (applyEquality (mapMaybe canonical) pr1)))
goPreservesCanonicalRightOne (one :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = applyEquality yes v
where
t : canonical y ≡ canonical z
t = yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) pr3))))
v : canonical (zero :: y) ≡ canonical (zero :: z)
v with inspect (canonical y)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightOne [] (one :: b) = refl
goPreservesCanonicalRightOne (zero :: a) (one :: b) with inspect (go one a b)
goPreservesCanonicalRightOne (zero :: a) (one :: b) | no with≡ pr1 with inspect (go one a (canonical b))
goPreservesCanonicalRightOne (zero :: a) (one :: b) | no with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = refl
goPreservesCanonicalRightOne (zero :: a) (one :: b) | no with≡ pr1 | yes y with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (mapMaybe canonical) pr2))))
goPreservesCanonicalRightOne (zero :: a) (one :: b) | yes y with≡ pr1 with inspect (go one a (canonical b))
goPreservesCanonicalRightOne (zero :: a) (one :: b) | yes y with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (equalityCommutative (goPreservesCanonicalRightOne a b)) (applyEquality (mapMaybe canonical) pr1))))
goPreservesCanonicalRightOne (zero :: a) (one :: b) | yes y with≡ pr1 | yes z with≡ pr2 rewrite pr1 | pr2 = applyEquality yes v
where
t : canonical y ≡ canonical z
t = yesInjective (transitivity (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr1)) (goPreservesCanonicalRightOne a b)) (applyEquality (mapMaybe canonical) pr2))
v : canonical (zero :: y) ≡ canonical (zero :: z)
v with inspect (canonical y)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightOne (one :: a) (one :: b) with inspect (go one a b)
goPreservesCanonicalRightOne (one :: a) (one :: b) | no with≡ pr1 with inspect (go one a (canonical b))
goPreservesCanonicalRightOne (one :: a) (one :: b) | no with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = refl
goPreservesCanonicalRightOne (one :: a) (one :: b) | no with≡ pr1 | yes y with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (mapMaybe canonical) pr2))))
goPreservesCanonicalRightOne (one :: a) (one :: b) | yes y with≡ pr1 with inspect (go one a (canonical b))
goPreservesCanonicalRightOne (one :: a) (one :: b) | yes y with≡ pr1 | yes z with≡ pr2 rewrite pr1 | pr2 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr1)) (goPreservesCanonicalRightOne a b) ) (applyEquality (mapMaybe canonical) pr2)))
goPreservesCanonicalRightOne (one :: a) (one :: b) | yes y with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (equalityCommutative (goPreservesCanonicalRightOne a b)) (applyEquality (mapMaybe canonical) pr1))))
goPreservesCanonicalRight : (state : Bit) → (a b : BinNat) → mapMaybe canonical (go state a b) ≡ mapMaybe canonical (go state a (canonical b))
goPreservesCanonicalRight zero = goPreservesCanonicalRightZero
goPreservesCanonicalRight one = goPreservesCanonicalRightOne
| {
"alphanum_fraction": 0.7200812274,
"avg_line_length": 142.9677419355,
"ext": "agda",
"hexsha": "7f369380e99600bdcdcffec49daf5603b554f2e9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/BinaryNaturals/SubtractionGoPreservesCanonicalRight.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/BinaryNaturals/SubtractionGoPreservesCanonicalRight.agda",
"max_line_length": 443,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/BinaryNaturals/SubtractionGoPreservesCanonicalRight.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 6849,
"size": 22160
} |
open import Nat
open import Prelude
open import core
open import contexts
module htype-decidable where
lemma-l : ∀{t1 t2 t4} → t1 ==> t2 == t1 ==> t4 → t2 == t4
lemma-l refl = refl
lemma-r : ∀{t1 t2 t3} → t1 ==> t2 == t3 ==> t2 → t1 == t3
lemma-r refl = refl
lemma-b : ∀{t1 t2 t3 t4} → t1 ==> t2 == t3 ==> t4 → t1 == t3
lemma-b refl = refl
htype-dec : (t1 t2 : htyp) → t1 == t2 + (t1 == t2 → ⊥)
htype-dec b b = Inl refl
htype-dec b ⦇-⦈ = Inr (λ ())
htype-dec b (t2 ==> t3) = Inr (λ ())
htype-dec ⦇-⦈ b = Inr (λ ())
htype-dec ⦇-⦈ ⦇-⦈ = Inl refl
htype-dec ⦇-⦈ (t2 ==> t3) = Inr (λ ())
htype-dec (t1 ==> t2) b = Inr (λ ())
htype-dec (t1 ==> t2) ⦇-⦈ = Inr (λ ())
htype-dec (t1 ==> t2) (t3 ==> t4) with htype-dec t1 t3 | htype-dec t2 t4
htype-dec (t1 ==> t2) (.t1 ==> .t2) | Inl refl | Inl refl = Inl refl
htype-dec (t1 ==> t2) (.t1 ==> t4) | Inl refl | Inr x₁ = Inr (λ x → x₁ (lemma-l x))
htype-dec (t1 ==> t2) (t3 ==> .t2) | Inr x | Inl refl = Inr (λ x₁ → x (lemma-r x₁))
htype-dec (t1 ==> t2) (t3 ==> t4) | Inr x | Inr x₁ = Inr (λ x₂ → x (lemma-b x₂))
-- if an arrow is disequal, it disagrees in the first or second argument
ne-factor : ∀{τ1 τ2 τ3 τ4} → (τ1 ==> τ2) ≠ (τ3 ==> τ4) → (τ1 ≠ τ3) + (τ2 ≠ τ4)
ne-factor {τ1} {τ2} {τ3} {τ4} ne with htype-dec τ1 τ3 | htype-dec τ2 τ4
ne-factor ne | Inl refl | Inl refl = Inl (λ x → ne refl)
ne-factor ne | Inl x | Inr x₁ = Inr x₁
ne-factor ne | Inr x | Inl x₁ = Inl x
ne-factor ne | Inr x | Inr x₁ = Inl x
| {
"alphanum_fraction": 0.5233706386,
"avg_line_length": 39.9736842105,
"ext": "agda",
"hexsha": "374ea88a99c03ac8ec0e809a3bf10ea11051f33a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "htype-decidable.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "htype-decidable.agda",
"max_line_length": 89,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "htype-decidable.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 724,
"size": 1519
} |
open import Agda.Builtin.Nat
-- Matching against negative numbers
lit : Nat → Nat
lit -20 = 0 -- Error thrown here
lit _ = 1
| {
"alphanum_fraction": 0.6846153846,
"avg_line_length": 16.25,
"ext": "agda",
"hexsha": "32eb727b88aaa60b69102a2c8e4944ef15558b05",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2365a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2365a.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2365a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 40,
"size": 130
} |
------------------------------------------------------------------------
-- The two coinductive definitions of weak bisimilarity are pointwise
-- logically equivalent
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Labelled-transition-system
module Bisimilarity.Weak.Equivalent {ℓ} {lts : LTS ℓ} where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude
import Bisimilarity.Weak lts as Std
import Bisimilarity.Weak.Alternative lts as Alt
import Bisimilarity.Weak.Alternative.Equational-reasoning-instances
import Bisimilarity.Weak.Equational-reasoning-instances
open import Equational-reasoning
open LTS lts
mutual
-- The alternative definition of weak bisimilarity can be converted
-- to the standard one, in a size-preserving way.
alternative⇒ : ∀ {i p q} → Alt.[ i ] p ≈ q → Std.[ i ] p ≈ q
alternative⇒ {i} p≈q =
Std.⟨ lr p≈q
, Σ-map id (Σ-map id symmetric) ∘ lr (symmetric p≈q)
⟩
where
lr : ∀ {p p′ q μ} →
Alt.[ i ] p ≈ q → p [ μ ]⟶ p′ →
∃ λ q′ → q [ μ ]⇒̂ q′ × Std.[ i ] p′ ≈′ q′
lr p≈q p⟶p′ =
Σ-map id (Σ-map id alternative⇒′)
(Alt.left-to-right p≈q (⟶→⇒̂ p⟶p′))
alternative⇒′ : ∀ {i p q} → Alt.[ i ] p ≈′ q → Std.[ i ] p ≈′ q
Std.force (alternative⇒′ p≈′q) = alternative⇒ (Alt.force p≈′q)
mutual
-- One can also convert in the other direction. Note that this
-- conversion is not guaranteed to be size-preserving. For at least
-- one LTS it cannot (in general) be size-preserving, see
-- Bisimilarity.Weak.Delay-monad.size-preserving-⇒alternative⇔uninhabited.
