Search is not available for this dataset
text
string | meta
dict |
---|---|
module ImportTests.ExtractCaseSplit where
open import ExtractCaseSplit
open import Data.Maybe
open import Data.Bool
test : Bool
test = func (just false)
| {
"alphanum_fraction": 0.8129032258,
"avg_line_length": 19.375,
"ext": "agda",
"hexsha": "943b365bbe5f3078ee09b1ec9097c1c11e191a6f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractCaseSplit.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractCaseSplit.agda",
"max_line_length": 41,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractCaseSplit.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 37,
"size": 155
} |
-- Andreas, 2016-06-11, issue reported by Mietek Bak
data Foo : Foo → Set where
-- WAS: Panic: unbound name Foo
-- NOW: Not in scope: Foo
| {
"alphanum_fraction": 0.6737588652,
"avg_line_length": 17.625,
"ext": "agda",
"hexsha": "e929f39d676b79e0fec31621bb480bde29b865ae",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2024-data.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2024-data.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2024-data.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 46,
"size": 141
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Paths
open import lib.types.Pi
open import lib.types.Sigma
module lib.types.Pointed where
Ptd : ∀ i → Type (lsucc i)
Ptd i = Σ (Type i) (λ A → A)
Ptd₀ = Ptd lzero
⊙[_,_] : ∀ {i} (A : Type i) (a : A) → Ptd i
⊙[_,_] = _,_
infixr 0 _⊙→_
_⊙→_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
(A , a₀) ⊙→ (B , b₀) = ⊙[ Σ (A → B) (λ f → f a₀ == b₀) , ((λ _ → b₀), idp) ]
infix 30 _⊙≃_
_⊙≃_ : ∀ {i j} → Ptd i → Ptd j → Type (lmax i j)
X ⊙≃ Y = Σ (fst (X ⊙→ Y)) (λ {(f , _) → is-equiv f})
⊙≃-in : ∀ {i j} {X : Ptd i} {Y : Ptd j}
(e : fst X ≃ fst Y) (p : –> e (snd X) == snd Y)
→ X ⊙≃ Y
⊙≃-in (f , ie) p = ((f , p) , ie)
⊙≃-out : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ X ⊙≃ Y
→ Σ (fst X ≃ fst Y) (λ e → –> e (snd X) == snd Y)
⊙≃-out ((f , p) , ie) = (f , ie) , p
⊙idf : ∀ {i} (X : Ptd i) → fst (X ⊙→ X)
⊙idf A = ((λ x → x) , idp)
⊙cst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙→ Y)
⊙cst {Y = Y} = ((λ x → snd Y) , idp)
infixr 80 _⊙∘_
_⊙∘_ : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → fst (X ⊙→ Z)
(g , gpt) ⊙∘ (f , fpt) = (g ∘ f) , (ap g fpt ∙ gpt)
infixr 80 _⊙∘e_
_⊙∘e_ : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(g : Y ⊙≃ Z) (f : X ⊙≃ Y) → X ⊙≃ Z
(g , g-eq) ⊙∘e (f , f-eq) = (g ⊙∘ f , g-eq ∘ise f-eq)
⊙∘-unit-l : ∀ {i j} {X : Ptd i} {Y : Ptd j} (f : fst (X ⊙→ Y))
→ ⊙idf Y ⊙∘ f == f
⊙∘-unit-l (f , idp) = idp
⊙∘-unit-r : ∀ {i j} {X : Ptd i} {Y : Ptd j} (f : fst (X ⊙→ Y))
→ f ⊙∘ ⊙idf X == f
⊙∘-unit-r f = idp
⊙∘-assoc : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(h : fst (Z ⊙→ W)) (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y))
→ ((h ⊙∘ g) ⊙∘ f) == (h ⊙∘ (g ⊙∘ f))
⊙∘-assoc (h , hpt) (g , gpt) (f , fpt) = pair= idp (lemma fpt gpt hpt)
where
lemma : ∀ {x₁ x₂} (fpt : x₁ == x₂) → ∀ gpt → ∀ hpt →
ap (h ∘ g) fpt ∙ ap h gpt ∙ hpt == ap h (ap g fpt ∙ gpt) ∙ hpt
lemma idp gpt hpt = idp
⊙Σ : ∀ {i j} (X : Ptd i) → (fst X → Ptd j) → Ptd (lmax i j)
⊙Σ (A , a₀) Y = ⊙[ Σ A (fst ∘ Y) , (a₀ , snd (Y a₀)) ]
infixr 80 _⊙×_
_⊙×_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
X ⊙× Y = ⊙Σ X (λ _ → Y)
⊙dfst : ∀ {i j} {X : Ptd i} (Y : fst X → Ptd j) → fst (⊙Σ X Y ⊙→ X)
⊙dfst Y = (fst , idp)
⊙fst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙× Y ⊙→ X)
⊙fst = ⊙dfst _
⊙snd : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙× Y ⊙→ Y)
⊙snd = (snd , idp)
⊙diag : ∀ {i} {X : Ptd i} → fst (X ⊙→ X ⊙× X)
⊙diag = ((λ x → (x , x)) , idp)
⊙×-in : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ fst (X ⊙→ Y) → fst (X ⊙→ Z) → fst (X ⊙→ Y ⊙× Z)
⊙×-in (f , fpt) (g , gpt) = (λ x → (f x , g x)) , ap2 _,_ fpt gpt
⊙fst-⊙×-in : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : fst (X ⊙→ Y)) (g : fst (X ⊙→ Z))
→ ⊙fst ⊙∘ ⊙×-in f g == f
⊙fst-⊙×-in (f , idp) (g , idp) = idp
⊙snd-⊙×-in : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : fst (X ⊙→ Y)) (g : fst (X ⊙→ Z))
→ ⊙snd ⊙∘ ⊙×-in f g == g
⊙snd-⊙×-in (f , idp) (g , idp) = idp
⊙×-in-pre∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(f : fst (Y ⊙→ Z)) (g : fst (Y ⊙→ W)) (h : fst (X ⊙→ Y))
→ ⊙×-in f g ⊙∘ h == ⊙×-in (f ⊙∘ h) (g ⊙∘ h)
⊙×-in-pre∘ (f , idp) (g , idp) (h , idp) = idp
pair⊙→ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
→ fst (X ⊙→ Y) → fst (Z ⊙→ W)
→ fst ((X ⊙× Z) ⊙→ (Y ⊙× W))
pair⊙→ (f , fpt) (g , gpt) =
((λ {(x , z) → (f x , g z)}) , pair×= fpt gpt)
{- ⊙→ preserves hlevel -}
⊙→-level : ∀ {i j} {X : Ptd i} {Y : Ptd j} {n : ℕ₋₂}
→ has-level n (fst Y) → has-level n (fst (X ⊙→ Y))
⊙→-level pY = Σ-level (Π-level (λ _ → pY)) (λ _ → =-preserves-level _ pY)
{- function extensionality for pointed functions -}
⊙λ= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : fst (X ⊙→ Y)}
(p : ∀ x → fst f x == fst g x) (α : snd f == p (snd X) ∙ snd g)
→ f == g
⊙λ= {g = g} p α =
pair= (λ= p) (↓-app=cst-in (α ∙ ap (λ w → w ∙ snd g) (! (app=-β p _))))
{- Extracting data from an pointed equivalence -}
module _ {i j} {X : Ptd i} {Y : Ptd j} (⊙e : X ⊙≃ Y) where
private
e : fst X ≃ fst Y
e = (fst (fst ⊙e) , snd ⊙e)
p = snd (fst ⊙e)
⊙≃-to-≃ = e
⊙–> : fst (X ⊙→ Y)
⊙–> = fst ⊙e
⊙<– : fst (Y ⊙→ X)
⊙<– = (<– e , ap (<– e) (! p) ∙ <–-inv-l e (snd X))
⊙<–-inv-l : ⊙<– ⊙∘ ⊙–> == ⊙idf _
⊙<–-inv-l = ⊙λ= (<–-inv-l e) $
ap (<– e) p ∙ ap (<– e) (! p) ∙ <–-inv-l e (snd X)
=⟨ ! (∙-assoc (ap (<– e) p) (ap (<– e) (! p)) (<–-inv-l e (snd X))) ⟩
(ap (<– e) p ∙ ap (<– e) (! p)) ∙ <–-inv-l e (snd X)
=⟨ ∙-ap (<– e) p (! p) ∙ ap (ap (<– e)) (!-inv-r p)
|in-ctx (λ w → w ∙ <–-inv-l e (snd X)) ⟩
<–-inv-l e (snd X)
=⟨ ! (∙-unit-r _) ⟩
<–-inv-l e (snd X) ∙ idp ∎
⊙<–-inv-r : ⊙–> ⊙∘ ⊙<– == ⊙idf _
⊙<–-inv-r = ⊙λ= (<–-inv-r e) $
ap (–> e) (ap (<– e) (! p) ∙ <–-inv-l e (snd X)) ∙ p
=⟨ ap-∙ (–> e) (ap (<– e) (! p)) (<–-inv-l e (snd X))
|in-ctx (λ w → w ∙ p) ⟩
(ap (–> e) (ap (<– e) (! p)) ∙ ap (–> e) (<–-inv-l e (snd X))) ∙ p
=⟨ <–-inv-adj e (snd X)
|in-ctx (λ w → (ap (–> e) (ap (<– e) (! p)) ∙ w) ∙ p) ⟩
(ap (–> e) (ap (<– e) (! p)) ∙ <–-inv-r e (–> e (snd X))) ∙ p
=⟨ ∘-ap (–> e) (<– e) (! p)
|in-ctx (λ w → (w ∙ <–-inv-r e (–> e (snd X))) ∙ p) ⟩
(ap (–> e ∘ <– e) (! p) ∙ <–-inv-r e (–> e (snd X))) ∙ p
=⟨ htpy-lemma (<–-inv-r e) p ⟩
<–-inv-r e (snd Y)
=⟨ ! (∙-unit-r _) ⟩
<–-inv-r e (snd Y) ∙ idp ∎
where
htpy-lemma : ∀ {i} {A : Type i} {f : A → A}
(p : ∀ z → f z == z) {x y : A} (q : x == y)
→ (ap f (! q) ∙ p x) ∙ q == p y
htpy-lemma p idp = ∙-unit-r _
{- Equality of pointed types -}
⊙ua : ∀ {i} {X Y : Ptd i} → X ⊙≃ Y → X == Y
⊙ua ((f , p) , ie) = pair= (ua (f , ie)) (↓-idf-ua-in (f , ie) p)
| {
"alphanum_fraction": 0.3796539067,
"avg_line_length": 32.1404494382,
"ext": "agda",
"hexsha": "c693380d36c1af948ddbbc38b08c4659463d059c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Pointed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Pointed.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Pointed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3263,
"size": 5721
} |
------------------------------------------------------------------------
-- Indices
------------------------------------------------------------------------
module Parallel.Index where
open import Data.Product.Record
import Data.Product as Prod; open Prod using () renaming (_,_ to pair)
open import Data.Bool using (Bool; true; false; _∨_; _∧_; if_then_else_)
open import Data.Bool.Properties as Bool
open import Data.Nat using (ℕ; zero; suc; _⊔_)
open import Data.Nat.Properties
open import Algebra
import Algebra.Props.BooleanAlgebra as BAlg
import Algebra.Props.DistributiveLattice as DL
private
module NR = CommutativeSemiringWithoutOne
⊔-⊓-0-commutativeSemiringWithoutOne
module NL = DL distributiveLattice
module BR = CommutativeSemiring Bool.commutativeSemiring-∨-∧
module BA = BAlg Bool.booleanAlgebra
import Relation.Binary.PropositionalEquality as PropEq
open PropEq hiding (setoid)
open ≡-Reasoning
open import Data.Function
open import Relation.Nullary
------------------------------------------------------------------------
-- The index type
-- Does the parser accept the empty string?
Empty : Set
Empty = Bool
-- The maximum "distance" to the next parser which is guaranteed to
-- either consume a token or fail.
Distance : Set
Distance = ℕ
-- Parser indices. Note that it is important that the record type used
-- here has η-equality, since otherwise it would be harder to infer
-- the types.
Index : Set
Index = Empty × Distance
import Algebra.FunctionProperties as P; open P (PropEq.setoid Index)
------------------------------------------------------------------------
-- The basic operations on indices
infixl 50 _·I_
infixl 40 _∣I_
0I : Index
0I = (false , zero)
1I : Index
1I = (true , zero)
_·I_ : Index -> Index -> Index
i₁ ·I i₂ = ( proj₁ i₁ ∧ proj₁ i₂
, (if proj₁ i₁ then proj₂ i₁ ⊔ proj₂ i₂
else proj₂ i₁)
)
_∣I_ : Index -> Index -> Index
i₁ ∣I i₂ = (proj₁ i₁ ∨ proj₁ i₂ , proj₂ i₁ ⊔ proj₂ i₂)
------------------------------------------------------------------------
-- These operations satisfy some algebraic properties
private
-- TODO: General code for taking the product of two commutative
-- monoids. However, I don't want to define this operation for both
-- Data.Product and Data.Product.Record. Hence I'll probably wait
-- (at least) until pattern matching on records is possible, since I
-- plan to merge Data.Product and Data.Product.Record then.
∣-assoc : Associative _∣I_
∣-assoc i₁ i₂ i₃ =
cong₂ _,_ (BR.+-assoc (proj₁ i₁) (proj₁ i₂) (proj₁ i₃))
(NR.+-assoc (proj₂ i₁) (proj₂ i₂) (proj₂ i₃))
∣-comm : Commutative _∣I_
∣-comm i₁ i₂ =
cong₂ _,_ (BR.+-comm (proj₁ i₁) (proj₁ i₂))
(NR.+-comm (proj₂ i₁) (proj₂ i₂))
∣-identity : Identity 0I _∣I_
∣-identity = pair
(\i -> cong₂ _,_ (Prod.proj₁ BR.+-identity (proj₁ i))
(Prod.proj₁ NR.+-identity (proj₂ i)))
(\i -> cong₂ _,_ (Prod.proj₂ BR.+-identity (proj₁ i))
(Prod.proj₂ NR.+-identity (proj₂ i)))
·-assoc : Associative _·I_
·-assoc i₁ i₂ i₃ with proj₁ i₁ | proj₁ i₂
·-assoc i₁ i₂ i₃ | false | e₂ = refl
·-assoc i₁ i₂ i₃ | true | false = refl
·-assoc i₁ i₂ i₃ | true | true =
cong (_,_ (proj₁ i₃)) (NR.+-assoc (proj₂ i₁) (proj₂ i₂) (proj₂ i₃))
·-identity : Identity 1I _·I_
·-identity = pair (\_ -> refl) (\x -> helper (proj₁ x) (proj₂ x))
where
helper : forall e d ->
_≡_ {a = Index} (e ∧ true , (if e then d ⊔ zero else d))
(e , d)
helper false d = refl
helper true d = cong (_,_ true) (Prod.proj₂ NR.+-identity d)
·-∣-distrib : _·I_ DistributesOver _∣I_
·-∣-distrib = pair
(\i₁ i₂ i₃ ->
cong₂ _,_
(Prod.proj₁ BR.distrib (proj₁ i₁) (proj₁ i₂) (proj₁ i₃))
(distribˡ₂ (proj₂ i₁) (proj₂ i₂) (proj₂ i₃) (proj₁ i₁)))
(\i₁ i₂ i₃ ->
cong₂ _,_
(Prod.proj₂ BR.distrib (proj₁ i₁) (proj₁ i₂) (proj₁ i₃))
(distribʳ₂ (proj₂ i₁) (proj₂ i₂) (proj₂ i₃)
(proj₁ i₂) (proj₁ i₃)))
where
lemma : forall d₁ d₂ d₃ -> d₁ ⊔ (d₂ ⊔ d₃) ≡ d₁ ⊔ d₂ ⊔ (d₁ ⊔ d₃)
lemma d₁ d₂ d₃ = begin
d₁ ⊔ (d₂ ⊔ d₃) ≡⟨ sym (NL.∧-idempotent d₁)
⟨ NR.+-pres-≈ ⟩
byDef {x = d₂ ⊔ d₃} ⟩
d₁ ⊔ d₁ ⊔ (d₂ ⊔ d₃) ≡⟨ NR.+-assoc d₁ d₁ (d₂ ⊔ d₃) ⟩
d₁ ⊔ (d₁ ⊔ (d₂ ⊔ d₃)) ≡⟨ byDef {x = d₁} ⟨ NR.+-pres-≈ ⟩
sym (NR.+-assoc d₁ d₂ d₃) ⟩
d₁ ⊔ (d₁ ⊔ d₂ ⊔ d₃) ≡⟨ byDef {x = d₁} ⟨ NR.+-pres-≈ ⟩
(NR.+-comm d₁ d₂ ⟨ NR.+-pres-≈ ⟩
byDef {x = d₃}) ⟩
d₁ ⊔ (d₂ ⊔ d₁ ⊔ d₃) ≡⟨ byDef {x = d₁} ⟨ NR.+-pres-≈ ⟩
NR.+-assoc d₂ d₁ d₃ ⟩
d₁ ⊔ (d₂ ⊔ (d₁ ⊔ d₃)) ≡⟨ sym $ NR.+-assoc d₁ d₂ (d₁ ⊔ d₃) ⟩
d₁ ⊔ d₂ ⊔ (d₁ ⊔ d₃) ∎
distribˡ₂ : forall d₁ d₂ d₃ e₁ ->
(if e₁ then d₁ ⊔ (d₂ ⊔ d₃) else d₁) ≡
(if e₁ then d₁ ⊔ d₂ else d₁) ⊔
(if e₁ then d₁ ⊔ d₃ else d₁)
distribˡ₂ d₁ d₂ d₃ true = lemma d₁ d₂ d₃
distribˡ₂ d₁ d₂ d₃ false = sym (NL.∧-idempotent d₁)
distribʳ₂ : forall d₁ d₂ d₃ e₂ e₃ ->
(if e₂ ∨ e₃ then d₂ ⊔ d₃ ⊔ d₁ else d₂ ⊔ d₃)
≡
(if e₂ then d₂ ⊔ d₁ else d₂) ⊔
(if e₃ then d₃ ⊔ d₁ else d₃)
distribʳ₂ d₁ d₂ d₃ true true = begin
d₂ ⊔ d₃ ⊔ d₁ ≡⟨ NR.+-comm (d₂ ⊔ d₃) d₁ ⟩
d₁ ⊔ (d₂ ⊔ d₃) ≡⟨ lemma d₁ d₂ d₃ ⟩
d₁ ⊔ d₂ ⊔ (d₁ ⊔ d₃) ≡⟨ NR.+-comm d₁ d₂ ⟨ NR.+-pres-≈ ⟩
NR.+-comm d₁ d₃ ⟩
d₂ ⊔ d₁ ⊔ (d₃ ⊔ d₁) ∎
distribʳ₂ d₁ d₂ d₃ true false = begin
d₂ ⊔ d₃ ⊔ d₁ ≡⟨ NR.+-assoc d₂ d₃ d₁ ⟩
d₂ ⊔ (d₃ ⊔ d₁) ≡⟨ byDef {x = d₂} ⟨ NR.+-pres-≈ ⟩
NR.+-comm d₃ d₁ ⟩
d₂ ⊔ (d₁ ⊔ d₃) ≡⟨ sym $ NR.+-assoc d₂ d₁ d₃ ⟩
d₂ ⊔ d₁ ⊔ d₃ ∎
distribʳ₂ d₁ d₂ d₃ false true = NR.+-assoc d₂ d₃ d₁
distribʳ₂ d₁ d₂ d₃ false false = refl
·-idempotent : Idempotent _·I_
·-idempotent i = cong₂ _,_ (BA.∧-idempotent (proj₁ i))
(lemma (proj₁ i) (proj₂ i))
where
lemma : forall b x -> (if b then x ⊔ x else x) ≡ x
lemma true x = NL.∧-idempotent x
lemma false x = refl
∣-idempotent : Idempotent _∣I_
∣-idempotent i = cong₂ _,_ (BA.∨-idempotent (proj₁ i))
(NL.∧-idempotent (proj₂ i))
-- Not quite a semiring, but the proper name is too long...
indexSemiring : SemiringWithoutAnnihilatingZero
indexSemiring = record
{ setoid = PropEq.setoid Index
; _+_ = _∣I_
; _*_ = _·I_
; 0# = 0I
; 1# = 1I
; isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = record
{ isMonoid = record
{ isSemigroup = record
{ assoc = ∣-assoc
; ∙-pres-≈ = cong₂ _∣I_
}
; identity = ∣-identity
}
; comm = ∣-comm
}
; *-isMonoid = record
{ isSemigroup = record
{ assoc = ·-assoc
; ∙-pres-≈ = cong₂ _·I_
}
; identity = ·-identity
}
; distrib = ·-∣-distrib
}
}
module IndexSemiring =
SemiringWithoutAnnihilatingZero indexSemiring
nearSemiring : NearSemiring
nearSemiring = record
{ setoid = setoid
; _+_ = _+_
; _*_ = _*_
; 0# = 0#
; isNearSemiring = record
{ +-isMonoid = +-isMonoid
; *-isSemigroup = *-isSemigroup
; distribʳ = Prod.proj₂ distrib
; zeroˡ = \_ -> PropEq.refl
}
}
where open IndexSemiring
private
lemma : suc zero ≢ zero
lemma ()
-- The indices very nearly form a semiring (∣I, ·I, 0I, 1I). The
-- only missing piece is that 0I is not a right zero for ·I:
notRightZero : ¬ RightZero 0I _·I_
notRightZero zeroʳ = lemma $ cong proj₂ $
zeroʳ (false , suc zero)
-- It might also be worth noting that ·I is not commutative:
notCommutative : ¬ Commutative _·I_
notCommutative comm = lemma $ cong proj₂ $
comm (true , suc zero) (false , zero)
-- Note that we don't want these properties to be true. The second
-- one implies the first, and the first implies that
-- p = p ⊛> symbol
-- is an OK definition, even though it is left recursive.
| {
"alphanum_fraction": 0.5313727825,
"avg_line_length": 32.5542635659,
"ext": "agda",
"hexsha": "c9e19765b18902344da98d9d16030c105dea8a02",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/Parallel/Index.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/Parallel/Index.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/Parallel/Index.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 3021,
"size": 8399
} |
------------------------------------------------------------------------
-- Small coinductive higher lenses with erased "proofs"
------------------------------------------------------------------------
{-# OPTIONS --guardedness #-}
import Equality.Path as P
module Lens.Non-dependent.Higher.Coinductive.Small.Erased
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude as P hiding (id)
open import Bijection equality-with-J as B using (_↔_)
open import Equality.Decidable-UIP equality-with-J using (Constant)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
open import Equivalence.Erased.Cubical eq as EEq using (_≃ᴱ_)
open import Equivalence.Erased.Contractible-preimages.Cubical eq as ECP
using (_⁻¹ᴱ_)
open import Erased.Cubical eq
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq using (∥_∥)
open import Preimage equality-with-J using (_⁻¹_)
open import Tactic.Sigma-cong equality-with-J
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent eq
import Lens.Non-dependent.Higher.Capriotti.Variant.Erased.Variant eq
as V
open import Lens.Non-dependent.Higher.Coherently.Coinductive eq
import Lens.Non-dependent.Higher.Coinductive eq as C
import Lens.Non-dependent.Higher.Coinductive.Erased eq as CE
import Lens.Non-dependent.Higher.Coinductive.Small eq as S
import Lens.Non-dependent.Higher.Erased eq as E
private
variable
a b c d : Level
A B : Type a
l g p s : A
P : A → Type p
f : (x : A) → P x
univ : Univalence a
------------------------------------------------------------------------
-- Weakly constant functions
-- Weakly constant type-valued functions.
--
-- Note that the definition does not use _≃ᴱ_: the right-to-left
-- directions of the equivalences are erased.
Constantᴱ :
{A : Type a} →
(A → Type p) → Type (a ⊔ p)
Constantᴱ P = ∀ x y → ∃ λ (f : P x → P y) → Erased (Is-equivalence f)
-- In erased contexts Constantᴱ is pointwise equivalent to Constant
-- (assuming univalence).
@0 Constantᴱ≃Constant :
{P : A → Type p} →
Univalence p →
Constantᴱ P ≃ Constant P
Constantᴱ≃Constant {P = P} univ =
Constantᴱ P ↔⟨⟩
(∀ x y → ∃ λ (f : P x → P y) → Erased (Is-equivalence f)) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∃-cong λ _ → erased Erased↔) ⟩
(∀ x y → ∃ λ (f : P x → P y) → Is-equivalence f) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → inverse Eq.≃-as-Σ) ⟩
(∀ x y → P x ≃ P y) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → inverse $ ≡≃≃ univ) ⟩
(∀ x y → P x ≡ P y) ↔⟨⟩
Constant P □
-- In erased contexts Constantᴱ is pointwise equivalent to
-- S.Constant-≃.
@0 Constantᴱ≃Constant-≃ : Constantᴱ P ≃ S.Constant-≃ P
Constantᴱ≃Constant-≃ {P = P} =
Constantᴱ P ↔⟨⟩
(∀ x y → ∃ λ (f : P x → P y) → Erased (Is-equivalence f)) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∃-cong λ _ → erased Erased↔) ⟩
(∀ x y → ∃ λ (f : P x → P y) → Is-equivalence f) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → inverse Eq.≃-as-Σ) ⟩
(∀ x y → P x ≃ P y) ↔⟨⟩
S.Constant-≃ P □
-- In erased contexts Constantᴱ (f ⁻¹ᴱ_) is pointwise equivalent to
-- S.Constant-≃ (f ⁻¹_).
@0 Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ :
Constantᴱ (f ⁻¹ᴱ_) ≃ S.Constant-≃ (f ⁻¹_)
Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ {f = f} =
Constantᴱ (f ⁻¹ᴱ_) ↝⟨ Constantᴱ≃Constant-≃ ⟩
S.Constant-≃ (f ⁻¹ᴱ_) ↔⟨⟩
(∀ b₁ b₂ → f ⁻¹ᴱ b₁ ≃ f ⁻¹ᴱ b₂) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ →
Eq.≃-preserves ext (inverse ECP.⁻¹≃⁻¹ᴱ) (inverse ECP.⁻¹≃⁻¹ᴱ)) ⟩
(∀ b₁ b₂ → f ⁻¹ b₁ ≃ f ⁻¹ b₂) ↔⟨⟩
S.Constant-≃ (f ⁻¹_) □
-- In erased contexts Constantᴱ (f ⁻¹ᴱ_) is pointwise equivalent to
-- Constant (f ⁻¹_) (assuming univalence).
@0 Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ :
Block "Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹" →
{A : Type a} {B : Type b} {f : A → B} →
Univalence (a ⊔ b) →
Constantᴱ (f ⁻¹ᴱ_) ≃ Constant (f ⁻¹_)
Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ ⊠ {f = f} univ =
Constantᴱ (f ⁻¹ᴱ_) ↝⟨ Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ ⟩
S.Constant-≃ (f ⁻¹_) ↝⟨ inverse $ S.Constant≃Constant-≃ univ ⟩□
Constant (f ⁻¹_) □
-- A "computation" rule for Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹.
@0 proj₁-from-Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ :
(bl : Block "Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹") →
∀ {A : Type a} {B : Type b} {f : A → B} {univ : Univalence (a ⊔ b)}
{c : Constant (f ⁻¹_)} {b₁ b₂} →
proj₁ (_≃_.from (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) c b₁ b₂) ≡
ECP.⁻¹→⁻¹ᴱ ∘ subst P.id (c b₁ b₂) ∘ ECP.⁻¹ᴱ→⁻¹
proj₁-from-Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ ⊠ {c = c} {b₁ = b₁} {b₂ = b₂} =
⟨ext⟩ λ (a , [ eq ]) →
ECP.⁻¹→⁻¹ᴱ (≡⇒→ (c b₁ b₂) (a , eq)) ≡⟨ cong ECP.⁻¹→⁻¹ᴱ $ sym $
subst-id-in-terms-of-≡⇒↝ equivalence ⟩∎
ECP.⁻¹→⁻¹ᴱ (subst P.id (c b₁ b₂) (a , eq)) ∎
-- Constantᴱ (get ⁻¹ᴱ_) can be expressed (up to _≃ᴱ_) in terms of a
-- "setter" and an erased "get-set" law that, in a certain way, form
-- an erased family of equivalences.
--
-- This lemma is based on a lemma suggested by Andrea Vezzosi, see
-- S.Constant-≃-get-⁻¹-≃.
Constantᴱ-⁻¹ᴱ-≃ᴱ :
{A : Type a} {B : Type b} {get : A → B} →
Block "Constantᴱ-⁻¹ᴱ-≃ᴱ" →
Constantᴱ (get ⁻¹ᴱ_) ≃ᴱ
(∃ λ (set : A → B → A) →
Erased (∃ λ (get-set : ∀ a b → get (set a b) ≡ b) →
∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in
Is-equivalence f))
Constantᴱ-⁻¹ᴱ-≃ᴱ {A = A} {B = B} {get = get} ⊠ =
Constantᴱ (get ⁻¹ᴱ_) ↔⟨⟩
(∀ b₁ b₂ →
∃ λ (f : get ⁻¹ᴱ b₁ → get ⁻¹ᴱ b₂) →
Erased (Is-equivalence f)) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∃-cong λ f → Erased-cong (
Is-equivalence≃Is-equivalence-∘ˡ {k = equivalence} ext $
_≃_.is-equivalence $ from-bijection $
∃-cong λ _ → erased Erased↔)) ⟩
(∀ b₁ b₂ →
∃ λ (f : get ⁻¹ᴱ b₁ → get ⁻¹ᴱ b₂) →
Erased (Is-equivalence (Σ-map P.id erased ∘ f))) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∃-cong λ f → Erased-cong (
Is-equivalence≃Is-equivalence-∘ʳ {k = equivalence} ext $
_≃_.is-equivalence $ from-bijection $
∃-cong λ _ → inverse $ erased Erased↔)) ⟩
(∀ b₁ b₂ →
∃ λ (f : get ⁻¹ᴱ b₁ → get ⁻¹ᴱ b₂) →
Erased (Is-equivalence (Σ-map P.id erased ∘ f ∘ Σ-map P.id [_]→))) ↔⟨ Π-comm ⟩
(∀ b₂ b₁ →
∃ λ (f : get ⁻¹ᴱ b₁ → get ⁻¹ᴱ b₂) →
Erased (Is-equivalence (Σ-map P.id erased ∘ f ∘ Σ-map P.id [_]→))) ↔⟨ (∀-cong ext λ _ → ΠΣ-comm) ⟩
(∀ b₂ →
∃ λ (f : ∀ b₁ → get ⁻¹ᴱ b₁ → get ⁻¹ᴱ b₂) →
∀ b₁ →
Erased (Is-equivalence (Σ-map P.id erased ∘ f b₁ ∘ Σ-map P.id [_]→))) ↔⟨ (∀-cong ext λ _ → ∃-cong λ _ → inverse Erased-Π↔Π) ⟩
(∀ b₂ →
∃ λ (f : ∀ b₁ → get ⁻¹ᴱ b₁ → get ⁻¹ᴱ b₂) →
Erased (∀ b₁ →
Is-equivalence (Σ-map P.id erased ∘ f b₁ ∘ Σ-map P.id [_]→))) ↔⟨ (∀-cong ext λ _ →
Σ-cong {k₂ = equivalence}
(inverse (∀-cong ext λ _ → currying) F.∘
Π-comm F.∘
(∀-cong ext λ _ → currying))
(λ _ → Eq.id)) ⟩
(∀ b₂ →
∃ λ (f : ∀ a → (∃ λ b₁ → Erased (get a ≡ b₁)) → get ⁻¹ᴱ b₂) →
Erased (∀ b₁ →
let g : get ⁻¹ b₁ → get ⁻¹ b₂
g = λ (a , eq) → Σ-map P.id erased (f a (b₁ , [ eq ]))
in
Is-equivalence g)) ↝⟨ (∀-cong ext λ _ →
EEq.Σ-cong-≃ᴱ-Erased
(∀-cong ext λ _ →
EEq.drop-⊤-left-Π-≃ᴱ ext
Erased-other-singleton≃ᴱ⊤
(λ _ _ → F.id)) λ f →
Erased-cong (
∀-cong ext λ b₁ →
Is-equivalence-cong ext λ (a , eq) →
Σ-map P.id erased (f a (b₁ , [ eq ])) ≡⟨ cong (Σ-map P.id erased ∘ f a) $ sym $
erased (proj₂ Contractibleᴱ-Erased-other-singleton) _ ⟩
Σ-map P.id erased (f a (get a , [ refl _ ])) ≡⟨ cong (Σ-map P.id erased) $ sym $ subst-refl _ _ ⟩∎
Σ-map P.id erased
(subst (const _) (refl _) (f a (get a , [ refl _ ]))) ∎)) ⟩
(∀ b₂ →
∃ λ (f : A → get ⁻¹ᴱ b₂) →
Erased (∀ b₁ →
let g : get ⁻¹ b₁ → get ⁻¹ b₂
g = λ (a , _) → Σ-map P.id erased (f a)
in
Is-equivalence g)) ↔⟨ ΠΣ-comm ⟩
(∃ λ (f : ∀ b → A → get ⁻¹ᴱ b) →
∀ b₂ →
Erased (∀ b₁ →
let g : get ⁻¹ b₁ → get ⁻¹ b₂
g = λ (a , _) → Σ-map P.id erased (f b₂ a)
in
Is-equivalence g)) ↔⟨ (∃-cong λ _ → inverse Erased-Π↔Π) ⟩
(∃ λ (f : ∀ b → A → get ⁻¹ᴱ b) →
Erased (∀ b₂ b₁ →
let g : get ⁻¹ b₁ → get ⁻¹ b₂
g = λ (a , _) → Σ-map P.id erased (f b₂ a)
in
Is-equivalence g)) ↔⟨ Σ-cong Π-comm (λ _ → Erased-cong Π-comm) ⟩
(∃ λ (f : A → ∀ b → get ⁻¹ᴱ b) →
Erased (∀ b₁ b₂ →
let g : get ⁻¹ b₁ → get ⁻¹ b₂
g = λ (a , _) → Σ-map P.id erased (f a b₂)
in
Is-equivalence g)) ↔⟨ Σ-cong (∀-cong ext λ _ → ΠΣ-comm) (λ _ → Eq.id) ⟩
(∃ λ (f : A → ∃ λ (set : B → A) →
∀ b → Erased (get (set b) ≡ b)) →
Erased (∀ b₁ b₂ →
let g : get ⁻¹ b₁ → get ⁻¹ b₂
g = λ (a , _) → proj₁ (f a) b₂ , erased (proj₂ (f a) b₂)
in
Is-equivalence g)) ↔⟨ Σ-cong
(∀-cong ext λ _ → ∃-cong λ _ → inverse Erased-Π↔Π)
(λ _ → Eq.id) ⟩
(∃ λ (f : A → ∃ λ (set : B → A) →
Erased (∀ b → get (set b) ≡ b)) →
Erased (∀ b₁ b₂ →
let g : get ⁻¹ b₁ → get ⁻¹ b₂
g = λ (a , _) → proj₁ (f a) b₂ , erased (proj₂ (f a)) b₂
in
Is-equivalence g)) ↔⟨ Σ-cong-id {k₂ = equivalence} ΠΣ-comm ⟩
(∃ λ ((set , get-set) :
∃ λ (set : A → B → A) →
∀ a → Erased (∀ b → get (set a b) ≡ b)) →
Erased (∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , erased (get-set a) b₂
in
Is-equivalence f)) ↔⟨ Σ-cong (∃-cong λ _ → inverse Erased-Π↔Π) (λ _ → Eq.id) ⟩
(∃ λ ((set , [ get-set ]) :
∃ λ (set : A → B → A) →
Erased (∀ a b → get (set a b) ≡ b)) →
Erased (∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in
Is-equivalence f)) ↔⟨ inverse Σ-assoc ⟩
(∃ λ (set : A → B → A) →
∃ λ (([ get-set ]) : Erased (∀ a b → get (set a b) ≡ b)) →
Erased (∀ b₁ b₂ →
Is-equivalence λ (a , _) → set a b₂ , get-set a b₂)) ↔⟨ (∃-cong λ _ → inverse
Erased-Σ↔Σ) ⟩□
(∃ λ (set : A → B → A) →
Erased (∃ λ (get-set : ∀ a b → get (set a b) ≡ b) →
∀ b₁ b₂ →
Is-equivalence λ (a , _) → set a b₂ , get-set a b₂)) □
-- A lemma relating S.Constant-≃-get-⁻¹-≃,
-- Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ and Constantᴱ-⁻¹ᴱ-≃ᴱ.
@0 to-Constant-≃-get-⁻¹-≃-to-Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹-≡ :
(bl : Block "Constant-≃-get-⁻¹-≃")
{A : Type a} {B : Type b} {get : A → B} →
(c : Constantᴱ (get ⁻¹ᴱ_)) →
_≃_.to (S.Constant-≃-get-⁻¹-≃ bl)
(_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c) ≡
Σ-map P.id erased
(_≃ᴱ_.to (Constantᴱ-⁻¹ᴱ-≃ᴱ bl) c)
to-Constant-≃-get-⁻¹-≃-to-Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹-≡
bl {get = get} c =
_≃_.from (Eq.≃-≡ $ Eq.↔⇒≃ $ inverse Σ-assoc) $
Σ-≡,≡→≡
(lemma bl)
((Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Eq.propositional ext _)
_ _)
where
lemma :
(bl : Block "Constant-≃-get-⁻¹-≃") →
(proj₁ $ _↔_.to Σ-assoc $
_≃_.to (S.Constant-≃-get-⁻¹-≃ bl)
(_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c)) ≡
(proj₁ $ _↔_.to Σ-assoc $
Σ-map P.id erased (_≃ᴱ_.to (Constantᴱ-⁻¹ᴱ-≃ᴱ bl) c))
lemma ⊠ =
Σ-≡,≡→≡
(⟨ext⟩ λ a → ⟨ext⟩ λ b →
proj₁ (proj₁ (c (get a) b) (a , [ refl _ ])) ≡⟨ cong proj₁ $ sym $ subst-refl _ _ ⟩∎
proj₁ (subst (λ _ → get ⁻¹ᴱ b) (refl _)
(proj₁ (c (get a) b) (a , [ refl _ ]))) ∎)
(⟨ext⟩ λ a → ⟨ext⟩ λ b →
subst (λ set → ∀ a b → get (set a b) ≡ b)
(⟨ext⟩ λ a → ⟨ext⟩ λ b →
cong {x = proj₁ (c (get a) b) (a , [ refl _ ])} proj₁ $ sym $
subst-refl _ _)
(λ a b → erased (proj₂ (proj₁ (c (get a) b) (a , [ refl _ ]))))
a b ≡⟨ sym $
trans (push-subst-application _ _) $
cong (_$ b) $ push-subst-application _ _ ⟩
subst (λ set → get (set a b) ≡ b)
(⟨ext⟩ λ _ → ⟨ext⟩ λ _ → cong proj₁ $ sym $ subst-refl _ _)
(erased (proj₂ (proj₁ (c (get a) b) (a , [ refl _ ])))) ≡⟨ trans (subst-ext _ _) $
subst-ext _ _ ⟩
subst (λ s → get s ≡ b)
(cong proj₁ $ sym $ subst-refl _ _)
(erased (proj₂ (proj₁ (c (get a) b) (a , [ refl _ ])))) ≡⟨ sym $ subst-∘ _ _ _ ⟩
subst (λ (s , _) → get s ≡ b)
(sym $ subst-refl _ _)
(erased (proj₂ (proj₁ (c (get a) b) (a , [ refl _ ])))) ≡⟨ elim¹
(λ {p} eq →
subst (λ (s , _) → get s ≡ b) eq
(erased (proj₂ (proj₁ (c (get a) b) (a , [ refl _ ])))) ≡
erased (proj₂ p))
(subst-refl _ _)
_ ⟩∎
erased
(proj₂ (subst (λ _ → get ⁻¹ᴱ b) (refl _)
(proj₁ (c (get a) b) (a , [ refl _ ])))) ∎)
------------------------------------------------------------------------
-- Coherently constant families of fibres
-- Coherently constant families of fibres (with erased proofs),
-- defined using univalence.
Coherently-constant-fibres :
{A : Type a} {B : Type b} →
@0 Univalence (a ⊔ b) →
(A → B) → Type (a ⊔ b)
Coherently-constant-fibres {A = A} {B = B} univ get =
∃ λ (set : A → B → A) →
Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c }))
-- Coherently-constant-fibres univ get is equivalent (with erased
-- proofs) to CE.Coherently-constant (get ⁻¹ᴱ_) (assuming univalence).
Coherently-constant-fibres≃ᴱCoherently-constant-⁻¹ᴱ :
{A : Type a} {B : Type b} {get : A → B} →
@0 Univalence (lsuc (a ⊔ b)) →
(@0 univ : Univalence (a ⊔ b)) →
Coherently-constant-fibres univ get ≃ᴱ
CE.Coherently-constant (get ⁻¹ᴱ_)
Coherently-constant-fibres≃ᴱCoherently-constant-⁻¹ᴱ
{a = a} {b = b} {A = A} {B = B} {get = get} univ′ univ =
block λ bl →
Coherently-constant-fibres univ get ↔⟨⟩
(∃ λ (set : A → B → A) →
Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c }))) ↔⟨ (∃-cong λ _ → Erased-cong (∃-cong λ c →
≡⇒≃ $ cong (_ ≡_) $
S.Lens.set≡ {univ = univ}
(record { get⁻¹-coherently-constant = c })
bl)) ⟩
(∃ λ (set : A → B → A) →
Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
set ≡ proj₁ (_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property)))) ↔⟨ (∃-cong λ _ → Erased-cong (∃-cong λ _ → inverse $
≡-comm F.∘
drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
other-singleton-contractible _)) ⟩
(∃ λ (set : A → B → A) →
Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
∃ λ (p : proj₁ (_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property)) ≡
set) →
∃ λ (q : ∃ λ (get-set : (a : A) (b : B) → get (set a b) ≡ b) →
∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in Is-equivalence f) →
subst
(λ set →
∃ λ (get-set : (a : A) (b : B) → get (set a b) ≡ b) →
∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in
Is-equivalence f)
p
(proj₂ (_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property))) ≡
q)) ↔⟨ (∃-cong λ _ → Erased-cong (∃-cong λ _ →
(∃-cong λ _ → ∃-comm) F.∘
∃-comm F.∘
(∃-cong λ _ → inverse Σ-assoc))) ⟩
(∃ λ (set : A → B → A) →
Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
∃ λ (get-set : (a : A) (b : B) → get (set a b) ≡ b) →
∃ λ (eq : ∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in Is-equivalence f) →
∃ λ (p : proj₁ (_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property)) ≡
set) →
subst
(λ set →
∃ λ (get-set : (a : A) (b : B) → get (set a b) ≡ b) →
∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in
Is-equivalence f)
p
(proj₂ (_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property))) ≡
(get-set , eq))) ↔⟨ (∃-cong λ _ → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
B.Σ-≡,≡↔≡)) ⟩
(∃ λ (set : A → B → A) →
Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
∃ λ (get-set : (a : A) (b : B) → get (set a b) ≡ b) →
∃ λ (eq : ∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in Is-equivalence f) →
_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property) ≡
(set , get-set , eq))) ↔⟨ (∃-cong λ _ → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
≡⇒≃ (cong (_≡ _) $ _≃_.left-inverse-of (S.Constant-≃-get-⁻¹-≃ bl) _) F.∘
inverse (Eq.≃-≡ $ inverse $ S.Constant-≃-get-⁻¹-≃ bl))) ⟩
(∃ λ (set : A → B → A) →
Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
∃ λ (get-set : (a : A) (b : B) → get (set a b) ≡ b) →
∃ λ (eq : ∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in Is-equivalence f) →
c .property ≡ S.Constant-≃-get-⁻¹-≃⁻¹ (set , get-set , eq))) ↔⟨ (Σ-assoc F.∘
(∃-cong λ _ →
Erased-Σ↔Σ F.∘
Erased-cong
(Σ-assoc F.∘
(∃-cong λ _ → ∃-comm) F.∘
∃-comm))) ⟩
(∃ λ ((set , [ get-set , eq ]) :
∃ λ (set : A → B → A) →
Erased
(∃ λ (get-set : (a : A) (b : B) → get (set a b) ≡ b) →
∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in
Is-equivalence f)) →
Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
c .property ≡ S.Constant-≃-get-⁻¹-≃⁻¹ (set , get-set , eq))) ↝⟨ (inverse $
EEq.Σ-cong-≃ᴱ-Erased (Constantᴱ-⁻¹ᴱ-≃ᴱ bl) λ c →
Erased-cong (∃-cong λ c′ →
≡⇒↝ _ (cong (c′ .property ≡_) (
_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c ≡⟨ sym $ _≃_.to-from (S.Constant-≃-get-⁻¹-≃ bl) $
to-Constant-≃-get-⁻¹-≃-to-Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹-≡
bl c ⟩∎
S.Constant-≃-get-⁻¹-≃⁻¹
(Σ-map P.id erased $ _≃ᴱ_.to (Constantᴱ-⁻¹ᴱ-≃ᴱ bl) c) ∎)))) ⟩
(∃ λ (c : Constantᴱ (get ⁻¹ᴱ_)) →
Erased
(∃ λ (c′ : S.Coherently-constant univ (get ⁻¹_)) →
c′ .property ≡ _≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c)) ↔⟨ (∃-cong λ c → Erased-cong (inverse $
Σ-cong (S.Coinductive-coherently-constant≃Coherently-constant
univ′ univ) λ c′ →
lemma₁ bl c (c′ .property))) ⟩
(∃ λ (c : Constantᴱ (get ⁻¹ᴱ_)) →
Erased
(∃ λ (c′ : C.Coherently-constant (get ⁻¹_)) →
c′ .property ≡ _≃_.to (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) c)) ↔⟨ (∃-cong λ c → Erased-cong (lemma₃ bl c)) ⟩
(∃ λ (c : Constantᴱ (get ⁻¹ᴱ_)) →
Erased (
∃ λ (c′ : C.Coherently-constant (get ⁻¹ᴱ_)) →
∀ b₁ b₂ → proj₁ (c b₁ b₂) ≡ subst P.id (c′ .property b₁ b₂))) ↔⟨ inverse Σ-assoc F.∘
(Σ-cong (ΠΣ-comm F.∘ ∀-cong ext λ _ → ΠΣ-comm) λ _ → F.id) ⟩
(∃ λ (get⁻¹ᴱ-const : ∀ b₁ b₂ → get ⁻¹ᴱ b₁ → get ⁻¹ᴱ b₂) →
(∀ b₁ b₂ → Erased (Is-equivalence (get⁻¹ᴱ-const b₁ b₂))) ×
Erased (
∃ λ (c′ : C.Coherently-constant (get ⁻¹ᴱ_)) →
∀ b₁ b₂ → get⁻¹ᴱ-const b₁ b₂ ≡ subst P.id (c′ .property b₁ b₂))) ↔⟨ (∃-cong {k = bijection} λ _ →
drop-⊤-left-× λ ([ _ , eq ]) →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
H-level-Erased 1 (Eq.propositional ext _))
(λ x y →
[ Eq.respects-extensional-equality
(ext⁻¹ (sym (eq x y)))
(_≃_.is-equivalence $ Eq.subst-as-equivalence _ _)
])) ⟩
(∃ λ (get⁻¹ᴱ-const : ∀ b₁ b₂ → get ⁻¹ᴱ b₁ → get ⁻¹ᴱ b₂) →
Erased (
∃ λ (c′ : C.Coherently-constant (get ⁻¹ᴱ_)) →
∀ b₁ b₂ → get⁻¹ᴱ-const b₁ b₂ ≡ subst P.id (c′ .property b₁ b₂))) ↔⟨⟩
CE.Coherently-constant (get ⁻¹ᴱ_) □
where
@0 lemma₁ : ∀ _ _ _ → _ ≃ _
lemma₁ bl c c′ =
c′ ≡ _≃_.to (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) c ↝⟨ ≡⇒≃ $ cong (c′ ≡_) $
unblock bl
(λ bl → _≃_.to (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) c ≡
_≃_.from (S.Constant≃Constant-≃ univ)
(_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c))
(refl _) ⟩
c′ ≡
_≃_.from (S.Constant≃Constant-≃ univ)
(_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c) ↝⟨ inverse $ Eq.≃-≡ (S.Constant≃Constant-≃ univ) ⟩
_≃_.to (S.Constant≃Constant-≃ univ) c′ ≡
_≃_.to (S.Constant≃Constant-≃ univ)
(_≃_.from (S.Constant≃Constant-≃ univ)
(_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c)) ↝⟨ ≡⇒≃ $
cong (_≃_.to (S.Constant≃Constant-≃ univ) c′ ≡_) $
_≃_.right-inverse-of (S.Constant≃Constant-≃ univ) _ ⟩□
_≃_.to (S.Constant≃Constant-≃ univ) c′ ≡
_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c □
@0 lemma₂ : ∀ _ _ _ _ → _
lemma₂ bl c′ b₁ b₂ =
proj₁ (_≃_.from (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ)
(c′ .property) b₁ b₂) ≡⟨ proj₁-from-Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl ⟩
ECP.⁻¹→⁻¹ᴱ ∘ subst P.id (c′ .property b₁ b₂) ∘ ECP.⁻¹ᴱ→⁻¹ ≡⟨ sym $
cong₂ (λ f g → f ∘ subst P.id (c′ .property b₁ b₂) ∘ g)
(trans (⟨ext⟩ λ _ →
subst-id-in-terms-of-≡⇒↝ equivalence) $
cong _≃_.to $ _≃_.right-inverse-of (≡≃≃ univ) _)
(trans (⟨ext⟩ λ _ →
subst-id-in-terms-of-inverse∘≡⇒↝ equivalence) $
cong _≃_.from $ _≃_.right-inverse-of (≡≃≃ univ) _) ⟩
subst P.id (≃⇒≡ univ ECP.⁻¹≃⁻¹ᴱ) ∘
subst P.id (c′ .property b₁ b₂) ∘
subst P.id (sym (≃⇒≡ univ ECP.⁻¹≃⁻¹ᴱ)) ≡⟨ (⟨ext⟩ λ _ →
trans (subst-subst _ _ _ _) $
subst-subst _ _ _ _) ⟩
subst P.id
(trans (sym (≃⇒≡ univ (ECP.⁻¹≃⁻¹ᴱ {y = b₁})))
(trans (c′ .property b₁ b₂)
(≃⇒≡ univ (ECP.⁻¹≃⁻¹ᴱ {y = b₂})))) ≡⟨ sym $
cong (λ f → subst P.id
(trans (sym (f b₁))
(trans (c′ .property b₁ b₂) (f b₂)))) $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) _ ⟩
subst P.id
(trans (sym (cong (_$ b₁) $ ⟨ext⟩ λ _ → ≃⇒≡ univ ECP.⁻¹≃⁻¹ᴱ))
(trans (c′ .property b₁ b₂)
(cong (_$ b₂) $ ⟨ext⟩ λ b₂ →
≃⇒≡ univ (ECP.⁻¹≃⁻¹ᴱ {y = b₂})))) ≡⟨ cong (subst P.id) $
elim¹
(λ eq →
trans (sym (cong (_$ b₁) eq))
(trans (c′ .property b₁ b₂) (cong (_$ b₂) eq)) ≡
≡⇒→ (cong C.Coherently-constant eq) c′ .property b₁ b₂)
(
trans (sym (cong (_$ b₁) (refl _)))
(trans (c′ .property b₁ b₂) (cong (_$ b₂) (refl (get ⁻¹_)))) ≡⟨ trans (cong (flip trans _) $
trans (cong sym $ cong-refl _) $
sym-refl) $
trans (trans-reflˡ _) $
trans (cong (trans _) $ cong-refl _) $
trans-reflʳ _ ⟩
c′ .property b₁ b₂ ≡⟨ cong (λ eq → _≃_.to eq c′ .property b₁ b₂) $ sym $
trans (cong ≡⇒≃ $ cong-refl C.Coherently-constant)
≡⇒↝-refl ⟩∎
≡⇒→ (cong C.Coherently-constant (refl _)) c′ .property b₁ b₂ ∎)
_ ⟩∎
subst P.id (≡⇒→ (cong C.Coherently-constant $
⟨ext⟩ λ _ → ≃⇒≡ univ ECP.⁻¹≃⁻¹ᴱ)
c′ .property b₁ b₂) ∎
@0 lemma₃ : ∀ _ _ → _ ≃ _
lemma₃ bl c =
(∃ λ (c′ : C.Coherently-constant (get ⁻¹_)) →
c′ .property ≡ _≃_.to (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) c) ↝⟨ (∃-cong λ _ →
(∀-cong ext λ _ → ∀-cong ext λ _ → from-bijection $ inverse $
≡-comm F.∘
ignore-propositional-component
(H-level-Erased 1 (Eq.propositional ext _))) F.∘
inverse
(Eq.extensionality-isomorphism bad-ext F.∘
(∀-cong ext λ _ → Eq.extensionality-isomorphism bad-ext)) F.∘
(≡⇒≃ $ cong (_ ≡_) $
_≃_.left-inverse-of (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) _) F.∘
(inverse $
Eq.≃-≡ $ inverse $ Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ)) ⟩
(∃ λ (c′ : C.Coherently-constant (get ⁻¹_)) →
∀ b₁ b₂ →
proj₁ (c b₁ b₂) ≡
proj₁ (_≃_.from (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ)
(c′ .property) b₁ b₂)) ↝⟨ (Σ-cong (≡⇒≃ $ cong C.Coherently-constant $ ⟨ext⟩ λ _ →
≃⇒≡ univ ECP.⁻¹≃⁻¹ᴱ) λ c′ →
∀-cong ext λ b₁ → ∀-cong ext λ b₂ →
≡⇒≃ $ cong (proj₁ (c b₁ b₂) ≡_) (lemma₂ bl c′ b₁ b₂)) ⟩□
(∃ λ (c′ : C.Coherently-constant (get ⁻¹ᴱ_)) →
∀ b₁ b₂ → proj₁ (c b₁ b₂) ≡ subst P.id (c′ .property b₁ b₂)) □
-- In erased contexts Coherently-constant-fibres univ get is
-- equivalent to S.Coherently-constant univ (get ⁻¹_).
@0 Coherently-constant-fibres≃Coherently-constant-⁻¹ :
(bl : Block "Constant-≃-get-⁻¹-≃")
{A : Type a} {B : Type b} {get : A → B} →
(univ : Univalence (a ⊔ b)) →
Coherently-constant-fibres univ get ≃
S.Coherently-constant univ (get ⁻¹_)
Coherently-constant-fibres≃Coherently-constant-⁻¹
bl {A = A} {B = B} {get = get} univ =
Coherently-constant-fibres univ get ↔⟨⟩
(∃ λ (set : A → B → A) →
Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c }))) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩
(∃ λ (set : A → B → A) →
∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c })) ↔⟨ ∃-comm ⟩
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
∃ λ (set : A → B → A) →
set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c })) ↔⟨ (drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
singleton-contractible _) ⟩□
S.Coherently-constant univ (get ⁻¹_) □
------------------------------------------------------------------------
-- The lens type family
-- Small coinductive lenses.
--
-- The lens type is defined using (erased) univalence. The use of a
-- record type makes it easier for Agda to infer the argument univ
-- from a value of type Lens univ A B.
--
-- Note that everything is erased, except for the getter and the
-- setter.
record Lens (@0 univ : Univalence (a ⊔ b))
(A : Type a) (B : Type b) : Type (a ⊔ b) where
field
-- A getter.
get : A → B
-- A setter.
set : A → B → A
-- The family get ⁻¹_ is coherently constant (in erased contexts).
@0 get⁻¹-coherently-constant : S.Coherently-constant univ (get ⁻¹_)
-- Using get and get⁻¹-coherently-constant we can construct an
-- erased lens.
@0 erased-lens : S.Lens univ A B
erased-lens = record
{ get = get
; get⁻¹-coherently-constant = get⁻¹-coherently-constant
}
field
-- The setter that we get from this lens is equal to set.
@0 set≡set : set ≡ S.Lens.set erased-lens
-- The family of fibres of the getter is coherently constant.
coherently-constant-fibres-get : Coherently-constant-fibres univ get
coherently-constant-fibres-get =
set , [ (get⁻¹-coherently-constant , set≡set) ]
instance
-- The lenses defined above have getters and setters.
has-getter-and-setter :
{@0 univ : Univalence (a ⊔ b)} →
Has-getter-and-setter (Lens {a = a} {b = b} univ)
has-getter-and-setter = record
{ get = Lens.get
; set = Lens.set
}
-- Lens can be expressed as a Σ-type.
Lens-as-Σ :
{A : Type a} {B : Type b} {@0 univ : Univalence (a ⊔ b)} →
Lens univ A B ≃
∃ λ (get : A → B) → Coherently-constant-fibres univ get
Lens-as-Σ =
Eq.↔→≃
(λ l → Lens.get l , Lens.coherently-constant-fibres-get l)
_ refl refl
-- Lens univ A B is equivalent to CE.Lens A B (with erased proofs,
-- assuming univalence).
Lens≃ᴱLens :
Block "Lens≃ᴱLens" →
{A : Type a} {B : Type b} →
@0 Univalence (lsuc (a ⊔ b)) →
(@0 univ : Univalence (a ⊔ b)) →
Lens univ A B ≃ᴱ CE.Lens A B
Lens≃ᴱLens ⊠ {A = A} {B = B} univ′ univ =
Lens univ A B ↔⟨ Lens-as-Σ ⟩
(∃ λ (get : A → B) → Coherently-constant-fibres univ get) ↝⟨ (∃-cong λ _ →
Coherently-constant-fibres≃ᴱCoherently-constant-⁻¹ᴱ univ′ univ) ⟩□
(∃ λ (get : A → B) → CE.Coherently-constant (get ⁻¹ᴱ_)) □
-- The equivalence preserves getters and setters.
Lens≃ᴱLens-preserves-getters-and-setters :
(bl : Block "Lens≃ᴱLens")
{A : Type a} {B : Type b}
(@0 univ′ : Univalence (lsuc (a ⊔ b)))
(@0 univ : Univalence (a ⊔ b)) →
Preserves-getters-and-setters-⇔ A B
(_≃ᴱ_.logical-equivalence (Lens≃ᴱLens bl univ′ univ))
Lens≃ᴱLens-preserves-getters-and-setters ⊠ univ′ univ =
(λ _ → refl _ , refl _)
, (λ l →
let open CE.Lens l in
refl _
, ⟨ext⟩ λ a → ⟨ext⟩ λ b →
proj₁
(subst (λ _ → get ⁻¹ᴱ b) (refl tt)
(get⁻¹ᴱ-const (get a) b (a , [ refl (get a) ]))) ≡⟨ cong proj₁ $ subst-refl _ _ ⟩∎
proj₁ (get⁻¹ᴱ-const (get a) b (a , [ refl (get a) ])) ∎)
-- Lens univ A B is equivalent to E.Lens A B (with erased proofs,
-- assuming univalence).
Lens≃ᴱLensᴱ :
Block "Lens≃ᴱLensᴱ" →
{A : Type a} {B : Type b}
{@0 univ : Univalence (a ⊔ b)} →
@0 Univalence (lsuc (a ⊔ b)) →
Lens univ A B ≃ᴱ E.Lens A B
Lens≃ᴱLensᴱ bl {A = A} {B = B} {univ = univ} univ′ =
Lens univ A B ↝⟨ Lens≃ᴱLens bl univ′ univ ⟩
CE.Lens A B ↝⟨ CE.Lens≃ᴱLens bl univ′ univ ⟩
V.Lens A B ↝⟨ V.Lens≃ᴱHigher-lens bl univ ⟩□
E.Lens A B □
-- The equivalence preserves getters and setters (in erased contexts).
@0 Lens≃ᴱLensᴱ-preserves-getters-and-setters :
(bl : Block "Lens→Lens")
{A : Type a} {B : Type b}
(@0 univ′ : Univalence (lsuc (a ⊔ b)))
(@0 univ : Univalence (a ⊔ b)) →
Preserves-getters-and-setters-⇔ A B
(_≃ᴱ_.logical-equivalence (Lens≃ᴱLensᴱ bl {univ = univ} univ′))
Lens≃ᴱLensᴱ-preserves-getters-and-setters bl univ′ univ =
Preserves-getters-and-setters-⇔-∘
{f = _≃ᴱ_.logical-equivalence (V.Lens≃ᴱHigher-lens bl univ) F.∘
_≃ᴱ_.logical-equivalence (CE.Lens≃ᴱLens bl univ′ univ)}
{g = _≃ᴱ_.logical-equivalence (Lens≃ᴱLens bl univ′ univ)}
(Preserves-getters-and-setters-⇔-∘
{f = _≃ᴱ_.logical-equivalence (V.Lens≃ᴱHigher-lens bl univ)}
{g = _≃ᴱ_.logical-equivalence (CE.Lens≃ᴱLens bl univ′ univ)}
(V.Lens≃ᴱHigher-lens-preserves-getters-and-setters bl univ)
(CE.Lens≃ᴱLens-preserves-getters-and-setters bl univ′ univ))
(Lens≃ᴱLens-preserves-getters-and-setters bl univ′ univ)
-- In erased contexts Lens univ A B is equivalent to S.Lens univ A B.
@0 Lens≃Lens :
(bl : Block "Constant-≃-get-⁻¹-≃") →
Lens univ A B ≃ S.Lens univ A B
Lens≃Lens {univ = univ} {A = A} {B = B} bl =
Lens univ A B ↝⟨ Lens-as-Σ ⟩
(∃ λ (get : A → B) → Coherently-constant-fibres univ get) ↝⟨ (∃-cong λ _ → Coherently-constant-fibres≃Coherently-constant-⁻¹ bl univ) ⟩
(∃ λ (get : A → B) → S.Coherently-constant univ (get ⁻¹_)) ↝⟨ inverse S.Lens-as-Σ ⟩□
S.Lens univ A B □
-- Lens≃Lens preserves getters and setters.
@0 Lens≃Lens-preserves-getters-and-setters :
(bl : Block "Lens≃Lens")
{A : Type a} {B : Type b}
{univ : Univalence (a ⊔ b)} →
Preserves-getters-and-setters-⇔ A B
(_≃_.logical-equivalence (Lens≃Lens {univ = univ} bl))
Lens≃Lens-preserves-getters-and-setters ⊠ =
(λ l →
let open Lens l in
refl _
, (S.Lens.set erased-lens ≡⟨ sym set≡set ⟩∎
set ∎))
, (λ _ → refl _ , refl _)
-- Lenses with stable view types are equal if their setters are equal
-- (in erased contexts, assuming univalence).
@0 lenses-equal-if-setters-equal :
{A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
(univ : Univalence (a ⊔ b)) →
(l₁ l₂ : Lens univ A B) →
(∥ B ∥ → B) →
Lens.set l₁ ≡ Lens.set l₂ →
l₁ ≡ l₂
lenses-equal-if-setters-equal univ′ univ l₁ l₂ stable =
block λ bl →
Lens.set l₁ ≡ Lens.set l₂ ↔⟨ ≡⇒≃ $ sym $ cong₂ _≡_
(proj₂ $ proj₁ (Lens≃Lens-preserves-getters-and-setters bl) l₁)
(proj₂ $ proj₁ (Lens≃Lens-preserves-getters-and-setters bl) l₂) ⟩
S.Lens.set (_≃_.to (Lens≃Lens bl) l₁) ≡
S.Lens.set (_≃_.to (Lens≃Lens bl) l₂) ↝⟨ S.lenses-equal-if-setters-equal univ′ _ _ _ stable ⟩
_≃_.to (Lens≃Lens bl) l₁ ≡ _≃_.to (Lens≃Lens bl) l₂ ↔⟨ Eq.≃-≡ $ Lens≃Lens bl ⟩□
l₁ ≡ l₂ □
------------------------------------------------------------------------
-- Changing the implementation of the getter and the setter
-- One can change the getter of a lens, provided that the new
-- implementation is extensionally equal to the old one.
with-other-getter :
{A : Type a} {B : Type b}
(@0 univ : Univalence (a ⊔ b))
(l : Lens univ A B)
(get : A → B) →
@0 get ≡ Lens.get l →
Lens univ A B
with-other-getter {A = A} {B = B} univ l get p = record l
{ get = get
; get⁻¹-coherently-constant =
subst (S.Coherently-constant univ ∘ _⁻¹_)
(sym p) L.get⁻¹-coherently-constant
; set≡set =
L.set ≡⟨ L.set≡set ⟩
S.Lens.set l₁ ≡⟨ cong S.Lens.set $ sym l₂≡l₁ ⟩∎
S.Lens.set l₂ ∎
}
where
module L = Lens l
@0 l₁ l₂ : S.Lens univ A B
l₁ = record
{ get = L.get
; get⁻¹-coherently-constant = L.get⁻¹-coherently-constant
}
l₂ = record
{ get = get
; get⁻¹-coherently-constant =
subst (S.Coherently-constant univ ∘ _⁻¹_) (sym p)
L.get⁻¹-coherently-constant
}
@0 l₂≡l₁ : l₂ ≡ l₁
l₂≡l₁ =
_≃_.to (Eq.≃-≡ S.Lens-as-Σ) $ Σ-≡,≡→≡ p
(subst (S.Coherently-constant univ ∘ _⁻¹_) p
(subst (S.Coherently-constant univ ∘ _⁻¹_) (sym p)
L.get⁻¹-coherently-constant) ≡⟨ subst-subst-sym _ _ _ ⟩∎
L.get⁻¹-coherently-constant ∎)
_ : Lens.get (with-other-getter univ l g p) ≡ g
_ = refl _
_ : Lens.set (with-other-getter univ l g p) ≡ Lens.set l
_ = refl _
-- The resulting lens is equal to the old one (if the equality proof
-- is not erased).
with-other-getter≡ :
{A : Type a} {B : Type b}
(@0 univ : Univalence (a ⊔ b))
(l : Lens univ A B)
(get : A → B)
(p : get ≡ Lens.get l) →
with-other-getter univ l get p ≡ l
with-other-getter≡ {A = A} {B = B} univ l get p =
_≃_.to (Eq.≃-≡ Lens-as-Σ) $ Σ-≡,≡→≡ p
(subst (Coherently-constant-fibres univ) p
L′.coherently-constant-fibres-get ≡⟨ push-subst-pair-× _ _ ⟩
L.set ,
subst
(λ get →
Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
L.set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c })))
p
[ (L′.get⁻¹-coherently-constant , L′.set≡set) ] ≡⟨ cong (L.set ,_) push-subst-[] ⟩
L.set ,
[ subst
(λ get →
∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
L.set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c }))
p
(L′.get⁻¹-coherently-constant , L′.set≡set)
] ≡⟨ cong (L.set ,_) $ []-cong [ push-subst-pair′ _ _ _ ] ⟩
L.set ,
[ ( L.get⁻¹-coherently-constant
, subst
(λ ((get , c) : ∃ (S.Coherently-constant univ ∘ _⁻¹_)) →
L.set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c }))
(Σ-≡,≡→≡ p (subst-subst-sym _ _ _))
L′.set≡set
)
] ≡⟨⟩
L.set ,
[ ( L.get⁻¹-coherently-constant
, let q = Σ-≡,≡→≡ {p₂ = _ , L.get⁻¹-coherently-constant}
p
(subst-subst-sym _ _ _)
in
subst
(λ ((get , c) : ∃ (S.Coherently-constant univ ∘ _⁻¹_)) →
L.set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c }))
q
(trans L.set≡set
(cong (S.Lens.set {univ = univ}) $ sym $
_≃_.to (Eq.≃-≡ S.Lens-as-Σ) q))
)
] ≡⟨ cong (L.set ,_) $ []-cong
[ cong (L.get⁻¹-coherently-constant ,_) $
elim₁
(λ q →
subst
(λ ((get , c) : ∃ (S.Coherently-constant univ ∘ _⁻¹_)) →
L.set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c }))
q
(trans L.set≡set
(cong (S.Lens.set {univ = univ}) $ sym $
_≃_.to (Eq.≃-≡ S.Lens-as-Σ) q)) ≡
L.set≡set)
(trans (subst-refl _ _) $
trans (cong (trans _) $
trans (cong (cong _) $
trans (cong sym (Eq.to-≃-≡-refl S.Lens-as-Σ))
sym-refl) $
cong-refl _) $
trans-reflʳ _)
_
] ⟩
L.set , [ (L.get⁻¹-coherently-constant , L.set≡set) ] ≡⟨⟩
L.coherently-constant-fibres-get ∎)
where
module L = Lens l
l′ : Lens univ A B
l′ = record
{ get = get
; get⁻¹-coherently-constant =
subst (S.Coherently-constant univ ∘ _⁻¹_) (sym p)
L.get⁻¹-coherently-constant
}
module L′ = Lens l′
-- One can change the setter of a lens, provided that the new
-- implementation is extensionally equal to the old one.
with-other-setter :
{A : Type a} {B : Type b}
{@0 univ : Univalence (a ⊔ b)}
(l : Lens univ A B)
(set : A → B → A) →
@0 set ≡ Lens.set l →
Lens univ A B
with-other-setter l set p = record l
{ set = set
; set≡set = trans p (Lens.set≡set l)
}
_ : Lens.get (with-other-setter l s p) ≡ Lens.get l
_ = refl _
_ : Lens.set (with-other-setter l s p) ≡ s
_ = refl _
-- The resulting lens is equal to the old one (if the equality proof
-- is not erased).
with-other-setter≡ :
{A : Type a} {B : Type b}
{@0 univ : Univalence (a ⊔ b)}
(l : Lens univ A B)
(set : A → B → A)
(p : set ≡ Lens.set l) →
with-other-setter l set p ≡ l
with-other-setter≡ {univ = univ} l set p =
_≃_.to (Eq.≃-≡ Lens-as-Σ) $ cong (get ,_) $ Σ-≡,≡→≡ p
(subst
(λ set → Erased
(∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c })))
p
[ (get⁻¹-coherently-constant , trans p set≡set) ] ≡⟨ push-subst-[] ⟩
[ subst
(λ set → ∃ λ (c : S.Coherently-constant univ (get ⁻¹_)) →
set ≡
S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant = c }))
p
(get⁻¹-coherently-constant , trans p set≡set)
] ≡⟨ []-cong [ push-subst-pair-× _ _ ] ⟩
[ ( get⁻¹-coherently-constant
, subst (_≡ S.Lens.set {univ = univ}
(record { get⁻¹-coherently-constant =
get⁻¹-coherently-constant }))
p
(trans p set≡set)
)
] ≡⟨ []-cong [ cong (_ ,_) subst-trans-sym ] ⟩
[ ( get⁻¹-coherently-constant
, trans (sym p) (trans p set≡set)
)
] ≡⟨ []-cong [ cong (_ ,_) $ trans-sym-[trans] _ _ ] ⟩∎
[ (get⁻¹-coherently-constant , set≡set) ] ∎)
where
open Lens l
------------------------------------------------------------------------
-- Code for converting from S.Lens to Lens
-- Data corresponding to the erased proofs of a lens.
record Erased-proofs
{A : Type a} {B : Type b}
(univ : Univalence (a ⊔ b))
(get : A → B) (set : A → B → A) : Type (a ⊔ b) where
field
@0 get⁻¹-coherently-constant : S.Coherently-constant univ (get ⁻¹_)
@0 erased-lens : S.Lens univ A B
erased-lens = record
{ get = get
; get⁻¹-coherently-constant = get⁻¹-coherently-constant
}
field
@0 set≡set : set ≡ S.Lens.set erased-lens
-- Extracts "erased proofs" from a lens (in erased contexts).
@0 Lens→Erased-proofs :
(l : S.Lens univ A B) →
Erased-proofs univ (S.Lens.get l) (S.Lens.set l)
Lens→Erased-proofs {univ = univ} l = proofs ⊠
where
module _ (bl : Unit) where
open Erased-proofs
l′ = _≃_.from (Lens≃Lens bl) l
proofs : Erased-proofs univ (Lens.get l′) (Lens.set l′)
proofs .get⁻¹-coherently-constant =
Lens.get⁻¹-coherently-constant l′
proofs .set≡set = Lens.set≡set l′
-- Converts two functions and some erased proofs to a lens.
--
-- Note that Agda can in many cases infer "get" and "set" from the
-- first explicit argument, see (for instance) id below.