⇒alternative : ∀ {i p q} → p Std.≈ q → Alt.[ i ] p ≈ q
⇒alternative {i} p≈q =
Alt.⟨ lr p≈q
, Σ-map id (Σ-map id symmetric) ∘ lr (symmetric p≈q)
⟩
where
lr : ∀ {p p′ q μ} →
p Std.≈ q → p [ μ ]⇒̂ p′ →
∃ λ q′ → q [ μ ]⇒̂ q′ × Alt.[ i ] p′ ≈′ q′
lr p≈q p⇒̂p′ =
Σ-map id (Σ-map id ⇒alternative′) (Std.weak-is-weak⇒̂ p≈q p⇒̂p′)
⇒alternative′ : ∀ {i p q} → p Std.≈ q → Alt.[ i ] p ≈′ q
Alt.force (⇒alternative′ p≈q) = ⇒alternative p≈q
-- The two definitions of weak bisimilarity are logically equivalent.
alternative⇔ : ∀ {p q} → p Alt.≈ q ⇔ p Std.≈ q
alternative⇔ = record
{ to = alternative⇒
; from = ⇒alternative
}
-- TODO: I don't know if the two definitions of weak bisimilarity are
-- isomorphic.
| {
"alphanum_fraction": 0.5777233782,
"avg_line_length": 31.8311688312,
"ext": "agda",
"hexsha": "2c8bbaa8436146d758738b3788cf282e9eb658f0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Weak/Equivalent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Weak/Equivalent.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Weak/Equivalent.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 865,
"size": 2451
} |
------------------------------------------------------------------------
-- Monads
------------------------------------------------------------------------
-- Note that currently the monad laws are not included here.
module Category.Monad where
open import Data.Function
open import Category.Monad.Indexed
open import Data.Unit
RawMonad : (Set → Set) → Set₁
RawMonad M = RawIMonad {⊤} (λ _ _ → M)
RawMonadZero : (Set → Set) → Set₁
RawMonadZero M = RawIMonadZero {⊤} (λ _ _ → M)
RawMonadPlus : (Set → Set) → Set₁
RawMonadPlus M = RawIMonadPlus {⊤} (λ _ _ → M)
module RawMonad {M : Set → Set} (Mon : RawMonad M) where
open RawIMonad Mon public
module RawMonadZero {M : Set → Set} (Mon : RawMonadZero M) where
open RawIMonadZero Mon public
module RawMonadPlus {M : Set → Set} (Mon : RawMonadPlus M) where
open RawIMonadPlus Mon public
| {
"alphanum_fraction": 0.5844155844,
"avg_line_length": 28.2333333333,
"ext": "agda",
"hexsha": "72ddf28e93e0bc4d2c49afb7f3e075fabe2f3128",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Category/Monad.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Category/Monad.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Category/Monad.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 235,
"size": 847
} |
{-# OPTIONS --copatterns #-}
-- {-# OPTIONS -v interaction.give:20 -v tc.cc:60 -v reify.clause:60 -v tc.section.check:10 -v tc:90 #-}
-- {-# OPTIONS -v tc.lhs:20 #-}
module Issue937 where
open import Common.Equality
data Nat : Set where
zero : Nat
suc : Nat → Nat
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
data _≤_ : Nat → Nat → Set where
z≤n : ∀ {n} → zero ≤ n
s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n
_<_ : Nat → Nat → Set
m < n = suc m ≤ n
ex : Σ Nat (λ n → zero < n)
proj₁ ex = suc zero
proj₂ ex = s≤s z≤n
module _ (A : Set) where
ex'' : Σ Nat (λ n → zero < n)
proj₁ ex'' = suc zero
proj₂ ex'' = s≤s z≤n
test : ex'' Nat ≡ (suc zero , s≤s z≤n)
test = refl
| {
"alphanum_fraction": 0.5447570332,
"avg_line_length": 20.0512820513,
"ext": "agda",
"hexsha": "df51a812afc788d77152c7daac1f461fedca6dce",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue937.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue937.agda",
"max_line_length": 104,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue937.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 315,
"size": 782
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Polynomials.Multivariate.Equiv-Polyn-nPoly where
open import Cubical.Foundations.Everything
open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_)
open import Cubical.Data.Vec
open import Cubical.Data.Sigma
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Polynomials.Univariate.Base
open import Cubical.Algebra.CommRing.Instances.UnivariatePoly
open import Cubical.Algebra.Polynomials.Multivariate.Base
open import Cubical.Algebra.Polynomials.Multivariate.Properties
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly
open import Cubical.Algebra.Polynomials.Multivariate.Equiv.Poly0-A
open import Cubical.Algebra.Polynomials.Multivariate.Equiv.Poly1-Poly
open import Cubical.Algebra.Polynomials.Multivariate.Equiv.Comp-Poly
open import Cubical.Algebra.Polynomials.Multivariate.Equiv.Induced-Poly
open Nth-Poly-structure
open CommRingEquivs renaming (compCommRingEquiv to _∘-ecr_ ; invCommRingEquiv to inv-ecr)
private variable
ℓ : Level
-----------------------------------------------------------------------------
-- Definition
nPoly : (A' : CommRing ℓ) → (n : ℕ) → CommRing ℓ
nPoly A' zero = A'
nPoly A' (suc n) = UnivariatePoly (nPoly A' n)
Equiv-Polyn-nPoly : (A' : CommRing ℓ) → (n : ℕ) → CommRingEquiv (PolyCommRing A' n) (nPoly A' n)
Equiv-Polyn-nPoly A' zero = CRE-Poly0-A A'
Equiv-Polyn-nPoly A' (suc n) = inv-ecr _ _ (CRE-PolyN∘M-PolyN+M A' 1 n)
∘-ecr (lift-equiv-poly _ _ (Equiv-Polyn-nPoly A' n) 1
∘-ecr CRE-Poly1-Poly: (nPoly A' n))
| {
"alphanum_fraction": 0.7138590203,
"avg_line_length": 38.0454545455,
"ext": "agda",
"hexsha": "c2494268aaa55e9a118e5c241ec000a9eab2b9e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv-Polyn-nPoly.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv-Polyn-nPoly.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv-Polyn-nPoly.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 494,
"size": 1674
} |
import cedille-options
open import general-util
module toplevel-state (options : cedille-options.options) {mF : Set → Set} {{_ : monad mF}} where
open import lib
open import cedille-types
open import classify options {mF}
open import ctxt
open import constants
open import conversion
open import rename
open import spans options {mF}
open import syntax-util
open import to-string options
open import string-format
open import subst
import cws-types
record include-elt : Set where
field ast : maybe start
cwst : maybe cws-types.start
deps : 𝕃 string {- dependencies -}
import-to-dep : trie string {- map import strings in the file to their full paths -}
ss : spans ⊎ string {- spans in string form (read from disk) -}
err : 𝔹 -- is ss reporting an error
need-to-add-symbols-to-context : 𝔹
do-type-check : 𝔹
inv : do-type-check imp need-to-add-symbols-to-context ≡ tt
last-parse-time : maybe UTC
cede-up-to-date : 𝔹
rkt-up-to-date : 𝔹
blank-include-elt : include-elt
blank-include-elt = record { ast = nothing ; cwst = nothing; deps = [] ;
import-to-dep = empty-trie ; ss = inj₂ "" ; err = ff ; need-to-add-symbols-to-context = tt ;
do-type-check = tt ; inv = refl ; last-parse-time = nothing; cede-up-to-date = ff ; rkt-up-to-date = ff }
-- the dependencies should pair import strings found in the file with the full paths to those imported files
new-include-elt : filepath → (dependencies : 𝕃 (string × string)) → (ast : start) →
cws-types.start → maybe UTC → include-elt
new-include-elt filename deps x y time =
record { ast = just x ; cwst = just y ; deps = map snd deps ; import-to-dep = trie-fill empty-trie deps ; ss = inj₂ "" ; err = ff ;
need-to-add-symbols-to-context = tt ;
do-type-check = tt ; inv = refl ; last-parse-time = time ; cede-up-to-date = ff ; rkt-up-to-date = ff }
error-include-elt : string → include-elt
error-include-elt err = record blank-include-elt { ss = inj₂ (global-error-string err) ; err = tt }
error-span-include-elt : string → string → posinfo → include-elt
error-span-include-elt err errSpan pos = record blank-include-elt { ss = inj₁ (add-span (span.mk-span err pos (posinfo-plus pos 1) [] (just errSpan) ) empty-spans ) ; err = tt }
set-do-type-check-include-elt : include-elt → 𝔹 → include-elt
set-do-type-check-include-elt ie b =
record ie { need-to-add-symbols-to-context = (b || include-elt.need-to-add-symbols-to-context ie) ;
do-type-check = b ;
inv = lem b }
where lem : (b : 𝔹) → b imp (b || include-elt.need-to-add-symbols-to-context ie) ≡ tt
lem tt = refl
lem ff = refl
set-need-to-add-symbols-to-context-include-elt : include-elt → 𝔹 → include-elt
set-need-to-add-symbols-to-context-include-elt ie b =
record ie { need-to-add-symbols-to-context = b ;
do-type-check = b && include-elt.do-type-check ie ;
inv = lem b }
where lem : ∀(b : 𝔹){b' : 𝔹} → b && b' imp b ≡ tt
lem tt {tt} = refl
lem tt {ff} = refl
lem ff {tt} = refl
lem ff {ff} = refl
set-spans-include-elt : include-elt → spans → include-elt
set-spans-include-elt ie ss =
record ie { ss = inj₁ ss ;
err = spans-have-error ss }
set-last-parse-time-include-elt : include-elt → UTC → include-elt
set-last-parse-time-include-elt ie time =
record ie { last-parse-time = just time }
set-cede-file-up-to-date-include-elt : include-elt → 𝔹 → include-elt
set-cede-file-up-to-date-include-elt ie up-to-date = record ie { cede-up-to-date = up-to-date }
set-rkt-file-up-to-date-include-elt : include-elt → 𝔹 → include-elt
set-rkt-file-up-to-date-include-elt ie up-to-date = record ie { rkt-up-to-date = up-to-date }
set-spans-string-include-elt : include-elt → (err : 𝔹) → string → include-elt
set-spans-string-include-elt ie err ss = record ie { ss = inj₂ ss ; err = err }
record toplevel-state : Set where
constructor mk-toplevel-state
field include-path : 𝕃 string × stringset
files-with-updated-spans : 𝕃 string
is : trie include-elt {- keeps track of files we have parsed and/or processed -}
Γ : ctxt
new-toplevel-state : (include-path : 𝕃 string × stringset) → toplevel-state
new-toplevel-state ip = record { include-path = ip ;
files-with-updated-spans = [] ; is = empty-trie ; Γ = new-ctxt "[nofile]" "[nomod]" }
toplevel-state-lookup-occurrences : var → toplevel-state → 𝕃 (var × posinfo × string)
toplevel-state-lookup-occurrences symb (mk-toplevel-state _ _ _ Γ) = ctxt-lookup-occurrences Γ symb
get-include-elt-if : toplevel-state → filepath → maybe include-elt
get-include-elt-if s filename = trie-lookup (toplevel-state.is s) filename
-- get an include-elt assuming it will be there
get-include-elt : toplevel-state → filepath → include-elt
get-include-elt s filename with get-include-elt-if s filename
get-include-elt s filename | nothing = blank-include-elt {- should not happen -}
get-include-elt s filename | just ie = ie
set-include-elt : toplevel-state → filepath → include-elt → toplevel-state
set-include-elt s f ie = record s { is = trie-insert (toplevel-state.is s) f ie }
set-include-path : toplevel-state → 𝕃 string × stringset → toplevel-state
set-include-path s ip = record s { include-path = ip }
get-do-type-check : toplevel-state → string → 𝔹
get-do-type-check s filename = include-elt.do-type-check (get-include-elt s filename)
include-elt-spans-to-rope : include-elt → rope
include-elt-spans-to-rope ie with (include-elt.ss ie)
include-elt-spans-to-rope ie | inj₁ ss = spans-to-rope ss
include-elt-spans-to-rope ie | inj₂ ss = [[ ss ]]
include-elt-to-string : include-elt → string
include-elt-to-string ie =
" deps: " ^ (𝕃-to-string (λ x → x) "," (include-elt.deps ie)) ^
-- ast
", ast: " ^ maybe-else "not parsed" (λ ast → "parsed") (include-elt.ast ie) ^ ", " ^
" import-to-dep: " ^ (trie-to-string "," (format "filename: %s") (include-elt.import-to-dep ie)) ^
-- spans
" err: " ^ (𝔹-to-string (include-elt.err ie)) ^
", need-to-add-symbols-to-context: " ^ (𝔹-to-string (include-elt.need-to-add-symbols-to-context ie)) ^
", do-type-check: " ^ (𝔹-to-string (include-elt.do-type-check ie)) ^
", last-parse-time: " ^ (maybe-else "" utcToString (include-elt.last-parse-time ie))
params-to-string'' : params → string
params-to-string'' ParamsNil = ""
-- TODO print erased vs non-erased?
params-to-string'' (ParamsCons (Decl pi pi' me v t-k pi'') pms) = "{var: " ^ v ^ ", tk: " ^ rope-to-string (tk-to-string empty-ctxt t-k) ^ "}" ^ ", " ^ (params-to-string'' pms)
defParams-to-string : defParams → string
defParams-to-string (just pms) = params-to-string'' pms
defParams-to-string nothing = ""
-- TODO also print modname?
syms-to-string : trie (string × 𝕃 string) → string
syms-to-string = trie-to-string ", " (λ l → "{" ^ (𝕃-to-string (λ s → s) ", " (snd l)) ^ "}")
ctxt-info-to-string : ctxt-info → string
ctxt-info-to-string (term-decl tp) = "term-decl: {type: " ^ rope-to-string (to-string empty-ctxt tp) ^ "}"
ctxt-info-to-string (term-def dp opac t tp) = "term-def: {defParams: {" ^ (defParams-to-string dp) ^ "}, opacity: " ^ (opacity-to-string opac) ^ ", term: " ^ rope-to-string (to-string empty-ctxt t) ^ ", type: " ^ rope-to-string (to-string empty-ctxt tp) ^ "}"
ctxt-info-to-string (term-udef dp opac t) = "term-udef: {defParams: {" ^ (defParams-to-string dp) ^ "}, opacity: " ^ (opacity-to-string opac) ^ ", term: " ^ rope-to-string (to-string empty-ctxt t) ^ "}"
ctxt-info-to-string (type-decl k) = "type-decl: {kind: " ^ rope-to-string (to-string empty-ctxt k) ^ "}"
ctxt-info-to-string (type-def dp opac tp k) = "type-def: {defParams: {" ^ (defParams-to-string dp) ^ "}, opacity: " ^ (opacity-to-string opac) ^ ", tp: " ^ rope-to-string (to-string empty-ctxt tp) ^ ", kind: " ^ rope-to-string (to-string empty-ctxt k) ^ "}"
ctxt-info-to-string (kind-def pms k) = "kind-def: {pms: " ^ (params-to-string'' pms) ^ "kind: " ^ rope-to-string (to-string empty-ctxt k) ^ "}"
ctxt-info-to-string (rename-def v) = "rename-def: {var: " ^ v ^ "}"
ctxt-info-to-string (var-decl) = "var-decl"
ctxt-info-to-string (const-def _) = "const-def"
ctxt-info-to-string (datatype-def _ _) = "datatype-def"
sym-info-to-string : sym-info → string
sym-info-to-string (ci , (fn , pi)) = "{ctxt-info: " ^ (ctxt-info-to-string ci) ^ ", location: {filename: " ^ fn ^ ", posinfo: " ^ pi ^ "}}"
sym-infos-to-string : trie sym-info → string
sym-infos-to-string = trie-to-string ", " sym-info-to-string
occ-to-string : var × posinfo × string → string
occ-to-string (v , pi , s) = "var: " ^ v ^ ", posinfo: " ^ pi ^ ", string: " ^ s
sym-occs-to-string : trie (𝕃 (var × posinfo × string)) → string
sym-occs-to-string = trie-to-string ", " (λ l → "{" ^ (𝕃-to-string occ-to-string ", " l) ^ "}")
qualif-to-string : qualif-info → string
qualif-to-string (x , as) = x ^ rope-to-string (fst (args-to-string as {TERM} [[]] 0 [] (new-ctxt "" "") nothing neither))
mod-info-to-string : mod-info → string
mod-info-to-string (fn , mn , pms , q) = "filename: " ^ fn ^ ", modname: " ^ mn ^ ", pms: {" ^ (params-to-string'' pms) ^ "}" ^ ", qualif: {" ^ (trie-to-string ", " qualif-to-string q) ^ "}"
ctxt-to-string : ctxt → string
ctxt-to-string (mk-ctxt mi (ss , mn-fn) is os d) = "mod-info: {" ^ (mod-info-to-string mi) ^ "}, syms: {" ^ (syms-to-string ss) ^ "}, i: {" ^ (sym-infos-to-string is) ^ "}, sym-occs: {" ^ (sym-occs-to-string os) ^ "}"
toplevel-state-to-string : toplevel-state → string
toplevel-state-to-string (mk-toplevel-state include-path files is context) =
"\ninclude-path: {\n" ^ (𝕃-to-string (λ x → x) "\n" (fst include-path)) ^
"\n}\nis: {" ^ (trie-to-string "\n" include-elt-to-string is) ^
"\n}\nΓ: {" ^ (ctxt-to-string context) ^ "}"
-- check if a variable is being redefined, and if so return the first given state; otherwise the second (in the monad)
check-redefined : posinfo → var → toplevel-state → spanM toplevel-state → spanM toplevel-state
check-redefined pi x s c =
get-ctxt (λ Γ →
if ctxt-binds-var Γ x then
(spanM-add (redefined-var-span Γ pi x) ≫span spanMr s)
else c)
import-as : var → optAs → var
import-as v NoOptAs = v
import-as v (SomeOptAs pi pfx) = pfx # v
error-in-import-string = "There is an error in the imported file"
-- Traverse all imports, returning an error if we encounter the same file twice
{-# TERMINATING #-}
check-cyclic-imports : (original current : filepath) → stringset → (path : 𝕃 string) → toplevel-state → err-m
check-cyclic-imports fnₒ fn fs path s with stringset-contains fs fn
...| ff = foldr (λ fnᵢ x → x maybe-or check-cyclic-imports fnₒ fnᵢ (stringset-insert fs fn) (fn :: path) s)
nothing (include-elt.deps (get-include-elt s fn))
...| tt with fnₒ =string fn
...| tt = just (foldr (λ fnᵢ x → x ^ " → " ^ fnᵢ) ("Cyclic dependencies (" ^ fn) path ^ " → " ^ fn ^ ")")
...| ff = just error-in-import-string
scope-t : Set → Set
scope-t X = filepath → string → optAs → params → args → X → toplevel-state → toplevel-state × err-m
infixl 0 _≫=scope_
_≫=scope_ : toplevel-state × err-m → (toplevel-state → toplevel-state × err-m) → toplevel-state × err-m
_≫=scope_ (ts , err) f with f ts
...| ts' , err' = ts' , err maybe-or err'
{-# TERMINATING #-}
scope-file : toplevel-state → (original imported : filepath) → optAs → args → toplevel-state × err-m
scope-file' : scope-t ⊤
scope-cmds : scope-t cmds
scope-cmd : scope-t cmd
scope-var : scope-t var
scope-file ts fnₒ fnᵢ oa as with check-cyclic-imports fnₒ fnᵢ (trie-single fnₒ triv) [] ts
...| just e = ts , just e
...| nothing = scope-file' fnₒ fnᵢ oa ParamsNil as triv ts
scope-file' fnₒ fn oa psₒ as triv s with get-include-elt s fn
...| ie with include-elt.err ie | include-elt.ast ie
...| e | nothing = s , (maybe-if e) ≫maybe just error-in-import-string
...| e | just (File pi0 is pi1 pi2 mn ps cs pi3) =
(s , (maybe-if e) ≫maybe just error-in-import-string) ≫=scope
scope-cmds fn mn oa ps as (imps-to-cmds is) ≫=scope
scope-cmds fn mn oa ps as cs
scope-cmds fn mn oa ps as (CmdsNext c cs) s =
scope-cmd fn mn oa ps as c s ≫=scope scope-cmds fn mn oa ps as cs
scope-cmds fn mn oa ps as CmdsStart s = s , nothing
scope-cmd fn mn oa ps as (ImportCmd (Import pi NotPublic pi' ifn oa' as' pi'')) s = s , nothing
scope-cmd fn mn oa psₒ asₒ (ImportCmd (Import pi IsPublic pi' ifn oa' asᵢ' pi'')) s =
let ifn' = trie-lookup-else ifn (include-elt.import-to-dep (get-include-elt s fn)) ifn in
scope-file' fn ifn' oa psₒ asᵢ triv s
-- ^ oa' should be NoOptAs, so we can use oa ^
where
merged : trie (maybe arg) → params → args → trie (maybe arg)
merged σ (ParamsCons (Decl _ _ me x atk _) ps) (ArgsCons a as) =
merged (trie-insert σ x $ just a) ps as
merged σ (ParamsCons (Decl _ _ me x atk _) ps) ArgsNil =
merged (trie-insert σ x nothing) ps ArgsNil
merged σ _ _ = σ
arg-var : arg → maybe var
arg-var (TermArg me (Var pi x)) = just x
arg-var (TypeArg (TpVar pi x)) = just x
arg-var _ = nothing
σ = merged empty-trie psₒ asₒ
reorder : args → args
reorder (ArgsCons a as) =
maybe-else' (arg-var a ≫=maybe trie-lookup σ) (ArgsCons a $ reorder as) λ ma →