Erased-proofs→Lens :
{A : Type a} {B : Type b} {get : A → B} {set : A → B → A}
{@0 univ : Univalence (a ⊔ b)} →
@0 Erased-proofs univ get set →
Lens univ A B
Erased-proofs→Lens {get = get} {set = set} ep = λ where
.Lens.get → get
.Lens.set → set
.Lens.get⁻¹-coherently-constant →
Erased-proofs.get⁻¹-coherently-constant ep
.Lens.set≡set → Erased-proofs.set≡set ep
------------------------------------------------------------------------
-- Identity and composition
-- An identity lens.
id :
{A : Type a}
(@0 univ : Univalence a) →
Lens univ A A
id univ = Erased-proofs→Lens (Lens→Erased-proofs (S.id univ))
-- Composition.
infix 9 ⟨_,_⟩_∘_
⟨_,_⟩_∘_ :
{A : Type a} {B : Type b} {C : Type c}
{@0 univ₁ : Univalence (b ⊔ c)}
{@0 univ₂ : Univalence (a ⊔ b)}
(@0 univ₃ : Univalence (a ⊔ c)) →
@0 Univalence (a ⊔ b ⊔ c) →
Lens univ₁ B C → Lens univ₂ A B → Lens univ₃ A C
⟨ univ₃ , univ ⟩ l₁ ∘ l₂ =
Erased-proofs→Lens
(subst (Erased-proofs _ _)
(⟨ext⟩ λ a → ⟨ext⟩ λ c →
S.Lens.set l₂′ a (S.Lens.set l₁′ (get l₂ a) c) ≡⟨ cong (λ s → s a (S.Lens.set l₁′ (get l₂ a) c)) $
proj₂ $ proj₁ (Lens≃Lens-preserves-getters-and-setters ⊠) l₂ ⟩
set l₂ a (S.Lens.set l₁′ (get l₂ a) c) ≡⟨ cong (λ s → set l₂ a (s (get l₂ a) c)) $
proj₂ $ proj₁ (Lens≃Lens-preserves-getters-and-setters ⊠) l₁ ⟩∎
set l₂ a (set l₁ (get l₂ a) c) ∎) $
Lens→Erased-proofs (S.⟨ univ₃ , univ ⟩ l₁′ ∘ l₂′))
where
open Lens
@0 l₁′ : _
l₁′ = _≃_.to (Lens≃Lens ⊠) l₁
@0 l₂′ : _
l₂′ = _≃_.to (Lens≃Lens ⊠) l₂
-- The setter of a lens formed using composition is defined in the
-- "right" way.
set-∘ :
∀ {A : Type a} {B : Type b} {C : Type c}
{@0 univ₁ : Univalence (b ⊔ c)}
{@0 univ₂ : Univalence (a ⊔ b)}
(@0 univ₃ : Univalence (a ⊔ c))
(@0 univ₄ : Univalence (a ⊔ b ⊔ c))
(l₁ : Lens univ₁ B C) (l₂ : Lens univ₂ A B) {a c} →
Lens.set (⟨ univ₃ , univ₄ ⟩ l₁ ∘ l₂) a c ≡
Lens.set l₂ a (Lens.set l₁ (Lens.get l₂ a) c)
set-∘ _ _ _ _ = refl _
-- Composition is associative if the view type of the resulting lens
-- is stable (in erased contexts, assuming univalence).
@0 associativity :
{A : Type a} {B : Type b} {C : Type c} {D : Type d} →
(∥ D ∥ → D) →
(univ₁ : Univalence (c ⊔ d))
(univ₂ : Univalence (b ⊔ c))
(univ₃ : Univalence (a ⊔ b))
(univ₄ : Univalence (a ⊔ d))
(univ₅ : Univalence (a ⊔ c ⊔ d))
(univ₆ : Univalence (a ⊔ c))
(univ₇ : Univalence (a ⊔ b ⊔ c))
(univ₈ : Univalence (a ⊔ b ⊔ d))
(univ₉ : Univalence (b ⊔ d))
(univ₁₀ : Univalence (b ⊔ c ⊔ d)) →
Univalence (lsuc (a ⊔ d)) →
(l₁ : Lens univ₁ C D) (l₂ : Lens univ₂ B C) (l₃ : Lens univ₃ A B) →
⟨ univ₄ , univ₅ ⟩ l₁ ∘ (⟨ univ₆ , univ₇ ⟩ l₂ ∘ l₃) ≡
⟨ univ₄ , univ₈ ⟩ (⟨ univ₉ , univ₁₀ ⟩ l₁ ∘ l₂) ∘ l₃
associativity stable _ _ _ univ₄ _ _ _ _ _ _ univ₁₁ l₁ l₂ l₃ =
lenses-equal-if-setters-equal
univ₁₁
univ₄
_
_
stable
(refl _)
-- The identity lens is a left identity of composition if the view
-- type of the resulting lens is stable (assuming univalence).
@0 left-identity :
{A : Type a} {B : Type b} →
(∥ B ∥ → B) →
(univ₁ : Univalence (a ⊔ b))
(univ₂ : Univalence (a ⊔ b))
(univ₃ : Univalence b) →
Univalence (lsuc (a ⊔ b)) →
(l : Lens univ₁ A B) →
⟨ univ₁ , univ₂ ⟩ id univ₃ ∘ l ≡ l
left-identity stable univ₁ univ₂ univ₃ univ₄ l =
lenses-equal-if-setters-equal
univ₄
univ₁
_
_
stable
(refl _)
-- The identity lens is a right identity of composition if the view
-- type of the resulting lens is stable (assuming univalence).
@0 right-identity :
{A : Type a} {B : Type b} →
(∥ B ∥ → B) →
(univ₁ : Univalence (a ⊔ b))
(univ₂ : Univalence (a ⊔ b))
(univ₃ : Univalence a) →
Univalence (lsuc (a ⊔ b)) →
(l : Lens univ₁ A B) →
⟨ univ₁ , univ₂ ⟩ l ∘ id univ₃ ≡ l
right-identity stable univ₁ univ₂ univ₃ univ₄ l =
lenses-equal-if-setters-equal
univ₄
univ₁
_
_
stable
(refl _)
| {
"alphanum_fraction": 0.3996801446,
"avg_line_length": 45.0830721003,
"ext": "agda",
"hexsha": "f580a3250bef5571dbe1582e6e982d796d01b16d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Higher/Coinductive/Small/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Higher/Coinductive/Small/Erased.agda",
"max_line_length": 150,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Higher/Coinductive/Small/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 19017,
"size": 57526
} |
module perm-keep-length where
open import nat
open import list
open import nondet
open import bool
open import bool-thms
open import eq
open import nat-thms
open import nondet-thms
-- Non-deterministic insert:
ndinsert : {a : Set} → a → 𝕃 a → ND (𝕃 a)
ndinsert x [] = Val (x :: [])
ndinsert x (y :: ys) = Val (x :: y :: ys)
?? (_::_ y) $* (ndinsert x ys)
-- Permutation:
perm : {a : Set} → 𝕃 a → ND (𝕃 a)
perm [] = Val []
perm (x :: xs) = ndinsert x *$* (perm xs)
----------------------------------------------------------------------
-- Non-deterministic insertion increases the list length by one:
insert-inc-length : {a : Set} (x : a) → (xs : 𝕃 a)
→ (ndinsert x xs) satisfy (λ ys → length ys =ℕ suc (length xs)) ≡ tt
insert-inc-length x [] = refl
insert-inc-length x (y :: ys)
rewrite =ℕ-refl (length ys)
| satisfy-$* (_::_ y) (ndinsert x ys)
(λ zs → length zs =ℕ suc (suc (length ys)))
| insert-inc-length x ys = refl
-- If the length of the input list is n, ndinsert increases it to (suc n):
insert-suc-length : {a : Set} → (n : ℕ) (x : a) (xs : 𝕃 a)
→ length xs =ℕ n ≡ tt
→ ndinsert x xs satisfy (λ ys → length ys =ℕ suc n) ≡ tt
insert-suc-length n x [] p = p
insert-suc-length n x (y :: ys) p
rewrite =ℕ-to-≡ {suc (length ys)} {n} p | =ℕ-refl n |
satisfy-$* (_::_ y) (ndinsert x ys) (λ zs → length zs =ℕ suc n)
| sym (=ℕ-to-≡ {suc (length ys)} {n} p)
| insert-inc-length x ys
= refl
-- The previous lemma is also valid on non-deterministic lists:
ins-suc-nondet : {a : Set} → (n : ℕ) → (x : a) → (t : ND (𝕃 a))
→ t satisfy (λ xs → length xs =ℕ n) ≡ tt
→ (ndinsert x *$* t) satisfy (λ xs → length xs =ℕ suc n) ≡ tt
ins-suc-nondet n x (Val xs) p = insert-suc-length n x xs p
ins-suc-nondet n x (t1 ?? t2) p
rewrite ins-suc-nondet n x t1 (&&-fst p)
| ins-suc-nondet n x t2 (&&-snd {t1 satisfy (λ xs → length xs =ℕ n)} p)
= refl
-- The length of a permuted list is identical to the length of the list:
perm-length : {a : Set} → (xs : 𝕃 a)
→ (perm xs) satisfy (λ ys → length ys =ℕ length xs) ≡ tt
perm-length [] = refl
perm-length (x :: xs) = ins-suc-nondet (length xs) x (perm xs) (perm-length xs)
| {
"alphanum_fraction": 0.5496049166,
"avg_line_length": 36.1587301587,
"ext": "agda",
"hexsha": "c32477c2e87213a70c0bf9174ab700e0f8614578",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "mihanus/curry-agda",
"max_forks_repo_path": "nondet/perm-keep-length.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "mihanus/curry-agda",
"max_issues_repo_path": "nondet/perm-keep-length.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "mihanus/curry-agda",
"max_stars_repo_path": "nondet/perm-keep-length.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 780,
"size": 2278
} |
------------------------------------------------------------------------
-- Total recognisers which can handle left recursion
------------------------------------------------------------------------
-- The recognisers are parametrised on the alphabet.
module TotalRecognisers.LeftRecursion (Tok : Set) where
open import Algebra
open import Codata.Musical.Notation
open import Data.Bool as Bool hiding (_∧_; _≤_)
import Data.Bool.Properties as Bool
private
module BoolCS = CommutativeSemiring Bool.∧-∨-commutativeSemiring
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence as Eq
using (_⇔_; equivalence; module Equivalence)
renaming (_∘_ to _⟨∘⟩_)
open import Data.List using (List; []; _∷_; _++_; [_])
import Data.List.Properties
private
module ListMonoid {A : Set} =
Monoid (Data.List.Properties.++-monoid A)
open import Data.Product as Prod
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary
open import Relation.Nullary.Decidable as Decidable
------------------------------------------------------------------------
-- A "right-strict" variant of _∧_
-- If the left-strict variant of _∧_ were used to type _·_ below, then
-- the inferred definition of D-nullable would not be total; it would
-- contain expressions of the form "D-nullable t (♭ p₁) ∧ false". With
-- the right-strict definition of _∧_ such expressions reduce to
-- "false".
infixr 6 _∧_
_∧_ : Bool → Bool → Bool
b ∧ true = b
b ∧ false = false
-- A lemma.
left-zero : ∀ b → false ∧ b ≡ false
left-zero true = refl
left-zero false = refl
------------------------------------------------------------------------
-- Recogniser combinators
infixl 10 _·_
infixl 5 _∣_
mutual
-- The index is true if the corresponding language contains the empty
-- string (is nullable).
data P : Bool → Set where
fail : P false
empty : P true
sat : (Tok → Bool) → P false
_∣_ : ∀ {n₁ n₂} → P n₁ → P n₂ → P (n₁ ∨ n₂)
_·_ : ∀ {n₁ n₂} → ∞⟨ n₂ ⟩P n₁ → ∞⟨ n₁ ⟩P n₂ → P (n₁ ∧ n₂)
nonempty : ∀ {n} → P n → P false
cast : ∀ {n₁ n₂} → n₁ ≡ n₂ → P n₁ → P n₂
-- Delayed if the index is /false/.
∞⟨_⟩P : Bool → Bool → Set
∞⟨ false ⟩P n = ∞ (P n)
∞⟨ true ⟩P n = P n
-- Note that fail, nonempty and cast could be defined as derived
-- combinators. (For cast this is obvious, fail could be defined
-- either using sat or the combinator leftRight below, and nonempty is
-- defined in the module AlternativeNonempty. Note also that the proof
-- in TotalRecognisers.LeftRecursion.ExpressiveStrength does not rely
-- on these constructors.) However, Agda uses /guarded/ corecursion,
-- so the fact that nonempty and cast are constructors can be very
-- convenient when constructing other recognisers.
-- For an example of the use of nonempty, see the Kleene star example
-- in TotalRecognisers.LeftRecursion.Lib. For examples of the use of
-- cast, see TotalRecognisers.LeftRecursion.ExpressiveStrength and
-- TotalRecognisers.LeftRecursion.NotOnlyContextFree.
------------------------------------------------------------------------
-- Helpers
♭? : ∀ {b n} → ∞⟨ b ⟩P n → P n
♭? {b = false} x = ♭ x
♭? {b = true} x = x
♯? : ∀ {b n} → P n → ∞⟨ b ⟩P n
♯? {b = false} x = ♯ x
♯? {b = true} x = x
forced? : ∀ {b n} → ∞⟨ b ⟩P n → Bool
forced? {b = b} _ = b
-- A lemma.
♭?♯? : ∀ b {n} {p : P n} → ♭? {b} (♯? p) ≡ p
♭?♯? false = refl
♭?♯? true = refl
------------------------------------------------------------------------
-- Semantics
-- The semantics is defined inductively: s ∈ p iff the string s is
-- contained in the language defined by p.
infix 4 _∈_
data _∈_ : ∀ {n} → List Tok → P n → Set where
empty : [] ∈ empty
sat : ∀ {f t} → T (f t) → [ t ] ∈ sat f
∣-left : ∀ {s n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
s ∈ p₁ → s ∈ p₁ ∣ p₂
∣-right : ∀ {s n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
s ∈ p₂ → s ∈ p₁ ∣ p₂
_·_ : ∀ {s₁ s₂ n₁ n₂}
{p₁ : ∞⟨ n₂ ⟩P n₁} {p₂ : ∞⟨ n₁ ⟩P n₂} →
s₁ ∈ ♭? p₁ → s₂ ∈ ♭? p₂ → s₁ ++ s₂ ∈ p₁ · p₂
nonempty : ∀ {n t s} {p : P n} →
t ∷ s ∈ p → t ∷ s ∈ nonempty p
cast : ∀ {n₁ n₂ s} {p : P n₁} {eq : n₁ ≡ n₂} →
s ∈ p → s ∈ cast eq p
infix 4 _≤_ _≈_
-- p₁ ≤ p₂ iff the language (defined by) p₂ contains all the strings
-- in the language p₁.
_≤_ : ∀ {n₁ n₂} → P n₁ → P n₂ → Set
p₁ ≤ p₂ = ∀ {s} → s ∈ p₁ → s ∈ p₂
-- p₁ ≈ p₂ iff the languages p₁ and p₂ contain the same strings.
_≈_ : ∀ {n₁ n₂} → P n₁ → P n₂ → Set
p₁ ≈ p₂ = ∀ {s} → s ∈ p₁ ⇔ s ∈ p₂
-- p₁ ≈ p₂ iff both p₁ ≤ p₂ and p₂ ≤ p₁.
≈⇔≤≥ : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
p₁ ≈ p₂ ⇔ (p₁ ≤ p₂ × p₂ ≤ p₁)
≈⇔≤≥ = equivalence
(λ p₁≈p₂ → ((λ {s} → _⟨$⟩_ (Equivalence.to (p₁≈p₂ {s = s})))
, λ {s} → _⟨$⟩_ (Equivalence.from (p₁≈p₂ {s = s}))))
(λ p₁≤≥p₂ {s} → equivalence (proj₁ p₁≤≥p₂ {s = s})
(proj₂ p₁≤≥p₂ {s = s}))
-- Some lemmas.
cast∈ : ∀ {n} {p p′ : P n} {s s′} → s ≡ s′ → p ≡ p′ → s ∈ p → s′ ∈ p′
cast∈ refl refl s∈ = s∈
drop-♭♯ : ∀ n {n′} {p : P n′} → ♭? (♯? {n} p) ≤ p
drop-♭♯ n = cast∈ refl (♭?♯? n)
add-♭♯ : ∀ n {n′} {p : P n′} → p ≤ ♭? (♯? {n} p)
add-♭♯ n = cast∈ refl (sym $ ♭?♯? n)
------------------------------------------------------------------------
-- Example: A definition which is left and right recursive
leftRight : P false
leftRight = ♯ leftRight · ♯ leftRight
-- Note that leftRight is equivalent to fail, so fail does not need to
-- be a primitive combinator.
leftRight≈fail : leftRight ≈ fail
leftRight≈fail = equivalence ≤fail (λ ())
where
≤fail : ∀ {s A} → s ∈ leftRight → A
≤fail (∈₁ · ∈₂) = ≤fail ∈₁
-- For more examples, see TotalRecognisers.LeftRecursion.Lib.
------------------------------------------------------------------------
-- Nullability
-- The nullability index is correct.
⇒ : ∀ {n} {p : P n} → [] ∈ p → n ≡ true
⇒ pr = ⇒′ pr refl
where
⇒′ : ∀ {n s} {p : P n} → s ∈ p → s ≡ [] → n ≡ true
⇒′ empty refl = refl
⇒′ (sat _) ()
⇒′ (∣-left pr₁) refl with ⇒ pr₁
⇒′ (∣-left pr₁) refl | refl = refl
⇒′ (∣-right pr₂) refl with ⇒ pr₂
⇒′ (∣-right {n₁ = n₁} pr₂) refl | refl = proj₂ BoolCS.zero n₁
⇒′ (nonempty p) ()
⇒′ (cast {eq = refl} p) refl = ⇒′ p refl
⇒′ (_·_ {[]} pr₁ pr₂) refl = cong₂ _∧_ (⇒ pr₁) (⇒ pr₂)
⇒′ (_·_ {_ ∷ _} pr₁ pr₂) ()
⇐ : ∀ {n} (p : P n) → n ≡ true → [] ∈ p
⇐ fail ()
⇐ empty refl = empty
⇐ (sat f) ()
⇐ (_∣_ {true} p₁ p₂) refl = ∣-left (⇐ p₁ refl)
⇐ (_∣_ {false} {true} p₁ p₂) refl = ∣-right {p₁ = p₁} (⇐ p₂ refl)
⇐ (_∣_ {false} {false} p₁ p₂) ()
⇐ (nonempty p) ()
⇐ (cast refl p) refl = cast (⇐ p refl)
⇐ (_·_ {.true} {true} p₁ p₂) refl = ⇐ p₁ refl · ⇐ p₂ refl
⇐ (_·_ {_} {false} p₁ p₂) ()
index-correct : ∀ {n} {p : P n} → [] ∈ p ⇔ n ≡ true
index-correct = equivalence ⇒ (⇐ _)
-- We can decide if the empty string belongs to a given language.
nullable? : ∀ {n} (p : P n) → Dec ([] ∈ p)
nullable? {n} p = Decidable.map (Eq.sym index-correct) (Bool._≟_ n true)
------------------------------------------------------------------------
-- Derivative
-- The index of the derivative.
D-nullable : ∀ {n} → Tok → P n → Bool
D-nullable t fail = false
D-nullable t empty = false
D-nullable t (sat f) = f t
D-nullable t (p₁ ∣ p₂) = D-nullable t p₁ ∨ D-nullable t p₂
D-nullable t (nonempty p) = D-nullable t p
D-nullable t (cast _ p) = D-nullable t p
D-nullable t (p₁ · p₂) with forced? p₁ | forced? p₂
... | true | false = D-nullable t p₁
... | false | false = false
... | true | true = D-nullable t p₁ ∨ D-nullable t p₂
... | false | true = D-nullable t p₂
-- D t p is the "derivative" of p with respect to t. It is specified
-- by the equivalence s ∈ D t p ⇔ t ∷ s ∈ p (proved below).
D : ∀ {n} (t : Tok) (p : P n) → P (D-nullable t p)
D t fail = fail
D t empty = fail
D t (sat f) with f t
... | true = empty
... | false = fail
D t (p₁ ∣ p₂) = D t p₁ ∣ D t p₂
D t (nonempty p) = D t p
D t (cast _ p) = D t p
D t (p₁ · p₂) with forced? p₁ | forced? p₂
... | true | false = D t p₁ · ♯? (♭ p₂)
... | false | false = ♯ D t (♭ p₁) · ♯? (♭ p₂)
... | true | true = D t p₁ · ♯? p₂ ∣ D t p₂
... | false | true = ♯ D t (♭ p₁) · ♯? p₂ ∣ D t p₂
-- D is correct.
D-sound : ∀ {n s t} {p : P n} → s ∈ D t p → t ∷ s ∈ p
D-sound s∈ = D-sound′ _ _ s∈
where
sat-lemma : ∀ {s} f t → s ∈ D t (sat f) → T (f t) × s ≡ []
sat-lemma f t ∈ with f t
sat-lemma f t empty | true = (_ , refl)
sat-lemma f t () | false
D-sound′ : ∀ {s n} (p : P n) t → s ∈ D t p → t ∷ s ∈ p
D-sound′ fail t ()
D-sound′ empty t ()
D-sound′ (sat f) t s∈ with sat-lemma f t s∈
... | (ok , refl) = sat ok
D-sound′ (p₁ ∣ p₂) t (∣-left ∈₁) = ∣-left (D-sound′ p₁ t ∈₁)
D-sound′ (p₁ ∣ p₂) t (∣-right ∈₂) = ∣-right {p₁ = p₁} (D-sound′ p₂ t ∈₂)
D-sound′ (nonempty p) t ∈ = nonempty (D-sound ∈)
D-sound′ (cast _ p) t ∈ = cast (D-sound ∈)
D-sound′ (p₁ · p₂) t s∈ with forced? p₁ | forced? p₂
D-sound′ (p₁ · p₂) t (∣-left (∈₁ · ∈₂)) | true | true = D-sound ∈₁ · drop-♭♯ (D-nullable t p₁) ∈₂
D-sound′ (p₁ · p₂) t (∣-right ∈₂) | true | true = ⇐ p₁ refl · D-sound′ p₂ t ∈₂
D-sound′ (p₁ · p₂) t (∣-left (∈₁ · ∈₂)) | false | true = D-sound ∈₁ · drop-♭♯ (D-nullable t (♭ p₁)) ∈₂
D-sound′ (p₁ · p₂) t (∣-right ∈₂) | false | true = ⇐ (♭ p₁) refl · D-sound′ p₂ t ∈₂
D-sound′ (p₁ · p₂) t (∈₁ · ∈₂) | true | false = D-sound ∈₁ · drop-♭♯ (D-nullable t p₁ ) ∈₂
D-sound′ (p₁ · p₂) t (∈₁ · ∈₂) | false | false = D-sound ∈₁ · drop-♭♯ (D-nullable t (♭ p₁)) ∈₂
D-complete : ∀ {n s t} {p : P n} → t ∷ s ∈ p → s ∈ D t p
D-complete {t = t} t∷s∈ = D-complete′ _ t∷s∈ refl
where
D-complete′ : ∀ {s s′ n} (p : P n) → s′ ∈ p → s′ ≡ t ∷ s → s ∈ D t p
D-complete′ fail () refl
D-complete′ empty () refl
D-complete′ (sat f) (sat ok) refl with f t
D-complete′ (sat f) (sat ok) refl | true = empty
D-complete′ (sat f) (sat ()) refl | false
D-complete′ (p₁ ∣ p₂) (∣-left ∈₁) refl = ∣-left (D-complete ∈₁)
D-complete′ (p₁ ∣ p₂) (∣-right ∈₂) refl = ∣-right {p₁ = D t p₁} (D-complete ∈₂)
D-complete′ (nonempty p) (nonempty ∈) refl = D-complete ∈
D-complete′ (cast _ p) (cast ∈) refl = D-complete ∈
D-complete′ (p₁ · p₂) _ _ with forced? p₁ | forced? p₂
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | true | true = ∣-right {p₁ = D t p₁ · _} (D-complete ∈₂)
D-complete′ (p₁ · p₂) (_·_ {._ ∷ _} ∈₁ ∈₂) refl | true | true = ∣-left (D-complete ∈₁ · add-♭♯ (D-nullable t p₁) ∈₂)
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | true | false with ⇒ ∈₁
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | true | false | ()
D-complete′ (p₁ · p₂) (_·_ {._ ∷ _} ∈₁ ∈₂) refl | true | false = D-complete ∈₁ · add-♭♯ (D-nullable t p₁) ∈₂
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | false | true = ∣-right {p₁ = _·_ {n₂ = false} _ _} (D-complete ∈₂)
D-complete′ (p₁ · p₂) (_·_ {._ ∷ _} ∈₁ ∈₂) refl | false | true = ∣-left (D-complete ∈₁ · add-♭♯ (D-nullable t (♭ p₁)) ∈₂)
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | false | false with ⇒ ∈₁
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | false | false | ()
D-complete′ (p₁ · p₂) (_·_ {._ ∷ _} ∈₁ ∈₂) refl | false | false = D-complete ∈₁ · add-♭♯ (D-nullable t (♭ p₁)) ∈₂
D-correct : ∀ {n s t} {p : P n} → s ∈ D t p ⇔ t ∷ s ∈ p
D-correct = equivalence D-sound D-complete
------------------------------------------------------------------------
-- _∈_ is decidable
-- _∈?_ runs a recogniser. Note that the result is yes or no plus a
-- /proof/ verifying that the answer is correct.
infix 4 _∈?_
_∈?_ : ∀ {n} (s : List Tok) (p : P n) → Dec (s ∈ p)
[] ∈? p = nullable? p
t ∷ s ∈? p with s ∈? D t p
t ∷ s ∈? p | yes s∈Dtp = yes (D-sound s∈Dtp)
t ∷ s ∈? p | no s∉Dtp = no (s∉Dtp ∘ D-complete)
-- The last three lines could be replaced by the following one:
--
-- t ∷ s ∈? p = Decidable.map D-correct (s ∈? D t p)
------------------------------------------------------------------------
-- Alternative characterisation of equality
infix 5 _∷_
infix 4 _≈′_
-- Two recognisers/languages are equal if their nullability indices
-- are equal and all their derivatives are equal (coinductively). Note
-- that the elements of this type are bisimulations.
data _≈′_ {n₁ n₂} (p₁ : P n₁) (p₂ : P n₂) : Set where
_∷_ : n₁ ≡ n₂ → (∀ t → ∞ (D t p₁ ≈′ D t p₂)) → p₁ ≈′ p₂
-- This definition is equivalent to the one above.
≈′-sound : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} → p₁ ≈′ p₂ → p₁ ≈ p₂
≈′-sound (refl ∷ rest) {[]} = Eq.sym index-correct ⟨∘⟩ index-correct
≈′-sound (refl ∷ rest) {t ∷ s} =
D-correct ⟨∘⟩ ≈′-sound (♭ (rest t)) ⟨∘⟩ Eq.sym D-correct
same-nullability : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
p₁ ≈ p₂ → n₁ ≡ n₂
same-nullability p₁≈p₂ =
Bool.⇔→≡ (index-correct ⟨∘⟩ p₁≈p₂ ⟨∘⟩ Eq.sym index-correct)
D-cong : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} {t} →
p₁ ≈ p₂ → D t p₁ ≈ D t p₂
D-cong p₁≈p₂ = Eq.sym D-correct ⟨∘⟩ p₁≈p₂ ⟨∘⟩ D-correct
≈′-complete : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} → p₁ ≈ p₂ → p₁ ≈′ p₂
≈′-complete p₁≈p₂ =
same-nullability p₁≈p₂ ∷ λ _ → ♯ ≈′-complete (D-cong p₁≈p₂)
≈′-correct : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} → p₁ ≈′ p₂ ⇔ p₁ ≈ p₂
≈′-correct = equivalence ≈′-sound ≈′-complete
------------------------------------------------------------------------
-- The combinator nonempty does not need to be primitive
-- The variant of nonempty which is defined below (nonempty′) makes
-- many recognisers larger, though.
module AlternativeNonempty where
nonempty′ : ∀ {n} → P n → P false
nonempty′ fail = fail
nonempty′ empty = fail
nonempty′ (sat f) = sat f
nonempty′ (p₁ ∣ p₂) = nonempty′ p₁ ∣ nonempty′ p₂
nonempty′ (nonempty p) = nonempty′ p
nonempty′ (cast eq p) = nonempty′ p
nonempty′ (p₁ · p₂) with forced? p₁ | forced? p₂
... | false | _ = p₁ · p₂
... | true | false = p₁ · p₂
... | true | true = nonempty′ p₁ ∣ nonempty′ p₂
∣ ♯ nonempty′ p₁ · ♯ nonempty′ p₂
sound : ∀ {n} {p : P n} → nonempty′ p ≤ nonempty p
sound {s = []} pr with ⇒ pr
... | ()
sound {s = _ ∷ _} pr = nonempty (sound′ _ pr refl)
where
sound′ : ∀ {n t s s′} (p : P n) →
s′ ∈ nonempty′ p → s′ ≡ t ∷ s → t ∷ s ∈ p
sound′ fail () refl
sound′ empty () refl
sound′ (sat f) (sat ok) refl = sat ok
sound′ (p₁ ∣ p₂) (∣-left pr) refl = ∣-left (sound′ p₁ pr refl)
sound′ (p₁ ∣ p₂) (∣-right pr) refl = ∣-right {p₁ = p₁} (sound′ p₂ pr refl)
sound′ (nonempty p) pr refl = nonempty (sound′ p pr refl)
sound′ (cast _ p) pr refl = cast (sound′ p pr refl)
sound′ (p₁ · p₂) pr _ with forced? p₁ | forced? p₂
sound′ (p₁ · p₂) pr refl | false | _ = pr
sound′ (p₁ · p₂) pr refl | true | false = pr
sound′ (p₁ · p₂) (∣-left (∣-left pr)) refl | true | true = cast∈ (proj₂ ListMonoid.identity _) refl $
sound′ p₁ pr refl · ⇐ p₂ refl
sound′ (p₁ · p₂) (∣-left (∣-right pr)) refl | true | true = ⇐ p₁ refl · sound′ p₂ pr refl
sound′ (p₁ · p₂) (∣-right (_·_ {[]} pr₁ pr₂)) refl | true | true with ⇒ pr₁
... | ()
sound′ (p₁ · p₂) (∣-right (_·_ {_ ∷ _} pr₁ pr₂)) refl | true | true with sound {p = p₂} pr₂
... | nonempty pr₂′ = sound′ p₁ pr₁ refl · pr₂′
complete : ∀ {n} {p : P n} → nonempty p ≤ nonempty′ p
complete (nonempty pr) = complete′ _ pr refl
where
complete′ : ∀ {n t s s′} (p : P n) →
s ∈ p → s ≡ t ∷ s′ → t ∷ s′ ∈ nonempty′ p
complete′ fail () refl
complete′ empty () refl
complete′ (sat f) (sat ok) refl = sat ok
complete′ (p₁ ∣ p₂) (∣-left pr) refl = ∣-left (complete′ p₁ pr refl)
complete′ (p₁ ∣ p₂) (∣-right pr) refl = ∣-right {n₁ = false} (complete′ p₂ pr refl)
complete′ (nonempty p) (nonempty pr) refl = complete′ p pr refl
complete′ (cast _ p) (cast pr) refl = complete′ p pr refl
complete′ (p₁ · p₂) pr _ with forced? p₁ | forced? p₂
complete′ (p₁ · p₂) pr refl | false | _ = pr
complete′ (p₁ · p₂) pr refl | true | false = pr
complete′ (p₁ · p₂) (_·_ {[]} pr₁ pr₂) refl | true | true = ∣-left (∣-right {n₁ = false} (complete′ p₂ pr₂ refl))
complete′ (p₁ · p₂) (_·_ {_ ∷ _} {[]} pr₁ pr₂) refl | true | true = cast∈ (sym $ proj₂ ListMonoid.identity _) refl $
∣-left (∣-left {n₂ = false} (complete′ p₁ pr₁ refl))
complete′ (p₁ · p₂) (_·_ {_ ∷ _} {_ ∷ _} pr₁ pr₂) refl | true | true = ∣-right {n₁ = false} (complete′ p₁ pr₁ refl ·
complete′ p₂ pr₂ refl)
correct : ∀ {n} {p : P n} → nonempty′ p ≈ nonempty p
correct = equivalence sound complete
| {
"alphanum_fraction": 0.4728822882,
"avg_line_length": 41.4123006834,
"ext": "agda",
"hexsha": "9e54962440762ae3df52cb8ff8e7ada4b332c403",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalRecognisers/LeftRecursion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalRecognisers/LeftRecursion.agda",
"max_line_length": 134,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalRecognisers/LeftRecursion.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 6790,
"size": 18180
} |
open import Formalization.PredicateLogic.Signature
module Formalization.PredicateLogic.Syntax (𝔏 : Signature) where
open Signature(𝔏)
open import Data.ListSized
import Lvl
open import Functional using (_∘_ ; _∘₂_ ; swap)
open import Numeral.Finite
open import Numeral.Natural
open import Sets.PredicateSet using (PredSet)
open import Type
private variable ℓ : Lvl.Level
private variable args vars : ℕ
data Term (vars : ℕ) : Type{ℓₒ} where
var : 𝕟(vars) → Term(vars) -- Variables
func : Obj(args) → List(Term(vars))(args) → Term(vars) -- Constants/functions
-- Formulas.
-- Inductive definition of the grammatical elements of the language of predicate logic.
data Formula : ℕ → Type{ℓₚ Lvl.⊔ ℓₒ} where
_$_ : Prop(args) → List(Term(vars))(args) → Formula(vars) -- Relations
⊤ : Formula(vars) -- Tautology (Top / True)
⊥ : Formula(vars) -- Contradiction (Bottom / False)
_∧_ : Formula(vars) → Formula(vars) → Formula(vars) -- Conjunction (And)
_∨_ : Formula(vars) → Formula(vars) → Formula(vars) -- Disjunction (Or)
_⟶_ : Formula(vars) → Formula(vars) → Formula(vars) -- Implication
Ɐ : Formula(𝐒(vars)) → Formula(vars)
∃ : Formula(𝐒(vars)) → Formula(vars)
-- A sentence is a formula with no variables occurring.
Sentence = Formula(𝟎)
infix 1011 _$_
infixr 1005 _∧_
infixr 1004 _∨_
infixr 1000 _⟶_
-- Negation
¬_ : Formula(vars) → Formula(vars)
¬_ = _⟶ ⊥
-- Double negation
¬¬_ : Formula(vars) → Formula(vars)
¬¬_ = (¬_) ∘ (¬_)
-- Reverse implication
_⟵_ : Formula(vars) → Formula(vars) → Formula(vars)
_⟵_ = swap(_⟶_)
-- Equivalence
_⟷_ : Formula(vars) → Formula(vars) → Formula(vars)
p ⟷ q = (p ⟵ q) ∧ (p ⟶ q)
-- (Nor)
_⊽_ : Formula(vars) → Formula(vars) → Formula(vars)
_⊽_ = (¬_) ∘₂ (_∨_)
-- (Nand)
_⊼_ : Formula(vars) → Formula(vars) → Formula(vars)
_⊼_ = (¬_) ∘₂ (_∧_)
-- (Exclusive or / Xor)
_⊻_ : Formula(vars) → Formula(vars) → Formula(vars)
_⊻_ = (¬_) ∘₂ (_⟷_)
infix 1010 ¬_ ¬¬_
infixl 1000 _⟵_ _⟷_
Ɐ₊ : Formula(vars) → Sentence
Ɐ₊{𝟎} φ = φ
Ɐ₊{𝐒 v} φ = Ɐ₊{v} (Ɐ φ)
∃₊ : Formula(vars) → Sentence
∃₊{𝟎} φ = φ
∃₊{𝐒 v} φ = ∃₊{v} (∃ φ)
| {
"alphanum_fraction": 0.6415719697,
"avg_line_length": 25.756097561,
"ext": "agda",
"hexsha": "d5fddfa0ff57dd76d099b5498d4cd907e9d6214f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/PredicateLogic/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/PredicateLogic/Syntax.agda",
"max_line_length": 87,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/PredicateLogic/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 781,
"size": 2112
} |
{-
In order to solve the metavariables in this example
we need to solve a constraint of the form
_1 := unit₂ (_2 y)
With the flex removal feature the occurs check will
spot the bad variable 'y' in the instantiation and
remove it by instantiating
_2 := λ y → _3
for a fresh metavariable _3. The instantiation of _1
can then proceed.
-}
module FlexRemoval where
record Unit : Set where
data Unit₂ : Set where
unit₂ : Unit → Unit₂
mutual
data D : Set where
c₁ : D
c₂ : (x : Unit₂) → (Unit → D₂ x) → D
D₂ : Unit₂ → Set
D₂ (unit₂ x) = D
foo : D
foo = c₂ _ (λ y → c₁)
{- 2011-04-05 Andreas
This test case and the explanation is no longer up to date.
What happens is
_2 y : Unit
is solved by eta-expansion
_2 = λ y -> record {}
and then
_1 = unit₂ (record {})
is in solved form.
-} | {
"alphanum_fraction": 0.6503579952,
"avg_line_length": 15.5185185185,
"ext": "agda",
"hexsha": "dc120ff8cd1f8e1bccf9512bc63c8805e6465160",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/FlexRemoval.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/FlexRemoval.agda",
"max_line_length": 61,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/FlexRemoval.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 267,
"size": 838
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.Theory
{- Cohomology groups of the n-torus (S¹)ⁿ.
- We have Ĉᵏ(Tⁿ) == C⁰(S⁰)^(n choose' k) where _choose'_ defined as below.
- This argument could give Cᵏ((Sᵐ)ⁿ) with a little more work. -}
module cohomology.Torus {i} (OT : OrdinaryTheory i) where
open OrdinaryTheory OT
open import cohomology.Sn OT
open import cohomology.SphereProduct cohomology-theory
open import cohomology.Unit cohomology-theory
{- Almost n choose k, but with n choose' O = 0 for any n. -}
_choose'_ : ℕ → ℤ → ℕ
n choose' (neg _) = 0
n choose' O = 0
n choose' pos O = n
O choose' (pos (S k)) = 0
S n choose' pos (S k) = (n choose' (pos k)) + (n choose' (pos (S k)))
_-⊙Torus : ℕ → Ptd i
O -⊙Torus = ⊙Lift ⊙Unit
(S n) -⊙Torus = (⊙Sphere {i} 1) ⊙× (n -⊙Torus)
C-nTorus : (k : ℤ) (n : ℕ)
→ C k (n -⊙Torus) == (C O (⊙Sphere 0)) ^ᴳ (n choose' k)
C-nTorus (neg k) O = C-Unit-is-trivial (neg k)
C-nTorus (neg k) (S n) =
C-Sphere× (neg k) 1 (n -⊙Torus)
∙ ap (λ K → K ×ᴳ (C (neg k) (⊙Susp^ 1 (n -⊙Torus))
×ᴳ C (neg k) (n -⊙Torus)))
(C-Sphere-≠ (neg k) 1 (ℤ-neg≠pos _ _))
∙ ×ᴳ-unit-l {G = C (neg k) (⊙Susp (n -⊙Torus))
×ᴳ C (neg k) (n -⊙Torus)}
∙ ap (λ K → C (neg k) (⊙Susp (n -⊙Torus)) ×ᴳ K)
(C-nTorus (neg k) n)
∙ ×ᴳ-unit-r {G = C (neg k) (⊙Susp (n -⊙Torus))}
∙ C-Susp (neg (S k)) (n -⊙Torus)
∙ C-nTorus (neg (S k)) n
C-nTorus O O = C-Unit-is-trivial O
C-nTorus O (S n) =
C-Sphere× O 1 (n -⊙Torus)
∙ ap (λ K → K ×ᴳ (C O (⊙Susp (n -⊙Torus)) ×ᴳ C O (n -⊙Torus)))
(C-Sphere-≠ O 1 (ℤ-O≠pos _))
∙ ×ᴳ-unit-l {G = C O (⊙Susp (n -⊙Torus)) ×ᴳ C O (n -⊙Torus)}
∙ ap (λ K → C O (⊙Susp (n -⊙Torus)) ×ᴳ K)
(C-nTorus O n)
∙ ×ᴳ-unit-r {G = C O (⊙Susp (n -⊙Torus))}
∙ C-Susp (neg O) (n -⊙Torus)
∙ C-nTorus (neg O) n
C-nTorus (pos O) O =
C-Unit-is-trivial (pos O)
C-nTorus (pos O) (S n) =
C-Sphere× (pos O) 1 (n -⊙Torus)
∙ ap (λ K → K ×ᴳ (C (pos O) (⊙Susp (n -⊙Torus))
×ᴳ C (pos O) (n -⊙Torus)))
(C-Sphere-diag 1)
∙ ap (λ K → C O (⊙Sphere O) ×ᴳ K)
(ap2 _×ᴳ_
(C-Susp O (n -⊙Torus) ∙ C-nTorus O n)
(C-nTorus (pos O) n)
∙ ×ᴳ-unit-l {G = C O (⊙Sphere 0) ^ᴳ (n choose' pos O)})
C-nTorus (pos (S k)) O =
C-Unit-is-trivial (pos (S k))
C-nTorus (pos (S k)) (S n) =
C-Sphere× (pos (S k)) 1 (n -⊙Torus)
∙ ap (λ K → K ×ᴳ (C (pos (S k)) (⊙Susp (n -⊙Torus))
×ᴳ C (pos (S k)) (n -⊙Torus)))
(C-Sphere-≠ (pos (S k)) 1 (ℕ-S≠O k ∘ pos-injective (S k) 0))
∙ ×ᴳ-unit-l {G = (C (pos (S k)) (⊙Susp (n -⊙Torus))
×ᴳ (C (pos (S k)) (n -⊙Torus)))}
∙ ap2 _×ᴳ_ (C-Susp (pos k) (n -⊙Torus) ∙ C-nTorus (pos k) n)
(C-nTorus (pos (S k)) n)
∙ ^ᴳ-sum (C O (⊙Sphere 0)) (n choose' pos k) (n choose' pos (S k))
| {
"alphanum_fraction": 0.5028070175,
"avg_line_length": 32.0224719101,
"ext": "agda",
"hexsha": "92ad38abee8a5cd1dc9a1c798017cd838cef2532",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "cohomology/Torus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "cohomology/Torus.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "cohomology/Torus.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1429,
"size": 2850
} |
module Numeral.Natural.Function.GreatestCommonDivisor where
import Lvl
open import Data
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Logic.Propositional
open import Numeral.CoordinateVector as Vector using (Vector)
open import Numeral.Finite using (𝕟 ; 𝟎 ; 𝐒)
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.FlooredDivision
open import Numeral.Natural.Oper.Modulo
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Relation.Divisibility
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Classical
open import Type
-- TODO: Prove that gcd is the infimum in a lattice of ℕ with divisibility as its ordering
{-# TERMINATING #-}
gcdFold : ∀{ℓ}{T : Type{ℓ}} → ((a : ℕ) → (b : ℕ) → (a ≥ b) → (b > 𝟎) → T → T → T) → ((a : ℕ) → (b : ℕ) → (a < b) → (b > 𝟎) → T → T → T) → T → ℕ → ℕ → (ℕ ⨯ T)
gcdFold f g x (a)(𝟎) = (a , x)
gcdFold f g x (a)(𝐒(b)) with [≥]-or-[<] {a}{𝐒(b)}
... | [∨]-introₗ ab = Tuple.mapRight (f a (𝐒(b)) ab (succ min) x) (gcdFold f g x (𝐒(b))(a mod 𝐒(b)))
... | [∨]-introᵣ ba = Tuple.mapRight (g a (𝐒(b)) ba (succ min) x) (gcdFold f g x (𝐒(b))(a))
-- An algorithm for computing the greatest common divisor for two numbers.
-- Also called: Euclid's algorithm.
-- Termination: See `Gcd-existence` for a functionally equal variant of this function that passes the termination checker. It is equal in the sense that the same algorithm is used to construct the existence and to compute the value of this function. This is even more evident when looking at `Gcd-gcd`.
-- Alternative implementation:
-- gcd(a)(𝟎) = a
-- gcd(a)(𝐒(b)) with [≥]-or-[<] {a}{𝐒(b)}
-- ... | [∨]-introₗ _ = gcd(𝐒(b))(a mod 𝐒(b))
-- ... | [∨]-introᵣ _ = gcd(𝐒(b))(a)
gcd : ℕ → ℕ → ℕ
gcd a b = Tuple.left(gcdFold(\_ _ _ _ _ _ → <>) (\_ _ _ _ _ _ → <>) (<>{Lvl.𝟎}) a b)
lcm : ℕ → ℕ → ℕ
lcm(a)(b) = (a ⋅ b) ⌊/⌋₀ gcd(a)(b)
-- `Gcd a b D` is the specialization for 2 elements and states that `D` is a divisor of both `a` and `b`, and the greatest one of them.
-- Example:
-- Divisor(24) = {1,2,3,4, 6,8, 12, 24}
-- Divisor(60) = {1,2,3,4,5,6 ,10,12,15,20, 30,60}
-- 24 = 2³ ⋅ 3¹
-- 60 = 2² ⋅ 3¹ ⋅ 5¹
-- Gcd 24 60 = {max(Divisor(24) ∩ Divisor(60))} = 2² ⋅ 3¹ = 12
-- Divisor of first : 24 / 12 = 2
-- Divisor of second: 60 / 12 = 5
record GreatestCommonDivisor(n : ℕ) (v : Vector(n)(ℕ)) (D : ℕ) : Type{Lvl.𝟎} where
constructor intro
field
divisor : ∀(i) → (D ∣ v(i))
maximum : ∀{d} → (∀(i) → (d ∣ v(i))) → (d ∣ D)
Gcd = GreatestCommonDivisor(2) ∘₂ Vector.pair
module Gcd {a b D} where
intro₂ : _ → _ → (∀{d} → _ → _ → (d ∣ D)) → Gcd a b D
intro₂ divisorₗ divisorᵣ maximum = intro{2}{Vector.pair a b}
(\{𝟎 → divisorₗ ; (𝐒(𝟎)) → divisorᵣ})
(\dv → maximum (dv 𝟎) (dv (𝐒 𝟎)))
module _ (inst : Gcd a b D) where
open GreatestCommonDivisor(inst) public
divisorₗ = divisor 𝟎
divisorᵣ = divisor(𝐒 𝟎)
maximum₂ = \{d} a b → maximum{d} \{𝟎 → a ; (𝐒(𝟎)) → b}
-- `Lcm a b M` is the specialization for 2 elements and states that `M` is a multiple of both `a` and `b`, and the smallest one of them.
-- Example:
-- 360 = 2³ ⋅ 3² ⋅ 5¹
-- 8400 = 2⁴ ⋅ 3¹ ⋅ 5² ⋅ 7¹
-- Lcm 360 8400 = {min(Multiple(360) ∩ Multiple(8400))} = 2⁴ ⋅ 3² ⋅ 5² ⋅ 7¹ = 25200
-- Multiple of first : 360 ⋅ 2¹ ⋅ 5¹ ⋅ 7¹ = 360 ⋅ 70 = 25200
-- Multiple of second: 8400 ⋅ 3¹ = 25200
record LeastCommonMultiple(n : ℕ) (v : Vector(n)(ℕ)) (M : ℕ) : Type{Lvl.𝟎} where
constructor intro
field
multiple : ∀(i) → (v(i) ∣ M)
minimum : ∀{m} → (∀(i) → (v(i) ∣ m)) → (M ∣ m)
Lcm = LeastCommonMultiple(2) ∘₂ Vector.pair
module Lcm {a b M} where
intro₂ : _ → _ → (∀{m} → _ → _ → (M ∣ m)) → Lcm a b M
intro₂ multipleₗ multipleᵣ minimum = intro{2}{Vector.pair a b}
(\{𝟎 → multipleₗ ; (𝐒(𝟎)) → multipleᵣ})
(\dv → minimum (dv 𝟎) (dv (𝐒 𝟎)))
module _ (inst : Lcm a b M) where
open LeastCommonMultiple(inst) public
multipleₗ = multiple 𝟎
multipleᵣ = multiple(𝐒 𝟎)
minimum₂ = \{m} a b → minimum{m} \{𝟎 → a ; (𝐒(𝟎)) → b}
open import Logic.Predicate
open import Numeral.Natural.Inductions
open import Numeral.Natural.Oper.Modulo.Proofs
open import Numeral.Natural.Relation.Divisibility.Proofs
open import Numeral.Natural.Relation.Divisibility.Proofs.Modulo
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Sets.PredicateSet using (_∈_ ; _⊆_)
open import Structure.Relator.Properties
open import Structure.Setoid.Uniqueness
open import Syntax.Function
private variable a b d : ℕ
Gcd-unique : Unique(Gcd a b)
Gcd-unique p q = antisymmetry(_∣_)(_≡_)
(Gcd.maximum₂ q (Gcd.divisorₗ p) (Gcd.divisorᵣ p))
(Gcd.maximum₂ p (Gcd.divisorₗ q) (Gcd.divisorᵣ q))
Gcd-base : (a ∈ Gcd(a)(𝟎))
Gcd-base = Gcd.intro₂
divides-reflexivity
Div𝟎
const
Gcd-step : (a ≥ 𝐒(b)) → Gcd(a mod 𝐒(b))(𝐒(b)) ⊆ Gcd(a)(𝐒(b))
Gcd-step ab p = Gcd.intro₂
([↔]-to-[←] (divides-mod (Gcd.divisorᵣ p)) (Gcd.divisorₗ p))
(Gcd.divisorᵣ p)
(\da db → Gcd.maximum₂ p ([↔]-to-[→] (divides-mod db) da) db)
Gcd-swap : Gcd(a)(b) ⊆ Gcd(b)(a)
Gcd-swap p = Gcd.intro₂
(Gcd.divisorᵣ p)
(Gcd.divisorₗ p)
(swap(Gcd.maximum₂ p))
-- Note: The construction for the existence is following the same steps as in the definition of the function `gcd`, but unlike `gcd` which does not pass the termination checker, this uses [ℕ]-strong-induction to pass it.
Gcd-existence : ∃(Gcd a b)
Gcd-existence{a}{b} = [ℕ]-strong-induction {φ = b ↦ ∀{a} → ∃(Gcd a b)} base step {b}{a} where
base : ∀{a} → ∃(Gcd a 𝟎)
base{a} = [∃]-intro a ⦃ Gcd-base ⦄
step : ∀{i} → (∀{j} → (j ≤ i) → ∀{a} → ∃(Gcd a j)) → ∀{a} → ∃(Gcd a (𝐒(i)))
step {i} prev {a} with [≥]-or-[<] {a}{𝐒(i)}
... | [∨]-introₗ ia = [∃]-map-proof (Gcd-step ia ∘ Gcd-swap) (prev{a mod 𝐒(i)} ([≤]-without-[𝐒] (mod-maxᵣ{a}{𝐒(i)})) {𝐒(i)})
... | [∨]-introᵣ (succ ai) = [∃]-map-proof Gcd-swap(prev {a} ai {𝐒(i)})
Gcd-gcdFold : ∀{a b}{ℓ}{T : Type{ℓ}}{f}{g}{x : T} → Gcd a b (Tuple.left(gcdFold f g x a b))
Gcd-gcdFold{a}{b}{f = f}{g}{x} = [ℕ]-strong-induction {φ = b ↦ ∀{a} → Gcd a b (Tuple.left(gcdFold f g x a b))} base step {b}{a} where
base : ∀{a} → Gcd a 𝟎 (Tuple.left(gcdFold f g x a 𝟎))
base{a} = Gcd-base
step : ∀{i} → (∀{j} → (j ≤ i) → ∀{a} → Gcd a j (Tuple.left(gcdFold f g x a j))) → ∀{a} → Gcd a (𝐒(i)) (Tuple.left(gcdFold f g x a (𝐒(i))))
step {i} prev {a} with [≥]-or-[<] {a}{𝐒(i)}
... | [∨]-introₗ ia = (Gcd-step ia ∘ Gcd-swap) (prev{a mod 𝐒(i)} ([≤]-without-[𝐒] (mod-maxᵣ{a}{𝐒(i)})) {𝐒(i)})
... | [∨]-introᵣ (succ ai) = Gcd-swap(prev {a} ai {𝐒(i)})
-- Usage: This allows the transferrence of proofs between `Gcd` and `gcd`. It is sometimes easier to prove properties by using `Gcd` first and then transfering them so that the proofs also hold for `gcd`.
Gcd-gcdFold-value : ∀{a b D}{ℓ}{T : Type{ℓ}}{f}{g}{x : T} → (Gcd a b D) ↔ (Tuple.left(gcdFold f g x a b) ≡ D)
Gcd-gcdFold-value = [↔]-intro (\{[≡]-intro → Gcd-gcdFold}) (Gcd-unique Gcd-gcdFold)
Gcd-gcd : Gcd a b (gcd a b)
Gcd-gcd = Gcd-gcdFold
Gcd-gcd-value : (Gcd a b d) ↔ (gcd a b ≡ d)
Gcd-gcd-value = Gcd-gcdFold-value
| {
"alphanum_fraction": 0.6124041812,
"avg_line_length": 44.018404908,
"ext": "agda",
"hexsha": "abaefa9cf070edfb04f954214c6fd96224a0ef93",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Function/GreatestCommonDivisor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Function/GreatestCommonDivisor.agda",
"max_line_length": 302,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Function/GreatestCommonDivisor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3032,
"size": 7175
} |
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Algebra.Signature
module Fragment.Algebra.Quotient (Σ : Signature) where
open import Fragment.Algebra.Algebra Σ
open import Fragment.Algebra.Homomorphism Σ
open import Fragment.Setoid.Morphism using (_↝_)
open import Level using (Level; Setω; _⊔_; suc)
open import Data.Vec.Properties using (map-id)
open import Relation.Binary using (Setoid; IsEquivalence; Rel)
import Relation.Binary.PropositionalEquality as PE
private
variable
a b ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
module _
(A : Algebra {a} {ℓ₁})
(_≈_ : Rel ∥ A ∥ ℓ₂)
where
private
setoid' : IsEquivalence _≈_ → Setoid _ _
setoid' isEquivalence =
record { Carrier = ∥ A ∥
; _≈_ = _≈_
; isEquivalence = isEquivalence
}
record IsDenominator : Set (a ⊔ suc ℓ₁ ⊔ suc ℓ₂) where
field
isEquivalence : IsEquivalence _≈_
isCoarser : ∀ {x y} → x =[ A ] y → x ≈ y
isCompatible : Congruence (setoid' isEquivalence) (A ⟦_⟧_)
module _
(A : Algebra {a} {ℓ₁})
(_≈_ : Rel ∥ A ∥ ℓ₄)
{{isDenom : IsDenominator A _≈_}}
where
record IsQuotient (A/≈ : Algebra {b} {ℓ₂}) : Setω where
field
inc : A ⟿ A/≈
factor : ∀ {c ℓ₃} {X : Algebra {c} {ℓ₃}}
→ (f : A ⟿ X)
→ (Congruent _≈_ ≈[ X ] ∣ f ∣)
→ A/≈ ⟿ X
commute : ∀ {c ℓ₃} {X : Algebra {c} {ℓ₃}}
→ (f : A ⟿ X)
→ (cong : Congruent _≈_ ≈[ X ] ∣ f ∣)
→ factor f cong ⊙ inc ≗ f
universal : ∀ {c ℓ₃} {X : Algebra {c} {ℓ₃}}
→ (f : A ⟿ X)
→ (cong : Congruent _≈_ ≈[ X ] ∣ f ∣)
→ {h : A/≈ ⟿ X}
→ h ⊙ inc ≗ f
→ factor f cong ≗ h
open IsDenominator isDenom
∥_∥/_ : Setoid _ _
∥_∥/_ = record { Carrier = ∥ A ∥
; _≈_ = _≈_
; isEquivalence = isEquivalence
}
_/_-isAlgebra : IsAlgebra ∥_∥/_
_/_-isAlgebra = record { ⟦_⟧ = A ⟦_⟧_
; ⟦⟧-cong = isCompatible
}
_/_ : Algebra
_/_ = record { ∥_∥/≈ = ∥_∥/_
; ∥_∥/≈-isAlgebra = _/_-isAlgebra
}
private
∣inc∣⃗ : ∥ A ∥/≈ ↝ ∥_∥/_
∣inc∣⃗ = record { ∣_∣ = λ x → x
; ∣_∣-cong = isCoarser
}
∣inc∣-hom : Homomorphic A _/_ (λ x → x)
∣inc∣-hom f xs =
Setoid.reflexive ∥_∥/_ (PE.cong (A ⟦ f ⟧_) (map-id xs))
inc : A ⟿ _/_
inc = record { ∣_∣⃗ = ∣inc∣⃗
; ∣_∣-hom = ∣inc∣-hom
}
module _ {c ℓ₃}
{X : Algebra {c} {ℓ₃}}
(f : A ⟿ X)
(cong : Congruent _≈_ ≈[ X ] ∣ f ∣)
where
private
∣factor∣⃗ : ∥_∥/_ ↝ ∥ X ∥/≈
∣factor∣⃗ = record { ∣_∣ = ∣ f ∣
; ∣_∣-cong = cong
}
factor : _/_ ⟿ X
factor = record { ∣_∣⃗ = ∣factor∣⃗
; ∣_∣-hom = ∣ f ∣-hom
}
factor-commute : factor ⊙ inc ≗ f
factor-commute = Setoid.refl ∥ X ∥/≈
factor-universal : ∀ {h : _/_ ⟿ X} → h ⊙ inc ≗ f → factor ≗ h
factor-universal p {x} = sym (p {x})
where open Setoid ∥ X ∥/≈
_/_-isQuotient : IsQuotient (_/_)
_/_-isQuotient = record { inc = inc
; factor = factor
; commute = factor-commute
; universal = factor-universal
}
| {
"alphanum_fraction": 0.4474203552,
"avg_line_length": 27.0763358779,
"ext": "agda",
"hexsha": "e6194a27626a3b946b3a937b7f0624dbe9787198",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Algebra/Quotient.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Algebra/Quotient.agda",
"max_line_length": 65,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Algebra/Quotient.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 1334,
"size": 3547
} |
-- Non-index (plain) monads in form of Kleisli triple.
module Control.Monad where
open import Function using () renaming (_∘′_ to _∘_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Axiom.FunctionExtensionality
open import Control.Functor
-- The operations of a monad.
module T-MonadOps (M : Set → Set) where
T-return = ∀ {A} (a : A) → M A
T-bind = ∀ {A B} (m : M A) (k : A → M B) → M B
record MonadOps (M : Set → Set) : Set₁ where
open T-MonadOps M
infixr 6 _>>=_
field
return : T-return
_>>=_ : T-bind
bind = _>>=_
functorOps : FunctorOps M
functorOps = record
{ map = λ f m → m >>= λ a → return (f a)
}
open FunctorOps functorOps public
-- The laws of a monad (Kleisli triple variant).
module T-MonadLaws {M : Set → Set} (ops : MonadOps M) where
open MonadOps ops public
T-bind-β = ∀ {A B} (k : A → M B) (a : A) →
return a >>= k ≡ k a
T-bind-η = ∀ {A} (m : M A) →
m >>= return ≡ m
T-bind-assoc = ∀ {A B C} (m : M A) {k : A → M B} {l : B → M C} →
(m >>= k) >>= l ≡ m >>= λ a → (k a >>= l)
-- Provable laws.
-- A variant of bind-β using function extensionality.
T-bind-β-ext = ∀ {A B C : Set} (f : A → B) (k : B → M C) →
(λ a → return (f a) >>= k) ≡ k ∘ f
T-map-after-bind = ∀ {A B C} (m : M A) {k : A → M B} {f : B → C} →
f <$> (m >>= k) ≡ m >>= λ a → f <$> k a
T-bind-after-map = ∀ {A B C} (m : M A) {k : B → M C} {f : A → B} →
(f <$> m) >>= k ≡ m >>= λ a → k (f a)
record MonadLaws {M : Set → Set} (ops : MonadOps M) : Set₁ where
open T-MonadLaws ops
-- Axioms.
field
bind-β : T-bind-β
bind-η : T-bind-η
bind-assoc : T-bind-assoc
-- Derived laws.
bind-β-ext : T-bind-β-ext
bind-β-ext f k = fun-ext (λ a → bind-β k (f a))
map-after-bind : T-map-after-bind
map-after-bind m = bind-assoc m
-- A more detailed proof. (NF: trans (bind-assoc m) refl)
private
map-after-bind′ : T-map-after-bind
map-after-bind′ m {k = k} {f = f} = begin
f <$> (m >>= k)
≡⟨⟩ -- definition of map
((m >>= k) >>= λ b → return (f b))
≡⟨ bind-assoc m ⟩ -- associativity of bind
m >>= (λ a → k a >>= λ b → return (f b))
≡⟨⟩ -- definition of map
m >>= (λ a → f <$> k a)
∎
bind-after-map : T-bind-after-map
bind-after-map m {k = k} {f = f} = begin
(f <$> m) >>= k
≡⟨⟩ -- definition of map
(m >>= λ a → return (f a)) >>= k
≡⟨ bind-assoc m ⟩ -- associativity of bind
m >>= (λ a → return (f a) >>= k)
≡⟨ cong (_>>=_ m) (bind-β-ext _ _) ⟩ -- beta for bind
m >>= (λ a → k (f a))
∎
-- Functor laws.
open T-FunctorLaws functorOps using (T-map-∘)
private
abstract
map-comp : T-map-∘
map-comp {f = f} {g = g} = fun-ext λ m → begin
g ∘ f <$> m ≡⟨⟩
(m >>= λ a → return (g (f a))) ≡⟨ cong (_>>=_ m) (sym (bind-β-ext _ _)) ⟩
(m >>= λ a → return (f a) >>= λ b → return (g b)) ≡⟨ sym (bind-assoc m) ⟩
(m >>= λ a → return (f a)) >>= (λ b → return (g b)) ≡⟨⟩
g <$> f <$> m
∎
functorLaws : FunctorLaws functorOps
functorLaws = record
{ map-id = fun-ext bind-η
; map-∘ = map-comp
}
open FunctorLaws functorLaws public
record IsMonad (M : Set → Set) : Set₁ where
field
ops : MonadOps M
laws : MonadLaws ops
open MonadOps ops public
open MonadLaws laws public
{-
-- The operations of a monad.
record MonadOps (M : Set → Set) : Set₁ where
infixr 6 _>>=_
T-return = ∀ {A} (a : A) → M A
T-bind = ∀ {A B} (m : M A) (k : A → M B) → M B
field
return : T-return
_>>=_ : T-bind
bind = _>>=_
functorOps : FunctorOps M
functorOps = record
{ _<$>_ = λ f m → m >>= λ a → return (f a)
}
open FunctorOps functorOps public
-- The laws of a monad (Kleisli triple variant).
record MonadLaws {M : Set → Set} (ops : MonadOps M) : Set₁ where
open MonadOps ops
T-bind-β = ∀ {A B} (a : A) (k : A → M B) →
return a >>= k ≡ k a
T-bind-η = ∀ {A} (m : M A) →
m >>= return ≡ m
T-bind-assoc = ∀ {A B C} (m : M A) {k : A → M B} {l : B → M C} →
(m >>= k) >>= l ≡ m >>= λ a → (k a >>= l)
field
bind-β : T-bind-β
bind-η : T-bind-η
bind-assoc : T-bind-assoc
private
abstract
map-comp : FunctorLaws.T-map-∘ {!!}
map-comp = {!!}
functorLaws : FunctorLaws functorOps
functorLaws = record
{ map-id = bind-η
; map-∘ = {!!}
}
record IsMonad (M : Set → Set) : Set₁ where
record IsMonad (M : Set → Set) : Set₁ where
infixr 6 _>>=_
field
return : ∀ {A} (a : A) → M A
_>>=_ : ∀ {A B} (m : M A) (k : A → M B) → M B
-- Laws
bind-β : ∀ {A B} (a : A) (k : A → M B) →
return a >>= k ≡ k a
bind-η : ∀ {A} (m : M A) →
m >>= return ≡ m
bind-assoc : ∀ {A B C} (m : M A) {k : A → M B} {l : B → M C} →
(m >>= k) >>= l ≡ m >>= λ a → (k a >>= l)
bind = _>>=_
private
map : Map-T F
map = λ f m → m >>= λ a → return (f a)
abstract
map-comp : Map-Comp-T map
functor : IsFunctor M
functor = record
{ _<$>_ = λ f m → m >>= λ a → return (f a)
; map-id = bind-η
; map-∘ = map-comp
where x = {!bind-assoc!}
}
-}
| {
"alphanum_fraction": 0.4611546686,
"avg_line_length": 22.2698412698,
"ext": "agda",
"hexsha": "e3a74c1958c213a71a639b260c8acea6d2720880",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Monad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Monad.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Monad.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2051,
"size": 5612
} |
module Issue278 where
abstract
module A where
Foo : Set₁
Foo = Set
module B where
open A
Foo≡Set : Foo ≡ Set
Foo≡Set = refl
| {
"alphanum_fraction": 0.6066666667,
"avg_line_length": 12.5,
"ext": "agda",
"hexsha": "0b9732b5c3c78cdf5b13bb5ff4b9bebd7a989e4d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue278.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue278.agda",
"max_line_length": 23,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue278.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 52,
"size": 150
} |
{-# OPTIONS --cubical --safe #-}
module Data.Nat.Show where
open import Prelude
open import Data.Nat
open import Data.Nat.DivMod
open import Data.String
open import Data.List
showDig : ℕ → Char
showDig 0 = '0'
showDig 1 = '1'
showDig 2 = '2'
showDig 3 = '3'
showDig 4 = '4'
showDig 5 = '5'
showDig 6 = '6'
showDig 7 = '7'
showDig 8 = '8'
showDig 9 = '9'
showDig _ = '!'