maybe-else' ma ArgsNil λ a → ArgsCons a $ reorder as
reorder ArgsNil = ArgsNil
asᵢ = reorder $ qualif-args (toplevel-state.Γ s) asᵢ'
scope-cmd fn mn oa ps as (DefKind _ v _ _ _) = scope-var fn mn oa ps as v
scope-cmd fn mn oa ps as (DefTermOrType _ (DefTerm _ v _ _) _) = scope-var fn mn oa ps as v
scope-cmd fn mn oa ps as (DefTermOrType _ (DefType _ v _ _) _) = scope-var fn mn oa ps as v
scope-cmd fn mn oa ps as (DefDatatype (Datatype _ _ v _ _ _ _) _) = scope-var fn mn oa ps as v
scope-var _ mn oa ps as v s with import-as v oa | s
...| v' | mk-toplevel-state ip fns is (mk-ctxt (mn' , fn , pms , q) ss sis os d) =
mk-toplevel-state ip fns is (mk-ctxt (mn' , fn , pms , trie-insert q v' (mn # v , as)) ss sis os d) ,
flip maybe-map (trie-lookup q v') (uncurry λ v'' as' →
"Multiple definitions of variable " ^ v' ^ " as " ^ v'' ^ " and " ^ (mn # v) ^
(if (mn # v =string v'') then " (perhaps it was already imported?)" else ""))
| {
"alphanum_fraction": 0.6362816511,
"avg_line_length": 49.7068965517,
"ext": "agda",
"hexsha": "3e36f220c6ba5e2ee61f1ddfa9c2e9d695c76baa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/toplevel-state.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/toplevel-state.agda",
"max_line_length": 259,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/toplevel-state.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4486,
"size": 14415
} |
module nodcap.NF.Typing where
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Data.Pos as ℕ⁺ using (ℕ⁺; suc; _+_)
open import Data.Environment
open import Data.List as L using (List; []; _∷_; _++_)
open import Data.List.Any as LA using (Any; here; there)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import nodcap.Base
open import nodcap.Typing as FF using (⊢_)
-- Typing Rules.
infix 1 ⊢ⁿᶠ_
data ⊢ⁿᶠ_ : Environment → Set where
send : {Γ Δ : Environment} {A B : Type} →
⊢ⁿᶠ A ∷ Γ → ⊢ⁿᶠ B ∷ Δ →
-------------------
⊢ⁿᶠ A ⊗ B ∷ Γ ++ Δ
recv : {Γ : Environment} {A B : Type} →
⊢ⁿᶠ A ∷ B ∷ Γ →
-------------
⊢ⁿᶠ A ⅋ B ∷ Γ
sel₁ : {Γ : Environment} {A B : Type} →
⊢ⁿᶠ A ∷ Γ →
-----------
⊢ⁿᶠ A ⊕ B ∷ Γ
sel₂ : {Γ : Environment} {A B : Type} →
⊢ⁿᶠ B ∷ Γ →
-----------
⊢ⁿᶠ A ⊕ B ∷ Γ
case : {Γ : Environment} {A B : Type} →
⊢ⁿᶠ A ∷ Γ → ⊢ⁿᶠ B ∷ Γ →
-------------------
⊢ⁿᶠ A & B ∷ Γ
halt :
--------
⊢ⁿᶠ 𝟏 ∷ []
wait : {Γ : Environment} →
⊢ⁿᶠ Γ →
-------
⊢ⁿᶠ ⊥ ∷ Γ
loop : {Γ : Environment} →
-------
⊢ⁿᶠ ⊤ ∷ Γ
mk?₁ : {Γ : Environment} {A : Type} →
⊢ⁿᶠ A ∷ Γ →
---------------------
⊢ⁿᶠ ?[ 1 ] A ∷ Γ
mk!₁ : {Γ : Environment} {A : Type} →
⊢ⁿᶠ A ∷ Γ →
---------------------
⊢ⁿᶠ ![ 1 ] A ∷ Γ
cont : {Γ : Environment} {A : Type} {m n : ℕ⁺} →
⊢ⁿᶠ ?[ m ] A ∷ ?[ n ] A ∷ Γ →
------------------------------
⊢ⁿᶠ ?[ m + n ] A ∷ Γ
pool : {Γ Δ : Environment} {A : Type} {m n : ℕ⁺} →
⊢ⁿᶠ ![ m ] A ∷ Γ → ⊢ⁿᶠ ![ n ] A ∷ Δ →
-------------------------------------
⊢ⁿᶠ ![ m + n ] A ∷ Γ ++ Δ
exch : {Γ Δ : Environment} →
Γ ∼[ bag ] Δ → ⊢ⁿᶠ Γ →
--------------------
⊢ⁿᶠ Δ
fromNF : {Γ : Environment} → ⊢ⁿᶠ Γ → ⊢ Γ
fromNF (send x y) = FF.send (fromNF x) (fromNF y)
fromNF (recv x) = FF.recv (fromNF x)
fromNF (sel₁ x) = FF.sel₁ (fromNF x)
fromNF (sel₂ x) = FF.sel₂ (fromNF x)
fromNF (case x y) = FF.case (fromNF x) (fromNF y)
fromNF halt = FF.halt
fromNF (wait x) = FF.wait (fromNF x)
fromNF loop = FF.loop
fromNF (mk?₁ x) = FF.mk?₁ (fromNF x)
fromNF (mk!₁ x) = FF.mk!₁ (fromNF x)
fromNF (cont x) = FF.cont (fromNF x)
fromNF (pool x y) = FF.pool (fromNF x) (fromNF y)
fromNF (exch x y) = FF.exch x (fromNF y)
-- -}
-- -}
-- -}
-- -}
-- -}
| {
"alphanum_fraction": 0.4325820482,
"avg_line_length": 21.8017241379,
"ext": "agda",
"hexsha": "7d40b95801054a17b7348d60452431aabb4c50e8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z",
"max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "pepijnkokke/nodcap",
"max_forks_repo_path": "src/cpnd1/nodcap/NF/Typing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "pepijnkokke/nodcap",
"max_issues_repo_path": "src/cpnd1/nodcap/NF/Typing.agda",
"max_line_length": 66,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/nodcap",
"max_stars_repo_path": "src/cpnd1/nodcap/NF/Typing.agda",
"max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z",
"num_tokens": 1077,
"size": 2529
} |
-- {-# OPTIONS -v tc.check.app:70 #-}
-- {-# OPTIONS -v tc.proj.amb:30 #-}
record S : Set₁ where
field X : Set
record T : Set₁ where
field X : Set
open S
open T
ok : S → Set
ok s = X s
test : S → Set
test s = s .X
-- Error WAS:
-- Cannot resolve overloaded projection X because it is not applied to
-- a visible argument
-- when inferring the type of .X
-- Should succeed.
| {
"alphanum_fraction": 0.6302083333,
"avg_line_length": 15.36,
"ext": "agda",
"hexsha": "969feaf1baca8c1f679d18ebc8257b5874c7f316",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2136.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2136.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2136.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 118,
"size": 384
} |
open import Data.Nat
open import Data.Vec using ( Vec ; [] ; _∷_ )
module OpenTheory2 where
----------------------------------------------------------------------
data _∈_ {A : Set} : A → {n : ℕ} → Vec A n → Set where
here : {n : ℕ} {x : A} {xs : Vec A n} → x ∈ (x ∷ xs)
there : {n : ℕ} {x y : A} {xs : Vec A n} (p : x ∈ xs) → x ∈ (y ∷ xs)
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.3245823389,
"avg_line_length": 34.9166666667,
"ext": "agda",
"hexsha": "c9a800d1d54208d6ecc2f20d6081a58d545bb47e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:31:22.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-02T08:56:15.000Z",
"max_forks_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/generic-elim",
"max_forks_repo_path": "slides/OpenTheory2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/generic-elim",
"max_issues_repo_path": "slides/OpenTheory2.agda",
"max_line_length": 70,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/generic-elim",
"max_stars_repo_path": "slides/OpenTheory2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-09T08:46:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-02T14:05:20.000Z",
"num_tokens": 124,
"size": 419
} |
------------------------------------------------------------------------------
-- Properties of the inequalities
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.Inequalities.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP
open import FOTC.Data.Nat.PropertiesATP
------------------------------------------------------------------------------
-- N.B. The elimination properties are in the module
-- FOTC.Data.Nat.Inequalities.EliminationProperties.