showsℕ : ℕ → List Char → List Char
showsℕ n xs = go xs n n
where
go : List Char → ℕ → ℕ → List Char
go a zero _ = a
go a n@(suc _) (suc t) = go (showDig (rem n 10) ∷ a) (n ÷ 10) t
go a (suc _) zero = a
showℕ : ℕ → String
showℕ n = pack (showsℕ n [])
| {
"alphanum_fraction": 0.599078341,
"avg_line_length": 19.1470588235,
"ext": "agda",
"hexsha": "2ca780f21b04b613f64d33c50f96626522c8140f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Nat/Show.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Nat/Show.agda",
"max_line_length": 65,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Nat/Show.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 256,
"size": 651
} |
module Data.List.Prefix where
open import Level
open import Data.Nat
open import Data.List
open import Data.List.At
open import Data.List.Membership.Propositional
open import Data.List.Relation.Unary.Any hiding (map)
open import Data.List.Relation.Binary.Pointwise as P hiding (refl; map)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as ≡
-- prefix predicate for lists
infix 4 _⊑_
data _⊑_ {a} {A : Set a} : List A → List A → Set a where
[] : ∀ {ys} → [] ⊑ ys
_∷_ : ∀ x {xs ys} → xs ⊑ ys → x ∷ xs ⊑ x ∷ ys
⊑-refl : ∀ {a} {A : Set a} → Reflexive (_⊑_ {A = A})
⊑-refl {x = []} = []
⊑-refl {x = x ∷ xs} = x ∷ ⊑-refl
⊑-trans : ∀ {a} {A : Set a} → Transitive (_⊑_ {A = A})
⊑-trans [] _ = []
⊑-trans (x ∷ p) (.x ∷ q) = x ∷ ⊑-trans p q
open import Relation.Binary.PropositionalEquality
⊑-unique : ∀ {a}{A : Set a}{k l : List A}(xs ys : k ⊑ l) → xs ≡ ys
⊑-unique [] [] = refl
⊑-unique (x ∷ xs) (.x ∷ ys) = cong (λ u → x ∷ u) (⊑-unique xs ys)
⊑-trans-refl : ∀ {a}{A : Set a}{k l}{xs : k ⊑ l} → ⊑-trans {A = A} ⊑-refl xs ≡ xs
⊑-trans-refl {xs = []} = refl
⊑-trans-refl {xs = x ∷ xs} = cong (λ u → x ∷ u) ⊑-trans-refl
⊑-trans-refl' : ∀ {a}{A : Set a}{k l}{xs : k ⊑ l} → ⊑-trans {A = A} xs ⊑-refl ≡ xs
⊑-trans-refl' {xs = []} = refl
⊑-trans-refl' {xs = x ∷ xs} = cong (λ u → x ∷ u) ⊑-trans-refl'
⊑-trans-assoc : ∀ {a}{A : Set a}{k l m n : List A}{p : k ⊑ l}{q : l ⊑ m}{r : m ⊑ n} →
⊑-trans p (⊑-trans q r) ≡ ⊑-trans (⊑-trans p q) r
⊑-trans-assoc {p = []} {q} = refl
⊑-trans-assoc {p = x ∷ p} {.x ∷ q} {.x ∷ r} = cong (λ u → x ∷ u) ⊑-trans-assoc
remainder : ∀ {a}{A : Set a}{xs ys : List A} → xs ⊑ ys → List A
remainder ([] {ys}) = ys
remainder (x ∷ xs) = remainder xs
-- list extensions; reverse prefix relation
infix 4 _⊒_
_⊒_ : ∀ {a} {A : Set a} → List A → List A → Set a
xs ⊒ ys = ys ⊑ xs
-- appending to a list gives a list extension;
-- or, appending to a list makes the original a prefix
∷ʳ-⊒ : ∀ {a} {A : Set a} (x : A) xs → xs ∷ʳ x ⊒ xs
∷ʳ-⊒ x [] = []
∷ʳ-⊒ x (x₁ ∷ Σ₁) = x₁ ∷ (∷ʳ-⊒ x Σ₁)
-- indexes into a prefix point to the same element in extensions
xs⊒ys[i] : ∀ {a} {A : Set a} {xs : List A} {ys : List A} {i y} →
xs [ i ]= y → (p : ys ⊒ xs) → ys [ i ]= y
xs⊒ys[i] () []
xs⊒ys[i] {i = zero} p (x ∷ a) = p
xs⊒ys[i] {i = suc i} p (x ∷ a) = xs⊒ys[i] p a
-- prefix is preserved by map
⊑-map : ∀ {a b} {A : Set a} {B : Set b} {xs ys : List A} {f : A → B} →
xs ⊑ ys → map f xs ⊑ map f ys
⊑-map [] = []
⊑-map {f = f} (x ∷ p) = f x ∷ (⊑-map p)
-- all elemens in a list, also exist in it's extensions
∈-⊒ : ∀ {a}{A : Set a}{xs : List A}{x} → x ∈ xs → ∀ {ys} → ys ⊒ xs → x ∈ ys
∈-⊒ () []
∈-⊒ (here px) (x ∷ q) = here px
∈-⊒ (there p) (x ∷ q) = there (∈-⊒ p q)
∈-⊒-refl : ∀ {a}{A : Set a}{xs : List A}{x}{p : x ∈ xs} → ∈-⊒ p ⊑-refl ≡ p
∈-⊒-refl {p = here px} = refl
∈-⊒-refl {p = there p} = cong there ∈-⊒-refl
∈-⊒-trans : ∀ {a}{A : Set a}{xs ys zs : List A}{x}{p : x ∈ xs}(q : ys ⊒ xs)(r : zs ⊒ ys) → ∈-⊒ p (⊑-trans q r) ≡ ∈-⊒ (∈-⊒ p q) r
∈-⊒-trans {p = here px} (x ∷ l) (.x ∷ r) = refl
∈-⊒-trans {p = there p} (x ∷ l) (.x ∷ r) = cong there (∈-⊒-trans l r)
open import Relation.Binary
open import Relation.Binary.Core
open import Relation.Nullary
module Decidable {a}{A : Set a}(_≟_ : Decidable (_≡_ {A = A})) where
_⊑?_ : Decidable (_⊑_ {A = A})
[] ⊑? _ = yes []
(x ∷ xs) ⊑? [] = no (λ ())
(x ∷ xs) ⊑? (y ∷ ys) with x ≟ y
(x ∷ xs) ⊑? (y ∷ ys) | no ¬p = no (λ{ (.x ∷ z) → ¬p refl })
(x ∷ xs) ⊑? (.x ∷ ys) | yes refl with xs ⊑? ys
... | yes px = yes (x ∷ px)
... | no ¬px = no (λ{ (.x ∷ px) → ¬px px})
_⊒?_ : Decidable (_⊒_ {A = A})
xs ⊒? ys = ys ⊑? xs
import Relation.Binary.PropositionalEquality.Core as PC
⊑-preorder : ∀ {ℓ}{A : Set ℓ} → Preorder ℓ ℓ ℓ
⊑-preorder {A = A} = record {
Carrier = List A ; _≈_ = _≡_ ; _∼_ = _⊑_ ;
isPreorder = record {
isEquivalence = ≡.isEquivalence ;
reflexive = λ{ refl → ⊑-refl } ; trans = ⊑-trans } }
⊒-preorder : ∀ {ℓ}{A : Set ℓ} → Preorder _ _ _
⊒-preorder {A = A} = record {
Carrier = List A ; _≈_ = _≡_ ; _∼_ = _⊒_ ;
isPreorder = record {
isEquivalence = ≡.isEquivalence ;
reflexive = λ{ refl → ⊑-refl } ; trans = λ p q → ⊑-trans q p } }
| {
"alphanum_fraction": 0.5110530069,
"avg_line_length": 35.0583333333,
"ext": "agda",
"hexsha": "ed08a855778f79f18f575d35099214a9f473226c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Data/List/Prefix.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Data/List/Prefix.agda",
"max_line_length": 128,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Data/List/Prefix.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 2000,
"size": 4207
} |
{-# OPTIONS --without-K #-}
open import Types
open import Functions
open import Paths
open import HLevel
open import Equivalences
open import Univalence
open import Funext
module HLevelBis where
abstract
-- Every map between contractible types is an equivalence
contr-to-contr-is-equiv : ∀ {i j} {A : Set i} {B : Set j} (f : A → B)
→ (is-contr A → is-contr B → is-equiv f)
contr-to-contr-is-equiv f cA cB y =
((π₁ cA , (contr-has-all-paths cB _ _))
, (λ _ → Σ-eq (contr-has-all-paths cA _ _)
(contr-has-all-paths (≡-is-truncated _ cB) _ _)))
is-contr-is-prop : ∀ {i} {A : Set i} → is-prop (is-contr A)
is-contr-is-prop {A = A} = all-paths-is-prop
(λ x y → Σ-eq (π₂ y (π₁ x))
(funext (lemma x y (π₂ y (π₁ x))))) where
lemma : (x y : is-contr A) (p : π₁ x ≡ π₁ y) (t : A)
→ transport (λ v → (z : A) → z ≡ v) p (π₂ x) t ≡ π₂ y t
lemma (x , p) (.x , q) refl t = contr-has-all-paths
(≡-is-truncated _ (x , p)) _ _
-- Equivalent types have the same truncation level
equiv-types-truncated : ∀ {i j} {A : Set i} {B : Set j} (n : ℕ₋₂) (f : A ≃ B)
→ (is-truncated n A → is-truncated n B)
equiv-types-truncated ⟨-2⟩ (f , e) (x , p) =
(f x , (λ y → ! (inverse-right-inverse (f , e) y) ∘ ap f (p _)))
equiv-types-truncated (S n) f c = λ x y →
equiv-types-truncated n (equiv-ap (f ⁻¹) x y ⁻¹) (c (f ⁻¹ ☆ x) (f ⁻¹ ☆ y))
Π-is-truncated : ∀ {i j} (n : ℕ₋₂) {A : Set i} {P : A → Set j}
→ (((x : A) → is-truncated n (P x)) → is-truncated n (Π A P))
Π-is-truncated ⟨-2⟩ p =
((λ x → π₁ (p x)) , (λ f → funext (λ x → π₂ (p x) (f x))))
Π-is-truncated (S n) p = λ f g →
equiv-types-truncated n funext-equiv
(Π-is-truncated n (λ x → p x (f x) (g x)))
→-is-truncated : ∀ {i j} (n : ℕ₋₂) {A : Set i} {B : Set j}
→ (is-truncated n B → is-truncated n (A → B))
→-is-truncated n p = Π-is-truncated n (λ _ → p)
is-truncated-is-prop : ∀ {i} (n : ℕ₋₂) {A : Set i}
→ is-prop (is-truncated n A)
is-truncated-is-prop ⟨-2⟩ = is-contr-is-prop
is-truncated-is-prop (S n) =
Π-is-truncated _ (λ x → Π-is-truncated _ (λ y → is-truncated-is-prop n))
is-set-is-prop : ∀ {i} {A : Set i} → is-prop (is-set A)
is-set-is-prop = is-truncated-is-prop ⟨0⟩
Σ-is-truncated : ∀ {i j} (n : ℕ₋₂) {A : Set i} {P : A → Set j}
→ (is-truncated n A → ((x : A) → is-truncated n (P x))
→ is-truncated n (Σ A P))
Σ-is-truncated ⟨-2⟩ p q = ((π₁ p , (π₁ (q (π₁ p)))) ,
(λ y → Σ-eq (π₂ p _) (π₂ (q _) _)))
Σ-is-truncated (S n) p q =
λ x y → equiv-types-truncated n total-Σ-eq-equiv
(Σ-is-truncated n (p _ _) (λ _ → q _ _ _))
×-is-truncated : ∀ {i j} (n : ℕ₋₂) {A : Set i} {B : Set j}
→ (is-truncated n A → is-truncated n B → is-truncated n (A × B))
×-is-truncated n pA pB = Σ-is-truncated n pA (λ x → pB)
subtype-truncated-S-is-truncated-S : ∀ {i j} (n : ℕ₋₂)
{A : Set i} {P : A → Set j}
→ (is-truncated (S n) A → ((x : A) → is-prop (P x))
→ is-truncated (S n) (Σ A P))
subtype-truncated-S-is-truncated-S n p q =
Σ-is-truncated (S n) p (λ x → prop-is-truncated-S n (q x))
is-equiv-is-prop : ∀ {i j} {A : Set i} {B : Set j} (f : A → B)
→ is-prop (is-equiv f)
is-equiv-is-prop f = Π-is-truncated _ (λ x → is-contr-is-prop)
-- Specilization
module _ where
Π-is-prop : ∀ {i j} {A : Set i} {P : A → Set j}
→ (((x : A) → is-prop (P x)) → is-prop (Π A P))
Π-is-prop = Π-is-truncated ⟨-1⟩
Π-is-set : ∀ {i j} {A : Set i} {P : A → Set j}
→ (((x : A) → is-set (P x)) → is-set (Π A P))
Π-is-set = Π-is-truncated ⟨0⟩
→-is-set : ∀ {i j} {A : Set i} {B : Set j}
→ (is-set B → is-set (A → B))
→-is-set = →-is-truncated ⟨0⟩
→-is-prop : ∀ {i j} {A : Set i} {B : Set j}
→ (is-prop B → is-prop (A → B))
→-is-prop = →-is-truncated ⟨-1⟩
-- Type of all n-truncated types
Type≤ : (n : ℕ₋₂) (i : Level) → Set (suc i)
Type≤ n i = Σ (Set i) (is-truncated n)
hProp : (i : Level) → Set (suc i)
hProp = Type≤ ⟨-1⟩
hSet : (i : Level) → Set (suc i)
hSet = Type≤ ⟨0⟩
-- [Type≤ n] is (n+1)-truncated
abstract
≃-is-truncated : ∀ {i} (n : ℕ₋₂) {A B : Set i}
→ (is-truncated n A → is-truncated n B → is-truncated n (A ≃ B))
≃-is-truncated ⟨-2⟩ pA pB =
(((λ _ → π₁ pB) , contr-to-contr-is-equiv _ pA pB)
, (λ _ → Σ-eq (funext (λ _ → contr-has-all-paths pB _ _))
(π₁ (is-equiv-is-prop _ _ _))))
≃-is-truncated (S n) pA pB = Σ-is-truncated (S n) (→-is-truncated (S n) pB)
(λ _ → prop-is-truncated-S n
(is-equiv-is-prop _))
≃-is-set : ∀ {i} {A B : Set i} → (is-set A → is-set B → is-set (A ≃ B))
≃-is-set = ≃-is-truncated ⟨0⟩
universe-≡-is-truncated : ∀ {i} (n : ℕ₋₂) {A B : Set i}
→ (is-truncated n A → is-truncated n B → is-truncated n (A ≡ B))
universe-≡-is-truncated n pA pB = equiv-types-truncated n eq-to-path-equiv
$ ≃-is-truncated n pA pB
universe-≡-is-set : ∀ {i} {A B : Set i}
→ (is-set A → is-set B → is-set (A ≡ B))
universe-≡-is-set = universe-≡-is-truncated ⟨0⟩
Type≤-is-truncated : (n : ℕ₋₂) (i : Level)
→ is-truncated (S n) (Type≤ n i)
Type≤-is-truncated n i A B =
equiv-types-truncated n total-Σ-eq-equiv
(Σ-is-truncated n (universe-≡-is-truncated n (π₂ A) (π₂ B))
(λ _ → contr-is-truncated n (≡-is-truncated _
(inhab-prop-is-contr (π₂ B) (is-truncated-is-prop n {-(π₁ B)-})))))
hProp-is-set : (i : Level) → is-set (hProp i)
hProp-is-set = Type≤-is-truncated _
hSet-is-gpd : (i : Level) → is-gpd (hSet i)
hSet-is-gpd = Type≤-is-truncated _
| {
"alphanum_fraction": 0.5178821879,
"avg_line_length": 37.5263157895,
"ext": "agda",
"hexsha": "8ca6641a04cb7539f5c97d576dfef0c7b650d13c",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/HLevelBis.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/HLevelBis.agda",
"max_line_length": 79,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/HLevelBis.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2287,
"size": 5704
} |
open import Coinduction using ( ♭ ; ♯_ )
open import Data.Empty using ( ⊥-elim )
open import System.IO.Transducers.Session using ( Session ; I ; Σ ; IsΣ ; Γ ; _/_ ; _∼_ )
open import System.IO.Transducers.Trace using ( Trace ; [] ; _∷_ ; _⊨_✓ ; _✓ ; _⊑_ )
open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; ⟦_⟧ ; _≃_ ; equiv )
open import System.IO.Transducers.Reflective using ( Reflective ; inp ; out ; done )
open import System.IO.Transducers.Strict using ( Strict ; inp ; done )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; trans ; cong )
open import Relation.Nullary using ( Dec ; ¬_ ; yes ; no )
module System.IO.Transducers.Properties.Lemmas where
open Relation.Binary.PropositionalEquality.≡-Reasoning
-- ≃ is an equivalence
≃-refl : ∀ {S T} {f : Trace S → Trace T} → (f ≃ f)
≃-refl as = refl
≃-sym : ∀ {S T} {f g : Trace S → Trace T} →
(f ≃ g) → (g ≃ f)
≃-sym f≃g as = sym (f≃g as)
≃-trans : ∀ {S T} {f g h : Trace S → Trace T} →
(f ≃ g) → (g ≃ h) → (f ≃ h)
≃-trans f≃g g≃h as = trans (f≃g as) (g≃h as)
-- Completion is decidable
✓-tl : ∀ {S a as} → (S ⊨ a ∷ as ✓) → (S / a ⊨ as ✓)
✓-tl (a ∷ as✓) = as✓
✓? : ∀ {S} as → (Dec (S ⊨ as ✓))
✓? {I} [] = yes []
✓? {Σ V F} [] = no (λ ())
✓? (a ∷ as) with ✓? as
✓? (a ∷ as) | yes as✓ = yes (a ∷ as✓)
✓? (a ∷ as) | no ¬as✓ = no (λ a∷as✓ → ¬as✓ (✓-tl a∷as✓))
-- Eta conversion for traces of type I
I-η : ∀ (as : Trace I) → (as ≡ [])
I-η [] = refl
I-η (() ∷ as)
-- All traces at type I are complete
I-✓ : ∀ (as : Trace I) → (as ✓)
I-✓ [] = []
I-✓ (() ∷ as)
-- Cons is invertable
∷-refl-≡₁ : ∀ {S a b} {as bs : Trace S} {cs ds} →
(as ≡ a ∷ cs) → (bs ≡ b ∷ ds) → (as ≡ bs) → (a ≡ b)
∷-refl-≡₁ refl refl refl = refl
∷-refl-≡₂ : ∀ {S a} {as bs : Trace S} {cs ds} →
(as ≡ a ∷ cs) → (bs ≡ a ∷ ds) → (as ≡ bs) → (cs ≡ ds)
∷-refl-≡₂ refl refl refl = refl
-- Make a function reflective
liat : ∀ {S} → (Trace S) → (Trace S)
liat [] = []
liat (a ∷ []) = []
liat (a ∷ b ∷ bs) = a ∷ liat (b ∷ bs)
incomplete : ∀ {S} → (Trace S) → (Trace S)
incomplete as with ✓? as
incomplete as | yes ✓as = liat as
incomplete as | no ¬✓as = as
reflective : ∀ {S T} → (Trace S → Trace T) → (Trace S → Trace T)
reflective f as with ✓? as
reflective f as | yes ✓as = f as
reflective f as | no ¬✓as = incomplete (f as)
liat-¬✓ : ∀ {S} a as → ¬ (S ⊨ liat (a ∷ as) ✓)
liat-¬✓ a (b ∷ bs) (.a ∷ ✓cs) = liat-¬✓ b bs ✓cs
liat-¬✓ {I} () [] []✓
liat-¬✓ {Σ V F} a [] ()
incomplete-¬✓ : ∀ {S} {isΣ : IsΣ S} (as : Trace S) → ¬ (incomplete as ✓)
incomplete-¬✓ as with ✓? as
incomplete-¬✓ {I} {} [] | yes []
incomplete-¬✓ {Σ V F} [] | yes ()
incomplete-¬✓ (a ∷ as) | yes ✓a∷as = liat-¬✓ a as
incomplete-¬✓ as | no ¬✓as = ¬✓as
reflective-refl-✓ : ∀ {S T} {isΣ : IsΣ T} (f : Trace S → Trace T) as → (reflective f as ✓) → (as ✓)
reflective-refl-✓ f as ✓bs with ✓? as
reflective-refl-✓ f as ✓bs | yes ✓as = ✓as
reflective-refl-✓ {S} {Σ V F} f as ✓bs | no ¬✓as = ⊥-elim (incomplete-¬✓ (f as) ✓bs)
reflective-refl-✓ {S} {I} {} f as ✓bs | no ¬✓as
reflective-≡-✓ : ∀ {S T} (f : Trace S → Trace T) {as} → (as ✓) → (reflective f as ≡ f as)
reflective-≡-✓ f {as} ✓as with ✓? as
reflective-≡-✓ f {as} ✓as | yes _ = refl
reflective-≡-✓ f {as} ✓as | no ¬✓as = ⊥-elim (¬✓as ✓as)
-- All transducers are monotone
⟦⟧-mono : ∀ {S T} (P : S ⇒ T) as bs → (as ⊑ bs) → (⟦ P ⟧ as ⊑ ⟦ P ⟧ bs)
⟦⟧-mono (inp P) .[] bs [] = []
⟦⟧-mono (inp P) (.a ∷ as) (.a ∷ bs) (a ∷ as⊑bs) = ⟦⟧-mono (♭ P a) as bs as⊑bs
⟦⟧-mono (out b P) as bs as⊑bs = b ∷ (⟦⟧-mono P as bs as⊑bs)
⟦⟧-mono done as bs as⊑bs = as⊑bs
-- All transducers respect completion
⟦⟧-resp-✓ : ∀ {S T} (P : S ⇒ T) as → (as ✓) → (⟦ P ⟧ as ✓)
⟦⟧-resp-✓ (inp P) (a ∷ as) (.a ∷ ✓as) = ⟦⟧-resp-✓ (♭ P a) as ✓as
⟦⟧-resp-✓ (out b P) as ✓as = b ∷ ⟦⟧-resp-✓ P as ✓as
⟦⟧-resp-✓ done as ✓as = ✓as
⟦⟧-resp-✓ (inp P) [] ()
-- Reflective transducers reflect completion
⟦⟧-refl-✓ : ∀ {S T} {P : S ⇒ T} → (Reflective P) → ∀ as → (⟦ P ⟧ as ✓) → (as ✓)
⟦⟧-refl-✓ (inp ⟳P) (a ∷ as) bs✓ = a ∷ ⟦⟧-refl-✓ (♭ ⟳P a) as bs✓
⟦⟧-refl-✓ (out b ⟳P) as bs✓ = ⟦⟧-refl-✓ ⟳P as (✓-tl bs✓)
⟦⟧-refl-✓ done as bs✓ = bs✓
⟦⟧-refl-✓ (inp ⟳P) [] ()
-- Any transducer which reflects completion is reflective
⟦⟧-refl-✓⁻¹ : ∀ {S T} (P : S ⇒ T) → (∀ as → (⟦ P ⟧ as ✓) → (as ✓)) → (Reflective P)
⟦⟧-refl-✓⁻¹ {Σ V F} {Σ W G} (inp P) H = inp (♯ λ a → ⟦⟧-refl-✓⁻¹ (♭ P a) (λ as → λ bs✓ → ✓-tl (H (a ∷ as) bs✓)))
⟦⟧-refl-✓⁻¹ (out b P) H = out b (⟦⟧-refl-✓⁻¹ P (λ as bs✓ → H as (b ∷ bs✓)))
⟦⟧-refl-✓⁻¹ done H = done
⟦⟧-refl-✓⁻¹ {Σ V F} {I} (inp P) H with H [] []
⟦⟧-refl-✓⁻¹ {Σ V F} {I} (inp P) H | ()
-- Strict transducers respect emptiness.
⟦⟧-resp-[] : ∀ {S T} {P : S ⇒ T} → (Strict P) → (⟦ P ⟧ [] ≡ [])
⟦⟧-resp-[] (inp P) = refl
⟦⟧-resp-[] done = refl
-- Any transducer which respects emptiness is strict.
⟦⟧-resp-[]⁻¹ : ∀ {S T} (P : S ⇒ T) → (∀ {as} → (as ≡ []) → (⟦ P ⟧ as ≡ [])) → (Strict P)
⟦⟧-resp-[]⁻¹ (inp P) H = inp P
⟦⟧-resp-[]⁻¹ (out b P) H with H refl
⟦⟧-resp-[]⁻¹ (out b P) H | ()
⟦⟧-resp-[]⁻¹ done H = done
-- Coherence wrt ∼
⟦⟧-resp-∼ : ∀ {S T} (eq₁ eq₂ : S ∼ T) → ⟦ equiv eq₁ ⟧ ≃ ⟦ equiv eq₂ ⟧
⟦⟧-resp-∼ I I as = refl
⟦⟧-resp-∼ (Σ V F) (Σ .V G) [] = refl
⟦⟧-resp-∼ (Σ V F) (Σ .V G) (a ∷ as) = cong (_∷_ a) (⟦⟧-resp-∼ (♭ F a) (♭ G a) as)
-- IsEquiv P is inhabited whenever P is equivalent to an equivalence
data IsEquiv {S T : Session} (P : S ⇒ T) : Set₁ where
isEquiv : (S∼T : S ∼ T) → (⟦ P ⟧ ≃ ⟦ equiv S∼T ⟧) → (IsEquiv P)
-- Equivalences are equivalent
≃-equiv : ∀ {S T} {P Q : S ⇒ T} → (IsEquiv P) → (IsEquiv Q) → (⟦ P ⟧ ≃ ⟦ Q ⟧)
≃-equiv {S} {T} {P} {Q} (isEquiv eq₁ P≃eq₁) (isEquiv eq₂ Q≃eq₂) as =
begin
⟦ P ⟧ as
≡⟨ P≃eq₁ as ⟩
⟦ equiv eq₁ ⟧ as
≡⟨ ⟦⟧-resp-∼ eq₁ eq₂ as ⟩
⟦ equiv eq₂ ⟧ as
≡⟨ sym (Q≃eq₂ as) ⟩
⟦ Q ⟧ as
∎
| {
"alphanum_fraction": 0.4730882836,
"avg_line_length": 35.0229885057,
"ext": "agda",
"hexsha": "83c4f4fc2a4ccecd2884061b88182af5641d7e9b",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Transducers/Properties/Lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Transducers/Properties/Lemmas.agda",
"max_line_length": 114,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Transducers/Properties/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 2972,
"size": 6094
} |
{-# OPTIONS --universe-polymorphism #-}
-- Should give some unsolved metas
module Issue203b where
open import Imports.Level
-- Should work but give unsolved metas (type of b)
data ↓ {a b} (A : Set a) : Set a where
[_] : (x : A) → ↓ A
-- Shouldn't instantiate the level of Σ to a
data Σ {a b} (A : Set a) (B : A → Set b) : Set _ where
_,_ : (x : A) (y : B x) → Σ A B
| {
"alphanum_fraction": 0.6069518717,
"avg_line_length": 24.9333333333,
"ext": "agda",
"hexsha": "7900c7a85087e52e799f2d2cec322d7cf1193117",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/Issue203b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/Issue203b.agda",
"max_line_length": 54,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue203b.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 133,
"size": 374
} |
{-# OPTIONS --cubical #-}
module _ where
open import Agda.Primitive.Cubical
open import Agda.Builtin.Cubical.Path
data S1 : Set where
base : S1
loop : base ≡ base
postulate
weird : S1 → I
bad : (x : S1) → I
bad base = {!!}
bad (loop x) = {!!}
| {
"alphanum_fraction": 0.625984252,
"avg_line_length": 14.1111111111,
"ext": "agda",
"hexsha": "21dfa592547f27245eae7190bfa5312d343959a1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phadej/agda",
"max_forks_repo_path": "test/Fail/Issue3314.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phadej/agda",
"max_issues_repo_path": "test/Fail/Issue3314.agda",
"max_line_length": 37,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phadej/agda",
"max_stars_repo_path": "test/Fail/Issue3314.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 88,
"size": 254
} |
{-# OPTIONS --allow-unsolved-metas #-}
module HasSubstantiveDischarge where
open import OscarPrelude
record HasSubstitution (T : Set) (S : Set) : Set where
field
_◃_ : S → T → T
open HasSubstitution ⦃ … ⦄ public
record HasPairUnification (T : Set) (S : Set) : Set where
field
⦃ hasSubstitution ⦄ : HasSubstitution T S
Property : Set₁
Property = S × S → Set
Nothing : Property → Set
Nothing P = ∀ s → P s → ⊥
IsPairUnifier : (t₁ t₂ : T) → Property
IsPairUnifier t₁ t₂ s = let s₁ , s₂ = s in s₁ ◃ t₁ ≡ s₂ ◃ t₂
field
unify : (t₁ t₂ : T) → Dec ∘ ∃ $ IsPairUnifier t₁ t₂
open HasPairUnification ⦃ … ⦄ public
open import HasNegation
record HasSubstantiveDischarge (A : Set) : Set₁
where
field
_o≽o_ : A → A → Set
field
⦃ hasNegation ⦄ : HasNegation A
_⋡_ : A → A → Set
_⋡_ (+) (-) = ¬ + o≽o -
field
≽-reflexive : (x : A) → x o≽o x
≽-consistent : (+ - : A) → + o≽o - → + ⋡ ~ -
≽-contrapositive : ∀ x y → ~ x o≽o y → x o≽o ~ y
≽-contrapositive' : ∀ x y → x o≽o ~ y → ~ x o≽o y
≽-contrapositive' = {!!}
open HasSubstantiveDischarge ⦃ … ⦄ public
{-# DISPLAY HasSubstantiveDischarge._o≽o_ _ = _o≽o_ #-}
open import Membership
record HasGenericSubstantiveDischarge (A : Set) (B : Set) : Set₁
where
field
_≽_ : A → B → Set
open HasGenericSubstantiveDischarge ⦃ … ⦄ public
{-# DISPLAY HasGenericSubstantiveDischarge._≽_ _ = _≽_ #-}
instance HasGenericSubstantiveDischargeReflexive : ∀ {A} ⦃ _ : HasSubstantiveDischarge A ⦄ → HasGenericSubstantiveDischarge A A
HasGenericSubstantiveDischarge._≽_ HasGenericSubstantiveDischargeReflexive = _o≽o_
instance HasGenericSubstantiveDischargeAList : ∀ {A} ⦃ _ : HasSubstantiveDischarge A ⦄ → HasGenericSubstantiveDischarge A (List A)
HasGenericSubstantiveDischarge._≽_ (HasGenericSubstantiveDischargeAList {A}) (+) -s = ∃ λ (i : A) → i ∈ -s × (+ ≽ i)
instance HasGenericSubstantiveDischargeListA : ∀ {A} ⦃ _ : HasSubstantiveDischarge A ⦄ → HasGenericSubstantiveDischarge (List A) A
HasGenericSubstantiveDischarge._≽_ (HasGenericSubstantiveDischargeListA {A}) (+s) (-) = ∃ λ (c : A) → c ∈ +s × c ≽ -
instance HasGenericSubstantiveDischargeListList : ∀ {A} ⦃ _ : HasSubstantiveDischarge A ⦄ → HasGenericSubstantiveDischarge (List A) (List A)
HasGenericSubstantiveDischarge._≽_ (HasGenericSubstantiveDischargeListList {A}) +s -s = ∀ (i : A) → i ∈ -s → +s ≽ i
⋆≽⋆-reflexive : ∀ {A} ⦃ _ : HasSubstantiveDischarge A ⦄ → (xs : List A) → xs ≽ xs
⋆≽⋆-reflexive _ i i∈ys⋆ = _ , i∈ys⋆ , ≽-reflexive i
◁_ : ∀ {A} ⦃ _ : HasSubstantiveDischarge A ⦄ → List A → Set
◁_ {A} +s = ∃ λ (s : A) → s ∈ +s × +s ≽ ~ s
⋪_ : ∀ {A} ⦃ _ : HasSubstantiveDischarge A ⦄ → List A → Set
⋪_ = ¬_ ∘ ◁_
record HasDecidableSubstantiveDischarge (A : Set) : Set₁
where
field
⦃ hasSubstantiveDischarge ⦄ : HasSubstantiveDischarge A
_≽?_ : (+ - : A) → Dec $ + o≽o -
open HasDecidableSubstantiveDischarge ⦃ … ⦄ public
{-# DISPLAY HasDecidableSubstantiveDischarge._≽?_ _ = _≽?_ #-}
_⋆≽?_ : ∀ {A} ⦃ _ : HasDecidableSubstantiveDischarge A ⦄ → (+s : List A) → (- : A) → Dec (+s ≽ -)
_⋆≽?_ [] - = no λ { (_ , () , _)}
_⋆≽?_ (+ ∷ +s) - with + ≽? -
… | yes +≽- = yes $ _ , zero , +≽-
… | no +⋡- with +s ⋆≽? -
… | yes (+' , +'∈+s , +'≽-) = yes $ _ , suc +'∈+s , +'≽-
… | no +s⋡- = no λ { (_ , zero , +≽-) → +⋡- +≽-
; (+' , suc +'∈+s , +'≽-) → +s⋡- $ _ , +'∈+s , +'≽- }
_≽⋆?_ : ∀ {A} ⦃ _ : HasDecidableSubstantiveDischarge A ⦄ → (+ : A) → (-s : List A) → Dec (+ ≽ -s)
+ ≽⋆? [] = no (λ { (fst₁ , () , snd₁)})
+ ≽⋆? (- ∷ -s) with + ≽? -
… | yes +≽- = yes (_ , zero , +≽-)
… | no +⋡- with + ≽⋆? -s
… | yes (_ , i∈-s , +≽⋆i) = yes (_ , suc i∈-s , +≽⋆i)
… | no +⋡⋆-s = no (λ { (_ , zero , +≽-) → +⋡- +≽-
; (_ , suc -'∈-s , +≽-') → +⋡⋆-s (_ , -'∈-s , +≽-')})
_⋆≽⋆?_ : ∀ {A} ⦃ _ : HasDecidableSubstantiveDischarge A ⦄ → (+s : List A) → (-s : List A) → Dec (+s ≽ -s)
_⋆≽⋆?_ +s [] = yes λ _ ()
_⋆≽⋆?_ +s (- ∷ -s) with +s ⋆≽? -
… | no +s⋡- = no λ +s≽-∷-s → +s⋡- $ +s≽-∷-s (-) zero
… | yes +s≽- with +s ⋆≽⋆? -s
… | yes +s≽-s = yes λ { _ zero → +s≽-
; -' (suc -'∈-∷-s) → +s≽-s -' -'∈-∷-s }
… | no +s⋡-s = no λ +s≽-∷-s → +s⋡-s λ +' +'∈-s → +s≽-∷-s +' (suc +'∈-s)
◁?_ : ∀ {+} ⦃ _ : HasDecidableSubstantiveDischarge (+) ⦄
→ (+s : List +) → Dec $ ◁ +s
◁? [] = no λ {(_ , () , _)}
◁?_ (+ ∷ +s) with +s ⋆≽? ~ +
… | yes (_ , +'∈+s , +'≽~+) = yes $ _ , zero , _ , suc +'∈+s , +'≽~+
… | no +s⋆⋡~+ with ~ + ≽⋆? +s
… | yes (_ , c∈+s , ~+≽c) = yes (_ , suc c∈+s , _ , zero , ≽-contrapositive (+) _ ~+≽c)
… | no ~+⋡⋆+s with ◁? +s
… | yes (s , s∈+s , c , c∈+s , c≽~s) = yes $ _ , suc s∈+s , _ , suc c∈+s , c≽~s
… | no ⋪+s = no
λ { (_ , zero , _ , zero , c≽~s) → ≽-consistent (+) (+) (≽-reflexive +) c≽~s
; (_ , zero , c , suc c∈+s , c≽~s) → +s⋆⋡~+ (_ , c∈+s , c≽~s)
; (s , suc s∈+s , .+ , zero , +≽~s) → ~+⋡⋆+s (_ , s∈+s , ≽-contrapositive' (+) s +≽~s)
; (s , suc s∈+s , c , suc c∈+s , c≽~s) → ⋪+s (_ , s∈+s , _ , c∈+s , c≽~s) }
| {
"alphanum_fraction": 0.5172760145,
"avg_line_length": 36.0724637681,
"ext": "agda",
"hexsha": "beb4cedeabf50ec27e03469c3f487ca5cb9707fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/HasSubstantiveDischarge.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/HasSubstantiveDischarge.agda",
"max_line_length": 140,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/HasSubstantiveDischarge.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2433,
"size": 4978
} |
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Constructions.Thin where
open import Cats.Category.Base
open import Level using (_⊔_)
open import Relation.Binary.PropositionalEquality using (_≡_)
module _ {lo la l≈} (C : Category lo la l≈) where
open Category C
Thin : Set (lo ⊔ la ⊔ l≈)
Thin = ∀ {A B} {f g : A ⇒ B} → f ≈ g
StronglyThin : Set (lo ⊔ la)
StronglyThin = ∀ {A B} {f g : A ⇒ B} → f ≡ g
StronglyThin→Thin : ∀ {lo la l≈} {C : Category lo la l≈}
→ StronglyThin C → Thin C
StronglyThin→Thin {C = C} sthin = ≈.reflexive sthin
where
open Category C
| {
"alphanum_fraction": 0.6306913997,
"avg_line_length": 21.1785714286,
"ext": "agda",
"hexsha": "d4e4fb0797ec5bf05c5e60f833b0cf91effe2596",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Category/Constructions/Thin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Category/Constructions/Thin.agda",
"max_line_length": 61,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Category/Constructions/Thin.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 209,
"size": 593
} |
------------------------------------------------------------------------------
-- All the group theory modules
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module GroupTheory.Everything where
open import GroupTheory.Base
open import GroupTheory.Base.Consistency.Axioms
open import GroupTheory.AbelianGroup.Base
open import GroupTheory.AbelianGroup.Base.Consistency.Axioms
open import GroupTheory.AbelianGroup.PropertiesATP
open import GroupTheory.Commutator
open import GroupTheory.Commutator.PropertiesATP
open import GroupTheory.Commutator.PropertiesI
open import GroupTheory.PropertiesATP
open import GroupTheory.PropertiesI
| {
"alphanum_fraction": 0.6226190476,
"avg_line_length": 33.6,
"ext": "agda",
"hexsha": "92975b7799970dbf4abffb0ade514cd716ef43f8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/GroupTheory/Everything.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/GroupTheory/Everything.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/GroupTheory/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 149,
"size": 840
} |
{-# OPTIONS --warning=error #-}
module _ (A : Set) where
{-# POLARITY A #-}
| {
"alphanum_fraction": 0.5641025641,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "5d44c285a0f7993ddcf8975d49198f061c257989",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Polarity-pragma-for-module-parameter.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Polarity-pragma-for-module-parameter.agda",
"max_line_length": 31,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Polarity-pragma-for-module-parameter.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 78
} |
open import prelude renaming (_≟String_ to _≟_)
infixl 5 _$_
-- Copied pretty much verbatim
Var = String
data Term : Set where
var : Var → Term
fun : Var → Term → Term
_$_ : Term → Term → Term
data Value : Term → Set where
fun : (x : Var) → (t : Term) → Value(fun x t)
-- Free variables of a term.
-- (Turns out to be easiest to define when a variable isn't free rather than when it is.)
data _∉FV_ : Var → Term → Set where
var : ∀ {x y} →
x ≢ y →
-------------
x ∉FV(var y)
fun₁ : ∀ {x y t} →
(x ≡ y) →
---------------
x ∉FV(fun y t)
fun₂ : ∀ {x y t} →
(x ∉FV(t)) →
---------------
x ∉FV(fun y t)
app : ∀ {x t₁ t₂} →
(x ∉FV(t₁)) →
(x ∉FV(t₂)) →
-----------------
(x ∉FV(t₁ $ t₂))
-- Substitution
-- TAPL defines substitution as a partial function, which Agda doesn't implement.
-- So instead we keep track of the derivation tree.
data [_↦_]_is_ : Var → Term → Term → Term → Set where
yes : ∀ {x y s} →
(x ≡ y) →
----------------------
[ x ↦ s ] (var y) is s
no : ∀ {x y s} →
(x ≢ y) →
----------------------------
[ x ↦ s ] (var y) is (var y)
fun₁ : ∀ {x y s t} →
(x ≡ y) →
--------------------------------
[ x ↦ s ] (fun y t) is (fun y t)
fun₂ : ∀ {x y s t t′} →
(x ≢ y) →
(y ∉FV(s)) →
[ x ↦ s ] t is t′ →
---------------------------------
[ x ↦ s ] (fun y t) is (fun y t′)
app : ∀ {x s t₁ t₁′ t₂ t₂′} →
[ x ↦ s ] t₁ is t₁′ →
[ x ↦ s ] t₂ is t₂′ →
---------------------------------
[ x ↦ s ] (t₁ $ t₂) is (t₁′ $ t₂′)
-- Reduction is as per TAPL
data _⟶_ : Term → Term → Set where
E─App1 : ∀ {t₁ t₁′ t₂} →
(t₁ ⟶ t₁′) →
------------------------
(t₁ $ t₂) ⟶ (t₁′ $ t₂)
E─App2 : ∀ {t₁ t₂ t₂′} →
(t₂ ⟶ t₂′) →
------------------------
(t₁ $ t₂) ⟶ (t₁ $ t₂′)
E─AppAbs : ∀ {x t₁ t₂ t₃} →
[ x ↦ t₂ ] t₁ is t₃ →
----------------------
(fun x t₁ $ t₂) ⟶ t₃
-- A redex is a term which can reduce
data Redex : Term → Set where
redex : ∀ {t t′} →
t ⟶ t′ →
--------
Redex(t)
-- A closed term is one with no free variables
Closed : Term → Set
Closed(t) = ∀ {x} → x ∉FV(t)
-- Proving that substitution is well-defined for closed terms
data [_↦_]_⇓ : Var → Term → Term → Set where
subst : ∀ {x s t t′} →
([ x ↦ s ] t is t′) →
([ x ↦ s ] t ⇓)
substDef : (x : Var) → (s t : Term) → Closed(s) → ([ x ↦ s ] t ⇓)
substDef x s (var y) c = helper (x ≟ y) where
helper : Dec(x ≡ y) → ([ x ↦ s ] (var y) ⇓)
helper (yes p) = subst (yes p)
helper (no p) = subst (no p)
substDef x s (fun y t) c = helper₁ (x ≟ y) where
helper₂ : (x ≢ y) → ([ x ↦ s ] t ⇓) → ([ x ↦ s ] (fun y t) ⇓)
helper₂ p (subst s) = subst (fun₂ p c s)
helper₁ : Dec(x ≡ y) → ([ x ↦ s ] (fun y t) ⇓)
helper₁ (yes p) = subst (fun₁ p)
helper₁ (no p) = helper₂ p (substDef x s t c)
substDef x s (t₁ $ t₂) c = helper (substDef x s t₁ c) (substDef x s t₂ c) where
helper : ([ x ↦ s ] t₁ ⇓) → ([ x ↦ s ] t₂ ⇓) → ([ x ↦ s ] (t₁ $ t₂) ⇓)
helper (subst s₁) (subst s₂) = subst (app s₁ s₂)
-- Proving that closed terms stay closed
closed₁ : ∀ {t₁ t₂ x} → (x ∉FV(t₁ $ t₂)) → (x ∉FV(t₁))
closed₁ (app p₁ p₂) = p₁
closed₂ : ∀ {t₁ t₂ x} → (x ∉FV(t₁ $ t₂)) → (x ∉FV(t₂))
closed₂ (app p₁ p₂) = p₂
substClosed₁ : ∀ {y s t t′} → (y ∉FV(s)) → ([ y ↦ s ] t is t′) → (y ∉FV(t′))
substClosed₁ p (yes refl) = p
substClosed₁ p (no q) = var q
substClosed₁ p (fun₁ q) = fun₁ q
substClosed₁ p (fun₂ x x₁ q) = fun₂ (substClosed₁ p q)
substClosed₁ p (app q₁ q₂) = app (substClosed₁ p q₁) (substClosed₁ p q₂)
substClosed₂ : ∀ {x y s t t′} → (x ∉FV(t)) → (x ∉FV(s)) → ([ y ↦ s ] t is t′) → (x ∉FV(t′))
substClosed₂ p q (yes refl) = q
substClosed₂ p q (no r) = p
substClosed₂ p q (fun₁ refl) = p
substClosed₂ (fun₁ p) q (fun₂ x x₁ r) = fun₁ p
substClosed₂ (fun₂ p) q (fun₂ x x₁ r) = fun₂ (substClosed₂ p q r)
substClosed₂ (app p₁ p₂) q (app r₁ r₂) = app (substClosed₂ p₁ q r₁) (substClosed₂ p₂ q r₂)
substClosed₃ : ∀ {x y s t t′} → x ∉FV(fun y t) → x ∉FV(s) → ([ y ↦ s ] t is t′) → x ∉FV(t′)
substClosed₃ (fun₁ refl) q r = substClosed₁ q r
substClosed₃ (fun₂ p) q r = substClosed₂ p q r
redexClosed : ∀ {t t′} → Closed(t) → (t ⟶ t′) → Closed(t′)
redexClosed c (E─App1 r) = app (redexClosed (closed₁ c) r) (closed₂ c)
redexClosed c (E─App2 r) = app (closed₁ c) (redexClosed (closed₂ c) r)
redexClosed c (E─AppAbs s) = substClosed₃ (closed₁ c) (closed₂ c) s
-- Proving that every closed term is a value or a redex
data ValueOrRedex : Term → Set where
value : ∀ {t} →
(Value(t)) →
---------------
ValueOrRedex(t)
redex : ∀ {t t′} →
t ⟶ t′ →
---------------
ValueOrRedex(t)
valueOrRedex : (t : Term) → Closed(t) → ValueOrRedex(t)
valueOrRedex (var x) c = CONTRADICTION (helper c) where
helper : (x ∉FV(var x)) → FALSE
helper (var p) = p refl
valueOrRedex (fun x t) c = value (fun x t)
valueOrRedex (t₁ $ t₂) c = helper₁ (valueOrRedex t₁ (closed₁ c)) where
helper₃ : ∀ {x s t} → ([ x ↦ s ] t ⇓) → ValueOrRedex((fun x t) $ s)
helper₃ (subst s) = redex (E─AppAbs s)
helper₂ : ∀ {t₁} → Value(t₁) → ValueOrRedex(t₂) → ValueOrRedex(t₁ $ t₂)
helper₂ (fun x t) (value v) = helper₃ (substDef x t₂ t (closed₂ c))
helper₂ (fun x t) (redex r) = redex (E─App2 r)
helper₁ : ValueOrRedex(t₁) → ValueOrRedex(t₁ $ t₂)
helper₁ (value v₁) = helper₂ v₁ (valueOrRedex t₂ (closed₂ c))
helper₁ (redex r) = redex (E─App1 r)
-- Interpreter!
data _⟶*_ : Term → Term → Set where
done : ∀ {t} →
--------
t ⟶* t
redex : ∀ {t t′ t″} →
t ⟶ t′ →
t′ ⟶* t″ →
----------
t ⟶* t″
-- An interpreter result
data Result : Term → Set where
result : ∀ {t t′} →
t ⟶* t′ →
Value(t′) →
---------
Result(t)
-- The interpreter just calls `valueOrRedex` until it is a value.
-- This might bot terminate!
{-# NON_TERMINATING #-}
interp : (t : Term) → Closed(t) → Result(t)
interp t c = helper₂ (valueOrRedex t c) where
helper₁ : ∀ {t′} → (t ⟶ t′) → Result(t′) → Result(t)
helper₁ r (result s v) = result (redex r s) v
helper₂ : ValueOrRedex(t) → Result(t)
helper₂ (value v) = result done v
helper₂ (redex {t′ = t′} r) = helper₁ r (interp t′ (redexClosed c r))
-- Examples
zer : Term
zer = fun "z" (fun "s" (var "z"))
succ : Term
succ = fun "x" (fun "z" (fun "s" (var "s" $ var "x")))
add : Term
add = fun "x" (fun "y" (var "x" $ var "y" $ succ))
two : Term
two = succ $ (succ $ zer)
four : Term
four = add $ two $ two
zerC : Closed(zer)
zerC {x} with (x ≟ "z")
... | yes refl = fun₁ refl
... | no p = fun₂ (fun₂ (var p))
succC : Closed(succ)
succC {x} with (x ≟ "x") | (x ≟ "s")
... | yes refl | _ = fun₁ refl
... | no p | yes refl = fun₂ (fun₂ (fun₁ refl))
... | no p | no q = fun₂ (fun₂ (fun₂ (app (var q) (var p))))
addC : Closed(add)
addC {x} with (x ≟ "x") | (x ≟ "y")
... | yes refl | _ = fun₁ refl
... | no p | yes refl = fun₂ (fun₁ refl)
... | no p | no q = fun₂ (fun₂ (app (app (var p) (var q)) succC))
twoC : Closed(two)
twoC = app succC (app succC zerC)
fourC : Closed(four)
fourC = app (app addC twoC) twoC
| {
"alphanum_fraction": 0.5027049521,
"avg_line_length": 24.03,
"ext": "agda",
"hexsha": "695e592b208b7ac225e48373879b9f9ad8ed31d3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "asajeffrey/tapl",
"max_forks_repo_path": "ch5.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "asajeffrey/tapl",
"max_issues_repo_path": "ch5.agda",
"max_line_length": 91,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "asajeffrey/tapl",
"max_stars_repo_path": "ch5.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-15T12:09:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-03-12T22:44:19.000Z",
"num_tokens": 2930,
"size": 7209
} |
-- Reported by fredrik.forsberg, Oct 21, 2014
-- The following code gives an internal error
-- "An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/TypeChecking/InstanceArguments.hs:269"
-- on Agda head, since "n ≠ zero" is not expanded.
open import Common.Prelude
open import Common.Equality
¬ : (A : Set) → Set
¬ A = A → ⊥
_≠_ : {A : Set} → (A → A → Set)
x ≠ y = ¬ (x ≡ y)
f : (n : Nat) ⦃ _ : n ≠ zero ⦄ -> Nat
f n = n
g : Nat
g = f (suc zero)
| {
"alphanum_fraction": 0.6274900398,
"avg_line_length": 21.8260869565,
"ext": "agda",
"hexsha": "b1cbbb10aaabfdcdcc25861e1d8eaed0a5eb493d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/Issue1321.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/Issue1321.agda",
"max_line_length": 78,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/Issue1321.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 175,
"size": 502
} |
module C where
open import B
C : Set
C = B
| {
"alphanum_fraction": 0.6444444444,
"avg_line_length": 6.4285714286,
"ext": "agda",
"hexsha": "e9fdae86f65c89d8c99b1f74639c7e8f479c0c92",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/relocatable/originals/C.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/relocatable/originals/C.agda",
"max_line_length": 14,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/relocatable/originals/C.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 16,
"size": 45
} |
open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ )
open import Relation.Binary.PropositionalEquality using ( refl )
open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ; _*_ )
open import Web.Semantic.DL.ABox.Model using
( _⊨a_ ; ⊨a-resp-≡³ ; on-bnode ; bnodes ; _,_ )
open import Web.Semantic.DL.Category.Object using ( Object ; IN )
open import Web.Semantic.DL.Category.Morphism using
( _⇒_ ; BN ; impl ; _⊑_ ; _≣_ ; _,_ )
open import Web.Semantic.DL.Category.Composition using ( _∙_ )
open import Web.Semantic.DL.Category.Tensor using ( _⊗_ ; _⟨⊗⟩_ )
open import Web.Semantic.DL.Category.Wiring using ( identity ; id✓ )
open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using
( compose-left ; compose-right ; compose-resp-⊨a )
open import Web.Semantic.DL.Category.Properties.Tensor.Lemmas using
( tensor-up ; tensor-down ; tensor-resp-⊨a )
open import Web.Semantic.DL.Category.Properties.Tensor.RespectsWiring using
( tensor-resp-wiring )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox )
open import Web.Semantic.DL.TBox.Interp using ( Δ )
open import Web.Semantic.Util using
( id ; _∘_ ; _⊕_⊕_ ; inode ; bnode ; enode ; left ; right ; up ; down )
module Web.Semantic.DL.Category.Properties.Tensor.Functor
{Σ : Signature} {S T : TBox Σ} where
tensor-resp-id : ∀ (A₁ A₂ : Object S T) →
((identity A₁ ⟨⊗⟩ identity A₂) ≣ identity (A₁ ⊗ A₂))
tensor-resp-id A₁ A₂ =
tensor-resp-wiring A₁ A₂ A₁ A₂
id (id✓ A₁) id (id✓ A₂) id (id✓ (A₁ ⊗ A₂))
(λ x → refl) (λ x → refl)
tensor-resp-compose : ∀ {A₁ A₂ B₁ B₂ C₁ C₂ : Object S T}
(F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) (G₁ : B₁ ⇒ C₁) (G₂ : B₂ ⇒ C₂) →
(((F₁ ∙ G₁) ⟨⊗⟩ (F₂ ∙ G₂)) ≣ ((F₁ ⟨⊗⟩ F₂) ∙ (G₁ ⟨⊗⟩ G₂)))
tensor-resp-compose {A₁} {A₂} {B₁} {B₂} {C₁} {C₂} F₁ F₂ G₁ G₂ =
(LHS⊑RHS , RHS⊑LHS) where
LHS⊑RHS : (F₁ ∙ G₁) ⟨⊗⟩ (F₂ ∙ G₂) ⊑ (F₁ ⟨⊗⟩ F₂) ∙ (G₁ ⟨⊗⟩ G₂)
LHS⊑RHS I I⊨STA₁A₂ I⊨LHS = (f , I⊨RHS) where
f : ((BN F₁ ⊎ BN F₂) ⊕ (IN B₁ ⊎ IN B₂) ⊕ (BN G₁ ⊎ BN G₂)) → Δ ⌊ I ⌋
f (inode (inj₁ v)) = ind I (bnode (inj₁ (inode v)))
f (inode (inj₂ v)) = ind I (bnode (inj₂ (inode v)))
f (bnode (inj₁ y)) = ind I (bnode (inj₁ (bnode y)))
f (bnode (inj₂ y)) = ind I (bnode (inj₂ (bnode y)))
f (enode (inj₁ w)) = ind I (bnode (inj₁ (enode w)))
f (enode (inj₂ w)) = ind I (bnode (inj₂ (enode w)))
Iˡ₁⊨F₁ : up * left * bnodes I f ⊨a impl F₁
Iˡ₁⊨F₁ = ⊨a-resp-≡³
(left * up * I) (on-bnode f (ind I) ∘ left ∘ up) refl (impl F₁)
(compose-left F₁ G₁ (up * I) (tensor-up (F₁ ∙ G₁) (F₂ ∙ G₂) I I⊨LHS))
Iˡ₂⊨F₂ : down * (left * bnodes I f) ⊨a impl F₂
Iˡ₂⊨F₂ = ⊨a-resp-≡³
(left * down * I) (on-bnode f (ind I) ∘ left ∘ down) refl (impl F₂)
(compose-left F₂ G₂ (down * I) (tensor-down (F₁ ∙ G₁) (F₂ ∙ G₂) I I⊨LHS))
Iʳ₁⊨G₁ : up * (right * bnodes I f) ⊨a impl G₁
Iʳ₁⊨G₁ = ⊨a-resp-≡³
(right * up * I) (on-bnode f (ind I) ∘ right ∘ up) refl (impl G₁)
(compose-right F₁ G₁ (up * I) (tensor-up (F₁ ∙ G₁) (F₂ ∙ G₂) I I⊨LHS))
Iʳ₂⊨G₂ : down * (right * bnodes I f) ⊨a impl G₂
Iʳ₂⊨G₂ = ⊨a-resp-≡³
(right * down * I) (on-bnode f (ind I) ∘ right ∘ down) refl (impl G₂)
(compose-right F₂ G₂ (down * I) (tensor-down (F₁ ∙ G₁) (F₂ ∙ G₂) I I⊨LHS))
I⊨RHS : bnodes I f ⊨a impl ((F₁ ⟨⊗⟩ F₂) ∙ (G₁ ⟨⊗⟩ G₂))
I⊨RHS = compose-resp-⊨a (F₁ ⟨⊗⟩ F₂) (G₁ ⟨⊗⟩ G₂) (bnodes I f)
(tensor-resp-⊨a F₁ F₂ (left * bnodes I f) Iˡ₁⊨F₁ Iˡ₂⊨F₂)
(tensor-resp-⊨a G₁ G₂ (right * bnodes I f) Iʳ₁⊨G₁ Iʳ₂⊨G₂)
RHS⊑LHS : (F₁ ⟨⊗⟩ F₂) ∙ (G₁ ⟨⊗⟩ G₂) ⊑ (F₁ ∙ G₁) ⟨⊗⟩ (F₂ ∙ G₂)
RHS⊑LHS I I⊨STA₁A₂ I⊨RHS = (f , I⊨LHS) where
f : ((BN F₁ ⊕ IN B₁ ⊕ BN G₁) ⊎ (BN F₂ ⊕ IN B₂ ⊕ BN G₂)) → Δ ⌊ I ⌋
f (inj₁ (inode v)) = ind I (bnode (inode (inj₁ v)))
f (inj₁ (bnode y)) = ind I (bnode (bnode (inj₁ y)))
f (inj₁ (enode w)) = ind I (bnode (enode (inj₁ w)))
f (inj₂ (inode v)) = ind I (bnode (inode (inj₂ v)))
f (inj₂ (bnode y)) = ind I (bnode (bnode (inj₂ y)))
f (inj₂ (enode w)) = ind I (bnode (enode (inj₂ w)))
I₁ˡ⊨F₁ : left * up * bnodes I f ⊨a impl F₁
I₁ˡ⊨F₁ = ⊨a-resp-≡³
(up * left * I) (on-bnode f (ind I) ∘ up ∘ left) refl (impl F₁)
(tensor-up F₁ F₂ (left * I) (compose-left (F₁ ⟨⊗⟩ F₂) (G₁ ⟨⊗⟩ G₂) I I⊨RHS))
I₁ʳ⊨G₁ : right * up * bnodes I f ⊨a impl G₁
I₁ʳ⊨G₁ = ⊨a-resp-≡³
(up * right * I) (on-bnode f (ind I) ∘ up ∘ right) refl (impl G₁)
(tensor-up G₁ G₂ (right * I) (compose-right (F₁ ⟨⊗⟩ F₂) (G₁ ⟨⊗⟩ G₂) I I⊨RHS))
I₂ˡ⊨F₂ : left * down * bnodes I f ⊨a impl F₂
I₂ˡ⊨F₂ = ⊨a-resp-≡³
(down * left * I) (on-bnode f (ind I) ∘ down ∘ left) refl (impl F₂)
(tensor-down F₁ F₂ (left * I) (compose-left (F₁ ⟨⊗⟩ F₂) (G₁ ⟨⊗⟩ G₂) I I⊨RHS))
I₂ʳ⊨G₂ : right * down * bnodes I f ⊨a impl G₂
I₂ʳ⊨G₂ = ⊨a-resp-≡³
(down * right * I) (on-bnode f (ind I) ∘ down ∘ right) refl (impl G₂)
(tensor-down G₁ G₂ (right * I) (compose-right (F₁ ⟨⊗⟩ F₂) (G₁ ⟨⊗⟩ G₂) I I⊨RHS))
I⊨LHS : bnodes I f ⊨a impl ((F₁ ∙ G₁) ⟨⊗⟩ (F₂ ∙ G₂))
I⊨LHS = tensor-resp-⊨a (F₁ ∙ G₁) (F₂ ∙ G₂) (bnodes I f)
(compose-resp-⊨a F₁ G₁ (up * bnodes I f) I₁ˡ⊨F₁ I₁ʳ⊨G₁)
(compose-resp-⊨a F₂ G₂ (down * bnodes I f) I₂ˡ⊨F₂ I₂ʳ⊨G₂)
| {
"alphanum_fraction": 0.5656913368,
"avg_line_length": 47.1081081081,
"ext": "agda",
"hexsha": "f75d055a1873f3d879ebda6e32fb15912b83309f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/Functor.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/Functor.agda",
"max_line_length": 85,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/Functor.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 2592,
"size": 5229
} |
{-# OPTIONS --without-K --safe #-}
module Fragment.Examples.Semigroup.Arith.Reasoning where
open import Fragment.Examples.Semigroup.Arith.Base
+-direct : ∀ {m n} → (m + 2) + (3 + n) ≡ m + (5 + n)
+-direct {m} {n} = begin
(m + 2) + (3 + n)
≡⟨ fragment SemigroupFrex +-semigroup ⟩
m + (5 + n)
∎
open import Data.Nat.Properties using (*-distribˡ-+)
+-inner : ∀ {m n k} → k * (m + 2) + k * (3 + n) ≡ k * (m + 5 + n)
+-inner {m} {n} {k} = begin
k * (m + 2) + k * (3 + n)
≡⟨ sym (*-distribˡ-+ k (m + 2) (3 + n)) ⟩
k * ((m + 2) + (3 + n))
≡⟨ cong (k *_) (fragment SemigroupFrex +-semigroup) ⟩
k * (m + 5 + n)
∎
| {
"alphanum_fraction": 0.4945226917,
"avg_line_length": 26.625,
"ext": "agda",
"hexsha": "78dff3e56c95bf806f2d777515da35d2001afd0b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Examples/Semigroup/Arith/Reasoning.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Examples/Semigroup/Arith/Reasoning.agda",
"max_line_length": 65,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Examples/Semigroup/Arith/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 283,
"size": 639
} |
{-# OPTIONS --allow-unsolved-metas #-}
module nfa where
-- open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Nat
open import Data.List
open import Data.Fin hiding ( _<_ )
open import Data.Maybe hiding ( zip )
open import Relation.Nullary
open import Data.Empty
-- open import Data.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ )
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Relation.Nullary using (¬_; Dec; yes; no)
open import logic
data States1 : Set where
sr : States1
ss : States1
st : States1
data In2 : Set where
i0 : In2
i1 : In2
record NAutomaton ( Q : Set ) ( Σ : Set )
: Set where
field
Nδ : Q → Σ → Q → Bool
Nend : Q → Bool
open NAutomaton
LStates1 : List States1
LStates1 = sr ∷ ss ∷ st ∷ []
-- one of qs q is true
existsS1 : ( States1 → Bool ) → Bool
existsS1 qs = qs sr \/ qs ss \/ qs st
-- extract list of q which qs q is true
to-listS1 : ( States1 → Bool ) → List States1
to-listS1 qs = ss1 LStates1 where
ss1 : List States1 → List States1
ss1 [] = []
ss1 (x ∷ t) with qs x
... | true = x ∷ ss1 t
... | false = ss1 t
Nmoves : { Q : Set } { Σ : Set }
→ NAutomaton Q Σ
→ (exists : ( Q → Bool ) → Bool)
→ ( Qs : Q → Bool ) → (s : Σ ) → ( Q → Bool )
Nmoves {Q} { Σ} M exists Qs s = λ q → exists ( λ qn → (Qs qn /\ ( Nδ M qn s q ) ))
Naccept : { Q : Set } { Σ : Set }
→ NAutomaton Q Σ
→ (exists : ( Q → Bool ) → Bool)
→ (Nstart : Q → Bool) → List Σ → Bool
Naccept M exists sb [] = exists ( λ q → sb q /\ Nend M q )
Naccept M exists sb (i ∷ t ) = Naccept M exists (λ q → exists ( λ qn → (sb qn /\ ( Nδ M qn i q ) ))) t
{-# TERMINATING #-}
NtraceDepth : { Q : Set } { Σ : Set }
→ NAutomaton Q Σ
→ (Nstart : Q → Bool) → List Q → List Σ → List (List ( Σ ∧ Q ))
NtraceDepth {Q} {Σ} M sb all is = ndepth all sb is [] [] where
ndepth : List Q → (q : Q → Bool ) → List Σ → List ( Σ ∧ Q ) → List (List ( Σ ∧ Q ) ) → List (List ( Σ ∧ Q ) )
ndepth1 : Q → Σ → List Q → List Σ → List ( Σ ∧ Q ) → List ( List ( Σ ∧ Q )) → List ( List ( Σ ∧ Q ))
ndepth1 q i [] is t t1 = t1
ndepth1 q i (x ∷ qns) is t t1 = ndepth all (Nδ M x i) is (⟪ i , q ⟫ ∷ t) (ndepth1 q i qns is t t1 )
ndepth [] sb is t t1 = t1
ndepth (q ∷ qs) sb [] t t1 with sb q /\ Nend M q
... | true = ndepth qs sb [] t ( t ∷ t1 )
... | false = ndepth qs sb [] t t1
ndepth (q ∷ qs) sb (i ∷ is) t t1 with sb q
... | true = ndepth qs sb (i ∷ is) t (ndepth1 q i all is t t1 )
... | false = ndepth qs sb (i ∷ is) t t1
-- trace in state set
--
Ntrace : { Q : Set } { Σ : Set }
→ NAutomaton Q Σ
→ (exists : ( Q → Bool ) → Bool)
→ (to-list : ( Q → Bool ) → List Q )
→ (Nstart : Q → Bool) → List Σ → List (List Q)
Ntrace M exists to-list sb [] = to-list ( λ q → sb q /\ Nend M q ) ∷ []
Ntrace M exists to-list sb (i ∷ t ) =
to-list (λ q → sb q ) ∷
Ntrace M exists to-list (λ q → exists ( λ qn → (sb qn /\ ( Nδ M qn i q ) ))) t
data-fin-00 : ( Fin 3 ) → Bool
data-fin-00 zero = true
data-fin-00 (suc zero) = true
data-fin-00 (suc (suc zero)) = true
data-fin-00 (suc (suc (suc ())))
data-fin-01 : (x : ℕ ) → x < 3 → Bool
data-fin-01 zero lt = true
data-fin-01 (suc zero) lt = true
data-fin-01 (suc (suc zero)) lt = true
data-fin-01 (suc (suc (suc x))) (s≤s (s≤s (s≤s ())))
transition3 : States1 → In2 → States1 → Bool
transition3 sr i0 sr = true
transition3 sr i1 ss = true
transition3 sr i1 sr = true
transition3 ss i0 sr = true
transition3 ss i1 st = true
transition3 st i0 sr = true
transition3 st i1 st = true
transition3 _ _ _ = false
fin1 : States1 → Bool
fin1 st = true
fin1 ss = false
fin1 sr = false
test5 = existsS1 (λ q → fin1 q )
test6 = to-listS1 (λ q → fin1 q )
start1 : States1 → Bool
start1 sr = true
start1 _ = false
am2 : NAutomaton States1 In2
am2 = record { Nδ = transition3 ; Nend = fin1}
example2-1 = Naccept am2 existsS1 start1 ( i0 ∷ i1 ∷ i0 ∷ [] )
example2-2 = Naccept am2 existsS1 start1 ( i1 ∷ i1 ∷ i1 ∷ [] )
t-1 : List ( List States1 )
t-1 = Ntrace am2 existsS1 to-listS1 start1 ( i1 ∷ i1 ∷ i1 ∷ [] ) -- (sr ∷ []) ∷ (sr ∷ ss ∷ []) ∷ (sr ∷ ss ∷ st ∷ []) ∷ (st ∷ []) ∷ []
t-2 = Ntrace am2 existsS1 to-listS1 start1 ( i0 ∷ i1 ∷ i0 ∷ [] ) -- (sr ∷ []) ∷ (sr ∷ []) ∷ (sr ∷ ss ∷ []) ∷ [] ∷ []
t-3 = NtraceDepth am2 start1 LStates1 ( i1 ∷ i1 ∷ i1 ∷ [] )
t-4 = NtraceDepth am2 start1 LStates1 ( i0 ∷ i1 ∷ i0 ∷ [] )
t-5 = NtraceDepth am2 start1 LStates1 ( i0 ∷ i1 ∷ [] )
transition4 : States1 → In2 → States1 → Bool
transition4 sr i0 sr = true
transition4 sr i1 ss = true
transition4 sr i1 sr = true
transition4 ss i0 ss = true
transition4 ss i1 st = true
transition4 st i0 st = true
transition4 st i1 st = true
transition4 _ _ _ = false
fin4 : States1 → Bool
fin4 st = true
fin4 _ = false
start4 : States1 → Bool
start4 ss = true
start4 _ = false
am4 : NAutomaton States1 In2
am4 = record { Nδ = transition4 ; Nend = fin4}
example4-1 = Naccept am4 existsS1 start4 ( i0 ∷ i1 ∷ i1 ∷ i0 ∷ [] )
example4-2 = Naccept am4 existsS1 start4 ( i0 ∷ i1 ∷ i1 ∷ i1 ∷ [] )
fin0 : States1 → Bool
fin0 st = false
fin0 ss = false
fin0 sr = false
test0 : Bool
test0 = existsS1 fin0
test1 : Bool
test1 = existsS1 fin1
test2 = Nmoves am2 existsS1 start1
open import automaton
am2def : Automaton (States1 → Bool ) In2
am2def = record { δ = λ qs s q → existsS1 (λ qn → qs q /\ Nδ am2 q s qn )
; aend = λ qs → existsS1 (λ q → qs q /\ Nend am2 q) }
dexample4-1 = accept am2def start1 ( i0 ∷ i1 ∷ i1 ∷ i0 ∷ [] )
texample4-1 = trace am2def start1 ( i0 ∷ i1 ∷ i1 ∷ i0 ∷ [] )
-- LStates1 contains all states in States1
-- a list of Q contains (q : Q)
eqState1? : (x y : States1) → Dec ( x ≡ y )
eqState1? sr sr = yes refl
eqState1? ss ss = yes refl
eqState1? st st = yes refl
eqState1? sr ss = no (λ ())
eqState1? sr st = no (λ ())
eqState1? ss sr = no (λ ())
eqState1? ss st = no (λ ())
eqState1? st sr = no (λ ())
eqState1? st ss = no (λ ())
list-contains : {Q : Set} → ( (x y : Q ) → Dec ( x ≡ y ) ) → (qs : List Q) → (q : Q ) → Bool
list-contains {Q} eq? [] q = false
list-contains {Q} eq? (x ∷ qs) q with eq? x q
... | yes _ = true
... | no _ = list-contains eq? qs q
containsP : {Q : Set} → ( eq? : (x y : Q ) → Dec ( x ≡ y )) → (qs : List Q) → (q : Q ) → Set
containsP eq? qs q = list-contains eq? qs q ≡ true
contains-all : (q : States1 ) → containsP eqState1? LStates1 q
contains-all sr = refl
contains-all ss = refl
contains-all st = refl
-- foldr : (A → B → B) → B → List A → B
-- foldr c n [] = n
-- foldr c n (x ∷ xs) = c x (foldr c n xs)
ssQ : {Q : Set } ( qs : Q → Bool ) → List Q → List Q
ssQ qs [] = []
ssQ qs (x ∷ t) with qs x
... | true = x ∷ ssQ qs t
... | false = ssQ qs t
bool-t1 : {b : Bool } → b ≡ true → (true /\ b) ≡ true
bool-t1 refl = refl
bool-1t : {b : Bool } → b ≡ true → (b /\ true) ≡ true
bool-1t refl = refl
to-list1 : {Q : Set } (qs : Q → Bool ) → (all : List Q) → foldr (λ q x → qs q /\ x ) true (ssQ qs all ) ≡ true
to-list1 qs [] = refl
to-list1 qs (x ∷ all) with qs x | inspect qs x
... | false | record { eq = eq } = to-list1 qs all
... | true | record { eq = eq } = subst (λ k → k /\ foldr (λ q → _/\_ (qs q)) true (ssQ qs all) ≡ true ) (sym eq) ( bool-t1 (to-list1 qs all) )
existsS1-valid : ¬ ( (qs : States1 → Bool ) → ( existsS1 qs ≡ true ) )
existsS1-valid n = ¬-bool refl ( n ( λ x → false ))
--
-- using finiteSet
--
open import finiteSet
open import finiteSetUtil
open FiniteSet
allQ : {Q : Set } (finq : FiniteSet Q) → List Q
allQ {Q} finq = to-list finq (λ x → true)
existQ : {Q : Set } (finq : FiniteSet Q) → (Q → Bool) → Bool
existQ finq qs = exists finq qs
eqQ? : {Q : Set } (finq : FiniteSet Q) → (x y : Q ) → Bool
eqQ? finq x y = equal? finq x y
finState1 : FiniteSet States1
finState1 = record {
finite = finite0
; Q←F = Q←F0
; F←Q = F←Q0
; finiso→ = finiso→0
; finiso← = finiso←0
} where
finite0 : ℕ
finite0 = 3
Q←F0 : Fin finite0 → States1
Q←F0 zero = sr
Q←F0 (suc zero) = ss
Q←F0 (suc (suc zero)) = st
F←Q0 : States1 → Fin finite0
F←Q0 sr = # 0
F←Q0 ss = # 1
F←Q0 st = # 2
finiso→0 : (q : States1) → Q←F0 ( F←Q0 q ) ≡ q
finiso→0 sr = refl
finiso→0 ss = refl
finiso→0 st = refl
finiso←0 : (f : Fin finite0 ) → F←Q0 ( Q←F0 f ) ≡ f
finiso←0 zero = refl
finiso←0 (suc zero) = refl
finiso←0 (suc (suc zero)) = refl
| {
"alphanum_fraction": 0.553344968,
"avg_line_length": 30.264084507,
"ext": "agda",
"hexsha": "e0722ee099321de88e19bbc57b9e32737a9a347f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/nfa.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/nfa.agda",
"max_line_length": 144,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/nfa.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3481,
"size": 8595
} |
module Acme.Type where
open import Agda.Builtin.Bool using (Bool; true; false) public
open import Agda.Builtin.Char using (Char)
renaming (primCharEquality to _==_) public
open import Agda.Builtin.Equality using (_≡_; refl) public
open import Agda.Builtin.List using (List; []; _∷_) public
open import Agda.Builtin.String using (String)
renaming (primStringToList to unpack) public
open import Agda.Builtin.Unit using (⊤; tt) public
open import Agda.Builtin.TrustMe using ()
renaming (primTrustMe to trustMe) public
Type : Set
Type = List Char → Bool
data ⊥ : Set where
IsTrue : Bool → Set
IsTrue true = ⊤
IsTrue false = ⊥
_∈_ : List Char → Type → Set
x ∈ A = IsTrue (A x)
record Elt (A : Type) : Set where
constructor [_]
field value : List Char
@0 {{check}} : value ∈ A
open Elt public
infix 100 _∋_
_∋_ : (A : Type) (str : String) → {{unpack str ∈ A}} → Elt A
A ∋ str = record { value = unpack str }
infixr 3 _&&_
_&&_ : Bool → Bool → Bool
true && b = b
false && b = false
infixr 2 _||_
_||_ : Bool → Bool → Bool
true || b = true
false || b = b
isNil : List Char → Bool
isNil [] = true
isNil _ = false
data Reflects (a : Char) : Char → Bool → Set where
true : Reflects a a true
false : ∀ {b} → Reflects a b false
mkTrue : ∀ {a b} → a ≡ b → Reflects a b true
mkTrue refl = true
_≟_ : (a b : Char) → Reflects a b (a == b)
a ≟ b with a == b
... | false = false
... | true = mkTrue trustMe
private
variable
A B : Set
x y z : A
cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f refl = refl
sym : x ≡ y → y ≡ x
sym refl = refl
trans : x ≡ y → y ≡ z → x ≡ z
trans refl eq = eq
| {
"alphanum_fraction": 0.6242312423,
"avg_line_length": 21.1168831169,
"ext": "agda",
"hexsha": "e6cbf5cba42380d1e7f15f1aed8be3786e3f2d3d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9e83fe708271b4437ae4e259175397d96d10aaf6",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "gallais/STRINaGda",
"max_forks_repo_path": "src/Acme/Type.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9e83fe708271b4437ae4e259175397d96d10aaf6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "gallais/STRINaGda",
"max_issues_repo_path": "src/Acme/Type.agda",
"max_line_length": 62,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "9e83fe708271b4437ae4e259175397d96d10aaf6",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "gallais/STRINaGda",
"max_stars_repo_path": "src/Acme/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-01T20:56:37.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-14T22:26:17.000Z",
"num_tokens": 571,
"size": 1626
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed binary relations
------------------------------------------------------------------------
-- The contents of this module should be accessed via
-- `Relation.Binary.Indexed.Heterogeneous`.
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Indexed.Heterogeneous.Bundles where
open import Function.Base
open import Level using (suc; _⊔_)
open import Relation.Binary using (_⇒_)
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
open import Relation.Binary.Indexed.Heterogeneous.Core
open import Relation.Binary.Indexed.Heterogeneous.Structures
------------------------------------------------------------------------
-- Definitions
record IndexedSetoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : I → Set c
_≈_ : IRel Carrier ℓ
isEquivalence : IsIndexedEquivalence Carrier _≈_
open IsIndexedEquivalence isEquivalence public
record IndexedPreorder {i} (I : Set i) c ℓ₁ ℓ₂ :
Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _∼_
field
Carrier : I → Set c
_≈_ : IRel Carrier ℓ₁ -- The underlying equality.
_∼_ : IRel Carrier ℓ₂ -- The relation.
isPreorder : IsIndexedPreorder Carrier _≈_ _∼_
open IsIndexedPreorder isPreorder public
| {
"alphanum_fraction": 0.5804394047,
"avg_line_length": 32.0681818182,
"ext": "agda",
"hexsha": "18d191506468614764f4a732b931cedae7755786",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Bundles.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Bundles.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 355,
"size": 1411
} |
-- Partly based on code due to Andrea Vezzosi.
{-# OPTIONS --cubical-compatible --safe #-}
open import Agda.Builtin.Bool
data D : Set where
run-time : Bool → D
@0 compile-time : Bool → D
g : D → D
g (run-time x) = run-time x
g (compile-time x) = compile-time x
h : D → @0 D → D
h (run-time x) _ = run-time x
h (compile-time x) (run-time y) = compile-time y
h (compile-time x) (compile-time y) = compile-time x
i : @0 D → D → D
i _ (run-time y) = run-time y
i (run-time x) (compile-time y) = compile-time x
i (compile-time x) (compile-time y) = compile-time y
data E (@0 A : Set) : Set where
c₁ c₂ : E A
@0 c₃ : A → E A
m : {@0 A : Set} → @0 A → E A → E A
m _ c₁ = c₂
m _ c₂ = c₁
m x (c₃ _) = c₃ x
| {
"alphanum_fraction": 0.5437017995,
"avg_line_length": 23.5757575758,
"ext": "agda",
"hexsha": "b666dd0a11beaf079c1a066ac364a6e6659d77ba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue4638.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue4638.agda",
"max_line_length": 52,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue4638.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 283,
"size": 778
} |
open import Agda.Builtin.Unit
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
postulate
foo : Set
macro
bar : Term → TC ⊤
bar = unify (def (quote foo) [])
test : Set
test = {!bar!}
| {
"alphanum_fraction": 0.6842105263,
"avg_line_length": 13.9333333333,
"ext": "agda",
"hexsha": "b8fd6e3ade48f484623700d7280f70f4f0e2da19",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/interaction/Issue4975.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue4975.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue4975.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 65,
"size": 209
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Categories.Definition
module Categories.Dual.Definition where
dual : {a b : _} → Category {a} {b} → Category {a} {b}
dual record { objects = objects ; arrows = arrows ; id = id ; _∘_ = _∘_ ; rightId = rightId ; leftId = leftId ; compositionAssociative = associative } = record { objects = objects ; arrows = λ i j → arrows j i ; id = id ; _∘_ = λ {x y z} g f → f ∘ g ; rightId = λ {x y} f → leftId f ; leftId = λ {x y} f → rightId f ; compositionAssociative = λ {x y z w} f g h → equalityCommutative (associative h g f) }
| {
"alphanum_fraction": 0.650974026,
"avg_line_length": 61.6,
"ext": "agda",
"hexsha": "73a79940180de61ed83db1c1738d8dd5b452813d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Categories/Dual/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Categories/Dual/Definition.agda",
"max_line_length": 404,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Categories/Dual/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 196,
"size": 616
} |
---------------------------------------------
-- Consequences of the axiom of regularity
---------------------------------------------
{-# OPTIONS --allow-unsolved-meta #-}
module sv20.assign2.SetTheory.Regularity where
open import sv20.assign2.SetTheory.Logic
open import sv20.assign2.SetTheory.Algebra
open import sv20.assign2.SetTheory.Subset
open import sv20.assign2.SetTheory.ZAxioms
open import sv20.assign2.SetTheory.Pairs
-- Theorem 105, p. 54
A∉A : (A : 𝓢) → A ∉ A
A∉A A h = cont _ (p₄ , notEmpty)
where
A∈Aₛ : A ∈ singleton A
A∈Aₛ = singletonp₂ A
A∈Aₛ∩A : A ∈ (singleton A ∩ A)
A∈Aₛ∩A = ∩-d₂ _ _ _ (A∈Aₛ , h)
notEmpty : (singleton A ∩ A) ≢ ∅
notEmpty = prop-∅ A _ A∈Aₛ∩A
Aₛ≢∅ : singleton A ≢ ∅
Aₛ≢∅ x = prop-∅ _ _ A∈Aₛ x
reg-step : ∃ (λ x → x ∈ singleton A ∧ ((y : 𝓢) → y ∈ x → y ∉ singleton A))
reg-step = reg (singleton A) Aₛ≢∅
aux : 𝓢
aux = proj₁ reg-step
aux-p : aux ∈ singleton A ∧ ((y : 𝓢) → y ∈ aux → y ∉ singleton A)
aux-p = proj₂ _ reg-step
p : aux ∈ singleton A
p = ∧-proj₁ aux-p
aux∈auxₛ : aux ∈ singleton aux
aux∈auxₛ = singletonp₂ aux
prop : A ∈ singleton aux → A ∩ singleton aux ≡ ∅
prop = singletonp₄ A aux
prop₂ : aux ≡ A
prop₂ = singletonp _ p
imp : A ∩ singleton aux ≡ ∅
imp = prop (subs (λ w → w ∈ singleton aux) (prop₂) aux∈auxₛ)
p₃ : singleton aux ∩ A ≡ ∅
p₃ = subs (λ w → w ≡ ∅) (∩-sym _ _) imp
p₄ : singleton A ∩ A ≡ ∅
p₄ = subs (λ w → singleton w ∩ A ≡ ∅) prop₂ p₃
reg-cons : (A B : 𝓢) → ¬ (A ∈ B ∧ B ∈ A)
reg-cons A B h = {!!}
where
p₁ : A ∈ A ₚ B
p₁ = pair-d₂ _ _ (inj₁ refl)
p₂ : A ∈ B
p₂ = ∧-proj₁ h
p₃ : A ∈ A ₚ B ∩ B
p₃ = ∩-d₂ _ _ _ (p₁ , p₂)
p₄ : (A ₚ B) ≢ ∅
p₄ = prop-∅ _ _ p₁
reg-step : ∃ (λ x → x ∈ A ₚ B ∧ ((y : 𝓢) → y ∈ x → y ∉ A ₚ B))
reg-step = {!!}
x : 𝓢
x = proj₁ reg-step
x-p : x ∈ A ₚ B ∧ ((y : 𝓢) → y ∈ x → y ∉ A ₚ B)
x-p = proj₂ _ reg-step
p₆ : (A ₚ B ∩ x) ≡ ∅
p₆ = {!!}
p₇ : x ∈ A ₚ B
p₇ = ∧-proj₁ x-p
p₈ : x ≡ A ∨ x ≡ B
p₈ = pair-d₁ _ _ p₇
-- References
--
-- Suppes, Patrick (1960). Axiomatic Set Theory.
-- The University Series in Undergraduate Mathematics.
-- D. Van Nostrand Company, inc.
--
-- Enderton, Herbert B. (1977). Elements of Set Theory.
-- Academic Press Inc.
| {
"alphanum_fraction": 0.5374059318,
"avg_line_length": 22.3663366337,
"ext": "agda",
"hexsha": "6cc41f060d6a5a0ab9cebc8fd594bd6535e72c73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Regularity.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Regularity.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Regularity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 991,
"size": 2259
} |
module FFI.Data.Scientific where
{-# FOREIGN GHC import qualified Data.Scientific #-}
postulate Scientific : Set
{-# COMPILE GHC Scientific = type Data.Scientific.Scientific #-}
| {
"alphanum_fraction": 0.7611111111,
"avg_line_length": 25.7142857143,
"ext": "agda",
"hexsha": "8a5be39e2228116d54f50c827126469be3deeebd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FreakingBarbarians/luau",
"max_forks_repo_path": "prototyping/FFI/Data/Scientific.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FreakingBarbarians/luau",
"max_issues_repo_path": "prototyping/FFI/Data/Scientific.agda",
"max_line_length": 64,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FreakingBarbarians/luau",
"max_stars_repo_path": "prototyping/FFI/Data/Scientific.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z",
"num_tokens": 40,
"size": 180
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Int
open import lib.types.Group
open import lib.types.List
open import lib.types.Word
open import lib.groups.Homomorphism
open import lib.groups.Isomorphism
open import lib.groups.FreeAbelianGroup
open import lib.types.SetQuotient
module lib.groups.Int where
ℤ-group-structure : GroupStructure ℤ
ℤ-group-structure = record
{ ident = 0
; inv = ℤ~
; comp = _ℤ+_
; unit-l = ℤ+-unit-l
; assoc = ℤ+-assoc
; inv-l = ℤ~-inv-l
}
ℤ-group : Group₀
ℤ-group = group _ ℤ-group-structure
ℤ-group-is-abelian : is-abelian ℤ-group
ℤ-group-is-abelian = ℤ+-comm
ℤ-abgroup : AbGroup₀
ℤ-abgroup = ℤ-group , ℤ-group-is-abelian
ℤ-iso-FreeAbGroup-Unit : ℤ-group ≃ᴳ FreeAbGroup.grp Unit
ℤ-iso-FreeAbGroup-Unit = ≃-to-≃ᴳ (equiv to from to-from from-to) to-pres-comp where
to = FreeAbGroup.exp Unit fs[ inl unit :: nil ]
from = FormalSum-extend ℤ-abgroup (λ _ → 1)
abstract
to-pres-comp = FreeAbGroup.exp-+ Unit fs[ inl unit :: nil ]
to-from' : ∀ l → to (Word-extendᴳ ℤ-group (λ _ → 1) l) == fs[ l ]
to-from' nil = idp
to-from' (inl unit :: l) =
FreeAbGroup.exp-succ Unit fs[ inl unit :: nil ] (Word-extendᴳ ℤ-group (λ _ → 1) l)
∙ ap (FreeAbGroup.comp Unit fs[ inl unit :: nil ]) (to-from' l)
to-from' (inr unit :: l) =
FreeAbGroup.exp-pred Unit fs[ inl unit :: nil ] (Word-extendᴳ ℤ-group (λ _ → 1) l)
∙ ap (FreeAbGroup.comp Unit fs[ inr unit :: nil ]) (to-from' l)
to-from : ∀ fs → to (from fs) == fs
to-from = FormalSum-elim to-from' (λ _ → prop-has-all-paths-↓)
from-to : ∀ z → from (to z) == z
from-to (pos 0) = idp
from-to (pos 1) = idp
from-to (negsucc 0) = idp
from-to (pos (S (S n))) =
GroupHom.pres-comp (FreeAbGroup-extend ℤ-abgroup (λ _ → 1))
fs[ inl unit :: nil ] (FreeAbGroup.exp Unit fs[ inl unit :: nil ] (pos (S n)))
∙ ap succ (from-to (pos (S n)))
from-to (negsucc (S n)) =
GroupHom.pres-comp (FreeAbGroup-extend ℤ-abgroup (λ _ → 1))
fs[ inr unit :: nil ] (FreeAbGroup.exp Unit fs[ inl unit :: nil ] (negsucc n))
∙ ap pred (from-to (negsucc n))
exp-shom : ∀ {i} {GEl : Type i} (GS : GroupStructure GEl) (g : GEl) → ℤ-group-structure →ᴳˢ GS
exp-shom GS g = group-structure-hom (GroupStructure.exp GS g) (GroupStructure.exp-+ GS g)
exp-hom : ∀ {i} (G : Group i) (g : Group.El G) → ℤ-group →ᴳ G
exp-hom G g = group-hom (Group.exp G g) (Group.exp-+ G g)
| {
"alphanum_fraction": 0.6245516142,
"avg_line_length": 34.8472222222,
"ext": "agda",
"hexsha": "766f557ef827300a5854fa3e2d572d9d0c2af7d6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/Int.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/Int.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/Int.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 900,
"size": 2509
} |
import cedille-options
open import general-util
module untyped-spans (options : cedille-options.options) {F : Set → Set} ⦃ monadF : monad F ⦄ where
open import ctxt
open import cedille-types
open import constants
open import conversion
open import free-vars
open import rename
open import spans options {F} ⦃ monadF ⦄
open import subst
open import syntax-util
open import to-string options
open import type-util
open import elab-util options
{-# TERMINATING #-}
untyped-term : ctxt → ex-tm → spanM term
untyped-type : ctxt → ex-tp → spanM type
untyped-kind : ctxt → ex-kd → spanM kind
untyped-tpkd : ctxt → ex-tk → spanM tpkd
untyped-arg : ctxt → ex-arg → spanM arg
untyped-args : ctxt → ex-args → spanM args
untyped-let : ctxt → ex-def → erased? → posinfo → posinfo → spanM (ctxt × var × tagged-val × (∀ {ed : exprd} → ⟦ ed ⟧ → ⟦ ed ⟧) × (term → term))
untyped-cases : ctxt → ex-cases → renamectxt → spanM cases
untyped-case : ctxt → ex-case → (siblings : ℕ) → (ℕ → err-m) → renamectxt → spanM (case × (ℕ → err-m) × maybe ℕ)
untyped-let Γ (ExDefTerm pi x Tₑ? t) e? fm to =
maybe-map (untyped-type Γ) Tₑ? >>=? λ Tₑ?~ →
untyped-term Γ t >>= λ t~ →
elim-pair (compileFail-in Γ t~) λ tvs e →
let Tₑ~ = maybe-else' Tₑ?~ (TpHole pi) id in
[- Var-span (Γ , pi - x :` Tkt Tₑ~) pi x untyped tvs e -]
return
(ctxt-term-def pi localScope opacity-open x (just t~) Tₑ~ Γ ,
pi % x ,
binder-data Γ pi x (Tkt Tₑ~) e? (just t~) fm to ,
(λ {ed} T' → [ Γ - t~ / (pi % x) ] T') ,
(λ t' → LetTm e? x nothing t~ ([ Γ - Var x / (pi % x) ] t')))
untyped-let Γ (ExDefType pi x k T) e? fm to =
untyped-kind Γ k >>= λ k~ →
untyped-type Γ T >>= λ T~ →
[- TpVar-span (Γ , pi - x :` Tkk k~) pi x untyped [] nothing -]
return
(ctxt-type-def pi localScope opacity-open x (just T~) k~ Γ ,
pi % x ,
binder-data Γ pi x (Tkk k~) e? (just T~) fm to ,
(λ {ed} T' → [ Γ - T~ / (pi % x) ] T') ,
(λ t' → LetTp x k~ T~ ([ Γ - TpVar x / (pi % x) ] t')))
untyped-term Γ (ExApp t e t') =
[- App-span tt (term-start-pos t) (term-end-pos t') untyped [] nothing -]
untyped-term Γ t >>= λ t~ →
untyped-term Γ t' >>= λ t'~ →
return (if e then t~ else App t~ t'~)
untyped-term Γ (ExAppTp t T) =
[- AppTp-span tt (term-start-pos t) (type-end-pos T) untyped [] nothing -]
untyped-type Γ T >>= λ T~ →
untyped-term Γ t
untyped-term Γ (ExBeta pi t? t?') =
maybe-map (λ {(PosTm t pi) → untyped-term Γ t}) t? >>=? λ t?~ →
maybe-map (λ {(PosTm t pi) → untyped-term Γ t}) t?' >>=? λ t?'~ →
[- Beta-span pi (term-end-pos (ExBeta pi t? t?')) untyped [] nothing -]
return (maybe-else' t?'~ id-term id)
untyped-term Γ (ExChi pi T? t) =
maybe-map (untyped-type Γ) T? >>=? λ T?~ →
[- Chi-span Γ pi T?~ t untyped [] nothing -]
untyped-term Γ t
untyped-term Γ (ExDelta pi T? t) =
[- Delta-span pi t untyped [] nothing -]
maybe-map (untyped-type Γ) T? >>=? λ T?~ →
untyped-term Γ t >>= λ t~ →
return id-term
untyped-term Γ (ExEpsilon pi lr -? t) =
[- Epsilon-span pi lr -? t untyped [] nothing -]
untyped-term Γ t
untyped-term Γ (ExHole pi) =
[- hole-span Γ pi nothing untyped [] -]
return (Hole pi)
untyped-term Γ (ExIotaPair pi t₁ t₂ Tₘ? pi') =
let tv-f = λ {(ExGuide pi'' x Tₘ) →
[ binder-data Γ pi'' x (Tkt (TpHole pi'')) ff nothing
(type-start-pos Tₘ) (type-end-pos Tₘ) ]} in
[- IotaPair-span pi pi' untyped (maybe-else' Tₘ? [] tv-f) nothing -]
untyped-term Γ t₁ >>= λ t₁~ →
untyped-term Γ t₂ >>= λ t₂~ →
maybe-map (λ {(ExGuide pi'' x Tₘ) →
untyped-type (ctxt-term-decl pi'' x (TpHole pi'') Γ) Tₘ}) Tₘ? >>=? λ Tₘ?~ →
return t₁~
untyped-term Γ (ExIotaProj t n pi) =
[- IotaProj-span t pi untyped [] nothing -]
untyped-term Γ t
untyped-term Γ (ExLam pi e pi' x tk? t) =
(return tk? on-fail return (Tkt (TpHole pi')) >>=m untyped-tpkd Γ) >>= λ tk~ →
untyped-term (Γ , pi' - x :` tk~) t >>= λ t~ →
let eₖ? = tk? >>= λ _ → ifMaybej (tk-is-type tk~ && ~ e)
"λ-terms must bind a term, not a type (use Λ instead)"
eₑ? = ifMaybej (e && is-free-in (pi' % x) (erase t~))
"The Λ-bound variable occurs free in the erasure of the body" in
[- var-span e (Γ , pi' - x :` tk~) pi' x untyped tk~ eₑ? -]
[- Lam-span Γ untyped pi pi' e x tk~ t [] eₖ? -]
return (if e then t~ else Lam ff x nothing ([ Γ - Var x / (pi' % x) ] t~))
untyped-term Γ (ExLet pi e? d t) =
untyped-let Γ d e? (term-start-pos t) (term-end-pos t) >>= λ where
(Γ' , x , tv , σ , f) →
untyped-term Γ' t >>= λ t~ →
[- punctuation-span "Parens (let)" pi (term-end-pos t) -]
[- Let-span e? pi (term-end-pos t) untyped []
(ifMaybej (e? && is-free-in x t~)
(unqual-local x ^ "occurs free in the body of the term")) -]
return (if is-free-in x t~ then f t~ else t~)
untyped-term Γ (ExOpen pi o pi' x t) =
[- Var-span Γ pi' x untyped [ not-for-navigation ] nothing -]
[- Open-span o pi x t untyped [] nothing -]
untyped-term Γ t
untyped-term Γ (ExParens pi t pi') =
[- punctuation-span "Parens (term)" pi pi' -]
untyped-term Γ t
untyped-term Γ (ExPhi pi t₌ t₁ t₂ pi') =
[- Phi-span pi pi' untyped [] nothing -]
untyped-term Γ t₌ >>
untyped-term Γ t₁ >>
untyped-term Γ t₂
untyped-term Γ (ExRho pi ρ+? ρ<ns>? t₌ Tₘ? t) =
[- Rho-span pi t₌ t untyped ρ+?
(maybe-else' Tₘ? (inj₁ 1) λ {(ExGuide pi' x Tₘ) → inj₂ x}) [] nothing -]
untyped-term Γ t₌ >>
maybe-map (λ {(ExGuide pi' x Tₘ) →
untyped-type (ctxt-var-decl-loc pi' x Γ) Tₘ}) Tₘ? >>=? λ Tₘ?~ →
untyped-term Γ t
untyped-term Γ (ExVarSigma pi t) =
[- VarSigma-span pi t untyped [] nothing -]
untyped-term Γ t
untyped-term Γ (ExTheta pi θ t ts) =
[- Theta-span Γ pi θ t ts untyped [] nothing -]
untyped-term Γ t >>= λ t~ →
untyped-args Γ (map (λ {(Lterm e t) → ExTmArg e t}) ts) >>= λ as~ →
return (recompose-apps (map Arg (erase-args as~)) t~)
untyped-term Γ (ExMu pi pi''' x t Tₘ? pi' ms pi'') =
untyped-term Γ t >>= λ t~ →
maybe-map (untyped-type Γ) Tₘ? >>=? λ Tₘ~? →
[- Var-span Γ pi''' x untyped [] nothing -]
let Γ' = ctxt-term-decl pi''' x (TpHole pi''') Γ
ρ = renamectxt-single (pi''' % x) x
tvs = [ binder-data Γ' pi''' x (Tkt (TpHole pi''')) ff nothing pi' pi'' ] in
untyped-cases Γ' ms ρ >>= λ ms~ →
-- Make sure we aren't matching upon a "False" datatype (e.g., one
-- with no constructors) before any datatypes have been declared
maybe-else' (head2 (trie-mappings (ctxt.μ Γ)))
([- Mu-span Γ pi pi'' Tₘ~? untyped tvs
(just "No datatypes have been declared yet") -]
return (Hole pi))
λ where
(Dₓ , ps , kᵢ , k , cs , eds , ecs) →
[- Mu-span Γ pi pi'' Tₘ~? untyped tvs nothing -]
return (Mu x t~ nothing (mk-data-info Dₓ Dₓ (params-to-args ps) [] ps kᵢ k cs cs eds ecs) ms~)
untyped-term Γ (ExSigma pi t? t Tₘ? pi' ms pi'') =
untyped-term Γ t >>= λ t~ →
maybe-map (untyped-type Γ) Tₘ? >>=? λ Tₘ~? →
maybe-map (untyped-term Γ) t? >>=? λ t~? →
let ρ = empty-renamectxt
μ~ = t~?
tvs = [] in
untyped-cases Γ ms ρ >>= λ ms~ →
-- Make sure we aren't matching upon a "False" datatype (e.g., one
-- with no constructors) before any datatypes have been declared
maybe-else' (head2 (trie-mappings (ctxt.μ Γ)))
([- Mu-span Γ pi pi'' Tₘ~? untyped tvs
(just "No datatypes have been declared yet") -]
return (Hole pi))
λ where
(Dₓ , ps , kᵢ , k , cs , eds , ecs) →
[- Mu-span Γ pi pi'' Tₘ~? untyped tvs nothing -]
return (Sigma μ~ t~ nothing (mk-data-info Dₓ Dₓ (params-to-args ps) [] ps kᵢ k cs cs eds ecs) ms~)
-- x
untyped-term Γ (ExVar pi x) =
maybe-else' (ctxt-binds-term-var Γ x)
([- Var-span Γ pi x untyped [] (just "Not a term variable") -]
return (Var x))
λ {(qx , as) →
[- Var-span Γ pi x untyped [] nothing -]
return (recompose-apps (map Arg (erase-args as)) (Var qx))}
-- ∀/Π x : tk. T
untyped-type Γ (ExTpAbs pi e pi' x tk T) =
untyped-tpkd Γ tk >>= λ tk~ →
untyped-type (Γ , pi' - x :` tk~) T >>= λ T~ →
let T~ = rename-var Γ (pi' % x) x T~ in
[- punctuation-span "Forall" pi (posinfo-plus pi 1) -]
[- var-span e (Γ , pi' - x :` tk~) pi' x untyped tk~ nothing -]
[- TpQuant-span Γ e pi pi' x tk~ T untyped [] nothing -]
return (TpAbs e x tk~ T~)
-- ι x : T₁. T₂
untyped-type Γ (ExTpIota pi pi' x T₁ T₂) =
untyped-type Γ T₁ >>= λ T₁~ →
untyped-type (Γ , pi' - x :` Tkt T₁~) T₂ >>= λ T₂~ →
let T₂~ = rename-var Γ (pi' % x) x T₂~ in
[- punctuation-span "Forall" pi (posinfo-plus pi 1) -]
[- var-span ff (Γ , pi' - x :` Tkt T₁~) pi' x untyped (Tkt T₁~) nothing -]
[- Iota-span Γ pi pi' x T₂~ T₂ untyped [] nothing -]
return (TpIota x T₁~ T₂~)
-- {^ T ^} (generated by theta)
untyped-type Γ (ExTpNoSpans T pi) = untyped-type Γ T >>=spand return
-- [d] - T
untyped-type Γ (ExTpLet pi d T) =
untyped-let Γ d ff (type-start-pos T) (type-end-pos T) >>= λ where
(Γ' , x , tv , σ , f) →
untyped-type Γ' T >>= λ T~ →
[- punctuation-span "Parens (let)" pi (type-end-pos T) -]
[- TpLet-span pi (type-end-pos T) untyped [ tv ] -]
return (σ T~)
-- T · T'
untyped-type Γ (ExTpApp T T') =
untyped-type Γ T >>= λ T~ →
untyped-type Γ T' >>= λ T'~ →
[- TpApp-span (type-start-pos T) (type-end-pos T) untyped [] nothing -]
return (TpAppTp T~ T'~)
-- T t
untyped-type Γ (ExTpAppt T t) =
untyped-type Γ T >>= λ T~ →
untyped-term Γ t >>= λ t~ →
[- TpAppt-span (type-start-pos T) (term-end-pos t) untyped [] nothing -]
return (TpAppTm T~ t~)
-- T ➔/➾ T'
untyped-type Γ (ExTpArrow T e T') =
untyped-type Γ T >>= λ T~ →
untyped-type Γ T' >>= λ T'~ →
[- TpArrow-span T T' untyped [] nothing -]
return (TpAbs e ignored-var (Tkt T~) T'~)
-- { t₁ ≃ t₂ }
untyped-type Γ (ExTpEq pi t₁ t₂ pi') =
untyped-term Γ t₁ >>= λ t₁~ →
untyped-term Γ t₂ >>= λ t₂~ →
[- punctuation-span "Parens (equation)" pi pi' -]
[- TpEq-span pi pi' untyped [] nothing -]
return (TpEq t₁~ t₂~)
-- ●
untyped-type Γ (ExTpHole pi) =
[- tp-hole-span Γ pi nothing untyped [] -]
return (TpHole pi)
-- λ x : tk. T
untyped-type Γ (ExTpLam pi pi' x tk T) =
untyped-tpkd Γ tk >>= λ tk~ →
untyped-type (Γ , pi' - x :` tk~) T >>= λ T~ →
[- punctuation-span "Lambda (type)" pi (posinfo-plus pi 1) -]
[- var-span ff (Γ , pi' - x :` tk~) pi' x untyped tk~ nothing -]
[- TpLambda-span Γ pi pi' x tk~ T untyped [] nothing -]
return (TpLam x tk~ (rename-var Γ (pi' % x) x T~))
-- (T)
untyped-type Γ (ExTpParens pi T pi') =
[- punctuation-span "Parens (type)" pi pi' -]
untyped-type Γ T
-- x
untyped-type Γ (ExTpVar pi x) =
maybe-else' (ctxt-binds-type-var Γ x)
([- TpVar-span Γ pi x untyped [] (just "Undefined type variable") -]
return (TpVar x))
λ {(qx , as) →
[- TpVar-span Γ pi x untyped [] nothing -]
return (apps-type (TpVar qx) (erase-args-keep as))}
-- Π x : tk. k
untyped-kind Γ (ExKdAbs pi pi' x tk k) =
untyped-tpkd Γ tk >>= λ tk~ →
untyped-kind (Γ , pi' - x :` tk~) k >>= λ k~ →
[- KdAbs-span Γ pi pi' x tk~ k untyped nothing -]
[- var-span ff (Γ , pi' - x :` tk~) pi' x untyped tk~ nothing -]
[- punctuation-span "Pi (kind)" pi (posinfo-plus pi 1) -]
return (KdAbs x tk~ (rename-var Γ (pi' % x) x k~))
-- tk ➔ k
untyped-kind Γ (ExKdArrow tk k) =
untyped-tpkd Γ tk >>= λ tk~ →
untyped-kind Γ k >>= λ k~ →
[- KdArrow-span tk k untyped nothing -]
return (KdAbs ignored-var tk~ k~)
-- ●
untyped-kind Γ (ExKdHole pi) =
[- kd-hole-span pi untyped -]
return (KdHole pi)
-- (k)
untyped-kind Γ (ExKdParens pi k pi') =
[- punctuation-span "Parens (kind)" pi pi' -]
untyped-kind Γ k
-- ★
untyped-kind Γ (ExKdStar pi) =
[- Star-span pi untyped nothing -]
return KdStar
-- κ as...
untyped-kind Γ (ExKdVar pi κ as) =
case ctxt-lookup-kind-var-def Γ κ of λ where
nothing →
[- KdVar-span Γ (pi , κ) (args-end-pos (posinfo-plus-str pi κ) as) [] untyped []
(just "Undefined kind variable") -]
return (KdHole pi)
(just (ps , k)) →
untyped-args Γ as >>= λ as~ →
[- KdVar-span Γ (pi , κ)
(args-end-pos (posinfo-plus-str pi κ) as)
ps untyped (params-data Γ ps)
(unless (length as =ℕ length ps)
("Expected " ^ ℕ-to-string (length ps) ^
" argument" ^ (if length ps =ℕ 1 then "" else "s") ^
", but got " ^ ℕ-to-string (length as))) -]
return (fst (subst-params-args' Γ ps as~ k))
untyped-arg Γ (ExTmArg ff t) = inj₁ <$> untyped-term Γ t
untyped-arg Γ (ExTmArg tt t) = (inj₂ ∘ inj₁) <$> untyped-term Γ t
untyped-arg Γ (ExTpArg T) = (inj₂ ∘ inj₂) <$> untyped-type Γ T
untyped-args Γ = sequenceA ∘ map (untyped-arg Γ)
untyped-tpkd Γ (ExTkt T) = Tkt <$> untyped-type Γ T
untyped-tpkd Γ (ExTkk k) = Tkk <$> untyped-kind Γ k
untyped-cases Γ ms ρ =
let msₗ = length ms in
foldl (λ m rec ms f → untyped-case Γ m msₗ f ρ >>= uncurry₂ λ m asₗ n? → rec (maybe-else' n? ms (λ n → set-nth n (just m) ms)) asₗ)
(const ∘ return) ms (repeat (length ms) nothing) (λ _ → nothing) >>=r drop-nothing
untyped-case-args : ctxt → posinfo → ex-case-args → ex-tm → renamectxt → spanM (case-args × term)
untyped-case-args Γ pi cas t ρ =
foldr {B = ctxt → renamectxt → 𝕃 tagged-val → (term → spanM ⊤) → spanM (case-args × term)}
(λ {(ExCaseArg me pi x) rec Γ' ρ tvs sm →
let tk = case me of λ {ExCaseArgTp → Tkk (KdHole pi-gen);
ExCaseArgTm → Tkt (TpHole pi-gen);
ExCaseArgEr → Tkt (TpHole pi-gen)} in
rec
(ctxt-tk-decl pi x tk Γ')
(renamectxt-insert ρ (pi % x) x)
(binder-data Γ' pi x tk (ex-case-arg-erased me) nothing
(term-start-pos t) (term-end-pos t) :: tvs)
(λ t →
[- var-span (ex-case-arg-erased me) Γ' pi x untyped tk
(when (ex-case-arg-erased me && is-free-in (pi % x) (erase t))
"The bound variable occurs free in the erasure of the body (not allowed)") -]
sm t) >>=c λ cas →
return2 (case me of λ {ExCaseArgTm → CaseArg ff x nothing :: cas; _ → cas})})
(λ Γ' ρ tvs sm →
[- pattern-clause-span pi t (reverse tvs) -]
untyped-term Γ' t >>= λ t~ →
sm t~ >>
return2 [] (subst-renamectxt Γ' ρ t~))
cas Γ ρ [] λ _ → spanMok
untyped-case Γ (ExCase pi x cas t) csₗ asₗ ρ =
untyped-case-args Γ pi cas t ρ >>=c λ cas~ t~ →
case (qual-lookup Γ x) of λ where
(just (qx , as , ctr-def ps T Cₗ cᵢ cₐ , loc)) →
let c~ = Case qx cas~ t~ []
eᵢ = "This constructor overlaps with " ^ x
eₐ = unless (length cas~ =ℕ cₐ)
("Expected " ^ ℕ-to-string cₐ ^
" arguments after erasure, but got " ^ ℕ-to-string (length cas~))
eₗ = unless (Cₗ =ℕ csₗ)
("Constructor's datatype has " ^ ℕ-to-string Cₗ ^
(if Cₗ =ℕ 1 then " constructor" else " constructors") ^
", but expected " ^ ℕ-to-string csₗ) in
[- Var-span Γ pi x untyped [] (asₗ cᵢ ||-maybe (eₐ ||-maybe eₗ)) -]
return2 c~ ((λ cᵢ' → when (cᵢ =ℕ cᵢ') eᵢ) , (maybe-not (asₗ cᵢ) >> just cᵢ))
_ →
[- Var-span Γ pi x untyped [] (just $ "This is not a valid constructor name") -]
return2 (Case x cas~ t~ []) (asₗ , nothing)
| {
"alphanum_fraction": 0.5608791494,
"avg_line_length": 38.2729528536,
"ext": "agda",
"hexsha": "f9cc265d7a4e4b1795445b443bf12d5001e6f8bb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ice1k/cedille",
"max_forks_repo_path": "src/untyped-spans.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ice1k/cedille",
"max_issues_repo_path": "src/untyped-spans.agda",
"max_line_length": 144,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ice1k/cedille",
"max_stars_repo_path": "src/untyped-spans.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5699,
"size": 15424
} |
module AlonzoPrelude where
open import RTN public
import RTP -- magic module - Run Time Primitives
Int : Set
Int = RTP.Int
Float : Set
Float = RTP.Float
String : Set
String = RTP.String
Char : Set
Char = RTP.Char
data True : Set where
tt : True
{-
record True : Set where
tt : True
tt = record{}
-}
data False : Set where
elim-False : {A : Set} -> False -> A
elim-False ()
-- _∘_ : {A,B,C:Set} -> (B -> C) -> (A -> B) -> A -> C
-- f ∘ g = \x -> f (g x)
id : {A : Set} -> A -> A
id x = x
infixr 90 _○_
_○_ : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C
(f ○ g) x = f (g x)
infixr 0 _$_
_$_ : {A B : Set} -> (A -> B) -> A -> B
f $ x = f x
flip : {A B C : Set} -> (A -> B -> C) -> B -> A -> C
flip f x y = f y x
const : {A B : Set} -> A -> B -> A
const x _ = x
typeOf : {A : Set} -> A -> Set
typeOf {A} _ = A
data _×_ (A B : Set) : Set where
<_,_> : A -> B -> A × B
fst : {A B : Set} -> A × B -> A
fst < x , y > = x
snd : {A B : Set} -> A × B -> B
snd < x , y > = y
{-
infixr 10 _::_
data List (A:Set) : Set where
nil : List A
_::_ : A -> List A -> List A
[_] : {A:Set} -> A -> List A
[ x ] = x :: nil
-}
{-# BUILTIN INTEGER Int #-}
-- {-# BUILTIN STRING String #-}
-- {-# BUILTIN FLOAT Float #-}
{-# BUILTIN CHAR Char #-}
| {
"alphanum_fraction": 0.4411337209,
"avg_line_length": 17.2,
"ext": "agda",
"hexsha": "3541e266a567b7ad17c7fa8a234aeda066824bd8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/AlonzoPrelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/AlonzoPrelude.agda",
"max_line_length": 56,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/AlonzoPrelude.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 556,
"size": 1376
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block
import LibraBFT.Impl.Execution.ExecutorTypes.StateComputeResult as StateComputeResult
import LibraBFT.Impl.OBM.Crypto as Crypto
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.Prelude
module LibraBFT.Impl.Consensus.ConsensusTypes.ExecutedBlock where
isNilBlock : ExecutedBlock → Bool
isNilBlock eb = Block.isNilBlock (eb ^∙ ebBlock)
blockInfo : ExecutedBlock → BlockInfo
blockInfo eb =
Block.genBlockInfo
(eb ^∙ ebBlock)
(Crypto.obmHashVersion -- OBM-LBFT-DIFF - see SafetyRules.extensionCheck
(eb ^∙ ebStateComputeResult ∙ scrObmNumLeaves))
(eb ^∙ ebStateComputeResult ∙ scrObmNumLeaves)
(eb ^∙ ebStateComputeResult ∙ scrEpochState)
maybeSignedVoteProposal : ExecutedBlock → MaybeSignedVoteProposal
maybeSignedVoteProposal self =
MaybeSignedVoteProposal∙new
(VoteProposal∙new (StateComputeResult.extensionProof (self ^∙ ebStateComputeResult))
(self ^∙ ebBlock)
(self ^∙ ebStateComputeResult ∙ scrEpochState))
| {
"alphanum_fraction": 0.7407912688,
"avg_line_length": 40.7222222222,
"ext": "agda",
"hexsha": "1d0c02576e146353a45a8d094e4d691a8ece1969",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/ExecutedBlock.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/ExecutedBlock.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/ExecutedBlock.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 387,
"size": 1466
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bisimilarity for Covecs
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Covec.Bisimilarity where
open import Level using (_⊔_)
open import Size
open import Codata.Thunk
open import Codata.Conat hiding (_⊔_)
open import Codata.Covec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as Eq using (_≡_)
data Bisim {a b r} {A : Set a} {B : Set b} (R : A → B → Set r) (i : Size) :
∀ m n (xs : Covec A ∞ m) (ys : Covec B ∞ n) → Set (r ⊔ a ⊔ b) where
[] : Bisim R i zero zero [] []
_∷_ : ∀ {x y m n xs ys} → R x y → Thunk^R (λ i → Bisim R i (m .force) (n .force)) i xs ys →
Bisim R i (suc m) (suc n) (x ∷ xs) (y ∷ ys)
module _ {a r} {A : Set a} {R : A → A → Set r} where
reflexive : Reflexive R → ∀ {i m} → Reflexive (Bisim R i m m)
reflexive refl^R {i} {m} {[]} = []
reflexive refl^R {i} {m} {r ∷ rs} = refl^R ∷ λ where .force → reflexive refl^R
module _ {a b} {A : Set a} {B : Set b}
{r} {P : A → B → Set r} {Q : B → A → Set r} where
symmetric : Sym P Q → ∀ {i m n} → Sym (Bisim P i m n) (Bisim Q i n m)
symmetric sym^PQ [] = []
symmetric sym^PQ (p ∷ ps) = sym^PQ p ∷ λ where .force → symmetric sym^PQ (ps .force)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
{r} {P : A → B → Set r} {Q : B → C → Set r} {R : A → C → Set r} where
transitive : Trans P Q R → ∀ {i m n p} → Trans (Bisim P i m n) (Bisim Q i n p) (Bisim R i m p)
transitive trans^PQR [] [] = []
transitive trans^PQR (p ∷ ps) (q ∷ qs) =
trans^PQR p q ∷ λ where .force → transitive trans^PQR (ps .force) (qs .force)
-- Pointwise Equality as a Bisimilarity
------------------------------------------------------------------------
module _ {ℓ} {A : Set ℓ} where
infix 1 _,_⊢_≈_
_,_⊢_≈_ : ∀ i m → Covec A ∞ m → Covec A ∞ m → Set ℓ
_,_⊢_≈_ i m = Bisim _≡_ i m m
refl : ∀ {i m} → Reflexive (i , m ⊢_≈_)
refl = reflexive Eq.refl
sym : ∀ {i m} → Symmetric (i , m ⊢_≈_)
sym = symmetric Eq.sym
trans : ∀ {i m} → Transitive (i , m ⊢_≈_)
trans = transitive Eq.trans
| {
"alphanum_fraction": 0.5046812305,
"avg_line_length": 35.046875,
"ext": "agda",
"hexsha": "ba60fce6d0ca788be934c7f009c1bfe1c9d21319",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Covec/Bisimilarity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Covec/Bisimilarity.agda",
"max_line_length": 95,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Covec/Bisimilarity.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 821,
"size": 2243
} |
------------------------------------------------------------------------
-- Some omniscience principles
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Omniscience {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Equality.Decision-procedures eq
open import Excluded-middle eq
open import Function-universe eq hiding (id; _∘_)
open import H-level eq
open import H-level.Closure eq
open import Nat eq
-- I don't know who first stated LPO and WLPO, or who first proved
-- various properties about these principles.
-- The limited principle of omniscience.
LPO : Type
LPO = (f : ℕ → Bool) → (∀ n → f n ≡ false) ⊎ (∃ λ n → f n ≡ true)
-- The weak limited principle of omniscience.
WLPO : Type
WLPO = (f : ℕ → Bool) → Dec (∀ n → f n ≡ false)
-- WLPO is propositional (assuming extensionality).
WLPO-propositional :
Extensionality lzero lzero →
Is-proposition WLPO
WLPO-propositional ext =
Π-closure ext 1 λ f →
Dec-closure-propositional ext
(Π-closure ext 1 λ _ →
Bool-set)
-- LPO implies WLPO.
LPO→WLPO : LPO → WLPO
LPO→WLPO LPO f =
⊎-map id
(uncurry λ n fn≡true ∀n→fn≡false → Bool.true≢false (
true ≡⟨ sym fn≡true ⟩
f n ≡⟨ ∀n→fn≡false n ⟩∎
false ∎))
(LPO f)
-- WLPO follows from excluded middle (assuming extensionality).
--
-- This follows from LPO→WLPO and LEM→LPO (see below), but this proof
-- is less complicated.
LEM→WLPO : Extensionality lzero lzero → Excluded-middle lzero → WLPO
LEM→WLPO ext em = λ _ → em (Π-closure ext 1 λ _ →
Bool-set)
mutual
-- There is a propositional property that is logically equivalent to
-- LPO (assuming extensionality).
--
-- I think that Escardo has proved some variant of this property. The
-- proof below uses a technique suggested by Exercise 3.19 in the HoTT
-- book.
LPO⇔propositional :
Extensionality lzero lzero →
∃ λ (P : Type) → Is-proposition P × (LPO ⇔ P)
LPO⇔propositional ext =
let P , P-prop , LPO⇔ = LPO⇔propositional′ ext in
(∀ f → P f ⊎ ¬ P f)
, (Π-closure ext 1 λ f →
⊎-closure-propositional
(flip _$_) (P-prop f) (¬-propositional ext))
, LPO⇔
-- A variant of the previous property.
LPO⇔propositional′ :
Extensionality lzero lzero →
∃ λ (P : (ℕ → Bool) → Type) →
(∀ f → Is-proposition (P f)) ×
(LPO ⇔ ∀ f → P f ⊎ ¬ P f)
LPO⇔propositional′ ext =
P
, P-prop
, (((f : ℕ → Bool) → (∀ n → f n ≡ false) ⊎ (∃ λ n → f n ≡ true)) ↝⟨ (∀-cong _ λ _ →
record { to = ≡false→¬P; from = ¬P→≡false }
⊎-cong
record { to = ≡true→P; from = Σ-map id proj₁ }) ⟩
((f : ℕ → Bool) → ¬ P f ⊎ P f) ↝⟨ (∀-cong _ λ _ → from-bijection ⊎-comm) ⟩□
((f : ℕ → Bool) → P f ⊎ ¬ P f) □)
where
P = λ (f : ℕ → Bool) →
∃ λ n → f n ≡ true × ∀ {m} → m < n → f m ≡ false
P-prop : ∀ f → Is-proposition (P f)
P-prop f (n₁ , fn₁≡true , <n₁→≡false) (n₂ , fn₂≡true , <n₂→≡false) =
Σ-≡,≡→≡
(case n₁ <⊎≡⊎> n₂ of λ where
(inj₁ n₁<n₂) → ⊥-elim (Bool.true≢false (
true ≡⟨ sym fn₁≡true ⟩
f n₁ ≡⟨ <n₂→≡false n₁<n₂ ⟩∎
false ∎))
(inj₂ (inj₁ n₁≡n₂)) → n₁≡n₂
(inj₂ (inj₂ n₁>n₂)) → ⊥-elim (Bool.true≢false (
true ≡⟨ sym fn₂≡true ⟩
f n₂ ≡⟨ <n₁→≡false n₁>n₂ ⟩∎
false ∎)))
(×-closure 1
(Bool-set)
(implicit-Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Bool-set)
_ _)
¬P→≡false : ∀ {f} → ¬ (P f) → (∀ n → f n ≡ false)
¬P→≡false {f} ¬Pf =
well-founded-elim _ λ n hyp →
case inspect (f n) of λ where
(false , fn≡false) → fn≡false
(true , fn≡true) → ⊥-elim (¬Pf (n , fn≡true , hyp))
≡false→¬P : ∀ {f} → (∀ n → f n ≡ false) → ¬ (P f)
≡false→¬P {f} ≡false (n , ≡true , _) = Bool.true≢false (
true ≡⟨ sym ≡true ⟩
f n ≡⟨ ≡false n ⟩∎
false ∎)
≡true→P : ∀ {f} → (∃ λ n → f n ≡ true) → P f
≡true→P {f} (n , fn≡true) =
helper (≤→≤↑ (zero≤ _)) (λ o<0 → ⊥-elim (≮0 _ o<0))
where
helper : ∀ {m} → m ≤↑ n → (∀ {o} → o < m → f o ≡ false) → P f
helper {m} (≤↑-refl m≡n) <→≡false = n , fn≡true , λ {o} →
o < n ↝⟨ subst (o <_) (sym m≡n) ⟩
o < m ↝⟨ <→≡false ⟩□
f o ≡ false □
helper {m} (≤↑-step m<n) <→≡false with inspect (f m)
... | true , fm≡true = m , fm≡true , <→≡false
... | false , fm≡false = helper m<n λ {o} o<1+m →
case ≤→≤↑ o<1+m of λ where
(≤↑-refl 1+o≡1+m) → f o ≡⟨ cong f (cancel-suc 1+o≡1+m) ⟩
f m ≡⟨ fm≡false ⟩∎
false ∎
(≤↑-step 1+o<1+m) → <→≡false (pred-mono (≤↑→≤ 1+o<1+m))
-- LPO follows from excluded middle (assuming extensionality).
LEM→LPO : Extensionality lzero lzero → Excluded-middle lzero → LPO
LEM→LPO ext =
let P , P-prop , LPO⇔P = LPO⇔propositional′ ext in
({P : Type} → Is-proposition P → Dec P) ↝⟨ _∘ P-prop ⟩
(∀ f → P f ⊎ ¬ P f) ↝⟨ _⇔_.from LPO⇔P ⟩□
LPO □
| {
"alphanum_fraction": 0.4557477111,
"avg_line_length": 35.1071428571,
"ext": "agda",
"hexsha": "b3b2ae7b7494c58faed85bafe27dd2a3d6e60b58",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Omniscience.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Omniscience.agda",
"max_line_length": 125,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Omniscience.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2064,
"size": 5898
} |
--------------------------------------------------------------------------------
-- This is part of Agda Inference Systems
{-# OPTIONS --guardedness #-}
module is-lib.InfSys {𝓁} where
open import is-lib.InfSys.Base {𝓁} public
open import is-lib.InfSys.Induction {𝓁} public
open import is-lib.InfSys.Coinduction {𝓁} public
open import is-lib.InfSys.FlexCoinduction {𝓁} public
open MetaRule public
open FinMetaRule public
open IS public | {
"alphanum_fraction": 0.6084070796,
"avg_line_length": 34.7692307692,
"ext": "agda",
"hexsha": "1224f08ac9fdd65c80e17556af5f7e763570bdc3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/is-lib/InfSys.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/is-lib/InfSys.agda",
"max_line_length": 80,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/is-lib/InfSys.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 116,
"size": 452
} |
module Issue121 where
id : Set → Set
id A = A
data Bool : Set where
true : Bool
false : Bool
F : Bool → Set → Set
F true = id
F false = id
G : Bool → Set → Set
G true = id
G false = λ A → A
data D : Set where
nop : (b : Bool) → F b D → D
bop : (b : Bool) → G b D → D
| {
"alphanum_fraction": 0.5441696113,
"avg_line_length": 12.8636363636,
"ext": "agda",
"hexsha": "956cf396bb327d3e6bd6c65ada054c980a47e52b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue121.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue121.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue121.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 111,
"size": 283
} |
{-
This second-order signature was created from the following second-order syntax description:
syntax Group | G
type
* : 0-ary
term
unit : * | ε
add : * * -> * | _⊕_ l20
neg : * -> * | ⊖_ r40
theory
(εU⊕ᴸ) a |> add (unit, a) = a
(εU⊕ᴿ) a |> add (a, unit) = a
(⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c))
(⊖N⊕ᴸ) a |> add (neg (a), a) = unit
(⊖N⊕ᴿ) a |> add (a, neg (a)) = unit
-}
module Group.Signature where
open import SOAS.Context
open import SOAS.Common
open import SOAS.Syntax.Signature *T public
open import SOAS.Syntax.Build *T public
-- Operator symbols
data Gₒ : Set where
unitₒ addₒ negₒ : Gₒ
-- Term signature
G:Sig : Signature Gₒ
G:Sig = sig λ
{ unitₒ → ⟼₀ *
; addₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ *
; negₒ → (⊢₀ *) ⟼₁ *
}
open Signature G:Sig public
| {
"alphanum_fraction": 0.5661764706,
"avg_line_length": 18.1333333333,
"ext": "agda",
"hexsha": "3c5d6f7db04810a6b06769ceaf9e59c38f8015da",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/Group/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/Group/Signature.agda",
"max_line_length": 91,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/Group/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 356,
"size": 816
} |
------------------------------------------------------------------------------
-- Properties stated in the Burstall's paper
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.SortList.PropertiesI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Bool
open import FOTC.Data.Bool.PropertiesI
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.List.Type
open import FOTC.Data.Nat.Type
open import FOTC.Data.List
open import FOTC.Data.List.PropertiesI
open import FOTC.Program.SortList.Properties.Totality.BoolI
open import FOTC.Program.SortList.Properties.Totality.ListN-I
open import FOTC.Program.SortList.Properties.Totality.OrdList.FlattenI
open import FOTC.Program.SortList.Properties.Totality.OrdListI
open import FOTC.Program.SortList.Properties.Totality.OrdTreeI
open import FOTC.Program.SortList.Properties.Totality.TreeI
open import FOTC.Program.SortList.SortList
------------------------------------------------------------------------------
-- Induction on lit.
ind-lit : (A : D → Set) (f : D) → ∀ y₀ {xs} → ListN xs →
A y₀ →
(∀ {x} → N x → ∀ y → A y → A (f · x · y)) →
A (lit f xs y₀)
ind-lit A f y₀ lnnil Ay₀ ih = subst A (sym (lit-[] f y₀)) Ay₀
ind-lit A f y₀ (lncons {i} {is} Ni LNis) Ay₀ ih =
subst A
(sym (lit-∷ f i is y₀))
(ih Ni (lit f is y₀) (ind-lit A f y₀ LNis Ay₀ ih))
------------------------------------------------------------------------------
-- Burstall's lemma: If t is ordered then totree(i, t) is ordered.
toTree-OrdTree : ∀ {item t} → N item → Tree t → OrdTree t →
OrdTree (toTree · item · t)
toTree-OrdTree {item} Nitem tnil _ =
ordTree (toTree · item · nil)
≡⟨ subst (λ x → ordTree (toTree · item · nil) ≡
ordTree x)
(toTree-nil item)
refl
⟩
ordTree (tip item)
≡⟨ ordTree-tip item ⟩
true ∎
toTree-OrdTree {item} Nitem (ttip {i} Ni) _ =
case prf₁ prf₂ (x>y∨x≤y Ni Nitem)
where
prf₁ : i > item → OrdTree (toTree · item · tip i)
prf₁ i>item =
ordTree (toTree · item · tip i)
≡⟨ subst (λ t → ordTree (toTree · item · tip i) ≡ ordTree t)
(toTree-tip item i)
refl
⟩
ordTree (if (le i item)
then (node (tip i) item (tip item))
else (node (tip item) i (tip i)))
≡⟨ subst (λ t → ordTree (if (le i item)
then (node (tip i) item (tip item))
else (node (tip item) i (tip i))) ≡
ordTree (if t
then (node (tip i) item (tip item))
else (node (tip item) i (tip i))))
(x>y→x≰y Ni Nitem i>item)
refl
⟩
ordTree (if false
then (node (tip i) item (tip item))
else (node (tip item) i (tip i)))
≡⟨ subst (λ t → ordTree (if false
then (node (tip i) item (tip item))
else (node (tip item) i (tip i))) ≡
ordTree t)
(if-false (node (tip item) i (tip i)))
refl
⟩
ordTree (node (tip item) i (tip i))
≡⟨ ordTree-node (tip item) i (tip i) ⟩
ordTree (tip item)
&& ordTree (tip i)
&& le-TreeItem (tip item) i
&& le-ItemTree i (tip i)
≡⟨ subst (λ t → ordTree (tip item)
&& ordTree (tip i)
&& le-TreeItem (tip item) i
&& le-ItemTree i (tip i) ≡
t
&& ordTree (tip i)
&& le-TreeItem (tip item) i
&& le-ItemTree i (tip i))
(ordTree-tip item)
refl
⟩
true && ordTree (tip i) && le-TreeItem (tip item) i &&
le-ItemTree i (tip i)
≡⟨ subst (λ t → true
&& ordTree (tip i)
&& le-TreeItem (tip item) i
&& le-ItemTree i (tip i) ≡
true
&& t
&& le-TreeItem (tip item) i
&& le-ItemTree i (tip i))
(ordTree-tip i)
refl
⟩
true && true && le-TreeItem (tip item) i && le-ItemTree i (tip i)
≡⟨ subst (λ t → true && true && le-TreeItem (tip item) i &&
le-ItemTree i (tip i) ≡
true && true && t && le-ItemTree i (tip i))
(le-TreeItem-tip item i)
refl
⟩
true && true && le item i && le-ItemTree i (tip i)
≡⟨ subst (λ t → true && true && le item i && le-ItemTree i (tip i) ≡
true && true && t && le-ItemTree i (tip i))
(x<y→x≤y Nitem Ni i>item)
refl
⟩
true && true && true && le-ItemTree i (tip i)
≡⟨ subst (λ t → true && true && true && le-ItemTree i (tip i) ≡
true && true && true && t)
(le-ItemTree-tip i i)
refl
⟩
true && true && true && le i i
≡⟨ subst (λ t → true && true && true && le i i ≡
true && true && true && t)
(x≤x Ni)
refl
⟩
true && true && true && true
≡⟨ subst (λ t → true && true && true && true ≡ true && true && t)
(t&&x≡x true)
refl
⟩
true && true && true
≡⟨ subst (λ t → true && true && true ≡ true && t)
(t&&x≡x true)
refl
⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
prf₂ : i ≤ item → OrdTree (toTree · item · tip i)
prf₂ i≤item =
ordTree (toTree · item · tip i)
≡⟨ subst (λ t → ordTree (toTree · item · tip i) ≡ ordTree t)
(toTree-tip item i)
refl
⟩
ordTree (if (le i item)
then (node (tip i) item (tip item))
else (node (tip item) i (tip i)))
≡⟨ subst (λ t → ordTree (if (le i item)
then (node (tip i) item (tip item))
else (node (tip item) i (tip i))) ≡
ordTree (if t
then (node (tip i) item (tip item))
else (node (tip item) i (tip i))))
i≤item
refl
⟩
ordTree (if true
then (node (tip i) item (tip item))
else (node (tip item) i (tip i)))
≡⟨ subst (λ t → ordTree (if true
then (node (tip i) item (tip item))
else (node (tip item) i (tip i))) ≡
ordTree t)
(if-true (node (tip i) item (tip item)))
refl
⟩
ordTree (node (tip i) item (tip item))
≡⟨ ordTree-node (tip i) item (tip item) ⟩
ordTree (tip i) && ordTree (tip item) && le-TreeItem (tip i) item &&
le-ItemTree item (tip item)
≡⟨ subst (λ t → ordTree (tip i) &&
ordTree (tip item) &&
le-TreeItem (tip i) item &&
le-ItemTree item (tip item) ≡
t &&
ordTree (tip item) &&
le-TreeItem (tip i) item &&
le-ItemTree item (tip item))
(ordTree-tip i)
refl
⟩
true && ordTree (tip item) && le-TreeItem (tip i) item &&
le-ItemTree item (tip item)
≡⟨ subst (λ t → true &&
ordTree (tip item) &&
le-TreeItem (tip i) item &&
le-ItemTree item (tip item) ≡
true &&
t &&
le-TreeItem (tip i) item &&
le-ItemTree item (tip item))
(ordTree-tip item)
refl
⟩
true && true && le-TreeItem (tip i) item && le-ItemTree item (tip item)
≡⟨ subst (λ t → true && true && le-TreeItem (tip i) item &&
le-ItemTree item (tip item) ≡
true && true && t && le-ItemTree item (tip item))
(le-TreeItem-tip i item)
refl
⟩
true && true && le i item && le-ItemTree item (tip item)
≡⟨ subst (λ t → true && true && le i item && le-ItemTree item (tip item) ≡
true && true && t && le-ItemTree item (tip item))
i≤item
refl
⟩
true && true && true && le-ItemTree item (tip item)
≡⟨ subst (λ t → true && true && true && le-ItemTree item (tip item) ≡
true && true && true && t)
(le-ItemTree-tip item item)
refl
⟩
true && true && true && le item item
≡⟨ subst (λ t → true && true && true && le item item ≡
true && true && true && t)
(x≤x Nitem)
refl
⟩
true && true && true && true
≡⟨ subst (λ t → true && true && true && true ≡ true && true && t)
(t&&x≡x true)
refl
⟩
true && true && true
≡⟨ subst (λ t → true && true && true ≡ true && t) (t&&x≡x true) refl ⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
toTree-OrdTree {item} Nitem (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) OTtnode =
case prf₁ prf₂ (x>y∨x≤y Ni Nitem)
where
prf₁ : i > item → OrdTree (toTree · item · node t₁ i t₂)
prf₁ i>item =
ordTree (toTree · item · node t₁ i t₂)
≡⟨ subst (λ t → ordTree (toTree · item · node t₁ i t₂) ≡ ordTree t)
(toTree-node item t₁ i t₂)
refl
⟩
ordTree (if (le i item)
then (node t₁ i (toTree · item · t₂))
else (node (toTree · item · t₁) i t₂))
≡⟨ subst (λ t → ordTree (if (le i item)
then (node t₁ i (toTree · item · t₂))
else (node (toTree · item · t₁) i t₂)) ≡
ordTree (if t
then (node t₁ i (toTree · item · t₂))
else (node (toTree · item · t₁) i t₂)))
(x>y→x≰y Ni Nitem i>item)
refl
⟩
ordTree (if false
then (node t₁ i (toTree · item · t₂))
else (node (toTree · item · t₁) i t₂))
≡⟨ subst (λ t → ordTree (if false
then (node t₁ i (toTree · item · t₂))
else (node (toTree · item · t₁) i t₂)) ≡
ordTree t)
(if-false (node (toTree · item · t₁) i t₂))
refl
⟩
ordTree (node (toTree · item · t₁) i t₂)
≡⟨ ordTree-node (toTree · item · t₁) i t₂ ⟩
ordTree (toTree · item · t₁) &&
ordTree t₂ &&
le-TreeItem (toTree · item · t₁) i &&
le-ItemTree i t₂
≡⟨ subst (λ t → ordTree (toTree · item · t₁) &&
ordTree t₂ &&
le-TreeItem (toTree · item · t₁) i &&
le-ItemTree i t₂ ≡
t &&
ordTree t₂ &&
le-TreeItem (toTree · item · t₁) i &&
le-ItemTree i t₂)
(toTree-OrdTree Nitem Tt₁
(leftSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode))
refl
⟩
true && ordTree t₂ && le-TreeItem (toTree · item · t₁) i &&
le-ItemTree i t₂
≡⟨ subst (λ t → true &&
ordTree t₂ &&
le-TreeItem (toTree · item · t₁) i &&
le-ItemTree i t₂ ≡
true &&
t &&
le-TreeItem (toTree · item · t₁) i &&
le-ItemTree i t₂)
(rightSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode)
refl
⟩
true && true && le-TreeItem (toTree · item · t₁) i && le-ItemTree i t₂
≡⟨ subst (λ t → true &&
true &&
le-TreeItem (toTree · item · t₁) i &&
le-ItemTree i t₂ ≡
true && true && t && le-ItemTree i t₂)
(toTree-OrdTree-helper₁ Ni Nitem i>item Tt₁
((&&-list₄-t₃
(ordTree-Bool Tt₁)
(ordTree-Bool Tt₂)
(le-TreeItem-Bool Tt₁ Ni)
(le-ItemTree-Bool Ni Tt₂)
(trans (sym (ordTree-node t₁ i t₂)) OTtnode))))
refl
⟩
true && true && true && le-ItemTree i t₂
≡⟨ subst (λ t → true && true && true && le-ItemTree i t₂ ≡
true && true && true && t)
(&&-list₄-t₄
(ordTree-Bool Tt₁)
(ordTree-Bool Tt₂)
(le-TreeItem-Bool Tt₁ Ni)
(le-ItemTree-Bool Ni Tt₂)
(trans (sym (ordTree-node t₁ i t₂)) OTtnode))
refl
⟩
true && true && true && true
≡⟨ subst (λ t → true && true && true && true ≡ true && true && t)
(t&&x≡x true)
refl
⟩
true && true && true
≡⟨ subst (λ t → true && true && true ≡ true && t) (t&&x≡x true) refl ⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
prf₂ : i ≤ item → OrdTree (toTree · item · node t₁ i t₂)
prf₂ i≤item =
ordTree (toTree · item · node t₁ i t₂)
≡⟨ subst (λ t → ordTree (toTree · item · node t₁ i t₂) ≡ ordTree t)
(toTree-node item t₁ i t₂)
refl
⟩
ordTree (if (le i item)
then (node t₁ i (toTree · item · t₂))
else (node (toTree · item · t₁) i t₂))
≡⟨ subst (λ t → ordTree (if (le i item)
then (node t₁ i (toTree · item · t₂))
else (node (toTree · item · t₁) i t₂)) ≡
ordTree (if t
then (node t₁ i (toTree · item · t₂))
else (node (toTree · item · t₁) i t₂)))
i≤item
refl
⟩
ordTree (if true
then (node t₁ i (toTree · item · t₂))
else (node (toTree · item · t₁) i t₂))
≡⟨ subst (λ t → ordTree (if true
then (node t₁ i (toTree · item · t₂))
else (node (toTree · item · t₁) i t₂)) ≡
ordTree t)
(if-true (node t₁ i (toTree · item · t₂)))
refl
⟩
ordTree (node t₁ i (toTree · item · t₂))
≡⟨ ordTree-node t₁ i (toTree · item · t₂) ⟩
ordTree t₁ &&
ordTree (toTree · item · t₂) &&
le-TreeItem t₁ i &&
le-ItemTree i (toTree · item · t₂)
≡⟨ subst (λ t → ordTree t₁ &&
ordTree (toTree · item · t₂) &&
le-TreeItem t₁ i &&
le-ItemTree i (toTree · item · t₂) ≡
t &&
ordTree (toTree · item · t₂) &&
le-TreeItem t₁ i &&
le-ItemTree i (toTree · item · t₂))
(leftSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode)
refl
⟩
true && ordTree (toTree · item · t₂) && le-TreeItem t₁ i &&
le-ItemTree i (toTree · item · t₂)
≡⟨ subst (λ t → true &&
ordTree (toTree · item · t₂) &&
le-TreeItem t₁ i &&
le-ItemTree i (toTree · item · t₂) ≡
true &&
t &&
le-TreeItem t₁ i &&
le-ItemTree i (toTree · item · t₂))
(toTree-OrdTree Nitem Tt₂
(rightSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode))
refl
⟩
true && true && le-TreeItem t₁ i && le-ItemTree i (toTree · item · t₂)
≡⟨ subst (λ t → true &&
true &&
le-TreeItem t₁ i &&
le-ItemTree i (toTree · item · t₂) ≡
true &&
true &&
t &&
le-ItemTree i (toTree · item · t₂))
(&&-list₄-t₃
(ordTree-Bool Tt₁)
(ordTree-Bool Tt₂)
(le-TreeItem-Bool Tt₁ Ni)
(le-ItemTree-Bool Ni Tt₂)
(trans (sym (ordTree-node t₁ i t₂)) OTtnode))
refl
⟩
true && true && true && le-ItemTree i (toTree · item · t₂)
≡⟨ subst (λ t → true &&
true &&
true &&
le-ItemTree i (toTree · item · t₂) ≡
true && true && true && t)
(toTree-OrdTree-helper₂ Ni Nitem i≤item Tt₂
((&&-list₄-t₄
(ordTree-Bool Tt₁)
(ordTree-Bool Tt₂)
(le-TreeItem-Bool Tt₁ Ni)
(le-ItemTree-Bool Ni Tt₂)
(trans (sym (ordTree-node t₁ i t₂)) OTtnode))))
refl
⟩
true && true && true && true
≡⟨ subst (λ t → true && true && true && true ≡ true && true && t)
(t&&x≡x true)
refl
⟩
true && true && true
≡⟨ subst (λ t → true && true && true ≡ true && t) (t&&x≡x true) refl ⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
------------------------------------------------------------------------------
-- Burstall's lemma: ord(maketree(is)).
-- makeTree-TreeOrd : ∀ {is} → ListN is → OrdTree (makeTree is)
-- makeTree-TreeOrd LNis =
-- ind-lit OrdTree toTree nil LNis ordTree-nil
-- (λ Nx y TOy → toTree-OrdTree Nx {!!} TOy)
makeTree-OrdTree : ∀ {is} → ListN is → OrdTree (makeTree is)
makeTree-OrdTree lnnil =
ordTree (lit toTree [] nil)
≡⟨ subst (λ t → ordTree (lit toTree [] nil) ≡ ordTree t)
(lit-[] toTree nil)
refl
⟩
ordTree nil
≡⟨ ordTree-nil ⟩
true ∎
makeTree-OrdTree (lncons {i} {is} Ni Lis) =
ordTree (lit toTree (i ∷ is) nil)
≡⟨ subst (λ t → ordTree (lit toTree (i ∷ is) nil) ≡ ordTree t)
(lit-∷ toTree i is nil)
refl
⟩
ordTree (toTree · i · (lit toTree is nil))
≡⟨ toTree-OrdTree Ni (makeTree-Tree Lis) (makeTree-OrdTree Lis) ⟩
true ∎
------------------------------------------------------------------------------
-- Burstall's lemma: If ord(is1) and ord(is2) and is1 ≤ is2 then
-- ord(concat(is1, is2)).
++-OrdList : ∀ {is js} → ListN is → ListN js → OrdList is → OrdList js →
≤-Lists is js → OrdList (is ++ js)
++-OrdList {js = js} lnnil LNjs LOis LOjs is≤js =
subst OrdList (sym (++-leftIdentity js)) LOjs
++-OrdList {js = js} (lncons {i} {is} Ni LNis) LNjs LOi∷is LOjs i∷is≤js =
subst OrdList (sym (++-∷ i is js)) lemma
where
lemma : OrdList (i ∷ is ++ js)
lemma =
ordList (i ∷ is ++ js)
≡⟨ ordList-∷ i (is ++ js) ⟩
le-ItemList i (is ++ js) && ordList (is ++ js)
≡⟨ subst (λ t → le-ItemList i (is ++ js) && ordList (is ++ js) ≡
t && ordList (is ++ js))
(++-OrdList-helper Ni LNis LNjs
(&&-list₂-t₁ (le-ItemList-Bool Ni LNis)
(ordList-Bool LNis)
(trans (sym (ordList-∷ i is)) LOi∷is))
(&&-list₂-t₁ (le-ItemList-Bool Ni LNjs)
(le-Lists-Bool LNis LNjs)
(trans (sym (le-Lists-∷ i is js)) i∷is≤js))
(&&-list₂-t₂ (le-ItemList-Bool Ni LNjs)
(le-Lists-Bool LNis LNjs)
(trans (sym (le-Lists-∷ i is js)) i∷is≤js))
)
refl
⟩
true && ordList (is ++ js)
≡⟨ subst (λ t → true && ordList (is ++ js) ≡ true && t)
(++-OrdList LNis LNjs (subList-OrdList Ni LNis LOi∷is) LOjs
(&&-list₂-t₂
(le-ItemList-Bool Ni LNjs)
(le-Lists-Bool LNis LNjs)
(trans (sym (le-Lists-∷ i is js)) i∷is≤js)))
refl
⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
------------------------------------------------------------------------------
-- Burstall's lemma: If t is ordered then (flatten t) is ordered.
flatten-OrdList : ∀ {t} → Tree t → OrdTree t → OrdList (flatten t)
flatten-OrdList tnil OTt =
subst OrdList (sym flatten-nil) ordList-[]
flatten-OrdList (ttip {i} Ni) OTt =
ordList (flatten (tip i))
≡⟨ subst (λ t → ordList (flatten (tip i)) ≡ ordList t)
(flatten-tip i)
refl
⟩
ordList (i ∷ [])
≡⟨ ordList-∷ i [] ⟩
le-ItemList i [] && ordList []
≡⟨ subst₂ (λ t₁ t₂ → le-ItemList i [] && ordList [] ≡ t₁ && t₂)
(le-ItemList-[] i)
ordList-[]
refl
⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
flatten-OrdList (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) OTt =
ordList (flatten (node t₁ i t₂))
≡⟨ subst (λ t → ordList (flatten (node t₁ i t₂)) ≡ ordList t)
(flatten-node t₁ i t₂)
refl
⟩
ordList (flatten t₁ ++ flatten t₂)
≡⟨ ++-OrdList (flatten-ListN Tt₁)
(flatten-ListN Tt₂)
(flatten-OrdList Tt₁ (leftSubTree-OrdTree Tt₁ Ni Tt₂ OTt))
(flatten-OrdList Tt₂ (rightSubTree-OrdTree Tt₁ Ni Tt₂ OTt))
(flatten-OrdList-helper Tt₁ Ni Tt₂ OTt)
⟩
true ∎
| {
"alphanum_fraction": 0.4080389235,
"avg_line_length": 40.1654929577,
"ext": "agda",
"hexsha": "01e87c7bb81a461eb4f9a69be4eb112ae4ad5d6c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/SortList/PropertiesI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/SortList/PropertiesI.agda",
"max_line_length": 80,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/SortList/PropertiesI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 6539,
"size": 22814
} |
module Basic.Compiler.CorrectFrom where
open import Basic.AST
open import Basic.BigStep
open import Basic.Compiler.Code
open import Basic.Compiler.SplitCode
open import Utils.NatOrdLemmas
open import Utils.Decidable
open import Utils.Monoid
open import Data.Fin using (Fin; #_)
open import Data.Vec hiding (_∷ʳ_; _++_; [_]; _∈_; foldr)
open import Data.Nat
open import Data.Nat.Properties.Simple
open import Data.Nat.Properties
open import Data.Empty
open import Data.Bool renaming (not to notBool; if_then_else_ to ifBool_then_else)
open import Data.List hiding ([_])
open import Data.List.Properties
open import Relation.Binary.PropositionalEquality
open import Function
open import Data.Product
open import Relation.Nullary
open import Relation.Nullary.Decidable
import Level as L
open import Algebra
private
module LM {a A} = Algebra.Monoid (Data.List.monoid {a} A)
open import Relation.Unary
open import Induction.Nat
open import Induction.WellFounded
{-
Lemma 3.22
This proof caused me considerable headache. First I started to prove it
by strctural recursion on the to-be-compiled statement, but then Agda complained
that it was not structurally recursive. And indeed it isn't.
In the "while-true" case, we start with a program derivation of the type:
⟨ 𝓒⟦ S ⟧ˢ ++ LOOP 𝓒⟦ b ⟧ᵉ 𝓒⟦ S ⟧ˢ ∷ [] , [] , s ⟩▷*⟨ [] , e , s' ⟩
And a statement with the following form:
while b do S
Then we split this derivation into two parts:
⟨ 𝓒⟦ S ⟧ˢ , [] , s ⟩▷*⟨ [] , e'' , s'' ⟩
⟨ LOOP 𝓒⟦ b ⟧ᵉ 𝓒⟦ S ⟧ˢ ∷ [] , e'' , s'' ⟩▷*⟨ [] , e , s' ⟩
But now if we recurse on the second derivation, the corresponding statement will
be again "while b do S". Thus Agda will not be able to prove termination.
So I had to use well-founded induction. It is a standard library machinery that
allows us to do induction on a well-ordered set. Here's an introduction to how
it works:
http://blog.ezyang.com/2010/06/well-founded-recursion-in-agda/
We usually prefer to not use well-founded recursion, because it demands us proofs
of decreasing order even on cases where recursion is otherwise evidently structural, and
it also makes certain proofs rather difficult.
-}
-- Well-foundedness lemmas
------------------------------------------------------------
{-
We do well-founded recursion on the length of derivation sequences.
But we also have to prove that splitting a derivation sequence will
never produce empty sequences, or else the lenghts will not be strictly
decreasing.
To show this, we have to show that
- compilation into abstract machine code never outputs
an empty list of instructions
- computation sequences starting with a non-empty instruction list are never empty
-}
∷ʳ-nonempty : ∀ {a}{A : Set a}(xs : List A) x → xs ∷ʳ x ≢ []
∷ʳ-nonempty [] x ()
∷ʳ-nonempty (x ∷ xs) x₁ ()
++-xs-empty : ∀ {a}{A : Set a}(xs : List A) {ys} → xs <> ys ≡ [] → xs ≡ []
++-xs-empty [] p = refl
++-xs-empty (x ∷ xs) ()
{- Compiled statement are non-empty -}
𝓒ˢ-nonempty : ∀ {n}(S : St n) → 𝓒⟦ S ⟧ˢ ≢ []
𝓒ˢ-nonempty (x := x₁) = ∷ʳ-nonempty 𝓒⟦ x₁ ⟧ᵉ (STORE x)
𝓒ˢ-nonempty (S , S₁) = 𝓒ˢ-nonempty S ∘ ++-xs-empty 𝓒⟦ S ⟧ˢ
𝓒ˢ-nonempty (if x then S else S₁) = ∷ʳ-nonempty 𝓒⟦ x ⟧ᵉ (BRANCH 𝓒⟦ S ⟧ˢ 𝓒⟦ S₁ ⟧ˢ)
𝓒ˢ-nonempty (while x do S) ()
𝓒ˢ-nonempty skip ()
{- Compiled expressions are non-empty -}
𝓒-Exp-nonempty : ∀ {n t} (e : Exp n t) → 𝓒⟦ e ⟧ᵉ ≢ []
𝓒-Exp-nonempty (add e e₁) = ∷ʳ-nonempty (𝓒⟦ e₁ ⟧ᵉ <> 𝓒⟦ e ⟧ᵉ) ADD
𝓒-Exp-nonempty (mul e e₁) = ∷ʳ-nonempty (𝓒⟦ e₁ ⟧ᵉ <> 𝓒⟦ e ⟧ᵉ) MUL
𝓒-Exp-nonempty (sub e e₁) = ∷ʳ-nonempty (𝓒⟦ e₁ ⟧ᵉ <> 𝓒⟦ e ⟧ᵉ) SUB
𝓒-Exp-nonempty (eq e e₁) = ∷ʳ-nonempty (𝓒⟦ e₁ ⟧ᵉ <> 𝓒⟦ e ⟧ᵉ) EQ
𝓒-Exp-nonempty (lte e e₁) = ∷ʳ-nonempty (𝓒⟦ e₁ ⟧ᵉ <> 𝓒⟦ e ⟧ᵉ) LTE
𝓒-Exp-nonempty (lt e e₁) = ∷ʳ-nonempty (𝓒⟦ e₁ ⟧ᵉ <> 𝓒⟦ e ⟧ᵉ) LT
𝓒-Exp-nonempty (Exp.and e e₁) = ∷ʳ-nonempty (𝓒⟦ e₁ ⟧ᵉ <> 𝓒⟦ e ⟧ᵉ) AND
𝓒-Exp-nonempty (not e) = ∷ʳ-nonempty 𝓒⟦ e ⟧ᵉ NOT
𝓒-Exp-nonempty (lit x) ()
𝓒-Exp-nonempty (var x) ()
𝓒-Exp-nonempty tt ()
𝓒-Exp-nonempty ff ()
{-Computations sequences for non-empty code are non-zero length -}
▷*-S-nonempty :
∀ {n S}{s s' : State n}{e e'} (p : ⟨ 𝓒⟦ S ⟧ˢ , e , s ⟩▷*⟨ [] , e' , s' ⟩)
→ ▷*-length p ≢ 0
▷*-S-nonempty{_}{S} p x with 𝓒ˢ-nonempty S | 𝓒⟦ S ⟧ˢ | inspect 𝓒⟦_⟧ˢ S
▷*-S-nonempty done x | ¬empty | [] | [ remember ] = ¬empty remember
▷*-S-nonempty (() ∷ p) x₁ | ¬empty | [] | [ remember ]
▷*-S-nonempty (x₁ ∷ p) () | ¬empty | x ∷ cs | [ remember ]
{- misc ordering lemmas -}
a<′a+sb : ∀ a b → b ≢ 0 → a <′ a + b
a<′a+sb a zero x = ⊥-elim (x refl)
a<′a+sb a (suc b) x rewrite +-comm a (suc b) = ≤⇒≤′ $ a<sb+a a b
a<′b+sa : ∀ a b → a <′ b + suc a
a<′b+sa a zero = ≤′-refl
a<′b+sa a (suc b) = ≤′-step (a<′b+sa a b)
≤′-weaken-l : ∀ {a b} c → a ≤′ b → a ≤′ c + b
≤′-weaken-l zero p = p
≤′-weaken-l (suc c) p = ≤′-step (≤′-weaken-l c p)
-- Correctness
------------------------------------------------------------
{-
This is a shorthand for the actual type of the theorem. We use this because
otherwise we'd have to write out the type three times in the following code.
-}
𝓒-correct-from-Ty : {_ : ℕ} → ℕ → Set
𝓒-correct-from-Ty {n} size =
∀ {S : St n} {e s s'}
→ (p : ⟨ 𝓒⟦ S ⟧ˢ , [] , s ⟩▷*⟨ [] , e , s' ⟩)
→ size ≡ ▷*-length p
→ ⟨ S , s ⟩⟱ s' × e ≡ []
𝓒-correct-from : ∀ {n} size → 𝓒-correct-from-Ty {n} size
𝓒-correct-from {n} = <-rec _ go where
{-
Note: we use ▷*-deterministic quite a few times below. We separately use
▷*-split to split the sequence and 𝓒-Exp to establish the contents of the stack
after evaluating an expression, but these remain separate facts until we use
determinism to prove that the first split sequence and 𝓒-Exp's resulting sequence
are the same.