0≯x : ∀ {n} → N n → zero ≯ n
0≯x nzero = prf
where postulate prf : zero ≯ zero
{-# ATP prove prf #-}
0≯x (nsucc {n} Nn) = prf
where postulate prf : zero ≯ succ₁ n
{-# ATP prove prf #-}
0≮x→x≡0 : ∀ {n} → N n → zero ≮ n → n ≡ zero
0≮x→x≡0 nzero h = refl
0≮x→x≡0 (nsucc {n} Nn) h = prf
where postulate prf : succ₁ n ≡ zero
{-# ATP prove prf #-}
x≮x : ∀ {n} → N n → n ≮ n
x≮x nzero = prf
where postulate prf : zero ≮ zero
{-# ATP prove prf #-}
x≮x (nsucc {n} Nn) = prf (x≮x Nn)
where postulate prf : n ≮ n → succ₁ n ≮ succ₁ n
{-# ATP prove prf #-}
Sx≰0 : ∀ {n} → N n → succ₁ n ≰ zero
Sx≰0 nzero = prf
where postulate prf : succ₁ zero ≰ zero
{-# ATP prove prf #-}
Sx≰0 (nsucc {n} Nn) = prf
where postulate prf : succ₁ (succ₁ n) ≰ zero
{-# ATP prove prf #-}
x<Sx : ∀ {n} → N n → n < succ₁ n
x<Sx nzero = lt-0S zero
x<Sx (nsucc {n} Nn) = prf (x<Sx Nn)
where postulate prf : n < succ₁ n → succ₁ n < succ₁ (succ₁ n)
{-# ATP prove prf #-}
postulate x<y→Sx<Sy : ∀ {m n} → m < n → succ₁ m < succ₁ n
{-# ATP prove x<y→Sx<Sy #-}
postulate Sx<Sy→x<y : ∀ {m n} → succ₁ m < succ₁ n → m < n
{-# ATP prove Sx<Sy→x<y #-}
x<y→x<Sy : ∀ {m n} → N m → N n → m < n → m < succ₁ n
x<y→x<Sy {m} Nm nzero h = prf
where postulate prf : m < succ₁ zero
{-# ATP prove prf x<0→⊥ #-}
x<y→x<Sy nzero (nsucc {n} Nn) _ = lt-0S (succ₁ n)
x<y→x<Sy (nsucc {m} Nm) (nsucc {n} Nn) h = prf (x<y→x<Sy Nm Nn m<n)
where
postulate m<n : m < n
{-# ATP prove m<n #-}
postulate prf : m < succ₁ n → succ₁ m < succ₁ (succ₁ n)
{-# ATP prove prf #-}
x≤x : ∀ {n} → N n → n ≤ n
x≤x nzero = lt-0S zero
x≤x (nsucc {n} Nn) = prf (x≤x Nn)
where postulate prf : n ≤ n → succ₁ n ≤ succ₁ n
{-# ATP prove prf #-}
postulate 2*SSx≥2 : ∀ {n} → N n →
succ₁ (succ₁ zero) * succ₁ (succ₁ n) ≥ succ₁ (succ₁ zero)
{-# ATP prove 2*SSx≥2 #-}
postulate x≤y→Sx≤Sy : ∀ {m n} → m ≤ n → succ₁ m ≤ succ₁ n
{-# ATP prove x≤y→Sx≤Sy #-}
postulate Sx≤Sy→x≤y : ∀ {m n} → succ₁ m ≤ succ₁ n → m ≤ n
{-# ATP prove Sx≤Sy→x≤y #-}
postulate Sx≤y→x≤y : ∀ {m n} → N m → N n → succ₁ m ≤ n → m ≤ n
{-# ATP prove Sx≤y→x≤y x<y→x<Sy #-}
postulate x≰y→Sx≰Sy : ∀ m n → m ≰ n → succ₁ m ≰ succ₁ n
{-# ATP prove x≰y→Sx≰Sy #-}
x>y→y<x : ∀ {m n} → N m → N n → m > n → n < m
x>y→y<x {n = n} nzero Nn h = prf
where postulate prf : n < zero
{-# ATP prove prf #-}
x>y→y<x (nsucc {m} Nm) nzero _ = lt-0S m
x>y→y<x (nsucc {m} Nm) (nsucc {n} Nn) h = prf (x>y→y<x Nm Nn m>n)
where
postulate m>n : m > n
{-# ATP prove m>n #-}
postulate prf : n < m → succ₁ n < succ₁ m
{-# ATP prove prf #-}
x≥y→x≮y : ∀ {m n} → N m → N n → m ≥ n → m ≮ n
x≥y→x≮y nzero nzero h = prf
where postulate prf : zero ≮ zero
{-# ATP prove prf #-}
x≥y→x≮y nzero (nsucc {n} Nn) h = prf
where postulate prf : zero ≮ succ₁ n
{-# ATP prove prf 0≥S→⊥ #-}
x≥y→x≮y (nsucc {m} Nm) nzero _ = lt-S0 m
x≥y→x≮y (nsucc {m} Nm) (nsucc {n} Nn) h =
prf (x≥y→x≮y Nm Nn m≥n)
where
postulate m≥n : m ≥ n
{-# ATP prove m≥n #-}
postulate prf : m ≮ n → succ₁ m ≮ succ₁ n
{-# ATP prove prf #-}
x≮y→x≥y : ∀ {m n} → N m → N n → m ≮ n → m ≥ n
x≮y→x≥y nzero nzero h = prf
where postulate prf : zero ≥ zero
{-# ATP prove prf #-}
x≮y→x≥y nzero (nsucc {n} Nn) h = prf
where postulate prf : zero ≥ succ₁ n
{-# ATP prove prf #-}
x≮y→x≥y (nsucc {m} Nm) nzero _ = lt-0S (succ₁ m)
x≮y→x≥y (nsucc {m} Nm) (nsucc {n} Nn) h =
prf (x≮y→x≥y Nm Nn m≮n)
where
postulate m≮n : m ≮ n
{-# ATP prove m≮n #-}
postulate prf : m ≥ n → succ₁ m ≥ succ₁ n
{-# ATP prove prf #-}
x>y→x≰y : ∀ {m n} → N m → N n → m > n → m ≰ n
x>y→x≰y {n = n} nzero Nn h = prf
where postulate prf : zero ≰ n
{-# ATP prove prf 0>x→⊥ #-}
x>y→x≰y (nsucc {m} Nm) nzero h = prf
where postulate prf : succ₁ m ≰ zero
{-# ATP prove prf Sx≰0 #-}
x>y→x≰y (nsucc {m} Nm) (nsucc {n} Nn) h = prf (x>y→x≰y Nm Nn m>n)
where
postulate m>n : m > n
{-# ATP prove m>n #-}
postulate prf : m ≰ n → succ₁ m ≰ succ₁ n
{-# ATP prove prf #-}
x>y∨x≤y : ∀ {m n} → N m → N n → m > n ∨ m ≤ n
x>y∨x≤y {n = n} nzero Nn = prf
where postulate prf : zero > n ∨ zero ≤ n
{-# ATP prove prf #-}
x>y∨x≤y (nsucc {m} Nm) nzero = prf
where postulate prf : succ₁ m > zero ∨ succ₁ m ≤ zero
{-# ATP prove prf #-}
x>y∨x≤y (nsucc {m} Nm) (nsucc {n} Nn) = prf (x>y∨x≤y Nm Nn)
where postulate prf : m > n ∨ m ≤ n → succ₁ m > succ₁ n ∨ succ₁ m ≤ succ₁ n
{-# ATP prove prf #-}
x<y∨x≥y : ∀ {m n} → N m → N n → m < n ∨ m ≥ n
x<y∨x≥y Nm Nn = x>y∨x≤y Nn Nm
x<y∨x≮y : ∀ {m n} → N m → N n → m < n ∨ m ≮ n
x<y∨x≮y nzero nzero = prf
where postulate prf : zero < zero ∨ zero ≮ zero
{-# ATP prove prf #-}
x<y∨x≮y nzero (nsucc {n} Nn) = prf
where postulate prf : zero < succ₁ n ∨ zero ≮ succ₁ n
{-# ATP prove prf #-}
x<y∨x≮y (nsucc {m} Nm) nzero = prf
where postulate prf : succ₁ m < zero ∨ succ₁ m ≮ zero
{-# ATP prove prf #-}
x<y∨x≮y (nsucc {m} Nm) (nsucc {n} Nn) = prf (x<y∨x≮y Nm Nn)
where postulate prf : m < n ∨ m ≮ n → succ₁ m < succ₁ n ∨ succ₁ m ≮ succ₁ n
{-# ATP prove prf #-}
x≤y∨x≰y : ∀ {m n} → N m → N n → m ≤ n ∨ m ≰ n
x≤y∨x≰y {n = n} nzero Nn = prf
where postulate prf : zero ≤ n ∨ zero ≰ n
{-# ATP prove prf #-}
x≤y∨x≰y (nsucc {m} Nm) nzero = prf
where postulate prf : succ₁ m ≤ zero ∨ succ₁ m ≰ zero
{-# ATP prove prf Sx≰0 #-}
x≤y∨x≰y (nsucc {m} Nm) (nsucc {n} Nn) = prf (x≤y∨x≰y Nm Nn)
where postulate prf : m ≤ n ∨ m ≰ n → succ₁ m ≤ succ₁ n ∨ succ₁ m ≰ succ₁ n
{-# ATP prove prf #-}
postulate x≡y→x≤y : ∀ {m n} → N m → N n → m ≡ n → m ≤ n
{-# ATP prove x≡y→x≤y x≤x #-}
x<y→x≤y : ∀ {m n} → N m → N n → m < n → m ≤ n
x<y→x≤y {m} Nm nzero h = prf
where postulate prf : m ≤ zero
{-# ATP prove prf x<0→⊥ #-}
x<y→x≤y nzero (nsucc {n} Nn) _ = lt-0S (succ₁ n)
x<y→x≤y (nsucc {m} Nm) (nsucc {n} Nn) h = prf (x<y→x≤y Nm Nn m<n)
where
postulate m<n : m < n
{-# ATP prove m<n #-}
postulate prf : m ≤ n → succ₁ m ≤ succ₁ n