We see 𝓒-Exp , ▷*-split and ▷*-deterministic chained together several times below.
This is admittedly pretty ugly and it would be better to factor out this pattern
and possibly include all the relevant information in the output of ▷*-split.
-}
{-
"go" is the helper function for well-founded recursion. "<-rec" can be viewed as
a sort of a fixpoint operator that demands a proof that the argument strictly decreases
on every recursion. "size" is the size argument, and we recurse via the "recurse"
argument.
-}
go : ∀ size → (∀ y → y <′ size → 𝓒-correct-from-Ty {n} y) → 𝓒-correct-from-Ty {n} size
-- Assignment
go size recurse {x := exp}{e}{s} p sizeEq
with ▷*-split 𝓒⟦ exp ⟧ᵉ p | 𝓒-Exp-nat {e = []}{s = s} exp
go size recurse {.x := exp} p sizeEq | s₁ , ._ , p1 , STORE x ∷ () ∷ p2 , eqn | exp'
go size recurse {.x := exp} p sizeEq | s₁ , ._ , p1 , STORE x ∷ done , eqn | exp'
with ▷*-deterministic p1 exp'
... | _ , eqe , eqs
rewrite eqs
with ∷-injective eqe
... | eq-cond , e≡[]
rewrite nat-inj eq-cond
= ass , e≡[]
-- Skip
go size recurse {skip} (NOOP ∷ done) sizeEq = skip , refl
go size recurse {skip} (NOOP ∷ () ∷ p) sizeEq
-- Sequencing
go size recurse {S , S₁} p sizeEq
with ▷*-split 𝓒⟦ S ⟧ˢ p
... | s'' , e'' , p1 , p2 , size+eq
rewrite sizeEq | sym size+eq
with recurse _ (a<′a+sb _ _ (▷*-S-nonempty {S = S₁} p2)) {S} p1 refl
... | p1' , e''≡[]
rewrite e''≡[] | +-comm (▷*-length p1) (▷*-length p2)
with recurse _ (a<′a+sb _ _ (▷*-S-nonempty {S = S} p1)) {S₁} p2 refl
... | p2' , e≡[] = (p1' , p2') , e≡[]
-- If then else
go size recurse {if b then S else S₁} {e}{s}{s'} p sizeEq
with ▷*-split 𝓒⟦ b ⟧ᵉ p | 𝓒-Exp-bool {e = []}{s = s} b
... | s'' , ._ , p1 , BRANCH ∷ p2 , size+eq | b'
with ▷*-deterministic p1 b'
... | _ , eqe , eqs
rewrite eqs
with ∷-injective eqe
... | eq-cond , e'≡[]
rewrite bool-inj eq-cond | e'≡[] |
proj₂ LM.identity (ifBool ⟦ b ⟧ᵉ s then 𝓒⟦ S ⟧ˢ else 𝓒⟦ S₁ ⟧ˢ)
| sizeEq | sym size+eq
with ⟦ b ⟧ᵉ s | inspect ⟦ b ⟧ᵉ s
... | true | [ condTrue ]
= (if-true (≡true→T condTrue) (proj₁ rest)) , proj₂ rest
where rest : ⟨ S , s ⟩⟱ s' × e ≡ []
rest = recurse (▷*-length p2) (a<′b+sa (▷*-length p2) (▷*-length p1)) p2 refl
... | false | [ condFalse ]
= (if-false (≡false→F condFalse) (proj₁ rest)) , proj₂ rest
where rest : ⟨ S₁ , s ⟩⟱ s' × e ≡ []
rest = recurse (▷*-length p2) (a<′b+sa (▷*-length p2) (▷*-length p1)) p2 refl
-- While
go size recurse {while b do S}{e}{s}{s'} (LOOP ∷ p) sizeEq
with 𝓒-Exp-bool {e = []}{s = s} b | ▷*-split 𝓒⟦ b ⟧ᵉ p
... | b' | s'' , ._ , p1 , BRANCH ∷ p2 , size+eq
with ▷*-deterministic p1 b'
... | _ , eqe , eqs
rewrite eqs
with ∷-injective eqe
... | eq-cond , e'≡[]
rewrite bool-inj eq-cond | e'≡[] |
proj₂ LM.identity (ifBool ⟦ b ⟧ᵉ s then 𝓒⟦ S ⟧ˢ ++ LOOP 𝓒⟦ b ⟧ᵉ 𝓒⟦ S ⟧ˢ ∷ [] else (NOOP ∷ []))
| sym size+eq | sizeEq
with ⟦ b ⟧ᵉ s | inspect ⟦ b ⟧ᵉ s
{- Here we the proofs are a bit messed up by the two recursive calls with
hideous hand-crafted proofs of size decrease. This is the sort of thing
where Coq's solvers and tactics for arithmetic are really handy. Unfortunately
we don't yet have those things in Agda, although there is some infrastructure
already in place that could be used to create more automatization (like typeclasses
and goal reflection)
-}
-- while-true
... | true | [ condTrue ] = 𝓒-while-true condTrue p2 refl
where
𝓒-while-true :
∀ {s s' : State n}{b e S}
→ ⟦ b ⟧ᵉ s ≡ true
→ (p3 : ⟨ 𝓒⟦ S ⟧ˢ ++ LOOP 𝓒⟦ b ⟧ᵉ 𝓒⟦ S ⟧ˢ ∷ [] , [] , s ⟩▷*⟨ [] , e , s' ⟩)
→ (▷*-length p3 ≡ ▷*-length p2)
→ (⟨ while b do S , s ⟩⟱ s') × e ≡ []
𝓒-while-true {s}{s'}{b}{e}{S} condTrue p3 ≡len
with ▷*-split 𝓒⟦ S ⟧ˢ p3
... | s'' , e'' , p1_new , p2_new , size+eq
rewrite sym size+eq
with recurse (▷*-length p1_new)
(≤′-step
(subst (λ x → suc (▷*-length p1_new) ≤′ ▷*-length p1 + suc x) ≡len
(≤′-weaken-l (▷*-length p1)
(≤′-step (a<′a+sb (▷*-length p1_new) (▷*-length p2_new)
(▷*-S-nonempty {S = while b do S} p2_new))))))
{S} p1_new refl
... | p1' , e''≡[]
rewrite e''≡[]
with recurse (▷*-length p2_new)
(≤′-step (subst (λ x → suc (▷*-length p2_new) ≤′ ▷*-length p1 + suc x) ≡len
(≤′-weaken-l (▷*-length p1)
(≤′-step (
subst
(λ x → ▷*-length p2_new <′ x)
(+-comm (▷*-length p2_new) (▷*-length p1_new))
(a<′a+sb
(▷*-length p2_new) (▷*-length p1_new)
(▷*-S-nonempty {S = S} p1_new)))))))
{while b do S} p2_new refl
... | p2' , e≡[] = (while-true (≡true→T condTrue) p1' p2') , e≡[]
-- while-false
... | false | [ condFalse ] = 𝓒-while-false condFalse p2
where
𝓒-while-false :
∀ {n}{s s' : State n}{e b S}
→ ⟦ b ⟧ᵉ s ≡ false
→ ⟨ NOOP ∷ [] , [] , s ⟩▷*⟨ [] , e , s' ⟩
→ (⟨ while b do S , s ⟩⟱ s' × e ≡ [])
𝓒-while-false f (NOOP ∷ done) = (while-false (≡false→F f)) , refl
𝓒-while-false f (NOOP ∷ () ∷ p)
| {
"alphanum_fraction": 0.5636347455,
"avg_line_length": 36.9605263158,
"ext": "agda",
"hexsha": "24506f60606c599154d8a015346b225acc1497a5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_forks_repo_path": "Basic/Compiler/CorrectFrom.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_issues_repo_path": "Basic/Compiler/CorrectFrom.agda",
"max_line_length": 101,
"max_stars_count": 8,
"max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_stars_repo_path": "Basic/Compiler/CorrectFrom.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z",
"num_tokens": 4371,
"size": 11236
} |
{-# OPTIONS --type-in-type #-}
record ⊤ : Set where
constructor tt
data ⊥ : Set where
data _==_ {A : Set} (x : A) : A → Set where
refl : x == x
module _ (A : Set) (B : A → Set) where
record Σ : Set where
constructor _,_
field
π₁ : A
π₂ : B π₁
open Σ public
syntax Σ A (λ x → B) = Σ[ x ∶ A ] B
isContr : Set → Set
isContr A = Σ[ x ∶ A ] (∀ y → x == y)
Σ! : (A : Set) (B : A → Set) → Set
Σ! A B = isContr (Σ A B)
syntax Σ! A (λ x → B) = Σ![ x ∶ A ] B
_×_ : (A B : Set) → Set
A × B = Σ A λ _ → B
P : Set → Set
P A = A → Set
module _ {A : Set} where
empty : P A
empty = λ x → ⊥
full : P A
full = λ x → ⊤
_∩_ : P A → P A → P A
U ∩ V = λ x → (U x) × (V x)
_⊆_ : P A → P A → Set
U ⊆ V = ∀ x → U x → V x
⋃[_] : P (P A) → P A
⋃[_] S = λ x → Σ[ U ∶ P A ] S U × U x
record Topology (X : Set) : Set where
field
O : P (P X)
empty-open : O empty
full-open : O full
inter-open : ∀ {U V} → O U → O V → O (U ∩ V)
union-open : ∀ {S} → S ⊆ O → O ⋃[ S ]
record Equivalence {A : Set} (R : A → A → Set) : Set where
field
reflexivity : {x : A} → R x x
!_ : {x y : A} → R x y → R y x
_∙_ : {x y z : A} → R y z → R x y → R x z
infixr 9 _∙_
instance
==-equiv : ∀ {A} → Equivalence (_==_ {A})
==-equiv = record { reflexivity = refl ; !_ = λ { {_} {._} refl → refl }; _∙_ = λ { {_} {._} {_} refl q → q } }
record Category : Set where
field
Ob : Set
Hom : Ob → Ob → Set
_~_ : ∀ {A B} → Hom A B → Hom A B → Set
~-equiv : ∀ {A B} → Equivalence (_~_ {A} {B})
id : ∀ {A} → Hom A A
_∘_ : ∀ {A B C} → Hom B C → Hom A B → Hom A C
left-id : ∀ {A B} {f : Hom A B} → (id ∘ f) ~ f
right-id : ∀ {A B} {f : Hom A B} → (f ∘ id) ~ f
assoc : ∀ {A B C D} {f : Hom A B} {g : Hom B C} {h : Hom C D} → ((h ∘ g) ∘ f) ~ (h ∘ (g ∘ f))
instance
~-equiv-instance = ~-equiv
opposite : Category
opposite =
let open Equivalence {{...}} in
record
{ Ob = Ob
; Hom = λ A B → Hom B A
; _~_ = _~_
; ~-equiv = ~-equiv
; id = id
; _∘_ = λ f g → g ∘ f
; left-id = λ {A} {B} → right-id
; right-id = λ {A} {B} → left-id
; assoc = λ {A} {B} {C} {D} {f} {g} {h} → ! assoc
}
record Functor (C D : Category) : Set where
module C = Category C
module D = Category D
field
apply : C.Ob → D.Ob
map : ∀ {A B} → C.Hom A B → D.Hom (apply A) (apply B)
id-law : ∀ {A} → map (C.id {A}) D.~ D.id
comp-law : ∀ {A B C} (f : C.Hom B C) (g : C.Hom A B) → map (f C.∘ g) D.~ (map f D.∘ map g)
instance
open Equivalence {{...}}
Types : Category
Types =
record
{ Ob = Set
; Hom = λ A B → A → B
; _~_ = λ f g → ∀ x → f x == g x
; ~-equiv = record
{ reflexivity = λ x → refl
; !_ = λ {f} {g} p x → ! p x
; _∙_ = λ {f} {g} {h} p q r → p r ∙ q r
}
; id = λ {A} z → z
; _∘_ = λ {A} {B} {C} f g x → f (g x)
; left-id = λ {A} {B} {f} x → refl
; right-id = λ {A} {B} {f} x → refl
; assoc = λ x → refl
}
module _ (X : Set) (T : Topology X) where
private
module T = Topology T
instance
OpenSets : Category
OpenSets = record
{ Ob = Σ _ T.O
; Hom = λ U V → π₁ U ⊆ π₁ V
; _~_ = _==_
; ~-equiv = ==-equiv
; id = λ x z → z
; _∘_ = λ z z₁ x z₂ → z x (z₁ x z₂)
; left-id = refl
; right-id = refl
; assoc = refl
}
Presheaf : Set
Presheaf = Functor (Category.opposite OpenSets) Types
module _ (U : P X) (U-open : T.O U) where
record Cover : Set where
field
Index : Set
at : (i : Index) → P X
at-open : (i : Index) → T.O (at i)
at-subset : (i : Index) → at i ⊆ U
covering : (x : X) → U x → Σ[ i ∶ Index ] at i x
module _ (F : Presheaf) (<U> : Cover) where
private
module F = Functor F
module <U> = Cover <U>
Section : Set
Section =
∀ i → F.apply (<U>.at i , <U>.at-open i)
Coherence : Section → Set
Coherence <s> =
∀ i j →
let <U>ij = (<U>.at i ∩ <U>.at j) , (T.inter-open (<U>.at-open i) (<U>.at-open j) ) in
F.map {<U>.at i , <U>.at-open i} {<U>ij} (λ _ → π₁) (<s> i)
==
F.map {<U>.at j , <U>.at-open j} {<U>ij} (λ _ → π₂) (<s> j)
Sheaf : Presheaf → Set
Sheaf F =
let module F = Functor F in
(U : P X)
(U-open : T.O U)
(<U> : Cover U U-open)
(<s> : Section U _ F <U>)
(coh : Coherence U _ F <U> <s>)
→
let module <U> = Cover _ _ <U> in
Σ![ s ∶ F.apply (U , U-open) ]
(∀ i → F.map {U , U-open} (<U>.at-subset i) s == <s> i)
| {
"alphanum_fraction": 0.4314516129,
"avg_line_length": 23.9187817259,
"ext": "agda",
"hexsha": "30bd9361df0b673f9ee0314193b289e807691a6e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8a06162a8f0f7df308458db91d720cf8f7345d69",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "jonsterling/Agda-Sheaves",
"max_forks_repo_path": "sheaves.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8a06162a8f0f7df308458db91d720cf8f7345d69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "jonsterling/Agda-Sheaves",
"max_issues_repo_path": "sheaves.agda",
"max_line_length": 113,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "8a06162a8f0f7df308458db91d720cf8f7345d69",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "jonsterling/Agda-Sheaves",
"max_stars_repo_path": "sheaves.agda",
"max_stars_repo_stars_event_max_datetime": "2015-05-08T22:58:35.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-08T22:58:35.000Z",
"num_tokens": 1946,
"size": 4712
} |
module Agda.Builtin.Nat where
open import Agda.Builtin.Bool
data Nat : Set where
zero : Nat
suc : (n : Nat) → Nat
{-# BUILTIN NATURAL Nat #-}
infix 4 _==_ _<_
infixl 6 _+_ _-_
infixl 7 _*_
_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
{-# BUILTIN NATPLUS _+_ #-}
_-_ : Nat → Nat → Nat
n - zero = n
zero - suc m = zero
suc n - suc m = n - m
{-# BUILTIN NATMINUS _-_ #-}
_*_ : Nat → Nat → Nat
zero * m = zero
suc n * m = m + n * m
{-# BUILTIN NATTIMES _*_ #-}
_==_ : Nat → Nat → Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
{-# BUILTIN NATEQUALS _==_ #-}
_<_ : Nat → Nat → Bool
_ < zero = false
zero < suc _ = true
suc n < suc m = n < m
{-# BUILTIN NATLESS _<_ #-}
div-helper : Nat → Nat → Nat → Nat → Nat
div-helper k m zero j = k
div-helper k m (suc n) zero = div-helper (suc k) m n m
div-helper k m (suc n) (suc j) = div-helper k m n j
{-# BUILTIN NATDIVSUCAUX div-helper #-}
mod-helper : Nat → Nat → Nat → Nat → Nat
mod-helper k m zero j = k
mod-helper k m (suc n) zero = mod-helper 0 m n m
mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j
{-# BUILTIN NATMODSUCAUX mod-helper #-}
| {
"alphanum_fraction": 0.5556485356,
"avg_line_length": 19.2741935484,
"ext": "agda",
"hexsha": "0e7c880b2195c173b2dd94e89882c8a0904aaa73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Nat.agda",
"max_line_length": 57,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 450,
"size": 1195
} |
{-# OPTIONS --safe #-}
module Definition.Conversion.Reduction where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Conversion
-- Weak head expansion of algorithmic equality of types.
reductionConv↑ : ∀ {A A′ B B′ r Γ}
→ Γ ⊢ A ⇒* A′ ^ r
→ Γ ⊢ B ⇒* B′ ^ r
→ Whnf A′
→ Whnf B′
→ Γ ⊢ A′ [conv↑] B′ ^ r
→ Γ ⊢ A [conv↑] B ^ r
reductionConv↑ x x₁ x₂ x₃ ([↑] A″ B″ D D′ whnfA′ whnfB′ A′<>B′)
rewrite whnfRed* D x₂ | whnfRed* D′ x₃ =
[↑] A″ B″ x x₁ whnfA′ whnfB′ A′<>B′
-- Weak head expansion of algorithmic equality of terms.
reductionConv↑Term : ∀ {t t′ u u′ A B Γ l}
→ Γ ⊢ A ⇒* B ^ [ ! , l ]
→ Γ ⊢ t ⇒* t′ ∷ B ^ l
→ Γ ⊢ u ⇒* u′ ∷ B ^ l
→ Whnf B
→ Whnf t′
→ Whnf u′
→ Γ ⊢ t′ [conv↑] u′ ∷ B ^ l
→ Γ ⊢ t [conv↑] u ∷ A ^ l
reductionConv↑Term x x₁ x₂ x₃ x₄ x₅
([↑]ₜ B₁ t″ u″ D d d′ whnfB whnft′ whnfu′ t<>u)
rewrite whnfRed* D x₃ | whnfRed*Term d x₄ | whnfRed*Term d′ x₅ =
[↑]ₜ B₁ t″ u″ x x₁ x₂ whnfB whnft′ whnfu′ t<>u
| {
"alphanum_fraction": 0.4544049459,
"avg_line_length": 34.0526315789,
"ext": "agda",
"hexsha": "ada986f14981666d635f4225de246176bce8855d",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Reduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Reduction.agda",
"max_line_length": 83,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 466,
"size": 1294
} |
open import Agda.Builtin.IO
open import Agda.Builtin.Size
open import Agda.Builtin.Unit
data D (i : Size) : Set where
{-# FOREIGN GHC
data Empty i
#-}
{-# COMPILE GHC D = data Empty () #-}
f : ∀ {i} → D i → D i
f ()
{-# COMPILE GHC f as f #-}
postulate
return : {A : Set} → A → IO A
{-# COMPILE GHC return = \_ -> return #-}
main : IO ⊤
main = return _
| {
"alphanum_fraction": 0.5858310627,
"avg_line_length": 14.68,
"ext": "agda",
"hexsha": "84418479a46592cbd1396ecaca174364031b583c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue2879-1.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue2879-1.agda",
"max_line_length": 41,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue2879-1.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z",
"num_tokens": 117,
"size": 367
} |
module Oscar.Class.Reflexive where
open import Oscar.Level
open import Oscar.Property.IsReflexive
record Reflexive {𝔬} (⋆ : Set 𝔬) ℓ : Set (𝔬 ⊔ lsuc ℓ) where
field
_≣_ : ⋆ → ⋆ → Set ℓ
isReflexive : IsReflexive ⋆ _≣_
open IsReflexive isReflexive public
| {
"alphanum_fraction": 0.6940298507,
"avg_line_length": 20.6153846154,
"ext": "agda",
"hexsha": "42695c6ffd213469e668f387eda71351d45877d0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Class/Reflexive.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Class/Reflexive.agda",
"max_line_length": 59,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Class/Reflexive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 108,
"size": 268
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category; module Commutation)
open import Categories.Category.Monoidal.Core using (Monoidal)
open import Categories.Category.Monoidal.Braided using (Braided)
-- Braided monoidal categories satisfy the "four middle interchange"
module Categories.Category.Monoidal.Interchange.Braided
{o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (B : Braided M) where
open import Level using (_⊔_)
open import Data.Product using (_,_)
import Categories.Category.Construction.Core C as Core
import Categories.Category.Monoidal.Construction.Product as MonoidalProduct
open import Categories.Category.Monoidal.Braided.Properties as BraidedProps
using (braiding-coherence; inv-Braided; inv-braiding-coherence)
open import Categories.Category.Monoidal.Interchange using (HasInterchange)
open import Categories.Category.Monoidal.Properties using (module Kelly's)
import Categories.Category.Monoidal.Reasoning as MonoidalReasoning
import Categories.Category.Monoidal.Utilities as MonoidalUtilities
open import Categories.Category.Product using (_⁂_; assocˡ)
open import Categories.Functor using (_∘F_)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (_≃_; niHelper)
open import Categories.Morphism.Reasoning C
open Category C
open Commutation C
private
variable
W W₁ W₂ X X₁ X₂ Y Y₁ Y₂ Z Z₁ Z₂ : Obj
f g h i : X ⇒ Y
-- Braided monoidal categories have an interchange map.
open MonoidalReasoning M
open MonoidalUtilities M
open Braided B renaming (associator to α)
open Core.Shorthands -- for idᵢ, _∘ᵢ_, ...
open Shorthands -- for λ⇒, ρ⇒, α⇒, ...
open BraidedProps.Shorthands B -- for σ⇒, ...
-- The "four middle interchange" for braided tensor products.
swapInner : (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z)
swapInner = α ⁻¹ ∘ᵢ idᵢ ⊗ᵢ (α ∘ᵢ σ ⊗ᵢ idᵢ ∘ᵢ α ⁻¹) ∘ᵢ α
module swapInner {W X Y Z} = _≅_ (swapInner {W} {X} {Y} {Z})
private
i⇒ = swapInner.from
i⇐ = swapInner.to
-- to shorten things, it is convenient to name some items that recur
-- swapˡ is the inner part of 'swapInner'
private
swapˡ : X ⊗₀ (Y ⊗₀ Z) ⇒ Y ⊗₀ (X ⊗₀ Z)
swapˡ = α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐
swapˡ-act : swapˡ ∘ g ⊗₁ (h ⊗₁ i) ≈ h ⊗₁ (g ⊗₁ i) ∘ swapˡ
swapˡ-act {g = g} {h = h} {i = i} = begin
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ g ⊗₁ (h ⊗₁ i) ≈⟨ pullʳ (pullʳ assoc-commute-to) ⟩
α⇒ ∘ σ⇒ ⊗₁ id ∘ (g ⊗₁ h) ⊗₁ i ∘ α⇐ ≈⟨ refl⟩∘⟨ extendʳ (parallel (braiding.⇒.commute _) id-comm-sym) ⟩
α⇒ ∘ (h ⊗₁ g) ⊗₁ i ∘ σ⇒ ⊗₁ id ∘ α⇐ ≈⟨ extendʳ assoc-commute-from ⟩
h ⊗₁ (g ⊗₁ i) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∎
swapInner-natural : i⇒ ∘ (f ⊗₁ g) ⊗₁ (h ⊗₁ i) ≈ (f ⊗₁ h) ⊗₁ (g ⊗₁ i) ∘ i⇒
swapInner-natural {f = f} {g = g} {h = h} {i = i} = begin
(α⇐ ∘ id ⊗₁ swapˡ ∘ α⇒) ∘ (f ⊗₁ g) ⊗₁ (h ⊗₁ i) ≈⟨ pullʳ (pullʳ assoc-commute-from) ⟩
α⇐ ∘ id ⊗₁ swapˡ ∘ f ⊗₁ g ⊗₁ (h ⊗₁ i) ∘ α⇒ ≈⟨ refl⟩∘⟨ extendʳ (parallel id-comm-sym swapˡ-act) ⟩
α⇐ ∘ f ⊗₁ h ⊗₁ (g ⊗₁ i) ∘ id ⊗₁ swapˡ ∘ α⇒ ≈⟨ extendʳ assoc-commute-to ⟩
(f ⊗₁ h) ⊗₁ (g ⊗₁ i) ∘ α⇐ ∘ id ⊗₁ swapˡ ∘ α⇒ ∎
swapInner-naturalIsomorphism : ⊗ ∘F (⊗ ⁂ ⊗) ≃ ⊗ ∘F MonoidalProduct.⊗ M M
swapInner-naturalIsomorphism = niHelper (record
{ η = λ _ → i⇒
; η⁻¹ = λ _ → i⇐
; commute = λ _ → swapInner-natural
; iso = λ _ → swapInner.iso
})
-- Another version of the interchange that associates differently.
--
-- Why are there two versions and what's the difference? The domain
-- (X₁ ⊗ X₂) ⊗₀ (Y₁ ⊗ Y₂) and codomain (X₁ ⊗ Y₁) ⊗₀ (X₁ ⊗ Y₂) of the
-- interchange map are perfectly symmetric/balanced. But in order to
-- apply the braiding to the middle X₂ and Y₁, we need to
-- re-associate and that breaks the symmetry. We must first
-- re-associate the whole expression in one direction and then the
-- larger subterm in the other. This can be done in two ways,
-- associate to the right first, then to the left, resulting in X₁ ⊗
-- ((Y₂ ⊗₀ X₁) ⊗ Y₂), or vice versa, resulting in (X₁ ⊗ (Y₂ ⊗₀ X₁))
-- ⊗ Y₂. The choice is arbitrary and results in two distinct
-- interchange maps that behave the same way (as witnessed by
-- swapInner-coherent below).
--
-- Why define both? Because the proofs of some coherence laws become
-- easier when the core of the expression is associated in one
-- direction vs. the other. For example swapInner-unitˡ is easier to
-- prove for the second definition, while swapInner-unitʳ is easier
-- to prove for the first; swapInner-assoc uses both.
swapInner′ : (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z)
swapInner′ = α ∘ᵢ (α ⁻¹ ∘ᵢ idᵢ ⊗ᵢ σ ∘ᵢ α) ⊗ᵢ idᵢ ∘ᵢ α ⁻¹
module swapInner′ {W X Y Z} = _≅_ (swapInner′ {W} {X} {Y} {Z})
private
j⇒ = swapInner′.from
j⇐ = swapInner′.to
swapʳ : (X ⊗₀ Y) ⊗₀ Z ⇒ (X ⊗₀ Z) ⊗₀ Y
swapʳ = α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒
-- Derived coherence laws.
swapInner-coherent : [ (X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂) ⇒ (X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂) ]⟨
i⇒
≈ j⇒
⟩
swapInner-coherent = begin
α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁ α⇒ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁ α⇒ ∘ id ⊗₁ (σ⇒ ⊗₁ id) ∘ id ⊗₁ α⇐ ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ conjugate-from α (idᵢ ⊗ᵢ α) (⟺ pentagon) ⟩
α⇐ ∘ id ⊗₁ α⇒ ∘ id ⊗₁ (σ⇒ ⊗₁ id) ∘ (α⇒ ∘ α⇒ ⊗₁ id) ∘ α⇐ ≈˘⟨ pullʳ (pullʳ (extendʳ (pushˡ assoc-commute-from))) ⟩
(α⇐ ∘ id ⊗₁ α⇒ ∘ α⇒ ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐ ≈⟨ pushʳ sym-assoc ⟩∘⟨refl ⟩
((α⇐ ∘ id ⊗₁ α⇒ ∘ α⇒) ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐ ≈⟨ pushˡ (conjugate-from (α ⊗ᵢ idᵢ) α (assoc ○ pentagon)) ⟩∘⟨refl ⟩
(α⇒ ∘ α⇐ ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐ ≈˘⟨ pushʳ (pushʳ (pushˡ split₁ˡ)) ⟩
α⇒ ∘ α⇐ ⊗₁ id ∘ (id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈˘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ∎
private
α-mid : ∀ {X} {Y} {Z} {W} → X ⊗₀ ((Y ⊗₀ Z) ⊗₀ W) ⇒ (X ⊗₀ Y) ⊗₀ (Z ⊗₀ W)
α-mid = α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐
private
serialize-assoc : α⇒ {X₁} {Y₁} {Z₁} ⊗₁ α⇒ {X₂} {Y₂} {Z₂} ≈ id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒
serialize-assoc = begin
α⇒ ⊗₁ α⇒ ≈⟨ serialize₂₁ ⟩
id ⊗₁ α⇒ ∘ α⇒ ⊗₁ id ≈⟨ refl⟩∘⟨ (begin
α⇒ ⊗₁ id ≈⟨ switch-fromtoˡ α (switch-fromtoˡ (idᵢ ⊗ᵢ α) pentagon) ⟩
α⇐ ∘ id ⊗₁ α⇐ ∘ α⇒ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ refl⟩⊗⟨ cancelˡ α.isoʳ ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ∘ α⇐) ∘ α⇒ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ refl⟩⊗⟨ pullʳ pentagon-inv ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ (α-mid ∘ id ⊗₁ α⇐) ∘ α⇒ ∘ α⇒ ≈⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁ α-mid ∘ id ⊗₁ (id ⊗₁ α⇐) ∘ α⇒ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ assoc-commute-from ⟩
α⇐ ∘ id ⊗₁ α-mid ∘ α⇒ ∘ (id ⊗₁ id) ⊗₁ α⇐ ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ α-mid ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒ ∎) ⟩
id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ α-mid ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒ ∎
swapInner-assoc : [ ((X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⇒
(X₁ ⊗₀ (Y₁ ⊗₀ Z₁)) ⊗₀ (X₂ ⊗₀ (Y₂ ⊗₀ Z₂)) ]⟨
i⇒ ⊗₁ id ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⟩
i⇒ ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ Z₁) ⊗₀ ((X₂ ⊗₀ Y₂) ⊗₀ Z₂) ⟩
α⇒ ⊗₁ α⇒
≈ α⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Y₂) ⊗₀ (Z₁ ⊗₀ Z₂)) ⟩
id ⊗₁ i⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Z₁) ⊗₀ (Y₂ ⊗₀ Z₂)) ⟩
i⇒
⟩
swapInner-assoc = begin
α⇒ ⊗₁ α⇒ ∘ i⇒ ∘ i⇒ ⊗₁ id ≈⟨ serialize-assoc ⟩∘⟨refl ⟩
(id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ α-mid ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒) ∘ i⇒ ∘ i⇒ ⊗₁ id ≈˘⟨ pullˡ (pushˡ (⊗.identity ⟩⊗⟨refl ⟩∘⟨refl)) ⟩
((id ⊗₁ id) ⊗₁ α⇒ ∘ α⇐) ∘ (id ⊗₁ α-mid ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒) ∘ i⇒ ∘ i⇒ ⊗₁ id
≈⟨ ⟺ assoc-commute-to ⟩∘⟨ pullʳ (pullʳ (pushʳ (pushˡ (pushʳ (pushˡ split₂ˡ))))) ⟩
(α⇐ ∘ id ⊗₁ (id ⊗₁ α⇒)) ∘ id ⊗₁ α-mid ∘ α⇒ ∘
((id ⊗₁ α⇐ ∘ α⇒) ∘ α⇐ ∘ id ⊗₁ α⇒) ∘
(id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ i⇒ ⊗₁ id
≈⟨ pullʳ (refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ elimˡ (_≅_.isoˡ (α ⁻¹ ∘ᵢ idᵢ ⊗ᵢ α))) ⟩
α⇐ ∘ id ⊗₁ (id ⊗₁ α⇒) ∘ id ⊗₁ α-mid ∘ α⇒ ∘
(id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘
i⇒ ⊗₁ id
≈⟨ refl⟩∘⟨ merge₂ sym-assoc ⟩∘⟨ pushʳ ((⟺ ⊗.identity ⟩⊗⟨refl) ⟩∘⟨refl ⟩∘⟨ split₁ˡ) ⟩
α⇐ ∘ id ⊗₁ ((id ⊗₁ α⇒ ∘ α⇒) ∘ α⇐ ⊗₁ id ∘ α⇐) ∘
(α⇒ ∘ (id ⊗₁ id) ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘
α⇐ ⊗₁ id ∘ (id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id
≈⟨ refl⟩∘⟨ refl⟩⊗⟨
extendʳ (pushˡ (switch-fromtoʳ (α ⊗ᵢ idᵢ) (assoc ○ pentagon))) ⟩∘⟨
extendʳ assoc-commute-from ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ ((α⇒ ∘ α⇒) ∘ (α⇐ ⊗₁ id ∘ α⇐ ⊗₁ id) ∘ α⇐) ∘
(id ⊗₁ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘ (α⇒ ∘ α⇒)) ∘ α⇐ ⊗₁ id ∘
(id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id
≈˘⟨ refl⟩∘⟨ refl⟩⊗⟨ pushʳ (refl⟩∘⟨ split₁ˡ ⟩∘⟨refl) ⟩∘⟨
pushʳ (extendʳ (switch-fromtoʳ (α ⊗ᵢ idᵢ) (assoc ○ pentagon))) ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐) ∘
id ⊗₁ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘ id ⊗₁ α⇒ ∘ α⇒ ∘
(id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id
≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ split₁ˡ ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐) ∘
id ⊗₁ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘ id ⊗₁ α⇒ ∘ α⇒ ∘
(id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐)) ⊗₁ id ∘ α⇒ ⊗₁ id
≈⟨ refl⟩∘⟨ merge₂ assoc²' ○ (refl⟩∘⟨ refl⟩∘⟨ assoc) ⟩∘⟨
refl⟩∘⟨ extendʳ assoc-commute-from ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘
id ⊗₁ α⇒ ∘
id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ∘ α⇒ ∘ α⇒ ⊗₁ id
≈⟨ refl⟩∘⟨ merge₂ (assoc²' ○ (refl⟩∘⟨ refl⟩∘⟨ assoc²')) ⟩∘⟨
refl⟩∘⟨ switch-fromtoˡ (idᵢ ⊗ᵢ α) pentagon ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘
id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ∘ id ⊗₁ α⇐ ∘ α⇒ ∘ α⇒
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁
(α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘
id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ α⇒
≈⟨ refl⟩∘⟨ merge₂ assoc²' ○ (refl⟩∘⟨ refl⟩∘⟨ (assoc²' ○
(refl⟩∘⟨ refl⟩∘⟨ assoc))) ⟩∘⟨ Equiv.refl ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘
α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ α⇒
≈⟨ refl⟩∘⟨ refl⟩⊗⟨ pushʳ (begin
α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ (pushˡ split₂ˡ) ⟩
α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id) ∘ (id ⊗₁ α⇐ ∘ α⇒) ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈⟨ refl⟩∘⟨ refl⟩∘⟨ (extendʳ assoc-commute-to ○ (refl⟩∘⟨ sym-assoc)) ⟩
α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id ∘ (α⇐ ∘ (id ⊗₁ α⇐ ∘ α⇒)) ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ (sym-assoc ○
(conjugate-to α (α ⊗ᵢ idᵢ) (sym-assoc ○ pentagon-inv))) ⟩∘⟨refl ⟩
α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id ∘ (α⇒ ⊗₁ id ∘ α⇐) ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈˘⟨ refl⟩∘⟨ split₁ Equiv.refl ⟩∘⟨
pushʳ (refl⟩∘⟨ refl⟩⊗⟨ ⊗.identity ⟩∘⟨refl) ⟩
α⇒ ∘ ((α⇐ ∘ α⇐) ∘ id ⊗₁ σ⇒) ⊗₁ id ∘ α⇒ ⊗₁ id ∘ α⇐ ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘ α⇐
≈⟨ refl⟩∘⟨ merge₁ assoc² ⟩∘⟨ extendʳ assoc-commute-to ⟩
α⇒ ∘ (α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘
((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ⊗₁ id ∘ α⇐ ∘ α⇐
≈˘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
α⇒ ∘ ((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ⊗₁ id ∘
α⇐ ∘ α⇐
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ (sym-assoc ○ pentagon-inv) ⟩
α⇒ ∘ ((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ⊗₁ id ∘
α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇐
≈⟨ refl⟩∘⟨ pullˡ (⟺ split₁ˡ ○ (assoc ⟩⊗⟨refl)) ⟩
α⇒ ∘
((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐) ⊗₁ id ∘
α⇐ ∘ id ⊗₁ α⇐
≈⟨ refl⟩∘⟨ (begin
(α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ≈⟨ pushˡ (pushʳ sym-assoc) ⟩
(α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒ ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ≈⟨ (refl⟩∘⟨ extendʳ (pushʳ split₁ˡ)) ⟩
(α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒) ∘ (α⇒ ∘ α⇒ ⊗₁ id) ∘ (σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ≈⟨ pushʳ (switch-fromtoˡ (idᵢ ⊗ᵢ α) pentagon ⟩∘⟨ pushˡ split₁ˡ) ⟩
((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒) ∘ (id ⊗₁ α⇐ ∘ α⇒ ∘ α⇒)) ∘
(σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐ ⊗₁ id ∘ α⇐ ≈⟨ pushˡ (sym-assoc ○ (pullˡ (pullʳ assoc ⟩∘⟨refl))) ⟩
((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ id ⊗₁ α⇐) ∘ α⇒) ∘
α⇒ ∘ (σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐ ⊗₁ id ∘ α⇐ ≈⟨ pullʳ (refl⟩∘⟨ extendʳ assoc-commute-from) ⟩
(α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ id ⊗₁ α⇐) ∘ α⇒ ∘
σ⇒ ⊗₁ (id ⊗₁ id) ∘ α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐ ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ ⟺ split₂ˡ) ⟩∘⟨ refl⟩∘⟨ (refl⟩⊗⟨ ⊗.identity ⟩∘⟨
conjugate-from (idᵢ ⊗ᵢ (α ⁻¹)) (α ⁻¹) pentagon-inv) ⟩
(α⇐ ∘ α⇐ ∘ id ⊗₁ (σ⇒ ∘ α⇐)) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈˘⟨ extendʳ (sym-assoc ○ pentagon-inv) ⟩∘⟨refl ⟩
(α⇐ ⊗₁ id ∘ (α⇐ ∘ id ⊗₁ α⇐) ∘ id ⊗₁ (σ⇒ ∘ α⇐)) ∘
α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈˘⟨ (refl⟩∘⟨ pushʳ split₂ˡ) ⟩∘⟨refl ⟩
(α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ σ⇒ ∘ α⇐)) ∘
α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈˘⟨ pushˡ ((refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ (sym-assoc ○ hexagon₂ ○ assoc)) ⟩∘⟨refl) ⟩
((α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ σ⇒)) ∘ α⇒) ∘
σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ pushˡ (pushʳ (pushʳ split₂ˡ)) ⟩∘⟨refl ⟩
((α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ σ⇒ ⊗₁ id) ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ∘
σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ pushʳ (pushˡ split₂ˡ) ⟩∘⟨refl ⟩
(((α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ σ⇒ ⊗₁ id) ∘ id ⊗₁ α⇐) ∘
id ⊗₁ id ⊗₁ σ⇒ ∘ α⇒) ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ ((pushˡ (pushʳ assoc-commute-to) ⟩∘⟨
⟺ assoc-commute-from) ○ (pullʳ sym-assoc)) ⟩∘⟨refl ⟩
((α⇐ ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ ((α⇐ ∘ id ⊗₁ α⇐) ∘ α⇒) ∘
(id ⊗₁ id) ⊗₁ σ⇒) ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ pullˡ (⟺ split₁ˡ ⟩∘⟨
conjugate-from α (idᵢ ⊗ᵢ α ∘ᵢ α) (⟺ (assoc ○ pentagon)))
⟩∘⟨refl ⟩
(((α⇐ ∘ id ⊗₁ σ⇒) ⊗₁ id ∘ α⇒ ⊗₁ id ∘ α⇐) ∘ (id ⊗₁ id) ⊗₁ σ⇒) ∘
σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ (pullˡ (⟺ split₁ˡ) ⟩∘⟨ ⊗.identity ⟩⊗⟨refl) ⟩∘⟨refl ⟩
((((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ id ⊗₁ σ⇒) ∘
σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ extend² (⟺ serialize₂₁ ○ serialize₁₂) ⟩
((((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ σ⇒ ⊗₁ id) ∘
id ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ α⇒ ≈˘⟨ pushʳ (refl⟩∘⟨ refl⟩⊗⟨ ⊗.identity) ⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl ⟩
(((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐ ∘ σ⇒ ⊗₁ id ⊗₁ id) ∘
(id ⊗₁ id) ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ pushʳ assoc-commute-to ⟩∘⟨ extendʳ (⟺ assoc-commute-to) ⟩
((((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ (σ⇒ ⊗₁ id) ⊗₁ id) ∘ α⇐) ∘
α⇐ ∘ id ⊗₁ id ⊗₁ σ⇒ ∘ id ⊗₁ α⇒ ≈˘⟨ ((sym-assoc ○ sym-assoc) ⟩⊗⟨refl ○ split₁ˡ) ⟩∘⟨refl ⟩∘⟨ refl⟩∘⟨ split₂ˡ ⟩
(((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ⊗₁ id) ∘ α⇐) ∘
α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒ ∘ α⇒) ≈˘⟨ extend² (sym-assoc ○ pentagon-inv) ⟩
(((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ⊗₁ id) ∘ α⇐ ⊗₁ id) ∘
(α⇐ ∘ id ⊗₁ α⇐) ∘ id ⊗₁ (id ⊗₁ σ⇒ ∘ α⇒) ≈˘⟨ split₁ˡ ⟩∘⟨ pushʳ split₂ˡ ⟩
((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘
α⇐ ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∎) ⟩⊗⟨refl ⟩∘⟨refl ⟩
α⇒ ∘ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐ ∘
id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒)) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇐ ≈⟨ (refl⟩∘⟨ pushˡ ((sym-assoc ⟩⊗⟨refl) ○ split₁ˡ)) ⟩
α⇒ ∘ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐) ⊗₁ id ∘
(id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒)) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇐ ≈⟨ (refl⟩∘⟨ split₁ˡ ⟩∘⟨ extendʳ (⟺ assoc-commute-to)) ○ pushʳ assoc ⟩
(α⇒ ∘ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id) ⊗₁ id) ∘
α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ id ⊗₁ α⇐ ≈⟨ pushˡ assoc-commute-from ⟩
((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘ α⇒ ∘
α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ id ⊗₁ α⇐ ≈˘⟨ refl⟩∘⟨ pullʳ (pullʳ (refl⟩∘⟨ split₂ˡ)) ⟩
((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘
(α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ≈˘⟨ pullʳ (pullˡ (conjugate-from (α ∘ᵢ α ⊗ᵢ idᵢ) α pentagon)) ⟩
(((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘ α⇐) ∘
id ⊗₁ α⇒ ∘ id ⊗₁ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ≈⟨ refl⟩⊗⟨ ⊗.identity ⟩∘⟨refl ⟩∘⟨ ⟺ split₂ˡ ⟩
(((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐) ∘
id ⊗₁ (α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ≡⟨⟩
(((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ id ⊗₁ j⇒ ≈˘⟨ switch-fromtoʳ α (switch-fromtoˡ α (⟺ hexagon₁))
⟩⊗⟨refl ⟩∘⟨refl ⟩∘⟨refl ⟩
(σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ j⇒
∎) ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ j⇒) ∘ α⇒ ∘ α⇒ ≈⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ id ⊗₁ j⇒ ∘ α⇒ ∘ α⇒ ≈˘⟨ pullʳ (pullʳ (extendʳ assoc-commute-from)) ⟩
(α⇐ ∘ id ⊗₁ swapˡ ∘ α⇒) ∘ (id ⊗₁ id) ⊗₁ j⇒ ∘ α⇒ ≡⟨⟩
i⇒ ∘ (id ⊗₁ id) ⊗₁ j⇒ ∘ α⇒ ≈⟨ refl⟩∘⟨ ⊗.identity ⟩⊗⟨ ⟺ swapInner-coherent ⟩∘⟨refl ⟩
i⇒ ∘ id ⊗₁ i⇒ ∘ α⇒
∎
private
mid-1-elim-coh : [ X ⊗₀ (unit ⊗₀ Y) ⇒ X ⊗₀ Y ]⟨ λ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ≈ id ⊗₁ λ⇒ ⟩
mid-1-elim-coh = begin
λ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ≈⟨ pullˡ (Kelly's.coherence₁ M) ⟩
λ⇒ ⊗₁ id ∘ σ⇒ ⊗₁ id ∘ α⇐ ≈˘⟨ pushˡ split₁ˡ ⟩
(λ⇒ ∘ σ⇒) ⊗₁ id ∘ α⇐ ≈⟨ braiding-coherence B ⟩⊗⟨refl ⟩∘⟨refl ⟩
ρ⇒ ⊗₁ id ∘ α⇐ ≈˘⟨ switch-fromtoʳ α triangle ⟩
id ⊗₁ λ⇒ ∎
Kelly₁′ : [ unit ⊗₀ (X ⊗₀ Y) ⇒ X ⊗₀ Y ]⟨ λ⇒ ⊗₁ id ∘ α⇐ ≈ λ⇒ ⟩
Kelly₁′ = ⟺ (switch-fromtoʳ α (Kelly's.coherence₁ M))
Kelly₂′ : [ X ⊗₀ (Y ⊗₀ unit) ⇒ X ⊗₀ Y ]⟨ ρ⇒ ∘ α⇐ ≈ id ⊗₁ ρ⇒ ⟩
Kelly₂′ = ⟺ (switch-fromtoʳ α (Kelly's.coherence₂ M))
σ⁻¹-coherence : [ unit ⊗₀ X ⇒ X ]⟨ ρ⇒ ∘ σ⇒ ≈ λ⇒ ⟩
σ⁻¹-coherence = inv-braiding-coherence (inv-Braided B)
swapInner-unitˡ : [ unit ⊗₀ (X ⊗₀ Y) ⇒ (X ⊗₀ Y) ]⟨
λ⇐ ⊗₁ id ⇒⟨ (unit ⊗₀ unit) ⊗₀ (X ⊗₀ Y) ⟩
i⇒ ⇒⟨ (unit ⊗₀ X) ⊗₀ (unit ⊗₀ Y) ⟩
λ⇒ ⊗₁ λ⇒
≈ λ⇒
⟩
swapInner-unitˡ = begin
λ⇒ ⊗₁ λ⇒ ∘ i⇒ ∘ λ⇐ ⊗₁ id ≈⟨ refl⟩∘⟨ swapInner-coherent ⟩∘⟨ (Kelly's.coherence-inv₃ M ⟩⊗⟨refl) ⟩
λ⇒ ⊗₁ λ⇒ ∘ j⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ pullˡ (pushˡ serialize₁₂) ⟩
(λ⇒ ⊗₁ id ∘ id ⊗₁ λ⇒ ∘ α⇒ ∘ swapʳ ⊗₁ id ∘ α⇐) ∘ ρ⇐ ⊗₁ id
≈⟨ (refl⟩∘⟨ (begin
id ⊗₁ λ⇒ ∘ α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈⟨ pullˡ triangle ⟩
ρ⇒ ⊗₁ id ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈˘⟨ pushˡ split₁ˡ ⟩
(ρ⇒ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈⟨ (pullˡ Kelly₂′ ⟩⊗⟨refl ⟩∘⟨refl) ⟩
(id ⊗₁ ρ⇒ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈˘⟨ pushˡ split₂ˡ ⟩⊗⟨refl ⟩∘⟨refl ⟩
(id ⊗₁ (ρ⇒ ∘ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐ ≈⟨ (refl⟩⊗⟨ σ⁻¹-coherence ⟩∘⟨refl) ⟩⊗⟨refl ⟩∘⟨refl ⟩
(id ⊗₁ λ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈⟨ triangle ⟩⊗⟨refl ⟩∘⟨refl ⟩
(ρ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐ ≈˘⟨ assoc-commute-to ⟩
α⇐ ∘ ρ⇒ ⊗₁ (id ⊗₁ id)
∎)) ⟩∘⟨refl ⟩
(λ⇒ ⊗₁ id ∘ α⇐ ∘ ρ⇒ ⊗₁ (id ⊗₁ id)) ∘ ρ⇐ ⊗₁ id ≈⟨ (sym-assoc ○ (Kelly₁′ ⟩∘⟨ refl⟩⊗⟨ ⊗.identity)) ⟩∘⟨refl ⟩
(λ⇒ ∘ ρ⇒ ⊗₁ id) ∘ ρ⇐ ⊗₁ id ≈⟨ cancelʳ (_≅_.isoʳ (unitorʳ ⊗ᵢ idᵢ)) ⟩
λ⇒
∎
swapInner-unitʳ : [ (X ⊗₀ Y) ⊗₀ unit ⇒ (X ⊗₀ Y) ]⟨
id ⊗₁ λ⇐ ⇒⟨ (X ⊗₀ Y) ⊗₀ (unit ⊗₀ unit) ⟩
i⇒ ⇒⟨ (X ⊗₀ unit) ⊗₀ (Y ⊗₀ unit) ⟩
ρ⇒ ⊗₁ ρ⇒
≈ ρ⇒
⟩
swapInner-unitʳ = begin
ρ⇒ ⊗₁ ρ⇒ ∘ i⇒ ∘ id ⊗₁ λ⇐ ≡⟨⟩
ρ⇒ ⊗₁ ρ⇒ ∘ (α⇐ ∘ id ⊗₁ swapˡ ∘ α⇒) ∘ id ⊗₁ λ⇐ ≈⟨ pullˡ (pushˡ serialize₂₁) ⟩
(id ⊗₁ ρ⇒ ∘ ρ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ swapˡ ∘ α⇒) ∘ id ⊗₁ λ⇐ ≈⟨ (refl⟩∘⟨ (begin
ρ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ swapˡ ∘ α⇒ ≈˘⟨ pushˡ (switch-fromtoʳ α triangle) ⟩
id ⊗₁ λ⇒ ∘ id ⊗₁ swapˡ ∘ α⇒ ≈˘⟨ pushˡ split₂ˡ ⟩
id ⊗₁ (λ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩⊗⟨ mid-1-elim-coh ⟩∘⟨refl ⟩
id ⊗₁ (id ⊗₁ λ⇒) ∘ α⇒ ≈˘⟨ assoc-commute-from ⟩
α⇒ ∘ (id ⊗₁ id) ⊗₁ λ⇒ ≈⟨ refl⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩
α⇒ ∘ id ⊗₁ λ⇒ ∎)) ⟩∘⟨refl ⟩
(id ⊗₁ ρ⇒ ∘ α⇒ ∘ id ⊗₁ λ⇒) ∘ id ⊗₁ λ⇐ ≈⟨ (sym-assoc ○ (Kelly's.coherence₂ M ⟩∘⟨refl )) ⟩∘⟨refl ⟩
(ρ⇒ ∘ id ⊗₁ λ⇒) ∘ id ⊗₁ λ⇐ ≈⟨ cancelʳ (_≅_.isoʳ (idᵢ ⊗ᵢ unitorˡ)) ⟩
ρ⇒ ∎
-- Two different ways of swapping things around are the same
private
[23][14]ʳ : [ (X ⊗₀ Y) ⊗₀ (Z ⊗₀ W) ⇒ (Y ⊗₀ Z) ⊗₀ (X ⊗₀ W) ]⟨ α⇒ ∘ swapʳ ⊗₁ id ∘ (σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐ ≈ (α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐ ⟩
[23][14]ʳ = begin
(α⇒ ∘ swapʳ ⊗₁ id ∘ (σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐) ≈˘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
(α⇒ ∘ (swapʳ ∘ σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐) ≈⟨ refl⟩∘⟨ pullʳ (assoc ○ hexagon₁) ⟩⊗⟨refl ⟩∘⟨refl ⟩
(α⇒ ∘ (α⇐ ∘ α⇒ ∘ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ≈⟨ refl⟩∘⟨ cancelˡ α.isoˡ ⟩⊗⟨refl ⟩∘⟨refl ⟩
(α⇒ ∘ (σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ≈⟨ extendʳ (pushʳ split₁ˡ) ⟩
((α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐) ∎
[13][42]ˡ : [ (X ⊗₀ Y) ⊗₀ (Z ⊗₀ W) ⇒ (X ⊗₀ Z) ⊗₀ (W ⊗₀ Y) ]⟨ α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒) ∘ id ⊗₁ swapˡ ∘ α⇒ ≈ (α⇐ ∘ id ⊗₁ α⇒) ∘ id ⊗₁ σ⇒ ∘ α⇒ ⟩
[13][42]ˡ = begin
α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒) ∘ id ⊗₁ swapˡ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (⟺ assoc ○ (pullˡ (assoc ○ hexagon₁))) ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ∘ α⇒) ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ pullʳ (cancelʳ α.isoʳ) ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒) ∘ α⇒ ≈⟨ extendʳ (pushʳ split₂ˡ) ⟩
(α⇐ ∘ id ⊗₁ α⇒) ∘ id ⊗₁ σ⇒ ∘ α⇒ ∎
swapInner-braiding : [ (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ⇒ (Y ⊗₀ Z) ⊗₀ (W ⊗₀ X) ]⟨
i⇒ ⇒⟨ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) ⟩
σ⇒ ⊗₁ σ⇒ ⇒⟨ (Y ⊗₀ W) ⊗₀ (Z ⊗₀ X) ⟩
i⇒
≈ σ⇒
⟩
swapInner-braiding = begin
i⇒ ∘ σ⇒ ⊗₁ σ⇒ ∘ i⇒ ≡⟨⟩
i⇒ ∘ σ⇒ ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ swapˡ ∘ α⇒ ≈⟨ swapInner-coherent ⟩∘⟨ pushˡ serialize₁₂ ⟩
j⇒ ∘ σ⇒ ⊗₁ id ∘ id ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ swapˡ ∘ α⇒ ≈˘⟨ ((refl⟩∘⟨ refl⟩⊗⟨ ⊗.identity) ⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl) ○ assoc ⟩
((α⇒ ∘ swapʳ ⊗₁ id ∘ α⇐) ∘ σ⇒ ⊗₁ (id ⊗₁ id)) ∘
(id ⊗₁ id) ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ swapˡ ∘ α⇒ ≈⟨ pullʳ (pullʳ assoc-commute-to) ⟩∘⟨ extendʳ (⟺ assoc-commute-to) ⟩
(α⇒ ∘ swapʳ ⊗₁ id ∘ (σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐) ∘
α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒) ∘ id ⊗₁ swapˡ ∘ α⇒ ≈⟨ [23][14]ʳ ⟩∘⟨ [13][42]ˡ ⟩
((α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐) ∘ (α⇐ ∘ id ⊗₁ α⇒) ∘ id ⊗₁ σ⇒ ∘ α⇒ ≈˘⟨ extendʳ (pushʳ (pushʳ assoc)) ⟩
(α⇒ ∘ σ⇒ ⊗₁ id) ∘ (α⇒ ⊗₁ id ∘ (α⇐ ∘ α⇐) ∘ id ⊗₁ α⇒) ∘ id ⊗₁ σ⇒ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ switch-tofromˡ (α ⊗ᵢ idᵢ)
(switch-tofromʳ (idᵢ ⊗ᵢ α) pentagon-inv) ⟩∘⟨refl ⟩
(α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ≈⟨ pullʳ (sym-assoc ○ pullˡ hexagon₂) ⟩
α⇒ ∘ ((α⇐ ∘ σ⇒) ∘ α⇐) ∘ α⇒ ≈⟨ (refl⟩∘⟨ cancelʳ α.isoˡ) ⟩
α⇒ ∘ (α⇐ ∘ σ⇒) ≈⟨ cancelˡ α.isoʳ ⟩
σ⇒ ∎
-- Braided monoidal categories have an interchange.
hasInterchange : HasInterchange M
hasInterchange = record
{ swapInner = swapInner
; natural = swapInner-natural
; assoc = swapInner-assoc
; unitˡ = swapInner-unitˡ
; unitʳ = swapInner-unitʳ
}
open HasInterchange hasInterchange public using (naturalIso)
| {
"alphanum_fraction": 0.3773663644,
"avg_line_length": 62.6104513064,
"ext": "agda",
"hexsha": "f5d225f5d4440fac20e229360e484683b7dcd716",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Interchange/Braided.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Interchange/Braided.agda",
"max_line_length": 158,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Interchange/Braided.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 15078,
"size": 26359
} |
module Min where
open import Data.Nat using (ℕ; zero; suc)
open import Algebra.Bundles using (CommutativeRing)
open import Algebra.Module.Bundles using (Module)
open import Data.Product using (Σ-syntax; ∃-syntax; _×_; proj₁; proj₂; _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Binary.Core using (Rel)
import Algebra.Module.Construct.Zero as Zero
import Algebra.Module.Construct.DirectProduct as Prod
import Algebra.Module.Construct.TensorUnit as Unit
module _
{r ℓr} {CR : CommutativeRing r ℓr}
{ma ℓma} (MA : Module CR ma ℓma)
{mb ℓmb} (MB : Module CR mb ℓmb)
where
open import Linear MA MB
module _
{rel} (_<_ : Rel (CommutativeRing.Carrier CR) rel)
(∥_∥ᴬ : A → R)
(∥_∥ᴮ : B → R)
(_÷_ : B → R → B)
where
_LimitOf_x→_ Limit-syntax : (L : B) (f : A → B) (c : A)→ Set _
L LimitOf f x→ c = ∀ ε → ∃[ δ ] ∥ (f (c +ᴬ δ) -ᴮ L) ∥ᴮ < ∥ ε ∥ᴮ
Limit-syntax = _LimitOf_x→_
syntax Limit-syntax L (λ h → f) c = L LimitOf f ∶ h ⟶ c
Diff' : (f : A → B) (x : A) (f' : A → A → B) → Set _
Diff' f x f' = 0ᴮ LimitOf tmp dx ∶ dx ⟶ 0ᴬ
where
tmp : (dx : A) → B
tmp dx = (f (x +ᴬ dx) -ᴮ f x -ᴮ f' x dx) ÷ ∥ dx ∥ᴬ
Differentiable : (f : A → B) → A → Set _
Differentiable f x =
Σ[ f' ∈ (A → A → B) ]
Linear (f' x)
-- × ∀ dy → ∃[ dx ] (∥ ((f (x +ᴬ dx) -ᴮ f x) -ᴮ (f' x dx)) ∥ᴮ) < (∥ dy ∥ᴮ)
D : {f : A → B} {x : A} (d : Differentiable f x) → A → B
D {x = x} d = proj₁ d x
n-module : ∀ {a b} {S : CommutativeRing a b} → ℕ → Module S a b
n-module zero = Zero.⟨module⟩
n-module (suc n) = Prod.⟨module⟩ Unit.⟨module⟩ (n-module n)
open import Tactic.RingSolver
module Line {a b} (CR : CommutativeRing a b) where
open CommutativeRing CR
open import Relation.Binary.Reasoning.Setoid setoid
open import Tactic.RingSolver.Core.AlmostCommutativeRing
line : Carrier → Carrier → Carrier → Carrier
line m b x = m * x + b
x+y-x≈y : ∀ x y → (x + y) - x ≈ y
x+y-x≈y x y =
begin
(x + y) - x
≈⟨ +-assoc x y (- x) ⟩
x + (y - x)
≈⟨ +-cong refl (+-comm y (- x)) ⟩
x + (- x + y)
≈⟨ sym (+-assoc x (- x) y) ⟩
(x - x) + y
≈⟨ +-cong (proj₂ -‿inverse x) refl ⟩
0# + y
≈⟨ +-identityˡ y ⟩
y
∎
x+y+z≈x+z+y : ∀ x y z → x + y + z ≈ x + z + y
x+y+z≈x+z+y x y z =
begin
(x + y) + z
≈⟨ +-assoc x y z ⟩
x + (y + z)
≈⟨ +-cong refl (+-comm y z) ⟩
x + (z + y)
≈⟨ sym (+-assoc x z y) ⟩
(x + z) + y
∎
linear-diff : ∀ m b x dy → line m b (x + dy) - line m b x ≈ m * dy
linear-diff m b x dy =
begin
m * (x + dy) + b - (m * x + b)
≈⟨ +-cong (+-cong (distribˡ m x dy) refl) refl ⟩
m * x + m * dy + b - (m * x + b)
≈⟨ +-cong (x+y+z≈x+z+y (m * x) (m * dy) b) refl ⟩
m * x + b + m * dy - (m * x + b)
≈⟨ x+y-x≈y (m * x + b) (m * dy) ⟩
m * dy
∎
| {
"alphanum_fraction": 0.5005142269,
"avg_line_length": 26.5181818182,
"ext": "agda",
"hexsha": "a9dc5f56b1ea7b5a16f26221bffa8675e237ce62",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "cspollard/diff",
"max_forks_repo_path": "src/Min.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "cspollard/diff",
"max_issues_repo_path": "src/Min.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "cspollard/diff",
"max_stars_repo_path": "src/Min.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1257,
"size": 2917
} |
{-
This file contains:
- Properties of groupoid truncations
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.GroupoidTruncation.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.HITs.GroupoidTruncation.Base
private
variable
ℓ : Level
A : Type ℓ
rec : ∀ {B : Type ℓ} → isGroupoid B → (A → B) → ∥ A ∥₃ → B
rec gB f ∣ x ∣₃ = f x
rec gB f (squash₃ x y p q r s i j k) =
gB _ _ _ _ (λ m n → rec gB f (r m n)) (λ m n → rec gB f (s m n)) i j k
elim : {B : ∥ A ∥₃ → Type ℓ}
(bG : (x : ∥ A ∥₃) → isGroupoid (B x))
(f : (x : A) → B ∣ x ∣₃) (x : ∥ A ∥₃) → B x
elim bG f (∣ x ∣₃) = f x
elim bG f (squash₃ x y p q r s i j k) =
isOfHLevel→isOfHLevelDep 3 bG _ _ _ _
(λ j k → elim bG f (r j k)) (λ j k → elim bG f (s j k))
(squash₃ x y p q r s)
i j k
elim2 : {B : ∥ A ∥₃ → ∥ A ∥₃ → Type ℓ}
(gB : ((x y : ∥ A ∥₃) → isGroupoid (B x y)))
(g : (a b : A) → B ∣ a ∣₃ ∣ b ∣₃)
(x y : ∥ A ∥₃) → B x y
elim2 gB g = elim (λ _ → isGroupoidΠ (λ _ → gB _ _))
(λ a → elim (λ _ → gB _ _) (g a))
elim3 : {B : (x y z : ∥ A ∥₃) → Type ℓ}
(gB : ((x y z : ∥ A ∥₃) → isGroupoid (B x y z)))
(g : (a b c : A) → B ∣ a ∣₃ ∣ b ∣₃ ∣ c ∣₃)
(x y z : ∥ A ∥₃) → B x y z
elim3 gB g = elim2 (λ _ _ → isGroupoidΠ (λ _ → gB _ _ _))
(λ a b → elim (λ _ → gB _ _ _) (g a b))
groupoidTruncIsGroupoid : isGroupoid ∥ A ∥₃
groupoidTruncIsGroupoid a b p q r s = squash₃ a b p q r s
groupoidTruncIdempotent≃ : isGroupoid A → ∥ A ∥₃ ≃ A
groupoidTruncIdempotent≃ {A = A} hA = isoToEquiv f
where
f : Iso ∥ A ∥₃ A
Iso.fun f = rec hA (idfun A)
Iso.inv f x = ∣ x ∣₃
Iso.rightInv f _ = refl
Iso.leftInv f = elim (λ _ → isGroupoid→is2Groupoid groupoidTruncIsGroupoid _ _) (λ _ → refl)
groupoidTruncIdempotent : isGroupoid A → ∥ A ∥₃ ≡ A
groupoidTruncIdempotent hA = ua (groupoidTruncIdempotent≃ hA)
| {
"alphanum_fraction": 0.5710944808,
"avg_line_length": 31.4411764706,
"ext": "agda",
"hexsha": "dbf8f9ace5df8e4fd89f1d7c666c05216522e9c0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/GroupoidTruncation/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/GroupoidTruncation/Properties.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/GroupoidTruncation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 941,
"size": 2138
} |
{-# OPTIONS --cubical --no-import-sorts --guardedness --safe #-}
module Cubical.Codata.M.AsLimit.Coalg where
open import Cubical.Codata.M.AsLimit.Coalg.Base public
| {
"alphanum_fraction": 0.7530120482,
"avg_line_length": 27.6666666667,
"ext": "agda",
"hexsha": "da0ed579edc00c5a67a68aa149ef22f377ceb923",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/M/AsLimit/Coalg.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/M/AsLimit/Coalg.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/M/AsLimit/Coalg.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 43,
"size": 166
} |
module Oscar.Property.Extensionality where
open import Oscar.Level
record Extensionality
{a} {A : Set a} {b} {B : A → Set b} {ℓ₁}
(_≤₁_ : (x : A) → B x → Set ℓ₁)
{c} {C : A → Set c} {d} {D : ∀ {x} → B x → Set d} {ℓ₂}
(_≤₂_ : ∀ {x} → C x → ∀ {y : B x} → D y → Set ℓ₂)
(μ₁ : (x : A) → C x)
(μ₂ : ∀ {x} → (y : B x) → D y)
: Set (a ⊔ ℓ₁ ⊔ b ⊔ ℓ₂) where
field
extensionality : ∀ {x} {y : B x} → x ≤₁ y → μ₁ x ≤₂ μ₂ y
open Extensionality ⦃ … ⦄ public
extension : ∀
{a} {A : Set a}
{b} {B : A → Set b}
{ℓ₁} {_≤₁_ : (x : A) → B x → Set ℓ₁}
{c} {C : A → Set c} {d} {D : ∀ {x} → B x → Set d} {ℓ₂}
(_≤₂_ : ∀ {x} → C x → ∀ {y : B x} → D y → Set ℓ₂)
{μ₁ : (x : A) → C x}
{μ₂ : ∀ {x} → (y : B x) → D y}
⦃ _ : Extensionality _≤₁_ _≤₂_ μ₁ μ₂ ⦄
{x} {y : B x}
→ x ≤₁ y → μ₁ x ≤₂ μ₂ y
extension _≤₂_ = extensionality {_≤₂_ = _≤₂_}
| {
"alphanum_fraction": 0.4311717861,
"avg_line_length": 28.3548387097,
"ext": "agda",
"hexsha": "31f718821773ee9ce7bdd8bbbfecb3f878f79948",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Property/Extensionality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Property/Extensionality.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Property/Extensionality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 452,
"size": 879
} |
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.Truncation
open import Integers
-- Formalization of 0-truncated groups
module Algebra.Groups where
-- A pregroup is a group whose carrier is not a required to be a set (but
-- without higher coherences)
record pregroup i : Set (suc i) where
-- constructor pregroup
field
-- Stuff
carrier : Set i -- \|
-- Structure
_∙_ : carrier → carrier → carrier -- \.