{-# ATP prove prf #-}
x<Sy→x≤y : ∀ {m n} → N m → N n → m < succ₁ n → m ≤ n
x<Sy→x≤y {n = n} nzero Nn _ = lt-0S n
x<Sy→x≤y (nsucc Nm) Nn Sm<Sn = Sm<Sn
x≤y→x<Sy : ∀ {m n} → N m → N n → m ≤ n → m < succ₁ n
x≤y→x<Sy {n = n} nzero Nn _ = lt-0S n
x≤y→x<Sy (nsucc Nm) Nn Sm≤n = Sm≤n
x≤Sx : ∀ {m} → N m → m ≤ succ₁ m
x≤Sx nzero = lt-0S (succ₁ zero)
x≤Sx (nsucc {m} Nm) = prf (x≤Sx Nm)
where postulate prf : m ≤ succ₁ m → succ₁ m ≤ succ₁ (succ₁ m)
{-# ATP prove prf #-}
x<y→Sx≤y : ∀ {m n} → N m → N n → m < n → succ₁ m ≤ n
x<y→Sx≤y {m} Nm nzero h = prf
where postulate prf : succ₁ m ≤ zero
{-# ATP prove prf x<0→⊥ #-}
x<y→Sx≤y nzero (nsucc {n} Nn) h = prf
where postulate prf : succ₁ zero ≤ succ₁ n
{-# ATP prove prf x<0→⊥ #-}
x<y→Sx≤y (nsucc {m} Nm) (nsucc {n} Nn) h = prf
where postulate prf : succ₁ (succ₁ m) ≤ succ₁ n
{-# ATP prove prf #-}
Sx≤y→x<y : ∀ {m n} → N m → N n → succ₁ m ≤ n → m < n
Sx≤y→x<y {m} Nm nzero h = prf
where postulate prf : m < zero
{-# ATP prove prf S≤0→⊥ #-}
Sx≤y→x<y nzero (nsucc {n} Nn) _ = lt-0S n
Sx≤y→x<y (nsucc {m} Nm) (nsucc {n} Nn) h = prf (Sx≤y→x<y Nm Nn Sm≤n)
where
postulate Sm≤n : succ₁ m ≤ n
{-# ATP prove Sm≤n #-}
postulate prf : m < n → succ₁ m < succ₁ n
{-# ATP prove prf #-}
x≤y→x≯y : ∀ {m n} → N m → N n → m ≤ n → m ≯ n
x≤y→x≯y nzero nzero h = prf
where postulate prf : zero ≯ zero
{-# ATP prove prf #-}
x≤y→x≯y nzero (nsucc {n} Nn) h = prf
where postulate prf : zero ≯ succ₁ n
{-# ATP prove prf #-}
x≤y→x≯y (nsucc {m} Nm) nzero h = prf
where postulate prf : succ₁ m ≯ zero
{-# ATP prove prf S≤0→⊥ #-}
x≤y→x≯y (nsucc {m} Nm) (nsucc {n} Nn) h = prf (x≤y→x≯y Nm Nn m≤n)
where
postulate m≤n : m ≤ n
{-# ATP prove m≤n #-}
postulate prf : m ≯ n → succ₁ m ≯ succ₁ n
{-# ATP prove prf #-}
x≯y→x≤y : ∀ {m n} → N m → N n → m ≯ n → m ≤ n
x≯y→x≤y {n = n} nzero Nn _ = lt-0S n
x≯y→x≤y (nsucc {m} Nm) nzero h = prf
where postulate prf : succ₁ m ≤ zero
{-# ATP prove prf #-}
x≯y→x≤y (nsucc {m} Nm) (nsucc {n} Nn) h =
prf (x≯y→x≤y Nm Nn m≯n)
where
postulate m≯n : m ≯ n
{-# ATP prove m≯n #-}
postulate prf : m ≤ n → succ₁ m ≤ succ₁ n
{-# ATP prove prf #-}
Sx≯y→x≯y : ∀ {m n} → N m → N n → succ₁ m ≯ n → m ≯ n
Sx≯y→x≯y nzero nzero h = prf
where postulate prf : zero ≯ zero
{-# ATP prove prf #-}
Sx≯y→x≯y nzero (nsucc {n} Nn) h = prf
where postulate prf : zero ≯ succ₁ n
{-# ATP prove prf #-}
Sx≯y→x≯y (nsucc {m} Nm) nzero h = prf
where postulate prf : succ₁ m ≯ zero
{-# ATP prove prf #-}
Sx≯y→x≯y (nsucc {m} Nm) (nsucc {n} Nn) h = prf (Sx≯y→x≯y Nm Nn Sm≯n)
where
postulate Sm≯n : succ₁ m ≯ n
{-# ATP prove Sm≯n #-}
postulate prf : m ≯ n → succ₁ m ≯ succ₁ n
{-# ATP prove prf #-}
x>y∨x≯y : ∀ {m n} → N m → N n → m > n ∨ m ≯ n
x>y∨x≯y {n = n} nzero Nn = prf
where postulate prf : zero > n ∨ zero ≯ n
{-# ATP prove prf 0≯x #-}
x>y∨x≯y (nsucc {m} Nm) nzero = prf
where postulate prf : succ₁ m > zero ∨ succ₁ m ≯ zero
{-# ATP prove prf #-}
x>y∨x≯y (nsucc {m} Nm) (nsucc {n} Nn) = prf (x>y∨x≯y Nm Nn)
where postulate prf : m > n ∨ m ≯ n →
succ₁ m > succ₁ n ∨ succ₁ m ≯ succ₁ n
{-# ATP prove prf #-}
<-trans : ∀ {m n o} → N m → N n → N o → m < n → n < o → m < o
<-trans {o = o} nzero nzero No h₁ h₂ = prf
where postulate prf : zero < o
{-# ATP prove prf #-}
<-trans nzero (nsucc Nn) nzero h₁ h₂ = prf
where postulate prf : zero < zero
{-# ATP prove prf #-}
<-trans nzero (nsucc Nn) (nsucc {o} No) _ _ = lt-0S o
<-trans (nsucc {m} Nm) Nn nzero h₁ h₂ = prf
where postulate prf : succ₁ m < zero
{-# ATP prove prf x<0→⊥ #-}
<-trans (nsucc {m} Nm) nzero (nsucc {o} No) h₁ h₂ = prf
where postulate prf : succ₁ m < succ₁ o
{-# ATP prove prf #-}
<-trans (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) h₁ h₂ =
prf (<-trans Nm Nn No m<n n<o)
where
postulate m<n : m < n
{-# ATP prove m<n #-}
postulate n<o : n < o
{-# ATP prove n<o #-}
postulate prf : m < o → succ₁ m < succ₁ o
{-# ATP prove prf #-}
≤-trans : ∀ {m n o} → N m → N n → N o → m ≤ n → n ≤ o → m ≤ o
≤-trans {o = o} nzero Nn No _ _ = lt-0S o
≤-trans {o = o} (nsucc {m} Nm) nzero No h₁ h₂ = prf
where postulate prf : succ₁ m ≤ o
{-# ATP prove prf S≤0→⊥ #-}
≤-trans (nsucc {m} Nm) (nsucc Nn) nzero h₁ h₂ = prf
where postulate prf : succ₁ m ≤ zero
{-# ATP prove prf S≤0→⊥ #-}
≤-trans (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) h₁ h₂ =
prf (≤-trans Nm Nn No m≤n n≤o)
where
postulate m≤n : m ≤ n
{-# ATP prove m≤n #-}
postulate n≤o : n ≤ o
{-# ATP prove n≤o #-}
postulate prf : m ≤ o → succ₁ m ≤ succ₁ o
{-# ATP prove prf #-}
pred-≤ : ∀ {n} → N n → pred₁ n ≤ n
pred-≤ nzero = prf
where postulate prf : pred₁ zero ≤ zero
{-# ATP prove prf #-}
pred-≤ (nsucc {n} Nn) = prf
where postulate prf : pred₁ (succ₁ n) ≤ succ₁ n
{-# ATP prove prf <-trans x<Sx #-}
x≤x+y : ∀ {m n} → N m → N n → m ≤ m + n
x≤x+y {n = n} nzero Nn = lt-0S (zero + n)
x≤x+y {n = n} (nsucc {m} Nm) Nn = prf (x≤x+y Nm Nn)
where postulate prf : m ≤ m + n → succ₁ m ≤ succ₁ m + n
{-# ATP prove prf #-}
x<x+Sy : ∀ {m n} → N m → N n → m < m + succ₁ n
x<x+Sy {n = n} nzero Nn = prf0
where postulate prf0 : zero < zero + succ₁ n
{-# ATP prove prf0 #-}
x<x+Sy {n = n} (nsucc {m} Nm) Nn = prfS (x<x+Sy Nm Nn)
where postulate prfS : m < m + succ₁ n → succ₁ m < succ₁ m + succ₁ n
{-# ATP prove prfS #-}
k+x<k+y→x<y : ∀ {m n k} → N m → N n → N k → k + m < k + n → m < n
k+x<k+y→x<y {m} {n} Nm Nn nzero h = prf0
where postulate prf0 : m < n
{-# ATP prove prf0 #-}
k+x<k+y→x<y {m} {n} Nm Nn (nsucc {k} Nk) h = k+x<k+y→x<y Nm Nn Nk prfS
where postulate prfS : k + m < k + n
{-# ATP prove prfS #-}
postulate x+k<y+k→x<y : ∀ {m n k} → N m → N n → N k →
m + k < n + k → m < n
{-# ATP prove x+k<y+k→x<y k+x<k+y→x<y +-comm #-}
x≤y→k+x≤k+y : ∀ {m n k} → N m → N n → N k → m ≤ n → k + m ≤ k + n
x≤y→k+x≤k+y {m} {n} Nm Nn nzero h = prf0
where postulate prf0 : zero + m ≤ zero + n
{-# ATP prove prf0 #-}
x≤y→k+x≤k+y {m} {n} Nm Nn (nsucc {k} Nk) h = prfS (x≤y→k+x≤k+y Nm Nn Nk h)
where postulate prfS : k + m ≤ k + n → succ₁ k + m ≤ succ₁ k + n
{-# ATP prove prfS #-}
postulate x≤y→x+k≤y+k : ∀ {m n k} → N m → N n → N k → m ≤ n → m + k ≤ n + k
{-# ATP prove x≤y→x+k≤y+k x≤y→k+x≤k+y +-comm #-}
x<y→Sx∸y≡0 : ∀ {m n} → N m → N n → m < n → succ₁ m ∸ n ≡ zero
x<y→Sx∸y≡0 {m} Nm nzero h = prfx0
where postulate prfx0 : succ₁ m ∸ zero ≡ zero
{-# ATP prove prfx0 x<0→⊥ #-}
x<y→Sx∸y≡0 nzero (nsucc {n} Nn) h = prf0S
where postulate prf0S : succ₁ zero ∸ succ₁ n ≡ zero
{-# ATP prove prf0S S∸S 0∸x #-}
x<y→Sx∸y≡0 (nsucc {m} Nm) (nsucc {n} Nn) h = prfSS (x<y→Sx∸y≡0 Nm Nn m<n)
where
postulate m<n : m < n
{-# ATP prove m<n #-}
postulate prfSS : succ₁ m ∸ n ≡ zero → succ₁ (succ₁ m) ∸ succ₁ n ≡ zero
{-# ATP prove prfSS S∸S #-}
postulate x≤y→x∸y≡0 : ∀ {m n} → N m → N n → m ≤ n → m ∸ n ≡ zero
{-# ATP prove x≤y→x∸y≡0 x<y→Sx∸y≡0 S∸S #-}
x<y→0<y∸x : ∀ {m n} → N m → N n → m < n → zero < n ∸ m
x<y→0<y∸x {m} Nm nzero h = prfx0
where postulate prfx0 : zero < zero ∸ m
{-# ATP prove prfx0 x<0→⊥ #-}
x<y→0<y∸x nzero (nsucc {n} Nn) h = prf0S
where postulate prf0S : zero < succ₁ n ∸ zero
{-# ATP prove prf0S #-}
x<y→0<y∸x (nsucc {m} Nm) (nsucc {n} Nn) h = prfSS (x<y→0<y∸x Nm Nn m<n)
where
postulate m<n : m < n
{-# ATP prove m<n #-}
postulate prfSS : zero < n ∸ m → zero < succ₁ n ∸ succ₁ m
{-# ATP prove prfSS S∸S #-}
0<x∸y→0<Sx∸y : ∀ {m n} → N m → N n → zero < m ∸ n → zero < succ₁ m ∸ n
0<x∸y→0<Sx∸y {m} Nm nzero h = prfx0
where postulate prfx0 : zero < succ₁ m ∸ zero
{-# ATP prove prfx0 #-}
0<x∸y→0<Sx∸y nzero (nsucc {n} Nn) h = prf0S
where postulate prf0S : zero < succ₁ zero ∸ succ₁ n
{-# ATP prove prf0S 0∸x x<0→⊥ #-}
0<x∸y→0<Sx∸y (nsucc {m} Nm) (nsucc {n} Nn) h = prfSS (0<x∸y→0<Sx∸y Nm Nn 0<m-n)
where
postulate 0<m-n : zero < m ∸ n
{-# ATP prove 0<m-n S∸S #-}
postulate prfSS : zero < succ₁ m ∸ n → zero < succ₁ (succ₁ m) ∸ succ₁ n
{-# ATP prove prfSS <-trans S∸S #-}
x∸y<Sx : ∀ {m n} → N m → N n → m ∸ n < succ₁ m
x∸y<Sx {m} Nm nzero = prf
where postulate prf : m ∸ zero < succ₁ m
{-# ATP prove prf x<Sx #-}
x∸y<Sx nzero (nsucc {n} Nn) = prf
where postulate prf : zero ∸ succ₁ n < succ₁ zero
{-# ATP prove prf 0∸x #-}
x∸y<Sx (nsucc {m} Nm) (nsucc {n} Nn) = prf (x∸y<Sx Nm Nn)
where postulate prf : m ∸ n < succ₁ m → succ₁ m ∸ succ₁ n < succ₁ (succ₁ m)
{-# ATP prove prf <-trans ∸-N x<Sx S∸S #-}
postulate Sx∸Sy<Sx : ∀ {m n} → N m → N n → succ₁ m ∸ succ₁ n < succ₁ m
{-# ATP prove Sx∸Sy<Sx x∸y<Sx S∸S #-}
x<x∸y→⊥ : ∀ {m n} → N m → N n → ¬ (m < m ∸ n)
x<x∸y→⊥ {m} Nm nzero h = prf
where postulate prf : ⊥
{-# ATP prove prf x<x→⊥ #-}
x<x∸y→⊥ nzero (nsucc Nn) h = prf
where postulate prf : ⊥
{-# ATP prove prf x<x→⊥ 0∸x #-}
x<x∸y→⊥ (nsucc Nm) (nsucc Nn) h = prf
where postulate prf : ⊥
{-# ATP prove prf ∸-N x<y→y<x→⊥ x∸y<Sx S∸S #-}
postulate x∸Sy≤x∸y : ∀ {m n} → N m → N n → m ∸ succ₁ n ≤ m ∸ n
{-# ATP prove x∸Sy≤x∸y pred-≤ ∸-N #-}
x>y→x∸y+y≡x : ∀ {m n} → N m → N n → m > n → (m ∸ n) + n ≡ m
x>y→x∸y+y≡x {n = n} nzero Nn h = prf
where postulate prf : zero ∸ n + n ≡ zero
{-# ATP prove prf 0>x→⊥ #-}
x>y→x∸y+y≡x (nsucc {m} Nm) nzero h = prf
where postulate prf : (succ₁ m ∸ zero) + zero ≡ succ₁ m
{-# ATP prove prf +-rightIdentity ∸-N #-}
x>y→x∸y+y≡x (nsucc {m} Nm) (nsucc {n} Nn) h = prf (x>y→x∸y+y≡x Nm Nn m>n)
where
postulate m>n : m > n
{-# ATP prove m>n #-}
postulate prf : (m ∸ n) + n ≡ m → (succ₁ m ∸ succ₁ n) + succ₁ n ≡ succ₁ m
{-# ATP prove prf +-comm ∸-N S∸S #-}
x≤y→y∸x+x≡y : ∀ {m n} → N m → N n → m ≤ n → (n ∸ m) + m ≡ n
x≤y→y∸x+x≡y {n = n} nzero Nn h = prf
where postulate prf : (n ∸ zero) + zero ≡ n
{-# ATP prove prf +-rightIdentity ∸-N #-}
x≤y→y∸x+x≡y (nsucc {m} Nm) nzero h = prf
where postulate prf : (zero ∸ succ₁ m) + succ₁ m ≡ zero
{-# ATP prove prf S≤0→⊥ #-}
x≤y→y∸x+x≡y (nsucc {m} Nm) (nsucc {n} Nn) h = prf (x≤y→y∸x+x≡y Nm Nn m≤n)
where
postulate m≤n : m ≤ n
{-# ATP prove m≤n #-}
postulate prf : (n ∸ m) + m ≡ n → (succ₁ n ∸ succ₁ m) + succ₁ m ≡ succ₁ n
{-# ATP prove prf +-comm ∸-N S∸S #-}
x<Sy→x<y∨x≡y : ∀ {m n} → N m → N n → m < succ₁ n → m < n ∨ m ≡ n
x<Sy→x<y∨x≡y nzero nzero h = inj₂ refl
x<Sy→x<y∨x≡y nzero (nsucc {n} Nn) h = inj₁ (lt-0S n)
x<Sy→x<y∨x≡y (nsucc {m} Nm) nzero h = prf
where postulate prf : succ₁ m < zero ∨ succ₁ m ≡ zero
{-# ATP prove prf x<0→⊥ #-}
x<Sy→x<y∨x≡y (nsucc {m} Nm) (nsucc {n} Nn) h = prf (x<Sy→x<y∨x≡y Nm Nn m<Sn)
where
postulate m<Sn : m < succ₁ n
{-# ATP prove m<Sn #-}
postulate prf : m < n ∨ m ≡ n → succ₁ m < succ₁ n ∨ succ₁ m ≡ succ₁ n
{-# ATP prove prf #-}
x≤y→x<y∨x≡y : ∀ {m n} → N m → N n → m ≤ n → m < n ∨ m ≡ n
x≤y→x<y∨x≡y = x<Sy→x<y∨x≡y
postulate x<y→y≡z→x<z : ∀ {m n o} → m < n → n ≡ o → m < o
{-# ATP prove x<y→y≡z→x<z #-}
postulate x≡y→y<z→x<z : ∀ {m n o} → m ≡ n → n < o → m < o
{-# ATP prove x≡y→y<z→x<z #-}
x≯Sy→x≯y∨x≡Sy : ∀ {m n} → N m → N n → m ≯ succ₁ n → m ≯ n ∨ m ≡ succ₁ n
x≯Sy→x≯y∨x≡Sy nzero nzero h = prf
where postulate prf : zero ≯ zero ∨ zero ≡ succ₁ zero
{-# ATP prove prf #-}
x≯Sy→x≯y∨x≡Sy nzero (nsucc {n} Nn) h = prf
where postulate prf : zero ≯ succ₁ n ∨ zero ≡ succ₁ (succ₁ n)
{-# ATP prove prf #-}
x≯Sy→x≯y∨x≡Sy (nsucc {m} Nm) nzero h = prf
where postulate prf : succ₁ m ≯ zero ∨ succ₁ m ≡ succ₁ zero
{-# ATP prove prf 0≮x→x≡0 #-}
x≯Sy→x≯y∨x≡Sy (nsucc {m} Nm) (nsucc {n} Nn) h = prf (x≯Sy→x≯y∨x≡Sy Nm Nn m≯Sn)
where
postulate m≯Sn : m ≯ succ₁ n
{-# ATP prove m≯Sn #-}
postulate prf : m ≯ n ∨ m ≡ succ₁ n →
succ₁ m ≯ succ₁ n ∨ succ₁ m ≡ succ₁ (succ₁ n)
{-# ATP prove prf #-}
x≥y→y>0→x∸y<x : ∀ {m n} → N m → N n → m ≥ n → n > zero → m ∸ n < m
x≥y→y>0→x∸y<x {m} Nm nzero h₁ h₂ = prf