e : carrier
_′ : carrier → carrier -- \'
-- Properties
assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z)
right-unit : ∀ x → x ∙ e ≡ x
left-unit : ∀ x → e ∙ x ≡ x
right-inverse : ∀ x → x ∙ (x ′) ≡ e
left-inverse : ∀ x → (x ′) ∙ x ≡ e
record group i : Set (suc i) where
-- constructor group
field
pre : pregroup i
open pregroup pre
field
set : is-set carrier
open pregroup pre public
-- Group structure on [unit]
unit-group : ∀ {i} → group i
unit-group {i} = record
{ pre = record
{ carrier = unit
; _∙_ = λ _ _ → tt
; e = tt
; _′ = λ _ → tt
; assoc = λ _ _ _ → refl
; right-unit = λ _ → refl
; left-unit = λ _ → refl
; right-inverse = λ _ → refl
; left-inverse = λ _ → refl
}
; set = unit-is-set
}
postulate -- Tedious because I have a terrible definition of groups
unit-group-unique : ∀ {i} (G : group i) →
let open group G in (c : is-contr carrier) → G ≡ unit-group
-- Every pregroup can be truncated to a group
π₀-pregroup : ∀ {i} → pregroup i → group i
π₀-pregroup pre = record
{ pre = record
{ carrier = carrier₀
; _∙_ = _•₀_
; e = e₀
; _′ = _′₀
; assoc = assoc₀
; right-unit = right-unit₀
; left-unit = left-unit₀
; right-inverse = right-inverse₀
; left-inverse = left-inverse₀
}
; set = carrier₀-is-set
} where
open pregroup pre
carrier₀ : Set _
carrier₀ = π₀ carrier
carrier₀-is-set : is-set carrier₀
carrier₀-is-set = π₀-is-set carrier
_•₀_ : carrier₀ → carrier₀ → carrier₀
_•₀_ = π₀-extend-nondep ⦃ →-is-set $ carrier₀-is-set ⦄
(λ x → π₀-extend-nondep ⦃ carrier₀-is-set ⦄
(λ y → proj (x ∙ y)))
e₀ : π₀ carrier
e₀ = proj e
_′₀ : carrier₀ → carrier₀
_′₀ = π₀-extend-nondep ⦃ carrier₀-is-set ⦄ (λ x → proj (x ′))
abstract
assoc₀ : ∀ x y z → (x •₀ y) •₀ z ≡ x •₀ (y •₀ z)
assoc₀ =
(π₀-extend ⦃ λ _ → Π-is-set λ _ → Π-is-set λ _ → ≡-is-set carrier₀-is-set ⦄
(λ x → π₀-extend ⦃ λ _ → Π-is-set λ _ → ≡-is-set carrier₀-is-set ⦄
(λ y → π₀-extend ⦃ λ _ → ≡-is-set carrier₀-is-set ⦄
(λ z → ap proj (assoc x y z)))))
abstract
right-unit₀ : ∀ x → x •₀ e₀ ≡ x
right-unit₀ =
(π₀-extend ⦃ λ _ → ≡-is-set carrier₀-is-set ⦄
(ap proj ◯ right-unit))
abstract
left-unit₀ : ∀ x → e₀ •₀ x ≡ x
left-unit₀ =
(π₀-extend ⦃ λ _ → ≡-is-set carrier₀-is-set ⦄
(ap proj ◯ left-unit))
abstract
right-inverse₀ : ∀ x → x •₀ (x ′₀) ≡ e₀
right-inverse₀ =
(π₀-extend ⦃ λ _ → ≡-is-set carrier₀-is-set ⦄
(ap proj ◯ right-inverse))
abstract
left-inverse₀ : ∀ x → (x ′₀) •₀ x ≡ e₀
left-inverse₀ =
(π₀-extend ⦃ λ _ → ≡-is-set carrier₀-is-set ⦄
(ap proj ◯ left-inverse))
-- Not used
-- is-group-morphism : ∀ {i j} (A : Group i) (B : Group j)
-- (f : ∣ g A ∣ → ∣ g B ∣)
-- → Set (max i j)
-- is-group-morphism A B f =
-- (x y : ∣ g A ∣) → f (_∙_ (g A) x y) ≡ _∙_ (g B) (f x) (f y)
-- _≈_ : ∀ {i j} (A : Group i) (B : Group j) → Set (max i j)
-- A ≈ B = Σ (∣ g A ∣ → ∣ g B ∣) (λ f → is-equiv f × is-group-morphism A B f)
| {
"alphanum_fraction": 0.5306623058,
"avg_line_length": 26.3956834532,
"ext": "agda",
"hexsha": "51ceb201d2f62eeed1aaadaf70c3121d9cf85050",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Algebra/Groups.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Algebra/Groups.agda",
"max_line_length": 83,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Algebra/Groups.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1356,
"size": 3669
} |
{-
Definition of the integers as a HIT ported from the redtt library:
https://github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red
For the naive, but incorrect, way to define the integers as a HIT, see HITs.IsoInt
This file contains:
- definition of BiInvInt
- proof that Int ≡ BiInvInt
- [discreteBiInvInt] and [isSetBiInvInt]
- versions of the point constructors of BiInvInt which satisfy the path constructors judgmentally
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Ints.BiInvInt.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Data.Nat
open import Cubical.Data.Int
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.BiInvEquiv
open import Cubical.Foundations.HAEquiv
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Relation.Nullary
data BiInvInt : Type₀ where
zero : BiInvInt
suc : BiInvInt -> BiInvInt
-- suc is a bi-invertible equivalence:
predr : BiInvInt -> BiInvInt
suc-predr : ∀ z -> suc (predr z) ≡ z
predl : BiInvInt -> BiInvInt
predl-suc : ∀ z -> predl (suc z) ≡ z
suc-biinvequiv : BiInvEquiv BiInvInt BiInvInt
suc-biinvequiv = record { fun = suc ; invr = predr ; invr-rightInv = suc-predr
; invl = predl ; invl-leftInv = predl-suc }
predr-suc : ∀ z -> predr (suc z) ≡ z
predr-suc = BiInvEquiv.invr-leftInv suc-biinvequiv
-- since we want to use suc-adj and pred-adj (defined below) later on, we will need the
-- definition of suc-predl taken from HAEquiv instead of from BiInvEquiv
suc-haequiv : HAEquiv BiInvInt BiInvInt
suc-haequiv = biInvEquiv→HAEquiv suc-biinvequiv
suc-predl : ∀ z -> suc (predl z) ≡ z
suc-predl = isHAEquiv.ret (snd suc-haequiv)
-- predr and predl (as well as suc-predr and suc-predl - up to a path) are indistinguishable,
-- so we can safely define 'pred' to just be predl
predl≡predr : ∀ z -> predl z ≡ predr z
predl≡predr z i = cong fst (isContr→isProp (isContr-section (biInvEquiv→Equiv-left suc-biinvequiv))
(predl , suc-predl) (predr , suc-predr)) i z
suc-predl≡predr : ∀ z -> PathP (λ j → suc (predl≡predr z j) ≡ z) (suc-predl z) (suc-predr z)
suc-predl≡predr z i = cong snd (isContr→isProp (isContr-section (biInvEquiv→Equiv-left suc-biinvequiv))
(predl , suc-predl) (predr , suc-predr)) i z
pred : BiInvInt -> BiInvInt
pred = predl
suc-pred = suc-predl
pred-suc = predl-suc
-- these paths from HAEquiv will be useful later
suc-adj : ∀ z → (λ i → suc (pred-suc z i)) ≡ suc-pred (suc z)
pred-adj : ∀ z → (λ i → pred (suc-pred z i)) ≡ pred-suc (pred z)
suc-adj z = isHAEquiv.com (snd suc-haequiv) z
pred-adj z = isHAEquiv.com-op (snd suc-haequiv) z
-- Int ≡ BiInvInt
fwd : Int -> BiInvInt
fwd (pos zero) = zero
fwd (pos (suc n)) = suc (fwd (pos n))
fwd (negsuc zero) = pred zero
fwd (negsuc (suc n)) = pred (fwd (negsuc n))
bwd : BiInvInt -> Int
bwd zero = pos zero
bwd (suc z) = sucInt (bwd z)
bwd (predr z) = predInt (bwd z)
bwd (suc-predr z i) = sucPred (bwd z) i
bwd (predl z) = predInt (bwd z)
bwd (predl-suc z i) = predSuc (bwd z) i
bwd-fwd : ∀ (x : Int) -> bwd (fwd x) ≡ x
bwd-fwd (pos zero) = refl
bwd-fwd (pos (suc n)) = cong sucInt (bwd-fwd (pos n))
bwd-fwd (negsuc zero) = refl
bwd-fwd (negsuc (suc n)) = cong predInt (bwd-fwd (negsuc n))
fwd-sucInt : ∀ (x : Int) → fwd (sucInt x) ≡ suc (fwd x)
fwd-sucInt (pos n) = refl
fwd-sucInt (negsuc zero) = sym (suc-pred (fwd (pos zero)))
fwd-sucInt (negsuc (suc n)) = sym (suc-pred (fwd (negsuc n)))
fwd-predInt : ∀ (x : Int) → fwd (predInt x) ≡ pred (fwd x)
fwd-predInt (pos zero) = refl
fwd-predInt (pos (suc n)) = sym (predl-suc (fwd (pos n)))
fwd-predInt (negsuc n) = refl
private
sym-filler : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y)
→ Square {- (j = i0) -} refl
{- (i = i0) -} (sym p)
{- (i = i1) -} refl
{- (j = i1) -} p
sym-filler {y = y} p i j = hcomp (λ k → λ { (j = i0) → y
; (i = i0) → p ((~ j) ∨ (~ k))
; (i = i1) → y
; (j = i1) → p (i ∨ (~ k)) }) y
fwd-sucPred : ∀ (x : Int)
→ Square {- (j = i0) -} (λ i → fwd (sucPred x i))
{- (i = i0) -} (fwd-sucInt (predInt x) ∙ (λ i → suc (fwd-predInt x i)))
{- (i = i1) -} (λ _ → fwd x)
{- (j = i1) -} (suc-pred (fwd x))
fwd-sucPred (pos zero) i j
= hcomp (λ k → λ { (j = i0) → fwd (pos zero)
; (i = i0) → rUnit (sym (suc-pred (fwd (pos zero)))) k j
-- because fwd-sucInt (predInt (pos zero)) ≡ sym (suc-pred (fwd (pos zero)))
; (i = i1) → fwd (pos zero)
; (j = i1) → suc-pred (fwd (pos zero)) i
})
(sym-filler (suc-pred (fwd (pos zero))) i j)
fwd-sucPred (pos (suc n)) i j
= hcomp (λ k → λ { (j = i0) → suc (fwd (pos n))
; (i = i0) → lUnit (λ i → suc (sym (predl-suc (fwd (pos n))) i)) k j
-- because fwd-predInt (pos (suc n)) ≡ sym (predl-suc (fwd (pos n)))
; (i = i1) → suc (fwd (pos n))
; (j = i1) → suc-adj (fwd (pos n)) k i
})
(suc (sym-filler (pred-suc (fwd (pos n))) i j))
fwd-sucPred (negsuc n) i j
= hcomp (λ k → λ { (j = i0) → fwd (negsuc n)
; (i = i0) → rUnit (sym (suc-pred (fwd (negsuc n)))) k j
-- because fwd-sucInt (predInt (negsuc n)) ≡ sym (suc-pred (fwd (negsuc n)))
; (i = i1) → fwd (negsuc n)
; (j = i1) → suc-pred (fwd (negsuc n)) i
})
(sym-filler (suc-pred (fwd (negsuc n))) i j)
fwd-predSuc : ∀ (x : Int)
→ Square {- (j = i0) -} (λ i → fwd (predSuc x i))
{- (i = i0) -} (fwd-predInt (sucInt x) ∙ (λ i → pred (fwd-sucInt x i)))
{- (i = i1) -} (λ _ → fwd x)
{- (j = i1) -} (pred-suc (fwd x))
fwd-predSuc (pos n) i j
= hcomp (λ k → λ { (j = i0) → fwd (pos n)
; (i = i0) → rUnit (sym (pred-suc (fwd (pos n)))) k j
-- because fwd-predInt (sucInt (pos n)) ≡ sym (pred-suc (fwd (pos n)))
; (i = i1) → fwd (pos n)
; (j = i1) → pred-suc (fwd (pos n)) i
})
(sym-filler (pred-suc (fwd (pos n))) i j)
fwd-predSuc (negsuc zero) i j
= hcomp (λ k → λ { (j = i0) → fwd (negsuc zero)
; (i = i0) → lUnit (λ i → pred (sym (suc-pred (fwd (pos zero))) i)) k j
-- because fwd-sucInt (negsuc zero) ≡ sym (suc-pred (fwd (pos zero)))
; (i = i1) → fwd (negsuc zero)
; (j = i1) → pred-adj (fwd (pos zero)) k i
})
(pred (sym-filler (suc-pred (fwd (pos zero))) i j))
fwd-predSuc (negsuc (suc n)) i j
= hcomp (λ k → λ { (j = i0) → fwd (negsuc (suc n))
; (i = i0) → lUnit (λ i → pred (sym (suc-pred (fwd (negsuc n))) i)) k j
-- because fwd-sucInt (negsuc (suc n)) ≡ sym (suc-pred (fwd (negsuc n)))
; (i = i1) → fwd (negsuc (suc n))
; (j = i1) → pred-adj (fwd (negsuc n)) k i
})
(pred (sym-filler (suc-pred (fwd (negsuc n))) i j))
fwd-bwd : ∀ (z : BiInvInt) -> fwd (bwd z) ≡ z
fwd-bwd zero = refl
fwd-bwd (suc z) = fwd-sucInt (bwd z) ∙ (λ i → suc (fwd-bwd z i))
fwd-bwd (predr z) = fwd-predInt (bwd z) ∙ (λ i → predl≡predr (fwd-bwd z i) i)
fwd-bwd (predl z) = fwd-predInt (bwd z) ∙ (λ i → pred (fwd-bwd z i))
fwd-bwd (suc-predr z i) j
= hcomp (λ k → λ { (j = i0) → fwd (sucPred (bwd z) i)
; (i = i0) → (fwd-sucInt (predInt (bwd z))
∙ (λ i → suc (compPath-filler (fwd-predInt (bwd z))
(λ i' → predl≡predr (fwd-bwd z i') i')
k i))) j
; (i = i1) → fwd-bwd z (j ∧ k)
; (j = i1) → suc-predl≡predr (fwd-bwd z k) k i })
(fwd-sucPred (bwd z) i j)
fwd-bwd (predl-suc z i) j
= hcomp (λ k → λ { (j = i0) → fwd (predSuc (bwd z) i)
; (i = i0) → (fwd-predInt (sucInt (bwd z))
∙ (λ i → pred (compPath-filler (fwd-sucInt (bwd z))
(λ i' → suc (fwd-bwd z i'))
k i))) j
; (i = i1) → fwd-bwd z (j ∧ k)
; (j = i1) → pred-suc (fwd-bwd z k) i })
(fwd-predSuc (bwd z) i j)
Int≡BiInvInt : Int ≡ BiInvInt
Int≡BiInvInt = isoToPath (iso fwd bwd fwd-bwd bwd-fwd)
discreteBiInvInt : Discrete BiInvInt
discreteBiInvInt = subst Discrete Int≡BiInvInt discreteInt
isSetBiInvInt : isSet BiInvInt
isSetBiInvInt = subst isSet Int≡BiInvInt isSetInt
-- suc' is equal to suc (suc≡suc') but cancels pred *exactly* (see suc'-pred)
suc'ᵖ : (z : BiInvInt) -> Σ BiInvInt (suc z ≡_)
suc' = fst ∘ suc'ᵖ
suc≡suc' = snd ∘ suc'ᵖ
suc'ᵖ zero = suc zero , refl
suc'ᵖ (suc z) = suc (suc z) , refl
suc'ᵖ (predr z) = z , suc-predr z
suc'ᵖ (suc-predr z i) = let filler : I → I → BiInvInt
filler j i = hfill (λ j → λ { (i = i0) → suc (suc (predr z))
; (i = i1) → suc≡suc' z j })
(inS (suc (suc-predr z i))) j
in filler i1 i , λ j → filler j i
suc'ᵖ (predl z) = z , suc-predl z
suc'ᵖ (predl-suc z i) = let filler : I → I → BiInvInt
filler j i = hfill (λ j → λ { (i = i0) → suc-predl (suc z) j
; (i = i1) → suc≡suc' z j })
(inS (suc (predl-suc z i))) j
in filler i1 i , λ j → filler j i
private
suc'-pred : ∀ z → suc' (pred z) ≡ z
suc'-pred z = refl
-- pred' is equal to pred (pred≡pred') but cancels suc *exactly* (see pred'-suc)
predr'ᵖ : (z : BiInvInt) -> Σ BiInvInt (predr z ≡_)
predr' = fst ∘ predr'ᵖ
predr≡predr' = snd ∘ predr'ᵖ
predr'ᵖ zero = predr zero , refl
predr'ᵖ (suc z) = z , predr-suc z
predr'ᵖ (predr z) = predr (predr z) , refl
predr'ᵖ (suc-predr z i) = let filler : I → I → BiInvInt
filler j i = hfill (λ j → λ { (i = i0) → predr-suc (predr z) j
; (i = i1) → predr≡predr' z j })
(inS (predr (suc-predr z i))) j
in filler i1 i , λ j → filler j i
predr'ᵖ (predl z) = predr (predl z) , refl
predr'ᵖ (predl-suc z i) = let filler : I → I → BiInvInt
filler j i = hfill (λ j → λ { (i = i0) → predr (predl (suc z))
; (i = i1) → predr≡predr' z j })
(inS (predr (predl-suc z i))) j
in filler i1 i , λ j → filler j i
predl'ᵖ : (z : BiInvInt) -> Σ BiInvInt (predl z ≡_)
predl' = fst ∘ predl'ᵖ
predl≡predl' = snd ∘ predl'ᵖ
predl'ᵖ zero = predl zero , refl
predl'ᵖ (suc z) = z , predl-suc z
predl'ᵖ (predr z) = predl (predr z) , refl
predl'ᵖ (suc-predr z i) = let filler : I → I → BiInvInt
filler j i = hfill (λ j → λ { (i = i0) → predl-suc (predr z) j
; (i = i1) → predl≡predl' z j })
(inS (predl (suc-predr z i))) j
in filler i1 i , λ j → filler j i
predl'ᵖ (predl z) = predl (predl z) , refl
predl'ᵖ (predl-suc z i) = let filler : I → I → BiInvInt
filler j i = hfill (λ j → λ { (i = i0) → predl (predl (suc z))
; (i = i1) → predl≡predl' z j })
(inS (predl (predl-suc z i))) j
in filler i1 i , λ j → filler j i
private
predr'-suc : ∀ z → predr' (suc z) ≡ z
predr'-suc z = refl
predl'-suc : ∀ z → predl' (suc z) ≡ z
predl'-suc z = refl
| {
"alphanum_fraction": 0.4781964272,
"avg_line_length": 41.2186495177,
"ext": "agda",
"hexsha": "d99c91d33e0806791dd56bcb178316329e734166",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/HITs/Ints/BiInvInt/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/HITs/Ints/BiInvInt/Base.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/HITs/Ints/BiInvInt/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4582,
"size": 12819
} |
module Numeral.Natural.Oper.Summation.Range.Proofs where
import Lvl
open import Data.List
open import Data.List.Functions
open Data.List.Functions.LongOper
open import Data.List.Proofs
open import Data.List.Equiv.Id
open import Data.List.Proofs.Length
open import Functional as Fn using (_$_ ; _∘_ ; const)
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Summation.Range
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals hiding (_≡_)
open import Relator.Equals.Proofs.Equiv
open import Structure.Function
open import Structure.Function.Multi
open import Structure.Setoid
open import Syntax.Transitivity
open import Type
Range-empty : ∀{a} → (a ‥ a ≡ ∅)
Range-empty {𝟎} = [≡]-intro
Range-empty {𝐒 a} rewrite Range-empty {a} = [≡]-intro
{-# REWRITE Range-empty #-}
Range-reversed : ∀{a b} → ⦃ _ : (a ≥ b) ⦄ → (a ‥ b ≡ ∅)
Range-reversed {a} {𝟎} ⦃ min ⦄ = [≡]-intro
Range-reversed {𝐒 a} {𝐒 b} ⦃ succ p ⦄
rewrite Range-reversed {a} {b} ⦃ p ⦄
= [≡]-intro
Range-succ : ∀{a b} → (map 𝐒(a ‥ b) ≡ 𝐒(a) ‥ 𝐒(b))
Range-succ = [≡]-intro
Range-prepend : ∀{a b} → ⦃ _ : (a < b) ⦄ → (a ‥ b ≡ prepend a (𝐒(a) ‥ b))
Range-prepend {𝟎} {𝐒 b} = [≡]-intro
Range-prepend {𝐒 a} {𝐒 b} ⦃ succ ab ⦄ rewrite Range-prepend {a} {b} ⦃ ab ⦄ = [≡]-intro
Range-postpend : ∀{a b} → ⦃ _ : (a < 𝐒(b)) ⦄ → (a ‥ 𝐒(b) ≡ postpend b (a ‥ b))
Range-postpend {𝟎} {𝟎} ⦃ [≤]-with-[𝐒] ⦄ = [≡]-intro
Range-postpend {𝟎} {𝐒 b} ⦃ [≤]-with-[𝐒] ⦄ = congruence₁(prepend 𝟎) $
map 𝐒(𝟎 ‥ 𝐒(b)) 🝖[ _≡_ ]-[ congruence₁(map 𝐒) (Range-postpend {𝟎}{b}) ]
map 𝐒(postpend b (𝟎 ‥ b)) 🝖[ _≡_ ]-[ map-postpend ]
postpend (𝐒(b)) (map 𝐒(𝟎 ‥ b)) 🝖-end
Range-postpend {𝐒 a} {𝐒 b} ⦃ succ 𝐒ab ⦄
rewrite Range-postpend {a} {b} ⦃ 𝐒ab ⦄
= map-postpend
Range-length : ∀{a b} → (length(a ‥ b) ≡ b −₀ a)
Range-length {𝟎} {𝟎} = [≡]-intro
Range-length {𝟎} {𝐒 b}
rewrite length-map{f = 𝐒}{x = 𝟎 ‥ b}
rewrite Range-length {𝟎} {b}
= congruence₁(𝐒) [≡]-intro
Range-length {𝐒 a} {𝟎} = [≡]-intro
Range-length {𝐒 a} {𝐒 b}
rewrite length-map{f = 𝐒}{x = a ‥ b}
rewrite Range-length {a} {b}
= [≡]-intro
Range-length-zero : ∀{b} → (length(𝟎 ‥ b) ≡ b)
Range-length-zero {b} = Range-length {𝟎}{b}
Range-singleton : ∀{a} → (a ‥ 𝐒(a) ≡ singleton(a))
Range-singleton {𝟎} = [≡]-intro
Range-singleton {𝐒 a}
rewrite Range-singleton {a}
= [≡]-intro
{-# REWRITE Range-singleton #-}
Range-concat : ∀{a b c} → ⦃ ab : (a ≤ b) ⦄ ⦃ bc : (b < c) ⦄ → ((a ‥ b) ++ (b ‥ c) ≡ a ‥ c)
Range-concat {𝟎} {𝟎} {𝐒 c} ⦃ min ⦄ ⦃ succ bc ⦄ = [≡]-intro
Range-concat {𝟎} {𝐒 b} {𝐒 c} ⦃ min ⦄ ⦃ succ bc ⦄ = congruence₁ (prepend 0) $
map 𝐒(𝟎 ‥ b) ++ map 𝐒 (b ‥ c) 🝖[ _≡_ ]-[ preserving₂(map 𝐒)(_++_)(_++_) {𝟎 ‥ b}{b ‥ c} ]-sym
map 𝐒((𝟎 ‥ b) ++ (b ‥ c)) 🝖[ _≡_ ]-[ congruence₁(map 𝐒) (Range-concat {𝟎} {b} {c}) ]
map 𝐒(𝟎 ‥ c) 🝖-end
where instance _ = bc
Range-concat {𝐒 a} {𝐒 b} {𝐒 c} ⦃ succ ab ⦄ ⦃ succ bc ⦄ =
map 𝐒(a ‥ b) ++ map 𝐒 (b ‥ c) 🝖[ _≡_ ]-[ preserving₂(map 𝐒)(_++_)(_++_) {a ‥ b}{b ‥ c} ]-sym
map 𝐒((a ‥ b) ++ (b ‥ c)) 🝖[ _≡_ ]-[ congruence₁(map 𝐒) (Range-concat {a} {b} {c}) ]
map 𝐒(a ‥ c) 🝖-end
where
instance _ = ab
instance _ = bc
| {
"alphanum_fraction": 0.5703861356,
"avg_line_length": 37.375,
"ext": "agda",
"hexsha": "db9d9fa82db30fcfcb71f423950eebb4537b7307",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Oper/Summation/Range/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Oper/Summation/Range/Proofs.agda",
"max_line_length": 94,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Oper/Summation/Range/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1550,
"size": 3289
} |
module Section9 where
open import Section8 public
-- 9. A decision algorithm for terms
-- =================================
--
-- The reduction defined above can be used for deciding if two well-typed terms are convertible
-- with each other or not: reduce the terms and check if the results are equal. This algorithm
-- is implicit in Martin-Löf’s notes [13].
--
-- The decision algorithm is complete:
-- Theorem 11.
postulate
thm₁₁ : ∀ {Γ A t₀ t₁} →
Γ ⊢ t₀ ≊ t₁ ∷ A →
Σ 𝕋 (λ t → Γ ⊢ t₀ ⇓ t ∷ A × Γ ⊢ t₁ ⇓ t ∷ A)
-- Proof: By Lemma 14 and Lemma 12 we know that there exist proof trees `M, N` such
-- that `t₀` is equal to `M ⁻` and `t₁` is equal to `N ⁻`. By Theorem 9 we get that `M ≅ N`. We can
-- choose `nf M ⁻` for `t` since, by Lemma 8, `Γ ⊢ M ⁻ ⇓ nf M ⁻ ∷ A`, `Γ ⊢ N ⁻ ⇓ nf N ⁻ ∷ A`
-- and by Theorem 6 we have `nf M ≡ nf N` and hence that `nf M ⁻` and `nf N ⁻` are the
-- same.
--
-- This decision algorithm is correct, i.e.,
-- Theorem 12.
postulate
thm₁₂ : ∀ {Γ A t} →
(M N : Γ ⊢ A) → Γ ⊢ M ⁻ ⇓ t ∷ A → Γ ⊢ N ⁻ ⇓ t ∷ A →
M ≅ N
-- Proof: We have `nf M ⁻ ≡ nf N ⁻` since, by Lemma 8, `Γ ⊢ M ⁻ ⇓ nf M ⁻ ∷ A`
-- and `Γ ⊢ N ⁻ ⇓ nf N ⁻ ∷ A` and the reduction is deterministic. By Corollary 2 we get
-- `M ≅ N`.
| {
"alphanum_fraction": 0.5503512881,
"avg_line_length": 33.7105263158,
"ext": "agda",
"hexsha": "e563662b0f2cddaf8bbf7af7fb815e47aa0ebe90",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand",
"max_forks_repo_path": "src/Section9.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand",
"max_issues_repo_path": "src/Section9.agda",
"max_line_length": 101,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand",
"max_stars_repo_path": "src/Section9.agda",
"max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z",
"num_tokens": 495,
"size": 1281
} |
-- Andreas, 2019-12-03, issue #4205, reported by Smaug123,
-- first shrinking by Jesper Cockx
record R : Set₂ where
field
f : Set₁
postulate
r : R
open R r
test : R
R.f test with Set₃
f test | _ = Set
-- WAS: internal error in getOriginalProjection
-- EXPECTED:
-- With clause pattern f is not an instance of its parent pattern R.f
-- when checking that the clause
-- R.f test with Set₃
-- f test | _ = Set
-- has type R
| {
"alphanum_fraction": 0.6788990826,
"avg_line_length": 17.44,
"ext": "agda",
"hexsha": "15f8898ac2a9b1ecd2e3e5259082d1d4a17988c6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4205.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4205.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4205.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 139,
"size": 436
} |
module Ints.Add.Invert where
open import Ints
open import Ints.Properties
open import Ints.Add.Comm
open import Nats.Add.Invert
open import Data.Empty
open import Relation.Nullary
open import Equality
open import Function
------------------------------------------------------------------------
-- internal stuffs
private
nat→int′ : ∀ a b → -[1+ nsuc $ a :+: a ] ≡ -[1+ nsuc $ b :+: b ] → a ≡ b
nat→int′ a b = nat-add-invert a b ∘ nat-add-invert-1 (a :+: a) (b :+: b) ∘ eq-neg-int-to-nat
impossible : ∀ a b → ¬ (+ a + + a ≡ -[1+ b ] + -[1+ b ])
impossible a b ()
+-invert : ∀ a b → (a + a ≡ b + b) → a ≡ b
+-invert (+ a ) (+ b ) = eq-nat-to-int ∘ nat-add-invert a b ∘ eq-int-to-nat
+-invert (+ a ) -[1+ b ] = ⊥-elim ∘ impossible a b
+-invert -[1+ a ] (+ b ) = ⊥-elim ∘ impossible b a ∘ sym
+-invert -[1+ a ] -[1+ b ] = eq-neg-nat-to-int ∘ nat→int′ a b
------------------------------------------------------------------------
-- public aliases
int-add-invert : ∀ a b → (a + a ≡ b + b) → a ≡ b
int-add-invert = +-invert
| {
"alphanum_fraction": 0.4777251185,
"avg_line_length": 28.5135135135,
"ext": "agda",
"hexsha": "4a39a3349ed7ed28b31a98b34dc4c77b7eb78092",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Ints/Add/Invert.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Ints/Add/Invert.agda",
"max_line_length": 94,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Ints/Add/Invert.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 360,
"size": 1055
} |
-- {-# OPTIONS -v impossible:100 -v tc.lhs.imp:100 #-}
-- {-# OPTIONS -v impossible:100 -v tc.cover:20 #-}
{-# OPTIONS --copatterns #-}
module Copatterns where
open import Common.Equality
record _×_ (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
open _×_
pair : {A B : Set} → A → B → A × B
fst (pair a b) = a
snd (pair a b) = b
swap : {A B : Set} → A × B → B × A
fst (swap p) = snd p
snd (swap p) = fst p
swap3 : {A B C : Set} → A × (B × C) → C × (B × A)
fst (swap3 t) = snd (snd t)
fst (snd (swap3 t)) = fst (snd t)
snd (snd (swap3 t)) = fst t
-- should also work if we shuffle the clauses
swap4 : {A B C D : Set} → A × (B × (C × D)) → D × (C × (B × A))
fst (snd (swap4 t)) = fst (snd (snd t))
snd (snd (snd (swap4 t))) = fst t
fst (swap4 t) = snd (snd (snd t))
fst (snd (snd (swap4 t))) = fst (snd t)
-- multiple clauses with abstractions
fswap3 : {A B C X : Set} → (X → A) × ((X → B) × C) → (X → C) × (X → (B × A))
fst (fswap3 t) x = snd (snd t)
fst (snd (fswap3 t) y) = fst (snd t) y
snd (snd (fswap3 t) z) = fst t z
-- State monad example
-- The State newtype
record State (S A : Set) : Set where
constructor state
field
runState : S → A × S
open State
-- The Monad type class
record Monad (M : Set → Set) : Set1 where
constructor monad
field
return : {A : Set} → A → M A
_>>=_ : {A B : Set} → M A → (A → M B) → M B
module NoInstance where
-- State is an instance of Monad
stateMonad : {S : Set} → Monad (State S)
runState (Monad.return stateMonad a ) s = a , s
runState (Monad._>>=_ stateMonad m k) s₀ =
let a , s₁ = runState m s₀
in runState (k a) s₁
module InstantiatedModule {S : Set} where
open Monad (stateMonad {S})
leftId : {A B : Set}(a : A)(k : A → State S B) →
(return a >>= k) ≡ k a
leftId a k = refl
rightId : {A B : Set}(m : State S A) →
(m >>= return) ≡ m
rightId m = refl
assoc : {A B C : Set}(m : State S A)(k : A → State S B)(l : B → State S C) →
((m >>= k) >>= l) ≡ (m >>= λ a → (k a >>= l))
assoc m k l = refl
module VisibleArgument where
open Monad
leftId : {A B S : Set}(a : A)(k : A → State S B) →
(_>>=_ stateMonad (return stateMonad a) k) ≡ k a
leftId a k = refl
rightId : {A B S : Set}(m : State S A) →
(_>>=_ stateMonad m (return stateMonad)) ≡ m
rightId m = refl
assoc : {A B C S : Set}(m : State S A)(k : A → State S B)(l : B → State S C) →
(_>>=_ stateMonad (_>>=_ stateMonad m k) l) ≡
(_>>=_ stateMonad m λ a → _>>=_ stateMonad (k a) l)
assoc m k l = refl
module HiddenArgument where
return : ∀ {M}{dict : Monad M}{A : Set} → A → M A
return {dict = dict} = Monad.return dict
_>>=_ : ∀ {M}{dict : Monad M}{A B : Set} → M A → (A → M B) → M B
_>>=_ {dict = dict} = Monad._>>=_ dict
leftId : {A B S : Set}(a : A)(k : A → State S B) →
(_>>=_ {dict = stateMonad} (return {dict = stateMonad} a) k) ≡ k a
leftId a k = refl
{- LOTS OF YELLOW:
leftId : {A B S : Set}(a : A)(k : A → State S B) → (return {dict = stateMonad {S}} a >>= k) ≡ k a
leftId a k = refl
rightId : {A B S : Set}(m : State S A) → (m >>= return) ≡ m
rightId m = refl
assoc : {A B C S : Set}(m : State S A)(k : A → State S B)(l : B → State S C) →
((m >>= k) >>= l) ≡ (m >>= λ a → k a >>= l)
assoc m k l = refl
-}
{- WORKS NOT YET
module InstanceArgument where
open Monad {{...}}
-- State is an instance of Monad
-- TODO: this does not work with hidden argument yet
stateMonad : {S : Set} → Monad (State S)
runState (return {{stateMonad {S}}} a ) s = a , s
runState (_>>=_ {{stateMonad {S}}} m k) s₀ =
let a , s₁ = runState m s₀
in runState (k a) s₁
_~_ : {S A : Set} → State S A → State S A → Set
m ~ m' = ∀ {s} → runState m s ≡ runState m' s
-- the following identities should also hold with _≡_
-- but that would need a back-translation of copatterns to
-- record expressions, which does not preserve SN for recursive cases
leftId : {A B S : Set}(a : A)(k : A → State S B) → (return a >>= k) ≡ k a
leftId a k = refl
rightId : {A B S : Set}(m : State S A) → (m >>= return) ~ m
rightId m = refl
assoc : {A B C S : Set}(m : State S A)(k : A → State S B)(l : B → State S C) →
((m >>= k) >>= l) ~ (m >>= λ a → k a >>= l)
assoc m k l = refl
-}
| {
"alphanum_fraction": 0.5259090909,
"avg_line_length": 27.3291925466,
"ext": "agda",
"hexsha": "c3e1a13d84532ab5d50cda85c8e5f324c8fd74d9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/succeed/Copatterns.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/succeed/Copatterns.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Copatterns.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1640,
"size": 4400
} |
{-# OPTIONS --without-K #-}
module hott.level.closure.lift where
open import level
open import function.isomorphism.lift
open import hott.level.core
open import hott.level.closure.core
-- lifting preserves h-levels
↑-level : ∀ {i n} j {X : Set i}
→ h n X
→ h n (↑ j X)
↑-level j {X} = iso-level (lift-iso j X)
| {
"alphanum_fraction": 0.6524390244,
"avg_line_length": 23.4285714286,
"ext": "agda",
"hexsha": "2711bfdf52d86df49ae0db72837570581b746dfa",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/hott/level/closure/lift.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/hott/level/closure/lift.agda",
"max_line_length": 40,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "hott/level/closure/lift.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 95,
"size": 328
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Numbers.Naturals.Definition
open import LogicalFormulae
open import Groups.Definition
open import Groups.Orders.Partial.Definition
open import Setoids.Orders.Partial.Definition
open import Setoids.Setoids
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Orders.Archimedean {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {G : Group S _+_} {c : _} {_<_ : A → A → Set c} {pOrder : SetoidPartialOrder S _<_} (p : PartiallyOrderedGroup G pOrder) where
open Setoid S
open import Groups.Cyclic.Definition G
open Group G
Archimedean : Set (a ⊔ c)
Archimedean = (x y : A) → (0G < x) → (0G < y) → Sg ℕ (λ n → y < (positiveEltPower x n))
| {
"alphanum_fraction": 0.693877551,
"avg_line_length": 36.75,
"ext": "agda",
"hexsha": "c145c27dd58356563008b7718e3c402e73c8c0cf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/Orders/Archimedean.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/Orders/Archimedean.agda",
"max_line_length": 222,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/Orders/Archimedean.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 241,
"size": 735
} |
open import Common.Prelude
_test_ : Nat → Nat → Nat
m test_ = m +_
| {
"alphanum_fraction": 0.6764705882,
"avg_line_length": 13.6,
"ext": "agda",
"hexsha": "9e93d80fb16e90e3c8573a80f231767c95ef1d39",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Sections-10.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Sections-10.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Sections-10.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 68
} |
{-# OPTIONS --rewriting --without-K #-}
open import Agda.Primitive
open import Prelude
import GSeTT.Typed-Syntax
import Globular-TT.Syntax
{- Type theory for globular sets -}
module Globular-TT.Uniqueness-Derivations {l}
(index : Set l) (rule : index → GSeTT.Typed-Syntax.Ctx × (Globular-TT.Syntax.Pre-Ty index)) (eqdec-index : eqdec index) where
open import Globular-TT.Syntax index
open import Globular-TT.Rules index rule
open import Globular-TT.Eqdec-syntax index eqdec-index
lΓ≤n→n∉Γ : ∀ {Γ A} n → Γ ⊢C → C-length Γ ≤ n → ¬ (n # A ∈ Γ)
lΓ≤n→n∉Γ n (cc Γ⊢ Γ⊢A idp) Sl≤n (inl x) = lΓ≤n→n∉Γ n Γ⊢ (≤T (n≤Sn _) Sl≤n) x
lΓ≤n→n∉Γ n (cc Γ⊢ Γ⊢A idp) Sl≤n (inr (idp , idp)) = Sn≰n _ Sl≤n
lΓ∉Γ : ∀ {Γ A} → Γ ⊢C → ¬ (C-length Γ # A ∈ Γ)
lΓ∉Γ Γ⊢ = lΓ≤n→n∉Γ _ Γ⊢ (n≤n _)
has-all-paths-∈ : ∀ {Γ x A} → Γ ⊢C → has-all-paths (x # A ∈ Γ)
has-all-paths-∈ {Γ ∙ y # B} {x} {A} (cc Γ⊢ γ⊢A idp) (inl x∈Γ) (inl x∈'Γ) = ap inl (has-all-paths-∈ Γ⊢ x∈Γ x∈'Γ)
has-all-paths-∈ {Γ ∙ y # B} {x} {A} (cc Γ⊢ γ⊢A idp) (inr (p , q)) (inr (p' , q')) = inr= (,= (is-prop-has-all-paths (eqdec-is-set eqdecℕ _ _) p p') (is-prop-has-all-paths (eqdec-is-set eqdec-Ty _ _) q q'))
has-all-paths-∈ {Γ ∙ y # B} {x} {A} (cc Γ⊢ γ⊢A idp) (inl x∈Γ) (inr (idp , idp)) = ⊥-elim (lΓ∉Γ Γ⊢ x∈Γ)
has-all-paths-∈ {Γ ∙ y # B} {x} {A} (cc Γ⊢ γ⊢A idp) (inr (idp , idp)) (inl x∈Γ) = ⊥-elim (lΓ∉Γ Γ⊢ x∈Γ)
has-all-paths-⊢C : ∀ {Γ} → has-all-paths (Γ ⊢C)
has-all-paths-⊢T : ∀ {Γ A} → has-all-paths (Γ ⊢T A)
has-all-paths-⊢t : ∀ {Γ A t} → has-all-paths (Γ ⊢t t # A)
has-all-paths-⊢S : ∀ {Δ Γ γ} → has-all-paths (Δ ⊢S γ > Γ)
has-all-paths-⊢C {⊘} ec ec = idp
has-all-paths-⊢C {Γ ∙ x # A} (cc Γ⊢ Γ⊢A p) (cc Γ⊢' Γ⊢'A q) = ap³ cc (has-all-paths-⊢C Γ⊢ Γ⊢') (has-all-paths-⊢T Γ⊢A Γ⊢'A) (is-prop-has-all-paths (eqdec-is-set (eqdecℕ) _ _) p q)
has-all-paths-⊢T {Γ} {∗} (ob Γ⊢) (ob Γ⊢') = ap ob (has-all-paths-⊢C Γ⊢ Γ⊢')
has-all-paths-⊢T {Γ} {⇒ A t u} (ar Γ⊢A Γ⊢t:A Γ⊢u:A) (ar Γ⊢'A Γ⊢'t:A Γ⊢'u:A) = ap³ ar (has-all-paths-⊢T Γ⊢A Γ⊢'A) (has-all-paths-⊢t Γ⊢t:A Γ⊢'t:A) (has-all-paths-⊢t Γ⊢u:A Γ⊢'u:A)
has-all-paths-⊢t {Γ} {A} {Var x} (var Γ⊢ x∈Γ) (var Γ⊢' x∈'Γ) = ap² var (has-all-paths-⊢C Γ⊢ Γ⊢') (has-all-paths-∈ Γ⊢ x∈Γ x∈'Γ)
has-all-paths-⊢t {Γ} {A} {Tm-constructor i γ} (tm Ci⊢Ti Γ⊢γ p) (tm Ci⊢'Ti Γ⊢'γ p') = ap³ tm (has-all-paths-⊢T Ci⊢Ti Ci⊢'Ti) (has-all-paths-⊢S Γ⊢γ Γ⊢'γ) (is-prop-has-all-paths (eqdec-is-set eqdec-Ty _ _) p p')
has-all-paths-⊢S {Δ} {Γ} {<>} (es Δ⊢) (es Δ⊢')= ap es (has-all-paths-⊢C Δ⊢ Δ⊢')
has-all-paths-⊢S {Δ} {Γ} {< γ , x ↦ t >} (sc Δ⊢γ Γ+⊢ Δ⊢t p) (sc Δ⊢'γ Γ+⊢' Δ⊢'t q) = ap⁴ sc (has-all-paths-⊢S Δ⊢γ Δ⊢'γ) (has-all-paths-⊢C Γ+⊢ Γ+⊢') (has-all-paths-⊢t Δ⊢t Δ⊢'t) (is-prop-has-all-paths (eqdec-is-set (eqdecℕ) _ _) p q)
is-prop-⊢C : ∀ Γ → is-prop (Γ ⊢C)
is-prop-⊢T : ∀ Γ A → is-prop (Γ ⊢T A)
is-prop-⊢t : ∀ Γ A t → is-prop (Γ ⊢t t # A)
is-prop-⊢S : ∀ Δ Γ γ → is-prop (Δ ⊢S γ > Γ)
is-prop-⊢C Γ = has-all-paths-is-prop has-all-paths-⊢C
is-prop-⊢T Γ A = has-all-paths-is-prop has-all-paths-⊢T
is-prop-⊢t Γ A t = has-all-paths-is-prop has-all-paths-⊢t
is-prop-⊢S Γ Δ γ = has-all-paths-is-prop has-all-paths-⊢S
unique-type : ∀ {Γ t u A B} → (Γ ⊢t t # A) → (Γ ⊢t u # B) → t == u → A == B
unique-type (var (cc Γ⊢ _ idp) (inl a)) (var _ (inl b)) idp = unique-type (var Γ⊢ a) (var Γ⊢ b) idp
unique-type (var (cc Γ⊢ _ idp) (inr (idp , _))) (var _ (inl l∈Γ)) idp = ⊥-elim (lΓ∉Γ Γ⊢ l∈Γ)
unique-type (var (cc Γ⊢ _ idp) (inl l∈Γ)) (var _ (inr (idp , _))) idp = ⊥-elim (lΓ∉Γ Γ⊢ l∈Γ)
unique-type (var (cc Γ⊢ _ idp) (inr (idp , idp))) (var _ (inr (idp , idp))) _ = idp
unique-type (tm _ _ p) (tm _ _ q) idp = p >> (q ^)
| {
"alphanum_fraction": 0.5414273995,
"avg_line_length": 57.140625,
"ext": "agda",
"hexsha": "e826fad76851d256f5574ab5fc54ef907b04480f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "Globular-TT/Uniqueness-Derivations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "Globular-TT/Uniqueness-Derivations.agda",
"max_line_length": 232,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "Globular-TT/Uniqueness-Derivations.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2136,
"size": 3657
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Binary.Raw.Construct.Never where
open import Cubical.Core.Everything
open import Cubical.Relation.Binary.Raw
open import Cubical.Relation.Binary.Raw.Construct.Constant
open import Cubical.Data.Empty.Polymorphic using (⊥)
------------------------------------------------------------------------
-- Definition
Never : ∀ {a ℓ} {A : Type a} → RawRel A ℓ
Never = Const ⊥
| {
"alphanum_fraction": 0.6269662921,
"avg_line_length": 29.6666666667,
"ext": "agda",
"hexsha": "0389d61de892cd29057fec8c2f1d174b5e55bb43",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Relation/Binary/Raw/Construct/Never.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Relation/Binary/Raw/Construct/Never.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Relation/Binary/Raw/Construct/Never.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 104,
"size": 445
} |
open import Relation.Binary.Core
module TreeSort.Impl1 {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import BTree {A}
open import Data.List
open import Data.Sum
insert : A → BTree → BTree
insert x leaf = node x leaf leaf
insert x (node y l r)
with tot≤ x y
... | inj₁ x≤y = node y (insert x l) r
... | inj₂ y≤x = node y l (insert x r)
treeSort : List A → BTree
treeSort [] = leaf
treeSort (x ∷ xs) = insert x (treeSort xs)
| {
"alphanum_fraction": 0.5860655738,
"avg_line_length": 19.52,
"ext": "agda",
"hexsha": "230581f6984d3aa2d3b109a078ec9fa2d7b8bb0f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/TreeSort/Impl1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/TreeSort/Impl1.agda",
"max_line_length": 43,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/TreeSort/Impl1.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 163,
"size": 488
} |
------------------------------------------------------------------------------
-- Using setoids for formalizing FOTC
------------------------------------------------------------------------------
{-# OPTIONS --no-positivity-check #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
{-
From Peter emails:
At that time I was considering an inductive data type D and an
inductively defined equality on D. But I think what we are doing now
is better.
For =: The reason is that with the propositional identity we have
identity elimination which lets us replace equals by equals. We cannot
do that in general if we have setoid equality.
For D: the reason why I prefer to postulate D is that we have no use
for the inductive structure of D, and this inductive structure would
make e g 0 + 0 different from 0. So in that case we need setoid
equality.
-}
module FOTC where
module Aczel-CA where
-- From Peter's slides
-- http://www.cse.chalmers.se/~peterd/slides/Amagasaki.pdf
-- We add 3 to the fixities of the Agda standard library 0.8.1 (see
-- Algebra.agda and Relation/Binary/Core.agda).
infixl 9 _·_
infix 7 _≐_
data D : Set where
K S : D
_·_ : D → D → D
-- The setoid equality.
data _≐_ : D → D → Set where
≐-refl : ∀ {x} → x ≐ x
≐-sym : ∀ {x y} → x ≐ y → y ≐ x
≐-trans : ∀ {x y z} → x ≐ y → y ≐ z → x ≐ z
≐-cong : ∀ {x x' y y'} → x ≐ y → x' ≐ y' → x · x' ≐ y · y'
K-eq : ∀ x y → K · x · y ≐ x
S-eq : ∀ x y z → S · x · y · z ≐ x · z · (y · z)
-- The identity type.
data _≡_ (x : D) : D → Set where
refl : x ≡ x
----------------------------------------------------------------------------
-- 14 May 2012: Using the inductive structure we cannot prove
--
-- K · x · y ≡ x,
--
-- we need the setoid equality.
-- K-eq : ∀ {x y} → (K · x · y) ≡ x
----------------------------------------------------------------------------
-- 14 May 2012. We cannot define the identity elimination using the
-- setoid equality.
--
-- Adapted from Peter's email:
-- Given
postulate ≐-subst : (A : D → Set) → ∀ {x y} → x ≐ y → A x → A y
-- we can proof
≐→≡ : ∀ {x y} → x ≐ y → x ≡ y
≐→≡ {x} h = ≐-subst (λ z → x ≡ z) h refl
-- but this doesn't hold because "x ≡ y" (propositional equality)
-- means identical expressions. We do NOT have K · x · y ≡ x.
--
-- The point is that ≐ is a non-trivial equivalence relation, and
-- not all properties preserve it. However, all properties are
-- preserved by ≡.
------------------------------------------------------------------------------
module FOTC where
infixl 9 _·_ -- The symbol is '\cdot'.
infix 7 _≐_
data D : Set where
_·_ : D → D → D
lam fix : (D → D) → D
true false if zero succ pred iszero : D
-- The setoid equality.
data _≐_ : D → D → Set where
≐-refl : ∀ {x} → x ≐ x
≐-sym : ∀ {x y} → x ≐ y → y ≐ x
≐-trans : ∀ {x y z} → x ≐ y → y ≐ z → x ≐ z
≐-cong : ∀ {x₁ x₂ y₁ y₂} → x₁ ≐ y₁ → x₂ ≐ y₂ → x₁ · x₂ ≐ y₁ · y₂
if-true : ∀ t t' → if · true · t · t' ≐ t
if-false : ∀ t t' → if · false · t · t' ≐ t'
pred-0 : pred · zero ≐ zero
pred-S : ∀ n → pred · (succ · n) ≐ n
iszero-0 : iszero · zero ≐ true
iszero-S : ∀ n → iszero · (succ · n) ≐ false
beta : ∀ f a → lam f · a ≐ f a
fix-eq : ∀ f → fix f ≐ f (fix f)
------------------------------------------------------------------------------
module LeibnizEquality where
infixl 9 _·_
infix 7 _≡_
data D : Set where
_·_ : D → D → D
lam fix : (D → D) → D
true false if zero succ pred iszero : D
-- (Barthe et al. 2003, p. 262) use the Leibniz equality when
-- they talk about setoids.
-- Using the Leibniz equality (adapted from
-- Agda/examples/lib/Logic/Leibniz.agda)
_≡_ : D → D → Set₁
x ≡ y = (A : D → Set) → A x → A y
-- we can prove the setoids properties
refl : ∀ x → x ≡ x
refl x A Ax = Ax
sym : ∀ {x y} → x ≡ y → y ≡ x
sym {x} h A Ay = h (λ z → A z → A x) (λ Ax → Ax) Ay
trans : ∀ x y z → x ≡ y → y ≡ z → x ≡ z
trans x y z h₁ h₂ A Ax = h₂ A (h₁ A Ax)
-- and the identity elimination
subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y
subst A h = h A
-- and the congruency
cong : ∀ {x x' y y'} → x ≡ x' → y ≡ y' → x · y ≡ x' · y'
cong {x} {x'} {y} {y'} h₁ h₂ A Axx' =
h₂ (λ z → A (x' · z)) (h₁ (λ z → A (z · y)) Axx')
------------------------------------------------------------------------------
-- References
--
-- Barthe, Gilles, Capretta, Venanzio and Pons, Olivier
-- (2003). Setoids in type theory. Journal of Functional Programming
-- 13.2, pp. 261–293.
| {
"alphanum_fraction": 0.4804188482,
"avg_line_length": 29.2944785276,
"ext": "agda",
"hexsha": "724dbaacaef6f082ef0f4bb7f842b954350d2cfb",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/setoids/FOTC.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/setoids/FOTC.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/setoids/FOTC.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1642,
"size": 4775
} |
------------------------------------------------------------------------
-- Restricted hypotheses
------------------------------------------------------------------------
-- A restricted hypothesis is a hypothesis where both types are
-- sub/terms/ of either one of two given types.
open import RecursiveTypes.Syntax
module RecursiveTypes.Subterm.RestrictedHypothesis
{n} (χ₁ χ₂ : Ty n) where
open import Category.Monad
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using (module Inverse)
open import Data.List as List
open import Data.List.Relation.Unary.Any as Any
open import Data.List.Relation.Unary.Any.Properties
import Data.List.Categorical
import Data.List.Countdown as Countdown
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties
import Data.List.Membership.Setoid
open import Data.Product as Prod
open import Data.Sum as Sum
open import Level
open import Relation.Nullary
open import Relation.Binary
import Relation.Binary.Construct.On as On
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl)
open RawMonad (Data.List.Categorical.monad {ℓ = zero})
open import RecursiveTypes.Subterm as ST using (_⊑_; _∗)
------------------------------------------------------------------------
-- Restricted hypotheses
-- Types which are subterms of either χ₁ or χ₂.
Subterm : Ty n → Set
Subterm σ = σ ⊑ χ₁ ⊎ σ ⊑ χ₂
-- The Subterm predicate is anti-monotone.
anti-mono : ∀ {σ₁ σ₂} → σ₂ ⊑ σ₁ → Subterm σ₁ → Subterm σ₂
anti-mono σ₂⊑σ₁ = Sum.map (ST.trans σ₂⊑σ₁) (ST.trans σ₂⊑σ₁)
-- Hypotheses where both types are subterms.
RestrictedHyp : Set
RestrictedHyp = ∃ Subterm × ∃ Subterm
-- Computes the underlying hypothesis/es.
⟨_⟩ : RestrictedHyp → Hyp n
⟨_⟩ = Prod.map proj₁ proj₁
⟨_⟩⋆ : List RestrictedHyp → List (Hyp n)
⟨_⟩⋆ = List.map ⟨_⟩
-- Equality of restricted hypotheses (ignores the subterm proofs).
_≈_ : Rel RestrictedHyp zero
_≈_ = _≡_ on ⟨_⟩
-- List membership relation for restricted hypotheses.
open Data.List.Membership.Setoid
(record { isEquivalence =
On.isEquivalence (⟨_⟩) PropEq.isEquivalence })
using () renaming (_∈_ to _⟨∈⟩_)
------------------------------------------------------------------------
-- Computing all possible restricted hypotheses
-- Computes all the subterms of the given type.
subtermsOf : ∀ τ → (∀ {σ} → σ ⊑ τ → Subterm σ) → List (∃ Subterm)
subtermsOf τ f = List.map (Prod.map id f) (ST.subtermsOf τ)
subtermsOf-complete :
∀ {τ} (f : ∀ {σ} → σ ⊑ τ → Subterm σ) {σ} →
σ ⊑ τ → ∃ λ σ⊑τ → (σ , f σ⊑τ) ∈ subtermsOf τ f
subtermsOf-complete f σ⊑τ =
Prod.map id (λ ∈ → Inverse.to (map-∈↔ _) ⟨$⟩ (_ , ∈ , refl)) $
ST.subtermsOf-complete σ⊑τ
subtermsOf²-complete :
∀ {σ₁ τ₁ σ₂ τ₂}
(f : ∀ {σ} → σ ⊑ τ₁ → Subterm σ)
(g : ∀ {σ} → σ ⊑ τ₂ → Subterm σ) →
(σ₁⊑τ₁ : σ₁ ⊑ τ₁) (σ₂⊑τ₂ : σ₂ ⊑ τ₂) →
((σ₁ , f σ₁⊑τ₁) ≲ (σ₂ , g σ₂⊑τ₂)) ⟨∈⟩
(subtermsOf τ₁ f ⊗ subtermsOf τ₂ g)
subtermsOf²-complete f g σ₁⊑τ₁ σ₂⊑τ₂ =
Any.map (PropEq.cong $ Prod.map proj₁ proj₁) $
Inverse.to ⊗-∈↔ ⟨$⟩
( proj₂ (subtermsOf-complete f σ₁⊑τ₁)
, proj₂ (subtermsOf-complete g σ₂⊑τ₂)
)
-- All subterms of χ₁.
⊑-χ₁ : List (∃ Subterm)
⊑-χ₁ = subtermsOf χ₁ inj₁
-- All subterms of χ₂.
⊑-χ₂ : List (∃ Subterm)
⊑-χ₂ = subtermsOf χ₂ inj₂
-- All possible restricted hypotheses.
restrictedHyps : List RestrictedHyp
restrictedHyps = (⊑-χ₁ ⊗ ⊑-χ₂) ++ (⊑-χ₂ ⊗ ⊑-χ₁) ++
(⊑-χ₁ ⊗ ⊑-χ₁) ++ (⊑-χ₂ ⊗ ⊑-χ₂)
complete : ∀ h → h ⟨∈⟩ restrictedHyps
complete ((σ , inj₁ σ⊑χ₁) ≲ (τ , inj₂ τ⊑χ₂)) =
Inverse.to ++↔ ⟨$⟩ (inj₁ $
subtermsOf²-complete inj₁ inj₂ σ⊑χ₁ τ⊑χ₂)
complete ((σ , inj₂ σ⊑χ₂) ≲ (τ , inj₁ τ⊑χ₁)) =
Inverse.to (++↔ {xs = ⊑-χ₁ ⊗ ⊑-χ₂}) ⟨$⟩ (inj₂ $
Inverse.to ++↔ ⟨$⟩ (inj₁ $
subtermsOf²-complete inj₂ inj₁ σ⊑χ₂ τ⊑χ₁))
complete ((σ , inj₁ σ⊑χ₁) ≲ (τ , inj₁ τ⊑χ₁)) =
Inverse.to (++↔ {xs = ⊑-χ₁ ⊗ ⊑-χ₂}) ⟨$⟩ (inj₂ $
Inverse.to (++↔ {xs = ⊑-χ₂ ⊗ ⊑-χ₁}) ⟨$⟩ (inj₂ $
Inverse.to ++↔ ⟨$⟩ (inj₁ $
subtermsOf²-complete inj₁ inj₁ σ⊑χ₁ τ⊑χ₁)))
complete ((σ , inj₂ σ⊑χ₂) ≲ (τ , inj₂ τ⊑χ₂)) =
Inverse.to (++↔ {xs = ⊑-χ₁ ⊗ ⊑-χ₂}) ⟨$⟩ (inj₂ $
Inverse.to (++↔ {xs = ⊑-χ₂ ⊗ ⊑-χ₁}) ⟨$⟩ (inj₂ $
Inverse.to (++↔ {xs = ⊑-χ₁ ⊗ ⊑-χ₁}) ⟨$⟩ (inj₂ $
subtermsOf²-complete inj₂ inj₂ σ⊑χ₂ τ⊑χ₂)))
------------------------------------------------------------------------
-- A countdown structure for restricted hypotheses
-- Equality of restricted hypotheses can be decided.
_≟_ : Decidable (_≡_ {A = Hyp n})
( σ₁ ≲ σ₂) ≟ (τ₁ ≲ τ₂) with σ₁ ≡? τ₁ | σ₂ ≡? τ₂
(.τ₁ ≲ .τ₂) ≟ (τ₁ ≲ τ₂) | yes refl | yes refl = yes refl
... | no σ₁≢τ₁ | _ = no (σ₁≢τ₁ ∘ PropEq.cong proj₁)
... | _ | no σ₂≢τ₂ = no (σ₂≢τ₂ ∘ PropEq.cong proj₂)
isDecEquivalence : IsDecEquivalence _≈_
isDecEquivalence =
On.isDecEquivalence ⟨_⟩ $
DecSetoid.isDecEquivalence (PropEq.decSetoid _≟_)
-- The countdown data structure can be used to keep track of (an upper
-- bound of) the number of hypotheses which have not been inserted
-- into a given list of hypotheses yet.
private
open module C =
Countdown (record { isDecEquivalence = isDecEquivalence })
public hiding (empty; emptyFromList)
-- An initialised countdown structure.
empty : [] ⊕ length restrictedHyps
empty = C.emptyFromList restrictedHyps complete
| {
"alphanum_fraction": 0.6030832095,
"avg_line_length": 31.8579881657,
"ext": "agda",
"hexsha": "3ac12ec1566bdeccca8ae5edde0963544669604a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "RecursiveTypes/Subterm/RestrictedHypothesis.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "RecursiveTypes/Subterm/RestrictedHypothesis.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "RecursiveTypes/Subterm/RestrictedHypothesis.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 1917,
"size": 5384
} |
------------------------------------------------------------------------
-- Monads
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Monad
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection eq using (_↔_)
open Derived-definitions-and-properties eq
open import Function-universe eq using (inverse)
------------------------------------------------------------------------
-- Basic definitions
-- Raw monads and raw monad transformers.
open import Monad.Raw public
-- Monads.
record Monad {d c} (M : Type d → Type c) : Type (lsuc d ⊔ c) where
constructor mk
field
⦃ raw-monad ⦄ : Raw-monad M
left-identity : ∀ {A B} (x : A) (f : A → M B) →
return x >>= f ≡ f x
right-identity : ∀ {A} (x : M A) →
x >>= return ≡ x
associativity : ∀ {A B C} →
(x : M A) (f : A → M B) (g : B → M C) →
x >>= (λ x → f x >>= g) ≡ x >>= f >>= g
-- Monads are functors.
map-id : ∀ {A} (x : M A) → map id x ≡ x
map-id x =
x >>= return ∘ id ≡⟨⟩
x >>= return ≡⟨ right-identity _ ⟩∎
x ∎
map-∘ : Extensionality d c →
∀ {A B C} (f : B → C) (g : A → B) (x : M A) →
map (f ∘ g) x ≡ map f (map g x)
map-∘ ext f g x =
x >>= return ∘ (f ∘ g) ≡⟨ cong (x >>=_) (apply-ext ext λ _ → sym $ left-identity _ _) ⟩
x >>= (λ x → return (g x) >>= return ∘ f) ≡⟨ associativity _ _ _ ⟩∎
(x >>= return ∘ g) >>= return ∘ f ∎
-- More lemmas.
map-return : ∀ {A B} (f : A → B) (x : A) →
map {M = M} f (return x) ≡ return (f x)
map-return f x =
return x >>= return ∘ f ≡⟨ left-identity _ _ ⟩∎
return (f x) ∎
map->>= : ∀ {A B C} (f : B → C) (x : M A) (g : A → M B) →
map f (x >>= g) ≡ x >>= map f ∘ g
map->>= f x g =
x >>= g >>= return ∘ f ≡⟨ sym $ associativity _ _ _ ⟩
x >>= (λ x → g x >>= return ∘ f) ≡⟨⟩
x >>= (λ x → map f (g x)) ≡⟨ refl _ ⟩∎
x >>= map f ∘ g ∎
>>=-map : Extensionality d c →
∀ {A B C} (f : A → B) (x : M A) (g : B → M C) →
map f x >>= g ≡ x >>= g ∘ f
>>=-map ext f x g =
(x >>= return ∘ f) >>= g ≡⟨ sym $ associativity _ _ _ ⟩
x >>= (λ x → return (f x) >>= g) ≡⟨ cong (x >>=_) (apply-ext ext λ _ → left-identity _ _) ⟩∎
x >>= g ∘ f ∎
open Monad ⦃ … ⦄ public hiding (raw-monad)
-- Monad transformers.
record Monad-transformer
{d c₁ c₂} (F : (Type d → Type c₁) → (Type d → Type c₂)) :
Type (lsuc (c₁ ⊔ d) ⊔ c₂) where
constructor mk
field
transform : ∀ {M} ⦃ is-monad : Monad M ⦄ → Monad (F M)
liftᵐ : ∀ {M A} ⦃ is-monad : Monad M ⦄ → M A → F M A
lift-return :
∀ {M A} ⦃ is-monad : Monad M ⦄ (x : A) →
let module M = Raw-monad (Monad.raw-monad transform) in
liftᵐ {M = M} (return x) ≡ M.return x
lift->>= :
∀ {M A B} ⦃ is-monad : Monad M ⦄
(x : M A) (f : A → M B) →
let module M = Raw-monad (Monad.raw-monad transform) in
liftᵐ (x >>= f) ≡ liftᵐ x M.>>= liftᵐ ∘ f
open Monad-transformer ⦃ … ⦄ public using (liftᵐ; lift-return; lift->>=)
------------------------------------------------------------------------
-- Preservation lemmas
-- If F and G are pointwise logically equivalent, then Raw-monad F and
-- Raw-monad G are logically equivalent.
⇔→raw⇔raw : ∀ {a f g} {F : Type a → Type f} {G : Type a → Type g} →
(∀ x → F x ⇔ G x) → Raw-monad F ⇔ Raw-monad G
⇔→raw⇔raw {a} = λ F⇔G → record
{ to = to F⇔G
; from = to (inverse ∘ F⇔G)
}
where
to : ∀ {f g} {F : Type a → Type f} {G : Type a → Type g} →
(∀ x → F x ⇔ G x) → Raw-monad F → Raw-monad G
Raw-monad.return (to F⇔G F-monad) x =
_⇔_.to (F⇔G _) (F.return x)
where
module F = Raw-monad F-monad
Raw-monad._>>=_ (to F⇔G F-monad) x f =
_⇔_.to (F⇔G _) (_⇔_.from (F⇔G _) x F.>>= λ x →
_⇔_.from (F⇔G _) (f x))
where
module F = Raw-monad F-monad
-- If F and G are pointwise isomorphic, then Raw-monad F and
-- Raw-monad G are isomorphic (assuming extensionality).
↔→raw↔raw : ∀ {a f g} →
Extensionality (lsuc a ⊔ f ⊔ g) (lsuc a ⊔ f ⊔ g) →
{F : Type a → Type f} {G : Type a → Type g} →
(∀ x → F x ↔ G x) → Raw-monad F ↔ Raw-monad G
↔→raw↔raw {a} {f} {g} = λ ext F↔G → record
{ surjection = record
{ logical-equivalence = ⇔→raw⇔raw (_↔_.logical-equivalence ∘ F↔G)
; right-inverse-of = to∘to (lower-extensionality f f ext)
(inverse ∘ F↔G)
}
; left-inverse-of = to∘to (lower-extensionality g g ext) F↔G
}
where
to∘to :
∀ {f g} {F : Type a → Type f} {G : Type a → Type g} →
Extensionality (lsuc a ⊔ f) (lsuc a ⊔ f) →
(F↔G : ∀ x → F x ↔ G x) (F-monad : Raw-monad F) →
let eq = ⇔→raw⇔raw (_↔_.logical-equivalence ∘ F↔G) in
_⇔_.from eq (_⇔_.to eq F-monad) ≡ F-monad
to∘to {f} ext F↔G (mk return _>>=_) = cong₂ mk
(implicit-extensionality (lower-extensionality f (lsuc a) ext) λ _ →
apply-ext (lower-extensionality _ (lsuc a) ext) λ x →
_↔_.from (F↔G _) (_↔_.to (F↔G _) (return x)) ≡⟨ _↔_.left-inverse-of (F↔G _) _ ⟩∎
return x ∎)
(implicit-extensionality (lower-extensionality f lzero ext) λ _ →
implicit-extensionality (lower-extensionality f (lsuc a) ext) λ _ →
apply-ext (lower-extensionality (lsuc a) (lsuc a) ext) λ x →
apply-ext (lower-extensionality (lsuc a) (lsuc a) ext) λ f →
_↔_.from (F↔G _) (_↔_.to (F↔G _)
(_↔_.from (F↔G _) (_↔_.to (F↔G _) x) >>= λ x →
_↔_.from (F↔G _) (_↔_.to (F↔G _) (f x)))) ≡⟨ _↔_.left-inverse-of (F↔G _) _ ⟩
(_↔_.from (F↔G _) (_↔_.to (F↔G _) x) >>= λ x →
_↔_.from (F↔G _) (_↔_.to (F↔G _) (f x))) ≡⟨ cong₂ _>>=_ (_↔_.left-inverse-of (F↔G _) _)
(apply-ext (lower-extensionality _ (lsuc a) ext) λ _ →
_↔_.left-inverse-of (F↔G _) _) ⟩∎
x >>= f ∎)
-- If F and G are pointwise isomorphic, then Monad F and Monad G are
-- logically equivalent (assuming extensionality).
↔→⇔ : ∀ {a f g} →
Extensionality a (f ⊔ g) →
{F : Type a → Type f} {G : Type a → Type g} →
(∀ x → F x ↔ G x) → Monad F ⇔ Monad G
↔→⇔ {a} {f} {g} = λ ext F↔G → record
{ to = to (lower-extensionality lzero g ext) F↔G
; from = to (lower-extensionality lzero f ext) (inverse ∘ F↔G)
}
where
to : ∀ {f g} {F : Type a → Type f} {G : Type a → Type g} →
Extensionality a f →
(∀ x → F x ↔ G x) → Monad F → Monad G
Monad.raw-monad (to ext F↔G F-monad) =
_⇔_.to (⇔→raw⇔raw (_↔_.logical-equivalence ∘ F↔G)) F.raw-monad
where
module F = Monad F-monad
Monad.left-identity (to ext F↔G F-monad) x f =
_↔_.to (F↔G _)
(_↔_.from (F↔G _) (_↔_.to (F↔G _) (FR.return x)) FR.>>= λ x →
_↔_.from (F↔G _) (f x)) ≡⟨ cong (λ y → _↔_.to (F↔G _) (y FR.>>= _)) (_↔_.left-inverse-of (F↔G _) _) ⟩
_↔_.to (F↔G _) (FR.return x FR.>>= λ x → _↔_.from (F↔G _) (f x)) ≡⟨ cong (_↔_.to (F↔G _)) (FM.left-identity _ _) ⟩
_↔_.to (F↔G _) (_↔_.from (F↔G _) (f x)) ≡⟨ _↔_.right-inverse-of (F↔G _) _ ⟩∎
f x ∎
where
module FM = Monad F-monad
module FR = Raw-monad FM.raw-monad
Monad.right-identity (to ext F↔G F-monad) x =
_↔_.to (F↔G _) (_↔_.from (F↔G _) x FR.>>= λ x →
_↔_.from (F↔G _) (_↔_.to (F↔G _) (FR.return x))) ≡⟨ cong (λ g → _↔_.to (F↔G _) (_ FR.>>= g))
(apply-ext ext λ _ → _↔_.left-inverse-of (F↔G _) _) ⟩
_↔_.to (F↔G _) (_↔_.from (F↔G _) x FR.>>= FR.return) ≡⟨ cong (_↔_.to (F↔G _)) (FM.right-identity _) ⟩
_↔_.to (F↔G _) (_↔_.from (F↔G _) x) ≡⟨ _↔_.right-inverse-of (F↔G _) _ ⟩∎
x ∎
where
module FM = Monad F-monad
module FR = Raw-monad FM.raw-monad
Monad.associativity (to ext F↔G F-monad) x f g =
_↔_.to (F↔G _)
(_↔_.from (F↔G _) x FR.>>= λ x →
_↔_.from (F↔G _) (_↔_.to (F↔G _)
(_↔_.from (F↔G _) (f x) FR.>>= λ x → _↔_.from (F↔G _) (g x)))) ≡⟨ cong (λ g → _↔_.to (F↔G _) (_↔_.from (F↔G _) x FR.>>= g))
(apply-ext ext λ _ → _↔_.left-inverse-of (F↔G _) _) ⟩
_↔_.to (F↔G _)
(_↔_.from (F↔G _) x FR.>>= λ x →
_↔_.from (F↔G _) (f x) FR.>>= λ x → _↔_.from (F↔G _) (g x)) ≡⟨ cong (_↔_.to (F↔G _)) (FM.associativity _ _ _) ⟩
_↔_.to (F↔G _)
((_↔_.from (F↔G _) x FR.>>= λ x →
_↔_.from (F↔G _) (f x)) FR.>>= λ x →
_↔_.from (F↔G _) (g x)) ≡⟨ cong (λ y → _↔_.to (F↔G _) (y FR.>>= _))
(sym $ _↔_.left-inverse-of (F↔G _) _) ⟩∎
_↔_.to (F↔G _)
(_↔_.from (F↔G _) (_↔_.to (F↔G _)
(_↔_.from (F↔G _) x FR.>>= λ x →
_↔_.from (F↔G _) (f x))) FR.>>= λ x →
_↔_.from (F↔G _) (g x)) ∎
where
module FM = Monad F-monad
module FR = Raw-monad FM.raw-monad
------------------------------------------------------------------------
-- Identity monads
-- The identity monad.
identity-monad : ∀ {ℓ} → Monad {d = ℓ} id
Raw-monad.return (Monad.raw-monad identity-monad) x = x
Raw-monad._>>=_ (Monad.raw-monad identity-monad) x f = f x
Monad.left-identity identity-monad x f = refl (f x)
Monad.right-identity identity-monad x = refl x
Monad.associativity identity-monad x f g = refl (g (f x))
-- The identity monad, defined using a wrapper type to make instance
-- resolution easier.
record Id {a} (A : Type a) : Type a where
constructor wrap
field
run : A
open Id public
instance
Id-raw-monad : ∀ {ℓ} → Raw-monad {d = ℓ} Id
run (Raw-monad.return Id-raw-monad x) = x
run (Raw-monad._>>=_ Id-raw-monad x f) = run (f (run x))
Id-monad : ∀ {ℓ} → Monad {d = ℓ} Id
Monad.raw-monad Id-monad = Id-raw-monad
Monad.left-identity Id-monad x f = cong wrap (refl (run (f x)))
Monad.right-identity Id-monad x = cong wrap (refl (run x))
Monad.associativity Id-monad x f g = cong wrap (refl (run (g (run (f (run x))))))
| {
"alphanum_fraction": 0.4487120726,
"avg_line_length": 38.9607142857,
"ext": "agda",
"hexsha": "79e608ad75044aa95fcfe222234e43e49dbb8bde",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Monad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Monad.agda",
"max_line_length": 147,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Monad.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 4085,
"size": 10909
} |
module Structure.Operator where
import Lvl
open import Functional using (_$_)
open import Lang.Instance
open import Logic.Predicate
open import Logic
open import Structure.Setoid
open import Structure.Function.Names
open import Structure.Function
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Transitivity
open import Type
private variable ℓ ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₒ₄ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ ℓₗ₄ : Lvl.Level
private variable A₁ A₂ A₃ B : Type{ℓ}
module _
⦃ equiv-A₁ : Equiv{ℓₗ₁}(A₁) ⦄
⦃ equiv-A₂ : Equiv{ℓₗ₂}(A₂) ⦄
⦃ equiv-B : Equiv{ℓₗ₃}(B) ⦄
(_▫_ : A₁ → A₂ → B)
where
-- The operator `_▫_` "(behaves like)/is a function" in the context of `_≡_` from the Equiv instance.
-- `congruence` is the defining property of a binary operation.
record BinaryOperator : Type{Lvl.of(A₁) Lvl.⊔ Lvl.of(A₂) Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃} where
constructor intro
field congruence : Congruence₂(_▫_)
instance
left : ∀{x} → Function(_▫ x)
left = intro(proof ↦ congruence proof (reflexivity(_≡_)))
instance
right : ∀{x} → Function(x ▫_)
right = intro(proof ↦ congruence (reflexivity(_≡_)) proof)
congruenceₗ : ∀{x₁ x₂}{y} → (x₁ ≡ x₂) → (x₁ ▫ y ≡ x₂ ▫ y)
congruenceₗ = Function.congruence(left)
congruenceᵣ : ∀{x}{y₁ y₂} → (y₁ ≡ y₂) → (x ▫ y₁ ≡ x ▫ y₂)
congruenceᵣ = Function.congruence(right)
[≡]-congruence2-left : ⦃ inst : BinaryOperator ⦄ → (x : _) → Function(_▫ x)
[≡]-congruence2-left = x ↦ inst-fn(BinaryOperator.left) {x}
[≡]-congruence2-right : ⦃ inst : BinaryOperator ⦄ → (x : _) → Function(x ▫_)
[≡]-congruence2-right = x ↦ inst-fn(BinaryOperator.right) {x}
congruence₂ = inst-fn BinaryOperator.congruence
congruence₂ₗ : ⦃ inst : BinaryOperator ⦄ → (a : A₂) → ∀{x y : A₁} → (x ≡ y) → (x ▫ a ≡ y ▫ a)
congruence₂ₗ _ = inst-fn BinaryOperator.congruenceₗ -- (congruence₁(_▫ a) ⦃ [≡]-congruence2-left ⦃ inst ⦄ a ⦄)
congruence₂ᵣ : ⦃ inst : BinaryOperator ⦄ → (a : A₁) → ∀{x y : A₂} → (x ≡ y) → (a ▫ x ≡ a ▫ y)
congruence₂ᵣ _ = inst-fn BinaryOperator.congruenceᵣ
functions-to-binaryOperator : ⦃ l : ∀{y} → Function(_▫ y) ⦄ ⦃ r : ∀{x} → Function(x ▫_) ⦄ → BinaryOperator
BinaryOperator.congruence functions-to-binaryOperator {x₁} {y₁} {x₂} {y₂} leq req =
(x₁ ▫ x₂) 🝖[ _≡_ ]-[ congruence₁(_▫ x₂) leq ]
(y₁ ▫ x₂) 🝖[ _≡_ ]-[ congruence₁(y₁ ▫_) req ]
(y₁ ▫ y₂) 🝖-end
module _
⦃ equiv-A₁ : Equiv{ℓₗ₁}(A₁) ⦄
⦃ equiv-A₂ : Equiv{ℓₗ₂}(A₂) ⦄
⦃ equiv-A₃ : Equiv{ℓₗ₃}(A₃) ⦄
⦃ equiv-B : Equiv{ℓₗ₄}(B) ⦄
(_▫_▫_ : A₁ → A₂ → A₃ → B)
where
record TrinaryOperator : Type{Lvl.of(A₁) Lvl.⊔ Lvl.of(A₂) Lvl.⊔ Lvl.of(A₃) Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃ Lvl.⊔ ℓₗ₄} where
constructor intro
field congruence : Congruence₃(_▫_▫_)
congruence₃ = inst-fn TrinaryOperator.congruence
| {
"alphanum_fraction": 0.6394727467,
"avg_line_length": 35.5316455696,
"ext": "agda",
"hexsha": "0e0aeaa8372529803c9c5a53a87f6133cce3229b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator.agda",
"max_line_length": 123,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1283,
"size": 2807
} |
{-# OPTIONS --cubical-compatible #-}
open import Agda.Primitive
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
data ⊥ : Set where
record Σ {a} {b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
fst : A
snd : B fst
no : _≡_ {A = Σ Set (λ X → X)} (Nat , 0) (Nat , 1) → ⊥
no ()
| {
"alphanum_fraction": 0.5848484848,
"avg_line_length": 19.4117647059,
"ext": "agda",
"hexsha": "d7197ca03240644c0b5917eb0eb703f9a4efbca1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue2721.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue2721.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue2721.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 127,
"size": 330
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties for Conats
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Conat.Properties where
open import Data.Nat
open import Codata.Thunk
open import Codata.Conat
open import Codata.Conat.Bisimilarity
open import Function
open import Relation.Nullary
open import Relation.Binary
sℕ≤s⁻¹ : ∀ {m n} → suc m ℕ≤ suc n → m ℕ≤ n .force
sℕ≤s⁻¹ (sℕ≤s p) = p
_ℕ≤?_ : Decidable _ℕ≤_
zero ℕ≤? n = yes zℕ≤n
suc m ℕ≤? zero = no (λ ())
suc m ℕ≤? suc n with m ℕ≤? n .force
... | yes p = yes (sℕ≤s p)
... | no ¬p = no (¬p ∘′ sℕ≤s⁻¹)
0ℕ+-identity : ∀ {i n} → i ⊢ 0 ℕ+ n ≈ n
0ℕ+-identity = refl
+ℕ0-identity : ∀ {i n} → i ⊢ n +ℕ 0 ≈ n
+ℕ0-identity {n = zero} = zero
+ℕ0-identity {n = suc n} = suc λ where .force → +ℕ0-identity
| {
"alphanum_fraction": 0.5200433369,
"avg_line_length": 26.3714285714,
"ext": "agda",
"hexsha": "0ad0da9f3034d5f6f0d4083453bec7387c7beced",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat/Properties.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 340,
"size": 923
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Monoid.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma hiding (_×_)
open import Cubical.Data.Prod
open import Cubical.Algebra
open import Cubical.Algebra.Properties
open import Cubical.Algebra.Monoid.Morphism
open import Cubical.Algebra.Semigroup.Properties as Semigroup using (isPropIsSemigroup)
open import Cubical.Relation.Binary.Reasoning.Equality
open import Cubical.Relation.Unary as Unary
open import Cubical.Relation.Binary as Binary
open import Cubical.Algebra.Monoid.MorphismProperties public
using (MonoidPath; uaMonoid; carac-uaMonoid; Monoid≡; caracMonoid≡)
private
variable
ℓ : Level
isPropIsMonoid : ∀ {M : Type ℓ} {_•_ ε} → isProp (IsMonoid M _•_ ε)
isPropIsMonoid {_} {_} {_•_} {ε} (ismonoid aSemi aId) (ismonoid bSemi bId) =
cong₂ ismonoid (isPropIsSemigroup aSemi bSemi) (isPropIdentity (IsSemigroup.is-set aSemi) _•_ ε aId bId)
module MonoidLemmas (M : Monoid ℓ) where
open Monoid M
ε-comm : ∀ x → x • ε ≡ ε • x
ε-comm x = identityʳ x ∙ sym (identityˡ x)
^-zeroˡ : LeftZero ε _^_
^-zeroˡ zero = refl
^-zeroˡ (suc n) = identityˡ (ε ^ n) ∙ ^-zeroˡ n
^-suc : ∀ x n → x ^ suc n ≡ x ^ n • x
^-suc x zero = ε-comm x
^-suc x (suc n) =
x ^ suc (suc n) ≡⟨⟩
x • x ^ suc n ≡⟨ cong (x •_) (^-suc x n) ⟩
x • (x ^ n • x) ≡˘⟨ assoc x (x ^ n) x ⟩
x • x ^ n • x ≡⟨⟩
x ^ suc n • x ∎
^-plus : ∀ x → Homomorphic₂ (x ^_) _+_ _•_
^-plus x zero n = sym (identityˡ (x ^ n))
^-plus x (suc m) n =
x ^ (suc m + n) ≡⟨⟩
x • x ^ (m + n) ≡⟨ cong (x •_) (^-plus x m n) ⟩
x • (x ^ m • x ^ n) ≡˘⟨ assoc x (x ^ m) (x ^ n) ⟩
x • x ^ m • x ^ n ≡⟨⟩
x ^ suc m • x ^ n ∎
infixl 10 _^′_
_^′_ = Semigroup._^_ semigroup
^semi≡^ : ∀ x n → x ^′ n ≡ x ^ (ℕ₊₁→ℕ n)
^semi≡^ x one = sym (identityʳ x)
^semi≡^ x (2+ n) = cong (x •_) (^semi≡^ x (1+ n))
-- Invertible elements
module Invertible (M : Monoid ℓ) where
open Monoid M
Inverses′ : RawRel ⟨ M ⟩ ℓ
Inverses′ x y = (x • y ≡ ε) × (y • x ≡ ε)
isPropInverses : Binary.isPropValued Inverses′
isPropInverses _ _ = isPropProd (is-set _ _) (is-set _ _)
Inverses : Rel ⟨ M ⟩ ℓ
Inverses = Binary.fromRaw Inverses′ isPropInverses
inv-unique′ : ∀ {x y z} → x • y ≡ ε → z • x ≡ ε → y ≡ z
inv-unique′ {x} {y} {z} xy≡ε zx≡ε =
y ≡˘⟨ identityˡ y ⟩
ε • y ≡˘⟨ cong (_• y) zx≡ε ⟩
(z • x) • y ≡⟨ assoc z x y ⟩
z • (x • y) ≡⟨ cong (z •_) xy≡ε ⟩
z • ε ≡⟨ identityʳ z ⟩
z ∎
inv-unique : ∀ {x y z} → ⟨ Inverses x y ⟩ → ⟨ Inverses x z ⟩ → y ≡ z
inv-unique (xy≡ε , _) (_ , zx≡ε) = inv-unique′ xy≡ε zx≡ε
Invertible′ : RawPred ⟨ M ⟩ ℓ
Invertible′ x = Σ ⟨ M ⟩ (Inverses′ x)
isPropInvertible : Unary.isPropValued Invertible′
isPropInvertible x (y , x-y) (z , x-z) = ΣPathTransport→PathΣ (y , x-y) (z , x-z)
(inv-unique x-y x-z , isPropInverses _ _ _ _)
Invertible : Pred ⟨ M ⟩ ℓ
Invertible = Unary.fromRaw Invertible′ isPropInvertible
εInverses : ⟨ Inverses ε ε ⟩
εInverses = identityˡ ε , identityˡ ε
εInvertible : ε ∈ Invertible
εInvertible = ε , εInverses
module Kernel {ℓ ℓ′} {M : Monoid ℓ} {N : Monoid ℓ′} (hom : MonoidHom M N)
= Semigroup.Kernel (MonoidHom→SemigroupHom hom)
| {
"alphanum_fraction": 0.5928449744,
"avg_line_length": 29.5966386555,
"ext": "agda",
"hexsha": "5a8fa833f32d1a5af0db14cbe0afdba2881b1646",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Monoid/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Monoid/Properties.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Monoid/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1460,
"size": 3522
} |
-- Andreas, 2017-05-13, issue reported by nad
module Issue2579 where
open import Common.Bool
open import Issue2579.Import
import Issue2579.Instance Bool true -- imports instances
theWrapped : {{w : Wrap Bool}} → Bool
theWrapped {{w}} = Wrap.wrapped w
test : Bool
test = theWrapped
| {
"alphanum_fraction": 0.7421602787,
"avg_line_length": 19.1333333333,
"ext": "agda",
"hexsha": "8900d82e0b361ac6df78bfa5567a4cf1a5d17f4b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2579.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2579.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2579.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 78,
"size": 287
} |
-- Andreas, 2013-03-22
-- cut down from https://github.com/agda/agda-assoc-free/src/AssocFree/DList.agda
-- {-# OPTIONS -v tc.cover.splittree:10 -v tc.cc:30 #-}
module Issue827 where
open import Common.Equality
-- need to keep this record !
record List (A : Set) : Set where
constructor list -- need to keep this constructor
field bla : A
postulate
_++_ : ∀ {A} → List A → List A → List A
_∈_ : ∀ {A} (a : A) (as : List A) → Set
_≪_ : ∀ {A} {a : A} {as} → (a ∈ as) → ∀ bs → (a ∈ (as ++ bs))
_≫_ : ∀ {A} {a : A} as {bs} → (a ∈ bs) → (a ∈ (as ++ bs))
-- Case on membership
data Case {A} a (as bs : List A) : Set where
inj₁ : (a∈as : a ∈ as) → Case a as bs
inj₂ : (a∈bs : a ∈ bs) → Case a as bs
-- Three-way case, used for proving associativity properties
data Case₃ {A} (a : A) as bs cs : Set where
inj₁ : (a ∈ as) → Case₃ a as bs cs
inj₂ : (a ∈ bs) → Case₃ a as bs cs
inj₃ : (a ∈ cs) → Case₃ a as bs cs
-- Associating case₃ to the right gives case
case : ∀ {A} {a : A} {as bs cs} → Case₃ a as bs cs → Case a as (bs ++ cs)
case {cs = cs} (inj₂ a∈bs) = inj₂ (a∈bs ≪ cs)
case {bs = bs} (inj₃ a∈cs) = inj₂ (bs ≫ a∈cs)
case (inj₁ a∈as) = inj₁ a∈as
works : ∀ {A} {a : A} {as bs cs : List A} {a∈bs : a ∈ bs} →
case {as = as} (inj₂ a∈bs) ≡ inj₂ (a∈bs ≪ cs)
works = refl
-- Different order of clauses fails:
case′ : ∀ {A} {a : A} {as bs cs} → Case₃ a as bs cs → Case a as (bs ++ cs)
case′ (inj₁ a∈as) = inj₁ a∈as
case′ {cs = cs} (inj₂ a∈bs) = inj₂ (a∈bs ≪ cs)
case′ {bs = bs} (inj₃ a∈cs) = inj₂ (bs ≫ a∈cs)
fails : ∀ {A} {a : A} {as bs cs : List A} {a∈bs : a ∈ bs} →
case′ {as = as} (inj₂ a∈bs) ≡ inj₂ (a∈bs ≪ cs)
fails = refl
-- There was a bug in the record pattern translation.
-- Solution: expand all catch-alls in position of a record
-- pattern split. Then record pattern translation works fine.
| {
"alphanum_fraction": 0.567115903,
"avg_line_length": 32.5438596491,
"ext": "agda",
"hexsha": "eafaaa0c7e6cdb6374dbe9697f99fd17638bf73e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue827.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue827.agda",
"max_line_length": 82,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue827.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 770,
"size": 1855
} |
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Constructions.Initial where
open import Data.Product using (proj₁ ; proj₂)
open import Level
open import Cats.Category.Base
import Cats.Category.Constructions.Iso as Iso
import Cats.Category.Constructions.Unique as Unique
module Build {lo la l≈} (Cat : Category lo la l≈) where
open Category Cat
open Iso.Build Cat
open Unique.Build Cat
IsInitial : Obj → Set (lo ⊔ la ⊔ l≈)
IsInitial ⊥ = ∀ X → ∃! ⊥ X
record HasInitial : Set (lo ⊔ la ⊔ l≈) where
field
⊥ : Obj
isInitial : IsInitial ⊥
¡ : ∀ X → ⊥ ⇒ X
¡ X = ∃!′.arr (isInitial X)
¡-unique : ∀ {X} (f : ⊥ ⇒ X) → ¡ X ≈ f
¡-unique {X} f = ∃!′.unique (isInitial X) _
⊥⇒-unique : ∀ {X} (f g : ⊥ ⇒ X) → f ≈ g
⊥⇒-unique f g = ≈.trans (≈.sym (¡-unique f)) (¡-unique g)
⊥-unique : ∀ {X} → IsInitial X → X ≅ ⊥
⊥-unique {X} init = record
{ forth = init ⊥ .∃!′.arr
; back = ¡ X
; back-forth = ≈.trans (≈.sym (init X .∃!′.unique _)) (init X .∃!′.unique _)
; forth-back = ⊥⇒-unique _ _
}
initial-unique : ∀ {X Y} → IsInitial X → IsInitial Y → X ≅ Y
initial-unique X-init Y-init
= HasInitial.⊥-unique (record { isInitial = Y-init }) X-init
open Build public using (HasInitial)
private
open module Build′ {lo la l≈} {C : Category lo la l≈}
= Build C public using (IsInitial ; initial-unique)
| {
"alphanum_fraction": 0.5749822317,
"avg_line_length": 23.0655737705,
"ext": "agda",
"hexsha": "97f0fca9a1ca7f58c601c86c27f75399bf7090ac",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Category/Constructions/Initial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Category/Constructions/Initial.agda",
"max_line_length": 82,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Category/Constructions/Initial.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 509,
"size": 1407
} |
{-# OPTIONS --safe --warning=error #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Functions.Definition
open import Boolean.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Vectors
module Logic.PropositionalLogic where
data Propositions {a : _} (primitives : Set a) : Set a where
ofPrimitive : primitives → Propositions primitives
false : Propositions primitives
implies : (a b : Propositions primitives) → Propositions primitives
prNot : {a : _} {pr : Set a} → Propositions pr → Propositions pr
prNot p = implies p false
impliesIsBigger : {a : _} {pr : Set a} {P Q : Propositions pr} → Q ≡ implies P Q → False
impliesIsBigger {P = P} {Q} ()
impliesInjectiveL : {a : _} {A : Set a} → {p q r : Propositions A} → implies p q ≡ implies r q → p ≡ r
impliesInjectiveL refl = refl
impliesInjectiveR : {a : _} {A : Set a} → {p q r : Propositions A} → implies p q ≡ implies p r → q ≡ r
impliesInjectiveR refl = refl
impliesInjective : {a : _} {A : Set a} → {p q r s : Propositions A} → implies p q ≡ implies r s → (p ≡ r) && (q ≡ s)
impliesInjective refl = refl ,, refl
record Valuation {a : _} (primitives : Set a) : Set a where
field
v : Propositions primitives → Bool
vFalse : v false ≡ BoolFalse
vImplicationF : {p q : Propositions primitives} → v p ≡ BoolTrue → v q ≡ BoolFalse → v (implies p q) ≡ BoolFalse
vImplicationVacuous : {p q : Propositions primitives} → v p ≡ BoolFalse → v (implies p q) ≡ BoolTrue
vImplicationT : {p q : Propositions primitives} → v q ≡ BoolTrue → v (implies p q) ≡ BoolTrue
-- Proposition 1a
valuationIsDetermined : {a : _} {pr : Set a} → (v1 v2 : Valuation pr) → ({x : pr} → Valuation.v v1 (ofPrimitive x) ≡ Valuation.v v2 (ofPrimitive x)) → {x : Propositions pr} → Valuation.v v1 x ≡ Valuation.v v2 x
valuationIsDetermined v1 v2 pr {ofPrimitive x} = pr
valuationIsDetermined v1 v2 pr {false} rewrite Valuation.vFalse v1 | Valuation.vFalse v2 = refl
valuationIsDetermined v1 v2 pr {implies x y} with valuationIsDetermined v1 v2 pr {x}
valuationIsDetermined v1 v2 pr {implies x y} | eqX with valuationIsDetermined v1 v2 pr {y}
... | eqY with inspect (Valuation.v v1 x)
valuationIsDetermined v1 v2 pr {implies x y} | eqX | eqY | BoolTrue with≡ p with inspect (Valuation.v v1 y)
valuationIsDetermined v1 v2 pr {implies x y} | eqX | eqY | BoolTrue with≡ p | BoolTrue with≡ q rewrite p | q | Valuation.vImplicationT v2 {p = x} {q = y} (equalityCommutative eqY) | Valuation.vImplicationT v1 {p = x} {q = y} q = refl
valuationIsDetermined v1 v2 pr {implies x y} | eqX | eqY | BoolTrue with≡ p | BoolFalse with≡ q rewrite p | q | Valuation.vImplicationF v1 p q | Valuation.vImplicationF v2 (equalityCommutative eqX) (equalityCommutative eqY) = refl
valuationIsDetermined v1 v2 pr {implies x y} | eqX | eqY | BoolFalse with≡ p rewrite p | Valuation.vImplicationVacuous v1 {q = y} p | Valuation.vImplicationVacuous v2 {q = y} (equalityCommutative eqX) = refl
extendValuationV : {a : _} {pr : Set a} → (w : pr → Bool) → Propositions pr → Bool
extendValuationV w (ofPrimitive x) = w x
extendValuationV w false = BoolFalse
extendValuationV w (implies x y) with extendValuationV w x
... | BoolTrue with extendValuationV w y
extendValuationV w (implies x y) | BoolTrue | BoolTrue = BoolTrue
... | BoolFalse = BoolFalse
extendValuationV w (implies x y) | BoolFalse = BoolTrue
extendValuation : {a : _} {pr : Set a} → (w : pr → Bool) → Valuation pr
Valuation.v (extendValuation w) = extendValuationV w
Valuation.vFalse (extendValuation w) = refl
Valuation.vImplicationF (extendValuation w) {p} {q} pT qF with Valuation.v (extendValuation w) p
Valuation.vImplicationF (extendValuation w) {p} {q} refl qF | BoolTrue with Valuation.v (extendValuation w) q
Valuation.vImplicationF (extendValuation w) {p} {q} refl () | BoolTrue | BoolTrue
Valuation.vImplicationF (extendValuation w) {p} {q} refl refl | BoolTrue | BoolFalse = refl
Valuation.vImplicationF (extendValuation w) {p} {q} () qF | BoolFalse
Valuation.vImplicationVacuous (extendValuation w) {p} {q} pF with Valuation.v (extendValuation w) p
Valuation.vImplicationVacuous (extendValuation w) {p} {q} () | BoolTrue
Valuation.vImplicationVacuous (extendValuation w) {p} {q} refl | BoolFalse = refl
Valuation.vImplicationT (extendValuation w) {p} {q} qT with Valuation.v (extendValuation w) p
Valuation.vImplicationT (extendValuation w) {p} {q} qT | BoolTrue with Valuation.v (extendValuation w) q
Valuation.vImplicationT (extendValuation w) {p} {q} refl | BoolTrue | BoolTrue = refl
Valuation.vImplicationT (extendValuation w) {p} {q} () | BoolTrue | BoolFalse
Valuation.vImplicationT (extendValuation w) {p} {q} qT | BoolFalse = refl
-- Proposition 1b
valuationsAreFree : {a : _} {pr : Set a} → (w : pr → Bool) → {x : pr} → Valuation.v (extendValuation w) (ofPrimitive x) ≡ w x
valuationsAreFree w = refl
Tautology : {a : _} {pr : Set a} (prop : Propositions pr) → Set a
Tautology {pr = pr} prop = (v : Valuation pr) → Valuation.v v prop ≡ BoolTrue
record IsSubset {a b : _} (sub : Set a) (super : Set b) : Set (a ⊔ b) where
field
ofElt : sub → super
mapProp : {a b : _} {pr1 : Set a} {pr2 : Set b} → (pr1 → pr2) → Propositions pr1 → Propositions pr2
mapProp f (ofPrimitive x) = ofPrimitive (f x)
mapProp f false = false
mapProp f (implies p q) = implies (mapProp f p) (mapProp f q)
inheritedValuation : {a b : _} {sub : Set a} {super : Set b} → (IsSubset sub super) → Valuation super → Valuation sub
Valuation.v (inheritedValuation isSub v) prop = Valuation.v v (mapProp (IsSubset.ofElt isSub) prop)
Valuation.vFalse (inheritedValuation isSub v) = Valuation.vFalse v
Valuation.vImplicationF (inheritedValuation isSub v) pT qF = Valuation.vImplicationF v pT qF
Valuation.vImplicationVacuous (inheritedValuation isSub v) pF = Valuation.vImplicationVacuous v pF
Valuation.vImplicationT (inheritedValuation isSub v) qT = Valuation.vImplicationT v qT
inheritedValuation' : {a b : _} {sub : Set a} {super : Set b} → (IsSubset sub (Propositions super)) → Valuation super → (x : sub) → Bool
inheritedValuation' subset v x = Valuation.v v (IsSubset.ofElt subset x)
Entails : {a b : _} {sub : Set a} {super : Set b} (S : IsSubset sub (Propositions super)) (P : Propositions super) → Set (a ⊔ b)
Entails {sub = sub} {super = super} S P = {v : Valuation super} → ({s : sub} → inheritedValuation' S v s ≡ BoolTrue) → Valuation.v v P ≡ BoolTrue
data ThreeElements : Set where
One : ThreeElements
Two : ThreeElements
Three : ThreeElements
indexAxiom : {a : _} (A : Set a) → ThreeElements → Set a
indexAxiom A One = Propositions A && Propositions A
indexAxiom A Two = Propositions A & Propositions A & Propositions A
indexAxiom A Three = Propositions A
indexPropositionalAxioms : {a : _} {A : Set a} → Set a
indexPropositionalAxioms {A = A} = Sg ThreeElements (indexAxiom A)
-- An axiom system is simply a subset of a set of propositions.
propositionalAxioms : {a : _} {A : Set a} → IsSubset (indexPropositionalAxioms {A = A}) (Propositions A)
IsSubset.ofElt propositionalAxioms (One , (p ,, q)) = implies p (implies q p)
IsSubset.ofElt propositionalAxioms (Two , record { one = p ; two = q ; three = r }) = implies (implies p (implies q r)) (implies (implies p q) (implies p r))
IsSubset.ofElt propositionalAxioms (Three , p) = implies (prNot (prNot p)) p
record Selection {a : _} {A : Set a} {n : ℕ} (l : Vec A n) : Set a where
field
element : A
position : ℕ
pos<N : position <N n
elementIsAt : vecIndex l position pos<N ≡ element
data Proof {a b c : _} {A : Set a} {axioms : Set b} (axiomsSubset : IsSubset axioms (Propositions A)) {givens : Set c} (givensSubset : IsSubset givens (Propositions A)) : (n : ℕ) → Set (a ⊔ b ⊔ c)
data ProofStep {a b c : _} {A : Set a} {axioms : Set b} (axiomsSubset : IsSubset axioms (Propositions A)) {givens : Set c} (givensSubset : IsSubset givens (Propositions A)) {n : ℕ} (proofSoFar : Proof {a} {b} {c} {A} {axioms} axiomsSubset {givens} givensSubset n) : Set (a ⊔ b ⊔ c)
toSteps : {a b c : _} {A : Set a} {axioms : Set b} {axiomsSubset : IsSubset axioms (Propositions A)} {givens : Set c} {givensSubset : IsSubset givens (Propositions A)} {n : ℕ} (pr : Proof {axioms = axioms} axiomsSubset {givens = givens} givensSubset n) → Vec (Propositions A) n
data ProofStep {a} {b} {c} {A} {axioms} axiomsSubset {givens} givensSubset proofSoFar where
axiom : axioms → ProofStep axiomsSubset givensSubset proofSoFar
given : givens → ProofStep axiomsSubset givensSubset proofSoFar
modusPonens : (implication : Selection (toSteps proofSoFar)) → (argument : Selection (toSteps proofSoFar)) → (conclusion : Propositions A) → (Selection.element implication ≡ implies (Selection.element argument) conclusion) → ProofStep axiomsSubset givensSubset proofSoFar
data Proof {a} {b} {c} {A} {axioms} axiomsSubset {givens} givensSubset where
empty : Proof axiomsSubset givensSubset 0
nextStep : (n : ℕ) → (previous : Proof {axioms = axioms} axiomsSubset {givens = givens} givensSubset n) → ProofStep axiomsSubset givensSubset previous → Proof axiomsSubset givensSubset (succ n)
toSteps empty = []
toSteps {axiomsSubset = axiomsSubset} (nextStep n pr (axiom x)) = (IsSubset.ofElt axiomsSubset x) ,- toSteps pr
toSteps {givensSubset = givensSubset} (nextStep n pr (given x)) = IsSubset.ofElt givensSubset x ,- toSteps pr
toSteps (nextStep n pr (modusPonens implication argument conclusion x)) = conclusion ,- toSteps pr
record Proves {a b c : _} {A : Set a} {axioms : Set b} (axiomsSubset : IsSubset axioms (Propositions A)) {givens : Set c} (givensSubset : IsSubset givens (Propositions A)) (P : Propositions A) : Set (a ⊔ b ⊔ c) where
field
n : ℕ
proof : Proof axiomsSubset givensSubset (succ n)
ofStatement : vecIndex (toSteps proof) 0 (succIsPositive n) ≡ P
addSingletonSet : {a : _} → Set a → Set a
addSingletonSet A = True || A
interpretSingletonSet : {a b c : _} {A : Set a} {B : Set b} {C : Set c} → IsSubset A B → (c : C) → (addSingletonSet A) → C || B
interpretSingletonSet A<B c (inl x) = inl c
interpretSingletonSet A<B _ (inr x) = inr (IsSubset.ofElt A<B x)
inrInjective : {a b : _} {A : Set a} {B : Set b} {b1 b2 : B} → inr {a = a} {A = A} b1 ≡ inr b2 → b1 ≡ b2
inrInjective refl = refl
singletonSubset : {a b c : _} {A : Set a} {B : Set b} {C : Set c} → IsSubset A B → (c : C) → IsSubset (addSingletonSet A) (C || B)
IsSubset.ofElt (singletonSubset subs c) = interpretSingletonSet subs c
adjoinGiven : {a b : _} {A : Set a} {givens : Set b} (givensSubset : IsSubset givens A) (P : A) → IsSubset (addSingletonSet givens) A
IsSubset.ofElt (adjoinGiven record { ofElt = ofElt } P) (inl x) = P
IsSubset.ofElt (adjoinGiven record { ofElt = ofElt } _) (inr x) = ofElt x
vecIndexRefl : {a : _} {A : Set a} {n : ℕ} {v1 v2 : Vec A n} → {pos : ℕ} → {pos<N1 pos<N2 : pos <N n} → v1 ≡ v2 → vecIndex v1 pos pos<N1 ≡ vecIndex v2 pos pos<N2
vecIndexRefl {v1 = v1} {.v1} {pos} {pos<N1} {pos<N2} refl = refl
{-
proofRemainsValidOnAddingGivens : {a b c : _} {A : Set a} {axioms : Set b} {axiomsSubset : IsSubset axioms (Propositions A)} {givens : Set c} {givensSubset : IsSubset givens (Propositions A)} {n : ℕ} → {Q : Propositions A} → Proof axiomsSubset givensSubset n → Proof axiomsSubset (adjoinGiven givensSubset Q) n
pr' : {a b c : _} {A : Set a} {axioms : Set b} {axiomsSubset : IsSubset axioms (Propositions A)} {givens : Set c} {givensSubset : IsSubset givens (Propositions A)} {n : ℕ} → {Q : Propositions A} → (pr : Proof axiomsSubset givensSubset n) → toSteps pr ≡ toSteps (proofRemainsValidOnAddingGivens {Q = Q} pr)
pr' empty = refl
pr' (nextStep n pr (axiom x)) rewrite pr' pr = refl
pr' (nextStep n pr (given x)) rewrite pr' pr = refl
pr' (nextStep n pr (modusPonens implication argument conclusion x)) rewrite pr' pr = refl
proofRemainsValidOnAddingGivens {Q = Q} empty = empty
proofRemainsValidOnAddingGivens {Q = Q} (nextStep n pr (axiom x)) = nextStep n (proofRemainsValidOnAddingGivens pr) (axiom x)
proofRemainsValidOnAddingGivens {Q = Q} (nextStep n pr (given x)) = nextStep n (proofRemainsValidOnAddingGivens pr) (given (inr x))
proofRemainsValidOnAddingGivens {A = A} {axiomsSubset = axiomsSubset} {givensSubset = givensSubset} {Q = Q} (nextStep n pr (modusPonens implication argument conclusion x)) = nextStep n (proofRemainsValidOnAddingGivens pr) (modusPonens (record { element = Selection.element implication ; position = Selection.position implication ; pos<N = Selection.pos<N implication ; elementIsAt = lemma implication }) (record { element = Selection.element argument ; position = Selection.position argument ; pos<N = Selection.pos<N argument ; elementIsAt = lemma argument }) conclusion x)
where
lemma : (sel : Selection (toSteps pr)) → vecIndex (toSteps (proofRemainsValidOnAddingGivens pr)) (Selection.position sel) (Selection.pos<N sel) ≡ Selection.element sel
lemma sel with proofRemainsValidOnAddingGivens {Q = Q} pr
... | nextStep n bl x = {!!}
-}
{-
proofImpliesProves : {a b c : _} {A : Set a} {axioms : Set b} {axiomsSubset : IsSubset axioms (Propositions A)} {givens : Set c} {givensSubset : IsSubset givens (Propositions A)} {n : ℕ} (0<n : 0 <N n) → (p : Proof axiomsSubset givensSubset n) → (pr : Propositions A) → vecIndex (toSteps p) 0 0<n ≡ pr → Proves axiomsSubset givensSubset pr
proofImpliesProves {n = zero} () p pr x
proofImpliesProves {n = succ n} _ p pr x = record { n = n ; proof = p ; ofStatement = transitivity (vecIndexRefl {v1 = toSteps p} refl) x }
deductionTheorem' : {a b c : _} {A : Set a} {axioms : Set b} {axiomsSubset : IsSubset axioms (Propositions A)} {givens : Set c} {givensSubset : IsSubset givens (Propositions A)} {n : ℕ} → {P Q : Propositions A} → Proves axiomsSubset givensSubset (implies P Q) → Proves axiomsSubset {givens = addSingletonSet givens} (adjoinGiven givensSubset P) Q
Proves.n (deductionTheorem' record { n = n ; proof = proof ; ofStatement = ofStatement }) = succ (succ n)
Proves.proof (deductionTheorem' {P = P} {Q = Q} record { n = n ; proof = proof ; ofStatement = ofStatement }) = nextStep (succ (succ n)) (nextStep (succ n) (proofRemainsValidOnAddingGivens proof) (given (inl record {}))) (modusPonens (record { element = implies P Q ; position = 1 ; pos<N = succPreservesInequality (succIsPositive _) ; elementIsAt = transitivity (equalityCommutative (vecIndexRefl (pr' proof))) ofStatement }) (record { element = P ; position = 0 ; pos<N = succIsPositive _ ; elementIsAt = refl }) Q refl)
Proves.ofStatement (deductionTheorem' record { n = n ; proof = proof ; ofStatement = ofStatement }) = refl
deductionTheorem : {a b c : _} {A : Set a} {givens : Set c} {givensSubset : IsSubset givens (Propositions A)} {n : ℕ} → {P Q : Propositions A} → Proves propositionalAxioms {givens = addSingletonSet givens} (adjoinGiven givensSubset P) Q → Proves propositionalAxioms givensSubset (implies P Q)
deductionTheorem {P = P} {Q} record { n = n ; proof = (nextStep .n proof (axiom x)) ; ofStatement = ofStatement } = {!!}
--... | bl = record { n = {!!} ; proof = nextStep (succ (succ (succ n))) (nextStep (succ (succ n)) (nextStep (succ n) {!deductionTheorem proof!} (axiom x)) (axiom (One , (Q ,, P)))) (modusPonens (record { element = implies Q (implies P Q) ; position = 0 ; pos<N = succIsPositive _ ; elementIsAt = refl }) (record { element = Q ; position = 1 ; pos<N = succPreservesInequality (succIsPositive _) ; elementIsAt = ofStatement }) (implies P Q) refl) ; ofStatement = {!!} }
deductionTheorem {P = P} {Q} record { n = n ; proof = (nextStep .n proof (given x)) ; ofStatement = ofStatement } = {!!}
deductionTheorem {P = P} {Q} record { n = n ; proof = (nextStep .n proof (modusPonens implication argument conclusion x)) ; ofStatement = ofStatement } = {!!}
{-
Proves.n (deductionTheorem {P = P} {Q} record { n = n ; proof = (nextStep .n proof (axiom x)) ; ofStatement = ofStatement }) = succ (succ (succ n))
Proves.proof (deductionTheorem {P = P} {Q} record { n = n ; proof = (nextStep .n proof (axiom x)) ; ofStatement = ofStatement }) = nextStep (succ (succ (succ n))) (nextStep (succ (succ n)) (nextStep (succ n) {!!} (axiom x)) (axiom (One , (Q ,, P)))) (modusPonens (record { element = implies Q (implies P Q) ; position = 0 ; pos<N = succIsPositive _ ; elementIsAt = refl }) (record { element = Q ; position = 1 ; pos<N = succPreservesInequality (succIsPositive _) ; elementIsAt = ofStatement }) (implies P Q) refl)
Proves.ofStatement (deductionTheorem {P = P} {Q} record { n = n ; proof = (nextStep .n proof (axiom x)) ; ofStatement = ofStatement }) = {!!}
deductionTheorem {P = P} {Q} record { n = n ; proof = (nextStep .n proof (given x)) ; ofStatement = ofStatement } = {!!}
deductionTheorem {P = P} {Q} record { n = n ; proof = (nextStep .n proof (modusPonens implication argument conclusion x)) ; ofStatement = ofStatement } = {!!}
-}
propositionalLogicSound : {a b c : _} {A : Set a} {givens : Set c} {givensSubset : IsSubset givens (Propositions A)} → {P : Propositions A} → Proves propositionalAxioms givensSubset P → Entails givensSubset P
Entails.entails (propositionalLogicSound {P = .(IsSubset.ofElt propositionalAxioms x)} record { n = .0 ; proof = (nextStep .0 empty (axiom x)) ; ofStatement = refl }) {v} values = propositionalAxiomsTautology x {v}
Entails.entails (propositionalLogicSound {P = P} record { n = .0 ; proof = (nextStep .0 empty (given x)) ; ofStatement = ofStatement }) {v} values rewrite equalityCommutative ofStatement = values {x}
Entails.entails (propositionalLogicSound {P = P} record { n = .0 ; proof = (nextStep .0 empty (modusPonens record { element = element ; position = zero ; pos<N = (le x₁ ()) ; elementIsAt = elementIsAt } argument conclusion x)) ; ofStatement = ofStatement }) {v} values
Entails.entails (propositionalLogicSound {P = P} record { n = .0 ; proof = (nextStep .0 empty (modusPonens record { element = element ; position = (succ position) ; pos<N = (le x₁ ()) ; elementIsAt = elementIsAt } argument conclusion x)) ; ofStatement = ofStatement }) {v} values
Entails.entails (propositionalLogicSound {P = P} record { n = .(succ n) ; proof = (nextStep .(succ n) (nextStep n proof y) x) ; ofStatement = ofStatement }) {v} values = {!!}
-}
| {
"alphanum_fraction": 0.6969463972,
"avg_line_length": 78.1459227468,
"ext": "agda",
"hexsha": "6c62c5c97c169a75da7bf737d2fb8da82772d1ce",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Logic/PropositionalLogic.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Logic/PropositionalLogic.agda",
"max_line_length": 574,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Logic/PropositionalLogic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 6148,
"size": 18208
} |
{-# OPTIONS --warning=error --safe #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
module Numbers.Naturals.WithK where
<NRefl : {a b : ℕ} → (p1 p2 : a <N b) → (p1 ≡ p2)
<NRefl {a} {.(succ (p1 +N a))} (le p1 refl) (le p2 proof2) = help p1=p2 proof2
where
p1=p2 : p1 ≡ p2
p1=p2 = equalityCommutative (canSubtractFromEqualityRight {p2} {a} {p1} (succInjective proof2))
help : (p1 ≡ p2) → (pr2 : succ (p2 +N a) ≡ succ (p1 +N a)) → le p1 refl ≡ le p2 pr2
help refl refl = refl
| {
"alphanum_fraction": 0.6635514019,
"avg_line_length": 35.6666666667,
"ext": "agda",
"hexsha": "6476fa9e3e144e28db166f1b95ef814e6f8dee7b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Naturals/WithK.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Naturals/WithK.agda",
"max_line_length": 99,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Naturals/WithK.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 244,
"size": 642
} |
module bool-to-string where
open import bool
open import string
𝔹-to-string : 𝔹 → string
𝔹-to-string tt = "tt"
𝔹-to-string ff = "ff" | {
"alphanum_fraction": 0.7089552239,
"avg_line_length": 16.75,
"ext": "agda",
"hexsha": "76644424fefa2b62490c13859ab6320f04bbedf6",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "bool-to-string.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "bool-to-string.agda",
"max_line_length": 27,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "bool-to-string.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 46,
"size": 134
} |
------------------------------------------------------------------------
-- The two semantical definitions of subtyping are equivalent
------------------------------------------------------------------------
module RecursiveTypes.Subtyping.Semantic.Equivalence where
open import Data.Nat
open import Codata.Musical.Notation
open import Function.Base
open import RecursiveTypes.Syntax
open import RecursiveTypes.Subtyping.Semantic.Inductive
open import RecursiveTypes.Subtyping.Semantic.Coinductive
mutual
≤∞⇒≤↓ : ∀ {n} {σ τ : Tree n} → σ ≤∞ τ → σ ≤↓ τ
≤∞⇒≤↓ le zero = ⊥
≤∞⇒≤↓ ⊥ (suc k) = ⊥
≤∞⇒≤↓ ⊤ (suc k) = ⊤
≤∞⇒≤↓ var (suc k) = refl
≤∞⇒≤↓ (τ₁≤σ₁ ⟶ σ₂≤τ₂) (suc k) = ≤∞⇒≤↑ (♭ τ₁≤σ₁) k ⟶ ≤∞⇒≤↓ (♭ σ₂≤τ₂) k
≤∞⇒≤↑ : ∀ {n} {σ τ : Tree n} → σ ≤∞ τ → σ ≤↑ τ
≤∞⇒≤↑ le zero = ⊤
≤∞⇒≤↑ ⊥ (suc k) = ⊥
≤∞⇒≤↑ ⊤ (suc k) = ⊤
≤∞⇒≤↑ var (suc k) = refl
≤∞⇒≤↑ (τ₁≤σ₁ ⟶ σ₂≤τ₂) (suc k) = ≤∞⇒≤↓ (♭ τ₁≤σ₁) k ⟶ ≤∞⇒≤↑ (♭ σ₂≤τ₂) k
domain : ∀ {n} {σ₁ σ₂ τ₁ τ₂ : FinTree n} →
σ₁ ⟶ σ₂ ≤Fin τ₁ ⟶ τ₂ → σ₂ ≤Fin τ₂
domain refl = refl
domain (τ₁≤σ₁ ⟶ σ₂≤τ₂) = σ₂≤τ₂
codomain : ∀ {n} {σ₁ σ₂ τ₁ τ₂ : FinTree n} →
σ₁ ⟶ σ₂ ≤Fin τ₁ ⟶ τ₂ → τ₁ ≤Fin σ₁
codomain refl = refl
codomain (τ₁≤σ₁ ⟶ σ₂≤τ₂) = τ₁≤σ₁
mutual
≤↑⇒≤∞ : ∀ {n} (σ τ : Tree n) → σ ≤↑ τ → σ ≤∞ τ
≤↑⇒≤∞ ⊥ _ le = ⊥
≤↑⇒≤∞ _ ⊤ le = ⊤
≤↑⇒≤∞ ⊤ ⊥ le with le 1
... | ()
≤↑⇒≤∞ ⊤ (var x) le with le 1
... | ()
≤↑⇒≤∞ ⊤ (σ ⟶ τ) le with le 1
... | ()
≤↑⇒≤∞ (var x) ⊥ le with le 1
... | ()
≤↑⇒≤∞ (var x) (var x′) le with le 1
≤↑⇒≤∞ (var x) (var .x) le | refl = var
≤↑⇒≤∞ (var x) (σ ⟶ τ) le with le 1
... | ()
≤↑⇒≤∞ (σ₁ ⟶ τ₁) ⊥ le with le 1
... | ()
≤↑⇒≤∞ (σ₁ ⟶ τ₁) (var x) le with le 1
... | ()
≤↑⇒≤∞ (σ₁ ⟶ τ₁) (σ₂ ⟶ τ₂) le =
♯ ≤↓⇒≤∞ (♭ σ₂) (♭ σ₁) (codomain ∘ le ∘ suc) ⟶
♯ ≤↑⇒≤∞ (♭ τ₁) (♭ τ₂) (domain ∘ le ∘ suc)
≤↓⇒≤∞ : ∀ {n} (σ τ : Tree n) → σ ≤↓ τ → σ ≤∞ τ
≤↓⇒≤∞ ⊥ _ le = ⊥
≤↓⇒≤∞ _ ⊤ le = ⊤
≤↓⇒≤∞ ⊤ ⊥ le with le 1
... | ()
≤↓⇒≤∞ ⊤ (var x) le with le 1
... | ()
≤↓⇒≤∞ ⊤ (σ ⟶ τ) le with le 1
... | ()
≤↓⇒≤∞ (var x) ⊥ le with le 1
... | ()
≤↓⇒≤∞ (var x) (var x′) le with le 1
≤↓⇒≤∞ (var x) (var .x) le | refl = var
≤↓⇒≤∞ (var x) (σ ⟶ τ) le with le 1
... | ()
≤↓⇒≤∞ (σ₁ ⟶ τ₁) ⊥ le with le 1
... | ()
≤↓⇒≤∞ (σ₁ ⟶ τ₁) (var x) le with le 1
... | ()
≤↓⇒≤∞ (σ₁ ⟶ τ₁) (σ₂ ⟶ τ₂) le =
♯ ≤↑⇒≤∞ (♭ σ₂) (♭ σ₁) (codomain ∘ le ∘ suc) ⟶
♯ ≤↓⇒≤∞ (♭ τ₁) (♭ τ₂) (domain ∘ le ∘ suc)
Ind⇒Coind : ∀ {n} {σ τ : Ty n} → σ ≤Ind τ → σ ≤Coind τ
Ind⇒Coind = ≤↓⇒≤∞ _ _
Coind⇒Ind : ∀ {n} {σ τ : Ty n} → σ ≤Coind τ → σ ≤Ind τ
Coind⇒Ind = ≤∞⇒≤↓
| {
"alphanum_fraction": 0.3786372007,
"avg_line_length": 28.8829787234,
"ext": "agda",
"hexsha": "a13e0384d1bdb73931e1214f63f79f45adb1d24f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "RecursiveTypes/Subtyping/Semantic/Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "RecursiveTypes/Subtyping/Semantic/Equivalence.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "RecursiveTypes/Subtyping/Semantic/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 1551,
"size": 2715
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Based on (Vene, 2000).
module Functors where
infixr 1 _+_
infixr 2 _×_
data Bool : Set where
false true : Bool
data _+_ (A B : Set) : Set where
inl : A → A + B
inr : B → A + B
data _×_ (A B : Set) : Set where
_,_ : A → B → A × B
-- The terminal object.
data ⊤ : Set where
<> : ⊤
postulate
-- The least fixed-point.
-- Haskell definitions:
-- data Mu f = In (f (Mu f))
-- unIn :: Mu f → f (Mu f)
-- unIn (In x) = x
μ : (Set → Set) → Set
In : {F : Set → Set} → F (μ F) → μ F
unIn : {F : Set → Set} → μ F → F (μ F)
postulate
-- The greatest fixed-point.
-- Haskell definitions:
-- data Nu f = Wrap (f (Nu f))
-- out :: Nu f → (f (Nu f))
-- out (Wrap x) = x
ν : (Set → Set) → Set
Wrap : {F : Set → Set} → F (ν F) → ν F
out : {F : Set → Set} → ν F → F (ν F)
------------------------------------------------------------------------------
-- Functors
-- The identity functor (the functor for the empty and unit types).
IdF : Set → Set
IdF X = X
-- The (co)natural numbers functor.
NatF : Set → Set
NatF X = ⊤ + X
-- The (co)list functor.
ListF : Set → Set → Set
ListF A X = ⊤ + A × X
-- The stream functor.
StreamF : Set → Set → Set
StreamF A X = A × X
------------------------------------------------------------------------------
-- Types as least fixed-points
-- The empty type is a least fixed-point.
⊥ : Set
⊥ = μ IdF
-- The natural numbers type is a least fixed-point.
N : Set
N = μ NatF
-- The data constructors for the natural numbers.
zero : N
zero = In (inl <>)
succ : N → N
succ n = In (inr n)
-- The list type is a least fixed-point.
List : Set → Set
List A = μ (ListF A)
-- The data constructors for List.
nil : {A : Set} → List A
nil = In (inl <>)
cons : {A : Set} → A → List A → List A
cons x xs = In (inr (x , xs))
------------------------------------------------------------------------------
-- Types as greatest fixed-points
-- The unit type is a greatest fixed-point.
Unit : Set
Unit = ν IdF
-- Non-structural recursion
-- unit : Nu IdF
-- unit = Wrap IdF {!unit!}
-- The conat type is a greatest fixed-point.
Conat : Set
Conat = ν NatF
zeroC : Conat
zeroC = Wrap (inl <>)
succC : Conat → Conat
succC cn = Wrap (inr cn)
-- Non-structural recursion for the definition of ∞C.
-- ∞C : Conat
-- ∞C = succC {!∞C!}
-- The pred function is the conat destructor.
pred : Conat → ⊤ + Conat
pred cn with out cn
... | inl _ = inl <>
... | inr x = inr x
-- The colist type is a greatest fixed-point.
Colist : Set → Set
Colist A = ν (ListF A)
-- The colist data constructors.
nilCL : {A : Set} → Colist A
nilCL = Wrap (inl <>)
consCL : {A : Set} → A → Colist A → Colist A
consCL x xs = Wrap (inr (x , xs))
-- The colist destructors.
nullCL : {A : Set} → Colist A → Bool
nullCL xs with out xs
... | inl _ = true
... | inr _ = false
-- headCL : {A : Set} → Colist A → A
-- headCL {A} xs with out (ListF A) xs
-- ... | inl t = -- Impossible
-- ... | inr (x , _) = x
-- tailCL : {A : Set} → Colist A → Colist A
-- tailCL {A} xs with out (ListF A) xs
-- ... | inl t = -- Impossible
-- ... | inr (_ , xs') = xs'
-- The stream type is a greatest fixed-point.
Stream : Set → Set
Stream A = ν (StreamF A)
-- The stream data constructor.
consS : {A : Set} → A → Stream A → Stream A
consS x xs = Wrap (x , xs)
-- The stream destructors.
headS : {A : Set} → Stream A → A
headS xs with out xs
... | x , _ = x
tailS : {A : Set} → Stream A → Stream A
tailS xs with out xs
... | _ , xs' = xs'
-- From (Leclerc and Paulin-Mohring 1994, p. 195).
--
-- TODO (07 January 2014): Agda doesn't accept the definition of
-- Stream-build.
{-# TERMINATING #-}
Stream-build :
{A X : Set} →
(X → StreamF A X) →
X → Stream A
Stream-build h x with h x
... | a , x' = Wrap (a , Stream-build h x')
-- From (Giménez, 1995, p. 40).
--
-- TODO (07 January 2014): Agda doesn't accept the definition of
-- Stream-corec.
{-# TERMINATING #-}
Stream-corec :
{A X : Set} →
(X → (A × (Stream A + X))) →
X → Stream A
Stream-corec h x with h x
... | a , inl xs = Wrap (a , xs)
... | a , inr x' = Wrap (a , (Stream-corec h x'))
------------------------------------------------------------------------------
-- References
--
-- Giménez, E. (1995). Codifying guarded definitions with recursive
-- schemes. In: Types for Proofs and Programs (TYPES ’94). Ed. by
-- Dybjer, P., Nordström, B. and Smith, J. Vol. 996. LNCS. Springer,
-- pp. 39–59.
--
-- Leclerc, F. and Paulin-Mohring, C. (1994). Programming with Streams
-- in Coq. A case study : the Sieve of Eratosthenes. In: Types for
-- Proofs and Programs (TYPES ’93). Ed. by Barendregt, H. and Nipkow,
-- T. Vol. 806. LNCS. Springer, pp. 191–212.
--
-- Vene, Varmo (2000). Categorical programming with inductive and
-- coinductive types. PhD thesis. Faculty of Mathematics: University
-- of Tartu.
| {
"alphanum_fraction": 0.5462168097,
"avg_line_length": 22.8721461187,
"ext": "agda",
"hexsha": "bec56ddb0627c619e9dbdb87eed27f4401aefc55",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/fixed-points/Functors.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/fixed-points/Functors.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/fixed-points/Functors.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1644,
"size": 5009
} |
-- {-# OPTIONS -v interaction:100 #-}
module Issue810 where
postulate
T : Set → Set
introHid : {A : Set} → T A
introHid = {!!}
data Sg {A : Set} : A → Set where
sg : (a : A) → Sg a
intro : ∀ {A}{a : A} → Sg a
intro = {!!}
intro′ : ∀ {A}(a : A) → Sg a
intro′ = {!!}
| {
"alphanum_fraction": 0.5,
"avg_line_length": 15.2222222222,
"ext": "agda",
"hexsha": "a9255d814164810dac31b90ca1ab5b695621263d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/interaction/Issue810.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/interaction/Issue810.agda",
"max_line_length": 37,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/interaction/Issue810.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 111,
"size": 274
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.PathGroupoid
open import lib.path-seq.Concat
open import lib.path-seq.Inversion
open import lib.path-seq.Reasoning
module lib.path-seq.Rotations {i} {A : Type i} where
{-
The order of the arguments p, q, r follows the occurrences
of these variables in the output type
-}
pre-rotate-in : {a a' a'' : A} {q : a' =-= a''} {p : a == a'} {r : a =-= a''}
→ p ◃∙ q =ₛ r
→ q =ₛ ! p ◃∙ r
pre-rotate-in {q = q} {p = idp} {r = r} e =
q
=ₛ⟨ =ₛ-in (! (↯-∙∙ (idp ◃∎) q)) ⟩
idp ◃∙ q
=ₛ⟨ e ⟩
r
=ₛ⟨ =ₛ-in (! (↯-∙∙ (idp ◃∎) r)) ⟩
idp ◃∙ r ∎ₛ
pre-rotate-out : {a a' a'' : A} {p : a == a'} {q : a' =-= a''} {r : a =-= a''}
→ q =ₛ ! p ◃∙ r
→ p ◃∙ q =ₛ r
pre-rotate-out {p = idp} {q = q} {r = r} e =
idp ◃∙ q
=ₛ⟨ =ₛ-in (↯-∙∙ (idp ◃∎) q) ⟩
q
=ₛ⟨ e ⟩
idp ◃∙ r
=ₛ⟨ =ₛ-in (↯-∙∙ (idp ◃∎) r) ⟩
r ∎ₛ
pre-rotate'-in : {a a' a'' : A} {p : a == a'} {r : a =-= a''} {q : a' =-= a''}
→ r =ₛ p ◃∙ q
→ ! p ◃∙ r =ₛ q
pre-rotate'-in e =
!ₛ (pre-rotate-in (!ₛ e))
pre-rotate'-out : {a a' a'' : A} {r : a =-= a''} {p : a == a'} {q : a' =-= a''}
→ ! p ◃∙ r =ₛ q
→ r =ₛ p ◃∙ q
pre-rotate'-out e =
!ₛ (pre-rotate-out (!ₛ e))
pre-rotate-seq-in : {a a' a'' : A} {q : a' =-= a''} {p : a =-= a'} {r : a =-= a''}
→ p ∙∙ q =ₛ r
→ q =ₛ seq-! p ∙∙ r
pre-rotate-seq-in {q = q} {p = []} {r = r} e = e
pre-rotate-seq-in {q = q} {p = p ◃∙ s} {r = r} e =
q
=ₛ⟨ pre-rotate-seq-in {q = q} {p = s} {r = ! p ◃∙ r} (pre-rotate-in e) ⟩
seq-! s ∙∙ ! p ◃∙ r
=ₛ⟨ =ₛ-in (ap ↯ (! (∙∙-assoc (seq-! s) (! p ◃∎) r))) ⟩
seq-! (p ◃∙ s) ∙∙ r ∎ₛ
pre-rotate'-seq-in : {a a' a'' : A} {p : a =-= a'} {r : a =-= a''} {q : a' =-= a''}
→ r =ₛ p ∙∙ q
→ seq-! p ∙∙ r =ₛ q
pre-rotate'-seq-in {p = p} {r = r} {q = q} e =
!ₛ (pre-rotate-seq-in {q = q} {p} {r} (!ₛ e))
post-rotate'-in : {a a' a'' : A}
→ {r : a =-= a''} {q : a' == a''} {p : a =-= a'}
→ r =ₛ p ∙▹ q
→ r ∙▹ ! q =ₛ p
post-rotate'-in {r = r} {q = idp} {p = p} e =
r ∙▹ idp
=ₛ⟨ =ₛ-in (↯-∙∙ r (idp ◃∎) ∙ ∙-unit-r (↯ r)) ⟩
r
=ₛ⟨ e ⟩
p ∙▹ idp
=ₛ⟨ =ₛ-in (↯-∙∙ p (idp ◃∎) ∙ ∙-unit-r (↯ p)) ⟩
p ∎ₛ
post-rotate-in : {a a' a'' : A}
→ {p : a =-= a'} {r : a =-= a''} {q : a' == a''}
→ p ∙▹ q =ₛ r
→ p =ₛ r ∙▹ ! q
post-rotate-in {p = p} {r = r} {q = q} e =
!ₛ (post-rotate'-in (!ₛ e))
post-rotate-out : {a a' a'' : A}
→ {p : a =-= a'} {q : a' == a''} {r : a =-= a''}
→ p =ₛ r ∙▹ ! q
→ p ∙▹ q =ₛ r
post-rotate-out {p = p} {q = q} {r = r} e = =ₛ-in $
↯ (p ∙▹ q)
=⟨ ap (λ v → ↯ (p ∙▹ v)) (! (!-! q)) ⟩
↯ (p ∙▹ ! (! q))
=⟨ =ₛ-out (post-rotate'-in {r = p} {q = ! q} {p = r} e) ⟩
↯ r =∎
post-rotate'-seq-in : {a a' a'' : A}
→ {r : a =-= a''} {q : a' =-= a''} {p : a =-= a'}
→ r =ₛ p ∙∙ q
→ r ∙∙ seq-! q =ₛ p
post-rotate'-seq-in {r = r} {q = []} {p = p} e =
r ∙∙ []
=ₛ⟨ =ₛ-in (ap ↯ (∙∙-unit-r r)) ⟩
r
=ₛ⟨ e ⟩
p ∙∙ []
=ₛ⟨ =ₛ-in (ap ↯ (∙∙-unit-r p)) ⟩
p ∎ₛ
post-rotate'-seq-in {r = r} {q = q ◃∙ s} {p = p} e =
r ∙∙ (seq-! s ∙▹ ! q)
=ₛ⟨ =ₛ-in (ap ↯ (! (∙∙-assoc r (seq-! s) (! q ◃∎)))) ⟩
(r ∙∙ seq-! s) ∙▹ ! q
=ₛ⟨ post-rotate'-in {r = r ∙∙ seq-! s} {q = q} {p = p} $
post-rotate'-seq-in {r = r} {s} {p ∙▹ q} $
r
=ₛ⟨ e ⟩
p ∙∙ (q ◃∙ s)
=ₛ⟨ =ₛ-in (ap ↯ (! (∙∙-assoc p (q ◃∎) s))) ⟩
(p ∙▹ q) ∙∙ s ∎ₛ
⟩
p ∎ₛ
post-rotate-seq-in : {a a' a'' : A}
→ {p : a =-= a'} {r : a =-= a''} {q : a' =-= a''}
→ p ∙∙ q =ₛ r
→ p =ₛ r ∙∙ (seq-! q)
post-rotate-seq-in {p = p} {r = r} {q = q} e =
!ₛ (post-rotate'-seq-in {r = r} {q = q} {p = p} (!ₛ e))
post-rotate'-seq-out : {a a' a'' : A}
→ {r : a =-= a''} {p : a =-= a'} {q : a' =-= a''}
→ r ∙∙ seq-! q =ₛ p
→ r =ₛ p ∙∙ q
post-rotate'-seq-out {r = r} {p = p} {q = q} e =
r
=ₛ⟨ post-rotate-seq-in {p = r} {r = p} {q = seq-! q} e ⟩
p ∙∙ seq-! (seq-! q)
=ₛ⟨ =ₛ-in (ap (λ v → ↯ (p ∙∙ v)) (seq-!-seq-! q)) ⟩
p ∙∙ q ∎ₛ
post-rotate-seq-out : {a a' a'' : A}
→ {p : a =-= a'} {q : a' =-= a''} {r : a =-= a''}
→ p =ₛ r ∙∙ seq-! q
→ p ∙∙ q =ₛ r
post-rotate-seq-out e =
!ₛ (post-rotate'-seq-out (!ₛ e))
| {
"alphanum_fraction": 0.3666666667,
"avg_line_length": 27.417218543,
"ext": "agda",
"hexsha": "9a380ca6520505867f4712e0eefd0a3f76402512",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/path-seq/Rotations.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/path-seq/Rotations.agda",
"max_line_length": 83,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/path-seq/Rotations.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2395,
"size": 4140
} |
------------------------------------------------------------------------
-- Is-equivalence, defined in terms of contractible fibres
------------------------------------------------------------------------
-- Partly based on Voevodsky's work on univalent foundations.
{-# OPTIONS --without-K --safe #-}
open import Equality
module Equivalence.Contractible-preimages
{e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq
open import Prelude as P hiding (id)
open import Bijection eq using (_↔_)
open import Equality.Decision-procedures eq
open import H-level eq as H-level
open import H-level.Closure eq
open import Preimage eq as Preimage using (_⁻¹_)
open import Surjection eq using (_↠_)
private
variable
a b ℓ p q : Level
A B : Type a
f g : A → B
------------------------------------------------------------------------
-- Is-equivalence
-- A function f is an equivalence if all preimages under f are
-- contractible.
Is-equivalence :
{A : Type a} {B : Type b} →
(A → B) → Type (a ⊔ b)
Is-equivalence f = ∀ y → Contractible (f ⁻¹ y)
abstract
-- Is-equivalence f is a proposition, assuming extensional equality.
propositional :
Extensionality (a ⊔ b) (a ⊔ b) →
{A : Type a} {B : Type b} (f : A → B) →
Is-proposition (Is-equivalence f)
propositional {a = a} ext f =
Π-closure (lower-extensionality a lzero ext) 1 λ _ →
Contractible-propositional ext
-- If the domain is contractible and the codomain is propositional,
-- then Is-equivalence f is contractible.
sometimes-contractible :
Extensionality (a ⊔ b) (a ⊔ b) →
{A : Type a} {B : Type b} {f : A → B} →
Contractible A → Is-proposition B →
Contractible (Is-equivalence f)
sometimes-contractible {a = a} ext A-contr B-prop =
Π-closure (lower-extensionality a lzero ext) 0 λ _ →
cojoin ext (Σ-closure 0 A-contr (λ _ → +⇒≡ B-prop))
-- Is-equivalence f is not always contractible.
not-always-contractible₁ :
∃ λ (A : Type a) → ∃ λ (B : Type b) → ∃ λ (f : A → B) →
Is-proposition A × Contractible B ×
¬ Contractible (Is-equivalence f)
not-always-contractible₁ =
⊥ ,
↑ _ ⊤ ,
const (lift tt) ,
⊥-propositional ,
↑-closure 0 ⊤-contractible ,
λ c → ⊥-elim (proj₁ (proj₁ (proj₁ c (lift tt))))
not-always-contractible₂ :
∃ λ (A : Type a) → ∃ λ (B : Type b) → ∃ λ (f : A → B) →
Contractible A × Is-set B ×
¬ Contractible (Is-equivalence f)
not-always-contractible₂ =
↑ _ ⊤ ,
↑ _ Bool ,
const (lift true) ,
↑-closure 0 ⊤-contractible ,
↑-closure 2 Bool-set ,
λ c → Bool.true≢false (cong lower
(proj₂ (proj₁ (proj₁ c (lift false)))))
-- Is-equivalence respects extensional equality.
respects-extensional-equality :
(∀ x → f x ≡ g x) →
Is-equivalence f → Is-equivalence g
respects-extensional-equality f≡g f-eq = λ b →
H-level.respects-surjection
(_↔_.surjection (Preimage.respects-extensional-equality f≡g))
0
(f-eq b)
-- If f is an equivalence, then it has an inverse.
inverse :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
Is-equivalence f → B → A
inverse eq y = proj₁ (proj₁ (eq y))
right-inverse-of :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
(eq : Is-equivalence f) → ∀ x → f (inverse eq x) ≡ x
right-inverse-of eq x = proj₂ (proj₁ (eq x))
abstract
left-inverse-of :
(eq : Is-equivalence f) → ∀ x → inverse eq (f x) ≡ x
left-inverse-of {f = f} eq x =
cong (proj₁ {B = λ x′ → f x′ ≡ f x}) (
proj₁ (eq (f x)) ≡⟨ proj₂ (eq (f x)) (x , refl (f x)) ⟩∎
(x , refl (f x)) ∎)
-- All fibres of an equivalence over a given point are equal to a
-- given fibre.
irrelevance :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
(eq : Is-equivalence f) →
∀ y (p : f ⁻¹ y) → (inverse eq y , right-inverse-of eq y) ≡ p
irrelevance eq y = proj₂ (eq y)
abstract
-- The two proofs left-inverse-of and right-inverse-of are
-- related.
left-right-lemma :
(eq : Is-equivalence f) →
∀ x → cong f (left-inverse-of eq x) ≡ right-inverse-of eq (f x)
left-right-lemma {f = f} eq x =
lemma₁ f _ _ (lemma₂ (irrelevance eq (f x) (x , refl (f x))))
where
lemma₁ : {x y : A} (f : A → B) (p : x ≡ y) (q : f x ≡ f y) →
refl (f y) ≡ trans (cong f (sym p)) q →
cong f p ≡ q
lemma₁ f = elim
(λ {x y} p → ∀ q → refl (f y) ≡ trans (cong f (sym p)) q →
cong f p ≡ q)
(λ x q hyp →
cong f (refl x) ≡⟨ cong-refl f ⟩
refl (f x) ≡⟨ hyp ⟩
trans (cong f (sym (refl x))) q ≡⟨ cong (λ p → trans (cong f p) q) sym-refl ⟩
trans (cong f (refl x)) q ≡⟨ cong (λ p → trans p q) (cong-refl f) ⟩
trans (refl (f x)) q ≡⟨ trans-reflˡ _ ⟩∎
q ∎)
lemma₂ : ∀ {f : A → B} {y} {f⁻¹y₁ f⁻¹y₂ : f ⁻¹ y}
(p : f⁻¹y₁ ≡ f⁻¹y₂) →
proj₂ f⁻¹y₂ ≡
trans (cong f (sym (cong (proj₁ {B = λ x → f x ≡ y}) p)))
(proj₂ f⁻¹y₁)
lemma₂ {f = f} {y = y} =
let pr = proj₁ {B = λ x → f x ≡ y} in
elim {A = f ⁻¹ y}
(λ {f⁻¹y₁ f⁻¹y₂} p →
proj₂ f⁻¹y₂ ≡
trans (cong f (sym (cong pr p))) (proj₂ f⁻¹y₁))
(λ f⁻¹y →
proj₂ f⁻¹y ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl (f (proj₁ f⁻¹y))) (proj₂ f⁻¹y) ≡⟨ cong (λ p → trans p (proj₂ f⁻¹y)) (sym (cong-refl f)) ⟩
trans (cong f (refl (proj₁ f⁻¹y))) (proj₂ f⁻¹y) ≡⟨ cong (λ p → trans (cong f p) (proj₂ f⁻¹y)) (sym sym-refl) ⟩
trans (cong f (sym (refl (proj₁ f⁻¹y)))) (proj₂ f⁻¹y) ≡⟨ cong (λ p → trans (cong f (sym p)) (proj₂ f⁻¹y))
(sym (cong-refl pr)) ⟩∎
trans (cong f (sym (cong pr (refl f⁻¹y)))) (proj₂ f⁻¹y) ∎)
right-left-lemma :
(eq : Is-equivalence f) →
∀ x →
cong (inverse eq) (right-inverse-of eq x) ≡
left-inverse-of eq (inverse eq x)
right-left-lemma {f = f} eq x =
let f⁻¹ = inverse eq in
subst
(λ x → cong f⁻¹ (right-inverse-of eq x) ≡
left-inverse-of eq (f⁻¹ x))
(right-inverse-of eq x)
(cong f⁻¹ (right-inverse-of eq (f (f⁻¹ x))) ≡⟨ cong (cong f⁻¹) $ sym $ left-right-lemma eq _ ⟩
cong f⁻¹ (cong f (left-inverse-of eq (f⁻¹ x))) ≡⟨ cong-∘ f⁻¹ f _ ⟩
cong (f⁻¹ ∘ f) (left-inverse-of eq (f⁻¹ x)) ≡⟨ cong-roughly-id (f⁻¹ ∘ f) (λ _ → true) (left-inverse-of eq _) _ _
(λ z _ → left-inverse-of eq z) ⟩
trans (left-inverse-of eq (f⁻¹ (f (f⁻¹ x))))
(trans (left-inverse-of eq (f⁻¹ x))
(sym (left-inverse-of eq (f⁻¹ x)))) ≡⟨ cong (trans _) $ trans-symʳ _ ⟩
trans (left-inverse-of eq (f⁻¹ (f (f⁻¹ x)))) (refl _) ≡⟨ trans-reflʳ _ ⟩∎
left-inverse-of eq (f⁻¹ (f (f⁻¹ x))) ∎)
abstract
-- If Σ-map P.id f is an equivalence, then f is also an equivalence.
drop-Σ-map-id :
{A : Type a} {P : A → Type p} {Q : A → Type q}
(f : ∀ {x} → P x → Q x) →
Is-equivalence {A = Σ A P} {B = Σ A Q} (Σ-map P.id f) →
∀ x → Is-equivalence (f {x = x})
drop-Σ-map-id {p = ℓp} {q = ℓq} {A = A} {P = P} {Q = Q} f eq x z =
H-level.respects-surjection surj 0 (eq (x , z))
where
map-f : Σ A P → Σ A Q
map-f = Σ-map P.id f
to-P : ∀ {x y} {p : ∃ Q} → (x , f y) ≡ p → Type (ℓp ⊔ ℓq)
to-P {y = y} {p} _ = ∃ λ y′ → f y′ ≡ proj₂ p
to : map-f ⁻¹ (x , z) → f ⁻¹ z
to ((x′ , y) , eq) = elim¹ to-P (y , refl (f y)) eq
from : f ⁻¹ z → map-f ⁻¹ (x , z)
from (y , eq) = (x , y) , cong (_,_ x) eq
to∘from : ∀ p → to (from p) ≡ p
to∘from (y , eq) = elim¹
(λ {z′} (eq : f y ≡ z′) →
_≡_ {A = ∃ λ (y : P x) → f y ≡ z′}
(elim¹ to-P (y , refl (f y)) (cong (_,_ x) eq))
(y , eq))
(elim¹ to-P (y , refl (f y)) (cong (_,_ x) (refl (f y))) ≡⟨ cong (elim¹ to-P (y , refl (f y))) $
cong-refl (_,_ x) ⟩
elim¹ to-P (y , refl (f y)) (refl (x , f y)) ≡⟨ elim¹-refl to-P _ ⟩∎
(y , refl (f y)) ∎)
eq
surj : map-f ⁻¹ (x , z) ↠ f ⁻¹ z
surj = record
{ logical-equivalence = record { to = to; from = from }
; right-inverse-of = to∘from
}
-- A "computation" rule for drop-Σ-map-id.
inverse-drop-Σ-map-id :
{A : Type a} {P : A → Type p} {Q : A → Type q}
{f : ∀ {x} → P x → Q x} {x : A} {y : Q x}
{eq : Is-equivalence {A = Σ A P} {B = Σ A Q} (Σ-map P.id f)} →
inverse (drop-Σ-map-id f eq x) y ≡
subst P (cong proj₁ (right-inverse-of eq (x , y)))
(proj₂ (inverse eq (x , y)))
inverse-drop-Σ-map-id
{P = P} {Q = Q} {f = f} {x = x} {y = y} {eq = eq} =
let lemma = elim¹
(λ {q′} eq →
cong proj₁
(proj₂ (other-singleton-contractible (Σ-map P.id f p′))
(q′ , eq)) ≡
eq)
(cong proj₁
(proj₂ (other-singleton-contractible (Σ-map P.id f p′))
(Σ-map P.id f p′ , refl _)) ≡⟨ cong (cong proj₁) $
other-singleton-contractible-refl _ ⟩
cong proj₁ (refl _) ≡⟨ cong-refl _ ⟩∎
refl _ ∎)
_
in
proj₁
(subst
(λ ((_ , y) , _) → f ⁻¹ y)
(proj₂
(other-singleton-contractible (Σ-map P.id f p′))
(q′ , right-inverse-of eq q′))
(proj₂ p′ , refl _)) ≡⟨ cong proj₁ $ push-subst-pair _ _ ⟩
subst
(λ ((x , _) , _) → P x)
(proj₂
(other-singleton-contractible (Σ-map P.id f p′))
(q′ , right-inverse-of eq q′))
(proj₂ p′) ≡⟨ trans (subst-∘ _ _ _) (subst-∘ _ _ _) ⟩
subst P
(cong proj₁ $ cong proj₁ $
proj₂
(other-singleton-contractible (Σ-map P.id f p′))
(q′ , right-inverse-of eq q′))
(proj₂ p′) ≡⟨ cong (λ eq → subst P (cong proj₁ eq) (proj₂ p′))
lemma ⟩∎
subst P
(cong proj₁ (right-inverse-of eq q′))
(proj₂ p′) ∎
where
q′ : ∃ Q
q′ = x , y
p′ : ∃ P
p′ = inverse eq q′
------------------------------------------------------------------------
-- _≃_
-- A notion of equivalence.
infix 4 _≃_
_≃_ : Type a → Type b → Type (a ⊔ b)
A ≃ B = ∃ λ (f : A → B) → Is-equivalence f
-- An identity equivalence.
id : A ≃ A
id = P.id , singleton-contractible
-- Equalities can be converted to equivalences.
≡⇒≃ : A ≡ B → A ≃ B
≡⇒≃ = elim (λ {A B} _ → A ≃ B) (λ _ → id)
-- If ≡⇒≃ is applied to reflexivity, then the result is equal to id.
≡⇒≃-refl : ≡⇒≃ (refl A) ≡ id
≡⇒≃-refl = elim-refl (λ {A B} _ → A ≃ B) (λ _ → id)
-- Univalence for fixed types.
Univalence′ : (A B : Type ℓ) → Type (lsuc ℓ)
Univalence′ A B = Is-equivalence (≡⇒≃ {A = A} {B = B})
-- Univalence.
Univalence : ∀ ℓ → Type (lsuc ℓ)
Univalence ℓ = {A B : Type ℓ} → Univalence′ A B
| {
"alphanum_fraction": 0.4666724302,
"avg_line_length": 34.1209439528,
"ext": "agda",
"hexsha": "9c5b9bd23709eb8706683ad4fa20972b1f13b004",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equivalence/Contractible-preimages.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equivalence/Contractible-preimages.agda",
"max_line_length": 130,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equivalence/Contractible-preimages.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 4117,
"size": 11567
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Decidable setoid membership over lists
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Decidable; DecSetoid)
module Data.List.Membership.DecSetoid {a ℓ} (DS : DecSetoid a ℓ) where
open import Data.List.Relation.Unary.Any using (any)
open DecSetoid DS
------------------------------------------------------------------------
-- Re-export contents of propositional membership
open import Data.List.Membership.Setoid (DecSetoid.setoid DS) public
------------------------------------------------------------------------
-- Other operations
infix 4 _∈?_
_∈?_ : Decidable _∈_
x ∈? xs = any (x ≟_) xs
| {
"alphanum_fraction": 0.4665012407,
"avg_line_length": 28.7857142857,
"ext": "agda",
"hexsha": "9aedee23edd5540a0642bdbaed10f82056d797d8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/DecSetoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/DecSetoid.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/DecSetoid.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 155,
"size": 806
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- If we could prove ifInjective then we could true ≡ false (see Dan
-- Licata example in
-- http://thread.gmane.org/gmane.comp.lang.agda/4511).
module FOTC.Base.Consistency.IfInjective where
open import FOTC.Base
------------------------------------------------------------------------------
postulate ifInjective : ∀ {b b' t t'} →
(if b then t else t') ≡ (if b' then t else t') → b ≡ b'
{-# ATP prove ifInjective #-}
true≡false : true ≡ false
true≡false = ifInjective {true} {false} {true} {true}
(trans (if-true true) (sym (if-false true)))
| {
"alphanum_fraction": 0.5175097276,
"avg_line_length": 33.5217391304,
"ext": "agda",
"hexsha": "46f2ec4e496fadc59ea0a83e6cfebdc982279457",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Base/Consistency/IfInjective.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Base/Consistency/IfInjective.agda",
"max_line_length": 79,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Base/Consistency/IfInjective.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 193,
"size": 771
} |
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Logic.Classical
open import Logic
import Lvl
open import Type
open import Structure.Setoid
-- Elementary Plane Geometry.
-- An axiomatic approach to plane geometry in first order logic.
-- The axiomatic system used here is usually called "Tarski's axioms", and plane geometry is also known as two-dimensional Euclidean geometry.
module Geometry.Axioms
{ℓₚ ℓₚₑ ℓₗₗₑ ℓₗᵢₗ}
(Point : Type{ℓₚ}) ⦃ Point-equiv : Equiv{ℓₚₑ}(Point) ⦄
(Equidistanced : (Point ⨯ Point) → (Point ⨯ Point) → Stmt{ℓₗₗₑ}) -- Two pairs of points have the same distance between each other.
(Aligned : Point → Point → Point → Stmt{ℓₗᵢₗ}) -- Three points are aligned in a weak order. The second point is between the first and the third in a line.
⦃ classical : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄
where
open import Data.Tuple.Equivalence
open import Functional
open import Functional.Combinations
open import Logic.Predicate
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Sets.ExtensionalPredicateSet renaming (_≡_ to _≡ₛ_)
open import Structure.Relator.Equivalence
open import Structure.Relator.Ordering
open import Structure.Relator.Properties
open import Structure.Relator
open import Structure.Setoid.Uniqueness
open import Syntax.Function
open import Syntax.Implication
open import Syntax.Transitivity
open import Syntax.Type
private variable ℓ ℓ₁ ℓ₂ ℓₗ ℓₗ₁ ℓₗ₂ : Lvl.Level
private variable p a b c d e p₁ p₂ pᵢ pₒ pᵣ a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂ e₁ e₂ i m₁ m₂ : Point
private variable P Q : Point → Stmt{ℓ}
-- Three points are aligned in a strict order. The second point is between the first and the third in a line without being the first or the second.
Between : Point → Point → Point → Stmt
Between a b c = (Aligned a b c) ∧ ((a ≢ b) ∧ (b ≢ c))
-- Three points are collinear when they all are points of a single line.
Collinear : Point → Point → Point → Stmt
Collinear a b c = (Aligned a b c) ∨ (Aligned b c a) ∨ (Aligned c a b)
Aligned₄ : Point → Point → Point → Point → Stmt
Aligned₄ = combine₄Fn₃Op₂ Aligned (_∧_)
-- The equivalence on points.