where postulate prf : m ∸ zero < m
{-# ATP prove prf x∸y<Sx 0∸x S∸S #-}
x≥y→y>0→x∸y<x nzero (nsucc {n} Nn) h₁ h₂ = prf
where postulate prf : zero ∸ succ₁ n < zero
{-# ATP prove prf 0∸x S≤0→⊥ #-}
x≥y→y>0→x∸y<x (nsucc {m} Nm) (nsucc {n} Nn) h₁ h₂ = prf
where postulate prf : succ₁ m ∸ succ₁ n < succ₁ m
{-# ATP prove prf x∸y<Sx 0∸x S∸S #-}
x<y→y≤z→x<z : ∀ {m n o} → N m → N n → N o → m < n → n ≤ o → m < o
x<y→y≤z→x<z {o = o} nzero nzero No h₁ h₂ = prf
where postulate prf : zero < o
{-# ATP prove prf 0<0→⊥ #-}
x<y→y≤z→x<z nzero (nsucc Nn) nzero h₁ h₂ = prf
where postulate prf : zero < zero
{-# ATP prove prf S≤0→⊥ #-}
x<y→y≤z→x<z nzero (nsucc Nn) (nsucc {o} No) h₁ h₂ = prf
where postulate prf : zero < succ₁ o
{-# ATP prove prf #-}
x<y→y≤z→x<z {o = o} (nsucc {m} Nm) nzero No h₁ h₂ = prf
where postulate prf : succ₁ m < o
{-# ATP prove prf #-}
x<y→y≤z→x<z (nsucc {m} Nm) (nsucc Nn) nzero h₁ h₂ = prf
where postulate prf : succ₁ m < zero
{-# ATP prove prf S≤0→⊥ #-}
x<y→y≤z→x<z (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) h₁ h₂ =
prf (x<y→y≤z→x<z Nm Nn No m<n n≤o)
where
postulate m<n : m < n
{-# ATP prove m<n #-}
postulate n≤o : n ≤ o
{-# ATP prove n≤o #-}
postulate prf : m < o → succ₁ m < succ₁ o
{-# ATP prove prf #-}
x≤y+x∸y : ∀ {m n} → N m → N n → m ≤ n + (m ∸ n)
x≤y+x∸y {n = n} nzero Nn = prf0
where postulate prf0 : zero ≤ n + (zero ∸ n)
{-# ATP prove prf0 +-N #-}
x≤y+x∸y (nsucc {m} Nm) nzero = prfx0
where postulate prfx0 : succ₁ m ≤ zero + (succ₁ m ∸ zero)
{-# ATP prove prfx0 x<Sx #-}
x≤y+x∸y (nsucc {m} Nm) (nsucc {n} Nn) = prfSS (x≤y+x∸y Nm Nn)
where postulate prfSS : m ≤ n + (m ∸ n) →
succ₁ m ≤ succ₁ n + (succ₁ m ∸ succ₁ n)
{-# ATP prove prfSS x≤y→Sx≤Sy ≤-trans +-N ∸-N S∸S #-}
x∸y<x∸z→Sx∸y<Sx∸z : ∀ {m n o} → N m → N n → N o →
m ∸ n < m ∸ o → succ₁ m ∸ n < succ₁ m ∸ o
x∸y<x∸z→Sx∸y<Sx∸z {n = n} {o} nzero Nn No h = prf
where postulate prf : succ₁ zero ∸ n < succ₁ zero ∸ o
{-# ATP prove prf 0∸x #-}
x∸y<x∸z→Sx∸y<Sx∸z {o = o} (nsucc {m} Nm) nzero No h = prf
where postulate prf : succ₁ (succ₁ m) ∸ zero < succ₁ (succ₁ m) ∸ o
{-# ATP prove prf x<x∸y→⊥ #-}
x∸y<x∸z→Sx∸y<Sx∸z (nsucc {m} Nm) (nsucc {n} Nn) nzero h = prf
where postulate prf : succ₁ (succ₁ m) ∸ succ₁ n < succ₁ (succ₁ m) ∸ zero
{-# ATP prove prf Sx∸Sy<Sx #-}
x∸y<x∸z→Sx∸y<Sx∸z (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) h =
prf (x∸y<x∸z→Sx∸y<Sx∸z Nm Nn No)
where
postulate prf : (m ∸ n < m ∸ o → succ₁ m ∸ n < succ₁ m ∸ o) →
succ₁ (succ₁ m) ∸ succ₁ n < succ₁ (succ₁ m) ∸ succ₁ o
{-# ATP prove prf S∸S #-}
------------------------------------------------------------------------------
-- Properties about the lexicographical order
postulate xy<00→⊥ : ∀ {m n} → N m → N n → ¬ (Lexi m n zero zero)
{-# ATP prove xy<00→⊥ x<0→⊥ #-}
postulate 0Sx<00→⊥ : ∀ {m} → ¬ (Lexi zero (succ₁ m) zero zero)
{-# ATP prove 0Sx<00→⊥ #-}
postulate Sxy₁<0y₂→⊥ : ∀ {m n₁ n₂} → ¬ (Lexi (succ₁ m) n₁ zero n₂)
{-# ATP prove Sxy₁<0y₂→⊥ #-}
postulate x₁y<x₂0→x₁<x₂ : ∀ {m₁ n} → N n → ∀ {m₂} → Lexi m₁ n m₂ zero → m₁ < m₂
{-# ATP prove x₁y<x₂0→x₁<x₂ x<0→⊥ #-}
postulate xy₁<0y₂→x≡0∧y₁<y₂ : ∀ {m} → N m → ∀ {n₁ n₂} → Lexi m n₁ zero n₂ →
m ≡ zero ∧ n₁ < n₂
{-# ATP prove xy₁<0y₂→x≡0∧y₁<y₂ x<0→⊥ #-}
[Sx∸Sy,Sy]<[Sx,Sy] : ∀ {m n} → N m → N n →
Lexi (succ₁ m ∸ succ₁ n) (succ₁ n) (succ₁ m) (succ₁ n)
[Sx∸Sy,Sy]<[Sx,Sy] {m} {n} Nm Nn = prf
where postulate prf : Lexi (succ₁ m ∸ succ₁ n) (succ₁ n) (succ₁ m) (succ₁ n)
{-# ATP prove prf x∸y<Sx S∸S #-}
[Sx,Sy∸Sx]<[Sx,Sy] : ∀ {m n} → N m → N n →
Lexi (succ₁ m) (succ₁ n ∸ succ₁ m) (succ₁ m) (succ₁ n)
[Sx,Sy∸Sx]<[Sx,Sy] {m} {n} Nm Nn = prf
where postulate prf : Lexi (succ₁ m) (succ₁ n ∸ succ₁ m) (succ₁ m) (succ₁ n)
{-# ATP prove prf x∸y<Sx S∸S #-}
| {
"alphanum_fraction": 0.5066142764,
"avg_line_length": 35.1303680982,
"ext": "agda",
"hexsha": "5ccdb2e60da9b7108e4e89f63665926439d97ef8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/Inequalities/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/Inequalities/PropertiesATP.agda",
"max_line_length": 79,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/Inequalities/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 11110,
"size": 22905
} |
-- Like Leftovers.Examples, but more meant to stress-test the library
-- than to be clear/readable
module Leftovers.Tests where
open import Leftovers.Leftovers
open import Leftovers.ByRefl
open import Level
open import Reflection
open import Data.Nat
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.List
--Make sure findLeftovers works with
data Foo : Set(Level.suc Level.zero) where
Bar : Set → ℕ → ((n : ℕ) → n ≡ n + 0) → Foo
makePair : Term → TC ⊤
makePair = λ goal →
do
hole1 <- newMeta (quoteTerm Set)
hole2 <- newMeta (quoteTerm ℕ)
hole3 <- newMeta (quoteTerm ((n : ℕ) → n ≡ n + 0))
body <- extendContext (vArg (quoteTerm ℕ)) do
tyHole ← newMeta (quoteTerm Set)
newHole ← newMeta tyHole
return (def (quote sym) (vArg newHole ∷ []))
unify hole3 (lam visible (abs "arg" body))
unify hole2 (quoteTerm 4)
unify goal (con (quote Bar) (vArg hole1 ∷ vArg hole2 ∷ vArg hole3 ∷ []))
p0 : ∀ n → n + 0 ≡ n
p0 zero = refl
p0 (suc n) rewrite p0 n = refl
f : Foo
f =
by
makePair
andAlso
p0
ℕ
| {
"alphanum_fraction": 0.6491540516,
"avg_line_length": 23.3958333333,
"ext": "agda",
"hexsha": "186b012a0fa5ce0f52ea64e0e6c6235e62b3cd53",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_forks_repo_path": "src/Leftovers/Tests.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_issues_repo_path": "src/Leftovers/Tests.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_stars_repo_path": "src/Leftovers/Tests.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 355,
"size": 1123
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.