_≡ₚ_ = Equiv._≡_ Point-equiv
-- Source: Tarski's axioms of geometry (https://en.wikipedia.org/wiki/Tarski%27s_axioms @ 2020-06-14).
-- TODO: Are there any modifications of the axioms when working in constructive logic?
record Axioms : Typeω where
field
⦃ Equidistanced-relator ⦄ : BinaryRelator(Equidistanced)
⦃ Aligned-relator ⦄ : TrinaryRelator(Aligned)
-- ⦃ Point-equivalence-classical ⦄ : Classical₂(_≡ₚ_)
-- ⦃ Equidistanced-classical ⦄ : Classical₂(Equidistanced)
-- ⦃ Aligned-classical ⦄ : Classical₃(Aligned)
-- The distance between p₁ and p₂ is the same as the distance between p₂ and p₁.
-- The order of the points in the equidistance relation does not matter.
-- Example:
-- • (p₁) <--- (p₂)
-- • (p₁) ---> (p₂)
-- These two drawings depict lines between points p₁ and p₂. They have the same length.
-- So there is no need to draw an arrow head on the lines when referring to the length of a line.
-- Also called: A1 in Metamathematische Methoden in der Geometrie.
Equidistanced-flipped : Equidistanced(p₁ , p₂)(p₂ , p₁)
-- Equidistance is a transitive relation.
-- Example:
-- la: (a₁) ---- (a₂)
-- lb: (b₁) ---- (b₂)
-- lc: (c₁) ---- (c₂)
-- Here is a drawing of three lines.
-- The line la have the same length as lb, and the line la have the same length as lc. Then lb have the same length as lc.
-- Also called: A2 in Metamathematische Methoden in der Geometrie.
Equidistanced-symmetric-transitivity : Equidistanced(a₁ , a₂)(b₁ , b₂) → Equidistanced(a₁ , a₂)(c₁ , c₂) → Equidistanced(b₁ , b₂)(c₁ , c₂)
-- If two points have the same distance as the distance between a single point with itself, then they are the same point.
-- Essentially, if two points have no distance between each other, they are the same point.
-- Example:
-- (p₁) ---------- (p₂)
-- (p)
-- Here p₁ and p₂ are arbitrary points, and a line between them is depicted.
-- The line from p to p is also depicted (as a point).
-- Currently, these lines do not have the same length, and for p₁ and p₂ to have the same distance as the single point line consisting of p, the line must collapse to a single point, making p₁ and p₂ the same point.
-- Also called:
-- • Identity axiom for the `Equidistance` relation.
-- • A3 in Metamathematische Methoden in der Geometrie.
Equidistanced-point : Equidistanced(p₁ , p₂)(p , p) → (p₁ ≡ p₂)
-- Given two lines, there exists a line extending the first line so that the extension part is of the same length as the second line.
-- Essentially, given a starting point and a direction, it is always possible to construct a line of the same length as an another already existing line.
-- Or: It is always possible to extend a line by the length of another line.
-- Example:
-- Given two lines:
-- (p) <-- (a₁)
-- (a₂) ------> (b₂)
-- it is possible to construct an extension of the first line like this:
-- (b₁) <------(p)-- (a₁)
-- The extension from a₁ to b₁ have the same direction as the first line (a₁ to p) and the same length as the second line (from a₂ to b₂).
-- Also called:
-- • A4 in Metamathematische Methoden in der Geometrie.
segment-construction : ∃(b₁ ↦ (Aligned a₁ p b₁) ∧ Equidistanced(p , b₁)(a₂ , b₂))
-- Given two bisected triangles, if all except one of the non-bisected sides of the first triangle have the same length as the second one's, then the unknown side of the first triangle is also congruent to the unknown side of the second.
--
-- Note: If any of the points other than (a,b) or (a,d) are equal, then the result follows from the assumptions.
-- (d)\__
-- / \_ \__
-- / \_ \__
-- / \ \
-- (a)__________(b)___(c)
--
-- Also called:
-- • A5 in Metamathematische Methoden in der Geometrie.
five-segment : (a₁ ≢ b₁) → (Aligned a₁ b₁ c₁) → (Aligned a₂ b₂ c₂) → Equidistanced(a₁ , b₁)(a₂ , b₂) → Equidistanced(b₁ , c₁)(b₂ , c₂) → Equidistanced(a₁ , d₁)(a₂ , d₂) → Equidistanced(b₁ , d₁)(b₂ , d₂) → Equidistanced(c₁ , d₁)(c₂ , d₂)
-- If a point is between two identical points, then they are the same point.
-- Alternatively, if a point is in a line consisting of only a single point, then the point is the single point.
-- Example:
-- (p₁) ------(a)--- (p₂)
-- Here, a line from p₁ to p₂ is depicted, and a point a is in this line.
-- But if p₁ and p₂ would be the same point p, then the line would collapse to a single point, making a and p the same.
-- Also called:
-- • Identity axiom for the `Aligned` relation.
-- • A6 in Metamathematische Methoden in der Geometrie.
Aligned-point : (Aligned p a p) → (a ≡ p)
-- Given two connected lines and one point in each of the lines, two lines connecting the points and the endpoints of the other line have an intersection point.
-- Example:
-- (c)
-- / \
-- (m₁)\ /(m₂)
-- / _(i)_ \
-- (a)__/ \__(b)
-- Also called:
-- • Axiom of Pasch.
-- • Inner Pasch.
-- • A7 in Metamathematische Methoden in der Geometrie.
Aligned-intersection : (Aligned a m₁ c) → (Aligned b m₂ c) → ∃(i ↦ (Aligned m₁ i b) ∧ (Aligned m₂ i a))
-- Also called:
-- • Axiom schema of Continuity
-- • A11' in Metamathematische Methoden in der Geometrie.
Aligned-continuity : ∃(a ↦ ∀{x y} → P(x) → Q(y) → (Aligned a x y)) → ∃(a ↦ ∀{x y} → P(x) → Q(y) → (Aligned x a y))
-- A triangle exists.
-- This excludes the possibility of this theory describing 0 or 1-dimensional spaces when using the standard interpretation of the axioms.
-- Example:
-- (c)
-- / \
-- (a)___(b)
-- Also called:
-- • A8 in Metamathematische Methoden in der Geometrie.
lower-dimension₂ : ∃{Obj = Point ⨯ Point ⨯ Point}(\(a , b , c) → (¬ Aligned a b c) ∧ (¬ Aligned b c a) ∧ (¬ Aligned c a b))
-- Also called:
-- • A9 in Metamathematische Methoden in der Geometrie.
upper-dimension₂ : Equidistanced(a , p₁)(a , p₂) → Equidistanced(b , p₁)(b , p₂) → Equidistanced(c , p₁)(c , p₂) → (p₁ ≢ p₂) → (Aligned a b c) ∨ (Aligned b c a) ∨ (Aligned c a b)
-- Given three points, they are either collinear (forming a line), or there is a circumcentered point for the triangle of the three points (a point where the distance between this point and all three vertices are equal).
-- Example:
-- Here is an example of the different cases depicted:
-- • (a) ----(b)------ (c)
-- • (b) ----(c)------ (a)
-- • (c) ----(a)------ (b)
-- • (a)\__
-- / ‖ \__
-- / ‖ \
-- (b)______‖______(c)
-- \___ ‖ ___/
-- \_(m)_/
-- or when the triangle is equilateral:
-- (a)
-- / \
-- / \
-- / (m) \
-- /_______\
-- (b) (c)
-- Also called:
-- • Axiom of Euclid.
-- • Variant of A10 in Metamathematische Methoden in der Geometrie.
center-of-3 : (Collinear a b c) ∨ ∃(m ↦ Equidistanced(a , m)(b , m) ∧ Equidistanced(a , m)(c , m))
module _ ⦃ axioms : Axioms ⦄ where
open Axioms(axioms)
-- A line constructed by the points `a` and `b` have an intersection point on a circle with the center point `c` and radius point `pᵣ` when a part of the line.
-- Also called:
-- • CA in Metamathematische Methoden in der Geometrie.
-- circle-line-intersection : (Aligned₄ c pᵢ pᵣ pₒ) → Equidistanced(c , a)(c , pᵢ) → Equidistanced(c , b)(c , pₒ) → ∃(i ↦ Equidistanced(c , i)(c , pᵣ) ∧ (Aligned a i b))
instance
-- Identical pairs of points have the same distance between each other.
-- Also called: 2.1 in Metamathematische Methoden in der Geometrie.
Equidistanced-reflexivity : Reflexivity(Equidistanced)
Reflexivity.proof Equidistanced-reflexivity {p₁ , p₂} = Equidistanced-symmetric-transitivity (Equidistanced-flipped {p₂}{p₁}) (Equidistanced-flipped {p₂}{p₁})
instance
-- Also called: 2.2 in Metamathematische Methoden in der Geometrie.
Equidistanced-symmetry : Symmetry(Equidistanced)
Symmetry.proof Equidistanced-symmetry p = Equidistanced-symmetric-transitivity p (reflexivity(Equidistanced))
instance
-- Also called: 2.3 in Metamathematische Methoden in der Geometrie.
Equidistanced-transitivity : Transitivity(Equidistanced)
Transitivity.proof Equidistanced-transitivity p q = Equidistanced-symmetric-transitivity (symmetry(Equidistanced) p) q
instance
-- Also called: 2.7 in Metamathematische Methoden in der Geometrie.
Equidistanced-equivalence : Equivalence(Equidistanced)
Equidistanced-equivalence = intro
-- The distance between a point and itself is the same for all points.
-- Also called: 2.8 in Metamathematische Methoden in der Geometrie.
Equidistanced-points : Equidistanced(a , a) (b , b)
Equidistanced-points {a}{b}
with [∃]-intro p ⦃ [∧]-intro _ bpaa ⦄ ← segment-construction{a}{b} {a}{a}
=
• (b ≡ b) ∧ (p ≡ b) :-[ [∧]-intro (reflexivity(_≡_)) (symmetry(_≡_) (Equidistanced-point bpaa)) ]
• Equidistanced(b , p) (b , p) :-[ reflexivity(Equidistanced) ]
⇒₂-[ substitute₂ᵣ(Equidistanced) ]
Equidistanced(b , p) (b , b) ⇒-[ Equidistanced-symmetric-transitivity bpaa ]
Equidistanced(a , a) (b , b) ⇒-end
-- Addition of two distances when the points are in a line.
-- Also called: 2.11 in Metamathematische Methoden in der Geometrie.
segment-sum : (Aligned a₁ b₁ c₁) → (Aligned a₂ b₂ c₂) → Equidistanced(a₁ , b₁)(a₂ , b₂) → Equidistanced(b₁ , c₁)(b₂ , c₂) → Equidistanced(a₁ , c₁)(a₂ , c₂)
segment-sum {a₁ = a₁}{b₁ = b₁} abc₁ abc₂ ab₁ab₂ bc₁bc₂ with excluded-middle(a₁ ≡ b₁)
... | [∨]-introₗ a₁b₁
with a₂b₂ ← Equidistanced-point (symmetry(Equidistanced) (substitute₂ₗ(Equidistanced) ([∧]-intro a₁b₁ (reflexivity(_≡ₚ_))) ab₁ab₂))
= substitute₂(Equidistanced) ([∧]-intro (symmetry(_≡ₚ_) a₁b₁) (reflexivity(_≡ₚ_))) ([∧]-intro (symmetry(_≡ₚ_) a₂b₂) (reflexivity(_≡ₚ_))) bc₁bc₂
... | [∨]-introᵣ na₁b₁ =
Equidistanced-flipped
🝖 (five-segment
na₁b₁
abc₁
abc₂
ab₁ab₂
bc₁bc₂
Equidistanced-points
(Equidistanced-flipped 🝖 ab₁ab₂ 🝖 Equidistanced-flipped)
)
🝖 Equidistanced-flipped
-- The segment extension axiom constructs unique points when the given pair of points forms a line segment to extend.
-- Also called: 2.12 in Metamathematische Methoden in der Geometrie.
segment-construction-uniqueness : (a₁ ≢ p) → Unique(b₁ ↦ (Aligned a₁ p b₁) ∧ Equidistanced(p , b₁)(a₂ , b₂))
segment-construction-uniqueness na₁p ([∧]-intro al-a₁p₁x eq-p₁xa₂b₂) ([∧]-intro al-a₁p₁y eq-p₁ya₂b₂)
with pxpy ← transitivity(Equidistanced) eq-p₁xa₂b₂ (symmetry(Equidistanced) eq-p₁ya₂b₂)
with a₁xa₁y ← segment-sum al-a₁p₁x al-a₁p₁y (reflexivity(Equidistanced)) pxpy
= Equidistanced-point (five-segment na₁p al-a₁p₁x al-a₁p₁y (reflexivity(Equidistanced)) pxpy (reflexivity(Equidistanced)) (reflexivity(Equidistanced)))
-- Two points are always aligned.
-- Also called: 3.1 in Metamathematische Methoden in der Geometrie.
Aligned-reflexivityᵣ : Aligned a b b
Aligned-reflexivityᵣ {a}{b}
with [∃]-intro p ⦃ [∧]-intro alig equi ⦄ ← segment-construction{a}{b} {a}{a}
= substitute₃-unary₃(Aligned) (symmetry(_≡_) (Equidistanced-point equi)) alig
-- A single point is always aligned with itself.
Aligned-reflexivity : Aligned a a a
Aligned-reflexivity = Aligned-reflexivityᵣ
-- When three points are aligned in one direction, they are also aligned in the opposite direction.
-- Also called: 3.2 in Metamathematische Methoden in der Geometrie.
Aligned-symmetry : Aligned a b c → Aligned c b a
Aligned-symmetry {a}{b}{c} alig
with [∃]-intro p ⦃ [∧]-intro bpb cpa ⦄ ← Aligned-intersection{a}{b}{_}{b}{c} alig Aligned-reflexivityᵣ
with pb ← Aligned-point bpb
= substitute₃-unary₂(Aligned) pb cpa
-- Two points are always aligned.
-- Also called: 3.3 in Metamathematische Methoden in der Geometrie.
Aligned-reflexivityₗ : Aligned a a b
Aligned-reflexivityₗ = Aligned-symmetry Aligned-reflexivityᵣ
-- Also called: 3.4 in Metamathematische Methoden in der Geometrie.
Aligned-antisymmetryₗ : (Aligned a b c) → (Aligned b a c) → (a ≡ b)
Aligned-antisymmetryₗ {a}{b}{c} al-abc al-bac
with [∃]-intro i ⦃ [∧]-intro al-bib al-aia ⦄ ← Aligned-intersection{a}{b}{c} al-abc al-bac
with ia ← Aligned-point al-aia
with ib ← Aligned-point al-bib
= symmetry(_≡_) ia 🝖 ib
Aligned-antisymmetryᵣ : (Aligned a b c) → (Aligned a c b) → (b ≡ c)
Aligned-antisymmetryᵣ al-abc al-acb = symmetry(_≡_) (Aligned-antisymmetryₗ (Aligned-symmetry al-abc) (Aligned-symmetry al-acb))
-- Also called: 3.6(1) in Metamathematische Methoden in der Geometrie.
Aligned-transitivityᵣ-exchange : (Aligned a b c) → (Aligned a c d) → (Aligned b c d)
Aligned-transitivityᵣ-exchange abc acd
with [∃]-intro i ⦃ [∧]-intro bid cic ⦄ ← Aligned-intersection (Aligned-symmetry abc) (Aligned-symmetry acd)
with ic ← Aligned-point cic
= substitute₃-unary₂(Aligned) ic bid
-- Also called: 3.5(1) in Metamathematische Methoden in der Geometrie.
Aligned-transitivityₗ-exchange : (Aligned a b d) → (Aligned b c d) → (Aligned a b c)
Aligned-transitivityₗ-exchange abd bcd = Aligned-symmetry (Aligned-transitivityᵣ-exchange (Aligned-symmetry bcd) (Aligned-symmetry abd))
-- Also called: 3.7(1) in Metamathematische Methoden in der Geometrie.
Aligned-semitransitivityᵣ : (Aligned a b c) → (Aligned b c d) → (b ≢ c) → (Aligned a c d)
Aligned-semitransitivityᵣ {a}{b}{c}{d} abc bcd nbc
with [∃]-intro x ⦃ [∧]-intro acx cxcd ⦄ ← segment-construction{a}{c}{c}{d}
with bcx ← Aligned-transitivityᵣ-exchange abc acx
with xd ← segment-construction-uniqueness nbc ([∧]-intro bcx cxcd) ([∧]-intro bcd (reflexivity(Equidistanced)))
= substitute₃-unary₃(Aligned) xd acx
-- Also called: 3.5(2) in Metamathematische Methoden in der Geometrie.
Aligned-transitivityₗ-merge : (Aligned a b d) → (Aligned b c d) → (Aligned a c d)
Aligned-transitivityₗ-merge {a}{b}{d}{c} abd bcd with excluded-middle(b ≡ₚ c)
... | [∨]-introₗ bc = substitute₃-unary₂(Aligned) bc abd
... | [∨]-introᵣ nbc = Aligned-semitransitivityᵣ (Aligned-transitivityₗ-exchange abd bcd) bcd nbc
-- Also called: 3.6(2) in Metamathematische Methoden in der Geometrie.
Aligned-transitivityᵣ-merge : (Aligned a b c) → (Aligned a c d) → (Aligned a b d)
Aligned-transitivityᵣ-merge abc acd = Aligned-symmetry (Aligned-transitivityₗ-merge (Aligned-symmetry acd) (Aligned-symmetry abc))
-- Also called: 3.7(2) in Metamathematische Methoden in der Geometrie.
Aligned-semitransitivityₗ : (Aligned a b c) → (Aligned b c d) → (b ≢ c) → (Aligned a b d)
Aligned-semitransitivityₗ abc bcd nbc = Aligned-symmetry(Aligned-semitransitivityᵣ (Aligned-symmetry bcd) (Aligned-symmetry abc) (nbc ∘ symmetry(_≡ₚ_)))
Aligned₄-intro-[123,134] : (Aligned a b c) → (Aligned a c d) → (Aligned₄ a b c d)
Aligned₄-intro-[123,134] abc acd = abc , abd , acd , bcd where
abd = Aligned-transitivityᵣ-merge abc acd
bcd = Aligned-transitivityᵣ-exchange abc acd
Aligned₄-intro-[124,234] : (Aligned a b d) → (Aligned b c d) → (Aligned₄ a b c d)
Aligned₄-intro-[124,234] abd bcd = abc , abd , acd , bcd where
abc = Aligned-transitivityₗ-exchange abd bcd
acd = Aligned-transitivityₗ-merge abd bcd
-- Existence of two distinct points.
-- Also called: 3.13 in Metamathematische Methoden in der Geometrie.
lower-dimension₁ : ∃{Obj = Point ⨯ Point}(\{(a , b) → a ≢ b})
lower-dimension₁
with [∃]-intro (a , b , _) ⦃ [∧]-intro ([∧]-intro p _) _ ⦄ ← lower-dimension₂
= [∃]-intro (a , b) ⦃ ab ↦ p(substitute₃-unary₂(Aligned) ab Aligned-reflexivityₗ) ⦄
-- Also called: 3.14 in Metamathematische Methoden in der Geometrie.
extension-existence : ∃(e ↦ (Aligned a b e) ∧ (b ≢ e))
extension-existence{a}{b}
with [∃]-intro (x , y) ⦃ nab ⦄ ← lower-dimension₁
with [∃]-intro e ⦃ [∧]-intro abe bexy ⦄ ← segment-construction{a}{b}{x}{y}
= [∃]-intro e ⦃ [∧]-intro abe (nab ∘ (be ↦ Equidistanced-point(symmetry(Equidistanced) (substitute₂ₗ(Equidistanced) ([∧]-intro be (reflexivity(_≡ₚ_))) bexy)))) ⦄
-- Also called: 3.17 in Metamathematische Methoden in der Geometrie.
triangle-edge-lines-intersection : (Aligned a₁ b₁ c) → (Aligned a₂ b₂ c) → (Aligned a₁ p a₂) → ∃(i ↦ (Aligned p i c) ∧ (Aligned b₁ i b₂))
triangle-edge-lines-intersection a₁b₁c a₂b₂c a₁pa₂
with [∃]-intro j ⦃ [∧]-intro pjc b₂ja₁ ⦄ ← Aligned-intersection a₁pa₂ (Aligned-symmetry a₂b₂c)
with [∃]-intro i ⦃ [∧]-intro b₁ib₂ jic ⦄ ← Aligned-intersection (Aligned-symmetry a₁b₁c) (b₂ja₁)
= [∃]-intro i ⦃ [∧]-intro (Aligned-transitivityₗ-merge pjc jic) b₁ib₂ ⦄
-- Also called: 4.6 in Metamathematische Methoden in der Geometrie.
postulate equidistanced-points-are-aligned : Equidistanced₃(a₁ , b₁ , c₁)(a₂ , b₂ , c₂) → (Aligned a₁ b₁ c₁) → (Aligned a₂ b₂ c₂)
-- Also called: 5.1 in Metamathematische Methoden in der Geometrie.
postulate Aligned-order-cases₃-skip₂ : (a ≢ b) → (Aligned a b c₁) → (Aligned a b c₂) → ((Aligned a c₁ c₂) ∨ (Aligned a c₂ c₁))
-- Also called: 5.2 in Metamathematische Methoden in der Geometrie.
postulate Aligned-order-cases₃-skip₁ : (a ≢ b) → (Aligned a b c₁) → (Aligned a b c₂) → ((Aligned b c₁ c₂) ∨ (Aligned b c₂ c₁))
-- Also called: 5.3 in Metamathematische Methoden in der Geometrie.
postulate Aligned-order-cases₂-skip₃ : (Aligned a b₁ c) → (Aligned a b₂ c) → ((Aligned a b₁ b₂) ∨ (Aligned a b₂ b₁))
-- The distance between the first pair of points are lesser or equal to the distance between the second pair of points.
-- The definition states that there should exist a point bₘ such that a (b₁,bₘ) is a subline of (b₁,b₂) and such that the subline is of the same length as (a₁,a₂).
-- Also called: 5.4 in Metamathematische Methoden in der Geometrie.
LeDistanced : (Point ⨯ Point) → (Point ⨯ Point) → Stmt
LeDistanced(a₁ , a₂)(b₁ , b₂) = ∃(bₘ ↦ (Aligned b₁ bₘ b₂) ∧ Equidistanced(a₁ , a₂)(b₁ , bₘ))
-- Also called: 5.4 in Metamathematische Methoden in der Geometrie.
GeDistanced : (Point ⨯ Point) → (Point ⨯ Point) → Stmt
GeDistanced = swap LeDistanced
-- Also called: 5.5 in Metamathematische Methoden in der Geometrie.
postulate LeDistanced-alternative : LeDistanced(a₁ , a₂)(b₁ , b₂) ↔ ∃(aₒ ↦ (Aligned a₁ a₂ aₒ) ∧ Equidistanced(a₁ , aₒ)(b₁ , b₂))
-- Also called: 5.7 in Metamathematische Methoden in der Geometrie.
instance
postulate LeDistanced-reflexivity : Reflexivity(LeDistanced)
-- Also called: 5.8 in Metamathematische Methoden in der Geometrie.
instance
postulate LeDistanced-transitivity : Transitivity(LeDistanced)
-- Also called: 5.9 in Metamathematische Methoden in der Geometrie.
instance
postulate LeDistanced-antisymmetry : Antisymmetry(LeDistanced)(Equidistanced)
-- Also called: 5.10 in Metamathematische Methoden in der Geometrie.
instance
postulate LeDistanced-converseTotal : ConverseTotal(LeDistanced)
-- Also called: 5.11 in Metamathematische Methoden in der Geometrie.
instance
postulate LeDistanced-minimal : Weak.Properties.LE.Minimum(LeDistanced)(p , p)
-- Also called: 5.12 in Metamathematische Methoden in der Geometrie.
postulate Collinear-aligned-ledistanced-equivalence : (Collinear a b c) → ((Aligned a b c) ↔ (LeDistanced(a , b)(a , c) ∧ LeDistanced(b , c)(a , c)))
-- Also called: 5.14 in Metamathematische Methoden in der Geometrie.
LtDistanced : (Point ⨯ Point) → (Point ⨯ Point) → Stmt
LtDistanced(a₁ , a₂)(b₁ , b₂) = LeDistanced(a₁ , a₂)(b₁ , b₂) ∧ (¬ Equidistanced(a₁ , a₂)(b₁ , b₂))
-- Also called: 5.14 in Metamathematische Methoden in der Geometrie.
GtDistanced : (Point ⨯ Point) → (Point ⨯ Point) → Stmt
GtDistanced = swap GeDistanced
aligned-equidistanced-equality : (Aligned a b₁ b₂) → Equidistanced(a , b₁)(a , b₂) → (b₁ ≡ₚ b₂)
aligned-equidistanced-equality ab₁b₂ ab₁ab₂ = {!!}
aligned-equidistanced-last-equality : (a ≢ b) → (Aligned a b c₁) → (Aligned a b c₂) → Equidistanced(b , c₁)(b , c₂) → (c₁ ≡ c₂)
aligned-equidistanced-last-equality nab abc₁ abc₂ bc₁bc₂ = {!Aligned-order-cases₃-skip₁ nab abc₁ abc₂!}
Aligned-classical : Classical₃(Aligned)
Classical.excluded-middle (Aligned-classical {a} {b} {c})
with [∃]-intro d ⦃ [∧]-intro abd bdbc ⦄ ← segment-construction{a}{b}{b}{c}
with excluded-middle(a ≡ₚ b) | excluded-middle(c ≡ₚ d)
... | _ | [∨]-introₗ cd = [∨]-introₗ (substitute₃-unary₃(Aligned) (symmetry(_≡ₚ_) cd) abd)
... | [∨]-introₗ ab | [∨]-introᵣ ncd = [∨]-introₗ (substitute₃-unary₂(Aligned) ab Aligned-reflexivityₗ)
... | [∨]-introᵣ nab | [∨]-introᵣ ncd = [∨]-introᵣ (abc ↦ ncd(aligned-equidistanced-last-equality nab abc abd (symmetry(Equidistanced) bdbc)))
{-
-- Also called: 6.14 in Metamathematische Methoden in der Geometrie.
lineSet : (a : Point) → (b : Point) → ⦃ distinct : (a ≢ b) ⦄ → PredSet(Point)
lineSet a b ∋ p = Collinear a p b
PredSet.preserve-equiv (lineSet a b) = {!TrinaryRelator.unary₂(Collinear)!} -- TODO-}
-- Example:
-- (c)
-- / \
-- (m₁)\ /(m₂)
-- / _(i)_ \
-- (a)__/ \__(b)
-- Also called: Outer Pasch.
postulate Aligned-outer-intersection : (Aligned a i m₂) → (Aligned b m₂ c) → ∃(m₁ ↦ (Aligned a m₁ c) ∧ (Aligned b i m₁))
{-Aligned-outer-intersection {a}{i}{m₂}{b}{c} aim2 bm2c with excluded-middle(Collinear b i m₂) ⦃ classical ⦄
Aligned-outer-intersection {a}{i}{m₂}{b}{c} aim2 bm2c | [∨]-introₗ coll-bim2 with excluded-middle(Aligned b i m₂) ⦃ classical ⦄
... | [∨]-introₗ al-bim2 = [∃]-intro c ⦃ [∧]-intro {!!} ([∨]-elim ([∨]-elim (al-bim2 ↦ {!!}) (al-im2b ↦ {!!})) (al-m2bi ↦ {!!}) coll-bim2) ⦄
... | [∨]-introᵣ x = {!!}
Aligned-outer-intersection {a}{i}{m₂}{b}{c} aim2 bm2c | [∨]-introᵣ x = {!!}-}
{-with [∃]-intro ii ⦃ p ⦄ ← Aligned-intersection {!!} {!!}
= {!!}-}
{-
-- A point on the bisecting ray of the given line.
-- Example:
-- ⋮
-- |
-- (p)
-- / | \
-- / | \
-- (a)-----(b)
-- |
-- ⋮
BisectingRayPoint : Point → Point → Point → Stmt
BisectingRayPoint a p b = Equidistanced(a , p)(b , p)
-- The points are all aligned in a line with the second point being in the center of the line constructed from the other points.
-- Example:
-- (a)---(m)---(b)
-- `m` is the centerpoint (in the middle) of `a` and `b`.
CenterAligned : Point → Point → Point → Stmt
CenterAligned a m b = (BisectingRayPoint a m b) ∧ (Aligned a m b)
-- The points form a perpendicular triangle with b being the corner where the perpendicular angle is residing.
-- Example:
-- (a)
-- / | \
-- / | \
-- / | \
-- (c)--(b)--(cₘ)
PerpendicularCorner : Point → Point → Point → Stmt
PerpendicularCorner a b c = ∃(cₘ ↦ (CenterAligned c b cₘ) ∧ (BisectingRayPoint c a cₘ))
-- The distance between the first pair of points are lesser or equal to the distance between the second pair of points.
-- This is defined by considering points on a bisecting ray in the center of each of the two lines constructed from the pairs of points. If there is a function that maps points on the second bisecting ray to the first bisecting ray such that this mapping preserves the distance to one of the endpoints of its corresponding line, then the distance between the first pair is lesser than the second.
-- Example:
-- (bBisect)
-- /|\
-- / | \
-- / | \
-- (b₁)=====(b₂)
-- (aBisect)
-- /|\
-- / | \
-- | | |
-- (a₁)===(a₂)
--
-- Here, b₁ and b₂ are equally distanced to bBisect.
-- The definition then states that there exists a similiar construction aBisect on a₁ and a₂, and it does.
-- And this second construction (aBisect) should have the same distance to its endpoints (for example a₂) as the first (bBisect) have (for example b₂), which it does.
-- Now, in the extreme case where the distance between bBisect and the endpoints are shrunk, bBisect would collapse into being a center point of the line (b₁,b₂), but because the distance between a₁ and a₂ is smaller, aBisect will still be outside of the line (a₁,a₂). Though, it still exists.
-- This would not be the case if the relation was reversed.
LeDistanced2 : (Point ⨯ Point) → (Point ⨯ Point) → Stmt
LeDistanced2(a₁ , a₂)(b₁ , b₂) =
∀{bBisect} → (BisectingRayPoint b₁ bBisect b₂) →
∃(aBisect ↦ (BisectingRayPoint a₁ aBisect a₂) ∧ Equidistanced(a₂ , aBisect)(b₂ , bBisect))
-- Aligned-Distanced-equivalence : (Aligned a b c) ↔ (∀{d} → LeDistanced2(a , d)(a , b) → LeDistanced2(c , d)(b , c) → (b ≡ d))
-- Note: The only purpose of this definition is so that instance search works (because it do not work on functions, and negation is defined as a function).
record DistinctPoints (a b : Point) : Type{ℓₚₑ} where
constructor intro
field proof : (a ≢ b)
-- A line segment is a geometric figure defined by two distinct points
-- The interpretation is that these two points connect each other, and the set of points of the figure are the points between these two points.
record LineSegment : Type{ℓₚ Lvl.⊔ ℓₚₑ} where
constructor lineSegment
field
from : Point
to : Point
⦃ distinct ⦄ : DistinctPoints from to
-- A point on the line segment.
point : Point
point = [∃]-witness (Aligned-intersection {to}{from} {from} {to}{from} Aligned-reflexivityᵣ Aligned-reflexivityᵣ)
-- The line segment flipped.
flip : LineSegment
flip = record{from = to ; to = from ; distinct = intro(DistinctPoints.proof distinct ∘ symmetry(_≡_))}
copyTo : Point → LineSegment
copyTo base = {!!}
-- TODO: This is apparently difficult to construct
center : Point
-- center = {!!}
-- The bisector (TODO: which one?) line of this line segment. (TODO: Too unspecific. Where does it start and end?)
bisector : LineSegment
-- bisector = {!!}
private variable l l₁ l₂ l₃ : LineSegment
-- Point inclusion in line segment (a point is in a line segment).
_∈₂_ : Point → LineSegment → Type
p ∈₂ lineSegment a b = Aligned a p b
-- Line segment congruence (two line segments are of equal length)
_⎶_ : LineSegment → LineSegment → Type
lineSegment a₁ a₂ ⎶ lineSegment b₁ b₂ = Equidistanced(a₁ , a₂)(b₁ , b₂)
Perpendicular : LineSegment → LineSegment → Stmt
Perpendicular(lineSegment a₁ a₂)(lineSegment b₁ b₂) = ∃(c ↦ (Collinear a₁ a₂ c) ∧ (Collinear b₁ b₂ c) ∧ (PerpendicularCorner a₂ c b₂))
Parallel : LineSegment → LineSegment → Stmt
Parallel a b = Perpendicular a (LineSegment.bisector b)
point-in-lineSegment : LineSegment.point(l) ∈₂ l
point-in-lineSegment{l} = [∧]-elimₗ([∃]-proof (Aligned-intersection Aligned-reflexivityᵣ Aligned-reflexivityᵣ))
-- A triangle is a geometric figure defined by three unaligned points.
-- The interpretation is that these three points connect each other, forming three line segments, and the set of points of the figure are the points inside the line segments.
record Triangle : Type{ℓₚ Lvl.⊔ ℓₗᵢₗ} where
constructor triangle
field
point₁ : Point
point₂ : Point
point₃ : Point
⦃ distinct₁ ⦄ : ¬ Aligned point₁ point₂ point₃
⦃ distinct₂ ⦄ : ¬ Aligned point₂ point₃ point₁
⦃ distinct₃ ⦄ : ¬ Aligned point₃ point₁ point₂
side₁₂ : LineSegment
side₁₂ = line point₁ point₂ ⦃ intro(contrapositiveᵣ (p1p2 ↦ substitute₃-unary₁(Aligned) (symmetry(_≡_) p1p2) Aligned-reflexivityₗ) distinct₁) ⦄
side₂₃ : LineSegment
side₂₃ = line point₂ point₃ ⦃ intro(contrapositiveᵣ (p2p3 ↦ substitute₃-unary₁(Aligned) (symmetry(_≡_) p2p3) Aligned-reflexivityₗ) distinct₂) ⦄
side₃₁ : LineSegment
side₃₁ = line point₃ point₁ ⦃ intro(contrapositiveᵣ (p3p1 ↦ substitute₃-unary₁(Aligned) (symmetry(_≡_) p3p1) Aligned-reflexivityₗ) distinct₃) ⦄
private variable tri tri₁ tri₂ : Triangle
-- A triangle exists.
-- This comes directly from an axiom.
Triangle-existence : Triangle
Triangle-existence
with [∃]-intro(x , y , z) ⦃ [∧]-intro ([∧]-intro p q) r ⦄ ← lower-dimension
= triangle x y z ⦃ p ⦄ ⦃ q ⦄ ⦃ r ⦄
Aligned-four : (Aligned a b c) → (Aligned p₁ b c) → (Aligned a b p₂) → (Aligned p₁ b p₂)
Aligned-four abc p₁bc abp₂
with [∃]-intro d ⦃ [∧]-intro bdp₂ bdc ⦄ ← Aligned-intersection (Aligned-symmetry abc) (Aligned-symmetry abp₂)
with [∃]-intro e ⦃ [∧]-intro bep₁ bea ⦄ ← Aligned-intersection abc p₁bc
= {!Aligned-transitivityᵣ abp₂ p₁bc!}
Aligned-alternative-start : (Aligned a₁ b c)→ (Aligned a₂ b c) → ((Aligned a₁ a₂ b) ∨ (Aligned a₂ a₁ b))
-- Note: The difference between segment-construction and this is that this is not extending the line (a₁,b₁). segment-equidistanced-copy constructs a new line which is of the same length as (a₂,b₂) but starting from a₁ and is in the direction of p.
-- TODO: A proof idea is to use center-of-3 and eliminate the last case. For the different cases, one uses different segment-constructions as usual
segment-equidistanced-copy : ∃(p ↦ ((Aligned a₁ b₁ p) ∨ (Aligned a₁ p b₁)) ∧ Equidistanced(a₁ , p)(a₂ , b₂))
segment-equidistanced-copy {a₁}{b₁} {a₂}{b₂}
with [∃]-intro ext ⦃ [∧]-intro al-b₁a₁ext d-a₁ext-a₂b₂ ⦄ ← segment-construction{b₁}{a₁} {a₂}{b₂}
with [∃]-intro p ⦃ [∧]-intro al-exta₁p d-a₁p-exta₁ ⦄ ← segment-construction{ext}{a₁} {ext}{a₁}
with center-of-3 {a₁}{b₁}{p}
... | [∨]-introₗ ([∨]-introₗ ([∨]-introₗ al-a₁b₁p)) = [∃]-intro p ⦃ [∧]-intro ([∨]-introₗ al-a₁b₁p) (d-a₁p-exta₁ 🝖 Equidistanced-flipped 🝖 d-a₁ext-a₂b₂) ⦄
... | [∨]-introₗ ([∨]-introₗ ([∨]-introᵣ al-b₁pa₁)) = [∃]-intro p ⦃ [∧]-intro ([∨]-introᵣ (Aligned-symmetry al-b₁pa₁)) (d-a₁p-exta₁ 🝖 Equidistanced-flipped 🝖 d-a₁ext-a₂b₂) ⦄
... | [∨]-introₗ ([∨]-introᵣ al-pa₁b₁) = [∃]-intro p ⦃ [∧]-intro ([∨]-introᵣ {!!}) (d-a₁p-exta₁ 🝖 Equidistanced-flipped 🝖 d-a₁ext-a₂b₂) ⦄ -- TODO: Use Aligned-four to prove (a₁ ≡ ext), which implies (a₁ ≡ p), so therefore ( Aligned a₁ a₁ b₁) by substitution. Note that this is the case when (a₂ ≡ b₂), but it is not used in the proof.
... | [∨]-introᵣ x = {!!} -- TODO: x essentially states that a₁ b₁ p is not in a line, which can be proven that they are like in the cases above by Aligned-alternative-start
-- A circle is a geometric figure defined by two distinct points.
-- The interpretation is that the first point is the center point, and the second point lies on the arc of the circle.
-- The distance between the points is the radius of the circle, and all points within the radius from the center point defines the set of points of the circle.
record Circle : Type{ℓₚ Lvl.⊔ ℓₚₑ} where
constructor circle
field
center : Point
outer : Point
⦃ distinct ⦄ : DistinctPoints center outer
-- A line from the center point to the arc.
radiusLineSegment : LineSegment
radiusLineSegment = lineSegment center outer
{- TODO
-- A line from the center point to the arc in the direction of the given point.
radiusLineSegmentTowards : Point → LineSegment
radiusLineSegmentTowards p
with [∃]-intro q ⦃ [∧]-intro cpq pqco ⦄ ← segment-construction{center}{p} {center}{outer}
= lineSegment center q ⦃ intro(cq ↦ (
• (
• center ≡ q :-[ cq ]
• Aligned center p q :-[ cpq ]
⇒₂-[ substitute₃-unary₁(Aligned) ]
Aligned q p q ⇒-[ Aligned-point ]
p ≡ q ⇒-[ pq ↦ [∧]-intro pq (reflexivity(_≡_)) ]
(p ≡ q) ∧ (q ≡ q) ⇒-end
)
• Equidistanced(p , q) (center , outer) :-[ pqco ]
⇒₂-[ substitute₂ₗ(Equidistanced) ]
Equidistanced(q , q) (center , outer) ⇒-[ symmetry(Equidistanced) ]
Equidistanced(center , outer) (q , q) ⇒-[ Equidistanced-point ]
center ≡ outer ⇒-[ DistinctPoints.proof distinct ]
⊥ ⇒-end
)) ⦄
-- TODO: I am confused. Is the point (LineSegment.to(radiusLineTowards p)) always further away than p?
radiusLineTowards-aligned : Aligned center p (Line.to(radiusLineSegmentTowards p))
radiusLineTowards-aligned{p}
with [∃]-intro q ⦃ [∧]-intro cpq pqco ⦄ ← segment-construction{center}{p} {center}{outer}
= cpq
radiusLineSegmentTowards-radius : Equidistanced(center , LineSegment.to(radiusLineSegmentTowards p)) (center , outer)
radiusLineSegmentTowards-radius{p}
with [∃]-intro q ⦃ [∧]-intro cpq pqco ⦄ ← segment-construction{center}{p} {center}{outer}
= {!pqco!} -- TODO: pqco is actually stating that (p,q) and (center,outer) is equally distanced, which is not what we want, so radiusLineTowards should be modified to use segment-construction-alt
-}
-- TODO: Two circles' intersection points are either 0, 1, 2 or they are the same circle.
-- intersection : ∀{C₁ C₂} → (∀{p} → ¬(p ∈ₒ C₁) ∧ ¬(p ∈ₒ C₂)) ∨ ∃!(p ↦ (p ∈ₒ C₁) ∧ (p ∈ₒ C₂)) ∨ ∃(p₁ ↦ ∃(p₂ ↦ (p ∈ₒ C₁) ∧ (p ∈ₒ C₂))) ∨ (C₁ ≡ C₂)
-- Point inclusion in circle (a point is in a circle).
_∈ₒ_ : Point → Circle → Type
p ∈ₒ circle c o = LeDistanced(c , p)(c , o)
-- TODO: Is this equivalent? ∃(op ↦ Equidistanced(c , o)(c , op) ∧ (Aligned c p op)) It extends the line (c,p) instead of shrinking the line (c,o)
-}
| {
"alphanum_fraction": 0.657019825,
"avg_line_length": 53.3776119403,
"ext": "agda",
"hexsha": "7590c82e401761dcbb4077342e90edb1c066d1bd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Geometry/Axioms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Geometry/Axioms.agda",
"max_line_length": 398,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Geometry/Axioms.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 12287,
"size": 35763
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Structures.Everything where
open import Cubical.Structures.Pointed public
open import Cubical.Structures.InftyMagma public
open import Cubical.Structures.Monoid public
open import Cubical.Structures.Queue public
open import Cubical.Structures.TypeEqvTo public
| {
"alphanum_fraction": 0.8322580645,
"avg_line_length": 31,
"ext": "agda",
"hexsha": "1896bd25e99bf749dfc3cdc646040e1978b196c4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/Structures/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/Structures/Everything.agda",
"max_line_length": 48,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/Structures/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 72,
"size": 310
} |
module PLRTree.Heap {A : Set}(_≤_ : A → A → Set) where
open import PLRTree {A}
data _≤*_ : A → PLRTree → Set where
lf≤* : (x : A)
→ x ≤* leaf
nd≤* : {t : Tag}{x y : A}{l r : PLRTree}
→ x ≤ y
→ x ≤* l
→ x ≤* r
→ x ≤* node t y l r
data Heap : PLRTree → Set where
leaf : Heap leaf
node : {t : Tag}{x : A}{l r : PLRTree}
→ x ≤* l
→ x ≤* r
→ Heap l
→ Heap r
→ Heap (node t x l r)
| {
"alphanum_fraction": 0.3339041096,
"avg_line_length": 26.5454545455,
"ext": "agda",
"hexsha": "d837ef77d9470bf98d213b51b6eebd4b00907125",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Heap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Heap.agda",
"max_line_length": 54,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Heap.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 191,
"size": 584
} |
{-# OPTIONS --safe #-}
module Cubical.HITs.S2.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Pointed
data S² : Type₀ where
base : S²
surf : PathP (λ i → base ≡ base) refl refl
S²∙ : Pointed ℓ-zero
S²∙ = S² , base
S²ToSetElim : ∀ {ℓ} {A : S² → Type ℓ}
→ ((x : S²) → isSet (A x))
→ A base
→ (x : S²) → A x
S²ToSetElim set b base = b
S²ToSetElim set b (surf i j) =
isOfHLevel→isOfHLevelDep 2 set b b {a0 = refl} {a1 = refl} refl refl surf i j
-- Wedge connectivity lemmas for S² (binary maps 2-groupoids)
wedgeconFunS² : ∀ {ℓ} {P : S² → S² → Type ℓ}
→ ((x y : _) → isOfHLevel 4 (P x y))
→ (l : ((x : S²) → P x base))
→ (r : (x : S²) → P base x)
→ l base ≡ r base
→ (x y : _) → P x y
wedgeconFunS² {P = P} hlev l r p base y = r y
wedgeconFunS² {P = P} hlev l r p (surf i i₁) y = help y i i₁
where
help : (y : S²) → SquareP (λ i j → P (surf i j) y)
(λ _ → r y) (λ _ → r y)
(λ _ → r y) λ _ → r y
help =
S²ToSetElim (λ _ → isOfHLevelPathP' 2 (isOfHLevelPathP' 3 (hlev _ _) _ _) _ _)
λ w j → hcomp (λ k → λ { (j = i0) → p k
; (j = i1) → p k
; (w = i0) → p k
; (w = i1) → p k})
(l (surf w j))
wedgeconFunS²Id : ∀ {ℓ} {P : S² → S² → Type ℓ}
→ (h : ((x y : _) → isOfHLevel 4 (P x y)))
→ (l : ((x : S²) → P x base))
→ (r : (x : S²) → P base x)
→ (p : l base ≡ r base)
→ (x : S²) → wedgeconFunS² h l r p x base ≡ l x
wedgeconFunS²Id h l r p base = sym p
wedgeconFunS²Id h l r p (surf i j) k =
hcomp (λ w → λ {(i = i0) → p (~ k ∧ w)
; (i = i1) → p (~ k ∧ w)
; (j = i0) → p (~ k ∧ w)
; (j = i1) → p (~ k ∧ w)
; (k = i1) → l (surf i j)})
(l (surf i j))
| {
"alphanum_fraction": 0.4356338718,
"avg_line_length": 35.224137931,
"ext": "agda",
"hexsha": "6b156b5542f87af7324292266ea6456f63417e47",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/HITs/S2/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/HITs/S2/Base.agda",
"max_line_length": 82,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/HITs/S2/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 781,
"size": 2043
} |
{-# OPTIONS --without-K --safe #-}
module PiFracDynDef where
open import Data.Bool
open import Data.Empty
open import Data.Unit
open import Data.Nat
open import Data.Nat.Properties
open import Data.Sum
open import Data.Product
open import Data.Maybe
open import Function
open import Relation.Binary.PropositionalEquality
renaming ([_] to R[_])
open import Relation.Binary.Core
open import Relation.Nullary
infix 70 _×ᵤ_
infix 60 _+ᵤ_
infix 40 _↔_
infixr 50 _⊚_
data ◯ : Set where
○ : ◯
-- Pi
mutual
data 𝕌 : Set where
𝟘 : 𝕌
𝟙 : 𝕌
_+ᵤ_ : 𝕌 → 𝕌 → 𝕌
_×ᵤ_ : 𝕌 → 𝕌 → 𝕌
𝟙/_ : 𝕌 → 𝕌
⟦_⟧ : 𝕌 → Set
⟦ 𝟘 ⟧ = ⊥
⟦ 𝟙 ⟧ = ⊤
⟦ t₁ +ᵤ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧
⟦ t₁ ×ᵤ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
⟦ 𝟙/ t ⟧ = ◯
data _↔_ : 𝕌 → 𝕌 → Set where
unite₊l : {t : 𝕌} → 𝟘 +ᵤ t ↔ t
uniti₊l : {t : 𝕌} → t ↔ 𝟘 +ᵤ t
unite₊r : {t : 𝕌} → t +ᵤ 𝟘 ↔ t
uniti₊r : {t : 𝕌} → t ↔ t +ᵤ 𝟘
swap₊ : {t₁ t₂ : 𝕌} → t₁ +ᵤ t₂ ↔ t₂ +ᵤ t₁
assocl₊ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤ (t₂ +ᵤ t₃) ↔ (t₁ +ᵤ t₂) +ᵤ t₃
assocr₊ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) +ᵤ t₃ ↔ t₁ +ᵤ (t₂ +ᵤ t₃)
unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ↔ t
uniti⋆l : {t : 𝕌} → t ↔ 𝟙 ×ᵤ t
unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ↔ t
uniti⋆r : {t : 𝕌} → t ↔ t ×ᵤ 𝟙
swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ↔ t₂ ×ᵤ t₁
assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ↔ (t₁ ×ᵤ t₂) ×ᵤ t₃
assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ↔ t₁ ×ᵤ (t₂ ×ᵤ t₃)
absorbr : {t : 𝕌} → 𝟘 ×ᵤ t ↔ 𝟘
absorbl : {t : 𝕌} → t ×ᵤ 𝟘 ↔ 𝟘
factorzr : {t : 𝕌} → 𝟘 ↔ t ×ᵤ 𝟘
factorzl : {t : 𝕌} → 𝟘 ↔ 𝟘 ×ᵤ t
dist : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) ×ᵤ t₃ ↔ (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃)
factor : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) ↔ (t₁ +ᵤ t₂) ×ᵤ t₃
distl : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤ t₃) ↔ (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃)
factorl : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) ↔ t₁ ×ᵤ (t₂ +ᵤ t₃)
id↔ : {t : 𝕌} → t ↔ t
_⊚_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ↔ t₂) → (t₂ ↔ t₃) → (t₁ ↔ t₃)
_⊕_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ↔ t₃) → (t₂ ↔ t₄) → (t₁ +ᵤ t₂ ↔ t₃ +ᵤ t₄)
_⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ↔ t₃) → (t₂ ↔ t₄) → (t₁ ×ᵤ t₂ ↔ t₃ ×ᵤ t₄)
η : {t : 𝕌} {t≠0 : ¬ card t ≡ 0} → 𝟙 ↔ t ×ᵤ (𝟙/ t)
ε : {t : 𝕌} {t≠0 : ¬ card t ≡ 0} → t ×ᵤ (𝟙/ t) ↔ 𝟙
-- Number of points in type
card : (t : 𝕌) → ℕ
card 𝟘 = 0
card 𝟙 = 1
card (t₁ +ᵤ t₂) = card t₁ + card t₂
card (t₁ ×ᵤ t₂) = card t₁ * card t₂
card (𝟙/ t) = 1
-- If number of points is zero then it is impossible to find a value
-- of the type
0empty : {t : 𝕌} → card t ≡ 0 → (v : ⟦ t ⟧) → ⊥
0empty {𝟘} _ ()
0empty {𝟙} () tt
0empty {t₁ +ᵤ t₂} s (inj₁ v₁)
with card t₁ | card t₂ | inspect card t₁
0empty {t₁ +ᵤ t₂} refl (inj₁ v₁) | 0 | 0 | R[ s₁ ] =
0empty {t₁} s₁ v₁
0empty {t₁ +ᵤ t₂} s (inj₂ v₂)
with card t₁ | card t₂ | inspect card t₂
0empty {t₁ +ᵤ t₂} refl (inj₂ v₂) | ℕ.zero | ℕ.zero | R[ s₂ ] =
0empty {t₂} s₂ v₂
0empty {t₁ ×ᵤ t₂} s (v₁ , v₂)
with card t₁ | card t₂ | inspect card t₁ | inspect card t₂
0empty {t₁ ×ᵤ t₂} refl (v₁ , v₂) | ℕ.zero | _ | R[ s₁ ] | _ =
0empty {t₁} s₁ v₁
0empty {t₁ ×ᵤ t₂} s (v₁ , v₂) | ℕ.suc n₁ | ℕ.zero | R[ s₁ ] | R[ s₂ ] =
0empty {t₂} s₂ v₂
0empty {𝟙/ t} () f
default : (t : 𝕌) → {t≠0 : ¬ card t ≡ 0} → ⟦ t ⟧
default 𝟘 {t≠0} = ⊥-elim (t≠0 refl)
default 𝟙 = tt
default (t₁ +ᵤ t₂) {p≠0} with card t₁ | card t₂ | inspect card t₁ | inspect card t₂
... | 0 | 0 | R[ s₁ ] | R[ s₂ ] = ⊥-elim (p≠0 refl)
... | 0 | suc n | R[ s₁ ] | R[ s₂ ] =
inj₂ (default t₂ {λ t2≡0 → ⊥-elim (p≠0 (trans (sym s₂) t2≡0))})
... | suc m | 0 | R[ s₁ ] | R[ s₂ ] =
inj₁ (default t₁ {λ t1≡0 →
⊥-elim (p≠0 ((trans (sym (trans s₁ (sym (+-identityʳ (suc m))))) t1≡0)))})
... | suc m | suc n | R[ s₁ ] | R[ s₂ ] =
inj₁ (default t₁ {λ t1≡0 → ⊥-elim (1+n≢0 (trans (sym s₁) t1≡0))})
default (t₁ ×ᵤ t₂) {p≠0} with card t₁ | card t₂ | inspect card t₁ | inspect card t₂
... | 0 | 0 | R[ s₁ ] | R[ s₂ ] = ⊥-elim (p≠0 refl)
... | 0 | suc n | R[ s₁ ] | R[ s₂ ] = ⊥-elim (p≠0 refl)
... | suc m | 0 | R[ s₁ ] | R[ s₂ ] = ⊥-elim (p≠0 (*-zeroʳ (suc m)))
... | suc m | suc n | R[ s₁ ] | R[ s₂ ] =
default t₁ {λ t1≡0 → ⊥-elim (1+n≢0 (trans (sym s₁) t1≡0))},
default t₂ {λ t2≡0 → ⊥-elim (1+n≢0 (trans (sym s₂) t2≡0))}
default (𝟙/ t) = ○
𝕌dec : (t : 𝕌) → Decidable (_≡_ {A = ⟦ t ⟧})
𝕌dec 𝟘 ()
𝕌dec 𝟙 tt tt = yes refl
𝕌dec (t₁ +ᵤ t₂) (inj₁ x) (inj₁ y) with 𝕌dec t₁ x y
𝕌dec (t₁ +ᵤ t₂) (inj₁ x) (inj₁ .x) | yes refl = yes refl
𝕌dec (t₁ +ᵤ t₂) (inj₁ x) (inj₁ y) | no ¬p = no (λ {refl → ¬p refl})
𝕌dec (t₁ +ᵤ t₂) (inj₁ x) (inj₂ y) = no (λ ())
𝕌dec (t₁ +ᵤ t₂) (inj₂ x) (inj₁ y) = no (λ ())
𝕌dec (t₁ +ᵤ t₂) (inj₂ x) (inj₂ y) with 𝕌dec t₂ x y
𝕌dec (t₁ +ᵤ t₂) (inj₂ x) (inj₂ .x) | yes refl = yes refl
𝕌dec (t₁ +ᵤ t₂) (inj₂ x) (inj₂ y) | no ¬p = no (λ {refl → ¬p refl})
𝕌dec (t₁ ×ᵤ t₂) (x₁ , y₁) (x₂ , y₂) with 𝕌dec t₁ x₁ x₂ | 𝕌dec t₂ y₁ y₂
𝕌dec (t₁ ×ᵤ t₂) (x₁ , y₁) (.x₁ , .y₁) | yes refl | yes refl = yes refl
𝕌dec (t₁ ×ᵤ t₂) (x₁ , y₁) (.x₁ , y₂) | yes refl | no ¬p = no (λ p → ¬p (cong proj₂ p))
𝕌dec (t₁ ×ᵤ t₂) (x₁ , y₁) (x₂ , .y₁) | no ¬p | yes refl = no (λ p → ¬p (cong proj₁ p))
𝕌dec (t₁ ×ᵤ t₂) (x₁ , y₁) (x₂ , y₂) | no ¬p | no ¬p₁ = no (λ p → ¬p (cong proj₁ p))
𝕌dec (𝟙/ t) ○ ○ = yes refl
_≟ᵤ_ : {t : 𝕌} → Decidable (_≡_ {A = ⟦ t ⟧})
_≟ᵤ_ {t} v w = 𝕌dec t v w
interp : {t₁ t₂ : 𝕌} → (t₁ ↔ t₂) → ⟦ t₁ ⟧ → Maybe ⟦ t₂ ⟧
interp unite₊l (inj₁ ())
interp unite₊l (inj₂ v) = just v
interp uniti₊l v = just (inj₂ v)
interp unite₊r (inj₁ v) = just v
interp unite₊r (inj₂ ())
interp uniti₊r v = just (inj₁ v)
interp swap₊ (inj₁ v) = just (inj₂ v)
interp swap₊ (inj₂ v) = just (inj₁ v)
interp assocl₊ (inj₁ v) = just (inj₁ (inj₁ v))
interp assocl₊ (inj₂ (inj₁ v)) = just (inj₁ (inj₂ v))
interp assocl₊ (inj₂ (inj₂ v)) = just (inj₂ v)
interp assocr₊ (inj₁ (inj₁ v)) = just (inj₁ v)
interp assocr₊ (inj₁ (inj₂ v)) = just (inj₂ (inj₁ v))
interp assocr₊ (inj₂ v) = just (inj₂ (inj₂ v))
interp unite⋆l v = just (proj₂ v)
interp uniti⋆l v = just (tt , v)
interp unite⋆r v = just (proj₁ v)
interp uniti⋆r v = just (v , tt)
interp swap⋆ (v₁ , v₂) = just (v₂ , v₁)
interp assocl⋆ (v₁ , v₂ , v₃) = just ((v₁ , v₂) , v₃)
interp assocr⋆ ((v₁ , v₂) , v₃) = just (v₁ , v₂ , v₃)
interp absorbr (() , v)
interp absorbl (v , ())
interp factorzr ()
interp factorzl ()
interp dist (inj₁ v₁ , v₃) = just (inj₁ (v₁ , v₃))
interp dist (inj₂ v₂ , v₃) = just (inj₂ (v₂ , v₃))
interp factor (inj₁ (v₁ , v₃)) = just (inj₁ v₁ , v₃)
interp factor (inj₂ (v₂ , v₃)) = just (inj₂ v₂ , v₃)
interp distl (v₁ , inj₁ v₂) = just (inj₁ (v₁ , v₂))
interp distl (v₁ , inj₂ v₃) = just (inj₂ (v₁ , v₃))
interp factorl (inj₁ (v₁ , v₂)) = just (v₁ , inj₁ v₂)
interp factorl (inj₂ (v₁ , v₃)) = just (v₁ , inj₂ v₃)
interp id↔ v = just v
interp (c₁ ⊚ c₂) v = interp c₁ v >>= interp c₂
interp (c₁ ⊕ c₂) (inj₁ v) = interp c₁ v >>= just ∘ inj₁
interp (c₁ ⊕ c₂) (inj₂ v) = interp c₂ v >>= just ∘ inj₂
interp (c₁ ⊗ c₂) (v₁ , v₂) = interp c₁ v₁ >>= (λ v₁' → interp c₂ v₂ >>= λ v₂' → just (v₁' , v₂'))
interp (η {t} {t≠0}) tt = just (default t {t≠0} , ○)
interp (ε {t} {t≠0}) (v' , ○) with 𝕌dec t (default t {t≠0}) v'
interp (ε {t}) (v' , ○) | yes _ = just tt
interp (ε {t}) (v' , ○) | no _ = nothing -- if v ≡ v' then tt else throw Error
--- Examples
𝟚 : 𝕌
𝟚 = 𝟙 +ᵤ 𝟙
𝔽 𝕋 : ⟦ 𝟚 ⟧
𝔽 = inj₁ tt
𝕋 = inj₂ tt
xorr xorl : 𝟚 ×ᵤ 𝟚 ↔ 𝟚 ×ᵤ 𝟚
xorr = dist ⊚ (id↔ ⊕ (id↔ ⊗ swap₊)) ⊚ factor
xorl = distl ⊚ (id↔ ⊕ (swap₊ ⊗ id↔)) ⊚ factorl
𝟚≠0 : ¬ (card 𝟚 ≡ 0)
𝟚≠0 ()
η𝟚 : 𝟙 ↔ 𝟚 ×ᵤ (𝟙/ 𝟚)
η𝟚 = η {t≠0 = 𝟚≠0}
ε𝟚 : 𝟚 ×ᵤ (𝟙/ 𝟚) ↔ 𝟙
ε𝟚 = ε {t≠0 = 𝟚≠0}
-- ─────┬────⊕─── ───────
-- | | ⨉
-- ┌──⊕────┴─── ───┐
-- └────────────────┘
id' : 𝟚 ↔ 𝟚
id' = uniti⋆r ⊚ (id↔ ⊗ η𝟚) ⊚ assocl⋆ ⊚
((xorr ⊚ xorl ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆ ⊚ (id↔ ⊗ ε𝟚) ⊚ unite⋆r
ex1 : interp id' 𝕋 ≡ just 𝕋
ex1 = refl
ex2 : interp id' 𝔽 ≡ just 𝔽
ex2 = refl
-- ┌────── ───────┐
-- └──────╲╱───────┘
-- ╱╲
-- ┌───── ──────┐
-- └───────────────┘
switch : 𝟙 ↔ 𝟙
switch = uniti⋆r ⊚ (η𝟚 ⊗ η𝟚) ⊚ assocl⋆ ⊚
(((swap⋆ ⊗ id↔) ⊚ assocr⋆ ⊚
(id↔ ⊗ swap⋆) ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id↔)) ⊗ id↔) ⊚
assocr⋆ ⊚ (ε𝟚 ⊗ ε𝟚) ⊚ unite⋆r
bad : 𝟚 ↔ 𝟚
bad = uniti⋆r ⊚ (id↔ ⊗ η𝟚) ⊚ assocl⋆ ⊚
((xorr ⊚ swap⋆) ⊗ id↔) ⊚
assocr⋆ ⊚ (id↔ ⊗ ε𝟚) ⊚ unite⋆r
ex3 : interp bad 𝔽 ≡ just 𝔽
ex3 = refl
ex4 : interp bad 𝕋 ≡ nothing
ex4 = refl
{--
shouldn't_type_check : 𝟙 ↔ 𝟙
shouldn't_type_check = η {v = 𝔽} ⊚ ε {v = 𝕋}
ex5 : interp shouldn't_type_check tt ≡ nothing
ex5 = refl
more : 𝟙 ↔ 𝟙
more = η {v = 𝔽} ⊚ (swap₊ ⊗ id↔) ⊚ ε {v = 𝕋}
ex6 : interp more tt ≡ just tt
ex6 = refl
--}
| {
"alphanum_fraction": 0.4970553592,
"avg_line_length": 32.6538461538,
"ext": "agda",
"hexsha": "d96ef8f34577ab5b16e4bce8a5706cbfcc069d32",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "fracGC/PiFracDynDef.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "fracGC/PiFracDynDef.agda",
"max_line_length": 97,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "fracGC/PiFracDynDef.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 4974,
"size": 8490
} |
module Isomorphism where
open import Library
record Iso {a b}(A : Set a)(B : Set b) : Set (a ⊔ b) where
field fun : A → B
inv : B → A
law1 : ∀ b → fun (inv b) ≅ b
law2 : ∀ a → inv (fun a) ≅ a
| {
"alphanum_fraction": 0.5045454545,
"avg_line_length": 22,
"ext": "agda",
"hexsha": "e0edfc5e34b8e5d06054c210ac7749cc5fd99018",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Isomorphism.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Isomorphism.agda",
"max_line_length": 58,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 83,
"size": 220
} |
{-# OPTIONS --without-K #-}
open import HoTT.Base
open import HoTT.Equivalence
module HoTT.Identity.Product where
open variables
private variable x y : A × B
_=×_ : A × B → A × B → 𝒰 _
x =× y = pr₁ x == pr₁ y × pr₂ x == pr₂ y
-- Theorem 2.6.2
=× : x == y ≃ x =× y
=× {x = _ , _} {_ , _} = let open Iso in iso→eqv λ where
.f refl → refl , refl
.g (refl , refl) → refl
.η refl → refl
.ε (refl , refl) → refl
module _ {x y : A × B} where
open Iso (eqv→iso (=× {x = x} {y})) public
renaming (f to =×-elim ; g to =×-intro ; η to =×-η ; ε to =×-β)
×-pair⁼ = =×-intro
| {
"alphanum_fraction": 0.5421686747,
"avg_line_length": 22.3461538462,
"ext": "agda",
"hexsha": "e8ef88270430640545e38390a7929337a184e8ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Identity/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Identity/Product.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Identity/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 239,
"size": 581
} |
module Golden.RedBlack where
open import Prelude hiding (insert)
-- Version of comparison that lets us use instance search for the proof objects.
data Comparison! {a} {A : Set a} (_<_ : A → A → Set a) (x y : A) : Set a where
less : {{_ : x < y}} → Comparison! _<_ x y
equal : {{_ : x ≡ y}} → Comparison! _<_ x y
greater : {{_ : y < x}} → Comparison! _<_ x y
compare! : ∀ {a} {A : Set a} {{_ : Ord A}} (x y : A) → Comparison! _<_ x y
compare! x y =
case compare x y of λ where
(less lt) → less {{lt}}
(equal eq) → equal {{eq}}
(greater gt) → greater {{gt}}
record Prf (A : Set) : Set where
constructor !
field
{{prf}} : A
data Bound (A : Set) : Set where
-∞ ∞ : Bound A
# : A → Bound A
module _ {A : Set} {{_ : Ord A}} where
LessBound : Bound A → Bound A → Set
LessBound ∞ _ = ⊥
LessBound _ ∞ = ⊤
LessBound _ -∞ = ⊥
LessBound -∞ _ = ⊤
LessBound (# x) (# y) = x < y
instance
OrdBound : Ord (Bound A)
OrdBound = defaultOrd compareBound
where
compareBound : (a b : Bound A) → Comparison LessBound a b
compareBound -∞ -∞ = equal refl
compareBound -∞ ∞ = less _
compareBound -∞ (# x) = less _
compareBound ∞ -∞ = greater tt
compareBound ∞ ∞ = equal refl
compareBound ∞ (# x) = greater tt
compareBound (# x) -∞ = greater tt
compareBound (# x) ∞ = less tt
compareBound (# x) (# y) with compare x y
... | less lt = less lt
... | greater gt = greater gt
compareBound (# x) (# .x) | equal refl = equal refl
Bounds : Set → Set
Bounds A = Bound A × Bound A
Rel : Set → Set₁
Rel A = Bounds A → Set
module _ {A : Set} where
PrfR : Rel A → Rel A
PrfR R b = Prf (R b)
data _∧_ (S T : Rel A) : Rel A where
pivot : ∀ {l u} p → S (l , # p) → T (# p , u) → (S ∧ T) (l , u)
pattern -⟨_⟩- p = pivot p ! !
pattern _⟨_⟩_ l p r = pivot p l r
module _ {A : Set} {{_ : Ord A}} where
Less : Rel A
Less = PrfR (uncurry _<_)
Bounded : Rel A
Bounded = Less ∧ Less
data Color : Set where
red black : Color
module _ (A : Set) {{_ : Ord A}} where
data Tree′ (b : Bounds A) : Nat → Color → Set
Tree : Nat → Color → Rel A
Tree n c b = Tree′ b n c
data Tree′ b where
leaf′ : Less b → Tree 0 black b
red : ∀ {n} → (Tree n black ∧ Tree n black) b → Tree n red b
black : ∀ {c₁ c₂ n} → (Tree n c₁ ∧ Tree n c₂) b → Tree (suc n) black b
pattern leaf = leaf′ !
data PreTree′ (b : Bounds A) (n : Nat) : Color → Set
PreTree : Nat → Color → Bounds A → Set
PreTree n c b = PreTree′ b n c
data PreTree′ b n where
red : ∀ {c₁ c₂} → (Tree n c₁ ∧ Tree n c₂) b → PreTree n red b
maybe-black : ∀ {c} → Tree n c b → PreTree n black b
pattern _b⟨_⟩_ l x r = black (l ⟨ x ⟩ r)
pattern _r⟨_⟩_ l x r = red (l ⟨ x ⟩ r)
pattern _pb⟨_⟩_ l x r = maybe-black (black (l ⟨ x ⟩ r))
pattern _pbr⟨_⟩_ l x r = maybe-black (red (l ⟨ x ⟩ r))
pattern _rbb⟨_⟩_ l x r = red {c₁ = black} {c₂ = black} (l ⟨ x ⟩ r)
module _ {A : Set} {{_ : Ord A}} where
balance-l : ∀ {b c₁ c₂ n} →
(PreTree A n c₁ ∧ Tree A n c₂) b →
PreTree A (suc n) black b
balance-l (((l₁ r⟨ z ⟩ l₂) r⟨ x ⟩ l₃) ⟨ y ⟩ r) =
(l₁ b⟨ z ⟩ l₂) pbr⟨ x ⟩ (l₃ b⟨ y ⟩ r)
balance-l ((l₁ r⟨ z ⟩ (l₂ r⟨ x ⟩ l₃)) ⟨ y ⟩ r) =
(l₁ b⟨ z ⟩ l₂) pbr⟨ x ⟩ (l₃ b⟨ y ⟩ r)
balance-l ((l₁ rbb⟨ x ⟩ l₂) ⟨ y ⟩ r) =
(l₁ r⟨ x ⟩ l₂) pb⟨ y ⟩ r
balance-l (maybe-black l ⟨ y ⟩ r) = l pb⟨ y ⟩ r
balance-r : ∀ {b c₁ c₂ n} →
(Tree A n c₁ ∧ PreTree A n c₂) b →
PreTree A (suc n) black b
balance-r (l ⟨ y ⟩ ((r₁ r⟨ z ⟩ r₂) r⟨ x ⟩ r₃)) =
(l b⟨ y ⟩ r₁) pbr⟨ z ⟩ (r₂ b⟨ x ⟩ r₃)
balance-r (l ⟨ y ⟩ (r₁ r⟨ x ⟩ (r₂ r⟨ z ⟩ r₃))) =
(l b⟨ y ⟩ r₁) pbr⟨ x ⟩ (r₂ b⟨ z ⟩ r₃)
balance-r (l ⟨ y ⟩ (r₁ rbb⟨ x ⟩ r₂)) =
l pb⟨ y ⟩ (r₁ r⟨ x ⟩ r₂)
balance-r (l ⟨ y ⟩ maybe-black r) = l pb⟨ y ⟩ r
ins : ∀ {b c n} → Bounded b → Tree A n c b → PreTree A n c b
ins -⟨ x ⟩- leaf = leaf pbr⟨ x ⟩ leaf
ins -⟨ x ⟩- (red (l ⟨ y ⟩ r)) =
case compare! x y of λ where
less → case ins -⟨ x ⟩- l of λ { (maybe-black l′) → l′ r⟨ y ⟩ r }
greater → case ins -⟨ x ⟩- r of λ { (maybe-black r′) → l r⟨ y ⟩ r′ }
equal → l r⟨ y ⟩ r
ins -⟨ x ⟩- (black (l ⟨ y ⟩ r)) =
case compare! x y of λ where
less → balance-l (ins -⟨ x ⟩- l ⟨ y ⟩ r)
greater → balance-r (l ⟨ y ⟩ ins -⟨ x ⟩- r)
equal → l pb⟨ y ⟩ r
data RedBlackTree (A : Set) {{_ : Ord A}} : Set where
mkT : ∀ {n} → Tree A n black (-∞ , ∞) → RedBlackTree A
module _ {A : Set} {{_ : Ord A}} where
insert : A → RedBlackTree A → RedBlackTree A
insert x (mkT t) with ins -⟨ x ⟩- t
... | l pbr⟨ y ⟩ r = mkT $ l b⟨ y ⟩ r
... | l pb⟨ y ⟩ r = mkT $ l b⟨ y ⟩ r
... | maybe-black leaf = mkT leaf
fromList : List A → RedBlackTree A
fromList = foldr insert (mkT leaf)
toList′ : ∀ {b n c} → Tree′ A b n c → List A → List A
toList′ (leaf′ _) xs = xs
toList′ (l r⟨ x ⟩ r) xs = toList′ l (x ∷ toList′ r xs)
toList′ (l b⟨ x ⟩ r) xs = toList′ l (x ∷ toList′ r xs)
toList : RedBlackTree A → List A
toList (mkT t) = toList′ t []
treeSort : List A → List A
treeSort = toList ∘ fromList
-- Example
test : List Nat
test = treeSort $ 5 ∷ 1 ∷ 2 ∷ 10 ∷ 13 ∷ 0 ∷ 141 ∷ 7 ∷ []
hest : String
hest = show test
main : IO Unit
main = putStrLn hest
| {
"alphanum_fraction": 0.5103896104,
"avg_line_length": 29.9444444444,
"ext": "agda",
"hexsha": "9238894d1fc246acb0cc5a3842f1f5143e0d8edc",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-05-24T10:45:59.000Z",
"max_forks_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-ocaml",
"max_forks_repo_path": "test/agda-ocaml/Golden/RedBlack.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec",
"max_issues_repo_issues_event_max_datetime": "2018-11-05T21:28:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-29T13:37:52.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-ocaml",
"max_issues_repo_path": "test/agda-ocaml/Golden/RedBlack.agda",
"max_line_length": 80,
"max_stars_count": 48,
"max_stars_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-ocaml",
"max_stars_repo_path": "test/agda-ocaml/Golden/RedBlack.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-15T09:08:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-29T14:19:31.000Z",
"num_tokens": 2244,
"size": 5390
} |
-- Andreas, 2018-06-19, issue #3130
module Issue3130 where
-- A pattern variable should not shadow a postfix projection
-- in the same scope.
module Shadow where
record R : Set₁ where
field y : Set → Set
open R
-- Should succeed or maybe complain about pattern variable y,
-- but not about the postfix projection pattern.
test : R
test .y y = y
-- Disambiguation
module Parens where
record R : Set₁ where
field p : Set
open R
data D : (R → Set) → Set₁ where
c : D p
test : (f : R → Set) (x : D f) → Set₁
test .(p) c = Set
| {
"alphanum_fraction": 0.6402116402,
"avg_line_length": 17.1818181818,
"ext": "agda",
"hexsha": "f121c4aee68c5bdf003823fc0d24ea6d0e58ed0a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3130.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3130.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3130.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 177,
"size": 567
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.